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Abstract

The surface of a material is critical for its properties, especially in heterogeneous catal-
ysis. Surfaces properties can be probed, for example, by H atom scattering. However
ab-inito theoretical investigations of H atom scattering are held back by the high cost
for performing the large amount of necessary simulations. Machine learning potentials
can be used to bridge the gap between the high accuray of ab-inito calculations and
the low computational cost of force field calculations. In this thesis, a high-dimensional
neural network potential (HDNNP) based on RPBE density funcitonal theory reference
data has been constructed for the scattering of H atoms from the [0001] α-Al2O3 sur-
face. This system is well accessible for theoretical studies and experimental benchmarks
due to the simple nature of H atom scattering, lacking the involvement of steric or vi-
brational effects. The process of generating the reference data set and validating the
constructed HDNNP, using system properties like the phonon band structure and the
potential energy surface as a function of collective variables, is described in detail. Fur-
thermore, the HDNNP is validated using experimental kinetic energy distributions and
angular distributions from H atom scattering. Insights into the surface structure are
gained by comparing the experimental and theoretical scattering distributions. Finally,
the accuracy of the RPBE functional describing the interaction of the H atom with the
surface is evaluated and discussed.
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1 Introduction

Heterogeneous catalysis is tremendously important in today’s economy and state of the
world. Catalyzed reaction contribute to a huge percentage of the world’s gross domes-
tic product.[1] Processes like the Haber-Bosch process for artificial ammonia synthesis
changed the world by being the source of half of the nitrogen atoms in our bodies.[2] The
surface of heterogeneous catalysts is critical for their properties. Scientists have made
significant efforts to improve prominent heterogeneous catalysis processes by gaining a
deeper understanding of their underlying chemical and physical dynamics. These stud-
ies have led to initial discoveries and subsequent industrial applications of improved
catalysts.[3]

Theoretical studies of established and new materials and processes can further improve
the understanding of catalytic reactions and chemistry in general.[4] The theoretical in-
vestigation of catalytic surfaces is difficult and cost intensive due to the presence of
diverse morphologies and preparation methods. The usually high pressures and temper-
atures used in preparation further increase the complexity of the systems dramatically.
However the rapid advancements in computer power, the continuous development of
new electronic structure algorithms, and simulation setups that accurately replicate
reaction conditions help to bridge the gap between industrial applications and theo-
retical simulations. One recently developed way to circumvent the high cost of the
calculations is the use of machine learning potentials (MLP).[5–7]

Machine learning potentials, fitted to ab-initio reference calculations, can reduce the
cost of simulations for large, long, or complex calculations, while retaining the high
level of accuracy from the reference methods. They have been developed for many dif-
ferent systems, ranging from gas phase vibrational spectroscopy[8] to manganese oxide
spinels used as electrode materials[9] to the description of solid-gas interfaces.[10]

Experimental benchmarks of these systems are very valuable to determine the accuracy
of the models, but the increase in complexity of the theoretically described systems also
increases the complexity of the needed experiments. Furthermore a machine learning
potential is based on a data set consisting of tens of thousands of calculations which
have to be consistent with each other. The choice of the reference method and its
settings is of utmost important for a well working potential energy surface (PES). In
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1 Introduction

order to keep the cost of generating such a data set low, the reference structures have
to be selected carefully, so that a small data set still fully maps all relevant chemical
environments. Thorough validation of the electronic structure reference calculations
and the machine learning potential, as well as experimental results is needed for ac-
curate and reliable results. The creation and validation of those models is not trivial
and further research is still required. The investigation of less complex model systems
can help understanding the complexity of creating machine learning potentials and also
supports understanding what is needed from experimental benchmarks to ascertain the
quality of the models.

Using H atom scattering to probe surface properties is a well-researched process. The
scattering of H atoms and small molecules was studied from metal surfaces,[11] surface
oxides,[12] graphene,[10] and insulators.[13] The interaction between an H atom and a
well-defined surface in ultra-high vacuum (UHV) is a relatively simple process. Unlike
other collisions, such as those involving vibrations or steric effects, only the atomic
translational energy is involved, which makes it particularly attractive for research and
comparison with first principle theories. Additionally, these interactions are important
in a variety of technological applications, such as heterogeneous catalysis,[14] interstellar
H2 production on dust grains,[15] nuclear fusion in tokamaks, and hydrogen storage.[16,17]

While the experimental investigation is performed with highest precision, the theoreti-
cal studies are gatekept by the huge amount of required simulations. Machine learning
potentials enable the simulation of millions of trajectories needed to investigate the
surface and understand to the experimental results. One experimentally character-
ized system is the scattering of H atoms from α-Al2O3.[18] The [0001] α-Al2O3 surface
is well suited for theoretical benchmarking. The surface termination is well studied
under high vacuum conditions and does not show a complex surface reorganization.
The material is also often applied, either as catalyst[19] or as supporting material[20] in-
creasing the need of a deeper understanding of how this material interacts at interfaces.

In this thesis, a high-dimensional neural network potential[21] (HDNNP) is trained on
RPBE density functional theory (DFT) data of the α-Al2O3 and H atom system. The
structural and electronic setup is investigated and the accuracy of the RPBE functional
is compared to the PBE functional. Using the bulk properties of α-Al2O3, including
the phonon band structure, ab-initio DFT calculations including ab-inito molecular dy-
namics (MD) simulations and experimental measurements the HDNNP is thoroughly
validated. MD trajectories for four different experimental incidient conditions are cal-
culated using the HDNNP and the kinetic energy distributions for different scattering
angles and angular distributions are compared to the experiment. The experimental
surface termination is evaluated using the theoretical kinetic energy distributions at
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1 Introduction

different incident azimuth angles. Differences between the experimental and theoretical
surface structure and roughness are analyzed. The accuracy of the RPBE functional,
describing the interaction of the H atom with the surface, are discussed and evaluated.

3



2 Methods

2.1 Density Functional Theory

2.1.1 Foundations of Density Functional Theory
According to the first postulate of quantum mechanics, the wave function Ψ(τ , t) fully
describes the state of a system, where the positions r and spins s of all particles are
expressed by τ at time t.[22] Although the wave function itself has no direct physical
interpretation, the squared absolute value |Ψ(τ , t)|2 corresponds to the probability
density of the described system at a given time.[23] For a many-electron system, the
wave function must be antisymmetric under the interchange of any two electrons, which
is known as the Pauli principle:[24,25]

Ψ(τ1, ..., τi, τj, ..., τn) = −Ψ(τ1, ..., τj, τi, ..., τn). (2.1)

A non-relativistic description of the system’s time evolution can be obtained from the
time-dependent Schrödinger equation:[26,27]

Ĥ(τ , t)Ψ(τ , t) = iℏ
∂Ψ(τ , t)

∂t
, (2.2)

where Ĥ is the Hamiltonian operator and ℏ is the reduced Planck constant. For a
time-independent Hamiltonian, the space and time dependence of the wave function
can be separated, yielding the time-independent Schrödinger equation:

Ĥ(τ )Ψ(τ ) = EΨ(τ ) , (2.3)

where E represents the energy of stationary eigenstates. The probability density of the
particles is given by the square of the absolute value of the wave function |Ψ(τ )|2.[23]

The Hamiltonian, defining the interaction of the electrons and nuclei, of N electrons
and M nuclei is

Ĥ = −1
2

N∑
i=1

∇2
i︸ ︷︷ ︸

Te

−
M∑

A=1

1
2MA

∇2
A︸ ︷︷ ︸

TN

−
N∑

i=1

M∑
A=1

ZA

riA︸ ︷︷ ︸
VNe

+
N∑

i=1

N∑
j>1

1
rij︸ ︷︷ ︸

Vee

+
M∑

A=1

M∑
B>A

ZAZB

RAB︸ ︷︷ ︸
VNN

, (2.4)
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2.1 Density Functional Theory

were riA represents the distance from electron i to nucleus A, rij denotes the distance
between electron i and electron j, and RAB signifies the distance between nucleus A

and nucleus B. Nucleus A has a charge of ZA and a mass of MA. The Laplacian
operators ∇i and ∇A correspond to electron i and nucleus A, respectively, and are
defined in terms of the coordinates of the particles.
The Hamiltonian in equation 2.4 has several contributions. The first and second terms,
Te and TN, represent the kinetic energies of the electrons and nuclei, respectively. The
remaining terms, VNe, Vee, and VNN, describe Coulomb interactions between electrons
and nuclei, with their signs indicating whether the interactions are attractive or repul-
sive. The third term, VNe, represents the Coulomb attraction between electrons and
nuclei, while the fourth and fifth terms, Vee and VNN, express the repulsion between
electrons and between nuclei.
The mass of an electron is significantly smaller than that of a nucleus, resulting in a
much larger acceleration of electrons compared to nuclei. Since the motion of electrons
and nuclei occurs on significantly different time scales, the two terms can be sepa-
rated using the time independent Schrödinger equation. The electronic energy can be
characterized using the electronic Hamiltonian Helec, given by:

Helec = Te + TNe + Vee . (2.5)

This Hamiltonian in equation 2.5 describes the energy of electrons in the presence of
fixed point charges corresponding to the nuclei. Since the nuclei are stationary, their
kinetic energy is zero, and the energy of repulsion between the nuclei is constant. When
a constant term is added to an operator, it only affects the operator eigenvalue and
not the eigenfunction. However, the constant term contributes to the total energy of
the system. This separation of electron and nuclei motion is the Born-Oppenheimer
approximation.[28] The latter approach does not account for the coupling of electronic
states and is therefore an adiabatic approximation. Using this approximation, we can
treat a molecular structure as a configuration of fixed nuclei R = {RA} and calculate
its electronic energy. By performing these calculations for every possible R, we can
construct a PES that describes the energy of the system E as a function of the nuclear
positions for a given electronic state. To determine the energy of the system, we
take the expectation value of the Hamiltonian with its normalized ground state wave
function:

E = ⟨Ψ(τ )|Ĥ(τ )|Ψ(τ )⟩. (2.6)

In many cases, the exact wave function of a system is unknown, but the variational
principle can be applied to obtain the best approximation to the ground state wave
function. The principle states that the energy Etrial of a normalized trial wave function
Φ(τ ) is always greater than or equal to the true energy E0 of the ground state wave
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2.1 Density Functional Theory

function:

E0 ≤ Etrial = ⟨Φ(τ )| H(τ ) |Φ(τ )⟩ . (2.7)

Therefore, the energy of the trial wave function can be used to assess the quality of
the approximation by the trial wave function.

2.1.2 Density Functional Theory
Density functional theory is a widely used computational method in quantum chemistry
and condensed matter physics, thanks to its ability to accurately predict the electronic
properties of materials while significantly reducing computational cost compared to
traditional wave function-based methods. In traditional wave function-based methods,
each electron n in a system is described by its 3 spatial coordinates r and its spin
state s, leading to 4n degrees of freedom for the wave function. This can result in
computationally demanding calculations for systems with more than a few atoms.
DFT is based on the fundamental concept of the electron density, which is a function
of the electron positions r and does not depend on spin states. Instead of explicitly
computing the many-electron wave function, DFT calculates the total energy of a
system as a function of its electron density ρ(r). The electron density is the square
of the wave function, integrated over all the electron coordinates except those of one
electron and multiplied by the number of electrons n:

ρ(r) = n
∫

...
∫

|Ψ(τ )|2ds1dτ2...τn. (2.8)

This density-based approach allows DFT to bypass the computationally expensive step
of explicitly computing the many-electron wave function, significantly reducing the
computational cost of electronic structure calculations while still providing accurate
results.
For this to work, it is necessary for the electron density to determine the complete
system. The number of electrons in the system is equal to the sum of ρ(r) over the
full space. The electron density exhibits cusps at the locations of the nuclei, with the
height of the cusp depending on the charge of the nuclei, thereby providing informa-
tion about the element. The total charge of the system can be obtained by adding the
nuclear charges and the number of electrons. According to the first Hohenberg-Kohn
theorem,[29] the ground state electron density satisfies this condition. If the electron
density does not uniquely specify the Hamiltonian, there would exist two distinct ex-
ternal potentials VeN and V ′

eN that lead to the same ground state electron density ρ0(r).
This would imply that there are two different Hamiltonians H and H ′, which would
result in two different ground state wave functions Ψ0 and Ψ′

0 and energies E0 and E ′
0.

The expectation value of one Hamiltonian can be calculated with the wave function

6



2.1 Density Functional Theory

belonging to the other

E ′
0 < ⟨Ψ0| H ′ |Ψ0⟩ ,

< ⟨Ψ0| H |Ψ0⟩ + ⟨Ψ0| H ′ − H |Ψ0⟩ , (2.9)

<E0 +
∫

(V ′
eN − VeN)ρ0(r)dr ,

and with interchanged primed and unprimed quantities,

E0 < E ′
0 −

∫
(VeN − V ′

eN)ρ0(r)dr . (2.10)

Adding equation 2.9 to equation 2.10 leads to the contradiction

E ′
0 + E0 < E0 + E ′

0 . (2.11)

As shown above, the initial assumption that the electron density does not uniquely
describe the system is incorrect. The second Hohenberg-Kohn theorem[29] proves that
the ground state electron density can be found using the variational principle. Since
the exact ground state wave function Ψ0 corresponds to the exact ground state electron
density ρ0, the exact ground state energy E0 can be calculated via the electron density
as E[ρ0]. That is,

E0 = ⟨Ψ0| H |Ψ0⟩ = E[ρ0] . (2.12)

The use of an approximate wave function Ψ̃0 and electron density ρ̃0 results in an
approximate ground state energy Ẽ0, given by

Ẽ0 = ⟨Ψ̃0| H |Ψ̃0⟩ = E[ρ̃0] . (2.13)

The variational principle for wave functions dictates that E0 must be lower than Ẽ0,
which in turn means that E[ρ0] must be lower than E[ρ̃0]. Therefore, the variational
principle can be used to approximate the ground state electron density.
According to the two Hohenberg-Kohn theorems, the ground state energy of a system
can be calculated using the electron density, given by

E[ρ0] = T [ρ0] + Eee[ρ0] + EeN[ρ0] + VNN . (2.14)

The terms in equation 2.14 correspond to the terms in the Hamiltonian equation 2.4.
To calculate the energy E[ρ0], we need to define expressions for the kinetic energy
of the electrons T [ρ0], the electron-electron repulsion Eee[ρ0], and the electron-nuclei
interaction EeN[ρ0]. First the nuclear-electron interaction EeN[ρ0] is described by the
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2.1 Density Functional Theory

expression,

EeN[ρ0] =
∫

VNeρ0(r)dr = −
M∑

A=1

∫ ZA

riA

ρ0(r)dr . (2.15)

The electron-electron interaction Eee[ρ0] is separated into two parts: the classical
Coulomb part, J [ρ0], and the non-classical part, Encl[ρ0], which includes the exchange,
correlation, and interaction corrections. The Coulomb interaction can be described
classically by integrating over the complete space and adding a factor of 1

2 to avoid
double counting:

J [ρ0] = 1
2

∫ ∫ ρ(r1)ρ(r2)
r12

dr1dr2 . (2.16)

Equation 2.16 allows for an exact calculation of a large contribution of the Coulomb
energy.
To describe the kinetic energy, Thomas and Fermi[30,31] first attempted to use the ki-
netic energy of a homogeneous electron gas, which yielded poor results. To improve the
kinetic energy, Kohn and Sham introduced the idea of using one-electron orbitals, or
wave functions, to split the kinetic energy functional into two parts: a part describing
a non-interacting reference system and a part describing the Coulomb interaction be-
tween electrons. The reference system consists of electrons that behave like uncharged
fermions, and the missing interaction between electrons due to Coulomb interaction is
described by the effective potential VS(r).
To calculate the kinetic energy of the non-interacting system, one-electron orbitals ϕi

are introduced, for which the exact wave function is known, given by a Slater determi-
nant. This Slater determinant ΦS(τ ) is given by a matrix of the one-electron orbitals:

ΦS(τ ) = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(τ1) ϕ2(τ1) · · · ϕn(τ1)
ϕ1(τ2) ϕ2(τ2) · · · ϕn(τ2)

... ... . . . ...
ϕ1(τn) ϕ2(τn) · · · ϕn(τn)

∣∣∣∣∣∣∣∣∣∣∣
. (2.17)

For this system the exact kinetic energy is

TS[ρS] = −1
2

n∑
i=1

⟨ϕi(r)| ∇2 |ϕi(r)⟩ . (2.18)

In the Kohn-Sham approach, the Hamiltonian of the non-interacting system is the sum
of one-electron operators, similar to Hartree-Fock theory.[32,33] These operators, called
Kohn-Sham operators, are given by:

8



2.1 Density Functional Theory

f̂KS = −1
2∇2 + VS(r) . (2.19)

The Kohn-Sham orbitals are then determined by solving the Kohn-Sham equations:

f̂KSϕi = ϵiϕi , (2.20)

where ϵi is the energy of the i-th orbital. The effective potential VS(r) is chosen such
that the electron density of these orbitals, ρS(r), is equal to the real density ρ0(r):

ρS(r) =
n∑

i=1
|ϕi(τ )|2 = ρ0(r) . (2.21)

By solving the Kohn-Sham equations self-consistently, the Kohn-Sham orbitals and
the effective potential are obtained iteratively until convergence is achieved. The non-
interacting reference system only accounts for a part of the kinetic energy, leaving out
the part that is not described by the Coulomb interaction of the electrons. To account
for this difference, we combine the non-classical part of the electron-electron interaction
Encl[ρ0] with the difference between the exact and reference kinetic energy to obtain
the exchange-correlation functional EXC[ρ0]:

EXC[ρ0] = T [ρ0] − TS[ρ0] + Encl[ρ0] , (2.22)

Here, T [ρ0] represents the exact kinetic energy, and TS[ρ0] is the kinetic energy of the
non-interacting reference system. The exchange-correlation functional EXC[ρ0] contains
both the kinetic correlation energy and the potential correlation and exchange energy.
The equation to calculate the energy of the ground state electron density E[ρ0 is:

E[ρ0] = TS[ρ0] + EeN[ρ0] + J [ρ0] + EXC[ρ0] , (2.23)

where EeN[ρ0] represents the electron-nucleus interaction energy and J [ρ0] is the clas-
sical electron-electron interaction energy.
To ensure that the effective potential VS(r) yields Kohn-Sham orbitals that reproduce
the same density as the real system, as much of the energy expression as possible must
be expressed in terms of the Kohn-Sham orbitals. Therefore, the equation can be
written as:

9



2.1 Density Functional Theory

E[ρ0] = − 1
2

n∑
i=1

⟨ϕi(r)| ∇2 |ϕi(r)⟩ −
n∑

i=1

M∑
A=1

∫ ZA

rA1
|ϕ1(r1)|2dr1

+ 1
2

n∑
i=1

n∑
j=1

∫ ∫
|ϕ1(r1)|2

1
r12

|ϕ1(r2)|2dr1dr2 + EXC[ρ0(r)] .

(2.24)

Here, ϕi(r) represents the Kohn-Sham orbitals, and ZA is the charge of the Ath nucleus.
The first term represents the kinetic energy, the second term is the electron-nucleus
interaction energy, the third term is the classical electron-electron interaction energy,
and the fourth term is the exchange-correlation energy EXC[ρ0(r)] evaluated at the
ground state electron density ρ0(r). To obtain the orbitals one can minimize the en-
ergy expression under the constraint of orthonormality using the variational principle.
This results in a Euler-Lagrange equation which gives the one-electron Kohn-Sham
equations:−1

2∇2
i −

N∑
A=1

ZA

rA1
+

n∑
j=1

∫ |ϕj(r2)|2
r12

dr2 + ∂EXC[ρ0(r)]
∂ρ0(r)

ϕi = ϵiϕi . (2.25)

These equations are expressed as a Schrödinger-like equation with an effective potential
that includes the Coulomb interaction between electrons, as well as the exchange-
correlation potential. The Kohn-Sham orbitals are eigenfunctions of this effective
potential, and thus, the equations have to be solved self-consistently. To solve the
equations, a basis set expansion is used, where the orbitals are expressed as a linear
combination of basis functions:

ϕi =
∑

µ

cµiχµ , (2.26)

Examples of basis functions include plane waves, Gaussians, or numerical atomic or-
bitals. The Kohn-Sham equations (2.25) can then be solved by transforming the differ-
ential equations into a generalized eigenvalue problem that can be solved using linear
algebra.
The exchange-correlation functional EXC serves as a catch-all for any unknown energy
contributions in density functional theory. The accuracy of DFT calculations is heavily
reliant on finding a suitable approximation for this functional. However, improving
the functional is not a straightforward task. Different approaches can be organized
in the Jacob’s ladder of density functionals, which reflects their trend of increasing
accuracy.[34] The first step on this ladder is the local density approximation (LDA),
which models the exchange-correlation energy as that of a locally homogeneous electron
gas. The generalized gradient approximation (GGA) builds on the LDA approach by
considering not only the electron density, but also its local gradient, to account for
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inhomogeneity in the electron density. The meta-GGA approach goes a step further by
incorporating the kinetic energy density alongside the gradient. In hybrid functionals,
a fraction of exact Hartree-Fock exchange is included.

2.1.3 Spin-Polarised Calculations
To accurately describe hydrogen atoms, a closed shell approach is not sufficient. In-
stead, the different spin states of the electrons must be considered separately. This is
achieved by defining the electron density with a spin of s = +1

2 and s = −1
2 separately,

denoted as ρα(r) and ρβ(r), respectively. These densities are obtained by integrating
the square of the wave function |Ψ(τ )|2 over all the spatial coordinates except for the
first electron’s coordinates, for which the spin is fixed.

ρα(r) = n
∫

...
∫

|Ψ(τ )|2dτ2...dτn for s1 = +1
2 , (2.27)

ρβ(r) = n
∫

...
∫

|Ψ(τ )|2dτ2...dτn for s1 = −1
2 . (2.28)

The total electron density ρ(r) is then obtained as the sum of ρα(r) and ρβ(r):

ρ(r) = ρα(r) + ρβ(r) , (2.29)

The magnetization density Q(r) is defined as the difference between ρα(r) and ρβ(r):

Q(r) = ρα(r) − ρβ(r) . (2.30)

The total ground state energy can be expressed as a functional of either ρα(r) and
ρβ(r) or ρ(r) and Q(r) in a collinear spin-polarized DFT calculation, with:

E[ρα, ρβ] = E[ρ, Q] . (2.31)

To represent both electron density and spin density, a non-interacting reference system
in the Kohn-Sham approach must use separate Kohn-Sham operators for α and β

electrons. This is achieved through the following operators:

f̂α
KS = −1

2∇2 + V α
S (r) , (2.32)

f̂β
KS = −1

2∇2 + V β
S (r) . (2.33)

While a single Slater determinant can still represent the system, there may be different
spatial orbitals for α and β electrons, and the α- and β-orbitals may not be orthogonal
to each other. In contrast to the restricted case, the total energy functional in spin
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polarised density functional theory depends on both α- and β-densities:

E[ρα, ρβ] = T u
S [ρα, ρβ] + EeN[ρ0] + J [ρ0] + Eu

XC[ρα, ρβ] . (2.34)

The kinetic and exchange-correlation functional components of the total energy func-
tional also depend on the α- and β-densities, and the exchange-correlation potential for
the α- and β-electrons can be obtained by deriving the exchange-correlation functional
with respect to the α- and β-densities, respectively.[35] When ρα = ρβ, the spin density
becomes zero and T u

S [ρα, ρβ] is defined the same way as TS[ρ].

2.1.4 Exchange Correlation Functionals
PBE
The PBE density functional theory functional, named after Perdew, Burke, and Ernzer-
hof, is a widely used GGA functional in solid and surface chemistry.[36] It is a relatively
simple functional that incorporates all of its parameters from fundamental constants,
which makes it useful for a wide range of systems. The functional is composed of ex-
change and correlation terms, each containing a LDA term ϵLDA

X and ϵLDA
C , respectively,

as well as a term that depends on the gradient FX(ρ, Q, |∇ρ|) and H(ρ, Q, |∇ρ|). The
exchange-correlation functional is computed as an additive combination of these terms,
given by the equation:

EPBE
XC [ρ, Q] =EPBE

X [ρ, Q] + EPBE
C [ρ, Q]

=
∫

ρϵLDA
X (ρ)FX(ρ, Q, |∇ρ|)dr +

∫
ρ
[
ϵLDA

C + H(ρ, Q, |∇ρ|)
]

dr . (2.35)

The PBE functional’s reliance on fundamental constants and its ability to perform well
for a wide range of systems make it an attractive option for computational studies in
solid and surface chemistry.

RPBE
The RPBE density functional theory functional, developed by Hammer et al.,[37] is a re-
vised version of the PBE functional. While the two functionals are similar, the RPBE
functional uses a different mathematical form for the exchange energy enhancement
factor FX(ρ, Q, |∇ρ|) compared to the PBE functional. This change has a significant
effect on the performance of the functional, reducing the overbinding of chemisorbed
atoms and molecules by approximately half compared to the PBE functional. This im-
provement makes the RPBE functional particularly useful for studying systems where
chemisorption plays a critical role, such as surface chemistry or heterogeneous catal-
ysis. Overall, the RPBE functional represents a valuable advancement in the field of
density functional theory and has found widespread use in the study of materials and
chemical systems.
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PBE0
The PBE0 density functional theory functional is a hybrid GGA functional that com-
bines the exchange energy from both the PBE functional and Hartree-Fock theory.
This functional was developed by Adamo and Barone[38] and provides an improved de-
scription of electronic structures for a wide range of molecular and solid-state systems.
The PBE0 functional has proven to be a powerful tool in the study of chemical reac-
tions, excited states, and molecular properties. The inclusion of Hartree-Fock exchange
energy improves the accuracy of the functional, especially for systems with strong corre-
lation effects. The Hartree-Fock exchange is simply added to the exchange-correlation
energy:

EPBE0
XC = EPBE

XC + 1
4
(
EHF

X − EPBE
X

)
(2.36)

The PBE0 functional also performs well for transition metal-containing systems, which
can be difficult to describe accurately using standard GGA functionals.

2.1.5 Periodic Boundary Conditions
To construct a realistic surface for interaction with gas phase particles, a large number
of atoms are required to create an uninterrupted surface. However, simply extending
the surface by adding more atoms, to circumvent creating artificial interruptions in
the surface, increases the cost of the calculations immensely. This is where periodic
boundary conditions (PBC) come into play.
The idea behind PBC is to place the atoms generating the surface into a box that
is replicated in all directions. This results in a slab of atoms that is infinite in two
directions and is separated by vacuum in the third direction. In this direction, the
slab is continuously repeated. If an atom in the slab moves out of the box in one
direction, its image will enter from the opposite direction, ensuring that the surface
remains uninterrupted.
To apply periodic boundary conditions to the system, a periodic potential is required.
This is where Bloch’s theorem[39] comes in. Bloch’s theorem states that any eigenfunc-
tion ϕn

k(r) can be expressed as a product of a function un
k(r) with the periodicity of

the lattice and a plane wave eikr, where n is the band index and k is a vector in the
first Brillouin zone:[40]

ϕn
k(r) = un

k(r)enkr . (2.37)

The Brillouin zone is the Wigner-Seitz[41] cell of the reciprocal space. The two parts
of the eigenfunction, un

k(r) and eikr, can be considered separately. The first part must
be a function with the periodicity of the lattice, for which plane waves are a natural
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choice. In addition to using plane waves to describe the periodicity of the lattice, it is
also possible to describe it by periodically replicating local basis functions χ0

i as

χn
i (r − Rn) = χ0

i (r) , (2.38)

with

Rn = n1a1 + n2a2 + n3a3 , (2.39)

where a1,2,3 are the lattice vectors of the periodic box and n1,2,3 are integer numbers
denoting the position of the periodic image. This approach has the advantage that
consistent basis functions can be used even without periodic boundary conditions.
The second part of Bloch’s theorem contains the vector k, which can be any vector
in the first Brillouin zone. However, since the eigenvalues depend on the k-vectors,
also called k-points, the selection of k-points is crucial. Using more k-points leads to
a more accurate description of the system, but for each selected k-point, the Kohn-
Sham equations must be solved separately. Therefore, the minimal number of k-points
needed to achieve convergence should be chosen.
From the chosen k-points, a weighted sum of energies is calculated. This means that
the k-point grid must be checked to find the point at which increasing the k-point
density yields energy convergence to the desired accuracy.

2.1.6 Dispersion Correction
The accurate description of long-range van der Waals (vdW) interactions between
atoms and molecules is crucial in many areas of chemistry and materials science. While
standard DFT accounts these interactions only incompletely, the addition of a pairwise
interatomic C6R

−6 term to the DFT energy has been a popular approach[42,43] to include
vdW interactions in DFT calculations, yielding the DFT+vdW method:

EDFT+vdW = EDFT + EvdW (2.40)

Here, EDFT is the DFT energy and EvdW is the vdW energy correction, which takes
the form:

EvdW = −1
2
∑
A,B

fdamp(RAB, R0
A, R0

B)C6ABR−6
AB , (2.41)

where C6AB and R−6
AB are the C6 coefficient and the distance-dependent R−6 term,

respectively, for the interaction between atoms A and B, and the damping function
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fdamp(RAB, R0
A, R0

B) is a function of the vdW radii of the atoms and the interatomic
distance RAB.
The Tkatchenko-Scheffler (TS) correction[44] is a widely used method to calculate the
vdW interaction energies, where the C6 coefficient and the vdW radii are determined
from the ground state electron density of DFT or Hartree-Fock theory and reference
values of the free atoms using the Hirshfeld partitioning of the electron density.[45] In
this method, the damping function fdamp(RAB, R0

AB) is a function of the sum of the
vdW radii R0

AB, given by:

fdamp(RAB, R0
AB) =

1 + e
−d

(
RAB

sRR0
AB

−1
)

−1

. (2.42)

where d is a parameter that adjusts the steepness of the damping function, and sR is
a free parameter that is fitted to a database of converged Coupled Cluster Singles and
Doubles with perturbative triples [CCSD(T)] binding energies of 22 different dimers
with varying interaction strengths. The value of d is typically set to 20, providing a
satisfactory description of binding energy curves for rare gas and vdW-bonded organic
molecule dimers.

2.2 Machine Learning Potentials

2.2.1 Introduction to Machine Learning Potentials
While first principles methods like DFT offer accurate predictive power and agree
well with experimental data for various systems, their application is limited to smaller
systems due to their high computational costs. Machine learning potentials that are
trained on electronic structure data can maintain the accuracy of first principle methods
while speeding up energy and force evaluations by several orders of magnitude. This
makes it possible to extend the length, time and quantity scales of first principles-
quality atomistic simulations to more complex systems. Several studies[6,46–49] have
demonstrated the ability of MLPs in accelerating the simulation of complex systems
while maintaining accuracy.
The extension of MLPs to larger and more complex systems has been a focus of re-
search in recent years, and this development can be categorized into four generations.[50]

The first generation of MLPs, which dates back to 1995, was developed for low-
dimensional systems and relied on neural network potentials.[51–53] The second genera-
tion of MLPs was introduced in 2007 in the form of high-dimensional neural network
potentials.[21,50,54–56] HDNNPs enable the simulation of high-dimensional systems con-
taining tens of thousands of atoms by approximating the Major part of the atomic
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interactions to be local. The energy is expressed as a sum of atomic energy contribu-
tions. These atomic energy contributions are estimated based on the local structrual
environment which is represented within a cutoff sphere that is translationally, rota-
tionally, and permutationally invariant. This generation of MLPs has been widely used
due to its cost-effectiveness and applicability to a broad range of systems. Examples of
second-generation MLPs include Gaussian approximation potentials,[57] moment tensor
potentials,[58] and many others.[59–61] A variety of structural descriptors have also been
developed for second-generation MLPs, such as atom-centered symmetry functions
(ACSF),[62] bispectrum,[57] Coulomb matrices,[63] overlapp matrix,[64] smooth overlap
of atomic positions,[65] and many others.[66]

Recent developments in machine learning potentials have resulted in the third and
fourth generations of MLPs. The third generation MLPs take into account the long-
range interactions beyond the cutoff sphere, such as electrostatics and dispersion.
To include the electrostatic interaction, element-specific fixed charges[57,67] or local
environment-dependent atomic charges can be used.[68–70] The fourth generation MLPs
further incorporate non-local and global dependencies, allowing for the description
of non-local charge transfer and different global charge states. This generation in-
cludes methods such as charge equilibration neural networks,[71] Becke population neu-
ral networks,[72] and fourth-generation HDNNPs.[73,74]

2.2.2 High Dimensional Neural Network Potentials
One of the most used MLPs is the second generation HDNNP,[21] which employs a
separate feed-forward neural network potential for each type of element included in a
structure. The energy contribution Em

n of each element M included Nm times in the
structure is calculated via these neural networks, and the energy of the entire system
Etot is obtained by summing up the energy values for each atom:

Etot =
M∑

m=1

Nm∑
n=1

Em
n . (2.43)

This approach works well for up to four different elements, but adding more elements
exponentially increases the configurational space. Feed-forward neural networks were
the first and simplest type of artificial neural networks used for neural network poten-
tials, they can only calculate the energy of one structural setup since any change in
the number or ordering of atoms changes the number or input of the input nodes in
the neural network. However, feed-forward neural networks are effective in calculating
the energy of individual atoms. Figure 2.1 illustrates the structure of a feed-forward
neural network.
A feed-forward neural network comprises interconnected layers that process information
in one direction and culminate in the output layer. The input layer, which utilizes
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Fig. 2.1: The figure illustrates a feed forward neural network that analyzes the struc-
tural information of an atom, of element M , using structural descriptors GM . The
network consists of neurons, denoted as y, which process this information and ulti-
mately produce the energy value EM of the atom. The weight parameters a and b
are applied to the processed values to establish the appropriate relationship between
G and E. (graphic taken from [75])

symmetry functions Gi, provides data about the atomic environment to the network
by characterizing the chemical environment of an atom up to a cutoff radius. The
hidden layers, which usually consist of one to three layers containing up to 50 neurons
each, receive and process information from the input layer before transmitting it to
the output layer. Neurons in the hidden layers obtain input from every node in the
preceding layer, weighted by a parameter aij

kl. All values are summed up by the neuron
yj

l , after which a bias weight bj
l is added. A continuous non-linear activation function

f j
l such as a hyperbolic tangent or Sigmoid function evaluates this value in the neuron,

with the bias weight being added to ensure the value lies in the non-linear region of
the activation function. The output of the activation function is used as input to the
following layer. The output layer uses a linear activation function to output energy
without any restrictions. The atomic energy Em

n is the sum of all weighted values
of every node in the last hidden layer plus a bias weight. A separate atomic neural
network is fitted for each element M . The complete equation of the feed-forward neural
network with 2 hidden layers is as follows:
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Em
n = f 3

1

(
b3

1 +
n2∑
l=1

a23
l1 · f 2

l

(
b2

l +
n1∑

k=1
a12

kl · f 1
k

(
b1

k +
nG∑
i=1

a01
ik · Gi

)))
. (2.44)

As previously mentioned, the data used to train a neural network must be invariant
under translation, rotation, and permutation. Symmetry functions play a crucial role in
achieving this. These functions are many-body functions centered on individual atoms,
which describe the environment around them within a cutoff radius Rc. Choosing
the correct value of Rc is essential, as it should encompass all relevant interactions.
Typically, Rc falls between 6 and 10 Å. Importantly, since symmetry functions are
local in nature, HDNNPs can model arbitrarily large systems by stitching together
many different local parts.
Forces can be analytically computed from symmetry functions. Therefore the functions
must be continuous and differentiable. Additionally, the effective cutoff radius for forces
is twice the normal Rc. For instance, two atoms, i and j, located to each other at a
distance approaching Rc, will experience forces influenced by the symmetry functions
of the other atom, which can extend up to a distance of 2 · Rc away from i.
Symmetry functions are typically divided into two types: radial symmetry functions
Grad

i and angular symmetry functions Gang
i . Radial symmetry functions depend on the

distance between the central atom i and other atoms j and are defined as:

Grad
i =

∑
j

e−η(Rij−RS)2 · fc(Rij) (2.45)

where Rij is the distance between atoms i and j, η is a scaling parameter, and RS is
a reference distance. The function fc(Rij) is a cutoff function that smoothly decreases
the contribution of atoms up to a cutoff distance Rc. Specifically, it is defined as

fc(Rij) =


0.5

[
cos

(
πRij

Rc

)
+ 1

]
for Rij ≤ Rc

0 for Rij ≥ Rc

. (2.46)

The summation over all atoms ensures that the number of symmetry functions remains
constant even as the number of atoms in the cutoff sphere changes during a simulation.
This is necessary because the number of neurons in a neural network cannot be changed
once it has been trained on a fixed set of data.
Angular symmetry functions describe the structural relation between three atoms i, j,
and k and are defined as:

Gang
i = 21−ζ

∑
j

∑
k ̸=j

[1 + λ cos(θijk)]ζ · fc(Rij) · fc(Rik) · fc(Rjk) , (2.47)
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where θijk is the angle between the vectors pointing from atom i to j and from atom
i to k. The parameters ζ and λ control the shape of the angular symmetry functions.
These functions depend on the parameters η, RS, ζ, and λ, which can be optimized to
accurately capture the chemical environment of the atoms.
Figure 2.2 provides examples of the symmetry functions used in this work. The total
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Fig. 2.2: The figure displays radial and angular symmetry functions for H, O, and Al.
The top-left panel shows the radial symmetry functions for H, while the top-right panel
shows the radial symmetry functions for O and Al. In both cases, the radial symmetry
functions are calculated with RS = 0 Å and Rc = 6.35 Å. The bottom panel shows the
angular symmetry functions for H, O, and Al with η = 0.0 Å−2. (graphic taken from
[75])

number of symmetry functions required for a system depends on the complexity of
its chemical environment and the number of elements present. Typically, there are
between 20 and 200 symmetry functions per atom.
A complete high dimensional neural network is depicted in figure 2.3. The Cartesian
coordinates Rm

n of a given structure are transformed into symmetry functions Gm
n ,
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Fig. 2.3: The figure illustrates the architecture of a high-dimensional neural network
potential. In this approach, the atomic coordinates R are first transformed into sym-
metry functions G, which are then utilized by the atomic neural network potentials
(NNPs) to calculate the atomic energies E. These atomic energies are subsequently
summed up to obtain the total energy Etot. (graphic taken from [75])

which are then processed by the atomic NNPs to generate atomic contributions Em
n to

the total energy Etot. To fit the weight parameters aij
kl and the bias weights bj

k to the
reference data, a gradient-based iterative optimization algorithm is employed, to min-
imize the root mean squared error (RMSE) of the predicted total energies and forces.
The global adaptive Kalman filter has been shown to perform well in this process.[76,77]

During validation, the RMSE serves as a preliminary indication of the accuracy of the
fit and helps detect over- or underfitting, as well as gaps in the configurational space.
A high test RMSE could result from overfitting or be caused by structures which are
not well described by the data set, hinting towards gaps in the configurational space.
Figure 2.4 illustrate the effects of overfitting and underfitting.
The flexibility of a neural network is determined by the number of neurons it has. As
the number of neurons increases, so does the flexibility of the network. However, an
excessive number of neurons can lead to overfitting. To detect overfitting, a common
approach is to set aside around 10% of the reference data as a testing set and evaluate
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Fig. 2.4: Representation of (a) underfitting, (b) an accurate fit and (c) overfitting
(graphic taken from [55]).

how accurately the neural network predicts the structures it was not trained on. If the
RMSE of the test set is larger than that of the training set, it may indicate overfitting.
Nevertheless, outliers, or an inhomogeneous or incoherent reference data set could
also cause a similar pattern. If both the training and testing RMSEs are too large,
it may be necessary to investigate the flexibility of the network and the descriptive
power of the symmetry functions. In this case, adjusting the number of neurons and
symmetry functions may be helpful. However, if the form of the function is not the
main cause of the accuracy problem, it may be necessary to evaluate the training set.
The training set should sufficiently describe the PES as the neural network’s ability
to extrapolate is limited. Extrapolation can be detected by checking if the value of
a symmetry function is beyond the range that the neural network has been trained
on. Another challenge is to identify inaccurate predictions of structures within the
range of the symmetry functions. To address this issue, a second or even more neural
networks with an equally good fit should be trained. If the energy or force predictions
of this second neural network show a significant difference, it suggests that the PES in
that region of the configuration space is not adequately represented in the training set.
Structures that caused extra- or interpolation errors can be discovered by conducting
MD or Monte Carlo (MC) simulations.
The following reviews [50, 54–56, 78] provide more comprehensive and detailed infor-
mation about HDNNPs and ACSFs.
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2.2.3 Molecular Dynamics
Following the Born Oppenheimer approximation, it is possible to simulate the classical
motion of nuclei based on the PES V (RA), which determines the forces FA acting on
the nuclei A, as given by the expression:

FA = −∂V ({RA})
∂RA

. (2.48)

To calculate the time evolution of the system, the equation of motion proposed by
Newton is utilized, with the mass mA of nucleus A being a contributing factor:

FA = mAR̈A , (2.49)

However, finding an analytic solution for this many-body problem is not possible. Clas-
sical MD[79,80] is utilized to find an approximate solution, which involves numerically
solving the coupled differential equations with discrete time steps δt.
To numerically solve Newton’s equations of motion, an algorithm that conserves energy
and angular momentum, is time reversible, and symplectic is necessary. The velocity
Verlet algorithm[81] satisfies these conditions, except for energy conservation due to the
finite time steps. However, using sufficiently small time steps can yield satisfactory
energy conservation. The algorithm propagates the positions R and velocities v in
time t by first calculating the updated positions R(t + δt) and forces F (t + δt) as:

R(t + δt) = R(t) + v(t)δt + F (t)
2m

δt2 , (2.50)

and then updating the velocities v(t + δt) as:

v(t + δt) = v(t) + F (t) + F (t + δt)
2m

δt . (2.51)

This numerical integration of Newton’s equations of motion provides a practical and
efficient method for simulating the classical motion of nuclei in the framework of the
Born Oppenheimer approximation. To ensure that the energy of the system remains
constant during the simulation, the microcanonical (NV E) ensemble is utilized, with
N denoting the number of particles and V representing the volume of the cell. However,
for a more accurate representation of a system that is in equilibrium with its environ-
ment, the canonical ensemble (NV T ) should be employed, where the temperature is
kept constant instead of the energy. To achieve this, a thermostat is required, such
as the Nosé-Hoover Thermostat[82–84] (NH). The NH thermostat simulates a coupling
to a heat bath, extending the 6N -dimensional phase space by two artificial degrees of
freedom and achieving a constant system temperature. It’s worth noting, however, that
the NH thermostat alone may not result in ergodic dynamics, which can be restored
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by utilizing a nested chain of NH thermostats.[85] By doing so, the simulated system
can be effectively transformed into the canonical ensemble.

2.2.4 Experimental Setup
The theoretical results gathered in this thesis will be compared to experimental data.
The experimental scattering apparatus has been described elsewhere.[18] Briefly, using
photodissociation of a supersonic molecular beam of hydrogen iodide via pulses of KrF
eximer laser light at 248.35 nm hydrogen atoms with incident kinetic energies Ein =
1.92(2) eV and Ein = 0.99(2) eV were created. The hydrogen atoms then scattered
from the room temperature [0001] Al2O3-surface at a azimuthal incident angle ϕi =
0◦ and a polar incident angles θi = 40◦ and 55◦ and then were exited to a long-lived
Rydberg state by two laser pulses. The first pulse excites the 1s -> 2p transition at
121.6 nm and the second one the 2p -> 34p transition at 365.9 nm. The travel time
of the metastable atoms is then measured after a field-ionization and detection by a
multichannel plate detector. The arrival time is then recorded by a multichannel scaler
and via the calibrated flight time the velocity and kinetic energies of the H atoms
can be calculated. The [0001] Al2O3-surface held in the UHV chamber are cleaned by
annealing for several hours in oxygen (10–6 mbar) at 600–750 ◦C.
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3 Computational Details

3.1 Density Functional Theory

3.1.1 Fritz Haber Institute-Ab Initio Materials Simulations
All DFT calculations were performed using the Fritz-Haber-Institute ab initio materials
simulations (FHI-aims)) package (version 160328 3 from October 23, 2016).[86,87] The
RPBE,[37] PBE[36] and PBE0[38,88] functionals were used, including the Tkatchenko-
Scheffler dispersion correction.[44] For all elements, the "light" settings were used for
the basis set of the numeric atom-centered basis functions. The atomic energies for H,
O and Al were calculated without periodic boundary conditions, while periodic bound-
ary conditions were applied to the bulk and slab calculations for α-Al2O3. Γ-centred
k-point grids have been used for all periodic systems. For bulk α-Al2O3 structures a
6×6×2 k-point grid was used, while the 2×2 slab super cells used a 2×2×1 k-point grid.
For calculations of the α-Al2O3 slab including H atoms collinear spin polarization was
applied, while for the bulk and slab structures without H atoms restricted closed-shell
calculations were performed. The H atoms were initialized with a "initial moment"
of 1. Atomic spins were calculated using the Hirshfeld spin moments.[45] The calcula-
tions were converged in a self-consistent field (SCF) procedure to a value of 10−6 eV
for energies and 10−4 eV Å−1 for forces. Geometry optimizations were done using the
Broyden-Fletcher-Goldfarb-Shanno algorithm[89–92] with an energy convergence crite-
rion of 0.005 eV. Convergence tests for the k-point grid can be found in section 3.3.1.

3.2 Molecular Dynamics Simulations using
LAMMPS

To run MD simulations, the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) (version from March 16, 2018)[93] using the n2p2 extension to include
HDNNPs[94][95] was used. MD simulations for active learning were run in the ensemble
NV T and NV E with a time step of δt = 0.5 fs for simulations without a H atom and
δt = 0.25 fs for simulations with a H atom. The velocity Verlet algorithm was used as
the integrator. To simulate the NV T ensemble a Nose Hoover thermostat[85] with a
temperature damping factor of 0.01 ps was used. For the trajectories using experimen-
tal incident kinetic energies and angles, the slab structures and atom velocities were
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3.3 High-Dimensional Neural Network Potentials

taken from the NV E trajectories at 300 K every 0.1 ps. The H atom was then initial-
ized at a random position 6.3 Å above the surface with velocity vectors corresponding
to the experimental kinetic energy, polar angle and azimuth angle. The trajectory then
was run for 0.5 ps or until the H atom was at a distance of 7.8 Å from the slab.

3.2.1 Phonopy Calculations
Phonon band structures were calculated with the phonopy code (version v.2.17.1)[96,97]

using both force constants from the FHI-aims RPBE DFT calculations, as well as
force constants calculated using the HDNNP. Force constants were calculated using a
geometry optimized primitive α-Al2O3 cell with 10 atoms. Geometry optimization for
the HDNNP calculation was carried out using LAMMPS with the n2p2 extension. To
determine the correct symmetry, the symmetry precision threshold was set to 5 · 10−4.
The graphs were created using the Python interface. The interface between phonopy
and RuNNer was created using a Python script.

3.3 High-Dimensional Neural Network Potentials

3.3.1 Construction of the Reference Data Set
Overview

The prediction of a HDNNP is not based on physical foundations, but relies solely on
the information it learned from the data set it was trained on. Because the HDNNP
can represent the reference PES with high accuracy, it is important to consider the
completeness, consistency, and quality of the data set when creating it. Without a
complete data set, not all reaction pathways can be studied with the same accuracy,
leading to a biased or inaccurate description of the system. If the data set is incon-
sistent, the MLP will have difficulty fitting the data, resulting in higher errors and
unreliable behavior. Finally, only with high-quality calculations will the MLP be able
to produce high-quality results that are free from errors or bias. To ensure these cri-
teria of the data set, the creation of reference data is a multistep process of training,
validation, and extension, commonly referred to as active learning.
During the creation of this thesis, three separate data sets have been created, using
three different approaches for the initial generation of structures. The first data set
had no initial reference structures, while the next two were able to start using either
the structures or the potentials of their predecessors. Although the initial generation of
structures was very different for all three data sets, further improvement and extension
followed the same principles of active learning.
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3.3 High-Dimensional Neural Network Potentials

General Structure Design

In order to give an accurate description of the system, the training structures for
the data set must be carefully constructed. The data set consists of three different
structure types, a bulk structure, a slab structure and a structure with a slab and H
atoms. In this section, convergence calculations based on the RPBE DFT functional
are shown, while the PBE convergence calculations are described elsewhere.[75] The
bulk structures are in the data set to ensure that the HDNNP is able to extrapolate
to bulk geometries in the middle of the slab. The structure consists of one unit cell of
α-Al2O3 , which includes 30 atoms. The calculation can introduce many bulk chemical
environments into the fit, enhancing its ability to accurately describe the interior of
the slab compared to slab calculations. The calculations use a 4×4×2 k-point grid
which was converged in energy to below 1 meV compared to a 7×7×3 k-point grid.
The energy convergence is shown in the top panel of figure 3.3.
For the convergence calculations for bulk structures the formation energy ∆Eform was
used, derived from the reaction from the elements,

2Al(s) + 3
2O2(g) → α-Al2O3(s) , (3.1)

while for the slab calculations the energy difference between the 3 H atom positions
above the unoptimised slab, shown in figure 3.2, was used. For the different amounts
of layers and different super cell sizes, the relative positions of the H atom stayed the
same. The three energy differences, ∆E1 = EPos1 − EPos2, ∆E2 = EPos2 − EPos3 and
∆E3 = EPos3 −EPos1 were calculated from the respective energies. Slab structures must
ensure an accurate description of the surface, as well as the H atom on the surface,
while cost-effectively describing all the chemical environments needed for the H atoms.
The k-point grid for a slab created from a unit cell of α-Al2O3 was set to 4×4×1, with
an energy convergence compared to a 10×10×2 k-point grid of less than 1 meV shown
in the lower panel of figure 3.3. Using a 2×2 super cell decreases the interaction energy
between the H atoms in periodic images to around 1.5 meV compared to the 3×3 super
cell shown in figure 3.1. Increasing the amount of O-Al-Al layer from six in the bulk
unit cell to eight in the slab ensures that the symmetry functions of the H atoms on the
surface will go to 0 in the middle of the slab. The energy for the number of slab layers is
converged to 2 meV compared to twelve layers. More layers increase the computational
time more than the small increase in energy convergence, and "bulk"-like environments
would result in a significant enough increase in accuracy. The slab structure for MD
simulations using experimental conditions consist of a 2×2 super cell with 8 O-Al-Al
layers. The slab is terminated with the [0001] surface of α-Al2O3 and was relaxed with
constrained bulk lattice constants in the x and y directions. The surface termination
ends with one Al per unit cell on top of the O layer, which is called the half metal
termination in literature.[98] A vacuum of 21 Å was added between the slabs in the z
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O-Al-Al Layer

Fig. 3.1: Representation of the bulk unit cell (left) and 2×2 slab super cell (right).
The red spheres are O atoms, and the gray spheres are Al atoms. One O-Al-Al layer
is highlighted between the two black bars.

direction. Adding a H atom at a distance of 7 Å from the surface, with a symmetry
function cutoff of 12 a0 or 6.35 Å, which is a commonly used standard, gives plenty
space to put a H atom at the opposite site of the slab at the same distance while
keeping a distance of 7 Å between the H atoms.
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3.3 High-Dimensional Neural Network Potentials

(a) (b) (c)

Fig. 3.2: Representation of the three different positions of the H atom. The red spheres
are O atoms, the grey spheres are Al atoms and the white spheres are H atoms. (a) is
the first position, (b) is the second position, and (c) is the third position. The upper
part depicts the slab from the side, while the lower part shows it from the top.

Initial Structure Generation for the PBE Data Set

The initial data set for a MLP typically is based on structural data generated from
experiments, for example the bulk crystal structure of α-Al2O3. The structure is opti-
mized using the DFT functional to generate the first data point. Geometry-optimized
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Fig. 3.3: Energy convergence for different k-point grid settings. (a) Bulk unit cell of
α-Al2O3 converged to a k-point grid of 7×7×3. The k-point grid of 4×4×2 already
has an energy convergence of less than 1 meV. (b) Differences between three H atom
positions above the α-Al2O3 slab with 8 O-Al-Al layers. ∆E1, ∆E2 and ∆E3 are the
differences in energies between the positions of H atoms shown in figure 3.2. The k-
point grid of 4×4×2 already has energy convergence of less than 1 meV, uses the same
density as the bulk cell and is scalable for the 2×2 super cell.

structures are an ideal starting point for the construction of a reference data set, since
they describe the lowest energy point of the PES, from which the rest of the PES
can be explored. Low-energy structures are crucial for most chemical systems and can
be created using reasonable random displacements, which introduce variance in the
chemical environments without the need of prior knowledge of the system. A system-
atic mapping of all chemical environments is unfeasible due to the complexity of the
system and the cost of the needed calculations. The data set needs to be restricted
to the chemical environments available for the system given the nature of the system
of interest. For example a structural configuration, which needs a reorganisation that
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Fig. 3.4: The energy convergence for slab O-Al-Al layer count and super cell size. (a)
Differences between three H atom positions above the α-Al2O3 slab with a different
number of layers, from six layers as in the bulk unit cell up to double the amount. ∆E1,
∆E2 and ∆E3 are the differences in energies between the positions of H atoms shown
in figure 3.2. Energy convergence of less than 4 meV is reached with eight O-Al-Al
layers, which also increase the distance between the two surfaces to more than twice
the cutoff radius for the symmetry functions. (b) Differences between three H atom
positions above the α-Al2O3 slab at different super cell sizes. Energy convergence of
less than 1.5 meV is reached for the 2×2 super cell.

only happens at 1000 K, does not need to be included into a reference data set for a
system used for simulations at 300 K. Small random displacements around the ener-
getic ground state will enable the first HDNNP fit to run in the direction of thermal
distortions. Reasonable displacements vary from system to system, but one should
stay with small displacements. Especially when working with an incomplete data set,
high-energy or force outliers can easily derail the fitting process. Here, displacements of
0.2 Å yielded reliable results, while higher displacements caused problems in the initial
fitting process. Those random displacements were made for the optimized geometry
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structure, as well as for structures with scaled lattice vectors of up to ±2%. Structures
with distances between the atoms of less than 1.2 Å were filtered out.
A similar process was applied to generate slab structures, without scaling the lattice
constants and random displacements up to 0.2 Å. In order to add the first chemical
environments for the H atom, a grid approach was applied. Initially, structures of the
geometry optimized slab with H atoms in an equally spaced grid in the irreducible
unit of the unit cell were calculated. Due to the symmetry of the surface the H atom
only needs to be placed over one third of one unit cell to gain information about every
possible chemical environment. The other two thirds can be obtained by three-fold
rotation of the irreducible unit as shown in figure 3.5 alongside a representation of
the grid. The spacing of the grid in all direction was initially set to 0.5 Å, from a
distance of 0.6 Å above the surface, measured by the oxygen layer, up to 7.1 Å from the
surface. Again, structures with atomic distances of below 0.75 Å were excluded. Later
a closer spacing of 0.3 Å for layers between 0.6 Å and 1.7 Å was added to improve the
description of the chemical environments close to the surface. The H atom was added
on top and below the slab to maintain the inversion symmetry of the slab. To further
increase the initial quality of the fit, H atoms were added above slab structures with
randomly displaced atoms, similar to the slab structures without a H atom. Although
the inversion symmetry was broken because of random displacements, H atoms were
still added on both sides of the slab to gain more H atom chemical environments per
structure.
After creating an initial fit using the structures mentioned in this section, additional
structures were added using active learning which is described in more detail in section
3.3.1.

Initial Structure Generation for the First RPBE Data Set

The structures created for the first data set served as a catalyst to initiate the de-
velopment of the second data set. Applying the same methodology used during the
generation of the PBE data set, the geometrically optimized bulk and slab structures
were calculated and scaling factors were determined to adjust the PBE lattice con-
stants to match the RPBE lattice constants. Using these scaling factors, the lattice
constants and atom positions of the structures in the PBE data set could be scaled
to mimic RPBE structures. The scaled structures could then be calculated using the
RPBE functional. This created a huge initial data set that resulted in an especially
stable first fit. Scaling the structures using just the factor between the lattice constants
would not have reproduced the subtle differences between both functionals, for example
differences between the Al-O distances and the O-O distances, which would be scaled
equally. But the scaled structures would still sample a reasonable structural space on
the RPBE PES. This sampled space would be biased by the structures preferred by
the PBE PES and extra care has to be taken to remove this bias by adding the missing
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(a)
(b)

Fig. 3.5: (a) Top and (b) side view of the H atom grid used for the final RPBE
data set. The red spheres are O atoms, the grey spheres are Al atoms and the white
spheres are H atoms. In the top view the irreducible unit of the α-Al2O3 unit cell is
framed in green. The black arrow markers show the three-fold rotation axis to rotate
the irreducible unit to fill the whole unit cell. The orange and blue frames are the
rotated irreducible units shown inside the 2×2 super cell of the slab structure.

structures needed to fully describe the RPBE PES. Especially any local minima in the
RPBE PES, which are not in the PBE PES, need to be found and sampled. This
structural search was simplified by already having a HDNNP fit which runs relatively
stable MD simulations. Those missing structures then needed to be found applying
active learning further described in section 3.3.1.

Initial Structure Generation for the Final RPBE Data Set

After detecting problems with the calculation of the electron spin, explained further in
section 4.1.4, the general setup of the structures containing H atoms had to be changed.
In summary, electron spin of the H atom on one side of the slab could be moved to
the other side of the slab during the DFT SCF cycle, resulting in energy-structure
relations which the HDNNP is not able to describe due to the cutoff of the symmetry
functions. As a solution for this problem the lowest 4 O-Al-Al layer were frozen in
geometry optimised places and only one H atom on the top side of the slab was added.
This means that the top side of the slab, including the H atom, is always interacting
with the same bottom side, which eliminates the need for the HDNNP to be able to
see the other side of the slab. Since the bottom side is frozen in geometry optimized
positions, which are energetically favored, the amount of interaction between both sides
should be kept at a minimum. Analyzing the Hessian matrix of the slab, with the H
atom in close proximity to the surface atoms, the residual atomic Hessian submatrix
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norm values ||hHX||, between the atoms in the first frozen layer and the H atom, were
determined. The value is below 0.2 eV Å−2 for every frozen atom, as shown in figure
3.6. As frozen layers are now required for all structures with a H atom, only structures
lacking H atoms were eligible for transfer from the initial RPBE data set. A set of
structures with the H atom on a grid was created using the procedure described in
section 3.3.1. Additionally, the HDNNP fit, using the first RPBE data set, was used
to generate the structures for the final data set. For this structure search, a farthest
point sampling approach (FPS)[99] was applied. This was now easily applicable because
there was already a working HDNNP fit and only one H atom per structure.
MD simulations under experimental conditions were run only adding one H atom and
freezing the lowest four O-Al-Al layers using the HDNNP trained on the first RPBE
data set. The symmetry function values of the H atom can be used to find the H atom
chemical environments in the trajectory, which are the least similar to the chemical
environments already included in the data set. To find the structures with the most
different chemical environments for the H atom in the trajectory, the Euclidean distance
of the difference between the symmetry function vector of the H atom in the new
structure with every symmetry function vector of the H atoms in the data set was
calculated. This results in a list of values corresponding to the similarity between the
H atom chemical environment of the new structure with the chemical environments
already included in the data set. The smallest of those values for every structure in
the trajectory was then compared with each other. From this list, the structure with
the highest value was added to the data set. Of all structures of the trajectory the
H atom has the least similar chemical environment with all chemical environments in
the data set. In the beginning this process was repeated for a trajectory, after adding
the first structure to the data set and including the first added structure in the search
for the least similar chemical environment. This process ensures that many different
chemical environments for the H atom are added to the data set without the risk
of adding the same chemical environment multiple times. Atoms close to the surface
have large symmetry function values, since they see a lot of atoms in their cutoff range.
Initially mainly those structures are added to the data set, since this also means their
difference vector is usually longer than the vector of H atoms further from the surface,
where their symmetry function values are closer to 0. This is a useful characteristic of
this method because more chemical environments for the H atom close to the surface
are needed because these structures have the highest energies and forces. Using the
HDNNP fit based on the first RPBE data set, structures were generated until the fit
using the new data set was able to run simulations without too many extrapolation
warnings. Subsequently, the data set was improved using a combination of FPS and
active learning, described in the next section.
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Fig. 3.6: Hessian analysis of the influence of atoms in the slab on the H atom in close
proximity to the surface. The atomic Hessian submatrix norm values ||hHX|| for each
atom is plotted vs the distances in z direction from the H atom. The frozen layers
start at a distance of 8 Å.

Active Learning

In order to create a data set for machine learning potentials, there needs to be a way
to generate structures which are missing to fully map the energetically relevant config-
uration space. This introduces the challenge that, especially when the goal is to create
a reactive potential, not all possible configurations and pathways are already known.
Often those potentials are created to explore pathways the system only rarely visits,
which are impossible to explore using ab-inito MD, due to the high computational
cost of long simulations. Here, active learning can be applied to use the potential to
find missing structures and explore the configurational space guided by the forces and
energies of the fitted PES. For active learning, HDNNP MD simulations are run in
order to create new structures in the energy and temperature regions of interest. Then
the structures are analysed and the structures which would expand the configurational
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space of the data set are picked to add them to it. The data set can be extended to de-
scribe new regions of the PES by using the ACSF values to find structures with values
not already included in the data set. Using the RuNNer program, those extrapolations
are easily detected and the structures can be added to the data set.
Finding regions in the configuration space where the HDNNP does not have enough in-
formation to accurately interpolate is more difficult. Here, multiple HDNNP fits, using
different architectures or splittings in training and testing set, can be used to calcu-
late structures along the simulation to determine if their energy and force prediction
diverge. Structures where two HDNNPs diverge in their prediction are not adequately
covered by the data set and should be added to it. Using both approaches, the data set
can be expanded and improved iteratively until the target accuracy and configurational
coverage is reached. Especially early in the iterative process it should be checked that
the structures found using active learning are not too similar. If simulations run into
the same unexplored region of the PES and the predictions becomes too unreliable due
to extrapolation, the extrapolated structures could be almost identical. It is recom-
mended to limit the number of structures added for each iteration and increase the
number of iterations. Increasing the data set size will also increase the fitting time,
which then increases the time required per iteration. At this point the simulations
should be stable enough to not run into the same local environment, where the amount
of structures added per iteration can be increased. Running simulations at higher tem-
perature can also speed up the mapping of relevant chemical environments after stable
simulations are possible at the target temperature to generate missing structures that
would take a long time to appear at the target temperature. Furthermore, structures
should always be checked for unphysically short bond distances, since the HDNNP
does not contain an energy penalty when atoms come very close. Setting reasonable
distances for every element combination and discarding structures generated with too
small distances can reduce the amount of unnecessary DFT calculations. This active
learning method should be repeated until the HDNNP is at the desired accuracy and
covers all configurations of interest.

Training of the High-Dimensional Neural Network Potential

In order to train a HDNNP using the reference data set the data set will be split into
a training set and a test set. The fraction is usually 90% training and 10% testing
set. The training set includes the structures the HDNNP fit will learn from, while the
testing set is used to check the predictive power of the HDNNP and detect overfitting.
Different settings for the atomic neural network architectures, the training algorithm,
the weight initialization and the amount and weight of training on forces can be chosen
to obtain an accurate HDNNP description of the PES. Depending on the system, some
settings can have rather huge influences on the accuracy and training progress of the
HDNNP and usually every hyper parameter should be tested at least once. Initially,
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the accuracy of the HDNNP fit can vary wildly, especially when fitting data with a
large energy range or high forces. It is recommended to fit multiple HDNNPs per
iteration to be more resilient against fits which are not converging, as well as to pick
the best performing fits to use for active learning. Initially, the best criterion for fit
quality is the RMSE of the energies, as well as the forces in the training and test
set. The lower the RMSE, the better is the overall description of the training or test
set. Usually the aim should be to have the smallest testing set RMSE possible. A
small testing set RMSE indicates good transferability to unknown structures, which
the test set is emulating. A big difference between training and test RMSE can be a
sign of overfitting, where the interpolation quality of the fit is decreased, or due to an
insufficient coverage of all chemical environments, where some chemical environments
are only in the testing set. That indicates that the fit is not well trained for those
structures and has high errors in the predictions. Usually those cases can be detected
by plotting the error of the prediction vs the value of the energy or force. If there are
structures with especially high error in the testing set but not in the training set it is a
sign for an incomplete data set. Overfitting can usually be prevented by stopping the
optimization process early, once the testing set RMSE stops decreasing. Plotting 1D
energy curves along the PES can also help to find cases of overfitting by comparing a
more densely populated HDNNP energy curve with the DFT reference calculations.
HDNNPs can also help improve the quality of the data set by helping to identify incon-
sistent electronic structure data. Finding single structures with small inconsistencies
is nearly impossible because of the large number of structures in the data set and the
thermal fluctuations of the structures already creating a wider energy range. But here
simple grouping of structures can give enough additional information to detect those
inconsistencies. For example the origin of the calculation can help finding calculations
with different or wrong setups, or find a set of structures from MD simulations, all
using a wrong starting structure. The easy accessibility makes plots of the prediction
error against the binding energy or the structure number a great tool to check the data
set. Another way to use the fitting power of the HDNNP to find inconsistencies in the
data set is to use system parameters to split the data set and fit only a subsection of
it. For example, one could compare the quality of fits including all structures with fits
excluding especially skewed unit cells to find out if those calculations have convergence
problems due to the skewed lattice angles. If the RMSE values of fits excluding those
structures are far better than when including them, it can be very helpful to take a
better look at those structures to determine if they are inconsistent with the rest of
the calculations or just not sampled enough. In this project fits with all training data
were compared to fits only including structures with a total spin of S = 1

2 per H atom.
Although spanning a similar energy range, the fits using only structures with a total
spin of S = 1

2 per H atom had roughly half the RMSE of the fits using all training
data, as can be seen in figure 3.7. Further analysis showed that the data points with a
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spin of less than S = 1
2 per H atom were not consistent with the rest of the structures,

doubling the RMSE for fits including all data points.
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Fig. 3.7: Comparison of different train RMSE values for fits that include all structures
in the PBE data set and fits that only use structures with a total spin of S = 1

2 per H
atom.

It is possible to establish upper limits for energy and force values to eliminate irrelevant
configurations that are not relevant to the desired temperatures and pressures. Addi-
tionally, it is possible to set a different threshold for forces to exclude high forces from
the fitting process, while keeping the structure and all other forces accessible for the
fit. Those thresholds should be checked regularly to not exclude relevant data points
during the sampling of all important regions of the PES.
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3.3.2 RuNNer
The RuNNer code (version from August 22, 2019)[55,56,100] was used to construct the
final RPBE HDNNP. A cutoff of Rc = 12 a0 or 6.35 Å was applied to the ACSFs. The
parameters of the radial ACSFs are compiled in table A.1. For the radial ACSFs all
combinations for the parameters λ = {−1, 1}, ζ = 1, 2, 4, 16, and η = 0 a−2

0 , 0.05 a−2
0

were used. Some combinations of the radial symmetry functions are missing, which are
listed in the appendix in table A.2. This results in 46 H ACSFs, 98 O ACSFs, and 94 Al
ACSFs. Atomic neural networks consist of 2 hidden layers with 15 neurons each. The
weights were initialized using the Nguyen-Widrow scheme. The HDNNP was trained
on the total DFT energies minus the atomic energies, calculated using single atoms in
vacuum. A full list of the RuNNer settings is provided in Tab. A.3.
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4 Results and Discussion

4.1 Validation of the Final RPBE α-Al2O3 High
Dimensional Neural Network Potential

4.1.1 Overview
With the aim of accurately describing the interaction between a H atom and the [0001]
α-Al2O3 surface using a theoretical representation, the reference data and the HDNNP
trained on the reference data need to be carefully validated. Only if the reference data
set is well converged and without inconsistencies, the HDNNP can as accurate as possi-
ble. And only if the representation of data set by the HDNNP is as accurate as possible
the resulting insights into the system can be trusted. To gain this trust the careful
construction of the structural setup was described in section 3.3.1. Here the data set
will be analyzed, using the HDNNP in order to find inconsistencies within it. The bulk
α-Al2O3 system will be analyzed and the prediction of the HDNNP will be compared
to the reference DFT results. The PES of the grid structures will be analyzed and
the PBE and RPBE PES will be compared. The description of the bulk and surface
α-Al2O3 systems is of great importance for the energy transfer from the H atom to the
surface during the MD simulations. Comparing the phonon band structure calculated
using the HDNNP with the band structure calculated with DFT will show how well
the HDNNP is able to reproduce energy transfer mechanisms in the system. Using a
structural setup to circumvent the H atom spin inconsistencies during the SCF cycle of
the DFT calculation, the H atom interaction can be validated by comparing the DFT
PES with the HDNNP PES in detail. Ab-initio MD simulations can also be recal-
culated using the HDNNP to ensure correct prediction during MD simulations using
experimental conditions. Lastly the kinetic energy distributions calculated from simu-
lations using the HDNNP can be compared to experimentally measured distributions
at different incident conditions to not only validate the HDNNP but also investigate
how well the functional is able to describe the system and understand where there are
deviations from reality.
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4.1.2 Reference Data Set
The final RPBE data set consist of 15812 structures, which include 808 bulk struc-
tures and 15004 slab structures from which 2300 do not contain a H atom. The final
HDNNP has a RMSE for the testing data set of 0.746 meV atom−1 for the energy and
0.103 eVÅ−1 for the atomic force components. For the training set the RMSE values
are 0.257 meV atom−1 for the energy and 0.111 eVÅ−1 for the force components. The
largest energy error is 5.47 meV atom−1.
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Fig. 4.1: Absolute prediction error ∆E = |EDFT − EHDNNP| of the training set plotted
vs. the binding energy of the structure. The points are colored by type of structure,
bulk, slab and slab with H atom. The lower the energy of each structure type the lower
the errors, which tend to rise as the energy level increases.

The energy RMSE is well below the target error for machine learning potentials fitted
to DFT reference calculations of 1.0 meV atom−1. For all structures including H atoms
the bottom half of the slab is frozen. These frozen atoms sum up to 41% of all atoms.
Those atom share similar chemical environments between in all structures. The energy
and force prediction for those atoms is very accurate, due to their abundance in the
data set. Including such frozen atoms to the structures decreases their RMSE, without
increasing the accuracy of the prediction for the moving region of the slab and the
interaction with the H atom.
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Fig. 4.2: Absolute prediction error ∆E = |EDFT − EHDNNP| of the testing set plotted
vs. the binding energy of the structure. The points are colored by type of structure,
bulk, slab and slab with H atom. The maximum prediction error is roughly twice as
large as for the training set (figure 4.1), but most of the structures are described as
well as in the training set.

4.1.3 Validation of the bulk System using Density Functional
Theory

First the bulk α-Al2O3 structures will be analyzed. They are crucial for a accurate
description of the target system, since the inside of the slab should be as close to the
bulk system as possible. In order to teach the HDNNP the correct bulk energies and
forces directly, the bulk structures are included in the training process. As a first step
of validating the potential we can calculate the lattice constants and bulk modulus B0

for bulk α-Al2O3, which are shown in table 4.1. The bulk modulus is calculated using
the Birch-Murnaghan equation of state[101,102]

E = E0 + B0V

B′

 V0
V

B′

B′ − 1 + 1
− B0V0

B′ − 1 , (4.1)

determining the equilibrium energy E0 and volume V0 as well as the bulk modulus as

B0 = −V
dP

dV

∣∣∣∣∣
T

. (4.2)
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Fig. 4.3: Prediction error ∆Fi = Fi,DFT−Ei,HDNNP of the training set for each Cartesian
force component i plotted vs. the DFT force component. The points are colored by
type of structure, bulk, slab and slab with H atom.

Fig. 4.4: Prediction error ∆Fi = Fi,DFT−Ei,HDNNP of the testing set for each Cartesian
force component i plotted vs. the DFT force component. Force error distributions are
very similar to the training set indicating good transferability.

The energy E and volume V are fitted for each c/a-ratio scaled from 0.97 to 1.03 in
0.01 steps. The HDNNP accurately reproduces the RPBE lattice constants for the
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Tab. 4.1: The calculated and experimental lattice constants a and c of α-Al2O3
[103] in

Å and bulk modulus B0 in GPa.
Compound parameter RPBE HDNNP Exp.
α-Al2O3 a 4.827 4.824 4.7554

c 13.145 13.139 12.991
B0 222 216 253

bulk structure and predicts a slightly lower bulk modulus. The bulk lattice constants
are used for the creation of the slab, here a good representation of the bulk properties
is important for the description of interaction between the surface and the H atom.
The deviation of the bulk modulus prediction is small and should result in a good
representation of the compression characteristics of the system. The accurate prediction
of the bulk lattice constants and bulk modulus lays the foundation for a accurate
description of the slab system.
During the scattering process the H atom will loose kinetic energy, which is transferred
to the surface in different channels. One of the channels for the H atom to transfer
energy is phonon excitation. The accurate description of the phonons is important for
the system in order to accurately describe the kinetic energy loss of the H atom during
the scattering process and the energy distribution across the slab. This mechanism
will greatly influence the final measured kinetic energy of the H atom, which makes
an accurate description crucial for the comparison with the experiment. In Figure
4.5 the phonon band structures calculated using the phonopy program[96,97] is shown.
The band structure calculated using DFT forces is compared to the band structure
calculated using HDNNP forces, showing small differences between both spectra at low
frequencies, which slightly increase at higher frequencies. The overall band structure
is very similar and will result in very similar phonon excitation properties.
The HDNNP can accurately describe the bulk properties, which is shown by the small
RMSE values, as well as the lattice constants, the bulk modulus and the phonon
spectrum. This gives the HDNNP a ideal basis for the description of the α-Al2O3 slab,
as well as the interaction with the H atom.

4.1.4 Investigation of the H Atom Spin
Overview

During the validation process of the HDNNP one of the system properties investigated
thoroughly was the H atom spin. Calculations of structures including H atoms were
initialized with a spin of S = 1

2 on the H atom and analyzed using the Hirshfeld
spin moments.[45] For H atoms far away from the surface the spin is located solely on
the H atom, when the H atom is closer to the surface more and more spin density is
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Fig. 4.5: Phonon band structure of bulk α-Al2O3 using a (2x2) primitive cell, created
from the optimized 1x1 bulk unit cell. The spectrum was calculated using phonopy[96,97]

shared with the surface atoms, decreasing the spin density on the H atom. The general
behavior is shown for the PBE data set in figure 4.6 and for the RPBE data set in
figure 4.9. In order to analyze the total spin of the structure, the absolute total spin

Sabs,tot =
Natom∑

i

|Si| (4.3)

is calculated as the sum of the absolute spin components of each atom |Si| in the
structure. Based on the absolute total spin of the slab structures the DFT calculations
can be classified into three different spin states. The calculation resulted either in an
absolute total spin of 1

2 per H atom, no spin, or a value between 0 and 1
2 per H atom.

During the SCF cycles of the calculation the electron density per spin state is constantly
adjusted to find the minimum energy for the structure. During this adjustment the
initial spin values are changed to lower the energy. If not specified directly, the total
spin will also change during the calculation. For example both H atoms could start
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with a spin of S = 1
2 and during the SCF cycle the spin of one H atom flips to S = −1

2 ,
resulting in a total spin of the structure of 0, and an absolute total spin of Sabs,tot = 1.
The majority of the computations resulted in a spin state with Sabs,tot = 1

2 per H atom,
whereas approximately 20% of them yielded a spin of 0 or a value in between these
two. The following section will investigate this behavior to ensure data set consistency.
The goal is to accurately predict the DFT results using the HDNNP.

Spins in the PBE Data Set

In order to investigate the interaction of the H atom with the surface the H atom
spin was plotted as a function of the distance to the closest surface atom in figure
4.6. Additionally the data points are colored according to the absolute total spin of
the structure. Most of the H atom spins follow a common pattern, at large distances
from the surface the H atom carries the whole spin of the structure. When the H atom
interacts with the surface the spin density is shared with the surface, reducing the spin
of the H atom. In some cases the absolute total spin is also reduced, resulting in either
some residual spin density or 0 spin density. A considerable amount of structures with
H atoms closer to the surface end up with less than S = 1

2 per H atom. Since the
total spin of the system during a DFT calculation is not constant, it is possible that
those calculations are in the correct DFT spin state. That would mean spin state is
consistent in energy and forces with the rest of the calculations with a spin state of
S = 1

2 per H atom.
The number of structures that are not in the S = 1

2 per H atom state is too vast to
examine each one meticulously, and a preliminary random structural investigation was
inconclusive. however, using the ACSFs the structures can be analyzed using the same
method the HDNNP is using to represent the structure. There should be a correlation
between the spin of a H atom and its symmetry function values, because both depend
directly on the chemical environment. Plotting the difference between spin of two H
atoms ∆SH vs. the Euclidean distance between the symmetry function vectors

∆GH = |GH1 − GH2 | (4.4)

of the H atoms H1 and H2 should reveal this correlation. Figure 4.7 shows these plots in
panels (a), (b) and (c). When two H atoms from structures with different Sabs,tot are
compared, they will be shown in panel (b) if one of them comes from a structure with
Sabs,tot = 0 and none of them has a Sabs,tot in between 0 and 1

2 per H atom and, in panel
(c) if either one of them has a Sabs,tot in between 0 and 1

2 per H atom. For structures
with Sabs,tot = 1

2 per H atom there is a clear correlation between the H atom spin and its
symmetry function vector as seen in panel (a) of figure 4.7. Here, a different spin value
always indicates a different chemical environment, described by the symmetry function
vector. This is not the case for structures with an absolute total spin of less than S = 1

2
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Fig. 4.6: H atom spin plotted over the distance between the H atom and the closest
atom. The points are colored according to the absolute total spin of the structure, if
the structure has a spin larger than 0.475 per H atom it is blue, less than 0.025 per H
atom it is red and in between those to values it is yellow.

per H atom, as seen in panels (b) and (c) of figure 4.7. Here, even for very small ∆GH

the maximum difference in spin of ∆S = 1
2 is reached. Comparing all panels of figure

4.7 shows that the HDNNP is able to differentiate between the different spin values
for the structures with Sabs,tot = 1

2 per H atom, while there are structures without a
clear correlation between the chemical environment described by the ACSFs and the H
atom spin with Sabs,tot < 1

2 per H atom. This lack of correlation presents a significant
problem. If the HDNNP cannot distinguish between structures that possess varying
energy-relevant characteristics, it will inevitably fail to make accurate predictions for
those structures. This remains true even if such structures are consistent with the rest
of the calculations. Ultimately, the HDNNP will prove incapable of reproducing the
PES.
In order to test if those structures are problematic for the HDNNP, two sets of HDNNP
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(a) (b)

(c)

Fig. 4.7: The difference in H spin ∆SH between two H atoms plotted the Euclidean
distance the symmetry function vectors of both ∆GH shown for combination of H
atoms from structures with a absolute total spin of Sabs,tot = 1

2 per H atom in (a),
combinations including H atoms from structures with a spin of Sabs,tot = 0 and Sabs,tot =
1
2 per H atom in (b) and combinations including H atoms from structures with a spin
in between Sabs,tot = 0 and Sabs,tot = 1

2 per H atom in (c) for all H atoms in the PBE
data set up to |∆GH| = 0.5.

fits were generated. The first set is fitted to the whole data set, including all structures,
while the second set only considers structures with a spin of Sabs,tot = 1

2 per H atom,
which also includes spin-free bulk and slab structures without H atoms. Comparing the
generated fits will show the impact of the structures with Sabs,tot < 1

2 per H atom on the
accuracy of the HDNNP. To compare the fits, their respective RMSE of the training
set, which serves as an overall measure of accuracy for all structures, and the prediction
error for an optimized slab structure with a H atom located beyond the cutoff radius of
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the surface are evaluated. The latter metric was chosen, because 1D energy plots of the
adsorption of the H atom onto the optimized surface were investigated as a measure
for fit accuracy, and an energy offset was observed at distances larger than the cutoff
distance. This energy difference is indicative of a problem with the data set, since the
HDNNP should, in principle, be able to learn the correct energy for a H atom and
the optimized slab structure. The fits share the same neural network architecture and
general settings and only differ in their random seed and the allowed energy range of
the structures.
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Fig. 4.8: Comparison of different training set RMSEs and the prediction error for an
optimized slab structure with a H atom located beyond the cutoff radius of the surface
EHgap for two sets of fits. The first set includes all structures in the PBE data set,
whereas the second set only uses structures with an absolute total spin of Sabs,tot = 1

2
per H atom.

The results of both sets of fits are shown in figure 4.8. As can be seen, excluding the
structures with a total spin of less than Sabs,tot = 1

2 per H atom reduces the mean
RMSE of the fits from around 0.6 meV atom−1 to around 0.3 meV atom−1, while also
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reducing the energy difference for structures of the optimized surface with H atoms
at large distances from around 0.03 eV to less than 0.005 eV. The decrease in RMSE
and removal of the energy difference at large H atom distances provides evidence that
there is indeed a consistency problem between the structures with a total spin of
Sabs,tot = 1

2 per H atom and structures with less total spin, but the extent of the
problem is still unknown. In particular, it is plausible that either all or only a specific
subset of those structures are problematic. To efficiently train accurate models, there
needs to be a way to ensure consistent data for the already calculated structures,
as well as for all future structures without hindering the active learning procedure.
Ensuring consistent data is crucial for constructing a machine learning potential and
identifying the inconsistent data is a difficult and time consuming task. The chance of
adding inconsistent data must be minimized to not cause problems in the future. First,
the DFT calculations have to be checked for correct convergence. If the calculations
are already correctly converged to lowest energy for each structure, the setup of the
HDNNP or the structures needs to be changed. Since the calculations with an absolute
total spin of Sabs,tot = 1

2 per H atom are consistent, fixing the total spin of the system
during the DFT calculation could lead to consistent data.

Fixed Total Spin Calculations

The HDNNP fitting power has revealed that structures with a spin value of less than
Sabs,tot = 1

2 per H atom are inconsistent with the rest of the structures. This incon-
sistency could stem from one of two issues. It is possible that the DFT calculation’s
SCF cycle did not converge to the same PES for every calculation, or that the HDNNP
is incapable of distinguishing between structures with varying spin values, or perhaps
both. Using the symmetry function values for the H atom, it was already determined
that the HDNNP is not able to differentiate the structures, but it is not known if that is
due to incorrect DFT calculations. With the aim to get a better understanding of the
DFT calculation, structures were recalculated fixing the total spin to be Stot = 1

2 per
H atom. If the resulting energies and spins are consistent with the earlier calculations
which had an absolute total spin of Sabs,tot = 1

2 per H atom, and create spin states
which are discernible by the HDNNP, the problem would be solved. Depending on
the structure, fixing the spin had different results. Some of the structures converged
to reasonable spin states which where very similar to the structures with an absolute
total spin of Sabs,tot = 1

2 per H atom, but had a lower energy than the original calcu-
lation, whereas other calculations had a higher energy than before. Some calculations
exhibited spin states, where the sum of all the atomic spin contributions of one side of
the slab stayed below S = 1

2 while the other side summed up to more than 1
2 . Further

investigation of the latter case shows, that during the calculation the spin density is
transferred from one side of the slab to the other, if that spin state is energetically
favored. This is problematic in two different aspects. First this effect is invisible to
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the HDNNP. In order to correctly describe this spin shift, the atoms where the spin
was shifted to would need to have the opposite side of the slab inside their cutoff ra-
dius. This would be against the idea behind this setup, which is to have two separate
surfaces per structure, which are not influencing each other. This also is important for
the second aspect of why this behavior is problematic. In a real system, the electron
density cannot be shifted to the other side of the slab, because the distance between
the two sides is too large. However, in some cases, this can artificially lower the en-
ergy of a structure that would otherwise be energetically unfavorable by moving the
spin density to the other side of the slab, where it is less unfavorable. When using
the HDNNP to describe such a system accurately without increasing the cutoff radius,
only one hydrogen atom can interact with the surface, and everything invisible to this
interacting H atom must be identical for all structures. If the side of the slab with the
H atom interacts with the an identical opposite side of the slab for all structures, the
effect of the other side of the slab on the hydrogen atom remains constant and does not
require fitting by the HDNNP. To ensure this constant influence, the atoms on the side
without the H atom need to be constrained in geometrically optimized positions. An
energetically favorable structure will also limit the amount of spin density that can be
shifted to this side. The exact changes to the structural setup are described in section
3.3.1.

Spins in the Final RPBE Data Set

Applying these changes to the structures and generating a new data set solved the
apparent problem of inconsistencies in the data due to the spins. While the number of
structures generated with Sabs,tot = 1

2 per H atom did not change, the HDNNP is now
able to differentiate the different spin states. In figure 4.9 the H atom spin is plotted
vs. the distance between the H atom and the closest atom on the surface. Previously,
many structures with H atoms exhibiting spins Sabs,tot < 1

2 at higher distances and with
relatively large H spins were present. Now, in contrast they are limited to structures
where the H atom is in close proximity to the surface atoms and has lost most of its
initial spin. The number of outliers also drastically decreased.
For this new data set, we perform the same test as for the PBE data set, to see whether
the HDNNP can differentiate the spin states by plotting the difference in spin ∆SH

vs. the Euclidean distance of the symmetry function vectors ∆GH. For all pairs of H
atoms, symmetry function vector changes and H atom spin changes are correlated. In
figure 4.10 panel (b) the number of points drastically decreased compared to the PBE
data set. This is because the structures with an absolute total spin of S = 0 are in very
different chemical environments compared to structures with different absolute total
spins and the plot only includes pairs with ∆G ≤ 0.5. The tests show that the data
set is more consistent with itself, because here different H atom spins are correlated
with different chemical environments.
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Fig. 4.9: H atom spin plotted over the distance of the H atom and the closest surface
atom. The points are colored according to the absolute total spin of the structure, if
the structure has a spin larger than 0.475 per H atom it is blue, less than 0.025 per H
atom it is red and it is yellow otherwise.

As a final consistency test, again, fits including all structures and fits including only
structures with Sabs,tot = 1

2 per H atom, including bulk and slab structures, were
calculated. The results of this test are shown in figure 4.11. The accuracy of the
HDNNPs is the same for both data sets.
The quality of the data set is fundamental for the accuracy of the HDNNP. During the
validation of the accuracy of the HDNNP it is important to investigate the potential in
multiple different ways and not only focus on the target parameters. Since the H atom
spin is not the target parameter, it was not the training objective to accurately predict
the spin of the H atom, but analyzing how the spin changes with the distance of the
H atom to the surface made it possible to detect problems with the DFT calculations
and with the ability of the HDNNP to differentiate between different spin states.
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(a) (b)

(c)

Fig. 4.10: Plot of the difference in H spin ∆SH between 2 H atoms over the Euclidean
distance of the symmetry function vectors of both ∆GH. Pairs of H atoms from struc-
tures with a absolute total spin of Sabs,tot = 1

2 per H atom in (a), pairs including H
atoms from structures with a spin of Sabs,tot = 0 and Sabs,tot = 1

2 per H atom in (b)
and pairs including H atoms from structures with a spin in between Sabs,tot = 0 and
Sabs,tot = 1

2 per H atom in (c), for all H atoms in the PBE data set up to |∆GH| = 0.5.

4.1.5 Comparing PBE and RPBE H Atom Interactions
The DFT functional determines the results of every calculation used in the data set
for the HDNNP. Therefore, the choice of functional is therefore critical for an accurate
description of the system. Within GGA functionals, there are two options, the PBE and
RPBE functional. The first data set was created using the PBE functional. This choice
was based on the fact that the lattice constant and bulk modulus of the bulk system
were closer to the experimental values.[75] As previously stated, the bulk system forms
the foundation for the slab system, with the slab being derived from a bulk structure.
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Fig. 4.11: Comparison of different training set RMSE values and the prediction error
for an optimized slab structure with a H atom located beyond the cutoff radius of the
surface EHgap for fits that include all structures in the RPBE data set and fits that
only use structures with a total spin of S = 1

2 per H atom.

The functional was selected based on the bulk properties. Once the HDNNP was
created for the PBE data set, experimental kinetic energy loss spectra were compared
to theoretical spectra, revealing a systematically higher kinetic energy loss predicted
by theoretical calculations. This discovery prompted an investigation of the interaction
between the H atom and the surface using both functionals to determine whether the
RPBE functional would lead to a lower kinetic energy loss. Based on the experimental
analysis of the system, the kinetic energy loss of the H atom is mainly driven by
phonon excitation and can be described using the binary collision model.[104,105] The
final kinetic energy of the H atom then can be approximated by the equation

Ekin,s = Ekin,i · 1(
1 + mH

Msur

)2 ·

√1 −
(

mH

Msur

)2
· sin2(θ) − mH

Msur
· cos(θ)

2

, (4.5)
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where Msur is the effective mass of the surface, mH is the mass of the H atom and
θ = θi +θs. Following this equation, there are two factors influencing the kinetic energy
loss, the effective mass of the surface Msur and the initial kinetic energy Ekin,i. Although
the initial kinetic energy of the calculated trajectories matches the experimental value,
the H atom can accelerate towards the surface, resulting in increased kinetic energy
during the scattering event. This increase in kinetic energy leads to a larger kinetic
energy loss compared to cases in which the H atom is not accelerated. After the
scattering incident, the H atom loses kinetic energy as it moves away from the surface
and exits the attractive potential of the surface. A more attractive potential thus
increases the kinetic energy at the scattering incident, which then increases the lost
kinetic energy. For both functionals, using the grid approach introduced in section
3.3.1, the PES for the H atom on top of the surface can be plotted. A comparison
of different 2D cuts through the PES shows similarities and differences of the system
with the two functionals.
(a) (b) (c)

Fig. 4.12: 2D energy cuts through the PES of the H atom above the equilibrated
surface. (a) depicts the PBE PES, (b) shows the RPBE PES and (c) shows the
difference between both methods, ∆E = ERPBE,form − EPBE,form. The energy difference
∆E for the PBE and RPBE energies is the difference between the optimized slab
structure with the H atom at infinite distances compared to the H atom at the distance
z from the O layer of the slab. The data points are from the grid approach described
in the construction of the data set in section 3.3.1, and the points are interpolated
linearly on a trigonal grid.

When comparing the adsorption energy of the H atom using the PBE and RPBE
functionals (see figure 4.12), it becomes apparent that the RPBE surface is only half
as attractive as the PBE surface. Specifically, the RPBE surface has an adsorption
energy of 0.1 eV, while the PBE surface has an adsorption energy of 0.2 eV. If the H
atom in the RPBE functional is more weakly bound to the surface, the kinetic energy
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loss should be smaller.
However, also the other part of equation 4.5 also needs to be considered. The effective
mass of the surface is determined by how strongly bound the surface atoms are and how
well they can be deformed. The bulk modulus measures how well the bulk material
deforms under pressure. Comparing the bulk modulus calculated with the RPBE
functional, B0 = 222 GPa, with the PBE functional, B0 = 228 GPa, shows that the bulk
modulus for the RPBE functional is not significantly lower than for the PBE functional.
But the relative difference is much smaller compared to the difference in adsorption
energy. While the lattice constants and bulk modulus of the PBE functional are slightly
closer to the experimental values, the H atom adsorption energy of the RPBE functional
is only half of the PBE functional. Considering these factors contributing towards the
H atom energy loss discussed in this section, the clear choice of functional is the RPBE
functional. The rest of the thesis will fully focus on the RPBE results.

4.1.6 Validation of the Slab System using Density Functional
Theory

Overview

Ensuring consistent reference data is one step of validating the accuracy of the HDNNP,
as the HDNNP can only predict accurately if the the data is consistent. If the reference
data is consistent the next step is to validate that the potential is accurate in the
relevant regions of the PES. Therefore, it has to be investigated, if the structures
in the data set cover the relevant regions and allow for an accurate prediction of all
relevant chemical environments. A general view of the PES can be gained by comparing
the prediction of the HDNNP with the DFT energies for the grid structures. This will
give a basis for the accuracy of the predictions over a larger structural space at nearly
no extra cost. It can lay the base line of the expected accuracy, since it shows the
PES for the lowest energy structures, as well as for the best sampled surface H atom
interactions. To investigate the relevant energy surface for the MD simulations using
experimental conditions, the system can be explored by ab-initio MD simulations.
They are an expensive method, which probes a specific pathway through the PES very
accurately, but due to its computational cost, is very limited in exploring large amounts
of space on the PES. Picking the right areas to compare the prediction of the HDNNP
with the reference method is difficult. Using the data generated by the HDNNP,
MD simulation trajectories with different kinetic energy loss at different scattering
angles can be picked to probe different scattering trajectories more easily. In the
following section the HDNNP will be validated using the mentioned methods. In
particular, comparing the visualization of the PES spanned by the grid structures and
the prediction of the HDNNP with ab-initio MD simulations.
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Visualization and Validation of the Potential using the H Atom Grid

The H atom grid used for the initial structure generation allows the identification of
repulsive and attractive areas of the PES for the H atom. A good understanding of
attractive and repulsive configurations can greatly improve the understanding of the
system. It can reveal adsorption sides and diffusion channels, as well as point out the
heights and structures of the surface visible for the H atom at different kinetic energies.
In figure 4.13, eight 2D cuts through the PES in plane with the surface are shown. The
points are interpolated using linear interpolation between points on the triangular grid.
Figure 4.13 depicts three panels, with each panel representing a different type of the
PES. Panel (a) displays the PES calculated using RPBE DFT. In panel (b), the PES
is predicted using the HDNNP. Finally, in panel (c) shows the difference between the
DFT PES and the HDNNP prediction, highlighting discrepancies between the two
models. The panels show the PES for the (2×2) super cell, the energy difference ∆E

is calculated between the surface and H atom at infinite distance and the surface with
the H atom at the distance z from the O layer. There are as many contour lines for
energy differences below 0 and above 0 for the HDNNP and RPBE PES in panel (a)
and (b). This makes the structure of the PES in the attractive region of the PES
visible, but also aggravates smaller differences between the HDNNP and the DFT data
points. The symmetry of the surface is clearly represented by the PES. The attractive
potential of the Al atom on top of the highest O-layer is visible in the middle of the
cell, starting from the top. This minimum also depicts the threefold rotation axis, as
well as being the global minimum for the H atom on top of the relaxed surface. Closer
to the surface, the Al atom becomes repulsive for the H atom, drastically increasing
the energy compared to the surrounding area covered by O atoms. The area around
the Al atom, which is flanked by O atoms, is most attractive for the H atom at 3 Å
off the surface, slowly becoming more repulsive toward the Al atom. At approximately
1.5 Å the O covered area becomes less repulsive than the Al atom. The H atom favors
the area around the Al atom and will adsorb there under normal circumstances. The
HDNNP potential in the middle panel of figure 4.13 reproduces all those features with
high accuracy. The maximum deviation shown in the right panel is approximately
−0.04 eV. This would represent an error of 0.3 meV atom−1. Besides the maximum
deviation at around 2 Å from the surface, the error is distributed over the surface, both
with higher and lower predictions of the HDNNP. There is no bias toward higher or
lower energies. Overall the prediction of the HDNNP accurately describes the PES for
the H atom on top of the equilibrated surface, reproducing all features of the DFT
PES.
The MD trajectories using experimental conditions that are calculated with the HDNNP
have H atoms scattering from the surface with an initial kinetic energy of 1.92 eV.
The HDNNP needs to be able to accurately describe the PES up to and beyond this
threshold, since at the scattering point most of the kinetic energy will be converted to
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Fig. 4.13: 2D energy cuts through the PES of the H atom above the equilibrated
surface. (a) depicts the RPBE PES, (b) shows the HDNNP PES and (c) shows the
difference between both methods. The energy difference ∆E for the HDNNP and DFT
energies is the difference between the optimized slab structure with the H atom at
infinite distances compared to the H atom at the distance z from the O layer of the
slab. The DFT data points are from the grid approach described in the construction
of the data set in section 3.3.1, and the points are interpolated linearly on a trigonal
grid.

potential energy. In order to better analyze the accuracy at high potential energies,
1D energy curves following the H atom coming closer to the surface can be plotted. In
figure 4.14 the 1D energy curve for the H atom position above the topmost Al atom
is shown up to an energy of 2.5 eV above the energy of the separated systems. Figure
4.15 shows the 1D energy curve for a H atom position above a O atom, as shown in
the inset of the figure.
Both, the energy and force compontents in z direction of the H atom, are reproduced
by the HDNNP up to at least 2.5 eV above the separated system. Small deviations at
medium distances, better visible in figure 4.13, can be seen for both the energy and the
force component. At large distances, the HDNNP accurately describes the separated
system. The HDNNP can also accuratly describe the repulsive potential above the Al
atom in figure 4.14, as well as the repulsive potential closer to the surface in figure
4.15.
The HDNNP exhibits high accuracy for grid structures overall, as demonstrated by the
RMSE of the fit. Equilibrated slab structures are predicted with precision across all
relevant energy ranges and H atom force components are replicated with similar pre-
cision. This comparison demonstrates a best-case scenario in which all relevant data
points are present. However, in the upcoming MD trajectories at 300 K, not all possible
slab geometries have a closely situated H atom grid. To assess the HDNNP’s perfor-
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Fig. 4.14: 1D energy curve of H atom adsorbing on the equilibrated surface. The
left axis shows the energy difference between the structure with the H atom at the
distance z and the H atom at a infinite distance, in blue. The right axis shows the z
direction force component of the H atom, in red. The grid DFT points are shown as
circles, while the HDNNP points are calculated on a denser grid and shown as a line.
The inset picture of the surface shows the position of the H atom in white above the
surface.

mance on those structures, ab-initio trajectories are recalculated using the HDNNP in
the next section.

Validation of the Potential using ab-initio Molecular Dynamic Simulations

Reference calculations are expensive and time consuming, the HDNNP can not be val-
idated for every possible geometry. Usually HDNNP are applied for systems, which
are difficult to describe using DFT calculations, because the system needs to be a cer-
tain size or the simulations need to be calculated for a long time. This will make the
validation of the potential with those structures difficult. Here, the problem lies in
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Fig. 4.15: 1D energy curve of H atom adsorbing on the equilibrated surface. The
left axis shows the energy difference between the structure with the H atom at the
distance z and the H atom at a infinite distance, in blue. The right axis shows the z
direction force component of the H atom, in red. The grid DFT points are shown as
circles, while the HDNNP points are calculated on a denser grid and shown as a line.
The inset picture of the surface shows the position of the H atom in white above the
surface.

the statistical nature of the experimental measurements. In the experiment, trillions
of H atoms are scattered from the surface, all independently probing the surface and
scattering, resulting in different scattering kinetic energies. Only those H atom that
precisely hit the detector above the surface will be measured. Therefore, only a fraction
of the simulations will fulfill the criteria needed to hit the detector and be plotted in the
kinetic energy loss distribution. Trajectories hitting the detector at different scattering
angles and energies can be directly compared with ab-initio trajectories to get the best
overview of the accuracy of the HDNNP predictions as possible. Using the HDNNP
to generate those trajectories at different points of the PES reduces the cost of gen-
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erating ab-inito MD simulations. Running an ab-initio MD at the target temperature
usually needs hundred of time steps, in order to equilibrate the structure to the right
temperature. By starting the ab-inito MD from positions and velocities generated by
the HDNNP, the cost can be reduced. The ab-initio trajectories, calculated to validate
the performance of the HDNNP, were chosen from MD simulations using experimen-
tal conditions, calculated with a HDNNP potential. In total ten of those simulations
were chosen, at different incident and scattering conditions shown in table 4.2. Those
calculations were initially picked to represent different regions of the kinetic energy
spectrum, especially to compare regions with good agreement between experiment and
theory and regions with bad agreement. Here, one of the difficulties of describing the
system becomes apparent. A set of incident conditions determining the starting posi-
tion and velocities of all atoms can be picked based on the trajectory calculated with a
HDNNP potential, resulting in certain scattering angles and kinetic energies. However,
using those incident conditions, the ab-initio MD simulation does not have to result
in similar scattering conditions. The chaotic nature of the MD simulation, where the
small differences in the PES lead to larger differences in the trajectory, resulting in
very different outcomes. This uncertainty means that it is unknown whether the se-
lected incident conditions will result in similar scattering angles and kinetic energies as
those of the original trajectory. This increases the difficulty in picking trajectories from
different parts of the kinetic energy loss spectrum. It also means it is very difficult to
compare the kinetic energy loss of a HDNNP trajectory with the kinetic energy loss of
ab-initio MD simulations, where small differences in scattering angles could result in
comparing two different trajectories. Therefore, in order to validate the HDNNP, the
energies and forces of the structures of the ab-initio trajectories will be compared to
prediction of the HDNNP of these structures.
Table 4.2 shows the incident and scattering conditions, as well as the RMSE for both
energy and force of the H atom. The RMSE values are gathered by calculating every
structure of the ab-inito trajectory with the HDNNP. The RMSE values for the poten-
tial energy and the force are smaller or very close to the RMSE values gathered from the
training and test set. A similar RMSE indicates that the structures in the simulation
are as well described as the structures in the data set. The data set seems to be well
suited to describe the chemical environments probed by the ab-inito MD simulations.
A closer look at two of the ab-initio MD simulations will reveal if the errors are spread
over the whole trajectory or if they accumulate at the scattering incident.
The ab-initio trajectory MD4 (see Figure 4.16) shows a very simple scattering process,
were the H atom follows a nearly right-angled trajectory scattering from a O atom.
The z direction force component has one peak at the scattering incident at around
t = 40 fs. The potential energy of the system shows no large difference between before
and after the scattering incident, since the H atom keeps most of its initial kinetic
energy, only transferring around 0.14 eV. The energy errors are distributed along the
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Tab. 4.2: Initial and scattering conditions of the ab-initio MD simulations used to
validate the potential, as well as the RMSE for the energy and H atom force for the
HDNNP prediction.

Name Θi / ◦ ϕi / ◦ Ekin,i /
eV Θs / ◦ Ekin,s /

eV

RMSE
E /
meV
atom−1

RMSE
FH,z /
eV Å−1

MD1 40 0 0.99 54 0.56 0.39 0.039
MD2 40 0 1.92 25 1.65 0.35 0.041
MD3 40 0 1.92 44 1.69 0.32 0.037
MD4 40 0 1.92 50 1.78 0.38 0.045
MD5 40 180 1.92 -10 1.00 0.34 0.125
MD6 40 180 1.92 32 1.00 0.33 0.047
MD7 40 180 1.92 61 0.83 0.35 0.102
MD8 40 180 1.92 13 0.57 0.47 0.108
MD9 55 0 0.99 49 0.83 0.36 0.022
MD10 55 180 1.92 48 1.70 0.37 0.047

whole trajectory, while the force error shows slightly more fluctuations at very small
forces, compared to the peak force. Overall, there is a very good agreement between
the ab-initio trajectory and the HDNNP potential.
The ab-initio trajectory MD5, shown in figure 4.16, shows a back scattering path, where
the direction of the H atom is changed. Here, there is a clear difference between the
potential energy before and after the scattering incident at t = 40 fs, because the H
atom is losing 0.92 eV of kinetic energy. This higher kinetic energy loss is accommo-
dated with a higher peak force of around 7.8 eV Å−1, which is accurately predicted by
the HDNNP. Overall, the HDNNP predicts the energy and force along the trajectory
accurately.
MD4 and MD5 are examples for trajectories with a high and with a small kinetic
energy loss. The remaining ab-initio MD simulations show similar deviations for both
energy and force components, but the amount of trajectoires is still too small for a
statistical evaluation. The comparison between the ab-initio MD simulations and the
prediction of the HDNNP shows that the high accuracy shown for the H atom grid
and RMSE values is also expected for those unknown MD structures. It would also
be possible to start HDNNP MD simulations with the same starting conditions as
used for the ab-inito MD simulation, but due to the nature of MD simulations the
smallest differences in the potential will lead to very different scattering conditions.
This makes the comparison of the resulting kinetic energy loss impossible. Nonetheless
the ability of the HDNNP to accurately predict the unknown structures of the ab-
inito MD simulations shows that the HDNNP can accurately predict the full range
of structures during a MD simulation using experimental conditions. From the high
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Fig. 4.16: Analysis of MD4. Panel (a) shows the potential energy of the structure
∆Eslab+H, in reference to the equilibrated slab with the H atom at infinite distance, vs.
the time t of the trajectory, while panel (b) shows the z-direction force component of
the H atom during the same time. Panel (c) and (d) show the path (blue) of the H
atom (white) along the surface. In panel (c) the trajectory wraps at the edge of the
cell. The surface is shown for the first frame of the simulation.

energy structures at the moment of scattering to the slab structure with higher kinetic
energy after the scattering the prediction of the HDNNP is accurate. This lays the basis
for comparing the experimental kinetic energy loss spectra with the results generated
by the HDNNP in the next section.
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Fig. 4.17: Analysis of MD5. Panel (a) shows the potential energy of the structure
∆Eslab+H, in reference to the equilibrated slab with the H atom at infinite distance,
vs. the time t of the trajectory, while panel (b) shows the z-direction force component
of the H atom during the same time. Panel (c) and (d) show the path (blue) of the
H atom (white) along the surface. The surface is shown for the first frame of the
simulation.

4.2 Benchmarking the HDNNP with Experimental
Data

4.2.1 Overview
Experimental benchmarks are needed to validate results of theoretical chemistry and
provide a means of testing and refining theoretical models, allowing researchers to
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gain a deeper understanding of chemical systems and make more accurate predictions.
they also introduce challenges, since it is not always easy or possible to simulate an
experimental setup accurately using theory. For good experimental benchmarks, the
experiment has to be well defined, all conditions need to be known and the system
cannot be too complicated so that calculations are still feasible to be carried out. The
system of scattering H atoms from α-Al2O3 fulfills most of these characteristics. The
ultra high vacuum conditions during the experiment create an environment were the
surface should be clean from adsorbates and the H atoms should only interact with
the surface. Additionally, the crystal is cleaned by argon sputtering and annealed at
700 ◦C to form a flat surface. The kinetic energy of the H atom and the beam are
well defined and the resulting spectra show little noise. These are ideal conditions for
theoretical benchmarking.
In this section, the creation of the theoretical kinetic energy distributions will be ex-
plained in detail. Afterwards the experimental kinetic energy distributions, as well
as the angular distributions will be compared with the theoretical distributions. The
system will be further analyzed in order to explore possible sources of deviations.

4.2.2 Creation of Theoretical Kinetic Energy Distributions
The experimental kinetic energy spectrum consist of a trillion separate H atoms scat-
tered from the surface and detected by the detector. Every H atom has only one chance
to hit the detector and for every scattering angle a separate set of scattered H atoms
has to be measured. Here, for every incident condition, incident polar angle Θi and
incident kinetic energy Ekin.i, a separate data set consisting of hundred thousands of
simulations has to be calculated. The setup for the MD simulations using experimental
conditions is described in section 3.2. For the creation of the kinetic energy distribu-
tion and angular distribution spectra, the incident conditions of the H atom and the
position and velocity at the end of the trajectory are used to evaluate if the simulation
will be counted toward the respective distribution. If the H atom is on the way away
from the surface, at a distance of at least 7.8 Å, it is eligible to be counted. For the
H atom to hit the detector, the velocity vector v⃗H,s has to point toward the detector.
The detector position can be described by a unit vector d̂detector. The relation between
the x and y component of the d̂detector and the z component can be determined from
the experimental detector polar angle Θdet as

z = cos Θdet , (4.6)√
x2 + y2 = sin Θdet , (4.7)

and the relation between the x and y component can be determined by the experimental
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detector azimuth angle ϕdet as

x = sin Θdet · cos ϕdet , (4.8)
y = sin Θdet · sin ϕdet . (4.9)

Combining equations 3.6 -3.9, d̂detector can be calculated by the following equation:

d̂detector =


sin Θdet · cos ϕdet

sin Θdet · sin ϕdet

cos Θdet


The H atom velocity vector at the end of the trajectory v⃗H,s, and its unit vector v̂H,s,
can be used to calculate the angular difference γ (see equation 4.10) between the H
atom velocity vector v̂H,s and the detector position unit vector d̂detector.

γ = cos−1
(
v̂H,s · d̂detector

)
(4.10)

In the experiment the maximum γ between both vectors is determined by the size
of the detector and its distance from the surface, resulting in an angular resolution
of 3◦, which results in γ = 1.5◦. For the theoretical kinetic energy distributions, the
threshold for γ can be adjusted to decrease the amount of trajectories needed to obtain
a well defined spectra. As long as the distribution does not change, the value for
γ can be increased to reduce the number of calculations necessary. Setting γ = 5◦

increases the amount of counted trajectories by a factor of 10, while not changing the
distribution, as shown in figure 4.18. While there are less trajectories contributing to
the distribution with γ = 1.5◦, resulting in a higher degree of fluctuation and variability
in the distribution, the overall shape is the same for the distribution with γ = 5◦.
The data points for a distribution are then sorted into 90 bins along the energy range (0
to 2.2 eV for Ekin,i = 1.92 eV and 0 to 1.45 eV for Ekin,i = 0.99 eV). Both the theoretical
and experimental distributions are scaled to the maximum of the distribution so that
emphasis is put on the shape of the distribution as well as the onset and width of
the distribution. The distributions will be shown for the experimentally measured
scattering polar angles.
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Fig. 4.18: Kinetic energy distribution plots for Ekin,i = 1.92 eV, Θi = 40◦ and ϕi = 0◦.
The orange line in the background shows the distribution for γ = 5◦ and the blue line
for γ = 5◦. The number of trajectories hitting the detector at the corresponding Θs is
written in the plot, color coded for the respective γ.

4.2.3 Benchmarking Experimental and Theoretical Kinetic
Energy Distributions

The experimental data set consist of four separate sets of incident conditions, Ekin,i =
0.99 eV with Θi = 40◦, Ekin,i = 0.99 eV with Θi = 55◦, Ekin,i = 1.92 eV with Θi = 40◦

and Ekin,i = 1.92 eV with Θi = 55◦. For each set at Θi = 40◦, there are six Θs measured
and for each set at Θi = 55◦ there are three Θs measured. For every incident condition

66



4.2 Benchmarking the HDNNP with Experimental Data

set, there is also an angular distribution measured. The detector was put opposite of
the H atom beam for all measurements, resulting in ϕi = 0◦. The [0001] α-Al2O3 surface
introduces another variable into the simulation, it can be terminated in two ways, which
are chemically and energetically equivalent, but will produce significantly different
scattering spectra. The top most oxygen layer can be replicated by the second oxygen
layer via a mirror operation.[98] The crystal used during the experiment was not a
perfect single crystal and thous should have some steps on the surface. Scattering
on the two sides of the step will result in scattering at a incident azimuthal angle ϕi

of either 0◦ or 180◦, depending on the oxygen layering. There is no way to ensure
that the experimental data was scattered from only one oxygen layering. Comparing
the experimentally measured distributions with the distributions using the HDNNP,
the oxygen layering can be predicted. It could be scattering from either layering or a
combination of both.
In figure 4.19, the kinetic energy loss spectrum for Ekin =1.92 eV and Θi = 40◦ at ϕi =0◦

(a) and ϕi =180◦ (b), as well as the combination of both spectra (c) is compared to
the experimental spectra.
The experimental kinetic energy loss distributions shown in all three plots in figure 4.19
are the same. For every set of incident conditions, around 300000 MD simulations using
the HDNNP have been calculated. The kinetic energy distributions narrow moving
from small scattering polar angle toward larger angles, while the maximum of the
distribution shifts toward higher kinetic energies, in accordance with the binary collision
model. The theoretical distributions for ϕi = 0◦ shows a generally lower kinetic energy
at the onset and maximum of the distribution, while the distributions at Θs = 5◦,
20◦, 35◦ and 65◦ are narrower or as narrow as the experimental distributions and the
distributions for Θs = 45◦ and 50◦ are wider than the experimental ones while a keeping
similar shape. The distributions for ϕi=180◦ shows a lower kinetic energy at the onset
and maximum for Θs up to 35◦, while the kinetic energy at larger Θs is closer to the
experimental one. The distributions for Θs = 45◦, 50◦ and 65◦ are very similar in
width, shape and kinetic energy at the maximum and the the distributions at Θs = 5◦,
20◦ and 35◦ are wider than the experimental distributions.
Comparing both sets of distributions to the experiment shows them matching better at
different angles. At small scattering angles the distribution for ϕi=0◦ deviates less com-
pared to the experiment, while at larger scattering angles the distribution of ϕi=180◦

fits better. The distribution using a combination of both scattering azimuth angles
more uniformly agrees with the experiment. For Θs = 5◦, the agreement between ex-
periment and theory is almost perfect, while Θs = 20◦ shows a slight shift toward lower
kinetic energies. The distributions with Θs = 35◦, 45◦ and 50◦ are all slightly wider
and shifted toward lower kinetic energies, while Θs = 35◦ has a slower decline of the
distribution between 1.5 eV and 0.8 eV. The distribution with Θs = 65◦ again matches
well with the experiment with a slight shift toward lower kinetic energies.
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Fig. 4.19: Kinetic energy loss distributions for H atom scattering at Ekin = 1.92 eV
and Θi = 40◦. The incident azimuthal angle ϕi is 0◦ for (a), 180◦ for (b) and a
combination of both for (c), which is weighted by the amount of trajectories calculated
for the incident condition. For every set of incident conditions, around 300000 MD
simulations using the HDNNP have been calculated. The experimental and theoretical
distributions are scaled to the maximum of the distribution.

The distributions for Ekin = 0.99 eV and Θi = 40◦ in figure 4.20 are all more similar
in shape. While the shape of the experimental distribution narrows with increasing
scattering angle, the width of the theoretical distribution does not change. Comparing
the theoretical distributions for ϕi = 0◦ and ϕi = 180◦ there are no clear differences
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visible. All three theoretical sets of distributions, ϕi = 0◦, ϕi = 180◦ and the com-
bination of both, are very similar in position and shape of the distributions. While
the kinetic energy at the maximum of the distribution for Ekin =1.92 eV and Θi = 40◦

increased with increasing Θs, the kinetic energy at the maximum of the distribution
for Ekin =0.99 eV and Θi = 40◦ does barely increases and decreases for scattering at
Θs = 65◦. The H atoms scattering at Θs = 65◦ are staying in the attractive part of the
surface the longest and might lose more kinetic energy in the process.
For the distributions with Θi = 55◦, there are only experimental measurements for
Θs = 35◦, 55◦ and 65◦. This is due to the fact, that at small scattering angles not
enough H atoms are scattered. The theoretical distribution for Θs = 5◦, even with
increased detector size, is statistically not relevant, while for Θs = 20◦ and 35◦ enough
H atoms hit the detector, making the analysis of the distributions feasible.
The scattering at Ekin = 0.99 eV and Θi = 55◦, in figure 4.21, shows many similarities
to the scattering at Ekin = 0.99 eV and Θi = 40◦. The distributions, except for Θs = 5◦,
all are of a similar shape. The maximum of the distribution changes again from lower
toward higher kinetic energies when moving from small scattering angles toward the
larger ones, except for the scattering at Θs = 65◦, for which the maximum is at slightly
lower kinetic energies.
The scattering at Ekin = 1.92 eV and Θi = 55◦, in figure 4.22, shows the differences
between the scattering at ϕi = 0◦ and ϕi = 180◦ for scattering at Θs = 20◦, 35◦ and 45◦,
where the distribution for ϕi = 180◦ is broader and shows a shoulder toward lower
kinetic energies, very similar to the scattering at Ekin = 1.92 eV and Θi = 40◦. The
distribution for Θs = 55◦ and 65◦ does not change between scattering at ϕi = 0◦ and
ϕi = 180◦. Again the combination of both scattering azimuth angles reproduces the
experimental distributions the best, especially for the scattering at Θs = 35◦, where
the shape of the theoretical distribution is very similar to the experimental one.
Considering the available data, there is strong evidence toward scattering from both
oxygen layers, giving a more coherent comparison between experiment and theory. The
scattering with Ekin = 1.92 eV is described best by the combination of both scattering
azimuth angles. For both incident polar angles, the distributions at low scattering
angles at ϕi = 0◦ are narrower than the experimental one and show a broader distri-
bution for scattering at ϕi = 180◦. The scattering with Ekin = 0.99 eV shows little to
no difference between the distributions for ϕi = 0◦ and ϕi = 180◦, neither for low nor
for high scattering polar angles.
The influence of the incident azimuth angle seems to be the strongest at high kinetic
energies and low scattering polar angles. A higher kinetic energy enables the H atom
to get closer toward surface, giving a more nuanced representation of the surface atom
positions. The same is true for scattering at low polar angles, where the H atom has
to be deflected upwards instead of grazing the surface as is the case for low scattering
polar angles. From a solely geometric viewpoint the stronger dependence on the inci-
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Fig. 4.20: Kinetic energy loss distributions for H atom scattering at Ekin = 0.99 eV
and Θi = 40◦. The incident azimuthal angle ϕi is 0◦ for (a), 180◦ for (b) and a
combination of both for (c), which is weighted by the amount of trajectories calculated
for the incident condition. For every set of incident conditions around 300000 MD
simulations using the HDNNP have been calculated. The experimental and theoretical
distributions are scaled to the maximum of the distribution.

dent azimuth angle for the Ekin = 1.92 eV and Θi = 40◦ case seems to be physically
reasonable.
Considering the results discussed in this section, all following analysis will be done on
the combination of the scattering at ϕi = 0◦ and ϕi = 180◦. The HDNNP accurately
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Fig. 4.21: Kinetic energy loss distributions for H atom scattering at Ekin = 0.99 eV
and Θi = 55◦. The incident azimuthal angle ϕi is 0◦ for (a), 180◦ for (b) and a
combination of both for (c), which is weighted by the amount of trajectories calculated
for the incident condition. For every set of incident conditions around 300000 MD
simulations using the HDNNP have been calculated. The experimental and theoretical
distributions are scaled to the maximum of the distribution.

predicts most of the features of the experimental distributions, especially the distribu-
tions for Ekin = 1.92 eV and Θi = 40◦ are well described in shape. All distributions
show more kinetic energy loss than in the experiment, except for the scattering at
Ekin = 1.92 eV, Θi = 40◦ and Θs = 5◦. The scattering with Ekin = 0.99 eV has a larger
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Fig. 4.22: Kinetic energy loss distributions for H atom scattering at Ekin = 1.92 eV
and Θi = 55◦. The incident azimuthal angle ϕi is 0◦ for (a), 180◦ for (b) and a
combination of both for (c), which is weighted by the amount of trajectories calculated
for the incident condition. For every set of incident conditions around 300000 MD
simulations using the HDNNP have been calculated. The experimental and theoretical
distributions are scaled to the maximum of the distribution.

relative energy loss, especially for high scattering angles.
The general differences between the experimental and theoretical distributions and
their likely causes will be discussed a following section, after gathering all the needed
information. The main differences are the higher mean kinetic energy loss, which is
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also indicated by the maximum of the distribution, the mostly broader shape of the
distributions and punctual differences, e.g. the extra peak for scattering at Ekin =
1.92 eV, Θi = 40◦ and Θs = 65◦.
The discrete peak at low kinetic energies for scattering at Ekin,i = 1.92 eV, Θi = 40◦ and
Θs = 65◦ (see figure 4.19) needs to be investigated. It is a well defined peak resulting
from the scattering with ϕi = 180◦ which is not visible in the experimental spectrum.
Since it is a well defined peak, it is expected to result from certain region of the
surface, instead of being a fitting error, where the peak consists of H atoms scattered
from random places of the surface. In order to investigate the scattering origin on
the surface, a very simple approach will be applied. For each trajectory, the point at
which the H atom is closest to the surface (referred to as the point of scattering in the
following analysis) can be plotted. Since the surface is in motion during the simulation,
a exact x and y position of the point of scattering is not very meaningful, since the
surface will be different for each trajectory. With this methodology the origin of the
scattering event can be approximated reasonably well allowing to pinpoint possible
reasons for the deviations between the experiment and theory. The point of scattering
will be defined as the lowest position of the H atom in the trajectory. A more complex
definition of this point is not needed, since the goal is to generate an overview of the
area of scattering. In figure 4.23 the point of scattering for all trajectories hitting the
detector at Ekin,i = 1.92 eV, Θi = 40◦, Θs = 65◦ and Ekin,s <= 0.9 eV is plotted over
the unit cell of the surface.
All the scattering for that peak comes almost exclusively from one place on the surface.
Examining the trajectories, it can be observed that they come into contact with the O
atom before bending around the Al atom, transitioning from a more acute angle to a 65◦

angle, ultimately aiding in the formation of the peak. This means that the outcomes of
the trajectories are caused by a localized feature of the PES, given that during multiple
different MD simulations this scattering happened at the same place above the surface.
Therefore, this scattering behavior is a feature of the fitted PES. In order to determine
if it is also a feature of the RPBE PES, points along the trajectories can be calculated
using DFT to determine the accuracy of the HDNNP for those trajectories.
Comparing the energy and force predictions of the HDNNP in figure 4.24 with the
single point calculations using DFT shows no large differences. The trajectory in panel
(b) deviates the most at the end of the DFT points, at around 0.1 eV, while there are
only small differences for the force prediction visible at the peak of the force in panel
(c). Overall, the accuracy of the simulations is very similar to the accuracy of the ab-
initio trajectories and shows no substantial deviations that would hint toward a hole in
the PES. While this does not exclude the possibility that the peak is a artifact of the
HDNNP fit, it shows that the predicted energies and forces during these simulations
are as accurate as expected from the prior analysis. Additionally, this feature was
present for multiple generations of the HDNNP, further decreasing the probability of it
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Fig. 4.23: x and y coordinate of each trajectory where the H atom gets closest to the
surface on top of the surface picture for trajectories with Ekin,i = 1.92 eV, Θi = 40◦,
Θs = 65◦ and Ekin,s <= 0.9 eV. The points come from trajectories with moving surfaces,
they indicate the area from where the scattering is possible.

happening due to a hole in the PES. If it was due to a hole in the PES, the prediction
of the HDNNP in that region should be random and not consistently lead to the same
peak. With the gathered information it is very likely for this peak to be a feature of
the RPBE PES and not due to inaccurate fitting of the HDNNP.
For the further analysis of the influence of the functional, the MD simulations and
experimental conditions for all available data should be taken into account. The dis-
cussion of these points will be continued after the analysis of the angular distributions.

4.2.4 Benchmarking Angular Distributions
Additionally to the kinetic energy distributions, for each set of incident conditions the
angular distribution of the scattered H atoms were measured experimentally. For the
theoretical description of the angular distributions, the detector was placed in the same
manner as for the kinetic energy distributions. However, instead of measuring just at
the experimental scattering polar angle, the detector was placed at multiple positions
between −10◦ and 90◦ in 3◦ steps. Then for each polar scattering angle the amount
of trajectories hitting the detector at that angle, normalized to the maximum, was
plotted vs the scattering angle. In figure 4.25, the angular distributions are shown for
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Fig. 4.24: Potential energy and z direction force component of three trajectories con-
tributing to the low kinetic energy peak at Ekin = 1.92 eV, Θi = 40◦ and Θs = 65◦.
The upper part shows the potential energy relative to optimized slab and H atom at
infinite distance, while the bottom part shows the z direction force component of the
H atom vs the time of the simulation. Around the time of the collision 22 DFT points
have been calculated to compare with the HDNNP energy and force.
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Fig. 4.25: Normalized angular distribution for scattering at (a) Ekin,i = 0.99 eV and
Θi = 40◦, (b) Ekin,i = 1.92 eV and Θi = 40◦, (c) Ekin,i = 0.99 eV and Θi = 55◦ and
(d) Ekin,i = 1.92 eV and Θi = 40◦. The blue lines are the theoretical distributions
calculated using the HDNNP, while the black lines are the experimental distributions.
Both theoretical and experimental distributions are normalized to 1 at the maximum.

Panel (a) shows the angular distribution for Ekin,i = 0.99 eV and Θi = 40◦. While the
experimental distribution has its maximum at the specular angle of 40◦, the maximum
of the theoretical distribution is at 45◦. Toward larger scattering angles the theoretical
distributions agree well with the experiment, while toward scattering angles smaller
than the specular angle the difference between the theoretical and experimental distri-
bution grows. At Θs = 0◦ the experimental distribution still has a normalized signal of
0.45, while the theoretical distribution is at a normalized signal of 0.10. This difference
at low scattering angles around the surface normal is visible for all scattering incident
conditions. Due to the normalization of the distribution to a maximum of 1, this dif-
ference could be due to less scattering around the surface normal for the theoretical
simulations or due to more specular scattering. In panel (b) the angular distribution
for Ekin,i = 1.92 eV and Θi = 40◦ is shown. The maximum and the scattering at high
polar angles compares favorably with the experiment, while there is a slightly lesser
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difference at small scattering polar angles compared to the scattering at Ekin,i = 0.99 eV
and Θi = 40◦. The scattering at Ekin,i = 0.99 eV and Θi = 55◦ in panel (c) shows a
similar difference for the maximum, while there is more scattering at higher angles
compared to the experiment. For scattering below the specular angle, the experiment
first shows a similar decline as for the scattering at Θi = 40◦, which then ends in a
plateau at around a normalized signal at 0.4. The theoretical distributions falls of more
quickly and levels off to zero at around the surface normal at Θs = 0◦. Scattering at
Ekin,i = 1.92 eV and Θi = 55◦ shows a similar behavior, both in experiment and theory
as scattering at Ekin,i = 0.99 eV, with the same differences between experiment and
theory. For the maximum of the distribution and the scattering at higher angles than
the specular angle show nearly no differences with the experiment.
Overall, the theoretical distributions compare well with the experiment at scatter-
ing angles around and higher than the specular angle, while there is a difference for
scattering around the surface normal and at low scattering angles. The theoretical
distributions fall off more quickly than the experimental ones going from the specular
scattering toward the surface normal.

4.2.5 Discussion of the Differences between the Experiment
and Theory

Overall there is a good agreement between experiment and theory, with all differences
being relativly small adn the general shape of most distributions being well reproduced.
The main differences between the experimental distributions and the theoretical ones
are the consistent shift toward lower kinetic energies, the increased width of most dis-
tributions and the deviations for angular distributions close to scattering at the surface
normal. During the prior analysis the quality of the HDNNP fit has been investigated
and no major differences between the prediction of the HDNNP and the underlying
DFT reference calculations have been found. Additionally, all of the differences be-
tween the experiment and theory have been present for the whole process of generating
the HDNNP, in all generations where there were MD simulations using experimental
conditions calculated. While it is not impossible that some of the differences are due to
inaccuracies in the prediction of the HDNNP, it is highly improbable that the evident
difference between the experimental and theoretical distributions is solely caused by
disparities between the HDNNP PES and the RPBE PES. In the following section,
the other possible sources for the differences will be analysed. There are four distinct
sources from which the discrepancies between experiment and theory could stem from.
1) The HDNNP could be unable to correctly predict the RPBE PES, due to fitting
errors or missing data. 2) The classical MD simulations could be unable to give the
right description of the trajectory, due to non classical effects, like quantum effects or
electronic excitation. 3) The RPBE functional could over or underestimate certain ef-
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fects to lead to higher kinetic energy loss and different distributions. 4) And lastly the
experiment could be adding unknown factors that change the distribution, like steps
on the surface or adsorbed atoms and molecules. The influence of the HDNNP is the
most accessible to test and were already discussed in the previous sections. Next the
differences between the theoretical and experimental surface will be analyzed.

Discussion of the Influence of the Surface

As mentioned in section 2.2.4 the surface has been prepared in a manner where the
termination should be well defined. There also should be no adsorbates on the sur-
face, due to the ultra high vacuum conditions and annealing. Nonetheless, as already
discussed, steps in the surface layers introduce a second termination which drastically
changes how the theoretical distributions would look like. A high quantity of vacan-
cies, ad-atoms or adsorbates could have a similar effect. A theoretical description of
those changes of the structure of the surface is nearly impossible, due to multiple fac-
tors. First introducing multiple possible surface effects introduces more parameters for
comparing the distributions. In the absence of knowledge regarding the specific nature
and extent of the surface variations, it would be necessary to calculate distributions
for all conceivable effects. Following this, the combination of distributions that most
closely resembles the experimental data would need to be identified in order to de-
termine the type and quantity of surface imperfections present. Additionally it would
increase the amount of reference calculations drastically, adding additional calculations
for the interaction between the H atom and every imperfection. This would also in-
crease the amount of time necessary to validate that the HDNNP is accurate enough
for every possible interaction. While the increase in cost, both in time and comput-
ing resources, could be managed, introducing more variables into the creation of the
distribution would lead to multiple, equivalently accurate, solutions for the smallest
difference between the experimental and theoretical distribution. Simply adding more
variables on the computational side will not facilitate the identification of the sources
of the observed deviations.
There are two differences between the experimental and theoretical kinetic energy
distributions that could be caused by the discrepancies between the experimental and
theoretical surface. The difference between the normalized signal at low scattering
angles could be caused by a rougher experimental surface. In order for a H atom to
scatter at an angle close to the surface normal it needs something to transfer its forward
momentum to. In a classical collision model, the H atom would need to collide with
a protrusion on the surface for it to scatter with a lower scattering angle, as seen in
figure 4.26. The ideal [0001] surface, used for the calculations, should have the least
possible amount of these protrusions. Steps, adatoms and vacancies should all increase
the amount of scattering close to the surface normal. Increasing the scattering between
the surface normal and the specular angle should reduce the differences between the
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theoretical and experimental angular distributions drastically. It could also slightly
move the maximum of the distribution toward lower scattering angles, improving the
agreement between experiment and theory even further. Another possible source of
more scattering at angles around the surface normal is the desorption of adsorbed H
atoms from the surface or from subsurface sites. During all simulation that have been
run there was not a single incident of H atoms going below the surface. The first
PBE data set included structures with H atoms below the surface and simulations of
H atoms moving from sub surface positions, in principle, was possible. However, no
such event was recorded. Analyzing the kinetic energy distribution for scattering at
small scattering angles also does not show any signs of another form of scattering. If
there were additional H atoms detected from desorption, they should have a different
kinetic energy distribution compared to the directly scattered H atoms. Here, the
agreement between the experimental distribution, which could include such events,
and the theoretical distribution, which does not include such events, is the best from
all scattering angels. If there were H atoms desorbing from the surface and being
detected in the experiment, this should be evident when comparing the experimental
and theoretical energy distributions.

Al2O3 surface

𝛩𝑖 = 40° 𝛩𝑠 = 5°
𝛩𝑠 = 35°

𝛩𝑠 = 45°

𝛩𝑠 = 65°

Fig. 4.26: Schematic representation on how the H atom could scatter from the surface
under experimental scattering angles in a classical scattering model. All angles are
correctly represented by the arrows with the same colours.

But the difference at small scattering angles could also be affected by a more subtle
effects than desorption. When the H atom scatters from the surface it transfers some
part of its kinetic energy toward the surface and due to the parallel momentum con-
versation, the scattering angle is affected by the normal momentum transfer. This
means that energy transfer from the H atom to the surface will lead to scattering an-
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gles higher than the specular angle, while energy transfer from the surface to the H
atom will increase the scattering at angles closer to the surface normal. Significant
differences are observed between the experimental and theoretical distributions at high
Ekin,s, particularly in the case of scattering at Ekin,i = 0.99 eV. Notably, the number of
scattered H atoms with kinetic energies higher than Ekin,i is considerably greater in the
experimental distribution compared to the theoretical one. If the theoretical surface
is less effective at transferring kinetic energy toward the H atom, while also showing
more transfer of kinetic energy from the H atom toward the surface, the theoretical
angular distributions should be shifted toward higher scattering angles and show less
scattering around the surface normal. This effect alone is likely not sufficient to explain
the differences between the experimental and predicted angular distributions close to
the surface normal, but it will definitely contribute toward it. This effect could be due
to different surface structures having a varying efficacy at transferring kinetic energy
toward the H atom, or it could come from differences in the surface motion, that would
be caused by an inaccurate description of the surface motion by the functional or both.
The surface can also have an influence on the width and the kinetic energy loss of the
distributions. The kinetic energy loss is influenced by the effective mass of the surface
during the scattering process, as discussed previously. Changing the surface structure
by adding or removing atoms will influence the effective mass of the surface. If, for
example, the experimental surface would have more Al atom compared to the ideal
[0001] α-Al2O3 surface, the mean kinetic energy loss should be smaller, since the mass
of the Al atom is larger than the mass of the O atom. Here, analyzing from where
the H atom is scattered from the surface could give insight regarding the plausibility
of more Al atoms being present on the experimental surface. The simplified point of
scattering can be plotted for the different kinetic energy distributions to identify the
regions of the surface were the scattering originates from. Since there are many more
scattered atoms per distribution compared to the previously plotted peak, the points
need to be colored by the density of the points, giving a heat map of the point of
scattering. This will show the regions from were the most H atoms are scattered at a
glance. In figure 4.27, the heat map can be seen for Ekin,i = 1.92 eV and Θi = 40◦ with
all experimentally measured scattering angles.
The data is shown for one unit cell equivalent of the [0001] α-Al2O3 surface, shown
by the black lines. In the panel for Θs = 5◦ most of the scattering is coming from
scattering off the Al atom, which is in line with the classical scattering model, were a
protrusion is needed to scatter at small scattering angles. A similar behavior can be
seen for the scattering at Ekin,i = 0.99 eV, Θi = 40◦ and Θs = 5◦ in figure 4.28, were
most of the signal is again coming from scattering of the Al atom.
For scattering at those angles, the protrusion of the Al atom out of the surface is
needed, whereas for the scattering at Θs = 35◦ and 45◦, close to the specular angle,
the H atom can scatter from almost the whole surface. Except the position of the Al
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Fig. 4.27: Point of scattering heat map for the scattering at Ekin,i = 1.92 eV and
Θi = 40◦. The color of the points represents how many scattering events happen at
that point. The point of scattering is determined by the lowest point in the trajectory.
The grey scale background shows the [0001] α-Al2O3 surface and the black border
frames in the unit cell.

atom, the surface seems to be flat in regards to the H atom scattering of it. The same
can be seen for the scattering at Θi = 55◦ and Θs = 55◦, for both kinetic energies, in
figure 4.29 and 4.30 were the scattering is happening from the whole surface.
And again for both kinetic energies the scattering at Θs = 35◦, which needs a pro-
trusion to stop the forward momentum, the H atom scatters of the Al atom. During
the simulations it is evident that the surface favors scattering at the specular angle,
while it is unfavorable for scattering at low scattering angles. This is in line with the
observations for the angular distributions, where there is a strong mismatch between
the amount of scattering at low scattering angles between the experiment and theory.
The experimental surface had to be rougher than the theoretical surface, causing more
scattering at low scattering angles, which cannot be seen for the theoretical surface. If
the roughness is created by atoms that are heavier or more strongly bound than the O
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Fig. 4.28: Point of scattering heat map for the scattering at Ekin,i = 0.99 eV and
Θi = 40◦. The colour of the points represents how many scattering events happen at
that point. The point of scattering is determined by the lowest point in the trajectory.
The grey scale background shows the [0001] α-Al2O3 surface and the black border
frames in the unit cell.

atom on the perfect [0001] α-Al2O3 surface, which most of the theoretical scattering is
happening from, the smaller kinetic energy loss of the experimental distributions could
also be explained. Reducing the space from which the H atom can scatter toward a
certain scattering angle should also reduce the width of the distributions. For scatter-
ing at Ekin,i = 1.92 eV and Θi = 40◦, the kinetic energy distributions which are closest
in width compared to the experiment, scattering at Θs = 5◦ and 65◦, also show the
smallest area from which the scattering can happen on the surface. Every site on the
surface from which the scattering can happen should have a distribution of possible
Ekin,s, depending on the current positions of surface atoms and the correlating effective
mass as well as scattering geometry. The distribution should look slightly different
for each scattering site and the maximum should be slightly shifted depending on the
environment of that site. The full kinetic energy distribution is then a composition of
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Fig. 4.29: Point of scattering heat map for the scattering at Ekin,i = 0.99 eV and
Θi = 55◦. The colour of the points represents how many scattering events happen at
that point. The point of scattering is determined by the lowest point in the trajectory.
The grey scale background shows the [0001] α-Al2O3 surface and the black border
frames in the unit cell.

all those distributions. Summing up the distributions of more different sites all leading
to the same scattering angle should increase the width of the summed up kinetic energy
distribution. A rougher surface would mean there is less possible space for scattering
to happen at Θs = 35◦ and 45◦, where the theoretical distribution is wider than the
experimental one.
Overall, comparing the experimental and theoretical results shows that the scattering
from the α-Al2O3 surface is strongly affected by the exact geometries of the surface.
The amount of scattering at certain angles is strongly correlated to the needed surface
roughness, which can explain the difference in scattering signal for the angular distri-
butions at low scattering polar angles. The different widths of the distributions could
also be affected by the varying surface roughness, giving more sites for the scattering to
happen at specular scattering angles, increasing the width of the experimental kinetic
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Fig. 4.30: Point of scattering heat map for the scattering at Ekin,i = 1.92 eV and
Θi = 55◦. The colour of the points represents how many scattering events happen at
that point. The point of scattering is determined by the lowest point in the trajectory.
The grey scale background shows the [0001] α-Al2O3 surface and the black border
frames in the unit cell.

energy distributions.

Discussion of the Influence of the Functional

Some of the differences between the experimental and theoretical distributions could
be caused by the used functional with the energy loss being especially sensitive with
regards to the PES. In the simulations the effective mass of the surface is determined
by the strength of the bonds between the surface atoms and strength of the attractive
and repulsive H atom interactions can also influence the amount of energy the H atom
is transferring or receiving to and from the surface. Here a lot of different effects
are working together to determine the kinetic energy loss during the simulation. The
main observation is that the kinetic energy loss during the simulation is higher than
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experimentally measured one. This could be either caused by a too strong interaction
between the H atom and the surface or too softly bound surface atoms. Here, not only
the surface in general could be too softly bound, but also the interaction between the
H atom and the Al atoms or the O atoms could be separately lead to too much kinetic
energy loss.
The best agreement between the experimental and theoretical kinetic energy distri-
butions is obtained at low scattering angles with high kinetic energies. The biggest
difference in mean kinetic energy is loss present at high scattering angles and low ki-
netic incident energies, especially the scattering at Ekin,i = 0.99 eV and Θs = 65◦.
Both cases represent opposite extremes of H atom interaction with a surface. When
the H atom scatters at high kinetic energies and low scattering angles, the simulation
time and interaction time inside the surface potential are minimal. However, when
the scattering angle is high and kinetic energy is low, the simulation and interaction
time with the surface are the longest compared to all other simulations. The longer
interaction time could increase the effect of the stronger interaction, explaining why
the kinetic energy distributions for high kinetic energies are in better agreement with
the experiment compared to the distributions for low kinetic energies. It would also
explain why the distributions at low kinetic incident conditions are all more similar in
shape to each other. If a big part of the kinetic energy loss is not happening during the
collision, but when the H atom is inside of the potential of the surface, the influence of
the surface structure and the scattering conditions on the shape of the distribution is
reduced, resulting in similar shaped distributions for all scattering angles. It would also
explain why the maxima of the distributions for both the scattering at Ekin,i = 0.99 eV,
Θi = 40◦ and Ekin,i = 0.99 eV, Θi = 55◦ are not increasing with the scattering an-
gle, which the binary collision model would predict. Moreover, for the scattering at
Ekin,i = 1.92 eV, the influence of the attractive potential is reduced and the prediction
of the binary collision model fits better.
The higher kinetic energy loss could also be caused by the softer description of α-
Al2O3 by the functional. Comparing the bulk modulus calculated with the RPBE
functional with the experimentally measured one is a difference of 10%, as can be seen
in table 4.1. It is unknown how well this difference in bulk modulus is transferred to
the local hardness of the surface during the scattering event. Nonetheless, the surface
hardness could be underestimated by the RPBE functional, which would lead to more
kinetic energy loss.
The plausibility of an over or underestimation of the interaction between the surface
and the H atom can be checked by comparing the interaction of the H atom with the
surface calculated using different functionals. In figure 4.31 the 1D energy curve for the
H atom adsorbing onto the topmost Al atom is shown for three different functionals. For
each functional, the 2×2 super cell was created using the same approach as described
for the RPBE structure in section 3.3.1. The bulk unit cell was optimized using the
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respective functional. Then the slab structure was created from the bulk structure.
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Fig. 4.31: 1D energy curve for the H atom directly on top of the Al atom of a opti-
mized α-Al2O3 slab. The adsorption energy is shown for the PBE, RPBE and PBE0
functional and plotted against the distance from the surface z.

All three functionals show different adsorption energies and minima locations. The
RPBE functional has the smallest adsorption energy of 0.11 eV, while the PBE func-
tional has the largest adsorption energy with 0.20 eV. The PBE0 functional has a
adsorption energy of 0.14 eV and the position of the minimum is shifted from 2.1 Å for
the RPBE and PBE functional toward 2.3 Å from the surface for the PBE0 functional.
The figure is showing the adsorption onto the optimized surface for all three functionals.
The difference in adsorption energy is similar in magnitude to the difference in mean
kinetic energy between experiment and theory. It is not unlikely that the interaction
of the H atom with the surface is not accurately described by the RPBE functional.
In order to achieve better agreement between the experimental and predicted energy
distributions other functionals could be employed in the future.
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In this thesis a HDNNP describing the scattering of H atoms from the [0001] α-
Al2O3 surface was created. It is based on RPBE DFT reference calculations. After
careful validation it is applied to further the understanding of both the theoretical side
of constructing and using MLP in combination with experimental data, as well as deep-
ening the understanding of the conditions under which the experiment was measured.

The careful construction of the reference data set, starting with the structural setup
of the bulk and slab calculations, is described in the computational details part of
this thesis. The discovery of the shift of H atom spin towards the opposite side of
the slab demanded a reevaluation of the structural setup. This was guided by using
the fitting capabilities of the HDNNP to detect inconsistencies in the data set. The
investigation was supported by the use of the ACSFs to determine if the HDNNP is able
to differentiate the H atom spin states resulting from different chemical environments.
After reducing the amount of H atoms per slab to one and freezing the bottom four
Al-O-O layers of the slab, the RPBE H atom spin states were accurately differentiated
by the HDNNP.
The grid approach for the initial structure generation of H atoms interacting with the
slab proved to be useful in quickly and efficiently generating a potential which is able
to run the first MD simulations for starting the active learning process. Furthermore
it enabled the visualization of the PES, helping in the validation of the potential. The
structures for the reference calculations were mostly created using active learning. By
running MD simulations with preliminary HDNNPs, missing structures were found and
holes in the configurational space were filled without the need of expensive ab-initio
MD calculations. The availability of the preliminary HDNNPs also allowed to discover
problems with the data set on the fly, reducing their impact by discovering them early.
The change in structural setup due to the H atom spin problems, then was accelerated
by using the HDNNP fitted to the old reference data set and furthest point sampling
to quickly generate the new structures.

The the HDNNP was validated by comparing multiple different feature of the system
with DFT reference data. The phonon band structure comparison showed that the
HDNNP is able to reproduce the possible energy transfer mechanism of the system
responsible for transferring the translation energy of the H atom onto the surface and
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then distributing the energy over the structure. The visualization of the PES using the
aforementioned H atom grid structures showed a uniformly accurate coverage of the
energy prediction of the HDNNP over the whole unit cell, while the 1D-energy plots
showed that the HDNNP is able to reproduce the RPBE energies and forces for energy
ranges occurring during the MD simulations. Using selected ab-initio MD simulations
it could be shown that the HDNNP is able to reproduce the energies and forces for
scattering trajectories, differing in high and low scattering kinetic energies and angles
close to the surface normal or the specular angle. While the amount of ab-inito MD
simulations is too small for a statistical evaluation, they are nonetheless a important
part of the validation process.

While the validation using the RPBE calculations shows how well the the HDNNP is
able to reproduce reference calculations, the goal is to describe the system under real
conditions. To benchmark the ability of the HDNNP to predict experimental results,
experimental kinetic energy distributions and angular distributions for four sets of inci-
dent conditions were compared to the results of MD simulations using the HDNNP. By
comparing theoretical kinetic energy distributions at ϕi = 0◦ and 180◦ with the exper-
imental kinetic energy distributions it could be determined that the scattering in the
experiment is a composition of two oxygen layerings, which are energetically equivalent
and interchangeable by a mirror operation. Overall the theoretical results agree with
the experiment, only showing one additional peak at Ekin,i = 1.92 eV, Θi = 40◦ and
Θs = 65◦, which is most likely a feature of the RPBE PES. The results of the HDNNP
tend to overestimate the kinetic energy loss by around 0.1 eV and show broader dis-
tributions for the specular scattering. In combination with the big difference in H
atom flux for scattering angels around the surface normal, it has to be expected that
the differences stem from the difference in surface roughness. A rougher surface leads
to more scattering around the surface normal and reduces the possible geometries at
which scattering at the specular angle is possible. The higher kinetic energy loss is
most likely caused by the overestimation of the attractive interaction between the H
atom and the surface. Especially for the scattering at Ekin,i = 0.99 eV the resulting
kinetic energy loss seems to be less determined by the scattering geometry and more
by attractive potential.

Overall the findings demonstrate the ability of the HDNNP to reproduce the reference
calculations and the associated PES for solid-gas interfaces under vacuum conditions
and how they can be used to broaden the availability of systems which can be investi-
gated theoretically. It shows where there is still need to investigate electronic structure
methods and how important well defined experimental conditions are for benchmarking
theory.
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The HDNNP developed in this thesis can be applied to further investigate the interac-
tion between a H atom and the [0001] α-Al2O3 surface. Without further adjustment
of the potential, investigations of the sticking of H atoms, as well as the scattering
under different incident conditions are possible. Increasing the initial kinetic energy
of the H atom improves the comparison between the experiment and theory for scat-
tering at Ekin,i = 1.92 eV but only slightly improves the description of the scattering
at Ekin,i = 0.99 eV. Since the experimental spectra shows a significant contribution of
H atoms with Ekin,s >= Ekin,i it would be interesting to see if increasing the surface
temperature could improve the comparison between the theoretical and experimental
results. Since the HDNNP is able to describe the H atom adsorbed on the surface, and
investigations of H atom mobility on the surface could be done using the potential.
The HDNNP could be further improved by changing the functional used for the ref-
erence calculations to a hybrid functional, increasing the accuracy of the reference
calculations. Test calculations using the PBE0 functional, shown in figure 4.31 and
table 6.1, show that the prediction of the bulk modulus by the PBE0 functional is
significantly more accurate compared to the experimental value. The increased bulk
modulus could lead to less kinetic energy loss of the H atom during the simulations.
The position of the adsorption minimum is also slightly different between the PBE and
RPBE functional, hinting towards a slightly different description of the H atom inter-
action with the surface, which could lead to a improved description of the experimental
data.
The configurational space of the HDNNP could also be extended to either include
steps or point defects to more closely resemble the experimental surface and investigate
how those surface defects can influence the scattering. Increasing the diversity of the
available experimental measurements could also greatly help in determining the sources
of the deviations between the experiment and theory.

Tab. 6.1: The calculated and experimental bulk modulus B0 in GPa.
Parameter RPBE PBE PBE0 Exp.

B0 222 229 258 253
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Appendix

A.1 RuNNer Settings

Tab. A.1: Values of the radial ACSF parameter η.

Element pair η / a−2
0

H-O 0, 0.005, 0.013, 0.029, 0.067, 0.187
O-H 0, 0.005, 0.013, 0.029, 0.067, 0.187
H-Al 0, 0.005, 0.012, 0.027, 0.058, 0.145
Al-H 0, 0.005, 0.012, 0.027, 0.058, 0.145
O-O 0, 0.005, 0.011, 0.023, 0.048, 0.109
O-Al 0, 0.004, 0.010, 0.019, 0.036, 0.070
Al-O 0, 0.004, 0.010, 0.019, 0.036, 0.070
Al-Al 0, 0.003, 0.008, 0.014, 0.024, 0.041

Tab. A.2: List of missing ACSFs from all combinations of the parameters λ = {−1, 1},
ζ = 1, 2, 4, 16, and η = 0 a−2

0 , 0.05 a−2
0 .

Element triple η / a−2
0 λ ζ

H-Al-Al 0.05 1 16
H-Al-Al 0.05 -1 16
Al-Al-Al 0.05 1 16
Al-Al-H 0.05 1 16
Al-Al-Al 0.05 -1 16
Al-Al-H 0.05 -1 16
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Appendix

Tab. A.3: RuNNer HDNNP construction settings excluding the specification of
symfunction short.

Value
nn type short 1
random number type 5
random seed mode 1 13242
random seed mode 2 37198
number of elements 3
elements H O Al
remove atom energies atom energy H / Eh -0.50498442
atom energy O / Eh -75.16628513
atom energy Al / Eh -243.03908176
energy threshold -0.215
bond threshold 0.5
cutoff type 1
use short nn
global hidden layers short 2
global nodes short 15 15
global activation short t t l
test fraction 0.1
check input forces 1.0
epochs 20
points in memory 20000
mix all points
scale symmetry functions
center symmetry functions
fitting unit eV
precondition weights
use short forces
optmode short energy 1
optmode short force 1
kalman lambda short 0.98
kalman nue short 0.9987
element decoupled kalman
short energy fraction 1.0
short force fraction 0.025
weights min -0.5
weights max 0.5
nguyen widrow weights short
short energy error threshold 0.0
short force error threshold 0.2
force update scaling 1.5
max force 0.11
write trainpoints
write trainforces
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