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The fundamental problem of scientific progress,
and a fundamental one of everyday life,

is that of learning from experience.

– Harold Jeffreys, Theory of Probability, 1961 [1].





Abstract

Insight into enzyme specificities and dynamics is central to understanding biochemical processes.

The peptide products generated by purified proteases in in vitro digestions are often identified

by mass spectrometry measurements. However, these provide only relative quantification and to

obtain absolute quantities, laborious titration of synthetic peptide equivalents is required. Our

aim is to develop a method to convert MS ion signals to concentrations for many peptide products

computationally without further experimental effort. To achieve this, a conversion parameter for

each digestion product needs to be estimated. We present an algorithm named Quantification of

Peptides using Bayesian inference (QPuB), which works on the principle of mass conservation.

It employs Bayesian statistical inference in an adaptive, population-based Markov chain Monte

Carlo sampling scheme to estimate the conversion factors. This approach allows to quantify the

underlying uncertainty in the form of full posterior distributions of the estimated parameters.

We calibrated the algorithm on synthetic noise-free datasets mimicking the dynamics of real

proteases. For low-informative data causing parameter non-identifiability, we propose strategies

to enable successful inference. We show that QPuB is able to infer the conversion factors for up

to 45 peptides with high accuracy and precision. Although the algorithm still requires further

development, we believe that QPuB could become a useful quantification tool to the field of

peptidomics.

Keywords: Label-free quantification, absolute quantification, in vitro digestion, peptidomics,

mass spectrometry, Bayesian inference, Markov chain Monte Carlo, Differential Evolution.
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1 | Introduction

Systems biology is the endeavour to understand dynamic biological processes using mathematical and

computational approaches. Through the development of models, simulations and data analysis, complex

interactions can be analysed and differences under different conditions recognised [2]. The key players of

biological processes are proteins. Their function is regulated by many factors, from synthesis through

inhibition and enhancement to degradation. Proteins can be degraded by other proteins, a type of

enzymes referred to as proteases. Upon binding, the so-called substrate is disassembled into smaller

fragmental products down to their individual components [3]. This reaction can be simplified as

Enzyme + Substrate → Enzyme + Products.

The degradation products are called peptides. These can be functional and their activity depends on en-

vironmental conditions and is subject to stimuli. The large-scale study of peptides is called peptidomics.

Understanding their role in the cell dynamics is of increasing interest in fundamental as well as medical

research. For example, proteases and peptides play an important part in the adaptive immune system.

Inside human body cells, specific proteases named proteasomes are responsible for the degradation of

proteins. Following the antigen processing and presentation pathway, some of the degradation products

are presented at the cell surface and recognised by immune cells. If the presented peptides are of viral

origin, an immune response can be triggered [4]. Proteases as well as peptides can be useful candidates in

drug development for a variety of diseases, including diabetes, cardiovascular diseases and cancer [5, 6, 7].

In response towards environmental conditions, protein expression or certain reactions are usually not

simply switched on or off, but it rather results in a gradual change in protein and peptide concentration.

Consequently, the research interest experiences a shift from not only identifying but also quantifying

them. Quantification therefore became crucial for the holistic description of the protein dynamics. In

vitro experiments provide a useful analysis alongside in cellulo and in vivo studies [8]. Unfortunately,

with today’s techniques, a direct observation of peptide concentrations in a large complex sample is

not possible. Instead, related quantities can be measured to indirectly infer the peptide amounts [9].

Mass spectrometry provides an automated, sensitive and high-throughput technology for protein and

1



2 Ch. 1. Introduction

peptide identification. A protein is digested in vitro by a protease and the resulting mixture of peptides is

measured over time in a mass spectrometer. The sample is ionized and subjected to an electric field, which

causes the ions to be deflected according to their mass and charge. From the induced signal intensities, the

peptide identity can be inferred [10]. For absolute quantification of the peptides, a subsequent titration

of synthetic peptide equivalents has to be performed. By loading different amounts of the peptide and

measuring the corresponding signal response, a linear relationship between the two quantities can be

observed [11, 12, 13, 14, 15, 16]:

signal = response factor * amount

Through calculation of the respective response factor specific to each peptide, the peptide amounts in the

digest can be inferred. However, this procedure is laborious and time-consuming, therefore not feasible

for large scale peptidomics analyses. Due to the linearity, the signal intensities can also be used directly

for relative quantification. It is possible to compare the intensities of the same peptide between samples

under different experimental conditions, to draw qualitative conclusions about the effect. However, the

behaviour of the peptide ions in the mass spectrometer also depends on peptide properties other than

mass, which makes a comparison of intensities of different peptides among one another impossible [17, 18,

19, 20]. Another way to achieve absolute quantification is to add a known isotope-labelled or unlabelled

standard to the sample for every peptide of interest. This allows to approximate the product amount by

comparison to the known amount injected [21]. This technique requires additional experimental effort,

which becomes infeasible if many peptide products must be quantified. With the vast amount of data

generated by today’s mass spectrometry hardware, the necessity for powerful computational approaches

increases.

Over the years, different tools improving the accuracy of standard label-based and label-free techniques

have been developed. However, many approaches still require labelling [22, 23], only focus on relative

quantification [24, 25], or aim at absolute quantification of proteins rather than peptides [8, 26, 27, 28, 29].

Attempts have been made to predict the response factor based on the physico-chemical properties of the

analyte [30, 31, 32, 33]. However, to our knowledge, there are no publications solving the problem of

automated, label-free, absolute quantification of peptide products without further experimental effort.

Another approach, if direct or indirect measurement of parameters of a system is difficult, is parameter

estimation using analytical or computational approaches. A model is proposed, which links the quantity

of interest with the observable quantity. The optimal parameter values minimise the deviation between

the predicted model output and the experimentally measured data, which is defined by an objective

function [34, 35, 36]. In 2002, Peters et al. [37] followed this approach and published their mass balance

method for response factor estimation. Making use of the linear relationship they aimed to derive the
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response factor (or signal conversion coefficient, as they call it) for each peptide product from the kinetic

signal data. The main principle they applied is the fact that in a closed system of in vitro digestions the

mass conservation holds at every point in time. All the amount of substrate degraded must be equal to

the amount of peptides produced, no mass should be lost and no additional mass can be generated. With

this, they relied on the assumption that all peptides are detected and identified and that no mass loss is

happening over the course of the experiment. They defined an optimization problem of finding the set of

conversion factors that minimises the deviation of the amount of peptides produced from the amount of

substrate degraded. Subsequently, from the estimated conversion factors the peptide concentrations of

every peptide products can be calculated using only the conversion factor of the substrate, which needs

to be measured through titration. Their approach significantly reduces the experimental effort needed

for reliable quantification of all major peptides in a sample. Peter’s mass balance method has been

applied [38] and further developed by Mishto et al. [39]. In 2012, they published QME, Quantification

with Minimal Effort. They introduced some changes to the optimisation problem and used the downhill

simplex method to solve it. Comparison of their results obtained by the QME method to those measured

via titration indicated agreement.

Using the concept of mass conservation provides a reliable way to estimate the conversion factors of

many peptide products and to infer the peptide amounts without the need of cumbersome peptide titra-

tions, sample labelling or introduction of internal standard peptides. However, the QME tool was tuned

specifically for a certain analysis on a particular instrument and has since not been applied often and

was never properly benchmarked. A drawback of their implementation is its dependence on instrument

features of the mass spectrometer used, which need to be provided by the user obtained through laborious

calibration. A larger difficulty is faced for samples analysed with modern mass spectrometers. The high

accuracy of recent hardware leads to an almost-complete identification of the set of products and large

and complex peptide mixtures are common for many applications. A high-dimensional problem like this

can become challenging to solve with QME. Another disadvantage of optimisation methods is that single

point estimates do not convey the uncertainty that still comes with the systematic and random errors in

the mass spectrometry measurements. A better computational approach is required.

1.1 Aim and approach of this thesis

In this thesis, we present QPuB, Quantification of Peptides using Bayesian inference. Building on the

ideas of Peters et al. [37] and Mishto et al. [39], we use the linear relationship between signal intensities

and amounts as well as the concept of mass conservation to convert MS ion peak areas to absolute peptide

amounts with no or little further experimental effort. Our framework does not require instrument specific
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settings and provides an easy-to-use analysis tool. For the estimation of the conversion factors, instead of

an optimisation routine, we employ likelihood-based Bayesian inference in a Markov chain Monte Carlo

scheme. Bayesian inference is a statistical technique used to combine prior knowledge about the param-

eters and gained knowledge through experimental data to obtain educated estimates. The quality of the

estimates is assessed through the definition of an objective function, called likelihood. In this case, it con-

trols the deviation from mass balance. Using an iterative sampling scheme, parameter values are proposed

and accepted or rejected based on their likelihood [40]. In this way, instead of finding a sole minimizer of

the objective function, a full distribution of possible values for every conversion factor is obtained. This

conveys a measure for the uncertainty in the estimate. The underlying implementation is an adaptive

population-based algorithm, called Differential Evolution Markov chain suitable for large dimensions,

developed by Ter Braak and Vrugt et al. [41, 42, 43, 44, 45]. Using the inferred conversion factor dis-

tributions, distributions of normalised signal intensities for all peptide products can be calculated, which

allow for relative quantification between different peptides. If, in addition, the experimentally measured

conversion factor of the substrate is provided, distributions for the amounts of all peptide products are

returned, enabling absolute quantification. Our algorithm is calibrated and benchmarked on noise-free

simulated data. If sufficient information about the parameters is conveyed by the data, QPuB is able

to reliably infer the correct conversion factors with high accuracy and precision for up to 50 products,

and possibly more. It has the potential to add a useful and user-friendly tool to the pool of methods for

absolute quantification in peptidomics.

1.2 Structure of this thesis

The remainder of this thesis is structured as follows. Following chapter 1, the second chapter introduces

the relevant biological background of quantitative peptidomics including a description of tandem mass

spectrometry. In the third chapter, we describe key concepts of Bayesian inference and Markov chain

Monte Carlo schemes, in particular the underlying Differential Evolution Markov chain algorithm. We

provide an introduction to theoretical considerations to assess parameter identifiability of a mathematical

system and explain the benchmarking framework applied in this thesis. The fourth chapter presents the

implementation of the QPuB package. In Chapter 5, we calibrate and benchmark the QPuB algorithm

using noise-free simulated data and discuss its performance. We show examples where parameter inference

is successful and the peptides’ conversion factors can be estimated with high precision and accuracy. We

also present examples, where the provided data is not sufficient to enable successful inference. Two

strategies to overcome these limitations are presented. Chapter 6 provides a discussion of the results, the

limitations and an outlook. Lastly, we conclude this thesis with a summary.
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The central dogma of molecular biology describes how genetic information flows inside a cell. It was

first stated by Francis Crick in 1957 [46]. The proteome is the entire set of proteins expressed from the

genome. The word ”proteome” was coined in 1995 by Wilkins et al., as a fusion of the words ”protein”

and ”genome” [47, 48, 49]. With the human genome containing around 21 000 genes [50, 51], the number

of unique proteins is estimated to be a few millions, considering alternative splicing, polymorphisms

and post-translational modifications [52]. Only an estimated fraction of 35% of all proteins is conserved

between cell types, the so-called housekeeping proteins [53] Protein expression is cell type dependent

and varies in time as a response to environmental conditions, stress or diseases [54]. It can fluctuate

several orders of magnitude from a few copies per cell up to several millions [55, 56]. Proteins have

vital functions within cells, ranging from providing structure over signalling and transporting cargo to

catalyzing metabolic reactions. The proteins of interest in this thesis are a special kind of enzymes, which

degrade other proteins into smaller fragments, so called proteases [3].

2.1 Protein chemistry

Proteins are large biomolecules that consist of one or more chains of amino acid residues, folded into a

three-dimensional structure [57, 3]. Amino acids are organic molecules, consisting of a central carbon

atom with an amino and a carboxylic group attached. Structure, properties and function of the amino

acid are defined by a side chain (see Fig. 2.1A). The genetic information of a cell can encode twenty

canonical amino acids with different properties [57, 3]. Amino acids are linked to each other via peptide

bonds. Through a condensation reaction, a covalent bond between the nitrogen atom of the amino

group of one amino acid and the carbon atom of the carboxylic group of a second amino acid is formed.

A connection of at least two amino acid residues is called a peptide (see Fig. 2.1B) [3]. Proteins

are folded polypeptides consisting of ten or more amino acid residues with a molecular weight of more

than 10 000 Da, but definitions vary [57]. The amino acid sequence is the unique primary structure of

5
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a protein. Folding and coiling by forming hydrogen bonds across the peptide backbone results in the

secondary structure. The tertiary structure is the unique three-dimensional shape of the molecule and

determines the protein’s identity [57, 3]. Chemical changes to the amino acid chain after synthesis are

called post-translational modifications (PTM). Common examples are phosphorylation, oxidation or

methylation, among others. These modifications have a major impact on the protein’s function [58].
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Fig. 2.1: General structural formulas of amino acids and polypeptides. (A) General structural
formula of an amino acid with amino (−NH2) and carboxylate (−COOH) functional groups and the
side chain R specific to the amino acid. (B) General structural formula of a polypeptide of length 2n+2.
Amino acid residues are connected via peptide bonds. The end finishing with an amino group is called
N-terminus, the other end with the carboxylate group is called C-terminus [3].

2.2 Protease dynamics

Proteins can be categorised by their structure or their function. The protein class of interest in this

thesis are enzymes, which act as biological catalysts [3]. They bind to other molecules (substrates)

and accelerate their structural conversion into different molecules (products) by lowering the activation

energy of the reaction. The enzyme itself remains unchanged in this reaction. Their structure has a

particular conformation called the active site, which contains a binding site to bind the substrate and

a catalytic site where the catalytic reaction occurs. Depending on the kind of reaction the enzymes

catalyse, they are categorised into different classes. Hydrolases, for example, break chemical bonds by

addition of a water molecule [3]. A special kind of hydrolases are proteases (also called peptidases).

They break down proteins by hydrolysing their peptide bonds (proteolysis) [3]. The half life of a peptide

bond can normally be years and proteases increase the rate of the hydrolysis by multiples [59]. We

distinguish exopeptidases, which hydrolyse N-terminal peptide bonds, cleaving off single amino acid

residues, and endopeptidases, which break peptide bonds along the protein backbone, releasing shorter

peptide fragments. When a protein is fragmented by an enzyme into smaller chains of amino acids, we

speak of an enzymatic digest (see Fig. 2.3) [3]. The mathematical framework of enzymatic digests will

be explained in Section 2.2.3.
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2.2.1 Trypsin

Trypsin is the most commonly used protease in MS-based proteomics [60]. It was discovered by the

German physiologist Wilhelm Kühne in 1876 [61]. Acting as a digestive enzyme in the duodenum,

trypsin breaks down proteins into smaller peptides to facilitate absorption. Trypsin is routinely applied

in bottom-up proteomics to achieve a controlled digest of proteins for analysis [10]. Its advantage lies

in its specificity: It mainly hydrolyses the peptide bond C-terminally of the basic amino acids arginine

and lysine [60]. This results in highly regular protein fragments with a length of about 10 amino acid

residues, depending on the amino acid composition of the substrate [62].

2.2.2 Proteasome

The proteasome is a multi-catalytic endopeptidase. It degrades damaged proteins inside cells and prevents

old proteins from accumulating. In addition, it plays an important role in the adaptive immune system

by processing peptide antigens in preparation for display by major histocompatibility complex class I

(MHC) proteins on the surface of cells. Its existence was hypothesised in 1977 by Joseph Etlinger and

Alfred L. Goldberg [64] and proven in 1978 by Avram Hershko, Ahron Ciechanover and Irwin Rose [65]

(Nobel price in 2004 [66]). In 1994, the structure of the proteasome was solved [67]. In eukaryotic cells,

there are two types of proteasomes with different structures, called the 20S and the 26S proteasome (see

Fig. 2.2A). The 26S proteasome is a large protein complex consisting of a cylindrical 20S core particle

capped with a regulatory 19S particle on at least one side [68, 69]. The core is composed of four rings of

seven subunits each stacked into a barrel-like shape creating a chamber. The two outer rings (α-subunits)

maintain the structure, the two inner rings (β-subunits) contain three to seven active sites on their inner

surface [70, 69]. Based on the isoforms of these catalytic subunits, we can distinguish different types of
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Fig. 2.2: Structure of the 26S proteasome and schematic of proteasome-generated peptide
products. (A) Cryo-EM structure of the human 26S proteasome. Image generated using PyMOL
version 2.4. (B) Schematic of proteasome-generated peptide products. Figure reprinted with permission
from [63].
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20S proteasomes. Together with different types of regulatory particles, the proteasome complexes can

have different dynamics and cleavage preferences [69]. The mechanism by which the 26S proteasome

identifies and degrades target proteins is called ubiquitin-dependent degradation. Target proteins are

tagged with the molecular label ubiquitin for degradation. This allows the regulatory 19S unit of the

proteasome to recognise the protein as substrate. After deubiquitination, it partially unfolds the protein

and transfers it to the inside of the 20S chamber. Upon binding to the active sites, degradation of the

substrate occurs through hydrolysis of the peptide bonds. The different β-subunits have slightly different

substrate specificities, resulting in the preferred proteolysis after different amino acid residues. Shorter

peptides are released into the cytosol [66, 69]. The 20S proteasome can also exist freely. It makes up

around half the proteasome pool in a cell [71]. Missing the 19S regulatory unit for ubiquitin recognition,

it can perform ubiquitin-independent protein degradation [72].

Compared to tryptic digests, protein degradation by proteasomes is more diverse, resulting in a peptide

repertoire that is very large. A special mechanism of proteasomes increases the pool of possible peptide

products even more: In addition to canonical peptide bond hydrolysis resulting in proteasomal cleavage

products (PCP), the proteasome has the ability to re-ligate created peptide products in a process called

proteasome-catalysed peptide splicing (PCPS). This phenomenon was first described by Vigneron et al.

in 2004 [73], and confirmed and further investigated by many [74, 75, 76, 77]. Two non-contiguous

fragments, called splice-reactants, can be fused to form a proteasome-generated spliced product (PSP)

with a sequence not contiguously present in the parental molecule [73, 78, 79]. Although PCPS can occur

via condensation [80], splicing via transpeptidation [73] is probably predominant [79]. Three types of PSPs

are currently distinguished (Fig. 2.2B). When both fragments stem from the same substrate molecule,

the product is denoted cis-PSP. Normal cis-PCPS follows the orientation from N- to C-terminus of the

parental protein, whereas reverse cis-PCPS ligates fragments in the reverse order. When the fragments

stem from two distinct substrates, the product is called trans-PSP [74, 75, 39, 81].

2.2.3 Michaelis–Menten enzyme kinetics

Enzyme kinetics is a field in biochemistry that describes the catalysed processing of substrates by en-

zymes and quantitatively investigates the change of reactions rates under different conditions [82]. The

experimental and theoretical base for it was laid in the early 20th century and is still standard today.

Leonor Michaelis and Maud L. Menten built on the work of many others, most importantly Victor Henri

[83], when they published their findings on initial-rate methods for steady-state enzyme-catalysed reac-

tions in 1913 [84]. Their ideas were further developed by George E. Briggs and John B.S. Haldane [85],

who generalised the concept to the Henri–Michaelis–Menten kinetics that is widely used [86].
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The model assumes in vitro enzymatic reactions under controlled, well-mixed conditions. The number of

molecules should be great enough so that the distribution of reactants can be assumed to be a continuum.

The stochastic behaviour can then be approximated by deterministic dynamics, which are easier to

analyse. The initial amount of the substrate in the solution should be much larger than the amount of

enzyme [87, 3]. The major finding of Michaelis and Menten was, that the binding of the substrate to the

enzyme can be split into two stages: a rapid reaction forming a low-energy enzyme-substrate complex,

and a slower reaction catalysing the hydrolysis of the substrate into product fragments [87]. Denoting

the enzyme by E, the substrate by S, the enzyme-substrate complex by ES and the generated products

by P1 and P2, an elementary enzymatic hydrolysis reaction can be approximated as follows [87]:

E + S
kon−−⇀↽−−
koff

ES −−→
kcat

E + P1 + P2. (2.1)

The constants kon and koff are called forward rate and reverse rate respectively, and kcat is the catalytic

rate constant. The reverse catalytic step can be neglected under small product concentrations [87,

3]. Depending on the specificity of the enzyme of interest, different reactions yielding distinct peptide

products Pd (d = 1, . . . , D) can be combined.

This deterministic reaction is commonly represented as a system of ordinary differential equations (ODE).

The law of mass action states that the rate of a reaction is proportional to the product of the concen-

trations of the reactants. This gives the following set of coupled Michaelis–Menten ODEs for

the concentrations of the reactants over time ([X] denotes the concentration of reactant X, t denotes

time) [87]:

d[S]

dt
(t) = −kon[S](t)[E](t) + koff[ES](t) (2.2a)

d[ES]

dt
(t) = kon[S](t)[E](t)− (koff + kcut)[ES](t) (2.2b)

d[E]

dt
(t) = −kon[S](t)[E](t) + (koff + kcut)[ES](t) (2.2c)

d[P1]

dt
(t) = kcat[ES](t) (2.2d)

d[P2]

dt
(t) = kcat[ES](t) (2.2e)

together with the initial concentrations at the start of the reaction [S](0), [E](0), [ES](0), [P1](0), [P2](0).

An illustration of the resulting concentration kinetics over time is sketched in Fig. 2.3.

In an in vitro reaction compartment, mass balance must be conserved. The amount of free and bound

enzyme involved in the reaction must be kept constant and the amount of substrate can only be converted
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into product mass. This leads to the following conservation conditions [87]:

[E](t) + [ES](t) = [E](0) (2.3a)

[S](t) + [ES](t) + [P1](t) + [P2](t) = [S](0). (2.3b)

To date, no analytical solution of the system has been derived. However, for given kinetic parameters and

initial conditions of the reactants, numerical solutions can be calculated [87], as described in Sec. 4.8.1.
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Fig. 2.3: Schematic of a Michaelis–Menten kinetics. (A) Cleavage pattern. Hydrolysis of
substrate S by enzyme E into products P1 and P2, through an intermediate enzyme-substrate complex
ES. In the following, the N-terminal and C-terminal cleavage products created by a hydrolysis reaction
will be denoted sibling peptides. (B) Concentration kinetics. Concentrations of all reactants over time.
By design both products have the same concentration and therefore appear as one. [Figure (B) modified
from U+003F – Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=15943986]

2.3 Mass spectrometry-based peptidomics

Proteomics is the large-scale investigation of the proteome. Its aim is the identification of the pro-

tein sequences, their role in reactions and their abundances in order to understand their functions in

the biological system [88]. A field adjacent to proteomics is peptidomics, the large-scale study of

peptides [89]. Protein analysis techniques have evolved dramatically over the past seventy years. Early

approaches involved manual chemical analyses of few proteins that were cumbersome and time-consuming

[57]. One of the earliest methods for protein identification was the Edman degradation, where the

protein is sequenced by repeatedly cleaving off the N-terminal amino acid residue and identifying it

[90, 91]. Nowadays, current instruments allow to analyse even low amounts of complex protein mixtures

in short time [89]. A high-throughput proteomic technology often applied is mass spectrometry (MS).

In the ”top-down” approach, intact proteins are purified and measured in MS, whereas in the ”bottom-

up” approach, the proteins are subjected to enzymatic digestion (usually using specific proteases such as

trypsin) and the generated peptides are analysed in MS. From the identified peptides the parental protein

https://commons.wikimedia.org/w/index.php?curid=15943986
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Fig. 2.4: Schematic of an MS-based peptide identification and quantification pipeline.
A polypeptide is digested in vitro by a protease (Sec. 2.2). The peptide mixture is measured in liq-
uid chromatography tandem mass spectrometry. Resulting mass spectra are used to identify the peptide
sequences via database search (Sec. 2.3.2). Based on the signal intensities, a label-free relative quantifi-
cation between same peptides is possible. For absolute quantification, additional steps involving labelling
techniques or titrations are required (Sec. 2.3.3). QPuB provides a computational alternative to these
experimental efforts. [Figure inspired by [20].]

can be identified [10]. Mass spectrometry can also be used for peptidomics research. In a bottom-up

approach, a protein is in vitro digested by a protease of interest and the peptides in the sample are

identified. Automated high-throughput technologies accompanied with computational pipelines allow for

rapid analysis of large and complex peptide mixtures [92].

2.3.1 Tandem mass spectrometry

Mass spectrometry (MS) is a laboratory technique to measure the mass-to-charge ratios of ions. Its

invention can be dated back to the beginning of the last century, when Joseph John Thomson and

Francis Wiliam Aston built the first mass spectrographs for measuring isotopes of chemical elements

[93, 94, 95, 96, 97, 98, 99, 100]. A sample of particles of interest is ionised and exposed to an electric

or magnetic field, which deflects them based on their mass-to-charge-ratio. Today, mass spectrometry

is a technique indispensable for the identification and structural determination of unknown compounds

in a wide range of applications, one important field of which is peptide and protein identification [92].

A schematic of an MS-based peptide identification pipeline is shown in Fig. 2.4.

A mass spectrometer mainly consists of three components: an ion source to ionise the sample, a mass

analyser to accelerate and select the ions, and a detector to measure the resulting currents. Usually,

the sample intended for MS analysis is a complex compound mixture. This makes it difficult to distin-

guish between similar masses. To avoid overcrowding at the inlet of the mass spectrometer, the mass

spectrometer can be coupled on-line with column chromatography [101, 92]. With this, separation of

the compounds by physico-chemical properties is achieved, before they are introduced to the ion source.

Today’s standard is high performance liquid chromatography (HPLC), which separates the peptides by
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e.g. their hydrophobicity. The separation of the peptide mixture eluted over retention time can be visu-

alised in an ion chromatogram [102, 10]. The first component of a mass spectrometer is the ion source,

which ionises the sample and transfers it into gas phase. There are a variety of techniques to achieve ion-

isation. One of the first was electron ionisation, where the sample is bombarded with electrons. Applying

this method to peptides would cause these fragile molecules to break. A frequently used soft ionisation

method without breaking the peptide bonds is called electrospray ionisation [103, 104, 105] (Nobel price

in 2002 [106]). Here, the liquid solvent containing the peptides is electrically dispersed into a fine aerosol,

usually by applying a positive voltage. Charged droplets are formed which continuously decrease in size

due to evaporation of the solvent until they become unstable and disintegrate into smaller droplets.

Eventually, the charge is transferred onto the peptide molecule inside the droplet, forming peptide ions of

variable charge. The nebulised beam is subsequently led into the vacuum chamber of the mass spectro-

meter [10]. The core of the mass spectrometer is the mass analyser. It applies an electro-magnetic

field that accelerates the peptide ions and deflects them according to their mass-to-charge ratio. The

degree of deflection is recorded by a detector. A common mass analyser for proteomics experiments is

the orbitrap [107, 108], which has an innovative barrel-like shape that combines a mass analyser and a

detector in one. Application of a negative current causes the ions to orbit around an inner electrode. The

resulting image current is detected by an outer electrode. Depending on the mass-to-charge-ratio of the

ions, different frequencies are measured and transformed into signal intensities using Fast Fourier Trans-

formation [107]. The orbitrap is a high-throughput mass analyser that offers high mass accuracy, high

resolving power and a wide mass range [108], which makes it particularly useful for analysing complex

peptide mixtures. The unique feature of tandem mass spectrometers is their ability to perform multiple

cycles of MS analysis, separated by a fragmentation step [10]. In the first round, the survey scan, the

mass-to-charge ratios of the intact peptide ions are measured and the induced ion signal intensities are

detected. A common graphical representation is the mass spectrum (Fig. 2.4) [10]. Using a second mass

analyser as a mass filter, precursor ions can be selected for fragmentation based on their intensity, charge

or mass-to-charge ratio. Two approaches can be distinguished. In data-dependent acquisition (DDA) a

fixed number of ions is selected, commonly the top N ions based on their intensities in the survey scan.

Data-independent acquisition (DIA), on the other hand, forwards all peptide ions for fragmentation [10].

There is a variety of methods for fragmentation of precursor ions in mass spectrometry. A common

technique is collision-induced dissociation (CID) [92]. A variant used nowadays in orbitrap tandem mass

spectrometers is higher-energy C-trap dissociation (HCD) [109]. Selected precursor ions travel to the

collision cell, which is filled with an inert gas. Collision of the accelerated peptide ions with the gas

atoms causes them to break stochastically at any chemical bond, releasing smaller fragment ions. The

charges of the peptide ion are transferred to the fragments. Fragments without charge are neutral and
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remain undetected in the following MS cycle. In HCD, the main break point is the peptide bond. After

fragmentation, the resulting fragment ions undergo a second round of MS analysis, the product-ion

scanning. The measured mass-to-charge ratios and corresponding ion signal intensities of each detected

fragment can be displayed in a tandem mass spectrum [10]. In total, the MS output provides information

about the mass-to-charge ratio and the respective ion signal intensities of the ionised peptides and their

fragment ions.

2.3.2 Peptide identification

From the mass spectrum of the precursor ions, the mass and charge of the peptides can be deduced

by making use of the natural occurrence of carbon isotopes inside the peptide molecules. Sequence

information can be reconstructed from the mass spectrum of the fragment ions based on the molecular

masses of the amino acid residues [10]. In the past, researchers had to decipher that information from

the MS data manually. Nowadays, there is a wide variety of software available for peptide and protein

identification. They can be grouped into two classes. Algorithms for sequence database search identify

peptides by comparing the experimentally obtained mass spectra with theoretical mass spectra derived

from sequences in a database. Popular proprietary software for protein identification via database search

are Mascot [110, 111] and SEQUEST [112]. A freeware alternative is MaxQuant [113]. An alternative

approach is de novo sequencing [114]. Here, the peptide sequence is actively inferred from the MS/MS

data. As opposed to the database search, which can only identify peptides that match existing sequences,

the de novo approach is able to identify novel sequences as well. Common software applying a de novo

algorithm is PEAKS (proprietary) [115]. Both approaches aim at identifying the peptide sequence from

the tandem mass spectra and provide confidence scores for their assignments [116].

2.3.3 Peptide quantification

Tandem mass spectrometry does not directly provide quantitative information about the analysed sample.

There is a variety of methods that permit quantification of proteins and peptides. According to what kind

of information is provided, we distinguish relative and absolute quantification. Relative quantification

is achieved by comparing the amounts of the same peptides or proteins between samples, providing a

quantitative ratio or a relative change (”x-fold increase”). Absolute quantification, on the other hand,

yields exact peptide numbers or concentrations within a sample and allows to compare abundances of

different peptides [117].
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Fig. 2.5: Linear relation between
amount and signal intensity. Cali-
bration curve obtained via titration of a
synthetic peptide equivalent of the hydro-
lysis product KRAS 5–14G12V [generated
based on data published in [118]]. The ion
signal intensity was measured for different
amounts of peptide over a range of 0 to
10 pmol. The background signal detected
at 0 fmol was subtracted from the other
measurements in the plot. The relation-
ship between the loaded amount and the
resulting ion signal intensity is a linear one.
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2.3.3.1 Titration of synthetic peptide equivalents

After performing an MS analysis of a sample of peptides, absolute quantities of peptides of interest can

be obtained by subsequent titration of synthetic peptide equivalents. A crucial requirement is to use

the same instrument and setup as for the initial measurement. For a range of peptide amounts the

corresponding signal intensity is measured by MS and plotted in a calibration curve (Fig. 2.5). For a

range of analyte concentrations, the so-called linear dynamic range, a linear relationship between the

amount and the intensity can be observed [11, 12, 13, 14, 15, 16]. Using this correlation, the MS1 signal

intensities from the analysis of the peptide mixture can be translated into absolute amounts for each

titrated peptide.

2.3.3.2 Label-based quantification

Other MS-based quantification approaches can be broadly classified into two classes: label-based and

label-free. Label-based quantification relies on incorporating stable isotopes into the molecules them-

selves or a tag molecule. Three types of labelling techniques can be distinguished [21, 117]. In metabolic

labelling, heavy amino acids are incorporated into the protein in vivo. A prominent technique is Stable

Isotope Labeling of Amino acids in Cell culture (SILAC, [119]). In chemical labelling, labelled tags are

linked to the amino acid side chains of the peptides prior to digestion. Common approaches to be men-

tioned are isotope-coded affinity tags (ICAT, [120]) and tandem mass tags (TMT, [121]). In enzymatic

labelling, the proteins are digested in presence of heavy water. All of the above methods only provide
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relative quantification. Absolute quantification can be achieved by adding a known amount of internal

standard peptide (synthetised containing isotopes) to the sample. This way, relative quantification of

sample peptides to an absolute value can be realised (AQUA, [122]). In summary, label-based techniques

provide accurate means for peptide quantification that are, however, quite costly and require additional

steps in sample preparation. Additionally, with most approaches, only a limited number of peptides can

be quantified within a sample and only a limited number of samples can be compared [21, 117].

2.3.3.3 Label-free quantification

Techniques for peptide quantification that do not require labelling of samples are called label-free (Label-

free quantification, LFQ). Because of their simplicity, they are of high demand in the proteomics field. The

samples of interest are analysed sequentially without the need for additional manipulation like labelling.

Label-free techniques are usually divided into two groups. The first method uses the mass spectrum of

the precursor peptide ions and compares the ion intensities of the same peptide in different samples

[123, 124]. Because of the linear relationship between the peptide amounts and their ion current described

above, signal intensities are a relative measure for the ion abundance. The great accuracy of today’s mass

spectrometers allows the use of the mass spectra of the peptide ions for relative quantification between

the same peptide in multiple samples [125], provided that identical experimental and MS conditions were

used and the precursor masses and retention times were identical. Over the years, many algorithms were

developed to improve intensity-based LFQ [28, 126, 127, 17]. The second method relies on counting the

mass spectra of the fragment ions to infer protein abundance [124]. If a peptide is more abundant in

one sample than in the other, then, statistically, there will be more fragments observed in MS2. Therefore,

the more tandem mass spectra are assigned for the peptide of interest, the more abundant it should be [24].

This forms the basis for a fast and easy procedure to compare peptide amounts between samples [128]. In

the simplest form, the number of tandem mass spectra assigned to the same peptide/protein is counted

[128]. Over the years, many strategies for improving the performance have emerged [129, 25, 124, 128].

Studies have demonstrated the intensity-based method to be slightly superior to the spectral counting

approach, especially for low-intensity peptides. Yet, other studies have shown an equal performance.

Combining both approaches was observed to improve label-free quantification. In summary, label-free

quantification offers a simple alternative to label-based techniques. Its ease of use with no additional

work required for accurate and robust relative quantification of samples with any size and complexity

makes it a popular technique, that is by now widely accepted. Unfortunately, absolute quantification of

peptides in a sample is not directly possible with label-free techniques [124, 128].
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2.4 MS-based peptidomics for enzyme kinetics

For the absolute quantification of the peptide products in an enzymatic digest over time the following

procedure is commonly applied (Fig. 2.4). The protease of interest is incubated with the substrate

of interest in a controlled environment to elicit digestion. After fixed time intervals, the reaction is

stopped for a part of the mixture and the current state of the peptide product population is analysed

by tandem mass spectrometry. MS measurements are performed in multiple biological and technical

replicates. Multiple digestions under same biological conditions account for biological variability. Multiple

measurements of the same sample with same technical settings account for technical measurement error.

A Mascot database search is performed for peptide identification. A relative quantification of the peptide

products under different biological conditions is possible via comparing ion signal intensities of same

peptides (LFQ). For absolute quantification, titrations of selected synthetic peptide equivalents can be

performed to obtain the concentrations over time. Titrations are performed in multiple technical replicates

[39, 118].
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The goal of this work is parameter estimation based on observed data. Bayesian inference in a Markov

Chain Monte Carlo scheme offers a convenient tool to achieve this. Bayesian inference is a technique

that combines previous knowledge on the unknown parameters with new knowledge obtained through

experimental data. In the framework of Markov Chain Monte Carlo, this combined knowledge is contin-

uously updated until the optimal distribution of parameter values is found. In particular, in this thesis,

an adaptive and population-based Differential Evolution Markov chain algorithm will be applied. This

chapter presents the theoretical background for this approach. The concept of parameter identifiability

is introduced and the benchmarking framework to review the performance of an algorithm is explained.

3.1 Bayesian inference

In statistics, mainly two schools of thought are distinguished. Frequentist statistics defines probability

using frequencies and relative proportions. The Bayesian approach, on the other hand, defines probability

as ’a degree of rational belief’ [130]. This work will use a Bayesian point of view. Bayesian inference is a

method to make an educated decision using statistical knowledge to a problem at hand. It applies Bayes’

theorem to combine experimental sample information with previous knowledge on the data to update the

probability of a hypothesis of interest [131]. The gist of this perspective is that instead of returning only

an optimum point estimate, it returns a distribution of possible values, which accounts for uncertainty

in the data [40].

3.1.1 Bayes’ Theorem

The heart of Bayesian statistics is Bayes’ theorem (more correctly Bayes-Price theorem). It provides

a simple formula to calculate the probability of an event conditional on an event that previously oc-

curred [131]. A typical phrasing of the theorem today is the following:

17
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Theorem 3.1 (Discrete form of Bayes’ Theorem [131]). Let A and B1,. . . ,Bn be random variables, the

Bi being disjoint with P (
⋃n

i=1 Bi) = 1, i.e. one of the events Bi is certain to occur. Let P (·) be the

probability of an event, P (·|·) denotes the conditional probability of an event given the occurrence of the

second. Then

P (Bj |A) =
P (Bj)P (A|Bj)

P (A)
(j = 1, . . . , n), (3.1)

with P (A) =
∑n

i=1 P (A|Bi)P (Bi).

3.1.2 Model-based Bayesian inference

Oftentimes, the Bayesian approach is used for model-based parameter estimation. Bayes’ theorem shows,

how the degree of belief in a hypothesis can be updated, when new evidence becomes available [40]. The

hypothesis of interest then deals with the question, whether an estimated set of parameter values does

explain the observed data.

Theorem 3.2 (Continuous form of Bayes’ Theorem [131, 40, 132]). Let θ ∈ Θ ⊆ Rn be the un-

known parameter vector of a model. Denote the collected data by the continuous random variable X =

(X1, . . . , XM ) ∈ X ⊆ Rn with independent observations Xm. Let the variable x be a particular realisation

of X. Let p be the probability density function of x. Then

p(θ|x) = p(θ) p(x|θ)
p(x)

, (3.2)

where p(x) =
∫
Θ
p(x|ϑ) p(ϑ) dϑ.

The quantity of interest, p(θ|x), is called posterior probability distribution and represents the probability

that the hypothesis is true after evidence through new relevant data is gathered. The probability of the

hypothesis, p(θ), before new data is observed, is called prior probability. The likelihood function p(x|θ)

is defined as the conditional probability of the observable quantity x given the unobserved variable θ,

and shows to what extent the data supports the hypothesis. The denominator p(x) ̸= 0 is the total

probability of the data, irrespective of the parameters, the marginal distribution [132].

3.1.3 The prior distribution

The prior distribution p(θ) (or prior, for short) is the subjective knowledge about the hypothesis before

data is observed, i.e. the initial belief. It can be based on information from the past, like data collected

from former simulations or experiments, or on experience of an expert.
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A prior distribution is called proper if its integral is finite:

∫
Θ

p(θ) dθ < ∞. (3.3)

Depending on their information content, different types of priors are distinguished [132]. A prior is

called uninformative or non-informative, if no or very little information about the parameters is known.

A non-informative prior is the most objective prior that can be defined [131], attempting to impart no

information about the parameters of interest, e.g. by an unbounded uniform distribution. In this case,

the posterior is driven mainly by the information conveyed by the data. If prior knowledge about the

parameters is available, an informative prior can be defined. Here often a normal distribution is used,

with mean equal to the believed value and a narrow standard deviation. In most cases, it should be

possible to provide at least a weakly informative prior, i.e. a normal distribution with a wide standard

deviation or a uniform prior with bounds:

p : Θ → U([a, b]).

3.1.4 The likelihood function

All relevant experimental information about a parametrised model can be summarised in the sampling

distribution, the so-called likelihood function [131]. It quantifies the agreement of the model output with

the experimental data [35]. The larger the likelihood, the more likely are the parameters to describe the

observed data [131]. The likelihood function (or simply likelihood, for short) is defined as the conditional

probability density p(x|θ) of the observed data x given the parameters θ, considered as a function of θ.

For independent experimental data xm(t) (m = 1, . . . ,M , t = 1, . . . , T ), the likelihoods of the individual

observations multiply:

p(x|θ) =
M∏

m=1

T∏
t=1

p(xm(t)|θ). (3.4)

Commonly, measurement noise is assumed to be normally distributed according to N (0, σ). In this case,

the difference between the model output ym(t, θ) under the estimated parameter values θ and the observed

experimental data xm(t) can be described by the following likelihood function [35]:

p(x|θ) =
M∏

m=1

T∏
t=1

1√
2πσ2

exp

(
−

(
xm(t)− ym(t, θ)

)2
2σ2

)
. (3.5)

The goal of the inference is to obtain parameters, which result in model outputs as close to the observed

data as possible, i.e. that maximise the likelihood function. In a frequentist setting, the best fit yields a
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point estimate – the maximum likelihood estimate – of the parameters [35]. In many cases however, the

likelihood is difficult to calculate. Here, sampling methods provide a convenient way to circumvent this

problem. We will introduce the popular class of Markov Chain Monte Carlo methods in Section 3.2.

3.1.4.1 The log-likelihood

In practice, it is often convenient to use the logarithm of the likelihood function, log p(x|θ). Maximizing

the log-likelihood is equivalent to maximizing the likelihood, because it is a strictly increasing function.

The logarithm simplifies the calculations in Eqn. (3.5):

log p(x|θ) = −
M∑

m=1

T∑
t=1

log
( 1√

2πσ2

)(xm(t)− ym(t, θ)
)2

2σ2
, (3.6)

therewith increasing the speed and improving the numerical accuracy when dealing with small probabil-

ities [].

3.1.5 The marginal likelihood function

The marginal likelihood function (also referred to as integrated likelihood, prior predictive distribution,

evidence or model evidence), is the distribution of the observed data marginalised over the parameters

[40]:

p(x) =

∫
Θ

p(x|ϑ) p(ϑ) dϑ. (3.7)

In Bayes’ theorem (3.2), it serves as a normalizing constant that guarantees that the integral of the

posterior probability density over all values of θ is equal to 1.

3.1.6 The posterior distribution

According to Bayes’ theorem (3.2), the prior probability and the likelihood function are combined to

form the posterior probability distribution of θ given x (or posterior, for short). It summarises all the

information available, i.e. the previous beliefs and relevant sample information, into a final perception

about the parameters [131]. If the prior distribution is proper, then the posterior distribution is also

proper, i.e. the integral is finite. This ensures that a sampling approach can be used to approximate the

posterior [35].

Analogous to the maximum likelihood estimate, the parameter that maximises the posterior is called

maximum a posteriori estimate [35]. However, a considerable advantage of the Bayesian approach is the

generation of a full distribution of estimated values for the parameters, involving uncertainty. If a single
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parameter value is desired, the posterior distribution can be summarised using the mode, the median, or

the mean [131]. In addition, the uncertainty of the estimate can be measured using the standard deviation

of the distribution [131]. It provides a feeling for the confidence that can be laid in the prediction.

3.1.7 Bayesian model comparison

The inference process provides a mean to update the prior density to the posterior density through the

likelihood function. From the inferred posterior distributions for the parameters, one can now conclude

a decision for the underlying hypothesis. A comparison of two competing hypotheses can be achieved by

comparing their respective posteriors. Let θ̃ and θ̄ be the parameter sets to be compared. If

p(θ̃|x)
p(θ̄|x)

> 1, (3.8)

then parameter set θ̃ with the larger posterior probability is considered the better choice [40]. This

reasoning is the basis for the decision step in the MCMC algorithm, see Sec. 3.2.1.2.

3.1.7.1 Sidenote on the marginal likelihood

Marginal likelihoods are often difficult to calculate. However, it is independent of θ, and therefore identical

for all possible hypotheses considered. It does not change the outcome of a comparison of probabilities

of different hypotheses:
p(θ̃|x)
p(θ̄|x)

(3.2)
=

p(x|θ̃) p(θ̃) p(x)
p(x|θ̄) p(θ̄) p(x)

=
p(x|θ̃) p(θ̃)
p(x|θ̄) p(θ̄)

(3.9)

and can hence be omitted. This simplifies the posterior calculations in the Bayesian inference [40]:

p(θ|x) ∝ p(θ) p(x|θ). (3.10)

3.2 The Markov Chain Monte Carlo method

In many applications, the model is too complex to obtain the posterior distribution in closed form by

analytical methods. In such situations, sampling approaches can be applied to approximate the posterior.

One class of sampling techniques are Markov chain Monte Carlo methods (MCMC for short). Over the

years, a wide variety of different algorithms has been developed. One of the earliest processes in this class

is the Metropolis–Hastings algorithm [132]. In this work, we will use an advanced Metropolis–Hastings

based algorithm that employs an adaptive population-based approach, namely Differential Evolution

Markov Chain.
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3.2.1 Basic principle

The idea of MCMC algorithms in Bayesian inference is to approximate the posterior distribution by a

sampling distribution. The earliest and simplest MCMC version is the Metropolis–Hastings algorithm.

The main idea can be summarised as follows. For every parameter to be estimated, a sequence of samples

is drawn in a particular manner and evaluated by calculating the corresponding Bayesian posterior.

By either rejecting or accepting the proposed values, the emerging Markov chain iterates through the

state space, converging to a limiting distribution that represents the target posterior.

3.2.1.1 Markov chain theory

In the sampling scheme, a discrete stochastic process for the parameters is created: {θ(i) ∈ Θ : i ∈ N0},

where Θ is the state space and i denotes the number of samples created, also referred to as iterations.

In practice, the number of iterations will be finite i = 1, . . . , N ∈ N0.

Definition 3.1 (Markov chains [133, 134]). A discrete-time stochastic process fulfills the Markov prop-

erty, if the conditional probability of the future state θ(i+ 1) given the past θ(0), . . . , θ(i) depends only

on the current state θ(i):

p(θ(i+ 1)|θ(0), . . . , θ(i)) = p(θ(i+ 1)|θ(i)) (3.11)

A process that satisfies the Markov property is called Markov process or Markov chain.

The distribution of the first state θ(0) is called the initial distribution. The conditional probability

p(θ(i + 1)|θ(i)) of arriving at state θ(i + 1) following the current position θ(i) is also called transition

probability.

For the purpose of parameter estimation, the Markov chain should sample the whole state space over the

course of iterations and eventually stabilise at the posterior distribution.

Definition 3.2 (Stationarity [134]). A Markov chain is stationary (or at equilibrium), if the distribution

of any part of the chain does not depend on i:

p(θ(i+ 1), . . . , θ(i+ k)|θ(i)) = p(θ(j + 1), . . . , θ(j + k)|θ(j)) ∀i, j, k ∈ N0 (3.12)

A theorem that ensures, that the Markov chain reaches its stationary distribution given certain conditions

is the Ergodic theorem.
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Theorem 3.3 (Ergodic theorem [135, 136]). Let {θ(i)} be a Markov chain with stationary distribution

π(θ). If it is ergodic, i.e. if it is

• time-homogeneous (its transitions do not depend on iteration time),

• irreducible (every point in the state space can potentially be reached regardless of the starting point),

• aperiodic (it does not oscillate between states),

then, for large iteration number, the samples will be close to the stationary distribution:

p(θ(i)|θ(0)) −−−→
i→∞

π(θ) ∀ θ, θ(0) ∈ Θ (3.13)

Whether a Markov chain has a stationary distribution depends on the way it is constructed. In the

following section, the Metropolis–Hastings sampling algorithm is presented, which ensures, that the

posterior distribution is a stationary distribution of the Markov chain generated. Any advanced sampling

scheme using the Metropolis–Hastings idea at its core needs to make sure, that the way it generates

the Markov chain, guarantees ergodicity. Then, by the Ergodic theorem, the chains will converge to the

posterior.

3.2.1.2 The Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm [137, 138, 139] is the most general algorithm of all the MCMC

variants [136]. Its principle is to simulate a Markov chain that covers the state space and whose stationary

distribution is the target distribution. To achieve this, it pursues a trial-and-error strategy by proposing

samples that are either accepted or rejected based on experience by taking into account the current value.

The concept of a simple MCMC sampler is illustrated in Fig. 3.1 and a summary of the algorithm is shown

in Alg. 1 using pseudo code notation [140, 134].

1. Initialisation. The Markov chain is initialised by (randomly) picking start values from the state

space, which in Bayesian inference is the prior distribution:

θ(0) ∼ p(θ). (3.14)

The algorithm then proceeds in an iterative manner using discrete time steps i = 1, . . . , N .

2. Proposal step. Transitions from one state θ(i) to the next state θ(i + 1) are generated using the

proposal distribution g(θ(i+1)|θ(i)). In every iteration a candidate ζ ∈ Θ for the next state is suggested

according to g(ζ|θ(i)). The easiest form of proposal function would be a small perturbation of the
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current value resulting in a random walk: q(ζ|θ(i)) = θ(i) + ϵ [136]. The selection of the proposal

function influences the efficiency of the sampling algorithm [35].

3. Metropolis step. For the proposed candidates, the posterior probability p(ζ|x) is calculated and

compared to the posterior value of the current state of the chain p(θ(i)|x) by calculating the Metropolis–

Hastings acceptance probability:

α(ζ, θ(i)) = min
{ p(ζ|x)
p(θ(i)|x)

αsym, 1
}
, (3.15)

where αsym =
g(θ(i)|ζ)
g(ζ|θ(i))

. (3.16)

The factor αsym vanishes if the proposal is symmetric. The ratio of the two posteriors comprises whether

the proposed candidate values are more likely to explain the observed data x than the previous value.

4. Acceptance–rejection step. If the new value better explains the data, then it is always accepted

and the chain moves to this new state. If the candidate is rejected, the chain remains at its current

location. The crux of the algorithm is the occasional ”downhill” transition, when a candidate, which has

a lower posterior, may also be accepted with a certain probability. This is implemented by comparing α

to a uniform random number u ∼ U([0, 1]):

θ(i+ 1) =

{
ζ if u ≤ α (3.17a)

θ(i) if u > α (3.17b)

5. Convergence. Over iteration time, the Markov chain slowly transfers the parameter values from the

prior distribution to the stationary target posterior distribution.

Fig. 3.1: Illustration of the MCMC concept. Starting from an initial sample, the Markov chain
evolves by proposing candidate values from the prior range in a particular fashion, that depends on the
underlying proposal function. These candidates are successively accepted (grey dots) or rejected (white
dots). After sufficiently many iterations, the accepted samples approximate the posterior distribution.
[This figure is taken from [141], Creative Commons 4.0.]
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Algorithm 1 The Metropolis–Hastings algorithm. The MH algorithm is the simplest
Markov Chain Monte Carlo method. It iteratively transfers the prior parameter distributions
into posterior distributions taking into account the observed data.
Input: Observed data x
Output: Estimations of the parameters θ

Sample start values θ(0) ∼ p(θ) ▷ 1. Initialisation

for iterations i = 1, . . . , N do
Propose candidate ζ using proposal function g ▷ 2. Proposal step
Calculate α according to (3.15) using data x ▷ 3. Metropolis step

if uniform([0, 1]) ≤ α then ▷ 4. Acc./Rej. step
Accept candidate and move to new state (3.17a)

else
Reject candidate and stay at current state (3.17b)

end if
end for

3.2.2 Practical considerations

When running MCMC simulations, several decisions in algorithm settings and chain handling have to be

made. In this section, we will only name a few. A central question for example is where to start the

sampling process and when to stop.

Number of parallel chains. The classical MCMC frameworks generate a single Markov chain. Other

algorithms require the run of several chains in parallel. The opinions on which approach is beneficial

deviate. While some promote the use of a single long chain [142, 143], others recommend running

multiple interconnected chains [144].

Starting values. There is no universal rule on how to find a good starting point for the Markov chain(s)

[145]. It can be randomly sampled from the prior distribution, or informed by previous simulations.

Optimisation can be used to approximate the global mode of the target distribution wherever possible,

which can then be used as initial value [146]. Different runs of a simulation should be started from

different initial points, to check the reliability of the estimates and to eliminate the possibility of getting

stuck in local modes [145]. The same applies to running multiple interconnected chains, where the starting

points of the parallel chains should be dispersed [45, 145]. After a sufficient number of iterations, the

chain(s) should become independent of the particular choice of the starting point [142].
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Warm-up period. The number of iterations the chain needs to explore the space before it reaches its

equilibrium is called burn-in. These early samples are usually neglected in the calculation of the summary

statistics of the posterior distribution. Recommendations on what fraction to discard differ widely, from

as little as 1-2% [142] up to 50% [144].

Thinning. A strategy often used to reduce autocorrelations in a Markov chain is discarding samples

and only keeping every k-th observation. However, since this procedure wastes a lot of information, some

researchers recommend to only apply it if computational issues (storage, cost of function evaluations) call

for it [147, 148, 146, 149].

Acceptance rate. The fraction of accepted samples can be calculated, which allows to monitor the

sampler performance. An acceptance rate of 15-30% usually indicates good mixing [136, 44].

3.2.3 Stopping rules

The Markov chain has reached its stationary distribution when further samples do not change the estimate

[45]. Although theoretically it can be assessed whether a chain will eventually converge, in practice it is

difficult to determine when the sequence is representative of the target distribution [150, 151, 133, 145].

This section presents some considerations on the duration of the sampling process.

3.2.3.1 Stopping after a fixed number of iterations

Running a fixed number of iterations relies on trial-and-error and is a trade-off between speed and

accuracy. Premature termination will probably lead to inaccurate inference. Running a simulation for

more iterations will increase the accuracy [145]. However, running simulations longer than actually needed

unnecessarily uses time and resources [146].

3.2.3.2 Stopping after visual inspection

Visualisation is an important tool in assessing Markov chain Monte Carlo performance [152]. The results

for each inferred parameter are usually investigated in two ways: the traceplots of the chain(s) and the

resulting posterior distributions. A traceplot of a parameter shows the parameter values over iteration

time. It represents the movement of the chain in the state space, also referred to as mixing. It may

include the burn-in samples to visualise the transition from starting values to target distribution. A well-

mixing chain should look like a “hairy caterpillar” [146]. From any arbitrary starting point, it should

explore the whole state space and after some time become stationary around some mean value. As

long as the traceplot shows trends, convergence has not been achieved. When multiple parallel chains
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are used in a simulation, they should sample in agreement with each other, once converged [44]. The

distributions of the parameters are typically depicted in the form of histograms, which, for sufficiently

many samples, should approximate the posterior density. From this, the most likely parameter value is

directly apparent, together with its uncertainty in the form of the standard deviation. The parameter

estimates can be provided in the form of summary statistics [40]. Burn-in samples are typically not

included.

3.2.3.3 Stopping using convergence criteria

Since the early 1990s, a large variety of convergence criteria has been developed, as reviewed in [146,

153, 150, 154]. There are methods for single chain MCMC simulations, as well as convergence criteria

for multiple chains. Some only give lower bounds for the required number of iterations, others provide

concrete stopping rules [150]. The preferred way to establish convergence is via theoretical considerations

[153]. However, most approaches are too conservative or just too complex in practice [153, 150]. As a

result, empirical tools are more commonly applied to assess convergence, or the lack thereof. A popular

diagnostic was developed by Gelman and Rubin in 1992 [144].

The Gelman–Rubin convergence criterion can be applied to any multi-chain MCMC algorithm

output [150]. Convergence is diagnosed through comparison of the parameter variances within the chains

and between the chains. A quantitative measure, called potential scale reduction factor, is defined as

R̂ =

√
V

W
, (3.18)

where W is an estimate of the within-sequence variance and V is an estimate of the mixture-of-sequences

variance, calculated using W and the between-sequence variance estimate. Gelman and Rubin argue

that starting from an overdispersed initial distribution, after a finite number of iterations, the numerator

will dominate the denominator, meaning R̂ will approach 1. Once it is sufficiently close to 1 for every

parameter, this suggests that their distributions are close to the target distribution [144]. A threshold

often used is R̂ < 1.2 [155].

3.2.3.4 Limitations

The general sentiment is that no single method provides the ultimate convergence diagnostic. Some

approaches may lead to premature termination, different techniques may even contradict each other and

results should be interpreted with caution. No method can guarantee that a finite Markov chain is repre-

sentative of the limit distribution [150]. Nevertheless, they provide a valuable control of the algorithm’s
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progress. Visual inspection alone can be quite subjective and unreliable [40, 45]. In high-dimensional in-

ference problems, it is not practical to investigate all of the traceplots and posterior distributions. Easier,

preferably numerical summaries of the convergence properties are required [156]. In summary, it is ad-

visable to use a mixture of approaches with different properties, together with appropriate visualisation

and experience [153, 157, 150, 151].

3.2.4 Advanced algorithms

The usefulness of MCMC methods in Bayesian inference has led to the development of a multitude of

different algorithms by researchers in different fields [151]. Although existing theory proves convergence

of well-constructed Markov chains to the target posterior, in practice the rate of convergence can be very

slow. An issue often addressed is the question of orientation and scaling of the proposal to achieve faster

convergence. Proposal schemes with an automated adjustment are called adaptive methods. While

the problem of choosing an appropriate direction was solved in early adaptive schemes proposed by Gilks

and Roberts in 1994 [158], the problem of choosing an optimal scale remained [44]. The disadvantage of

classical approaches is the fact that the proposal step size is fixed, hampering efficiency. The scale factor

needs to be carefully tuned before running the algorithm. If the chosen step size is too small, then most

proposals will be accepted, but the chain will move only slowly towards the limiting distribution. If the

chosen step size is too large, then most samples will be rejected, also resulting in slow convergence [43]. It

would be beneficial to make larger jumps in the beginning to reach a region of high likelihood faster, and

to decrease the step size as the chain approaches more precise estimates. An automatic adaptation of the

proposal step size allows to overcome these difficulties [43]. Haario et al. proposed a sampling scheme

utilising information from past states of the chain to adapt the proposal distribution [159, 160]. Many

variations of the adaptive algorithms have been published with the goal to improve efficiency [161]. They

can be grouped in two classes: single- and multiple-chain methods. In a multi-chain approach, the

chains are regarded as members of a population that can learn from each other by taking into consideration

the current states of the other chains. The idea was taken from a class of global optimisation algorithms

called evolutionary algorithms. Here, a population of individuals evolves over generation time through

reproduction, mutation and selection based on an evaluation of their fitness. The first evolutionary

MCMC methods were developed by Liang et al. in 2000 [162, 163]. The population-based algorithm in

focus of this thesis is the Differential Evolution Markov chain algorithm.
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3.2.4.1 The Differential Evolution Markov chain algorithm

The Differential Evolution Markov Chain (DE-MC) is an adaptive population-based MCMC algorithm

that takes care of both choosing an optimal direction as well as an appropriate scale in the proposal step

[41]. It is a merger of the evolutionary algorithm called Differential Evolution (DE) and an adaptive

MCMC scheme. Differential Evolution (DE) is a population-based global optimisation approach devel-

oped by Storn and Price in 1997 [164, 165]. It works on the principle, that any population member

can improve using the information contained in the population as a whole [166]. A genetic algorithm is

applied to update a population of states through mutation, crossover and selection.

The first attempt to combine the Differential Evolution method with an MCMC scheme was conducted

by Strens et al. [167, 166]. Independently, in 2006 Cajo J.F. ter Braak integrated the essential ideas of

DE with MCMC for Bayesian inference [41]. A flaw of the algorithm was the impractical need of a large

number of parallel chains. In a follow-up joint work with Jasper A. Vrugt in 2008 [42], improvements were

made to circumvent this using an archive of past states. In addition, the resulting DE-MC(ZS) algorithm

increases the variety of update directions by introducing a second type of proposal. Alternatively, the

DREAM algorithm (Differential Evolution Adaptive Metropolis, [43]) was developed in 2009, decreasing

the number of chains required by implementing a self-adaptive randomised subspace sampling, that

introduces even more proposal directions and decreases autocorrelation in the samples. A combination

of the above approaches was developed as DREAM(ZS) [168] in 2012, which allows efficient sampling of

target distributions of up to one hundred parameters with as few as three parallel chains. The algorithm

was published in slightly different versions on diverse programming platforms [168, 44, 45]. The DREAM

framework has experienced many applications across a multitude of research fields [44].

A summary of the DREAM(ZS) algorithm is shown in Alg. 2 using pseudo code. In accordance with the

implementation of [44, 45], we present the algorithm with only a single chain pair in the calculation of

the proposal (δ = 1). In the following, the main steps are explained in detail. The original notation was

moderately modified to match the notation of this thesis. Let c = 1, . . . , C denote the number of parallel

chains (default C = 3), d = 1, . . . , D the dimension of the parameter vector and i = 1, . . . , N iteration

time. Let the current state of the Markov chain of parameter d in chain c at iteration i be given by

θ
(c)
d (i). In DREAM(ZS), the current state is provided as a population matrix X of dimension C ×D:

X =


θ
(1)
1 (i) · · · θ

(1)
D (i)

...
. . .

...

θ
(C)
1 (i) · · · θ

(C)
D (i)

 . (3.19)
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Algorithm 2 The Differential Evolution Markov Chain algorithm. The DE-MC algo-
rithm applies an adaptive population-based sampling scheme with two kinds of proposals using
information of past states to increase efficiency [41, 42, 43, 44, 45].
Input: Observed data x
Output: Estimations of the parameters θ

Initialise fake archive Z ∼ p(θ) ▷ 1. Initialisation
Initialise start values X ∼ p(θ)

while not GR converged do
for every chain c = 1, . . . , C do

if uniform([0, 1]) ≥ pγ then ▷ 2. Proposal step
Propose candidate ζ(c) according to snooker update (3.23)

else
Propose candidate ζ(c) according to parallel direction update (3.21)

end if
Optional: (adaptive) crossover step

Calculate α according to (3.26) using data x ▷ 3. Metropolis step
if uniform([0, 1]) ≤ α then ▷ 4. Acc./Rej. step

Accept candidate and move to new state (3.27a)
else

Reject candidate and stay at current state (3.27b)
end if

end for
end while

A

1

2

B

1

2

3

Fig. 3.2: Proposal scheme of the DREAM(ZS) algorithm. (A) Parallel direction update. (B)
Snooker update. The grey dots denote the past states of all chains. Green is the current state of a
chain to be updated. Blue are the anchor points drawn from the archive used to generate the proposal
candidate (orange). [Figure adapted from [42].]
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1. Initialisation. Since the algorithm requires sampling from past states, an initial “fake” archive Z of

dimension Z0 ×D is generated randomly by sampling the elements from the prior:

Z =


Z[1, 1] · · · Z[1, D]

...
. . .

...

Z[Z0, 1] · · · Z[Z0, D]

 , where Z[z, d] ∼ p(θ). (3.20)

The initial vector population is also chosen randomly X[c, d] ∼ p(θ) and should be distributed over the

entire prior range so that multiple modes can be found, if they exist [44].

2. Proposal step. In what they call the “mutation” step, a candidate ζ(c) for each of the chains is

proposed in either of two ways: via a parallel direction update or an occasional snooker update.

In the parallel direction update, for every chain, a pair of points Z[z1, ], Z[z2, ] are randomly chosen

from the archive of past states without replacement. The weighted difference of those is added to the

current point. In this way, diversity is introduced and superior vectors in the population are allowed to

influence others. This takes care of the problem of finding the appropriate scale and orientation. The

parallel direction proposal is defined as follows [45]:

ζ(c) = X[c, ] + γ(d)(1 + e1)
(
Z[z1, ]− Z[z2, ]

)
+ e2 ∀c = 1, . . . , C. (3.21)

Here, the function γ is defined as

γ(d) =


1 if uγ ≥ pγ , where uγ ∼ U([0, 1])

2.38β0√
2d

else
(3.22)

and denotes the jump rate that controls the acceptance rate. It can be tuned through the factor β0

[41, 44], in most applications they use β0 = 1. Every few iterations (pγ = 10 in [41], pγ = 5 in

[43, 168, 44, 45]), a gamma jump of 1 is introduced, that allows the chain to leap between modes in

a multi-modal limiting distribution. In [41] it is suggested to use a gamma jump of 0.98 instead. The

random constants e1 ∼ UD([−b1, b1]) and e2 ∼ ND(0, b2) (with b1, b2 small) are noise factors introduced

to account for randomisation and to guarantee ergodicity, respectively. Since this proposal is symmetric,

the Metropolis acceptance probability below simplifies with αsym = 1.

To increase the variety of possible updates, in 10% of the iterations, a snooker update with adaptive

step size is performed. Here, for every chain, three points Z[z1, ], Z[z2, ], Z[z3, ] are sampled from the

archive without replacement. A line is drawn through the current point X[c, ] and Z[z1, ]. The other two

points are orthogonally projected onto that line. The difference of those projected points is then used to
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generate a proposal in a new direction [45]:

ζ(c) = X[c, ] + γs(1 + e1)
(
Z⊥[z2, ]− Z⊥[z3, ]

)
+ e2 (3.23)

= X[c, ] + γs(1 + e1)
(Z[z2, ]− Z[z3, ])(X[c, ]− Z[z1, ])

(X[c, ]− Z[z1, ]) · (X[c, ]− Z[z1, ])
(X[c, ]− Z[z1, ]) + e2 (3.24)

The jump rate here is sampled uniformly around a value of 1.7 as γs ∼ U([1.2, 2.2]) [42]. The symmetry

factor in the acceptance probability in the snooker case is defined differently in the author’s implemen-

tations [42, 44, 45], this definition is taken from [42]:

αsym =
||ζ − Z[z1, ]||D−1

||X[c, ]− Z[z1, ]||D−1
. (3.25)

To ensure that the parameters stay within the prior range specified, boundary handling is applied. Vrugt

et al. suggest different options, of which only the “folding” option maintains detailed balance. In this

case, if a proposal lands outside the prior range, it will re-enter the range on the opposite bound [44].

3. Metropolis step. The decision step whether the candidate should be replaced by the proposal

is called “selection”. It follows the same acceptance probability as the Metropolis–Hastings algorithm

(Eqn. (3.15)):

α(ζ(c), θ(c)(i)) = min
{
1,

p(ζ(c)|x)
p(θ(c)(i)|x))

αsym

}
, (3.26)

where αsym as defined by the parallel or snooker proposal step, respectively.

4. Acceptance–rejection step. The DREAM(ZS) algorithm follows the usual acceptance rule of the

MH algorithm (Eqn. (3.17a)):

θ(i+ 1) =

{
ζ if u ≤ α (3.27a)

θ(i) if u > α (3.27b)

4A. Crossover step. In higher dimensions, it can make sense to update only a subset of the candidate

vector. This further broadens diversity in the population and increases efficiency [41]. This efficiency can

be further enhanced by implementing a self-adaptive version of this subspace sampling [43].

4B. Archive update. The current state X is appended to the archive Z. This happens every few

iterations only, achieving a thinning of the chain [42].

5. Convergence. Vrugt et al. [44] use the Gelman–Rubin criterion for its power and robustness. The

proof showing that the algorithm produces Markov chains that converge to a stationary distribution equal

to the target posterior distribution is given in [42, 43, 168].
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3.3 Parameter identifiability

It would be desirable to know before running a long simulation, whether the inference has the potential of

being successful. A fundamental question is whether the parameters of interest are in fact estimable [34].

Knowledge about a physical system is often limited and the amount of data observed is incomplete and

noisy. As a result, uncertainty accumulates due to model choice and experimental errors, and transfers

to uncertainty in the parameter estimates [34]. Has the right type of data been collected for the model?

Has a sufficient amount of data been collected? Does the likelihood function have a maximum and is it

unique? Can the parameters be uniquely identified? If not, what are sources of uncertainty? How does

the parameter uncertainty affect the problem at hand? How does it affect the inference performance?

What can be done to improve the situation? [169, 34] This section introduces the main concepts of

parameter identifiability and methods to analyse it.

3.3.1 Definition of identifiability

A parameter is said to be identifiable, if it is possible to infer its value from the data. That means, if

two parameter values are equally likely to describe the data, they must be equal. In other words, the

maximal likelihood is attained by a unique parameter value.

Definition 3.3 (Parameter identifiability [169]). The parameter θ is called globally (or uniquely) iden-

tifiable, if the function θ 7→ p(θ|x) is injective:

p(θ1|x) = p(θ2|x) ⇒ θ1 = θ2 ∀θ1, θ2 ∈ p(θ) (3.28)

It is only locally identifiable, if this relation holds only in a neighbourhood of values. It is called non-

identifiable, if it is neither globally nor locally identifiable. In the case of local identifiability, multiple

solutions to the parameter estimation problem exist. If the parameter is locally as well as globally

non-identifiable, an infinite number of solutions might exist [34]. It should be noted, that although a

parameter is theoretically identifiable, the inference in practice can be difficult [170].

In the Bayesian setting, the concept of identifiability is not so clearly defined and subject to discussion.

A much quoted opinion was expressed by Lindley, who said that non-identifiability does not cause real

difficulties in the Bayesian approach [171]. Indeed, an advantage of the Bayesian approach is, that models

that are non-identifiable in the frequentist theory can become identifiable in the Bayesian theory through

the definition of a suitable prior [172]. Identifiability is then a problem of the likelihood [173]. But even if

the likelihood is non-identifiable, a posterior distribution for every parameter can always be obtained. It
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is just a question whether this estimate is at all meaningful [171], since all information comes solely from

the prior and no additional information is gained through the data. In this case, the MCMC sampling

can encounter difficulties with convergence and the result can be misleading.

3.3.2 Diagnosing non-identifiability

There are some symptoms that indicate non-identifiability [34]:

• The parameters cannot be uniquely identified, even for noise-free data.

• Inference results in broad posterior distributions with large parameter uncertainty.

• The posterior is equal to the prior, no information gain through the likelihood/ the data

• Different parameter values yield the same likelihood value, low sensitivity of the likelihood towards

change in parameter values

• High correlation between the parameters

• Different runs of the inference with different or even the same initialisation yield different parameter

estimates

• Model output is inaccurate and predictions not possible.

3.3.3 Sources of non-identifiability

Realising that an identifiability problem exists is one thing. The question is what causes this non-

identifiability. Two sources of parameter non-uniqueness can be distinguished. The first reason, why

parameters might not be (uniquely) inferable, could be due to the choice of the model concept or the model

equations. This is called structural non-identifiability. Underdetermined or ill-posed model equations

can be singled out theoretically before any data is observed [34]. The other reason for non-identifiability

is data-dependent and called practical non-identifiability. On the one hand, an insufficient amount of

data might be supplied or the wrong kind of data at all. Also unsuitable initial or boundary conditions

can be an issue [34]. On the other hand, the supplied data can in principle be suitable, but contains

errors or noise [34]. Careful experimental design is a start for improvement [87].

3.3.4 Identifiability analysis

There are different approaches to analyse the identifiability of a model. Analytical methods investigate

the structure of the model equations before any data is observed and typically require advanced mathe-

matical techniques [174]. If a model a priori turns out to be structurally non-identifiable, it will obviously
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be practically non-identifiable as well. However, if the analytical method assures structural identifiabil-

ity, this does not imply practical identifiability [34]. Practical identifiability can only be assessed using

data-based methods [35]. Investigation of the likelihood function for local and global maxima and the

curvature around them is commonly done via visualisation of the response towards different parameter

values. A problem is globally identifiable, if the response surface shows a unique maximal peak. Multiple

distinct peaks with the same maximal likelihood function values (global optima) make the problem locally

identifiable but globally non-identifiable. Flat surfaces may occur when combinations of parameter values

result in the same likelihood values, indicating parameter interaction [34]. In this case, the problem is

locally and globally non-identifiable. Visualisation provides a practical approach to understand the shape

of the response surface, but in higher dimensions visualisation becomes tricky. A systematic approach is

required [34].

The flatness of the likelihood surface due to parameter correlation can be investigated using the covariance

matrix. Flat directions are characterised by large eigenvalues thereof. The corresponding eigenvectors

specify the direction. For a gaussian likelihood, instead of looking at the covariance matrix Σ, the Hessian

(or curvature matrix) K of the likelihood can be analysed. It is the negative inverse of the covariance

K = −Σ−1 and hence, large eigenvalues of Σ correspond to small eigenvalues of K. The Hessian of a

function is the matrix of the second-order partial derivatives of the function. The Hessian of a normal

likelihood is therefore

Kij(x) =
∂2L(x|θ)
∂θi∂θj

, (3.29)

which is independent of the parameters θ.

Let λ1, . . . , λD be the eigenvalues of K and w(λ1), . . . , w(λD) the corresponding eigenvectors. Normalisation

of the eigenvalues by the sum of all eigenvalues allows to quantify the information carried by the respective

direction. We define the proportion of variance explained by eigenvector w(λd) as [175]

I(w(λd)) =
λd∑D
d=1 λd

. (3.30)

Low variance explained, resulting from small eigenvalues, means high correlation and therefore a flat

likelihood. To find out which parameters are responsible for this low information, the eigenvectors are

themselves normalised by the sum of their elements. We define the parameter contribution to direction

w(λd) = (w
(λd)
1 , . . . , . . . w

(λd)
D ) by

C(w(λd)) =
w(λd)∑D
i=1 w

(λd)
i

. (3.31)

In multi-dimensional likelihoods, there might be multiple directions, in which the surface is flat. Let D

be the set of indices of vanishing eigenvalues and w(λd) with d ∈ D the corresponding eigenvectors. We
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denote the subspace spanned by the low-informative eigenvectors WD and it is determined by

the outer product of these vectors with themselves:

WD =
∑
d∈D

w(λd)w(λd)T (3.32)

The diagonal diag(WD) of this matrix gives the contribution of parameters to the low-informative

space. Sorting the elements in decreasing order identifies the parameters which are least restricted

by the data and will probably run into problems in the inference. In summary, the identifiability of

the parameters given the data is quantified by the degree to which they contribute to possibly flat

directions [176].

3.3.5 Dealing with non-identifiability

Once non-identifiability is diagnosed and the causes are detected, the question is, how to deal with it. This

depends on the level of output uncertainty induced and the purpose and context of the model. Even if

the parameter estimates are inaccurate, the model output can still be tolerable. If not, the researcher can

try to improve the model structure or the data collected. A thorough model analysis can be performed to

adjust model equations and assumptions or the objective function can be reconsidered. Some parameters

might be possible to eliminate or to replace by inferable relations between parameters instead, certain

parameter values could be fixed. In the data collection process different biological conditions could be

analysed or the recording technique could be changed to result in more precise measurements. However,

in practice the right data can be hard or even impossible to obtain. In the inference, settings can be

altered (like the prior distribution) or the method used can be changed to a more effective algorithm

[34, 169, 35].

3.4 Performance evaluation

A crucial component of algorithm development is performance evaluation. One way to achieve this is to

run the algorithm in a controlled setting on data where the true solution is known and can be compared

to the model outcome. The parameters leading to the model outcomes, however, are not necessarily

observed and a good model fit does not allow to draw conclusions about the estimated parameters as

such [145].
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3.4.1 Simulated data

A common practice in parameter inference is the generation of synthetic data that mimics the data

obtained by real-world experiments in structure and size. The model under investigation is used to

simulate data from a particular set of parameter values. The algorithm can then be applied to the

simulated data, pretending the parameter values are unknown. Subsequently, the inferred parameter

values can be compared to the correct parameter values used to create the data. For single point estimates,

the difference of the inferred value to the true value should be minimal. For Bayesian inference, the true

parameters should be covered by the uncertainty of the posterior distribution. This offers an objective

assessment of the algorithm performance. [87, 145]

In general, a single simulated dataset will not be meaningful for performance evaluation. This simulation

framework provides a cheap and rapid way to create as much data as needed for algorithm validation.

Different conditions can be simulated and the effect of measurement noise in the data can be studied. It

can help to build the model, to understand the influence of parameters across the parameter space and

to confirm the validity of the inference method applied. In the case of Bayesian inference, it can be used

to check whether the observed data provides information beyond the prior information. On the other

hand, this procedure also provides opportunity to demonstrate limitations of the algorithm to deepen

understanding of the model and method used. If the algorithm can be calibrated to perform reproducibly

and reliably on the synthetic data, it can be applied to real data. There is, however, no guarantee that

the performance will be comparable. [87, 145]

See Section 4.8.1 for details on how simulated data for QPuB is generated.

3.4.2 Error measurement

We will use precision, accuracy and repeatability to evaluate the algorithm performance. Various defi-

nitions of these terms exist. Descriptions of how we define the terms in this thesis are given below. An

illustration of the difference between precision and accuracy is depicted in Fig. 3.3.

The precision quantifies the experimental uncertainty of the inference. It can be expressed by numerical

exactness in terms of decimal digits, or by how close a series of estimated values of a parameter are to

each other. In Bayesian inference, a fit is said to have high precision, if the standard deviation of the

obtained distribution around the inferred mean is small [177]. For noise-free data, the parameters should

be inferred with minimal uncertainty. For noisy data, clearly the uncertainty will be larger depending on

the level of noise.
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The accuracy evaluates the correctness of the estimate, i.e. how close the estimated values are to the

correct values of the parameters. In case of Bayesian posterior parameter distributions, usually the mean,

the median or the maximum a posteriori probability estimate (the mode(s)) is used. The inference results

are said to have high accuracy, if the deviation from the true values is small [177].

A Precise and accurate B Not precise but accurate

C Precise but not accurate D Not precise and not accurate

Fig. 3.3: Inference errors: precision vs. accuracy. This figure illustrates the difference between
precise and accurate posterior estimates. An estimate is precise, if the standard deviation is small. An
estimate is accurate, if the mean is equal to the correct value (vertical red line). Accuracy can therefore
only be assessed if the true value is known, e.g. in model calibration using simulated data. (A) The
optimal posterior distribution is both precise and accurate. (B) In case of large uncertainty in the data,
the estimate can be of low precision but still accurate. (C) An estimate which is precise but not accurate
is the worst outcome. (D) An estimate which is not precise and not very accurate is not optimal, but still
acceptable if the correct value is at least covered by the distribution. The definition of what is “sufficiently
precise and accurate” is up to the user. [Figure inspired by Fig. 4.1 in [177].]

Two kinds of error sources can be distinguished: random error and systematic error. Random error is an

effect of statistical variability and affects the algorithm precision. Systematic error, on the other hand, is

an effect of statistical bias and affects the accuracy. While the random error is directly evident from the

inference results, the systematic error can only be assessed through the help of simulated data with known

true values. [177] The deviation of an estimate θ̂ to the true value θ∗ can be represented in different

forms [177]. The absolute error is defined as the absolute value of the difference between the estimated

and the true value:

ϵ = |θ∗ − θ̂| (absolute error) (3.33a)
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Dividing the absolute error by the magnitude of the true value (provided θ∗ ̸= 0), gives the relative error:

η =
ϵ

|θ∗|
(relative error) (3.33b)

which can also be specified in percent:

δ = 100%× η (percent error) (3.33c)

Ideally, inference results have both high accuracy and high precision. The average estimate should coincide

with the true value, i.e. the error should be zero. If this cannot be achieved (due to noise or missing data),

at least the correct value should be covered by the posterior distribution with tight standard deviations.

Repeatability is a measure of the reliability of an inference. Repeated measurements should yield the

same results, when all conditions are kept constant [177]. The inference is repeated on the same data,

applying the same computational setup, same algorithm settings and same conditions over a short period

of time. Experimental measurements should be repeated a few times for statistical significance. This

is usually not a problem for computer simulations, where it is easy to repeat an inference an arbitrary

number of times. The variability that arises can be reported using the standard deviation of the collection

of posterior means obtained. Let n = 1, . . . , Nrep be the number of repeated inference runs with estimated

means µn, then

σµ = sd({µ1, . . . , µNrep}). (3.34)

A value of 0 is ideal, but unrealistic in an inference scheme due to the inherent randomness. It is up to

the user to decide on his acceptable threshold.
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framework

We propose a software package called QPuB (Quantification of Peptides using Bayesian inference). It

is based on the ideas of Peters et al. [37] and Mishto et al.[39] and adapts their notations. The goal is

to computationally derive the amounts of all peptide products based on the MS signal intensities and

only the titration of the substrate. The quantity that links the two is called conversion factor. The

estimation of the conversion factors for every peptide product is achieved using Bayesian inference in an

MCMC scheme. In this chapter, the main components and settings of the QPuB framework are described.

A schematic of the QPuB pipeline is shown in Fig. 4.1 and the QPuB algorithm is summarised in Alg. 3

using pseudo code. The QPuB code was implemented in R version 4.0.3 (2020-10-10) [178] using RStudio

[179], implementing the following packages [180, 181, 182, 183].

4.1 Notation

Digestion. The substrate or the substrate sequence is denoted by S. Let D be the total number of

peptide products generated by digestion of the substrate by the enzyme. The individual peptides are

referred to by Pd, where d = 1, . . . , D. Let T denote the total number of measuring points in digestion

time and let t = 0, . . . , T be the counter. The total number of amino acid residues in the substrate

sequence is denoted by A and the amino acid position in the substrate is counted by a = 1, . . . , A.

Kinetics. The amounts of the peptide products in the loading volume over digestion time are symbolised

by cd(t) (for ‘concentration’):

C : [0, D]× [0, T ] → R+, (4.1)

C[d, t] = cd(t). (4.2)

41
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By convention, the index d = 0 refers to the substrate, so c0(t) denotes the amount of the substrate over

time. Similarly, sd(t) stands for the measured MS signal intensities over time:

S : [0, D]× [0, T ] → R+, (4.3)

S[d, t] = sd(t). (4.4)

Parameters. The conversion factors that link the MS signals and the amounts for all peptide products

are typified by the vector v = (v1, . . . , vD). They are the unknown parameters of interest to be inferred

by the algorithm. Along with that, a nuisance parameter σ is also estimated, which denotes the standard

deviation of the normal distribution in the likelihood function. Hence, the parameter set becomes

θ = (v1, . . . , vD, σ), (4.5)

which has length D + 1.
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Fig. 4.1: Schematic of the QPuB package. QPuB takes MS signal intensities over digestion time
as input and returns normalised signal intensities or absolute concentrations, if the substrate titration is
provided. The core module is an algorithm based on Bayesian inference using an iterative Metropolis–
Hastings sampling scheme. Graphical output includes residual plots to investigate fulfilment of the mass
balance condition, the full parameter posterior distributions and the final kinetic plots of the peptide
amounts.
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Algorithm 3 The QPuB algorithm. QPuB employs the DREAM(ZS) algorithm with three
parallel chains.
Input: Signal intensities
Input: Slope of the substrate titration
Output: Posterior distributions of the conversion factors
Output: Estimations of the peptide amounts

Data pre-processing

Initialisation of the “fake” archive θ(c)(1 : M0) ∼ p(θ) ▷ 1. Initialisation
Initialisation of the chains θ(c)(M0 + 1) ∼ p(θ)
Initialisation of the proposal function
Initialisation of the convergence diagnostics

for i = 1, . . . , N do
for every chain c = 1, 2, 3 do

if uniform([0, 1]) > 0.1 then ▷ 2. Proposal step
if uniform([0, 1]) ≤ 0.1 then

γ = 0.98 ▷ Gamma jump
else

γ = 2.38√
2D+2

end if
Propose candidate ζ(c) according to parallel direction update (3.21)

else
γ = uniform([1.2, 2.2])
Propose candidate ζ(c) according to snooker update (3.23)

end if

Calculate α according to (3.26) using data ▷ 3. Metropolis step
if uniform([0, 1]) ≤ α then ▷ 4. Acc./Rej. step

Accept candidate and move to new state (3.27a)
else

Reject candidate and stay at current state (3.27b)
end if

end for

Create diagnostic plots ▷ Diagnostics
Create convergence diagnostics

end for

Combine all chains excl. 50% burn-in ▷ Post-processing
Create summary statistics
Calculate peptide amounts using (4.17)
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4.2 Model assumptions

The main assumptions that QPuB is based on are the following:

1. For every peptide, the concentration is in linear relation to its signal intensity.

2. During an in vitro enzymatic digestion, the amount of amino acids in the solution remains constant:

no amino acids are lost or created in the process of transforming the substrate into products (mass

conservation).

4.2.1 Linear correlation

As described in Sec. 2.3.3.1, Fig. 2.5, the relationship between the loaded substance amounts and the

measured MS signal intensities is linear in the pmol range relevant for enzymatic in vitro digestions:

sd = mdcd + nd ∀d = 0, . . . , D, (4.6)

where md is the slope and nd the intercept of the line. Subtracting the background signal, which is

the signal at time 0, from all time points yields nd = 0. The slopes of the peptide titration curves are

multiples of the substrate slope: md = ρdm0 with ρd ∈ R. Using this observation and rearranging the

equations results in

c0 =
1

m0
s0 =: v0 s0, (4.7)

cd =
1

ρd m0
sd =: vd sd. (4.8)

The inverse of the slope is called conversion factor. Every substance has its individual conversion factor

which depends on its physico-chemical properties [37] and is instrument specific and constant in time.

The conversion factor of the substrate is now normalised to v0 = 1. The peptide’s conversion factors are

all relative to the substrate.

4.2.2 Mass conservation

The second principle that we make use of is the law of mass conservation. Since we consider a closed

system of in vitro digestions, we know that each amino acid present in the solution at time t = 0 is still

present at any time t > 0. We assume the ideal case that all peptide products are detected in the MS

analysis. Formally, the sum of amino acids of the products should be equal to the amount of substrate
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degraded since the beginning, for every amino acid position and for every time point:

D∑
d=1

cd(t)bda = c0(0)− c0(t) =: ∆c0(t) ∀a, t. (4.9)

The factor bda ∈ [0, 1] is the probability that the product d contains amino acid a. The amount of

substrate degraded since time t = 0 is ∆c0(t). Now, substituting the expression for cd according to

equation (4.8), we have
D∑

d=1

vdsd(t)bda −∆c0(t) = 0 ∀a, t. (4.10)

This mass conservation will build the basis for our likelihood function (see Sec. 4.4.2).

4.3 Input and pre-processing

Mandatory input for the algorithm includes the measured MS signal intensity kinetics of the substrate

and the peptide products, as well as the titration measurements of the substrate.

4.3.1 MS signal intensities

QPuB takes as data input a table containing the amino acid sequences of the substrate and all detected

and identified peptide products in one letter code and their measured MS ion peak area values over

digestion time. Usually, the protein digest is documented over a digestion time of a few hours with

regular intermediate measurements. Depending on the protein digest of interest, the number of peptide

products can vary from just a few to a few thousands. Multiple measurement replicates can be provided.

4.3.2 Data preparation

Before the inference is run, the input is controlled and certain characteristics of the input data are

extracted. To infer where the peptide products originate from in the substrate, the product sequence

is aligned to the substrate sequence, taking non-uniqueness into consideration. If a product can be

created by the process of simple cleavage, then it is assumed to be a cleavage product. If the peptide

sequence cannot be found in the linear sequence of the parental molecule, the peptide is identified as a

proteasome-generated spliced product.

Example. Assume a substrate with sequence ABCDEFGHABCD and the products with sequences

DEFGH and DEFABC, respectively. We number the amino acids in the substrate consecutively

a = 1, . . . , 12. Since the sequence of peptide 1 is a direct subsequence of the substrate sequence, it is
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identified as cleavage peptide stemming from the substrate positions 4 to 8. On the other hand, the

sequence of peptide 2 cannot be directly aligned to the substrate sequence and therefore is identified as

spliced peptide, originating from ligating the stretch between positions 4 and 6 to either the subsequence

1 to 3 or the subsequence 9 to 11.

Using the above position information, the position probability matrix b ∈ RD×A is defined. It serves to

identify which peptide products contain which amino acids to be able to control mass balance. It contains

the probabilities of the amino acid a = 1, . . . , A of the substrate being used in the production of peptide

d = 1, . . . , D. The entry bda is defined by

bda =
1

Na
, (4.11)

where Na is the number of possible origins the amino acid at position a has in the substrate.

Example. In the example above, the frequencies of the single amino acids in the substrate sequence are

N1:12 = [2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2]. Consider the product i = 1, the cleaved 5mer DEFGH with positions

4 to 8. According to Eqn. (4.11), the positions 4 to 8 then get the matrix entries b14 = b15 = b16 =

b17 = b18 = 1
1 = 1, all the other positions have probability 0, therefore b1: = [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0].

Product 2, on the other hand, does not have a unique position code assigned. The amino acid A, for

example, could stem either from position 1 or 9 in the substrate, making N1 = N9 = 2. We consider

both possibilities equally likely. Hence the probability of A in the peptide 2 stemming from position 1 in

the substrate is b21 = 1
2 by Eqn. (4.11). In total, the second row of the position probability matrix reads

b2: = [0.5, 0.5, 0.5, 1, 1, 1, 0, 0, 0.5, 0.5, 0.5, 0].

In order to control mass balance, the amount of products generated must be compared to the amount

of substrate degraded. Instead of referring to the mass change since the beginning of the digest, the

difference between one time point and the next is calculated and the dataset of signal differences is

denoted by an apostrophe S′ with elements s′d(t) := sd(t) − sd(t − 1) and analogously the matrix of

differences in concentration over time C ′ with c′d(t) := cd(t)− cd(t− 1) for all peptides d = 1, . . . , D.

Finally, all signals are scaled by 100 times the mean order of magnitude of the substrate to avoid high

orders of magnitude and potential numerical issues arising from it.

4.3.3 Substrate titration

The initial amount of substrate loaded [S](0) in the in vitro digest under consideration must be provided.

Additionally, the titration information of the substrate in the form of loaded substrate amounts and

corresponding measured signal intensities are required. If the titration data is provided by the user, we
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fit it using a linear model (4.6) s0 = m0c0 + n0. With the obtained slope and intercept, the peptide

amounts can be retrieved after the inference.

4.4 Bayesian setup

In Section 3.1 the main components of a Bayesian inference scheme were described. This section presents

the concrete definitions used in QPuB.

4.4.1 The prior distribution

The prior probability distribution expresses the initial belief about the unknown parameters, before any

data is observed. To be unbiased, the QPuB algorithm uses a weakly informative flat prior, namely a

uniform one:

p(θ) =

D+1∑
d=1

θd, (4.12)

where

θd ∼


U(10−4, 104) for d = 1, . . . , D (conversion factors),

U(10−20, 104) for d = D + 1 (sigma).

The range for the conversion factors is chosen like this, because experimental observations suggest that

the conversion factors span eight orders of magnitude, and because the factor for the substrate is set to 1

by default.

4.4.2 The likelihood function

The likelihood in QPuB is based on the law of mass conservation and defined using the objective func-

tion (4.9). The likelihoods for the independent observations over the amino acid positions a and time

points t and measurement replicates r multiply (see Eqn. (3.4)). In this thesis, we deal with noise-free

data only, therefore the number of replicates is 1 and can be omitted in the equation. For convenience,

we are using a log-likelihood L(S′|θ) = log p(S′|θ). Considering a normally distributed deviation

D∑
d=1

vds
′
d(t)bda − c′0(t) ∼ N (0, σ),

the log-likelihood can be defined as

L(S′|θ) = − 1

2σ2

T∑
t=1

A∑
a=1

( D∑
d=1

vds
′
d(t)bda − c′0(t)

)2

− AT

2
log(2πσ2). (4.13)
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4.4.3 The posterior distribution

The posterior distribution is calculated using Bayes’ theorem (Eqn. (3.2)). As only ratios of posterior

densities are considered in the metrolopis step and the marginal likelihood therefore cancels itself out

(3.1.7), it suffices to calculate the product of the prior and the likelihood (Eqn. (3.10)). Since a log-

likelihood is used, this simplifies to a calculation of

p(θ|S′) = exp(log(p(θ)) + L(S′|θ))). (4.14)

4.5 MCMC setup

The posterior can be approximated using an MCMC scheme (Sec. 3.2). QPuB employs a variant of the

DREAM(ZS) algorithm (Sec. 3.2.4.1). Convergence is assessed graphically and using the Gelman–Rubin

criterion (Sec. 3.2.3).

4.5.1 Iterative sampling scheme

QPuB is based on a mixture of descriptions from the publications of the authors of the DE-MC family

[41, 42, 43, 168, 44, 45], and their MATLAB and Python implementations as available online, as well as

an independent R implementation by Florian Hartig [184]. A list of variable settings used in QPuB is

provided in Tab. 4.1.

Table 4.1: DREAM(ZS) settings used in QPuB.

setting value
number of chains C 3
length of “fake” archive Z0 10(D+1)
number of proposal pairs δ 1
snooker update probability psnooker 0.1
gamma tuner β0 1
gamma jump probability pγ 0.1
proposal noise b1 0.2
proposal noise b2 0
boundary handling fold
crossover rate CR 1
thinning 1000
burn-in 50%
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Instead of having two separate objects of the current state and the archive of past states, QPuB defines

a joint chain matrix θ
(c)
d (i) of dimension N × (3 ∗ (D + 1)) containing all past and present states of the

N chains over iteration time as rows:

chain 1 chain 2 chain 3

v1 v2 · · · vD σ v1 v2 · · · vD σ v1 v2 · · · vD σ

· · · · · · · · ·

(4.15)

1. Initialisation. The “fake” archive is initialised with a length of Z0 = 10 (D+1) by sampling from the

prior. The chains are by default initialised from values dispersed over the prior range, namely one chain

from the lower bound, one chain from the upper bound, and the third chain from the middle point of the

prior range:

θ
(c)
d (1 : Z0) ∼ p(θ) for c = 1, . . . , C (4.16a)

θ
(1)
d (Z0 + 1) = 1× 10−4 for d = 1, . . . , D (4.16b)

θ
(1)
d (Z0 + 1) = 1× 10−20 for d = D + 1 (4.16c)

θ
(2)
d (Z0 + 1) = 1× 104 for d = 1, . . . , D + 1 (4.16d)

θ
(3)
d (Z0 + 1) ≈ 0.5× 104 for d = 1, . . . , D + 1 (4.16e)

2. Proposal step. The proposal employs a mixture of 90% parallel direction update and 10% snooker

update. The symmetry factor was implemented with an exponent of D + 1. The gamma jump distance

is set to 0.98. The crossover step is not implemented in the current version of QPuB.

The Metropolis step and the Acc./Rej. step are performed like in the original algorithm.

4.5.2 Diagnostic output

Over the course of iterations, diagnostic output is produced to track the performance of the algorithm.

Trace plots and posterior histograms are generated (Sec. 3.2.3). In addition, the mass balance is

illustrated in residual plots (Fig. 4.1). Using the current conversion factor values in the current iteration,

the estimated peptide amounts are calculated and compared to the amount of substrate degraded. For

every pair of consecutive time points and for every amino acid position, the plot shows the degree to which

the current parameter estimates fulfil the mass balance condition. Over the course of the iteration, the

product residual distributions should converge towards the amount of substrate digested. The residuals

are summarised by the mean total residuals per chain.
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4.5.3 Convergence criterion

The QPuB run is terminated after a fixed number of iterations defined by the user. Graphical portrayal of

the Markov chains (Sec. 4.5.2) is created and the potential scale reduction factor defined by the Gelman–

Rubin diagnostic (3.18) is calculated excluding the nuisance parameter σ. The authors of the DREAM(ZS)

algorithm use R̂ < 1.2 as a threshold to diagnose convergence. The chains were usually run longer than

actually necessary to assess how precise the estimates could potentially become.

4.6 Output and post-processing

After the inference, QPuB returns the full posterior distributions of the estimated parameters. A generous

burn-in fraction of 50% of the samples is discarded. Since after convergence, all chains sample from the

same stationary distribution, the chains can be combined into a single object. From this, the estimated

conversion factors are used to calculate estimated peptide amounts.

4.6.1 Estimated conversion factors

To obtain a measure for the best guess as well as the uncertainty of the estimate, the following overall

summary statistics are calculated for the distributions of the conversion factors of all peptide products

and the nuisance parameter σ: mean and median, standard deviation, 5% and 95% quantiles, minimum

and maximum.

4.6.2 Estimated peptide amounts

From the distributions of the conversion factors, the peptide amounts can be obtained. Let m0 be the

slope and n0 be the intercept of the substrate calibration curve as obtained in Sec. 4.3.3. Using the

median v̄d of the parameter distribution of peptide d, the median amount c̄d(t) of product d can be

calculated from the input signal intensities for every point in time:

c̄d(t) =
v̄dsd(t)

m0
− n0. (4.17)

We proceed accordingly for the other quantiles of the conversion factor distributions: The 5% quantile of

the conversion factor distribution is used to obtain the 5% quantile of the corresponding concentration

distribution; likewise for the 95% quantiles. The result is an estimated concentration kinetics for every

peptide product of the digestion including uncertainty.
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If the substrate titration was not provided by the user, only normalised signals are returned:

c̄d(t) = v̄dsd(t). These can be used for relative quantification between the different peptide products

but they are not absolute amounts. This is already a considerate advantage of the QPuB pipeline.

Common label-free quantification only allows for relative quantification of the same peptides between

samples.

4.7 Identifiability analysis

Before the inference is run, we can check whether the dataset of interest contains sufficient information

for a potentially successful inference. Using the theory described in Section 3.3, we identify difficulties

and indications for improvement. The curvature matrix of the dataset is determined and its eigenvectors

and eigenvalues are calculated. As seen in Section 3.3.4, the curvature matrix is defined as the second

derivative of the function of interest, in this case the likelihood function. The matrix of second partial

derivatives of the log-likelihood (4.13) is then proportional to

Kij(v) =
∂2L(S′|v)
∂vi∂vj

∝
T∑

t=1

A∑
a=1

s′i(t)s
′
j(t)biabja. (4.18)

Note that the curvature matrix of our likelihood is independent of the parameters v. This allows us to

calculate it using the data before the inference to assess parameter identifiability (Sec. 3.3).

4.8 Benchmarking framework

As described in Section 3.4.1, to be able to validate the model and calibrate the algorithm, synthetic

data needs to be constructed. Even the most complex biochemical processes can usually be divided into

elementary binding reactions [87]. For the creation of data, we will make the simplifying assumption,

that the proteases used in the enzymatic digest follow the Michaelis–Menten reaction kinetics (Sec. 2.2.3).

Complex details in the reaction steps will be neglected. Using the MM model equations (2.2a), data

is simulated for benchmarking of the QPuB algorithm performance. The benchmarking framework of

Section 3.3 will be explained for the specific case of QPuB.

4.8.1 Creation of simulated data for QPuB

The concentration kinetics of enzymatic digests of hypothetic substrates into products was simulated

following several different cleavage patterns combined with different reaction rates to achieve a great
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variety of datasets. Using the concentrations and predetermined conversion factors, the signal kinetics

was calculated. For evaluation of the algorithm performance, QPuB is applied to the simulated signal

intensity data. The inferred conversion factors can then be compared to the true known values used to

create the data. In addition, the calculated concentration kinetics can be compared to the true kinetics

(see Fig. 4.2).

Simple enzymatic reactions were considered yielding one or two peptide products. Generated products

may continue to be digested by acting as substrates to the enzyme themselves. The digestion pattern

can be described by j = 1, . . . , J reactions.

The initial concentration of the reactants were set to the following values:

[S](0) = 200pmol, (4.19a)

[E](0) = 0.05 pmol, (4.19b)

[ES](0) = 0 pmol, (4.19c)

[Pd](0) = 0 pmol for all d = 1, . . . , D. (4.19d)

The digestion time was set to 4 h with half-hourly measurements. The binding and unbinding rates were

sampled from discrete intervals for every reaction j:

kjon ∈ {x ∈ Z | 1 ≤ x ≤ 100} (4.20a)

kjoff ∈ {x ∈ Z | 500 ≤ x ≤ 1000}. (4.20b)

The ranges were chosen arbitrarily to yield suitable digestion kinetics over time. The catalytic rate

constant was modified to depend on the concentration of one of the products P (by default the N-terminal

cleavage product):

kjcat =
kj

1− pj [P ](t)
[S](0)

, (4.21)

where kj was sampled from an interval of positive integers kj ∈ {x ∈ Z | 1 ≤ x ≤ 500} and pj is a factor

sampled from pj ∈ {0.1, 0.2, 0.3, . . . , 1}.

With these specifications, we simulated a digestion according to the Michaelis–Menten equations (2.2a),

yielding numerical concentration kinetics of all reactants. We then removed the complexes from the

system, by adding the concentrations of the complexes to the concentrations of the respective substrates

to ensure mass balance.
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choose initial reagent concentrations,
choose reaction rates (randomly)

simulate concentration kinetics
using Michaelis–Menten ODEs

choose conversion factors (randomly)
= ground truth

calculate signal intensities

run QPuB compare estimated conversion
factors to correct values

Fig. 4.2: Schematic of in silico data simulation and model validation. Simulating data allows
comparison of the inference results to the true underlying parameters for algorithm validation.

The conversion factors for all products were sampled from the prior distribution or a subinterval thereof.

The signal intensities were calculated according to the principle of linear relation (4.8) and multiplied by

a large factor to match a realistic order or signal magnitude:

si(t) =
ci(t)

vi
· 1010. (4.22)

This procedure yields the exact signal intensity kinetics of the substrate and all peptide products over

time. For more realistic data, noise was introduced to the system. We used multiplicative noise drawn

from a normal distribution with different standard deviations:

si(t) =
ci(t)

vi
· 1010 · ν where ν ∼ N (1, σnoise). (4.23)

Several replicates of measurements were generated.

These simulations were implemented in the Julia programming language version 1.6.3 [185] using the

DiffEqBiological package for chemical reaction models [186] and the OrdinaryDiffEq package for solving

ODEs [187], as well as Latexify for convenient LATEX formatting [188].

4.8.2 Performance evaluation

We use the criteria described in Section 3.4 to evaluate QPuB performance. The precision is evaluated

using the standard deviations of the posterior distributions. Accuracy is assessed through comparison

of the estimated conversion factor median to their correct values and reported in the form of percent



54 Ch. 4. Implementation and Benchmarking framework

error (Eqn. (3.33c)). The mean over all peptides will be reported:

δv =
1

D

D∑
d=1

100 · |v
∗
d − v̂d|
v∗d

, (4.24)

where v̂d denotes the posterior median and v∗d the true value of conversion factor d. Since the researcher

is more interested in the inferred peptide concentrations rather than the conversion factor per se, the

deviation of the median inferred concentrations to the true underlying concentrations is computed. Re-

peatability is quantified by the standard deviation of the mean across runs (Eqn. (3.34)).



5 | Application to simulated data

To investigate the performance of the algorithm and to calibrate the model, we applied QPuB to perfect

simulated data without noise. We consider in silico datasets with differing complexity, generated as

explained in 4.8.1. We assume that all products are detected and that mass balance over the time

span of the kinetics is satisfied. Since the underlying true solution is known, the inference outcome

can be compared to it. We compare the conversion factors, that were estimated from the simulated

signal intensities, to the true values used to obtain the data. We also compare the therewith calculated

concentrations to the true ones.

In Section 5.1, a detailed description of the QPuB pipeline is given on the basis of the simplest example

possible. It serves as a proof of concept and illustrates the individual steps in the algorithm. After that,

in Section 5.2 and Section 5.3, two examples are shown in comparison to demonstrate two scenarios that

can happen when applying QPuB to a dataset. In Example 1 the parameter inference is successful. In

Example 2, on the other hand, insufficient information is conveyed to successfully infer the parameters.

To solve this issue, two different strategies to increase the information content of the system are applied.

Finally, in Section 5.4 a more complicated dataset is presented, where the strategies proposed before

coalesce and demonstrate a successful inference on 46 parameters.

5.1 Example 0

We begin with a miniature example of the smallest digest possible, with only two peptide products. This

example serves to illustrate the important steps in the QPuB pipeline. We show that QPuB successfully

infers the correct conversion factors for both peptide products with high precision and accuracy.

5.1.1 The data

For simplicity, we assume, that the amino acid sequence of the substrate S is the Latin alphabet. The

enzyme E binds the substrate and cleaves it after amino acid position 12, releasing peptide products P1

55
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Fig. 5.1: Schematic of the cleavage pattern of Ex. 0 and the resulting kinetics. (A-B)
Digestion pattern. The schematic depicts the digest of a 26-mer substrate by a specific endopeptidase
into two peptide products (numbered accordingly). The enzyme hydrolyses the peptide bond at position
12, creating products 1 and 2. (B) shows the corresponding amino acid sequences. (C) Kinetics of
reactant amounts. Depicted are the amounts of the substrate and the two peptide products over the
digestion time, as simulated. Colors as in (A). Note that by construction, the amounts of the sibling
peptides must be equal and are therefore not distinguishable in the plot. (D) Kinetics of MS signal
intensities. Depicted are the MS signal intensities of the substrate and the peptide products over
digestion time, as computed from (C) and the conversion factors shown in Tab. 5.1B. Colors as in (A).
This serves as QPuB input. For numerical values of the kinetics see Tab. 5.1. Note that peptides with
equal concentrations but different conversion factors will have different intensities. A comparison of
different peptides based on their intensities is therefore not suited.

Table 5.1: Numerical values used in Ex. 0. (A) Kinetics of the reactant amounts. Amounts
in [pmol] for the substrate and all peptide products over a digestion time of 4 hours, as simulated. (B)
Conversion factors. Conversion factors of all peptide products, systematically chosen. The conversion
factor of the substrate is set to 1 by default. (C) Kinetics of MS signal intensities. MS signal
intensities in [a.u.] for the substrate and all peptide products over a digestion time of 4 hours, as calculated
from (A) and (B) using Eqn. (4.8). Values were rounded to two digits precision for printing.

(A) Amounts [pmol]

Reactant 0h 1h 2h 3h 4h
S 200 100 50 25 12.5

P1 0 100 150 175 187.5

P2 0 100 150 175 187.5

(B) Conversion factors

Param Value
v0 1
v1 1.1
v2 10

(C) MS signal intensities [a.u.]

Reactant 0h 1h 2h 3h 4h
S 2.00× 1012 1.00× 1012 5.00× 1011 2.50× 1011 1.25× 1011

P1 0.00 9.09× 1011 1.36× 1012 1.59× 1012 1.70× 1012

P2 0.00 1.00× 1011 1.50× 1011 1.75× 1011 1.88× 1011
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and P2 (see Fig. 5.1A). For the purpose of illustration, we choose simple numerical values. The following

initial conditions for the substrate and the products are used: [S](0) = 200 pmol, [E](0) = 0.05 pmol,

[ES](0) = [P1](0) = [P2](0) = 0pmol, followed by a steady decay of the substrate with a consequent

increase of the peptide product pair, as seen in Tab. 5.1A and Fig. 5.1C. The conversion factors were

chosen as in Tab. 5.1B. Using the linear relation (4.8), the signal kinetics were calculated over a time course

of 4 hours and shown in Tab. 5.1C and Fig. 5.1D. This serves as QPuB input. Note that peptides with

equal concentrations but different conversion factors will have different intensities. A direct comparison

of different peptides based on their intensities is therefore not suited.

5.1.2 Results

5.1.2.1 Data preparation

To be able to identify the mass balance of the system, QPuB first matches the sequence of the peptide

products to the substrate using sequence alignment. The resulting substrate accessions are:

reactant type start end
S - 1 26
P1 cleavage 1 12
P2 cleavage 13 26

The position probability matrix looks as follows:

b =

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 , (5.1)

with a switch of values after the 12th element (cleavage position) in each row.

The signal differences between two consecutive time points were calculated. To avoid numerical issues,

the data was devided by 1e10:

S′ =


0 100.00 50.00 25.00 12.50

0 90.90 45.10 23.00 11.00

0 10.00 5.00 2.50 1.25

 . (5.2)

5.1.2.2 Identifiability analysis

In QPuB, first the parameter identifiability is investigated using the curvature matrix. This gives an

indication whether the data is able to sufficiently constrain the conversion factor values for a unique
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inference. The context of this will become apparent in Example 2. In this example, the matrix is

K(S′) =

1593.75 0

0 224984.38

 (5.3)

and has the following eigenvectors and eigenvalues

λ1 = 224984.375 λ2 = 1593.75 (5.4)

w1 =

0

1

 w2 =

−1

0

 , (5.5)

which results in a partitioning of information with the majority contained in the first component:

I =

0.993

0.007

 . (5.6)

5.1.2.3 Inference results

The goal is to obtain estimates for the conversion factors v1 of product P1 and v2 of product P2 re-

spectively, as well as the additional nuisance parameter σ of the likelihood function. We initialise three

parallel chains, starting from the dispersed initial values. The chains explore the prior range over the

course of 1 million iterations and converge to the posterior distribution. The traceplots of the chains

are shown in Fig. 5.2C. The Gelman–Rubin scale reduction factors for the conversion factors are close

enough to 1 to diagnose convergence: R̂1 ≈ 0.99 and R̂2 ≈ 0.99. The estimated values result in perfect

mass balance, as shown in the residual plots in Fig. 5.2A and the numerical mean residuals (chain 1:

2.36 × 10−14, chain 2: 2.50 × 10−14, chain 3: 2.36 × 10−14). The resulting posterior distributions

in the form of densities of the conversion factors and the nuisance parameter are depicted in Fig. 5.2B.

A summary statistics is provided in Tab. 5.2.

Table 5.2: Statistics of the posterior distributions in Ex. 0. The burn-in of the chains was
discarded and the three chains were combined for the summary statistic. For the conversion factors, their
true value (denoted by an asterisk) was subtracted from the mean to visualise the accuracy. Values are
rounded to two digits precision for printing.

Parameter mean sd
v1 − v∗1 1.47× 10−14 2.35× 10−11

v2 − v∗2 0.00 4.93× 10−15

σ 2.16× 10−13 1.53× 10−14
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Comparing the inferred conversion factors to the true values, we see that for peptide 2 the true value

coincides perfectly with the median of the distribution. For peptide 1, the true value lies at the lower

end of the posterior distribution, which may look not very accurate at first sight, however based on

the high precision we judge this estimate to be very successful. The deviation from the true value is

reported as percent error as defined in Eqn. (3.33c): δ1 = 1.33 × 10−15% and δ2 = 0%. For larger

number of peptides, it is convenient to report the deviation as the mean over the individual deviations as

defined in Eqn. (4.24), which in this case is δv = 6.06 × 10−14%. Subsequently, the peptide amounts

are calculated from the conversion factor distributions using the Eqn. (4.22). The resulting amounts

over time are depicted in Fig. 5.2D. Due to the highly precise estimates, the standard deviations of the

concentrations are very small and invisible in the plot (see Fig. 5.2D).
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Fig. 5.2: Inference results of Ex. 0. Caption on next page.
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5.1.3 Summary

As a proof of concept and to introduce the working principle of QPuB an example with the simplest

cleavage pattern with only two peptide products was analysed. QPuB is able to infer the correct values

with high accuracy and precision. This suggests, that the framework is a promising approach in the

endeavour of conversion factor estimation. Other datasets of the same pattern yielded an estimate of

sigma as low as e-98 if its lower prior bound was adjusted accordingly, resulting in a conversion factor

estimate with no variation in the chain at all (standard deviation 0).

Although this example would be easily solvable by hand, for problems with higher dimensions this will

quickly become cumbersome or impossible.

Fig. 5.2: Inference results of Ex. 0. Figure on page 59. (A) Residual plots. The residual plots
show whether the estimate satisfies the mass balance condition. The red solid horizontal lines represent
the difference in ion peak areas of substrate degraded between two successive time points. The dots
represent the median of inferred amount of every amino acid position of all products together as inferred
by QPuB. The range between the 5% and 95% quantile are indicated by vertical lines, which, because the
conversion factor distributions (see B) are very narrow, are not visible here. With the correctly inferred
conversion factor values the dotted black line coincides with the continuous red line. Only the residual
plots of one chain is shown, the others are qualitatively similar. (B) Marginal posterior conversion
factor distributions. Depicted are the posterior distributions of the estimated conversion factors of
every peptide product and the nuisance parameter in the form of densities derived from histograms of
the frequencies of the parameter values over iteration time. The first 50% samples were excluded as
burn-in. Three densities are shown for the three parallel Markov chains run by the algorithm in shades
of grey, but hardly distinguishable in the plot. To visualise the small spread of the distributions, the
correct conversion factor value was subtracted on the x-axis for the conversion factors, not sigma. The
correct conversion factor value is marked in red, which is known by construction of the in silico dataset.
(C) Traceplots of the Markov chains. Shown are the parameter values over iteration time. For the
conversion factors, the true value was subtracted again. The three parallel Markov chains are plotted
in shades of grey. The chains were thinned by a value of 1000 and 50% burn-in samples were excluded.
The true value is marked in red. (D) Distributions of the estimated peptide amounts. Depicted
are the amounts of all peptide products over time, as derived from the distributions of the estimated
conversion factors in (B) using Eqn. (4.8). The three chains without burn-in were combined into one for
the calculation. The solid line indicates the median of the combined distribution and the shaded area
(invisible) illustrates the confidence range. The lower bound is calculated using the 5% quantile of the
parameter distribution, and the upper bound using the 95% quantile respectively. Because the conversion
factor distributions are very narrow, the confidence ranges are not visible. The peptide product amounts
obtained by QPuB perfectly coincide with the true values (red).
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5.2 Example 1

This example is an extension of the previous example, with the same simple substrate following a cleavage

pattern that results in six peptide products. We will show, in less detail, how QPuB successfully infers

the correct conversion factors for all peptide products with high precision and accuracy. For comparison,

in the similar Example 2 of the next section this will not be the case.

5.2.1 The data

The substrate considered in this example is the same substrate as in the example before. This time,

we assume, that in addition to the production of peptides 1 and 2, the substrate can also be cleaved

at a second position, releasing two more products, of which one can itself act as a substrate to the

protease, setting free another two products. In total, this digestion pattern leads to six different peptide
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Fig. 5.3: Schematic of the cleavage pattern of Ex. 1 and the resulting kinetics. (A) Digestion
pattern. The schematic depicts the digest of a 26-mer substrate by a specific endopeptidase into six
peptide products (numbered accordingly). The enzyme hydrolyses the peptide bonds at positions 12 and
15, creating products 1 and 2 or 3 and 4, respectively. Peptide 3 serves as a substrate to the enzyme
itself, with a cleavage site at position 9, creating products 5 and 6. All other products will not be further
digested. (B) Amino acid sequences. Sequences of the substrate and the generated products. (C)
Concentration kinetics. Depicted are the amounts of the substrate and all peptide products over the
digestion time, as simulated. Colors are as in (A). The amounts of the darkblue and the lightblue peptides
P1 and P2 are equal by construction. (D) Kinetics of MS signal intensities. Depicted are the MS
signal intensities of the substrate and all peptide products over the digestion time, as computed from
the amounts in (B) using the conversion factors in Tab. 5.3B. This serves as QPuB input. For numerical
values see Table 5.3. Note that the most abundant lightgreen peptide P4 in (A) does not necessarily have
the highest signal intensity.
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products (see Fig. 5.3A). We will refer to products directly derived from the substrate as first-generation

products (P1, P2, P3, P4) and to products derived by further digestion of one of the products by second-

generation products (P5, P6). The concentration kinetics for this cleavage pattern was simulated using

the julia scripts described in Section 4.8.1. The initial conditions of the reagents were set as follows:

[S](0) = 200pmol, [E](0) = 0.05 pmol, [ES](0) = [Pd](0) = 0pmol for all d = 1, . . . , 6. The reaction

rates were randomly sampled and a simulated reaction kinetics was selected (Tab. 5.3A and Fig. 5.3C).

Since we are considering noise-free data, only one replicate is produced. Conversion factors were chosen

with different orders of magnitude as in Table 5.3B. Using the concentration kinetics and the conversion

factor values, signal kinetics were obtained (Tab. 5.3C and Fig. 5.3D). These signal intensities were used

as input to QPuB.

Table 5.3: Numerical data used in Ex. 1. (A) Concentration kinetics. Amounts in [pmol] for
the substrate and all peptide products over a digestion time of 4 hours. (B) Conversion factors.
Conversion factors of all peptide products, systematically chosen. The conversion factor of the substrate
is set to 1 by default. (C) Kinetics of MS signal intensities. MS signal intensities in [a.u.] for
the substrate and all peptide products over a digestion time of 4 hours, as calculated from (A) and (B)
using Eqn. (4.8). Shown are only the hourly timepoints, in the inference we also used the half-hourly
measurements. Values in (A) and (C) are rounded to two digits precision for printing.

(A) Concentrations [pmol]

Reactant 0h 1h 2h 3h 4h
S 200.00 110.67 56.06 21.56 2.23

P1 0.00 21.77 34.38 42.69 47.72

P2 0.00 21.77 34.38 42.69 47.72

P3 0.00 47.33 50.22 30.65 4.40

P4 0.00 67.57 109.56 135.75 150.05

P5 0.00 20.24 59.33 105.11 145.65

P6 0.00 20.24 59.33 105.11 145.65

(B) Conversion factors

Param Value
v0 1
v1 0.01
v2 0.1
v3 1
v4 10
v5 10.01
v6 100

(C) MS signal intensities [a.u.]

Reactant 0h 1h 2h 3h 4h
S 2.00× 1012 1.11× 1012 5.61× 1011 2.16× 1011 2.23× 1010

P1 0.00 2.18× 1013 3.44× 1013 4.27× 1013 4.77× 1013

P2 0.00 2.18× 1012 3.44× 1012 4.27× 1012 4.77× 1012

P3 0.00 4.73× 1011 5.02× 1011 3.06× 1011 4.40× 1010

P4 0.00 6.76× 1010 1.10× 1011 1.36× 1011 1.50× 1011

P5 0.00 2.02× 1010 5.93× 1010 1.05× 1011 1.46× 1011

P6 0.00 2.02× 109 5.93× 109 1.05× 1010 1.46× 1010
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Table 5.4: Statistics of Ex. 1. Inferences were run for 2e6 iterations, burn-in was discarded and the
three chains were combined into one. To visualise the accuracy, the true conversion factor value was sub-
tracted for all conversion factors. Values were rounded to two digits precision. (A) Posterior statistics
of one run. Statistics of the posterior distributions of all parameters in Ex. 2. (B) Repeatability.
The inference on the dataset was repeated 100 times. In none of the runs the chains were converged
to a stationary distribution. This table reports the mean of the posterior means across runs and the
corresponding standard deviations.

(A) Single run

Parameter mean sd
v1 − v∗1 −1.49× 10−15 6.21× 10−13

v2 − v∗2 −1.30× 10−14 6.65× 10−13

v3 − v∗3 3.00× 10−14 4.94× 10−14

v4 − v∗4 2.01× 10−13 4.37× 10−13

v5 − v∗5 3.00× 10−13 6.14× 10−10

v6 − v∗6 2.00× 10−12 4.24× 10−12

σ 1.44× 10−13 6.97× 10−15

(B) Repeatability

Parameter mean sd
v1 − v∗1 −1.47× 10−15 1.32× 10−16

v2 − v∗2 −1.29× 10−14 1.15× 10−15

v3 − v∗3 2.86× 10−14 4.95× 10−15

v4 − v∗4 2.04× 10−13 4.18× 10−14

v5 − v∗5 2.93× 10−13 4.52× 10−14

v6 − v∗6 1.98× 10−12 4.01× 10−13

σ 1.47× 10−13 1.41× 10−14

5.2.2 Results

QPuB was applied to this dataset and achieved to estimate the conversion factors of all six peptide

products with high precision and accuracy. The underlying Markov chains converged over iteration time.

The mass balance requirement is satisfied to a high degree. The marginal posterior distributions of the

estimated conversion factors have a unique maximum and a very narrow standard deviation. Comparison

of the medians to the correct values used to create the in silico data shows high agreement. The kinetics of

the peptide amounts derived from the conversion factors estimated are in accordance with the underlying

ground truth. Simulation results were highly repeatable.

Simulations were run with 2 million iterations. The Markov chains explored the prior range and settled

in a region of highest probability, with good mixing. All three parallel chains converged to roughly

the same values (Fig.5.4C). Also the Gelman–Rubin diagnostics suggests convergence, since the scale

reduction factor of every parameter is close to 1 ( mean
d=1,...,D

(R̂d) ≈ 1.004). In an example with full mass

information and without noise in the data, the mass balance requirement can be perfectly satisfied.

The residual plots are depicted in Figure 5.4A. For every amino acid position, the total mass over all

peptides containing this amino acid position is calculated from the conversion factor distributions. The

medians are in perfect agreement with the amount of substrate degraded for every point in digestion

time. The spread of each distribution is so small that they are invisible in the plots. The means of the

residuals per chain over all amino acid positions and all time points are small (chain 1: −5.52 × 10−15,

chain 2: −7.42×10−15, chain 3: −6.92×10−15). Figure 5.4B shows the posterior distributions of the

conversion factors for every chain with good agreement between the chains. The distributions have
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a unique maximum and a very narrow standard deviation, showing high precision of the estimate. See

Tab. 5.4A for numerical values. The results were validated by comparing the estimates of the conversion

factors to the correct conversion factors used to create the dataset. The estimation accuracy of

the conversion factors in this example is very high. In Figures 5.4B-C the true values are indicated

by red lines. Unfortunately, the true values are outside the posterior ranges, but the deviation is so

small that we judge the estimates to be highly satisfactory. For comparability, the deviation between

the estimation median and the true value is given as the relative error in percent (see Sec.3.4.2). The

largest percent error has peptide 1 with 1.36 × 10−11%, all other deviations are below that. The mean

deviation over all peptides is δv = 7.36×10−12%. Finally, the peptide product amounts are calculated

from the estimated conversion factors (Fig. 5.4D). Since the standard deviation of the conversion factor

posteriors are so small, the uncertainty in the calculated amounts is invisible in the plots. We end up

with distributions of peptide amounts over time which highly coincide with the true curves. The relative

error in the parameter estimates transfers to the error in amount estimates. The mean deviation of the

estimate to the true value over all time points is δc = 7.59× 10−12%. The inference on the same dataset

with the same settings was repeated 100 times. The mean and standard deviation of the posterior

means of every conversion factor across runs are shown in Tab. 5.4B.

Fig. 5.4: Inference results of Ex. 1. Figure on page 65. (A) Residual plots. The residual plots show
whether the estimate satisfies the mass balance condition. The red solid horizontal lines represent the
difference in ion peak areas of substrate degraded between two successive time points. The dots represent
the median of inferred amount of every amino acid position of all products together as inferred by QPuB.
The range between the 5% and 95% quantile are indicated by vertical lines, which, because the conversion
factor distributions (see B) are very narrow, are not visible. With the correctly inferred conversion factor
values the dotted black line coincides with the continuous red line. Only the residual plots of one chain
for every second time point is shown, the others are qualitatively similar. (B) Marginal posterior
conversion factor distributions. Depicted are the posterior distributions of the estimated conversion
factors of every peptide product in the form of densities derived from histograms of the frequencies of the
parameter values over iteration time. Three densities are shown for the three parallel Markov chains run
by the algorithm. The first 50% samples were excluded as burn-in. To visualise the small spread of the
distributions, the correct conversion factor value was substracted on the x-axis. The correct conversion
factor value is marked in red, which is known by construction of the in silico dataset. (C) Traceplots
of the Markov chains. Shown are the parameter values over iteration time. The three parallel Markov
chains are plotted in shades of grey. The chains were thinned by a value of 1000 and 50% burn-in samples
were excluded. The true value is marked in red. (D) Distributions of the estimated peptide
amounts. Depicted are the amounts of all peptide products over time, as derived from the distributions
of the estimated conversion factors in (A) using Eqn. (4.8). The three chains were combined into one for
the calculation. The solid line indicates the median of the combined distribution and the shaded area
(invisible) illustrates the confidence range. The lower bound is calculated using the 5% quantile of the
parameter distribution, and the upper bound using the 95% quantile respectively. Because the conversion
factor distributions are very narrow, the confidence ranges are not visible. The peptide product amounts
obtained by QPuB perfectly coincide with the true values (red).
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Fig. 5.4: Inference results of Ex. 1. Caption on page 64.
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5.2.3 Summary

We presented an example, where QPuB successfully inferred the correct conversion factors and the calcu-

lated kinetics of amounts coincided with the true kinetics. Due to the perfect data without noise, inference

results are subject to very small uncertainty, exhibited in the form of narrow standard deviations.

Many different cleavage patterns with differing kinetics were investigated. Ranging from very broad

cleavage patterns with only first order products, to very deep patterns where all products are further

digested, and many variants inbetween including interconnected patterns with peptide splicing. In the

majority of datasets with low number of products (<20) were identifiable. Here, the performance of

QPuB is highly precise, accurate and repeatable. However, datasets exist where this is not the case, as

we will see in the next section.
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Fig. 5.5: Schematic of the cleavage pattern of Ex. 2 and the resulting kinetics. (A) Digestion
pattern The schematic depicts the digest of a 26-mer substrate by a specific endopeptidase into six
peptide products (numbered accordingly). The enzyme hydrolyses the peptide bonds at positions 12, 15
and 9, creating product pairs 1 and 2, 3 and 4, and 5 and 6, respectively. (B) Amino acid sequences
Sequences of the substrate and the generated products. (C) Concentration kinetics Depicted are the
amounts of the substrate and all peptide products over the digestion time, as simulated. Colors are as in
(A). By construction, “sibling” peptides are equally abundant. (D) Kinetics of MS signal intensities
Depicted are the MS signal intensities of the substrate and all peptide products over the digestion time,
as computed from the amounts in (B) using the conversion factors in Tab. 5.5B. This serves as QPuB
input. For numerical values see Tab. 5.5.



Ch. 5. Application to simulated data 67

Table 5.5: Numerical data used in Ex. 2. (A) Concentration kinetics. Amount in [pmol] for
the substrate and all peptide products over a digestion time of 4 hours. (B) Conversion factors.
Conversion factors of all peptide products, systematically chosen. The conversion factor of the substrate
is set to 1 by default. (C) Kinetics of MS signal intensities. MS signal intensities in [a.u.] for
the substrate and all peptide products over a digestion time of 4 hours, as calculated from (A) and (B)
using Eqn. (4.8). Shown are only the hourly time points, in the inference we also used the half-hourly
measurements. Values in (A) and (C) are rounded to two digits precision for printing. [Remark: The
author realised too late, that the data simulation in this example yielded negative substrate amounts, due
to numerical issues of the ODE solver. However, the negative value is so small, that the mass balance is
not affected much. In similar datasets with the same cleavage pattern but different numerical values, the
results of this section are qualitatively the same.]

(A) Amounts [pmol]

Reactant 0h 1h 2h 3h 4h
S 200.00 116.42 31.25 0.00 −3.36× 10−8

P1 0.00 9.28 18.40 21.65 21.65

P2 0.00 9.28 18.40 21.65 21.65

P3 0.00 27.68 57.67 69.23 69.23

P4 0.00 27.68 57.67 69.23 69.23

P5 0.00 46.63 92.67 109.12 109.12

P6 0.00 46.63 92.67 109.12 109.12

(B) Conversion factors

Parameter Value
v0 1
v1 0.01
v2 0.1
v3 1
v4 10
v5 10.01
v6 100

(C) MS signal intensities [a.u.]

Reactant 0h 1h 2h 3h 4h
S 2.00× 1012 1.16× 1012 3.13× 1011 1.35× 106 −335.79

P1 0.00 9.28× 1012 1.84× 1013 2.16× 1013 2.16× 1013

P2 0.00 9.28× 1011 1.84× 1012 2.16× 1012 2.16× 1012

P3 0.00 2.77× 1011 5.77× 1011 6.92× 1011 6.92× 1011

P4 0.00 2.77× 1010 5.77× 1010 6.92× 1010 6.92× 1010

P5 0.00 4.66× 1010 9.26× 1010 1.09× 1011 1.09× 1011

P6 0.00 4.66× 109 9.27× 109 1.09× 1010 1.09× 1010
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5.3 Example 2

This is an example that shows difficulties in the parameter inference. The same substrate as in Example 1

is digested with a slightly different cleavage pattern, resulting in six slightly different peptide products

that follow different kinetics. The information contained in the data is too low for QPuB to identify the

parameters reliably. We will show two ways to increase the information content of the system to enable

successful inference.

5.3.1 The data

The same substrate as in Example 1 is digested with a slightly different cleavage specificity. The same

four first order products are produced as before, but none of the products is further digested. Instead,

a third cleavage site in the substrate sequence is introduced, resulting in six first order peptide products

in total (see Fig. 5.5A). For comparability, we used the same initial conditions and reaction rates for

the three reactions as in Example 1. The obtained concentration kinetics is shown in Fig. 5.5C, with

numerical values in Tab. 5.5A. The same conversion factor values were defined as before (Tab. 5.5B). The

resulting signal kinetics is provided in Tab. 5.5C and depicted in Fig. 5.5D.

5.3.2 Results: Insufficient information

We show that the convergence of the Markov chains to the correct values fails, although mass balance is

achieved. A multitude of possible parameter combinations can explain the data. The information content

of the dataset is determined using the identifiability approach from Sec.3.3. We will show, that the data

does not contain sufficient information for all parameters to be identifiable. A general rule of thumb for

the inferability will be proposed.

5.3.2.1 Inference results

After 2 million iterations, the single Markov chains are not converged yet. The Gelman–Rubin diag-

nostic does not suggest convergence ( mean
d=1,...,D

(R̂d) ≈ 3.2) and visually the chains are still in the sam-

pling process, far from any limiting distribution. The three chains are not in agreement with each

other (Fig. 5.6C). However, the mass balance condition seems satisfied, as the residuals look perfect

(Fig. 5.6A). The means of the residuals per chain are small, but not as small as in Example 1 (chain 1:

1.76 × 10−4, chain 2: 1.47 × 10−4, chain 3: 9.27 × 10−5). This observation suggests the existence of

multiple solutions and the inability of QPuB to find the particular one that was used to create the data.
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Since the chains are not converged to a normal distribution, it is not very reliable to calculate a summary

statistics and to compare the statistics to the correct values. Nonetheless, the statistics are shown in

Tab. 5.6A. From the current state of the chains, the estimation accuracy of the conversion factors

is investigated. Large deviation of the median to the correct values is observed. The deviation in percent

is as high as 329.18% for peptide 1 and gives a mean deviation over all peptides of δv = 134.51%. For

data without noise, this level of uncertainty is disappointing. The combined chains were subsequently

used to calculate the peptide amounts. The estimated concentration kinetics show broad ranges of

uncertainty (Fig. 5.6D). Due to the linear relationship between conversion factor and concentration, the

high error in the conversion factors directly translates to a low estimation accuracy of the peptide

amounts: δc = 134.72%. The simulation was repeated 100 times. Every run stopped after 2e6 itera-

tions returns Markov chains which are currently sampling a different part of the prior space (results not

shown). In all cases, the posterior distributions have not reached a limiting distribution. In most cases,

the chains are sampling in the correct order of magnitude. In some cases, the chains sample in unison.

In total, the mean across runs deviates from the true values with a standard deviation indicating high

uncertainty (Tab. 5.6B).

Table 5.6: Statistics of Ex. 2 with insufficient information. Inferences were run for 2e6 iterations,
burn-in was discarded and the three chains were combined into one. Values were rounded to three
digits precision. (A) Posterior statistics of one run. Statistics of the posterior distributions of all
parameters in Ex. 2. (B) Repeatability. The inference on the dataset was repeated 100 times. In none
of the runs the chains were converged to a stationary distribution. This table reports the mean of the
posterior means across runs and the corresponding standard deviations.

(A) Single run

Parameter mean sd
v1 0.043 0.004

v2 0.430 0.042

v3 1.055 0.007

v4 10.555 0.072

v5 3.115 0.887

v6 31.114 8.859

σ 0.005 0.001

(B) Repeatability

Parameter mean sd
v1 0.031 0.014

v2 0.313 0.142

v3 1.036 0.024

v4 10.358 0.239

v5 5.553 2.972

v6 55.476 29.687

σ 0.004 0.002
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Fig. 5.6: Inference results of Ex. 2 with insufficient information. Figure on page 70. (A)
Residual plots. The residual plots show whether the estimate satisfies the mass balance condition. The
red solid horizontal lines represent the difference in ion peak areas of substrate degraded between two
successive time points. The dots represent the median of inferred amount of every amino acid position of
all products together as inferred by QPuB. The range between the 5% and 95% quantile are indicated by
vertical lines, which, because the conversion factor distributions (see (B)) are very narrow, are not visible.
With inferred conversion factor values which satisfy mass balance, the dotted black line coincides with
the continuous red line. Only the residual plots of one chain for every second time point is shown, the
others are qualitatively similar. (B) Marginal posterior conversion factor distributions. Depicted
are the posterior distributions of the estimated conversion factors of every peptide product in the form of
densities derived from histograms of the frequencies of the parameter values over iteration time. Three
densities are shown for the three parallel Markov chains run by the algorithm. The first 50% samples
were excluded as burn-in. A unique normal stationary distribution has not been reached in the iteration
time run. The correct conversion factor values are not in range of the plots. (C) Traceplots of the
Markov chains. Shown are the parameter values over iteration time. The three parallel Markov chains
are plotted in shades of grey. The chains were thinned by a value of 1000 and 50% burn-in samples were
excluded. Stationarity of the chains has not been reached. The true value of each parameter is not in the
y-range plotted. (D) Distributions of the estimated peptide amounts. Depicted are the amounts
of all peptide products over time, as derived from the distributions of the estimated conversion factors
in (A) using Eqn. (4.8). The three chains were combined into one for the calculation. The solid line
indicates the median of the distribution and the shaded area illustrates the confidence range. The lower
bound is calculated using the 5% quantile of the parameter distribution, and the upper bound using
the 95% quantile respectively. The peptide product amounts obtained by QPuB do not cover the true
kinetics (red).
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Fig. 5.7: Identifiability analysis of Ex.2. (A) Eigenvalues. The plot visualises the six eigenvalues
of the curvature matrix of the likelihood for the dataset of Ex. 2 (red) compared to the eigenvalues of
Ex. 1 (green). Note the difference in the last eigenvalue 6. (B) Information content. Depicted are
the normalised eigenvalues, i.e. the proportion of variance explained by the corresponding eigenvector.
Note the difference in the last component. (C) Parameter contribution to the subspace of low-
informative eigenvectors. In this example, the subspace is spanned by only one eigenvector. The
largest contribution has parameter 6 belonging to peptide 6. Values were rounded to two significant
digits for printing.
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5.3.2.2 Identifiability analysis

The identifiability analysis gives insight to the issue at hand. The curvature matrix of the likelihood

function is calculated together with its eigenvalues and eigenvectors. A normalisation gives the infor-

mation content of the different principal components. Figure 5.7 shows the eigenvalues and information

contents of Ex. 1 and Ex. 2. A comparison reveals a particular difference: the last eigenvector in Ex. 1

carries more information than in Ex. 2:

Example lowest info
1 4.3× 10−10

2 9.4× 10−14

The results indicate that somewhere between these two values lies a threshold under which the inference

will not succeed anymore. The corresponding eigenvalue is too close to zero, implying too large variance

in the data to sufficiently constrain the parameters. After systematic investigation of a multitude of

datasets, we propose the following rule of thumb:

Heuristic principle 5.1 (Information threshold for successful inference). QPuB struggles to converge

to the correct conversion factor values in reasonable iteration time, if the curvature matrix reveals eigen-

vectors carrying an information content of the order of e-12 or lower.

The information contained in this dataset does not suffice for the inference of the correct values. Due to

correlations, a multitude of possible solutions satisfying mass balance exists. Investigation of the curvature

matrix reveals that there exists a threshold of information under which the parameter contributing most

to the space of low-informative directions is not sufficiently constrained. The heuristic principle 5.1 is

proposed, stating that the threshold for most datasets seems to be of the order of e-12. In the following,

we will present two strategies to increase the information content of the system sufficiently to make a

successful inference possible.

5.3.3 Strategy 1: Additional information through peptide titrations

In this section, a procedure is developed to provide more information to the system in the form of

additional peptide titrations. Recall that peptide ion signal intensities can be measured for synthetic

peptide equivalents, as described in Sec. 2.3.3.1. From the calibration curve, the conversion factor can be

calculated. This experimentally derived conversion factor can then be supplied to the QPuB inference.

This reduces the number of parameters to be estimated and adds constraints to the remaining peptides.
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We will test this concept in the in silico framework by fixing the conversion factor of a peptide to its

correct value, used to generate the data.

5.3.3.1 The additional data

Figure 5.7 shows that parameter 6 contributes most to the low-informative subspace of the curvature

matrix and therefore makes a good candidate for this experiment. Its value is fixed to its correct value

v6 = 100 and the parameter vector to be estimated reduces its dimension by one: θ = (v1, v2, v3, v4, v5, σ).

5.3.3.2 Identifiability analysis

In the insufficiently constrained case, an infinite combination of parameter values yields the same like-

lihood value. By fixing the value of one of the parameters, this uncertainty is taken away. The least-

informative eigenvector is removed from the system, and the now least-informative eigenvector carries

sufficient information to pass the rule of thumb. The eigenvalues are large enough to be distinguishable

from zero, resulting in all remaining parameters to be identifiable. Figure 5.8 shows the normalised

eigenvalues after setting parameter 6 to its correct value. According to the heuristic 5.1, the now lowest

information is sufficiently large to enable a successful inference.

Fig. 5.8: Identifiability analysis of Ex. 2
after peptide titration. Depicted are the
normalised eigenvalues mirroring the informa-
tion content when fixing parameter 6 to its true
value v6 = 100. Dropping one dimension, a
little shift in the remaining values is observed.
The last normalised eigenvalue is now above the
threshold e-12 of the proposed heuristic.
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5.3.3.3 Inference results

Indeed, the system becomes identifiable and the chains converge to a stationary distribution close to

the correct values. After running the fixed number of 2e6 iterations, convergence to normal limit dis-

tributions for the conversion factors is achieved. The three parallel chains converge to the same values

(Fig. 5.9C). The Gelman–Rubin criterion suggests convergence for all parameters ( mean
d=1,...,D

(R̂d) ≈ 1.00071).

The residual plots indicate mass balance for all time points (Fig. 5.9A) and the numerical mean residu-

als are smaller than before (chain 1: −1.23×10−14, chain 2: −1.16×10−14, chain 3: −1.47×10−14). The

posterior distributions of the remaining parameters converge to nice normal distributions (Fig. 5.9B)
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Fig. 5.9: Inference results of Ex. 2 when fixing one conversion factor to its true value. Only
the inference results of parameter 1 are shown. The outcome for the others is similar. (A) Residual
plots (B) Posterior distributions of the conversion factors and (C) Trace plots of the Markov
chains After fixing parameter 6 to its true value, the chains for the remaining parameters converge and
agree with their true values to high accuracy and precision. (D) Estimated amount kinetics Since
the spread of the posterior distribution is so small, the uncertainty in the peptide amounts over time is
invisible in the graphics.

Table 5.7: Statistics of Ex. 2 with a peptide titration. The sixth conversion factor was set to
its true value v6 = 100. Inferences were run for 2e6 iterations, burn-in was discarded and the three
chains were combined into one. For the conversion factors, the true value was subtracted to visualise the
accuracy. Values were rounded to two digits precision. (A) Posterior statistics of one run. Statistics
of the posterior distributions of all remaining parameters in Ex. 2. (B) Repeatability. The inference
on the dataset was repeated 100 times. This table reports the mean of the posterior means across runs
and the corresponding standard deviations.

(A) Single run

Parameter mean sd
v1 − v∗1 −5.85× 10−15 6.17× 10−13

v2 − v∗2 −5.87× 10−14 7.10× 10−13

v3 − v∗3 2.10× 10−13 1.98× 10−13

v4 − v∗4 1.90× 10−12 1.98× 10−12

v5 − v∗5 2.01× 10−13 6.15× 10−10

σ 2.88× 10−13 1.53× 10−14

(B) Repeatability

Parameter mean sd
v1 − v∗1 −5.87× 10−15 8.42× 10−18

v2 − v∗2 −5.88× 10−14 1.53× 10−16

v3 − v∗3 2.10× 10−13 2.01× 10−15

v4 − v∗4 1.90× 10−12 8.93× 10−15

v5 − v∗5 2.01× 10−13 1.25× 10−14

σ 2.87× 10−13 6.64× 10−17
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with small standard deviations (Tab. 5.7A). Like in Example 1, the curves do not center at the true

values. Nevertheless, we say that the values are inferred accurately. All of the deviations lie below

5.88 × 10−11% and the mean over all remaining peptides (excluding peptide 6) is δv = 3.15 × 10−11.

Again, the high accuracy and high precision transfer directly to small uncertainty in the estimated

peptide concentrations (Fig. 5.9D) and the mean percent error is small: δc = 3.16×10−11. Fixing one

of the parameters results into reliable inference with every simulation. The mean and standard deviation

of the means of all conversion factor estimates over 100 repetitions is shown in Tab.5.7B.

5.3.3.4 Generalisation

Providing the correct conversion factor of one peptide seems to help in the inference of the remaining

conversion factors. Above, we selected the peptide with the largest contribution to the low-informative

subspace, which in that case corresponds to the single least-informative eigendirection of the curvature

matrix. Does it make a difference which peptide we choose for titration? We systematically investigated

the inference results by fixing each conversion factor one by one to their correct values. Figure 5.10

shows the change in the lowest information content, as well as the resulting mean deviation in percent,

the mean posterior standard deviations and the mean residuals. Fixing the value of peptides P1, P2, P5

and P6 yields a successful inference. The biggest improvement in the information content is visible for

the titration of peptide P1, however the inference results are qualitatively very similar. A titration of

peptides P3 or P4 does not increase the information above the heuristic threshold, which is also mirrored

in the simulations. The chains have not converged after 2e6 iterations and the deviation of the means

from the true values is large in comparison to the other scenarios.

After confirming our observations on more datasets, we conclude, that setting the conversion factors

of certain peptides to fixed (correct) values facilitates the inference, whereas fixing of certain other

conversion factors might not have the desired effect in a reasonable iteration time. We propose a second

rule of thumb:

Heuristic principle 5.2 (Titration candidate). To increase the information content sufficiently for suc-

cessful inference, the conversion factor of the peptide contributing most to the subspace of low-informative

eigenvectors should be fixed.

However, we observed that the fixation of the recommended parameter does not always yield the largest

increase in information. Nevertheless we found this rule of thumb reliable and useful in practice.

For this simple dataset, we only have one low-informative eigendirection, so a single additional peptide

titration suffices to increase the amount of information to a reasonable amount that enables identifiability.

A detailed analysis on a multitude of datasets revealed that for larger and more complicated datasets
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Fig. 5.10: Comparison of different titrations in Ex. 2. Identifiability analysis and inferences were
performed for the dataset when fixing the values of the respective conversion factors to their true values.
Simulations were run for 2e6 iterations. (A) Lowest information. The plot shows the information
carried by the least-informative directions. The information is lowest for the original dataset discussed
before, shown in the top bar. Titrations of peptides P1, P2, P5, P6 all increase the information to a
level above the heuristic threshold (darkblue), peptides P3, P4 do not. (B) Inference accuracy. This
plot depicts the means over the deviations of the parameter posterior medians from their true values in
percent. (C) Inference precision. The means over the posterior standard deviations of all peptides are
shown. (D) Mass balance. The residual means over all amino acids positions, time points and chains
is summarised.

multiple low-informative eigendirections can arise and require multiple peptide titrations. We propose

a summarising and generalising rule of thumb for multiple peptide titrations, that has been successfully

applied to a multitude of datasets:

Heuristic principle 5.3 (Generalisation). An information content of the order of e-12 is considered

too low for identifiability. The number of low-informative directions indicates how many conversion

factors should be provided. The parameters contributing most to the eigenspace of low-informative

eigendirections are the recommended choice for additional peptide titrations.

5.3.3.5 Noisy peptide titrations

In the above analysis, we considered the ability to fix the parameter to the correct value. In reality,

if the conversion factor is measured via titration, the value will be subject to measurement errors. In

this paragraph, we will investigate the impact of titration measurement errors on the inference of the

remaining conversion factors. Note that the signal intensities are still noise-free.

The heuristic 5.3 above was followed for choosing which parameter to fix. Instead of providing the true

conversion factor value, it was perturbed by using a normally distributed titration error:

vtit = vtrue + ϵtit, where ϵtit ∼ N (0, σtit) (5.7)
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The standard deviations σtit were chosen systematically between 1e-7 and 20.

In the examples considered, we observed that the measurement error transfers directly to the estimations.

Figure 5.11 shows the results for two datasets with a similar cleavage pattern to the one discussed in this

section. The same substrate is digested with slightly different cleavage sites and different reaction rates,

resulting in different but similar kinetics. Two datasets were simulated. A linear relationship between

input titration error and output inference error was observed. The digestion product with the largest

inference error is the cleavage sibling peptides of the titrated peptide. It is inferred with the same relative

deviation from its true value as the titrated peptide. All other digestion products would have a lower

error. This suggests that the QPuB inference is only as good as the conversion factor value provided.
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Fig. 5.11: Linear titration error in Ex. 2. To investigate the effect of erroneous measurements in the
additional peptide titration, the conversion factor of the titrated peptide was fixed to normally perturbed
values. The inference was run for 5e6 iterations achieving convergence. (A) Cleavage pattern. (B-
C) Concentration kinetics for the two replicates respectively. (D-E) Effect of the titration
error. The titrated peptide was chosen as recommended by the heuristic principle. In replicate 1,
peptide 2 was fixed and in replicate 2, peptide 1 was fixed. The titration error is plotted on the x-axis
as relative percent error. On the y-axis the mean percent error over the inferred conversion factors of
the remaining peptides is drawn. Colors are as in (A). The relationship between the input titration error
and the output inference error is linear for the two examples analysed. [The simulations were run with
a former version of the QPuB code with no major differences to the current version. The quality of the
results is expected to be the same.]
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5.3.3.6 Summary

In datasets containing an insufficient amount of information impeding an effective inference, fixing one

or more parameters to their correct values can cause improvement. We proposed a heuristic principle

that recommends the number and identities of the peptides to titrate. By fixing their values, the others

can be estimated successfully. This principle has proved useful in a variety of datasets. Our analysis

suggests, that if the conversion factors are fixed to values perturbed from their true values, the resulting

parameter estimations mirror the input error.

5.3.4 Strategy 2: Additional information through fitting several kinetics to-

gether

A second strategy to achieve identifiability and successful inference is presented in this section. Infor-

mation on the parameters can be increased by measuring a second kinetic under different biological

conditions. The conversion factor depends on the peptide’s physico-chemical properties which determine

its behaviour in the mass spectrometer. These properties should not be altered by the way the peptide

was generated. Introduction of a protease inhibitor, digestion of the same substrate with two different

protease isoforms or proteases from different cell lines or organisms, as well as changing the essay con-

ditions or simply the ratio of substrate and enzyme in the digest only affect the kinetics of the digest.

Combining two different kinetics should therefore add information on the conversion factors of those

peptides which are observed in both datasets, facilitating inference. The idea is to provide a second set

of synthetic data as QPuB input. In the calculation of the likelihood, QPuB will simply loop over the

datasets, attempting to satisfy the mass balance condition for both of them simultaneously.

5.3.4.1 The additional data

The second dataset is created from the same cleavage pattern (Fig. 5.5A), but with different reaction

rates, therefore resulting in a different concentration kinetics over time. The same conversion factors as

before (Tab. 5.5B) are used to calculate the signal intensities. Numerical values are given in Tab. 5.8 and

Fig. 5.12 juxtaposes the two reaction kinetics used in this example.
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Fig. 5.12: Two concentration kinetics of the same cleavage pattern in Ex. 2. Different kinetics
can arise due to different biological conditions. (A) Kinetics under condition 1. Peptide amounts over
time of the unidentifiable dataset analysed before (see Fig. 5.5C). (B) Kinetics under condition 2.
A second kinetics derived from the same cleavage pattern.

Table 5.8: Numerical data of the second kinetics in Ex. 2. (A) Concentration kinetics.
Amount in [pmol] for the substrate and all peptide products over a digestion time of 4 hours. (B)
Conversion factors. Conversion factors of all peptide products, systematically chosen. The conversion
factor of the substrate is set to 1 by default. (C) Kinetics of MS signal intensities. MS signal
intensities in [a.u.] for the substrate and all peptide products over a digestion time of 4 hours, as
calculated from (A) and (B) using Eqn. (4.8). Shown are only the hourly time points, in the inference
we also used the half-hourly measurements. Values in (A) and (C) are rounded to two digits precision
for printing.

(A) Amounts [pmol]

Reactant 0h 1h 2h 3h 4h
S 200.00 119.51 41.86 0.35 5.21× 10−5

P1 0.00 33.32 65.08 81.89 82.02

P2 0.00 33.32 65.08 81.89 82.02

P3 0.00 40.40 79.85 101.15 101.32

P4 0.00 40.40 79.85 101.15 101.32

P5 0.00 6.77 13.22 16.62 16.65

P6 0.00 6.77 13.22 16.62 16.65

(B) Conversion factors

Parameter Value
v0 1
v1 0.01
v2 0.1
v3 1
v4 10
v5 10.01
v6 100

(C) MS signal intensities [a.u.]

Reactant 0h 1h 2h 3h 4h
S 2.00× 1012 1.20× 1012 4.19× 1011 3.45× 109 521 376.06

P1 0.00 3.33× 1013 6.51× 1013 8.19× 1013 8.20× 1013

P2 0.00 3.33× 1012 6.51× 1012 8.19× 1012 8.20× 1012

P3 0.00 4.04× 1011 7.99× 1011 1.01× 1012 1.01× 1012

P4 0.00 4.04× 1010 7.99× 1010 1.01× 1011 1.01× 1011

P5 0.00 6.76× 109 1.32× 1010 1.66× 1010 1.66× 1010

P6 0.00 6.77× 108 1.32× 109 1.66× 109 1.67× 109
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Table 5.9: Improvement by fitting together two kinetics in Ex. 2. The table shows the infor-
mation content and the performance of the inference when the datasets are run separately compared
to in combination. The first column reports the information content of the least-informative direction.
Note that it is below the heuristic threshold for both kinetics, but sufficiently large for the combination.
The inference was stopped after 2e6 iterations. The accuracy is evaluated by the mean over the percent
deviation from the true value (δv) as before. The precision is summarised as mean over the standard
deviations for every conversion factor. Values were rounded to two digits precision for printing.

info accuracy precision
cond 1 9.41× 10−14 134.51 1.65
cond 2 5.54× 10−18 117.85 0.58
together 3.98× 10−10 7.37× 10−12 1.03× 10−10

Table 5.10: Statistics of Ex. 2 with two kinetics. Inferences were run for 2e6 iterations, burn-in
was discarded and the three chains were combined into one. For the conversion factors, the true value
was subtracted to visualise the accuracy. Values were rounded to two digits precision. (A) Posterior
statistics of one run. Statistics of the posterior distributions of all parameters in Ex. 2, when fitting
two kinetics together. (B) Repeatability. The inference on the dataset was repeated 100 times. This
table reports the mean of the posterior means across runs and the corresponding standard deviations.

(A) Single run

Parameter mean sd
v1 − v∗1 −9.70× 10−16 6.22× 10−13

v2 − v∗2 −9.01× 10−15 6.62× 10−13

v3 − v∗3 8.99× 10−14 1.00× 10−13

v4 − v∗4 9.01× 10−13 1.00× 10−12

v5 − v∗5 −9.95× 10−14 6.15× 10−10

v6 − v∗6 −1.41× 10−12 3.48× 10−12

σ 2.91× 10−13 1.00× 10−14

(B) Repeatability

Parameter mean sd
v1 − v∗1 −1.03× 10−15 1.18× 10−15

v2 − v∗2 −9.69× 10−15 1.15× 10−14

v3 − v∗3 9.02× 10−14 1.02× 10−13

v4 − v∗4 1.01× 10−12 9.93× 10−13

v5 − v∗5 −1.49× 10−13 4.02× 10−13

v6 − v∗6 −1.62× 10−12 4.02× 10−12

σ 3.18× 10−13 8.89× 10−14

5.3.4.2 Identifiability analysis

The combination of the two kinetics increases the information content. Table 5.9 shows the information

contents of the two kinetics separately compared to the information content of the combination. Following

the heuristic principle 5.1, it should now be possible for QPuB to infer the correct conversion factors for

all peptide products.

5.3.4.3 Inference results

Indeed, the information content has been increased enough for a successful inference. After 2e6 iterations,

the Markov chains have converged, visually (Fig. 5.13) as well as by the Gelman–Rubin diagnostics

(meani(R̂i) ≈ 1.01). The posterior distributions are now settled at a single peak with a narrow

standard deviation (Fig. 5.13B). The means of the estimated conversion factors perfectly match the

correct values with low deviation. All conversion factor deviations are below 1.001× 10−11% with the
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mean over all peptides being δv = 7.37 × 10−12%. The calculated peptide amounts over time have

a very narrow uncertainty range for both datasets (Fig. 5.13D). The residual plots show perfect mass

balance for both replicates (Fig. 5.13A). The means of the residuals in each chain are small (chain 1:

−2.16×10−14, chain 2: −2.48×10−14, chain 3: −2.26×10−14), now with a comparable order of magnitude

as the results in Example 1. Also, after improving the identifiability of this example, the results are highly

repeatable (Tab. 5.10B).

5.3.4.4 Summary

Using multiple kinetics under different biological conditions together improves the inference results sub-

stantially. The information content is increased so that all parameters are now identifiable.

For larger and more complicated datasets unfortunately this technique might only reduce the number

of low-informative eigendirections, but not sufficiently. In these cases, fitting more then two biological

replicates together can improve the identifiability, as presented in the next example.
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Fig. 5.13: Inference results of Ex. 2 when fitting two kinetics obtained under different
biological conditions together. Only the inference results of parameter 1 are shown. The outcome
for the others is similar. (A) Residual plots The red and cyan lines represent the amount of substrate
degraded in the two kinetics respectively. The parameters are inferred such that mass balance is achieved
for both conditions simultaneously. (B) Posterior distributions of the conversion factors and (C)
Trace plots of the Markov chains Per chain, a single density is obtained of the values that best
explain the data of both kinetics. (D) Estimated amount kinetics The inferred parameters yield
peptide amounts that fit the true amounts perfectly. The uncertainty is so small that it is invisible in
the plot.
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5.4 Example 3

In this section, a more complex example with many peptide products is discussed. Application of the

heuristic principles proposed above suggests non-identifiability and calls for additional measures. We will

pursue the titration approach as well as the approach of considering multiple replicates in the inference,

as well as combinations thereof.

5.4.1 The data

The same 26-mer substrate as in the previous examples is digested by a proteasome-like protease with

a complex cleavage specificity shown in Figure 5.14A. Over a digestion time of four hours, 45 peptide

products are produced. Canonical as well as spliced peptides are considered to increase the peptide diver-

sity. Three kinetics under different biological conditions were simulated. Reaction rates were randomly

sampled and kinetics generated using the julia code presented in Section 4.8.1. This time, also the conver-

sion factors were randomly sampled; half of them on a range of [0,1], the other half in [1,100]. Values are

shown in Tab. 5.11D. The kinetics of the peptide amounts and the resulting input MS signal intensities

of one condition are shown in Fig. 5.14. Tables of the reaction rates and the kinetics under all conditions

considered can be found in Tab. 5.11.

5.4.2 Results

5.4.2.1 Identifiability analysis

First, the information content of the individual replicates was calculated to investigate identifiability.

According to the heuristic principle 5.3, each of them has a few low-informative eigendirections. Table 5.12

shows the number of vanishing eigenvalues of each dataset together with the parameters that contribute

most to the low-informative eigenspace. Therefore, trying to run them individually in their original

state will probably not result in successful inference in reasonable iteration time. For dataset A, the

titration approach would require fixing six parameters, dataset B requires six and dataset D five titrations,

respectively. The approach of combining several kinetics decreases the number drastically. Combining

kinetics A and B reduces the number of required titrations to one. When fitting all three datasets

together, no additional titrations are needed. In the following, we will focus on three strategies:

• Scenario 1: dataset A by itself with six peptide titrations,

• Scenario 2: datasets A and B together with titration of peptide P41,

• Scenario 3: all three kinetics together without additional peptide titration.
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Fig. 5.14: Schematic of the cleavage pattern of Ex. 3 and resulting kinetics. (A) Digestion
pattern. A 26-mer substrate is digested by a proteasome-style peptidase into 45 peptide products over
the course of 4 hours. The enzyme hydrolyses the peptide bonds at four different positions in the substrate
sequence and also digests multiple of the peptide products downstream. To further increase the peptide
repertoire, also proteasome-catalysed spliced peptides are generated. (B) Concentration kinetics of
kinetic A. Depicted are the amounts of the substrate and all peptide products over the digestion time,
as simulated. For numerical values see Tab. 5.11A. (C) Kinetics of MS signal intensities of kinetic
A. Depicted are the MS signal intensities of the substrate and all peptide products over the digestion
time, as computed from the amounts in (B) using the conversion factors in Tab. 5.11D.
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Table 5.11: Numerical data in Ex. 3. (A-C) Concentration kinetics. Amounts in [pmol] for the
substrate and all peptide products over a digestion time of 4 hours for three different biological conditions.
In this example, only hourly measurements are created. (D) Conversion factors. Conversion factors
of all peptide products, randomly sampled. The conversion factor of the substrate is set to 1 by default.
MS signal intensities for the substrate and all peptide products can be calculated from (A) and (B) using
Eqn.(4.8). Values are rounded to two digits precision for printing. [Table continued on next page.]

(A) Amounts of kinetic A [pmol]

0h 1h 2h 3h 4h
S 200.00 87.80 21.11 2.23 0.13
P1 0.00 15.48 17.40 9.98 3.98
P2 0.00 17.85 26.94 27.34 24.66
P3 0.00 2.71 11.07 20.68 25.73
P4 0.00 1.11 1.16 0.91 0.59
P5 0.00 0.02 0.20 0.85 1.99
P6 0.00 0.02 0.20 0.89 2.17
P7 0.00 0.00 0.00 0.04 0.14
P8 0.00 0.00 0.00 0.04 0.18
P9 0.00 3.17× 10−6 0.00 0.01 0.04
P10 0.00 3.17× 10−6 0.00 0.01 0.04
P11 0.00 0.07 0.07 0.07 0.07
P12 0.00 0.10 0.10 0.10 0.09
P13 0.00 29.88 46.31 48.85 46.41
P14 0.00 27.65 34.03 24.44 14.94
P15 0.00 0.87 3.74 7.31 9.56
P16 0.00 0.86 3.63 7.11 9.34
P17 0.00 0.01 0.12 0.20 0.21
P18 0.00 0.01 0.16 0.65 1.43
P19 0.00 35.38 56.17 61.03 60.04
P20 0.00 35.41 56.00 59.79 56.23
P21 0.00 0.17 0.82 2.05 3.60
P22 0.00 0.04 0.04 0.04 0.04
P23 0.00 28.03 43.61 45.83 42.98
P24 0.00 26.98 38.90 35.18 26.67
P25 0.00 1.32 6.10 13.61 20.37
P26 0.00 1.34 6.36 14.91 23.96
P27 0.00 0.01 0.06 0.14 0.22
P28 0.00 0.02 0.26 1.29 3.56
P29 0.00 0.00 0.05 0.57 1.74
P30 0.00 0.00 0.01 0.13 0.52
P31 0.00 0.26 1.56 3.71 5.92
P32 0.00 1.61 10.11 20.66 27.30
P33 0.00 0.00 0.07 0.41 1.20
P34 0.00 0.00 0.06 0.23 0.51
P35 0.00 0.00 0.01 0.06 0.16
P36 0.00 0.01 0.12 0.63 1.79
P37 0.00 1.51× 10−5 0.00 0.01 0.04
P38 0.00 0.13 0.80 2.07 3.72
P39 0.00 0.00 0.02 0.16 0.58
P40 0.00 2.14× 10−6 0.00 0.02 0.12
P41 0.00 2.14× 10−6 0.00 0.02 0.12
P42 0.00 0.01 0.20 1.16 3.37
P43 0.00 1.62× 10−5 0.00 0.01 0.04
P44 0.00 0.28 1.52 3.45 5.19
P45 0.00 0.01 0.12 0.63 1.76

(B) Amounts of kinetic B [pmol]

0h 1h 2h 3h 4h
S 200.00 78.02 31.52 12.52 4.15
P1 0.00 19.30 24.41 24.47 22.23
P2 0.00 18.80 23.11 22.41 19.52
P3 0.00 1.38 3.55 5.47 7.01
P4 0.00 0.62 0.91 1.26 1.89
P5 0.00 0.14 0.77 1.89 3.61
P6 0.00 0.15 0.83 2.11 4.23
P7 0.00 0.01 0.06 0.22 0.62
P8 0.00 0.01 0.06 0.22 0.62
P9 0.00 9.20× 10−6 0.00 0.00 0.01
P10 0.00 9.20× 10−6 0.00 0.00 0.01
P11 0.00 1.21 1.12 0.88 0.76
P12 0.00 0.11 0.10 0.09 0.08
P13 0.00 60.38 80.37 86.07 86.00
P14 0.00 44.41 41.06 28.38 15.29
P15 0.00 16.26 32.71 37.93 34.53
P16 0.00 14.31 28.86 33.88 30.56
P17 0.00 1.95 3.84 4.05 3.97
P18 0.00 0.89 2.42 7.30 22.06
P19 0.00 11.47 10.73 7.66 4.47
P20 0.00 14.02 10.25 2.05 0.06
P21 0.00 3.85 6.89 8.25 8.14
P22 0.00 4.32 9.67 14.10 18.08
P23 0.00 22.73 31.51 35.05 36.49
P24 0.00 22.21 30.01 32.39 32.42
P25 0.00 0.54 1.56 2.74 4.12
P26 0.00 0.55 1.62 2.91 4.50
P27 0.00 0.01 0.04 0.12 0.32
P28 0.00 0.01 0.05 0.12 0.20
P29 0.00 0.71 8.72 22.98 40.70
P30 0.00 1.77 10.14 19.72 22.61
P31 0.00 1.91 5.55 9.43 13.64
P32 0.00 0.91 3.47 6.32 9.35
P33 0.00 0.01 0.04 0.11 0.23
P34 0.00 0.00 0.00 0.01 0.01
P35 0.00 0.70 3.24 4.89 5.49
P36 0.00 0.10 1.27 3.80 7.64
P37 0.00 0.09 1.24 3.72 7.50
P38 0.00 0.32 1.69 2.71 2.86
P39 0.00 0.00 0.03 0.09 0.18
P40 0.00 0.00 0.00 0.02 0.05
P41 0.00 0.00 0.00 0.02 0.05
P42 0.00 0.00 0.02 0.05 0.06
P43 0.00 0.00 0.01 0.05 0.18
P44 0.00 0.02 0.05 0.07 0.07
P45 0.00 0.00 0.03 0.08 0.14
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Table 5.11: continued.

(C) Amounts of kinetic D [pmol]

0h 1h 2h 3h 4h
S 200.00 81.68 19.53 3.56 0.57
P1 0.00 11.28 15.82 15.40 13.74
P2 0.00 11.10 15.06 14.01 11.85
P3 0.00 0.44 1.87 3.67 5.35
P4 0.00 0.30 0.55 0.60 0.63
P5 0.00 0.00 0.05 0.19 0.42
P6 0.00 0.00 0.06 0.21 0.47
P7 0.00 7.54× 10−5 0.00 0.02 0.05
P8 0.00 7.57× 10−5 0.00 0.02 0.05
P9 0.00 3.49× 10−7 2.93× 10−5 0.00 0.00
P10 0.00 3.49× 10−7 2.93× 10−5 0.00 0.00
P11 0.00 0.26 0.28 0.26 0.22
P12 0.00 0.47 0.97 0.97 0.86
P13 0.00 33.03 48.54 50.32 48.58
P14 0.00 31.69 43.09 39.96 33.60
P15 0.00 1.35 5.45 8.71 9.65
P16 0.00 1.19 4.11 6.14 6.67
P17 0.00 0.16 1.34 2.58 2.99
P18 0.00 0.05 0.18 0.42 1.21
P19 0.00 12.55 16.48 14.59 11.62
P20 0.00 12.99 15.47 9.57 2.71
P21 0.00 0.94 3.98 7.65 10.93
P22 0.00 0.55 0.79 0.80 0.76
P23 0.00 59.54 89.42 94.46 92.35
P24 0.00 57.62 81.80 79.56 70.48
P25 0.00 2.19 9.04 16.66 22.49
P26 0.00 2.29 10.19 20.74 31.39
P27 0.00 0.09 0.72 2.17 5.18
P28 0.00 0.10 1.00 3.15 6.08
P29 0.00 0.00 0.36 2.67 6.99
P30 0.00 0.11 1.52 4.83 8.77
P31 0.00 0.15 1.55 3.46 4.81
P32 0.00 0.14 1.38 3.28 5.19
P33 0.00 0.01 0.18 0.85 2.05
P34 0.00 0.00 0.01 0.02 0.02
P35 0.00 2.75× 10−5 0.00 0.00 0.00
P36 0.00 0.00 0.05 0.20 0.46
P37 0.00 2.78× 10−7 1.40× 10−5 9.05× 10−5 0.00
P38 0.00 0.39 3.05 5.92 7.36
P39 0.00 0.00 0.17 0.81 1.93
P40 0.00 1.93× 10−5 0.00 0.02 0.09
P41 0.00 1.93× 10−5 0.00 0.02 0.09
P42 0.00 0.01 0.43 1.91 3.72
P43 0.00 0.00 0.15 0.93 2.82
P44 0.00 0.37 2.36 4.82 7.03
P45 0.00 0.00 0.05 0.20 0.46

(D) Conversion factors

Parameter Value
v0 1.00
v1 87.83
v2 0.93
v3 45.96
v4 46.84
v5 21.37
v6 0.30
v7 0.25
v8 32.83
v9 0.78
v10 13.20
v11 26.17
v12 0.66
v13 91.92
v14 0.27
v15 50.23
v16 0.55
v17 82.83
v18 29.17
v19 0.24
v20 0.41
v21 0.87
v22 92.35
v23 0.97
v24 0.93
v25 0.41
v26 69.39
v27 0.76
v28 25.36
v29 53.76
v30 0.99
v31 8.23
v32 47.23
v33 11.07
v34 0.69
v35 69.66
v36 0.55
v37 0.29
v38 1.66
v39 0.08
v40 0.49
v41 72.41
v42 5.43
v43 0.60
v44 0.51
v45 32.81
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Table 5.12: Identifiability analysis in Ex. 3. The curvature matrix was calculated for the individual
datasets as well as for possible combinations. The heuristic principle 5.3 was applied. The table shows
the number of small eigenvalues and the parameters which contribute most to the space spanned by
low-informative eigenvectors. The single datasets have very low information content and call for many
additional peptide titrations. When combining two of the kinetics, the information content increases
significantly. When combining all of the kinetics, no additional peptide titrations are required.

replicate number of small eigenvalues biggest contribution
A 6 35, 41, 10, 22, 8, 17
B 6 10, 9, 44, 34, 27, 7
D 5 35, 10, 37, 8, 41
A,B 1 41
A,B,D 0 -
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Fig. 5.15: Inference results of Ex. 3 for Scenario 2 and 3. Posterior distributions of the conversion
factors of peptides 1 and 2 are shown. The outcome for the others is similar. To visualise the accuracy
and precision of the estimate, the correct values were subtracted of the parameter values on the x-axes.
(A) Density of parameter 1 when combining datasets A and B and fixing the value of v41. (B) Density of
parameter 1 when combining datasets A, B and D. (C) Density of parameter 2 when combining datasets
A and B and fixing the value of v41. (D) Density of parameter 2 when combining datasets A, B and D.
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5.4.2.2 Inference results

All inferences were run for 2e7 iterations. As expected, in the inferences of the cases which the rule

of thumb predicts to be problematic, we did not obtain convergence after a reasonable iteration time

(data not shown). Surprisingly, Scenario 1 did not converge over iteration time (visually as well as

Gelman–Rubin), although the rule of thumb did not indicate any difficulties. In Scenarios 2 and 3 the

chains did converge with mean
d=1,...,D

(R̂d) ≈ 1.06 and mean
d=1,...,D

(R̂d) ≈ 1.03, respectively. We will omit the

results of scenario 1 in the following, only reporting results of the two scenarios that converged. In both

scenarios, the posterior densities of all (remaining) conversion factors are normally distributed with

small standard deviations. Figure 5.15 shows the densities of peptides 1 and 2 as representatives reflecting

the inference outcome. The densities of the other conversion factors are qualitatively similar. We report

here the mean over the standard deviations of all inferred conversion factors to summarise the precision:

mean
d=1,...,D

(sd(vd)) = 1.33× 10−6 (Scenario 2) (5.8)

mean
d=1,...,D

(sd(vd)) = 5.26× 10−7 (Scenario 3). (5.9)

The estimated conversion factors of all (remaining) peptides are highly accurate and coincide with their

true values. The mean of the deviations in percent are

δv = 2.62× 10−8 (Scenario 2) (5.10)

δv = 1.14× 10−10 (Scenario 3). (5.11)

Likewise, the distributions of the peptide concentrations are very narrow for every replicate. In both

scenarios, the mass balance was satisfied to a high degree:

chain Scenario 2 Scenario 3

chain 1 −1.10× 10−10 −6.80× 10−12

chain 2 −6.78× 10−11 −1.97× 10−13

chain 3 −3.56× 10−10 −2.80× 10−15

(5.12)

The simulations were repeatable, but we did not study it in large scale.

5.4.3 Summary

Some large datasets have multiple bad directions and the rule of thumb suggests multiple peptide titra-

tions. Here, the inference can be successful when fixing the recommended conversion factors to their
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true values. Unfortunately, the information gain through many additional titrations sometimes might

not be enough for a successful inference in reasonable iteration time. Fitting together multiple datasets

simulated to represent measurements under different biological conditions sufficiently constrains the pa-

rameters to infer. With a certain number of kinetics, the need for additional peptide titrations can be

eliminated.



6 | Discussion

The aim of this project was to implement a computational pipeline to absolutely quantify all peptide

products of an in vitro protein digestion analysed by mass spectrometry. This chapter will summarise

the key findings and discuss the value of the results. We will review the limitations and recommend

implementations for improvement.

6.1 Discussion of the results

We here presented QPuB, a tool for absolute Quantification of Peptide products using Bayesian inference.

It is based on the principle of mass balance and the linear relationship between the peptide amount and its

MS signal response. The underlying algorithm applies Bayesian inference in a Markov Chain Monte Carlo

scheme to iteratively estimate the conversion factors enabling computational transition from measured

signal intensities to desired peptide amounts. To develop and calibrate the algorithm and to evaluate

its performance, it was tested on synthetic noise-free data where the correct solution is known. The

results indicate that QPuB is able to successfully infer the correct solution with high precision and

accuracy under the premise that sufficient information is conveyed by the data. If the data does not

sufficiently constrain the parameters, then QPuB cannot give a reliable estimate. As a proof of concept,

we demonstrated the QPuB pipeline on the simplest possible example of only two cleavage products. It

would be interesting to investigate the maximal possible precision the sampler can achieve. However,

for biological applications, this level of precision is usually not required. The same argument explains

why we judge the estimates to be satisfactory although the true value lies several standard deviations

away from the mean of the posterior (Fig. 5.2B, 5.4B, 5.9B, 5.13B). This small error in the conversion

factor values translates directly into the precision of the concentrations, and a deviation of the order of

e-15 pmol is usually not relevant in applications.

Investigation of the curvature of the likelihood surface seems to provide a way to anticipate whether

the data contain sufficient information to constrain the parameters for successful inference. Since the

89
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likelihood function is Gaussian the corresponding curvature matrix is independent of the parameters.

This allows us to assess the sensitivity of the likelihood around the optimum before running the inference

and gives an indication whether it is worth starting a simulation. This is convenient, because it saves

the user hours or days of computational runtime until they see that the system is not identifiable and

no unique estimate can be made. If the Hessian matrix has eigenvalues which are zero or very small

compared to the largest eigenvalues, this means that there is large variance along the direction of the

corresponding eigenvector. A deviation of the parameter value in a direction of low curvature leads to

no or small change in the likelihood value, making it difficult to find the optimal value. In case the

curvature matrix has multiple vanishing eigenvalues, the problem expands to multiple low-informative

directions which can be arbitrarily combined. With little information through the likelihood evaluation,

the chain is not guided and diffuses through the space spanned by low-informative directions. This

is the case in Example 2. Here, all products are of first order and none of them is further digested.

Therefore sibling peptides have the same concentration kinetics and the kinetics of the different peptide

pairs are very parallel to each other. Due to this linear dependence, the measurements over digestion

time do not provide new information. In Example 1, this dependence is not so strong because one of

the products is further digested, leading to a more diverse kinetics. Although the cleavage pattern of

Example 2 might not be very realistic, the same behaviour can occur in different, more complex cleavage

patterns like Example 3. The conversion factors of the peptides are not sufficiently constrained and

an infinite number of combinations yields the same sum of mass for a particular amino acid position.

The parameters are correlated; if the mass of one of the peptides is increased, another is decreased and

infinitely many parameter combinations satisfy the mass balance condition. This leads to the problem of

non-identifiability. The chains sample along the state space with nowhere to settle. Since the prior range

is a bounded uniform distribution, the chains will converge to a uniform posterior after many iterations.

Using the estimate of such an inference — a premature one as well as the converged — will lead to wrong

calculated peptide amounts in the sample. Thus, the identifiability analysis on the dataset a priori is a

valuable tool which can save time and prevent from ill-considered conclusions.

The analysis of the Hessian not only allows to appraise whether or not the parameters probably will

be identifiable, but also provides a framework to remedy the problem of non-identifiability. In general,

additional data can yield additional information which facilitates the inference. Identification of the low-

informative parameter directions with large variance and determination of the parameters that contribute

most to the space spanned by them allows to spot the parameters which are hardest to infer. One way

to obtain more information about these parameters would be to measure the conversion factor value

through titration of a synthetic equivalent of the corresponding peptide, as shown in Sec. 5.3.3. Fixing
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the parameter to a certain value reduces the variability between the parameters and therewith constrains

the value of the others, resulting in successful inference.

The identifiability analysis reveals that the curvature matrices of all examples shown in this thesis have

a large difference in magnitude between the largest and smallest eigenvalues. The machine precision of a

double float in R is 2.220446e-16. Therefore, the smallest eigenvalue will appear negligible in comparison

to the others and the likelihood in the corresponding direction appears very flat around its maximum. In

Example 2, the difference in magnitude is of the order e13 (Fig. 5.7), which leads to numerical difficulties.

The eigenvalues are so small, i.e. the curvature is so flat, that navigation in the respective directions is

not possible anymore. Even in Example 1, the difference in magnitude is already very large with an order

of e9. Nevertheless, the curvature is still large enough for the chain to find its way and the algorithm

succeeds to make use of the little information there is to return a reliable estimate. This is a considerable

strength of the algorithm.

Since the order of magnitude of eigenvalues of a matrix changes under scaling of the data, we use the

normalised eigenvalues, the proportion of variance explained, to assess identifiability. The analysis of

multiple datasets lead us to the observation, that the transition between identifiable and non-identifiable

should lie somewhere in the order of e-12. However, specifying a clear cut threshold when the parameters

are not constrained enough and QPuB will most likely fail to infer the correct values in reasonable

iteration time is difficult. The current implementation uses a threshold of 1e-12. If at least one normalised

eigenvalue is below this threshold, QPuB gives a warning. In Scenario 1 of Example 3, the threshold of

1e-12 identifies six low-informative directions. Yet, with six additional peptide titrations, the curvature

matrix still has three normalised eigenvalues in the order of e-12. However, fixing nine parameters to

their correct values also does not enable the chains to converge in the iteration time tested. On the

other hand, Scenario 2 still has one value of order e-12 but displays successful inference. In the border

area assessment of identifiability can become vague. Making definite statements in the order of machine

precision is tricky. Nevertheless, the heuristic principle builds a guideline that is easily applicable and

proved useful in practice.

Calculation of the conversion factor from the experimentally measured calibration curve will be subject

to some measurement error. First results indicate that fixing the parameter to an erroneous value results

in estimates whose posterior median deviates from the true value by the same relative error (Fig. 5.11).

The conversion factor estimate of the sibling peptide exhibits the same error that was input. This makes

sense because in the cleavage pattern studied they have the same concentration by construction. All

other cleavage products can be inferred to a higher accuracy. Further investigation should include other

cleavage patterns as well. This analysis was performed on noise-free data. How the error of the titration

propagates with the error in the kinetics needs to be investigated. Also how the error accumulates when
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multiple additional peptide titrations are advised can be subject to further studies. In a similar fashion,

the effects of an erroneous substrate titration on the inferred peptide concentrations could be studied.

These findings suggest that QPuB can only be as accurate as the data provided. If the user has an

estimation of the level of error of the titration performed they can size up the error of the inferred

conversion factors.

In general, the titration approach requires the user to measure the digestion kinetics, consult QPuB,

then purchase recommended peptide equivalents and perform the respective titrations. While kinetics

and titration should better be performed back to back for comparability, this procedure is theoretically

feasible in the application, if the synthesis of the inquired peptides does not take too long and no major

changes were made to the MS setup in the meantime (cleaning or calibration). However, the digestion

kinetics could also be remeasured. A practical limitation of the titration approach can be reached for

large and complex datasets where many additional peptide titrations are recommended. However, for

low numbers of low-informative eigendirections this is a relatively fast procedure to make the measured

dataset identifiable.

Another way to introduce more information to the system is to measure a second kinetics under different

biological conditions resulting in ideally the same set of peptide products. If the same peptide is produced

in the different digests, then the amount of information on its conversion factor in the data is increased.

Like the titration procedure, this provides more information about the unconstrained parameters, but

instead of just fixing a single value, many new data points now contribute to the calculation of the

likelihood. In addition, this strategy also provides more data on all the identifiable parameters as well,

therewith facilitating the inference even more. This could explain why Scenario 1 in Example 3 does

not converge in time even with nine additional peptide titrations, whereas it does with the additional

kinetic. We consider this in general the superior approach. If the user can, they are advised to provide a

second (or more) kinetics to the inference to decrease the number of additional peptide titrations needed.

Luckily, in many use cases, the researcher is already investigating two or more biological situations in

comparison, interested in the differences in peptide amounts under the two more conditions. Instead of a

purely relative assessment of abundance between the same peptides, with the application of QPuB they

would have the benefit of being able to compare abundances between different peptides as well. If, in

addition, they provide the substrate titration, even absolute amounts for all peptides in the digestions

are obtained in one go.
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6.2 On the way to real data

Our investigation indicates that QPuB is able to successfully infer the correct conversion factors if the

data is noise-free, satisfies mass balance and sufficiently constrains all parameters. However, in reality

measurements will be far from perfect. Further in silico investigation is advised to analyse the perfor-

mance on more realistic datasets.

The QPuB predecessor QME was developed to handle small conversion factors reflecting the small dy-

namic range of older mass spectrometers. Modern devices have a larger mass range and are potentially

able to detect peptides with conversion factors ranging from very small (∼ 10−4) to very large (∼ 104).

The examples investigated in this thesis used conversion factors in the range [0, 100], which already ex-

ceeds QME’s capability. Attempts to increase the conversion factor range to [0, 10 000] have been

made. Preliminary analyses indicate that the parameters are harder to infer if their values are dispersed

over a larger range. It might also be interesting to analyse how easy it is for the algorithm to distinguish

between two conversion factors with very similar values.

In this thesis, we made the assumption that all peptide products produced in the digestion are detected

and identified. However, in reality, this is rarely the case. For a discussion of this assumption see Sec. 6.4.

Studying the effect of missing peptides in vitro would be very important to draw conclusions about

applicability of QPuB to real data. Depending on the sensitivity of the mass spectrometer used, low

abundant peptides might escape the analysis. Due to poor ionisation, fragmentation or transport of the

ions, peptides can induce low signal intensities which can be indistinguishable from background noise.

Detectability of short amino acid sequences depends on the sensitivity and precision of the instrument as

well as the identification software used. Usually, peptides shorter than three amino acid residues escape

detection. Also randomly missing peptides should be studied [125]. Preliminary results indicate that the

effect of a missing peptide depends on the total number of peptides in the digest, on the position of the

peptide in the cleavage hierarchy, and its abundance. In a small digestion with few products, the mass

is largely off balance even with a single peptide missing. The larger the peptide pool, the smaller the

effect will be. However, in the setting of Example 3, removing even one out of 45 products can have a

considerable effect.

The substrate sequence used in this thesis was the latin alphabet, which is not very realistic. In

QPuB, the choice of characters used does not make a difference for the inference, as long as the sequences

can be compared and aligned. However, what would be interesting to investigate is the effect of amino

acid repetitions in the sequence. Some amino acids are more frequently observed in proteins than others

and the probability, that a repetition occurs in a sequence of length 26 is quite high. Of particular
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interest would be the simulation of a tryptic digest, where cleavage occurs C-terminally of lysine and

arginine residues. Preliminary results indicate that repetitions of single amino acids along the substrate

sequence do not hinder successful inference. Peptide products can most likely be uniquely aligned to the

substrate sequence because of the conventions used in the assignment step (if a peptide sequence is a

direct subsequence of the parental sequence, it is identified as canonical hydrolysis product). However,

repetitions of longer amino acid stretches inside the substrate sequence can lead to peptides of ambiguous

origin, which causes uncertainty in the mass balance calculation. In this case, inference can be hampered,

as preliminary analysis suggests.

Related to the study of trypsin is the study of other types of proteases. QPuB does not need the

information about which protease was used for the digest, it solely compares the sequences and uses mass

balance. In principle, the digestion of any kind of protease can be analysed. It only becomes problematic

if some peptide products are failed to be identified due to poor ionisation or inconsistent kinetic behaviour

and the argument comes back to the satisfaction of mass balance. A protease of interest is the endoplasmic

reticulum aminopeptidase (ERAP I), which is one of the key players in the MHC I antigen processing

and presentation pathway of the adaptive immune system. It ensures, that peptides have the optimal

length of 9 to 15 amino acids to be loaded onto the major histocompatibility complex (MHC) class I for

presentation to T cells. Aminopeptidases are exopeptidases. Exopeptidases cleave off single amino acid

residues or short fragments at the N- or C-terminus of their substrate. This constitutes a challenge of mass

loss that could be accounted for in QPuB. A former version of QPuB would take the information whether

the protease was an endo- or exopeptidase as input, then figure out the longest common subsequence of

the peptides produced and only consider the overlapping amino acid positions in the calculation of the

mass balance. However, this implementation was removed with the rationale that endopeptidases can

also produce short undetectable products as well as the aim to reduce required user input. It might be

helpful for the inference to reimplement this feature to at least factor in this expected systematic mass loss

where it is guaranteed to occur. Preliminary inference on simulated datasets mimicking exopeptidatic

digestions with all fragments detected seem to be successful for small number of products. For more

products, the curvature matrix reveals a number of low-informative eigendirections, that can be reduced

by following the approach of fitting together multiple kinetics under different biological conditions as

described in Sec. 5.3.4. Further investigation is needed. The impact of not detecting the single amino

acid products has not yet been investigated.

The main factor to investigate in silico is the question of data noise. In reality, the measurements of the

MS signal intensities over digestion time will be subject to random and systematic error. How the level of

noise influences the identifiability of the parameters and the quality of the resulting concentrations is of

major interest in regard of potential real-life applications. In the generation of synthetic data (Sec. 4.8.1),
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multiplicative noise can be added to the data as described in Eqn. (4.23). This would represent technical

noise from the device. Another possibility would be to include biological noise that depends on the

concentration and behaviour of the peptides in the mixture over time. Noisy data should also always be

provided in biological and technical replicates to account for some uncertainty. The impact of data noise

on the inference results should be investigated in practical terms — how will the level of noise effect the

success or uncertainty of the inference? — as well as from an analytical point examining the information

content change under different levels of noise. In the same context, the influence of the number of

replicates can be examined. When adding noise to identifiable examples, we expect the precision of

the estimates to decrease depending on the spread of the replicates, i.e. the more noise the wider the

posterior distributions. The accuracy of the estimate will probably depend on the mean of the replicates

and how much this represents the true values. In theory, the more replicates are measured, the more

their mean represents the true underlying value [177]. Some investigations on noise have already been

done. We generated noisy data using Eqn. (4.23) in two or more replicates for different levels of noise,

i.e. different values of σnoise. Preliminary analysis on the dataset of Example 1 shows, that the precision

and accuracy of the estimate decrease as the level of noise increases. A systematic analysis can reveal

the relationship between the noise level and the inference error. In non-identifiable datasets, it is possible

that the noise can have the effect of making the problem identifiable. This is what was observed when

adding noise to Example 2. Above a certain level of noise, the eigenvalues are raised above the heuristic

threshold of e-12. The low-informative directions are then determined by the measurement error. This

allows the chains to converge to a solution after the same number of iterations it did not converge in

before. However, the inferred conversion factors are not very precise nor accurate. Increasing the number

of replicates or time points measured in the data could increase the information in the system, allowing

for an improved inference. This however is strongly dependent on the shape of the kinetics and requires

further investigation. In the case of noisy data, single inference results are maybe not conclusive about

the underlying systematic. An analytical examination of the likelihood and its curvature matrix under

noise could be useful to gain a deeper understanding of the difficulties arising.

Once QPuB is calibrated to realistic synthetic data, the thorough in silico analysis can be followed

by calibration on experimental data. As opposed to the controlled environment of simulated data, the

correct conversion factors are not known in reality. To be able to benchmark the performance and

validate the results, the concentrations of the digestion products need to be experimentally obtained via

titration. The inferred concentrations can then be compared to the measured kinetics. The estimated

concentration range should overlap with the “true” values. After satisfying accuracy as well as precision

has been achieved for a sufficiently large number of datasets, QPuB can be applied in practice and serve

as a convenient tool to computationally quantify digestion products.
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6.3 Discussion of the implementation

A handy characteristic of the Bayesian approach is that it is built from modules which can easily be

replaced [145]. A different prior can be defined, the likelihood function can be adjusted and the proposal

algorithm can be substituted by a more efficient one. The current default prior of QPuB is a wide

but bounded uniform prior for every parameter. If the user has more information about the conversion

factors of certain peptides, they can replace the default. On the one hand, information could be gained

experimentally. Especially in the case of additional peptide titrations, it would make sense to define

a normal prior around the measured value instead of simply setting the value to a fixed number. On

the other hand, the prior can be informed by a former posterior. It should not be informed by another

inference on the same dataset. However, if sufficient timepoints or replicates have been measured, a subset

could be used to run a preliminary inference whose posterior can be used as prior of a subsequent run.

Also, since the conversion factors of the peptides should be the same under different biological conditions,

the inference on the dataset of one kinetics could be used to inform the prior of a second. Different prior

distributions can be tested to see how they affect the resulting posterior. Preliminary results show that

if the chosen prior range of a parameter is too narrow such that the true value is not covered, then the

estimates of all conversion factors are affected to make up for this error. A drawback of the uniform prior

as defined is that small values below 1 are less probable to be sampled than larger values. A commonly

chosen prior for scaling parameters like the conversion factors is a logarithmical uniform prior.

The likelihood function can be adjusted to incorporate new features. For example, future work could

deal with the violation of the mass conservation. Peters et al. [37] punished mass gain by defining an

unsymmetric distance metric that weights an unlikely mass gain more than a (systematic) mass loss.

A former QPuB implementation accounted for this in the definition of the likelihood. With an additional

scaling parameter, the standard deviation of the normally distributed likelihood would be narrowed for

the case of mass gain. Initially, this punishment parameter was set to a fixed value, that was later

replaced by a nuisance parameter to be inferred. For the inference on noise-free datasets, this parameter

did not seem to make a difference in the output, so it was omitted again. For noisy data, it could

be reimplemented. However, since this punishment also restrains the possibility of mass gain due to

measurement error instead of true mass error, this concept might have to be reconsidered.

There is no one-size-fits-all inference algorithm. In the development of QPuB we went through the imple-

mentation of a range of different MCMC algorithms. We started with the basic Metropolis–Hastings

algorithm [137, 138, 139], which required cumbersome tuning of the proposal and did not converge in

reasonable iteration time even for low-dimensional problems. This issue was solved through adding an

adaptive scheme in the form of adaptive Metropolis [160, 189]. We went through implementations of the
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Rao-Blackwellised AM algorithm (Alg. 3 in [190]), introducing global adaptation (Alg. 4 in [190]), as well

as a componentwise approach (Alg. 6 in [190]), but none performed to satisfaction. A colleague worked

on a Hamiltonian Monte Carlo approach, which is promising for high-dimensional problems but ran into

problems in our model.

Finally, we decided to take advantage of the learning capacity of population-based sampling. By taking

into account the states of multiple chains in parallel, a more efficient proposal can be achieved. The

Differential Evolution Markov Chain algorithm (DE-MC) by Ter Braak [41] looked promising for a suc-

cessful quantification of up to 100 peptides. The need to run 50 to 200 chains in parallel, however, seemed

impractical. In follow-up publications, the authors managed to reduce the number of chains required to

a minimum of three by incorporating features like sampling from an archive of past states and increas-

ing the variability in the proposal step [42, 43]. They successfully applied the DREAM algorithm to

high-dimensional, multi-modal and nonlinear target distributions, respectively [43].

In the current implementation of QPuB, some adjustments can be done to increase the performance. The

default in QPuB are start values of the three chains which are dispersed over the prior region, namely

from the lower and upper bound and the middle point respectively. We also implemented random

initialisation or user-defined starting positions. The repeatability analysis in the results section was

performed 100 times starting from the same initialisation, because this is the default setting. The analysis

might be more representative if started from random start values. However, in our tests on noise-free data

it did not seem to make a difference where to start sampling, the true solution was reached every time.

The number of parallel chains run by the sampler is set to three by default. This is recommended by

the DREAM literature, since the time it takes to reach convergence increases drastically the more chains

are run [42]. However, for a large number of peptides in the sample, it could be beneficial to increase

the number of chains [45]. An advantage of multi-chain algorithms is their ability to parallelise [144].

Because the proposal works on past states instead of the current ones, it can be distributed to multiple

processors [44]. This can substantially decrease the algorithm runtime when many chains are used to infer

many parameters. A boost in convergence rate could be achieved by tuning the proposal function. In

the parallel direction update, to increase the efficiency, the gamma jump rate could be adjusted. The

factor β0 can be tuned to improve the acceptance rate [44]. The jump rate γs in the snooker update is

currently uniformly sampled like in [42]. However, they remark that this might be suboptimal for normal

target distributions. Therefore, fixing γs = 2.38/
√
2 could be an option. The occasional unit gamma

jump is performed every 10 iterations [41]. This could be increased to a frequency of every 5 iterations

like in [43] and onwards. Surprisingly, although the authors recommend a unit jump distance of 0.98

[41], their implementations use a jump distance of 1 [44, 45]. Additionally, the noise factors e1 and e2

could be tuned. There are different default values used in the different DREAM publications. In the



98 Ch. 6. Discussion

current implementation of QPuB, the noise factor e2 was set to zero. This is not a good choice, since

this constant ensures ergodicity of the chains, i.e. that the chains can potentially reach every part of the

state space. The definition of dispersed starting values should make up for this mistake. Nevertheless,

it should be corrected in the next generation implementation. The frequency of the occasional snooker

update could be optimised. Preliminary results indicate that for simple examples the snooker update

might even hamper the convergence speed. More recommendations on improving the snooker proposal

are given in [42]. In higher dimensions, it can be beneficial not to update all parameter values at once,

but rather only a subset. In what the authors call the “crossover” step, some parameters are chosen

randomly to stay at their current position instead of being updated by their proposal candidate [41].

This procedure can further be optimised by a self-adaptive crossover step [43]. This step increases the

variability in the proposal and should result in a more effective search of the state space resulting in faster

convergence.

The convergence is currently accessed using the Gelman–Rubin criterion. However, in practice, we

always set the iteration number to a large fixed value and judge convergence based on the graphical output.

In our experience, the threshold of 1.2 recommended by Gelman and Rubin is too generous. We observed,

that the posterior histograms are not converged to normal distributions yet and need to run longer.

For automated convergence monitoring, a lower threshold would be advisable. However, an automated

stopping criterion can be unreliable [150]. QPuB would benefit from consulting a second diagnostic.

Vrugt et al. use a combination of different criteria to decide whether convergence has been achieved

[44]. Apart from evaluating convergence, much research has also been done to accelerate convergence

[150]. In general, the efficiency of QPuB should be improved. For simple examples it takes quite long

until the chain is fully converged. The correct order of magnitude for every conversion factor is found

relatively fast, but it takes many more iterations to refine the estimate. In [44], the authors list the

number of samples needed for the DREAM algorithm to reliably infer the parameters of a “not too

complicated” (quote [44]) posterior distribution, after burn-in has been subtracted. According to this

list, for five to ten parameters only 5 000–10 000 iterations should be sufficient. This guideline is given

for the DREAM algorithm, so for the more efficient DREAM(ZS) this should be even less. One reason

for this under-performance is the large thinning parameter of QPuB, which was chosen to be 1 000 by

mistake. The originators of the algorithm recommend a thinning rate of 10 [42, 45]. With a value too

large, the dominance of the “fake” archive is overcome only after 1000 ·10d iterations, which means 70 000

for Example 1. Most importantly, the thinning rate should only affect the convergence rate and not the

final outcome, i.e. we expect the results of this thesis to be qualitatively the same. If the chains need

too many iterations to converge, QPuB will run into memory issues. Since every iteration is saved to

the chain object (4.15), it soon becomes a very large array, especially if many parameters are inferred
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(Ex. 3 with 46 parameters and three chains: 60 MB). However, also the authors experience a rather low

acceptance rate of the DREAM(ZS) algorithm for some examples [168].

If the above measures do not sufficiently improve the efficiency of the algorithm, a next-generation QPuB

could employ a more advanced member of the DREAM family. The MT-DREAM(ZS) algorithm [168] is

built on the former DREAM(ZS) with the additional feature of multi-try sampling [191]. The efficiency

of the proposal step is increased drastically by proposing multiple candidates at once (e.g. five), of which

the best is selected based on their posteriors and forwarded to the Metropolis acceptance step, which

itself is modified in a complex fashion. The generation and evaluation of a high number of proposals is

computationally demanding, but this is compensated by “spectacular performance” (quote [168]) due to

distributed computing. The authors emphasise the algorithm’s suitability for high-dimensional problems

and apply MT-DREAM(ZS) to dimensions up to 241 parameters with fast convergence time as well as

overall runtime.

6.4 Discussion of the general assumptions

A main assumption underlying the QPuB framework is the linearity of the calibration curve. Peptide

amounts and the resulting measured signal response are related, but whether the relationship is a true

linear one cannot be guaranteed. Physico-chemical properties of the peptides can influence their behaviour

in the mass spectrometer and therewith the resulting signal intensities measured. Signal suppression by

dominant peptides or saturation effects for large abundances can distort the linearity [37, 125]. The second

assumption used is the principle of mass conservation. In the closed and controlled environment of in vitro

analyses, theoretically the law of mass conservation holds. Every amino acid in the sample preparation

must be preserved over the course of the experiment. With a complete peptide coverage, quantification

of the digestion products should in theory be possible. However, in reality mass conservation cannot

be guaranteed [37, 125, 192, 193]. There is a potential for systematic loss of mass at every step of the

experimental pipeline. Even with well controlled experiments, careful sample handling and calibration of

laboratory equipment, sample preparation can be error-prone due to environmental conditions or small

variations. Traces of peptides will remain in the laboratory equipment like pipettes and tubes, as well

as in the instrument, e.g. the chromatography column [personal communication]. With the choice of

high-resolution instruments and optimisation of the MS process, uncertainty can be further limited but

not excluded. The nature of a peptide influences its ionisation and transportability through the mass

spectrometer. Fragmentation efficiency and resolution of the instrument play a role. Peptides with

strong signals can lead to detector saturation that masks peptides of lower intensity. Short peptides

of length smaller than three amino acids usually escape detection. The Fourier transform required in
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modern orbitrap devices can also be a source of error. Even after careful calibration, random noise of

electrical origin and systematic effects in the measurements remain, like background noise and other

interfering signals of contaminants [192, 194, 28]. After the measurements, the postprocessing steps can

further introduce uncertainty. Data processing can lead to errors, especially when not performed in an

automated fashion. The most important part in the MS workflow is the peak assignment. It is a complex

procedure that depends on many factors. Filtering and smoothing steps can be performed to facilitate

effective feature detection [192]. Reliable peptide identification depends on the method used, the quality

and quantity of the database searched and the false discovery rates [192]. In this step, even large peptides

can remain unidentified because of the mass range or modifications [39]. Subsequent data filtering steps

can further decrease the number of peptides in a dataset. In summary, many factors in the MS-based

peptide identification pipeline can lead to a violation of mass conservation [37, 125, 192, 193]. The impact

of missing products on the peptide quantification using QPuB needs further investigation. However, with

the advancement in mass spectrometry technology leading to increasing precision and sensitivity, both

the assumptions of mass conservation and linearity become more and more justified.

6.5 Applicability of QPuB

QPuB is an easy to use software package. It is independent of the operating system and only requires

the installation of the R software environment and relies on a few R packages. Currently, the QPuB

pipeline is started using a single command line from the terminal. However, it can also be run from

within R or RStudio. Multiple runs can be started using convenient bash scripts. The program comes

with a lot of default settings for the layman user. The only mandatory input are CSV files with the signal

intensities of the substrate and products in replicates and the peptide sequences. To calculate absolute

peptide amounts, the substrate titration data and the amount of substrate loaded in the digestion must be

specified. Otherwise only normalised signal intensities are returned, which allow for relative quantification

between peptides. QPuB does not require any other specific settings, especially no instrument specific

settings that have to be laboriously calibrated prior to application, as is the case for its predecessor

QME by Mishto et al. [39]. To change the default settings, QPuB comes with an input text file, where

output preferences and algorithm parameters can be specified. The advanced user has the opportunity

to customise the code, as modules can easily be adjusted. Thanks to its flexible implementation, QPuB

has the potential to become a universal tool which can be applied to any in vitro enzymatic digest.

The maximum number of peptide products that could be analysed depends on the algorithms ability for

high-dimensional parameter inference and the computational hardware available. With the advancement

in mass spectrometry hardware, the number of products measured will increase steadily. For common
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laboratory techniques, absolute quantification of many peptides becomes expensive and laborious [117].

A well-designed computational approach could keep the experimental work to a minimum and indicate

which experimental measurements would be most beneficial to obtain the information desired. The

computational cost depends on the hardware and inferential method used. With the advancement in

computer technology, algorithms can become more efficient, saving resources and runtime. QME in

its current implementation struggles with high-dimensional data [personal communication]. For large

numbers of peptides in a digest, label-free quantification can be applied. Unfortunately it only allows for

relative quantification between the same peptides in different samples [21]. With QPuB it is possible to

compare relative abundances of different peptides, without additional experimental effort. With minimal

effort in the form of a substrate titration, QPuB brings the great advantage of easy absolute quantification.

Another advantage compared to QME is that QPuB returns a full posterior distribution of possible

parameter values instead of a single point estimate. The conversion factor distribution can be summarised

into a single value and the spread of the distribution gives an estimate on the uncertainty in the data.

This is particularly useful for noisy data or when the amount of data is limited. In addition, the current

implementation of QME struggles to find global solutions and might get stuck in a local optimum [personal

communication]. The DREAM(ZS) algorithm promises to be robust to that [43]. In summary, the QPuB

framework offers an easy and reliable approach to relative and absolute quantification with minimal

experimental effort.

6.6 The greater picture

Proteases are more than non-specific degradative enzymes. Through regulation of protein activity they

control biological processes from the control of the cell cycle progression to the activation of the immune

system [195, 196]. Analysing the dynamics of the degradome, i.e. the proteases, their substrates and

inhibitors [197, 195], as well as the resulting peptidome is important to understand their role in the cell.

Identification and quantification of the peptide pool generated by the proteases plays a major part in

understanding the protease’s cleavage preferences and how it is affected by various factors. Inside cells,

proteases are usually not acting in isolation and much more information is contained in the greater system

they are part of. From protein synthesis to degradation, subject to activation and inhibition, following

spatial and temporal distributions, proteases are highly dynamic. Many proteases can digest a variety

of substrates and a complex connection and interaction between different types of proteins results in a

hierarchical synergy that asks to be understood [195]. Abundances of target proteins of proteases and

their degradation products play a crucial part in this process. Quantitative information provided by

QPuB can be useful in these studies.
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Quantitative modelling provides a way to develop a deeper understanding of small scale processes like

molecular mechanisms of individual processes up to their influence on large-scale cellular networks

[198, 199]. A prominent example is the MHC I antigen processing and presentation pathway. A network

of different proteases, transporters and assistant protein complexes acts together as part of the adaptive

immune system. Antigens in the cell plasma are digested by the proteasome and trimmed by aminopepti-

dases into smaller fragments. These are transported to the endoplasmic reticulum, where they are further

degraded by ERAP to fit the binding groove of the major histocompatibility complex I. This complex is

finally shuttled to the cell surface via the common secretory pathway, where T cells recognise the load

and potentially initiate an immune response [200, 201, 202, 203, 79, 204, 4]. A deeper understanding of

this pathway can be gained through the development of models [205, 206, 38, 207, 208, 209, 210, 211,

212, 213, 214]. Quantitative modelling would not only allow to understand the specificity and turn-over

of the proteases involved but also potentially predict which of the possible MHC I bound peptides – both

non-spliced and spliced – will be produced by the proteasome and presented on the cell surface [215].

The absolute amount of peptides presented on MHC 1 is one of the crucial factors for T cell activation.

QPuB could help to analyse the dynamics of the proteases in vitro [216].

As mentioned in Sec. 2.2.2, proteasomes are not only able to catalyse peptide hydrolysis but are also

involved in transpeptidation that creates spliced peptides. This was an interesting discovery [73] and

caused many groups to investigate the frequencies of spliced peptides and their biological relevance

[20, 217, 218, 219, 220, 221, 222, 223, 224]. QPuB could provide a layer of quantitative information on

spliced peptides that could advance this area of research. Another aspect in this context is the proteasome

specificity for cleavage and splice sites along a substrate sequence. It was previously demonstrated, that

the different catalytically active β subunits of the 20S proteasome and its isoforms exhibit differences in

quantities of the generated peptide products. A quantitative investigation of the proteasome dynamics

in the presence of inhibitors for the specific subunits could elucidate this [225, 209].

The small size and high specificity of peptides makes them ideal targets for various medical treatments

against food allergies, diabetes and cancer, among others [5, 6]. In immunotherapy, mutation-derived

peptide vaccines can be used to trigger a T cell response [226, 227, 228, 229]. T cell transfer therapy

aims at multiplying T cells specific to tumor-associated antigens [230, 231]. These and other approaches

require the identification of potential peptide candidates that are efficiently produced by the proteasome

[232, 233]. Quantification of peptides in an in vitro digestion via QPuB could largely facilitate this

endeavour [118].



7 | Conclusions

Quantification of peptide products is an important step on the way to understanding protease specificities

and dynamics. However, measurements obtained by mass spectrometry of in vitro digests only provide

relative quantification of same peptides in different samples. In order to obtain absolute quantities, lab-

oratory techniques involving synthetic peptides have to be applied, which can become expensive and

laborious for large peptide mixtures. In this thesis, we proposed a label-free quantification pipeline called

QPuB, Quantification of Peptides using Bayesian inference, which computationally infers the peptide

amounts from the MS signal intensities with minimal experimental effort. Based on the principle of

mass balance and the linear relationship between the peptide amounts and the corresponding MS signal

intensities, a conversion factor for every peptide is estimated, that allows to calculate normalised signal

intensities which can be used for relative quantification between different peptides in a sample. If in

addition the substrate titration is provided, then absolute quantities of all peptides generated can be

obtained. For this, QPuB employs Bayesian inference with an underlying Differential Evolution Markov

chain algorithm, which returns full posterior distributions for the conversion factors. These provide a

best guess about the conversion factors and also represent the uncertainty of the estimate. With these

distributions, the concentration kinetics for each individual peptide can be calculated. In its current

implementation, QPuB is able to reliably infer the correct parameter values for a variety of noise-free

synthetic datasets that satisfy the mass balance condition. If the measured data provided is not informa-

tive enough and does not sufficiently constrain the parameters, then more information can be provided

in the form of additional peptide titrations or more signal kinetics measured under different biological

conditions. Once QPuB has been validated on experimental data, we believe that it has the potential to

add a valuable alternative to the pool of quantification techniques.
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