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Abstract 
 

Software-defined networking in recent years has come into the sight of so many network 
designers as a successor to traditional networking. Unlike traditional networks where control 
and data planes engage together within a single device in the network infrastructure such as 
switches and routers, the two planes are kept separated in software-defined networks (SDNs). 
All critical decisions about packet routing are made by the network controller, and the data-
level devices forward the packets based on these decisions.  

This type of network is vulnerable to DDoS attacks, degrading the overall functioning and 
performance of the network by continuously injecting fake flows into it. This increases the 
substantial burden on the controller side, and the result ultimately leads to the inaccessibility 
of the controller and the lack of network service to legitimate users. Thus, the protection of 
this novel network architecture against denial-of-service attacks is essential.  

Today, the world is on the verge of using computer network services and information systems 
at their peak. Thus, the security concerns attached to these services/systems shall be taken 
seriously and dealt with. In the world of cybersecurity, attacks, and new threats emerge every 
day. It is essential to have tools capable of managing and analyzing all this new information to 
detect possible attacks in real-time. These tools should provide a comprehensive solution to 
automatically detect, predict and prevent abnormalities in the network.  

Big data, though, encompasses a wide range of studies; it mainly refers to the massive 
amounts of structured and unstructured data that organizations deal with on a regular basis. 
It essentially refers to the amount of data coming from the applications being so huge that it 
is not possible to be captured, organized, processed, and managed in a reasonable time by 
the current mainstream software tools that help enterprises make business decisions. On the 
other hand, it regards not only the volume of the data; but also, how data-driven information 
can be employed to develop decision-making processes, security, and the overall efficiency of 
a business.  

This Ph.D. research introduces an intelligent big data framework as a solution to prevent the 
performance degradation on SDN network during DDoS attacks. By leveraging the 
programmability and centralized controller of the SDN and using distributed data processing 
techniques based on the big data analytic tools and machine learning algorithm, we aim to 
enhance the SDN network security and resilience against these sophisticated attacks. 
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Chapter 1 

1 Introduction  

The Computers on the World Wide Web are connected using a standard protocol called the 
Internet. Today, people rely on the Internet for education, business, socialization, and 
entertainment, among many vital aspects of human life, as well as sharing information, and 
e-commerce. We can claim that the Internet is the biggest revolution in the world of 
computing and communication. Web threats, on the other hand, cause a wide range of 
jeopardies including financial abduction, identity theft, loss of information or confidentiality, 
network resources theft, damage to the brand and personal reputation, and consumer trust 
decrease in e-commerce, online banking, and all different network services.  

The traditional network structure initially has limitations such as complexity, inconsistent 
policies, lack of scalability, dependency on manufacturers, and a lack of symmetry between 
market demands and network capabilities. New concepts such as Cloud, virtualization, and 
changes in data consumption patterns, reveal weaknesses and limitations in traditional 
networks. With the advent of software-defined networks, new hopes have emerged for 
finding solutions for structural problems and resolving restrictions in traditional networks.  

Software-defined networking is a dynamic, manageable, cost-effective, and adaptable 
architecture that seeks to be suitable for today's dynamic and high-bandwidth applications 
that can fundamentally overcome the restrictions of traditional networks [1]. Due to its 
centralized control, a software-defined network facilitates management, reduces hardware 
complexity, and gives the network environment more flexibility and mobility [2].  

Denial of service attacks is one of the hazards that can create a serious and unexpected 
challenge for accessing essential information by eligible users. By performing this kind of 
attack, the attackers attempt to disrupt the services by occupying a significant amount of 
available resources [3]. Although the technical complexity of these attacks is increasing daily, 
the attackers do not need high technical knowledge and skills about the victim’s system and 
attack launch techniques to perform such attacks [4].  

Hackers have enhanced their DDoS attack methods to extraordinary levels over the past 
decade. The emergence of the internet of things (IoT), pervasive connectivity, and now 5G 
networks are all components that have led to DDoS attacks’ rapid expansion and complexity 
[5]. These kinds of attacks are growing daily. The DDoS attack has evolved into a substantial 
danger to organizations and Internet infrastructures over the last few years, which has 
resulted in a devastating threat to the services provided by these companies. Figure 1.1, 
briefly shows the rise of DDoS attacks in recent years. 
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Figure 1. 1: The rise in sophisticated DDoS attacks in recent years [Taken from [6] ]. 

Several instances indicate how DDoS attacks can affect the performance of different famous 
companies in recent years. One of the first major DDoS attacks targeted Yahoo! company, 
which brought down their services for a few hours [7]. In October 2002, another immense 
DDoS flooding attack took place, making the service unavailable for the majority of DNS root 
servers (9 out of 13) [8]. At the end of the year 2010, another harmful DDoS attack occurred 
when a group of hackers orchestrated massive DDoS flooding strikes on Mastercard, Visa, and 
PostFinance websites, bringing them down [9]. Attackers have lately targeted online banking 
websites, including several major US financial organizations such as Wells Fargo, PNC, HSBC, 
Bank of America, Citigroup, and U.S. Bancorp, which have all been subjected to massive DDoS 
flooding attacks [10].  

Recent distributed denial of service (DDoS) attacks have become more complicated, and the 
scale of the attack has crossed the barrier of hundreds of gigabits per second (Gbps) [11]. One 
of the widespread denials of service attacks happened on October 21st, 2016 at Dyn. Dyn is 
an Internet infrastructure company that offers DNS service to a vast area of Europe and North 
America. In this attack, IoT devices were exploited to execute a Distributed Denial of Service 
attack, which created nasty DNS lookup queries [12]. This attack with a rate of 1.2 Tbsp., was 
the most devastating of its kind in the history of attacks [13]. 

1.1 Challenges in SDN network security 

Security is an essential concern in both traditional networks and SDN networks since it ensures 
the integrity, privacy , and availability of information. The effectiveness of SDN is increasing in 
the IT world day by day; it spreads in diverse areas, from local area networks to public cloud 
architectures. However, despite the many benefits it offers, SDN security remains a matter of 
concern among research communities. SDN networks face a significant challenge in the form 
of the adverse effects caused by Distributed Denial of Service (DDoS) attacks. 

It is noteworthy that the distributed denial-of-service attacks on the SDN networks can be 
much more destructive since the SDN architecture is based on the separation of the control 
plane from the data plane, where the intelligence of the network is centralized in a single 
entity known as the controller. The centralized role of the controller makes it vulnerable to 
DDoS attacks. This kind of attack can cause the interruption of the service of the entire 
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network by bringing down the controller [14]. As a result of the large number of unknown 
flows arriving at the controller, the controller’s resources such as bandwith, memory, and 
CPU, etc., become vulnerable, and the network becomes unusable. Furthermore, the 
bandwidth of the communication line between the controller and data plane can be saturated 
by a huge amount of this new traffic which will harm the functionality of the switches and 
disrupt the SDN network functionality [15]. Since the flow table is placed in the network 
devices, the data plane is also vulnerable to DDoS attacks. During the launch of the DDoS 
attack, enormous packets are sent to the network switches from diverse anonymous sources. 
The defined rules for these arriving packets will be added to the flow table of the switches by 
the SDN controller. The capacity of these flow tables is limited; therefore, the flow table of 
the switch will be saturated after a while. As a result, no new rules can be added to the flow 
table, and no packets can be forwarded. Furthermore, once the buffer capacity is saturated 
due to the DDoS attack, all incoming network traffic drops automatically [16]. Therefore, in 
recent years, the security of the SDN network came to the sight of the research communities 
and many researchers have tried to propose various methods to detect and mitigate DDoS 
attacks in SDN networks. They utilize various concepts and methods, such as statistical 
measurement, big data tools, and machine learning techniques to find a comprehensive 
solution to tackle this critical security concern in the SDN environment. 

Adding big data analytics to a company’s security architecture can significantly improve its 
capability to identify, investigate, and potentially prevent DDoS attacks. Large amounts of data 
must be analyzed and saved to evaluate DDoS attacks properly. The big data ecosystem is 
capable of managing massive volumes of data for assessment and comparison. Big data 
analytics provide comprehensive investigation, which can offer a vision into a diversity of 
crucial information, whereas standard traditional security methods contain only negligible 
logging information and just a few summary reports. It almost seems like hackers are able to 
modify their methodologies to include advanced IT concepts such as cloud capability prior to 
enterprises switching from scale-up to scale-out architecture. As a result, even the most 
sophisticated security systems are unable to detect, prevent, or mitigate today’s DDoS attacks. 
In this situation, big data is a notion that can give companies knowledge about DDoS attacks 
and provide the tools they need to efficiently tackle the problem [17].  

Big data analytics tools can provide various capabilities to address advanced and complex 
security threats. For instance, providing real-time data processing which is a significant 
capability for real-time threat analysis. Moreover, monitoring and automation of the network 
traffic offer the ability to react rapidly to detected threats. In addition, these analytical 
capabilities can be enhanced by using the machine learning approach. Using machine learning 
techniques in the network security domain and specifically for detecting DDoS attacks can 
assist researchers to develop a defense mechanism by collecting, analyzing, and processing 
data based on previous DDoS attack information. In other words, using machine learning 
algorithms enables a security framework to detect malicious traffic from activities learned and 
collected from past knowledge rather than through personal interaction, which in the first 
case it provides an automated, more accurate, and reliable defense solution. 

in the realm of security, where novel threats emerge in less time and attack techniques are 
getting more sophisticated, it is vital to have formidable tools to facilitate manage and analyze 
all this new information to detect potential attacks swiftly and in real time. 
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1.2 Motivation  

The rapid expansion of internet-based services in recent years has significantly increased 
cyber security concerns. Security in a data network should be a top concern since failing to do 
so exposes companies and organizations to a series of threats that might jeopardize service 
availability. The amount of data produced each day exceeds the threshold of petabytes. These 
data contain information about internet users' behaviors. On the other hand, besides the 
volume of data, the number of security threats is growing drastically. There are a wide variety 
of attack scenarios and methodologies, which makes them complicated and increases the 
difficulty of detecting them. 

Different attacks have their own specific features to be recognized; hence a wide variety of 
signs must be considered to identify multiple attacks while monitoring a large-scale network 
infrastructure. DDoS attacks are one of the most significant issues in network security today 
due to the massive disruption they can cause to any type of network infrastructure [18]. The 
majority of distributed denial of service attacks are directed at online marketplaces, blogs, and 
the financial industry. It is also common knowledge that the SDN infrastructure is susceptible 
to attacks of this kind. 

Software-Defined Networking (or SDN) is a networking technology that offers a particular type 
of network architecture, compared to traditional networks, which are more scalable and 
flexible. This modern architecture is also capable of reacting fast to shifting requirements for 
businesses and end-users' perspectives because of its specific characteristic, which is a unified 
management network [19]. The efficacy of software-defined networking (SDN) is becoming 
more and more apparent on a daily basis; its use spans a wide range of domains, from private 
local area networks to public cloud infrastructures. SDN demonstrates its excellent 
performance in the majority of situations by delivering simplicity, flexibility, reliability, and 
efficacy at a lesser cost. SDN security, however, continues to be a topic of concern among 
research communities, despite the numerous advantages of this technology. Similar to the 
traditional network, SDN-based networks also have the same security necessities [20]. 

The software-defined networking (SDN) viewpoint is predicated on the principle of separating 
the control plane from the data plane. In this architecture, all the intelligence of the network 
is unified in a single location, referred to as the controller. Due to the fact that in the initial 
design of the SDN architecture, security was not considered, different SDN layers are 
vulnerable to different attacks; figure 1.2 presents the effect of the DDoS Attack on the 
different layers of the SDN environment. Launching a DDoS attack targeting the SDN network 
can disrupt the functioning of the different SDN entities, such as overloading the Flow table 
of the network Switch, saturating the buffer of the switch, congestion of the southbound 
interface, and bringing down the SDN controller. The centralized controller, as the core of the 
SDN network, is susceptible to DDoS flood attacks, which may result in an interruption of 
service over the whole network [21].  
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Figure 1. 2: Attack on SDN Layers. [22] 

In the SDN-based network, the impact of distributed denial of service (DDoS) attacks on SDN 
networks is one of the most significant concerns of network administrators. A Distributed 
Denial of Service attack (DDoS) conducted against the SDN controller might deplete its 
processing capabilities, rendering it unreachable to legitimate traffic, thus affecting the 
availability of services [23]. In addition, because the controller will have all its resources 
dedicated to processing a large number of malicious packets, it will be inaccessible to 
legitimate traffic as a result of these types of threats. Driver functions, such as online services 
or web applications, may become unavailable because of these types of threats [24]. 

Compared to conventional networks, the effectiveness of distributed denial of service attacks 
(DDoS) will be evident in SDN networks at a much quicker pace and with higher damage. There 
are now several research papers that offer various techniques for detecting and mitigating 
distributed denial of service (DDoS) attacks in SDN networks. However, there is no 
methodology that serves as a guide for the implementation of these solutions [25]. 

In most of these proposed methods, the module is centrally located in the controller. There 
are three major disadvantages that can be addressed for these methods: 

1- One of the main drawbacks to these techniques is the lack of scalability of the 
detection module; In most proposed methods the detection/defense module is 
implemented by developing the controller core or running it as an application in a 
separate machine, in both cases, it can be a single point of failure.  

2- In centralized detection methods, concerns are raised about the amount of computing 
load imposed on the controller during heavy DDoS attacks. When a DDoS attack 
begins, a large number of new packets flow to the controller. The controller must 
analyze all new packets and take the essential actions. In this case, a considerable 
computing load is imposed on the controller, and the controller may fail to manage 
and control other upcoming network requests. 
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3- Another issue is the delay in responding to permissible flows sent to the controller. 
The validation process for detecting malicious traffic to any new incoming network 
packets by the controller can cause delays in responding to legitimate flows. For the 
SDN network, these additional delays can be a major concern. 

Therefore, with the increasing complexity of the different DDoS attack techniques for 
deploying the SDN architecture in a network environment, it is crucial to consider the above-
mentioned concerns. To protect the SDN network, sophisticated methods are essential to 
monitor, analyze, and accurately identify attack features. In this context, big data techniques 
can be used to detect these attack features. An edge might be gained against these kinds of 
attacks by developing a real-time network traffic monitoring and processing system that is 
able to identify malicious activity, scale the amount of data that is ingested, and react quickly 
in terms of reaction time. To ingest and analyze massive volumes of data in real-time with 
minimal latency, distributed processing systems such as Apache Spark 1, Apache Kafka2, and 
Apache Storm3 are rapidly being deployed. Distributed processing solutions, such as Apache 
Kafka, and Apache Spark are being quickly implemented so that huge amounts of data may be 
ingested and analyzed in real-time with little lag. 

Using these big data tools, a DDoS detection system may quickly detect abnormal activities or 
suspicious acts and mark them for urgent analysis. This can be done during enormous 
workloads with heavy traffic. Developing such a framework can offer a vital supporter that 
may assist network security systems in addressing the DDoS threats that are currently being 
encountered in the SDN environment. In this sense, machine learning (ML) algorithms provide 
a viable opportunity for classifying network data and determining attacks. 

Machine learning approaches can analyze characteristics and learn from them, which enables 
the detection and prevention of DDoS attacks. In the context of DDoS attack detection, 
approaches based on machine learning perform very well when combined with the robust 
qualities of big data processing systems. 

In general, in the context of the DDoS attack detection methods, there are still certain open 
issues which are summarized in the following: 

- Designing a real-time attack detection system to collect and analyze incoming new packets 
without packet loss. 

- Implementing security techniques to the SDN controller may influence the performance of 
the entire network during high traffic load. 

- To prevent controller performance degradation, the detection system should be decoupled 
from the core network architecture. 

- The attack detection system should be continuously updating its attack features, 
information, and detection methodologies to be capable of detecting new attacks without 

                                                 
1 “Apache Spark”. [Online]. Available: https://spark.apache.org/, /, [Last accessed: June 2022]. 
2 “Apache Kafka”. [Online]. Available: https://kafka.apache.org/, /, [Last accessed: June 2022]. 
3 “Apache Storm”. [Online]. Available: https://storm.apache.org/, /, [Last accessed: June 2022]. 
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jeopardizing the system performance, as attack scenarios and patterns change very fast and 
attack methods are getting more complex and difficult to detect.  

To tackle the above-mentioned issues, the big data analytics tools with their specific powerful 
features such as the formidable processing power, real-time analysis, and capability of 
handling heavy traffic can be used to design and develop a DDoS attack detection and 
prevention framework for the SDN network. To address the issues mentioned in the SDN 
environment, we propose a framework that utilizes machine learning techniques and a big 
data pipeline. This framework provides rapid, precise, efficient, and automated security 
systems that can identify DDoS attacks in real-time. Additionally, it can be easily adapted to 
new malicious activities and can handle large traffic loads 

1.3  Objectives  

The DDoS attack is still a severe threat to SDN networks, where there exists no specific solution 
that provides a perfect security orchestration against DDoS attacks in SDN networks. It is 
crucial to have a solution that can quickly and reliably identify DDoS attacks in real-time 
network traffic. The security solution must be fast, scalable, and effective to provide the SDN 
network environment efficiency and security. In this research, since the control plane is the 
most vulnerable part of the SDN security architecture, we specifically consider and investigate 
the control plane of the SDN architecture to design and develop a methodology prototype for 
detecting and mitigating the DDoS attack directed at the control plane and southbound 
interface in the SDN architecture with the aim of improving the security within SDN network. 
We propose a scalable, reliable framework to detect and mitigate DDoS attacks to prevent the 
computational load and delay in the legitimate flows sent to the controller. 

1.3.1 Research Questions 

In this research, we intend to develop a methodology to detect and mitigate DDoS attacks 
using machine learning techniques based on big data pipelines to increase security in the 
control plane of the SDN environment. Therefore, it is critical to design a software stack in a 
way that the collected data is sent in real-time for analysis by the model. 

there are the following major questions to be investigated in this research: 

1- What are the SDN attack vectors? 
2- Which machine learning classifier algorithm is appropriate for detecting DDoS attacks? 
3- How to implement a data pipeline to detect malicious network traffic in the networks? 
4- How can a detection module be integrated into the SDN controller for the detection 

and prevention of a DDoS attack in the SDN environment? 
5- What is the effect of integrating a detection module using the big data pipeline and 

developed controller to detect and mitigate DDoS attacks in software-defined 
networks? 
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1.3.2 Specific objectives 

The overall objective of this research is to develop a framework that is a combination of a data 
analytics pipeline for processing the incoming traffic and identifying network abnormalities in 
real-time. This will be accomplished by developing a data analytics pipeline. To be more 
specific, the following four activities will be incorporated into the development of the 
framework: 

Activity1: Problem identification and motivation 

Activity2: Development of the Control Plane of the SDN network 

Activity3: Evaluation of Different Machine Learning Classification Algorithms 

Activity4: Implementation of Big Data Pipeline for Intrusion Detection  

Activity5: Demonstration of the Framework with an experimental setup 

Activity6: Evaluation 

In the following, each activity is described more precisely: 

Activity1: Problem identification and motivation 

-Investigating the literature associated with software-defined networks and their 
applicability in this research. 

- Researching SDN security issues and defining various security vectors and possible 
solutions on different layers of the SDN architecture. 

-Studying the different types of DDoS attacks in SDN and their detection and mitigation 
mechanisms. 

Activity2: Development of the Control Plane of the SDN network 

-Developing an API into the SDN controller to handle, aggregate, and convert the incoming 
traffic information immediately after they arrive and make them reliably accessible for the 
rest of the pipeline.  

Activity3: Evaluation of Different Machine Learning Classification Algorithms  

-Selecting the most appropriate machine learning algorithms for the identification of DDoS 
attacks. 

Activity4: Implementation of Big Data Pipeline for Intrusion Detection 

-Carrying out a study of big data and technologies and architectures for massive data analysis. 
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-Designing the methodology based on the big data pipeline for the detection and mitigation 
to identify, analyze, and prevent the different denial of service attacks in the SDN network. 

-Designing and building classification models using big data tools capable of classifying 
network traffic and detecting possible attacks with good accuracy and a low percentage of 
false alarms (the classification of normal traffic and attacks). Implement a machine learning 
technique that processes network information into big data tools and makes predictive 
analyses with the most recent dataset to date. 

Activity5: Demonstration of the Framework with an experimental setup 

-Demonstrating the proposed framework by integrating the traffic capture tool, developed 
SDN controller, and the machine learning model with the big data software stack to obtain a 
distributed intrusion detection system capable of analyzing and classifying the flooding traffic 
targeting the victim system in real-time. 
 

Activity6: Evaluation 

-Evaluating and verifying the viability of the proposed detection and prevention methodology 
in a controlled simulation scenario using real attacks and checking the results. 
 
-Drawing conclusions from the analysis and proposing improvements and visualizing the 
results of the monitoring process.  

To accomplish each individual objective of our project, we have used a unique collection of 
tools to address each challenge with the appropriate approach. 

1.4 Goals and Contributions 

To deliver an accurate, scalable, real-time, and fast DDoS detection and prevention system 
that matches current demand, our solution integrates SDN concepts, machine learning, and 
distributed stream processing using a big data pipeline. The challenging task in this research 
is to develop a machine learning-based network intrusion detector using big data tools, a 
predictive framework that is capable of distinguishing between malicious traffic and 
legitimate traffic.  

More specifically, in the primary phase of the proposed solution, a Java-based API is developed 
into the SDN controller for collecting, aggregating, and transforming the network traffic 
information received from the controller into a specific format. These collected data are 
constantly sent to a distributed message broker known as Apache Kafka, whose job is to 
provide a fault-tolerant layer for the data stream processing phase. It consistently saves and 
manages the input network traffic information, which is sent via the SDN controller to feed 
them to the data stream processing step of the big data pipeline. 

The next step is where the majority of the processing and classification of the network traffic 
is done. It is implemented using the Apache Spark framework, which is a scalable analytics 
tool for data processing data and includes several different packages for various purposes such 
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as Structured Streaming and machine learning. For classification of the network traffic, first 
pre-processing should be done to boost the accuracy by removing unrelated features. 
Afterward, five different supervised classification algorithms, such as Logistic Regression, 
Naïve Bayes, k-Nearest Neighbor, Random Forest, and Decision Tree are evaluated to find out 
which algorithm has the most efficiency in differentiating between normal and malicious 
traffic. 

In this research, to evaluate the deployed machine learning algorithm which is implemented 
in the proposed framework, we have decided to use the NSL-KDD [26], and UNSW-NB15 [27] 
datasets. The NSL-KDD and UNSW-NB15 datasets are popular datasets that are extensively 
used as a benchmark for contemporary network traffic supervising systems. The last step of 
the data pipeline consists of storing the classified network flows. For this function, we use 
Elasticsearch 4, a distributed search engine, to provide a fast search and store service. When 
the network flows are processed through the data stream processing step of the big data 
pipeline, if any malicious flow is detected, a request will be sent to the SDN controller via the 
REST API communication channel to block the sender of the traffic. 

In another attack scenario, the attacker is targeting the southbound interface to saturate the 
channel between the controller and the network infrastructure devices. In this situation, the 
controller cannot receive the network traffic to perform the data processing for distinguishing 
the malicious traffic. In the proposed approach, we can tackle this serious vulnerability by 
setting up the infrastructure devices to send the network flow information via the standard 
network protocols such as Netconf and IPFIX to the data processing pipeline, and the rest of 
the process will be the same. The network devices such as switches can be configured to send 
the network traffic information via Netconf or IPFIX protocols to the big data pipeline, and if 
any malicious traffic is detected, the sender will be blocked by sending a REST communication 
request to the controller. 
 

1.4.1 Thesis Impact 

During this research, the result of different parts of this thesis have been published in peer-
reviewed conference proceedings:  

1- Amirreza Fazely Hamedani, Muzzamil Aziz, Phillip Wieder, Ramin Yahyapour,” Security 
Enhancement in SDN-based Networks Using Big Data Analytic Pipeline.”, Digital 
Privacy and Security Conference 2023 (DPSC2023). 

 
Own Contribution 
I am the lead author of the paper. All major analyses and evaluations have been done 
by myself. 
 
 

                                                 
4 “Elasticsearch. Distributed search and analytics engine based on Apache Lucene.” [Online], Available: 
https://www.elastic.co/, [Last accessed: June 2022]. 
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2- Amirreza Fazely Hamedani, Muzzamil Aziz, Phillip Wieder, Ramin 
Yahyapour, “Leveraging Big Data Pipeline to Enhance Security in SDN networks.”, The 
27th International Conference on Optical Network Design and Modelling (ONDM 
2023),Potugues. 

 

      Own Contribution 
     I am the lead author of the paper. I have to present the investigation and evaluation  
     of the proposed method in the workshop. 

 
3- Amirreza Fazely Hamedani, Muzzamil Aziz, Phillip Wieder, Ramin Yahyapour,” Big Data 

Framework to Detect and Mitigate DDoS Attacks in SDN Networks”, Proc. of the 
International Conference on Electrical, Computer, Communications and Mechatronics 
Engineering (ICECCME 2023), Spain. 
 
Own Contribution 
I am the lead author of the paper. I significantly contribute to designing and 
implementing the prototype model. 
 

4- Amirreza Fazely, “DDoS attack and Detection Techniques”, GWDG-Nachrichten, March 
2019. 

 
Own Contribution 
I am the lead author of the paper. I did the most investigating and writing. 

 
Furthermore, one papers have been prepared for submission to the IEEE conference: 

 
5- Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour,” 

Analysing the Efficiency of Utilizing Machine Learning Techniques on Apache Spark for 
Intrusion Detection“, 4th International Conference on Digital Technologies and 
Applications,ICDTA’24, February 2024,Fez, Morocco. 
 
Own Contribution 
I am the lead author of this paper. As the primary researcher, I took on the 
responsibility of thoroughly performing the analysis and evaluation of the different 
machine learning approaches discussed in this study. This hands-on involvement 
ensured the accuracy and reliability of the results presented in the paper. 

Moreover, a few papers were published to which the author of this thesis contributed:  

6- Muzzamil Aziz; Amirreza Fazely; Giada Landi; Domenico Gallico; Kostas 
Christodoulopoulos; Philipp Wieder,” SDN-enabled application-aware networking for 
data center networks”, IEEE International Conference on Electronics (ICECS), 2016. 

 
Own Contribution  
My own contribution to this paper is the implementation and modeling of the required 
simulation prototype. Furthermore, performing the evaluation and analysis of the 
simulated data.  
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7- Giada Landi; Ioannis Patronas; Kostas Kontodimas; Muzzamil Aziz; Kostas 
Christodoulopoulos, Amirreza Fazely,” SDN Control Framework with Dynamic 
Resource Assignment for Slotted Optical Datacenter Networks”, Optical Fiber 
Communication Conference, OSA Technical Digest, 2017 

 
             Own Contribution 

Own contributions to this paper comprise designing and implementing the proposed 
approach. 

 
8- Amjad Zia, Muzzamil Aziz, Ioana Popa, Sabih Ahmed Khan, Amirreza Fazely Hamedani, 

Abdul R Asif, “Artificial Intelligence-Based Medical Data Mining”, Journal of 
Personalized Medicine, 2022. 

 
Own Contribution 
 
Own contribution to this journal paper embraces certain conceptual investigations and 
evaluations of various machine-learning techniques for medical data mining. 

1.5 Thesis Outline 

The rest of the report is organized as follows: 

In Chapter 2, we provide a review of the current literature on the different defense 
methodologies. We divided the existing literature into five categories: General Methods, 
Mathematical Methods,  Methods, Big Data Methods, and Hybrid approaches. Furthermore, 
there is a detailed review of the current literature for each category. 

In Chapter 3, we explain an overview of the SDN network, its history, the concept from the 
perspective of general definition, and its particular characteristic, which separates it from 
traditional technologies. In addition, we introduce the details of the SDN architecture and its 
different layers from top to bottom point of view. Furthermore, we present the OpenFlow 
protocol and its specification, since it is the protocol that we consider in our proposed 
framework prototype as a southbound interface for communicating between SDN controllers 
and infrastructure switches. For this reason, we describe the OpenFlow architecture and 
OpenFlow-based switches, followed by its workflow in terms of how messages are exchanged 
between the controller and the switches and different types of messages.  

Then, we summarized the SDN security and different challenges and issues that should be 
considered. More specifically, in section 3.6, we explain the Threats and SDN vulnerabilities 
related to different layers of the SDN architecture. In section 3.6.3, we expound on the seven 
significant SDN attack vectors. Section 3.7 introduces the Denial of Service (DoS) attack, 
including its specification and why it has become an important subject for security researchers 
and organizations. Particularly, in section 3.7.2, we clarify the effect and impact of DDoS 
attacks on three layers of the SDN structure. 

In Chapter 4, initially, we introduce various key factors which are essential for evaluating 
different SDN controllers; then we investigate in detail five prevalent SDN controllers based 
on these key factors in order to choose the proper controller to be implemented into our 
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framework. For this purpose, we particularly study various prevalent SDN controllers, 
including NOX/POX, Ryo, Floodlight, OpenDaylight, and ONOS, and illustrate their overall 
architecture. 

In Chapter 5, we explain the proposed framework and its components and modules. 
Particularly, in sections 5.1 and 5.2, we describe the details of the proposed framework 
architecture, its three major modules, its functionality, and workflow. Section 5.3, contains 
information about developing an API for the SDN controller. Evaluation of the different 
algorithms and the results are explained in Sections 5.4 and 5.5. In section 5.4, we provide a 
theoretical explanation of, its use cases, and three major classifications. This is followed by 
defining the process of designing and evaluating the accuracy of a model. Particularly, Section 
5.4.5, contains the mathematical background of various algorithms which we use in our 
research. Further, in section 5.5, we depict the process of selection of the proper algorithm in 
detail and present the comparison result of the selected classification algorithms.  

Furthermore, in section 5.6, we provide information about the tools and technologies used in 
this research. Section 5.6.2, contains details about the big data tools, including, Apache Spark, 
Spark Streaming, Apache Kafka, Zookeeper, and Elasticsearch, which we employ to implement 
the data pipeline for processing the network traffic to detect DDoS attacks. The details of the 
big data pipeline implementation are described deeply in section 5.7. 

In Chapter 6, we describe an experimental setup and performance evaluation. Specifically, 
section 6.1 contains the details about the experimental testbed and its specifications. In 
sections 6.2 and 6.3 we present the deployment of the network topology and proposed 
framework operation. Sections 6.4 and 6.5 present experimental results and performance 
evaluation. 

In Chapter 7, we introduce three European projects that we include as contributions and use-
cases of this research to present how the SDN paradigm can provide a possibility to modify 
the network infrastructure on demand to match the needs of any organization. 

In Chapter 8, we summarize this research and briefly explain the achievements and 
conclusions. Finally, some possibilities for the development of the future plan for this thesis 
are discussed.  
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Chapter 2 

2 Literature Review 
 
In the last few years, due to the significance of security risks in software-defined networks, 
different detection and mitigation systems against DDoS attacks have been proposed the 
literature; Numerous concerns exist in the traditional detection system such as no real-time 
reaction, slow detection process, single point of the failure, etc. Based on our knowledge, few 
researchers offered a distributed processing framework for DDoS detection and mitigation 
system in SDN networks to address the issues of traditional systems. Most of them rely on 
techniques such as  methods, statistical solutions, and information theory. In some statistical 
solutions, entropy has been used to detect the attack [28].  

 Although entropy is a proper analytical method, it alone cannot detect all the attacks. 
Therefore, for some attacks, it is probable that the system may trigger false alarms at peak 
times. The peak time is when the legitimate traffic on the network has been increased for 
some reason, such as providing authorized services to too many users. Therefore, the best 
approach is to combine entropy with some other methods. In some other solutions, 
researchers have offered graph-based methodologies for the detection of DDoS attacks. 
However, there also lies the possibility of false alarms with the increase in illegitimate traffic 
[29].  

2.1 General Methods 

Kandoi et al. examined the risk of controller resource saturation and flow table overflow. This 
paper outlines a method that revolves on altering and modifying the configuration of switches 
to deal with these threats [30]. Taejin et al. introduced multiple intrusion detection systems. 
In this method, the traffic flow is distributed among the systems using the flow group 
clustering algorithm based on routing information and data flow rate [31].  

Wang et al. proposed a mechanism of protection against Distributed Denial of Service attacks 
in cloud environments using the Floodlight controller. This method consists of two modules, 
one for detection and the other for defense. The attack detection module is responsible for 
identifying attacks and then notifying the response module for performing the necessary 
action against the attacks. This method is the first solution against this type of attack in cloud 
environments with the help of SDN [32].  

Fichera et al. offered a technique for protecting web servers from Flood attacks based on the 
Pox controller. This technique introduces a controller named OPERETTA, which verifies each 
SYN packet and then allows the connection to start. This method is very comparable to 
SynCookie on traditional networks [33].  
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Discussion: 

These general DDoS detection methods involved enforcing specific network policies or rules 
on the attacked network as traffic was flowing through it. It is also possible to define various 
network policies and traffic rules to prevent and identify various DDoS attacks.  

On the other hand, these solutions have some limitations, including the fact that it only applies 
to a single SDN controller and does not support scalability and also real-time detection.  

2.2 Mathematical Methods  

as a mathematical method, Chouhan and Peddoju use the hop count of the IP mapping table 
for clarifying the DDoS attack packets. They claim that the accuracy for detection in this 
technique for IP attack behaviour, has been around 90% and deployment of the method is 
comfy. As a negative point, this technique is helpless against distributed attacks. Furthermore, 
if the IP-to-Hop-Count mapping table (Known as P2HC) is not updated appropriately, normal 
network packets may be mistakenly considered malicious traffic which affects the false 
positives [34]. As another mathematical method, Feinstein et al. consider the entropy and chi-
square assessment for the network traffic to detect DDoS attacks [35].  

Discussion: 

In addition to the aforementioned mathematical methods, there are various other similar 
options available for SDN networks. In these methods, probability, the analysis of standard 
deviation, and correlation. and entropy measurement, are the essential foundation. For 
instance, Entropy can be calculated by considering two different variables: the specifying 
threshold value and the clarifying window size. 

As main drawback of these methods is, when the network traffic complies with the traffic 
regulations and policies, the network traffic is considered to be legitimate traffic flows; 
otherwise, in the vast volume of the traffic, even the legitimate traffic, they are regarded as 
malicious traffic flows. In addition, these methods, do not offer any platform or framework 
that can be implemented in the real world. 

2.3  Machine Learning Methods  

In this research, they use three distinct kinds of data mining applications to comprehend the 
prototype and utilize them for DDoS attack detection, in order to assess the efficiency of the 
proposed protection architecture. Their experience shows a proper outcome on attack 
detection and false positive rate.  

Gurulakshmi and Nesarani utilize the classification method and specifically the SVM method 
to classify normal and malicious traffic and predict immediate abnormal activities [36]. 
Moreover, Huang et al. suggested architecture for network security based on Deep defense, 
and also proposed data mining techniques for processing and evaluating the alarms collected 
in the IDS/IPS systems [37].  
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In another  research and based on the C4.5 algorithm, Zekri et al offered a DDoS attack 
detection. In their proposed method the signature detection technology is considered to 
create the decision tree, and the algorithm is used to detect the DDoS flood attack 
automatically and efficiently [38]. Wang et al. proposed a technique based on flow mining for 
attack detection, by using the Code Red and Slammer worms and DDoS data collection from 
MIT Lincoln Laboratories, they indicate the effectiveness of this approach [39]. 

Rojalina et al. [16] developed a defense system and detection methods against DDoS attacks 
based on deep learning. In this method, the capabilities of SDN networks have been used to 
design a prevention algorithm module in the SDN controller. Robust infrastructure 
requirements and high costs are some of the problems associated with this method. The 
accuracy of the system in detecting attacks is reported to be 98.88% [40].  

Discussion: 

The major vulnerability of the SDN network is the centralized controller. This is due to the fact 
that in the SDN architecture, the underlying infrastructure which is called the data plane, and 
control logic which is called the control plane have been separated. To protect SDN controllers 
against DDoS attacks, there are already several methods. The machine learning approaches 
are able to analyse network traffic characteristics and learn from them, which can well assist 
in the detection of DDoS attacks. 

One of the disadvantages of these methods is, they cannot provide any scalability and 
reliability for their methods which is a crucial feature for any network attack detection 
method.  

2.4 Big Data Methods 

G. Dileep Kumar et.al introduced a real-time DDoS attack detection method based on SDN and 
big data. In their study, they implemented an SVM algorithm and offered two novel 
approaches for attack detection. They claimed that the proposed method could further be 
improved to detect and prevent different types of DDoS attacks [41]. Zhao et al. developed a 
neural network for detecting DDoS attacks which has the ability to adapt to new types of DDoS 
attacks. In their proposed system, they used big data tools such as HBase and Hadoop for 
analysing and storing huge amounts of the unstructured dataset which have been collected 
from the network log. [42].  

Sufian and Usman presented a system called HADEC, which is a live DDoS detection framework 
based on Hadoop to deal with flooding attacks using MapReduce. They implemented an 
algorithm that only detects the TCP-SYN, ICMP, UDP, and HTTP GET attacks [43].  

Karimi, et al., by using Spark offer a feature extraction technique for real-time IDS. For 
capturing the network packets from the network devices and obtaining essential information 
from the packet header, they utilize a collector module. All this captured header information 
is stored in CSV files and used the time window to separate them. Then, for providing real-
time processing, Spark periodically uses these CSV files for reading data during a small-time 
window. One disadvantage of this method for the online Internet traffic monitoring system is 
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that reading and writing the data from the CSV files in an intervallic way may reduce the Spark 
performance [44].  
 
Gupta et al. proposed three network traffic monitoring tools by using the Spark Streaming 
library for analyzing network packets in real-time. This application, which involves monitoring 
reflection attacks, may be described as streaming analytics problems, port scan detection, and 
application functioning evaluation. To obtain only the traffic that is required, they utilized the 
OpenFlow switches (programmable switches). The advantage of this solution would be 
reducing the amount of data that should be processed. On the other hand, this methodology 
is not realistic for a network that utilizes traditional switches (non-programmable switches) 
[45]. 
 
Lee et al introduced a method based on Hadoop5 for HTTP flooding attack detection. In their 
approach, the Hadoop-based packet processor [46] is used and developed a detection method 
using MapReduce 6 to detect the HTTP GET flooding attack. In their approach, the number of 
the traffic volume or the total number of requests for the web page is calculated using a 
MapReduce method for detecting DDoS using counters to distinguish the attackers from 
legitimate users. For evaluating the performance of the proposed method for DDoS attack 
detection, multiple Hadoop nodes (max. 10) are used in parallel. There is an issue regarding 
the proposed framework. This technique in the current structure can only be used for offline 
batch processing of a massive number of requests. Therefore, developing this approach to 
provide a live analysis using a real-time defense system should be considered [47].  
 
Discussion: 
 
The approaches that have been suggested offer a mechanism that is quick for the 
identification of malicious network traffic. These solutions have some limitations, for instance 
since some of these methods can only operate at the transport layer, it is unable to detect 
network threats throughout the entire OSI network layers. On the other hand, these 
methodologies are not realistic for a network that utilizes traditional switches (non-
programmable switches). 
 
In addition, the methodology that some of these techniques use is based on Hadoop which is 
somewhat slow and inefficient when real-time processing is required. In fact, the speed of 
Apache Spark which we use for data processing in our proposed framework is much faster 
than Hadoop either running in memory or on a disk [48]. 

2.5 Hybrid Methods (Big Data and Machine Learning) 

Saied et al. presented a method for attack detection using the ANN algorithm and using 
various big data tools, such as Apache Spark for a cluster computing system, HDFS for data 
storing, and Yarn for the resource management [49]. Dahiya et al. used Apache Spark to 
develop an intrusion detection system in NetFlow protocol. Linear Discriminant Analysis (LDA) 
and Canonical Correlation Analysis (CCA) were employed as two feature reduction approaches 

                                                 
5 “Hadoop”. [Online]. https://hadoop.apache.org/. [Last Accessed July 2018] 
6 “Mapreduce”. [Online]. http://wiki.apache.org/hadoop/MapReduce. [ Accessed July 2018] 
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and then applied supervised classification machine learning algorithms including Random 
Forest, REP Tree, Naive Bayes, and Bagging using UNSW-NB15 as the dataset [50].  

Beluch et al. investigated the performance of various famous machine learning (ML) 
algorithms such as SVM, decision tree, Naïve Bayes, and Random Forest using Apache Spark. 
For the performance evaluation, they used UNSW NB15 as their dataset with 42 features in 
terms of accuracy, building time, and prediction time. They reached the conclusion that the 
Random Forest algorithm with 97% accuracy has more advantages compared to the other 
classifiers [51]. Ferhat et al. used the k-Means algorithm in the machine learning libraries on 
Apache Spark to decide between the attack or normal network traffic. They used the KDD Cup 
1999 is used for training and testing and didn’t consider any feature selection technique to 
select the related features [52].  

N. Patil et al. developed S-DDoS, a distributed and real-time DDoS detection system based on 
Spark streaming, to categorize live traffic flows. To distinguish the DDoS attack traffic in real 
time, they employed the K-Means clustering algorithm. Also, by using highly scalable H2O 

sparkling water, they designed the model on the Apache Hadoop framework.  They asserted 
that the suggested S-DDoS detection method accurately and successfully identifies DDoS 
attacks from network traffic flows (98\%) [53]. Manzoor et. proposed a real-time intrusion 
detection system based on the SVM algorithm using the Apache Storm framework. For 
intrusion detection, the authors employed C-SVM with libSVM categorization. The proposed 
method was trained and assessed on KDD 99 dataset. The experimental findings demonstrate 
that the suggested approach is practical for stream processing of network traffic data for 
highly accurate network intrusion detection. [54]. 
 
Kai Peng et al. offered an IDS system built on a decision tree over big data in a Fog computing 
environment using the classification machine learning approach. To digitize the strings in the 
presumptive dataset, they implemented a pre-processing technique. They then normalized 
the data to ensure the accuracy of the input data and boost the effectiveness of detection. 
They compared the Nave Bayesian and KNN methods with the decision tree method for IDS. 
The results that they obtained using the KDDCUP99 dataset demonstrated that the suggested 
strategy is effective and precise. [55]. Zhao j et al. designed a methodology using a 
combination of big data analysis with machine learning, dynamic instruction flow analysis, and 
binary instrumentation to propose a technique for classifying the malware [56]. 

Trezi D. et al. utilize Principal Component Analysis (PCA) method for dimension reduction and 
offer unsupervised anomaly detection using Apache Spark. In addition, they indicate that for 
implementing big data for anomaly detection, multiple options such as Scalability, choosing 
appropriate features, and Confirmation of learned knowledge should be considered [57]. 
Alsirhani et al., for anomaly detection, proposed multiple classification approaches in spark, 
and furthermore, for selecting the classification algorithms used Fuzzy Logic and 
demonstrated this method on MATLAB. Their experimental outcomes revealed that the tree-
based classification algorithms have an enhanced classification influence on the traffic 
classification [58].  

Ying Gao et al., by using big data and distributed DDoS network intrusion detection, provide a 
new approach to network intrusion detection. A real-time traffic collecting module and a 
traffic detection module are the two main components of their system. In their framework 
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architecture, they used Apache Spark for fast data processing and HDFS for storing fishy 
networks. To enhance the real-time performance of the traffic feature collection, they 
adopted a micro-batch data processing paradigm in the network collecting component. 
Furthermore, they implemented the Random Forest classification algorithm in the traffic 
detection component. They also utilized two data sets, NSL-KDD and UNSW-NB15, to evaluate 
the accuracy of the framework in attack detection. The results of their evaluation using these 
two data sets indicate an accuracy rate of 99.95% and 98.75% for the proposed detection 
algorithm and a false alarm rate of 0.5% and 1.08% [59]. 

Tizghadam et. al. developed a system called CVST. It is an open-source, scalable manifesto 
that can be used in smart transport application development. Their proposed system contains 
four specific major modules for different use cases such as business intelligence, data 
dissemination, resource management, and application. For instance, the MLlib library is used 
in the business intelligence module, which is responsible for data analytics, to process the 
information and send it to the front-end [60]. Arora implemented the K-means machine 
learning algorithm on the Apache Spark MLlib library to perform an analysis of the mobile data 
which are collected from the internet. He proposed an efficient approach by using clustering 
based on latitude and longitude values for estimating the number of clients in the network 
[61].  

Discussion: 

These above-mentioned methods are the combination of multiple advanced methods to 
provide a scalable, fast, real-time platform for the detection and mitigation of DDoS attacks.  
Most of these methods offer a solution for a general network, which means that they may not 
be appropriate to be implemented in the SDN network, and they cannot take advantage of 
using a centralized controller to control, maintain, and manage the security of the entire 
network.  

2.6 Research Gap 

The identification and mitigation of Distributed Denial of Service (DDoS) attacks in Software-
Defined Networking (SDN) networks is a critical research area. Although significant progress 
has been made in this field, there are still some research gaps that need to be addressed. 
In this section, several potential research gaps have been proposed that could be explored 
further:  

1- Lack of Standardization: The field of SDN is still relatively new and lacks 
standardization. As a result, there is a lack of standardization in the detection and 
mitigation of DDoS attacks in SDN networks. Future research could explore ways to 
standardize the detection and mitigation process, which would make it easier to 
implement and scale across different network environments. 
 

2- Real-Time Detection: Most existing approaches to detecting DDoS attacks in 
OpenFlow-based SDN networks rely on post-attack analysis. However, real-time 
detection is critical to minimizing the impact of DDoS attacks. Future research could 
explore ways to improve real-time detection by analyzing network traffic in real-time 
and using machine learning techniques to identify anomalous patterns. 
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3- Low Negative Impact on Legitimate Traffic: Additionally, research should focus on 
developing mitigation strategies that can effectively counter DDoS attacks in SDN 
networks, while minimizing the impact on legitimate network traffic. 
 

4- Scalability: While scalability is one of the primary goals of OpenFlow-based SDN 
networks, existing approaches to detecting and mitigating DDoS attacks may not be 
scalable enough to handle large-scale attacks. Future research could explore ways to 
make DDoS detection and mitigation mechanisms more scalable, such as by using 
distributed detection techniques or optimizing the use of network resources. 

 
5- False Positive and False Negative Rates: The effectiveness of current DDoS detection 

and mitigation mechanism in SDN network depends on its ability to minimize false 
positive and false negative rates. However, existing approaches may suffer from high 
rates of false positives or negatives. Future research could explore ways to improve 
the accuracy of DDoS detection and mitigation mechanisms, such as by using machine 
learning techniques or analyzing network traffic at multiple levels of granularity.  
 

6- Cost-Effectiveness: Implementing effective DDoS detection and mitigation 
mechanisms can be costly, both in terms of time and resources. Future research could 
explore ways to make DDoS detection and mitigation mechanisms more cost-effective, 
such as by optimizing the use of network resources or using open-source tools. 

 
In conclusion, the detection and mitigation of DDoS attacks in SDN networks is an important 
research area that requires further investigation. The proposed research gaps provide a 
starting point for researchers to advance the current state of knowledge in this field. 

2.7 Chapter Summary 

The majority of this chapter is devoted to a literature review that examines security concerns 
associated with SDN. Defense methods against DDoS attacks that currently exist were 
addressed. These mechanisms were distributed into five different sections. The first one is the 
“General Method”, then the second one is the “Mathematical Method”. We consider these 
two methods as traditional methods. Then we alternatively study the “Machine Learning 
Methods”, “Big Data Methods”, and “Hybrid Methods” as the most recent methods for 
detecting and mitigating DDoS attacks. Furthermore, there has been a detailed review of the 
current literature for each section. These investigations provide us with the essential 
knowledge to identify the research gaps that will contribute to the accomplishment of the 
proposed research objectives. 
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Chapter 3 

3 Technology Background 

SDN is a revolutionary network architecture that stands for software-defined networking. The 
concepts proposed by SDN, such as separation of the control and forwarding planes, 
centralized control of network status, and support for software programming, are nothing 
new, but there has been no breakthrough for a long time. Currently, because of the IT’s 
conversion in network demand, SDN has attracted pervasively IT experts’ attention: cloud 
computing services (represented by server virtualization technology) have become 
conventional, big data technology has become increasingly popular, and network resources 
are elastically expanded. The weaknesses of the traditional model are that in that model, the 
network devices are closed systems that consist of three components: the hardware, the 
operating system, and the network application. These components are tightly integrated with 
one another. The development and invention of each of these three components necessitate 
the evolution and innovation of the others. 

The last decade has endorsed an extraordinary revolution in end-user devices both in terms 
of computing capacity and in terms of intelligence level. The presence of a large number of 
smart devices, high-performance tablets, phones, and servers is a clear example of the 
computing power that has been provided for users. Today's network infrastructure carries 
much more data over networks for connecting a larger number of people, more complex 
applications, and devices, which demands improvements in the processing capability of the 
network hardware and provides enhanced control over data traffic. One solution to overcome 
the above-mentioned concern is to replace existing processors which are used in the network 
equipment with faster ones, but due to the strong relationship that exists between the 
architecture of the processors and the software that operates on them, this solution is not 
feasible. 
 
Upgrading and replacing the current software, as another possible solution, is also not a viable 
option since the infrastructure of the networks is made up of equipment from different 
manufacturers that must interoperate with each other and require great efforts to achieve 
this compatibility. Above mentioned condition cause limitations on any improvement and 
innovation in the conventional network and due to this limitation and to offer a potential 
solution the following questions arise: 
 
Is it possible that the algorithms and computation part to be moved from network equipment? 
Can control part of the network equipment be moved to a central entity and, also provide 
programmability to the network? Is it feasible to create a more open, flexible, and intelligent 
network? The answer to all these questions guided the researchers to replacement of the 
traditional network model with the software-defined network model, where the control plane 
of the network equipment is moved to a logically centralized point and, also provides the 
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capability of programmatically controlling the forwarding network traffic for many network 
devices [62]. 

3.1 Overview 

The computer network, in general, is a set of heterogeneous equipment (switches, routers, 
computers, etc.) that is interconnected with each other to exchange information. There are 
standard models which allow different network devices to interact and exchange their 
information. The two major structure models used for the planning and implementation of 
networks are the Open System Interconnection (OSI) model [63] and TCP / IP [64]. The model 
OSI is a network communication standard developed by the International Organization for 
Standardization (ISO) in 1984, specifying how network equipment should communicate with 
each other. Its architecture is composed of seven layers, and each layer is independent of the 
others to perform a particular role.  
 
comparable to the OSI model, the TCP / IP model is another layered communication model 
composed of four layers: Application, Transport, Internet, and Network Access. These two 
traditional network models, despite their wide acceptance and general usage in the world, 
have some problems and have become more and more complex to administer and secure 
[65]. For instance, if any policy or configuration of the network changes, the network 
administrators should spend a lot of time manually configuring network equipment through 
command lines.  
 
In addition, this network equipment is vertically integrated and most often operates with 
proprietary software [66]. For example, in traditional network equipment, the part which 
defines and controls the routing of the packets (Control Functionality) and the part which 
forwards the packets through the network (Data/Forwarding Functionality) is composed of a 
single device, which makes it difficult to develop. This coupling makes any innovation difficult 
since deploying any new protocol or service on the equipment network must go through the 
manufacturer and can sometimes be very long. For compensation for these architectural 
rigidity problems and many more, SDN was introduced in 2009. 

3.2 SDN History  

In 2006, SDN was born out of the Clean Slate project funded by the GENI project at Stanford 
University in the United States. The Clean Slate project's ultimate objective is to redesign the 
Internet's architecture, with a focus on updating the present network's infrastructure since it 
has become rather obsolete and challenging to advance. In 2007, a Stanford University 
student, Martin Casado, directed a project called Ethane which was about network 
management and security; this project endeavored to practice a centralized controller to let 
network administrators simply state security control rules that are based on network traffic 
flows. This is all that is required to achieve security control over the whole of network 
communication. These security policies are then applied to the different network devices. In 
2008, based on the motivation of the Ethane project and its predecessor project called Sane, 
professor Nick McKeown and his colleague went one step forward and defined the concept of 
the OpenFlow protocol, and published a paper entitled "OpenFlow: Enabling Innovation in 
Campus Networks" in ACM SIGCOMM the same year. In this paper, they not only introduced 
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the concept of OpenFlow, in addition to clarifying the OpenFlow operation workflow, but also 
descriptions of the many possible OpenFlow application scenarios were also supplied. 

 Further, based on the programmable characteristics that OpenFlow gives the network, 
professor Nick McKeown and his colleagues introduced the idea of SDN (Software Defined 
Network). In 2009, the SDN concept was selected as one of the top ten innovative 
technologies in the Technology Review of the year. Since then, it has been widely considered 
and strongly supported by academia and the industry. In December 2009, the OpenFlow 
specification has become more mature by releasing version 1.0 which can be used in 
commercial products. For example, it provided OpenFlow's support plug-ins on Wireshark 
packet capture analysis tools, OpenFlow virtual computer simulation (OpenFlowVMS), 
OpenFlow debugging tools (liboftrace), etc. At present, the OpenFlow specification and 
versioning have gone through 1.3, and 1.4, and the latest released version is 1.5.1. The 
OpenFlow 1.6 standard has been released internally by ONF but it’s only available for ONF 
members. 

 In March 2011, the Open Network Foundation (ONF) was established under the supervision 
of Professor Nick McKeown and others. The major responsibility of this non-profit consortium 
is mainly dedicated to supporting the standardization and development of SDN architecture 
and technology. ONF currently has more than 96 members, of which 7 are the core members 
who created the organization, such as Google, Facebook, NTT, Verizon, Deutsche Telekom, 
Microsoft, and Yahoo. In December 2011, the first Open Networking Summit was held in 
Beijing. The summit invited all leading local and international companies in SDN to present 
their successful use cases in SDN; and in parallel, the world's top Internet communication 
network and The IT company discussed how to deploy SDN-based hardware and software in 
global data centers, and this was a suitable introduction, also advertising of OpenFlow and 
SDN concepts in academia and industry. 

 In April 2012, ONF released the SDN white paper (The title was: Software-Defined 
Networking: The New Norm for Networks), then the three-layer architecture model of SDN 
was widely accepted by the industry. In April 2012, Google revealed that its backbone 
infrastructure network had been entirely functioning using OpenFlow and through 10G 
network links implemented in 12 data centers around the world. This proved that OpenFlow 
wasn't merely a research model anymore that stays in the academic scope but already has 
sufficient technological maturity that can be applied in a production environment. 

 At the end of 2012, a number of prominent companies such as AT&T, British Telecom (BT), 
Telefónica, Verizon, Telecom Italia, Deutsche Telekom, and Orange jointly initiated the 
establishment of the Network Functions Virtualization Industry Association (NFV), initial 
targeting was to present the SDN paradigm to telecom Industry. Currently, it is formed by 
more than 52 network operators, telecommunications/IT equipment providers, and 
technology suppliers. In April 2013, the LINUX Foundation joined the race of developing SDN 
controllers, southbound/northbound APIs, and other software to break the monopoly of 
major manufacturers of network hardware, drive network technology innovation and make 
network management easier and cheaper. 
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3.3 The Concept of SDN 

The SDN was born out of a large intellectual movement motivated by the question of why 
network equipment should not be programmable like other platforms of computing, and the 
need to solve the problems that were earlier mentioned in traditional networks, difficulty in 
managing and developing networks.  
 
SDN is an emerging idea in network management. It's a novel methodology for designing, 
building, operating, and securing networks. It is based on a logically centralized management 
network by decoupling the control plane from the data plane, and it makes the network 
flexible and programmable. The control plane is in charge of defining and associating a routing 
decision with the data plane packets, and the data plane represents the physical or virtual 
infrastructure. It is only responsible to take care of the routing and forwarding of the packets 
into the network. In the SDN structure, the network intelligence is outsourced from the 
network devices and managed by external equipment called” controller” which manages and 
controls the roles of the control plane. One or more distributed virtual computers or physical 
machines may make up this intelligent unit.  
 
All communication between the controller and network equipment should pass through the 
Southbound API (for example, OpenFlow, LIST, BGP, …) via a secured channel. The SDN 
applications with various functionalities, such as policy implementation and management, 
security services, and network configuration, will mount to the controller via a well-defined 
Application Programming Interface (API), which is called Northbound API (for example, REST 
API). In other words, the main objective of SDN is to enable the networks to be agile, 
programmable, and flexible in order to make their control and management simple [67]. The 
interest of the big companies that have the main role in the digital world, such as Google and 
Microsoft [68] [69] in the deployment of SDN concepts into their data centers, gives good 
prospects for the concept of SDN to be accepted in the real world. 
 
 

3.3.1 General definitions of SDN 
 
Considering the functionality of the traditional network device, it can be divided into two 
planes. The data plane and control plane or management plane. The first plane which is called 
the data plane also can be called the forwarding plane, in this step is where the network data 
(frames, packets, datagrams) is effectively transmitted through the network by the network 
device from one node to another. The second plane is the control, which essentially defines 
and represents the protocols that are used in the network and is able to define the rules for 
the routing or forwarding table that are ultimately used by the data plane. Finally, the third 
plane, the application plane; is where any software-based service that is used is included to 
remotely manage or configure the functionality of the control plane [70]. 

Through the SDN Architecture, the following four basic characteristics can be achieved: 

1) The control and data planes are separated. 
The control functionality is removed from the network devices therefore the network devices 
would only be responsible for the packet, and datagram forwarding (data plane). 
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2) Forwarding decisions are based on incoming flows and not on destination addresses. In a 
general perspective, a collection of values within some of the fields which belong specifically 
to the header of the packets (frames or datagrams) and by a set of actions or instructions 
respectively defined the flows. These values in the fields of the header consider as the options 
which make up the filter criteria for making forwarding decisions. 
 
3) The control logic has been delegated to an external unit. 
This entity is called an SDN controller, which operates as the Network Operating System 
(NOS). The SDN controller is a software platform that is running on a server (physical or 
virtual). It delivers the critical resources, also abstraction to facilitate programming or 
configuration for forwarding network equipment (such as switches or routers).  
 
4) The application software that operates on the server. 
The network Operating system (NOS) is what essentially turns the conventional network into 
a programmable network. It can interact directly with the network devices of the data plane. 
 
These features offer various benefits to the operational, design, and scalability of the network 
infrastructure. More specifically, using logically centralized control offers a simplification way 
for defining and modifying the network policies, which makes it even less prone to 
mistakes. Additionally, a control program can react to any low-level network changes just by 
modifying the high-level policies. Furthermore, based on the logical centralization of the 
control, it contains global information of the whole network, which conclusively can 
contribute to developing the service functions and more sophisticated network applications. 
 

3.3.2 The major characteristic of the SDN Network  
 
An SDN network architecture has 4 fundamental features: 
 
1. The control and data planes are decoupled. The control functionality is separated from the 
hardware of network devices, so in this architecture, the network elements play a simpler role 
which is just transporting data on the network. 
 
2. The network can be programmed which means maintaining, controlling, and programming 
the data plane will be done by software applications operating above the network controllers. 
 
3. The control logic is moved to a logically centralized entity or network operating system 
(NOS). A NOS is a software platform that runs on a general server that offers crucial resources 
and abstractions of the layers to facilitate the programming of SDN infrastructure devices.  
 
4. Traffic forwarding decisions are based on flows. contrariwise to the traditional network, in 
which all decision policies are based on the network packets, in the context of the SDN 
architecture, the forwarding decisions are based on flows.  
A flow is a series of packets transmitted between a source and a destination that share 
common characteristics and receive the same policy handling on the network devices. The 
abstraction of flows makes it possible to standardize the operation of a variety of network 
devices, including switches, routers, firewalls, traffic optimizers, and load balancers. 
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3.4 SDN Architecture 

As illustrated in Figure 3.1, the architecture of the SDN network is divided into three layers 
which are called the infrastructure/data-plane layer, the control-plane layer, and the 
application-plane layer. Communication between these different layers is made through the 
Southbound, Northbound, and East-Westbound APIs. [71]. 
 
In this section, these layers will be explained in detail to provide a better view of the SDN 
architecture. 
 

 
  

Figure 3. 1: The Architect of the SDN Network 

 

 

3.4.1 The Application Layer 
 

The application layer is the uppermost layer of the SDN structure where all the management 
policies are defined and applied. These rules are defined by using a set of applications that are 
intended to specify an explicit service to the network such as firewalls, load balancing, IDS, 
etc. This layer makes it possible to define, interact and deploy the behavior of network devices 
through the SDN controller. As mentioned earlier, in the SDN concept, the control plane 
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provides a global view of the network and all the requested information about network 
elements by the applications should pass through the controller's southbound API. Since, the 
OpenFlow is the de facto standard API southbound in the SDN environment, for defining and 
implementing network functions and tasks in the form of OpenFlow-based applications, with 
help of this layer, several services can be implemented above the OpenFlow-based controller 
as applications. 
 

3.4.2 The Control Layer 
 

In the SDN architecture, the control layer entails a software controller called the SDN 
controller, which is used to centralize the intelligence part of the network. It is the most 
important component in the SDN concept, and it can be considered as an equivalent to the 
network operating system, which is responsible for handling the network management and 
configuration by defining and installing packet routing rules of the infrastructure layer through 
the Southbound API in the appropriate network devices (such as routers, and switches). Some 
of the core functionalities of the controllers are: 
 

1- Topology and network management 
2- Device discovery 
3- Path computation  

 
Moreover, the controller maintains a global view of the network through its topology 
discovery service, and this capability is very essential for the accurate operation of the other 
network services of the controller, such as network configuration. Some controllers are 
centralized (such as Beacon, Floodlight, POX), and some of them are distributed (such as 
ONOS, OpenDaylight); therefore, in distributed controllers, there should be an integration of 
additional APIs for Eastbound and Westbound traffic. Distributed controllers make it possible 
to overcome the limitation of the use of a single controller, which can not only become a single 
point of failure from the security perspective but also may cause a problem for the 
management of vast networks with an enormous number of network entities. 
 

3.4.2.1 The Controller Characteristics 
 

The core functionalities of the SDN controller can be defined as the following mechanisms: 
1- Topology management, responsible for discovering the topology of the network,  
2- Device management, in charge of configuring and managing the network 

infrastructure equipment,  
3- Path computation, the major task is selecting the best paths (Shortest path) toward 

destinations,  
4- Notification management, responsible for managing the communication of the control 

plane with network elements, 
5- Statistical information management, responsible for collecting flow traffic 

measurements from the network,  
6- Security mechanisms are in charge of providing network protection mechanisms. 
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3.4.2.2 Different Types of the SDN Controllers 
 
There are currently two types of SDN controllers: (1) centralized SDN controllers and (2) 
distributed SDN controllers. In a centralized SDN controller design, a single control entity 
manages all SDN devices. The major limitation behind this type of design is it may cause the 
condition of a single point of breakdown, which means that when a failure occurs in the 
controller or in any of its links, the network continues to operate in a restricted way, which 
makes it impossible to accept any policy changes and new services and flows. 
 
In the distributed SDN controller design, the control of the network is based on several 
distributed controllers, which offers an enhanced availability of the network in case of failures 
and provides the network scalability by incorporating additional controllers as required. An 
outline of Distributed SDN controller can be a cluster of centralized nodes in the same place 
or a group of geographically distributed controllers. The first option can afford the high 
performance, particularly in extremely data-dense centers, and the second option can offer 
higher resilience in the conditions of physical or logical failure. As the third option, In the Cloud 
communication situation, the Service Providers consist of multiple data centers 
interconnected with each other through the WAN connection links. In this case, a hybrid SDN 
controller design can be considered with the clusters of controllers in each data center and 
distributed controllers in different localities.  
 

3.4.3 The Infrastructure/Data-plane Layer 
 
This layer expresses the functionality of the data plane. The data plane entails network entities 
such as switches, routers, etc. . A network device is an entity that accepts network 
traffic(packets) at its ports and executes one or more network functions (for example, 
forwarding, deleting, or header changing for a specific action) [72]. 
In general, a switch is a network device whose main role is to transfer the packet. It is made 
up of two functional parts: the data plane and the control plane. The data plane is in charge 
for routing and forwarding the packets from the source to the destination. It retrieves the 
packets from the input interface, then for forwarding the packets, checks its routing table to 
determine the egress interface. The control plane is in charge for defining the forwarding 
rules, and building and maintaining the routing table.  
 
The data plane contains of network devices such as switches and routers. The SDN-based 
network devices are designed to use an open and standard programming interface, which 
allows them to ensure their configuration and interoperability with the control plane and 
other SDN switches. There are several standard protocols that can be used such as OpenFlow, 
LIST, BGP, etc. 
 
There are two types of OpenFlow switches [73]: the OpenFlow switch Only which is specifically 
designed for SDN networks and for supporting the OpenFlow and the OpenFlow enabled 
switch which Simultaneously can undertake the role of traditional and OpenFlow-based 
switches. For this research, the OpenFlow is considered the standard interface between the 
control plane and the data plane. The OpenFlow-based switch and the controller 
communicate via the OpenFlow protocol which will be explained in detail subsequently.  
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3.4.4 SDN Programming Interfaces 
 
SDN has introduced several types of interfaces to allow different elements of its SDN 
architecture to interact with each other [74]. This section describes the details of these 
interfaces which are the Southbound API, the Northbound API, and the East-Westbound API. 
 

3.4.4.1 The Northbound API 
 
The communication between the control layer and the application layer is provided through 
the interface which is called the Northbound API. It is one of the key elements for providing 
the abstractions between the layers in the SDN environment. It provides the way in which the 
information can be exchanged between the controller and the applications running on the 
network. In other words, the Northbound API is an API used by the network administrator to 
define policies to schedule the control plane. Generally, it indicates a list of basic network 
functions associated with the provider, which are then used to configure the infrastructure 
network equipment, and the controller in between is responsible to interprets it into a 
language that any network device can understand.  
 
The Northbound API represents the network abstraction data model and also controller 
functionality which can be used by network applications. Northbound API is used to facilitate 
innovation and efficiently orchestrate the network. The essential of collecting the control 
information for the network applications from the underlying infrastructure network is 
another major rationale for this interface. Currently, various types of SDN controllers offer a 
wide variety of Northbound APIs. The Northbound API mainly can be classified into three 
categories, REST APIs (Representational State Transfer) [75] , specialized ad hoc APIs, and 
programming languages such as Frenetic[f] [76], Procera[e] [77], FML [78] (Flow-Based 
Management Language), NetCore [79]and Pyretic [80]. 
 
Even though, the ONF organization created a working group 22 to define and develop a 
standard protocol for this interface, at the time of writing this thesis, still there is no industrial-
recognized standard for Northbound API. The REST API is the most used solution as the 
Northbound API because it provides simple integration and minimum interaction between a 
client and a server. Obviously, it is not a protocol but an architectural concept intending to 
facilitate the programming of service-oriented applications by using the HTTP protocol. 
Moreover, because of this ease of use, many large companies such as Facebook and Google 
use it to offer their services. This is the main reason that currently most of the SDN controllers 
use the REST API as a Northbound interface to provide network information to applications 
[81]. Apart from ONOS and OpenDaylight controllers, most of the other SDN controllers still 
do not support and entirely implement the REST API, they are still using other legacy methods 
such as SOAP. this is also one of the main reasons for choosing the ONOS controller for this 
research. 
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3.4.4.2 The East-Westbound API 
 
The East-Westbound API is the interface that allows multiple controllers to share a common 
view of the network and coordinate with each other for implementing the policies and 
protocols (see Figure 3.2). Through this interface, the SDN controllers can manage the way to 
interact with each other to share information and consequently, transmit status data about 
their networks and have an impact on routing decisions. This East-Westbound interface can 
be used to improve communication across different domains of an SDN network (intra-domain 
and inter-domain) and accordingly improve the scalability and interoperability of the SDN 
environment. The East-Westbound API is very important, specifically for large SDN-based 
networks, which are divided into multiple subdomains, and each subdomain is controlled by 
an SDN controller [82]. 
 
In overall conception, a large network, for instance, is divided into multiple subnets, then to 
deploy SDN architecture, each subnet should have its own controller, and each subnet has a 
global view of its sub-network. Therefore, to build a global view of the entire network, the 
controllers must exchange their network information with each other, including the topology, 
accessibility, the network protocols used, network status, etc., through the East-Westbound 
interface. An East-Westbound interface is also important for automating network decisions to 
reduce the intervention of the operations of the network administrators on large-scale 
networks. Some of the functionalities of these interfaces are: (1) provide algorithms for data 
consistency models, (2) provide monitoring and notification capabilities, and (3) import or 
export data between controllers.  
 
Currently, most of these types of interfaces are available under the license of open-source, 
which is a huge advantage in the deployment of SDN in large-scale networks. ALTO, SDNi [83], 
and HyperFlow are examples of East- and Westbound protocols that can be used for 
compatibility and interoperability between different controllers in large-scale SDN-based 
networks when using multiple controllers. By using these protocols common requirements 
can be defined to manage the establishment of the flows and the exchange of reachability 
information across multiple domains, which provide the ability to create scalable and reliable 
SDN control platforms. 
 

 
 

Figure 3. 2: Communication between Controllers via East / West APIs [84] 
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3.4.4.3 The Southbound API 
 
The interface between the infrastructure layer (Data-plane layer) and the control layer is 
called Southbound API. The Southbound APIs constitute the communication protocol that 
facilitates the communication between controllers and SDN network devices. These APIs can 
be open-source or proprietary [85]. As stated earlier, OpenFlow is the de facto industry 
standard Southbound API in the SDN architecture which provides communication between 
the infrastructure network and the controller in the SDN environment. Through this interface, 
the controller can control and manage all the flows of the switches or routers under its 
authority. The open flow characteristic and specification will be explained in detail in the next 
section [86]. 
 
Although OpenFlow is the most famous Southbound API and even it is considered the industry 
standard for controlling and managing the overall information about the network equipment, 
there are also some traditional protocols that can be considered as southbound protocols in 
SDN environments such as SNMP [87], and NETCONF [88] (Network Configuration Protocol), 
LISP(Location Identifier Separation Protocol), and even BGP [89](Border Gateway Protocol). 
There are also several other specific Southbound APIs to manage communications between 
these two layers of the SDN architecture, for instance, OVSDB [90] (The Open vSwitch 
Database Management Protocol), OpFlex [91], and ForCES [92](Forwarding and Control 
Element Separation).  

3.5 OpenFlow protocol 

ONF is a non-profit organization consortium of various industrial/Academy members, formed 
in 2011 that is leading the development and standardization of the critical elements of the 
SDN architecture, such as the OpenFlow [93] protocol, which provides the standard 
Southbound communication interface between the controller (control plane) and 
infrastructure network devices (data plane). The major goal of ONF was to propose 
specifications to facilitate the configuration of networks, and to simplify management and 
control networks to deploy the different types of services such as security, QoS, mobile, etc. 
more easily. OpenFlow is a proper solution for innovating the networks, but it also has to face 
various challenges, in particular security. The first version of OpenFlow was introduced in 
2009 and Figure 3.3 demonstrates the timeline of different versions of it.  
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 Figure 3. 3: OpenFlow Versions Timeline [94]. 

 
OpenFlow [93] is the first interface proposed particularly for SDN, offering granular traffic and 
high-performance control on multi-vendor devices. An SDN network based on OpenFlow can 
be implemented using hardware devices (such as switches) and software, offering the 
following benefits to companies and service providers: 
 
▪ Centralized management and control of multi-vendor network devices. 
 
▪ Provide enhancement in automation and management through open APIs, which abstract 
the details of the underlying physical network, the applications and provisioning systems, and 
the orchestration of the network elements. 
 
▪ Speed up the innovation by allowing to offer of new capabilities and network services 
without having to configure the network devices individually or wait for the release of updates 
by manufacturers. 
 
▪ Increase the security and reliability of the network as an outcome of the centralized and 
automated management part of network devices. 
 
The most advantage of using OpenFlow is to centrally control infrastructure elements, and 
traffic flows in the network and enables straight access and control of the data plane of 
underlying network devices, both physical and virtual. In an SDN network, the control plane is 
decoupled from the physical network and located in a centralized controller. The controller 
uses OpenFlow to communicate with all components of the network, as indicated in figure 
3.4. Through this protocol, the network administrators can manage the whole network rather 
than configure each device individually. 
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Figure 3. 4: OpenFlow Network Architecture [95]. 

 
The OpenFlow protocol should be implemented between both communication sides, the 
network devices, and an SDN controller. The SDN architecture uses the concept of flows to 
identify network traffic and makes decisions based on predefined static rules or rules 
dynamically programmed by SDN control software. Since OpenFlow enables the network to 
be programmed based on a flow, an OpenFlow-based SDN environment offers granular 
control of network traffic, allowing the network to respond to changes in real time at the level 
of applications, users, or sessions. 
 
Table 3.1 expresses the specification of different versions of OpenFlow. The most recent 
version at the time of this writing is version 1.5.1 (the latest version is 1.6, but it is available 
only for ONF members). 
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Table 3. 1: Functionality of the different OpenFlow specifications [96]. 

 
 
 

3.5.1 OpenFlow Architecture 
 
The OpenFlow network architecture contains three fundamental concepts: first, the control 
plane consists of one or more OpenFlow controllers that define, maintain, and distribute 
forwarding policies into the network infrastructure (data plane), second, the data plane 
network which consists of the OpenFlow-based devices(switches), and third, a secure control 
channel which the controller and OpenFlow switches can communicate with each other. 
 

3.5.1.1 OpenFlow Switch 
 
An OpenFlow-based switch [97] is a network device that forwards the incoming packets based 
on the rules defined in its internal flow table. The flow table in the SDN switch contains a set 
of flow entries consisting of the header, counter, and action fields. The header field is used to 
determine the match of incoming packets/flows with any entries of the flow table. The header 
field can accept different types of network protocols, depending on the version of the 
OpenFlow, such as Ethernet, IPv4, IPv6, or MPLS. The counter field is used to collect statistical 
information from flows, such as the number of bytes of received packets/flows or the duration 
of remaining flows in the tables. The action field defines the treatment which should be done 
to incoming packets, such as forwarding packets to a port, modifying a packet, or discarding a 
packet. 
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3.5.2 OpenFlow Workflow 
 
As mentioned earlier, in an OpenFlow-based SDN architecture, the data of the network 
(packet/flows) are forwarded through the switches based on the forwarding decisions which 
are made in network operating software (NOS) is implemented on an external 
machine(server) called controller that communicates with the switches through the OpenFlow 
protocol. 
 

 
Figure 3. 5: SDN / OpenFlow device [98]. 

 
Through OpenFlow protocol, the control and underlying network devices can communicate 
with each other. It defines the specification and format of the exchanged messages between 
the SDN controller and the OpenFlow switch and uses TCP protocol for exchanging these 
messages. The OpenFlow protocol provides the possibility for the controller to modify, add, 
update and delete input flows in the flow table of the switches. The messages between the 
OpenFlow controller and the OpenFlow-based switches are exchanged through the secure 
channel and implemented via an SSL/TLS connection over TCP. When the switch distinguishes 
the controller's IP address, it initiates the SSL connection. 
 
A controller may create, update, and remove flow entries from the network switches' flow 
tables using the OpenFlow protocol, proactively or reactively in response to the arrival of 
packets, modifying the forwarding action of the data plane of the switches (Figure 3.5). When 
a network packet reaches the one of switch ports, the switch starts a process of querying the 
flow table to find out if there is a flow entry in the table that matches the packet. The flow 
entries are evaluated in priority order, and the first match in the table will be considered. If 
there is a match in the table for the arrival packet, the actions indicated in the flow entry 
would be executed for that packet, and the counter field of the flow entry correspondently is 
updated. In case there is no match in any entry in the flow table inside the switch, the packet 
is sent to the controller over the OpenFlow communication channel (Figure 3.6). 
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 Figure 3. 6: OpenFlow Switch Operation workflow [99]. 

 
 All messages exchanged between the controller and the switch begin with an OpenFlow 
header consisting of the version of the OpenFlow protocol, the type of the message, the length 
of the message, and the message identifier. In the OpenFlow specification, there are three 
types of messages: Controller to switch messages, Symmetric messages, and Asynchronous 
messages. 
 
Controller-to-switch messages: These types of messages are utilized to directly manage the 
OpenFlow switches and are basically initiated by the controller. This type of OpenFlow 
message, which is exchanged between the controller and the switch, is used to detect the 
switch functionality, information retrieval, configuration, and programming. These messages 
are, among other commands such as switch configuration, the commands from the controller, 
statistics, queue configuration, and barrier. 
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Figure 3. 7: Exchanges the OpenFlow messages between the controller and the switch 

 
Symmetric messages: the HELLO, ECHO REQUEST, ECHO REPLY, and VENDOR are the main 
types of symmetrical messages which can be exchanged between the controller and the 
OpenFlow switch. They don't need to be solicited for action to be started by the controller or 
the switch. After establishing the SSL/TLS secure channel with TCP protocol, the HELLO 
messages are exchanged between the switch and the controller to determine the version of 
the OpenFlow protocol which is used. The ECHO messages (ECHO REQUEST and ECHO REPLY) 
are also used by the switch and the controller while they are operating, monitoring if the 
established link is still active and, at the same time, checking the speed of the connection and 
measuring latency. Figure 3.7 indicates different OpenFlow messages exchanged between the 
Controller and the infrastructure switch. 
 
Asynchronous Messages: Asynchronous messages can be initiated by the switch without 
any request from the controller. They are used to inform the controller of incoming traffic, 
switch state changes, and errors. For instance, PACKET-In is the type of message used by the 
switch to send the flows to the controller for decision-making. This type of message is sent, 
when none of the entries in the switch's flow table matches the incoming packet, or when it 
is indicated at the action level of the corresponding entry in the flow table that the packet is 
to be transferred to the controller. In general, the traffic from the data plane is transmitted to 
the controller via the PACKET-IN message. Figure 3.8 shows a sample flow sent to the SDN 
controller via the OpenFlow channel. 
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 Figure 3. 8: Sample flow sent to the controller via OpenFlow.  

 
On the other hand, the FLOW-REMOVED message allows the switch to inform the controller 
in the event of a deletion of an input flow from the flow table. The switch removes an input 
stream when no incoming packet matches this entry for a defined time by the controller when 
creating this input flow in the switch flow table. PORT STATUS is the message that allows the 
switch to inform the controller of any changes in the configuration or port status of the switch. 
The ERROR message is used to alert the controller for occurring the errors. For example, the 
ERROR message is sent to the controller when the latter tries to add a flow entry containing 
actions not supported by the switch. 
 

3.5.3 Flow Load Modes 
 
There are two methods to define and specify entries in the flow table of the switch: Reactive 
Mode and Proactive mode. 
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Reactive mode: In this case, when the new packet arrives at the switch, it triggers a call to the 
controller via the OpenFlow channel so that the controller can create and insert a new 
entry(rule) in the flow table of the switch which refers to the new package. 
 
Proactive Mode: Under this scheme, the controller can populate the flow tables of the 
switches before the new traffic arrives, therefore in case of losing the communication channel 
(OpenFlow connection) between the controller and switch, the network performance would 
not be interrupted. 
 
In the OpenFlow network one of the following actions can be applied to every incoming flow: 
(1) forward the packet to a port (destination port), (2) modify the packet header fields and (3) 
remove the packet. 

3.6 SDN Security 

After introducing the most essential elements of the software-defined network structure, 
explaining them and their main characteristics, as well as the differences that exist with the 
traditional networks, this chapter is analyzing the security challenges which expose by 
implementing the SDN networks. Similar to any other area or network structure, security is 
the most important aspect that must be considered since it can become future weaknesses of 
that network which ultimately end up putting the whole organization at risk. With the rise of 
modern network concepts that progressively support consistent and dynamic applications, 
such as the Internet of Things, social networks, cloud services, mobile apps, etc., it is necessary 
to develop technologies that can adjust themselves to the complexity required by upstream 
applications to provide security. 
 
In the context of the SDN network, various challenges arise in terms of security. Currently, 
SDN is mostly used in data center design, therefore its security issues must be deeply 
considered and put more effort to strengthen it. For this reason, there is a security group 
arranged by the Open Networking Foundation (ONF), which is responsible to find specific 
security issues that require further research. There are several types of vulnerabilities that 
have been addressed in each layer of the SDN architectures. One of them is the necessity of 
authentication and authorization between application and controller to use the network 
resources. The problem lies in providing different organizations required to have access to the 
network resources in a secure way, but not all applications have identical privileges to utilize 
the network resources; therefore, attackers can perform spoofing attacks to exploit the 
identity and gain unauthorized access to the resources. 
 
To understand security in SDN, first, the security properties which are associated with a 
computer system should be declared. There are three essential security attributes that must 
be provided for each computer system to make it safe: confidentiality, integrity, and 
availability. In addition to these features, other attributes such as authenticity, accountability, 
and non-repudiation are also usually included. Confidentiality means that the information 
must be accessible only to those who are authorized. It guarantees that private or sensitive 
information is not displayed or accessible to unauthorized users. Integrity provides the 
opportunity for the information and system function to remain unaffected by malicious 
attempts. Availability ensures that the computer system can continue to work without 
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suffering any data or system access degradation and, in addition, offer authorized users the 
resources which they require whenever they need them. Authenticity ensures that users can 
be verified as they claim to be and the system receives the traffic packets from trustworthy 
resources [100]. 
 
However, the specific characteristics and the architecture of the SDN itself introduce new 
security challenges and additional surfaces for attacks that do not exist in conventional 
networks, aside from security concerns that have already existed in traditional 
networks. Therefore, it can be seen that in the SDN environment, security has a double 
connotation: first, the utilization of the SDN characteristics to provide mechanisms for 
detecting and mitigating methods against known security threats, either by introducing new 
security offers or by expanding the functionality of the existing defensive systems and security 
devices. Second, develop the SDN architecture to provide proactive behavior against new 
attacks and security threats that are raised by the SDN architecture itself [101]. 
 

3.6.1 SDN Challenges and Issues 
 
The intention behind the SDN advent is to change the way that networks are managed. The 
implementation of this network architecture would reduce complexity and increase the 
efficiency of administrative processes and optimize network management, especially in the 
large network infrastructures owned by service providers. In addition, it would help to reduce 
significantly administrative costs in enterprise business and service provider networks. On the 
other hand, by implementing SDN architecture and separating the network plane from the 
data plane various new challenges may arise.  
 

3.6.1.1 Scalability 
 
The presence of a centralized controller in the SDN network makes it necessary that when a 
packet receives into the infrastructure devices (like switches), the network device looks into 
its flow table for an entry that corresponds to the received package and takes action 
associated with this entry. If no entry is found in the flow table, the packet is considered as a 
new packet and will be sent to the controller, and the controller must decide and define a rule 
based on its policy that which action should be considered for that packet. Therefore, in the 
SDN architecture, the controller and devices exchange not only the network traffic but also 
control messages and network information would be transmitted. On a small-scale network, 
this mechanism performs well, but in a large-scale network, infrastructures may cause latency 
problems because of the large number of nodes that can exist in the network. This can be a 
challenge that rises with implementing the SDN architectures in a large network. 
 
Various approaches have been proposed to overcome this particular challenge. One of them, 
for instance, proposes a strategy based on a group of controllers who are responsible to 
maintain, controlling, and communicating with the elements of the network infrastructure. As 
a matter of fact, this scheme introduces a different problem in terms of scalability for the SDN 
architectures, which means how communication should be established between controllers, 
and define specific policies for using the east to west traffic (east to westbound APIs). This 
concern arises due to the principal design of the SDN architecture which each controller 
requires to have a complete view of the network [102]. 
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The scalability of the SDN network has been considered by researchers from the beginning of 
the advent of the SDN concept. Various research groups and institutions have been trying over 
years to find a possible solution to provide scalability for the SDN environment. One of the 
proposed solutions is developing the HyperFlow framework [103]. HyperFlow is a framework 
that provides a distributed control plane based on the selective propagation of the events that 
change the configuration state of the network. Each controller transmits the published events 
to reconstruct the state of the network to another controller, thus all controllers can share a 
consistent state of the network. 
 

3.6.1.2 Performance 
 
Another concern about the SDN network is performance management in packet processing. In 
an SDN network, it is important to efficiently manage the process of the network flows with 
the necessity of high security and low latency. In this case, two features should be considered 
to assess the processing performance. One factor is to consider the throughput and associated 
latency when processing the incoming flows. The other factor is the programmability of the 
network devices, this feature refers to the ability of the devices to accept the sets of 
instructions that change the functional behavior of the network. There is another feature that 
might increase the processing performance of the network devices is the highest transmission 
speed at which the network connection links can be reached [102]. 
 

3.6.2 SDN Vulnerabilities  
 
SDN, similar to any innovative technology, has its pros and cons. Regarding security, as its 
pros, the SDN technology can be leveraged to fully mitigate some attack threats and 
vulnerabilities that commonly appear in conventional networks. On the other hand, the SDN 
technology hosts new risk vectors and vulnerabilities that are inherent in its novel 
architecture. The decoupling of the data and control planes and the fact that the intelligence 
of the network is logically centralized makes it vulnerable to being abused as a single point of 
failure, which might result in the whole SDN network being compromised. As in conventional 
networks, each network element such as network protocol, network device, or network layers 
that participates in the SDN network can potentially be the subject of intentional exploitation 
and this misbehavior can cause system and network failures. This explanation affirms that 
each element or layer which is a part of the SDN architecture can be considered a threat vector 
or attack surface; Therefore, any misconfiguration or improper deployment of any elements 
of the SDN network has the potential to introduce new vulnerabilities and jeopardy of security 
[104]. 
 
The major security problem of the SDN architecture is by default there is no security 
anticipation in its design. As SDN technology use cases progressively increase in the IT world, 
the list of security challenges that need to be considered and then prevented is expected to 
grow. Security vulnerabilities in SDNs are concentrated in the three planes or layers 
(application, control, and data). Therefore, in the SDN environment, all three architectural 
layers (Data-plane, Control-plane, and Application-plane), and interfaces (northbound and 
southbound) are susceptible to different types of attacks that can compromise the network 
components that reside in the layer or target the elements of the other layers [105].  
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in this research, for investigating the security issues in the SDN environment, the study of 
attack vectors is separated into 3 parts: The data plane, control plane, and application layer, 
and the following paragraphs explain different security vulnerabilities which could occur in 
each of these layers.  
 

3.6.2.1 Attack on the Data-Plane Layer 
 
In this layer, attackers can target network devices directly from inside of the network. An 
attacker could theoretically have unauthorized access (physically or virtually) to the SDN 
network or compromise a host that has been already connected to the network and then try 
to perform malicious behavior to threaten network infrastructure or elements. This behavior 
can be a type of denial of service (DoS) or a fuzzing attack that attempt to attack network 
components. As mentioned before the Southbound APIs and protocols are used by the 
controller (control plane) to communicate with the infrastructure layer and network 
equipment (data plane). There are various southbound protocols such as OpenFlow (OF), 
OVSDB, PCEP. 
 
Each of these protocols has its own methods to provide a secure communication channel 
between the control plane and the data plane. Currently, SDN architecture is mostly used in 
designing modern data centers, and for providing connection between two or more data 
centers the Data Center Interconnect (DCI) technology is used. In this technology, besides of 
underlay network, network overlay is also implemented using various protocols such as 
NVGRE, STT, VXLAN. These new protocols could be vulnerable due to their natural design or 
the way the provider or customer has employed them. Therefore, in this layer, an attacker 
could be motivated for impersonating another network device to modify the links DCI or 
generate a DoS (or DDoS) attack on DCI connections [106]. 
 

3.6.2.2 Attack on the Control Layer 
 
By considering the definition and role of the controller in the SDN architecture, obviously, it 
can be an important target for the attacker for different purposes. If an attacker can take 
control of the SDN controller, he would have the ability to instantiate new flows by forging 
information that is sent from applications via the northbound interfaces to the controller or 
spoofing packets that the controller sends to the data plane devices through southbound API.  
 
In addition, an attacker may force the controller to reject requests for some services or even 
attempt to use specific methods to bring down the SDN controller which means that it may 
cause to bring down the whole network. Furthermore, attacking the SDN controller may cause 
the controller to consume many resources of the computer system (such as CPU and memory), 
and therefore, it would respond very slowly to incoming requests from the network. The 
delayed response to any legitimate traffic from the network may cause a big concern for the 
SDN network [106]. 
 

3.6.2.3 Attack on the Application Layer 
 
As an application layer, there are numerous applications that are used by SDN controllers for 
different purposes such as network management, QoS, and security. Different Northbound 
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APIs can be used for communication between the application layer and control layer, such as 
Java, Python, REST, JSON, and XML. As these Northbound APIs have their known 
vulnerabilities, if an attacker can use these known vulnerabilities for a malicious attempt, with 
complete access to the controller, he might be able to control the entire network. According 
to research, the main threats in the plans or layers of SDN can be categorized and presented 
in Table 3.2 [106]. 
 
  

 Table 3. 2: Main Threats in the SDN Layers [106].  

 
 
  

3.6.3 SDN Attack Vectors 
 
In the world of the network, especially the SDN network, introducing new architecture and 
defining new components such as interfaces, applications, and controllers faces new security 
challenges. Compare to the traditional network, security in an SDN network is more complex 
considering these new components, the central controller can be an appropriate target for 
performing attacks, also using some open source applications and interfaces makes it difficult 
to define security policies. Since the SDN controller is the fundamental component of the SDN 
network architecture, launching an attack targeting the controller can affect the operation 
and performance of the entire network [107]. 
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Different types of known attacks can be threatening the SDN network such as denial of service 
(DoS) to disrupt the availability of network services for legitimate users, the man-in-the-
middle attack (MTM) to modify the rules sent from the SDN controller to the data plane 
network devices to take control of the network, and exploiting vulnerabilities of the controller 
and installing malicious applications to take control of the entire network infrastructure. The 
SDN architecture was introduced without any security facility in its design. Therefore, 
mitigating the risk of attack in the SDN network requires a protection-in-design approach to 
provide a suitable defense against different network attacks and other unintentional security 
issues such as bugs in installed software, or device misconfiguration [107]. 
 
SDN architecture has a characteristic that can turn it into a perfect target for different attacks: 
the infrastructure network is based on a centralized control entity that can become a target 
of the attack to take ownership of the system and control of the entire network software that 
may contain application bugs and other vulnerabilities. Kreutz et al. [116] make deep research 
focusing on the security vulnerabilities of the SDN architecture. They classify SDN security 
issues in seven attack vectors (see Figure 3.9). In addition, Hori et al consider the attack 
vectors indicated by Kreutz et al. [108] and merge them with the list of attacks (using 
SDNSecurity.org) and make a check sheet to assess the security of the OpenFlow-based SDN 
network together with its protection countermeasures. 
 
Their study defines seven categories of security issues in the SDN network: unauthorized 
access, data leakage, data modification, malicious applications, denial of service, configuration 
problems, and systems-level security. The authors of this research also propose solutions to 
overcome these problems. As a solution, they suggest the replication of the controllers and 
management applications to provide alternatives in the situation of any hardware or software 
failure. 

 
 

 
 

Figure 3. 9: SDN Security Vectors [Taken from [108]]. 
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Threat Vector number 1 which is forged or fake traffic: In this case, an attacker tries to 
perform an attack by sending fake traffic directly to network devices such as switches. The 
attacker can use, a workstation, a server, or even another network device such as a switch to 
launch a denial-of-service attack on OpenFlow-based switches for saturating the southbound 
bandwidth or controller resources to disrupt the network operation. 
 
Solution: For detecting and mitigating this threat vector, intrusion detection systems can be 
used to identify anomalies or fake traffic. In addition, this solution can be accompanied by 
using mechanisms to limit the rate of requests which are sent to the controller to restrict the 
size of the malicious traffic [109]. 
 
Threat Vector 2, Vulnerability attacks on switches:  
 
It consists of using a switch to discard or slow down packets which simply produce a 
catastrophe in the infrastructure network. A single switch might be exploited to discard 
network packets, distract network traffic (for example, to facilitate data theft), or even inject 
traffic or fraudulent requests to overwhelm the controller or nearby switches. 
 
Solution: Implement applications or tolls for testing, including autonomous trust 
management mechanisms for software components. In addition, using mechanisms to 
monitor and detect all network traffic to detect malicious behavior in the network can be 
another solution [109]. 
 
Threat Vector 3, Attacks in the communication channel of the plane of control:  
 
The intruders can generate a denial of service attack or data theft targeting the southbound 
between the control plane and the data plane. In SDN architecture, SSL/TLS technology is used 
to provide a protected connection channel between the control plane and the data plane. But, 
SSL/TLS protocol is exposed to the risk of a man-in-the-middle attack. Therefore, the TLS / SSL 
method is not sufficient to establish a secure channel and ensure trust between the control 
plane and data plane, more precisely between the controller and switches. Once the intruder 
gains access to the control plane, the attack level can be extended on several switches under 
the same domain, and the intruder can easily perform distributed denial of service attacks. 
 
Solution: One conceivable solution can be implementing several trust-anchor certification 
authorities (for instance, one for each sub-domain or one for each controller instance). 
Another solution method is to use threshold cryptography to secure communication among 
controller replicas [110]. Moreover, implementing a trusting relationship between the control 
plane and data plane devices with the usage of automated, dynamic, and ensured device 
association techniques might be another feasible solution. 
 
Threat Vector 4, Attacks on the Controller Vulnerabilities: 
This is the most severe threat to an SDN network. In the case of a controller failure, it may 
cause compromise the entire network operation.  
 
Solution: To make the controller secure, various techniques can be used, including controller 
replication and diversity using backup/recovery techniques to refresh the system into a clean 
and reliable state in case of any failure, secure sensitive controller objects using cryptographic 
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methods, implement access restriction policies into interfaces or applications which can 
manipulate network policies rules, or restrict the scope on the type of rules that they can 
generate to schedule the network [108]. 
 
Threat Vector 5, Lack of mechanisms to guarantee the trust between the controller and 
applications: 
Techniques for verifying devices are different to verify applications, and for communicating 
between the control plane and application plane, there is no procedure in place to build a 
trusting connection between the controller and applications. 
 
Solution: Provide independent management mechanisms to guarantee that the application is 
reliable throughout its life cycle [108]. 
 
Threat Vector 6: Vulnerabilities and attacks on the administrative system: The major target, 
in this case, is to attack the administration consoles of the controller to reprogram network 
policies from a single point. 
 
Solution: to prevent this threat, a double credential verification protocol can be used, it means 
that to have access to the management server, the credentials of two users are 
required. Additionally, in this case, recovery mechanisms are also required to let the 
management server return to a reliable state after a system failure. 
 
Threat Vector 7: Lack of reliable resources for forensic activities and remediation: To 
investigate and determine the facts about an incident in the network, trustworthy information 
from all the elements and resources of the network is required. This information is useful if 
they are trustable and have been previously authenticated and kept its integrity. Remediation 
requires secure and reliable system snapshots to ensure fast and correct recovery of the 
network elements to a known state. 
 
Solution: Implement logging and tracing mechanisms in data plane devices. data and 
control. In addition, the records must be persistent and must keep a backup of the information 
in an external storage repository [108]. 
 

3.6.4 Improve Security in SDN 
 
As mentioned above, the SDN architecture and separating the control plane from the data 
plane introduces new vulnerabilities and security. Although the introducing of new interfaces 
and layers by SDN architecture simplifies the network management and control, it provides 
the opportunity the new surfaces of attack and exploitable targets. In other words, despite 
providing the facilities to improve network security by utilizing the new features and novelties 
concepts of SDN, the network infrastructure architecture could persist insecure if the SDN 
architecture itself would not completely secure against security threats introduced by SDN 
features.  
 
The channels and interfaces used for the exchange of information between the three layers 
in the SDN environment can be a proper target for the attacker if they are not accurately 
protected, the exchanged data through these interfaces can be eavesdropped on to 
compromise Network entities. Therefore, in this case, all data which passes through 
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communication channels and interfaces of the SDN network must be encrypted, so that if an 
attacker manages to gain the data exchanges, it cannot extract the real information. 
Moreover, besides the encryption of the interfaces, the security of the SDN network especially 
at the control plane should be strengthened by using authentication mechanisms. The SDN 
controller must be able to identify and authorize trusted devices (such as other controllers, 
and switches), to ensure that only trusted devices and applications can access network 
resources and malicious devices and applications persist isolated from the network. 
 
It is essential to consider the protocols and services used by the communication channel 
before selecting the protection mechanisms to make the connection secure. In order to 
achieve a high level of security for different layers of the SDN architecture ( data plane, control 
plane, and application plans) various mechanisms (for instance, limited access to management 
services and applications, authorization and authentication methods, security assessment) 
are required to be developed for detecting and mitigating malicious attempts launched by 
untrusted users [111].  

3.7 Denial of Service Attacks 

Denial of Service or DoS attacks has been growing in recent years and has become a real threat 
and challenge in the area of security in the IT world. It can target various parts of society such 
as companies, government agencies, banks, armies, or public services such as universities, 
hospitals, and airports. According to the report [112], currently, in the field of cybercrime, this 
type of attack is the first place IT threat for companies in the United Kingdom and the second 
place in the United States. 
 
The most effective and widely used DoS attacks are of a distributed form of it which are known 
as DDoS (Distributed Denial of Service). In this case, the attacker uses a computer system as a 
master server (called botmaster) to control several previously infected computers called 
slaves or zombies. In this type of attack, the attacker creates a network of zombies to attack 
their victims in a synchronized way. This scheme is shown in figure 3.10. 

 
 

Figure 3. 10: DDoS attack 
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Denial of service attacks is a type of malicious attempt to cause an interruption or suspension 
of one or several services. This objective can be achieved through the excessive consumption 
of one or several resources that the target server or other victims such as network 
infrastructure devices. The malicious activities of the DoS attack which can break down the 
resources of the target victim are CPU over-processing, memory overloading, making the disk 
or database capacity full with fake data, saturating the bandwidth of the connection, and 
filling the inner tables of the network device with unnecessary information. various methods 
of sending massive network traffic are used to above-mentioned outcomes can be 
accomplished, this technique is called flooding. 
 
During the flooding attacks, after some time the target or victim cannot respond to the 
requests because the traffic is too heavy in quantity and disrupt victim resources, another 
approach to achieve this outcome is to exploit vulnerabilities in target operating systems or 
their applications. A Distributed Denial of Service (DDOS) attack is kind of a malicious behavior 
that attempts to disrupt the normal services of a server, to overwhelm the target or its 
surrounding infrastructure. In this attack, the more computer is used against a particular 
target for performing the DDoS attack, the more powerful and effective the attack would be. 
 
To maximize the influence of DoS attacks, the attackers introduce a much more effective 
technique: Distributed Denial of Service or DDoS attacks. DDoS attacks are defined as: “attacks 
that aim to exhaust the critical resources of a system/network and that come from multiple 
sources distributed throughout it” [113]. To launch a DDoS attack, a network of various 
computer systems creates infected with malware which is called a botnet. Once the botnet 
has been established, the attacker will attack the target server (using its IP address), and by 
sending a huge number of requests, try to overwhelm the target. In this type of attack, 
separating the attack traffic from normal network traffic can be quite problematic, since each 
bot machine can be a normal and legitimate Internet device. This means sending large 
amounts of malicious traffic (currently, on average the size of Tbs/Pbs) to the target victim. 
For intruders, this technique provides more advantages over conventional DoS attacks, 
including: 
 
Combined attacks: when a DDoS attack is executed, each source (Zombie) generates 
individual malicious traffic, but as they employ a similar type of DDoS attack (same target, IP 
address, and protocol), eventually the whole accumulated traffic will be considered as a 
threat. 
 
Simplify of Hiding: In this attack, the real attacker can easily hide behind the infected 
computer under his control and it is difficult to find the real intruders. It seems it is just the 
normal behavior of enormous legitimate users attempting to access the targeted server. 
 
Multiple sources: It is difficult to identify this attack since the source of the attack is 
distributed between a vast group of computers. 
 
In the traditional network architecture, a connection between a computer system and a server 
is defined by the OSI model. The DDOS attacks can target various layers of this connection 
model. Therefore, to understand the different types of attacks, it is first necessary to mention 
the connectivity layers of the Open Systems Interconnection (OSI) model, ISO/IEC 7498-1 
[114]. According to the report presented by the F5 Silverline Security Operations Center (SOC) 
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[115] The distribution of DDoS attack techniques observed by the SOC team during a 13-
months period is shown in figure 3.11. At first look, volumetric DDoS attacks (UDP 
fragmentation, DNS reflection) seem to be the most prevalent. 
 

 
 

Figure 3. 11: The incidence of various DDoS attacks from January 2020 to March 2021. [Taken from [115]] 

 
The above-mentioned described DDOS attack characteristics indicate that this kind of attack 
can be a potential threat to any type of network. The spread of the Internet in the world allows 
various network infrastructures to be connected to each other without implementing proper 
security policies which makes the whole network to be vulnerable to traditional attacks. On 
the other hand, there are tools that can be found to offer the possibility for any user to launch 
this kind of attack without any need to have high technical knowledge. 
 
The major concern about DDoS attacks is this kind of attack is very difficult to be detected 
because their behavior is in a way that the normal user generates a legitimate request and 
valid traffic, because of this feature when a DDoS attack occurs, the malicious packets can be 
considered as legitimate traffic, and not a potential threat. Another concern that should be 
considered is to detect and prevent the DDoS attack accurately, all the incoming packets to 
the network should be evaluated, and this can cause overloading of the responsible device’s 
resources, consequently making it become a bottleneck for the network operation and trigger 
a long delay for response times to the normal network request. 
 
The advent of the SDN concept and its characteristics propose new features which can be used 
as an opportunity for detecting and mitigating the DDoS attack. Two major features which can 
be addressed here are the centralization of the control, and the possibility to have knowledge 
about the state of the entire network. These features can be used in the following way for 
detecting DDoS attacks: Utilize the controller for requesting the sample of the incoming flow, 
evaluate the flow headers, classify the new flows as normal or malicious traffic, and finally 
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define, produce, and send rules to network devices (such as a switch) to eliminate hazardous 
flows. 
 

3.7.1 Different Types of DDoS Attacks 
 
DDoS attacks are classified into different categories, each category targets a specific 
component of the infrastructure network. DDoS attacks can be classified into three types: 
volume attacks, application-layer attacks, and protocol attacks. An attacker may use one or 
more of the three techniques to attack different elements of the network. 
 

3.7.1.1 Volumetric Attack: 
 
It is the highest prevalent type of DDoS attack, and since the range of its usage is growing 
drastically fast, this type of DDoS attack receives the utmost attention from researchers and 
network security managers. The method which is used to launch this attack is sending a 
gigantic stream of worthless but simple packets of information to the targeted system, 
requiring the target to handle an enormous quantity of data and simultaneously using all the 
available bandwidth between the victim’s system and the Internet to cause congestion. 
 
Amplification forms or other techniques of creating enormous traffic, such as requests from a 
botnet, are used to send huge volumes of data to a destination. A well-known instance of a 
Volumetric attack is DNS Amplification. In this type of attack, an attacker directs a request 
with a spoofed IP address to the DNS server, as a result, the victim receives a huge number of 
responses that it certainly not requested from the server, and will ultimately crash.  
 

3.7.1.2 Application Layer attack: 
 
This kind of malicious behavior is frequently referred to as a Layer 7(of the OSI model) DDoS 
attack, and the main goal of this attack is to bring down the victim’s resources to stop and 
refuse services. This type of attack is launched in the OSI layer in which the websites are 
developed and the response to the HTTP request coming from the Internet will be distributed. 
 
The attacks mainly target web servers, and even though their requests look like legitimate 
demands, they immobilize the server services. Basically, this type of attack is tough to discover 
because it is very hard to distinguish between normal and abnormal network traffic, therefore 
detecting and preventing this type of attack is very hard and challenging. The most effective 
of this type of attack is on bandwidth consumption and in this category HTTP flood and Slow 
Posts can be mentioned as famous attacks. HTTP Flood: In this attack technique, the HTTP GET 
or POST request is simultaneously sent from several hosts to the target server, causing the 
disruption of the server services since the server continues to respond to the requests and 
eventually would be run out of resources. 
 

3.7.1.3 Protocol attacks 
 
In this type of attack, the vulnerabilities in Layers 3 and 4 of the OSI model are used to exploit 
an inaccessible victim. Extreme usage of the target resources or network devices such as 
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firewalls and load balancers can cause an interrupt in their services. Of the most widespread 
type of this kind of attack is SYN Flood. 
 

TCP-SYN Flood:  
 
Since TCP is a connection-oriented protocol, before sending the data flow between source and 
destination, communication should be established in the network. Therefore, the attacker can 
exploit the vulnerabilities of the TCP protocol. In TCP communication protocol, regardless of 
the legitimacy of the sender, the server has the obligation to respond to all received SYN 
requests. Before establishing the connection, the server must keep the received requests in 
its memory and wait for receiving confirmation from the recipient [116]. 
 
An attacker can take advantage of the TCP communication process and send an enormous 
number of SYN requests to the server without the purpose of establishing a real connection 
(they usually use the non-existent IPs for connection). Hence, by creating several open 
connections, the server's memory is saturated, making it incapable of serving any more 
requests, refusing access to the normal users, and the service is disrupted, this attack is known 
as SYN flooding [117]. In the TCP protocol, to establish a connection between two computers, 
three negotiation steps (Three-way Hand-shake) must be done (Figure 3.12), in which the 
client tells the server that it wants to establish a connection by sending an SYN packet, the 
server responds with an SYN-ACK packet and the client ends the negotiation with an ACK. 
 

 
 

Figure 3. 12: Three-step negotiation in TCP [118].  

 
So, in this attack, the attacker tries to take advantage of the TCP hand-shake concept by 
keeping the connection open. The attacker sends TCP connection requests (SYN messages) to 
the targeted server using fake IP addresses, in this case, the server responds by sending an 
SYN+ACK and waits for the sender to respond with the ACK in return. however, the server will 
not receive any ACK confirmation since the source addresses are fake, and the server must 
keep the connection open for the response and continues to send SYN+ACK packets to the 
sender until a timeout occurs (Figure 3.13). 
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Figure 3. 13: TCP Flood attack. [118]. 

Some of the other prevalent examples of this type of attack are as follows: 
  

UDP Flood: 
 
In this method, the attacker uses multiple clients for sending UDP packets to different ports 
of a targeted server. If the requested port is not used for any services or the server cannot 
resolve the requests, as a response to the sender of the request, it will send an ICMP response 
with the appropriate message which is the destination is not reachable. This type of request 
sends to the passive ports from a group of infected computers (Zombie) causes network 
connection bandwidth consumption. ICMP Flood: This technique uses a similar method as the 
UDP flood attack, which means a huge size of ICMP requests are sent to the targeted server 
to pretend the victim to resolve the incoming requests. 
 

ICMP Flooding:  
 

The ICMP protocol is used by some network troubleshooting tools to assist in the identification 
of network connection errors. The network tools use the ICMP protocol messages to verify 
the existence of network connection errors. Therefore, not only the ICMP message is 
continuously sent but also inside of the switch has priority for processing. This feature gives 
the attacker an opportunity to generate an ICMP flood attack with a large amount of traffic. 
This activity causes a denial of service since it occupies all the available bandwidth [116].  
 
The ICMP flooding attack has several variations such as SMURF and Ping of Death. The SMURF 
attack uses ICMP broadcast messages to generate a flooding attack and forces a large number 
of hosts to respond. If the broadcast message is sent on a fast and continuous basis, the target 
host will be overwhelmed by processing the traffic and a denial of service attack occurs. The 
Ping of Death attack uses ICMP messages in the form of echo and request/reply. The attacker 
generates flooding of packets with a large extension (more than 64Kb) so that the target 
system cannot process them and as a result, a denial of service attack happens. DNS Flood: In 
this attack, to disrupt DNS server operation, various name resolving requests are sent to a 
company's DNS server to overload and suspend its service. 
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3.7.2 DDoS Attacks on SDN Networks 
 
The DDoS attack is a type of attack directed by multiple computers called “bots” or “zombies”, 
which are a network of different computers remotely controlled by an attacker to launch 
massive unwanted network traffic toward a specific target; the objective can be a computer, 
server or a network [119]. The major goal behind this attack is trying to exhaust the network 
resources, with the intention to hamper or disrupt the services for normal users. Regardless 
of the target of the attack, all different types of DDoS attacks have the common characteristic, 
which is flooding the targeting network with huge amounts of unwanted packets, typically 
using the following protocols: ICMP, TCP, or UDP packets [120]. 
 
As mentioned earlier, during the DDoS attack, to cause the unavailability of service, a vast 
number of packets are sent to one or more servers in the network. In the SDN network, if the 
source IP addresses of incoming packets are spoofed, the SDN-based switch will not find the 
proper match in its flow table and will have to forward the packet to the controller. Therefore, 
the accumulation of the incoming packets from both the legitimate users and fake packets 
generated by the attacker can compromise the critical resources such as CPU, memory, and 
network bandwidth of the SDN controller, and in the worst case, completely disrupt them and 
eventually bring down the controller (Figure 3.14) [121]. 
 

 
 

Figure 3. 14: DDoS Attack on SDN Network Using the Botnet [122]. 

 
The DDoS attack can be performed by targeting all three planes of the SDN architecture. 
Therefore, In the SDN environment, DDoS attacks can be divided into three categories based 
on these potential targets: application-layer DDoS attacks, control layer DDoS attacks, and 
data layer DDoS attacks. In the SDN network, when the DDoS attack happens, it can extend 
either vertically when one layer communicates with another layer or horizontally because of 
communication between controllers and between applications. The DDoS attacker can send a 
large amount of malicious traffic to any SDN layers through the defined communication 
channels such as the northbound, southbound, and east/westbound interfaces. The attack 
can be propagated from the data plane into the control layer through the southbound 
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interface. On the other hand, at the control layer, the attack can be spread from one controller 
to another via the east-westbound API. And lastly, the traffic from the control layer can be 
directed to the application layer through northbound API to paralyze different services [122]. 
 

3.7.2.1 DDoS attacks at the SDN application layer 
 

In this situation, the attacker sends malicious traffic to the application layer in order to 
saturate the northbound interfaces and disrupt running applications. Since it is tough to 
identify traffic between different SDN applications, it is possible for a DDoS attack targeting 
to influence another application that is not the attacker's target [119]. More specifically, in 
this layer, these types of attacks establish full TCP connections targeting network entities such 
as servers and then start flooding the illegitimate traffic generated by the attacker towards it 
with a huge number of HTTP requests to saturate the bandwidth. It is important to mention 
that, in the case of the attack performing at the start with a low and slow rate, it would be 
very challenging to distinguish them from legitimate traffic. Therefore, at present, the tools 
for SDN application layer attacks are a powerful facility for attackers to harm their victims. The 
most important challenge about this security issue which should be considered is 
differentiating between malicious traffic and an unexpectedly large volume of packets from 
legitimate users [123]. 
 

3.7.2.2 DDoS attacks on the SDN data layer 
 

At the data layer, the appropriate target for the DDoS attack would be the OpenFlow-based 
switches and their flow table, because they contain information such as communication, 
access control, and administrative data. In this case, through unauthorized physical or virtual 
network access the intruder intentions to disrupt network functionality. Since the storage 
capacity of the OpenFlow-based switch is limited, it is not possible to store all the flow rules. 
Therefore, If the attacker conducts a vast number of packets from an unknown different IP 
address in a short period of time, the switch considers them as new flows and sends them to 
the controller, then the controller creates new rules for these new flows, forwards and insert 
them into the flow table. In this case, in a short period, the capacity of the flow table gets full 
and runs out of space. Therefore, it is not possible to add a new rule to the flow table anymore. 
Accordingly, since the flow table is out of capacity, the transmission of new legitimate traffic 
from the switch to the controller is stopped [119].  
 

3.7.2.3 DDoS attacks at the SDN control layer 
 

Since the SDN control layer is a centralized entity in the SDN architecture that controls the 
entire infrastructure network. Therefore, attacking the SDN controller using DDoS attacks can 
cause bringing down the entire network and unavailability of the network services by sending 
huge amounts of traffic from multiple sources to overload the controller. 
As the SDN concepts, for every new coming packet, the decision-making is done by the 
controller. In the data plane, when a network packet arrives at the switch and the switch 
cannot find any flow rules corresponding to this packet in the flow table, for making the 
decision, the entire packet or part of the header is sent to the controller. Therefore, sending 
a total packet in a high volume of network traffic from the switch to the controller can saturate 
the southbound interface bandwidth [119].  
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To perform such a kind of attack, the attacker in the first step must identify if the targeted 
network is SDN-based. It should be noticed that in traditional network architecture, the 
network devices often have a pre-defined forwarding table. Therefore, for a new incoming 
packet, no additional time is required to process, create and add a flow entry. But, in SDN 
architecture, for a new incoming packet, the controller needs some time to create a new flow 
entry. In addition, more process time should be spent comparing the first packet with 
subsequent packets from the controller. Therefore, this knowledge can be used by attackers 
to identify whether the target network is SDN or not. It means that the attacker identifies 
whether the target network is SDN by checking the difference in controller response times 
between the first and subsequent packets and once he finds out that the network is SDN, the 
attack can be performed [124]. 

3.8 Chapter Summary 

The major goal of this chapter is to answer the first research question which is:  
 
What are the SDN attack vectors? 
To achieve this purpose, this chapter, there has presented the SDN environment in detail. 
First, introduce SDN history and concept, then define the SDN architecture deeply. More 
specifically, we study Open Flow protocol as the southbound protocol, because some 
traditional protocols can be considered as southbound protocols in SDN environments such 
as SNMP, NETCONF, LISP, and even BGP. In addition, there are also several other specific 
Southbound APIs to manage communications between these two layers of the SDN 
architecture, for instance, P4, OVSDB, OpFlex, and ForCES, but OpenFlow is the most famous 
Southbound API and even it is considered the industry standard for controlling and managing 
the overall information about the network equipment, Therefore, in this research, we 
consider the OpenFlow protocol as the southbound interface for the SDN networks to provide 
the communication channel between SDN-based switches and the controller. Furthermore, 
we explore the SDN security on each layer of the SDN architecture to be able to identify the 
SDN attack vectors. 
 
Moreover, DDoS attacks have been studied, because these types of attacks are a real threat 
to both traditional and SDN networks. This type of attack can cause a large disruption to any 
network infrastructure. Particularly, in SDN networks due to the separation of the control and 
data plane, the DDoS attack can be the most important threat vector for SDN networks. 
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Chapter 4 
4 Evaluating the SDN Controllers 
 
It is essential to have a solid understanding of the performance of the control plane in 
software-defined networks (SDNs) since this plane serves as the "brain" of the network and 
influences the overall functioning of the network, as well as the performance of services, 
applications, and so on. Therefore, for developers, experts, and users to make efficient use of 
this technology, it will be helpful to have a solid grasp of knowledge about the performance 
of the SDN controllers and evaluate different controllers already available for SDN networks 
in the research and industry domain. There are several SDN controllers available in the market, 
in this research, we consider the most prevalent open-source controllers, such as NOX/POX, 
Ryu, Floodlight, ODL(OpenDaylight), and ONOS, and for evaluation of these controllers we 
deliberate the following features: 

4.1 Features for Selecting the SDN Controllers 

In this section we introduce the features we consider for evaluating and comparing various 
SDN controllers: 
 
1. (South-, Northbound) Interface support: The interface communication channels the way 
that the different layers of the SDN can communicate with each other. When choosing a 
controller, it is essential to understand which interface communication protocols are 
supported by the controller. From the southbound interface point of view, the controller must 
be capable of supporting different protocols beyond just the OpenFlow, such as NetConf, P4, 
and OF-Config. Since OpenFlow protocol is a standard southbound interface that is used 
specifically in the research environment for this research we consider OpenFlow protocol. 
Therefore, the characteristics of the OpenFlow versions that the controller supports should 
be considered, as well as the possibilities offered by the controller provider to migrate to new 
versions of the protocol, such as v1.4 and v1.5. Because some important features, such as IPv6 
support, are not part of OpenFlow v1.0 specification as they are added in the OpenFlow v1.2 
standard. For the Northbound interface protocol, there are various methods offered by 
different vendors, such as RESTful API and gRPC. In this research, we use REST API to provide 
communication between the controller and the detection module. 
 

2. Performance: We consider two features to define the performance of the SDN controllers. 
One is the number of flows that can be processed per second by the controller and the other 
is flow shaping because the major function of the SDN controller is to make decisions about 
flows. When switches initiate more flows than the capacity of the controller these metrics 
significantly influence. As mentioned earlier, there are two methods to handle the flows: 
proactive and reactive. The Proactive method is when decision-making is done before the 
network packet reaches the SDN-based switch. Thus, when the packet reaches the switch, it 
informs about the decision and what to do with the packet. This method significantly reduces 
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the delays and provides no real limit on the number of flows per second that the controller 
can support. Reactive method, the flow handling process occurs when the SDN-based switch 
receives a packet that does not match any entry in its flow table, and therefore the packet 
should be forwarded to the controller, for decision-making. In the reactive method, the 
consuming time for processing the packet can be defined as the calculation of the time it 
spends to transfer the packet from the SDN-based switch to the SDN controller, the total time 
of the flow processing on the controller, and the time it spends to fill the flow table on the 
switch. In both methods, the key factors that influence the time of the flow processing contain 
the processing capacity of the SDN-based switches, the southbound interface bandwidth, and 
the input/output processing power and throughput of the controller.  
 
3. Architecture: For evaluating various SDN controllers, it is vital to consider the architecture 
and design of the controllers. From the architectural point of view, there are two SDN 
controller categories: A centralized design, securely connected control plane, and distributed, 
and scalable SDN controllers. In the centralized architecture, the implementation and 
maintenance would be easy and it can provide low latency between different layers of the 
SDN architecture but centralized design can be a bottleneck. On the other hand, in the 
distributed architecture, the implementation and maintenance are mostly more sophisticated 
but provide an environment that can be scaled efficiently to prevent performance 
bottlenecks. 
 

4. Scalability: It is a fundamental consideration feature for comparing various SDN controllers. 
When evaluating SDN controllers, it is necessary to ensure that the controller is capable of 
reducing the impact of heavy network traffic overhead. One aspect of scalability can be 
defined as the ability of the SDN controller to span multiple locations. To maximize the benefit 
of this capability, the SDN controller must permit network routing and forwarding policies to 
be applied automatically in different locations. Another aspect of scalability can be the 
capability of the controllers for internal functionality for defining and supporting the clustering 
design. 
 
5. Reliability: The two significant factors which indicate the reliability of the SDN controllers 
are elasticity and fault tolerance. There are various techniques for providing consistency to 
the controllers. For instance, one of the techniques that an SDN controller can use to increase 
network reliability is the ability to discover multiple paths from source to destination, which 
it can be done by constantly monitoring the network topology to prevent packet loss 
conditions in case of interruption of the link between source and destination. Alternatively, if 
the SDN controller distinguishes only a single path from source to destination, it should be 
capable of utilizing a mechanism to rapidly react when a link failure occurs, and redirect 
network traffic to an active link. 
Another technique for providing high availability and fault tolerance for the controller itself is, 
there should be a built-in mechanism in the controller for clustering which means it should be 
capable of creating various, identical but related nodes. With this feature, in case of a 
controller failure, another instance can take the role, control, and maintain the network. In 
the case of running one single controller, there should be an external node monitoring the 
running controller to discover and respond if any failure occurs. In addition, it is vital that the 
controller has a mechanism for providing redundancy for both hardware and software. 
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6. Monitoring and Visualization: One of the important features which must be considered for 
comparing SDN controllers is the ability to monitor and visualize the SDN network topology to 
discover and present the physical link between network entities. This would help the network 
administrator to have not only the overall view of the network topology but also provide the 
ability to rapidly discover any link failure between network devices. In addition, the controller 
must be capable of providing a view with detailed information about the flows, both from the 
physical and virtual network perspective. To achieve the above-mentioned capability, the 
controller must be able to continuously monitor the network topology with the help of some 
standard management protocols for instance SNMP (Simple Network Management Protocol), 
and provide access to network information such as port or link status, connected device, etc., 
using a common communication protocol such as REST API or gRPC. 
 
7. Support Community: In recent years, the industry and business domain have shown 
growing interest in the SDN concept, numerous providers have entered the SDN market, and 
many others have declared their objective to do so. Organizations and societies who are 
responsible to evaluate SDN controllers should concentrate not only on the aforementioned 
SDN controller’s technical features but also on the vendor’s support. Because the SDN market 
in general, and the SDN controller market, in particular, are still unpredictable.  
For every organization that intends to deploy SDN architecture in their network, it is critical to  
purchase the SDN drivers from a vendor that can guarantee to support its product and keep 
up with the changing in the SDN environment. Most of the well-known and prevalent SDN 
controllers run on an open-source platform, therefore it is significantly beneficial if a large 
developer and user are involved in the development of these projects. Involving a large 
international community can provide long-term support and security to SDN projects. 
 
There are other features that can be considered to evaluate and compare SDN controllers, 
such as Network Programming, Modularity and Extensibility, Network Virtualization.  

4.2 SDN Controllers 

The primary OpenFlow-based controllers that are now available and most often used are as 
follows: 
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4.2.1 NOX/POX: 
 

1- NOX Controller: 
 
 

 
Figure 4. 1: NOX Controller Architecture [Taken from [125] ] 

NOX 7 is an open-source project that is extensively used and stable. It is the first SDN controller 
that was developed to support OpenFlow. This controller, in the beginning, was called classic 
NOX; this initial version was created using Python and C++ programming languages; however, 
currently, it is no longer in use. The latest version is entirely written in C++, which makes it 
significantly quicker; also, it is maintained by numerous teams, and they still provide updates 
for it. Comparable to most controllers, this controller operates by monitoring events and 
providing a platform for programming a set of activities that must be performed prior to each 
event. NOX is suggested to be programmed by those who know C++ programming and prefer 
to employ instructions that are not too complicated; in addition, because of its simplicity, it 
often produces excellent results in terms of performance. Figure 4.1 shows the overall 
architecture of the NOX controller. 
 

2- POX controller  
 
POX 8 is essentially a Python-based implementation of NOX, with the limitation that it only 
supports OpenFlow version 1.0, which can be considered its drawback and is not as fast as the 
version that is developed in the C++ programming language. 
 
Since POX is continually being updated, this is the reason that it is still widely utilized, and it is 
also very straightforward to understand the written code and develop it, so for those who are 
familiar with Python programming, this controller is extremely suggested. Additionally, it 

                                                 
7 “NOX”. [Online]. Available: http://www.noxrepo.org/, [Last accessed: June 2022]. 
8 “POX Manual Current documentation(2015).”. [Online]. Available: https://noxrepo.github.io/pox-doc/html/,  
 [Last accessed: June 2022]. 
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enables rapid programming, which makes it an appropriate option for presentations, tryouts, 
and scientific investigations.  
 
 

4.2.2 Ryu Controller  
 
 

 
Figure 4. 2: Ryu Controller Architecture [Taken from [126] ] 

 
Ryu 9 is an open-source software and component-based application. It is developed 
completely in Python and maintained by NTT’s labs. Ryo is comparable to other SDN controller 
frameworks that can offer developers the ability to generate new control applications and 
network management by using software components with well-defined Application 
Programming interfaces (APIs). One of the powerful features of Ryu is that it can maintain and 
employ various southbound protocols for managing network devices. These protocols include 
such as Configuration Protocol (OF-Config), Network Configuration Protocol (NETCONF), 
OpenFlow, and others. In addition to the aforementioned protocol, Ryo also supports Netflow, 
OF-Config, sFlow, OVSDB, and other third-party protocols.  
 
Furthermore, the OpenFlow controller is one of the essential elements that make up the Ryu 
architecture. This component is in charge of controlling the OpenFlow switches, which are 
used to set up flows, handle events, and so on. (Figure 4.2 illustrates the architecture of the 
Ryu). Ryu supports this protocol up to the latest version 1.4.  
 
 
 
 
 
 
 
 

                                                 
9 “Ryo Controller”, [Online]. Available:” https://ryu-sdn.org/, [Last accessed: June 2022]. 
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4.2.3 Floodlight Controller  
 

 
 

Figure 4. 3: Floodlight Controller Architecture [Taken from [127] ] 

 
Floodlight 10 is a Java-based open-source controller that is compatible with OpenFlow. It was 
developed by a community of Big Switch Networks developers and, originally, would be 
included in the OpenDaylight project. Apart from the fact that it is developed in the Java 
programming language, this controller differs from the preceding controllers in that it was the 
only one that implemented a REST API [128] for the Northbound interface at that time, which 
offers a possibility for the incorporation of external apps(Figure 4.3 shows the Floodlight 
architecture). 
 

4.2.4 OpenDaylight (ODL) 
 
OpenDaylight (ODL) 11 is a joint open-source project founded by the Linux Foundation that 
claims to be the most extensively used open-source SDN controller today, according to its 
official website. Currently, several SDN controllers have been developed, the most used 
controller in the real world are ODL (OpenDaylight) and ONOS. The essential purpose of ODL 
is to simplify the deployment of the SDN and Network Functions Virtualization (NFV) 
technologies in existing conventional networks. Its main characteristics are: 
 
 

                                                 
10 Floodlight, [Online]. Available: https://floodlight.gitlab.io/, [Last accessed: June 2022]. 
11 “The OpenDaylight platform”, [Online]. Available: https://www.opendaylight.org/, [Last accessed: June 2022]. 
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Figure 4. 4: ODL Controller Architecture [Taken from [129]]. 

 
It provides a modular, extensible, scalable, high availability, and multi-protocol infrastructure.  
ODL is capable to support various southbound protocols, such as OpenFlow, NETCONF, and 
OVSDB. It is written in Java and uses the YANG language for data modeling, although the 
communication between the different interfaces is accomplished through REST API. Several 
important telecommunications companies provide support for this project. Cisco, HP, and 
Intel are just a few prominent companies that are members of the ODL project (Figure 4.4 
presents the ODL architecture). 
 
Phosphorus was released in September 2021 and was the most recent release at the time of 
writing this article. The main objective of this emerging paradigm for network orchestration is 
to make the architecture of a network more dynamic, easier to reconfigure, and compatible, 
independent of the models or manufacturers used to construct the network [130]. By 
abstracting high-level operations from the devices, it allows operators to maintain, control 
and manage all network services from a distance. By separating the control plane from the 
data plane in the network, the purpose mentioned above can be achieved. In this 
methodology, the control layer of the network devices is separated from the hardware, and 
decisions making, and policies defining the packet routing and traffic flows will be done 
outside and independently of the network devices that exist in the data plane. The following 
are some of the advantages afforded by the implementation of SDN: 
 
-Network automation and streamlining are accomplished by simplifying the processes that 
must be performed on it. 
 
-As an accomplishment, the complexity is reduced through the separation of the control plane 
and the data plane.  
 
-By creating a programmable network, the manual configuration will be eliminated.  
 
-Using this approach will be led to a more secure and scalable network since human 
interference is decreased. 
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-The usage of an Application Programming Interface (API) in this architecture causes speeds 
up the development and deployment of new applications and services. 
 

4.2.5  ONOS Controller 
 
Open Network Operating System (ONOS) [131] is a central controller for managing network 
components in an SDN environment. This operating system was first introduced by the Open 
Networking Lab (ON. Lab) in 2014 and currently is maintained and developed under the 
umbrella of the ONF (Open. Network Foundation).  
 
ONOS is an open distributed operating system and an SDN controller platform for providing 
high scalability and availability. ONOS’s major advantage is supporting multiple protocols 
across southbound interfaces to communicate with different devices and offering APIs as 
northbound interfaces to address the service providers’ and application developers' 
requirements (Figure 4.5). From the first version of the ONOS, which was released in 
December 2014, till now, several versions of the ONOS has been released, and the latest one 
is X-Wing which was released in July 2021 [132]. 
 

 
 

Figure 4. 5: Overview of the ONOS Architecture [Taken from [133]] 

 
 

4.2.6 Conclusion  
We investigate some of the prevalent SDN controllers, the table 4.1 summarize the result, and 
based on the features we consider to evaluate SDN controllers, for this research, we choose 
ONOS as the central controller in our proposed framework. Therefore, we study deeply 
through the ONOS characterization, structure, and architecture in the next section. 
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Table 4. 1: SDN controllers and their characteristics [134]. 

 
 

4.3 Open Network Operating System (ONOS) 

 
ONOS [135] is one of the most popular applications that is used to provide the role of the 
controller in an SDN environment. Its primary goal is to make the implementation and 
development of SDN and NFV solutions as simple as possible. In addition, it is an open-source 
system and several well-known high-technology companies such as AT&T, Huawei, Intel, etc. 
support it. Although some essential characteristics are shared between both controllers. 
 
The following are the distinctive characteristics of ONOS in comparison to ODL: 
 
Using Apache Karaf makes it possible to activate or deactivate any of ONOS's functionalities 
while the system is running. This is quite beneficial for expanding the controller's capabilities 
without the necessity to stop and restart the service. These characteristics make it easier to 
create and develop new applications and solutions in the future. Because of this capability, 
ONOS may be used by a wide range of manufacturers and different types of network 
equipment. Its major purpose is to make it possible for service providers to implement actual 
SDN/NFV solutions. 
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Using this system in SDN environments has the following advantages: 
 

- Optimal performance for the ONOS platform and applications as a modular, 
extensible, and distributed controller. 
 

- Provides significant ease of network management, since it considers the entire 
network as a single entity. 

  
- Runs as a distribution system between multiple servers while offering fault tolerance 

in the case of a server failure, it permits the utilization of CPU and memory from several 
servers. 

 
- Provides some types of functionality comparable to server operating systems, such as 

resource allocation and permissions, user-interactive tools such as CLI and GUI, and 
APIs and abstractions. 
 

- Provides a network graph and a view of the entire network in an abstract manner, 
independent of the northern part, which is logically centralized despite the physical 
distribution between several servers. 
 

- Establish a control platform for service providers to address the problems of 
distributed systems, including high availability, scalability, and efficiency. 
 

- The greatest benefit of an operating system is that it offers a functional and useable 
foundation for software applications intended for a certain purpose or use case, 
including custom communication routing or management and service monitoring for 
software-based networks. 
 

4.3.1 ONOS Use Cases 
 
The use cases are intended to address challenging SDN deployment scenarios encountered by 
members of the ONOS community. Correspondingly, the implementations of these use cases 
are typically complicated, involving combinations of apps, drivers, system core components, 
and specialized APIs. In the following, the names of some of the applications as use cases for 
ONOS are mentioned. These applications are developed on the ONOS, or integrate ONOS as 
part of their software design [136]: 
 

- CORD: Central Office Reimagined as a Datacenter (vCPE, vOLT, NFaaS) 
- CORD: Leaf-Spine Fabric with Segment Routing 
- DC Network Virtualization 
- E-CORD: Enterprise CORD 
- Packet Optical Convergence 
- IP RAN 
- M-CORD: Mobile CORD 
- NFV (NFaaS) 
- Peering Router - ONF's Project Atrium 
- SDN-IP 
- Virtual Private LAN Service (VPLS) 
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The above-mentioned use cases have their own website which contains project definition and 
architecture documents, related presentations, and videos. 
 

4.3.2 Clustering capability of the ONOS  
 
One of the significant benefits of using ONOS as a controller in the SDN environment is in 
ONOS; unlike other controllers, the support for distributed architecture was considered in its 
initial design. ONOS can be developed as a set of controllers that operates together to achieve 
flexibility, fault tolerance, and better load management. ONOS has the ability to form a 
cluster. Each cluster consists of controllers, which are called nodes, and each node can be 
verified by a unique identifier. There are three states in which one node in the cluster can 
have: 
 
None: in this state, the node cannot communicate with the network elements. 
Master: It is the state when the node has complete control of the network elements which 
means that the node has the ability to read its state and execute write operations on it. 
Standby: the node in this state has a connection with the network elements, but it has only 
permission to execute read operations from the network element. 
 
In the beginning, when a cluster is established and all nodes are started, all of them will be in 
the “None” state. When there is no master node in the cluster, the first node detects a 
network element and makes a connection to it, it will become the master node. 
There is a subsystem leader in the cluster who is responsible for ensuring that each network 
device has only one master node(controller) and all other controllers will remain in the 
standby state. Also, in the cluster, the standby controllers are prioritized to ensure that control 
of the connected network device can be quickly restored in the case of a failure of the master 
controller. Regarding cluster synchronization, each ONOS controller is aware of a subset of 
network information and shares it among other members of the cluster as events. These 
events are controlled and maintained by the controller that manages that information. 
 
In a cluster environment (with multiple controller instances), various failures may occur such 
as the crashing of one node(controller), In this situation, there should be an approach that the 
other node in the cluster is able to receive updates from others. In this case, ONOS proposes 
an approach for instance the anti-entropy mechanism, which is based on the intervallic node 
exploration and gossip protocol. 
 

4.3.3 Security concerns in the ONOS controller 
 
Based on the research in terms of the security and performance analysis of the ONOS 
controller [137], some security points must be considered in the ONOS controller. These 
security concerns can be divided based on different methods of communication: 
 
● In Northbound Interface: The standard HTTP protocol is used by default to allow access 
between the control plane and the application plane. Despite the fact that authentication is 
set by default, there is no security in the data transmission between the client and the ONOS 
server if HTTPS is not utilized. Because of potential compatibility issues with specific browsers 
and REST APIs, it is not recommended to use self-signed certificates. 
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● In Southbound Interface: By default, the data transfer through the southbound interface is 
not encrypted, and the devices using this channel are not authenticated. Therefore, it is 
suggested that SSL protocol be enabled in the southbound interface to avoid data 
eavesdropping and tampering. Moreover, when the ONOS server and network devices have 
been linked, it is recommended to enable TLS protocol. 
 
● In East/West Interface: By default, for communication between the controllers through the 
East/Westbound interface, TLS is not enabled. Consequently, for this kind of communication, 
it is highly recommended to use TLS.  
 
Since ONOS has been chosen to be the central controller of the proposed framework for this 
research. More details about its architecture in detail will be explained in the coming section. 
 
In this chapter, the architecture of the ONOS controller will be explained in detail, and clarify 
the different methods which are used at the user level to interact with it. 
 

4.3.4 ONOS Overview 
 
There are several ways and tools which can be used for installing the ONOS controller, in this 
research, we use the Bazel tool for installing the ONOS controller.  
 
 
Note: Bazel is an open-source tool for building and testing applications similar to Make, Maven, and Gradle. 
It is designed to support the projects that is developed using multiple languages and construct outputs for 
several platforms. Bazel can accommodate big codebases that are spread out over numerous repositories 
in addition to a high number of users. 

 
 

After completing the process of the ONOS installation. The following ways can be used to 
communicate with the controller. 

4.3.4.1 Communication with ONOS 
 
There are three ways in which a network operator can interact with ONOS: 
The first way is using the CLI console [138]. This console is developed and employed based on 
Karaf which the network operator can directly enter the command on the running ONOS 
server. Figure 4.6 shows the ONOs CLI interface. 
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Figure 4. 6: ONOS CLI interface 

 
The second way is using Graphical User Interface (GUI) [139] through the web browser that 
provides a visual view of the network which is controlled and maintained by the ONOS (Figure 
4.7).  
 
 

 
 

Figure 4. 7: ONOS GUI 
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The third way is using the REST API which allows interaction through the REST protocol with 
the interface provided by ONOS. 
 
The ONOS server provided an extensive REST API for interaction using the REST protocol. This 
protocol proposes the same functionalities similar to the CLI console by using the CRUD 
requests (The CRUD stands for the four main requests create, read, update and delete). The 
ONOS REST API can be accessed at the following link: 
 
http://[ONOS_SERVER_IP_ADDRESS]:[ONOS_PORT]/onos/v1/docs 
 

4.3.5 ONOS Architecture 
 
The ONOS kernel and its central services are written in Java as bundles, which are loaded into 
the Karaf OSGi container. OSGi [140] is a module system for Java that enables the installation 
and dynamic running of modules in a JVM (Figure 4.8).  
 
OSGi is a dynamic component platform for creating and distributing modular Java libraries and 
software applications, to make them easier for developing code, make application distribution 
more manageable, detect any issues fast, gain more reusability, and provide better vision into 
the application during the run time. 
 
 

 
 

Figure 4. 8: Overview of the OSGi framework [Taken from [141] ]. 

 
ONOS contains several high-availability databases, with reliable interactions, scalability, and 
different approaches for performance improvement such as replication techniques, robust 
compatibility, and as well as using gossip protocol for synchronization across multiple 
controllers and for maintaining its cluster members. In addition, it uses Hazelcast, a Java-based 
open-source in-memory data grid for facilitating cluster membership. From ONOS version 1.4 
the Hazelcast has been replaced by the Atomix framework [142]. This framework is based on 
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an algorithm known as the RAFT consensus algorithm to provide a better solution for 
managing recovery. 
 
The following are the fundamental concepts of the ONOS design: 
 

- High availability, scalability, and performance. 
 

- Simplicity and solid abstraction. 
 

- The protocol and the equipment's performance are independent. 
 

- Modularity. 
 
Similar to SDN architecture, The ONOS structure is divided into three layers: Southbound 
Interface, Core, and Northbound Interface. A variety of components and subsystems, which 
are organized into layers of functionality, make up the ONOS system. 
 
The ONOS architecture (Figure 6.9) is divided into applications (Apps), Northbound (consumer) 
API, Core, Southbound (provider) API, Providers, Protocols, and Network Elements. 
 
The following figure is a high-level representation of the ONOS architecture. 
 

 
 Figure 4. 9: ONOS architecture [143]. 

 
To develop an API for ONOS, it is essential to understand the architecture of ONOS and all the 
services it provides in detail. Therefore, in this section, all above mentioned different parts of 
the ONOS architecture with the related services they support will be defined. 
 

4.3.5.1 ONOS Application 
 
Through the AdminService and Service interfaces, applications utilize and change information 
contributed by Managers. Each application is identified by a unique identifier called 
ApplicationId. ONOS uses this identity to manage the context associated with the app. It is 
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necessary for each application to register to the CoreService by specifying its name to receive 
a valid identifier.  
 

4.3.5.2 ONOS Northbound interface 
 
The Northbound interface [144] consists of components that are responsible for 
communication between the ONOS core and running services and applications over the 
network.  
 

4.3.5.3 ONOS southbound interface 
 
The Southbound interface in ONOS is responsible to provide a channel for communication 
between the core of the control plane and the devices which directly related to the physical 
network. This interface provides the following feature: Abstraction, modularity, and 
interoperability. All the components which construct the structure of the ONOS reside in one 
of the three main ONOS layers which means the Northbound interface, the Core, and the 
Southbound interface. Figure 4.10 depicts the outline of the relationship between subsystem 
components in a distributed environment. The dotted lines demarcate the boundaries 
between the core and the Northbound, and Southbound interfaces. 
 
 

  
 

Figure 4. 10: Relationship between ONOS subsystem components [143]. 

 

4.3.5.4 ONOS Core 
 

The core [145] of ONOS forms the fundamental of the architecture. It is responsible for 
tracking all the information which is received about the state of the network and presenting 
it to the application layer via services.  
The ONOS core is composed of multiple services and subsystems as can be perceived from the 
Figure 4.11. A service is a functional unit that is made of numerous discrete components that 
together form the stacking software system and the collection of components that compose 
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a service is called a subsystem. A service consists of multiple components that are spread over 
different layers. The core provides the following primary services: 
 
Device Subsystem: This subsystem is responsible to manage the list of devices on the network 
that are participating in the routing tasks. 
 
In the infrastructure network, there are various types of network devices, for instance, 
switches, routers, or access points and these devices can be identified by a set of specific 
information such as interfaces/ports and device-id. 
 
Host Subsystem: This subsystem is in charge of managing the list of end hosts and their 
positions on the network. The nodes that have the role of the source and destination points 
for the network traffic which is called hosts. A host can be a computer. A server, or any other 
device that generate traffic into the network. A host can be verified by its IP address, MAC 
address, and connection port. 
 
Link Subsystem: This subsystem is responsible to control the list of links. Links mean the direct 
connection between the nodes. The only types of connections that are permitted in ONOS are 
those that connect two devices or a device with a host. Direct connections between hosts are 
not permitted. 
 
Topology Subsystem: This service offers a graph snapshot that presents the whole network 
that is sorted according to the time. Different routing algorithms such as Dijkstra utilizes this 
service. 
 
Path Subsystem: This service is responsible to calculate and discover the routes (or paths), 
which are made up of one or more connections between two network hosts (which must be 
adjacent). To achieve this goal, this service uses the most recent provided snapshot from 
Topology Subsystem. 
 
FlowRule Subsystem: It is responsible for providing the flow metrics and measurements as 
well as managing the flow rules inventory and providing the list of match/action rules which 
is installed on the devices. 
 
Packet Subsystem: This service provides the possibility for the application to monitor and 
inject traffic via one or more devices into the network, as well as inspect data packets received 
by network devices. 
 
The services consist of two entities: 
 

1- Manager: This entity is responsible for communication between southbound interface 
protocols and the applications. 

 To achieve this purpose, it provides a number of interfaces that are responsible for providing 
the current network state for the applications at a particular moment, performing 
administrative commands on the computers, and creating communication between the 
manager and the applications. 
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2- Listener: This entity provides the possibility for applications to register to obtain 
announcements of events that happened on the network. 

 
 

 
 

Figure 4. 11: ONOS Subsystem [143]. 

 

4.3.5.5 Provider Layer: 
 
In ONOS, the Provider concept is used to cover protocol concerns for the southbound 
protocols. It also covers any behavior or needs, from other components of the controller 
platform; The Providers are in charge of providing specific data for the ONOS Core by 
communicating with the network environment through different control and configuration 
protocols. In the architecture of the ONOS, the Provider takes Core requests and applies them 
to the network using the specific protocols [133]. In ONOS The Provider layer is the lowest in 
the ONOS stack, Providers communicate with the network through specific protocol libraries, 
and with the Core through the ProviderService interface. 
 

1. Manager 
 
It is a component in the ONOS Core. The Manager is in charge of receiving information from 
Providers and distributing it to Applications. It contains the following interfaces: 
 
Northbound Service: This interface is used by apps and other Core components to get 
information about certain features of the network status. 
 
AdminService: this interface is used for executing administrative commands and employing 
them to the network status in the system. 
 
Southbound ProviderRegistry: By using this interface, Providers may register with the 
Manager and engage with him. 
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2. Store Component 
 
ONOS Core has a component called the store, which is linked to the Manager. The Store 
maintains the information received from the Managers and synchronizes it. This contains 
promising the reliability and healthiness of the information through the instances of ONOS. 
 
 

3. Application 
 
Through the AdminService and Service interfaces, applications utilize and change information 
contributed by Managers. 
 
Each application is identified by a unique identifier (ApplicationId). ONOS uses this identity to 
manage the context associated with the app. 
 
It is necessary for the applications to register to the CoreService by specifying their name to 
receive a valid identifier.  

4.4 Chapter Summary 

In this chapter, there has been investigated different SND controllers. There are several SDN 
controllers available in the market, in this research, we consider the most prevalent 
controllers, such as NOX/POX, Ryu, Floodlight, ODL(OpenDaylight), and ONOS. The main 
reasons we consider these SDN controllers are they are open-source, the most popular and 
widely used controllers particularly in the research and scientific realm.  
 
To indicate the SDN controller for our proposed framework, we evaluate the above-
mentioned controllers based on the following features: South and Northbound interface 
because once deciding about the controller, it is necessary to understand which interface 
communication protocols are supported by the controllers since later it should be used to 
transfer the network traffic between SDN layers in the proposed framework. Performance, as 
in an SDN network, is vital to efficiently manage the process of the network flows with high 
security and low latency. Architecture, to indicate whether the SDN controller has a 
centralized design, and securely connected control plane or distributed, and scalable design. 
Scalability is a fundamental feature for evaluating various SDN controllers because it is 
necessary to certify that the controller is capable of reducing the impact of heavy network 
traffic. Reliability, since the controller is the center of the SDN network, reliability is an 
essential feature for every controller since, for this feature, two significant factors are 
considered, elasticity and fault tolerance. The other features that have been considered for 
the evaluation process are Monitoring and Visualization, and the Support community. 
Consequently, from the various nominated features for evaluation, it can be concluded that 
ONOS performs better than the other controllers. The rest of this chapter is dedicated to 
studying the ONOS controller in detail. 
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Chapter 5 

5 Proposed Framework (BFDD-S) 
 

As mentioned before, the main goal of this research is to propose a near real-time framework 
to detect and mitigate the influence of distributed denial-of-service attacks on SDN networks. 
For achieving this goal, an effective method appropriate to the architecture and 
characteristics of the SDN network has been proposed. The proposed framework is a 
heterogeneous system in which the detection phase is performed out of the controller and 
gathering information and mitigation are performed by the SDN controller.  

5.1 BFDD-S Methodology  

In SDN networks, when the network traffic reaches to the SDN-based switch, the switch checks 
its current flow tables, If the switch finds a pre-defined policy rule for this packet in the flow 
tables, the flow will be passed to the destination. Otherwise, it will be considered a new flow, 

which is sent to the controller to make the decision. In this framework, when the new traffic 
flows reach the controller, it gathers all required data, aggregates them, and sends them to 
the detection module which resides in another server. Then, the data are evaluated by a 
detection module located in the attack detection server. 

After analyzing the packet, if no anomaly is detected, a non-attack message will be sent to the 
controller. The controller then orders the switch by installing the appropriate rule in the 
switch’s flow table to permit the related flow to pass through the switch. In opposition to that, 

If an anomaly is detected by the detection module, the attack detection module sends a 
detection message to the controller. After the controller receives the message, commands the 
switch to drop the flows and block the IP address of the attacker. Figure 5.1 presents the 
process of the network traffic received from a legitimate user and an attacker in the proposed 
framework in an SDN environment. 
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Figure 5. 1: Process of the legitimate and malicious traffic by the proposed framework 
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The following Pseudocode depicts the above-mentioned detection and mitigation method in 
the BFDD-S framework: 

 

 In designing this framework prototype, we utilize a combination of big data tools and machine 
learning together with taking advantage of the developed SDN controller, therefore we called 
this framework BFDD-S (Big data Framework for DDoS attack Detection in SDN network). In 
this section, we clarify the architecture of this framework in particular and justify how it works 
and depict output results, and define the functional modules for the solution that will serve 
as the basis for the design and development of the framework prototype. 

5.1.1 Motivation behind BFDD-S 
 

In the realm of network security, rapid attack detection is a key point for designing and 
developing any security system. In addition, as the architecture of the DDoS attacks shows, an 
attacker sends a massive volume of real or fake traffic to exhaust the network resources, with 
the intention to hamper or disrupt the services for normal users. Therefore, to design and 
implement a defense mechanism, another key point is utilizing a method that is capable of 
handling and processing a huge volume of data fast and in real-time.  

As mentioned earlier, in designing the BFDD-S framework, we decouple the detection module 
from the controller to prevent controller performance degradation and delay in responding 
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to permissible flows sent to the controller. Therefore, in our design, we implement a big data 
pipeline to provide a fast and real-time data processing method using Apache Spark and 
prevent any delay in processing or losing any normal traffic during receiving a massive amount 
of traffic to the controller by using Apache Kafka. 

In our detection module, we utilize Apache Kafka, as an open-source, streaming data platform, 
since it has capabilities such as short response time, high performance, horizontally scalable, 
fault tolerance, and it is capable of processing extremely fast streams of events. In the real 
world, it is used in real-time projects to provide data pipelines and program flow. The major 
advantages of using Apache Kafka in our framework include the following: 

1. Creating streaming and timely data transmission lines that reliably transfer and exchange 
data between the controller and the detection module. 

2. Creating the framework for real-time streaming data that react in time to a stream of data 
and transfer them. 

In the detection module, we also implement Apache Spark as an open-source programming 
model for processing large data sets with a parallel distributed algorithm which can provide 
machine learning and real-time workloads. In most of the previous related research, they 
utilize Apache Hadoop for processing the network traffic. The main concern about MapReduce 
is with each step, it reads data from the cluster, performs operations, and writes the results 
to HDFS. Because each step requires a disk read and write, MapReduce jobs are slow due to 
disk I/O latency which is a big concern for detecting malicious traffic. We choose to implement 
Apache Spark in the data processing pipeline to overcome the above-mentioned concern in 
Hadoop and MapReduce. 
 
Although Apache Spark is an open-source framework focused on machine learning and 
interactive queries, It does not have its own storage system. Therefore, in the data processing 
pipeline in the data detection module, we implement Elasticsearch for storing features that 
are required for data processing. Since Elasticsearch can search documents that were 
uploaded just one second earlier, by implementing it we can achieve a real-time search 
engine. In addition, It has a document-oriented distributed architecture, which makes it 
simple to scale up in a big environment. These real-time and scalable features are the key 
factors for implementing a fast, real-time, reliable, and scalable DDoS attack detection 
framework for SDN networks. 

5.2 Framework Architecture 

The aim of this work is to provide a robust and resilient intrusion detection system that can 
offer a fast, real-time detection system to increase the scalability and reliability of DDoS attack 
detection and mitigation. Figure 5.2 shows the overall view of the processing of the proposed 
framework.  
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Figure 5. 2: Overall Architecture of the Proposed Framework. 

 

The framework consists of three main modules, first module is for data gathering and 

formatting statistical information developed as an API to the ONOS core using Java 
programming language(Figure 5.3).  

The major purpose of this API is to gather statistical information, aggregate it, and convert 
them to the appropriate format before sending it to the data processing module. 
In addition, the mitigation activities will be performed by the controller (We used ONOS as a 
controller for this experience). 

 

Figure 5. 3: Information Gathering and Mitigation Module.  
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The second module is attack detection which is located on another server and uses data 
pipeline infrastructure and machine learning for detecting DDoS attacks (Figure 5.4). In this 

framework for creating data pipeline infrastructure, we use the following big data analytic tools, 
Apache Kafka for message queuing, Apache Spark for data processing, and Elasticsearch for 
storing data. 
When the new flows reach the SDN-based switches they will be sent to the controller, in this 
framework, the developed API module gathers, and aggregate the statistical information and 
then convert them to JSON format. Then the API module sends them to the detection module. 
In the Big Data processing pipeline, the information in JSON format first will be passed to 
Apache Kafka for buffering. Then Spark as a consumer reads information from Kafka’s 
message queuing. In this module, Apache Spark is responsible for data processing and 
anomaly detection using the machine learning classifier.  
If an anomaly is detected during the data processing phase, the attack detection module sends 
an incident report via the REST API to the SDN controller, providing the necessary information 
for decision-making, such as the source IP address of the sender. 
 

 

Figure 5. 4: Intrusion Detection Module. 

As Figure 5.5 indicates, the third module is a machine learning model which we design and 
implement in the data processing phase of the big data pipeline. 
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Figure 5. 5: Machine Learning Module. 

In this framework, the following tools are used to create a data pipeline infrastructure: Kafka 

for message queuing, Apache Spark for data processing, and Elasticsearch for storing data.  

In this particular case, we are going to use Kafka as the system data source for Spark 
Streaming. Typically, a Spark Streaming system processes a data flow, stores them in 
databases, and file systems, or reflects them in a graph to give a better view to the user. The 
operation of data processing in Spark Streaming works as follows. Spark Streaming receives 
the data and splits it into small batches, and these batches are processed by the Spark kernel 
to generate a data stream of results. 

5.3 Framework Workflow 

In the proposed method, every incoming packet should go through 5 different phases from 
the moment it reaches the switch and then be transferred to the controller and validated. 
Figure 5.6, demonstrates these phases in more detail.  

Preliminary Phase: request for communication  

The Preliminary phase is a request for communication. It is the phase when the packet for the 

first time enters the OpenFlow switch. Upon arrival, the switch checks its current flow tables. 
If the switch finds a forwarding rule defined for this packet in the flow tables, the flow is 
allowed to pass to the destination. Otherwise, it will be considered a new flow, which is sent 
to the controller to make the decision.  

Phase 2: Information Gathering and Formatting  

After entering the controller, initial checks such as destination address, protocol type, etc., 
are performed. If the packet is detected within the current network rules, the controller allows 
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several packets of the corresponding flow to pass to the server. The attack detection systems 
are usually not able to detect abnormal activities from only one packet. For this reason, the 
controller requests the entry of several packets of the same flows into the attack detection 

system. For this phase, we developed a Java API into the ONOS core, called Extractor, for 
gathering statistical information, flow aggregation, and converting the aggregated data to a 
suitable format (JSON, for instance) for sending to the data pipeline infrastructure.  

Phase 3: Packet analysis and decision Making  

After the second phase, it is time for the analysis and decision phase. In this phase, packets 
are evaluated by a detection module located in the attack detection server. The formatted 
aggregated flows from the Extractor module in JSON format will be passed to Apache Kafka 
for buffering. Then Spark as a consumer reads information from Kafka's message queuing. In 
this module, Apache Spark is responsible for data processing and anomaly detection. This 
phase consists of three steps: the feature engineering process, the machine learning process, 
and the decision-making step.  

Spark Streaming is used as one of the components of the Apache Spark Ecosystem to enable 

the processing of live streams of data and to read the buffered information from Kafka. After 
performing Feature Engineering, the features will be stored in the index using Elasticsearch 
for rapid retrieval. For the machine learning process, the MLlib library is used, which is also 
one of the Apache Spark Ecosystem components. It is built on top of Spark core and has the 

facility to provide various machine-learning algorithms. For this experience, we implemented 
the Random Forest algorithm to detect anomaly patterns in stored data. Then it is used for 
detecting any anomaly in the new messages received from Kafka.  

Phase 4: Reporting phase 

After analyzing the packet by the attack detection module, if no anomaly is detected, a non-
attack message will be sent to the controller and the controller enters the decision and action 
phase. The controller then commands the switch by installing the proper rule in the switch’s 
flow table to allow the corresponding flow to pass through the switch. All these 
communications in both cases between the detection module and controller will be done via 
a REST interface. If an anomaly is detected by the detection module, the attack detection 
module sends an incident report via the REST API, providing the necessary information for 
decision-making by the controller, such as the source IP address of the sender.  

Final Phase: The action phase  

After the controller receives the incident report, updates its log file, and analyzes the source 

and destination of the flow, the controller commands the switch to drop the packet and block 
the IP address of the attacker.  
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Figure 5. 6: Five Phases of the BFDD-S Framework’s packet processing. 

For implementing the proposed framework, which henceforward is called BFDD-S (Big Data 
Framework for Detection and Mitigation of DDoS attacks in the SDN network), four phases 
have been accomplished as follows: 

1- API Development for SDN controller 
2-  Algorithms Evaluation 
3- Big Data Pipeline Implementation 
4- Experimental Setup and Performance Evaluation 

In the following sections, these four phases will be explained in detail. 

5.4 API Development for SDN controller 

As discussed before, ONOS implements the OSGi framework using Karaf (Figure 5.7), which 
breaks the application into bundles. According to the website, Apache Karaf is a minor OSGi-
based runtime that offers a lightweight container onto which numerous modules and 
applications can be deployed. In other words, Apache Karaf is not another OSGi application, 
basically, its role is mostly similar to a cover on top of an already existing OSGi. On top of these 
runtimes, Karaf provides various value-added services. The majority of these services were 
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developed as OSGi bundles that are installed on containers when Apache Karaf begins. OSGi 
applications may benefit greatly from features such as central logging, command-line 
configuration manipulation, remote SSH access to OSGi runtime, and interaction with Apache 
Karaf's [146] flexible command shell. 
 

 
Figure 5. 7: Overview of the Apache Karaf [147]. 

 
Using these annotations provides a possibility for Karaf for calling the application's Java code 
during different events, such as the loading and unloading of the application's bundle. 
These calls are critical for initializing required variables, attaching to other services, and 
initiating the logic of the application. All the applications which exist in ONOS follow the 
Maven directory hierarchy standard. In this hierarchy standard, the application source code 
and libraries would be stored under the following path: 
 
src/main/java 
 
Therefore, in this research, for developing an API for the ONOS controller (called Exporter), 
The first step is to define the directory structure for this kind of bundle. This directory 
structure includes the pom.xml configuration file and numerous Java class files containing the 
application's main functionality and for keeping the source code of tests, the following path 
has been used: 
 
src/test/java 
 
Component Templates can be used to automate the creation of a skeleton directory structure 
for any typical project. It is necessary for all the applications created and developed for ONOS 
to be linked to Karaf with the use of annotations like as @Activate or @Deactivate. 
 
Afterward, by using these annotations, write entry and exit functions to enable Karaf to 
successfully load your application. To register additional services that are accessible with 
Karaf, the CoreService.registerApplication() routine of the org.onosproject.core should be 
used inside the startup method. The coreService package is used to register the application 
with a unique name so that Karaf can identify it. 
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Karaf requests all the services that the application requires to use via the startup and cleanup 
processes. As soon as the skeleton is complete and ready to be bonded using Karaf, it is time 
to create the application core logic, often known as the business logic. The core logic is 
developed using Java files, which are subsequently compiled into the necessary class files. 
When the writing code is finished, the Maven commands are used to build/compile the 
application. 
 
Apache Maven is a project management software and download tool. Based on the concept 
of the Project Object Model (POM) in the project, it can manage the construction of a project. 
This management starts from the time of compilation and continues until publication and 
documentation. This method allows teamwork to take place properly. The major objectives of 
the Maven are exposed in the following figure. 
 

 
 

Figure 5. 8: Maven Objectives [146] 

 
It is one of the most widely used Java tools for packaging, building, deploying, compiling, 
testing, and documenting projects. It allows all developers to follow a standard for generating 
a project, instead of using their own taste. And in the future, the other developers can easily 
communicate and continue developing the project structure. 
Maven is responsible for compiling all the Java files of the application, connecting all of the 
dependent bundles together, or downloading those dependency bundles that are not 
currently accessible locally. 
 
Once the process of Maven is complete, the result which is the Java archive (jar) would be 
stored in a position inside the ONOS folder where Karaf would be able to access it without the 
need for further developer participation. To complete the installation process, launch the 
application using the ONOS CLI with the "feature: install application name>" command. For a 
better understanding of the essential steps for developing an API into the ONOS controller, 
the aforementioned steps are shown in Figure 5.9. 
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Figure 5. 9: A typical development process for an ONOS application [148]. 

 
ONOS also adds two more folders to this structure, one in the following path for keeping the 
application's source code: 
 
Src/main/java/org/onosproject/Exporter 
 
And the other one is for keeping the source code of the test in the following path: 
 
Src/test/java/org/onosproject/Exporter 
 
There must be a BUILD file outside of this structure, at the same level as the src directory, that 
informs Bazel what to build and how to compile it, defining the artifacts and their 
dependencies. As mentioned earlier, for creating an ONOS app, two methods have a 
significant role, more precisely, in at least one of its source code files, every ONOS application 
must implement an Activate and a Deactivate method. As the name implies, these methods 
specify what should be done when the program is activated and what should be done when it 
is deactivated. Apart from these, an ONOS application can be developed by creating as many 
methods as required. 
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To start, the applications folder, which is located in the ONOS root directory, is used to create 
a new application considering the structure described in the previous section. Following the 
writing of the code and creating the file in which the source code for the program will be 
stored, it is necessary to create a skeleton of the application. For creating an application for 
ONOS the following services are needed: 
 
Core Service, Statistic Service, Device Service, and Metrics Service.  

5.5  Machine Learning Algorithms Evaluation 

The machine learning method is the most human answer to complex and demanding 
activities. It is one of the specializations in the area of artificial intelligence and a data mining 
technique.  is a technique in which a computer is trained to perform a specific task using 
specific algorithms. For the preparation phase, collected data is used called data set to train 
the machine to perform certain operations by collecting data called data sets. This training 
continues to guarantee that the machine is capable of doing the same task as a human with 
similar quality. This process is also called learning with the observer because the machine can 
continue to function due to the training given to it by humans. 
 

5.5.1 Algorithm Methods 
 
 According to different methods, various models can be defined, and among all these designed 
models, the best one should be selected based on the evaluation method. Analysis methods 
provide required information and other statistical data used for evaluating different models. 
Model processing is often called training and is a procedure for applying a specific 
mathematical algorithm to the data of a structure and extracting patterns. The type of 
patterns found in the training process depends on various items such as the selection of 
training data, the selected algorithm, and how the algorithm is implemented. 
 
 In the world of machine learning the algorithm can be classified into three main categories: 
 

- Supervised Machine Learning 
- Unsupervised Machine Learning 
- Reinforcement Learning 

 

5.5.1.1 Supervised Learning 
 
In this method, the data should be labeled. Most machine learning methods use supervised 
learning. In supervised machine learning, the system tries to learn from the prior examples 
provided. In other words, in this type of learning, the system tries to learn the patterns based 
on the examples given to it. Mathematically speaking, when the input variable (X) and output 
variable (Y) are available, a mathematical algorithm can be used to derive an input-to-output 
mapping function based on these variables, this is called supervised learning. The mapping 
function is represented by Y = f (X). 
 
This type of algorithm can be divided into two categories: classification and regression 
methods. Classification: A problem can be considered as classification when the output 
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variable is a category or group. An example of this would be a sample belonging to the "black" 
or "white" categories and an email to the "spam" or "non-spam" categories. Regression: A 
problem is considered as regression when the type of the output variable is real for instance 
"height". In other words, the classification algorithms work with discrete variables and 
regression algorithms work with continuous variables. 
 

5.5.1.2 Unsupervised Learning 
 
In unsupervised learning, the algorithm alone must look for appropriate patterns in the data. 
From a mathematical point of view, unsupervised learning is used when there are only input 
variables (X) in the data set and no associated output data variables. This type of learning is 
called unsupervised because, unlike supervised learning, there is no correct answer given, and 
the machine itself must look for the answer. In other words, when the algorithm uses a dataset 
that lacks labeled data (output variables) to work, it uses another mechanism for learning and 
decision making. In this way, learning is done on unlabeled data, and the system itself must 
discover hidden patterns in the data, using different tasks such as clustering, association, and 
dimensionality reduction. In this case, the model learns through observations and discovers 
the relations and structures in the data set. When a data set is introduced to the model, the 
model automatically discovers the connections and patterns in the data using clustering.  
 

5.5.1.3 Reinforcement Learning 
 
Reinforcement learning is a type of machine learning approach that designs algorithms for 
recognizing the environment and making optimal decisions to achieve the maximum set of 
rewards. This approach, not only has a rich mathematical structure and leads to the 
emergence of profound theories and robust learning methods, but also it is very flexible and 
has been widely used in practical problem-solving. The reinforcement learning problem is 
formulated mathematically based on Markov decision processes. 
In this method, the algorithm enters the cycle of trial and error, learns to make certain 
decisions, and thus is constantly learning. Reinforcement learning also refers to the ability to 
find a feature related to the external environment to achieve the best results. The concept is 
also known as the trial and error model. This factor is scored or penalized based on the right 
or wrong results, and finally, the model achieves the ability to improve through the positive 
scores and the desired results. This learning and improvement will continue until the system 
can make the necessary predictions and decisions about the new input data. Figure 5.10 
depicts the three above-mentioned classified  categories and correlated prevalent algorithms. 
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Figure 5. 10: Various Types of Machine Learning Algorithms 

 

5.5.2 Process of Designing a Model in this Research 
 
One of the most important components for success in  projects is the use of accurate 
methodology and workflows for project management. The following are the necessary steps 
to implement analytical models based on . Through this research, various sources have been 
studied and they have introduced the stages of  differ in terms of the number of stages. Most 
sources mainly introduced five, six, or seven steps. Of course, this is not a fundamental 
difference, but in some sources, it is preferred that some stages be separated and not more 
detailed or not. Therefore, it is possible that even in some sources we encounter more than 7 
steps, so here we examine a 10-step process for  as shown in Figure 5.11. 
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Figure 5. 11: Process of Design Model [149] 

 
These ten steps in the  process are repeated periodically to improve the performance of the  
model until it reaches the desired quality.  
 

5.5.3 Evaluate the Accuracy of a Model 
 
Sensitivity and specificity are two essential indicators for assessing statistically the functioning 
of the classification model. The data can be distributed into positive and negative groups, and  
the sensitivity and specificity indicators may be used to quantify and characterize the 
performance of an experiment when categorizing data into these two groups. 
 

5.5.3.1 Confusion Matrix 
 
In the field of artificial intelligence, a confusion matrix is a matrix in which the performance of 
relevant algorithms is represented. The name of this matrix is also derived from the fact that 
it was easier to see the error and the interference between the results. This matrix shows the 
results of the classification based on the actual information available. Then, Different criteria 
for classification assessment and accuracy measurement might be created based on these 
results (Figure 5.12 indicates all the evaluation indicators which can be derived from Confusion 
matrix).  
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There are different metrics that can be considered when determining the suitability of a 
classification algorithm. On the one hand, we must consider the efficiency of the algorithm 
when classifying the analyzed elements. To measure it we will use the following metrics: 
 
True Positive (TP): represents the number of malicious packages correctly classified as such. 
 
True Negative (TN): represents the number of legitimate packets correctly classified as such. 
 
False Negative (FN): represents the number of malicious packets erroneously classified as 
legitimate. 
 
False Positive (FP): represents the number of legitimate packets erroneously classified as 
malicious. 
 
Once a  model is designed, one of the most important phases is to evaluate its performance. 
In the following, the methods for evaluating a  model are briefly defined: 
 
 

 
Figure 5. 12: Overall View of the Confusion Matrix and Assessment Methods [149]. 

 

5.5.3.2 Selection of Metrics 
 
Finally, the obtained results are evaluated and interpreted. The following criteria are usually 
considered in the evaluation, as shown in Figure 5.13. 
 
Accuracy: The most prevalent, fundamental, and straightforward metric for evaluating a 
model's value is its accuracy. This parameter indicates the number of patterns that have been 
correctly identified and is formulated and defined based on the confusion matrix. In general, 
accuracy refers to the model's ability to properly anticipate output. Nevertheless, this criterion 
provides only a limited amount of information regarding the model's performance. 
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                                     TP + TN 
Accuracy =  
                            TP + FN + FP + TN 
 
Precision: It determines, how true is the result when the model predicts the result positively. 
When the value of false positives is high, the correctness criterion will be appropriate. In fact, 
when the researcher uses this parameter as an evaluation parameter for his category, the goal 
is to achieve the utmost accuracy in identifying positive class samples. The precision is 
calculated as follows: 
 

                             TP 
Precision =  
                         TP + FP 
 
Recall: The accuracy of negative class identification, in contrast to this characteristic, may 
sometimes be significant. The specificity parameter, often known as the "True Negative Rate," 
is one of the most frequently used characteristics that is typically taken into account together 
with sensitivity. This parameter is calculated as follows. The ratio of the correct number of 
items classified by the algorithm from one class to the number of items in that class is 
calculated as follows: 
 

                         TP 
Recall =  
                        TP + FN 
 

 
Figure 5. 13: Three main assessment Metrics [150]. 

 
 

5.5.3.3 Evaluation of the Model in a Real Environment 
 
After analyzing the data and creating insight, it is time to present and distribute this output. 
Showing the results to competent people at the right time and using modern methods 
provides the conditions that can be used to make a valuable reservoir of insight before 
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deciding to do anything. If adequately filled and properly removed, a repository can improve 
performance in an organization. Today, different methods are used to present data. In this 
regard, several tools have been designed and implemented that can be used to provide and 
distribute insights. 
 

5.5.4  Classification Algorithms  
 
For this research, the five most well-known classification algorithms have been chosen and 
performed evaluation process, to select one of them to be implemented in the data processing 
module of the proposed framework for DDoS attack detection. In this section, these five 
classification algorithms will be introduced. 
 

5.5.4.1 Logistic Regression (LR) 
 
Logistic Regression is a  method and is one of the most popular techniques for classifying data. 
In the classification problem, it is used when one class must be distinguished from another. 
This algorithm is used to predict a class-dependent variable using a given set of independent 
variables. Logistic Regression is one of the most widely used algorithms in the field of . This 
technique is a supervised learning method, and the data have a specific label, and the learning 
process is done to classify based on this data and their labels [151]. 
 
Table 5.1 describes pseudocode for classification with the LR algorithm. 
 
 

Table 5. 1: Pseudo code for the Logistic Regression algorithm [152]. 

 

 
 
 

5.5.4.2 K-Nearest Neighbor (KNN) 
 
The k-Nearest Neighbors (k-NN) algorithm is a supervised classification algorithm based on 
neighborhood criteria. In particular, the concept behind k-NN is that fresh samples will be 
categorized with the same class that has the largest number of most similar neighbors to them 



 106 

in the training set. It is based on a hyperplane computation. Neighbor K method is used for 
many methods because it is effective, non-parametric, and easy to implement. However, the 
categorizing process takes a long time, and it is difficult to determine the best value for k. In 
general, if the best choice of K is given to the data, the influence of noise is decreased, and 
the boundary between classes is less distinct [151]. Table 5.2 explains pseudocode for 
classification with the KNN algorithm. 
 

 Table 5. 2: Pseudocode for the KNN Algorithm [152]. 

 

5.5.4.3 Naïve Bayes Classifier (NB) 
 
This algorithm can be called a generative model. This implies that it is supposed that the input 
data can be demonstrated by a model and its certain parameters, and the learning phase is 
comprised of attempting to determine which values are appropriate. This is due to the fact 
that distinguishing the distribution followed by the input data is often more difficult than 
creating an appropriate classifier without doing so, compare to other classification 
techniques. This algorithm simplifies the Optimal Bayes Classifier based on the Bayes theorem 
which refers to a considerable decrease in the number of parameters that must be anticipated 
by an assumption. In a particular label, it is assumed that the characteristics of the input vector 
are independent of one another. This assumption is made with the awareness of the fact that 
it is often inaccurate, especially in intrusion detection cases, but that it significantly simplifies 
the construction of a probabilistic model. That is the reason this classifier is referred to as 
Naïve, which means the maximum possibility principle is considered to estimate the 
parameters. Therefore, it will be mandatory to identify the ideal parameters for these 
algorithms to make them work properly [151]. 
 
Table 5.3 depicts pseudocode for classification with the Naïve Bayes algorithm. 
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Table 5. 3: Pseudo code for the Naïve Bayes Algorithm [152]. 

 
 

5.5.4.4 Decision Tree (DT):  
 
The Decision Tree is one of the most widely used techniques in data mining. Decision trees are 
one of the simplest algorithms available, but they are also one of the most effective in the 
field of . This technique can be beneficial when the volume of data is very high. It is a collection 
of algorithms that categorize data and then make a sequence of choices based on that 
classification and a tree structure is used to describe this series of choices [153]. 
In general, data categorization is carried out from the root node to an appropriate leaf node, 
where each leaf node represents a different category [154]. 
 
Throughout the supervised training phase, this method generates a binary decision tree, 
which is can be described as if-then rules. The decision is made on each node depending on 
the value of an attribute associated with that node. During the training phase, the choices and 
the sequence in which they are made are decided based on their relevance to the classification 
of the data. In this algorithm for a particular dataset S with N classes where k ∈ {1, 2, 3, ..., N}. 
Variable pk signifies the number of cases classified as k inside the dataset. The summation of 
the probabilities of the incorrect classification of k is mentioned as [155]: 
 

𝑝𝑤 =  ∑ 𝑝𝑟 = 1− Ρ𝑘

𝑟 ≠𝑘
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Table 5.4 illustrates the procedure of the classification with the decision tree algorithm. 
 
 

Table 5. 4: Pseudo code for the Decision Tree algorithm [152].  

 
 
In general, this algorithm demonstrates a function that accepts a vector of attributes as input, 
and as a result, it returns a particular value that shows the "decision". There are two types of 
decision trees; Classification trees are models in which the objective variable has distinct 
values, whereas regression trees are models in which the target variable has continuous 
values. 
 

5.5.4.5 Random Forest (RF):  
 
The random forest method is an example of an ensemble algorithm for classification using a 
large number of individual decision trees. As a hybrid classification system, this  technique 
employs a mixture of two or more classification algorithms, which are also referred to as 
fundamental algorithms. The decision tree method is the foundation of the Random Forest 
algorithm. The technique shown in Table 5.5 is used to create individual trees. As it was 
mentioned earlier in this chapter, the combination of a number of different models in an 
ensemble method can offer an improved level of accuracy [151]. 
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Table 5. 5: Pseudo code for the random forest algorithm [152]. 

 
 

5.5.5 Intrusion Detection Using  Techniques 
 

Using  techniques for intrusion detection first came to the sight of researchers in 1987 [156]. 
Since then, it's been a hot study topic around attack detection for researchers. A well-tuned 
machine learning system may be capable of detecting not just known attack patterns but also 
novel ones. As machine learning technologies have progressed over time, numerous 
algorithms for intrusion detection have been developed and employed. In the scope of 
intrusion detection, Decision trees, neural networks, Bayesian algorithms, support vector 
machines, and genetic algorithms have all been successful techniques. 

Additionally, unsupervised techniques have been used to identify intrusions by using 
ensemble methods, graph theory, and clustering. Machine learning has a lot of ability for 
intrusion detection since it particularly excels at recognizing patterns in huge amounts of data. 
In most situations, there is just too much data to process for data analysts and scientists. They 
must go through massive log files for signs of malicious behavior. This is the area in which 
different machine learning techniques are particularly good at [157]. 

5.5.6 Data Set Selection 
 

For researchers, finding a suitable collection of data to train machine learning models for 
intrusion detection is one of the most challenging concerns in this subject. 

Datasets are a set of information with specific properties that are collected in a specific area. 
Datasets or datasets are collections of data that are used with the same subject matter for 
analysis and data mining projects. Of course, there is another application of datasets for 
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comparison between different methods, in that, for example, on a data set, two different 
methods (algorithms) are implemented and according to the results can be based on the 
criteria of accuracy, speed, and complexity of each Compared methods. 
 
Because of the amount of data passing through the network and the need for confidentiality, 
most data sets used in supervised learning comprise simulated data. In the Third International 
Competition for Knowledge Discovery and Data Mining, the first dataset which is called KDD 
Cup 1999 was generated [158]. Developing a network intrusion detection system was the 
main objective of the competition. The dataset was created using data collected over nine 
weeks from a simulated Air Force local area network. Then, a CSV data set was created based 
on the process of the collected raw data from the network. This data set consists of the sample 
data for different types of the attacks such as DoS attacks, illegal approaches to a local private 
account, illegal access to the network from a remote computer, and Probing attacks. 

However, even though the KDD Cup 1999 data set was convenient for the original competition 
and following research, for more than 15 years, it was nearly the only data set utilized for 
intrusion detection investigation. Since, in the last 15 years, computers and networks have 
evolved tremendously, the KDD 1999 data set was complained about including duplicate 
information and representing old-fashioned technology. Because of the above-mentioned 
weaknesses of the KDD 1999, numerous scientists have generated more up-to-date data sets 
to solve the KDD Cup 1999's drawbacks. A more recent network data set was presented by 
the UNSW-NB15 data set, which was produced in 2015 [159]. In this section, these three well-
known datasets will be briefly introduced but according to the above-mentioned issues about 
KDD CUP 1999, the two other data sets have been used in this research to perform the 
evaluation of various machine learning algorithms for selecting the appropriate algorithm for 
intrusion detection to implement in the proposed framework.  

 

5.5.6.1 KDD CUP 1999:  
 
It is based on the DARPA 1998/1999 dataset, which the MIT Lincoln Lab generated from an 
emulated network environment. In this data set, both regular traffic and various forms of 
computer attacks such as Dos, buffer overflow, etc. were logged for several weeks. As 
indicated earlier, KDD CUP 99 is a stream-based dataset that is developed by data from system 
logs and network packets engaged in the connection. in addition to typical traffic, and has 
already been separated into two subsets: a training subset for machine learning algorithms 
and a test subset. Conversely, the Canadian Institute of Cybersecurity (CIC), the organization 
that is presently providing this dataset, also has additional up-to-date datasets with 
comparable features that are accessible for free to use [158]. 
 

5.5.6.2 NSL KDD Data Set 
 
As an upgrade to KDD CUP 99, it was developed in 2009, and it has addressed some of the 
redundancy issues mentioned in [160]; however, it still retains some of the issues raised by 
McHugh in [161]. Despite some issues mentioned above, it is still regarded as a strong 
benchmark for evaluating various intrusion detection techniques, and it remains to be one of 
the best choices for researchers for their investigations in the field of intrusion detection 
[162]. Comparable to KDD CUP 99, NSL-KDD also uses stream-based data that is developed 
with information about the computers and packets involved in connections. In this section, 
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the structure and content of the NSL-KDD are described briefly, according to the information 
provided by the CIC website and analysis performed by [163]. NSL-KDD dataset is an 
established benchmark for evaluating network intrusion detection techniques. It is produced 
from the KDDCUP99 dataset, which has a significant disadvantage of a large quantity of un-
usable duplicate records existing in it. This may produce a wrong result and prediction 
specifically for machine learning algorithms as a detection algorithm. Therefore, NSLKDD 
eliminates repeated records from the KDDCUP99. Specifically, NSLKDD includes two training 
sets (’KDDTrain’ and ’KDDTrain 20percent’) and two test sets (’KDDTest+’ and ’KDDTest-21’), 
among expressing 41 features defining the statistical information and fundamental aspect of 
the network [164].  
 
The dataset contains a total of 41 characteristics which can be classified into the following 
four comprehensive categories: R2L attack, U2R attack, DoS attack, and PROBE attack. In this 
data set, each item has a label that corresponds to the flow grouping. In addition, in this data 
set, the flows are categorized into two types, either normal or conforming as an attack, and 
contain the data equivalent to 40 individual kinds of attacks. Table 5.6 presents the different 
features of the NSL-KDD data set. For this research, the features numbers F2, F5, F6, and F23 
are used because these features can be simply achieved from the SDN controller; therefore, 
they can be appropriate options for this study [165]. 
 

Table 5. 6: List of features of the NSL-KDD dataset. 

 
 
Table 5.7 shows the distribution of the flows stored in the NSL-KDD data set for the identified 
and new attacks based on four different attack classifications [166]. 
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Table 5. 7: Divisions of famous and new attacks in the KDD-Test set. 

 
 

5.5.6.3 UNSW-NB15 Data Set 
 
KDDCUP99 and NSLKDD benchmark data sets were created ten years ago to evaluate research 
efforts on network intrusion detection systems. Conversely, numerous recent studies have 
demonstrated that in the context of the current network security environment, these data 
sets do not accurately represent network traffic and contemporary low footprint attacks 
[161]. The UNSW-NB15 dataset was generated in 2015 at the Cyber Range Lab of the 
Australian Centre for Cyber Security (ACCS) using the AXIA Perfect Storm tool to provide a 
combination of the realistic modern normal and malicious network traffic. The genuine 
current normal and the contemporary synthetic attack activities of the network traffic are 
both included in this data set to make it a hybrid data set. To construct the characteristics of 
the UNSWNB15 data set, both existing and innovative methodologies are applied. [159].  
 
In this data set, by using three virtual servers, the data was collected by an IXIA traffic 
generator. Two servers were set up to generate legitimate network traffic, while a third was 
set up to produce malicious network traffic. Argus and Bro-IDS software retrieved 49 features 
from the raw network packets, including flow-based and packet-based characteristics, and 
nine distinct attacks including, Shellcode, Backdoors, Reconnaissance, Exploits, Analysis, 
Generic, DoS, Fuzzers, and Worms [167]. Packet-based features are extracted from the packet 
header and its payload (also called packet data). On the other hand, flow-based characteristics 
are produced by exploiting the sequencing of packets as they move across a network, starting 
at a source and ending at a destination. This dataset is included 2,540,044 realistic modern 
normal and abnormal (also known as an attack) network activities. As Figure 5.8 shows, the 
data set is divided into two parts, with 175,341 records in the training data set and 82,332 
records in the testing data set, respectively [168]. Compared to previous benchmark datasets 
like DARPA98(LABORATORY, 1998), KDDCUP 99, and NSL-KDD, the structure of this dataset is 
more complicated. As a result, the UNSW-NB15 is enhanced to provide a more comprehensive 
and reliable assessment of the current network intrusion detection technologies [159]. 
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Table 5. 8: Number of records in training and testing subsets for each class 

 

5.6 Selection of Proper Machine Learning Algorithm 

In this phase, to select appropriate machine learning algorithms that should be implemented 
in the data processing step in the attack detection module, five prevalent classification 
algorithms have been evaluated by using two popular datasets. In this research, two popular 

data sets have been used, and evaluate different classification algorithms using the python 
library Scikit-learn; therefore, the above-mentioned machine learning process is customized 
into the following steps depicted in Figure 5.14. 

 
 

Figure 5. 14: The Machine Learning workflow used in this research. 
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The main reason behind using two data sets for the evaluation phase of this research is, that 
there is some research [161] showing that the NSL-KDD data set, despite the fact that it is the 
most frequent data set used by researchers for training and test designed machine learning 
model for DDoS attack detection, it contains the data that has not been collected from a real 
environment and most of the data captured in the simulation network. In addition, this data 
set was created in 2009, therefore it does not contain data related to novel and modern attack 
methods and it is getting slightly out of date.  
 
For implementing and evaluating different ML algorithms the following python libraries have 
been used: NumPy, pandas, Scikit-learn, and matplotlib, and can be seen in figure 5.15.  
For this reason, a Python script is implemented so that, each of the algorithms, applies the ML 
algorithm to the dataset. First to train the model and later to test its effectiveness. The 
introduction of a validation phase between the two will be studied. This script will be based 
on the Scikit-Learn and matplotlib libraries. 
 

5.6.1 Data Preprocessing 
 
In the world of machine learning, data processing is so vital. It means that before 
implementing any machine learning algorithms, data must be prepared to increase the 
accuracy and output of the work. As shown in figure 5.14 in this research, for data 
preprocessing, the following steps have been performed: 
 
To perform data preprocessing, the initial step is to import the Python libraries, which in this 
study Scikit-learn, Pandas, NumPy, and Matplotlib have been used (Figure 5.15). These 
libraries are very beneficial for entering data and managing them. 
 

 
 

Figure 5. 15: Importing the essential Python Libraries. 
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As revealed above, in this research two popular data sets have been used. First, the NSL-KDD 
data set has been downloaded and with the help of Pandas library can work with the data 
format. The relevant commands are shown in the figure 5.16. 
 

 
 

Figure 5. 16: Importing the Data set and Creating the Pandas Data Frame. 

In pre-processing phase, the figure 5.17 present the steps we follow to prepare data set for 
the train and test the designated machine learning algorithms. 
 

 
 

 Figure 5. 17: Data pre-processing workflow 
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The next step is to convert qualitative data. Any data that is not numerical is qualitative or 
categorical. For modeling, the data must be numerical. To do this, import the "LabelEncoder" 
class from the "sklearn.preprocessing" library and create a labelencoder_X object from the 
LabelEncoder class. We then use the fit_transform method to convert the data as displayed 
in figure 5.18. 
 

 
 

Figure 5. 18: Convert Qualitative Data 

 
After converting the values, we must make changes to the numbers again. Suppose we 
attribute the number 1 to red and the number 2 to green. In this case, machine learning 
algorithms consider the number 2 to be superior to the number 1. If we did not have such an 
intention. We use One-Hot Encoding so that the numbers are not superior to each other in 
terms of algorithm. 
 
One-Hot Encoding is used where numbers are not hierarchical. These are just numbers that 
have no superiority over others. For One-Hot Encoding, we use the following method (See 
figure 5.19): 
 

 
 

Figure 5. 19: Applying One-Hot Encoding 

 
In this stage of preprocessing with Python, we divide our data into two sets, one to train our 
designed model, entitled the training set, and the other to test the effectiveness of our model. 
The division is generally 70/30. To do this, we enter "train_test_split" from the 
"sklearn.model_selection" library. 
 

from sklearn.model_selection import train_test_split 
 
We will now create 4 sets to build our training and experimental collections: 
 
X_train: Examples of training part 
X_test: Examples of the test section 
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Y_train: Tutorials tags 
Y_test: Test labels 
The test_train_split function finds samples and labels along with the training-to-test ratio and 
breaks it down into 4 variables (Figure 5.20) 
 

 
 

Figure 5. 20: Splitting Dataset 

 
Most machine learning algorithms use Euclidean distance for their calculations. For this 
reason, if a few samples have a very high or very low value, the modeling accuracy decreases. 
Data scaling is used to solve this problem. One of the most famous of these comparisons is 
the Z conversion. The Z conversion is done using the "StandardScaler" class in the 
sklearn.preprocessing library as shown in figure 5.21. 
 

 
 

Figure 5. 21: Data Scaling  

 
This was the last stage of data preprocessing. Now you can inject your data into machine 
learning algorithms. For the UNSW-NB15 data set similar steps for the machine learning 
process are done and in the next section the accomplished results from these two data sets 
compare to each other to select the most appropriate classification algorithm to be 
implemented in the data processing pipeline. 
 

5.6.2 Comparison of the Classification Algorithms  
 

As indicated earlier in this section, in this research, for the DDoS detection phase, we assessed 
the effectiveness of several classification algorithms in order to identify the most appropriate 
classifier to deploy using the Spark Mllib library (Figure 5.22). The mission of the detection 

phase is to classify whether the incoming network traffic is normal or consider it an attack, 
based on the features of the incoming traffic.  

To evaluate the efficiency of the different Spark machine learning-based algorithms, we 
compared various classic machine learning algorithms, such as Logistic Regression, Naïve 
Bayes, K-Nearest Neighbor, Decision Tree, and Random Forest using two datasets i.e., NSL-
KDD and UNSW- NB15 as well-known datasets for Network Intrusion Detection Systems.  
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Figure 5. 22: Training  Algorithms 

Table 5.9 indicates the classification report and result for the supervised algorithms we have 
used in this research for the NSL-KDD data set. In this evaluation for simplifying, we use an 
abbreviation for these classification machine learning algorithms as follows: 

LR: Linear Regression, KNN: K-Nearest Neighbor, NB: Naïve Bayes, DT: Decision Tree, and RF: 
Random Forest. 

Table 5. 9: Accuracy Comparison Table (Using NSL-KDD data set) 

 

The result presents Decision Tree and Random Forest gives the best accuracy which is more 
than 98%, followed by the Logistic Regression algorithm which gives more than 89% accuracy. 
This classification report depicts that the Naïve Bayes has the weakest performance, with a 
score of 88% accuracy. 

Although the two classifiers delivered more than 98% accuracy, the table indicates that 
Random Forest has the best result and Decision Tree comes in second. 

The results for the UNSW-NB15 dataset are shown in table 5.10. 
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Table 5. 10: Comparison Table (Using UNSW-NB15 data set) 

 

Obviously, the Random Forest algorithm is significantly better than the other classification 
algorithms followed by the Decision Tree, K-Nearest Neighbor, Logistic Regression, and Naïve 
Bayes algorithms with an accuracy of 99%, 98%, 96%, 96%, and 88% respectively. 

Additionally, an interesting observation in the above classification report is that the Naïve 
Bayes algorithm achieved high scores (>88%) in accuracy; however, the algorithm also 
produced low scores (>64%) in recall and precision (>78%) which indicates that here again, 

using UNSW-NB15 data set the Naïve Bayes has the weakest performance compared to the 
other classification algorithms we use in this research (See table 5.10). 

Furthermore, to give a better view of the comparison between different machine learning 
algorithms with two different data sets, the following figures have been used. Figure 5.23 
indicates that the large majority of machine learning models achieved 95% or better scores 
through each different evaluation metric, including accuracy, precision, and recall. 
 
 

 

Figure 5. 23: Comparison of different ML Algorithms using the NSL-KDD dataset. 

The only algorithm that produced a noticeably low score in all three evaluation metrics is the 
Naïve Bayes algorithm. The accuracy of the Naïve Bayes algorithm depicts a score below the 
88% threshold in both data sets we have used in this research (Figure 5.24).  
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Figure 5. 24: Comparison of different ML Algorithms using the UNSW-NB15 dataset. 

For better overall observation, figure 5.25 presents the results of the evaluation of these 
classification algorithms using both data sets in one graph for each one of the three considered 
metrics. 

 

Figure 5. 25: Comparison of NSL-KDD and UNSW-NB15 datasets results for different ML Algorithms. 

Based on the evaluation results, we concluded that the Random Forest classifier offers the 
best performance in terms of accuracy, precision, and recall compared to the other 
classification algorithms. Therefore, in this research, we choose this algorithm to be 
implemented in the data processing phase of our proposed data pipeline using Apache Spark 
for attack detection.  

5.7 Tools Used for Proposed Framework (BFDD-S) 

In this research, several tools and applications are used to provide an appropriate platform 
for implementing our proposed framework. we divide the tools into three categories, General 
Tools, big data Tools, and the SDN controller. Therefore, in this section, we introduce all the 
tools that we use in this research. 
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5.7.1 General Tools 
 

To evaluate the performance of our proposed framework, it is required to provide a platform 
to emulate an SDN network using SDN-based network equipment, then perform a DDoS attack 
against the SDN controller, and monitor the critical system metrics. To achieve this objective 
we use the following tools: 
 

5.7.1.1 Mininet 
 

Mininet is a network emulator which means that a virtual network comprising hosts, switches, 
controllers, and connections can be built using Mininet. which creates a network of virtual 
hosts, switches, controllers, and links. It is a software environment that most research teams, 
students, and network researchers use to model, emulate, analyze, and evaluate the 
performance of SDN (software-based networks) networks and their associated protocols. 
Using the Mininet emulator, an SDN network can be modeled before the actual 
implementation, and various network parameters can be changed during the emulation, and 
the results can be evaluated and compared. The various modules in this simulator were 
developed to support different types of controllers and switches. In addition, complex custom 
scenarios can also be created and experimented with using the Mininet extensible API library 
in the Python programming language [169].  

Standard Linux networking software is used by Mininet hosts, and OpenFlow is supported on 
its switches for high flexibility in traditional and SDN routing. For supporting all the research 
that requires to have a comprehensive tentative network on the PC or laptop, Mininet can 
provide a learning, testing, developing, debugging, and prototyping environment. Among the 
above-mentioned major features of Mininet, Other capabilities which Mininet has can be 
defined as follows [169]: 

• For emerging OpenFlow applications, it offers a simple and reasonable network test bed. 

• It provides a possibility that various developers can work simultaneously and individually on 
an identical topology. 

• Without any requirement to utilize a real physical network, a complex network topology can 
be defined and tested using Mininet.  

• For launching tests and debugging throughout the network, it contains a CLI that 
maintenances topology and OpenFlow. Figure 5.26 presents a sample CLI command. This 
command will create a binary tree SDN network topology of a specified depth with 9 hosts, 
connected to 4 switches (depth=2 and fanout -3) and a local SDN controller. Switches will 

interact with the controller using vSwitch and OpenFlow version 1.3. The result of the 
executed command will be the following topology: 
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Figure 5. 26: Sample Mininet CLI command. 

 

5.7.1.2 Open vSwtich 
 

Open vSwitch is open-source software designed to perform as a virtual switch in a virtual 
machine. It is responsible for switching network traffic between virtual machines located on 
the same physical computer, as well as communication between virtual machines and the 
physical network. Moreover, it is compatible with various protocols, for instance, OpenFlow 
and tunneling protocols such as IPsec or GRE [170]. 
 
Similar to SDN-based physical switches in the SDN environment, Open vSwitch can operate 
under the supervision of an SDN controller; in this case, it performs as a learning-based 
Ethernet switch. It has the capability to be configured through commands conducted by the 
command line console (CLI). As figure 5.27 illustrates an OVS switch consists of three modules, 
two modules operate in user space and one in the kernel space [171]: 
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Figure 5. 27: Open vSwitch Architecture [172]. 

 
- Ovsdb-server: This module operates in user space, and it is the location where switch 
configuration is stored. It utilizes the OVSDB protocol for communicating with the ovs-
vswtichd and with a controller. 
 
- Ovs-vswitchd: this module operates in user space, and it is responsible to receive packets 
from a new flow in the network and deciding in what way they should be treated. If there is a 
controller, it will communicate with it using the OpenFlow protocol.  
 
- Openvswitch_mod.ko: this module operates in the kernel space; its role is to route all the 
packets belonging to a flow that has already matched in the flow table of the switch. In other 
words, when a packet arrives at the switch, it goes straight to the kernel. If there is no match 
for that flow in the flow table, it is routed to Ovs-vswitchd, which is in charge of routing it and 
creating a new entry in the flow table. These two modules communicate with each other 
through the NETLINK protocol. The benefit of designing and developing such a module is that 
the operation runs in the kernel at a much higher speed. 
 

5.7.1.3 Hping3 
 

The hping3 is a command-line tool for producing and analyzing network packets. hping3 is 
developed and supported by antirez@invece.org and is licensed under GPL version 2.  

It has the power to create and send custom TCP/IP packets and present the received replies 
from the target system. In addition, the Hping3 tool can produce custom network packages 
that can be used for TCP / IP security testing, such as port scanning, firewall rules assessment, 
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and network performance analysis. This tool has the ability to simply send echo request data 
in various formats with ICMP protocol and it also supports other prevalent protocols such as 
TCP, UDP, and even raw IP protocol. This package can simply be used in network scanning 

processes to achieve more accurate information about the target system [173].  

5.7.1.4 Htop 
 

Htop is a command-line utility that is an enhanced version of the top command. It displays 
critical system metrics such as running tasks, PID, uptime, load average, memory utilization, 
CPU consumption, and many other vital statistics information. What makes this tool stand out 
from its other predecessor tools is the capability to demonstrate system metrics in a more 
organized way. This allows users to intuitively determine the system metrics they need with 
simplicity compared to the other utility tool [174]. 

5.7.1.5 Programming Libraries 
 

Scikit-Learn12 (also known as Sklearn), is a free Python library for implementing machine 
learning algorithms. This library contains the main ML algorithms, as well as all required tools 
for pre-and post-processing. These tools include utilities for different purposes, such as 
dividing datasets and for extracting and analyzing data resulting from a test. Scikit-learn is 
selected over other similar libraries such as Java WEKA for its versatility and comprehensive 
accessible documentation. 
 
Numpy13 is the main library for mathematical calculations in the Python language. This library 
provides facilities for defining and managing arrays for computing projects. Before Numpy, a 
similar version called Numeric was created by Jim Hugunin with the participation of several 
other developers. In 2005, Travis Oliphant created Numpy by keeping Numarray's features (As 
a more flexible alternative to Numeric) in Numeric and making extensive changes. 
 
Pandas14 is one of the open libraries created to work with data with a relational (rational) or 
labeled structure. This library provides a variety of data structures along with the possibility 
of applying numerical operations on these data and has the capability to work with time series. 
Pandas is based on the NumPy library, and many NumPy structures are used and extended in 
this library.  
 
The advantages of this library include the following: 
 
-High speed and efficiency in working with data. 
-Ability to load data from different source files. 
-Transform data flexibly. 
-Providing the possibility to work with time series. 
-The possibility of grouping data according to practical purposes. 
 

                                                 
12 https://scikit-learn.org/stable/ 
13 https://numpy.org/ 
14 https://pandas.pydata.org/ 
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Matplotlib15 is a free Python library developed for data plotting that we use to plot and 
visualize the evaluation results. 
 

5.7.2 Big Data Analytics Tools  
In the realm of cybersecurity in general, and network security specifically, it is crucial to 
transform the data into useful information for the security expert or application. For this 
purpose, big data analytic tools can provide valuable facilities for processing, analyzing, and 
storing all the collected data. In this research, we also utilize some big data tools to provide a 
data processing pipeline to detect malicious traffic. In this section we describe these tools:  
 

5.7.2.1 Apache Spark 
 
Spark [175] is one of the quickest-growing and most widely accepted big data tools today. It 
represents a great opportunity for organizations to gain the benefits of large-scale data 
analytics. Apache Spark has lately emerged to participate in large-scale data analysis. This fast-
processing engine was produced in 2009 at Berkeley University. And then, as its name 
suggests, it has been developed within the framework of the Apache project, which 
guarantees its Open-Source license. Apache Spark is designed and developed as a distributed 
processing engine that is responsible for orchestrating, distributing, and monitoring 
applications that consist of multiple data processing tasks by several worker machines, which 
form a cluster. Spark’s architecture has a modular design that allows you to adopt different 
configurations according to need.  
 
In addition to the flexibility provided to Spark by its programming design, the master-slave 
computing model provides it with scalability and fault tolerance, Apache Spark is a framework 
that allows us to process distributed data quickly and efficiently, capable of orchestrating, 
distributing, and monitoring applications by reading data from different storage systems on 
several clustered machines. Although Spark reads data from different storage solutions, it 
does not store data in itself but is focused on processing very quickly and efficiently, since all 
this processing is done in memory, which drives this technology to be one of the best solutions 
for real-time data processing (Streaming). Spark is responsible for the management and 
coordination of tasks with data on a cluster of computers. This cluster of computers is 
orchestrated by a cluster manager, such as Spark Standalone Cluster Manager, Apache YARN, 
or Apache MESOS. The applications (Spark Applications) are sent to the cluster managers, 
providing the required resources for our application so that we can complete the work that 
we have defined.  
 
Spark is flexible, and it offers a series of APIs which allow users with different backgrounds to 
use it. It includes Python, Java, Scala, SQL, and R APIs, with built-in functions and in general a 
realistically good performance using all of them. It also includes different libraries to handle 
structured data (Spark SQL), streaming capabilities data (Spark Streaming), machine learning 
(MLlib), and computation on graphs (GraphX) [176]. Figure 5.28 displays the architecture of 
the Spark.  
 

                                                 
15 “Matplotlib”. [Online]. Available: https://matplotlib.org/ [Last Access: April 2022]. 
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Figure 5. 28: The Ecosystem of the Apache Spark [177]. 

 
 
Apache Spark can be configured and run in four different cluster modes: 
 

1- Standalone Cluster 
2- Apache Mesos 
3- Hadoop YARN 
4- Kubernetes 

 
For this research, the standalone cluster has been chosen to implement and configure, since 
it is a simple cluster manager and an easy to setup cluster. The Architecture of the standalone 
cluster is based on a master-slave design. To run the Spark application, this architecture 
contains master and slave nodes. The master node performs as a resource supervisor for the 
cluster and receives the applications and arranges resources to execute those applications. 
On the other hand, the worker(s) node is responsible for initiation executors for job execution. 
 
Apache Spark makes it possible to create large-scale machine learning methods that need 
model parallelism or fundamental data parallelism [178]. Spark Core, which is developed 
specifically for efficient iterative calculations, is capable of handling these iterative algorithms 
in an efficient approach. Common activities including model training, model assessment, 
feature transformation, feature extraction, and tuning are often needed when employing data 
pipelines and machine learning algorithms for practical applications. To achieve these 
requirements, Spark's MLlib was developed to function as a distributed library for deploying 
machine learning with the intention of making the development and implementation of such 
pipelines and algorithms more straightforward. The two primary packages of Spark's MLlib are 
the spark.mlib and spark.ml.32 (Figure 5.29). Spark.ml is based on DataFrames, while 
spark.mllib is built on RDDs. 
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Figure 5. 29: Two main packages of Spark’s MLlib library [179]. 

 
Each package provides several standard machine learning responsibilities such as model 
training, transformations, model assessment, featurization, and optimization. While spark. 
mllib contains packages for statistics, linear algebra, and other fundamental machine learning 
tools, spark.ml offers the pipelines API for creating, troubleshooting, and fine-tuning machine 
learning pipelines. 
 

5.7.2.2 Apache Spark Streaming  
 
Apache Spark Streaming [180] is one of the Spark ecosystem components used for this project. 
It is an extension of the Spark core designed for processing data streams in real time. This data 
stream can come from different sources like Apache Kafka, Apache Flume, RabbitMQ, Twitter, 
or Facebook and receive data collected from sensors or devices connected via TCP sockets. 
Spark Streaming extends the batch processing concept of Apache Spark to stream processing, 
which decomposes the stream into a series of continuous micro-batches, which can then be 
manipulated using the Apache Spark API. Thus, batch and stream operations may operate on 
the same framework and use the same code (in most cases), thereby reducing the overhead 
for developers and operators. By using Spark streaming for streaming data processing, data 
can be obtained from many sources, such as Kafka, Flume, Kinesis, or TCP sockets, and then 
complex algorithms developed by advanced functions (such as Hadoop MapReduce) can be 
used.  
 
The processed data can be sent to the file system, the database, and the dashboard in real-
time. Also, the Spark-provided machine learning (Using Spark MLlib Library) and graphics 
processing algorithms (Using Spark Graph Library) can be applied to the data streams (Figure 
5.30) which is an extension of the source [181]). The criticism of the Spark Streaming approach 
is that in scenarios that require low-latency responses to incoming data, micro-batch 
processing may not be comparable to the performance of other streaming media-supporting 
frameworks (such as Apache Storm, Apache Flink, and Apache Apex). These frameworks all 
use pure streaming methods instead of micro-batch processing. 
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Figure 5. 30: Integration of Apache Streaming with any other Spark components [181]. 

 
In this research, Spark Streaming has been used because it is capable of using different formats 
such as CSV, TEXT, and JSON for reading and writing from/to Kafka topic. 
 

5.7.2.3 Apache Kafka 
 
Apache Kafka [182] is a fault-tolerant, horizontally scalable, distributed data transmission 
system. It allows users to transfer data in real-time using the publish/subscribe messaging 
technique. Kafka was created by LinkedIn and currently is an open-source project supported 
by Confluent, a company that is managed by Apache. Its principal features are as follows: 
Kafka is an intermediary-based solution that functions by controlling data streams as records 
in a server cluster. It is possible to store the records (message streams) of numerous server 
instances in a topic across several data centers using Kafka servers. The records and messages 
that are kept in a topic are organized into a sequence of tuples. Tuples are immutable Python 
objects that include a key, a value, and a timestamp. 
 
Kafka provides a Publish-subscribe-based messaging system for the data streams, performing 
similarly to other message queuing technologies but with excessive performance and gaining 
very low latency in the transmission of the messages. For scaling up the processing, it offers 
to users the capability of distributing the data processing into various consumer instances. In 
addition, it allows for storing streams and replicating them to provide fault tolerance. Kafka 
permits producers to anticipate recognition so that a deed is not complete unless it is 
completely reproduced and its persistence is assured. Figure 5.31 displays briefly the 
architecture of Apache Kafka.  
 
One of the open-source messaging systems with the fastest market growth is Apache Kafka. 
This is mostly because the architecture design pattern offers distributed systems an effective 
logging method. Apache Kafka is designed for real-time log streaming, which is ideal for 
applications with the following requirements [183]: 
 
• Reliable communication between various components. 
• Flexible messaging workloads, which may be adapted to changing application needs. 
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• Streaming data processing in real-time. 
• Data/message replay is natively supported. 
 
 

 
Figure 5. 31: Kafka Architecture [Is an extension of resources [It is an extension of the sources [184] and [185] ] 

 

5.7.2.4 Zookeeper 
 
One of the intermediate affiliations of Apache Kafka is Apache Zookeeper [186], which is a 
service for distributed synchronization. Zookeeper is a service that performs as a coordinating 
interface between Kafka brokers and consumers. Kafka stores Metadata such as information 
about topics, brokers and consumers and offsets, etc. in zookeeper. In addition, A huge 
number of hosts may be efficiently managed with the help of Zookeeper, a distributed 
coordination service. With its straightforward design, Zookeeper has been able to simplify the 
complicated task of administering and coordinating a service in a distributed context. It should 
be noted that Zookeeper gives programmers the ability to concentrate on the logical aspects 
of their program without being concerned about the distributed nature of the program. 
Zookeeper is used to manage and coordinate Kafka brokers. The Zookeeper service is used to 
provide information to both customers and producers as well as the existence of any new 
broker in the Kafka system or the failure of the Kafka system. In this way, producers and 
consumers decide to use another broker to coordinate their work. 
 

5.7.2.5 Elasticsearch 
 
Elasticsearch [187] It is a full-text search and analysis engine that is extremely scalable and 
distributed, and it gives you the ability to store, search, and analyze enormous volumes of 
data in close to real-time. Through a robust aggregation mechanism and data storage, it may 
be utilized as an analytical framework even if it is mostly employed as a search engine. 
Elasticsearch has a comprehensive JSON-based query DSL, demonstrating how easy it is for 
Lucene to read and write queries. The JSON data storage format is used by most of the NoSQL 
data stores due to its ability to be very condensed, versatile, and simple to comprehend. From 
another point of view, this is a document database setting in which semi-structured and 
structured data can be efficiently retrieved, stored, and documented. All data in the software 
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settings are stored in JSON file format. Using the JSON format, Elastic Search has its domain-
oriented query language. In addition, this setting allows for nesting level queries as needed. 
REST API is used to expose the function of elastic search settings, Elasticsearch provides a 
stable environment for storing large amounts of data and content. Most importantly, the 
technology allows extremely fast data retrieval and storage procedures. 

5.8 Implementing the Big Data Pipeline  

As mentioned earlier, in the BFDD-S framework the process of the attack detection will be 
done out of the controller. To provide a scalable, fast, and real-time detection phase, the big 
data pipeline has been implemented. The big data pipeline consists of Apache Kafka for 
message queuing, and Apache Spark for real-time data streaming and machine learning 
processing, in this section, first these tools will be introduced briefly and then explain how the 
pipeline has been implemented. 

5.8.1 Pre-Requisite Configuration 
 

In this research, the Linux Ubuntu Server is used as an operating system of the Server. 
Therefore, before installing all these tools, it is necessary to make sure that Java 8 is installed 
on the server, to install Java 8 the following commands should be followed: 

sudo apt-get update 

sudo apt install openjdk-8-jdk openjdk-8-jre 

 

After the installation of Java is completed, the JAVA_HOME and JRE_HOME environment vari

ables should be set. Multiple java applications use these variables to find the JAVA libraries d

uring the runtime 

cat >> /etc/environment <<EOL 

JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 

JRE_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre 

EOL 

  

5.8.2 Implementation of Big Data Infrastructure 
 

In this section, we describe deeply the implementation process of our intended big data 
infrastructure. As stated in the previous section, we utilize three big data tools for data 
pipeline infrastructure, Apache Kafka for message queuing, Apache Spark for data processing, 
and Elasticsearch for data storing. Therefore, in the following, we explain the deployment of 
each one of these tools in our infrastructure. 
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5.8.2.1 Apache Spark Implementation in Standalone Mode 
 
For starting the Spark process and launching a standalone cluster manually, after downloading 
and installing the Apache Spark, first, a standalone server (Master) should be run by executing 
the following command: 
 

$SPARK_HOME/sbin/start-master.sh 

After performing the above-mentioned command, figure 5.32 presents the result. 
 
 

 
 

Figure 5. 32: Running Spark in Standalone Server Mode. 

 
After successfully running the command, the result can be seen in the Spark web UI at the 
address: http://localhost:8080 (Figure 5.33) 
 

 
 

Figure 5. 33: Spark Web GUI. 

http://localhost:8080/
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After completing the previous step, the worker process should be launched. The executors are 
launched by the worker process for job execution. These executors are where the real data 
processing take place. One or more workers can be started and connected to the master using 
the following command: 
 

$SPARK_HOME/sbin/start-slave.sh spark://[master Spark server name]:7077 

 
Figure 5.34 shows the result after executing the above command. 
 

 
 

Figure 5. 34: Launching Spark Worker 

 
As figure 5.35 presents, the result can be seen in the master web console: 
 

 
 

Figure 5. 35: Spark Standalone Mode Information 

 
Apache Spark offers a functionality to interactively develop Scala programs which is called 
Spark Shell. This functionality is highly useful for both learning the Spark API and interactively 
analyzing data. 
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Run the following command to start spark-shell in local mode: 
 
$SPARK_HOME:/bin/spark-shell spark://[Spark server name]:7077 
 
The figure 5.36 shows Spark shell environment. 
 

 
 

Figure 5. 36: Spark Shell 

 

5.8.2.2 Apache Kafka Implementation  
 

As mentioned earlier, Apache Kafka is a publish-subscribe messaging system. Therefore, for 
publishing messages it requires the two following entities: 
-The producer for facilitating the publication of data and records on topics, and 
-The consumer for reading data and messages from the topic. 
 
The steps of the pub-sub messaging workflow are as follows: 
 

1- Producers send messages to topics at regular intervals. 
2- Kafka brokers store all the messages into the configured unit for a specific topic and 

share the messages evenly between the partitions.  
3- Consumer shares personal topics. When a topic is shared by a Consumer, Kafka 

prepares the current topic offset for the Consumer, and the offset is also stored in the 
zookeeper. 

4- Consumer requests new messages from Kafka at regular intervals. 
5- When Kafka receives messages from the producer, it sends these messages to the 

consumer. 
6- The consumer receives and processes messages. 
7- When the message is processed, the consumer sends a confirmation to the broker. 
8- Kafka modifies the offset value and updates zookeeper after receiving confirmation. 

Hence the offsets are stored in the zookeeper, the consumer can read the next 
messages correctly and the above steps are repeated until the consumer stops the 
request. 
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Consumer has options that can go back in time and the desired topic goes back and messages 
can be read. 
 
After successfully downloading and installing Apache Kafka, to make Kafka run, it is required 
to update and set a few properties in the Kafka configuration file which is available at the 
following address: 
 
$KAFKA_HOME/config/server.properties 

 
The following two lines must be added to the Kafka configuration file: 
 
listeners=PLAINTEXT://[Name of the Server]:9092 
advertised.listeners=PLAINTEXT://[Name of the Server]:9092 
delete.topic.enable=true 

 
 
Listeners are the addresses to which the socket server listens, and advertised.listener is the 
hostname and port number of the broker which will broadcast to producers and consumers. 
After editing the Kafka configuration file, and before launching the Kafka application, first, the 
Zookeeper tool must be run. 
 
In this step, the following command is used to launch the Zookeeper application (Figure 5.37): 
 
$KAFKA_HOME/bin/zookeeper-server-start.sh config/zookeeper.properties 

 
 

 

 
 

Figure 5. 37: Running Zookeeper 
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After running the zookeeper successfully, the Kafka server (As the Kafka Broker) can be 
launched with the following command: 
 
$KAFKA_HOME/bin/kafka-server-start.sh config/server.properties 
 

Figure 5.38 presents the result of executing the above command. 
 

 

 
 

Figure 5. 38: Running Kafka Server (Broker) 

After completing the installation and running the Zookeeper and Kafka, first, a new Topic 
should be defined to store the events as shown in the following command: 
 
 $KAFKA_HOME/bin/kafka-topics.sh --create –zookeeper localhost: 2181 --replication-factor 1 --partitions 1 –
-topic EXPTINFO 

 
In this command, the replication-factor option specifies the number of copies of data that will 
be generated. Because only one single instance is running in this research, this value is set to 
1. 
 
Additionally, in the above command, the partition option indicates the number of brokers to 
which the data are split. In this experiment, the single broker is used therefore the number 
in the partition option is set to 1(Figure 5.39). 
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Figure 5. 39: Create a Topic in Kafka 

After executing the above command, the created Topic can be checked by running the 
following command (See figure 5.40): 
 
$KAFKA_HOME/bin/kafka-topics.sh –list –zookeeper localhost:2181 
 

 
 

Figure 5. 40: Kafka Topic Information 

 
In the old version of Kafka, it was necessary for the Kafka consumer to communicate directly 
with Zookeeper, but in the new version of Kafka, the Zookeeper is deprecated and replaced 
with the bootstrap-server to provide the connectivity between the Kafka consumer and Kafka 
broker. As can be seen in figure 5.41. 
 
Kafka uses the command line to define consumers for reading data from the Kafka cluster as 
shown in the below command: 
 
$KAFKA_HOME/bin/kafka-console-consumer.sh –zookeeper localhost: 2181 –-topic EXPTINFO 

 
 

 
 

Figure 5. 41: Define Kafka Consumer 

 

5.8.2.3 Elasticsearch Implementation 
 
After completing the installation and configuring the Apache Kafka and Apache Spark, the 
Elasticsearch for storing data should be installed and run. 
 
After Installing, for running Elasticsearch simply the following command should be executed: 
 
$ELASTICSEARCH_HOME/bin/elasticsearch 
 
The result of running above command is shown in figure 5.42. 
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Figure 5. 42: Running Elasticsearch 

The Elasticsearch can be configured through its main configuration file called elasticsearch.yml 
which is stored in the /etc/elasticsearch directory. It should be considered that the 
Elasticsearch configuration file is in YAML format which means that the indentation should be 
maintained. By default, Elasticsearch listens for the network traffic on port 9200. The 
Elasticsearch uses RESTful API for communication which means that it responds to the typical 
CRUD commands (CRUD stands for Create, Read, Update, and Delete). Therefore, for checking 
the successful running Elasticsearch on port 9200, the curl command and GET request can be 
used: 
 
 $curl -X GET ‘http://localhost:9200’ 
 
The following figure 5.43 displays the result. 
 

 
 

Figure 5. 43: Elasticsearch Information 
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It should be noticed that Elasticsearch is a distributed and very simple-to-scale NoSQL 
database, since it is built on top of the Lucene engine and uses the HTTP interface. Being a 
NoSQL database means that it is not necessary to have any structured data, and it does not 
employ any standard structured query language while searching for information. 
 
For configuring Elasticsearch, first, an index should be defined, the index is a group of 
documents that have comparable features. In other words, indexes are groups of associated 
JSON files that can be considered as the base unit of storage in Elasticsearch. Figure 5.43 
indicates the index file which is created in this research for storing the network traffic 
information received, aggregated, transformed, and sent from the SDN controller to the data 
pipeline for processing. As mentioned earlier, in the “Machine Learning” section of this 
chapter, and “Data set Selection” sub-section, in this framework prototype, for DDoS attack 
detection, we consider four traffic features, Source Address, Destination Address, Destination 
Port, and Sum of the Flows. 
 
 

 
 

Figure 5. 44: Create Index in Elasticsearch for Storing Data 

 
Therefore, for this research, the index called “trafficinfo” is created to store the network traffic 
received from Apache Kafka for later processing by Apache Spark-based machine learning. To 
ensure that the index is properly created in Elasticsearch, the following command can be used 
(Figure 5.45 shows the result).  
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Figure 5. 45: Information of the Created Index in Elasticsearch 

In the following section, how to implement the data pipeline is explained, when all necessary 
tools and applications are properly installed and configured,  

5.8.3 Implementing Data Pipeline  

For implementing the data pipeline two Python files are created, one for providing the 
connection between Apache Kafka, and Apache Spark and the second one for implementing 
a machine learning model into Apache Spark using the Mllib library. In the initial phase, the 
essential modules for different purposes such as configuring Spark, defining Streaming, and 
enabling Kafka to Spark Streaming must be imported. In addition, it is required to import the 
JSON module for processing the incoming data and also the Elasticsearch module (Figure 
5.46). 

 

Figure 5. 46: Import Spark Essential Libraries 

Then the Spark Context must be created. Figure 5.47 illustrates the necessary steps to 
accomplish this object. The Spark Context is the primary point for accessing Spark capabilities. 
Creating RDDs, accumulators, and broadcast variables on a Spark cluster is accomplished via 
the usage of the Spark Context object, which establishes a link to a Spark cluster [188]. 
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Figure 5. 47: Create Spark Context 

The setMaster (‘local [*]’) allows Spark to be run locally with as many worker threads as logical 
cores available on the computer. 

It is not essential to use the setLogLevel function, but it is beneficial for reducing the amount 
of noise on stdout (Standard Output) that would otherwise obscure the real outputs from the 
task. 

Then an instance of the Streaming Context object (available as variable sc) must be 
constructed, which acts as a doorway for the streaming to begin. The Spark Streaming divides 
the incoming data into batches and creates mini-batch RDDs (RDD is Spark's fundamental 
abstraction), and the output is likewise produced in batches. Therefore, the batch interval 
must be specified when a Streaming Context object is created. This guarantees that the 
streaming data is separated into batches depending on the time slice that is being used. 

n_secs = 10 

scc = StreamingContext (sc, n_secs) 

 By using a batch interval, Spark is informed how long it should wait before fetching the data. 
To achieve optimal processing performance, it is usually suggested to choose a low batch size 
interval value. In this framework, the batch interval is set to 10 seconds. The figure 5.48 
clarifies the process of dividing the live input data into batches and then processing by the 
Spark engine.  

 

 

Figure 5. 48: Process of the live input data in the Spark streaming [189]. 

To provide a connection to the Kafka cluster, the streaming context is used. In this step, the 
input stream is created to pull messages from the Kafka Brokers. Some parameters should be 
specified for creating the input stream: 
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- Zookeeper’s hostname and port number that connects from this stream. 
- Name of the Topic (here is EXPTINFO) and the number of partitions this stream 

consumes in parallel (Figure 5.49). 

 

Figure 5. 49: Generates an input stream that fetches messages from the Kafka broker. 

Using the above-mentioned steps, the connection between Kafka broker and Spark streaming 
will be provided. Then, to complete the data pipeline two functions are written, one for 
sending and storing the network traffic from Kafka to Elasticsearch (called StoringtoES) and 
the other one for retrieving the stored information from Elasticsearch (called FetchfromES) 
into Apache Spark for the data processing phase. 

5.8.4 Implementing Machine Learning in Apache Spark 

Regularly, for implementing and creating a machine learning model in Python, as an input for 
training, raw DataFrame is used, particularly when working with the Scikit-learn library but in 
a distributed environment the situation might be more challenging because in this condition 
for preparing the training data the Assemblers should be used. Therefore, in this step, a simple 
Spark DataFrame should be established. DataFrame is a Distributed set of data organized in 
registered columns. In fact, its concept can be considered as corresponding to a table in a 
relational database. DataFrames can be created from an extensive range of sources such as 
external databases, structured data files, hive tables, or existing RDDs. 

Spark is based on the concept of a fault-tolerant collection of components that may be 
processed in parallel and is known as a resilient distributed dataset (RDD) [190]. 

For creating RDDs in Spark, there are two methods, one method is to use an external data 
source such as HDFS, File system, etc., and load it into the system and the other method which 
is used in this research is to consider an existing group of data and perform the transformation 
operation by utilizing the parallelize () method of SparkContext.  

The first item that must be constructed in order to utilize the parallelize () function is a 
SparkContext object; as cited earlier in this section then, the following commands, as shown 
in figure 5.50, can be used to create a data frame. 

 

Figure 5. 50: Creating RDD in Spark 
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In the previous section, the process of evaluating different machine learning methods for 
detecting DDoS attacks in the network using two popular data sets was described in detail and 
the Random Forest algorithm has been chosen for implementation in the data processing 
phase of the data pipeline of the BFDD-S framework using Apache Spark. In order to 
implement the machine learning algorithm into the framework using Apache Spark MLlib 
library, the following methods are utilized for the pre-processing phase in Spark approaches: 

1) VectorAssembler 

2) Scaling and normalizing 

Vectors are utilized in algorithms and processes in the field of machine learning to describe 
the objective variable while training an algorithm. Therefore, by using the Spark ML library, 
we can take advantage of using the VectorAssembler module, which provides the possibility 
for transforming numerical features into a single vector that can be later passed to the 
machine learning models (Figure 5.51 shows the relevant commands).  

 

Figure 5. 51: Transforming Numerical Features into Single Vector 

As another step of pre-processing of the implementation of the machine learning model to 
the BFDD framework, we perform the scaling and normalization task. This task is not 
mandatory but, extremely suggested that before employing the machine learning model for 
preventing the possibility of an algorithm being unresponsive to particular features and data 
leakage, it is an appropriate approach to scale and normalize the features [191]. 

As Figure 5.52 shows for scaling and normalization of the features task in Spark, there is a class 
called “StandardScaler” in the ML library [192]. 

 

Figure 5. 52: Scaling Features in Spark 

and finally, for the machine learning model, after loading the appropriate module from the Ml 
library with the commands displayed in figure 5.53. 

 

Figure 5. 53: Import Random Forest Classifier in Spark 
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the RandomForestClassifier is used to define the machine learning model (See figure 5.54). 

 

Figure 5. 54: Define Random Forest Model in Spark 

As the figure shows, the Random Forest Classifier method is comprised of some parameters. 
This algorithm requires defining the feature column, created by the VectorAssembler module 
as mentioned earlier in this section, as well as the dataset's label column, and the number of 
trees is which in this model defined as 30 without tuning the hyperparameters. 

In this research, the major concern is DDoS attack detection, and accuracy should be 
considered as a vital criterion for any intrusion detection approach. Therefore, for creating a 
Random Forest model with high accuracy, the number of trees plays a significant role. In 
Addition, the number of trees in this model affects the memory utilization and processing 
time. Some research [193] claimed that if the number of trees has been increased without any 
logic behind it, the anomaly detection approach may suffer serious consequences. In addition, 
they demonstrated that for achieving the optimal value considering both processing time and 
accuracy, the suitable value for trees is around 30 trees. 

The next step in this approach is to create and conduct the proper action request to the 
controller based on the machine learning process for all incoming traffic. As stated in the 
earlier section, the northbound interface provides communication between the controller and 
the application layer. There are several different methods that can be used as the Northbound 
interface, in this framework, the REST API is considered for providing the communication 
between the big data pipeline and the controller.  

When Spark Streaming context is run, then load the stored traffic from the Elasticsearch using 
FetchfromES () function, and perform data processing phase, if Spark-based machine learning 
detects any malicious traffic, the attacker device is recognized by the traffic sender’s IP 
address (SrcIPAddr), then a REST API request is created and send to the controller with the IP 
address of the attacker. To achieve this objective, first, we have to create a REST API channel 
to the controller in order to send a specific request. 

API is a specific service through the web that utilizes the standard HTTP protocols to grant 
access to the particular data for other applications. There are multiple architecture styles that 
can be used in designing API such as FALCORE, gRPC, GraphQL, and REST. But probably, the 
most prominent architectural style of APIs for web services is REST which is the acronym for 
REpresentational State Transfer. It makes client-server communication easy by providing a set 
of guidelines. In this particular use case, the REST architecture is implemented to the BFDD-S 
framework to propose Northbound API to the controller. 

the general processes for designing and performing a RET API communication are as follows: 
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1- A client or application to send a request and some data to a specific address (URL). The 
data will send through the request method enclosed in the message body in JSON 
format. The popular request methods are GET, POST, and PUT. 

JSON (JavaScript Object Notation) is a standard format for sending and receiving data 
using REST APIs architecture. 

2- The sever located in the particular address (URL) received the data and will perform 
some operations on them and reply response to the client or application. The response 
information should also be always in JSON format. 

3- The client or application will decide about the received response. The figure 7.48 
concisely explains the REST API communication architecture. 

 

 

Figure 5. 55: REST API Architecture 

For implementing the above process into the framework in order to provide a REST API 
channel as a northbound interface between the controller and data processing pipeline, first, 
a block of data (called AttackDevInfo) in JSON format is created with all necessary information 
such as network device ID (deviceID), type of the traffic (ETH_TYPE), attacker IP address and 
subnet mask, etc. is created which can be seen in the figure 5.56. 
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Figure 5. 56: JSON File for Creating REST API Request 

Then, a REST API POST method is used to create a request object and send a combination of 
the specific data such as the REST server address (here, the ONOS controller URL), the data 
(AttackDevInfo), and the authentication information (here, ONOS admin username and 
password) as shown in the below figure 5.57. 

 

Figure 5. 57: Sending Request to the Controller via REST API POST Method  

After receiving and processing the request, the REST API server will provide a response. This 
response contains an HTTP status code. This code represents the result of the request, and 
the sender application can check and make a decision based on this received code. The HTTP 
code has a range between 1xx to 5xx.  

If the response code is 200 (which means OK) or 204 (which means No Content), this indicates 
the successful conclusion of the sent request.  

5.9 Chapter Summary 

The major goal of this chapter is to find solutions to a few research questions. In this chapter, 
a robust and resilient intrusion detection framework (BDDF-S) has been presented that can 
offer a scalable and reliable DDoS attack detection and mitigation system for the SDN 
environment with a fast, novel, and real-time detection technique. For achieving this purpose, 
an effective method appropriate to the architecture and characteristics of the SDN network 
has been proposed. The BDDF-S framework is a heterogeneous system in which the detection 
phase is done out of the controller and gathering information and mitigation are done by the 
SDN controller.  
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In designing the BFDD-S prototype, we utilize a combination of big data tools and machine 
learning together with taking advantage of the developed SDN controller. The proposed 
framework consists of three modules, one module for gathering and formatting statistical 
information, the second module for detecting attacks, and the third module is the machine 
learning process. 

For classifying the network traffic to determine malicious flows more accurately, the third 
module is defined and implemented to utilize the machine learning algorithm classifier 
capability offered by Apache Spark MLlib library and implement the Random Forest algorithm 
into the data processing module based on the results of our evaluation on different machine 
learning algorithms. The outcome of this part would be an answer to research question 
number two, which is: 

- Which machine learning classifier algorithm is appropriate for detecting DDoS 
attacks? 

The attack detection module is located in a server and uses data pipeline infrastructure and 
machine learning for detecting DDoS attacks. The prevention task will be done by the 
controller (We used ONOS as a controller for this experience). In this framework for creating 
data pipeline infrastructure, we use the following big data analytic tools, Kafka for message 
queuing, Apache Spark for data processing, and Elasticsearch for storing data.  

By creating a data processing pipeline with these tools with the following features such as 
short response time, high efficiency and error tolerance, high scalability, and ability to process 
fast streams of events of Kafka together with Real-Time Stream Processing, Fault Tolerance, 
scalability, and the lightning-fast analytic engine of Apache Spark and horizontally scalability, 
multi-tenancy, and speed of Elasticsearch. The conclusion of this part would be an explanation 
for research question number three: 

- How to implement a data pipeline to detect malicious network traffic in the 
network? 

 
In addition, for information gathering, aggregating the flows, and converting them to an 
appropriate format we developed an API for the ONOS core controller using Java 
programming language. The result of this part which is developed an API called Exporter would 
be an explanation for research question number four which is: 
 

- How can a detection module be integrated into the SDN controller for the detection 
and prevention of a DDoS attack in the SDN environment? 
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Chapter 6 

6 Experimental Setup and Performance Evaluation 
 

In this chapter, we explain the details of the hardware and software that we use for setting up 
and preparing the experimental test bed. Since our preliminary purpose when designing the 
BFDD-S framework was to offer a robust, resilient, and fast DDoS attack detection in the SDN 
network, for evaluating the performance of the framework, we generated normal (ICMP 
packet) and anomaly traffic (TCP SYN flood) simultaneously and walk through our approach, 
the network traffic captures via the SDN controller and process through the data pipeline for 
attack detection and outcomes are stored in the data store. Finally, the diagrams will be used 
to demonstrate the performance evaluation of the framework. In this research, we consider 
the CPU consumption, memory utilization, and estimated process time for legitimate traffic 
as evaluation metrics. 

6.1 Setup Experimental Testbed 

To evaluate the performance of the BDDF-S framework, we implement a testbed which is 
depicted in figure 6.1. We design a simple leaf-spine network architecture by using four Dell 
Power Edge R430 servers and four bare metal EdgeCore AS 4610 switches that support 
OpenFlow protocol and one HP2530-8G as a management switch. These servers and Switches 
connect to each other using the Fiber cable. Table 6.1 portrays the hardware and software we 
use in this research. 

For emulating a SDN network architecture, we use this simple but real test bed as an underlay 
network with the help of virtual Open vSwitches. The emulated SDN network runs within one 
Linux machine server and is controlled by a remote ONOS SDN controller which is installed 
and running on another physical server and implements the Big Data pipeline in another 
physical machine. To emulate the SDN-based network, we use Mininet [169] to define the 
topology on one server, consisting of one Web server and several hosts which are all 
connected to an SDN-based switch.  
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Figure 6. 1: Experimental Testbed Architecture. 

Furthermore, one Linux server machine has been used to implement a Bigdata pipeline which 
is controlled by a remote SDN controller (ONOS) running on another physical server machine, 
to emulate the SDN based network, we use Mininet to define a network topology on one of 
server machines, consisting of one web server and several hosts which are all connected to a 

virtual SDN switch (OpenVswitch).  

Table 6. 1: Hardware and Software used in the Testbed. 

 
 

6.2 Deploying Network Topology 

Mininet is capable of creating the network with arbitrary topology in a simple and fast way 
using the Python API [194]. By using this API, a script consisting of various features of the 
network can be defined, such as the topology, the type of network devices, the IP addresses 
of the controller, the communication protocol, etc. 
 

Therefore, for deploying and emulating our network topology for our experimental testbed 
using Mininet, we use the Mininet Python API to develop a Python script.  
 
In the script, after importing all essential libraries, the network devices such as hosts and 
switches are specified using the following commands: 
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For adding a host to the topology, the following command is used: 

host = self.addHost('h')  

For adding a switch to the topology, the following command is used:  

switch = self.addSwitch('s')  

For defining a link between two devices, the following command is used: 

self.addLink(device1,device2) 

Once the topology of the network has been defined in the script, the type of switch used in 
the network, the IP address of the SDN controller, and the protocols that must be activated in 
each of the switches must be specified. In this research, our network topology is based on the 
ONOS SDN controller and OVS switches, and for connecting the controller to the OVS switches 
and establishing communication between them, the OpenFlow protocol has been activated 
on all the switches. To achieve this task, the following commands have been used: 
 
The following commands are used to specify the IP address of the SDN controller, the type of 
switch, and the activation of the OpenFlow protocol in version 1.3: 
 
net = Mininet ( 
 topo=NetTopo(), 
 controller=lambda name: RemoteController(name, ip=CONTROLLER_IP,  
 port=CONTROLLER_PORT),  
 switch=partial (OVSSwitch, protocols=’OpenFlow13’) 
) 
  
 

The following command performs network deployment: 

net.start()  

Before executing the script, the ONOS must be run as the SDN controller. To run the ONOS 
controller, using the CLI command and in the ONOS_ROOT folder, the following command 
must be executed: 

bazel run onos-local -- clean debug  

After successfully running launching the ONOS, for connecting the OVS switches defined in 
mininet with ONOS, the OpenFlow protocol must be activated (By default, this application is 
deactivated in ONOS). The following commands activate the OpenFlow and 
Forwarding apps: 

> app activate org.onosproject.fwd 

> app activate org.onosproject.openflow  
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Figure 6. 2: Activate the OpenFlow and Forwarding apps in ONOS. 

After executing these commands, it can be verified in the ONOS CLI that the OpenFlow 
protocol is already active, as can be seen in Figure 6.2. 
 
Once the previous command has been completed, in a new CLI terminal in the folder where 
the developed script resides and execute the following command, "NetTopoScript.py" is the 
name of the developed script: 

sudo python NetTopoScript.py  

An example of the script execution is shown in figure 6.3. The ONOS controller provides the 
overall view of the whole network, and it depicts how all the devices and their connections 
are added, and the network topology is ready for generating network traffic. 
It has not been considered to add a capture of the complete output of the execution of the 
script in figure 6.3 due to the great extent of the displayed information when generating the 
traffic between the hosts on the network. 
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Figure 6. 3: Network Setup from Controller Point of View 

For the experimentation, we launch a DDoS flooding attack to evaluate the performance of 
the BFDD-S framework.  

6.3 BFDD-S Framework Operation 

The figures in the following present the operation of the proposed framework. In the 
beginning, we execute a ping command for sending the ICMP packet between two hosts to 
show the network connectivity between hosts and make sure that the hosts are reachable 
from each other (Figure 6.4). 

 

Figure 6. 4: Ping command before launching flooding attack. 
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As mentioned earlier, the new traffic sends to the controller, and the controller transfers the 
incoming new traffic to the big data pipeline for data processing and attack detection phase; 
as figure 6.5 shows, the anomaly detection module considers the traffic as normal; therefore, 

no action required and the packet will be forwarded to the destination port. 

 

Figure 6. 5: Legitimate Traffic Detection Message 

To generate a DDoS flooding attack, we use hping3 to employ a TCP SYN flood attack, the 
sample command which we use is as follows:  

sudo hping3 -V -c 100000 -d 9000 -S–flood [IP- address]  

using this command, we send 100000 SYN packets with a data packet size of 9000 bytes and 
as fast as possible without waiting for the reply message. During the analyzing the incoming 
network traffic, if the anomaly detection module identifies any anomaly, it generates a REST 
request and sends it to the controller to block the attacker as can be seen in the following 
figure 6.6. 
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Figure 6. 6: Anomaly Detection Message by the Framework 

After receiving the request from the attack detection module, the controller makes action and 
creates a new rule to block the attacker’s host. As Figure 6.7 indicates after launching the 

attack, the host is blocked and the normal ICMP packet sending does not work via the PING 
command. 

 

Figure 6. 7: Ping command After Blocking the Attacker. 
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6.4 Performance Evaluation of the BFDD-S Framework  

To evaluate the performance of the framework, we choose the following metrics: CPU and 

memory consumption of the ONOS controller, average response to the legitimate traffic 
during the attack, and average time to detect and mitigate a DDoS attack. We use the psutil 
python library and the htop tool to measure the above-mentioned metrics. The figures 6.8, 
6.9, and 6.10 depict the performance metrics under the DDoS attack. The evaluation results 
clearly show that increasing the number of packets has not so much effect on the performance 
of the ONOS Controller. Analyzing the CPU and memory consumption, figures 6.8 and 6.9 
indicate that in the time that the number of attacking packets is increased under launching a 
flooding attack, the consumption fluctuation does not increase drastically and it shows that 
the DDoS attack could not saturate drastically the controller’s CPU and memory capacity of 
the ONOS controller. With the highest number of attacking packets, the controller reaches 
less than 20% of average CPU consumption and in addition, the average Memory consumption 
reaches less than 35%.  

 

Figure 6. 8: Average Controller CPU Consumption. 

 

Figure 6. 9: Average Controller Memory Consumption.  
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On the other hand, figure 6.10 illustrates the average response time by the controller to the 
legitimate traffic during the attack. It shows by using the BFDD-S framework, there is not so 
much response delay to the legitimate traffic and the average latency value is not significant 

and the flooding attack does not considerably affect the processing of the normal traffic.  

 

Figure 6. 10: Average Controller Response time to Legitimate Traffic. 

In addition to previous analysis, and to thoroughly evaluate the BFDD-S framework and 
ascertain its performance, we conducted a comprehensive analysis incorporating various 
methodologies. Our objective was to assess the effectiveness of the framework by comparing 
it to both SDN-based and traditional approaches employed in countering DDoS attacks. For 
the first approach, we employed a comparative analysis with an SDN controller using 
centralized attack detection method, for this purpose the OPERETTA SDN controller was 
utilized. In fact, OPERETTA, an evolved version of the Pox controller, was specifically designed 
to detect and mitigate DDoS SYN flooding attacks. By benchmarking the BFDD-S framework 
against OPERETTA, we could gain valuable insights into its efficacy and potential advantages. 

In addition to the SDN-based approach, we also evaluated the BFDD-S framework against 
traditional technique that are still prevalent in combating DDoS attacks. This technique 
included the utilization of Firewalls, which serve as a first line of defense. By examining the 
performance of the BFDD-S framework against the different approach, we aimed to provide a 
comprehensive understanding of its capabilities and strengths in addressing the evolving 
landscape of DDoS threats. 

In order to evaluate the performance of the BFDD-S framework, we took into account several 
crucial metrics. These metrics encompassed the CPU and memory consumption of the 
Controller, the average response time to legitimate traffic during an attack, and the average 
time required for mitigating a DDoS attack by the controller. By analyzing these metrics, we 
aimed to acquire valuable insights into the efficiency and effectiveness of the BFDD-S 
framework when confronted with DDoS attacks. This comprehensive evaluation enabled us to 
assess the framework's ability to handle such attacks and provided a clearer understanding of 
its operational performance. 



 156 

Additionally, the evaluation considered the framework's adaptability and scalability in 
dynamic network environments. We examined how well BFDD-S coped with increasing traffic 
loads while maintaining its responsiveness and ability to prevent DDoS attacks effectively. 

6.4.1 Performance Evaluationof of the BFDD-S Framework with 
Centralized Detection Method 

 

In first method, to compare our proposed BFDD-S framework with a centralized method , we 
address one of the primary challenges associated with centralized defense methods: the delay 
caused by the validation process of incoming packets, which subsequently affects the 
controller's response time to legitimate flows. This analysis focuses on highlighting the 
advantages of the BFDD-S method in reducing response time for authorized requests and 
expediting attack mitigation compared to centralized attack detection methods. In the 
conducted experiments, we subjected both the BFDD-S framework and OPERETTA to a series 
of simulated DDoS attacks under controlled conditions. By carefully monitoring the response 
time of each method, we observed a significant difference in their ability to handle legitimate 
traffic during attack scenarios. 

Evaluating response time to legitimate flows:  

The BFDD-S method excels in its ability to detect attacks without introducing delays in the 
controller's packet handling. Because in this method, all packets are directed to a separate 
attack detection module  for validation, relieving the controller from the responsibility of 
validating and responding to these requests. Consequently, the time required to respond to 
authorized requests is significantly reduced. To support this claim, we conducted an 
experiment to evaluate the response time of the BFDD-S method. 

For this experiment, we subjected the network to DDoS flood attacks at varying rates. We 
then sent requests to a web service and measured the time taken to establish of a complete 
HTTP session. These results were then compared with the output of the OPERETTA controller. 
The findings as shown in figure 6.11 explicitly demonstrate that our proposed framework 
method significantly reduces response time to legitimate traffic when compared to 
OPERETTA. In instances of low-rate attacks, the OPERETTA controller exhibited response times 
of 2 to 4 seconds, whereas our proposed method consistently achieved response times below 
2 seconds. Moreover, as the attack rate increased, the BFDD-S method exhibited even greater 
advantages in terms of response time to legitimate flows. 
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Figure 6. 11: Comparison between BFDD-S and centralized method in terms of average response time to the 
legitimate traffic. 

Furthermore, the experiment evaluated the scalability of the BFDD-S method by subjecting 
the network to a high-intensity DDoS attack. Under this extreme condition, the BFDD-S 
framework maintained its efficiency in handling legitimate traffic, with response times 
remaining well below the tolerable threshold. In contrast, the OPERETTA controller 
experienced significant delays and struggled to respond promptly during the intense attack. 

These results confirm that the BFDD-S method not only excels in its responsiveness to 
legitimate requests but also exhibits robust scalability, making it a promising solution for 
defending against DDoS attacks in modern, high-traffic network environments. Its ability to 
maintain optimal performance even under extreme conditions further emphasizes the 
practicality and effectiveness of the BFDD-S framework as a comprehensive DDoS defense 
strategy. 

Evaluating Mitigation Time by the controller: 

 In addition to reducing response time to legitimate flows, we also assessed the time required 
for the controller to mitigate attacks. To perform this analysis, we subjected the network to a 
flooding of SYN packets and measured the time required for the controller to mitigate the 
attacks. Our evaluation (figure 6.12) revealed that the BFDD-S method surpasses centralized 
methods by providing quicker attack mitigation. In centralized approaches, the controller 
must bear the burden of detecting and mitigating the attack while also control, maintain and 
managing the network, resulting in longer mitigation times. The evaluation results, illustrated 
in the graph, clearly demonstrate the time advantages offered by the BFDD-S method across 
different attack rates. 
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Figure 6. 12: Comparison between BFDD-S and centralized method in terms time required to mitigate DDoS 
attack by the controller. 

Evaluation of Processing Load in the Controller: 

To evaluate the processing load of the controller in the BFDD-S method, we conducted a 
comprehensive analysis by subjecting the simulation network to a flood attack consisting of 
SYN packets at varying rates. The results in figure 6.13 clearly demonstrate that the BFDD-S 
method exhibits a significantly lower processing load compared to OPERETTA when the attack 
rate remains below 9000 packets. This finding highlights the efficiency and effectiveness of 
the BFDD-S method in efficiently handling and managing the processing load during 
moderate-intensity DDoS attacks. However, as the attack rate increases beyond 9000 packets, 
the processing load of the BFDD-S method approaches that of the OPERETTA controller. This 
observation suggests the need for further optimization or scaling strategies to ensure optimal 
performance of the BFDD-S method under high-intensity DDoS attacks. 

 

Figure 6. 13: Comparison between BFDD-S and centralized method in terms of processing load on the 
controller during the DDoS attack. 
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Evaluation of Controller Memory Consumption: 

Furthermore, we evaluated the memory consumption of the controller in both the BFDD-S 
method and the centralized approach. The results in figure 6.14 indicate that the proposed 
framework exhibits slightly lower memory consumption values compared to the centralized 
method. This implies that the BFDD-S method is more resource-efficient and capable of 
effectively managing memory utilization during DDoS flooding attacks. However, it is worth 
noting that as the attack rate varies, the memory consumption of the BFDD-S method 
approaches that of the centralized method. This finding underscores the need for continuous 
monitoring and optimization to ensure efficient memory utilization, particularly under high-
intensity attack scenarios. 

Overall, the evaluations of processing load and memory consumption reveal the strengths of 
the BFDD-S method in mitigating DDoS attacks with reduced resource utilization. These 
insights serve as a basis for further optimization and enhancement of the framework to 
enhance its scalability and performance in real-world DDoS attack scenarios. 

 
Figure 6. 14: Comparison between BFDD-S and centralized method in terms of memory consumption during 

the DDoS attack. 

In conclusion, the comparison between the BFDD-S framework and OPERETTA provides 
compelling evidence of the proposed framework's capability to effectively reducing response 
time for authorized requests, expediting attack mitigation and enhance the overall resilience 
of the network compared to centralized defense methods. By offloading the validation 
process to a separate detection module, the SDN controller is relieved of a heavyweight traffic, 
leading to reduced response delays and improved network security. These experimental 
findings underscore the potential of BFDD-S as a promising solution for bolstering network 
security and defending against DDoS attacks in modern, dynamic environments. 
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6.4.2 Performance Evaluation of the BFDD-S Framework with 
Traditional Methods 

 
In this section, we compare the proposed defense method with a common traditional method, 
which is a firewall. Firewalls have long been employed as a fundamental security measure to 
protect networks from unauthorized access and potential threats. In our comparison, we 
specifically use iptables, a flexible command-line firewall tool that comes pre-installed on 
most Linux distributions. By conducting this comparison, we aim to assess the effectiveness 
and limitations of the traditional firewall approach when faced with TCP-based DDoS attacks, 
as opposed to the proposed defense method. Through a series of carefully crafted 
experiments, we evaluate how each approach handles varying attack intensities and the 
extent to which they can successfully mitigate the impact of such attacks on the network. 
 
To compare the performance of the framework with traditional methods, again we choose 
the following metrics: CPU consumption of the ONOS controller, and average response time 
to the legitimate traffic during the attack for both the proposed framework and the traditional 
method. To measure these metrics, we use the psutil python library and htop tool for 
evaluations, such as response time to authorized users and the amount of processing load 
imposed on the server. Figures 6.11, and 6.12 depict the performance of these metrics under 
the DDoS attack for both methods. The evaluation results clearly show that increasing the 
number of packets has not so much effect on the performance of the ONOS Controller. On the 
other hand, as can be seen in figures the firewall method imposes a large amount of 
processing load on the server’s CPU when dealing with attacks. 
 

 

Figure 6. 15: The average processing load in the traditional and proposed method. 
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Figure 6. 16: The average response time to the legitimate flows in the traditional defense and proposed 
methods. 

Analyzing the CPU consumption indicate that the moment the number of attacking packets is 
increased, in both cases the CPU consumption does not increase drastically and it shows that 
the DDoS attack could not saturate the controller’s CPU and memory capacity of the ONOS 
controller. The controller with the highest number of attacking packets reaches less than 20% 

of average CPU consumption, as can be seen in figure 6.11, the firewall method imposes a 
large amount of processing load on the server's CPU when dealing with attacks. As the attack 
rate increases, so does the CPU consumption. To measure the response time to the legitimate 
traffic by the server for normal users in the traditional and proposed method, we performed 
an experiment by generating several different traffic rates consisting of SYN packets on the 
webserver. Figure 6.12, illustrates the average response time by the controller to legitimate 
traffic during the attack. It shows by using the proposed framework, there is not so much 
response delay to the legitimate traffic and the average latency value is not significant and the 
flooding attack does not considerably affect the processing of the normal traffic. In the 
traditional countermeasures method, with increasing attack rates, a significant amount of 
time is spent responding to unauthorized requests, and the response time to authorized users' 
requests increases dramatically. 

6.5 Chapter Summary 

In this chapter, for evaluating the performance of the framework, first, we design and 
implement a simple leaf-spine network architecture physical testbed by using four Dell Power 
Edge R430 servers and four bare metal EdgeCore AS 4610 switches that support OpenFlow 
protocol and one HP2530-8G as a management switch.  
 
For emulating an SDN network architecture, we use this simple but real test bed as an underlay 
network, we use Mininet to define the topology on one server, consisting of one Web server 
and several hosts which are all connected to an SDN-based switch. Then, we generate normal 
(ICMP packet) and anomaly traffic (TCP SYN flood) simultaneously and walk through our 
approach, the network traffic captures via the SDN controller and process through the data 
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pipeline for attack detection, and outcomes are stored in the data store. The CPU and memory 
consumption of the ONOS controller, the average response to legitimate traffic during the 
attack, and the average time to detect and mitigate a DDoS attack, are the parameters we 

consider for our assessment. Moreover, we use the psutil python library and the htop tool to 
measure the above-mentioned metrics. 

Furthermore, to evaluate our proposed framework, its performance and assess its 
effectiveness, we compare the proposed defense method with an SDN controller using 
centralized attack detection module(OPERETA) and a common traditional method which is a 
firewall (Iptables). For this goal, various metrics have been considered, these metrics include: 
average response time to legitimate traffic as well as the time required to mitigate attack by 
the controller and CPU and memroty consumption of the ONOS controller during attacks. The 
conclusion of this chapter would clarify the answer to research question number 6, which is: 

- What is the effect of integrating a detection module using the big data pipeline and 
developing the controller to detect and mitigate DDoS attacks in software-defined 
networks? 
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Chapter 7 

7  Projects Contribution and Research Use Cases 
 
During this research, we had the opportunity to involve in three European projects which can 
be considered research use cases. in each of these projects, we contribute to various work 
packages by offering the result of different parts of this research. In this section, these projects 
are introduced and described briefly how the SDN paradigm can offer elasticity and cope with 
some specific key network issues and additionally how it can provide a possibility to modify the 
network infrastructure on demand to match the needs of any organization by incorporating 
software controls and automation into practically any LAN or WAN management system (Table 
7.1 describes briefly these projects and our contribution). 
 

Table 7. 1: Projects Contributions 

 
 

7.1 Nephele Project.  

  
 
The first project was the Nephele Project. The purpose of this project, according to its 
description, was to provide an “end-to-end scalable and dynamically reconfigurable optical 
Architecture for application-aware SDN Cloud Datacenters (NEPHELE)” [195]. 
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7.1.1 Project goals 
 
The project intended to construct a dynamic optical network architecture capable of 
increasing data center efficiency and hence lowering costs and conserving energy. It offers 
increased scalability in cloud infrastructures by bypassing existing architectural limits. A data 
center has traditionally been assigned a defined percentage of equipment for processing and 
storage capacity, among data transmission. The ongoing growth of cloud-based applications 
involves a massive expansion of the data center’s fundamental infrastructure, which from an 
economic point of view, requires an unsustainable, non-linear development of network 
components. At the start of the project, the principle was resource disaggregation and SDN 
concepts. Therefore, it was necessary to construct an upper control layer with a northbound 
interface to the application layer as well as southbound access to provide hardware 
abstraction and dynamic network configuration. 
 
The research team is relying on the massive capacities of optical fibers and intends to deploy 
a network of optical switches to achieve two major objectives: 1) the optimum mixture of high 
network bandwidth and 2) reducing the cost. By considering the SDN controller as the major 
component for the development of the project, our task in this project was to emerge a novel 
control layer, which provides an application-defined network topology and integrates 
hardware and software virtualization through a hybrid optical infrastructure. This involves the 
replacement of the control logic part of network equipment with one or additional central 
software modules. These are responsible for orchestrating the flow of data by the needs of 
cloud-based applications. To accomplish this goal, the OpenFlow protocol was enhanced and 
modified to support optical switch needs. Additionally, for the Application Programming 
Interface, many Representational State Transfer (REST) protocols were considered and 
studied. Moreover, a module was planned to be included in the developed SDN controller to 
support virtual machine migration to other data centers in the future. Besides other goals of 
the NEPHELE project, an initial objective was to provide an extension for the control plane of 
Software Defined Networking (SDN) for the dynamic allocation of resources of an optical data 
center network.  
 
 To achieve this purpose, an agent can be considered as a part of the control plane unit of an 
SDN network that facilitates the interaction between a central SDN controller and a non-SDN 
data plane device. Since the non-SDN devices can be mentioned as the legacy network devices 
which have not by default any capability to interact and comprehend the OpenFlow protocol. 
Therefore, the major responsibility of an SDN agent is to interpret the OpenFlow commands 
from an SDN controller into device particular commands of the underlying network devices 
and vice versa. Therefore, in the NEPHELE project, we developed an agent, called SDN Optical 
Agent (SOA), to provide communication between the control plane and the new hybrid 
optical-electrical switches introduced in the NEPHELE project by other partners. For providing 
the communication, the agent converts the control plane instructions of an OpenFlow-based 
controller into the optical-electrical switch configurations. 
 
Since the hybrid optical-electrical switches are based on the FPGA framework, therefore our 
approach is to develop an agent between the SDN controller, and the FPGA-based switches 
which converts the OpenFlow messages conducted by the controller to FPGA framework-
specific messages. The FPGA framework messages can be then used to program Hybrid Optical 
Electrical switches and accomplish the flexibility and automation guaranteed by the SDN 
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network model. Figure 7.1 demonstrates the high-level design of the agent with respect to 
the SDN controller and FPGA framework.  
 

7.1.2 Our Contribution 
 
The major goal of this project is to design and develop an agent (SOA) to connect optical-
electrical switches with an OpenFlow controller and OpenFlow-based switches 
simultaneously. For enhancing the security of the agent, the result of our research for 
evaluating different machine learning algorithms for DDoS attack detection is used to 
implement the appropriate machine learning at the agent level. 
 

 
Figure 7. 1: Agent Position in SDN Architecture 

 
 

7.2 SENDATE Project.  

  
 
The second project was the SENDATE Project [196], which is the abbreviation of Secure 
Networking for a Data Center Cloud in Europe (SENDATE). According to the project 
description, the SENDATE project is a Celtic-Plus cooperative project under the umbrella of 
EUREKA.  
 
 

7.2.1 Project Goals 
 

The major motivation behind this project was secure and adaptable data center 
interconnection. We contributed to this project via the SENDATE-Secure-DCI sub-project, 
which engages in investigation and development activities concerning network designs as well 
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as technologies for the network orchestration of distributed data center structures. The major 
objective of this project is to develop a novel distributed data center, which will capable to 
offer more elastic infrastructures, storing space, and protected processing for the clients. We 
investigated the state-of-the-art data center interconnects during the early stage of the 
project. This involves collecting information on market needs and application scenarios, 
investigating data center traffic prototypes, and creating and assessing distributed data center 
designs. A further goal of this project is to incorporate SDN-based control into distributed data 
center networks, as well as to achieve virtualization of processing, resource orchestration, and 
storage supplies. This was accomplished by developing the new SDN controller or using the 
existing controller together with resource orchestrators. In this project, we were also entailed 
in the creation of the SDN-based testbed for a distributed data center as part of the technical 
review process for the ideas and implementations under consideration. 
 
In this project, we can portray our tasks in a nutshell as follows:  
 
- Researching the most recent developments in data center interconnects. 
- Information gathering, data center traffic model analysis, and distributed data center 

design evaluation. 
- Combine virtualization of computing and storage resources with SDN-based control to 

achieve resource orchestration. 
- Implementing new network controllers and resource orchestrators.  
- Participating in the setup of a testbed for the distributed data center. 

 
In this project, we set up the orchestration framework for distributed data centers, which 
integrates the SDN controller and cloud computing components. This framework provides 
fine-grained control of distributed data centers, from the physical machines to the network 
resources, such that facilitates core concepts in cloud computing and distributed DCs, like 
multi-tenancy, virtualized function/service chaining, and Simplified interfaces for 
consolidated administrations and operations. 
 

7.2.1.1 DCI Orchestration Framework and Testbed Setup 

 
The aforementioned orchestrators as well as independent implementation are all optional to 
our design. On one hand, the idea is to use existing solutions for DC orchestration and lay our 
focus on the DCI part. On the other hand, it is still open to implementing our orchestrator 
instead of using Heat, Tacker, XOS, or Kubernetes. This can be a light-weighted orchestrator 
that simply applies REST API and reduces superfluous functionalities to secure DCI 
orchestration. The selection criteria are as follows: 

• Functions covered, 

• Open-source (industry-friendly license), 

• Integration of SDN controllers like ODL, ONOS, 

• Large community, 

• Easily extensible, 

• Well documented, 

• Compatible with the NFV MANO framework, 

• DCI support 
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Regarding this list especially DCI support, we further have the following considerations. First, 
distance will very possibly make the network the bottleneck of chaining functions/services. 
The orchestrator platform which supports the network should gain more focus. Second, the 
heterogeneity of DCs seems to be more common. A “good” orchestrator should consider this. 
Third, “dynamic” orchestration should be well supported as it is used for function chain 
healing and refinement. Our first choices are CORD and OPNFV ONAP [197]. The former is the 
main focus in SENDATE-Secure-DCI, while the latter is used in the SENDATE Working Group 
Datacenter as the testbed framework. XOS is the integrated orchestrator of CORD used to 
implement NFV MANO in the DCI network. In parallel, we also directly call REST API to 
implement orchestration functionalities in accordance with fundamental control concerns. 
Since both deploy OpenStack as a core component, Tacker should be a good alternative to do 
NFV MANO. The traditional DCI components are routers or multilayer switches. The 
configuration is mostly distributed. The customers are separated by VLAN/VRF. The DCI 
provides layer 3 and/or layer 2 tunneling between data center edge (DCE) devices. DCI of 
automated DCs is shown in Figure 7.2. DCEs still connect to fabrics, which, however, are 
managed by a separate control plane now.  

 
 

Figure 7. 2: A Simplified DCI Architecture for DCs with Automation. S: spine, L: leaf. 

 
 

different kinds of controllers in all DCs as well as DCI channels. This orchestrator achieves the 
united orchestration/control plane. We move the functionalities of the orchestrators within 
DCs, to the global orchestrator. Another architecture is shown in Figure 7.3 Orchestrations  

 
Figure 7. 3: Intermediate Orchestrator or Orchestrator Cascading. 

 
may already exist in distributed DCs. We set up an orchestrator in DCI to play a role as either 
an “intermediate” or a “commander” of those distributed orchestrators. Compared with the 
former architecture, this architecture can reduce the administrative load on the global 
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orchestrator, minimize the changes to DCs, and be easy to scale in case of a large number of 
DCs.  
 

7.2.2 Our Contribution 
 
In this project, for providing virtualization of processing, resource orchestration, and storage 
supplies, the SDN-based control is used to incorporate into distributed data center networks. 
This was accomplished by developing the new SDN controller or using the existing controller 
together with resource orchestrators. For choosing the proper SDN controller, our research 
result for evaluating different SDN controllers is used. Therefore, in this project, the ONOS is 
used as the main SDN controller to provide fine-grained control of distributed data centers, 
from the physical machines to the network resources, such that facilitates core concepts in 
cloud computing and distributed DCs, together with the CORD which is used for orchestrator 
platform to support network, the heterogeneity of DCs, and providing the dynamic 
orchestration to support for function chain healing and support. Furthermore, we contribute 
actively to the conceptual investigation, design, and modeling of the DCI prototype among 
with deploying the Testbed. 
 
The final objective of this project, after successfully implementing the aforementioned goals, 
is to provide security for the traffic which are transferred in distributed DCs. Currently, the 
DCs progressively are threatened by DDoS attacks. We offer our research solution to be 
implemented in each and every SDN-based DCs to detect and pretend DDoS attacks at the 
controller level and for the DCI channel.  

7.3 AI-NET-PROTECT Project. 

  
 
The third project is the AI-NET-PROTECT [198] Project which is still an ongoing project at the 
time of writing this thesis. The overall description of the project is offering robust and 
protected infrastructure networks which are functioning on reliable devices.  
 

7.3.1 Project goals 

The major purpose of this project is to quicken Europe's digital conversion via intelligent 
network automation at different network parts, including the edge, metro, core, and data 
centers. AI-NET will investigate a variety of use cases covering the technological trials 
associated with the deployment and operation of services at the network edge, to experience 
the various scenarios and deployments associated with each use case, and thus the technical 
needs and associated values. AI-NET will study and implement technologies particular for an 
edge infrastructure, which is categorized by an enormous number of edge spots, a blend of 
base methods for virtualization frameworks and transport networks, site configurations, 
resource-constrained compute environments, and different hardware, and ultimately 
supporting vital services in modified network parts.  
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Artificial intelligence (AI) and machine learning (ML) must be used to supplement or replace 
conventional optimization and prediction techniques to handle the ensuing complexity. 
Although, the five work packages have been defined for this project, in the following we 
explain our collaboration in the packages with the approach for enhancing the SDN usage and 
capabilities. 

7.3.2 Work Package Three: AI-based Network control & service 
automation 

In this work package, with the support of OpenFlow agents from the NEPHELE project, we plan 
to create an automation method for legacy networks. An OpenFlow agent acts as a bridge 
between an SDN controller and a conventional data plane. Once the OpenFlow commands 
sent by the controller have arrived and been transcribed, it sends them to the forwarding 
agents on the data plane. Furthermore, we want to contribute by developing an enhanced 
monitoring system that will be used for various monitoring applications such as traffic 
accounting and network security monitoring in real-time. Individual flow data are collected, 
processed, and stored as part of the proposed system, which is used for the above-mentioned 
purpose. Figure 7.4 depicts the overall planned contribution in this project. 

 

Figure 7. 4: Overview of our Contribution to WP3. 

 

7.3.3 Our Contribution  

In this project and terms of security, we see enhancing and improving current machine 
learning/artificial intelligence systems for detecting/mitigating various types of network 
threats.  
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We use the fact that a centralized controller is the optimal location for monitoring network 
flows in order to identify any anomaly, and therefore, in conjunction with the 
programmability, the mitigation method will be implemented much more rapidly and 
effectively. Therefore, instead of implementing the intrusion detector at a few critical 
locations, the SDN controller can provide the possibility for the security applications to select 
when and how to monitor the network dynamically. 

 

Figure 7. 5: Overview of our Contribution to WP4 

As figure 7.5 indicates, this research is initiated as our contribution to this project with some 
enhancement in architecture such as creating the graphical dashboard and improvement in 
performance, for instance, defining a methodology for automating the deployment of the 
overlay network, for managing and configuring systems, scheduling applications, automating 
and chronizing tasks.   
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 Chapter 8 

8  Conclusion and Future Work 
 
In this chapter, we conclude our research by providing a summary and offering an outlook on 
potential future work.  

8.1 Introduction 

The SDN architecture is a game-changer in controlling and management of the network as it 
includes particular features that improve numerous network functions and address 
intractable issues that exist in traditional networks. By decoupling the control plane from the 
data plane, the software-defined networking (SDN) architecture offers benefits for both the 
reprogramming and the centralized management of the network. The network's 
programmability and centralization of control expedite the creation of new network 
capabilities through rapid prototyping; In general, the majority of network services present in 

traditional systems can be implemented in the SDN as simple software implementations. 
While SDN offers numerous benefits for controlling, maintaining, and implementing network 
environments, it was initially designed with a lack of security measures. Therefore, similar to 
the traditional network, the SDN network is exposed to various security risks in its architecture 
design, where it tries to centralize all the controlling, maintenance, and administration of the 
network into a single entity. This single centralized unit triggers some new security challenges. 
One of the most considerable threat factors in SDN structure is the possibility that an attacker 
attempts to compromise the proper performance of an SDN controller at the control plane 

level. The centralized nature of SDN, which relies on a single controller, creates a potential 
point of failure that can be exploited by DDoS attacks, ultimately compromising the entire 
network. 

The main objective of this research is to address SDN security concerns by integrating big data 
analytics tools and machine learning approaches to provide security defense for the SDN 
controller. These mechanisms offer fast and reliable malicious activity detection based on 
monitoring the network flows. Currently, the SDN concepts are mostly used in data center 
design; therefore, the result of the research is intended to enhance network security in the 
SND-based data center environment. 

8.2 Conclusions about the Research Questions  

This research was motivated by the requirement for a scalable and reliable framework for SDN 
networks against DDoS attacks. The prime objectives revolve around two approaches: first, 
separating the detection module from the SDN controller to proactively prevent performance 
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degradation of the SDN controller, and second, leveraging a big data pipeline to provide a 
scalable, real-time, and reliable attack detection method. 
 
Since the initiation of this research, some questions have arisen, and they must be addressed 
through subsequent research and study. 

What are the SDN attack vectors? 

Compared to traditional networks, security in an SDN network is more complex due to the 
addition of new components. The central controller can be an attractive target for attackers, 
and the use of open-source applications and interfaces can make it difficult to define security 
policies. The SDN architecture was introduced without any security facility in its design. 
Therefore, mitigating the risk of attack in the SDN network requires a protection-in-design 
approach to provide suitable defense against different network attacks. To design and 
implement a robust and resilient attack detection and mitigation method, it is crucial to 
outline the different SDN attack vectors. 
 

Seven attack vectors can be identified when examining the security vulnerabilities of the SDN 
architecture based on in-depth research.:  
 

Forged or fake network traffic, network device vulnerability, attacks on the communication 
channel of the plane of control, SDN controller vulnerabilities, lack of mechanisms to 
guarantee the trust between the controller and applications, administrative system 
vulnerabilities, and lack of reliable resources for forensic activities and remediation. 
 

Which machine learning classifier algorithm is suitable for detecting DDoS attacks? 

In this research, to improve the accuracy of network traffic classification, we utilize machine 
learning supremacy in the detection module of our proposed framework. The mission of the 
detection module is to classify whether the incoming network is normal or classified as an 
attack based on the features of the incoming traffic. 
 

Therefore, to identify the most appropriate classifier to incorporate into our framework, five 
prevalent classification algorithms such as Logistic Regression, Naïve Bayes, K-Nearest 
Neighbor, Decision Tree, and Random Forest have been evaluated by using two well-known 
datasets (NSL-KDD and UNSW- NB15) for network intrusion detection systems. 

Based on the evaluation results, we concluded that the Random Forest classifier offers the 
best performance in terms of accuracy, precision, and recall compared to the other 
classification algorithms. Therefore, in this research, we have selected this algorithm to be 

implemented in the data processing phase of our proposed data pipeline utilizing Apache 
Spark for the attack detection phase. 

How to implement a data pipeline to detect malicious network traffic in the networks? 

In this framework, a few big data analytics tools are used to produce a data pipeline 
infrastructure. For this purpose, we use Apache Kafka for message queuing, Apache Spark for 
data processing, and Elasticsearch for storing processed data. Additionally, the Spark 
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Streaming system from the Apache Spark ecosystem is involved in processing data flows, 
storing them in databases, or reflecting them in a graph to provide a better view for the user. 

The features and specifications of each one of these tools are the main reasons behind using 
them to implement the big data pipeline infrastructure. Specifically, by taking advantage of 
the short response time, high efficiency, error tolerance, high scalability, and ability to process 
fast streams of Apache Kafka, together with the real-time stream processing, fault tolerance, 
scalability, and lightning-fast analytic engine of Apache Spark, and the horizontal scalability, 
multi-tenancy, and speed of Elasticsearch, we can achieve the major objective of this research, 
which is to offer a highly scalable, reliable, and almost real-time framework to detect and 
mitigate DDoS attacks in SDN networks. 

How can a detection module be integrated into the SDN controller for the detection and 
prevention of a DDoS attack in the SDN environment? 

When the SDN-based switch sends the incoming traffic to the controller, the attack detection 
systems are not able to detect abnormal activities from only one packet. therefore, the 
controller requests the entry of several packets of the same flows into the attack detection 
system. To facilitate this process, we created a Java API called Extractor within the ONOS core. 
This API is responsible for collecting statistical information, aggregating flows, and converting 
the resulting data into a suitable format (such as JSON) for transmission to the detection 
module. Given that the ONOS controller serves as the basis for our proposed framework, and 

considering that ONOS employs the OSGi framework with Karaf to divide applications into 
bundles, we followed these steps to develop the Extractor API: 

- Creating an API directory template 
- Registering the API with Karaf 
- Importing services from other modules 
- Compiling the API and plugging in 

What is the effect of integrating a detection module using the big data pipeline and 
developed controller to detect and mitigate DDoS attacks in software-defined networks? 
 

To evaluate the performance of the framework, we choose the following metrics: CPU and 
memory consumption of the ONOS controller, average response to legitimate traffic during 
an attack, and average time to detect and mitigate a DDoS attack. Furthermore, we compare 
the proposed defense method with a common traditional method which is a firewall 
(Iptables). Next, we conducted a test scenario in which we simultaneously generated normal 
(ICMP packet) and anomalous (TCP  flood) traffic. During this experiment, we applied our 
proposed approach to capture network traffic via the SDN controller and process it through 

the data pipeline to detect attacks, with the resulting outcomes stored in the data store. 

The evaluation results indicate that increasing the number of packets had a relatively minor 
impact on the performance of the ONOS Controller. Based on the analysis of CPU and memory 
consumption, our results indicate that increasing the number of attacking packets during a 
flooding attack did not significantly increase consumption fluctuations. This suggests that the 
DDoS attack was unable to drastically saturate the ONOS controller's CPU and memory 
capacity. Moreover, the controller can handle legitimate traffic with a reasonable delay time. 
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8.3 Research Summary 

In this research, we present an intrusion detection system using distributed processing 

technologies based on the combination of machine learning algorithms and big data pipeline 
infrastructure in SDN-based networks for proactively preventing the performance 
degradation of the SDN controller. This proposed framework is called BFDD-S (Big data 
Framework for DDoS attack Detection in SDN networks). To identify the classifier model with 
the best classification accuracy for employing a machine learning algorithm using Spark, we 
evaluated the effectiveness of several classification techniques. 

The first two chapters introduce the research and discuss the motivation behind it, as well as 
summarize related work. Chapter three is used to describe the essential associated 
background and correlated information. In chapter 4, we evaluate different SDN controllers 
to distinguish the appropriate controller to be utilized in our research. There exist several 
open-source controllers in the research and academic domain. This chapter considers and 
evaluates the five most popular controllers, such as NOX/POX, Ryo, Floodlight, ODL, and 
ONOS. We classify the SDN controllers based on the following characteristics: Architecture, 

Interfaces (South-, Northbound), Scalability, Modularity and Extensibility, and Performance. 
Our evaluation result indicates that the ONOS controller has the capabilities and features 
which is vital for our research; Therefore, in our proposed solution, we choose ONOS as the 
SDN controller and implement it in our framework. 

In chapter 5, we propose our solution against DDoS threats in SDN-based networks. The 
framework, which is called BFDD-S, is a heterogeneous system. In other words, in this method, 
the detection phase will be done outside of the SDN controller, and the information gathering 
and mitigation phase will be done by the controller. To provide scalability, real-time, and fast 
processing, we have designed and implemented a data pipeline infrastructure using various 
big data tools. For implementing the data pipeline infrastructure, we use Apache Kafka for 
message queuing, Apache Spark for real-time data streaming and machine learning 
processing, and Elasticsearch for storing data. We use the MLlib API library as a part of the 
Apache Spark ecosystem for employing a machine learning algorithm.  

For evaluating the effectiveness of various machine learning algorithms for intrusion 
detection, we have applied five well-known general-purposed supervised machine learning 
algorithms, such as Logistic Regression, Naïve Bayes, K-Nearest Neighbor, Decision Tree, and 
Random Forest, using the two common intrusion detection datasets, NSL-KDD and UNSW-
NB15. In our investigation, three major metrics, Accuracy, Precision, and Recall, were 
employed to determine which algorithm should be implemented in the DDoS detection 
module using Apache Spark in our proposed framework (BFDD-S).  

The result based on the NSL-KDD dataset presents the Decision Tree and Random Forest gives 
the best accuracy, which is more than 98%, followed by the Logistic Regression algorithm 
which offers more than 89% accuracy. This classification report depicts that the Naïve Bayes 
has the weakest performance, with a score of 88% accuracy. Although the two classifiers 
delivered more than 98% accuracy, the table indicates that Random Forest has the best result. 
In addition, the results based on the UNSW-NB15 dataset indicate that the Random Forest 
algorithm has the highest accuracy of 99%, which is significantly better than other 
classification algorithms such as the Decision Tree, K-Nearest Neighbor, Logistic Regression, 
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and Naïve Bayes algorithms. 

Moreover, the classification report based on the UNSW-NB15 dataset shows that the Naïve 
Bayes algorithm achieved high accuracy (>88%); however, it also yielded low scores in recall 

and precision (>64% and >78%, respectively), indicating that Naïve Bayes had the weakest 
performance compared to other classification algorithms utilized in this research. Based on 
the evaluation results, we concluded that the Random Forest classifier offers the best 
performance in terms of accuracy compared to the other classification algorithms. Therefore, 
in this research, we have chosen this algorithm to be implemented in the data processing 
phase of our proposed data pipeline using Apache Spark for attack detection. 

According to the outcome of the evaluation, we chose the Random Forest classifier to be 
employed in Apache Spark as the data processing part of our data pipeline infrastructure for 
accurate and rapid anomaly detection. 

To evaluate the proposed framework, we simulated an SDN-based environment using a simple 
testbed with real hardware and leaf-spine architecture. We utilized ONOS as the controller 
and Mininet to define and emulate the SDN network topology, which consisted of several 

hosts connected to the SDN controller. We generate the normal ICMP traffic using the Ping 
command and DDoS traffic using the hping tool to assess the response of the proposed 
framework. We consider the CPU, memory consumption, and average response time to 
legitimate traffic as evaluation metrics. Analyzing the CPU and memory consumption indicates 

that during performing the DDoS attack, with the highest number of attacking packets, the 
controller reaches less than 20% of the average CPU consumption. In addition, the average 
memory consumption reaches less than 35%, which indicates that in both cases the 
consumption fluctuation does not increase drastically, and it shows that the DDoS attack could 
not saturate the controller’s CPU and memory capacity of the SDN controller.  

The results show that during the DDoS attack, the average response time to legitimate traffic 
was less than 5 ms when using the BFDD-S framework. Even at the highest number of attacking 
packets, the controller still responded to normal traffic in less than 10 ms. This suggests that 
the framework did not cause significant delays in processing normal traffic and the DDoS 
flooding attack did not greatly affect the controller's ability to handle normal traffic. In this 
research, we propose to create a data pipeline that integrates machine learning techniques 
and big data analytics tools to develop a fast, reliable, and scalable security framework for 
SDN-based network environments to detect and mitigate DDoS attacks. The proposed 
framework will incorporate features such as high scalability, the ability to process fast streams 
of events using Kafka, real-time stream processing, the scalability of Apache Spark, and the 
horizontal scalability and speed of Elasticsearch. This framework will aim to enable early 
detection and mitigation of DDoS attacks in SDN-based network environments. 

These results imply that the BFDD-S framework can provide a scalable and reliable platform 
to prevent DDoS attacks in SDN networks in comparison to other traditional methods. Another 
major advantage of this solution compared to the other solution is that most of the related 
methods do not consider southbound saturation during DDoS attacks. If the bandwidth of the 
southbound interface in the SDN network is saturated by heavy traffic, the network flows will 
not reach the controller, and these methods cannot perform their proposed detection 
methods. However, in the BFDD-S framework, if the southbound is saturated with heavy 
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traffic during a DDoS attack, we can configure the network devices to send the network 
information via common network protocols such as Netflow and IPFix to the data processing 
pipeline, and the process will be the same, and if any anomaly activity is detected, the Apache 

Spark will generate and send a RestAPI request to the controller to block the attacker host. 

Finally, to indicate the impact and contribution of this research in real scientific use cases, we 
describe three European projects to which we contribute in various work packages by offering 
the result of different parts of this research according to their requirements.  

8.4 Future Work 

The research presented in this thesis focuses on designing and developing a heterogeneous 
framework to introduce a scalable, fast, and reliable security level for the SDN-based network. 
To enhance the process of anomaly detection and mitigation process offered by this 
framework, the following paths can be specified as future work: 

- Since using the console as output is inadequate in the production environments, we 
intend to add a graphical dashboard for the stream processing monitoring to provide an 
enhanced view of the system processing. For this purpose, we plan to implement Kibana 
with Elasticsearch as Kibana is an appropriate tool for retrieving the data stored in 
Elasticsearch via simple queries. Using Kibana, we can monitor network traffic in real time 

or within a specific time period by displaying the data on a dashboard we have designed. 
 

- Currently, the machine learning approach has a significant role in the IT world, especially 
in the cybersecurity domain, and several researchers are exploring innovative techniques 
to improve the performance and accuracy of the machine learning methods; therefore, 
we consider the Implementation of other machine learning methods, such as deep 
learning (DL) based on Apache Spark into the proposed framework and providing a 
performance evaluation with the existing system. 

 
Furthermore, we compare our proposed framework with a traditional firewall system 
(iptables) in this paper. We also plan to compare our framework with other modern 
intrusion detection systems (IDS) and intrusion prevention systems (IPS) in order to 
evaluate its effectiveness. 
 

- The proposed system has been developed on a single computer, not in cluster mode. 
Spark and Kafka’s applications are designed to work in cluster mode. Therefore, we 
assume that the final result would be more accurate by working in cluster mode in parallel 
with several machines. One of the primary objectives of this research is to design a 

framework in which all its components are scalable. Consequently, the computational 
efficiency of the whole proposed framework will be able to adjust to the increasing load. 
 

- Designing a layer that assists in orchestrating and automating the configuration of all 
services to make the deployment of the proposed framework easier to manage.  
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[52]  F Karataş, S A.Korkmaz, "BigData: Controlling Fraud by Using Machine Learning 
Librarieson Spark," International Journal of Applied Mathematics, Electronics, and 
Computers Advanced Technology and Science,, no. ISSN:2147-822821, DOI: 
10.18100/ijamec.2018138629.  

[53]  N V Patil, C.R Krishna, and K Kumar, "S-DDoS: Apache spark based real-time DDoS 
detection system," Journal of Intelligent Fuzzy Systems, no. DOI:103233/JIFS-179733, 
IOS Press, ISSN 1064-1246/20/$35.00, 2020.  

[54]  M A Manzoor, Y Morgan, "Real-time support vector machine-based network intrusion 
detection system using Apache Storm," in IEEE 7th annual information technology, 
electronics and mobile communication conference (IEMCON), 2016.  

[55]  K Peng, V C. M. Leung, and L Zheng, "Intrusion Detection System Based on Decision 
Tree over Big Data in Fog Environment," Hindawi Wireless Communication and Mobile 
Computing, no. Article ID 4680867, https://doi.org/10.1155/2018/4680867,2018, 
2018.  

[56]  Zhao J, Chen S, Cao M, Cui B, "Malware algorithm classification method based on big 
data analysis," in International Journal of Web and Grid Services., 2017.  

[57]  Terzi, D., Terzi, R. and Sagiroglu, S, "Big data analytics for network anomaly detection 
from netflow data," in International Conference on Computer Science and Engineering 
(UBMK), Antalya, 2017.  

[58]  A.Alsirhani, S.Sampalli, and P.Bodorik, "DDoS attack detection system: Utilizing 
classification algorithms with Apache spark," in Proc. 9th IFIP Int. Conf. New Technol. 
Mobility Secur. (NTMS), Feb. 2018.  

[59]  Ying Gao, Honngrui Wu, Binjie Song, Y Jin, X Luo, and Xing Zeng, "A Distributed 
Network Intrusion Detection System for Distributed Denial of Service Attacks in 
Vehicular Ad Hoc Network," 2019.  

[60]  Leon-Garcia, A. Tizghadam and A., "Application platform for smart transportation, pp. 
.," in Future Access Enablers of Ubiquitous and Intelligent Infrastructures., 2015.  

[61]  S. Arora, "Analyzing mobile phone usage using clustering in spark mllib and pig," 2017.  

[62]  Sundararajan, R., "Software-Defined Networking (SDN)," 2013.  

[63]  Y. Li, D. Li, W. Cui, and R. Zhang, "Research-based on OSI model," in 2011 IEEE 3rd 
International Conference on Communication Software and Networks, May 2011.  

[64]  T. Socolofsky, C. Kale, "A TCP/IP Tutorial," January 1991. [Online]. Available: 
https://tools.ietf.org/html/rfc1180. [Accessed 14 5 2022]. 

[65]  T. Benson, A. Akella, and D. Maltz, "Unraveling the complexity of network 
management," in Proceedings of the 6th USENIX Symposium on Networked Systems 
Design and Implementation, 2009.  



Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network. 

 

 

 

181 

[66]  D. Kreutz, F. M. V. Ramos, P. E. VerA ̃ssimo, C. E. Rothenberg, S. Azodolmolky, and S. 
Uhlig, "Software-defined networking: A comprehensive survey," in Proceedings of the 
IEEE, Jan 2015.  

[67]  C. Martinez, R. Ferro, and W. Ruiz, "Next-generation networks under the SDN and 
open-flow protocol architecture," in 2015 Workshop on Engineering Applications - 
International Congress on Engineering (WEA), Oct 2015.  

[68]  S. Wang, D. Li, and S. Xia, "The problems and solutions of network update in SDN: A 
survey," in 2015 IEEE Conference on Computer Communications Workshops 
(INFOCOM WKSHPS), April 2015.  

[69]  F. Hu, Q. Hao, and K. Bao, "A survey on software-defined network and OpenFlow: 
From concept to implementation," in IEEE Communications Surveys Tutorials, 2014.  

[70]  K.Gray, T.D.Nadeau, "SDN: Software Defined Networks, Chapter 6, Data Center 
Concepts and Constructs," vol. Chapter 6, O ́REILLY, 2013.  

[71]  D. Kreutz, F. Ramos, "Software-Defined Networking: A Comprehensive Survey," in 
Proceedings of the IEEE, 2015.  

[72]  B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, "A Survey of 
Software-Defined Networking: Past, Present, and Future of Programmable 
Networks," in IEEE Communications Surveys & Tutorials, 2014.  

[73]  N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. 
Shenker, and J. Turner, "OpenFlow: enabling innovation in campus networks," in ACM 
SIGCOMM Computer Communication Review, 2008.  

[74]  M. Shin, K. Nam, and H. Kim, "Software-defined networking (SDN): A reference 
architecture and open APIs," in 2012 International Conference on ICT Convergence 
(ICTC), Oct 2012.  

[75]  L. Richardson, S. Ruby, RESTful Web Services. Web Services for the Real World., Mayo: 
O’Reilly Media, 2007.  

[76]  Foster, N., "Frenetic: A network programming language," in Proceedings of the 16th 
ACM SIGPLAN international conference on Functional programming, September 2011.  

[77]  H. Kim, N. Feamster., "Improving network management with software defined 
networking," in IEEE Communications Magazine, 2013.  

[78]  T. Hinrichs, N. Gude, M. Casado, "Practical declarative network management," in 
Proceedings of the 1st ACM workshop on Research on enterprise networking, August 
2009..  

[79]  C. Monsanto, N. Foster, R. Harrison, "A compiler and run-time system for network 
programming languages," in Proceedings of the 39th annual ACM SIGPLAN-SIGACT 
Symposium on Principles of programming languages, 2012.  

[80]  J. Reich, C. Monsanto, N. Foster, "Modular SDN programming with pyretic," in Usenix, 
The Advanced Computing Systems Association, Octubre, 2013.  

[81]  Y. E. Oktian, S. Lee, H. Lee, and J. Lam, "Secure your northbound SDN API," in 2015 
Seventh International Conference on Ubiquitous and Future Networks, July 2015.  

[82]  M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer, "Interfaces, attributes, 
and use cases : A compass for SDN," in IEEE Communications Magazine, June 2014.  

[83]  H. Yin, "SDNi: A message exchange protocol for software-defined networks (SDNS) 
across multiple domains.," in Internet Engineering Task Force, Internet Draft., 2012.  



 182 

[84]  D. Kreutz, F. Ramos, "Software-Defined Networking: A Comprehensive Survey," in 
Proceedings of the IEEE, 2015.  

[85]  M. Lessing, "What Are SDN Southbound APIs?," SDxCentral Studios, September 2019. 
[Online]. Available: https://www.sdxcentral.com/resources/sdn/southbound-
interface-api. [Accessed 10 6 2022]. 

[86]  S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, 
M. Miller, and N. Rao, "Are we ready for sdn? implementation challenges for software-
defined networks," in IEEE Communications Magazine, July 2013.  

[87]  J. Case, M. Fedor, "A Simple Network Management Protocol (SNMP). .," 2022 May 
1990.. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc1098. [Accessed 
10 6]. 

[88]  R. Enns, M. Bjorklund, J. Schoenwaelder, "Network Configuration Protocol 
(NETCONF)," RFC 6241. IETF, June 2011.. [Online]. Available: 
https://datatracker.ietf.org/doc/html/rfc6241. [Accessed 10 6 2022]. 

[89]  Y. Rekhter, T. Lid, S. Hares, "A Border Gateway Protocol 4 (BGP-4)," RFC 4271, January 
2006. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc4271. 

[90]  B. Pfaff, B. Davie, "The Open vSwitch Database Management Protocol.," RFC 7047. 
IETF, December 2013.. [Online]. Available: https://www.ietf.org/rfc/rfc7047.txt. 

[91]  M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, "OpFlex Control Protocol," IETF, 2 April 
2014. [Online]. Available: http://tools.ietf.org/pdf/draft-smith-opflex-00.pd. 
[Accessed 10 6 2022]. 

[92]  A. Doria, J. Hadi, R. Hass, H. Khosravi, "Forwarding and Control Element Separation 
(ForCES) Protocol Specification.," RFC 5810, March 2010.. [Online]. Available: 
https://datatracker.ietf.org/doc/html/rfc5810. [Accessed 10 6 2022]. 

[93]  N. McKeown, "OpenFlow: Enabling Innovation in Campus Networks," Stanford 
University, March, 2008. 

[94]  M. K. Jaiswal, "Innovations in Software-Defined Networking and Network Functions 
Virtualization," no. 10.4018/978-1-5225-3640-6.ch003, p. 20, 2018.  

[95]  H. Egilmez, S. Dane, "OpenQoS: OpenFlow controller design and test network for 
multimedia delivery with quality of service," in Proc. NEM Summit, Implementing 
Future Media Internet Towards New Horizons, December 2012.  

[96]  C-Hao, Chang and Y-Dar Lin, "OpenFlow Version Roadmap," 11 September 2015. 
[Online]. Available: http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf. 
[Accessed 6 2022]. 

[97]  "OpenFlow Switch Specification, Version 1.0.0 Implemented (Wire Protocol 0x01)," 
December, 2009.  

[98]  D. Kreutz, F. Ramos, "Software-Defined Networking: A Comprehensive Survey," in 
Proceedings of the IEEE, January, 2015.  

[99]  "Openflow Spec 1.3 Coverage," 22 Feb. 2017. [Online]. Available: 
https://seagullbird.xyz/posts/openflow-1.3-coverage/. [Accessed 10 6 2022]. 

[100]  A. C. Jimenez, "LOGICAL SECURITY. Information management: Confidentiality, 
integrity, availability and tightness," 31 March 2017. [Online]. Available: 
https://cronicaseguridad.com/2017/03/31/seguridad-logica-gestion-la-informacion-
confidencialidad-integridad-disponibilidad-estanqueidad/. [Accessed 15 6 2022]. 



Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network. 

 

 

 

183 

[101]  Zhen Yan, Peng Zhang, Athanasios V. Vasilakos, "A security trust framework for 
virtualized networks and software-defined networking”, 2015.," Wiley Online Library, 
vol. 9, no. https://doi.org/10.1002/sec.1243, pp. 3059-3069, 26 March 2015.  

[102]  S.-H. S. Sezer, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller y N. 
Rao, "Are we ready for SDN? Implementation challenges for software-defined 
networks," in Communications Magazine, 2013.  

[103]  Ganjali, A. Tootoonchian and Y., "HyperFlow: A Distributed Control Plane for Open-
Flow," in Proc. 2010 Internet Network Management Conf. Research on Enterprise 
Networking, 2010.  

[104]  Andrés Felipe Murillo, Sandra Rueda, Laura Victoria Morales, Álvaro Cardenas, "SDN 
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