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“I want to claim that AI is better viewed as sharing with traditional epistemology
the status of being a most general, most abstract asking of the top-down question:
how is knowledge possible?”

Daniel Dennett
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Abstract

Prakhar Godara

Resource bounded agency in public goods games

The new and emerging field of sociophysics aims to explain and under-
stand collective behavior demonstrated by humans in a variety of domains.
This usually requires to make some assumptions about the microscopic inter-
human rules of interaction. Often these interactions rules are inspired from
physical systems, and are therefore criticized to be too simplistic, to give
meaningful predictions of human behavior in novel domains. In this thesis,
I take inspiration from general intelligence research and game theory to de-
velop a model of human agency in the well known public goods game (PGG),
in order to respond to the criticism. The model agent has two aspects called
learning and planning, both of which, are bounded by constraints. While the
former is bounded by the amount of memory the agent holds about it’s past
(recency bias), the latter is bound by an information theoretic constraint in-
spired from information thermodynamics. The thesis presents a route from
microscopic behavior to collective behavior of human players in PGG. I start
with demonstrating that a bounded planning agent is sufficient to explain
human behavior in short games. Following that, I also include the bounded
learning mechanism and demonstrate the exclusive effects of the learning
mechanism on agent behavior. Finally I make use of the model to explore
collective effects of these humanized agents, the behavior of which, as op-
posed to contemporary models, is justified by comparing to experimental
data on human behavior.
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Chapter 1

Introduction

"I can calculate the motion of heavenly bodies, but not the madness of people." -
such was the sentiment of Sir Isaac Newton in the year 1720 after having lost
approximately 2× 104 pounds in an economic collapse.

1.1 Physics of the madness of people

The main goal of social physics is to describe and understand collective so-
cial phenomena that emerge from interactions between individual humans.
While studying the collective behavior of humans is not the same as studying
the collective behavior of (the more sane counterparts, for instance) molecules
of water, there still are quite a few macroscopic regularities in human behav-
ior (Castellano, Fortunato, and Loreto, 2009), thereby making social systems
susceptible to mathematical tools of statistical physics.

As it turns out, statistical physics of social systems seems to "work" for
quite a few classes of social systems and has led social physics to become a
mature field of research, with domains of interest to social physicists ranging
from traffic flows, economic time series modelling, opinion dynamics, coop-
eration in social games, migration and epidemiology, to name a few (Jusup
et al., 2022 provides a comprehensive overview of the field).

1.1.1 How is it done?

Statistical physics is driven by the idea that observables of collective behavior
(say melting point of water) lie in a smaller dimensional space as compared to
the state space of the microscopic degrees of freedom of the system (position
and momenta of all the molecules) and therefore a lot of information regard-
ing the microscopic dynamics can be ignored when concerned with the col-
lective effects (hence universality classes). A dominant modelling paradigm
in statistical physics of social systems is agent based modelling (ABM). In prin-
ciple, every ABM approach is carried out in the following manner. In each
step we state the corresponding quantity in the Ising model to aid under-
standing.
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1. Macroscopic: choose a domain, therefore the coarse grained observ-
ables of interest, like magnetism.

2. Microscopic:

(a) define the microscopic entities (agents in ABM and spins in the Ising
model) and

(b) choose an interaction rule for the entities, like the Hamiltonian in
the Ising model.

3. Emergence: from the microscopic dynamics, use the tools of statistical
physics to evaluate the macroscopic observables of interest.

If the outcome of the model doesn’t match the experimental observation then
step 2 is redone.

The above blueprint of ABM will become apparent with the following two
examples from social physics. The first example comes from modelling opin-
ion dynamics of agents interacting via a network as described in Baumann
et al., 2020.

1. The objective of the study is to explore the emergence of polarization
on the opinion space. It will become clear in the following, what their
definition of polarization is.

2. (a) The opinion space is given by X = [−∞,+∞] where x ∈ X rep-
resents an opinion. One also considers N agents interacting via a
network given by the adjacency matrix A. The opinion of the ith
agent at time t is given by xi(t).

(b) The evolution of the opinions of agents is given by the dynamical
law

dxi(t)
dt

= −xi(t) + K
N

∑
j=1

Aij tanh(αxj). (1.1)

3. The dynamical law is then used to evaluate the distribution P(x, t) of
the opinions of the ensemble of agents. Polarization is then evaluated
from the distribution. At any time t the population is considered to be
polarized if there are two well-separated peaks in the opinion distribu-
tion around the neutral consensus (x = 0).

The second example comes from modelling player behavior in the well-
known public goods game (PGG). The PGG is played between N players
where each player is given some initial endowment (say 20 tokens) and they
are allowed to contribute all or a part of their endowment into a public pot
anonymously. Once all the contributions are collected, the total contribution
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is multiplied by a factor greater than 1 and then divided among all the play-
ers equally. The payoff of a player at the end of the game is the sum of the
tokens not contributed and the rewards reaped from the common pot. In an
iterated PGG this game is repeatedly played for a known number of peri-
ods. In the following, we describe the agent based model approach generally
taken in this field (for instance the work of Szabó and Hauert, 2002 serves as
an example).

1. A common goal is to explain the cooperative and non-Nash behavior
shown by human players playing iterated PGG.

2. (a) Each player playing the game is given an identity, in the simplest
case, from the set {C, D}, where C stands for cooperator and D for
defector. Both cooperators and defectors behave in a prescribed
manner (for instance, cooperator always contributes all the tokens,
defector always doesn’t contribute).

(b) The agents play based on the rules above and the payoffs are ob-
served. The identities of the agents are then updated through some
transition probability distribution (also depending on the payoffs)
before the next period begins and the game continues.

3. The dynamical rule described above is then used to evaluate the emer-
gence of (or the lack of) cooperation, which is measured via the total
average contribution of the players in a given period of the game.

1.1.2 Problems with ABM

Essentially, the burden of a physicist (or any other modeller) comes down
to performing a "good" selection of the microscopic interaction rule for the
ABM. The true test of the goodness of the rule is whether the macroscopic
observable of interest is faithfully replicated. But the space of all allowed
rules is much larger than the space of allowed values of the macroscopic
observable. This essentially creates a degeneracy in the rule space and allows
the modeller to make an arbitrary choice of the microscopic rules to replicate
a simple behavior of the macroscopic observable.

The reason why this is not a big concern for traditional domains of physics
is that in physical systems, we exploit various symmetries and conservation
laws that restrict the space of allowed interaction rules. This is not a luxury
one has when modelling microscopic entities as complex as humans. There-
fore, especially in social physics, such ad hoc ABM provides little insight into
what is actually happening and is also bound to fail in novel situations, when
suddenly a new observable becomes of interest. The author claims that such
is the state of the majority of publications in the social physics literature.
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1.1.3 What can be done?

Essentially the above problem can be reduced to that of non-invertibility of
macroscopic dynamics to microscopic dynamics. There could be two ways
to resolve this issue.

1. One approach to deal with this non-invertibility could be to increase the
number of macroscopic observables that need to be replicated, as this
would put further restriction on the space of microscopic rules. The lim-
iting process of increasing the number of observables might just come
down to making the macroscopic observable a microscopic one. This
would necessitate a more detailed inspection into individual agency.

2. Another route could be to use the same interaction rule across different
domains of application. This would require that the agent based models
follow a general enough framework that allows for it to be applicable
in various settings, i.e., one needs to develop a view of agency that is
independent of the domain in which the agent operates.

Essentially the above indicate the need for a more accurate and general
framework of human agency. As it turns out there are ideas in other aca-
demic disciplines that fill this void. More specifically, economists have pon-
dered the nature of human agency, which has led to Game theory, which has
become a dominant modelling paradigm for economic agents. On the other
hand, computer scientists working on general intelligence have pondered on
what general models of agency can be built that allow the agents to perform
in a wide array of environments. The author believes that physicists should
make use of the progress made in these disciplines to guide their models of
agency in social physics.

1.2 Modelling individual agency

As discussed in the previous section, we will bring our attention to modelling
individual agency. We will do this by exploring what the literature in other
disciplines has to say about human agency and agency in general. This will
also serve as a motivation for the line of work presented in this thesis. Before
we do any of this, we need to make some matters precise.

1.2.1 What even is an agent?

A notion that is central to this line of research is the notion of an agent. In the
most abstract sense, an agent can be viewed as a function f (Russell and Sub-
ramanian, 1994) whose domain is the space of observations O and co-domain
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FIGURE 1.1: Relationship between the agent A and environment E.

is a space of actions A, i.e. f : O → A. Through these observations and
actions, the agent is in constant interaction with, what can be called the envi-
ronment. The environment is essentially viewed as a controllable dynamical
system (stochastic or otherwise) and the control variable is the action of the
agent, equivalently it can be viewed as a function g : X × A → X where X
is the state space of the environment. The observations o ∈ O on the other
hand are some functions of the state of the environment i.e. h : X → O.

In addition to the agent, environment and observation functions there is
also a utility function U : X× A→ R, which describes the goals of the agent.
A utility function essentially induces an order relation on the space of actions
i.e. some actions are better than others. The relationship between the agent
and the environment has been provided a schematic representation as shown
in Fig. 1.1. The agent-environment interactions can be viewed as a cycle that
starts with the environment in a given state, the agent observes the state of
the environment and outputs an action, which then feeds into the evolution
law of the environment, consequently generating a new environment state
and also a reward for the agent.

There are a couple of things to note already.

1. The notion of an agent in consideration is oblivious to how the agent
function is implemented physically i.e. a machine for instance. This is
only a functional description of agency as opposed to an architectural
one.

2. The description of the environment as a function is sufficiently general
as it also allows for the possibility for the environment to include other
agents.

1.2.2 Searching for "good" agent functions

The general notion of agency defined above allows us to cast the pursuits of
agent based modelling across different fields as a search problem for different
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agent functions. In the following, we explore the relevant explorations in the
fields of general intelligence research and game theory.

Artificial general intelligence (AGI)

Very broadly speaking it can be said that the search for general intelligence is
a search for those f that perform well/intelligently (with respect to the utility
function) for a wide range of g. A formalization of this order relation on agent
functions has been provided by Legg and Hutter, 2007. The authors not only
define the order relation but also describe (one of) the maximal element(s) of
the set of agents with respect to the order relation and it corresponds to the
AIXI1 agent function (Hutter, 2007).

The AIXI agent function is essentially an amalgamation of the Solomonoff’s
theory of induction (Solomonoff, 1964) and Bellman’s theory of optimal con-
trol (Bellman, 1954). The AIXI agent function can be viewed as a composi-
tion of two functions called the learning and the planning functions. Where
the learning function is a mapping from observations to models of the envi-
ronment and the planning function is a mapping from models of the envi-
ronment to actions. It is then shown that this learning and planning agent is
Pareto optimal with respect to the aforementioned order relation (although
this result comes with its own set of nuances (Leike and Hutter, 2015)).

Game theory

Even before its formal inception with the work of Neumann, 1928, game the-
ory was being developed with the motivation of describing optimal behavior
in economic interactions for instance Cournot, Bacon, and Fisher, 1897 dis-
cussed what is now known as the Cournot duopoly. Economic interactions
are usually abstracted into games such as prisoner’s dilemma, public goods
game (which will be the focus of our attention in this thesis), dictator game,
etc. and agent behavior in these specific environments is studied.

Broadly speaking there are two sub branches to game theory - normative
game theory and descriptive game theory (or behavioral game theory) and
they can be characterized by different searches for agent functions. Norma-
tive game theorists concern themselves with how the agent ought to act in
economic interactions. Von Neumann in his aforementioned work states a
set of axioms that any "good" economic agent must act as, thereby restricting
the set of good agent functions. For instance perfect rationality and common
knowledge of rationality are commonly assumed by normative game theorists
(we will discuss this in a little more detail in Chapter 2).

1This is short for Artificial Intelligence - ξ.
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On the other hand behavioral game theorists have the concern of describ-
ing how agents (humans) actually interact in economic interactions as ob-
served by experiments of humans playing economic games. Here the hope
is to develop a theory that finds agent functions that most closely repre-
sent human behavior in the environments related to economic interactions.
Camerer, 2011 serves as a good overview of the subject.

1.3 Returning to social physics: Our approach

In this thesis we combine the insights from AGI research (learning and plan-
ning agent) which provides generality (i.e. applicability to a wide range of
environments) to our agent model and also add some specific insights from
behavioral game theory (cognitive bounds on learning and planning) to give
our agent model the human touch, thereby alleviating the two main worries
that face the ABM approach to study social systems. We do this by devel-
oping our agent model and employing it in a very well studied paradigm
afforded by the public goods game (PGG). We consider PGG simply for our
results to be comparable to contemporary literature in sociophysics. Finally.
we end up with an agent model that has parameters which can be interpreted
as individual human preferences and can be inferred from experimental data.

Before we move on to describe our agent model, in the next chapter we
describe the PGG and review some of the work that has already been done
to the end of explaining human behavior in PGG and provide further moti-
vation for the modelling route we choose.
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Chapter 2

The public goods game

In this chapter, we will set the stage for the work done in the thesis. We
start by defining the public goods game (PGG) and then providing a brief
overview of some game theoretic concepts associated with "optimal" behav-
ior in PGG. We will also describe the experimental evidence on human be-
havior in PGG, which our models in the subsequent chapters will aim to
explain. To contrast our model with the current standards in the field we will
also explore contemporary models that explain human behavior in PGG.

2.1 Game definition

A public goods game (PGG)1 is defined by the tuple (N, T, τ, α), where N in
the number of players, T is the number of iterations (also called periods) for
which the game is played, τ is in initial endowment provided to each player
in each period and α is the return factor (also called MPCR - mean per capita
return). In each period of the game, the following happens (Fig. 2.1 shows a
schematic of one period of the game, and references to it will be in brackets.).

1. Each player is provided with the same number τ ∈N of tokens (τ = 20
in the figure).

2. Each player anonymously contributes an integer number of tokens (20, 0, 20, 20)
to a "public" pot (represented by the cyan box in the middle).

3. Each player receives a return worth the total collection in the pot, mul-
tiplied with a number α ∈ R (α = 0.4). This return, plus the tokens held
back initially by the player, is called her reward (24, 44, 24, 24).

This completes one period of the game. After that, the game continues for a
finite (and previously known to all players) number T of periods. The total
gain of an individual is then the sum of the rewards in each period.

1Technically it must be called the iterated public goods game. Regardless, we continue this mis-
nomer throughout the thesis for convenience. Whenever referring to the actual PGG we may refer to
it as a "single shot PGG" or a "single period PGG".
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FIGURE 2.1: One period of a PGG with N = 4 players and α = 0.4.

Giving notations to the above, we can represent the contribution of a
player i ≤ N in period t ≤ T as fi,t ∈ [0, τ]. Then the gain of player i in
period t (also called the immediate gain) is given by

Gi,t = α
N

∑
j=1

f j,t − fi,t. (2.1)

This can also be written as

Gi,t = α(N − 1)µi,t − (1− α) fi,t, (2.2)

where µi,t =
∑k 6=i fk,t

N−1 is the average contribution of other players. The total
gain for the ith player can then be defined as Gi = ∑T

t Gi,t.

2.2 Why focus on PGG?

The main reason to focus on PGG is due to the wide scope it has. It is a
classic example of a "social dilemma", i.e. a situation where the individual
and collective goals clash. This will become clear in the following. As can be
seen from the definition of the game, if α ≥ 1 then it is trivial to see that every
individual gains by contributing all of her initial endowment into the public
pot. On the other hand, if α < 1 things are not as clear. We can certainly
see from Eq. 2.2 that individual gains are maximized when the individual
"defects" (i.e. doesn’t contribute) and others do not (like the yellow player
in Fig. 2.1). Although if everyone follows this strategy and defects, no one
ends up with more reward than the initial endowment τ. On the other hand,
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collective gain (i.e. the sum of gains of all the players) gets maximized when
the collection in the public pot is maximized, i.e. when everyone contributes.
In such a scenario everyone gets a better reward as compared to the case
where everyone defects. But then again, this goes against the self-interest of
the players.

This aspect of a social dilemma that PGG captures allows it to be a good
metaphor for a variety of situations we encounter. For instance, let’s consider
mask-wearing to prevent the spread of the Covid-19 virus. Clearly, there is
a personal cost to wearing a mask, as evidenced by plenty of us wearing it
underneath the nose. Those of us who wore a mask essentially contributed
to the public pot, where the return on our investment was a lowered proba-
bility of being infected. Social gains would be maximized by everyone wear-
ing masks. Although, the best outcome for an individual is when every-
one wears it and the individual doesn’t, much like a PGG! Other domains
where the PGG metaphor applies are for example state taxes, reducing the
carbon footprint for climate, cleanliness in the house with multiple room-
mates, etc.. Such a wide scope of applicability of PGG has made it a funda-
mental paradigm in experimental economics, which also means that there is
plenty of experimental data available that theoreticians can aim to explain.
Therefore, developing good models for human behavior in PGG enhances
our understanding of a wide variety of socio-economic environments that
we are embedded in.

2.3 How we ought to act in games

2.3.1 Rationality

Before we pursue how we ought to act in a multiplayer game such as a PGG,
let’s consider how we ought to act in a single player game G1. The game is
defined by a tuple G1 = (X, Y, C, U), where

• X is an action space, denoting the set of all actions available to the
player,

• Y a consequence space, denoting the consequences of each action,

• C : X → Y the causal map from actions to consequences and

• U : Y → R is the utility function denoting the reward of the player.
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In this game if a player takes an action x ∈ X, then it earns a reward U(C(x)).
In order for the player to be optimal or rational2, the player must be able to
choose an action x∗ such that

U(C(x∗)) ≥ U(C(x))∀x ∈ X. (2.3)

This is a deterministic game, i.e. the causal map from actions to consequences
is given by a function C. In a more general setting, where we allow for actions
to have uncertain consequences the causal map C transforms to C′ : X →
P(Y), where P(Y) is a probability measure on the space Y. In such a case
a rational agent must be capable of maximizing the expected utility, i.e. the
agent must be able to choose an action x∗ such that

∫

Y
C(x∗)U(y)dy ≥

∫

Y
C(x)U(y)dy∀x ∈ X. (2.4)

So far, playing the game G1 optimally or rationally means that the agent
must be able to maximize either the utility or the expected utility function.
G1 is a trivial game in the sense that there is no strategic interaction between
players. This simplicity vanishes the moment we have a multiplayer in-
teraction where the utility of each player depends on the actions of oth-
ers. Let us explore this possibility by considering a two player game G2 =

(X1, X2, Y, C, U1, U2). Here

• X1 and X2 are the action spaces of the respective players,

• Y the consequence space,

• C : X1 × X2 → Y a causal map and

• U1 : Y → R and U2 : Y → R are the respective utility functions.

If we now proceed as before then from the perspective of player 1, the player
is rational if she can choose an action x∗1 ∈ X1 such that U1 gets maximized.
But U1 depends on y ∈ Y and y depends on the actions of both the players.
Therefore if player 1 wants to be able to maximize her payoff, she needs some
information regarding what player 2 is going to do, but this information is
not provided to player 1.

2.3.2 Common knowledge of rationality

It seems that mere rationality (i.e. the capability to maximize (expected) pay-
off) is insufficient in guiding us to act in a multiplayer setting and we need to

2Here we have tacitly introduced the notion of "rationality" which is formally defined via the VNM
axioms. For pedagogical reasons, we will not get into the formal description, but rather just carry on
with these operational notions. Any interested reader is encouraged to go through Von Neumann and
Morgenstern, 2004.
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FIGURE 2.2: Two player location game with the potential locations of
the red and blue players are as shown at 30 and 60 respectively. The
dashed lines represent the part of the city that flocks to the respec-

tively colored shop.

make some assumptions about the kind of knowledge each player has about
other players. It may be better to proceed by an example. Consider the two
player location game. In this game we have two players named red and blue
, who both want to open an ice cream shop in a one dimensional city given
by the interval [0, 100]. The population in this city is uniformly distributed
on this interval but the shops can only be opened at x coordinates that are
multiples of 10 as marked in Fig. 2.2. The goal of the players is to open the
shop at such a place that most people from the city buy ice-creams from their
shop. The city however is famous for its lazy people and it is known by both
players that the customers are only going to visit the shop that is closest to
them. Let us go through some observations sequentially.

• End points (x = 0 and x = 100) are the worst locations to open the
shop, therefore any player that is capable of maximizing her utility (i.e.
is rational) will not open shop at the end points of the city.

• If red knows that blue is rational, then (according to red) blue will not
open shop at either x = 0 or x = 100. So red will now consider x = 10
and x = 90 as viable shop locations (for blue).

• If red knows that blue knows that red is rational then blue will not ex-
pect red to play x = 0 or x = 100 as well. This will mean that the new
end points of the game are x = 10 and x = 90.

• If this process continues ad infinitum, we say that the players have com-
mon knowledge of rationality.

• So if the players are rational and if they have common knowledge of
rationality then in the 2 player location game they will open shop at
x = 50. This is also the Nash equilibrium of the game.

Coming back to G2, the issue of not being able to maximize personal util-
ity due to lack of sufficient knowledge can now be resolved by invoking the
assumption of common knowledge of rationality. As it turns out, in nor-
mative game theory the properties of rationality and common knowledge of
rationality are always assumed on the part of the agents. When both these
conditions are met, these rational and all-knowing agents act according to the
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Nash equilibrium. For G2, the Nash equilibrium is a set of strategies (x∗1 , x∗2)
such that

U1(C(x∗1 , x∗2)) ≥ U1(C(x1, x∗2))∀x1 ∈ X1,

U2(C(x∗1 , x∗2)) ≥ U2(C(x∗1 , x2))∀x2 ∈ X2.
(2.5)

Essentially, the Nash equilibrium is a collection of optimal actions. The ac-
tions are optimal in the sense that for all the players, these actions are the best
response to the actions of the rest of the players.

2.4 How we ought to act in a PGG

We are now ready to answer what the Nash equilibrium of PGG is going to
be. This is what normative game theorists would say, one ought to act like.
Let us start with the single shot PGG that the players play in period t of the
actual PGG and consider this from the perspective of player i ≤ N. In order
to find the Nash equilibrium action for player i we will have to find f ∗i,t such
that

Gi,t( f ∗i,t, f̄ ∗−i,t) ≥ Gi,t( fi,t, f̄ ∗−i,t)∀ fi,t ∈ [0, τ]. (2.6)

Here f̄ ∗−i,t represents the vector of contributions from all the players except
the one with index i and ∗ is used to represent optimal quantities as usual.
Using Eq. 2.2 we can see that irrespective of what f̄ ∗−i,t is, the optimal action
for player i is given by

f ∗i,t =
{

0 α < 1,
τ α ≥ 1.

(2.7)

Because the chosen index i is arbitrary, the Nash equilibrium for PGG is com-
plete defection or total contribution depending on the value of α. As this is
true for an arbitrary period in a PGG, defection in all periods is the Nash
equilibrium in PGG. Therefore if we are rational and our rationality is in
common knowledge, then when playing PGG we should either defect or
contribute everything. But are we rational? And if so, is our rationality in
common knowledge?

2.5 How we actually act in a PGG: experimental evidence

Herrmann, Thöni, and Gächter, 2008 conduct experiments with human play-
ers across sixteen different cities all across the world. In the experiments, the
players were made to play PGG with τ = 20, N = 4 and α = 0.4. Fig. 2.3
shows city-averaged contributions as a function of game period for all six-
teen cities. As can be seen, human behavior in PGG can be characterized by
a declining trend of the average contributions as the game progresses. While
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FIGURE 2.3: Group average contributions as a function of game pe-
riod for various cities. Figure taken directly from Herrmann, Thöni,

and Gächter, 2008.

FIGURE 2.4: City average contributions and the corresponding vari-
ances represented as error bars for two cities- Athens (left panel) and
Bonn (right panel). The plots are generated using the data from Her-

rmann, Thöni, and Gächter, 2008.
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FIGURE 2.5: Trajectory of a single group game played among citizens
of Athens. Contributions of all four players are shown, in different

styles.

FIGURE 2.6: Intragroup vs. intergroup variance in the average con-
tributions of players. Each data point corresponds to one city. The
significant offset of the data above the fist diagonal demonstrates the

substantial coupling between players playing in the same group.
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it is true that the declining trend in average contribution has been observed
in various other studies (for instance see the works of Janssen and Ahn, 2003;
Croson, 2007) and is therefore considered characteristic of human behavior in
PGG, the period to period variance in the contributions is also very high (as
can be seen in Fig. 2.4). This can also be seen by taking a look at the game tra-
jectory of an individual group. Fig. 2.5 demonstrates the very erratic nature
of human play in PGG.

Beyond the erraticity, human players also showed evidence of system-
atic interactions amongst themselves. The mutual interaction of the players
within a group becomes apparent when one considers the variance of the av-
erage contributions of the players. As Fig. 2.6 shows, the intragroup variance
(abscissa) was generally smaller than the variance of average contributions
among all groups of the same city (ordinate). Since players were picked from
citizens in a completely random fashion as a part of the experiment, this sug-
gests a certain degree of co-operativity, or peer pressure, between players
within the same group as to the style of playing, either more parsimoniously
or more generously.

It seems obvious that the prescriptions of normative game theory are in-
capable of reproducing the declining trend of average contributions, the er-
raticity of human play (far from the Nash equilibrium) or the mutual interac-
tions. Naturally, it leads one to question the prescriptions of normative game
theory, namely, rationality and common knowledge of rationality, which are
the prerequisites of playing Nash equilibrium. This is the main motivation
behind behavioral game theory (a good overview can be found in Camerer,
2011). Arising from these motivations is the notion of bounded rationality as
first discussed by Simon, 1955 and this will be explored in more detail in
Chapter 3 as it will be central to our modelling approach. Before we get into
our model, let us look at the current state of the art, when it comes to mod-
elling human behavior in PGG.

2.6 Existing models

A broad look over the existing literature on human behavior in PGG shows
that most research primarily focuses on explaining the declining trend of
contributions in PGG (in some cases also intra-group correlations) and dis-
regarding both the erratic nature of human play and the mutual interactions
they demonstrate. The explanations for the declining average contributions
that come forward are conditional cooperation, pay off based learning, and in-
equity aversion.
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2.6.1 Conditional cooperation

Conditional cooperators are those players whose contributions to the public
good positively correlate with their beliefs about how the rest of the group
is going to contribute. For instance, in the work of Dufwenberg and Kirch-
steiger, 2004, they consider model agents that hold beliefs about how other
players are going to contribute, given a history of the game. The manner
in which these beliefs enter the dynamics of the agents is through the util-
ity function. The authors add two components to the utility function- first
is the (what they call) "material payoff" which would be given by Eq. 2.2 in
our case, and second is the "reciprocity payoff" which encodes the agent’s be-
liefs about other players’ actions. As the game progresses the agents update
their beliefs about other players via a Bayesian update rule and this changes
their preferences and consequently their behavior. A very similar approach
is also employed by Falk and Fischbacher, 2006 but only initial beliefs en-
ter the utility function. In these studies, the declining trend is explained via
these conditionally cooperating agents realizing the existence of free-riders
(players who always defect) and therefore leading to also a decrease in their
contributions. Additionally, it has been reported that a small self-serving
bias to conditional cooperation is also responsible for the declining trends
(Fischbacher, Gächter, and Fehr, 2001).

2.6.2 Inequity aversion

Inequity aversion is the tendency to avert extreme outcomes in rewards in
a group. The work of Fehr and Schmidt, 1999 suggests that the declining
trends can be attributed to the interaction between fair (inequity averse) and
selfish agents. The model of inequity aversion proposed includes a modi-
fication to the utility function. A fair agent’s utility includes not only the
material payoffs but also a negative payoff for either earning more (guilt) or
less (envy) material payoff than other players. Therefore the declining trend
can yet again be seen as a response of the fair players to the presence of self-
ish players that always defect. In addition to the declining trend, inequity
aversion also holds the potential to explain the correlations in intra-group
dynamics.

2.6.3 Payoff based learning

Yet another approach to explain the declining trends in average contributions
is the payoff based learning approach as adopted by Burton-Chellew, Nax,
and West, 2015a. The authors make the case that the declining trends in av-
erage contributions are a consequence of the players learning how to play
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the game. They hypothesize that the players start with an incomplete under-
standing of playing the game and as the game progresses, they learn which
actions give them more utility (which in the case of the concerned work only
includes the material payoff) and just by definition (Eq. 2.2) the players de-
crease their contributions as the game progresses.

2.7 How do we proceed?

Our work starts with the objective to explain the non-Nash behavior that
human players, playing iterated PGG for 10 periods, show as reported in ex-
perimental findings by Herrmann, Thöni, and Gächter, 2008. Our first con-
tribution to this line of work is challenging the explanations of payoff based
learning and inequity aversion and presenting an alternative (discussed in
Chapter 3) based on the notion of bounded rationality (without invoking a
learning mechanism) and a slightly different manner of incorporating beliefs
about other agents. More specifically we show that just bounded rational
planning is not only sufficient to explain observed human behavior in PGG
but also does a better job than all existing models. We not only replicate the
mean decreasing trends but also the period to period variances (erraticity)
and the intra-group correlations.

We do not imply that human players do not learn when playing iterated
PGG for 10 periods. All our work does is point out the fact that there are
multiple explanations for human behavior in iterated PGG and one should
increase the complexity of the explanation only when faced with observa-
tions that cannot be explained by the previous one. With this motivation in
mind, in our second work (Chapter 4) we introduce the complete model with
both learning and planning and bounds on them and focus our attention on
what exclusive impact does learning have of agent behavior. We go on to
show that results from studies on human players playing PGG with vary-
ing number of players cannot be replicated by planning alone and learning
mechanisms need to be invoked. In addition to this, we provide experimen-
tally testable predictions for human behavior in PGG.

Only after having reasonably justified the use of our microscopic agent
based model, we move to collective effects and provide our predictions. We
consider our bounded learning and planning agent playing the spatially ex-
tended variant of the PGG, also called spatial PGG or SPGG (Chapter 5).
Quite surprisingly we find that the model agents in an SPGG show a very
simple collective behavior that is mostly characterized by local topological
descriptors of the underlying hypergraph.
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Chapter 3

Bounded rational agency in PGG

Following the observation from experiments that human behavior is not con-
gruent with the prescriptions of normative game theory, in this chapter we
will develop an agent model that relaxes the two assumptions of rationality
and common knowledge of rationality (CKR from now on). We will start
with building up a model of fully rational agents but without CKR and post
that we will introduce bounds on their rationality and complete the agent
model. With this updated bounded rational agent, through this chapter, we
will explore how it explains the behavior of human players in PGG.

3.1 Notation

We start the discussion by exploring the notation that we employ. In the
following, we consider a PGG given by the tuple (N, T, τ, α).

1. fi,t ∈ N := the contribution (or ‘action’) of the ith agent in period t ∈
{1, ..., T}.

2. f̄t = ( f1,t, ... fN,t) is the state of the game at the end of turn t. The bar on
the top will be used to represent a vector quantity as before.

3. Gi,t( f̄t) = α ∑k fk,t + (τ − fi,t) is the immediate gain of agent i in pe-
riod t. The last summand represents the ‘gain’ from what was not con-
tributed.

4. θT
t = ( f̄t, f̄t+1, ..., f̄T), is the trajectory of all the players in the game from

period t to T.

5. Gi(θ
T
t ) = ∑T

t′=t Gi( f̄t′) is the cumulative gain of agent i from period t to
T.

6. P(θT
t ) := The probability of a game trajectory from time t to T.

7. f̄−i,t := The contribution of all agents except the ith agent in period t
(we may identify f̄t = ( fi,t, f̄−i,t)).
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8. πT
t = ( f̄−i,t, f̄−i,t+1, ..., f̄−i,T), is the trajectory of all players except the ith

player, from period t to T.

9. P(πT
t ) := The probability of the trajectory of all players except the ith

player, from period t to T.

3.2 Rational agency over finite time horizons

We start the discussion by modelling a completely rational agent (and as we
will see, without common knowledge of rationality) with rationality mean-
ing the capability to find the best action by maximizing for an objective (util-
ity) as already discussed in Sec. 2.3.1.

Exploiting the inherent symmetry in the game, we will state the model for
only one agent with the index i ∈ {1, ...N}. From the perspective of the ith

agent, we shall often refer to the other agents as the system and we call the ith

agent the focal agent, or just agent, for short.
The aim of agent i is to maximize the cumulative gain Gi achieved at the

end of all iterations i.e. to say that in each period t of the game, agent i
chooses an action fi,t in service of maximizing the cumulative gain Gi. The
latter, however, depends not only on the agent’s actions but also the other
agent’s actions (i.e., the system) like G2 in Sec. 2.3.1 and therefore we need to
make some comment about what information agent i has about the system.
Recall from Chapter 2 that in PGG the contributions of the players are anony-
mous i.e. there is no communication between the players. It is then safe to
assume that agent i can only have a probabilistic model of other agents, and
this is how we proceed1.

In order for the agent to be rational, agent i has to calculate the likelihood
of a particular trajectory of the game (i.e. system + agent) and hence be able
to act so as to maximize the expected gain over the entire trajectory. In this
model we assume that the agents are Markovian, i.e. their decisions in a
given period are dependent only on the state of the game in the previous pe-
riod and not on the states further back in the game history2. The probability
of realizing a trajectory P(θT

t ) is then given by

P(θT
t ) =

T

∏
t′=t

P( f̄t′ | f̄t′−1) =
T

∏
t′=t

P( fit′ , f̄−it′ | f̄t′−1). (3.1)

From the perspective of agent i, note that there are two kinds of processes at
play here. First, the stochastic process describing the system which generates

1Notice that we have already relaxed the CKR assumption by doing this.
2While this may appear as a gross simplification, we will see that human playing behavior can be

accounted for quite well by this assumption.
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f̄−i,t. Second, there is the choice of the agent, fi,t. Since the game is played
anonymously, both of these processes can be assumed to be statistically inde-
pendent3. This can be used to write P( fi,t, f̄−i,t| f̄t−1) = P( fi,t| f̄t−1)P( f̄−i,t| f̄t−1).
We refer to P( f̄−k,t| f̄t−1) as the transition function as it denotes the likelihood
of the system responding with f̄−i,t to the previous state f̄t−1 of the game. In
order to avoid confusion with other Ps, we rename it as Q( f̄−i,t| f̄t−1). This
now allows us to write the total game trajectory as

P(θT
t ) =

T

∏
t′=t

P( fit′ | f̄t′−1)Q( f̄−it′ | f̄t′−1)

= P(πT
t )P( f T

t ),

(3.2)

where P( f T
t ) = ∏T

t′=t P( fi,t′ | f̄t′−1) is called the policy of the agent.
So far we have broken down the path probability into two parts - one that

the agent controls i.e. its policy and the other holds the information of how
the system transitions into new states. With each of these paths, there is also
an associated gain for the agent. If we combine the path probability with the
path gain, we can write the optimization problem agent i faces in period t as,

Vt[P( f T
t )] −→ max, (3.3)

where
Vt[P( f T

t )] = ∑
θT

t

P(θT
t )Gi(θ

T
t ), (3.4)

is the expected cumulative gain (also called the value functional). The maxi-
mum value of Vt will henceforth be called V∗t .

Noticing that Gi(θ
T
t ) can be written as Gi(θ

T
t ) = Gi,t( f̄t) + Gi(θ

T
t+1), we

can break down the summation in Eq. 3.4 into two parts, the first of which is
the immediate expected gain, the second is the future expected gain.

Vt[P( f T
t )] = ∑

θT
t

[
P( f̄t| f̄t−1)P(θT

t+1)Gi,t( f̄t) + P( f̄t| f̄t−1)P(θT
t+1)Gi(θ

T
t+1)

]

(3.5)
Now we can sum over θT

t+1. In the first summand, the path probability is
going integrate to 1 and the second summand will lead to the value function
at time t + 1. Finally, we get a recursive equation of the form

Vt[P( f T
t )] = ∑̄

ft

P( f̄t| f̄t−1)
[

Gi,t( f̄t) + Vt+1[P( f T
t+1)]

]
. (3.6)

3Notice that the independence is of the variables at the same period t. Agent i could still influence
future system states through its actions.
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Now, we can make use of Eq. 3.2 and write the above even more explicitly as

Vt = ∑̄
ft

P( fi,t| f̄t−1)
[

Q( f̄−i,t| f̄t−1)Gi,t( f̄t) + Q( f̄−i,t| f̄t−1)Vt+1

]
. (3.7)

Finally the optimization problem that agent i faces in period t can be written
as

V∗t = max
f T
t

∑̄
ft

P( fi,t| f̄t−1)
[

Q( f̄−i,t| f̄t−1)Gi,t( f̄t) + Q( f̄−i,t| f̄t−1)Vt+1

]
. (3.8)

This equation is known in literature as the Bellman equation as developed by
Richard Bellman, 1952, which was originally used in optimal control theory.
In common applications, this equation also includes a discount factor 0 ≤ γ ≤
1, which is the factor by which the future gains are discounted in comparison
to immediate rewards. This is written as

V∗t = max
f T
t

∑̄
ft

P( fi,t| f̄t−1)
[

Q( f̄−i,t| f̄t−1)Gi,t( f̄t) + γQ( f̄−i,t| f̄t−1)Vt+1

]
, (3.9)

where γ = 0 would indicate an extremely myopic agent as it is only trying
to maximize the immediate gains and γ = 1 would represent an extremely
far-sighted agent as it values all gains, no matter how far away in the future,
equally.

This concludes the description of our agent i which is rational as it finds
the optimal policy P∗( f T

t ) by solving Eq. 3.9, but there is no CKR as the
agent’s model of other agents is a probabilistic model given by the Marko-
vian transition function Q. In the next section, we will explore one particular
manner of bounding the rationality of the agent. More specifically we will
briefly go over some information thermodynamics to evaluate the cost of
performing a computation.

3.3 The cost of computing- Szilard engine

Szilard, 1929 created a thought experiment through which he described the
thermodynamic consequences of possessing information. The main idea is
rather simple. Consider a single particle in a box as in Fig. 3.1 that is currently
in equilibrium with a heat bath at temperature T. If one were to ask you what
the probability of the particle was for being in the left half of the box (without
you observing it), you would have said that it was 0.5. Let us say you now
make an observation and find that the particle is indeed in the left half of the
box with unity probability. Now you can do the following.
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FIGURE 3.1: A particle in a box and a massless partition being intro-
duced into it, dividing it into two halves- left (L) and right (R).

1. You are now allowed to introduce a massless partition in the middle
of the box (thick black line in the figure) and thereby allowing you to
extract work from the system4. The amount of work you would be able
to extract by doing this would be

W =
∫ V

V/2

kBT
V

dV = kBT ln 2 (3.10)

2. Once the partition reaches the right end of the box, you lift it out and
wait for the particle to again equilibriate with the heat bath.

3. Once it is in equilibrium, repeat step 1.

Essentially what you have done here, is that you have converted 1 bit of
information (L and R can be represented as a binary variable) into kBT ln 2
of work. Does this mean that we can keep freely extracting work out of a
single heat bath at constant temperature? Well, no. While it is true, that the
entropy of the physical system decreases when we possess information about
the system, the global entropy (system + observer) doesn’t. Loosely speaking
we are ignoring the work done by the observer in figuring out where the
particle was in the first place! That is, the amount of work the observer has
to do to update its knowledge about the system through observation is at
least as much as the amount of energy that can be extracted out of the system
as a consequence of the information.

In a more general case, we can say the following. The observer starts
with an a priori knowledge of the system state represented by the distribution
P0 where P0(L) = P0(R) = 0.5. This would be the guess of the observer
without performing any observation at all. Let us now say that the observer
has made a (potentially flawed) observation and the new knowledge state
can be represented by P where P0(L) = p and P0(R) = 1− p. The expected

4The particle is going to hit the massless partition and push it in the direction of the dashed arrow.
The partition could as well have been tied to a mass which could have been lifted using the pressure
from the particle.
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work this observer can extract out of a Szilard engine can be written as

〈W〉 = kBT[p log(
p

1/2
) + (1− p) log(

1− p
1/2

)] = kBTDKL(P||P0). (3.11)

3.4 The bounded planning agent

You may ask, what does the previous section have to do with agents play-
ing a game? The connection is rather simple. One may identify the Szilard
engine as a game where the expected work extracted can be identified as the
expected utility of the game. The agent in the case of a PGG then has an a
priori policy of playing the game called P0 and if the agent doesn’t engage in
any computation for instance searching through the box to find the particle
or searching through the policy space to find a better policy, then the agent is
likely to act in the game according to P0. On the other hand, a more computa-
tionally capable agent will expend some effort through deliberation and find
a better policy P as a consequence. What we do know is that for the agent to
deviate from its basal tendency P0 to a new policy P it has to expend effort
that is proportional to the KL divergence of the two policies (for more details
the reader is encouraged to go through Ortega and Braun, 2011).

Making use of the above analogy we allocate a computational budget K
that represents the maximal deviation from its basal tendency P0 that the
agent is allowed in search of a better policy, to agent i. Consequently, we
constrain (hence the name "bounded") the optimization problem in Eq. 3.9 by
the computational budget of the agent and write the optimization problem
faced by the agent in period t as,

V∗t = max
f T
t

∑̄
ft

P( fi,t| f̄t−1)
[

Q( f̄−i,t| f̄t−1)Gi,t( f̄t) + γQ( f̄−i,t| f̄t−1)Vt+1

]
,

with DKL(P( fi,t| f̄t−1)||P0( fi,t| f̄t−1)) ≤ K.

(3.12)

Here DKL(.||.) is the Kullback-Leibler divergence and P0( fk,t| f̄t−1) is the prior
policy for this period. The constrained optimization problem can be written
as an unconstrained one by introducing a Lagrange parameter to write the
optimization problem as,

V∗t = max
f T
t

∑̄
ft

P( fi,t| f̄t−1)
[

Q( f̄−i,t| f̄t−1)Gi,t( f̄t)−
1
β

log
P( fi,t| f̄t−1)

P0( fi,t| f̄t−1)

+γQ( f̄−i,t| f̄t−1)Vt+1

]
,

(3.13)
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where β is the inverse of the Lagrange parameter for the bounded optimiza-
tion problem. Because we have an inequality constraint, an additional con-
dition for optimality is given by the Karush–Kuhn–Tucker (KKT) condition
(see Kuhn, 1982), i.e.,

1
β
(DKL(P∗( fk,t| f̄t−1)||P0( fk,t| f̄t−1))− K) = 0. (3.14)

This means that if the optimal action is within the bounds of the computa-
tional capabilities of the agent, the agent will act optimally, else β is chosen
such that DKL(P∗( fk,t| f̄t−1)||P0( fk,t| f̄t−1)) = K and P∗( fk,t| f̄t−1) is a solution
of Eq. 3.135.

This concludes the description of the bounded rational agent. The bounded
planning agent can be seen as defined by the quadruple (Q( f̄−k,t| f̄t−1), P0( fk,t| f̄t−1), K, γ)6.
The transition model encapsulates the agent’s internal model of the system
(or other players), the prior policy represents the basal tendency of the agent,
K expresses the computational limitations, and γ represents the degree of
myopia of the agent. Although K could in principle vary from one period
to another, in this work we assume the computational constraint K to be the
same for all the periods, considering it as a trait of the agent.

We now turn to solving Eq. 3.13. The value function at period t cannot be
evaluated, because future actions are not known ab initio, and yet they need
to be considered in the optimization problem. This problem can be resolved
in the same spirit as Richard Bellman’s, through what is called backward in-
duction. Instead of starting from period t, we can start from the last period
and obtain a series of nested functions which can then iteratively lead to turn
t. Although simple in principle, an analytical solution can only be obtained
in a few special cases. The numerical solution to this problem, however, is
straightforward.

5One may argue that the bound on optimization in the form of relative entropy in Eq. 3.13 is arbi-
trary for modelling human agents as it follows from the physical system of a particle in a box. In order
to come up with a more "physical" bound on the computational abilities of humans, one would need
to have a model of how humans perform computations through their neural network and evaluate the
thermodynamic work done in that physical system in order to perform those computations. Then from
the energy limits of human agents, we might be able to quantitatively derive an appropriate value for
K. This is, however, well beyond what is currently known about computations in the brain.

6By describing the agent as such, we have deviated from the bounded rationality framework of
Ortega and Braun, 2011. In that work, the authors require the game to specify the Lagrange parameter
β for each period of the game, whereas, in our model, β is determined from K after performing the
constrained optimization.
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FIGURE 3.2: Basal tendencies of the agents P0( fk,t) as given by trun-
cated Gaussian prior distributions with variable m.

3.5 Numerical simulations

3.5.1 Model assumptions

First, we make the simplifying assumption that the prior of the agent P0( fit| f̄t−1),
is independent of the previous state, i.e. we replace P0( fi,t| f̄t−1) with P0( fi,t).
This simplification essentially implies that the agents don’t have a very com-
plex prior strategy that takes into account specific game states and the agent’s
response to each of them. Rather the agent has an apriori preference toward
some specific actions and it doesn’t change as the game evolves.

Second, we assume that the agents have truncated Gaussian priors given
by

g( f ; m, σ) =




N e

( f−m)2

2σ2 , 0 ≤ f ≤ τ,

0, otherwise,

where we set τ = 20 in order to relate to the data we intend to compare our
simulations with (Herrmann, Thöni, and Gächter, 2008). N is the normaliza-
tion constant, along with a fixed variance σ2 = 25. By varying the peak m
∈ (−∞, ∞) of the distribution we can span the basal tendencies from being
very greedy (small m), indifferent (intermediate m), or very benevolent (large
m). The corresponding prior distributions are displayed in Fig. 3.2. The pa-
rameter m, which may serve as a fitting parameter determined individually
for each agent, is constant over the full game. It can be seen as resembling a
character trait of the respective player.

Third, because of the anonymity of the players in the game, we can as-
sume symmetry across the f̄−i,t variables and separately across the f̄−i,t−1
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variables in Q( f̄−i,t| f̄t−1). Additionally, we only need to consider the distri-
bution of the means of f̄−i,t’s and f̄−i,t−1’s as these are the only relevant quan-
tities in the game from the perspective of agent i (see Eq. 2.2). Therefore, from
the definition of the agent we replace the transition function Q( f̄−i,t| f̄t−1)

with Q(µt|µt−1, fi,t−1). Where µt =
∑k 6=i fk,t

N−1 .
Finally, we assume that the transition function Q(µt|µt−1, fi,t−1) is a trun-

cated Gaussian with the most likely value of the Gaussian given by

µ
peak
t =

{
µ′t−1 + ξ+|µ′t−1 − fi,t−1|, µ′t−1 − fi,t−1 < 0

µ′t−1 − ξ−|µ′t−1 − fi,t−1|, µ′t−1 − fi,t−1 > 0
(3.15)

and some fixed variance (σtrans = 3) 7. Here µ
peak
t is the most likely value

of µt, µ′t−1 is the observed value of µt−1 and ξ± are scalar parameters. This
assumption is based upon the idea that an agent’s contributions can either
have an encouraging or a discouraging impact on other agents as the game is
being played anonymously and the agent can only influence the game trajec-
tory via its contributions. Therefore, ξ+ and ξ− control the degree to which
other agents are being encouraged or discouraged. In summary, the prior
distributions are parameterized by m, while the transition functions are pa-
rameterized by ξ±.

3.5.2 The agent model and relation to known human preferences

With the above assumptions in mind the agent model described at the end of
Sec. 3.4 gets modified and the simplified agent is completely described by its
tuple (ξ±, m, K, γ), which is considered constant over the game it plays. As a
side note, it is instructive to compare these parameters to known human pref-
erence parameters used, e.g., in the Global Preference Survey (GPS Falk et al.,
2018). In that work, which provides a compilation of economic preferences
all across the planet, six parameters affecting human choices are considered:
patience (willingness to wait), risk taking (willingness to take risks in gen-
eral), positive reciprocity (willingness to return a favor), negative reciprocity
(willingness to take revenge), altruism (willingness to give to good causes),
and trust (assuming people have good intentions).

There is a large body of literature on why these preferences are consid-
ered particularly important for economic decisions (Arrow, 1972; Boyd et al.,
2003; Dohmen et al., 2008; Chen et al., 2013), but this shall not concern us
here. What we immediately recognize is a relation between the parameter ξ+
and ξ− in our model on the one hand and positive and negative reciprocity

7 Varying σtrans between 1 and 8 was found not to change the qualitative features of the group
trajectories appreciably. We chose an intermediate value, which means that agents are neither entirely
uninformed about their contemporaries nor have a very precise model of them.
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on the other hand. Furthermore, patience, which is measured by the will-
ingness to delay a reward if this increases the amount rewarded, obviously
relates to the foresight expressed by the attempt to maximize the reward path
integral (instead of focusing on the reward in a single period). Notions like
risk taking, altruism, and trust will certainly reflect in the value m assigned
to a player, and to some extent also affect ξ±. Hence the ingredients of our
model are by no means ad hoc, but are widely accepted to exist, to be relevant
for decisions, and to vary considerably among different cultures across the
globe (Falk et al., 2018).

3.5.3 Algorithm

Above we used backward induction to compute the (bounded rational) pol-
icy of an agent. For a more instructive description of the algorithm, we now
describe the fully rational case in more detail (i.e. Sec. 3.2). The correspond-
ing policy can be obtained again by backward induction, using the transition
matrix for the system, with the transition matrix P.

We use the notation µt−1 := 1
N−1 ∑i 6=1 fi,t−1 for the cumulative bets of the

other agents and assume for simplicity, that the agent the policy of which we
are interested in has index 1.

Algorithm 1 Backward Induction

1: function POLICY(M, tmax)
2: t = tmax

3: E = 0
4: V = 0
5: while t > 0 do
6: for 0 ≤ f1,t−1 ≤ τ do
7: for 0 ≤ µt−1 ≤ do
8: for 0 ≤ a ≤ τ do
9: E[a] = GAIN(Q, a, µt−1, f1,t−1, V)

10: end for
11: j = arg max E
12: policy[t, f1,t−1, µt−1] = (δij)i∈{0,...,(N−1)τ}
13: V = policy[t, f1,t−1, µt−1] · E
14: end for
15: end for
16: t = t− 1
17: end while
18: RETURN policy
19: end function
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Here δkj is the Kronecker delta, bold notation refers to vector-valued vari-
ables, and the GAIN function is defined as:

GAIN(Q, a, µt−1, f1,t−1, V) = Q(·|µt−1, f1,t−1) · (γV + α((0, . . . , (N − 1)τ) + a) + τ − a) ,

where Q(·|µt−1, f1,t−1) refers to the probability distribution vector of having
certain cumulative bets given µt−1 and f1,t−1.

For bounded rational agents, the method is more or less identical, except
that instead of having delta distributions with their peak at the maximum
expected value, we need to solve the constrained maximization problem. For
the algorithm-wise, this means that instead of immediately taking the delta
distribution, we first check if DKL(P0||δ) ≤ K for the agent’s prior P0, the
delta distribution as described in line 12 of the algorithm and his rationality
parameter K. If this is the case, the computational cost of playing optimally
in this situation is compatible with the computational budget of our agent,
so his policy is exactly δ. Otherwise, we find β such that

DKL(P0||P∗) = K

Here, P∗( fi,t) = c · P0( fi,t) · exp(βE[ fi,t]), fi,t ∈ {0, . . . , τ} where c is just a
normalizing constant to get a probability distribution.

Note that for this algorithm one needs to know both µt−1 and fi,t−1 in
order to evaluate the expected cumulative gain. This leads to a problem
for the first period, as no history yet exists. Therefore in our implementa-
tion, we manually initialize the group with an appropriate state f̄0

8. For in-
stance, when fitting simulations to experimental data, we initialize the group
of agents with the initial contributions of the corresponding players. The
code was written in Python using the Just-In-Time Compiler Numba (Lam,
Pitrou, and Seibert, 2015) and the numerical library Numpy (Harris et al.,
2020).

3.5.4 Solution space of the model

Now we will demonstrate the kind of behavior our model agents can exhibit,
to the end of developing some intuition about the agent parameters. Since we
aim to develop agents whose playing behaviour is similar to that of human
players in ref. Herrmann, Thöni, and Gächter, 2008, we set (N, T, α, τ) =

(4, 10, 0.4, 20), as was chosen in that study. Due to the high dimensionality
of the parameter space, we show game trajectories for 4-player groups with
only a few configurations given by (ξ±, m, K, γ).

8As the contribution in the first period has to depend on the pre-play awareness of the human
player, we can just treat it as an initial condition for the purposes of our model.
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FIGURE 3.3: group average contribution, 〈A〉, as a function of

r =
√

ξ2
− + ξ2

+ for four different values of the polar angle, θ ∈
{0, π

6 , π
3 , π

2 }. The data collapse shows that the polar angle (hence the
ratio ξ+/ξ−) is not relevant for the average contribution. The inset
shows spurious oscillations for θ < π/4, which are not observed in
real games and should therefore be avoided by proper choice of ξ+

and ξ−.

Choice of ξ±

In order to understand the significance of ξ±, we consider fully rational agents
for the sake of simplicity, with (m, K, γ) = (10, ∞, 1), and consider the aver-
age (over periods and agents) contribution of the group, 〈A〉9, while the two
components of ξ are varied. Writing ξ+ = r cos θ and ξ− = r sin θ, it can
be seen from Fig. 3.3 that 〈A〉 seems to depend only on r, while the polar
angle θ has no effect on 〈A〉. The only region which is non-generic is close
to the origin (r ≤ 0.3), where the dependence of 〈A〉 is steep, and levels off
at minimal contributions for r ≤ 0.1. r = 0 corresponds to the case when
the agent decouples itself from the rest of the agents, i.e., the agent believes
that its actions will have no impact on other agents’ behaviors. In this case,
the agent plays at Nash equilibrium, i.e., contributes nothing. This is known
to be at variance with real player behaviour, hence we should avoid small r
when choosing ξ± in the model.

Some caveat is in order concerning the polar angle, θ. When ξ+ > ξ−
(θ < π/4), a strongly oscillating behavior is observed in the contributions for
intermediate time (see inset in Fig. 3.3). These oscillations (which do not have
a visible effect on the average 〈A〉) occur because agents believe, judging

9Here 〈·〉 is used to denote an ensemble average over multiple simulation runs.
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from their own ξ+, that it is easier to encourage people to contribute highly,
and harder to discourage them. Therefore, the strategy agents adopt is to
contribute highly once, so as to encourage all the other agents to contribute
highly and then contribute nothing, reaping the benefits from the contribu-
tion of the other agents. The oscillations can then be observed because all the
agents are employing the same strategy, and all of them are Markovian. Such
oscillations are unnatural for human player groups and can be considered an
artifact due to the strictly Markovian character of the agents.

In order to model human players, it seems therefore reasonable to keep r
sufficiently far away from zero and to assume ξ− > ξ+. The latter may as
well be seen as reflecting a tendency to be risk-averse, which is characteristic
of human players to a certain extent. Aside from the observations summa-
rized above, we did not find our simulations to depend strongly on ξ±. In our
simulations, we therefore set ξ+ = 0.1 and ξ− = 0.5 and keep these values
fixed for the remainder of this paper. Additionally, we initialize all following
simulations with f̄0 = (10, 10, 10, 10), except when fitting experimental data.

Impact of K

It should be clear from the previous section that fully rational agents (i.e.
K = ∞) act independently of their priors. Fig. 3.4 (a) shows simulations of a
group of four identical rational agents with (m, K, γ) = (5, ∞, 1). We see that
identical rational agents play identically. Although fully rational (K = ∞),
the agents do not play Nash equilibrium, but contribute substantially. This
is because, with our choice of ξ±, r = 0.26 is sufficiently large to prevent
players from "decoupling". Notice also that rational agents always contribute
zero tokens in the last period. This corresponds to the Nash equilibrium in
the one-period PGG, as the sole purpose of contributing was to potentially
encourage others to contribute in future periods, which is expressed by the
ξ±. In the inset of Fig. 3.4 (a) we also see the impact of γ on rational agents.
Here we have 3 agents (open circles) with (m, K, γ) = (5, ∞, 1) and one agent
(solid circle) with (m, K, γ) = (5, ∞, 0.7).

Computational limitations make the agent’s action random and depen-
dent on the prior probabilities. Again we have a set of 3 identical rational
agents (circles) with (m, K, γ) = (5, ∞, 1) and we show the impact of K by
varying it for the fourth agent (solid circles). In Fig. 3.4 (b) and (c), we show
the ensemble average trajectory of the group and a different agent which has
K = 3 and K = 0, respectively. Notice the dissimilarity from the case when
all the agents were fully rational.

In Fig. 3.4 (c) we see the effect of a complete lack of any computational
ability. The agent just acts according to its prior, unaffected by the play of
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FIGURE 3.4: Full game trajectories of a group of four fully rational
agents. In (a) all agents are (m, K, γ) = (5, ∞, 1). For the inset, one
agent has different γ = 0.7 (solid circles). (b) and (c) show ensem-
ble average trajectories over 10000 simulation runs with three agents
(open circles) as before and one different agent (solid circles) with the

same m and γ, but K reduced to 3 and 0, respectively.



3.5. Numerical simulations 35

other agents, as it is seen from the flat average trajectory. The preferred con-
tribution of the agent is given by the average of the truncated Gaussian prior
with m = 5, which is ≈ 6.24.

Impact of m

As mentioned previously, m only has an impact on agent behavior for finite
K. In order to investigate its impact on agent behaviour, we therefore con-
struct a group of three identical rational agents with (m, K, γ) = (5, ∞, 1)
and a single agent with K = 3 and γ = 1, for which we vary m. As can
be seen from the ensemble averaged trajectories shown in Fig. 3.5, m has a
monotonous impact on the average contribution of all the agents. Notice
that the agent with m = 0 plays like rational agents in the last periods and
the agent with m = 20 plays like the rational agents in the intermediate pe-
riods. As mentioned before, this is because the optimal strategy is close to
the agent’s basal tendency in these regimes. Bounded rational agents with
higher values of m will not be able to play rationally in the last period, as can
be seen in Fig. 3.5 (b) and (c).

Mutual coupling of agents

Referring to the correlations displayed in Fig. 2.6, we now consider the in-
tragroup coupling of agents. This can be investigated by composing a group
of three identical agents with K = 0 as the "system" and one agent as the
"probe". K must vanish for the system in order to ensure that there are no
repercussions of the probe agent’s behaviour upon the system. We then vary
m of the system and observe the ensuing changes on the contribution of the
probe agent. The result is shown in Fig. 3.7. Here we have chosen a benev-
olent rational player as the probe. Clearly, its contributions are very much
dominated by the contributions of the three system players, which demon-
strates considerable coupling between the players within a group.

Groups of identical agents

So far we have focused on the impact of parameters on the behaviour of in-
dividual agents. It is similarly instructive to study the behaviour of groups
of identical agents when their parameters are varied simultaneously. Results
for the impact of m and K on 〈A〉 for groups of identical agents are sum-
marized in Fig. 3.6. An initial contribution of 10 tokens is assumed for each
agent. Obviously, m and γ have a monotonous impact on the average contri-
butions. At high values of K, the average contribution of the group becomes
more and more independent of the priors (convergence of all curves towards
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FIGURE 3.5: Full game ensemble average trajectories of group of four
agents. There are three identical agents (open circles) with (m, K, γ) =
(5, ∞, 1) and one different agent (solid circle) with (a) (m, K, γ) =

(0, 3, 1), (b) (m, K, γ) = (10, 3, 1) and (c)(m, K, γ) = (20, 3, 1).
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FIGURE 3.6: The dependence of the average contribution 〈A〉 on
agent parameters in a group of identical agents. The ensemble aver-
age was determined over 10000 runs. In each panel, the dotted curve

is for (m, γ) = (10, 1).
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FIGURE 3.7: Demonstration of coupling among agents within one
group. A benevolent rational agent (dashed curve) with (m, K, γ) =
(20, ∞, 1) is made to play in two different systems, with either m = 0
(greedy, top, solid curves) or m = 20 (benevolent, bottom, solid
curves). The system agents are all chosen with K = 0 in order to
prevent repercussions of the agent under consideration (dashed) onto

the system.
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the right margin of Fig. 3.6 (a)). Also note that at very small K, the contribu-
tion is entirely governed by the priors. This is not the case with γ. At high
values of K, γ has a large impact on 〈A〉 (Fig. 3.6 (b)), while at low values of
K, γ has little or no impact on the 〈A〉.

It is furthermore interesting to note that 〈A〉 varies with K appreciably
only in an intermediate range of m. In the inset of Fig. 3.6 (a), we plot the
square of the derivative of 〈A〉 (suitably smoothed) with respect to K, aver-
aged over the full range of m. We find a pronounced peak at K ≈ 2.5. In this
range, 〈A〉 is sensitive as well to m and γ. Hence we may say that the system
has a particularly high susceptibility to parameter changes in this range. This
is interesting in view of K being intimately related to the Lagrange parameter
β, which can be viewed as an inverse generalized temperature (Ortega and
Braun, 2011). A peak in susceptibility may be analogous to a phase transi-
tion, when thermal energy comes of the same order as the coupling energy
between agents.

3.6 Fitting to experimental data

We are finally ready to fit the simulated game trajectories to the data obtained
from experiments done by Herrmann, Thöni, and Gächter, 2008. We fit our
model agent to the actual players in the game. Note that all agent actions are
correlated through their transition functions. Therefore we need to perform
the fits on the whole group, rather than fitting individual players sequen-
tially. This means we will have to fit the four quadruples (ξ i

±, Ki, mi, γi), with
i ∈ 1, 2, 3, 4 (16 parameters), to 40 data points (4 player contributions over 10
periods). This appears as rather sparse data, in particular as the data gener-
ated in simulations have a strong random contribution. We, therefore, have
to seek some meaningful ways to reduce parameter space.

First of all, we fix some of the parameter values by adopting all assump-
tions from section 3.5.1. Further suggestions emerge when fitting the eight
parameters (Ki, mi), with i ∈ {1, 2, 3, 4}, to experimental group trajectories.
This yields a two-dimensional histogram over the (K, m)-plane, which is
shown for two cities in Fig. 3.8, assuming γ = 1. While fitted values for m
are scattered widely, there is a preference for K ≈ 2.5 for both cities. This is in
line with the susceptibility peak we identified in Fig. 3.6, where agents have
access to a maximum range of game states. Hence we henceforth assume
K = 2.5 for all agents in the fitting procedures. We furthermore assume that
all the agents in a group have the same γ. We also choose the initial condi-
tion f̄0 to be the same as that of the actual players, therefore effectively fitting
only 9 periods. As a result, to each group from the experimental data we fit
the quintuple (γ, m1, m2, m3, m4).
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FIGURE 3.8: Joint distributions of K and m for Melbourne (top) and
Boston (bottom). There seems to be a clear preference for K ≈ 2.5.
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FIGURE 3.9: Two trajectories simulated under identical conditions,
with parameters obtained from fitting the group trajectory displayed
in Fig. 2.5 (data from an Athens group). The same group of agents
yields a different trajectory each time the simulation is run, due to the
inherent randomness of the model. The fitting procedure minimizes
the deviations of the average contribution at each period, as well as
of the variance of these contributions from the observed variance of

player contributions.
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We minimize the mean squared deviation of the ensemble averaged sim-
ulated trajectory from the experimental game trajectory. The quintuple men-
tioned above was numerically found using the Simulated Annealing algo-
rithm in Scipy Virtanen et al., 2020. The optimization problem for the fitting
procedure can be written as

min
(γ,m1,...,m4)

10

∑
t=2

4

∑
k=1

(
f obs
k,t − 〈 f sim

k,t 〉(γ,m1,...,m4)

)2

, (3.16)

where the f obs
k,t is the observed (from data) contribution of the k’th agent in

period t and f sim
k,t is the corresponding contribution from the simulated agent.

Furthermore, 〈·〉(γ,m1,...,m4)
denotes the average over multiple simulation runs

of the group defined by the parameters (γ, m1, . . . , m4).
The resulting parameter set found by fitting to a single group can be used

to generate individual game trajectories of the so obtained group of agents,
for comparison with the experimental trajectory. Fig. 3.9 shows two examples
from the agent group obtained by fitting to the trajectory from an Athens
group, which we displayed in Fig. 2.5.

3.7 Discussion

In Fig. 3.10 we compare the simulated city averages with the actual city av-
erages for Bonn and Copenhagen as two examples (for comparisons in other
cities, please refer to the publication in the appendix A). The error bars rep-
resent the city-wide standard deviation of contributions in that period for
both the simulated city and the actual data. The simulated city averages were
evaluated by averaging over multiple simulation runs of all the groups in the
city while keeping the agent parameters to be the estimated parameters from
the fits. Our model not only accounts for the average contributions and their
characteristic decline but also for the variability of contributions. The slight
underestimation of the variance can be attributed to the simplifying assump-
tions we have made in assigning the same γ to all the players within a group
and setting K = 2.5 for all players in general. We see that even though we
have limited our model severely in its scope, we are able to model the player
behavior quite effectively. Note that the difference between the simulations
and the data is much smaller than the variances of contributions throughout
the data sets. Hence we find that γ and the individual values of m are suffi-
cient as parameters for obtaining a very good agreement with experimental
data for each city, although both the slope of the decline and the average
contribution varies significantly. We show the distributions obtained for m
and γ in appendix A for each city.
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(A) Bonn

(B) Copenhagen

FIGURE 3.10: Actual and simulated city-averaged contributions. The
error bars indicate the variance of contributions.
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FIGURE 3.11: Coupling in A vs. coupling in m as obtained from the
fitted simulations. The grey bar represents the data from Fig. ??b.

3.7.1 Game-induced inter-agent coupling

Let us now turn to the coupling of players within a group, as observed from
the data in Fig. 2.6. We can quantify this coupling by taking the ratio of
intergroup variance (ordinate in Fig. 2.6) to intragroup variance (abscissa in
Fig. 2.6). Specifically, for 〈A〉 and m, we write

Cm =
var{m | intergroup}
〈var{mi | intragroup}〉l

(3.17)

and

CA =
var{〈A〉 | intergroup}
〈var{〈Ai〉 | intragroup}〉l

, (3.18)

respectively, where var is the variance and the index l runs through all groups
of a city.

Results for these couplings as obtained by fitting to the experimental game
trajectories are presented in Fig. 3.11, where each data point corresponds to
one city. The grey bar represents the data from Fig. 2.6, where CA is found
to range from 1.25 to 2.7. As m represents the preference inherent to a single
player, the bar is placed at Cm = 1. This corresponds to the fact that play-
ers had been chosen randomly, such that the intergroup variance of personal
preferences must a priori be equal to the intragroup variance, up to some sta-
tistical fluctuations which we indicate by the fuzzy boundaries of the grey
bar.

The values obtained for CA from the fitted simulations are found in the
same range as that indicated by the grey bar. This is expected as we have fit-
ted the contributions to those of the experiments. However, we see that most
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of the data points are well above the first diagonal, which shows that the in-
dividual mk’s are less strongly coupled than the average individual contribu-
tions, 〈Ak〉. There is some coupling effect on the m since the fitting algorithm
cannot distinguish to what extent a player contributes due to her own pref-
erence or due to entrainment by her fellow players. The offset above the first
diagonal, however, clearly shows that the coupling effect is present among
the model agents. This is another manifestation of the same phenomenon as
demonstrated in Fig. 3.7.

3.7.2 Comparison to other approaches

While payoff-based learning has been suggested as the explanation of the
commonly declining contributions in a PGG (For instance the works of Burton-
Chellew, Nax, and West, 2015a; Burton-Chellew and West, 2021), we have
shown that bounded rational foresight, as reflected by the bounded rational
model agent, can perfectly well serve as an explanation of this phenomenon.
Moreover, it is capable to account for the substantial in-game variance of con-
tributions that is observed in real games.

Note that Fig. 3.10 shows that both the average contribution and the slope
of its decline vary substantially among the cities investigated. Our model
suggests that this can be attributed to different human preference parame-
ters, which are indeed well known to vary among different cultures. It is
not straightforward to see why (or at least it is not known that) the parame-
ters of payoff-based learning should vary in a similarly pronounced manner.
This would be a necessary conclusion if one wanted to insist on payoff-based
learning explaining all salient features of the data displayed in Fig. 3.10.

Additionally, we note that the conditional cooperator model (Dufwenberg
and Kirchsteiger, 2004; Falk and Fischbacher, 2006) which modelled agents
by modifying the utility function to also include the agent’s model of other
agents, is similar to our model in spirit but not exactly in how conditional
cooperation is implemented. The main difference is that, in our approach,
we do not modify the utility function (only consider the material payoffs),
and the mental model of the agents is incorporated as a transition function
instead. Finally, we also see that the need for inequity aversion based ex-
planations (Fehr and Schmidt, 1999) is eliminated to explain the intra-group
correlations, as in our model they are mediated by the transition function the
agent holds.
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3.8 Conclusions

In this chapter we have developed agents by deviating from the prescrip-
tions of normative game theory. Specifically, we have created a bounded
rational agent which is described by the tuple (ξ±, m, K, γ) which is consid-
ered constant over the game and shown that they replicate human behavior
in PGG (for games of length 10 periods) quite well (cf. Fig. 3.10). Our re-
sults also demonstrate how the bounded rational foresight explains the three
main observables highlighted in Chapter 2, namely, declining trends, erratic-
ity (cf. Fig. 3.10) and intra-group correlations (cf. Sec. 3.7.1).

One may argue that the constancy of ξ± (the model of other agents the
focal agent has) over the game is too strict a restriction and is probably not
representative of humans who probably also learn and update their models
as the game progresses. While it is true that human players indeed learn, the
objective of this chapter was to demonstrate that learning is not necessary to
replicate human behavior. Our results then indicate that the space of mod-
els that generates the behavior is much larger than the space in which the
behavior exists (game trajectories). Therefore any attempts to make realis-
tic models of human agency must increase the complexity of the model only
incrementally.

This is exactly how we proceed. In the next chapter, we will, in addition
to the bounded planning mechanism, also introduce a learning mechanism
and therefore explore the exclusive effects of learning on human behavior in
PGG.
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Chapter 4

Exploring the exclusive effects of
learning

In the previous chapter, we explored how bounded rational agency was suffi-
cient to explain human behavior in PGG given by (N, T, τ, α) = (4, 10, 20, 0.4).
This is not to say that humans do not learn when playing iterative PGG for
10 rounds. All this communicates is that learning is not necessary to repro-
duce human behavior in these games. Therefore as a next natural step, we
introduce learning in our model to see for what behaviors is it necessary to
invoke mechanisms of learning. In other words, in this chapter, we wish to
observe the exclusive impact of learning on bounded rational agents, which
couldn’t have been generated by bounded rational agency alone. Like before
we will compare the behavior of agents to known experimental results and
also provide experimentally testable findings where possible.

4.1 Motivating the learning mechanism

As briefly discussed in Chapter 1, it has been argued in artificial general in-
telligence (AGI) research that a minimal model of an intelligent agent embed-
ded in an arbitrary environment (for instance, playing a game) has two main
ingredients, learning and planning (AIXI Hutter, 2007). At any point of time,
an intelligent agent looks at the past trajectory of the environment (past game
states and actions) to learn about the dynamics of the environment (mod-
elling other players in the game). This knowledge of the dynamics is then
used to simulate future trajectories1 of the environment (game), in order to
choose the action which leads to the best trajectory, i.e., the trajectory maxi-
mizing a previously defined utility function. Employing the notion from Sec.
1.2.1, learning is a mapping from observed behavior to mental models given
by fl : O → M, and planning is a mapping from mental models to actions

1This is essentially equivalent to the path integral formulation of reward maximization as intro-
duced in Chapter 3.
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given by fp : M → A. Here O is the observation space, A the action space,
and M the space of all possible models2.

4.1.1 Relation to other notions of learning

Social learning

The readers should note that the notion of learning put forward is distinct
from "social learning" as is common in evolutionary game theory (for in-
stance refer to the works of Hofbauer and Sigmund, 1998; Sigmund et al.,
2010), where the agents learn from other agents by comparing their strategy’s
fitness with that of others in the population and then imitating the better strat-
egy with a finite probability. This is in contrast with our approach, as (in
our approach) the agents learn of the other players’ behaviors by creating a
model of them.

Payoff based learning

This distinction between learning and planning is not commonly made in
most agent based models. Instead, learning is conceived to refer to figur-
ing out which action leads to better immediate rewards, with the agent being
oblivious to other agents (i.e., has no models of them), for example, the notion
of payoff based learning in the works of Amado et al., 2015; Burton-Chellew,
Nax, and West, 2015b. In these works learning is a mapping directly from
observed behavior to actions. Again, making use of the functional notation,
we can write the learning function as f payoff

l : O → A, which is in contrast
with our approach. By making a clear distinction between learning and plan-
ning, we can study, and potentially control, the distinct qualitative behaviors
introduced by either of them, which is not a luxury payoff based learning
provides.

So why not just implement AIXI? The main problem in implementing
AIXI to predict human behavior in games is that it is not computable (Legg
and Hutter, 2007) (although a variant of it is, and this is discussed in the next
section). Nonetheless, the idealized model can still be viewed as a guiding
principle to generate models of human behavior in slightly less general en-
vironments by introducing specific approximations, whereby trading off the
generality with the computability of the model. Therefore, in this chapter we
will introduce learning, in the aforementioned sense, to our bounded ratio-
nal agent model of Chapter 3, while at the same time making use of context
specific approximations that allow our model to be computable.

2In the previous chapter we assumed agents to have a fixed point in the model space represented
by the transition function with ξ± = (0.1, 0.5).
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4.2 The learning mechanism

4.2.1 A sub-space of all partial functions

In AIXI Hutter, 2007, learning for an agent from past data happens through
Solomonoff induction Solomonoff, 1964, which considers the space of all par-
tial functions3 on {0, 1}∗ 4 i.e. the space of all allowed "explanations" for the
past trajectory. Although this form of learning guarantees convergence to the
true distribution, is not computable as a consequence of the halting problem
(Church, 1936). In practice however one might want to reduce the search space
from the space of all partial functions on {0, 1}∗ to a smaller space.

In AIXItl (a variant of AIXI described by Legg and Hutter, 2007) it is
proposed to consider only programs up to length l and computation time
t. AIXItl does this by running a brute force search over all the programs.
Although this brute force search is computable, it still takes enormous com-
puting power to compute. While this is not a problem for AIXItl, which is
focused on describing intelligence in an arbitrary environment, it seems un-
reasonable to model humans as brute force searchers which take enormous
computing time in a specific environment such as PGG as they have context
specific pre-play awareness of the game (c.f. supplementary article by Her-
rmann, Thöni, and Gächter, 2008).

Another common way to reduce the search space is by creating a model
class and then performing regression or maximum likelihood estimate to find
the best model in the model class. The latter approach is not only easier to
implement but also allows the opportunity to introduce easily interpretable
parameters in the model as compared to AIXItl. Therefore, it is the latter ap-
proach that we will take in this chapter. We will exploit the context specificity
afforded by PGG and consider the model class M introduced in Chapter 3.
Therefore we only consider Markovian transition functions Q, given by trun-
cated Gaussian distributions, parameterized via ξ±.

4.2.2 The model

The bounded rational agent of the previous chapter was defined by the tu-
ple (ξ±, m, K, γ) which was considered to be constant throughout the game.
More specifically the planning mechanism required as its input a transition
function Q which represented the agent’s model of other agents. In so far as
the planning mechanism was concerned, it was oblivious to how this transi-
tion function was obtained by the agent.

3A partial function from X → Y is a function that is only defined on a subset S ⊂ X. If the function
is defined on all of X i.e. S = X then the function is called a total function.

4Here ∗ refers to the space of finite strings in the alphabet {0, 1}, including the empty string.
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In the learning problem, however, we will be concerned with how the
agent comes up with the transition function Q. As the transition function is
parameterized by ξ±, the learning mechanism is then concerned with finding
the ξ± values that are the most representative of the past experiences, i.e.
those values of ξ± that have the highest likelihood of generating the past
game trajectory.

Additionally, quite like the exponentially decaying foresight given by γ,
we also introduce another parameter γp ∈ [0, 1], which represents hindsight
decaying exponentially into the past (equivalently called "recency-bias" in
Fudenberg and Levine, 2014) of the agent. It signifies that when an agent
evaluates the behavior of its environment, recent experiences guide its model
more than earlier experiences. This is also equivalent to the agent having a
bounded memory of its past. This is then achieved by weighting the maxi-
mum likelihood estimation with γp as below,

ξ∗±(t) = arg max
ξ±

[ 2

∑
i=t−1

γt−i
p log Q(µi|µi−1, fki−1)− (1− γp)(ξ±(t)− ξ±(t− 1))2

]
.

(4.1)

Here the last summand captures the tendency of the agent to not update its
model. Therefore γp = 0 would correspond to not updating the model given
a past trajectory (no learning, therefore the agent reduces to that of Chapter
3), and γp = 1 would correspond to learning from arbitrarily far back in the
past.

4.3 An updated agent model

We can now combine the planning mechanism from the previous chapter
and the learning mechanism into one agent which is described now by the
tuple (m, K, γ, γp). In every period 2 < t ≤ T the agent,

1. plans: by considering the game state at t− 1, making use of the current
model (ξ±(t)) and solving Eq. 3.13 and evaluating the policy P( f T

t ),

2. acts: by sampling a bet from the evaluated policy and

3. learns: after observing the state of the game in the current period t and
finding the ξ±(t) by making use of Eq. 4.1.

In period t = 1 the bets of the agent are sampled from its prior distribution
P0( fk,t) and the agent is provided with a model ξ+, ξ−(0) = (0.1, 0.5)5. In

5These are the values from Chapter 3.
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period t = 2 there is certainly planning and acting based on the model, but
there is no learning, as the agent has not yet observed a transition.

4.4 Behavior space of the updated model

Now that we have defined the learning mechanism, in this section we ex-
plore the behavior space of the agent by considering two types of setups.
Namely, considering contribution dynamics in groups of identical agents and
groups of randomly chosen agents. In the former setup the agent parameters
in a game are identical to each other. This setup is chosen to demonstrate
the qualitative effects of the agent parameters on average contributions. In
the latter setup, the agent parameters are chosen randomly from a uniform
distribution over the parameter space. This setup is chosen to observe the
behavior of agents in a well-mixed population.

To the end of understanding the exclusive aspects of the dynamics intro-
duced by learning and its interplay with planning, we only consider the com-
putational bound K and the hindsight γp as the parameters of importance.
For simplicity, the other parameters, namely, m and γ are fixed throughout
the rest of the chapter to 10 and 0.9 respectively6. Additionally, as we intend
to qualitatively exaggerate the effects of learning on the agent, throughout
this section we consider longer games of length T = 100 and keep the group
size to be N = 4.

4.4.1 Groups of identical agents

In this subsection, we explore cooperation in groups of identical agents play-
ing a PGG for different values of K, γp. In Fig. 4.1 we show the average

contribution 〈A〉 as a function γp for various values of K, where A = ∑k ∑t fk,t
4T

and the 〈·〉 is to denote an ensemble average over multiple simulation runs
(1350 simulation runs for each datum).

Quite expectedly in groups of agents with K = 0, 〈A〉 is not impacted by
learning. For K > 0 we see that the introduction of learning monotonically
decreases the contribution levels in groups of identical agents. Additionally,
the rates at which 〈A〉 decreases with respect to γp, depend on the value of K.
Therefore we perform exponential fits on 〈A〉 with respect to γp in the small
memory regime given by the interval [0, 0.2]. I.e. we consider the ansatz
〈A〉 = 〈A〉0ed(K)γp and find the coefficient d(K) for different values of K. In

6In the previous chapter in Sec. 3.5.4 it was shown that both m and γ have a monotonic impact on
〈A〉. That is for a fixed k and γp increasing m monotonically increases the contributions and for a fixed
m and K, increasing γ monotonically decreases the contributions. Therefore the qualitative features
that are the focus of our attention in this chapter are unchanged by these parameters. Hence we make
an arbitrary choice of these parameters.
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FIGURE 4.1: Average contributions 〈A〉 as a function of learning
strength γp for various values of K. Inset depicts the dependence

of the decay rate of 〈A〉 with respect to K.

FIGURE 4.2: Average contributions 〈A〉 as a function of computa-
tional budget K for various values of γp.
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the inset, we plot d(K) as function K and see the decay rate is linearly pro-
portional to K. Here 〈A〉0 is the average group contribution without learning
(i.e. γp = 0).

d(K) tells us the susceptibility of agents with a given computational bud-
get K to learning. Note that the higher the value of K the faster the rate at
which the learning mechanism brings you towards defection, which corre-
sponds to the Nash equilibrium of the PGG. This observation reiterates that
rationality alone is not sufficient to produce Nash equilibrium behavior. As
we saw in Chapter 2, a rational agent also needs to develop predictive mod-
els of other rational agents to play the Nash equilibrium (CKR). The results
in Figs. 4.1 and 4.2 then seem to indicate that through learning the behav-
ior of other agents, some sort of common knowledge of rationality is being
developed in a group of all rational agents and as a consequence, the agents
play the Nash equilibrium.

Finally in Fig. 4.2 one can see that the impact of K on 〈A〉 differs qual-
itatively for different values of γp. For lower γp, 〈A〉 increases with K and
decreases for higher γp. This further highlights the exclusive impact that
learning has on bounded rational agents. In so far as how such a qualitative
difference is brought about in our model is concerned, we refer the reader to
Sec. 4.5.2, where the issue is explored in more detail.

4.4.2 Groups of random agents

In this section we consider groups of agents where the K, γp are i.i.d. (inde-
pendent and identically distributed) with the uniform distribution P(K, γp) =

U over the domain D = [0, 5]× [0, 1]. We are interested in the question : ’In a
random group of agents playing PGG, which agents gain the most?’.

In order to do that, we create 5× 105 groups and we consider the condi-
tional expected reward 〈G|K, γp〉 defined as

〈G|K, γp〉 =
∫

D
GP(G|K, γp)dG. (4.2)

The gain of a particular agent is the same as in Eq. 2.2. The conditional
expected reward is as shown in Fig. 4.3. Much in line with our intuition, the
conditional gain is maximized by higher values of K, γp, i.e. agents with a
higher computational budget and lesser recency bias earn the most reward
when playing against a group of randomly chosen agents.

Learning-Planning tradeoff

It is interesting to note that the data in Fig. 4.3 suggest that there is a trade-off
between learning (γp) and planning (K). This shows up as a negative slope of
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FIGURE 4.3: Conditional expected gains 〈G|K, γp〉 (colorbar) and con-
tours (solid grey curves) at 〈G|K, γp〉 = 3, 3.5, 4, 4.5, 4.8.

the contours and a strong bend towards low γp (solid grey curves). Hence in
order to maintain a constant amount of gain, one can trade off the planning
computational budget (K) with the learning memory (γp). Similar behav-
ior has been observed recently (Moerland et al., 2020), although a different
planning and learning algorithm was used. The authors defined a total com-
putational budget that is to be allocated to learning and planning and found
that optimal rewards are achieved at intermediate values of budget alloca-
tion toward planning (and consequently learning).

One can view γp also as a measure of computational resources allocated
towards learning, as higher values of γp require the agent to have more mem-
ory and also perform a computationally intensive optimization over the ξ±
space. Therefore, one can view the total computational budget of the agent
as some linear combination of K and γp. In Fig. 4.3 this would be represented
by straight lines with negative slope. Due to the bend in the contour lines of
〈G|K, γp〉, it can be anticipated that there is a maximum gain for some inter-
mediate values of γp and K. This further indicates a potential universality
in the trade-off between learning and planning and must be a direction for
future research in so far as observing it in human players is concerned.

4.5 Cooperation amongst learning and planning agents

Equipped with some intuitions of the dependence of agent behavior on the
agent parameters, we now focus on certain computational experiments which
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FIGURE 4.4: Average contributions as a function of group size N and
the variance (errorbars) for constant α. Inset shows P(rξ < 0.1) and

MPCR α as a function of group size N.

are relevant to experimentally observed behavior in human players playing
PGG. In sec. 4.5.1 we observe the impact of group size on cooperation and in
sec. 4.5.2 we study how noise in game trajectories might impact the average
contributions.

4.5.1 Impact of group size on cooperation

Experiments on PGG reveal different kinds of impacts that group size has on
cooperation. Where some studies observe that group size positively impacts
cooperation (Pereda María and Angel, 2019), some claim that cooperation
is harder in larger groups whereas others claim a non-monotonic impact of
group size on cooperation (Isaac and Walker, 1988; Yang et al., 2013).

In order to investigate the effect of group size on cooperation, we run
simulations of randomly chosen bounded rational agents (i.e. K, γp are again
i.i.d. with the uniform distribution as in Sec. 4.4.2 ), playing PGG for T = 100
periods. Figs. 4.4 and 4.5 show the average contribution 〈A〉 as a function
of group size. In fig. 4.4 we keep α = 0.4 as a constant and we see that
the cooperation is impacted non-monotonically by group size. Cooperation
peaks for intermediately sized groups.

In order to explore reasons why cooperation may behave non-monotonically,
we first look at the values of ξ± for groups of each size, for all time. More
specifically we look at the cumulative probability of having small values of rξ

(taken to be less than 0.1 here), given by P(rξ < 0.1) (see inset Fig. 4.4). Here
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FIGURE 4.5: Average contributions as a function of group size N and
the variance (errorbars) for α ∼ 1/N. Inset shows P(rξ < 0.1) and

MPCR α as a function of group size N.

rξ =
√

ξ2
+ + ξ2

−. We observe that 〈rξ〉 monotonically decreases with group
size.

In the limit rξ → 0 we can see that the transition function becomes in-
dependent of player contribution fi,t (see from Eq. 3.15 limrξ→0 p = µi,t−1 ).
This essentially (from the perspective of the ith agent) decouples the agent
from other players. We can see this effect more precisely in Eq. 3.13. For sim-
plicity we ignore the bounded rationality term and consider that T = t + 1.
Upon substituting for the value function and expanding we have,

V∗t = max
P( f t+1

t )
∑̄
ft

Gk,t

[
[PQ]t + γ[PQ]t ∑̄

ft+1

Gk,t+1[PQ]t+1

]
, (4.3)

where [PQ]t is a short hand notation for P( fk,t)Q(µk,t| f̄t−1). We can perform
the maximization over P( fk,t+1) directly over the second summand as fol-
lows

max
P( fk,t+1)

∑̄
ft+1

α(N − 1)µt+1[PQ]t+1 − ∑̄
ft+1

(1− α) fk,t+1[PQ]t+1, (4.4)

which further simplifies to,

max
P( fk,t+1)

∑
µk,t+1

α(N − 1)µt+1Qt+1 − ∑
fk,t+1

(1− α) fk,t+1Pt+1. (4.5)
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The first summand has no fk,t+1 dependence, and the second summand can
be seen to be maximized at P( fk,t+1) = δ( fk,t+1) (because α < 1) and there-
fore it vanishes upon maximization. Also, the first summand has no fk,t de-
pendence, therefore it essentially reduces to α(N − 1)〈µk,t+1|µk,t〉. Substitut-
ing this in Eq. 4.3 we get

V∗t = max
P( fk,t)

∑̄
ft

Gk,t[PQ]t + γ[PQ]t〈µk,t+1|µk,t〉α(N − 1). (4.6)

The second summand in this equation when summed over fk,t gives a con-
stant γQt〈µk,t+1|µk,t〉α(N− 1) independent of P( fk,t) and therefore it doesn’t
participate in the maximization. It then remains trivial to see that maximiz-
ing over P( fk,t) gives P( fk,t) = δ( fk,t). Therefore, it was optimal to defect in
both the periods.

For T > t + 1 one can similarly see that at all periods the conditional
expected contribution of other players will not depend on the player’s play
( fk,t), and therefore the term will not participate in the maximization. Also,
upon the introduction of the bounded rationality term for K ≈ 0 the max-
imization will result in distributions similar to the prior, and as K increases
the mean contributions decrease, until at a critical threshold of computational
budget Kcrit where DKL(δ( fk,t)||P0( fk,t)) = Kcrit, it again resembles the solu-
tion for fully rational agents that we see above. Therefore, lower values of rξ

indicate that the agents are decoupled from the rest of the group. This seems
to be natural for larger groups, as an individual agent’s action tends to have
a lesser impact on the group behavior as the group size increases.

If the decrease in rξ were the only process at play here, one would be
lead to believe that contributions monotonically decrease with group size.
But there is a competing tendency. As we increase group size, cooperation
is rewarded more steeply as the contributions in the pot are multiplied by
αN (see Eq. 2.2). This increases linearly with N for constant α (see inset Fig.
4.4). Therefore the increase in αN with group size leads to cooperation being
more beneficial in larger groups. Combining both these tendencies may lead
to cooperation being maximized for intermediate sized groups.

To further verify this explanation we run simulations where we have
α ∝ 1

N such that αN = const. (see Fig. 4.5). Now as expected, cooperation
monotonically falls with group size N. This then seems to indicate that coop-
eration as a function of group size is influenced by two factors- the degree of
control an agent thinks it has on the group contributions and the utility of co-
operation. While the latter can be modulated by a parameter of the game (α)
the former is a consequence of agent parameters. For instance, agents with
smaller γp, tend to not update their models as much, therefore they assume
that they have similar control over larger groups as well. This then leads to



58 Chapter 4. Exploring the exclusive effects of learning

FIGURE 4.6: Average contributions as a function of group size N and
the variance (error bars) for constant α and γp = 0. Inset shows

P(rξ < 0.1) and MPCR α as a function of group size N.

〈A〉 to become monotonically increasing with group size. This can be seen in
Fig. 4.6 where we show average contributions as a function of the number
of players in a group. Where agents in a group are described γp = 0 and
K chosen uniformly randomly on the domain [0, 5]. P(rξ < 0.1) = 0 for all
values of N as can be seen in the inset. Note that as P(rξ < 0.1) is constant
w.r.t. N and αN is increasing linearly in N the average contributions increase
with group size.

4.5.2 Noise induced cooperation

Anomalous behavior of K = 3 agents

In Fig. 4.1 what is also interesting to note is that for bounded rational agents
with K ≈ 3, intermediate values of γp lead to an increase in cooperation,
whereas for lower and higher values of K increasing γp beyond ≈ 0.2 is in-
consequential to the average contribution. In the following, we will explore
why this is the case.

For agents that learn and plan, the contribution is not only impacted by
their capability of choosing the best action (K) but also by their model of
other agents (ξ±). Certain models encourage the agent to contribute more
than other models. More specifically, for the agent to contribute more than
the group average contribution, one needs ξ± > 0. This can be seen in the
following.
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When rξ is not close to 0, the second summand in Eq. 4.6 would be condi-
tioned on fk,t as well, i.e. it would become γ[PQ]t〈µk,t+1|µk,t, fk,t〉 α(N − 1).
In order for the optimal action to not be defection it would be necessary (but
not sufficient) that ∂〈µk,t+1|µk,t, fk,t〉

∂ fk,t
> 0. From Eq. 3.15 one can see that this

is the case when ξ± > 0. Therefore when ξ± > 0 the agents contribute the
most.

One can then say that 〈A〉 correlates with the occupation probability of the
said quadrant of the ξ± space (see Fig 4.7). This can be defined as f = ∑t〈It〉

T
where It is the indicator function given by

It =

{
1, ξ±(t) ≥ 0

0, else.
(4.7)

For γp = 0 we start and stay in the aforementioned quadrant as the
agent’s model is not updated (Eq. 4.1), as γp is increased the agent starts
performing a random walk in the model space, with increasing mean step
length l, thereby decreasing the occupation probability of the said quadrant
and consequently decreasing the contribution (see Fig. 4.7). Here the mean
step length l is defined as

l =
1

T − 1

T

∑
t=2

√
(ξ(t)− ξ(t− 1))2, (4.8)

where ξ(t) = (ξ+(t), ξ−(t)) and the corresponding ensemble average quan-
tity is given by 〈l〉.

Upon further increasing γp and consequently the average step length 〈l〉,
occupation probability of the said quadrant increases, similar to the manner
in which increasing temperature leads to an increase in the probability den-
sity in the high potential energy regions. Finally, when γp is close to 1, 〈l〉
reduces, because as the game length increases, every new observation has a
decreasing impact on the ξ± value as obtained from Eq. 4.1. This then fur-
ther reduces the occupation probability and also the contribution 〈A〉 as a
consequence.

Adding a noisy agent to a group

Given the arguments above, it would be natural to expect that noise i.e.
greater 〈l〉, can enhance cooperation among bounded rational agents play-
ing PGG. Apart from keeping γp in the intermediate region, 〈l〉 can be in-
creased by adding a noisy agent to the group and increasing the variance of
contributions of the noisy agent.

Hence in order to further explore the hypothesis above, we consider adding
one noisy agent with K = 0, a fixed mean of contribution m = 10 and varying
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FIGURE 4.7: Average contribution of groups of identical agents with
K = 3. Inset shows the corresponding values of 〈l〉 and f as a function

of γp.

FIGURE 4.8: Average contribution of groups of three randomly cho-
sen agents and one noisy agent with the variance of contributions
given by σ. Inset shows the corresponding values of 〈l〉 and f as a

function of σ.
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variances σ of the prior distribution (P0( fk,t)), to a group of three other ran-
domly chosen agents, as done in Sec. 4.4.2. We then observe how the group
average contributions 〈A〉 are impacted as we increase σ.

In Fig. 4.8 one can see that as the variance of the contributions of the
noisy player σ is increased, the average contribution of the group increases.
In the inset, we also see the corresponding increase in 〈l〉 and also f . Thereby
adding weight to the claim that cooperation can be induced by increasing
noise in the game behavior. Whether this behavior is also observed in human
players playing PGG, is yet to be tested experimentally.

4.6 Conclusions

We have demonstrated the exclusive impact of learning on the behavior of
bounded rational agents in PGG through two major computational experi-
ments. First, we explore the impact of noise on cooperation. Specifically, we
find that the introduction of an agent that contributes in a noisy manner (i.e.,
with finite variance) to the public pot positively impacts the average contri-
bution. It is found that this effect systematically increases as the variance is
increased. It is also easy to see that this behavior cannot be possible in the
agents of Chapter 3 as the increase in contributions is caused by the increase
in the occupation probability of the ξ± > 0 quadrant. In the case of bounded
rational agents without learning this occupation probability is fixed. This
prediction remains to be tested via experiments.

Second, we provide a theoretical explanation of the observed impact of
group size on cooperation, specifically, we show that the shape of the curve
of average contributions 〈A〉 vs group size N can be modulated by varying
the MPCR (i.e., α) and also the agent parameters. More specifically there are
qualitative differences in the contribution curves depending on whether the
agents are learning or not. This provides us with a quantifiable way of pre-
dicting cooperation in PGGs with varying numbers of players. Yet again, this
variability in behavior is an exclusive consequence of learning as evidenced
by Figs. 4.4, 4.5 and 4.7.

With the addition of the learning mechanism, we have shown that our
model is able to replicate (to our knowledge) all known experimental data
on the vanilla version of PGG7. This demonstrates the enormous explain-
ing power our model holds as it starts from very few and abstract assump-
tions about human behavior and yet is able to replicate some stylized facts as

7There are other variants of PGG beyond the one considered in this thesis. For instance, including
a punishment mechanism, or PGG where the play is not anonymous so some reputation effects come
into play, etc..
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shown in this chapter, without needing to explicitly hard-code them into the
agent model.

Our model provides an alternative to the ad-hoc cellular automata (CA)
type models that are commonly found in sociophysics literature (Szolnoki,
Perc, and Szabó, 2009; Szabó and Hauert, 2002; Wu, Fu, and Wang, 2018;
Su, Wang, and Stanley, 2018), which employ these idealized CA agents and
focus on collective effects, while mostly ignoring available human behavioral
data on PGG. In the next chapter therefore we will extend our data validated
model to the domain of spatial PGG or SPGG and compare it to the state of
the art in sociophysics.

Albeit, one criticism of our approach could be that it is rather cumber-
some as opposed to CA based models. If there is any validity to the criticism
then we suggest that our model be treated as a more fine-grained model of
player behavior in games as it has been used to replicate microscopic player
behavior (at the level of individual player trajectory). One should then sys-
tematically find more coarse-grained CA type models which are effective de-
scriptors of some coarse grained observables, possibly following the ideas
of Wolpert et al., 2014. We will discuss this in greater detail in Chapter 6 of
the thesis, for now, we move on to studying the collective effects of bounded
planning and learning agents in the domain of SPGG.
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Chapter 5

Collective effects

In the previous chapters, we motivated and developed an agent based model
that replicates human behavior in PGG. In this chapter, we extend our model
to the more general setting of spatial PGG or SPGG. SPGG may be taken as
a model of a vast number of real situations of human interaction that hap-
pen concurrently. In a shared household, participants fulfill chores as an
investment ( fi) into a pleasant atmosphere as the common good (G), mem-
bers of a sports club invest donations ( fi) for enjoying common goods such as
a well-maintained playing court (G), members of an association invest per-
sonal commitment ( fi) in the common good of a thriving association (G), and
so on. A substantial fraction of societal interaction can, in this paradigm, be
viewed as an enormously complex network of PGG, which interact through
agents participating in several PGG simultaneously. In this setting, beyond
just the intra-group dynamics (which we focused on in chapters prior to this),
the network of connections between groups and players also becomes of rel-
evance through the fact that players play in several groups. Therefore in this
chapter, we wish to explore what novel and exclusive effects emerge from
the system as a consequence of the topology of the network.

5.1 Networks of PGG

The interaction structure for players playing multiple PGGs simultaneously
with different groups of players is best captured by hypergraphs. In what
follows, we give a brief account of the concept hypergraphs, and how it con-
nects to our system of interest. We will then describe how to adapt the be-
havioral dynamics, as described for single groups in the previous chapters,
to the spatially extended setting of an SPGG.

5.1.1 Hypergraphs

A hypergraph (Ouvrard, 2020) is a graph whose edges are allowed to connect
more than two nodes. An edge in a hypergraph is called a hyperedge. Hence
a hypergraph H can be defined as a tuple H = (V, E), where V is a finite set
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of nodes vi indexed by i ∈ {1, . . . , |V|} and E is a finite set of hyperedges ej

indexed by j ∈ {1, . . . , |E|}, where each hyperedge is a non-empty subset of
V. One can completely specify a hypergraph by an incidence matrix Hij where
i ∈ {1, . . . , |V|} and j ∈ {1, . . . , |E|} and

Hij =

{
1 vi ∈ ej,
0 else.

(5.1)

We can identify the nodes in H as the agents and the edges can be identi-
fied as the various groups the agents play in. To be consistent with the work
presented in the previous chapters, in this work, we consider agents playing
on 4-regular hypergraphs, where a k-regular hypergraph H is a hypergraph
such that |ei| = k for all i ∈ {1, . . . , |E|}. Each agent, although, is allowed to
play in arbitrarily many groups. Other than this we consider no restrictions
on the topology of the hypergraphs.

5.1.2 The SPGG

Recall that eq. 2.2 describes the gain for a given player playing in one period,
in one group. In a network of interacting PGG groups, the corresponding
gain becomes the sum of gains over all groups the agent plays in. Notice that
the gains in each of these groups are independent. Therefore, in order to find
a favourable policy in a particular group, each agent needs to keep in mind
the actions of other players in that group alone. The dynamical interaction
between groups comes about through the learning of the agents, i.e., their
gradually updating their internal model of other player’s behaviour. We as-
sume that each agent bears one such model for players in general, i.e., for the
players of all groups it is playing in.

5.1.3 Agent dynamics on hypergraphs

With the interaction structure as afforded by hypergraphs, we focus on how
to adapt the agent behavioral dynamics from Chapters 3 and 4 to the spa-
tially extended setting. For the following, let us consider an SPGG being
played on a hypergraph H with |V| = Np players and |E| = Ng groups. In
order to carry out the discussion on the agent model we describe it from the
perspective of an arbitrary agent given by an index i ≤ Np, which plays in
k ≤ Ng different groups given by the indices i1, . . . , ik.

As already mentioned, agent i plans in each of the k groups indepen-
dently. This means that agent i in period t, makes use of Eq. 3.13 to find
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the optimal policy for itself, and then, for each group it plays in, it indepen-
dently samples an investment from the conditional distribution P( fi,t|µi,t−1)

by conditioning on the observed µi,t−1 of that group.
Learning, on the other hand, is not done independently in each group.

Essentially, the exponentially weighted log likelihood in Eq. 4.1 is summed
not only over all the observed past of one group but over all the groups. By
suitably modifying the notation to also include the group identity, one can
write the analogous equation as

ξ i
±
∗(t) = arg max

ξ i
±

k

∑
m=1

[ 2

∑
w=t−1

(
γt−w

p log Q(µi,im,w|µi,im,w−1, fi,im,w−1)
)

− (1− γp)(ξ
i
±(t)− ξ i

±(t− 1))2
]

,

(5.2)

where the subscript im denotes that the quantity is being evaluated in group
im with m ≤ k.

The learning and planning mechanisms can be then combined into a sin-
gle agent which is defined by a quadruple of parameters, (m, K, γ, γp), where
m parameterizes the prior policy of the agent1. In each round t ∈ {2, 3, ...T},
the agent

1. plans: by considering the game state at t− 1 in all the k groups it plays
in and ξ i

±(t− 1), the agent making use of Eq. 3.13 finds the best policy
for itself.

2. acts: by sampling an investment, fi,im,t, from the evaluated policy, after
conditioning on the observed µi,im,t−1 of each group m ∈ {1, · · · , k}.

3. learns: after observing the state of the game in the current period t in
all the k groups the agent learns and updates its model of the players by
evaluating ξ i

±(t) from Eq. 5.2.

In period t = 1 the investments of the agent are sampled from its prior distri-
bution P0( fi,1) for all the groups it plays in. In period t = 2 there is certainly
planning based on observed behavior, but there is no learning, as the agent
has not yet observed a transition.

5.2 Topology and dynamics

As mentioned above, in this chapter we wish to investigate the specific im-
pact of the interaction network structure on the agent dynamics, and thereby

1We assume that the prior policy of the agent is given by the same distribution P0( fi,t) in each
period t and the distribution is a truncated Gaussian centered around m and a fixed variance σm = 5.
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FIGURE 5.1: Projecting a hypergraph to a line graph. The hyper-
edges (e1, e2, e3) of the hypergraph correspond to the vertices of the
line graph. Black pentagons correspond to agents, black circles corre-

spond to groups.

on possible collective phenomena in the system. This will be the main ques-
tion we pursue in the remained of the chapter. Before we proceed, however,
we need to clarify our concepts of "topology" and "dynamics", and introduce
the key descriptors of topology of the hypergraph as well as the relevant ob-
servables we will use to describe the agent behavioral dynamics.

5.2.1 Topological features

Hypergraphs (as opposed to graphs) provide the opportunity to consider
two distinct types of interactions: inter-group and intra-group. While our
previous studies have focused primarily on intra-group interactions, we fo-
cus here on inter-group interactions and their effect on contributions. The
smallest unit of interest in this paradigm is a group. This allows us to project
the uniform hypergraph to a corresponding line graph L2. Fig. 5.1 shows a
schematic of the projection of a hypergraph to the corresponding line graph.
Notice that the hyperedges e1, e2, e3 become vertices in the line graph and
the information about the location of vertices of the hypergraph (black pen-
tagons) gets lost when performing this projection. Therefore in a line graph
all of the intra-group structure is lost and it remembers only non-zero over-
laps between groups.

Our task now remains to choose the appropriate descriptor of the graph
topology. Studying SPGG, we are interested in evaluating the degree of influ-
ence (measured through the dynamical observables) a particular group (i.e.,
a node in the line graph) has on other groups in the graph depending, e.g.,

2A line graph of a hypergraph H = (V, E) is a graph L(H) = (VL, EL), where VL = E and two
vertices ei, ej in are connected in L iff. ei ∩ ej 6=
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on the distance between them. This is to determine how ‘far’ the influence
of a group travels within the graph. Hence we need a suitable descriptor
that represents the notion of a distance in a graph topology and is suitable to
quantify such propagation of influence.

A well-established class of such descriptors is the Bonacich-Katz class of
centrality measures (Bonacich, 1987). The Bonacich-Katz centrality of a node
i in the line graph L is parameterized by two parameters ω, η and is given by

ci(ω, η) = ω(I − η J)−1 J1, (5.3)

where I is the identity matrix, J is the adjacency matrix of L and 1 is a col-
umn vectors of all ones. Here ω is a constant multiplying factor and therefore
doesn’t impact the centrality ranking of the nodes and can therefore be ig-
nored via an appropriate normalization. η parameterizes the expected radius
of influence a particular group has on other groups, which is proportional to
(1 − η)−1. It will be the main parameter of concern for us in this chapter.
While for η → 0+, ci is equivalent to degree centrality and it corresponds to
eigenvector centrality if η → 1

λmax
−, where λmax is the largest eigenvalue of

the adjacency matrix of L (Benzi and Klymko, 2015).

5.2.2 Dynamical features

In order to quantify cooperation in PGG, a natural observable of interest (as
before) is the average contribution of the group or player. Let us consider an
agent i where i ≤ Np. Let the set of groups the agent plays in be given by
pi = {k|Hik 6= 0}. Then we define the average agent contribution as

Aagent
i,t =

∑j∈pi
fi,j,t

|gi|
, (5.4)

and the corresponding ensemble averaged quantity given by 〈Aagent
i,t 〉. The

corresponding average group contribution for a group j where j ≤ Ng is
defined as

Agroup
j,t =

∑i∈gj
fi,j,t

4
, (5.5)

where gj = {i|Hij 6= 0} and the ensemble average quantity is given by
〈Agroup

j,t 〉. For both these quantities the corresponding time average quantity

is given by A
′
i =

∑T
t=0 A

′
i,t

T .
The above quantities are averaged over time and therefore hold no in-

formation regarding the interactions between groups unfolding over time.
The latter can be investigated by considering temporal correlations between
group trajectories. To this end, we consider the correlation matrix Cij, in
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FIGURE 5.2: Dependence of conditional expected contribution vari-
ance, M(η), upon radial distance of influence, as expressed by
(1 − η)−1. The curves are averaged over ten hypergraphs of size

(Np, Ng) = (64, 25) for agents with K = 0 through K = 4.5.

which the i, j entry is the correlation between trajectories of groups i and j. It
is given by

Ci,j =
1
T

T

∑
t=0

σAgroup
i,t Agroup

j,t

σAgroup
i,t

σAgroup
j,t

, (5.6)

where σXY is the covariance of random variables X, Y given by 〈XY〉− 〈X〉〈Y〉
and σX is the variance of X. Because the correlation between two group av-
eraged trajectories is symmetric over the two groups, it is a natural measure
for us as the coupling between groups which is mediated by the learning
mechanism of the common player(s) also has no way to break the symmetry
between the groups.

5.3 Results

As we intend to evaluate the specific impact of network topology on the dy-
namics, we will keep the agent characteristics homogeneous and consider
heterogeneity only through graph topology. Therefore we consider identical
agents that are embedded in a random hypergraph (for details on how these
random hypergraphs are generated see App. C).

For these agents we fix (m, γ) = (10, 0.9) for similar reasons as in Chapter
4 and additionally, we consider γp = 0.9. This choice reflects the fact that
in our model the interactions between neighboring groups are mediated by
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FIGURE 5.3: Group trajectory correlations as a function of the shortest
distance between the groups for groups of agents with K = 0 through

K = 4.5. Crosses are data points, polygons are exponential fits.

learning. Lower values of γp would weaken the group interactions, thereby
rendering the network structure pointless. On the other hand for γp ≈ 1 it is
observed that something similar occurs for longer times (recall Sec. 4.5.2), as
every new observation has only a diminishing impact on the agents’ prefer-
ences. As we will see in the following, even though we create a setup (choice
of parameters) that qualitatively maximizes the group interactions, the re-
sulting dynamics still seem mostly independent of the various topological
features.

We consider ten randomly generated hypergraphs with (Np, Ng) = (64, 25)
with all the agents described by (m, γ, γp) = (10, 0.9, 0.9) and K ∈ {0, 1.5, 3, 4.5}.
For each random hypergraph, we perform the ensemble average of 5000 sim-
ulation runs. Following the question asked in the beginning of Sec. 5.2 we in-
vestigate, in a random hypergraph with all identical agents, what topological
descriptor is the most appropriate to predict average group contribution. As
already mentioned we consider the class of descriptors given by Bonacich-
Katz centrality and we consider the most "appropriate" centrality measure
(or the most appropriate η) as the one that minimizes the function

M(η) =
∫

θ〈Agroup
j 〉|(cj(η)=c)dc. (5.7)

Here the variance is defined as

θ〈Agroup
j 〉|(cj(η)=c) = VAR{〈Agroup

j 〉|c ≤ cj ≤ c + dc}, (5.8)
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for some choice of discretization. Essentially, every value of η is an assign-
ment of a centrality to each node. We wish to find that assignment η such
that given a centrality c(η) = c0, the variance of the average contributions
corresponding to the nodes with the centrality close to c0 is minimal when
integrated over all c0. In other words, we wish to find η for which the scatter
of the scatter plot between 〈Agroup

j 〉 and cj(η) is minimal.
In Fig. 5.2 we plot M(η) curve averaged over 10 different random hy-

pergraphs as a function of η and one can see that the global minimum of
M(η) is given by η ≈ 0 for various values of agent parameters given by
K ∈ {0, 1.5, 3, 4.5} thereby indicating that the centrality measure with very
small values of η best predicts the group average contribution independent
of K. Recalling the definition of Katz centrality, smaller values of η corre-
spond to smaller radii of influence. This then seems to indicate that it is the
local topological features (in this case, node centrality i.e. number of neigh-
bors) that are the best predictors of average group contribution.

In the above analysis, there is no "dynamics" as such, as we have only
considered the distribution of 〈Agroup〉 across nodes of varying centrality.
Therefore any claims of groups have a smaller "radius of influence" could
be misguided if the above result is considered in isolation. In order to cre-
ate a more robust picture of the radius of influence of a group, we consider
how quickly do inter-group correlations decay as a function of the shortest
distance between the groups.

Therefore, we proceed by comparing the correlation matrix C with the
distance matrix D3 to evaluate how the correlations between group average
trajectories scale with the shortest distance between the groups. In Fig. 5.3
one can see that the correlation between group average trajectories falls ex-
ponentially with the (shortest) distance between the groups with correlation
lengths l < 1 (as shown in the inset). Thereby meaning that substantial cor-
relations of a group’s behavior are only with its immediate neighbors. This
further corroborates that group contributions in SPGG are mostly governed
by local interactions.

The locality of interactions in SPGG is a piece of good news for two major
reasons. First and the more obvious reason is that locality simplifies the anal-
ysis of the system, thereby allowing for the possibility of developing simpler
effective dynamics that replicate these observations. The second reason is
that if group contributions are mostly governed by local interactions (in this
case group centrality c(η = 0)), then even if we have graphs with different
global structures but similar local structures we should observe similar be-
havior. The latter would seem to indicate a universality (i.e. global topology

3A distance matrix D for a graph L = (V, E) is a matrix of size |V| × |V| where the i, j entry Di,j is
the length of the shortest path between node i and node j in L.
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FIGURE 5.4: Impact of group centrality on the group average contri-
bution for ten randomly generated hypergraphs. Left panel: results
for K = 4.5, with different symbols corresponding to different hy-
pergraphs. Right panel: same as left panel for different values of K.

Polygons connect averages over all hypergraphs, respectively.

independent) in cooperation behavior across a large set of networks.
Fig. 5.4 presents the impact of group centrality (c(η = 0)) on the group av-

erage contribution for different values of K, for ten randomly generated hy-
pergraphs. Different symbols correspond to different hypergraphs. For each
value of K, the results are found not to differ significantly for different hyper-
graphs. This demonstrates that the topological features of the hypergraphs
are irrelevant to this end. Cooperation levels of groups are predominantly
determined by the number of neighbors of the group. Quite surprisingly,
one does not even need to consider how many players are shared between
two neighbor groups (recall that c(0) is measured from the line graphs and
not the hypergraphs).

5.4 Discussion

Another observation from Fig. 5.2 is that M(η) monotonically increases with
K, attaining a minimal value at η = 0 for all K investigated. Having a higher
scatter for higher K would seem to indicate that agents with higher K accom-
modate their contributions to more details of topology rather than just the
number of groups they play in4. This is a view that also gets supported by
looking at the variation of correlation lengths with K. In the inset of Fig. 5.3,
it can be seen that correlation lengths increase with K, thereby indicating that
as K increases, more distant neighbors become relevant as compared to lower
values of K. Hence agents with higher values of K are more sensitive to the
surrounding topology of the interaction network. However, the data suggest

4The other end of the extreme is the case of K = 0, where the agents disregard any topological or
dynamical features and play according to independent samples from a stationary prior distribution.
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FIGURE 5.5: Line graphs corresponding to three hypergraphs. The
left two correspond to random hypergraphs and the rightmost one

corresponds to square lattice.

FIGURE 5.6: (A0− A)/h as a function of group centrality for the three
hypergraphs. The corresponding data from the hypergraphs are rep-
resented by circles, triangle-up and triangle down. The solid line cor-

responds to the function (1 + c(0)/β)−1 for β = 12.5.

that the range of this sensitivity saturates at higher K, with the decay length
staying below unity.

This sensitivity can also be seen in Fig. 5.4. Note that group centrality has
a positive impact on group contributions irrespective of agent parameters,
although agents with higher values of K experience an appreciably bigger
increase in their contributions as compared to their lower K counterparts. In
the following, we quantify this sensitivity (to centrality) as a function of K.

We consider 3 different hypergraphs (their corresponding line graphs can
be seen in Fig. 5.5), two of them generated randomly and one uniform square
lattice, all with (Np, Ng) = (64, 25). We consider identical agents with K
varying from 0.5 to 5 and average over 5000 simulation runs for each con-
figuration (i.e. a pair of a value of K and one of the three hypergraphs). We
then perform three-parameter fits on the average contribution curves with
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FIGURE 5.7: h(K) for three hypergraphs. Polygons (dashed, dash
dotted and dotted) correspond to the best fit. The corresponding data
from the hypergraphs are represented by circles, triangle-up and tri-

angle down, respectively.

the ansatz,

A(c(0), K) = A0(K)−
h(K)

1 + c(0)/β
. (5.9)

As it turns out, A0 does not vary appreciably with K5. Therefore we remove
its dependence on K and treat it as a constant. Therefore, parameters A0

and β are obtained by performing a fit on all configurations and h is fitted
to each configuration separately. It turns out that setting A0 = 12.25 and
β = 12.5, the (fitted) values of h(K) collapse onto a characteristic curve inde-
pendent of the network topology. In Fig. 5.7 we plot three curves h(K) for
the corresponding hypergraphs as obtained from the fits. The empty sym-
bols correspond to (A0 − A)/(1 + c(0)β) for each individual group, where
A0 and β take the aforementioned values. A and c(0) for each group are ob-
tained from the simulations. Within scatter, the data are well represented by
eq. (5.9). In a similar fashion we also show the characteristic value of β to be
well descriptive of the impact of group centrality (see Fig. 5.6). To conclude,
the deviation from the ‘trivial´ case K = 0 seems to factorize as expressed by
eq. (5.9), into a part depending on c(0) and a function h(K) which depends
only on K. The latter starts off roughly linearly but saturates at higher values
of K.

5Here we ignore the case of K = 0, as it represents a qualitatively trivial case, and the corresponding
fitting procedure has non-unique global minima (both h(0)→ 0 and β→ ∞ lead to a flat curve).
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5.5 Comparisons to other models

Contemporary literature on SPGG (Szolnoki, Perc, and Szabó, 2009; Szabó
and Hauert, 2002; Wu, Fu, and Wang, 2018; Su, Wang, and Stanley, 2018)
mostly considers simplistic agents that either always cooperate or defect and
update their strategies through "imitation learning" (where an agent imitates
the strategy of the most successful individual in its vicinity). In these mod-
els, the authors commonly report phase transitions depending on the initial
fraction of cooperators in the population. In contrast, our results suggest that
phase transition in fixed group size games is not a possibility in SPGG as can
be seen from the correlation lengths asymptoting to values less than 1.

Despite the differences in our approaches, there are still some similarities
in the observed outcomes. For instance, our work suggests that cooperation
in SPGG can be driven by making the players more diverse i.e. increasing
the number of groups they play in and consequently increase inter-group
connections. This observation is in line with results previously reported in
Santos, Santos, and Pacheco, 2008, despite the fact that the authors follow a
completely different modelling route.

5.6 Conclusions

Based on previously developed model agents that boundedly learn and plan,
we have explored collective behavior in SPGG on a variety of hypergraphs
of different topologies. What we find that collective investment behavior is
determined essentially by local descriptors, with correlations decaying expo-
nentially in space. Furthermore, the impact of local connectivity, c(0), and
rationality of the agent, K, on the expected average investment factorize in a
universal way, independent of network topology. Its behavior can be quan-
tified with a characteristic function as shown in Fig. 5.7 and lends itself to
experimental test.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this thesis we have presented an alternate modelling route to cellular au-
tomaton (CA) based models, to model human behavior in games. We demon-
strate the explaining power of our model by comparing it to experimental
data while only incrementally increasing its complexity (plan→ plan + learn
→ plan + learn + topology). We demonstrated in Chapter 3 that bounded
rational agency is sufficient to replicate human behavior in short games, by
fitting our model to individual player trajectories, something that no other
known model does. By doing this we challenged the dominant explanations
for the cooperative, non-Nash, and erratic behavior of human players. Sub-
sequently we demonstrated that in order to account for human behavior in
varying group sizes and longer games, learning is a necessary ingredient,
in Chapter 4. We also provided a testable prediction (which comes about
only rarely in sociophysics) that noise in contributions could increase coop-
eration levels. It must be noted that through these two works, we show that
cooperation amongst selfish agents can be attributed to bounded rationality
and learning and that we don’t need to explicitly modify the utility func-
tion of the agents (i.e. hard coding altruism or inequity aversion) to mimic
cooperative behavior as has been done in prior works. Only after having
justified our model on human behavior, we explore the collective effects of
agents in SPGG in Chapter 5. There we demonstrated that our model agents
show a topology independent behavior, where cooperation is directly linked
to player diversity. Finally, through our work, we hope to have communi-
cated to sociophysicists the need to move to more humanized agents in order
to develop robust theories of collective social behavior.
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6.2 Outlook

There are three major future directions that our work can head towards -
going higher in the abstraction hierarchy by developing effective agents, go-
ing parallel by using our model agents to replicate human behavior in other
games, and going deeper by augmenting our model with more human prop-
erties. In the following we will elaborate a little on each of these directions.

6.2.1 Going higher - effective dynamics

Recall from Chapter 1 that through the work presented in the thesis, all we
have done is present an agent function f = fp ◦ fl that we have compared
with experimental data and it shows to replicate human behavior in PGG. In
order for us to scale up the simulations to any realistic setting (larger group
sizes or larger hypergraphs in SPGG), we will have to think about the com-
plexity of the algorithms that we employ. More specifically, the planning
function involves selecting paths that maximize some path integral, which is
done by solving the Bellman equation that has a complexity ofO(Tn3) where
n is the number of states (of the game) and T represents the time horizon (see
Papadimitriou and Tsitsiklis, 1987). This is the complexity of one game. For
an SPGG with multiple groups overlapping in non-trivial ways, using the
algorithms adopted in this thesis becomes unfeasible rather quickly (this is
why in Chapter 5 we restricted ourselves to (Np, Ng) = (64, 25)). Therefore,
for such scaling up to be possible, one would need to focus on finding ef-
fective dynamical rules that are sufficient to reproduce some coarse-grained
observable of interest.

One can take inspiration from the state space compression (SSC) method
introduced in Wolpert et al., 2014. The basic idea is rather simple. Let’s
consider a microscopic state space X (we could identify with space of all
f̄ s in our case) and a dynamical rule DX representing the evolution law on
this space (our agent + environment paradigm). Correspondingly we have
macroscopic state space Y and a macroscopic dynamical rule DY which are to
be determined. Let us say that for our purposes all we care about in PGG and
SPGG is the temporal evolution of the average of contributions At. In such a
case, our objective is to find a "suitable" Y and Dy such that AX

t (the trajectory
generated by DX on X) is as close to AY

t as possible. The suitability of the
macroscopic state space and the dynamics depends on how much easy they
are to compute (complexity wise). Therefore, with a suitable formalization
of the computation costs and accuracy costs (as presented in Wolpert et al.,
2014) one can find effective behavioral descriptions of our model.
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6.2.2 Going parallel - other games

Another direction to proceed further could be by testing the bounded plan-
ning and learning model on other games. Recall that our model parameters
(m, K, γ, γp) represent properties of the agents that are unchanging during
the game, equivalently they could be considered the identity of the player.
Therefore, a true test of the model would be if it could not only generate the
observed behavior in these games but also if the inferred parameters of the
players are constant across these games.

However, for the model to be applied to other games, we will have to
get rid of the context specific assumptions (anonymity of play, etc..) we’ve
made throughout the thesis. The most important one has to do with the
functional form of the transition function (being parameterized by ξ±). This
would also consequently impact the learning mechanism as it relies on per-
forming a maximum likelihood estimation (MLE) over ξ±. Regardless, the
framework of learning and planning with bounds upon them should remain
unchanged.

Moreover, what could also be interesting is if we could develop experi-
mental methods to measure player properties before the game is played. For
instance, if we allow close to zero reaction time in a single shot PGG, then
multiple samples of the player could represent their prior policy. Then by
allowing for more reaction time, one could find the posterior policy and con-
sequently get an idea of K. In so far as measuring the discounting factor γ is
concerned, there are already existing experimental paradigms (for instance
see Andersen et al., 2008). The true test of the model would be if it could
predict how players with the obtained preferences play iterated PGG.

6.2.3 Going deeper - cognitive science

The final direction to proceed could be to develop even more accurate mod-
els of human agency. There are certain aspects of human agency that we have
ignored in our pursuit of modelling PGG behavior, for instance, have a look
at Fig. 6.1. The figure shows the density of contributions of all the players in
the city of Samara. The distribution has 5 very well pronounced peaks and
they coincide with contributions that are exact multiples of 5. As you can
imagine, this preference for multiples of 5 is not specific to Samara, rather is
demonstrated by players of all the cities. In fact, tendencies such as this are
not only limited to PGGs alone. For instance, recent experiments involving
human subjects performing serial reaction time tasks (Wu et al., 2022) seem
to show a behavior that the authors call "chunking". Here the participants re-
member sequences in chunks, the sizes of which depend on the time allowed
to remember the sequences (which could be viewed as some analogue of K).
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FIGURE 6.1: Density of contributions of all players and all periods in
the city of Samara. Data was obtained from the authors of Herrmann,

Thöni, and Gächter, 2008.

It is not a coincidence that humans show very similar tendencies across
very different domains. One may model this behavior as a coarse-graining
of the action space in order to reduce the complexity of the task at hand,
in order for it to be doable within the computational bounds of the human.
An agent needs to figure out "optimal" coarse-graining of state and action
spaces, as too much coarse-graining may lead to having imprecise models
of the environment and too fine-grained models may become incomputable
in the given bounds. This may be formalized using the information bottle-
neck method of Tishby, Pereira, and Bialek, 2000. Also, because the coarse-
graining must be impacted by the agent’s understanding (learning) of the
environment it is in (knowing what details to ignore), the Lagrange param-
eter in the information-bottleneck method must be related to the computa-
tional bounds. Regardless of the manner of modelling this, the link between
learning and coarse-graining must be formalized.

Another aspect that got ignored in the bigger scheme of things was the
trade-off between learning and planning resources as demonstrated in Sec.
4.4.2. These trade-offs should be explicitly described in a future work, poten-
tially in a natural manner. If the trade-off is to be decided dynamically (on-
line) as opposed to passively (offline) from a look-up table, then there might
be a need to invoke meta-cognitive mechanisms which learn to trade-off (for
instance see Lin et al., 2015) learning resources with planning resources opti-
mally.
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use of bounded rationality, but without invoking mechanisms of learning. The underlying Markov decision
process is driven by a path integral formulation of reward maximization. The parameters of the model can
be related to human preferences accessible to measurement. Fitting simulated game trajectories to available
experimental data, we demonstrate that our agents are capable of modeling human behavior in PGG quite well,
including aspects of cooperation emerging from the game. We find that only two fitting parameters are relevant
to account for the variations in playing behavior observed in 16 cities from all over the world. We thereby find
that learning is not a necessary ingredient to account for empirical data.
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I. INTRODUCTION

The arguably most important question of our time is
how humankind can devise a sustainable management of its
ecological niche on planet Earth [1]. Scientific problems con-
cerning the many aspects of sustainability have thus attracted
the interest of an increasingly active research community
since about the turn of the millennium [2]. Aside from se-
vere problems in dealing with limited planet resources and
a changing global climate, a topic of major concern is the
possible response of human societies to these stimuli. Having
to deal with dire consequences of rapidly changing conditions,
unwanted collective behavior may result, such as sedation or
civil war. Hence an important goal of legislation and policy
making is to have these systems evolve in a way which is as
beneficial as possible for its agents.

Since legislation can only change the interaction rules
which apply in human encounters, there is a need for the-
oretical modeling which is capable to predict the collective
behavior in human societies on the basis of these interac-
tion rules [3]. This bears close similarity to the physics of
phase transitions and critical phenomena, where one seeks
to predict the collective behavior of a large number of sim-
ilar subsystems (such as molecules) solely from their known
mutual interactions [4,5]. This paradigm has been applied suc-
cessfully, e.g., in modeling the emergence of polarization in
opinion dynamics [6–8], where collective behavior was found

*Corresponding author: prakhar.godara@ds.mpg.de
†tilmandiego.aleman@stud.uni-goettingen.de
‡stephan.herminghaus@ds.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

to depend sensitively on details in the mutual interactions of
agents. Hence in order to develop a predictive model of col-
lective phenomena in societal dynamics, one has to model the
interactions between individuals in a way sufficiently formal
for access by theory, but still resembling human encounters as
closely as possible.

While the interactions of opinions in topical space may
be modeled by comparably simple mathematical structures
[7,8], more general interactions between humans, including
exchanges of resources and emotions, requires a much higher
degree of modeling complexity. A classical paradigm for
achieving such modeling is game theory, which has grown
into a mature field of research, with extensions towards col-
lective phenomena having emerged in recent years [9–14].

A frequently studied example is the so-called public goods
game (PGG), in which players contribute resources to a com-
mon (public) pot, from which disbursements are paid back to
all players equally [5,12,15,16]. This may be seen as modeling
a wide variety of social interactions, since both contributions
and disbursements may be monetary (e.g., taxes), goods (e.g.,
public infrastructure), activities (e.g., chores in a common
household), or emotions (e.g., enjoying a tidy common house-
hold). In a society, every player is participating in many such
games at the same time, such that society may, e.g., be viewed
as a network of many PGG, coupled by the players they have
mutually in common. The prediction of collective behavior in
such a network rests, in the first place, on careful modeling of
the agents and their interactions.

Despite extensive research in recent decades, the question
how human behavior, as regards PGG, should be cast into
a suitable model agent, must still be considered open. In
PGG experiments played over a number of consecutive rounds
among the same group of players, one widely observes that
contributions to the common pot (referred to as cooperation)
tend to decrease gradually from one round to the next [5,17].
This is not straightforward to account for through a simple
Markovian agent model with a fixed transition matrix. Fur-
thermore, it is commonly assumed that agents have full access

2470-0045/2022/105(2)/024114(15) 024114-1 Published by the American Physical Society



GODARA, ALÉMAN, AND HERMINGHAUS PHYSICAL REVIEW E 105, 024114 (2022)

FIG. 1. Top: Trajectory of a single group game played among
citizens of Athens [17]. Contributions of all four players are shown,
in different styles. Bottom: Intragroup vs intergroup variance in the
average contributions of players. Each data point corresponds to
one city. The significant offset of the data above the fist diagonal
demonstrates the substantial coupling between players playing in the
same group.

to all information necessary to perform optimal moves (“ra-
tional” agents), and are also designed to use this information
exhaustively in search of a Nash equilibrium. As the latter
can be shown to consist in defecting, i.e., zero contribution
(assuming that the number of rounds are finite and known to
all the players), this is clearly at variance with experimental
data [18,19].

In search for less simplistic model agents which better
account for experimental data, concepts of learning [20,21]
have been put forward. In fact, the observed declining trend
in average cooperation could be accounted for quite well
[15,16]. However, a glance at typical game trajectories sheds
some doubt on this to be the sole explanation. The top panel
of Fig. 1 shows the trajectory of a single PGG (played
among four citizens of Athens for ten subsequent rounds

[17]), showing the contributions of all players. It is not ob-
vious what players should even try to “learn” from each
other in such erratic trajectories. Nevertheless, the declining
trend in contributions shows up once many trajectories are
averaged [17]. It thus appears reasonable to investigate as
well other possible extensions (other than learning) of agents
with respect to the simple (fixed transition matrix rational)
agent.

It is clear that real players are characterized by a certain
lack of information as well as by limited resources to use the
information they have access to. This observation is reflected
in the concept of bounded rationality [22,23], which we focus
on in the present paper. Our goal is to develop model agents
whose parameters can be related to measurable individual
preferences [24], and at the same time are capable to model
experimental data on human playing behavior. As we will
show, we are able to account for human playing behavior, both
its “volatility” and the observed decline of cooperation, in 258
games [17], by merely assuming some foresight and bounded
rationality, but without invoking any learning mechanism.

II. BOUNDED RATIONAL FORESIGHT

It appears reasonable to assume that, depending on the
real-life situation modeled by the PGG, players may try to
think a few steps ahead when deciding on their next move, or
contribution. In fact, it is well accepted in the wider commu-
nity that some foresight, usually cast in the notion of “agency”
[25], is one of the key ingredients in human decision pro-
cesses. This requires intellectual resources, as the course of
the game needs to be anticipated somewhat into the future.
As mentioned above, completely rational players (i.e., with
infinite intellectual resources) will always defect in a finite
PGG, as defection maximizes their gains irrespective of what
other players do (Nash equilibrium). Experimental evidence
about iterated PGG, however, shows that players rarely play
the Nash equilibrium [18,19], but instead contribute substan-
tially, with average contributions typically decreasing from
one round to the next as the game proceeds, irrespective of
the country or culture the players belong to [17].

Inspired from a formulation of bounded rationality [22,23],
we use a path integral formulation to develop a type of model
agent which tries to maximize its gain in future moves, but
exhibits bounded rationality in a manner resembling some
key aspects of a human player. Its parameters can be loosely
attributed to certain traits of human character [24], as we
will discuss in more detail further below. We then use these
parameters to adjust the agent properties such as to fit data
of public goods games which had been played by real human
players [17]. As the public goods game can already be seen as
a collective scenario in some sense, our approach is contrast-
ing other work which assumes some agent behavior a priori
and then immediately focuses on trying to predict collective
effects [14,26,27].

A. Rules of the public goods game (PGG)

The public goods game (PGG) has become one of the
major paradigms in game theory and is played by a finite set
of N players. It can be summarized as follows:
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(1) Each player is provided with the same number τ ∈ N
of tokens.

(2) Each player anonymously contributes an integer num-
ber of tokens to a “public” pot.

(3) Each player receives a return worth the total collection
in the pot, multiplied by a number α ∈ R. This return, plus
the tokens held back initially by the player, is called her
reward.
This completes one round of the game. After that, the game
continues for a finite (and previously known to all players)
number T of rounds. Hence there is a chance for the players
to “learn” over time how their companions are playing, and
possibly to develop strategies to maximize their rewards ac-
cordingly. The PGG is completely characterized by the triple
(N, T, α). The number of tokens, τ , merely provides some
kind of currency unit for the asset to be distributed. It is
significant only to match real playing situations and does not
affect the structure of the game.

Data have been made available from this game for a large
number of players in different cities around the world [17].
In that study, each group consisted of four players. In each
of the cities investigated, a number of groups of four players
each were compiled from citizens in a random fashion. The
number of groups per city varied from ten to 38. Each group
played one game consisting of ten rounds. A maximum of 20
tokens could be invested in each round by a single player. It
is well known from earlier experiments [18] that an increase
in α leads to monotonously increasing contributions by the
agents. In the study we refer to [17] it was chosen α = 0.4.
Wherever appropriate, we will choose the same conditions
in our model in order to achieve maximum comparability,
hence in the remainder of this paper we use (N, T, α) =
(4, 10, 0.4).

While the average contributions were substantially differ-
ent for different cities, it was quite generally found that the
average (over all the trajectories in a city) contributions of the
players tended to decrease gradually as the game proceeded.
An example is shown in Fig. 1(a) for a single group from
Athens. This as well as the rather erratic variations is clearly
at variance with what one would expect for Nash equilibrium
players.

The mutual interaction of the players within a group also
becomes apparent when one considers the variance of the
average contributions of the players. As Fig. 1(b) shows, the
intragroup variance (abscissa) was generally smaller than the
variance of average contributions among all groups of the
same city (ordinate). Since players were picked from citizens
in a random fashion, this suggests a certain degree of coop-
erativity, or peer pressure, between players within the same
group as to the style of playing, either more parsimoniously
or more generously. In the present paper, we will refer to this
phenomenon using the neutral term coupling. The agent we
want to develop should be capable of modeling as many of
these traits as possible.

In the remainder of this section, we will develop our agent
model in detail. In Sec. III we present the numerical imple-
mentation of the model and discuss some simulation results
demonstrating its properties. Results of fitting the model to
experimental data are shown in Sec. IV. Finally, we will
suggest some future directions.

B. Developing the agent model

Exploiting the inherent symmetry in the game, we will state
the model for only one agent with the index k ∈ {1, . . . , N}.
From the perspective of the kth agent we shall often refer to
the other agents as the system, and we call the kth agent the
agent under consideration, or just the agent , for short. First
we will introduce the model assuming full rationality and later
introduce the concept of bounded rational agents. We use the
following notations:

(1) fk,t ∈ N := the contribution (or “action”) of the kth
agent at turn t ∈ {1, . . . , T }.

(2) f̄t = ( f1,t , . . . , fN,t ) is the state of the game at the end
of turn t . The bar on the top represents a vector quantity.

(3) θT
t = ( f̄t , f̄t+1, . . . , f̄T ), is the total trajectory of the

game from turn t to T .
(4) Gk ( f̄t ) = α

∑
i fi,t + (τ − fk,t ) is the immediate gain

of agent k at turn t . The last term represents the “gain” from
what was not contributed.

(5) Gk[θT
t ] = ∑T

t ′=t Gk ( f̄t ′ ) is the cumulative gain of agent
k from turn t to T .

(6) P(θT
t ) := The probability of a trajectory from time t

to T .
The aim of each agent is to maximize the cumulative gain

achieved at the end of all turns. At each round t of the game,
the kth agent chooses an action fk,t so as to maximize the
expected cumulative gain. The latter, however, depends not
only on the agent’s actions but also the other agent’s actions
(i.e., the system). Hence due to the anonymity of the game and
lack of information, the agent can have only a probabilistic
model of the evolution of the system’s state.

For the discussion which follows, it will prove useful to
introduce the following quantities:

(1) f̄−k,t := The contribution of all agents except the kth
agent at turn t (we may identify f̄t = ( fk,t , f̄−k,t )).

(2) πT
t = ( f̄−k,t , f̄−k,t+1, . . . , f̄−k,T ), the system trajectory

from turn t to T .
(3) P(πT

t ) := The probability of system trajectory from
time t to T .

C. Rational agents

In order to play the game successfully, each agent has to
calculate the likelihood of a particular trajectory of the game
(system + agent) and hence be able to act so as to maximize
the expected gain over the entire trajectory. In this model we
assume that the agents are Markovian, i.e., their decisions in
a given round are dependent only on the state of the game in
the previous round and not on the states further back in the
game history. While this may appear as a gross simplification,
we will see that human playing behavior can be accounted for
quite well by this assumption. The probability of realizing a
trajectory P(θT

t ) is then given by

P(θT
t ) =

T∏
t ′=t

P( f̄t ′ | f̄t ′−1) =
T∏

t ′=t

P( fkt ′ , f̄−kt ′ | f̄t ′−1). (1)

Note that there are two kinds of processes at play here. First,
the stochastic process describing the system (from the per-
spective of the kth agent) which generates f̄−k,t . Second, there
is the choice of the agent, fk,t . Since the game is played
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anonymously, both of these processes can be assumed to be
independent. This can be used to write P( fk,t , f̄−k,t | f̄t−1) =
P( fk,t | f̄t−1)P( f̄−k,t | f̄t−1). We refer to P( f̄−k,t | f̄t−1) as the
transit ion f unct ion. In order to avoid confusion, we rename
it as Q( f̄−k,t | f̄t−1). This now allows us to write

P(θT
t ) =

T∏
t ′=t

P( fkt ′ | f̄t ′−1)Q( f̄−kt ′ | f̄t ′−1)

= P
(
πT

t

)
P
(

f T
t

)
, (2)

where P( f T
t ) = ∏T

t ′=t P( fkt ′ | f̄t ′−1) is called the policy of the
agent.

We now write the optimization problem the agent faces at
turn t as

Vt
[
P
(

f T
t

)] −→ max, (3)

where

Vt
[
P
(

f T
t

)] =
∑
θT

t

P
(
θT

t

)
G
[
θT

t

]
(4)

is the expected cumulative gain (also called the value func-
tional).

The maximum value of Vt will henceforth be called V ∗
t .

Writing G[θT
t ] = G( f̄t ) + G[θT

t+1], the summation can be bro-
ken down into two parts, the first of which is the immediate
expected gain, and the second is the future expected gain. By
additionally using the normalization of the path probabilities
we can write the equation in a recursive form as

V ∗
t

[
P
(

f T
t

)] = max
f T
t

∑
f̄t

P( f̄t | f̄t−1)
[
G( f̄t ) + Vt+1

[
P
(

f T
t+1

)]]
.

(5)
Now, making use of Eq. (2), we can write the above more
explicitly as

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)

× [Q( f̄−k,t | f̄t−1)Gk ( f̄t ) + Q( f̄−k,t | f̄t−1)Vt+1]. (6)

This equation is known in the literature as the Bellman equa-
tion [28], which was originally used in optimal control theory.
In common applications, this equation also includes a dis-
count factor 0 � γ � 1, which is the factor by which the
future gains are discounted in comparison to immediate re-
wards. One can then write

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)

× [Q( f̄−k,t | f̄t−1)Gk ( f̄t ) + γ Q( f̄−k,t | f̄t−1)Vt+1], (7)

where γ = 0 would indicate an extremely myopic agent and
γ = 1 would represent an extremely far-sighted agent. In
terms of established preference dimensions, γ should be
closely related to patience [24].

D. Rationally bounded agents

So far the agents have been completely rational. By rational
we mean that the agent is able to perform the computations
and solve the optimization problem mentioned above. The

reader must not confuse this with the notion of rationality
used conventionally in game theory, which not only assumes
infinite computational capabilities but also assumes that the
agent has perfect information about the game and other play-
ers. In our model the agent doesn’t have perfect information
about other players, and this aspect is incorporated by the use
of a transition function. Therefore our rational agents may
not necessarily play the Nash equilibrium in the intermediate
rounds as their contributions will depend on their respective
transition functions.

In order to model real human players, we need to introduce
a form of bounded rat ionality. It can be argued that human
players playing the PGG do not quite maximize the functional
as in Eq. (7), like a fully rational agent might do, due to
either limited time or computational capabilities. Consider, for
instance, a player who has maximally limited computational
capabilities or has zero time to perform the optimization. Such
a player is bound to contribute randomly and independently
of other agents. An agent modeling such behavior would con-
tribute random samples from a prior distribution P0( fk,t ). This
distribution represents the basal tendency of the agent, and
any deviations from the basal play would involve some cost
of performing computations. In this model we assume that the
agents have a computational budget K , which represents the
degree to which they can “deviate” from their basal tendency
in search of an optimal strategy.

The functional form of the cost of computation is adopted
from [22,23]. Making use of it, we constrain the optimization
problem in Eq. (7) by the computational budget of the agent
and write the optimization problem faced by the agent on turn
t as

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)
[
Q( f̄−k,t | f̄t−1)Gk ( f̄t )

+ γ Q( f̄−k,t | f̄t−1)Vt+1],

with DKL[P( fk,t | f̄t−1)||P0( fk,t | f̄t−1)] � K. (8)

K is the computational budget of the agent in round t ,
DKL(·||·) is the Kullback-Leibler divergence, and P0( fk,t | f̄t−1)
is the prior distribution. We can introduce a Lagrange param-
eter to write the optimization problem as

V ∗
t = max

f T
t

∑
f̄t

P( fk,t | f̄t−1)

[
Q( f̄−k,t | f̄t−1)Gk ( f̄t )

− 1

β
log

P( fk,t | f̄t−1)

P0( fk,t | f̄t−1)
+ γ Q( f̄−k,t | f̄t−1)Vt+1

]
, (9)

where β is the inverse of the Lagrange parameter for the
bounded optimization problem. Because we have an in-
equality constraint, an additional condition for optimality
is given by the KKT condition [29], i.e., 1

β
{DKL[P∗( fk,t

| f̄t−1)||P0( fk,t | f̄t−1)] − K} = 0. This means that if the optimal
action is within the bounds of the computational capabilities
of the agent, the agent will act optimally, else β is chosen such
that DKL[P∗( fk,t | f̄t−1)||P0( fk,t | f̄t−1)] = K and P∗( fk,t | f̄t−1) is
a solution of Eq. (9).
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This concludes the model of the agent, which can be
seen as defined by the quadruple (Q( f̄−k,t | f̄t−1), P0( fk,t | f̄t−1),
K, γ ). The transition model encapsulates the agent’s inter-
nal model of the system, the prior action represents the
basal tendency of the agent, K expresses the computational
limitations, and γ represents the degree of myopia of the
agent. Although K could in principle vary from one round
to another, we assume the computational constraint K to
be the same for all the rounds, considering it as a trait of
the agent.

We now turn to solving Eq. (9). The value function at
turn t cannot be evaluated, because future actions are not
known ab initio and yet they need to be considered in the
optimization problem. This problem can be resolved in the
same spirit as Bellman’s, through what is called backward
induction. Instead of starting from turn t , we can start from
the last turn and obtain a series of nested functions which
can then iteratively lead to turn t . Although simple in prin-
ciple, an analytical solution can be obtained only in a few
special cases. Numerical solution of this problem, however,
is straightforward.

III. NUMERICAL SIMULATIONS

A. Model assumptions

First, we make the simplifying assumption that the prior
of the agent P0( fkt | f̄t−1), is independent of the previous state,
i.e., we replace P0( fkt | f̄t−1) with P0( fkt ). This explicitly ex-
cludes any learning mechanism, as we want to explore to what
extent we can account for observed behavior exclusively by
bounded rational foresight.

Second, we assume that the agents have truncated Gaussian
priors given by

T G( f ; m, σ ) =
{
N e

( f −m)2

2σ2 , 0 � f � τ,

0, otherwise,

where we set τ = 20 in order to relate to the data we intend to
compare our simulations with [17]. N is the normalization
constant, along with a fixed variance σ 2 = 25. By varying
the peak m ∈ (−∞,∞) of the distribution we can span the
basal tendencies from being very greedy (small m), indif-
ferent (intermediate m), or very benevolent (large m). The
corresponding prior distributions are displayed in Fig. 2. The
parameter m, which may serve as a fitting parameter deter-
mined individually for each agent, is constant over the full
game. It can be seen as resembling a character trait of the
respective player.

Third, because of the anonymity of the players in the
game we can assume symmetry across the f̄−kt variables
and separately across the f̄−kt−1 variables in Q( f̄−k,t | f̄t−1).
Additionally, we need only to consider the distribution of
the means of f̄−kt and f̄−kt−1 as these are the only relevant
quantities in the game. Therefore, from the definition of the
agent we replace the transition function Q( f̄−k,t | f̄t−1) with

Q(μt |μt−1, fkt−1), where μt =
∑

i �=k fit

N−1 .
Finally, we assume that the transition function

Q(μt |μt−1, fkt−1) is a truncated Gaussian with the most

FIG. 2. Basal tendencies of the agents P0( fk,t ) as given by trun-
cated Gaussian prior distributions with variable m.

likely value of the Gaussian given by

μ
peak
t =

{
μ′

t−1 + ξ+|μ′
t−1 − fkt−1|, μ′

t−1 − fkt−1 < 0

μ′
t−1 − ξ−|μ′

t−1 − fkt−1|, μ′
t−1 − fkt−1 > 0

(10)
and some fixed variance (σtrans = 3) [30]. Here μ

peak
t is the

most likely value of μt , μ′
t−1 is the observed value of μt−1 and

ξ± are scalar parameters. This assumption is based upon the
idea that an agent’s contributions can either have an encour-
aging or a discouraging impact on other agents, and ξ+ and ξ−
control the degree to which other agents are being encouraged
or discouraged. In summary, the prior distributions are param-
eterized by m, while the transition functions are parameterized
by ξ±.

B. Relation to known human preferences

Accordingly, each agent is completely described by its
tuple (ξ±, m, K, γ ), which is considered constant over the
game it plays. It is instructive to compare these parameters to
known human preference parameters used, e.g., in the Global
Preference Survey (GPS [24]). In that work, which provides a
compilation of economic preferences all across the planet, six
parameters affecting human choices are considered: patience
(willingness to wait), risk taking (willingness to take risks in
general), positive reciprocity (willingness to return a favor),
negative reciprocity (willingness to take revenge), altruism
(willingness to give to good causes), and trust (assuming
people have good intentions).

There is a large body of literature on why these preferences
are considered particularly important for economic decisions
[31–34], but this shall not concern us here. What we
immediately recognize is a relation between the parameter
ξ+ and ξ− in our model on the one hand and positive and
negative reciprocity on the other hand. Furthermore, patience,
which is measured by the willingness to delay a reward if
this increases the amount rewarded, obviously relates to the
foresight expressed by the attempt to maximize the reward
path integral (instead of focusing on the reward in a single
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TABLE I. Backward Induction.

1: function POLICYM, tmax

2: t = tmax

3: E = 0
4: V = 0
5: while t > 0
6: for 0 � f1,t−1 � τ do
7: for 0 � μt−1 � do
8: for 0 � a � τ do
9: E[a] = GAIN(Q, a, μt−1, f1,t−1, V)

10: end for
11: j = arg maxE
12: policy[t, f1,t−1, μt−1] = (δk j )k∈{0,...,(N−1)τ }
13: V = policy[t, f1,t−1, μt−1] · E
14: end for
15: end for
16: t = t − 1
17: end while
18: RETURN policy
19: end function

round). Notions like risk taking, altruism, and trust will cer-
tainly reflect in the value m assigned to a player, and to some
extent also affect ξ±. Hence the ingredients of our model
are by no means ad hoc, but are widely accepted to exist,
to be relevant for decisions, and to vary considerably among
different cultures across the globe [24].

C. Algorithm

Above we used backward induction to compute the
(bounded rational) policy of an agent. For a more instruc-
tive description of the algorithm, we now describe the fully
rational case in more detail (see Table I). The corresponding
policy can be obtained again by backward induction, using the
transition matrix for the system, with the transition matrix P.

We use the notation μt−1 := 1
N−1

∑
k �=1 fk,t−1 for the cu-

mulative bets of the other agents and assume for simplicity
that the agent the policy of which we are interested in has
index 1.

Here δk j is the Kronecker delta, bold notation refers to
vector-valued variables, and the GAIN function is defined as

GAIN(Q, a, μt−1, f1,t−1, V) = Q(·|μt−1, f1,t−1) · {γ V + α[(0, . . . , (N − 1)τ ) + a] + τ − a},

where Q(·|μt−1, f1,t−1) refers to the probability distribution
vector of having certain cumulative bets given μt−1 and f1,t−1.

For bounded rational agents, the method is more or less
identical, except that instead of having delta distributions with
their peak at the maximum expected value, we need to solve
the constrained maximization problem. In terms of the algo-
rithm, this means that instead of immediately taking the delta
distribution, we first check if DKL(P0||δ) � K for the agent’s
prior P0, the delta distribution as described in line 12 of the
algorithm and his rationality parameter K . If this is the case,
the computational cost of playing optimally in this situation is
compatible with the computational budget of our agent, so his
policy is exactly δ.

Otherwise, we find β such that

DKL(P0||P∗) = K.

Here P∗( fk,t ) = cP0( fk,t ) exp(βE [ fk,t ]), fk,t ∈ {0, . . . , τ }
where c is just a normalizing constant to get a probability
distribution.

Note that for this algorithm one needs to know both μt−1

and fk,t−1 in order to evaluate the expected cumulative gain.
This leads to a problem for the first round, as no history yet
exists. Therefore in our implementation we manually initialize
the group with an appropriate state f̄0. For instance, when fit-
ting simulations to experimental data, we initialize the group
of agents with the initial contributions of the corresponding
players. The code was written in Python using the just-in-time
compiler Numba [35] and the numerical library Numpy [36].

D. Solution space of the model

In this section we will demonstrate the kind of behavior
our model agents can exhibit. Since the main goal of the
present work is to develop agents whose playing behavior is

similar to that of the players in Ref. [17], we set (N, T, α, τ ) =
(4, 10, 0.4, 20), as was chosen in that study, for the remainder
of this paper. Due to the high dimensionality of the parameter
space, we show game trajectories for four-player groups with
only a few configurations given by (ξ±, m, K, γ ).

1. Choice of ξ±

In order to understand the significance of ξ±, we con-
sider fully rational agents for the sake of simplicity, with
(m, K, γ ) = (10,∞, 1), and consider the average (over
rounds and agents) contribution of the group, 〈A〉, while the
two components of ξ are varied. Writing ξ+ = r cos θ and
ξ− = r sin θ , it can be seen from Fig. 3 that 〈A〉 seems to
depend only on r, while the polar angle θ has no effect on
〈A〉. The only region which is nongeneric is close to the origin
(r � 0.3), where the dependence of 〈A〉 is steep, and levels
off at minimal contributions for r � 0.1. r = 0 corresponds
to the case when the agent decouples itself from the rest of
the agents, i.e., the agent believes that its actions will have no
impact on other agents’ behaviors. In this case, the agent plays
at Nash equilibrium, i.e., contributes nothing. This is known
to be at variance with real player behavior, hence we should
avoid small r when choosing ξ± in the model.

Some caveat is in order concerning the polar angle, θ .
When ξ+ > ξ− (θ < π/4), a strongly oscillating behavior is
observed in the contributions for intermediate time (see inset
in Fig. 3). These oscillations (which do not have a visible ef-
fect on the average 〈A〉) occur because agents believe, judging
from their own ξ+, that it is easier to encourage people to
contribute highly, and harder to discourage them. Therefore,
the strategy agents adopt is to contribute highly once, so as to
encourage all the other agents to contribute highly and then
contribute nothing, reaping the benefits from the contribution
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FIG. 3. Group average contribution, 〈A〉, as a function of
r = √

ξ 2− + ξ 2+ for four different values of the polar angle, θ ∈
{0, π

6 , π

3 , π

2 }. The data collapse shows that the polar angle (hence the
ratio ξ+/ξ−) is not relevant for the average contribution. The inset
shows spurious oscillations for θ < π/4, which are not observed in
real games and should therefore be avoided by proper choice of ξ+
and ξ−.

of the other agents. The oscillations can then be observed
because all the agents are employing the same strategy, and
all of them are Markovian. Such oscillations are unnatural for
human player groups, and can be considered an artifact due to
the strictly Markovian character of the agents.

In order to model human players, it seems therefore rea-
sonable to keep r sufficiently far away from zero and to
assume ξ− > ξ+. The latter may as well be seen as reflect-
ing a tendency to be risk-averse, which is characteristic of
human players to a certain extent. Aside from the observations
summarized above, we did not find our simulations to depend
strongly on ξ±. In our simulations, we therefore set ξ+ = 0.1
and ξ− = 0.5 and keep these values fixed for the remainder of
this paper. Additionally, we initialize all following simulations
with f̄0 = (10, 10, 10, 10), except when fitting experimental
data.

2. Impact of K

It should be clear from the previous section that fully ra-
tional agents (i.e., K = ∞) act independently of their priors.
Figure 4(a) shows simulations of a group of four identi-
cal rational agents with (m, K, γ ) = (5,∞, 1). We see that
identical rational agents play identically. Although fully ra-
tional (K = ∞), the agents do not play Nash equilibrium,
but contribute substantially. This is because with our choice
of ξ±, r = 0.26 is sufficiently large to prevent players from
“decoupling.” Notice also that rational agents always con-
tribute zero tokens in the last round. This corresponds to
the Nash equilibrium in the one-round PGG, as the sole
purpose of contributing was to potentially encourage others
to contribute in future rounds, which is expressed by the
ξpm. In the inset of Fig. 4(a) we also see the impact of γ

on rational agents. Here we have three agents (open circles)

FIG. 4. Full game trajectories of a group of four fully rational
agents. In (a) all agents are (m, K, γ ) = (5, ∞, 1). For the inset, one
agent has different γ = 0.7 (solid circles). Panels (b) and (c) show
ensemble average trajectories over 10 000 simulation runs with three
agents (open circles) as before and one different agent (solid circles)
with the same m and γ , but K reduced to 3 and 0, respectively.

with (m, K, γ ) = (5,∞, 1) and one agent (solid circle) with
(m, K, γ ) = (5,∞, 0.7).

Computational limitations make the agent’s action random
and dependent on the prior probabilities. Again we have a set
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of three identical rational agents (circles) with (m, K, γ ) =
(5,∞, 1), and we show the impact of K by varying it for the
fourth agent (solid circles). In Figs. 4(b) and 4(c), we show
the ensemble average trajectory of the group and a different
agent which has K = 3 and K = 0, respectively. Notice the
dissimilarity from the case when all the agents were fully
rational.

In Fig. 4(c) we see the effect of complete lack of any
computational ability. The agent just acts according to its
prior, unaffected by the play of other agents, as is seen from
the flat average trajectory. The preferred contribution of the
agent is given by the average of the truncated Gaussian prior
with m = 5, which is ≈6.24.

3. Impact of m

As mentioned previously, m only has an impact on agent
behavior for finite K . In order to investigate its impact on
agent behavior, we therefore construct a group of three iden-
tical rational agents with (m, K, γ ) = (5,∞, 1) and a single
agent with K = 3 and γ = 1, for which we vary m. As can be
seen from the ensemble averaged trajectories shown in Fig. 5,
m has a monotonous impact of the average contribution of
all the agents. Notice that the agent with m = 0 plays like
rational agents in the last rounds and the agent with m = 20
plays like the rational agents in the intermediate rounds. As
mentioned before, this is because the optimal strategy is close
to the agent’s basal tendency in these regimes. Bounded ra-
tional agents with higher values of m will not be able to play
rationally in the last round, as can be seen in Figs. 5(b) and
5(c).

4. Mutual coupling of agents

Referring to the correlations displayed in Fig. 1(b), we
now consider the intragroup coupling of agents. This can be
investigated by composing a group of three identical agents
with K = 0 as the “system” and one agent as the “probe.”
K must vanish for the system in order to ensure that there
are no repercussions of the probe agent’s behavior upon the
system. We then vary m of the system and observe the ensuing
changes on the contribution of the probe agent. The result is
shown in Fig. 6. Here we have chosen a benevolent rational
player as the probe. Clearly, its contributions are very much
dominated by the contributions of the three system players,
which demonstrates considerable coupling between the play-
ers within a group.

5. Groups of identical agents

So far we have focused on the impact of parameters on
the behavior of individual agents. It is similarly instructive to
study the behavior of groups of identical agents when their
parameters are varied simultaneously. Results for the impact
of m and K on 〈A〉 for groups of identical agents are summa-
rized in Fig. 7. An initial contribution of 10 tokens is assumed
for each agent. Obviously, m and γ have a monotonous im-
pact on the average contributions. At high values of K , the
average contribution of the group becomes more and more
independent of the priors [convergence of all curves towards
the right margin of Fig. 7(a)]. Also note that at very small K ,
the contribution is totally governed by the priors. This is not

FIG. 5. Full game ensemble average trajectories of group
of four agents. There are three identical agents (open circles)
with (m, K, γ ) = (5, ∞, 1) and one different agent (solid cir-
cle) with (a) (m, K, γ ) = (0, 3, 1), (b) (m, K, γ ) = (10, 3, 1), and
(c) (m, K, γ ) = (20, 3, 1).

the case with γ . At high values of K , γ has a large impact on
〈A〉 [Fig. 7(b)], while at low values of K , γ has little or no
impact on the 〈A〉.
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FIG. 6. Demonstration of coupling among agents within one
group. A benevolent rational agent (dashed curve) with (m, K, γ ) =
(20,∞, 1) is made to play in two different systems, with either
m = 0 (greedy, top, solid curves) or m = 20 (benevolent, bottom,
solid curves). The system agents are all chosen with K = 0 in order
to prevent repercussions of the agent under consideration (dashed)
onto the system.

It is furthermore interesting to note that 〈A〉 varies with
K appreciably only in an intermediate range of m. In the
inset of Fig. 7(a), we plot the square of the derivative of 〈A〉
(suitably smoothed) with respect to K , averaged over the full
range of m. We find a pronounced peak at K ≈ 2.5. In this
range, 〈A〉 is sensitive as well to m and γ . Hence we may
say that the system has a particularly high susceptibility to
parameter changes in this range. This is interesting in view
of K being intimately related to the Lagrange parameter β,
which can be viewed as an inverse generalized temperature
[22,23]. A peak in susceptibility may be analogous to a phase
transition, when thermal energy comes of the same order as
the coupling energy between agents. This will be investigated
in more detail in a forthcoming study.

FIG. 7. The dependence of the average contribution 〈A〉 on agent
parameters in a group of identical agents. The ensemble average was
determined over 10 000 runs. In each panel, the dotted curve is for
(m, γ ) = (10, 1).

IV. FITTING TO EXPERIMENTAL DATA

Let us now turn to fitting simulated game trajectories to
the data obtained from experiments [17]. The data set in-
cludes full game trajectories of four-player games for ten
rounds. The data spans over 15 different cities across the
world. We fit our model agent to the actual players in the
game. Note that all agent actions are correlated through
their transition functions. Therefore we need to perform the
fits on the whole group, rather than fitting individual play-
ers sequentially. This means we will have to fit the four
quadruples (Q( f̄−k,t | f̄t−1), Kk, mk, γk ), with k ∈ 1, 2, 3, 4 (16
parameters), to 40 data points (four player contributions over
ten rounds). This appears as rather sparse data, in particular as
the data generated in simulations have a strong random con-
tribution. We therefore have to seek some meaningful ways to
reduce parameter space.

First, we fix some of the parameter values by adopt-
ing all assumptions from Sec. III A. Further suggestions
emerge when fitting the eight parameters (Kk, mk ), with k ∈
{1, 2, 3, 4}, to experimental group trajectories. This yields a
two-dimensional histogram over the (K, m)-plane, which is
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FIG. 8. Joint distributions of K and m for Melbourne (top) and
Boston (bottom). There seems to be a clear preference for K ≈ 2.5.

shown for two cities in Fig. 8, assuming γ = 1. While fitted
values for m are scattered widely, there is a preference for
K ≈ 2.5 for both cities. This is in line with the susceptibility
peak we identified in Fig. 7, where agents have access to a
maximum range of game states. Hence we henceforth assume
K = 2.5 for all agents in the fitting procedures. We further-
more assume that all the agents in a group have the same γ .
We also choose the initial condition f̄0 to be the same as that
of the actual players, therefore effectively fitting only nine
rounds. As a result, to each group from the experimental data
we fit the quintuple (γ , m1, m2, m3, m4).

We minimize the mean-squared deviation of the ensemble-
averaged simulated trajectory from the experimental game
trajectory. The quintuple mentioned above was numerically
found using the Simulated Annealing algorithm in Scipy [37].
The optimization problem for the fitting procedure can be
written as

min
(γ ,m1,...,m4 )

10∑
t=2

4∑
k=1

(
f obs
k,t − 〈

f sim
k,t

〉
(γ ,m1,...,m4 )

)2
, (11)

where the f obs
k,t is the observed (from data) contribution of the

kth agent in round t and f sim
k,t is the corresponding contribution

FIG. 9. Two trajectories simulated under identical conditions,
with parameters obtained from fitting the group trajectory displayed
in Fig. 1(a) (data from a Athens group). The same group of agents
yields a different trajectory each time the simulation is run, due to the
inherent randomness of the model. The fitting procedure minimizes
the deviations of the average contribution at each round, as well as
of the variance of these contributions from the observed variance of
player contributions.

from the simulated agent. Furthermore, 〈·〉(γ ,m1,...,m4 ) denotes
the average over multiple simulation runs of the group defined
by the parameters (γ , m1, . . . , m4).

The resulting parameter set found by fitting to a single
group can be used to generate individual game trajectories
of the so obtained group of agents, for comparison with the
experimental trajectory. Figure 9 shows two examples from
the agent group obtained by fitting to the trajectory from an
Athens group, which we displayed in Fig. 1(a).

V. DISCUSSION

In Fig. 10 we compare the simulated city averages with the
actual city averages. The error bars represent the city-wide
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(a) Athens (b) Bonn (c) Boston

(d) Chengdu (e) Copenhagen (f) Istanbul

(g) Melbourne (h) Minsk (i) Muscat

(j) Nottingham (k) Riyadh (l) Samara

(m) Seoul (n) St. Gallen (o) Zurich

FIG. 10. Actual and simulated city-averaged contributions. The error bars indicate the variance of contributions.

standard deviation of contributions in that round for both the
simulated city and the actual data. The simulated city averages
were evaluated by averaging over multiple simulation runs of
all the groups in the city while keeping the agent parameters
to be the estimated parameters from the fits. Our model not

only accounts for the average contributions and their charac-
teristic decline, but also for the variability of contributions.
The slight underestimation of the variance can be attributed
to the simplifying assumptions we have made in assigning
the same γ to all the players within a group, and setting
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FIG. 11. Coupling in A vs coupling in m as obtained from the
fitted simulations. The gray bar represents the data from Fig. 1(b).

K = 2.5 for all players in general. We see that even though
we have limited our model severely in its scope, we are able
to model the player behavior quite effectively. Note that the
difference between the simulations and the data are much
smaller than the variances of contributions throughout the data
sets. Hence we find that γ and the individual values of m are
sufficient as parameters for obtaining a very good agreement
with experimental data for each city, although both the slope
of the decline and the average contribution varies significantly.
For the sake of completeness at this point, we show the dis-
tributions obtained for m and γ in the Appendix (see Fig. 12)
for each city.

A. Game-induced interagent coupling

Let us now turn to the coupling of players within a group,
as observed from the data in Fig. 1(b). We can quantify this
coupling by taking the ratio of intergroup variance [ordinate
in Fig. 1(b] to intragroup variance [abscissa in Fig. 1(b)].
Specifically, for 〈A〉 and m, we write

Cm = var{m|intergroup}
〈var{mk|intragroup}〉l

(12)

and

CA = var{〈A〉|intergroup}
〈var{〈Ak〉|intragroup}〉l

, (13)

respectively, where “var” is the variance and the index l runs
through all groups of a city.

Results for these couplings as obtained by fitting to the
experimental game trajectories are presented in Fig. 11, where
each data point corresponds to one city. The gray bar rep-
resents the data from Fig. 1(b), where CA is found to range
from 1.25 to 2.7. As m represents the preference inherent to
a single player, the bar is placed at Cm = 1. This corresponds
to the fact that players had been chosen randomly, such that
the intergroup variance of personal preferences must a priori
be equal to the intragroup variance, up to some statistical
fluctuations which we indicate by the fuzzy boundaries of the
gray bar.

The values obtained for CA from the fitted simulations are
found in the same range as that indicated by the gray bar.
This is expected as we have fitted the contributions to those
of the experiments. However, we see that most of the data
points are well above the first diagonal, which shows that
the individual mk are less strongly coupled than the average
individual contributions, 〈Ak〉. There is some coupling effect
on the m since the fitting algorithm cannot distinguish to what
extent a player contributes due to her own preference or due
to entrainment by her fellow players. The offset above the first
diagonal, however, clearly shows that the coupling effect is
present among the model agents. This is another manifestation
of the same phenomenon as demonstrated in Fig. 6.

B. Learning vs bounded rational foresight

While payoff-based learning has been suggested as the ex-
planation of the commonly declining contributions in a PGG
[15,16], we have shown that bounded rational foresight, as
reflected by the model agent used in the present work, can
perfectly well serve as an explanation of this phenomenon.
Moreover, it is capable of accounting for the substantial in-
game variance of contributions which is observed in real
games.

Note that Fig. 10 shows that both the average contribution
and the slope of its decline vary substantially among cities
investigated. Our model suggests that this can be attributed
to different human preference parameters, which are indeed
well known to vary among different cultures. It is not straight-
forward to see why (or at least it is not known that) the
parameters of payoff-based learning should vary in a similarly
pronounced manner. This would be a necessary conclusion if
one wanted to insist on payoff-based learning explaining all
salient features of the data displayed in Fig. 10.

VI. CONCLUSIONS AND OUTLOOK

We have modeled the PGG game as an Markov decision
process with bounded rational agents based on a path integral
formulation of reward maximization, without invoking any
learning mechanism. We found that at least in short games, for
which experimental data are available, our bounded rational
agent is able to. account for human playing behavior in PGG
(cf. Fig. 10).

One may argue that the bound on optimization in the form
of relative entropy [Eq. (9)] is arbitrary for modeling human
agents. In order to come up with a more “physical” bound on
the computational abilities of humans, one would need to have
a model of how humans perform computations through their
neural network and evaluate the thermodynamic work done in
order to perform those computations. Then from the energy
limits of human agents we might be able to quantitatively
derive an appropriate value for K . This is, however, well
beyond what is currently known about computations in the
brain.

Our results suggest that the most important parame-
ters determining the playing behavior for our agents are m
and γ . The question whether bounded rational foresight or
payoff-based learning dominates human decision making in
PGG-type situations must be considered open. Both mech-
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(a) Athens (b) Bonn (c) Boston

(d) Chengdu (e) Copenhagen (f) Istanbul

(g) Melbourne (h) Minsk (i) Muscat

(j) Nottingham (k) Riyadh (l) Samara

(m) Seoul (n) St. Gallen (o) Zurich

FIG. 12. Marginal distributions of γ and m as obtained by performing the fits for various cities.

anisms may play a role; actually, it would be surprising if
one would be completely irrelevant. The relative importance
of these mechanisms is a challenge. One might, for instance,
perform PGG with players the preference parameters of which

have been determined beforehand. Correlating the results with
the parameters m, γ , and ξ± may then yield insight into the
importance of bounded rational foresight in the respective
game.
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APPENDIX: MARGINAL DISTRIBUTIONS OF γ AND m
FOR ALL THE CITIES

For the sake of completion, we provide the marginal distri-
butions of γ and m for the various cities.
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A previously developed agent model, based on bounded rational planning, is extended by introducing learning,
with bounds on the memory of the agents. The exclusive impact of learning, especially in longer games, is
investigated. Based on our results, we provide testable predictions for experiments on repeated public goods
games (PGG) with synchronized actions. We observe that noise in player contributions can have a positive
impact of group cooperation in PGG. We theoretically explain the experimental results on the impact of group
size as well as mean per capita return (MPCR) on cooperation.
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I. INTRODUCTION

With the looming climate crisis, limited planetary re-
sources, and the associated challenges to human societies,
predicting human collective behavior in resource allocation is
a problem of increasing importance [1–3]. Essential for such
predictions is the development of models of human economic
interactions which are both reliable and suitable for modeling
entire societies.

A classical paradigm for achieving such modeling is game
theory. It has lately grown into a mature field of research,
with extensions toward collective behavior having emerged
in recent years [4–9]. The capability of predicting human
behavior in controlled environments such as games allows
not only to test models of intelligence but also potentially
allows policy makers to make more robust decisions [10,11] in
situations of societal relevance. A frequently studied example
is the so-called public goods game (PGG), in which players
contribute resources to a common (public) pot, from which
disbursements are paid back to all players equally [7,12–14].

However, human behavior in games lies in a much smaller
dimensional space (game trajectories), than the physical sys-
tem (agent + environment) that generates the behavior. This
then leads to creation of a large number of ad-hoc models
which account for human behavior in very limited settings
only [15]. Such approaches may provide some predictive
power in very specific scenarios but are likely to fail in
predicting human behavior in different environments. Addi-
tionally, they do not have much potential in providing insight
into the mechanisms of intelligent behavior.
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Creative Commons Attribution 4.0 International license. Further
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In order to circumvent these problems, one needs to de-
velop and systematically study models that are applicable in
more general environments, with parameters which can be
related to measurable human behavioral preferences [2]. To
this end, we have demonstrated [16] that a general bounded
rational planning agent is able to reproduce human behavior
in public goods games (PGG). In particular, this was possible
without needing to invoke any mechanisms of learning. This
is not to say that humans do not learn when playing iterative
PGG for 10 rounds. All this communicates is that learning is
not necessary to reproduce human behavior in these games.
Therefore as a next natural step we introduce learning in our
model to see for what behaviors is it necessary to invoke
mechanisms of learning. In other words, in this article we wish
to observe the exclusive impact of learning on bounded ratio-
nal agents, which couldn’t have been generated by bounded
rational agency alone. As in our previous work [16], we
base our model on the specific case of playing PGG and
compare the behavior of agents to known experimental results.
Before we proceed with developing our model, we briefly
describe the well known PGG.

The PGG is played with N players over a total of known
T periods. In each period the players are given a fixed integer
number of tokens τ , which they can anonymously invest into
a public pot. Following a widely followed convention in the
field [16,17], we use τ = 20 throughout this article. In any pe-
riod t � T if the contribution of the kth player is fk,t ∈ [0, τ ]
then the immediate reward of the player in that period is given
by

Gk,t = α(N − 1)μk,t − (1 − α) fk,t , (1)

where α < 1 is multiplying factor which is known to all the

players and μk,t =
∑

i �=k fi,t

N−1 is the average contribution of other
players. The total gain for the kth player can then be defined
as Gk = ∑T

t Gk,t .
It has been argued in artificial general intelligence (AGI)

research that a minimal model of an intelligent agent em-
bedded in an arbitrary environment (for instance, playing
a game) has two main ingredients, learning and planning
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(AIXI [18]). At any point of time, an intelligent agent looks
at the past trajectory of the environment (past game states
and actions) to learn about the dynamics of the environment
(modeling other players in the game). This knowledge of
the dynamics is then used to simulate future trajectories of
the environment (game), in order to choose the action which
leads to the best trajectory, i.e., the trajectory maximizing a
previously defined utility function. That is to say, learning
is a mapping from observed behavior to mental models and
planning is a mapping from mental models to actions. The
readers should note that the notion of learning put forward
is distinct from ”social learning” as is common in evolution-
ary game theory [19,20], where the agents learn from other
agents by comparing their strategy’s fitness with that of oth-
ers in the population and then imitating the better strategy
with a finite probability. In our approach the agents learn
of the other player behavior by creating a model of other
agents.

Also note that this distinction between learning and plan-
ning is not commonly made in most agent based models.
Instead, learning is conceived to refer to figuring out which
action leads to better immediate rewards, with the agent being
oblivious to other agents (i.e., has no models of them) [12,21],
i.e., to say that in these works learning is a mapping directly
from observed behavior to actions. In contrast, by making a
clear distinction between learning and planning, we can study,
and potentially control, the distinct qualitative behaviors intro-
duced by either of them.

The main problem in implementing AIXI to predict hu-
man behavior in games is that it is not computable [22].
Nonetheless, the idealized model can still be viewed as a
guiding principle to generate models of human behavior
in slightly less general environments by introducing spe-
cific approximations, whereby trading off the generality with
computability of the model. Therefore, in this article our ap-
proach would be to introduce learning to our bounded rational
agent model [16], while at the same time making use of
context specific approximations that allow our model to be
computable.

II. PLANNING AND LEARNING WITH BOUNDS

A. The planning mechanism

As aforementioned the planning mechanism is a mapping
from mental models to actions (in this case, a policy). There-
fore in this subsection we assume a mental model of the agent
(given by the transition function) and seek to find the optimal
policy of the agent. We describe the planning mechanism from
the perspective of the kth agent and this extends to all k.
We model the agent’s decision making problem as a Markov
decision process (MDP), with the transition function Q given
by

Q(μk,t |μk,t−1, fk,t−1) = T G(μk,t ; m, σ ). (2)

Here, T G is the truncated Gaussian distribution on the interval
[0, τ ] (τ = 20), fk,t is the contribution of the kth agent in

round t , and μk,t =
∑

i �=k fi,t

N−1 is the average contribution of other
players in round t . m is the peak position of the distribution

given by

m =
{

μk,t−1 + ξ+|μk,t−1 − fk,t−1|, μk,t−1 − fk,t−1 < 0

μk,t−1 − ξ−|μk,t−1 − fk,t−1|, μk,t−1 − fk,t−1 > 0.

(3)

As the kth agent can influence others actions through its
contributions alone (because players play anonymously and
do not interact otherwise), the parameters ξ+ and ξ− describe
to which degree the agent believes to be able to encourage or
discourage other agents to contribute. In that sense, ξ± is a
model the agent has of its environment (i.e., the other agents)
and represents its transition function. In so far as planning
is concerned, we do not bother about how the agent comes
up with a particular model (i.e., particular values of ξ±), but
rather what decisions (policy) does the agent come up with,
given a model of its environment.

The bounded rational decision making problem in period
t � T as defined in Ref. [16] is described by a Bellman
equation given by

V ∗
t = max

P( f T
t )

∑
fk,t ,μk,t

P( fk,t | f̄t−1)

[
Q · Gk,t ( fk,t , μk,t )

− 1

β
log

P( fk,t | f̄t−1)

P0( fk,t | f̄t−1)
+ γ Q · Vt+1

]
, (4)

where ∗ is to indicate a maximized quantity, f̄t = ( f1,t . . . fN,t )
is the state of the game in period t , and β is a
Lagrange parameter along with an additional constraint
1
β

(DKL(P∗( fk,t | f̄t−1)||P0( fk,t | f̄t−1)) − K ) = 0, with K the
computational capability of the agent. Intuitively speaking,
K represents the maximum deviation (in policy space), from
the prior policy, that the agent can afford in search of a better
policy. For instance, setting K = 0 would mean that P∗ = P0,
thereby the agent is maximally bounded and is going to play
only according to its prior strategy P0. On the other hand,
if K = ∞, then one can see from the above constraint that
1
β

= 0, and hence Eq. (4) reduces to the completely rational
case. All intermediate values of K span policies between the
completely rational policy and the prior policy. Additionally,
we consider another parameter γ ∈ [0, 1] appearing in Eq. (4).
It represents a foresight which exponentially “decays” into
the future [16]. The solution of the optimization problem in
Eq. (4) then provides us with the (bounded optimal) policy
P∗( f T

t ) = ∏T
t ′=t P∗( fk,t ′ | f̄t ′−1) of the agent, which is the out-

put of the planning mechanism.

B. The learning mechanism

1. A subspace of all partial functions

In AIXI [18], learning for an agent from past data happens
through Solomonoff induction [23], which considers the space
of all partial functions [24] on {0, 1}∗ [25], i.e., the space of
all allowed “explanations” for the past trajectory. Although
this form of learning guarantees convergence to the true dis-
tribution, it is not computable as a consequence of the halting
problem [26]. In practice however, one might want to reduce
the search space from the space of all partial functions on
{0, 1}∗ to a smaller space.
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In AIXItl [22] it is proposed to consider only programs
up to length l and computation time t . AIXItl does this by
running a brute force search over all the programs. Although
this brute force search is computable, it still takes enormous
computing power to compute. While this is not a problem for
AIXItl, which is focused on describing intelligence in an ar-
bitrary environment, it seems unreasonable to model humans
as brute force searchers which take enormous computing time
in a specific environment such as PGG as they have context
specific pre-play awareness of the game [17].

Another common way to reduce the search space is by
creating a model class and then performing regression or max-
imum likelihood estimate to find the best model in the model
class. The latter approach is not only easier to implement but
also allows the opportunity to introduce easily interpretable
parameters in the model as compared to AIXItl. Therefore, it
is the latter approach that we will take in this article.

As we intend to model human behavior in PGG, we exploit
this context specificity and consider the model class intro-
duced in Ref. [16], as it has been successful in explaining
observed human behavior [17]. Therefore we only consider
Markovian transition functions, given by truncated Gaussian
distributions, parameterized via ξ±.

2. The model

In the learning problem we are concerned with the agent
learning the transition function Q from its past experiences
in the game. As the transition function is parameterized by
ξ±, learning mechanism is then concerned with finding the ξ±
values that are the most representative of the past experiences,
i.e., those values of ξ± that have the highest likelihood of
generating the past game trajectory.

Additionally, quite like the exponentially decaying fore-
sight given by γ , we also introduce another parameter γp ∈
[0, 1], which represents a hindsight decaying exponentially
into the past (equivalently called “recency-bias” in Ref. [27])
of the agent. It signifies that when an agent evaluates the
behavior of its environment, recent experiences guide its
model more than earlier experiences. This is then achieved
by weighting the maximum likelihood estimation with γp as
below:

ξ ∗
±(t ) = arg maxξ±

[ 2∑
i=t−1

γ t−i
p log Q(μi|μi−1, fk,i−1)

− (1 − γp)(ξ±(t ) − ξ±(t − 1))2

]
, (5)

where the last summand captures the tendency of the agent to
not update its model. Therefore γp = 0 would correspond to
not updating the model given a past trajectory (no learning)
and γp = 1 would correspond to learning from arbitrarily far
back in the past.

C. An updated agent model

We now combine the planning and the learning mecha-
nism into one agent which is described now by the tuple
(m, K, γ , γp). In every period 2 < t � T the agent:

(i) plans: by considering the game state at t − 1, making
use of the current model (ξ± (t )) and solving Eq. (4) and
evaluating the policy P( f T

t ),
(ii) acts: by sampling a bet from the evaluated policy, and
(iii) learns: after observing the state of the game in the

current period t and finding the ξ±(t ) by making use of Eq. (5).
In period t = 1 the bets of the agent are sampled from its prior
distribution P0( fk,t ) and the agent is provided with a model
ξ+, ξ−(0) = (0.1, 0.5). In period t = 2 there is certainly plan-
ning and acting based on the model, but there is no learning,
as the agent has not yet observed a transition.

III. BEHAVIOR SPACE OF THE MODEL

With the model being defined, in this section we explore
the behavior space of the agent by considering two types of se-
tups. Namely, considering contribution dynamics in groups of
identical agents and groups of randomly chosen agents. In the
former setup the agent parameters in a game are identical to
each other. This setup is chosen to demonstrate the qualitative
effects of the agent parameters on average contributions. In the
latter setup the agent parameters are chosen randomly from
a uniform distribution over the parameter space. This setup
is chosen to observe the behavior of agents in a well-mixed
population.

To the end of understanding the exclusive aspects of the
dynamics introduced by learning and its interplay with plan-
ning, we only consider the computational bound K and the
hindsight γp as the parameters of importance. For simplicity,
the other parameters, namely, m and γ are fixed throughout
the rest of the paper to 10 and 0.9 respectively [16,28]. Addi-
tionally throughout this section we consider games of length
T = 100 and groups of size N = 4.

A. Groups of identical agents

In this subsection we explore cooperation in groups of
identical agents playing a PGG for different values of K, γp.
In Fig. 1 we show the average contribution 〈A〉 as a function
γp for various values of K , where A =

∑
k

∑
t fk,t

NT and the 〈·〉 is
to denote an ensemble average over multiple simulation runs
(1350 simulation runs for each datum).

Quite expectedly in groups of agents with K = 0, 〈A〉 is
not impacted by learning. For K > 0 we see that introduction
of learning monotonically decreases the contribution levels in
groups of identical agents. Additionally, the rates at which
〈A〉 decreases with respect to γp depend on the value of K .
Therefore we perform exponential fits on 〈A〉 with respect to
γp in the small memory regime given by the interval [0,0.2].
I.e., we consider the ansatz 〈A〉 = 〈A〉0ed (K )γp and find the
coefficient d (K ) for different values of K . In the inset we
plot d (K ) as function K and see the decay rate is linearly
proportional to K . Here 〈A〉0 is the average group contribution
without learning (i.e., γp = 0).

d (K ) tells us the susceptibility of agents with a given
computational budget K to learning. Note that the higher the
value of K the faster the rate at which the learning mechanism
bring you towards defection, which corresponds to the Nash
equilibrium of the PGG. This observation highlights that ra-
tionality alone is not sufficient to produce Nash equilibrium
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FIG. 1. Average contributions 〈A〉 as a function of learning
strength γp for various values of K . Inset depicts the dependence of
the decay rate of 〈A〉 with respect to K .

behavior. A rational agent also needs to develop predictive
models of other rational agents to play the Nash equilibrium.
This is reminiscent of the standard knowledge that rationality
and mutual knowledge of rationality lead to Nash equilibrium
[29] in games of more than two players. Our results in Figs. 1
and 2 then seem to indicate that through learning the behavior
of other agents, some sort of a mutual knowledge of rationality
is developed in a group of all rational agents.

Finally, in Fig. 2 one can see that the impact of K on 〈A〉
differs qualitatively for different values of γp. For lower γp,
〈A〉 increases with K and decreases for higher γp. This further
highlights the exclusive impact that learning has on bounded
rational agents. In so far as how such a qualitative difference is
brought about in our model is concerned, we refer the reader
to Sec. IV B 1, where the issue is explored in more detail.

FIG. 2. Average contributions 〈A〉 as a function of computational
budget K for various values of γp.

FIG. 3. Conditional expected gains 〈G|K, γp〉 (colorbar) and con-
tours (solid grey curves) at 〈G|K, γp〉 = 3, 3.5, 4, 4.5, 4.8.

B. Groups of random agents

In this section we consider groups of agents where the
K, γp are i.i.d. (independent and identically distributed) with
the uniform distribution P(K, γp) = U over the domain D =
[0, 5] × [0, 1]. We are interested in the question: “In a random
group of agents playing PGG, which agents gain the most?”

In order to do that, we create 5 × 105 groups and
we consider the conditional expected reward 〈G|K, γp〉
defined as

〈G|K, γp〉 =
∫

D
GP(G|K, γp)dG. (6)

The gain of a particular agent is defined in Sec I. The con-
ditional expected reward is as shown in Fig. 3. Much in line
with our intuition, the conditional gain is maximized by higher
values of K, γp, i.e., agents with higher computational budget
and lesser recency bias earn the most reward when playing
against a group of randomly chosen agents.

It is interesting to note that the data in Fig. 3 suggest
that there is a trade-off between learning (γp) and planning
(K). This shows up as a negative slope of the contours and
a strong bend towards low γp (solid grey curves). Hence,
in order to maintain a constant amount of gain, one can
trade off the planning computational budget (K) with the
learning memory (γp). Similar behavior has been observed
before [30], although a different planning and learning algo-
rithm was used. The authors defined a total computational
budget that is to be allocated to learning and planning and
find that optimal rewards are achieved at intermediate val-
ues of budget allocation toward planning (and consequently
learning).

One can view γp also as a measure of computational re-
sources allocated towards learning, as higher values of γp

require the agent to have more memory and also perform
a computationally intensive optimization over the ξ± space.
Therefore, one can view the total computational budget of the
agent as some linear combination of K and γp. In Fig. 3 this
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FIG. 4. Average contributions as a function of group size N and
the variance (errorbars) for constant α. Inset shows P(rξ < 0.1) and
MPCR α as a function of group size N .

would be represented by straight lines with negative slope.
Due to the bend in the contour lines of 〈G|K, γp〉, it can be
anticipated that there is a maximum gain for some interme-
diate values of γp and K . This further indicates a potential
universality in the trade-off between learning and planning
and must be a direction for future research in so far as ob-
serving it in human players is concerned.

IV. COOPERATION AMONGST LEARNING
AND PLANNING AGENTS

In this section we focus on certain computational experi-
ments which are relevant to experimentally observed behavior
in human players playing PGG. In Sec. IV A we observe the
impact of group size on cooperation and in Sec. IV B we
study how noise in game trajectories might impact the average
contributions.

A. Impact of group size on cooperation

Experiments on PGG reveal different kinds of impacts that
group size has on cooperation. Where some studies observe
that group size positively impacts cooperation [31], some
claim that cooperation is harder in larger groups whereas oth-
ers claim a nonmonotonic impact of group size on cooperation
[32,33].

In order to investigate the effect of group size on coopera-
tion, we run simulations of randomly chosen bounded rational
agents ( i.e., K, γp are again i.i.d. with the uniform distribution
as in Sec. III B ), playing PGG for T = 100 periods [34].
Figures 4 and 5 show the ensemble average contribution
〈A〉 as a function of group size. In Fig. 4 we keep α = 0.4
as a constant and we see that the cooperation is impacted
nonmonotonically by group size. Cooperation peaks for in-
termediately sized groups. However, as can be seen from the
size of the error bars, this is only the mean behavior of the
ensemble, and the behavior of an individual group could vary
substantially from the mean.

FIG. 5. Average contributions as a function of group size N and
the variance (errorbars) for α ∼ 1/N . Inset shows P(rξ < 0.1) and
MPCR α as a function of group size N .

In order to explore reasons why cooperation may behave
nonmonotonically, we first look at the values of ξ± for groups
of each size, for all time. More specifically we look at the
cumulative probability of having small values of rξ (taken
to be less than 0.1 here), given by P(rξ < 0.1) (see inset
Fig. 4). Here rξ = √

ξ 2
+ + ξ 2

−. We observe that 〈rξ 〉 monoton-
ically decreases with group size. Recall that ξ± is the degree
to which we believe we can encourage or discourage other
agents in their contributions. Lower values of rξ indicates that
the agents are decoupled and this seems to be natural for larger
groups, as an individual agent’s action tends to have lesser
impact on the group behavior as the group size increases. For
a detailed calculation see Appendix A 1.

If this were the only process at play, one would be lead to
believe that contributions monotonically decrease with group
size. But there is a competing tendency. As we increase group
size, cooperation is rewarded more steeply as the contributions
in the pot are multiplied by αN [see Eq. (1)]. This increases
linearly with N for constant α (see inset Fig. 4). Therefore
the increase in αN with group size leads to cooperation be-
ing more beneficial in larger groups. Combining both these
tendencies may lead to cooperation being maximized for in-
termediate sized groups.

To further verify this explanation we run simulations where
we have α ∝ 1

N such that αN = const . (see Fig. 5). Now as
expected, cooperation monotonically falls with group size N .
This then seems to indicate that cooperation as a function of
group size is influenced by two factors: the degree of control
an agent thinks it has on the group contributions and the
utility of cooperation. While the latter can be modulated by
a parameter of the game (α) the former is a consequence of
agent parameters. For instance, agents with smaller γp tend to
not update their models as much, therefore they assume that
they have similar control over larger groups as well. This then
leads 〈A〉 to become monotonically increasing with group size
(see Appendix A 3).
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FIG. 6. Average contribution of groups of identical agents with
K = 3. Inset shows the corresponding values of 〈l〉 and f as a
function of γp.

B. Noise induced cooperation

1. Anomalous behavior of K = 3 agents

In Fig. 1 what is also interesting to note is that for bounded
rational agents with K ≈ 3, intermediate values of γp lead
to an increase in cooperation, whereas for lower and higher
values of K increasing γp beyond ≈0.2 is inconsequential to
the average contribution. In the following we will explore why
this is the case.

For agents that learn and plan, the contribution is not only
impacted by their capability of choosing the best action (K),
but also by their model of other agents (ξ±). Certain models
encourage the agent to contribute more than other models.
More specifically, for the agent to contribute more than the
group average contribution, one needs ξ+, ξ− > 0 (see Ap-
pendix A 2).

〈A〉 then correlates with the occupation probability of the
said quadrant of the ξ± space (see Fig. 6). This can be defined
as f =

∑
t 〈It 〉
T where It is the indicator function given by

It =
{

1, ξ±(t ) � 0

0, else.
(7)

For γp = 0 we start and stay in the aforementioned quad-
rant as the agent’s model is not updated [Eq. (5)], as γp is
increased the agent starts performing a random walk in the
model space, with increasing mean step length l , thereby
decreasing the occupation probability of the said quadrant and
consequently decreasing the contribution (see Fig. 6). Here
the mean step length l is defined as

l = 1

T − 1

T∑
t=2

√
(ξ(t ) − ξ(t − 1))2, (8)

where ξ(t ) = (ξ+(t ), ξ−(t )) and the corresponding ensemble
average quantity is given by 〈l〉.

Upon further increasing γp and consequently the average
step length 〈l〉, occupation probability of the said quadrant

FIG. 7. Average contribution of groups of three randomly chosen
agents and one noisy agent with variance of contributions given by
σ . Inset shows the corresponding values of 〈l〉 and f as a function
of σ .

increases, similar to the manner in which increasing temper-
ature leads to an increase in the probability density in the
high potential energy regions. Finally when γp is close to 1,
〈l〉 reduces, because as the game length increases, every new
observation has a decreasing impact on the ξ± value as ob-
tained from Eq. (5). This then further reduces the occupation
probability and also the contribution 〈A〉 as a consequence.

2. Adding a noisy agent to a group

Given the arguments above, it would be natural to expect
that noise (i.e., greater 〈l〉) can enhance cooperation among
bounded rational agents playing PGG. Apart from keeping
γp in the intermediate region, 〈l〉 can be increased by adding
a noisy agent to the group and increasing the variance of
contributions of the noisy agent.

Hence in order to further explore the hypothesis above, we
consider to add one noisy agent with K = 0, a fixed mean
of contribution m = 10 and varying variances σ of the prior
distribution [P0( fk,t )], to a group of three other randomly
chosen agents, as done in Sec. III B. We then observe how the
group average contributions 〈A〉 are impacted as we increase
σ .

In Fig. 7 one can see that as the variance of the con-
tributions of the noisy player σ is increased, the average
contribution of the group increases. In the inset we also see
the corresponding increase in 〈l〉 and also f . Thereby adding
weight to the claim that cooperation can be induced by in-
creasing noise in the game behavior. Whether this behavior
is also observed in human players playing PGG, is yet to be
tested experimentally.

V. CONCLUSIONS

We have demonstrated the exclusive impact of learning
on the behavior of bounded rational agents in PGG. We
explore the impact of noise on cooperation. Specifically,
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we find that the introduction of an agent that contributes
in a noisy manner (i.e., with finite variance) to the pub-
lic pot positively impacts the average contribution. It is
found that this effect systematically increases as the vari-
ance is increased. This prediction remains to be tested via
experiments.

We also provide a theoretical explanation to the observed
impact of group size on cooperation, specifically we show
that the shape of the curve of average contributions 〈A〉 vs
group size N can be modulated by varying the MPCR and also
the agent parameters. More specifically, there are qualitative
differences in the contribution curves depending on whether
the agents are learning or not. This provides us a quantifiable
way of predicting cooperation in PGGs with varying number
of players.

Our results not only justify the bounded rational model of
human behavior but also show how rather simple assumptions
on human behavior can lead to a large variety of behaviors that
are also observed in experiments. This provides an alternative
to the ad hoc cellular automata (CA) type models that are
commonly found in literature. One criticism of this approach
could be that it is rather cumbersome as opposed to CA based
models. If there is any validity to the criticism then we suggest
that this model be treated as a more fine-grained model of
player behavior in games and one should then systematically
find more coarse-grained CA type models which are effective
descriptors of some coarse-grained observables.

While the presented model could be construed as a fine-
grained model in comparison to CA based models, it is still an
effective description of human decision making, as opposed to
a mechanistic one. That is to say, our model makes statements
such as “...humans behave in PGG as if they were solving
Eqs. (4) and (5)...”, as compared to a mechanistic model (such
as DDM [35]) which makes statements such as “...humans
play by enacting this procedure/algorithm...”. We therefore
do not make claims about how humans actually come up
with their decisions. To check the veracity of either type of
model of human decision making, it must first lend itself to
experimental tests, as we are aiming at in the present study.
Only then can a predictive simulation of human economic
interactions, as alluded to in the introduction, be tackled suc-
cessfully.
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APPENDIX: EFFECT OF ξ± ON COOPERATION

1. The limit of rξ → 0

In the limit rξ → 0 we can see that the transition function
becomes independent of player contribution fk,t [see from
Eq. (3) limrξ →0 m = μk,t−1]. This essentially (from the per-
spective of the kth agent) decouples the agent from other
players. We can see this effect more precisely in Eq. (4). For
simplicity we ignore the bounded rationality term and con-
sider that T = t + 1. Upon substituting for the value function

FIG. 8. Average contributions as a function of group size N
and the variance (errorbars) for constant α and γp = 0. Inset shows
P(rξ < 0.1) and MPCR α as a function of group size N .

and expanding we have

V ∗
t = max

P( f t+1
t )

∑
f̄t

Gk,t

[
[PQ]t + γ [PQ]t

∑
f̄t+1

Gk,t+1[PQ]t+1

]
,

(A1)

where [PQ]t is a short-hand notation for P( fk,t )Q(μk,t | f̄t−1).
We can perform the maximization over P( fk,t+1) directly over
the second summand as follows

max
P( fk,t+1 )

∑
f̄t+1

α(N − 1)μt+1[PQ]t+1 −
∑
f̄t+1

(1 − α) fk,t+1[PQ]t+1,

(A2)

which further simplifies to

max
P( fk,t+1 )

∑
μk,t+1

α(N − 1)μt+1Qt+1 −
∑
fk,t+1

(1 − α) fk,t+1Pt+1.

(A3)

The first summand has no fk,t+1 dependence, and the sec-
ond summand can be seen to be maximized at P( fk,t+1) =
δ( fk,t+1) (because α < 1) and therefore it vanishes upon max-
imization. Also, the first summand has no fk,t dependence,
therefore it essentially reduces to α(N − 1)〈μk,t+1|μk,t 〉. Sub-
stituting this in Eq. (A1) we get

V ∗
t = max

P( fk,t )

∑
f̄t

Gk,t [PQ]t + γ [PQ]t 〈μk,t+1|μk,t 〉α(N − 1).

(A4)

The second summand in this equation when summed over
fk,t gives a constant γ Qt 〈μk,t+1|μk,t 〉α(N − 1) independent
of P( fk,t ) and therefore it doesn’t participate in the maximiza-
tion. It then remains trivial to see that maximizing over P( fk,t )
gives P( fk,t ) = δ( fk,t ). Therefore, it was optimal to defect in
both the periods.

For T > t + 1 one can similarly see that at all periods the
conditional expected contribution of other players will not de-
pend on the player’s play ( fk,t ) and therefore the term will not
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participate in the maximization. Also, upon the introduction of
the bounded rationality term for K ≈ 0, the maximization will
result in distributions similar to the prior and as K increases
the mean contributions decrease, until at a critical threshold
of computational budget Kcrit where DKL(δ( fk,t )||P0( fk,t )) =
Kcrit, it again resembles the solution for fully rational agents
that we see above.

2. The cooperation quadrant

When rξ is not close to 0, the second summand in Eq. (A4)
would be conditioned on fk,t as well, i.e., it would become
γ [PQ]t 〈μk,t+1|μk,t , fk,t 〉α(N − 1). In order for the optimal
action to not be defection it would be necessary (but not

sufficient) that ∂〈μk,t+1|μk,t , fk,t 〉
∂ fk,t

> 0. From Eq. (3) one can see
that this is the case when ξ± > 0. Therefore when ξ± > 0 the
agents contribute the most.

3. Constant rξ and changing N

In Fig. 8 we show average contributions as a function of
number of players in a group. Where agents in a group are
described γp = 0 and K chosen uniformly randomly on the
domain [0,5]. P(rξ < 0.1) = 0 for all values of N as can be
seen in the inset. Note that as P(rξ < 0.1) is constant w.r.t. N
and αN is increasing linearly in N the average contributions
increase with group size.
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Public goods games between model agents with bounded rationality and a simple learning rule,
which have been previously shown to represent experimentally observed human playing behaviour,
are studied by direct simulation on various lattices with different network topology. Despite strong
coupling between playing groups, we find that average investments do not significantly depend upon
network topology, but are determined solely by immediate local network environment. Furthermore,
the dependence of investments on characteristic agent parameters factorizes into a function of indi-
vidual cognitive budget, K, and a simple function 1/(1 + c(0)/β), where c(0) is the group centrality
and β = 12.5 for all networks investigated. Given the good agreement of agent behaviour with
available experiments, this seems to indicate that even complex societal networks of investment in
public goods may be accessible to predictive simulation with limited effort.

I. INTRODUCTION

The sustainable management of the ecological niche
of humankind on planet Earth is increasingly being rec-
ognized as a sizeable problem, attracting growing inter-
est of scientific research across disciplines [1–3]. Aside
from limited planet resources and rapidly changing cli-
mate conditions, a topic of major concern is the possi-
ble response of human societies to such stimuli [3–5]. In
order to anticipate these responses, and to potentially
advise policy makers to come up with appropriate legis-
latory precautions, a thorough understanding of the col-
lective behaviour of humans in dense societies needs to
be achieved.

Given the complexity of the behaviour even of a single
human, this may seem entirely out of reach at first glance.
However, it is well known that in systems consisting of
sufficiently many similar entities in mutual interaction,
quite precise predictions may be possible on collective
phenomena, even if little is known about the individual
entities. We can precisely predict, e.g., the critical ex-
ponents of all singular quantities of a condensed matter
system close to a phase transition solely from the number
of degrees of freedom of the order parameter and its di-
mensionality, without even knowing which molecules the
system is composed of [6]. Similar statements hold even if
none of the many constituents (i.e., molecules) are iden-
tical, as may be the case in polymers [7]. In fact, many
similarities between phase transitions and collective phe-
nomena in societies have been demonstrated [8–13]. Con-
sequently, methods of statistical physics are meanwhile
widely applied to social systems, with ever growing suc-
cess [11–14]. The main challenge, and subject of lively
debate [3–5, 11, 15–20], is to come up with model agents
which are sufficiently simple to allow for large scale sim-
ulations, and at the same time model traits of human
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interaction behaviour which are relevant for the respec-
tive study.

II. PUBLIC GOODS GAMES

A well established, and much studied, paradigm of in-
teraction of human agents in societies is the well-known
public goods game (PGG). In its standard game-theoretic
setting, the PGG is played among N players over a total
of T periods, where T is known to all players. In each
period t ≤ T , each player i is given a fixed integer num-
ber, τ , of tokens, a fraction fi,t ∈ [0, τ ] of which they can
invest anonymously into a public pot1. The immediate
reward of the ith player in that period is given by

Gi,t = α

N∑

j=1

fj,t − fi,t (1)

where α is multiplying factor which is known to all play-
ers2. This can be written as

Gi,t = α(N − 1)µi,t − (1− α)fi,t, (2)

where µi,t =
∑

k 6=i fk,t

N−1 is the average contribution of other
players. The total gain for the ith player can then be

defined as Gi =
∑T
t Gi,t.

1 τ thereby just provides a scale of coarse-graining of the in-
vestments. Following a widely followed convention in the field
[20, 21], and without loss of generality, we use τ = 20 through-
out this article.

2 It can be seen from Eq. 2 that the game has very trivial optimal
strategies for α ≥ 1 (contribute everything) or α ≤ 1

N
(con-

tribute nothing) and therefore the only ”interesting” case where
the personal and collective gains conflict and give rise to a social
dilemma is the case when 1

N
< α < 1. Outside this range, α does

not have much qualitative impact on game dynamics. Therefore
we set α = 0.4 throughout this article, which is a value commonly
found in literature.
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This game may be taken as a model of a vast number of
real situations of human interaction. In a shared house-
hold, participants fulfill chores as an investment (fi) into
a pleasant atmosphere as the common good (G), mem-
bers of a sports club invest donations (fi) for enjoying
common goods such as a well-maintained playing court
(G), members of an association invest personal commit-
ment (fi) in the common good of a thriving association
(G), and so on. A substantial fraction of societal interac-
tion can, in this paradigm, be viewed as an enormously
complex network of PGG, which interact through agents
participating in several PGG simultaneously. Judging
from the mentioned analogies to condensed matter sys-
tems, one might anticipate that the topology of this net-
work has a major impact upon the collective investment
behaviour of the agents.

Eq. 2 describes the gain for a given player playing in
one period, in one group. In a network of interacting
PGG groups, the corresponding gain becomes the sum of
gains over all groups the agent plays in. Notice that the
gains in each of these groups are independent. Therefore,
in order to find a favourable policy in a particular group,
each agent needs to keep in mind the actions of other
players in that group alone. The dynamical interaction
between groups comes about through the learning of the
agents, i.e., their gradually updating their internal model
of other player’s behaviour. We assume that each agent
bears one such model for players in general, i.e., for the
players of all groups it is playing in.

The PGG networks modeling a society are very com-
plex as compared to the networks of nearest-neighbour
interaction in a condensed matter system. In the latter,
interactions are all of one kind (or a few) and extend
over a set of spatially nearest (perhaps including next
nearest) neighbors. Coordination numbers (i.e., network
degrees) are small and homogeneous, and the topology
of the network is strictly determined by the dimensional-
ity. In contrast, the number of games agents participate
in may vary strongly, and the topology of the network
of interactions between groups, the size of which may
also vary vastly, does not need to bear any relation to a
network of proximity in a space of fixed (integer) dimen-
sions. Hence one must be prepared to find qualitative
differences to collective behaviour in condensed matter
systems when simulating complex networks of PGG, and
universality classes as in phase transitions may not hold.
As we will show, the investment behaviour of agents can
most probably be anticipated solely on the basis of rather
local network descriptors, and network topology is found
to be surprisingly irrelevant.

A. PGG agents

We employ model agents we have developed before
[20, 22], guided by progress in intelligence research
[23, 24]. While it has been claimed that reinforcement
learning is the essential ingredient of agents reproducing

experimentally observed PGG playing behaviour [18, 25],
we could show that agents with bounded rational fore-
sight with no learning capabilities at all may provide an
even better account of experimental data [20, 21]. Not
only do they quantitatively reproduce the commonly ob-
served downward trend of average investments during a
game, they are also capable of accounting for the sub-
stantial period-to-period variance of these investments
[21]. When bestowing a simple learning mechanism to
these agents, as appears plausible for long-time playing
settings, we furthermore obtained complex dependencies
of average investment upon group size [22], as had been
observed in a number of real-world settings [26, 27]. The
resulting model agent is still sufficiently simple to be used
in large scale simulations such as those needed to inves-
tigate collective behaviour in complex PGG networks.

Consequently, in the present paper we consider
bounded learning and planning agents as described be-
fore [20, 22], playing a spatially extended PGG (SPGG).
The agent model is composed of two parts - learning and
planning. Learning refers to agents observing the past
game behavior of other agents in order to make a pre-
dictive model of them, while planning refers to making
use of this model to chart out an optimal course of ac-
tion in a particular game. In the following we describe
the learning and planning mechanisms of an agent in a
single group.

B. Planning mechanism

To describe the planning mechanism, we assume that
agent i has a predictive model of other agents incorpo-
rated as a transition function,

Q(µi,t|µi,t−1, fi,t−1) = g(µi,t; p, σ). (3)

It describes the likelihood of other agents’ next action
(expressed by µi,t), given the previous state of the game
(µi,t−1, fi,t−1). g(µ; p, σ) is the truncated Gaussian dis-
tribution on the interval [0, τ ], where σ is the variance
of the distribution, which we fix to σ = 3 throughout
the article. p(µi,t−1, fi,t−1) is the peak position of the
distribution as given by

p =

{
µi,t−1 + ξi+|µi,t−1 − fi,t−1|, µi,t−1 − fi,t−1 < 0

µi,t−1 − ξi−|µi,t−1 − fi,t−1|, µi,t−1 − fi,t−1 > 0.

(4)
where ξi+ and ξi− parameterize Q. As the ith agent can
influence the actions of others solely through its contri-
butions (because players play anonymously and do not
interact otherwise), the parameters ξi+ and ξi− describe
to which degree agent i believes to be able to encourage
or discourage other agents to contribute. In that sense,
ξi± is the model the agent has of the other agents. As far
as planning is concerned, we do not bother about how
the agent comes up with a particular set of values ξi±,
but rather what decisions does the agent come up with,
given Q.
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Let us assume that the agent has a policy of its own
actions from period t until the end of the game (period

T ) given by P (fTt ) =
∏T
t′=t P (fi,t′ |µi,t′−1). By making

use of Q and P (fTt ) one can write the path probabili-
ties of various game trajectories. Combining it with the
gain of the agent associated with a trajectory, one can
write down the expected utility for the policy as a path
integral. This expected utility can then be maximized to
find the optimal policy. Finally, the path integral max-
imization can be written in a recursive form, described
by a Bellman equation [28] given by

V ∗t = max
P (fT

t )

∑

fi,t,µi,t

P (fi,t|µi,t−1)
[
Q ·Gi,t(fi,t, µi,t)

+γQ · Vt+1

]
,

(5)

where ∗ is to indicate a maximized quantity. γ ∈ [0, 1]
represents a foresight which exponentially ‘decays’ into
the future, discounting for future rewards. If we also
include bounds on the computational capabilities of the
agent [20], an additional term appears in Eq. 5. which
then becomes

V ∗t = max
P (fT

t )

∑

fi,t,µi,t

P (fi,t|µi,t−1)
[
Q ·Gi,t(fi,t, µi,t)

− 1

β
log

P (fi,t|µi,t−1)

P0(fi,t|µi,t−1)
+ γQ · Vt+1

]
.

(6)

The Lagrange parameter β comes
about from the additional constraint
1
β (DKL(P ∗(fi,t|µi,t−1)||P0(fi,t|µi,t−1)) − K) = 0,

where K is the computational budget of the agent.
Essentially, the additional term penalizes high Kullback-
Leibler (KL) divergence of the posterior (P ) and the
prior (P0) policies, for some given P0 for the agent.
The solution of the optimization problem in Eq. 6
then provides us with the bounded optimal policy

P (fTt ) =
∏T
t′=t P (fi,t′ |µi,t′−1).

In conclusion, in period t, given a model ξi±, a prior
policy P0, a computational budget K and exponentially
decaying foresight γ that describe agent i’s properties,
the agent makes use of Eq. 6 to evaluate the best policy.
Now we concern ourselves with how the agent comes up
with its model of other agents i.e. ξi±.

C. Learning mechanism

Following [22] we consider the learning mechanism as a
maximum likelihood estimation over the transitions ob-
served by the agent. The task of learning for agent i in
period t then is the task of finding the tuple ξi± that is
most representative of the state transitions observed by

the agent. This can be written as

ξi±
∗(t) = arg max

ξi±(t)

[ 2∑

w=t−1
γt−wp logQ(µi,w|µi,w−1, fi,w−1)

− (1− γp)(ξi±(t)− ξi±(t− 1))2
]
.

(7)

The summation is over all observed past and the sum-
mand is the weighted log likelihood of having observed
a particular transition from period w − 1 to period w.
The exponential weighting factor γp represents the re-
cency bias or the bounded memory of the agent [29] as it
weights recent transitions more than earlier transitions.
Finally the last summand represents the tendency of the
agent to not update it’s model. Therefore when γp = 0
the agent performs no learning and maintains it’s previ-
ously believed model, and when γp = 1 the agent looks
arbitrarily back in the past and performs the maximum
likelihood estimation and updates it’s model.

As we are interested in collective effects here, we al-
low all players to play in multiple groups simultaneously.
Their rewards in single playing groups are evaluated in-
dependently and then summed over all groups they play
in. In this setting, beyond just the intra-group dynamics,
the network of connections between groups and players
also becomes of relevance through the fact that players
play in several groups.

III. PGG NETWORKS

The interaction structure for players playing multiple
PGGs simultaneously with different groups of players is
best captured by hypergraphs. In what follows, we give a
brief account of the concept hypergraphs, and how con-
nects to our system of interest. We will then describe how
to adapt the behavioral dynamics, as described for single
groups in the previous section, to the spatially extended
setting of an SPGG.

A. Hypergraphs

A hypergraph [30] is a graph whose edges are allowed
to connect more than two nodes. An edge in a hyper-
graph is called a hyperedge. Hence a hypergraph H can
be defined as a tuple H = (V,E), where V is a finite set
of nodes vi indexed by i ∈ {1, . . . , |V |} and E is a finite
set of hyperedges ej indexed by j ∈ {1, . . . , |E|}, where
each hyperedge is a non-empty subset of V . One can
completely specify a hypergraph by an incidence matrix
Hij where i ∈ {1, . . . , |V |} and j ∈ {1, . . . , |E|} and

Hij =

{
1 vi ∈ ej ,
0 else.

(8)

In this work, we identify the nodes in H as the agents
and the edges are identified as the various groups the
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agents play in. As most literature on PGG considers four
player games, in this work we consider agents playing on
4-regular hypergraphs3, but each agent is allowed to play
in arbitrarily many groups. Other than this we consider
no restrictions on the topology of the hypergraphs.

B. Agent dynamics on hypergraphs

Now that we have introduced the interaction structure,
our task remains to adapt the agent behavioral dynamics
from Sec. II to the spatially extended setting. Let us
consider an SPGG being played on a hypergraph H with
|V | = Np players and |E| = Ng groups. In order to carry
out the discussion on the agent model we describe it from
the perspective of an arbitrary agent given by an index
i ≤ Np, which plays in k ≤ Ng different groups given by
the indices i1, . . . , ik.

As already mentioned, agent i plans in each of the k
groups independently. This means that agent i in period
t, makes use of Eq. 6 to find the optimal policy for itself
and then, for each group it plays in, it independently
samples an investment from the conditional distribution
P (fi,t|µi,t−1) by conditioning on the observed µi,t−1 of
that group.

Learning, on the other hand, is not done independently
in each group. Essentially, the exponentially weighted log
likelihood in Eq. 7 is summed not only over all observed
past of one group, but over all groups. By suitably mod-
ifying the notation to also include the group identity, one
can write the analogous equation as

ξi±
∗(t) = arg max

ξi±

k∑

m=1

[ 2∑

w=t−1

(
γt−wp

logQ(µi,im,w|µi,im,w−1, fi,im,w−1)
)

− (1− γp)(ξi±(t)− ξi±(t− 1))2
]
,

(9)

where the subscript im denotes that the quantity is being
evaluated in group im with m ≤ k.

The learning and planning mechanisms can be then
combined into a single agent which is defined by a
quadruple of parameters, (m,K, γ, γp), where m param-
eterizes the prior policy of the agent4. In each round
t ∈ {2, 3, ...T}, the agent

1. plans: by considering the game state at t − 1 in
all the k groups it plays in and ξi±(t− 1), the agent
making use of Eq. 6 finds the best policy for itself.

3 A k-regular hypergraph H is a hypergraph such that |ei| = k for
all i ∈ {1, . . . , |E|}.

4 We assume that the prior policy of the agent is given by the
same distribution P0(fi,t) in each period t and the distribution
is a truncated Gaussian centered around m and a fixed variance
σm = 5.

Figure 1: Projecting a hypergraph to a line graph. The
hyperedges (e1, e2, e3) of the hypergraph correspond to
the vertices of the line graph. Black pentagons
correspond to agents, black circles correspond to groups.

2. acts: by sampling an investment, fi,im,t, from the
evaluated policy, after conditioning on the observed
µi,im,t−1 of each group m ∈ {1, · · · , k}.

3. learns: after observing the state of the game in the
current period t in all the k groups the agent learns
and updates it’s model of the players by evaluating
ξi±(t) from Eq. 9.

In period t = 1 the investments of the agent are sampled
from it’s prior distribution P0(fi,1) for all the groups it
plays in. In period t = 2 there is certainly planning
based on observed behavior, but there is no learning, as
the agent has not yet observed a transition.

IV. TOPOLOGY AND DYNAMICS

In our previous studies [20, 22] we focused on how
agent characteristics (m,K, γ, γp) impact the behavioral
dynamics in PGG. Here we have, as an additional fea-
ture, namely, the interaction structure imposed by the
hypergraph. It is then natural to investigate the specific
impact of the interaction network structure on the agent
dynamics, and thereby on possible collective phenomena
in the system. This will be the main question we pur-
sue in the remainder of this article. Before we proceed,
however, we need to clarify our concepts of ”topology”
and ”dynamics”, and to introduce the key descriptors of
topology of the hypergraph as well as the relevant ob-
servables we will use to describe the agent behavioral
dynamics.

A. Topological features

Hypergraphs (as opposed to graphs) provide the op-
portunity to consider two distinct types of interactions:
inter-group and intra-group. While our previous stud-
ies have focused primarily on intra-group interactions,
we focus here on inter-group interactions and their effect
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on contributions. The smallest unit of interest in this
paradigm is a group. This allows us to project the uni-
form hypergraph to a corresponding line graph L5. Fig.
1 shows a schematic of the projection of a hypergraph
to the corresponding line graph. Notice that the hyper-
edges e1, e2, e3 become vertices in the line graph and the
information about the location of vertices of the hyper-
graph (black pentagons) gets lost when performing this
projection. Therefore in a line graph all of the intra-
group structure is lost and it remembers only non-zero
overlaps between groups.

Our task now remains to choose the appropriate de-
scriptor of the graph topology. Studying SPGG, we are
interested in evaluating the degree of influence (measured
through the dynamical observables) a particular group
(i.e., a node in the line graph) has on other groups in the
graph depending, e.g., on the distance between them.
This is to determine how ‘far’ the influence of a group
travels within the graph. Hence we need a suitable de-
scriptor which represents the notion of a distance in a
graph topology, and is suitable to quantify such propa-
gation of influence.

A well-established class of such descriptors is the
Bonacich-Katz class of centrality measures [31]. The
Bonacich-Katz centrality of a node i in the line graph
L is parameterized by two parameters ω, η and is given
by

ci(ω, η) = ω(I − ηJ)−1J1, (10)

where I is the identity matrix, J is the adjacency matrix
of L and 1 is a column vectors of all ones. Here ω is a
constant multiplying factor and therefore doesn’t impact
the centrality ranking of the nodes and can therefore be
ignored via an appropriate normalization. η parametrises
the expected radius of influence a particular group has
on other groups, which is proportional to (1 − η)−1. It
will be the main parameter of concern for us in this
article. While for η → 0+, ci is equivalent to degree
centrality and it corresponds to eigenvector centrality if
η → 1

λmax
−, where λmax is the largest eigenvalue of the

adjacency matrix of L [32].

B. Dynamical features

In order to quantify cooperation in PGG, a natural
observable of interest is the average contribution of the
group or player. Let us consider an agent i where i ≤
Np. Let the set of groups the agent plays in be given
by pi = {k|Hik 6= 0}. Then we define the average agent
contribution as

Aagent
i,t =

∑
j∈pi fi,j,t
|gi|

, (11)

5 A line graph of a hypergraph H = (V,E) is a graph L(H) =
(VL, EL), where VL = E and two vertices ei, ej in are connected
in L iff. ei ∩ ej 6= Ø

and the corresponding ensemble averaged quantity given
by 〈Aagent

i,t 〉. The corresponding average group contribu-
tion for a group j where j ≤ Ng is defined as

Agroup
j,t =

∑
i∈gj fi,j,t

4
, (12)

where gj = {i|Hij 6= 0} and the ensemble average
quantity is given by 〈Agroup

j,t 〉. For both these quanti-
ties the corresponding time average quantity is given by

A
′
i =

∑T
t=0 A

′
i,t

T .
The above quantities are averaged over time, and

therefore hold no information regarding the interactions
between groups unfolding over time. The latter can be in-
vestigated by considering temporal correlations between
group trajectories. To this end, we consider the correla-
tion matrix Cij , in which the i, j entry is the correlation
between trajectories of groups i and j. It is given by

Ci,j =
1

T

T∑

t=0

σAgroup
i,t Agroup

j,t

σAgroup
i,t

σAgroup
j,t

, (13)

where σXY is the covariance of random variables X,Y
given by 〈XY 〉 − 〈X〉〈Y 〉 and σX is the variance of X.
Because the correlation between two group averaged tra-
jectories is symmetric over the two groups, it is a natural
measure for us as the coupling between groups which
is mediated by the learning mechanism of the common
player(s) also has no way to break the symmetry between
the groups.

V. RESULTS

As we intend to evaluate the specific impact of network
topology on the dynamics, we will keep the agent char-
acteristics homogeneous and consider heterogeneity only
through graph topology. Therefore we consider identical
agents that are embedded on a random hypergraph (for
details on how these random hypergraphs are generated
see App. A).

For these agents we fix (m, γ) = (10, 0.9) for similar
reasons as in [22] and additionally, we consider γp = 0.9.
This choice reflects the fact that in our model the interac-
tions between neighboring groups are mediated by learn-
ing. Lower values of γp would weaken the group inter-
actions, thereby rendering the network structure point-
less. On the other hand for γp ≈ 1 it is observed that
something similar occurs for longer times [22], as every
new observation has only a diminishing impact on the
agents’ preferences. As we will see in the following, even
though we create a setup (choice of parameters) that
qualitatively maximizes the group interactions, the re-
sulting dynamics still seems mostly independent of the
various topological features.

We consider ten randomly generated hypergraphs with
(Np, Ng) = (64, 25) with all the agents described by
(m, γ, γp) = (10, 0.9, 0.9) and K ∈ {0, 1.5, 3, 4.5}. For
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Figure 2: Dependence of conditional expected
contribution variance, M(η), upon radial distance of
influence, as expressed by (1− η)−1. The curves are
averaged over ten hypergraphs of size
(Np, Ng) = (64, 25) for agents with K = 0 through
K = 4.5.

Figure 3: Group trajectory correlations as a function of
the shortest distance between the groups for groups of
agents with K = 0 through K = 4.5. Crosses are data
points, polygons are exponential fits.

each random hypergraph we perform the ensemble aver-
age of 5000 simulation runs. Following the question asked
in the beginning of Sec. IV we investigate, in a random
hypergraph with all identical agents, what topological de-
scriptor is the most appropriate to predict average group
contribution. As already mentioned we consider the class
of descriptors given by Bonacich-Katz centrality and we
consider the most ”appropriate” centrality measure (or
the most appropriate η) as the one that minimizes the
function

M(η) =

∫
θ〈Agroup

j 〉|(cj(η)=c)dc. (14)

Here the variance is defined as

θ〈Agroup
j 〉|(cj(η)=c) = VAR{〈Agroup

j 〉|c ≤ cj ≤ c+ dc},
(15)

for some choice of discretization. Essentially, every value
of η is an assignment of a centrality to each node. We
wish to find that assignment η such that given a central-
ity c(η) = c0, the variance of the average contributions
corresponding to the nodes with the centrality close to
c0 is minimal when integrated over all c0. In other words
we wish to find η for which the scatter of the scatter plot
between 〈Agroup

j 〉 and cj(η) is minimal.

In Fig. 2 we plot M(η) curve averaged over 10 dif-
ferent random hypergraphs as a function of η and one
can see that the global minimum of M(η) is given by
η ≈ 0 for various values of agent parameters given by
K ∈ {0, 1.5, 3, 4.5} thereby indicating that the central-
ity measure with very small values of η best predicts the
group average contribution independent of K. Recalling
the definition of Katz centrality, smaller values of η cor-
respond to smaller radii of influence. This then seems to
indicate that it is the local topological features (in this
case, node centrality i.e. number of neighbors) that are
the best predictors of average group contribution.

In the above analysis there is no ”dynamics” as such,
as we have only considered the distribution of 〈Agroup〉
across nodes of varying centrality. Therefore any claims
of groups have a smaller ”radius of influence” could be
misguided if the above result is considered in isolation.
In order to create a more robust picture of the radius of
influence of a group, we consider how quickly do inter-
group correlations decay as a function of the shortest
distance between the groups.

Therefore, we proceed by comparing the correlation
matrix C with the distance matrix D6 to evaluate how
the correlations between group average trajectories scale
with the shortest distance between the groups. In Fig.
3 one can see that the correlation between group aver-
age trajectories falls down exponentially with the (short-
est) distance between the groups with correlation lengths
l < 1 (as shown in the inset). Thereby meaning that sub-
stantial correlations of a group’s behavior is only with
it’s immediate neighbors. This further corroborates that
group contributions in SPGG are mostly governed by lo-
cal interactions.

The locality of interactions in SPGG is a good news
for two major reasons. First and the more obvious rea-
son is that locality simplifies the analysis of the system,
thereby allowing for the possibility of developing simpler
effective dynamics that replicate these observations. The
second reason is that, if group contributions are mostly
governed by local interactions (in this case group central-
ity c(η = 0)), then even if we have graphs with different

6 A distance matrix D for a graph L = (V,E) is a matrix of size
|V | × |V | where the i, j entry Di,j is the length of the shortest
path between node i and node j in L.
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Figure 4: Impact of group centrality on the group
average contribution for ten randomly generated
hypergraphs. Top panel: results for K = 4.5, with
different symbols corresponding to different
hypergraphs. Bottom panel: same as top panel for
different values of K. Polygons connect averages over
all hypergraphs, respectively.

global structures but similar local structures we should
observe similar behavior. The latter would seem to indi-
cate a universality (i.e. global topology independent) in
cooperation behavior across a large set of networks.

Fig. 4 presents the impact of group centrality (c(η =
0)) on the group average contribution for different values
of K, for ten randomly generated hypergraphs. Differ-
ent symbols correspond to different hypergraphs. For
each value of K, the results are found not to differ sig-
nificantly for different hypergraphs. This demonstrates
that topological features of the hypergraphs are irrele-
vant to this end. Cooperation levels of groups are pre-
dominantly determined by the number of neighbors of
the group. Quite surprisingly, one does not even need
to consider how many players are shared between two
neighbor groups (recall that c(0) is measured from the
line graphs and not the hypergraphs).

VI. DISCUSSION

Another observation from Fig. 2 is that M(η) mono-
tonically increases with K, attaining a minimal value at
η = 0 for all K investigated. Having a higher scatter
for higher K would seem to indicate that agents with
higher K accommodate their contributions to more de-
tails of topology rather than just the number of groups
they play in7. This is a view that also gets supported by
looking at the variation of correlation lengths with K. In
the inset of Fig. 3, it can be seen that correlation lengths
increase with K, thereby indicating that as K increases,
more distant neighbors become relevant as compared to
lower values of K. Hence agents with higher values of
K are more sensitive to the surrounding topology of the
interaction network. However, the data suggest that the
range of this sensitivity saturates at higher K, with the
decay length staying below unity.

This sensitivity can also be seen in Fig. 4. Note that
group centrality has a positive impact on group contri-
butions irrespective of agent parameters, although agents
with higher values of K experience an appreciably big-
ger increase in their contributions as compared to their
lower K counterparts. In the following we quantify this
sensitivity (to centrality) as a function of K.

We consider 3 different hypergraphs (their correspond-
ing line graphs can be seen in Fig. 5), two of them gen-
erated randomly and one uniform square lattice, all with
(Np, Ng) = (64, 25). We consider identical agents with
K varying from 0.5 to 5 and average over 5000 simula-
tion runs for each configuration (i.e. a pair of a value of
K and one of the three hypergraphs). We then perform
three-parameter fits on the average contribution curves
with the ansatz,

A(c(0),K) = A0(K)− h(K)

1 + c(0)/β
. (16)

As it turns out, A0 does not vary appreciably with K8.
Therefore we remove it’s dependence on K and treat it as
a constant. Therefore, parameters A0 and β are obtained
by performing a fit on all configurations and h is fitted to
each configuration separately. It turns out that setting
A0 = 12.25 and β = 12.5, the (fitted) values of h(K) col-
lapse onto a characteristic curve independent of the net-
work topology. In Fig. 7 we plot three curves h(K) for
the corresponding hypergraphs as obtained from the fits.
The empty symbols correspond to (A0 − A)/(1 + c(0)β)

7 The other end of the extreme is the case of K = 0, where the
agents disregard any topological or dynamical features and play
according to independent samples from a stationary prior distri-
bution.

8 Here we ignore the case of K = 0, as it represents a qualitatively
trivial case, and the corresponding fitting procedure has non-
unique global minima (both h(0)→ 0 and β →∞ lead to a flat
curve).
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Random hypergraph 1

Random hypergraph 2

Lattice

Figure 5: Line graphs corresponding to three
hypergraphs. Top two correspond to random
hypergraphs and the bottom corresponds to square
lattice.

Figure 6: (A0 −A)/h as a function of group centrality
for the three hypergraphs. The corresponding data from
the hypergraphs are represented by circles, triangle-up
and triangle down. The solid line corresponds to the
function (1 + c(0)/β)−1 for β = 12.5.

Figure 7: h(K) for three hypergraphs. Polygons
(dashed, dash dotted and dotted) correspond to the
best fit. The corresponding data from the hypergraphs
are represented by circles, triangle-up and triangle
down, respectively.

for each individual group, where A0 and β take the afore-
mentioned values. A and c(0) for each group are obtained
from the simulations. Within scatter, the data are well
represented by eq. (16). In a similar fashion we also show
the characteristic value of β to be well descriptive of the
impact of group centrality (see Fig. 6). To conclude, the
deviation from the ‘trivial case K = 0 seems to factor-
ize as expressed by eq. (16), into a part depending on
c(0) and a function h(K) which depends only on K. The
latter starts off roughly linearly but saturates at higher
values of K.

VII. CONCLUSIONS

Based on previously developed model agents that
boundedly learn and plan, we have explored collective
behavior in SPGG on a variety of hypergraphs of differ-
ent topology. What we find that collective investment
behavior is determined essentially by local descriptors,
with correlations decaying exponentially in space. Fur-
thermore, the impact of local connectivity, c(0), and ra-
tionality of the agent, K, on the expected average invest-
ment factorize in a universal way, independent of network
topology. Its behavior can be quantified with a charac-
teristic function as shown in Fig. 7 and lends itself to
experimental test.

Finally, our work suggests that cooperation in SPGG
can be driven by making the players more diverse i.e.
increasing the number of groups they play in and con-
sequently increase inter-group connections. This obser-
vation is in line with results previously reported in [33],
despite the fact that the authors follow a completely dif-
ferent modelling route.
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Appendix A: Generating a random hypergraph

In Algorithm 1 we show our method of generating
a random hypergraph. The function takes as input
(Np, Ng) and returns the incidence matrix for the hyper-
graph. It has to be kept in mind that Np ≥ 4 otherwise
we will not be able to generate a 4-regular hypergraph
and also Np ≤ 4Ng, because if Np > 4Ng there will be at
least one player which doesn’t play in any group, thereby
effectively decreasing Np until Np = 4Ng.

Algorithm 1 Random hypergraph generation

function Hypergraph(Np, Ng)
H = zeros(Np, Ng) . Incidence matrix
for 1 ≤ i ≤ Np do . Each player gets a group

filled = 0
while filled = 0 do

j = random (1, Ng) . choose a random
j ∈ [1, Ng]

if
∑

kHkj < 4 then
Hij ← 1
filled ← 1

end if
end while

end for
for 1 ≤ j ≤ Ng do . Each group gets 4 players

while
∑

kHkj < 4 do
i = random(1, Np)
Hij ← 1

end while
end for
RETURN H

end function
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