Understanding the role of the transcription factor MGA in primordial germ cell differentiation

Dissertation

for the award of the degree
"Doctor of Philosophy"
Division of Mathematics and Natural Sciences
of the
Georg-August-Universität Göttingen

Within the doctoral program
'International Max Planck Research School for Genome Science'
Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences
(GGNB)

IMPRS
for Genome Science
INTERNATIONAL MAX PLANCK RESEARCH SCHOOL
submitted by

Erica Calabrese

from Bologna, Italy

Dr. Ufuk Günesdogan

Göttingen Center for Molecular Biology, Department of Developmental Biology, Göttingen, Germany

Prof. Dr. Henning Urlaub
Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Göttingen, Germany

Dr. Johannes Söding
Max Planck Institute for Multidisciplinary Sciences, Quantitative and Computational Biology, Göttingen, Germany

Members of the Examination Board

Dr. Ufuk Günesdogan (1st reviewer)
Göttingen Center for Molecular Biology, Department of Developmental Biology, Göttingen, Germany

Prof. Dr. Henning Urlaub (2nd reviewer)
Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Göttingen, Germany

Further members of the Examination Board

Dr. Johannes Söding
Max Planck Institute for Multidisciplinary Sciences, Quantitative and Computational Biology, Göttingen, Germany

Prof. Dr. Heidi Hahn
University Medical Center Göttingen, Department of Human Genetics, Section of Developmental Genetics, Göttingen, Germany

Prof. Dr. Argyris Papantonis

University Medical Center Göttingen, Institute of Pathology, Göttingen, Germany

Prof. Dr. Elisabeth Heßmann,
University Medical Center Göttingen, Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, Göttingen, Germany

Date of oral examination: January 20, 2023

Science does not know its debt to imagination.
-Ralph Waldo Emerson

Acknowledgements

This long journey could not have been completed without the valuable contributions and unwavering encouragement of many people. Therefore, I would like to extend my heartfelt gratitude to all of them.

First and foremost, I would like to thank my supervisor Dr. Ufuk Günesdogan for giving me the great opportunity to carry out my PhD in his lab under his supervision. I'm really grateful that he gave me enough freedom to explore and develop my interests and ideas. He guided and encouraged me to be a better scientist. Thanks a million!

I also would like to express my gratitude to my TAC members, Prof. Dr. Henning Urlaub and Dr. Johannes Söding, as every meeting with you gave me new insight into my project and allowed me to explore new angles with your advice. A special thanks to Prof. Dr. Henning Urlaub and Dr. Ralf Planz for the collaboration and experimental support, which was essential for the completeness of my project. I would like to thank Prof. Dr. Heidi Hahn, Prof. Dr. Argyris Papantonis and Prof. Dr. Elisabeth Heßmann, who agreed to serve on my examination board.

I would like to express my gratitude to my PGC celebrities, Xiaojuan and Cera. Xiaojuan, or as I like to call her, my "Pretty woman in the morning," meeting you was one of the best parts of my PhD journey. We started this journey together, and you have become a dear friend over the years. I am grateful for the time we have spent together, the laughs, the movies, and how much I have learned from you, both scientifically and personally. As we started this journey together, it is only fitting that we finish it together while watching "Mouse hunt". Cera, you were the first person I met from the lab, and from that moment, I have appreciated your great support and friendship. We have spent countless hours in the lab together, including too many hours in cell culture, and I cherished our fun nights. I hope to see you soon. Finally, Dominik, you are a great colleague and friend, always smiling and ever helpful. Your presence always reassures me, and I value the good memories we have shared, except maybe for your love for Pfeffy. I would also like to thank all the other members of the lab, including Julia, Oleksandr and Carmela, for the good times we shared together.

I would also like to express my gratitude to everyone in the Department of Developmental Biology, particularly Prof. Ernst Wimmer, as well as the technicians and secretaries for creating such a great environment. I am grateful for my great moments with Salim, Ting, Costanza, Bibi, Georg, Gordon, Hassam, Hazem, and Noel over the last four years. I loved being part of the International Max Planck Research School for Genome Science (IMPRS-GS) in such an inspiring environment for learning and seeking advice. I would like to extend special thanks to the program coordinator, Dr. Henriette Irmer, and Frauke Bergmann, for their constant support, as well to all the members of this amazing program.

I would like to thank all my friends. My LAMA lab - Marti, Ila, Lory, and Michy - whom I met during university as we shared our passion for science. Since then, I consider you my "soul friends." Even with the distance between us, your messages and our "Skyppate" were moments of intense laughter, and it was always comforting to know we were there for each other. I cannot forget to mention my "Marpie"-Ludo and Lety. You are incredible friends, and I am always happy to share moments with you. Lastly, Niki and Je, we have known each other since we were little. Over the years, we have shared many moments in our lives, good and bad, but importantly, we have grown up together. I am very happy that you will also be part of this moment.

Finally, I would like to thank my family, with special thanks to my GrandMa. Thank you for your unconditional love and for always making me feel special. To my sister, Chiara, you are my source of inspiration. Every day, thinking about you helps me overcome the impossible. And to my lovely mom, Gigla, "Your heart is my home." I am grateful for your love and support throughout the years. You have always believed in me and encouraged me to keep going. Thank you from the bottom of my heart.

Summary

One of the most crucial cell lineage decisions in mammalian embryos is the differentiation of a few pluripotent epiblast cells into primordial germ cells (PGCs). PGCs are unique for their ability to mature into either sperm or egg, enabling species survival and transmitting genetic and epigenetic information. Remarkably, the spatiotemporal coordination of signal pathways induces a mesoderm T-box factor, T, to initiate the PGC gene expression program, diverging from the mesodermal formation. Although significant progress has been made in identifying the signal pathways, transcription factors, and chromatin remodelers involved in PGC specification, the precise molecular mechanisms leading to this exclusive lineage choice remain unknown. Therefore, it is becoming increasingly evident that novel factors are responsible for this critical cell fate determination and need to be identified.

One ideal candidate for investigating the control of gene expression during PGC differentiation is the transcription factor MGA (Max's giant-associated protein). MGA stands out as a unique transcription factor, harbouring three distinct domains (T-box, bHLH/Zip, DUF4801) and is associated with three diverse families of developmental proteins: T-box factors, MAX-interacting proteins, and Polycomb repressive complex 1.6 (PRC1.6). During early mouse development, MGA expression is observed in the epiblast cells of both preand post-implantation embryos, and its abrogation leads to early embryonic lethality. Therefore, considering MGA's structural properties and its essential role in the survival of epiblast cells, which give rise to various fetal cell lineages, including PGCs, it is reasonable to propose that MGA has the potential to influence the development of multiple tissues and exhibit tissue-specific functions. However, despite these properties, the specific role of MGA in PGC differentiation has never been explored.

In this study, I aim to reveal the role of the transcription factor MGA during PGC differentiation.
For this purpose, I used a well-established in vitro model that mimics early mouse PGC development by progressively differentiating embryonic stem cells (ESCs) into epiblast-like cells (EpiLCs) and subsequently inducing the formation of PGC-like cells (PGCLCs). Then, I employed a combination of genetic and proteomic approaches to explore the function of MGA in the context of PGC differentiation.

In Chapter 1, I present the main findings of my study. Using an auxin-inducible degron system, I show that depletion of MGA impairs PGCLC induction, further evidenced by a significant increase in the expression of meiotic genes and reduced expression of PGC markers. Indeed, CUT\&RUN sequencing analysis from ESCs towards PGCLCs reveals that MGA dynamically binds to and thereby controls the expression of crucial genes involved in pluripotency, epiblast development, and germ cell formation. Furthermore, motif analysis indicates that MGA works in conjunction with pluripotency and T-box factors. Notably, among all MGA domains, the T-box domain is essential in regulating the expression of PGC-specific genes, as its deletion leads to their premature expression.

Interestingly, the MGA interactome analysis uncovers a highly dynamic network of interaction partners during PGCLC differentiation. Indeed, despite the presence of PRC1.6 members and the confirmation of
pluripotency factors only in ESCs, the data also reveal an unexpected interplay between MGA and RNAbinding proteins, suggesting that MGA may play a more complex role in regulating gene expression.

In Chapter II, I investigate the structure and function of MGA's Domain of Unknown Function 4801 (DUF4801) during PGCLC differentiation. I show that deletion of the DUF4801 domain has a significant impact on MGA's canonical binding sites, resulting in the loss and gain of genes involved in neurogenesis and endoderm fate. Consequently, despite the significant alterations observed in the transcriptome of PGCLCs, the lack of a severe phenotype strongly suggests the involvement of compensatory mechanisms in response to the deletion of the DUF4801 domain. Thus, my data suggest that the DUF4801 domain may have an impact on controlling gene expression and regulating cellular processes.

Table of Contents

Thesis Advisory Committee 2
Acknowledgements 4
Summary 6
Introduction 9

1. Primordial germ cell development 10
1.1 Specification of primordial germ cells 11
1.2 Migration and proliferation: Phase I of epigenetic reprogramming 12
1.3 Colonization of the genital ridge: Phase II of epigenetic reprogramming 14
1.4 Sex determination and Meiosis 15
2. MGA: a dual transcription factor 17
2.1 MGA is a unique member of the T-box gene family 17
2.2 MGA and BMP signalling 19
2.3 MGA acts as repressor of germ cell fate 20
2.4 MGA and cancer 22
3. Aim of this thesis 23
Results 24
Chapter I- MGA coordinates cell-state transitions of developing mouse primordial germ cells. 25
Abstract 26
Introduction 27
Results 29
Discussion 45
Materials and Methods 48
Chapter II - Structure and function of DUF4801 domain of MGA 71
Abstract 72
Introduction 73
Results 74
Discussion 80
Material and methods 82
Discussion 88
Literature 93
Abbreviations 107
Curriculum Vitae 108

Introduction

Numerous cell fate decisions and lineage choices are made during embryogenesis to form a whole organism. This process depends on the spatiotemporal coordination of signal pathways, sequence-specific transcription factors, and chromatin-modifying proteins, which establish a read-out of a specific gene expression program. However, such networks often induce a cellular state to differentiate into multiple different cell lineages within the same spatial and temporal windows throughout development. Therefore, understanding the molecular mechanisms that ensure the correct cell identity remains an important question in developmental biology.

In the following chapters, I will provide an overview of murine germ cell development, starting from the induction of germ cell fate in the embryo to the colonization of the genital ridge. I will highlight the unique features of germ cells with a particular focus on the signalling pathways, transcription factors, and epigenetic reprogramming involved. Then, I will discuss the role of the transcription factor MGA, which is the focus of this work, and its potential involvement during this early cell fate decision.

1. Primordial germ cell development

In mammals, the fusion of sperm and oocyte results in the generation of the zygote, a single totipotent cell, which initiates a cascade of cell divisions leading to the formation of the early blastocyst at embryonic day (E) 3.5 (Zernicka-Goetz, Morris, and Bruce 2009). Two cell populations are distinguished in the early blastocyst: the pluripotent inner cell mass (ICM) and the outer layer trophectoderm (TE). Subsequently, in the late blastocyst (E4.5), the ICM segregates into the pre-implantation epiblast (EPI) and the primitive endoderm (PE) lineages (Zernicka-Goetz, Morris, and Bruce 2009; Tang et al. 2016). The TE and PE give rise to the extra-embryonic components, including the future placenta and yolk sac, whereas the EPI generates the future foetus (Tang et al. 2016). Following implantation, the epiblast cells in the posterior region of the embryo give rise to a small cluster of cells known as primordial germ cells (PGCs), which possess the unique ability to generate gametes and pass on genetic and epigenetic information from one generation to the next (Surani 2007) (Figure1). Their differentiation is crucial to ensure the survival of species. PGC specification from epiblast cells results from a combinatorial action of signalling pathways, transcription factors, and chromatin remodelers. However, even though many of these factors were previously identified, the molecular mechanisms responsible for the unique biology of PGCs still need to be better understood.

Figure 1. The origin of the mouse germline. Germ cell development in mice starts with the fertilization of the zygote, which undergoes cell division to form a blastocyst (E3.5). Then, at E4.5, the ICM segregates into EPI and TE. After implantation, the EPI gives rise to PGCs (green). EPI, epiblast; TE, trophectoderm; ICM, inner cell mass; PE, primitive endoderm; ExE, Extra embryonic ectoderm; PGCs, primordial germ cells.

1.1 Specification of primordial germ cells

The specification of PGCs between species can be categorized into two different modes: pre-formation and epigenesis. The pre-formation mechanism is based on the localization of maternal inheritance of key factors, known as germplasm in the oocyte, which drive germ cell formation in the embryo. Germ plasm or equivalent was identified in organisms such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis (Extavour and Akam 2003). In contrast, mammals do not 'pre-determine' PGC fate but induce PGCs through extracellular signalling.

PGCs in mouse embryos were discovered as a cluster of 40 alkaline phosphatase (AP)-positive cells, originating from post-implantation epiblast cells most proximal to the extraembryonic ectoderm at E6.5 (Chiquoine 1954; Ginsburg, Snow, and McLaren 1990; Lawson and Hage 1994). The molecular network that drives PGC development includes the transcription factor BLIMP1 (encoded by Prdm1) (Mitinori Saitou, Barton, and Surani 2002; Ohinata et al. 2005). Its expression starts at around E6.25 in the proximal epiblast cells, followed by PRDM14 and AP2 (encoded by Tfap2c) (Ohinata et al. 2005; Yamaji et al. 2008; Kurimoto et al. 2008). Conditional knockout of any of these factors in the germline results in impaired development of PGCs, demonstrating that these factors are required for PGC fate (Ohinata et al. 2005; Vincent et al. 2005; Yamaji et al. 2008; Weber et al. 2010; Kurimoto et al. 2008).

At least two signalling pathways are involved in the specification of PGCs: the BMP pathway and WNT signalling. BMP4 and BMP8b are expressed in the extraembryonic ectoderm (ExE), and their secretion toward the adjacent epiblast induces PGCs (Lawson and Hage 1990; Lawson et al. 1999). Mice lacking BMP4 and BMP8b show a complete loss of PGCs, demonstrating their essential role in PGC specification (Lawson et al. 1999; Yamaji et al. 2008; Ohinata et al. 2009; Ying, Qi, and Zhao 2001). BMP signalling acts through BMP receptors (ALK2) and/or BMP signal-transducing proteins (SMAD1, SMAD4, SMAD5) (Mitinori Saitou and Yamaji 2010). In addition to BMP signalling, WNT signalling is also involved in PGC specification, expressed in the posterior endoderm and the epiblast around E5.5-6.5. WNT3A has been proposed as essential for the epiblast's responsiveness to BMP4 (Ohinata et al. 2009; Tanaka et al. 2013).

It is technically challenging to study early PGC development, mainly due to the limited cell numbers, ~ 40 cells per embryo shortly after specification. Thus, an in vitro system was established to overcome these limitations, recapitulating PGC differentiation in vivo. Mouse embryonic stem cells (mESCs), derived from the pre-implantation epiblast, can differentiate into epiblast-like cells (EpiLCs), resembling cells of the early post-implantation epiblast (Hayashi et al. 2011). EpiLCs can be further differentiated into PGC-like cells (PGCLCs), which can give rise to functional sperm and egg (Hayashi et al. 2011; 2012; Hikabe et al. 2016). This in vitro system has provided a solid platform for characterizing the signalling principles of PGC specification (Hayashi et al. 2011; 2012), leading to new discoveries on how PGCs are specified.

It has been shown that BMP4 signalling is necessary to directly or indirectly activate WNT3 signalling, creating an appropriate context for PGC specification (Aramaki et al. 2013). WNT3A, in turn, induces the expression of the mesodermal transcription factor T (also known as Brachyury) (Aramaki et al. 2013).

T belongs to the T-box family of transcription factors required for the expression of mesodermal genes to promote the differentiation of epiblast cells into mesodermal somatic cells at E6.5 (Herrmann et al. 1990; Papaioannou 2014a). Unexpectedly, in this developmental context, T is required to activate the two germline determinants, BLIMP1 and PRDM14, binding their putative enhancers (Aramaki et al. 2013).

BLIMP1 induces the expression of AP2 γ, whose expression is maintained by PRDM14. The co-expression of these three genes is sufficient to induce PGCs in vitro, suggesting that they are key determinants of PGC fate (Magnúsdóttir et al. 2013). This tripartite genetic network controls subsequent events required for PGC development, including the repression of somatic genes, the transient re-establishment of pluripotency, and epigenetic reprogramming (Kurimoto et al. 2008; Yamaji et al. 2008; Magnúsdóttir et al. 2013).
The re-establishment of pluripotency involves the expression of OCT4 (encoded by Pou5f1), SOX2, and NANOG in PGCs. While OCT4 expression persists throughout early embryonic development in the epiblast and PGCs, SOX2 and NANOG are first downregulated in post-implantation epiblast cells and later reexpressed in PGCs (Kurimoto et al. 2008; Yabuta et al. 2006). Consistently, conditional knockout results in the loss of PGCs through defects in apoptosis and proliferation, strongly indicating their function in maintaining PGCs (Campolo et al. 2013; Kehler et al. 2004; Yamaguchi et al. 2009; Chambers et al. 2007). Interestingly, the overexpression of Nanog in EpiLCs is sufficient to induce PGCs by directly activating Prdm1 and Prdm14 expression independently of BMP4 (Murakami et al. 2016). In vivo, this could mean cooperation between BMP4 and NANOG in PGC specification (Murakami et al. 2016). However, the direct role of pluripotency factors in PGCs is still unclear.

In summary, PGC specification relies on the action of two different signalling pathways, BMP and WNT, which induce the expression of the germline determinants BLIMP1, PRDM14 and AP2 γ. These three factors control the molecular events required for early PGC development. However, further work is needed to better understand the underlying molecular mechanisms.

1.2 Migration and proliferation: Phase I of epigenetic reprogramming

After PGCs are specified, they proliferate and migrate towards the developing gonads. Their migration starts from the extraembryonic mesoderm to the developing hindgut endoderm, and then finally, they reach the genital ridges by E10.5 (Molyneaux et al. 2001; Seki et al. 2007; Richardson and Lehmann 2010). During their migration, PGCs require the presence of different signals, such as the receptor tyrosine kinase C-KIT and its ligand STEEL, to guarantee their survival, proliferation and motility (Richardson and Lehmann 2010). Migration is accompanied by the first wave of epigenetic reprogramming, which entails changes in histone modifications and DNA methylation.

The first described chromatin changes that PGCs encounter at E8.0 are the global loss of the repressive histone mark H3 lysine 9 dimethylation (H3K9me2), immediately followed by a global increase of H3 lysine

27 trimethylation (H3K27me3) (Hajkova et al. 2008; Seki et al. 2005; 2007). The erasure of H3K9me2 is potentially triggered by the downregulation of GLP, known as G9a-like protein, that forms a complex with the histone methyltransferase G9a that methylates H3K9, leading to transcriptional repression (Tachibana et al. 2005). During these changes, there is a transcriptional quiescence until the complementary enrichment of H3K27me3 levels (Seki et al. 2007). In addition, PGCs exhibit an increase in the histone modifications H3 lysine 4 di-, tri-methylation (H3K4me2/3) and H3 lysine 9 acetylation (H3K9ac), as well as the repressive histone H2A/H4 arginine 3 symmetrical methylation (H2A/H4R3me2s) (Hajkova et al. 2008). The latter is due to the translocation of the protein arginine methyltransferase PRMT5 from the cytoplasm to the nucleus, where it interacts with BLIMP1 (Ancelin et al. 2006).

Notably, in concomitance with global changes in histone modifications, global DNA demethylation occurs from E8.5 onwards (Seki et al. 2005; Guibert, Forné, and Weber 2012). Whole genome bisulfite sequencing (WGBS) has revealed that methylation levels in PGCs decrease to 30% at E9.5 compared to 70% at the developmental stage E6.5, with reductions occurring in the gene body, promoters, and intergenic regions (Seisenberger et al. 2012). However, at this stage, methylation levels remain stable at retrotransposons, imprinting control regions, and germline-specific promoters in PGCs (Seisenberger et al. 2012; Guibert, Forné, and Weber 2012). Therefore, PRMT5 protects genomic integrity during DNA demethylation by repressing transposable elements (S. Kim et al. 2014) (Figure 2).

Figure 2. Epigenetic reprogramming in PGCs. A summary of the main signalling, transcriptional, and epigenetic events occurring in PGCs from E6.5 to E12.5. PGC specification occurs from E6.5 to E7.25 and results from the interplay of two signalling pathways: BMP4 secreted from ExE (yellow) and WNT3 from EPI (orange), which leads to the expression of germline tripartite factors BLIMP1, PRDM14, and AP2 2 (green). After their specification, PGCs migrate (indicated by the green arrow) and proliferate during PGC reprogramming phase I (E8.5-E10.5) and phase II (E10.5-E12.5), driven by different histone modifications and changes in DNA demethylation.

1.3 Colonization of the genital ridge: Phase II of epigenetic reprogramming

The second phase of epigenetic reprogramming occurs around E11.5 when most PGCs reach the genital ridges and colonize them. The developmental stages between E10.5 and E13.5 are subject to a transient change and loss of histone modifications, primarily associated with further extensive global DNA demethylation. DNA demethylation occurs mainly at germline promoters, repetitive elements and imprinted genes (Hajkova et al. 2002; Seisenberger et al. 2012; Guibert, Forné, and Weber 2012; Hill et al. 2018). Indeed, the methylation level reached by PGCs at this developmental stage is one of the lowest points observed at any time during development (Hill, Amouroux, and Hajkova 2014). The erasure of DNA methylation at imprinted genes is necessary to properly establish parental identity, as these genes are expressed from only one parental allele (Bartolomei and Ferguson-Smith 2011).

In somatic cells, methylation of imprinted genes is maintained, except in PGCs where, at E13.5, the differentially methylated regions of genes, including lgfr2 or H19, are hypomethylated and subsequently reestablished after sex-determination (Sato et al. 2003).

Two parallel mechanisms have been proposed to coordinate the global loss of DNA methylation: a passive mechanism, which involves the downregulation of DNA methyltransferases, and an active mechanism, which involves the active removal of methyl groups from DNA (Hackett et al. 2012). The passive demethylation mechanism is mainly attributed to the regulation of DNA methyltransferases, including DNMT1 (DNA methyltransferase 1). DNMT1 maintains a DNA methylation pattern during DNA replication by methylating cytosines in the newly synthesized DNA strand (Sharif et al. 2007). Although DNMT1 is expressed in PGCs, its recruiting factor UHRF1 is downregulated, suggesting that the inefficient localization of DNMT1 contributes to global DNA demethylation in PGCs (Sharif et al. 2007; Bostick et al. 2007). Additionally, the expression of the two de novo DNA methyltransferases (DNMT3A and DNMT3B) is repressed in PGCs from their specification until E13.5 (Kagiwada et al. 2012). This suggests that passive DNA demethylation contributes to the global DNA demethylation in PGCs.

The active DNA demethylation mechanism in PGCs is associated with the enzymatic activity of two families of enzymes. The family of ten-eleven translocation (TET1, TET2, and TET3) enzymes catalyses the oxidation of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) and/or other derivatives (Hackett, Zylicz, and Surani 2012). These cytosines can be removed enzymatically and replaced by an unmethylated cytosine during DNA replication, as they are only poorly recognized by DNMT1 (Hackett et al. 2013; Tang et al. 2016). However, it has been proposed that TET enzymes might have only a minor role in PGCs (Hill et al. 2018; Yamaguchi et al. 2012). TET1 loss does not impair genome-wide DNA methylation in PGCs; instead, it increases methylation levels on the promoters of key germline genes, including meiotic genes and imprint control regions (Hill et al. 2018; Yamaguchi et al. 2013). These data suggest that TET proteins may play a role in demethylating specific loci instead of promoting global DNA demethylation (Hill et al. 2018).

In addition, the activation-induced cytidine deaminase (AID) family can deaminase 5 hmC and be followed by T: G base excision repair by glycosylases (Popp et al. 2010). In PGCs, loss of AID leads to hypermethylation
compared to wild-type embryos (Popp et al. 2010). However, the methylation level still decreases significantly in AID mutants, suggesting that the AID demethylation process works with other active and or passive mechanisms (Matsui and Mochizuki 2014).

The loss of DNA methylation is associated with the activation of a set of germline reprogramming-responsive genes. The expression of meiotic genes, such as Ddx4, Scp3 and Dazl, is induced in PGCs between E10.5 and E11.5 (Maatouk et al. 2006) (see Figure 2). Their expression depends on the methylation level of their promoter regions. Accordingly, embryos lacking DNMT1 prematurely upregulate these methylationdependent genes (Maatouk et al. 2006). Notably, recent studies in mESCs have reported that the promoter regions of these meiotic genes are bound by transcription factors of the Polycomb repressive complex 1.6 (PRC1.6), which I will describe in detail in section 2.3 (Stielow et al. 2018; Mochizuki et al. 2021). This might suggest that their upregulation during DNA demethylation in PGCs requires a simultaneous depletion of polycomb marks. Further investigation is needed to clarify how these results relate to the process of hypomethylation.

The second wave of epigenetic reprogramming is also associated with changes in histone modifications. During E10.5 and E11.5, the histone marks of H3K9me3 and H3K27me3, along with linker histone H1, are transiently lost but are subsequently re-established at E12.5 (Hajkova et al. 2008).

In summary, developing PGCs erase or change epigenetic information, including DNA methylation and histone modifications. DNA demethylation in PGCs is complex and likely involves a combination of active and passive processes.

1.4 Sex determination and Meiosis

Once the global wave of DNA methylation and chromatin reorganization is completed, PGCs acquire the ability to differentiate into either sperm or oocytes. This developmental process is initiated by the expression of DAZL, an RNA-binding protein, which licenses the PGCs to become gametogenesis-competent cells and triggers the onset of meiosis, a specialized cell division process that produces haploid gametes (Gill et al. 2011; Nicholls et al. 2019). Nevertheless, the timing of meiotic onset differs between the sexes, marking the beginning of sexual differentiation.

The male genital ridges initiate the development of testicular structures required for spermatogenesis via SRY, a sex-determination gene located on the Y chromosome (Koopman et al. 1991). Downstream genes, including Sox9, are upregulated by SRY and promote the differentiation of somatic precursor cells into Sertoli cells, which direct germ cell development towards the male program (Sekido et al. 2004; Sekido and LovellBadge 2008). FGF9, a ligand produced by Sertoli cells, suppresses meiosis by breaking down retinoic acid and inducing the expression of the germ cell-specific gene Nanos2, an RNA-binding protein (Atsushi Suzuki and Saga 2008; Barrios et al. 2010). Then starting at E13.5, Nanos2 binds to meiosis-specific mRNAs, such as Stra8 and Sycp3, and represses meiotic initiation (Atsushi Suzuki et al. 2010). Between E12.5 and E14.5, male
germ cells enter G1/G0 mitotic arrest, and after birth, XY germ cells resume mitotic proliferation and develop into spermatogonial progenitor cells (Western et al. 2008). These cells ultimately enter meiosis at puberty to complete gametogenesis (Hajkova et al. 2002).

The process of female sex specification is distinct from that of males and is initiated by the WNT/ β-catenin signalling pathway (Maatouk et al. 2008). In females, the absence of SRY expression in the gonad results in the differentiation of somatic cells into pre-granulosa cells, which produce two signalling factors, WNT4 and RSPO1 (Maatouk et al. 2008; Vainio et al. 1999; Parma et al. 2006). These factors promote the female differentiation program by downregulating Sox9 in surrounding somatic cells (Chassot et al. 2008; Y. Kim et al. 2006). By E13.5, female germ cells begin downregulating pluripotency markers and entering meiosis, expressing genes essential for this process between E12.5 and E16.5 (Pesce et al. 1998). Stra8 is one of the first genes expressed and is essential for entering meiosis as mice are infertile in its absence (Baltus et al. 2006; Anderson et al. 2008). At E13.5, two proteins involved in meiotic prophase I, Sycp3 and Rec8, are expressed, marking the start of this phase (Syrjänen, Pellegrini, and Davies 2014). During meiotic prophase I, female germ cells condense, pair, and recombine their homologous chromosomes until they arrest in the diplotene stage (X. Wang and Pepling 2021). At puberty, they resume meiosis, complete the first division, separate the homologous chromosomes, and then arrest again in metaphase II. The second meiotic division is only completed after fertilization, resulting in haploid germ cells (Handel and Schimenti 2010).

2. MGA: a dual transcription factor

The cooperation of different families of transcription factors is the driving force in establishing gene expression during PGC differentiation. Transcription factors bind specific DNA sequence motifs embedded in chromatin, such as promoters and enhancers, via specific domains. Therefore, the amino acid sequence homology of the protein domains has been used to classify them into different families and unveil their putative functions. The transcription factor MGA (Max's giant associated protein), which is the focus of this thesis, has a complex structure and belongs to three families of proteins. These families are known to control gene expression during cell differentiation towards PGCs, which will be described in the next sections.

2.1 MGA is a unique member of the T-box gene family

Members of the T-box gene family are transcription factors which control a cascade of gene expression events required for various developmental processes and lineage specification (Papaioannou 2014b). All members harbour a conserved T-box domain, which binds DNA sequences known as T-box binding elements (TBE). Subsequently, they may act as transcriptional activators, repressors, or both. Moreover, the T-box domain not only binds DNA but also facilitates the interaction with chromatin remodelers such as histone methyltransferases, demethylases, acetyltransferases and deacetyltransferases, regulating the permissiveness of the chromatin environment (Beisaw et al. 2018; Istaces et al. 2019; M. D. Lewis et al. 2007; Miller et al. 2008; Miller, Mohn, and Weinmann 2010). Studies in vivo highlighted the importance of these proteins in diverse processes, including cell proliferation, migration, cell fate and tissue morphogenesis, as their loss often results in embryonic lethality (Papaioannou 2014a). As an example, the founding member of this family, T/Brachyury, was discovered in mouse by the short-tailed heterozygous phenotype, while homozygous mutants were not viable (Stott, Kispert, and Herrmann 1993). T is required for the proper specification of mesoderm during gastrulation (Kispert 1995). However, as described in section 1.1, in the post-implantation epiblast, T also activates the expression of crucial germline determinants to ensure PGC specification (Aramaki et al. 2013). It is important to note that embryos lacking T show an initial expression of BLIMP1, although they failed to express PRDM14 and do not form PGCs (Aramaki et al. 2013). This led to the hypothesis that another T-box factor, expressed from E6.25 onward, could also be required for the initial up-regulation of germline determinants (Aramaki et al. 2013). Several lines of evidence suggest that one possible T-box factor involved in this context could be MGA.

MGA is a very large and complex transcription factor of $\sim 300 \mathrm{kDa}$ characterized by two heterotypic DNA binding domains (Hurlin et al.,1999). Therefore, MGA belongs not only to the T-box gene family but also to
the conserved family of the MAX interacting network. The MAX interacting network comprises the MYC family of oncoproteins and a group of MYC antagonists such as MNT and MXD1-4. These proteins control many aspects of cell behaviour, including cell proliferation and tumorigenesis (Hurlin and Huang 2006; Amati et al. 1993). To act as transcription factors, these proteins heterodimerize with the small basic helix-loophelix leucine zipper (bHLH/Zip) protein, MAX, which is required for their specific DNA binding to E-box sequences (Hurlin and Huang 2006). MGA was first identified in a screening for interaction partners of MAX in mice, as it harbours the same bHLH/Zip DNA-binding dimerization domain in the C-terminal region (Hurlin et al., 1999). The bHLH/Zip domain makes MGA unique among the T-box genes, which generally only have a single central T-box domain suggesting it might control gene expression of various biological processes. In mouse embryos, MGA expression is along with some members of the T-box family, such as T, EOMES and TBX3, as well as MAX (Figure 3) (Papaioannou 2014b; Shen-Li et al. 2000). During mouse pre-implantation at E3.5, the ICM is characterized by the expression of MGA, TBX3, and MAX, while the TE expresses EOMES and MAX (Yoshikawa et al. 2006; Shen-Li et al. 2000; Russ et al. 2000; Showell, Binder, and Conlon 2004; 2004). Following implantation at E6.5, MGA is highly expressed only in epiblast cells, and its expression overlaps with T and EOMES in the posterior proximal epiblast, which is the embryonic location where PGC specification occurs (Yoshikawa et al. 2006; Shen-Li et al. 2000; Russ et al. 2000; Showell, Binder, and Conlon 2004; Papaioannou 2014b). T and EOMES are also expressed in ExE, while TBX3 is presented in extraembryonic endoderm (ExEn). MAX expression is maintained in all embryonic and extraembryonic structures (Russ et al. 2000; Shen-Li et al. 2000). At E7.5, MGA expression is still limited to epiblast cells, while EOMES was found in the chorion, T in the core of the allantois, primitive streak and node, TBX3 in the developing yolk sac and MAX is still widely expressed in all tissues (Burn et al. 2018; Papaioannou 2014b; Shen-Li et al. 2000).

During organogenesis (E8.5-E10.5), MGA and MAX are widely expressed in various structures such as the nervous system, reproductive systems, heart, and limbs (Hurlin et al., 1999). MGA's constant expression in epiblast cells, the precursors of PGCs and other somatic cell types, indicates that MGA plays a crucial role in early embryonic cell fate decisions and potentially has a role in PGCs specification.

Deletion of Mga causes peri-implantation lethality in embryos between E3.5 and E6.5. Although Mga null embryos develop into a blastocyst with PE, the epiblast cells undergoes apoptosis (Washkowitz et al. 2015; Burn et al. 2018). Interestingly, the Mga mutant phenotype is similar to the deletion of pluripotency factors, such as Pou5f1 (encoded by OCT4) and Sox2 (Nichols et al. 1998; Avilion et al. 2003), which are also essential in maintaining PGCs as discussed in section 1.1. Despite this, Mga mutants still express pluripotency genes. However, the increase in apoptosis leads to embryonic lethality caused by the defective development of the ICM and EPI (Washkowitz et al. 2015). Similarly, in vitro, mESCs lacking Mga display a growth defect, exhibiting impaired self-renewal and spontaneous differentiation to primitive endoderm (Washkowitz et al. 2015; Qin et al. 2021).

Figure 3. Expression profile of T, TBX3, EOMES, MGA and MAX during mouse pre- and post-implantation embryo development. The figure depicts the expression pattern in various embryonic structures such as AVE (anterior visceral endoderm), EPC (ectoplacental cone), ExE (extraembryonic ectoderm), ExEn (extraembryonic endoderm), ICM (inner cell mass), TE (trophectoderm), and VE (visceral endoderm). This figure is adapted from Papaioannou 2014.

2.2 MGA and BMP signalling

The Mga gene is highly conserved among vertebrates and its mRNA is maternally deposited in zebrafish oocytes, where it is expressed during embryogenesis in the anterior regions (Rikin and Evans 2010). Depletion of Mga through morpholino-mediated gene knockdown revealed its essential role in organogenesis, as it led to defects in brain, heart, and gut development (Rikin and Evans 2010). During zebrafish embryonic gastrulation, it was discovered that MGA forms a complex with SMAD4 and MAX to modulate BMP signalling (Sun et al. 2014). Additionally, MGA is localized not only in the nucleus but also in the cytoplasm, where it associates with BS69, a protein that selectively recognizes the histone variant H3.3 lysine 36 trimethylation (H3.3K36me3), thereby modulating RNA Polymerase II elongation (Guo et al. 2014). MGA antagonizes BS69 to promote BMP signalling activity (Sun et al. 2018).

These findings suggest that MGA may play a crucial role in controlling BMP signalling, which is also essential for PGC specification in mice. Furthermore, the presence of MGA in the cytoplasm suggests that it may have an independent role in addition to its DNA-binding activity.

2.3 MGA acts as repressor of germ cell fate

MGA, together with MAX, was purified with epigenetic factors such as PCGF6, RING1A/B, YAF2, L3MBTL2, CBX3, and the transcription factor E2F6 (Gao et al. 2012). Components of this complex were classified as members of the non-canonical Polycomb repressive complex 1.6 (ncPRC1.6) (Ogawa et al. 2002; Gao et al. 2012). In detail, Polycomb group (PcG) proteins play a fundamental role in controlling gene expression during development. The first PcG gene was discovered in Drosophila, and it was shown to be required for stable repression of Hox genes (Lewis,1947; E. B. Lewis 1978). Mutations in PcG genes lead to a homeotic transformation of anterior segments into posterior ones, demonstrating the essential role of Polycomb in preventing incorrect body segmentation (E. B. Lewis 1978). Subsequent genetic screening has expanded the list of annotated PcG genes that exhibit similar homeotic transformations (Jurgens,1985; Duncan,1982;Kennison 1995). In mammals, the number of PcG orthologs has increased, although their major role as regulators during development is conserved across species (Schuettengruber et al. 2017).

PcG proteins exert different molecular activities in two large multiprotein complexes: Polycomb repressive complex 1 (PRC1) and PRC2 (Margueron and Reinberg 2011). In mammals, the different complexes are defined by conserved core subunits that post-translationally modify histones. PRC1 catalyses monoubiquitination of Lys 119 of H2A (H2AK119ub1) through E3 ligase activity, whereas PRC2 has a methyltransferase activity and catalyses H3K27me1/2/3. Furthermore, PRC1 and PRC2 core components interact with a heterogeneous group of auxiliary proteins, forming different sub-complexes (Blackledge and Klose 2021). As a result of their highly variable composition, they have been classified as canonical PRC1 (cPRC1) and non-canonical PRC1 (ncPRC1) (Gao et al. 2012; Hauri et al. 2016).

One unconventional PRC1 variant is the ncPRC1.6 complex, considered a germ-cell-specific epigenetic regulatory complex (Bajusz et al. 2019).Therefore, at least five of its subunits, including MGA, have already been connected to repress meiotic genes (Bajusz et al. 2019).

Meiosis is a crucial event of sexual reproduction. While somatic cells and germ cells undergo mitosis to increase their cell number, only germ cells switch their cell division from mitosis to meiosis to generate haploid cells (Ginsburg, Snow, and McLaren 1990b). As mentioned in section 1.3, meiotic genes, such as Dazl, Sycp3 and Ddx4, are transcriptionally activated after erasing genomic DNA methylation in PGCs between E10.5 and E11.5 (Maatouk et al. 2006). PGCs are licensed by DAZL, an RNA-binding protein, to become sexually differentiating germ cells. However, the expression of meiotic genes in PGCs is also associated with global chromatin reorganisation. Deletion of RING1B, a component of the PRC1.6 complex, induces precocious up-regulation of a subset of female meiotic prophase genes such as Stra8, Sycp3, Rec8, and Hormad2, in PGC development between E10.5 and E11.5, which are normally expressed from E13.5.

Therefore, RING1B is a regulator that coordinates the timing of sexual differentiation of female PGCs (Yokobayashi et al. 2013).

Consistently, knockout of PCGF6, L3MBTL2, MAX, E2F6 or MGA in mESCs showed upregulation of meiotic genes. However, the high expression level of these genes were not as strong as those associated with MGAnull ESCs (Maeda et al. 2013; Ayumu Suzuki et al. 2016; Endoh et al. 2017; Qin et al. 2021; Dahlet, Truss, Frede, Adhami, et al. 2021). Studies on genomic binding sites have revealed that MGA and E2F6 are essential for PRC1.6 occupancy at meiosis-related genes (Endoh et al. 2017; Stielow et al. 2018; Dahlet, Truss, Frede, Adhami, et al. 2021). Indeed, both MGA domains are directly involved in distinct binding sets of meiotic genes. In particular, the bHLH/Zip domain is required for repressing Meiosin, which, together with Stra8, is required for meiosis entry in the late stage of PGC development (Uranishi et al. 2021). The importance of the PRC1.6 complex in repressing meiotic genes in mESCs is well-established. Additional studies on some members of this complex were conducted during different stages of germ cell differentiation, which are listed below.

1) PGCF6: The genetic ablation of PCGF6 showed a severe phenotype only in mESCs and EpiLCs, including growth defects and cell death, which were not reported in PGCLCs (Endoh et al. 2017). PCGF6 is also highly expressed in the testis, and its knockdown alters male germ cell differentiation (J. Sun et al. 2015). In addition, PCGF6 interacts with the testis-specific protein HSPA2, suggesting an important role in modulating male germ cell proliferation and differentiation (J. Sun et al. 2015).
2) L3MBTL2: In testis, L3MBTL2 is highly expressed, and its mutation leads to decreased sperm counts, abnormal spermatozoa, and increased germ cell apoptosis in mice (Meng et al. 2019). Surprisingly, this was not accompanied by a significant change in the transcriptional activity linked to spermatogenesis but by DNA damage and synapsis during meiosis I (Meng et al. 2019).
3) CBX3 (HP1): Loss of CBX3 results in impaired cell cycle progression and, consequently, a lower number of PGCs, while the gene expression profile in germ cells is unaffected (Abe et al. 2011).

In view of these current findings, the role of each component of PRC1.6 is crucial in maintaining the germline. For this reason, I hypothesize that MGA could also play an important role in the development of PGCs.

2.4 MGA and cancer

The role of MGA has also been investigated in the context of tumorigenesis. Its genetic alterations are prevalent in various tumours, such as chronic lymphocytic leukemia, lung cancer, and colorectal cancer (Cancer Genome Atlas Network et al. 2018). In colorectal cancer, MGA acts as a tumour suppressor with members of the ncPRC1.6 complex (Mathsyaraja et al. 2021). Notably, using protein domain databases, a third conserved domain between 1040-1080 ammino acid (aa) of an unidentified function named DUF4801 was revealed, in addition to its N-terminal T-box domain and C-terminal bHLH/Zip. The DUF4801 domain was identified as a linker between MGA and PRC1.6 members (Mathsyaraja et al. 2021). Therefore, during malignant progression, MGA perturbation leads to the upregulation of growth and pro-invasive PRC1.6, MYC and E2F targets. However, most of these studies are associated with the bHLHL/Zip domain activity, not the T-box domain, suggesting that further studies need to be considered to better understand the role of MGA as a tumour suppressor (Mathsyaraja et al. 2021).

3. Aim of this thesis

During development, transcription factors are crucial in orchestrating specific gene expression programs to ensure the correct cell-lineage fate to form a complex multicellular organism. Specifically, in the early postimplantation embryo, epiblast cells differentiate into primordial germ cells (PGCs), essential for reproduction. PGC specification occurs through a remarkable act of the mesoderm T-box factor, T, which initiates the PGC genetic program instead of activating mesodermal fate. However, the molecular mechanism that drives this cell fate decision remains poorly understood, suggesting the presence of new factors that need to be identified.

One transcription factor that may shed some light on how PGC are specified is MGA.
MGA is a unique transcription factor with complex structural properties, as it is part of three families of developmental proteins such as T-box, MAX-interacting proteins and Polycomb repressive complex (PRC1.6). As part of these, it has been suggested that MGA controls different biological processes. Specifically, in the post-implantation embryo, MGA is expressed in epiblast cells where PGCs occur with Tbox members such as T and EOMES. Its abrogation demonstrated that it is crucial for the survival of the epiblast cells. However, previous studies only focused on its role as a repressor of meiotic genes and safeguarding pluripotency in embryonic stem cells, leaving its role in other developmental processes completely unknown.

Based on these initial observations, in this thesis, I set out to analyse the role of MGA in PGC differentiation. To achieve this goal, I used an in vitro system to recapitulate mouse PGC differentiation in vivo. Then, to understand how MGA regulates cell state transition, I applied genetic and proteomic approaches to identify its genomic binding sites and interactors partners.

Results

Chapter I: MGA coordinates cell-state transitions of developing mouse primordial germ cells
\qquadPage25
Chapter II: Structure and function of DUF4801 domain of MGA
Page 71

Chapter I- MGA coordinates cell-state transitions of developing mouse primordial germ cells

In this manuscript, I presented the majority of data gathered during my PhD. I investigated the role of the transcription factor MGA using an in vitro system to recapitulate PGC differentiation in vivo. Several genetic and proteomic approaches were used to identify MGA binding sites and interactome. We investigate how the absence of MGA, using an auxin-inducible system, affects phenotype and transcriptome during PGC differentiation.

Authors

Erica Calabrese, Xiaojuan Li, Ralf Pflanz, Henning Urlaub, Ufuk Günesdogan

Status

in preparation for submission at 'Molecular cell, Nature Communications'

My contributions

- Contribution to the conceptualisation of the project ${ }^{1}$
- Preparation and conduction experiments ${ }^{2}$
- Preparation or modification of figures
- Data analysis ${ }^{3}$

1 Together with Dr. Ufuk Günesdogan
2 Excluding of mass spectrometry data performed in collaboration with Prof. Dr. Henning Urlaub and Dr. Ralf Planz

3 Excluding of T-box RNA-seq, CUT\&RUN ESCs-EpiLCs, Auxin RNA-seq ESCs and EpiLCs bioinformatic analysis performed by Xiaojuan Li

MGA coordinates cell-state transitions of developing mouse primordial germ cells

Authors: E. Calabrese ${ }^{1}$, X. Li ${ }^{1}$, R. Pflanz ${ }^{2}$, H. Urlaub ${ }^{1,2}$, U. Günesdogan ${ }^{1,3,{ }^{*}}$

Affiliations:
${ }^{1}$ University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology; Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
${ }^{2}$ Max Planck Institute for Multidisciplinary Sciences, Department for Bioanalytical Mass Spectrometry; Am Fassberg 11, 37077 Göttingen, Germany
${ }^{3}$ Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology; Am Fassberg 11, 37077 Göttingen, Germany
* Corresponding author: ufuk.guenesdogan@uni-goettingen.de

Abstract

Primordial germ cells (PGCs) possess a unique ability to ensure lifelong reproduction and heredity through their differentiation into germ cells. However, despite the remarkable role of the mesoderm T -box factor T in PGC specification, the molecular mechanism underlying this lineage choice remains poorly understood. Our study demonstrates that the transcription factor MGA, a member of the T-box factors and part of the polycomb repressive complex 1.6 (PRC1.6), plays an essential role in targeting and initiating the cell state transition required for PGC specification. During the differentiation of PGC-like cells (PGCLCs), MGA ensures cell fate transitions by regulating specific cell-type genes and interacting dynamically with proteins such as the core of pluripotency, PRC1.6 factors, and potentially RNA-binding proteins.

Using the auxin-inducible degron system during PGCLC differentiation, we demonstrate that MGA stably represses meiotic genes conjunction with PRC1.6 members. Notably, the absence of MGA led to impaired PGCLC development, as evidenced by a notable increase in the expression of meiotic genes and a reduction in the expression of PGC targets, including Prdm1, Prdm14, and Nanog. These targets, along with T-box factors, are directly regulated by MGA.

Our findings shed light on the role of MGA during PGCLC differentiation and undercover its significance in inducing PGC specification.

Introduction

The family of T-box transcription factors are required for early cell fate decisions and for defining specific gene expression patterns during various stages of development (Papaioannou 2014a). The T-box domain recognizes DNA sequences known as T-box binding elements (TBEs). Despite the presence of the T-box domain, the T-box factors differ in many aspects, such as their structure, interactors and transcriptional activity (Beisaw et al. 2018; Istaces et al. 2019; M. D. Lewis et al. 2007; Miller, Mohn, and Weinmann 2010; Miller et al. 2008; Wehn et al. 2020).

One of the early cell fate decisions during development regulated by a T-box factor is the specification of primordial germ cells (PGCs). In the post-implantation mouse embryo, the specification of primed pluripotent epiblast cells to PGCs is mediated by graded BMP and WNT signalling inducing the T-box factor T (also known as BRACHYUURY) (Aramaki et al. 2013; Ohinata et al. 2009). Strikingly, instead of activating mesodermal genes, T activates the expression of key germline determinants such as BLIMP1 (encoded by Prdm1) and PRDM14, which shortly after induce the expression of AP2 2γ, encoded by Tfap2c (Aramaki et al. 2013; Magnúsdóttir et al. 2013). Following the specification, PGCs regain a pluripotency network, suppress somatic lineage genes, undergo epigenetic remodelling, and develop germ cells (M. Saitou and Yamaji 2012). The genome-wide epigenetic changes include global DNA demethylation, which results in the expression of DNA methylation-dependent genes, such as Dazl and Mvh (Hackett, Zylicz, and Surani 2012; Hackett et al. 2012). In particular, the expression of DAZL, an RNA-binding protein, is essential to lead the acquisition of meiotic and gametogenic competence for sperm or oocytes, respectively (Gill et al. 2011; Nicholls et al. 2019).

Although much progress has been made in identifying signal pathways, transcription factors, and chromatin remodelers involved in PGC specification, the precise molecular mechanisms leading to this exclusive lineage choice remain unknown. Prevailing PGC specification models suggest that another T-box factor binds to the regulatory region of BLIMP1 and PRDM14, as T mutant embryos still showed their weak activation (Aramaki et al. 2013). One less characterised member of the T-box gene family, the transcription factor MGA (Max's giant associated protein), could play a role in this process.

MGA is a transcription factor of ~ 300 kDa characterised by the presence of two heterotypic DNA binding domains, T-box and basic helix-loop-helix leucine zipper (bHLH/Zip), and interaction with different groups of proteins (Hurlin et al., 1999.; Gao et al. 2012), indicating involvement in distinct biological process. MGA heterodimerises with MAX, which is required for genomic binding to the E-box motif via their bHLH/Zip domains to regulate genes involved in cell renewal and proliferation (Shen-Li et al. 2000,Blackwood \& Eisenman,1991). In mouse embryonic stem cells (ESCs), both domains bind to largely distinct sets of genes associated with meiosis. In particular, the bHLH/Zip domain is required for repressing Meiosin, which
together with Stra8 is required for meiosis entry (Uranishi et al. 2021). MGA and MAX, together with RYBP, PCGF6, E2F6, L3MBTL2, CBX3, RING1A/B, WDR5, HDAC1 and HDAC2, are part of the non-canonical Polycomb repressive complex, PRC1.6. In ESCs, MGA depletion leads to a loss of expression of pluripotency genes and up-regulation of mesoderm and germ cell genes, including Dazl and Mvh (Washkowitz et al. 2015; Qin et al. 2021). The disruption of other core subunits of PRC1.6, such as PCGF6, MAX, L3MBTL2 and E2F6, shows a similar phenotype but less severe than MGA (Endoh et al. 2017; Maeda et al. 2013; Ayumu Suzuki et al. 2016; Qin et al. 2012; Dahlet, Truss, Frede, Al Adhami, et al. 2021; Qin et al. 2021). In ESCs, a particular set of germline genes is repressed via RING1A-dependent H2AK119ub1 and SETDB1-mediated H3K9me3 deposition. In epiblast-like cells (EpiLCs), which are induced from ESCs and represent the post-implantation epiblast (Hayashi et al. 2011), deposition of H3K9me3 and de novo DNA methylation is dependent on MGA binding, suggesting that PRC1.6 engagement at germline gene promoters anticipate DNA methylation (Mochizuki et al. 2021).

MGA expression is first detected in the inner cell mass of pre-implantation embryos (Washkowitz et al. 2015). After implantation, MGA is expressed in the epiblast of the post-implantation embryo together with other T-box members such as T and EOMES (Papaioannou 2014a). Null mutations in Mga lead to the loss of epiblast cells, causing peri-implantation lethality (Washkowitz et al. 2015; Burn et al. 2018; Qin et al. 2021). However, the potential role of MGA during PGC specification and subsequent differentiation has never been explored.

Here, we aimed to investigate the function of MGA during the in vitro differentiation of ESCs to PGC-like cells (PGCLCs) using genetic and proteomic approaches. Our results show that MGA dynamically maintains the correct cell-type specific gene programs during PGC differentiation through its binding sites and interactions with different proteins. We demonstrate that MGA is critical to ensure PGC specification by targeting their determinant genes through its T-box domain, cooperating with T-box factors. Therefore, using an auxin-inducible degron system, the deletion of MGA results in impaired PGCLCs with misregulation of germ cell genes. MGA acts with pluripotency factors and members of PRC1.6 to maintain pluripotency and repress meiotic genes. Moreover, at the late stage of PGCs, the MGA interactome revealed high enrichment of RNA-binding proteins, leading to the assumption of its possible role not only in controlling DNA but also RNA.

Results

MGA is expressed during PGC differentiation in vitro and in vivo

We first investigated the expression pattern of MGA in PGCs using a combination of in vitro and in vivo analyses. The In vitro system, designed to replicate early mouse PGC development, is achieved by differentiating ESCs, harbouring a transgenic Blimp1-mEGFP reporter (Ohinata et al. 2005), into EpiLCs and subsequently inducing the formation of PGC-like cells (PGCLCs) within embryoid bodies (Hayashi et al. 2011) (Supplementary Fig. 1A). For subsequent analyses, the resulting PGCLCs were sorted by fluorescenceactivated cell sorting (FACS) based on the mEGFP reporter (Supplementary Fig. 1B).

Immunofluorescent stainings revealed that MGA is expressed in the nuclei of ESCs and EpiLCs (Supplementary Fig. 1C). As PGCLCs underwent differentiation, MGA progressively colocalizes with PGC markers, SOX2 and AP2Y, in the early and late days of PGCLC differentiation (Supplementary Fig. 1C). However, it is worth noting that MGA expression is not restricted exclusively to PGCs, as we can also detect its expression in somatic cells (Supplementary Fig. 1C). Consistently, performing RNA-seq on ESCs, EpiLCs, and PGCLCs at day 6 (d6) of differentiation showed that MGA transcripts were highly abundant in all three cell types (Supplementary Fig. 1D), indicating a consistent expression pattern of MGA through PGCLC differentiation. In vivo, d6 PGCLCs correspond to early PGCs at the onset of epigenetic reprogramming at ~E9.5 (Hayashi et al. 2011). Therefore, we confirmed MGA expression in late PGCs by staining embryonic gonads at E10.5 and E11.5 (Supplementary Fig. 1E). In addition, published single-cell RNA-seq data from E6.5 to E12.5 PGCs confirmed the expression of MGA in early and late PGCs in vivo (Supplementary Fig. 1F) (Magnúsdóttir et al. 2013).
Thus, our results demonstrate that MGA is progressively expressed during PGC differentiation, including the developmental time window when epigenetic reprogramming occurs.

To understand MGA's regulatory events during cell state transitions from ESCs towards PGCLCs, we conducted a genomic binding analysis using CUT\&RUN (Skene and Henikoff 2017) in ESCs, EpiLCs, and d1 PGCLCs. Our analysis revealed that MGA binds promoter, intronic and intergenic regions predominantly in all three cell types (Fig. 1A). Notably, a subset of MGA-bound sites is unique to each cell type (Fig. 1B). This is particularly evident at the transcription start sites (TSSs) +/-1kb of PGCLCs showing a dynamic binding pattern (Fig. 1C).

Next, we performed Gene ontology (GO) analysis with genes bound by MGA. Genes associated with MGAbound promoters were associated with GO terms such as stem cell population maintenance and regulation of meiotic cell cycle in all three cell types (Supplementary Fig. 2A), consistent with previous studies in ESCs (Stielow et al. 2018; Qin et al. 2021; Uranishi et al. 2021). Interestingly, in d1 PGCLCs, MGA is associated with genes involved in the regulation of Wht signalling pathway and regulation of stem cell differentiation. In contrast, genes within the GO term Germ cell development and regulation of reproductive processes were enriched in ESCs and EpiLCs, but not in d1 PGCLCs. Additionally, MGA-bound intergenic regions revealed enrichment for genes in GO terms such as mesoderm development, gastrulation and cell fate commitment in all three cell types. However, the GO term BMP signalling pathway was only enriched in ESCs and PGCLCs (Supplementary Fig. 2B). This data suggests that MGA is involved in pluripotency maintenance and differentiation processes, including germ cell development, by controlling cell type-specific but also a common set of genes during PGC differentiation.

To identify cell-type specific genes controlled by MGA, we integrated CUT\&RUN peaks at promoter regions with RNA-seq data on ESCs, EpiLCs and d6 PGCLCs. Using this approach, we defined sets of differentially expressed genes (DEGs), which were significantly up- or down-regulated in pairwise comparisons between the different cell types (EpiLCs vs ESCs; d6 PGCLCs vs EpiLCs).

We found that MGA binds to approximately 30\% of the DEGs for each cell type, indicating its involvement in the differentiation process (Fig. 1D). These genes include those involved in epiblast development, such as Lin28a, Fgf15, and Dnmt3l, pluripotency genes, such as Esrrb, Klf5, and Dppa5a, as well as key PGC genes, such as Prdm1, Nanog, Tfap2c, Dazl, and Dppa3 (Fig. 1E).

Furthermore, our analysis of the promoter regions of these genes has shown that MGA's occupancy is dynamic, characterized by a pattern of recruitment, displacement, and maintenance of binding sites during the differentiation of PGCLCs. Taken together, these findings suggest that during the transition from ESCs to PGCLCs, the recruitment and displacement of MGA is directly associated with transcriptional upregulation and downregulation of target genes, respectively.

Figure 1. MGA binds genes involved in PGCLC differentiation. A. Genomic distribution of MGA-bound sites in ESCs ($n=17,427$), EpiLCs ($n=10,604$), and day 1 PGCLCs ($n=4,521$). B. Overlap of annotated genes bound by MGA in all three cell types, duplicated genes removed. C. Heatmaps of average CUT\&RUN intensities for MGA over $\pm 1 \mathrm{~kb}$ around the transcriptional start site (TSS) during the sequential differentiation of PGCLCs from ESCs. D. DEGs bound by MGA in the promoter region ($\pm 1 \mathrm{~kb}$ TSS). The bar chart in the top panel shows the number of DEGs (UP and DOWN) for each comparison, indicating the number of genes bound by MGA per cell type. E. Examples of genomic snapshots of loci bound by MGA in each cell type, with the relative expression during PGCLC differentiation, with colour related to MGA binding sites. IgG track serves as control.

We investigated MGA binding sites by motif enrichment analysis and found an expected enrichment of the T-box and E-box motifs in all three cell types (Fig. 2A and Supplementary Fig. 2C). However, the T-box was found more frequently than the E-box motif, which is consistent with our finding that MGA binds many developmental regulators. Moreover, we also found OCT4-SOX2, KLF4, and E2F6 motif enrichment among the top hits (Fig. 2A and Supplementary Fig. 2C), which showed dynamic changes in their frequency during PGCLC differentiation. Most notably, the OCT4-SOX2 motif was lost at the PGCLC stage.

These motifs belong to pluripotency and T-box factors, which might indicate that MGA cooperates with other transcription factors to regulate the expression of the same target genes during PGCLC differentiation. To address this, we used published ChIP-seq datasets from mouse ESCs (Galonska et al. 2015; Tosic et al. 2019; Dahlet et al. 2021). Interestingly, MGA binding sites are mostly co-occupied by pluripotency factors such as OCT4, SOX2 and NANOG (Fig. 2B), which was also the case for MGA-bound DEGs involved in ESC differentiation towards EpiLCs (Supplementary Fig. 2D). This result indicates that MGA might act synergistically with the pluripotency network to control pluripotency transitions.

As a part of the PRC1.6 complex, both MGA and E2F6 share peaks associated with Polycomb target genes and germline genes in ESCs, as previously reported (Fig. 2B) (Dahlet et al. 2021). Comparing the peaks of E2F6 with DEGs showed enrichment only on up-regulated genes in EpiLCs, suggesting a possible cooperation between MGA and E2F6 in repressing genes in ESCs (Supplementary Fig. 2E).

We then analyzed ChIP-seq data of T , which is involved in mesoderm and PGC development, and EOMES, which is required for definitive endoderm development (Tosic et al. 2019). Our comparative analysis showed a strong association of MGA, T and EOMES binding sites (Fig. 2C). Nearly 90\% of MGA-associated genes overlapped with T and EOMES target genes, while the remaining 10% corresponded to MGA binding sites on meiotic genes, as revealed by GO analysis (Fig. 2D). In particular, T, EOMES and MGA bound regulatory regions of mesoderm, epiblast, and pluripotency genes (Supplementary Fig. 2F), as well as PGC determinant genes such as Prdm1,Prdm14 and Nanog (Fig. 2E).

To summarize, our findings suggest that MGA plays a critical role in regulating gene expression during the differentiation of PGCLCs from ESCs. Specifically, MGA binds to regulatory regions of key developmental genes and cooperates with other transcription factors, as pluripotency and T-box factors, to modulate their expression levels. This suggests that MGA is a key regulator of cell fate decisions during early embryonic development.

Fig. 2 Cooperation between MGA and pluripotency and T-box factors. A. Metaplot of MGA motifs enrichment, comparing the enrichment for high-ranked MGA motifs to the center of the genomic region per cell type (left panel). Legend indicates motif sequences and displays colours (right panel). B. Heatmaps of OCT4, SOX2, NANOG and E2F6 ChIP-seq read densities on MGA ESCs genomic loci defined over 1.5 Kb around the annotated TSS. C. Heatmaps of T and EOMES ChIP-seq read densities on MGA consensus peaks between cell types. D. Venn diagram of annotated genes of T, EOMES and MGA, indicating the number of genes overlapping. The bar plot shows GO analysis of MGA unique genes (lower panel). E. Genome tracks of MGA, T and EOMEs over PGC markers such as Prdm1, Prdm14 and Nanog.

Deletion of the T-box domain of MGA induces upregulation of PGC genes

The T-box factors bind promoters of developmental genes involved in PGC differentiation. Thus, we asked whether the T-box domain of MGA can directly influence gene expression during PGC differentiation. To explore this, we employed CRISPR/Cas9 to delete the coding sequence of the T-box domain in-frame, thereby creating Blimp1-mEGFP ESCs that express truncated MGA protein. To this end, we generated two different clones and validated the excision of the target region using PCR followed by Sanger sequencing (Supplementary Fig. 3A). Then, we confirmed the expression of the truncated MGA protein using Western blot in two independent clones, named ΔT-box1 and ΔT-box7 (Supplementary Fig. 3B).

To test the requirement of the T-box domain of MGA for PGCLC differentiation, we differentiated $\triangle T$-box ESCs towards PGCLCs. FACS analysis of embryoid bodies at d6 of PGCLC differentiation showed no significant difference in Blimp1-mEGFP+ cells compared to the wild-type (WT) (Fig. 3A). To evaluate the gene expression profile of these cells, we performed RNA-seq on ESCs, EpiLCs and Blimp1-mEGFP+cells at d6 of PGCLCs. Notably, the principal component analysis (PCA) of RNA-seq data indicated a shift in gene expression between ΔT-box and WT cell lines (Supplementary Fig. 3C).

The analysis of DEGs revealed a defined number of up- and down-regulated genes, which were also defined by GO analysis (Fig. 3B and Supplementary Fig 3. E-F). Although we identified approximately 100 significantly upregulated genes in each cell type, only 22 DEGs were shared and were associated with GO terms such as meiotic cell cycle and male sex differentiation (Supplementary Fig. 3D-3E).

In ΔT-box ESCs cells, we observed upregulation of mesoderm markers such as $A x i n 2, \operatorname{Sp} 5$, and $C d x 2$, which are direct target genes of T (Fig. 3C) (Tosic et al. 2019). Interestingly, slightly below the fold-change of significant DEGs, we also found upregulation of WNT3 and its downstream target T in ΔT-box cell lines. Western blots confirmed the increased levels of T protein (Fig. 3C-D). In EpiLCs, we identified upregulation of PGC markers, including Prdm14 and Tfap2c, which were already upregulated in ΔT-box cells (Fig. 3E). Conversely, epiblast markers, such as Dnmt3l and Otx2, maintained high expression levels in $\triangle T$-box PGCLCs (Fig. 3E). More than half of these genes were directly bound by MGA in the promoter and distal intergenic regions (Fig. 3F).

These findings suggest that the T-box domain directly controls the expression of specific cell-lineage genes involved in PGC differentiation, resulting in premature expression after its deletion. Moreover, the high expression of T might indicate mutual feedback among T-box factors, as similar phenotypes occur after the deletion of EOMES (Senft et al. 2019).

Based on the genetic background of ΔT-box cells, knowing that T starts PGC specification, we hypothesised that ΔT-box cells could differentiate into PGCLCs directly from ESCs. To test this hypothesis, we differentiated ESCs into PGCLCs using the same cocktails of cytokine but excluded LIF (Supplementary Fig.

3G). To evaluate the differentiation potential of $\triangle T$-box ESCs into PGCLCs, we monitored the mRNA expression and protein levels of PGC markers (Fig. 3G-H).

Interestingly, immunofluorescence analysis revealed that the majority of cells in embryoid bodies were double-positive for the germ cell marker AP2 γ and Blimp1-mEGFP, as opposed to the WT (Fig. 3G). Consistently, qPCR analysis showed that Prdm1, Prdm14 and Tfap2c were significantly up-regulated in ΔT box PGCLCs derived directly from ESCs. However, we also found up-regulation of meiotic genes such as Dazl and Sycp3, which were already up-regulated in $\Delta \mathrm{T}$-box ESCs (Supplementary Fig. 3H).

Therefore, further evaluation is needed as the expression of PGC markers might be dependent on a secondary effect rather than the effect of T expression.

In summary, these findings demonstrate that the expression of MGA target genes involved in PGCLC differentiation highly depends on the T-box domain activity. Furthermore, the expression of T , as compensation of the deletion of MGA T-box domain in ESCs, reinforced the idea of the cooperation between MGA and T-box factors in maintaining cell-type programs.

Figure 3. The MGA T-box domain is required to control PGC target genes. A. Quantification of BLIMP1+ cells. FACS result for ΔT-box cells compared to WT, showing no change in the quantification of BLIMP1+ cells number (four independent replicates). Scheme of PGCLC differentiation, highlighting d6 PGCLCs, day we collected the cells (Top panel). B. MA plot showing DEGs of Δ T-box cells compared to WT in ESCs, EpiLCs and PGCLCs day6 (Padj < 0.05, fold-change >1.5). C. Expression heatmap of genes involved in mesoderm specification resulted from DEGs in ESCs upon T-box domain deletion. Mean expression profile from independent duplicate experiments. D. Western blot of BLIMP1, T and α-TUBULIN ($\alpha-T U B$) in $\triangle T$-box ESCs compared to WT. E. Heatmap of DEGs in EpiLCs and PGCLCs upon T-box domain deletion. F. MGA CUT\&RUN read densities cantered on resulted DEGs of \triangle T-box cells. UP-DOWN genes grouped per each cell type. G. Immunofluorescence of ESC-PGCLCs cells at day 6 stained for BLIMP1-GFP and AP2 γ. H. Quantitative validation of gene expression changes in ESC- PGCLCs from WT and ΔT-box cell (cl1 and cl 7) by independent qRT-PCR experiments. Error bars show s.e.m of triplicate biological experiments.

Dynamic interactome of MGA during PGC differentiation

Given the dynamicity of MGA in controlling different sets of genes together with pluripotency and T-box factors, we aimed to identify MGA's cell-type specific interaction partners. We used mass spectrometry to detect endogenous proteins co-immunoprecipitated with MGA in ESCs, EpiLCs and d6 PGCLCs protein extracts, followed by quantitative MS-based proteomics workflows (Supplementary Fig. 4A). First, we identified the interactors using the label-free quantification (LFQ). Then, using intensity-based quantification (iBAQ), we calculated the stoichiometry of each interactor relative to MGA (Supplementary Fig. 4A) (Smits et al. 2013). This approach allowed us to understand the dynamics of MGA interactors during PGC differentiation. We found that the proteomics of all cell types distinctly separated between MGA and IgG (used as a negative control) using principal component analysis (PCA) (Supplementary Fig. 4B).

Our results showed a strong association of MGA with known members of the PRC1.6 complex, such as PCGF6, L3MBTL2, RING2, and WDR5, along with ATF7ip, SMARCA4, and CEP85, which were maintained in all three cell types (Fig. 4A-B). To confirm our findings, we conducted a Western blot in ESCs and day 6 PGCLCs, which validated the interaction between MGA and L3MBTL2 (Supplementary Fig. 4C). Previous studies have reported that the interaction between MGA and ATF7ip represses germ cell genes together with SETDB1 in ESCs (Tsusaka et al. 2020). Our results showed that this interaction remained stable throughout the differentiation towards PGCLCs. Analysis of the stoichiometry of these factors compared to MGA revealed that PCGF6 was the only stable factor during the differentiation, whereas the abundance of other interactors varied. For example, L3MBTL2 and WDR5 were highly enriched in PGCLCs, and RING2 only in EpiLCs (Fig. 4C).

Analysis of the statistically enriched MGA interactors via GO terms indicated a diverse range of biological processes specific for each cell type (Fig. 4D), indicating different significant hits. In ESCs, MGA pulled down pluripotency factors, such as ESRBB and TEX10, and we also detected OCT4 and SOX2, although they were below the significance threshold. However, the interaction between MGA and OCT4 was confirmed via Western blot (Supplementary Fig. 4D), consistent with our previous observations of co-occupancy of core pluripotency factors in MGA binding sites. Additionally, previous proteomic studies have shown that MGA is among OCT4's interacting partners (van den Berg et al. 2010; Ding et al. 2015; Buecker et al. 2014; Pardo et al. 2010). Analysis of their stoichiometry seems to indicate a dimeric state when interacting with MGA (Supplementary Fig. 4E). Notably, consistent with our motif analysis of MGA binding sites, the interaction with pluripotency factors was lost at PGC stage (Fig. 4B).

In EpiLCs, we found a significant enrichment of proteins involved in the DNA methylation process, such as DNMT1, TET3 and MEST, along with proteins involved in the regulation of chromosome organization, such as SUMO1 and SPAG5. Previous studies have shown that DNMT1 directly interacts with MAX and SETDB1 to co-repress germ cell genes in ESCs (Tatsumi et al. 2018). Recently, DNMT1 was also reported interacting
with EED to stabilize epigenetic signatures on germ cell genes in EpiLCs (Lowe et al. 2022). Stoichiometry values for DNMT1 and SETDB1 changed very little between ESCs and EpiLCs (Supplementary Fig. 4F). Interestingly, the presence of proteins, such as ATF7ip, SMARCA4, and L3MBTL2, in all cell types could indicate the formation of a complex, different from PRC1.6, to support the repression of germline genes. Indeed, previous publications have already attributed this function to single proteins (Maeda et al. 2013; Qin et al. 2012; Tsusaka et al. 2020).

Altogether, MGA seems to regulate the pluripotent state in ESCs with a core of pluripotency, while in EpiLCs, it might lead DNMT1 to repress germ cells through epigenetic silencing. Therefore, these data reinforce the dynamicity found in MGA binding sites.

Remarkably, mass spectrometry analysis of PGCLCs showed a predominance of RNA-binding proteins and translation factors co-immunoprecipitating with MGA, particularly DAZL. DAZL, known for its role in regulating mRNA translation in germ cells (Gill et al. 2011), has recently been found to bind to chromatin sites of PRC2 to silence developmental genes in ESCs (Rafiee et al. 2020). Interestingly, the majority of DAZLinteracting proteins, such as IGF2BP1 RNP complex, were also found in MGA interactome in PGCLCs. Although MGA was not previously identified in DAZL interactome studies at later PGC stages, a comparison of datasets showed that DAZL and MGA share 30 interaction partners, mostly RNA-binding proteins (Supplementary Fig. 4G). Stoichiometry values derived from iBAQ analysis revealed a DAZL: MGA ratio of 10:1, possibly indicating the formation of a new complex at later stages of differentiation (Supplementary Fig. 4H). These findings suggest that their interaction could depend on binding to common RNA or control of the same DNA targets.

Overall, these results highlight the highly dynamic nature of the MGA interactome and suggest that its role in PGCLC differentiation may be context dependent. Moreover, the interplay between MGA and RNAbinding proteins suggests a potential involvement in RNA regulation, specifically in PGCLCs.

Figure 4. MGA interactome during PGCLC differentiation. A. Venn diagram of the proteins enriched in each cell type, highlighting the shared proteins. B. Volcano plot of MGA exhibiting the interaction partners in ESCs, EpiLCs, and PGCLCs on day 6. Statistically enriched proteins in the MGA-pulldowns were identified by a t-test comparing label-free quantification (LFQ) relative to MGA-pulldown with IgG-pulldown. Significantly enriched proteins were represented by different colours indicating different protein groups, including PRC1.6 members (Fuchsia), common proteins (Purple), DNA methylation process (Orange), pluripotency proteins (Brown), and RNA-binding proteins (Blue). C. Stoichiometry of MGA interactors during PGCLC differentiation, represented by dividing the IBAQ value of each protein by the MGA value. MGA value is set as 1 . Data are shown as the mean of three replicates with standard deviation error bars. D. GO analysis of enriched proteins in MGA-pulldown for each cell type.

Depletion of MGA affects PGC specification

MGA controls the expression of many key genes required during PGCLC differentiation and shows a cell type-specific interactome. Thus, we asked whether MGA is required for PGCLC differentiation. Previous knockout studies in ESCs using CRISPR/Cas9 or RNA interference show that MGA is required for the survival of pluripotent stem cells (Washkowitz et al. 2015). Therefore, we harnessed the auxin-inducible degron (AID) system to rapidly deplete MGA at the protein level (Nishimura et al. 2009; Natsume et al. 2016). We generated a stable Blimp1-mEGFP ESC cell line harbouring a transgene for the hormone receptor TIR1. Subsequently, we used CRISPR/Cas9 to knock in a miniAID tag fused to mCherry at the C-terminal of MGA, which is referred to as MGA-AID. The knock-in was verified by PCR and Sanger sequencing (Supplementary Fig. 5A). MGA was efficiently degraded within two hours of auxin addition in ESCs, as shown by Western blot and immunofluorescence staining (Supplementary Fig. 5B-C). After establishing this approach, we conducted various time-course experiments to deplete MGA during PGCLC differentiation through auxin supplementation (Supplementary Fig. 5D). Depletion of MGA in ESCs or EpiLCs after 8-12 hours of auxin treatment results in up-regulation of meiotic genes, but the expression of lineage-specific or pluripotency genes was unaffected (Supplementary Fig. 5E-F). However, depletion of MGA for 96 hours in ESCs resulted in growth defects, reduced proliferation rate, and loss of pluripotency with a reduction of OCT4 expression, as determined by immunofluorescence (Supplementary Fig. 5G).

To determine whether MGA is required for initiating PGCLC differentiation, we treated MGA-AID cells with auxin on d0 and analyzed them on d1 by FACS. Using this approach, we discovered a significant reduction in the percentage of Blimp1-mEGFP+ cells ($\sim 5 \%$) in MGA-AID cells treated with auxin compared to controls ($\sim 10 \%$) (Fig. 5A). Immunofluorescence staining of Blimp1-mEGFP and MGA confirmed the reduction in PGCLCs upon MGA depletion (Supplementary Fig. 5H). Next, we performed RNA-seq on d1 PGCLCs that were untreated or treated with auxin for 24h. Differential gene expression analysis identified a small number (32) of significantly up-regulated genes. Among them, GO analysis revealed enrichment for genes related to germ cells, such as the meiotic cell cycle and male and female gamete generation (Fig. 5B). Furthermore, monitoring the expression changes of early PGC genes (318) that were previously defined (Miyauchi et al. 2017), we found that PGC markers such as Prdm1 and Prdm14, pluripotency genes such as Esrrb and Nanog, and signalling markers such as Notch1 and Smad3 showed lower expression levels in MGA-depleted samples (Fig. 5C).

To determine whether the upregulated genes and early PGC genes are direct targets of MGA, we integrated RNA-seq data with the genomic binding sites of MGA in d1 PGCLCs (Fig. 5D). The analysis showed that half of the DEGs (16 out of 32) are predominantly bound by MGA in the promoter region. Genes upregulated without MGA binding are likely regulated by some of the proteins that interact with MGA, which might have lost their genomic binding in the absence of MGA. Moreover, MGA directly binds 49 early PGC genes (Fig.

5D). We then treated PGCLCs from d0 to d3 with auxin to examine whether longer depletion of MGA during PGCLC differentiation enhances the phenotype. Notably, the depletion of MGA led to a significant reduction in PGCLC numbers, as shown by FACS (Fig. 5E). Additionally, the depletion of MGA affected the morphology of the embryo bodies (EBs), which were smaller and poorly defined (Fig. 5F). However, this severe phenotype made transcriptome analysis impossible. We suggest that it might involve severe loss of PGC markers together with high expression of the germ cell genes, as observed in the mild phenotype. Overall, these results demonstrate that MGA is essential in ensuring PGC specification by activating PGC target genes and repressing early expression of meiotic genes.

Figure 5. Depletion of MGA results in impaired PGCLCs. A. Quantification of Blimp1-mEGFP+ cells in MGA-AID cells after 24 h +/- auxin compared to TIR1 (parental cell lines) on day 1 by FACS. The data shows four independent experiments. ns-not significant; ** P<0.01. Two-way ANOVA followed by Sidak's multiple comparison test. Scheme of PGCLC differentiation, highlighting d1 PGCLCs, the day we quantified the cells (top panel). B. MA plot depicting 32 DEGs in PGCLCs on day 1 after 24 h of auxin treatment (Padj < 0.05, fold-change > 1.5). The upper panel shows the GO analysis of the DEGs, highlighting their biological processes. C. Boxplots show normalized counts of the 318 early PGC genes in TIR1 cells and MGA-AID cells +/- auxin after Z-scoring. The lower box indicates genes directly bound by MGA. D. MGA CUT\&RUN read densities of PGCLCs on day 1 centred on results from DEGs and early PGC genes directly bound by MGA. The right panel shows snapshots of the binding profiles of MGA on meiotic and PGC genes. E. Quantification of Blimp1-mEGFP+ cells in MGA-AID cells after 72h +/- auxin compared to TIR1 (parental cell lines) on day 3 by FACS. The data shows four independent experiments. ns-not significant; *** P<0.001 (Two-way ANOVA followed by Sidak's multiple comparison test). Scheme of PGCLC differentiation, highlighting d3 PGCLCs, the day we quantified the cells (top panel). F. Brightfield images representing day-3 PGCLCs $+/-$ auxin. They show two MGA-AID clones (clone A and clone n.27) compared to parental cell lines TIR1.

Are meiotic genes coregulated by MGA and DAZL?

Our data suggest that MGA and DAZL interact. As previously described, DAZL is only expressed at a late stage of PGC development, when global DNA demethylation occurs (Maatouk et al. 2006). Thus, to investigate the relationship between MGA and DAZL, we designed a CRISPR-Cas9 targeting strategy to delete the Dazl gene in MGA-AID ESCs (Supplementary Fig. 6A). To validate the KO, we used PCR followed by Sanger sequencing to confirm the excision of the target region. At the protein level, we performed staining after depletion of MGA with auxin for 24 h . As expected, DAZL was upregulated in the control cell line but not in the DAZL KO, MGA-AID ESCs (Supplementary Fig. 6A-B), referred to as dDAZL hereafter. To explore the potential differences, we evaluated the impairment produced by the loss of DAZL, MGA or both. We analyzed the effect of simultaneous depletion on PGC development by differentiating these cells towards PGCLCs. After treating the resulting EBs with auxin at d5, we quantified Blimp1-mEGFP+ cells at d6 after disrupting DAZL (dDAZL), MGA (dMGA), or both (ddMD). Interestingly, FACS analysis showed a decrease in Blimp1-mEGFP+ cells derived only from dMGA cells and ddMD, while dDAZL was unaffected (Fig. 6A).

To investigate the effect of DAZL and MGA loss on gene expression in PGCLCs, we conducted RNA-seq on Blimp1-mEGFP+ cells isolated via FACS at d6 after their deletion. At first, PCA of the RNA-seq data revealed a significant transcriptional shift in gene expression profiles (Supplementary Fig. 6C).

Then, we performed DEGs analysis between dMGA, dDAZL, and ddMD compared to the matched parental cell lines. We clustered these genes into five groups (Fig. 6B). The first cluster corresponds to DAZL-activated genes (cluster I), while the second cluster corresponds to MGA-DAZL co-activated genes (cluster II), which showed reduced or absent expression in ddMD. The third cluster contains MGA-repressed genes (cluster III), while the fourth cluster contains DAZL-repressed genes (cluster IV). The fifth cluster contains DAZL-MGA co-repressed genes (cluster V), which includes genes that MGA, DAZL or both inversely regulated, resulting in increased expression above parental control levels in $\mathrm{dMGA}, \mathrm{dDAZL}$, and ddMD, respectively (Fig. 6B). However, we observed that among the up- and down-regulated DEGs in dDAZL and ddMD cells, mostly annotated genes were ribosomal pseudogenes, which was expected as DAZL is an RNA-binding protein (Fig. $6 C$). When considering only defined genes, there was no overlap between the DEGs of dDAZL and dMGA, which is consistent with their opposite phenotypes as evaluated by FACs quantification (Fig. 6D). The upregulated genes in dMGA were associated with GO terms related to Male gamete generation and meiotic cell cycle (Fig. 6E), indicating that MGA still acts as a repressor at this stage of differentiation. As most of the meiotic genes were also misregulated in ddMD cells, we speculated whether it was due to the sole deletion of MGA or was connected to the absence of both factors.

To investigate whether DAZL binds to germline genes' RNAs, we examined previously published individualnucleotide crosslinking and immunoprecipitation (iCLIP) data of DAZL in spermatogonia, which are at a late stage of PGCs (Mikedis et al. 2020; Rafiee et al. 2021). Surprisingly, we found that DAZL binds to genes such as Ddx4, Sycp3, Taf71, and Hormad1 (Fig. 6F), whose translation should be reduced in DAZL's absence (Zagore
et al. 2018). However, we did not observe any changes in the expression of these genes in dDAZL cells. Interestingly, in ddMD cells, the expression of $D d x 4$ and Sycp3 was reduced compared to dMGA, likely as a compensatory effect of DAZL's absence (Fig. 6G).

A previous publication proposed a model where DAZL maintains high mRNA levels for selected targets, thereby preventing the binding of negative regulatory factors (Mikedis et al. 2020). In its absence, the levels of these targets are reduced by negative regulation. Therefore, we speculate that MGA might act as a negative regulator of DAZL to prevent excessive translation of downstream meiotic genes at this time point. However, it is also possible that other RNA-binding proteins in the MGA interactome could play a similar role in this context.

These findings suggest a potential relationship between MGA and DAZL in regulating the late stage of PGCLC differentiation. While our results show that the absence of both proteins directly impacts gene expression, further experiments are needed to confirm this relationship and determine if MGA binds directly to RNA.

Figure 6. Impact of MGA and DAZL absence on gene expression during day 6 of PGCLC differentiation. A. Quantification of Blimp1-mEGFP+ cells in the parental cell lines TIR1, MGA-AID cells without auxin, dMGA (deletion of MGA), dDAZL (knockdown of DAZL), and ddMD (absence of MGA and DAZL) at day 6 of PGCLC differentiation. The scheme highlights PGCLC differentiation with day 6 PGCLCs quantified (top panel). B. Heatmap representing DEGs for each condition using k-means clustering ($\mathrm{n}=5$). Data show the mean of two independent replicates. C. Barplot of DEGs in dDAZL and ddMD, indicating the number of genes and pseudogenes found for each cell type. D. Venn diagram showing the overlap between up-regulated genes in dMGA, dDAZL, and ddMD. Pseudogenes were excluded. E. Dot plot displaying the results of $G O$ analysis of up-regulated genes in dMGA, associated with male gamete generation and meiotic cell cycle. F. Snapshot of iCLIP in spermatogonia for DAZL compared to IgG. G. Comparison of normalized counts for meiotic genes between AID (no auxin), dMGA, dDAZL, and ddMD. Data show the mean of two independent experiments. ns: not significant; *p<0.1 via Two-way ANOVA with Sidak's multiple comparison test.

Discussion

Transcription factors and signalling pathways work together during embryonic development to specify PGCs from the mesodermal signalling environment. However, the molecular mechanism driving this cell lineage is not well understood. In this study, we present evidence of the crucial role of the transcription factor MGA in promoting PGC formation, revealing its genomic targets and interaction partners during PGCLC differentiation.

We demonstrate that differentiation into PGCLCs involves the dynamic activity of MGA in maintaining the correct gene programs for the specific cell type (Fig. 7). At first, using an inducible degron system, we confirm the role of MGA as a repressor of meiotic genes and in safeguarding pluripotency (Stielow et al. 2018; Washkowitz et al. 2015; Qin et al. 2021). Indeed, rapid depletion of MGA results in the derepression of meiotic genes in ESCs and EpiLCs, while prolonged deletion leads to an impaired pluripotent state with loss of OCT4 in ESCs. MGA controls promoter regions of genes that maintain stem cell and germ cell development in ESCs and EpiLCs, as evidenced by the enrichment of canonical motifs T-box and E-box, as well as the presence of OCT4-SOX2 motifs. Comparison of the MGA binding site with pluripotency factors (OCT4, SOX2 and NANOG), using previous ChIP-seq data (Galonska et al. 2015), shows a higher overlap that suggests their possible cooperation. Furthermore, we identify MGA interactors in ESCs, including pluripotency factors such as ESRBB, TEX10, OCT4, and SOX2, suggesting that MGA may be part of the core of pluripotency factors in ESCs. This study presents a direct relationship between MGA and pluripotency factors for the first time. MGA binding sites also overlap with E2F6, and as part of the PRC1.6 complex, MGA guides the complex on the binding sites of meiotic genes together with E2F6, repressing their premature expression in ESCs (Dahlet et al. 2021; Mochizuki et al.2021). In line with that, during PGCLC differentiation, the MGA interactome maintain the presence of PRC1.6 members together with proteins such as ATF7ip and SMARCA4, previously found to influence meiotic gene expression in ESCs (Maeda et al. 2013). DNMT1 and SETDB1, which are involved in silencing germ cell genes through methylation, were also found to sustain the action of these factors in MGA-interactome in EpiLCs. DNMT1 and SETDB1 were previously found to interact with MAX in repressing ESC germ cell genes in ESCs (Tatsumi et al. 2018). In a more recent publication, DNMT1 was shown to interact with EED, a member of PRC2. Their interaction was proposed as essential in maintaining an epigenetic signature on meiotic genes from epiblast through PGC differentiation (Lowe et al. 2022). DNAmethylation establishment may depend on MGA or EED recruitment of DNMT1 rather than MGA binding on their promoter (Mochizuki et al. 2021). Together, this led to an intricate network of proteins implicated in repressing meiotic genes during PGCLC differentiation. In particular, we show how MGA is important in the early step, which precedes PGC specification, as ESCs and EpiLCs, and indicates a context-dependent role of MGA in maintaining their cell-type specific gene program reflected by a combinatorial action with different interactor partners.

One major finding of this study is that MGA plays a direct role in maintaining PGC specification. After MGA deletion, the efficiency of PGCLC formation decreased, and meiotic genes were derepressed. MGA also regulates the expression of PGC markers, including Prdm1, Prdm14, and Nanog, in EpiLCs and d1 PGCLCs by binding to their promoters. Their lower expression upon MGA deletion suggests a context-dependent role of MGA in maintaining the cell-type specific gene program. This phenotype resembles the one observed upon loss of T-box factors, T and EOMES, resulting in the weak activation of BLIMP1 but failure to maintain PGCs (Aramaki et al. 2013; Senft et al. 2019). MGA binding sites overlap with T and EOMES (Tosic et al. 2019), specifically on PGC determinant genes while meiotic genes were controlled only by MGA. Deletion of MGA T-box domain resulted in only changes in the transcriptome but not reduced efficiency of PGCLC formation. Even though PGCLCs have not presented a severe phenotype as it was for the complete deletion of MGA, we observed early up-regulation of genes associated with meiosis and mesodermal differentiation in ESCs and PGC markers in EpiLCs. Moreover, we found an increase in T expression and its target genes in ESCs suggesting a mutual feedback regulation between the T-box factors. A similar result was obtained by a complete loss of EOMES during mesodermal differentiation (Tosic et al. 2019) or the contrary in nascent PGCs with lower expression of T (Senft et al. 2019). Intriguingly, the fact that we influenced T expression only by deleting the T-box domain suggests a strong connection between MGA and T-box factors. Therefore first, we demonstrated that the T-box domain is a key determinant of target genes specific for PGC differentiation. Second, findings of similar phenotypes and target regions of MGA and T-box factors might indicate synergetic action in determining PGC specification achieved by their overlapping expression in the posterior epiblast region where PGCs occur. Their redundant function might ensure continuous activation of PGC determinant genes until their expression is lost during differentiation. However, T and EOMES were not presented in the MGA interactome. Instead, in a previous publication, SMARCA4 was linked to EOMES cell state transition by changing chromatin accessibility (Istaces et al. 2019). Considering this, it would be interesting to study how accessible chromatin is after the deletion of these T-box factors in relation to SMARCA4 in this cell-state transitions from epiblast to PGC.

One intriguing finding was the complete change in the interactome of MGA at day 6 of PGCLCs, with the enrichment of RNA-binding proteins. In particular, we found the presence of DAZL, an RNA-binding protein essential for ensuring meiotic and gametogenic competence (Gill et al. 2011). We investigated the nature of their interaction by disrupting the simultaneous expression of both proteins using an inducible system and CRISPR/Cas9. We found that impairment of either MGA or DAZL alone leads to different phenotypes. Deletion of MGA reduced the number of PGCLCs, resulting in higher expression of meiotic genes. Conversely, deletion of DAZL did not influence the differentiation of PGCLCs but rather genes involved in RNA processing. Instead, the combined loss of both MGA and DAZL seems to result in a compensatory action to restore the expression of some meiotic genes, such as $D d x 4$ and $\operatorname{Sycp} 3$, which were expressed at higher levels in the absence of MGA and bound by DAZL. Therefore, it is tempting to speculate that MGA might act as a negative
regulator of DAZL to avoid excessive translation of downstream meiotic genes at this time point. Future work is needed to test this hypothesis.

In summary, MGA is required to ensure PGC specification, with an expanded role during the differentiation process, relying on controlling cell-type gene expression and interaction with multiple proteins. Our data demonstrate the essential role of MGA in ensuring cell fate transition, providing an exciting glimpse into the complex action of this transcription factor.

Figure 7. Model depicting the diverse regulatory roles of MGA during the differentiation of PGCLCs. During PGCLC differentiation, MGA maintain the interaction with PRC1.6 members, ATF7ip, and SMARCA4, and represses meiotic genes. In ESCs, MGA interacts with pluripotency factors (OCT4, SOX2, ESRRB, and TEX10) and safeguards pluripotency. In EpiLCs, MGA interacts with methyl proteins, such as DNMT1 and SETDB1. In the early stage of PGCLCs (day 1), MGA induces primordial germ cell (PGC) specification by binding to PGC genes such as Prdm1, Prdm14, and Nanog, along with T and EOMES. In the late stage of PGCLCs (day 6), MGA is linked to RNA binding proteins such as DAZL. These findings suggest that MGA plays a critical role in the regulation of various developmental programs during PGCLC differentiation.

Materials and Methods

Mouse embryonic stem cell culture and primordial germ cells like cells induction

Previously established mouse embryonic stem cell (mESC) lines carrying Blimp1-mEGFP were used in this study (Ohinata et al. 2005). The cells were cultured in N2B27 medium (1:1 DMEM/F12 and Neurobasal, 2mM L-glutamine, $1 x$ penicllin-streptomycin, $0.1 \mathrm{mM} \beta$-mercaptoethanol, $1 \% \mathrm{~B} 27,0.5 \% \mathrm{~N} 2$) supplemented with 2i ($1 \mu \mathrm{M}$ PD0325901, $3 \mu \mathrm{M}$ CHIR99021) and $1000 \mathrm{U} / \mathrm{ml}$ mouse leukemia inhibitory factor (mLIF) on fibronectin-coated dishes (Millipore). Media was replaced daily, and cells were passaged using Tryple (Gibco). All ESCs were regularly tested for mycoplasma contamination using Lookout mycoplasma PCR Detection Kit (Sigma).
To induce mPGCLCs following the previous protocol established (Hayashi et al. 2011),mESCs were dissociated and seeded onto fibronectin-coated plates with EpiLC medium (N2B27 medium, 1\% KnockOut Serum Replacement (KSR), bFGF ($12 \mathrm{ng} / \mathrm{ml}$), Activin A ($20 \mathrm{ng} / \mathrm{ml}$)) for 42 hrs . Media was changed every day. The resulting EpiLCs were dissociated and plated into ultra-low cell attachment U-bottom 96-well plates (Corning) at a density of 3000 cell/well in 100 ul PGCLC induction medium (GK15: GMEM, 15\% KSR, NEAA, 1 mM sodium pyruvate, $0.1 \mathrm{mM} \beta$-mercaptoethanol, $100 \mathrm{U} / \mathrm{ml}$ penicillin, 2 mM L-glutamine; supplemented with cytokines: BMP4 (500 ng/ml), LIF (1000 U/ml), SCF (100 ng/ml), BMP8a (500 ng/ml), and EGF (50 $\mathrm{ng} / \mathrm{ml})$). For late-stage analysis, 100 ul of GK15 medium was added on day 4.

For large-scale induction of PGCLCs (for CUT\&RUN, RNA-seq, and Mass Spectrometry experiments), $1.5 \times 10^{\wedge} 6$ cells/well in 1 mL PGCLC induction medium were plated into six-well AggreWell 400 plates (STEMCELL Technologies), which were previously coated with Anti-Adherence Rising Solution (STEMCELL Technologies), and 1 mL of GK15 medium was added after 24 hours. From day 2 on, media was changed by removing 1 mL and adding 1 mL of fresh GK15 medium. After 1-6 days, embryo bodies (EBs) were collected for fluorescence-activated cell sorting (FACS) or immunofluorescence. EpiLCs were also seeded in GK15 medium without cytokines as a negative control.

To deplete MGA-AID cells, auxin (indole-3-acetic acid sodium salt, IAA, Sigma) was used at $100 \mu \mathrm{M}$ (in H2O) for adherent cells and $500 \mu \mathrm{M}$ for EBs.

Flow cytometry

To prepare cells for fluorescence-activated cell sorting (FACS), cultured cells or embryoids were first dissociated into single cells using Tryple and suspended in phosphate-buffered saline (PBS, Gibco) with 2% fetal bovine serum (FBS, Gibco), as well as 4',6-diamidino-2-phenylindole (DAPI) for nuclear staining. The cell suspension was then passed through a $35-\mu \mathrm{m}$ cell strainer into a Falcon tube (Corning) and sorted using a Sony SH800 cell sorter. PGCLCs were identified and analyzed based on the absence or presence of Blimp1-
mEGFP expression. Gates were set using expression levels in ESC-Blimp1-mEGFP and PGCLCs without cytokines to normalize the data. Negative population mESCs without any fluorescence (mE14) were used to set absolute thresholds. Data were analyzed using FlowJO for further interpretation.

Immunofluorescence

To prepare for fluorescence microscopy, adherent ESCs were grown on fibronectin-coated round slides, placed into 4-well rectangular plates (Thermo Scientific), and washed with phosphate-buffered saline (PBS). The cells were fixed with 4\% paraformaldehyde (PFA, Thermo Scientific) in PBS for 20 minutes at room temperature (RT). After washing with PBS, the slides were permeabilized with 0.1% Triton X-100 in PBS (washing buffer or WB) for 30 minutes and then incubated with 2% bovine serum albumin (BSA) and 0.1% Triton X-100 in PBS (permeabilization buffer or PB) for 30 minutes. Primary antibodies (Table 1) were added, and the samples were incubated overnight at $4^{\circ} \mathrm{C}$. The next day, the samples were washed with WB three times and incubated with secondary antibodies (Table 1) in PBS for 2 hours at RT. After washing with PBS, the samples were incubated with $4^{\prime}, 6$-diamidino-2-phenylindole (DAPI) in PBS for 20 minutes and mounted using Vectashield Mounting Medium (Biozol).

Images were acquired using a Zeiss confocal LSM980 microscope and analyzed using Fiji software. For PGCLCs, EBs were collected on day 1 or day 6 and fixed with 4\% PFA in PBS at RT for 20 minutes. After washing with PBS, the EBs were incubated with 10% sucrose solution in PBS at $4^{\circ} \mathrm{C}$ for 24 hours, followed by 1-hour incubation with 20% sucrose/PBS and embedding in OCT embedding matrix for 30 minutes at $4^{\circ} \mathrm{C}$. The EBs were then embedded in a tissue-mould and stored at $-80^{\circ} \mathrm{C}$ until cryosectioning.

The cryosectioned slides ($8-\mu \mathrm{m}$ thickness), made using Leica Cryostat CM3050S, were collected on Superfrost Plus Micro slides (Thermo Scientific) and stored at $-80^{\circ} \mathrm{C}$. To prevent the sections from drying out, they were circumscribed using ImmEdge Pen (Biozol) and washed with WB three times before incubation with PB for 30 minutes. The slides were then processed as described for adherent cells.

Collection of Genital Ridges from Embryos

All animal experiments were performed following the ethical guidelines of the German animal protection law (TierSchG) and approved by the Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES). Mice carrying \triangle PE-Oct3/4-GFP (GOF-GFP), previously established (Yeom et al. 1996), were bred and housed in the mouse facility of the Max Planck Institute for Multidisciplinary Sciences (Göttingen, Germany). Genital ridges of male and female siblings were isolated from 10.5 and 11.5 dpc embryos. After fixation with 4\% paraformaldehyde, the tissues were embedded in OCT compound and frozen. Sectioning and immunostaining procedures were performed as described above for EBs.

Cleavage under target and release under nuclease (CUT\&RUN) procedure

All CUT\&RUN experiments were performed using 500,000 cells per biological replicate (ESCs-EpiLCs: triplicates; PGCLCs day1: duplicates) and normalized using IgG from each cell type. ESCs and EpiLCs were dissociated with Tryple and counted using the Invitrogen Countess automated cell counter. PGCLCs day1 were dissociated into a single-cell solution with Tryple and sorted with FACS based on appropriate Blimp1mEGFP expression until reaching the appropriate number. CUT\&RUN was performed as previously described (Skene and Henikoff 2017).Briefly, cells were washed and captured with BioMagPlus Concanavalin A (Polysciences), permeabilized with Wash Buffer (20 mM HEPES pH $7.5,150 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}$ spermidine, and $1 \times$ complete protease inhibitor cocktail (Roche)) containing 0.065% digitonin (Dig Wash), and incubated with primary antibody (MGA, IgG) overnight at $4^{\circ} \mathrm{C}$.

The cell-bead slurry was washed twice with Dig Wash, incubated with Protein AG-Micrococcal Nuclease (pAG-MNase) for 1 hour at $4^{\circ} \mathrm{C}$, then washed twice more with Dig Wash. Experiments were carried out in part using pA-MNase provided by Dr. S. Henikoff and the pAG-MNase from EpiCypher. The slurry was then placed on an ice-cold block and incubated with Dig Wash containing 2 mM CaCl 2 to activate pAG-MNase digestion for 30 minutes. After adding one volume of $2 x$ Stop Buffer ($340 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ EDTA, 4 mM EGTA, 0.05% Digitonin, $0.05 \mathrm{mg} / \mathrm{mL}$ glycogen, $5 \mathrm{mg} / \mathrm{mL}$ RNase A) to stop the reaction, fragments were released by a 10 -minute incubation at $37^{\circ} \mathrm{C}$. Samples were centrifuged for 5 minutes at $16,000 \times g$ at $4^{\circ} \mathrm{C}$, and the supernatant was recovered. DNA was extracted by spin column (NucleoSpin kit Qiagen), and resulting DNA was quantified and analyzed by TapeStation 2200 (Agilent). The resulting DNA was used as input for library preparation.
Library preparation was carried out following the protocol (https://dx.doi.org/10.17504/protocols.io.bagaibse) modified to preserve short DNA fragments, ideal for studying transcription factor profiles, using NEBNext Ultra II DNA Library Prep Kit (NEB). Fragment size distribution and the absence of adaptor dimers were checked using Agilent TapeStation 2200 and High Sensitivity D1000 ScreenTape. Libraries were sequenced as 100 bp paired-end reads on the Illumina Nova Seq 6000 at the Sequencing Core Facility (Max Planck Institute for Molecular Genetics, Berlin, Germany).

CUT\&RUN data analysis

Sequencing data were processed according to the standard CUT\&RUN pipeline (https://bitbucket.org/qzhudfci/cutruntools/src/default/). First, paired-end reads were quality-checked using FastQC, and then trimmed for adapter removal using a two-step process with Trimmomatic (Bolger, Lohse, and Usadel 2014) and Kseq trimmer. The trimmed reads were then mapped to the mouse genome (mm10) using Bowtie2 (Langmead and Salzberg 2012), and duplicate reads were removed using Samtools. Peak calling was performed using MACS2 (Li et al. 2009; Zhang et al. 2008), and bed files for each replicate were obtained after removing IgG peaks with BEDTools subtract (Quinlan 2014). Merged peaks from
biological replicates were obtained using an R script that generated consensus non-redundant peaks with an occurrence in at least two samples for triplicates and by concatenating two BED files on the Galaxy platform for duplicates (Afgan et al. 2016). Genomic peak annotation was performed using the ChIPseeker R package (Yu, Wang, and He 2015) with $\pm 1 \mathrm{~kb}$ around TSS set for the promoter region window. The comparison of Gene-ontology analyses of MGA targets was performed using the Bioconductor package clusterProfiler (Yu et al. 2012), setting the threshold as an adjusted p-value of 0.01, and using ShinyGO 0.76.2 (http://bioinformatics.sdstate.edu/go/) for visualization. Motif discovery and enrichment were performed using TFmotifView (Leporcq et al. 2020). CUT\&RUN signals were obtained by merging bam files from each replicate using Samtools merge, and then deepTools bam-Coverage (option --binSize 50 --normalizeUsing CPM --scaleFactor 10 --smoothLength 150 --extendReads 157) was used to generate bigwig files (Ramírez et al. 2016). Heatmaps and profile plots were performed using the functions computeMatrix, followed by plotHeatmap and plotProfile from deepTools. The data were visualized using IGV (Thorvaldsdottir, Robinson, and Mesirov 2013), and Venn diagrams were generated using InteractiVenn (http://www.interactivenn.net).

Construction of T-box deletion, auxin-Inducible MGA Degron and DAZL Knockdown cells

The CRISPR/CAS9 system was to target endogenous genes in our study. All guide RNAs (gRNAs) were designed using either Benchling/CRISPOR software or sequences obtained from CRISPR screening designed by the laboratory of Feng Zhang (Sanjana, Shalem, and Zhang 2014). Next, gRNA oligos with Bbs/ overhangs were annealed and ligated into pSpCas9(BB)-2A-Puro (PX459) V2.0, which was a gift from Feng Zhang (Adgene plasmid \# 62988, http://n2t.net/addgene:62988; RRID:Addgene 62988). The gRNA oligos used are listed in Table 2.

To construct the MGA-AID-mCherry targeting vector, we assembled it by serial modification of the base vector pMK292 (mAID-mCherry2-NeoR), which was a gift from Masato Knemaki (Addgene plasmid \# 72830; http://n2t.net/addgene:72830; RRID:Addgene_72830). We used Gibson assembly with the following templates: the minimal functional AID tag fused with mCherry was amplified by PCR from PMK292, and homology arms to the last exon and 3^{\prime} UTRs of MGA were PCR amplified from Blimp1-mEGFP ESCs genomic DNA (1kb each).

Plasmids were transfected into Blimp1-mEGFP cells using lipofectamine 2000 (Invitrogen), following the manufacturer's guidelines. The day after transfection, cells were subjected to puromycin selection (1ug/ml) for 48h to eliminate any non-transfected cells and passed them at a range density. Approximately one week later, colonies were picked and expanded, and PCR screened them followed by Sanger sequencing to determine the desired genomic modification.

To delete the T-box domain, we transfected Blimp1-mEGFP cells with two px459-Cas9-sgRNA targeting MGA's T-box domain in exon 2. Two correctly targeted homozygous clones were used for this study (T-box1 and T-box7)

To knock in the AID-mCherry cassette at the N-terminal of MGA, we first generated TIR1-Blimp1-mEGFP ESCs by transfecting pPB-CAG-OsTir1-V5-T2A-Puro along with the pPBase vector. After evaluating the number of copies of TIR1 for the selected colonies, we then transfected the MGA-AID-mCherry vector together with px459-Cas9-sgRNA targeting MGA last exon. Two correctly targeted homozygous clones were used for this study (clone A and clone 27).

To generate DAZL knockdown (dDAZL cells), one MGA-AID clone was then transfected with px459-Cas9sgRNA targeting DAZL fifth exon. One correctly targeted homozygous clone was used for this study.

A table of the gene targeting gRNAs, genotyping primers and the editing strategy is shown below.

Target gene	Target site	gRNA sequence $\left(5^{\prime}-3^{\prime}\right)$	Primer sequence $\left(5^{\prime}-3^{\prime}\right)$	Strategy
T-box domain (MGA)	Exon 2 (beginning)	FW-CAC CGC CCT TGA TAA CAA TAG tat g REV-AAA CCA TAC TAT TGT TAT CAA GGG C	FW- AGTCATCACCAGGAAAATCTAAAGA GAA	Deletion of T-box domain
	Exon 2 (end)	fw-cac cgc cca tca tcc CGA AAG CCT T rev-aAa caa gGc tit cga GAT GAT GGG C	REV gGatcaAaAtcacctgantgtatct CTG	
MGA	$\begin{gathered} \text { Exon 24- } \\ 3^{\prime} \text { UTR } \end{gathered}$		FW-ATGCCTACATTGGCACCTGTT REV-CTCACAGCCTGGCTTTTGTATG	Tagged MGA with AID-mCherry (Auxin degron system)
	$\frac{\text { pMK292- }}{\text { exon24 }}$		FW- gactcactatagggcgaattggagctccccgg gAGGTATGAGTGGCAACAAA REV- TTTGCCTGATGAACTTGATGGAGCT	Generate MGA-AID-mCherry vector
	Exon24 AIDmCherry		FW AGCTCCATCAAGTTCATCAGGcAAA aaggagaagagtgcttgtcctaaaga REV- GCTTTTGTATGAGGATGAACAAGCT CAttacttgtacagctcgtccatgccg	
	$\frac{\text { AlDmCherry- }}{\text { 3-UTRs }}$	FW- TGAGCTGGTTCATCCTCATACAAAA GC REV- attggtatgctgatatgatcagttatctag aAtTTGGCTACGGTCTCTGGTTAG GG		

DAZL	Exon 5			Generate frameshifting indel in coding exon
		FW- CACCGTGAAACT GGGCCCTGCAAT CAGG	FW GAA CTG GTG TGT CGA AGG GG	
		REV-AAAC GATTGCAGGGCCCAGTTTCAC	REV- CAG CTC CTG GAT CAA CTT CAC T	

RNA-sequencing procedure

RNA sequencing was performed on two independent cultures of ESCs, EpiLCs, and PGCLCs on day 1 and day 6. ESCs and EpiLCs were dissociated with Tryple, pelleted, and processed. PGCLCs on day 1 and day 6 were dissociated into a single-cell solution with Tryple and sorted with FACS based on appropriate Blimp1-mEGFP expression until 100,000 cells were obtained. All samples were processed as follows: ΔT-box samples were obtained from two independent cultures of ESCs, EpiLCs, and PGCLCs on day 6 for both the wild-type and two $\Delta \mathrm{T}$-box clones($\Delta \mathrm{T}$-box1 and $\Delta \mathrm{T}$-box7), respectively; MGA-AID samples were obtained from two clones (clA and cl27) from the same passage (ESCs and EpiLCs) or the same PGCLC inductions were used as replicates together with TIR1 cells; dDAZL samples were obtained from two independent cultures. RNA extraction was performed using the RNeasy Mini kit (Qiagen). The RNA integrity number was assessed using RNA ScreenTape (Agilent), and all samples were confirmed to have RIN >8.5. Libraries were prepared from 250ng of total RNA using the NEBNext ${ }^{\circledR}$ Ultra™ II Directional RNA Library Prep Kit for Illumina (NEB). The libraries were sequenced as 100bp single/paired-end reads on the Illumina Nova Seq 6000 at the Sequencing Core Facility (Max Planck Institute for Molecular Genetics, Berlin, Germany).

RNA-seq data analysis

The quality of the library sequence was analyzed using FastQC, and low-quality reads and adaptor sequences were removed using Trimmomatic. RNA-seq reads were aligned to the mouse reference (GRCm38/mm10) genome using STAR (Dobin et al. 2013). Read counts per gene were obtained by HTseq-count (parameters -t exon -s reverse) (Anders, Pyl, and Huber 2015) and normalised using DEseq2 in R (Love, Huber, and Anders 2014). Differential expression analysis was performed using DESeq2 (fold change >1.5, adjusted pvalue < 0.05). GO analysis was performed using Metascape (http://metascape.org/gp/index.html). Heatmaps were generated using ComplexHeatmap and pheatmap in R, while Boxplot were created using BoxPlotR (http://shiny.chemgrid.org/boxplotr/).

Reverse-transcriptase quantitative PCR

Total RNAs were reverse transcribed into cDNA using the QuantiTect Reverse Transcription Kit (Qiagen). qPCR was performed with KAPA SYBR FAST (Roche) on a CFX96 touch Real-Time PCR instrument (Bio-Rad). The expression of target genes was normalized using the housekeeping gene, Arbp, as indicated in the figure. The primer sequences for qPCR are listed in the table below.

Target genes	Forward primer (5'-3')	Reverse primer (5'-3')
Arbp	CAAAGCTGAAGCAAAGGAAGAG	AATTAAGCAGGCTGACTTGGTTG
Prdm1	GAGGATCTGACCCGAATCAA	CATGGAGGTCACATCGACAC
Prdm14	ACAGCCAAGCAATTTGCACTAC	TTACCTGGCATTTTCATTGCTC
Ap2y	ATCAAGATCGGACACCCAAC	ATGGCGATTAGAGCCTCCTT
Dazl	CCAGAAGGCAAAATCATGCCAA	GGCAAAGAAACTCCTGATTTCGG
Sycp3	TGTGTTGCAGCAGTGGGAACTG	GGCTCTGAACAATTCTAGACTGC

Co-immunoprecipitation (Co-IP) and Western Blotting

Cells were harvested and suspended in lysis buffer (50 mM Tris-HCl [pH 7.5], $150 \mathrm{mM} \mathrm{NaCl}, 1 \% \mathrm{NP40}, 0.5 \%$ NaDeoxycholate, $1 \times$ cOmplete protease inhibitor cocktail). The cell suspension was incubated on ice for 10 minutes, followed by incubation for 15 minutes on a rolling wheel at $4^{\circ} \mathrm{C}$, and then centrifuged at $16,000 \mathrm{~g}$ for 10 minutes at $4^{\circ} \mathrm{C}$. The supernatant was collected and quantified using the Qubit Protein assay (Thermo Fisher Scientific).

For immunoprecipitation, the cell lysates were incubated with Dynabeads Protein G (Thermo Fisher) for 1 hour at $4^{\circ} \mathrm{C}$ to pre-clear the lysate. Then, the cell lysates were incubated with the indicated antibodies for 2.5 hours at room temperature. Protein G-associated Dynabeads were added and incubated overnight at $4^{\circ} \mathrm{C}$. After washing three times with lysis buffer and two times with Wash Buffers (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$, $250 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ NP-40, 0.05\% deoxycholate), 1X protein SDS loading buffer (Bio-Rad) was added and boiled for 5 minutes. The supernatant was cooled on ice for 5 minutes before loading onto a gel for immunoblotting. As a control, immunoprecipitation was performed using IgG. Immunoprecipitated proteins and input were loaded onto a 4-12\% SDS-polyacrylamide gel electrophoresis (Bio-Rad) and transferred to a $0.45 \mu \mathrm{~m}$ nitrocellulose membrane (Amersham). The membranes were probed with appropriate antibodies (listed in Table 1).

Mass spectrometry and data analysis

To characterize novel interactor partners of MGA, we performed MGA and IgG immunoprecipitation using 6×10^{6} cells (ESCs, EpiLCs) and 1.5×10^{6} cells (PGCLCs) per biological replicate (ESCs, EpiLCs: triplicates; PGCLC day 6: quadruplicate). Dr. Ralf Pflanz at the Proteomics Facility, part of the Bioanalytical Mass Spectrometry group of Prof. Henning Urlaub in Göttingen, Germany, carried out further processing steps.

Raw files from MS/MS were analyzed with MaxQuant (Cox and Mann 2008) version 2.0.3.0 with default settings and searching against the UniProt mouse proteome (UP_mouse_rev_070219). Additional options for 'match between runs', LFQ, and iBAQ were selected. Statistically enriched proteins were identified using a permutation-based false discovery rate (FDR)-corrected two-sided t-test applied on LFQ, using the Perseus Software protocol which are listed in table 2 (Rudolph and Cox 2019). Stoichiometry calculation was made using the iBAQ value. We subtracted the IgG values from MGA pulldown iBAQ intensity. The relative abundance values were scaled to obtain the abundance of the bait protein, which was set to 1 (Smits et al. 2013). GO analysis was performed using Metascape.

Table 1

A table of the antibodies used for western blot, staining, CUT\&RUN and immunoprecipitation with the concentration used is shown below.

Primary Antibody	Western Blot	Staining	CUT\&RUN	Immunoprecipitation
MGA Abcam EPR19854	1:1000	1:100/1:500	1:50	1:50
Guinea Pig anti-Rabbit-IgG Antibodies ABIN101961	x	x	1:100	1:50
DAZL Abcam ab34139	1:1000	1:100	x	1:50
L3MBTL2 Active Motif 39569	1:1000	x	x	x
Alpha Tubulin proteintech 66031-1-Ig	1:2000	1:50	x	x
	1:1000	x	x	x
BLIMP1 Cell Signalling 9115	1:1000	x	x	x
Anti-GFP Abcam ab13970	x	1:400	x	x
SOX2 Santa Cruz sc-365823	1:500	1:50	x	1:50
AP2 γ Santa Cruz sc- 12762	x	1:50	x	x
$\begin{gathered} \text { OCT4 } \\ \text { Santa Cruz } \\ \text { sc-5279 } \end{gathered}$	1:500	1:50	x	1:50
NANOG eBioscience, clone eBioMLC-51, 14-5761	x	1:50	x	x

Secondary Antibody	Western Blot	Staining	CUT\&RUN	Immunoprecipitation
Anti-Mouse Cell Signalling 7076	$1: 2000$	x	x	x
Anti-Rabbit Cell Signalling 7074	$1: 2000$	x	x	x
Alexa Fluor 488 anti-Mouse	x	$1: 400$	x	x
Alexa Fluor 555 anti-Rabbit	x	$1: 400$	x	x
Alexa Fluor 405	x	$1: 500$	x	x
anti-Mouse	x	$1: 400$	x	x
Alexa-Fluor 488 anti-Chicken	x	$1: 1000$	x	
DAPI			x	

Table 2

Proteins specifically associating with MGA identified by mass spectrometry. Proteins are highlighted with different colours same used in volcano plot.

1) ESCs-MGA-IP (5 replicates)

Protein IDS	Significant	pvalue(-logic	Difference	LFQ_ESC_IgG_1	LFQ_ESC_I8G_2	LFQ_ESC_IgG_3	LFQ_ESC_IgG_4	LFQ_ESC_IgG_5	LFQ_ESC_MGA_1	LFQ_ESC_MGA_2	FQ_ESC_MGA_3	LFQ_ESC_MGA_4	C_MGA_5			
Spl\|Q80UY2	KCMF1_MOUSE	+	4.864379	7.22539	17.29074	18.17029	19.31948	17.87659	18.47747	21.14383	20.81519	20.11108	21.78568	23.15791		
sp\|P48725	PCNT_MOUSE	+	3.217146	6.632461	16.90578	18.58159	18.78289	18.94906	18.89322	23.63079	21.3573	23.28799	22.7707	20.14507		
Sp\| P14115	RL27A_MOUSE $^{\text {a }}$	+	2.56127	5.695423	17.80792	17.8595	18.04164	18.44245	18.4863	22.44927	20.28704	20.53583	21.17548	20.11057		
sp\|A2AWLITMGAP_MOUSE	+	7.085907	5.551546	22.5784	22.88183	23.18884	23.87474	24.50458	30.11458	27.51683	29.34613	29.22617	28.00935			
splQ999NA9\|PCGF6_MOUSE	+	6.524911	5.500742	17.07492	18.37029	18.98438	19.64164	18.2612	25.90896	23.32072	26.94838	26.67936	25.60196			
Sp\|P16460	ASSY_MOUSE	+	4.821072	5.436934	19.10669	18.71021	19.12873	19.06434	19.01927	22.92879	21.00168	21.70514	21.67029	23.08892		
splQ80WTS [AFTIN_MOUSE	+	6.657309	5.434052	18.27526	18.69169	18.17485	18.30829	18.08298	18.72589	25.59229	24.75445	25.13065	25.80691			
spla64378\|FKBP5_MOUSE	+	3.737555	5.327825	16.87557	18.90737	18.45806	74946	18.82351	24.37789	20.90095	22.54527	22.13665	07308			
SplQ7TME2\|SPAG5_MOUSE	+	4.783512	5.249745	17.78074	18.64042	18.84328	18.71615	18.73328	24.79223	21.70126	22.47949	22.83103	24.35494			
Sp\| P46061	RAGP1_MOUSE	+	3.015538	5.080585	18.02693	18.19289	18.34735	18.54296	19.10772	23.34584	21.16165	22.18954	21.95656	21.69043		
sp\| P61965	WDR5_MOUSE	+	5.475254	4.990519	19.0341	18.37037	18.20655	18.90438	18.82156	24.22347	22.043	24.02893	23.79828	24.19588		
Sp\|Q9ERU9	RBP2_MOUSE	+	3.330141	4.963639	16.74708	17.94639	18.09619	19.42929	19.11728	21.02547	20.62033	20.61072	20.53886	20.23853		
spl\|Q8BMK0	CEP85_MOUSE	+	5.137912	4.845451	17.50936	20.11362	20.5966	20.75418	18.34404	26.58792	24.06093	25.14091	24.0792	24.08797		
splQ9CQ,44\|RING2_MOUSE	+	4.220932	4.689016	17.84619	19.9607	19.53615	19.78483	18.38648	21.34462	21.35127	21.70434	21.11261	21.89353			
Sp\|P59178	LMBL2_MOUSE	+	4.567914	4.622455	17.72537	18.61598	18.04278	18.83809	19.29896	24.64301	23.77957	23.98163	23.64339	23.64384		
splQ999\%0\|ECHB_MOUSE	+	4.680971	4.584631	18.61878	20.31141	20.2383	20.41204	18.92595	21.23064	21.87023	21.82225	22.05778	22.71186			
spl 0 SSV853 SYNRG_MOUSE	+	3.473287	4.443975	17.52284	18.61026	18.47269	18.32181	18.25054	21.35456	21.87871	22.32663	22.34384	21.3573			
spla8k389 \|CK5P2_MOUSE	+	6.059588	4.345991	19.28888	20.90932	18.92204	17.44352	19.03564	21.51576	23.21749	21.76596	22.41573	25.20116			
splQ8BRT1\|CLAP2_MOUSE	+	3.215924	4.257121	17.05919	20.93207	18.79995	19.47326	17.82302	22.05933	22.32975	21.80923	21.82536	21.37146			
sp\|Q90981		SKAP_MOUSE	+	4.248775	4.231905	21.10066	14.79589	15.25978	16.26138	18.97948	24.07194	23.15754	24.09281	23.89597	24.34123	
splQ7T18\|MCAF_ _MOUSE	+	4.81869	3.972414	20.12098	18.93004	19.48911	19.1481	18.74816	23.5798	21.08842	23.16408	22.12626	24.14709			
SplQ812U2\|\XTP_MOUSE	+	3.069002	3.836668	16.31882	18.49612	19.28862	18.71621	18.52236	22.33189	20.38036	20.93179	21.21282	21.1077			
spla6NV72\|WDCP_MOUSE	+	3.02261	3.815859	18.90259	18.77355	18.23612	17.40939	18.44921	21.16116	20.77209	20.42491	20.82314	21.24028			
splagcris \|PARB_MOUSE	+	2.577674	3.703339	16.92501	17.94148	17.79005	18.9229	18.57468	20.12692	19.58261	20.75116	20.48572	20.34819			
splQ3UYG1\|CC160_MOUSE	+	4.695302	3.625234	18.36438	18.59363	19.15365	18.22234	19.1033	25.09096	22.92586	22.79511	22.96603	23.8866			
splQ99LC3\|NDUAA_MOUSE	+	5.806003	3.616579	24.84891	25.21148	24.7168	24.95553	25.10278	26.26573	25.5813	26.39062	26.03758	26.2325			
SplQ9awT9\|KIFC1_MOUSE	+	3.45476	3.533851	18.32418	19.88832	20.20275	19.98008	19.70198	21.84165	21.06612	21.23468	21.84126	21.41183			
splQ62158\|TR127_MOUSE:sp	Q9ESN2		+	5.468193	3.480026	17.72832	18.98479	18.57485	19.77748	17.0559	25.98494	20.63254	23.46688	22.99099	24.44891	
splQ8R0G9\|NU133_MOUSE	+	5.350689	3.417185	24.67098	26.38407	26.57615	25.96838	19.15602	18.85611	18.32464	17.27808	18.05817	17.65093			
Spl\|Q8BMS1	ECHA_MOUSE	+	2.648071	3.334945	23.17039	21.94796	21.46558	21.10961	21.1465	18.76435	18.79549	18.92654	18.81285	17.73571		
Sp\|035654	DPOD2_MOUSE	+	3.755144	3.331898	17.44402	18.46725	18.75192	18.43848	18.26642	21.61405	20.71934	21.36592	21.34186	21.00696		
splQ07104\|GDF3_MOUSE	+	3.333797	3.311195	17.45482	18.80634	19.83542	19.02208	17.2058	21.51716	20.995	20.32499	20.53735	21.34841			
Sp\|Q9RoL6	PCM1_MOUSE	+	2.688287	3.26334	17.30335	18.94982	19.49166	18.22647	17.9825	21.30463	21.30575	22.34865	21.88818	21.24899		
SplQ9ılm4\|ZMYM3_MOUSE	+	4.10499	3.228481	17.48729	18.50863	17.71899	18.85577	19.51081	24.0554	21.64759	22.98024	23.12321	23.38732			
spl $188 B \times 10 \mid$ PGAM5_MOUSE	+	3.065349	3.175824	17.35867	18.43378	18.39384	17.7171	18.94855	20.48188	21.06362	21.49121	21.08434	20.1149			
SplQ62074\|KPCI_MOUSE	+	4.886076	3.175246	18.57724	18.84522	18.76451	19.74801	18.48861	21.76571	20.78556	21.42198	20.46981	21.67405			
Spl\|Q9CPS7	PNO1_MOUSE	+	2.796193	3.093671	17.64821	18.83231	18.41362	18.38858	18.26406	22.69098	20.16668	21.66214	20.83746	20.93575		
Sp\|Q1PSW8	LIN41_MOUSE	+	4.174234	3.073117	17.2727	19.22331	18.70094	19.15321	18.72588	25.46678	22.7233	23.47296	23.62701	24.03473		
SplQ08297\|RAD51_MOUSE	+	2.667424	3.061529	18.34456	17.69764	18.67682	18.81059	19.68404	21.39827	19.61585	21.04747	21.18574	20.87725			
SplQ91WG4\|ELP2_MOUSE	+	3.763087	2.973619	17.70212	18.65896	19.36065	19.08454	18.28166	23.28968	21.40919	21.7536	20.89903	22.3959			
SplQ9CZH8\|CCD77_MOUSE	+	3.621243	2.949246	17.67343	18.3693	17.83508	19.28598	18.16488	20.38648	19.83138	20.42798	20.75385	20.63076			
splQ61539 \|ERR2_MOUSE;sp	P62509			1+	5.332413	2.936009	18.44735	18.16781	19.44704	17.97622	18.4391	24.50367	23.09512	24.00196	23.9832	24.39728
SplQ9bbe8\|ALL2_MOUSE	+	4.360018	2.927506	18.34868	21.54567	21.51658	20.80349	19.57895	24.55298	22.7554	24.62109	23.97272	22.56591			
splQ3UM18\|LLS61_MOUSE	+	3.279385	2.925325	18.82128	18.79945	19.11932	18.00607	18.367	23.55777	22.28176	23.09933	22.46498	23.43924			
Sp\|O88974	SETT31_MOUSE	+	2.910369	2.924483	16.91353	18.84809	19.05765	18.6806	18.23175	22.13931	21.35294	21.11515	21.32948	20.66284		
spl054917\|E2F6_MOUSE	+	4.526082	2.87351	17.36342	20.79939	18.81663	19.42922	18.14665	21.98242	21.92872	21.18538	21.81206	23.11509			
Spl\|Q6Z288	KDMIA_MOUSE	+	3.114579	2.859486	18.72604	19.07726	18.72572	19.2002	18.85054	22.26178	20.56514	21.57038	21.66027	21.81535		
SplQ3UJV1\|CCD61_MOUSE	+	3.592023	2.784077	18.92852	18.36755	17.38269	18.50854	17.33782	22.52669	20.97778	23.54333	22.88876	21.74809			
Spl\|Q3uMCO	AFG2H_MOUSE;Spl Q9033R	+	3.156669	2.758309	17.35169	18.75402	18.52957	18.99436	17.93571	20.24493	20.73438	20.87793	20.76409	20.01468		
SplQ901M0\|SEC13_MOUSE	+	2.710707	2.733451	17.43469	18.45388	18.98886	18.7186	18.49244	20.26098	20.37241	20.19832	21.74271	19.90686			
Sp\|Q90753]ExOS8_MOUSE	+	3.519826	2.694489	20.52593	20.35348	19.64679	19.46718	18.18436	22.97325	22.07215	22.25503	21.48729	23.18158			
splQgCQus \|ZWINT_MOUSE	+	4.027277	2.676801	17.80386	18.41569	19.31711	19.02877	18.45933	22.86761	20.41833	20.70092	21.49565	22.16886			
Spl\|a8BSF4	PIS_MOUSE	+	4.737019	2.658635	21.55754	18.34628	17.95775	18.34664	18.76145	25.42089	22.01723	23.67368	23.84575	24.83031		
SplQAFzF3\|DDX49_MOUSE	+	4.505759	2.530143	17.8351	18.32795	19.26318	18.11878	18.92206	23.48013	21.69047	22.10217	22.00683	23.04955			
splQ90CE5 \|PK11P_MOUSE	+	2.724102	2.479687	17.49553	18.29369	18.37722	18.32973	18.06686	19.51389	20.91335	19.86974	19.14684	20.54066			
Spl\|Q3UA06	PCH2_MOUSE	+	3.130503	2.380051	18.2066	18.46936	18.92172	18.25015	19.30349	21.1332	19.90389	21.55417	20.58371	19.74598		
splQ8CGY8\|OGT1_MOUSE	+	3.192464	2.378401	18.98305	18.88288	17.90351	18.89885	18.42634	22.48895	22.19277	21.34749	21.84	22.62556			
splQ8k224\|Nat10_MOUSE	+	3.248277	2.34962	17.60976	18.41572	18.10866	18.43629	16.71716	21.61441	20.85795	20.5657	20.71154	21.41421			
splQ91V99\|ZN622_MOUSE	+	2.845555	2.339536	17.49454	18.20889	18.21043	18.47484	17.60196	19.22873	19.74665	20.02052	20.00813	20.64042			
SplQ6NVF9\|CPSF6_MOUSE	+	3.897306	2.338703	17.15218	18.22782	19.21715	18.57114	16.78025	23.32113	22.24394	20.20108	20.71925	22.64647			
sp\|Q922s8	KIF2C_MOUSE	+	2.955484	2.237255	17.17759	18.65023	18.64167	17.82393	17.55497	20.4711	20.4051	19.71089	19.65992	21.34949		
SplQ6P281\|TNPO3_MOUSE	+	3.296352	2.228093	17.00776	18.7751	18.46344	18.51384	19.62511	21.32965	21.02499	20.7576	21.58049	21.16497			
Sp\|Q8BIX3	AL14E_MOUSE	+	3.71546	2.214132	18.61941	17.85	19.4004	16.55258	19.39455	24.70556	21.23911	22.4039	22.25023	22.50373		
SplQ8C547\| HTRES_MOUSE	+	2.888982	2.182186	18.32147	17.84518	18.51717	18.2852	19.07129	22.39331	21.11343	21.59113	21.68205	22.34633			
splQ90018\|MRT4_MOUSE	+	3.773041	2.140356	17.53542	19.72274	20.47229	19.12168	18.67664	22.83919	21.22647	22.41669	22.77296	22.82945			
sp\|P11157	RR2_MOUSE:Sp	Q6PEE3	R1+		2.979951	2.078563	17.77425	19.02162	18.40604	17.98364	18.28256	21.93708	20.69702	20.68398	20.8413	21.67629
Spl055091\|	MPCT_MOUSE	+	2.875296	1.953928	17.53911	19.49798	17.9631	17.6166	18.12802	20.72117	21.08602	21.18749	21.22158	21.16607		
splQ3URQ0\|TTEX10_MOUSE	+	3.71968	1.930756	22.4496	20.90984	20.64966	20.09558	18.20766	24.49637	23.02337	23.80528	23.43454	23.86948			
sp\|O9JKC8	AP3M1_MOUSE:Sp	O8R2R9		3.07743	1.88429	16.74464	19.09455	19.47011	19.4427	18.17532	21.86374	21.21549	21.66813	21.70936	20.13786	
Sp\|P61963	DCAF_ MOUSE	+	2.998458	1.859644	18.46481	18.50536	18.69039	18.28055	18.26267	19.47807	19.33032	19.78069	20.11261	20.81878		
sp\|A2AN08	UBR4_MOUSE		2.018348	6.315606	18.11285	24.58159	23.96305	25.83535	22.88142	18.17612	25.5994	26.53726	25.65103	26.21178		
Sp\|P20263	P05F1_MOUSE		0.890182	1.819274	18.29254	18.8133	21.7432	21.57759	18.53584	17.6356	22.11312	21.39509	21.56481	20.51759		
splQ921E6\|EED_MOUSE		2.224329	1.807505	18.04421	19.00987	18.04036	24.74812	23.62712	18.28914	20.38121	22.30847	23.04243	25.9467			
spla8BTO7 [CEP55_MOUSE		1.68623	1.801362	26.29971	19.06163	23.13449	21.61621	17.96614	26.00958	20.52946	25.4197	24.86287	25.18597			
SplQ90621\|NOP56_MOUSE		1.065148	1.801134	17.66565	19.42323	18.63347	18.88551	17.49359	19.74179	20.75858	21.0997	20.48621	18.92413			
splQ8k333\|LN28A_MOUSE		1.558061	1.800281	19.78144	20.71095	20.72983	20.39393	22.06569	22.58854	22.20398	21.83927	21.89152	24.47655			
spl\|Q8BP48	MAP11_MOUSE		1.064472	1.794736	24.34577	24.00898	23.89078	24.21904	17.8075	25.82982	23.37372	24.95731	24.95593	24.0059		
sp\|P70398	USP9X_MOUSE		2.597993	1.794429	26.60102	27.72221	27.0878	27.39517	26.62519	26.02766	27.14822	28.18631	27.66878	26.51437		
SplQ6PDQ2\|CHD4_MOUSE		1.605852	1.793665	22.27855	22.37875	23.16294	22.52703	19.06445	23.52612	22.45438	21.8514	22.50281	23.8624			
Sp\|P62307	RUXE_MOUSE		1.228441	1.785793	17.78582	22.40234	23.15877	22.94135	18.85508	22.35351	22.3787	22.61901	22.399	23.73655		
Spl\|a6P3A8	ODBB_MOUSE		1.981534	1.781789	22.43451	20.76838	22.00512	19.73759	24.59366	23.86854	18.67942	22.53969	21.95031	25.90012		
SplQ3TIZ6\|FA98A_MOUSE		0.961473	1.775948	20.67219	22.65347	23.089	23.61336	19.23334	22.03999	24.21148	23.63467	23.09347	20.8786			
SplQ91W50\|CSDE1_MOUSE		1.973842	1.775764	22.35114	24.47957	25.04689	25.04256	18.61082	25.08489	24.75995	24.92913	24.97705	24.41041			
Spl\|Q99P88	NU155_MOUSE		2.078677	1.771374	17.5386	25.20404	25.10025	25.73624	19.03561	18.02378	25.85369	25.31907	25.6294	26.56758		
Sp\|P31230	AIMP1_MOUSE		0.646786	1.770588	17.39932	22.48424	21.86495	22.16846	19.29239	18.52972	22.10926	21.80865	21.60123	20.81972		
Sp\|P70168	IMB1_MOUSE		0.655372	1.770123	20.42419	23.79054	23.38153	23.57554	19.28449	18.08898	23.08188	22.7615	23.17594	17.35264		
SplQ3U9G9 \|LR_MOUSE		1.473152	1.769833	21.79769	18.80883	21.75471	21.29592	17.58902	22.47665	20.60684	22.27421	22.05033	19.1989			
Spl\|a8C647	SMC4_MOUSE		1.154976	1.765545	17.3756	18.9159	18.67266	17.87655	19.56284	17.23454	19.15931	17.89131	17.82056	19.51077		

2) EpiLCs MGA-IP (3 replicates)

Protein Ids	Significant	pvalue(-log1	Difference	LFQ_EpiLC_IgG_1	LF_EpiLC_IgG_2	LFQ_EpilC_lgG_3	LFQ_EpiLC_MGA_1	LFQ_EpiLC_MGA	FQ_EpilC_MGA_3
DOPD_MOUSE	+	4.61658688	10.6617285	18.81955147	17.36318398	18.31180191	28.56223679	29.25925636	28.65822983
KCMF1_MOUSE	+	4.55384368	7.68915494	18.9022789	18.0851078	17.80310631	26.22326469	25.74911499	25.88557816
CHIP_MOUSE	+	2.7415183	7.37027486	19.68459702	16.90718842	18.04935646	26.73039627	24.74237061	25.2791996
RAGP1_MOUSE	+	3.95867771	7.32686806	19.30167198	18.243536	19.39508629	25.72517776	26.40666962	26.78905106
RBP2_MOUSE	+	5.67360424	7.16579501	18.73498726	19.22387886	18.81690788	25.92601204	26.22618866	26.12095833
SPAG5_MOUSE	+	3.56227851	6.91701508	19.16125679	18.22177124	17.60593414	24.85000229	24.9343605	25.95564461
AFTIN_MOUSE	+	3.51294491	6.63915507	18.92004585	17.61921883	17.59650612	24.10797119	24.59109306	25.35417175
MGAP_MOUSE	+	3.48410145	6.62339528	18.56089592	18.68721199	17.57990646	25.8158741	24.4582634	24.42406273
UBR4_MOUSE	+	2.85385193	6.53383636	20.14895058	20.56885338	22.64662743	27.17111969	27.58684921	28.20797157
CEP85_MOUSE	+	2.98246108	6.50317891	18.72481728	17.59318924	17.36949348	23.12941742	24.92886162	25.13875771
SUMO1_MOUSE	+	2.93731738	6.38932482	19.27436256	17.15667915	17.5198307	23.67076874	24.36452866	25.0835495
CLAP2_MOUSE	+	2.04299779	6.23827076	19.30665588	15.27953815	17.26554108	22.32846832	23.83701515	24.40106392
PCGF6_MOUSE	+	4.06752149	6.1213754	18.42327118	17.96426201	17.53875542	24.57010651	23.60263634	24.11767197
SYNRG_MOUSE	+	3.21421546	6.08395894	18.81247902	17.83550644	18.7971344	23.57484818	24.73003387	25.39211464
RING2_MOUSE	+	2.32771904	5.91979408	20.70223999	17.46801567	18.04773521	25.25234222	24.43872833	24.28630257
MCAF1_MOUSE	+	2.81527341	5.91836294	19.4872303	17.64792442	18.47970963	23.40626335	24.67168617	25.29200363
PCNT_MOUSE	+	2.14238437	5.8811264	18.34606171	20.09764099	16.30773354	23.5370636	24.87333298	23.98441887
GSHO_MOUSE	+	3.30242589	5.71939214	18.55685616	17.29494858	17.3850174	22.76016045	24.0500946	23.5847435
LMBL2_MOUSE	+	3.90749812	5.4538784	18.22072601	18.8119812	17.64989471	23.99412155	23.54674911	23.50336647
RL36_MOUSE	+	3.16336298	5.4461422	19.76869774	18.96806145	17.80791473	24.39021301	24.33619881	24.15668869
WDR5_MOUSE	+	3.00409955	5.34064039	19.33665085	17.71678925	17.87186813	24.30089569	23.14734077	23.49899292
H32_MOUSE	+	3.63307755	5.33774948	18.74908829	17.62896538	17.45686531	23.3730526	23.45010376	23.02501106
RL7_MOUSE	+	1.98299709	5.31462224	19.27352333	22.14513397	23.08284378	27.23114204	26.74727249	26.46695328
FKBP5_MOUSE	+	3.37689456	5.28241285	18.86065102	20.12148857	20.17596817	24.59559631	24.99804497	25.41170502
CK5P2_MOUSE	+	2.48332287	5.24262746	19.06321907	17.17523766	17.59961319	21.98978043	23.96912575	23.60704613
H11_MOUSE	+	2.4760626	5.22491646	17.57205772	17.16720581	19.61009216	23.73892403	22.62885284	23.6563282
PURA_MOUSE	+	2.70534745	4.9961586	19.17216301	16.94867134	18.41490746	23.39649773	23.42342186	22.70429802
SRRM1_MOUSE	+	2.59781929	4.97811762	19.31382561	16.81764793	18.1520462	23.32223701	23.11909866	22.77653694
U2AF1_MOUSE	+	3.66527257	4.92716726	18.63405228	17.59212494	18.73543739	23.41209221	23.32443619	23.00658798
DPOD2_MOUSE	+	2.35312434	4.89784431	18.79545403	17.14063072	19.44566536	22.40275574	23.60681915	24.06570816
U2AF2_MOUSE	+	1.93896012	4.83501752	18.91314316	21.42183113	17.72529984	24.34170532	24.21378517	24.0098362
NCK5L_MOUSE	+	3.35844773	4.7909406	19.08883667	18.21545601	17.61260986	23.32991982	22.86221123	23.09759331
SNUT1_MOUSE	+	2.45564743	4.70922089	19.64601517	17.32256699	17.52886581	23.20402527	22.82080841	22.60027695
SKAP_MOUSE	+	3.29758259	4.61767324	18.44835281	17.50347137	18.46372795	22.79629898	22.18752289	23.28474998
KIF2A_MOUSE	+	3.11950811	4.5745093	18.268116	18.99476814	17.59426689	22.32819366	23.30187225	22.95061302
TSR1_MOUSE	+	2.75864991	4.53007062	18.70022583	17.40155792	17.57525826	22.62722778	23.08407593	21.55595016
UBC9_MOUSE	+	3.48977552	4.5066274	17.46515656	18.56554985	17.73800278	22.03123474	22.73566437	22.52169228
PNO1_MOUSE	+	3.32848092	4.46100934	17.93741608	18.11243248	17.59237862	22.1634922	23.10184669	21.75991631
EXOSX_MOUSE	+	2.32039044	4.42460442	18.42805672	17.58399773	17.02157402	23.16633034	22.26258659	20.87852478
MEF2D_MOUSE;Sp	+	2.1544291	4.42369016	Color2 [$A=255, \mathrm{R}=1$	4	19.94671822	- 1		23.89892197
SYHM_MOUSE	+	3.20291713	4.3939298	18.84627342	17.54482841	18.11864853	22.3318615	22.29642105	23.06325722
CLU_MOUSE	+	2.17165909	4.38948758	18.67285919	20.66431618	21.25942802	24.18055916	24.32546616	25.25904083
PGAM5_MOUSE	+	3.42012251	4.30949593	18.14195442	17.3527832	17.33651352	22.32385826	22.06601906	21.3698616
RHG29_MOUSE	+	2.55568929	4.30063756	18.71793938	16.87994385	18.45842171	21.95663261	22.94611931	22.0554657
IF2B_MOUSE	+	2.70932477	4.28642591	18.5987339	17.79199028	19.00489616	23.67260361	22.09003448	22.49225998
THOC4_MOUSE;sp	+	2.76153011	4.22520002	- 4	18.49230003	17.06309891		22.71334839	22.2612381
WDCP_MOUSE	+	2.05155866	4.22488149	20.00613976	17.44912148	17.9667511	23.3823185	21.93081093	22.78352737
CBX3_MOUSE	+	3.7179372	4.22261111	18.09908676	18.41207123	18.00570297	22.97774506	22.01478195	22.19216728
PSMD4_MOUSE	+	4.20598152	4.18266233	18.95907593	18.38945961	18.20957947	22.81971741	22.5572834	22.72910118
KHDR1_MOUSE;sp	+	2.41835049	4.16928355	4	19.56681061	18.82207108		22.26987839	23.45022964
SUH_MOUSE; ${ }^{\text {dp }}$	+	3.97482932	4.14488729	4	18.36063957	18.28832245		22.97999573	22.12136078
SON_MOUSE	+	2.18578946	4.11195755	18.22954178	17.17340851	18.11042404	20.51854897	22.74011803	22.59057999
LUC7L_MOUSE	+	1.98123811	4.04061953	18.83032799	18.33063889	16.56433678	23.03853607	21.65215302	21.15647316
TMM11_MOUSE	+	2.83713278	4.00419617	18.38152885	16.75878716	17.6762867	21.71770477	21.90080261	21.21068382
CNBP_MOUSE		1.9145825	3.96387672	18.68654442	18.21321106	20.72375679	23.96947861	23.2588253	22.28683853
SRSF5_MOUSE	+	2.1948316	3.9635671	19.92101479	20.89548683	18.38638878	23.99412155	23.78925133	23.31021881
SMD3_MOUSE	+	3.03961418	3.95172564	17.23462296	17.64693451	18.42859077	21.73463058	22.19976425	21.23093033
NOB1_MOUSE	+	2.36447098	3.93350538	18.45409584	17.90167999	20.08342743	22.69718742	23.05147171	22.49106026
DDX21_MOUSE	+	2.73525738	3.90571976	19.42481041	18.32781982	17.88010979	22.26490593	22.98231316	22.10268021
SRSF2_MOUSE		1.90375762	3.83568573	17.91196251	17.96323586	20.41905403	23.1043129	22.70227051	21.99472618
S39A7_MOUSE	+	2.94695685	3.82988294	19.00814629	17.93953705	18.20274544	22.4443512	21.56616211	22.62956429
NOG1_MOUSE	+	2.70646874	3.76861827	19.17247391	18.30768967	17.61941719	22.34256172	22.45878983	21.60408401
EMC8_MOUSE	+	2.4656001	3.76219749	18.52657509	16.92974663	18.09870529	21.98060608	20.86725426	21.99375916
CCNB1_MOUSE	+	2.58904554	3.7585481	18.62435532	17.4655571	16.6985054	21.33843231	21.31080055	21.41482925
CDK12_MOUSE	+	2.1440596	3.7505544	19.73575783	17.41963196	17.75734138	21.8911171	22.38606071	21.88721657
RL35A_MOUSE	+	2.05529123	3.74745496	19.05754852	21.61063194	21.08388138	24.1943779	24.52784729	24.27220154
DICER_MOUSE	+	2.29404174	3.67201233	18.64511299	16.90665627	17.70597649	22.10155678	20.63706017	21.53516579
RMXL1_MOUSE	+	3.28614614	3.65982564	17.58579254	17.3586483	18.45462418	21.59900665	21.57911301	21.20042229
EXOS8_MOUSE	+	2.56972915	3.64147059	19.01972961	17.80752945	17.14531326	21.67387581	21.65189171	21.57121658
PRP19_MOUSE	+	2.51157976	3.6112353	19.5657959	19.65847015	18.16633987	23.28093338	22.67415619	22.26922226
ELAV1_MOUSE	+	2.37362593	3.60992686	18.40230751	19.40922546	20.41452026	22.94904518	23.40301704	22.70377159

HTR5B_MOUSE		1.88726154	3.60236677	19.4677639	17.5326786	18.04446411	22.75427818	20.7446003	22.35312843
WNK3_MOUSE	+	2.30273101	3.5954202	19.29206467	17.21456718	17.73704529	21.39937019	21.71762085	21.9129467
PISD_MOUSE	+	2.74293697	3.55810229	19.26364517	17.80336952	17.86763	21.80829239	21.7747879	22.02587128
TR125_MOUSE	+	4.00772135	3.55450694	19.11874199	18.87729645	18.90888596	22.93387413	22.20997047	22.4246006
NOP2_MOUSE	+	2.12814316	3.53299014	19.60223007	17.34068871	18.95849609	22.54719734	22.13921165	21.81397629
TALDO_MOUSE	+	2.10143685	3.51943207	18.97449875	17.58217621	17.40431976	22.16189384	20.49150085	21.86589622
DNMT1_MOUSE	+	2.84431766	3.514925	19.15879631	19.25847435	17.91040802	22.41758728	22.39183998	22.06302643
SUCB2_MOUSE	+	2.66466605	3.50717481	18.25875282	17.98645401	16.89194489	21.3324337	21.62685013	20.69939232
MEST_MOUSE	+	2.80837395	3.47779592	18.61448288	17.58100319	17.6534462	20.81190109	21.74283409	21.72758484
BYST_MOUSE	+	3.99109639	3.47118441	17.75229645	17.53569412	17.16963005	21.11254311	21.09448814	20.66414261
ATSF1_MOUSE	+	2.43233143	3.46662966	19.4241066	17.83839226	18.41090584	22.65298462	21.52645111	21.89385796
ML12B_MOUSE	+	2.59570949	3.39487394	18.05635834	16.99129105	18.32303047	20.95631409	21.77615547	20.82283211
RTCA_MOUSE	+	3.6186024	3.37957764	18.1959095	17.9691143	17.39465141	21.02519608	21.473629	21.19958305
LSG1_MOUSE	+	2.8693905	3.37275505	18.88176918	19.40804291	20.21299934	22.77517128	23.2095089	22.63639641
HNRPD_MOUSE		1.87306606	3.35786311	18.88443184	16.82100487	17.65238762	22.0777359	21.07750702	20.27617073
RL1D1_MOUSE	+	2.89493839	3.3216114	17.679039	17.99532509	17.43842125	21.13420486	20.32366562	21.61974907
T2EB_MOUSE	+	1.98177931	3.3042558	19.90309525	17.50738525	18.13588715	21.96975899	21.59204102	21.89733505
HSP7E_MOUSE		1.91843997	3.3001194	19.29907036	17.45659447	16.95477676	20.69879913	21.52094841	21.39105225
SSRA_MOUSE	+	2.60189312	3.29609299	18.94052315	18.66926575	17.40090942	21.40857315	21.72250748	21.76789665
SRSF6_MOUSE		1.86096716	3.2881368	19.29615593	21.36072922	21.76267624	24.33681297	24.19633102	23.75082779
DDX49_MOUSE	+	2.64357576	3.28070831	18.62909126	17.11583138	17.32959747	21.00058365	20.9770813	20.9389801
PESC_MOUSE	+	2.8868824	3.27648608	18.65057373	17.58664131	17.47824669	21.00511551	21.50416756	21.0356369
DYL1_MOUSE	+	2.85940659	3.25629234	18.67635536	17.5611763	18.41140556	21.10980606	21.38890076	21.91910744
DLGP5_MOUSE	+	3.62145495	3.23456955	19.79797745	19.83361816	19.66892624	23.42534447	23.03456306	22.54432297
ECHB_MOUSE	+	2.33928743	3.21498044	18.99215317	20.44515991	18.82802773	22.38719177	23.08375168	22.43933868
TMCO1_MOUSE	+	3.75585073	3.19059817	18.81286812	18.40224266	18.12962341	21.43170738	21.60936928	21.87545204
YMEL1_MOUSE	+	2.06584491	3.18849373	18.96538734	19.32054138	20.15276527	23.79064369	22.15548515	22.05804634
EXOS2_MOUSE	+	2.20866702	3.1583271	18.85819054	17.27005768	18.09522057	21.9417038	20.61934662	21.13739967
CKAP2_MOUSE	+	4.20023216	3.15111923	17.39134789	16.81180191	17.2273941	20.39832687	20.22493935	20.26063538
NDUA9_MOUSE	+	2.4626907	3.15011978	19.57715034	17.93442535	18.21523094	21.66570282	21.740942	21.77052116
FBRL_MOUSE	+	2.64760567	3.14600563	19.14769554	18.63257027	20.04046059	22.27690887	22.79409981	22.1877346
GNL3L_MOUSE	+	2.64115788	3.14579264	19.01182747	18.6932621	20.1000824	22.45665932	22.664814	22.12107658
MTCH2_MOUSE	+	2.89832428	3.14402898	17.9082222	17.35104942	18.25613022	20.49306488	21.48035049	20.97407341
SGPL1_MOUSE	+	2.27116817	3.13570595	18.84325409	16.86871719	17.87706184	20.9480648	21.05840874	20.98967743
NPM_MOUSE	+	2.76544164	3.08877945	23.28700829	21.92488098	22.94861794	25.81872749	25.70514297	25.90297508
TRI27_MOUSE;sp	+	2.13965719	3.08835856	4	18.48321342	17.21704102		20.43389893	21.9629631
DIDO1_MOUSE	+	2.20123077	3.07623545	18.47603035	16.99752617	17.30516052	21.34288597	20.61593819	20.04859924
MEP50_MOUSE	+	3.92528573	3.07179832	18.52910233	18.13588333	18.69158745	21.41379738	21.77168846	21.38648224
TMM33_MOUSE	+	3.68128493	3.04577573	18.29094505	17.95749474	18.12707138	21.27719116	21.47975922	20.75588799
FBX22_MOUSE	+	2.00219533	3.02914111	18.81344223	16.98171043	17.39554596	20.3709259	20.44485664	21.4623394
NAT10_MOUSE	+	2.72423404	3.00707881	17.29899406	18.30316544	18.59105492	21.25885391	20.82057571	21.13502121
E2F6_MOUSE		1.82418939	2.98405393	19.54010201	17.34550667	18.29234123	21.53815269	20.69038391	21.90157509
TROAP_MOUSE	+	2.51731806	2.98344167	19.53733826	18.42133522	18.18543816	21.90943527	21.28523064	21.89977074
DYR1A_MOUSE; ${ }^{\text {p }}$	+	2.3745244	2.94946416	4	18.71510506	17.32423592		20.91466331	20.79114151
RS21_MOUSE		1.83428312	2.93997383	20.00487709	17.59166336	18.67482758	21.75702858	21.92408371	21.41017723
ELP3_MOUSE	+	3.47308065	2.88117854	17.92194557	17.96098328	18.08898163	21.31174469	20.84796906	20.45573235
RLAO_MOUSE		1.94665327	2.8687884	23.72837448	25.30089569	25.83893967	28.03674316	27.83815765	27.59967422
UBE2O_MOUSE	+	3.21259762	2.86349169	17.93568993	17.60186386	16.95231247	20.4488945	20.27980042	20.35164642
ROAA_MOUSE		1.95957431	2.82550875	18.39328003	17.92689896	18.02707863	22.11483192	20.66942787	20.03952408
TET3_MOUSE	+	2.67273403	2.82024002	18.7338829	17.39466667	17.88165092	20.9813385	20.77225304	20.71732903
GDF3_MOUSE		1.97332285	2.8201135	19.49834824	18.0141964	17.64297295	21.19766617	21.65896606	20.75922585
RSMB_MOUSE;sp	+	2.35535587	2.81978099	4	19.36260796	18.73496819		21.51850128	21.65704727
EXOS9_MOUSE	+	2.06462023	2.81634712	19.3006916	18.83514977	17.69370079	21.99206543	20.81636238	21.47015572
PMVK_MOUSE	+	2.47244535	2.80433273	18.68691063	18.12099075	17.41152191	21.26619339	20.39152527	20.97470284
SMD2_MOUSE	+	2.09651373	2.76702372	19.17065048	17.26848412	18.1407299	21.20591927	20.88546753	20.78954887
NOP58_MOUSE	+	2.28596754	2.76040967	18.69968987	17.74523926	19.26677704	21.72008705	20.9392662	21.33358192
VPS4B_MOUSE	+	3.44478845	2.75020917	18.14476967	17.52608681	18.19351006	20.90822601	20.49960136	20.70716667
CAZA1_MOUSE		1.97346707	2.7426815	18.90531731	17.09835625	18.72807503	21.30312729	20.6395359	21.0171299
EXOS4_MOUSE	+	2.07909903	2.73094432	19.60915565	17.78770828	18.31497383	21.50208092	20.99562454	21.40696526
GTPB1_MOUSE	+	2.03255544	2.72808329	17.93639183	19.45500946	19.83343315	21.77390289	21.80455399	21.83062744
FMR1_MOUSE	+	2.49136054	2.70481936	18.76949501	19.00637627	20.01930237	21.67422104	22.3298645	21.90554619
DNJC2_MOUSE		2.00182223	2.66148822	18.53262138	19.96310425	20.42306328	22.39430237	22.10744476	22.40150642
RCC2_MOUSE	+	2.12781339	2.65528361	20.28411293	21.40841675	22.06190681	23.70176315	23.95109177	24.0674324
TRIPC_MOUSE	+	2.82466447	2.65045547	18.9413662	18.99194717	18.72170639	21.94663811	20.87829971	21.78144836
NUBP2_MOUSE	+	2.16596871	2.64924939	19.50900841	18.08821487	18.04970741	20.86135864	21.51629066	21.21702957
ATPD_MOUSE	+	2.71088472	2.63251495	18.65138245	17.71687889	17.94215202	21.1935215	20.44929695	20.56513977

NONO_MOUSE	+	3.73971876	2.63155556	19.51903152	19.06773376	19.37243652	21.8279171	21.78456688	22.24138451
HIRA_MOUSE	+	2.28591994	2.62014325	18.57726097	17.78154755	17.57140923	19.87738609	20.97435379	20.93890762
RFC3_MOUSE	+	2.61743441	2.59665235	17.97568893	18.35216331	18.89495468	20.46353722	21.31589508	21.23333168
CWC22_MOUSE		1.86524175	2.55943044	19.46443939	17.46541977	18.37982941	21.26636505	20.62622643	21.09538841
ELP2_MOUSE	+	2.38205511	2.53295199	18.98376083	18.50392532	17.63197327	20.72800064	21.24214172	20.74837303
AP3D1_MOUSE	+	2.53726493	2.48476982	19.2923069	18.84980202	19.16393471	22.12221527	21.73446465	20.90367317
SC61B_MOUSE	+	2.53962517	2.4836216	18.10457039	17.24526978	18.38258743	20.07077599	20.46901321	20.64350319
TBG1_MOUSE;sp	+	2.25731432	2.43540637	4	18.65612602	18.82596397		20.36996841	21.23432541
MYO9B_MOUSE	+	2.18690916	2.38238398	17.02120399	18.03404999	16.63549805	19.93329811	19.62578011	19.27882576
RFC2_MOUSE	+	3.16182357	2.35842133	18.89457703	19.33293724	19.71538544	21.52453995	21.76255417	21.73106956
TCOF_MOUSE	+	2.34943115	2.34908231	18.90975189	17.59043503	18.00426483	20.50076866	20.72891426	20.32201576
DDX41_MOUSE	+	2.53685214	2.34658051	18.436409	18.25401878	19.15088272	20.71523476	20.73314095	21.43267632
TRBP2_MOUSE	+	2.90567059	2.30510585	18.67405319	18.06248093	17.96382141	20.60774612	20.80278206	20.20514488
MELK_MOUSE	+	2.76176502	2.30014038	19.13614464	18.77622986	18.20246887	20.748209	21.01338577	21.25366974
DJC21_MOUSE	+	3.67285613	2.28212229	18.99835014	19.15288925	18.91843796	21.06131363	21.61701584	21.23771477
UBF1_MOUSE	+	2.27049474	2.27344449	18.55065346	19.63466835	19.78335953	21.8488102	21.58801842	21.3521862
MPIP1_MOUSE;sp	+	2.34121332	2.26911227	4	18.75317383	17.69032097		20.07691956	20.48237038
PMM1_MOUSE	+	2.08321991	2.26083819	18.81152153	17.56939125	18.33868599	20.75417709	20.82888603	19.91905022
SPAS2_MOUSE	+	2.59284906	2.24589666	18.55794716	17.48685265	17.79099083	20.06157684	20.38953018	20.12237358
SOX2_MOUSE;Sp	+	2.67294922	2.24576124	18.64822578	20.58801842	17.99599457	20.09352112	17.68462181	20.38458633
MTMR5_MOUSE	+	2.17168245	2.23930486	17.89781189	18.69874573	18.54829788	20.93149567	19.90600967	21.02526474
ARHGC_MOUSE	+	2.43191852	2.23814519	19.2429657	18.28191185	18.58264732	21.32948112	20.9731617	20.51931763
PR38A_MOUSE	+	2.09354493	2.2218984	18.35954475	17.44160271	17.97063446	20.22658539	20.73826408	19.47262764
RRP12_MOUSE	+	2.71514774	2.17904854	19.1470871	18.66017723	18.53004837	20.83738136	21.41183281	20.62524414
CCD47_MOUSE	+	3.77340538	2.16991234	18.31539536	18.0249691	17.97405624	20.27366829	20.48089218	20.06959724
AFG31_MOUSE	+	2.87678203	2.08526611	19.43767166	19.15202141	19.82680893	21.21210861	21.72903824	21.73115349
FOLC_MOUSE	+	2.52336291	2.02305794	18.49145317	17.85420036	18.21076584	19.75403023	20.23724747	20.63431549
PWP3A_MOUSE	+	2.85711724	2.01078033	18.2483902	17.52182961	18.2165947	20.18410492	19.96366882	19.87138176
RBX1_MOUSE	+	2.58068557	1.98654111	18.22340012	17.65926552	18.57178497	20.29423523	19.87073517	20.24910355
DDX47_MOUSE	+	2.36373207	1.97561709	18.53499603	17.66792107	18.11487198	20.30785942	19.62381744	20.31296349
HJURP_MOUSE	+	2.25081453	1.94696299	18.60614014	18.33687782	17.9405632	19.69360352	20.73842812	20.29243851
PSME4_MOUSE	+	3.58661916	1.93106524	18.50156784	18.73780251	18.51148224	20.40748405	20.34765244	20.78891182
TEFM_MOUSE	+	2.41183206	1.90176773	18.84143448	18.69717026	17.92343521	20.63493538	20.37581062	20.15659714
DNJC9_MOUSE	+	2.28543001	1.82427343	18.883564	17.77752495	18.23247528	20.01876068	20.2631588	20.08446503
PDS5B_MOUSE	+	2.19794526	1.82134374	19.40730476	20.09596825	20.049263	21.14519501	22.01338577	21.85798645
AURKA_MOUSE	+	2.37595355	1.80390867	18.52012062	18.71187973	17.77050972	20.03925705	20.01848793	20.35649109
EXOS3_MOUSE	+	2.29181383	1.79384232	18.79178429	17.90615654	18.65461349	20.22776222	20.54349709	19.96282196
GTSE1_MOUSE	+	2.32572897	1.77018483	18.09778404	18.80344391	18.81187057	20.08615112	20.74073601	20.1967659
RU2A_MOUSE	+	2.58311108	1.72907066	17.58222389	17.55879593	18.28915405	19.7302742	19.48006439	19.40704727
ILF3_MOUSE	+	2.39614401	1.60576375	19.54289627	19.43493843	19.79823112	21.64389992	21.16134071	20.78811646
KIF23_MOUSE	+	2.61562083	1.60206286	18.79933167	18.78190422	19.31333923	20.61566925	20.81245041	20.27264404
ECHA_MOUSE	+	2.62406927	1.52130063	21.68897629	22.28025436	21.72899628	23.20445824	23.58955193	23.46811867

3)PGCLCs d6 MGA-IP (3 replicates)

Hspa14	+	10
Ahhy	+	10
Rpl130	+	
Cltc	+	1
Rpp18	+	10
Pcbp2	+	10
Stub1	+	10

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M |

Supplementary Figure 1

Supplementary Figure 1. MGA expression during PGC differentiation in vitro and in vivo. A. Schematic representation of the culture protocol used for PGCLC differentiation. B. Representative flow cytometry profile of BLIMP1-GFP during in vitro cell fate transition from ESCs to PGCLCs, with BLIMP1+ cells (green) and BLIMP1- cells (red). C. MGA immunofluorescence (IF) staining was performed throughout PGCLC differentiation in vitro and counterstained with aTUBULIN (ESCs), NANOG (EpiLCs), AP2 2 (d2-d6) and SOX2 (d4). The bottom magnifications of the image show that MGA is primarily expressed within the nuclei of ESCs and EpiLCs. In contrast, the magnifications in PGCLCs at d2, d4, and d6 display the overlap area between MGA and PGC markers, as well as a somatic area, indicated by the dashed square. Scale bars, $50 \mu \mathrm{~m}$. D. Expression levels of MGA and representative early (Prdm1, Prdm14, Tfap2c) and late (Dazl) PGC markers during PGCLC differentiation. The average of two replicates is shown. E. Staining of MGA in the genital ridge of $\triangle P E-O c t 3 / 4-G F P$ (GOF-GFP) cells at E10.5 and E11.5 counterstained with GFP. The bottom magnifications show the zooming of the overlap area between MGA and GFP indicated by the dashed square. Scale bars, $80 \mu \mathrm{~m}$. F. Expression levels of MGA with early PGC markers (Prdm1, Prdm14, and Tfap2c) and the late PGC marker (Dazl) transcripts during PGC specification assayed by single-cell RNA-seq (Magnúsdóttir et al. 2013).

Supplementary Figure 2

A

B
Enrichment of TF motifs in MGA peaks
C
EpiLCs

D

E

F

Supplementary Figure 2. Analysis of MGA binding sites during PGCLC differentiation. A-B. Comparison of GO enrichment analysis of MGA binding sites in the promoter (A) and distal intergenic (B) regions of selected biological processes across all cell types. C. Scatterplots showing the enrichment of MGA motifs in each cell type. The x-axis represents the number of regions with one motif $\%$, while the y-axis represents the fold change over the global control regions. The color scale is associated with P-values, with motifs of higher frequency highlighted. D-E. Heatmaps displaying ChIP-seq read densities for pluripotency factors (D) and E2F6 (E) centered on differentially expressed genes bound by MGA during the transition from ESCs to EpiLCs. The analysis considers a region 1.5 kb upstream and downstream of the transcription start site (TSS). F. Coverage tracks of MGA, T, and EOMES at the loci of Wnt8a and Lefty2.

Supplementary Figure 3

E

G Embryonic stem cells
(ESCs)

Supplementary Figure 3: Deletion of T-box domain. A. Position of T-box domain in MGA coding sequence, highlighting the position of the gRNAs used to delete this region. PCR was performed to confirm the deletion. A band was observed at 766 bp in the wild-type, while in the two selected clones, a band was observed at around 210 bp . B. Western blot shows no change in protein levels after deletion of T-box domain. The two clones and wild-type were loaded twice each. α-tubulin was used as a loading control. C. PCA plot of RNA-seq comparing ESCs, EpiLCs, and d6 PGCLCs transcriptome of ΔT-box cells clone 1 and clone 7 , compared to the wild-type cell line. D. Comparison of the up-regulated genes identified in each cell type of ΔT-box cells. The arrow indicates the 22 genes shared between cell types. The expression is shown via Heatmap, mean of the normalized count of two independent experiments. E. Comparison of $G O$ terms identified per up-regulated gene in ΔT-box cells during PGCLC differentiation. F. Comparison of down-regulated genes identified in each cell type of ΔT-box cells, with the results of GO analysis for the biological processes shown in the right panel. G. Scheme used to differentiate ΔT-box cells from ESCs to PGCLCs. H. qPCR of meiotic genes such as Dazl and Sycp3 in ESCs-PGCLCs from WT and ΔT-box cell (cl1 and cl7). Error bars show s.e.m of triplicate biological experiments. * $\mathrm{P}<0.01$, not significant (ns). Two-way ANOVA followed by Sidak's multiple comparison test.

Supplementary Figure 4

Supplementary Figure 4. Comprehensive analysis of MGA interactome during PGCLC differentiation. A. MS-based proteomics workflows during PGCLC differentiation. Protein extracts from ESCs, EpiLCs, and PGCLCs are subject to MGA and IgG immunoprecipitation. Five replicates for ESCs, three replicates for EpiLCs, and four replicates for PGCLCs. Pull-downs are analyzed by LC-MS. The data analysis was performed using MaxQuant, identifying proteins, and statistical analysis using Perseus. Label-free quantification (LFQ) was used to identify statistically enriched proteins in the MGA-IP by permutationbased FDR-corrected t-test. iBAQ intensities are used to calculate stoichiometry. B. Quality control of LFQ values of each interactome performed via PCA analysis. C. Co-immunoprecipitation of MGA in ESCs and PGCLCs (IP-d6). Western blot was performed on input, IgG-IP, and MGA-IP using MGA and L3MBTL2 antibodies. D. Co-immunoprecipitation of MGA, SOX2, and OCT4 in ESCs. Western blot was performed on the input, IgG-IP, MGA-IP, SOX2-IP, and OCT4-IP using MGA and OCT4 antibodies. E-F-H. Stoichiometry determination of the statistically significant interactors in MGA-IP. (E) Pluripotency factors. iBAQ-ESC vs iBAQ-EpiLCs. (F) Proteins involved in methylation. IBAQ-ESC vs iBAQ-EpiLCs. (H) DAZL-PRC1. 6 proteins iBAQ-EpiLCs vs iBAQ-PGCLCs. G. Comparison of proteins enriched from MGA-IP in PGCLCs day 6 with published mass spec data (Chen et al. 2014) of proteins enriched in DAZL-IP.

Supplementary Figure 5

Supplementary Figure 5. Extended analysis of MGA depletion in PGCLC differentiation. A. Targeting strategy of MGA-AID. CRISPR/Cas9 is used to tag AID-mcherry at the C-terminal locus of MGA. PCR showed positive insertion with a size of 1100 bp . B. In ESCs, Western blot analysis of MGA-AID cells treated with auxin for the indicated times. . α-tubulin was used as a loading control. C. Staining of ESCs after 24h of treatment with auxin in TIR1 (parental cell line) and MGA-AID cells. D. A schematic representation of the in vitro differentiation scheme for MGA-AID cells from ESCs to PGCLCs. Auxin was added to deplete MGA at the indicated time points. Cells were also collected for RNA-seq (dashed line). The red square indicates a severe phenotype. E.-F. Expression Heatmaps of lineage-specific genes (E) Meiotic genes and (F) naïve pluripotency, exit pluripotency, and EpiLC markers of ESCs and EpiLCs after MGA-AID cells treated with auxin. Mean of the normalized count of two different biological experiments. G. Staining in ESCs of MGA-AID cells treated with auxin for 96 h and stained with OCT4. H. Immunofluorescence of PGCLCs day 1 of MGA-AID cells +/- auxin after 24h. Cells were stained for GFP-BLIMP1, PGC marker, and MGA.

Supplementary Figure 6

Supplementary Figure 6. DAZL knockdown in MGA-AID cells. A. Schematic representation of DAZL coding sequence indicating the gRNA used for DAZL knockdown. B. Validation of DAZL knockdown via immunofluorescence in the presence of auxin. The positive clone for DAZL knockdown did not show any DAZL expression after adding auxin. C. PCA plot of RNA-seq comparing the transcriptome of PGCLCs at day 6 from MGA-AID, dMGA (without MGA), dDAZL (without DAZL), and ddMD (without both DAZL and MGA) cells.

Chapter II - Structure and function of DUF4801 domain of MGA

In this manuscript, we investigated the role of the DUF4801 domain of MGA. Given that MGA has been identified as essential in promoting PGCs, we were interested in understanding the functional properties of the DUF4801 domain, which have not been fully studied. To this end, we utilized structural prediction tools and genetic approaches to explore the structure and function of this domain in the context of PGC differentiation.

Authors

Erica Calabrese, Ufuk Günesdogan

Status

Preliminary results that require more additional experiments to validate the major finding

My contributions

- Contribution to the conceptualisation of the project ${ }^{1}$
- Preparation and conduction experiments
- Preparation or modification of figures
- Data analysis

[^0]
Structure and function of DUF4801 domain of MGA

Authors: E. Calabrese ${ }^{1}$, U. Günesdogan ${ }^{1,3,{ }^{*}}$

Affiliations:
${ }^{1}$ University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology; Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
${ }^{3}$ Max Planck Institute for Multidisciplinary Sciences, Department for Molecular
Developmental Biology; Am Fassberg 11, 37077 Göttingen, Germany
* Corresponding author: ufuk.guenesdogan@uni-goettingen.de

Abstract

The transcriptional MAX-giant associate protein (MGA) contains a domain that has not been thoroughly characterized- the domain of unknown function 4801 (DUF4801). In this study, using the HHpred tool, we predicted the structural properties of this domain and identified the presence of two unknown zinc fingers, suggesting new protein-, RNA-, and DNA-binding capabilities of MGA. To investigate the role of the DUF4801 domain, we deleted it and examined its effect during the differentiation of mouse primordial germ cell-like cells (PGCLCs) in vitro. Our results show that deleting the DUF4801 domain affects MGA's canonical binding sites, resulting in the loss and gain of genes involved in neurogenesis and endoderm fate. These changes in gene expression are evident in the transcriptome of PGCLCs, although no severe phenotype was observed. This could be attributed to the weakened binding of MGA to DNA. Overall, our findings demonstrate that the deletion of the DUF4801 domain alters the genome-wide DNA binding and transcriptional profile of MGA.

Introduction

The driving force determining proteins' functional and structural properties derives from a small unit of 30100 amino acids defined as a domain (Janin and Wodak 1983). Typically, most proteins contain one or several domains, indicating a significant complexity in their function and evolution (Dawson et al. 2017). To track down their functions, computational methods based on the sequence-based domain concept classify different proteins based on their homology regions (Y. Wang et al. 2021). Despite identifying many protein domains with putative functions (e.g., helix-turn-helix domain, T-box domain, methyltransferase-like domain), more than 3000 domains still lack confirmed functions and are known as domains of unknown function (DUFs) (Bateman, Coggill, and Finn 2010). Since their first classification a decade ago, many studies have explored the functions of DUFs in bacteria and plants, but only a few in mammalian cells. In mammals, DUF domains are mainly involved in binding RNA and DNA or mediating protein interactions (Burgute et al. 2014; Huang et al. 2020; H. Wang et al. 2014; Al Chiblak et al. 2019).

One transcription factor characterized by the presence of the DUF4801 domain is the MAX giant-associated (MGA) protein (Mathsyaraja et al. 2021). According to its characterized domains, MGA is a member of two highly conserved families of transcription factors: MAX interacting proteins (bHLH/zip domain) and the Tbox family (T-box domain) (Hurlin et al., 1999). Moreover, structural studies have reported its belonging to the non-canonical Polycomb repress complex 1.6, PRC1.6, based on its interaction with different proteins (Gao et al. 2012). Therefore, MGA has been studied in various biological processes, such as mouse embryonic stem cell development, germ cell development, and crucially, tumour progression (Stielow et al. 2018; Washkowitz et al. 2015; Burn et al. 2018; Qin et al. 2021; Mochizuki et al. 2021; Mathsyaraja et al. 2021). While previous studies have dissected the activity of MGA's DNA-binding domains in gene expression regulation during development (Uranishi et al. 2021), the DUF4801 domain was only suggested as a mediator of protein interaction in lung cancer cells (Mathsyaraja et al. 2021). However, a recent publication has suggested the DUF4801 domain as a DNA-chromatin binding region, opening up a potential transcriptional role never investigated before (Rafiee et al. 2021).

As MGA is known to play a crucial role during the early development in dynamically regulate the expression of cell-type-specific genes, including pluripotency, meiotic, and germ genes, we utilized mouse primordial germ cell-like cells (PGCLCs) as an in vitro differentiation model system (Hayashi et al. 2011). In particular, we focused how the deletion of the DUF4801 domain influences MGA binding sites, which are critical for the transcriptional regulation of genes involved in PGCLC differentiation. By analyzing MGA binding sites, we determined which genes are directly regulated by DUF4801 domain and how it influences their regulation. Our research aims to provide insights into the specific mechanisms by which MGA and its DUF4801 domain regulate gene expression during PGCLC differentiation.

Results

Analysis of DUF4801 structure

To comprehensively understand the role of the DUF4801 domain, we first started by characterizing its structure. The DUF4801 domain is a conserved region of MGA protein located between amino acids (aa) 1040-1080. To predict the structure of DUF4801 domain, we relied on its primary sequence and its homology with known proteins. We used the HHpred tool to predict the structure, which listed MGA with a probability of 99.5% as its exclusive domain. However, the DUF4801-MGA alignment showed the same arrangements of cysteins, CxxxxCxxxCxC, indicating the presence of two zinc fingers of the same unknown type that could suggest its ability to bind DNA, RNA, or protein (Fig. 1A). We also found that part of this region has structural similarity with the CCCH zinc finger domain of the RNA-binding protein ZC 3 H 14 , which is known to bind RNA and regulate RNA metabolism primarily involved in neurogenesis (Rha et al. 2017; Morris and Corbett 2018, 3) with a probability of 37% (Supplementary Fig. 1A). Furthermore, we used the AlphaFold2 structural modelling tool to confirm the presence of the only predicted helix, which had high confidence. However, the confidence in other predicted regions was very low (Fig. 1B).

By using these structural hunting strategies, we were able to gain insights into the structure of DUF4801 domain, which opens up avenues for further characterization of this domain and its possible functions. based on its sequence.

A

KRAPPCNNDFCRLGCVCSSLALEKRQPAHCRRPDCMFGCTCL

B
pIDDT: \square Very low (<50) Low (60) \square OK (70) \square Confident (80) \square Very high (>90)

Figure1. Summary of DUF4801 domain. A. Overall structure of MGA protein, including a schematic alignment of DUF4801 domain based on HHpred result. The corresponding HHpred alignment of the DUF4801 domain shows a high structural homology with CCCH zinc finger domain, with the arrangement of cysteins highlighted red. B. Alphold2 structure prediction of DUF4801 domain with highlight of predicted helix.

Deletion of DUF4801 domain influenced MGA binding sites and gene expression in ESCs

To characterize the functional activity of the DUF4801 domain, we utilized CRISPR/Cas9 system to delete its coding sequence and produce a truncated MGA \triangle DUF4801 protein in ESCs. We validated the excision of the target region using PCR followed by Sanger sequencing in two clones, referred to as \triangle DUF4801-cl8 and DDUF4801-cl16 (Supplementary Fig. 1B). The absence of this domain did not affect MGA protein expression, as demonstrated by staining and western blot (Supplementary Fig. 1C-D).

Considering its potential role as a DNA-chromatin binder (Rafiee et al. 2021) and its structural properties, we investigated whether its deletion could impact MGA binding sites. Thus, we performed a CUT\&RUN analysis on DDUF4801 clones in ESCs and compared them to the wild-type. Our analysis of the binding sites revealed that the deletion of DUF4801 domain caused MGA to bind more promoter regions, with a frequency of 49.2% compared to 37.7% in the wild-type (Fig. 2A). Although MGA still bound a large subset of genes in DUF4801 cells, it lost 4000 genes and gained 2000 genes, primarily in the promoter regions (Fig. 2B). Indeed, heatmaps of MGA binding loci from wild-type and DDUF4801 cells, partitioned into 4 distinct clusters, showed gained peaks of DDUF4801 cells in cluster 2 (Fig. 2C).

Gene ontology analysis on unique MGA peaks in \triangle DUF4801 cells revealed that most genes were associated to tissue development. We found genes linked to endoderm fate, such as Sox17, Sox2, Tbx21, and Pou6f1, and to neurogenesis, such as Creb1 and Gabra4 (Fig. 2D, Supplementary Fig. 2A-B). Interestingly, MGA lost binding sites in some target genes known to play an important role in pluripotency, such as Dppa5a and Prdm14, as also shown by the L2 database (Supplementary Fig. 2C-2D).

Based on that, we conducted RNA-seq analysis to investigate the effect of the absence of the DUF4801 domain on gene expression in ESCs and to correlate the binding sites changes. The analysis revealed that the absence of the DUF4801 domain led to the significant upregulation of 97 genes and downregulation of 261 genes (Fig. 2E). The high number of downregulated genes suggests that the domain may act as a transcriptional activator. GO analysis showed that negative regulation of ERK1 and ERK2 cascade, such as Dusp6, Chrna9, Dynlt1b, and histone H3 acetylation, as Lef1, Dmrtc2, Sumo2 related terms were significantly enriched among upregulated genes, while downregulated genes were linked to tube morphogenesis, such as Stra6, Hoxa5, and Itga5 genes, and cell adhesion terms such as Dsp, Fat2, Cebpb (Supplementary Fig. 2FH). These results indicate that the DUF4801 domain controls different signalling pathways.

We also checked the expression of unique genes bound in \triangle DUF4801 cells. Although many of them were not significant in the differentially expressed genes (DEGs) analysis, they showed lower expression than in the wild-type cells. However, genes related to endoderm fate and neurogenesis, already downregulated in ESCs to maintain the pluripotency state, showed an even more significant reduction in absence of DUF4801
domain. When we compared the DEG list with the CUT\&RUN binding sites, we found that only half of the genes were directly influenced by the DUF4801 domain suggesting that change in gene expression may depend on a secondary effect relate to change of MGA structure (Fig. 2G).

Taken together, these data showed for the first time how DUF4801 domain is important to bind specific regions, and how its deletion destabilizes canonical MGA binding sites leading to influence several genes' expression in ESCs.

Figure 2. Δ DUF4801 influences MGA binding sites and gene expression in ESCs. A. Genomic distribution of MGA wild-type and \triangle DUF4801 peaks in the genome. Promoters are defined as the region around $\pm 1 \mathrm{~kb}$ from mm10-annotated TSS. B. Overlap of
genes associated with the region bound by MGA wild-type and \triangle DUF4801 cells, highlighting those bound in the promoter region, shows 6,586 genes shared, 4,172 lost after deletion, and 2,183 gained genes. C. Heatmap analysis of MGA bound loci in wild-type and Δ DUF4801 over $\pm 1 \mathrm{~kb}$ around the TSS. Peaks are separated into four clusters by k-means clustering. Profile plots (top panel) show the average signals per each cluster, highlighting cluster 2 as the one with the most difference. D. GO analysis for biological processes associated with genes bound only in the \triangle DUF4801 clones in the promoter region. E. Boxplot showing significantly DEGs in both clones \triangle DUF4801, cl8, and cl16, compared to wild-type in ESCs. Data points are shown using a jittered plot. Important genes are highlighted. F. Boxplot showing the expression levels of 2,160 unique genes bound in the DDUF4801 cells compared to wild-type. Medians are represented by the + symbol. G. Venn diagrams of DEGs, up and downregulated, intersected with MGA binding sites in DDUF4801 cells and wild-type.

DDUF4801 in PGCLCs affect the transcriptome but not the phenotype

Since Δ DUF4801 cells were generated from a transgenic ESC line harbouring a PGC-expressed reporter gene such as Blimp1-mEGFP (Ohinata et al. 2005), we evaluated how the deletion influenced PGCLC differentiation. Firstly, EpiLCs and PGCLCs did not present any abnormalities in their morphology. Indeed, quantification of Blimp1+ cells of Δ DUF4801 clones at day 6 of PGCLC differentiation, evaluated by fluorescence-activated cell sorting (FACS), showed no significant difference compared to wild-type cells (Fig. $3 A)$. However, we did not exclude changes in gene expression during PGCLC differentiation. Therefore, we performed RNA-seq experiments in \triangle DUF4801-cl8, \triangle DUF4801-cl16, and wild-type cells in EpiLCs and d6 PGCLCs.

Interestingly, integrating the data from ESCs, principal components analysis (PCA) from RNA-seq profiles showed that DDUF4801 cells in ESCs and EpiLCs clustered closely with wild-type while in PGCLCs diverged (Fig. 3B). However, analysis of cell-type-specific genes showed no changes in PGC markers, as for other cell-type-specific genes for ESCs and EpiLCs, confirming the morphology of cells and FACS data. Nevertheless, these data indicated that changes in the transcriptome were related to the misregulated gene expression of other classes of genes (Fig. 3C). DEGs in EpiLCs showed the same number (59) of up and downregulated genes, respectively. In PGCLCs, we found 150 high-express genes and 250 down-expressed genes (Fig. 3D). Overlap of DEGs showed a larger number of exclusive genes per each cell type, indicating that the DUF4801 domain has different targets during PGC differentiation. This finding was confirmed by the comparison of GO terms in each cell type (Supplementary Fig. 2E-G). Interestingly, a higher number of down-regulated genes in PGCLCs boosted our hypothesis of the DUF4801 domain as a potential transcriptional activator. Closer inspection of \triangle DUF4801 PGCLCs revealed up-regulation of meiotic genes, such as Ddx4, Mov10l1, Sycp3, and Hormad2. Notably, transcriptional regulation of this class of genes has always been attributed to MGA canonical domains in ESCs (Uranishi et al. 2021; Mochizuki et al. 2021). Therefore, this result might indicate a dynamic regulation of these genes during PGC differentiation involving different MGA domains. By contrast, down-regulated genes, such as Wht8a, Brd9, and Tfap2a, are linked to GO terms, such as skeletal system development.

We then assessed whether other transcriptional regulators could control the DEGs in PGCLCs. To this end, we used the DEG list and looked for putative transcription factors that were enriched using in silico ChIP
analysis of public ChIP-seq datasets from various mouse cell types, using the ChEA 2022 database. In upregulated genes, we found enrichment for transcription factors such as SUZ12 and EZH2, which are part of the PRC2 complex, as well as the zinc finger protein EGR1 (ZNF268) and SOX17. Different proteins targeted other down-regulated genes, such as ZFp281, YY1, and DMTR1. Moreover, SETDB1, NANOG, and OCT4 were also listed, but with a lower fold-change (Supplementary Fig. 3).

However, only about 30 genes of the DEGs were considered potential targets for different transcription factors, which indicated that the rest of the genes were a direct consequence of the loss of the DUF4801 domain.

Our results indicate that the removal of just 40 amino acids from the MGA protein leads to significant changes in gene expression during PGCLC differentiation. Despite this, we observed that the cells did not exhibit severe phenotypic effects, suggesting that the deletion did not affect essential genes. Additionally, the fact that other factors controlled only a small fraction of the differentially expressed genes suggests that the absence of a severe mutant phenotype did not arise from the loss of interaction partners.

Figure 2. Δ DUF4801 influences gene expression in PGCLCs. A. FACS results of $\triangle D U F 4801$ cells compared to wild-type cells show no changes in the quantification of BLIMP1+ cells in independent replicates. A scheme of PGCLC differentiation is shown, highlighting d6 PGCLCs (top panel). B. PCA plot of RNA-seq data generated from ESCs, EpiLCs, and d6 PGCLCs. C Heatmap showing changes in the mean expression profile of selected genes from duplicate independent WT, $4 \mathrm{DUF4801} \mathrm{cl8}$, and cl16 during PGCLC induction by RNA-seq. D. Boxplot showing significantly DEGs in both \triangle DUF4801 clones, cl8 and cl16, compared to wild-type cells in EpiLCs and PGCLCs. Data points are shown using a jittered plot. Some of the important genes are highlighted.

Discussion

Transcription factors are known to play a primary role in driving gene expression in specific cell types and developmental patterns. It is therefore paramount to identify the different domains that compose these factors in order to elucidate their function in orchestrating different expression programs (Lambert et al. 2018). Different computational approaches have been established over the last few decades to predict protein domains and their putative functions based on sequence homology or their structure (Y. Wang et al. 2021). Among these, the conserved protein domain of unknown function (DUF) has not been extensively characterized yet. In this study, we examined the DUF4801 domain, which is part of the transcription factor MGA, to provide insight into its role during PGC differentiation.

Deletion of the DUF4801 domain in ESCs, using CRISPR/Cas9, revealed that its absence affects MGA binding sites and several gene expressions. CUT\&RUN data showed that the MGA without DUF4801 domain lost known target genes such as pluripotency genes and bound to new DNA sequences of genes involved in endoderm fate and neurogenesis. Even though these genes are down-regulated in the wild-type to maintain pluripotency, their expression levels are even lower in the absence of DUF4801 domain.

As MGA is a member of the PRC1.6 complex, it is possible that a change in its structure can also affect other members of this complex, as MGA functions as a scaffold protein (Qin et al. 2021; Mathsyaraja et al. 2021). Furthermore, such structural changes may lead to counteracted transcription initiation. Previous studies have shown that Polycomb target genes are expressed at low levels, implying that Polycomb members primarily regulate transcription burst frequency rather than block it (Paula Dobrinić et al. 2021). Therefore, the new binding of MGA to these target regions may further compromise their transcription. The intersection of MGA binding sites, from wild-type and \triangle DUF4801 condition, with DEGs in ESCs revealed that only a fraction of these genes was directly influenced by MGA due to loss of binding sites, reduction of DNA-binding affinity, or gained binding. The remaining genes were affected by the change in MGA structural properties. Indeed, our structural analysis of the DUF4801 domain predicted that the amino acid residues are characterized by a repetitive cysteine sequence, indicating the presence of two novel Zinc fingers. As well-known, Zinc finger proteins are mainly involved in transcriptional and post-transcriptional regulation interacting through DNA, RNA and other proteins. Therefore, we cannot exclude that change in the binding site and gene expression could indicate its function as a DNA-binding domain or as a scaffold to support MGA binding to the DNA or as an interaction domain.

In this study, we also investigated how \triangle DUF4801 influences PGCLC differentiation. We found changes in gene expression, with a high number of down-regulated genes mostly involved in different developmental processes. Interestingly, we observed up-regulation of meiotic genes known to be directly controlled by Tbox and bHHL/zip domains in ESCs (Uranishi et al. 2021; Mochizuki et al. 2021). This data might indicate cooperation between MGA domains in repressing these genes, or that the absence of the DUF4801 domain allows MGA canonical domains to bind less tightly, leading to increased expression. However, genes directly
involved in the induction of PGC differentiation were not found to be deregulated, and the phenotype did not present any abnormalities. Moreover, we investigated whether other transcription factors could regulate DEGs in PGCLCs, but we found only a small fraction of genes enriched for members of the PRC2 complex or pluripotency factors, reinforcing the idea that observed gene expression changes are related to the change in MGA structure

In summary, our findings expand previous studies on the role of the DUF4801 domain, showing changes in MGA binding sites and gene expression during PGCLC differentiation for the first time. Moreover, these data suggest that MGA is an even more unique and complicated transcription factor, controlling different biological processes. Therefore, future studies are needed to address the molecular mechanism that drives the action of the DUF4801 domain.

Material and methods

Structural bioinformatics

The putative structural and functional features of the DUF4801 domain of MGA were identified by analyzing its amino acid sequence for remote protein homology. This was done using the HHPred web server (Soding, Biegert, and Lupas 2005) available through the MPI Bioinformatics Tool kit https://toolkit.tuebingen.mpg.de/tools/hhpred (Zimmermann et al. 2018) and PSI-Blast tool (EMBL) (Madeira et al. 2022). Additionally, AlphaFold (Jumper et al. 2021) generated a three-dimensional model using a high accuracy structure prediction method in the ColabFold notebook (Mirdita et al. 2022).

Cell culture

Mouse embryonic stem cells were cultured in N2B27 supplemented with 2i/LIF. N2B27 medium was prepared by combining 50\% Neurobasal and 50\% DMEM/F12, along with 1\% B27, 0.5\% N2, 2 mM Lglutamine, $1 \times$ Pen/strep, and 0.1 mM 2-mercaptoethanol. These cells were grown on dishes that were treated with 0.1% gelatin for 10 minutes.

Epiblast-like cells (EpiLCs) were cultured in N2B27 medium supplemented with 1\% KnockOut Serum Replacement, FGF2 (12 ng/ml), and ActivinA ($20 \mathrm{ng} / \mathrm{ml}$). They were grown on dishes coated with Fibronectin in PBS for 30 minutes at room temperature.

PGCLCs (Primordial Germ Cell Like-Cells) were cultured in GK15 medium supplemented with BMP4 (500 $\mathrm{ng} / \mathrm{ml})$, LIF (1000 U/ml), SCF ($100 \mathrm{ng} / \mathrm{ml}$), BMP8a ($500 \mathrm{ng} / \mathrm{ml}$), and EGF ($50 \mathrm{ng} / \mathrm{ml}$). They were cultured in ultra-low cell attachment U-bottom 96-well plates at 3000 cells per well (Corning) or in six-well AggreWell 400 plates at 1.5×106 cells per well (STEMCELL Technologies). PGCLCs were obtained using a cell line carrying the fluorescent reporter Blimp1-mEGFP, which was previously established (Ohinata et al. 2005). Cells were dissociated into a single-cell suspension using 3\% fetal bovine serum in PBS. PGCLCs were then sorted based on Blimp1-mEGFP fluorescence using the FACS (fluorescent-activated cell sorting) Sony SH800 and collected for further analysis (RNA-seq). The data was analyzed using FlowJo software.

Generation of DUF4801 domain deletion in mESCs

The CRISPR/Cas9 was used to delete the DUF4801 domain of MGA, and the respective gRNA were designed using Benchling. We designed two gRNAs to target the DUF4801 region as follows:

FW gRNA1	CACCGTCGACGGCAGTGAGCAGGT
REV gRNA1	AAACACCTGCTCACTGCCGTCGAC

FW gRNA2	CACCGCAACAATGACTTCTGTCGCC
REV gRNA2	AAACGGCGACAGAAGTCATTGTTGC

Then, oligos were annealed and ligate in pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from Feng Zhang (Adgene plasmid \# 62988, http://n2t.net/addgene:62988; RRID:Addgene 62988). mESCs were transfected with the plasmid using Lipofectamine 2000 (Invitrogen) and selected with puromycin (1ug/ml) for 48 h . We then expanded the cells and picked single colonies. Deletion was evaluated by PCR and Sanger sequencing. We generated two different clones, named cl8 and cl16.

CU\&RUN sequencing and analysis

For each experiment, 500,000 cells were used and performed per clone (cl8 and cl16) in duplicate. CUT\&RUN, a targeted in situ genome-wide profiling technique, was performed following protocol version 1 https://www.protocols.io/view/cut-run-targeted-in-situ-genome-wide-profiling-wit-

14egnr4ql5dy/v1?version_warning=no (Skene and Henikoff 2017). DNA was used as input for library preparation, which was performed using the NEB Next Ultra II Library Prep Kit (NEB) following the modification suggested in a publication (https://dx.doi.org/10.17504/protocols.io.bagaibse) to analyze transcription factor profiles. The final samples were sequenced as 100 bp paired-end reads on an Illumina Nova Seq 6000 at the Sequencing Core Facility (Max Planck Institute for Molecular Genetics, Berlin, Germany).

Libraries were then analysed using the standard CUT\&RUN pipeline. Peaks were called using MACS2. Genomic annotation was performed on merged consensus peaks of biological replicates using the ChIPseeker R package (Yu, Wang, and He 2015). Heatmaps were generated using the merged bigwig files obtained using Samtools merge and then Deeptools bam-Coverage (Ramírez et al. 2016).

Gene ontology was performed on selected peaks using the web tool ShinyGO 0.76.2 (http://bioinformatics.sdstate.edu/go/) with standard parameters. InteractiVenn (http://www.interactivenn.net) was used to generate a Venn diagram, and IGV was used to generate gene coverage (Thorvaldsdottir, Robinson, and Mesirov 2013).

RNA-sequencing procedure and analysis

To perform RNA sequencing, we used two independent cultures of ESCs, EpiLCs, and PGCLCs from day 6 of both the $\operatorname{DDUF4801}$ cl8 and clone 16, as well as wild-type cells. Total RNA was extracted using the RNeasy Mini Kit (Qiagen) and evaluated for quality using RNA ScreenTape (Agilent). We generated libraries using RNA and the NEBNext ${ }^{\circledR}$ Ultra ${ }^{\text {TM }}$ II Directional RNA Library Prep Kit for Illumina (NEB), and then sequenced the
samples as 100bp single/paired-end reads on the Illumina Nova Seq 6000 at the Sequencing Core Facility (Max Planck Institute for Molecular Genetics, Berlin, Germany).

We aligned the RNA sequencing reads to the mouse reference (GRCm38/mm10) using STAR (Dobin et al. 2013) and obtained mRNA read counts per genes using HTseq-count (Anders, Pyl, and Huber 2015). To identify differentially expressed genes, we performed normalization and pairwise comparison using DESeq2 (fold change >1.5, adjusted p-value <0.05).

We then used various tools to complete further analysis: we used pheatmap to generate heatmaps in R, BoxPlotR (http://shiny.chemgrid.org/boxplotr/) to create boxplots, and GO analysis was conducted using (http://metascape.org/gp/index.html).

Immunofluorescence staining

Immunofluorescence staining was performed as follows. Cells growing on round slides were fixed in 4\% paraformaldehyde for 30 minutes, washed three times with PBS, and permeabilized with 0.2% Triton X-100 and 3\% BSA for 30 minutes at room temperature. The cells were then incubated overnight with anti-MGA antibody (Abcam EPR19854). The next day, after washing with PBS, the secondary antibody (Alexa Fluor 555 anti-rabbit) was applied for 1 hour. Subsequently, DAPI was applied for 20 minutes, and the coverslips were mounted on slides. The slides were analysed using a Zeiss confocal LSM980 microscope, and the images were processed using Fiji software.

Western Blot

Cells were lysed on ice using 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5$), $150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ SDS, 0.5% NaDeoxycholate, and $1 \times$ Complete protease inhibitor cocktail. Whole-cell extracts were resolved by 4-12\% SDS-PAGE and transferred to $0.45 \mu \mathrm{M}$ nitrocellulose membranes at 60 V for 4 hours in a cold room. The membranes were then probed with the following antibodies: anti-MGA (Abcam EPR19854) and Alpha Tubulin (Proteintech 66031-1).

Supplementary Figure 1

Supplementary Figure 1. Sequence homology and verification of DUF4801 domain deletion. A. Sequence alignment of DUF4801 domain to different protein sequences, showing the protein with the highest similarity to the DUF4801 domain. In contrast, subject match shows the position of the domain in the respective proteins. B Position of DUF4801 domain in the MGA coding sequence, highlighting the position of the two gRNAs used to delete this region and generating two different clones, cl8 and cl16. C-D. No change in MGA protein expression was observed after the deletion of DUF4801 compared to wild-type in ESCs. Staining in ESCs (C) and Western blot (D). Each clone and wild-type were loaded twice, and α-tubulin was used as a loading control.

Supplementary Figure 2

Supplementary Figure 2. Deletion of DUF4801 domain alters binding sites and gene expression in ESCs. A-B-C. CUT\&RUN coverage tracks of wild-type and $\triangle \mathrm{DUF} 4801$ for endoderm genes (A), neurogenesis genes (B), and genes with lost binding in DUF4801 cells. Tracks represent the merging of three replicates for wild-type and two clones for DUF4801 cells. D. GO analysis of lost genes using the L2L database compared to differentially expressed genes from public data. E. Overlap of up-regulated genes between ESCs, EpiLCs, and PGCLCs in \triangle DUF4801 cells. F. Comparison of GO terms associated with each up-regulated DEG per cell type. G. Overlap of down-regulated genes between ESCs, EpiLCs, and PGCLCs in \triangle DUF4801 cells. H. Comparison of GO terms associated with each down-regulated DEGs per cell type.

Supplementary Figure 3
A
UP-REGULATED

DOWN-REGULATED

Supplementary Figure 3. The transcription factors that target the differentially expressed genes of PGCLCs \triangle DUF4801. A. The dot plot demonstrates the enrichment of transcription factors for up-regulated genes. B. The dot plot shows the enrichment of transcription factors for down-regulated genes.

Discussion

One of the driving questions in developmental biology is how PGCs maintain their unique cell identity in an environment where mesodermal fate occurs. Up to date, we know that the influence of a temporally and spatially restricted expression of specific signalling pathways and transcription factors drives this cell fate decision. Despite these findings, the molecular mechanism governing PGC cell fate decision remains illdefined, suggesting the presence of new factors that need to be characterized.

Here, we investigate the role of transcription factor MGA during PGC differentiation.
MGA is a unique transcription factor with complex structural properties, owning three heterotypic domains (T-box, bhLH/zip and DUF4801), and belonging to three families of proteins essential for the development such as T-box factors, MAX-interacting proteins and PRC1.6 complex (Hurlin et al., 1999; Gao et al. 2012). In early development, MGA is crucial for the survival of epiblast cells in the pre-and post-implantation of the embryo (Washkowitz et al. 2015). Given that these cells can generate all fetal cell lineage, it is reasonable to suggest that MGA may influence the development of multiple tissues and have a tissue-specific function. However, all previous studies on MGA have focused exclusively on its role as a member of the PRC1.6 complex, acting to repress germ cell genes and safeguard pluripotency in ESCs (Stielow et al. 2018; Endoh et al. 2017; Qin et al. 2021; Burn et al. 2018).

On the other hand, this thesis aims to explore MGA's role during PGC differentiation by identifying its genomic binding sites and interactors partners and examining the functions of its two domains (T-box and DUF4801). Through a combination of genomic and proteomic characterization of MGA during ESCs differentiation to PGCCLs in vitro (Hayashi et al. 2011), we have made several key observations regarding MGA biology.

MGA acts as repressor of meiotic genes during PGCLC differentiation

Previous studies have only described the role of MGA as a repressor of meiotic genes in ESCs (Stielow et al. 2018; Endoh et al. 2017). In our study, we found that the role of MGA as a repressor of germ cell genes during PGC differentiation, with the assistance of the PRC1.6 complex. Germline genes, such as Dazl, Ddx4, Mael, and Mov10l1, are expressed during the late stage of PGCs when epigenetic reprogramming occurs at E9.5 (Hackett et al. 2012). Therefore, strict temporal regulation of these genes is necessary for normal development, as the premature expression can lead to a precocious meiosis pathway deleterious for the cells (Yokobayashi et al. 2013; Hargan-Calvopina et al. 2016). Our data extends the function of MGA as a repressor of these genes also to EpiLCs and PGCLCs stage. We employed an auxin-inducible degron system
and observed significant up-regulation of meiotic genes after performing a time course MGA depletion during PGCLC differentiation.

By integrating the up-regulated genes with our analysis of MGA binding sites obtained through CUT\&RUN experiments, we demonstrated that MGA binds to their promoter regions. However, in PGCLCs, we found that only half of the genes were directly targeted by MGA, indicating that their overexpression was due to the loss of MGA interactors. We found a higher frequency of E2F6 motif in MGA binding sites, which we confirmed by finding co-occupancy of E2F6 on these sites, a relation previously described only in ESCs (Dahlet, Truss, Frede, Adhami, et al. 2021). Our analysis of MGA interactome during PGCLC differentiation indicated the constant presence of PRC1.6 members and auxiliary proteins such as ATF7ip and SMARCA4. Interestingly, ATF7ip and SMARCA4 in MGA interactome during PGCLC differentiation gained our attention, suggesting cooperation with MGA and PRC1.6 members in repressing germline genes. Indeed, the absence of these two proteins resulted in higher expression of meiotic genes in ESCs (Maeda et al. 2013). In addition to its transcriptional regulatory function, ATF7ip has been found to interact with SETDB1, a histone methyltransferase, recently involved in the repression of germline genes in a combinatorial action with PRC1.6 complex during PGCLC differentiation (Mochizuki et al. 2021). The binding of MGA to germline gene promoters appears necessary for DNA methylation, highlighting the complex interplay among ATF7ip, SETDB1, PRC1.6, and MGA in regulating germline genes. Interestingly, this combination of proteins may form a new complex with the only function to repress meiotic genes, with MGA serving as a scaffold protein that tethers them together. Mechanistically, this role as a scaffold protein has been proposed for MGA only as part of the PRC1.6 complex, as its deletion resulted in a more severe phenotype and reduced expression of PRC1.6 members (Qin et al. 2021).

In summary, our findings have extended the role of MGA as a repressor of meiotic genes during PGCLC differentiation. MGA binds to their promoter regions along with PRC1.6 complex members, and its absence resulted in their derepression. The stable presence of PRC1.6 members, ATF7ip and SMARCA4 in MGA interactome during PGCLC differentiation suggests the possibility of a new complex, formed by MGA, specialized in repressing meiotic genes.

The dynamic interactome and genomic targets of MGA during PGCLC differentiation

Having described these stable interactors during PGCLC differentiation, we also found a context-dependent role of MGA sustained by an interactome and highly cell-type-specific genomic binding sites. The binding profile of MGA during PGCLC differentiation is highly dynamic, regulating genes involved in cell state transition. Interestingly, MGA has a dual function switching on and off specific genes following the differentiation of PGCLCs from ESCs. Changes in MGA interactome also contributed to this re-arrangement of MGA binding sites.

Therefore, following through the differentiation process, only in ESCs, MGA was linked to proteins involved in maintaining pluripotency, such as TEX10, ESRRB, SOX2 and OCT4. Even though OCT4 and SOX2 interaction with MGA was consistent with previous studies in ESCs (van den Berg et al. 2010; Buecker et al. 2014), it was interesting to find the presence of TEX10 and ESRRB proteins, recently indicated as part of the core pluripotency circuity (Ding et al. 2015; Martello et al. 2012). Therefore, we investigated how MGA establishes and maintains pluripotency by cooperating with these factors. Consistent with our CUT\&RUN experiments in ESCs and previous ChIP-seq data (Galonska et al. 2015), we demonstrated that SOX2, NANOG and OCT4 occupied a higher number of MGA target genes involved in ESC differentiation towards EpiLCs. These data were consistent with our discovery of the OCT4-SOX2 motif among MGA motifs with a frequency rate comparable to the canonical E-box motif. Accordingly, with their correlation, we showed that a more persistent depletion (96h) of MGA induced loss of OCT4 expression with growth defects of ESCs. This data adds another brick in sustaining MGA's role in maintaining pluripotency and orchestrating the expression of specific genes together with the principal core of this circuitry.

In EpiLCs, MGA's interactome enriched proteins involved in DNA methylation, such as DNMT1 and SETDB1. Recently, these proteins were linked with MAX in repressing germ cell genes in ESCs (Tatsumi et al. 2018). However, based on our findings, we cannot exclude that the presence of SETDB1 was indirectly linked with the presence of ATF7ip. Instead, DNMT1 was proposed to maintain epigenetic signatures on meiotic genes in EpiLCs with EED (Lowe et al. 2022). Therefore, MGA might recruit DNMT1 close to the promoter regions of germ cells to methylate, indicating an even more fine-tuning of these instruct signals.

Continuing with the differentiation, we found a broad spectrum of RNA-binding proteins characterizing MGA interactome, but only in PGCLCs. Enriching these proteins adds another layer of complexity to MGA biology, indicating its potential ability to control RNAs, which has not been investigated before. The nature of these interactions may be related to typical protein-protein interaction or binding of the same RNAs. Notably, we observed enrichment of DAZL, an RNA-binding protein, essential for PGC differentiation into gametes (Gill et al. 2011).To understand their interaction, we used the inducible depletion of MGA combined with CRISPR/Cas9 to simultaneously deplete both proteins and investigate their phenotype. Depletion of both proteins resulted in a reduced number of PGCLCs and a change in the transcriptome. However, this phenotype reflects a compensatory trend of both proteins' impairment alone, presenting two different phenotypes. Specifically, we observed higher expression of meiotic genes and a lower number of PGCLCs in the absence of MGA, while in the absence of DAZL, only misregulation of genes related to RNA pathways was observed.

Interestingly, we found that the expression of some meiotic genes, such as Ddx4 and Sycp3, seems restored without both proteins. As DAZL represses their translation by binding their RNAs and we only observed their high expression in the absence of MGA, we attempted to speculate that the nature of their interaction was related to avoiding excessive translation of meiotic genes. However, it remains an open question which needs further investigation. In the future, it would be interesting to perform iCLIP on MGA to assess its direct
binding on RNA. Additionally, it would be valuable to define the interaction with other RNA-binding proteins found in the MGA interactome.

MGA induces PGC specification in a synergetic action with T-box factors

As previously mentioned, our primary focus regarding MGA was on its role in ensuring PGC specification. The discovery of an intricate network of proteins and dynamic binding sites of MGA involved in cell-typespecific gene programs reinforced the idea of its involvement in this cell fate decision.

The T-box factors have been implicated in various developmental processes, mainly in maintaining the mesodermal program (Papaioannou 2014a). Notably, one member, T, is also responsible for initiating PGC specification, as its downstream targets are two germline determinants, BLIMP1 and PRDM14 (Aramaki et al. 2013). As MGA belongs to this family of factors, the presence of the T-box domain as a sign of high similarity between these proteins could reflect similar modes of action and functional redundancy. Moreover, the expression of MGA, T and EOMES in the posterior epiblast, where PGC specification occurs, indicates a possible functional correlation (Papaioannou 2014a). Therefore, we correlated MGA binding sites with these proteins and showed an interplay of MGA with T and EOMES in controlling genes involved in PGC specification and maintaining cell identity as pluripotency or mesodermal genes. It is worth noting that MGA exclusively controls meiotic genes, suggesting the only clear distinction with the T-box factors.
Depletion of MGA during the transition from EpiLCs to PGCCLs resulted in impaired PGCLCs accompanied by derepression of meiotic genes and decreased expression of PGC markers such as Nanog, Prdm1 and Prdm14, which are direct targets of MGA. This supports the idea of their combinatorial action, as similar phenotypes were also observed in the absence of T and EOMES in this early stage of PGC (Aramaki et al. 2013; Senft et al. 2019).

To gain further insight, we deleted the T-box domain of MGA and focused on changes in the transcriptome during PGCLC differentiation. Even though it did not result in a severe phenotype as a reduced number of PGCCLs, we found a significant premature expression of cell-type specific genes, such as mesodermal and meiotic genes in ESCs, and PGC markers in EpiLCs. Moreover, the absence of the T-box domain promoted higher expression of T as a compensatory effect, as a similar result was found in the absence of EOMES (Senft et al. 2019). These findings support the idea of a synergetic action between MGA and T-box factors to ensure PGC specification, even though the enrichment of T-box factors in MGA interactome was not identified. Nevertheless, T-box factors have been recently connected with chromatin remodellers, i.e. demethylases and acetyltransferases, which regulate the permissiveness of the chromatin environment (Istaces et al. 2019; Beisaw et al. 2018).

In particular, SMARCA4, a stable component of MGA interactome, was previously linked to EOMES in controlling chromatin state (Istaces et al. 2019). Intriguingly, the accessibility of definitive endoderm
enhancers depends on the binding of T and EOMES (Tosic et al. 2019), indicating that ensuring germ layer segregation might depend on the asymmetry of the chromatin landscape.

In the future, it would be interesting to investigate how chromatin accessibility changes after deleting these factors during the cell state transition from epiblast to PGC and the nature of their interaction.

In summary, our data presented for the first time a relation between MGA and T-box factors establishing its role in PGC. We showed that MGA is essential to ensure PGC specification, regulating the expression of PGC genes such as Prdm1 and Prdm14, and how its absence led to impaired PGCLCs.

Functional properties of MGA DUF4801 domain

Having described the role of the T-box domain during PGCLC differentiation, we sought to assess the role of the DUF4801 MGA domain, which has been poorly understood in terms of its functional properties. While previous studies have suggested that it may play a role in protein interaction or DNA-chromatin binding, little is known about its specific functions (Mathsyaraja et al. 2021; Rafiee et al. 2020). To better understand its role, we utilized CRISPR/Cas9 to delete this domain and evaluated its effects on gene expression and MGA binding sites. Our findings revealed that deleting the DUF4801 domain altered the canonical MGA binding sites, resulting in the loss and acquisition of new target genes. Surprisingly, we also found that MGA was binding to regulatory regions of genes that were not expressed in ESCs, such as Sox17 and Sox2, which are involved in endoderm development, and Creb1 and Gabra4, which are involved in neurogenesis. Interestingly, the expression of these genes was even lower in the DUF4801-deleted cells compared to wildtype cells. Therefore, we hypothesize that the deletion of the DUF4801 domain may have influenced the structural properties of MGA, potentially impacting other members of the PRC1.6 complex. Additionally, previous research has shown that Polycomb members can counteract transcription initiation, regulating the burst frequency of transcription instead of blocking expression (Paula Dobrinić et al. 2021). This could potentially explain our findings.

To better understand the DUF4801 domain's functional role, it would be interesting to study how chromatin accessibility changes after its deletion, as this could explain changes in gene expression. However, the presence of two Zinc fingers of unknown type within the domain makes it challenging to determine its exact function. Further studies are therefore needed to elucidate the DUF4801 domain's precise role in gene regulation and protein interaction.

Literature

Abe, Kanae, Chie Naruse, Tomoaki Kato, Takumi Nishiuchi, Mitinori Saitou, and Masahide Asano. 2011. 'Loss of Heterochromatin Protein 1 Gamma Reduces the Number of Primordial Germ Cells via Impaired Cell Cycle Progression in Mice1'. Biology of Reproduction 85 (5): 1013-24. https://doi.org/10.1095/biolreprod.111.091512.
Afgan, Enis, Dannon Baker, Marius van den Beek, Daniel Blankenberg, Dave Bouvier, Martin Čech, John Chilton, et al. 2016. ‘The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2016 Update'. Nucleic Acids Research 44 (W1): W3-10. https://doi.org/10.1093/nar/gkw343.
Al Chiblak, Mohannad, Felix Steinbeck, Hans-Jürgen Thiesen, and Peter Lorenz. 2019. 'DUF3669, a "Domain of Unknown Function" within ZNF746 and ZNF777, Oligomerizes and Contributes to Transcriptional Repression'. BMC Molecular and Cell Biology 20 (1): 60. https://doi.org/10.1186/s12860-019-0243-y.
Amati, Bruno, Mary W. Brooks, Naomi Levy, Trevor D. Littlewood, Gerard I. Evan, and Hartmut Land. 1993. 'Oncogenic Activity of the C-Myc Protein Requires Dimerization with Max'. Cell 72 (2): 233-45. https://doi.org/10.1016/0092-8674(93)90663-B.
Ancelin, Katia, Ulrike C. Lange, Petra Hajkova, Robert Schneider, Andrew J. Bannister, Tony Kouzarides, and M. Azim Surani. 2006. ‘Blimp1 Associates with Prmt5 and Directs Histone Arginine Methylation in Mouse Germ Cells'. Nature Cell Biology 8 (6): 623-30. https://doi.org/10.1038/ncb1413.
Anders, S., P. T. Pyl, and W. Huber. 2015. 'HTSeq--a Python Framework to Work with High-Throughput Sequencing Data'. Bioinformatics 31 (2): 166-69. https://doi.org/10.1093/bioinformatics/btu638.
Anderson, Ericka L., Andrew E. Baltus, Hermien L. Roepers-Gajadien, Terry J. Hassold, Dirk G. De Rooij, Ans M. M. Van Pelt, and David C. Page. 2008. 'Stra8 and Its Inducer, Retinoic Acid, Regulate Meiotic Initiation in Both Spermatogenesis and Oogenesis in Mice'. Proceedings of the National Academy of Sciences 105 (39): 14976-80. https://doi.org/10.1073/pnas. 0807297105.

Aramaki, Shinya, Katsuhiko Hayashi, Kazuki Kurimoto, Hiroshi Ohta, Yukihiro Yabuta, Hiroko Iwanari, Yasuhiro Mochizuki, et al. 2013. 'A Mesodermal Factor, T, Specifies Mouse Germ Cell Fate by Directly Activating Germline Determinants'. Developmental Cell 27 (5): 516-29. https://doi.org/10.1016/j.devcel.2013.11.001.
Avilion, Ariel A., Silvia K. Nicolis, Larysa H. Pevny, Lidia Perez, Nigel Vivian, and Robin Lovell-Badge. 2003. 'Multipotent Cell Lineages in Early Mouse Development Depend on SOX2 Function'. Genes \& Development 17 (1): 126-40. https://doi.org/10.1101/gad. 224503.
Bajusz, Izabella, Surya Henry, Enikő Sutus, Gergő Kovács, Melinda Katalin Pirity, Melinda Katalin Pirity, and Melinda K. Pirity. 2019. 'Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription.' Genes 10 (11): 941. https://doi.org/10.3390/genes10110941.
Baltus, Andrew E, Douglas B Menke, Yueh-Chiang Hu, Mary L Goodheart, Anne E Carpenter, Dirk G De Rooij, and David C Page. 2006. 'In Germ Cells of Mouse Embryonic Ovaries, the Decision to Enter Meiosis Precedes Premeiotic DNA Replication'. Nature Genetics 38 (12): 1430-34. https://doi.org/10.1038/ng1919.
Barrios, Florencia, Doria Filipponi, Manuela Pellegrini, Maria Paola Paronetto, Sara Di Siena, Raffaele Geremia, Pellegrino Rossi, Massimo De Felici, Emmanuele A. Jannini, and Susanna Dolci. 2010. 'Opposing Effects of Retinoic Acid and FGF9 on Nanos2 Expression and Meiotic Entry of Mouse Germ Cells'. Journal of Cell Science 123 (6): 871-80. https://doi.org/10.1242/jcs. 057968.
Bartolomei, M. S., and A. C. Ferguson-Smith. 2011. 'Mammalian Genomic Imprinting'. Cold Spring Harbor Perspectives in Biology 3 (7): a002592-a002592. https://doi.org/10.1101/cshperspect.a002592.

Bateman, Alex, Penny Coggill, and Robert D. Finn. 2010. 'DUFs: Families in Search of Function'. Acta Crystallographica Section F Structural Biology and Crystallization Communications 66 (10): 114852. https://doi.org/10.1107/S1744309110001685.

Beisaw, Arica, Pavel Tsaytler, Frederic Koch, Sandra U Schmitz, Maria-Theodora Melissari, Anna D Senft, Lars Wittler, et al. 2018. 'BRACHYURY Directs Histone Acetylation to Target Loci during Mesoderm Development'. EMBO Reports 19 (1): 118-34. https://doi.org/10.15252/embr. 201744201.
Berg, Debbie L.C. van den, Tim Snoek, Nick P. Mullin, Adam Yates, Karel Bezstarosti, Jeroen Demmers, Ian Chambers, and Raymond A. Poot. 2010. 'An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells'. Cell Stem Cell 6 (4): 369-81. https://doi.org/10.1016/j.stem.2010.02.014.
Blackledge, Neil P., and Robert J. Klose. 2021. 'The Molecular Principles of Gene Regulation by Polycomb Repressive Complexes.' Nature Reviews Molecular Cell Biology, August, 1-19. https://doi.org/10.1038/s41580-021-00398-y.
Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. ‘Trimmomatic: A Flexible Trimmer for Illumina Sequence Data'. Bioinformatics 30 (15): 2114-20. https://doi.org/10.1093/bioinformatics/btu170.
Bostick, Magnolia, Jong Kyong Kim, Pierre-Olivier Estève, Amander Clark, Sriharsa Pradhan, and Steven E. Jacobsen. 2007. 'UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells'. Science 317 (5845): 1760-64. https://doi.org/10.1126/science. 1147939.
Buecker, Christa, Rajini Srinivasan, Zhixiang Wu, Eliezer Calo, Dario Acampora, Tiago Faial, Antonio Simeone, Minjia Tan, Tomasz Swigut, and Joanna Wysocka. 2014. 'Reorganization of Enhancer Patterns in Transition from Naive to Primed Pluripotency'. Cell Stem Cell 14 (6): 838-53. https://doi.org/10.1016/j.stem.2014.04.003.
Burgute, Bhagyashri D., Vivek S. Peche, Anna-Lena Steckelberg, Gernot Glöckner, Berthold Gaßen, Niels H. Gehring, and Angelika A. Noegel. 2014. ‘NKAP Is a Novel RS-Related Protein That Interacts with RNA and RNA Binding Proteins'. Nucleic Acids Research 42 (5): 3177-93. https://doi.org/10.1093/nar/gkt1311.
Burn, Sally F., Andrew J. Washkowitz, Svetlana Gavrilov, and Virginia E. Papaioannou. 2018. 'Postimplantation Mga Expression and Embryonic Lethality of Two Gene-Trap Alleles'. Gene Expression Patterns 27 (January): 31-35. https://doi.org/10.1016/j.gep.2017.10.006.
Campolo, Federica, Manuele Gori, Rebecca Favaro, Silvia Nicolis, Manuela Pellegrini, Flavia Botti, Pellegrino Rossi, Emmanuele A. Jannini, and Susanna Dolci. 2013. 'Essential Role of Sox2 for the Establishment and Maintenance of the Germ Cell Line'. Stem Cells 31 (7): 1408-21. https://doi.org/10.1002/stem. 1392.
Chambers, Ian, Jose Silva, Douglas Colby, Jennifer Nichols, Bianca Nijmeijer, Morag Robertson, Jan Vrana, Ken Jones, Lars Grotewold, and Austin Smith. 2007. 'Nanog Safeguards Pluripotency and Mediates Germline Development'. Nature 450 (7173): 1230-34. https://doi.org/10.1038/nature06403.
Chassot, A.-A., F. Ranc, E. P. Gregoire, H. L. Roepers-Gajadien, M. M. Taketo, G. Camerino, D. G. De Rooij, A. Schedl, and M.-C. Chaboissier. 2008. 'Activation of -Catenin Signalling by Rspo1 Controls Differentiation of the Mammalian Ovary'. Human Molecular Genetics 17 (9): 1264-77. https://doi.org/10.1093/hmg/ddn016.
Chen, Hsu-Hsin, Maaike Welling, Donald B. Bloch, Javier Muñoz, Edwin Mientjes, Xinjie Chen, Cody Tramp, et al. 2014. 'DAZL Limits Pluripotency, Differentiation, and Apoptosis in Developing Primordial Germ Cells'. Stem Cell Reports 3 (5): 892-904. https://doi.org/10.1016/j.stemcr.2014.09.003.
Chiquoine, A. Duncan. 1954. 'The Identification, Origin, and Migration of the Primordial Germ Cells in the Mouse Embryo'. The Anatomical Record 118 (2): 135-46. https://doi.org/10.1002/ar.1091180202.

Ciruna, Brian G., and Janet Rossant. 1999. 'Expression of the T-Box Gene Eomesodermin during Early Mouse Development'. Mechanisms of Development 81 (1-2): 199-203. https://doi.org/10.1016/S0925-4773(98)00243-3.

Cox, Jürgen, and Matthias Mann. 2008. 'MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification'. Nature Biotechnology 26 (12): 1367-72. https://doi.org/10.1038/nbt. 1511.
Dahlet, Thomas, Matthias Truss, Ute Frede, Hala Al Adhami, Anaïs F. Bardet, Michael Dumas, Judith Vallet, et al. 2021. 'E2F6 Initiates Stable Epigenetic Silencing of Germline Genes during Embryonic Development'. Nature Communications 12 (1): 3582-3582. https://doi.org/10.1038/s41467-021-23596-w.

Dahlet, Thomas, Matthias Truss, Ute Frede, Hala Al Adhami, Anaïs F. Bardet, Michael Dumas, Judith Vallet, et al. 2021. 'E2F6 Initiates Stable Epigenetic Silencing of Germline Genes during Embryonic Development'. Nature Communications 12 (1): 3582. https://doi.org/10.1038/s41467-021-23596w.

Dawson, Natalie, Ian Sillitoe, Russell L. Marsden, and Christine A. Orengo. 2017. 'The Classification of Protein Domains'. In Bioinformatics, edited by Jonathan M. Keith, 1525:137-64. Methods in Molecular Biology. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-66226_7.
Ding, Junjun, Xin Huang, Ningyi Shao, Hongwei Zhou, Dung-Fang Lee, Francesco Faiola, Miguel Fidalgo, et al. 2015. 'Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming'. Cell Stem Cell 16 (6): 653-68. https://doi.org/10.1016/j.stem.2015.04.001.
Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. 'STAR: Ultrafast Universal RNA-Seq Aligner'. Bioinformatics 29 (1): 15-21. https://doi.org/10.1093/bioinformatics/bts635.
Endoh, Mitsuhiro, Takaho A. Endo, Jun Shinga, Katsuhiko Hayashi, Anca M. Farcas, Kit-Wan Ma, Kit Wan, et al. 2017. 'PCGF6-PRC1 Suppresses Premature Differentiation of Mouse Embryonic Stem Cells by Regulating Germ Cell-Related Genes'. ELife 6 (March). https://doi.org/10.7554/elife.21064.
Extavour, Cassandra G., and Michael Akam. 2003. 'Mechanisms of Germ Cell Specification across the Metazoans: Epigenesis and Preformation'. Development 130 (24): 5869-84. https://doi.org/10.1242/dev. 00804.
Galonska, Christina, Michael J. Ziller, Rahul Karnik, and Alexander Meissner. 2015. 'Ground State Conditions Induce Rapid Reorganization of Core Pluripotency Factor Binding before Global Epigenetic Reprogramming'. Cell Stem Cell 17 (4): 462-70. https://doi.org/10.1016/j.stem.2015.07.005.
Gao, Zhonghua, Jin Zhang, Roberto Bonasio, Francesco Strino, Ayana Sawai, Fabio Parisi, Yuval Kluger, and Danny Reinberg. 2012. 'PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes'. Molecular Cell 45 (3): 344-56. https://doi.org/10.1016/j.molcel.2012.01.002.
Gill, Mark E., Yueh-Chiang Hu, Yanfeng Lin, and David C. Page. 2011. 'Licensing of Gametogenesis, Dependent on RNA Binding Protein DAZL, as a Gateway to Sexual Differentiation of Fetal Germ Cells'. Proceedings of the National Academy of Sciences 108 (18): 7443-48. https://doi.org/10.1073/pnas. 1104501108.
Ginsburg, M., M.H. Snow, and A. McLaren. 1990a. 'Primordial Germ Cells in the Mouse Embryo during Gastrulation'. Development 110 (2): 521-28. https://doi.org/10.1242/dev.110.2.521.
———. 1990b. 'Primordial Germ Cells in the Mouse Embryo during Gastrulation'. Development 110 (2): 521-28. https://doi.org/10.1242/dev.110.2.521.
Guibert, Sylvain, Thierry Forné, and Michael Weber. 2012. 'Global Profiling of DNA Methylation Erasure in Mouse Primordial Germ Cells'. Genome Research 22 (4): 633-41. https://doi.org/10.1101/gr.130997.111.
Guo, Rui, Lijuan Zheng, Juw Won Park, Ruitu Lv, Hao Chen, Fangfang Jiao, Wenqi Xu, et al. 2014. 'BS69/ZMYND11 Reads and Connects Histone H3.3 Lysine 36 Trimethylation-Decorated Chromatin
to Regulated Pre-MRNA Processing'. Molecular Cell 56 (2): 298-310. https://doi.org/10.1016/j.molcel.2014.08.022.

Hackett, Jamie A., James P. Reddington, Colm E. Nestor, Donncha S. Dunican, Miguel R. Branco, Judith Reichmann, Wolf Reik, M. Azim Surani, Ian R. Adams, and Richard R. Meehan. 2012. 'Promoter DNA Methylation Couples Genome-Defence Mechanisms to Epigenetic Reprogramming in the Mouse Germline'. Development 139 (19): 3623-32. https://doi.org/10.1242/dev. 081661.
Hackett, Jamie A., Roopsha Sengupta, Jan J. Zylicz, Kazuhiro Murakami, Caroline Lee, Thomas A. Down, and M. Azim Surani. 2013. ‘Germline DNA Demethylation Dynamics and Imprint Erasure Through 5Hydroxymethylcytosine'. Science 339 (6118): 448-52. https://doi.org/10.1126/science.1229277.
Hackett, Jamie A., Jan J. Zylicz, and M. Azim Surani. 2012. 'Parallel Mechanisms of Epigenetic Reprogramming in the Germline'. Trends in Genetics 28 (4): 164-74. https://doi.org/10.1016/j.tig.2012.01.005.
Hajkova, Petra, Katia Ancelin, Tanja Waldmann, Nicolas Lacoste, Ulrike C. Lange, Francesca Cesari, Caroline Lee, Genevieve Almouzni, Robert Schneider, and M. Azim Surani. 2008. 'Chromatin Dynamics during Epigenetic Reprogramming in the Mouse Germ Line'. Nature 452 (7189): 877-81. https://doi.org/10.1038/nature06714.
Hajkova, Petra, Sylvia Erhardt, Natasha Lane, Thomas Haaf, Osman El-Maarri, Wolf Reik, Jörn Walter, and M.Azim Surani. 2002. 'Epigenetic Reprogramming in Mouse Primordial Germ Cells'. Mechanisms of Development 117 (1-2): 15-23. https://doi.org/10.1016/S0925-4773(02)00181-8.

Handel, Mary Ann, and John C. Schimenti. 2010. ‘Genetics of Mammalian Meiosis: Regulation, Dynamics and Impact on Fertility'. Nature Reviews Genetics 11 (2): 124-36. https://doi.org/10.1038/nrg2723.
Hargan-Calvopina, Joseph, Sara Taylor, Helene Cook, Zhongxun Hu, Serena A. Lee, Ming-Ren Yen, Yih-Shien Chiang, Pao-Yang Chen, and Amander T. Clark. 2016. 'Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation’. Developmental Cell 39 (1): 75-86. https://doi.org/10.1016/j.devcel.2016.07.019.
Hauri, Simon, Federico Comoglio, Makiko Seimiya, Moritz Gerstung, Timo Glatter, Klaus Hansen, Ruedi Aebersold, Renato Paro, Matthias Gstaiger, and Christian Beisel. 2016. 'A High-Density Map for Navigating the Human Polycomb Complexome'. Cell Reports 17 (2): 583-95. https://doi.org/10.1016/j.celrep.2016.08.096.
Hayashi, Katsuhiko, Sugako Ogushi, Kazuki Kurimoto, So Shimamoto, Hiroshi Ohta, and Mitinori Saitou. 2012. 'Offspring from Oocytes Derived from in Vitro Primordial Germ Cell-like Cells in Mice'. Science 338 (6109): 971-75. https://doi.org/10.1126/science.1226889.
Hayashi, Katsuhiko, Hiroshi Ohta, Kazuki Kurimoto, Shinya Aramaki, and Mitinori Saitou. 2011. 'Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells'. Cell 146 (4): 519-32. https://doi.org/10.1016/j.cell.2011.06.052.

Herrmann, Bernhard G., Siegfried Labeit, Annemarie Poustka, Thomas R. King, and Hans Lehrach. 1990. 'Cloning of the T Gene Required in Mesoderm Formation in the Mouse'. Nature 343 (6259): 61722. https://doi.org/10.1038/343617a0.

Hikabe, Orie, Nobuhiko Hamazaki, Go Nagamatsu, Yayoi Obata, Yuji Hirao, Norio Hamada, So Shimamoto, et al. 2016. 'Reconstitution in Vitro of the Entire Cycle of the Mouse Female Germ Line'. Nature 539 (7628): 299-303. https://doi.org/10.1038/nature20104.
Hill, Peter W. S., Harry G. Leitch, Cristina E. Requena, Zhiyi Sun, Rachel Amouroux, Monica Roman-Trufero, Malgorzata Borkowska, et al. 2018. 'Epigenetic Reprogramming Enables the Transition from Primordial Germ Cell to Gonocyte'. Nature 555 (7696): 392-96. https://doi.org/10.1038/nature25964.

Hill, Peter W.S., Rachel Amouroux, and Petra Hajkova. 2014. 'DNA Demethylation, Tet Proteins and 5Hydroxymethylcytosine in Epigenetic Reprogramming: An Emerging Complex Story'. Genomics 104 (5): 324-33. https://doi.org/10.1016/j.ygeno.2014.08.012.
Huang, Chuyu, Yan Chen, Huaiqian Dai, Huan Zhang, Minyu Xie, Hanbin Zhang, Feilong Chen, Xiangjin Kang, Xiaochun Bai, and Zhenguo Chen. 2020. 'UBAP2L Arginine Methylation by PRMT1 Modulates Stress Granule Assembly'. Cell Death \& Differentiation 27 (1): 227-41. https://doi.org/10.1038/s41418-019-0350-5.

Hurlin, Peter J., and Jie Huang. 2006. 'The MAX-Interacting Transcription Factor Network'. Seminars in Cancer Biology 16 (4): 265-74. https://doi.org/10.1016/j.semcancer.2006.07.009.
Hurlin, Peter J, Eirıkur Steingrımsson, Neal G Copeland, Nancy A Jenkins, and Robert N Eisenman. n.d. 'Mga, a Dual-Specificity Transcription Factor That Interacts with Max and Contains a T-Domain DNA- Binding Motif', 10.
Istaces, Nicolas, Marion Splittgerber, Viviana Lima Silva, Muriel Nguyen, Séverine Thomas, Aurore Le, Younes Achouri, et al. 2019. 'EOMES Interacts with RUNX3 and BRG1 to Promote Innate Memory Cell Formation through Epigenetic Reprogramming'. Nature Communications 10 (1): 3306. https://doi.org/10.1038/s41467-019-11233-6.
Janin, Joël, and Shoshanna J. Wodak. 1983. 'Structural Domains in Proteins and Their Role in the Dynamics of Protein Function'. Progress in Biophysics and Molecular Biology 42: 21-78. https://doi.org/10.1016/0079-6107(83)90003-2.

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, et al. 2021. 'Highly Accurate Protein Structure Prediction with AlphaFold'. Nature 596 (7873): 583-89. https://doi.org/10.1038/s41586-021-03819-2.
Kagiwada, Saya, Kazuki Kurimoto, Takayuki Hirota, Masashi Yamaji, and Mitinori Saitou. 2012. 'ReplicationCoupled Passive DNA Demethylation for the Erasure of Genome Imprints in Mice'. The EMBO Journal 32 (3): 340-53. https://doi.org/10.1038/emboj.2012.331.
Kehler, James, Elena Tolkunova, Birgit Koschorz, Maurizio Pesce, Luca Gentile, Michele Boiani, Hilda Lomelí, et al. 2004. 'Oct4 Is Required for Primordial Germ Cell Survival'. EMBO Reports 5 (11): 1078-83. https://doi.org/10.1038/sj.embor. 7400279.
Kennison, James A. 1995. ‘THE POLYCOMB AND TRITHORAX GROUP PROTEINS OF DROSOPHILA : TransRegulators of Homeotic Gene Function'. Annual Review of Genetics 29 (1): 289-303. https://doi.org/10.1146/annurev.ge.29.120195.001445.

Kim, Shinseog, Ufuk Günesdogan, Jan J. Zylicz, Jamie A. Hackett, Delphine Cougot, Siqin Bao, Caroline Lee, et al. 2014. 'PRMT5 Protects Genomic Integrity during Global DNA Demethylation in Primordial Germ Cells and Preimplantation Embryos'. Molecular Cell 56 (4): 564-79. https://doi.org/10.1016/j.molcel.2014.10.003.
Kim, Yuna, Akio Kobayashi, Ryohei Sekido, Leo DiNapoli, Jennifer Brennan, Marie-Christine Chaboissier, Francis Poulat, Richard R Behringer, Robin Lovell-Badge, and Blanche Capel. 2006. 'Fgf9 and Wnt4 Act as Antagonistic Signals to Regulate Mammalian Sex Determination'. Edited by Hiroshi Hamada. PLoS Biology 4 (6): e187. https://doi.org/10.1371/journal.pbio. 0040187.
Kispert, Andreas. 1995. ‘The Brachyury Protein: A T-Domain Transcription Factor’. Seminars in Developmental Biology 6 (6): 395-403. https://doi.org/10.1016/S1044-5781(06)80003-4.
Koopman, Peter, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge. 1991. 'Male Development of Chromosomally Female Mice Transgenic for Sry'. Nature 351 (6322): 117-21. https://doi.org/10.1038/351117a0.

Kurimoto, Kazuki, Yukihiro Yabuta, Yasuhide Ohinata, Mayo Shigeta, Kaori Yamanaka, and Mitinori Saitou. 2008. 'Complex Genome-Wide Transcription Dynamics Orchestrated by Blimp1 for the

Specification of the Germ Cell Lineage in Mice'. Genes \& Development 22 (12): 1617-35. https://doi.org/10.1101/gad. 1649908.

Langmead, Ben, and Steven L Salzberg. 2012. 'Fast Gapped-Read Alignment with Bowtie 2'. Nature Methods 9 (4): 357-59. https://doi.org/10.1038/nmeth.1923.
Lawson, K. A., N. R. Dunn, B. A.J. Roelen, L. M. Zeinstra, A. M. Davis, C. V.E. Wright, J. P.W.F.M. Korving, and B. L.M. Hogan. 1999. 'Bmp4 Is Required for the Generation of Primordial Germ Cells in the Mouse Embryo'. Genes \& Development 13 (4): 424-36. https://doi.org/10.1101/gad.13.4.424.
Lawson, K. A., and W. J. Hage. 2007. 'Clonal Analysis of the Origin of Primordial Germ Cells in the Mouse'. In Novartis Foundation Symposia, edited by Joan Marsh and Jamie Goode, 68-91. Chichester, UK: John Wiley \& Sons, Ltd. https://doi.org/10.1002/9780470514573.ch5.
Leporcq, Clémentine, Yannick Spill, Delphine Balaramane, Christophe Toussaint, Michaël Weber, and Anaïs Flore Bardet. 2020. 'TFmotifView: A Webserver for the Visualization of Transcription Factor Motifs in Genomic Regions'. Nucleic Acids Research 48 (W1): W208-17. https://doi.org/10.1093/nar/gkaa252.
Lewis, E. B. 1978. 'A Gene Complex Controlling Segmentation in Drosophila'. Nature 276 (5688): 565-70. https://doi.org/10.1038/276565a0.
Lewis, Megan D., Sara A. Miller, Michael M. Miazgowicz, Kristin M. Beima, and Amy S. Weinmann. 2007. ‘TBet's Ability To Regulate Individual Target Genes Requires the Conserved T-Box Domain To Recruit Histone Methyltransferase Activity and a Separate Family Member-Specific Transactivation Domain'. Molecular and Cellular Biology 27 (24): 8510-21. https://doi.org/10.1128/MCB.0161507.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup. 2009. ‘The Sequence Alignment/Map Format and SAMtools'. Bioinformatics 25 (16): 2078-79. https://doi.org/10.1093/bioinformatics/btp352.
Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. 'Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2'. Genome Biology 15 (12): 550. https://doi.org/10.1186/s13059-014-0550-8.
Lowe, Matthew G., Ming-Ren Yen, Fei-Man Hsu, Linzi Hosohama, Zhongxun Hu, Tsotne Chitiashvili, Timothy J. Hunt, et al. 2022. 'EED Is Required for Mouse Primordial Germ Cell Differentiation in the Embryonic Gonad'. Developmental Cell 57 (12): 1482-1495.e5. https://doi.org/10.1016/j.devcel.2022.05.012.

Maatouk, Danielle M., Leo DiNapoli, Ashley Alvers, Keith L. Parker, Makoto M. Taketo, and Blanche Capel. 2008. 'Stabilization of β-Catenin in XY Gonads Causes Male-to-Female Sex-Reversal'. Human Molecular Genetics 17 (19): 2949-55. https://doi.org/10.1093/hmg/ddn193.
Maatouk, Danielle M., Lori D. Kellam, Mellissa R. W. Mann, Hong Lei, En Li, Marisa S. Bartolomei, and James L. Resnick. 2006. ‘DNA Methylation Is a Primary Mechanism for Silencing Postmigratory Primordial Germ Cell Genes in Both Germ Cell and Somatic Cell Lineages'. Development 133 (17): 3411-18. https://doi.org/10.1242/dev. 02500.
Madeira, Fábio, Matt Pearce, Adrian R N Tivey, Prasad Basutkar, Joon Lee, Ossama Edbali, Nandana Madhusoodanan, Anton Kolesnikov, and Rodrigo Lopez. 2022. 'Search and Sequence Analysis Tools Services from EMBL-EBI in 2022'. Nucleic Acids Research 50 (W1): W276-79. https://doi.org/10.1093/nar/gkac240.
Maeda, Ikuma, Daiji Okamura, Yuko Tokitake, Makiko Ikeda, Hiroko Kawaguchi, Nathan Mise, Kuniya Abe, Toshiaki Noce, Akihiko Okuda, and Yasuhisa Matsui. 2013. 'Max Is a Repressor of Germ CellRelated Gene Expression in Mouse Embryonic Stem Cells’. Nature Communications 4 (1): 1754. https://doi.org/10.1038/ncomms2780.

Magnúsdóttir, Erna, Sabine Dietmann, Kazuhiro Murakami, Ufuk Günesdogan, Fuchou Tang, Siqin Bao, Evangelia Diamanti, Kaiqin Lao, Berthold Gottgens, and M. Azim Surani. 2013. 'A Tripartite Transcription Factor Network Regulates Primordial Germ Cell Specification in Mice’. Nature Cell Biology 15 (8): 905-15. https://doi.org/10.1038/ncb2798.
Margueron, Raphaël, and Danny Reinberg. 2011. 'The Polycomb Complex PRC2 and Its Mark in Life'. Nature 469 (7330): 343-49. https://doi.org/10.1038/nature09784.
Martello, Graziano, Toshimi Sugimoto, Evangelia Diamanti, Anagha Joshi, Rebecca Hannah, Satoshi Ohtsuka, Berthold Göttgens, Hitoshi Niwa, and Austin Smith. 2012. 'Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal'. Cell Stem Cell 11 (4): 491-504. https://doi.org/10.1016/j.stem.2012.06.008.
Mathsyaraja, Haritha, Jonathen Catchpole, Brian Freie, Emily Eastwood, Ekaterina Babaeva, Michael Geuenich, Pei Feng Cheng, et al. 2021. 'Loss of MGA Repression Mediated by an Atypical Polycomb Complex Promotes Tumor Progression and Invasiveness'. ELife 10 (July): e64212. https://doi.org/10.7554/eLife.64212.
Matsui, Yasuhisa, and Kentaro Mochizuki. 2014. 'A Current View of the Epigenome in Mouse Primordial Germ Cells: EPIGENOME IN PRIMORDIAL GERM CELLS'. Molecular Reproduction and Development 81 (2): 160-70. https://doi.org/10.1002/mrd. 22214.
Meng, Chenling, Jinyue Liao, Danfeng Zhao, Huihui Huang, Jinzhong Qin, Tin-Lap Lee, Degui Chen, Wai-Yee Chan, and Yin Xia. 2019. 'L3MBTL2 Regulates Chromatin Remodeling during Spermatogenesis'. Cell Death \& Differentiation 26 (11): 2194-2207. https://doi.org/10.1038/s41418-019-0283-z.
Mikedis, Maria M, Yuting Fan, Peter K Nicholls, Tsutomu Endo, Emily K Jackson, Sarah A Cobb, Dirk G de Rooij, and David C Page. 2020. 'DAZL Mediates a Broad Translational Program Regulating Expansion and Differentiation of Spermatogonial Progenitors'. ELife 9 (July): e56523. https://doi.org/10.7554/eLife.56523.
Miller, Sara A., Albert C. Huang, Michael M. Miazgowicz, Margaret M. Brassil, and Amy S. Weinmann. 2008. 'Coordinated but Physically Separable Interaction with H3K27-Demethylase and H3K4Methyltransferase Activities Are Required for T-Box Protein-Mediated Activation of Developmental Gene Expression'. Genes \& Development 22 (21): 2980-93. https://doi.org/10.1101/gad.1689708.
Miller, Sara A., Sarah E. Mohn, and Amy S. Weinmann. 2010. 'Jmjd3 and UTX Play a DemethylaseIndependent Role in Chromatin Remodeling to Regulate T-Box Family Member-Dependent Gene Expression'. Molecular Cell 40 (4): 594-605. https://doi.org/10.1016/j.molcel.2010.10.028.
Mirdita, Milot, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Martin Steinegger. 2022. ‘ColabFold: Making Protein Folding Accessible to All'. Nature Methods 19 (6): 679-82. https://doi.org/10.1038/s41592-022-01488-1.
Miyauchi, Hidetaka, Hiroshi Ohta, So Nagaoka, Fumio Nakaki, Kotaro Sasaki, Katsuhiko Hayashi, Yukihiro Yabuta, Tomonori Nakamura, Takuya Yamamoto, and Mitinori Saitou. 2017. 'Bone Morphogenetic Protein and Retinoic Acid Synergistically Specify Female Germ-cell Fate in Mice'. The EMBO Journal 36 (21): 3100-3119. https://doi.org/10.15252/embj. 201796875.
Mochizuki, Kentaro. n.d. 'Repression of Germline Genes by PRC1.6 and SETDB1 in the Early Embryo Precedes DNA Methylation-Mediated Silencing', 15.
Mochizuki, Kentaro, Jafar Sharif, Kenjiro Shirane, Kousuke Uranishi, Aaron B. Bogutz, Sanne M. Janssen, Ayumu Suzuki, Akihiko Okuda, Haruhiko Koseki, and Matthew C. Lorincz. 2021. 'Repression of Germline Genes by PRC1.6 and SETDB1 in the Early Embryo Precedes DNA Methylation-Mediated Silencing'. Nature Communications 12 (1): 7020. https://doi.org/10.1038/s41467-021-27345-x.

Molyneaux, Kathleen A., Jim Stallock, Kyle Schaible, and Christopher Wylie. 2001. 'Time-Lapse Analysis of Living Mouse Germ Cell Migration'. Developmental Biology 240 (2): 488-98. https://doi.org/10.1006/dbio.2001.0436.
Morris, Kevin J, and Anita H Corbett. 2018. 'The Polyadenosine RNA-Binding Protein ZC3H14 Interacts with the THO Complex and Coordinately Regulates the Processing of Neuronal Transcripts'. Nucleic Acids Research 46 (13): 6561-75. https://doi.org/10.1093/nar/gky446.
Murakami, Kazuhiro, Ufuk Günesdogan, Jan J. Zylicz, Walfred W. C. Tang, Roopsha Sengupta, Toshihiro Kobayashi, Shinseog Kim, Richard Butler, Sabine Dietmann, and M. Azim Surani. 2016. 'NANOG Alone Induces Germ Cells in Primed Epiblast in Vitro by Activation of Enhancers'. Nature 529 (7586): 403-7. https://doi.org/10.1038/nature16480.

Natsume, Toyoaki, Tomomi Kiyomitsu, Yumiko Saga, and Masato T. Kanemaki. 2016. 'Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors'. Cell Reports 15 (1): 210-18. https://doi.org/10.1016/j.celrep.2016.03.001.
Nicholls, Peter K., Hubert Schorle, Sahin Naqvi, Yueh-Chiang Hu, Yuting Fan, Yuting Fan, Yuting Fan, et al. 2019. 'Mammalian Germ Cells Are Determined after PGC Colonization of the Nascent Gonad.' Proceedings of the National Academy of Sciences of the United States of America 116 (51): 2567787. https://doi.org/10.1073/pnas. 1910733116.

Nichols, Jennifer, Branko Zevnik, Konstantinos Anastassiadis, Hitoshi Niwa, Daniela Klewe-Nebenius, Ian Chambers, Hans Schöler, and Austin Smith. 1998. 'Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4'. Cell 95 (3): 379-91. https://doi.org/10.1016/S0092-8674(00)81769-9.
Nishimura, Kohei, Tatsuo Fukagawa, Haruhiko Takisawa, Tatsuo Kakimoto, and Masato Kanemaki. 2009. 'An Auxin-Based Degron System for the Rapid Depletion of Proteins in Nonplant Cells'. Nature Methods 6 (12): 917-22. https://doi.org/10.1038/nmeth.1401.
Ogawa, Hidesato, Kei-ichiro Ishiguro, Stefan Gaubatz, David M. Livingston, and Yoshihiro Nakatani. 2002. 'A Complex with Chromatin Modifiers That Occupies E2F- and Myc-Responsive Genes in Go Cells'. Science 296 (5570): 1132-36. https://doi.org/10.1126/science. 1069861.

Ohinata, Yasuhide, Hiroshi Ohta, Mayo Shigeta, Kaori Yamanaka, Teruhiko Wakayama, and Mitinori Saitou. 2009. 'A Signalling Principle for the Specification of the Germ Cell Lineage in Mice'. Cell 137 (3): 571-84. https://doi.org/10.1016/j.cell.2009.03.014.
Ohinata, Yasuhide, Bernhard Payer, Dónal O’Carroll, Katia Ancelin, Yukiko Ono, Mitsue Sano, Sheila C. Barton, et al. 2005. 'Blimp1 Is a Critical Determinant of the Germ Cell Lineage in Mice'. Nature 436 (7048): 207-13. https://doi.org/10.1038/nature03813.

Papaioannou, Virginia E. 2014a. 'The T-Box Gene Family: Emerging Roles in Development, Stem Cells and Cancer'. Development 141 (20): 3819-33. https://doi.org/10.1242/dev. 104471.
———. 2014b. 'The T-Box Gene Family: Emerging Roles in Development, Stem Cells and Cancer’. Development 141 (20): 3819-33. https://doi.org/10.1242/dev. 104471.
Pardo, Mercedes, Benjamin Lang, Lu Yu, Haydn Prosser, Allan Bradley, M. Madan Babu, and Jyoti Choudhary. 2010. 'An Expanded Oct4 Interaction Network: Implications for Stem Cell Biology, Development, and Disease'. Cell Stem Cell 6 (4): 382-95. https://doi.org/10.1016/j.stem.2010.03.004.
Parma, Pietro, Orietta Radi, Valerie Vidal, Marie Christine Chaboissier, Elena Dellambra, Stella Valentini, Liliana Guerra, Andreas Schedl, and Giovanna Camerino. 2006. 'R-Spondin1 Is Essential in Sex Determination, Skin Differentiation and Malignancy'. Nature Genetics 38 (11): 1304-9. https://doi.org/10.1038/ng1907.

Paula Dobrinić, Paula Dobrinić, Szczurek At, and Robert J. Klose. 2021. 'PRC1 Drives Polycomb-Mediated Gene Repression by Controlling Transcription Initiation and Burst Frequency'. Nature Structural \& Molecular Biology 28 (10): 811-24. https://doi.org/10.1038/s41594-021-00661-y.
Pesce, Maurizio, Xiangyuan Wang, Debra J Wolgemuth, and Hans R Schöler. 1998. ‘Differential Expression of the Oct-4 Transcription Factor during Mouse Germ Cell Differentiation'. Mechanisms of Development 71 (1-2): 89-98. https://doi.org/10.1016/S0925-4773(98)00002-1.
Popp, Christian, Wendy Dean, Suhua Feng, Shawn J. Cokus, Simon Andrews, Matteo Pellegrini, Steven E. Jacobsen, and Wolf Reik. 2010. 'Genome-Wide Erasure of DNA Methylation in Mouse Primordial Germ Cells Is Affected by AID Deficiency'. Nature 463 (7284): 1101-5. https://doi.org/10.1038/nature08829.
Qin, Jinzhong, Congcong Wang, Yaru Zhu, Ting Su, Lixia Dong, Yikai Huang, and Kunying Hao. 2021. 'Mga Safeguards Embryonic Stem Cells from Acquiring Extraembryonic Endoderm Fates'. Science Advances 7 (4): eabe5689. https://doi.org/10.1126/sciadv.abe5689.
Qin, Jinzhong, Warren A. Whyte, Endre Anderssen, Effie Apostolou, Hsu-Hsin Chen, Schahram Akbarian, Roderick T. Bronson, et al. 2012. ‘The Polycomb Group Protein L3mbtl2 Assembles an Atypical PRC1-Family Complex That Is Essential in Pluripotent Stem Cells and Early Development'. Cell Stem Cell 11 (3): 319-32. https://doi.org/10.1016/j.stem.2012.06.002.
Quinlan, Aaron R. 2014. 'BEDTools: The Swiss-Army Tool for Genome Feature Analysis'. Current Protocols in Bioinformatics 47 (1). https://doi.org/10.1002/0471250953.bi1112s47.

Rafiee, Mahmoud-Reza, Julian A Zagalak, Sviatoslav Sidorov, Sebastian Steinhauser, Karen Davey, Jernej Ule, and Nicholas M Luscombe. 2021. 'Chromatin-Contact Atlas Reveals Disorder-Mediated Protein Interactions and Moonlighting Chromatin-Associated RBPs'. Nucleic Acids Research 49 (22): 13092-107. https://doi.org/10.1093/nar/gkab1180.

Rafiee, Mahmoud-Reza, Julian A Zagalak, Sviatoslav Sidorov, Sebastian Steinhauser, Karen Davey, Jernej Ule, and Nicholas M. Luscombe. 2020. ‘SPACE Exploration of Chromatin Proteome to Reveal Associated RNA-Binding Proteins'. BioRxiv, July. https://doi.org/10.1101/2020.07.13.200212.
Ramírez, Fidel, Devon P Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas S Richter, Steffen Heyne, Friederike Dündar, and Thomas Manke. 2016. 'DeepTools2: A next Generation Web Server for Deep-Sequencing Data Analysis'. Nucleic Acids Research 44 (W1): W160-65. https://doi.org/10.1093/nar/gkw257.
Rha, Jennifer, Stephanie K. Jones, Jonathan Fidler, Ayan Banerjee, Sara W. Leung, Kevin J. Morris, Jennifer C. Wong, et al. 2017. ‘The RNA-Binding Protein, ZC3H14, Is Required for Proper Poly(A) Tail Length Control, Expression of Synaptic Proteins, and Brain Function in Mice'. Human Molecular Genetics 26 (19): 3663-81. https://doi.org/10.1093/hmg/ddx248.
Richardson, Brian E., and Ruth Lehmann. 2010. 'Mechanisms Guiding Primordial Germ Cell Migration: Strategies from Different Organisms'. Nature Reviews Molecular Cell Biology 11 (1): 37-49. https://doi.org/10.1038/nrm2815.
Rikin, Amir, and Todd Evans. 2010. ‘The Tbx/BHLH Transcription Factor Mga Regulates Gata4 and Organogenesis'. Developmental Dynamics 239 (2): 535-47. https://doi.org/10.1002/dvdy. 22197.
Rudolph, Jan Daniel, and Jürgen Cox. 2019. 'A Network Module for the Perseus Software for Computational Proteomics Facilitates Proteome Interaction Graph Analysis'. Journal of Proteome Research 18 (5): 2052-64. https://doi.org/10.1021/acs.jproteome.8b00927.
Russ, Andreas P., Sigrid Wattler, William H. Colledge, Samuel A. J. R. Aparicio, Mark B. L. Carlton, Jonathan J. Pearce, Sheila C. Barton, et al. 2000. 'Eomesodermin Is Required for Mouse Trophoblast Development and Mesoderm Formation'. Nature 404 (6773): 95-99. https://doi.org/10.1038/35003601.

Saitou, M., and M. Yamaji. 2012. 'Primordial Germ Cells in Mice'. Cold Spring Harbor Perspectives in Biology 4 (11): a008375-a008375. https://doi.org/10.1101/cshperspect.a008375.
Saitou, Mitinori, Sheila C. Barton, and M. Azim Surani. 2002. 'A Molecular Programme for the Specification of Germ Cell Fate in Mice'. Nature 418 (6895): 293-300. https://doi.org/10.1038/nature00927.
Saitou, Mitinori, and Masashi Yamaji. 2010. 'Germ Cell Specification in Mice: Signalling, Transcription Regulation, and Epigenetic Consequences'. REPRODUCTION 139 (6): 931-42. https://doi.org/10.1530/REP-10-0043.

Sanjana, Neville E, Ophir Shalem, and Feng Zhang. 2014. 'Improved Vectors and Genome-Wide Libraries for CRISPR Screening'. Nature Methods 11 (8): 783-84. https://doi.org/10.1038/nmeth. 3047.
Sato, Shun, Tomomi Yoshimizu, Eimei Sato, and Yasuhisa Matsui. 2003. 'Erasure of Methylation Imprinting Oflgf2r during Mouse Primordial Germ-Cell Development'. Molecular Reproduction and Development 65 (1): 41-50. https://doi.org/10.1002/mrd. 10264.
Schuettengruber, Bernd, Henri-Marc Bourbon, Luciano Di Croce, and Giacomo Cavalli. 2017. 'Genome Regulation by Polycomb and Trithorax: 70 Years and Counting'. Cell 171 (1): 34-57. https://doi.org/10.1016/j.cell.2017.08.002.

Seisenberger, Stefanie, Simon Andrews, Felix Krueger, Julia Arand, Jörn Walter, Fátima Santos, Christian Popp, Bernard Thienpont, Wendy Dean, and Wolf Reik. 2012. 'The Dynamics of Genome-Wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells'. Molecular Cell 48 (6): 849-62. https://doi.org/10.1016/j.molcel.2012.11.001.

Seki, Yoshiyuki, Katsuhiko Hayashi, Kunihiko Itoh, Michinao Mizugaki, Mitinori Saitou, and Yasuhisa Matsui. 2005. 'Extensive and Orderly Reprogramming of Genome-Wide Chromatin Modifications Associated with Specification and Early Development of Germ Cells in Mice'. Developmental Biology 278 (2): 440-58. https://doi.org/10.1016/j.ydbio.2004.11.025.

Seki, Yoshiyuki, Masashi Yamaji, Yukihiro Yabuta, Mitsue Sano, Mayo Shigeta, Yasuhisa Matsui, Yumiko Saga, Makoto Tachibana, Yoichi Shinkai, and Mitinori Saitou. 2007. 'Cellular Dynamics Associated with the Genome-Wide Epigenetic Reprogramming in Migrating Primordial Germ Cells in Mice'. Development 134 (14): 2627-38. https://doi.org/10.1242/dev. 005611.

Sekido, Ryohei, Isabelle Bar, Véronica Narváez, Graeme Penny, and Robin Lovell-Badge. 2004. 'SOX9 Is UpRegulated by the Transient Expression of SRY Specifically in Sertoli Cell Precursors'. Developmental Biology 274 (2): 271-79. https://doi.org/10.1016/j.ydbio.2004.07.011.
Sekido, Ryohei, and Robin Lovell-Badge. 2008. 'Sex Determination Involves Synergistic Action of SRY and SF1 on a Specific Sox9 Enhancer'. Nature 453 (7197): 930-34. https://doi.org/10.1038/nature06944.
Senft, Anna D., Elizabeth K. Bikoff, Elizabeth J. Robertson, and Ita Costello. 2019. ‘Genetic Dissection of Nodal and Bmp Signalling Requirements during Primordial Germ Cell Development in Mouse'. Nature Communications 10 (1): 1089. https://doi.org/10.1038/s41467-019-09052-w.

Sharif, Jafar, Masahiro Muto, Shin-ichiro Takebayashi, Isao Suetake, Akihiro Iwamatsu, Takaho A. Endo, Jun Shinga, et al. 2007. ‘The SRA Protein Np95 Mediates Epigenetic Inheritance by Recruiting Dnmt1 to Methylated DNA'. Nature 450 (7171): 908-12. https://doi.org/10.1038/nature06397.
Shen-Li, Hong, Rónán C. O’Hagan, Harry Hou, James W. Horner, Han-Woong Lee, and Ronald A. DePinho. 2000. 'Essential Role for Max in Early Embryonic Growth and Development'. Genes \& Development 14 (1): 17-22. https://doi.org/10.1101/gad.14.1.17.
Showell, Chris, Olav Binder, and Frank L. Conlon. 2004. 'T-Box Genes in Early Embryogenesis'. Developmental Dynamics 229 (1): 201-18. https://doi.org/10.1002/dvdy. 10480.
Skene, Peter J, and Steven Henikoff. 2017. 'An Efficient Targeted Nuclease Strategy for High-Resolution Mapping of DNA Binding Sites'. ELife 6 (January): e21856. https://doi.org/10.7554/eLife.21856.

Smits, Arne H., Pascal W. T. C. Jansen, Ina Poser, Anthony A. Hyman, and Michiel Vermeulen. 2013. 'Stoichiometry of Chromatin-Associated Protein Complexes Revealed by Label-Free Quantitative Mass Spectrometry-Based Proteomics'. Nucleic Acids Research 41 (1): e28-e28. https://doi.org/10.1093/nar/gks941.
Soding, J., A. Biegert, and A. N. Lupas. 2005. ‘The HHpred Interactive Server for Protein Homology Detection and Structure Prediction'. Nucleic Acids Research 33 (Web Server): W244-48. https://doi.org/10.1093/nar/gki408.
Stielow, Bastian, Florian Finkernagel, Thorsten Stiewe, Andrea Nist, and Guntram Suske. 2018. 'MGA, L3MBTL2 and E2F6 Determine Genomic Binding of the Non-Canonical Polycomb Repressive Complex PRC1.6'. Edited by Luciano Di Croce. PLOS Genetics 14 (1): e1007193. https://doi.org/10.1371/journal.pgen. 1007193.
Stott, D, A Kispert, and B G Herrmann. 1993. 'Rescue of the Tail Defect of Brachyury Mice.' Genes \& Development 7 (2): 197-203. https://doi.org/10.1101/gad.7.2.197.
Sun, Jin, Jian Wang, Lin He, Yi Lin, and Ji Wu. 2015. ‘Knockdown of Polycomb-Group RING Finger 6 Modulates Mouse Male Germ Cell Differentiation in Vitro'. Cellular Physiology and Biochemistry 35 (1): 339-52. https://doi.org/10.1159/000369700.
Sun, Xiaoyun, Ji Chen, Yanyong Zhang, Mumingjiang Munisha, Scott Dougan, and Yuhua Sun. 2018. 'Mga Modulates Bmpr1a Activity by Antagonizing Bs69 in Zebrafish'. Frontiers in Cell and Developmental Biology 6 (September): 126. https://doi.org/10.3389/fcell.2018.00126.

Sun, Yuhua, Wei-Chia Tseng, Xiang Fan, Rebecca Ball, and Scott T. Dougan. 2014. 'Extraembryonic Signals under the Control of MGA, Max, and Smad4 Are Required for Dorsoventral Patterning'. Developmental Cell 28 (3): 322-34. https://doi.org/10.1016/j.devcel.2014.01.003.
Surani, M. Azim. 2007. ‘Germ Cells: The Eternal Link between Generations'. Comptes Rendus Biologies 330 (6-7): 474-78. https://doi.org/10.1016/j.crvi.2007.03.009.
Suzuki, Atsushi, Katsuhide Igarashi, Ken-ichi Aisaki, Jun Kanno, and Yumiko Saga. 2010. ‘NANOS2 Interacts with the CCR4-NOT Deadenylation Complex and Leads to Suppression of Specific RNAs'. Proceedings of the National Academy of Sciences 107 (8): 3594-99. https://doi.org/10.1073/pnas.0908664107.
Suzuki, Atsushi, and Yumiko Saga. 2008. ‘Nanos2 Suppresses Meiosis and Promotes Male Germ Cell Differentiation'. Genes \& Development 22 (4): 430-35. https://doi.org/10.1101/gad.1612708.
Suzuki, Ayumu, Masataka Hirasaki, Tomoaki Hishida, Jun Wu, Daiji Okamura, Atsushi Ueda, Masazumi Nishimoto, et al. 2016. 'Loss of MAX Results in Meiotic Entry in Mouse Embryonic and Germline Stem Cells'. Nature Communications 7 (1): 11056. https://doi.org/10.1038/ncomms11056.
Syrjänen, Johanna Liinamaria, Luca Pellegrini, and Owen Richard Davies. 2014. 'A Molecular Model for the Role of SYCP3 in Meiotic Chromosome Organisation'. ELife 3 (June): e02963. https://doi.org/10.7554/eLife. 02963.
Tachibana, Makoto, Jun Ueda, Mikiko Fukuda, Naoki Takeda, Tsutomu Ohta, Hiroko Iwanari, Toshiko Sakihama, Tatsuhiko Kodama, Takao Hamakubo, and Yoichi Shinkai. 2005. 'Histone Methyltransferases G9a and GLP Form Heteromeric Complexes and Are Both Crucial for Methylation of Euchromatin at H3-K9'. Genes \& Development 19 (7): 815-26. https://doi.org/10.1101/gad.1284005.
Tanaka, Satomi S., Akihiro Nakane, Yasuka L. Yamaguchi, Takeshi Terabayashi, Takaya Abe, Kazuki Nakao, Makoto Asashima, Kirsten A. Steiner, Patrick P. L. Tam, and Ryuichi Nishinakamura. 2013. 'Dullard/Ctdnep1 Modulates WNT Signalling Activity for the Formation of Primordial Germ Cells in the Mouse Embryo'. Edited by Masaru Katoh. PLoS ONE 8 (3): e57428. https://doi.org/10.1371/journal.pone. 0057428.

Tang, Walfred W. C., Toshihiro Kobayashi, Naoko Irie, Sabine Dietmann, and M. Azim Surani. 2016. 'Specification and Epigenetic Programming of the Human Germ Line'. Nature Reviews Genetics 17 (10): 585-600. https://doi.org/10.1038/nrg.2016.88.

Tatsumi, Daiki, Yohei Hayashi, Mai Endo, Hisato Kobayashi, Takumi Yoshioka, Kohei Kiso, Shinichiro Kanno, et al. 2018. 'DNMTs and SETDB1 Function as Co-Repressors in MAX-Mediated Repression of Germ Cell-Related Genes in Mouse Embryonic Stem Cells'. Edited by Osman El-Maarri. PLOS ONE 13 (11): e0205969. https://doi.org/10.1371/journal.pone. 0205969.

Thorvaldsdottir, H., J. T. Robinson, and J. P. Mesirov. 2013. 'Integrative Genomics Viewer (IGV): HighPerformance Genomics Data Visualization and Exploration'. Briefings in Bioinformatics 14 (2): 178-92. https://doi.org/10.1093/bib/bbs017.
Tosic, Jelena, Gwang-Jin Kim, Mihael Pavlovic, Chiara M. Schröder, Sophie-Luise Mersiowsky, Margareta Barg, Alexis Hofherr, et al. 2019. 'Eomes and Brachyury Control Pluripotency Exit and Germ-Layer Segregation by Changing the Chromatin State'. Nature Cell Biology 21 (12): 1518-31. https://doi.org/10.1038/s41556-019-0423-1.
Tsusaka, Takeshi, Kei Fukuda, Chikako Shimura, Masaki Kato, and Yoichi Shinkai. 2020. ‘The Fibronectin Type-III (FNIII) Domain of ATF7IP Contributes to Efficient Transcriptional Silencing Mediated by the SETDB1 Complex'. Epigenetics \& Chromatin 13 (1): 52. https://doi.org/10.1186/s13072-020-00374-4.
Uranishi, Kousuke, Masataka Hirasaki, Yuka Kitamura, Yosuke Mizuno, Masazumi Nishimoto, Ayumu Suzuki, and Akihiko Okuda. 2021. 'Two DNA Binding Domains of MGA Act in Combination to Suppress Ectopic Activation of Meiosis-Related Genes in Mouse Embryonic Stem Cells'. Stem Cells 39 (11): 1435-46. https://doi.org/10.1002/stem. 3433.
Vainio, Seppo, Minna Heikkilä, Andreas Kispert, Norman Chin, and Andrew P. McMahon. 1999. 'Female Development in Mammals Is Regulated by Wnt-4 Signalling'. Nature 397 (6718): 405-9. https://doi.org/10.1038/17068.
Vincent, Stéphane D., N. Ray Dunn, Roger Sciammas, Miriam Shapiro-Shalef, Mark M. Davis, Kathryn Calame, Elizabeth K. Bikoff, and Elizabeth J. Robertson. 2005. 'The Zinc Finger Transcriptional Repressor Blimp1/Prdm1 Is Dispensable for Early Axis Formation but Is Required for Specification of Primordial Germ Cells in the Mouse'. Development 132 (6): 1315-25. https://doi.org/10.1242/dev. 01711.
Wang, Hui, Elizabeth C Curran, Thomas R Hinds, Edith H Wang, and Ning Zheng. 2014. 'Crystal Structure of a TAF1-TAF7 Complex in Human Transcription Factor IID Reveals a Promoter Binding Module'. Cell Research 24 (12): 1433-44. https://doi.org/10.1038/cr.2014.148.
Wang, Xiaoyi, and Melissa E. Pepling. 2021. 'Regulation of Meiotic Prophase One in Mammalian Oocytes'. Frontiers in Cell and Developmental Biology 9 (May): 667306. https://doi.org/10.3389/fcell.2021.667306.
Wang, Yan, Hang Zhang, Haolin Zhong, and Zhidong Xue. 2021. 'Protein Domain Identification Methods and Online Resources'. Computational and Structural Biotechnology Journal 19: 1145-53. https://doi.org/10.1016/j.csbj.2021.01.041.
Washkowitz, Andrew J., Caroline Schall, Kun Zhang, Wolfgang Wurst, Thomas Floss, Jesse Mager, and Virginia E. Papaioannou. 2015. 'Mga Is Essential for the Survival of Pluripotent Cells during PeriImplantation Development'. Development 142 (1): 31-40. https://doi.org/10.1242/dev. 111104.
Weber, Susanne, Dawid Eckert, Daniel Nettersheim, Ad J.M. Gillis, Sabine Schäfer, Peter Kuckenberg, Julia Ehlermann, et al. 2010. 'Critical Function of AP-2gamma/TCFAP2C in Mouse Embryonic Germ Cell Maintenance1'. Biology of Reproduction 82 (1): 214-23. https://doi.org/10.1095/biolreprod.109.078717.

Wehn, Amy K., Deborah R. Farkas, Carly E. Sedlock, Dibya Subedi, and Deborah L. Chapman. 2020. 'Functionally Distinct Roles for T and Tbx6 during Mouse Development'. Biology Open 9 (8): bio054692. https://doi.org/10.1242/bio. 054692.
Western, Patrick S., Denise C. Miles, Jocelyn A. Van Den Bergen, Matt Burton, and Andrew H. Sinclair. 2008. 'Dynamic Regulation of Mitotic Arrest in Fetal Male Germ Cells'. Stem Cells 26 (2): 339-47. https://doi.org/10.1634/stemcells.2007-0622.
Yabuta, Yukihiro, Kazuki Kurimoto, Yasuhide Ohinata, Yoshiyuki Seki, and Mitinori Saitou. 2006. ‘Gene Expression Dynamics During Germline Specification in Mice Identified by Quantitative Single-Cell Gene Expression Profiling1'. Biology of Reproduction 75 (5): 705-16. https://doi.org/10.1095/biolreprod.106.053686.
Yamaguchi, Shinpei, Kwonho Hong, Rui Liu, Li Shen, Azusa Inoue, Dinh Diep, Kun Zhang, and Yi Zhang. 2012. 'Tet1 Controls Meiosis by Regulating Meiotic Gene Expression'. Nature 492 (7429): 443-47. https://doi.org/10.1038/nature11709.
Yamaguchi, Shinpei, Kazuki Kurimoto, Yukihiro Yabuta, Hiroyuki Sasaki, Norio Nakatsuji, Mitinori Saitou, and Takashi Tada. 2009. 'Conditional Knockdown of Nanog Induces Apoptotic Cell Death in Mouse Migrating Primordial Germ Cells'. Development 136 (23): 4011-20. https://doi.org/10.1242/dev. 041160.
Yamaguchi, Shinpei, Li Shen, Yuting Liu, Damian Sendler, and Yi Zhang. 2013. 'Role of Tet1 in Erasure of Genomic Imprinting'. Nature 504 (7480): 460-64. https://doi.org/10.1038/nature12805.

Yamaji, Masashi, Yoshiyuki Seki, Kazuki Kurimoto, Yukihiro Yabuta, Mihoko Yuasa, Mayo Shigeta, Kaori Yamanaka, Yasuhide Ohinata, and Mitinori Saitou. 2008. 'Critical Function of Prdm14 for the Establishment of the Germ Cell Lineage in Mice'. Nature Genetics 40 (8): 1016-22. https://doi.org/10.1038/ng.186.
Yeom, Y.I., G. Fuhrmann, C.E. Ovitt, A. Brehm, K. Ohbo, M. Gross, K. Hubner, and H.R. Scholer. 1996. 'Germline Regulatory Element of Oct-4 Specific for the Totipotent Cycle of Embryonal Cells'. Development 122 (3): 881-94. https://doi.org/10.1242/dev.122.3.881.
Ying, Ying, Xiaoxia Qi, and Guang-Quan Zhao. 2001. 'Induction of Primordial Germ Cells from Murine Epiblasts by Synergistic Action of BMP4 and BMP8B Signalling Pathways'. Proceedings of the National Academy of Sciences 98 (14): 7858-62. https://doi.org/10.1073/pnas. 151242798.
Yokobayashi, Shihori, Ching-Yeu Liang, Hubertus Kohler, Peter Nestorov, Zichuan Liu, Miguel Vidal, Maarten van Lohuizen, Tim C. Roloff, and Antoine H. F. M. Peters. 2013. 'PRC1 Coordinates Timing of Sexual Differentiation of Female Primordial Germ Cells'. Nature 495 (7440): 236-40. https://doi.org/10.1038/nature11918.
Yoshikawa, Toshiyuki, Yulan Piao, Jinhui Zhong, Ryo Matoba, Mark G. Carter, Yuxia Wang, Ilya Goldberg, and Minoru S.H. Ko. 2006. 'High-Throughput Screen for Genes Predominantly Expressed in the ICM of Mouse Blastocysts by Whole Mount in Situ Hybridization'. Gene Expression Patterns 6 (2): 213-24. https://doi.org/10.1016/j.modgep.2005.06.003.
Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. 2012. 'ClusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters'. OMICS: A Journal of Integrative Biology 16 (5): 284-87. https://doi.org/10.1089/omi.2011.0118.

Yu, Guangchuang, Li-Gen Wang, and Qing-Yu He. 2015. 'ChIPseeker: An R/Bioconductor Package for ChIP Peak Annotation, Comparison and Visualization'. Bioinformatics 31 (14): 2382-83. https://doi.org/10.1093/bioinformatics/btv145.
Zagore, Leah L., Thomas J. Sweet, Molly M. Hannigan, Sebastien M. Weyn-Vanhentenryck, Chaolin Zhang, and Donny D. Licatalosi. 2018. ‘Dazl Regulates Germ Cell Survival through a Network of PolyAProximal MRNA Interactions'. BioRxiv, February, 273292. https://doi.org/10.1101/273292.

Zernicka-Goetz, Magdalena, Samantha A. Morris, and Alexander W. Bruce. 2009. 'Making a Firm Decision: Multifaceted Regulation of Cell Fate in the Early Mouse Embryo'. Nature Reviews Genetics 10 (7): 467-77. https://doi.org/10.1038/nrg2564.
Zhang, Yong, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E Bernstein, Chad Nusbaum, et al. 2008. 'Model-Based Analysis of ChIP-Seq (MACS)'. Genome Biology 9 (9): R137. https://doi.org/10.1186/gb-2008-9-9-r137.
Zimmermann, Lukas, Andrew Stephens, Seung-Zin Nam, David Rau, Jonas Kübler, Marko Lozajic, Felix Gabler, Johannes Söding, Andrei N. Lupas, and Vikram Alva. 2018. 'A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at Its Core'. Journal of Molecular Biology 430 (15): 2237-43. https://doi.org/10.1016/j.jmb.2017.12.007.

Abbreviations

bHLH/Zip	basic helix loop helix leucine zipper domain
DNMT1/3A/3B	DNA methyltransferase 1/3A/3B
DUF	domain unknow function
E	Embryonic day
EPI	Epiblast
EpiLCs	Epiblast-like cells
ExE	Extra-embryonic ectoderm
H2A/H4R3me2s	H2A/H4 arginine 3 symmetrical methylation
H2AK199ub1	mono-ubiquitination of Lys 199 of H2A
H3K27me3	H3 lysine 27 trimethylation
H3K9me2	H3 lysine 9 dimethylation
ICM	inner cell mass
mESCs	mouse embryonic stem cells
MGA	MAX giant associated protein
ncPRC1.6	non-canonical Polycomb repressive complex 1.6
PE	primitive endoderm
PcG	Polycomb repressive complex
PGCLCS	PGC-like cells
PGCs	Primordial germ cells
TE	Trophectoderm
TET1/2/3	ten-eleven translocation
WGBS	whole genomic bisulfite sequencing

Curriculum Vitae

	Erica Calabrese
Address	Mauerstraße 24, 37073, Göttingen, Germany Email Phone
erica.c99@hotmail.com $+49(0) 1732731809$	

Education

Work experiences

Affiliation	Research Technician Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, United Kingdom
Dates	G2/2018-07/2018
Description	Prof. Dr. Azim Surani I was responsible for maintaining the laboratory organization and generating various common laboratory reagents (i.e. colture medium hESC/iPSC)

Conferences and Meeting

Scientific Writing: "How to start" to "How to publish", Graduate Academy at Clausthal University of Technology, Clausthal-Zellerfeld, Germany.

MaxQuant Summer School, Online, Germany.

Sequence analysis of proteins and their post-translational modifications by electrospray ionization (ESI) mass spectrometry, Max Planck Institute for Multidisciplinary Sciences Bioanalytical Mass Spectrometry, Göttingen, Germany

Introduction to R and RNA-seq, Georg-August-Universität, Göttingen, Germany.

Learn to Analyze RNA-seq and ChIP-seq Data, Galaxy Course, NGS Integrative Genomics Core Unit (NIG) and the core Facility Medical Biometry and Statistical Bioinformatics (MBSB) Georg-August-Universität, Göttingen, Germany.

First language	Italian, native proficiency
Second language	English, advanced proficiency
Third language	German, elementary proficiency

[^0]: 1 Together with Dr. Ufuk Günesdogan

