

Scalable and Reliable Framework to Detect and Mitigate
DDoS Attack in OpenFlow-based SDN Network

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

"Doctor rerum naturalium"

der Georg-August-Universität Göttingen

im Promotionsprogramm Computer Science (PCS)

der Georg-August University School of Science (GAUSS)

vorgelegt von

Amirreza Fazely Hamedani
aus Teheran – Iran

Göttingen, 2023

Betreuungsausschuss

Prof. Dr. Ramin Yahyapour
Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen mbH (GWDG),
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe
Institut für Informatik, Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent: Prof. Dr. Ramin Yahyapour
Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen mbH (GWDG),
Institut für Informatik, Georg-August-Universität Göttingen

Korreferent: Prof. Dr. Dieter Hogrefe
Institut für Informatik, Georg-August-Universität Göttingen

Weitere Mitglieder der Prüfungskommission

Prof. Dr. Florentin Andreas Wörgötter
Third Institute of Physics, Georg-August-Universität Göttingen

Prof. Dr. Bernhard Schmitzer
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Jens Grabowski
Institut für Informatik, Georg-August-Universität Göttingen

Hon.-Prof. Dr. Philipp Wieder
Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG)

Tag der mündlichen Prüfung: 4 Juli, 2023

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

1

Acknowledgments

The completion of this thesis would not have been possible without the support and
encouragement of several special people. Hence, I would like to take this opportunity to
indicate my gratitude to those who have supported me in various ways.

First and foremost, I would like to express my heartfelt thanks to my supervisor Prof. Dr. Ramin
Yahyapour for giving me this opportunity, for his enthusiasm, continuous support on many
occasions, patient guidance, and unceasing ideas. A more supportive and considerate
supervisor than I could not have asked for. I would also like to express my gratitude to my
second supervisor, Prof. Dr. Dieter Hogrefe, who always delivered valuable advice for my
research, despite his busy schedule being the director of the Institute of Computer Science.

Moreover, I would like to thank my amazing current and former colleagues and friends from
the Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG) for the
incredible working environment and the enormous support who made this research journey
enjoyable, despite the hard times which I passed through. In particular, I would like to thank
Prof. Dr. Phillip Wieder for his encouragement and moral support, and Dr. Muzzamil Aziz for
his support on scientific and non-scientific matters which was a significant aid in completing
this work. I would like to express my gratitude to all of the eScience group members who are
too numerous to mention here.

Finally, my deep and sincere gratitude to my wife Hadis for her continuous and unparalleled
love, help, and support. Throughout the ups and downs of this challenging journey, she
provided me with a constant source of inspiration and motivation. I am also grateful to my
brother Amirhossein for always being there for me as a friend. I would like to express my
heartfelt gratitude to my dear friend Azad Ahmadi, who provided unwavering support and
encouragement throughout my journey in completing this thesis.

And last but not least, I am forever indebted to my late parents for giving me the opportunities
and experiences that have made me who I am.

 2

Abstract

Software-defined networking in recent years has come into the sight of so many network
designers as a successor to traditional networking. Unlike traditional networks where control
and data planes engage together within a single device in the network infrastructure such as
switches and routers, the two planes are kept separated in software-defined networks (SDNs).
All critical decisions about packet routing are made by the network controller, and the data-
level devices forward the packets based on these decisions.

This type of network is vulnerable to DDoS attacks, degrading the overall functioning and
performance of the network by continuously injecting fake flows into it. This increases the
substantial burden on the controller side, and the result ultimately leads to the inaccessibility
of the controller and the lack of network service to legitimate users. Thus, the protection of
this novel network architecture against denial-of-service attacks is essential.

Today, the world is on the verge of using computer network services and information systems
at their peak. Thus, the security concerns attached to these services/systems shall be taken
seriously and dealt with. In the world of cybersecurity, attacks, and new threats emerge every
day. It is essential to have tools capable of managing and analyzing all this new information to
detect possible attacks in real-time. These tools should provide a comprehensive solution to
automatically detect, predict and prevent abnormalities in the network.

Big data, though, encompasses a wide range of studies; it mainly refers to the massive
amounts of structured and unstructured data that organizations deal with on a regular basis.
It essentially refers to the amount of data coming from the applications being so huge that it
is not possible to be captured, organized, processed, and managed in a reasonable time by
the current mainstream software tools that help enterprises make business decisions. On the
other hand, it regards not only the volume of the data; but also, how data-driven information
can be employed to develop decision-making processes, security, and the overall efficiency of
a business.

This Ph.D. research introduces an intelligent big data framework as a solution to prevent the
performance degradation on SDN network during DDoS attacks. By leveraging the
programmability and centralized controller of the SDN and using distributed data processing
techniques based on the big data analytic tools and machine learning algorithm, we aim to
enhance the SDN network security and resilience against these sophisticated attacks.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

3

Table of Contents

Acknowledgments .. 1

Abstract .. 2

List of Acronyms ... 7

List of Figures .. 9

Chapter 1 ... 13

1 Introduction .. 13

1.1 Challenges in SDN network security .. 14

1.2 Motivation .. 16

1.3 Objectives... 19

1.3.1 Research Questions ... 19

1.3.2 Specific objectives ... 20

1.4 Goals and Contributions .. 21

1.4.1 Thesis Impact... 22

1.5 Thesis Outline ... 24

Chapter 2 ... 26

2 Literature Review .. 26

2.1 General Methods ... 26

2.2 Mathematical Methods ... 27

2.3 Machine Learning Methods ... 27

2.4 Big Data Methods... 28

2.5 Hybrid Methods (Big Data and Machine Learning) .. 29

2.6 Research Gap ... 31

2.7 Chapter Summary .. 32

Chapter 3 ... 33

3 Technology Background .. 33

3.1 Overview .. 34

3.2 SDN History .. 34

3.3 The Concept of SDN ... 36

3.3.1 General definitions of SDN .. 36

3.3.2 The major characteristic of the SDN Network... 37

3.4 SDN Architecture ... 38

3.4.1 The Application Layer .. 38

3.4.2 The Control Layer .. 39

3.4.3 The Infrastructure/Data-plane Layer .. 40

3.4.4 SDN Programming Interfaces .. 41

 4

3.5 OpenFlow protocol .. 43

3.5.1 OpenFlow Architecture ... 46

3.5.2 OpenFlow Workflow ... 47

3.5.3 Flow Load Modes .. 50

3.6 SDN Security ... 51

3.6.1 SDN Challenges and Issues .. 52

3.6.2 SDN Vulnerabilities .. 53

3.6.3 SDN Attack Vectors ... 55

3.6.4 Improve Security in SDN .. 58

3.7 Denial of Service Attacks .. 59

3.7.1 Different Types of DDoS Attacks ... 62

3.7.2 DDoS Attacks on SDN Networks .. 65

3.8 Chapter Summary .. 67

Chapter 4 ... 68

4 Evaluating the SDN Controllers .. 68

4.1 Features for Selecting the SDN Controllers ... 68

4.2 SDN Controllers .. 70

4.2.1 NOX/POX: .. 71

4.2.2 Ryu Controller ... 72

4.2.3 Floodlight Controller ... 73

4.2.4 OpenDaylight (ODL) ... 73

4.2.5 ONOS Controller .. 75

4.2.6 Conclusion ... 75

4.3 Open Network Operating System (ONOS) ... 76

4.3.1 ONOS Use Cases .. 77

4.3.2 Clustering capability of the ONOS ... 78

4.3.3 Security concerns in the ONOS controller ... 78

4.3.4 ONOS Overview ... 79

4.3.5 ONOS Architecture .. 81

4.4 Chapter Summary .. 86

Chapter 5 ... 87

5 Proposed Framework (BFDD-S) ... 87

5.1 BFDD-S Methodology ... 87

5.1.1 Motivation behind BFDD-S .. 89

5.2 Framework Architecture .. 90

5.3 Framework Workflow .. 93

5.4 API Development for SDN controller ... 95

5.5 Machine Learning Algorithms Evaluation .. 99

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

5

5.5.1 Algorithm Methods ... 99

5.5.2 Process of Designing a Model in this Research ... 101

5.5.3 Evaluate the Accuracy of a Model ... 102

5.5.4 Classification Algorithms ... 105

5.5.5 Intrusion Detection Using Techniques ... 109

5.5.6 Data Set Selection ... 109

5.6 Selection of Proper Machine Learning Algorithm .. 113

5.6.1 Data Preprocessing.. 114

5.6.2 Comparison of the Classification Algorithms .. 117

5.7 Tools Used for Proposed Framework (BFDD-S) ... 120

5.7.1 General Tools .. 121

5.7.2 Big Data Analytics Tools .. 125

5.8 Implementing the Big Data Pipeline .. 130

5.8.1 Pre-Requisite Configuration .. 130

5.8.2 Implementation of Big Data Infrastructure ... 130

5.8.3 Implementing Data Pipeline .. 139

5.8.4 Implementing Machine Learning in Apache Spark .. 141

5.9 Chapter Summary .. 145

Chapter 6 ... 147

6 Experimental Setup and Performance Evaluation .. 147

6.1 Setup Experimental Testbed .. 147

6.2 Deploying Network Topology .. 148

6.3 BFDD-S Framework Operation ... 151

6.4 Performance Evaluation of the BFDD-S Framework .. 154

6.4.1 Performance Evaluationof of the BFDD-S Framework with Centralized Detection Method 156

6.4.2 Performance Evaluation of the BFDD-S Framework with Traditional Methods 160

6.5 Chapter Summary .. 161

Chapter 7 ... 163

7 Projects Contribution and Research Use Cases .. 163

7.1 Nephele Project. .. 163

7.1.1 Project goals .. 164

7.1.2 Our Contribution ... 165

7.2 SENDATE Project. ... 165

7.2.1 Project Goals ... 165

7.2.2 Our Contribution ... 168

7.3 AI-NET-PROTECT Project. ... 168

7.3.1 Project goals .. 168

 6

7.3.2 Work Package Three: AI-based Network control & service automation 169

7.3.3 Our Contribution ... 169

Chapter 8 ... 171

8 Conclusion and Future Work ... 171

8.1 Introduction ... 171

8.2 Conclusions about the Research Questions ... 171

8.3 Research Summary .. 174

8.4 Future Work ... 176

Bibliography ... 177

Appendix A .. 190

A. The Source Code of Machine Learning Evaluation ... 190

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

7

List of Acronyms

SDN Software-defined Networking
DoS Denial of Service
DDoS Distributed Denial of Service
U2R Users-to-root attack
R2L Remote-to-local attack
PROBE Probing attack
IoT Internet of Things
DNS Domain Name Service
CPU Central Processing Unit
API Application Programming Interface
ML Machine Learning
LR Logistic Regression
KNN k-Nearest Neighbor
NB Naïve Bayes
DT Decision Tree
RF Random Forest
NETCONF Network Configuration Protocol
IPFIX Internet Protocol Flow Information Export
HTTP Hypertext Transfer Protocol
ANN Artificial Neural Network
OSI Open System Interconnection
TCP/IP Transmission Control Protocol/Internet Protocol
NFV Network Function Virtualization
REST Representational State Transfer
NOS Network Operating System
ODL OpenDaylight
ONOS Open Network Operating System
OVS Open vSwitch
OVSDB Open vSwitch Database
CLI Command-Line Interface
GUI Graphical User Interface
CORD Central Office Re-architected as a Data Center
vCPE Virtual Customer Premises Equipment
vOLT Virtual Optical Line Termination
NFaaS Network Function-as-a-Service
VPLS Virtual Private LAN Service
BGP Border Gateway Protocol
FML Flow-based Management Language
SNMP Simple Network Management Protocol
LISP Location Identifier Separation Protocol
ForCES Forwarding and Control Element Separation
ONF Open Network Foundation
QoS Quality of Service
PCEP Path Computation Element Communication Protocol

 8

DCI Data Center Interconnect
NVGRE Network Virtualization using Generic Routing Encapsulation
STT Stateless Transport Tunneling
VxLAN Virtual Extensible LAN
MTM Man in the Middle Attack
SSL Secure Sockets Layer
TLS Transport Layer Security
SOC Security Operation Center
ICMP Internet Control Message Protocol
UDP User Datagram Protocol
U2R User to Root Attack
R2L Remote to Local Attack
RDD Resilient Distributed Dataset
JSON JavaScript Object Notation
OPNFV Open Platform for NFV Project
ONAP Open Network Automation Platform
VLAN Virtual local area networks
VRF Virtual routing and forwarding

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

9

List of Figures

Figure 1. 1: The rise in sophisticated DDoS attacks in recent years. 14
Figure 1. 2: Attack on SDN Layers. ... 17

Figure 3. 1: The Architect of the SDN Network .. 38
Figure 3. 2: Communication between Controllers via East / West APIs 42
Figure 3. 3: OpenFlow Versions Timeline ... 44
Figure 3. 4: OpenFlow Network Architecture ... 45
Figure 3. 5: SDN / OpenFlow device. ... 47
Figure 3. 6: OpenFlow Switch Operation workflow .. 48
Figure 3. 7: Exchanges the OpenFlow messages between the controller and the switch 49
Figure 3. 8: Sample flow sent to the controller via OpenFlow. ... 50
Figure 3. 9: SDN Security Vectors .. 56
Figure 3. 10: DDoS attack ... 59
Figure 3. 11: The incidence of various DDoS attacks from January 2020 to March 2021 61
Figure 3. 12: Three-step negotiation in TCP ... 63
Figure 3. 13: TCP Flood attack. ... 64
Figure 3. 14: DDoS Attack on SDN Network Using the Botnet ... 65

Figure 4. 1: NOX controller architecture .. 71
Figure 4. 2: Ryu controller architecture ... 72
Figure 4. 3: Floodlight controller architecture .. 73
Figure 4. 4: ODL Controller Architecture ... 74
Figure 4. 5: Overview of the ONOS Architecture .. 75
Figure 4. 6: ONOS CLI interface .. 80
Figure 4. 7: ONOS GUI .. 80
Figure 4. 8: Overview of the OSGi framework .. 81
Figure 4. 9: ONOS architecture . .. 82
Figure 4. 10: Relationship between ONOS subsystem components 83
Figure 4. 11: ONOS Subsystem 85

Figure 5. 1: Overall Architecture of the Proposed Framework. ... 91
Figure 5. 2: Information Gathering and Mitigation Module. ... 91
Figure 5. 3: Intrusion Detection Module. ... 92
Figure 5. 4: Machine Learning Module. ... 93
Figure 5. 5: Five Phases of the BFDD-S Framework’s packet processing. 95
Figure 5. 6: Overview of the Apache Karaf ... 96
Figure 5. 7: Maven Objectives ... 97
Figure 5. 8: A typical development process for an ONOS application 98
Figure 5. 9: Various Types of Machine Learning Algorithms ... 101
Figure 5. 10: Process of Design Machine Learning Model ... 102
Figure 5. 11: Overall View of the Confusion Matrix and Assessment Methods 103
Figure 5. 12: Three main assessment Metrics .. 104
Figure 5. 13: The machine learning workflow used in this research. 113
Figure 5. 14: Importing the essential Python Libraries. ... 114
Figure 5. 15: Importing the Data set and Creating the Pandas Data Frame. 115

 10

Figure 5. 16: Data pre-processing workflow .. 115
Figure 5. 17: Convert Qualitative Data .. 116
Figure 5. 18: Applying One-Hot Encoding .. 116
Figure 5. 19: Splitting Dataset .. 117
Figure 5. 20: Data Scaling ... 117
Figure 5. 21: Training Machine Learning Algorithms ... 118
Figure 5. 22: Comparison of different ML Algorithms using the NSL-KDD dataset. 119
Figure 5. 23: Comparison of different ML Algorithms using the UNSW-NB15 dataset. 120
Figure 5. 24: Comparison of NSL-KDD and UNSW-NB15 datasets results for different ML
Algorithms. ... 120
Figure 5. 25: Sample Mininet CLI command. ... 122
Figure 5. 26: Open vSwitch Architecture 123
Figure 5. 27: The Ecosystem of the Apache Spark 126
Figure 5. 28: Two main packages of Spark’s MLlib library .. 127
Figure 5. 29: Integration of Apache Streaming with any other Spark components 128
Figure 5. 30: Kafka Architecture .. 129
Figure 5. 31: Running Spark in Standalone Server Mode. ... 131
Figure 5. 32: Spark Web GUI. ... 131
Figure 5. 33: Launching Spark Worker ... 132
Figure 5. 34: Spark Standalone Mode Information ... 132
Figure 5. 35: Spark Shell ... 133
Figure 5. 36: Running Zookeeper ... 134
Figure 5. 37: Running Kafka Server(Broker) ... 135
Figure 5. 38: Create a Topic in Kafka .. 136
Figure 5. 39: Kafka Topic Information .. 136
Figure 5. 40: Define Kafka Consumer ... 136
Figure 5. 41: Running Elasticsearch ... 137
Figure 5. 42: Elasticsearch Information ... 137
Figure 5. 43: Create Index in Elasticsearch for Storing Data .. 138
Figure 5. 44: Information of the Created Index in Elasticsearch ... 139
Figure 5. 45: Import Spark Essential Libraries .. 139
Figure 5. 46: Create Spark Context .. 140
Figure 5. 47: Process of the live input data in the Spark streaming 140
Figure 5. 48: Generates an input stream that fetches messages from the Kafka broker. 141
Figure 5. 49: Creating RDD in Spark ... 141
Figure 5. 50: Transforming Numerical Features into Single Vector 142
Figure 5. 51: Scaling Features in Spark .. 142
Figure 5. 52: Import Random Forest Classifier in Spark... 142
Figure 5. 53: Define Random Forest Model in Spark ... 143
Figure 5. 54: REST API Architecture ... 144
Figure 5. 55: JSON File for Creating REST API Request .. 145
Figure 5. 56: Sending Request to the Controller via REST API POST Method 145

Figure 6. 1: Experimental Testbed Architecture. ... 148
Figure 6. 2: Activate the OpenFlow and Forwarding apps in ONOS. 150
Figure 6. 3: Network Setup from Controller Point of View .. 151
Figure 6. 4: Ping command before launching flooding attack. .. 151
Figure 6. 5: Legitimate Traffic Detection Message .. 152

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

11

Figure 6. 6: Anomaly Detection Message by the Framework .. 153
Figure 6. 7: Ping command After Blocking the Attacker. ... 153
Figure 6. 8: Average Controller CPU Consumption. ... 154
Figure 6. 9: Average Controller Memory Consumption. .. 154
Figure 6. 10: Average Controller Response time to Legitimate Traffic. 155
Figure 6. 11: Comparison between BFDD-S and centralized method in terms of average
response time to the legitimate traffic. ... 157
Figure 6. 12: Comparison between BFDD-S and centralized method in terms time
required to mitigate DDoS attack by the controller. .. 158
Figure 6. 13: Comparison between BFDD-S and centralized method in terms of
processing load on the controller during the DDoS attack.. 158
Figure 6. 14: Comparison between BFDD-S and centralized method in terms of memory
consumption during the DDoS attack. ... 159
Figure 6. 15: The average processing load in the traditional and proposed method. 160
Figure 6. 16: The average response time to the legitimate flows in the traditional defense
and proposed methods. ... 161

Figure 7. 1: Agent Position in SDN Architecture .. 165
Figure 7. 2: A Simplified DCI Architecture for DCs with Automation. S: spine, L: leaf. 167
Figure 7. 3: Intermediate Orchestrator or Orchestrator Cascading. 167
Figure 7. 4: Overview of our Contribution to WP3. ... 169
Figure 7. 5: Overview of our Contribution to WP4 .. 170

 12

List of Tables

Table 3. 1: Functionality of the different OpenFlow specifications ... 46
Table 3. 2: Main Threats in the SDN Layers .. 55

Table 4. 1: SDN controllers and their characteristics .. 76

Table 5. 1: Pseudo code for the Logistic Regression algorithm 105
Table 5. 2: Pseudocode for the KNN Algorithm 106
Table 5. 3: Pseudo code for the Naïve Bayes Algorithm . .. 107
Table 5. 4: Pseudo code for the Decision Tree algorithm . .. 108
Table 5. 5: Pseudo code for the random forest algorithm ... 109
Table 5. 6: List of features of the NSL-KDD dataset. .. 111
Table 5. 7: Divisions of famous and new attacks in the KDD-Test set. 112
Table 5. 8: Number of records in training and testing subsets for each class 113
Table 5. 9: Accuracy Comparison Table (Using NSL-KDD data set) 118
Table 5. 10: Comparison Table (Using UNSW-NB15 data set) ... 119

Table 6. 1: Hardware and Software used in the Testbed. ... 148

Table 7. 1: Projects Contributions .. 163

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

13

Chapter 1

1 Introduction

The Computers on the World Wide Web are connected using a standard protocol called the
Internet. Today, people rely on the Internet for education, business, socialization, and
entertainment, among many vital aspects of human life, as well as sharing information, and
e-commerce. We can claim that the Internet is the biggest revolution in the world of
computing and communication. Web threats, on the other hand, cause a wide range of
jeopardies including financial abduction, identity theft, loss of information or confidentiality,
network resources theft, damage to the brand and personal reputation, and consumer trust
decrease in e-commerce, online banking, and all different network services.

The traditional network structure initially has limitations such as complexity, inconsistent
policies, lack of scalability, dependency on manufacturers, and a lack of symmetry between
market demands and network capabilities. New concepts such as Cloud, virtualization, and
changes in data consumption patterns, reveal weaknesses and limitations in traditional
networks. With the advent of software-defined networks, new hopes have emerged for
finding solutions for structural problems and resolving restrictions in traditional networks.

Software-defined networking is a dynamic, manageable, cost-effective, and adaptable
architecture that seeks to be suitable for today's dynamic and high-bandwidth applications
that can fundamentally overcome the restrictions of traditional networks [1]. Due to its
centralized control, a software-defined network facilitates management, reduces hardware
complexity, and gives the network environment more flexibility and mobility [2].

Denial of service attacks is one of the hazards that can create a serious and unexpected
challenge for accessing essential information by eligible users. By performing this kind of
attack, the attackers attempt to disrupt the services by occupying a significant amount of
available resources [3]. Although the technical complexity of these attacks is increasing daily,
the attackers do not need high technical knowledge and skills about the victim’s system and
attack launch techniques to perform such attacks [4].

Hackers have enhanced their DDoS attack methods to extraordinary levels over the past
decade. The emergence of the internet of things (IoT), pervasive connectivity, and now 5G
networks are all components that have led to DDoS attacks’ rapid expansion and complexity
[5]. These kinds of attacks are growing daily. The DDoS attack has evolved into a substantial
danger to organizations and Internet infrastructures over the last few years, which has
resulted in a devastating threat to the services provided by these companies. Figure 1.1,
briefly shows the rise of DDoS attacks in recent years.

 14

Figure 1. 1: The rise in sophisticated DDoS attacks in recent years [Taken from [6]].

Several instances indicate how DDoS attacks can affect the performance of different famous
companies in recent years. One of the first major DDoS attacks targeted Yahoo! company,
which brought down their services for a few hours [7]. In October 2002, another immense
DDoS flooding attack took place, making the service unavailable for the majority of DNS root
servers (9 out of 13) [8]. At the end of the year 2010, another harmful DDoS attack occurred
when a group of hackers orchestrated massive DDoS flooding strikes on Mastercard, Visa, and
PostFinance websites, bringing them down [9]. Attackers have lately targeted online banking
websites, including several major US financial organizations such as Wells Fargo, PNC, HSBC,
Bank of America, Citigroup, and U.S. Bancorp, which have all been subjected to massive DDoS
flooding attacks [10].

Recent distributed denial of service (DDoS) attacks have become more complicated, and the
scale of the attack has crossed the barrier of hundreds of gigabits per second (Gbps) [11]. One
of the widespread denials of service attacks happened on October 21st, 2016 at Dyn. Dyn is
an Internet infrastructure company that offers DNS service to a vast area of Europe and North
America. In this attack, IoT devices were exploited to execute a Distributed Denial of Service
attack, which created nasty DNS lookup queries [12]. This attack with a rate of 1.2 Tbsp., was
the most devastating of its kind in the history of attacks [13].

1.1 Challenges in SDN network security

Security is an essential concern in both traditional networks and SDN networks since it ensures
the integrity, privacy , and availability of information. The effectiveness of SDN is increasing in
the IT world day by day; it spreads in diverse areas, from local area networks to public cloud
architectures. However, despite the many benefits it offers, SDN security remains a matter of
concern among research communities. SDN networks face a significant challenge in the form
of the adverse effects caused by Distributed Denial of Service (DDoS) attacks.

It is noteworthy that the distributed denial-of-service attacks on the SDN networks can be
much more destructive since the SDN architecture is based on the separation of the control
plane from the data plane, where the intelligence of the network is centralized in a single
entity known as the controller. The centralized role of the controller makes it vulnerable to
DDoS attacks. This kind of attack can cause the interruption of the service of the entire

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

15

network by bringing down the controller [14]. As a result of the large number of unknown
flows arriving at the controller, the controller’s resources such as bandwith, memory, and
CPU, etc., become vulnerable, and the network becomes unusable. Furthermore, the
bandwidth of the communication line between the controller and data plane can be saturated
by a huge amount of this new traffic which will harm the functionality of the switches and
disrupt the SDN network functionality [15]. Since the flow table is placed in the network
devices, the data plane is also vulnerable to DDoS attacks. During the launch of the DDoS
attack, enormous packets are sent to the network switches from diverse anonymous sources.
The defined rules for these arriving packets will be added to the flow table of the switches by
the SDN controller. The capacity of these flow tables is limited; therefore, the flow table of
the switch will be saturated after a while. As a result, no new rules can be added to the flow
table, and no packets can be forwarded. Furthermore, once the buffer capacity is saturated
due to the DDoS attack, all incoming network traffic drops automatically [16]. Therefore, in
recent years, the security of the SDN network came to the sight of the research communities
and many researchers have tried to propose various methods to detect and mitigate DDoS
attacks in SDN networks. They utilize various concepts and methods, such as statistical
measurement, big data tools, and machine learning techniques to find a comprehensive
solution to tackle this critical security concern in the SDN environment.

Adding big data analytics to a company’s security architecture can significantly improve its
capability to identify, investigate, and potentially prevent DDoS attacks. Large amounts of data
must be analyzed and saved to evaluate DDoS attacks properly. The big data ecosystem is
capable of managing massive volumes of data for assessment and comparison. Big data
analytics provide comprehensive investigation, which can offer a vision into a diversity of
crucial information, whereas standard traditional security methods contain only negligible
logging information and just a few summary reports. It almost seems like hackers are able to
modify their methodologies to include advanced IT concepts such as cloud capability prior to
enterprises switching from scale-up to scale-out architecture. As a result, even the most
sophisticated security systems are unable to detect, prevent, or mitigate today’s DDoS attacks.
In this situation, big data is a notion that can give companies knowledge about DDoS attacks
and provide the tools they need to efficiently tackle the problem [17].

Big data analytics tools can provide various capabilities to address advanced and complex
security threats. For instance, providing real-time data processing which is a significant
capability for real-time threat analysis. Moreover, monitoring and automation of the network
traffic offer the ability to react rapidly to detected threats. In addition, these analytical
capabilities can be enhanced by using the machine learning approach. Using machine learning
techniques in the network security domain and specifically for detecting DDoS attacks can
assist researchers to develop a defense mechanism by collecting, analyzing, and processing
data based on previous DDoS attack information. In other words, using machine learning
algorithms enables a security framework to detect malicious traffic from activities learned and
collected from past knowledge rather than through personal interaction, which in the first
case it provides an automated, more accurate, and reliable defense solution.

in the realm of security, where novel threats emerge in less time and attack techniques are
getting more sophisticated, it is vital to have formidable tools to facilitate manage and analyze
all this new information to detect potential attacks swiftly and in real time.

 16

1.2 Motivation

The rapid expansion of internet-based services in recent years has significantly increased
cyber security concerns. Security in a data network should be a top concern since failing to do
so exposes companies and organizations to a series of threats that might jeopardize service
availability. The amount of data produced each day exceeds the threshold of petabytes. These
data contain information about internet users' behaviors. On the other hand, besides the
volume of data, the number of security threats is growing drastically. There are a wide variety
of attack scenarios and methodologies, which makes them complicated and increases the
difficulty of detecting them.

Different attacks have their own specific features to be recognized; hence a wide variety of
signs must be considered to identify multiple attacks while monitoring a large-scale network
infrastructure. DDoS attacks are one of the most significant issues in network security today
due to the massive disruption they can cause to any type of network infrastructure [18]. The
majority of distributed denial of service attacks are directed at online marketplaces, blogs, and
the financial industry. It is also common knowledge that the SDN infrastructure is susceptible
to attacks of this kind.

Software-Defined Networking (or SDN) is a networking technology that offers a particular type
of network architecture, compared to traditional networks, which are more scalable and
flexible. This modern architecture is also capable of reacting fast to shifting requirements for
businesses and end-users' perspectives because of its specific characteristic, which is a unified
management network [19]. The efficacy of software-defined networking (SDN) is becoming
more and more apparent on a daily basis; its use spans a wide range of domains, from private
local area networks to public cloud infrastructures. SDN demonstrates its excellent
performance in the majority of situations by delivering simplicity, flexibility, reliability, and
efficacy at a lesser cost. SDN security, however, continues to be a topic of concern among
research communities, despite the numerous advantages of this technology. Similar to the
traditional network, SDN-based networks also have the same security necessities [20].

The software-defined networking (SDN) viewpoint is predicated on the principle of separating
the control plane from the data plane. In this architecture, all the intelligence of the network
is unified in a single location, referred to as the controller. Due to the fact that in the initial
design of the SDN architecture, security was not considered, different SDN layers are
vulnerable to different attacks; figure 1.2 presents the effect of the DDoS Attack on the
different layers of the SDN environment. Launching a DDoS attack targeting the SDN network
can disrupt the functioning of the different SDN entities, such as overloading the Flow table
of the network Switch, saturating the buffer of the switch, congestion of the southbound
interface, and bringing down the SDN controller. The centralized controller, as the core of the
SDN network, is susceptible to DDoS flood attacks, which may result in an interruption of
service over the whole network [21].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

17

Figure 1. 2: Attack on SDN Layers. [22]

In the SDN-based network, the impact of distributed denial of service (DDoS) attacks on SDN
networks is one of the most significant concerns of network administrators. A Distributed
Denial of Service attack (DDoS) conducted against the SDN controller might deplete its
processing capabilities, rendering it unreachable to legitimate traffic, thus affecting the
availability of services [23]. In addition, because the controller will have all its resources
dedicated to processing a large number of malicious packets, it will be inaccessible to
legitimate traffic as a result of these types of threats. Driver functions, such as online services
or web applications, may become unavailable because of these types of threats [24].

Compared to conventional networks, the effectiveness of distributed denial of service attacks
(DDoS) will be evident in SDN networks at a much quicker pace and with higher damage. There
are now several research papers that offer various techniques for detecting and mitigating
distributed denial of service (DDoS) attacks in SDN networks. However, there is no
methodology that serves as a guide for the implementation of these solutions [25].

In most of these proposed methods, the module is centrally located in the controller. There
are three major disadvantages that can be addressed for these methods:

1- One of the main drawbacks to these techniques is the lack of scalability of the
detection module; In most proposed methods the detection/defense module is
implemented by developing the controller core or running it as an application in a
separate machine, in both cases, it can be a single point of failure.

2- In centralized detection methods, concerns are raised about the amount of computing
load imposed on the controller during heavy DDoS attacks. When a DDoS attack
begins, a large number of new packets flow to the controller. The controller must
analyze all new packets and take the essential actions. In this case, a considerable
computing load is imposed on the controller, and the controller may fail to manage
and control other upcoming network requests.

 18

3- Another issue is the delay in responding to permissible flows sent to the controller.
The validation process for detecting malicious traffic to any new incoming network
packets by the controller can cause delays in responding to legitimate flows. For the
SDN network, these additional delays can be a major concern.

Therefore, with the increasing complexity of the different DDoS attack techniques for
deploying the SDN architecture in a network environment, it is crucial to consider the above-
mentioned concerns. To protect the SDN network, sophisticated methods are essential to
monitor, analyze, and accurately identify attack features. In this context, big data techniques
can be used to detect these attack features. An edge might be gained against these kinds of
attacks by developing a real-time network traffic monitoring and processing system that is
able to identify malicious activity, scale the amount of data that is ingested, and react quickly
in terms of reaction time. To ingest and analyze massive volumes of data in real-time with
minimal latency, distributed processing systems such as Apache Spark 1, Apache Kafka2, and
Apache Storm3 are rapidly being deployed. Distributed processing solutions, such as Apache
Kafka, and Apache Spark are being quickly implemented so that huge amounts of data may be
ingested and analyzed in real-time with little lag.

Using these big data tools, a DDoS detection system may quickly detect abnormal activities or
suspicious acts and mark them for urgent analysis. This can be done during enormous
workloads with heavy traffic. Developing such a framework can offer a vital supporter that
may assist network security systems in addressing the DDoS threats that are currently being
encountered in the SDN environment. In this sense, machine learning (ML) algorithms provide
a viable opportunity for classifying network data and determining attacks.

Machine learning approaches can analyze characteristics and learn from them, which enables
the detection and prevention of DDoS attacks. In the context of DDoS attack detection,
approaches based on machine learning perform very well when combined with the robust
qualities of big data processing systems.

In general, in the context of the DDoS attack detection methods, there are still certain open
issues which are summarized in the following:

- Designing a real-time attack detection system to collect and analyze incoming new packets
without packet loss.

- Implementing security techniques to the SDN controller may influence the performance of
the entire network during high traffic load.

- To prevent controller performance degradation, the detection system should be decoupled
from the core network architecture.

- The attack detection system should be continuously updating its attack features,
information, and detection methodologies to be capable of detecting new attacks without

1 “Apache Spark”. [Online]. Available: https://spark.apache.org/, /, [Last accessed: June 2022].
2 “Apache Kafka”. [Online]. Available: https://kafka.apache.org/, /, [Last accessed: June 2022].
3 “Apache Storm”. [Online]. Available: https://storm.apache.org/, /, [Last accessed: June 2022].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

19

jeopardizing the system performance, as attack scenarios and patterns change very fast and
attack methods are getting more complex and difficult to detect.

To tackle the above-mentioned issues, the big data analytics tools with their specific powerful
features such as the formidable processing power, real-time analysis, and capability of
handling heavy traffic can be used to design and develop a DDoS attack detection and
prevention framework for the SDN network. To address the issues mentioned in the SDN
environment, we propose a framework that utilizes machine learning techniques and a big
data pipeline. This framework provides rapid, precise, efficient, and automated security
systems that can identify DDoS attacks in real-time. Additionally, it can be easily adapted to
new malicious activities and can handle large traffic loads

1.3 Objectives

The DDoS attack is still a severe threat to SDN networks, where there exists no specific solution
that provides a perfect security orchestration against DDoS attacks in SDN networks. It is
crucial to have a solution that can quickly and reliably identify DDoS attacks in real-time
network traffic. The security solution must be fast, scalable, and effective to provide the SDN
network environment efficiency and security. In this research, since the control plane is the
most vulnerable part of the SDN security architecture, we specifically consider and investigate
the control plane of the SDN architecture to design and develop a methodology prototype for
detecting and mitigating the DDoS attack directed at the control plane and southbound
interface in the SDN architecture with the aim of improving the security within SDN network.
We propose a scalable, reliable framework to detect and mitigate DDoS attacks to prevent the
computational load and delay in the legitimate flows sent to the controller.

1.3.1 Research Questions

In this research, we intend to develop a methodology to detect and mitigate DDoS attacks
using machine learning techniques based on big data pipelines to increase security in the
control plane of the SDN environment. Therefore, it is critical to design a software stack in a
way that the collected data is sent in real-time for analysis by the model.

there are the following major questions to be investigated in this research:

1- What are the SDN attack vectors?
2- Which machine learning classifier algorithm is appropriate for detecting DDoS attacks?
3- How to implement a data pipeline to detect malicious network traffic in the networks?
4- How can a detection module be integrated into the SDN controller for the detection

and prevention of a DDoS attack in the SDN environment?
5- What is the effect of integrating a detection module using the big data pipeline and

developed controller to detect and mitigate DDoS attacks in software-defined
networks?

 20

1.3.2 Specific objectives

The overall objective of this research is to develop a framework that is a combination of a data
analytics pipeline for processing the incoming traffic and identifying network abnormalities in
real-time. This will be accomplished by developing a data analytics pipeline. To be more
specific, the following four activities will be incorporated into the development of the
framework:

Activity1: Problem identification and motivation

Activity2: Development of the Control Plane of the SDN network

Activity3: Evaluation of Different Machine Learning Classification Algorithms

Activity4: Implementation of Big Data Pipeline for Intrusion Detection

Activity5: Demonstration of the Framework with an experimental setup

Activity6: Evaluation

In the following, each activity is described more precisely:

Activity1: Problem identification and motivation

-Investigating the literature associated with software-defined networks and their
applicability in this research.

- Researching SDN security issues and defining various security vectors and possible
solutions on different layers of the SDN architecture.

-Studying the different types of DDoS attacks in SDN and their detection and mitigation
mechanisms.

Activity2: Development of the Control Plane of the SDN network

-Developing an API into the SDN controller to handle, aggregate, and convert the incoming
traffic information immediately after they arrive and make them reliably accessible for the
rest of the pipeline.

Activity3: Evaluation of Different Machine Learning Classification Algorithms

-Selecting the most appropriate machine learning algorithms for the identification of DDoS
attacks.

Activity4: Implementation of Big Data Pipeline for Intrusion Detection

-Carrying out a study of big data and technologies and architectures for massive data analysis.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

21

-Designing the methodology based on the big data pipeline for the detection and mitigation
to identify, analyze, and prevent the different denial of service attacks in the SDN network.

-Designing and building classification models using big data tools capable of classifying
network traffic and detecting possible attacks with good accuracy and a low percentage of
false alarms (the classification of normal traffic and attacks). Implement a machine learning
technique that processes network information into big data tools and makes predictive
analyses with the most recent dataset to date.

Activity5: Demonstration of the Framework with an experimental setup

-Demonstrating the proposed framework by integrating the traffic capture tool, developed
SDN controller, and the machine learning model with the big data software stack to obtain a
distributed intrusion detection system capable of analyzing and classifying the flooding traffic
targeting the victim system in real-time.

Activity6: Evaluation

-Evaluating and verifying the viability of the proposed detection and prevention methodology
in a controlled simulation scenario using real attacks and checking the results.

-Drawing conclusions from the analysis and proposing improvements and visualizing the
results of the monitoring process.

To accomplish each individual objective of our project, we have used a unique collection of
tools to address each challenge with the appropriate approach.

1.4 Goals and Contributions

To deliver an accurate, scalable, real-time, and fast DDoS detection and prevention system
that matches current demand, our solution integrates SDN concepts, machine learning, and
distributed stream processing using a big data pipeline. The challenging task in this research
is to develop a machine learning-based network intrusion detector using big data tools, a
predictive framework that is capable of distinguishing between malicious traffic and
legitimate traffic.

More specifically, in the primary phase of the proposed solution, a Java-based API is developed
into the SDN controller for collecting, aggregating, and transforming the network traffic
information received from the controller into a specific format. These collected data are
constantly sent to a distributed message broker known as Apache Kafka, whose job is to
provide a fault-tolerant layer for the data stream processing phase. It consistently saves and
manages the input network traffic information, which is sent via the SDN controller to feed
them to the data stream processing step of the big data pipeline.

The next step is where the majority of the processing and classification of the network traffic
is done. It is implemented using the Apache Spark framework, which is a scalable analytics
tool for data processing data and includes several different packages for various purposes such

 22

as Structured Streaming and machine learning. For classification of the network traffic, first
pre-processing should be done to boost the accuracy by removing unrelated features.
Afterward, five different supervised classification algorithms, such as Logistic Regression,
Naïve Bayes, k-Nearest Neighbor, Random Forest, and Decision Tree are evaluated to find out
which algorithm has the most efficiency in differentiating between normal and malicious
traffic.

In this research, to evaluate the deployed machine learning algorithm which is implemented
in the proposed framework, we have decided to use the NSL-KDD [26], and UNSW-NB15 [27]
datasets. The NSL-KDD and UNSW-NB15 datasets are popular datasets that are extensively
used as a benchmark for contemporary network traffic supervising systems. The last step of
the data pipeline consists of storing the classified network flows. For this function, we use
Elasticsearch 4, a distributed search engine, to provide a fast search and store service. When
the network flows are processed through the data stream processing step of the big data
pipeline, if any malicious flow is detected, a request will be sent to the SDN controller via the
REST API communication channel to block the sender of the traffic.

In another attack scenario, the attacker is targeting the southbound interface to saturate the
channel between the controller and the network infrastructure devices. In this situation, the
controller cannot receive the network traffic to perform the data processing for distinguishing
the malicious traffic. In the proposed approach, we can tackle this serious vulnerability by
setting up the infrastructure devices to send the network flow information via the standard
network protocols such as Netconf and IPFIX to the data processing pipeline, and the rest of
the process will be the same. The network devices such as switches can be configured to send
the network traffic information via Netconf or IPFIX protocols to the big data pipeline, and if
any malicious traffic is detected, the sender will be blocked by sending a REST communication
request to the controller.

1.4.1 Thesis Impact

During this research, the result of different parts of this thesis have been published in peer-
reviewed conference proceedings:

1- Amirreza Fazely Hamedani, Muzzamil Aziz, Phillip Wieder, Ramin Yahyapour,” Security
Enhancement in SDN-based Networks Using Big Data Analytic Pipeline.”, Digital
Privacy and Security Conference 2023 (DPSC2023).

Own Contribution
I am the lead author of the paper. All major analyses and evaluations have been done
by myself.

4 “Elasticsearch. Distributed search and analytics engine based on Apache Lucene.” [Online], Available:
https://www.elastic.co/, [Last accessed: June 2022].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

23

2- Amirreza Fazely Hamedani, Muzzamil Aziz, Phillip Wieder, Ramin
Yahyapour, “Leveraging Big Data Pipeline to Enhance Security in SDN networks.”, The
27th International Conference on Optical Network Design and Modelling (ONDM
2023),Potugues.

 Own Contribution
 I am the lead author of the paper. I have to present the investigation and evaluation
 of the proposed method in the workshop.

3- Amirreza Fazely Hamedani, Muzzamil Aziz, Phillip Wieder, Ramin Yahyapour,” Big Data

Framework to Detect and Mitigate DDoS Attacks in SDN Networks”, Proc. of the
International Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME 2023), Spain.

Own Contribution
I am the lead author of the paper. I significantly contribute to designing and
implementing the prototype model.

4- Amirreza Fazely, “DDoS attack and Detection Techniques”, GWDG-Nachrichten, March
2019.

Own Contribution
I am the lead author of the paper. I did the most investigating and writing.

Furthermore, one papers have been prepared for submission to the IEEE conference:

5- Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour,”

Analysing the Efficiency of Utilizing Machine Learning Techniques on Apache Spark for
Intrusion Detection“, 4th International Conference on Digital Technologies and
Applications,ICDTA’24, February 2024,Fez, Morocco.

Own Contribution
I am the lead author of this paper. As the primary researcher, I took on the
responsibility of thoroughly performing the analysis and evaluation of the different
machine learning approaches discussed in this study. This hands-on involvement
ensured the accuracy and reliability of the results presented in the paper.

Moreover, a few papers were published to which the author of this thesis contributed:

6- Muzzamil Aziz; Amirreza Fazely; Giada Landi; Domenico Gallico; Kostas
Christodoulopoulos; Philipp Wieder,” SDN-enabled application-aware networking for
data center networks”, IEEE International Conference on Electronics (ICECS), 2016.

Own Contribution
My own contribution to this paper is the implementation and modeling of the required
simulation prototype. Furthermore, performing the evaluation and analysis of the
simulated data.

 24

7- Giada Landi; Ioannis Patronas; Kostas Kontodimas; Muzzamil Aziz; Kostas
Christodoulopoulos, Amirreza Fazely,” SDN Control Framework with Dynamic
Resource Assignment for Slotted Optical Datacenter Networks”, Optical Fiber
Communication Conference, OSA Technical Digest, 2017

 Own Contribution

Own contributions to this paper comprise designing and implementing the proposed
approach.

8- Amjad Zia, Muzzamil Aziz, Ioana Popa, Sabih Ahmed Khan, Amirreza Fazely Hamedani,

Abdul R Asif, “Artificial Intelligence-Based Medical Data Mining”, Journal of
Personalized Medicine, 2022.

Own Contribution

Own contribution to this journal paper embraces certain conceptual investigations and
evaluations of various machine-learning techniques for medical data mining.

1.5 Thesis Outline

The rest of the report is organized as follows:

In Chapter 2, we provide a review of the current literature on the different defense
methodologies. We divided the existing literature into five categories: General Methods,
Mathematical Methods, Methods, Big Data Methods, and Hybrid approaches. Furthermore,
there is a detailed review of the current literature for each category.

In Chapter 3, we explain an overview of the SDN network, its history, the concept from the
perspective of general definition, and its particular characteristic, which separates it from
traditional technologies. In addition, we introduce the details of the SDN architecture and its
different layers from top to bottom point of view. Furthermore, we present the OpenFlow
protocol and its specification, since it is the protocol that we consider in our proposed
framework prototype as a southbound interface for communicating between SDN controllers
and infrastructure switches. For this reason, we describe the OpenFlow architecture and
OpenFlow-based switches, followed by its workflow in terms of how messages are exchanged
between the controller and the switches and different types of messages.

Then, we summarized the SDN security and different challenges and issues that should be
considered. More specifically, in section 3.6, we explain the Threats and SDN vulnerabilities
related to different layers of the SDN architecture. In section 3.6.3, we expound on the seven
significant SDN attack vectors. Section 3.7 introduces the Denial of Service (DoS) attack,
including its specification and why it has become an important subject for security researchers
and organizations. Particularly, in section 3.7.2, we clarify the effect and impact of DDoS
attacks on three layers of the SDN structure.

In Chapter 4, initially, we introduce various key factors which are essential for evaluating
different SDN controllers; then we investigate in detail five prevalent SDN controllers based
on these key factors in order to choose the proper controller to be implemented into our

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

25

framework. For this purpose, we particularly study various prevalent SDN controllers,
including NOX/POX, Ryo, Floodlight, OpenDaylight, and ONOS, and illustrate their overall
architecture.

In Chapter 5, we explain the proposed framework and its components and modules.
Particularly, in sections 5.1 and 5.2, we describe the details of the proposed framework
architecture, its three major modules, its functionality, and workflow. Section 5.3, contains
information about developing an API for the SDN controller. Evaluation of the different
algorithms and the results are explained in Sections 5.4 and 5.5. In section 5.4, we provide a
theoretical explanation of, its use cases, and three major classifications. This is followed by
defining the process of designing and evaluating the accuracy of a model. Particularly, Section
5.4.5, contains the mathematical background of various algorithms which we use in our
research. Further, in section 5.5, we depict the process of selection of the proper algorithm in
detail and present the comparison result of the selected classification algorithms.

Furthermore, in section 5.6, we provide information about the tools and technologies used in
this research. Section 5.6.2, contains details about the big data tools, including, Apache Spark,
Spark Streaming, Apache Kafka, Zookeeper, and Elasticsearch, which we employ to implement
the data pipeline for processing the network traffic to detect DDoS attacks. The details of the
big data pipeline implementation are described deeply in section 5.7.

In Chapter 6, we describe an experimental setup and performance evaluation. Specifically,
section 6.1 contains the details about the experimental testbed and its specifications. In
sections 6.2 and 6.3 we present the deployment of the network topology and proposed
framework operation. Sections 6.4 and 6.5 present experimental results and performance
evaluation.

In Chapter 7, we introduce three European projects that we include as contributions and use-
cases of this research to present how the SDN paradigm can provide a possibility to modify
the network infrastructure on demand to match the needs of any organization.

In Chapter 8, we summarize this research and briefly explain the achievements and
conclusions. Finally, some possibilities for the development of the future plan for this thesis
are discussed.

 26

Chapter 2

2 Literature Review

In the last few years, due to the significance of security risks in software-defined networks,
different detection and mitigation systems against DDoS attacks have been proposed the
literature; Numerous concerns exist in the traditional detection system such as no real-time
reaction, slow detection process, single point of the failure, etc. Based on our knowledge, few
researchers offered a distributed processing framework for DDoS detection and mitigation
system in SDN networks to address the issues of traditional systems. Most of them rely on
techniques such as methods, statistical solutions, and information theory. In some statistical
solutions, entropy has been used to detect the attack [28].

 Although entropy is a proper analytical method, it alone cannot detect all the attacks.
Therefore, for some attacks, it is probable that the system may trigger false alarms at peak
times. The peak time is when the legitimate traffic on the network has been increased for
some reason, such as providing authorized services to too many users. Therefore, the best
approach is to combine entropy with some other methods. In some other solutions,
researchers have offered graph-based methodologies for the detection of DDoS attacks.
However, there also lies the possibility of false alarms with the increase in illegitimate traffic
[29].

2.1 General Methods

Kandoi et al. examined the risk of controller resource saturation and flow table overflow. This
paper outlines a method that revolves on altering and modifying the configuration of switches
to deal with these threats [30]. Taejin et al. introduced multiple intrusion detection systems.
In this method, the traffic flow is distributed among the systems using the flow group
clustering algorithm based on routing information and data flow rate [31].

Wang et al. proposed a mechanism of protection against Distributed Denial of Service attacks
in cloud environments using the Floodlight controller. This method consists of two modules,
one for detection and the other for defense. The attack detection module is responsible for
identifying attacks and then notifying the response module for performing the necessary
action against the attacks. This method is the first solution against this type of attack in cloud
environments with the help of SDN [32].

Fichera et al. offered a technique for protecting web servers from Flood attacks based on the
Pox controller. This technique introduces a controller named OPERETTA, which verifies each
SYN packet and then allows the connection to start. This method is very comparable to
SynCookie on traditional networks [33].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

27

Discussion:

These general DDoS detection methods involved enforcing specific network policies or rules
on the attacked network as traffic was flowing through it. It is also possible to define various
network policies and traffic rules to prevent and identify various DDoS attacks.

On the other hand, these solutions have some limitations, including the fact that it only applies
to a single SDN controller and does not support scalability and also real-time detection.

2.2 Mathematical Methods

as a mathematical method, Chouhan and Peddoju use the hop count of the IP mapping table
for clarifying the DDoS attack packets. They claim that the accuracy for detection in this
technique for IP attack behaviour, has been around 90% and deployment of the method is
comfy. As a negative point, this technique is helpless against distributed attacks. Furthermore,
if the IP-to-Hop-Count mapping table (Known as P2HC) is not updated appropriately, normal
network packets may be mistakenly considered malicious traffic which affects the false
positives [34]. As another mathematical method, Feinstein et al. consider the entropy and chi-
square assessment for the network traffic to detect DDoS attacks [35].

Discussion:

In addition to the aforementioned mathematical methods, there are various other similar
options available for SDN networks. In these methods, probability, the analysis of standard
deviation, and correlation. and entropy measurement, are the essential foundation. For
instance, Entropy can be calculated by considering two different variables: the specifying
threshold value and the clarifying window size.

As main drawback of these methods is, when the network traffic complies with the traffic
regulations and policies, the network traffic is considered to be legitimate traffic flows;
otherwise, in the vast volume of the traffic, even the legitimate traffic, they are regarded as
malicious traffic flows. In addition, these methods, do not offer any platform or framework
that can be implemented in the real world.

2.3 Machine Learning Methods

In this research, they use three distinct kinds of data mining applications to comprehend the
prototype and utilize them for DDoS attack detection, in order to assess the efficiency of the
proposed protection architecture. Their experience shows a proper outcome on attack
detection and false positive rate.

Gurulakshmi and Nesarani utilize the classification method and specifically the SVM method
to classify normal and malicious traffic and predict immediate abnormal activities [36].
Moreover, Huang et al. suggested architecture for network security based on Deep defense,
and also proposed data mining techniques for processing and evaluating the alarms collected
in the IDS/IPS systems [37].

 28

In another research and based on the C4.5 algorithm, Zekri et al offered a DDoS attack
detection. In their proposed method the signature detection technology is considered to
create the decision tree, and the algorithm is used to detect the DDoS flood attack
automatically and efficiently [38]. Wang et al. proposed a technique based on flow mining for
attack detection, by using the Code Red and Slammer worms and DDoS data collection from
MIT Lincoln Laboratories, they indicate the effectiveness of this approach [39].

Rojalina et al. [16] developed a defense system and detection methods against DDoS attacks
based on deep learning. In this method, the capabilities of SDN networks have been used to
design a prevention algorithm module in the SDN controller. Robust infrastructure
requirements and high costs are some of the problems associated with this method. The
accuracy of the system in detecting attacks is reported to be 98.88% [40].

Discussion:

The major vulnerability of the SDN network is the centralized controller. This is due to the fact
that in the SDN architecture, the underlying infrastructure which is called the data plane, and
control logic which is called the control plane have been separated. To protect SDN controllers
against DDoS attacks, there are already several methods. The machine learning approaches
are able to analyse network traffic characteristics and learn from them, which can well assist
in the detection of DDoS attacks.

One of the disadvantages of these methods is, they cannot provide any scalability and
reliability for their methods which is a crucial feature for any network attack detection
method.

2.4 Big Data Methods

G. Dileep Kumar et.al introduced a real-time DDoS attack detection method based on SDN and
big data. In their study, they implemented an SVM algorithm and offered two novel
approaches for attack detection. They claimed that the proposed method could further be
improved to detect and prevent different types of DDoS attacks [41]. Zhao et al. developed a
neural network for detecting DDoS attacks which has the ability to adapt to new types of DDoS
attacks. In their proposed system, they used big data tools such as HBase and Hadoop for
analysing and storing huge amounts of the unstructured dataset which have been collected
from the network log. [42].

Sufian and Usman presented a system called HADEC, which is a live DDoS detection framework
based on Hadoop to deal with flooding attacks using MapReduce. They implemented an
algorithm that only detects the TCP-SYN, ICMP, UDP, and HTTP GET attacks [43].

Karimi, et al., by using Spark offer a feature extraction technique for real-time IDS. For
capturing the network packets from the network devices and obtaining essential information
from the packet header, they utilize a collector module. All this captured header information
is stored in CSV files and used the time window to separate them. Then, for providing real-
time processing, Spark periodically uses these CSV files for reading data during a small-time
window. One disadvantage of this method for the online Internet traffic monitoring system is

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

29

that reading and writing the data from the CSV files in an intervallic way may reduce the Spark
performance [44].

Gupta et al. proposed three network traffic monitoring tools by using the Spark Streaming
library for analyzing network packets in real-time. This application, which involves monitoring
reflection attacks, may be described as streaming analytics problems, port scan detection, and
application functioning evaluation. To obtain only the traffic that is required, they utilized the
OpenFlow switches (programmable switches). The advantage of this solution would be
reducing the amount of data that should be processed. On the other hand, this methodology
is not realistic for a network that utilizes traditional switches (non-programmable switches)
[45].

Lee et al introduced a method based on Hadoop5 for HTTP flooding attack detection. In their
approach, the Hadoop-based packet processor [46] is used and developed a detection method
using MapReduce 6 to detect the HTTP GET flooding attack. In their approach, the number of
the traffic volume or the total number of requests for the web page is calculated using a
MapReduce method for detecting DDoS using counters to distinguish the attackers from
legitimate users. For evaluating the performance of the proposed method for DDoS attack
detection, multiple Hadoop nodes (max. 10) are used in parallel. There is an issue regarding
the proposed framework. This technique in the current structure can only be used for offline
batch processing of a massive number of requests. Therefore, developing this approach to
provide a live analysis using a real-time defense system should be considered [47].

Discussion:

The approaches that have been suggested offer a mechanism that is quick for the
identification of malicious network traffic. These solutions have some limitations, for instance
since some of these methods can only operate at the transport layer, it is unable to detect
network threats throughout the entire OSI network layers. On the other hand, these
methodologies are not realistic for a network that utilizes traditional switches (non-
programmable switches).

In addition, the methodology that some of these techniques use is based on Hadoop which is
somewhat slow and inefficient when real-time processing is required. In fact, the speed of
Apache Spark which we use for data processing in our proposed framework is much faster
than Hadoop either running in memory or on a disk [48].

2.5 Hybrid Methods (Big Data and Machine Learning)

Saied et al. presented a method for attack detection using the ANN algorithm and using
various big data tools, such as Apache Spark for a cluster computing system, HDFS for data
storing, and Yarn for the resource management [49]. Dahiya et al. used Apache Spark to
develop an intrusion detection system in NetFlow protocol. Linear Discriminant Analysis (LDA)
and Canonical Correlation Analysis (CCA) were employed as two feature reduction approaches

5 “Hadoop”. [Online]. https://hadoop.apache.org/. [Last Accessed July 2018]
6 “Mapreduce”. [Online]. http://wiki.apache.org/hadoop/MapReduce. [Accessed July 2018]

 30

and then applied supervised classification machine learning algorithms including Random
Forest, REP Tree, Naive Bayes, and Bagging using UNSW-NB15 as the dataset [50].

Beluch et al. investigated the performance of various famous machine learning (ML)
algorithms such as SVM, decision tree, Naïve Bayes, and Random Forest using Apache Spark.
For the performance evaluation, they used UNSW NB15 as their dataset with 42 features in
terms of accuracy, building time, and prediction time. They reached the conclusion that the
Random Forest algorithm with 97% accuracy has more advantages compared to the other
classifiers [51]. Ferhat et al. used the k-Means algorithm in the machine learning libraries on
Apache Spark to decide between the attack or normal network traffic. They used the KDD Cup
1999 is used for training and testing and didn’t consider any feature selection technique to
select the related features [52].

N. Patil et al. developed S-DDoS, a distributed and real-time DDoS detection system based on
Spark streaming, to categorize live traffic flows. To distinguish the DDoS attack traffic in real
time, they employed the K-Means clustering algorithm. Also, by using highly scalable H2O

sparkling water, they designed the model on the Apache Hadoop framework.  They asserted
that the suggested S-DDoS detection method accurately and successfully identifies DDoS
attacks from network traffic flows (98\%) [53]. Manzoor et. proposed a real-time intrusion
detection system based on the SVM algorithm using the Apache Storm framework. For
intrusion detection, the authors employed C-SVM with libSVM categorization. The proposed
method was trained and assessed on KDD 99 dataset. The experimental findings demonstrate
that the suggested approach is practical for stream processing of network traffic data for
highly accurate network intrusion detection. [54].

Kai Peng et al. offered an IDS system built on a decision tree over big data in a Fog computing
environment using the classification machine learning approach. To digitize the strings in the
presumptive dataset, they implemented a pre-processing technique. They then normalized
the data to ensure the accuracy of the input data and boost the effectiveness of detection.
They compared the Nave Bayesian and KNN methods with the decision tree method for IDS.
The results that they obtained using the KDDCUP99 dataset demonstrated that the suggested
strategy is effective and precise. [55]. Zhao j et al. designed a methodology using a
combination of big data analysis with machine learning, dynamic instruction flow analysis, and
binary instrumentation to propose a technique for classifying the malware [56].

Trezi D. et al. utilize Principal Component Analysis (PCA) method for dimension reduction and
offer unsupervised anomaly detection using Apache Spark. In addition, they indicate that for
implementing big data for anomaly detection, multiple options such as Scalability, choosing
appropriate features, and Confirmation of learned knowledge should be considered [57].
Alsirhani et al., for anomaly detection, proposed multiple classification approaches in spark,
and furthermore, for selecting the classification algorithms used Fuzzy Logic and
demonstrated this method on MATLAB. Their experimental outcomes revealed that the tree-
based classification algorithms have an enhanced classification influence on the traffic
classification [58].

Ying Gao et al., by using big data and distributed DDoS network intrusion detection, provide a
new approach to network intrusion detection. A real-time traffic collecting module and a
traffic detection module are the two main components of their system. In their framework

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

31

architecture, they used Apache Spark for fast data processing and HDFS for storing fishy
networks. To enhance the real-time performance of the traffic feature collection, they
adopted a micro-batch data processing paradigm in the network collecting component.
Furthermore, they implemented the Random Forest classification algorithm in the traffic
detection component. They also utilized two data sets, NSL-KDD and UNSW-NB15, to evaluate
the accuracy of the framework in attack detection. The results of their evaluation using these
two data sets indicate an accuracy rate of 99.95% and 98.75% for the proposed detection
algorithm and a false alarm rate of 0.5% and 1.08% [59].

Tizghadam et. al. developed a system called CVST. It is an open-source, scalable manifesto
that can be used in smart transport application development. Their proposed system contains
four specific major modules for different use cases such as business intelligence, data
dissemination, resource management, and application. For instance, the MLlib library is used
in the business intelligence module, which is responsible for data analytics, to process the
information and send it to the front-end [60]. Arora implemented the K-means machine
learning algorithm on the Apache Spark MLlib library to perform an analysis of the mobile data
which are collected from the internet. He proposed an efficient approach by using clustering
based on latitude and longitude values for estimating the number of clients in the network
[61].

Discussion:

These above-mentioned methods are the combination of multiple advanced methods to
provide a scalable, fast, real-time platform for the detection and mitigation of DDoS attacks.
Most of these methods offer a solution for a general network, which means that they may not
be appropriate to be implemented in the SDN network, and they cannot take advantage of
using a centralized controller to control, maintain, and manage the security of the entire
network.

2.6 Research Gap

The identification and mitigation of Distributed Denial of Service (DDoS) attacks in Software-
Defined Networking (SDN) networks is a critical research area. Although significant progress
has been made in this field, there are still some research gaps that need to be addressed.
In this section, several potential research gaps have been proposed that could be explored
further:

1- Lack of Standardization: The field of SDN is still relatively new and lacks
standardization. As a result, there is a lack of standardization in the detection and
mitigation of DDoS attacks in SDN networks. Future research could explore ways to
standardize the detection and mitigation process, which would make it easier to
implement and scale across different network environments.

2- Real-Time Detection: Most existing approaches to detecting DDoS attacks in
OpenFlow-based SDN networks rely on post-attack analysis. However, real-time
detection is critical to minimizing the impact of DDoS attacks. Future research could
explore ways to improve real-time detection by analyzing network traffic in real-time
and using machine learning techniques to identify anomalous patterns.

 32

3- Low Negative Impact on Legitimate Traffic: Additionally, research should focus on
developing mitigation strategies that can effectively counter DDoS attacks in SDN
networks, while minimizing the impact on legitimate network traffic.

4- Scalability: While scalability is one of the primary goals of OpenFlow-based SDN
networks, existing approaches to detecting and mitigating DDoS attacks may not be
scalable enough to handle large-scale attacks. Future research could explore ways to
make DDoS detection and mitigation mechanisms more scalable, such as by using
distributed detection techniques or optimizing the use of network resources.

5- False Positive and False Negative Rates: The effectiveness of current DDoS detection

and mitigation mechanism in SDN network depends on its ability to minimize false
positive and false negative rates. However, existing approaches may suffer from high
rates of false positives or negatives. Future research could explore ways to improve
the accuracy of DDoS detection and mitigation mechanisms, such as by using machine
learning techniques or analyzing network traffic at multiple levels of granularity.

6- Cost-Effectiveness: Implementing effective DDoS detection and mitigation
mechanisms can be costly, both in terms of time and resources. Future research could
explore ways to make DDoS detection and mitigation mechanisms more cost-effective,
such as by optimizing the use of network resources or using open-source tools.

In conclusion, the detection and mitigation of DDoS attacks in SDN networks is an important
research area that requires further investigation. The proposed research gaps provide a
starting point for researchers to advance the current state of knowledge in this field.

2.7 Chapter Summary

The majority of this chapter is devoted to a literature review that examines security concerns
associated with SDN. Defense methods against DDoS attacks that currently exist were
addressed. These mechanisms were distributed into five different sections. The first one is the
“General Method”, then the second one is the “Mathematical Method”. We consider these
two methods as traditional methods. Then we alternatively study the “Machine Learning
Methods”, “Big Data Methods”, and “Hybrid Methods” as the most recent methods for
detecting and mitigating DDoS attacks. Furthermore, there has been a detailed review of the
current literature for each section. These investigations provide us with the essential
knowledge to identify the research gaps that will contribute to the accomplishment of the
proposed research objectives.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

33

Chapter 3

3 Technology Background

SDN is a revolutionary network architecture that stands for software-defined networking. The
concepts proposed by SDN, such as separation of the control and forwarding planes,
centralized control of network status, and support for software programming, are nothing
new, but there has been no breakthrough for a long time. Currently, because of the IT’s
conversion in network demand, SDN has attracted pervasively IT experts’ attention: cloud
computing services (represented by server virtualization technology) have become
conventional, big data technology has become increasingly popular, and network resources
are elastically expanded. The weaknesses of the traditional model are that in that model, the
network devices are closed systems that consist of three components: the hardware, the
operating system, and the network application. These components are tightly integrated with
one another. The development and invention of each of these three components necessitate
the evolution and innovation of the others.

The last decade has endorsed an extraordinary revolution in end-user devices both in terms
of computing capacity and in terms of intelligence level. The presence of a large number of
smart devices, high-performance tablets, phones, and servers is a clear example of the
computing power that has been provided for users. Today's network infrastructure carries
much more data over networks for connecting a larger number of people, more complex
applications, and devices, which demands improvements in the processing capability of the
network hardware and provides enhanced control over data traffic. One solution to overcome
the above-mentioned concern is to replace existing processors which are used in the network
equipment with faster ones, but due to the strong relationship that exists between the
architecture of the processors and the software that operates on them, this solution is not
feasible.

Upgrading and replacing the current software, as another possible solution, is also not a viable
option since the infrastructure of the networks is made up of equipment from different
manufacturers that must interoperate with each other and require great efforts to achieve
this compatibility. Above mentioned condition cause limitations on any improvement and
innovation in the conventional network and due to this limitation and to offer a potential
solution the following questions arise:

Is it possible that the algorithms and computation part to be moved from network equipment?
Can control part of the network equipment be moved to a central entity and, also provide
programmability to the network? Is it feasible to create a more open, flexible, and intelligent
network? The answer to all these questions guided the researchers to replacement of the
traditional network model with the software-defined network model, where the control plane
of the network equipment is moved to a logically centralized point and, also provides the

 34

capability of programmatically controlling the forwarding network traffic for many network
devices [62].

3.1 Overview

The computer network, in general, is a set of heterogeneous equipment (switches, routers,
computers, etc.) that is interconnected with each other to exchange information. There are
standard models which allow different network devices to interact and exchange their
information. The two major structure models used for the planning and implementation of
networks are the Open System Interconnection (OSI) model [63] and TCP / IP [64]. The model
OSI is a network communication standard developed by the International Organization for
Standardization (ISO) in 1984, specifying how network equipment should communicate with
each other. Its architecture is composed of seven layers, and each layer is independent of the
others to perform a particular role.

comparable to the OSI model, the TCP / IP model is another layered communication model
composed of four layers: Application, Transport, Internet, and Network Access. These two
traditional network models, despite their wide acceptance and general usage in the world,
have some problems and have become more and more complex to administer and secure
[65]. For instance, if any policy or configuration of the network changes, the network
administrators should spend a lot of time manually configuring network equipment through
command lines.

In addition, this network equipment is vertically integrated and most often operates with
proprietary software [66]. For example, in traditional network equipment, the part which
defines and controls the routing of the packets (Control Functionality) and the part which
forwards the packets through the network (Data/Forwarding Functionality) is composed of a
single device, which makes it difficult to develop. This coupling makes any innovation difficult
since deploying any new protocol or service on the equipment network must go through the
manufacturer and can sometimes be very long. For compensation for these architectural
rigidity problems and many more, SDN was introduced in 2009.

3.2 SDN History

In 2006, SDN was born out of the Clean Slate project funded by the GENI project at Stanford
University in the United States. The Clean Slate project's ultimate objective is to redesign the
Internet's architecture, with a focus on updating the present network's infrastructure since it
has become rather obsolete and challenging to advance. In 2007, a Stanford University
student, Martin Casado, directed a project called Ethane which was about network
management and security; this project endeavored to practice a centralized controller to let
network administrators simply state security control rules that are based on network traffic
flows. This is all that is required to achieve security control over the whole of network
communication. These security policies are then applied to the different network devices. In
2008, based on the motivation of the Ethane project and its predecessor project called Sane,
professor Nick McKeown and his colleague went one step forward and defined the concept of
the OpenFlow protocol, and published a paper entitled "OpenFlow: Enabling Innovation in
Campus Networks" in ACM SIGCOMM the same year. In this paper, they not only introduced

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

35

the concept of OpenFlow, in addition to clarifying the OpenFlow operation workflow, but also
descriptions of the many possible OpenFlow application scenarios were also supplied.

 Further, based on the programmable characteristics that OpenFlow gives the network,
professor Nick McKeown and his colleagues introduced the idea of SDN (Software Defined
Network). In 2009, the SDN concept was selected as one of the top ten innovative
technologies in the Technology Review of the year. Since then, it has been widely considered
and strongly supported by academia and the industry. In December 2009, the OpenFlow
specification has become more mature by releasing version 1.0 which can be used in
commercial products. For example, it provided OpenFlow's support plug-ins on Wireshark
packet capture analysis tools, OpenFlow virtual computer simulation (OpenFlowVMS),
OpenFlow debugging tools (liboftrace), etc. At present, the OpenFlow specification and
versioning have gone through 1.3, and 1.4, and the latest released version is 1.5.1. The
OpenFlow 1.6 standard has been released internally by ONF but it’s only available for ONF
members.

 In March 2011, the Open Network Foundation (ONF) was established under the supervision
of Professor Nick McKeown and others. The major responsibility of this non-profit consortium
is mainly dedicated to supporting the standardization and development of SDN architecture
and technology. ONF currently has more than 96 members, of which 7 are the core members
who created the organization, such as Google, Facebook, NTT, Verizon, Deutsche Telekom,
Microsoft, and Yahoo. In December 2011, the first Open Networking Summit was held in
Beijing. The summit invited all leading local and international companies in SDN to present
their successful use cases in SDN; and in parallel, the world's top Internet communication
network and The IT company discussed how to deploy SDN-based hardware and software in
global data centers, and this was a suitable introduction, also advertising of OpenFlow and
SDN concepts in academia and industry.

 In April 2012, ONF released the SDN white paper (The title was: Software-Defined
Networking: The New Norm for Networks), then the three-layer architecture model of SDN
was widely accepted by the industry. In April 2012, Google revealed that its backbone
infrastructure network had been entirely functioning using OpenFlow and through 10G
network links implemented in 12 data centers around the world. This proved that OpenFlow
wasn't merely a research model anymore that stays in the academic scope but already has
sufficient technological maturity that can be applied in a production environment.

 At the end of 2012, a number of prominent companies such as AT&T, British Telecom (BT),
Telefónica, Verizon, Telecom Italia, Deutsche Telekom, and Orange jointly initiated the
establishment of the Network Functions Virtualization Industry Association (NFV), initial
targeting was to present the SDN paradigm to telecom Industry. Currently, it is formed by
more than 52 network operators, telecommunications/IT equipment providers, and
technology suppliers. In April 2013, the LINUX Foundation joined the race of developing SDN
controllers, southbound/northbound APIs, and other software to break the monopoly of
major manufacturers of network hardware, drive network technology innovation and make
network management easier and cheaper.

 36

3.3 The Concept of SDN

The SDN was born out of a large intellectual movement motivated by the question of why
network equipment should not be programmable like other platforms of computing, and the
need to solve the problems that were earlier mentioned in traditional networks, difficulty in
managing and developing networks.

SDN is an emerging idea in network management. It's a novel methodology for designing,
building, operating, and securing networks. It is based on a logically centralized management
network by decoupling the control plane from the data plane, and it makes the network
flexible and programmable. The control plane is in charge of defining and associating a routing
decision with the data plane packets, and the data plane represents the physical or virtual
infrastructure. It is only responsible to take care of the routing and forwarding of the packets
into the network. In the SDN structure, the network intelligence is outsourced from the
network devices and managed by external equipment called” controller” which manages and
controls the roles of the control plane. One or more distributed virtual computers or physical
machines may make up this intelligent unit.

All communication between the controller and network equipment should pass through the
Southbound API (for example, OpenFlow, LIST, BGP, …) via a secured channel. The SDN
applications with various functionalities, such as policy implementation and management,
security services, and network configuration, will mount to the controller via a well-defined
Application Programming Interface (API), which is called Northbound API (for example, REST
API). In other words, the main objective of SDN is to enable the networks to be agile,
programmable, and flexible in order to make their control and management simple [67]. The
interest of the big companies that have the main role in the digital world, such as Google and
Microsoft [68] [69] in the deployment of SDN concepts into their data centers, gives good
prospects for the concept of SDN to be accepted in the real world.

3.3.1 General definitions of SDN

Considering the functionality of the traditional network device, it can be divided into two
planes. The data plane and control plane or management plane. The first plane which is called
the data plane also can be called the forwarding plane, in this step is where the network data
(frames, packets, datagrams) is effectively transmitted through the network by the network
device from one node to another. The second plane is the control, which essentially defines
and represents the protocols that are used in the network and is able to define the rules for
the routing or forwarding table that are ultimately used by the data plane. Finally, the third
plane, the application plane; is where any software-based service that is used is included to
remotely manage or configure the functionality of the control plane [70].

Through the SDN Architecture, the following four basic characteristics can be achieved:

1) The control and data planes are separated.
The control functionality is removed from the network devices therefore the network devices
would only be responsible for the packet, and datagram forwarding (data plane).

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

37

2) Forwarding decisions are based on incoming flows and not on destination addresses. In a
general perspective, a collection of values within some of the fields which belong specifically
to the header of the packets (frames or datagrams) and by a set of actions or instructions
respectively defined the flows. These values in the fields of the header consider as the options
which make up the filter criteria for making forwarding decisions.

3) The control logic has been delegated to an external unit.
This entity is called an SDN controller, which operates as the Network Operating System
(NOS). The SDN controller is a software platform that is running on a server (physical or
virtual). It delivers the critical resources, also abstraction to facilitate programming or
configuration for forwarding network equipment (such as switches or routers).

4) The application software that operates on the server.
The network Operating system (NOS) is what essentially turns the conventional network into
a programmable network. It can interact directly with the network devices of the data plane.

These features offer various benefits to the operational, design, and scalability of the network
infrastructure. More specifically, using logically centralized control offers a simplification way
for defining and modifying the network policies, which makes it even less prone to
mistakes. Additionally, a control program can react to any low-level network changes just by
modifying the high-level policies. Furthermore, based on the logical centralization of the
control, it contains global information of the whole network, which conclusively can
contribute to developing the service functions and more sophisticated network applications.

3.3.2 The major characteristic of the SDN Network

An SDN network architecture has 4 fundamental features:

1. The control and data planes are decoupled. The control functionality is separated from the
hardware of network devices, so in this architecture, the network elements play a simpler role
which is just transporting data on the network.

2. The network can be programmed which means maintaining, controlling, and programming
the data plane will be done by software applications operating above the network controllers.

3. The control logic is moved to a logically centralized entity or network operating system
(NOS). A NOS is a software platform that runs on a general server that offers crucial resources
and abstractions of the layers to facilitate the programming of SDN infrastructure devices.

4. Traffic forwarding decisions are based on flows. contrariwise to the traditional network, in
which all decision policies are based on the network packets, in the context of the SDN
architecture, the forwarding decisions are based on flows.
A flow is a series of packets transmitted between a source and a destination that share
common characteristics and receive the same policy handling on the network devices. The
abstraction of flows makes it possible to standardize the operation of a variety of network
devices, including switches, routers, firewalls, traffic optimizers, and load balancers.

 38

3.4 SDN Architecture

As illustrated in Figure 3.1, the architecture of the SDN network is divided into three layers
which are called the infrastructure/data-plane layer, the control-plane layer, and the
application-plane layer. Communication between these different layers is made through the
Southbound, Northbound, and East-Westbound APIs. [71].

In this section, these layers will be explained in detail to provide a better view of the SDN
architecture.

Figure 3. 1: The Architect of the SDN Network

3.4.1 The Application Layer

The application layer is the uppermost layer of the SDN structure where all the management
policies are defined and applied. These rules are defined by using a set of applications that are
intended to specify an explicit service to the network such as firewalls, load balancing, IDS,
etc. This layer makes it possible to define, interact and deploy the behavior of network devices
through the SDN controller. As mentioned earlier, in the SDN concept, the control plane

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

39

provides a global view of the network and all the requested information about network
elements by the applications should pass through the controller's southbound API. Since, the
OpenFlow is the de facto standard API southbound in the SDN environment, for defining and
implementing network functions and tasks in the form of OpenFlow-based applications, with
help of this layer, several services can be implemented above the OpenFlow-based controller
as applications.

3.4.2 The Control Layer

In the SDN architecture, the control layer entails a software controller called the SDN
controller, which is used to centralize the intelligence part of the network. It is the most
important component in the SDN concept, and it can be considered as an equivalent to the
network operating system, which is responsible for handling the network management and
configuration by defining and installing packet routing rules of the infrastructure layer through
the Southbound API in the appropriate network devices (such as routers, and switches). Some
of the core functionalities of the controllers are:

1- Topology and network management
2- Device discovery
3- Path computation

Moreover, the controller maintains a global view of the network through its topology
discovery service, and this capability is very essential for the accurate operation of the other
network services of the controller, such as network configuration. Some controllers are
centralized (such as Beacon, Floodlight, POX), and some of them are distributed (such as
ONOS, OpenDaylight); therefore, in distributed controllers, there should be an integration of
additional APIs for Eastbound and Westbound traffic. Distributed controllers make it possible
to overcome the limitation of the use of a single controller, which can not only become a single
point of failure from the security perspective but also may cause a problem for the
management of vast networks with an enormous number of network entities.

3.4.2.1 The Controller Characteristics

The core functionalities of the SDN controller can be defined as the following mechanisms:
1- Topology management, responsible for discovering the topology of the network,
2- Device management, in charge of configuring and managing the network

infrastructure equipment,
3- Path computation, the major task is selecting the best paths (Shortest path) toward

destinations,
4- Notification management, responsible for managing the communication of the control

plane with network elements,
5- Statistical information management, responsible for collecting flow traffic

measurements from the network,
6- Security mechanisms are in charge of providing network protection mechanisms.

 40

3.4.2.2 Different Types of the SDN Controllers

There are currently two types of SDN controllers: (1) centralized SDN controllers and (2)
distributed SDN controllers. In a centralized SDN controller design, a single control entity
manages all SDN devices. The major limitation behind this type of design is it may cause the
condition of a single point of breakdown, which means that when a failure occurs in the
controller or in any of its links, the network continues to operate in a restricted way, which
makes it impossible to accept any policy changes and new services and flows.

In the distributed SDN controller design, the control of the network is based on several
distributed controllers, which offers an enhanced availability of the network in case of failures
and provides the network scalability by incorporating additional controllers as required. An
outline of Distributed SDN controller can be a cluster of centralized nodes in the same place
or a group of geographically distributed controllers. The first option can afford the high
performance, particularly in extremely data-dense centers, and the second option can offer
higher resilience in the conditions of physical or logical failure. As the third option, In the Cloud
communication situation, the Service Providers consist of multiple data centers
interconnected with each other through the WAN connection links. In this case, a hybrid SDN
controller design can be considered with the clusters of controllers in each data center and
distributed controllers in different localities.

3.4.3 The Infrastructure/Data-plane Layer

This layer expresses the functionality of the data plane. The data plane entails network entities
such as switches, routers, etc. . A network device is an entity that accepts network
traffic(packets) at its ports and executes one or more network functions (for example,
forwarding, deleting, or header changing for a specific action) [72].
In general, a switch is a network device whose main role is to transfer the packet. It is made
up of two functional parts: the data plane and the control plane. The data plane is in charge
for routing and forwarding the packets from the source to the destination. It retrieves the
packets from the input interface, then for forwarding the packets, checks its routing table to
determine the egress interface. The control plane is in charge for defining the forwarding
rules, and building and maintaining the routing table.

The data plane contains of network devices such as switches and routers. The SDN-based
network devices are designed to use an open and standard programming interface, which
allows them to ensure their configuration and interoperability with the control plane and
other SDN switches. There are several standard protocols that can be used such as OpenFlow,
LIST, BGP, etc.

There are two types of OpenFlow switches [73]: the OpenFlow switch Only which is specifically
designed for SDN networks and for supporting the OpenFlow and the OpenFlow enabled
switch which Simultaneously can undertake the role of traditional and OpenFlow-based
switches. For this research, the OpenFlow is considered the standard interface between the
control plane and the data plane. The OpenFlow-based switch and the controller
communicate via the OpenFlow protocol which will be explained in detail subsequently.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

41

3.4.4 SDN Programming Interfaces

SDN has introduced several types of interfaces to allow different elements of its SDN
architecture to interact with each other [74]. This section describes the details of these
interfaces which are the Southbound API, the Northbound API, and the East-Westbound API.

3.4.4.1 The Northbound API

The communication between the control layer and the application layer is provided through
the interface which is called the Northbound API. It is one of the key elements for providing
the abstractions between the layers in the SDN environment. It provides the way in which the
information can be exchanged between the controller and the applications running on the
network. In other words, the Northbound API is an API used by the network administrator to
define policies to schedule the control plane. Generally, it indicates a list of basic network
functions associated with the provider, which are then used to configure the infrastructure
network equipment, and the controller in between is responsible to interprets it into a
language that any network device can understand.

The Northbound API represents the network abstraction data model and also controller
functionality which can be used by network applications. Northbound API is used to facilitate
innovation and efficiently orchestrate the network. The essential of collecting the control
information for the network applications from the underlying infrastructure network is
another major rationale for this interface. Currently, various types of SDN controllers offer a
wide variety of Northbound APIs. The Northbound API mainly can be classified into three
categories, REST APIs (Representational State Transfer) [75] , specialized ad hoc APIs, and
programming languages such as Frenetic[f] [76], Procera[e] [77], FML [78] (Flow-Based
Management Language), NetCore [79]and Pyretic [80].

Even though, the ONF organization created a working group 22 to define and develop a
standard protocol for this interface, at the time of writing this thesis, still there is no industrial-
recognized standard for Northbound API. The REST API is the most used solution as the
Northbound API because it provides simple integration and minimum interaction between a
client and a server. Obviously, it is not a protocol but an architectural concept intending to
facilitate the programming of service-oriented applications by using the HTTP protocol.
Moreover, because of this ease of use, many large companies such as Facebook and Google
use it to offer their services. This is the main reason that currently most of the SDN controllers
use the REST API as a Northbound interface to provide network information to applications
[81]. Apart from ONOS and OpenDaylight controllers, most of the other SDN controllers still
do not support and entirely implement the REST API, they are still using other legacy methods
such as SOAP. this is also one of the main reasons for choosing the ONOS controller for this
research.

 42

3.4.4.2 The East-Westbound API

The East-Westbound API is the interface that allows multiple controllers to share a common
view of the network and coordinate with each other for implementing the policies and
protocols (see Figure 3.2). Through this interface, the SDN controllers can manage the way to
interact with each other to share information and consequently, transmit status data about
their networks and have an impact on routing decisions. This East-Westbound interface can
be used to improve communication across different domains of an SDN network (intra-domain
and inter-domain) and accordingly improve the scalability and interoperability of the SDN
environment. The East-Westbound API is very important, specifically for large SDN-based
networks, which are divided into multiple subdomains, and each subdomain is controlled by
an SDN controller [82].

In overall conception, a large network, for instance, is divided into multiple subnets, then to
deploy SDN architecture, each subnet should have its own controller, and each subnet has a
global view of its sub-network. Therefore, to build a global view of the entire network, the
controllers must exchange their network information with each other, including the topology,
accessibility, the network protocols used, network status, etc., through the East-Westbound
interface. An East-Westbound interface is also important for automating network decisions to
reduce the intervention of the operations of the network administrators on large-scale
networks. Some of the functionalities of these interfaces are: (1) provide algorithms for data
consistency models, (2) provide monitoring and notification capabilities, and (3) import or
export data between controllers.

Currently, most of these types of interfaces are available under the license of open-source,
which is a huge advantage in the deployment of SDN in large-scale networks. ALTO, SDNi [83],
and HyperFlow are examples of East- and Westbound protocols that can be used for
compatibility and interoperability between different controllers in large-scale SDN-based
networks when using multiple controllers. By using these protocols common requirements
can be defined to manage the establishment of the flows and the exchange of reachability
information across multiple domains, which provide the ability to create scalable and reliable
SDN control platforms.

Figure 3. 2: Communication between Controllers via East / West APIs [84]

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

43

3.4.4.3 The Southbound API

The interface between the infrastructure layer (Data-plane layer) and the control layer is
called Southbound API. The Southbound APIs constitute the communication protocol that
facilitates the communication between controllers and SDN network devices. These APIs can
be open-source or proprietary [85]. As stated earlier, OpenFlow is the de facto industry
standard Southbound API in the SDN architecture which provides communication between
the infrastructure network and the controller in the SDN environment. Through this interface,
the controller can control and manage all the flows of the switches or routers under its
authority. The open flow characteristic and specification will be explained in detail in the next
section [86].

Although OpenFlow is the most famous Southbound API and even it is considered the industry
standard for controlling and managing the overall information about the network equipment,
there are also some traditional protocols that can be considered as southbound protocols in
SDN environments such as SNMP [87], and NETCONF [88] (Network Configuration Protocol),
LISP(Location Identifier Separation Protocol), and even BGP [89](Border Gateway Protocol).
There are also several other specific Southbound APIs to manage communications between
these two layers of the SDN architecture, for instance, OVSDB [90] (The Open vSwitch
Database Management Protocol), OpFlex [91], and ForCES [92](Forwarding and Control
Element Separation).

3.5 OpenFlow protocol

ONF is a non-profit organization consortium of various industrial/Academy members, formed
in 2011 that is leading the development and standardization of the critical elements of the
SDN architecture, such as the OpenFlow [93] protocol, which provides the standard
Southbound communication interface between the controller (control plane) and
infrastructure network devices (data plane). The major goal of ONF was to propose
specifications to facilitate the configuration of networks, and to simplify management and
control networks to deploy the different types of services such as security, QoS, mobile, etc.
more easily. OpenFlow is a proper solution for innovating the networks, but it also has to face
various challenges, in particular security. The first version of OpenFlow was introduced in
2009 and Figure 3.3 demonstrates the timeline of different versions of it.

 44

 Figure 3. 3: OpenFlow Versions Timeline [94].

OpenFlow [93] is the first interface proposed particularly for SDN, offering granular traffic and
high-performance control on multi-vendor devices. An SDN network based on OpenFlow can
be implemented using hardware devices (such as switches) and software, offering the
following benefits to companies and service providers:

▪ Centralized management and control of multi-vendor network devices.

▪ Provide enhancement in automation and management through open APIs, which abstract
the details of the underlying physical network, the applications and provisioning systems, and
the orchestration of the network elements.

▪ Speed up the innovation by allowing to offer of new capabilities and network services
without having to configure the network devices individually or wait for the release of updates
by manufacturers.

▪ Increase the security and reliability of the network as an outcome of the centralized and
automated management part of network devices.

The most advantage of using OpenFlow is to centrally control infrastructure elements, and
traffic flows in the network and enables straight access and control of the data plane of
underlying network devices, both physical and virtual. In an SDN network, the control plane is
decoupled from the physical network and located in a centralized controller. The controller
uses OpenFlow to communicate with all components of the network, as indicated in figure
3.4. Through this protocol, the network administrators can manage the whole network rather
than configure each device individually.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

45

Figure 3. 4: OpenFlow Network Architecture [95].

The OpenFlow protocol should be implemented between both communication sides, the
network devices, and an SDN controller. The SDN architecture uses the concept of flows to
identify network traffic and makes decisions based on predefined static rules or rules
dynamically programmed by SDN control software. Since OpenFlow enables the network to
be programmed based on a flow, an OpenFlow-based SDN environment offers granular
control of network traffic, allowing the network to respond to changes in real time at the level
of applications, users, or sessions.

Table 3.1 expresses the specification of different versions of OpenFlow. The most recent
version at the time of this writing is version 1.5.1 (the latest version is 1.6, but it is available
only for ONF members).

 46

Table 3. 1: Functionality of the different OpenFlow specifications [96].

3.5.1 OpenFlow Architecture

The OpenFlow network architecture contains three fundamental concepts: first, the control
plane consists of one or more OpenFlow controllers that define, maintain, and distribute
forwarding policies into the network infrastructure (data plane), second, the data plane
network which consists of the OpenFlow-based devices(switches), and third, a secure control
channel which the controller and OpenFlow switches can communicate with each other.

3.5.1.1 OpenFlow Switch

An OpenFlow-based switch [97] is a network device that forwards the incoming packets based
on the rules defined in its internal flow table. The flow table in the SDN switch contains a set
of flow entries consisting of the header, counter, and action fields. The header field is used to
determine the match of incoming packets/flows with any entries of the flow table. The header
field can accept different types of network protocols, depending on the version of the
OpenFlow, such as Ethernet, IPv4, IPv6, or MPLS. The counter field is used to collect statistical
information from flows, such as the number of bytes of received packets/flows or the duration
of remaining flows in the tables. The action field defines the treatment which should be done
to incoming packets, such as forwarding packets to a port, modifying a packet, or discarding a
packet.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

47

3.5.2 OpenFlow Workflow

As mentioned earlier, in an OpenFlow-based SDN architecture, the data of the network
(packet/flows) are forwarded through the switches based on the forwarding decisions which
are made in network operating software (NOS) is implemented on an external
machine(server) called controller that communicates with the switches through the OpenFlow
protocol.

Figure 3. 5: SDN / OpenFlow device [98].

Through OpenFlow protocol, the control and underlying network devices can communicate
with each other. It defines the specification and format of the exchanged messages between
the SDN controller and the OpenFlow switch and uses TCP protocol for exchanging these
messages. The OpenFlow protocol provides the possibility for the controller to modify, add,
update and delete input flows in the flow table of the switches. The messages between the
OpenFlow controller and the OpenFlow-based switches are exchanged through the secure
channel and implemented via an SSL/TLS connection over TCP. When the switch distinguishes
the controller's IP address, it initiates the SSL connection.

A controller may create, update, and remove flow entries from the network switches' flow
tables using the OpenFlow protocol, proactively or reactively in response to the arrival of
packets, modifying the forwarding action of the data plane of the switches (Figure 3.5). When
a network packet reaches the one of switch ports, the switch starts a process of querying the
flow table to find out if there is a flow entry in the table that matches the packet. The flow
entries are evaluated in priority order, and the first match in the table will be considered. If
there is a match in the table for the arrival packet, the actions indicated in the flow entry
would be executed for that packet, and the counter field of the flow entry correspondently is
updated. In case there is no match in any entry in the flow table inside the switch, the packet
is sent to the controller over the OpenFlow communication channel (Figure 3.6).

 48

 Figure 3. 6: OpenFlow Switch Operation workflow [99].

 All messages exchanged between the controller and the switch begin with an OpenFlow
header consisting of the version of the OpenFlow protocol, the type of the message, the length
of the message, and the message identifier. In the OpenFlow specification, there are three
types of messages: Controller to switch messages, Symmetric messages, and Asynchronous
messages.

Controller-to-switch messages: These types of messages are utilized to directly manage the
OpenFlow switches and are basically initiated by the controller. This type of OpenFlow
message, which is exchanged between the controller and the switch, is used to detect the
switch functionality, information retrieval, configuration, and programming. These messages
are, among other commands such as switch configuration, the commands from the controller,
statistics, queue configuration, and barrier.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

49

Figure 3. 7: Exchanges the OpenFlow messages between the controller and the switch

Symmetric messages: the HELLO, ECHO REQUEST, ECHO REPLY, and VENDOR are the main
types of symmetrical messages which can be exchanged between the controller and the
OpenFlow switch. They don't need to be solicited for action to be started by the controller or
the switch. After establishing the SSL/TLS secure channel with TCP protocol, the HELLO
messages are exchanged between the switch and the controller to determine the version of
the OpenFlow protocol which is used. The ECHO messages (ECHO REQUEST and ECHO REPLY)
are also used by the switch and the controller while they are operating, monitoring if the
established link is still active and, at the same time, checking the speed of the connection and
measuring latency. Figure 3.7 indicates different OpenFlow messages exchanged between the
Controller and the infrastructure switch.

Asynchronous Messages: Asynchronous messages can be initiated by the switch without
any request from the controller. They are used to inform the controller of incoming traffic,
switch state changes, and errors. For instance, PACKET-In is the type of message used by the
switch to send the flows to the controller for decision-making. This type of message is sent,
when none of the entries in the switch's flow table matches the incoming packet, or when it
is indicated at the action level of the corresponding entry in the flow table that the packet is
to be transferred to the controller. In general, the traffic from the data plane is transmitted to
the controller via the PACKET-IN message. Figure 3.8 shows a sample flow sent to the SDN
controller via the OpenFlow channel.

 50

 Figure 3. 8: Sample flow sent to the controller via OpenFlow.

On the other hand, the FLOW-REMOVED message allows the switch to inform the controller
in the event of a deletion of an input flow from the flow table. The switch removes an input
stream when no incoming packet matches this entry for a defined time by the controller when
creating this input flow in the switch flow table. PORT STATUS is the message that allows the
switch to inform the controller of any changes in the configuration or port status of the switch.
The ERROR message is used to alert the controller for occurring the errors. For example, the
ERROR message is sent to the controller when the latter tries to add a flow entry containing
actions not supported by the switch.

3.5.3 Flow Load Modes

There are two methods to define and specify entries in the flow table of the switch: Reactive
Mode and Proactive mode.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

51

Reactive mode: In this case, when the new packet arrives at the switch, it triggers a call to the
controller via the OpenFlow channel so that the controller can create and insert a new
entry(rule) in the flow table of the switch which refers to the new package.

Proactive Mode: Under this scheme, the controller can populate the flow tables of the
switches before the new traffic arrives, therefore in case of losing the communication channel
(OpenFlow connection) between the controller and switch, the network performance would
not be interrupted.

In the OpenFlow network one of the following actions can be applied to every incoming flow:
(1) forward the packet to a port (destination port), (2) modify the packet header fields and (3)
remove the packet.

3.6 SDN Security

After introducing the most essential elements of the software-defined network structure,
explaining them and their main characteristics, as well as the differences that exist with the
traditional networks, this chapter is analyzing the security challenges which expose by
implementing the SDN networks. Similar to any other area or network structure, security is
the most important aspect that must be considered since it can become future weaknesses of
that network which ultimately end up putting the whole organization at risk. With the rise of
modern network concepts that progressively support consistent and dynamic applications,
such as the Internet of Things, social networks, cloud services, mobile apps, etc., it is necessary
to develop technologies that can adjust themselves to the complexity required by upstream
applications to provide security.

In the context of the SDN network, various challenges arise in terms of security. Currently,
SDN is mostly used in data center design, therefore its security issues must be deeply
considered and put more effort to strengthen it. For this reason, there is a security group
arranged by the Open Networking Foundation (ONF), which is responsible to find specific
security issues that require further research. There are several types of vulnerabilities that
have been addressed in each layer of the SDN architectures. One of them is the necessity of
authentication and authorization between application and controller to use the network
resources. The problem lies in providing different organizations required to have access to the
network resources in a secure way, but not all applications have identical privileges to utilize
the network resources; therefore, attackers can perform spoofing attacks to exploit the
identity and gain unauthorized access to the resources.

To understand security in SDN, first, the security properties which are associated with a
computer system should be declared. There are three essential security attributes that must
be provided for each computer system to make it safe: confidentiality, integrity, and
availability. In addition to these features, other attributes such as authenticity, accountability,
and non-repudiation are also usually included. Confidentiality means that the information
must be accessible only to those who are authorized. It guarantees that private or sensitive
information is not displayed or accessible to unauthorized users. Integrity provides the
opportunity for the information and system function to remain unaffected by malicious
attempts. Availability ensures that the computer system can continue to work without

 52

suffering any data or system access degradation and, in addition, offer authorized users the
resources which they require whenever they need them. Authenticity ensures that users can
be verified as they claim to be and the system receives the traffic packets from trustworthy
resources [100].

However, the specific characteristics and the architecture of the SDN itself introduce new
security challenges and additional surfaces for attacks that do not exist in conventional
networks, aside from security concerns that have already existed in traditional
networks. Therefore, it can be seen that in the SDN environment, security has a double
connotation: first, the utilization of the SDN characteristics to provide mechanisms for
detecting and mitigating methods against known security threats, either by introducing new
security offers or by expanding the functionality of the existing defensive systems and security
devices. Second, develop the SDN architecture to provide proactive behavior against new
attacks and security threats that are raised by the SDN architecture itself [101].

3.6.1 SDN Challenges and Issues

The intention behind the SDN advent is to change the way that networks are managed. The
implementation of this network architecture would reduce complexity and increase the
efficiency of administrative processes and optimize network management, especially in the
large network infrastructures owned by service providers. In addition, it would help to reduce
significantly administrative costs in enterprise business and service provider networks. On the
other hand, by implementing SDN architecture and separating the network plane from the
data plane various new challenges may arise.

3.6.1.1 Scalability

The presence of a centralized controller in the SDN network makes it necessary that when a
packet receives into the infrastructure devices (like switches), the network device looks into
its flow table for an entry that corresponds to the received package and takes action
associated with this entry. If no entry is found in the flow table, the packet is considered as a
new packet and will be sent to the controller, and the controller must decide and define a rule
based on its policy that which action should be considered for that packet. Therefore, in the
SDN architecture, the controller and devices exchange not only the network traffic but also
control messages and network information would be transmitted. On a small-scale network,
this mechanism performs well, but in a large-scale network, infrastructures may cause latency
problems because of the large number of nodes that can exist in the network. This can be a
challenge that rises with implementing the SDN architectures in a large network.

Various approaches have been proposed to overcome this particular challenge. One of them,
for instance, proposes a strategy based on a group of controllers who are responsible to
maintain, controlling, and communicating with the elements of the network infrastructure. As
a matter of fact, this scheme introduces a different problem in terms of scalability for the SDN
architectures, which means how communication should be established between controllers,
and define specific policies for using the east to west traffic (east to westbound APIs). This
concern arises due to the principal design of the SDN architecture which each controller
requires to have a complete view of the network [102].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

53

The scalability of the SDN network has been considered by researchers from the beginning of
the advent of the SDN concept. Various research groups and institutions have been trying over
years to find a possible solution to provide scalability for the SDN environment. One of the
proposed solutions is developing the HyperFlow framework [103]. HyperFlow is a framework
that provides a distributed control plane based on the selective propagation of the events that
change the configuration state of the network. Each controller transmits the published events
to reconstruct the state of the network to another controller, thus all controllers can share a
consistent state of the network.

3.6.1.2 Performance

Another concern about the SDN network is performance management in packet processing. In
an SDN network, it is important to efficiently manage the process of the network flows with
the necessity of high security and low latency. In this case, two features should be considered
to assess the processing performance. One factor is to consider the throughput and associated
latency when processing the incoming flows. The other factor is the programmability of the
network devices, this feature refers to the ability of the devices to accept the sets of
instructions that change the functional behavior of the network. There is another feature that
might increase the processing performance of the network devices is the highest transmission
speed at which the network connection links can be reached [102].

3.6.2 SDN Vulnerabilities

SDN, similar to any innovative technology, has its pros and cons. Regarding security, as its
pros, the SDN technology can be leveraged to fully mitigate some attack threats and
vulnerabilities that commonly appear in conventional networks. On the other hand, the SDN
technology hosts new risk vectors and vulnerabilities that are inherent in its novel
architecture. The decoupling of the data and control planes and the fact that the intelligence
of the network is logically centralized makes it vulnerable to being abused as a single point of
failure, which might result in the whole SDN network being compromised. As in conventional
networks, each network element such as network protocol, network device, or network layers
that participates in the SDN network can potentially be the subject of intentional exploitation
and this misbehavior can cause system and network failures. This explanation affirms that
each element or layer which is a part of the SDN architecture can be considered a threat vector
or attack surface; Therefore, any misconfiguration or improper deployment of any elements
of the SDN network has the potential to introduce new vulnerabilities and jeopardy of security
[104].

The major security problem of the SDN architecture is by default there is no security
anticipation in its design. As SDN technology use cases progressively increase in the IT world,
the list of security challenges that need to be considered and then prevented is expected to
grow. Security vulnerabilities in SDNs are concentrated in the three planes or layers
(application, control, and data). Therefore, in the SDN environment, all three architectural
layers (Data-plane, Control-plane, and Application-plane), and interfaces (northbound and
southbound) are susceptible to different types of attacks that can compromise the network
components that reside in the layer or target the elements of the other layers [105].

 54

in this research, for investigating the security issues in the SDN environment, the study of
attack vectors is separated into 3 parts: The data plane, control plane, and application layer,
and the following paragraphs explain different security vulnerabilities which could occur in
each of these layers.

3.6.2.1 Attack on the Data-Plane Layer

In this layer, attackers can target network devices directly from inside of the network. An
attacker could theoretically have unauthorized access (physically or virtually) to the SDN
network or compromise a host that has been already connected to the network and then try
to perform malicious behavior to threaten network infrastructure or elements. This behavior
can be a type of denial of service (DoS) or a fuzzing attack that attempt to attack network
components. As mentioned before the Southbound APIs and protocols are used by the
controller (control plane) to communicate with the infrastructure layer and network
equipment (data plane). There are various southbound protocols such as OpenFlow (OF),
OVSDB, PCEP.

Each of these protocols has its own methods to provide a secure communication channel
between the control plane and the data plane. Currently, SDN architecture is mostly used in
designing modern data centers, and for providing connection between two or more data
centers the Data Center Interconnect (DCI) technology is used. In this technology, besides of
underlay network, network overlay is also implemented using various protocols such as
NVGRE, STT, VXLAN. These new protocols could be vulnerable due to their natural design or
the way the provider or customer has employed them. Therefore, in this layer, an attacker
could be motivated for impersonating another network device to modify the links DCI or
generate a DoS (or DDoS) attack on DCI connections [106].

3.6.2.2 Attack on the Control Layer

By considering the definition and role of the controller in the SDN architecture, obviously, it
can be an important target for the attacker for different purposes. If an attacker can take
control of the SDN controller, he would have the ability to instantiate new flows by forging
information that is sent from applications via the northbound interfaces to the controller or
spoofing packets that the controller sends to the data plane devices through southbound API.

In addition, an attacker may force the controller to reject requests for some services or even
attempt to use specific methods to bring down the SDN controller which means that it may
cause to bring down the whole network. Furthermore, attacking the SDN controller may cause
the controller to consume many resources of the computer system (such as CPU and memory),
and therefore, it would respond very slowly to incoming requests from the network. The
delayed response to any legitimate traffic from the network may cause a big concern for the
SDN network [106].

3.6.2.3 Attack on the Application Layer

As an application layer, there are numerous applications that are used by SDN controllers for
different purposes such as network management, QoS, and security. Different Northbound

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

55

APIs can be used for communication between the application layer and control layer, such as
Java, Python, REST, JSON, and XML. As these Northbound APIs have their known
vulnerabilities, if an attacker can use these known vulnerabilities for a malicious attempt, with
complete access to the controller, he might be able to control the entire network. According
to research, the main threats in the plans or layers of SDN can be categorized and presented
in Table 3.2 [106].

 Table 3. 2: Main Threats in the SDN Layers [106].

3.6.3 SDN Attack Vectors

In the world of the network, especially the SDN network, introducing new architecture and
defining new components such as interfaces, applications, and controllers faces new security
challenges. Compare to the traditional network, security in an SDN network is more complex
considering these new components, the central controller can be an appropriate target for
performing attacks, also using some open source applications and interfaces makes it difficult
to define security policies. Since the SDN controller is the fundamental component of the SDN
network architecture, launching an attack targeting the controller can affect the operation
and performance of the entire network [107].

 56

Different types of known attacks can be threatening the SDN network such as denial of service
(DoS) to disrupt the availability of network services for legitimate users, the man-in-the-
middle attack (MTM) to modify the rules sent from the SDN controller to the data plane
network devices to take control of the network, and exploiting vulnerabilities of the controller
and installing malicious applications to take control of the entire network infrastructure. The
SDN architecture was introduced without any security facility in its design. Therefore,
mitigating the risk of attack in the SDN network requires a protection-in-design approach to
provide a suitable defense against different network attacks and other unintentional security
issues such as bugs in installed software, or device misconfiguration [107].

SDN architecture has a characteristic that can turn it into a perfect target for different attacks:
the infrastructure network is based on a centralized control entity that can become a target
of the attack to take ownership of the system and control of the entire network software that
may contain application bugs and other vulnerabilities. Kreutz et al. [116] make deep research
focusing on the security vulnerabilities of the SDN architecture. They classify SDN security
issues in seven attack vectors (see Figure 3.9). In addition, Hori et al consider the attack
vectors indicated by Kreutz et al. [108] and merge them with the list of attacks (using
SDNSecurity.org) and make a check sheet to assess the security of the OpenFlow-based SDN
network together with its protection countermeasures.

Their study defines seven categories of security issues in the SDN network: unauthorized
access, data leakage, data modification, malicious applications, denial of service, configuration
problems, and systems-level security. The authors of this research also propose solutions to
overcome these problems. As a solution, they suggest the replication of the controllers and
management applications to provide alternatives in the situation of any hardware or software
failure.

Figure 3. 9: SDN Security Vectors [Taken from [108]].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

57

Threat Vector number 1 which is forged or fake traffic: In this case, an attacker tries to
perform an attack by sending fake traffic directly to network devices such as switches. The
attacker can use, a workstation, a server, or even another network device such as a switch to
launch a denial-of-service attack on OpenFlow-based switches for saturating the southbound
bandwidth or controller resources to disrupt the network operation.

Solution: For detecting and mitigating this threat vector, intrusion detection systems can be
used to identify anomalies or fake traffic. In addition, this solution can be accompanied by
using mechanisms to limit the rate of requests which are sent to the controller to restrict the
size of the malicious traffic [109].

Threat Vector 2, Vulnerability attacks on switches:

It consists of using a switch to discard or slow down packets which simply produce a
catastrophe in the infrastructure network. A single switch might be exploited to discard
network packets, distract network traffic (for example, to facilitate data theft), or even inject
traffic or fraudulent requests to overwhelm the controller or nearby switches.

Solution: Implement applications or tolls for testing, including autonomous trust
management mechanisms for software components. In addition, using mechanisms to
monitor and detect all network traffic to detect malicious behavior in the network can be
another solution [109].

Threat Vector 3, Attacks in the communication channel of the plane of control:

The intruders can generate a denial of service attack or data theft targeting the southbound
between the control plane and the data plane. In SDN architecture, SSL/TLS technology is used
to provide a protected connection channel between the control plane and the data plane. But,
SSL/TLS protocol is exposed to the risk of a man-in-the-middle attack. Therefore, the TLS / SSL
method is not sufficient to establish a secure channel and ensure trust between the control
plane and data plane, more precisely between the controller and switches. Once the intruder
gains access to the control plane, the attack level can be extended on several switches under
the same domain, and the intruder can easily perform distributed denial of service attacks.

Solution: One conceivable solution can be implementing several trust-anchor certification
authorities (for instance, one for each sub-domain or one for each controller instance).
Another solution method is to use threshold cryptography to secure communication among
controller replicas [110]. Moreover, implementing a trusting relationship between the control
plane and data plane devices with the usage of automated, dynamic, and ensured device
association techniques might be another feasible solution.

Threat Vector 4, Attacks on the Controller Vulnerabilities:
This is the most severe threat to an SDN network. In the case of a controller failure, it may
cause compromise the entire network operation.

Solution: To make the controller secure, various techniques can be used, including controller
replication and diversity using backup/recovery techniques to refresh the system into a clean
and reliable state in case of any failure, secure sensitive controller objects using cryptographic

 58

methods, implement access restriction policies into interfaces or applications which can
manipulate network policies rules, or restrict the scope on the type of rules that they can
generate to schedule the network [108].

Threat Vector 5, Lack of mechanisms to guarantee the trust between the controller and
applications:
Techniques for verifying devices are different to verify applications, and for communicating
between the control plane and application plane, there is no procedure in place to build a
trusting connection between the controller and applications.

Solution: Provide independent management mechanisms to guarantee that the application is
reliable throughout its life cycle [108].

Threat Vector 6: Vulnerabilities and attacks on the administrative system: The major target,
in this case, is to attack the administration consoles of the controller to reprogram network
policies from a single point.

Solution: to prevent this threat, a double credential verification protocol can be used, it means
that to have access to the management server, the credentials of two users are
required. Additionally, in this case, recovery mechanisms are also required to let the
management server return to a reliable state after a system failure.

Threat Vector 7: Lack of reliable resources for forensic activities and remediation: To
investigate and determine the facts about an incident in the network, trustworthy information
from all the elements and resources of the network is required. This information is useful if
they are trustable and have been previously authenticated and kept its integrity. Remediation
requires secure and reliable system snapshots to ensure fast and correct recovery of the
network elements to a known state.

Solution: Implement logging and tracing mechanisms in data plane devices. data and
control. In addition, the records must be persistent and must keep a backup of the information
in an external storage repository [108].

3.6.4 Improve Security in SDN

As mentioned above, the SDN architecture and separating the control plane from the data
plane introduces new vulnerabilities and security. Although the introducing of new interfaces
and layers by SDN architecture simplifies the network management and control, it provides
the opportunity the new surfaces of attack and exploitable targets. In other words, despite
providing the facilities to improve network security by utilizing the new features and novelties
concepts of SDN, the network infrastructure architecture could persist insecure if the SDN
architecture itself would not completely secure against security threats introduced by SDN
features.

The channels and interfaces used for the exchange of information between the three layers
in the SDN environment can be a proper target for the attacker if they are not accurately
protected, the exchanged data through these interfaces can be eavesdropped on to
compromise Network entities. Therefore, in this case, all data which passes through

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

59

communication channels and interfaces of the SDN network must be encrypted, so that if an
attacker manages to gain the data exchanges, it cannot extract the real information.
Moreover, besides the encryption of the interfaces, the security of the SDN network especially
at the control plane should be strengthened by using authentication mechanisms. The SDN
controller must be able to identify and authorize trusted devices (such as other controllers,
and switches), to ensure that only trusted devices and applications can access network
resources and malicious devices and applications persist isolated from the network.

It is essential to consider the protocols and services used by the communication channel
before selecting the protection mechanisms to make the connection secure. In order to
achieve a high level of security for different layers of the SDN architecture (data plane, control
plane, and application plans) various mechanisms (for instance, limited access to management
services and applications, authorization and authentication methods, security assessment)
are required to be developed for detecting and mitigating malicious attempts launched by
untrusted users [111].

3.7 Denial of Service Attacks

Denial of Service or DoS attacks has been growing in recent years and has become a real threat
and challenge in the area of security in the IT world. It can target various parts of society such
as companies, government agencies, banks, armies, or public services such as universities,
hospitals, and airports. According to the report [112], currently, in the field of cybercrime, this
type of attack is the first place IT threat for companies in the United Kingdom and the second
place in the United States.

The most effective and widely used DoS attacks are of a distributed form of it which are known
as DDoS (Distributed Denial of Service). In this case, the attacker uses a computer system as a
master server (called botmaster) to control several previously infected computers called
slaves or zombies. In this type of attack, the attacker creates a network of zombies to attack
their victims in a synchronized way. This scheme is shown in figure 3.10.

Figure 3. 10: DDoS attack

 60

Denial of service attacks is a type of malicious attempt to cause an interruption or suspension
of one or several services. This objective can be achieved through the excessive consumption
of one or several resources that the target server or other victims such as network
infrastructure devices. The malicious activities of the DoS attack which can break down the
resources of the target victim are CPU over-processing, memory overloading, making the disk
or database capacity full with fake data, saturating the bandwidth of the connection, and
filling the inner tables of the network device with unnecessary information. various methods
of sending massive network traffic are used to above-mentioned outcomes can be
accomplished, this technique is called flooding.

During the flooding attacks, after some time the target or victim cannot respond to the
requests because the traffic is too heavy in quantity and disrupt victim resources, another
approach to achieve this outcome is to exploit vulnerabilities in target operating systems or
their applications. A Distributed Denial of Service (DDOS) attack is kind of a malicious behavior
that attempts to disrupt the normal services of a server, to overwhelm the target or its
surrounding infrastructure. In this attack, the more computer is used against a particular
target for performing the DDoS attack, the more powerful and effective the attack would be.

To maximize the influence of DoS attacks, the attackers introduce a much more effective
technique: Distributed Denial of Service or DDoS attacks. DDoS attacks are defined as: “attacks
that aim to exhaust the critical resources of a system/network and that come from multiple
sources distributed throughout it” [113]. To launch a DDoS attack, a network of various
computer systems creates infected with malware which is called a botnet. Once the botnet
has been established, the attacker will attack the target server (using its IP address), and by
sending a huge number of requests, try to overwhelm the target. In this type of attack,
separating the attack traffic from normal network traffic can be quite problematic, since each
bot machine can be a normal and legitimate Internet device. This means sending large
amounts of malicious traffic (currently, on average the size of Tbs/Pbs) to the target victim.
For intruders, this technique provides more advantages over conventional DoS attacks,
including:

Combined attacks: when a DDoS attack is executed, each source (Zombie) generates
individual malicious traffic, but as they employ a similar type of DDoS attack (same target, IP
address, and protocol), eventually the whole accumulated traffic will be considered as a
threat.

Simplify of Hiding: In this attack, the real attacker can easily hide behind the infected
computer under his control and it is difficult to find the real intruders. It seems it is just the
normal behavior of enormous legitimate users attempting to access the targeted server.

Multiple sources: It is difficult to identify this attack since the source of the attack is
distributed between a vast group of computers.

In the traditional network architecture, a connection between a computer system and a server
is defined by the OSI model. The DDOS attacks can target various layers of this connection
model. Therefore, to understand the different types of attacks, it is first necessary to mention
the connectivity layers of the Open Systems Interconnection (OSI) model, ISO/IEC 7498-1
[114]. According to the report presented by the F5 Silverline Security Operations Center (SOC)

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

61

[115] The distribution of DDoS attack techniques observed by the SOC team during a 13-
months period is shown in figure 3.11. At first look, volumetric DDoS attacks (UDP
fragmentation, DNS reflection) seem to be the most prevalent.

Figure 3. 11: The incidence of various DDoS attacks from January 2020 to March 2021. [Taken from [115]]

The above-mentioned described DDOS attack characteristics indicate that this kind of attack
can be a potential threat to any type of network. The spread of the Internet in the world allows
various network infrastructures to be connected to each other without implementing proper
security policies which makes the whole network to be vulnerable to traditional attacks. On
the other hand, there are tools that can be found to offer the possibility for any user to launch
this kind of attack without any need to have high technical knowledge.

The major concern about DDoS attacks is this kind of attack is very difficult to be detected
because their behavior is in a way that the normal user generates a legitimate request and
valid traffic, because of this feature when a DDoS attack occurs, the malicious packets can be
considered as legitimate traffic, and not a potential threat. Another concern that should be
considered is to detect and prevent the DDoS attack accurately, all the incoming packets to
the network should be evaluated, and this can cause overloading of the responsible device’s
resources, consequently making it become a bottleneck for the network operation and trigger
a long delay for response times to the normal network request.

The advent of the SDN concept and its characteristics propose new features which can be used
as an opportunity for detecting and mitigating the DDoS attack. Two major features which can
be addressed here are the centralization of the control, and the possibility to have knowledge
about the state of the entire network. These features can be used in the following way for
detecting DDoS attacks: Utilize the controller for requesting the sample of the incoming flow,
evaluate the flow headers, classify the new flows as normal or malicious traffic, and finally

 62

define, produce, and send rules to network devices (such as a switch) to eliminate hazardous
flows.

3.7.1 Different Types of DDoS Attacks

DDoS attacks are classified into different categories, each category targets a specific
component of the infrastructure network. DDoS attacks can be classified into three types:
volume attacks, application-layer attacks, and protocol attacks. An attacker may use one or
more of the three techniques to attack different elements of the network.

3.7.1.1 Volumetric Attack:

It is the highest prevalent type of DDoS attack, and since the range of its usage is growing
drastically fast, this type of DDoS attack receives the utmost attention from researchers and
network security managers. The method which is used to launch this attack is sending a
gigantic stream of worthless but simple packets of information to the targeted system,
requiring the target to handle an enormous quantity of data and simultaneously using all the
available bandwidth between the victim’s system and the Internet to cause congestion.

Amplification forms or other techniques of creating enormous traffic, such as requests from a
botnet, are used to send huge volumes of data to a destination. A well-known instance of a
Volumetric attack is DNS Amplification. In this type of attack, an attacker directs a request
with a spoofed IP address to the DNS server, as a result, the victim receives a huge number of
responses that it certainly not requested from the server, and will ultimately crash.

3.7.1.2 Application Layer attack:

This kind of malicious behavior is frequently referred to as a Layer 7(of the OSI model) DDoS
attack, and the main goal of this attack is to bring down the victim’s resources to stop and
refuse services. This type of attack is launched in the OSI layer in which the websites are
developed and the response to the HTTP request coming from the Internet will be distributed.

The attacks mainly target web servers, and even though their requests look like legitimate
demands, they immobilize the server services. Basically, this type of attack is tough to discover
because it is very hard to distinguish between normal and abnormal network traffic, therefore
detecting and preventing this type of attack is very hard and challenging. The most effective
of this type of attack is on bandwidth consumption and in this category HTTP flood and Slow
Posts can be mentioned as famous attacks. HTTP Flood: In this attack technique, the HTTP GET
or POST request is simultaneously sent from several hosts to the target server, causing the
disruption of the server services since the server continues to respond to the requests and
eventually would be run out of resources.

3.7.1.3 Protocol attacks

In this type of attack, the vulnerabilities in Layers 3 and 4 of the OSI model are used to exploit
an inaccessible victim. Extreme usage of the target resources or network devices such as

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

63

firewalls and load balancers can cause an interrupt in their services. Of the most widespread
type of this kind of attack is SYN Flood.

TCP-SYN Flood:

Since TCP is a connection-oriented protocol, before sending the data flow between source and
destination, communication should be established in the network. Therefore, the attacker can
exploit the vulnerabilities of the TCP protocol. In TCP communication protocol, regardless of
the legitimacy of the sender, the server has the obligation to respond to all received SYN
requests. Before establishing the connection, the server must keep the received requests in
its memory and wait for receiving confirmation from the recipient [116].

An attacker can take advantage of the TCP communication process and send an enormous
number of SYN requests to the server without the purpose of establishing a real connection
(they usually use the non-existent IPs for connection). Hence, by creating several open
connections, the server's memory is saturated, making it incapable of serving any more
requests, refusing access to the normal users, and the service is disrupted, this attack is known
as SYN flooding [117]. In the TCP protocol, to establish a connection between two computers,
three negotiation steps (Three-way Hand-shake) must be done (Figure 3.12), in which the
client tells the server that it wants to establish a connection by sending an SYN packet, the
server responds with an SYN-ACK packet and the client ends the negotiation with an ACK.

Figure 3. 12: Three-step negotiation in TCP [118].

So, in this attack, the attacker tries to take advantage of the TCP hand-shake concept by
keeping the connection open. The attacker sends TCP connection requests (SYN messages) to
the targeted server using fake IP addresses, in this case, the server responds by sending an
SYN+ACK and waits for the sender to respond with the ACK in return. however, the server will
not receive any ACK confirmation since the source addresses are fake, and the server must
keep the connection open for the response and continues to send SYN+ACK packets to the
sender until a timeout occurs (Figure 3.13).

 64

Figure 3. 13: TCP Flood attack. [118].

Some of the other prevalent examples of this type of attack are as follows:

UDP Flood:

In this method, the attacker uses multiple clients for sending UDP packets to different ports
of a targeted server. If the requested port is not used for any services or the server cannot
resolve the requests, as a response to the sender of the request, it will send an ICMP response
with the appropriate message which is the destination is not reachable. This type of request
sends to the passive ports from a group of infected computers (Zombie) causes network
connection bandwidth consumption. ICMP Flood: This technique uses a similar method as the
UDP flood attack, which means a huge size of ICMP requests are sent to the targeted server
to pretend the victim to resolve the incoming requests.

ICMP Flooding:

The ICMP protocol is used by some network troubleshooting tools to assist in the identification
of network connection errors. The network tools use the ICMP protocol messages to verify
the existence of network connection errors. Therefore, not only the ICMP message is
continuously sent but also inside of the switch has priority for processing. This feature gives
the attacker an opportunity to generate an ICMP flood attack with a large amount of traffic.
This activity causes a denial of service since it occupies all the available bandwidth [116].

The ICMP flooding attack has several variations such as SMURF and Ping of Death. The SMURF
attack uses ICMP broadcast messages to generate a flooding attack and forces a large number
of hosts to respond. If the broadcast message is sent on a fast and continuous basis, the target
host will be overwhelmed by processing the traffic and a denial of service attack occurs. The
Ping of Death attack uses ICMP messages in the form of echo and request/reply. The attacker
generates flooding of packets with a large extension (more than 64Kb) so that the target
system cannot process them and as a result, a denial of service attack happens. DNS Flood: In
this attack, to disrupt DNS server operation, various name resolving requests are sent to a
company's DNS server to overload and suspend its service.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

65

3.7.2 DDoS Attacks on SDN Networks

The DDoS attack is a type of attack directed by multiple computers called “bots” or “zombies”,
which are a network of different computers remotely controlled by an attacker to launch
massive unwanted network traffic toward a specific target; the objective can be a computer,
server or a network [119]. The major goal behind this attack is trying to exhaust the network
resources, with the intention to hamper or disrupt the services for normal users. Regardless
of the target of the attack, all different types of DDoS attacks have the common characteristic,
which is flooding the targeting network with huge amounts of unwanted packets, typically
using the following protocols: ICMP, TCP, or UDP packets [120].

As mentioned earlier, during the DDoS attack, to cause the unavailability of service, a vast
number of packets are sent to one or more servers in the network. In the SDN network, if the
source IP addresses of incoming packets are spoofed, the SDN-based switch will not find the
proper match in its flow table and will have to forward the packet to the controller. Therefore,
the accumulation of the incoming packets from both the legitimate users and fake packets
generated by the attacker can compromise the critical resources such as CPU, memory, and
network bandwidth of the SDN controller, and in the worst case, completely disrupt them and
eventually bring down the controller (Figure 3.14) [121].

Figure 3. 14: DDoS Attack on SDN Network Using the Botnet [122].

The DDoS attack can be performed by targeting all three planes of the SDN architecture.
Therefore, In the SDN environment, DDoS attacks can be divided into three categories based
on these potential targets: application-layer DDoS attacks, control layer DDoS attacks, and
data layer DDoS attacks. In the SDN network, when the DDoS attack happens, it can extend
either vertically when one layer communicates with another layer or horizontally because of
communication between controllers and between applications. The DDoS attacker can send a
large amount of malicious traffic to any SDN layers through the defined communication
channels such as the northbound, southbound, and east/westbound interfaces. The attack
can be propagated from the data plane into the control layer through the southbound

 66

interface. On the other hand, at the control layer, the attack can be spread from one controller
to another via the east-westbound API. And lastly, the traffic from the control layer can be
directed to the application layer through northbound API to paralyze different services [122].

3.7.2.1 DDoS attacks at the SDN application layer

In this situation, the attacker sends malicious traffic to the application layer in order to
saturate the northbound interfaces and disrupt running applications. Since it is tough to
identify traffic between different SDN applications, it is possible for a DDoS attack targeting
to influence another application that is not the attacker's target [119]. More specifically, in
this layer, these types of attacks establish full TCP connections targeting network entities such
as servers and then start flooding the illegitimate traffic generated by the attacker towards it
with a huge number of HTTP requests to saturate the bandwidth. It is important to mention
that, in the case of the attack performing at the start with a low and slow rate, it would be
very challenging to distinguish them from legitimate traffic. Therefore, at present, the tools
for SDN application layer attacks are a powerful facility for attackers to harm their victims. The
most important challenge about this security issue which should be considered is
differentiating between malicious traffic and an unexpectedly large volume of packets from
legitimate users [123].

3.7.2.2 DDoS attacks on the SDN data layer

At the data layer, the appropriate target for the DDoS attack would be the OpenFlow-based
switches and their flow table, because they contain information such as communication,
access control, and administrative data. In this case, through unauthorized physical or virtual
network access the intruder intentions to disrupt network functionality. Since the storage
capacity of the OpenFlow-based switch is limited, it is not possible to store all the flow rules.
Therefore, If the attacker conducts a vast number of packets from an unknown different IP
address in a short period of time, the switch considers them as new flows and sends them to
the controller, then the controller creates new rules for these new flows, forwards and insert
them into the flow table. In this case, in a short period, the capacity of the flow table gets full
and runs out of space. Therefore, it is not possible to add a new rule to the flow table anymore.
Accordingly, since the flow table is out of capacity, the transmission of new legitimate traffic
from the switch to the controller is stopped [119].

3.7.2.3 DDoS attacks at the SDN control layer

Since the SDN control layer is a centralized entity in the SDN architecture that controls the
entire infrastructure network. Therefore, attacking the SDN controller using DDoS attacks can
cause bringing down the entire network and unavailability of the network services by sending
huge amounts of traffic from multiple sources to overload the controller.
As the SDN concepts, for every new coming packet, the decision-making is done by the
controller. In the data plane, when a network packet arrives at the switch and the switch
cannot find any flow rules corresponding to this packet in the flow table, for making the
decision, the entire packet or part of the header is sent to the controller. Therefore, sending
a total packet in a high volume of network traffic from the switch to the controller can saturate
the southbound interface bandwidth [119].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

67

To perform such a kind of attack, the attacker in the first step must identify if the targeted
network is SDN-based. It should be noticed that in traditional network architecture, the
network devices often have a pre-defined forwarding table. Therefore, for a new incoming
packet, no additional time is required to process, create and add a flow entry. But, in SDN
architecture, for a new incoming packet, the controller needs some time to create a new flow
entry. In addition, more process time should be spent comparing the first packet with
subsequent packets from the controller. Therefore, this knowledge can be used by attackers
to identify whether the target network is SDN or not. It means that the attacker identifies
whether the target network is SDN by checking the difference in controller response times
between the first and subsequent packets and once he finds out that the network is SDN, the
attack can be performed [124].

3.8 Chapter Summary

The major goal of this chapter is to answer the first research question which is:

What are the SDN attack vectors?
To achieve this purpose, this chapter, there has presented the SDN environment in detail.
First, introduce SDN history and concept, then define the SDN architecture deeply. More
specifically, we study Open Flow protocol as the southbound protocol, because some
traditional protocols can be considered as southbound protocols in SDN environments such
as SNMP, NETCONF, LISP, and even BGP. In addition, there are also several other specific
Southbound APIs to manage communications between these two layers of the SDN
architecture, for instance, P4, OVSDB, OpFlex, and ForCES, but OpenFlow is the most famous
Southbound API and even it is considered the industry standard for controlling and managing
the overall information about the network equipment, Therefore, in this research, we
consider the OpenFlow protocol as the southbound interface for the SDN networks to provide
the communication channel between SDN-based switches and the controller. Furthermore,
we explore the SDN security on each layer of the SDN architecture to be able to identify the
SDN attack vectors.

Moreover, DDoS attacks have been studied, because these types of attacks are a real threat
to both traditional and SDN networks. This type of attack can cause a large disruption to any
network infrastructure. Particularly, in SDN networks due to the separation of the control and
data plane, the DDoS attack can be the most important threat vector for SDN networks.

 68

Chapter 4
4 Evaluating the SDN Controllers

It is essential to have a solid understanding of the performance of the control plane in
software-defined networks (SDNs) since this plane serves as the "brain" of the network and
influences the overall functioning of the network, as well as the performance of services,
applications, and so on. Therefore, for developers, experts, and users to make efficient use of
this technology, it will be helpful to have a solid grasp of knowledge about the performance
of the SDN controllers and evaluate different controllers already available for SDN networks
in the research and industry domain. There are several SDN controllers available in the market,
in this research, we consider the most prevalent open-source controllers, such as NOX/POX,
Ryu, Floodlight, ODL(OpenDaylight), and ONOS, and for evaluation of these controllers we
deliberate the following features:

4.1 Features for Selecting the SDN Controllers

In this section we introduce the features we consider for evaluating and comparing various
SDN controllers:

1. (South-, Northbound) Interface support: The interface communication channels the way
that the different layers of the SDN can communicate with each other. When choosing a
controller, it is essential to understand which interface communication protocols are
supported by the controller. From the southbound interface point of view, the controller must
be capable of supporting different protocols beyond just the OpenFlow, such as NetConf, P4,
and OF-Config. Since OpenFlow protocol is a standard southbound interface that is used
specifically in the research environment for this research we consider OpenFlow protocol.
Therefore, the characteristics of the OpenFlow versions that the controller supports should
be considered, as well as the possibilities offered by the controller provider to migrate to new
versions of the protocol, such as v1.4 and v1.5. Because some important features, such as IPv6
support, are not part of OpenFlow v1.0 specification as they are added in the OpenFlow v1.2
standard. For the Northbound interface protocol, there are various methods offered by
different vendors, such as RESTful API and gRPC. In this research, we use REST API to provide
communication between the controller and the detection module.

2. Performance: We consider two features to define the performance of the SDN controllers.
One is the number of flows that can be processed per second by the controller and the other
is flow shaping because the major function of the SDN controller is to make decisions about
flows. When switches initiate more flows than the capacity of the controller these metrics
significantly influence. As mentioned earlier, there are two methods to handle the flows:
proactive and reactive. The Proactive method is when decision-making is done before the
network packet reaches the SDN-based switch. Thus, when the packet reaches the switch, it
informs about the decision and what to do with the packet. This method significantly reduces

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

69

the delays and provides no real limit on the number of flows per second that the controller
can support. Reactive method, the flow handling process occurs when the SDN-based switch
receives a packet that does not match any entry in its flow table, and therefore the packet
should be forwarded to the controller, for decision-making. In the reactive method, the
consuming time for processing the packet can be defined as the calculation of the time it
spends to transfer the packet from the SDN-based switch to the SDN controller, the total time
of the flow processing on the controller, and the time it spends to fill the flow table on the
switch. In both methods, the key factors that influence the time of the flow processing contain
the processing capacity of the SDN-based switches, the southbound interface bandwidth, and
the input/output processing power and throughput of the controller.

3. Architecture: For evaluating various SDN controllers, it is vital to consider the architecture
and design of the controllers. From the architectural point of view, there are two SDN
controller categories: A centralized design, securely connected control plane, and distributed,
and scalable SDN controllers. In the centralized architecture, the implementation and
maintenance would be easy and it can provide low latency between different layers of the
SDN architecture but centralized design can be a bottleneck. On the other hand, in the
distributed architecture, the implementation and maintenance are mostly more sophisticated
but provide an environment that can be scaled efficiently to prevent performance
bottlenecks.

4. Scalability: It is a fundamental consideration feature for comparing various SDN controllers.
When evaluating SDN controllers, it is necessary to ensure that the controller is capable of
reducing the impact of heavy network traffic overhead. One aspect of scalability can be
defined as the ability of the SDN controller to span multiple locations. To maximize the benefit
of this capability, the SDN controller must permit network routing and forwarding policies to
be applied automatically in different locations. Another aspect of scalability can be the
capability of the controllers for internal functionality for defining and supporting the clustering
design.

5. Reliability: The two significant factors which indicate the reliability of the SDN controllers
are elasticity and fault tolerance. There are various techniques for providing consistency to
the controllers. For instance, one of the techniques that an SDN controller can use to increase
network reliability is the ability to discover multiple paths from source to destination, which
it can be done by constantly monitoring the network topology to prevent packet loss
conditions in case of interruption of the link between source and destination. Alternatively, if
the SDN controller distinguishes only a single path from source to destination, it should be
capable of utilizing a mechanism to rapidly react when a link failure occurs, and redirect
network traffic to an active link.
Another technique for providing high availability and fault tolerance for the controller itself is,
there should be a built-in mechanism in the controller for clustering which means it should be
capable of creating various, identical but related nodes. With this feature, in case of a
controller failure, another instance can take the role, control, and maintain the network. In
the case of running one single controller, there should be an external node monitoring the
running controller to discover and respond if any failure occurs. In addition, it is vital that the
controller has a mechanism for providing redundancy for both hardware and software.

 70

6. Monitoring and Visualization: One of the important features which must be considered for
comparing SDN controllers is the ability to monitor and visualize the SDN network topology to
discover and present the physical link between network entities. This would help the network
administrator to have not only the overall view of the network topology but also provide the
ability to rapidly discover any link failure between network devices. In addition, the controller
must be capable of providing a view with detailed information about the flows, both from the
physical and virtual network perspective. To achieve the above-mentioned capability, the
controller must be able to continuously monitor the network topology with the help of some
standard management protocols for instance SNMP (Simple Network Management Protocol),
and provide access to network information such as port or link status, connected device, etc.,
using a common communication protocol such as REST API or gRPC.

7. Support Community: In recent years, the industry and business domain have shown
growing interest in the SDN concept, numerous providers have entered the SDN market, and
many others have declared their objective to do so. Organizations and societies who are
responsible to evaluate SDN controllers should concentrate not only on the aforementioned
SDN controller’s technical features but also on the vendor’s support. Because the SDN market
in general, and the SDN controller market, in particular, are still unpredictable.
For every organization that intends to deploy SDN architecture in their network, it is critical to
purchase the SDN drivers from a vendor that can guarantee to support its product and keep
up with the changing in the SDN environment. Most of the well-known and prevalent SDN
controllers run on an open-source platform, therefore it is significantly beneficial if a large
developer and user are involved in the development of these projects. Involving a large
international community can provide long-term support and security to SDN projects.

There are other features that can be considered to evaluate and compare SDN controllers,
such as Network Programming, Modularity and Extensibility, Network Virtualization.

4.2 SDN Controllers

The primary OpenFlow-based controllers that are now available and most often used are as
follows:

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

71

4.2.1 NOX/POX:

1- NOX Controller:

Figure 4. 1: NOX Controller Architecture [Taken from [125]]

NOX 7 is an open-source project that is extensively used and stable. It is the first SDN controller
that was developed to support OpenFlow. This controller, in the beginning, was called classic
NOX; this initial version was created using Python and C++ programming languages; however,
currently, it is no longer in use. The latest version is entirely written in C++, which makes it
significantly quicker; also, it is maintained by numerous teams, and they still provide updates
for it. Comparable to most controllers, this controller operates by monitoring events and
providing a platform for programming a set of activities that must be performed prior to each
event. NOX is suggested to be programmed by those who know C++ programming and prefer
to employ instructions that are not too complicated; in addition, because of its simplicity, it
often produces excellent results in terms of performance. Figure 4.1 shows the overall
architecture of the NOX controller.

2- POX controller

POX 8 is essentially a Python-based implementation of NOX, with the limitation that it only
supports OpenFlow version 1.0, which can be considered its drawback and is not as fast as the
version that is developed in the C++ programming language.

Since POX is continually being updated, this is the reason that it is still widely utilized, and it is
also very straightforward to understand the written code and develop it, so for those who are
familiar with Python programming, this controller is extremely suggested. Additionally, it

7 “NOX”. [Online]. Available: http://www.noxrepo.org/, [Last accessed: June 2022].
8 “POX Manual Current documentation(2015).”. [Online]. Available: https://noxrepo.github.io/pox-doc/html/,
 [Last accessed: June 2022].

 72

enables rapid programming, which makes it an appropriate option for presentations, tryouts,
and scientific investigations.

4.2.2 Ryu Controller

Figure 4. 2: Ryu Controller Architecture [Taken from [126]]

Ryu 9 is an open-source software and component-based application. It is developed
completely in Python and maintained by NTT’s labs. Ryo is comparable to other SDN controller
frameworks that can offer developers the ability to generate new control applications and
network management by using software components with well-defined Application
Programming interfaces (APIs). One of the powerful features of Ryu is that it can maintain and
employ various southbound protocols for managing network devices. These protocols include
such as Configuration Protocol (OF-Config), Network Configuration Protocol (NETCONF),
OpenFlow, and others. In addition to the aforementioned protocol, Ryo also supports Netflow,
OF-Config, sFlow, OVSDB, and other third-party protocols.

Furthermore, the OpenFlow controller is one of the essential elements that make up the Ryu
architecture. This component is in charge of controlling the OpenFlow switches, which are
used to set up flows, handle events, and so on. (Figure 4.2 illustrates the architecture of the
Ryu). Ryu supports this protocol up to the latest version 1.4.

9 “Ryo Controller”, [Online]. Available:” https://ryu-sdn.org/, [Last accessed: June 2022].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

73

4.2.3 Floodlight Controller

Figure 4. 3: Floodlight Controller Architecture [Taken from [127]]

Floodlight 10 is a Java-based open-source controller that is compatible with OpenFlow. It was
developed by a community of Big Switch Networks developers and, originally, would be
included in the OpenDaylight project. Apart from the fact that it is developed in the Java
programming language, this controller differs from the preceding controllers in that it was the
only one that implemented a REST API [128] for the Northbound interface at that time, which
offers a possibility for the incorporation of external apps(Figure 4.3 shows the Floodlight
architecture).

4.2.4 OpenDaylight (ODL)

OpenDaylight (ODL) 11 is a joint open-source project founded by the Linux Foundation that
claims to be the most extensively used open-source SDN controller today, according to its
official website. Currently, several SDN controllers have been developed, the most used
controller in the real world are ODL (OpenDaylight) and ONOS. The essential purpose of ODL
is to simplify the deployment of the SDN and Network Functions Virtualization (NFV)
technologies in existing conventional networks. Its main characteristics are:

10 Floodlight, [Online]. Available: https://floodlight.gitlab.io/, [Last accessed: June 2022].
11 “The OpenDaylight platform”, [Online]. Available: https://www.opendaylight.org/, [Last accessed: June 2022].

 74

Figure 4. 4: ODL Controller Architecture [Taken from [129]].

It provides a modular, extensible, scalable, high availability, and multi-protocol infrastructure.
ODL is capable to support various southbound protocols, such as OpenFlow, NETCONF, and
OVSDB. It is written in Java and uses the YANG language for data modeling, although the
communication between the different interfaces is accomplished through REST API. Several
important telecommunications companies provide support for this project. Cisco, HP, and
Intel are just a few prominent companies that are members of the ODL project (Figure 4.4
presents the ODL architecture).

Phosphorus was released in September 2021 and was the most recent release at the time of
writing this article. The main objective of this emerging paradigm for network orchestration is
to make the architecture of a network more dynamic, easier to reconfigure, and compatible,
independent of the models or manufacturers used to construct the network [130]. By
abstracting high-level operations from the devices, it allows operators to maintain, control
and manage all network services from a distance. By separating the control plane from the
data plane in the network, the purpose mentioned above can be achieved. In this
methodology, the control layer of the network devices is separated from the hardware, and
decisions making, and policies defining the packet routing and traffic flows will be done
outside and independently of the network devices that exist in the data plane. The following
are some of the advantages afforded by the implementation of SDN:

-Network automation and streamlining are accomplished by simplifying the processes that
must be performed on it.

-As an accomplishment, the complexity is reduced through the separation of the control plane
and the data plane.

-By creating a programmable network, the manual configuration will be eliminated.

-Using this approach will be led to a more secure and scalable network since human
interference is decreased.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

75

-The usage of an Application Programming Interface (API) in this architecture causes speeds
up the development and deployment of new applications and services.

4.2.5 ONOS Controller

Open Network Operating System (ONOS) [131] is a central controller for managing network
components in an SDN environment. This operating system was first introduced by the Open
Networking Lab (ON. Lab) in 2014 and currently is maintained and developed under the
umbrella of the ONF (Open. Network Foundation).

ONOS is an open distributed operating system and an SDN controller platform for providing
high scalability and availability. ONOS’s major advantage is supporting multiple protocols
across southbound interfaces to communicate with different devices and offering APIs as
northbound interfaces to address the service providers’ and application developers'
requirements (Figure 4.5). From the first version of the ONOS, which was released in
December 2014, till now, several versions of the ONOS has been released, and the latest one
is X-Wing which was released in July 2021 [132].

Figure 4. 5: Overview of the ONOS Architecture [Taken from [133]]

4.2.6 Conclusion
We investigate some of the prevalent SDN controllers, the table 4.1 summarize the result, and
based on the features we consider to evaluate SDN controllers, for this research, we choose
ONOS as the central controller in our proposed framework. Therefore, we study deeply
through the ONOS characterization, structure, and architecture in the next section.

 76

Table 4. 1: SDN controllers and their characteristics [134].

4.3 Open Network Operating System (ONOS)

ONOS [135] is one of the most popular applications that is used to provide the role of the
controller in an SDN environment. Its primary goal is to make the implementation and
development of SDN and NFV solutions as simple as possible. In addition, it is an open-source
system and several well-known high-technology companies such as AT&T, Huawei, Intel, etc.
support it. Although some essential characteristics are shared between both controllers.

The following are the distinctive characteristics of ONOS in comparison to ODL:

Using Apache Karaf makes it possible to activate or deactivate any of ONOS's functionalities
while the system is running. This is quite beneficial for expanding the controller's capabilities
without the necessity to stop and restart the service. These characteristics make it easier to
create and develop new applications and solutions in the future. Because of this capability,
ONOS may be used by a wide range of manufacturers and different types of network
equipment. Its major purpose is to make it possible for service providers to implement actual
SDN/NFV solutions.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

77

Using this system in SDN environments has the following advantages:

- Optimal performance for the ONOS platform and applications as a modular,
extensible, and distributed controller.

- Provides significant ease of network management, since it considers the entire
network as a single entity.

- Runs as a distribution system between multiple servers while offering fault tolerance

in the case of a server failure, it permits the utilization of CPU and memory from several
servers.

- Provides some types of functionality comparable to server operating systems, such as

resource allocation and permissions, user-interactive tools such as CLI and GUI, and
APIs and abstractions.

- Provides a network graph and a view of the entire network in an abstract manner,
independent of the northern part, which is logically centralized despite the physical
distribution between several servers.

- Establish a control platform for service providers to address the problems of
distributed systems, including high availability, scalability, and efficiency.

- The greatest benefit of an operating system is that it offers a functional and useable
foundation for software applications intended for a certain purpose or use case,
including custom communication routing or management and service monitoring for
software-based networks.

4.3.1 ONOS Use Cases

The use cases are intended to address challenging SDN deployment scenarios encountered by
members of the ONOS community. Correspondingly, the implementations of these use cases
are typically complicated, involving combinations of apps, drivers, system core components,
and specialized APIs. In the following, the names of some of the applications as use cases for
ONOS are mentioned. These applications are developed on the ONOS, or integrate ONOS as
part of their software design [136]:

- CORD: Central Office Reimagined as a Datacenter (vCPE, vOLT, NFaaS)
- CORD: Leaf-Spine Fabric with Segment Routing
- DC Network Virtualization
- E-CORD: Enterprise CORD
- Packet Optical Convergence
- IP RAN
- M-CORD: Mobile CORD
- NFV (NFaaS)
- Peering Router - ONF's Project Atrium
- SDN-IP
- Virtual Private LAN Service (VPLS)

 78

The above-mentioned use cases have their own website which contains project definition and
architecture documents, related presentations, and videos.

4.3.2 Clustering capability of the ONOS

One of the significant benefits of using ONOS as a controller in the SDN environment is in
ONOS; unlike other controllers, the support for distributed architecture was considered in its
initial design. ONOS can be developed as a set of controllers that operates together to achieve
flexibility, fault tolerance, and better load management. ONOS has the ability to form a
cluster. Each cluster consists of controllers, which are called nodes, and each node can be
verified by a unique identifier. There are three states in which one node in the cluster can
have:

None: in this state, the node cannot communicate with the network elements.
Master: It is the state when the node has complete control of the network elements which
means that the node has the ability to read its state and execute write operations on it.
Standby: the node in this state has a connection with the network elements, but it has only
permission to execute read operations from the network element.

In the beginning, when a cluster is established and all nodes are started, all of them will be in
the “None” state. When there is no master node in the cluster, the first node detects a
network element and makes a connection to it, it will become the master node.
There is a subsystem leader in the cluster who is responsible for ensuring that each network
device has only one master node(controller) and all other controllers will remain in the
standby state. Also, in the cluster, the standby controllers are prioritized to ensure that control
of the connected network device can be quickly restored in the case of a failure of the master
controller. Regarding cluster synchronization, each ONOS controller is aware of a subset of
network information and shares it among other members of the cluster as events. These
events are controlled and maintained by the controller that manages that information.

In a cluster environment (with multiple controller instances), various failures may occur such
as the crashing of one node(controller), In this situation, there should be an approach that the
other node in the cluster is able to receive updates from others. In this case, ONOS proposes
an approach for instance the anti-entropy mechanism, which is based on the intervallic node
exploration and gossip protocol.

4.3.3 Security concerns in the ONOS controller

Based on the research in terms of the security and performance analysis of the ONOS
controller [137], some security points must be considered in the ONOS controller. These
security concerns can be divided based on different methods of communication:

● In Northbound Interface: The standard HTTP protocol is used by default to allow access
between the control plane and the application plane. Despite the fact that authentication is
set by default, there is no security in the data transmission between the client and the ONOS
server if HTTPS is not utilized. Because of potential compatibility issues with specific browsers
and REST APIs, it is not recommended to use self-signed certificates.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

79

● In Southbound Interface: By default, the data transfer through the southbound interface is
not encrypted, and the devices using this channel are not authenticated. Therefore, it is
suggested that SSL protocol be enabled in the southbound interface to avoid data
eavesdropping and tampering. Moreover, when the ONOS server and network devices have
been linked, it is recommended to enable TLS protocol.

● In East/West Interface: By default, for communication between the controllers through the
East/Westbound interface, TLS is not enabled. Consequently, for this kind of communication,
it is highly recommended to use TLS.

Since ONOS has been chosen to be the central controller of the proposed framework for this
research. More details about its architecture in detail will be explained in the coming section.

In this chapter, the architecture of the ONOS controller will be explained in detail, and clarify
the different methods which are used at the user level to interact with it.

4.3.4 ONOS Overview

There are several ways and tools which can be used for installing the ONOS controller, in this
research, we use the Bazel tool for installing the ONOS controller.

Note: Bazel is an open-source tool for building and testing applications similar to Make, Maven, and Gradle.
It is designed to support the projects that is developed using multiple languages and construct outputs for
several platforms. Bazel can accommodate big codebases that are spread out over numerous repositories
in addition to a high number of users.

After completing the process of the ONOS installation. The following ways can be used to
communicate with the controller.

4.3.4.1 Communication with ONOS

There are three ways in which a network operator can interact with ONOS:
The first way is using the CLI console [138]. This console is developed and employed based on
Karaf which the network operator can directly enter the command on the running ONOS
server. Figure 4.6 shows the ONOs CLI interface.

 80

Figure 4. 6: ONOS CLI interface

The second way is using Graphical User Interface (GUI) [139] through the web browser that
provides a visual view of the network which is controlled and maintained by the ONOS (Figure
4.7).

Figure 4. 7: ONOS GUI

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

81

The third way is using the REST API which allows interaction through the REST protocol with
the interface provided by ONOS.

The ONOS server provided an extensive REST API for interaction using the REST protocol. This
protocol proposes the same functionalities similar to the CLI console by using the CRUD
requests (The CRUD stands for the four main requests create, read, update and delete). The
ONOS REST API can be accessed at the following link:

http://[ONOS_SERVER_IP_ADDRESS]:[ONOS_PORT]/onos/v1/docs

4.3.5 ONOS Architecture

The ONOS kernel and its central services are written in Java as bundles, which are loaded into
the Karaf OSGi container. OSGi [140] is a module system for Java that enables the installation
and dynamic running of modules in a JVM (Figure 4.8).

OSGi is a dynamic component platform for creating and distributing modular Java libraries and
software applications, to make them easier for developing code, make application distribution
more manageable, detect any issues fast, gain more reusability, and provide better vision into
the application during the run time.

Figure 4. 8: Overview of the OSGi framework [Taken from [141]].

ONOS contains several high-availability databases, with reliable interactions, scalability, and
different approaches for performance improvement such as replication techniques, robust
compatibility, and as well as using gossip protocol for synchronization across multiple
controllers and for maintaining its cluster members. In addition, it uses Hazelcast, a Java-based
open-source in-memory data grid for facilitating cluster membership. From ONOS version 1.4
the Hazelcast has been replaced by the Atomix framework [142]. This framework is based on

 82

an algorithm known as the RAFT consensus algorithm to provide a better solution for
managing recovery.

The following are the fundamental concepts of the ONOS design:

- High availability, scalability, and performance.

- Simplicity and solid abstraction.

- The protocol and the equipment's performance are independent.

- Modularity.

Similar to SDN architecture, The ONOS structure is divided into three layers: Southbound
Interface, Core, and Northbound Interface. A variety of components and subsystems, which
are organized into layers of functionality, make up the ONOS system.

The ONOS architecture (Figure 6.9) is divided into applications (Apps), Northbound (consumer)
API, Core, Southbound (provider) API, Providers, Protocols, and Network Elements.

The following figure is a high-level representation of the ONOS architecture.

 Figure 4. 9: ONOS architecture [143].

To develop an API for ONOS, it is essential to understand the architecture of ONOS and all the
services it provides in detail. Therefore, in this section, all above mentioned different parts of
the ONOS architecture with the related services they support will be defined.

4.3.5.1 ONOS Application

Through the AdminService and Service interfaces, applications utilize and change information
contributed by Managers. Each application is identified by a unique identifier called
ApplicationId. ONOS uses this identity to manage the context associated with the app. It is

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

83

necessary for each application to register to the CoreService by specifying its name to receive
a valid identifier.

4.3.5.2 ONOS Northbound interface

The Northbound interface [144] consists of components that are responsible for
communication between the ONOS core and running services and applications over the
network.

4.3.5.3 ONOS southbound interface

The Southbound interface in ONOS is responsible to provide a channel for communication
between the core of the control plane and the devices which directly related to the physical
network. This interface provides the following feature: Abstraction, modularity, and
interoperability. All the components which construct the structure of the ONOS reside in one
of the three main ONOS layers which means the Northbound interface, the Core, and the
Southbound interface. Figure 4.10 depicts the outline of the relationship between subsystem
components in a distributed environment. The dotted lines demarcate the boundaries
between the core and the Northbound, and Southbound interfaces.

Figure 4. 10: Relationship between ONOS subsystem components [143].

4.3.5.4 ONOS Core

The core [145] of ONOS forms the fundamental of the architecture. It is responsible for
tracking all the information which is received about the state of the network and presenting
it to the application layer via services.
The ONOS core is composed of multiple services and subsystems as can be perceived from the
Figure 4.11. A service is a functional unit that is made of numerous discrete components that
together form the stacking software system and the collection of components that compose

 84

a service is called a subsystem. A service consists of multiple components that are spread over
different layers. The core provides the following primary services:

Device Subsystem: This subsystem is responsible to manage the list of devices on the network
that are participating in the routing tasks.

In the infrastructure network, there are various types of network devices, for instance,
switches, routers, or access points and these devices can be identified by a set of specific
information such as interfaces/ports and device-id.

Host Subsystem: This subsystem is in charge of managing the list of end hosts and their
positions on the network. The nodes that have the role of the source and destination points
for the network traffic which is called hosts. A host can be a computer. A server, or any other
device that generate traffic into the network. A host can be verified by its IP address, MAC
address, and connection port.

Link Subsystem: This subsystem is responsible to control the list of links. Links mean the direct
connection between the nodes. The only types of connections that are permitted in ONOS are
those that connect two devices or a device with a host. Direct connections between hosts are
not permitted.

Topology Subsystem: This service offers a graph snapshot that presents the whole network
that is sorted according to the time. Different routing algorithms such as Dijkstra utilizes this
service.

Path Subsystem: This service is responsible to calculate and discover the routes (or paths),
which are made up of one or more connections between two network hosts (which must be
adjacent). To achieve this goal, this service uses the most recent provided snapshot from
Topology Subsystem.

FlowRule Subsystem: It is responsible for providing the flow metrics and measurements as
well as managing the flow rules inventory and providing the list of match/action rules which
is installed on the devices.

Packet Subsystem: This service provides the possibility for the application to monitor and
inject traffic via one or more devices into the network, as well as inspect data packets received
by network devices.

The services consist of two entities:

1- Manager: This entity is responsible for communication between southbound interface
protocols and the applications.

 To achieve this purpose, it provides a number of interfaces that are responsible for providing
the current network state for the applications at a particular moment, performing
administrative commands on the computers, and creating communication between the
manager and the applications.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

85

2- Listener: This entity provides the possibility for applications to register to obtain
announcements of events that happened on the network.

Figure 4. 11: ONOS Subsystem [143].

4.3.5.5 Provider Layer:

In ONOS, the Provider concept is used to cover protocol concerns for the southbound
protocols. It also covers any behavior or needs, from other components of the controller
platform; The Providers are in charge of providing specific data for the ONOS Core by
communicating with the network environment through different control and configuration
protocols. In the architecture of the ONOS, the Provider takes Core requests and applies them
to the network using the specific protocols [133]. In ONOS The Provider layer is the lowest in
the ONOS stack, Providers communicate with the network through specific protocol libraries,
and with the Core through the ProviderService interface.

1. Manager

It is a component in the ONOS Core. The Manager is in charge of receiving information from
Providers and distributing it to Applications. It contains the following interfaces:

Northbound Service: This interface is used by apps and other Core components to get
information about certain features of the network status.

AdminService: this interface is used for executing administrative commands and employing
them to the network status in the system.

Southbound ProviderRegistry: By using this interface, Providers may register with the
Manager and engage with him.

 86

2. Store Component

ONOS Core has a component called the store, which is linked to the Manager. The Store
maintains the information received from the Managers and synchronizes it. This contains
promising the reliability and healthiness of the information through the instances of ONOS.

3. Application

Through the AdminService and Service interfaces, applications utilize and change information
contributed by Managers.

Each application is identified by a unique identifier (ApplicationId). ONOS uses this identity to
manage the context associated with the app.

It is necessary for the applications to register to the CoreService by specifying their name to
receive a valid identifier.

4.4 Chapter Summary

In this chapter, there has been investigated different SND controllers. There are several SDN
controllers available in the market, in this research, we consider the most prevalent
controllers, such as NOX/POX, Ryu, Floodlight, ODL(OpenDaylight), and ONOS. The main
reasons we consider these SDN controllers are they are open-source, the most popular and
widely used controllers particularly in the research and scientific realm.

To indicate the SDN controller for our proposed framework, we evaluate the above-
mentioned controllers based on the following features: South and Northbound interface
because once deciding about the controller, it is necessary to understand which interface
communication protocols are supported by the controllers since later it should be used to
transfer the network traffic between SDN layers in the proposed framework. Performance, as
in an SDN network, is vital to efficiently manage the process of the network flows with high
security and low latency. Architecture, to indicate whether the SDN controller has a
centralized design, and securely connected control plane or distributed, and scalable design.
Scalability is a fundamental feature for evaluating various SDN controllers because it is
necessary to certify that the controller is capable of reducing the impact of heavy network
traffic. Reliability, since the controller is the center of the SDN network, reliability is an
essential feature for every controller since, for this feature, two significant factors are
considered, elasticity and fault tolerance. The other features that have been considered for
the evaluation process are Monitoring and Visualization, and the Support community.
Consequently, from the various nominated features for evaluation, it can be concluded that
ONOS performs better than the other controllers. The rest of this chapter is dedicated to
studying the ONOS controller in detail.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

87

Chapter 5

5 Proposed Framework (BFDD-S)

As mentioned before, the main goal of this research is to propose a near real-time framework
to detect and mitigate the influence of distributed denial-of-service attacks on SDN networks.
For achieving this goal, an effective method appropriate to the architecture and
characteristics of the SDN network has been proposed. The proposed framework is a
heterogeneous system in which the detection phase is performed out of the controller and
gathering information and mitigation are performed by the SDN controller.

5.1 BFDD-S Methodology

In SDN networks, when the network traffic reaches to the SDN-based switch, the switch checks
its current flow tables, If the switch finds a pre-defined policy rule for this packet in the flow
tables, the flow will be passed to the destination. Otherwise, it will be considered a new flow,

which is sent to the controller to make the decision. In this framework, when the new traffic
flows reach the controller, it gathers all required data, aggregates them, and sends them to
the detection module which resides in another server. Then, the data are evaluated by a
detection module located in the attack detection server.

After analyzing the packet, if no anomaly is detected, a non-attack message will be sent to the
controller. The controller then orders the switch by installing the appropriate rule in the
switch’s flow table to permit the related flow to pass through the switch. In opposition to that,

If an anomaly is detected by the detection module, the attack detection module sends a
detection message to the controller. After the controller receives the message, commands the
switch to drop the flows and block the IP address of the attacker. Figure 5.1 presents the
process of the network traffic received from a legitimate user and an attacker in the proposed
framework in an SDN environment.

 88

Figure 5. 1: Process of the legitimate and malicious traffic by the proposed framework

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

89

The following Pseudocode depicts the above-mentioned detection and mitigation method in
the BFDD-S framework:

 In designing this framework prototype, we utilize a combination of big data tools and machine
learning together with taking advantage of the developed SDN controller, therefore we called
this framework BFDD-S (Big data Framework for DDoS attack Detection in SDN network). In
this section, we clarify the architecture of this framework in particular and justify how it works
and depict output results, and define the functional modules for the solution that will serve
as the basis for the design and development of the framework prototype.

5.1.1 Motivation behind BFDD-S

In the realm of network security, rapid attack detection is a key point for designing and
developing any security system. In addition, as the architecture of the DDoS attacks shows, an
attacker sends a massive volume of real or fake traffic to exhaust the network resources, with
the intention to hamper or disrupt the services for normal users. Therefore, to design and
implement a defense mechanism, another key point is utilizing a method that is capable of
handling and processing a huge volume of data fast and in real-time.

As mentioned earlier, in designing the BFDD-S framework, we decouple the detection module
from the controller to prevent controller performance degradation and delay in responding

 90

to permissible flows sent to the controller. Therefore, in our design, we implement a big data
pipeline to provide a fast and real-time data processing method using Apache Spark and
prevent any delay in processing or losing any normal traffic during receiving a massive amount
of traffic to the controller by using Apache Kafka.

In our detection module, we utilize Apache Kafka, as an open-source, streaming data platform,
since it has capabilities such as short response time, high performance, horizontally scalable,
fault tolerance, and it is capable of processing extremely fast streams of events. In the real
world, it is used in real-time projects to provide data pipelines and program flow. The major
advantages of using Apache Kafka in our framework include the following:

1. Creating streaming and timely data transmission lines that reliably transfer and exchange
data between the controller and the detection module.

2. Creating the framework for real-time streaming data that react in time to a stream of data
and transfer them.

In the detection module, we also implement Apache Spark as an open-source programming
model for processing large data sets with a parallel distributed algorithm which can provide
machine learning and real-time workloads. In most of the previous related research, they
utilize Apache Hadoop for processing the network traffic. The main concern about MapReduce
is with each step, it reads data from the cluster, performs operations, and writes the results
to HDFS. Because each step requires a disk read and write, MapReduce jobs are slow due to
disk I/O latency which is a big concern for detecting malicious traffic. We choose to implement
Apache Spark in the data processing pipeline to overcome the above-mentioned concern in
Hadoop and MapReduce.

Although Apache Spark is an open-source framework focused on machine learning and
interactive queries, It does not have its own storage system. Therefore, in the data processing
pipeline in the data detection module, we implement Elasticsearch for storing features that
are required for data processing. Since Elasticsearch can search documents that were
uploaded just one second earlier, by implementing it we can achieve a real-time search
engine. In addition, It has a document-oriented distributed architecture, which makes it
simple to scale up in a big environment. These real-time and scalable features are the key
factors for implementing a fast, real-time, reliable, and scalable DDoS attack detection
framework for SDN networks.

5.2 Framework Architecture

The aim of this work is to provide a robust and resilient intrusion detection system that can
offer a fast, real-time detection system to increase the scalability and reliability of DDoS attack
detection and mitigation. Figure 5.2 shows the overall view of the processing of the proposed
framework.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

91

Figure 5. 2: Overall Architecture of the Proposed Framework.

The framework consists of three main modules, first module is for data gathering and

formatting statistical information developed as an API to the ONOS core using Java
programming language(Figure 5.3).

The major purpose of this API is to gather statistical information, aggregate it, and convert
them to the appropriate format before sending it to the data processing module.
In addition, the mitigation activities will be performed by the controller (We used ONOS as a
controller for this experience).

Figure 5. 3: Information Gathering and Mitigation Module.

 92

The second module is attack detection which is located on another server and uses data
pipeline infrastructure and machine learning for detecting DDoS attacks (Figure 5.4). In this

framework for creating data pipeline infrastructure, we use the following big data analytic tools,
Apache Kafka for message queuing, Apache Spark for data processing, and Elasticsearch for
storing data.
When the new flows reach the SDN-based switches they will be sent to the controller, in this
framework, the developed API module gathers, and aggregate the statistical information and
then convert them to JSON format. Then the API module sends them to the detection module.
In the Big Data processing pipeline, the information in JSON format first will be passed to
Apache Kafka for buffering. Then Spark as a consumer reads information from Kafka’s
message queuing. In this module, Apache Spark is responsible for data processing and
anomaly detection using the machine learning classifier.
If an anomaly is detected during the data processing phase, the attack detection module sends
an incident report via the REST API to the SDN controller, providing the necessary information
for decision-making, such as the source IP address of the sender.

Figure 5. 4: Intrusion Detection Module.

As Figure 5.5 indicates, the third module is a machine learning model which we design and
implement in the data processing phase of the big data pipeline.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

93

Figure 5. 5: Machine Learning Module.

In this framework, the following tools are used to create a data pipeline infrastructure: Kafka

for message queuing, Apache Spark for data processing, and Elasticsearch for storing data.

In this particular case, we are going to use Kafka as the system data source for Spark
Streaming. Typically, a Spark Streaming system processes a data flow, stores them in
databases, and file systems, or reflects them in a graph to give a better view to the user. The
operation of data processing in Spark Streaming works as follows. Spark Streaming receives
the data and splits it into small batches, and these batches are processed by the Spark kernel
to generate a data stream of results.

5.3 Framework Workflow

In the proposed method, every incoming packet should go through 5 different phases from
the moment it reaches the switch and then be transferred to the controller and validated.
Figure 5.6, demonstrates these phases in more detail.

Preliminary Phase: request for communication

The Preliminary phase is a request for communication. It is the phase when the packet for the

first time enters the OpenFlow switch. Upon arrival, the switch checks its current flow tables.
If the switch finds a forwarding rule defined for this packet in the flow tables, the flow is
allowed to pass to the destination. Otherwise, it will be considered a new flow, which is sent
to the controller to make the decision.

Phase 2: Information Gathering and Formatting

After entering the controller, initial checks such as destination address, protocol type, etc.,
are performed. If the packet is detected within the current network rules, the controller allows

 94

several packets of the corresponding flow to pass to the server. The attack detection systems
are usually not able to detect abnormal activities from only one packet. For this reason, the
controller requests the entry of several packets of the same flows into the attack detection

system. For this phase, we developed a Java API into the ONOS core, called Extractor, for
gathering statistical information, flow aggregation, and converting the aggregated data to a
suitable format (JSON, for instance) for sending to the data pipeline infrastructure.

Phase 3: Packet analysis and decision Making

After the second phase, it is time for the analysis and decision phase. In this phase, packets
are evaluated by a detection module located in the attack detection server. The formatted
aggregated flows from the Extractor module in JSON format will be passed to Apache Kafka
for buffering. Then Spark as a consumer reads information from Kafka's message queuing. In
this module, Apache Spark is responsible for data processing and anomaly detection. This
phase consists of three steps: the feature engineering process, the machine learning process,
and the decision-making step.

Spark Streaming is used as one of the components of the Apache Spark Ecosystem to enable

the processing of live streams of data and to read the buffered information from Kafka. After
performing Feature Engineering, the features will be stored in the index using Elasticsearch
for rapid retrieval. For the machine learning process, the MLlib library is used, which is also
one of the Apache Spark Ecosystem components. It is built on top of Spark core and has the

facility to provide various machine-learning algorithms. For this experience, we implemented
the Random Forest algorithm to detect anomaly patterns in stored data. Then it is used for
detecting any anomaly in the new messages received from Kafka.

Phase 4: Reporting phase

After analyzing the packet by the attack detection module, if no anomaly is detected, a non-
attack message will be sent to the controller and the controller enters the decision and action
phase. The controller then commands the switch by installing the proper rule in the switch’s
flow table to allow the corresponding flow to pass through the switch. All these
communications in both cases between the detection module and controller will be done via
a REST interface. If an anomaly is detected by the detection module, the attack detection
module sends an incident report via the REST API, providing the necessary information for
decision-making by the controller, such as the source IP address of the sender.

Final Phase: The action phase

After the controller receives the incident report, updates its log file, and analyzes the source

and destination of the flow, the controller commands the switch to drop the packet and block
the IP address of the attacker.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

95

Figure 5. 6: Five Phases of the BFDD-S Framework’s packet processing.

For implementing the proposed framework, which henceforward is called BFDD-S (Big Data
Framework for Detection and Mitigation of DDoS attacks in the SDN network), four phases
have been accomplished as follows:

1- API Development for SDN controller
2- Algorithms Evaluation
3- Big Data Pipeline Implementation
4- Experimental Setup and Performance Evaluation

In the following sections, these four phases will be explained in detail.

5.4 API Development for SDN controller

As discussed before, ONOS implements the OSGi framework using Karaf (Figure 5.7), which
breaks the application into bundles. According to the website, Apache Karaf is a minor OSGi-
based runtime that offers a lightweight container onto which numerous modules and
applications can be deployed. In other words, Apache Karaf is not another OSGi application,
basically, its role is mostly similar to a cover on top of an already existing OSGi. On top of these
runtimes, Karaf provides various value-added services. The majority of these services were

 96

developed as OSGi bundles that are installed on containers when Apache Karaf begins. OSGi
applications may benefit greatly from features such as central logging, command-line
configuration manipulation, remote SSH access to OSGi runtime, and interaction with Apache
Karaf's [146] flexible command shell.

Figure 5. 7: Overview of the Apache Karaf [147].

Using these annotations provides a possibility for Karaf for calling the application's Java code
during different events, such as the loading and unloading of the application's bundle.
These calls are critical for initializing required variables, attaching to other services, and
initiating the logic of the application. All the applications which exist in ONOS follow the
Maven directory hierarchy standard. In this hierarchy standard, the application source code
and libraries would be stored under the following path:

src/main/java

Therefore, in this research, for developing an API for the ONOS controller (called Exporter),
The first step is to define the directory structure for this kind of bundle. This directory
structure includes the pom.xml configuration file and numerous Java class files containing the
application's main functionality and for keeping the source code of tests, the following path
has been used:

src/test/java

Component Templates can be used to automate the creation of a skeleton directory structure
for any typical project. It is necessary for all the applications created and developed for ONOS
to be linked to Karaf with the use of annotations like as @Activate or @Deactivate.

Afterward, by using these annotations, write entry and exit functions to enable Karaf to
successfully load your application. To register additional services that are accessible with
Karaf, the CoreService.registerApplication() routine of the org.onosproject.core should be
used inside the startup method. The coreService package is used to register the application
with a unique name so that Karaf can identify it.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

97

Karaf requests all the services that the application requires to use via the startup and cleanup
processes. As soon as the skeleton is complete and ready to be bonded using Karaf, it is time
to create the application core logic, often known as the business logic. The core logic is
developed using Java files, which are subsequently compiled into the necessary class files.
When the writing code is finished, the Maven commands are used to build/compile the
application.

Apache Maven is a project management software and download tool. Based on the concept
of the Project Object Model (POM) in the project, it can manage the construction of a project.
This management starts from the time of compilation and continues until publication and
documentation. This method allows teamwork to take place properly. The major objectives of
the Maven are exposed in the following figure.

Figure 5. 8: Maven Objectives [146]

It is one of the most widely used Java tools for packaging, building, deploying, compiling,
testing, and documenting projects. It allows all developers to follow a standard for generating
a project, instead of using their own taste. And in the future, the other developers can easily
communicate and continue developing the project structure.
Maven is responsible for compiling all the Java files of the application, connecting all of the
dependent bundles together, or downloading those dependency bundles that are not
currently accessible locally.

Once the process of Maven is complete, the result which is the Java archive (jar) would be
stored in a position inside the ONOS folder where Karaf would be able to access it without the
need for further developer participation. To complete the installation process, launch the
application using the ONOS CLI with the "feature: install application name>" command. For a
better understanding of the essential steps for developing an API into the ONOS controller,
the aforementioned steps are shown in Figure 5.9.

 98

Figure 5. 9: A typical development process for an ONOS application [148].

ONOS also adds two more folders to this structure, one in the following path for keeping the
application's source code:

Src/main/java/org/onosproject/Exporter

And the other one is for keeping the source code of the test in the following path:

Src/test/java/org/onosproject/Exporter

There must be a BUILD file outside of this structure, at the same level as the src directory, that
informs Bazel what to build and how to compile it, defining the artifacts and their
dependencies. As mentioned earlier, for creating an ONOS app, two methods have a
significant role, more precisely, in at least one of its source code files, every ONOS application
must implement an Activate and a Deactivate method. As the name implies, these methods
specify what should be done when the program is activated and what should be done when it
is deactivated. Apart from these, an ONOS application can be developed by creating as many
methods as required.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

99

To start, the applications folder, which is located in the ONOS root directory, is used to create
a new application considering the structure described in the previous section. Following the
writing of the code and creating the file in which the source code for the program will be
stored, it is necessary to create a skeleton of the application. For creating an application for
ONOS the following services are needed:

Core Service, Statistic Service, Device Service, and Metrics Service.

5.5 Machine Learning Algorithms Evaluation

The machine learning method is the most human answer to complex and demanding
activities. It is one of the specializations in the area of artificial intelligence and a data mining
technique. is a technique in which a computer is trained to perform a specific task using
specific algorithms. For the preparation phase, collected data is used called data set to train
the machine to perform certain operations by collecting data called data sets. This training
continues to guarantee that the machine is capable of doing the same task as a human with
similar quality. This process is also called learning with the observer because the machine can
continue to function due to the training given to it by humans.

5.5.1 Algorithm Methods

 According to different methods, various models can be defined, and among all these designed
models, the best one should be selected based on the evaluation method. Analysis methods
provide required information and other statistical data used for evaluating different models.
Model processing is often called training and is a procedure for applying a specific
mathematical algorithm to the data of a structure and extracting patterns. The type of
patterns found in the training process depends on various items such as the selection of
training data, the selected algorithm, and how the algorithm is implemented.

 In the world of machine learning the algorithm can be classified into three main categories:

- Supervised Machine Learning
- Unsupervised Machine Learning
- Reinforcement Learning

5.5.1.1 Supervised Learning

In this method, the data should be labeled. Most machine learning methods use supervised
learning. In supervised machine learning, the system tries to learn from the prior examples
provided. In other words, in this type of learning, the system tries to learn the patterns based
on the examples given to it. Mathematically speaking, when the input variable (X) and output
variable (Y) are available, a mathematical algorithm can be used to derive an input-to-output
mapping function based on these variables, this is called supervised learning. The mapping
function is represented by Y = f (X).

This type of algorithm can be divided into two categories: classification and regression
methods. Classification: A problem can be considered as classification when the output

 100

variable is a category or group. An example of this would be a sample belonging to the "black"
or "white" categories and an email to the "spam" or "non-spam" categories. Regression: A
problem is considered as regression when the type of the output variable is real for instance
"height". In other words, the classification algorithms work with discrete variables and
regression algorithms work with continuous variables.

5.5.1.2 Unsupervised Learning

In unsupervised learning, the algorithm alone must look for appropriate patterns in the data.
From a mathematical point of view, unsupervised learning is used when there are only input
variables (X) in the data set and no associated output data variables. This type of learning is
called unsupervised because, unlike supervised learning, there is no correct answer given, and
the machine itself must look for the answer. In other words, when the algorithm uses a dataset
that lacks labeled data (output variables) to work, it uses another mechanism for learning and
decision making. In this way, learning is done on unlabeled data, and the system itself must
discover hidden patterns in the data, using different tasks such as clustering, association, and
dimensionality reduction. In this case, the model learns through observations and discovers
the relations and structures in the data set. When a data set is introduced to the model, the
model automatically discovers the connections and patterns in the data using clustering.

5.5.1.3 Reinforcement Learning

Reinforcement learning is a type of machine learning approach that designs algorithms for
recognizing the environment and making optimal decisions to achieve the maximum set of
rewards. This approach, not only has a rich mathematical structure and leads to the
emergence of profound theories and robust learning methods, but also it is very flexible and
has been widely used in practical problem-solving. The reinforcement learning problem is
formulated mathematically based on Markov decision processes.
In this method, the algorithm enters the cycle of trial and error, learns to make certain
decisions, and thus is constantly learning. Reinforcement learning also refers to the ability to
find a feature related to the external environment to achieve the best results. The concept is
also known as the trial and error model. This factor is scored or penalized based on the right
or wrong results, and finally, the model achieves the ability to improve through the positive
scores and the desired results. This learning and improvement will continue until the system
can make the necessary predictions and decisions about the new input data. Figure 5.10
depicts the three above-mentioned classified categories and correlated prevalent algorithms.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

101

Figure 5. 10: Various Types of Machine Learning Algorithms

5.5.2 Process of Designing a Model in this Research

One of the most important components for success in projects is the use of accurate
methodology and workflows for project management. The following are the necessary steps
to implement analytical models based on . Through this research, various sources have been
studied and they have introduced the stages of differ in terms of the number of stages. Most
sources mainly introduced five, six, or seven steps. Of course, this is not a fundamental
difference, but in some sources, it is preferred that some stages be separated and not more
detailed or not. Therefore, it is possible that even in some sources we encounter more than 7
steps, so here we examine a 10-step process for as shown in Figure 5.11.

 102

Figure 5. 11: Process of Design Model [149]

These ten steps in the process are repeated periodically to improve the performance of the
model until it reaches the desired quality.

5.5.3 Evaluate the Accuracy of a Model

Sensitivity and specificity are two essential indicators for assessing statistically the functioning
of the classification model. The data can be distributed into positive and negative groups, and
the sensitivity and specificity indicators may be used to quantify and characterize the
performance of an experiment when categorizing data into these two groups.

5.5.3.1 Confusion Matrix

In the field of artificial intelligence, a confusion matrix is a matrix in which the performance of
relevant algorithms is represented. The name of this matrix is also derived from the fact that
it was easier to see the error and the interference between the results. This matrix shows the
results of the classification based on the actual information available. Then, Different criteria
for classification assessment and accuracy measurement might be created based on these
results (Figure 5.12 indicates all the evaluation indicators which can be derived from Confusion
matrix).

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

103

There are different metrics that can be considered when determining the suitability of a
classification algorithm. On the one hand, we must consider the efficiency of the algorithm
when classifying the analyzed elements. To measure it we will use the following metrics:

True Positive (TP): represents the number of malicious packages correctly classified as such.

True Negative (TN): represents the number of legitimate packets correctly classified as such.

False Negative (FN): represents the number of malicious packets erroneously classified as
legitimate.

False Positive (FP): represents the number of legitimate packets erroneously classified as
malicious.

Once a model is designed, one of the most important phases is to evaluate its performance.
In the following, the methods for evaluating a model are briefly defined:

Figure 5. 12: Overall View of the Confusion Matrix and Assessment Methods [149].

5.5.3.2 Selection of Metrics

Finally, the obtained results are evaluated and interpreted. The following criteria are usually
considered in the evaluation, as shown in Figure 5.13.

Accuracy: The most prevalent, fundamental, and straightforward metric for evaluating a
model's value is its accuracy. This parameter indicates the number of patterns that have been
correctly identified and is formulated and defined based on the confusion matrix. In general,
accuracy refers to the model's ability to properly anticipate output. Nevertheless, this criterion
provides only a limited amount of information regarding the model's performance.

 104

 TP + TN
Accuracy =
 TP + FN + FP + TN

Precision: It determines, how true is the result when the model predicts the result positively.
When the value of false positives is high, the correctness criterion will be appropriate. In fact,
when the researcher uses this parameter as an evaluation parameter for his category, the goal
is to achieve the utmost accuracy in identifying positive class samples. The precision is
calculated as follows:

 TP
Precision =
 TP + FP

Recall: The accuracy of negative class identification, in contrast to this characteristic, may
sometimes be significant. The specificity parameter, often known as the "True Negative Rate,"
is one of the most frequently used characteristics that is typically taken into account together
with sensitivity. This parameter is calculated as follows. The ratio of the correct number of
items classified by the algorithm from one class to the number of items in that class is
calculated as follows:

 TP
Recall =
 TP + FN

Figure 5. 13: Three main assessment Metrics [150].

5.5.3.3 Evaluation of the Model in a Real Environment

After analyzing the data and creating insight, it is time to present and distribute this output.
Showing the results to competent people at the right time and using modern methods
provides the conditions that can be used to make a valuable reservoir of insight before

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

105

deciding to do anything. If adequately filled and properly removed, a repository can improve
performance in an organization. Today, different methods are used to present data. In this
regard, several tools have been designed and implemented that can be used to provide and
distribute insights.

5.5.4 Classification Algorithms

For this research, the five most well-known classification algorithms have been chosen and
performed evaluation process, to select one of them to be implemented in the data processing
module of the proposed framework for DDoS attack detection. In this section, these five
classification algorithms will be introduced.

5.5.4.1 Logistic Regression (LR)

Logistic Regression is a method and is one of the most popular techniques for classifying data.
In the classification problem, it is used when one class must be distinguished from another.
This algorithm is used to predict a class-dependent variable using a given set of independent
variables. Logistic Regression is one of the most widely used algorithms in the field of . This
technique is a supervised learning method, and the data have a specific label, and the learning
process is done to classify based on this data and their labels [151].

Table 5.1 describes pseudocode for classification with the LR algorithm.

Table 5. 1: Pseudo code for the Logistic Regression algorithm [152].

5.5.4.2 K-Nearest Neighbor (KNN)

The k-Nearest Neighbors (k-NN) algorithm is a supervised classification algorithm based on
neighborhood criteria. In particular, the concept behind k-NN is that fresh samples will be
categorized with the same class that has the largest number of most similar neighbors to them

 106

in the training set. It is based on a hyperplane computation. Neighbor K method is used for
many methods because it is effective, non-parametric, and easy to implement. However, the
categorizing process takes a long time, and it is difficult to determine the best value for k. In
general, if the best choice of K is given to the data, the influence of noise is decreased, and
the boundary between classes is less distinct [151]. Table 5.2 explains pseudocode for
classification with the KNN algorithm.

 Table 5. 2: Pseudocode for the KNN Algorithm [152].

5.5.4.3 Naïve Bayes Classifier (NB)

This algorithm can be called a generative model. This implies that it is supposed that the input
data can be demonstrated by a model and its certain parameters, and the learning phase is
comprised of attempting to determine which values are appropriate. This is due to the fact
that distinguishing the distribution followed by the input data is often more difficult than
creating an appropriate classifier without doing so, compare to other classification
techniques. This algorithm simplifies the Optimal Bayes Classifier based on the Bayes theorem
which refers to a considerable decrease in the number of parameters that must be anticipated
by an assumption. In a particular label, it is assumed that the characteristics of the input vector
are independent of one another. This assumption is made with the awareness of the fact that
it is often inaccurate, especially in intrusion detection cases, but that it significantly simplifies
the construction of a probabilistic model. That is the reason this classifier is referred to as
Naïve, which means the maximum possibility principle is considered to estimate the
parameters. Therefore, it will be mandatory to identify the ideal parameters for these
algorithms to make them work properly [151].

Table 5.3 depicts pseudocode for classification with the Naïve Bayes algorithm.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

107

Table 5. 3: Pseudo code for the Naïve Bayes Algorithm [152].

5.5.4.4 Decision Tree (DT):

The Decision Tree is one of the most widely used techniques in data mining. Decision trees are
one of the simplest algorithms available, but they are also one of the most effective in the
field of . This technique can be beneficial when the volume of data is very high. It is a collection
of algorithms that categorize data and then make a sequence of choices based on that
classification and a tree structure is used to describe this series of choices [153].
In general, data categorization is carried out from the root node to an appropriate leaf node,
where each leaf node represents a different category [154].

Throughout the supervised training phase, this method generates a binary decision tree,
which is can be described as if-then rules. The decision is made on each node depending on
the value of an attribute associated with that node. During the training phase, the choices and
the sequence in which they are made are decided based on their relevance to the classification
of the data. In this algorithm for a particular dataset S with N classes where k ∈ {1, 2, 3, ..., N}.
Variable pk signifies the number of cases classified as k inside the dataset. The summation of
the probabilities of the incorrect classification of k is mentioned as [155]:

𝑝𝑤 = ∑ 𝑝𝑟 = 1− Ρ𝑘

𝑟 ≠𝑘

 108

Table 5.4 illustrates the procedure of the classification with the decision tree algorithm.

Table 5. 4: Pseudo code for the Decision Tree algorithm [152].

In general, this algorithm demonstrates a function that accepts a vector of attributes as input,
and as a result, it returns a particular value that shows the "decision". There are two types of
decision trees; Classification trees are models in which the objective variable has distinct
values, whereas regression trees are models in which the target variable has continuous
values.

5.5.4.5 Random Forest (RF):

The random forest method is an example of an ensemble algorithm for classification using a
large number of individual decision trees. As a hybrid classification system, this technique
employs a mixture of two or more classification algorithms, which are also referred to as
fundamental algorithms. The decision tree method is the foundation of the Random Forest
algorithm. The technique shown in Table 5.5 is used to create individual trees. As it was
mentioned earlier in this chapter, the combination of a number of different models in an
ensemble method can offer an improved level of accuracy [151].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

109

Table 5. 5: Pseudo code for the random forest algorithm [152].

5.5.5 Intrusion Detection Using Techniques

Using techniques for intrusion detection first came to the sight of researchers in 1987 [156].
Since then, it's been a hot study topic around attack detection for researchers. A well-tuned
machine learning system may be capable of detecting not just known attack patterns but also
novel ones. As machine learning technologies have progressed over time, numerous
algorithms for intrusion detection have been developed and employed. In the scope of
intrusion detection, Decision trees, neural networks, Bayesian algorithms, support vector
machines, and genetic algorithms have all been successful techniques.

Additionally, unsupervised techniques have been used to identify intrusions by using
ensemble methods, graph theory, and clustering. Machine learning has a lot of ability for
intrusion detection since it particularly excels at recognizing patterns in huge amounts of data.
In most situations, there is just too much data to process for data analysts and scientists. They
must go through massive log files for signs of malicious behavior. This is the area in which
different machine learning techniques are particularly good at [157].

5.5.6 Data Set Selection

For researchers, finding a suitable collection of data to train machine learning models for
intrusion detection is one of the most challenging concerns in this subject.

Datasets are a set of information with specific properties that are collected in a specific area.
Datasets or datasets are collections of data that are used with the same subject matter for
analysis and data mining projects. Of course, there is another application of datasets for

 110

comparison between different methods, in that, for example, on a data set, two different
methods (algorithms) are implemented and according to the results can be based on the
criteria of accuracy, speed, and complexity of each Compared methods.

Because of the amount of data passing through the network and the need for confidentiality,
most data sets used in supervised learning comprise simulated data. In the Third International
Competition for Knowledge Discovery and Data Mining, the first dataset which is called KDD
Cup 1999 was generated [158]. Developing a network intrusion detection system was the
main objective of the competition. The dataset was created using data collected over nine
weeks from a simulated Air Force local area network. Then, a CSV data set was created based
on the process of the collected raw data from the network. This data set consists of the sample
data for different types of the attacks such as DoS attacks, illegal approaches to a local private
account, illegal access to the network from a remote computer, and Probing attacks.

However, even though the KDD Cup 1999 data set was convenient for the original competition
and following research, for more than 15 years, it was nearly the only data set utilized for
intrusion detection investigation. Since, in the last 15 years, computers and networks have
evolved tremendously, the KDD 1999 data set was complained about including duplicate
information and representing old-fashioned technology. Because of the above-mentioned
weaknesses of the KDD 1999, numerous scientists have generated more up-to-date data sets
to solve the KDD Cup 1999's drawbacks. A more recent network data set was presented by
the UNSW-NB15 data set, which was produced in 2015 [159]. In this section, these three well-
known datasets will be briefly introduced but according to the above-mentioned issues about
KDD CUP 1999, the two other data sets have been used in this research to perform the
evaluation of various machine learning algorithms for selecting the appropriate algorithm for
intrusion detection to implement in the proposed framework.

5.5.6.1 KDD CUP 1999:

It is based on the DARPA 1998/1999 dataset, which the MIT Lincoln Lab generated from an
emulated network environment. In this data set, both regular traffic and various forms of
computer attacks such as Dos, buffer overflow, etc. were logged for several weeks. As
indicated earlier, KDD CUP 99 is a stream-based dataset that is developed by data from system
logs and network packets engaged in the connection. in addition to typical traffic, and has
already been separated into two subsets: a training subset for machine learning algorithms
and a test subset. Conversely, the Canadian Institute of Cybersecurity (CIC), the organization
that is presently providing this dataset, also has additional up-to-date datasets with
comparable features that are accessible for free to use [158].

5.5.6.2 NSL KDD Data Set

As an upgrade to KDD CUP 99, it was developed in 2009, and it has addressed some of the
redundancy issues mentioned in [160]; however, it still retains some of the issues raised by
McHugh in [161]. Despite some issues mentioned above, it is still regarded as a strong
benchmark for evaluating various intrusion detection techniques, and it remains to be one of
the best choices for researchers for their investigations in the field of intrusion detection
[162]. Comparable to KDD CUP 99, NSL-KDD also uses stream-based data that is developed
with information about the computers and packets involved in connections. In this section,

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

111

the structure and content of the NSL-KDD are described briefly, according to the information
provided by the CIC website and analysis performed by [163]. NSL-KDD dataset is an
established benchmark for evaluating network intrusion detection techniques. It is produced
from the KDDCUP99 dataset, which has a significant disadvantage of a large quantity of un-
usable duplicate records existing in it. This may produce a wrong result and prediction
specifically for machine learning algorithms as a detection algorithm. Therefore, NSLKDD
eliminates repeated records from the KDDCUP99. Specifically, NSLKDD includes two training
sets (’KDDTrain’ and ’KDDTrain 20percent’) and two test sets (’KDDTest+’ and ’KDDTest-21’),
among expressing 41 features defining the statistical information and fundamental aspect of
the network [164].

The dataset contains a total of 41 characteristics which can be classified into the following
four comprehensive categories: R2L attack, U2R attack, DoS attack, and PROBE attack. In this
data set, each item has a label that corresponds to the flow grouping. In addition, in this data
set, the flows are categorized into two types, either normal or conforming as an attack, and
contain the data equivalent to 40 individual kinds of attacks. Table 5.6 presents the different
features of the NSL-KDD data set. For this research, the features numbers F2, F5, F6, and F23
are used because these features can be simply achieved from the SDN controller; therefore,
they can be appropriate options for this study [165].

Table 5. 6: List of features of the NSL-KDD dataset.

Table 5.7 shows the distribution of the flows stored in the NSL-KDD data set for the identified
and new attacks based on four different attack classifications [166].

 112

Table 5. 7: Divisions of famous and new attacks in the KDD-Test set.

5.5.6.3 UNSW-NB15 Data Set

KDDCUP99 and NSLKDD benchmark data sets were created ten years ago to evaluate research
efforts on network intrusion detection systems. Conversely, numerous recent studies have
demonstrated that in the context of the current network security environment, these data
sets do not accurately represent network traffic and contemporary low footprint attacks
[161]. The UNSW-NB15 dataset was generated in 2015 at the Cyber Range Lab of the
Australian Centre for Cyber Security (ACCS) using the AXIA Perfect Storm tool to provide a
combination of the realistic modern normal and malicious network traffic. The genuine
current normal and the contemporary synthetic attack activities of the network traffic are
both included in this data set to make it a hybrid data set. To construct the characteristics of
the UNSWNB15 data set, both existing and innovative methodologies are applied. [159].

In this data set, by using three virtual servers, the data was collected by an IXIA traffic
generator. Two servers were set up to generate legitimate network traffic, while a third was
set up to produce malicious network traffic. Argus and Bro-IDS software retrieved 49 features
from the raw network packets, including flow-based and packet-based characteristics, and
nine distinct attacks including, Shellcode, Backdoors, Reconnaissance, Exploits, Analysis,
Generic, DoS, Fuzzers, and Worms [167]. Packet-based features are extracted from the packet
header and its payload (also called packet data). On the other hand, flow-based characteristics
are produced by exploiting the sequencing of packets as they move across a network, starting
at a source and ending at a destination. This dataset is included 2,540,044 realistic modern
normal and abnormal (also known as an attack) network activities. As Figure 5.8 shows, the
data set is divided into two parts, with 175,341 records in the training data set and 82,332
records in the testing data set, respectively [168]. Compared to previous benchmark datasets
like DARPA98(LABORATORY, 1998), KDDCUP 99, and NSL-KDD, the structure of this dataset is
more complicated. As a result, the UNSW-NB15 is enhanced to provide a more comprehensive
and reliable assessment of the current network intrusion detection technologies [159].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

113

Table 5. 8: Number of records in training and testing subsets for each class

5.6 Selection of Proper Machine Learning Algorithm

In this phase, to select appropriate machine learning algorithms that should be implemented
in the data processing step in the attack detection module, five prevalent classification
algorithms have been evaluated by using two popular datasets. In this research, two popular

data sets have been used, and evaluate different classification algorithms using the python
library Scikit-learn; therefore, the above-mentioned machine learning process is customized
into the following steps depicted in Figure 5.14.

Figure 5. 14: The Machine Learning workflow used in this research.

 114

The main reason behind using two data sets for the evaluation phase of this research is, that
there is some research [161] showing that the NSL-KDD data set, despite the fact that it is the
most frequent data set used by researchers for training and test designed machine learning
model for DDoS attack detection, it contains the data that has not been collected from a real
environment and most of the data captured in the simulation network. In addition, this data
set was created in 2009, therefore it does not contain data related to novel and modern attack
methods and it is getting slightly out of date.

For implementing and evaluating different ML algorithms the following python libraries have
been used: NumPy, pandas, Scikit-learn, and matplotlib, and can be seen in figure 5.15.
For this reason, a Python script is implemented so that, each of the algorithms, applies the ML
algorithm to the dataset. First to train the model and later to test its effectiveness. The
introduction of a validation phase between the two will be studied. This script will be based
on the Scikit-Learn and matplotlib libraries.

5.6.1 Data Preprocessing

In the world of machine learning, data processing is so vital. It means that before
implementing any machine learning algorithms, data must be prepared to increase the
accuracy and output of the work. As shown in figure 5.14 in this research, for data
preprocessing, the following steps have been performed:

To perform data preprocessing, the initial step is to import the Python libraries, which in this
study Scikit-learn, Pandas, NumPy, and Matplotlib have been used (Figure 5.15). These
libraries are very beneficial for entering data and managing them.

Figure 5. 15: Importing the essential Python Libraries.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

115

As revealed above, in this research two popular data sets have been used. First, the NSL-KDD
data set has been downloaded and with the help of Pandas library can work with the data
format. The relevant commands are shown in the figure 5.16.

Figure 5. 16: Importing the Data set and Creating the Pandas Data Frame.

In pre-processing phase, the figure 5.17 present the steps we follow to prepare data set for
the train and test the designated machine learning algorithms.

 Figure 5. 17: Data pre-processing workflow

 116

The next step is to convert qualitative data. Any data that is not numerical is qualitative or
categorical. For modeling, the data must be numerical. To do this, import the "LabelEncoder"
class from the "sklearn.preprocessing" library and create a labelencoder_X object from the
LabelEncoder class. We then use the fit_transform method to convert the data as displayed
in figure 5.18.

Figure 5. 18: Convert Qualitative Data

After converting the values, we must make changes to the numbers again. Suppose we
attribute the number 1 to red and the number 2 to green. In this case, machine learning
algorithms consider the number 2 to be superior to the number 1. If we did not have such an
intention. We use One-Hot Encoding so that the numbers are not superior to each other in
terms of algorithm.

One-Hot Encoding is used where numbers are not hierarchical. These are just numbers that
have no superiority over others. For One-Hot Encoding, we use the following method (See
figure 5.19):

Figure 5. 19: Applying One-Hot Encoding

In this stage of preprocessing with Python, we divide our data into two sets, one to train our
designed model, entitled the training set, and the other to test the effectiveness of our model.
The division is generally 70/30. To do this, we enter "train_test_split" from the
"sklearn.model_selection" library.

from sklearn.model_selection import train_test_split

We will now create 4 sets to build our training and experimental collections:

X_train: Examples of training part
X_test: Examples of the test section

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

117

Y_train: Tutorials tags
Y_test: Test labels
The test_train_split function finds samples and labels along with the training-to-test ratio and
breaks it down into 4 variables (Figure 5.20)

Figure 5. 20: Splitting Dataset

Most machine learning algorithms use Euclidean distance for their calculations. For this
reason, if a few samples have a very high or very low value, the modeling accuracy decreases.
Data scaling is used to solve this problem. One of the most famous of these comparisons is
the Z conversion. The Z conversion is done using the "StandardScaler" class in the
sklearn.preprocessing library as shown in figure 5.21.

Figure 5. 21: Data Scaling

This was the last stage of data preprocessing. Now you can inject your data into machine
learning algorithms. For the UNSW-NB15 data set similar steps for the machine learning
process are done and in the next section the accomplished results from these two data sets
compare to each other to select the most appropriate classification algorithm to be
implemented in the data processing pipeline.

5.6.2 Comparison of the Classification Algorithms

As indicated earlier in this section, in this research, for the DDoS detection phase, we assessed
the effectiveness of several classification algorithms in order to identify the most appropriate
classifier to deploy using the Spark Mllib library (Figure 5.22). The mission of the detection

phase is to classify whether the incoming network traffic is normal or consider it an attack,
based on the features of the incoming traffic.

To evaluate the efficiency of the different Spark machine learning-based algorithms, we
compared various classic machine learning algorithms, such as Logistic Regression, Naïve
Bayes, K-Nearest Neighbor, Decision Tree, and Random Forest using two datasets i.e., NSL-
KDD and UNSW- NB15 as well-known datasets for Network Intrusion Detection Systems.

 118

Figure 5. 22: Training Algorithms

Table 5.9 indicates the classification report and result for the supervised algorithms we have
used in this research for the NSL-KDD data set. In this evaluation for simplifying, we use an
abbreviation for these classification machine learning algorithms as follows:

LR: Linear Regression, KNN: K-Nearest Neighbor, NB: Naïve Bayes, DT: Decision Tree, and RF:
Random Forest.

Table 5. 9: Accuracy Comparison Table (Using NSL-KDD data set)

The result presents Decision Tree and Random Forest gives the best accuracy which is more
than 98%, followed by the Logistic Regression algorithm which gives more than 89% accuracy.
This classification report depicts that the Naïve Bayes has the weakest performance, with a
score of 88% accuracy.

Although the two classifiers delivered more than 98% accuracy, the table indicates that
Random Forest has the best result and Decision Tree comes in second.

The results for the UNSW-NB15 dataset are shown in table 5.10.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

119

Table 5. 10: Comparison Table (Using UNSW-NB15 data set)

Obviously, the Random Forest algorithm is significantly better than the other classification
algorithms followed by the Decision Tree, K-Nearest Neighbor, Logistic Regression, and Naïve
Bayes algorithms with an accuracy of 99%, 98%, 96%, 96%, and 88% respectively.

Additionally, an interesting observation in the above classification report is that the Naïve
Bayes algorithm achieved high scores (>88%) in accuracy; however, the algorithm also
produced low scores (>64%) in recall and precision (>78%) which indicates that here again,

using UNSW-NB15 data set the Naïve Bayes has the weakest performance compared to the
other classification algorithms we use in this research (See table 5.10).

Furthermore, to give a better view of the comparison between different machine learning
algorithms with two different data sets, the following figures have been used. Figure 5.23
indicates that the large majority of machine learning models achieved 95% or better scores
through each different evaluation metric, including accuracy, precision, and recall.

Figure 5. 23: Comparison of different ML Algorithms using the NSL-KDD dataset.

The only algorithm that produced a noticeably low score in all three evaluation metrics is the
Naïve Bayes algorithm. The accuracy of the Naïve Bayes algorithm depicts a score below the
88% threshold in both data sets we have used in this research (Figure 5.24).

 120

Figure 5. 24: Comparison of different ML Algorithms using the UNSW-NB15 dataset.

For better overall observation, figure 5.25 presents the results of the evaluation of these
classification algorithms using both data sets in one graph for each one of the three considered
metrics.

Figure 5. 25: Comparison of NSL-KDD and UNSW-NB15 datasets results for different ML Algorithms.

Based on the evaluation results, we concluded that the Random Forest classifier offers the
best performance in terms of accuracy, precision, and recall compared to the other
classification algorithms. Therefore, in this research, we choose this algorithm to be
implemented in the data processing phase of our proposed data pipeline using Apache Spark
for attack detection.

5.7 Tools Used for Proposed Framework (BFDD-S)

In this research, several tools and applications are used to provide an appropriate platform
for implementing our proposed framework. we divide the tools into three categories, General
Tools, big data Tools, and the SDN controller. Therefore, in this section, we introduce all the
tools that we use in this research.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

121

5.7.1 General Tools

To evaluate the performance of our proposed framework, it is required to provide a platform
to emulate an SDN network using SDN-based network equipment, then perform a DDoS attack
against the SDN controller, and monitor the critical system metrics. To achieve this objective
we use the following tools:

5.7.1.1 Mininet

Mininet is a network emulator which means that a virtual network comprising hosts, switches,
controllers, and connections can be built using Mininet. which creates a network of virtual
hosts, switches, controllers, and links. It is a software environment that most research teams,
students, and network researchers use to model, emulate, analyze, and evaluate the
performance of SDN (software-based networks) networks and their associated protocols.
Using the Mininet emulator, an SDN network can be modeled before the actual
implementation, and various network parameters can be changed during the emulation, and
the results can be evaluated and compared. The various modules in this simulator were
developed to support different types of controllers and switches. In addition, complex custom
scenarios can also be created and experimented with using the Mininet extensible API library
in the Python programming language [169].

Standard Linux networking software is used by Mininet hosts, and OpenFlow is supported on
its switches for high flexibility in traditional and SDN routing. For supporting all the research
that requires to have a comprehensive tentative network on the PC or laptop, Mininet can
provide a learning, testing, developing, debugging, and prototyping environment. Among the
above-mentioned major features of Mininet, Other capabilities which Mininet has can be
defined as follows [169]:

• For emerging OpenFlow applications, it offers a simple and reasonable network test bed.

• It provides a possibility that various developers can work simultaneously and individually on
an identical topology.

• Without any requirement to utilize a real physical network, a complex network topology can
be defined and tested using Mininet.

• For launching tests and debugging throughout the network, it contains a CLI that
maintenances topology and OpenFlow. Figure 5.26 presents a sample CLI command. This
command will create a binary tree SDN network topology of a specified depth with 9 hosts,
connected to 4 switches (depth=2 and fanout -3) and a local SDN controller. Switches will

interact with the controller using vSwitch and OpenFlow version 1.3. The result of the
executed command will be the following topology:

 122

Figure 5. 26: Sample Mininet CLI command.

5.7.1.2 Open vSwtich

Open vSwitch is open-source software designed to perform as a virtual switch in a virtual
machine. It is responsible for switching network traffic between virtual machines located on
the same physical computer, as well as communication between virtual machines and the
physical network. Moreover, it is compatible with various protocols, for instance, OpenFlow
and tunneling protocols such as IPsec or GRE [170].

Similar to SDN-based physical switches in the SDN environment, Open vSwitch can operate
under the supervision of an SDN controller; in this case, it performs as a learning-based
Ethernet switch. It has the capability to be configured through commands conducted by the
command line console (CLI). As figure 5.27 illustrates an OVS switch consists of three modules,
two modules operate in user space and one in the kernel space [171]:

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

123

Figure 5. 27: Open vSwitch Architecture [172].

- Ovsdb-server: This module operates in user space, and it is the location where switch
configuration is stored. It utilizes the OVSDB protocol for communicating with the ovs-
vswtichd and with a controller.

- Ovs-vswitchd: this module operates in user space, and it is responsible to receive packets
from a new flow in the network and deciding in what way they should be treated. If there is a
controller, it will communicate with it using the OpenFlow protocol.

- Openvswitch_mod.ko: this module operates in the kernel space; its role is to route all the
packets belonging to a flow that has already matched in the flow table of the switch. In other
words, when a packet arrives at the switch, it goes straight to the kernel. If there is no match
for that flow in the flow table, it is routed to Ovs-vswitchd, which is in charge of routing it and
creating a new entry in the flow table. These two modules communicate with each other
through the NETLINK protocol. The benefit of designing and developing such a module is that
the operation runs in the kernel at a much higher speed.

5.7.1.3 Hping3

The hping3 is a command-line tool for producing and analyzing network packets. hping3 is
developed and supported by antirez@invece.org and is licensed under GPL version 2.

It has the power to create and send custom TCP/IP packets and present the received replies
from the target system. In addition, the Hping3 tool can produce custom network packages
that can be used for TCP / IP security testing, such as port scanning, firewall rules assessment,

 124

and network performance analysis. This tool has the ability to simply send echo request data
in various formats with ICMP protocol and it also supports other prevalent protocols such as
TCP, UDP, and even raw IP protocol. This package can simply be used in network scanning

processes to achieve more accurate information about the target system [173].

5.7.1.4 Htop

Htop is a command-line utility that is an enhanced version of the top command. It displays
critical system metrics such as running tasks, PID, uptime, load average, memory utilization,
CPU consumption, and many other vital statistics information. What makes this tool stand out
from its other predecessor tools is the capability to demonstrate system metrics in a more
organized way. This allows users to intuitively determine the system metrics they need with
simplicity compared to the other utility tool [174].

5.7.1.5 Programming Libraries

Scikit-Learn12 (also known as Sklearn), is a free Python library for implementing machine
learning algorithms. This library contains the main ML algorithms, as well as all required tools
for pre-and post-processing. These tools include utilities for different purposes, such as
dividing datasets and for extracting and analyzing data resulting from a test. Scikit-learn is
selected over other similar libraries such as Java WEKA for its versatility and comprehensive
accessible documentation.

Numpy13 is the main library for mathematical calculations in the Python language. This library
provides facilities for defining and managing arrays for computing projects. Before Numpy, a
similar version called Numeric was created by Jim Hugunin with the participation of several
other developers. In 2005, Travis Oliphant created Numpy by keeping Numarray's features (As
a more flexible alternative to Numeric) in Numeric and making extensive changes.

Pandas14 is one of the open libraries created to work with data with a relational (rational) or
labeled structure. This library provides a variety of data structures along with the possibility
of applying numerical operations on these data and has the capability to work with time series.
Pandas is based on the NumPy library, and many NumPy structures are used and extended in
this library.

The advantages of this library include the following:

-High speed and efficiency in working with data.
-Ability to load data from different source files.
-Transform data flexibly.
-Providing the possibility to work with time series.
-The possibility of grouping data according to practical purposes.

12 https://scikit-learn.org/stable/
13 https://numpy.org/
14 https://pandas.pydata.org/

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

125

Matplotlib15 is a free Python library developed for data plotting that we use to plot and
visualize the evaluation results.

5.7.2 Big Data Analytics Tools
In the realm of cybersecurity in general, and network security specifically, it is crucial to
transform the data into useful information for the security expert or application. For this
purpose, big data analytic tools can provide valuable facilities for processing, analyzing, and
storing all the collected data. In this research, we also utilize some big data tools to provide a
data processing pipeline to detect malicious traffic. In this section we describe these tools:

5.7.2.1 Apache Spark

Spark [175] is one of the quickest-growing and most widely accepted big data tools today. It
represents a great opportunity for organizations to gain the benefits of large-scale data
analytics. Apache Spark has lately emerged to participate in large-scale data analysis. This fast-
processing engine was produced in 2009 at Berkeley University. And then, as its name
suggests, it has been developed within the framework of the Apache project, which
guarantees its Open-Source license. Apache Spark is designed and developed as a distributed
processing engine that is responsible for orchestrating, distributing, and monitoring
applications that consist of multiple data processing tasks by several worker machines, which
form a cluster. Spark’s architecture has a modular design that allows you to adopt different
configurations according to need.

In addition to the flexibility provided to Spark by its programming design, the master-slave
computing model provides it with scalability and fault tolerance, Apache Spark is a framework
that allows us to process distributed data quickly and efficiently, capable of orchestrating,
distributing, and monitoring applications by reading data from different storage systems on
several clustered machines. Although Spark reads data from different storage solutions, it
does not store data in itself but is focused on processing very quickly and efficiently, since all
this processing is done in memory, which drives this technology to be one of the best solutions
for real-time data processing (Streaming). Spark is responsible for the management and
coordination of tasks with data on a cluster of computers. This cluster of computers is
orchestrated by a cluster manager, such as Spark Standalone Cluster Manager, Apache YARN,
or Apache MESOS. The applications (Spark Applications) are sent to the cluster managers,
providing the required resources for our application so that we can complete the work that
we have defined.

Spark is flexible, and it offers a series of APIs which allow users with different backgrounds to
use it. It includes Python, Java, Scala, SQL, and R APIs, with built-in functions and in general a
realistically good performance using all of them. It also includes different libraries to handle
structured data (Spark SQL), streaming capabilities data (Spark Streaming), machine learning
(MLlib), and computation on graphs (GraphX) [176]. Figure 5.28 displays the architecture of
the Spark.

15 “Matplotlib”. [Online]. Available: https://matplotlib.org/ [Last Access: April 2022].

 126

Figure 5. 28: The Ecosystem of the Apache Spark [177].

Apache Spark can be configured and run in four different cluster modes:

1- Standalone Cluster
2- Apache Mesos
3- Hadoop YARN
4- Kubernetes

For this research, the standalone cluster has been chosen to implement and configure, since
it is a simple cluster manager and an easy to setup cluster. The Architecture of the standalone
cluster is based on a master-slave design. To run the Spark application, this architecture
contains master and slave nodes. The master node performs as a resource supervisor for the
cluster and receives the applications and arranges resources to execute those applications.
On the other hand, the worker(s) node is responsible for initiation executors for job execution.

Apache Spark makes it possible to create large-scale machine learning methods that need
model parallelism or fundamental data parallelism [178]. Spark Core, which is developed
specifically for efficient iterative calculations, is capable of handling these iterative algorithms
in an efficient approach. Common activities including model training, model assessment,
feature transformation, feature extraction, and tuning are often needed when employing data
pipelines and machine learning algorithms for practical applications. To achieve these
requirements, Spark's MLlib was developed to function as a distributed library for deploying
machine learning with the intention of making the development and implementation of such
pipelines and algorithms more straightforward. The two primary packages of Spark's MLlib are
the spark.mlib and spark.ml.32 (Figure 5.29). Spark.ml is based on DataFrames, while
spark.mllib is built on RDDs.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

127

Figure 5. 29: Two main packages of Spark’s MLlib library [179].

Each package provides several standard machine learning responsibilities such as model
training, transformations, model assessment, featurization, and optimization. While spark.
mllib contains packages for statistics, linear algebra, and other fundamental machine learning
tools, spark.ml offers the pipelines API for creating, troubleshooting, and fine-tuning machine
learning pipelines.

5.7.2.2 Apache Spark Streaming

Apache Spark Streaming [180] is one of the Spark ecosystem components used for this project.
It is an extension of the Spark core designed for processing data streams in real time. This data
stream can come from different sources like Apache Kafka, Apache Flume, RabbitMQ, Twitter,
or Facebook and receive data collected from sensors or devices connected via TCP sockets.
Spark Streaming extends the batch processing concept of Apache Spark to stream processing,
which decomposes the stream into a series of continuous micro-batches, which can then be
manipulated using the Apache Spark API. Thus, batch and stream operations may operate on
the same framework and use the same code (in most cases), thereby reducing the overhead
for developers and operators. By using Spark streaming for streaming data processing, data
can be obtained from many sources, such as Kafka, Flume, Kinesis, or TCP sockets, and then
complex algorithms developed by advanced functions (such as Hadoop MapReduce) can be
used.

The processed data can be sent to the file system, the database, and the dashboard in real-
time. Also, the Spark-provided machine learning (Using Spark MLlib Library) and graphics
processing algorithms (Using Spark Graph Library) can be applied to the data streams (Figure
5.30) which is an extension of the source [181]). The criticism of the Spark Streaming approach
is that in scenarios that require low-latency responses to incoming data, micro-batch
processing may not be comparable to the performance of other streaming media-supporting
frameworks (such as Apache Storm, Apache Flink, and Apache Apex). These frameworks all
use pure streaming methods instead of micro-batch processing.

 128

Figure 5. 30: Integration of Apache Streaming with any other Spark components [181].

In this research, Spark Streaming has been used because it is capable of using different formats
such as CSV, TEXT, and JSON for reading and writing from/to Kafka topic.

5.7.2.3 Apache Kafka

Apache Kafka [182] is a fault-tolerant, horizontally scalable, distributed data transmission
system. It allows users to transfer data in real-time using the publish/subscribe messaging
technique. Kafka was created by LinkedIn and currently is an open-source project supported
by Confluent, a company that is managed by Apache. Its principal features are as follows:
Kafka is an intermediary-based solution that functions by controlling data streams as records
in a server cluster. It is possible to store the records (message streams) of numerous server
instances in a topic across several data centers using Kafka servers. The records and messages
that are kept in a topic are organized into a sequence of tuples. Tuples are immutable Python
objects that include a key, a value, and a timestamp.

Kafka provides a Publish-subscribe-based messaging system for the data streams, performing
similarly to other message queuing technologies but with excessive performance and gaining
very low latency in the transmission of the messages. For scaling up the processing, it offers
to users the capability of distributing the data processing into various consumer instances. In
addition, it allows for storing streams and replicating them to provide fault tolerance. Kafka
permits producers to anticipate recognition so that a deed is not complete unless it is
completely reproduced and its persistence is assured. Figure 5.31 displays briefly the
architecture of Apache Kafka.

One of the open-source messaging systems with the fastest market growth is Apache Kafka.
This is mostly because the architecture design pattern offers distributed systems an effective
logging method. Apache Kafka is designed for real-time log streaming, which is ideal for
applications with the following requirements [183]:

• Reliable communication between various components.
• Flexible messaging workloads, which may be adapted to changing application needs.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

129

• Streaming data processing in real-time.
• Data/message replay is natively supported.

Figure 5. 31: Kafka Architecture [Is an extension of resources [It is an extension of the sources [184] and [185]]

5.7.2.4 Zookeeper

One of the intermediate affiliations of Apache Kafka is Apache Zookeeper [186], which is a
service for distributed synchronization. Zookeeper is a service that performs as a coordinating
interface between Kafka brokers and consumers. Kafka stores Metadata such as information
about topics, brokers and consumers and offsets, etc. in zookeeper. In addition, A huge
number of hosts may be efficiently managed with the help of Zookeeper, a distributed
coordination service. With its straightforward design, Zookeeper has been able to simplify the
complicated task of administering and coordinating a service in a distributed context. It should
be noted that Zookeeper gives programmers the ability to concentrate on the logical aspects
of their program without being concerned about the distributed nature of the program.
Zookeeper is used to manage and coordinate Kafka brokers. The Zookeeper service is used to
provide information to both customers and producers as well as the existence of any new
broker in the Kafka system or the failure of the Kafka system. In this way, producers and
consumers decide to use another broker to coordinate their work.

5.7.2.5 Elasticsearch

Elasticsearch [187] It is a full-text search and analysis engine that is extremely scalable and
distributed, and it gives you the ability to store, search, and analyze enormous volumes of
data in close to real-time. Through a robust aggregation mechanism and data storage, it may
be utilized as an analytical framework even if it is mostly employed as a search engine.
Elasticsearch has a comprehensive JSON-based query DSL, demonstrating how easy it is for
Lucene to read and write queries. The JSON data storage format is used by most of the NoSQL
data stores due to its ability to be very condensed, versatile, and simple to comprehend. From
another point of view, this is a document database setting in which semi-structured and
structured data can be efficiently retrieved, stored, and documented. All data in the software

 130

settings are stored in JSON file format. Using the JSON format, Elastic Search has its domain-
oriented query language. In addition, this setting allows for nesting level queries as needed.
REST API is used to expose the function of elastic search settings, Elasticsearch provides a
stable environment for storing large amounts of data and content. Most importantly, the
technology allows extremely fast data retrieval and storage procedures.

5.8 Implementing the Big Data Pipeline

As mentioned earlier, in the BFDD-S framework the process of the attack detection will be
done out of the controller. To provide a scalable, fast, and real-time detection phase, the big
data pipeline has been implemented. The big data pipeline consists of Apache Kafka for
message queuing, and Apache Spark for real-time data streaming and machine learning
processing, in this section, first these tools will be introduced briefly and then explain how the
pipeline has been implemented.

5.8.1 Pre-Requisite Configuration

In this research, the Linux Ubuntu Server is used as an operating system of the Server.
Therefore, before installing all these tools, it is necessary to make sure that Java 8 is installed
on the server, to install Java 8 the following commands should be followed:

sudo apt-get update

sudo apt install openjdk-8-jdk openjdk-8-jre

After the installation of Java is completed, the JAVA_HOME and JRE_HOME environment vari

ables should be set. Multiple java applications use these variables to find the JAVA libraries d

uring the runtime

cat >> /etc/environment <<EOL

JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

JRE_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre

EOL

5.8.2 Implementation of Big Data Infrastructure

In this section, we describe deeply the implementation process of our intended big data
infrastructure. As stated in the previous section, we utilize three big data tools for data
pipeline infrastructure, Apache Kafka for message queuing, Apache Spark for data processing,
and Elasticsearch for data storing. Therefore, in the following, we explain the deployment of
each one of these tools in our infrastructure.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

131

5.8.2.1 Apache Spark Implementation in Standalone Mode

For starting the Spark process and launching a standalone cluster manually, after downloading
and installing the Apache Spark, first, a standalone server (Master) should be run by executing
the following command:

$SPARK_HOME/sbin/start-master.sh

After performing the above-mentioned command, figure 5.32 presents the result.

Figure 5. 32: Running Spark in Standalone Server Mode.

After successfully running the command, the result can be seen in the Spark web UI at the
address: http://localhost:8080 (Figure 5.33)

Figure 5. 33: Spark Web GUI.

http://localhost:8080/

 132

After completing the previous step, the worker process should be launched. The executors are
launched by the worker process for job execution. These executors are where the real data
processing take place. One or more workers can be started and connected to the master using
the following command:

$SPARK_HOME/sbin/start-slave.sh spark://[master Spark server name]:7077

Figure 5.34 shows the result after executing the above command.

Figure 5. 34: Launching Spark Worker

As figure 5.35 presents, the result can be seen in the master web console:

Figure 5. 35: Spark Standalone Mode Information

Apache Spark offers a functionality to interactively develop Scala programs which is called
Spark Shell. This functionality is highly useful for both learning the Spark API and interactively
analyzing data.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

133

Run the following command to start spark-shell in local mode:

$SPARK_HOME:/bin/spark-shell spark://[Spark server name]:7077

The figure 5.36 shows Spark shell environment.

Figure 5. 36: Spark Shell

5.8.2.2 Apache Kafka Implementation

As mentioned earlier, Apache Kafka is a publish-subscribe messaging system. Therefore, for
publishing messages it requires the two following entities:
-The producer for facilitating the publication of data and records on topics, and
-The consumer for reading data and messages from the topic.

The steps of the pub-sub messaging workflow are as follows:

1- Producers send messages to topics at regular intervals.
2- Kafka brokers store all the messages into the configured unit for a specific topic and

share the messages evenly between the partitions.
3- Consumer shares personal topics. When a topic is shared by a Consumer, Kafka

prepares the current topic offset for the Consumer, and the offset is also stored in the
zookeeper.

4- Consumer requests new messages from Kafka at regular intervals.
5- When Kafka receives messages from the producer, it sends these messages to the

consumer.
6- The consumer receives and processes messages.
7- When the message is processed, the consumer sends a confirmation to the broker.
8- Kafka modifies the offset value and updates zookeeper after receiving confirmation.

Hence the offsets are stored in the zookeeper, the consumer can read the next
messages correctly and the above steps are repeated until the consumer stops the
request.

 134

Consumer has options that can go back in time and the desired topic goes back and messages
can be read.

After successfully downloading and installing Apache Kafka, to make Kafka run, it is required
to update and set a few properties in the Kafka configuration file which is available at the
following address:

$KAFKA_HOME/config/server.properties

The following two lines must be added to the Kafka configuration file:

listeners=PLAINTEXT://[Name of the Server]:9092
advertised.listeners=PLAINTEXT://[Name of the Server]:9092
delete.topic.enable=true

Listeners are the addresses to which the socket server listens, and advertised.listener is the
hostname and port number of the broker which will broadcast to producers and consumers.
After editing the Kafka configuration file, and before launching the Kafka application, first, the
Zookeeper tool must be run.

In this step, the following command is used to launch the Zookeeper application (Figure 5.37):

$KAFKA_HOME/bin/zookeeper-server-start.sh config/zookeeper.properties

Figure 5. 37: Running Zookeeper

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

135

After running the zookeeper successfully, the Kafka server (As the Kafka Broker) can be
launched with the following command:

$KAFKA_HOME/bin/kafka-server-start.sh config/server.properties

Figure 5.38 presents the result of executing the above command.

Figure 5. 38: Running Kafka Server (Broker)

After completing the installation and running the Zookeeper and Kafka, first, a new Topic
should be defined to store the events as shown in the following command:

 $KAFKA_HOME/bin/kafka-topics.sh --create –zookeeper localhost: 2181 --replication-factor 1 --partitions 1 –
-topic EXPTINFO

In this command, the replication-factor option specifies the number of copies of data that will
be generated. Because only one single instance is running in this research, this value is set to
1.

Additionally, in the above command, the partition option indicates the number of brokers to
which the data are split. In this experiment, the single broker is used therefore the number
in the partition option is set to 1(Figure 5.39).

 136

Figure 5. 39: Create a Topic in Kafka

After executing the above command, the created Topic can be checked by running the
following command (See figure 5.40):

$KAFKA_HOME/bin/kafka-topics.sh –list –zookeeper localhost:2181

Figure 5. 40: Kafka Topic Information

In the old version of Kafka, it was necessary for the Kafka consumer to communicate directly
with Zookeeper, but in the new version of Kafka, the Zookeeper is deprecated and replaced
with the bootstrap-server to provide the connectivity between the Kafka consumer and Kafka
broker. As can be seen in figure 5.41.

Kafka uses the command line to define consumers for reading data from the Kafka cluster as
shown in the below command:

$KAFKA_HOME/bin/kafka-console-consumer.sh –zookeeper localhost: 2181 –-topic EXPTINFO

Figure 5. 41: Define Kafka Consumer

5.8.2.3 Elasticsearch Implementation

After completing the installation and configuring the Apache Kafka and Apache Spark, the
Elasticsearch for storing data should be installed and run.

After Installing, for running Elasticsearch simply the following command should be executed:

$ELASTICSEARCH_HOME/bin/elasticsearch

The result of running above command is shown in figure 5.42.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

137

Figure 5. 42: Running Elasticsearch

The Elasticsearch can be configured through its main configuration file called elasticsearch.yml
which is stored in the /etc/elasticsearch directory. It should be considered that the
Elasticsearch configuration file is in YAML format which means that the indentation should be
maintained. By default, Elasticsearch listens for the network traffic on port 9200. The
Elasticsearch uses RESTful API for communication which means that it responds to the typical
CRUD commands (CRUD stands for Create, Read, Update, and Delete). Therefore, for checking
the successful running Elasticsearch on port 9200, the curl command and GET request can be
used:

 $curl -X GET ‘http://localhost:9200’

The following figure 5.43 displays the result.

Figure 5. 43: Elasticsearch Information

 138

It should be noticed that Elasticsearch is a distributed and very simple-to-scale NoSQL
database, since it is built on top of the Lucene engine and uses the HTTP interface. Being a
NoSQL database means that it is not necessary to have any structured data, and it does not
employ any standard structured query language while searching for information.

For configuring Elasticsearch, first, an index should be defined, the index is a group of
documents that have comparable features. In other words, indexes are groups of associated
JSON files that can be considered as the base unit of storage in Elasticsearch. Figure 5.43
indicates the index file which is created in this research for storing the network traffic
information received, aggregated, transformed, and sent from the SDN controller to the data
pipeline for processing. As mentioned earlier, in the “Machine Learning” section of this
chapter, and “Data set Selection” sub-section, in this framework prototype, for DDoS attack
detection, we consider four traffic features, Source Address, Destination Address, Destination
Port, and Sum of the Flows.

Figure 5. 44: Create Index in Elasticsearch for Storing Data

Therefore, for this research, the index called “trafficinfo” is created to store the network traffic
received from Apache Kafka for later processing by Apache Spark-based machine learning. To
ensure that the index is properly created in Elasticsearch, the following command can be used
(Figure 5.45 shows the result).

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

139

Figure 5. 45: Information of the Created Index in Elasticsearch

In the following section, how to implement the data pipeline is explained, when all necessary
tools and applications are properly installed and configured,

5.8.3 Implementing Data Pipeline

For implementing the data pipeline two Python files are created, one for providing the
connection between Apache Kafka, and Apache Spark and the second one for implementing
a machine learning model into Apache Spark using the Mllib library. In the initial phase, the
essential modules for different purposes such as configuring Spark, defining Streaming, and
enabling Kafka to Spark Streaming must be imported. In addition, it is required to import the
JSON module for processing the incoming data and also the Elasticsearch module (Figure
5.46).

Figure 5. 46: Import Spark Essential Libraries

Then the Spark Context must be created. Figure 5.47 illustrates the necessary steps to
accomplish this object. The Spark Context is the primary point for accessing Spark capabilities.
Creating RDDs, accumulators, and broadcast variables on a Spark cluster is accomplished via
the usage of the Spark Context object, which establishes a link to a Spark cluster [188].

 140

Figure 5. 47: Create Spark Context

The setMaster (‘local [*]’) allows Spark to be run locally with as many worker threads as logical
cores available on the computer.

It is not essential to use the setLogLevel function, but it is beneficial for reducing the amount
of noise on stdout (Standard Output) that would otherwise obscure the real outputs from the
task.

Then an instance of the Streaming Context object (available as variable sc) must be
constructed, which acts as a doorway for the streaming to begin. The Spark Streaming divides
the incoming data into batches and creates mini-batch RDDs (RDD is Spark's fundamental
abstraction), and the output is likewise produced in batches. Therefore, the batch interval
must be specified when a Streaming Context object is created. This guarantees that the
streaming data is separated into batches depending on the time slice that is being used.

n_secs = 10

scc = StreamingContext (sc, n_secs)

 By using a batch interval, Spark is informed how long it should wait before fetching the data.
To achieve optimal processing performance, it is usually suggested to choose a low batch size
interval value. In this framework, the batch interval is set to 10 seconds. The figure 5.48
clarifies the process of dividing the live input data into batches and then processing by the
Spark engine.

Figure 5. 48: Process of the live input data in the Spark streaming [189].

To provide a connection to the Kafka cluster, the streaming context is used. In this step, the
input stream is created to pull messages from the Kafka Brokers. Some parameters should be
specified for creating the input stream:

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

141

- Zookeeper’s hostname and port number that connects from this stream.
- Name of the Topic (here is EXPTINFO) and the number of partitions this stream

consumes in parallel (Figure 5.49).

Figure 5. 49: Generates an input stream that fetches messages from the Kafka broker.

Using the above-mentioned steps, the connection between Kafka broker and Spark streaming
will be provided. Then, to complete the data pipeline two functions are written, one for
sending and storing the network traffic from Kafka to Elasticsearch (called StoringtoES) and
the other one for retrieving the stored information from Elasticsearch (called FetchfromES)
into Apache Spark for the data processing phase.

5.8.4 Implementing Machine Learning in Apache Spark

Regularly, for implementing and creating a machine learning model in Python, as an input for
training, raw DataFrame is used, particularly when working with the Scikit-learn library but in
a distributed environment the situation might be more challenging because in this condition
for preparing the training data the Assemblers should be used. Therefore, in this step, a simple
Spark DataFrame should be established. DataFrame is a Distributed set of data organized in
registered columns. In fact, its concept can be considered as corresponding to a table in a
relational database. DataFrames can be created from an extensive range of sources such as
external databases, structured data files, hive tables, or existing RDDs.

Spark is based on the concept of a fault-tolerant collection of components that may be
processed in parallel and is known as a resilient distributed dataset (RDD) [190].

For creating RDDs in Spark, there are two methods, one method is to use an external data
source such as HDFS, File system, etc., and load it into the system and the other method which
is used in this research is to consider an existing group of data and perform the transformation
operation by utilizing the parallelize () method of SparkContext.

The first item that must be constructed in order to utilize the parallelize () function is a
SparkContext object; as cited earlier in this section then, the following commands, as shown
in figure 5.50, can be used to create a data frame.

Figure 5. 50: Creating RDD in Spark

 142

In the previous section, the process of evaluating different machine learning methods for
detecting DDoS attacks in the network using two popular data sets was described in detail and
the Random Forest algorithm has been chosen for implementation in the data processing
phase of the data pipeline of the BFDD-S framework using Apache Spark. In order to
implement the machine learning algorithm into the framework using Apache Spark MLlib
library, the following methods are utilized for the pre-processing phase in Spark approaches:

1) VectorAssembler

2) Scaling and normalizing

Vectors are utilized in algorithms and processes in the field of machine learning to describe
the objective variable while training an algorithm. Therefore, by using the Spark ML library,
we can take advantage of using the VectorAssembler module, which provides the possibility
for transforming numerical features into a single vector that can be later passed to the
machine learning models (Figure 5.51 shows the relevant commands).

Figure 5. 51: Transforming Numerical Features into Single Vector

As another step of pre-processing of the implementation of the machine learning model to
the BFDD framework, we perform the scaling and normalization task. This task is not
mandatory but, extremely suggested that before employing the machine learning model for
preventing the possibility of an algorithm being unresponsive to particular features and data
leakage, it is an appropriate approach to scale and normalize the features [191].

As Figure 5.52 shows for scaling and normalization of the features task in Spark, there is a class
called “StandardScaler” in the ML library [192].

Figure 5. 52: Scaling Features in Spark

and finally, for the machine learning model, after loading the appropriate module from the Ml
library with the commands displayed in figure 5.53.

Figure 5. 53: Import Random Forest Classifier in Spark

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

143

the RandomForestClassifier is used to define the machine learning model (See figure 5.54).

Figure 5. 54: Define Random Forest Model in Spark

As the figure shows, the Random Forest Classifier method is comprised of some parameters.
This algorithm requires defining the feature column, created by the VectorAssembler module
as mentioned earlier in this section, as well as the dataset's label column, and the number of
trees is which in this model defined as 30 without tuning the hyperparameters.

In this research, the major concern is DDoS attack detection, and accuracy should be
considered as a vital criterion for any intrusion detection approach. Therefore, for creating a
Random Forest model with high accuracy, the number of trees plays a significant role. In
Addition, the number of trees in this model affects the memory utilization and processing
time. Some research [193] claimed that if the number of trees has been increased without any
logic behind it, the anomaly detection approach may suffer serious consequences. In addition,
they demonstrated that for achieving the optimal value considering both processing time and
accuracy, the suitable value for trees is around 30 trees.

The next step in this approach is to create and conduct the proper action request to the
controller based on the machine learning process for all incoming traffic. As stated in the
earlier section, the northbound interface provides communication between the controller and
the application layer. There are several different methods that can be used as the Northbound
interface, in this framework, the REST API is considered for providing the communication
between the big data pipeline and the controller.

When Spark Streaming context is run, then load the stored traffic from the Elasticsearch using
FetchfromES () function, and perform data processing phase, if Spark-based machine learning
detects any malicious traffic, the attacker device is recognized by the traffic sender’s IP
address (SrcIPAddr), then a REST API request is created and send to the controller with the IP
address of the attacker. To achieve this objective, first, we have to create a REST API channel
to the controller in order to send a specific request.

API is a specific service through the web that utilizes the standard HTTP protocols to grant
access to the particular data for other applications. There are multiple architecture styles that
can be used in designing API such as FALCORE, gRPC, GraphQL, and REST. But probably, the
most prominent architectural style of APIs for web services is REST which is the acronym for
REpresentational State Transfer. It makes client-server communication easy by providing a set
of guidelines. In this particular use case, the REST architecture is implemented to the BFDD-S
framework to propose Northbound API to the controller.

the general processes for designing and performing a RET API communication are as follows:

 144

1- A client or application to send a request and some data to a specific address (URL). The
data will send through the request method enclosed in the message body in JSON
format. The popular request methods are GET, POST, and PUT.

JSON (JavaScript Object Notation) is a standard format for sending and receiving data
using REST APIs architecture.

2- The sever located in the particular address (URL) received the data and will perform
some operations on them and reply response to the client or application. The response
information should also be always in JSON format.

3- The client or application will decide about the received response. The figure 7.48
concisely explains the REST API communication architecture.

Figure 5. 55: REST API Architecture

For implementing the above process into the framework in order to provide a REST API
channel as a northbound interface between the controller and data processing pipeline, first,
a block of data (called AttackDevInfo) in JSON format is created with all necessary information
such as network device ID (deviceID), type of the traffic (ETH_TYPE), attacker IP address and
subnet mask, etc. is created which can be seen in the figure 5.56.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

145

Figure 5. 56: JSON File for Creating REST API Request

Then, a REST API POST method is used to create a request object and send a combination of
the specific data such as the REST server address (here, the ONOS controller URL), the data
(AttackDevInfo), and the authentication information (here, ONOS admin username and
password) as shown in the below figure 5.57.

Figure 5. 57: Sending Request to the Controller via REST API POST Method

After receiving and processing the request, the REST API server will provide a response. This
response contains an HTTP status code. This code represents the result of the request, and
the sender application can check and make a decision based on this received code. The HTTP
code has a range between 1xx to 5xx.

If the response code is 200 (which means OK) or 204 (which means No Content), this indicates
the successful conclusion of the sent request.

5.9 Chapter Summary

The major goal of this chapter is to find solutions to a few research questions. In this chapter,
a robust and resilient intrusion detection framework (BDDF-S) has been presented that can
offer a scalable and reliable DDoS attack detection and mitigation system for the SDN
environment with a fast, novel, and real-time detection technique. For achieving this purpose,
an effective method appropriate to the architecture and characteristics of the SDN network
has been proposed. The BDDF-S framework is a heterogeneous system in which the detection
phase is done out of the controller and gathering information and mitigation are done by the
SDN controller.

 146

In designing the BFDD-S prototype, we utilize a combination of big data tools and machine
learning together with taking advantage of the developed SDN controller. The proposed
framework consists of three modules, one module for gathering and formatting statistical
information, the second module for detecting attacks, and the third module is the machine
learning process.

For classifying the network traffic to determine malicious flows more accurately, the third
module is defined and implemented to utilize the machine learning algorithm classifier
capability offered by Apache Spark MLlib library and implement the Random Forest algorithm
into the data processing module based on the results of our evaluation on different machine
learning algorithms. The outcome of this part would be an answer to research question
number two, which is:

- Which machine learning classifier algorithm is appropriate for detecting DDoS
attacks?

The attack detection module is located in a server and uses data pipeline infrastructure and
machine learning for detecting DDoS attacks. The prevention task will be done by the
controller (We used ONOS as a controller for this experience). In this framework for creating
data pipeline infrastructure, we use the following big data analytic tools, Kafka for message
queuing, Apache Spark for data processing, and Elasticsearch for storing data.

By creating a data processing pipeline with these tools with the following features such as
short response time, high efficiency and error tolerance, high scalability, and ability to process
fast streams of events of Kafka together with Real-Time Stream Processing, Fault Tolerance,
scalability, and the lightning-fast analytic engine of Apache Spark and horizontally scalability,
multi-tenancy, and speed of Elasticsearch. The conclusion of this part would be an explanation
for research question number three:

- How to implement a data pipeline to detect malicious network traffic in the
network?

In addition, for information gathering, aggregating the flows, and converting them to an
appropriate format we developed an API for the ONOS core controller using Java
programming language. The result of this part which is developed an API called Exporter would
be an explanation for research question number four which is:

- How can a detection module be integrated into the SDN controller for the detection
and prevention of a DDoS attack in the SDN environment?

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

147

Chapter 6

6 Experimental Setup and Performance Evaluation

In this chapter, we explain the details of the hardware and software that we use for setting up
and preparing the experimental test bed. Since our preliminary purpose when designing the
BFDD-S framework was to offer a robust, resilient, and fast DDoS attack detection in the SDN
network, for evaluating the performance of the framework, we generated normal (ICMP
packet) and anomaly traffic (TCP SYN flood) simultaneously and walk through our approach,
the network traffic captures via the SDN controller and process through the data pipeline for
attack detection and outcomes are stored in the data store. Finally, the diagrams will be used
to demonstrate the performance evaluation of the framework. In this research, we consider
the CPU consumption, memory utilization, and estimated process time for legitimate traffic
as evaluation metrics.

6.1 Setup Experimental Testbed

To evaluate the performance of the BDDF-S framework, we implement a testbed which is
depicted in figure 6.1. We design a simple leaf-spine network architecture by using four Dell
Power Edge R430 servers and four bare metal EdgeCore AS 4610 switches that support
OpenFlow protocol and one HP2530-8G as a management switch. These servers and Switches
connect to each other using the Fiber cable. Table 6.1 portrays the hardware and software we
use in this research.

For emulating a SDN network architecture, we use this simple but real test bed as an underlay
network with the help of virtual Open vSwitches. The emulated SDN network runs within one
Linux machine server and is controlled by a remote ONOS SDN controller which is installed
and running on another physical server and implements the Big Data pipeline in another
physical machine. To emulate the SDN-based network, we use Mininet [169] to define the
topology on one server, consisting of one Web server and several hosts which are all
connected to an SDN-based switch.

 148

Figure 6. 1: Experimental Testbed Architecture.

Furthermore, one Linux server machine has been used to implement a Bigdata pipeline which
is controlled by a remote SDN controller (ONOS) running on another physical server machine,
to emulate the SDN based network, we use Mininet to define a network topology on one of
server machines, consisting of one web server and several hosts which are all connected to a

virtual SDN switch (OpenVswitch).

Table 6. 1: Hardware and Software used in the Testbed.

6.2 Deploying Network Topology

Mininet is capable of creating the network with arbitrary topology in a simple and fast way
using the Python API [194]. By using this API, a script consisting of various features of the
network can be defined, such as the topology, the type of network devices, the IP addresses
of the controller, the communication protocol, etc.

Therefore, for deploying and emulating our network topology for our experimental testbed
using Mininet, we use the Mininet Python API to develop a Python script.

In the script, after importing all essential libraries, the network devices such as hosts and
switches are specified using the following commands:

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

149

For adding a host to the topology, the following command is used:

host = self.addHost('h')

For adding a switch to the topology, the following command is used:

switch = self.addSwitch('s')

For defining a link between two devices, the following command is used:

self.addLink(device1,device2)

Once the topology of the network has been defined in the script, the type of switch used in
the network, the IP address of the SDN controller, and the protocols that must be activated in
each of the switches must be specified. In this research, our network topology is based on the
ONOS SDN controller and OVS switches, and for connecting the controller to the OVS switches
and establishing communication between them, the OpenFlow protocol has been activated
on all the switches. To achieve this task, the following commands have been used:

The following commands are used to specify the IP address of the SDN controller, the type of
switch, and the activation of the OpenFlow protocol in version 1.3:

net = Mininet (
 topo=NetTopo(),
 controller=lambda name: RemoteController(name, ip=CONTROLLER_IP,
 port=CONTROLLER_PORT),
 switch=partial (OVSSwitch, protocols=’OpenFlow13’)
)

The following command performs network deployment:

net.start()

Before executing the script, the ONOS must be run as the SDN controller. To run the ONOS
controller, using the CLI command and in the ONOS_ROOT folder, the following command
must be executed:

bazel run onos-local -- clean debug

After successfully running launching the ONOS, for connecting the OVS switches defined in
mininet with ONOS, the OpenFlow protocol must be activated (By default, this application is
deactivated in ONOS). The following commands activate the OpenFlow and
Forwarding apps:

> app activate org.onosproject.fwd

> app activate org.onosproject.openflow

 150

Figure 6. 2: Activate the OpenFlow and Forwarding apps in ONOS.

After executing these commands, it can be verified in the ONOS CLI that the OpenFlow
protocol is already active, as can be seen in Figure 6.2.

Once the previous command has been completed, in a new CLI terminal in the folder where
the developed script resides and execute the following command, "NetTopoScript.py" is the
name of the developed script:

sudo python NetTopoScript.py

An example of the script execution is shown in figure 6.3. The ONOS controller provides the
overall view of the whole network, and it depicts how all the devices and their connections
are added, and the network topology is ready for generating network traffic.
It has not been considered to add a capture of the complete output of the execution of the
script in figure 6.3 due to the great extent of the displayed information when generating the
traffic between the hosts on the network.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

151

Figure 6. 3: Network Setup from Controller Point of View

For the experimentation, we launch a DDoS flooding attack to evaluate the performance of
the BFDD-S framework.

6.3 BFDD-S Framework Operation

The figures in the following present the operation of the proposed framework. In the
beginning, we execute a ping command for sending the ICMP packet between two hosts to
show the network connectivity between hosts and make sure that the hosts are reachable
from each other (Figure 6.4).

Figure 6. 4: Ping command before launching flooding attack.

 152

As mentioned earlier, the new traffic sends to the controller, and the controller transfers the
incoming new traffic to the big data pipeline for data processing and attack detection phase;
as figure 6.5 shows, the anomaly detection module considers the traffic as normal; therefore,

no action required and the packet will be forwarded to the destination port.

Figure 6. 5: Legitimate Traffic Detection Message

To generate a DDoS flooding attack, we use hping3 to employ a TCP SYN flood attack, the
sample command which we use is as follows:

sudo hping3 -V -c 100000 -d 9000 -S–flood [IP- address]

using this command, we send 100000 SYN packets with a data packet size of 9000 bytes and
as fast as possible without waiting for the reply message. During the analyzing the incoming
network traffic, if the anomaly detection module identifies any anomaly, it generates a REST
request and sends it to the controller to block the attacker as can be seen in the following
figure 6.6.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

153

Figure 6. 6: Anomaly Detection Message by the Framework

After receiving the request from the attack detection module, the controller makes action and
creates a new rule to block the attacker’s host. As Figure 6.7 indicates after launching the

attack, the host is blocked and the normal ICMP packet sending does not work via the PING
command.

Figure 6. 7: Ping command After Blocking the Attacker.

 154

6.4 Performance Evaluation of the BFDD-S Framework

To evaluate the performance of the framework, we choose the following metrics: CPU and

memory consumption of the ONOS controller, average response to the legitimate traffic
during the attack, and average time to detect and mitigate a DDoS attack. We use the psutil
python library and the htop tool to measure the above-mentioned metrics. The figures 6.8,
6.9, and 6.10 depict the performance metrics under the DDoS attack. The evaluation results
clearly show that increasing the number of packets has not so much effect on the performance
of the ONOS Controller. Analyzing the CPU and memory consumption, figures 6.8 and 6.9
indicate that in the time that the number of attacking packets is increased under launching a
flooding attack, the consumption fluctuation does not increase drastically and it shows that
the DDoS attack could not saturate drastically the controller’s CPU and memory capacity of
the ONOS controller. With the highest number of attacking packets, the controller reaches
less than 20% of average CPU consumption and in addition, the average Memory consumption
reaches less than 35%.

Figure 6. 8: Average Controller CPU Consumption.

Figure 6. 9: Average Controller Memory Consumption.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

155

On the other hand, figure 6.10 illustrates the average response time by the controller to the
legitimate traffic during the attack. It shows by using the BFDD-S framework, there is not so
much response delay to the legitimate traffic and the average latency value is not significant

and the flooding attack does not considerably affect the processing of the normal traffic.

Figure 6. 10: Average Controller Response time to Legitimate Traffic.

In addition to previous analysis, and to thoroughly evaluate the BFDD-S framework and
ascertain its performance, we conducted a comprehensive analysis incorporating various
methodologies. Our objective was to assess the effectiveness of the framework by comparing
it to both SDN-based and traditional approaches employed in countering DDoS attacks. For
the first approach, we employed a comparative analysis with an SDN controller using
centralized attack detection method, for this purpose the OPERETTA SDN controller was
utilized. In fact, OPERETTA, an evolved version of the Pox controller, was specifically designed
to detect and mitigate DDoS SYN flooding attacks. By benchmarking the BFDD-S framework
against OPERETTA, we could gain valuable insights into its efficacy and potential advantages.

In addition to the SDN-based approach, we also evaluated the BFDD-S framework against
traditional technique that are still prevalent in combating DDoS attacks. This technique
included the utilization of Firewalls, which serve as a first line of defense. By examining the
performance of the BFDD-S framework against the different approach, we aimed to provide a
comprehensive understanding of its capabilities and strengths in addressing the evolving
landscape of DDoS threats.

In order to evaluate the performance of the BFDD-S framework, we took into account several
crucial metrics. These metrics encompassed the CPU and memory consumption of the
Controller, the average response time to legitimate traffic during an attack, and the average
time required for mitigating a DDoS attack by the controller. By analyzing these metrics, we
aimed to acquire valuable insights into the efficiency and effectiveness of the BFDD-S
framework when confronted with DDoS attacks. This comprehensive evaluation enabled us to
assess the framework's ability to handle such attacks and provided a clearer understanding of
its operational performance.

 156

Additionally, the evaluation considered the framework's adaptability and scalability in
dynamic network environments. We examined how well BFDD-S coped with increasing traffic
loads while maintaining its responsiveness and ability to prevent DDoS attacks effectively.

6.4.1 Performance Evaluationof of the BFDD-S Framework with
Centralized Detection Method

In first method, to compare our proposed BFDD-S framework with a centralized method , we
address one of the primary challenges associated with centralized defense methods: the delay
caused by the validation process of incoming packets, which subsequently affects the
controller's response time to legitimate flows. This analysis focuses on highlighting the
advantages of the BFDD-S method in reducing response time for authorized requests and
expediting attack mitigation compared to centralized attack detection methods. In the
conducted experiments, we subjected both the BFDD-S framework and OPERETTA to a series
of simulated DDoS attacks under controlled conditions. By carefully monitoring the response
time of each method, we observed a significant difference in their ability to handle legitimate
traffic during attack scenarios.

Evaluating response time to legitimate flows:

The BFDD-S method excels in its ability to detect attacks without introducing delays in the
controller's packet handling. Because in this method, all packets are directed to a separate
attack detection module for validation, relieving the controller from the responsibility of
validating and responding to these requests. Consequently, the time required to respond to
authorized requests is significantly reduced. To support this claim, we conducted an
experiment to evaluate the response time of the BFDD-S method.

For this experiment, we subjected the network to DDoS flood attacks at varying rates. We
then sent requests to a web service and measured the time taken to establish of a complete
HTTP session. These results were then compared with the output of the OPERETTA controller.
The findings as shown in figure 6.11 explicitly demonstrate that our proposed framework
method significantly reduces response time to legitimate traffic when compared to
OPERETTA. In instances of low-rate attacks, the OPERETTA controller exhibited response times
of 2 to 4 seconds, whereas our proposed method consistently achieved response times below
2 seconds. Moreover, as the attack rate increased, the BFDD-S method exhibited even greater
advantages in terms of response time to legitimate flows.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

157

Figure 6. 11: Comparison between BFDD-S and centralized method in terms of average response time to the
legitimate traffic.

Furthermore, the experiment evaluated the scalability of the BFDD-S method by subjecting
the network to a high-intensity DDoS attack. Under this extreme condition, the BFDD-S
framework maintained its efficiency in handling legitimate traffic, with response times
remaining well below the tolerable threshold. In contrast, the OPERETTA controller
experienced significant delays and struggled to respond promptly during the intense attack.

These results confirm that the BFDD-S method not only excels in its responsiveness to
legitimate requests but also exhibits robust scalability, making it a promising solution for
defending against DDoS attacks in modern, high-traffic network environments. Its ability to
maintain optimal performance even under extreme conditions further emphasizes the
practicality and effectiveness of the BFDD-S framework as a comprehensive DDoS defense
strategy.

Evaluating Mitigation Time by the controller:

 In addition to reducing response time to legitimate flows, we also assessed the time required
for the controller to mitigate attacks. To perform this analysis, we subjected the network to a
flooding of SYN packets and measured the time required for the controller to mitigate the
attacks. Our evaluation (figure 6.12) revealed that the BFDD-S method surpasses centralized
methods by providing quicker attack mitigation. In centralized approaches, the controller
must bear the burden of detecting and mitigating the attack while also control, maintain and
managing the network, resulting in longer mitigation times. The evaluation results, illustrated
in the graph, clearly demonstrate the time advantages offered by the BFDD-S method across
different attack rates.

 158

Figure 6. 12: Comparison between BFDD-S and centralized method in terms time required to mitigate DDoS
attack by the controller.

Evaluation of Processing Load in the Controller:

To evaluate the processing load of the controller in the BFDD-S method, we conducted a
comprehensive analysis by subjecting the simulation network to a flood attack consisting of
SYN packets at varying rates. The results in figure 6.13 clearly demonstrate that the BFDD-S
method exhibits a significantly lower processing load compared to OPERETTA when the attack
rate remains below 9000 packets. This finding highlights the efficiency and effectiveness of
the BFDD-S method in efficiently handling and managing the processing load during
moderate-intensity DDoS attacks. However, as the attack rate increases beyond 9000 packets,
the processing load of the BFDD-S method approaches that of the OPERETTA controller. This
observation suggests the need for further optimization or scaling strategies to ensure optimal
performance of the BFDD-S method under high-intensity DDoS attacks.

Figure 6. 13: Comparison between BFDD-S and centralized method in terms of processing load on the
controller during the DDoS attack.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

159

Evaluation of Controller Memory Consumption:

Furthermore, we evaluated the memory consumption of the controller in both the BFDD-S
method and the centralized approach. The results in figure 6.14 indicate that the proposed
framework exhibits slightly lower memory consumption values compared to the centralized
method. This implies that the BFDD-S method is more resource-efficient and capable of
effectively managing memory utilization during DDoS flooding attacks. However, it is worth
noting that as the attack rate varies, the memory consumption of the BFDD-S method
approaches that of the centralized method. This finding underscores the need for continuous
monitoring and optimization to ensure efficient memory utilization, particularly under high-
intensity attack scenarios.

Overall, the evaluations of processing load and memory consumption reveal the strengths of
the BFDD-S method in mitigating DDoS attacks with reduced resource utilization. These
insights serve as a basis for further optimization and enhancement of the framework to
enhance its scalability and performance in real-world DDoS attack scenarios.

Figure 6. 14: Comparison between BFDD-S and centralized method in terms of memory consumption during

the DDoS attack.

In conclusion, the comparison between the BFDD-S framework and OPERETTA provides
compelling evidence of the proposed framework's capability to effectively reducing response
time for authorized requests, expediting attack mitigation and enhance the overall resilience
of the network compared to centralized defense methods. By offloading the validation
process to a separate detection module, the SDN controller is relieved of a heavyweight traffic,
leading to reduced response delays and improved network security. These experimental
findings underscore the potential of BFDD-S as a promising solution for bolstering network
security and defending against DDoS attacks in modern, dynamic environments.

 160

6.4.2 Performance Evaluation of the BFDD-S Framework with
Traditional Methods

In this section, we compare the proposed defense method with a common traditional method,
which is a firewall. Firewalls have long been employed as a fundamental security measure to
protect networks from unauthorized access and potential threats. In our comparison, we
specifically use iptables, a flexible command-line firewall tool that comes pre-installed on
most Linux distributions. By conducting this comparison, we aim to assess the effectiveness
and limitations of the traditional firewall approach when faced with TCP-based DDoS attacks,
as opposed to the proposed defense method. Through a series of carefully crafted
experiments, we evaluate how each approach handles varying attack intensities and the
extent to which they can successfully mitigate the impact of such attacks on the network.

To compare the performance of the framework with traditional methods, again we choose
the following metrics: CPU consumption of the ONOS controller, and average response time
to the legitimate traffic during the attack for both the proposed framework and the traditional
method. To measure these metrics, we use the psutil python library and htop tool for
evaluations, such as response time to authorized users and the amount of processing load
imposed on the server. Figures 6.11, and 6.12 depict the performance of these metrics under
the DDoS attack for both methods. The evaluation results clearly show that increasing the
number of packets has not so much effect on the performance of the ONOS Controller. On the
other hand, as can be seen in figures the firewall method imposes a large amount of
processing load on the server’s CPU when dealing with attacks.

Figure 6. 15: The average processing load in the traditional and proposed method.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

161

Figure 6. 16: The average response time to the legitimate flows in the traditional defense and proposed
methods.

Analyzing the CPU consumption indicate that the moment the number of attacking packets is
increased, in both cases the CPU consumption does not increase drastically and it shows that
the DDoS attack could not saturate the controller’s CPU and memory capacity of the ONOS
controller. The controller with the highest number of attacking packets reaches less than 20%

of average CPU consumption, as can be seen in figure 6.11, the firewall method imposes a
large amount of processing load on the server's CPU when dealing with attacks. As the attack
rate increases, so does the CPU consumption. To measure the response time to the legitimate
traffic by the server for normal users in the traditional and proposed method, we performed
an experiment by generating several different traffic rates consisting of SYN packets on the
webserver. Figure 6.12, illustrates the average response time by the controller to legitimate
traffic during the attack. It shows by using the proposed framework, there is not so much
response delay to the legitimate traffic and the average latency value is not significant and the
flooding attack does not considerably affect the processing of the normal traffic. In the
traditional countermeasures method, with increasing attack rates, a significant amount of
time is spent responding to unauthorized requests, and the response time to authorized users'
requests increases dramatically.

6.5 Chapter Summary

In this chapter, for evaluating the performance of the framework, first, we design and
implement a simple leaf-spine network architecture physical testbed by using four Dell Power
Edge R430 servers and four bare metal EdgeCore AS 4610 switches that support OpenFlow
protocol and one HP2530-8G as a management switch.

For emulating an SDN network architecture, we use this simple but real test bed as an underlay
network, we use Mininet to define the topology on one server, consisting of one Web server
and several hosts which are all connected to an SDN-based switch. Then, we generate normal
(ICMP packet) and anomaly traffic (TCP SYN flood) simultaneously and walk through our
approach, the network traffic captures via the SDN controller and process through the data

 162

pipeline for attack detection, and outcomes are stored in the data store. The CPU and memory
consumption of the ONOS controller, the average response to legitimate traffic during the
attack, and the average time to detect and mitigate a DDoS attack, are the parameters we

consider for our assessment. Moreover, we use the psutil python library and the htop tool to
measure the above-mentioned metrics.

Furthermore, to evaluate our proposed framework, its performance and assess its
effectiveness, we compare the proposed defense method with an SDN controller using
centralized attack detection module(OPERETA) and a common traditional method which is a
firewall (Iptables). For this goal, various metrics have been considered, these metrics include:
average response time to legitimate traffic as well as the time required to mitigate attack by
the controller and CPU and memroty consumption of the ONOS controller during attacks. The
conclusion of this chapter would clarify the answer to research question number 6, which is:

- What is the effect of integrating a detection module using the big data pipeline and
developing the controller to detect and mitigate DDoS attacks in software-defined
networks?

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

163

Chapter 7

7 Projects Contribution and Research Use Cases

During this research, we had the opportunity to involve in three European projects which can
be considered research use cases. in each of these projects, we contribute to various work
packages by offering the result of different parts of this research. In this section, these projects
are introduced and described briefly how the SDN paradigm can offer elasticity and cope with
some specific key network issues and additionally how it can provide a possibility to modify the
network infrastructure on demand to match the needs of any organization by incorporating
software controls and automation into practically any LAN or WAN management system (Table
7.1 describes briefly these projects and our contribution).

Table 7. 1: Projects Contributions

7.1 Nephele Project.

The first project was the Nephele Project. The purpose of this project, according to its
description, was to provide an “end-to-end scalable and dynamically reconfigurable optical
Architecture for application-aware SDN Cloud Datacenters (NEPHELE)” [195].

 164

7.1.1 Project goals

The project intended to construct a dynamic optical network architecture capable of
increasing data center efficiency and hence lowering costs and conserving energy. It offers
increased scalability in cloud infrastructures by bypassing existing architectural limits. A data
center has traditionally been assigned a defined percentage of equipment for processing and
storage capacity, among data transmission. The ongoing growth of cloud-based applications
involves a massive expansion of the data center’s fundamental infrastructure, which from an
economic point of view, requires an unsustainable, non-linear development of network
components. At the start of the project, the principle was resource disaggregation and SDN
concepts. Therefore, it was necessary to construct an upper control layer with a northbound
interface to the application layer as well as southbound access to provide hardware
abstraction and dynamic network configuration.

The research team is relying on the massive capacities of optical fibers and intends to deploy
a network of optical switches to achieve two major objectives: 1) the optimum mixture of high
network bandwidth and 2) reducing the cost. By considering the SDN controller as the major
component for the development of the project, our task in this project was to emerge a novel
control layer, which provides an application-defined network topology and integrates
hardware and software virtualization through a hybrid optical infrastructure. This involves the
replacement of the control logic part of network equipment with one or additional central
software modules. These are responsible for orchestrating the flow of data by the needs of
cloud-based applications. To accomplish this goal, the OpenFlow protocol was enhanced and
modified to support optical switch needs. Additionally, for the Application Programming
Interface, many Representational State Transfer (REST) protocols were considered and
studied. Moreover, a module was planned to be included in the developed SDN controller to
support virtual machine migration to other data centers in the future. Besides other goals of
the NEPHELE project, an initial objective was to provide an extension for the control plane of
Software Defined Networking (SDN) for the dynamic allocation of resources of an optical data
center network.

 To achieve this purpose, an agent can be considered as a part of the control plane unit of an
SDN network that facilitates the interaction between a central SDN controller and a non-SDN
data plane device. Since the non-SDN devices can be mentioned as the legacy network devices
which have not by default any capability to interact and comprehend the OpenFlow protocol.
Therefore, the major responsibility of an SDN agent is to interpret the OpenFlow commands
from an SDN controller into device particular commands of the underlying network devices
and vice versa. Therefore, in the NEPHELE project, we developed an agent, called SDN Optical
Agent (SOA), to provide communication between the control plane and the new hybrid
optical-electrical switches introduced in the NEPHELE project by other partners. For providing
the communication, the agent converts the control plane instructions of an OpenFlow-based
controller into the optical-electrical switch configurations.

Since the hybrid optical-electrical switches are based on the FPGA framework, therefore our
approach is to develop an agent between the SDN controller, and the FPGA-based switches
which converts the OpenFlow messages conducted by the controller to FPGA framework-
specific messages. The FPGA framework messages can be then used to program Hybrid Optical
Electrical switches and accomplish the flexibility and automation guaranteed by the SDN

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

165

network model. Figure 7.1 demonstrates the high-level design of the agent with respect to
the SDN controller and FPGA framework.

7.1.2 Our Contribution

The major goal of this project is to design and develop an agent (SOA) to connect optical-
electrical switches with an OpenFlow controller and OpenFlow-based switches
simultaneously. For enhancing the security of the agent, the result of our research for
evaluating different machine learning algorithms for DDoS attack detection is used to
implement the appropriate machine learning at the agent level.

Figure 7. 1: Agent Position in SDN Architecture

7.2 SENDATE Project.

The second project was the SENDATE Project [196], which is the abbreviation of Secure
Networking for a Data Center Cloud in Europe (SENDATE). According to the project
description, the SENDATE project is a Celtic-Plus cooperative project under the umbrella of
EUREKA.

7.2.1 Project Goals

The major motivation behind this project was secure and adaptable data center
interconnection. We contributed to this project via the SENDATE-Secure-DCI sub-project,
which engages in investigation and development activities concerning network designs as well

 166

as technologies for the network orchestration of distributed data center structures. The major
objective of this project is to develop a novel distributed data center, which will capable to
offer more elastic infrastructures, storing space, and protected processing for the clients. We
investigated the state-of-the-art data center interconnects during the early stage of the
project. This involves collecting information on market needs and application scenarios,
investigating data center traffic prototypes, and creating and assessing distributed data center
designs. A further goal of this project is to incorporate SDN-based control into distributed data
center networks, as well as to achieve virtualization of processing, resource orchestration, and
storage supplies. This was accomplished by developing the new SDN controller or using the
existing controller together with resource orchestrators. In this project, we were also entailed
in the creation of the SDN-based testbed for a distributed data center as part of the technical
review process for the ideas and implementations under consideration.

In this project, we can portray our tasks in a nutshell as follows:

- Researching the most recent developments in data center interconnects.
- Information gathering, data center traffic model analysis, and distributed data center

design evaluation.
- Combine virtualization of computing and storage resources with SDN-based control to

achieve resource orchestration.
- Implementing new network controllers and resource orchestrators.
- Participating in the setup of a testbed for the distributed data center.

In this project, we set up the orchestration framework for distributed data centers, which
integrates the SDN controller and cloud computing components. This framework provides
fine-grained control of distributed data centers, from the physical machines to the network
resources, such that facilitates core concepts in cloud computing and distributed DCs, like
multi-tenancy, virtualized function/service chaining, and Simplified interfaces for
consolidated administrations and operations.

7.2.1.1 DCI Orchestration Framework and Testbed Setup

The aforementioned orchestrators as well as independent implementation are all optional to
our design. On one hand, the idea is to use existing solutions for DC orchestration and lay our
focus on the DCI part. On the other hand, it is still open to implementing our orchestrator
instead of using Heat, Tacker, XOS, or Kubernetes. This can be a light-weighted orchestrator
that simply applies REST API and reduces superfluous functionalities to secure DCI
orchestration. The selection criteria are as follows:

• Functions covered,

• Open-source (industry-friendly license),

• Integration of SDN controllers like ODL, ONOS,

• Large community,

• Easily extensible,

• Well documented,

• Compatible with the NFV MANO framework,

• DCI support

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

167

Regarding this list especially DCI support, we further have the following considerations. First,
distance will very possibly make the network the bottleneck of chaining functions/services.
The orchestrator platform which supports the network should gain more focus. Second, the
heterogeneity of DCs seems to be more common. A “good” orchestrator should consider this.
Third, “dynamic” orchestration should be well supported as it is used for function chain
healing and refinement. Our first choices are CORD and OPNFV ONAP [197]. The former is the
main focus in SENDATE-Secure-DCI, while the latter is used in the SENDATE Working Group
Datacenter as the testbed framework. XOS is the integrated orchestrator of CORD used to
implement NFV MANO in the DCI network. In parallel, we also directly call REST API to
implement orchestration functionalities in accordance with fundamental control concerns.
Since both deploy OpenStack as a core component, Tacker should be a good alternative to do
NFV MANO. The traditional DCI components are routers or multilayer switches. The
configuration is mostly distributed. The customers are separated by VLAN/VRF. The DCI
provides layer 3 and/or layer 2 tunneling between data center edge (DCE) devices. DCI of
automated DCs is shown in Figure 7.2. DCEs still connect to fabrics, which, however, are
managed by a separate control plane now.

Figure 7. 2: A Simplified DCI Architecture for DCs with Automation. S: spine, L: leaf.

different kinds of controllers in all DCs as well as DCI channels. This orchestrator achieves the
united orchestration/control plane. We move the functionalities of the orchestrators within
DCs, to the global orchestrator. Another architecture is shown in Figure 7.3 Orchestrations

Figure 7. 3: Intermediate Orchestrator or Orchestrator Cascading.

may already exist in distributed DCs. We set up an orchestrator in DCI to play a role as either
an “intermediate” or a “commander” of those distributed orchestrators. Compared with the
former architecture, this architecture can reduce the administrative load on the global

 168

orchestrator, minimize the changes to DCs, and be easy to scale in case of a large number of
DCs.

7.2.2 Our Contribution

In this project, for providing virtualization of processing, resource orchestration, and storage
supplies, the SDN-based control is used to incorporate into distributed data center networks.
This was accomplished by developing the new SDN controller or using the existing controller
together with resource orchestrators. For choosing the proper SDN controller, our research
result for evaluating different SDN controllers is used. Therefore, in this project, the ONOS is
used as the main SDN controller to provide fine-grained control of distributed data centers,
from the physical machines to the network resources, such that facilitates core concepts in
cloud computing and distributed DCs, together with the CORD which is used for orchestrator
platform to support network, the heterogeneity of DCs, and providing the dynamic
orchestration to support for function chain healing and support. Furthermore, we contribute
actively to the conceptual investigation, design, and modeling of the DCI prototype among
with deploying the Testbed.

The final objective of this project, after successfully implementing the aforementioned goals,
is to provide security for the traffic which are transferred in distributed DCs. Currently, the
DCs progressively are threatened by DDoS attacks. We offer our research solution to be
implemented in each and every SDN-based DCs to detect and pretend DDoS attacks at the
controller level and for the DCI channel.

7.3 AI-NET-PROTECT Project.

The third project is the AI-NET-PROTECT [198] Project which is still an ongoing project at the
time of writing this thesis. The overall description of the project is offering robust and
protected infrastructure networks which are functioning on reliable devices.

7.3.1 Project goals

The major purpose of this project is to quicken Europe's digital conversion via intelligent
network automation at different network parts, including the edge, metro, core, and data
centers. AI-NET will investigate a variety of use cases covering the technological trials
associated with the deployment and operation of services at the network edge, to experience
the various scenarios and deployments associated with each use case, and thus the technical
needs and associated values. AI-NET will study and implement technologies particular for an
edge infrastructure, which is categorized by an enormous number of edge spots, a blend of
base methods for virtualization frameworks and transport networks, site configurations,
resource-constrained compute environments, and different hardware, and ultimately
supporting vital services in modified network parts.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

169

Artificial intelligence (AI) and machine learning (ML) must be used to supplement or replace
conventional optimization and prediction techniques to handle the ensuing complexity.
Although, the five work packages have been defined for this project, in the following we
explain our collaboration in the packages with the approach for enhancing the SDN usage and
capabilities.

7.3.2 Work Package Three: AI-based Network control & service
automation

In this work package, with the support of OpenFlow agents from the NEPHELE project, we plan
to create an automation method for legacy networks. An OpenFlow agent acts as a bridge
between an SDN controller and a conventional data plane. Once the OpenFlow commands
sent by the controller have arrived and been transcribed, it sends them to the forwarding
agents on the data plane. Furthermore, we want to contribute by developing an enhanced
monitoring system that will be used for various monitoring applications such as traffic
accounting and network security monitoring in real-time. Individual flow data are collected,
processed, and stored as part of the proposed system, which is used for the above-mentioned
purpose. Figure 7.4 depicts the overall planned contribution in this project.

Figure 7. 4: Overview of our Contribution to WP3.

7.3.3 Our Contribution

In this project and terms of security, we see enhancing and improving current machine
learning/artificial intelligence systems for detecting/mitigating various types of network
threats.

 170

We use the fact that a centralized controller is the optimal location for monitoring network
flows in order to identify any anomaly, and therefore, in conjunction with the
programmability, the mitigation method will be implemented much more rapidly and
effectively. Therefore, instead of implementing the intrusion detector at a few critical
locations, the SDN controller can provide the possibility for the security applications to select
when and how to monitor the network dynamically.

Figure 7. 5: Overview of our Contribution to WP4

As figure 7.5 indicates, this research is initiated as our contribution to this project with some
enhancement in architecture such as creating the graphical dashboard and improvement in
performance, for instance, defining a methodology for automating the deployment of the
overlay network, for managing and configuring systems, scheduling applications, automating
and chronizing tasks.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

171

 Chapter 8

8 Conclusion and Future Work

In this chapter, we conclude our research by providing a summary and offering an outlook on
potential future work.

8.1 Introduction

The SDN architecture is a game-changer in controlling and management of the network as it
includes particular features that improve numerous network functions and address
intractable issues that exist in traditional networks. By decoupling the control plane from the
data plane, the software-defined networking (SDN) architecture offers benefits for both the
reprogramming and the centralized management of the network. The network's
programmability and centralization of control expedite the creation of new network
capabilities through rapid prototyping; In general, the majority of network services present in

traditional systems can be implemented in the SDN as simple software implementations.
While SDN offers numerous benefits for controlling, maintaining, and implementing network
environments, it was initially designed with a lack of security measures. Therefore, similar to
the traditional network, the SDN network is exposed to various security risks in its architecture
design, where it tries to centralize all the controlling, maintenance, and administration of the
network into a single entity. This single centralized unit triggers some new security challenges.
One of the most considerable threat factors in SDN structure is the possibility that an attacker
attempts to compromise the proper performance of an SDN controller at the control plane

level. The centralized nature of SDN, which relies on a single controller, creates a potential
point of failure that can be exploited by DDoS attacks, ultimately compromising the entire
network.

The main objective of this research is to address SDN security concerns by integrating big data
analytics tools and machine learning approaches to provide security defense for the SDN
controller. These mechanisms offer fast and reliable malicious activity detection based on
monitoring the network flows. Currently, the SDN concepts are mostly used in data center
design; therefore, the result of the research is intended to enhance network security in the
SND-based data center environment.

8.2 Conclusions about the Research Questions

This research was motivated by the requirement for a scalable and reliable framework for SDN
networks against DDoS attacks. The prime objectives revolve around two approaches: first,
separating the detection module from the SDN controller to proactively prevent performance

 172

degradation of the SDN controller, and second, leveraging a big data pipeline to provide a
scalable, real-time, and reliable attack detection method.

Since the initiation of this research, some questions have arisen, and they must be addressed
through subsequent research and study.

What are the SDN attack vectors?

Compared to traditional networks, security in an SDN network is more complex due to the
addition of new components. The central controller can be an attractive target for attackers,
and the use of open-source applications and interfaces can make it difficult to define security
policies. The SDN architecture was introduced without any security facility in its design.
Therefore, mitigating the risk of attack in the SDN network requires a protection-in-design
approach to provide suitable defense against different network attacks. To design and
implement a robust and resilient attack detection and mitigation method, it is crucial to
outline the different SDN attack vectors.

Seven attack vectors can be identified when examining the security vulnerabilities of the SDN
architecture based on in-depth research.:

Forged or fake network traffic, network device vulnerability, attacks on the communication
channel of the plane of control, SDN controller vulnerabilities, lack of mechanisms to
guarantee the trust between the controller and applications, administrative system
vulnerabilities, and lack of reliable resources for forensic activities and remediation.

Which machine learning classifier algorithm is suitable for detecting DDoS attacks?

In this research, to improve the accuracy of network traffic classification, we utilize machine
learning supremacy in the detection module of our proposed framework. The mission of the
detection module is to classify whether the incoming network is normal or classified as an
attack based on the features of the incoming traffic.

Therefore, to identify the most appropriate classifier to incorporate into our framework, five
prevalent classification algorithms such as Logistic Regression, Naïve Bayes, K-Nearest
Neighbor, Decision Tree, and Random Forest have been evaluated by using two well-known
datasets (NSL-KDD and UNSW- NB15) for network intrusion detection systems.

Based on the evaluation results, we concluded that the Random Forest classifier offers the
best performance in terms of accuracy, precision, and recall compared to the other
classification algorithms. Therefore, in this research, we have selected this algorithm to be

implemented in the data processing phase of our proposed data pipeline utilizing Apache
Spark for the attack detection phase.

How to implement a data pipeline to detect malicious network traffic in the networks?

In this framework, a few big data analytics tools are used to produce a data pipeline
infrastructure. For this purpose, we use Apache Kafka for message queuing, Apache Spark for
data processing, and Elasticsearch for storing processed data. Additionally, the Spark

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

173

Streaming system from the Apache Spark ecosystem is involved in processing data flows,
storing them in databases, or reflecting them in a graph to provide a better view for the user.

The features and specifications of each one of these tools are the main reasons behind using
them to implement the big data pipeline infrastructure. Specifically, by taking advantage of
the short response time, high efficiency, error tolerance, high scalability, and ability to process
fast streams of Apache Kafka, together with the real-time stream processing, fault tolerance,
scalability, and lightning-fast analytic engine of Apache Spark, and the horizontal scalability,
multi-tenancy, and speed of Elasticsearch, we can achieve the major objective of this research,
which is to offer a highly scalable, reliable, and almost real-time framework to detect and
mitigate DDoS attacks in SDN networks.

How can a detection module be integrated into the SDN controller for the detection and
prevention of a DDoS attack in the SDN environment?

When the SDN-based switch sends the incoming traffic to the controller, the attack detection
systems are not able to detect abnormal activities from only one packet. therefore, the
controller requests the entry of several packets of the same flows into the attack detection
system. To facilitate this process, we created a Java API called Extractor within the ONOS core.
This API is responsible for collecting statistical information, aggregating flows, and converting
the resulting data into a suitable format (such as JSON) for transmission to the detection
module. Given that the ONOS controller serves as the basis for our proposed framework, and

considering that ONOS employs the OSGi framework with Karaf to divide applications into
bundles, we followed these steps to develop the Extractor API:

- Creating an API directory template
- Registering the API with Karaf
- Importing services from other modules
- Compiling the API and plugging in

What is the effect of integrating a detection module using the big data pipeline and
developed controller to detect and mitigate DDoS attacks in software-defined networks?

To evaluate the performance of the framework, we choose the following metrics: CPU and
memory consumption of the ONOS controller, average response to legitimate traffic during
an attack, and average time to detect and mitigate a DDoS attack. Furthermore, we compare
the proposed defense method with a common traditional method which is a firewall
(Iptables). Next, we conducted a test scenario in which we simultaneously generated normal
(ICMP packet) and anomalous (TCP flood) traffic. During this experiment, we applied our
proposed approach to capture network traffic via the SDN controller and process it through

the data pipeline to detect attacks, with the resulting outcomes stored in the data store.

The evaluation results indicate that increasing the number of packets had a relatively minor
impact on the performance of the ONOS Controller. Based on the analysis of CPU and memory
consumption, our results indicate that increasing the number of attacking packets during a
flooding attack did not significantly increase consumption fluctuations. This suggests that the
DDoS attack was unable to drastically saturate the ONOS controller's CPU and memory
capacity. Moreover, the controller can handle legitimate traffic with a reasonable delay time.

 174

8.3 Research Summary

In this research, we present an intrusion detection system using distributed processing

technologies based on the combination of machine learning algorithms and big data pipeline
infrastructure in SDN-based networks for proactively preventing the performance
degradation of the SDN controller. This proposed framework is called BFDD-S (Big data
Framework for DDoS attack Detection in SDN networks). To identify the classifier model with
the best classification accuracy for employing a machine learning algorithm using Spark, we
evaluated the effectiveness of several classification techniques.

The first two chapters introduce the research and discuss the motivation behind it, as well as
summarize related work. Chapter three is used to describe the essential associated
background and correlated information. In chapter 4, we evaluate different SDN controllers
to distinguish the appropriate controller to be utilized in our research. There exist several
open-source controllers in the research and academic domain. This chapter considers and
evaluates the five most popular controllers, such as NOX/POX, Ryo, Floodlight, ODL, and
ONOS. We classify the SDN controllers based on the following characteristics: Architecture,

Interfaces (South-, Northbound), Scalability, Modularity and Extensibility, and Performance.
Our evaluation result indicates that the ONOS controller has the capabilities and features
which is vital for our research; Therefore, in our proposed solution, we choose ONOS as the
SDN controller and implement it in our framework.

In chapter 5, we propose our solution against DDoS threats in SDN-based networks. The
framework, which is called BFDD-S, is a heterogeneous system. In other words, in this method,
the detection phase will be done outside of the SDN controller, and the information gathering
and mitigation phase will be done by the controller. To provide scalability, real-time, and fast
processing, we have designed and implemented a data pipeline infrastructure using various
big data tools. For implementing the data pipeline infrastructure, we use Apache Kafka for
message queuing, Apache Spark for real-time data streaming and machine learning
processing, and Elasticsearch for storing data. We use the MLlib API library as a part of the
Apache Spark ecosystem for employing a machine learning algorithm.

For evaluating the effectiveness of various machine learning algorithms for intrusion
detection, we have applied five well-known general-purposed supervised machine learning
algorithms, such as Logistic Regression, Naïve Bayes, K-Nearest Neighbor, Decision Tree, and
Random Forest, using the two common intrusion detection datasets, NSL-KDD and UNSW-
NB15. In our investigation, three major metrics, Accuracy, Precision, and Recall, were
employed to determine which algorithm should be implemented in the DDoS detection
module using Apache Spark in our proposed framework (BFDD-S).

The result based on the NSL-KDD dataset presents the Decision Tree and Random Forest gives
the best accuracy, which is more than 98%, followed by the Logistic Regression algorithm
which offers more than 89% accuracy. This classification report depicts that the Naïve Bayes
has the weakest performance, with a score of 88% accuracy. Although the two classifiers
delivered more than 98% accuracy, the table indicates that Random Forest has the best result.
In addition, the results based on the UNSW-NB15 dataset indicate that the Random Forest
algorithm has the highest accuracy of 99%, which is significantly better than other
classification algorithms such as the Decision Tree, K-Nearest Neighbor, Logistic Regression,

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

175

and Naïve Bayes algorithms.

Moreover, the classification report based on the UNSW-NB15 dataset shows that the Naïve
Bayes algorithm achieved high accuracy (>88%); however, it also yielded low scores in recall

and precision (>64% and >78%, respectively), indicating that Naïve Bayes had the weakest
performance compared to other classification algorithms utilized in this research. Based on
the evaluation results, we concluded that the Random Forest classifier offers the best
performance in terms of accuracy compared to the other classification algorithms. Therefore,
in this research, we have chosen this algorithm to be implemented in the data processing
phase of our proposed data pipeline using Apache Spark for attack detection.

According to the outcome of the evaluation, we chose the Random Forest classifier to be
employed in Apache Spark as the data processing part of our data pipeline infrastructure for
accurate and rapid anomaly detection.

To evaluate the proposed framework, we simulated an SDN-based environment using a simple
testbed with real hardware and leaf-spine architecture. We utilized ONOS as the controller
and Mininet to define and emulate the SDN network topology, which consisted of several

hosts connected to the SDN controller. We generate the normal ICMP traffic using the Ping
command and DDoS traffic using the hping tool to assess the response of the proposed
framework. We consider the CPU, memory consumption, and average response time to
legitimate traffic as evaluation metrics. Analyzing the CPU and memory consumption indicates

that during performing the DDoS attack, with the highest number of attacking packets, the
controller reaches less than 20% of the average CPU consumption. In addition, the average
memory consumption reaches less than 35%, which indicates that in both cases the
consumption fluctuation does not increase drastically, and it shows that the DDoS attack could
not saturate the controller’s CPU and memory capacity of the SDN controller.

The results show that during the DDoS attack, the average response time to legitimate traffic
was less than 5 ms when using the BFDD-S framework. Even at the highest number of attacking
packets, the controller still responded to normal traffic in less than 10 ms. This suggests that
the framework did not cause significant delays in processing normal traffic and the DDoS
flooding attack did not greatly affect the controller's ability to handle normal traffic. In this
research, we propose to create a data pipeline that integrates machine learning techniques
and big data analytics tools to develop a fast, reliable, and scalable security framework for
SDN-based network environments to detect and mitigate DDoS attacks. The proposed
framework will incorporate features such as high scalability, the ability to process fast streams
of events using Kafka, real-time stream processing, the scalability of Apache Spark, and the
horizontal scalability and speed of Elasticsearch. This framework will aim to enable early
detection and mitigation of DDoS attacks in SDN-based network environments.

These results imply that the BFDD-S framework can provide a scalable and reliable platform
to prevent DDoS attacks in SDN networks in comparison to other traditional methods. Another
major advantage of this solution compared to the other solution is that most of the related
methods do not consider southbound saturation during DDoS attacks. If the bandwidth of the
southbound interface in the SDN network is saturated by heavy traffic, the network flows will
not reach the controller, and these methods cannot perform their proposed detection
methods. However, in the BFDD-S framework, if the southbound is saturated with heavy

 176

traffic during a DDoS attack, we can configure the network devices to send the network
information via common network protocols such as Netflow and IPFix to the data processing
pipeline, and the process will be the same, and if any anomaly activity is detected, the Apache

Spark will generate and send a RestAPI request to the controller to block the attacker host.

Finally, to indicate the impact and contribution of this research in real scientific use cases, we
describe three European projects to which we contribute in various work packages by offering
the result of different parts of this research according to their requirements.

8.4 Future Work

The research presented in this thesis focuses on designing and developing a heterogeneous
framework to introduce a scalable, fast, and reliable security level for the SDN-based network.
To enhance the process of anomaly detection and mitigation process offered by this
framework, the following paths can be specified as future work:

- Since using the console as output is inadequate in the production environments, we
intend to add a graphical dashboard for the stream processing monitoring to provide an
enhanced view of the system processing. For this purpose, we plan to implement Kibana
with Elasticsearch as Kibana is an appropriate tool for retrieving the data stored in
Elasticsearch via simple queries. Using Kibana, we can monitor network traffic in real time

or within a specific time period by displaying the data on a dashboard we have designed.

- Currently, the machine learning approach has a significant role in the IT world, especially
in the cybersecurity domain, and several researchers are exploring innovative techniques
to improve the performance and accuracy of the machine learning methods; therefore,
we consider the Implementation of other machine learning methods, such as deep
learning (DL) based on Apache Spark into the proposed framework and providing a
performance evaluation with the existing system.

Furthermore, we compare our proposed framework with a traditional firewall system
(iptables) in this paper. We also plan to compare our framework with other modern
intrusion detection systems (IDS) and intrusion prevention systems (IPS) in order to
evaluate its effectiveness.

- The proposed system has been developed on a single computer, not in cluster mode.
Spark and Kafka’s applications are designed to work in cluster mode. Therefore, we
assume that the final result would be more accurate by working in cluster mode in parallel
with several machines. One of the primary objectives of this research is to design a

framework in which all its components are scalable. Consequently, the computational
efficiency of the whole proposed framework will be able to adjust to the increasing load.

- Designing a layer that assists in orchestrating and automating the configuration of all
services to make the deployment of the proposed framework easier to manage.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

177

Bibliography

[1] O. M. E. Committee, "Software-defined networking: The new norm for networks.,"
ONF White Paper, 2012.

[2] S.Lou, I.Wu, and B.Pei, "A DEfense MEchanism for Distributed Denial of Service Attack
in Software-Defined Networks.," in Ninth International Conference on Frontier of
Computer Science and Technology, August 2015.

[3] "Alert(TA14-017A) UDP-based Amplification Attacks," in US-CERT, 2014.

[4] N.N.Dao, J.Park, M.park, and S.Cho, "A feasible method to combat against DDoS attack
in SDN network," in International Conference on Information Networking(ICOIN),
Cambodia, January 2015.

[5] H.Polat, O.Polat, A.Cetin, Detecting DDoS Attacks in Software-Defined Networks
Through Feature Selection Methods and Machine Learning Models, Gazi University:
Faculty of Technology, February 2020.

[6] "Lumen automates DDoS mitigation as attacks surge worldwide," Lumen website,
[Online]. Available: https://news.lumen.com/2020-10-28-Lumen-automates-DDoS-
mitigation-as-attacks-surge-worldwide#assets_117:20491. [Accessed 20 10 2022].

[7] wired.com, "Yahoo on trail of site hackers," 8 February 2000. [Online]. Available:
http://www.wired.com. [Accessed November 2018].

[8] "Powerful attack cripples internet," 23 October 2002. [Online]. Available:
http://www.greenspun.com. [Accessed 15 February 2019].

[9] "Operation Payback cripple Mastercard site in revenge for WikiLeaks ban," 8
December 2010. [Online]. Available: http://www.gaurdian.co.uk. [Accessed 15
December 2018].

[10] P. Criscuolo, "Distributed denial of service:Trin00, Tribe food network, tribe Flood
network 2000, and stacheldraht ciac-2319," Technical report, DTIC document, 2000.

[11] ST Zargar, J Joshi, D Tipper, "A survey of defense mechanisms against distributed dial
of service(DDoS) flooding attacks.," in Comun.Surv, 2013.

[12] "Dyn Cyberattack," [Online]. Available:
www.theguardian.com/technology/2016/0ct/26/ddos-attack-dyn-mirai-botnet.
[Accessed 15 March 2020].

[13] C Kolias, G Kambourakis, A Stavrou, J Voas, "DDoA in the IoT: Mirai and other botnet,"
in Computer, 2017.

[14] N.N.Dao, J.Park, M.Park, and S.Cho, "A feasible method to combat against DDoS attack
in SDN network," in International Conference on Information Networking(ICOIN),
Camodia, January 2015.

[15] Shu. Z, Wan J, Lin D, Lin J, Vasilakos A.V, imran M, "Security in software-defined
networking: Threats and countermeasures.," in Mob. Netw, Appl, 2016.

[16] H.Polat, O.Polat, A.Cetin, "Detecting DDoS Attacks in Software-Defined Networks
Through Feature Selection Methods and Machine Learning Models," Sustainability
2020.

[17] A.A.Cardenas, P.K.Manadhata, "Big Data Analytics for Security[J]," in IEEE Security and
Privacy, Nov-Dec. 2013.

 178

[18] K. M, "Early Detection and Mitigation of DDoS Attacks In Software Defined
Networks.," in Ryerson University, Ontario, Canada, 2015.

[19] K. S. Sahoo, "Detection of Control Layer DDoS Attack using Entropy metrics in SDN :
An Empirical Investigation.," in Ninth International Conference on Advanced
Computing (ICoAC), 2017.

[20] Dao, N. N., Park, J., Park, M., & Cho, S., "A feasible method to combat against DDoS
attack in SDN network.," in International Conference on Information Networking,,
January 2015.

[21] Deepa, V., Sudar, K. M., & Deepalakshmi, P., "Detection of DDoS Attack on SDN
Control plane using Hybrid Machine Learning Techniques.," in International
Conference on Smart Systems and Inventive Technology (ICSSIT), 2018.

[22] Tushar Ubale, Ankit Kumar Jain, "Taxonomy of DDoS Attacks in Software-Defined
Networking Environment," FTNCT 2018: Futuristic Trends in Network and
Communication Technologies, no. DOI: 10.1007/978-981-13-3804-5_21, p. 278–291,
25 December 2018.

[23] Thomas, R. M., James, D., "DDOS Detection and Denial using Third Party Application
in SDN.," in International Conference on Energy, Communication, Data Analytics and
Soft Computing (ICECDS), 2017.

[24] Dharma, N. I. G., Muthohar, M. F., Prayuda, J. D. A., Priagung, K., Choi, D., "Time-based
DDoS detection and mitigation for SDN controller," 17th Asia-Pacific Network
Operations and Management Symposium: Managing a Very Connected World,
APNOMS, no. https://doi.org/10.1109/APNOMS.2015.7275389, p. 550–553, 2015.

[25] Mousavi, S. M., St-Hilaire, M., "Early Detection of DDoS Attacks Against Software
Defined Network Controllers," Journal of Network and Systems Management, vol.
26(3), no. https://doi.org/10.1007/s10922-017-9432-1, p. 573–591, 2018.

[26] L. Dhanabal, and S. Shantharajah, "A Study on NSL-KDD Dataset for Intrusion
Detection System Based on Classification Algorithms," 2015.

[27] K Jiang, W Wang, A Wang, and H Wu, "Network Intrusion Detection Combined Hybrid
Sampling With Deep Hierarchical Network," February 2020.

[28] STaghavi Zargar, J Joshi, D Tipper, "A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks," in IEEE Commun. Surveys Tuts,
2013.

[29] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, "An SDN-oriented DDoS blocking scheme for
botnet-based attacks," in Sixth International Conference on Ubiquitous and Future
Networks (ICUFN), 2014.

[30] R.Kandoi, M. Antikainen, "Denial-of-service attacks in OpenFlow SDN networks.," in
IFIP/IEEE International Symposium on Integrated Network Management (IM), May
2015.

[31] H. Taejin, Y. Seunghyun, A.C. Risdianto,J.W. Kim and H. Lim, "Suspicious Flow
Forwarding for Multiple Intrusion Detection Systems on Software-Defined
Networks.," in IEEE Network, Nov 2016.

[32] Y. Z. W. L. a. Y. T. H. B. Wang, "DDoS attack protection in the era of cloud computing
and Software-defined Networking,," in Computer Networks, 2015.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

179

[33] S. Fichera, L. Galluccio, S. C. Grancagnolo, G. Morabito, and S. Palazzo, "OPERETTA: An
OPEnflow-based REmedy to mitigate TCP FLOOD Attacks against web servers,," in
Computer Networks, 2015.

[34] Peddoju, V. Chouhan and S. K., "Packet monitoring approach to prevent DDoS attack
in cloud computing," in Int. J. Comput. Sci. Electr. Eng. (IJCSEE), 2013.

[35] L Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, "Statistical approaches to
DDoS attack detection and response," in Proc. DARPA Inf. Survivability Conf. Expo.,
Apr. 2003.

[36] Nesarani, K. Gurulakshmi and A., "Analysis of IoT Bots against DDoS attack using
machine learning algorithm," in Proc. 2nd Int. Conf. Trends Electron. Inform. (ICOEI),
May 2018.

[37] N.-F.Huang, C.-N.Kao, H.-W.Hun, G.-Y.Jai, and C.-L.Lin, "Apply data mining to defense-
in-depth network security system," in Proc. 19th Int. Conf. Adv. Inf. Netw. Appl, Mar.
2005.

[38] M. Zekri, S. El Kafhali, N. Aboutabit, and Y. Saadi, "DDoS attack detection using
machine learning techniques in cloud computing environments," in Proc. 3rd Int. Conf.
Cloud Comput. Technol. Appl. (CloudTech), Oct. 2017.

[39] J. Wang, D. J. Miller, and G. Kesidis, "Efficient mining of the multidimensional traffic
cluster hierarchy for digesting, visualization, and anomaly identification," in IEEE J. Sel.
Areas Commun, Oct. 2006.

[40] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz, and J. Gonza ́lez, "Towards
sFlow and adaptive polling sampling for deep learning-based DDoS detection in SDN,"
in Future Generation Computer Systems, 2020.

[41] C. V. G. R. G. Dileep Kumar, "Leveraging Big Data Analytics for Real-time DDoS Attacks
Detection in SDN," in International Journal for Research in Engineering Application and
Management (IJREAM), May 2018.

[42] D. C.-T. L. K. Q. T Zhao, "A Neural-Network Based DDoS Detection System Using
Hadoop and HBase," in IEEE International Conference on High-Performance
Computing and Communications (HPCC), 2015.

[43] S. Hameed, U. Ali, "HADEC: Hadoop-based live DDoS detection framework," EURASIP
Journal on Information Security, 2018:11.

[44] A. M. Karimi, Q. Niyaz, W. Sun, A. Y. Javaid, and V. K. Devabhaktuni, "Distributed
network traffic feature extraction for a real-time ids," in Electro Information
Technology (EIT), 2016.

[45] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and W. Willinger,
"Network monitoring as a streaming analytics problem," in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, 2016.

[46] Y Lee, W Kang, Y Lee, "Traffic Monitoring and Analysis of Lecture Notes in Computer
Science, ed. by J Domingo-Pascual, Y Shavitt, and S Uhlig. A hadoop-based packet trace
processing tool," Berlin Heidelberg, 2011.

[47] Y Lee, Y Lee, "Detecting DDoS attacks with Hadoop," in Proceedings of The ACM
CoNEXT Student Workshop (CoNEXT ’11 Student), New York, 2011.

[48] H. H. a. A. A. H. Benbrahim, "Comparison between Hadoop and Spark," in the
International Conference on Industrial Engineering and Operations Management,
Bangkok, Thailand, March 5-7, 2019.

 180

[49] A. Saied, R. E. Overill, and T. Radzik, "Detection of known and un-known DDoS attacks
using artificial neural networks,’," Neurocomputing, vol. 172, p. 385–393, Jan. 2016.

[50] P.Dahiya, D.Srivastava, "Network Intrusion Detection in Big Dataset Using Spark,"
Procedia Computer Science 132, pp. 253-262.

[51] M. Belouch, S. El Hadaj, and M. Idhammad, "Performance evaluation of intrusion
detection based on machine learning using Apache Spark.," in Procedia Computer
Science 127, 2018.

[52] F Karataş, S A.Korkmaz, "BigData: Controlling Fraud by Using Machine Learning
Librarieson Spark," International Journal of Applied Mathematics, Electronics, and
Computers Advanced Technology and Science,, no. ISSN:2147-822821, DOI:
10.18100/ijamec.2018138629.

[53] N V Patil, C.R Krishna, and K Kumar, "S-DDoS: Apache spark based real-time DDoS
detection system," Journal of Intelligent Fuzzy Systems, no. DOI:103233/JIFS-179733,
IOS Press, ISSN 1064-1246/20/$35.00, 2020.

[54] M A Manzoor, Y Morgan, "Real-time support vector machine-based network intrusion
detection system using Apache Storm," in IEEE 7th annual information technology,
electronics and mobile communication conference (IEMCON), 2016.

[55] K Peng, V C. M. Leung, and L Zheng, "Intrusion Detection System Based on Decision
Tree over Big Data in Fog Environment," Hindawi Wireless Communication and Mobile
Computing, no. Article ID 4680867, https://doi.org/10.1155/2018/4680867,2018,
2018.

[56] Zhao J, Chen S, Cao M, Cui B, "Malware algorithm classification method based on big
data analysis," in International Journal of Web and Grid Services., 2017.

[57] Terzi, D., Terzi, R. and Sagiroglu, S, "Big data analytics for network anomaly detection
from netflow data," in International Conference on Computer Science and Engineering
(UBMK), Antalya, 2017.

[58] A.Alsirhani, S.Sampalli, and P.Bodorik, "DDoS attack detection system: Utilizing
classification algorithms with Apache spark," in Proc. 9th IFIP Int. Conf. New Technol.
Mobility Secur. (NTMS), Feb. 2018.

[59] Ying Gao, Honngrui Wu, Binjie Song, Y Jin, X Luo, and Xing Zeng, "A Distributed
Network Intrusion Detection System for Distributed Denial of Service Attacks in
Vehicular Ad Hoc Network," 2019.

[60] Leon-Garcia, A. Tizghadam and A., "Application platform for smart transportation, pp.
.," in Future Access Enablers of Ubiquitous and Intelligent Infrastructures., 2015.

[61] S. Arora, "Analyzing mobile phone usage using clustering in spark mllib and pig," 2017.

[62] Sundararajan, R., "Software-Defined Networking (SDN)," 2013.

[63] Y. Li, D. Li, W. Cui, and R. Zhang, "Research-based on OSI model," in 2011 IEEE 3rd
International Conference on Communication Software and Networks, May 2011.

[64] T. Socolofsky, C. Kale, "A TCP/IP Tutorial," January 1991. [Online]. Available:
https://tools.ietf.org/html/rfc1180. [Accessed 14 5 2022].

[65] T. Benson, A. Akella, and D. Maltz, "Unraveling the complexity of network
management," in Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, 2009.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

181

[66] D. Kreutz, F. M. V. Ramos, P. E. VerA ̃ssimo, C. E. Rothenberg, S. Azodolmolky, and S.
Uhlig, "Software-defined networking: A comprehensive survey," in Proceedings of the
IEEE, Jan 2015.

[67] C. Martinez, R. Ferro, and W. Ruiz, "Next-generation networks under the SDN and
open-flow protocol architecture," in 2015 Workshop on Engineering Applications -
International Congress on Engineering (WEA), Oct 2015.

[68] S. Wang, D. Li, and S. Xia, "The problems and solutions of network update in SDN: A
survey," in 2015 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2015.

[69] F. Hu, Q. Hao, and K. Bao, "A survey on software-defined network and OpenFlow:
From concept to implementation," in IEEE Communications Surveys Tutorials, 2014.

[70] K.Gray, T.D.Nadeau, "SDN: Software Defined Networks, Chapter 6, Data Center
Concepts and Constructs," vol. Chapter 6, O ́REILLY, 2013.

[71] D. Kreutz, F. Ramos, "Software-Defined Networking: A Comprehensive Survey," in
Proceedings of the IEEE, 2015.

[72] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, "A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable
Networks," in IEEE Communications Surveys & Tutorials, 2014.

[73] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, "OpenFlow: enabling innovation in campus networks," in ACM
SIGCOMM Computer Communication Review, 2008.

[74] M. Shin, K. Nam, and H. Kim, "Software-defined networking (SDN): A reference
architecture and open APIs," in 2012 International Conference on ICT Convergence
(ICTC), Oct 2012.

[75] L. Richardson, S. Ruby, RESTful Web Services. Web Services for the Real World., Mayo:
O’Reilly Media, 2007.

[76] Foster, N., "Frenetic: A network programming language," in Proceedings of the 16th
ACM SIGPLAN international conference on Functional programming, September 2011.

[77] H. Kim, N. Feamster., "Improving network management with software defined
networking," in IEEE Communications Magazine, 2013.

[78] T. Hinrichs, N. Gude, M. Casado, "Practical declarative network management," in
Proceedings of the 1st ACM workshop on Research on enterprise networking, August
2009..

[79] C. Monsanto, N. Foster, R. Harrison, "A compiler and run-time system for network
programming languages," in Proceedings of the 39th annual ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages, 2012.

[80] J. Reich, C. Monsanto, N. Foster, "Modular SDN programming with pyretic," in Usenix,
The Advanced Computing Systems Association, Octubre, 2013.

[81] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, "Secure your northbound SDN API," in 2015
Seventh International Conference on Ubiquitous and Future Networks, July 2015.

[82] M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer, "Interfaces, attributes,
and use cases : A compass for SDN," in IEEE Communications Magazine, June 2014.

[83] H. Yin, "SDNi: A message exchange protocol for software-defined networks (SDNS)
across multiple domains.," in Internet Engineering Task Force, Internet Draft., 2012.

 182

[84] D. Kreutz, F. Ramos, "Software-Defined Networking: A Comprehensive Survey," in
Proceedings of the IEEE, 2015.

[85] M. Lessing, "What Are SDN Southbound APIs?," SDxCentral Studios, September 2019.
[Online]. Available: https://www.sdxcentral.com/resources/sdn/southbound-
interface-api. [Accessed 10 6 2022].

[86] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,
M. Miller, and N. Rao, "Are we ready for sdn? implementation challenges for software-
defined networks," in IEEE Communications Magazine, July 2013.

[87] J. Case, M. Fedor, "A Simple Network Management Protocol (SNMP). .," 2022 May
1990.. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc1098. [Accessed
10 6].

[88] R. Enns, M. Bjorklund, J. Schoenwaelder, "Network Configuration Protocol
(NETCONF)," RFC 6241. IETF, June 2011.. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6241. [Accessed 10 6 2022].

[89] Y. Rekhter, T. Lid, S. Hares, "A Border Gateway Protocol 4 (BGP-4)," RFC 4271, January
2006. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc4271.

[90] B. Pfaff, B. Davie, "The Open vSwitch Database Management Protocol.," RFC 7047.
IETF, December 2013.. [Online]. Available: https://www.ietf.org/rfc/rfc7047.txt.

[91] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, "OpFlex Control Protocol," IETF, 2 April
2014. [Online]. Available: http://tools.ietf.org/pdf/draft-smith-opflex-00.pd.
[Accessed 10 6 2022].

[92] A. Doria, J. Hadi, R. Hass, H. Khosravi, "Forwarding and Control Element Separation
(ForCES) Protocol Specification.," RFC 5810, March 2010.. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5810. [Accessed 10 6 2022].

[93] N. McKeown, "OpenFlow: Enabling Innovation in Campus Networks," Stanford
University, March, 2008.

[94] M. K. Jaiswal, "Innovations in Software-Defined Networking and Network Functions
Virtualization," no. 10.4018/978-1-5225-3640-6.ch003, p. 20, 2018.

[95] H. Egilmez, S. Dane, "OpenQoS: OpenFlow controller design and test network for
multimedia delivery with quality of service," in Proc. NEM Summit, Implementing
Future Media Internet Towards New Horizons, December 2012.

[96] C-Hao, Chang and Y-Dar Lin, "OpenFlow Version Roadmap," 11 September 2015.
[Online]. Available: http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf.
[Accessed 6 2022].

[97] "OpenFlow Switch Specification, Version 1.0.0 Implemented (Wire Protocol 0x01),"
December, 2009.

[98] D. Kreutz, F. Ramos, "Software-Defined Networking: A Comprehensive Survey," in
Proceedings of the IEEE, January, 2015.

[99] "Openflow Spec 1.3 Coverage," 22 Feb. 2017. [Online]. Available:
https://seagullbird.xyz/posts/openflow-1.3-coverage/. [Accessed 10 6 2022].

[100] A. C. Jimenez, "LOGICAL SECURITY. Information management: Confidentiality,
integrity, availability and tightness," 31 March 2017. [Online]. Available:
https://cronicaseguridad.com/2017/03/31/seguridad-logica-gestion-la-informacion-
confidencialidad-integridad-disponibilidad-estanqueidad/. [Accessed 15 6 2022].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

183

[101] Zhen Yan, Peng Zhang, Athanasios V. Vasilakos, "A security trust framework for
virtualized networks and software-defined networking”, 2015.," Wiley Online Library,
vol. 9, no. https://doi.org/10.1002/sec.1243, pp. 3059-3069, 26 March 2015.

[102] S.-H. S. Sezer, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller y N.
Rao, "Are we ready for SDN? Implementation challenges for software-defined
networks," in Communications Magazine, 2013.

[103] Ganjali, A. Tootoonchian and Y., "HyperFlow: A Distributed Control Plane for Open-
Flow," in Proc. 2010 Internet Network Management Conf. Research on Enterprise
Networking, 2010.

[104] Andrés Felipe Murillo, Sandra Rueda, Laura Victoria Morales, Álvaro Cardenas, "SDN
and NFV Security: Challenges for Integrated Solutions," no. DOI: 10.1007/978-3-319-
64653-4_3, 12 November 2017.

[105] Juan Felipe Botero, Juan Camilo Correa Chica, Jenny Cuatindioy Imbachi, "Security in
SDN: A comprehensive survey," Vega Journal of Network and Computer Applications,
2018.

[106] Ahmad, I., Namal, S., Ylianttila, M., & Gurtov, A., "Security in Software Defined
Networks: A Survey," in IEEE Communications Surveys & Tutorials, 2015.

[107] A. Linguori, M. Winandy, "The Diamond Approach for SDN Security," in IEEE
Softwarization, March, 2018.

[108] D. Kreutz, F. Ramos, P. Verissimo, "Towards Secure and Dependable Software-Defined
Networks," in ACM, August, 2013.

[109] Z. Yan, R. MacLaverty, "Autonomic Trust Management in a Component-Based
Software System," in Proceedings of the 3rd International Conference on Autonomic
and Trusted Computing (ATC2006), 2006.

[110] Y. Desmedt, Y. Franke, "Threshold Cryptosystems," in Proceedings of the 9th Annual
International Cryptology Conference., August, 1989.

[111] Schehlmann, L., Abt, S., Baier, H., "Blessing or curse? revisiting security aspects of
software-defined networking. In:," in 10th International Conference on Network and
Service Management (CNSM) and Workshop, 2014.

[112] "2016 Cost of Cyber Crime Study & the Risk of Business Innovation," Ponemon
Institute, October 2016. [Online]. Available:
https://www.ponemon.org/local/upload/file/2016%20HPE%20CCC%20GLOBAL%20
REPORT%20FINAL%203.pdf. [Accessed 10 6 2022].

[113] P. J. Criscuolo, "Distributed Denial of Service,," in Tribe Flood Network 2000, and
Stacheldraht CIAC-2319, February 14, 2000.

[114] "What is a DDoS attack?," Cloudflare, [Online]. Available:
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/.

[115] D Warburton, E Ojeda, "DDoS Attack Trends for 2020," 07 May 2021. [Online].
Available: https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-
for-2020. [Accessed 15 4 2022].

[116] Sobana Sikkanan, Kasthuri M., "Denial-of-Service and Botnet Analysis, Detection, and
Mitigation," 2021 , pp. 114-151.

[117] J. Paracuellos, "Proactive and reactive defense against DDoS attacks in a simulated
environment of software-defined networks," 2016.

 184

[118] Radware, "Attack Types and Their Effects," in DDoS Survival Handbook, 2013.

[119] Dong, S., Abbas, K., & Jain, R., "A Survey on Distributed Denial of Service (DDoS)
Attacks in SDN and Cloud Computing Environments.," 2019.

[120] Lawal, B. H., & At, N., " Real-Time Detection and Mitigation of Distributed Denial of
Service (DDoS) Attacks in Software-Defined Networking (SDN)," in 26th Signal
Processing and Communications Applications Conference (SIU), 2018.

[121] Mousavi, S. M., & St-Hilaire, M., "Early Detection of DDoS Attacks Against Software
Defined Network Controllers," in Journal of Network and Systems Management, 2018.

[122] Haque, M. R., Ali, S., Tan, S. C., Yusoff, Z., Kwang, L. C., Kaspin, I. R., & Ziri, S. R., "The
Motivation of DDoS Attack-Aware in Software-Defined Networking Controller
Placement," in International Conference on Computer and Applications, ICCA 201,
2017.

[123] N. Z. &. S. J. A. Bawany, "Application Layer DDoS Attack Defense Framework for Smart
City using SDN," May 2016.

[124] Ahmad, I., Namal, S., Ylianttila, M., & Gurtov, A., "Security in Software Defined
Networks: A Survey," 2015.

[125] THENEWSTACK, "SDN Series Part Three: NOX, the Original OpenFlow Controller," 15
December 2014. [Online]. Available: https://thenewstack.io/sdn-series-part-iii-nox-
the-original-openflow-controller/. [Accessed 15 3 2022].

[126] "SDN Series Part Four: Ryu, a Rich-Featured Open Source SDN Controller Supported
by NTT Labs," THENEWSTACK, 23 December 2014. [Online]. Available:
https://thenewstack.io/sdn-series-part-iv-ryu-a-rich-featured-open-source-sdn-
controller-supported-by-ntt-labs/. [Accessed 15 5 2022].

[127] Asadollahi, Saleh & Goswami, Bhargavi, "Experimenting with the scalability of
floodlight controller in software-defined networks," no.
10.1109/ICEECCOT.2017.8284684., pp. 288-292, 2017.

[128] "REST API Tutorial," 7 April 2022. [Online]. Available: https://restfulapi.net/ .
[Accessed 20 June 2022].

[129] Z. K. Khattak, M. Awais and A. Iqbal, "Performance evaluation of OpenDaylight SDN
controller," in 20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), 2014.

[130] "What’s Software Defined Networking (SDN)? Definition," SDxCentral Studios, 26
August 2016. [Online]. Available: https://www.sdxcentral.com/sdn/definitions/ what-
the-definition-of-software-defined-networking-sdn/. [Accessed 15 April 2022].

[131] "ONOS - a new carrier-grade SDN network operating system," Open Networking
Foundation (ONF), [Online]. Available: https://onosproject.org/. [Accessed 20 May
2022].

[132] A. Al-Shabibi, "ONOS Project. “ONOS Platform Architecture”," OpenDayLight, 4 March
2015. [Online]. Available: https://www.slideshare.net/OpenDaylight/onos-platform-
architecture. [Accessed 10 June 2022].

[133] "SDN Series Part Seven: ONOS," THENEWSTACK, 3 March 2015. [Online]. Available:
https://thenewstack.io/open-source-sdn-controllers-part-vii-onos/. [Accessed 10
May 2022].

[134] O. Salman, I. Elhajj, A. Chehab, "SDN controllers: A comparative study," in 18th
Mediterranean Electrotechnical Conference (MELECON), 2016.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

185

[135] "ONOS Project," [Online]. Available: https://wiki.onosproject.org/. [Accessed 20 6
2022].

[136] A. Koshibe, 30 March 2016. [Online]. Available:
https://wiki.onosproject.org/display/ONOS15/Use+Cases. [Accessed 10 May 2022].

[137] S. Secci, S. Scott-Hayward, Q. Pham Van, D. Verchere, A. Sow, C. Basquin, D. Smyth, K.
Attou, "ONOS Security & Performance Analysis (Report No. 2)," Open Networking
Foundation,, November 2018.

[138] A. Koshibe, "The ONOS CLI," [Online]. Available:
https://wiki.onosproject.org/display/ONOS/The+ONOS+CLI. [Accessed 20 6 2022].

[139] A. Koshibe, "The ONOS Web GUI," [Online]. Available:
https://wiki.onosproject.org/display/ONOS/The+ONOS+Web+GUI. [Accessed 20 6
2022].

[140] "OSGi Framework Overview," [Online]. Available:
http://docs.osgi.org/specification/osgi.core/7.0.0/ch01.html. [Accessed 20 6 2022].

[141] P. Paralogarajah, "OSGi in a Nutshell," 9 Sept 2017. [Online]. Available:
https://piraveenaparalogarajah.medium.com/osgi-in-a-nutshell-aafc3a86cff0 .
[Accessed 30 4 2022].

[142] E. Olkhovskaya, "ONOS Cluster Coordination," [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination. [Accessed 20 6
2022].

[143] A. Koshibe, "ONOS System Components," [Online]. Available:
https://wiki.onosproject.org/display/ONOS/System+Components. [Accessed 20 6
2022].

[144] T. Vachuska, "Overview of ONOS architecture," [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Overview+of+ONOS+architecture.
[Accessed 20 6 2022].

[145] Peterson, Cascone, O’Connor, Vachuska, and Davie, "Software-Defined Networks: A
Systems Approach (Chapter 6: Network OS)," [Online]. Available:
https://sdn.systemsapproach.org/onos.html. [Accessed 20 6 2022].

[146] Arvind, "Maven Tutorial: All You Need To Know To Get Started.," [Online]. Available:
https://www.edureka.co/blog/maven-tutorial/. [Accessed 20 12 2022].

[147] E. Z. Moghaddam, "Getting to know Apache Karaf," [Online]. Available:
http://developmentor.blogspot.com/2013/12/getting-to-know-apache-karaf.html.
[Accessed 20 6 2022].

[148] S. Rao, "SDN Series Part Seven: ONOS.," [Online]. Available:
https://thenewstack.io/open-source-sdn-controllers-part-vii-onos/. [Accessed 20 12
22].

[149] M. Virk, "Classification Metrics," 15 Feb. 2020. [Online]. Available:
https://medium.com/@m.virk1/classification-metrics-65b79bfdd776. [Accessed 15 6
2022].

[150] 26 Aug. 2016. [Online]. Available: http://kflu.github.io/2016/08/26/2016-08-26-
visualizing-precision-recall/. [Accessed 15 6 2022].

[151] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning, 2nd
edition, London, England: The MIT Press, 2018.

 186

[152] S. Kiourkoulis, "DDoS datasets, Use of machine learning to analyse intrusion detection
performance," Department of Computer Science, Electrical and Space Engineering,,
2020. [Online].

[153] Preeti Mishra, Vijay Varadharajan, Uday Tupakula, Emmanuel S. Pilli., "A Detailed
Investigation and Analysis of using Machine Learning Techniques for Intrusion
Detection," in IEEE Communications Surveys & Tutorials.

[154] T. M. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997.

[155] S. M. Kasongo, "Development and Evaluation of a Deep Learning Based Intrusion
Detection Model for Wireless Networks," in Doctoral Thesis, 2020.

[156] D. Denning, "An Intrusion Detection Model," in IEEE Transactions on Software
Engineering, 1987.

[157] R. Sommer and V. Paxson, "Outside the Closed World: On Using Machine Learning for
Network Intrusion Detection," in IEEE Security and Privacy Symposium, May 2010.

[158] "KDD Cup 1999 Data," in University of California, Irvine, 1999.

[159] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set)," in 2015 Military
Communications and Information Systems Conference (MilCIS), 2015.

[160] M. Tavallaee, E. Bagheri, W. Lu, A. Ghorbani, "A Detailed Analysis of the KDD CUP 99
Data Set," in Submitted to Second IEEE Symposium on Computational Intelligence for
Security and Defense Applications (CISDA), 2009.

[161] J. McHugh, "Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory," in
ACM Transactions on Information and System Security, 2000.

[162] F. Salo, M. Injadat, A. B. Nassif, A. Shami, A. Essex, "Data Mining Techniques in
IntrusionDetection Systems: A Systematic Literature Review," in IEEE Communications
Surveys & Tutorials, 2018.

[163] L. Dhanabal, S.P. Shantharajah, "A Study on NSL-KDD Dataset for Intrusion Detection
System Based on Classification Algorithms," in International Journal of Advanced
Research in Computer and Communication Engineering, June 2015.

[164] N. K. S. Choudhary, "Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 Datasets
using Deep Learning in IoT," in International Conference on Computational Intelligence
and Data Science (ICCIDS 2019), 2019.

[165] T. Tang, L. Mhamdi, D. McLernon, Z. S.A.R. and M. M. Ghogho, "Deep Learning
Approach for Network Intrusion Detection in Software Defined Networking," in Proc.
International Conf. on Wireless Networks and Mobile Communications, Morocco, 26-
29 Oct.2016.

[166] Latah, Majd & Toker, Levent, "An Efficient Flow-based Multi-level Hybrid Intrusion
Detection System for Software-Defined Networks," 2018.

[167] N. Moustafa, "The UNSW-NB15 Dataset," Intelligent Security Group(ISG), UNSW,
Australia, [Online]. Available: https://research.unsw.edu.au/projects/unsw-nb15-
dataset. [Accessed 20 6 2022].

[168] Zeinab Zoghi and Gursel Serpen, "UNSW-NB15 Computer Security Dataset: Analysis
through Visualization," in Electrical Engineering & Computer Science, Ohio, USA.

[169] "Mininet overview," [Online]. Available: http://mininet.org/overview. [Accessed 20 6
2022].

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

187

[170] S. Studios, "What Is Open vSwitch (OVS)?," [Online]. Available:
https://www.sdxcentral.com/cloud/open-source/definitions/what-is- open-vswitch/
. [Accessed 25 6 2022].

[171] L. Foundation. [Online]. Available: https://www.openvswitch.org/ . [Accessed 25 6
2022].

[172] "Open vSwitch," [Online]. Available: https://en.wikipedia.org/wiki/Open_vSwitch.
[Accessed 25 6 2022].

[173] "hping3," 14 Sept. 2021. [Online]. Available:
https://www.kali.org/tools/hping3/#:~:text=hping3%20is%20a%20network%20tool,
transfer%20files%20under%20supported%20protocols.. [Accessed 20 6 2022].

[174] "htop - an interactive process viewer," [Online]. Available: https://htop.dev/.
[Accessed 20 6 2022].

[175] "Apache Spark, a unified analytics engine for large-scale data processing," [Online].
Available: https://spark.apache.org/. [Accessed 20 6 2022].

[176] Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, Kun Li,, "A Survey on Spark Ecosystem:
Big Data Processing Infrastructure, Machine Learning, and Applications," in IEEE
Transactions On Knowledge and Data Engineering, Feb. 2020.

[177] S. Banerjee, "Introduction to Apache Spark," 7 2018. [Online]. Available:
https://www.kdnuggets.com/2018/07/introduction-apache-spark.html. [Accessed
20 4 2022].

[178] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.,
"Mllib: Machine learning in apache spark," (2015).

[179] R. D. X. C. P. X. P. J. Z. H. S. Salloum, "Big data analytics on Apache Spark," in Int J Data
Sci Anal , 2016.

[180] "Spark Streaming Tutorial for Beginners," [Online]. Available: https://data-
flair.training/blogs/apache-spark-streaming-tutorial/. [Accessed 20 6 2022].

[181] A. P. Gulati, "Introduction to Spark Streaming," 14 August 2022. [Online]. Available:
https://www.analyticsvidhya.com/blog/2022/08/introduction-to-spark-streaming/.
[Accessed 15 11 2022].

[182] "Apache Kafka," [Online]. Available: https://kafka.apache.org/intro. [Accessed 20 6
2022].

[183] L. Johansson, "Apache Kafka for beginners - What is Apache Kafka? " 19 3 2020.
[Online]. Available: https://www.cloudkarafka.com/blog/part1-kafka-for-beginners-
what-is-apache-kafka.html. [Accessed 20 6 2022].

[184] "Kafka Architecture and Its Fundamental Concepts," [Online]. Available: https://data-
flair.training/blogs/kafka-architecture/. [Accessed 15 11 2022].

[185] "Kafka Architecture," [Online]. Available: http://cloudurable.com/blog/kafka-
architecture/index.html. [Accessed 15 11 2022].

[186] "Apache ZooKeeper," [Online]. Available: https://zookeeper.apache.org/. [Accessed
20 6 2022].

[187] "What is Elasticsearch?," [Online]. Available: https://www.elastic.co/what-
is/elasticsearch. [Accessed 20 6 2022].

 188

[188] "SparkContext,"[Online]Available:
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.SparkConte
xt.html. [Accessed 20 6 2022].

[189] "Spark Streaming Programming Guide," [Online]. Available:
https://spark.apache.org/docs/latest/streaming-programming-guide.html. [Accessed
20 6 2022].

[190] "RDD Programming Guide," [Online]. Available:
https://spark.apache.org/docs/latest/rdd-programming-guide.html. [Accessed 24 6
2022].

[191] D. Rai, "Feature Engineering in pyspark," [Online]. Available: https://dhiraj-p-
rai.medium.com/essentials-of-feature-engineering-in-pyspark-part-i-76a57680a85.
[Accessed 24 6 2022].

[192] "ML - Features," [Online]. Available: https://spark.apache.org/docs/1.4.1/ml-
features.html. [Accessed 24 6 2022].

[193] H. Hajialian, C. TOMA, "Network Anomaly Detection by Means of Machine Learning:
Random Forest Approach with Apache Spark”,," in Informatics Economics, 2018.

[194] "Mininet Python API Reference Manual.," [Online]. Available:
http://mininet.org/api/index.html . [Accessed 25 6 2022].

[195] "NEPHELE project," 2018. [Online]. Available: http://www.nepheleproject.eu/.
[Accessed 5 3 2022].

[196] "SEcure Networking for a DATa center cloud in Europe," 2016. [Online]. Available:
https://www.celticnext.eu/project-sendate/. [Accessed 5 3 2022].

[197] "ONAP," [Online]. Available: https://www.onap.org.

[198] "Project AI-NET-PROTECT," 2021. [Online]. Available:
https://www.celticnext.eu/project-ai-net-protect/. [Accessed 5 5 2022].

[199] A. P. T. K. Y. H. K. W. a. M. M. H. Z. Ye, "Sparktext: Biomedical text mining on big data
framework," in PloS one.

[200] M. A. Uddin, J. bibi Joolee, A. Alam, and Y.-K. Lee, "Human action recognition using
adaptive local motion descriptor in spark," 2017.

[201] A. Campanella, "ONOS Southbound: Protocol, Providers, Drivers," [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Southbound%3A+Protocol%2C+Provider
s%2C+Drivers. [Accessed 20 6 2022].

[202] A. P. Tafti, E. Behravesh, M. Assefi, E. LaRose, J. Badger, J. Mayer, A. Doan, D. Page,
and P. Peissig, "bignn: an open-source big data toolkit focused on biomedical sentence
classification," in Proceedings of the IEEE BIG DATA, 2017.

[203] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska,
"Automating model search for large scale machine learning," in Proceedings of the
Sixth ACM Symposium on Cloud Computing, 2015.

[204] A. Hryhorzhevska, M. Wiewio ́rka, M. Okoniewski, and T. Gambin, "Scalable
framework for the analysis of population structure using the next generation
sequencing data," in International Symposium on Methodologies for Intelligent
Systems., 2017.

[205] M.-S. Lee, E. Kim, C.-S. Nam, and D.-R. Shin, "Design of educational big data application
using spark," in Advanced Communication Technology (ICACT), 2017.

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

189

[206] A.Saied, R.E.Overill, and T.Radzik, "Detection of known and unknown DDoS attacks
using artificial neural networks," in Neurocomputing, Jan. 2016.

[207] T. Zhao, D. C.-T. Lo, and K. Qian, "A neural-network based DDoS detection system
using Hadoop and HBase," in Proc. IEEE Int. Conf. High Perform. Comput. Commun,
Aug. 2015.

[208] T Zhao, D Chia-Tien Lo, K Qian, "A Neural-Network Based DDoS Detection System
Using Hadoop and HBase," in IEEE International Conference on High-Performance
Computing and Communications (HPCC), 2015.

[209] G. Dileep Kumar, C V Guru Rao, "Leveraging Big Data Analytics for Real-time DDoS
Attacks Detection in SDN," in International Journal for Research in Engineering
Application and Management (IJREAM), May 2018.

 190

Appendix A

A. The Source Code of Machine Learning Evaluation

Scalable and Reliable Framework to Detect and Mitigate DDoS attack in OpenFlow-based SDN Network.

191

 192

	Acknowledgments
	Abstract
	List of Acronyms
	List of Figures
	Chapter 1
	1 Introduction
	1.1 Challenges in SDN network security
	1.2 Motivation
	1.3 Objectives
	1.3.1 Research Questions
	1.3.2 Specific objectives

	1.4 Goals and Contributions
	1.4.1 Thesis Impact

	1.5 Thesis Outline

	Chapter 2
	2 Literature Review
	2.1 General Methods
	2.2 Mathematical Methods
	2.3 Machine Learning Methods
	2.4 Big Data Methods
	2.5 Hybrid Methods (Big Data and Machine Learning)
	2.6 Research Gap
	2.7 Chapter Summary

	Chapter 3
	3 Technology Background
	3.1 Overview
	3.2 SDN History
	3.3 The Concept of SDN
	3.3.1 General definitions of SDN
	3.3.2 The major characteristic of the SDN Network

	3.4 SDN Architecture
	3.4.1 The Application Layer
	3.4.2 The Control Layer
	3.4.2.1 The Controller Characteristics
	3.4.2.2 Different Types of the SDN Controllers

	3.4.3 The Infrastructure/Data-plane Layer
	3.4.4 SDN Programming Interfaces
	3.4.4.1 The Northbound API
	3.4.4.2 The East-Westbound API
	3.4.4.3 The Southbound API

	3.5 OpenFlow protocol
	3.5.1 OpenFlow Architecture
	3.5.1.1 OpenFlow Switch

	3.5.2 OpenFlow Workflow
	3.5.3 Flow Load Modes

	3.6 SDN Security
	3.6.1 SDN Challenges and Issues
	3.6.1.1 Scalability
	3.6.1.2 Performance

	3.6.2 SDN Vulnerabilities
	3.6.2.1 Attack on the Data-Plane Layer
	3.6.2.2 Attack on the Control Layer
	3.6.2.3 Attack on the Application Layer

	3.6.3 SDN Attack Vectors
	3.6.4 Improve Security in SDN

	3.7 Denial of Service Attacks
	3.7.1 Different Types of DDoS Attacks
	3.7.1.1 Volumetric Attack:
	3.7.1.2 Application Layer attack:
	3.7.1.3 Protocol attacks
	TCP-SYN Flood:
	UDP Flood:
	ICMP Flooding:

	3.7.2 DDoS Attacks on SDN Networks
	3.7.2.1 DDoS attacks at the SDN application layer
	3.7.2.2 DDoS attacks on the SDN data layer
	3.7.2.3 DDoS attacks at the SDN control layer

	3.8 Chapter Summary

	Chapter 4
	4 Evaluating the SDN Controllers
	4.1 Features for Selecting the SDN Controllers
	4.2 SDN Controllers
	4.2.1 NOX/POX:
	1- NOX Controller:
	2- POX controller

	4.2.2 Ryu Controller
	4.2.3 Floodlight Controller
	4.2.4 OpenDaylight (ODL)
	4.2.5 ONOS Controller
	4.2.6 Conclusion

	4.3 Open Network Operating System (ONOS)
	4.3.1 ONOS Use Cases
	4.3.2 Clustering capability of the ONOS
	4.3.3 Security concerns in the ONOS controller
	4.3.4 ONOS Overview
	4.3.4.1 Communication with ONOS

	4.3.5 ONOS Architecture
	4.3.5.1 ONOS Application
	4.3.5.2 ONOS Northbound interface
	4.3.5.3 ONOS southbound interface
	4.3.5.4 ONOS Core
	4.3.5.5 Provider Layer:

	4.4 Chapter Summary

	Chapter 5
	5 Proposed Framework (BFDD-S)
	5.1 BFDD-S Methodology
	5.1.1 Motivation behind BFDD-S

	5.2 Framework Architecture
	5.3 Framework Workflow
	5.4 API Development for SDN controller
	5.5 Machine Learning Algorithms Evaluation
	5.5.1 Algorithm Methods
	5.5.1.1 Supervised Learning
	5.5.1.2 Unsupervised Learning
	5.5.1.3 Reinforcement Learning

	5.5.2 Process of Designing a Model in this Research
	5.5.3 Evaluate the Accuracy of a Model
	5.5.3.1 Confusion Matrix
	5.5.3.2 Selection of Metrics
	5.5.3.3 Evaluation of the Model in a Real Environment

	5.5.4 Classification Algorithms
	5.5.4.1 Logistic Regression (LR)
	5.5.4.2 K-Nearest Neighbor (KNN)
	5.5.4.3 Naïve Bayes Classifier (NB)
	5.5.4.4 Decision Tree (DT):
	5.5.4.5 Random Forest (RF):

	5.5.5 Intrusion Detection Using Techniques
	5.5.6 Data Set Selection
	5.5.6.1 KDD CUP 1999:
	5.5.6.2 NSL KDD Data Set
	5.5.6.3 UNSW-NB15 Data Set

	5.6 Selection of Proper Machine Learning Algorithm
	5.6.1 Data Preprocessing
	5.6.2 Comparison of the Classification Algorithms

	5.7 Tools Used for Proposed Framework (BFDD-S)
	5.7.1 General Tools
	5.7.1.1 Mininet
	5.7.1.2 Open vSwtich
	5.7.1.3 Hping3
	5.7.1.4 Htop
	5.7.1.5 Programming Libraries

	5.7.2 Big Data Analytics Tools
	5.7.2.1 Apache Spark
	5.7.2.2 Apache Spark Streaming
	5.7.2.3 Apache Kafka
	5.7.2.4 Zookeeper
	5.7.2.5 Elasticsearch

	5.8 Implementing the Big Data Pipeline
	5.8.1 Pre-Requisite Configuration
	5.8.2 Implementation of Big Data Infrastructure
	5.8.2.1 Apache Spark Implementation in Standalone Mode
	5.8.2.2 Apache Kafka Implementation
	5.8.2.3 Elasticsearch Implementation

	5.8.3 Implementing Data Pipeline
	5.8.4 Implementing Machine Learning in Apache Spark

	5.9 Chapter Summary

	Chapter 6
	6 Experimental Setup and Performance Evaluation
	6.1 Setup Experimental Testbed
	6.2 Deploying Network Topology
	6.3 BFDD-S Framework Operation
	6.4 Performance Evaluation of the BFDD-S Framework
	6.4.1 Performance Evaluationof of the BFDD-S Framework with Centralized Detection Method
	6.4.2 Performance Evaluation of the BFDD-S Framework with Traditional Methods

	6.5 Chapter Summary

	Chapter 7
	7 Projects Contribution and Research Use Cases
	7.1 Nephele Project.
	7.1.1 Project goals
	7.1.2 Our Contribution

	7.2 SENDATE Project.
	7.2.1 Project Goals
	7.2.1.1 DCI Orchestration Framework and Testbed Setup

	7.2.2 Our Contribution

	7.3 AI-NET-PROTECT Project.
	7.3.1 Project goals
	7.3.2 Work Package Three: AI-based Network control & service automation
	7.3.3 Our Contribution

	Chapter 8
	8 Conclusion and Future Work
	8.1 Introduction
	8.2 Conclusions about the Research Questions
	8.3 Research Summary
	8.4 Future Work

	Bibliography
	Appendix A
	A. The Source Code of Machine Learning Evaluation
	54c8c301-a3f8-41ff-8943-1ea02c9bf7b0.pdf
	Acknowledgments
	Abstract
	List of Acronyms
	List of Figures
	Chapter 1
	1 Introduction
	1.1 Challenges in SDN network security
	1.2 Motivation
	1.3 Objectives
	1.3.1 Research Questions
	1.3.2 Specific objectives

	1.4 Goals and Contributions
	1.4.1 Thesis Impact

	1.5 Thesis Outline

	Chapter 2
	2 Literature Review
	2.1 General Methods
	2.2 Mathematical Methods
	2.3 Machine Learning Methods
	2.4 Big Data Methods
	2.5 Hybrid Methods (Big Data and Machine Learning)
	2.6 Research Gap
	2.7 Chapter Summary

	Chapter 3
	3 Technology Background
	3.1 Overview
	3.2 SDN History
	3.3 The Concept of SDN
	3.3.1 General definitions of SDN
	3.3.2 The major characteristic of the SDN Network

	3.4 SDN Architecture
	3.4.1 The Application Layer
	3.4.2 The Control Layer
	3.4.2.1 The Controller Characteristics
	3.4.2.2 Different Types of the SDN Controllers

	3.4.3 The Infrastructure/Data-plane Layer
	3.4.4 SDN Programming Interfaces
	3.4.4.1 The Northbound API
	3.4.4.2 The East-Westbound API
	3.4.4.3 The Southbound API

	3.5 OpenFlow protocol
	3.5.1 OpenFlow Architecture
	3.5.1.1 OpenFlow Switch

	3.5.2 OpenFlow Workflow
	3.5.3 Flow Load Modes

	3.6 SDN Security
	3.6.1 SDN Challenges and Issues
	3.6.1.1 Scalability
	3.6.1.2 Performance

	3.6.2 SDN Vulnerabilities
	3.6.2.1 Attack on the Data-Plane Layer
	3.6.2.2 Attack on the Control Layer
	3.6.2.3 Attack on the Application Layer

	3.6.3 SDN Attack Vectors
	3.6.4 Improve Security in SDN

	3.7 Denial of Service Attacks
	3.7.1 Different Types of DDoS Attacks
	3.7.1.1 Volumetric Attack:
	3.7.1.2 Application Layer attack:
	3.7.1.3 Protocol attacks
	TCP-SYN Flood:
	UDP Flood:
	ICMP Flooding:

	3.7.2 DDoS Attacks on SDN Networks
	3.7.2.1 DDoS attacks at the SDN application layer
	3.7.2.2 DDoS attacks on the SDN data layer
	3.7.2.3 DDoS attacks at the SDN control layer

	3.8 Chapter Summary

	Chapter 4
	4 Evaluating the SDN Controllers
	4.1 Features for Selecting the SDN Controllers
	4.2 SDN Controllers
	4.2.1 NOX/POX:
	1- NOX Controller:
	2- POX controller

	4.2.2 Ryu Controller
	4.2.3 Floodlight Controller
	4.2.4 OpenDaylight (ODL)
	4.2.5 ONOS Controller
	4.2.6 Conclusion

	4.3 Open Network Operating System (ONOS)
	4.3.1 ONOS Use Cases
	4.3.2 Clustering capability of the ONOS
	4.3.3 Security concerns in the ONOS controller
	4.3.4 ONOS Overview
	4.3.4.1 Communication with ONOS

	4.3.5 ONOS Architecture
	4.3.5.1 ONOS Application
	4.3.5.2 ONOS Northbound interface
	4.3.5.3 ONOS southbound interface
	4.3.5.4 ONOS Core
	4.3.5.5 Provider Layer:

	4.4 Chapter Summary

	Chapter 5
	5 Proposed Framework (BFDD-S)
	5.1 BFDD-S Methodology
	5.1.1 Motivation behind BFDD-S

	5.2 Framework Architecture
	5.3 Framework Workflow
	5.4 API Development for SDN controller
	5.5 Machine Learning Algorithms Evaluation
	5.5.1 Algorithm Methods
	5.5.1.1 Supervised Learning
	5.5.1.2 Unsupervised Learning
	5.5.1.3 Reinforcement Learning

	5.5.2 Process of Designing a Model in this Research
	5.5.3 Evaluate the Accuracy of a Model
	5.5.3.1 Confusion Matrix
	5.5.3.2 Selection of Metrics
	5.5.3.3 Evaluation of the Model in a Real Environment

	5.5.4 Classification Algorithms
	5.5.4.1 Logistic Regression (LR)
	5.5.4.2 K-Nearest Neighbor (KNN)
	5.5.4.3 Naïve Bayes Classifier (NB)
	5.5.4.4 Decision Tree (DT):
	5.5.4.5 Random Forest (RF):

	5.5.5 Intrusion Detection Using Techniques
	5.5.6 Data Set Selection
	5.5.6.1 KDD CUP 1999:
	5.5.6.2 NSL KDD Data Set
	5.5.6.3 UNSW-NB15 Data Set

	5.6 Selection of Proper Machine Learning Algorithm
	5.6.1 Data Preprocessing
	5.6.2 Comparison of the Classification Algorithms

	5.7 Tools Used for Proposed Framework (BFDD-S)
	5.7.1 General Tools
	5.7.1.1 Mininet
	5.7.1.2 Open vSwtich
	5.7.1.3 Hping3
	5.7.1.4 Htop
	5.7.1.5 Programming Libraries

	5.7.2 Big Data Analytics Tools
	5.7.2.1 Apache Spark
	5.7.2.2 Apache Spark Streaming
	5.7.2.3 Apache Kafka
	5.7.2.4 Zookeeper
	5.7.2.5 Elasticsearch

	5.8 Implementing the Big Data Pipeline
	5.8.1 Pre-Requisite Configuration
	5.8.2 Implementation of Big Data Infrastructure
	5.8.2.1 Apache Spark Implementation in Standalone Mode
	5.8.2.2 Apache Kafka Implementation
	5.8.2.3 Elasticsearch Implementation

	5.8.3 Implementing Data Pipeline
	5.8.4 Implementing Machine Learning in Apache Spark

	5.9 Chapter Summary

	Chapter 6
	6 Experimental Setup and Performance Evaluation
	6.1 Setup Experimental Testbed
	6.2 Deploying Network Topology
	6.3 BFDD-S Framework Operation
	6.4 Performance Evaluation of the BFDD-S Framework
	6.4.1 Performance Evaluationof of the BFDD-S Framework with Centralized Detection Method
	6.4.2 Performance Evaluation of the BFDD-S Framework with Traditional Methods

	6.5 Chapter Summary

	Chapter 7
	7 Projects Contribution and Research Use Cases
	7.1 Nephele Project.
	7.1.1 Project goals
	7.1.2 Our Contribution

	7.2 SENDATE Project.
	7.2.1 Project Goals
	7.2.1.1 DCI Orchestration Framework and Testbed Setup

	7.2.2 Our Contribution

	7.3 AI-NET-PROTECT Project.
	7.3.1 Project goals
	7.3.2 Work Package Three: AI-based Network control & service automation
	7.3.3 Our Contribution

	Chapter 8
	8 Conclusion and Future Work
	8.1 Introduction
	8.2 Conclusions about the Research Questions
	8.3 Research Summary
	8.4 Future Work

	Bibliography
	Appendix A
	A. The Source Code of Machine Learning Evaluation

