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Chapter 1

Introduction

A large number of real-world situations can be modelled in a fruitful way as a
graph G = (V , E) that is characterised by its vertex set V and its set of edges E, that
form connections between the vertices.

Indeed, in what is commonly cited as the earliest work in graph theory [BM76,
p. 51] the reduction of a complex problem to a simple structure made up of vertices
and edges was key to its solution. In 1736 Euler showed that it is impossible to
find a way to walk through the different parts of the city of Königsberg such that
one ends up where one started and crosses each of the seven bridges over the river
Prege exactly once. Euler realised that in order to analyse this problem of the seven
bridges of Königsberg most of the characteristics of the walk through the city can be
abstracted away: The only relevant piece of information is which bridges connect
which parts of the city.

Often it is useful to assign additional attributes to the vertices and edges of a
graph to model supplementary properties of the vertices and their connections. This
results in a weighted graph.1

Many real world applications involve graphs that are so large or so complex that it
becomes increasingly difficult to understand these objects in their entirety. It then
becomes attractive to try and model such graphs as random objects so that one may
analyse their typical behaviour.

The mathematical theory of random graphs is generally considered to have been
founded by Erdős and Rényi in a series of papers published in 1959 and the early
1960s [ER59; ER60; ER64; ER66]. Indeed, one of the most well-known and well-
studied random graph models, a graph with n vertices in which each pair of vertices
is independently connected with a fixed probability pn, is usually known as the
Erdős–Rényi random graph, even though Gilbert introduced this model at around
the same time [Gil59] and the formulation of the random graph investigated by
Erdős and Rényi is slightly different.

Even sixty years after its inception the Erdős–Rényi random graph remains one of
the standard models in random graph theory. The simple homogeneous structure
of Erdős–Rényi random graphs lends itself particularly well to analysis, but real-

1Many of the well-known and well-studied problems in graph theory involve only weights on edges,
so it is not uncommon to define weighted graphs as having weights only on edges [cf. BM76,
§ 1.8; Wil96, § 8]. We will be able to deal with weights on both edges and vertices.
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Chapter 1 Introduction

world examples of graphs are not always this uniform. The class of inhomogeneous
random graphs, in which the probability that an edge is present between two vertices
depends on an attribute of the vertices, aims to generalise the approach of the Erdős–
Rényi model to obtain more irregular graphs. Inhomogeneous random graphs were
introduced by Söderberg [Söd02] and studied extensively by Bollobás, Janson and
Riordan [BJR07]. For a general overview over basic properties of Erdős–Rényi graphs,
other graph models and inhomogeneous random graphs we refer to two books by
van der Hofstad [Hof18; Hof23].

In this thesis we will focus on a particular subclass of these inhomogeneous
random graphs, namely those with sparse rank-one kernels. This class of inhomo-
geneous random graphs is related to the Chung–Lu model [CL02]. In the Chung–Lu
model each vertex v has a weight Wv ∈ (0,∞) that determines its connectivity. Two
vertices v and u are independently connected with probability WvWu/(

∑
u′Wu′)

(assuming maxv W2
v <

∑
uWu so that this always yields a probability). The average

degree of a vertex v in the Chung–Lu model is approximately equal to Wv . This
allows for a greater inhomogeneity in the graph when compared to the Erdős–Rényi
model by choosing the Wv differently. Since every vertex has on average Wv neigh-
bours, the total number of edges in the graph scales roughly like n (whereas the
total possible number of edges in a graph with n vertices would scale like n2). That
is the reason why we call such a graph sparse.

The main aim of this work is to establish a central limit theorem for functions
on weighted sparse rank-one inhomogeneous random graphs. This result extends
recent work by Cao [Cao21] for the Erdős–Rényi model with weights only on edges.

While we formulate this theorem generally for functions on weighted graphs
satisfying a certain good local approximation property, we will note that most
interesting applications of this theorem will probably be related to combinatorial
optimisation problems on weighted graphs. In a combinatorial optimisation problem
we look for a particular substructure in the graph that is optimal according to a
certain measure. This definition is sufficiently general (or vague) to beg for an
example.

Consider a graph whose vertex set is a set of cities. Two cities u and v are
connected via an edge if there is a road that takes one from u to v without visiting
another city w on the way. The weight associated with that edge is the length of
the road from u to v . In the shortest path problem we look for the shortest possible
route to get from a city u to another city v , i.e. such that the sum of the length of
the roads on which we reach our destination is minimal.

Another classical problem is the maximum matching problem, in which vertices
are paired up with at most one partner along edges in such a way that the sum of
weights of the edges is maximal. For this problem vertices may represent people on
a party and there is an edge between two people if they share a common interest.
The weight of an edge might model the length of the conversation between the two
people. We are then interested in pairing up people so that the total conversation
time is maximised.
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In the Erdős–Rényi setting the first-order behaviour of a number of combinatorial
optimisation problems is known [e.g. BGT81; GNS06; KS81]. There are also results
for much more general sparse graph settings [BLS13]. A number of results are also
known for the mean field model, where the underlying graph is a complete graph
with i.i.d. edge weights, which reduces to an Erdős–Rényi setting for certain (relaxed)
optimisation problems [e.g. Ald01; Wäs10; Wäs12]. As far as we are aware Cao’s
[Cao21] work provided the first general central limit theorem for these problems in
the Erdős–Rényi setting. Our work aims to generalise this underlying setting.

This thesis is structured as follows. In Chapter 2 we introduce some basic notions,
present the general setting in mathematical detail and state and discuss our central
limit theorem (Theorem 2.3.5). Chapter 3 is dedicated to the analysis of the local
structure of sparse rank-one inhomogeneous random graphs. These results are
required to establish the central limit theorem in our setting, but they may also
be of independent interest. We investigate the properties of the neighbourhoods
of vertices in some detail and show that they are generally only weakly correlated.
We also establish explicit coupling results between the local neighbourhood of a
vertex in the graph and a limiting Galton–Watson tree. In Chapter 4 we will follow
Cao’s strategy and prove the central limit theorem via the (generalised) perturbative
Stein’s method introduced by Chatterjee [Cha08; Cha14]. We briefly present this
method in Section 4.1 and then put it to use in the remainder of that chapter.
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Chapter 2

Setting and Main Result

2.1 Basic notions

From now on the set of natural numbers includes 0 such that N = {0,1, . . .}. We
define N+ = N \ {0} = {1,2, . . .}.

In our calculations C will denote a numerical constant whose value may change
(usually increase) from occurrence to occurrence.

We will briefly introduce some more definitions from graph theory. For a general
introduction to the subject we refer the reader to works by Bondy and Murty [BM76],
Bollobás [Bol98] and Wilson [Wil96].

From now on we only consider undirected graphs. In this setting a graph G =
(V , E) is an ordered pair of two disjoint sets such that E is a subset of V (2) = {{v,u} :
v,u ∈ V}, the set of subsets of V with two elements. In an undirected graph an
edge e ∈ E that connects the two vertices u,v ∈ V does not have a direction and is
written as e = {u,v} = {v,u}. We will usually assume that V is finite, but at times
we may allow ourselves to consider graphs with a countable set of vertices V .

The following concepts arise by considering the relation that a single edge can
have with vertices.

Definition 2.1.1 (Adjacency, incidence). Let G = (V , E) be a graph.
Two distinct vertices v,u ∈ V are adjacent or neighbours if {v,u} ∈ E, i.e. if there

exists an edge that joins v and u. Two distinct edges e, e′ ∈ E are adjacent if they
have a vertex in common, i.e. if there exist vertices v,u,u′ ∈ V such that e = {v,u}
and e′ = {v,u′}.

An edge e ∈ E is called incident to a vertex v ∈ V if there exists a vertex u ∈ V
such that e = {v,u}. In this case we will call v and u endpoints or end vertices of e.

We can use edges to move from one vertex to another.

Definition 2.1.2 (Walk, trail, path). A sequence of edges e1, . . . , en ∈ E is a walk of
length n if there is a sequence of vertices v0, . . . , vn ∈ V such that ei = {vi−1, vi}.
In other words a walk of length n is a sequence of n edges that are adjacent to
each other or identical. We will refer to the vertex v0 as the start vertex of the walk
and vn as its end vertex. We say that this walk is a walk from v0 to vn.1

1It should be noted that we are working with undirected graphs. As such the choice to call v0 start
vertex and vn is somewhat arbitrary, since the walk can be traversed in any direction.
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Chapter 2 Setting and Main Result

A walk is called a trail if all its edges are distinct. A walk is called a path if all its
vertices are distinct. (This immediately implies that all its edges are distinct.) A walk
for which the sequence of vertices satisfies v0 = vn is called closed and referred to
as a cycle.

The graph G is called connected if for any two distinct vertices v,u ∈ V there
exists a walk from v to u.

An important subclass of graphs, in particular in the realms of sparse random
graphs, is the class of trees.

Definition 2.1.3 (Tree). A graph G = (V , E) is a tree if it is connected and contains
no cycles.

It is convenient to think of trees as ‘starting’ or ‘growing’ from somewhere.

Definition 2.1.4 (Rooted graphs, rooted trees). A graph G = (V , E) with a distin-
guished vertex v∗ ∈ V , which we may call the root, is called a rooted graph.

Of particular interest are rooted trees. We usually denote the root of a tree by ∅.

Unless otherwise noted, all trees we consider will be rooted.
Every tree can be embedded into the following infinite object, which we may use

to conveniently refer to vertices (individuals) in trees.

Definition 2.1.5 (Ulam–Harris tree). Set N0
+ = {∅} and let the Ulam–Harris tree be

U =
⋃
n∈N

Nn+,

i.e. the set of all finite words over the positive natural numbers.
For an individual i = (i1, i2, . . . , ik) ∈ U we call (i, j) = (i1, i2, . . . , ik, j) ∈ U,

j ∈ N+, a child of i. Hence the parent of an individual i = (i1, i2, . . . , ik−1, ik) ∈ U
is (i1, i2, . . . , ik−1) ∈ U.

We obtain a tree structure on U if we draw an edge between every child and its
parent.

Call |i| = |(i1, i2, . . . , ik)| = k the generation of i ∈ U and set |∅| = 0. Furthermore,
we define an order on U by setting i ≺ i′ if

(i) |i| < |i′| or

(ii) |i| = |i′|, which implies i = (i1, . . . , ik) and i′ = (i′1, . . . , i′k) for some k ∈ N+,
and there is a j ∈ {1, . . . , k} such that iℓ = i′ℓ for all ℓ ∈ {1, . . . , j − 1}
and ij < i′j .

It is easy to see that ≺ is transitive and that it is total, i.e., that for any two individu-
als i, i′ ∈ U we have either i = i′, i ≺ i′ or i ≻ i′.

12



2.1 Basic notions

On the whole, these conventions imply a breadth-first way of thinking about the
tree structure.

We may at times want to consider only a part of the graph or remove vertices from
it. The following definition makes precise which objects we obtain in those cases.

Definition 2.1.6 (Subgraph, induced subgraph and ‘reduced graph’). Let G = (V , E)
be a graph. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.

Let V ′ ⊆ V be a subset of vertices of G. Then the subgraph of G whose vertex set
is V ′ and whose edge set contains all edges in E whose endpoints both lie in V ′ is
denoted by G[V ′] and called the subgraph of G induced by V ′.

We write G − V ′ for G[V \ V ′], which we may call G reduced by V ′. Then G − V ′
is obtained from G by deleting all vertices in V ′ and all edges adjacent to those
vertices.

Analogously, we can also induce subgraphs with edge sets. Let E′ ⊆ E be a subsets
of edges of G (which could also be a set of paths or walks). Then the subgraph of G
whose edge set is E′ and whose vertex set contains exactly all the endpoints of edges
in E′ is denoted by G[E′] and called the subgraph of G induced by E′.

We write G − E′ for G[E \ E′], i.e. the subgraph of G for which we removed all
edges of E′.

We will often write G − v for G − {v} and G − e for G − {e}.
Examples of the definitions from Definition 2.1.6 are shown in Fig. 2.1.

1

2 3 4

5 6 7 8

9

(a) G

1

2 3 4

8

(b) G[{1,2,3,4,8}]

1

2 4

5 6 7 8

9

(c) G − 3

Figure 2.1: (a) A graph G with vertex set {1, . . . ,9}, (b) the subgraph G[{1,2,3,4,8}]
induced by the vertices {1,2,3,4,8} and (c) the graph G − 3.

One of the aims of Chapter 3 is to show a coupling between the local neighbour-
hood of a vertex and a limiting tree object. We first define what we mean by the
local neighbourhood of a vertex.

Definition 2.1.7 (Local neighbourhood). Let G = (V , E) be a graph. For a vertex v ∈ V
and level ℓ ∈ N denote by Bℓ(v,G) the (local) neighbourhood of the vertex v up to
level ℓ in the graph G. Formally, we define Bℓ(v,G) as the subgraph of G induced
by the union of all paths starting in v that are no longer than ℓ steps.

Unless otherwise noted, we usually regard Bℓ(v,G) as a rooted graph with root v .

13
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Chapter 2 Setting and Main Result

When the context is clear, we will sometimes drop the reference to the underlying
subgraph G and will just write Bℓ(v) instead of Bℓ(v,G). If we define the graph
distance dG(v,u) as the smallest number ℓ such that there is a path of length ℓ
joining v and u, the ℓ-neighbourhood around v is the ℓ-ball around v with respect
to the graph distance. It is tempting to draw Bℓ(v) as a ball around the vertex v in
a drawing of G (as is shown in Fig. 2.2a), but since the distance notion of the graph
distance need not agree with the usual notion of distance in the space in which we
draw G, this is rarely possible. We will therefore usually think of Bℓ(v) just as a
rooted graph (Fig. 2.2b).

1

2 3 4

5 6 7 8

9

(a) G and B1(3, G)

3

1

2 4

7 8

9

(b) B2(3, G)

Figure 2.2: A graph G with vertex set {1, . . . ,9}. The 1-neighbourhood of 3 is high-
lighted in blue on the left. The 2-neighbourhood of 3, B2(3, G), is shown
on the right.

It is convenient to have a notation for the set of vertices in a local neighbour-
hood Bℓ(v,G) of a vertex v and for the set of vertices at a certain level.

Definition 2.1.8. Let G = (V , E) be a graph. For a level ℓ ∈ N and a vertex v ∈ V
let Sℓ(v,G) be the set of vertices in Bℓ(v,G). Furthermore, set S−1(v,G) = ∅.

Then let
Dℓ(v,G) = Sℓ(v,G) \ Sℓ−1(v,G) for ℓ ∈ N

be the vertices of Bℓ(v,G) at level ℓ.

The local neighbourhood can be generalised from the neighbourhood of a single
vertex to the neighbourhood of a set of vertices.

Definition 2.1.9. Let G = (V , E) be a graph and let V ⊆ V be a set of vertices. Then
we let Bℓ(V , G) be the subgraph of G that is induced by the union of all paths
from Bℓ(v,G) for v ∈ V . The set of vertices in Bℓ(V , G) is given by

Sℓ(V ) =
⋃
v∈V

Sℓ(v,G)

and we set
Dℓ(V , G) = Sℓ(V , G) \ Sℓ−1(V , G)

(with the convention S−1(V ) = ∅).

14



2.1 Basic notions

By this construction we only have Dℓ(V , G) ⊆
⋃
v∈V Dℓ(v,G). Equality is only

guaranteed if the Sℓ−1(v,G) are disjoint.
For ℓ = 1 the set D1(v,G) is the set of (direct) neighbours of v and gives rise to

an important quantity of the vertex v : its degree.

Definition 2.1.10 (Degree). Let G = (V , E) be a graph and fix a vertex v ∈ V . Then
the degree of the vertex v is the number of its neighbours

|{u ∈ V : {v,u} ∈ E}| = |D1(v,G)|.

Formally, we have defined graphs as ordered pairs of two disjoint sets. The notion
of equality that this induces on the set of graphs is not particularly enlightening, so
we introduce the notion of a graph isomorphism.

Definition 2.1.11 (Graph isomorphism). Let G = (V , E) and G′ = (V ′, E′) be two
graphs. We write

G ≊ G′

and say that G and G are isomorphic if there is a bijection ϕ from V to V ′ that
preserves edges in the sense that {ϕ(v),ϕ(u)} ∈ E′ if and only if {v,u} ∈ E. Such
a function G is called a graph isomorphism.

If G and G′ are rooted graphs with root v and v′, respectively, we additionally
require that ϕ(v) = v′.

With those basic graph theoretic concepts in hand we finally turn to weighted
graphs.

Definition 2.1.12 (Weighted graph). A weighted graph G is an ordered tuple G =
(V , E,w), where G = (V , E) is a graph (the underlying graph) and w : V ∪ E → R is a
function that assigns a real-valued weight to each vertex v ∈ V and each edge e ∈ E.

All the previous notions generalise naturally to weighted graphs. We will not
restate them for the weighted case. For the avoidance of doubt and since it is a slight
extension of a previous concept, we will explain what we mean by an isomorphism
for graph pairs and make explicit reference to weights in that definition.

Definition 2.1.13 (Isomorphism for pairs of weighted rooted graphs). Let G =
(V , E,w) and G′ = (V ′, E′,w′) be two weighted rooted graphs with the same
root v∗ ∈ V ∩ V ′. Let similarly H = (U, F,x) and H′ = (U ′, F ′,x′) be two further
weighted rooted graphs with the same root u∗ ∈ U ∩U ′. We write

(G,G′) ≊ (H,H′)

if there exists a bijection ϕ : V → U that satisfies ϕ(v∗) = u∗, preserves edges, i.e.

{ϕ(v1),ϕ(v2)} ∈ F if and only if {v1, v2} ∈ E,

and weights, i.e. x(ϕ(v)) = w(v) for all v ∈ V and x({ϕ(v1),ϕ(v2)}) = w({v1, v2})
for all v1, v2 ∈ V , and a bijectionϕ′ : V ′ → U ′ that also maps v∗ to u∗ and preserves
edges and weights in the way just described.

15



Chapter 2 Setting and Main Result

Finally we will introduce two stochastic concepts. First the mixed Poisson distri-
bution and then the Galton–Watson tree.

Definition 2.1.14 (Mixed Poisson distribution). Let µ be a measure on (0,∞), then a
random variable Z has mixed Poisson distribution with mixing distribution µ if for
all k ∈ N

P(Z = k) = E
[
e−ΛΛk

k!

]
, where Λ ∼ µ.

If Z has a mixed Poisson distribution with mixing distribution µ, we write Z ∼
MPoi(µ) or alternatively Z ∼ MPoi(Λ) for Λ ∼ µ.

We write Poi(λ) for the regular Poisson distribution with parameter λ > 0. By
construction Poi(λ) = MPoi(δλ), where δλ is the Dirac measure at λ.

For our intents and purposes the definition of a Galton–Watson tree based on the
Ulam–Harris tree U (Definition 2.1.5) will be most convenient.

Definition 2.1.15 (Galton–Watson tree). For any k ∈ N let ν(k) be a probability
measure on N and let {Ni : i ∈ Nk+} be a sequence of i.i.d. random variables with
distribution ν(k). Construct these sequences so that they are independent for
every k, i.e. so that {Ni : i ∈ U} is a sequence of independent random variables.

Then the Galton–Watson tree with level-k offspring distributions (ν(k))k∈N is
defined as

T =
⋃
k∈N

Tk ⊆ U,

where T0 = {∅} and

Tk+1 = {(i, j) ∈ Nk+1
+ : i ∈ Tk,1 ≤ j ≤ Ni}.

As for the Ulam–Harris tree we draw an edge between each child (i, j) ∈ Tk+1 and
its parent i.

In what follows we will mainly need Galton–Watson trees in which the offspring
distribution is the same for all levels except level 0, i.e. at the root.

2.2 Setting

We are now ready to describe our setting in more detail. First we define the rank-one
inhomogeneous graph model (without additional vertex and edge weights) that we
will focus on. We will work on an underlying probability space (Ω,F ,P).
16



2.2 Setting

Graph structure For n ∈ N+ let Gn = (Vn, En) be a graph with vertex set Vn =
[n] = {1, . . . , n}.

Assign a possibly random connectivity weight Wn
v ∈ (0,∞) to each vertex v ∈

Vn. This weight will determine the connectivity of the vertex v in the graph Gn.
Let Wn = (Wn

v )v∈Vn be the collection of all connectivity weights for vertices in Vn
and let Fn = σ(Wn) = σ((Wn

v )v∈Vn) be the σ -algebra generated by all connectivity
weights for vertices in Vn. From now on we will write

Pn( · ) = P( · | Fn) and En( · ) = E[ · | Fn]

for the probability measure and expectation, respectively, conditioned on the con-
nectivity weights Wn

1 , . . . ,Wn
n . We will also drop the superscript n from Wn

v to make
formulas slightly easier on the eye.

Given these connectivity weights in Fn realise independent edges between all
(unordered) pairs of vertices u and v with probability

puv =
WuWv
nϑ

∧ 1, (2.1)

where we define Λn =∑u∈VnWu and assume that ϑ ∈ (0,∞) satisfies

1
n
Λn = 1

n

∑
u∈Vn

Wu
P→ ϑ as n→∞,

where
P→ denotes convergence in probability. We will generally make stronger as-

sumptions about the distribution of the connectivity weights (which will be detailed
in Assumption 2.2.1 in just a moment), so we will not highlight this assumption
here in more detail.

Formally, let V (2)n = {{u,v} : u,v ∈ Vn} be the maximal set of edges that Gn
could possibly have, i.e. the set of edges of the complete graph on Vn. Conditional
on Fn let Xuv ∼ Bin(1, puv) for 1 ≤ u < v ≤ n be independent indicator functions
(the edge indicators). We will write Xuv = Xvu whenever u,v ∈ Vn, u ≠ v , and
set Xvv = 0 for all v ∈ Vn. The set of edges of Gn is then given by

En = {{u,v} ∈ V (2)n : Xuv = 1}.

Remark. This model is related – but in this formulation not exactly equal – to the
Chung–Lu model [CL02], where vertices are connected independently with probability

WuWvΛn ∧ 1,

and the Norros–Reittu model [NR06] where the edge probability is

1− exp(−WuWv/Λn).
17



Chapter 2 Setting and Main Result

By the assumed convergence of n−1Λn to ϑ, however, the edge probabilities will be
very similar for large n.

The classical Erdős–Rényi model with pn = n−1λ for some λ ∈ (0,∞) can easily
be obtained by setting Wv = λ for all v ∈ Vn. Then n−1

∑
u′∈VnWu′ = λ is constant

so that ϑ = λ and thus

puv =
WuWv
nϑ

= λ
n
= pn.

Our setting also includes Erdős–Rényi models in which pn = n−1λn for a sequence
of (λn)n∈N ⊆ (0,∞) with λn → λ ∈ (0,∞). However, the intuitive idea of set-
ting Wv = λn yields ϑ = λ and edge probabilities of the form (λn/n)(λn/λ) =
pn(λn/λ). The undesirable factor λn/λ tends to 1 and therefore does not matter in
the limit. In fact all computations we make would still be valid if such a factor were
present. Yet with a slightly different parametrisation we can obtain the desired edge
probability pn directly: Choosing Wv = (λnλ)1/2 for any v ∈ Vn we get again ϑ = λ
so that the edge probability is equal to

puv =
λnλ
nλ

= λn
n
= pn

as desired.

In the framework of inhomogeneous sparse random graphs by Bollobás, Janson
and Riordan [BJR07] our graph is a so-called rank-one model, since its connection
kernel κn(x,y) = xy/ϑ has a simple product form.

In order to allow us to identify a limiting object for the graph Gn we will have to
impose some conditions on the connectivity weight distribution.

Assumption 2.2.1. Let (Gn)n∈N be a sequence of graphs as defined above.
Given Fn let

νn( · ) =
1
n

∑
v∈Vn

1{Wv∈·} and ν̂n( · ) =
1Λn

∑
v∈Vn

Wv1{Wv∈·} (2.2)

be the empirical measure of the connectivity weights and its size-biased version.
Assume that there is a measure ν on (0,∞) with mean in (0,∞) that satisfies the

following properties.

(i) There exists a sequence (αn)n∈N that converges to zero in probability such
that

W(νn, ν) ≤ αn,

where W(µ, ν) denotes the 1-Wasserstein distance between the measures µ
and ν on R

W(µ, ν) = inf
{
En[|X − Y |] : X ∼ µ,Y ∼ ν, X, Y defined on (Ω,Fn,Pn)}.
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2.2 Setting

(ii) Let ν̂ be the size-biased distribution of W ∼ ν given by

ν̂(A) = 1
E[W]

E[W1{W∈A}].

Then with the same sequence (αn)n∈N as in (i) we also have

W(ν̂n, ν̂) ≤ αn.

(iii) Furthermore, we assume that the third moment of W (n) ∼ νn

En[(W (n))3] = 1
n

∑
u∈Vn

W3
u

is bounded in probability.

The conditions we impose for the limiting object to exist are not minimal. Olvera-
Cravioto [Olv22] constructed the couplings between the graph and the limiting
object assuming only existence of the first moments. We decided to work under the
stronger assumptions because they give us more explicit control over the rate of
convergence and make the construction of the coupling slightly more natural.

Assumption (i) is in particular satisfied with an αn of rate n−1/2 if the weights Wv
are drawn i.i.d. from the distribution ν assuming that ν has second moments [FG15,
Thm. 1]. It is tempting to conjecture that the rate of convergence for W(ν̂n, ν̂)
should be similar under the same moment conditions for ν̂ , which would translate
into the existence of third moments for ν. We do not attempt to address this
question further in this thesis, we will just mention that Olvera-Cravioto [Olv22, in

a slightly different setting in proof of Lem. 4.8] briefly argues that W(νn, ν)
P→ 0

implies W(ν̂n, ν̂)
P→ 0 without claims on the rate of the latter convergence. Intuit-

ively, this is true because size-biasing respects convergence in distribution [AGK19,
Thm. 2.3] if the means converge as well and we can then use Skorohod’s represent-
ation theorem to obtain coupled random variables with the desired distributions
(possibly on a new probability space).

We will use the notation W (n) ∼ νn and W ∼ ν to recall the definition of Λn
Λn = ∑

u∈Vn
Wu = nEn[W (n)]

If W (n) and W are constructed via the optimal coupling guaranteed by the Wasser-
stein distance [San15, Thm. 1.7], we have∣∣∣ 1

n
Λn − En[W]∣∣∣ ≤ |En[W (n)]− En[W]| ≤ En[|W (n) −W |] ≤ αn.

This implies that n−1Λn converges in probability to En[W], so that we can set ϑ =
En[W] for (2.1).
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Chapter 2 Setting and Main Result

Fix p ∈ (0,∞). Now define

Γp,n = 1
nϑ

∑
u∈Vn

Wp
u =

En[(W (n))p]
ϑ

(2.3)

for the average p-th power of the connectivity weights normalised with ϑ and

κp,n =
1
nϑ

∑
u∈Vn

Wp
u1{Wi>

√
nϑ} =

1
ϑ
En[(W (n))p1{W (n)>

√
nϑ}] (2.4)

for the average excess of p-th power of the connectivity weights above
√
nϑ normal-

ised with ϑ.
By (iii) we immediately have that Γp,n is bounded in probability for all p ∈ [0,3].
For κp,n observe that if p ∈ [0,3) by Hölder’s and Markov’s inequality

κp,n =
1
ϑ
En[(W (n))p1{W (n)>

√
nϑ}]

≤ 1
ϑ
En[(W (n))3]p/3Pn(W (n) >

√
nϑ)−p/3

≤ 1
ϑ
En[(W (n))3]p/3

(
En[(W (n))3]
√
nϑ3

)1−p/3
= Γ3,n√

nϑ3−p .

This terms goes to zero in probability as n→∞ if p ∈ [0,3) since Γ3,n is bounded
in probability.

Note that if Wu ≤
√
nϑ and Wv ≤

√
nϑ it follows that WuWv ≤ nϑ. This implies

that the minimum with 1 in the definition (2.1) of puv is not needed in this case.
Hence, κp,n measures the p-th moment of the connectivity weight of the vertices
exceeding this ‘safe’ threshold.

Analogous to Γp,n we also define Γp as the ‘normalised’ p-th moment of ν. Fix p
and let W ∼ ν , then set Γp = E[Wp]

ϑ
= E[W

p]
E[W]

. (2.5)

Local limit We now describe the local limiting behaviour of the rank-one inhomo-
geneous graph model. This is done by showing that the local neighbourhood of a
vertex v in Gn can be coupled with high probability to a ‘delayed’ Galton–Watson
tree.

The limiting object can now be constructed as follows.

Definition 2.2.2. For a probability measure ν on (0,∞) and a connectivity weightW ∈
(0,∞) let T(W,ν) be a Galton–Watson tree in which the root has Poi(W) children
and all other levels have offspring distribution MPoi(ν̂).

For an integer ℓ ∈ N let Tℓ(W, ν) be the subtree of T(W,ν) cut at height ℓ (or
alternatively the ℓ-neighbourhood of the root Bℓ(∅, T (W, ν))).
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2.2 Setting

Remark. Note that T(W,ν) can be constructed by joining N ∼ Poi(W) independent
Galton–Watson trees with offspring distribution MPoi(ν̂) for all levels whose roots
we call ∅1, . . . ,∅N together at a root ∅ with edges {∅,∅1}, . . . , {∅,∅N}.

Olvera-Cravioto [Olv22] calls such a tree process ‘delayed’, because the root has a
different offspring distribution than all other individuals [see also EHH08].

This limiting tree is closely connected to the local weak limit of the graph Gn
[Hof18, Chap. 2]. The notion of local limits for graphs was introduced by Benjamini
and Schramm [BS01] and later by Aldous and Steele [AS04], who used it extensively
to develop the so-called objective method, in which the limiting properties of a
sequence of finite problems are analysed in terms of local properties of a new
infinite object. In our treatment we keep the vertex whose neighbourhood we
explore fixed, whereas in the context of local weak limits this vertex is chosen
uniformly at random. We can think of our setup as conditioning on the type of
the root vertex, so that the usual local weak limit can then be recovered from our
results by averaging over all vertices (and possibly adjusting the coupling of the
root vertex). Specifically, the resulting tree would have a root with MPoi(ν) children,
while all other individuals have offspring distribution MPoi(ν̂). Such a tree process
is called unimodular [Hof23].

One of the main results of Chapter 3 is an explicit coupling construction that
yields:

Proposition 2.2.3. Let (Gn)n∈N be a sequence of rank-one inhomogeneous random
graph that satisfies Assumption 2.2.1 for some measure ν on (0,∞).

Let V ⊆ Vn be a set of vertices. Then for all ℓ ∈ N the neighbourhoods around v ∈
V can be coupled to independent limiting trees T (v) ∼ T(Wv , ν) such that for
all n ∈ N

Pn

( ⋃
v∈V

{
Bℓ(v) ≇ Tℓ(v)

})

≤ Γ2,n
nϑ

∑
v∈V

W2
v + Γ1,n ∑

v∈V
Wv1{Wv>

√
nϑ}

+ (Γ2,n + 1)ℓ
(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

) ∑
v∈V

Wv

+ |V| 1
kn

+ k2
n

nϑΓ1,n +
∑
v∈V

Wvαn
(

1
ϑ
+ (Γ2 + 1)ℓ−1

( Γ2,n
ϑΓ1,n + 1

))
,

where (kn)n∈N ⊆ (0,∞) is an arbitrary sequence of positive real numbers.

By Assumption 2.2.1 Γ1,n, Γ2,n and Γ3,n are bounded in probability and αn, κ1,n
and κ2,n converge to zero in probability. Additionally,

∑
v∈V Wv1{Wv>

√
nϑ} is zero

if n is large enough for any finite set V .
Then the probability that the coupling does not hold goes to zero in probability

if (kn)n∈N is chosen appropriately. In particular the sequence needs to satisfy kn →
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Chapter 2 Setting and Main Result

∞ as well as k2
n/n→ 0. The choice kn ≈ n1/3 balances the rate of 1/kn and k2

n/n so
that both are of order n−1/3.

This proposition can be used to obtain a coupling for neighbourhoods in the Erdős–
Rényi model to a Galton–Watson tree with simple Poisson offspring distribution.

Example 2.2.4. Consider the Erdős–Rényi model with edge probability pn = λn/n
(and λn → λ). Recall that we had to set Wv = (λnλ)1/2 to obtain the desired edge
probabilities.

Then νn = δ(λnλ)1/2 and ν = δλ and by basic properties of the Wasserstein distance

W(νn, ν) = |λ1/2
n λ1/2 − λ| = λ1/2|λ1/2

n − λ1/2|.

Furthermore, the size-biased measures coincide with the original measures so that
also

W(ν̂n, ν̂) =W(νn, ν) = λ1/2|λ1/2
n − λ1/2|.

Recall that λ > 0 and that λn → λ so that we may assume that λn ≥ λ/4 for n
large enough. Since the function x 7→ x1/2 is Lipschitz continuous with Lipschitz
constant 1/2a−1/2 on the interval [a,∞), we have

λ1/2|λ1/2
n − λ1/2| ≤ |λn − λ|

as long as n is large enough. We thus set αn = |λn − λ|.
Furthermore, we may assume that κp,n = 0 and

∑
v∈V Wv1{Wv>

√
nϑ} = 0, be-

cause Wv >
√
nϑ if and only if λn > n which is not the case for n large enough

as λn ≤ 2λ < n for all n large enough.

Finally Γp,n = λ1/2p
n λ1/2p−1 and Γp = λp−1 in particular Γ2,n = λn and Γ2 = λ.

The trees T (v) are just independent Galton–Watson trees with Poi(λ1/2
n λ1/2)

children at the root and offspring distribution Poi(λ) for all other individuals.
For V = {v,u} Proposition 2.2.3 then reduces to

Pn({Bℓ(v) ≠ Tℓ(v)} ∪ {Bℓ(u) ≠ Tℓ(u)}

≤ 2
λ2
n
n
+ 2λ1/2

n λ1/2(λn + 1)ℓ
(
λ3/2
n

nλ1/2 +
2+ λ1/2

n /λ1/2

kn
+ kn
nλ

)
+ 2

1
kn

+ 2
k2
n

nλ1/2
n λ1/2

+ 2λ1/2
n λ1/2|λn − λ|

(
1
λ
+ (λ+ 1)ℓ−1

(
λ1/2
n

λ1/2 + 1
))

for n large enough. Choose kn = n1/3, then this bound can be estimated by

Pn({Bℓ(v) ≠ Tℓ(v)} ∪ {Bℓ(u) ≠ Tℓ(u)}) ≤ C
(λn + 1)ℓ+2

min{1, λ}n1/3 + C
(λ+ 1)ℓ

min{1, λ}|λn − λ|,

which is of the same order as the coupling probability that Cao established for
Erdős–Rényi random graphs [Cao21, Lem. 6.1].
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Note that we coupled the neighbourhoods to Galton–Watson trees whose offspring
distribution Poi((λnλ)1/2) at the root differs from the offspring distribution Poi(λ)
of all other individuals. The classical coupling for Erdős–Rényi random graphs that
Cao established couples the neighbourhood to Galton–Watson trees with offspring
distribution Poi(λ) for all individuals. If we wanted to obtain this classical coupling,
we would have to modify (or re-couple) the offspring distribution of the root at
a cost of W(δλnλ, δλ) ≤ |λn − λ|. This additional cost does not change the rate
estimate.

Weighted graph We now add vertex and edge weights to our graph model to obtain
a weighted graph. These weights are added independently of the underlying graph
structure in an i.i.d. manner. An extension of the previous coupling result to the
weighted setup is therefore straightforward.

Fix a graph Gn as defined above and fix two distributions on the non-negative
real numbers µE,n and µV,n. Assume that µV,n converges to some µV and µE,n to
some µE in total variation distance, i.e. that

dTV(µV,n, µV )→ 0 and dTV(µE,n, µE)→ 0,

where the total variation distance for two probability measures µ and λ on a meas-
urable space (Ω′,F ′) is given by

dTV(µ, ν) = inf{P(X ≠ Y) : X ∼ µ,Y ∼ ν}.

To obtain a weighted graph Gn from Gn, assign i.i.d. vertex weights w(n)
v ∼ µV,n

to each v ∈ Vn and i.i.d. edge weights w(n)
e ∼ µE,n to each e ∈ V (2)n .2

Given Fn the entire structure of Gn can be encoded in the following sequences of
independent random variables

(X(n),w(n)) = ((X(n)e )e∈V (2)n
, (w(n)

x )x∈Vn∪V (2)n
),

where X(n){u,v} ∼ Bin(1, puv) for {u,v} ∈ V (2)n , w(n)
v ∼ µV,n for v ∈ Vn and w(n)

e ∼
µE,n for e ∈ V (2)n are all independent random variables.

We will usually drop the superscript (n) for all these objects. Additionally, we will
use the notational convention that Xuv = Xvu = X{u,v} and wuv = wvu = w{u,v}
for all u ≠ v .

Local limit for the weighted graph In order to describe the local limit of the
weighted graph we just need to add vertex and edge weight to the limiting object we
identified for Proposition 2.2.3.

The limiting object will be the same as in Definition 2.2.2 just with added weights.

2Technically, we would only need to assign weights to edges e ∈ En that are actually present in Gn,
but it is more convenient to assign a weight to all ‘possible’ edges e ∈ V (2)n ‘just in case’.
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Definition 2.2.5. Given two weight distributions µE and µV let T(W, ν, µE, µV ) be the
Galton–Watson tree T(W,ν) endowed with i.i.d. edge weights drawn from µE and
i.i.d vertex weights drawn from µV . For ℓ ∈ N let Tℓ(W, ν, µE, µV ) denote the ℓ-level
subtree of T(W, ν, µE, µV ).

The following object arises from the limiting object by conditioning on the pres-
ence of a certain edge.

Definition 2.2.6. Let ν be a probability measure on (0,∞) and W,W ′ ∈ (0,∞)
two connectivity weights. Fix an edge weight distribution µE and a vertex weight
distribution µV .

Let T ∼ T(W, ν, µE, µV ) with root ∅ and T′ ∼ T(W ′, ν, µE, µV ) with root ∅′ be
independent. Construct T̃(W,W ′, ν, µE, µV ) by grafting T′ onto T via an edge of
weight w ∼ µE (independent of everything else) between ∅ and ∅′. (In particular ∅
is the root of T̃(W,W ′, ν, µE, µV ).) Let T̃ℓ(W,W ′, ν, µE, µV ) be the depth-ℓ subtree
of T̃(W,W ′, ν, µE, µV ).

Alternatively, T̃ℓ ∼ T̃ℓ(W,W ′, ν, µE, µV ) can directly be constructed from inde-
pendent trees Tℓ ∼ Tℓ(W, ν, µE, µV ) and T′ℓ−1 ∼ Tℓ−1(W ′, ν, µE, µV ) with roots ∅
and ∅′, respectively, by grafting T′ℓ−1 onto Tℓ via an edge between ∅′ and ∅ of
weight w ∼ µE (independent of everything else). Whenever T̃ℓ is defined via this
procedure, we say it is constructed from (Tℓ,T′ℓ−1,∅,∅

′,w).

As alluded to above, this object can be thought of as the limiting object of the
neighbourhood of v if we condition on the presence of an edge between v and u.

We will not state and discuss the coupling results in the weighted setting here,
because they are structurally similar to Proposition 2.2.3. The intuition should be
that in a first step the underlying graph structure is coupled as in the unweighted
case and then edge and vertex weights are added. Since the weight distributions
converge in total variation distance, the weights can be coupled so that they are
equal with high probability and because the number of vertices and edges in the
neighbourhood can be estimated, the probability that the coupled weights are
different can be controlled. We refer the reader to Section 3.5 for more details.

Perturbation Recall the representation of Gn as a sequence of Bernoulli random
variables and weights (X,w). Let X′ be an independent copy of X and likewise w′ be
an independent copy of w.

Let F be a subset of Vn ∪ V (2)n , i.e. sets of vertices and edges alike.
Let GFn be the weighted graph obtained from Gn by replacing

• Xe with X′e whenever e ∈ F and

• wz with w′
z whenever z ∈ F .
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For singleton sets F we often omit the curly brackets and simply write Gen for G{e}n
and Gvn for G{v}n . We abuse notation even further to write GF∪en for GF∪{e}n and GF∪vn
for GF∪{v}n .

For brevity we write

XF{u,v} =

X
′
{u,v} if {u,v} ∈ F ,

X{u,v} if {u,v} ∉ F ,
and wA

z =
{
w′
z if z ∈ F ,

wz if z ∉ F ,

whenever u,v ∈ Vn and z ∈ Vn ∪ V (2)n . With this notation GFn is the weighted
graph based on the sequences (XFe )e∈V (2)n

and (wF
z )z∈Vn∪V (2)n

instead of (Xe)e∈V (2)n

and (wz)z∈Vn∪V (2)n
. Note that by construction X∅e = Xe for e ∈ V (2)n and w∅

z = wz
for z ∈ Vn ∪ V (2)n . It follows that G∅n = Gn.

2.3 Statement of the Central Limit Theorem

The proof of our central limit theorem relies on the analysis of the effect of a small
perturbation to the weighted graph Gn on a function f . We introduce some notation
to refer to the effect of this perturbation.

Definition 2.3.1. Let Gn be a weighted graph and let f be a function on weighted

graphs. Recall the definition of the perturbed graph Gen and Gvn for an edge e ∈ V (2)n
and a vertex v ∈ Vn, respectively. Then define

∆ef = f(Gn)− f(Gen)
and ∆vf = f(Gn)− f(Gvn).

The main assumption of the theorem is that it is possible to approximate the effect
of resampling perturbations on the function f by considering local neighbourhoods
around the perturbed site, i.e. that we can find a good local approximation for the
effects of the perturbation on f .

Assumption 2.3.2 (Property GLA). Let f be a function on weighted graphs and
let (Gn)n∈N be a sequence of weighted inhomogeneous random graphs. Then the
pair (f , (Gn)n∈N) has property GLA for ν , µE and µV if

(i) the underlying unweighted graph sequence (Gn)n∈N satisfies Assumption 2.2.1,

(ii) the weight distributions satisfy dTV(µE,n, µE) → 0 and dTV(µV,n, µV ) → 0
as n→∞ and
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(iii) the effects of perturbations of Gn on the function f can be approximated
locally in the following sense.

For all k ∈ N there exist functions LAE,Lk , LAE,Uk , LAV,Lk and LAV,Uk from pairs of
rooted weighted trees to the real numbers and furthermore there exist two
sequences (mE

n)n∈N and (mV
n)n∈N of functions mE

n : V2
n → R and mV

n : Vn → R
such that

(ME
n)n∈N =

(
n−2

∑
v,u∈Vn

mE
n(v,u)

)
n∈N

and

(MV
n )n∈N =

(
n−1

∑
v∈Vn

mV
n(v)

)
n∈N

are bounded in probability and two sequences (δEk)k∈N, (δ
V
k )k∈N with δEk → 0

and δVk → 0 as k→∞ such that the following conditions hold for any k ∈ N.

(GLA 1) For any edge e = {u,v} ∈ V (2)n , if Bk = Bk(v,Gn) and Bek = Bk(v,Gen) are
trees, then

LAE,Lk (Bk, Bek) ≤ ∆ef ≤ LAE,Uk (Bk, Bek).

(GLA 2) For any edge e = {u,v} ∈ V (2)n , if a pair of trees (T,T′) satisfies (Bk, Bek) =
(Bk(v,Gn), Bk(v,Gen)) ≊ (T,T′), then

LAE,Lk (T,T′) = LAE,Lk (Bk, Bek),

LAE,Uk (T,T′) = LAE,Uk (Bk, Bek).

(GLA 3) For any two vertices v,u ∈ Vn let T̃k(v,u) ∼ T̃k(Wv ,Wu, ν, µE, µV ) be
constructed from (Tk(v),Tk−1(u),∅,∅′,w) (cf. Definition 2.2.6). Then

max{En[(LAE,Uk (T̃k(v,u),Tk(v))− LAE,Lk (T̃k(v,u),Tk(v)))2],

En[(LAE,Uk (Tk(v), T̃k(v,u))− LAE,Lk (Tk(v), T̃k(v,u)))2]}
≤mE

n(v,u)δ
E
k.

(GLA 4) For any vertex v ∈ Vn, if Bk = Bk(v,Gn) and Bvk = Bk(v,Gvn) are trees, then

LAV,Lk (Bk, Bvk ) ≤ ∆vf ≤ LAV,Uk (Bk, Bvk ).

(GLA 5) For any vertex v ∈ Vn, if (T,T′) are a pair of trees that satisfy (Bk, Bvk ) =
(Bk(v,Gn), Bk(v,Gvn)) ≊ (T,T′), then

LAV,Lk (T,T′) = LAV,Lk (Bk, Bvk ),

LAV,Uk (T,T′) = LAV,Uk (Bk, Bvk ).
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2.3 Statement of the Central Limit Theorem

(GLA 6) For any vertex v ∈ Vn let T̄k(v) be the weighted tree obtained by resampling
the weight of the root of Tk(v) ∼ Tk(Wv , ν, µE, µV ). Then

En[(LAV,Uk (Tk(v), T̄k(v))− LAV,Lk (Tk(v), T̄k(v)))2] ≤mV
n(v)δ

V
k .

As discussed in the previous sections Assumption 2.2.1 and convergence of the
weight distributions guarantee that the local neighbourhoods in Gn can be coupled
to limiting Galton–Watson trees.

The three assumptions (GLA 4), (GLA 5) (GLA 6) for resampling at a vertex (which
involves only resampling the weight at the vertex) are structurally analogous to
(GLA 1), (GLA 2) and (GLA 3) for resampling at an edge (which involves resampling the
edge indicator and its weight). It would have been possible to collect the conditions
for edge and vertex resampling in a combined condition (even though a combination
of (GLA 6) and (GLA 3) would be even more complex), but since it is more intuitive to
think about the effect of resampling separately, we decided to present the conditions
in this way. In the discussion of the interpretation of the conditions we will focus
mainly on the first three properties, since the interpretation of the other three is
analogous.

(GLA 1) implies that the effect of the perturbation of Gn on f can be approximated
by the local quantity LAE,Lk that only takes into account a k-neighbourhood of the

perturbed site. The error of this approximation is bounded by LAE,Uk −LAV,Lk . (GLA 2)

implies that the values of LAE,Lk and LAE,Uk only depend on properties that are
preserved under graph isomorphisms, which means that we can substitute the
limiting Galton–Watson trees for the local neighbourhoods in order to analyse the
approximation error. (GLA 3) ensures that the approximation error goes to zero as
the level k of the considered neighbourhood increases.

Note that property GLA does not need the function f to be local in the sense
that ∆ef and ∆vf only depend on a fixed neighbourhood Bk(v,Gn). All that
is required is that there be local approximations and that these approximations
improve as k gets large. We will see the difference in Section 2.4, where we present
a local function to get started and then a function for which ∆ef can only be
approximated locally.

(GLA 3) and (GLA 6) might look a bit daunting at first. Our proof relies on coupling
the neighbourhood of fixed vertices, which as we remarked when we discussed the
limiting object and the coupling Definition 2.2.2 and Proposition 2.2.3 makes for a
slightly more complex situation at the root. The conditions state that the effect of the
root can be separated from the approximation error that is due to the remaining tree
structure. Essentially we can think of the averaging we apply as choosing the root
uniformly, which transfers our setup to the unimodular setting. The boundedness
assumptions then guarantee that even in this setting the approximation error goes
to zero. We will show that the effect of the root can be separated out in a concrete
example in Section 2.4.
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In applications the function f will often be related to a combinatorial optimisation
problem that has certain recursive properties so that the local approximation func-
tions LA∗,∗k can be defined via a recursion on the graph by essentially cutting off
everything that is not in the local neighbourhood of level k, imposing an arbitrary
starting value for those vertices and then passing it down recursively towards the
root vertex of the neighbourhood. Depending on the properties of the recursion in
question natural lower and upper bounds may be found by selecting certain extremal
values for the vertices that are cut or by exploiting that the recursion values oscillate
for even and odd levels.

If applied to a Galton–Watson tree the recursive nature of f gives rise to a recursive
tree process [AB05]. Briefly, a recursive tree process (RTP) is a Galton–Watson tree in
which each individual i has an associated value Xi that is calculated by applying a
function g to all the values Xi1, . . . , XiNi associated with the Ni children i1, . . . , iNi

of i and an independent noise ξi at i. An RTP is called endogenous if the value at the
root X∅ is measurable with respect to the σ -algebra generated by the noise ξi and
number of children Ni for each individual in the tree. If the local approximations are
defined via the recursion associated with f , (GLA 3) is closely related to the question
of endogeny of the recursive tree process.

Properties related to (GLA 3) have also been called long-range independence
by Gamarnik, Nowicki and Swirszcz [GNS06] and replica symmetry by Wästlund
[Wäs12] and have been used to calculate limiting constants for the behaviour of
some combinatorial optimisation problems.

In our statement of the main theorem we will encounter the following two se-
quences.

Definition 2.3.3. Let (kn)n∈N ⊆ (0,∞) be any sequence.
Recall the definitions of αn from Assumption 2.2.1 and the definition of Γp,n

and κp,n from (2.3) and (2.4). For n,ℓ ∈ N let

εn,ℓ =
Γ2
2,n

n
+ ϑκ1,nΓ1,n

+ Γ1,nϑ(Γ2,n + 1)ℓ
(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ 1
kn

+ k2
n

nϑΓ1,n +αn(Γ1,n + (Γ2 + 1)ℓ−1(Γ2,n + ϑΓ1,n))
+ (1+ Γ1,nϑ(Γ2 + 1)ℓ)(dTV(µE,n, µE)+ dTV(µV,n, µV ))

and

ρn,ℓ = min
{ϑΓ2,n + ϑΓ1,n + 1

nϑ
(Γ1,n + 1)2(Γ2,n + C)2ℓ+1(Γ3,n + 1)2,1

}
.

The sequence εn,ℓ arises from the coupling probability (cf. Proposition 2.2.3). The
sequence ρn,ℓ absorbs the correlation between neighbourhoods of a fixed collection
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2.3 Statement of the Central Limit Theorem

of vertices and bounds the probability of certain other undesirable events in our
proofs.

As in the discussion of the convergence rate of Proposition 2.2.3, the terms Γ1,n,Γ2,n and Γ3,n are bounded in probability and αn, κ1,n and κ2,n converge to zero in
probability. Hence both εn,ℓ and ρn,ℓ converge to 0 in probability as n → ∞ for
all ℓ ∈ N if kn is chosen appropriately, e.g. kn = n1/3.

In addition to the local approximation in property GLA we will assume a much
simpler bound for the effect of the local perturbation.

Assumption 2.3.4. Assume that there are real-valued functions HE : [0,∞)4 → R
and HV : [0,∞)2 → R that satisfy

JE = max
{
1, sup
n∈N

E[HE(we,w′
e,wv ,wu)6]

}
<∞, (2.6)

and

JV = max
{
1, sup
n∈N

E[HV (wv ,w′
v)6]

}
<∞. (2.7)

Let J = JE + JV + JEJV .
Assume further that there exists a non-decreasing function h : [0,∞) → R such

that for

χn =
1
n

∑
v∈Vn

ζn(v) with ζn(v) = En[h(|D1(v)| + 4)4] <∞ (2.8)

we have that χn is bounded in probability.
Finally, assume that

|∆ef | ≤ 1{max{Xe,X′e}=1}HE(we,w′
e,wv ,wu) (2.9)

and
|∆vf | ≤ h(|D1(v)|)HV (wv ,w′

v). (2.10)

These bounds will allow us to make generous use of the Cauchy–Schwarz inequality
in proofs especially when we are not on the event where the coupling holds.

Note that the dependence on n is only implicit in the terms inside the expectation
in (2.6) and (2.7) because we have – as usual – dropped the superscript (n) for the
weights we and wv .

Property GLA and the simpler integrability bounds of Assumption 2.3.4 now finally
yield explicit bounds for the Kolmogorov distance of f(Gn) to a normal distribution.

Theorem 2.3.5. Suppose (f , (Gn)n∈N) satisfies property GLA (Assumption 2.3.2) for ν ,
µE and µV . Assume that Assumption 2.3.4 holds with J and χn as defined there.
Let σ2

n = Varn(f (Gn)), set

Zn =
f(Gn)− En[f (Gn)]

σn
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and let Φ be the cumulative distribution function of the standard normal distribution.
Then we have for all k,n ∈ N

sup
t∈R

|Pn(Zn ≤ t)− Φ(t)|
≤ C0J1/4

[(
n
σ2
n

)1/2
(ϑ1/2 + Γ2,n + χ1/2

n )2((ME
nδk)1/8 + (MV

nδ
V
k )

1/8 + ε1/16
n,k + ρ1/16

n,k )

+
(
n
σ2
n

)3/4ϑΓ1,n + χ1/2
n

n1/4

]
.

(2.11)

Under the assumptions of the theorem Γ1,n, Γ2,n, χn, ME
n and MV

n are bounded in
probability. Furthermore εn,k and ρn,k converge to zero in probability as n→∞ for
all k ∈ N.

If nσ−2
n is bounded in probability we can make all terms on the right hand-side

of (2.11) arbitrarily small as follows. First choose k large enough so that the terms
involving the bounded terms (whose bound is independent of n) and δEk and δVk
are as small as desired. Then choose n large enough that for this k the terms εn,k
and ρn,k are as small as desired.

This behaviour of the variance is in general not a given and will need to be verified
separately in applications.

The following corollary replaces property GLA with a slightly simpler condition
that is particularly suitable if f has a recursive structure.

Corollary 2.3.6. Let (Gn)n∈N be a sequence of weighted inhomogeneous graphs and
let f be a function defined on weighted graphs. Suppose that

(i) the underlying graph sequence (Gn)n∈N satisfies Assumption 2.2.1,

(ii) there are two probability measures µE and µV on (0,∞) with dTV(µE,n, µE)→ 0
and dTV(µV,n, µV )→ 0 as n→∞,

(iii) Assumption 2.3.4 holds with J and χn as defined there and

(iv) the effects of perturbations of Gn on f can be approximated locally in the
following sense.

There exist functions gLk and gUk defined on weighted rooted graphs for any k ∈
N and there exist two sequences (mn)n∈N and (m̃n)n∈N of functions mn : Vn →
R and m̃n : V2

n → R such that

(Mn)n∈N =
(
n−1

∑
v∈Vn

mn(v)
)
n∈N

and

(M̃n)n∈N =
(
n−2

∑
v,u∈Vn

m̃n(v,u)
)
n∈N
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2.3 Statement of the Central Limit Theorem

are bounded in probability and furthermore two sequences (δEk)k∈N, (δ
V
k )k∈N

with δEk → 0 and δVk → 0 as k → ∞ such that for all k ∈ N the following
conditions are satisfied.

(GLA′ 1) For any v ∈ Vn, whenever Bk(v,Gn) is a tree, then

gLk(Bk(v,Gn)) ≤ f(Gn)− f(Gn − v) ≤ gUk (Bk(v,Gn)).

(GLA′ 2) For any v ∈ Vn if Bk(v,Gn) ≊ T for some rooted weighted tree T, then

gLk(T) = gLk(Bk(v,Gn)) and gUk (T) = gUk (Bk(v,Gn)).

(GLA′ 3) For any v,u ∈ Vn if we have Tk(v) ∼ Tk(Wv , ν, λ, µE, µV ) and T̃k(v,u) ∼
T̃(Wv ,Wu, ν, µE, µV ), then

En[(gUk (Tk(v))− gLk(Tk(v)))2] ≤m(v)δk
and

En[(gUk (T̃k(v,u))− gLk(T̃k(v,u)))2] ≤ m̃(v,u)δ̃k.

Let σ2
n = Varn(f (Gn)), set

Zn =
f(Gn)− En[f (Gn)]

σn

and let Φ be the cumulative distribution function of the standard normal distribution.
Then we have for all k,n ∈ N

sup
t∈R

|Pn(Zn ≤ t)− Φ(t)|
≤ C0J1/4

[(
n
σ2
n

)1/2
(ϑ1/2 + Γ2,n + χ1/2

n )2((Mnδk)1/8 + (M̃nδ̃k)1/8 + ε1/16
n,k + ρ1/16

n,k )

+
(
n
σ2
n

)3/4ϑΓ1,n + χ1/2
n

n1/4

]
.

The three conditions (GLA′ 1) to (GLA′ 3) together imply property GLA, so we may
informally refer to them as property GLA′. Again, the intuition is that (GLA′ 1) can
be used to approximate the effect of the perturbation on f locally with gLk with

an approximation error at most gUk − gLk . Then (GLA′ 2) allows us to estimate this
approximation error on the limiting Galton–Watson tree, where (GLA′ 3) ensures
that the approximation error goes to 0 as k→∞.

We will prove Theorem 2.3.5 and Corollary 2.3.6 in Chapter 4.
These results extend the central limit theorem shown by Cao [Cao21]. We were

able to include weights on the vertices and could prove the result in the more
general setting of rank-one inhomogeneous random graphs. As far as we are aware
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Cao’s result is the only general central limit theorem for combinatorial optimisation
problems in a sparse Erdős–Rényi random graph setting. In this setting, central
limit theorems are known for certain graph statistics like subgraph counts [Ruc88]
or the size of the giant component [BR12]. For the maximal matching (without
weights) a central limit theorem can be shown in certain regimes [Kre17; Pit90].
Barbour and Röllin [BR19] recently proved a general central limit theorem for local
graph statistics in the configuration model. The configuration model generates a
random graph with a given degree sequence. In fact, conditional on its degrees the
inhomogeneous graph model we considered here (and more general inhomogeneous
graph models) have the same distribution as a configuration model conditioned on
producing no loops or multiple edges [Hof18, Thm. 7.18].

The first-order behaviour of a number of combinatorial optimisation problems, on
the contrary, has been studied extensively in the sparse Erdős–Rényi graph setting
[e.g. BGT81; GNS06; KS81]. Some of the methods that were used to obtain limiting
constants in this setting can in fact be used to verify property GLA, so that a first-
order result together with our central limit theorem immediately also proves the
second-order behaviour. Results for more general sparse graphs do not appear to
be as abundant [BLS13].

2.4 Applications

In this section we will briefly present two applications of the central limit theorem.
The first is a slightly contrived example in which we assign artificial edge weights
to edges based on the weight at their end vertices. Contrary to the setup in which
we assign edge weights as usual in our weighted graph model, this results in edge
weights that are not independent, so that a standard central limit is not immediately
applicable. The second example will be that of maximum weight matching.

2.4.1 A simple example

In order to whet our appetite here is a simple application of Theorem 2.3.5. Let Gn
be a sequence of weighted inhomogeneous random graphs satisfying the assump-
tions of Theorem 2.3.5. We will assume that the connectivity weights are such
that En[(W (n))4] converges in probability to a constant and that ν has fourth mo-
ments. In this example we do not place independent weights on the edges with
distribution µE , which we ignore from now on. Instead we will use the weights
we put on the vertices with µV,n = µV to induce artificial weights on the edges by
adding up the weights of their endpoints. We will assume that µV has at least sixth
moments.

With the usual notation of X and w we are interested in the quantity

N(Gn) =
∑

u,v∈Vn
(wv +wu)Xvu =

∑
e={u,v}∈V (2)n

(wv +wu)Xe,
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i.e. in twice the total sum of these artificial edge weights. Since the same wv will

appear for different edges e ∈ V (2)n , this is not a sum of independent random
variables.

Observe that N(Gn) can be rewritten as

N(Gn) =
∑
v∈Vn

|D1(v)|wv ,

but again that this is not a sum of independent random variables, since |D1(v)| is
not independent for different v (take the simple example in which we consider a
graph with just two vertices, if the degree of one of the vertices is 1, we know that
the degree of the other must also be 1).

Since we could not easily rewrite N(Gn) as a sum of independent random variables,
we cannot easily apply one of the standard central limit theorems. Hence, we will
appeal to our central limit theorem Theorem 2.3.5.

We will first identify suitable local approximations for property GLA. Since the
problem is ‘truly local’ in the sense that the effect of a local change can be fully
estimated with local information, this is straightforward.

We observe that for any edge e = {u,v} ∈ V (2)n

∆eN = N(Gn)−N(Gen) = (wv +wu)(Xe −X′e) (2.12)

and any vertex v ∈ Vn

∆vN = N(Gn)−N(Gvn) = |D1(v)|(wv −w′
v). (2.13)

To shorten notation from now on write Bk = Bk(v,Gn), Bek = Bk(v,Gen) and Bvk =
Bk(v,Gvn). For k ≥ 1 we can let

LAE,L(Bk, Bek) = LAE,U(Bk, Bek) = (wv +wu)(Xe −X′e)

and
LAV,L(Bk, Bvk ) = LAV,U(Bk, Bvk ) = |D1(v)|(wv −w′

v).

Then
LAE,L(Bk, Bek) = ∆eN = LAE,U(Bk, Bek)

and
LAV,L(Bk, Bvk ) = ∆vN = LAV,U(Bk, Bvk ),

which immediately verifies (GLA 1) and (GLA 4). The construction of these functions
relies only on properties that are preserved under isomorphisms for weighted graphs,
so (GLA 2) and (GLA 5) are also satisfied. Since the upper and lower bound coincide,
(GLA 3) and (GLA 6) are trivially satisfied. Hence, property GLA (Assumption 2.3.2)
holds in our problem.
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We turn to the simpler integrability bounds in Assumption 2.3.4. From (2.12) and
(2.13) we obtain

|∆eN| ≤ 1{max{Xe,X′e}=1}(wv +wu)

and
|∆vN| ≤ |D1(v)|(wv +w′

v).

The sixth moments of the weights are bounded by assumption. Hence we can choose

HE(wv ,wu) = wv +wu and HV (wv ,w′
v) = wv +w′

v

to satisfy (2.6) and (2.7) of Assumption 2.3.4. For (2.8) set h(x) = x so that we need
a bound on the fourth moment of |D1(v)|, which can be found in Lemma 3.1.11. We
then have that

ζn(v) = En[(|D1(v)| + 4)4] ≤ C(Wv + 1)4(Γ2,n + 1)4 <∞

and that

χn =
1
n

∑
v∈Vn

ζn(v) ≤
1
n

∑
v∈V

C(Wv + 1)4(Γ2,n + 1)4 = C(Γ2,n + 1)4En[(W (n) + 1)4]

is bounded in probability because we assumed the existence of fourth moments
for W (n).

With all assumptions verified we can now apply Theorem 2.3.5. As discussed
in the remarks after Theorem 2.3.5 the bound for the Kolmogorov distance of the
distribution of σ−1

n (N(Gn)− En[N(Gn)]) to a standard normal distribution goes to
zero in probability if nσ−2

n is bounded in probability. Hence, in order to conclude
convergence to a standard normal, we have to verify that the variance of N(Gn)
is of sufficiently high order. A straightforward but tedious calculation, which we
will not show here, verifies that indeed Varn(N(Gn)) is of order n so that nσ−2

n is
bounded in probability. This then allows us to conclude the desired convergence.
The convergence rate depends on the rate of convergence of νn to ν and other
properties of νn and ν .

2.4.2 Maximum weight matching

We will now apply Corollary 2.3.6 to the maximum weight matching problem on an
inhomogeneous random graph satisfying Assumption 2.2.1 for some measure ν and
with Exp(1) edge weights and no vertex weights. We will assume that ν has third
moments, so that ν̂ has second moments.

Furthermore, we will assume that the following technical condition holds. Define
an operator T on the space of probability distributions on R by letting T(µ) be the
distribution of

max
i∈[N]

{0, ξi −Xi},
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where N ∼ ν̂, ξ1, . . . , ξN
i.i.d.∼ Exp(1) and Xi, . . . , XN

i.i.d.∼ µ are independent. We
assume that the iterated operator T 2 (defined as T 2(µ) = T(T(µ))) has a unique
fixed point. This condition is in essence what Gamarnik, Nowicki and Swirszcz
[GNS06] call ‘long-range independence’ and verify for the case ν = δc for some c > 0
[GNS06, Thm. 3]. We believe that this condition can be verified for a more general
class of measures ν .

Definition 2.4.1 (Maximum weight matching). Let G be an edge-weighted graph with
vertex set V and edge set E.

A matching on G is a subset of edges M ⊆ E in which no two edges have a
vertex in common. In other words, for all v ∈ V there is at most one u ∈ V such
that {v,u} ∈ E (we call u the vertex matched to v).

The maximum weight matching is a matching M that maximises the sum of edge
weights

∑
e∈M we.

Note that a maximum weight matching need not match every vertex to another
vertex.

We follow the strategy used by Cao [Cao21] to tackle this problem. We want to
apply Corollary 2.3.6 and so need to identify suitable functions gLk and gUk .

As alluded to before, recursive properties are usually a very good starting point
to verify property GLA or its slightly simplified cousin in Corollary 2.3.6. Let M(G)
be the weight of the maximum weight matching on a graph G with vertex set V
and edge set E. Then for any vertex v ∈ V the weight of the maximum weight
matching M(G) satisfies the recursion

M(G) = max
{
M(G− v), max

u:{v,u}∈E

{
w{v,u} +M(G− {v,u})

}}
.

Essentially this formula says that we need to decide between not matching v to any
partner vertex, so that the matching is in effect a matching on G− v , or matching v
to any of its neighbours u, upon which the weight of the matching increases by the
weight of the edge between v and u and the remainder of the matching happens on
the graph G− {v,u}.

Now define
h(G, v) = M(G)−M(G− v)

and note that

h(G, v) = max
{
0, max
u:{v,u}∈E

{
w{v,u} − h(G− v,u)

}}
.

Intuitively, this expression quantifies how much better it is to match v to one of
its neighbours rather than to leave it unmatched. If h(G, v) = 0, then the weight
of the maximum weight matching on G and G − v are the same, which means
that v can remain unmatched in G and we still attain the maximum possible weight.
If h(G, v) > 0, then matching v to one of its neighbours means that the matching
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performs better than the matching that does not match v . Hence, v should be
matched in the maximum weight matching on v .

Let T be a weighted tree of height at most k, let ∅ be the root of T and let C(u) be
the set of children of the vertex u in T. Denote the edge weights of T by we.

Define hk( · ,T) : T → R by setting hk(u,T) = 0 for all leaves u of T and by the
recursion

hk(u,T) = max
{
0, max
u′∈C(u)

{
w{u,u′} − hk(u′,T)

}}
for all non-leaf vertices u of T. Note that by this recursion the value hk(u,T) only
ever depends on the subtree in T that is induced by the descendants of u.

A short induction argument shows that under the assumption that Bk(v,Gn) is a
tree

hk(v, Bk(v,Gn)) ≤ h(Gn, v) if k is even

and

h(Gn, v) ≤ hk(v, Bk(v,Gn)) if k is odd.

Thus, if for k ∈ N we have that B2k+1(v,Gn) is a tree (which naturally implies
that B2k(v,Gn) is a tree), we also have

h2k(v, B2k(v,Gn)) ≤ h(Gn, v) ≤ h2k+1(v, B2k+1(v,Gn)).

This suggests the following definition for gLk and gUk : Let kU be the largest odd
number less than or equal to k and kL = kU − 1. Then kL ≤ k and kU ≤ k so that
if Bk(v,Gn) is a tree, we can set

gLk(Bk(v,Gn)) = hkL(v, BkL(v,Gn))
and

gUk (Bk(v,Gn)) = hkU (v, BkU (v,Gn)).

Property GLA′ Immediately this construction ensures

gLk(Bk(v,Gn)) ≤ h(Gn, v) ≤ gUk (Bk(v,Gn)),

which verifies (GLA′ 1) in Corollary 2.3.6.
The construction of gLk and gUk also ensures (GLA′ 2) of Corollary 2.3.6 because

the definition relies only on structure that is preserved under isomorphisms on
weighted rooted graphs, namely edges and weights.

The next step is to verify (GLA′ 3). We start with the first part Let T(v) ∼
T(Wv , ν,Exp(1), · ) and Tk(v) be its level-k subtree. Recall that T(v) is a delayed
weighted Galton–Watson tree that can be constructed by joining together N ∼
Poi(Wv) independent weighted Galton–Watson trees T(i) for i ∈ {1, . . . ,N} with
offspring distribution MPoi(ν̂) via edges {∅,∅i} with independent edge weights
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according to Exp(1). The depth-k subtree Tk of T is then made up of the N sub-

trees T(i)k−1 of T(i) joined at the root ∅. By the construction of gLk and gUk we need to
analyse

En[(h2k+1(∅,T2k+1(v))− h2k(∅,T2k(v)))2]

in order to verify condition (GLA′ 3) of Corollary 2.3.6.
We evaluate one recursion step to find

|h2k+1(∅,T2k+1(v))− h2k(∅,T2k(v))|2

=
∣∣∣max

{
0, max

1≤i≤N

{
w{∅,∅i} − h2k+1(∅i,T2k+1(v))

}}
−max

{
0, max

1≤i≤N

{
w{∅,∅i} − h2k(∅i,T2k(v))

}}∣∣∣2
.

Recall that hk(u,T) only depends on the subtree of T induced by the descendants
of u. If hk( · ,Tk(v)) assigns value 0 to the leaves of Tk(v), then hk−1( · ,T(i)k−1) does
the same for the subtree induced by the descendants of ∅i. Hence, the previous
expression is equal to

=
∣∣∣max

{
0, max

1≤i≤N

{
w{∅,∅i} − h2k(∅i,T(i)2k)

}}
−max

{
0, max

1≤i≤N

{
w{∅,∅i} − h2k−1(∅i,T(i)2k−1)

}}∣∣∣2
.

Use that |maxxi −maxyi| ≤ max|xi −yi| to find that this difference is bounded by

≤ max
1≤i≤N

|h2k(∅i,T(i)2k)− h2k−1(∅i,T(i)2k−1)|2

≤
N∑
i=1

|h2k(∅i,T(i)2k)− h2k−1(∅i,T(i)2k−1)|2.

Since all T(i) are independent Galton–Watson trees with the same offspring distribu-
tion that are independent of N ∼ Poi(Wv), we have

En[(h2k+1(∅,T2k+1)− h2k(∅,T2k))2]

≤ En
[ N∑
i=1

|h2k(∅i,T(i)2k)− h2k−1(∅i,T(i)2k−1)|2
]

≤ En[N]En[|h2k(∅1,T
(1)
2k )− h2k−1(∅1,T

(1)
2k−1)|2]

≤ WvE[|h2k(∅1,T
(1)
2k )− h2k−1(∅1,T

(1)
2k−1)|2]. (2.14)

We dropped the conditioning on Fn in the last expectation, because the random
variables inside the expectation do not depend on Fn in any way.

Shorten hk(∅1,T
(1)
k ) to hk(∅1). With this notation it is enough to verify that

δk = E[(h2k(∅1)− h2k−1(∅1))2]→ 0 as k→∞, (2.15)
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Chapter 2 Setting and Main Result

because then together with mn(v) = Wv , for which we have that

Mn = n−1
∑
v∈Vn

Wv = ϑΓ1
is bounded in probability, and (2.14) we would have

En[(h2k+1(∅,T2k+1(v))− h2k(∅,T2k(v)))2] ≤mn(v)δk (2.16)

as required for the first part of (GLA′ 3).
In order to verify (2.15), note first that as before a short induction argument

shows that we have h2k(∅1) ≤ h2k−1(∅1) for all k ∈ N+. Furthermore, we also have
that h2k−1(∅1) is non-increasing in k and that h2k(∅1) is non-decreasing in k. Set

hL = lim
k→∞

h2k(∅1) and hU = lim
k→∞

h2k−1(∅1).

Then by the monotonicity of the sequences

h2k−1(∅1)− h2k(∅1) ↘ hU − hL

and

0 ≤ h2k−1(∅1)− h2k(∅1) ≤ h2k−1(∅1) ≤ h1(∅1) ≤ max
u∈C(∅1)

w{∅1,u}.

Since the right-hand side has finite second moment (because we assumed that ν̂
has finite second moment and the we are exponentially distributed), we can apply
Lebesgue’s dominated convergence theorem and obtain the desired convergence for
(2.15) if hU − hL = 0 almost surely. By definition we have hL ≤ hU , so the almost
sure equality can be concluded from equality of the expectations.

Hence, (2.15) and with it the first part of (GLA′ 3) follow from the the following
claim.

Claim 2.4.2. We have E[hL] = E[hU].

Proof. Under the technical condition that the distributional operator T 2 has a unique
fixed point, the arguments used by Gamarnik, Nowicki and Swirszcz [GNS06] to
prove their Proposition 1 and Theorem 3 also apply in our setting, which implies
that hk(∅) converges in distribution to some limit H∞. But this implies that hL

and hU have the same distribution, namely H∞. Then E[hL] = E[hU] as claimed.

This shows the first part of condition (GLA′ 3) in Corollary 2.3.6. For the second
part we need to consider

En[(h2k+1(∅, T̃2k+1(v,u))− h2k(∅, T̃2k(v,u)))2].

As explained in Definition 2.2.6 we may assume that the weighted tree T̃k(v,u) ∼
T̃(Wv ,Wu, ν, µE, µV ) is constructed from (Tk(v),Tk−1(u),∅,∅′,w). Again the idea
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is to unwrap what the recursion implies for the different subtrees. We only need
to focus on the ‘artifical’ edge {∅,∅′} of weight w between Tk(v) and Tk−1(u). We
have

h2k+1(∅, T̃2k+1(v,u)) = max{h2k+1(∅,T2k+1(v)),w − h2k(∅′,T2k(u))}
and

h2k(∅, T̃2k(v,u)) = max{h2k(∅,T2k+1(v)),w − h2k−1(∅′,T2k−1(u))}.

Let

Yk = h2k+1(∅,T2k+1(v))− h2k(∅,T2k+1(v))
and

Y ′k = h2k−1(∅′,T2k−1(u))− h2k(∅′,T2k(u)).

Then

|h2k+1(∅, T̃2k+1(v,u))− h2k(∅, T̃2k(v,u))|2 ≤ max{|Yk|2, |Y ′k|2}.

When we verified the first part of (GLA′ 3), we already showed that En[|Yk|2] satisfies
(2.16), i.e.

En[|Yk|] ≤ Wvδk.

The exact same reasoning can be used to show that

En[|Y ′k|] ≤ Wuδk.

Together this shows

En[|h2k+1(∅, T̃2k+1(v,u))− h2k(∅, T̃2k(v,u))|2] ≤ (Wv +Wu)δk,

so that the second part of (GLA′ 3) is satisfied with m̃n(v,u) = Wv + Wu for
which M̃n = n−2

∑
v,u∈VnWu +Wv = 2ϑΓ1,n is bounded in probability.

This verifies the simplified version of property GLA from Corollary 2.3.6. Hence,
we can apply Corollary 2.3.6 once we have verified Assumption 2.3.4.

Bounds for Assumption 2.3.4 Because there are no vertex weights, we only need
to consider (2.6) and (2.9). Indeed, for (2.9) we only need to find a bound of the form

|M(Gn)−M(Gen)| ≤ 1{max{Xe,X′e}=1}HE(we,we′).

We identify a suitable bound by considering the cases separately. First we consider
the case that perturbing the edge removes it from the graph, i.e. Xe = 1, but X′e = 0.
If e with weight we is part of the maximum weight matching, removing it from the
graph (and therefore from the matching) can cost the maximum weight matching
at most we, because the removal of e allows other previously blocked edges to
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Chapter 2 Setting and Main Result

participate again. If e is not part of the matching, removing it does not change the
weight of the maximum weight matching at all. In case the perturbation adds a
previously nonexistent edge, i.e. Xe = 0, X′e = 1, the weight of the maximum weight
matching can increase at most by the weightw′

e of this edge. If the edge is present in
both the unperturbed and perturbed graph and only changes its weight, the weight of
the maximum weight matching changes at most by the difference of the old and new
weight. In any case the difference is bounded by the maximum of the old weight we
and the new weight w′

e. In other words we can choose HE(we,w′
e) = max{we,w′

e}.
Since we,w′

e ∼ Exp(1), we immediately have E[HE(we,w′
e)6], which implies (2.6),

since our weight distribution is the same for all n.

Variance bound As in the previous example, an application of Corollary 2.3.6 now
provides an estimate for the Kolmogorov distance of the distribution of σ−1

n (N(Gn)−
En[N(Gn)]) to a standard normal distribution. In order to obtain a convergence
we have to verify that the variance is at least of order n. This again a technical
calculations. For the case ν = δc we refer to the calculations done by Cao [Cao21,
Lem. 3.2], whose approach carries over to ν ≠ δc under our technical condition.

2.5 Outlook

The main contribution of this thesis was to show that the framework used by Cao
[Cao21] to establish the central limit theorem for the (homogeneous) edge-weighted
Erdős–Rényi model can be extended to more inhomogeneous graph models and to
models with weights on edges and vertices.

The setting we investigate in this thesis still exhibits a fair amount of uniformity
in the limit. Yet still, the methods used in the proof for the Erdős–Rényi model had
to be adapted not inconsiderably to apply to this case as well. It would be interesting
to investigate which level of inhomogeneity – either in the graphs or the limiting
objects – these methods can still support and at which point other methods need to
be considered.

The inhomogeneous random graph models we investigate here do not exhibit a
spatial structure, but many interesting real-world networks have inherent spatial
and geometric properties that influence the graph structure. The local limiting
behaviour of spatial inhomogeneous random graphs is known [HHM22] and may
differ significantly from the local behaviour of sparse inhomogeneous random
graphs. It is therefore doubtful that the sparsity/tree-based approach pursued
here is directly suitable to these graphs. Nevertheless, the methods used here may
be applicable to a subclass of spatial random graphs whose local properties are
sufficiently similar to the sparse inhomogeneous graphs we considered. Moreover,
the general approach of the perturbative Stein’s method and local approximation
has been used successfully in a spatial setting [CS17].
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2.5 Outlook

A final direction for future research would be to consider dynamic versions of
the underlying random graph [see e.g. Man+19; ZMN17]. If it is possible to show a
central limit theorem for each time-point of the evolving graph, one might hope for
a functional central limit theorem for the entire process.
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Chapter 3

Local Structure of Sparse Inhomogeneous
Random Graphs

One of the fundamental results in the analysis of the behaviour of Erdős–Rényi
random graphs is that their connected components can be described with branching
processes [see, e.g. Hof18, Chap. 4]. Indeed, the entire local neighbourhood structure
of a sparse Erdős–Rényi random graph can be related to a Galton–Watson tree with
Poisson offspring distribution. In the realm of inhomogeneous random graphs
similar branching process results have been known since the introduction of the
model by Söderberg [Söd02] and extensive study by Bollobás, Janson and Riordan
[BJR07]. Specifically, the local structure of a wide class of sparse inhomogeneous
random graphs can be related to a class of multi-type branching processes [BJR07;
Hof23, Chap. 3]. In our setting the limiting object will essentially turn out to be a
single-type branching process with Poisson offspring distribution.

In this chapter we will analyse the local structure of sparse inhomogeneous
random graphs of the form introduced in Section 2.2. We will start by showing
relatively simple results about the sizes of the neighbourhoods of a fixed vertex and
about the probability that a fixed vertex or edge is part of the neighbourhood of
another vertex in Section 3.1. In a second step we will find explicit bounds for the
correlation between neighbourhoods of different vertices in Section 3.2.

We will then use the graph exploration procedure introduced in Section 3.3 to
explicitly couple neighbourhoods in the inhomogeneous graph to Galton–Watson
trees in Section 3.4. Finally, in Section 3.5 we present several coupling results that
are at first glance more complex, but follow directly from the coupling established
in Section 3.4.

3.1 Neighbourhood size and path probabilities

In this section we will briefly establish a few results about the size of the neigh-
bourhood of a vertex and for path probabilities. Since the strategy of coupling the
cluster (i.e the neighbourhood of a vertex) to a branching process is well established
[BJR07], these results are by no means surprising and are in principle known in a
much more general setting. We were not able to locate all of the precise results we
need in the literature, though, so we state all of them here in a consistent notation.
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Chapter 3 Local Structure

The estimates in this section only depend on the underlying graph structure and
not on the additional vertex and edge weights in the weighted graph Gn. Hence, all
results in this section will be shown for Gn = (Vn, En). Still, all results presented
here will still hold if Gn is replaced with Gn. Again, V (2)n = {{u,v} : u,v ∈ Vn} is
the set of possible edges.

Recall the definition of the local neighbourhood Bℓ(v,Gn) of a vertex v in Gn up
to level ℓ ∈ N (cf. Definition 2.1.7). For the rest of this section we will drop the
reference to Gn and will just write Bℓ(v) for Bℓ(v,Gn).

In a slight abuse of notation we will write both u ∈ Bℓ(v) for a vertex u ∈ Vn to
mean that u is contained in the vertex set of Bℓ(v), which means that there must
be a path from v to u of length no more than ℓ, and e ∈ Bℓ(v) to mean that the

possible edge e ∈ V (2)n is contained in the edge set of Bℓ(v), which means that e is
part of a path of length at most ℓ from v to an arbitrary vertex.

It will be useful to have an estimate of the expected number of vertices in a
neighbourhood as well as of their ‘total connectivity weight’. Amongst other things
these quantities can be used to estimate the correlation between neighbourhoods of
different vertices.

Definition 3.1.1 (Total p-connectivity weight). Fix p ≥ 0. For any set of vertices U ⊆
Vn let

∥U∥p =
∑
u∈U

Wp
u

denote the total sum of the p-th power of the connectivity weights of the vertices
in U. We also say that ∥U∥p is the total p-connectivity weight of U.

We write ∥U∥ = ∥U∥1. Note also that the cardinality of a set can be written as its
total 0-weight, that is to say |U| = ∥U∥0.

In a first step we estimate the expected number of vertices in Bℓ(v).

Lemma 3.1.2. For any level ℓ ∈ N and vertex v ∈ Vn we have

En[|Sℓ(v)|] ≤ 1+WvΓ1,n(Γ2,n + 1)ℓ−1.

Proof. By construction Sℓ(v) =
⋃ℓ
r=0Dr (v) is a disjoint union so that

|Sℓ(v)| =
ℓ∑
r=0

|Dr (v)|.

The number of vertices at level exactly r ≥ 1 can be estimated by the number of
vertices to which there exists a path of length r from v . In particular for r ≥ 1 we
have

En[|Dr (v)|] ≤
∑

u1,...,ur∈Vn\{v}
pairwise different

En[Xvu1Xu1u2 · · ·Xur−1ur ].
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3.1 Neighbourhood size and path probabilities

All edges are different and therefore independent, so that the edge probabilities
factor

≤
∑

u1∈Vn

WvWu1

nϑ

∑
u2∈Vn

Wu1Wu2

nϑ
· · ·

∑
ur∈Vn

Wur−1Wur
nϑ

≤ Wv
1
nϑ

∑
u1∈Vn

W2
u1

1
nϑ

∑
u2∈Vn

W2
u2
. . .

1
nϑ

∑
ur−1∈Vn

W2
ur−1

1
nϑ

∑
ur∈Vn

Wur

≤ Wv
( 1
nϑ

∑
u∈Vn

W2
u

)r−1 1
nϑ

∑
u∈Vn

Wu

= Wv
(En[(W (n))2]

ϑ

)r−1En[W (n)]
ϑ

= WvΓ1,nΓ r−1
2,n .

Then

En[|Sℓ(v)|] = 1+
ℓ∑
r=1

|Dr (v)|

≤ 1+WvΓ1,n ℓ∑
r=1

Γ r−1
2,n

≤ 1+WvΓ1,n(Γ2,n + 1)ℓ−1

as claimed.

Corollary 3.1.3. For any V ⊆ Vn and ℓ ∈ N we have

En[|Sℓ(V )|] ≤ |V| + ∥V∥Γ1,n(Γ2,n + 1)ℓ−1.

Proof. This follows directly from Lemma 3.1.2, because |Sℓ(V )| ≤
∑
v∈V |Sℓ(v)|.

It is also instructive to calculate the expectation of the ‘total p-connectivity weight’
of the explored graph up to level ℓ. The proof replicates the ideas of Lemma 3.1.2,
which is not surprising given that the following lemma actually implies Lemma 3.1.2
(by taking p = 0).

Lemma 3.1.4. Let p ≥ 0. For any level ℓ ∈ N and vertex v ∈ Vn we have

En[∥Sℓ(v)∥p] ≤ W
p
v +Wv(Γ2,n + 1)ℓ−1Γp+1,n.

In case p = 1 this bound can be tweaked slightly to become

En[∥Sℓ(v)∥] ≤ Wv(Γ2,n + 1)ℓ.
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Proof. By construction and the fact that the Dr (v) are disjoint

∥Sℓ(v)∥p =
ℓ∑
r=0

∥Dr (v)∥p.

Recall that D0(v) = {v} so that ∥D0(v)∥p = Wp
v .

Analogous to the estimate for |Dr (v)| we have for r ≥ 1 that

En[∥Dr (v)∥p] (3.1)

≤
∑

u1,...,ur∈Vn\{v}
pairwise different

En[Xvu1Xu1u2 · · ·Xur−1urW
p
ur ]

≤
∑

u1∈Vn

WvWu1

nϑ

∑
u2∈Vn

Wu1Wu2

nϑ
· · ·

∑
ur∈Vn

Wur−1Wur
nϑ

Wp
ur

≤ Wv
1
nϑ

∑
u1∈Vn

W2
u1

1
nϑ

∑
u2∈Vn

W2
u2
· · · 1

nϑ

∑
ur−1∈Vn

W2
ur−1

1
nϑ

∑
ur∈Vn

Wp+1
ur

≤ Wv
( 1
nϑ

∑
u∈Vn

W2
u

)r−1( 1
nϑ

∑
u∈Vn

Wp+1
u

)
= WvΓ r−1

2,n Γp+1,n. (3.2)

Now sum over r to obtain

En[∥Sℓ(v)∥p] = En[∥D0(v)∥p]+
ℓ∑
r=1

En[∥Dr (v)∥p]

≤ Wp
v +WvΓp+1,n

ℓ∑
r=1

Γ r−1
2,n

≤ Wp
v +WvΓp+1,n(Γ2,n + 1)ℓ−1. (3.3)

This proves the first part of the claim.
For the second claim note that in case p = 1 the bound in (3.2) becomes

En[∥Dr (v)∥] ≤ WvΓ r2,n.
But this bound also holds for r = 0, so that the summation in (3.3) becomes

En[∥Sℓ(v)∥] ≤ Wv
ℓ∑
r=0

Γ r2,n ≤ Wv(Γ2,n + 1)ℓ,

which proves the second part of the claim.

Again, summing the result gives:
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Corollary 3.1.5. Let p ≥ 0. For any level ℓ ∈ N and vertex set V ⊆ Vn we have

En[∥Sℓ(V )∥p] ≤ ∥V∥p + ∥V∥(Γ2,n + 1)ℓ−1Γp+1,n

and thus also

En[∥Sℓ(V )∥] ≤ ∥V∥(Γ2,n + 1)ℓ.

We will need a similar result for the excess connectivity weight of vertices

Definition 3.1.6 (Excess connectivity weight). Fix n ∈ N. Let U ⊆ Vn a set of vertices
in Gn. Then we say that

∥U∥+ =
∑
u∈U

Wu1{Wu>
√
nϑ}

is the total sum of excess connectivity weights of U.

Replicating the exact same arguments as in Lemma 3.1.2 we can show a bound
for ∥Sℓ(v)∥+.

Lemma 3.1.7. For any level ℓ ∈ N and vertex v ∈ Vn we have

En[∥Sℓ(v)∥+] ≤ Wv1{Wv>√nϑ} +Wv(Γ2,n + 1)ℓ−1κ2,n.

Proof. We follow the steps in the proof of Lemma 3.1.2.
By construction and the fact that the Dr (v) are disjoint we have

∥Sℓ(v)∥+ =
ℓ∑
r=0

∥Dr (v)∥+.

Recall that D0(v) = {v} so that ∥D0(v)∥+ = Wv1{Wv>√nϑ}.
For r ≥ 1 we have

En[∥Dr (v)∥+] ≤
∑

u1,...,ur∈Vn\{v}
pairwise different

En[Xvu1Xu1u2 · · ·Xur−1urWur1{Wur>
√
nϑ}]

≤ Wv
( 1
nϑ

∑
u∈Vn

W2
u

)r−1( 1
nϑ

∑
u∈Vn

W2
u1{Wur>

√
nϑ}
)

= WvΓ r−1
2,n κ2,n.

Now sum over r as in the proof of Lemma 3.1.2 to prove the claim.

For estimates involving the Cauchy–Schwarz inequality it will also be useful to
have a bound on the second moment of ∥Sℓ(v)∥.
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Lemma 3.1.8. For any level ℓ ∈ N and vertex v ∈ Vn we have

En[∥Sℓ(v)∥2
p]

≤ W2p
v + 2Wp+1

v Γp+1,n(Γ2,n + 1)ℓ−1

+ C(Wv + 1)2(Γ2,n + 2)2ℓ−2(Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1)(Γ2p+1,n + 1).

For p = 0 this estimate can be slightly simplified further to

En[|Sℓ(v)|2] = En[∥Sℓ(v)∥2
0] ≤ C(Wv + 1)2(Γ1,n + 1)2(Γ2,n + 2)2ℓ(Γ3,n + 1)

and for p = 1 to

En[∥Sℓ(v)∥2] ≤ C(Wv + 1)2(Γ2,n + 2)2ℓ(Γ3,n + 1).

Proof. Recall that D0(v) = {v} so that ∥D0(v)∥p = Wp
v . Then

∥Sℓ(v)∥2
p

=
( ℓ∑
r=0

∥Dr (v)∥p
)2

=
ℓ∑
r=0

∥Dr (v)∥2
p +

ℓ∑
r ,s=0
r≠s

∥Dr (v)∥p∥Ds(v)∥p

= W2p
v +

ℓ∑
r=1

∥Dr (v)∥2
p + 2Wp

v

ℓ∑
r=1

∥Dr (v)∥p +
ℓ∑

r ,s=1
r≠s

∥Dr (v)∥p∥Ds(v)∥p (3.4)

The bound
ℓ∑
r=1

En[∥Dr (v)∥p] ≤ WvΓp+1,n(Γ2,n + 1)ℓ−1 (3.5)

was already established in (3.3) for the proof of Lemma 3.1.4. It thus remains to

bound
∑ℓ
r=1 En[∥Dr (v)∥2

p] and
∑ℓ
r ,s=1
r≠s

En[∥Dr (v)∥p∥Ds(v)∥p].
For r ∈ N+ we can write

∥Dr (v)∥p =
∑
u
1{v→ru}W

p
u ,

where v →r u means that there is a path from v to u of length exactly r (that does
not visit the same vertex twice) and that there exists no such path of length s < r .
Then

∥Dr (v)∥2
p =

∑
u
1{v→ru}W

2p
u +

∑
u≠u′

1{v→ru}1{v→ru′}W
p
uW

p
u′ (3.6)

and

∥Dr (v)∥p∥Ds(v)∥p =
∑
u
1{v→ru}1{v→su}W

2p
u +

∑
u≠u′

1{v→ru}1{v→su′}W
p
uW

p
u′ . (3.7)
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The first sum in (3.6) involves only paths to a single vertex and its expectation is
easily estimated as follows

En
[∑
u
1{v→ru}W

2p
u
]
≤

∑
u1,u2,...,ur
pairw. diff.

WvWu1

nϑ
Wu1Wu2

nϑ
. . .
Wur−1Wur

nϑ
W2p
ur

≤ Wv
(En[(W (n))2]

ϑ

)r−1En[(W (n))2p+1]
ϑ

≤ WvΓ r−1
2,n Γ2p+1,n. (3.8)

The first sum in (3.7) is zero for r ≠ s, since the shortest path from v to u cannot
have length both r and s. Hence,

En
[∑
u
1{v→ru}1{v→su}W

2p
u
]
= 0 (3.9)

The paths to u and u′ in the second sums in (3.6) and (3.7) are not necessarily
independent, so a priori their expectation does not factorise. A closer look at the
indicators allows for a ‘restricted factorisation’.

In particular we claim that if there is a path π of length r from v to u and a
path π ′ of length s from v to u′ (and no shorter path for either end-vertex), this
implies there is a vertex z in the same position in π and π ′ such that πzu and π ′zu′ ,
the segments of π from z to u and π ′ and from z to u′, respectively, do not share a
vertex apart from z. That is to say, the paths π and π ′ agree up to a certain vertex
and bifurcate afterwards.

If π and π ′ do not share any vertex apart from v , the claim is trivially true
with z = v .

So suppose there is a vertex z ≠ v that is shared between π and π ′. (If there
are several such vertices, pick the one that appears last in π and π ′.) Then z must
appear in the same position in π and π ′. If this were not the case, the path with
the longer segment from v to z could be shortened by using the shorter segment
from v to z from the other path. But this would be a contradiction to the minimality
of the paths. By choice of z the path segments πzu and π ′zu′ only share the vertex z.

It is easy to see that the path segments πzu and π ′zu′ only have the vertex z in
common with πvz, the path segment of π connecting v to z. If the paths shared a
vertex apart from z we could find a shorter path between v and u or u′ by leaving
out all vertices between the shared vertex contradicting the minimality assumption.

Hence, the event that u and u′ (with u ≠ u′) can be reached from v in r and s
steps, respectively, can be estimated by counting these ‘eventually bifurcating paths’
of the form just described. We distinguish the two cases r ≠ s and r = s (without
loss of generality we may assume r < s in the former case), because they differ in
one detail.

In case r < s, the paths either bifurcate immediately at v or they split at a later
step t ∈ {1, . . . , r}. Note that if the paths split at r , the path from v to u′ includes
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the complete path from v to u. If we write ur = u and u′s = u′ we thus have

1{v→ru}1{v→ru′} ≤
∑

u1,...,ur−1,
u′1,...,u

′
s−1

pairw. diff.

Xvu1 · · ·Xur−1urXvu′1 · · ·Xu′s−1u
′
s

+
r∑
t=1

∑
u1,u2,...,ut ,
ut+1,...,ur−1,
u′t+1,...,u

′
s−1

pairw. diff.

Xvu1Xu1u2 · · ·Xut−1ut

Xutut+1Xut+1ut+2 · · ·Xur−2ur−1Xur−1ur

Xutu′t+1
Xu′t+1u

′
t+2
· · ·Xu′s−2u

′
s−1
Xu′s−1u

′
s .

(3.10)

In case r = s, the paths similarly either bifurcate immediately at v or they split
at a later step t ∈ {1, . . . , r − 1}. Unlike in the previous case r < s, the bifurcation
must happen before step r in the path, because otherwise the paths would be the
same and would thus have the same endpoints, but we assumed that u ≠ u′. Again
we write ur = u and u′r = u′ to obtain

1{v→ru}1{v→ru′} ≤
∑

u1,...,ur−1,
u′1,...,u

′
r−1

pairw. diff.

Xvu1 · · ·Xur−1urXvu′1 · · ·Xu′r−1u
′
r

+
r−1∑
t=1

∑
u1,u2,...,ut ,
ut+1,...,ur−1,
u′t+1,...,u

′
r−1

pairw. diff.

Xvu1Xu1u2 · · ·Xut−1ut

Xutut+1Xut+1ut+2 · · ·Xur−2ur−1Xur−1ur

Xutu′t+1
Xu′t+1u

′
t+2
· · ·Xu′r−2u

′
r−1
Xu′r−1u

′
r .

(3.11)

For each summand in (3.10) and (3.11) all involved edges are independent given Fn
since apart from v or ut no vertex appears multiple times.
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3.1 Neighbourhood size and path probabilities

For (3.10) this immediately implies

En
[ ∑
u≠u′

1{v→ru}1{v→su′}W
p
uW

p
u′
]

≤
∑

u1,...,ur ,
u′1,...,u

′
s

pairw. diff.

WvWu1

nϑ
· · · Wur−1Wur

nϑ
Wp
ur
WvWu′1
nϑ

· · ·
Wu′s−1

Wu′s
nϑ

Wp
u′s

+
r∑
t=1

∑
u1,u2,...,ut ,
ut+1,...,ur ,
u′t+1,...,u

′
s

pairw. diff.

WvWu1

nϑ
Wu1Wu2

nϑ
· · · Wut−1Wut

nϑ

WutWut+1

nϑ
Wut+1Wut+2

nϑ
· · · Wur−2Wur−1

nϑ
Wur−1Wur

nϑ
Wp
ur

WutWu′t+1

nϑ
Wu′t+1

Wu′t+2

nϑ
· · ·

Wu′s−2
Wu′s−1

nϑ
Wu′s−1

Wu′s
nϑ

Wp
u′s
.

In the first sum the Wv as well as the r − 1 terms Wu1 , . . . ,Wur−1 and the s − 1
terms Wu′1 , . . . ,Wu′s′−1

appear exactly twice, whereas Wur and Wu′s′ appear to the
power p + 1.

In the second sum we distinguish the case t < r and t = r . In any case Wv
appears once. If t ∈ {1, . . . , r − 1}, then all t − 1 terms Wu1 , . . . ,Wut−1 appear
twice, Wt appears three times, the r − t − 1 terms Wut+1 . . . ,Wur−1 and the s − t − 1
terms Wu′t+1

. . . ,Wu′s−1
appear twice and Wur and Wu′s appear to the power p +

1. If t = r , then the r terms Wu1 , . . . ,Wur−1 appear twice, as do the s − r − 1
terms Wu′r+1

, . . . ,Wu′s−1
, whereas Wur appears to the power p + 2 and Wu′s appears

to the power p + 1.

Separate the sums over the us and u′s and count the multiplicity of the respect-
ive Wus to obtain the bound

W2
v

(
1
nϑ

∑
u
W2
u

)r+s−2( 1
nϑ

∑
u
Wp+1
u

)2

+
r−1∑
t=1

Wv
(

1
nϑ

∑
u
W2
u

)r+s−t−3( 1
nϑ

∑
u
W3
u

)(
1
nϑ

∑
u
Wp+1
u

)2

+Wv
(

1
nϑ

∑
u
W2
u

)s−2( 1
nϑ

∑
u
Wp+1
u

)(
1
nϑ

∑
u
Wp+2
u

)
.
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The summation of r + s − t − 3 from t = 1 to t = r − 1 can be rewritten as a
summation of t from t = s − 2 to t = r + s − 4, which in turn is a summation
of s − 2 + t from t = 0 to r − 2. If we additionally rewrite the sums with Γq,n we
obtain

≤ W2
v Γ r+s−2

2,n Γ2
p+1,n +WvΓ3,nΓ2

p+1,nΓ s−2
2,n

r−2∑
t=0

Γ t2,n +WvΓ s−2
2,n Γp+1,nΓp+2,n

≤ W2
v Γ r+s−2

2,n Γ2
p+1,n +WvΓ3,nΓ2

p+1,nΓ s−2
2,n (Γ2,n + 1)r−2 +WvΓ s−2

2,n Γp+1,nΓp+2,n.

In order to simplify this expression, we estimate very generously to factor out
common terms

≤ W2
v Γ r+s−2

2,n Γ2
p+1,n +Wv(Γ2,n + 1)r+s−2(Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1). (3.12)

Note that the generous estimation can be slightly simplified in case p = 1, because
then Γ3,n and Γp+2,n coincide so that after factoring only one of the two terms needs
to be part of the product.

The case r = s in (3.11) can be treated similarly, but the sum does not include a
term for t = r , so that

En
[ ∑
u≠u′

1{v→ru}1{v→ru′}W
p
uW

p
u′
]

≤
∑

u1,...,ur ,
u′1,...,u

′
r

pairw. diff.

WvWu1

nϑ
· · · Wur−1Wur

nϑ
Wp
ur
WvWu′1
nϑ

· · ·
Wu′r−1

Wu′r
nϑ

Wp
u′r

+
r−1∑
t=1

∑
u1,u2,...,ut ,
ut+1,...,ur ,
u′t+1,...,u

′
r

pairw. diff.

WvWu1

nϑ
Wu1Wu2

nϑ
· · · Wut−1Wut

nϑ

WutWut+1

nϑ
Wut+1Wut+2

nϑ
· · · Wur−2Wur−1

nϑ
Wur−1Wur

nϑ
Wp
ur

WutWu′t+1

nϑ
Wu′t+1

Wu′t+2

nϑ
· · ·

Wu′r−2
Wu′r−1

nϑ
Wu′r−1

Wu′r
nϑ

Wp
u′r

≤ W2
v Γ2r−2

2,n Γ2
p+1,n +Wv(Γ2,n + 1)2r−2(Γ3,n + 1)(Γp+1,n + 1)2. (3.13)

Now (3.6) together with (3.8) and (3.13) and generous estimates of the involved
terms imply

En[∥Dr (v)∥2
p]

≤ W2
v Γ2r−2

2,n Γ2
p+1,n +Wv(Γ r−1

2,n Γ2p+1,n + (Γ2,n + 1)2r−2(Γ3,n + 1)(Γp+1,n + 1)2)

≤ W2
v Γ2r−2

2,n Γ2
p+1,n +Wv(Γ2,n + 1)2r−2(Γ3,n + 1)(Γp+1,n + 1)2(Γ2p+1,n + 1). (3.14)
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3.1 Neighbourhood size and path probabilities

This estimate can be simplified if 2p + 1 should happen to be equal to 3 or p + 1. In
those cases the (Γ2p+1,n + 1) can be replaced by a constant.

Analogously (3.7) in conjuction with (3.9) and (3.12) and similarly generous estim-
ates imply

En[∥Dr (v)∥p∥Ds(v)∥p]
≤ W2

v Γ r+s−2
2,n Γ2

p+1,n +Wv(Γ2,n + 1)r+s−2(Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1).
(3.15)

As remarked after (3.12) the term (Γp+2,n + 1) may be dropped for p = 1.
Briefly write

x1 = (Γ3,n + 1)(Γp+1,n + 1)2(Γ2p+1,n + 1)
and

x2 = (Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1)

to simplify (3.14) and (3.15), respectively. Then

x1 + x2 ≤ C(Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1)(Γ2p+1,n + 1).

By the comments after (3.12) and (3.14), the (Γp+2,n + 1) may be dropped if p = 1
and the (Γ2p+1 + 1) may be replaced by a constant if 2p + 1 ∈ {3, p + 1}.

Now (3.4), (3.5), (3.14) and (3.15) and similarly rough estimates of the terms
involved imply

En[∥Sℓ(v)∥2
p]

≤ W2p
v + 2Wp

vWvΓp+1,n(Γ2,n + 1)ℓ−1 +W2
v Γ2
p+1,n

ℓ∑
r=0

Γ2r−2
2,n

+Wvx1

ℓ∑
r=0

(Γ2,n + 1)2r−2 +W2
v Γ2
p+1,n

ℓ∑
r ,s=0

Γ r+s−2
2,n +Wvx2

ℓ∑
r ,s=0

(Γ2,n + 1)r+s−2

≤ W2p
v + 2Wp+1

v Γp+1,n(Γ2,n + 1)ℓ−1 +W2
v Γ2
p+1,n

( ℓ∑
r=0

Γ2r−2
2,n +

ℓ∑
r ,s=0

Γ r+s−2
2,n

)

+Wv
(
x1

ℓ∑
r=0

(Γ2,n + 1)2r−2 + x2

ℓ∑
r ,s=0

(Γ2,n + 1)r+s−2
)

≤ W2p
v + 2Wp+1

v Γp+1,n(Γ2,n + 1)ℓ−1 +W2
v Γ2
p+1,n((Γ2

2,n + 1)ℓ−1 + (Γ2,n + 1)2ℓ−2)

+Wv(x1 + x2)((Γ2,n + 2)2ℓ−2 + (Γ2,n + 2)2ℓ−2)

≤ W2p
v + 2Wp+1

v Γp+1,n(Γ2,n + 1)ℓ−1 + CW2
v Γ2
p+1,n(Γ2,n + 2)2ℓ−2

+ CWv(Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1)(Γ2p+1,n + 1)(Γ2,n + 2)2ℓ−2

≤ W2p
v + 2Wp+1

v Γp+1,n(Γ2,n + 1)ℓ−1
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+ C(Wv + 1)2(Γ2,n + 2)2ℓ−2(Γ3,n + 1)(Γp+1,n + 1)2(Γp+2,n + 1)(Γ2p+1,n + 1).

This shows the claim for general p.
Again, for p = 1 the term (Γp+2,n + 1) may be dropped and the (Γ2p+1 + 1) may be

replaced by a constant if 2p + 1 ∈ {3, p + 1}. Furthermore, for p = 0 and p = 1 the
first terms can be absorbed into the last term by increasing C appropriately. This
then proves the slightly simplified results for p = 0 and p = 1.

We can sum the previous bound to obtain results for Sℓ(V ), where V is a set of
vertices. In the following we will only need the results for p = 0 and p = 1, so we
only work with the simplified results from Lemma 3.1.8

Corollary 3.1.9. For any vertex set V ⊆ Vn and level ℓ ∈ N we have

En[|Sℓ(V )|2] = En[∥Sℓ(V )∥2
0]

≤ C(∥V∥ + |V|)2(Γ1,n + 1)2(Γ2,n + 2)2ℓ(Γ3,n + 1)

and
En[∥Sℓ(V )∥2] ≤ C(∥V∥ + |V|)2(Γ2,n + 2)2ℓ(Γ3,n + 1).

Proof. To simplify notation we will assume that for p = 0 and p = 1 Lemma 3.1.8
gives a bound of the form

En[∥Sℓ(v)∥2
p] ≤ C(Wv + 1)2xn,p,

where xn,p consists of terms involving Γ2,n, Γ3,n, Γp+1,n, Γp+2,n and Γ2p+1,n.
Note that

En[∥Sℓ(V )∥2
p] ≤ En

[( ∑
v∈V

∥Sℓ(v)∥p
)2]

≤
∑
v∈V

En[∥Sℓ(v)∥2
p]+

∑
v,v′∈V
v≠v′

En[∥Sℓ(v)∥p∥Sℓ(v′)∥p]. (3.16)

For the first sum we can apply Lemma 3.1.8 and obtain∑
v∈V

En[∥Sℓ(v)∥2
p] ≤

∑
v∈V

En[∥Sℓ(v)∥2
p]

≤ Cxp,n
∑
v∈V

(Wv + 1)2

≤ Cxp,n(∥V∥ + |V|)2.

The terms in the second sum can be estimated using Cauchy–Schwarz and
Lemma 3.1.8

En[∥Sℓ(v)∥∥Sℓ(v′)∥] ≤ En[∥Sℓ(v)∥2]1/2En[∥Sℓ(v′)∥2]1/2

≤ Cxp,n(Wv + 1)(Wv′ + 1).
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3.1 Neighbourhood size and path probabilities

Summing over these terms we obtain∑
v,v′∈V
v≠v′

En[∥Sℓ(v)∥∥Sℓ(v′)∥] ≤ Cxp,n
∑

v,v′∈V
v≠v′

(Wv + 1)(Wv′ + 1)

≤ Cxp,n(∥V∥ + |V|)2.

Hence, both terms on the right-hand side of (3.16) can be estimated with the same
bound. This finishes the proof.

In fact the approach from (3.6) can be generalised to bound (higher) moments of
the degree distribution of a given vertex v in Gn. Recall that with the notation from
Definition 2.1.8 the degree of the vertex v in Gn can be written as |D1(v)|.

In the calculations for higher moments of the degree we will encounter the Stirling
numbers of the second kind [see e.g. AS72, § 24.1.4].

Definition 3.1.10 (Stirling numbers of the second kind). Let k ∈ N and j ∈ {1, . . . , k}.
Then the number of ways of partitioning a set of k elements into j non-empty

subsets is denoted by S(j)k and called the Stirling number of the second kind for k, j.

Lemma 3.1.11. Fix v ∈ Vn and k ∈ N. Then

En[|D1(v)|k] ≤
k∑
j=1

S(j)k W j
vΓ j1,n ≤ (Wv + 1)k(Γ1,n + k)k.

Proof. Note that

|D1(v)|k =
( ∑
u∈Vn

Xvu
)k

=
∑

u1,...,uk
Xvu1 · · ·Xvuk .

Since the Xvuℓ are indicator functions, any product of Xvuℓ with identical uℓ
collapses to one such indicator. We can therefore rewrite the sum over all possible
combinations of k vertices into a sum over j pairwise different vertices to obtain

|D1(v)|k =
k∑
j=1

S(j)k
∑

u1,...,uj
pairw. diff.

Xvu1 · · ·Xvuj ,

because each product Xvu1 · · ·Xvuj with pairwise different uℓ is realised by ex-

actly S(j)k products of the form Xvu1 · · ·Xvuk , where some of the uℓ may be equal.
To see this in more detail, partition the k vertices u1, . . . , uk into subsets such
that ur and us are in the same subset of they are the same. The number of
nonempty subsets of vertices that this procedure produces is exactly equal to the
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number vertices we need to write Xvu1 . . . Xvuk as a product over pairwise different

vertices. In particular there are exactly S(j)k to obtain a product of j pairwise different
vertices.

Taking expectations and using that the Xvuℓ in the sums are independent since
the uℓ are pairwise different, we obtain

En[|D1(v)|k] =
k∑
j=1

S(j)k
∑

u1,...,uj
pairw. diff.

En[Xvu1] · · ·En[Xvuj]

≤
k∑
j=1

S(j)k W j
v

(
1
nϑ

∑
u
Wu
)j

=
k∑
j=1

S(j)k W j
v

(
En[W (n)]

ϑ

)j

=
k∑
j=1

S(j)k W j
vΓ j1,n,

which proves the first part of the claim.
For the second part note that for k ≥ 2 the Stirling numbers of the second kind

can be bounded above as follows [RD69, Thm. 3]

S(j)k ≤ 1
2

(
k
j

)
jk−j ≤ 1

2

(
k
j

)
kk−j ,

so that

En[|D1(v)|k] ≤
k∑
j=1

S(j)k W j
vΓ j1,n

≤ 1
2

k∑
j=1

(
k
j

)
(WvΓ1,n)jkk−j

≤ 1
2
(WvΓ1,n + k)k

≤ (WvΓ1,n + k)k.
For k = 1 we have

En[|D1(v)|] ≤ WvΓ1,n ≤ WvΓ1,n + 1.

Thus we get for all k ∈ N that

En[|D1(v)|k] ≤ (WvΓ1,n + k)k ≤ (Wv + 1)k(Γ1,n + k)k
as claimed.
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We will also need to bound the probability that there exists a path of given length
between two subsets of vertices. To simplify notation we introduce a shorthand for
this event.

Definition 3.1.12. Let U and V be two sets of vertices. Let R be a third set of
vertices that is disjoint from U and V

• Write U↭ℓ V if there exists a path of length ℓ between a vertex u ∈ U and a
vertex v ∈ V .

In some cases it might be useful to restrict this event to paths that avoid a set
of vertices R, so we write U↭(R)ℓ V if there is a path of length ℓ between a
vertex u ∈ U and a vertex v ∈ V that does not use any vertices from R.

• WriteU↭≤ℓ V if there exists a path of length at most ℓ between a vertex u ∈
U and a vertex v ∈ V .

As above we write U↭(R)≤ℓ V if there is a path between U and V that does
not use any vertices from R.

As we do so often, we drop the curly brackets if V or U is a set with a single
element and write for example v ↭ℓ u for {v}↭ℓ {u}.

Lemma 3.1.13. Fix ℓ ∈ N, ℓ ≥ 1. Let U,V ⊆ Vn be two disjoint sets of vertices then

Pn(U↭ℓ V ) ≤
∥U∥∥V∥
nϑ

Γ ℓ−1
2,n .

Proof. Recall that in a path no vertex can appear multiple times. This ensures that
the edges of a path are all distinct and hence independent, so that

Pn(U↭ℓ V ) ≤
∑
u0∈U

u1,...,uℓ−1
uℓ∈V

En[Xu0u1Xu1u2 · · ·Xuℓ−1uℓ]

≤
∑
u0∈U

u1,...,uℓ−1
uℓ∈V

Wu0Wu1

nϑ
Wu1Wu2

nϑ
· · ·

Wuℓ−1
Wuℓ

nϑ

≤ 1
nϑ

∑
u0∈U

Wu0

( 1
nϑ

∑
v
W2
v

)ℓ−1 ∑
uℓ∈V

Wuℓ

≤ ∥U∥∥V∥
nϑ

Γ ℓ−1
2,n .

This finishes the proof.

In particular the probability that there is an edge between two sets of vertices U
and V is bounded above by (nϑ)−1∥U∥∥V∥.
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Corollary 3.1.14. Fix ℓ ∈ N, ℓ ≥ 1. Let U,V ⊆ Vn be two disjoint sets of vertices,
then

Pn(U↭≤ℓ V ) ≤
∥U∥∥V∥
nϑ

(1+ Γ2,n)ℓ−1.

Proof. By Lemma 3.1.13 we have

Pn(U↭≤ℓ V ) ≤
ℓ∑
r=1

Pn(U↭r V )

≤
ℓ∑
r=1

∥U∥∥V∥
nϑ

Γ r−1
2,n

≤ ∥U∥∥V∥
nϑ

(1+ Γ2,n)ℓ−1

as claimed.

The following special case of Corollary 3.1.14 is of particular interest to us.

Corollary 3.1.15. For any level ℓ ∈ N and vertices v,u ∈ Vn with u ≠ v we have

Pn(u ∈ Bℓ(v)) ≤
WuWv
nϑ

(Γ2,n + 1)ℓ−1.

Proof. The vertex u is contained in the ℓ-neighbourhood Bℓ(v) of v if and only if
there is a path of length at most ℓ from v to u. Hence, we apply Corollary 3.1.14
with V = {v} and U = {u}, so that

Pn(u ∈ Bℓ(v)) = Pn({v}↭ℓ {u}) ≤
WuWv
nϑ

(Γ2,n + 1)ℓ−1

as desired.

This result can be used to bound the probability that an edge e is contained
in Bℓ(v).

Corollary 3.1.16. For any level ℓ ∈ N, vertex v ∈ Vn and edge e = {u,u′} whose
endpoints are not equal to v we have

Pn(e ∈ Bℓ(v)) ≤
Wv(Wu +Wu′)

nϑ
(Γ2,n + 1)ℓ−1.

Proof. The edge e = {u,u′} can only be contained in the ℓ-neighbourhood of v if
one of its endpoints u or u′ can be reached in at most ℓ− 1 steps from v . Hence by
Corollary 3.1.15

Pn(e ∈ Bℓ(v)) ≤ Pn(u ∈ Bℓ−1(v))+ Pn(u′ ∈ Bℓ−1(v))

≤ Wv(Wu +Wu′)
nϑ

(Γ2,n + 1)ℓ−1

as claimed.
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Corollary 3.1.14 still holds conditional on knowing the edges emanating from a
fixed set of vertices. In order to formulate this in more detail, we need some more
notation.

Definition 3.1.17. For any vertex v ∈ Vn let

S̃v = (X{v,u})u∈Vn

be the collection of all indicator functions of possible edges emanating from v .

For an edge e = {u,v} define

S̃e = (Sv , Su)

so that S̃e contains information about all edges incident to e.
For the proof of the result it is convenient to estimate the set of neighbours of a

vertex set in a way that makes this set independent of the neighbours of another
vertex set.

Definition 3.1.18. Let V ,U ⊆ Vn be two disjoint subsets of vertices.

Set S(U)1 (V ) = S1(V ) \U and D(U)1 (V ) = D1(V ) \U so that

S(U)1 (V ) = V ∪ {x ∈ Vn \U : X{v,x} = 1 for some v ∈ V}
D(U)1 (V ) = {x ∈ Vn \U : X{v,x} = 1 for some v ∈ V}

are independent of Xvu for all v ∈ V and u ∈ U.

In particular then D(U)1 (V ) and D(V )1 (U) are independent. The same holds

for S(U)1 (V ) and S(V )1 (U).
Clearly we also have

|S1(v)| ≤ |S(U)1 (v)| + |U| and ∥S1(v)∥ ≤ ∥S(U)1 (v)∥ + ∥U∥.

as well as

|D1(v)| ≤ |D(U)1 (v)| + |U| and ∥D1(v)∥ ≤ ∥D(U)1 (v)∥ + ∥U∥.

We write D(u1,...,um)
1 (v) instead of D({u1,...,um})

1 (v) and S(u1,...,um)
1 (v) instead of

S({u1,...,um})
1 (v) for any fixed number of vertices u1, . . . , um ∈ Vn.

Lemma 3.1.19. Fix three disjoint sets of vertices U, V and R (the sets may be empty).
Set S = (S̃w)w∈U∪V∪R and S̃ = (S̃w)w∈U∪V (note the absence of vertices from R
in S̃).

Then there exists a function ξℓ(U,V ,R) that is σ(S̃,Fn)-measurable and inde-
pendent of all edges of the form {u,u′} for u,u′ ∈ U, {v,v′} for v,v′ ∈ V . This
function satisfies

Pn(U↭(R)≤ℓ V | S̃) ≤ ξℓ(U,V ,R),
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and

En[ξℓ(U,V ,R)] ≤ min
{∥U∥|V|

nϑ
(Γ2,n + 1)ℓ−1,1

}
as well as

En[ξℓ(U,V ,R)f (|D1(U)|, |D1(V )|)]

≤ Cβn(U,V )min
{∥U∥∥V∥

nϑ
(Γ2,n + 1)ℓ−1,1

}
for all functions f that are non-decreasing in both arguments such that

En[f (|D1(U)| + |V| + 1, |D1(V )| + |U| + 1)] ≤ βn(U,V ).
Proof. Let G̃n be the graph that can be obtained from Gn by removing all vertices
in U and V and introducing two new vertices ũ and ṽ such that ũ has an edge to a
vertex z in G̃ if and only if z has an edge to some u ∈ U in Gn and analogous for ṽ
and V .

If there is a path from a u ∈ U to a v ∈ V in Gn, then this induces a path from ũ
to ṽ in G̃n.

We write x ∼ y to indicate that there is an edge between x and y in Gn. In a
slight abuse of notation we use the same expression to mean that two vertices are
connected by an edge in G̃n. We also write U ∼ V for subsets of vertices and mean
that at least one vertex in U has an edge to at least one vertex in V .

By definition of U↭(R)≤ℓ V and construction of G̃n we have

Pn(U↭(R)≤ℓ V | S)
≤ Pn(ũ ∈ Bℓ(ṽ, G̃n −R) | S).

Since path of length at most ℓ from ṽ to ũ that avoids R consists either of a single
edge between the two vertices or can be decomposed into a single edge from u to
one of its neighbours x ∉ R, which is S-measurable, and a path from x to ṽ of
length at most ℓ − 1 that avoids R and additionally also ũ, this can be bounded by

≤
∑

x∉R∪{ũ,ṽ}
1{ũ∼x}Pn(x ∈ Bℓ−1(ṽ, G̃n −R− {ũ}) | S)+ 1{ũ∼ṽ}.

Similarly, a path of length at most ℓ − 1 from ṽ to x that avoids ũ and R either
consists of the single edge between the two vertices or can be composed of a single
edge from ṽ to one of its neighbours y ∉ R ∪ {ũ, ṽ, x} and a path of length at
most ℓ − 2 from y to x that avoids R, ũ and additionally also ṽ . We therefore have
the bound

Pn(U↭(R)≤ℓ V | S)
≤

∑
x∉R∪{ũ,ṽ}

1{ũ∼x}
∑

y∉R∪{ũ,ṽ,x}
1{ṽ∼y}Pn(x ∈ Bℓ−2(y, G̃n −R− {ũ, ṽ}) | S)

+
∑

x∉R∪{ũ,ṽ}
1{ũ∼x}1{x∼ṽ} + 1{ũ∼ṽ}

(3.17)
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3.1 Neighbourhood size and path probabilities

Focus on the probability for a moment. Outside ofU∪V and {ũ, ṽ} the graphs Gn
and G̃n agree. Hence,

Pn(x ∈ Bℓ−2(y, G̃n −R− {ũ, ṽ}) | S)
≤ Pn(x ∈ Bℓ−2(y,Gn −R−U−V ) | S).

The conditioning can be removed, since the graph Gn−R−U−V no longer depends
on S.

≤ Pn(x ∈ Bℓ−2(y,Gn −R−U−V )).

The probability that there is a path from x to y in the graph Gn −R−U−V can
be estimated by the probability that there is a path in Gn, so that together with
Corollary 3.1.15 the probability is bounded by

≤ Pn(x ∈ Bℓ−2(y,Gn))

≤ WxWy
nϑ

(Γ2,n + 1)ℓ−3.

Plugging this bound for the probability into (3.17) and going back from ũ to U and
from ṽ to V , we arrive at

Pn(U↭(R)≤ℓ V | S)

≤
∑

x,y∉R∪U∪V
x≠y

WxWy
nϑ

(Γ2,n + 1)ℓ−3 +
∑

x∉R∪U∪V
1{U∼x}1{V∼x} + 1{U∼V} (3.18)

Call the left-hand side ξℓ(U,V ,R). Then ξℓ(U,V ,R) is σ(S,Fn)-measurable and
conditionally on Fn its sole source of randomness is the collection X. Note addi-
tionally that the expression does not contain indicator functions for events of the
form {X{u,u′} = 1} with u,u′ ∈ U, {X{v,v′} = 1} with v,v′ ∈ V or {X{x,y} = 1}
with x ∈ R and y ∈ Vn. Hence, ξℓ(U,V ,R) is σ(S̃,Fn)-measurable.

Taking expectations we obtain

En[ξℓ(U,V ,R)]

=
∑

x,y∉R∪U∪V
x≠y

En

[
1{U∼x}1{V∼y}

WxWy
nϑ

(Γ2,n + 1)ℓ−3
]

+
∑

x∉R∪U∪V
En[1{U∼x}1{V∼x}]+ En[1{U∼V}].
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The events in the indicators are independent, because they involve disjoint sets of
edges, so that we can apply Lemma 3.1.13 to find the bound

≤
∑

x,y∉R∪U∪V
x≠y

∥U∥Wx
nϑ

∥V∥Wy
nϑ

WxWy
nϑ

(Γ2,n + 1)ℓ−3

+
∑

x∉R∪U∪V

∥U∥Wx
nϑ

∥V∥Wx
nϑ

+ ∥U∥∥V∥
nϑ

≤ ∥U∥∥V∥
nϑ

1
nϑ

∑
x
W2
x

1
nϑ

∑
y
W2
y(Γ2,n + 1)ℓ−3

+ ∥U∥∥V∥
nϑ

1
nϑ

∑
x
W2
x +

∥U∥∥V∥
nϑ

≤ ∥U∥∥V∥
nϑ

(Γ2
2,n(Γ2,n + 1)ℓ−3 + Γ2,n + 1)

≤ ∥U∥∥V∥
nϑ

(Γ2,n + 1)ℓ−1.

Since we take the expectation of a bound for a probability, we may assume that this
expectation is also bounded above by 1.

Additionally,

En[ξℓ(U,V ,R)f (|D1(U)|, |D1(V )|)]

=
∑

x,y∉R∪U∪V
x≠y

En
[
f(|D1(U)|, |D1(V )|)1{U∼x}1{V∼y}

WxWy
nϑ

(Γ2,n + 1)ℓ−3
]

+
∑

x∉R∪U∪V
En[f (|D1(U)|, |D1(V )|)1{U∼x}1{V∼x}]

+ En[f (|D1(U)|, |D1(V )|)1{U∼V}].
(3.19)

For the first of the three terms on the right-hand side of (3.19) note that D1(U) ⊆
D(V∪{x})1 (U)∪V ∪ {x} and that by construction D(V∪{x})1 (U), 1{U∼x} and 1{V∼y}
are independent as long as x ≠ y and x,y ∉ U∪V . Similarly, we have D1(V ) ⊆
D(U∪{y})1 (V )∪U∪{y} and that D(U∪{y})1 (V ), 1{U∼x} and 1{V∼y} are independent
as long as x ≠ y and x,y ∉U∪V .
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3.1 Neighbourhood size and path probabilities

Hence, using also that f is non-decreasing in both arguments, we can bound

(Γ2,n + 1)ℓ−3

nϑ

∑
x,y∉R∪U∪V

x≠y

En[f (|D1(U)|, |D1(V )|)1{U∼x}Wx1{V∼y}Wy]

≤ (Γ2,n + 1)ℓ−3

nϑ

∑
x,y∉R∪U∪V

x≠y

En[1{U∼x}Wx]En[1{V∼y}Wy]

En[f (|D(V∪{x})1 (U)| + |V| + 1, |D(U∪{y})1 (V )| + |U| + 1)].

Recall the definition of ∥D1(U)∥ and ∥D1(V )∥ and use that D(V∪{x})1 (U) ⊆ D1(U)
to bound this further by

≤ (Γ2,n + 1)ℓ−3

nϑ
En[∥D1(U)∥]En[∥D1(V )∥]

En[f (|D1(U)| + |V| + 1, |D1(U)| + |V| + 1)].

Now Corollary 3.1.5 and Dℓ(V ) ⊆ Sℓ(V ) imply the bound

≤ βn(U,V )
∥U∥∥V∥
nϑ

(Γ2,n + 1)ℓ−2.

For the second term in (3.19) we use a similar approach and Lemma 3.1.13∑
x∉R∪U∪V

En[f (|D1(U)|, |D1(V )|)1{U∼x}1{V∼x}]

≤ En
[ ∑
x∉R∪U∪V

1{U∼x}1{V∼x}

f(|D(V∪{x})1 (U)| + |V | + 1, |D(U∪{y})1 (V )| + |U| + 1)
]

≤
∑

x∉R∪U∪V

Wx∥U∥
nϑ

Wx∥V∥
nϑ

βn(U,V )

≤ βn(U,V )
∥U∥∥V∥
nϑ

Γ2,n.
Similarly, the third term on the right-hand side of (3.19) can be estimated with

Lemma 3.1.13

En[1{U∼V}f(|D1(U)|, |D1(V )|)]
≤ En[1{U∼V}f(|D(V )1 (U)| + |V|, |D(U)1 (V )| + |U|)]

≤ βn(U,V )
∥U∥∥V∥
nϑ

.
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Together this proves

En[ξℓ(U,V ,R)f (|D1(U)|, |D1(V )|)] ≤ Cβn(U,V )
∥U∥∥V∥
nϑ

(Γ2,n + 1)ℓ−1.

Since ξℓ is a probability, the left-hand side is trivially bounded by βn(U,V ), the
bound for the expectation of f(|D1(U)|, |D1(V )|), which finishes the proof.

These path and inclusion probabilities can now be used to bound the probability
that the neighbourhood of a vertex is not tree shaped. Like the following section
this proof is an extension of an idea by Cao [Cao21, Lem. 6.7].

Lemma 3.1.20. For every vertex v ∈ Vn and level ℓ ∈ N

Pn(Bℓ(v) is not a tree) ≤ C(1+ Γ2,n)2ℓ+1(Γ3,n + 1)
(Wv + 1)2

nϑ
.

Proof. Let Aℓ be the event that Bℓ(v) is a tree. If Bℓ−1(v) is a tree, Bℓ(v) can only
fail to be a tree if there is an edge between two vertices in Dℓ−1(v) or if there is a
vertex not in Sℓ−1(v) that is connected to two vertices in Dℓ−1(v).

Figure 3.1: There are two ways B3(v) can fail to be a tree if B2(v) (shown in green)

is a tree. Either two vertices in D2(v) are connected via an edge (shown

in blue) or two vertices from D2(v) have an edge each (shown in red) to
a vertex not in S2(v).
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3.2 Correlation between neighbourhoods

Thus

1Aℓ−1
Pn(Acℓ | Bℓ−1(v))

≤ 1Aℓ−1

∑
u,u′∈Dℓ−1(v)

(
Pn(Xuu′ = 1)+

∑
x∉Sℓ−1(v)

Pn(Xux = 1)Pn(Xxu′ = 1)
)

≤ 1Aℓ−1

∑
u,u′∈Dℓ−1(v)

(WuWu′
nϑ

+
∑

x∉Sℓ−1(v)

WuWx
nϑ

WxWu′
nϑ

)

≤ 1Aℓ−1
(1+ Γ2,n)∥Dℓ−1(v)∥2

nϑ
.

Take expectations and conclude that

Pn(Aℓ−1 ∩Acℓ) ≤ (1+ Γ2,n)En[∥Dℓ−1(v)∥2]
nϑ

.

Furthermore,

Pn(Acℓ) = Pn(A
c
ℓ ∩Aℓ−1)+ Pn(Acℓ ∩A

c
ℓ−1)

≤ Pn(Acℓ ∩Aℓ−1)+ Pn(Acℓ−1).

Iterate, plug in the bound for Pn(Acℓ ∩Aℓ−1) and use Pn(Ac1) = 0 to show

Pn(Acℓ) ≤ (1+ Γ2,n) ℓ−1∑
r=1

E[∥Dr−1(v)∥2]
nϑ

.

Since the Dr−1(v) are disjoint, and their union is contained in Sℓ−1(v) the square
of the sum of the weights of the Dr−1(v) can be bounded by the square of the sum
of weights in Sℓ(v), which in turn can be bounded by Lemma 3.1.8

≤ (1+ Γ2,n)En[∥Sℓ−1(v)∥2]
nϑ

≤ C(1+ Γ2,n)2ℓ+1(Γ3,n + 1)
(Wv + 1)2

nϑ
.

This concludes the proof.

3.2 Correlation between neighbourhoods

In this section we investigate the correlation between different neighbourhoods in the
graph Gn more closely. Before we get into the formal argument, we will briefly recall
Corollary 3.1.14, which bounds the probability that there is a path of length at most ℓ
between two disjoint sets of vertices U and V by (nϑ)−1∥U∥∥V∥(1+ Γ2,n)ℓ−1. This
implies that the probability that the ℓ-neighbourhoods Bℓ(V , Gn) and Bℓ(U, Gn)
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(here in the unweighted graph, but the argument is the same for the weighted graph)
share a vertex is bounded by

Pn(Bℓ(V , Gn) and Bℓ(U, Gn) share a vertex) ≤ ∥U∥∥V∥
nϑ

(1+ Γ2,n)2ℓ−2.

Intuitively, if the neighbourhoods do not share a vertex, their structure is determined
by independent random variables, which would mean that they are independent.
That argument is made more rigorous in the remainder of this section. As in the
previous section, the results we show here are by no means surprising, but results
for the exact setup we needed were not readily available in the literature.

We show that the ℓ-neighbourhoods of two disjoint sets of root vertices are
relatively weakly correlated by constructing slightly altered independent versions
of the ℓ + 1-neighbourhoods conditionally on the ℓ-neighbourhoods. An iterative
argument that relates the correlation of the ℓ+ 1-neighbourhoods to the correlation
of the ℓ-neighbourhoods then finishes the argument.

The discussion here extends Cao’s [Cao21, § 6] approach for edge-weighted Erdős–
Rényi graphs to inhomogeneous random graphs with additional weights on edges
and vertices. Our construction of the altered neighbourhoods needs to take into
account both edge and vertex weights. We will do that in two separate steps. In a
first step we ignore the vertex weights at level ℓ+1 (formally, we do this by applying
a function τℓ+1 that removes these weights).

Given the ℓ-neighbourhoods, the ℓ+ 1-neighbourhoods without vertex weights at
level ℓ + 1 can be constructed by adding edges emanating from level ℓ vertices. If
the edges that are added to the neighbourhoods are distinct, the added randomness
is independent. If edges have to be used for neighbourhoods emanating from both
root vertex sets, they can be replaced by independent copies for one of the two sets
to make the added randomness independent. Provided that not too many edges
have to be rerandomised in this way, the resulting objects are close enough to the
original ℓ + 1-neighbourhoods.

Lemma 3.2.1. Fixm,m′ ∈ N andm+m′ distinct vertices v1, . . . , vm and v′1, . . . , v
′
m′ .

Let En = {(i, j) : 1 ≤ i < j ≤ n}. Let F ⊆ Vn ∪ En and F ′ ⊆ Vn ∪ En. For r ∈ N let

Br = (Br (v1,Gn), Br (v1,GFn), . . . , Br (vm,Gn), Br (vm,GFn)),

B′r = (Br (v′1,Gn), Br (v′1,GF
′
n ), . . . , Br (v

′
m′ ,Gn), Br (v′m′ ,GF

′
n )).

Let Sr be the set of vertices in Br and similarly let S′r be the set of vertices in B′r .
Then Dr = Sr \ Sr−1 and D′r = S′r \ S′r−1 are the level r -vertices of Br and B′r ,
respectively.

Let Ir be the event that the Sr and S′r do not intersect. Let τr be the function that
takes m+m′ weighted rooted graphs as input and removes the weight of the vertices
at level r .

Fix any level ℓ ∈ N, then there is a coupling of τℓ+1(Bℓ+1) to B̃ℓ+1 and of τℓ+1(B′ℓ+1)
to B̃′ℓ+1 such that B̃ℓ+1 and B̃′ℓ+1 are conditionally independent on Iℓ given Bℓ,B′ℓ.
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Furthermore, on Iℓ the law of B̃ℓ+1 given Bℓ,B′ℓ is equal to the law of τℓ+1(Bℓ+1)
given Bℓ and the law of B̃′ℓ+1, given Bℓ,B′ℓ is equal to the law of τℓ+1(B′ℓ+1) given B′ℓ.

In formulas, for all bounded measurable functions g and g′ we have (almost surely)

1Iℓ Covn(g(B̃ℓ+1), g′(B̃′ℓ+1) | Bℓ,B′ℓ) = 0,
1IℓEn[g(B̃ℓ+1) | Bℓ,B′ℓ] = 1IℓEn[g(τℓ+1(Bℓ+1)) | Bℓ],
1IℓEn[g

′(B̃′ℓ+1) | Bℓ,B′ℓ] = 1IℓEn[g
′(τℓ+1(B′ℓ+1)) | B′ℓ].

Moreover,

1IℓPn(B̃ℓ+1 ≠ τℓ+1(Bℓ+1) | Bℓ,B′ℓ) ≤ 1IℓC
∥Sℓ∥∥S′ℓ∥
nϑ

, (3.20)

1IℓPn(B̃
′
ℓ+1 ≠ τℓ+1(B′ℓ+1) | Bℓ,B′ℓ) ≤ 1IℓC

∥Sℓ∥∥S′ℓ∥
nϑ

. (3.21)

Proof. For T1,T2 ⊆ Vn denote with

X(T1,T2) = {(e,Xe, X′e,we,w′
e) : e = {v,u}, v ∈ T1, u ∈ T2}

the set of edges connecting T1 and T2 and all the information potentially associated
to those edges in Gn, GFn and GF

′
n .

An edge that is new in Bℓ+1, i.e. an edge that is present in Bℓ+1, but not in Bℓ,
must connect a vertex in Dℓ to a vertex in Vn \ Sℓ−1. (Let e′ = {v′, u′} be a new edge
in Bℓ+1. W.l.o.g. we can assume that v′ ∈ Sℓ, because e′ must be part of a path of
length ℓ + 1 in Gn or GFn from some vi, which implies that one of its endpoints lies
on a path of length ℓ from vi. If v′ ∈ Sℓ−1 or u′ ∈ Sℓ−1, then it would already follow
that e ∈ Bℓ. In particular v′ ∈ Sℓ \ Sℓ−1 = Dℓ and u′ ∈ Vn \ Sℓ−1.)

Hence, there exists a function Ψ depending on F such that

τℓ+1(Bℓ+1) = Ψ(Bℓ, X(Dℓ, Vn \ Sℓ−1)).

Intuitively, this function just identifies the edges that are part of τℓ+1(Bℓ+1), but
not of Bℓ and adds them to Bℓ. Note that for an edge e between Dℓ and Vn \ Sℓ−1

with Xe = X′e = 0 the values of we and w′
e do not matter for Ψ , because such an

edge cannot be part of Bℓ+1. In other words, the values we and w′
e influence Ψ only

if Xe +X′e ≥ 1. We call such an edge with Xe +X′e ≥ 1 relevant for Ψ .
There is a similar function Ψ ′ depending on F ′ such that

τℓ+1(B′ℓ+1) = Ψ ′(B′ℓ, X(D′ℓ, Vn \ S′ℓ−1)).

Define

X1 = X(Dℓ, Vn \ (Sℓ−1 ∪ S′ℓ)),
X2 = X(D′ℓ, Vn \ (S

′
ℓ−1 ∪ Sℓ)),

X3 = X(Dℓ,D′ℓ).
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Then X1 contains the information on all potential new edges of Bℓ+1 that do not
have an endpoint in B′ℓ. Analogously, X2 contains the information on all potential
new edges of B′ℓ+1 that do not have an endpoint in Bℓ. Finally, X3 contains the
information on all potential new edges of Bℓ+1 and B′ℓ+1 that connect Bℓ and B′ℓ. By
construction

X1 ∪X3 = X(Dℓ, Vn \ (Sℓ−1 ∪ S′ℓ−1))
and

X2 ∪X3 = X(D′ℓ, Vn \ (S
′
ℓ−1 ∪ Sℓ−1)).

On the event Iℓ the set of edges X(Dℓ, Vn \ Sℓ−1) coincides with X1 ∪X3, since there
can be no edges between Dℓ and S′ℓ−1, because that would imply that Dℓ ⊆ Sℓ and S′ℓ
have a nonempty intersection. An analogous consideration holds for X2∪X3. Hence,
on Iℓ we have

τℓ+1(Bℓ+1) = Ψ(Bℓ, X1 ∪X3) and τℓ+1(B′ℓ+1) = Ψ ′(B′ℓ, X2 ∪X3).

On Iℓ the edge collections X1 and X3 are conditionally independent given Bℓ,B′ℓ.
Let X̃1 be an independent copy of X(Dℓ,S′ℓ−1) and let X̃2 be an independent copy
of X(D′ℓ,Sℓ−1). Finally, let X̃3 be an independent copy of X3. Then define

B̃ℓ+1 = Ψ(Bℓ, X1 ∪ X̃1 ∪X3) and B̃′ℓ+1 = Ψ ′(B′ℓ, X2 ∪ X̃2 ∪ X̃3).

Given Bℓ,B′ℓ the thus constructed B̃ℓ+1 and B̃′ℓ+1 are conditionally independent on Iℓ.
Furthermore, on Iℓ and conditionally on Bℓ,B′ℓ the law of X1 ∪ X̃1 ∪X3 is equal to
the law of X(Dℓ, Vn \ Sℓ−1) given only Bℓ, because X̃1 provides the ‘missing source
of randomness’ for X1 ∪X3 when conditioning on both Bℓ and B′ℓ, where the edges
between Dℓ and S′ℓ−1 are fixed, compared to conditioning Bℓ+1 only on Bℓ, where
these edges are random. Then on Iℓ the law of B̃ℓ+1 conditionally on Bℓ,B′ℓ is the
law of τℓ+1(Bℓ+1) given Bℓ. An analogous result holds for B̃′ℓ+1.

It remains to verify that B̃ℓ+1 differs from τℓ+1(Bℓ+1) with small probability on Iℓ
conditionally on Bℓ and B′ℓ. Write

X̃1 = {(e, X̃e, X̃′e, w̃e, w̃′
e) : e = {u,v}, v ∈ Dℓ, u ∈ S′ℓ−1}.

By construction B̃ℓ+1 and τℓ+1(Bℓ+1) differ only if there is an edge e in X̃1 that is
relevant for Ψ , which can only be the case if X̃e = 1 or X̃′e = 1. That is the same
as saying that there is a path of length 1 between the (fixed) sets of vertices Dℓ
and S′ℓ in a graph G̃n or G̃′n, which are based on X̃e and X̃′e, respectively. Hence, by
Lemma 3.1.13

1IℓPn(B̃ℓ+1 ≠ τℓ+1(Bℓ+1) | Bℓ,B′ℓ) ≤ 1Iℓ(Pn(Dℓ ↭
G̃n
1 S′ℓ)+ Pn(Dℓ ↭

G̃′n
1 S′ℓ))

≤ 1Iℓ2
∥Dℓ∥∥S′ℓ−1∥

nϑ

≤ 1IℓC
∥Sℓ∥∥S′ℓ∥
nϑ

. (3.22)
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Similarly we want to show that B̃′ℓ+1 differs from τℓ+1(B′ℓ+1) with small probability
on Iℓ conditionally on Bℓ and B′ℓ. Write

X̃2 = {(e, X̃e, X̃′e, w̃e, w̃′
e) : e = {u,v}, v ∈ D′ℓ, u ∈ Sℓ−1}

and

X̃3 = {(e, X̃e, X̃′e, w̃e, w̃′
e) : e = {u,v}, v ∈ Dℓ, u ∈ D′ℓ}.

By construction B̃′ℓ+1 and τℓ+1(B′ℓ+1) differ only if

• there is an edge e in X̃2 that is relevant for Ψ ′ or

• there is an edge e in X3 that differs in a relevant way between X3 and X̃3.

An edge e differs in a relevant way between X3 and X̃3 if (Xe, X′e,we,w′
e) differs

from (X̃e, X̃′e, w̃e, w̃′
e), unless all of Xe, X′e, X̃e and X̃′e are equal to zero, because

that would mean that the edge is not relevant for Ψ ′. In particular an edge can
only differ in a relevant way if at least one of Xe, X′e, X̃e or X̃′e is equal to one.

Hence, as in (3.22) Lemma 3.1.13 shows

1IℓPn(B̃ℓ+1 ≠ τℓ+1(Bℓ+1) | Bℓ,B′ℓ) ≤ 1IℓC
∥Dℓ∥∥S′ℓ−1∥

nϑ
+ 1IℓC

∥Dℓ∥∥D′ℓ∥
nϑ

≤ 1IℓC
∥Sℓ∥∥S′ℓ∥
nϑ

.

This finishes the proof.

We now add the missing weights to the vertices at level ℓ + 1. Again the new
weights are independent if no vertex appears for both sets of root vertices. If a vertex
is needed for both root vertex sets, its weight can be rerandomised to still obtain
independent random variables for both sets. As long as the number of rerandomised
vertex weights is not too large, the independent versions of the neighbourhoods
differ from the original ℓ + 1-neighbourhoods with small enough probability.

Lemma 3.2.2. Let Br , B′r , Sr , S′r , Dr , D′r , Ir and τr be as in Lemma 3.2.1.
Fix any level ℓ ∈ N, then there is a coupling of B̄ℓ+1 with Bℓ+1 and of B′ℓ+1 with B̄′ℓ+1

such that B̄ℓ+1 and B̄′ℓ+1 are conditionally independent given Bℓ,B′ℓ on Iℓ. Further-
more, the law of B̄ℓ+1 given Bℓ,B′ℓ is equal to the law of Bℓ+1 given Bℓ and analogously
for B̄′ℓ+1.

In formulas, for all functions g and g′ we have almost surely

1Iℓ Covn(g(B̄ℓ+1), g′(B̄′ℓ+1) | Bℓ,B′ℓ) = 0,
1IℓEn[g(B̄ℓ+1) | Bℓ,B′ℓ] = 1IℓEn[g(Bℓ+1) | Bℓ],
1IℓEn[g

′(B̄ℓ+1) | Bℓ,B′ℓ] = 1IℓEn[g
′(B′ℓ+1) | B′ℓ].
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Moreover,

1IℓPn(B̄ℓ+1 ≠ Bℓ+1 | Bℓ,B′ℓ) ≤ 1IℓC(1+ Γ2,n)∥Sℓ∥∥S′ℓ∥nϑ
,

1IℓPn(B̄
′
ℓ+1 ≠ B′ℓ+1 | Bℓ,B′ℓ) ≤ 1IℓC(1+ Γ2,n)∥Sℓ∥∥S′ℓ∥nϑ

.

Proof. Let Bℓ+1, B′ℓ+1, B̃ℓ+1 and B̃′ℓ+1) be as in Lemma 3.2.1. Let S̃ℓ be the union of

the vertex sets of the constituent graphs of B̃ℓ and similarly S̃′ℓ be the corresponding

vertex set of B̃′ℓ. Define D̃ℓ = S̃ℓ \ S̃ℓ−1 and D̃′ℓ = S̃′ℓ \ S̃′ℓ−1.
Construct B̄ℓ+1 from B̃ℓ+1 by adding the remaining vertex weights at level ℓ+ 1 as

follows

(w̄u, w̄′
u) =

(w̃u, w̃′
u) u ∈ S̃′ℓ

(wu,w′
u) u ∉ S̃′ℓ

u ∈ D̃ℓ+1

and

(w̄u, w̄′
u) =

(w̃u, w̃′
u) u ∈ S̃ℓ ∪ D̃ℓ+1

(wu,w′
u) u ∉ S̃ℓ ∪ D̃ℓ+1

u ∈ D̃′ℓ+1,

where (W̃ , W̃ ′) is an i.i.d. copy of (W,W ′).
Let Ψ̄ be the function such that

B̄ℓ+1 = Ψ̄(B̃ℓ+1, B̃′ℓ+1, W̃), (3.23)

where W̃ is the collection of random variables (wu,w′
u, w̃u, w̃′

u)u∈Vn\(S̃ℓ∪S̃′ℓ)
. The

function Ψ̄ endows B̃ℓ+1 with weights on the ℓ + 1-level vertices from W̃ and
chooses (wu,w′

u) or (w̃u, w̃′
u) according to the status of u in B̃′ℓ+1. Because the

alternatives (wu,w′
u) and (w̃u, w̃′

u) have the same distribution and are both inde-
pendent of B̃ℓ+1, the realisation of B̃′ℓ+1 does not matter for the distribution of the
resulting object. This implies that for all realisations b′ of B̃′ℓ we have

B̄ℓ+1
D= Ψ̄(B̃ℓ+1,b′,W), (3.24)

where W is a collection of independent random variables with the same distribution
as (wu,w′

u, w̃u, w̃′
u). In particular this also holds if b′ is empty. This equality in

distribution also holds conditional on B̃ℓ+1 and B̃′ℓ+1. For the same reasons, the
function also satisfies the following distributional equality

Bℓ+1
D= Ψ̄(τℓ+1(Bℓ+1),∅,W). (3.25)

The construction of B̄ℓ+1 and B̄ℓ+1 ensures that on Iℓ each vertex weight oc-
curs only in one of B̄ℓ+1 or B̄′ℓ+1 and the decision where it occurs is deterministic
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given B̃ℓ+1 and B̃′ℓ+1. Thus B̄ℓ+1 and B̄′ℓ+1 are conditionally independent on Iℓ
given B̃ℓ+1 and B̃′ℓ+1. In particular

1Iℓ Covn(g(B̄ℓ+1), g′(B̄′ℓ+1) | B̃ℓ+1, B̃′ℓ+1) = 0. (3.26)

Furthermore, the observations (3.23) to (3.25) about Ψ̄ show that we have for all
functions g almost surely that

1IℓEn[g(B̄ℓ+1) | Bℓ,B′ℓ] = 1IℓEn[En[g(Ψ̄(B̃ℓ+1, B̃′ℓ+1, W̃)) | B̃ℓ+1, B̃′ℓ+1] | Bℓ,B′ℓ]
= 1IℓEn[En[g(Ψ̄(B̃ℓ+1,∅,W)) | B̃ℓ+1, B̃′ℓ+1] | Bℓ,B′ℓ]
= 1IℓEn[En[g(Ψ̄(B̃ℓ+1,∅,W)) | B̃ℓ+1] | Bℓ,B′ℓ]
= 1IℓEn[g(Ψ̄(B̃ℓ+1,∅,W)) | Bℓ,B′ℓ]
= 1IℓEn[g(Ψ̄(τℓ+1(Bℓ+1),∅,W)) | Bℓ]
= 1IℓEn[g(Bℓ+1) | Bℓ]. (3.27)

Analogous we also have

1IℓEn[g
′(B̄′ℓ+1) | B̃ℓ+1, B̃′ℓ+1] = 1IℓEn[g

′(B′ℓ+1) | B′ℓ]. (3.28)

It remains to show that the probability that Bℓ+1 and B̄ℓ+1 differ can be controlled
as claimed. By construction Bℓ+1 and B̄ℓ+1 differ only if the underlying edge struc-
tures τ(Bℓ+1) and B̃ℓ+1 differ or if the underlying edge structures are the same, but
the vertex weights differ in a relevant way due to rerandomisation. Vertex weights
have to be rerandomised if D̃ℓ+1 has a non-empty intersection with S̃′ℓ. Hence,

1IℓPn(Bℓ+1 ≠ B̄ℓ+1 | Bℓ,B′ℓ)
≤ 1IℓPn(B̃ℓ+1 ≠ τℓ+1(Bℓ+1) | Bℓ,B′ℓ)

+ 1IℓPn(B̃ℓ+1 = τℓ+1(Bℓ+1), D̃ℓ+1 ∩ S̃′ℓ ≠∅ | Bℓ,B′ℓ)
≤ 1IℓPn(B̃ℓ+1 ≠ τℓ+1(Bℓ+1) | Bℓ,B′ℓ)+ 1IℓPn(B̃

′
ℓ+1 ≠ τℓ+1(B′ℓ+1) | Bℓ,B′ℓ)

+ 1IℓPn(B̃ℓ+1 = τℓ+1(Bℓ+1), B̃′ℓ+1 = τℓ+1(B′ℓ+1), D̃ℓ+1 ∩ S̃′ℓ ≠∅ | Bℓ,B′ℓ).

The first and second term can be estimated by (3.20) and (3.21) from Lemma 3.2.1.
In the third term we can replace D̃ℓ+1 with Dℓ+1 and S̃′ℓ with S′ℓ because the edge
structures of B̃ℓ+1 and Bℓ+1 are the same, then the probability that Dℓ+1 and S′ℓ
intersect is given by the probability that there is an edge between Dℓ and S′ℓ so that
by Lemma 3.1.13

≤ 1IℓC
∥Sℓ∥∥S′ℓ∥
nϑ

+ 1IℓC
∥Dℓ∥∥S′ℓ∥
nϑ

≤ 1IℓC
∥Sℓ∥∥S′ℓ∥
nϑ

.

The probability that B̄′ℓ+1 and B′ℓ+1 differ can be estimated similarly, taking into ac-
count that rerandomisation of vertex weights happens additionally if D̃ℓ+1 and D̃′ℓ+1
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have non-empty intersection, which is the case if there is a path consisting of two
edges connecting Dℓ with D′ℓ. Then Lemma 3.2.1 and Lemma 3.1.13 imply

1IℓPn(B
′
ℓ+1 ≠ B̄′ℓ+1 | Bℓ,B′ℓ)

≤ 1IℓPn(B̃
′
ℓ+1 ≠ τℓ+1(B′ℓ+1) | Bℓ,B′ℓ)+ 1IℓPn(B̃ℓ+1 ≠ τℓ+1(Bℓ+1) | Bℓ,B′ℓ)

+ 1IℓPn(B̃ℓ+1 = τℓ+1(Bℓ+1), B̃′ℓ+1 = τℓ+1(B′ℓ+1), D̃
′
ℓ+1 ∩ S̃ℓ ≠∅ | Bℓ,B′ℓ)

+ 1IℓPn(B̃ℓ+1 = τℓ+1(Bℓ+1), B̃′ℓ+1 = τℓ+1(B′ℓ+1), D̃ℓ+1 ∩ D̃′ℓ+1 ≠∅ | Bℓ,B′ℓ)

≤ 1IℓC
∥Sℓ∥∥S′ℓ∥
nϑ

+ 1IℓC
∥D′ℓ∥∥Sℓ∥
nϑ

+ 1IℓC
∥D′ℓ∥∥Dℓ∥

nϑ
Γ2,n

≤ 1IℓC(1+ Γ2,n)∥Sℓ∥∥S′ℓ∥nϑ
.

This completes the proof.

Thanks to the previous constructions the covariance between Bℓ+1 and B′ℓ+1 can
be bounded by a term involving the covariance between Bℓ and B′ℓ and an error term.

Lemma 3.2.3. Let g and g′ be measurable functions that are bounded by 1 in absolute
value. Then

Covn(g(Bℓ+1), g′(B′ℓ+1))

≤ C
(
Pn(Icℓ)+ (1+ Γ2,n)En[∥Sℓ∥∥S′ℓ∥]nϑ

)
+ Covn(En[g(Bℓ+1) | Bℓ],En[g′(B′ℓ+1) | B′ℓ]).

Write ḡ(Bℓ) = En[g(Bℓ+1) | Bℓ] and ḡ′(B′ℓ) = En[g′(B
′
ℓ+1) | B′ℓ], then

Covn(g(Bℓ+1), g′(B′ℓ+1))

≤ C
(
Pn(Icℓ)+ (1+ Γ2,n)En[∥Sℓ∥∥S′ℓ∥]nϑ

)
+ Covn(ḡ(Bℓ), ḡ′(B′ℓ)).

Proof. First split the covariance over Iℓ

Covn(g(Bℓ+1), g′(B′ℓ+1))
= Covn(1Iℓg(Bℓ+1),1Iℓg

′(B′ℓ+1))+ Covn(1Icℓ
g(Bℓ+1),1Iℓg

′(B′ℓ+1))

+ Covn(1Iℓg(Bℓ+1),1Icℓ
g′(B′ℓ+1))+ Covn(1Icℓ

g(Bℓ+1),1Icℓ
g′(B′ℓ+1)).

The covariances containing at least one factor 1Icℓ
can be bounded by bounding

all other terms in the expectation making up the covariance by 1 and retaining
only Pn(Icℓ). Thus

Covn(g(Bℓ+1), g′(B′ℓ+1)) ≤ Covn(1Iℓg(Bℓ+1),1Iℓg
′(Bℓ+1))+ CPn(Icℓ). (3.29)
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Approximate Bℓ+1 with B̄ℓ+1 and B′ℓ+1 with B̄′ℓ+1 on Iℓ

Covn(1Iℓg(Bℓ+1),1Iℓg
′(B′ℓ+1))

= Covn(1Iℓg(B̄ℓ+1),1Iℓg
′(B̄′ℓ+1))

+ Covn(1Iℓ(g(Bℓ+1)− g(B̄ℓ+1)),1Iℓg
′(B̄′ℓ+1))

+ Covn(1Iℓg(B̄ℓ+1),1Iℓ(g
′(B′ℓ+1)− g

′(B̄′ℓ+1)))
+ Covn(1Iℓ(g(Bℓ+1)− g(B̄ℓ+1)),1Iℓ(g

′(B′ℓ+1)− g
′(B̄′ℓ+1))).

(3.30)

By the law of total covariance and using the fact that 1Iℓ is (Bℓ,B′ℓ)-measurable
the first term in the right-hand side of (3.30) is equal to

Covn(1Iℓg(B̄ℓ+1),1Iℓg
′(B̄′ℓ+1))

= En[1Iℓ Covn(g(B̄ℓ+1), g′(B̄′ℓ+1) | Bℓ,B′ℓ)]
+ Covn(1IℓEn[g(B̄ℓ+1) | Bℓ,B′ℓ],1IℓEn[g

′(B̄′ℓ+1) | Bℓ,B′ℓ]).

By Lemma 3.2.2 the first expectation vanishes and the conditional expectations in
the covariance can be rewritten based on Bℓ+1 and B′ℓ+1 so that we obtain

= Covn(1IℓEn[g(Bℓ+1) | Bℓ],1IℓEn[g
′(B′ℓ+1) | B′ℓ]). (3.31)

The indicator in the covariance can be dropped at the cost of adding CPn(Icℓ) by the
reverse of the argument we used above to introduce it. Hence, (3.31) implies

Covn(1Iℓg(B̄ℓ+1),1Iℓg
′(B̄ℓ+1))

= Covn(1IℓEn[g(Bℓ+1) | Bℓ],1IℓEn[g
′(B′ℓ+1) | B′ℓ])

≤ Covn(En[g(Bℓ+1) | Bℓ],En[g′(Bℓ+1) | B′ℓ])+ CPn(I
c
ℓ).

(3.32)

For the second term on the right-hand side of (3.30) the triangle inequality implies

|Covn(1Iℓ(g(Bℓ+1)− gv(B̄ℓ+1)),1Iℓg
′(B̄′ℓ+1))|

≤ |En[1Iℓ(g(Bℓ+1)− g(B̄ℓ+1))g′(B̄′ℓ+1)]|
+ |En[1Iℓ(g(Bℓ+1)− g(B̄ℓ+1))]En[1Iℓg

′(B̄′ℓ+1)]|.
(3.33)

Consider the first term and use that g′ is bounded by 1 to bound the whole expecta-
tion

|En[1Iℓ(g(Bℓ+1)− g(B̄ℓ+1))g′(B̄′ℓ+1)]| ≤ En[1Iℓ|g(Bℓ+1)− g(B̄ℓ+1)||g′(B̄′ℓ+1)|]
≤ En[1Iℓ|g(Bℓ+1)− g(B̄ℓ+1)|].

Use the tower property to condition on Bℓ,B′ℓ and that |g(Bℓ+1) − g(B̄ℓ+1)| is
bounded above by 2, then apply Lemma 3.2.2 to bound the expectation further
by

≤ 2En[1IℓPn(Bℓ+1 ≠ B̄ℓ+1 | Bℓ,B′ℓ)]

≤ C(1+ Γ2,n)En[∥Sℓ∥∥S′ℓ∥]nϑ
.
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The second term in (3.33) can be bounded similarly. Thus

|Covn(1Iℓ(g(Bℓ+1)− g(B̄ℓ+1)),1Iℓg
′(B̄′ℓ+1))| ≤ C(1+ Γ2,n)En[∥Sℓ∥∥S′ℓ∥]nϑ

. (3.34)

The remaining terms in (3.30) can be bounded analogously.
Combine (3.29), (3.30) and (3.32) and (3.34) and the analogous results for the

remaining terms to obtain the claimed bound.

The following lemma establishes bounds for the error terms from Lemma 3.2.3.

Lemma 3.2.4. For ℓ ∈ N we have

Pn(Icℓ) ≤
∑
i,i′WviWv′i′
nϑ

22ℓ(1+ Γ2,n)2ℓ (3.35)

and

En[∥Sℓ∥∥S′ℓ∥] ≤ C
∑
i,i′
(Wvi + 1)(Wv′i′ + 1)(Γ3,n + 1)(Γ2,n + 2)2ℓ. (3.36)

Proof. Recall that Iℓ is the event that Sℓ and S′ℓ intersect, where Sℓ is the set of
vertices of neighbourhoods Bℓ(vi,Gn) and Bℓ(vi,GFn) for i ∈ [m] and S′ℓ the set of

vertices of of neighbourhoods Bℓ(v′i′ ,Gn) and Bℓ(v′i′ ,G
F ′
n ) for i′ ∈ [m′].

Fix i ∈ [m], i′ ∈ [m′]. If one of Bℓ(vi,Gn) or Bℓ(vi,GFn) intersects Bℓ(v′i′ ,Gn)
of Bℓ(v′i′ ,G

F ′
n ), then there exists a path of length 2ℓ from vi to v′i′ in a graph Ḡn

where an edge e is present if Xe or an independent copy X′e is equal to 1. In particular
the edge probability for e = {u,v} in Ḡn can be bounded by 2WuWv/(nϑ). Hence,
the calculations for Corollary 3.1.15 imply that the probability of intersection is
bounded by

WviWv′i′
nϑ

22ℓ(Γ2,n + 1)2ℓ.

Now sum over i ∈ [m] and i′ ∈ [m′] to obtain the first claim.
For the second inequality let Sℓ(vi) be the vertex set of of Bℓ(vi,Gn) and let SFℓ (vi)

the vertex set of Bℓ(vi,GFn), similarly let Sℓ(v′i) be the vertex set of of Bℓ(v′i ,Gn)
and SF

′
ℓ (v

′
i) the vertex set of Bℓ(v′i ,G

F
n). Then Cauchy–Schwarz and Lemma 3.1.8

imply

En[∥Sℓ(vi)∥∥Sℓ(v′i′)∥] ≤ En[∥Sℓ(v)∥2]1/2En[∥Sℓ(v′i′)∥2]1/2

≤ C(Wvi + 1)(Wv′i′ + 1)(Γ3,n + 1)(Γ2,n + 2)2ℓ

and the same bound for SFℓ (vi) instead of Sℓ(vi) or SF
′
ℓ (v

′
i′) instead of Sℓ(v′i′). Now

use that

∥Sℓ∥ ≤
m∑
i=1

∥Sℓ(vi)∥ +
m∑
i=1

∥SFℓ (vi)∥
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and

∥S′ℓ∥ ≤
m′∑
i′=1

∥Sℓ(v′i′)∥ +
m′∑
i′=1

∥SF ′ℓ (v
′
i′)∥

to obtain the second claim.

Together the previous results establish a bound of order n−1 for the covariance
between Bℓ and B′ℓ.

Lemma 3.2.5. For any ℓ ∈ N

sup
g,g′

Covn(g(Bℓ), g′(B′ℓ)) ≤ min

{∑
i,i′(Wvi + 1)(Wv′i′ + 1)

nϑ
(Γ3,n+1)(Γ2,n+C)2ℓ+1,1

}
,

where the supremum is taken over all functions g and g′ that are bounded by 1. If
we set V = {v1, . . . , vm} and V ′ = {v′1, . . . , v′m′}, the result can be rewritten as

sup
g,g′

Covn(g(Bℓ), g′(B′ℓ))

≤ min

{
(∥V∥ + |V|)(∥V ′∥ + |V ′|)

nϑ
(Γ3,n + 1)(Γ2,n + C)2ℓ+1,1

}
.

Proof. Apply first Lemma 3.2.3 then use Lemma 3.2.4 to estimate the non-covariance
‘error terms’. This gives the bound

Covn(g(Bℓ+1), g′(B′ℓ+1))

≤ C
(
Pn(Icℓ)+ (1+ Γ2,n)En[∥Sℓ∥∥S′ℓ∥]nϑ

)
+ Covn(En[g(Bℓ+1) | Bℓ],En[g′(B′ℓ+1) | B′ℓ])

≤ C
(∑

i,i′WviWv′i′
nϑ

22ℓ(1+ Γ2,n)2ℓ +
∑
i,i′(Wvi + 1)(Wv′i′ + 1)

nϑ
(Γ2,n + 1)2ℓ(Γ3,n + 1)

)
+ Covn(En[g(Bℓ+1) | Bℓ],En[g′(B′ℓ+1) | B′ℓ]).

Since E[g(Bℓ+1)|Bℓ] can be written as ḡ(Bℓ), where ḡv is a measurable function that
is bounded by 1, and similarly for g′ with a function ḡ′ the term can be rewritten as
a covariance of functions applied to Bℓ and B′ℓ.

≤ C
(∑i,i′WviWv′i′

nϑ
22ℓ(1+ Γ2,n)2ℓ +

∑
i,i′(Wvi + 1)(Wv′i′ + 1)

nϑ
(Γ2,n + 1)2ℓ(Γ3,n + 1)

)
+ Covn(ḡ(Bℓ), ḡ′(B′ℓ))

≤
∑
i,i′(Wvi + 1)(Wv′i′ + 1)

nϑ
(Γ3,n + 1)(Γ2,n + C)2ℓ+1 + Covn(ḡ(Bℓ), ḡ′(Bℓ)).

The claim follows by taking the supremum over all measurable bounded functions
(first on the right-hand side and then on the left-hand side) and iteration.
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3.3 Graph exploration

We now define a procedure that allows us to explore the neighbourhood of a vertex
in a graph. This procedure can be applied to arbitrary graphs, so for the remainder
of this section, we shall not restrict ourselves to the sparse inhomogeneous graph
setting and will work on a general graph G = (V , E). The presentation of the graph
exploration in this section is based on the formulation in lecture notes by Bordenave
[Bor16, § 3.5.1]. The approach is also discussed by van der Hofstad [Hof18, § 4.1]
who draws on work by Alon and Spencer [AS00, § 10.5]. In those discussions,
however, the focus is on the cardinality of the connected component of a vertex v
and not on the complete neighbourhood structure.

Fix a graph G = (V , E) with vertex set V and edge set E ⊆ {{u,v} : u,v ∈ V}.
The idea of the exploration on G is to discover which of the connections that could
possibly be present in a graph with vertex set V are actually present in G. To this
end let V (2) = {{u,v} : u,v ∈ V} be the set of edges in the complete graph on V and
call elements of V (2) possible edges of G. The graph G is then completely determined
by the edge indicators (1E(e))e∈V (2) that tell us whether a possible edge e ∈ V (2)
is present in the edge set E of G. Because we explore G by visiting vertices, it is
slightly more convenient to think of these edge indicators as being indexed by pairs
of vertices

Xuv = 1E({u,v}) for u,v ∈ V.
To make notation a bit easier we will also define Xvv = 0 for all v ∈ V .

Formally, the graph exploration of G started in a vertex v0 ∈ V is given by a
sequence of vertices v0, v1, v2, v3, · · · ∈ V along with sets Cj , Aj and Uj as well
as a function ϕ : S → G, where S ⊆ U is a subtree of the Ulam–Harris tree (cf.
Definition 2.1.5).

Algorithm 3.3.1. Start with a fixed vertex v0 in G and set C−1 = ∅, A−1 = {v0},
U−1 = V \ {v0} and on the Ulam–Harris side with i0 = ∅. Set ϕ(i0) =ϕ(∅) = v0.

For j ∈ {0,1, . . .} given Cj−1, Aj−1 and Uj−1 let vj =ϕ(ij) be the smallest element
in Aj−1 (‘smallest’ in the sense that its preimage ij underϕ is minimal in the order ≺
on the Ulam–Harris tree). Define Ij = {u ∈ Uj−1 : Xvju = 1} and let

Cj = Cj−1 ∪ {vj},
Aj = Aj−1 \ {vj} ∪ Ij and

Uj = Uj−1 \ Ij .

Then set Nij = |Ij|, enumerate the elements of Ij as {u1, . . . , uNij
} (if we want

the exploration to always yield the same results, we need to impose an order
on the vertices in the set, in our applications we can always assume that V =
Vn = [n] and use the natural order on N) and extend ϕ by setting ϕ((ij ,1)) =
u1, . . . ,ϕ((ij , Nij)) = uNij

so that the image of ϕ now also covers all of Ij .
The exploration stops if Aj = ∅.
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3.3 Graph exploration

The set Cj can be seen as the set of explored vertices for which all neighbours
have been seen, Aj is the set of active vertices (i.e. vertices that have been seen by
the exploration, but whose neighbours may not all have been seen yet) and Uj the
set of unexplored vertices.

The function ϕ catalogues all edges between vj and the unexplored vertices Uj−1.
It therefore encodes a spanning tree of the subgraph induced by Cj in G that uses
only edges from vj to vertices in Ij ⊆ Uj−1. The construction ensures that ϕ is an
injective function. In particular we can invert ϕ on Cj ∪Aj and obtain a subset of
the Ulam–Harris tree U.

Example 3.3.2. Consider the graph with nine vertices {1, . . . ,9} shown in Fig. 3.2.

1

2 3 4

5 6 7 8

9

Figure 3.2: A graph with nine vertices. The sets C1, A1, U1 of the exploration started
in vertex v0 = 1 are highlighted in red, blue and yellow, respectively. The
vertex v2 = 3 is highlighted in orange. Its unexplored neighbours are
collected in the green set I2 ⊆ U1.

Starting in v0 = 1 we explore the graph as described in Algorithm 3.3.1. If we have
to order vertices in Ij , we choose to order them by their labels.

After step 1, the explored, active and unexplored sets are given by

C1 = {1,2} , A1 = {3,4,5,6} and U1 = {7,8,9} .

The function ϕ after this step is given by

ϕ(∅) = 1 ϕ((1)) = 2 ϕ((2)) = 3

ϕ((1,1)) = 4 ϕ((1,2)) = 5.
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∅
1

(1)
2

(2)
3

(3)
4

(1,1)
5

(1,2)
6

Figure 3.3: Representation of ϕ after exploration step j = 1 in Fig. 3.2. The upper
part of each node is an individual i in the Ulam–Harris tree U, the lower
part corresponds to the vertex ϕ(i) in G. The set C1 is highlighted in red,
the set A1 in blue. The smallest element of ϕ−1(A1) in the Ulam–Harris
order is (2), which corresponds to the vertex 3 in G.

The spanning tree induced by ϕ is shown in Fig. 3.3.
In order to determine v2 we find the smallest element in

ϕ−1(Aj) = {(2), (3), (1,1), (1,2)} ⊆ U

in the Ulam–Harris order. Here we have minϕ−1(Aj) = (2) and thus

v2 =ϕ((2)) = 3.

1

2 3 4

5 6 7 8

9

(a) The graph G

1

2 3 4

5 6 7 8

(b) Subtree induced by ϕ

Figure 3.4: The sets C2, A2 and U2 after step 2 in G and the subtree induced by ϕ
highlighted in blue, red and yellow, respectively.

We then collect all vertices in U1 = {7,8,9} that are connected to 3 via an edge
in I2. Hence,

I2 = {7,8}.
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3.3 Graph exploration

Order the elements in I2 by their label and set

ϕ((2,1)) = 7 and ϕ((2,2)) = 8.

Then

C2 = {1,2} ∪ {3} = {1,2,3},
A2 = {3,4,5,6} \ {3} ∪ {7,8} = {4,5,6,7,8}

and

U2 = {7,8,9} \ {7,8} = {9}.

The sets C2, A2 and U2 as well as ϕ after exploration step 2 are shown in Fig. 3.4.

Knowledge of the exploration process up to step j in the form of Cℓ, Aℓ, Uℓ for
all ℓ ∈ {−1, . . . , j} and ϕ−1 on the set Cj ∪Aj does not give us a complete picture of
the explored graph, because the exploration does not explicitly keep track of edges
between vj and Aj−1.

This is easily seen in the simple example of the triangle graph.

Example 3.3.3. Consider the complete graph with three vertices 1, 2 and 3, the
so-called triangle graph (see Fig. 3.5).

1

2 3

Figure 3.5: Triangle graph. The highlighted (dashed) edge {2,3} is not seen by the
exploration started in 1.

Start the exploration in v0 = 1 (if required, we order vertices by their label) and
obtain

Step 0 v0 =ϕ(∅) = 1, I = {2,3}, so that C0 = {1} A0 = {2,3},

Step 1 v1 =ϕ(1) = 2, I1 = ∅, so that C1 = {1,2}, A1 = {3},

Step 2 v2 =ϕ(2) = 3, I2 = ∅, so that C2 = {1,2,3}, A2 = ∅.

The exploration stops after step 2 since A2 = ∅.
We can recover the solid edges {1,2} and {1,3} from the spanning tree induced

by ϕ. But the dashed edge between 2 and 3 is not catalogued by ϕ and cannot be
recovered by looking at the sets Cℓ, Aℓ and Uℓ for ℓ ∈ {0,1,2}. Indeed, this edge is
never considered by the exploration.

If we rely not only on the sets Cj , Aj , Uj and the function ϕ, but instead keep
track of all edges between vj and Aj−1 ∪Uj−1, we can recover the entire subgraph
structure and see each edge in the subgraph only once.
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Lemma 3.3.4. For all j ∈ N the following holds.

(i) The complete graph structure of the subgraph induced by Cj in G, i.e. the edge
indicators for

E′j = {{vℓ, u} ∈ V (2) : ℓ ∈ {0, . . . , j}, u ∈ V \ {vℓ}},

can be recovered from the edge indicators for

Ej = {{vℓ, u} ∈ V (2) : ℓ ∈ {0, . . . , j}, u ∈ Aℓ−1 ∪Uℓ−1}.

In other words Ej = E′j .

(ii) Each edge in E′j is contained in exactly one of the sets

Dℓ = {{vℓ, u} : u ∈ Aℓ−1 ∪Uℓ−1} for ℓ ∈ {0, . . . , j},

which means that it is seen exactly once by the exploration. In other words

the Dℓ are disjoint and E′j =
⋃j
ℓ=0Dℓ.

Proof. (i) We use induction to show Ej = E′j .
For j = 0 we have A−1 ∪U−1 = V \ {v0}, which implies that E0 collects all {v0, u}

for u ∈ V \ {v0}, so that E0 = E′0.
Assume that the claim holds for some j. Then we have Ej = E′j . In order to

show that Ej+1 = E′j+1 it is enough to show that {vj+1, u} ∈ Ej+1 for all u ∈
V \ {vj+1}. Note that vj+1 satisfies vj+1 ∈ Aℓ−1 ∪ Uℓ−1 = V \ Cℓ−1 for all ℓ ∈
{0, . . . , j}. Hence, {vj+1, vℓ} = {vℓ, vj+1} ∈ Eℓ ⊆ Ej ⊆ Ej+1. In other words Ej+1

contains {vj+1, u} for all u ∈ Cj . By construction Ej+1 also contains {vj+1, u} for
all u ∈ Aj ∪Uj . Together we thus have {vj+1, u} ∈ Ej+1 for u ∈ V \ {vj+1}.

(ii) Since Ej =
⋃j
ℓ=0Dℓ the first part, which claims Ej = E′j , implies that every

edge in E′j is contained in at least one of the Dℓ.
It thus remains to show that each edge can be contained in only at most one Dℓ.

Assume for contradiction that e ∈ Dℓ ∩Dℓ′ for some 0 ≤ ℓ < ℓ′ ≤ j. Then e =
{vℓ, u} for some u ∈ Aℓ−1 ∪Uℓ−1, but at the same time e = {vℓ′ , u′} for some u′ ∈
Aℓ′−1 ∪ Uℓ′−1. Because vℓ ≠ vℓ′ it follows that e = {vℓ′ , vℓ}. But this is a direct
contradiction to e ∈ Dℓ′ , because vℓ ∈ Cℓ ⊆ Cℓ′−1 and thus vℓ ∉ Aℓ′−1 ∪ Uℓ′−1. It
follows that the Dℓ are pairwise disjoint. This proves the claim.

This observation motivates the following definition.

Definition 3.3.5. Consider the exploration of the neighbourhood of a vertex v0 in a
graph G as defined in Algorithm 3.3.1. For any j so that vj is well-defined we call
the neighbours of vj that are in Aj−1 ∪Uj−1 exploration-relevant neighbours.

80



3.3 Graph exploration

Lemma 3.3.4 ensures that we can recover all neighbours of vj even if we only ever
keep track of exploration-relevant neighbours.

By construction there can be no edge between Cj and Uj . This is easily seen by
induction, because the vertices of Uj−1 that connect to the newly added vertex vj ∈
Cj are removed from Uj via Ij .

It follows that the subgraph of G induced by Cj spans a tree if there is no edge
between a vertex in Aj′−1 and vj′ for any j′ ≤ j.

Lemma 3.3.6. If there is no edge between a vertex in Aj′−1 and vj′ for any j′ ≤ j,
that is to say if Jj′ = {u ∈ Aj′−1 : {vj′ , u} ∈ E} is empty for all j′ ≤ j, then the
subgraph of G induced by Cj is a tree.

Proof. The construction of the exploration already embeds a tree into the subgraph
induced by Cj via ϕ. This tree uses exactly the edges from vk to Uk−1 for k ∈
{0, . . . , j}. We now show that under the assumption of this lemma all edges in the
subgraph induced by Cj in G are of this form. This then shows that the complete
subgraph is a tree.

Pick two vertices from Cj . By construction of Cj there exist indices 1 ≤ k < k′ ≤ j
such that the two vertices can be written as vk and vk′ . We then also have that vk ∈
Ck and vk′ ∈ Ak or vk′ ∈ Uk.

Now assume that vk and vk′ are connected via an edge. There are no edges
between Ck and Uk, so it follows that vk′ ∈ Ak = Ak−1 \ {vk}∪ Ik. Since there are no
edges between vk and Ak−1 by assumption, we can conclude that vk′ ∈ Ik ⊆ Uk−1.
It follows that vk′ is a child of vk in the sense that ϕ−1(vk′) = (ϕ−1(vk), ℓ) for
some ℓ ∈ N. Hence, edges only exist between direct descendant vertices, which
implies the claimed tree structure because it makes cycles impossible.

In case the subgraph induced by Cj is a tree, the complete information about this
subgraph is contained in ϕ.

Let Gj be the σ -algebra generated by the edge indicators along the exploration
sequence Xvℓ,u for ℓ ∈ {0, . . . , j} and u ∈ V , i.e.

Gj = σ(Xe)e∈E′j .

Clearly the exploration process as recorded by Cℓ, Aℓ, Uℓ for ℓ ∈ {0, . . . , j} and ϕ−1

on the set Cj ∪Aj is measurable with respect to Gj .
Observe that given Gj the selection of vj+1 from Aj is deterministic, because we

only need to know the preimages of the vertices in Aj under ϕ in order to pick vj+1.
This implies that vj+1 is Gj-measurable.

On the other hand, Xvj+1,u for u ∈ Aj∪Uj are independent of Gj , since the relevant
possible edges are not included in E′j . To see this, note that E′j only contains edges
with at least one endpoint in Cj . Since vj+1 ∉ Cj , it follows that u would have to
be in Cj for {vj+1, u} to be contained in E′j . But u ∈ Aj ∪Uj by definition, which is
disjoint with Cj by construction.
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Note further that the preimages of all vertices from Ij , i.e., the vertices that are
added to Aj in step j, are larger in the order ≺ on the Ulam–Harris tree than the
preimages of vertices in Cj−1 ∪Aj−1. This implies that those vertices are only up
for selection once all vertices from Aj−1 have been fully explored. In particular the
sequence v0, v1, . . . contains the vertices in exactly the order in which they were
added to the active set (i.e., removed from the unexplored set). This means that the
vertex sequences (vϕ(i))i∈S (traversed in the order given by ≺) and (vj)j∈[|S|] are
exactly the same.

3.4 Neighbourhood coupling

We now construct a coupling between the neighbourhood of a vertex v in the
unweighted inhomogeneous random graph Gn satisfying Assumption 2.2.1 and a
Galton–Watson tree. We slightly modify the approach by Olvera-Cravioto [Olv22] by
combining it with the exploration as described by Bordenave [Bor16]. As mentioned
before we do not work under the minimal moment assumptions by Olvera-Cravioto
[Olv22], instead we will assume that second and third moments of the connectivity
weight distributions exist. This allows us to simplify some arguments and prove
much more explicit bounds for the coupling probabilities. Couplings like this with
explicit error bounds are interesting in the context of the objective method [AS04].
A related coupling was used by Fraiman, Lin and Olvera-Cravioto [FLO22] to define
and analyse stochastic recursions (similar in principle to the RDE and RTP we briefly
mentioned before) on directed random graphs.

The coupling is found in two steps. In a first step the neighbourhood is coupled
to an intermediate tree in which the connectivity weights are still dependent on Fn.
The intermediate tree is then coupled to the desired limiting object in a second step.

Definition 3.4.1. Fix a vertex v ∈ Vn and conditionally on Fn define the intermediate
tree T̃ (v) via a sequence of random variables {(W̃i, Ñi) : i ∈ U}, where W̃i is the type
of individual i and Ñi is its number of children. The distribution of {(W̃i, Ñi) : i ∈ U}
satisfies

• W̃∅ = Wv and Ñ∅ ∼ Poi
(WvΛn
nϑ

)
,

• all other (non-root) individuals i ≠ ∅ have independent types and numbers of
children (W̃i, Ñi) with distribution

Pn((W̃i, Ñi) ∈ · ) =
n∑
i=1

WiΛnP((Wi,Di) ∈ · |Wi),

where Di is Poisson distributed with mean ΛnWi/(nϑ) given Wi.

The tree structure on T̃ (v) is then obtained recursively from Ã0 = {∅} and

Ãk = {(i, j) : i ∈ Ãk−1,1 ≤ j ≤ Ñi} for k ∈ N, k ≥ 1.
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3.4 Neighbourhood coupling

Intuitively, this defines T̃ (v) as a multi-type Galton–Watson process with n types
corresponding to the vertices of Gn. Technically, we have defined the tree so that the
type of a vertex is its weight W̃i. If the weights are all different, we can immediately
infer which vertex v gave rise to this weight and call v the type. If some of the Wv
are the same, we may assume that we sample W̃i by partitioning the unit interval
into n subintervals of length Wi/Λn, drawing a uniform random variable from (0,1)
and choosing W̃i equal to the Wi into whose interval the uniform random variable
falls.

We now use the exploration introduced in Section 3.3 to explore the neighbourhood
of v in Gn and build the intermediate tree T̃ (v) at the same time coupling the two in
the process. Broadly speaking the graph exploration is driven by Bernoulli random
variables, which we couple to Poisson random variables in order to arrive at the
Poisson structure of T̃ (v).

To simplify notation, set

p′vu =
WvWu
nϑ

,

such that pvu = p′vu ∧ 1.
Let Xvu ∼ Bin(1, pvu) be the edge indicators in Gn. Couple Zvu ∼ Poi(p′vu)

to Xvu (this coupling is constructed more explicitly in Lemma 3.4.3). Let Z∗vu be
i.i.d. copies of Zvu that are independent of both Zvu and Xvu.

Start the exploration in Gn in the vertex v0 = v (set C−1 = ∅, A−1 = {v},
U−1 = Vn \ {v}). In T̃ (v) give ∅ the type v and let i0 = ∅ be the first individual
we visit (we keep track of the types of individuals we see via C̃−1 = ∅, Ã−1 = {v},
Ũ−1 = Vn \ {v}).

In Gn the exploration process is governed by the random variables Xvju for u ∈
Aj−1 ∪Uj−1. In particular given Cj−1, Aj−1, Uj−1, we can select vj and obtain Ij by
collecting those vertices u ∈ Uj−1 for which Xvju = 1. We also record those vertices
in Aj−1 that satisfy Xvju = 1, which then allows us to recover all exploration-relevant
neighbours and thus the complete graph structure (cf. Lemma 3.3.4). (Assume that
we order elements in Ij by their vertex label.)

In T̃ (v) we have the analogous sets of types C̃j−1, Ãj−1, Ũj−1 and obtain the
children of the type-vj vertex ij by collecting Zvju children of type u for u ∈
Ũj−1 ∪ Ãj−1 and Z∗vju children of type u for u ∈ C̃j . (As written, this procedure

might suggest a certain ordering for the children that depends on the types in Ũj−1,
Ãj−1 and C̃j−1. The label of the children should not carry any information about
its type, so we relabel the children of ij randomly and add them to T̃ (v0) as (ij , t).)
Let Ĩj be the set of types of children of vj .

Assuming that Cj−1 = C̃j−1, Aj−1 = Ãj−1 and Uj−1 = Ũj−1, the exploration-
relevant neighbours of vj in G can be identified with the children of the type-vj
vertex in T̃ (v0) if

(i) Xvju = Zvju for all u ∈ Uj−1 ∪Aj−1,
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(ii) Zvju = 0 for all u ∈ Aj−1 and

(iii) Z∗vju = 0 for all u ∈ Cj−1.

Conditions (ii) and (iii) imply that Ĩj only contains types from Uj−1. Together with
condition (i) this implies Ij = Ĩj , so that we can conclude that also Cj = C̃j , Aj = Ãj
and Uj = Ũj . Then condition (i) ensures that u is an exploration-relevant neighbour
of vj if and only if the type-vj vertex in T̃ (v0) has a unique child of type u. But
this implies that the subgraph of G induced by Cj has the same graph structure as
the T̃ (v0) constructed so far.

In order to continue exploring Gn and building T̃ (v) at the same time, we now
reorder the children of ij so that their order matches the order in Ij . (This does
not change the graph structure modulo graph isomorphism, which is all we are
concerned with. It just ensures that the next exploration step continues with an
individual of the correct type.)

We now verify that the procedure to generate children of ij actually yields T̃ (v0)
as defined in Definition 3.4.1.

Lemma 3.4.2. The tree generated via this coupling procedure has the distribution of
the intermediate tree as defined in Definition 3.4.1.

Proof. The distribution of the tree in Definition 3.4.1 is fully characterised by the
offspring distribution for each individual.

From the definition it follows that the number of children of an individual of
type u is Poisson distributed with mean ΛnWu(nϑ)−1. The types of these children
can be obtained by a thinning with the type distribution for non-root individuals:
Each child has type Wi independently with probability WiΛ−1

n (i.e. the type is chosen
according to ν̂n). This implies that the numbers of children of type i of a type-u
individual are independently Poisson distributed with parameter

WiΛn ΛnWunϑ
= WuWi

nϑ
= p′ui.

This coincides exactly with the offspring distribution induced by the coupling proced-
ure, where a type-u individual has Poi(p′ui) many children of type i (depending on
the status of the type i in the exploration so far this is either the random variable Zui
or Z∗ui).

In order to estimate how long the coupling procedure can continue to produce
isomorphic structures, we we first estimate the probability that for a fixed v the
coupled random variables Xvu and Zvu differ for any u.

Lemma 3.4.3. Let v ∈ Vn, then we can couple Xvu ∼ Bin(1, pvu) and Zvu ∼ Poi(p′vu)
for u ∈ Vn \ {v} such that for any J ⊆ Vn \ {v}

Pn(max
u∈J

|Xvu − Zvu| ≥ 1) ≤
∑

u∈Vn\{v}
((p′vu)2 − p′vu1{p′vu≥1}).
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Proof. In order to couple Xvu ∼ Bin(1, pvu) and Zvu ∼ Poi(p′vu) consider auxiliary
random variables Yvu ∼ Poi(p′vu).

First we couple the Bernoulli random variable Xvu to a Poisson random vari-
able Yvu with the same parameter puv (see Lemma A.1.2). such that

Pn(Yvu ≠ Rvu) ≤ p2
vu ≤ (p′uv)2.

In a second step we couple the two Poisson random variables Yvu and Zvu with
parameters pvu and p′vu (see Lemma A.1.3) such that

Pn(Yvu ≠ Zvu) ≤ p′vu − pvu
= p′vu − p′vu ∧ 1

≤ (p′vu − 1)1{p′vu≥1}

≤ p′vu1{p′vu≥1}.

With this chain of couplings Xvu ≠ Zvu implies that Xvu ≠ Yvu or Yvu ≠ Zvu.
Summing over the vertices in J ⊆ Vn \ {v} we thus obtain

Pn(max
u∈J

|Xvu − Zvu| ≥ 1) ≤
∑
u∈J

Pn(|Xvu − Zvu| ≥ 1)

≤
∑
u∈J

(Pn(Xvu ≠ Yvu)+ Pn(Yvu ≠ Zvu))

≤
∑
u∈J

((p′vu)2 − p′vu1{p′vu≥1})

≤
∑

u∈Vn\{v}
((p′vu)2 − p′vu1{p′vu≥1})

as claimed.

The main result of this section is

Proposition 3.4.4. For any vertex v ∈ Vn of Gn = (Vn, En) and any level ℓ ∈ N it is
possible to couple the neighbourhood of a vertex v to an intermediate tree T̃ (v) such
that for any sequence (kn)n∈N ⊆ (0,∞)

Pn(Bℓ(v) ≇ T̃ℓ(v))

≤ En[∥Sℓ(v)∥2]
Γ2,n
nϑ

+ En[∥Sℓ(v)∥+]Γ1,n + En[∥Sℓ(v)∥](κ1,n +
1
kn

+ kn
nϑ

)
,

where T̃ℓ(v) is T̃ (v) truncated at level ℓ.

Proof. Recall that Sℓ(v) is the set of vertices in the ℓ-neighbourhood Bℓ(v) of v
in Gn and that we set Dℓ(v) = Sℓ(v) \ Sℓ−1(v). Explore Sℓ(v) with the exploration
defined in Algorithm 3.3.1.
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Let Gj be the σ -algebra generated by the edge indicators Xe in the exploration
process on Gn up to step j along with the coupled Poisson random variables Ze
(cf. Lemma 3.4.3) and an independent copy Z∗e of Ze

Gj = σ(Xe, Ze, Z∗e )e∈E′j .

The Poisson random variables Ze and Z∗e will be used to construct T̃ (v).
For any u ∈ Sℓ(v) let C(u), A(u) and U(u) be the sets Cj−1, Aj−1 and Uj−1,

respectively, when u’s neighbours are being explored, i.e. when u = vj for some j ∈
N. Additionally we also define G(u) = Gj−1 and G+(u) = Gj .

With this setup the step in which u’s unexplored neighbours are explored is
measurable with respect to G+(u), but conditionally independent of G(u) given the
sets C(u), A(u) and U(u).

We say that the coupling between the neighbourhoods of v in Gn and T̃ (v) breaks
in level ℓ if there is a u ∈ Dℓ−1(v), i.e. a vertex at level ℓ − 1, satisfying

(i) Xuu′ ≠ Zuu′ for some u′ ∈ U(u)∪A(u),

(ii) Zuu′ ≠ 0 for some u′ ∈ A(u) or

(iii) Z∗uu′ ≠ 0 for some u′ ∈ C(u).

For a fixed vertex u ∈ Dℓ−1(v) let N(u) event that at least one of these three
conditions is true for u. Let Mℓ be the event that the coupling holds up to level ℓ,
i.e. that the coupling has not yet broken up to level ℓ. Note that if the coupling holds
up to level ℓ, the graphs are isomorphic as rooted graphs up to level ℓ.

Let G′ℓ be the σ -algebra generated by the exploration process for all vertices up to
level ℓ − 1

G′ℓ = σ
( ⋃
u∈Sℓ−1(v)

G+(u)
)
. (3.37)

This σ -algebra already contains information about the vertices at level ℓ in Dℓ(v)
since

Dℓ(v) = Vn \
( ⋃
u∈Sℓ−1(v)

C(u)∪
⋂

u∈Sℓ−1(v)
U(u)

)
,

such that all of Bℓ(v) is G′ℓ-measurable. But the edges going from Dℓ(v) to the as
of yet not fully explored vertices Vn \ Sℓ−1(v) are independent of G′ℓ. Clearly, Mℓ−1

is G′ℓ−1-measurable.
Additionally we have G(u) ⊇ G′ℓ−1 for all u ∈ Dℓ−1(v).
Ultimately we want to estimate the probability Pn(Mc

ℓ). We will do this by noting
that Mc

ℓ = M
c
ℓ−1 ∪ (Mℓ−1 ∩Mc

ℓ) so that

Pn(Mc
ℓ) ≤ Pn(∥Sℓ(v)∥ > kn)+ Pn(M

c
ℓ ,∥Sℓ(v)∥ ≤ kn)

≤ Pn(∥Sℓ(v)∥ > kn)+
ℓ∑
j=1

Pn(Mj−1 ∩Mc
j ,∥Sj(v)∥ ≤ kn). (3.38)
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3.4 Neighbourhood coupling

Conditionally on G′ℓ−1 the summands of the second sum can be split further by
noting that Mℓ−1 ∩ Mc

ℓ can be written as a union over N(u) for u ∈ Dℓ−1(v).
Additionally, we have that ∥C(u)∪A(u)∥ ≤ ∥Sℓ(v)∥, because all vertices in C(u)∪
A(u) must be elements of Sℓ(v) since they are neighbours of vertices in Sℓ−1(v).
Hence,

Pn(∥Sℓ(v)∥ ≤ kn,Mℓ−1 ∩Mc
ℓ | G

′
ℓ−1)

≤ 1Mℓ−1

∑
u∈Dℓ−1(v)

Pn(∥C(u)∪A(u)∥ ≤ kn, N(u) | G′ℓ−1).
(3.39)

For the individual summands for u ∈ Dℓ−1(v) recall the definition of N(u) and
additionally condition on G(u) ⊇ G′ℓ−1 such that

Pn(∥C(u)∪A(u)∥ ≤ kn, N(u) | G′ℓ−1)

≤ En
[
Pn
(

max
u′∈U(u)∪A(u)\{u}

|Xuu′ − Zuu′| ≥ 1
∣∣∣G(u)) ∣∣∣G′ℓ−1

]
+ En

[
1{∥C(u)∪A(u)∥≤kn}Pn

( ∑
u′∈A(u)

Zuu′ +
∑

u′∈C(u)
Z∗uu′ ≥ 1

∣∣∣G(u)) ∣∣∣G′ℓ−1

]

note that Lemma 3.4.3 still holds conditionally on G(u) for the G(u)-measurable
set J = U(u)∪A(u) \ {u}, because Xuu′ and Zuu′ are independent of G(u), further-
more by independence of the Poisson random variables Zuu′ and Z∗uu′ from each
other (even conditional on G(u)) and the previous steps in the exploration the sum
of
∑
u′∈A(u) Zuu′ and

∑
u′∈C(u) Z∗uu′ has distribution Poi(

∑
u′∈A(u)∪C(u) p′uu′)

≤ En
[ ∑
u′∈Vn\{u}

((p′uu′)
2 + p′uu′1{p′uu′≥1})

+ 1{∥C(u)∪A(u)∥≤kn}(1− e−
∑
u′∈A(u)∪C(u) p

′
uu′ )

∣∣∣G′ℓ−1

]
≤ En

[ ∑
u′∈Vn\{u}

((p′uu′)
2 + p′uu′1{p′uu′≥1})

+ 1{∥C(u)∪A(u)∥≤kn}
∑

u′∈A(u)∪C(u)
p′uu′

∣∣∣G′ℓ−1

]
,

(3.40)

where the last inequality follows from 1− e−x ≤ x for x > −1.

For the first inner sum in (3.40) we get

En
[ ∑
u′∈Vn\{u}

((p′uu′)
2 + p′uu′1{p′uu′≥1})

∣∣∣G′j−1

]

≤ En
[ ∑
u′∈Vn\{u}

W2
uW

2
u′

ϑ2n2
+

∑
u′∈Vn\{u}

WuWu′
nϑ

1{WuWu′≥nϑ}
∣∣∣G′ℓ−1

]
.
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The indicator function can be split by by noting that ifWuWu′ ≥ nϑ, thenWu ≥
√
nϑ

or Wu′ ≥
√
nϑ, in particular 1{WuWu′≥nϑ} ≤ 1{Wu≥

√
nϑ} + 1{Wu′≥

√
nϑ} so that the

second sum splits into two sums with different indicators each

≤ En
[W2

u
nϑ

1
nϑ

∑
u∈Vn

W2
u′ +Wu1{Wu≥√nϑ}

1
nϑ

∑
u′∈Vn

Wu′

+Wu
1
nϑ

∑
u′∈Vn

Wu′1{Wu′≥
√
nϑ}

∣∣∣G′ℓ−1

]
.

Recall the definitions of Γp,n and κp,n to rewrite this as

≤ En
[W2

u
nϑ

Γ2,n +Wu1{Wu≥√nϑ}Γ1,n +Wuκ1,n

∣∣∣G′ℓ−1

]
≤ Γ2,n
nϑ

En[W2
u | G′ℓ−1]+ Γ1,nEn[Wu1{Wu>√nϑ} | G′ℓ−1]+ κ1,nEn[Wu | G′ℓ−1]. (3.41)

For the second inner sum in (3.40) we find

En
[
1{∥C(u)∪A(u)∥≤kn}

∑
u′∈A(u)∪C(u)

p′uu′
∣∣∣G′ℓ−1

]
≤ En

[
1{∥C(u)∪A(u)∥≤kn}

∑
u′∈A(u)∪C(u)

WuWu′
nϑ

∣∣∣G′ℓ−1

]
≤ En

[
1{∥C(u)∪A(u)∥≤kn}

Wu
nϑ

∥A(u)∪ C(u)∥
∣∣∣G′ℓ−1

]
≤
En[Wu | G′ℓ−1]

nϑ
kn. (3.42)

Then (3.40) together with (3.41) and (3.42) implies

Pn(∥C(u)∪A(u)∥ ≤ kn, N(u) | G′ℓ−1)

≤ En[W2
u | G′ℓ−1]

Γ2,n
nϑ

+ Γ1,nEn[Wu1{Wu>√nϑ} | G′ℓ−1]

+ En[Wu | G′ℓ−1]
(
κ1,n +

kn
nϑ

)
.

(3.43)

Hence, by (3.39), (3.40) and (3.43)

ℓ∑
j=1

Pn(Mj−1 ∩Mc
j ,∥Sj(v)∥ ≤ kn)

≤
ℓ∑
j=1

En[Pn(∥C(u)∪A(u)∥ ≤ kn, N(u) | G′j−1)]

≤
ℓ∑
j=1

En

[ ∑
u∈Dj−1(v)

En[W2
u | G′ℓ−1]

Γ2,n
nϑ

+ Γ1,nEn[Wu1{Wu>√nϑ} | G′ℓ−1]

+ En[Wu | G′ℓ−1]
(
κ1,n +

kn
nϑ

)]
.
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3.4 Neighbourhood coupling

Recall the definitions of ∥ · ∥p and ∥ · ∥+. Then use that the disjoint union of
the Dj−1(v) from j = 1 to ℓ is equal to Sℓ−1(v) to estimate the sums over W2

u
and Wu with ∥Sℓ(v)∥2 and ∥Sℓ(v)∥, respectively. We obtain the bound

≤ En[∥Sℓ(v)∥2]
Γ2,n
nϑ

+ En[∥Sℓ(v)∥+]Γ1,n + En[∥Sℓ(v)∥](κ1,n +
kn
nϑ

)
. (3.44)

Hence, by (3.38) and (3.44) and Markov’s inequality the probability that the coup-
ling breaks can be bounded as follows

Pn(Bℓ(v) ≇ T̃ℓ(v))
= Pn(coupling breaks up to level ℓ)
= Pn(Mc

ℓ)

≤ Pn(∥Sℓ(v)∥ > kn)+
ℓ∑
j=1

Pn(Mj−1 ∩Mc
j ,∥Sj(v)∥ ≤ kn)

≤ En[∥Sℓ(v)∥]
1
kn

+ En[∥Sℓ(v)∥2]
Γ2,n
nϑ

+ En[∥Sℓ(v)∥+]Γ1,n
+ En[∥Sℓ(v)∥]

(
κ1,n +

kn
nϑ

)
≤ En∥Sℓ(v)∥2]

Γ2,n
nϑ

+ En[∥Sℓ(v)∥+]Γ1,n + En[∥Sℓ(v)∥](κ1,n +
1
kn

+ kn
nϑ

)
.

This concludes the proof.

The coupling in Proposition 3.4.4 holds for a single ℓ-neighbourhood, but we
would like to be able to couple the neighbourhoods of several distinct vertices to
independent intermediate trees.

The neighbourhoods Bℓ(v) of m = |V| distinct vertices v ∈ V to trees Tℓ(v) are
not guaranteed to be independent, because the same vertex and with it the same
edges may appear in several neighbourhoods. By construction, the same holds for
the coupled intermediate trees, since the edges in those trees are coupled to the
original edges in Gn.

In Section 3.2 we have, however, already shown that the ℓ-neighbourhoods are
asymptotically only weakly correlated. In much the same vein we can show that the
intermediate trees can be altered (with sufficiently small probability) to make them
independent. This then implies that we may assume that the coupled intermediate
trees are independent at only a small additional penalty to the coupling probability.

Proposition 3.4.5. Let V ⊆ Vn be a set of vertices from Gn = (Vn, En). Then for
all ℓ ∈ N the neighbourhoods Bℓ(v) around v ∈ V can be coupled to independent
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Chapter 3 Local Structure

intermediate trees T̃ (v) such that

Pn

( ⋃
v∈V

{
Bℓ(v) ≇ T̃ℓ(v)

})

≤ ∥V∥2
Γ2,n
nϑ

+ ∥V∥(Γ2,n + 1)ℓ
(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ ∥V∥+Γ1,n + |V| 1

kn
+ k2

n
nϑΓ1,n

for all sequences (kn)n∈N ⊆ (0,∞).

Proof. Let S̃ℓ(v) the set of individuals in the intermediate tree T̃ (v) up to level ℓ
and D̃r (v) = S̃r (v) \ S̃r−1(v). As in Section 3.1 we calculate the expected number
of individuals in S̃ℓ(v) and their total weight.

Note that in the tree

En[Ñ∅] =
WvΛn
nϑ

≤ WvΓ1,n
and for i ≠ ∅

En[Ñi] =
n∑
i=1

WiΛnEn[Di] =
n∑
i=1

WiΛn ΛnWinϑ
≤ En[(W

(n))2]
ϑ

= Γ2,n,
where Di ∼ Poi(ΛnWi/(ϑn)) given Wi. Then by construction

|D̃0(v)| = 1 and En[|D̃1(v)|] = En[Ñ∅] ≤ WvΓ1,n
and furthermore by standard arguments for Galton–Watson trees

En[|D̃r (v)|] ≤ WvΓ1,nΓ r−1
2,n .

Hence,
En[|S̃ℓ(v)|] ≤ 1+WvΓ1,n(Γ2,n + 1)ℓ−1, (3.45)

which coincides with the bound Lemma 3.1.2 for the analogous quantity in Gn.
Similarly, by a standard argument for multi-type Galton–Watson processes

En[∥S̃ℓ(v)∥] ≤ Wv(Γ2,n + 1)ℓ, (3.46)

which coincides with the bound from Lemma 3.1.4 for Gn.
For a fixed set of vertices V we can use Proposition 3.4.4 to couple the neighbour-

hood of v in Gn to an intermediate tree T̃ ′(v) up to level ℓ of each v ∈ V . Together
these couplings satisfy

Pn

( ⋃
v∈V

{Bℓ(v) ≇ T̃ ′ℓ(v)}
)

≤
∑
v∈V

(
En[∥Sℓ(v)∥2]

Γ2,n
nϑ

+ En[∥Sℓ(v)∥+]Γ1,n + En[∥Sℓ(v)∥](κ1,n +
1
kn

+ kn
nϑ

))
.

90



3.4 Neighbourhood coupling

Bound the expectations of ∥Sℓ(v)∥ and ∥Sℓ(v)∥2 with Lemma 3.1.4 and the expecta-
tion of ∥Sℓ(v)∥+ with Lemma 3.1.7 to further estimate the term by

≤
∑
v∈V

(W2
v +Wv(Γ2,n + 1)ℓ−1Γ3,n)Γ2,nnϑ + ∑

v∈V
Wv1{Wv>

√
nϑ} +Wv(Γ2,n + 1)ℓ−1κ2,n

+
∑
v∈V

Wv(Γ2,n + 1)ℓ
(
κ1,n +

1
kn

+ kn
nϑ

)
≤ ∥V∥2

Γ2,n
nϑ

+ ∥V∥+Γ1,n + ∥V∥(Γ2,n + 1)ℓ
(Γ3,n
nϑ

+ κ1,n + κ2,n +
1
kn

+ kn
nϑ

)
.

(3.47)

The definition of these coupled trees does not ensure that the trees are independ-
ent, because the same (coupled) individual may appear in several trees. But given
a family of intermediate trees the following procedure can generate independent
trees (T̃ℓ(v))v∈V .

We construct level r ∈ {0, . . . , ℓ} of all trees (T̃ℓ(v))v∈V in the same step. During
our procedure we need to keep track of the individuals that we have seen so far.

Start by setting level 0 of each tree T̃ℓ(v) to just v .

Assuming that we have already explored all vertices at level r − 1 in all trees, we
now use breadth-first search to completely explore level r of each T̃ ′ℓ(v). Whenever
we encounter an individual in T̃ ′ℓ(v) that has not been seen before, it is copied
over to the appropriate T̃ℓ(v) and added to the set of individuals that have been
seen. If the individual has been seen before, an independent Galton–Watson tree of
appropriate height with offspring distribution ν̂ is added in its position to T̃ℓ(v).

This procedure terminates with independent intermediate trees and the probab-
ility that T̃ ′ℓ(v) ≠ T̃ℓ(v) for any v ∈ V can be estimated by the probability that

any individual added during the process was seen before. Let S̃(v) be the set of
individuals in the intermediate tree T̃ ′ℓ(v) for v ∈ V and set S̃ℓ(V ) =

⋃
v∈V S̃(v).

Then |S̃ℓ(V )| is the total number of individuals in all trees and ∥S̃ℓ(V )∥ their total
connectivity weight. The type of a non-root individual has distribution ν̂ . Hence, the
probability that during the breadth-first search a particular non-root individual has
a type that has been seen before is bounded above by (cf. (2.2))

ν̂n({Wi : i ∈ S̃ℓ(V )}) ≤
∥∥S̃ℓ(V )∥∥Λn .

If we have that |S̃ℓ(V )| ≤ kn and ∥S̃ℓ(V )∥ ≤ kn then the number of vertices whose
type was already seen is dominated by a binomial distribution with parameters kn
and knΛ−1

n . Let Z ∼ Bin(kn, knΛ−1
n ) such that by Markov’s inequality

Pn(Z ≥ 1) ≤ k2
nΛn .
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It follows that

Pn
( ⋃
v∈V

{
T̃ ′ℓ(v) ≇ T̃ℓ(v)

})
= Pn(at least one individual appears in more than one tree)

≤ Pn(Z ≥ 1, |S̃ℓ(V )| ≤ kn,∥S̃ℓ(V )∥ ≤ kn)
+ Pn(|S̃ℓ(V )| > kn)+ Pn(∥S̃ℓ(V )∥ > kn)

≤ k2
nΛn + En[|S̃ℓ(V )|]kn

+ En[∥S̃ℓ(V )∥]
kn

≤ k2
nΛn +

∑
v∈V En[|S̃ℓ(v)|]

kn
+
∑
v∈V En[∥S̃ℓ(v)∥]

kn
.

By (3.45) and (3.46) and
∑
v∈V Wv = ∥V∥ this can be bounded by

≤ k2
nΛn + |V| + ∥V∥Γ1,n(Γ2,n + 1)ℓ−1 + ∥V∥(Γ2,n + 1)ℓ

kn
(3.48)

This shows that we can turn a family of intermediate trees (T̃ ′(v))v∈V into
independent intermediate trees (T̃ (v))v∈V at small cost by replacing a repeated
individual and all its descendants by independent draws from ν̂n.

In particular we can switch the trees T̃ ′(v) coupled to the neighbourhoods of v to
independent trees T̃ (v). By (3.47) and (3.48) the couplings between Bℓ(v) and the
independent T̃ (v) then satisfy

Pn
( ⋃
v∈V

{
Bℓ(v) ≇ T̃ℓ(v)

})
≤ Pn

( ⋃
v∈V

{
Bℓ(v) ≠ T̃ ′ℓ(v)

})
+ Pn

( ⋃
v∈V

{
T̃ ′ℓ(v) ≇ T̃ℓ(v)

})
≤ ∥V∥2

Γ2,n
nϑ

∥V∥+Γ1,n
+ ∥V∥(Γ2,n + 1)ℓ

(Γ3,n
nϑ

+ κ1,n + κ2,n +
1
kn

+ kn
nϑ

)
+ k2

nΛn + |V| + ∥V∥Γ1,n(Γ2,n + 1)ℓ−1 + ∥V∥(Γ2,n + 1)ℓ

kn
.

Recall that Λn = nϑΓ1,n. Then collect the terms for ∥V∥2, ∥V∥ and |V | and estimate
terms very generously to obtain the bound

≤ ∥V∥2
Γ2,n
nϑ

+ ∥V∥(Γ2,n + 1)ℓ
(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ ∥V∥+Γ1,n + |V| 1

kn
+ k2

n
nϑΓ1,n .

This finishes the proof.
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The construction of the intermediate trees relies heavily on the connectivity
weights of vertices in Gn. Since the empirical distribution of those connectivity
weights converges to a limiting distribution by assumption we now define (limiting)
trees that draw from this limiting distribution and show that those trees can be
coupled to the intermediate trees.

Definition 3.4.6. Fix a vertex v ∈ Vn and define a tree T (v) via a sequence of
random variables {(Wi, Ni) : i ∈ U}, where Wi is the type of individual i and Ni is its
number of children. The distribution of {(W̃i, Ñi) : i ∈ U} satisfies

• W∅ = Wv and N∅ ∼ Poi(Wv),

• all other (non-root) individuals i ≠ ∅ have independent types and numbers of
children (Wi, Ni) with distribution

P((Wi, Ni) ∈ · ) = P((Ŵ ,N) ∈ · ),

where Ŵ ∼ ν̂ and N ∼ MPoi(Ŵ).

The tree structure on T (v) is then obtained recursively from A0 = {∅} and

Ak = {(i, j) : i ∈Ak−1,1 ≤ j ≤ Ni} for k ∈ N, k ≥ 1.

Ignoring the root, which differs from all other individuals, the structure of this
tree is given by a single-type branching process with a mixed Poisson offspring
distribution.

Note also that a underlying structure of the tree T (v) constructed as described
in Definition 3.4.6 has exactly the distribution T(Wv , ν) defined in Definition 2.2.2.

We now show that T̃ (v) can be coupled to T (v). This coupling relies on the
coupling between νn and ν that can be obtained because the Wasserstein distance
between the two measures is bounded by αn. Furthermore, the Poisson random
variables can easily be coupled once the vertex attributes are known.

Lemma 3.4.7. Let (Gn)n∈N be a sequence of rank-one inhomogeneous random graphs
that satisfies Assumption 2.2.1. Fix any n ∈ naturals. LetV ⊆ Vn be a set of vertices
from Gn = (Vn, En). We can couple the intermediate trees (T̃ (v))v∈V to the Poisson
trees (T (v))v∈V defined as in Definition 3.4.6 such that

Pn
( ⋃
v∈V

{
T̃ℓ(v) ≇ Tℓ(v)

})
≤ ∥V∥αn

(1
ϑ
+ (Γ2 + 1)ℓ−1

( Γ2,n
ϑΓ1,n + 1

))
.

Proof. We couple the types and number of children for each individual separately.
Since we can bound the expected number of individuals in the relevant trees, we can
then give a bound for the probability that the trees have a different structure.
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Clearly W̃∅ = W∅ = Wv by construction, so the type at the root is the same in both
trees. By Lemma A.1.3 we can couple the numbers of children of the root such that

Pn(Ñ∅ ≠ N∅) ≤ En
[∣∣∣Λn
nϑ

Wv −Wv
∣∣∣]

≤ En
[∣∣∣Λn
nϑ

− 1
∣∣∣Wv]

= WvEn
[∣∣∣Λn
nϑ

− 1
∣∣∣]

≤ Wv|Γ1,n − 1|,

where we used Λn = nϑΓ1,n and Fn-measurability of all involved terms in the last
line.

For i ≠ ∅ first couple W̃i ∼ ν̂n to Wi ∼ ν̂ optimally according to the Wasserstein
distance, i.e.

En[|W̃i −Wi|] ≤ αn,

where αn is Fn-measurable and αn
P→ 0. Then Lemma A.1.3 allows us to couple Ñi

and Ni such that

Pn(Ñi ≠ Ni) ≤ En
[∣∣∣Λn
nϑ

W̃i −Wi

∣∣∣]
≤ En

[∣∣∣Λn
nϑ

− 1
∣∣∣W̃i

]
+ En[|W̃i −Wi|]

≤ |Γ1,n − 1|En[W̃i]+αn.

Since

En[W̃i] =
n∑
i=1

Wi
WiΛn =

n∑
i=1

W2
i

nϑΓ1,n = 1Γ1,n Γ2,n
this implies

Pn(Ñi ≠ Ni) ≤ |Γ1,n − 1|Γ2,nΓ1,n +αn.
Recall that Γ1,n = ϑ−1En[W (n)] and assume that W (n) ∼ νn is coupled optimally

to W ∼ ν according to the Wasserstein distance. Then we have En[W] = ϑ and

|Γ1,n − 1| = ϑ−1|En[W (n)]− En[W]| ≤ ϑ−1En[|W (n) −W |] ≤ ϑ−1αn.

The tree structure of T̃ (v) and T (v) is determined only by Ñi and Ni, respectively.
In particular T̃ℓ(v) and Tℓ(v) can only disagree if there is an individual i at level ℓ−1
in Tℓ(v) whose number of children Ni is different from Ñi. If we can control the
number of vertices in Tℓ(v), a simple union bound and the fact that the distribution
of Ñi and Ni is the same for all i ≠ ∅ can be used to bound the probability that the
coupling generates different tree structures. As in the proof of Proposition 3.4.4 we
will work conditionally on the previous level.
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3.4 Neighbourhood coupling

Let Sr (v) be the set of individuals in Tr (v) and Dr (v) = Sr (v) \ Sr−1(v) the
individuals at level r ∈ N. Let Gℓ be the σ -algebra generated by W̃i,Wi, Ñi, Ni up to
level ℓ.

For ℓ = 1 we have

Pn(T̃1(v) ≇ T1(v)) ≤ Pn(Ñ∅ ≠ N∅) ≤ Wv|Γ1,n − 1| ≤ Wvϑ−1αn.

For ℓ ≥ 2 the coupling breaks if any of the individuals at level ℓ−1 creates a different
number of children. Since all individuals apart from ∅ have the same distribution
that is furthermore independent of other individuals (in particular independent
from those in a lower level), that probability of generating different tree structures
via this coupling is bounded by

1{T̃ℓ−1(v)≊Tℓ−1(v)}Pn(T̃ℓ(v) ≇ Tℓ(v) | Gℓ−1)

≤ 1{T̃ℓ−1(v)≊Tℓ−1(v)}Pn
( ⋃

i∈Dℓ−1(v)
{Ñi ≠ Ni}

∣∣∣Gℓ−1

)
≤

∑
i∈Dℓ(v)

Pn(Ñi ≠ Ni)

≤ |Dℓ−1(v)|Pn(Ñ(1) ≠ N(1))

≤ |Dℓ−1(v)|αn
( Γ2,n
ϑΓ1,n + 1

)
.

Now sum over the probabilities that the tree structure is different for the first
time at a specific level to find

Pn(T̃ℓ(v) ≇ Tℓ(v))

≤ Pn(T̃1(v) ≇ T1(v))+
ℓ∑
r=2

En
[
1{T̃r−1(v)≊Tr−1(v)}Pn(T̃r (v) ≇ Tr (v) | Gr−1)

]
≤ Wvϑ−1αn + En[|Sℓ−1(v)| − 1]αn

( Γ2,n
ϑΓ1,n + 1

)
≤ Wvϑ−1αn +Wv(Γ2 + 1)ℓ−1αn

( Γ2,n
ϑΓ1,n + 1

)
.

In the second to last step we used that E[N∅] = Wv and that E[Ni] = E[Ŵ] =
E[W2]/E[W] = Γ2 for i ≠ ∅ to conclude

E[|Sℓ(v)|] ≤ 1+Wv(Γ2 + 1)ℓ.

Sum these bounds over v ∈ V to finish the proof.

With this lemma it is now possible to couple the neighbourhoods to the limiting
trees as claimed in Proposition 2.2.3. We restate the proposition in the notation of
this section.
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Proposition 2.2.3. Let (Gn)n∈N be a sequence of rank-one inhomogeneous random
graphs satisfying Assumption 2.2.1. Fix any n ∈ N. Let V ⊆ Vn be a subset of
vertices of Gn = (Vn, En). Then for all ℓ ∈ N the neighbourhoods around Bℓ(v) can
be coupled to independent limiting trees T (v) as defined in Definition 3.4.6 such that

Pn
( ⋃
v∈V

{
Bℓ(v) ≇ Tℓ(v)

})
≤ ∥V∥2

Γ2,n
nϑ

+ ∥V∥+Γ1,n
+ ∥V∥(Γ2,n + 1)ℓ

(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ |V| 1

kn
+ k2

n
nϑΓ1,n + ∥V∥αn

(1
ϑ
+ (Γ2 + 1)ℓ−1

( Γ2,n
ϑΓ1,n + 1

))
for all sequences (kn)n∈N ⊆ (0,∞).

Proof. This is a direct consequence of Proposition 3.4.5 and Lemma 3.4.7.

3.5 More complex couplings

This section collects a few additional more specialised coupling results for the
weighted inhomogeneous random graph Gn that follow directly from Proposi-
tion 2.2.3 for the unweighted model Gn. These results are extensions of lemmas
shown by Cao [Cao21, § 6] for Erdős–Rényi graphs.

The following is just a reformulation of Proposition 2.2.3.

Lemma 3.5.1. Fix ℓ ∈ N and let V ⊆ Vn be a set of vertices vertices. Then there is a
coupling ((Bℓ(v,Gn),Tℓ(v))v∈V ) such that the Tℓ(v) ∼ Tℓ(Wv , ν) are independent
limiting trees with

Pn(Bℓ(v,Gn) ≊ Tℓ(v) for all v ∈ V ) ≥ 1− ηn,ℓ(V ),

where

ηn,ℓ(V ) = ∥V∥2
Γ2,n
nϑ

+ ∥V∥+Γ1,n
+ ∥V∥(Γ2,n + 1)ℓ

(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ |V| 1

kn
+ k2

n
nϑΓ1,n + ∥V∥αn

(1
ϑ
+ (Γ2 + 1)ℓ−1

( Γ2,n
ϑΓ1,n + 1

))
.

Lemma 3.5.2. Fix ℓ ∈ N and let V ⊆ Vn be a set of vertices vertices. Then there
is a coupling ((Bℓ(v,Gn),Tℓ(v))v∈V ) such that the Tℓ(v) are independent with
distribution Tℓ(Wv , ν, µE, µV ) and

Pn(Bℓ(v,Gn) ≊ Tℓ(v) for all v ∈ V ) ≥ 1− εn,ℓ(V ),
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where

εn,ℓ(V ) = ηn,ℓ(V )+ (|V | + ∥V∥(Γ2 + 1)ℓ)(dTV(µE,n, µE)+ dTV(µV,n, µV ))

with ηn,ℓ(V ) as in Lemma 3.5.1.

Proof. Apply Lemma 3.5.1 to couple ((Bℓ(v,Gn),Tℓ(v))v∈V ) such that the Tℓ(v)
are independent with distribution Tℓ(Wv , ν) and

Pn(A) = Pn(Bℓ(v,Gn) ≊ Tℓ(v) for all v ∈ V ) ≥ 1− ηn,ℓ(V ),

where A is the event that Bℓ(v,Gn) ≊ Tℓ(v) for all v ∈ V . This provides the
coupling of the underlying graph structure. It remains to also couple the edge and
vertex weights.

For each edge e ∈ V (2)n couple we, the weight in Gn, to w̃e, such that Pn(we ≠
w̃e) = dTV(µE,n, µE). Similarly, for each each vertex v ∈ Vn introduce a coup-
ling (wv , w̃v) such that Pn(wv ≠ w̃v) = dTV(µV,n, µV ).

Let EE be the event that there is an edge e in any of the Bℓ(v,Gn) such that we ≠
w̃e. Similarly let EV be the event that there is a vertex u in any of the Bℓ(v,Gn) such
that wv ≠ w̃v . On the event A we have that Bℓ(v,Gn) and Tℓ(v) are isomorphic, so
that we can reformulate EE and EV in terms of edges or vertices in Tℓ(v). Let Sℓ(v)
be the set of vertices in Tℓ(v). Since a tree with n vertices has n − 1 edges and
the Tℓ(v) are trees, the number of edges and vertices that are relevant for EE and EV

can be bounded by
∑
v∈V |Sℓ(v)|.

In particular the same calculation as in Lemma 3.4.7 implies

Pn(A∩ EE) ≤
∑
v∈V

En[|Sℓ(v)|]dTV(µE,n, µE)

≤ (|V | + ∥V∥(Γ2 + 1)ℓ)dTV(µE,n, µE)
and

Pn(A∩ EV ) ≤
∑
v∈V

En[|Sℓ(v)|]dTV(µV,n, µV )

≤ (|V | + ∥V∥(Γ2 + 1)ℓ)dTV(µV,n, µV ).

On the set A couple Bℓ(v,Gn) to Tℓ(v) by assigning edge weight w̃e to the edge
isomorphic to e and vertex weight w̃v to the vertex isomorphic to v in Tℓ(v)
resulting in Tℓ(v) ∼ Tℓ(Wv , ν, µE, µV ). This coupling satisfies

Pn(Bℓ(v,Gn) ≊ Tℓ(v) for all v ∈ V )
≥ Pn(A)− Pn(A∩ E0)

≥ 1− ηn,ℓ(V )− (|V | + ∥V∥(Γ2 + 1)ℓ)(dTV(µE,n, µE)+ dTV(µV,n, µV )).

This proves the claim.
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Indeed the coupled tree structure of the neighbourhood of a vertex v can be
manipulated slightly to be independent of a vertex e′ = {u′, v′} which does not
emanate from v . In essence we rerandomise the relevant edge and bound the
probability that it actually occurs in the neighbourhood.

Lemma 3.5.3. Let v ∈ Vn be a vertex in Gn and let e′ = {u′, v′} ∈ V (2)n be an edge
with endpoints distinct from v . Given a coupling

(Bℓ(v,Gn),Tℓ(v))

of Bℓ(v,Gn) with Tℓ(v) ∼ Tℓ(Wv , ν, µE, µV ) that satisfies

εn,ℓ({v}) ≥ 1− Pn(Bℓ(v,Gn) ≊ Tℓ(v))

it is is possible to couple (Bℓ(v,Gn), T̃ℓ(v)) such that T̃ℓ(v) is independent of Ye′ ,
where Ye′ = (Xe′ , X′e′), and

Pn(Bℓ(v,Gn) ≊ T̃ℓ(v)) | Ye′) ≥ 1−
(
εn,ℓ({v})+ C

Wv(Wv′ +Wu′)
nϑ

(Γ2,n + 1)ℓ+1
)
.

Proof. Let X′′ be a copy of X that is independent of everything else, in particular
independent of (X,W) and (X′,W ′). Let G′′n be the weighted graph obtained from Gn
by replacing Xe′ with X′′e′ . Based on the initial coupling, couple (Bℓ(v,G′′n), T̃ℓ(v)),
where T̃ℓ(v) ∼ Tℓ(Wv , ν, µE, µV ). By construction Bℓ(v,G′′n) is independent of Ye′ ,
so we may pick this coupling in a way such that T̃ℓ(v) is independent of Ye′ as well.

Moreover,

Pn(Bℓ(v,Gn) ≊ T̃ℓ(v) | Ye′)
≥ 1− (Pn(Bℓ(v,Gn) ≇ Bℓ(v,G′′n) | Ye′)+ Pn(Bℓ(v,G′′n) ≇ T̃ℓ(v) | Ye′))

By construction Bℓ(v,G′′n) and T̃ℓ(v) are independent of Ye′ , so by assumption

Pn(Bℓ(v,G′′n) ≇ T̃ℓ(v) | Ye′) = Pn(Bℓ(v,G′′n) ≇ T̃ℓ(v))
≤ εn,ℓ({v}).

Finally, G′′n is independent of Ye′ and differs from Gn only in e′. Hence, Bℓ(v,G′′n)
can differ from Bℓ(v,Gn) only if e′ is present in one and not the other. Thus a rough
estimate yields

Pn(Bℓ(v,G′′n) ≇ Bℓ(v,Gn) | Ye′) ≤ Pn(e′ ∈ Bℓ(v,G′′n))+ Pn(e′ ∈ Bℓ(v,Gn) |Xe′).

By Corollary 3.1.16 the first term can be bounded as follows:

Pn(e′ ∈ Bℓ(v,G′′n)) ≤
Wv(Wu′ +Wv′)

nϑ
(Γ2,n + 1)ℓ.
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For the second probability note that since e′ can only be present in the neighbour-
hood if one of its vertices u′ or v′ is present in the neighbourhood in its own right,
i.e. when e′ itself is ignored, we have by Corollary 3.1.15 that

Pn(e′ ∈ Bℓ(v,Gn) |Xe′)
≤ Pn(v′ ∈ Bℓ(v,Gn − e′))+ Pn(u′ ∈ Bℓ(v,Gn − e′))
≤ Pn(v′ ∈ Bℓ(v,Gn))+ Pn(u′ ∈ Bℓ(v,Gn))

≤ Wv(Wv′ +Wu′)
nϑ

(Γ2,n + 1)ℓ.

Together the last inequalities show the claim.

Similarly we can find a coupling for the effect of flipping the edge e = {v,u}
between v and u and another edge e′ = {v′, u′} that does not have any vertex in
common with e on the neighbourhood of v .

Lemma 3.5.4. Fix two vertices v and u and set e = {v,u}. Let e′ = {v′, u′} be
another edge with vertices distinct from u and v . Given a coupling

(Bℓ(v,Gn), Bℓ(u,Gn),Tℓ(v),Tℓ(u))

with independent Tℓ(v) ∼ Tℓ(Wv , ν, µE, µV ) and Tℓ(u) ∼ Tℓ(Wu, ν, µE, µV ) that
satisfies

εn,ℓ({u,v}) ≥ 1− Pn(Bℓ(v,Gn) ≊ Tℓ(v), Bℓ(u,Gn) ≊ Tℓ(u))

it is possible to couple (Bℓ(v,Gn), Bℓ(v,Gen), T̃ℓ(v), T̃
e
ℓ(v)) such that

(T̃ℓ(v), T̃eℓ(v)) | (Ye = (1,0), Ye′)
D= (T̃ℓ,Tℓ),

(T̃ℓ(v), T̃eℓ(v)) | (Ye = (0,1), Ye′)
D= (Tℓ, T̃ℓ),

where Ye = (Xe, X′e) and Ye′ = (Xe′ , X′e′) as well as Tℓ ∼ Tℓ(Wv , ν, µE, µV ) and T̃ℓ ∼
T̃ℓ(Wv ,Wu, ν, µE, µV ). Furthermore,

Pn((Bℓ(v,Gn), Bℓ(v,Gen) ≊ (T̃ℓ(v), T̃eℓ(v))) | Ye, Ye′)

≥ 1−
(
εn,ℓ({u,v})+ 2dTV(µE,n, µE)

+ CWuWv + (Wu +Wv)(Wu′ +Wv′)
nϑ

(Γ2,n + 1)2ℓ
)
.

Proof. Let (W ′′, X′′) be a copy of (W,X) that is independent of everything else.
Let G′′n be the weighted graph obtained from Gn by replacing Xe with X′′e and Xe′
with X′′e′ . Based on the initial coupling, couple Bℓ(v,G′′n) with T′′ℓ (v) and Bk−1(u,G′′n)
with T′′ℓ−1(u), where T′′ℓ (v) ∼ Tℓ(Wv , ν, µE, µV ) and T′′ℓ−1(u) ∼ Tℓ(Wu, ν, µE, µV ) are
independent. By construction Bℓ(v,G′′n) and Bℓ−1(u,G′′n) are independent of Ye, Ye′ ,
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so we may pick this coupling in a way that T′′ℓ (v) and T′′ℓ−1(v) are independent
of Ye, Ye′ as well.

For brevity write Bℓ = Bℓ(v,Gn) and B′ℓ = Bℓ(v,Gen). These neighbourhoods can
be constructed from the smaller neighbourhoods of v and u on Gn−e if we take into
account Xe andwe or X′e andw′

e as required. That is to say there is a function Ψ that
describes the procedure of possibly ‘gluing together’ the smaller neighbourhoods
(see Fig. 3.6) such that

Bℓ = Ψ(Bℓ(v,Gn − e), Bℓ−1(u,Gn − e),Xe,we)
B′ℓ = Ψ(Bℓ(v,Gn − e), Bℓ−1(u,Gn − e),X′e,w′

e).

v ue

(a) B3(v,G)

v u

(b) B3(v,G− e) and B2(u,G− e)

Figure 3.6: Illustration of the gluing procedure. The neighbourhood B3(v,G) can be
obtained by combining the two neighbourhoods B3(v,G−e) and B2(u,G−
e) that cannot use e and information about e.

Let (we,w′
e, w̃e, w̃′

e) be a coupling independent of everything else that satis-
fies we,w′

e ∼ µE,n, w̃e, w̃′
e ∼ µE as well as

Pn(we ≠ w̃e) ≤ dTV(µE,n, µE) and Pn(w′
e ≠ w̃′

e) ≤ dTV(µE,n, µE).

Then define

T̃ℓ(v) = Ψ(T′′ℓ (v),T′′ℓ−1(u),Xe, w̃e),
T̃eℓ(v) = Ψ(T′′ℓ (v),T′′ℓ−1(u),X

′
e, w̃′

e).

Conditionally on Ye, Ye′ the pair (T̃ℓ(v), T̃eℓ(v)) has the desired distribution.

Let E0 be the event that Bℓ(v,G′′n) and Bℓ−1(u,G′′n) share a vertex. On the comple-
ment of E0 it is possible to join Bℓ(v,G′′n) and Bℓ−1(u,G′′n) at the edge e to obtain a
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tree provided both Bℓ(v,G′′n) and Bℓ−1(u,G′′n) are trees. Then

Pn((Bℓ, B′ℓ) ≊ (T̃ℓ(v), T̃
e
ℓ(v)) | Ye, Ye′)

≥ Pn(Bℓ(v,G′′n) ≊ T′′ℓ (v), Bℓ−1(u,G′′n) ≊ T′′ℓ−1(u))
− Pn(E0)
− Pn(Bℓ(v,G′′n) ≠ Bℓ(v,Gn − e) | Ye, Ye′)
− Pn(Bℓ−1(u,G′′n) ≠ Bℓ−1(u,Gn − e) | Ye, Ye′)
− Pn(w̃e ≠ we)− Pn(w̃′

e ≠ w′
e).

(3.49)

By assumption

Pn(Bℓ(v,G′′n) ≊ Tℓ(v), Bℓ−1(u,G′′n) ≊ Tℓ−1(u)) ≥ 1− εn,ℓ({u,v}).

Furthermore, Bℓ(v,G′′n) and Bℓ−1(u,G′′n) share a vertex only if there is a path
from v to u of length at most 2ℓ − 1. Hence, Corollary 3.1.14 implies

Pn(E0) ≤ Pn(v ↭2ℓ−1 v) ≤
WvWu
nϑ

(Γ2,n + 1)2ℓ−1.

Finally, G′′n is independent of Ye, Ye′ and differs from Gn only in e and e′. Hence,
the neighbourhood Bℓ(v,G′′n) can differ from Bℓ(v,Gn − e) only if e is present in
the former or if e′ is present in one and not the other. Thus

Pn(Bℓ(v,G′′n) ≠ Bℓ(v,Gn − e) | Ye, Ye′)
≤ Pn(e ∈ Bℓ(v,G′′n))+ Pn(e′ ∈ Bℓ(v,G′′n))+ Pn(e′ ∈ Bℓ(v,Gn − e) |Xe′).

For the first term note that e is present in Bℓ(v,G′′n) if and only if v is connected
to u via e, i.e.

Pn(e ∈ Bℓ(v,G′′n)) = En[X′′e ] =
WuWv
nϑ

.

For the second term we we can apply Corollary 3.1.16

Pn(e′ ∈ Bℓ(v,G′′n)) ≤
Wv(Wu′ +Wv′)

nϑ
(Γ2,n + 1)ℓ.

The third term contains a conditioning which can be removed as follows. Since e′

can only be present in the neighbourhood if one of its vertices u′ or v′ is present in
the neighbourhood in its own right, i.e. when e′ itself is ignored, we can drop the
conditioning on Xe′ , so that by Corollary 3.1.15

Pn(e′ ∈ Bℓ(v,Gn − e) |Xe′)
≤ Pn(v′ ∈ Bℓ(v,Gn − {e, e′}))+ Pn(u′ ∈ Bℓ(v,Gn − {e, e′}))
≤ Pn(v′ ∈ Bk(v,Gn))+ Pn(u′ ∈ Bℓ(v,Gn))

≤ Wv(Wu′ +Wv′)
nϑ

(Γ2,n + 1)ℓ.

The remaining terms can be treated similarly. Putting everything together, this
shows the claim.
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The result from Lemma 3.5.4 can be slightly simplified by dropping the condition-
ing on e′.

Lemma 3.5.5. Fix two vertices v and u and set e = {v,u}. Given a coupling

(Bℓ(v,Gn), Bℓ(u,Gn),Tℓ(v),Tℓ(u))

with independent Tℓ(v) ∼ Tℓ(Wv , ν, µE, µV ) and Tℓ(u) ∼ Tℓ(Wu, ν, µE, µV ) that
satisfies

εn,ℓ({u,v}) ≥ 1− Pn(Bℓ(v,Gn) ≊ Tℓ(v), Bℓ(u,Gn) ≊ Tℓ(u))

it is possible to couple (Bℓ(v,Gn), Bℓ(v,Gen), T̃ℓ(v), T̃
e
ℓ(v)) such that

(T̃ℓ(v), T̃eℓ(v)) | Ye = (1,0)
D= (T̃ℓ,Tℓ),

(T̃ℓ(v), T̃eℓ(v)) | Ye = (0,1)
D= (Tℓ, T̃ℓ),

where Ye = (Xe, X′e) and Tℓ ∼ Tℓ(Wv , ν, µE, µV ) and T̃ℓ ∼ T̃ℓ(Wv ,Wu, ν, µE, µV ).
Furthermore,

Pn((Bℓ(v,Gn), Bℓ(v,Gen) ≊ (T̃ℓ(v), T̃eℓ(v))) | Ye)

≥ 1−
(
εn,ℓ({u,v})+ 2dTV(µE,n, µE)+ C

WuWv
nϑ

(Γ2,n + 1)2ℓ
)
.

Proof. Replicate the steps of the proof of Lemma 3.5.5, but do not modify the graph
at e′ and do not condition on Ye′ .

In particular the probabilities in (3.49) are only conditioned on Ye and not on Ye′ .
The relevant conditional probabilities on the right-hand side can then be estimated
as

Pn(Bℓ(v,G′′n) ≠ Bℓ(v,Gn − e) | Ye) ≤ Pn(e ∈ Bℓ(v,G′′n))
≤ En[X′′e ]

≤ WuWv
nϑ

and

Pn(Bℓ−1(u,G′′n) ≠ Bℓ−1(u,Gn − e) | Ye) ≤ Pn(e ∈ Bℓ−1(u,G′′n))
≤ En[X′′e ]

≤ WuWv
nϑ

.

Putting these results together we obtain the claimed bound.
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Proof of the Main Result

The proof of Theorem 2.3.5 is based on the perturbative Stein’s method. We will
follow the approach used by Cao [Cao21, § 5] for the case of the (homogeneous)
Erdős–Rényi graph. The same general strategy of combining the perturbative Stein’s
method with local approximations of the problem was also used by Chatterjee and
Sen [CS17; see also Cha14, § 4] to show a central limit theorem for the minimal
spanning tree in Euclidean space Rd and the lattice Zd for dimensions d ≥ 2.

Before we start with the proof, we will give a brief introduction to the perturbative
approach to Stein’s method.

4.1 Perturbative approach to Stein’s method

This short introduction to Stein’s method follows Chatterjee [Cha14], who formu-
lated a (generalised) perturbative approach to Stein’s method [first presented in
Cha08] that is particularly suitable for applications to random graphs. We will not
prove any of the results in this section, the proofs can be found in Chatterjee’s
survey paper [Cha14].

Stein’s method [Ste72] was developed with the aim of finding explicit bounds for
the error in the normal approximation to the distribution of a random variable. The
underlying inspiration for the method is the observation that the only distribution
satisfying the equation

E[Zf(Z)] = E[f ′(Z)]
for all absolutely continuous f with derivative f ′ (existing almost everywhere) such
that E[|f ′(Z)|] <∞ is the standard normal distribution.

Since the standard normal distribution is the unique solution to this distributional
equation, one can hope that a random variable W that satisfies this equation ap-
proximately is itself approximately normal. Stein makes this intuition rigorous as
follows.

Let g : R→ R be a measurable function and consider the differential equation

f ′(x)− xf(x) = g(x)− E[g(Z)] (4.1)

for functions f : R→ R where Z is a standard normal random variable. Stein showed
that if g is bounded, then there always exists a bounded solution fg of (4.1). Hence,
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taking expectations we have for any random variable W and bounded measurable
function g : R→ R

E[g(W)]− E[g(Z)] = E[f ′g(W)−Wfg(W)].

This means that the expectation of g(W) is close to the expectation of g(Z) if W is
close to satisfying the distributional equation E[Wf(W)] = E[f ′(W)] for f = fg . To
translate this observation into bounds for the distance of W to a standard normal
distribution note that the supremum over a certain class of functions G on the
left-hand side can be estimated by the supremum over the solutions fg for g ∈ G.
In particular if we can somehow characterise to which class of functions F the
solutions fg belong, we can simply bound the supremum over G on the left-hand
side by the supremum over F on the right-hand side.

We can use this idea to bound the Kolmogorov distance between W and a standard
normal distribution.

Proposition 4.1.1 [Cha14, Prop. 1.1]. Let D be the set of all functions f : R→ R that
are twice continuously differentiable with |f(x)| ≤ 1, |f ′(x)| ≤ 1 and |f ′′(x)| ≤ 1
for all x ∈ R. Let Z be a standard normal random variable and W any random
variable, then

sup
t∈R

∣∣P(W ≤ t)− P(Z ≤ t)
∣∣ ≤ 2

(
sup
f∈D

∣∣E[f ′(W)−Wf(W)]∣∣)1/2.
One way to show that the right-hand side is indeed small for a given W is the

method of exchangeable pairs [Cha14, § 2; see also Ros11, § 3.3]. In this method
we couple W to another random variable W ′ with the same distribution so that the
vector (W,W ′) is exchangeable. If this pair additionally satisfies

(i) E[W ′ −W |W] = −λW ,

(ii) E[(W ′ −W)2 |W] = 2λ+ o(λ) and

(iii) E[|W ′ −W |3] = o(λ),

a small calculation shows that E[f ′(W) −Wf(W)] = o(1), so that the right-hand
side becomes small.

We mention briefly how this would work in the ‘standard’ central limit theorem
setting.

Example 4.1.2. Let X1, . . . , Xn be independent random variables with E[Wi] = 0,
E[W2

i ] = 1 and E[|Xi|4] <∞. We set W = n−1/2∑n
i=1Xi.

Then we can obtain an exchangeable pair via resampling. Let X′1, . . . , X′n be an inde-
pendent copy of X1, . . . , Xn and I be an independent uniform choice from {1, . . . , n}.
Then (W,W ′) = (W,W −n−1/2(XI −X′I)) is an exchangeable pair that satisfies the
additional assumptions (i) to (iii) for λ = 1/n.
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The idea of the generalised perturbative approach to Stein’s method generalises
the resampling approach to obtain exchangeable pairs. It can be summarised
as saying that if small perturbations or resamplings of a random variable are
approximately independent, then the random variable is approximately normal. We
make these notions of perturbation and approximately independent more rigorous
in the following.

Let X be a measure space and suppose X = (X1, . . . , Xn) is a vector of in-
dependent X-valued (not necessarily identically distributed) random variables.
Let f : Xn → R be a measurable function and set W = f(X). Suppose that E[W] = 0
and E[W2] = 1.

Let X′ = (X′1, . . . , X′n) be an independent copy of X. Let [n] = {1, . . . , n} and for
each A ⊆ [n] define the perturbed or resampled random vector XA as

XAi =
{
X′i if i ∈ A,

Xi if i ∉ A.

We will write Xi instead of X{i} and XA∪i instead of XA∪{i}.
Define a ‘randomised derivative’ of f along the i-th coordinate as

∆if = f(X)− f(Xi)
and for each A ⊆ [n] and i ∉ A

∆ifA = f(XA)− f(XA∪i).
For any i ∈ [n] and A ⊆ [n] \ {i} define

ν(A) = 1

n
(
n−1
|A|

) .
For a fixed i ∈ [n] this defines a probability measure on the subsets of [n] \ {i}. Set

T = 1
2

n∑
i=1

∑
A⊆[n]\{i}

ν(A)∆if∆ifA.
With this notation, the Kolmogorov distance between W and a standard normal

random variable can be estimated by controlling the (co)variance and third moment
of the randomised derivative.

Theorem 4.1.3 [Cha14, Thm. 3.1]. Let W be as before and Z be a standard normal
random variable. Then

sup
t∈R

|P(W ≤ t)− P(Z ≤ t)| ≤ 2
(√

Var(E[T |W])+ 1
4

n∑
i=1

E[|∆if |3])1/2
.
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Chapter 4 Proof of the Main Result

On first glance the variance term on the right-hand side of the previous theorem
might look a bit daunting. The following corollary simplifies the right-hand side to a
simple sum of bounds for covariances.

Corollary 4.1.4 [Cha14, Cor. 3.2]. In the setting of Theorem 4.1.3 suppose for each i, j
there is a constant cij such that for all A ⊆ [n] \ {i} and B ⊆ [n] \ {j}

Cov(∆if∆ifA,∆jf∆jf B) ≤ cij .
Then

sup
t∈R

|P(W ≤ t)− P(Z ≤ t)| ≤
√

2
( n∑
i,j=1

cij
)1/4

+
( n∑
i=1

E[|∆if |3])1/2
.

Example 4.1.5. As a simple application of this result consider the classical central
limit theorem (with the assumption of existing fourth moments).

Let X1, . . . , Xn be i.i.d. random variables with E[|X1|4] <∞, E[X1] = 0 and E[X2
1] =

1. Let X′1, . . . , X′n be an independent copy of X1, . . . , Xn.
Define W = f(X1, . . . , Xn) = n−1/2∑n

i=1Xi, then for any i ∈ [n] and A ⊆ [n] \ {i}

∆ifA = f(XA)− f(XA∪i) = 1√
n
(Xi −X′i).

In particular for i, j ∈ [n] and A ⊆ [n] \ {i}, B ⊆ [n] \ {j}

Cov(∆if∆ifA,∆jf∆jf B) = 1
n2

Cov((Xi −X′i)2, (Xj −X′j)2).

Since we assumed that the Xi are i.i.d., the covariance on the right-hand side is zero
for i ≠ j and can be bounded by a term involving fourth moments of Xi for i = j. In
particular we can find cij so that

∑
ij cij is of order O(n−1).

Similarly, in

E[|∆if |3] = 1
n3/2E[|Xi −X

′
i|3]

the expectation on the right can be bounded by a term involving third moments
of Xi. This implies that the sum

∑
i E[|∆if |3] is of order O(n−1/2).

This shows that both terms on the right in Corollary 4.1.4 are of order O(n−1/4)
and thus the convergence of W to a standard normal. This rate of convergence
of order n−1/4 is suboptimal, since the Berry–Esseen theorem guarantees a rate
of n−1/2 in this case [Ber41].

We now adapt Corollary 4.1.4 to our setting. Recall that σ2
n = Varn(f (Gn)).

Lemma 4.1.6. If there exists a function f : V (2)n ∪ Vn → R such that for all x,x′ ∈
V (2)n ∪ Vn we have

σ−4
n Cov(∆xf∆xf F ,∆x′f∆x′f F ′) ≤ c(x,x′)

106



4.2 Straightforward moment and covariance bounds

for all F ⊆ (V (2)n ∪ Vn) \ {x}, F ′ ⊆ (V (2)n ∪ Vn) \ {x′}. Then we have

sup
t∈R

|Pn(Zn ≤ t)− Φ(t)|
≤
√

2
( ∑
x,x′∈V (2)n ∪Vn

c(x,x′)
)1/4

+ σ−3/2
n

( ∑
x∈V (2)n ∪Vn

E
[
|∆xf |3])1/2. (4.2)

Proof. Apply Corollary 4.1.4 to Gn interpreted as a sequence of independent random
variables ((Xe,we)e∈V (2)n

, (wv)v∈Vn) and the function σ−1
n (f (x)− E[f (Gn)]).

Theorem 2.3.5 can now be proved by finding a suitable function c and bounding
the two sums in (4.2). In particular we need to identify bounds for c(x,x′) for all
possible combinations of edges and vertices. This is what we set out to do in the
remainder of this chapter, which can broadly be split into two parts. The first part
is dedicated to identifying straightforward bounds for c and ∆xf . The second part
of the chapter examines bounds for c, where we make use of the fact that edges and
vertices that are not incident to each other are weakly correlated.

4.2 Straightforward moment and covariance bounds

The second sum on the right-hand side of (4.2) does not involve c and is easily
bounded after separation into vertex and edge sums∑

x∈V (2)n ∪Vn

En[|∆xf |3] = ∑
e∈V (2)n

En[|∆ef |3]+ ∑
v∈Vn

En[|∆vf |3].
Lemma 4.2.1. Under the conditions of Theorem 2.3.5∑

e∈V (2)n

En[|∆ef |3] ≤ 2nϑΓ2
1,nJ

1/2
E .

Proof. Use the estimate (2.9) for |∆ef | to find

En[|∆ef |3] ≤ En[1{max{Xe,X′e}=1}|HE(we,w′
e,wv ,wu)|3].

Note that the first term depends only on the collection of edge indicators X and X′

and the second term on the weights w and w′. Since these collections are independ-
ent, the expectations factor to

= Pn(max{Xe, X′e} = 1)En[|HE(we,w′
e,wv ,wu)|3]

≤ (Pn(Xe = 1)+ Pn(X′e = 1))En[|HE(we,w′
e,wv ,wu)|6]1/2.

Now use the definition of Xe and X′e as well as the moment bound (2.6) for HE to
bound these terms by

≤ 2
WuWv
nϑ

J1/2
E .
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Chapter 4 Proof of the Main Result

Hence, summing over all edges or combinations of two vertices we obtain∑
e∈En

En[|∆ef |3] ≤ ∑
u,v∈Vn

2
WuWv
nϑ

J1/2
E

≤ 2nϑ
( 1
nϑ

∑
u∈Vn

Wu
)2
J1/2
E

≤ 2nϑΓ2
1,nJ

1/2
E .

The claim follows.

The vertex sum can be treated analogously.

Lemma 4.2.2. Under the conditions of Theorem 2.3.5∑
v∈Vn

En[|∆vf |3] ≤ J1/2
V

∑
v∈Vn

ζ(v)3/4.

Proof. By the bound (2.10) on |∆vf |,
En[|∆vf |3] ≤ En[(h(|D1(v)|)HV (wv ,w′

v))3].

The first term depends only on X, the second term only on w and w′. By independ-
ence these terms factor, so that with the bounds (2.7) and (2.8) for moments of HV
and h(|D1(v)|) we obtain

≤ En[h(|D1(v)|)3]En[HV (wv ,w′
v)3]

≤ ζn(v)3/4J1/2
V .

Summing over v we obtain∑
v∈Vn

En[|∆vf |3] ≤ J1/2
V

∑
v∈Vn

ζn(v)3/4.

The claim follows.

It remains to identify a suitable function c bounding the covariances of the
randomised derivatives such that the sum over all vertex-edge combinations has a
rate that still allows for the desired convergence.

The O(n2) ‘diagonal terms’ c(e, e) are relatively easy to bound; and a bound of
order O(σ−4

n n−1) is sufficient to ensure the desired convergence.

Lemma 4.2.3. We may take

c(e, e) = σ−4
n
WuWv
nϑ

(
min

{
WuWv
nϑ

,1
}
+ 1

)
J2/3
E ≤ σ−4

n CJ2/3
E
WuWv
nϑ

for the edge e = {u,v}.
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4.2 Straightforward bounds

Proof. We will show

Covn(∆ef∆ef F ,∆ef∆ef F ′) ≤ WuWvnϑ

(
min

{WuWv
nϑ

,1
}
+ 1

)
J2/3
E ,

which immediately implies the claim.
In a first step we apply the Cauchy–Schwarz inequality to obtain separate ex-

pectations, we then note that ∆ef , ∆ef F and ∆ef F ′ have the same distribution.
Hence,

En[|(∆ef)2∆ef F∆ef F ′|]
≤ En[|∆ef |4]1/2En[|∆ef F |4]1/4En[|∆ef F ′|4]1/4
= En[|∆ef |4].

We now proceed as in Lemma 4.2.1 with the bound (2.9), independence and finally
(2.6) to estimate this term by

≤ En[1{max{Xe,X′e}=1}HE(we,w′
e,wv ,wu)4]

≤ Pn(max{Xe, X′e} = 1)En[HE(we,w′
e,wv ,wu)4]

≤ 2 min
{
WuWv
nϑ

,1
}
J2/3
E .

Similarly,

En[|∆ef∆ef F |] ≤ En|∆ef |2]1/2En[|∆ef F |2]1/2
= En|∆ef |2]
≤ Pn(max{Xe, X′e} = 1)EnHE(we,w′

e,wv ,wu)2]

≤ 2 min
{WuWv
nϑ

,1
}
J1/3
E .

The same bound holds for ∆ef∆ef F ′
En[|∆ef∆ef F ′|] ≤ 2 min

{WuWv
nϑ

,1
}
J1/3
E .

Putting all this together we get

Covn(∆ef∆ef F ,∆ef∆ef F ′)
≤ |En[∆ef∆ef F∆ef∆ef F ′]| + |En[∆ef∆ef F]En[∆ef∆ef F ′]|
≤ En[

∣∣(∆ef)2∆ef F∆ef F ′∣∣]+ En[|∆ef∆ef F |]En[|∆ef∆ef F ′|]
≤ CWuWv

nϑ

(
min

{WuWv
nϑ

,1
}
+ 1

)
J2/3
E

as claimed.
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Chapter 4 Proof of the Main Result

An analogous result can be shown for the pure vertex combination. Here c is of
rate O(σ−4

n ) and there are O(n) many terms.

Lemma 4.2.4. We may take

c(v,v) = σ−4
n CJ2/3

V ζn(v)

for each vertex v .

Proof. The proof proceeds as the proof of Lemma 4.2.3. We will show

Covn(∆vf∆vf F ,∆vf∆vf F ′) ≤ CJ2/3
V ζn(v)

to prove the claim.
As in Lemma 4.2.3 we first apply Cauchy–Schwarz and use that ∆vf , ∆vf F

and ∆vf F ′ have identical distribution so that

En[|(∆vf)2∆vf F∆vf F ′|]
≤ En[|∆vf |4]1/2En[|∆vf F |4]1/4En[|∆vf F ′|4]1/4
≤ En[|∆vf |4].

By the reasoning from Lemma 4.2.2 with the bound (2.10) for |∆vf |, independence
and the bounds (2.7) for HV and (2.8) for h(|D1(v)|) this term can be estimated by

≤ En[h(|D1(v)|)4HV (wv ,w′
v)4]

≤ J2/3
V ζn(v).

In exactly the same way we show

En[|∆vf∆vf F |] ≤ En[|∆vf |2]1/2En[|∆vf F |2]1/2 ≤ J1/3
V ζn(v).

and
En[|∆vf∆vf F ′|] ≤ J1/3

V ζn(v)1/4.

Together this bounds the relevant covariance by

Covn(∆vf∆vf F ,∆vf∆vf F ′)
≤ |En[∆vf∆vf F∆vf∆vf F ′]| + |En[∆vf∆vf F]En[∆vf∆vf F ′]|
≤ E[|(∆vf)2∆vf F∆vf F ′|]+ En[|∆vf∆vf F |]En[|∆vf∆vf F ′|]
≤ J2/3

V ζn(v)1/2 + J1/3
V ζn(v)1/4 · J1/3

V ζn(v)1/4

≤ CJ2/3
V ζn(v)1/2.

This proves the claim.
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4.2 Straightforward bounds

For the O(n2) mixed terms involving a vertex and an edge emanating from that
vertex we obtain an order of O(σ−4

n n−1).

Lemma 4.2.5. We may take

c(e, v) = σ−4
n C

WuWv
nϑ

J1/3
E J1/3

V ζn(v)1/4

for any vertex v and all edges e = {v,u} emanating from v .

Proof. We will show

Covn(∆ef∆ef F ,∆vf∆vf F ′) ≤ CWuWvnϑ
J1/3
E J1/3

V ζn(v)1/4.

The claim then follows.
Again, the proof follows along the lines of the proofs of Lemmas 4.2.3 and 4.2.4.

The first term, however, needs a little more attention, since we do not want apply
Cauchy–Schwarz immediately, because that would leave us with an exponent 1/2
that we cannot remove easily.

By the bounds (2.9) and (2.10) for ∆ef and ∆vf we have

En[|∆ef∆ef F∆vf∆vf F ′|]
≤ En[|1{max{Xe,X′e}=1}HE(we,w′

e,wv ,wu)HE(we,w′
e,wF

v ,wF
u)

h(|D1(v)|)HV (wv ,w′
v)h(|DF

′
1 (v)|)HV (wv ,w′

v)|].

Collect terms that depend on the edges X, X′ and the weights w, w′ and use their
independence to bound this term by

≤ En[1{max{Xe,X′e}=1}h(|D1(v)|)h(|DF
′

1 (v)|)]
En[HE(we,w′

e,wv ,wu)HE(we,w′
e,wF

v ,wF
u)HV (wv ,w′

v)2].

Recall Definition 3.1.18 and estimate h(|D1(v)|) against h(|D(u)1 (v) + 1|), which
ignores the edge e = {u,v}, to create independence from Xe and X′e

≤ En[1{max{Xe,X′e}=1}(h(|D
(u)
1 (v)|)+ 1)(h(|D(u),F

′
1 (v)|)+ 1)]

En[HE(we,w′
e,wv ,wu)HE(we,w′

e,wF
v ,wF

u)HV (wv ,w′
v)2].

Use the independence of Xe, X′e from D(u)1 and D(u),F
′

1 , judiciously apply Cauchy–
Schwarz and then use that Gn and GFn have the same distribution to find the bound

≤ Pn(max{Xe, X′e} = 1)En[(h(|D(u)1 (v)|)+ 1)2]

En[HE(we,w′
e,wv ,wu)4]1/4En[HE(we,w′

e,wF
v ,wF

u)4]1/4

En[HV (wv ,w′
v)4]1/2.
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Chapter 4 Proof of the Main Result

With (2.6) to (2.8) this term is further bounded by

≤ CWvWu
nϑ

ζn(v)1/4J
1/3
E J1/3

V .

Putting this together with the bounds shown in the proof of Lemmas 4.2.3 and 4.2.4
we obtain

Covn(∆ef∆ef F ,∆v′f∆v′f F ′)
≤ |En[∆ef∆ef F∆v′f∆v′f F ′]| + |En[∆ef∆ef F]En[∆v′f∆v′f F ′]|
≤ En[|∆ef∆ef F∆v′f∆v′f F ′|]+ En[|∆ef∆ef F |]En[|∆v′f∆v′f F ′|]
≤ CWvWu

nϑ
ζn(v)1/4J

1/3
E J1/3

V + 2J1/3
E
WvWu
nϑ

J1/3
V ζn(v)1/4

≤ CWuWv
nϑ

J1/3
E J1/3

V ζn(v)1/4.

This proves the claim.

The same general strategy can be used for the O(n3) edge pairs sharing one
vertex. The resulting bound is of order σ−4

n n−2 and is thus sufficient for the desired
convergence.

Lemma 4.2.6. Let e = {u,v} and e′ = {u,v′} be two edges in V (2)n that share exactly
one vertex. Then we may take

c(e, e′) = σ−4
n CW2

u
Wv
nϑ

Wv′
nϑ

J2/3
E .

Proof. As previously we bound

Covn(∆ef∆ef F ,∆e′f∆e′f F ′).
As in Lemma 4.2.5 we first apply the bound (2.9) for ∆ef so that

En[|∆ef∆e′f∆ef F∆e′f F ′|]
≤ En[1{max{Xe,X′e}=1}1{max{Xe′ ,X′e′}=1}

HE(we,w′
e,wv ,wu)HE(we,w′

e,wF
v ,wF

u)

HE(we′ ,w′
e′ ,wv′ ,wu′)HE(we′ ,w

′
e′ ,w

F ′
v′ ,w

F ′
u′)].

Since Xe, X′e, Xe′ and X′e′ are independent from each other and from the weights w
and w′, this expectation factors and we can apply Cauchy–Schwarz to find the bound

≤ Pn(max{Xe, X′e} = 1)Pn(max{Xe′ , X′e′} = 1)

En[HE(we,w′
e,wv ,wu)4]1/4En[HE(we,w′

e,wF
v ,wF

u)4]1/4

En[HE(we′ ,w′
e′ ,wv′ ,wu′)

4]1/4En[HE(we′ ,w′
e′ ,w

F ′
v′ ,w

F ′
u′)

4]1/4

≤ 4
WuWv
nϑ

WuWv′
nϑ

J2/3
E .
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From the proof of Lemma 4.2.3 we have directly that

En[|∆ef∆ef F |] ≤ 2
WuWv
nϑ

J1/3
E and En[|∆e′f∆e′f F ′|] ≤ 2

WuWv′
nϑ

J1/3
E .

These estimates together show

Covn(∆ef∆ef F ,∆e′f∆e′f F ′)
≤ |En[∆ef∆ef F∆e′f∆e′f F ′]| + |En[∆ef∆ef F]En[∆e′f∆e′f F ′]|
≤ En[|∆ef∆e′f∆ef F∆e′f F ′|]+ En[|∆ef∆ef F |]En[|∆e′f∆e′f F ′|]
≤ 4W2

u
Wv
nϑ

Wv′
nϑ

J2/3
E + 2

WuWv
nϑ

J1/3
E · 2

WuWv′
nϑ

J1/3
E

≤ CW2
u
Wv
nϑ

Wv′
nϑ

J2/3
E .

This proves the claim.

4.3 Sparsity-based covariance bounds

In this section we will find bounds for c for the remaining cases in which the
vertices and edges that are involved are not incident to each other. The mainly
Cauchy–Schwarz-based approach of the previous section would not give the desired
convergence rates here. We rely on property GLA (Assumption 2.3.2) and the
coupling to the limiting Galton–Watson tree Definition 2.2.5 to bound the effect of a
local change on the function by a local quantity. Property GLA and the coupling to
the limiting tree structure ensure that the approximation error of using the local
quantity goes to zero. The sparsity of the underlying graph ensures that local
quantities are only very weakly correlated (cf. Lemma 3.2.5).

In our calculations we will use the following multi-purpose error term that absorbs
the probability of various additional coupling events and the covariance bound for
local neighbourhoods.

Definition 4.3.1. Let n,k ∈ N. For any set of vertices V ⊆ Vn set

ρn,k(V ) = min
{
(∥V∥ + |V |)2

nϑ
(Γ1,n + 1)2(Γ2,n + C)2k+1(Γ3,n + 1)2,1

}
.

Recall the definition of εn,k(V ) from Lemma 3.5.1 and Lemma 3.5.2

εn,k(V ) = ∥V∥2
Γ2,n
nϑ

+ ∥V∥+Γ1,n
+ ∥V∥(Γ2,n + 1)k

(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ |V| 1

kn
+ k2

n
nϑΓ1,n + ∥V∥αn

(1
ϑ
+ (Γ2 + 1)k−1

( Γ2,n
ϑΓ1,n + 1

))
+ (|V | + ∥V∥(Γ2 + 1)k)(dTV(µE,n, µE)+ dTV(µV,n, µV )).

113



Chapter 4 Proof of the Main Result

4.3.1 Edge-edge case

We will now bound c(e, e′) for edges e = {u,v} and e′ = {u′, v′} with all distinct
vertices. There are O(n4) of these edge pairs and a c(e, e′) of rate O(σ−4

n n−2) (as
in the previous case) would result in a convergence rate that is slightly worse than
the rate that can be obtained by exploiting that with high probability the two edges
do not influence each other. The remainder of this subsection is therefore dedicated
to showing the following proposition.

Proposition 4.3.2. Let e = {u,v} and e′ = {u′, v′} be two edges in V (2)n with all
distinct vertices. Then we may take

c(e, e′) = σ−4
n CJE

WuWv
nϑ

Wu′Wv′
nϑ

((mE
n(v,u)δ

E
k)

1/2 + (mE
n(v′, u′)δ

E
k)

1/2

+ εn,k({u,v,u′, v′})1/4 + ρn,k({u,v,u′, v′})1/4).

We will prove this result via the coupling to the limiting tree. In order to do this
properly, we need to introduce some notation.

Let E0 be the event that both Bk(v,Gn) and Bk(v,Gen) are trees and let

Ae = {(Xe, X′e) = (1,0) or (Xe, X′e) = (0,1)}

be the event that e is switched by going from Xe to X′e. Define

L̃Ek(e) = 1E01AeLAE,Lk (Bk(v,Gn), Bk(v,Gen)).

Let Q( · , y) : R→ [−y,y] be the function truncating x to level y ≥ 0, i.e.

Q(x,y) = max{min{x,y},−y} =


−y x < −y,
x −y ≤ x ≤ y,
y x > y.

For brevity let

H̃E(e) = HE(we,w′
e,wv ,wu), H̃E(F ∪ e) = HE(we,w′

e,wF
v ,wF

u)

and similarly for e′ and F ′ ∪ e′.
Then define a truncated version of L̃Ek(e)

LEk(e) = Q(L̃Ek(e), H̃E(e)).

This will be our local approximation of ∆ef (hence ‘L’). The construction ensures

|LEk(e)| ≤ 1AeH̃E(e). (4.3)

Let REk(e) be the difference of LEk(e) to ∆ef (it is the remainder to ∆ef , hence ‘R’),
i.e. set

REk(e) = ∆ef − LEk(e).
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4.3 Sparsity-based covariance bounds

Let Ãe = {max{Xe, X′e} = 1}, so that Ãe = Ae∪{Xe = X′e = 1}. Then by (2.9) and (4.3)

|REk(e)| ≤ |∆ef | + |LEk(e)|
≤ 1ÃeH̃E(e)+ 1AeH̃E(e)

≤ 21ÃeH̃E(e). (4.4)

For F ⊆ (V (2)n ∪ Vn) \ {e} define LEk(F ∪ e) with Bk(v,GFn) and Bk(v,GF∪en ) instead
of Bk(v,Gn) and Bk(v,Gen). Analogous to REk(e) define the remainder REk(F ∪ e)

REk(F ∪ e) = ∆ef F − LEk(F ∪ e).
With these definitions we want to bound

Covn(∆ef∆ef F ,∆e′f∆e′f F ′)
= Covn((REk(e)+ LEk(e))(REk(F ∪ e)+ LEk(F ∪ e)),

(REk(e
′)+ LEk(e′))(REk(F ′ ∪ e′)+ LEk(F ′ ∪ e′))).

(4.5)

Expand this expressions into sixteen terms of the form

Covn(UE1 (e)U
E
2 (F ∪ e),UE3 (e′)UE4 (F ′ ∪ e′)),

where UEi for i ∈ {1,2,3,4} may be either LEk or REk .
Recall that REk corresponds to the difference of ∆ef and LEk . In other words, REk is

the error of approximating ∆ef locally. Hence, the fifteen covariances involving at
least one REk term can be bounded by coupling the neighbourhood to the limiting
Galton–Watson tree and appealing to (GLA 3).

Lemma 4.3.3. We have

Cov(UE1 (e)U
E
2 (F ∪ e),UE3 (e′)UE4 (F ′ ∪ e′))

≤ CJE
WuWv
nϑ

Wu′Wv′
nϑ

((mE
n(v,u)δ

E
k)

1/2 + (mE
n(v′, u′)δ

E
k)

1/2

+ εn,k({u,v,u′, v})1/4 + ρn,k({u,v,u′, v′})1/4)

if at least one of the UEi is an REk -term.

Proof. We show the claim the case where UE1 is an REk term, i.e. for

Cov(REk(e)U
E
2 (F ∪ e),UE3 (e′)UE4 (F ′ ∪ e′)).

The proof for the other terms is analogous (the bound we show is symmetric in e
and e′).

By construction JE ≥ 1, so JrE ≤ JE for all r ≤ 1, so we will drop the exponents
of JE that are smaller than one.
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Set
H̃E = max{H̃E(e), H̃E(e′), H̃E(F ∪ e), H̃E(F ′ ∪ e′)}.

Then by (4.3) and (4.4) and noting that Ãe = Ae ∪ {Xe = X′e = 1}

|REk(e)UE2 (F ∪ e)UE3 (e′)UE4 (F ′ ∪ e′)| ≤ C1Ãe1Ãe′ H̃
3
E|REk(e)|

≤ C1Ae1Ãe′ H̃
3
E|REk(e)| + C1{Xe=X′e=1}1Ãe′ H̃

4
E .

(4.6)

Since w, X and X′ are independent, the expectation of the second term in (4.6) can
be bounded easily by

En[1{Xe=X′e=1}1Ãe′ H̃
4
E] ≤ Cmin

{WuWv
nϑ

,1
}2

min
{Wu′Wv′

nϑ
,1
}
J2/3
E

≤ CWuWv
nϑ

Wu′Wv′
nϑ

min
{WuWv
nϑ

,1
}
J2/3
E

≤ CWuWv
nϑ

Wu′Wv′
nϑ

J2/3
E ρn,k({u,v,u′, v′}).

Since ρn,k({u,v,u′, v′}) ≤ 1 we can make the bound worse by

≤ CWuWv
nϑ

Wu′Wv′
nϑ

J2/3
E ρn,k({u,v,u′, v′})1/4. (4.7)

We move on to the first term in (4.6). Let Ye = (Xe, X′e). Then the indicator
functions of the first term in (4.6) are Ye, Ye′ -measurable. The conditional expectation
of the remainder of the term can be bounded with the Cauchy–Schwarz inequality

En[H̃3
E|REk(e)| | Ye, Ye′] ≤ En[H̃6

E | Ye, Ye′]1/2En[|REk(e)|2 | Ye, Ye′]1/2

since w, w′ are independent of X, X′, the conditioning in the first term can be
dropped and (2.6) implies

≤ CJ1/2
E En[(REk(e))

2 | Ye, Ye′]1/2. (4.8)

It remains to bound the second moment of REk(e) conditional on Ye, Ye′ . Recall
that REk(e) = ∆ef − LEk(e). Write Bk = Bk(v,Gn) and B′k = Bk(v,Gen). Then on E0

0 ≤ ∆ef − LEk(e) ≤ LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k).

Verify this by considering the possible cases for the truncation of LAE,Lk (Bk, B′k) to
level H̃E(e) separately.

Case (i) LAE,Lk (Bk, B′k) ∈ [−H̃E(e), H̃E(e)]. Then LEk(e) = LAE,Lk (Bk, B′k) and (GLA 1)
immediately implies both inequalities.
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4.3 Sparsity-based covariance bounds

Case (ii) LAE,Lk (Bk, B′k) < −H̃E(e). Then LEk(e) = −HE(wv ,wu). For the first inequal-
ity use that ∆ef ≥ −H̃E(e) by (2.9). For the second inequality recall that ∆ef ≤
LAE,Uk (Bk, B′k) by (GLA 1) and use LAE,Lk (Bk, B′k) < L

E
k(e), which follows directly

from LEk(e) = −H̃E(e) in this case.

Case (iii) LAE,Lk (Bk, B′k) > H̃E(e). Then LEk(e) = H̃E(e). Combining (GLA 1) and (2.9)

we obtain LAE,Lk (Bk, B′k) ≤ ∆ef ≤ H̃E(e), which forces ∆ef = H̃E(e). This shows
that the first inequality holds (even with equality). But that immediately also
proves the second inequality since LAE,Lk (Bk, B′k) ≤ LAE,Uk (Bk, B′k) by (GLA 1).

In particular |REk(e)| ≤ LAE,Uk (Bk, B′k) − LAE,Lk (Bk, B′k) on E0 and so together with
(4.4) we have

1Ae|REk(e)| ≤ 1Ae1E01E1|REk(e)| + 1Ae1Ec0∪Ec1 |R
E
k(e)|

≤ 1Ae1E01E1(LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k))+ 1AeCH̃E1Ec0∪Ec1

for an arbitrary set E1 that will be chosen later. Taking conditional expectations,
applying Cauchy–Schwarz on the second term and using the moment bound (2.6)
for HE and then in the next step (x +y)1/2 ≤ x1/2 +y1/2 we see

1AeEn[(R
E
k(e))

2 | Ye, Ye′]
≤ En[1Ae1E01E1(LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k))

2 | Ye, Ye′]
+ 1AeCJ

1/3
E (Pn(Ec0 | Ye, Ye′)+ Pn(Ec1 | Ye, Ye′))1/2

≤ En[1Ae1E01E1(LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k))
2 | Ye, Ye′]

+ 1AeCJ
1/3
E (Pn(Ec0 | Ye, Ye′)1/2 + Pn(Ec1 | Ye, Ye′)1/2).

(4.9)

We turn first to the probability of Ec0 in (4.9). The probability that Bk or B′k is a not
tree can be bounded by the sum of the probabilities of those events. Thus

Pn(Ec0 | Ye, Ye′) ≤ Pn(Bk is not a tree | Ye, Ye′)+ Pn(B′k is not a tree | Ye, Ye′).

We consider the event that Bk is not a tree, the case for B′k is analogous. If Bk =
Bk(v,Gn) is not a tree, then Bk(v,Gn − e) is not a tree or Bk−1(u,Gn − e) is not
a tree or the two (trees) Bk(v,Gn − e) and Bk−1(u,Gn − e) intersect (see Fig. 4.1).
Therefore we have

Pn(Bk is not a tree | Ye, Ye′)
≤ Pn(Bk(v,Gn − {e}) is not a tree | Ye, Ye′)
+ Pn(Bk−1(u,Gn − {e}) is not a tree | Ye, Ye′)
+ Pn(Bk(v,Gn − {e}) and Bk−1(u,Gn − {e}) intersect | Ye, Ye′).

The conditioning on Ye, Ye′ can be removed since Bk(v,Gn−e) ≊ Bk(v,Gn−{e, e′})
and Bk−1(u,Gn − e) ≊ Bk−1(u,Gn − {e, e′}) with high probability even conditionally
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v

u

e

(a) B2(v,G− e) and B1(u,G− e) contain
cycles.

v

u

e

(b) B2(v,G−e) and B1(u,G−e) intersect.

Figure 4.1: Examples of the three ways B2(v,G) can fail to be a tree. Either there is a
cycle in B2(v,G− e) , there is a cycle in B1(u,G− e) (a) or B2(v,G− e)
and B1(u,G− e) overlap (b).

on Ye, Y ′e . The events involving only Gn − {e, e′} are then independent of Ye, Ye′ so
that

Pn(Bk is not a tree | Ye, Ye′)
≤ Pn(Bk(v,G− {e, e′}) is not a tree)
+ Pn(Bk−1(u,G− {e, e′}) is not a tree)
+ Pn(Bk(v,G− {e, e′}) and Bk−1(u,G− {e, e′}) intersect)
+ 2Pn(Bk(v,Gn − e) ≇ Bk(v,Gn − {e, e′}) | Ye, Ye′)
+ 2Pn(Bk−1(u,Gn − e) ≇ Bk−1(u,Gn − {e, e′}) | Ye, Ye′)

For the last two terms note that Bk(v,Gn − e) ≇ Bk(v,Gn − {e, e′}), implies e′ ∈
Bk(v,Gn − e), since otherwise all paths in Bk(v,Gn − e) would avoid e′ and would
thus already be in Bk(v,Gn − {e, e′}). Hence,

Pn(Bk(v,Gn − e) ≠ Bk(v,Gn − {e, e′}) | Ye, Ye′)
≤ Pn(e′ ∈ Bk(v,Gn − e) | Ye, Ye′).

The edge e′ can only be present in Bk(v,Gn − e) if at least one of its endpoints v′

or u′ can be reached in Bk(v,Gn − {e, e′}), which is independent of Ye and Ye′ , so
that Corollary 3.1.15 yields the bound

≤ Pn(u′ ∈ Bk(v,Gn − {e, e′}) | Ye, Ye′)
+ Pn(v′ ∈ Bk(v,Gn − {e, e′}) | Ye, Ye′)

≤ P(u′ ∈ Bk(v,Gn − {e, e′}))+ Pn(v′ ∈ Bk(v,Gn − {e, e′}))
≤ P(u′ ∈ Bk(v,Gn))+ Pn(v′ ∈ Bk(v,Gn))

≤ WvWu′
nϑ

(Γ2,n + 1)k + WvWv′
nϑ

(Γ2,n + 1)k
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4.3 Sparsity-based covariance bounds

≤ Wv(Wu′ +Wv′)
nϑ

(Γ2,n + 1)k.

The analogous result applies to Bk−1(u,Gn − e) and Bk−1(u,Gn − {e, e′}).
Now apply Lemma 3.1.20 to bound the (unconditional) probability that Bk(v,Gn −

{e, e′}) and Bk−1(u,Gn − {e, e′}) are not trees and Corollary 3.1.15 to bound the
probability that the neighbourhoods intersect. Then

Pn(Bk is not a tree | Ye, Ye′)

≤ C (Wv + 1)2 + (Wu + 1)2

nϑ
(Γ3,n + 1)(Γ2,n + 1)2k+1

+ CWuWv
nϑ

(Γ2,n + 1)2k + C (Wu +Wv)(Wu′ +Wv′)
nϑ

(Γ2,n + 1)k.

The same holds for the probability that B′k is a tree, so that together with the
definition of ρn,k

Pn(Ec0 | Ye, Ye′) ≤ ρn,k({u,v,u′, v′}). (4.10)

For the second probability in the second term of (4.9) we use Lemmas 3.5.2
and 3.5.4 to couple (Bk, B′k,T,T

′) and set E1 = {(Bk, B′k) ≊ (T,T′)} such that

Pn(E1) = Pn((Bk, B′k) ≊ (T,T′) | Ye, Ye′)

≥ 1−
(
εn,k({u,v})+ 2dTV(µE,n, µE)

+ CWuWv + (Wu +Wv)(Wu′ +Wv′)
nϑ

(Γ2,n + 1)2k
)

Absorb 2dTV(µE,n, µE) into εn,k({u,v,u′, v}) ≥ εn,k({u,v}), and recall the defini-
tion of ρn,k({u,v,u′, v′}) to conclude

Pn(Ec1 | Ye, Ye′) ≤ C(εn,k({u,v,u′, v})+ ρn,k({u,v,u′, v′})). (4.11)

Now consider the first term in (4.9). By the definition of E1 and (GLA 2) we can
replace Bk with T and B′k with T′. Then use Lemma 3.5.4 to show that (T,T′) is
distributed like (T̃k,Tk) or (Tk, T̃k) on Ae given (Ye, Ye′), so that (GLA 3) gives us
the following bound

En[1Ae1E01E1(LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k))
2 | Ye, Ye′]

= 1AeEn[1E01E1(LAE,Uk (T,T′)− LAE,Lk (T,T′))2 | Ye, Ye′]
≤mE

n(v,u)δ
E
k. (4.12)

Together (4.9) to (4.12) imply

1AeEn[(R
E
k(e))

2 | Ye, Ye′]
≤ C(mE

n(v,u)δ
E
k + εn,k({u,v,u′, v′})1/2 + ρn,k({u,v,u′, v′})1/2),

119



Chapter 4 Proof of the Main Result

so that together with by (4.8) the expectation of the first term in (4.6) becomes

En[C1Ae1Ãe′ H̃
3
E|REk(e)|]

≤ En[C1Ae1Ãe′J
1/2
E (En[(REk(e))

2 | Ye, Ye′])1/2]

≤ CWuWv
nϑ

Wu′Wv′
nϑ

J1/2
E

((mE
n(v,u)δ

E
k)

1/2 + εn,k({u,v,u′, v′})1/4 + ρn,k({u,v,u′, v′})1/4).
(4.13)

Putting (4.7) and (4.13) together we obtain

En[|REk(e)UE2 (F ∪ e)UE3 (e′)UE4 (F ′ ∪ e′)|]

≤ CJE
WuWv
nϑ

Wu′Wv′
nϑ

((mE
n(v,u)δ

E
k)

1/2 + εn,k({u,v,u′, v′})1/4 + ρn,k({u,v,u′, v′})1/4)

≤ CJE
WuWv
nϑ

Wu′Wv′
nϑ

((mE
n(v,u)δ

E
k)

1/2 + (mE
n(v′, u′)δ

E
k)

1/2

+ εn,k({u,v,u′, v′})1/4 + ρn,k({u,v,u′, v′})1/4).

Here we introduced the additional term mE
n(v′, u′)δ

E
k in order to make the bound

symmetric in e and e′.
The other two expectations in the covariance can be bounded similarly.
This proves the claim.

The last of the sixteen covariance terms does not involve an REk term and thus
has to be bounded differently. The key idea here is that LEk(e) is a function of the
neighbourhood around e and LEk(e) a function of the neighbourhood around e′,
by sparsity the neighbourhood around e should only be very weakly correlated to
the neighbourhood around e′ (cf. Section 3.2), so that LEk(e) and LEk(e

′) are also
only weakly correlated. The formal proof proceeds by constructing independent
approximations to LEk(e) and LEk(e

′).

Lemma 4.3.4. We have

Covn(LEk(e)L
E
k(F ∪ e), LEk(e′)LEk(F ′ ∪ e′)) ≤ CJ

2/3
E
WuWv
nϑ

Wu′Wv′
nϑ

ρn,k({u,v,u′, v′}).

Proof. For the proof of this lemma we will need some more notation.
For any vertex v ∈ Vn let

Sv = ((X{v,x}, X′{v,x},w{v,x},w′
{v,x})x∈Vn ,wv ,w

′
v).

be the collection of random variables of X, X′, w and w′ at v and edges emanating
from v . For an edge e = {u,v} define

Se = (Sv , Su)
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4.3 Sparsity-based covariance bounds

the collection of random variables associated with the two end vertices u and v of
the edge e. Let Uv = (X{v,x}, X′{v,x})x∈Vn be the collection of random variables that
describe the presence or absence of edges emanating from v .

Let
Ae = {(Xe, X′e) = (1,0) or (Xe, X′e) = (0,1)},

then set

XE(e) = LEk(e)LEk(F ∪ e) and XE(e′) = LEk(e′)LEk(F ′ ∪ e′).

Then XE(e) = 1AeXE(e) and XE(e′) = 1Ae′X
E(e′). By the law of total covariance

Covn(XE(e),XE(e′))

= Covn(1AeEn[X
E(e) | Se, Se′],1Ae′En[XE(e′) | Se, Se′])

+ En[1Ae1Ae′ Covn(XE(e),XE(e′) | Se, Se′)].

The claim then follows from the following two lemmas 4.3.5 and 4.3.6.

Lemma 4.3.5. We have

Covn(1AeEn[X
E(e) | Se, Se′],1Ae′En[XE(e′) | Se, Se′])

≤ CJ2/3
E
WuWv
nϑ

Wu′Wv′
nϑ

ρn,k({u,v,u′, v′}).

Proof. The random variable XE(e) can be written as a function of

(Bk(v,Gn), Bk(v,Gen), Bk(v,GFn), Bk(v,GF∪en )).

Define an approximation X̃E(e) of XE(e) as the same function, but applied to

(Bk(v,Gn − {u′, v′}), Bk(v,Gen − {u′, v′}),
Bk(v,GFn − {u′, v′}), Bk(v,GF∪en − {u′, v′})).

By construction X̃E(e) is independent of Se′ , since the vertices u′ and v′ are com-
pletely removed from the underlying graph objects. Define X̃E(e′) analogously as a
function applied to the neighbourhoods of v′ in graphs ignoring u and v′. Set

ZE(e) = En[XE(e) | Se, Se′]
and

Z̃E(e) = En[X̃E(e) | Se, Se′] = En[X̃E(e) | Se],

where the last equality is justified by the fact that X̃E(e) is based on the ori-
ginal graph with the edge e′ and its endpoints u′ and v′ completely removed,
so that X̃E(e) is independent of Se′ . Note that the fact that X̃E(e) is independent
of Se′ is slightly stronger than the equality above, which only claims that Z̃E(e) is a
function of Se, since Se and Se′ overlap.
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Define ZE(e′) and Z̃E(e′) similarly for e′.
By construction and (4.3)

|XE(e)|, |X̃E(e)| ≤ 1AeH̃E(e)H̃E(F ∪ e) (4.14)

and therefore also

|ZE(e)| ≤ En[|XE(e)| | Se, Se′]
= En[1AeH̃E(e)H̃E(F ∪ e) | Se, Se′]
≤ 1AeH̃E(e)H̃E(F ∪ e),

since H̃E(e) and H̃E(F ∪ e) are measurable with respect to Se. Similarly

|Z̃E(e)| ≤ 1AeH̃E(e)H̃E(F ∪ e).

Analogous results hold for XE(e′), X̃E(e′), ZE(e′) and Z̃E(e′).
With this notation the covariance of interest is

Covn(1AeEn[X
E(e) | Se, Se′],1Ae′En[XE(e′) | Se, Se′])

= Covn(1AeZ
E(e),1Ae′Z

E(e′)).

Approximate ZE(e) with Z̃E(e) and ZE(e′) with Z̃E(e′) so that this covariance be-
comes

= Covn(1Ae Z̃
E(e),1Ae′ Z̃

E(e′))

+ Covn(1Ae(Z
E(e)− Z̃E(e)),1Ae′ Z̃E(e′))

+ Covn(1Ae Z̃
E(e),1Ae′ (Z

E(e′)− Z̃E(e′)))
+ Covn(1Ae(Z

E(e)− Z̃E(e)),1Ae′ (ZE(e′)− Z̃E(e′))).

(4.15)

By construction 1Ae Z̃e is a function of Se that is independent of Se′ and 1Ae′ Z̃e′ is a
function of Se′ that is independent of Se. Hence, 1Ae Z̃e and 1Ae′ Z̃e′ are independent
and the first term vanishes.

We will now bound the remaining three covariances. The argument is similar
for all of three terms, so we will only spell out the argument for the first of the
remaining three covariances. By the bound on Z̃E(e′)

|1Ae1Ae′ (ZE(e)−Z̃E(e))Z̃E(e′)| ≤ 1Ae1Ae′ H̃E(e
′)H̃E(F ′∪e′)|(ZE(e)−Z̃E(e))|. (4.16)

Furthermore, by the bounds (4.14) for XE(e) and X̃E(e) and measurability of H̃E(e′)
and H̃E(F ′ ∪ e′) we have

|ZE(e)− Z̃E(e)| = |E[XE(e)− X̃E(e) | Se, Se′]|
≤ 2H̃E(e)H̃E(F ∪ e)Pn(XE(e) ≠ X̃E(e) | Se, Se′). (4.17)
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4.3 Sparsity-based covariance bounds

We now claim that the probability that XE(e) and X̃E(e) differ can be bounded by

Pn(XE(e) ≠ X̃E(e) | Se, Se′) ≤ CΞ (4.18)

for a random variable Ξ that is independent of Xe, X′e, Xe′ and X′e′ and satis-
fies En[Ξ] ≤ Cρn,k({u,v,u′, v′}). To verify this, note that XE(e) ≠ X̃E(e) im-
plies that Bk(v,G − {u′, v′}) ≠ Bk(v,G) for at least one of G = Gn,Gen,GFn,GF∪en .
For G = Gn we can use Lemma 3.1.19 with V = {u,v}, U = {u′, v′} and R =∅ to
find a random variable ξk that is independent of Xe, X′e, Xe′ and X′e′ such that

Pn(Bk(v,Gn − {u′, v′}) ≠ Bk(v,Gn) | Se, Se′)
≤ Pn(u′ ∈ Bk(v,Gn) | Se, Se′)+ Pn(v′ ∈ Bk(v,Gn) | Se, Se′)
≤ ξk({u,v}, {u′, v′},∅)

and

En[ξk({u,v}, {u′, v′},∅)] ≤ min
{
(Wu +Wv)(Wu′ +Wv′)

nϑ
(Γ2,n + 1)k,1

}
≤ ρn,k({u,v,u′, v′}).

Similar bounds hold for the other cases, which are not based on Gn, but on Gen, GFn
or GF∪en . Sum these bounds to obtain Ξ, which is independent of X and X′ at e and e′

and has expectation bounded by Cρn,k({u,v,u′, v′})
Put (4.16) to (4.18) together to find

|En[1Ae1Ae′ (ZE(e)− Z̃E(e))Z̃E(e′)]|
≤ CEn[1Ae1Ae′ H̃E(e)H̃E(F ∪ e)H̃E(e′)H̃E(F ′ ∪ e′)Ξ].

Now H̃E depends only on w and w′, that Ξ depends on X and X′ except at e and e′

and Ae and Ae′ depends only on X and X′ at e and e′. This means that the expectation
factors, so that the definitions of Ae, Ae′ , the bound for H̃E Lemma 3.1.19 and for
the expectation of Ξ yield

≤ CJ2/3
E
WuWv
nϑ

Wu′Wv′
nϑ

ρn,k({u,v,u′, v′}).

The same holds for |En[1Ae(ZE(e) − Z̃E(e))]En[1Ae′ Z̃E(e′)]| by analogous argu-
ments. This bound is symmetric in e and e′ so that it also holds for the other two
remaining covariance terms in (4.15) involving a difference of ZE and Z̃E .

Putting these results together proves the claim.

Lemma 4.3.6. We have

En[1Ae1Ae′ Covn(XE(e),XE(e′) | Se, Se′)] ≤ CJ2/3
E
WuWv
nϑ

Wu′Wv′
nϑ

ρn,k({u,v,u′, v′}).
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Proof. Similar to the previous proof define the following objects

Bk(−{u,v}) = (Bk−1(w,Gn − {u,v}), Bk−1(w,GFn − {u,v}))w∈Vn ,
B′k(−{u′, v′}) = (Bk−1(w,Gn − {u′, v′}), Bk−1(w,GF

′
n − {u′, v′}))w∈Vn ,

Bk(−) = (Bk−1(w,Gn − {u,v,u′, v′}), Bk−1(w,GFn − {u,v,u′, v′}))w∈Vn ,
B′k(−) = (Bk−1(w,Gn − {u,v,u′, v′}), Bk−1(w,GF

′
n − {u,v,u′, v′}))w∈Vn ,

With this notation XE(e) can be written as a function of (Bk(−{u,v}), Se), be-
cause the entire k-neighbourhood of u and v can easily be obtained from Se
and Bk(−{u,v}).

We can define an approximation X̃E(e) of XE(e) as the same function applied
to (Bk(−), Se). Formally the function is defined taking all of Bk(−{u,v}) or Bk(−) as
argument, but given Se it can be recast into a form that only uses neighbourhoods of
vertices w that are connected to u or v by an edge in the original graph Gn or in GFn.
We will call such vertices ws – and by extension their neighbourhoods – relevant.
See Fig. 4.2 for an illustration. Define X̃E(e′) similarly.

v u

Figure 4.2: The neighbourhood around v in a graph G can be obtained from the
information on edges incident to u and v (dashed) and the neighbour-
hoods (in G− {v,u}) of vertices that connect to v or u via dashed edges
(solid black). Neighbourhoods (in G − {v,u}) of vertices that do not
connect to v or u are irrelevant (shown in grey).

First estimate Pn(X̃E(e) ≠ XE(e) | Se, Se′). Since XE(e) and X̃E(e) are obtained by
applying the same function to slightly modified neighbourhoods, the two can only
differ if at least one of the relevant neighbourhoods differs between Bk(−{u,v})
and Bk(−). Such a neighbourhood of a vertex w, say, can only differ if u′ or v′ is
contained in the k− 1-neighbourhood of w in Gn − {u,v} or GFn − {u,v}. That is
to say, there is a path of length at most k − 1 from w to {u′, v′} in Gn − {u,v}

124



4.3 Sparsity-based covariance bounds

or GFn − {u,v}. Since only neighbourhoods of vertices w that neighbour u or v are
relevant, this immediately implies that there is a path of length no more than k
steps from {u,v} to {u′, v′} in Gn or GFn. Hence by Lemma 3.1.19

Pn(X̃E(e) ≠ XE(e) | Se, Se′)
≤ Pn({u,v}↭≤k {u′, v′} | Se, Se′)+ Pn({u,v}↭F

≤k {u′, v′} | Se, Se′)
≤ ξk({u′, v′}, {u,v},∅)+ ξFk ({u′, v′}, {u,v},∅).

Call the right-hand side of the last equation Ξ. Note that Ξ is independent of Xe, X′e,
Xe′ and X′e′ . Furthermore, its expectation can be bounded as follows

En[Ξ] ≤ Cmin
{
(Wu +Wv)(Wu′ +Wv′)

nϑ
(Γ2,n + 1)k,1

}
≤ Cρn,k({u,v,u′, v′}).

An analogous bound Ξ′ with the same expectation and independence properties can
be found for Pn(X̃E(e′) ≠ XE(e′) | Se, Se′)

Let
H̃E = max{H̃E(e), H̃E(F ∪ e), H̃E(e′), H̃E(F ′ ∪ e′)}.

Write XE(e) = XE(e) − X̃E(e) + X̃E(e) and XE(e) = XE(e′) − X̃E(e′) + X̃E(e′), then
expand Cov(XE(e),XE(e′) | Se, Se′) to obtain

Covn(XE(e),XE(e′) | Se, Se′)
= Covn(X̃E(e), X̃E(e′) | Se, Se′)
+ Covn(XE(e)− X̃E(e), X̃E(e′) | Se, Se′)
+ Covn(X̃E(e),XE(e′)− X̃E(e′) | Se, Se′)
+ Covn(XE(e)− X̃E(e),XE(e′)− X̃E(e′) | Se, Se′).

(4.19)

First focus on the three covariances containing XE(e)− X̃E(e) or XE(e′)− X̃E(e′).
To this end note that by measurability of terms depending only on information at e
or e′, i.e. on Se, Se′ , we have

|En[(XE(e)− X̃E(e))XE(e′) | Se, Se′]|
≤ En[|XE(e)− X̃E(e)||XE(e′)| | Se, Se′]
≤ En[(|XE(e)| + |X̃E(e)|)1{XE(e)≠X̃E(e)}|XE(e′)| | Se, Se′]
≤ En[C1AeH̃E(e)H̃E(F ∪ e)1{XE(e)≠X̃E(e)}1Ae′ H̃E(e′)H̃E(F ′ ∪ e′) | Se, Se′]
≤ C1Ae1Ae′ H̃E(e)H̃E(F ∪ e)H̃E(e′)H̃E(F ′ ∪ e′)Pn(XE(e) ≠ X̃E(e) | Se, Se′)
≤ C1Ae1Ae′ H̃4

EΞ.
The same holds for the other terms in the definition of the covariance. With (4.19)
this shows

|Covn(XE(e),XE(e′) | Se, Se′)− Covn(X̃E(e), X̃E(e′) | Se, Se′)| ≤ CH̃4
E(Ξ+ Ξ′)
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and thus by independence of Ξ+ Ξ′ from Ae and A′e

En[1Ae1Ae′ |Covn(XE(e),XE(e′) | Se, Se′)− Covn(X̃E(e), X̃E(e′) | Se, Se′)|]

≤ CJ2/3
E
WuWv
nϑ

Wu′Wv′
nϑ

ρn,k({u,v,u′, v′}). (4.20)

It thus remains to investigate Covn(X̃E(e), X̃E(e′) | Se, Se′).
By construction Bk(−) and B′k(−) are independent of Se and Se′ . Hiding the

dependence of X̃E(e) and X̃E(e′) on Se and Se′ in functions Ψ and Ψ ′ we may use
Lemma A.2.3 to write

Covn(X̃E(e), X̃E(e′) | Se, Se′) = Covn(Ψ(Bk(−)),Ψ ′(B′k(−))).
By definition |Ψ| ≤ H̃E(e)H̃E(F ∪ e), which is constant conditioned on Se and Se′ . A
similar bound holds for |Ψ ′|.

Recall that Ψ and Ψ ′ depend not on all of Bk(w,Gn) for w ∈ Vn, but only on the
neighbourhoods of vertices w for which there is a connection to u or v and u′

or v′, respectively. This data is known conditioned on Se and Se′ . More formally,
the relevant vertices for Ψ are contained in

D = D1(v)∪D1(u)∪DF1 (v)∪DF1 (u),

and the vertices relevant for Ψ ′ are contained in

D′ = D1(v′)∪D1(u′)∪DF
′

1 (v
′)∪DF ′1 (u

′).

While D and D′ are not independent of Ae and Ae′ ,

D̄ = S(u)1 (v)∪ S(v)1 (u)∪ S(u),F1 (v)∪ S(v),F1 (u)
and

D̄′ = S(u
′)

1 (v′)∪ S(v
′)

1 (u′)∪ S(u
′),F ′

1 (v′)∪ S(v
′),F ′

1 (u′)

are independent of Ae and Ae′ and satisfy D ⊆ D̄ and D′ ⊆ D̄′. Furthermore by
Corollary 3.1.9

En[(∥D̄∥ + |D̄|)2] ≤ En[∥D̄∥2]+ 2En[∥D̄∥|D̄|]+ E2[|D̄|2]
≤ En[∥D̄∥2]+ 2En[∥D̄∥2]1/2En[|D̄|2]1/2 + E2[|D̄|2]
≤ C(∥{u,v}∥ + 2)2(Γ1,n + 1)2(Γ2,n + 1)2(Γ3,n + 1),

so that

En[(∥D̄∥ + |D̄|)(∥D̄′∥ + |D̄′|)]
≤ En[(∥D̄∥ + |D̄|)2]1/2En[(∥D̄′∥ + |D̄′|)2]1/2

≤ C(∥{u,v}∥ + 2)(∥{u′, v′}∥ + 2)(Γ1,n + 1)2(Γ2,n + 1)2(Γ3,n + 1).
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Now Lemma 3.2.5 implies

Covn(Ψ(Bk(−)),Ψ ′(B′k(−)))
≤ CH̃4

E min
{
(∥D∥ + |D|)(∥D′∥ + |D′|)

nϑ
(Γ3,n + 1)(Γ2,n + C)2k+1,1

}
≤ CH̃4

E min
{
(∥D̄∥ + |D̄|)(∥D̄′∥ + |D̄′|)

nϑ
(Γ3,n + 1)(Γ2,n + C)2k+1,1

}
.

Taking the expectation and using independence we obtain

En[1Ae1Ae′ Covn(X̃E(e), X̃E(e′) | Se, Se′)]
= En[1Ae1Ae′ Cov(Ψ(Bk(−)),Ψ ′(B′k(−)))]
≤ CPn(Ae)Pn(Ae′)En[H̃4

E]

min
{
En[(∥D̄∥ + |D̄|)(∥D̄′∥ + |D̄′|)]

nϑ
(Γ3,n + 1)(Γ2,n + C)2k+1,1

}
≤ CJ2/3

E
WuWv
nϑ

Wu′Wv′
nϑ

min
{
(Wu +Wv + 2)(Wu′ +Wv′ + 2)

nϑ

(Γ1,n + 1)2(Γ2,n + C)2k+1(Γ3,n + 1)2,1
}

≤ CJ2/3
E
WuWv
nϑ

Wu′Wv′
nϑ

ρn,k({u,v,u′, v′}). (4.21)

Now (4.20) and (4.21) imply the claim.

With all these results in hand we can verify Proposition 4.3.2.

Proof of Proposition 4.3.2. Recall (4.5)

Covn(∆ef∆ef F ,∆e′f∆e′f F ′)
= Covn((REk(e)+ LEk(e))(REk(F ∪ e)+ LEk(F ∪ e)),

(REk(e
′)+ LEk(e′))(REk(F ′ ∪ e′)+ LEk(F ′ ∪ e′))).

Expand this into sixteen terms then apply Lemmas 4.3.3 and 4.3.4 to these terms as
appropriate.

4.3.2 Vertex-vertex case

The combination of two different vertices can be handled like the case of two edges
which do not share any vertices.

Proposition 4.3.7. Let v and v′ be two distinct vertices in Vn, then we can choose

c(v,v′) = σ−4
n CJVζn(v)ζn(v′)((mV

n(v)δ
V
k )

1/2 + (mV
n(v′)δ

V
k )

1/2+
εn,k({v,v′})1/4 + ρn,k({v,v′})1/4)
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As previously, the proof is split over several auxiliary lemmas and needs some
notation first. The ideas are analogous to what we did in Section 4.3.1.

Let E0 be the event that Bk(v,Gn) and thus also Bk(v,Gvn) is a tree. Set

L̃Vk (v) = 1E0LAV,Lk (Bk(v,Gn), Bk(v,Gvn))

and
LVk (v) = Q(L̃Vk , h(|D1(v)|)HV (wv ,w′

v)).

Furthermore, define
RVk (v) = ∆vf − LVk (v).

With these definitions and (2.10) we have

|LVk (v)| ≤ h(|D1(v)|)HV (wv ,w′
v),

|RVk (v)| ≤ 2h(|D1(v)|)HV (wv ,w′
v).

(4.22)

As before also define LVk (F ∪ v) and RVk (F ∪ v) based on Bk(v,GF) and Bk(v,GF∪vn )
instead of Bk(v,G) and Bk(v,Gvn). With these definitions we can bound

Covn(∆vf∆vf F ,∆v′f∆v′f F ′)
= Covn((RVk (v)+ LVk (v))(RVk (F ∪ v)+ LVk (F ∪ v)),

(RVk (v
′)+ LVk (v′))(RVk (F ′ ∪ v′)+ LVk (F ′ ∪ v′)))

(4.23)

in order to find c(v,v′).
As in the previous section the fifteen term involving at least one RVk term can be

bounded by appealing to (GLA 6).

Lemma 4.3.8.

Cov(UV1 (v)U
V
2 (F ∪ v),UV3 (v′),UV4 (F ′ ∪ v′))

≤ CJVζn(v)1/4ζn(v′)1/4((mV
n(v)δ

V
k )

1/2 + (mV
n(v′)δ

V
k )

1/2+
εn,k({v,v′})1/4 + ρn,k({v,v′})1/4)

if at least one of the UVi terms is RVk .

Proof. We show the claim for a term of the form

Covn(RVk (v)U
V
2 (F ∪ v),UV3 (v′),UV4 (F ′ ∪ v′)).

The proof for the other terms is analogous and yields the same estimate, since we
obtain a bound that is symmetric in v and v′.

Set
H̃V = max{HV (wv ,w′

v),HV (wv′ ,w
′
v′)}
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4.3 Sparsity-based covariance bounds

as well as

D̃(v) = h(|D(v
′)

1 (v)| + 1)+ h(|D(v
′),F

1 (v)| + 1)
and

D̃(v′) = h(|D(v)1 (v′)| + 1)+ h(|D(v),F
′

1 (v′)| + 1).

This construction ensures that D̃(v) and D̃(v′) are independent and still satisfy

h(|D1(v)|) ≤ D̃(v) and h(|D1(v
′)|) ≤ D̃(v′)

as well as a condition like (2.8)

En[D̃(v)4] ≤ Cζn(v) and En[D̃(v′)4] ≤ Cζn(v′).

By the bounds (4.22) for LVk and RVk , Cauchy–Schwarz and independence of D̃,
which depends only on X and X′, from H̃V , which depends only on w and w′, as well
as the bounds (2.7) and (2.8) for h(|D1(v)|) and HV we have

En[|RVk (v)UV2 (F ∪ v)UV3 (v′)UV4 (F ′ ∪ v′)|]
≤ CEn[D̃(v)D̃(v′)2H̃3

V |RVk (v)|]
≤ CEn[D̃(v)2D̃(v′)4H̃6

V ]
1/2En[|RVk (v)|2]1/2

≤ C(En[D̃(v)2D̃(v′)4]En[H̃6
V ])

1/2En[|RVk (v)|2]1/2

≤ CJ1/2
V ζn(v)1/4ζn(v′)1/2En[|RVk (v)|2]1/2. (4.24)

Let Bk = Bk(v,Gn) and B′k = Bk(v,Gvn). Use Lemma 3.5.2 to couple the neighbour-
hood Bk(v,Gn) to T ∼ Tk(Wv , ν, µE, µV ). Exchange the weight of the root of T for
a random variable w̃v with distribution µV coupled to the weight of v in Gvn such
that w̃v ≠ wv with probability at most dTV(µV,n, µV ) and call the resulting weighted
tree T̃.

Let E1 be the event that Bk ≊ T and B′k ≊ T̃ and let E0 be the event that Bk(v,Gn)
is a tree. Then

|RVk (v)| ≤ LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k)

≤ 1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))+ 1Ec0∪Ec1CD̃(v)H̃V .

Square and take expectations, then apply Cauchy–Schwarz and use independence
of D̃ from H̃V as well as (2.7) and (2.8) to show

E[(RVk (v))
2] ≤ En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))

2]

+ CEn[D̃(v)2H̃2
V1Ec0∪Ec1]

≤ En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))
2]

+ CJ1/3
V ζn(v)1/2(Pn(Ec0)+ Pn(Ec1))1/2. (4.25)
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Since the rerandomisation of the vertex weight does not change the underlying
tree structure, Bk is a tree if and only if B′k is a tree. Hence, Lemma 3.1.20 implies

Pn(Bk(v,Gn) is not a tree) ≤ C(Γ2,n + 1)2k+1(Γ3,n + 1)
(Wv + 1)2

nϑ
,

so that recalling the definition of ρn,k we have

Pn(Ec0) = Pn(Bk(v,Gn) is not a tree) ≤ Cρn,k({v,v′}). (4.26)

By construction of the coupling Bk ≊ T implies B′k ≊ T̄ unless w̃v ≠ wv . Hence,

Pn(Ec1) ≤ Pn(Bk ≇ T)+ Pn(w̃v ≠ wv)
≤ εn,k({v})+ dTV(µV,n, µV ).

Absorb dTV(µV,n, µV ) into εk,n(v) ≤ εn,k({v,v′}) to find the shorter bound

≤ Cεn,k({v,v′}). (4.27)

On E1 the neighbourhoods Bk and B′k can be replaced with T and T̄. Then by
(GLA 6)

En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))
2]

≤ En[(LAV,Uk (T, T̄)− LAV,Lk (T, T̄))2]

≤mV
n(v)δ

V
k . (4.28)

Put together (4.24) with (4.25) and (4.26) and (4.27) as well as (4.28) to obtain

E[|RVk (v)UV2 (F ∪ v)UV3 (v′)UV4 (F ′ ∪ v′)|]
≤ CJVζn(v)1/2ζn(v′)1/2((mV

n(v)δ
V
k )

1/2 + εn,k({v,v′})1/4 + ρn,k({v,v′})1/4)
≤ CJVζn(v)1/2ζn(v′)1/2

((mV
n(v)δ

V
k )

1/2 + (mV
n(v′)δ

V
k )

1/2 + εn,k({v,v′})1/4 + ρn,k({v,v′})1/4).

Here, we added an additional mV
n(v′)δ

V
k to make the bound symmetric in v and v′.

The remaining components of the covariance can be bounded similarly. This
concludes the proof.

It remains to bound the covariance involving only LVk terms

Lemma 4.3.9. We have

Covn(LVk (v)L
V
k (F ∪v), LVk (v′)LVk (F ′∪v′)) ≤ CJ

2/3
V ζn(v)1/2ζn(v′)1/2ρn,k({v,v′}).
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Proof. Set XV (v) = LVk (v)LVk (F ∪ v) and XV (v′) = LVk (v′)LVk (F ′ ∪ v′). Recall the
definition of Sv and Sv′ in the proof of Lemma 4.3.4 and use the law of total
covariance to show

Covn(XV (v),XV (v′)) = Covn(En[XV (v) | Sv , Sv′],En[XV (v′) | Sv , Sv′])
+ En[Covn(XV (v),XV (v′) | Sv , Sv′)].

The claim will follow from Lemmas 4.3.10 and 4.3.11.

Lemma 4.3.10. We have

Covn(En[XV (v) | Sv , Sv′],En[XE(v′) | Sv , Sv′])
≤ CJ2/3

V ζn(v)1/2ζn(v′)1/2ρn,k({v,v′}).

Proof. The random variable XV (v) can be written as a function of

(Bk(v,Gn), Bk(v,Gvn), Bk(v,GFn), Bk(v,GF∪vn )).

Define an approximation X̃V (v) of XV (v) as the same function, but applied to

(Bk(v,Gn − v′), Bk(v,Gvn − v′), Bk(v,GFn − v′), Bk(v,GF∪vn − v′)).

By construction X̃V (v) is independent of Sv′ , since the vertex v′ and with it the edges
emanating from v′ were completely removed from the underlying graph objects.
Define X̃V (v′) similarly. Set ZV (v) = En[XV (v) | Sv , Sv′] and Z̃V (v) = En[X̃V (v) |
Sv , Sv′] = En[X̃V (v) | Sv], similarly for ZV (v′) and Z̃V (v′).

Let
H̃V = max{HV (wv ,w′

v),HV (wv′ ,w
′
v′)}

as well as

D̃(v) = h(|D1(v)|)+ h(|DF1 (v)|) and D̃(v′) = h(|D1(v′)|)+ h(|DF
′

1 (v
′)|).

By construction and the bounds on LVk from (4.22)

|XV (v)|, |X̃V (v)| ≤ D̃(v)2H̃2
V

and therefore also

|ZV (v)| = |E[XV (v) | Sv , Sv′]|
≤ E[D̃(v)2H̃2

V | Sv , Sv′]
= D̃(v)2H̃2

V ,

because D(v) is Sv -measurable. Similarly

|Z̃V (v)| ≤ D̃(v)2H̃2
V .
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The same bounds with D̃(v) replaced by D̃(v′) also hold for XV (v′), X̃V (v′), ZV (v′)
and Z̃V (v′).

Split the relevant covariance

Covn(ZV (v), ZV (v′)) = Covn(Z̃V (v), Z̃V (v′))

+ Covn((ZV (v)− Z̃V (v)), Z̃V (v′))
+ Covn(Z̃V (v), (ZV (v′)− Z̃V (v′)))
+ Covn((ZV (v)− Z̃V (v)), (ZV (v′)− Z̃V (v′))).

By construction Z̃V (v) is a function of Sv , but since X̃V (v) and thus also Z̃V (v)
ignores v′, it is actually a function of

((X{v,u}, X′{v,u},w{v,u},w
′
{v,u})u∈Vn\{v′},wv ,w

′
v).

In the same vein Z̃V (v′) is a function of

((X{v′,u}, X′{v′,u},w{v′,u},w
′
{v′,u})u∈Vn\{v},wv′ ,w

′
v′).

These two collections of random variables are disjoint, so that Z̃V (v) and Z̃V (v′)
are independent. Hence, the first term vanishes.

We will investigate the bound for the first of the remaining three covariances.
The other terms can be bounded similarly (the bound we obtain is symmetric in v
and v′). By the bound on Z̃V (v′)

|(ZV (v)− Z̃V (v))Z̃V (v′)| ≤ D̃(v′)2H̃2
V |(ZV (v)− Z̃V (v))|. (4.29)

Furthermore, by the bounds on XV (v) and X̃V (v) and measurability

|ZV (v)− Z̃V (v)| = |En[XV (v)− X̃V (v) | Sv , Sv′]|
≤ En[2D̃2(v)H̃2

V1{XV (v)≠X̃V (v)} | Sv , Sv′]
≤ 2D̃2(v)H̃2

VPn(X
V (v) ≠ X̃V (v) | Sv , Sv′). (4.30)

We now claim that probability that XV (v) and X̃V (v) differ can be bounded by

Pn(XV (v) ≠ X̃V (v) | Sv , Sv′) ≤ Ξ, (4.31)

where Ξ depends only on X and X′.
To see (4.31), note that XV (v) ≠ X̃V (v) implies Bk(v,G − v′) ≠ Bk(v,G) for at

least one of G = Gn,Gvn,GFn,GF∪vn . For G = Gn we apply Lemma 3.1.19 we obtain

Pn(Bk(v,Gn − v′) ≠ Bk(v,Gn) | Sv , Sv′)
= Pn(v′ ∉ Bk(v,Gn) | Sv , Sv′)
≤ ξk({v}, {v′},∅)
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The other cases are analogous. Let Ξ be the sum of the ξk(v, v′)s. Together with
(2.8) Lemma 3.1.19 additionally guarantees that

En[D̃(v)2D̃(v′)2ξk({v}, {v′},∅)]

≤ Cζn(v)1/2ζn(v′)1/2 min
{
WvWv′
nϑ

(Γ2,n + 1)k,1
}
,
,

so that we have

En[D̃(v)2D̃(v′)2Ξ]
≤ Cζn(v)1/2ζn(v′)1/2 min

{
WvWv′
nϑ

(Γ2,n + 1)k,1
}

≤ Cζn(v)1/2ζn(v′)1/2ρn,k({v,v′}). (4.32)

Putting (4.29), (4.30) and then (4.31) together we obtain

|En[(ZV (v)− Z̃V (v))Z̃V (v′)]|
≤ CEn[D̃(v)2H̃2

V D̃(v
′)2H̃2

VPn(X
V (v) ≠ X̃V (v) | Sv , Sv′)]

≤ CEn[H̃4
V D̃(v)

2D̃(v′)2Ξ].
Use independence of H̃V from the other terms and then (4.32) to bound

≤ CEn[H̃4
V ]En[D̃(v)

2D̃(v′)2Ξ]
≤ CJ2/3

V ζn(v)1/2ζn(v′)1/2ρn,k({v,v′}).

The same holds for |E[1Ae(ZE(e)− Z̃E(e))]E[1Ae′ Z̃E(e′)]| by analogous arguments.
Putting these results together proves the claim.

Lemma 4.3.11. We have

En[Covn(XV (v),XV (v′) | Sv , Sv′)] ≤ CJ2/3
V ζn(v)1/2ζn(v′)1/2ρn,k({v,v′}).

Proof. Let
H̃V = max{HV (wv ,w′

v),HV (wv′ ,w
′
v′)}

as well as

D̃(v) = h(|D1(v)|)+ h(|DF1 (v)|) and D̃(v′) = h(|D1(v′)|)+ h(|DF
′

1 (v
′)|).

Similar to the previous we proof define the following objects

Bk(−v) = ((Bk−1(w,Gn − v), Bk−1(w,GFn − v))w∈Vn),
Bk(−v′) = ((Bk−1(w,Gn − v′), Bk−1(w,GFn − v′))w∈Vn),

Bk(−) = ((Bk−1(w,Gn − {v,v′}), Bk−1(w,GFn − {v,v′}))w∈Vn),
B′k(−) = ((Bk−1(w,Gn − {v,v′}), Bk−1(w,GF

′
n − {v,v′}))w∈Vn).
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With this notation XV (v) can be written as a function of (Bk(−v), Sv). Note
that XV (v) is completely determined by the neighbourhoods Bk−1(w,Gn) of ver-
tices w which are connected to v in Gn or GFn via an edge. Define an approxima-
tion X̃V (v) of XV (v) as the same function applied to (Bk(−), Sv). Define X̃V (v′)
analogously.

By construction XV (v) ≠ X̃V (v) implies that there is a vertex w connected to v
via an edge such that its k− 1-neighbourhood differs between Bk(−v) and Bk(−).
These neighbourhoods can differ only if v′ is present in Bk−1(w,Gn) or Bk−1(w,GFn).
In other words, there is a path of length at most k − 1 from w to v′ in Gn or GFn.
Since only those w which are connected to v via an edge are relevant for XV (v), it
follows that there is a path of length at most k from v to v′. Thus Lemma 3.1.19
implies

Pn(XV (v) ≠ X̃V (v) | Sv , Sv′)
≤ Pn(v′ ∈ Bk(v,Gn) | Sv , Sv′)+ Pn(v′ ∈ Bk(v,GFn) | Sv , Sv′)
≤ ξk(v, v′,∅)+ ξFk (v, v′,∅).

Call the right-hand side of the last equation Ξ. Clearly Ξ is independent of w and w′.
Additionally Lemma 3.1.19 together with (2.8) ensures

En[D̃(v)2D̃(v′)2Ξ] ≤ Cζn(v)1/2ζn(v′)1/2 min
{
WvWv′
nϑ

(Γ2,n + 1)k,1
}

≤ Cζn(v)1/2ζn(v′)1/2ρn,k({v,v′}). (4.33)

A similar bound holds for XV (v′) and X̃V (v′) with Ξ′ instead of Ξ.

Write XV (v) = XV (v)− X̃V (v)+ X̃V (v) and XV (v) = XV (v′)− X̃V (v′)+ X̃V (v′),
then expand Covn(XV (v),XV (v′) | Sv , Sv′) to

Covn(XV (v),XV (v′) | Sv , Sv′)
= Covn(X̃V (v), X̃V (v′) | Sv , Sv′)
+ Covn(XV (v)− X̃V (v), X̃V (v′) | Sv , Sv′)
+ Covn(X̃V (v),XV (v′)− X̃V (v′) | Sv , Sv′)
+ Covn(XV (v)− X̃V (v),XE(v′)− X̃V (v′) | Sv , Sv′).

We claim that

|Covn(XV (v)− X̃V (v),XV (v′) | Sv , Sv′)| ≤ CD̃(v)2D̃(v′)2H̃4
VΞ

and similarly for the other covariances involving XV (v)− X̃V (v). To this end note

134



4.3 Sparsity-based covariance bounds

that by measurability of H̃V and D̃ with respect to Sv , Sv′ we have

|En[(XV (v)− X̃V (v))XV (v′) | Sv , Sv′]|
≤ En[|XV (v)− X̃V (v)||XV (v′)|

∣∣ Sv , Sv′]
≤ En[(|XV (v)| + |X̃V (v)|)1{XV (v)≠X̃V (v)}|XV (v)| | Sv , Sv′]
≤ CE[D̃(v)2D̃(v′)2H̃4

V1{XV (v)≠X̃V (v)} | Sv , Sv′]
≤ CD̃(v)2D̃(v′)2H̃4

VPn(X
V (v) ≠ X̃V (v) | Sv , Sv′)

≤ CH̃4
V D̃(v)

2D̃(v′)2Ξ.
The same holds for the other terms in the definition of the covariance. This shows

|Covn(XV (v),XV (v′) | Sv , Sv′)− Covn(X̃V (v), X̃V (v′) | Sv , Sv′)|
≤ CD̃(v)2D̃(v′)2H̃4

V (Ξ+ Ξ′).
We can then use (4.33) to estimate the expectation

En[|Covn(XV (v),XV (v′) | Sv , Sv′)− Covn(X̃V (v), X̃V (v′) | Sv , Sv′)|]

≤ CJ2/3
V ζn(v)1/2ζn(v′)1/2 min

{
WvWv′
nϑ

(Γ2,n + 1)k,1
}

≤ CJ2/3
V ζn(v)1/2ζn(v′)1/2ρn,k({v,v′}). (4.34)

It remains to bound the expectation of Covn(X̃V (v), X̃V (v′) | Sv , Sv′).
By construction Bk−1(−) and B′k−1(−) are independent of Sv and Sv′ . Hiding the

dependence of X̃V (v) and X̃V (v′) on Sv and Sv′ in functions Ψ and Ψ ′ we may
appeal to Lemma A.2.3 to write

Covn(X̃V (v), X̃V (v′) | Sv , Sv′) = Covn(Ψ(Bk−1(−)),Ψ ′(B′k−1(−))).

Moreover, the values of Ψ and Ψ ′ do not depend on the collection of neighbourhoods
of all vertices in Gn and GFn. Instead the value of Ψ is completely determined by the
neighbourhoods of vertices that are connected to v via an edge. Similarly, the value
of Ψ ′ is determined by the neighbourhoods of vertices w that have an edge to v′.
Since we fixed Sv and Sv′ for Ψ and Ψ ′, the selection of those neighbourhoods is
deterministic. More precisely let

D = D1(v)∪DF1 (v) and D′ = D1(v′)∪DF
′

1 (v
′).

Then Ψ and Ψ ′ only depend on the neighbourhoods of vertices in D and D′, re-
spectively, and D and D′ are (Sv , Sv′)-measurable. Note that D and D′ are not
independent, but

D̄ = D(v
′)

1 (v)∪D(v
′),F

1 (v)∪ {v′} and D̄′ = D(v)1 (v′)∪D(v),D
′

1 (v′)∪ {v}
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are independent and satisfy D ⊆ D̄ and D′ ⊆ D̄′. Additionally, Lemma 3.1.11 implies

En[|D̄|r ] ≤ En[(|D1(v)| + |DF1 (v)| + 1)r ]

≤
r∑
j=0

(
r
j

)
En[(|D1(v)| + |DF1 (v)|)j]

≤
r∑
j=0

(
r
j

) j∑
ℓ=0

(
j
ℓ

)
En[|D1(v)|ℓ|DF1 (v)|j−ℓ]

≤
r∑
j=0

(
r
j

) j∑
ℓ=0

(
j
ℓ

)
En[|D1(v)|2ℓ]1/2En[|DF1 (v)|2(j−ℓ)]1/2

≤
r∑
j=0

(
r
j

) j∑
ℓ=0

(
j
ℓ

)
(Wv + 1)ℓ(Γ1,n + r)ℓ(Wv + 1)j−ℓ(Γ1,n + r)j−ℓ

≤
r∑
j=0

(
r
j

)
2j(Wv + 1)j(Γ1,n + r)j

≤ (2(Wv + 1)(Γ1,n + r)+ 1)r

≤ 4r (Wv + 1)k(Γ1,n + r)r .
If r is bounded above, we can absorb it into the constant to obtain

En[|D̄|r ] ≤ C(Wv + 1)r (Γ1,n + 1)r .

Similarly by Lemmas 3.1.4 and 3.1.8 we have

En[∥D̄∥2] ≤ En[(∥D1(v)∥ + ∥DF1 (v)∥ +Wv′)2]
≤ En[∥D1(v)∥2]+ 2En[∥D1(v)∥∥DF1 (v)∥]+ En[∥DF1 (v)∥2]

+ 2Wv′En[∥D1(v)∥ + ∥DF1 (v)∥]+W2
v′

≤ En[∥D1(v)∥2]+ 2(En[∥D1(v)∥2])1/2(En[∥DF1 (v)∥2])1/2

+ En[∥DF1 (v)∥2]+ 2Wv′En[∥D1(v)∥ + ∥DF1 (v)∥]+W2
v′

≤ C(Wv + 1)2(Γ3,n + 1)(Γ2,n + 1)2 + CWv(Γ2,n + 1)+W2
v′ ,

which we estimate crudely by

≤ C(Wv +Wv′ + 1)2(Γ3,n + 1)(Γ2,n + 1)2.
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4.3 Sparsity-based covariance bounds

This implies

En[(∥D̄∥ + |D̄|)2] = En[∥D̄∥2]+ 2En[∥D̄∥|D̄|]+ En[|D̄|2]
≤ En[∥D̄∥2]+ 2En[∥D̄∥2]1/2En[|D̄|2]1/2 + En[|D̄|2]
≤ C(Wv +Wv′ + 1)2(Γ3,n + 1)(Γ2,n + 1)2

+ C(Wv +Wv′ + 1)(Wv + 1)(Γ1,n + 1)(Γ3,n + 1)(Γ2,n + 1)

+ C(Wv + 1)2w(Γ1,n + 1)2

≤ C(Wv +Wv′ + 1)2(Γ1,n + 1)2(Γ3,n + 1)(Γ2,n + 1)2

and similarly for D̄′. Since D̄ and D̄′ are independent, this immediately implies

En[(∥D̄∥ + |D̄|)2(∥D̄′∥ + |D̄′|)2]
≤ C(Wv +Wv′ + 1)4(Γ1,n + 1)4(Γ3,n + 1)2(Γ2,n + 1)4. (4.35)

By definition |Ψ| ≤ D̃(v)2H̃2
V and |Ψ ′| ≤ D̃(v′)2H̃2

V . Hence Lemma 3.2.5 shows

Covn(Ψ(Bk−1(−)),Ψ ′(B′k−1(−)))

≤ D̃(v)2D̃(v′)2H̃4
V min

{
(∥D∥ + |D|)(∥D′∥ + |D′|)

nϑ
(Γ3,n + 1)(Γ2,n + 1)2k+1,1

}
.

Take the expectation and use independence of H̃V from the other terms as well
as Cauchy–Schwarz to separate the expectations of the terms involving D̃ from D
and D′ and (4.35) to obtain

En[Covn(X̃V (v), X̃V (v′) | Sv , Sv′)]
= En[Covn(Ψ(Bk−1(−)),Ψ ′(B′k−1(−)))]
≤ CEn[H̃4

V ]En[D̃(v)
4D̃(v′)4]1/2

min
{
En[(∥D∥ + |D|)2(∥D′∥ + |D′|)2]1/2

nϑ
(Γ3,n + 1)(Γ2,n + 1)2k+1,1

}
≤ CJ2/3

V ζn(v)1/2ζn(v′)1/2ρn,k({v,v′}), (4.36)

where we used (2.7) and (2.8) and the definition of ρn,k in the last step.
Now (4.34) and (4.36) imply the claim.

Proof of Proposition 4.3.7. Recall (4.23)

Covn(∆vf∆vf F ,∆v′f∆v′f F ′)
= Covn((RVk (v)+ LVk (v))(RVk (F ∪ v)+ LVk (F ∪ v)),

(RVk (v
′)+ LVk (v′))(RVk (F ′ ∪ v′)+ LVk (F ′ ∪ v′))).

Expand this covariance into sixteen terms, then apply Lemmas 4.3.8 and 4.3.9 to
these terms as appropriate.
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4.3.3 Vertex-edge case

A fusion of the ideas for the edge-edge and vertex-vertex case can be used to treat
the vertex-edge case, in which we estimate c(e, v′) for an edge e = {u,v} that is not
incident to the vertex v′.

Proposition 4.3.12. Let e = {v,u} be an edge in V (2)n and v′ ∈ Vn be a vertex not
incident to e. Then we can choose

c(e, v′) = σ−4
n CJEJV

WuWv
nϑ

ζn(v′)1/2((mE
n(v,u)δ

E
k)

1/2 + (mV
n(v′)δ

V
k )

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4).

The steps are as before. We want to bound

Covn((REk(e)+ LEk(e))(REk(F ∪ e)+ LEk(F ∪ e)),
(RVk (v

′)+ LVk (v′))(RVk (F ′ ∪ v′)+ LVk (F ′ ∪ v′))).
(4.37)

Again we expand the covariance and need to bound sixteen terms of the form

Cov(UE1 (e)U
E
2 (F ∪ e),UV3 (v′)UV4 (F ′ ∪ v′)).

For brevity let

H̃E = max{HE(we,w′
e,wv ,wu),HE(we,w′

e,wF
v ,wF

u)}

and

H̃V = HV (wv′ ,w′
v′) and D̃(v′) = h(|D1(v

′)|)+ h(|DF ′1 (v
′)|).

Note that these random variables are independent. Note further that D̃(v′) is
independent of Ae, since the former involves edges emanating from v′ and Ae is
only concerned with the edge e, which by assumption does not emanate from v′.

Again there are fifteen terms involving REk or RVk . These can be bounded by
appealing to (GLA 3) and (GLA 6), respectively. We first deal with terms involving
an REk .

Lemma 4.3.13.

Covn(UE1 (e)U
E
2 (F ∪ e),UV3 (v′)UV4 (F ′ ∪ v′))

≤ CJEJV
WuWv
nϑ

ζn(v′)1/2((mE
n(v,u)δ

E
k)

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4)

if UE1 or UE2 is an REk -term.
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Proof. The proof is essentially a simplification of the calculations done in the proof
of Lemma 4.3.3. Assume that the covariance is of the form

Covn(REk(e)U
E
2 (F ∪ e),UV3 (v′)UV4 (F ′ ∪ v′))

the remaining cases are analogous.
By (4.3), (4.4) and (4.22)

|REk(e)UE2 (F ∪ e)UV3 (v′)UV4 (F ′ ∪ v′)|
≤ C1ÃeH̃ED̃(v

′)2H̃2
V |REk(e)|

≤ C1AeH̃ED̃(v′)2H̃2
V |REk(e)| + C1{Xe=X′e=1}H̃2

ED̃(v
′)2H̃2

V . (4.38)

The expectation of the second term in (4.38) can be bounded using independence
and then the Cauchy–Schwarz inequality

CEn[1{Xe=X′e=1}H̃2
ED̃(v

′)2H̃2
V ] ≤ CPn(Xe = X′e = 1)En[H̃2

E]En[D̃(v
′)2H̃2

V ]

≤ Cmin
{
WvWu
nϑ

,1
}2
J1/3
E J1/3

V ζn(v′)1/2

≤ J1/3
E J1/3

V ζn(v′)1/2
WuWv
nϑ

ρn,k({u,v,v′}).

The remainder of the first term can be bounded with Cauchy–Schwarz as in (4.8)

En[1AeH̃ED̃(v
′)2H̃2

V |REk(e)| | Ye] ≤ 1AeEn[H̃
2
ED̃(v

′)4H̃4
V ]

1/2En[REk(e)
2 | Ye]1/2

≤ 1AeJ
1/6
E J1/3

V ζn(v′)1/2En[REk(e)
2 | Ye]1/2.

Write Bk = Bk(v,Gn) and B′k = Bk(v,Gen). Let E0 be the event that Bk and B′k are trees.
Then use Lemmas 3.5.2 and 3.5.5 to couple (Bk, B′k,T,T

′) and set E1 = {(Bk, B′k) ≊
(T,T′)}.

Analogous to (4.9) we have

1AeEn[(R
E
k(e))

2 | Ye]
≤ En[1Ae1E01E1(LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k))

2 | Ye]
+ 1AeCJ

1/3
E (Pn(Ec0 | Ye)1/2 + Pn(Ec1 | Ye)1/2).

(4.39)

Simplify the argument for (4.10) by conditioning only on Ye and not also on Ye′ to
obtain

Pn(Ec0 | Ye) ≤ Cρn,k({u,v}) ≤ Cρn,k({u,v,v′}).

Similarly, the calculations for (4.11) can be based on Lemma 3.5.5 instead of
Lemma 3.5.4 so that

Pn(Ec1) ≤ C(εn,k({u,v,v′})+ ρn,k({u,v,v′})).
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Lemma 3.5.5 and (GLA 3) then give that

En[1Ae1E01E1(LAE,Uk (Bk, B′k)− LAE,Lk (Bk, B′k))
2 | Ye] ≤mE

n(v,u)δ
E
k.

Hence, the expectation of the first part of (4.38) can be bounded by

En[C1AeH̃EH̃
2
V |REk(e)|]

≤ WuWv
nϑ

CJEJVζn(v′)1/2((mE
n(v,u)δ

E
k)

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4).

Putting this together we obtain

En[|REk(e)UE2 (F ∪ e)UV3 (v′)UV4 (F ′ ∪ v′)|]

≤ CJEJV
WuWv
nϑ

ζn(v′)1/2((mE
n(v,u)δ

E
k)

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4).

The other two terms in the covariance can be bounded similarly, which proves the
claim.

Now we treat those terms involving an RVk .

Lemma 4.3.14.

Covn(UE1 (e)U
E
2 (F ∪ e),UV3 (v′)UV4 (F ′ ∪ v′))

≤ CJVJE
WuWv
nϑ

ζn(v′)1/2((mV
n(v)δ

V
k )

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4)

if UV3 or UV4 is an RVk -term.

Proof. The main line of the argument follows Lemma 4.3.8. Here, however, we have
to condition on Ye, which makes the proof slightly more complicated at first glance.

Assume that the covariance is of the form

Covn(UE1 (e)U
E
2 (F ∪ e), RVk (v′)UV4 (F ′ ∪ v′))

the remaining cases are analogous.
By (4.3), (4.4) and (4.22), measurability, independence and Cauchy–Schwarz we

have

En[|UE1 (e)UE2 (F ∪ e)RVk (v′)UV4 (F ′ ∪ v′)| | Ye]
≤ C1ÃeEn[H̃

2
ED̃(v

′)H̃V |RVk (v′)| | Ye]
≤ C1ÃeEn[D̃(v

′)2H̃4
EH̃

2
V ]

1/2En[|RVk (v′)|2 | Ye]1/2

≤ C1ÃeJ
1/3
E J1/6

V ζn(v′)1/4En[|RVk (v′)|2 | Ye′]1/2. (4.40)
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Let Bk = Bk(v′,Gn) and B′k = Bk(v′,Gvn). Use Lemma 3.5.2 to couple Bk(v′,Gn)
and T ∼ Tk(Wv′ , ν, µE, µV ). Exchange the weight of the root of T for a random
variable w̃v′ with distribution µV coupled to the weight of v′ in Gv

′
n such that w̃v′ ≠

wv′ with probability at most dTV(µV,n, µV ) and call the resulting weighted tree T̃.
Let E1 be the event that Bk ≊ T and B′k ≊ T̃ and let E0 be the event that Bk(v,Gn)

is a tree. Then

|RVk (v′)| ≤ LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k)

≤ 1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))+ 1Ec0∪Ec1CD̃(v
′)H̃V .

Square this inequality, take conditional expectations, use independence and the
Cauchy–Schwarz inequality to find

E[(RVk (v
′))2 | Ye] ≤ En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))

2 | Ye]
+ CEn[D̃(v′)2H̃2

V1Ec0∪Ec1 | Ye′]

≤ En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))
2 | Ye]

+ C(En[D̃(v′)4H̃4
V ])

1/2(Pn(Ec0 | Ye)+ Pn(Ec1 | Ye))1/2

≤ En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))
2 | Ye]

+ Cζn(v′)1/2J1/3
V (Pn(Ec0 | Ye)+ Pn(Ec1 | Ye))1/2.

(4.41)

First we bound the probability of Ec0 in (4.41). Since the rerandomisation of the
vertex weight does not change the underlying tree structure, Bk is a tree if and only
if B′k is a tree. Now Bk(v′,Gn) is equal to Bk(v′,Gn − e) with high probability. More
precisely by Corollary 3.1.15

Pn(Bk(v′,Gn) ≠ Bk(v′,Gn − e) | Ye)
= Pn(e ∈ Bk(v′,Gn) | Ye)
≤ Pn(u ∈ Bk(v′,Gn − e) | Ye)+ Pn(v ∈ Bk(v′,Gn − e) | Ye)
≤ Pn(u ∈ Bk(v′,Gn − e))+ Pn(v ∈ Bk(v′,Gn − e))
≤ Pn(u ∈ Bk(v′,Gn))+ Pn(v ∈ Bk(v′,Gn))

≤ (Wu +Wv)Wv′
nϑ

(Γ2,n + 1)k.

Hence, we can look at Bk(v′,Gn−e) instead of Bk(v′,Gn) to calculate the conditional
probability of Ec0 given Ye so that Lemma 3.1.20 together with the last inequality
yields

Pn(Ec0 | Ye)
= Pn(Bk(v′,Gn) is not a tree | Ye)
≤ Pn(Bk(v′,Gn) ≠ Bk(v′,Gn − e) | Ye)+ Pn(Bk(v′,Gn − e) is not a tree)

≤ (Wu +Wv)Wv′
nϑ

(Γ2,n + 1)k + C(Γ2,n + 1)2k+1(Γ3,n + 1)
(Wv′ + 1)2

nϑ
.

141



Chapter 4 Proof of the Main Result

Hence,

Pn(Ec0 | Ye) ≤ ρn,k({u,v,v′}). (4.42)

By construction of the coupling Bk ≊ T implies B′k ≊ T̄ unless w̃v ≠ wv . Then by
Lemma 3.5.3

Pn(Ec1 | Ye) ≤ Pn(Bk ≇ T | Ye)+ Pn(w̃v ≠ wv)

≤ εn,k({v′})+ C
Wv′(Wv +Wu)

nϑ
(Γ2,n + 1)k+1 + dTV(µV,n, µV ).

Absorb dTV(µV,n, µV ) into εn,k({v′}) ≤ εn,k({u,v,v′}) to obtain

Pn(Ec1 | Ye) ≤ C(εn,k({u,v,v′})+ ρn,k({u,v,v′})). (4.43)

In fact the construction of Lemma 3.5.3 allows us to assume that T does not depend
on Ye at all.

On E1 the neighbourhoods Bk and B′k can be replaced with T and T̄, which are
independent of Ye. Then by (GLA 6)

En[1E01E1(LAV,Uk (Bk, B′k)− LAV,Lk (Bk, B′k))
2 | Ye]

≤ En[(LAV,Uk (T, T̄)− LAV,Lk (T, T̄))2]

≤mV
n(v′)δ

V
k . (4.44)

Putting (4.40) to (4.44) together we have

En[|UE1 (e)UE2 (F ∪ e)RVk (v′)UV4 (F ′ ∪ v′)|]

≤ CJEJV
WuWv
nϑ

ζn(v′)1/2((mV
n(v′)δ

V
k )

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4).

The other two terms in the covariance can be bounded similarly, which proves the
claim.

It remains to bound the covariance involving only Lk terms.

Lemma 4.3.15. We have

Covn(LEk(e)L
E
k(F ∪ e), LVk (v′)LVk (F ′ ∪ v′))

≤ CJ1/3
V J1/3

E
WuWv
nϑ

ζn(v′)1/2ρn,k({u,v,v′}).

Proof. Use the notation from the proofs of Lemmas 4.3.4 and 4.3.9 and use the law

142



4.3 Sparsity-based covariance bounds

of total variance to obtain.

Covn(LEk(e)L
E
k(F ∪ e), LVk (v′)LVk (F ′ ∪ v′))

= Covn(XE(e),XV (v′))

= Covn(En[XE(e) | Se, Sv′],En[XV (v′) | Se, Sv′])
+ En[Covn(XE(e),XV (v′) | Se, Sv′)]

= Covn(1AeEn[X
E(e) | Se, Sv′],En[XV (v′) | Se, Sv′])

+ En[1Ae Covn(XE(e),XV (v′) | Se, Sv′)].

The claim will follow from Lemmas 4.3.16 and 4.3.17.

Lemma 4.3.16. We have

Covn(1AeEn[X
E(e) | Se, Sv′],En[XV (v′) | Se, Sv′])

≤ CJ1/3
V J1/3

E
WuWv
nϑ

ζn(v′)1/2ρn,k({u,v,v′}).

Proof. Write XE(e) as a function of

(Bk(v,Gn), Bk(v,Gen), Bk(v,GFn), Bk(v,GF∪en ))

and define an approximation X̃E(e) as the same function applied to

(Bk(v,Gn − v′), Bk(v,Gen − v′), Bk(v,GFn − v′), Bk(v,GF∪en − v′)).

Similarly, XV (v′) can be written as a function of

(Bk(v′,Gn), Bk(v′,Gv
′
n ), Bk(v′,GF

′
n ), Bk(v′,GF

′∪v′
n ))

and can be approximated by X̃V (v′) that is defined as the same function, but applied
to

(Bk(v′,Gn − {u,v}), Bk(v′,Gv
′
n − {u,v}),

Bk(v′,GF
′
n − {u,v}), Bk(v′,GF

′∪v′
n − {u,v})).

By construction X̃E(e) is independent of Sv′ and X̃V (v′) is independent of Se. Set

ZE(e) = En[XE(e) | Se, Sv′] and Z̃E(e) = En[X̃E(e) | Se, Sv′] = En[X̃E(e) | Se]

and analogously

ZV (v′) = En[XV (v′)|Se, Sv′] and Z̃V (v′) = En[X̃V (v′)|Se, Sv′] = En[X̃V (v′)|Sv′].

The bounds from (4.3), (4.4) and (4.22) imply

|XE(e)|, |X̃E(e)| ≤ 1AeH̃
2
E
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and
|XV (v′)|, |X̃V (v′)| ≤ D̃(v′)2H̃2

V .

The conditional versions then satisfy

|ZE(e)| = |En[XE(e) | Se, Sv′]| ≤ En[1AeH̃2
E | Se, Sv′] ≤ 1AeH̃

2
E

by measurability of H̃E and Ae and in exactly the same way

|Z̃E(e)| ≤ 1AeH̃
2
E

as well as

|ZV (v′)| = |En[XV (v′) | Se, Sv′]| ≤ En[D̃(v′)2H̃2
V | Se, Sv′] ≤ D̃(v′)2H̃2

V (4.45)

by measurability of H̃V and D̃(v′) and

|Z̃V (v′)| ≤ D̃(v′)2H̃2
V .

Split the relevant covariance

Covn(1AeZ
E(e), ZV (v′))

= Covn(1Ae Z̃
E(e), Z̃V (v′))

+ Covn(1Ae(Z
E(e)− Z̃E(e)), Z̃V (v′))

+ Covn(1Ae Z̃
E(e), ZV (v′)− Z̃V (v′))

+ Covn(1Ae(Z
E(e)− Z̃E(e)), (ZV (v′)− Z̃V (v′))).

Since 1Ae Z̃E(e) is a function of Se that is completely independent of Sv′ and Z̃V (v′)
is a function of Sv′ that is completely independent of Se, the two approximations
are independent and thus the first term vanishes.

Now bound the three remaining covariances. We will only show the argument for

Covn(1Ae(Z
E(e)− Z̃E(e)), Z̃V (v′)),

the argument for the other two covariances is similar.
By (4.45)

|1Ae(ZE(e)− Z̃E(e))ZV (v′)| ≤ 1AeD̃(v
′)2H̃2

V |ZE(e)− Z̃E(e)|.

By construction

|ZE(e)− Z̃E(e)| ≤ En[|XE(e)− X̃E(e)| | Se, Sv′]
≤ 2H̃2

EPn(X
E(e) ≠ X̃E(e) | Se, Sv′).
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4.3 Sparsity-based covariance bounds

Similar to previous proofs XE(e) ≠ X̃E(e) implies that Bk(v,G − v′) ≠ Bk(v,G)
for at least one G of G = Gn,Gen,GFn,GF∪en . Then apply Lemma 3.1.19

Pn(Bk(v,Gn − v′) ≠ Bk(v,Gn) | Se, Sv′)
≤ Pn(v′ ∈ Bk(v,Gn) | Se, Sv′)
≤ ξk({v′}, {u,v},∅).

Sum these probabilities for all four graphs to Ξ with

Pn(XE(e) ≠ X̃E(e) | Se, Sv′) ≤ Ξ
and

En[D̃(v′)2Ξ] ≤ Cζn(v′)1/2 min
{
Wv′(Wu +Wv)

nϑ
(Γ2,n + 1)k,1

}
.

Take the expectation and use independence to find

En[|1Ae(ZE(e)− Z̃E(e))ZV (v′)|] ≤ CEn[1AeD̃(v′)2H̃2
V H̃

2
EΞ]

≤ CWuWv
nϑ

J1/3
V J1/3

E ζn(v′)1/2ρn,k({u,v,v′}).

The other terms in the covariance can be bounded similarly. Hence,

Covn(1Ae(Z
E(e)− Z̃E(e)), Z̃V (v′)) ≤ CWuWv

nϑ
J1/3
V J1/3

E ζn(v′)1/2ρn,k({u,v,v′}).

The same bound holds for the other covariances. This finishes the proof.

Lemma 4.3.17.

En[1Ae Covn(XE(e),XV (v′) | Se, Sv′)] ≤ CJ1/3
E J1/3

V
WuWv
nϑ

ζn(v′)1/2ρn,k({u,v,v′}).

Proof. Define

Bk(−{u,v}) = (Bk−1(w,Gn − {u,v}), Bk−1(w,GFn − {u,v}))w∈Vn ,
Bk(−v′) = (Bk−1(w,Gn − {v′}), Bk−1(w,GF

′
n − {v′}))w∈Vn ,

Bk(−) = (Bk−1(w,Gn − {u,v,v′}), Bk−1(w,GFn − {u,v,v′}))w∈Vn ,
B′k(−) = (Bk−1(w,Gn − {u,v,v′}), Bk−1(w,GF

′
n − {u,v,v′}))w∈Vn .

With those definitions XE(e) can be written as a function of (Bk(−{u,v}), Se), we
define an approximation X̃E(e) as the same function but applied to (Bk(−), Se). As
in the proof of Lemma 4.3.6 X̃E(e) actually only depends on the neighbourhoods
of vertices w that are connected to v or u via an edge. Analogously, XV (v′) is
a function of (B′k(−v′), Sv′), so define its approximation X̃V (v′) as that function
applied to (B′k(−), Sv′). As in the proof of Lemma 4.3.11 XV (v′) depends only on
the neighbourhoods of vertices w that are connected to v′ via an edge.
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Chapter 4 Proof of the Main Result

On the event XE(e) ≠ X̃E(e) there is at least one relevant vertex w connected
to u or v such that Bk−1(w,Gn − {u,v}) differs from Bk−1(w,Gn − {u,v,v′})
or Bk−1(w,GFn−{u,v}) differs from Bk−1(w,GFn−{u,v,v′}). That is to say there is
a path of length at most k− 1 from w to v′ that avoids u and v . Since w is directly
connected to u or v by an edge, it follows that there is a path from u or v to v′ of
no more than k steps. Thus by Lemma 3.1.19

Pn(X̃E(e) ≠ XE(e) | Se, Sv′) ≤ Pn({u,v}↭≤k v′)+ Pn({u,v}↭F
≤k v

′)

≤ ξk({u,v}, {v′},∅)+ ξFk ({u,v}, {v′},∅)

Call the right-hand side of the last equation Ξ and note that

En[D̃(v′)2Ξ] ≤ Cζn(v′)1/2 (Wu +Wv)Wv′nϑ
(Γ2,n + 1)k.

Similarly XV (v′) differs from X̃V (v′) only if there is a vertexw connected to v′ by
an edge such that Bk−1(w,Gn−{v′}) and Bk−1(w,Gn−{u,v,v′}) or Bk−1(w,GF

′
n −

{v′}) and Bk−1(w,GF
′
n − {u,v,v′}) differ. This implies that there is a path in Gn

or GF
′
n of length at most k − 1 from w to u or v that avoids v′. Hence, there is a

path of length at most k in Gn or GF
′
n from v′ to u or v . Thus by Lemma 3.1.19

Pn(X̃V (v′) ≠ XV (v′) | Se, Sv′) ≤ Pn(v′ ↭≤k {u,v})+ Pn(v′ ↭F
≤k {u,v})

≤ ξk({v′}, {u,v},∅)+ ξFk ({v′}, {u,v},∅)

Call the right-hand side of the last equation Ξ′ and note that

En[D̃(v′)2Ξ′] ≤ Cζn(v′)1/2 min
{
(Wu +Wv)Wv′

nϑ
(Γ2,n + 1)k,1

}
.

Expand the covariance of interest

Covn(XE(e),XV (v′) | Se, Sv′)
= Covn(X̃E(e), X̃V (v′) | Se, Sv′)
+ Covn(XE(e)− X̃E(e), X̃V (v′) | Se, Sv′)
+ Covn(X̃E(e),XV (v′)− X̃V (v′) | Se, Sv′)
+ Covn(XE(e)− X̃E(e),XV (v′)− X̃V (v′) | Se, Sv′).

As previously, bound the covariances involving an approximation error by estim-
ating the approximation error by the bounds on XE and XV times the probability
that the approximation is different from the original function. We obtain

|Covn(XE(e)− X̃E(e),XV (v′) | Se, Sv′)| ≤ CH̃2
ED̃(v

′)2H̃2
VΞ

and similar results for the other terms. Thus

|Covn(XE(e),XV (v′) | Se, Sv′)− Covn(X̃E(e), X̃V (v′) | Se, Sv′)|
≤ CH̃2

ED̃(v
′)2H̃2

V (Ξ+ Ξ′)
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4.3 Sparsity-based covariance bounds

and therefore also

En[1Ae|Covn(XE(e),XV (v′) | Se, Sv′)− Covn(X̃E(e), X̃V (v′) | Se, Sv′)|]
≤ CJ1/3

E J1/3
V ζn(v′)1/2ρn,k({u,v,v′}).

(4.46)

It remains to bound Covn(X̃E(e), X̃V (v′) | Se, Sv′). Recall that the construction
ensured that Bk(−) and B′k(−) are independent of Se and Sv′ . Hide the depend-
ence of X̃E(e) on Se and the dependence of X̃V (v′) on Sv′ in functions Ψ and Ψ ′,
respectively, so that by Lemma A.2.3

Covn(X̃E(e), X̃V (v′) | Se, Sv′) = Covn(Ψ(Bk(−)),Ψ ′(Bk(−))).
By definition |Ψ| ≤ H̃2

E and |Ψ ′| ≤ D̃(v′)2H̃2
V .

As in Lemmas 4.3.6 and 4.3.11 Ψ and Ψ ′ depend not on all w-neighbourhoods
for w ∈ Vn, but only on the neighbourhoods of ws for which there is an edge to u
or v and v′, respectively. This data is known conditioned on Se and Sv′ . More
formally, the relevant vertices for Ψ are contained in

D = D1(v)∪D1(u)∪DF1 (v)∪DF1 (u),

and the vertices relevant for Ψ ′ are contained in

D′ = D1(v′)∪DF
′

1 (v
′).

While D is not independent of Ae and D′,

D̄ = S(u,v
′)

1 (v)∪ S(v,v
′)

1 (u)∪ S(u,v
′),F

1 (v)∪ S(v,v
′),F

1 (u)∪ {v′}

is independent of Ae and of

D̄′ = S(u,v)1 (v′)∪ S(u,v),F
′

1 (v′)∪ {u,v}.

Then as before

En[(∥D̄∥ + |D̄|)2(∥D̄′∥ + |D̄′|)2]
≤ C(Wu +Wv +Wv′ + 2)4(Γ1,n + 1)4(Γ2,n + 1)4(Γ3,n + 1)2

and by Lemma 3.2.5

Covn(Ψ(Bk(−)),Ψ ′(Bk(−)))
≤ CH̃2

ED̃(v
′)2H̃V min

{
(∥D̄∥ + |D̄|)(∥D̄′∥ + |D̄′|)

nϑ
(Γ3,n + 1)(Γ2,n + 1)2k+1,1

}
.

Take expectations as in Lemma 4.3.11 to obtain

En[1Ae Covn(Ψ(Bk(−)),Ψ ′(Bk(−)))] ≤ CJ1/3
V
WuWv
nϑ

ζn(v′)1/2ρn,k({u,v,v′}).

Put these covariance estimates together to conclude the claim.
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Proof of Proposition 4.3.12. Recall (4.37)

Covn((REk(e)+ LEk(e))(REk(F ∪ e)+ LEk(F ∪ e)),
(RVk (v

′)+ LVk (v′))(RVk (F ′ ∪ v′)+ LVk (F ′ ∪ v′))).

Expand this covariance into sixteen terms, then apply Lemmas 4.3.13 to 4.3.15 to
these terms as appropriate.

4.4 Summing the bounds

We are almost ready to prove our main result.

Lemma 4.4.1. Recall ηn,ℓ(V ) and εn,ℓ(V ) from Lemma 3.5.1 and Lemma 3.5.2,
respectively. Then

∑
u1,...,um∈Vn

pairw. diff.

εn,ℓ({u1, . . . , um}) ≤mnmεn,ℓ,

where εn,ℓ is as defined in Definition 2.3.3.

For any r > 1 we also have

1
nm

∑
u1,...,um∈Vn

pairw. diff.

εn,ℓ({u1, . . . , um})1/r ≤m1/rε1/r
n,ℓ ,

Proof. We have

εn,ℓ(V ) = ∥V∥2
Γ2,n
nϑ

+ ∥V∥+Γ1,n
+ ∥V∥(Γ2,n + 1)ℓ

(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+ |V| 1

kn
+ k2

n
nϑΓ1,n + ∥V∥αn

(
1
ϑ
+ (Γ2 + 1)ℓ−1

( Γ2,n
ϑΓ1,n + 1

))
+ (|V | + ∥V∥(Γ2 + 1)ℓ)(dTV(µE,n, µE)+ dTV(µV,n, µV )).

In order to understand the sum over εn,ℓ(V ) it is therefore enough to understand
the sum over |V |, ∥V∥, ∥V∥+ and ∥V∥2. Recall that |V | = ∥V∥0.
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For p ≥ 0 we have

∑
u1,...,um∈Vn

pairw. diff.

∥{u1, . . . , um}∥p =
∑

u1,...,um∈Vn
pairw. diff.

m∑
i=1

Wp
ui

≤
∑

u1,...,um∈Vn

m∑
i=1

Wp
ui

≤m
∑

u1,...,um∈Vn
Wp
u1

=mnmϑ
(

1
nϑ

∑
u1∈Vn

Wp
u1

)(
1
n

∑
u∈Vn

1
)m−1

=mnmϑΓp,n.
In exactly the same way we also obtain

∑
u1,...,um∈Vn

pairw. diff.

∥{u1, . . . , um}∥+ =
∑

u1,...,um∈Vn
pairw. diff.

m∑
i=1

Wui1{Wi>
√
nϑ}

=mnmϑ
(

1
nϑ

∑
u1∈Vn

Wu11{W1>
√
nϑ}

)(
1
n

∑
u∈Vn

1
)m−1

=mnmϑκ1,n.

Hence, ∑
u1,...,um∈Vn

pairw. diff.

εn,ℓ({u1, . . . , um})

=mnm
Γ2
2,n

n
+mnmϑκ1,nΓ1,n

+mnmΓ1,nϑ(Γ2,n + 1)ℓ
(Γ3,n
nϑ

+ κ1,n + κ2,n +
2+ Γ1,n
kn

+ kn
nϑ

)
+mnm 1

kn
+nm k2

n
nϑΓ1,n

+mnmΓ1,nϑαn(1
ϑ
+ (Γ2 + 1)ℓ−1

( Γ2,n
ϑΓ1,n + 1

))
+mnm(1+ Γ1,nϑ(Γ2 + 1)ℓ)(dTV(µE,n, µE)+ dTV(µV,n, µV ))

≤mnmεn,ℓ.

This finishes the proof of the first part of the claim.
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For the second part of the claim let s > 1 such that 1/r + 1/s = 1 and apply
Hölder’s inequality so that the first part of the claim implies

1
nm

∑
u1,...,um∈Vn

pairw. diff.

εn,ℓ({u1, . . . , um})r

≤
(

1
nm

∑
u1,...,um∈Vn

pairw. diff.

(εn,ℓ({u1, . . . , um})1/r )r
)1/r( 1

nm
∑

u1,...,um∈Vn
pairw. diff.

1
)1/s

≤
(

1
nm

∑
u1,...,um∈Vn

pairw. diff.

εn,ℓ({u1, . . . , um})
)1/r

≤m1/rε1/r
n,k .

This shows the second claim.

Lemma 4.4.2. Recall ρn,k(V ) from Definition 4.3.1. Then∑
u1,...,um∈Vn

pairw. diff.

ρn,k({u1, . . . , um}) ≤mnmρn,k,

where ρn,ℓ is as defined in Definition 2.3.3.
Furthermore, for any r > 1 we have

1
nm

∑
u1,...,um∈Vn

pairw. diff.

ρn,k({u1, . . . , um})1/r ≤m1/rρ1/r
n,k .

Proof. As in the proof of Lemma 4.4.1 we just need to understand the relevant sum
over (∥V∥ + |V|)2 = ∥V∥2 + 2|V |∥V∥ + |V|2.

We use the Cauchy–Schwarz inequality to estimate the square of the sum by the
number of summands times the sum of squares and then proceed as in the proof of
Lemma 4.4.1 to obtain

∑
u1,...,um∈Vn

pairw. diff.

∥{u1, . . . , um}∥2 ≤
∑

u1,...,um∈Vn
pairw. diff.

( m∑
i=1

Wui
)2

≤
∑

u1,...,um∈Vn
pairw. diff.

m
m∑
i=1

W2
ui

≤m2nmϑΓ2,n.
The sum of the other terms is known from the proof of Lemma 4.4.1.
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Ignore the minimum with 1 for now to find∑
u1,...,um∈Vn

pairw. diff.

ρn,k({u1, . . . , um})

≤
∑

u1,...,um∈Vn
pairw. diff.

∥{u1, . . . , um}∥2 + 2m∥{u1, . . . , um}∥ +m2

nϑ

(Γ1,n + 1)2(Γ2,n + C)2k+1(Γ3,n + 1)2

≤m2nm
ϑΓ2,n + ϑΓ1,n + 1

nϑ
(Γ1,n + 1)2(Γ2,n + C)2k+1(Γ3,n + 1)2.

But clearly it also holds that∑
u1,...,um∈Vn

pairw. diff.

ρn,k({u1, . . . , um}) ≤ nm ≤mnm.

The first claim now follows immediately from the last two inequalities.
The second claim follows as in the proof of Lemma 4.4.1.

Finally, we can proceed to prove the main result.

Proof of Theorem 2.3.5. In the previous sections we identified a function c defined
on both vertices and edges with

σ−4
n Cov(∆xf∆xf F ,∆x′f∆x′f F ′) ≤ c(x,x′)

for all x,x′ ∈ Vn ∪ V (2)n and F ⊆ (Vn ∪ V (2)n ) \ {x}, F ′ ⊆ (Vn ∪ V (2)n ) \ {x′}. Apply
Lemma 4.1.6 to obtain that

sup
t∈R

|Pn(Zn ≤ t)− Φ(t)|
≤
√

2
( ∑
x,x′∈Vn∪V (2)n

c(x,x′)
)1/4

+
(
σ−3
n

∑
x∈Vn∪En

E[|∆xf |3])1/2.
All that is left to do is to calculate these sums. We start with the first sum

over c(x,x) and split the sum over all the different cases we handled.
Lemma 4.2.3 and the definition of Γp,n imply

∑
e∈En

c(e, e) ≤ σ−4
n CJ2/3

E
∑
e∈En

WuWv
nϑ

≤ σ−4
n CJ2/3

E nϑ
(

1
nϑ

∑
v∈Vn

Wv
)2

≤ n
σ4
n
CJ2/3

E ϑΓ2
1,n. (4.47)
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With Lemma 4.2.4 and (2.8) we can show∑
v∈Vn

c(v,v) ≤ σ−4
n CJ2/3

V
∑
v∈Vn

ζn(v)

≤ n
σ4
n
CJ2/3

V χn. (4.48)

From Lemma 4.2.5 we get∑
v,u∈Vn

c({v,u}, v)

≤ σ−4
n CJ1/3

E J1/3
V

∑
v,u∈Vn

WuWv
nϑ

ζn(v)1/2

≤ n
σ4
n
CJ1/3

E J1/3
V

(
1
nϑ

∑
u∈Vn

Wu
)(

1
n

∑
v∈Vn

Wvζn(v)1/2
)

≤ n
σ4
n
CJ1/3

E J1/3
V

(
1
nϑ

∑
u∈Vn

Wu
)(

1
n

∑
v∈Vn

W2
v

)1/2( 1
n

∑
v∈Vn

ζn(v)
)1/2

≤ n
σ4
n
CJ1/3

E J1/3
V Γ1,nϑ1/2Γ1/2

2,n χ
1/2
n . (4.49)

By Lemma 4.2.6

∑
u,v,v′∈Vn

c({u,v}, {u,v′}) ≤ σ−4
n CJ2/3

E
∑

u,v,v′∈Vn
W2
u
Wv
nϑ

Wv′
nϑ

≤ n
σ4
n
CJ2/3

E ϑ
(

1
nϑ

∑
u
W2
u

)(
1
nϑ

∑
v
Wv
)(

1
nϑ

∑
v′
Wv′

)
≤ n
σ4
n
CJ2/3

E ϑΓ2,nΓ2
1,n. (4.50)

The bounds (4.47) to (4.50) can in turn be bounded above by

n
σ4
n
C(JE + JV + JEJV )(ϑ1/2 + χ1/2

n )2(Γ1,n + 1)2(Γ2,n + 1).

We note that the last two terms can be bounded by nρn,k if n is large enough, so
that with J = JE + JV + JEJV this term is bounded by

≤ n2

σ4
n
CJ(ϑ1/2 + χ1/2

n )2ρn,k

≤ n2

σ4
n
CJ(ϑ1/2 + Γ2,n + χ1/2

n )2ρn,k. (4.51)

For the more complex bound from Proposition 4.3.2 we apply Cauchy–Schwarz to
separate the δ, ρ and ε terms in the sum. Then apply Lemmas 4.4.1 and 4.4.2 and
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the definition of mE
n and ME

n to obtain∑
e,e′∈En
e∩e′=∅

c(e, e′)

≤ σ−4
n CJE

∑
u,v,u′,v′∈En

pairwise different

WuWv
nϑ

Wu′Wv′
nϑ

((δEk(v,u)+ δEk(v′, u′))1/2

+ εn,k({u,v,u′, v′})1/4 + ρn,k({u,v,u′, v′})1/4)
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σ4
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CJE

1
n4ϑ2
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WuWvWu′Wv′((mE
n(v,u)δ

E
k)

1/2 + (mE
n(v′, u′)δ

E
k)

1/2

+ εn,k({u,v,u′, v′})1/4 + ρn,k({u,v,u′, v′})1/4)
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σ4
n
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n4ϑ4
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W2
uW2

vW
2
u′W

2
v′
)1/2( 1

n4

∑
u,v,u′,v′

mE
n(v,u)δ

E
k

+mE
n(v′, u′)δ

E
k + εn,k({u,v,u′, v′})1/2 + ρn,k({u,v,u′, v′})1/2

)1/2

≤ n2

σ4
n
CJEΓ2

2,n

(
δEk

2
n2
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u,v
mE
n(v,u)+

1
n4
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u,v,u′,v′

εn,k({u,v,u′, v′})1/2

+ 1
n4

∑
u,v,u′,v′

ρn,k({u,v,u′, v′})1/2
)1/2

≤ n2

σ4
n
CJEΓ2

2,n((M
E
nδ

E
k)

1/2 + ε1/4
n,k + ρ

1/4
k,n). (4.52)

Similarly by Proposition 4.3.7 we have∑
v,v′∈Vn
v≠v′

c(v,v′)

≤ σ−4
n CJV

∑
v,v′∈Vn
v≠v′

ζn(v)1/2ζn(v′)1/2((mV
n(v)δ

V
k )

1/2 + (mV
n(v′)δ

V
k )

1/2+

εn,k({v,v′})1/4 + ρn,k({v,v′})1/4)

≤ n2

σ4
n
CJV

( 1
n2

∑
v,v′∈Vn

ζn(v)ζn(v′)
)1/2( 1

n2

∑
v,v′∈Vn

(mV
n(v)δ

V
k )

1/2

+ (mV
n(v′)δ

V
k )

1/2 + εn,k({v,v′})1/2 + ρn,k({v,v′})1/2
)1/2

≤ n2

σ4
n
CJVχn((MV

nδ
V
k )

1/2 + ε1/4
n,k + ρ

1/4
k,n). (4.53)

Finally Proposition 4.3.12 yields∑
u,v,v′∈Vn
pairw. diff.

c({u,v}, v′)
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≤ σ−4
n CJEJV

∑
u,v,v′

WuWv
nϑ

ζn(v′)1/2((mE
n(v,u)δ

E
k)

1/2 + (mV
n(v)δ

V
k )

1/2

+ εn,k({u,v,v′})1/4 + ρn,k({u,v,v′})1/4)

≤ n2

σ4
n
CJEJV

( 1
n3ϑ2

∑
u,v,v′∈Vn

W2
uW2

vζn(v′)
)1/2( 1

n3

∑
u,v,v′∈Vn

(mE
n(v,u)δ

E
k)

1/2

+ (mV
n(v′)δ

V
k )

1/2 + εn,k({u,v,v′})1/2 + ρn,k({u,v,v′})1/2
)1/2

≤ n2

σ4
n
CJEJV Γ2,nχ1/2

n ((ME
nδ

E
k)

1/2 + (MV
nδ

V
k )

1/2 + ε1/4
n,k + ρ

1/4
k,n). (4.54)

The bounds (4.52) to (4.54) can all be estimated by

n2

σ4
n
C(JE + JV + JEJV )(Γ2,n + χ1/2

n )2((ME
nδ

E
k)

1/2 + (MV
nδ

V
k )

1/2 + ε1/4
n,k + ρ

1/4
k,n) (4.55)

≤ n2

σ4
n
CJ(ϑ1/2 + Γ2,n + χ1/2

n )2((ME
nδ

E
k)

1/2 + (MV
nδ

V
k )

1/2 + ε1/4
n,k + ρ

1/4
k,n). (4.56)

Putting all these terms together and using the observations from (4.51) and (4.56)
we obtain(∑

x,x′
c(x,x′)

)1/4
≤ CJ1/4

( n
σ2
n

)1/2
(ϑ1/2 + Γ2,n + χ1/2

n )2((ME
nδ

E
k)

1/8 + (MV
nδ

V
k )

1/8 + ε1/16
n,k + ρ1/16

n,k ).

Furthermore, by Lemmas 4.2.1 and 4.2.2 and from χn = n−1
∑
v∈Vn ζn(v)(

σ−3
n
∑
x
E[|∆xf |3])1/2 = (σ−3

n
∑
e
E[|∆xf |3]+ σ−3

n
∑
v
E[|∆xf |3])1/2

≤ (σ−3
n J1/2

E 2nϑΓ2
1,n + σ−3

n J1/2
V nχn)1/2

≤ (JE + JV )
( n
σ2
n

)3/4ϑΓ1,n + χ1/2
n

n1/4 .

Together these two terms give the required bound.

With Theorem 2.3.5 shown, we can prove Corollary 2.3.6.

Proof of Corollary 2.3.6. Let e = {u,v}. When Bk(v,Gn) and Bk(v,Gen) are trees,
define

LAE,Lk (Bk(v,Gn), Bk(v,Gen)) = gLk(Bk(v,Gn))− gUk (Bk(v,Gen))
and

LAE,Uk (Bk(v,Gn), Bk(v,Gen)) = gUk (Bk(v,Gn))− gLk(Bk(v,Gen)).

154



4.4 Summing the bounds

When Bk(v,Gn) and Bk(v,Gvn) are trees, define

LAV,Lk (Bk(v,Gn), Bk(v,Gvn)) = gLk(Bk(v,Gn))− gUk (Bk(v,Gvn))
and

LAV,Uk (Bk(v,Gn), Bk(v,Gvn)) = gUk (Bk(v,Gn))− gLk(Bk(v,Gvn)).

We now verify that property GLA holds for this choice of functions LAE,Lk , LAE,Uk ,

LAV,Lk , LAV,Uk and then apply Theorem 2.3.5. We will only verify (GLA 1), (GLA 2) and
(GLA 3) for the edge perturbation. The proof for the vertex perturbation (GLA 4),
(GLA 5) and (GLA 6) is analogous.

(GLA 1) follows from (GLA′ 1). We use that Gen − v = Gn − v , since the vertex v
and all edges incident to v are not present in those graphs, so that rerandomisation
at e, which is incident to v do not have any effect. Hence,

LAE,Lk (Bk(v,Gn), Bk(v,Gen))

= gLk(Bk(v,Gn))− gUk (Bk(v,Gen))
≤ (f (Gn)− f(Gn − v))− (f (Gen)− f(Gen − v))
= f(Gn)− f(Gen)
= ∆ef

and similarly
LAE,Uk (Bk(v,Gn), Bk(v,Gen)) ≥ ∆ef .

(GLA 2) follows directly from (GLA′ 2).
For (GLA 3) observe that∣∣LAE,U(T,T′)− LAE,L(T,T′)

∣∣ ≤ ∣∣(gUk (T)− gLk(T′))− (gLk(T)− gUk (T))∣∣
≤ |gUk (T)− gLk(T)| + |gUk (T′)− gLk(T′)|.

Thus (x +y)2 ≤ 2x2 + 2y2 and (GLA′ 3) yield

En[|LAE,U(T,T′)− LAE,L(T,T′)|2]
≤ 2En[|gUk (T)− gLk(T)|2]+ 2En[|gUk (T′)− gLk(T′)|2]
≤ 2mn(v)δk + 2m̃n(v,u)δ̃k.

Set δEk = δk + δ̃k and mE
n(v,u) = 2(mn(v)+ m̃(v,u)). Then the previous term can

be bounded by mE
n(v,u)δ

E
k . Now

ME
n =

1
n2

∑
v,u∈Vn

mE
n(v,u) =

2
n2

∑
v,u∈Vn

(mn(v)+ m̃(v,u))

is bounded in probability by (GLA′ 3). Also by (GLA′ 3) we have δEk → 0 as k → ∞,
which finally verifies (GLA 3).

Now the claim follows with an application of Theorem 2.3.5.

155





Bibliography

[AB05] David J. Aldous and Antar Bandyopadhyay: ‘A Survey of max-Type
Recursive Distributional Equations’. Annals of Applied Probability 15.2
(2005), pp. 1047–1110. doi: 10.1214/105051605000000142.

[Aco82] Alejandro de Acosta: ‘Invariance Principles in Probability for Triangu-
lar Arrays of B-Valued Random Vectors and Some Applications’. An-
nals of Probability 10.2 (Mar. 1982), pp. 346–373. doi: 10.1214/aop/
1176993862.

[AGK19] Richard Arratia, Larry Goldstein and Fred Kochman: ‘Size Bias for
One and All’. Probability Surveys 16 (2019), pp. 1–61. doi: 10.1214/13-
PS221.

[Ald01] David J. Aldous: ‘The ζ(2) Limit in the Random Assignment Problem’.
Random Structures & Algorithms 18.4 (2001), pp. 381–418. doi: 10.
1002/rsa.1015.

[AS00] Noga Alon and Joel H. Spencer: The Probabilistic Method. 2nd ed. New
York: Wiley, 2000.

[AS04] David Aldous and J. Michael Steele: ‘The Objective Method. Probabilistic
Combinatorial Optimization and Local Weak Convergence’. In: Harry
Kesten (ed.): Probability on Discrete Structures. Berlin and Heidelberg:
Springer, 2004, pp. 1–72. doi: 10.1007/978-3-662-09444-0_1.

[AS72] Milton Abramowitz and Irene A. Stegun (eds.): Handbook of Mathema-
tial Functions. With Formulas, Graphs, and Mathematical Tables. National
Bureau of Standards, 1972.

[Ber41] Andrew C. Berry: ‘The Accuracy of the Gaussian Approximation to the
Sum of Independent Variates’. Transactions of the American Mathem-
atical Society 49.1 (1941), pp. 122–136. doi: 10.1090/S0002-9947-
1941-0003498-3.

[BGT81] Mohsen Bayati, David Gamarnik and Prasad Tetali: ‘Combinatorial Ap-
proach to the Interpolation Method and Scaling Limits in Sparse Random
Graphs’. In: Proceedings of the Forty-second ACM Symposium on Theory
of Computing. 1981, pp. 105–114. doi: 10.1145/1806689.1806706.

[BJR07] Béla Bollobás, Svante Janson and Oliver Riordan: ‘The Phase Trans-
ition in Inhomogeneous Random Graphs’. Random Structures & Al-
gorithms 31.1 (2007), pp. 3–122. doi: 10.1002/rsa.20168.

157

https://doi.org/10.1214/105051605000000142
https://doi.org/10.1214/aop/1176993862
https://doi.org/10.1214/aop/1176993862
https://doi.org/10.1214/13-PS221
https://doi.org/10.1214/13-PS221
https://doi.org/10.1002/rsa.1015
https://doi.org/10.1002/rsa.1015
https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1090/S0002-9947-1941-0003498-3
https://doi.org/10.1090/S0002-9947-1941-0003498-3
https://doi.org/10.1145/1806689.1806706
https://doi.org/10.1002/rsa.20168


Bibliography

[BLS13] Charles Bordenave, Marc Lelarge and Justin Salez: ‘Matchings on In-
finite Graphs’. Probability Theory and Related Fields 157 (2013), pp. 183–
208. doi: 10.1007/s00440-012-0453-0.

[BM76] J. A. Bondy and U. S. R. Murty: Graph Theory with Applications. New
York: North-Holland, 1976.

[Bol98] Béla Bollobás: Modern Graph Theory. New York: Springer, 1998.

[Bor16] Charles Bordenave: Lecture Notes on Random Graphs and Probabilistic
Combinatorial Optimization. 8th Apr. 2016. url: https://www.math.
univ-toulouse.fr/~bordenave/coursRG.pdf.

[BR12] Béla Bollobás and Oliver Riordan: ‘Asymptotic Normality of the Size
of the Giant Component Via a Random Walk’. Journal of Combinatorial
Theory, Series B 102.1 (2012), pp. 53–61. doi: 10.1016/j.jctb.2011.
04.003.

[BR19] A. D. Barbour and Adrian Röllin: ‘Central Limit Theorems in the Config-
uration Model’. The Annals of Applied Probability 29.2 (2019), pp. 1046–
1069. doi: 10.1214/18-AAP1425.

[BS01] Itai Benjamini and Oded Schramm: ‘Recurrence of Distributional Limits
of Finite Planar Graphs’. Electronic Journal of Probability 6 (2001), pp. 1–
13. doi: 10.1214/EJP.v6-96.

[Cao21] Sky Cao: ‘Central Limit Theorems for Combinatorial Optimization Prob-
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A Auxiliary Results

A.1 Couplings

In this section we will briefly list a few standard results that allow us to couple
Binomial and Poisson random variables. For the simple results we will just present
the well-known proofs ourselves.

Lemma A.1.1. Fix p,p′ ∈ (0,1) with p ≤ p′. Then we can couple X ∼ Bin(1, p)
and X′ ∼ Bin(1, p′) such that X ≤ X′ a.s. and

P(X′ ≠ X) = p′ − p.

Proof. We construct X′ from X and an independent random variable.
Let ξ ∼ Bin(1, (p′ − p)/(1− p)) be independent of X ∼ Bin(1, p). Since p ≤ p′ ∈

(0,1), we have that (p′ − p)/(1− p) ∈ [0,1), so ξ is a well-defined random variable.
Now set

X′ = max{X,ξ}.
Clearly, this definition ensures that X ≤ X′ a.s.

By construction of X′ and independence of X and ξ we have

P(X′ = 0) = P(X = 0, ξ = 0) = (1− p)
(
1− p

′ − p
1− p

)
= 1− p′.

Since X′ can only take the values 0 and 1, this shows X′ ∼ Bin(1, p′) as desired.
Finally, we have that

P(X′ ≠ X) = P(X = 0, X′ = 1)
= P(X = 0, ξ = 1)

= (1− p)p
′ − p

1− p
= p′ − p

as claimed.

The following lemma is a well-known building block of the coupling between
Binomial and Poisson random variables [Tho00, § 1.5.1].

Lemma A.1.2. Fix p ∈ (0,1). Then we can couple X ∼ Bin(1, p) and Z ∼ Poi(p) such
that

P(Z ≠ X) ≤ p2.
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Lemma A.1.3. Fix 0 < λ < µ < ∞. Then we can couple X ∼ Poi(λ) and Y ∼ Poi(µ)
such that X ≤ Y a.s. and

P(X ≠ Y) ≤ µ − λ.

Proof. Let ∆ ∼ Poi(µ − λ) be independent of X ∼ Poi(λ). Then ∆ is well-defined,
since µ − λ > 0. Set

Y = X +∆.
Since the sum of independent Poisson random variable is again a Poisson random
variable whose parameter is given by the sum of parameters, it follows that Y ∼
Poi(µ). Clearly, the definition ensures X ≤ Y a.s.

Additionally,

P(X ≠ Y) = P(∆ ≥ 1) = 1− exp(−(µ − λ)) ≤ µ − λ,

where the last inequality follows from 1− exp(−x) ≤ x for all x > −1.

Formally, all these couplings are defined on new probability spaces that need
not have any connection to the probability spaces that supported the (or one of
the) involved random variables. If we want to have several of these couplings at
once, it is a priori not clear that there should be a probability space on which
all the relevant random variables can be defined. A more careful analysis of the
construction of these couplings shows that it is possible to construct the coupled
random variables on straightforward extensions of the original probability space of
one of the involved random variables. This allows us to define chains of couplings
on the same probability space. We will not pursue this here any further; for the
purposes of the constructions to follow it is enough to employ a gluing lemma for
couplings.

Lemma A.1.4 [Aco82, Cor. A.2]. Let V1, V2, V3 be Polish spaces. Let (X1, X2) be a ran-
dom vector with values in V1×V2 and (Y2, Y3) a random vector in V2×V3 such that X2

and Y2 have the same distribution. Then there exists a random vector (Z1, Z2, Z3) with
values in V1 × V2 × V3 such that (Z1, Z2) has the same law as (X1, X2) and (Z2, Z3)
has the same law as (Y2, Y3).

This result for two couplings can easily be extended to n couplings.

Lemma A.1.5. Fix n ∈ N, n ≥ 3, and let V1, . . . , Vn be Polish spaces. For i ∈
{1, . . . , n − 1} let (X(i)i , X

(i)
i+1) be a random vector with values in Vi × Vi+1 such

that X(i)i+1 and X(i+1)
i+1 have the same distribution. Then there exists a random vec-

tor (Z1, . . . , Zn) with values in V1 × · · · × Vn such that (Zi, Zi+1) has the same
distribution as (X(i)i , X

(i)
i+1) for all i ∈ {1, . . . , n− 1}

Proof. The proof proceeds by induction.
The base case n = 3 is Lemma A.1.4.
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Assume that the claim holds for some n. We now want to show that the claim also
holds for n+1. Hence, we seek to define a random vector (Z1, . . . , Zn+1) with values
in V1×· · ·×Vn+1 such that (Zi, Zi+1) and (X(i)i , X

(i)
i+1) have the same distribution for

all i ∈ {1, . . . , n} under the assumption that X(i)i and X(i)i+1 have the same distribution
for all i ∈ {1, . . . , n}.

Because the claim holds for n, there is a random vector (Z′1, . . . , Z′n) with values

in V1 × · · · × Vn such that (Z′i , Z
′
i+1) has the same distribution as (X(i)i , X

(i)
i+1) for

all i ∈ {1, . . . , n − 1}. In particular Z′n has the same distribution as X(n−1)
n , which

by assumption coincides with the distribution of X(n)n . Set Z̃ = (Z′1, . . . , Z′n−1) so

that (Z′1, . . . , Z′n) = (Z̃′, Z′n). Now apply Lemma A.1.4 to (Z̃′, Z′n) and (X(n)n , X(n)n+1)
to obtain a random vector (Z̃, Zn, Zn+1) such that (Z̃, Zn) has the same distribu-
tion as (Z̃′, Z′n) and (Zn, Zn+1) has the same distribution as (X(n)n , X(n)n+1). Now
write (Z1, . . . , Zn−1) for Z̃ and note that (Z̃, Zn) = (Z1, . . . , Zn) has the same distribu-
tion as (Z̃′, Z′n) = (Z′1, . . . , Z′n), so that the distributions of (Zi, Zi+1) and (X(i)i , X

(i)
i+1)

coincide for all i ∈ {1, . . . , n − 1}. Since we already have that (Zn, Zn+1) has
the same distribution as (X(n)n , X(n)n+1) we have shown that (Z1, . . . , Zn+1) satisfies

that (Zi, Zi+1) has the same distribution as (X(i)i , X
(i)
i+1) for all i ∈ {1, . . . , n}.

This concludes the proof.

With the help of this lemma we can now construct chains of couplings that retain
the properties of each involved coupling pair.

A.2 Measurability

The aim of this section is to establish that the conditional covariance in Lemmas 4.3.6,
4.3.11 and 4.3.17 can be rewritten as a measurable function

Lemma A.2.1. Let (Ω,F ,P) be a probability space, G ⊆ F be a σ -algebra and X
and Y be random variables with values in X and Y, respectively, such that X is
independent of G and Y is G-measurable.

Then
E[φ(X,Y) | G] = gφ(Y),

where
gφ(y) = E[φ(X,y)]

whenever E[|φ(X,Y)|] <∞.

Proof. Let

D =
{
A ∈ X ⊗Y : E[1A(X, Y) | G] = gA(Y), gA(y) = E[1A(X,y)]

}
.

First we show that D is a Dynkin system.
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(i) Ω ∈ D since 1Ω = 1;

(ii) if A ∈ D, then also Ac ∈ D, since 1Ac = 1− 1A;

(iii) let Ai ∈ D, then 1⋃iAi =∑i 1Ai and by monotone convergence

E[1⋃iAi(X, Y) | G] =∑
i
E[1Ai(X, Y) | G] =

∑
i
gAi(Y)

where again by monotone convergence∑
i
gAi(y) =

∑
i
E[1Ai(X,y)] = E

[∑
i
1Ai(X,y)

]
= E[1∪iAi(X,y)].

Now show that {A × B : A ∈ X, B ∈ Y} ⊆ D. To this end note that since Y
is G-measurable and X is independent of G

E[1A×B(X, Y) | G] = E[1A(X)1B(Y) | G]
= 1B(Y)E[1A(X) | G]
= 1B(Y)E[1A(X)]
= gA×B(Y)

where

gA×B(y) = 1B(y)E[1A(X)] = E[1A(X)1B(y)] = E[1A×B(X,y)].

as desired.
Now apply Dynkin’s π -λ-theorem to conclude that

X ⊗Y = σ(A× B) ⊆ D.

Hence, the claim holds for all indicator functions.
Use linearity and monotone convergence to show that the claim also holds for

elementary and nonnegative measurable function. For general integrable functions
split into positive and negative part.

Lemma A.2.2. Let X1, X2, Y1 and Y2 be independent random variables. Then

E[f (X1, X2)g(Y1, Y2) |X1, Y1] = E[f (X1, X2) |X1]E[g(Y1, Y2) | Y1].

Proof. By Lemma A.2.1 and the fact that X2, Y2 is independent of (X1, Y1)

E[f (X1, X2)g(Y1, Y2) |X1, Y1] = h(X1, Y1),

where

h(x,y) = E[f (x,X2)g(y, Y2)]
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since X2 and Y2 are independent

= E[f (x,X2)]E[g(y, Y2)]
= hf (x)hg(y).

Lemma A.2.1 implies

E[f (X1, X2) |X1] = hf (X1) and E[g(Y1, Y2) | Y1] = hg(Y1)

and so

E[f (X1, X2)g(Y1, Y2) |X1, Y1] = h(X1, Y1)
= hf (X1)hg(Y1)
= E[f (X1, X2) |X1]E[g(Y1, Y2) | Y1]

as claimed.

Lemma A.2.3. Let X1 and X2 be two random variables that are (jointly) independent
of Y . Then

Cov(f1(X1, Y ), f2(X2, Y ) | Y) = h(Y)

where
h(y) = Cov(f1(X1, y), f2(X2, y)).

Proof. By definition of the conditional covariance

Cov(f1(X1, Y ), f2(X2, Y ) | Y)
= E[f1(X1, Y )f2(X2, Y ) | Y]− E[f1(X1, Y ) | Y]E[f2(X2, Y ) | Y]

by Lemma A.2.1

= h12(Y)− h1(Y)h2(Y),

where
h12(y) = E[f1(X1, y)f2(X2, y)]

and
h1(y) = E[f1(X1, y)] and h2(y) = E[f2(X2, y)],

so that

h12(y)− h1(y)h2(y)
= E[f1(X1, y)f2(X2, y)]− E[f1(X1, y)]E[f2(X2, y)]
= Cov(f1(X1, y), f2(X2, y)).

Set h(y) = h12(y)− h1(y)h2(y) and the claim follows.
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