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Zusammenfassung
Die neueren Entwicklungen im Bereich der Machine-Learning-Software, etwa das
automatische Differenzieren und die JIT-Kompilierung (JIT = Just in Time),
haben die Forschung im maschinellen Lernen erheblich verändert. Sie haben die
Modellentwicklung beschleunigt und zum Entstehen von KI-Werkzeugen wie dem
Chatbot ChatGPT und dem Bildgenerator DALL·E beigetragen. Im Kontext
der probabilistischen Programmierung werden ähnliche Methoden eingesetzt, um
effiziente gradienten-basierte Inferenzalgorithmen zu implementieren, die auf eine
Vielzahl von Bayesianischen Modellen anwendbar sind, z. B. Hamiltonian Monte
Carlo (HMC) und der No-U-Turn Sampler (NUTS). Diese kumulative Disser-
tation umfasst drei Forschungsartikel, die Methoden des maschinellen Lernens
und der probabilistischen Programmierung mit semi-parametrischen Regressions-
modellen aus der angewandten Statistik kombinieren. So wird die Entwicklung
neuer Modelle mit semi-parametrischen Prädiktoren und den entsprechenden
Inferenzalgorithmen möglich. Außerdem werden verschiedene Anwendungen in
der Forstwissenschaft und der Ökologie vorgestellt.

Im ersten Artikel präsentieren wir das probabilistische Programmier-Framework
Liesel, mit dem wir eine Software-Basis für effiziente und zuverlässige Forschung
in der angewandten Statistik schaffen wollen, die geeignet ist für die Imple-
mentierung komplexer Modelle und Inferenzalgorithmen. Der Schwerpunkt der
Software liegt auf semi-parametrischen Prädiktoren mit linearen, nicht-linearen,
zufälligen und räumlichen Effekten von Kovariablen. Ein typischer Workflow
mit Liesel wäre: (1) Konfiguration eines Modellgraphen, z. B. mithilfe des R-
Interface von Liesel, (2) Anpassung des Modellgraphen zur Umsetzung neuer
Forschungsideen, und (3) vollständige Bayes-Inferenz mit der mitgelieferten
MCMC-Bibliothek (MCMC = Markov Chain Monte Carlo), entweder mit einem
Standardalgorithmus oder einer benutzerdefinierten Variante. Sampler wie HMC
und NUTS werden unterstützt und können mit herkömmlichen Methoden kom-
biniert werden, z. B. mit IWLS-Proposals (IWLS = Iterative Weighted Least
Squares) und Gibbs-Updates. Liesel ist in Python geschrieben und nutzt die
Machine-Learning-Bibliothek JAX als Backend.

Im zweiten und dritten Artikel werden Erweiterungen und Anwendungen der
semi-parametrischen Verteilungsregression in der Forstwissenschaft und der Öko-
logie diskutiert. Die neuen Modelle ergeben sich aus der Einführung bestimmter
Response-Strukturen in einen Regressionskontext, z. B. in Form von Gauß-
Prozessen (GPs) mit parametrischen Mittelwert- und Kovarianzfunktionen. Das
GP-Modell wenden wir auf Messungen von hochauflösenden Dendrometern an.
Diese Geräte erfassen neben dem irreversiblen Wachstum von Baumstämmen
auch die reversiblen Schwankungen aufgrund des Wassergehalts. Mit unserem Mo-
dell können die Daten in eine permanente und eine temporäre Komponente zerlegt
werden, wobei sich Unterschiede zwischen Bäumen und Jahren durch Kovariablen
erklären lassen. Im letzten Artikel schlagen wir das Multi-Species-Count-Modell
(MSCM) vor, mit dem Zusammenhänge zwischen Umweltbedingungen und ver-
schiedenen Indizes für Artenvielfalt geschätzt werden können. Wir nutzen das
Modell mit semi-parametrischen Prädiktoren, um die Effekte von Rotbuche,
Fichte und Douglasie auf die Artenvielfalt verschiedener Taxa zu bestimmen,
basierend auf Daten, die im Graduiertenkolleg (GRK) 2300 erhoben wurden,
und unter Berücksichtigung der räumlichen Korrelation.
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Abstract
Recent advances in machine learning software, such as automatic differentiation
and just-in-time (JIT) compilation, have significantly changed machine learning
research. They have accelerated model development and contributed to the
emergence of AI tools such as the chatbot ChatGPT and the image generator
DALL·E. In the context of probabilistic programming, similar methods are
used to implement efficient gradient-based inference algorithms applicable to
a broad range of Bayesian models, e.g. Hamiltonian Monte Carlo (HMC) and
the No-U-Turn Sampler (NUTS). This cumulative dissertation includes three
research papers that combine methods from machine learning and probabilistic
programming with semi-parametric regression models from applied statistics.
This combination enables the development of novel models with semi-parametric
regression predictors and the corresponding inference algorithms. Moreover,
various applications in forestry and ecology are presented.

In the first paper, we present the probabilistic programming framework Liesel,
which aims to provide a software basis for efficient and reliable research in applied
statistics, suitable for the implementation of complex models and inference
algorithms. The software focuses on semi-parametric regression predictors with
linear, non-linear, random and spatial covariate effects. A typical workflow with
Liesel would be: (1) configuration of a model graph as a baseline, e.g. using
Liesel’s R interface, (2) adaptation of the model graph to implement new research
ideas, and (3) fully Bayesian inference using the included Markov chain Monte
Carlo (MCMC) library, either with a standard algorithm or a user-defined variant.
Samplers such as HMC and NUTS are supported and can be combined with
conventional methods, e.g. iterative weighted least squares (IWLS) proposals
and Gibbs updates. Liesel is written in Python and uses the machine learning
library JAX as a backend.

The second and third paper discuss extensions and applications of semi-
parametric distributional regression in forestry and ecology. The new models
arise from the introduction of certain response structures into a regression
context, e.g. in the form of Gaussian processes (GPs) with parametric mean
and covariance functions. We apply the GP model to measurements from
high-resolution circumference dendrometers. These instruments record both
the irreversible growth of tree stems as well as the reversible shrinking and
swelling due to the water content. With our model, the data can be decomposed
into a permanent and a temporary component, and differences between trees
and years can be explained by covariates. In the last paper, we propose
the multi-species count model (MSCM) to estimate relationships between
environmental conditions and different indices of species diversity. We use
the model with semi-parametric regression predictors to assess the effects of
European beech, Norway spruce and Douglas fir on the species diversity of
various taxa, based on data collected in the Research Training Group (RTG)
2300 and taking into account spatial correlation.
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1 Introduction

1 Introduction
Regression is among the oldest and most popular methods in statistics, and aims
to describe the relationship between a dependent variable (also called response or
outcome variable) and one or more independent variables (also called predictor or
explanatory variables, or covariates). Regression can be used for prediction and
inference, with interpretability being one of its particular strengths, especially
of its simplest form, which assumes a linear relationship between the response
and explanatory variables, usually combined with a normally distributed error
term (and hence a normally distributed response variable, see Fahrmeir et al.,
2013, Section 3).

As these assumptions are too restrictive for many applications, semi-parametric
regression predictors allowing for additive combinations of linear, non-linear,
random and spatial covariate effects have been proposed (Wood, 2017, Sec-
tion 4 and 5). Research in statistics has also focused on the development of
non-Gaussian regression, e.g. logistic regression for binary outcomes, Poisson
regression for count data, and Cox regression for survival data. Most of these
models fall into the category of generalized linear models (GLMs, Nelder and
Wedderburn, 1972), or even more broadly into generalized additive models for
location, scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005).

The introduction to this dissertation skims the evolution of various regression
models from the simplest to more recent, flexible models (Section 1.1), before
providing a brief overview of Bayesian inference and Markov chain Monte Carlo
(MCMC) methods for the estimation of semi-parametric distributional regression
models (Section 1.2). In Section 1.3, Bayesian inference is considered in the
context of recent trends in Bayesian computing, especially probabilistic pro-
gramming. Several concepts from probabilistic programming are implemented
in the Liesel software package, which was developed as part of this dissertation.
Finally, in Section 1.4, short application cases of semi-parametric distributional
regression in the fields of forestry and ecology are presented, based not only
on the manuscripts that are part of this dissertation, but also on two further
articles with my co-authorship.

1.1 From linear to semi-parametric distributional
regression

In the classical linear regression model, the response variable yi is explained by
the covariates xi, for i = 1, . . . n, which are assumed to have a linear effect on
the expected value of the response variable. Stochasticity is introduced in the
model through an unobserved additive error term εi, i.e.

yi = β0 + xi1β1 + · · · + xikβk + εi = ηi + εi, (1)

where β0 is the intercept, β1, . . . , βk are the slope coefficients, and ηi = β0 +
xi1β1 + · · · + xikβk is the regression predictor. The model can be expressed more
concisely in matrix notation as

y = Xβ + ε,
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1.1 From linear to semi-parametric distributional regression

where

y =

y1...
yn

, X =

1 x11 · · · x1k...
... · · · ...

1 xn1 · · · xnk

, β =

β0...
βk

 and ε =

ε1...
εn

.

The standard assumptions on the error term ε are the so-called Gauss-Markov
assumptions, i.e. E(ε) = 0, and Cov(ε) = E(εε′) = σ2I. If the design matrix X is
of full column rank, the regression coefficients β can be estimated with ordinary
least squares (OLS), i.e. β̂ = (X′X)−1X′y. The OLS estimator minimizes the
residual sum of squares ε̂′ε̂ over the residuals ε̂ = y − ŷ = y − Xβ̂. Under
the Gauss-Markov assumptions, the OLS estimator is the best linear unbiased
estimator (BLUE), i.e. it has minimum variance in the class of linear unbiased
estimators (Seber and Lee, 2003, Section 3.2).

Note that the Gauss-Markov assumptions do not determine a specific probability
distribution for the error term εi. For maximum likelihood inference (which
is equivalent to OLS for the regression coefficients β in the linear regression
model) and to construct confidence intervals and hypothesis tests, it is common
to assume a Gaussian distribution for the errors, however. In combination with
the Gauss-Markov assumptions, this implies that the errors are independent and
identically distributed as εi ∼ N (0, σ2) (Seber and Lee, 2003, Section 3.4).

It might seem counterintuitive at first, but it is possible to use linear regression
to estimate non-linear relationships between a response variable yi and some
observed variables vi. Suppose, for example, we want to model the salary of the
employees of a company as a function of their age and gender, i.e. the response
variable is yi = salaryi, and the observed variables are vi = (agei, genderi).
It might be plausible to assume that the salary increases with age, but more
gradually for senior employees, and that the increase also depends on gender. To
take these assumptions into account, we could define the covariate vector xi as a
function of the observed variables vi, i.e. xi = xi(vi). An appropriate covariate
vector could be xi = (1, agei, age2

i , genderi, genderi × agei, genderi × age2
i ).

Note that the regression predictor ηi is still linear in β and xi in this case, but
not in the observed variables vi.

Semi-parametric regression

Two drawbacks of using polynomials for modeling non-linear effects as in the
previous example are their numerical instability and the difficulty to control the
“wiggliness” of the estimated effects in a systematic way. For these reasons, semi-
parametric regression predictors, also known as (structured) additive regression
predictors, have been proposed as an alternative. They are a powerful and flexible
modeling approach that can combine parametric and non-parametric covariate
effects on a response variable yi. The normal semi-parametric regression model
is defined as

yi = x′
iβ +

L∑
l=1

fl(zil) + εi,

where the parametric covariate effects x′
iβ include the intercept, and the non-

parametric covariate effects fl(zil), for l = 1, . . . , L, are centered around zero
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1.1 From linear to semi-parametric distributional regression

to avoid identification issues (Fahrmeir et al., 2004; Wood, 2017, Chapter 4).
The functions fl(zil) are modeled as linear basis expansions of the covariates zil

(Hastie et al., 2009, Chapter 5). Depending on the choice of the basis and the
penalty or prior on the regression coefficients γl, the functions can represent
non-linear, spatial and random effects, among others. Finally, the errors are
independent and identically distributed as εi ∼ N (0, σ2).

The non-parametric covariate effect fl(zil) is defined as the linear basis expan-
sion fl(zil) = Blγl, where the entries of the design matrix Bl are given by
Bl,ij = blj(zil), and blj is the j-th basis function of the l-th non-parametric
covariate effect, e.g. a B-spline basis function for some given knots. Therefore,
the semi-parametric regression model can also be expressed in matrix notation
as

y = Xβ + B1γ1 + · · · + BLγL + ε,

and estimated with OLS. To avoid overfitting, however, certain smoothness
properties are usually enforced on the non-parametric covariate effects through
regularization, e.g. using P-splines that penalize (second) differences between
coefficients of neighboring B-splines (Eilers and Marx, 1996; Lang and Brezger,
2004). This kind of regularization requires alternative estimation procedures,
e.g. penalized maximum likelihood in a frequentist or MCMC methods in a
Bayesian setting.

Bayesian regularization is usually implemented via informative priors, e.g. the
multivariate normal prior

p(γ | τ2) ∝ τ−rk(K) exp(−0.5τ−2γ′Kγ),

where τ2 is the variance (or smoothing) parameter, and K is a (potentially
rank-deficient) penalty matrix. Note that we are omitting the index l here for
the sake of simplicity. Apart from P-splines, other common non-parametric
covariate effects include random effects, where the penalty matrix reduces to
K = I, (intrinsic) Gaussian Markov random fields, where K is determined by the
neighborhood structure of the spatial units (Rue and Held, 2005), and Gaussian
processes, for which Vecchia approximations can be used to construct the penalty
matrix (Katzfuss and Guinness, 2021).

Distributional regression

The other important direction in which linear and semi-parametric regression
models can be extended is the assumption on their response distribution. For
the previous models, the Gaussian distribution of the error term εi ∼ N (0, σ2)
implies the Gaussian distribution of the response variable yi ∼ N (ηi, σ2). The
first steps towards more flexible response distributions are generalized linear
models (GLMs, Nelder and Wedderburn, 1972) and generalized additive models
(GAMs, Hastie and Tibshirani, 1986; Wood, 2017), which can be used to model
binary outcomes, count data and continuous non-negative responses. In GLMs
and GAMs, the response distribution needs to belong to the exponential family,
which is the case for the binomial, Poisson and gamma distribution, among others.
Both model classes comprise one regression predictor ηi that is mapped to the
conditional expectation of the response variable, i.e. E(yi) = µi = h(ηi), where h
is an appropriate one-to-one response function from the real line to the domain
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1.2 MCMC inference in semi-parametric distributional regression

of the mean of the response distribution. For the Gaussian distribution, the
response function h is usually the identity function, for the binomial distribution,
it is the logistic function, and for the Poisson distribution, the exponential
function.

In comparison to GLMs and GAMs, generalized additive models for location,
scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005) relax the assumptions
on the response distribution and the number of regression predictors even further.
In GAMLSS, the response distribution can belong to any parametric family, and
the number of regression predictors corresponds to the number of parameters of
the response distribution. The model class, which is sometimes also referred to
as distributional regression or regression beyond the mean, is defined as

yi ∼ D(θi1 = h1(ηi1), θi2 = h2(ηi2), . . . , θip = hp(ηip)), (2)

where D is the response distribution, θi1, . . . , θip are the (response) parameters,
ηi1, . . . , ηip are the corresponding (semi-parametric) regression predictors, and
h1, . . . , hp are the response functions mapping the regression predictors to the
domain of the response parameters. In models for location, scale and shape,
the first response parameter usually corresponds to the mean of the response
distribution, and the second response parameter to the variance or standard
deviation. This has the benefit of rendering the response parameters and covariate
effects interpretable, but not all response distributions can be parameterized in
this way.

The range of response distributions that fit into the GAMLSS framework is broad
and includes discrete, continuous and mixed distributions (Rigby et al., 2019).
Klein et al. (2015b) discuss various count data distributions in a regression context.
For fractional responses, e.g. single or multiple percentages, the beta or Dirichlet
distributions may be appropriate choices (Klein et al., 2015a). GAMLSS can
also be used to study multivariate responses, e.g. using conventional multivariate
distributions (Michaelis et al., 2018) or copulas to describe complex dependence
structures with arbitrary marginal distributions (Klein and Kneib, 2016).

1.2 MCMC inference in semi-parametric distributional
regression

Simple regression models can be estimated using least-squares methods. The
estimation of semi-parametric and distributional regression models is more
involved: For frequentist inference, approaches like (penalized) maximum likeli-
hood estimation and gradient boosting have been proposed. In contrast, this
dissertation deals exclusively with Bayesian inference using Markov chain Monte
Carlo (MCMC) methods, which have proven to be a flexible and efficient alter-
native to frequentist approaches (Klein, 2014). In this section, we first provide a
brief overview of the basic concepts of Bayesian inference, and then discuss its
application in semi-parametric distributional regression.

Bayesian inference allows us to update our beliefs about the parameters θ of a
model based on new evidence or data y. For this purpose, a prior distribution p(θ)
is assumed for the parameters θ, representing our beliefs about the parameters
before observing any data. After observing some data, we update our beliefs to
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1.2 MCMC inference in semi-parametric distributional regression

obtain the posterior distribution p(θ | y) of the parameters θ given the data y.
The update is performed using Bayes’ rule, i.e.

p(θ | y) = p(y | θ)p(θ)
p(y) ,

where p(y | θ) is the likelihood, and p(y) is the marginal likelihood (or evidence)
of the model. The caveat is that the evidence p(y) =

∑
θ p(y | θ)p(θ) (in the case

of discrete parameters) or p(y) =
∫

p(y | θ)p(θ) dθ (in the case of continuous
parameters) is usually intractable. For this reason, we need to find ways to assess
the posterior distribution based on the proportionality p(θ | y) ∝ p(y | θ)p(θ).
See Gelman et al. (2015), Section 1.3, or Fahrmeir et al. (2013), Appendix B.5,
among many others, for a gentle introduction to Bayesian inference.

The posterior distribution p(θ | y) obtained from Bayesian inference can also
be used for prediction. Assume we are about to observe a new data point ỹ.
Rather than being limited to point prediction, the Bayesian approach allows us
to express the uncertainty about ỹ through the so-called posterior predictive
distribution

p(ỹ | y) =
∫

p(ỹ | θ)p(θ | y) dθ.

If we are interested in a point prediction, we can compute the expected value
(or some other measure of central tendency) of ỹ from the posterior predictive
distribution.

Since the 1990s, it is possible to perform Bayesian inference on a broad range
of models using MCMC methods like Gibbs or Metropolis-Hastings (Robert
and Casella, 2011). A modern and often highly efficient variant of Metropolis-
Hastings is Hamiltonian Monte Carlo (HMC, Neal, 2011; Betancourt, 2018),
which uses the gradient of the model log-probability function with respect
to the parameters to sample from the posterior distribution. Other state-
of-the-art approaches to Bayesian inference include sequential Monte Carlo
(Chopin and Papaspiliopoulos, 2020) and variational inference (Blei et al., 2017).
Variational inference is related to the expectation-maximization (EM) algorithm
and can provide fast but sometimes inaccurate approximations to the posterior
distribution. For computationally intensive models such as Bayesian deep neural
networks, variational inference has become the standard in the field (Gelman
et al., 2020, Section 3).

This dissertation relies on MCMC for Bayesian inference. MCMC allows us to
sample from the posterior distribution p(θ | y) by constructing a Markov chain
with the posterior distribution as its stationary distribution. Given an initial
probability distribution p(0)(θ | y), the probability distribution at the (l + 1)-th
iteration of the chain is

p(l+1)(θ̃ | y) =
∫

t(θ̃, θ | y)p(l)(θ | y) dθ,

where the art of developing an MCMC method is in constructing an appropriate
transition probability t(θ̃, θ | y). As l → ∞, the probability distribution
p(l)(θ | y) will eventually converge to the posterior distribution p(θ | y), if (1)
the posterior distribution is an invariant distribution of the chain, and (2) the
chain is ergodic. The invariance of the posterior distribution under the chain is
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1.2 MCMC inference in semi-parametric distributional regression

often shown through the detailed balance property. For more details, see MacKay
(2003, Section 29.6).

One key advantage of MCMC is the characterization of the posterior distribution
through a sample (van de Meent et al., 2021, Section 1.1.3). Thanks to the
strong law of large numbers, this allows us to approximate the posterior mean
of an arbitrary generated quantity f(θ) as the arithmetic mean of the function
evaluations f(θ(l)) at the states of the chain θ(l), for l = 1, . . . , L, i.e.

lim
L→∞

1
L

L∑
l=1

f(θ(l)) →
∫

f(θ)p(θ | y) dθ,

where θ(l) is a draw from the posterior distribution p(θ | y). In the simplest
case, we can define f(θ) = θ and compute the posterior mean of the parameters
themselves. Examples of more complex generated quantities are given in Ap-
pendix C, where various species diversity indices are computed from the model
parameters.

For semi-parametric distributional regression, Klein et al. (2015b) propose an
MCMC algorithm based on a Metropolis-within-Gibbs scheme. They construct
transition probabilities for the regression coefficients β from iterative weighted
least squares (IWLS, Gamerman, 1997) proposals. These proposals make use
of the expected or observed Fisher information to approximate the curvature
of the posterior distribution. For the smoothing parameters τ2 of the non-
parametric covariate effects, Klein et al. use conjugate inverse gamma priors and
the corresponding Gibbs updates. Assuming an inverse gamma prior with the
hyperparameters a and b, the full conditional distribution has the parameters a∗

and b∗, where a∗ = 0.5 × rk(K) + a, b∗ = 0.5 × β′Kβ + b, K is the penalty
matrix, and β are the regression coefficients of the non-parametric covariate
effect.

Gamerman’s IWLS proposals tend to become expensive and unstable if too many
parameters are sampled in one block, because they require (an approximation of)
the second derivative of the log-posterior. Therefore, this dissertation explores
the use of HMC and the No-U-Turn Sampler (NUTS, Hoffman and Gelman,
2014) as an alternative for Bayesian inference in semi-parametric distributional
regression. HMC is designed to simulate the evolution of a Hamiltonian system,
defined by a potential and a kinetic energy function. It makes use of numerical
integration to generate posterior samples, and requires only the first derivative of
the log-posterior. NUTS was developed as a variant of HMC that frees the user
from the duty of hyperparameter tuning (to a great extent). It uses a recursive
algorithm to build a binary tree of possible states, responding to the curvature
of the posterior distribution, and is usually easier to use and more efficient than
HMC and other MCMC methods. Based on the experiments conducted for this
dissertation, we can confirm that NUTS works efficiently for most models in the
context of semi-parametric distributional regression.
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1.3 Probabilistic programming and Bayesian statistics

1.3 Probabilistic programming and Bayesian
statistics

In recent years, the fields of applied and Bayesian statistics have undergone
a fundamental transformation, due to the emergence of new machine learning
techniques, such as automatic differentiation and just-in-time (JIT) compilation.
Probabilistic programming is a novel programming paradigm that applies machine
learning techniques to formulate and estimate models based on probability theory,
with the aim of automating Bayesian inference (van de Meent et al., 2021).
Traditionally, the development of specific inference schemes for new statistical
models has been an important component of research in Bayesian statistics.
This approach is challenged by probabilistic programming, which attempts to
represent an alternative to the “manual” development of model-specific inference
schemes.

Probabilistic programming languages (PPLs) are the tools that implement the
concepts of probabilistic programming, allowing users to represent and reason
about uncertainty in real-world models. The models are defined by assigning
probability distributions to a number of random variables and then, given some
observed data, estimated by approximating the posterior distribution of the
variables. For this purpose, PPLs provide programming constructs such as
random variables and probability distributions for defining (log-)probability
functions of complex models. Most PPLs also provide at least one inference
algorithm, typically a variant of MCMC or variational inference depending on
the specific PPL, for assessing the posterior distribution.

To be more concrete, consider the following simple example of an i.i.d. Gaussian
data vector y with a conjugate normal-inverse-gamma prior for the model
parameters µ and σ2. In Stan (Stan Development Team, 2023), arguably the
most popular probabilistic programming language at the time of writing, the
model can be expressed as follows:

1 data {
2 int<lower=0> N;
3 vector[N] y;
4 }
5
6 parameters {
7 real mu;
8 real<lower=0> sig2;
9 }

10
11 model {
12 sig2 ~ inv_gamma(0.1, 0.1);
13 mu ~ normal(0.0, sqrt(sig2));
14 y ~ normal(mu, sqrt(sig2));
15 }

Assume we observe the data vector y = (−0.084, 0.922, −0.369, −0.334, −2.333).
As the prior is conjugate, we can compute the posterior means µ̂ = −0.366 and
σ̂2 = 1.857 analytically. Stan, however, takes a different approach to estimate
the model using the gradient-based NUTS algorithm for MCMC sampling. It
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1.3 Probabilistic programming and Bayesian statistics

accounts for the constraint on the parameter space, transforms the variance pa-
rameter σ2 to the real line, computes the derivatives of the model log-probability
with respect to the transformed parameters using automatic differentiation,
compiles the whole program and runs it on the observed data. The output from
Stan is the following, confirming the analytic results:

Running MCMC with 4 sequential chains...

Chain 1 finished in 0.0 seconds.
Chain 2 finished in 0.0 seconds.
Chain 3 finished in 0.0 seconds.
Chain 4 finished in 0.0 seconds.

All 4 chains finished successfully.
Mean chain execution time: 0.0 seconds.
Total execution time: 0.7 seconds.

var mean median sd mad q5 q95 rhat ess_bulk ess_tail
logprob -4.14 -3.78 1.13 0.84 -6.51 -3.03 1.00 1361 1631

mu -0.36 -0.36 0.53 0.46 -1.24 0.49 1.00 1537 1373
sig2 1.83 1.32 1.71 0.80 0.53 4.89 1.00 1810 1569

One advantage of probabilistic programming is that different versions of a
model can be estimated with little effort. If, for example, we wanted to assume
independent priors for the model parameters µ and σ2, we could just replace the
statement mu ~ normal(0.0, sqrt(sig2)); on line 13 of the Stan code with mu
~ normal(0.0, 10.0);. The independent priors are non-conjugate, but Stan
would work nonetheless, updating the derivatives automatically and running the
same inference algorithm without requiring further user intervention.

It may not be too surprising that Stan is capable of estimating this simple
model. If, however, a hypothetical PPL existed that worked efficiently for
models of arbitrary complexity, its impact on applied Bayesian statistics would
be tremendous, as it would render the development of model-specific inference
schemes completely unnecessary. This would free resources for research on
model development, diagnosis, interpretation and comparison, hence accelerat-
ing research in Bayesian statistics and its application in different fields. In a
comprehensive overview paper, Gelman et al. (2020) introduce a framework for
a so-called “Bayesian workflow” for real-world data analysis. The development
of model-specific Bayesian inference schemes is not discussed as part of the
workflow, highlighting the relevance of probabilistic programming already at the
present day.

In more abstract terms, probabilistic programming languages allow us to shift our
attention from the computation of the posterior p(θ | y, x) to the question: How
can we formulate useful generative models, i.e. probability distributions p(y, θ | x)
or even p(y, θ, x) over data y and x and parameters θ? How can we interpret
and apply these models to real-world problems in meaningful ways? Gelman
et al. (2020, Section 2.5) describe partially generative models, i.e. probability
distributions p(y, θ | x), as the current standard in Bayesian statistics. These
models are generative on the responses y and the parameters θ, but include
unmodeled data x, e.g. covariates and hyperparameters. On the one hand, they
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Figure 1: Posterior distributions over character sequences encoded in Facebook
captchas from 2017, reproduced from van de Meent et al. (2021) and Le et al.
(2017). The generative probabilistic model in this case is a probability distribution
over the character sequences and the captchas that are generated from them. The
posterior distributions are obtained by conditioning the model on the observed
captchas.

are a step forward from frequentist models p(y | θ, x), which do not define a
probability distribution for the parameters θ, but on the other hand, they can be
extended to fully generative models p(y, θ, x), where a probability distribution
is assumed for all data and parameters that are part of the model.

The range of problems that can be solved with generative probabilistic models
becomes clearer when considering an example (taken from van de Meent et al.
(2021), Section 1.1) outside the domain of classical statistics. Assume we want
to decode the captchas shown in Figure 1. To approach this problem with
probabilistic programming, we need to understand “vision as inverse graphics”
(Kulkarni et al., 2015) and describe the “graphics-generating process” in a
probabilistic program, i.e. we need to write a program that produces captchas
in a similar style as the original ones. Figure 1 shows how conditioning such a
model on an observed captcha yields a posterior distribution over the character
sequences that could have been used to produce the captcha. In contrast, the
standard machine learning approach would require collecting a large number
of captchas, hand-labeling them, and finally designing and training a neural
network to map the captchas back to the original character sequences (Bursztein
et al., 2014).

1.3.1 The Liesel probabilistic programming framework

One important component of this dissertation was the development of the software
package Liesel (see Appendix A). Liesel takes inspiration from probabilistic pro-
gramming, and aims to bring the convenience of probabilistic programming and
machine learning (graph-based model representations, automatic differentiation,
state-of-the-art gradient-based MCMC samplers) to research in applied statistics,
especially on semi-parametric distributional regression and the corresponding
inference algorithms. On top of that, the graph-based model representations used
in Liesel are general enough to accommodate almost any Bayesian model beyond
semi-parametric distributional regression. Liesel is, however, not a probabilistic
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programming language, as it does not define its own syntax (but rather works as
a software framework for Python), and maybe more importantly, it does not aim
to provide a one-size-fits-all inference algorithm, or otherwise try to automate
Bayesian inference.

In contrast to probabilistic programming languages, Liesel can be described
as a platform that assists the applied statistician with the development of
semi-parametric distributional regression and other complex models, as well as
the corresponding inference algorithms. Liesel comprises a graph-based model
building library, an MCMC library with support for modular inference algorithms
combining multiple kernels (both implemented in Python), and an R interface
(RLiesel) for the configuration of semi-parametric regression predictors. Each
component can be used independently of the others, e.g. the MCMC library also
works with third-party model implementations. Using JAX (Bradbury et al.,
2023) as a backend, we can take advantage of automatic differentiation, JIT
compilation, and high-performance computing devices, e.g. tensor processing
units (TPUs).

Although most probabilistic programming languages provide general-purpose
inference algorithms such as NUTS, in practice, they often require non-trivial
model reparameterizations to sample from the posterior efficiently (Stan Devel-
opment Team, 2023, Section 25.7). The case study in Appendix A describes
a situation where NUTS performs quite poorly despite attempts to reparam-
eterize the model. At the same time, the Metropolis-within-Gibbs algorithm
with IWLS and Gibbs updates proposed by Klein et al. (2015b) specifically for
semi-parametric distribution regression suffers from similar issues: It is efficient
for most members of the model class, but in some cases, splitting the parameter
vector into separate blocks deteriorates the mixing of the MCMC chains. Ap-
pendix B on Gaussian process (GP) responses in semi-parametric distributional
regression presents an example of this phenomenon. For these responses, a
new blocking scheme had to be developed to improve the performance of the
sampler.

Liesel combines the advantages of both approaches: From the graph-based model
representation, a JIT-compilable log-probability function can be obtained for
the use with Liesel’s MCMC library Goose. In the simplest case, Goose can
be used to run NUTS on all model parameters simultaneously, resembling the
inference algorithm of Stan and similar PPLs. If required, however, the user can
also configure a model-specific sampling scheme combining multiple parameter
blocks and MCMC kernels. Goose assists the user by providing many popular
MCMC kernels and warmup schemes out-of-the-box. This way, the user can
decide on a case-by-case basis whether a reparameterization of the model or the
development of a specific inference scheme is the most promising approach to
achieve efficient Bayesian inference.

Similar to the flexibility in the development of inference algorithms, Liesel also
provides a modeling library that supports the applied statistician with the con-
figuration of semi-parametric distributional regression and other complex models.
The library is designed around graph-based representations of these models and
builds on well-tested software for semi-parametric regression, especially the mgcv
package for R (Wood, 2023). One particular strength of Liesel’s modeling library
is its ability to customize models at runtime with the so-called graph builder.
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The graph builder can be used to combine existing models, transform parameters,
and add variables and nodes to the graph, e.g to extend the prior hierarchy.
The implementation of the multi-species count model presented in Appendix C
makes extensive use of this feature, combining the self-implemented graph-based
response structure with semi-parametric regression predictors from Liesel’s R
interface.

The features of Liesel’s modeling library correspond closely with Gelman et al.’s
notion of modularization of Bayesian model building, which they describe as
part of the Bayesian workflow. They provide the following examples of modules
or placeholders in a prototypical model building process: “[ . . . ] we model
data with a normal distribution and then replace this with a longer-tailed
or mixture distribution; we model a latent regression function as linear and
replace it with nonlinear splines or Gaussian processes; we can treat a set of
observations as exact and then add a measurement-error model [ . . . ]” (Gelman
et al., 2020, Section 2.2). Longer-tailed and mixture distributions fit naturally
into the distributional regression framework, splines and Gaussian processes
into semi-parametric regression predictors, both of which are well supported by
Liesel. Finally, the graph builder would make it straightforward to integrate
a measurement error model into an existing model, which previously assumed
the covariates as fixed. Gelman et al. note that, traditionally in the statistical
literature, whole models were given specific names, which goes against the
concept of modularization and makes it harder to adapt them to individual use
cases.

In summary, our aims with the Liesel probabilistic programming framework are
the following:

• Bring the convenience of probabilistic programming techniques (automatic
differentiation, HMC and NUTS, sophisticated MCMC warmup schemes)
to the development of semi-parametric distributional regression models
and the corresponding inference algorithms in the field of applied statistics.

• Allow the user to work with flexible graph-based representations of complex
statistical models, which can be combined and modified at runtime. For
semi-parametric distributional regression models, all standard components
are provided out-of-the-box.

• Facilitate model development by providing tools for model visualization,
prior and posterior predictive simulation, as well as MCMC summaries
and diagnostics, partly based on the ArviZ software package (Kumar et al.,
2019).

Liesel runs on Linux, macOS and with some limitations on Windows, and can
be used on laptops, desktop computers and servers. The latest release, currently
version 0.2.3, can be installed from the Python Package Index (PyPI). The source
code is available under the MIT license on GitHub, where bugs can be reported
and new features can be requested (https://github.com/liesel-devs/liesel).
On the project homepage (https://liesel-project.org), we provide the API
documentation and a collection of user tutorials.
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1.4 Applications in Forestry and Ecology
The second goal of this dissertation is to demonstrate that semi-parametric
and distributional regression have relevant applications in the fields of forestry
and ecology, especially when combined with graph-based model representations
and probabilistic programming techniques. Semi-parametric regression methods
have been in use in forestry and ecology for several years, see e.g. Villarini et al.
(2009) and Hawkins et al. (2013). In the remainder of this section, we discuss
applications that have been developed during my time as a PhD student at
the Chair of Statistics and in the Research Training Group (RTG) 2300. The
applications include intra-annual tree growth (Appendix B) and species diversity
in mixed forest stands (Appendix C), where the manuscripts are both part of
this cumulative dissertation. In addition, two applications on growth allocation
of tree seedlings (Bebre et al., 2021b) and small mammal habitat selection
(Bebre et al., 2021a) are presented. The corresponding articles were written with
colleagues from the RTG 2300 but are not part of this dissertation.

1.4.1 Decomposing dendrometer measurements into irreversible
growth and reversible shrinking and swelling

In Appendix B, we propose a statistical method to separate the permanent
and temporary components of measurements of tree stems obtained from high-
resolution circumference dendrometers. The measurements capture the irre-
versible growth of the stems (due to the formation of new cells in the cambium),
as well as the reversible shrinking and swelling (due to changes in the water
content). By embedding Gaussian processes (GPs) with parametric mean and co-
variance functions as response structures in a distributional regression framework
with structured additive predictors, we are able to decompose the measurements
and explain differences between trees and years by covariates. While classical
distributional regression focuses on univariate responses, a number of bivariate
and trivariate distributions are available in the vector generalized additive model
framework (Yee, 2015). Klein and Kneib (2016) discuss Bayesian inference in
multivariate distributional regression with copula-based response distributions.
Extending this line of thought, we demonstrate that distributional regression
is also possible with GPs as an example of more general, continuous response
structures.

Our model is related to regression for functional data as described by Shi and
Choi (2011), Greven and Scheipl (2017) and Scheipl et al. (2015). However, our
approach uses parametric mean functions, where the parameters of the mean
functions represent the distributional parameters and are linked to covariates,
while Greven and Scheipl (2017) focus on non-parametric mean functions using
suitable basis expansions. If prior knowledge on the shape of the mean functions
is available, e.g. that intra-annual tree growth curves follow a sigmoid shape,
our model can be considered as more realistic and stable. In other cases, the
assumption of parametric mean functions might be too restrictive. Finally, while
most literature on functional data is concerned with time-indexed data, our
model can accommodate GPs on different (potentially non-Euclidean) metric
spaces.
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The bamlss package for R (Umlauf et al., 2018) was used to implement the model,
as Liesel was not available in 2018, when the project was started. In hindsight,
the implementation would have been substantially easier with Liesel for at least
two reasons: First, to evaluate the model log-probability, a large number of
correlation matrices needs to be factorized. Unless the range parameters of the
correlation matrices are updated, the Cholesky factors can be cached to improve
the performance of the model. The caching was cumbersome to implement in
bamlss, but would have been straightforward with Liesel, where the Cholesky
factors could have been stored in an auxiliary variable in the model graph.
Second, the standard deviation and range of GPs are often strongly correlated,
resulting in poor mixing of the MCMC chains if they are sampled in separate
blocks. To combine the parameter blocks, a new sampler had to be written from
scratch in bamlss, while with Liesel’s MCMC library Goose, the same could
have been achieved with a small configuration change.

1.4.2 Estimating the effect of tree species and geographic location
on various species diversity indices

Loss of biodiversity is one of the most pressing environmental issues of our
time, as it affects the integrity of ecosystems and hence human well-being, as
emphasized by the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES) in its global assessment report from 2019. At
the University of Göttingen, the RTG 2300 studies the ecosystem of pure and
mixed forest stands of European beech, Norway spruce and Douglas fir. The
cultivation of non-native Douglas fir in managed forests in central Europe is
often considered to mitigate the effects of climate change. To gain a better
understanding of the consequences of introducing Douglas fir into the native
ecosystem, Glatthorn et al. (2023) study the abundance and diversity of multiple
taxa—e.g. fungi, plants, arthropods and small mammals—at eight field sites and
40 forest plots in Lower Saxony in northwest Germany.

As a statistically sounder, more integrated alternative to the two-step analysis
of Glatthorn et al. (2023), we propose the multi-species count model (MSCM,
Appendix C) to assess the relationship between the geographic location, the
composition of tree species and the species diversity at the forest plots of the
RTG. We apply the model to derive different species diversity indices for three
taxa—collembola, small mammals and vegetation. As the model belongs to the
class of Bayesian hierarchical models, we can incorporate structured additive
predictors combining linear, non-linear, random and spatial covariate effects.
We find that, for all three taxa, species richness and Shannon diversity are
consistently higher in southern Lower Saxony than in the north. In contrast, the
effect of tree species on species diversity remains ambiguous. For the vegetation
and small mammals, we observe trends towards greater species diversity if the
proportions of Norway spruce and Douglas fir are increased, while the effect is
reversed for collembola.

The model and the inference algorithm were implemented with Liesel and Goose.
We first developed a graph-based representation of the response structure in
Liesel, which we then extended with structured additive predictors from R (R
Core Team, 2023) and mgcv (Wood, 2023) using RLiesel. As some of the model
parameters are discrete, they could not be sampled with NUTS, and even for the
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continuous parameters, one combined NUTS block proved to be inefficient. For
this reason, we developed a custom Metropolis-within-Gibbs scheme combining
a number of NUTS and Gibbs kernels. The sampling scheme iterates over the
parameters in the model graph from the bottom to the top, so that the highest
level of the prior hierarchy is sampled last. Using Goose, orchestrating the
warmup and posterior phase of multiple kernels as in this application case is
straightforward.

1.4.3 Linking seedling growth to light availability and competition
type in a controlled pot experiment

In the study by Bebre et al. (2021b), we explore the impact of light availability
and competition type on the growth allocation of tree seedlings. While light
availability is critical for seedling establishment, growth and survival, their
response to limited resources and competitive pressure is determined by species-
specific traits, e.g. shade tolerance and rooting depth. To confirm this, we
carried out a controlled pot experiment with three species (European beech,
Norway spruce and Douglas fir). Three light availability levels (10%, 20% and
50%) were applied to pots containing four seedlings, which were grown either
in monocultures or mixtures of two species. Our analysis reveals that with
decreasing light availability, all species allocate more growth to height than
diameter. Significant differences can be observed between conifers and broadleaf
species, however. Taller seedlings tend to allocate less growth to height, as they
already possess a competitive advantage.

For the analysis, we assume a cylindrical model for the seedling stems and
compute the relative growth allocation to height as R = ∆VH/∆V , where ∆VH

is the volume growth due to height growth, and ∆V is the total volume growth
over one growing season. The variable R is constrained to the unit interval, but
as no values on the boundaries are observed, we use a log-normal location-scale
regression model to relate the growth allocation to explanatory variables. The
model is defined as

log(Rijt) = ηijt + εijt, where εijt ∼ N (0, (0.01 + exp(ζijt))2),

and the response variable Rijt is the growth allocation of seedling j in pot i
and year t. The predictor ηijt describes the mean of the response, and the
predictor ζijt the standard deviation of the error term εijt. Random intercepts
for the pots are included in both structured additive predictors, in combination
with fixed effects of species and competitor identity, height and diameter of the
seedling, light availability, year and some interaction terms.

Figure 2 shows how the predicted probability distributions of the relative growth
allocation to height shift towards the right as the light availability decreases.
This indicates that seedlings tend to allocate more resources to height rather than
diameter growth when exposed to less light. In addition to the mean shift, the
growth allocation also shows more variability with decreasing light. Employing a
distributional regression approach in this application is also important for another
reason: The stronger the competition in one pot, the poorer the growth of the
non-dominant seedlings, resulting in an increased standard deviation in that
pot. If, for example, inter-specific competition exceeds intra-specific competition,
pots containing species mixtures are going to have a greater standard deviation,
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Figure 2: Probability distributions of the relative growth allocation to height
depending on light availability and tree species, obtained from the log-normal
location-scale regression model described in Section 1.4.3. All other explanatory
variables are fixed to a representative value.
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which needs to be reflected in the model specification. Moreover, in some pots,
the competition is stronger due to idiosyncrasies in planting or soil, warranting
the use of random intercepts in the predictor for the standard deviation.

1.4.4 Predicting small mammal habitat selection from understory
complexity and mobile laser scans

In the study by Bebre et al. (2021a), we propose an understory complexity
index derived from mobile laser scans (MLS) of forest plots to assess small-
scale habitat preferences of mice and voles. Vegetation cover, downed branches
and lying deadwood provide small mammals with food, shelter and nesting
sites, and thus play an important role in habitat selection. The MLS-derived
understory complexity index effectively captures relevant characteristics of the
forest understory by measuring the variation in height of objects within a 5-meter
radius around the trapping points. We demonstrate that understory complexity
is a strong predictor of small mammal capture probability, suggesting that MLS
could represent a promising technology for investigating habitat preferences of
small mammals, with potential applicability to other species groups.

In order to relate the probabilities of capturing a mouse or vole in a specific
trap to explanatory variables, we use a multinomial logistic regression model
(Fahrmeir et al., 2013, Chapter 6.2) with structured additive predictors (Wood,
2017). The probabilities for mice and voles are compared to the reference category
of observing an empty trap. The predictors for both mice and voles incorporate
fixed effects of understory complexity and time of day, as well as random effects
of trap check and plot, and a spatial effect to account for correlation within
the plots. The application shows (1) that two predictors for mice and voles can
be combined in one model, a key feature of distributional regression, (2) that
structured additive predictors can integrate different types of covariate effects,
in this case fixed, random and spatial effects, and (3) that the estimation of
complex semi-parametric regression models with a high number of parameters is
feasible, as the within-plot correlation is modeled with Gaussian Markov random
fields for 14 forest plots × 64 trapping points ≈ 900 regression coefficients.

The predicted capture probabilities, as derived from the multinomial logistic
regression model, are presented in Figure 3. The strong positive relationship
between understory complexity and capture probabilities is evident. Moreover,
the capture probabilities vary strongly between mice and voles, sites, and time
of day.
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Figure 3: Stacked probabilities of capturing a mouse or vole depending on the
understory complexity, site and time of day, obtained from the multinomial
logistic regression model described in Section 1.4.4. For all other explanatory
variables, the average over the full dataset is used.
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2 Summaries of the manuscripts
The manuscripts that are part of this dissertation are in various ways related
to the semi-parametric distributional regression framework described in the
introduction, spanning topics from the development of modular, reusable and
reliable research software in applied statistics and semi-parametric regression to
extensions of the model class. The model extensions are implemented via novel
response structures, most of which are motivated by applications in the fields of
forestry and ecology.

This section contains short summaries of each of the manuscripts that may be
found in the appendix of the dissertation. Some additional information on the
context of the projects is also provided. Finally, in fulfillment of the requirements
for a cumulative dissertation at the Faculty of Business and Economics of the
University of Göttingen, my contributions and the contributions of all co-authors
are declared in full detail.

Liesel: A Probabilistic Programming Framework for
Developing Semi-Parametric Regression Models and
Custom Bayesian Inference Algorithms
Joint work with Paul F.V. Wiemann and Thomas Kneib.
Published on arXiv: https://doi.org/10.48550/arXiv.2209.10975.
See Appendix A.

Liesel is a probabilistic programming framework focusing on but not limited to
semi-parametric regression. It comprises a graph-based model building library, a
Markov chain Monte Carlo (MCMC) library with support for modular inference
algorithms combining multiple kernels (both implemented in Python), and an R
interface (RLiesel) for the configuration of semi-parametric regression models.
The development of the Liesel software was initiated by PW and me during
our PhD studies in 2018. In November 2019, the grant proposal “LIESEL – A
Software Framework for Bayesian Semi-Parametric Distributional Regression”,
co-authored by PW and me, was submitted to the German Research Foundation
(DFG) by TK. The proposal was accepted as grant KN 922/11-1 in May 2021,
primarily funding one postdoc for three years. Since April 2022, PW and me
are developing the Liesel software collaboratively with two PhD students at the
Chair of Statistics of TK. The latest version, v0.2.3 at the time of writing, was
released in March 2023.

The article “Liesel: A Probabilistic Programming Framework for Developing
Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms”
was published on arXiv in September 2022 and is currently being updated for a
submission to the Journal of Statistical Software. It describes all components
of the Liesel software framework in depth, emphasizing that they can be used
independently of each other, e.g. the MCMC library also works with third-party
model implementations. With Liesel, we aim to provide a platform for efficient
and reliable statistical research on complex models and estimation algorithms.
The typical workflow with Liesel is the following: (1) development of a model
graph as a baseline, e.g. using RLiesel, (2) manipulation of the model graph
to incorporate new research ideas using Liesel’s modeling library, and (3) fully

29

https://doi.org/10.48550/arXiv.2209.10975


2 Summaries of the manuscripts

Bayesian inference with the MCMC library, using either a default or user-defined
algorithm. Several prominent MCMC kernels such as the No U-Turn Sampler
(NUTS) are provided out-of-the-box and can be combined with self-written
kernels to new powerful sampling schemes. Liesel also comes with various tools
for summarizing, visualizing and diagnosing MCMC chains. Using JAX as a
backend, we can take advantage of modern machine-learning technology such as
automatic differentiation, just-in-time (JIT) compilation and high-performance
computing devices, e.g. tensor processing units (TPUs).

My contributions to the software and the article are the following:

• I designed and developed the Liesel software framework together with PW.
I am the main developer of Liesel’s modeling library and the R interface,
and contributed parts of the MCMC library.

• I co-supervised two PhD students and two student assistants, who were
involved in the development of the Liesel software between 2019 and
2023. Together with PW, I established and coordinated the agile software
development process of the Liesel team.

• I contributed to the grant proposal “LIESEL – A Software Framework for
Bayesian Semi-Parametric Distributional Regression”, which was accepted
by the DFG, providing a significant amount of funding for the development
of the Liesel software for three years.

• I conceptualized and wrote major parts of the manuscript “Liesel: A
Probabilistic Programming Framework for Developing Semi-Parametric
Regression Models and Custom Bayesian Inference Algorithms”, in partic-
ular the section on Liesel’s modeling library, the R interface and the case
study.

• I designed, implemented and evaluated the results of the case study com-
paring the performance of different MCMC sampling schemes on a semi-
parametric distributional regression model.

• I created the entity-relationship and sequence diagrams using the Mermaid
software, as well as the model graphs using Graphviz and the figures for
the case study using R and ggplot2.

PW and me contributed equally to the development of the Liesel software and
the manuscript, both of which evolved through numerous productive discussions
between the two of us. PW is the main developer of Liesel’s MCMC library,
contributed to the modeling library, and co-supervised the PhD students and
student assistants on the Liesel team. He wrote parts of the grant proposal
and the manuscript, in particular the introduction and the section on the
MCMC library. TK wrote major parts of the grant proposal, found collaboration
partners and application projects for the Liesel team, and assisted us with
discussions throughout the project. All authors revised and edited the final
manuscript.
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Modelling Intra-Annual Tree Stem Growth with
a Distributional Regression Approach for Gaussian
Process Responses
Joint work with Nadja Klein and Thomas Kneib.
Published in the Journal of the Royal Statistical Society: Series C (Applied
Statistics): https://doi.org/10.1093/jrsssc/qlad015.
See Appendix B.

In this article, we develop a novel model class within the semi-parametric distri-
butional regression framework, using Gaussian processes (GPs) with parametric
mean and covariance functions as response structures. The approach is moti-
vated by an application to measurements from high-resolution circumference
dendrometers, capturing both the irreversible growth and the reversible shrinking
and swelling due to the water content of a tree stem. Our method can be used
to decompose the dendrometer measurements into a permanent and a temporary
component, and to explain differences between the trees and years by covariates.
The covariate effects can be modeled in a flexible fashion with structured additive
predictors comprising linear, non-linear, random and spatial effects. Different
choices for the mean and covariance functions of the GPs, connections with other
statistical model classes, and Markov chain Monte Carlo (MCMC) inference are
discussed in the article. Finally, the efficiency of the proposed sampling scheme
is evaluated and two interesting model extensions are illustrated in an extensive
simulation study.

My contributions to the article are the following:

• I developed and formalized the idea for the model class within the semi-
parametric distributional regression framework.

• I developed the MCMC sampling scheme building on previous work of NK
and TK, and derived the required mathematical quantities.

• I implemented the model class and the MCMC sampling scheme, including
the documentation and the unit tests, in the new bamlssGP package for R,
which depends on the bamlss package.

• I designed, implemented and evaluated the results of the simulation study
with three scenarios, each focusing on different aspects of the MCMC
sampling scheme and the model class.

• I developed the idea for the application on intra-annual tree stem growth,
implemented it for a dataset of 85 trees and two growing seasons, and
interpreted the estimation results in their ecological context.

• I illustrated the results of the simulation study and the application graphi-
cally using the ggplot2 package for R and the software gnuplot.

• I published the computer code for the simulation study, the application
and the graphics on GitHub to follow the best practices of open science
and to make the study reproducible.

• I wrote most of the manuscript and all of the supplementary material.

NK contributed to the structure and framing of the article, and assisted me with
the mathematical formulation of the model class and the inference algorithm.
TK wrote the section on mixed models as a related model class and parts of
the discussion section. He also assisted me with the design of the simulation
scenarios and with discussions throughout the project. All authors revised and
edited the final manuscript.
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A Structured Additive Multi-Species Count Model
for Assessing the Relation Between Site Conditions
and Species Diversity
Joint work with Jonas Glatthorn and Thomas Kneib.
Unpublished manuscript.
See Appendix C.

In the final manuscript, we propose the multi-species count model (MSCM),
a model to assess the relationship between the environmental conditions at a
number of field sites and different species diversity indices derived from species
counts at the sites. The model is motivated by a meta-analysis of data from the
Research Training Group (RTG) 2300, aiming to partially replicate the work of
Glatthorn et al. (2023). The RTG 2300 is a research project conducted in Lower
Saxony, northwest Germany, studying the impact of admixed Norway spruce and
Douglas fir on the ecosystem of European beech forests. As the MSCM belongs
to the class of Bayesian hierarchical models, structured additive predictors can
be incorporated to identify the effect of the coniferous tree species on biodiversity,
while accounting for the spatial correlation of the field sites.

We also describe the MSCM from a theoretical perspective, draw connections
with several related model classes such as zero-inflated Poisson regression and
multi-species occupancy models (MSOMs), and discuss a few interesting model
extensions and generalizations. The model and the proposed MCMC algorithm
for fully Bayesian inference are implemented in Python using the probabilistic
programming framework Liesel and its MCMC library Goose. Therefore, the
project also serves as a proof a concept and one of the first complex use cases
of Liesel and Goose. The performance of the Goose-based inference algorithm
is evaluated in a simulation study.

My contributions to the article are the following:

• I developed and formalized the idea for the model class within the semi-
parametric distributional regression framework.

• I implemented the model class and the MCMC sampling scheme in Python
using the probabilistic programming framework Liesel.

• I designed, implemented and evaluated the results of the simulation study
with three scenarios.

• I investigated the relationship of the model class with other statistical and
ecological models, e.g. zero-inflated Poisson regression and multi-species
occupancy models.

• I applied the model class to three different taxa, which were surveyed on
the 40 experimental plots of the RTG 2300, and interpreted the estimation
results in their ecological context.

• I illustrated the results of the simulation study and the application graphi-
cally using the ggplot2 package for R.

• I wrote the complete manuscript.

JG contributed the pre-processed data from the RTG 2300 and discussed the
ecological context and interpretation with me. TK contributed to the structure
and framing of the article, assisted me with the design of the simulation scenarios
and the application, and with discussions throughout the project. All authors
revised and edited the final manuscript.
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3 Conclusion and outlook
This cumulative dissertation presents three manuscripts on semi-parametric
distributional regression, all in a Bayesian context, but approaching the topic from
different angles, focusing on software, models and applications. In Appendix A,
we present the probabilistic programming framework Liesel, which allows the
applied statistician to express Bayesian models using a graph-based, “hackable”
model representation, and to develop custom MCMC algorithms from building
blocks such as HMC, NUTS and Gibbs kernels, as well as sophisticated warmup
schemes for hyperparameter tuning. RLiesel, the R interface of the framework,
can be used to configure (and later extend) semi-parametric distributional
regression models. Using JAX as a backend, Liesel can take advantage of state-
of-the-art machine learning technology, e.g. automatic differentiation, just-in-time
compilation and tensor processing units.

Furthermore, we introduce two novel response structures within the distributional
regression framework. In Appendix B, we use Gaussian processes (GPs) with
parametric mean and covariance functions to model intra-annual tree stem
growth, decomposing high-resolution dendrometer measurements into permanent
growth and temporary shrinking and swelling. Various properties of both
measurement components are explained by semi-parametric regression predictors
based on covariates such as tree species and diameter at breast height (DBH). In
Appendix C, we propose the multi-species count model (MSCM) for assessing the
relationship between site conditions and species diversity. The model is applied
to data from the Research Training Group (RTG) 2300, studying the effect of
European beech, Norway spruce and Douglas fir on different species diversity
indices and taxa, while accounting for spatial correlation with semi-parametric
regression predictors.

One of the key achievements of this dissertation is re-imagining the distributional
regression framework by extending the spectrum of possible response distribu-
tions and response structures. GAMLSS were originally designed for univariate
responses, although they have been extended to bivariate and trivariate distribu-
tions. This dissertation considers further generalizations of response structures
in GAMLSS, preferably expressed as subgraphs of semi-parametric distributional
regression models. This perspective is in line with the concept of modularization
of model building, as described by Gelman et al. (2020, Section 2.2) as part
of the Bayesian workflow. In fact, probability distributions are just simple
statistical models, and vice versa, many statistical models can be interpreted as
probability distributions. The linear regression model (1), for example, defines a
probability distribution D with the parameters θ = (β0, β1, . . . , βk, σ2) for the
data y. In this sense, linear regression is not a closed model, but can itself
be considered as a response distribution, i.e. a module, in the distributional
regression framework (2). The concept of “regression on regression coefficients”
has been explored before, e.g. in the multi-level structured additive regression
model by Lang et al. (2014), but the argument here is more general: To extend
the distributional regression framework, we can think beyond what we usually
imagine a probability distribution to be. This allows us to incorporate response
structures such as GPs or the MSCM into the distributional regression frame-
work, opening up a variety of possibilities for interesting applications in different
fields.
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In the remainder of this section, we outline avenues for the continuation of
the projects presented in this dissertation. We start with a discussion of the
probabilistic programming framework Liesel, for which we plan to extend and
improve the software itself, and to implement application cases based on the
existing software. The application cases include the migration of the GP responses
to Liesel, which would facilitate the development of further model extensions,
e.g. to non-Gaussian stochastic processes. Finally, generalizations of the MSCM,
which is already implemented in Liesel, are discussed, especially to allow for
meta-studies across different taxa.

Further development and applications of Liesel and Goose

The development of the probabilistic programming framework Liesel will be
continued in the coming years. Our software depends on a number of libraries
that are under active development. API updates, new features and other changes
in these libraries need to be reflected in Liesel. Currently, a team of four
developers at the University of Göttingen and Texas A&M University is actively
working on and with Liesel. The DFG grant KN 922/11-1 is funding parts of
the development of Liesel until March 2025. With two PhD students working on
Liesel-related topics, there also is a strong research interest in extensions and
improvements of the software.

With regard to the software itself, we are planning to extend Liesel with more
model components and new MCMC algorithms. As Liesel’s technology stack
makes it straightforward to implement gradient-based methods, we are consider-
ing to add stochastic gradient MCMC (SG-MCMC) methods in the near future.
SG-MCMC is a novel class of Monte Carlo algorithms that scales well to models
with a large number of observations. Compared to traditional MCMC meth-
ods, SG-MCMC reduces the computational cost of Bayesian inference by using
subsamples of the original dataset. Another priority will be the development of
an enhanced interface between Liesel and Goose, i.e. the modeling and MCMC
library, which will reduce the effort required to configure a Goose inference
scheme for a Liesel model.

Several applied projects have already been realized with Liesel to date, e.g. a multi-
level model for variance partitioning on different spatial scales by Marques et al.
(2023), who used an early version of Goose for the project. The model is designed
for data from forest inventories that is collected on a fine spatial scale within forest
plots, and on a coarse scale between plots, similar to the experimental design of
the Research Training Group (RTG) 2300 described in Appendix C. For this kind
of data, it is plausible to assume a spatial correlation both within and between
plots, which the model by Marques et al. can account for. Another example
of a use case of Liesel and Goose is the Python package liesel-bctm (https:
//github.com/liesel-devs/liesel-bctm) by Johannes Brachem, implementing
Bayesian conditional transformation models (CTMs) and the corresponding
MCMC samplers. The liesel-bctm package is based on previous work of
Carlan and Kneib (2022) and Carlan et al. (2023).

More ideas for Liesel and Goose are described in the project proposal of the
DFG grant KN 922/11-1, e.g. in the work packages on random scaling effects,
distributional structural equation models and joint modeling. The proposal also
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outlines how Liesel’s graph builder could be used to combine existing models
to correct for dependent and non-Gaussian measurement errors of covariates, a
requirement of increasing importance as many recent models combine data from
different sources. Finally, Liesel could serve as a basis for the implementation of
deep distributional regression models, embedding neural networks into graph-
based representations of distributional regression models. For this purpose, a
broad range of deep learning libraries for JAX could be wrapped and combined
with the existing model components of Liesel. The deep distributional regression
approach allows us to combine the predictive strength of neural networks with
regression techniques beyond the mean, taking into account parameters such as
the scale or shape of the response distribution.

Non-Gaussian stochastic processes in distributional regression

The GP responses were originally implemented in R based on the bamlss package.
As discussed in Section 1.4.1, the implementation of the software would have
been substantially easier with Liesel and Goose. Several missing features would
also be more straightforward to add to the software using Liesel, e.g. support
for arbitrary mean and covariance functions beyond the ones discussed in the
manuscript, which would require some form of automatic differentiation. Thanks
to JAX’ just-in-time compilation, we would also expect a significant speed-up of
Liesel over bamlss. The improved performance and the detailed configuration
options of Goose would allow us to explore new, potentially more efficient
sampling schemes with less effort than before.

From a statistical perspective, the motivation of the model was the analysis of
intra-annual tree stem growth, but the flexibility and versatility of the approach
is emphasized throughout the manuscript and the simulation study. To explore
the full potential of the model class in various fields of application, other choices
of index sets, as well as mean and covariance functions of the GPs need to be
studied. Finally, further generalizations of the response structures are possible
using non-Gaussian stochastic processes. These stochastic processes could either
be defined by wrapping GPs with pointwise non-Gaussian distributions, or by
considering different types of stochastic processes, e.g. point processes such as
Poisson or Cox processes.

Optimizing the multi-species count model for meta-studies

Due to its low data requirements, the MSCM is a useful model for meta-studies
across various taxa that are sampled according to different protocols. In these
cases, repeated surveys at each site as required by multi-species occupancy
models (MSOMs) are not always available. Based on the MSCM as described in
the manuscript, this sort of meta-study involves the estimation of one model per
taxon, before the results can be summarized over the taxa. To further strengthen
the model’s aptitude for meta-studies, we are planning to extend the model
graph so that different taxa can be combined in one MSCM. This way, summary
statistics over the taxa could be obtained from a single, integrated model, and
assumptions about how the effects of the environmental factors are correlated
across the taxa could be expressed via appropriate priors.

35



3 Conclusion and outlook

Another option for extending the MSCM would be adding a second structured
additive predictor for the expected abundances, potentially including a func-
tional relationship between the second and the first predictor for the occupancy
probabilities. Assuming a functional relationship between the predictors seems
plausible, as the same environmental factors that drive the occupancy proba-
bilities are also likely to affect the expected abundances. Finally, the response
structure of the MSCM combining a count distribution for the total number of
observations at a site and a multinomial distribution over the species deserves
further attention, and could be compared to independent zero-inflated count
distributions for each site and species. As shown in the manuscript, if the total
number of observations follows a Poisson distribution, the MSCM is equivalent
to zero-inflated Poisson regression. For other count distributions, when an exact
mathematical equivalence does not hold, a comparison based on simulations and
real-world data would be worthwhile to assess which of the models has the better
explanatory and predictive performance.
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ABSTRACT

Liesel is a probabilistic programming framework focusing on but not limited to semi-parametric
regression. It comprises a graph-based model building library, a Markov chain Monte Carlo (MCMC)
library with support for modular inference algorithms combining multiple kernels (both implemented
in Python), and an R interface (RLiesel) for the configuration of semi-parametric regression models.
Each component can be used independently of the others, e.g. the MCMC library also works with
third-party model implementations. Our goal with Liesel is to facilitate a new research workflow in
computational statistics: In a first step, the researcher develops a model graph with pre-implemented
and well-tested building blocks as a base model, e.g. using RLiesel. Then, the graph can be manipu-
lated to incorporate new research ideas, before the MCMC library can be used to run and analyze
a default or user-defined MCMC procedure. The researcher has the option to combine powerful
MCMC algorithms such as the No U-Turn Sampler (NUTS) with self-written kernels. Various tools
for chain post-processing and diagnostics are also provided. Considering all its components, Liesel
enables efficient and reliable statistical research on complex models and estimation algorithms. It
depends on JAX as a numerical computing library. This way, it can benefit from the latest machine
learning technology such as automatic differentiation, just-in-time (JIT) compilation, and the use of
high-performance computing devices such as tensor processing units (TPUs).

Keywords Bayesian models · Markov chain Monte Carlo · probabilistic graphical models · Python · R · semi-parametric
regression

1 Introduction

In this article, we introduce Liesel,2 a probabilistic programming framework for the development and estimation of a
broad range of Bayesian models in Python. The framework, named after a fountain in its birth city Göttingen, Germany,
allows the user to represent statistical models as directed acyclic graphs (DAGs) and to implement tailor-made Markov

∗Hannes Riebl and Paul F.V. Wiemann contributed equally to the development of the Liesel software and to this preprint.
2https://liesel-project.org

ar
X

iv
:2

20
9.

10
97

5v
1 

 [
st

at
.C

O
] 

 2
2 

Se
p 

20
22

https://orcid.org/0000-0003-2416-8732
https://orcid.org/0000-0003-1901-0295
https://orcid.org/0000-0003-3390-0972
https://liesel-project.org


Liesel: Probabilistic Programming Framework A PREPRINT

RLiesel: Configuration/visualization of a 
semi-parametric regression model as a base model

Liesel-Model: Modification of the model graph 
(parameter transformations, prior hierarchy, ...)

Goose: Configuration/evaluation of a sampling scheme 
combining multiple kernels (including user-defined kernels 

and warm-up schemes)

Conversion to Python
with reticulate

PyMC model User-defined, JAX-compatible 
log-probability function

User-defined base model with 
self-written variables and nodes

Figure 1: The standard workflow using the Liesel framework. When working with semi-parametric regression models,
the first step is usually to create a Liesel model with the help of RLiesel. Then, the model graph is manipulated
to accommodate newly developed features, and finally, Goose is used to develop an MCMC algorithm combining
standard components like NUTS with user-defined kernels if required. The framework is, however, very flexible.
The Liesel-Model library is not limited to semi-parametric regression models but can handle any Bayesian network
expressed as a DAG. Goose communicates with the model via an interface which is also available for PyMC models or
even self-written, JAX-compatible model representations.

chain Monte Carlo (MCMC) algorithms. Liesel provides many default components for these tasks, which are easy to
extend and liberate the researcher from the time-consuming duty of re-implementing the basic components of their
models and inference algorithms, giving them the opportunity to focus on the novel aspects of their research. This
way, Liesel meets the requirements of many computational statisticians working on new methods or extensions of
existing ones. Currently, the framework is particularly useful for developing semi-parametric regression models, since
it includes all components required for this model class, but it can easily be extended beyond these models.

The Liesel framework consists of three main components: Goose, an MCMC library, Liesel-Model, a class system for
representing statistical models as DAGs, and RLiesel, an R interface to conveniently set up semi-parametric regression
models. The components and their relationships are illustrated in Figure 1. A standard workflow with Liesel involves
the following steps: First, a semi-parametric regression model is configured with RLiesel, returning a Liesel-Model
object. Second, the Liesel-Model object is modified for the research question at hand if required. Third, MCMC
estimation is performed with Goose, potentially with different sampling schemes. In the end, Goose’s utility functions
can be used for model and estimation diagnostics.

Before we proceed to describe the three components of Liesel in more detail, we would like to point out that Liesel is
by no means limited to semi-parametric regression models. In fact, the Liesel-Model library can be used to represent
any model falling into the category of Bayesian networks, including, for example, regression models, spatial models,
change-point models, Gaussian process models or Bayesian neural networks. For this rich model class, which may
involve discrete model parameters, there is, to the best of our knowledge, no one-size-fits-all MCMC algorithm. For this
reason, Goose encourages the researcher to use their expertise to design an optimal sampling scheme for their specific
problem by providing a set of building blocks, which can be used to extend and replace standard MCMC algorithms.
Moreover, Goose is not limited to the Liesel-Model library. As indicated in Figure 1, the Liesel framework is designed
to be modular, which allows Goose to be agnostic about the concrete model implementation. Goose can also be used to
estimate PyMC models or user-defined, JAX-compatible model implementations.

1.1 Software components

Liesel-Model The model building library of Liesel (called Liesel-Model in this article to distinguish it from the Liesel
probabilistic programming framework as a whole) facilitates the development of complex statistical models allowing
the user to represent them as directed acyclic graphs (DAGs). DAGs are easy to reason about and to manipulate. In
Liesel, each node of a DAG represents either data or a computation. The edges indicate data flow or, put differently,

2



Liesel: Probabilistic Programming Framework A PREPRINT

how the value of a node depends on the other nodes. Hence, the relationship between the model parameters and the
conditional distributions of the model naturally translates to a DAG.

Liesel provides methods to alter, remove or replace subgraphs of a model. This way, the user can extend or modify
a given model, for example, a semi-parametric regression model created with RLiesel. More specifically, a prior in
the model hierarchy can be replaced by updating the corresponding subgraph. This feature makes Liesel especially
well-suited for the development of new statistical models, and in combination with RLiesel, it can simplify research on
semi-parametric regression models significantly.

Goose Liesel’s MCMC library is called Goose. To perform MCMC estimation, one needs to construct a Markov
chain with an equilibrium distribution that matches the target distribution, i.e. the posterior distribution. The chain is
simulated for a given certain number of iterations, and the draws from the chain are used to approximate the posterior
distribution. While a valid MCMC algorithm is mathematically guaranteed to converge to the posterior distribution, the
convergence can be slow in practice. For this reason, most MCMC algorithms need to be tuned, i.e. they need to learn
some hyperparameters during a warmup phase to work efficiently.

Goose supports the user in building an MCMC algorithm for their estimation target by offering a broad range of
well-tested kernels that can be combined in flexible ways to construct problem-specific MCMC algorithms. In this
context, a kernel is an algorithm to transition a part of the parameter vector to a new state within an MCMC iteration.
Most kernels in Goose also implement an automatic tuning procedure, which guarantees a high computational efficiency
without requiring a manual adjustment of the kernel hyperparameters. The user can combine standard kernels like the
No-U-Turn Sampler (NUTS) provided by Liesel with self-implemented ones, e.g. specific Gibbs updates. Of course,
Goose also supports using a single kernel like NUTS for the full parameter vector as in Stan.

RLiesel The RLiesel package for R is built on top of the Liesel-Model library. It can be used to configure semi-
parametric regression models with the convenient R formula notation. The models are represented as DAGs using the
Liesel node and model classes and can be manipulated to incorporate new developments, e.g. new predictor components
or prior hierarchies. Finally, the user can take advantage of a default sampler setup or build a custom MCMC algorithm
for their model using Goose. RLiesel is based on the reticulate package, which allows for a seamless integration of
Python and R. With RLiesel, we strive to make Liesel accessible to the statistics community, where R is the predominant
language, and to allow for the integration of Liesel with many popular R-based post-sampling utilities.

RLiesel does not only demonstrate how Liesel can be used to implement complex statistical models, but it can also
serve as a solid basis for further methodological research on the popular model class of semi-parametric regression.
Semi-parametric regression has received a lot of attention among applied statisticians in recent years and is closely
related to the concepts of structured additive distributional regression (Klein et al., 2015a) and generalized additive
models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005). These models allow the researcher
to explore complex relationships between explanatory and response variables including linear, non-linear, random and
spatial effects. Many of them are also multi-predictor models, where different features of the response distribution
such as variance, skewness or kurtosis can be related to covariate information. Due to its generality, semi-parametric
regression can be understood as an “umbrella” model class comprising many interesting models, which pose a broad
range of statistical and computational challenges. RLiesel and Liesel allow the statistician to address these issues with
a set of well-tested building blocks, an intuitive graph-based model representation and API, and a modular library
for MCMC inference. This is particularly important due to the complexity of the model class, which would make an
implementation from scratch a very time-consuming task.

1.2 Related software

Most statistical software packages for Bayesian inference can be classified into software for a specific model class on
the one hand and general probabilistic programming languages (PPLs) on the other hand. Liesel and RLiesel try to
cover a middle ground between these two approaches: RLiesel facilitates the definition of semi-parametric models,
while Liesel-Model and Goose are capable of expressing and estimating a broad range of statistical models. Hence,
Liesel has similar capabilities as general-purpose PPLs like Stan (Stan Development Team, 2022), JAGS (Plummer,
2022), NIMBLE (the successor to BUGS, de Valpine et al., 2017) or PyMC (Salvatier et al., 2016). Unlike these
software projects, however, Liesel features a graph representation allowing for the modification of the model before
estimation. Furthermore, with Liesel, users have full control of the estimation algorithm. Stan and JAGS provide
only very limited options to customize the MCMC algorithm. In Stan, NUTS or HMC can be used, or alternatively
a mean-field variational inference method. Certain parameters of the samplers, e.g. the initial step size or the target
acceptance rate, can be configured. However, block-based sampling is not possible and user-implemented samplers
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cannot be integrated. Moreover, discrete parameters cannot be modeled with Stan, since it relies on gradient-based
samplers.

Compared to Stan, NIMBLE allows for a more detailed configuration of the MCMC algorithm. For example, the
default samplers can be reordered or replaced, even with user-defined samplers. In contrast to Liesel, NIMBLE misses
capabilities for automatic differentiation and consequently does not provide any gradient-based samplers. Moreover,
NIMBLE restricts the compilation of user-defined functions to a subset of the R programming language, which makes
third-party libraries difficult to use, while Liesel can wrap code of other JAX-based libraries. PyMC also offers some
options to customize the MCMC algorithm but does not go as far as Liesel, and similar to other general-purpose PPLs,
does not feature a mutable model object.

For complex models or large datasets, general-purpose PPLs may be slow or unable to sample the model at all. In these
situations, model-specific software remains important, and modeling frameworks with customizable MCMC algorithms
like Liesel or PyMC may serve as a basis for the implementation of model-specific solutions.

Its flexible model building library sets Liesel apart from other more specialized software. Similar to brms (Bürkner,
2017), which provides an interface for various types of multi-level models in Stan, RLiesel provides an interface for
semi-parametric regression models in Liesel. RLiesel’s features are comparable to other software in the field like
mgcv (Wood, 2022), gamlss (Stasinopoulos et al., 2017), GJRM (Marra and Radice, 2022), BayesX (Brezger et al.,
2005) and bamlss (Umlauf et al., 2021). Its approach is different, however, in that the intermediate graph-based model
representation can be modified and extended, allowing for the implementation of new models that are derived from a
base model. BayesX was one of the first software packages for fast MCMC inference in semi-parametric regression
models with spatial covariate effects. The software cannot be extended easily, however, restricting the user to the
pre-defined predictor components (i.e. linear, non-linear, spatial covariate effects, etc.). bamlss is another Bayesian
software that allows the user to define their own predictor components, which need to be linear in a basis expansion
of the covariates, and the corresponding regression coefficients need to follow a (potentially degenerate) multivariate
normal prior. In that regard, the model graph of Liesel is more expressive and more flexible. The inference procedure in
bamlss can be configured with the optimizer and sampler arguments, but a comprehensive collection of MCMC
kernels as in Goose is missing. Automatic differentiation and high-performance computing hardware are also not
supported in bamlss. Finally, the packages mgcv and GJRM are not primarily focused on Bayesian inference, although
mgcv offers an interface to JAGS using the jagam() function. In contrast to Liesel, both packages have an exclusive
focus on semi-parametric regression using basis function approaches.

1.3 Technology stack

Liesel uses a modern machine learning technology stack for the efficient implementation of the model graph and the
MCMC kernels. In particular, Liesel depends on the Python packages NumPy (Harris et al., 2020), JAX (Bradbury
et al., 2022), BlackJAX (Lao and Louf, 2022) and TensorFlow Probability (Dillon et al., 2017). JAX, a library for
scientific computing with support for automatic differentiation (AD) and just-in-time (JIT) compilation, is of particular
importance for Liesel, since its features enable the implementation of computationally efficient inference algorithms.
For example, when using reverse-mode AD, the value and the gradient of the log-posterior of a model can both be
evaluated in the same amount of time – up to a constant. Furthermore, JAX supports using CUDA-enabled graphics
cards for its computations, and running them on even more powerful tensor processing units (TPUs) or networks of
those.

Liesel runs on Linux, macOS and with some limitations on Windows,3 and can be used on laptops, desktop computers
and servers. Liesel’s development is hosted on GitHub,4 where bugs can be reported and new features can be requested.
The latest release of Liesel, 0.1.3 at the time of writing, is also available on the Python Package Index (PyPI).

The remainder of this article is organized as follows: In Section 2, the Liesel-Model library is discussed. Section 3
describes Liesel’s MCMC library Goose, its main design goals, and the interfaces that allow the user to implement their
own MCMC kernels and warmup schemes. RLiesel, the R interface for semi-parametric and distributional regression is
covered in Section 4 together with some theoretical background on these model classes. Finally, Section 5 describes a
case study showing how the components of the Liesel framework can be used together to evaluate different MCMC
algorithms on a semi-parametric regression model. The article concludes with a discussion in Section 6.

3JAX, one of Liesel’s dependencies, does not provide official builds for Windows. However, JAX can either be built by the user
or run using the Windows Subsystem for Linux (WSL).

4https://github.com/liesel-devs/liesel

4

https://github.com/liesel-devs/liesel


Liesel: Probabilistic Programming Framework A PREPRINT

2 Liesel: Developing probabilistic graphical models

Please note: The model building library of Liesel is going to receive a major update in version 0.2, which we plan to
release in fall 2022. The arXiv preprint will be updated after the release to reflect the changes in version 0.2. For this
reason, we focus on the abstract concepts and do not present any code examples in the current version of this section.

The model building library of Liesel allows the user to express a broad range of (typically Bayesian) statistical models as
probabilistic graphical models (PGMs). Particular attention is paid to the representation of semi-parametric regression
models, which are described in Section 4, and for which a number of convenience functions are provided. In general,
however, almost any statistical model can be expressed with Liesel. The PGM representation allows for a convenient
factorization of the log-probability of the model (or the unnormalized log-posterior in a Bayesian context). It is also the
basis for the user interface that can be used to update the nodes in a natural way and to modify the structure of the graph
(e.g. by adding or removing nodes or edges).

2.1 Probabilistic graphical models and directed acyclic graphs

A PGM uses a graph to express the conditional dependence and independence between a set of random variables. For
Bayesian models, one typically relies on directed acyclic graphs (DAGs) to represent hierarchical structures without
any loops or circular dependencies, permitting the factorization of the joint probability into a product of conditional
probabilities. More precisely, if 𝑀 = (𝑋, 𝐸) is a DAG with nodes 𝑥 ∈ 𝑋 representing random variables and edges
𝑒 ∈ 𝐸 representing conditional dependencies between them, the joint probability of 𝑀 can be written as∏

𝑥∈𝑋
𝑝
(
𝑥 | Inputs(𝑥)

)
,

i.e. the product of the probabilities of the individual nodes conditional on their inputs (or parents). The inputs of a node
𝑥 ∈ 𝑋 are all nodes 𝑥 ′ ∈ 𝑋 for which 𝑥 and 𝑥 ′ are not conditionally independent given the other nodes of the model.

2.2 Nodes and models in Liesel

Liesel uses Python classes to implement and enrich the mathematical concept of a node in a PGM. A node has two
important properties: a value and a log-probability, which is the evaluation of the log-probability density or mass
function of the node at its value. To keep both properties in sync, i.e. to avoid an inconsistent state, the node class
comes with methods for setting its value and updating its state. The model class, on the other hand, represents a PGM
and can hold a number of nodes. It provides methods for the evaluation of the model log-probability and for updating
the nodes in a topological order. The model graph can also be visualized conveniently.

The nodes are able to cache their value and log-probability, meaning that the model graph is stateful. The results of
expensive mathematical operations can be stored directly in the graph, enabling performance improvements for MCMC
sampling, especially if multiple parameter blocks are used. If required, the user can implement new types of nodes and
models due to the modular and extensible design of Liesel. More details on the key features of the nodes and models
are provided in the following paragraphs.

Nodes Liesel extends the concept of a node in a PGM, where nodes are used to represent random variables, and adds
a distinction between so-called “strong” and “weak” nodes. Strong nodes have a value that is either fixed or set by
an inference algorithm such as a sampler or optimizer. With some rare exceptions, the random variables of a model
are strong nodes and can represent observed data (e.g. the response of a regression model) or a model parameter (in
a Bayesian context). Conversely, not all strong nodes are random variables. Hyperparameters or design matrices are
examples of nodes strong without an associated probability distribution.

In contrast, weak nodes represent functions of their inputs. These functions are usually deterministic and describe the
mappings between the random variables of a model and their probability distributions. Weak nodes can also represent
pseudo-random functions, in which case however, they require the state of the PRNG (stored in a strong node) as one
of their inputs. The weak nodes can always be recomputed from the strong nodes, and hence, the state of a model
is uniquely defined by the strong nodes. Weak nodes can be used to cache the results of expensive computations,
because their value only needs to be updated when their inputs have changed. Node subclasses can implement weak
nodes representing commonly used functions. By default, Liesel comes with a number of weak nodes facilitating the
development of semi-parametric regression models.

If a node has a probability distribution, its log-probability is the evaluation of its probability mass or density function at
its current value. For convenience, the log-probability of a node without a distribution is defined to be zero. Summing up
the node log-probabilities gives the model log-probability, which can be interpreted as the unnormalized log-posterior

5



Liesel: Probabilistic Programming Framework A PREPRINT

Figure 2: The nodes of a Liesel model can be strong (blue) or weak (orange), and can have a probability distribution
(double border) or not (single border). Weak nodes are functions of their inputs and can always be recomputed from the
strong nodes of the model. Nodes with a distribution have a log-probability that is part of the model log-probability. For
a graphical representation of a concrete semi-parametric regression model, see Figure 5.

in a Bayesian context. The log-posterior can be decomposed into the log-likelihood (considering only the observed
nodes) and the log-prior (considering only the parameter nodes).

Liesel supports probability distributions that follow the class interface from TensorFlow Probability (TFP). Thus,
all distributions from TFP can be used with Liesel and new ones can be implemented. One feature of TFP that is
particularly useful for Bayesian statistics is the possibility to transform distributions with bijectors. When defining a
transformed distribution, TFP automatically adjusts the log-probability with the log-determinant of the Jacobian of the
bijector. For an overview of the different node types – strong and weak, with and without a probability distribution –
see Figure 2.

Finally, we provide a concrete example and describe which node types would be used to represent a generalized linear
model (GLM) in Liesel: The response vector y and the design matrix X of a GLM are the observed data and would be
two strong nodes. While the design matrix is fixed, the response is assumed to follow a probability distribution from
the exponential family such as a Poisson or gamma distribution. The vector of regression coefficients β is the only
model parameter and would be another strong node. In a Bayesian context, the regression coefficients are assigned
a prior distribution, whose hyperparameters would again be strong nodes. In contrast, the linear predictor η = Xβ
would be a weak node representing a simple matrix-vector product. The expected value of the response µ = ℎ(η) is the
element-wise evaluation of the response (or inverse link) function ℎ at the linear predictor η and would be encoded in
separate weak node.

Models A Liesel model is a collection of nodes with properties for the model log-probability, the log-likelihood and
the log-prior. Upon initialization, the model computes and stores a topological order of the nodes, which is required
for updating the model. The API allows the user to extract and set the state of the model, that is, the values and
log-probabilities of the nodes. If some of the nodes have a random seed as an input, the model can manage the PRNG
state by splitting and distributing a JAX PRNG key.

The key feature of the model is its update mechanism, which also supports partial updates. If the value of a strong node
is modified, its outputs (i.e. nodes that have the modified node as one of their inputs) are recursively flagged as outdated.
By calling the update method on the outdated nodes in a topological order, a consistent state can be restored. This is
exactly how the update mechanism of the model works. For situations when only a subset of the nodes is of interest and
a full update of the model graph is unnecessary, a partial update can be triggered through the model by specifying the
target nodes of the update.

The nodes and the model in Liesel follow a stateful, object-oriented approach, which is incompatible with JAX’s
requirement for pure, stateless functions. To take full advantage of JAX’s and Goose’s features for JIT compilation, the
computations need to be separated from the state of the model. For this purpose, Liesel provides helpers to extract pure
functions from the model, which can be used to compute the log-probability and to update the state. These functions are
also used in the model interface that can connect the model with Goose.
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2.3 Benefits of using Liesel

Goose, the MCMC library that comes with Liesel, can be used independently of the model building library. When using
Goose, the user can decide whether their model is best represented with Liesel, PyMC or a self-written log-probability
function. Comparing these different approaches, we see the following particular benefits of using Liesel:

Caching Weak nodes can be used to cache the results of expensive computations. This feature is particularly useful
for efficient MCMC sampling with multiple parameter blocks, as supported by Goose. Using weak nodes as
a cache, the results from the other branches of a tree-like model graph can be recycled when updating the
branches individually. Further performance improvements can be achieved with Liesel’s partial updates of the
model graph, allowing the user to compute only those quantities that are relevant for a given operation.

Graph manipulations The graph of a Liesel model can be modified, allowing for a workflow with a base model,
which can be customized to implement new variants of the model. This approach is most convenient if the
base model is a semi-parametric regression model that can be configured with RLiesel (Section 4). RLiesel
provides many model components for semi-parametric regression, e.g. different spline bases, penalties and
response distributions.

Hackability Liesel tries to get out of the way of the user who is extending a model or implementing a new one. The
design of the node and model classes is simple and follows the principle of least astonishment. When in doubt,
less surprising behavior is favored over more convenience. New operations for a model can be implemented as
weak nodes using JAX, which provides a familiar, NumPy-like user interface.

Visualization The graph of a Liesel model is composed of statistically meaningful nodes with values and log-
probabilites. It is a wrapper around the computational graph of the model and can be plotted using the
functions provided by Liesel. The visualization of the model graph can be useful for various purposes,
including debugging or strengthening the intuition about the underlying statistical model.

3 Goose: A toolbox for modular MCMC algorithms

The Liesel framework includes a library named Goose for tailoring MCMC algorithms to specific estimation problems.
Goose provides the means for statisticians to develop their own MCMC algorithms that fit the models they are working
on better than generic samplers. Goose assists the statistician in three ways: First, by using Goose, they are freed from
tedious bookkeeping tasks like storing the sample chains, managing the PRNG state or parallelizing the code to run
multiple chains. Second, Goose provides the building blocks of an MCMC algorithm called kernels. A kernel is an
algorithm that transitions the parameter vector or (in a blocked sampling scheme) a part of it within an MCMC iteration.
Kernels can also define warmup procedures allowing them to learn their hyperparameters and thus removing the need to
set them by hand. Third, a well-defined interface allows the combination of user-implemented problem-specific kernels
with the default kernels in case the kernels that are shipped with Goose are not sufficient for the estimation problem.

All in all, Goose enables users to construct entirely new algorithms but also to use existing building blocks and combine
them in new ways to match the estimation problem at hand. Statisticians using Goose can focus on how one MCMC
transition should be performed. In this section, we introduce Goose in detail and our key design choices. Some
implementation details are also discussed.

3.1 The primary design goals

The general goal of providing a modular framework for MCMC inference for statistical models can further be broken
down into the following more specific design goals:

• Goose should free the user from monotonous tasks that are repeatedly encountered when implementing MCMC
algorithms. Among these are storing the intermediate states, multi-chain management, tracking errors and
debug messages, and calling tuning algorithms at the right time.

• Goose should allow the user to decide how to transition the model parameters from one to the next MCMC
iteration. In Goose, we do that by letting the user combine multiple transition kernels. Each kernel moves a
part of the parameter vector or, if only one kernel is used, the entire parameter vector using a valid MCMC
transition.

• Goose should have a mechanism to tune the transition kernels automatically during a warmup phase and
should thereby avoid that the user needs to tune the kernel hyperparameters by hand.
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• The user should have full control over the combined MCMC algorithm. That means, in particular, that
all defaults must be changeable, but even more importantly, Goose must allow the implementation of user
components. Therefore, the framework should be based on a collection of modular components with well-
documented interfaces. The user should be able to compose and extend the components in a flexible, yet
straightforward way.

• Goose must support continuous and discrete model parameters.

• Liesel models should be first-class citizens and easy to set up with Goose. However, Goose should be a general
MCMC framework that can be used with any JAX model, e.g. a PyMC model or a hand-coded model by the
user.

• Goose strives to be convenient to use and fast. To achieve these goals, Goose provides pre-implemented
components of popular MCMC algorithms like HMC and NUTS. Furthermore, Goose makes heavy use
of JAX’s capabilities for automatic differentiation (sparing the user the implementation of derivatives) and
just-in-time compilation (speeding up the repeated evaluation of the log-probability of the model). For this
reason, the models and the components of the MCMC algorithms need to be expressed in JAX.

• Whenever possible, Goose should wrap well-tested MCMC kernels from other libraries such as the NUTS and
HMC kernels from BlackJAX. This way, we can avoid re-implementing complex algorithms, which would be
unnecessarily error-prone, while extending the user base of existing projects like BlackJAX.

However, there are also aspects that are outside the scope of Goose. For instance, Goose does not check the mathematical
correctness of the sampling schemes. It is up to the user to design a valid MCMC algorithm. The results from Goose
should generally be reproducible on the same system. However, reproducibility between different hardware cannot
be guaranteed due to small differences in the floating point arithmetic. These differences may add up to observable
differences during many MCMC iterations using modern MCMC algorithms.5

3.2 Main components of Goose

Goose is composed of many classes and interfaces. The design boils down to a few central pieces users must understand
to successfully use Goose as their tool to create MCMC algorithms in a few steps. A deeper understanding is required
to write extensions. The most important building blocks and their relationships are illustrated in Figure 3. We describe
their roles here. Note that we sometimes refer to the model parameters as the “position”.

Engine The Engine class is the central part of Goose and acts as a coordinating entity, hiding a big part of the
complexity from the user. In particular, after the user has decided how the transitions should be executed, it
makes sure that the right functions and methods are called at the right time guaranteeing that the transitions
of the position happen as requested. Moreover, the engine keeps track of the sampling history and advances
through the different sampling phases (e.g. the warmup and posterior phase). It also coordinates the PRNG
state and provides the top-level user interface.

Kernel A kernel object performs a single MCMC transition, i.e. an update of the position or some elements of the
position. The update must be a valid MCMC transition, for example based on the Metropolis-Hastings
algorithm. The Kernel interface describes how the engine can interact with the kernels. The user can either
use pre-implemented kernels or implement new kernel classes adhering to the kernel interface.

Epoch An epoch is a series of MCMC iterations. The EpochConfig class describes an epoch. Epochs are used to
communicate to the kernels which phase of the MCMC algorithm they are in and which operations they are
allowed to perform in this phase. More specifically, we divide the sampling process into a warmup and a
posterior phase. Samples from the posterior phase are expected to be valid MCMC samples. In contrast, during
the warmup phase, the chain may not yet have converged, and during the so-called adaptation epochs, the
Markov property may be violated. This way, we allow the kernels to learn their hyperparameters during the
adaptation epochs in the warmup phase. If done right, this can spare the user the manual tuning of the kernel
hyperparameters, and it can lead to more efficient sampling in the posterior phase.
The simplest setup would contain only two epochs: a burn-in epoch (part of the warmup phase) and a posterior
epoch (part of the posterior phase), each containing multiple MCMC iterations. On the other hand, a more
complex setup can include multiple adaptation epochs in the warmup phase.

5Exact reproducibility is limited for many modern computational tools. See for example Stan’s reference manual (https:
//mc-stan.org/docs/reference-manual/reproducibility.html) or the corresponding section in Liesel’s tutorial book
(https://liesel-devs.github.io/liesel-tutorials/reproducibility.html).
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Engine

Callable sample_all_epochs

Callable get_results

Epoch

EpochType type

int duration

int thinning

Kernel

Callable transition

Callable tune

ModelInterface

Callable update_state

Callable log_prob

manages and passes on to the kernelscalls as defined by the epochs

extracts information about the model from

Figure 3: Entity-relationship diagram of Goose’s main components. Only the most important classes, fields and methods
are shown here.

ModelInterface The ModelInterface describes how the components of Goose can communicate with the model.
Most importantly, it describes how the unnormalized log-posterior can be evaluated for a given position. By
defining the model interface as an abstraction layer, Goose can easily be used with different model backends.

To set up an MCMC algorithm, the user needs to combine the different components of Goose into one valid engine
object that handles the communication between them. However, the constructor of the engine is quite complex. To ease
the creation of an engine object, the EngineBuilder class can be used. It provides a step-by-step interface for the
configuration of an engine.

Using the engine builder, Goose leaves the user with only a few tasks to set up an MCMC sampler. These are: (i) Select
the appropriate kernels such that every part of the position is moved and add the kernels to the builder. (ii) Supply
the builder with an instance of a model interface so that the engine knows how to communicate with the model. (iii)
Set the initial values for the position. (iv) Define a sequence of epochs with the desired warmup scheme and the right
number of posterior samples. Goose provides a helper function for this task. (v) Additionally, the user must initialize
the random number generator and decide how many chains should be run in parallel. Afterwards, the engine is ready to
be used for sampling.

3.3 Some implementation details

To enable a deeper understanding of Goose, we describe how the sampling is performed on an implementation level.
We explain in detail how the engine communicates with the kernels and provide an overview of the sequence of these
interactions. A simplified sequence diagram of the sampling process is shown in Figure 4. Before the sampling is
started with the method sample_all_epochs(), the user has to create an engine object as described above. That
means a sequence of kernels and a sequence of epochs must be defined, the engine must be connected to the model
via the model interface, and the initial position must be set. In the following, we assume that only one kernel is used.
However, the extension to multiple kernels is straightforward and described later.

The sampling process is divided into multiple phases, which we call “epochs”. Each epoch has a duration, i.e. the
number of MCMC iterations that are performed in the epoch, and a type. At the beginning of each epoch, the kernel
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User

Engine Kernel

opt [is first posterior

epoch]

loop [over epoch duration]

opt [is adaptation epoch]

loop [for each epoch]

sample_all_epochs()

end_warmup()

WarmupResult

start_epoch()

KernelState

transition()

TransitionResult

store TransitionResults
and GeneratedQuantities

end_epoch()

KernelState

tune()

TuningResult

get_results()

MCMCResults

User

Engine Kernel

Figure 4: Sequence diagram of the communication between the engine and a kernel. For simplification, we show only
one kernel here. However, the extension to multiple kernels is natural by calling the kernel methods in a sequence,
which can be achieved by wrapping the kernels in a KernelSequence object. The engine provides additional methods
to run the epochs one by one and to append epochs, which are not shown here. These methods allow for an interactive
use of the engine, while the diagram illustrates a “one-shot” run of an already configured engine.
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method start_epoch() is called informing the kernel about the new epoch and allowing it to modify the kernel state.
The kernel state is a data structure used to store parameters defining the behavior of the kernel. It may be modified
during the warmup. The scale of the proposal distribution (also known as the step size) of a random walk kernel serves
as an example in this section. The kernel state can also include a cache required to calculate the actual parameters that
affect the transitions. Allowing the kernel to change its state at the beginning of an epoch enables it to prepare for the
subsequent operations.

Afterwards, the control is handed back to the engine, and it calls the kernel method transition() for each MCMC
iteration in the current epoch. The transition method is supposed to move the position and return the new position
together with additional information (which would typically include whether the position changed, how large the
acceptance probability was, whether an error occurred, etc.) to the engine. The engine takes care of storing the position
and the additional information. Note that during the warmup phase, the kernels are allowed to change their state in the
transition method, which allows for on-the-fly tuning of kernel parameters and updates of the cache. This is required, for
example, for the dual averaging algorithm (Nesterov, 2009; Hoffman and Gelman, 2014, Section 3.2) or for Welford’s
online algorithm for calculating the empirical variance of an element of the position (Welford, 1962).

Once all transitions defined in the current epoch have been carried out, the kernel method end_epoch() is called.
Again, the kernel can change its state and prepare for the following tuning. To invoke the tuning, the kernel method
tune() is called if the current epoch is an adaptation epoch. In the adaptive random walk kernel, this method would be
the place to calculate the new step size based on Welford’s algorithm and update it in the kernel state. The kernel is
allowed to request the history of the positions visited in the current epoch. Having the history available facilitates the
implementation of certain tuning algorithms.

The outlined process is repeated for each epoch. As soon as the first epoch of the posterior phase is encountered, the
kernel method end_warmup() is called before the call to start_epoch(). It informs the kernel that the warmup phase
is over, and subsequent to this call, the kernel must respect the Markov property.

Finally, the user can request the sampling results from the engine and inspect them. The results do not only contain the
chain of the visited positions but also meta-information and an error log (e.g. an error is reported if the log-posterior
evaluates to −∞). Liesel also provides some utilities for the inspection of the chains.

A more interactive approach is also possible. The user can always add more epochs to continue sampling. One
restrictions is that Goose does not allow posterior epochs to be followed by epochs of any other type. The interactive
approach is facilitated by the engine methods append_epoch() and sample_next_epoch(). The user can run a few
warmup epochs, inspect the chains, decide if they have reached the typical set and converged, add more warmup epochs
if necessary or move on to the posterior epoch otherwise.

Everything that has been said so far can easily be generalized to multiple kernels. In that case, each method call is
carried out in a loop over the sequence of kernels defined by the user. Note that the kernels cannot share their state.

If users want to work with custom MCMC transition or tuning methods or extend Goose’s collection of kernels, they
have to implement a new class that is required to follow the KernelInterface. The two most important methods to
do so are transition() and tune(). We describe them in more detail and also provide more information on the
implementation of the engine, which is useful to understand the requirements for the kernel methods.

The engine. As described above, the engine orchestrates the sampling process and provides the top-level user interface.
It also hides some complexity that arises from using JAX and JIT-compiled functions. Using JAX comes with many
benefits, e.g. automatic differentiation (AD) and just-in-time (JIT) compilation. Furthermore, JAX programs can be
executed on high-performance devices like GPUs and TPUs. For efficient sampling, the engine automatically groups
multiple MCMC iterations into one compilation unit and uses JAX’s jit() function to compile them together. Thus,
the MCMC iterations are performed together on the computing device without the need for communication with the
host. This ensures a better performance, especially if the computing device is not the CPU.

One drawback, or rather one limitation, is the requirement of “pureness”6 for functions to be compiled with JAX.
Pureness is not necessarily a disadvantage, because pure functions are easier to reason about for humans and for the
compiler. This can result in faster execution times compared to non-pure functions.

Goose needs to guarantee that the compiled functions are pure. This implies that the engine must manage the PRNG
state – we use JAX’s splittable Threefry counter-based PRNG – as well as the kernel states. Goose requires all kernel

6A pure function is a function whose value depends solely on the values of its arguments and which furthermore has no side
effects. In JAX and Goose, the concept of pureness is a bit weaker. A function may depend on variables in the environment. However,
the values of those variables are then compiled into the function, and therefore, the behavior of the function does not change if the
variables are updated later. Consequently, the compiled function is pure.
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methods called within the compiled functions (e.g. transition() and tune()) to be pure, meaning that the kernels
cannot store values changing over time in fields but must pass them back to the engine via a KernelState object, and
receive them again from the engine together with the PRNG state for the next transition.

The transition method. The two most important methods every kernel needs to implement are the transition()
and the tune() method. These methods are called by the engine and need to be pure and jittable.

The purpose of the transition method is to move the position or parts of it using a valid MCMC step, e.g. a Metropolis-
Hasting algorithm. The position is a subset of the model state. Through the standardized model interface, the kernel can
extract the position from the model state.

The signature of the transition() method is as follows:

Py > class Kernel:
+ # ...
+
+ def transition(
+ self ,
+ prng_key: KeyArray ,
+ kernel_state: KernelState ,
+ model_state: ModelState ,
+ epoch: EpochState ,
+ ) -> TransitionResult[KernelState , TransitionInfo ]:
+ # ...
+
+ # ...

Since the transition() method must be pure and MCMC transitions generally involve the generation of random
numbers, the state of the PRNG needs to be provided as an argument. In addition, the transition() method receives
the kernel state, the model state and the epoch state as arguments, and returns a TransitionResult object, which
wraps the new kernel state, the new model state and some meta-information about the transition, e.g. an error code or
the acceptance probability (in a TransitionInfo object). An error code of zero indicates that the transition did not
produce an error.

All inputs and outputs must be valid “pytrees” (i.e. arrays or nested lists, tuples or dicts of arrays). The structure of these
objects, e.g. the shape of the arrays in the kernel state, must not change between transitions. This allows the kernels to
have specialized KernelState and TransitionInfo classes.

Tuning a kernel. The sampling process can be divided into epochs of four types: fast and slow adaptation epochs,
burn-in epochs and posterior epochs. The adaptation and burn-in epochs are so-called warmup epochs. During the
adaptation epochs, the kernels are allowed to learn their hyperparameters from the history. Samples from the adaptation
epochs are usually invalid as MCMC samples, because the Markov property of the chain is violated. In contrast, during
a burn-in epoch, the kernels should no longer adjust their hyperparameters and the Markov property should be respected,
but the chain may still require some more time to converge. Finally, when reaching the first posterior epoch, the chain
should have converged, all transitions should be valid, e.g. there should be no divergent transitions, and hence, the
samples should approximate the target distribution appropriately.

The kernel method tune() is supposed to update the kernel hyperparameters at the end of an adaptation epoch. The
method receives the PRNG state, the model state, the kernel state, the epoch state and optionally the “history”, i.e. the
samples from the previous epoch, as arguments. It returns a TuningResult object that wraps the new kernel state and
some meta-information about the tuning process, e.g. an error code. As for the transition, the TuningInfo class can be
kernel-specific but must be a valid pytree.

The signature of the tune() method is as follows:

Py > class Kernel:
+ # ...
+
+ def tune(
+ self ,
+ prng_key: KeyArray ,
+ kernel_state: KernelState ,
+ model_state: ModelState ,

12
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+ epoch: EpochState ,
+ history: Position | None ,
+ ) -> TuningResult[KernelState , TuningInfo ]:
+ # ...
+
+ # ...

Debugging. The engine can be configured to store more information about the sampling process, e.g. for debugging
purposes. The extra information can include the log-posterior, log-likelihood, log-prior or any other quantity that can be
computed from the model state by a quantity generator. Debugging is further facilitated with the option to store the
kernel states for each iteration. Moreover, the engine can store information about the transitions and the tuning such as
the acceptance probabilities or the proposals. In any case, the transition() and tune() methods of the kernels need
to return an error code and inform the engine about non-fatal errors and warnings. The engine keeps a log and warns
the user about potential problems. Goose’s diagnostic tools can further aid the detection of potential sampling issues.

3.4 Standard kernels in Goose

Goose provides several kernels that can be used directly with many models. We discuss some of them here:

RandomWalkKernel The RandomWalkKernel implements a Gaussian proposal distribution and a Metropolis-Hastings
acceptance step. The kernel is self-tuning and uses the dual average algorithm to adjust the step size (i.e. to scale
the proposal distribution) during fast and slow adaptation epochs, such that a user-defined target acceptance
rate, by default of 0.234 (Gelman et al., 1997), is reached.

HMCKernel and NUTSKernel The HMCKernel and NUTSKernel use the gradient of the log-posterior to generate
MCMC chains with a low autocorrelation. The implementation of the transition() method is based on
BlackJAX’s implementations of the HMC (Neal, 2011) and NUTS (Hoffman and Gelman, 2014; Lao et al.,
2020; Phan et al., 2019) algorithms. Both kernels are able to tune the step size during fast and slow adaptation
epochs using the dual averaging algorithm. After slow adaptation epochs, the mass vector or matrix of the
impulse is adjusted based on the empirical variance-covariance of the samples from the previous epoch.

IWLSKernel The IWLSKernel is named after the method proposed by Gamerman (1997), which is often used for
Bayesian distributional regression models (Brezger et al., 2005). However, Liesel’s implementation is also
inspired by the roughly equivalent Metropolis-adjusted Langevin algorithm (MALA) with the Riemann metric
(Girolami and Calderhead, 2011). This approach allows us to add a step size parameter in a straightforward
way, which can then be tuned with the dual averaging algorithm during fast and slow adaptation epochs. More
precisely, the IWLSKernel employs a Metropolis-Hastings correction and a Gaussian proposal density, where
the mean vector µ and the covariance matrix 𝚺 depend on the gradient (score) and the Hessian (Hess) of the
log-posterior, i.e.

µ = θ + 𝑠2/2 Hess(θ)−1 score(θ), 𝚺 = 𝑠2 Hess(θ)−1,

where 𝑠 denotes the step size and θ the position vector. The factor 1/2 that is multiplied with 𝑠2 in the mean
vector comes from the Langevin diffusion, which is the basis of the MALA algorithm.

GibbsKernel The GibbsKernel can wrap a user-defined function generating samples from a full conditional into
a Goose-compatible kernel. With a Gibbs sampler, no tuning is necessary or possible, and therefore, the
GibbsKernel has a trivial tune() method returning an empty kernel state.

MHKernel Similar to the GibbsKernel, the MHKernel implements a Metropolis-Hastings sampler as a wrapper
around a user-defined function generating proposals based on the current state. If the proposal distribution is
asymmetric, the function must also return the Metropolis-Hastings correction factor. An optional step size
argument is also provided, which is tuned with the dual averaging algorithm if used.

3.5 Beyond pre-implemented kernels

The default Goose kernels are sufficient to estimate many statistical models with MCMC. However, Goose was
specifically designed for cases when specialized kernels are needed. In these situations, new kernel classes adhering to
the kernel interface can be implemented. The developer does not need to start from scratch, however. Goose comes
with some building blocks that facilitate the implementation of new kernel classes. For example, if a kernel should
support dual averaging, Goose can extend the kernel state with the necessary fields. It also comes with functions to
calculate the error sum and to adjust the step size. A mixin for Metropolis-Hastings kernels is provided as well.
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4 RLiesel: An R interface for semi-parametric regression

In this section, we discuss semi-parametric and distributional regression, the model classes Liesel offers first-class
support for, before introducing RLiesel, an R interface that assists the user with the configuration of these regression
models in Liesel. We also describe a natural workflow for RLiesel using R Markdown and Quarto.

4.1 Semi-parametric regression

Semi-parametric regression models combine parametric (usually linear) and non-parametric (usually spline-based)
covariate effects. The standard semi-parametric regression model is given by

𝑦𝑖 = 𝛽0 + x′
𝑖1β1 + 𝑓2 (x𝑖2,β2) + · · · + 𝑓𝐿 (x𝑖𝐿 ,β𝐿) + Y𝑖 , Y𝑖

i.i.d.∼ N(0, 𝜎2), (1)

where the response 𝑦𝑖 is modeled as a function of the covariates x𝑖1 with parametric effects and the covariates x𝑖𝑙
with the non-parametric effects 𝑓𝑙 (x𝑖𝑙 ,β𝑙) for 𝑙 = 2, . . . , 𝐿. The regression coefficients are the intercept 𝛽0, the slope
coefficients β1 and the spline coefficients β𝑙 . Fitting the model requires the estimation of the regression coefficients
and the variance of the additive Gaussian error term Y𝑖 .

One typical example of a non-parametric covariate effect is the B-spline 𝑓 (x𝑖 ,β) = b(𝑥𝑖) ′β, where b(𝑥𝑖) is the vector
of B-spline basis functions for a fixed set of knots evaluated at 𝑥𝑖 . For better readability, the index 𝑙 is omitted in
the remainder of this section. The given B-spline representation is linear in the spline coefficients β, allowing for a
straightforward evaluation of the log-likelihood and the use of efficient estimation techniques. To avoid overfitting,
certain smoothness properties can be encouraged through regularization, giving rise to the concept of penalized
B-splines, also known as P-splines (Eilers and Marx, 1996; Lang and Brezger, 2004).

In Bayesian statistics, regularization is achieved through informative priors, such as the multivariate normal distribution
with the density

𝑝(β | 𝜏2) ∝
(

1
𝜏2

) rk(K)/2
exp

(
− 1

2𝜏2β
′Kβ

)
, (2)

where 𝜏2 is the variance (or inverse smoothing) parameter, and K is a (potentially rank-deficient) penalty matrix. For
P-splines with equidistant knots, it is common to penalize the second differences of the spline coefficients using the
penalty matrix K = D′

2D2, where D2 is the second-order difference matrix such that D2β = Δ2β. In this case, the
penalty matrix is in fact rank-deficient, implying that additional constraints, usually a sum-to-zero constraint, are
required for the identification of the spline coefficients.

The hyperprior on the variance parameter 𝜏2 is typically weakly informative with support on the non-negative real line.
Lang and Brezger (2004) suggest to use the conjugate inverse gamma prior with the hyperparameters 𝑎 = 𝑏 = 0.01 (or
some other small number), allowing us to draw directly from the full conditional. However, priors like the half-Cauchy
distribution or half-normal distribution might have better statistical properties in practice (Gelman, 2006; Klein and
Kneib, 2016b).

The concept of semi-parametric regression also encompasses other effect types that can be expressed as the inner
product of a vector of basis function evaluations and a vector of regression coefficients, e.g. random effects for clustered
data or spatial effects. The structure of the penalty matrix K in the multivariate normal prior (2) depends on the desired
effect type. For a random effect, we have K = I, for an (intrinsic) Gaussian Markov random field, K arises from the
neighborhood structure (Rue and Held, 2005), and for more general spatial effects, Vecchia approximations can be
used to construct K (Katzfuss and Guinness, 2021). Note that the linear effect x′

𝑖
β also fits into this framework by

setting K = 0, reducing the multivariate normal prior (2) to a flat prior. Consequently, parametric and non-parametric
covariate effects can be treated the same way in this framework, and are generically referred to as predictor components
or smooth terms. Semi-parametric regression is sometimes (perhaps more accurately, but also more verbosely) called
structured additive regression. Consult Fahrmeir et al. (2013, Chapters 8 and 9) for more information on predictor
components and structured additive regression.

4.2 Distributional regression

Semi-parametric or structured additive regression predictors are often used in the context of distributional regression.
These models are also known as generalized additive models for location, scale and shape (GAMLSS) and combine
multiple regression predictors for different response parameters, that is,

𝑝(𝑦𝑖 | x𝑖 ,β) = 𝑝(𝑦𝑖 | \1 (x𝑖1,β1), . . . , \𝐾 (x𝑖𝐾 ,β𝐾 )), (3)
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Figure 5: One possible DAG representation of the semi-parametric distributional regression model (3). The different
node types are described in Figure 2: Strong nodes are blue, weak nodes are orange. Nodes with double borders have a
probability distribution, and oblique nodes are model parameters. Plate notation is used to indicate the range of the
variable indices.

where the response 𝑦𝑖 follows a probability distribution with the parameters \𝑘 for 𝑘 = 1, . . . , 𝐾, each of which is
modeled as a function of the covariates x𝑖𝑘 and the regression coefficients β𝑘 . In contrast to generalized linear models
(GLMs), the response distribution is not limited to the exponential family but can be of any parametric type, including
for example non-negative continuous distributions like the Weibull or Pareto distribution. Distributional regression
models for count data can take zero-inflation and overdispersion into account (Klein et al., 2015b), while fractional
responses (i.e. single or multiple percentages) can be analyzed with the beta or Dirichlet distribution (Klein et al.,
2015a). With mixed discrete-continuous distributions, we can add points with a non-zero probability mass to the support
of a continuous response distribution. Finally, the distributional regression framework allows us to study multivariate
response vectors using either conventional multivariate distributions (Michaelis et al., 2018) or copulas to describe
complex dependence structures with arbitrary marginal distributions (Klein and Kneib, 2016a).

In distributional regression, each parameter of the response distribution is modeled with a semi-parametric regression
predictor [𝑖𝑘 (just as the one in Model (1) in the previous section) and a response (or inverse link) function ℎ𝑘 , such
that

\𝑘 (x𝑖𝑘 ,β𝑙) = ℎ𝑘 ([𝑖𝑘 ) = ℎ𝑘 (𝛽𝑘0 + x′
𝑖𝑘1β𝑘1 + 𝑓𝑘2 (x𝑖𝑘2,β𝑘2) + · · · + 𝑓𝑘𝐿𝑘 (x𝑖𝑘𝐿𝑘 ,β𝑘𝐿𝑘 )). (4)

The response function ℎ𝑘 is a one-to-one mapping of the predictor [𝑖𝑘 from the real line to the appropriate parameter
space. For positive-valued response parameters, the exponential function is typically used as a response function, and
for parameters on the unit interval, the logistic function is a common choice.

The distributional regression model (3) with the semi-parametric predictor (4) is a Bayesian hierarchical model, where
the posterior can be factorized as 𝑝

(⋃
𝑘,𝑙{β𝑘𝑙 , 𝜏2

𝑘𝑙
} | ⋃𝑖{𝑦𝑖}

)
=
∏
𝑖 𝑝

(
𝑦𝑖 |

⋃
𝑘,𝑙{β𝑘𝑙}

)
·∏𝑘,𝑙 𝑝(β𝑘𝑙 | 𝜏2

𝑘𝑙
) · 𝑝(𝜏2

𝑘𝑙
). The

model graph is a DAG with a tree-like structure, making it a good fit for software like Liesel, PyMC or Stan.

4.3 DAG representations of semi-parametric regression models

One possible DAG representation of the semi-parametric distributional regression model is shown in Figure 5. The
strong node α𝑘𝑙 denotes the fixed hyperparameters of the prior of the variance parameter 𝜏2

𝑘𝑙
. Typically, α𝑘𝑙 =

(𝑎𝑘𝑙 , 𝑏𝑘𝑙) ′ = (0.01, 0.01) ′ in the case of an inverse gamma prior. The choice of the weak nodes is essentially arbitrary:
The nodes 𝑓𝑖𝑘𝑙 , [𝑖𝑘 and \𝑖𝑘 could also be merged into a single weak node. In Liesel, we encourage a structure of the
model graph that resembles the mathematical formulation of the semi-parametric distributional regression model in
Equation (3) and (4). This allows us to provide a number of pre-defined nodes for the components of the model class,
which can be combined by the user in different ways.

The DAG representation can also be modified to improve the computational efficiency of the model. In the DAG as
shown in Figure 5, the evaluation of the log-probability of β𝑘𝑙 , i.e. the evaluation of the multivariate normal prior (2),
requires computing the rank of the penalty matrix K𝑘𝑙 . Given that the penalty matrix is usually a fixed hyperparameter,
it is wasteful to repeat this expensive operation every time β𝑘𝑙 or 𝜏2

𝑘𝑙
are updated. The performance of the model can be

improved by adding a strong node with the pre-computed rank of K𝑘𝑙 . This node can then be used as an input for the
probability distribution of β𝑘𝑙 , hence avoiding the repeated computation of the matrix rank.
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4.4 Setting up semi-parametric regression models with RLiesel

RLiesel is an R interface for Liesel, which can be used to configure semi-parametric distributional regression models.
It is implemented as a thin wrapper around the mgcv package (Wood, 2022). The entry point to the package is
the liesel() function, which requires the user to pass in the response data and distribution, and the predictors as
arguments. The predictors are specified as R formulas with the extensions from mgcv to define non-parametric predictor
components. They are passed on to the gam() function from mgcv, which initializes the design and penalty matrices.
Finally, the Liesel model graph is built and filled with the data from mgcv. A concrete example how a model can be
specified in RLiesel is given in the case study in Section 5.

mgcv is the state-of-the-art package for semi-parametric regression in R. It is extremely powerful, supports many
different response distributions and predictor components, and is installed with R by default. Other notable features
of mgcv are the automatic smoothness selection (Wood, 2004) and various multivariate smooth terms. To the best of
our knowledge, no package with a comparable set of features exists in Python. Most newer R packages in the domain
of semi-parametric regression modeling depend on mgcv in one way or another. With our implementation of RLiesel,
we follow the same approach and leverage the features of mgcv for the use with JAX and Liesel, avoiding the need to
re-implement all predictor components in Python.

RLiesel configures the model graph, but does not automatically run an estimation procedure. Goose can be used for
MCMC-based estimation, but needs to be configured in Python. For a seamless integration of RLiesel and Goose, we
recommend Quarto (Scheidegger et al., 2022) and reticulate (Ushey et al., 2022). Quarto allows the user to write
and render dynamic documents in Markdown with embedded R and Python code cells, and using reticulate, objects
can be shared between the R and Python processes at runtime. With this setup, the model can be configured using
RLiesel in a R code cell, then exchanged with the Python process, before an MCMC algorithm is developed in another
code cell. Finally, the estimation results can be visualized either in Python or R, depending on the user’s preferences.

5 Case study: Comparing different sampling schemes

In this case study, we show how RLiesel and Goose can be used to set up and compare different sampling schemes on a
simple semi-parametric distributional regression model. Often, a one-size-fits-all MCMC algorithm does not work too
well with a specific model. In these cases, one can try to reparametrize the model to improve the performance of the
MCMC algorithm, or alternatively, one can try to develop a more suitable sampling scheme. The second approach is the
particular strength of Liesel and Goose. Goose facilitates building custom samplers for specific estimation problems,
allowing the user to combine different pre-defined and self-written kernels.

We use a dataset of LIDAR measurements, which was collected to determine the mercury concentration in the
atmosphere, to evaluate the performance of five sampling schemes combining IWLS, Gibbs, NUTS and HMC kernels
in different parameter blocks. For a detailed description of the experiment, see Holst et al. (1996). Two lasers with
different wavelengths were emitted by the LIDAR device, and the log-ratio between the signals (the amount of reflected
light, 𝑦𝑖) was recorded for each range (the distance the light traveled, 𝑥𝑖). The data is shown in Figure 6 together with
an estimate of the mean function. The derivative of the mean function is proportional to the desired estimate of the
mercury concentration.

5.1 Gaussian location-scale regression in RLiesel

From Figure 6, the non-linearity and heteroscedasticity of the LIDAR measurements becomes apparent. The semi-
parametric Gaussian location-scale regression model

𝑦𝑖 ∼ N(𝛽0 + 𝑓 (𝑥𝑖), (exp(𝛾0 + 𝑔(𝑥𝑖))2) (5)

is able to accommodate these properties of the data. Here, 𝛽0 and 𝛾0 are the intercepts, and 𝑓 (𝑥𝑖) and 𝑔(𝑥𝑖) are P-splines
as described in Section 4.1. For the P-splines, we use a cubic B-spline basis and a second-order difference penalty on
the regression coefficients. The model belongs to the distributional regression framework as defined in Equation (3),
using a Gaussian response distribution and a log-link for the standard deviation.

With RLiesel, we can set up Model (5) as follows:

R> library(SemiPar)
R> data(lidar)
R>
R> library(rliesel)
R> use_liesel_venv ()
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Figure 6: The log-ratio of the LIDAR signals for each range on top of a MCMC sample of 4000 estimated mean
functions (left) and 4000 estimated standard deviation functions (right). The red lines mark the posterior mean, the
sample was obtained with the IWLS-Gibbs scheme described in Section 5.2.

R>
R> model <- liesel(
+ response = lidar$logratio ,
+ distribution = "Normal",
+ predictors = list(
+ loc = predictor (~s(range , bs = "ps"), inverse_link = "Identity"),
+ scale = predictor (~s(range , bs = "ps"), inverse_link = "Exp")
+ ),
+ data = lidar
+ )

The response variable and distribution, and the semi-parametric regression predictors are passed as arguments to the
liesel() function. The predictors are specified as one-sided R formulas, where we can use the s() function from
the mgcv package to define spline-based predictor components with the multivariate normal prior (2). The argument
bs = "ps" indicates that we are using a P-spline. As Liesel depends on TensorFlow Probability (TFP) to represent
probability distributions, we need to use the same class and parameter names. Here, the argument distribution =
"Normal" refers to the class of the same name in TFP, which has the parameters loc and scale for the mean and the
standard deviation of the normal distribution.

5.2 Sampling schemes with different kernels in Goose

For the LIDAR model, we are using the IWLS-within-Gibbs sampling scheme as a benchmark. This scheme is provided
as the default in RLiesel and has been propagated in the literature on semi-parametric distributional regression for several
years (Klein et al., 2015b). It combines one IWLS kernel for the regression coefficients β with one Gibbs kernel for the
smoothing parameter 𝜏2 of each predictor component. Thus, in complex models with many predictor components, it
results in a high number of parameter blocks, and sometimes in MCMC chains with a high autocorrelation. Furthermore,
the use of the observed Fisher information in the IWLS kernel can cause numerical instabilities. Software packages like
BayesX and bamlss replace the observed with the expected Fisher information whenever possible to mitigate these
problems, but this workaround is model-specific and not possible with automatic differentiation.

Given the shortcomings of the IWLS-within-Gibbs scheme, it is interesting to compare its performance with gradient-
based MCMC methods that do not require second derivatives such as HMC or NUTS. Relying only on the gradient,
these kernels make it computationally feasible – also in complex models – to update large parameter blocks or the entire
parameter vector. HMC and NUTS have been popularized with software like Stan (Stan Development Team, 2022) and
PyMC (Salvatier et al., 2016), and are known to work well in many applications (MacKay, 2003, Chapter 30). In the
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LIDAR model, the smoothing parameters 𝜏2
𝑓

and 𝜏2
𝑔 need to be log-transformed if sampled with HMC or NUTS to

guarantee an unconstrained parameter space. The configuration of all five sampling schemes is described in Table 1.

Table 1: The sampling schemes for the LIDAR model. The IWLS kernel was used with the observed Fisher information
as a metric (obtained through automatic differentiation). The NUTS kernel was configured with a maximum tree depth
of 10 and a diagonal metric (tuned based on the empirical variances of the warmup samples). The HMC kernel was
used with 64 integration steps and a diagonal metric. A smaller number of integration steps would have resulted in an
insufficient exploration of the posterior distribution. The step size of the IWLS, NUTS and HMC kernels was calibrated
with the dual averaging algorithm during the warmup epochs.

𝛽0 β 𝑓 𝜏2
𝑓

or log(𝜏2
𝑓
) 𝛾0 γ𝑔 𝜏2

𝑔 or log(𝜏2
𝑔)

IWLS-Gibbs IWLS IWLS Gibbs IWLS IWLS Gibbs
NUTS-Gibbs NUTS NUTS Gibbs NUTS NUTS Gibbs
NUTS1 NUTS
NUTS2 NUTS NUTS
HMC2 HMC HMC

Setting up sampling schemes and parameter blocks is straightforward with Goose. To facilitate the configuration of an
MCMC engine, a builder class can be used. Through the builder, kernels can be assigned to one or more parameters, the
model and initial values can be set, as well as the number of MCMC iterations. Finally, the engine can be built and run.
The following code snippet illustrates the procedure for the NUTS2 scheme, but the setup of the other schemes works
analogously:

Py > builder = gs.EngineBuilder(seed =1337 , num_chains =4)
Py >
Py > k1 = [" loc_p0_beta", "loc_np0_beta", "loc_np0_tau2_transformed "]
Py > k2 = [" scale_p0_beta", "scale_np0_beta", "scale_np0_tau2_transformed "]
Py > builder.add_kernel(gs.NUTSKernel(k1))
Py > builder.add_kernel(gs.NUTSKernel(k2))
Py >
Py > builder.set_model(lsl.GooseModel(model))
Py > builder.set_initial_values(model.state)
Py >
Py > builder.set_duration(warmup_duration =1000 , posterior_duration =1000)
Py >
Py > engine = builder.build()
Py > engine.sample_all_epochs ()

5.3 Run time and effective sample size

All sampling schemes from Table 1 converged to the same posterior distribution shown in Figure 6, so we can focus
on comparing their efficiency rather than the parameter estimates. The MCMC algorithms were compiled and run
on an Intel i7-1185G7 CPU with 8 cores and 3 GHz. The compilation was generally much more expensive than the
generation of one chain with 1000 warmup and 1000 posterior iterations (Figure 7). The IWLS-Gibbs and NUTS-Gibbs
schemes were particularly slow to compile, presumably because combining two types of kernels means more work for
the compiler, while the sampling schemes involving one or two NUTS kernels took most time to run.

The reason for the performance issues with NUTS was that the maximum tree depth of 10 was reached in about
90% of the posterior iterations for the NUTS1 scheme, and in 75% for NUTS2. The problem did not occur with the
NUTS-Gibbs scheme, where we split the regression coefficients β and the smoothing parameters 𝜏2 into separate
blocks. We tried to improve the performance of the NUTS1 and NUTS2 schemes with a non-centered parameterization
as recommended by the Stan Development Team (2022, User’s Guide, Section 25.7) by diagonalizing the penalty
matrices of the P-splines as described by Wood (2017, Section 5.4), but did not achieve an efficiency improvement.
Other reparametrizations or the use of a Riemann metric (Girolami and Calderhead, 2011) might help to speed up the
NUTS kernels, but we did not explore these options further in this case study.

The efficiency of an MCMC algorithm cannot be assessed based on the run time alone, but the quality of the samples
needs to be taken into account as well. We use the effective sample size (ESS, Gelman et al., 2013) for this purpose.
The ESS estimates the size an independent sample would need to have to contain the same amount of information as
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Figure 7: The compile and run time of the sampling schemes. The timings are obtained on an Intel i7-1185G7 CPU
with 8 cores and 3 GHz for one MCMC chain with 1000 warmup and 1000 posterior iterations. The IWLS-Gibbs and
NUTS-Gibbs schemes are most expensive to compile (because they combine two types of kernels), while the NUTS1
and NUTS2 schemes are most expensive to run (due to the high tree depth).

the correlated MCMC sample. An MCMC chain with a high autocorrelation generally has a low ESS. For the LIDAR
model, the NUTS-Gibbs scheme has the highest ESS with a median of 318.67 per 1000 iterations, and the HMC2
scheme has the lowest ESS with a median of 25.56 (Table 2). The table also shows the ESS per second, which takes
both the quality of the samples and the run time into account. By that measure, the two schemes involving a Gibbs
kernel perform best, with a median of 869.05 for NUTS-Gibbs and 325.21 for IWLS-Gibbs.

Table 2: The bulk ESS and bulk ESS per second of the sampling schemes. 30 MCMC chains are generated per scheme,
and the summary statistics are computed pooling all 22 parameters of the LIDAR model. The ESS per second is
computed based on the run time of the posterior iterations, not taking the compilation and the warmup iterations into
account. The NUTS-Gibbs scheme is the most efficient, both in terms of ESS and ESS per second.

5% 25% Median 75% 95%

B
ul

k
E

SS

IWLS-Gibbs 33.53 70.01 91.17 114.61 269.58
NUTS-Gibbs 122.97 205.34 318.67 482.70 939.08
NUTS1 7.80 46.30 92.78 347.65 945.62
NUTS2 25.90 72.04 140.14 456.46 866.49
HMC2 1.62 6.81 25.56 291.10 1249.13

B
ul

k
E

SS
/s IWLS-Gibbs 119.61 249.72 325.21 408.80 961.55

NUTS-Gibbs 335.37 560.01 869.05 1316.41 2561.02
NUTS1 2.88 17.11 34.30 128.52 349.57
NUTS2 17.96 49.95 97.16 316.48 600.77
HMC2 7.56 31.88 119.55 1361.79 5843.52

6 Discussion

In this article, we introduced the probabilistic programming framework Liesel, which allows the user to express
Bayesian models as directed acyclic graphs and to build custom MCMC algorithms. With our software, established
MCMC algorithms can be combined in new ways, and the user can implement problem-specific kernels and warmup
schemes. Goose, Liesel’s MCMC library, is independent of Liesel’s graph-based model representation and can also be
used with other JAX-compatible software, for example PyMC or user-defined log-posterior functions.

Models expressed in Liesel can be modified through a programmer-friendly API. A base model can be generated with
RLiesel, a tool to configure semi-parametric regression models, and new ideas can be explored with little effort by
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modifying the base model. Using state-of-the-art technology like just-in-time compilation, automatic differentiation
and cluster computing, which is possible with JAX, Liesel allows for a fast development and testing cycle in Python
while maintaining good computational performance.

The development of Liesel will be continued in the coming years. Liesel uses many libraries that are under active
development and whose API changes must be reflected in our software. We also plan to integrate new features and
other enhancements of these libraries into Liesel. Based on JAX’s experimental module for sparse linear algebra, for
example, we will improve the performance of different models using efficient decomposition algorithms for matrices
with band structures or more general sparsity patterns.

The next major update of the software, Liesel 0.2, is planned for fall 2022. It will feature an improved model
representation, making manipulations and extensions of the model graph easier and safer. In the new version, the graph
of the statistical variables in the model will be built on top of a graph of computational nodes. This approach will result
in an interface that is more convenient in standard use cases and more “hackable” in advanced use cases. The new
interface aims to be simple and transparent with a small number of classes that do not surprise the developer with any
“magic” behavior.

Liesel will also be extended with more model components and new MCMC kernels. The new building blocks in
the modeling library will facilitate the rapid development of new types of models, thus speeding up research. In
particular, RLiesel will be extended with the functionality to build non-linear models that overcome the typical additive
predictor structure of semi-parametric regression, or models that involve covariates that are themselves assigned a
model specification such as measurement error models or more general structural equation models. These extensions
will also serve as a demonstration of the functionality and flexibility that Liesel offers for the development of Bayesian
(regression) models.

Liesel’s technology stack facilitates the implementation of gradient-based methods. Having automatic differentiation
available will allow us to use general optimization algorithms to implement variational inference methods. Stochastic
gradient MCMC (SG-MCMC) is a relatively new class of Monte Carlo algorithms that scale well to large datasets.
Compared to traditional MCMC, these algorithms reduce the computational costs by using subsamples of the original
dataset, while maintaining a high accuracy of the parameter estimates. Tools like Stan, PyMC and NIMBLE that
enabled the broad success of Bayesian methods in many application areas are still missing SG-MCMC methods,
although the first steps have been made (e.g. in the R package sgmcmc). We plan to implement SG-MCMC kernels and
non-traditional tuning methods for SG-MCMC in Liesel in the near future.
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High-resolution circumference dendrometers measure the irreversible growth and the reversible shrinking and 
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measurements into a permanent and a temporary component, while explaining differences between the trees 
and years by covariates. Our model embeds Gaussian processes with parametric mean and covariance 
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1 Introduction
Tree growth, and the growth of tree stems in particular, is a process that is of strong ecological and 
economic interest. Together with the height growth, the growth in the stem girth drives timber pro-
duction, and at the same time, plays a key role in the global carbon cycle (Mencuccini et al., 2017). 
Unfortunately, it is difficult to measure the formation of new wood and bark cells in the cambium 
resulting in permanent stem growth, and while electronic dendrometers can record the variation of 
the stem circumference on small time scales of a few minutes (Klepper et al., 1971), these measure-
ments also capture the reversible shrinking and swelling of the stem due to changes in its water 
content. Researchers have used additional measurement equipment such as sap flow sensors 
and controlled irrigation experiments to gain a better understanding of the permanent and tem-
porary components of tree stem growth (Mencuccini et al., 2017), but these experiments are either 
expensive or not feasible under open field conditions.

We describe a novel statistical method for the analysis of high-resolution dendrometer measure-
ments that does not require additional data about other tree-physiological processes. The method 
permits us to decompose the dendrometer measurements into a permanent and a temporary com-
ponent through stochastic assumptions and explanatory variables. Our dataset contains 85 de-
ciduous trees from Germany and the growing seasons 2012 and 2013. Figure 1 shows a 
subsample of the recorded growth curves between April 1 and September 30, each of which is as-
sumed to be a realisation of a Gaussian process (GP). The GPs are conditionally independent from 
each other given a set of explanatory variables. We observe that the coloured ash grows primarily 
between mid-April and mid-July, while the coloured beech grows later and more during the 
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vegetation period. These different patterns are captured in the estimated sigmoid mean functions 
of the GPs, which represent the irreversible growth of the tree stems. On the other hand, the tem-
porary shrinking and swelling, which is more pronounced in the ash than the beech, is described by 
the within-season covariance functions. The tree species is one factor that we condition the GPs on. 
Other possible explanatory variables include the diameter at breast height (DBH) and the geo-
graphical location of the trees.

The way we use GPs is different from the standard approaches in machine learning or spatial 
statistics. Models from those fields typically assume a single latent GP. For instance, in many su-
pervised learning problems in machine learning, GPs are used as priors over the hypothesis space 
of possible functions from the input to the output space (Rasmussen & Williams, 2006). GPs also 
play a key role in spatial statistics, where they are used to capture the spatial correlation of the 
data, and to avoid invalid, underestimated confidence intervals (Cressie, 1993). In contrast, we as-
sume multiple observed, conditionally independent GPs as response structures in a regression 
model.

The fact that we link multiple properties of the mean and covariance functions of the GPs to 
explanatory variables puts our model in the domain of the so-called distributional regression mod-
els, also known as generalised additive models for location, scale, and shape (GAMLSS, Rigby & 
Stasinopoulos, 2005). Usually, this model class admits multiple structured additive predictors for 
different parameters of the conditional distribution of a response variable. Standard distributional 
regression models use univariate or low-dimensional multivariate response variables. Klein and 
Kneib (2016b) discuss distributional regression models with copula-based bivariate response dis-
tributions in a Bayesian setting, and Filippou et al. (2017) propose a trivariate probit model, which 
they estimate with a frequentist penalised likelihood method. A number of bivariate and trivariate 
response distributions is also available in the vector generalised additive model framework (Yee, 
2015). Following this line of thought, we show that the distributional regression approach also 
works for more general, continuous response structures such as GPs.

The distributional regression literature offers different approaches to statistical inference. We 
build on the work of Klein et al. (2015), who propose a general Markov chain Monte Carlo 
(MCMC) algorithm for Bayesian inference in distributional regression models. To assess the pos-
terior distribution of the model parameters, they use a Metropolis-within-Gibbs sampler with it-
erative weighted least squares (IWLS) proposals (Gamerman, 1997). The algorithm was 
implemented by Umlauf et al. (2018) in the R package bamlss. However, bamlss blocks the 
model parameters in a way that performs very poorly with GPs as response structures. We describe 
a more efficient way of blocking the model parameters in Section 3, and discuss the problem in 
more detail in the simulation study in Section 4.

Figure 1. The cumulative radial growth of a subsample of the trees from our dataset over the course of one growing 
season. The coloured lines represent two exemplary trees, one beech and one ash, while the grey lines illustrate the 
diversity of the growth patterns in the dataset. The reversible shrinking and swelling is more pronounced for the 
coloured ash than the beech. The bold lines show the estimated irreversible growth.
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All computations for this paper were performed using the R software environment for statistical 
computing (R Core Team, 2020). The relevant code is available under the MIT open source license 
as a supplement and on GitHub (https://github.com/hriebl/gp-responses).

The remainder of this paper is structured as follows: in the next section, we give the precise def-
inition of our model, as well as some examples of mean and covariance functions. Structured addi-
tive predictors and the connection with a number of related statistical model classes (mixed 
models, functional data, etc.) are also discussed. In Section 3, we provide the specifics of the 
MCMC algorithm for the posterior estimation. The simulation study with three different scen-
arios is presented in Section 4, while Section 5 addresses the application to intra-annual tree 
stem growth in full detail. Finally, Section 6 concludes and discusses possible extensions and fur-
ther applications of the model.

2 Model specification
2.1 Gaussian processes as response structures
We consider GPs {Yi(t); t ∈ T} as response structures in structured additive distributional regres-
sion, where the observation index i runs from 1 to N and the index set T is a metric space that can 
represent time, space, or space-time. The GPs are assumed to be conditionally independent given 
the covariate vectors xi,

{Yi(t); t ∈ T} ∣ xi
ind.
∼
GP(mx(t; xi), cx(t, t′; xi)), (1) 

where t, t′ ∈ T. As a specific feature of distributional regression, the mean function mx and the 
covariance function cx both depend on the covariates xi, which differ between the observations 
1 to N but are constant within the index set T. An extension of the model to time or space-varying 
covariates is given below.

More precisely, the mean and the covariance function are linked to the covariates xi via their 
respective parameter vectors θm and θc,

mx(t; xi) = m(t; θm(xi)) and cx(t, t′; xi) = c(t, t′; θc(xi)).

For better readability, we use a subscript i as an abbreviation for the dependence of a variable on 
the covariates xi. Let θi = [(θm

i )⊤, (θc
i )

⊤]⊤ = [θm(xi)
⊤, θc(xi)

⊤]⊤ be the vector of all parameters of the 
GPs and K its dimension. In the terminology of distributional regression, θi is the vector of the K 
distributional parameters. Each parameter θki is linked to a structured additive predictor via a 
strictly monotonic link function (Section 2.3).

One important extension of Model (1) deals with the inclusion of time or space-varying cova-
riates zi : T→ S, which change within the index set T depending on the coordinates t (as opposed 
to the previously discussed covariates xi). The covariates zi may be understood as a mapping of the 
coordinates t into a different, more abstract metric space S, which no longer represents only space 
or time. The mean and the covariance function now depend on the coordinates t via this mapping,

{Yi(t)} ∣ zi, xi
ind.
∼
GP(mx(zi(t); xi), cx(zi(t), zi(t′); xi)). (2) 

The simulation study in Section 4 includes a proof of concept for time-varying covariates.
In practice, each GP {Yi(t)} can only be observed at a finite number of points tj ∈ T, for j = 1, …, ni. 

The collection of random variables at these points has a multivariate normal distribution,

[Yi(t1), . . . , Yi(tni )]
⊤ ∣ zi(t1), . . . , zi(tni ), xi

ind.
∼
N ni (μi, Σi), (3) 

where the elements of the mean vector μi and the covariance matrix Σi are the evaluations of the mean 
function m and the covariance function c at the observed points,

μi = [μi,j] = m(zi(tj); θm
i ) and Σi = [σi,j,j′ ] = c(zi(tj), zi(t j′ ); θc

i ) (4) 

for j, j′ = 1, …, ni. The number of observed values does not necessarily need to be the same for all GPs, 
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i.e., potentially ni ≠ ni′ for some i, i′ ∈ {1, …, N}. Furthermore, our construction leaves the basic struc-
ture of the covariance function untouched, such that even after including dependence on covariates, it 
is ensured that the covariance function and therefore also the resulting covariance matrices Σi are 
positive definite.

2.2 Examples of mean and covariance functions
The most important condition for a GP to be valid is that the covariance function needs to be posi-
tive semi-definite. For Model (1), this means that 


t,t′∈U atc(t, t′)at′ needs to be non-negative for 

all U ⊂ T and the weights at ∈ R of each linear combination 


t∈U atYi(t) (Adler, 1990, Section 
1.1). When considering Model (2) with time or space-varying covariates, the positive semi- 
definiteness of the covariance function needs to hold on the index set S instead of T. The require-
ments for the mean function of a GP are less restrictive: Essentially any function m : T→ R or 
m : S→ R is a valid mean function of a GP.

The mean and the covariance function of a GP determine its continuity and differentiability 
properties. For example, a GP is mean-square continuous if and only if its mean and its covariance 
function are continuous. Mean-square continuity, however, does not imply sample continuity 
(Rasmussen & Williams, 2006, Section 4.1.1). The concept of sample continuity is discussed in 
a rigorous and abstract fashion in Adler (1990). For most applied modelling problems, a continu-
ous mean function will be a reasonable assumption, but the same is not necessarily true for the 
covariance function: One reason for a discontinuous covariance function might be an idiosyncrat-
ic error term for each measurement. This idiosyncratic error term ‘conceals’ the GP of interest and 
is known as the ‘nugget effect’ in spatial statistics. It is usually modelled as an additive i.i.d. GP, 
rendering the resulting sum of two GPs discontinuous, even in the mean-square sense.

Note that we omit the observation index i in the following discussion of the mean and covari-
ance functions for the sake of simplicity.

2.2.1 Mean functions
Linear Mean Function. The linear mean function is defined as the dot product of the covariates 

zi(t) and the parameters θm,

ml(z(t); θm) = z(t)⊤θm. (5) 

The linear mean function is mathematically convenient and provides considerable flexibility for stat-
istical modelling. Polynomials or B-splines can be used, among others, to represent large classes of 
functions as linear combinations of basis functions. To do so, we choose z(t) = [b1(t), . . . , bM(t)]⊤, 
where b1, …, bM are the aforementioned basis functions and M is the number of basis functions or, 
equivalently, the number of distributional parameters of the mean function. This approach gives rise 
to non-parametric mean functions with very flexible shapes.

Weibull Growth Curve. The flexibility of a linear mean function with polynomials or B-splines 
comes at a cost: it requires a large number of parameters without an obvious interpretation. In 
many applications, however, interpretable distributional parameters are desirable. If prior knowl-
edge about the shape of the response processes is available, a parametric mean function might be a 
more natural choice. For example, the intra-annual tree growth curves in Section 5 have a sigmoid 
shape. Any sigmoid function such as the logistic function or the hyperbolic tangent could serve as a 
mean function in this case, but we follow Metz et al. (2020) and use the Weibull growth curve for 
this purpose. The Weibull growth curve is a scaled version of the cumulative distribution function 
of the Weibull distribution,

mw(z(t) = t; θm = [l, a, b]⊤) = l × 1 − exp −
t
b

 a
  

, (6) 

where t ≥ 0 is the point in time since the start of the growing season, and the parameters are the 
limit l > 0, the shape a > 0, and the scale b > 0. The scale parameter describes for how long a 
tree continues to grow during the summer, while the shape parameter represents the steepness 
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of the growth curve. As all parameters of the Weibull growth curve need to be positive, we use a 
log-link for these parameters.

2.2.2 Covariance functions
Throughout this paper, we use the Matérn covariance function and relate the standard deviation σ 
and the range ϕ to covariates. Without any time or space-varying covariates, it has the form

cm(z(t) = t, z(t′) = t′; θc = [σ, ϕ]⊤) = σ2 × ρ
d(t, t′)

ϕ
; ν

 

, (7) 

where ρ is the Matérn correlation function with the smoothness parameter ν, and d(t, t′) is a dis-
tance function. For ν = 1/2, the Matérn correlation function simplifies to the exponential correl-
ation function, and for ν → ∞, it converges to the squared exponential or Gaussian correlation 
function. GPs with the Matérn covariance function are ⌊ν⌋ times mean-square differentiable 
and even have differentiable sample paths (Rasmussen & Williams, 2006, Section 4.2.1; 
Paciorek, 2003, Section 2.5.4). Different values for ν can be used for different models, but we 
do not treat it as a distributional parameter in this paper. For the standard deviation and the range, 
we use a log-link, as these parameters need to be positive.

The Matérn covariance function (or any other covariance function) can be modified to include 
an additive i.i.d. measurement error, giving rise to the covariance function

c∗(t, t′; θc = [σ, ϕ, δ]⊤) = cm(t, t′; θc = [σ, ϕ]⊤) + δ2 × I(d(t, t′) = 0), 

where δ is the standard deviation of the idiosyncratic error, and I is the indicator function. In the 
distributional regression framework, δ can be interpreted as an additional distributional param-
eter of the covariance function. The estimation procedure discussed in Section 3 can be applied 
to δ in the same way as to any other distributional parameter.

It is important to note that the validity of a covariance function depends on the metric space it is 
defined on, i.e., on the distance function d(t, t′). While the Matérn covariance function is valid on 
the Euclidean space of any dimension, the situation on the sphere with the great circle distance is 
more complicated: Gneiting (2013) investigates the validity of different commonly used covari-
ance functions on the one- to three-dimensional sphere and finds that, in this case, the Matérn co-
variance function is only valid for 0 < ν ≤ 1/2.

There are no restrictions on the families of covariance functions that can be used in our model 
framework, and the number of covariance parameters can be greater than for the Matérn covari-
ance function. Examples of alternative covariance functions include the power exponential, the 
rational quadratic, and the spherical covariance functions (Rasmussen & Williams, 2006, 
Section 4.2). Some index sets with special interpretations might require more elaborate covariance 
functions such as non-stationary or non-separable space-time covariance functions (Gneiting, 
2002).

2.3 Structured additive predictors and effect priors
In the structured additive regression framework (Fahrmeir et al., 2004; Wood, 2017), each pre-
dictor ηki can be expressed as a sum of Lk smooth terms fkl,

ηki =
Lk

l=1

fkl(xi; βkl), 

where each function fkl is expanded from a basis representation as fkl =
Dkl

d=1 Bkld(xi)βkld, and βkl 

are the regression coefficients to be estimated. The predictor ηki can attain any real value and needs 
to be mapped to the (possibly constrained) parameter space of the distributional parameter θki 

with a strictly monotonic link function hk, i.e., hk(θki) = ηki or θki = h−1
k (ηki).
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A smooth term usually depends on one or two elements of the covariate vector xi, but it can also 
be of a higher dimension, e.g., in the case of simple linear covariate effects. The interpretation of a 
smooth term depends on the choice of the basis functions and the prior of the regression coeffi-
cients. In many cases, a (proper or improper) normal prior is assumed for the regression coeffi-
cients,

p(βkl ∣ τkl) ∝ exp −
1

2τ2
kl

β⊤
klPklβkl

 

, 

where τkl is a hyperparameter that controls the smoothness of the covariate effect, and Pkl is 
a penalty matrix. The hierarchical prior of the parameters of smooth term l in predictor k is 
given by p(βkl, τkl) = p(βkl ∣ τkl) × p(τkl), where p(τkl) is often an inverse gamma distribution 
with fixed hyperparameters a = b = 0.0001 or some other small value. In more complex scen-
arios, we might also have covariate effects that depend on more than just one single, scalar 
hyperparameter (e.g., to achieve adaptive smoothness) or another hierarchical prior layer 
that connects the hyperparameters (e.g., to control the overall model complexity, Klein & 
Kneib, 2016a), but we will stick to the simple case in this article. Notationally, we will as-
sume a vector of hyperparameters τkl for better generality, including the scalar case as a spe-
cial case.

The smooth terms in a structured additive predictor can represent a broad range of covariate 
effects (linear, random, non-linear, spatial, etc.). A simple non-linear effect of a single covariate 
can be constructed using a polynomial basis. Cubic or B-splines provide a numerically more sta-
ble and flexible alternative to standard polynomials. In Section 5, we use a kriging smooth to 
model a spatial effect, which we can also represent as a linear combination of basis function eval-
uations. See Fahrmeir et al. (2013) for more details on smooth terms and structured additive 
predictors.

2.4 Related model classes

Mixed models with within-group correlation structures
If the index set T reduces to a finite set, the GPs become finite collections of dependent observa-
tions. For grouped data like this, where the groups could represent longitudinal observations 
on one person, mixed models are the standard tool. Distributional regression models with GP re-
sponses are closely related to the marginal distribution implied by mixed models. For example, the 
random intercepts model corresponds to

[Yi,1, . . . , Yi,ni ]
⊤ ∣ xi

ind.
∼
N ni (μi, ξ2Eni + σ2Ini ), (8) 

where [Yi,1, . . . , Yi,ni ]
⊤ is the vector of the ni measurements on group i, Ei is a (ni × ni)-dimensional 

matrix of ones, Ini is the ni-dimensional identity matrix, and ξ2 represents the random effect vari-
ance. In this case, there are two (co-)variance parameters ξ2 and σ2. Adding random slopes to the 
model would increase the number of covariance parameters.

Some mixed model implementations (such as the nlme package for R, Pinheiro et al., 2020) al-
low for within-group correlation structures of the residuals, which means that the identity matrix 
Ini in Equation (8) can be replaced with a more complex correlation matrix. This model extension is 
useful for temporally or spatially correlated data. As in our model, the correlation matrix is defined 
in terms of a parametric correlation function such as the Matérn correlation function, but to the 
best of our knowledge, its parameters (and the further covariance parameters of mixed models) 
are usually not linked to group-specific covariates. We are also not aware of any software pack-
age that supports this model structure out of the box. Moreover, the nlme package does not 
support structured additive predictors, but other mixed model software packages like gamm4 
(Wood & Scheipl, 2020) do.
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Functional data
Our model also has a close conceptual relation with GP regression models for functional data (Shi 
& Choi, 2011). For example, consider the functional response model

Yi(t)
ind.
∼
N (μi(t) + ωi(xi(t)), σ2), 

where xi(t) are functional covariates, while a GP prior is assumed for ωi(xi(t)), which defines the 
covariance structure of Yi(t). As a major difference, Shi and Choi (2011) do not allow for the in-
clusion of group-specific covariate effects on the (hyper-)parameters of the covariance functions of 
ωi(xi(t)) and Yi(t).

Another aspect where the work of Shi and Choi (2011) is similar to that of Greven and Scheipl 
(2017) or Scheipl et al. (2015) but different from ours is the way the mean functions μi(t) are mod-
elled: while our motivation is to use mean functions whose parameters serve as distributional pa-
rameters and are linked to covariates, Greven and Scheipl (2017) focus on (non-parametric) linear 
representations of the mean functions via suitable basis expansions. Given this difference, our 
model can be considered more realistic and more stable, at least in situations where prior knowl-
edge on the shape of the mean functions such as the sigmoid shape of the Weibull growth curves in 
Section 5 is available. On the other hand, parametric mean functions might be too restrictive for 
some applications. Finally, our index set T can represent different (potentially non-Euclidean) 
metric spaces, while the functional data literature is typically concerned with time-indexed data.

3 Posterior estimation
We stack all regression coefficients in a vector β, all hyperparameters in a vector τ, and all cova-
riates in a matrix X consisting of the N rows xi. The unnormalised log-posterior is then given by

log π(β, τ ∣ y1, . . . , yN, X) ∝
N

i=1

log pN (yi ∣ xi, β) +
K

k=1

Lk

l=1

log pkl(βkl, τkl).

The first term on the right-hand side is the log-likelihood of the regression coefficients β, where the 
observed values for the ith GP are denoted by yi and the density of the multivariate normal distri-
bution by pN . The second term on the right-hand side is the joint log-prior of all parameters β and 
τ, where pkl is the density of the prior distribution of the regression coefficients and hyperpara-
meters of smooth term l in predictor k.

We perform fully Bayesian inference with an adjusted version of the generic MCMC sampler of 
Umlauf et al. (2018), which uses inverse gamma priors and Gibbs updates for each scalar element 
of the hyperparameters τ, and Metropolis–Hastings updates with locally adaptive IWLS proposals 
(Gamerman, 1997) for the regression coefficients β. As the IWLS proposals involve the observed or 
expected Fisher information matrix, the regression coefficients are sampled in blocks for numer-
ical stability and efficiency. Typically, one block consists of the regression coefficients of one 
smooth term, and the blocks are sampled in a nested loop over the distributional parameters first 
and the smooth terms second. As discussed in the next section, we sample the parameters of certain 
smooth terms in one joint block, which can reduce the autocorrelation of the MCMC chains 
substantially.

The required full conditionals for the Gibbs updates of the hyperparameters are independent of 
the specific response structure of a distributional regression model and are given e.g., in Umlauf 
et al. (2018).

3.1 Model-specific scores and Fisher information
For a general distributional regression model, the score and the Fisher information of the regres-
sion coefficients βkl are given by

s(βkl) =
N

i=1

s(θki)
∂θki

∂βkl
and I (βkl) =

N

i=1

I (θki)
∂θki

∂βkl

∂θki

∂βkl

 ⊤

, 
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where the distributional parameters θki are functions of the regression coefficients βkl composed of 
smooth terms, structured additive predictors, and inverse link functions. The derivatives ∂θki/∂βkl 
are usually easy to compute. For this reason, we only give s(θki) and I (θki), the score and the Fisher 
information of the distributional parameters with respect to the response distribution, for the par-
ticular case of GP responses in the distributional regression framework.

Using the definitions of the mean vector μi and the covariance matrix Σi from Equation (4), the 
unnormalised log-likelihood contribution of the ith GP is

log pN (yi ∣ xi, β) ∝ −
1
2

( log |Σi| + (yi − μi)
⊤Σ−1

i (yi − μi)).

For better readability, we omit the observation index i in the following formulas. Let θk be a dis-
tributional parameter of the mean function, then the score and the Fisher information of θk are

s(θk) =
∂μ
∂θk

 ⊤

Σ−1(y − μ) and I (θk) =
∂μ
∂θk

 ⊤

Σ−1 ∂μ
∂θk

.

Now, let θk be a distributional parameter of the covariance function, then the score of θk is

s(θk) = −
1
2

tr Σ−1 ∂Σ
∂θk

 

− (y − μ)⊤Σ−1 ∂Σ
∂θk

Σ−1(y − μ)
 

and the corresponding Fisher information is

I (θk) =
1
2

tr Σ−1 ∂Σ
∂θk

Σ−1 ∂Σ
∂θk

 

.

The derivatives ∂μ/∂θk and ∂Σ/∂θk depend on the specific mean and covariance function of the 
GPs. Typically, one of the distributional parameters of the covariance function will be the standard 
deviation σ (or the variance σ2, depending on the parameterisation). In this case, the covariance 
matrix is given by Σ = σ2R, where R is the correlation matrix, and the score and the Fisher infor-
mation of σ simplify to

s(σ) = −
1
σ

n − (y − μ)⊤Σ−1(y − μ)
( 

and I (σ) =
2n
σ2 .

3.2 Sampling the covariance parameters in one block
To sample the regression coefficients of the smooth terms l and l̃ in the predictors k and k̃ in one 
block, their joint Fisher information is required,

I
βkl
βk̃l̃

  

= I (βkl) Cov(s(βkl), s(βk̃l̃))
Cov(s(βk̃l̃), s(βkl)) I (βk̃l̃)

 

, 

where

Cov(s(βkl), s(βk̃l̃)) =
N

i=1

Cov(s(θki), s(θk̃i))
∂θki

∂βkl

∂θk̃i

βk̃l̃

 ⊤

.

Specifically, we want to improve the sampling performance for the covariance parameters, so we 
need the covariance of the score of the standard deviation and the range, which is given by

Cov(s(σ), s(ϕ)) =
1
σ

tr R−1 ∂R
∂ϕ

 

.
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4 Simulation study
We designed a simulation study with three scenarios: the first scenario shows that the sampling 
scheme from Section 3 can greatly improve the performance of the ‘standard’ IWLS sampler 
with separate blocks for each distributional parameter and smooth term. Scenario II resembles 
the real-world application to intra-annual tree stem growth in Section 5, extending it with an 
artificial time-varying covariate as a proof of concept. In the third scenario, we use GPs on a 
sphere, which can be understood as shapes of tree crowns. While this simulation is not imme-
diately linked to the application of analysing tree stem radial growth, it underlines that the in-
dex set of the GPs does not need to be one-dimensional or Euclidean. To communicate a clear 
message with each scenario, we refrained from adding unnecessary complexity: All scenarios 
use normal priors with mean zero and standard deviation 1,000 for the regression coefficients, 
100 replications of the data-generating process, and MCMC chains of length 1,000 after a 
burn-in of 200 iterations.

4.1 Scenario I: joint sampling
In this scenario, we use a constant mean function and the Matérn covariance function cm from 
Equation (7). The smoothness parameter ν of the Matérn covariance function is fixed to 1.5, 
and the predictors and inverse link functions are defined to be

μi = xi1, σi = exp(xi2 + xi4), and ϕi = exp(β0 + xi3 + xi4), 

where xi1, xi2, xi3, xi4
ind.

∼ U(0, 1) are the covariates. The observation index i runs from 1 to N, 
where N = 30 is the number of GPs, and ni = n = 30 is the number of observed values per GP. 
The unit interval serves as the index set of the GPs.

For β0, the intercept for the range ϕi, we use two different values: −3, such that ϕi ∈ [0.049, 
0.368], and 0, such that ϕi ∈ [1, 7.39]. We call β0 = −3 the ‘small-range scenario’ and β0 = 0 the 
‘large-range scenario.’ Figure 2 shows 30 simulated GPs from one exemplary replication of the 
simulation scenario. The realisations of the GPs in the large-range scenario seem almost linear, 
while the realisations in the small-range scenario are much more wiggly.

We ran 100 replications of this setup, both with a small and a large range. In a next step, we 
sampled the (correctly specified) model for each replication and range, one time with separate 
blocks for the regression coefficients for the standard deviation and the range, and another time 
with one joint block for these coefficients. The bias of the posterior mean estimates is negligible 
for both samplers, but in terms of the autocorrelation of the chains, there are substantial differen-
ces between them. While the autocorrelation is similar for the regression coefficients for xi2 and 
xi3, the joint sampler beats the one with separate blocks by far for the intercept and the regression 
coefficients for xi4 (the covariate with an effect on both the standard deviation and the range; see 
Figure 3 for a comparison of the trace plots). With a small range, the performance gap is less ex-
treme but still very apparent.

We conclude from Scenario I that using a joint sampler for the covariance parameters is 
much more efficient. In contrast, with the sampling scheme with separate parameter blocks 
for the covariance parameters, the resulting MCMC chains have a high autocorrelation and 
must be inspected carefully. For Scenarios II and III, similar performance differences between 
the samplers can be observed, which we demonstrate in the supplementary material to this 
article.

4.2 Scenario II: time-varying covariates
The mean function of the GPs in this scenario is constructed as the sum of the Weibull growth 
curve from Equation (6) and the linear mean function from Equation (5), yielding

m(zi(t) = [t, ui(t)]
⊤; θm

i = [li, ai, bi, wi]
⊤) = mw(t; [li, ai, bi]

⊤) + ml(ui(t); wi), 
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where ui(t) is a univariate time-varying covariate, and the parameter wi determines the effect size 
of ui(t). The covariance function of the GPs is

cs(zi(t) = t, zi(t′) = t′; θc
i = [σi, ϕi]

⊤) = q(t) × q(t′) × cm(t, t′; [σi, ϕi]
⊤), (9) 

where cm is the Matérn covariance function from Equation (7) with the smoothness parameter 
ν = 1.5. The auxiliary function q(t) is defined as

q(t) = 0.1 + 0.9
30 × t if 0 ≤ t < 30,

1 otherwise,



(10) 

and scales the standard deviation of the GPs over time, such that it increases linearly on the interval 
[0, 30] and remains constant afterwards. The motivation for this step is that the growth curves in 
the application in Section 5 are defined to start at zero on April 1 of each year (i.e., at the beginning 
of each growing season) and have little variability in the first couple of weeks after that.

We define the predictors and inverse link functions li = 1500 ≈ exp(7.313), ai = 3.5 ≈  
exp(1.253), bi = 100 ≈ exp(4.605), wi = xi, σi = 40 ≈ exp(3.689), and ϕi = 2 ≈ exp(0.693). The 
only explanatory variable xi, where i = 1, …, N, is independent and uniformly distributed on 
the interval [1, 2]. The number of GPs takes the values N = 30, 60, or 120, and the number of ob-
served values per GP is ni = n = 60 or 120. As the index set of the GPs, we use the interval [0, 182], 
representing the days during one growing season.

The focus of this scenario is on the time-varying covariate ui(t), which we simulate as i.i.d. GPs 
with mean zero and a squared exponential covariance function, scaled over time with the auxiliary 
function q(t) from Equation (10). In the context of intra-annual tree stem growth, the time-varying 
covariate ui(t) could, for example, be a mean-centred moving average over the precipitation at the 
location of a tree i. How much the precipitation affects the growth dynamics of tree i depends on 
the explanatory variable xi, which might represent the soil conditions around that tree. Figure 4
illustrates this simulation scenario.

For each possible N-n-combination, we ran 100 replications and found that the sampling 
scheme from Section 3 works very reliably. The posterior mean estimates do not show any system-
atic bias (Figure 5). They have very little variability around the true value for the parameters of the 
Weibull growth curve, while more variability is observed for the parameter of the time-varying co-
variate and the covariance parameters. As expected, the quality of the estimates improves with the 
sample size, where N has a stronger effect on the quality than n, because additional independent 
response GPs are more informative than additional dependent observations within each GP. In 

Figure 2. The GPs from one exemplary replication of Simulation Scenario I. The range takes values between 1 and 
7.39 for the GPs on the left-hand side and between 0.049 and 0.368 for those on the right-hand side.
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summary, this simulation scenario shows that our sampler has the expected properties for a cor-
rectly specified model, even if time-varying covariates are included.

Finally, we highlight that the boxplots in Figure 5 show the performance of the sampler under 
the assumption that the true smoothness parameter ν is known, which is usually not the case in 
practice. However, a misspecified smoothness parameter (ν = 0.5 or 2.5 instead of 1.5 in this scen-
ario) does not seem to have a strong adverse effects on the inferences drawn from such a model. In 
the supplementary material to this article, we show that a misspecified smoothness parameter is 
mostly compensated for by the estimated range parameter ϕ, while the other parameters remain 
essentially unaffected. Rather, we found that a reasonable choice for ν can increase the model sta-
bility and improve the MCMC mixing, as we will investigate in Section 5.

4.3 Scenario III: processes on a sphere
In this scenario, we show how our model can accommodate spatial or spatio-temporal processes as 
response structures. Generally speaking, the GPs can be defined on a one- or higher-dimensional 
Euclidean space, or even a non-Euclidean metric space when employing appropriate distances. 
The processes in this specific scenario are defined on a sphere, resembling shapes of tree crowns, 
and we use the great circle distance for quantifying distances. Figure 6 illustrates the design: the 
object on the left is an ‘average’ tree crown, from which we simulated a more realistic shape as 
a realisation of a GP with an exponential covariance function, shown on the right. In an applica-
tion, the tree species or the light availability could be used as covariates to explain the properties of 
the mean and the covariance function of the crown shapes. The mean properties are, among 
others, the average radius, and the vertical elongation, while the covariance properties are the 
size and the persistence of the deviations from the mean.

The mean function in this scenario is defined in terms of the linear mean function from Equation 
(5), which is applied to a transformed coordinate vector as follows:

m(zi(t) = [t1, t2]⊤; θm
i = [ri, hi, vi]

⊤)

=ml([1, cos (t2)( cos (t1) + 1), t2 + π/2]⊤; [ri, hi, vi]
⊤)

=ri + cos (t2)( cos (t1) + 1) × hi + (t2 + π/2) × vi.

Figure 3. Trace plots for the regression coefficients for xi4 from one exemplary replication of Simulation Scenario I. 
The left-hand side shows the sampler with separate blocks for the regression coefficients for the covariance 
parameters, whereas the right-hand side shows the sampler with one joint block for these coefficients. No thinning 
was applied to the chains.
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The coordinates t1 ∈ [ − π, π] and t2 ∈ [ − π/2, π/2] are the longitude and the latitude on the sphere 
in radians. The parameters are ri, the minimum radius of the tree crown, hi, the horizontal elong-
ation towards the south, and vi, the vertical elongation. Furthermore, we use the Matérn covari-
ance function cw from Equation (7) with the smoothness parameter ν = 0.5, i.e., an exponential 
covariance function.

The predictors and inverse link functions are defined as ri = exp(xi1), si = exp(xi2), hi = exp(1 + xi3), 
σi = exp(xi4), and ϕi = exp(xi5), where the explanatory variables xi1, xi2, xi3, xi4, and xi5 are inde-
pendent and uniformly distributed on the unit interval and the observation index is i = 1, …, N. 
The number of GPs is set to N = 30, and the number of observed values per GP is ni = n = 379. A 
regular longitude–latitude grid is used for the observations of the GPs.

With a maximum value of 0.014 for the covariate effect of xi1 on the radius ri, the average bias is 
negligible for all posterior mean estimates. The average mean squared errors (MSEs) are also very 
small, especially for the regression coefficients for the vertical elongation vi, the standard deviation 
σi, and the range ϕi. Among these regression coefficients, the maximum average MSE is 0.006 for 
the covariate effect of xi3 on vi. The average MSEs for the regression coefficients for ri and the hori-
zontal elongation hi are higher but still uncritical with values between 0.02 and 0.26 (results not 
shown graphically for this scenario). These numbers indicate that we are able to estimate the mod-
el parameters reliably with our sampling scheme, despite the fact that the GPs are defined on a 
non-Euclidean space.

5 Intra-annual tree stem growth
In this section, we apply our method to the intra-annual stem growth of 72 beeches, 6 ashes, and 7 
sycamores from three different regions in Germany. For each tree, the growing seasons 2012 and 
2013 were recorded in a high temporal resolution using electronic circumference dendrometers. 
The original purpose of the data was a study on the effect of the neighbourhood identity on the 
growth patterns of beech trees in pure and mixed stands (Metz et al., 2020), which was conducted 
in the Biodiversity Exploratories (Fischer et al., 2010). The dataset can be downloaded from the 
information system of the project (BExIS, Metz & Ammer, 2018; Ostrowski et al., 2016), thanks 
to the open data policy of the Biodiversity Exploratories. Our analysis is fully replicable with the 
code in the supplements.

A first outlook on the dataset was given in Figure 1. We compared a beech to an ash and ob-
served differences in the overall annual growth, the starting time of the growth process, and the 
shrinking and swelling. With our model, we formalise these observations and assess the effect 
of explanatory variables such as the DBH or the geographical location. We show that our model 

Figure 4. The response GPs Yi(t) (on the left-hand side) and the time-varying covariates ui(t) (on the right-hand side) 
from one exemplary replication of Simulation Scenario II with N = 30 and n = 60. The large-scale deviations of Yi(t) 
from the Weibull growth curve are mainly driven by mean shifts due to ui(t), while the small-scale variation comes 
from the covariance structure of Yi(t).
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is instructive when applied to high-resolution dendrometer data. Our statistical approach is differ-
ent from the one used by Metz et al. (2020), who estimate one Weibull curve per observed curve, 
each fitted individually by non-linear least squares, and then model the estimated parameters and 
other derived quantities. One downside of this two-step procedure is that the estimation uncer-
tainty of the parameters is not systematically taken into account in the second step. We solve 
this problem with an explicit assumption about the probability distribution of the stochastic pro-
cess of intra-annual tree stem growth and a one-step inference algorithm.

5.1 Model specification
Our analysis is based on the Weibull growth curve mw(t) from Equation (6) as a mean function and 
the scaled Matérn covariance function cs(t, t′) from Equation (9). Consequently, we have the fol-
lowing five distributional parameters: the limit l, the shape a, and the scale b of the Weibull growth 
curve, and the standard deviation σ and the range ϕ of the covariance function.

The covariance function describes the shrinking and swelling of the tree stems and does not in-
clude any additional parameters to account for potential measurement errors from the dendrom-
eters. The motivation for this approach is that electronic dendrometers are high-precision devices, 

Figure 5. Boxplots of the bias of the posterior mean estimates in Simulation Scenario II. Each boxplot represents 
100 replications for one combination of N, the number of response GPs, and n, the number of observed values per 
GP.

Figure 6. An exemplary mean function, shown on the left, and a corresponding realisation of a GP with an exponential 
covariance function, shown on the right, from one replication of Simulation Scenario III. The objects are designed to 
resemble shapes of tree crowns. The properties of the shapes can be related to explanatory variables such as the 
tree species or the light availability.
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and the individual measurement errors are on a very small scale. Large errors occur only when the 
dendrometers are touched, e.g., by an animal or a researcher. These errors were already corrected 
in our dataset with a simple post-processing step. Finally and most importantly, the data were ori-
ginally recorded in a very high temporal resolution of 30 min. As we are only working with daily 
data, a potential additive error per half-hourly measurement would average out over the 48 meas-
urements on one day. From a theoretical perspective, however, including a measurement error in 
the model would be straightforward, see the discussion in Section 2.2.2.

The predictors and inverse link functions are defined as

li = exp(βl0 + (Tree ∗ Year)i × βl1),

ai = exp(βa0 + Speciesi × βa1 + DBHi × βa2 + (Site ∗ Year)i × βa3),

bi = exp(βb0 + Speciesi × βb1 + DBHi × βb2 + (Site ∗ Year)i × βb3),

σi = exp(βσ0 + Speciesi × βσ1 + DBHi × βσ2 + fYeari
(xi, yi; βσ3)),

ϕi = exp(βϕ0 + Speciesi × βϕ1 + DBHi × βϕ2 + (Site ∗ Year)i × βϕ3), 

where β†,0 and β†,2 are scalar regression coefficients, while β†,1 and β†,3 are vectors of regression 
coefficients, and Speciesi denotes the entries of the design matrix for the dummy variable for the 
species of the tree where the ith growth curve was recorded,

Speciesi =
[0, 0] if the ith growth curve is of a beech,
[1, 0] if it is of a ash; and
[0, 1] if it is of a sycamore.

⎧
⎨

⎩

Similarly, (Tree ∗ Year)i and (Site ∗ Year)i are the entries of the design matrix for the interaction of 
two dummy variables: in the first case, of the individual tree and the year, and in the second case, of 
the field site and the year. Finally, fYeari 

denotes a year-specific spatial kriging smooth.
The tree-year-interaction in the predictor for the limit parameter implies one degree of freedom 

for the limit of each growth curve. The other variables in the dataset do not explain the overall 
annual growth sufficiently, but the limit is identified well enough for each growth curve that these 
parameters can be estimated without problems. All other predictors include the species and the 
DBH as covariates. For the shape, the scale, and the range, the site-year-interaction captures the 
spatial and temporal differences between the field sites and the years. For the standard deviation, 
the smooth term fYeari 

serves this purpose and illustrates the flexibility of structured additive pre-
dictors when used with covariance parameters in the GP framework.

For the regression coefficients β, we used uninformative N (0, 1000) priors, and an inverse gam-
ma prior with fixed hyperparameters a = b = 0.0001 for the smoothing parameter τ2 of the spatial 
kriging smooth fYeari

.

5.2 Tree physiology
The dendrometer measurements of the stem radius of a tree are composed of an irreversible growth 
component and temporary shrinking and swelling dynamics, which can be further divided into 
water potential-driven and osmotic processes (Chan et al., 2016). Water potential-driven changes 
in the stem radius are caused by sap moving radially within the xylem or between the xylem and 
the phloem from areas with a higher to areas with a lower water potential. This process give rise to 
an approximately periodic fluctuation of the dendrometer measurements over the course of 24 hr, 
while osmotic changes occur more gradually, for example, if the tree draws water from the roots.

In our case, the mean curves can be interpreted as the irreversible growth and the fluctuations 
around them as temporary shrinking and swelling. These fluctuations are characterised by the co-
variance function of the GPs. As the employed Matérn covariance function is stationary, the GPs 
keep returning to their mean. How fast they return depends on the range parameter, which is esti-
mated to be relatively small for most trees in the dataset. As we analyse the dendrometer measure-
ments in a daily resolution, the water potential-driven changes are averaged out from the data for 
the most part, and the remaining fluctuations are primarily osmotic. In fact, the deviations of the 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/2/414/7083835 by SU

B G
öttingen - U

niversität G
öttingen user on 04 August 2023



428                                                                                                                                                    Riebl et al.

growth curves from the estimated mean curves that we observe in the data do typically last a few 
days or weeks, as expected for the osmotic processes in tree stems.

If a growth curve increases faster than the mean curve, we interpret this as the tree drawing more 
water from the roots than required for the formation of new cells and the irreversible growth at a 
given moment. Conversely, if a growth curve increases slower than the mean curve, more water is 
consumed by the irreversible growth than drawn from the roots. Finally, if a growth curve decreases, 
water is released from the stem. These processes are reflected in the stochastic part of the model, 
which is characterised by the covariance parameters: the standard deviation quantifies the magnitude 
of the osmotic changes in the stem radius, and the range parameter their persistence. For example, 
some tree species might store more water in the stem than others (which would imply a higher stand-
ard deviation), or they might store it for a longer time (which would imply a higher range parameter).

Different approaches for the decomposition of dendrometer measurements have been proposed, 
among others, by Zweifel et al. (2005) and Chan et al. (2016). Zweifel et al. (2005), on the one 
hand, use a linear interpolation of the local maxima of the observed growth curves as an approxima-
tion of the irreversible growth and interpret the difference between the interpolation and the observed 
curves as the tree water deficit. They find that this measure of tree water deficit is explained well by 
soil water potential and vapour pressure deficit for pine, oak, and spruce under different environmen-
tal conditions in Switzerland. Chan et al. (2016), on the other hand, compute an estimate of the sum 
of the irreversible growth and the osmotic changes in the stem radius from dendrometer measure-
ments of both the whole stem and the xylem radial thickness. The irreversible growth is then obtained 
as the difference of the minima of this estimate on two consecutive days.

Despite the apparent similarities between our model framework and the approaches of Zweifel 
et al. (2005) and Chan et al. (2016), the scope of the methods is quite different: While the other 
approaches are motivated from ecophysiological considerations, our model takes advantage of 
statistical assumptions about the parametric form of the mean and covariance function of the 
GPs in a regression setting. It can be used to decompose dendrometer measurements into a per-
manent and a temporary component for any given point in time, but this is not our primary 
goal, and the decomposition is likely to be less accurate than the ones from the other, more spe-
cialised methods. Instead, our model does focus on the relationship between structural patterns 
of both the irreversible growth and the temporary shrinking and swelling throughout the vegeta-
tion period and a set of explanatory variables. As mentioned before, such structural patterns could 
be for example the magnitude or persistence of the osmotic changes in the stem radius. In particu-
lar, we would like to point out the following advantages of our approach:

• The model has minimal data requirements: A single circumference dendrometer per tree is suf-
ficient. Zweifel et al. (2005) and Chan et al. (2016) use one or two point dendrometers, re-
spectively. The model is also agnostic about the temporal resolution of the data, while the 
method of Chan et al. (2016) requires multiple measurements per day.

• The model can be estimated with one integrated MCMC algorithm, which estimates the de-
composition of the dendrometer measurements into irreversible growth and temporary 
shrinking and swelling, and the effects of the explanatory variables on the characteristics of 
the growth curves at the same time. The advantage is that the estimation uncertainty can 
be assessed in a sound statistical framework, and a two-step procedure can be avoided.

• The structural patterns of the growth curves that can be explained by covariates are not lim-
ited to the osmotic changes in the stem radius, but include characteristics of the overall intra- 
annual sigmoid growth curves as well, such as the total growth of a tree over an entire vege-
tation period or the steepness of a growth curve; for details, see Section 2.2.1.

The overall aim of our article is to present a model framework rather than one specific model for 
tree stem growth. The application in this section should illustrate how the different components of 
the framework can be interpreted in the context of tree stem growth. For the sake of simplicity, a 
relatively low temporal resolution and a limited number of covariates are used, but the model 
could easily be refined with a different mean or covariance function, more covariates, or a higher 
temporal resolution. In the view of this, the methods of Zweifel et al. (2005) and Chan et al. (2016)
should not be considered as competitors of our model, but their studies could serve as a basis for 
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the development of more specific models in our framework that could provide further insights into 
the ecophysiological process of tree stem growth. In fact, recent studies by Zweifel et al. (2021)
have confirmed vapour pressure deficit as an important driver of tree stem growth, so including 
it as a time-varying covariate in the mean or covariance function could be particularly instructive. 
In our application, the site-year-interactions in the predictors serve as proxies for the average wea-
ther conditions at a given site in a given year and ensure that the species and DBH effects do not 
suffer from an omitted variable bias, but the explicit inclusion of vapour pressure deficit or soil 
water potential would give rise to a more direct model.

Recent articles have addressed the question during which time of the day trees and other plants 
grow the most (Wiese et al., 2007; Zweifel et al., 2021). To investigate this problem in our model 
framework, the growth curves would need to be processed in a higher, e.g., hourly, temporal reso-
lution, which would increase the computational cost of our model and require some adjustments 
of the covariance and possibly the mean function of the GPs: to account for the daily pattern of the 
water potential-driven changes in the tree stem radius, an additive periodic kernel could be in-
cluded in the covariance function, for example, an exponential sine squared kernel (Rasmussen 
& Williams, 2006, Section 4.2). To address the question whether the irreversible growth primarily 
occurs during the day or the night, the mean function could be modified to represent a sequence of 
daily smooth step functions, where a parameter could be introduced to estimate the time of the day 
around which the steps are centred.

5.3 Estimation results
We used the sampling scheme from Section 3 to estimate our tree growth model with results pre-
sented in this section based on MCMC samples from the posterior distribution with a sample size 
of 10,000, excluding the 2,000 burn-in iterations. No thinning was applied to the chains. The ef-
fective sample size ranges from 703.169 to 8,793.660, as for some regression coefficients in the 
predictors for the mean parameters, the chains exhibit moderate to strong autocorrelation.

Table 1 summarises the posterior samples of the species effect of ash and the effect of DBH on 
the predictors. The reference category for the species effect is beech, so the negative effect on the 
scale implies that, on average, an ash stops growing earlier during the vegetation period than a 
beech. As different species allocate resources differently throughout the growing season, this is 
an expected result. The positive effect of DBH on the growth duration during the vegetation period 
might be due to the fact that trees with a greater DBH are more likely to be dominant in the stand. 
When the light availability decreases in the fall, the dominant trees still continue to grow, while the 
smaller trees cannot keep up their growth.

In terms of the covariance parameters, ash has a positive effect on the standard deviation. This is 
plausible because ash has a thicker bark than beech, which means it can store more water in the 
bark. The same argument applies for the effect of DBH on the standard deviation, as larger trees 
have a thicker bark. The effect of ash on the range parameter is estimated to be negative, which 
means that the osmosis-induced changes in the stem radius are less persistent for ash than for 
beech, possibly because the water is stored for shorter periods of time. Finally, the effect of 
DBH on the range is slightly positive, but the 95% credible interval does not exclude a zero effect.

The spatial kriging smooth in the predictor for the standard deviation is displayed in Figure 7. 
The six rectangles represent the three study regions Schwäbische Alb, Hainich-Dün, and 
Schorfheide-Chorin of the Biodiversity Exploratories and the years 2012 and 2013. The locations 
of the field sites in the study regions are marked with small crosses. A brighter colour indicates a 
higher standard deviation of the growth curves of the trees at a given location. The figure shows 
that the differences in the standard deviation are greater between than within the study regions: 
The trees on the Schwäbische Alb have the highest standard deviation, followed by those in the 
Hainich-Dün and the Schorfheide-Chorin. This pattern is stable over the years and very likely a 
result of differences in the precipitation, which are greater on a large than on a small scale. 
Note that the estimated effects are extrapolated considerably beyond areas supported by the ob-
servations, such that these parts of the rectangles in Figure 7 should be interpreted with care.

To check the robustness of the results with respect to the smoothness assumption of the correl-
ation function, we also estimated the model with the smoothness parameters ν = 0.5 and 2.5 instead 
of 1.5. We found that all three models produce similar results, both in terms of the model fit and the 
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estimated covariate effects. For ν = 0.5, we had to use informative standard normal priors for the 
regression coefficients β instead of the default N (0, 1000) priors, and still some parameters ap-
peared to be poorly identified, deteriorating the mixing of the MCMC chains. Comparing the re-
sults for ν = 1.5 and 2.5, we obtained the better DIC for ν = 1.5, making this model our preferred 
specification. The estimated covariate effects, particularly their signs and sizes, were comparable 
for all three models, such that the interpretation of the model is unaffected by the specific choice 
of the smoothness parameter. For more details, see the supplementary material to this article.

The discussion of the model results shows that our framework allows us to relate different prop-
erties of the tree growth curves to explanatory variables and complex covariate effects (such as the 
spatial kriging smooth in this example) in a very direct way. Using the methods of Zweifel et al. 
(2005) or Chan et al. (2016), similar results could be obtained by decomposing the dendrometer 
data, defining measures for the phenomena of interest, e.g., the persistence of the osmotic changes 
in the stem radius, based on the decomposition, and finally using these measures as response var-
iables in different regression models. Both approaches have benefits and drawbacks depending on 
the goal of the analysis, but if the focus is on the effect of the explanatory variables, our model is 
arguably more comprehensive.

6 Discussion
In this paper, we embedded GPs as response structures into the framework of structured additive 
distributional regression as described by Klein et al. (2015) to study intra-annual tree stem growth 
and to decompose high-resolution dendrometer measurements into irreversible growth and tem-
porary shrinking and swelling. It is of particular interest for the physiological understanding of 
stem growth that our model can explain certain properties of both components of the dendrometer 
measurements by covariates such as the tree species or the DBH. Based on a dataset of 85 individ-
ual trees from Germany, for which the variations in the stem radius were recorded during the 
growing seasons 2012 and 2013, we could identify different growth patterns for three deciduous 
tree species: for instance, ash grows more gradually and earlier during the vegetation period than 
beech, and its thick bark gives rise to a more pronounced temporary shrinking and swelling. Our 
model can quantify these differences between tree species and conditional on other explanatory 
variables with a sound and unified statistical approach.

We want to point out that the design of the structured additive predictors, that is the selection of 
the explanatory variables and their effect type, requires special care for the proposed type of mod-
el. Theoretical considerations and subject-matter expertise must be taken into account to build 
models with meaningful interpretations for the research questions at hand. Concerning the ana-
lysis of intra-annual tree stem growth, additional, more detailed models including precipitation 
data and other time-varying explanatory variables could be a promising next step, especially since 

Table 1. Summary statistics of the posterior samples of the species effect of ash (vs. beech) and the effect of DBH on 
the predictors

Ash Coefficient Mean 2.5% Median 97.5%

Shape βa1,1 −0.289 −0.363 −0.289 −0.218

Scale βb1,1 −0.426 −0.452 −0.426 −0.400

Std. dev. βσ1,1 0.602 0.529 0.602 0.678

Range βϕ1,1 −0.101 −0.157 −0.101 −0.043

DBH Coefficient Mean 2.5% Median 97.5%

Shape βa2 −0.027 −0.044 −0.027 −0.009

Scale βb2 0.050 0.045 0.050 0.055

Std. dev. βσ2 0.085 0.064 0.085 0.106

Range βϕ2 0.011 −0.004 0.011 0.027
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in the light of global climate change, a comprehensive understanding of the trees’ reaction to 
drought stress is becoming more and more indispensable.

While the original use case for our model class is the analysis of intra-annual tree stem growth, 
the flexibility, and versatility of the model framework was discussed throughout the paper and 
demonstrated in particular in the simulation study. The general model class certainly deserves fur-
ther investigation in the future. To explore its full potential in many other applications, it will be 
necessary to study the various members of the model class arising from specific choices of index 
sets, mean functions, and covariance functions, and to develop applications for research questions 
in different fields.

Other aspects that deserve further attention are both theoretical and software-related. We im-
plemented an R package that can fit the models described in this paper but does not yet support 
arbitrary mean and covariance functions. The challenge will be to keep the performance cost of 
these generalisations as small as possible. To reach a greater audience, the package will also 
need a more complete documentation and a better user interface. In terms of open theoretical ques-
tions, the propriety of the posterior distribution and the ergodicity of the MCMC chains comes to 
mind. Finally, following up on the discussion in Sections 3 and 4, a more thorough investigation of 
the correlation structure of the model parameters could guide the development of more efficient 
MCMC sampling schemes.
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1. Misspecification of the smoothness parameter of the Matérn
correlation function

Throughout the paper, we use the Matérn correlation function with a
fixed smoothness parameter ν = 0.5, 1.5 or 2.5. In spatial statistics, it is
common practice to fix the parameter ν to a half-integer value, as the cor-
relation function, which generally involves the gamma function and the
Bessel function of the second kind, reduces to a product of a polynomial
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and an exponential in these cases. Treating ν as a continuous parameter
is computationally challenging, and the parameter is often difficult to
identify in practice. Typically, ν is chosen based on assumptions about
the smoothness of the Gaussian process (GP), since it is intrinsically
connected to the differentiability of the GP. Another aspect to consider
is the mathematical validity of the correlation function on a given metric
space, e.g. the Matérn correlation function is only valid for 0 < ν ≤ 0.5
on the one to three-dimensional sphere (Section 2.2.2 of the paper).

1.1. Simulation study
To investigate the effect of a misspecified smoothness parameter ν on
the inference, we estimated the model from Scenario II of the simula-
tion study (Section 4.2 of the paper) with the wrong parameters ν =
0.5 and 2.5 (the true parameter is ν = 1.5). The effect of the model
misspecification on the bias of the posterior mean is shown in Figure 1
and 2. As expected, the strongest bias can be observed for the covariance
parameters, particularly for the range parameter ϕ.

For half-integer values of the parameter ν, we parametrize the Matérn
correlation function as

ρ(d̃, ν = 0.5) = exp(−d̃),

ρ(d̃, ν = 1.5) = (1 + d̃) exp(−d̃),

ρ(d̃, ν = 2.5) = (1 + d̃+ d̃ 2/3) exp(−d̃),

where d̃ = d/ϕ and d is the distance between two observations. The
parameter ϕ can be compared between the different correlation functions
in the sense that it scales the distance that is used in the correlation
functions, but the estimates cannot be expected to match each other
perfectly given the different terms in the correlation functions.

The range parameter can also be interpreted as a smoothness mea-
sure of the GP – not in the sense of differentiability but describing the
persistence of the deviations from the mean. A GP with a smaller pa-
rameter ϕ has less persistent deviations from the mean, i.e. the GP is
more wiggly (Figure 2 in the paper). For this reason, it is not surprising
that the parameter ϕ seems to compensate for the misspecification of the
smoothness parameter: In Figure 1, where the smoothness parameter is
too small, the parameter ϕ is estimated to be larger than for the correct
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Fig. 1. The bias of the posterior mean in Simulation Scenario II estimated
with the misspecified smoothness parameter ν = 0.5 (instead of the true
ν = 1.5). Each boxplot summarizes 100 replications for one combination of N
(the number of GPs) and n (the number of observations per GP).



Modeling Intra-Annual Tree Stem Growth – Supplement 4

n: 60
n: 120

l a b w: (Intercept) w: x σ ϕ

-0.6

-0.4

-0.2

0.0

0.2

-0.6

-0.4

-0.2

0.0

0.2

Bi
as

N

30
60
120

Fig. 2. The bias of the posterior mean in Simulation Scenario II estimated
with the misspecified smoothness parameter ν = 2.5 (instead of the true
ν = 1.5). Each boxplot summarizes 100 replications for one combination of N
(the number of GPs) and n (the number of observations per GP).
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smoothness parameter, hence reducing the wiggliness of the GP. On the
other hand, the opposite behavior can be observed in Figure 2.

Another conclusion from the simulation study is that the parameters
other than the range are barely affected by a misspecified smoothness
parameter: No bias was observed for the mean parameters, and only
a very small bias for the standard deviation in some configurations of
the simulation study. In the context of distributional regression with
GP responses, which we focus on in the paper, it is also more relevant
to consider the effect of a misspecified smoothness parameter on the
estimated covariate effects rather than the intercepts. This last aspect
is discussed in the next section for the tree stem growth model from
Section 5 of the paper.

1.2. Intra-annual tree stem growth
To check the robustness of the results from the tree stem growth model
from Section 5 of the paper, we also estimated the same model with
the smoothness parameters ν = 0.5 and 2.5. We found that all three
models produce very similar results, both in terms of the model fit and
the estimated covariate effects.

To compare the model fit, we used the deviance information criterion
(DIC), which is shown in Table 1. Generally, the deviance D(θ̄) is lower
for smaller smoothness parameters, which seems plausible because larger
smoothness parameters express more restrictive assumptions about the
smoothness of the GP. At the same time, the effective number of param-
eters pD is comparable for all three models, yielding the lowest DIC for
the model with ν = 0.5, followed by ν = 1.5 and ν = 2.5.
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Table 1: The DIC of the tree stem growth model from
Section 5 of the paper for different smoothness parameters ν.
The DIC is defined as DIC = D(θ̄) + 2pD, where D(θ̄) is the
deviance at the posterior mean of the parameters, and pD is
the effective number of parameters. The results for ν = 0.5
are in parentheses, because some parameters appear to be
underidentified in this case, deteriorating the mixing of the
MCMC chains.

D(θ̄) pD DIC

ν = 0.5 (209187.4) (267.351) (209722.1)
ν = 1.5 210850.9 276.261 211403.5
ν = 2.5 216793.3 275.828 217345.0

To estimate the model with ν = 0.5, however, we had to tighten the
priors of the regression coefficients for the limit and scale parameter of
the mean function from an uninformative prior to a standard normal
prior. Even with the standard normal prior, we still did not achieve a
satisfactory mixing of the MCMC chains for the model with ν = 0.5.
As larger smoothness parameters can stabilize the estimation of distri-
butional regression models with GP responses, we propose the following
approach to model selection: (1) Estimate the model with a number of
different smoothness parameters. (2) Among the smoothness parameters
that are large enough for a stable estimation of the model, choose the one
with the best value of your preferred model selection criterion. In our
case, this is the tree stem growth model with ν = 1.5, which is presented
in the paper.

Table 2 shows some of the estimated covariate effects from the tree
stem growth model with ν = 2.5, comparing them to the model from
the paper with ν = 1.5. The results are almost identical for the mean
parameters and very similar for the covariance parameters. In particular,
the sign pattern of the estimated covariate effects remains unchanged.
The most notable difference between the two models is the estimated
intercept for the range: For ν = 2.5, the posterior mean is 0.119, instead
of 0.875 for ν = 1.5. The differences from the model with ν = 0.5 are
more pronounced: The posterior mean of the intercept for the range is
3.85 for ν = 0.5, and the size of some estimated covariate effects also
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changes. Nonetheless, the sign pattern is again the same, except for the
species effect of ash on the range, where the posterior mean flips from
negative to positive.

Table 2: Summary statistics of the posterior samples of the
species effect of ash (vs. beech) and the effect of DBH on the
predictors of the tree stem growth model from Section 5 of
the paper with the smoothness parameter ν = 2.5. For
comparison, the summary statistics for ν = 1.5 are reported
in parentheses.

Ash Coefficient Mean 2.5% Median 97.5%

Shape βa1,1 -0.285
(-0.289)

-0.341
(-0.363)

-0.285
(-0.289)

-0.228
(-0.218)

Scale βb1,1 -0.430
(-0.426)

-0.450
(-0.452)

-0.429
(-0.426)

-0.409
(-0.400)

Std. dev. βσ1,1 0.636
(0.602)

0.573
(0.529)

0.635
(0.602)

0.699
(0.678)

Range βϕ1,1 -0.058
(-0.101)

-0.091
(-0.157)

-0.058
(-0.101)

-0.025
(-0.043)

DBH Coefficient Mean 2.5% Median 97.5%

Shape βa2 -0.027
(-0.027)

-0.040
(-0.044)

-0.027
(-0.027)

-0.013
(-0.009)

Scale βb2 0.050
(0.050)

0.046
(0.045)

0.050
(0.050)

0.054
(0.055)

Std. dev. βσ2 0.101
(0.085)

0.084
(0.064)

0.101
(0.085)

0.119
(0.106)

Range βϕ2 0.010
(0.011)

0.001
(-0.004)

0.010
(0.011)

0.018
(0.027)
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2. Comparison of the different sampling schemes for all simula-
tion scenarios

In Simulation Scenario I, we compare the performance of two different
MCMC algorithms for distributional regression with GP responses: The
conventional sampling scheme uses separate parameter blocks for each
distributional parameter and covariate effect, while we propose to sam-
ple the intercepts and covariate effects of the standard deviation and
range in one joint parameter block. We find that separate blocks for the
standard deviation and range can lead to MCMC chains with a very high
autocorrelation, and that the performance can be improved substantially
by blocking these parameters together.

Figure 3 and 4 show exemplary trace plots for Scenario II and III
to verify that the same pattern can also be observed in these cases. For
Scenario III (the GP on the sphere, Figure 4), the performance difference
is very apparent from the trace plots for the unmodified configuration
from the paper. The autocorrelation of the MCMC chains produced by
the joint sampler is substantially lower.

For Scenario II (the GP that resembles the tree stem growth model,
Figure 3), the green trace plots correspond to the configuration from the
paper. In this case, the true range parameter is ϕ = 2, and the trace
plots show no clear performance difference. As discussed in the paper,
the separate parameter blocks are particularly prone to produce samples
with a high autocorrelation if the range is large. To illustrate this in
Scenario II, we ran the same scenario but with the true range parameter
set to ϕ = 20, giving rise to the expected performance difference shown
in the purple trace plots.
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Fig. 3. Trace plots for the standard deviation and range from one exemplary
replication of Simulation Scenario II. The left-hand side shows the sampler
with separate blocks for the covariance parameters, while the right-hand side
shows the sampler with one joint block for these coefficients. No thinning was
applied to the chains.
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Fig. 4. Trace plots for the standard deviation and range from one exemplary
replication of Simulation Scenario III. The left-hand side shows the sampler
with separate blocks for the covariance parameters, while the right-hand side
shows the sampler with one joint block for these coefficients. No thinning was
applied to the chains.
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1 Introduction

Loss of biodiversity due to human overuse of natural resources is one of the most pressing environmental issues of our
time, as emphasized by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)
in its global assessment report from 2019. It directly impacts the integrity of ecosystems, and hence human well-being.
As such, there is an urgent need for robust and effective statistical models to assess biodiversity and its drivers on local,
regional and global scales. To address these questions, researchers typically collect data on the abundance of a variety
of species at different field sites, together with environmental variables such as temperature, precipitation and land-use
type. Analyzing such data can be a challenging task, however, as non-linear relationships and complex interactions
need to be taken into account.

In large-scale ecological research projects, the assessment of biodiversity across different taxa at multiple field sites
is often of primary interest. One approach to perform this analysis is to estimate the species diversity for each taxon
and field site separately, based on the observed abundances, and then relate these diversity estimates to site-specific
covariates using a regression model (Glatthorn et al., 2023). This two-step procedure has the drawback, however, that it
is difficult to take the uncertainty of the diversity estimates into account in the regression model. Alternatively, a more
comprehensive modeling approach is to use multi-species occupancy models (MSOMs, MacKenzie et al., 2004; Dorazio
and Royle, 2005), which are a class of models that estimate the occurrence, abundance and detection probabilities of
various species simultaneously, possibly allowing for interactions between them. As MSOMs involve the estimation of
detection probabilities, they require repeated surveys at each field site. In meta-studies, this level of detailed data is
often not available for all relevant taxa.

To address these difficulties and to provide a common model for different taxa that are monitored in a research project,
we propose the novel multi-species count model (MSCM) that can be used to estimate various species diversity indices.
The MSCM is formulated as a Bayesian hierarchical model, allowing us to integrate structured additive predictors with
linear, non-linear, random and spatial effects of the environmental conditions at the field sites. The MSCM has a few
advantages over MSOMs and other existing model classes: First, it offers a good compromise between the simplicity
of a two-step analysis and the high data requirements of MSOMs, making it a suitable tool for meta-studies. Second,
the formulation of the model as a directed acyclic graph (DAG) makes it straightforward to include derived quantities,
i.e. quantities that are computed from other variables in the model graph such as species diversity indices. Finally,
considering the model in a Bayesian context straightforwardly allows us to compare different model specifications and
assess the reliability of predictions.

We perform fully Bayesian inference using a Markov chain Monte Carlo (MCMC) algorithm, allowing us to estimate
the parameters of the multi-species count model and to make predictions in a flexible and computationally efficient
way. The model and inference scheme are implemented using Liesel, a probabilistic programming framework, and
the corresponding MCMC library Goose (Riebl et al., 2022). The software is based on the high-performance machine
learning library JAX (Bradbury et al., 2023) for Python. The robustness of the inference scheme is evaluated in an
extensive simulation study. Some data-generating processes (DGPs) under which the model parameters are difficult to
identify are also discussed.

Finally, we apply the MSCM to assess the species diversity of different taxa in mixed forest stands in Lower Saxony,
demonstrating the flexibility of our model with a complex structured additive predictor combining parametric and
non-parametric covariate effects. This way, we find that the more favorable environmental conditions at the field sites in
southern Lower Saxony are reflected in a higher community diversity across all taxa. Furthermore, the diversity of the
vegetation and small mammals tends to increase with the proportion of coniferous tree species at a given site.

The remainder of this article is organized as follows: Section 2 defines the multi-species count model, including a
description of structured additive predictors and the species diversity indices that can be computed from the model.
Section 3 explores the connections between the MSCM and other established model classes such as zero-inflated
Poisson regression and multi-species occupancy models. Section 4 provides details on our fully Bayesian inference
scheme, followed by a presentation of our simulation study with three scenarios in Section 5. In Section 6, we apply
the MSCM to assess the species diversity of different taxa in mixed forest stands in Lower Saxony, before providing
concluding remarks in Section 7.

2 The structured additive multi-species count model

The multi-species count model can be used with a response matrix Y, where the entry in the 𝑖-th row and the 𝑗-th
column describes how often species 𝑗 = 1, . . . , 𝑀 was observed on experimental plot 𝑖 = 1, . . . , 𝑁 (or more generally,
on observation unit 𝑖). Moreover, the covariate vectors x𝑖 contain information on the plots such as their geographic
location, the composition of tree species or the climate. Given this sort of data, we define the multi-species count model
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as the following Bayesian hierarchical model with

the occupancy intercept of species 𝑗 , 𝛾 𝑗 ∼ Normal(0, 10),
the probability that species 𝑗 occupies plot 𝑖, 𝜓𝑖 𝑗 = InvLogit(𝛾 𝑗 + [𝑖),

the unobserved indicator whether species 𝑗 occupies plot 𝑖, 𝑧𝑖 𝑗 ∼ Bernoulli(𝜓𝑖 𝑗 ),
the expected abundance of species 𝑗 , ` 𝑗 ∼ HalfNormal(0, 10),

the total number of observations on plot 𝑖, 𝑛𝑖 ∼ CountDistribution(𝑧𝑖 𝑗 , ` 𝑗 ),

the relative expected abundances per species on plot 𝑖, p𝑖 =
1∑𝑀

𝑗=1 𝑧𝑖 𝑗` 𝑗
× (𝑧𝑖1`1, . . . , 𝑧𝑖𝑀`𝑀 ),

the number of observations per species on plot 𝑖, y𝑖 ∼ Multinomial(𝑛𝑖 ,p𝑖).

Here, the [𝑖 are the structured additive predictors for the plots combining different covariate effects computed from
the covariate vectors x𝑖 (Section 2.1). In the standard case, CountDistribution(𝑧𝑖 𝑗 , ` 𝑗 ) = Poisson(∑ 𝑗 _𝑖 𝑗 ), where
_𝑖 𝑗 = 𝑧𝑖 𝑗` 𝑗 , but other count distributions can be used to account for specific properties of the data, e.g. the negative
binomial distribution in the case of overdispersion or the Yule distribution for heavy-tailed data. Section 6 presents an
application where an MSCM is estimated with three different count distributions. A comparison of the models using the
widely applicable information criterion (WAIC) suggests that count distributions other than the Poisson distribution
often result in a better model fit. Figure 1 shows the graph of the MSCM from the application including a structured
additive predictor and two species diversity indices that are derived from the model (Section 2.2).

2.1 Structured additive predictors

The structured additive predictor [𝑖 combines parametric covariate effects x′
𝑖1β1 and non-parametric covariate effects

𝑓𝑘 (x𝑖𝑘 ,β𝑘), for 𝑘 = 1, . . . , 𝐾 , i.e.

[𝑖 = 𝛽0 + x′
𝑖1β1 +

𝐾∑︁
𝑘=2

𝑓𝑘 (x𝑖𝑘 ,β𝑘),

where 𝛽0 is the intercept and the non-parametric effects 𝑓𝑘 are centered around zero (Fahrmeir et al., 2004; Wood, 2017,
Chapter 4). In the MSCM, the global intercept 𝛽0 is omitted in favor of the species-specific occupancy intercepts 𝛾 𝑗
to ensure identifiability. The functions 𝑓𝑘 are usually modeled as linear basis expansions of the covariate vectors x𝑖𝑘
(Hastie et al., 2009, Chapter 5). Depending on the choice of the basis and the prior of the regression coefficients β𝑘 , the
functions can represent non-linear, random and spatial effects, among others.

To avoid overfitting, certain smoothness properties of the non-parametric effects can be enforced through regularization,
e.g. using P-splines that penalize (second) differences between coefficients of neighboring B-splines (Eilers and Marx,
1996; Lang and Brezger, 2004). In a Bayesian context, regularization is accomplished using informative priors, e.g. the
multivariate normal prior

𝑝(β | 𝜏2) ∝ 𝜏−rk(K) exp(−0.5𝜏−2β′Kβ),

where 𝜏2 is the variance (or smoothing) parameter, K is a (potentially rank-deficient) penalty matrix, and the index 𝑘 is
omitted for better readability. For P-splines, the penalty matrix is given by K = D′

2D2, where D2 is the second-order
difference matrix, such that D2β = (𝛽1 − 2𝛽2 + 𝛽3, 𝛽2 − 2𝛽3 + 𝛽4, . . . ). In this case, the penalty matrix is, in fact,
rank-deficient.

Other common effect types include random effects, where the penalty matrix reduces to K = I, (intrinsic) Gaussian
Markov random field, where K is determined by the underlying neighborhood structure (Rue and Held, 2005), and
other spatial effects, where Vecchia approximations can be used to construct the penalty matrix (Katzfuss and Guinness,
2021). Moreover, note that the linear effect x′

𝑖1β1 can also be embedded in this framework by setting the penalty matrix
to K = 0, which results in a flat prior. Therefore, parametric and non-parametric effects are two sides of the same coin,
and are sometimes generically referred to as predictor components or smooth terms.

For the smoothing parameter 𝜏2, it is common to assume a weakly informative hyperprior. Lang and Brezger (2004)
propose the conjugate inverse gamma prior with hyperparameters 𝑎 = 𝑏 = 0.01, or some other small value, which
enables direct Gibbs updates by sampling from the full conditional. Practically, however, other priors such as the
half-Cauchy distribution or the half-normal distribution may have better statistical properties (Gelman, 2006; Klein
and Kneib, 2016a). For a comprehensive treatment of structured additive predictors, refer to Fahrmeir et al. (2013),
specifically Chapter 8 and 9.
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Figure 1: The graph of the multi-species count model from the application in Section 6, implemented using the Liesel
probabilistic programming framework. Blue variables are strong (constant or sampled), orange variables are weak
(computed from other variables). A double contour line indicates an associated probability distribution, and a round
shape indicates a model parameter. The lower part of the graph represents the response structure of the MSCM, where
𝑛 follows an arbitrary count distribution such as the Poisson, negative binomial or Yule distribution. The structured
additive predictor [ is composed of parametric and non-parametric covariate effects. In this case, the non-parametric
effect is a Gaussian process (GP) representing a spatial effect. From the response structure of the MSCM, various
diversity indices such as the species richness and the Shannon index can be derived.
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2.2 Species diversity indices

From the multi-species count model, different biodiversity measures can be derived and estimated simultaneously with
an MCMC algorithm based on one itegrated model. Among the most common biodiversity measures are the species
richness and the Shannon index, both of which we assess on a plot and landscape-level in the application in Section 6.

The species richness 𝑅𝑖 of experimental plot 𝑖 is the total number of species that are present on that plot, i.e.

𝑅𝑖 =

𝑀∑︁
𝑗=1

𝑧𝑖 𝑗 .

As the 𝑧𝑖 𝑗 , the indicators whether species 𝑗 is present at plot 𝑖, are unobserved and sampled with an MCMC algorithm,
the species richness 𝑅𝑖 is another random variable, whose posterior distribution can be assessed from the MCMC
samples. Generally speaking, species richness is a simple biodiversity measure that is easy to compute and interpret. A
high species richness can be indicative of a healthy and diverse ecosystem, but as it does not take the abundances of the
species into account, it can only provide an incomplete picture of biodiversity (Hill, 1973; Colwell, 2009).

The Shannon index 𝐻′
𝑖
, on the other hand, does take into account both the number of species and their abundances. It is

computed as

𝐻′
𝑖 = −

𝑀∑︁
𝑗=1

𝑝𝑖 𝑗 log(𝑝𝑖 𝑗 ),

where, by definition, some 𝑝𝑖 𝑗 may become zero, in which case we define 𝑝𝑖 𝑗 log(𝑝𝑖 𝑗 ) = 0. The Shannon index 𝐻′
𝑖

ranges from 0 to log(𝑀), where 𝑀 is the total number of species, and provides a more complex and comprehensive
biodiversity measure than the species richness 𝑅𝑖 (Shannon, 1948). A higher Shannon index signals a greater complexity
and diversity of an ecosystem.

Regardless of the specific index, species diversity can be considered on different spatial scales. The concept of
𝛼-diversity is a measure of local biodiversity, referring to a single habitat or small area, e.g. a 50 × 50 m2 plot in
the application in Section 6. In contrast, the concept of 𝛾-diversity is defined for a larger geographic area or region,
e.g. northern or southern Lower Saxony. It is a measure of regional biodiversity and reflects the diversity of species
across multiple habitats or ecosystems (Whittaker, 1960; Whittaker et al., 2001).

Figure 1 shows how the species richness and the Shannon index on a plot and landscape-level can be integrated into the
MSCM model graph. The landscapes are defined via an 𝐿 × 𝑁 binary selection matrix S, where the entry in the 𝑙-th row
and the 𝑖-th column is one if plot 𝑖 belongs to landscape 𝑙 and zero otherwise. Based on the matrix S, the 𝛾-richness can
be computed as the number of non-zero entries per row of the matrix T = SZ, where Z is the 𝑁 × 𝑀 matrix containing
the indicators 𝑧𝑖 𝑗 . The 𝛾-Shannon index can be computed in an analogous way.

3 Related work

The multi-species count model is closely related to several well-known statistical and ecological model classes such
as zero-inflated Poisson regression, structured additive distributional regression and multi-species occupancy models,
which we discuss in more detail in this section.

3.1 Zero-inflated Poisson regression

Zero-inflated Poisson regression is a statistical modeling technique that can be used to analyze count data with an excess
of zeros (Cameron and Trivedi, 2013). Mathematically, zero-inflated Poisson regression is defined as a mixture model
combining a point mass at zero and a Poisson regression model. Hence, there are two possible sources of the observed
zeros: the point mass and the Poisson regression model. To model the unobserved source of the observations, latent
dichotomous variables are introduced, which again can be related to covariates and modeled as outcomes of another
binary regression model.

Zero-inflated count data models originally were proposed by Mullahy (1986), together with hurdle models, another
type of mixture models where zeros come from a point mass at zero as the only possible source. Lambert (1992) was
the first to prominently apply zero-inflated Poisson regression to model defects in manufacturing. In addition to the
covariates of the Poisson regression model, they use a logit regression model with covariates for the latent dichotomous
variables describing whether the manufacturing equipment is properly aligned or not. With properly aligned equipment,
defects are almost impossible, while they follow a Poisson distribution when the equipment is misaligned.
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The data-generating process of the MSCM naturally falls into the category of zero-inflated count data models, as there
are two possible sources of zeros: A zero occurs for sure if a plot is not occupied by a species, but it may also occur
because a species is not detected despite being present at a plot. While Mullahy (1986) notes that zero-inflated and
hurdle models are equivalent if no covariates are used, this is not the case for the MSCM, where covariates are used for
the occupancy probabilities.

More formally, it can be shown that the response structure of the MSCM with CountDistribution(𝑧 𝑗 , ` 𝑗 ) =

Poisson(∑_ 𝑗 ), for _ 𝑗 = 𝑧 𝑗` 𝑗 and the species index 𝑗 = 1, . . . , 𝑀, is, in fact, equivalent to zero-inflated Poisson
regression. For one experimental plot and hence omitting the plot index 𝑖 = 1, . . . , 𝑁 , the joint probability of the
observed responses and the latent occupancies of the MSCM is given by

𝑝(y, 𝑛, z) = 𝑝(y | 𝑛, z) × 𝑝(𝑛 | z) × 𝑝(z)

=
𝑛!

𝑦1! . . . 𝑦𝑀 !

(
_1∑
_ 𝑗

) 𝑦1

. . .

(
_𝑀∑
_ 𝑗

) 𝑦𝑀
×

(∑_ 𝑗 )𝑛

𝑛!
𝑒−

∑
_ 𝑗 × 𝜓

𝑧1
1 (1 − 𝜓1)1−𝑧1 . . . 𝜓𝑧𝑀

𝑀
(1 − 𝜓𝑀 )1−𝑧𝑀

= 𝜓
𝑧1
1 (1 − 𝜓1)1−𝑧1

_
𝑦1
1
𝑦1!

𝑒−_1 × . . . × 𝜓
𝑧𝑀
𝑀

(1 − 𝜓𝑀 )1−𝑧𝑀 _
𝑦𝑀
𝑀

𝑦𝑀 !
𝑒−_𝑀 ×

�����������
𝑛!(∑_ 𝑗 )𝑛

𝑛!(∑_ 𝑗 )𝑦1 . . . (∑_ 𝑗 )𝑦𝑀
.

This is the product of the probabilities of 𝑀 zero-inflated Poisson variables 𝑦 𝑗 with the latent dichotomous variables
𝑧 𝑗 . As 𝑧 𝑗 = 0 =⇒ 𝑦 𝑗 = _ 𝑗 = 0 and 𝑦 𝑗 = 1 =⇒ 𝑧 𝑗 = 0, marginalizing out 𝑧 𝑗 yields the standard probability mass
function of the zero-inflated Poisson distribution, i.e.

𝜓
𝑧 𝑗

𝑗
(1 − 𝜓 𝑗 )1−𝑧 𝑗

_
𝑦 𝑗

𝑗

𝑦 𝑗 !
𝑒−_ 𝑗 =


(1 − 𝜓 𝑗 ) + 𝜓 𝑗𝑒−_ 𝑗 if 𝑦 𝑗 = 0,

𝜓 𝑗
_
𝑦𝑗

𝑗

𝑦 𝑗 ! 𝑒
−_ 𝑗 if 𝑦 𝑗 > 0.

Note that the equivalence depends on how the terms of the multinomial and the Poisson distribution can be rearranged.
Similar operations are not possible for other count distributions such as the negative binomial or the Yule distribution,
so that the equivalence does not hold in those cases.

3.2 Structured additive distributional regression

Zero-inflated Poisson regression and the multi-species count model belong to the so-called distributional regression
model class. These models are also known as generalized additive models for location, scale and shape (GAMLSS,
Rigby and Stasinopoulos, 2005). In contrast to standard generalized linear models (GLMs, Nelder and Wedderburn,
1972), the response distribution of GAMLSS is not limited to the exponential family but can come from any parametric
family. While the acronym GAMLSS suggests that the first three moments of the response distribution are related to
covariates, this is not generally the case. For example, the two parameters of the zero-inflated Poisson distribution
that are related to covariates in a regression context are the rate and zero-inflation parameter, neither of which directly
represents the mean or variance of the distribution. Usually in GAMLSS, the relationship between response and
explanatory variables is modeled using multiple structured additive predictors (Section 2.1). If a parameter of the
response distribution is constrained, e.g. to (0,∞) or (0, 1), it needs to be transformed to R before being linked to a
structured additive predictor.

Generally, GAMLSS have the capability to accommodate a broad range of response distributions, including discrete,
continuous and mixed distributions (Rigby et al., 2019). The use of various count data distributions beyond the
zero-inflated Poisson distribution within the GAMLSS framework is discussed by Klein et al. (2015b). For non-negative
continuous data, distributions like the Pareto or Weibull distribution may be a fitting choice. Regarding fractional
responses, such as single or multiple percentages, Klein et al. (2015a) consider the beta and Dirichlet distributions.
Finally, the GAMLSS framework can also be employed to study multivariate responses, using either conventional
multivariate distributions (Michaelis et al., 2018) or copulas to describe complex dependence structures with arbitrary
marginal distributions (Klein and Kneib, 2016b).

In a recent review paper, Stasinopoulos et al. (2018) provide an overview of the scientific fields where GAMLSS have
been applied since their introduction by Rigby and Stasinopoulos in 2005. The fields include biology (Hawkins et al.,
2013), economics (Voudouris et al., 2015), environmental science (Villarini et al., 2009), genomics (Khondoker et al.,
2007), management science (Budge et al., 2010) and medicine (Rodrigues et al., 2009). A Bayesian workflow for
GAMLSS is described by Umlauf and Kneib (2018) together with an application on German weather data.

3.3 Multi-species occupancy models

As the name suggests, the multi-species count model is also closely linked to multi-species occupancy models, a
widely-used method in ecology for estimating the probabilities of occurrence and detection of multiple species at the

6



A Structured Additive Multi-Species Count Model A PREPRINT

same time. Multi-species occupancy models (MSOMs) were first introduced by MacKenzie et al. (2004) and Dorazio
and Royle (2005) as an extension of single-species occupancy models, and they have gained significant popularity
in recent years. MSOMs are commonly used to study the composition and diversity of species communities, as the
joint analysis of data on multiple species is often more effective and informative than modeling each species separately
(Devarajan et al., 2020).

As MSOMs involve the estimation of detection probabilities, they require data from multiple surveys per field site
(Devarajan et al., 2020). This is an essential difference between MSOMs and our model, which relies on a single
count per species and field site and hence does not require repeated surveys. As the data requirements of our model
are relatively low, it is a good tool for meta-studies on various taxa, even if the species are sampled according to
different protocols for each taxon. On the other hand, our model is not designed to disentangle if differences in the
recorded counts are due to differences in the abundances or the detection probabilities of the species. Hence, when
species diversity indices are computed from our model, the implicit assumption is that the counts are proportional to the
abundances, i.e. that the detection probability is constant across all species.

Some variants of MSOMs can take biotic interactions between species into account. Correlations between occurrence
probabilities of different species are often a result of shared habitat requirements and similar responses to relevant
environmental factors. By including such dependencies in the model, the accuracy of the occupancy estimates can be
improved, and the mechanisms driving co-occurrence patterns can be better understood. Specific MSOMs with a focus
on species co-occurrence and biotic interactions have been developed by MacKenzie et al. (2004), Waddle et al. (2010)
and Rota et al. (2016).

In the form presented in Section 2, our model cannot take biotic interactions between species into account. However, it
would be straightforward to equip the model with this feature, e.g. by introducing a multivariate normal prior for the
species-specific occupancy intercepts 𝛾 𝑗 and the expected abundances _ 𝑗 . This way, a suitable correlation structure
between the species could be enforced. The researcher could either fix or estimate the correlations, depending on the
specific parameterization of the model. One drawback of estimating the correlations would be an increased number of
parameters, which could potentially result in identification issues and increase the computational cost of the model.
If the correlations were specified in the most naive way, the number of parameters would increase quadratically with
the number of species, i.e. sparse parameterizations would become necessary for more than four or five species. In
fact, most MSOM variants with a focus on co-occurrence patterns are limited to a relatively small number of species
(Devarajan et al., 2020).

Some MSOMs can also be used to estimate the size of an unobserved meta-community. For this purpose, Dorazio
and Royle (2005) propose a parameter-expanded data augmentation technique for MCMC inference, where some
all-zero columns representing potentially unobserved species are added to the response matrix Y. The size of the
meta-community is then assessed by estimating the number of extra columns (Kéry and Schaub, 2012). Our model as
described in this article lacks the ability to quantify the size of the meta-community, i.e. all relevant species must be
added to the response matrix Y by the researcher.

Due to the high degree of flexibility in terms of the model specification, presenting MSOMs concisely can be a
challenging task for researchers. Devarajan et al. (2020) provide a review of 92 studies using MSOMs that were
published between 2009 and 2018, spanning 27 countries and various taxa. They observe a consistent pattern of
underreporting on aspects as diverse as the spatial and temporal scope of the data, the field methods and the type of
detectors, as well as the covariates and the statistical tools. The insufficient reporting undermines the robustness of
the inferences and the reproducibility of the studies, and could potentially have an adverse effect on conservation and
management efforts.

Many studies using MSOMs also lack an explicit discussion of the model assumptions. Devarajan et al. (2020) note, for
example, that monitoring is usually geared towards one focal species, and other species are only recorded as bycatch. If
MSOMs are used with such data, the assumptions are unlikely to transfer seamlessly between the focal and the bycatch
species. Despite the biases and errors associated with MSOMs involving bycatch data, only about a quarter of the
studies reviewed by Devarajan et al. mention the presence of bycatch species in the study area.

4 Bayesian inference

A variety of approaches exist for Bayesian inference in distributional regression with structured additive predictors.
To assess the posterior distribution of the model parameters, Klein et al. (2015b) propose a MCMC algorithm using a
Metropolis-within-Gibbs scheme with iterative weighted least squares (IWLS, Gamerman, 1997) proposals for the
parametric and non-parametric regression coefficients 𝛽. The IWLS proposals are locally adaptive and make use of the
expected or observed Fisher information to construct proposal densities that approximate the curvature of the posterior.
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For this reason, they are useful for complex posteriors, and at the same time, they do not require the user to tune any
hyperparameters of the MCMC algorithm.

In combination with the IWLS proposals, the algorithm of Klein et al. (2015b) uses conjugate inverse gamma priors
for the smoothing parameters 𝜏2 of the non-parametric covariate effects. Assuming an inverse gamma prior with
the hyperparameters 𝑎 and 𝑏 for 𝜏2, the smoothing parameter can be sampled directly from the full conditional
𝜏2 | · ∼ InvGamma(𝑎∗, 𝑏∗), where 𝑎∗ = 0.5 × rk(K) + 𝑎, 𝑏∗ = 0.5 × β′Kβ + 𝑏, K is the penalty matrix, and β are the
regression coefficients of the covariate effect.

As the IWLS proposals involve second derivatives, they tend to become computationally expensive and numerically
unstable if many parameters are sampled together. A popular alternative is the Hamiltonian Monte Carlo (HMC, Neal,
2011) algorithm that simulates the evolution of a Hamiltonian system, defined by a potential and a kinetic energy
function, using numerical integration methods to generate posterior samples. To simulate this motion of particles, only
the gradient of the log-posterior but no second derivatives are required. Based on the trajectory, new values for the
model parameters are proposed, which are finally accepted or rejected in a Metropolis-Hastings step.

To explore the posterior distribution efficiently, the user needs to find a suitable value for the number of leapfrog steps
of the HMC algorithm. To eliminate the requirement of tuning the number of leapfrog steps, the No-U-Turn Sampler
(NUTS) was developed as a variant of HMC by Hoffman and Gelman (2014). NUTS uses a recursive algorithm to build
a binary tree of possible states and to adjust the trajectory of the particles in a dynamic way responding to the curvature
of the posterior. For this reason, NUTS is typically easier to use and more efficient than HMC or other traditional
MCMC methods.

Our approach to estimate the MSCM combines a Metropolis-within-Gibbs scheme with NUTS, using the same way
to block the parameter vector as Klein et al. (2015b) but exchanging the IWLS updates of the parametric and non-
parametric regression coefficients 𝛽 with NUTS updates. For the smoothing parameters 𝜏2 of the non-parametric
covariate effects, we use conjugate inverse gamma priors, allowing us to sample directly from the full conditionals.
Additionally, the occupancy states 𝑧 are sampled in a Gibbs update, and for the species-specific expected abundances
log(`) and the occupancy intercepts 𝛾, two separate NUTS updates are performed. More systematically, our MCMC
algorithm can be described as follows:

1. Initialize the model parameters as 𝑧 = 1(𝑦 > 0), where 1 is the indicator function, ` = [∑𝑁
𝑖=1 𝑦𝑖 × 1(𝑦𝑖 >

0)]/[∑𝑁
𝑖=1 1(𝑦𝑖 > 0)], i.e. the mean of the non-zero counts for one species over the sites, 𝛾 = 0, 𝛽 = 0 and

𝜏2 = 10.000.
2. For each iteration of the algorithm:

• Sample the occupancy states 𝑧 from the binary full conditional in a Gibbs update.
• Update the species-specific expected abundances log(`) using NUTS.
• Update the species-specific occupancy intercepts 𝛾 using NUTS.
• Update the site-specific parametric regression coefficients 𝛽 using NUTS.
• For each site-specific non-parametric covariate effect:

– Update the non-parametric regression coefficients 𝛽 using NUTS.
– Sample the smoothing parameter 𝜏2 from the inverse gamma full conditional in a Gibbs update.

3. Repeat step 2 for a great number of iterations to obtain a representative sample from the posterior distribution
of the model parameters.

The proposed sampling scheme is designed to iterate over the parameter variables in the model graph from the bottom
to the top, so that the highest level of the prior hierarchy is sampled last. The scheme is illustrated in Figure 2 for
the MSCM used in the application in Section 6. To implement the scheme, we use Goose, the MCMC library of the
probabilistic programming framework Liesel, which among other MCMC kernels, provides the NUTS kernel and an
abstract Gibbs kernel (Riebl et al., 2022). Using Goose, only the methods to sample from the full conditionals of the
model parameters 𝑧 and 𝜏2 need to be implemented manually.

To improve the performance of the sampling scheme, we run it in two phases: a warmup and a posterior phase. During
the warmup, the NUTS kernels are allowed to tune their hyperparameters, i.e. the step size and the mass matrix (also
called metric). To tune the step size in an adaptive way, we use the dual averaging algorithm, which increases or
decreases the step size based on the acceptance probabilities of the previous iterations, hence improving the convergence
rate and reducing the dependence on user-defined hyperparameters (Hoffman and Gelman, 2014; Nesterov, 2009). The
mass matrix, on the other hand, is supposed to capture correlations in the posterior and is tuned based on the empirical
covariance of the warmup samples. A well-adjusted mass matrix can improve the mixing and convergence rate of the
HMC and NUTS algorithms substantially in many situations (Betancourt, 2018).

8



A Structured Additive Multi-Species Count Model A PREPRINT

Figure 2: The proposed MCMC sampling scheme for the multi-species count model, illustrated for the model graph in
Figure 1. The algorithm iterates over the parameter variables in the model graph from the bottom to the top, so that
the highest level of the prior hierarchy is sampled last. Generally, the structured additive predictor [ of an MSCM can
include more than one non-parametric covariate effect, i.e. there could be additional NUTS and Gibbs kernels for the 𝛽
and 𝜏2 parameters of all non-linear, random and spatial effects.

In our experience, the proposed sampling scheme is robust and efficient for many different parameters of the data-
generating process of the MSCM. More details on the accuracy and performance of the MCMC algorithm are given in
the simulation study in the following section.

5 Simulation study

We examine our sampling scheme in a simulation study with three scenarios: In the first scenario, we confirm that the
MCMC algorithm is able to recover the true model parameters reliably in most practically relevant situations. The
second scenario is designed to produce more extreme data, i.e. data where the model parameters are closer to the
boundaries of the parameter space. We use this data to evaluate the performance of the MCMC algorithm under more
challenging conditions. Finally, we demonstrate that the sampling scheme also works with structured additive predictors
and spatial effects in Scenario III.

To conduct the simulation study, we generate data from the MSCM, adopting the priors of the model parameters to
produce more or less extreme parameters and therefore data. For each scenario, we run 1000 replications, generating
four independent chains with 1000 warmup and 1000 post-warmup samples per replication. No thinning is applied to
the chains before they are used to compute the summary statistics of the posterior. Various metrics such as the bias,
the root-mean-square error (RMSE) and the coverage probability are used to assess the performance of the sampling
scheme.

We find that our method works accurately under realistic conditions with and without structured additive predictors. If
the occupancy probability 𝜓 is close to zero or one and the expected abundance ` of a species is small, the estimated
posterior mean of the species-specific occupancy intercept 𝛾 tends to show some bias. However, the posterior standard
deviation also increases drastically in these cases, indicating a high uncertainty about the estimate, so that the issue can
easily be identified from the MCMC output.

5.1 Scenario I: Stable MCMC estimation

In the first scenario, we demonstrate that our sampling scheme is able to recover the true parameters of the MSCM. For
this purpose, we simulate data from the MSCM as defined in Section 2, exchanging the weakly informative priors of the
species-specific occupancy intercepts 𝛾 and the expected abundances ` with narrower sampling distributions as follows:

𝛽, 𝛾 ∼ Normal(` = 0, 𝜎 = 0.5),
` ∼ Gamma(𝛼 = 10, 𝛽 = 1).

We also simulate two independent site-specific covariates from a uniform distribution on the unit interval. This
configuration implies that the true occupancy probabilities 𝜓 are between 17.6% and 82.3% and the true expected
abundances ` are between 4.1 and 18.8 with 99% probability (see Table 1). Despite the modified data-generating
process, we use the weakly informative priors from Section 2 for the estimation to encode less knowledge about the
DGP in the priors and to estimate the model in the exact same way as in the application in Section 6.

For each of the sample sizes of 40 and 80 sites, and 26 and 52 species, our method is able to recover the true parameters
without problems. The estimated posterior means computed from the MCMC chains are unbiased on average, and the
bias shrinks with the sample size (see Figure 3). A greater sample size affects the estimation of the various model
parameters in different ways: The regression coefficients 𝛽 benefit from more sites and more species, because they
are shared between the sites and the species. On the other hand, the estimation of the occupancy intercepts 𝛾 and the
expected abundances log(`) can only be improved with more sites, not more species, because they are not shared
between the species.
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Table 1: The quantiles of the simulated true model parameters in the different scenarios of the simulation study.
Scenario I and III are designed to produce realistic data with and without structured additive predictors. In Scenario II,
the performance of the sampling scheme is assessed when the model parameters are close to the boundaries of the
parameter space.

Scenario I Scenario II Scenario III

Parameter 1% 99% 1% 99% 1% 99%

Parametric regression coefficients 𝛽 −1.175 1.178 −2.241 2.399 −1.152 1.174
Spatial regression coefficients 𝛽𝑠 — — — — −2.312 2.327
Species-specific occupancy intercepts 𝛾 −1.166 1.170 −2.337 2.328 −1.164 1.204
Species-specific expected abundances ` 4.141 18.768 0.142 26.029 4.185 18.781
Occupancy probabilities 𝜓 0.176 0.823 0.047 0.957 0.120 0.883

Figure 3: The bias of the estimated posterior mean of the model parameters for 1000 replications of Simulation
Scenario I. The average bias is close to zero for all model parameters and sample sizes. Most variability is observed
in the bias of the species-specific occupancy intercepts 𝛾, followed by the site-specific regression coefficients 𝛽 and
the species-specific expected abundances log(`). The bias of the regression coefficients 𝛽 decreases with both the
number of sites and species, while the estimation of the occupancy intercepts 𝛾 and the expected abundances log(`)
only benefits from more sites but not more species.
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Figure 4: The bias of the estimated posterior mean (left) and the estimated posterior standard deviation (right) of the
species-specific occupancy intercept 𝛾 as a function of the true occupancy intercept 𝛾 and the true expected abundance `
in Simulation Scenario II. If the abundance and the occupancy are small, 𝛾 tends to be underestimated, while it tends to
be overestimated if the abundance is small but the occupancy is large. In these cases, the posterior standard deviation
also increases drastically, indicating a high uncertainty about the estimate.

5.2 Scenario II: Problematic parameter constellations

This simulation scenario includes more cases where the model parameters are close the boundaries of the parameter
space, posing a more challenging estimation problem to our MCMC algorithm. To generate this kind of data, we sample
the model parameters from the distributions

𝛽, 𝛾 ∼ Normal(` = 0, 𝜎 = 1),
` ∼ HalfNormal(𝜎 = 10).

Again, we simulate two site-specific covariates on the unit interval using a uniform distribution. In this scenario, the
true occupancy probabilities 𝜓 are between 4.7% and 95.7% and the true expected abundances ` are between 0.1 and
26.0 with 99% probability (Table 1). The usual weakly informative priors are used for the estimation.

From 1000 replications with 40 sites and 26 species, we find that the average bias of the estimated posterior mean is still
close to zero for all model parameters, but for the species-specific occupancy intercepts 𝛾 and the expected abundances
log(`), it increases substantially compared to Scenario I (0.025 vs. −0.010 for 𝛾, and 0.049 vs. −0.006 for log(`)). In
particular, there are several cases when 𝛾 is strongly underestimated (when its true value and the true ` are small), and
when it is strongly overestimated (when its true value is large but the true ` is small, see Figure 4). In these cases, the
posterior standard deviation also increases drastically, indicating a high uncertainty about the estimate. For this reason,
the coverage rates of the 90% credible intervals remain relatively stable with 86.5% for 𝛾 and 86.7% for log(`).
The difficulties with these parameter constellations are to be expected considering their interpretation: A low expected
abundance ` implies that few or no individuals are observed at each site, no matter if the site was occupied by the species
or not. Under these circumstances, it is hard to disentangle whether an observed zero is the result of a low occupancy
probability or a low expected abundance, and hence the species-specific occupancy intercept 𝛾 is not well-identified.
Finally, it is worth mentioning that despite the bias in the estimation of 𝛾, the occupancy probabilities 𝜓 including
the site-specific regression coefficients 𝛽 are still estimated quite accurately on the unit interval after the inverse logit
transformation.

5.3 Scenario III: Structured additive predictors

In the last scenario, we verify that our sampling scheme also works with the model structure used in Section 6, i.e. with
a structured additive predictor and a spatial effect. The spatial effect is modeled as a latent Gaussian process with a
Matérn correlation function and a fixed smoothness parameter a = 1.5. The simulated data comprises 40 sites and
26 species. The 40 sites are geographically clustered in the same way as in Section 6, resulting in a similar correlation
matrix as in Figure 5. In addition to the spatial effect, this scenario also includes two continuous covariates on the unit
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interval with parametric linear effects. The spatial regression coefficients are sampled from an improper multivariate
normal distribution with the smoothing parameter 𝜏2 = 1, and all other model parameters are sampled from the same
distributions as in Scenario I.

Although there are substantially more parameters than in Scenario I, our method is able to estimate the spatial effect
reliably. The average bias of the estimated posterior mean of the spatial regression coefficients (0.005) is on a similar
scale as the bias of the parametric regression coefficients (−0.001). The bias of the parametric regression coefficients
does not increase compared to Scenario I (−0.001 vs. 0.011 in Scenario I). Moreover, the coverage rates of the
90% credible intervals of the spatial regression coefficients are remarkably accurate (90.1%). Only the smoothing
parameter 𝜏2 of the spatial effect is slightly overestimated with an average bias of 0.312 of the estimated posterior
mean, which is an effect of the heavy-tailed inverse gamma prior.

6 Application: Species diversity in mixed forest stands in Lower Saxony, Germany

In this section, we apply our model to assess the diversity of communities of various taxa within the flora, fauna and
microorganisms in pure and mixed forest stands located in Lower Saxony, a state in northwest Germany. The study
design of the Research Training Group (RTG) 2300, which collected the data, is described, followed by the specification
of a structured additive predictor for the occupancy probabilities. Finally, we present and discuss the estimation results
obtained from the model.

6.1 Research Training Group 2300

The Research Training Group 2300, which is based at the University of Göttingen, is devoted to investigating the
ecosystem functions of pure and mixed forest stands comprising European beech, Norway spruce and Douglas fir.
The cultivation of non-native species, e.g. Douglas fir, in managed forests in central Europe is believed to potentially
alleviate the effects of climate change (Glatthorn et al., 2023). To gain a more comprehensive understanding of the
possible implications of introducing a foreign species into the native ecosystem, the RTG examines various functional
traits of the tree species and associated organisms at eight field sites and 40 experimental plots.

The field sites of the RTG are distributed across Lower Saxony in northwest Germany, where the climate is temperate.
Each site comprises five experimental plots of square or rectangular shape and 0.25 ha in size. The plots are located in
even-aged, state-owned forests (Ammer et al., 2020). Four of the eight field sites are in the uplands of Lower Saxony,
specifically in the Solling and Harz mountain ranges, and the remaining four in the lowlands in the north. Due to the
high precipitation and clay content in the soil, the environmental conditions on the upland plots generally tend to be
more favorable (Foltran et al., 2022).

At each field site, three experimental plots in pure stands and two in mixed stands were established, featuring stand ages
that vary from 42 to 130 years, with an average of 80 years. The pure stands are either dominated by native broadleaved
European beech, native coniferous Norway spruce or non-native coniferous Douglas fir. The mixed stands are composed
of beech and one of the conifers, specifically mixtures of beech and Douglas fir as well as beech and spruce. After the
original plots were established in 2017, seven of them had to be relocated following a windthrow in early 2018.

In the context of the RTG’s research theme, Glatthorn et al. (2023) study the abundance and diversity of multiple taxa
that are relevant to ecosystem functioning, such as fungi, plants, arthropods and small mammals. Their findings indicate
that pure stands of Douglas fir provide habitats that can accommodate communities of equal or greater diversity than
those in beech or spruce stands. At the same time, the diversity of communities in mixed stands of beech in combination
with spruce or Douglas fir is not generally improved compared to pure stands.

Glatthorn et al. (2023) employ a two-step procedure to analyze the data: First, they estimate various abundance and
diversity indices for each experimental plot, and then relate them to the stand types using different mixed models. We
aim to replicate parts of Glatthorn et al.’s work with a more comprehensive approach based on the proposed multi-
species count model. Specifically, we focus on three taxa: collembola, small mammals and vegetation. Collembola
were sampled between November 2017 and January 2018 by collecting one soil core with a diameter of 5 cm per plot.
The arthropods were extracted using high-gradient heat extraction (Macfadyen, 1961) and identified to the species level
(Lu, 2021).

From July to September of 2018, 2019 and 2020, small mammals were surveyed using 64 Sherman traps per plot,
arranged in an 8 × 8 grid with 10 m between the traps. Simultaneous surveys were conducted for all plots at one site
over four consecutive nights per year. The captured animals were identified to the species level and individually marked
to identify future recaptures (Glatthorn et al., 2023). The cover abundance of plant species was visually estimated on
100 m2 subplots in May and June of 2020 following Braun-Blanquet (1951). The three selected taxa – collembola,
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Figure 5: The assumed prior correlation matrix of the experimental plots of the RTG based on their geographical
distance. The eight field sites of the RTG are located in Lower Saxony in northwest Germany. Originally, each site
consisted of five experimental plots, but some of the plots had to be replaced due to storm and bark beetle damage.
The correlation matrix is computed from the Matérn correlation function with range 𝜌 ≈ 0.008 (so that the correlation
effectively decays to zero after 5 km) and smoothness a = 1.5. It is used with the latent Gaussian process representing
the spatial effect in the structured additive predictor of the RTG multi-species count model.

small mammals and vegetation – were chosen to demonstrate the versatility of the MSCM, which can be applied to data
from sampling methods as different as soil coring, mark-recapture and visual vegetation assessment.

6.2 Predictor and model specification

As described in Section 2.1, the probability for a species to occupy a plot is modeled with a structured additive predictor
combining parametric and non-parametric covariate effects. In the particular case of the RTG-MSCM, the parametric
covariate effects are the species-specific occupancy intercepts 𝛾 and the composition of tree species on the experimental
plots. The composition of tree species is measured in terms of the area potentially available (APA, Glatthorn, 2021)
for the two coniferous species Norway spruce and Douglas fir. The APA is computed from a weighted Voronoi
tessellation of the plot, approximating the growing space that each tree can exploit. As European beech, Norway
spruce and Douglas fir are the three dominant species on the plots, their APA is defined on an approximate simplex,
i.e. APABeech + APASpruce + APADouglas ≈ 1.

The non-parametric covariate effect is a spatial effect modeled as a Gaussian process, assuming a correlation structure
between the experimental plots based on their geographical distance. The spatial effect accounts for unmeasured
environmental and biological factors, hence capturing the otherwise unexplained variability in the data. The correlation
matrix of the GP is computed from the Matérn correlation function with range 𝜌 ≈ 0.008 (so that the correlation
effectively decays to zero after 5 km) and smoothness a = 1.5. Figure 5 shows how the correlation matrix reflects the
study design of the RTG with its eight field sites and five experimental plots per site. Most plots that are part of the
same site are strongly correlated, while the correlation between the sites is effectively zero in most cases. In total, there
are more than 40 plots, because some of the original plots had to be replaced due to storm and bark beetle damage.

Gaussian processes are stochastic processes, i.e. collections of random variables, where every finite subset of the
random variables has a joint multivariate normal distribution. They are popular both in machine learning and spatial
statistics (Rasmussen and Williams, 2005). In the context of spatial statistics, they are often used for kriging, a method
for interpolating continuously indexed spatial data (Cressie, 1993). Using a GP with the Matérn correlation function, a
fixed range 𝜌 and the smoothness parameter a = 1.5, as we do in this application, is common practice when working
with kriging and geoadditive models (Kammann and Wand, 2003). One benefit of this approach is that only the variance
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Table 2: The widely applicable information criterion of the RTG multi-species count model for different taxa and
count distributions. Note that the WAIC is reported on the log-score scale rather than the deviance scale, i.e. higher
values indicate a better predictive accuracy. For all taxa, the data shows some degree of overdispersion, making the
location-scale parameterization of the negative binomial distribution a better fit than the Poisson distribution. The
heavy-tailed Yule distribution performs better than the Poisson but worse than the negative binomial distribution for all
studied taxa.

Count distribution WAIC Std. err. Eff. param.

Collembola Negative binomial −3281.88 351.51 132.68
Poisson −3566.92 396.68 166.45

Yule −3384.62 356.98 129.74
Small mammals Negative binomial −2966.08 237.28 31.11

Poisson −3330.91 281.24 61.55
Yule −3102.36 239.58 29.90

Vegetation Negative binomial −19022.28 3378.80 1028.34
Poisson −21016.58 3627.85 1156.56

Yule −19174.55 3390.47 1049.61

(or smoothing) parameter 𝜏2 needs to be estimated. Generally, the Matérn correlation function is considered to provide
a good balance between smoothness and flexibility of the estimated processes.

For each taxon, we estimate the MSCM with the aforementioned structured additive predictor using three different
count distributions for the total number of observations per experimental plot: the Poisson distribution, the negative
binomial distribution in a location-scale parameterization (Rigby et al., 2019, Chapter 22.2.3), and the Yule distribution
(Rigby et al., 2019, Chapter 22.1.4). The negative binomial distribution can account for potential overdispersion of the
data compared to the standard Poisson distribution, while the Yule distribution is heavy-tailed. Comparing the different
models by the WAIC, the negative binomial distribution shows the best performance across all taxa (Table 2). For the
vegetation data, the predictive accuracy of the heavy-tailed Yule distribution is almost as high as that of the negative
binomial distribution, while the Poisson distribution seems to fit worst in all cases. For this reason, the presentation
of the estimation results in the remainder of this section is only based on the MSCM with the negative binomial
distribution.

6.3 Estimation results

For each taxon and count distribution, the model was configured using Liesel and estimated using Goose, following the
sampling scheme proposed in Section 4. Four chains were sampled in parallel with 1000 warmup and 1000 posterior
iterations. While sampling, the species richness and Shannon index on the plot and landscape-level were tracked to
assess their posterior distribution. No thinning was applied to the chains before computing the summary statistics of the
posterior distribution. For the collembola and vegetation data, the model was estimated without any errors and with a
good effective sample size (ESS), while for the small mammal data, some divergent transitions of the NUTS kernels
were observed. This is a consequence of the small mammal data being substantially smaller than the others with only
seven species in total, four of which are very rare.

Our findings regarding the spatial effect on the species diversity are in line with Glatthorn et al. (2023). For all three
taxa, species richness and Shannon index are consistently estimated to be higher in southern Lower Saxony than in the
north. Figure 6 shows the posterior distribution of both diversity indices on the plot and landscape-level for collembola.
The differences between the northern and southern plots are generally very pronounced for collembola and for the
vegetation. For small mammals, the posterior distribution also indicates a slightly higher species diversity in the south,
but as the number of observed small mammal species is generally very low (posterior mean of 7.0 of the landscape
species richness in the south, 5.32 in the north), the difference is quite hard to identify.

The impact of the combination of tree species on the species diversity remains somewhat ambiguous. The diversity of
collembola shows a trend towards a reduced species richness and Shannon index with a higher APA for spruce and
Douglas fir. However, the posterior variance of the effect is high, indicating a substantial estimation uncertainty. In
contrast, the diversity of small mammals and the vegetation appears to increase with a higher APA for the coniferous
species. While for small mammals, the estimation uncertainty remains high, the positive effect on the vegetation is
rather pronounced, as shown in Figure 7. Glatthorn et al. (2023) report a similar pattern across the taxa collembola,
small mammals and vegetation.
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Figure 6: The posterior distribution of the 𝛼 and 𝛾-diversity (on the plot and landscape-level) of collembola depending
on the geographic location. The generally more favorable environmental conditions on the experimental plots in
southern Lower Saxony are clearly reflected in a higher average species richness and Shannon index of collembola.

The model specification presented in this section only allows for the estimation of the species effect of spruce and
Douglas fir relative to beech. The effect of mixed stands compared to pure stands cannot be assessed with this
parameterization. To address this question, a non-linear effect of the APA of spruce and Douglas fir on the structured
additive predictor for the occupancy probabilities would need to be assumed and modeled using e.g. polynomials or
P-splines. The figures illustrating the spatial effect and the effect of the composition of tree species on the diversity of
the taxa omitted in the article may be found in the supplementary material.

7 Conclusion

In conclusion, this study introduces the multi-species count model as a new model class for assessing the relationship
between site conditions and species diversity. The model allows us to incorporate a structured additive predictor with
linear, non-linear, random and spatial effects describing the site conditions. It can be estimated with a fully Bayesian
inference scheme based on an efficient MCMC algorithm, which we evaluate in a simulation study with different
scenarios and apply to data from a large-scale ecological research project in Lower Saxony, Germany.

We use the model to study the effect of admixing two coniferous species on the ecosystem in European beech forests,
accounting for the spatial correlation between the field sites. This application demonstrates the usefulness of the model
in real-world scenarios, where it can provide insights into the complex relationships between species diversity and site
conditions. Generally, the model can be applied to a broad range of problems, including the analysis of different species
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Figure 7: The posterior distribution of the effect of the composition of tree species on the 𝛼-diversity (on the plot-level)
of the overall vegetation on the experimental plots. The composition of tree species is measured in terms of the area
potentially available (APA, computed from a weighted Voronoi tessellation of the plot) for the different species. A
higher APA for the coniferous species Norway spruce and Douglas fir corresponds with a higher average species
richness and Shannon index of the vegetation on the plots. This effect is even more pronounced for Douglas fir than for
Norway spruce.

diversity indices and taxa. It can be used to estimate both the occupancy probabilities and the expected abundances of
the studied species. Due to its low data requirements, it is a particularly useful tool for meta-studies across various taxa
that are sampled according to different study designs.

Modeling species compositions and their driving environmental factors via species occupancy probabilities, and
aggregating them in ecologically meaningful indices in a Bayesian framework offers unique flexibility in terms of
research questions that can be addressed in a consistent way. For example, analyses of contrasts between different
species groups (rare vs. common, specialists vs. generalists, etc.) or of trait compositions of species communities
depending on environmental factors can all be derived from the same model. Through sampling from the posterior
predictive distribution conditional on environmental factors, simulation studies about the impact of different landscapes
on the overall species composition can be carried out easily.

Several aspects deserve further attention in future research: One key aspect to consider is the extension of the
model specification with another structured additive predictor for the expected abundances of the species, potentially
introducing a functional relationship between the new and the old predictor for the occupancy probabilities. Moreover,
alternative parameterizations and count distributions for the total number of observations per experimental plot could be
explored. It should be noted that, unlike multi-species occupancy models, our model lacks the ability to disentangle the
detection probabilities and expected abundances of the species. The current version of the model also cannot estimate
the size of a meta-community accounting for unobserved species. To overcome these limitations, more complex versions
of the model could be developed in the future.

Overall, the proposed multi-species count model provides a flexible and powerful framework for the analysis of species
diversity data, and can be used to identify key environmental drivers of biodiversity patterns. Our study contributes to the
growing body of literature highlighting the potential of Bayesian hierarchical modeling in ecology. The multi-species
count model can be applied to many different datasets, and we hope it will stimulate further research in the field of
community ecology.
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Supplementary material

In this supplementary material, we present additional figures that are not included in the article “A Structured Additive
Multi-Species Count Model for Assessing the Relation Between Site Conditions and Species Diversity”. The figures
show the estimation results for the taxa that are omitted from Section 6, i.e. the application on species diversity in
mixed forest stands in Lower Saxony, Germany. Specifically, the spatial effect, i.e. the posterior distribution of species
diversity depending on the geographic location, and the tree species effect, i.e. the posterior distribution of the effect of
the composition of tree species on species diversity, are shown. See Section 6.3 for more details on the interpretation of
the figures.

Spatial effect

Figure 8: The posterior distribution of the 𝛼 and 𝛾-diversity (on the plot and landscape-level) of small mammals
depending on the geographic location.

20



A Structured Additive Multi-Species Count Model A PREPRINT

Figure 9: The posterior distribution of the 𝛼 and 𝛾-diversity (on the plot and landscape-level) of the vegetation
depending on the geographic location.
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Tree species effect

Figure 10: The posterior distribution of the effect of the composition of tree species on the 𝛼-diversity (on the plot-level)
of collembola on the experimental plots.

Figure 11: The posterior distribution of the effect of the composition of tree species on the 𝛼-diversity (on the plot-level)
of small mammals on the experimental plots.
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