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Date of the oral examination: 27th June 2023

ii



Contents

1. Introduction 1

2. Theoretical Overview 5

2.1. Fundamentals of MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1. Classical Description of Magnetization . . . . . . . . . . . . . . . 5
2.1.2. Rotating Coordinate Systems . . . . . . . . . . . . . . . . . . . . 7
2.1.3. Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4. Signal Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5. Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6. Combined Temporal Evolution Models . . . . . . . . . . . . . . . 19
2.1.7. Spatial Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.8. Pulse Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.9. Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2. antitative MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1. Conventional Methods . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2. Model-Based Reconstruction . . . . . . . . . . . . . . . . . . . . 45

2.3. Simulation of Spin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.1. Rotation Matrix Approaches . . . . . . . . . . . . . . . . . . . . . 49
2.3.2. Matrix Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3. ODE Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.4. State-Transition Matrices . . . . . . . . . . . . . . . . . . . . . . 56

2.4. Partial Derivative Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1. Symbolic Dierentiation . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.2. Automatic Dierentiation . . . . . . . . . . . . . . . . . . . . . . 58
2.4.3. Dierenceotients . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.4. Direct Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 59

iii



Contents

3. Methods 61
3.1. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1. Scanner System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2. Reference Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.3. Computational Resources . . . . . . . . . . . . . . . . . . . . . . 64

3.2. Soware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1. Realistic Numerical Phantoms . . . . . . . . . . . . . . . . . . . . 65
3.2.2. Reconstruction and Simulation Soware . . . . . . . . . . . . . . 69

3.3. Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4. antitative Magnetic Resonance Imaging by Nonlinear Inversion of
the Bloch Equations 71
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2. eory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1. Sensitivity Analysis of the Bloch Equations . . . . . . . . . . . . 74
4.2.2. State-Transition Matrices . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3. Bloch Model-Based Reconstruction . . . . . . . . . . . . . . . . . 77

4.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2. Validation of Bloch Simulation . . . . . . . . . . . . . . . . . . . 79
4.3.3. Validation of Reconstruction . . . . . . . . . . . . . . . . . . . . . 80

4.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1. Validation of Bloch Simulation . . . . . . . . . . . . . . . . . . . 82
4.4.2. Validation of Reconstruction . . . . . . . . . . . . . . . . . . . . . 85

4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.1. Combining Sensitivity Analysis With a State-Transition Matrix
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.2. Forward Model Derivatives . . . . . . . . . . . . . . . . . . . . . 89
4.7.3. Look-Locker Reparameterization . . . . . . . . . . . . . . . . . . 90
4.7.4. Scaling Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7.5. IR-bSSFP Information Encoding . . . . . . . . . . . . . . . . . . . 92
4.7.6. Symbolic Derivatives of IR-bSSFP . . . . . . . . . . . . . . . . . . 92

4.8. Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
S1. Supporting Figure S1 . . . . . . . . . . . . . . . . . . . . . . . . . 100

iv



Contents

S2. Supporting Figure S2 . . . . . . . . . . . . . . . . . . . . . . . . . 101
S3. Supporting Figure S3: Simulation Accuracy . . . . . . . . . . . . 102
S4. Supporting Figure S4 . . . . . . . . . . . . . . . . . . . . . . . . . 104
S5. Supporting Figure S5: Inuence of the Magnetization Transfer

Eect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
S6. Supporting Figure S6 . . . . . . . . . . . . . . . . . . . . . . . . . 107
S7. Supporting Table S1 . . . . . . . . . . . . . . . . . . . . . . . . . . 108
S8. Supporting Table S2 . . . . . . . . . . . . . . . . . . . . . . . . . 108

5. Additional Factors Aecting theantitative Accuracy 109
5.1. General Initialization of the Reconstruction . . . . . . . . . . . . . . . . . 109
5.2. Eect of Parameter Distributions Within the Object . . . . . . . . . . . . 113
5.3. Inuence of 𝐵0 Inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . 115
5.4. Eects of Prior Shimming . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.5. Inuences of Gradient Delays . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6. Pixel-Wise Perspective on the In Vivo IR-bSSFP Oset . . . . . . . . . . . 126
5.7. Inuence of Spoke Binning . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.8. Flip Angle Eects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6. Summary and Outlook 135

A. Appendix 141
A1. Windowed Sinc Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143

Acknowledgments 157

Curriculum Vitæ 159

v





Glossary

ASY . . . . . . . asymmetric operator spliing

BART . . . . . . Berkeley Advanced Reconstruction Toolbox

bSSFP . . . . . . balanced steady-state free precession

BWTP . . . . . . bandwidth time product

CG . . . . . . . . conjugate gradient method

CLI . . . . . . . command line interface

CSF . . . . . . . cerebrospinal uid

CT . . . . . . . . computed tomography

DFT . . . . . . . discrete Fourier transform

DOPRI . . . . . Dormand-Prince

DQ . . . . . . . dierence quotient

FFT . . . . . . . fast (discrete) Fourier transform

FID . . . . . . . free induction decay

FISTA . . . . . . fast iterative shrinkage/thresholding algorithm

FLASH . . . . . fast low-angle shot

FoV . . . . . . . eld of view

GIRF . . . . . . . gradient system impulse response function

GRE . . . . . . . gradient recalled echo

vii



Glossary

GRE-DA . . . . gradient recalled echo double-angle

HS1 . . . . . . . hyperbolic secant

IR . . . . . . . . inversion-recovery

IR-bSSFP . . . . inversion-recovery balanced steady-state free precession

IR-FLASH . . . inversion-recovery fast low angle shot

IRGNM . . . . . iteratively regularized Gauss-Newton method

MR-STAT . . . . magnetic resonance spin tomography in time-domain

MRF . . . . . . . magnetic resonance ngerprinting

MRI . . . . . . . magnetic resonance imaging

MT . . . . . . . magnetization transfer

NIST . . . . . . National Institute of Standards and Technology

NLINV . . . . . regularized nonlinear inverse reconstruction

NMR . . . . . . nuclear magnetic resonance

nuFFT . . . . . . non-uniform fast Fourier transform

ODE . . . . . . . ordinary dierential equation

PCA . . . . . . . principal component analysis

PET . . . . . . . positron emission tomography

PI . . . . . . . . parallel imaging

PSD . . . . . . . phase-sensitive detection

PWE . . . . . . point-wise error

QMRI . . . . . . quantitative magnetic resonance imaging

RF . . . . . . . . radio frequency

viii



Glossary

RING . . . . . . radial spoke intersections for gradient delay estimation

RK . . . . . . . . Runge-Kua

ROI . . . . . . . region of interest

ROT . . . . . . . rotation matrix

RT-NLINV . . . real-time regularized nonlinear inverse reconstruction

SAB . . . . . . . sensitivity analysis of the Bloch equations

SAR . . . . . . . specic absorption rate

SNR . . . . . . . signal-to-noise ratio

SS-Pre . . . . . . slice-selective preconditioning

SSFP . . . . . . . steady-state free precession

STM . . . . . . . state-transition matrix

SVD . . . . . . . singular value decomposition

SY . . . . . . . . symmetric operator spliing

TE . . . . . . . . echo time

TI . . . . . . . . inversion delay time

TR . . . . . . . . repetition time

ix





1. Introduction

Magnetic resonance imaging (MRI) is a versatile imaging technology with a broad variety
of biomedical and clinical applications. It provides an excellent so tissue contrast without
the need for ionizing radiation or radioactive materials as required in modalities like
computed tomography (CT) and positron emission tomography (PET). In general, the
image contrast in MRI depends on tissue properties and hardware characteristics as
well as the measurement technique. us, conventional MRI provides only a qualitative
image contrast where images are interpreted based on relative intensity dierences. In
contrast, in quantitative magnetic resonance imaging (QMRI) physical properties such as
relaxation constants, ow velocities, temperatures, or diusion coecients are determined
in physical units. From a clinical perspective, QMRI is relevant for classication, detection,
and monitoring of abnormal tissue [1]. It can be used to detect subtle changes that are
not observable using conventional MRI and has the potential to replace measurements
which require the use of contrast agents, beneting otherwise excluded patients. From a
methodological perspective,measuring physical quantities adds robustness of the acquired
data against variations in the scanner hardware, the operating personnel or the soware.
It improves the longitudinal and inter-site comparability of results and thereby increases
the reproducibility of studies.
Most existing techniques in QMRI rely on special sequences designed for high sensi-

tivity to specic physical quantities, while being robust against other inuences. ey
utilize analytical signal representations that are used in an additional ing step to ex-
tract quantitative maps from conventionally reconstructed images [2–4]. e focus on
robust sequences makes conventional QMRI methods very accurate in measuring specic
physical quantities such as the 𝑇1 and 𝑇2 relaxation constants. Yet, this comes with a
severe downside: e requirement to rst obtain a number of high quality intermediate
images for pixel-wise ing leads to long measurement protocols which are then not
feasible in a clinical seing.

By exploiting the data in a more ecient way, e.g., by incorporating prior knowledge,
it is possible to reduce the amount of data required for reconstruction, and, consequently,
shorten the measuring time. is can be achieved with model-based reconstructions that
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1. Introduction

bypass the reconstruction of intermediate images completely by formulating the image
estimation as an inverse problem and by incorporating the physical signal model directly
into the image reconstruction [5–8]. us, the acquisition of redundant information is
avoided, which reduces the measurement time substantially.

Model-based reconstructionmethods rely on sequences with analytical signalmodels [9,
10], which are convenient to use with numerical optimization algorithms applied in image
reconstructions. ese signal models are oen derived using assumptions that limit their
accuracy by excluding certain physical eects of the magnetization during the acquisition.
Furthermore, the requirement of analytical models restricts the application of model-
based reconstructions to specic MRI measurements. Several ecient sequences that are
simultaneously sensitive to multiple parameters have complicated, oen non-analytical
signal expressions which prevent their use in established model-based reconstruction
schemes [11, 12]. e acquisition of multiple parameter maps then requires multiple scans,
which —even with shorter measurements— still presents a challenge in a clinical seing.

e aim of this thesis is to develop a generic model-based reconstruction method for
quantitative mapping of multiple parameters with arbitrary MRI sequences. Building
on a previous proof-of-principle study [13], a complete framework for QMRI that uses
model-based reconstruction with the Bloch equations is developed and validated. e
Bloch equations describe the behavior of nuclear spins under the inuence of external
magnetic elds and can be used to describe most MRI experiments. To integrate this into
a practical reconstruction framework, a generic technique for the solution of the Bloch
equations is described that eciently exploits repeated paerns of the MRI measurement
by pre-computation of state-transition matrices. is is combined with a direct sensitivity
analysis for the computation of the partial derivatives that are required for numerical
optimization. ese techniques were then integrated into a calibration-less model-based
reconstruction framework, which establishes a versatile and generic tool for QMRI. e
technique was validated using simulations, phantom scans, and in vivo experiments.

e thesis starts in Chapter 2 with a theoretical overview of various fundamental
concepts for MRI. e theory behind radio frequency (RF) excitation, signal acquisition,
spatial encoding and reconstruction is discussed. e general concept of QMRI is intro-
duced and various methods for the estimation of physical quantities are explained. In the
end of the theoretical overview, techniques for the simulation of temporal evolutions of
the magnetization in MRI experiments are introduced, followed by an overview about
methods for the estimation of partial derivatives.

In Chapter 3 information about the soware and hardware used in this thesis is provided.

2



It starts by introducing the MRI system, physical reference objects, and computational
resources. Furthermore, soware components for the simulation and reconstruction
developed during this project are discussed. e chapter ends with a brief description on
how the work of this thesis can be reproduced, listing the resources which provide the
source code and raw data. e main part of this thesis consists of Chapters 4 and 5.
Chapter 4 is based on a journal article and presents the basic principles behind the

nonlinear inversion of the Bloch equations and the details about the algorithm for the
Bloch model-based reconstruction. e theoretical section shows how a direct sensitivity
analysis for ordinary dierential equations (ODEs) can be applied to the Bloch equations to
compute their partial derivatives with respect to the physical parameters. It also presents
how the state-transition matrix (STM) technique can be exploited for computationally
ecient simulations of the temporal behavior of the magnetization in MRI experiments.
en, the integration of both concepts into a calibration-less model-based reconstruction
framework is described.e technique is validated by reproducing a special case, forwhich
an analytical signal model is available. is is done in a simulation and a physical phantom
study as well as on an in vivo dataset acquired with an inversion-recovery fast low angle
shot (IR-FLASH) sequence. Also in Chapter 4, the exibility of the generalized forward
model is demonstrated by simultaneous estimation of 𝑇1 and 𝑇2 relaxation parameters
from inversion-recovery balanced steady-state free precession (IR-bSSFP) datasets. e
simulation accuracy, the eect of regularization and a remaining physical bias due to
magnetization transfer (MT) eects are discussed.

In Chapter 5, additional analyses are described thatwere performed to beer understand
the remaining bias observed for the in vivo IR-bSSFP scans. e inuence of initialization
and parameters on the Bloch model-based reconstruction as well as additional error
sources such as 𝐵0 eld inhomogeneities and gradient imperfections are studied. e
technique is also compared to results determined by pixel-wise ing of images that
were obtained by observing the magnetization dynamics in real-time exploiting real-time
regularized nonlinear inverse reconstruction (RT-NLINV) [14].
Finally, the work is summarized and discussed in Chapter 6. Applications and future

research directions are outlined.
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2. Theoretical Overview

is section provides an overview of nuclear magnetic resonance (NMR) and magnetic
resonance imaging (MRI) principles including signal generation, signal types, spatial
encoding, sequences and image reconstruction. It also introduces quantitative MRI meth-
ods, such as basic 𝑇1, 𝑇2, 𝐵1, and 𝐵0 estimation, advanced physical modelling, and partial
derivative calculation of complex signals for quantitative MRI.

2.1. Fundamentals of MRI

MRI generates signals with local magnetic eld changes interacting with time-varying
radio frequency (RF) elds. In the beginning of this section, the focus lies on how a mag-
netic eld can be exploited to generate a signal response. Aerwards, the excitation and
spatial encoding of signals is discussed and jointly explained in the concept of sequences.
In the end, techniques to generate images from the acquired data are introduced. us,
all concepts from magnetic eld and signal generation to acquisition and reconstruction
are covered.

2.1.1. Classical Description of Magnetization

e fundamental basis of MRI is the signal generation with magnetic elds. Because
conventional MRI is based on H1 spins (with quantum spin number 𝐼 = 1/2) and their
interactions with a temporary changing magnetic eld, the underlying physical eects
are generally of quantum mechanical nature. e magnitude ` of the spins’ magnetic
moment depends on the Planck constant ℏ and the gyromagnetic ratio 𝛾 : [15, p.60]

` = 𝛾ℏ
√︁
𝐼 (𝐼 + 1) . (2.1)

Individual spins cannot be resolved, and therefore, many of them are collectively
observed within one volume element called voxel. In MRI, such a voxel has a volume
of typically 1 mm3. Describing the individual magnetic moments 𝝁 within one voxel
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2. eoretical Overview

jointly denes a classical description of the spins’ interactions with the macroscopic
magnetization 𝑴 [15, p.64]:

𝑴 =
1
𝑉

𝑁𝑠∑︁
𝑛=1

𝝁𝑛 , (2.2)

and the number of spins 𝑁𝑠 as well as the moment 𝝁𝑛 of the 𝑛-th spin in the volume𝑉 .
For a vanishing external magnetic eld 𝑩0 = 0, the polarization of the individual spins
within the collective is randomly distributed. is lack of preference in orientation leads
to an overall disappearing 𝑴 .
For 𝑩0 > 0, the magnetic eld adds a orientation preference which is parallel or anti-
parallel to the external eld. It is described by the Zeeman eect leading to a split of
the quantum mechanical up and down states and resulting in discrete states of the
𝑧-component of the magentic moments `𝑧 [15, p.60],

`𝑧 = 𝛾𝑚𝐼ℏ , (2.3)

dened by the magnetic quantum number𝑚𝐼 = −𝐼 ,− 𝐼 + 1,...,𝐼 . e H1 particles for MRI
split into two states: the ground state 𝑁↑ with𝑚𝐼 = 1/2 and the excited state 𝑁↓ with
𝑚𝐼 = −1/2. In Figure 2.1, both are visualized and dierent population levels are indicated.

Figure 2.1: Visualization of a not-vanishing magnetization adding an orientation pref-
erence to a spin system of spin 1/2 particles. e Zeeman eect describes
the spliing in the anti-parallel excited 𝑁↓ and the parallel ground state
𝑁↑. Figure taken from [13].

To understand the dierently populated states, the energy of the ground and the excited
state is required. Both follow with the magnetic quantum number [15, p.64]

𝐸 = −𝝁 · 𝑩0 = −𝛾ℏ𝑚𝐼𝐵0 . (2.4)

6



2.1. Fundamentals of MRI

e energy dierence between both states is dened by

Δ𝐸 = 𝐸↓ − 𝐸↑ = 𝛾ℏ𝐵0, (2.5)

with the energy of the ground state 𝐸↑ and of the excited state 𝐸↓, respectively.
In the equilibrium state without any external RF pulses, the H1 spins are Boltzmann-

distributed over 𝑁↓ and 𝑁↑ [15, p.65]:

𝑁↑
𝑁↓

= exp
(
− Δ𝐸

𝑘𝐵𝑇

)
, (2.6)

with temperature 𝑇 and the Boltzmann constant 𝑘𝐵 . Because more spins are located in
the ground state, this distribution is asymmetric leading to an overall non-zero macro-
scopic magnetization𝑀 > 0 with 𝑴 being parallel to 𝑩0.

2.1.2. Rotating Coordinate Systems

In the previous section, the basic concepts behind the classical macroscopic magnetization
are introduced. Here, the focus is on two coordinate systems commonly used for various
explanations in MRI. First, the focus is on the individual spins 𝝁. ey are tilted against
the external magnetic eld 𝑩0 as illustrated in Figure 2.1. e tilting angle follows [15,
p.63]

\ = arccos
(
`𝑧

`

)
. (2.7)

A tilted 𝝁 in an external magnetic eld exhibits a precession around 𝑩0 where the
angular frequency is given by the Larmor frequency [15, p.63]:

𝜔0 = 𝛾𝐵0. (2.8)

is rotation of𝑴 can be either described from a stationary perspective, the laboratory
frame, or incorporated into the coordinate system from a rotating perspective, the rotating
frame. While the rst describes the perspective of an outside observer, it is challenging to
visualize temporary eects of𝑴 when it is rotating with a frequency of 127.74 MHz. In the
rotating frame𝑴 is stationary which simplies a visual understanding and explanation of
evolutions of the magnetization. Both perspectives are discussed in detail in the following.

Laboratory Perspective In the laboratory frame, the observer is located in a stationary
Cartesian coordinate system described by the coordinates 𝑥′, 𝑦′ and 𝑧. A tilted magneti-
zation 𝑴 , as presented in Figure 2.2, is seen to rotate around 𝒆𝑧 with the frequency 𝜔0. In
the laboratory frame, the magnetization is dened as

7



2. eoretical Overview

𝑴′(𝑡) = 𝑀𝑥 ′ (𝑡)𝒆𝑥 ′ +𝑀𝑦 ′ (𝑡)𝒆𝑦 ′ +𝑀𝑧 (𝑡)𝒆𝑧 , (2.9)

with the time independent basis vectors 𝒆𝑥 ′,𝑦 ′,𝑧 .

Figure 2.2: Visualization of the laboratory (le) and rotating (right) coordinate sys-
tems. On the le, the magnetization 𝑴′ rotates with the frequency 𝜔0
around the 𝑧-axis. On the right, the magnetization 𝑴 is static, while the
coordinate system rotates with 𝜔0 around 𝑧. Figure modied from [13].

Rotating Perspective In the rotating frame, the observer is no longer stationary
but its 𝑥-, 𝑦-, and 𝑧-coordinate system rotates with the Larmor frequency 𝜔0. A tilted
magnetization as shown in Figure 2.2 appears to be stationary from this perspective. In
general, the magnetization is described by

𝑴 (𝑡) = 𝑀𝑥 (𝑡)𝒆𝑥 (𝑡) +𝑀𝑦 (𝑡)𝒆𝑦 (𝑡) +𝑀𝑧𝒆𝑧 , (2.10)

with the time-varying basis vectors 𝒆𝑥,𝑦 (𝑡). As these basis vectors rotate with constant
𝜔0, the notation of Equation (2.10) is typically simplied to

𝑴 (𝑡) = 𝑀𝑥 (𝑡)𝒆𝑥 +𝑀𝑦 (𝑡)𝒆𝑦 +𝑀𝑧𝒆𝑧 . (2.11)

Both coordinate systems share the same 𝑧-axis. e transformation connecting the
two coordinate systems is given by

R : 𝑴′ ↦→ 𝑴 , (2.12)

with [16, p.23]

8



2.1. Fundamentals of MRI

𝑴 = R(𝑡)𝑴′ =
©«
cos(𝜔0𝑡) − sin(𝜔0𝑡) 0
sin(𝜔0𝑡) cos(𝜔0𝑡) 0

0 0 1

ª®®®¬𝑴
′ . (2.13)

For the temporal change, this becomes [17]

d𝑴
d𝑡

=
d𝑴′

d𝑡
− 𝛀 ×𝑴 , (2.14)

with

𝛀 = −𝜔0𝒆𝑧 . (2.15)

2.1.3. Excitation

With the introduced rotating perspective on the macroscopic magnetization 𝑴 , all tools
are derived for introducing the classical concept of RF excitation through nuclear induction
proposed by [18]. It is based on the application of a time-varying external magnetic
eld 𝑩1(𝑡) oriented within the transversal plane. While 𝑩1(𝑡) is static from the rotating
perspective, it precesses around 𝒆𝑧 with an angular frequency 𝜔RF from the laboratory
view [16, p.26]:

𝑩′
1(𝑡) = 𝐵1(𝑡) cos(𝜔RF𝑡) 𝒆𝑥 ′ − 𝐵1(𝑡) sin(𝜔RF𝑡) 𝒆𝑦 ′ . (2.16)

Adding 𝑩′
1(𝑡) to the main magnetic eld 𝑩0 gives a total magnetization at time 𝑡 of

𝑩′(𝑡) = 𝑩0 + 𝑩′
1(𝑡) . (2.17)

e magnetization 𝑴 precesses around 𝑩′(𝑡) and its temporal evolution therefore
follows [16, p.26]

d𝑴′

d𝑡
= 𝛾𝑴 × 𝑩′(𝑡)

= 𝛾𝑴 ×
[
𝐵1(𝑡) cos(𝜔RF𝑡) 𝒆𝑥 ′ − 𝐵1(𝑡) sin(𝜔RF𝑡) 𝒆𝑦 ′ + 𝐵0𝒆𝑧

]
. (2.18)

For a beer understanding, the temporal dynamics of the magnetization are mapped
to the rotating frame from the laboratory perspective in Equation (2.18). First, the eld
𝑩′
1(𝑡) in Equation (2.16) is transformed to 𝑩1(𝑡) with R following Equation (2.13).
e result is inserted in Equation (2.18). In the last step, Equation (2.15) is used to

transform the temporal change of the magnetization d𝑴 ′

d𝑡 . Finally, the precession from a

9



2. eoretical Overview

rotating perspective reads [16, p.27]

d𝑴
d𝑡

= 𝛾𝑴 ×
(
𝐵1(𝑡) cos( [𝜔RF − 𝜔0]𝑡) 𝒆𝑥 − 𝐵1(𝑡) sin( [𝜔RF − 𝜔0]𝑡) 𝒆𝑦 + 𝒆𝑧

(
𝐵0 −

𝜔0

𝛾

))
︸                                                                                           ︷︷                                                                                           ︸

𝐵e(𝑡)

,

(2.19)

which denes the eective eld 𝐵e(𝑡).
With a denition of the eective eld in the rotating view, the resonance condition MRI
is named aer can be understood geometrically. Classically, precession is a rotation of
the magnetization around 𝑩0. is eect is static in the rotating frame. When a 𝑩1 eld
is added in the transversal plane that fullls the resonance condition

𝜔RF = 𝜔0 , (2.20)

it as well appears stationary in the rotating frame. is eect is illustrated in Figure
2.3.

Figure 2.3: Visualization of the eect of an external magnetic eld 𝑩1 acting on a
magnetization𝑴0 in the rotating frame of reference.𝑴0 precesses around
𝑩1 until it reaches a position 𝑴 ipped by the angle \ . Figure modied
from [13].

Because 𝐵e is a superposition of 𝑩0 and 𝑩1, its orientation is no longer parallel to 𝒆𝑧 .
e precession axis changes leading to a rotation of the magnetization𝑴 around 𝑩1. is
eect describes the on-resonant excitation with RF pulses from a classical perspective.

For an on-resonant 𝑩1(𝑡) Equation (2.19) simplies to

10



2.1. Fundamentals of MRI

d𝑴
d𝑡

= 𝛾𝑴 ×


𝐵1(𝑡) 𝒆𝑥︸   ︷︷   ︸
RF eld

+ 𝒆𝑧
(
𝐵0 −

𝜔RF

𝛾

)
︸           ︷︷           ︸

freq. oset


. (2.21)

e tipping angle of this rotation, generally referred to as ip angle, follows with [16,
p.69]

\ (𝑡) = 𝛾
𝑡∫

𝑡 ′=0

𝐵1(𝑡 ′)d𝑡 ′ . (2.22)

Aer the introduction of time-varying magnetic elds and the resonance condition,
the following is focused on the actual design of two RF pulses. Both are chosen for their
later application in the experiments of this work.

Sinc Pulses

e main frequency of the RF pulse is the carrier frequency 𝜔RF. When it fullls the
resonance condition in Equation (2.20) 𝑩1 is stationary in the rotating frame (compare
Figure 2.3). Nevertheless, the amplitude 𝑩1 is changed by adding an envelope of the carrier
frequency which denes the RF pulse’s shape in MRI experiments. e rst discussed
design is a sinc pulse which follows

𝐵1(𝑡) = 𝐴 sinc
(
𝜋𝑡

𝑡0

)
, (2.23)

with the width of the main lope 𝑡0 and the maximum amplitude 𝐴. e frequency
representation of the sinc in Equation (2.23) is a rectangular function Π(𝜔). It is ideal
for applications in slice-selection as further discussed in Section 2.1.7. In practice, a sinc
cannot be used in MRI because it requires an innite long application time. us, it needs
to be cut at specic points in time giving a truncated sinc pulse

𝐵1(𝑡) =

𝐴 sinc

(
𝜋𝑡
𝑡0

)
, −𝑁𝐿𝑡0 ≤ 𝑡 ≤ 𝑁𝑅𝑡0

0, elsewhere
, (2.24)

with 𝑁𝐿,𝑅 as the number of zero-crossing to the le (𝐿) and right (𝑅). e pulse shape
dened by Equation (2.24) is illustrated in Figure 2.4. e truncation of the innite long
sinc results in discontinuities of the derivative at both cuing points. For an intuitive
understanding, the temporal limitation can be understood as the multiplication of the

11



2. eoretical Overview

innite sinc with a rectangular function in time. Following the convolution property of
the Fourier transform [15, p.31]

𝐹𝑇 (sinc(𝑡) · Π(𝑡)) = 𝐹𝑇 (sinc(𝑡)) ∗ 𝐹𝑇 (Π(𝑡)) (2.25)

= Π(𝜔) ∗ sinc(𝜔) , (2.26)

this relates to a convolution of the frequency response of the ideal sinc with the Fourier
transform of a rectangular function. Following 𝐹𝑇 (Π(𝑡)) = sinc(𝜔), oscillations around
the sharp edges of the original rectangular frequency response occur as shown in Figure
2.4.
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Figure 2.4: Visualization of a truncated sinc function dened by Equation (2.24) (le)
and its frequency representation (right). e shape is dened by 𝑁𝐿=𝑁𝑅=6,
𝐴=1 and 𝑡0=1. e rectangular function representing the truncation limits
is added in time domain. Figure modied from [13].

To reduce oscillations, the cut sinc pulse in Equation (2.24) can be apodized by applying
a windowing function like a Hamming (𝛼 = 0.46) or a Hanning window (𝛼 = 0.5). No
windowing function corresponds to 𝛼 = 0. e analytical representation of the windowed
and temporal limited sinc pulse is [16, p.39]

𝐵1(𝑡) =

𝐴

[
(1 − 𝛼) + 𝛼 cos

(
𝜋𝑡
𝑁𝑡0

)]
sinc

(
𝜋𝑡
𝑡0

)
, −𝑁𝐿𝑡0 ≤ 𝑡 ≤ 𝑁𝑅𝑡0

0, elsewhere.
(2.27)

An analytical representation of its integral in time is derived in Section A1. e win-
dowing decreases the amplitude of the pulse to zero at the cuing points. is can be
understood as a multiplication of the 𝑩1 eld not with a rectangular function Π(𝑡), but
with a constant function 𝐶 following
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2.1. Fundamentals of MRI

𝐹𝑇 (𝐶) = 𝐶 · 𝛿 (𝑡) . (2.28)

With the Dirac delta function 𝛿 (𝑡) the convolution does not interpolate neighboring
frequencies and oscillations are avoided. e dierent windowing functions and their
eect on the frequency representation of the RF pulse are visualized in Figure 2.5.

1.0 0.5 0.0 0.5 1.0
time t [s]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

am
pl

itu
de

 [a
.u

.]

No Window
Hamming
Hanning

4 2 0 2 4
frequency f [1/Hz]

0

250

500

750

1000

1250

1500

1750

am
pl

itu
de

 [a
.u

.]

Figure 2.5: Visualization of a truncated sinc function on the le dened by Equa-
tion (2.27). e eect of multiple windowing functions dened by 𝛼 are
presented: no-windowing, a Hanning- and a Hamming-window. eir
frequency responses are shown on the right. e shape of the sinc pulses
is dened by: 𝑁𝐿=𝑁𝑅=1, 𝐴=1 and 𝑡0=1. Figure modied from [13].

Adiabatic Inversion Pulses

In MRI, sinc pulses are commonly chosen for their simplicity and their almost rectangular
frequency response. ey are designed with temporal variations solely in the amplitude,
as shown in Figure 2.5. In contrast adiabatic RF pulses are designed for robustness against
𝑩0 inhomogeneities and accurate inversion of the magnetization. is second class of RF
pulses vary in amplitude and frequency and consequently has a greater complexity.
In the following, the concept of adiabatic pulses is introduced. eir eects on the mag-
netization are discussed and the origins behind their robustness are explained. While the
class of adiabatic pulses is large, this work is focused on hyperbolic secant (HS1) inversion
pulses initially published by Silver et al. [19] as they are used in the inversion-recovery
sequences of this work.
e temporal evolution of the amplitude 𝜔1(𝑡) of a HS1 pulse follows

𝜔1(𝑡) = 𝜔max
1 (sech(𝛽𝑡))1+𝑖𝛾 , (2.29)
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2. eoretical Overview

depending on themaximum amplitude𝜔max
1 , the modulation of the angular frequency 𝛽 ,

and an additional dimensionless factor `. Equation (2.29) can be expressed in a coordinate
system rotating with a constant angular frequency 𝜔𝑐 [20],

𝜔1(𝑡) = 𝜔max
1 sech(𝛽𝑡)𝑒𝑖𝜙 (𝑡) , (2.30)

leading to a time-varying phase [20]

𝜙 (𝑡) = ` ln(sech(𝛽𝑡)) . (2.31)

For a beer understanding, the explanation follows [20] with Equations (2.30) and
(2.31) being transformed to a frequency-modulated rotating coordinate system. Its angular
frequency 𝜔RF(𝑡) follows the frequency of the RF pulse 𝜔RF(𝑡). Compared to the rotating
frame introduced in Section 2.1.2, its time-dependency varies. Within this system, the
amplitude of the HS1 pulse is described by

𝜔1(𝑡) = 𝜔max
1 sech(𝛽𝑡) , (2.32)

while the frequency is given by the derivative of Equation (2.31) with respect to 𝑡 and
reads

d𝜙
d𝑡

= 𝜔RF(𝑡) − 𝜔𝑐 = −`𝛽tanh(𝛽𝑡) . (2.33)

In the frequency-modulated frame, the eect of the HS1 pulse can be described geo-
metrically because it appears stationary. e eective RF eld 𝜔e consists of the two
components 𝝎1(𝑡) and 𝚫𝝎 (𝑡):

𝝎1(𝑡) = 𝜔1(𝑡)𝒆𝑥RF (2.34)

𝚫𝝎 (𝑡) = (𝜔0 − 𝜔RF(𝑡))𝒆𝑧 , (2.35)

with the Larmor frequency 𝜔0. Since 𝜔1(𝑡) and 𝜔RF(𝑡) vary with time, 𝜔e(𝑡) rotates
with the angular velocity of

d𝛼
d𝑡

= d
(
arctan

[
𝜔1(𝑡)
Δ𝜔 (𝑡)

] )
/d𝑡 . (2.36)

e temporal dynamics during the HS1 inversion pulse are illustrated in Figure 2.6.
For𝜔RF � 𝜔0, the eective eld𝜔e ≈ Δ𝜔 is parallel to 𝒆𝑧 . During the frequency sweep

(𝜔RF → −𝜔RF) , the eective eld 𝜔e moves towards the transversal plane where the
on-resonance condition is fullled: 𝜔RF ≈ 𝜔0 and𝜔e = 𝜔1. Aerwards, the𝜔e continues
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2.1. Fundamentals of MRI

Figure 2.6: Visualization of the eective magnetic eld 𝜔e which is experienced
by isochromates during an adiabatic HS1 inversion pulse in a frequency
modulated coordinate system. e le presents its projections on the
𝑧- and 𝑥RF-axis for 𝜔RF far away from the Larmor frequency 𝜔0. e
center shows both for the on-resonant case leading to a vanishing 𝑧-axis
projection 𝚫𝝎 and a tipping angle 𝛼 of 90◦. On the right, both components
are presented for 𝜔RF � 𝜔0 leading to an inverted 𝚫𝝎. Figure inspired by
[20].

the rotation until 𝜔RF � 𝜔0 and until the eective eld will be oriented anti-parallel to
𝒆𝑧 . e isochromates can follow 𝜔e during this passage when the adiabatic condition

|𝜔e(𝑡) | �
����d𝛼d𝑡 ���� (2.37)

is fullled. is holds for HS1 inversion pulses if [16, p.195]

𝜔max
1 �

√
`𝛽

𝛾
. (2.38)

e fundamental robustness of adiabatic pulses against 𝐵0 inhomogeneities results
from their designed sweep through a broad range of frequencies. Inhomogeneities lead to
isochromates with dierent resonance frequencies, which are not possible to excite with
a simple sinc pulse designed for a single carrier frequency 𝜔RF. During the application
of an adiabatic pulse, spins within a broad range of frequencies experience the whole
sweep, but at dierent time points. is ensures a high inversion eciency even in the
presence of inhomogeneities of the main magnetic eld.
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2.1.4. Signal Acquisition

e previously introduced excitation rotates the macroscopic magnetization 𝑴 around
an applied time-varying RF eld. In this section, the example of a 𝜋/2-pulse is used
to explain the concept of signal acquisition in MRI. e 𝜋/2-pulse ips 𝑴 into the
transversal plane: 𝑴 = 𝑴𝑥𝑦 . From the laboratory perspective, the transversal component
𝑴𝑥𝑦 precesses around the 𝑧-axis with the Larmor frequency 𝜔0. is induces a voltage
𝑉 (𝑡) in neighboring loops [15, p.95],

𝑉 (𝑡) = −𝜕Φ(𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑡

∫
object

𝑩(𝒓)𝑴 (𝒓,𝑡)d𝒓 , (2.39)

following Faraday’s law of induction. ese receivers need to resonate at the Larmor
frequency to be able to detect the signal from the precessing magnetization. e resulting
signal has a high frequency due to the typically high magnetic eld strengths in MRI.
To improve its post-processing, the signal is demodulated by 𝜔0. e technique is called
phase-sensitive detection (PSD). 𝑉 (𝑡) is multiplied with a reference sinusoidal signal
2 cos(𝜔0𝑡) and the double frequency component is removed by low-pass ltering [15,
p.97]. e resulting low frequency signal 𝑆1(𝑡) corresponds to a rotating perspective.
With a single demodulation, the direction of the rotation of the transversal magnetization
cannot be detected. erefore, a second demodulation is performed with a reference
signal that is phase-shied by 𝜋/2: 2 sin(𝜔0𝑡) [15, p.99]. It results in a second signal 𝑆2(𝑡)
orthogonal to 𝑆1(𝑡). is quadrature detection is oen expressed in a complex notation:

𝑆 (𝑡) = 𝑆1(𝑡) + 𝑖𝑆2(𝑡) . (2.40)

e signal 𝑆 (𝑡) is proportional to the transversal component of the magnetization:

𝑆 (𝑡) ∝ 𝑀𝑥𝑦 (𝑡) = 𝑀𝑥 (𝑡) + 𝑖𝑀𝑦 (𝑡) , (2.41)

with𝑀𝑥,𝑦 (𝑡) = |𝑴 (𝑡)𝒆𝑥,𝑦 |. e proportionality constant includes the eect of dierent
distances between the object and the receiver coils. In later sections this eect of varying
coil sensitivities is discussed. For simplicity, this work describes the signal with𝑀𝑥𝑦 and
ignores further eects inuencing 𝑆 (𝑡).
A detailed discussion about the principles of signal detection was carried out by [15,
p.94].
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2.1.5. Relaxation

Up to now, no interactions between individual spins have been taken into account. ey
can lead to a reduced inversion eciency when isochromates are moved through the
transversal plane. erefore, dierent types of interactions between spins and their
surroundings based on [18, 21, 22] are introduced and modelled in this section. A more
detailed description was given by [22].

𝑇1 Relaxation e 𝑇1 relaxation results from a model that incorporates interactions
between the spins and their surrounding laice. Energy between spins and laice is
exchanged which connects both thermally. Heat is understood as Brownian motion
which represents the temperature of the spin system. e focus here is on fast molecular
motion which allows for the approximation of dipol-dipol interactions by random eld
uctuations. A generalized model describing slow molecular motions was developed by
[23].

e model from Section 2.1.1 is continued where spins in the excited state 𝑁↓ have the
energy 𝐸↓ and the ones in the ground state 𝑁↑ have 𝐸↑. e dierence of spins between
both levels 𝑛 = 𝑁↑ − 𝑁↓ has been shown to contribute to the macroscopic magnetization.
Let 𝑛(𝑡 = 0) = 𝑛0 describe the dierence in equilibrium. An applied RF pulse changes 𝑛 by
liing spins from 𝐸↑ up to 𝐸↓ through absorption. Aer the RF pulse is switched o, the
system relaxes back to its equilibrium state. is transitions in the spin system originate
from stimulated emissions induced by their interactions with random eld changes that
are created from the surrounding laice. e process can be described classically with
the ordinary dierential equation (ODE) [18, 22],

d𝑛
d𝑡

=
𝑛0 − 𝑛
𝑇1

, (2.42)

and the relaxation constant𝑇1. Taking into account that 𝑛 corresponds to𝑀𝑧 of a voxel
and 𝑛0 replacing𝑀0 in the equilibrium state, the solution of the ODE (2.42) is

𝑀𝑧 = 𝑀0

(
1 − 𝑒−

𝑡
T1

)
. (2.43)

is 𝑇1 relaxation can be understood as an increase of the 𝑀𝑧 component until the
equilibrium state𝑀0 is reached. e eect is visualized in Figure 2.7.

𝑇2 Relaxation e 𝑇2 relaxation describes interactions between individual spins. e
overall energy of the spin system does not change and only the polarization of the
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Figure 2.7: Visualization of the eect of relaxation on the longitudinal (top) and
transversal magnetization (boom). While the 𝑇1 relaxation describes the
increase of𝑀𝑧 over time, 𝑇2 models the decreasing𝑀𝑥𝑦 component due
to dephasing of the isochromates that are summed up to the macroscopic
magnetization. Figure modied from [13].

macroscopic magnetization of a voxel is aected. Spin 1/2-particles like H1 have no
quadrupole moment which makes dipol-dipol interactions the dominating eect for the
𝑇2 relaxation in conventionalMRI. By approximating dipol-dipol interactions with random
eld uctuations [22], the classical interpretation of 𝑇2 is a dephasing eect of the spins
which is visualized in Figure 2.7. Here, the transversal magnetization𝑀𝑥𝑦 = 𝑴 ·𝒆𝒙+𝑖𝑴 ·𝒆𝒚
is the sum over all dephased spins and 𝑇2 reduces 𝑀𝑥𝑦 by changing the phase of the
individual spins and by keeping the overall polarization of 𝑴 constant. e dynamic of
𝑀𝑥𝑦 can be described with the ODE [18],

d𝑀𝑥𝑦

d𝑡
= − 1

𝑇2
𝑀𝑥𝑦 , (2.44)

and its solution is

𝑀𝑥𝑦 = 𝑀0𝑒
− 𝑡

T2 . (2.45)

e 𝑇2 relaxation results from a model that incorporates interactions within the spin
assemble for the ideal chase of a homogeneous magnetic eld. Only the dipol-dipol
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interactions result in random eld uctuations and dephasing. Field uctuations due to
𝐵0 inhomogeneities increase the dephasing of the spins and increases the transversal
relaxation rate which is described by the eective relaxation time 𝑇 ∗

2 < 𝑇2.

2.1.6. Combined Temporal Evolution Models

In the previous sections, the excitation and relaxation eects in MRI have been classically
described. Aer introducing them individually, they will be combined to a single system of
ODEs in this section.e derived equations describe the temporal evolution of the classical
magnetization within the limits of the random eld uctuation model. ey include the
Bloch equations and extensions to diusion and multiple substance compartments.

Bloch Equations e Bloch equations introduced by Bloch in 1946 [18] describe the
temporal dynamics of a two-level spin system in the presence of both time-varying RF
elds and dierent types of interactions between the spins and their surroundings. It
does not describe individual spins but focuses on the classical macroscopic magnetization
that results from Zeemann spliing. Spin interactions are described with two relaxation
constants. e Bloch equations read

d𝑴
d𝑡

= 𝛾𝑴 × 𝑩 −
𝒆𝑥𝑴 + 𝒆𝑦𝑴

𝑇2
− 𝒆𝑧𝑴 −𝑀0

𝑇1
, (2.46)

with

𝑴 =
©«
𝑀𝑥

𝑀𝑦

𝑀𝑧

ª®®®¬ and 𝑩 =
©«
𝐵𝑥

𝐵𝑦

𝐵𝑧

ª®®®¬ . (2.47)

It takes major assumptions, like a spatially stationary macroscopic magnetization and a
single type of observed particles. Incorporating further extension of the Bloch equations,
which avoid these assumptions, are not part of this work. Nevertheless, the possible
extensions are briey discussed for a beer understanding of possible future work.

Bloch-Torrey Equations e originally proposed model by Bloch in Equation (2.46)
takes the assumptions of stationary spins, which does not hold in general. An extension
incorporating this eect was proposed by Torrey in 1956 [24] who included an additive
diusion term with the diusion coecients 𝑫 and small dri terms in all directions 𝑴0:

𝜕𝑴

𝜕𝑡
= 𝛾𝑴 × 𝑩 −

𝒆𝑥𝑴 + 𝒆𝑦𝑴

𝑇2
− 𝒆𝑧𝑴 −𝑀0

𝑇1
− ∇ · 𝑫∇(𝑴 −𝑴0). (2.48)
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is model requires spins to have only small dri velocities, but can be further extended
to incorporate ow terms [25].

Bloch-McConnell Equations e Bloch equations in Equation (2.46) assume a single
type of observed particles. In reality, multiple interacting substances frequently contribute
to the measured signal. is is modelled by the Bloch-McConnell extension [26] which
added a second semi-solid pool 𝑴𝑠 and exchange rates to the free water pool 𝑴𝑤 with
rst order transversal life times 𝜏2,𝑠→𝑤 and 𝜏2,𝑤→𝑠 as well as the longitudinal life time
𝜏1,𝑠→𝑤 and 𝜏1,𝑤→𝑠 :

d𝑴𝑤

d𝑡
= 𝛾𝑴𝑤 × 𝑩 −

𝒆𝑥𝑴𝑤 + 𝒆𝑦𝑴𝑤

𝑇2,𝑤
− 𝒆𝑧𝑴𝑤 −𝑀0,𝑤

𝑇1,𝑤

−
𝒆𝑥𝑴𝑤 + 𝒆𝑦𝑴𝑤

𝜏2,𝑤→𝑠

− 𝒆𝑧𝑴𝑤

𝜏1,𝑤→𝑠

+
𝒆𝑥𝑴𝑠 + 𝒆𝑦𝑴𝑠

𝜏2,𝑠→𝑤

+ 𝒆𝑧𝑴𝑠

𝜏1,𝑠→𝑤

(2.49)
d𝑴𝑠

d𝑡
= 𝛾𝑴𝑠 × 𝑩 −

𝒆𝑥𝑴𝑠 + 𝒆𝑦𝑴𝑠

𝑇2,𝑠
− 𝒆𝑧𝑴𝑠 −𝑀0,𝑠

𝑇1,𝑠

+
𝒆𝑥𝑴𝑤 + 𝒆𝑦𝑴𝑤

𝜏2,𝑤→𝑠

+ 𝒆𝑧𝑴𝑤

𝜏1,𝑤→𝑠

−
𝒆𝑥𝑴𝑠 + 𝒆𝑦𝑴𝑠

𝜏2,𝑠→𝑤

− 𝒆𝑧𝑴𝑠

𝜏1,𝑠→𝑤

.

By assuming the same exchange rate in transversal (1/𝜏1,𝑠→𝑤 = 1/𝜏2,𝑠→𝑤 = 𝑘𝑠→𝑤 ) and
longitudinal (1/𝜏1,𝑤→𝑠 = 1/𝜏2,𝑤→𝑠 = 𝑘𝑤→𝑠 ) direction, this reduces to [27]

d𝑴𝑤

d𝑡
= 𝛾𝑴𝑤 × 𝑩 −

𝒆𝑥𝑴𝑤 + 𝒆𝑦𝑴𝑤

𝑇2,𝑤
− 𝒆𝑧𝑴𝑤 −𝑀0,𝑤

𝑇1,𝑤

− 𝑘𝑤→𝑠𝑴𝑤 + 𝑘𝑠→𝑤𝑴𝑠

(2.50)
d𝑴𝑠

d𝑡
= 𝛾𝑴𝑠 × 𝑩 −

𝒆𝑥𝑴𝑠 + 𝒆𝑦𝑴𝑠

𝑇2,𝑠
− 𝒆𝑧𝑴𝑠 −𝑀0,𝑠

𝑇1,𝑠

+ 𝑘𝑤→𝑠𝑴𝑤 − 𝑘𝑠→𝑤𝑴𝑠,

with the overall exchange rates 𝑘𝑠→𝑤 and 𝑘𝑤→𝑠 .

2.1.7. Spatial Encoding

Previous sections described the temporal evolution of a single magnetization 𝑴 , but full
objects consist of many voxels at dierent locations 𝒓 . While the Bloch equations take
the assumption of a single component in a voxel contributing to its signal, the overall
received signal is still a superposition of all voxels.
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In this section, spatial encoding is introduced and combined in the concept of sampling
trajectories. It explains how the signal from dierent locations 𝒓 is separated by relying
on the basic principle of gradients and frequency controlled RF pulses. For simplicity, the
following explanations assume linear gradient systems. Further developments extend
spatial encoding to nonlinear gradients with curved planes [28, 29] and multi-slice exci-
tations [30–32]. In the end of this section, a brief introduction to parallel imaging (PI) is
added.

Slice-Selection

e rst spatial dimension in MRI is encoded using a slice-selection gradient. Without
loss of generality, the gradient is assumed to be located in 𝑧-direction: 𝑮𝑧 = 𝐺𝑧𝒆𝑧 .
e gradient induces a magnetic eld 𝑩𝑧 (𝒓) which depends on the location 𝒓 ,

𝑩𝑧 (𝒓) = 𝑮𝑧 𝒓 𝒆𝑧 , (2.51)

and modies the total magnetic eld:

𝑩(𝒓) = 𝑩0 + 𝑩𝑧 (𝒓) = (𝐵0 + 𝑮𝑧𝒓)𝒆𝑧 . (2.52)

It assumes a strong main magnetic eld 𝑩0 that leads to the vanishing of concomitant
elds [16, p.292f].
Introducing a spatially dependent 𝑩(𝒓) changes the resonance frequency [15, p.145]:

𝜔𝒓 = 𝜔0 + 𝛾𝑮𝑧𝒓 . (2.53)

is encodes the spatial position 𝒓 along 𝑧 with a frequency 𝜔𝑧𝑐 which can be matched
with the carrier frequency 𝜔RF of the RF pulse:

𝜔RF
!
= 𝜔𝑧𝑐 = 𝛾 (𝐵0 +𝐺𝑧𝑧𝑐) . (2.54)

e frequency response of the applied RF pulse denes the shape of the excited slice cen-
tered at 𝑧𝑐 . Figure 2.8 illustrates this eect for a pulse with perfect rectangular frequency
response, as provided by an innite sinc pulse.

Aer the excitation of a single slice of an object, the received signal is still a superpo-
sition of all voxels within this slice. To explain the theory behind the encoding of the
signal in the two other spatial dimensions the next section introduces the frequency and
phase encoding concepts.
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Isocentre

RF-Pulse

Figure 2.8: Visualization of the physical eects during slice-selection. A slice-selection
gradient 𝑮𝑧 introduces a spatially dependent resonance frequency. By
adjusting the carrier frequency of an exciting RF pulse to match 𝜔𝑧𝑐 , its
frequency response is exploited to excite a single slice centered around 𝑧𝑐 .
Figure modied from [13].

Frequency Encoding

Frequency encoding allows for encoding a two-dimensional slice along individual isolines,
as illustrated in Figure 2.9.
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frequency encoding

Figure 2.9: Visualization of dierent isolines within an object 𝜌 spatially encoded
with a frequency encoding gradient. Figure modied from [13].

From the physical perspective, the signal from individual isolines is separated with
a frequency encoding gradient 𝑮fe. Its application results in a spatially dependent local
magnetic eld and a precession frequency [15, p.153]

𝜔 (𝒓) = 𝜔0 + 𝛾𝑮fe𝒓 . (2.55)
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2.1. Fundamentals of MRI

e signal 𝑆 (𝑡) at time 𝑡 received from the excited slice 𝜌 (𝒓) of the object 𝜌 becomes
[15, p.153]

𝑆 (𝑡) =
∫
object

d𝑆 (𝒓,𝑡) =
∞∫

−∞

𝜌 (𝒓)e−𝑖𝛾 (𝐵0+𝑮fe𝒓)𝑡d𝒓 , (2.56)

and can be demodulated by the Larmor frequency in Equation (2.8):

𝑆 (𝑡) =
∫
object

𝜌 (𝒓)e−𝑖𝛾𝑮fe𝒓𝑡d𝒓 . (2.57)

e frequency encoding is visualized in Figure 2.10 showing the dierent frequencies
for the isolines in Figure 2.9.
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Figure 2.10: Visualization of the physical concepts behind frequency encoding. A
gradient 𝑮fe modies the magnetic eld 𝐵0 locally and leads to a spatially
dependent frequency of the signal. Figure modied from [13].

From the signal perspective, MRI data is measured in frequency space, also called
k-space. High frequencies are located at the borders and low frequencies in the center.
Taking a two-dimensional acquisition as an example, a frequency is encoded with the
coordinates 𝑘𝑥 and 𝑘𝑦 (compare Figure 2.11). e frequency encoding gradient 𝑮fe maps
the time 𝑡 to the frequencies 𝒌 [15, p.158]:
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𝒌 =


𝛾

2𝜋 𝑮fe𝑡 FID signals
𝛾

2𝜋 𝑮fe(𝑡 − TE) echo signals .
(2.58)

Here, 𝑮fe maps the time 𝑡 to two dierent trajectories. e free induction decay (FID)
appears directly aer the RF excitation, while the echo signal describes the trajectory
at the time point shied by echo time (TE) following a refocusing event. By inserting
Equation (2.58) in Equation (2.57), the description for the measured signal is expressed as
a function of 𝒌 [15, p.158],

𝑆 (𝒌) =
∫
object

𝜌 (𝒓)e−2𝜋𝑖𝒌𝒓d𝒓 , (2.59)

showing the Fourier relation between the excited object 𝜌 and the acquired k-space
data 𝑆 (𝒌). e temporal order in which the signal 𝑆 (𝒌) is sampled is referred to as
sampling trajectory. To understand the eect of the frequency encoding on this trajectory,
a two-dimensional echo signal is considered [15, p.158]:

𝑘𝑥 =
𝛾

2𝜋
𝐺𝑥 (𝑡 − TE) (2.60)

𝑘𝑦 =
𝛾

2𝜋
𝐺𝑦 (𝑡 − TE) . (2.61)

ese coordinates can be transformed from Cartesian to polar coordinates with the
magnitude

𝑘 =
𝛾

2𝜋
(𝑡 − TE)

√︃
𝐺2
𝑥 +𝐺2

𝑦 , (2.62)

and the rotation angle

𝜙 = tan−1
(
𝐺𝑦

𝐺𝑥

)
, (2.63)

dened by the ratio between the gradient amplitudes 𝐺𝑥 and𝐺𝑦 . e transformation
leads to

𝑘𝑥 = 𝑘 cos𝜙 (2.64)

𝑘𝑦 = 𝑘 sin𝜙 . (2.65)

erefore, the eect of the frequency encoding on the sampling trajectory can be
understood with a radial line in k-space. It is rotated by an angle 𝜙 , as shown in Figure
2.11.
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2.1. Fundamentals of MRI

Figure 2.11: Visualization of the signal perspective on spatial encoding. Frequency
encoding has a time dependent eect and samples radial lines tilted by an
angle 𝜙 (le). Phase encoding shows a sampling time independent eect
oseing the sampled trajectory relative to the center of k-space (right).
Figure modied from [13].

Phase Encoding

Following the introduction to the concept behind frequency encoding, phase encoding is
explained in this section. It aims to encode the received signal along the isolines illustrated
in Figure 2.9.

e phase encoding is based on an additional gradient 𝑮𝒑 switched on for a dened
time 𝑇𝑝 . It adds a spatially dependent linear phase 𝜙 (𝒓) [15, p.156]

𝜙 (𝒓) = −𝛾𝑮𝒑𝒓𝑇𝑝 , (2.66)

to the received signal from the volume element d𝑆 (𝒓,𝑡) [15, p.156]:

d𝑆 (𝒓 ,𝑡) =

𝜌 (𝒓) e−𝑖𝛾 (𝐵0+𝑮𝒑𝒓)𝑡 , 0 ≤ 𝑡 ≤ 𝑇𝑝
𝜌 (𝒓) e−𝑖𝛾𝑮𝒑𝒓𝑇𝑝 e−𝑖𝛾𝐵0𝑡 , 𝑇𝑝 ≤ 𝑡 .

(2.67)

e additional phase is illustrated in Figure 2.12. Integrating the signal over the whole
object and demodulating it by the Larmor frequency leads to [15, p.156]

𝑆 (𝑡) =
∫
object

𝜌 (𝒓)e−𝑖𝛾𝑮𝒑𝒓𝑇𝑝d𝒓 , (2.68)

similar to the frequency encoding in Section 2.1.7.

e phase encoding gradient 𝑮𝒑 modies the measured spatial frequencies for a xed
time 𝑇𝑝 . is changes the trajectory following [15, p.163]
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𝒌 =
𝛾

2𝜋

𝑇𝑝∫
0

𝑮𝒑 (𝜏)d𝜏 (2.69)

⇒ 𝒌 =
𝛾

2𝜋
𝑮𝒑𝑇𝑝, for 𝑮𝒑 (𝜏) = const . (2.70)

Inserting Equation (2.70) into (2.68) shows the same Fourier relation like Equation
(2.59). Compared to the idea of frequency encoding, Equation (2.69) shows that the eect
of phase encoding on the sampling trajectory is independent of the sampling time 𝑡 . It
only depends on the xed time 𝑇𝑝 during which the gradient is turned on and aects the
sampling trajectory with a constant oset. is process is visualized in Figure 2.12.
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Figure 2.12: Visualization of the physical eect during phase encoding. A gradient
𝑮𝑝 locally modies the main magnetic eld 𝑩0 for a xed time 𝑇𝑝 . is
induces a spatially dependent phase change in the signal. Figure modied
from [13].

Sampling Trajectories

With the combined eect of the phase and frequency encoding gradients, various sampling
schemes of the k-space can be achieved. An exemplary overview on a fast low-angle shot
(FLASH) sequence is given in Figure 2.13 showing how dierent gradients can be combined
to create a sampling trajectory. Here, the slice-selection gradient has no inuence on
the spatial encoding. Instead, it focuses all spins moving the start of the encoding to
the low frequencies in the k-space center. Aerwards, according to Equation (2.63), the
simultaneous eects of the phase and frequency encoding gradients lead to a radially
outward sampling in frequency space. e corresponding angle of the radial spoke is
dened with the ratio of both gradient moments following Equation (2.63). During the
echo acquisition, the frequency encoding gradient is active, moving through the k-space
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2.1. Fundamentals of MRI

in a horizontal line while measuring the signals. By modifying the ratio between the
gradients, all other horizontal k-space lines can be acquired in further repetitions.

Figure 2.13: Visualization of a sequence diagram of a FLASH sequence (le) with its
sampling trajectory (center) and other classes of sampling trajectories
(right). Figure partially adapted from [13].

Depending on the order in which the frequencies are sampled, the dierent trajectories
are prone to various inaccuracies, like motion (Cartesian) and gradient delays (radial,
spiral). A more detailed discussion was elaborated by [33, 34].

Parallel Imaging

Up to now, only gradients have been exploited for spatial encoding, even though multiple
receive coils can add additional spatial information. An illustration of this eect for an
individual signal is shown in Figure 2.14. By placing an array of receivers around the
measured object, the signal of a point source becomes stronger in receivers close to it
and it becomes weaker in those further away. With the knowledge about the sensitivity
of the individual channels, the strength of these individual signals in the various coils
encode spatial information.
is simplistic example fails if more than a single signal source is acquired. e resulting
superposition of the signals cannot be separated if only the coil sensitivities are known.
While it does not replace frequency and phase encoding, this simple example demonstrates
that spatial information is provided by the knowledge about the individual receiver
sensitivities. e technique exploiting this additional knowledge is called PI and can
be eciently used to compensate missing data from not measured k-space frequencies.
is reduces the length of sequences and speeds up MRI examinations. Reconstruction
methods that exploit PI make use of the spatial correlations in multi-receive coil data
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while still keeping the quality of images similar to those of full k-space acquisitions. Many
of these techniques have been developed in the past [35]. Here, the focus is on regularized
nonlinear inverse reconstruction (NLINV) [36] which is introduced in Section 2.1.9.

Figure 2.14: Visualization of parallel imaging (PI) for spatial encoding. e signal of
the observed object 𝜌 is detected by multiple receive channels 𝑐1,2,3,4 with
each acquiring other areas depending on their location. is leads to
varying signals of the colored point source in 𝜌 in the channels. With
the knowledge about the receivers’ spatial sensitivity, the location of the
brown signal can roughly be found from the measured signal plot on the
right alone. is simple example demonstrates the spatial information
but does not work for multiple signal sources. Parallel imaging is no re-
placement for phase and frequency encoding, but can only add additional
knowledge.

2.1.8. Pulse Sequences

In the previous section, the inuence of dierent gradients on the acquisition in k-space
and their relation to sampling trajectories have been discussed. In this section, the focus
is on how gradients and RF excitation events are combined to actual measurements in
MRI, called sequences. Besides tissue and hardware related properties, sequences have a
major inuence on the contrast of the resulting reconstructions. Many sequences have
been designed to produce specic relative contrasts to encode a wide variety of physical
eects. Aer using a simple FLASH sequence diagram in an example in Figure 2.13, three
oen used sequences of this work are introduced. While many of them provide a mixed
contrast depending on multiple physical eects, some can encode individual parameters.
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ese sequences are used for quantitative parameter mapping in quantitative magnetic
resonance imaging (QMRI) and are discussed in Section 2.2.

Spin-Echo

e rst sequence discussed in this work is the spin-echo sequence. It is one of the rst
developed sequences in MRI and was introduced by Hahn in 1950 [37]. Its main event
blocks are visualized in Figure 2.15.

90°
180°

Figure 2.15: Visualization of a sequence diagram for a spin-echo sequence. the refocus-
ing 180◦ pulse is centered between the 90◦ excitation pulse and the echo.
e pulses are simultaneously turned on together with slice-selection
gradients. An additional slice-rephaser and frequency as well as phase
encoding gradients are shown.

It starts with a 90◦ pulse with a simultaneously active slice-selection gradient. ose
are followed by a slice-rephaser with the negative half of the integral of the slice-selection
gradient. It is simultaneously turned on with phase and frequency encoding gradients.
During a slice-selective 180◦ pulse halfway through the TE, an additional slice selection
gradient is added. Symmetrical around the 180◦ refocusing pulse, a readout gradient
samples the generated echo signal.
e spin-echo sequence typically requires long repetition time (TR), because the excitation
with the 90◦ pulse needs to be applied to the initial magnetization𝑀0 to avoid further
inuences on the contrast of the data. TR needs to be long enough so that the excited
magnetization can relax back with 𝑇1 to𝑀0.
e spin-echo sequence is oen used for its robustness especially in gold-standard QMRI
sequences, as further discussed in Section 2.2.
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(IR) FLASH

e second sequence discussed in this work is the FLASH which belongs to the family of
steady-state free precession (SSFP) sequences. It relies on a steady-state𝑀𝑠𝑠 developed
under application of repetitive RF pulses in combination with short TR. It results from an
equilibrium state between external 𝐵1 eld eects and𝑇1 relaxation. e FLASH sequence
is a spoiled SSFP [38]. Aer each TR, the transversal magnetization is entirely dephased.
is can be achieved either by application of additional gradients and constant phase [39,
40] or by using random phase RF spoiling [41].
By exploiting much shorter TR compared to spin-echo sequences, FLASH allows signi-
cantly reduced acquisition times. Combined with an advanced reconstruction a single
slice can be acquired in 20 ms [14].
rough its repetitive spoiling in each TR and short TE, FLASH sequences are robust
against eld inhomogeneities. e steady-state between 𝐵1 and 𝑇1 makes it sensitive to
changes in the longitudinal relaxation and 𝐵1 inhomogeneities. is sensitivity leads to a
𝑇1 dependent contrast in the data, also referred to as 𝑇1 weighted contrast.

To increase the capability of the sequence to encode 𝑇1 for QMRI applications, FLASH
can be extended by an initial inversion pulse followed by a transversal spoiling gradient
and an inversion delay time (TI). ismodication is illustrated in Figure 2.16. Without any
RF excitation, the inverted magnetization relaxes back to𝑀0 which is described by the 𝑇1
relaxation. During this transition phase, also called transient state, the inversion-recovery
fast low angle shot (IR-FLASH) sequence includes a FLASH readout that inuences the
relaxation with repetitive RF excitations. is modied transient state is characterized
by the eective relaxation 𝑇 ∗

1 and the equilibrium steady-state𝑀𝑠𝑠 . e analytical model
derived from the Bloch equations that describes the IR-FLASH signal evolution is called
the Look-Locker model [42]. It depends on the variables for the steady-state𝑀𝑠𝑠 ,𝑀0 and
𝑅∗1 = 1/𝑇 ∗

1 that encode mixed physical eects of the relative ip angle 𝛼e and 𝑇1. e
model can be reformulated to depend on the underlying physical parameters following
[43] as briey presented in Section 4.7.3.

e IR-FLASH sequence is used in QMRI for 𝑇1 mapping. When being combined with
a model-based reconstruction framework these maps can be determined eciently from
small amounts of data [9]. e technique is introduced in Section 2.2.2.

(IR) bSSFP

e last basic MRI sequence discussed in this work is similar to FLASH. e balanced
steady-state free precession (bSSFP) is also part of the family of SSFP sequences and
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Figure 2.16: Visualization of an IR-FLASH sequence (le) and the evolution of the
magnetization for RF pulses parallel to the 𝑦-axis (right). It shows the
initial inversion pulse with TI as well as the FLASH readout that consists
of excitation pulses with ip angle 𝛼 , an echo and a spoiling event.

was introduced by [44]. It exploits a similar short TE and TR, but uses a higher ip
angle leading to magnetization transfer (MT) inuences [45–47] and nite RF pulse
eects for longer pulse durations [48]. Instead of spoiling events, it provides a balanced
gradient moment in each repetition and a 180◦ phase change between consecutive RF
pulses to reach a steady-state [49]. is makes the sequence less robust against eld
inhomogeneities leading to the characteristic banding artifacts shown in Figure 5.4.

e signal of a bSSFP follows [50]

𝑀𝑠𝑠 = 𝑀0
sin𝛼 (1 − 𝐸1)

1 − (𝐸1 − 𝐸2) cos𝛼 − 𝐸1𝐸2
· 𝑒−

TE
𝑇 ∗2 , (2.71)

with 𝐸1,2 = exp
(
− TR
𝑇1,2

)
and therefore depends not only on the physical parameters 𝑇1,

𝑀0 and 𝐵1, as FLASH does, but is also sensitive to 𝑇 ∗
2 . By taking the assumption that

o-resonances are smaller than 𝜋 within a TR and seing,

TE = 1
2 · TR ,

the transverse magnetization is refocused similar to a spin-echo sequence, and thus
reduces the 𝑇 ∗

2 dependency to 𝑇2 [51]. is case is the default in this work. It ensures the
contrast of the bSSFP to be proportional to

√︁
𝑇2/𝑇1 leading to high signal-to-noise ratio,

especially for liquids like cerebrospinal uid (CSF) and fat tissue [49].
Similar to the IR-FLASH, the bSSFP can also be extended with an initial inversion

module. It increases the 𝑇1 sensitivity of the sequence for QMRI applications. is addi-
tion makes the sequence even more sensitive to o-resonances requiring an accurate
magnetization preparation either with an 𝛼/2-TR/2 preparation [49], as shown in Figure
2.17, or with ramps of varying ip angles [52, 53]. e benet of the increased sensitivity to
more physical eects is that the inversion-recovery balanced steady-state free precession
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(IR-bSSFP) allows for simultaneous mapping of 𝑇1 and 𝑇2 if the actual ip angle is known.
It decouples both parameters from 𝐵1, as further discussed in Section 4.7.5.

e IR-bSSFP is used in this work because of its increased sensitivity and simultaneous
mapping possibilities for 𝑇1 and 𝑇2 parameters.

echo

1. TR

following TR

Figure 2.17: Visualization of an IR-bSSFP sequence (le) and the evolution of the
magnetization for RF pulses parallel to the 𝑦-axis (right). It shows the
initial inversion pulse with TI, the preparation pulse with preparation
time TPrep and the bSSFP readout. e laer consists of excitation pulses
with ip angle 𝛼 and an alternating phase as well as echoes in the center
of the TR.

2.1.9. Image Reconstruction

In the previous sections, the basic concepts of excitation, spatial encoding and sequences
have been introduced in order to provide an understanding of the data acquisition with
dierent signal encodings and various sampling paerns. In this section, the focus lies on
the image reconstruction of measured data. e aim is to introduce the theory behind the
reconstruction of the slice of the object 𝜌 (𝒓) at location 𝒓 from the measured frequency
signals 𝑆 (𝒌).

Fourier Reconstruction

e denition in Equation (2.59) shows that the measured object and the signal are related
via a Fourier transformation. e object can be reconstructed from the acquired k-space
with an inverse Fourier transform:

𝜌 (𝒓) =
∞∫

−∞

𝑆 (𝒌)e2𝜋𝑖𝒌𝒓d𝒌 . (2.72)
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is involves approximations like the acquisition of all data at a single point in time and
a continuous as well as innite sampling of the object. While the temporal assumption
inuences the use of MRI as measurement device in QMRI, it can be assumed to hold
for conventional applications. e continuous and innite sampling on the other hand
inuence all MRI reconstructions and is further discussed in the following for a simplied
one-dimensional case.

Discretization Receiver hardware does not allow for continuous acquisition of signals.
e occurring echo can only be sampled with a dened sampling size Δ𝑘 . is gives a
one-dimensional sampling basis of

𝐷 = {𝑛Δ𝑘, −∞ < 𝑛 < ∞} , (2.73)

and the continuous reconstruction in Equation (2.72) becomes [15, p.191]

𝜌 (𝑥) ≈
∞∑︁

𝑛=−∞
𝑆 (𝑛Δ𝑘)e2𝜋𝑖𝑛Δ𝑘𝑥 . (2.74)

With the Poisson formula [15, p.191]

∞∑︁
𝑛=−∞

e2𝜋𝑖𝑛Δ𝑘𝑥 =
1
Δ𝑘

∞∑︁
𝑛=−∞

𝛿

(
𝑥 − 𝑛

Δ𝑘

)
, (2.75)

Equation (2.74) simplies to an inverse discrete Fourier representation:

𝜌 (𝑥) ≈ 1
Δ𝑘

∞∑︁
𝑛=−∞

𝜌

(
𝑥 − 𝑛

Δ𝑘

)
. (2.76)

e innite but discrete sampling results in periodic replicas of the object at frequencies
that are shied by a factor of 1

Δ𝑘 are illustrated in Figure 2.18.
If the sampling Δ𝑘 is not chosen small enough, the replicas overlap with the original 𝜌

creating infolding artifacts in the reconstruction.
To nd an accurate sampling, the fact of support limited objects can be exploited [15,
p.193]. Every measured object 𝜌 will not extend a limit 𝐿 so that

𝜌 (𝑥) = 0, |𝑥 | > 𝐿

2
. (2.77)

e limit 𝐿 will be referred to as eld of view (FoV). e sampling size can then be
chosen following the Nyquist sampling criterion
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k-space

image

Figure 2.18: Visualization of the eects of discretization of a one-dimensional signal.
e sinc-shaped signal is presented in frequency space (top) with its image
representation resulting from an inverse Fourier transform (boom).
e discretized signal is indicated by stripes. e discretization leads to
repeating replicas, which are marked with doed lines. Depending on
the sampling rate of the signal in k-space, these replicas can overlap with
the original image leading to infolding artifacts. Figure modied from
[13].

FoV <
1
Δ𝑘

(2.78)

to avoid infolding artifacts. e Fourier pixel-size representing the largest voxel di-
mension while still avoid infolding artifacts and follows with

Δ𝑥 =
1

𝑁Δ𝑘
. (2.79)

Finite Sampling Following the discussion of the inuence of discrete sampling on
the reconstruction Equation (2.72) still assumes an innite acquisition. is is practically
impossible because the frequency spectrum can only be measured to a limited bandwidth
𝑁Δ𝑘 . e sampling from Equation (2.73) therefore becomes

𝑘 ∈ 𝐷 =

{
𝑛Δ𝑘, − 𝑁

2
≤ 𝑛 <

𝑁

2

}
, (2.80)

leading to two main eects on the reconstruction: First, measured 𝑆 (𝑛Δ𝑘) = 𝑆 [𝑛] and
not measured Fourier coecients 𝑐 [𝑛] = 𝑐 (Δ𝑘) change Equation (2.74) to [15, p.193]

𝜌 (𝑥) = Δ𝑘

𝑁
2 −1∑︁

𝑛=−𝑁
2

𝑆 [𝑛]e2𝜋𝑖𝑛Δ𝑘𝑥 +
∑︁

𝑛<−𝑁
2 ; 𝑛≥

𝑁
2

𝑐 [𝑛]e2𝜋𝑖𝑛Δ𝑘𝑥 . (2.81)

e reconstruction becomes non-unique providing multiple possible solutions. Taking
the minimum-norm as a constraint for nding a reconstruction, the frequencies 𝑐 [𝑛]
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vanish [15, p.194], resulting in the Fourier reconstruction formula:

𝜌 (𝑥) = Δ𝑘

𝑁
2 −1∑︁

𝑛=−𝑁
2

𝑆 [𝑛]e2𝜋𝑖𝑛Δ𝑘𝑥 , |𝑥 | < 1
Δ𝑘

, (2.82)

which represents a discrete Fourier transform (DFT),

𝜌 (𝑚) =
𝑁
2 −1∑︁

𝑛=−𝑁
2

𝑆 [𝑛]e 2𝜋𝑖𝑛𝑚
𝑁 , −𝑁

2
≤ 𝑚 <

𝑁

2
, (2.83)

for a normalization factor of Δ𝑘 = 1.
e second eect of nite sampling is similar to cuing o frequencies of a sinc pulse, like
discussed in Section 2.1.3. Because the frequency representation of 𝜌 extends the sampling
limit 𝑁 , the nite sampling results in discontinuities of the underlying derivatives at the
k-space edges.
With the convolution property of the Fourier transform [15, p.31], the nite sampling can
be understood as the multiplication of the innite signal 𝑆 (𝑘) with a rectangular function
Π(𝑘) in frequency space:

𝐹𝑇 (𝑆 (𝑘) · Π(𝑘)) = 𝐹𝑇 (𝑆 (𝑘)) ∗ 𝐹𝑇 (Π(𝑘))
= 𝐹𝑇 (𝑆 (𝑘)) ∗ sinc(𝑥) . (2.84)

is corresponds to a convolution of the reconstructed object with a sinc-kernel and in-
troduces ringing artifacts that are referred to as Gibbs ringing. is eect is demonstrated
on a numerical phantom geometry in Figure 3.4.

MRI as Inverse Problem

Although fast (discrete) Fourier transform (FFT)-based reconstruction is computationally
ecient, it requires fully-sampled data which can be time-consuming to acquire. An
alternative approach is to formulate image reconstruction as an inverse problem. is
strategy is more generic and enables MR image reconstruction from undersampled data
with the potential to incorporate PI models. is leads to a dramatic improvement in MRI
speed.
To give an intuitive understanding of these concepts, this section rst introduces a recon-
struction as an inverse problem. It gives rise to a large variety of advanced reconstruction
techniques that incorporate complex signal models specially designed for QMRI applica-
tion.
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PI was introduced in Section 2.1.7 and is based on multiple receive channels. erefore,
Equation (2.59) is extended to𝑀 receivers with their sensitivity 𝑐 𝑗 (𝒓) for 𝑗 ∈ [0, 𝑀]. is
leads to the signal

𝑦 𝑗 (𝒌) =
∫
object

𝜌 (𝒓)𝑐 𝑗 (𝒓)e−2𝜋𝑖𝒌𝒓d𝒓 . (2.85)

It describes a forward problem with a known object 𝝆 and an unknown received signal
𝒚𝑗 for the 𝑗-th coil. Equation (2.85) can be reformulated to

𝒚 = PFC(𝒄,𝝆) , (2.86)

with the coil sensitivities 𝒄 . e paern operator P includes the information about the
sampling trajectory 𝒌 . e Fourier operator F performs a Fourier transformation and
the coil-prole operator C incorporates the information about the coil-sensitivities 𝒄 . All
operators are illustrated in Figure 4.1. Under the assumption of known 𝒄 , the operators
PFC can be combined:

A = PFC . (2.87)

is simplies an inverse formulation of the problem where the object 𝝆 is unknown
and should be estimated from the measured signal 𝒚 while knowing A:

𝝆 = A−1𝒚 . (2.88)

ese problems are typically ill-posed because noise and undersampling makes their
solution non-unique. Instead of solving it with a traditional inverse, the solution needs to
be found with respect to a metric. By choosing an Euclidean norm, the inverse of A is
approximated by the Moore-Penrose inverse A+,

A−1 ≈ A+ = (A𝐻A)−1A𝐻 , (2.89)

with the adjoint (·)𝐻 . e solution 𝝆 = A+𝒚 corresponds to the solution found with
an iterative least-squares optimization with the cost functional

�̂� := argmin
𝝆

‖A(𝒄,𝝆) − 𝒚 ‖22 . (2.90)

In general, noise in MRI signal results either from the resistance of the receiver coils, the
preamplier of the system or inductive and dielectric losses in the measured object [54].
Together with complex sampling schemes, they make the inverse problem ill-conditioned.
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is requires additional prior knowledge to be added as regularization to stabilize the con-
vergence of the optimization. An example is additional 𝑙2 regularization which improves
the robustness to Gaussian distributed noise in conventional MRI:

�̂� := argmin
𝝆

‖A𝝆 − 𝒚 ‖22 + ‖𝜌 ‖22︸︷︷︸
regularization

. (2.91)

Reconstruction by Nonlinear Inversion

In the previous section, the concept of reconstruction is introduced from the perspective
of an inverse problem. In Section 2.1.9, the model described by Equation (2.86) is linear
because all operators in A are linear due to the assumption of known coil-sensitivities.
In practice, this assumption requires prior knowledge about the coil sensitivities. ey
are either estimated in a separate calibration scan or from a calibration region within the
acquired data 𝒚 . e laer is based on popular techniques like ESPIRiT [55]. ey do not
exploit all the acquired information and skip data outside of the calibration area. is
potentially reduces the quality of the sensitivity maps [36]. A solution is to exploit the
coil-sensitivity signal model in Equation (2.86) and not just determine the image 𝝆, but the
coils 𝒄 simultaneously. is renders Equation (2.86) to be nonlinear and ill-conditioned.
It requires regularization and iterative solution strategies. While techniques like JSENSE
[56] integrate the coil-sensitivities as polynomials in the cost function, the focus of this
work lies on regularized nonlinear inverse reconstruction (NLINV) [36] with 𝒄 in image
space and Sobolev norm based smoothness penalty 𝑸

(�̂�,𝒄) = argmin
(𝝆,𝒄)

‖PF C(𝒄,𝝆) − 𝒚 ‖22 + 𝛼 ‖𝝆‖22 + 𝛼𝑸 (𝒄) , (2.92)

scaled by regularization factor 𝛼 . e nonlinear operator has the form

A𝒙 = PFC𝒙 = 𝒚, with 𝒙 =

©«
𝝆

𝒄1
...

𝒄𝑵

ª®®®®®¬
, (2.93)

and maps
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A : 𝒙 ↦→

©«
PF 𝒄1𝝆

PF 𝒄2𝝆
...

PF 𝒄𝑁𝝆

ª®®®®®¬
. (2.94)

In NLINV, the cost function in Equation (2.92) is solved with an iteratively regularized
Gauss-Newton method (IRGNM) [57, 58]. is algorithm linearizes the nonlinear problem
in each Gauss-Newton step around the current solution 𝑥𝑛 for step 𝑛:

A(𝒙 + d𝒙) ≈ 𝐷A(𝒙𝑛)d𝒙 + A(𝒙𝑛) , (2.95)

with the Jacobian 𝐷A at 𝒙𝑛 and the update d𝒙 . e linearized optimization problem in
each step 𝑛,

�̂�𝑛+1 = argmin
𝒙

‖𝐷A(𝒙𝑛) (𝒙 − 𝒙𝑛) + A(𝒙𝑛) − 𝒚 ‖22 + 𝛼𝑛‖𝒙 − 𝒙𝑛‖22 + 𝛼𝑛𝑸 (𝒄) , (2.96)

is solved using iterative algorithms like the conjugate gradient method (CG) or a fast
iterative shrinkage/thresholding algorithm (FISTA).
While the solution 𝒙𝑛 will have a low accuracy for small 𝑛, a strong regularization
enforces a strong prior knowledge about 𝒄 and 𝝆 which stabilizes the convergence of
the optimization. Keeping a constantly high regularization for larger 𝑛 leads to biases
introduced to the solution of the optimization. erefore, the IRGNM iteratively reduces
the regularization strength with increasing 𝑛 following

𝛼𝑛 = 𝛼0𝑞
𝑛 , (2.97)

with the initial regularization scaling 𝛼0 and factor 𝑞 ∈ (0,1).

2.2. antitative MRI

Depending on the sequence that is executed, MRI can provide images with various con-
trasts for the samemeasured object. e contrast depends on the physical properties of the
measured tissue, hardware characteristics of the MRI system and the executed sequences.
is complexity and high degree of freedom in choosing arbitrary sequences makes MRI
one of the most versatile imaging techniques in the clinical application. However, this
leads to complex protocols in the daily clinical routine and a dicult interpretation of the
resulting images. QMRI aims to reduce the complexity of the interpretation of the images
by measuring physical properties of the tissue or hardware. It requires sequences capable
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of encoding the desired characteristics and reconstructions that incorporates physical
knowledge to extract the information. is section introduces some common sequences
in QMRI, which are sensitive to various physical eects. It also explains how they are
designed to be robust against not desired characteristics.

2.2.1. Conventional Methods

Conventional QMRI typically exploits sequences that are sensitive to a single property of
the tissue or hardware and which are robust against most other occurring physical eects.
is conservative approach ensures to determine a single characteristic accurately while
avoiding coupled physical eects biasing the results. Aer the acquisition of data with
a specic sequence sensitive to a single parameter, the reconstruction in conventional
QMRI involves two steps:

1. Reconstruction of intermediate images from the acquired data

2. Pixel-wise ing of an analytical model to the intermediate images to extract the
parameter.

A schematic drawing of this procedure is shown to Figure 2.19.

intermediate
images

sequence

parameter
maps

signal

fiing

signal model

Figure 2.19: Visualization of a conventional QMRI workow. A special sequence
is designed to provide an analytical signal model 𝑴 (𝒙). Fully-sampled
datasets for multiple points in time are measured and reconstructed using
an inverse Fourier transform. Aerwards, the derived analytical signal
model is ed pixel-wisely to the reconstructed intermediate images,
which results in the parameter maps 𝒙 .

e analytical signal model applied in the pixel-wise ing is derived from the Bloch
equations for the special sequence that were used during acquisition. Its derivation
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typically involves assumptions that simplify the underlying physical processes. Common
assumptions are:

1. Hard-Pulses: No relaxation takes place during the execution of RF pulses.

2. Perfect Spoiling: e transversal magnetization vanished completely during a
spoiling event.

3. Innite Short Sampling: All samples of an echo are acquired at the same time.

e pixel-wise ing approach in conventional QMRI requires high quality intermedi-
ate images. ey are typically reconstructed from the raw dataset with an inverse Fourier
transform. Reconstruction with artifacts can alter the signal evolution of a single pixel
and reduce the accuracy of the physical parameter maps. e reconstruction with the
inverse Fourier transform requires fully-sampled k-spaces to avoid the artifacts. Measure-
ments involving PI [35] can speed up the acquisition, but still require a lot of redundant
information to be measured, especially for higher frequencies.
An example of conventional QMRI are sequences for gold-standard estimation of relax-
ation parameters.

Relaxation Parameter Mapping

Gold-Standard 𝑇1 Mapping Gold-Standard 𝑇1 mapping sequences are based on
inversion-recovery (IR) single-echo spin-echo sequences. A visualization of their se-
quence diagram is shown in Figure 2.20. ey consist of an initial adiabatic HS1 inversion
pulse with varying TI. e inversion pulse leads to a high 𝑇1 sensitivity. e single-echo
acquisition with constant TE shows the same 𝑇2 eect on every acquired sample in time,
which makes the pixel-ing robust against 𝑇2 variations. Addtionally, spin-echo se-
quences are by design insensitive to 𝑇 ∗

2 because the 𝜋-RF pulse refocuses the dephasing
eects introduced through inhomogeneities of the main magnetic eld. e 𝑇1 and 𝑇2
contrast is not aected by previous measurements because a full relaxation to 𝑀0 is
enforced by a long TR. Inhomogeneities in 𝐵1 show dierences between individual pixels,
but are constant for each in time and therefore do not aect the pixel-wise ing.

In summary, the signal of an IR single-echo spin-echo sequence with varying TI encodes
only 𝑇1 and is robust against 𝑇2, 𝐵0 and 𝐵1 inhomogeneitities. e analytical model for
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2.2. antitative MRI

the temporal evolution of the signal 𝑀𝑥𝑦 derived from the Bloch equations for such a
sequence follows

𝑀𝑥𝑦 (𝑡) ∝ 𝑀𝑧 (𝑡) = 𝑀0 ·
(
1 − 𝑒−𝑡/𝑇1

)
, (2.98)

with 𝑡 given with TI.

+M0

-M0

short T1

long T1

TI

lo
n
g
it

u
d
in

a
l

m
a
g
n
e
ti

za
ti

o
n

inversion
time

Mz

Figure 2.20: Visualization of the signal during a gold-standard𝑇1 mapping acquisition
representing the regrowing longitudinal magnetization. Phantom acqui-
sitions for dierent TI are added on the boom showing varying signal
intensities dependent on the 𝑅1 relaxation rate of the individual pixels.
ree exemplary regrowing curves are ploed on the top for short to
long 𝑇1 values. Figure modied from [13].

Gold-Standard 𝑇2 Mapping e gold-standard 𝑇2 mapping technique is based on a
single-echo spin-echo sequence with varying TE. It shows a reduced image contrast in
time encoding the 𝑇2 relaxation, as presented in Figure 2.21. e spin-echo sequence is
robust against 𝑇1 variations due to the magnetization relaxing back to 𝑀0 for long TR.
e same initial 𝜋/2 pulse excites the magnetization for each acquisition. is pulse
can be aected by 𝐵1 inhomogeneities, which leads to spatial variations of the contrast.
Nevertheless, the temporal evolution of each individual voxel is not aected making the
pixel-wise ing robust against 𝐵1 inhomogeneities. e gold-standard 𝑇2 sequence is
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robust against the inhomogeneity eect in 𝑇 ∗
2 because of their refocusing 𝜋-RF pulse.
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Figure 2.21: Visualization of the signal during a gold-standard𝑇2 mapping acquisition
representing the decreasing of the transversal magnetization. Phantom
acquisitions for dierent TE are added on the boom showing varying
signal intensities dependent on the 𝑅2 relaxation rate of the individual
pixels. ree exemplary signal curves are ploed on the top for short to
long 𝑇2 values. Figure modied from [13].

In summary, the signal change between acquisitions with varying TE encodes only
𝑇2 information and the pixel-wise ing is robust against 𝑇1, 𝐵0 and 𝐵1. e analytical
model for the temporal evolution of the signal𝑀𝑥𝑦 derived from the Bloch equations for
the variable TE single-echo spin-echo sequence follows

𝑀𝑥𝑦 (𝑡) = 𝑀0 · 𝑒−𝑡/𝑇2 , (2.99)

with 𝑡 dened by TE.

𝐵1 Mapping

Field inhomogeneities of the RF transmier eld 𝐵1 lead to spatially dierent excitations.
is modies the received signal for sequences sensitive to 𝐵1 and becomes important
for QMRI to model or compensate introduced biases. Many analytical models are based
on knowledge about the eective ip angle. is does not only include 𝐵1, but also the
slice prole in the presence of slice-selective excitations. While the laer is known from
the shape of the RF pulse and active gradients, 𝐵1 oen needs to be measured.

e concept of 𝐵1 mapping is to exploit two sequences whose varying contrasts encode
𝐵1. Many methods have been developed over the years that can be classied in magnitude-
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and phase-based techniques [59]. is introduction focuses on a gold-standard gradi-
ent recalled echo double-angle (GRE-DA) and a fast preconditioned RF pulse mapping
technique with FLASH readout.

Gradient Recalled Echo Double-Angle e GRE-DA technique exploits the dier-
ences of two gradient recalled echo (GRE) acquisitions acquired with two small ip angles:
𝛼 and 2𝛼 . Both acquisitions need to be identical in all other parameters to avoid further
inuences on the image. e contrast of GRE-based sequences depends on the relaxation
time𝑇1. is can be reduced by increasing TR to about ve times the longest𝑇1 relaxation
present in the measured object. It avoids the creation of a 𝑇1 dependent steady-state
and allows the magnetization to recover to its equilibrium 𝑀0. GRE-DA is assumed to
be robust against 𝐵0 inhomogeneities because dephasing aects both acquired images
equally. e measured image contrasts can be approximated with

𝜌1 = 𝑀0 sin(𝛼) (2.100)

𝜌2 = 𝑀0 sin(2𝛼). (2.101)

e ratio

𝑟 =
𝜌1

𝜌2
=

1
2 cos(𝛼) (2.102)

describes the relative change in 𝐵1 and can be converted to absolute values with the
denition of the ip angle 𝛼 . As an example for a block pulse with ip angle 𝛼 = 𝛾𝐵1𝑡 ,
the absolute 𝐵1 becomes [60]

𝐵1 =
1
𝛾𝑡

cos−1
(
1
2𝑟

)
. (2.103)

Preconditioned RF Pulse While GRE-DA provides accurate 𝐵1 values, its long TR
leads to long acquisition times. If its 𝑇1 robustness is not compromised, they are too long
for in vivo acquisitions. While techniques exist to reduce the TR based on compensation
pulses [61], current vendor implementations are based on preconditioned RF pulses with
spoiled FLASH readout [62]. A schematic drawing of the sequence can be found in Figure
2.22.
Similar to the GRE-DA technique, the preconditioned RF pulse sequence is based on
two GRE acquisitions with the contrasts 𝜌PD and 𝜌SS Pre. Both have the same ip angle
but the acquisition of 𝜌SS Pre starts with an initial slice-selective preconditioning (SS-
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Pre) RF pulse and a spoiling block removes any transversal macroscopic magnetization.
is SS-Pre pulse ips the magnetization with a high ip angle 𝛼nom (≈ 80◦) changing
the image contrast from the GRE acquisition to start from 𝑀𝑧 instead of 𝑀0. Ignoring
partial saturation, relaxation and o-resonance eects, the individual images become
proportional to the initial 𝑧-component of the magnetization [62, 63]:

𝜌PD ∝ 𝑀0 (2.104)

𝜌SS Pre ∝ 𝑀𝑧 . (2.105)

Assuming the same proportionality constant, the ratio between both images follows
[62]

𝜌SS Pre

𝜌PD
= cos(𝑟 · 𝛼nom) (2.106)

⇔ 𝑟 = cos−1
(
𝜌SS Pre

𝜌PD

)
/𝛼nom , (2.107)

with the relative 𝐵1 change 𝑟 and the nominal SS-Pre pulse ip angle 𝛼nom. e absolute
𝐵1 follows similar to Equation (2.103) with the knowledge of the applied RF pulse.
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Figure 2.22: Visualization of a simplied sequence diagram for a 𝐵1 Mapping sequence
based on preconditioned RF pulses. e SS-Pre module is colored with
the ip angle of 𝛼nom and its spoiling event. e FLASH readout with
dierent ip angle 𝛼 follows directly aerwards similar to Figure 2.16.

While this sequence allows for fast 𝐵1 mapping, especially the assumption of no longi-
tudinal relaxation does not hold for short𝑇1 values in measured objects. Here, 𝜌SS Pre ∝ 𝑀𝑧

breaks because the whole acquisition of the image does not happen in a steady-state
but rather in a transient state relaxing back to the initial 𝑀0. 𝐵0 inhomogeneities and
𝑇2 eects are assumed to be weak because of the spoiling of transversal magnetization
during the FLASH readout.
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𝐵0 Mapping

In conventional 𝐵0 eld mapping, two images 𝜌TE1 and 𝜌TE2 are acquired with GRE
sequences rather than spin-echoes, which are too robust against eld inhomogeneities.
e acquisitions of the complex images 𝜌TE1 and 𝜌TE2 dier in TE leading to a phase
dierence

Δ𝜙 = −𝛾𝐵0(TE2 − TE1) with TE2 < TE1 , (2.108)

which encodes the 𝐵0 information and is exploited to determine the relative eld map
Δ𝐵0 [64]:

Δ𝐵0 =
arg(𝜌TE2𝜌∗TE1)
−(TE2 − TE1)

, (2.109)

with the complex conjugate (·)∗.
By focussing on the phase dierence and exploiting short TE, this sequence is robust
against variations in 𝑇2, which inuence the magnitude but not the phase. In addition,
they are typically much longer than the used TE.𝑇1 and 𝐵1 both only aect the magnitude
image of GRE sequences. erefore, both acquisitions are inuenced in the same way.
is requires the dierence between both echo times to fulll: (TE2 − TE1) � 𝑇1.

2.2.2. Model-Based Reconstruction

Compared to conventional QMRI, which was introduced in Section 2.2.1, model-based
reconstruction does not require a two-step parameter estimation, but integrate the physi-
cal model into the reconstruction directly. ey formulate the parameter estimation and
reconstruction as a single inverse problem allowing to determine quantitative parameters
directly from the acquired raw data. is reduces the modelling of the temporal signal
evolution to only a few parameters and makes ecient use of the acquired data avoiding
the acquisition of redundant data. Model-based reconstructions bypass the intermediate
image reconstruction step from conventional QMRI techniques shown in Figure 2.19. A
visualization of a model-based acquisition/reconstruction pipeline is presented in Figure
2.23.
Many model-based reconstruction techniques exist. e complexity of their forward

models diers and allows to classify them in two basic categories: e linear subspace
[65–69] and nonlinear model-based methods [5–8, 70], which are further discussed in the
following.
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Figure 2.23: Visualization of a model-based reconstruction workow. A special se-
quence is designed providing an analytical signal model. is is further
combined with a signal acquisition model in the operator 𝑭 . Aer mea-
surement of undersampled datasets for multiple time points, the parame-
ter maps 𝒙 are calculated directly from the measured data 𝒚 .

Linear Subspace Techniques

Linear subspace techniques are based on simulated dictionaries𝑿 incorporating nonlinear
signal evolutions. Every possible combination of the desired physical quantities within
the measured object needs to be covered by the simulated time series in 𝑿 . e aim of
subspace techniques is to nd an orthonormal basis 𝚽 = [𝜙1 . . . 𝜙𝑇 ] in time [71],

𝑿 = 𝚽𝚽
𝐻𝑿 . (2.110)

A 𝐾-dimensional subspace 𝚽𝐾 = span{𝜙1 . . . 𝜙𝑇 } is designed to approximate 𝚽 to an
error limit 𝜖 [71]:

‖𝑿 − 𝚽𝐾𝚽
𝐻
𝐾𝑿 ‖ < 𝜖 . (2.111)

𝚽𝐾 is typically found with a principal component analysis (PCA) of 𝑿 .
During the reconstruction, the temporal basis coecients 𝜶 = 𝚽

𝐻
𝐾𝒙 are optimized for

�̂� = argmin
𝜶

‖𝒚 − 𝑭𝚽𝐾𝜶 ‖22 + . . . , (2.112)

Overall, the otherwise nonlinear forward model 𝑭 [71] is linearized

𝒚 = 𝑭𝒙 ≈ 𝑭𝚽𝐾 𝚽
𝐻
𝐾𝒙︸︷︷︸
𝜶

. (2.113)

with the physical parameters 𝒙 .
e linear nature of the subspace models makes them computationally ecient for
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a large variety of dierent signal models 𝑭 . Nevertheless, linearization represents an
approximation of the nonlinear model. is may require more parameters in cases of
complex signal dynamics making the approximation less ecient than the evaluation of
the nonlinear model itself [8].

Nonlinear Model-based Reconstructions

In comparison to linear subspace models, nonlinear model-based reconstructions do
not linearize the temporal evolution of the signals but include the underlying nonlinear
physical model directly into the reconstruction. While some techniques exploit analytical
signal models [9, 10, 72] that are derived from the Bloch equations for specic sequences
(see Table 2.1) others rely on generic simulations [73, 74].

Table 2.1: Listing of various signal models encoding a wide variety of physical param-
eters. e models are derived from the Bloch equation for special sequences
and are taken from [8].

𝑅1: 𝑎 − (1 + 𝑎) · 𝑒
−𝑡𝑛𝑅1

𝑎

𝑅2: 𝑒−𝑅2𝑡𝑛

𝑅∗2: 𝑒−𝑅
∗
2𝑡𝑛

𝐵0: 𝑒𝑖2𝜋 ·𝑓𝐵0𝑡𝑛

Chemical Shi:
∑
𝑝
𝑎𝑝𝑒

𝑖2𝜋 𝑓𝑝𝑡𝑛

𝒗: 𝑒𝑖𝒗·𝑽𝑛

𝐷 : 𝑒−𝒃
𝑇
𝑛𝐷𝒃𝑛

Most nonlinear model-based reconstructions dier in their complexity of the data
sampling and in the integration of coil-proles.

Reconstruction without Parallel Imaging Model Many model-based reconstruc-
tions treat the coil-sensitivies 𝒙𝑐 as prior knowledge [5–7, 70, 72].ey are either estimated
in a separate calibration scan or are calculated from a calibration region within the ac-
quired dataset itself [55]. e reconstruction is performed as an iterative optimization
following

�̂� = argmin
𝒙𝑝

‖𝒚 − PFC(𝒙𝑐,M(𝒙𝑝))‖22 + . . . , (2.114)

with a paern operator P that includes information about the sampling trajectory. e
Fourier operator F performs a Fourier transform into frequency space. e coil-operator
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C multiplies the signal with the known coil sensitivities. Finally, the nonlinear physics
model M takes the parameters 𝒙𝑝 as input and 𝒚 represents the measured data. is
method takes the assumption that the whole echo is acquired at a single point in time.
It is based on the idea that dynamics within a readout do not have a propagating eect
through the entire acquisition, which holds for most sequences. Additionally, the readout
time is much shorter compared to the 𝑇2 relaxation for the radial sampling schemes.

Reconstruction Including a Parallel Imaging Model Other techniques jointly re-
construct the coil-proles 𝒙𝑐 and the physical parameters 𝒙𝑝 [9, 10] based on techniques
like NLINV, which is introduced in Section 2.1.9. ey incorporate additional prior knowl-
edge about the smoothness of the sensitivities with a Sobolev norm regularization 𝑸

scaled by a scalar 𝛼 . e cost function of the optimization follows

�̂� = argmin
𝒙𝑝 ,𝒙𝑐

‖𝒚 − PFC(𝒙𝑐,M(𝒙𝑝))‖22 + 𝛼𝑸 (𝒙𝑐) + . . . . (2.115)

Other Types Besides the twomajor classes dened by the treatment of coil-sensitivities,
most of the model-based reconstruction techniques rely on analytically derived signal
models. While some integrate full size simulations into the reconstruction process [73, 74],
even these simulation-based methods dier in their complexity. e method developed
by Ben-Eliezer in 2016 [73] takes the assumption of a single TE for a whole echo readout
and coil-sensitivities as prior knowledge, magnetic resonance spin tomography in time-
domain (MR-STAT) [74] assumes a single coil prole but simulates each sampling point
along the trajectory of the acquisition. Further reconstruction techniques, like magnetic
resonance ngerprinting (MRF) [11], incorporate simulations stored in large look-up
tables but rely on a classical two-step QMRI reconstruction processes. ey speed up
the acquisition by exploiting the incoherence between the noise from undersampling
artifacts and a signal acquired with a pseudo-random variable ip angle sequence. e
reconstruction in MRF is performed as an inverse Fourier transform. Aerwards, the
signal traces (ngerprints) are looked up pixel-wisely in a previously simulated dictionary.

2.3. Simulation of Spin Dynamics

Following the idea of model-based reconstructions and QMRI, the knowledge about
the temporal evolution of the macroscopic magnetization can be exploited to measure
quantitative parameters. Generalizing the techniques beyond analytical models requires
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2.3. Simulation of Spin Dynamics

simulations of the underlying Bloch equation and extension, which is presented in Section
2.1.6.

is section is focused on dierent techniques for integrating the Bloch equations
(2.46). More information about dierent methods that are simulating in the frequency
domain was summarized in [75, 76].

For a simplied notation, the Bloch equations (2.46) are reformulated to a homogeneous
ODE:

d𝑴 (𝒄,𝑡)
d𝑡

= 𝑨(𝒄,𝑡) 𝑴 (𝒄,𝑡) , (2.116)

with the magnetization vector

𝑴 (𝒄,𝑡) =

©«
𝑀𝑥 (𝒄,𝑡)
𝑀𝑦 (𝒄,𝑡)
𝑀𝑧 (𝒄,𝑡)

1

ª®®®®®¬
, (2.117)

and its constant components 𝒄 = (𝑅1 𝑅2 𝑀0) as well as the system matrix

𝑨(𝒄,𝑡) =

©«
−𝑅2 𝛾𝐵𝑧 (𝑡) −𝛾𝐵𝑦 (𝑡) 0

−𝛾𝐵𝑧 (𝑡) −𝑅2 𝛾𝐵𝑥 (𝑡) 0
𝛾𝐵𝑦 (𝑡) −𝛾𝐵𝑥 (𝑡) −𝑅1 𝑀0𝑅1

0 0 0 0

ª®®®®®¬
, (2.118)

with the relaxation rates 𝑅1,2 = 1/𝑇1,2 and the external magnetic eld 𝑩 = (𝐵𝑥 𝐵𝑦 𝐵𝑧)𝑇 .

2.3.1. Rotation Matrix Approaches

e rst type of Bloch simulations discussed in this work is based on rotation matrices
[77]. ey rely on the idea that the system matrix 𝑨 in Equation (2.116) is approximately
constant for short time intervals Δ𝑡 :

𝑨(𝒄,𝑡 → 𝑡 + Δ𝑡) = const. (2.119)

In this piece-wise constant Bloch step, the physical eects of relaxation, excitation and
gradients can be modelled with basic rotations 𝑹𝑖 along the individual axis of the rotating
frame 𝑖 ∈ (𝑥,𝑦,𝑧). is concept is visualized in Figure 2.24.
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RF Pulse      &     Gradients Relaxation

Figure 2.24: Visualization of the concept of asymmetric operator spliing (ASY). e
dynamics of the Bloch equations are approximated in order to be piece-
wise constant during small time intervals Δ𝑡 . e evolution of the mag-
netization is described by rotations for RF pulses and gradients as well as
exponential terms for relaxation. Both eects are described by operators
executed in an asymmetric order transforming the magnetization from
step 𝑛 to 𝑛 + 1.

RF-Pulse Eects e rotation eects throughRF pulses can be split in their components
around all three axis depending on its phase 𝜙 , o-resonance frequency Δ𝜔 = 𝛾𝐵0 − 𝜔rf

and ip angle Δ𝛼 . e eective RF eld axis is tipped by

\ = arctan
(
Δ𝜔 · Δ𝑡
Δ𝛼

)
(2.120)

and the eective ip angle becomes

Δ𝛼′ =

√︄
Δ𝜔2 +

(
Δ𝛼

Δ𝑡

)2
. (2.121)

Using the notation 𝑴𝑛 for the magnetization vector before the RF excitation and 𝑴𝑛+1

aer, the RF eect can be described by

𝑴𝑛+1 = 𝑹𝑦 (\ )𝑹𝑧 (𝜙)𝑹𝑥 (Δ𝛼′)𝑹𝑧 (−𝜙)𝑹𝑦 (−\ )𝑴𝑛 (2.122)

= 𝑹RF(𝑴𝑛,Δ𝑡,...) . (2.123)

Free-Precession Eects Free-precession introduced through eld inhomogeneities
and gradient eects are also modelled with rotations. Instead of acting on multiple axis,
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2.3. Simulation of Spin Dynamics

they rotate only around the 𝑧-axis. Gradients 𝑮 introduce a rotation angle \𝑔 at location
𝒓 following

\𝑔 = 𝛾𝒓

𝑡+Δ𝑡∫
𝑡

𝑮 (𝒓,𝜏)d𝜏 . (2.124)

Field inhomogeneities Δ𝑩 introduce a rotation around 𝑧 by the angle \𝑖 within Δ𝑡 :

\𝑖 = 𝛾Δ𝑩(𝒓)𝒆𝑧Δ𝑡 . (2.125)

eir combined eects modify the magnetization in the piece-wise constant Bloch step
according to

𝑴𝑛+1 = 𝑹𝑧 (\𝑔)𝑹𝑧 (\𝑖)𝑴𝑛 (2.126)

= 𝑹prec(𝑴𝑛𝑚Δ𝑡,...) . (2.127)

For an ecient simulation, the two rotations described by Equations (2.123) and (2.127)
can be combined to

𝑹rot = 𝑹RF𝑹prec , (2.128)

modelling all rotations within one Bloch step.

Relaxation Eects While RF and gradient eects can be modelled with rotations and
can be combined in a single operator in Equation (2.128), the relaxation eects follow
with separate exponential models, which are introduced in Section 2.1.5, and are described
with a homogeneous component

𝑹rel,hom(Δ𝑡) =
©«
𝐸2 0 0
0 𝐸2 0
0 0 𝐸1

ª®®®¬ , (2.129)

with 𝐸1,2 = 𝑒
− Δ𝑡
𝑇1,2 and an inhomogeneous component

𝑹rel,non(Δ𝑡) = (𝑀0 − 𝐸1)
©«
0
0
1

ª®®®¬ . (2.130)

e relaxation dynamic therefore follows with the operator
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𝑴𝑛+1 = 𝑹rel,hom(Δ𝑡)𝑴𝑛 + 𝑹rel,non(Δ𝑡) (2.131)

= 𝑹rel(𝑴𝑛,Δ𝑡,...) . (2.132)

With the denition of operators for rotation 𝑹rot and relaxation 𝑹rel dierent rotation
based simulations techniques can be designed. Methods with rotation and relaxation
acting during the whole Bloch step Δ𝑡 are called ASY [77]

𝑴𝑛+1 = 𝑹rel

����
Δ𝑡

𝑹rot

����
Δ𝑡

𝑴𝑛 , (2.133)

and provide a rst order convergence in relation to their step size. Techniques with 𝑹rot

acting on Δ𝑡/2 in the beginning and end of the Bloch step are referred to as symmetric
operator spliing (SY) [78]:

𝑴𝑛+1 = 𝑹rot

����
Δ𝑡/2

𝑹rel

����
Δ𝑡

𝑹rot

����
Δ𝑡/2

𝑴𝑛 , (2.134)

with a quadratic convergence in step size. A detailed discussion of the dierent operator
spliing techniques, also including higher orders, was elaborated by [79].

2.3.2. Matrix Exponentials

e ODE in Equation (2.116) with the initial condition 𝑴 (𝒄,0) = 𝑴0 = 𝑀0𝒆𝑧 can be
formally solved by

𝑴 (𝒄,𝑡) = T
{
𝑒
∫
𝑨(𝒄,𝑡)d𝑡

}
𝑴0 . (2.135)

Here, T
{
𝑒
∫
𝑨(𝑡)d𝑡

}
describes a time-ordered exponential but can be simplied to a

matrix exponential for small time intervals Δ𝑡 in which the system matrix 𝑨(𝒄,𝑡) is
assumed to be constant:

𝑒
∫
𝑨(𝑡)d𝑡 ≈ 𝑒

∑
𝑛
𝑨(𝒄,𝑡𝑛)Δ𝑡

. (2.136)

ematrix exponential-based simulation requires the same small Bloch step assumption
as the rotation approach. For each interval𝑛, the matrix exponential 𝑺𝑛Δ𝑡 can be calculated
as follows:

𝑺𝑛Δ𝑡 = 𝑒
𝑨(𝒄,𝑛Δ𝑡)Δ𝑡 , (2.137)

modelling the dynamics of the magnetization
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𝑴 (𝒄,(𝑛 + 1)Δ𝑡) = 𝑺𝑛Δ𝑡𝑴 (𝒄,𝑛Δ𝑡) . (2.138)

A matrix exponential describes the combined eect of RF excitation, relaxation, inho-
mogeneities and gradients during the interval Δ𝑡 . e individual physical eects do not
need to be split, which allows to generalize the physical models [12, 80]. Nevertheless,
the simulation of fast dynamics requires a high discretization rate and many matrix ex-
ponentials need to be calculated. is becomes computationally demanding even though
multiple ecient techniques to determine matrix exponentials exist [81, 82]. e basic
concept behind matrix exponential-based simulation is visualized in Figure 2.25.

Figure 2.25: Visualization of the concept of simulations based on matrix exponentials.
e dynamics of the Bloch equations are approximated to be piece-wise
constant during small time intervals Δ𝑡 ranging from step 𝑛 to 𝑛 + 1.
e system matrix 𝑨 becomes constant and the originally time-ordered
exponential becomes a matrix exponential. is can be solved to nd a
matrix 𝑺𝑛Δ𝑡 that transforms the magnetization from 𝑴𝑛 to 𝑴𝑛+1.

2.3.3. ODE Solver

ey previously introduced simulation methods require a constant sampling in time to
hold the assumption of the piece-wise constant 𝑨. Combined with the fact that these
techniques provide up to second order convergence in step size, they are slow to simulate
with high accuracies. To overcome these limitations, it is exploited that the Bloch equations
(2.46) are ODEs and generic solvers are applied to integrate them. In this section, ODE
solvers are introduced and extended to provide an adaptive step size control.
For a beer understanding of how they work, the Bloch equations (2.116) are reduced to
their gradient 𝑓𝑖 form,

d
dt
𝑀𝑖 (𝒄,𝑡) = 𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡) , (2.139)

with the individual axis components 𝑖 ∈ (𝑥,𝑦,𝑧).
ODE solvers estimate the unknown magnetization 𝑴𝑛+1(𝑡𝑛+1) at time 𝑡𝑛+1 = 𝑡𝑛 + ℎ with
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step size ℎ from the known previous time point 𝑴𝑛 (𝑡𝑛). e individual techniques dier
in the number of intermediate gradients within ℎ that are summed up and averaged.

Euler Method e Euler method [83, p.720] is the simplest ODE solver. It exploits only
information from the beginning of the interval at 𝑡𝑛 and interpolates a solution for 𝑡𝑛+1.
e update follows with the product of step size ℎ and gradient 𝑓 (𝑡𝑛,𝑴𝑛) in 𝑡𝑛 referred to
as 𝑘1:

𝑘1 = ℎ · 𝑓 (𝑡𝑛,𝑴𝑛) (2.140)

𝑴𝑛+1 = 𝑴𝑛 + 𝑘1 +𝑂 (ℎ2) . (2.141)

It shows an approximation error in the order of ℎ2, here in Big O notation.

MidpointMethod Taking not just gradient information of the initial time 𝑡𝑛 but adding
an intermediate step to the interpolation leads to the midpoint method [83, p.720]. e
gradient at 𝑡𝑛 is added as 𝑘1, similar to the Euler method, but the additional approximated
gradient at 𝑡𝑛 + ℎ

2 that depends on 𝑘1 is calculated to improve the accuracy of the solution:

𝑘1 = ℎ · 𝑓 (𝑡𝑛,𝑴𝑛) (2.142)

𝑘2 = ℎ · 𝑓 (𝑡𝑛 +
ℎ

2
,𝑴𝑛 +

𝑘1

2
) (2.143)

𝑴𝑛+1 = 𝑴𝑛 + 𝑘2 +𝑂 (ℎ3) . (2.144)

is additional gradient information decreases the error order to 𝑂 (ℎ3) with ℎ > 1.

Generic Runge-Kua Method is concept of adding information from more in-
termediate points can be generalized to the generic Runge-Kua (RK) method. Here,
information of 𝑠 − 1 intermediate points is combined to approximate the magnetization
at 𝑴𝑛+1 from its origin 𝑴𝑛:

𝑘𝑖 = ℎ𝑛 · 𝑓
(
𝑡𝑛 + 𝑎𝑖ℎ𝑛,𝑴𝑛 +

𝑠∑︁
𝑗=1
𝑏𝑖 𝑗𝑘 𝑗

)
, with 𝑖 = 2, . . . ,𝑠 (2.145)

𝑴𝑛+1 = 𝑴𝑛 +
𝑠∑︁
𝑖=1
𝑐𝑖𝑘𝑖 . (2.146)

e coecients 𝑎𝑖 , 𝑏𝑖 𝑗 and 𝑐𝑖 dene the weighting of the integration coecients and
are commonly presented in a full butcher array
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𝒂 𝒃

𝒄𝑇
=

𝑎1 𝑏11 𝑏12 . . . 𝑏1𝑠

𝑎2 𝑏21 𝑏22 . . . 𝑏2𝑠
...

...
...

. . .
...

𝑎𝑠 𝑏𝑠1 𝑏𝑠2 . . . 𝑏𝑠𝑠

𝑐1 𝑐2 . . . 𝑐𝑠

. (2.147)

Variable Step Size Runge-Kua Method Up to now, techniques that provide an
increased order of convergence compared to the rotation simulation techniques are
discussed. Next, the previously required constant sampling in time is addressed. Following
the denition of a generalized formulation of RK methods, the extention to adaptive
step size control is introduced. is extension avoids manual tuning of the step size
and reduces the computational complexity when temporal dynamics like RF pulses and
relaxation eect are simulated. Mainly two dierent approaches for adding adaptive step
size control to an ODE solver have been developed: Techniques that are based on the
Richardson extrapolation involve two calculations of 𝑴𝑛+1 with dierent step sizes and
adapt ℎ with knowledge about the errors. is procedure, also known as step-doubling
[83, p.716], is computationally demanding and two times less ecient than an embedded
formula technique, which is discussed in the following.

A prominent example of embedded RK algorithms is the Dormand-Prince (DOPRI)
method [84]. It is based on a classical RK 5 algorithm [83, p.716]:

𝑘1 = ℎ · 𝑓 (𝑡𝑛,𝑴𝑛)
𝑘2 = ℎ · 𝑓 (𝑡𝑛 + 𝑎2ℎ,𝑴𝑛 + 𝑏21𝑘1)

. . . (2.148)

𝑘6 = ℎ · 𝑓 (𝑡𝑛 + 𝑎6ℎ,𝑴𝑛 + 𝑏61𝑘1 + · · · + 𝑏65𝑘5)
𝑴𝑛+1 = 𝑴𝑛 + 𝑐1𝑘1 + 𝑐2𝑘2 + 𝑐3𝑘3 + 𝑐4𝑘4 + 𝑐5𝑘5 + 𝑐6𝑘6 +𝑂 (ℎ6),

and includes an embedded RK 4:

𝑴∗
𝑛+1 = 𝑴𝑛 +

𝑠=6∑︁
𝑖=1
𝑐∗𝑖 𝑘𝑖 +𝑂 (ℎ5). (2.149)

Note the dierent coecients 𝑐∗𝑖 for the RK 4. e coecients are [84]:
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𝒂 𝒃

𝒄𝑇

(𝒄∗)𝑇
=

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 − 212

729
1 9017

3168 −355
33

46732
5247

49
176 − 5103

18656
1 35

384 0 500
1113

125
192 − 2187

6784
11
84

35
384 0 500

1113
125
192 − 2187

6784
11
84

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

. (2.150)

e error between the RK 5 and RK 4 for step 𝑛 is calculated with

err𝑛 = 𝑴𝑛+1 −𝑴∗
𝑛+1 (2.151)

and used to update the step size

ℎ𝑛 = ℎ𝑛−1\

(
𝛿

err𝑛

) 1
5

, (2.152)

which is based on the tolerance 𝛿 , the step size of the previous stepℎ𝑛−1 and an additional
factor \ that improves convergence.

2.3.4. State-Transition Matrices

e previous section extended the simulation from homogeneously sampled rotation
techniques to RK solvers incorporating an adaptive step size and higher convergence.
While both improvements reduce the computational eorts markedly, an additional trick
can reduce them even further. Following the idea of the matrix exponentials in Section
2.3.2, their concept is a special case of the generic time-ordered exponential. ese generic
solutions can be found with ODE solvers avoiding the assumption of ne homogeneous
sampling in time domain. e resulting state-transition matrices 𝑺𝑡1→𝑡2 transform the
magnetization 𝑴 from time 𝑡1 to 𝑡2,

𝑴 (𝒄,𝑡2) = T
{
𝑒

∫ 𝑡2
𝑡1

𝑨(𝒄,𝑡)d𝑡
}
𝑴 (𝒄,𝑡1) = 𝑺𝑡1→𝑡2𝑴 (𝒄,𝑡1) , (2.153)

incorporating the time-varying system matrix 𝑨(𝒄,𝑡). ey are a solution to the time-
ordered exponential 𝑒

∫ 𝑡2
𝑡1

𝑨(𝒄,𝑡)d𝑡 .
A detailed explanation of the novel simulation technique based on state-transitionmatrices
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is presented in Section 4.2.2. A visualization of the concept is added to Figure 2.26.

Figure 2.26: Visualization of the concept of simulations based on state-transition
matrices. A state-transition matrix 𝑺𝑡1→𝑡2 is calculated from the generic
time-ordered exponential solution of the Bloch equations transforming
the magnetization from 𝑡1 to 𝑡2.

2.4. Partial Derivative Estimation

Exploiting complex signal models based on simulations has great advantages for QMRI
because it allows the estimation of various physical properties for arbitrary sequences.
One of the major challenges in QMRI is to design a reconstruction that allows to include
such signal models. As presented in Section 2.2, many techniques are based on iterative
algorithms. Most of them are gradient-based methods requiring knowledge about the
partial derivatives of the signal with respect to the determined parameters. In QMRI, the
temporary changing eld 𝑩(𝑡) in the Bloch equations (2.139) is typically known and 𝒄 is
determined. e required gradient information for parameter 𝒄 𝑗 and component𝑀𝑖 is

𝑍𝑖 𝑗 (𝑡) =
𝜕𝑀𝑖 (𝒄,𝑡)
𝜕𝑐 𝑗

. (2.154)

Many techniques to nd 𝑍𝑖 𝑗 exist but they vary depending on the complexity of the
signal model.

2.4.1. Symbolic Dierentiation

Starting with the application presented in Section 2.2, the easiest way to calculate partial
derivatives is to derive an analytical expression 𝑔 for the signal 𝑀𝑥𝑦 from the Bloch
equations,

𝑀𝑥𝑦 = 𝑔(𝒄,𝑡) , (2.155)

and symbolically derive the partial derivatives with respect to the component 𝑐 𝑗 ∈ 𝒄 :
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2. eoretical Overview

𝜕𝑀𝑥𝑦

𝜕𝑐 𝑗
=
𝜕𝑔(𝒄,𝑡)
𝜕𝑐 𝑗

. (2.156)

An example is presented in Section 4.7.6 for an IR-bSSFP sequence.

2.4.2. Automatic Dierentiation

If no single analytical representation of the whole 𝑀𝑥𝑦 is given, it might be possible
to nd piece-wise analytical functions and chain them similar to the rotation matrix
simulations that are introduced in Section 2.3.1. With the knowledge of the piece-wise
analytical partial derivatives, automatic dierentiation can be exploited to calculate the
overall derivatives. To demonstrate the basic concept, two intervals with piece-wise
analytical signal representations 𝑔1 for 𝑡 ∈ [0,1] and 𝑔2 with 𝑡 ∈ [1,2] are assumed. e
magnetization at 𝑡 = 2 follows

𝑴 (𝒄,𝑡 = 2) = 𝑔2(𝑔1(𝑴 (𝒄,𝑡 = 0),𝒄,𝑡)) = 𝑔2(𝑴 (𝒄,𝑡 = 1),𝒄,𝑡) . (2.157)

With the 𝑖-th component of 𝑴 and the 𝑗-th constant coecient, the partial derivative
can be calculated with the chain rule

𝜕𝑀𝑖

𝜕𝑐 𝑗
=
𝜕𝑀𝑖

𝜕𝑚1

𝜕𝑚1

𝜕𝑐 𝑗
=
𝜕𝑔2(𝑚1,𝒄,𝑡)

𝜕𝑚1

𝜕𝑔1(𝑚0,𝒄,𝑡)
𝜕𝑐 𝑗

, (2.158)

and𝑚𝜏 = 𝑴 (𝒄,𝑡 = 𝜏).
Two dierent types of automatic dierentiation exist: e forward mode evaluates the
chain rule from the inside out

𝜕𝑚𝜏

𝜕𝑐 𝑗
=

𝜕𝑚𝜏

𝜕𝑚𝜏−1

𝜕𝑚𝜏−1
𝜕𝑐 𝑗

, (2.159)

with𝑚2 = 𝑀𝑖 . e backwards mode runs in the opposite direction,

𝜕𝑀𝑖

𝜕𝑚𝜏

=
𝜕𝑀𝑖

𝜕𝑚𝜏+1

𝜕𝑚𝜏+1
𝜕𝑚𝜏

, (2.160)

with𝑚0 = 𝑐 𝑗 . Both techniques have been used in various MRI applications but are
dominantly present in machine learning based techniques.

2.4.3. Dierenceotients

If sequences have no analytical or piece-wise analytical signal representation, partial
derivatives can be estimated with a generic dierence quotient:
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2.4. Partial Derivative Estimation

𝜕𝑀𝑖 (𝒄,𝑡)
𝜕𝑐 𝑗

= lim
ℎ→0

𝑀𝑖 (𝒄,𝑡)
����
𝑐 𝑗+ℎ

−𝑀𝑖 (𝒄,𝑡)
����
𝑐 𝑗

ℎ
. (2.161)

It is calculated from two evaluations of the signal model𝑀𝑖 (𝒄,𝑡)
����
𝑐 𝑗

and𝑀𝑖 (𝒄,𝑡)
����
𝑐 𝑗+ℎ

with

small perturbation ℎ in the desired parameter 𝑐 𝑗 . In practice, ℎ needs to be tuned for each
parameter 𝑐 𝑗 individually to ensure an accurate approximation of the derivative without
amplication of numerical noise.
A visualization of the dierence quotient technique is given in Figure 2.27.

Figure 2.27: Visualization of a dierence quotient for a generic function 𝑓 depending
on the parameters 𝑡 and 𝑝 . e partial derivative of 𝑓 with respect to 𝑝
can be approximated in the limit of a vanishing perturbation ℎ from the
dierence between two evaluations of 𝑓 with and without perturbated
parameter 𝑝 .

2.4.4. Direct Sensitivity Analysis

e direct sensitivity analysis [85] provides partial derivatives for generic non-analytical
signals. It exploits an ODE-based temporal description of the signal and assumes that
the partial derivative with respect to the parameter 𝑐 𝑗 exchanges with the total time
derivative. A detailed explanation of the direct sensitivity analysis and its application to
the Bloch equation is given in Section 4.2.1.
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3. Methods

Aer introducing the fundamental basics of classical and quantitative magnetic resonance
imaging (MRI), Bloch simulations and partial derivative estimation, this chapter is focused
on the hardware and soware of the performed experiments of Chapter 4 and 5. It does
not provide a detailed explanation of the individual experiments performed in the analysis
but rather discusses concepts and gives additional details compared to the Section 4.3.

3.1. Hardware

e methodological section starts with details about the used hardware components. e
measurement devices, the physical reference objects and details about the computational
resources are given.

3.1.1. Scanner System

In the fundamentals, the classical description of MRI is introduced in Section 2.1.1. It
provides details about the Zeemann spliing for spin 1/2 particles and therefore about the
origin of the macroscopic magnetization used for imaging. Without any measurement
device, every object on earth already experiences a magnetic eld. In Göingen, the
eld strength is 49 `T [86, p.66]. is already leads to a Zeeman spliing and a resulting
macroscopic magnetization. Following Equation (2.5) and (2.6), this low eld strength
leads to similar populations on both energy levels, 𝐸↓ and 𝐸↑. erefore, exploiting only
earth’s magnetic eld for MRI imaging leads to a small macroscopic magnetization and a
low signal-to-noise ratio (SNR). To create a stronger signal, the magnetic eld is increased
with an experimental device: the MRI scanner presented in Figure 3.1.

In this work, two whole body systems have been used: a Siemens MAGNETOM Skyra
and MAGNETOM Vida scanner (Siemens Healthineers AG, München, Germany). ey in-
crease the population dierence between the spins’ ground and excited state by providing
a 3 T strong main magnetic eld 𝑩0. It is created with superconductive electromagnets
that are cooled with liquid helium. From Equation (2.8), the resonance frequency of the
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Figure 3.1: Image of the MAGNETOM Vida MRI scanner on the le. Visualization
of the major components in a conventional scanner system on the right.
Figure partially adapted from [13].

spin system can be derived for 𝑩0. is Larmor frequency is 127.74 MHz for H1. For spatial
encoding, which is explained in Section 2.1.7, both scanners incorporate strong gradients.
e Skyra system has a Siemens XQ gradient system with a maximum strength of 45
mT/m at a slew rate of 200 T/m/s,whereas the Vida system has Siemens XT gradients with
60 mT/m and 200 T/M/s, respectively. Both can exploit a high number of independent
receiver channels for parallel imaging (PI) (Section 2.1.7), but in this work only 20 channel
head coils have been used to reduce the amount of acquired data. e excitation of the
measured objects, which is introduced in Section 2.1.3, is achieved with radio frequency
(RF) coils that are placed around the measured object. To improve the homogeneity of
the main magnetic eld, both scanners have been passively shimmed during setup and
have been equipped with three rst-order and ve second-order shim coils (Section 5.4).

3.1.2. Reference Objects

Physical reference objects, also referred to as physical phantoms, are important for the
development of new acquisition and reconstruction techniques. ey are typically used
aer validations ofmethods with numerical phantoms,which are discussed in Section 3.2.1.
Similarly to their numerical versions, physical phantoms allow for a controlled increase
in complexity of the setup. In in vivo experiments, this is not possible due to hardware
imperfections, motion and various interacting compartments in tissue. us, physical
phantoms are important for verication and validation of reconstruction techniques,
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3.1. Hardware

especially for quantitative measurements like in quantitative magnetic resonance imaging
(QMRI). In this study, mainly two physical reference objects have been used and those
are introduced in the following.

NIST Phantom

e rst physical phantom that was used is the NIST reference phantom [87], more
precisely the system standard model 130. It is designed with ve layers, each specialized
for specic QMRI applications. A schematic visualization of it is given in Figure 3.2.
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Figure 3.2: Visualization of the geometry of the NIST reference phantom (model 130)
with focus on the 𝑇2 sphere.

Due to the focus of this thesis on relaxation parameters, the 𝑇2 sphere containing a
MnCl2 array of varying 𝑇1 and 𝑇2 relaxation times has been measured. e reference
relaxation parameters are determined in a single slice with two gold-standard single-echo
spin-echo measurements. Both techniques are discussed in more detail in Section 2.2.1
and their acquisition parameters are added to Table 4.1. e calculated reference values
for the NIST phantom’s 𝑇2 sphere for a eld strength of 3 T are listed in Table 3.1 [87].

Table 3.1: NIST phantom reference results of the 𝑇2 sphere components [87]. e
0-th component denes the background. e numbers correspond to the
labelled spheres in Figure 3.2.

Sphere No. 0 1 2 3 4 5 6 7
𝑇1 [s] 3 2.48 2.173 1.907 1.604 1.332 1.044 0.802
𝑇2 [s] 1 0.581 0.404 0.278 0.191 0.133 0.097 0.064

Sphere No. 8 9 10 11 12 13 14
𝑇1 [s] 0.609 0.458 0.337 0.244 0.177 0.127 0.091
𝑇2 [s] 0.046 0.032 0.023 0.016 0.011 0.008 0.006
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SONAR Phantom

e second physical reference object is the SONAR phantom which consists of tubes with
dierent gels of the Eurospin II line produced by Diagnostic Sonar LTD (Scotland, UK).
e phantom includes the gels numbered 3, 4, 7, 10, 14 and 16. eir relaxation parameters
have been measured in previous publications [9, 88]. 𝑇1 is described by Wang in 2018
[9] and 𝑇2 by Sumpf in 2014 [88]. Follow-up scans showed a good robustness of the
gels against aging, so it can be assumed that the relaxation values from the publications
mentioned above are still valid (see Table 3.2).

Table 3.2: SONAR phantom reference values taken from 𝑇1 [9] and 𝑇2 [88]. e 0th
component denes the background and the 7th component a tube contain-
ing the same substance as the 0th.
Tube No. 0 1 2 3 4 5 6 7
𝑇1 [s] 3 0.311 0.458 0.633 0.805 1.116 1.441 3
𝑇2 [s] 1 0.046 0.081 0.101 0.132 0.138 0.166 1

3.1.3. Computational Resources

Aer discussing the measurement system and physical reference objects the compu-
tational resources of this work are described in detail in this section. e simulations,
reconstructions and analysis of this thesis have been performed mainly on two server
systems: e rst server system is a Supermicro Super-Server (Supermicro Inc., San Jose,
USA) with two Intel Xeon Gold 6132 14-Core CPU clocked at a base frequency of 2.60GHz
with up to 3.7 GHz, and four Tesla V100-SXM2-32GB GPUs as well as 378 GB of RAM.
e second server is also from Supermicro Super-Server (Supermicro Inc., San Jose, USA)
but includes two AMD EPYC 7662 64-Core CPUs clocked at 2.0 GHz, 1 TB of RAM, and
four Nvidia A100-SXM-80GB GPUs. Both systems run latest Debian linux distributions.

3.2. Soware

Besides the always active main magnetic eld, programs dene how multiple gradients in
all spatial directions are executed and when and how time-varying RF elds are switched
on. ey dene pipelines to receive the data, demodulate it and reconstruct it in the end.
erefore, this project was mostly about designing own soware, controlling the scanner,
building reconstructions and simulations. In this section, an overview of the design of
realistic numerical phantoms and reconstruction tools is provided.
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3.2.1. Realistic Numerical Phantoms

e goal of this thesis is to develop a new generalized model-based reconstruction tech-
nique for multi-parameter mapping. In the long term, it should provide a new tool to
determine physical quantities in patients, which can improve the diagnostic and potential
treatments. While the nal steps involve actual measurements on volunteers and physical
reference objects, the initial tests were performed on numerical phantoms. Compared to
their physical conter part, they allow for an even more gradual and controlled increase in
complexity, which simplies the debugging and testing of algorithms. Additionally, they
do not require potentially expensive measurements and allow a careful preparation. A
realistic numerical representation of a phantom needs to satisfy three major conditions:

1. Simulation of multi-coil receiver channels with realistic spatial sensitivities

2. Simulation of objects in image and frequency domain to include eects through
nite sampling, as introduced in Section 2.1.9

3. Simulation of realistic temporal evolutions of the magnetization during an acquisi-
tion, as introduced in Section 2.3.

In the following, it is discussed why the created numerical phantom satises all of
them.

Modelling Coil Sensitivities

Following the Biot-Savart law, the spatial sensitivity of receiver channels in MRI is gener-
ally smooth. Mathematically, smoothness can be modelled with various techniques, like
the Sobolev norm [36], polynomials [56, 89] or sinusoid functions [90]. While polynomials
work well, their accuracy increases less with more parameters compared to sinusoid
models [90]. erefore, this work focuses on a sinusoid sensitivity model.
e coil-sensitivity 𝑆 (𝒓) at spatial location 𝒓 is dened as a linear combination of

sinusoids in their exponential form [90],

𝑆 (𝒓) =
∑︁
𝒗

𝒔𝒗𝑒
𝑖𝒓 ·𝒗 , (3.1)

weighted with angular frequencies 𝒔𝒗 at position 𝒗 = (𝑣𝑥 𝑣𝑦)𝑇 on a frequency grid.
e distance between the frequency samples in 𝒗 is set to Δ𝑣𝑥 =

1
2·FoV𝑥

and Δ𝑣𝑦 = 1
2·FoV𝑦

.
e frequencies 𝒔𝒗 are precalculated from a reference sensitivity scan with an 8-channel
coil and are stored in a look-up table accessible for the simulation. Guerquin-Kern et al.
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propose to limit the involved angular frequencies to a factor𝐿 [90]. In this implementation,
𝐿 is set to 5.

Simulation in Frequency Space

Aer discussing how coil-sensitivities can be modelled mathematically, the focus is on the
measured object in this section.eir geometry is constraint to elliptical regions E because
of their analytical frequency space representation. is concept can be generalized to
b-splines [90]. e individual regions are dened by their center 𝒓𝑐 and angle of rotation
\ between its two axis 𝐴 and 𝐵. To nd the frequency representation of E, the operators
𝑫 = diag(𝐴,𝐵) and the rotation 𝑹\ around \ are required to transform E to a unit disc 𝒖
[90],

𝒖 = 𝑫−1𝑹𝑇 (𝒓 − 𝒓𝑐) , (3.2)

with a Fourier transform dened with the jinc-function

𝐺 (𝝎) = 𝐽1(𝝎)
𝝎

, (3.3)

based on a Bessel function of the rst kind 𝐽1. e Fourier transformation of the elliptical
region E follows with [90, 91]

𝐹𝑇E (𝜔) = 2𝜋 |𝑫 |𝑒− 𝑗𝝎·𝒓𝑐𝐺
(
𝑫𝑹𝑇𝝎

)
, (3.4)

and the absolute value operation | · |.
By convolving the frequency representation of the elliptical region in Equation (3.4)

with the angular frequencies from Equation (3.1), an analytical model for ellipses can be
derived that is acquired with smooth spatial sensitivities in frequency space [90]:

𝐹𝑇E,sens(𝜔) = 2𝜋 |𝑫 |𝑒− 𝑗𝝎·𝒓𝑐
∑︁
𝒗

𝒔𝒗𝑒
𝑖𝒓 ·𝒗𝐺 (𝑫𝑹−\ (𝝎 + 𝒗)) . (3.5)

An object simulated analytically in frequency space can be sampled at arbitrary discrete
points. erefore, such phantoms enable testing of non-Cartesian sampling. In addition,
they show the same errors through discrete and limited sampling like real measurements
(Section 2.1.9). e resulting Gibbs ringing can be observed in the two inverse Fourier
transformed geometries, as shown in Figure 3.4.
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Combined Numerical Phantom

Aer discussing the design of an elliptical region E with its Fourier representation
including spatial sensitivities in Equation (3.5), it is now discussed how multiple of these
regions can be combined to form complex geometrical objects. ey consist of dierent
geometric components G ∈ ℂ𝑀×𝑁 dened by𝑀 × 𝑁 complex samples. An example of a
numerical phantom that consists of four components, 𝐶 = 4, is illustrated in Figure 3.3.

Figure 3.3: Visualization of the concept of the numerical phantom. A reference geome-
try is created from elliptical regions to provide individual tubes and a back-
ground. e components are element-wisely multiplied with simulated
signal evolutions. e simulated phantom is the sum over all components.

It is dened by one background and three single elliptical, here circular, inner tube
components. e geometric component of the background is designed as the sum of
multiple ellipses with the same absolute intensity but opposite signs. is creates holes in
the background component and avoids overlapping regions, which might lead to partial
volume eects. Due to the linearity of the Fourier transform, the superposition of the
individual tubes can be performed in the image and the frequency domain. By choosing
the cutout ellipses in the background slightly larger than their component equivalents,
signal-free black circles are created in the nal phantom. ey model plastic or glass
tubes and are visualized on the right in Figure 3.3 and in Figure 3.4.
e component-wise design of the geometry allows for simple integration of temporary
changing signals 𝑺 ∈ ℂ𝐶×𝑇 , as presented in Section 2.3. Each geometric component is a
signal evolution that is assigned by an element-wise multiplication in the pixel or the
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frequency domain,

Gsim,𝑐 = G𝑐 � 𝑺𝑐 , (3.6)

leading to the simulated geometrical components Gsim ∈ ℂ𝑀×𝑁×𝐶×𝑇 . e element-
wise multiplication includes the assumption of homogeneous characteristics for each
component. Multiple dierent characteristics within a voxel, referred to as partial volume
eect, can be created with overlapping spatial regions with dierent signal behavior. e
nal phantom Pha ∈ ℂ𝑀×𝑁×𝑇 follows as sum over all spatial components:

Pha =

𝐶∑︁
𝑐=1

Gsim,𝑐 . (3.7)

e numerical phantom’s geometries designed in this work follow their physical exam-
ples. e SONAR and𝑇2 sphere of the NIST phantom (model 130) have been implemented
and are visualized in Figure 3.4. e relaxation values for their individual components
are the same as listed in Table 3.1 and 3.2 if not stated otherwise.

Figure 3.4: Visualization of the numerical phantom geometries for the𝑇2 sphere of the
NIST (model 130) and the Diagnostic Sonar phantom. Both are presented
as simulation in the image and the inverse Fourier transformed frequency
domain.
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3.2.2. Reconstruction and Simulation Soware

All simulations and reconstructions of this work have been implemented and published
in the Berkeley Advanced Reconstruction Toolbox (BART). Its command line interface
(CLI) is convenient for prototyping and its C backend libraries provide a large variety of
algorithms from simple matrix operators up to complex optimizations. is work exploits
many of the implemented tools in BART, like a singular value decomposition (SVD) based
coil-compression, a radial spoke intersections for gradient delay estimation (RING) based
gradient delay estimation, parallel imaging and compressed sensing reconstructions, and
a non-uniform fast Fourier transform (nuFFT). BARTs nonlinear operator framework
[92] directly incorporates GPU support and advanced optimization algorithms, like the
iteratively regularized Gauss-Newton method (IRGNM). e center of the Bloch model-
based reconstruction tool is a simulation that is implemented with a Runge-Kua (RK)
solver, state-transition and rotation matrices. e nonlinear problem is solved with an
IRGNM. Compared to the original regularized nonlinear inverse reconstruction (NLINV),
introduced in Section 2.1.9, no conjugate gradient method (CG) but fast iterative shrink-
age/thresholding algorithm (FISTA) is exploited to solve the linearized problem within
each Gauss-Newton step which allows for enforcing a non-negativity constraint on the
parameter maps. In the current implementation the whole linearized problem can be
solved on GPUs. e simulation only runs on multiple CPUs which makes it the main
contributor to the overall reconstruction time.

3.3. Reproducibility

Aer discussing some details about the implementation of the Bloch model-based re-
construction method, this section focuses on how the code and data can be accessed. It
should give the reader the opportunity to reproduce all gures and more easily build up
upon this work. e data for reproducing the results of this thesis has been uploaded to
Zenodo:

1. Data @doi:10.5281/zenodo.7654462 for reproducing the gures in Section 4

2. Data @doi:10.5281/zenodo.7837312 for reproducing the gures in Section 5.

e gures can be reproduced with the scripts published on Github:

1. Scripts @mrirecon/bloch-moba for reproducing the gures in Section 4
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2. Scripts @mrirecon/bloch-moba-misc for reproducing the gures in Section 5.

All reconstruction and simulation tools have been implemented and published in
BART with commit 0c847a2. Tutorials have been created to guide the reader interactively
through the initial steps of applying the developed techniques:

1. Link→Simulation Tool Tutorial

2. Link→Bloch model-based Reconstruction Tutorial

3. Link→Abstract reproduction: Direct Sensitivity Analysis of the Bloch Equations.
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4. antitativeMagnetic Resonance Imaging byNonlinear Inversion of the Bloch Equations

Abstract

Purpose: Development of a generic model-based reconstruction framework for
multi-parametric quantitative MRI that can be used with data from dierent pulse
sequences.
Methods: Generic nonlinear model-based reconstruction for quantitative MRI
estimates parametric maps directly from the acquired k-space by numerical op-
timization. is requires numerically accurate and ecient methods to solve the
Bloch equations and their partial derivatives. In this work, we combine direct sensi-
tivity analysis and pre-computed state-transition matrices into a generic framework
for calibrationless model-based reconstruction that can be applied to dierent pulse
sequences. As a proof-of-concept, the method is implemented and validated for
quantitative 𝑇1 and 𝑇2 mapping with single-shot inversion-recovery (IR) FLASH
and IR-bSSFP sequences in simulations, phantoms, and the human brain.
Results: e direct sensitivity analysis enables a highly accurate and numerically
stable calculation of the derivatives. e state-transition matrices eciently exploit
repeating paerns in pulse sequences, speeding up the calculation by a factor of 10
for the examples considered in this work, while preserving the accuracy of native
ODE solvers. e generic model-based method reproduces quantitative results of
previous model-based reconstructions based on the known analytical solutions for
radial IR-FLASH. For IR-bSSFP it produces accurate 𝑇1 and 𝑇2 maps for the NIST
phantom in numerical simulations and experiments. Feasibility is also shown for
human brain, although results are aected by magnetization transfer eects.
Conclusion: By developing ecient tools for numerical optimizations using
the Bloch equations as forward model, this work enables generic model-based
reconstruction for quantitative MRI.

Keywords: model-based reconstruction, sensitivity analysis, state-transition ma-
trix, nonlinear inversion, Bloch equations, quantitative MRI
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4.1. Introduction

Conventional quantitative magnetic resonance imaging is based on a two-step process,
where rst intermediate images are reconstructed and then physical models are ed
pixel-wisely to obtain parameter maps. Acquiring a sucient amount of high quality
images with carefully designed contrasts is required for achieving a good t. For this
reasons, these methods are too slow for many clinical applications. In contrast, nonlinear
model-based reconstruction methods formulate image reconstruction as a single inverse
problem. ey exploit a physical model of the measurement process and directly estimate
quantitative parameter maps from k-space. us, they make optimal use of the available
data and enable highly ecient parameter mapping from signals acquired with sequences
that make use of transient magnetization dynamics [5–8, 70]. ese techniques have two
problems: ey are computationally demanding and they need to be specially designed
for each application.
Alternatively, ngerprinting [11] uses a lookup dictionary obtained by Bloch simula-

tions to map the pixels of intermediate images computed directly from undersampled
data to quantitative parameter maps. is enables multi-parametric mapping with high
acceleration in a exible and computationally ecient framework, but is not optimal due
to its lack of a least-squares data consistency term. Subspace models can be exploited
for a more ecient mapping by approximating the physical signal with a larger linear
subspace. ey reduce the computational demand of the reconstruction very eciently
[65–69], but are still not optimal because a linear subspace is used to approximate the
manifold of possible signals. For complicated spin dynamics a larger number of subspace
coecients may be needed to accurately represent the signal, rendering subspace methods
less ecient [8].
e aim of this work is to develop a generic framework for nonlinear model-based

reconstruction with accurate signal models for dierent MRI sequences even with com-
plicated spin dynamics. e generalization of the forward model then allows the use of
optimized sequences for which no analytical expression for their signal can be derived.
Fundamentally, such a generic method requires ecient techniques to compute the partial
derivatives of the Bloch equations. So far, two dierent methods were used in MRI. First,
symbolic derivatives can be calculated for analytical solutions of the Bloch equations for
special sequences [9, 10, 72] and this can be generalized to chains of small blocks using
automatic dierentiation [93, 94]. ese methods require idealized assumptions such as
hard pulse approximation and perfect inversion. In more complicated scenarios with long
pulses or imperfect inversion they require high discretization rates or suer from errors.
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Second, derivatives can be estimates using dierence quotients [73, 74]. is method
fully exploits the generality of full Bloch simulations, but is computational expensive and
requires careful tuning to balance accuracy and noise amplication.
To overcome these limitations, this work uses a direct sensitivity analysis [85] to

compute the derivatives of the Bloch equations for arbitrary sequences with high accuracy
by solving an extended system of ordinary dierential equations (ODE). e technique
is validated using an analytical model of an IR-bSSFP sequence and is compared to
results obtained from dierence quotients methods. To further improve computation
speed, pre-computed state-transition matrices are applied to arbitrary initial conditions
solving the required ODEs for all repeating parts of an MRI sequence eciently. ey
are validated by comparing them to the direct application of a Runge-Kua ODE solver.
We further integrate both techniques in a nonlinear model-based reconstruction with
integrated calibration-less parallel imaging. For IR-FLASH, we show that the methods
reproduce the results of an analytical model. In a numerical and measured phantom
study with an IR-bSSFP sequence we rene the exible forward model of the generic
model-based reconstruction to include realistic simulations with slice-selective excitations
and hyperbolic secant inversion pulses. us, we show that the reconstruction quality
benets much from the more physically accurate modelling leading to accurate 𝑇1 and 𝑇2
parameter maps. Finally, we test the developed technique on in vivo brain data from a
healthy volunteer.

Parts of this work have been published in [95–98].

4.2. Theory

In the following, we briey explain the concepts of a direct sensitivity analysis and its
application to the Bloch equations (SAB). We then describe how state-transition matrices
(STMs) can be used to accelerate the solution of the ODEs. Aerwards, both methods are
integrated into a nonlinear model-based reconstruction method.

4.2.1. Sensitivity Analysis of the Bloch Equations

We consider the temporal evolution of a magnetization vector 𝑴 (𝒄,𝑡) depending on a
vector of parameters 𝒄 and time 𝑡 . e temporal behavior of its components 𝑀𝑖 (𝒄,𝑡) is
described by the Bloch equations as a system of ODEs

d
dt
𝑀𝑖 (𝒄,𝑡) = 𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡) , (4.1)
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where 𝑓 denes the dynamics. e partial derivative of the component𝑀𝑖 with respect
to the parameter 𝒄 𝑗 denes the (𝑖, 𝑗)-th entry

𝑍𝑖 𝑗 (𝑡) =
𝜕𝑀𝑖 (𝒄,𝑡)
𝜕𝑐 𝑗

(4.2)

of the sensitivity matrix 𝒁 (𝑡).
Using direct sensitivity analysis [85] one obtains 𝒁 (𝑡) by solving an additional set of

ODEs. Assuming that the partial and ordinary derivatives interchange, the time derivative
of the (𝑖, 𝑗)-th entry of 𝒁 is

d
d𝑡
𝑍𝑖 𝑗 (𝑡) =

d
d𝑡

(
𝜕𝑀𝑖 (𝒄,𝑡)
𝜕𝑐 𝑗

)
=

𝜕

𝜕𝑐 𝑗

(
d𝑀𝑖 (𝒄,𝑡)

d𝑡

)
. (4.3)

Substituting d𝑀𝑖 (𝒄,𝑡)
d𝑡 then yields

d
d𝑡
𝑍𝑖 𝑗 (𝑡) =

𝜕

𝜕𝒄 𝑗
𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡) . (4.4)

With the chain rule, the resulting ODE becomes

d
d𝑡
𝑍𝑖 𝑗 (𝑡) =

𝜕𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡)
𝜕𝒄 𝑗

+
∑︁
𝑗

𝜕𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡)
𝜕𝑀 𝑗

𝜕𝑀 𝑗 (𝒄,𝑡)
𝜕𝒄 𝑗

=
𝜕𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡)

𝜕𝒄 𝑗
+

∑︁
𝑗

𝜕𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡)
𝜕𝑀 𝑗

𝑍𝑖 𝑗 , (4.5)

where 𝜕𝑓𝑖 (𝑴 (𝒄,𝑡),𝒄,𝑡)
𝜕𝑀𝑗

describes the (𝑖, 𝑗)-th element of the Jacobian 𝐽𝑖, 𝑗 . is can be wrien
compactly for the sensitivity matrix 𝒁 (𝑡) as

d
d𝑡
𝒁 (𝑡) = 𝒇𝒄 (𝑴 (𝒄,𝑡),𝒄,𝑡) + 𝑱 (𝑴 (𝒄,𝑡),𝒄,𝑡) · 𝒁 (𝑡) . (4.6)

If a direct sensitivity analysis is applied to the Bloch equations for the parameters 𝑅1,
𝑅2 and 𝐵1, the ODE in Equations 4.6 describing the temporal evolution of the sensitivities
becomes

d
d𝑡𝒁 =

©«
0 −𝑀𝑥 −𝛾 sin𝜙 𝑀𝑧

0 −𝑀𝑦 𝛾 cos𝜙 𝑀𝑧

𝑀0 −𝑀𝑧 0 𝛾 (sin𝜙 𝑀𝑥 − cos𝜙 𝑀𝑦)

ª®®®¬ +
©«

−𝑅2 𝛾𝐵𝑧 −𝛾 sin𝜙 𝐵1
−𝛾𝐵𝑧 −𝑅2 𝛾 cos𝜙 𝐵1

𝛾 sin𝜙𝐵1 −𝛾 cos𝜙 𝐵1 −𝑅1

ª®®®¬ · 𝒁 . (4.7)

depending on the 𝑥 , 𝑦 and 𝑧 components of the magnetization 𝑴 , the magnetic elds
𝐵𝑧 and 𝐵1 as well as the RF pulse phase 𝜙 . Equation 4.7 is solved jointly with the Bloch
Equations 4.1 which provide the time-dependent solutions for𝑀𝑥 ,𝑀𝑦 , and𝑀𝑧 .
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4.2.2. State-Transition Matrices

By embedding the magnetization vector into a four-dimensional space

𝑴 (𝒄,𝑡) =

©«
𝑀𝑥 (𝒄,𝑡)
𝑀𝑦 (𝒄,𝑡)
𝑀𝑧 (𝒄,𝑡)

1

ª®®®®®¬
, (4.8)

we obtain a formulation of the Bloch Equations 4.1 as a system of homogeneous ODEs

d𝑴 (𝒄,𝑡)
d𝑡

= 𝒇 (𝑴 (𝒄,𝑡),𝒄,𝑡) = 𝑨(𝒄,𝑡) 𝑴 (𝒄,𝑡) , (4.9)

with the system matrix

𝑨(𝒄,𝑡) =

©«
−𝑅2 𝛾𝑮𝑧 (𝑡) · 𝒓 −𝛾𝐵𝑦 (𝑡) 0

−𝛾𝑮𝑧 (𝑡) · 𝒓 −𝑅2 𝛾𝐵𝑥 (𝑡) 0
𝛾𝐵𝑦 (𝑡) −𝛾𝐵𝑥 (𝑡) −𝑅1 𝑀0𝑅1

0 0 0 0

ª®®®®®¬
, (4.10)

at location 𝒓 depending on time 𝑡 , the 𝑧-gradient 𝑮𝑧 and the magnetic elds 𝐵𝑥,𝑦 .
e Bloch equations can be solved directly for time-dependent coecients 𝑨(𝑡) using

standard ODE solvers. Here we describe the pre-computation of STMs as more ecient
way to solve the equations for MRI sequences with repeating paerns. A STM 𝑺𝑡1→𝑡2

describes the evolution of an arbitrary starting magnetization 𝑴 (𝒄,𝑡1) for the time span
from 𝑡1 to 𝑡2 including all eects from relaxation and time-dependent external RF elds.
is compresses the temporal evolution to a single matrix multiplication

𝑴 (𝒄,𝑡2) = 𝑺𝑡1→𝑡2𝑴 (𝒄,𝑡1) . (4.11)

e computation of 𝑺𝑡1→𝑡2 is based on derivation of Equation 4.11

d𝑴 (𝒄,𝑡2)
d𝑡2

=
d
d𝑡2

(
𝑺𝑡1→𝑡2𝑴 (𝒄,𝑡1)

)
. (4.12)

Using the Bloch Equations 4.9 to replace the time derivative on the le side and using
d𝑴 (𝑡1)
d𝑡2 = 0 for the right, we obtain

𝑨(𝑡2)𝑴 (𝒄,𝑡2) =
(
d
d𝑡2

𝑺𝑡1→𝑡2

)
𝑴 (𝒄,𝑡1) . (4.13)

By using Equations 4.11 and switching both sides we obtain
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d
d𝑡2

𝑺𝑡1→𝑡2 𝑴 (𝒄,𝑡1) = 𝑨(𝑡2)𝑺𝑡1→𝑡2𝑴 (𝒄,𝑡1) . (4.14)

As this holds for arbitrary 𝑴 (𝒄,𝑡1) and by renaming 𝑡2 as 𝑡 a system of ODEs

d
d𝑡
𝑺𝑡1→𝑡 = 𝑨(𝑡)𝑺𝑡1→𝑡 (4.15)

for the entries of the STM is derived. is ODEs 4.15 can be solved for estimating 𝑺𝑡1→𝑡2

column-wisely with an ODE solver [81, 82] with initial conditions

𝑺𝑡1→𝑡1 = 𝟙 . (4.16)

e solution of the state-transition ODE in Equation 4.15 can be formally dened as a
time ordered exponential

𝑺𝑡1→𝑡2 =

𝑡2∏
𝑡1

𝑒𝑨(𝜏)d𝜏 ≡ T
{
𝑒

∫ 𝑡2
𝑡1

𝑨(𝜏)d𝜏
}

(4.17)

≡ lim
𝑁→∞

(
𝑒𝑨(𝑡𝑁 )Δ𝑡𝑒𝑨(𝑡𝑁−1)Δ𝑡 . . . 𝑒𝑨(𝑡1)Δ𝑡𝑒𝑨(𝑡0)Δ𝑡

)
. (4.18)

is links the proposed technique to approximation methods based on matrix-
exponentials computed using discretized sampling [12, 80].
is technique is not limited to the Bloch Equations, but can be extended to also

include the sensitivity analysis for the three partial derivatives 𝑅1, 𝑅2 and 𝐵1. is is
further described in Appendix 4.7.1.

4.2.3. Bloch Model-Based Reconstruction

In the following, we integrate the generic Bloch operator B into a nonlinear model-based
reconstruction framework with non-Cartesian, calibrationsless, parallel imaging and
compressed sensing as illustrated in Figure 4.1. e reconstruction method solves the
nonlinear inverse problem for the maps 𝒙 = (𝒙𝒑 𝒙𝒄)𝑇 with the physical parameters
𝒙𝒑 = (𝑅1 𝑅2 𝑀0 𝐵1)𝑇 and coil sensitivities 𝒙𝒄 = (𝑐1 . . . 𝑐𝑁 )𝑇 by optimizing

�̂� = argmin
𝒙

‖𝒚 − A(𝒙)‖22 + 𝛼𝑸 (𝒙𝒄) + 𝛽𝑹 (𝒙𝒑) . (4.19)

Equation 4.19 includes the forward-operatorA, the measured data 𝒚 , the Sobolev norm
𝑸 with its regularization parameter 𝛼 to enforce the smoothness of coil proles [36]
and 𝐵1 maps. A joint sparsity constraint 𝑹 is applied to the other parameter maps [99,
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Figure 4.1: Illustration of the operators used in the Bloch model-based reconstruction.
e boom part presents the ODEs for the signal and the derivatives.

100]. e full forward operator is A = PFCB. It is solved by the Iteratively Regularized
Gauss-Newton Method (IRGNM)

�̂�𝑛+1 = argmin
𝒙

‖𝐷A(𝒙𝑛) (𝒙 − 𝒙𝑛) + A(𝒙𝑛) − 𝒚 ‖22

+𝛼𝑛𝑸 (𝒙𝒄) + 𝛽𝑛𝑹 (𝒙𝒑) (4.20)

with the Jacobian𝐷A(𝒙𝑛) and the regularization parameters𝛼𝑛 = 𝛼0 ·𝑞𝑛 and 𝛽𝑛 = 𝛽0 ·𝑞𝑛

at the 𝑛th iteration step. Here, C is the nonlinear parallel imaging operator combining the
signal with the coil proles, F represents the Fourier operator, P the sampling paern.
e generic operator B takes information about the applied sequence and outputs the
simulated signal based on the STM technique. e partial derivatives of B are calculated
using the direct sensitivity analysis. e derivatives of A are described in Appendix 4.7.2.
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4.3. Methods

4.3.1. Implementation

All simulations and reconstructions are implemented in the Berkeley Advanced Recon-
struction Toolbox (BART) using single-precision oating point arithmetic [101]. e Bloch
operator B is implemented in BARTs nonlinear operator framework [92]. e calibra-
tionless model-based reconstruction is based on an IRGNM-FISTA following Wang et al.
[9] and we refer to this work for further details. e Bloch operator includes a pixel-wise
calculation of the signal evolution using STMs (Section 4.2.2) and of the partial derivatives
with SAB (Section 4.2.1). ODEs are solved using the a Runge-Kua algorithm (RK54)
with adaptive step-sizes. e error tolerances are chosen to be 10−7 for the simulation
comparisons in Section 4.2.1 and 4.2.2 as well as 10−6 for further reduced computational
costs in the Bloch model-based reconstructions. e Runge-Kua solver exploits weights
published by Dormand and Prince [84]. For balancing the relative scaling of the partial
derivatives during the optimization of Equation 4.19 pre-conditioning following Wang et
al. [9] is used. e initial wavelet regularization is set to 𝛼0=𝛽0=1 and decreased by 𝑞=1/2
in each Newton iteration. e output of the Bloch model operator B is scaled according
to Section 4.7.4. As a globalized Newton method, the IRGNM does not require ne tuning
of initial values. Here, the maps are initialized with the constants 𝑅1 = 1 Hz, 𝑅2 = 1 Hz,
𝑀0 = 1, 𝐵1 = 0 and the coil proles are initialized with zero.

For comparison, we also implemented the reparameterized Look-Locker model from
equation 4.29 in the same model-based reconstruction framework following Wang et al.
[9].

4.3.2. Validation of Bloch Simulation

e accuracy of the SAB technique is validated with an IR-bSSFP sequence for tissue with
𝑇1/𝑇2 = 1250/45 ms. An analytical solution for the IR-bSSFP signal can be derived from the
Bloch equations [3] assuming hard pulses, a perfect inversion and a perfect non-selective
excitation. e symbolic partial derivatives with respect to the parameters 𝑅1, 𝑅2,𝑀0 and
𝐵1 are calculated in Appendix 4.7.6 and are used as ground truth. For validation of the
derivatives the ODE simulation parameters are chosen to be close to the assumptions
of the analytical model. e ODE solution for the derivatives is also compared to the
dierence quotient techniques (DQ) calculated using two simulations 𝑀𝑡,𝑝 and 𝑀𝑡,𝑝+ℎ

diering by a small perturbation ℎ for all parameters 𝑝 ∈ (𝑇1,𝑇2, 𝑀0, 𝐵1) and time points
𝑡 :
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𝜕𝑴𝑡

𝜕𝑝
≈
𝑀𝑡,𝑝+ℎ −𝑀𝑡,𝑝

ℎ
(4.21)

e size of the perturbation is decreased until numerical noise dominates.
To validate the STM approach in the presence of RF pulses, gradients, and relaxation,

a slice-selective excitation of a Hamming-windowed sinc-shaped inversion pulse with
TRF = 1 ms, BWTP=1, Δ𝑧 =10 mm, 𝐺𝑧 = 10 mT/m is simulated. Relaxation parameters are
selected based on typical human white maer values at 3 T: 𝑇1/𝑇2 =832/80 ms [102]. e
STM simulation is computed with the Runga-Kua solver and the magnetization just
before the slice rewinder is compared to a direct simulation exploiting the same solver.
For comparison a traditional Bloch simulation technique based on temporal discretization
with rotation matrices (ROT) is performed using a discretization rate of 1 MHz. According
to the analysis shown in Figure S3, a sampling rate of 1 MHz is required for ROT to
accurately model complex spin dynamics that include slice-selective RF pulses.
e simulation speed is analyzed for a FLASH sequence with FA=8◦, TR/TE=3.1/1.7 ms
and TRF=1 ms simulated for 101 isochromats homogeneously distributed along a slice of
0.02 m width and using a slice-selection gradient of 12 mT/m. e tissue parameters are
set to relaxation times of white maer at 3 T. e simulations were executed on a single
Intel(R) i7-8565U CPU core at 1.80 GHz.

4.3.3. Validation of Reconstruction

To validate the model-based reconstruction we further perform validations on numerical
and experimental phantoms as well as in vivo data for both single-shot IR-FLASH and
IR-bSSFP sequences with tiny golden-angle based radial sampling. e IR-bSSFP sequence
includes a prior 𝛼/2-TR/2 pulse to achieve a smooth signal evolution during the transient
state [103, 104]. To be able to decouple the information of 𝑇1 and 𝑇2 for an IR-bSSFP
sequence (see section 4.7.5) a 𝐵1 map is acquired on the same slice using a vendor protocol
based on rapid 𝐵1 estimation with preconditioned RF pulses and Turbo-FLASH readout
[62]. All sequence parameters are shown in Table 4.1.
Phantom data for an IR-FLASH sequence published by Wang et al. [105] was down-

loaded from Zenodo [106]. is data was measured on a 3 T Magnetom Skyra by Siemens
Healthcare (Erlangen, Germany) with a 20 channel head-coil. e measured phantom is
a commercial reference phantom (Diagnostic Sonar LTD, Scotland, UK, Eurospin II, gel 3,
4, 7, 10, 14, and 16) consisting of six tubes with known 𝑇1 relaxation values surrounded by
water. A digital phantom of the dataset is created with the same sequence and acquisition
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characteristics as the downloaded measurement. e relaxation parameters were set
to the estimated reference 𝑇1 and 𝑇2 values from previous studies [9, 88]. Additional
phantom data for a radial single-shot IR-bSSFP sequence was acquired on the 𝑇2 spheres
of a National Institute of Standards and Technology (NIST) phantom [87] on the same
scanner and the same 20 channel head-coil. For comparison gold-standard maps of 𝑇1
and 𝑇2 are estimated on the same slice of the NIST phantom using fully-sampled single-
echo spin-echo sequences. All phantom measurements were performed at constant room
temperature (∼21◦C). e estimated quantitative values from gold-standard scans were
used to simulate a second digital phantom with the same geometry as the measured
T2-spheres of the NIST geometry (model 130).

Radial single-shot IR-FLASH and IR-bSSFP data for a brain of a healthy volunteer was
acquired with a 20 channel head-coil on a Siemens Skyra 3T system (Siemens Healthcare,
Erlangen, Germany) aer obtaining wrien informed consent. e IR-FLASH data was
measured with a TR/TE of 4.1/2.58 ms, a ip angle of 6◦, a band-width-time-product
(BWTP) of 4 and a RF pulse duration of 1 ms. e eld-of-view (FoV) was 220x220 mm2

measured at 512 samples with two-fold oversampling. e single-shot IR-bSSFP data was
acquired with two dierent pulse durations: 1 ms and 2.5 ms respectively. e repetition
and echo times were set to 4.88/2.44 ms and 10.8/5.4 ms. A FoV of 200x200 mm2, a ip
angle of 45◦, a BWTP of 4 and a base resolution of 256 was chosen and the same for both
measurements.
e phantom and in vivo IR-FLASH datasets are reconstructed with both the Look-

Locker model and the Bloch model-based technique. As the IR-FLASH sequence is in-
sensitive to 𝑅2, its estimation in the Bloch model-based reconstruction was turned o by
seing the scaling in the pre-conditioner to zero. e initial free decay of 15.3 ms during
the non-selective hyperbolic secant inversion pulse is corrected in both cases using the
correction published by Deichmann et al. [107].
e exibility of the Bloch model-based reconstruction with its ability to also model

more complex sequences is demonstrated using single-shot IR-bSSFP. In the analysis of
the measured dataset the 𝐵1 map is used in the forward model for scaling the nominal ip
angle for each pixel. Additionally, the 𝐵1 estimation is turned o by seing the scaling to
zero in the pre-conditioning.
e method is numerically validated using a digital phantom of the𝑇2 sphere of the NIST
phantom (model version 130) implemented in BART. e multi-coil phantom is simulated
in the frequency domain with the same sequence parameters as the measurement. e
eight coils are compressed to four virtual coils using a singular-value decomposition
(SVD). Complex Gaussian noise is added before coil compression to further avoid an
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inverse crime. To ensure realistic physical conditions the simulated signal model includes
a non-selective hyperbolic secant inversion pulse and slice-selective excitations using
multiple isochromats distributed over equally spaced slice-selection gradient positions.
While analytical solutions of the Bloch equations require the assumption of perfect
inversions and ideal non-selective excitation, the generic simulation of the Bloch model-
based reconstruction technique can simulate more realistic signal models. We show
how step-wise improvements to the model allow more accurate modelling of actual
measurements. is is demonstrated on the numerical and measured NIST phantom
datasets by performing reconstructions with various dierent assumptions about the
signal model. e rst reconstruction uses a model close to the analytical formula by
assuming a perfect inversion and a non-selective excitation. We then add a realistic
slice-selective excitation simulated as mean signal of various homogeneously spaced
isochromats along the slice-selection gradient. To also model the eect of non-optimal
inversion eciency, the nal reconstruction includes an extended model with realistic
non-selective hyperbolic secant inversion.
e radial single-shot IR-bSSFP in vivo data is reconstructed using the most realistic

model. For comparison, the single-shot IR-FLASHmeasurement was acquired on the same
slice and reconstructed with the Bloch model-based reconstruction assuming a realistic
IR-FLASH signal model with non-selective hyperbolic secant inversion and gradient
based slice-selective excitation model to estimate a 𝑇1 map.

Details about the measurements can be found in Table 4.1.

4.4. Results

4.4.1. Validation of Bloch Simulation

Figure 4.2 shows the partial derivatives for an IR-bSSFP sequence with respect to 𝑅1,
𝑅2 and 𝐵1 for the analytical reference, the SAB technique and dierence quotient (DQ)
techniques with dierent perturbations ℎ on the le. On the right Figure 4.2 presents the
dierences of DQ and SAB to the analytical reference.
As expected, the error of DQ decreases for small perturbations until numerical noise
starts to dominate for very small ℎ.
e SAB technique demonstrates a high accuracy and precision of estimating partial

derivatives without requiring tuning of the perturbation level.
Figure 4.3.A compares the simulation results of a Hamming-windowed sinc-shaped

inversion pulse using the Runge-Kua 54 method with Dormand-Prince weights (RK54)
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Figure 4.2: Le: Temporal evolution of the partial derivatives with respect to 𝑅1,
𝑅2 and 𝐵1 estimated for an IR-bSSFP sequence with the SAB, DQ with
varying perturbation levels ℎ and the analytical references. Right: Plot
with point-wise errors of the various DQ methods and the SAB with
respect to the analytical reference. Note that the errors are presented in
ppm for visualization.

[84], STM, and ROT technique.

e error of the STM simulation is dominated by numerical noise due to limited
oating point precision. With the parameters used here, the STM technique has
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Figure 4.3: A: e slice-selection gradient based simulation for a Hamming-windowed
sinc-shaped inversion pulse simulated with the RK54 framework is shown
(le). e point-wise errors of the RK54 (top), the STM technique (center)
and the ROT method (boom) with sampling rate 1 MHz are ploed for
the x-, y- and z- component of the magnetization. Note that the errors
are scaled by large factors for visualization. B: e runtime of the STM
technique is compared to the reference RK54method and a ROT simulation
performed with a sampling rate of 1 MHz. e simulation is performed
for 101 isochromats homogeneously distributed along a slice-selection
gradient during a FLASH sequence for various numbers of repetitions. e
maximum of 1000 is chosen to cover about 4 s of acquisition, required to
measure enough data points for mapping high 𝑇1 values. A more detailed
version of this gure has been added to the Supplementary Section S3.

substantially lower point-wise errors than ROT.

It demonstrates that STM reproduces the RK54 technique for nding solutions to the
Bloch equations extremely well, while ROT is aected by errors due to the discretization
with xed sampling rate and its nature of being a rst order method constrained to single
oating point precision here. e runtime of RK54, STM and ROT is shown in Figure 4.3.B.
e computational cost of ROT increases linear with higher sampling rates. e STM
has higher initial costs than the other techniques which reect the initial calculation of
the state-transition matrices. e other methods are therefore faster for a small number
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of repetitions. For more repetitions, the STM becomes much faster as it requires only
a few matrix multiplications per TR. A detailed comparison of the computational cost
and accuracy of the RK54, STM and ROT techniques for various error tolerances and
sampling rates can be found in Supplementary Section S3 and Supplementary Figure S3.

4.4.2. Validation of Reconstruction

e Bloch model-based reconstruction was compared to the Look-Locker model-based
version for simulated (Figure 4.4.A) and measured single-shot IR-FLASH phantom data
(Figure 4.4.B). Both methods recover high quality 𝑇1 maps with small dierences. Values
for the same Regions-of-Interests (ROIs) are very similar leading to their position on the
diagonal of the Bloch vs. Look-Locker plot on the most right of Figure 4.4.A and Figure
4.4.B. e reconstructed tubes are very homogeneous in both reconstructions leading to
low standard deviations. Reconstructions using dierent regularization parameters or
no regularization are shown in Supplementary Figure S4 and Supplementary Figure S6,
respectively.
In the dierence map between the 𝑇1 maps of the two methods only the water back-

ground shows areas with minor dierences. is probably results from small dierences
in the Sobolev regularization on the ip angle map in both techniques. At the walls of the
inner tubes there is not enough signal and the 𝑇1 maps are not well dened. Results for
the radial single-shot in vivo IR-FLASH data are shown in Figure 4.4.C. e parameter
maps are visually indistinguishable except for minor artifacts in the areas of the head
with ow related eects, which are not modelled by both signal models. e 𝑇1 values
in the marked ROIs for representative white and gray maer areas show a very good
correspondence. e homogeneity within the white maer is high corresponding to a
small standard deviation.
e complex𝑀0 parameter map in Figure 4.4.D reconstructed with the Bloch model-

based reconstruction is of good quality showing no artifacts and a homogeneous phase.
Only in border regions phase changes are present which are most likely caused by
fat. e relative ip angle map is globally lower than one. It combines the eect of an
imperfect slice-selective excitation and the present 𝐵1 eld. e intensity and phase of
the estimated SVD-compressed virtual coil sensitivities is comparable to intensity and
phase of sensitivities estimated with ESPIRiT [55](results not shown).

Figure 4.5 shows the reconstructed 𝑇1 and 𝑇2 maps of the digital NIST phantom (4.5.A)
and the measurement (4.5.B) using the radial single-shot IR-bSSFP acquisition for dierent
models compared to the reference values in Bland-Altman plots.emost simplistic model
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assumes a perfect inversion and an ideal non-selective excitation (Perfect Inversion) and
shows inaccuracies in the 𝑇1 and 𝑇2 estimation. By integrating a slice-selective excitation
(Slice) the errors in 𝑇2 are signicantly reduced leaving an oset in 𝑇1. Adding a realistic
hyperbolic secant inversion pulse to the forward model (Pulse+Slice) corrects for the 𝑇1
oset leading to an accurate estimation of the relaxation parameters. ese eects are
present in both: the simulation and the measured data reconstructions. Important to note
is that the NIST phantoms contains some spheres with extreme 𝑇1 and 𝑇2 parameters
[87], which were excluded from the Bland-Altman analysis in Figure 4.5.A and 4.5.B for
improved visualization. In particular, the three highest𝑇2 values (1.450 s, 0.388 s and 0.271
s) were removed for the reconstruction from simulated data and the highest and lowest𝑇2
values (1.450 s, 0.006 s) for the measured data. Especially the simple model has diculties
in nding the correct relaxation parameters in the reconstruction of the measured data,
so that the mean value is outside the ploed region. A direct comparison of reference
and estimated parameters in a diagonal plot can be found in Supplementary Figure S1. A
Bland-Altman plot with all data points is shown in Supplementary Figure S2.
Reconstructed 𝑇1 and 𝑇2 parameter maps for the two single-shot IR-bSSFP scans of

a human brain are shown in Figure 4.6. For comparison, a map with the Look-Locker
model-based reconstruction of the IR-FLASH scan of the same slice is added. Both IR-
bSSFP reconstructions show large osets in 𝑇1 compared to the IR-FLASH reference.
e relaxation values for the two analyzed ROIs are listed in Table 4.2. e dierences
are smaller for the longer TR and longer RF pulse duration 𝑇RF compared to the short
pulse protocol. is is likely due to the magnetization transfer eect (MT) that aects the
IR-bSSFP sequence but is not included in the current study.
e reconstruction times depend on the complexity of the forward model. e re-

construction of the IR-FLASH datasets took about 80 s on a AMD EPYC 7662 64-Core
CPU and a Nvidia A100-SXM-80GB GPU. e reconstruction of the simple forward
model of the IR-bSSFP NIST phantom dataset took 60 s, while the most complex model
reconstruction took 38 min. e longest reconstruction times were required for the in
vivo IR-bSSFP dataset with short RF pulse. e strong slice-selection gradient prolonged
the reconstruction to about 75 min.

4.5. Discussion

A nonlinear model-based reconstruction framework can be used in combination with well-
craed sequences and their analytical signal representations to accelerate quantitative
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MRI. is work presents a generalization of this well-known approach to arbitrary MRI
sequences by exploiting the Bloch equations directly as forward model. is method
becomes computationally feasible by including a direct sensitivity analysis of the Bloch
equations. It allows us to use a generic ODE solver to compute the derivatives required
by ecient nonlinear optimization algorithms such as the IRGNM. In comparison to
techniques based on dierence quotients it produces highly stable and accurate partial
derivatives without the need of ne-tuning perturbation levels. is was shown by
estimating partial derivatives of an IR-bSSFP experiment with the mentioned techniques
and by comparing their results to the underlying analytical reference.

To further reduce computational demand,we exploit pre-computed STMs.ey are used
to solve the Bloch equations and the system describing their sensitivities simultaneously
for arbitrary initial conditions for a given time span.ey reduce the spin dynamics even in
the presence of external elds, gradients, and relaxation to single matrix multiplications. It
dramatically speeds up the reconstruction whenever the MRI sequence contains repeated
paerns as it is oen the case. In the presented example of the FLASH sequence with
101 isochromats along a slice and simulated for 1000 repetitions, the run-time of the
simulation was reduced by a factor of 10 from 5 s down to 0.5 s in comparison to a regular
Runge-Kua ODE solver. Even in the presence of gradients, RF pulses and relaxation the
slice prole analysis showed the high accuracy of the STM technique in reproducing the
ODE solver results.
Experimentally we conrmed that the Bloch model-based reconstruction reproduces

the Look-Locker model as a special case. A comparison between both techniques showed
only minor dierences in the 𝑇1 maps reconstructed from the single-shot phantoms and
single-shot in vivo data.
e integration of a generic Bloch simulation into the reconstruction adds the exibility to
analyze a broad variety of sequences. As an initial example, we applied the technique to IR-
bSSFP sequence and validated it using a numerical and measured NIST phantom dataset.
By correctly modelling the slice-selective excitation and a non-selective hyperbolic secant
inversion pulse highly accurate 𝑇1 and 𝑇2 maps could be obtained.
For a human brain, 𝑇1 maps estimated from an IR-bSSFP sequence were compared

to Bloch model-based reconstructions of an IR-FLASH acquisition of the same slice
both including non-selective hyperbolic inversion and a slice-selective excitation. Here,
dierences could be observed which are likely caused by MT [45]. is hypothesis is
supported by the fact that prolonging the RF pulse duration and increasing the TR reduced
the dierences, but preliminary results (Supplementary Section S5) suggest that this does
not explain the complete discrepancy and that other eects may also play a role. e
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NIST phantom measurement is not aected by MT eects, because it is based on water
[87]. e IR-FLASH measurement is assumed to be unaected by MT because of its small
ip angle [108].
At this stage, the most relevant practical limitation is the need to manually tune

the scaling factors used for pre-conditioning. For each analyzed sequence the relative
scaling between the partial derivatives needs to be balanced manually to ensure smooth
convergence. Future work is going to investigate automatic scaling techniques [109, 110].

Further extensions could be the application to hybrid state free precession sequences
[12, 111],multi-echo inversion-recovery sequences [112], andmagnetization transfermodels
[80].

4.6. Conclusion

is work developed a generic framework for model-based reconstruction using the
Bloch equations. e approach is validated numerically and tested experimentally using
phantom and in vivo scans.
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4.7. Appendix

4.7.1. Combining Sensitivity Analysis With a State-Transition
Matrix Simulation

e systemmatrix𝑨(𝑡) in equation 4.10 can be extended to include the sensitivity analysis
for the three partial derivatives 𝑅1, 𝑅2 and 𝐵1:

𝑨(𝑡) =

©«

−𝑅2 𝛾𝐵𝑧 (𝑡) −𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0 0 0 0 0 0 0 0 0 0
−𝛾𝐵𝑧 (𝑡) −𝑅2 𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 0 0 0 0 0 0 0 0 0 0

𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝑅1 0 0 0 0 0 0 0 0 0 𝑀0𝑅1

0 0 0 −𝑅2 𝛾𝐵𝑧 (𝑡) −𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0 0 0 0 0 0 0
0 0 0 −𝛾𝐵𝑧 (𝑡) −𝑅2 𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0 0 0 0 0 0 0
0 0 −1 𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝑅1 0 0 0 0 0 0 𝑀0

−1 0 0 0 0 0 −𝑅2 𝛾𝐵𝑧 (𝑡) −𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0 0 0 0
0 −1 0 0 0 0 −𝛾𝐵𝑧 (𝑡) −𝑅2 𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0 0 0 0
0 0 0 0 0 0 𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝑅1 0 0 0 0
0 0 −𝛾 sin(𝜙 (𝑡))𝐵1(𝑡) 0 0 0 0 0 0 −𝑅2 𝛾𝐵𝑧 (𝑡) −𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0
0 0 𝛾 cos(𝜙 (𝑡))𝐵1(𝑡) 0 0 0 0 0 0 −𝛾𝐵𝑧 (𝑡) −𝑅2 𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) 0

𝛾 sin(𝜙 (𝑡))𝐵1(𝑡) −𝛾 cos(𝜙 (𝑡))𝐵1(𝑡) 0 0 0 0 0 0 0 𝛾 sin(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝛾 cos(𝜙 (𝑡))𝐵1(𝑡)𝐵𝑧 (𝑡) −𝑅1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

. (4.22)

with its corresponding parameter vector from equation 4.9:

𝑴 (𝑡) → 𝒙 (𝑡) =

©«

𝑀𝑥 (𝑡)
𝑀𝑦 (𝑡)
𝑀𝑧 (𝑡)
𝑍𝑅1,𝑥 (𝑡)
𝑍𝑅1,𝑦 (𝑡)
𝑍𝑅1,𝑧 (𝑡)
𝑍𝑅2,𝑥 (𝑡)
𝑍𝑅2,𝑦 (𝑡)
𝑍𝑅2,𝑧 (𝑡)
𝑍𝐵1,𝑥 (𝑡)
𝑍𝐵1,𝑦 (𝑡)
𝑍𝐵1,𝑧 (𝑡)

1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

. (4.23)

4.7.2. Forward Model Derivatives

e derivative of A in equation 4.19 follows by exploiting the Jacobi matrix and the
product rule similar to [9, 36]:
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𝑫A(𝒙)

©«

d𝑅1
d𝑅2
d𝑀0

d𝐵1
d𝑐1
...

d𝑐𝑁

ª®®®®®®®®®®®®®¬
=

©«

PF
(
d𝑐1𝑀𝑡1 + 𝑐1

[
𝜕𝑀𝑡1
𝜕𝑅1

d𝑅1 +
𝜕𝑀𝑡1
𝜕𝑅2

d𝑅2 +
𝜕𝑀𝑡1
𝜕𝑀0

d𝑀0 +
𝜕𝑀𝑡1
𝜕𝐵1

d𝐵1
] )

...

PF
(
d𝑐𝑁𝑀𝑡1 + 𝑐𝑁

[
𝜕𝑀𝑡1
𝜕𝑅1

d𝑅1 +
𝜕𝑀𝑡1
𝜕𝑅2

d𝑅2 +
𝜕𝑀𝑡1
𝜕𝑀0

d𝑀0 +
𝜕𝑀𝑡1
𝜕𝐵1

d𝐵1
] )

...

PF
(
d𝑐𝑁𝑀𝑡𝑛 + 𝑐𝑁

[
𝜕𝑀𝑡𝑛

𝜕𝑅1
d𝑅1 + 𝜕𝑀𝑡𝑛

𝜕𝑅2
d𝑅2 + 𝜕𝑀𝑡𝑛

𝜕𝑀0
d𝑀0 + 𝜕𝑀𝑡𝑛

𝜕𝐵1
d𝐵1

] )

ª®®®®®®®®®®¬
. (4.24)

e adjoint of the derivative becomes

𝑫A𝐻 (𝒙)

©«
𝑦1,1

𝑦2,1
...

𝑦𝑛,𝑁

ª®®®®®¬
=

©«

d𝑅1
d𝑅2
d𝑀0

d𝐵1
d𝑐1
...

d𝑐𝑁

ª®®®®®®®®®®®®®¬
=

©«

𝑁∑
𝑗=1

𝑛∑
𝑘=1

(
𝜕𝑀𝑡𝑘

𝜕𝑅1

)
· 𝑐 𝑗 · F −1 [P𝐻𝑦𝑘,𝑗

]
𝑁∑
𝑗=1

𝑛∑
𝑘=1

(
𝜕𝑀𝑡𝑘

𝜕𝑅2

)
· 𝑐 𝑗 · F −1 [P𝐻𝑦𝑘,𝑗

]
𝑁∑
𝑗=1

𝑛∑
𝑘=1

(
𝜕𝑀𝑡𝑘

𝜕𝑀0

)
· 𝑐 𝑗 · F −1 [P𝐻𝑦𝑘,𝑗

]
𝑁∑
𝑗=1

𝑛∑
𝑘=1

(
𝜕𝑀𝑡𝑘

𝜕𝐵1

)
· 𝑐 𝑗 · F −1 [P𝐻𝑦𝑘,𝑗

]
𝑛∑
𝑘=1
𝑀𝑡𝑘 · F −1 [P𝐻𝑦𝑘,1

]
...

𝑛∑
𝑘=1
𝑀𝑡𝑘 · F −1 [P𝐻𝑦𝑘,𝑁

]

ª®®®®®®®®®®®®®®®®®®®®®®¬

. (4.25)

4.7.3. Look-Locker Reparameterization

e Look-Locker model represents a special solution of the Bloch equations for an IR-
FLASH sequence [42]. It assumes a perfect inversion, a small ip angle and short repetition
times compared to the relaxation eects. Initial relaxation eects between the inversion
and the rst echo can be compensated analytically [107]. e original formulation of the
Look-Locker model with the parameters𝑀0,𝑀𝑠𝑠 and 𝑅∗1 is

𝑀𝑧 (𝑀𝑠𝑠,𝑀0,𝑅
∗
1 ,𝑡) = 𝑀𝑠𝑠 − (𝑀𝑠𝑠 +𝑀0) · 𝑒−𝑅

∗
1 ·𝑡 . (4.26)

ese parameters are related to the underlying physical parameters 𝑀0, 𝑅1 and 𝛼e.
With the assumption of short repetition times [113]

𝑀0

𝑀𝑠𝑠

=
𝑅∗1
𝑅1

(4.27)

the eective relaxation rate
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𝑅∗1 = 𝑅1 + 𝑅′1 = 𝑅1 −
1
TR

ln cos𝛼e (4.28)

splits into 𝑅1 and the readout relaxation rate 𝑅′1 determined by the eective ip angle
𝛼e [43]. e reparameterized Look-Locker model can be formulated as

𝑀𝑧 (𝑀0, 𝑅1, 𝑅
′
1,𝑡) = 𝑀0 ·

(
𝑅1

𝑅1 + 𝑅′1
−

(
1 + 𝑅1

𝑅1 + 𝑅′1

)
· 𝑒−(𝑅1+𝑅′

1)𝑡
)
. (4.29)

Here, Equation 4.29 depends directly on the physical parameters 𝑀0, 𝑅1 and 𝑅′1 =

− 1
TR ln cos𝛼e and allows adding prior knowledge about smooth B1 maps [107, 114] to

the reconstruction [43]. is reparameterized model can be directly compared to a Bloch
model-based reconstruction using the same set of parameters.

4.7.4. Scaling Factors

e output of the forward operator B in equation 4.19 is the strength of the signal
estimated by the Bloch simulation and its partial derivatives. e strength of the signal
depends on the sequence and especially the applied ip angle. erefore, the signals
output diers for classical FLASH or bSSFP sequences inuencing the weighting between
the data delity and regularization terms changing the optimization behavior.

A generic reconstruction aims for robustness against variations of the sequence pa-
rameters. It requires a scaling of the signal and its partial derivatives simulated within B.
e implemented scaling is motivated by the Look-Locker model assumption that the
longitudinal magnetization𝑀𝑧 in equation 4.29 is proportional to the measured signal
𝑀𝑥𝑦 and scaled to 1. us, the signal of a simulation with an initial magnetization of
length 1 requires scaling of the simulated signal output𝑀𝑥𝑦 by the applied ip angle 𝛼

and the relaxation eect 𝑒−
𝑡TE
𝑇2 during the echo time interval Δ𝑡TE:

𝑀𝑧 =
𝑒
− Δ𝑡TE

𝑇2

sin𝛼
·𝑀𝑥𝑦 . (4.30)

Because of the short echo times of the sequences used in this work, the𝑇2 relaxation ef-
fect can be neglected. is assumption avoids additional𝑇2 dependencies of the estimated
derivatives. e nal scaling factor 1

sin𝛼 increases the robustness of the forward operator
B in equation 4.19 to the choice of the applied ip angle in FLASH based sequences.
For a bSSFP type sequence the ip angle in equation 4.30 needs to be halved to take its
dynamics on the 𝛼/2 cone into account [49].
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4.7.5. IR-bSSFP Information Encoding

e IR-bSSFP signal behavior is described by a limited exponential growth similar to the IR-
FLASH sequence [3]. A single inversion recovery can encode information for estimating
3 parameters. While the IR-FLASH sequence is sensitive to exactly 3 parameters, the
IR-bSSFP is also sensitive to 𝑇2, leading to 4 parameters in total. With a single limited
exponential growth this additional parameter can not be encoded and two parameters
need to be coupled. For bSSFP sequences the relaxation parameters 𝑇1 and 𝑇2 are coupled.
Prior knowledge about 𝐵1 can be used to decouple both relaxation parameters [3, 115, 116].

4.7.6. Symbolic Derivatives of IR-bSSFP

e analytical signal model for an IR-bSSFP can be derived from the Bloch equations
with the assumptions of hard RF pulses, a perfect inversion and an ideal 𝛼/2 − TR/2
magnetization preparation.

e signal is modelled by [3]:

𝑀 (𝑀𝑠𝑠, 𝑀
∗
0 ,𝑅

∗
1 ,𝑡) = 𝑀𝑠𝑠 − (𝑀∗

0 +𝑀𝑠𝑠) · 𝑒−𝑅
∗
1 ·𝑡 (4.31)

with

𝑅∗1 = 𝑅1 cos
2
(𝛼
2

)
+ 𝑅2 sin2

(𝛼
2

)
𝑀𝑠𝑠 =

𝑀0(1 − 𝐸1) sin𝛼
1 − (𝐸1 − 𝐸2) cos𝛼 − 𝐸1𝐸2

(4.32)

=
TR<<𝑇1,2

𝑀0 sin𝛼(
𝑅1
𝑅2

+ 1
)
− cos𝛼 ·

(
𝑅2
𝑅1

− 1
)

𝑀∗
0 = 𝑀0 sin

(𝛼
2

)
for

𝐸1,2 = 𝑒
−𝑅1,2·𝑡 . (4.33)

is can be reparameterized to the physical parameters 𝑅1, 𝑅2,𝑀0 and 𝛼 :
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𝑀 (𝑅1, 𝑅2, 𝑀0, 𝛼, 𝑡) =
𝑀0 sin𝛼

𝑅2
𝑅1

+ 1 − cos𝛼
(
𝑅2
𝑅1

− 1
) (4.34)

− 𝑀0 sin𝛼 · 𝑒−𝑅1 cos2( 𝛼2 ) ·𝑡−𝑅2 sin2( 𝛼2 ) ·𝑡
𝑅2
𝑅1

+ 1 − cos𝛼
(
𝑅2
𝑅1

− 1
)

−𝑀0 sin
(𝛼
2

)
· 𝑒−𝑅1 cos2( 𝛼2 ) ·𝑡−𝑅2 sin2( 𝛼2 ) ·𝑡

with its symbolic derivatives:

𝜕𝑀 (𝑅1,𝑅2,𝑀0,𝛼,𝑡)
𝜕𝑅1

= −𝑀0𝑅2 sin𝛼 · (cos𝛼 − 1) · 1 −𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)
𝐵2(𝑅1, 𝑅2,𝛼)

(4.35)

+𝑀0𝑅1𝑡 sin𝛼 cos
(𝛼
2

)
· 𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)
𝐵(𝑅1, 𝑅2,𝛼)

+𝑀0𝑡 sin
(𝛼
2

)
cos2

(𝛼
2

)
·𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)

𝜕𝑀 (𝑅1,𝑅2,𝑀0,𝛼,𝑡)
𝜕𝑅2

= 𝑀0𝑅1 sin𝛼 · (cos𝛼 − 1) · 1 −𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)
𝐵2(𝑅1, 𝑅2,𝛼)

(4.36)

+𝑀0𝑅1𝑡 sin𝛼 sin2
(𝛼
2

)
· 𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)
𝐵(𝑅1, 𝑅2,𝛼)

+𝑀0𝑡 sin3
(𝛼
2

)
·𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)

𝜕𝑀 (𝑅1,𝑅2,𝑀0,𝛼,𝑡)
𝜕𝛼

=
𝑀0𝑅1 sin2 𝛼 (𝑅2 − 𝑅1) · (𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡) − 1)

𝐵2(𝑅1, 𝑅2,𝛼)
(4.37)

−
𝑀0𝑅1 sin𝛼 ·𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)𝑡 sin

(
𝛼
2
)
cos

(
𝛼
2
)
(𝑅1 − 𝑅2)

𝐵(𝑅1, 𝑅2,𝛼)

− 𝑀0𝑅1 cos𝛼 · (𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡) − 1)
𝐵(𝑅1, 𝑅2,𝛼)

− 𝑀0

2
cos

(𝛼
2

)
·𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)

−𝑀0 sin2
(𝛼
2

)
cos

(𝛼
2

)
(𝑅1 − 𝑅2) ·𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡)𝑡
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𝜕𝑀 (𝑅1,𝑅2,𝛼,𝑡)
𝜕𝑀0

=
sin𝛼

𝑅2
𝑅1

+ 1 − cos𝛼
(
𝑅2
𝑅1

− 1
) (4.38)

− sin𝛼 · 𝑒−𝑅1 cos2( 𝛼2 ) ·𝑡−𝑅2 sin2( 𝛼2 ) ·𝑡
𝑅2
𝑅1

+ 1 − cos𝛼
(
𝑅2
𝑅1

− 1
)

− sin
(𝛼
2

)
· 𝑒−𝑅1 cos2( 𝛼2 ) ·𝑡−𝑅2 sin2( 𝛼2 ) ·𝑡

with

𝐵(𝑅1, 𝑅2,𝛼) = (𝑅1 − 𝑅2) cos𝛼 + 𝑅1 + 𝑅2 (4.39)

𝐶 (𝑅1, 𝑅2, 𝛼, 𝑡) = exp
(
−𝑅1 cos2

(𝛼
2

)
· 𝑡 − 𝑅2 sin2

(𝛼
2

)
· 𝑡

)
.
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Figure 4.4: Reconstructed 𝑇1 parameter maps for radial single-shot IR-FLASH data
acquired from a numerical (A) and measured phantom (B) as well as a hu-
man brain (C). e Bloch model-based reconstruction and the dierences
between the two methods are shown in the middle. e dierence map is
scaled up by a factor of 20 to improve visualization. On the right the 𝑇1
values of the color-coded ROIs (arrows) of the Bloch reconstruction vs.
Look-Locker reconstruction are ploed together with standard deviations.
Besides the in vivo 𝑇1 map presented in C, the Bloch model-based tech-
nique reconstructs a complex valued 𝑀0 map, a relative ip angle map
and complex coil sensitivities shown in D.

95



4. antitativeMagnetic Resonance Imaging byNonlinear Inversion of the Bloch Equations

Figure 4.5: A: Reconstructed 𝑇1 and 𝑇2 parameter maps and the corresponding ROI
values for numerical radial single-shot IR-bSSFP data of a digital multi-coil
reference object simulated in k-space.e le side shows the reconstructed
parameter maps and the right the ROI analysis results in Bland-Altman
plots relative to the simulated reference values. e analyzed ROIs are
marked and numbered in the𝑇1 map. B: Reconstructed𝑇1 and𝑇2 parameter
maps and the corresponding ROI values for a radial single-shot IR-bSSFP
measurement of the 𝑇2 spheres of the NIST system phantom. e le side
corresponds to the rightmost ROI analysis. e right side presents the
comparison of the analyzed ROIs reconstructed with the Bloch model-
based technique for various signal model assumptions compared with
gold-standard reference values in Bland-Altman plots. For improved visu-
alization individual outliers are removed from the plot.
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4.7. Appendix

Figure 4.6: e 𝑇1 parameter map reconstructed from a radial single-shot IR-FLASH
in vivo dataset with a Look-Locker model-based reconstruction is shown
on the le. It also shows the reconstructed 𝑇1 parameter maps of a radial
single-shot IR-bSSFP in vivo dataset acquired on the same brain slice for
short RF pulses (𝑇RF: 1 ms, TR: 4.88 ms) on the top and long RF pulses
(𝑇RF: 2.5 ms, TR: 10.8 ms) on the boom reconstructed with the Bloch
model-based reconstruction. In the center column the dierence maps are
shown. e values corresponding to the colored ROIs are listed in Table
4.2. On the right the 𝑇2 parameter maps for the short and long RF pulse
experiments are shown reconstructed from the IR-bSSFP sequence.
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4.7. Appendix

Table 4.2: Table listing the single-shot in vivo IR-bSSFP ROI analysis results presented
in Figure 4.6.

𝑇1,IR-FLASH [s] 𝑇1,IR-bSSFP, short [s] 𝑇1,IR-FLASH, long [s] 𝑇2,IR-bSSFP, short [s] 𝑇2,IR-bSSFP, long [s]

ROI 1 0.737±0.016 1.35±0.019 1.061±0.019 0.024±0.001 0.033±0.001
ROI 2 1.736±0.299 2.434±0.413 2.226±0.456 0.066±0.02 0.096±0.088
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4.8. Supporting Information

S1. Supporting Figure S1

Figure S1: A: Reconstructed 𝑇1 and 𝑇2 parameter maps and the corresponding ROI
values for numerical radial single-shot IR-bSSFP data of a digital multi-coil
reference object simulated in k-space. e le side shows the reconstructed
parameter maps and the right the ROI analysis results relative to the sim-
ulated reference values with standard deviations. e analyzed ROIs are
marked and numbered in the𝑇1 map. B: Reconstructed𝑇1 and𝑇2 parameter
maps with corresponding ROI values for a radial single-shot IR-bSSFP mea-
surement of the 𝑇2 spheres of the NIST phantom. e le side corresponds
to the rightmost ROI analysis. e right side presents the comparison of
the analyzed ROIs reconstructed with the Bloch model-based technique
for various signal model assumptions. It is compared to gold-standard
reference values.
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S2. Supporting Figure S2

Figure S2: A: Reconstructed 𝑇1 and 𝑇2 parameter maps and all corresponding ROI
values for simulated radial single-shot IR-bSSFP data. Here, the data points
removed to improve the visualization in Figure 4.5 are included. Recon-
structed parameter maps are shown on the le. Bland-Altman plots com-
paring to the simulated reference values are added on the right. e ROIs
are marked and numbered in the 𝑇1 map. B: Reconstructed 𝑇1 and 𝑇2 pa-
rameter maps and the corresponding ROI values for a radial single-shot
IR-bSSFP measurement of the 𝑇2 spheres of the NIST phantom. e le
side corresponds to the rightmost ROI analysis. e right shows the Bland-
Altman plots comparing the values of the ROIs reconstructed with the
Bloch model-based technique for various assumptions used in the signal
model compared with gold-standard reference values.
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S3. Supporting Figure S3: Simulation Accuracy

is section discusses the simulation accuracy of the ODE solvers for dierent tolerances
and sampling rates in more detail. In Figure S3.A reconstructions of the IR-FLASH
phantom from Figure 4.4.B using the Bloch model-based reconstruction with signal
model assumptions of only on-resonant spins and with spins distributed along a slice-
selection gradient are shown. e reconstructions are performed with varying tolerances
for the STM simulation method while keeping the initial step-size of the RK54 solver
constant at 1E-4.
For the on-resonance results the dierence values are small. Here, the reconstructed

parameter maps for higher error tolerances are very similar to the reference map. For the
signal model with simulation of the slice-selection gradient the reconstructed parameter
maps are similar up to a tolerance of 0.001, while lower values result in large variations
in the 𝑇1 parameter map. e important result is that the error of the simulation from an
STM tolerance value of 0.001 still allows accurate reconstructions even for complex spin
dynamics.
In Figure S3.B the error plot from Figure 4.3 is extended to include more simulations

with dierent tolerances and sampling rates. e required STM tolerance of 0.001 from
Figure S3.A for complex dynamics is translated to the required sampling rate for the ROT
simulation. It shows the point-wise errors (PWEs) for RK54, STM and ROT for the same
simulation with slice-selection gradient. e tolerance value for the estimated limit of
STM of 0.001 produces an error similar to the 1 MHz sampling rate. is leads to the
conclusion that at least a sampling rate of 1 MHz is required for an accurate reconstruction
of complex spin dynamics involving slice-selection gradients.

e simulation times for the same analysis with a slice-selection gradient, as presented
in Figure 4.3, are shown in Figure S3.C for multiple tolerances and sampling rates.
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4.8. Supporting Information

Figure S3: A: 𝑇1 maps reconstructed from single-shot IR-FLASH (same as for Figure
4.4.B) with varying tolerances of the STM simulation. e forward model
assumes on-resonant spins. e dierences of the reconstructions for
tolerances of 1e-5 to 1e-2 compared to the 1e-6 reference are shown in
the boom row. e dierences are scaled by large factors for improved
visualization. B: Extension of Figure 4.3.A with varying tolerances for
RK54 and STM and sampling rates for ROT. C: Extension of Figure 4.3.B
with varying tolerances for RK54 and STM and sampling rates for ROT.
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S4. Supporting Figure S4

Figure S4: Reconstructed 𝑇1 parameter maps similar to Figure 4.4.B for varying
wavelet regularization strength 𝛽0 for the Bloch model-based reconstruc-
tion (upper row). On the le a reference reconstruction estimated with
the reparameterized Look-Locker model-based technique is shown. In the
boom row the dierences between Bloch model-based reconstruction
and the reference map are shown scaled by a factor of 10 for improved
visualization.
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S5. Supporting Figure S5: Influence of the Magnetization Transfer
Eect

To estimate the inuence of the magnetization transfer eect (MT) on the reconstructed𝑇1
parameter maps multiple single-shot IR-bSSFP experiments were performed with varying
TR and𝑇𝑅𝐹 . e sequence parameters are shown in Table S2. e analytical representation
of the signal behavior during an IR-bSSFP experiment can be described by Equation (4.31).
Following [115] the MT eect reduces the 𝑇 ∗

1 and the steady-state magnetization 𝑀𝑠𝑠 ,
while not aecting𝑀0. ey propose an exponential model for correction of the eect of
MT on𝑀𝑠𝑠 :

𝑀𝑠𝑠 (𝛽) =
(
𝑀no MT
𝑠𝑠 −𝑀 full MT

𝑠𝑠

)
·
(
1 − 𝑒−𝑘 ·𝛽

)
+𝑀 full MT

𝑠𝑠 (4.40)

Here, the signal which is not aected by MT is denoted as𝑀no MT
𝑠𝑠 , the signal from a

fully-saturated solid pool is𝑀 full MT
𝑠𝑠 , the rate constant is 𝑘 and the increase in RF pulse

duration is 𝛽 .
e 𝑇1 value for an IR-bSSFP can be estimated by

𝑇1 =
𝑇 ∗
1

𝑀𝑠𝑠

𝑀0 cos(
𝛼

2
) (4.41)

with the ip angle 𝛼 .
Taking into account that 𝑇 ∗

1 is less aected by MT than𝑀𝑠𝑠 [115], we assume that the
MT inuence on 𝑇1 follows the model:

𝑇1(𝛽) ≈
1

(𝑎 − 𝑏) ·
(
1 − 𝑒−𝑘 ′·𝛽

)
+ 𝑏

. (4.42)

Equation 4.42 is ed to the dierent relaxation parameters from various acquisitions
with dierent TR and 𝑇𝑅𝐹 (Figure S5).

e estimated parameters 𝑎, 𝑏 and 𝑘′ have no direct physical interpretation, but can be
used to interpolate an MT-free 𝑇1 for 𝛽 → ∞. e parameters of the ts are shown in
Table S1.

e results for 𝑇1(𝛽 → ∞) suggest that the MT eect plays a signicant role in the 𝑇1
oset observed in Figure 4.6, but also indicates that it might not explain the complete
discrepancy.
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Figure S5: Visualization of the magnetization transfer eect in𝑇1 maps reconstructed
from an IR-bSSFP sequence with varying TR and 𝑇𝑅𝐹 . On the le the 𝑇1
map corresponding to the longest 𝑇𝑅𝐹 = 2.5 ms is ploed with colored
ROIs. e mean values of the relaxation values for the colored areas are
ploed with their standard deviation on the right for various lengths of
RF pulses 𝑇𝑅𝐹 . e doed lines represent the ed functions following the
analysis of Section S5.
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S6. Supporting Figure S6

Figure S6: Bloch model-based reconstruction of an in vivo single-shot IR-bSSFP
dataset acquired with 1 ms long RF pulses. e coil-sensitivities have
been estimated with the regular Bloch model-based method and have been
added as xed prior knowledge to both reconstructions aerwards. e
top presents the regularized reconstruction, while the boom results do
not include any regularization on the parameter maps.
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S7. Supporting Table S1

Table S1: Table listing the ing parameters estimated for Figure S5.
𝑎 [s] 𝑏 [s] 𝑘′ [s]

ROI 1 0.931±0.006 0.510±0.003 0.723±0.023
ROI 2 0.923±0.013 0.498±0.005 0.620±0.041
ROI 3 0.834±0.01 0.498±0.006 0.786±0.059
ROI 4 0.519±0.007 0.382±0.008 0.992±0.158

S8. Supporting Table S2

Table S2: Table listing the sequence parameters for the analysis in Figure S5.
Sequence IR-bSSFP IR-bSSFP IR-bSSFP IR-bSSFP IR-bSSFP IR-bSSFP

Object in vivo in vivo in vivo in vivo in vivo in vivo

TR|TE [ms] 3.8|1.9 4.0|2.0 4.6|2.3 5|2.5 5.5|2.75 6.14|3.07
FA [◦] 35 35 35 35 35 35

𝑇RF [ms] 0.4 0.6 1.2 1.6 2.1 2.5

Nominal Slice ickness [mm] 5 5 5 5 5 5

Repetitions 1000 1000 1000 1000 1000 1000

Coils 20 20 20 20 20 20

BWTP 1 1 1 1 1 1

BR 256 256 256 256 256 256

FoV [mm] 200 200 200 200 200 200

Duration [min:s] 0:04 0.04 0:05 0:05 0:06 0:06

others #tiny GA=13 #tiny GA=13 #tiny GA=13 #tiny GA=13 #tiny GA=14 #tiny GA=13
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5. Additional Factors Aecting the
antitative Accuracy

e Bloch model-based reconstruction is developed, veried and discussed in Chapter 4.
Inversion-recovery fast low angle shot (IR-FLASH) datasets from numerical and physical
phantoms as well as in vivo brain scans are successfully reconstructed, which result in
accurate 𝑇1 relaxation parameter maps. For inversion-recovery balanced steady-state free
precession (IR-bSSFP) sequences, 𝑇1 and 𝑇2 are determined in a numerical and physical
phantom study but show osets to the expected references for in vivo datasets. While
eects like magnetization transfer (MT) inuence the accuracy of most parameter maps,
as described in Section S5, they do not explain the full oset.
In this chapter, the eects of additional physical model inaccuracies and conceptual
error sources in the optimization is investigated. In the beginning the robustness of the
optimization with respect to the initialization of the parameter maps is tested. Further, the
inuence of dierent relaxation parameter distributions on the resulting parameter maps
within the object is investigated. Aerwards, potential physical model discrepancies that
result from eld inhomogeneities, shimming procedures, and eddy currents are discussed.
e validity of the data consistency in the optimization is veried with a pixel-wise
ing on reconstructed intermediate images. In the end, it is tested how averaged spokes
inuence the accuracy of the reconstructed parameter maps. e chapter closes with an
investigation of the oset of the IR-bSSFP acquisition with respect to dierent ip angles.

5.1. General Initialization of the Reconstruction

Due to the high nonlinearity of combining the Bloch model with the parallel imaging (PI)
model, the initialization of the parameter maps inuences the convergence of the opti-
mization. e analysis in this section investigates the sensitivity of the Bloch model-based
reconstruction to its initialization. erefore, 𝑇1 and 𝑇2 parameter maps are calculated
from the same single-shot IR-bSSFP in vivo dataset but are reconstructed with dierent
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initializations of the individual maps.

Methods A radially sampled single-shot IR-bSSFP dataset is acquired on a volunteer’s
brain with repetition time (TR)/echo time (TE)=4.88/2.44 ms, radio frequency (RF) pulse
duration 𝑇RF=1 ms, and a bandwidth time product (BWTP) of 4. More information on
the acquisition is listed in Table 4.1. An additional preconditioned RF pulse sequence
is used to acquire a 𝐵1 map of the same slice. It is passed to the Bloch model-based
reconstruction to improve the prior knowledge about the actual ip angles that are
executed during the acquisition. e reconstruction is performed with a forward model
that incorporates a slice prole simulation based on a known slice-selection gradient
strength. 24 Blochmodel-based reconstructions are carried outwith varying initializations
of 𝑅1 ∈ [0.5,1,2,3,5,10] Hz and 𝑅2 ∈ [1,5,10,20] Hz. For pre-conditioning similar to Wang
[9], the individual parameter maps are scaled with the scalars 𝑠𝑅1 :𝑠𝑀0 :𝑠𝑅2 :𝑠𝐵1=1:1:30:0. e
𝑀0 map is initialized with 1, while the 𝐵1 map requires to be initialized with 0 because it
is kept constant for IR-bSSFP reconstructions.

Results e reconstructed parameter maps for𝑇1 and𝑇2 are ploed in Figure 5.1 and 5.2.
e reconstruction is robust over a large range of initialization values. While white maer
relaxation parameters are close to 1 s for𝑇1 and close to 0.1 s for𝑇2 at the measured 3 T, the
initialization leads to the same results for values from 1 to 5 Hz for 𝑅1. e reconstruction
is robust against changes in the initialization of 𝑅2 for a robust choice of 𝑅1. If 𝑅1 is too
large, changes in 𝑅2 lead to strong artifacts in the reconstruction. is is observed in the
combinations of (𝑅1/𝑅2) : (10/1), (10/5), (10/10) and (10/20) Hz.

Discussion e Bloch model-based reconstruction is robust for many initialization
combinations of𝑅1 and𝑅2. 𝑅2 showed a relatively higher robustness for a reasonable choice
of 𝑅1, which can result from the stronger enforced prior knowledge due to regularization
and scaling with 𝑠𝑅2 = 30 during preconditioning. Artifacts always occur in the 𝑇1 and 𝑇2
map simultaneously due to the joint regularization of all parameter maps.
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Figure 5.1: 𝑇1 parameter maps reconstructed from single-shot IR-bSSFP data using the
Bloch model-based reconstruction with dierent 𝑅1 and 𝑅2 initializations.
e individual columns have constant 𝑅2 and the rows constant 𝑅1.
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Figure 5.2: 𝑇2 parameter maps reconstructed from single-shot IR-bSSFP data using the
Bloch model-based reconstruction with dierent 𝑅1 and 𝑅2 initializations.
e individual columns have constant 𝑅2 and the rows constant 𝑅1.
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5.2. Eect of Parameter Distributions Within the
Object

By formulating the entire reconstruction as a single nonlinear inverse problem, all pa-
rameter maps are calculated directly from k-space. is is generally ill-conditioned for
small amounts of data and requires additional regularization which needs to be tuned
manually. As the regularization is relative to the overall data scaling, its strength can be
changed by dierent parameter distributions.
In this section, it is investigated how such relaxation parameter distributions can aect
the quality of the reconstructed parameter maps.

Methods To investigate the inuence of dierent parameter distributions, exibility
is required in changing the environment. While physical phantoms can be designed in
such a manner that they have the same geometries with dierently doped ingredients,
additional experimental errors can not be excluded. erefore, this analysis is based
on a numerical phantom. Two NIST phantom geometries of the model number 130 are
simulated with the Berkeley Advanced Reconstruction Toolbox (BART) following the
acquisition with a single-shot IR-bSSFP sequence similarly to the analysis shown in Figure
4.5.A. e relaxation parameters of the small tubes are kept the same and the background
values, which were set to water at 3 T (𝑇1 = 3 s and 𝑇2 = 1 s), are changed to white maer
with𝑇1/𝑇2=0.834/0.08 s [102]. All other simulation, regularization and Bloch model-based
reconstruction parameters are kept the same. Multiple regions of interests (ROI) of the
reconstructed𝑇1 and𝑇2 parameter maps are extracted and their mean values are compared
to the known reference values, which were passed to the simulation tool.

Results e results of the reconstruction with the water and white maer background
relaxation are presented in Figure 5.3. e error in both 𝑇1 and 𝑇2 for the most simplistic
model (Perfect Inversion) is similar. e two more complex models with slice prole
and additional hyperbolic secant inversion pulse are more accurate and precise in both
parameter maps compared to the white maer background analysis, even though the
relaxation rates of the inner tubes have not been changed.

Discussion e reconstruction results of the numerical NIST phantom with white
maer background demonstrate the sensitivity of the current implementation of the non-
linear Bloch model-based reconstruction to dierent relaxation parameter distributions
within the object. By choosing a lower background relaxation, the precision, and accuracy
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of the smaller tubes increases, even though their reference relaxation characteristics
have not been changed. is can result from dierent regularization strengths in both
experiments. While the passed optimization parameters were kept the same in both
reconstructions, the data in the current implementation is scaled internally before being
further processes based on its 𝑙2-norm. is is meant to increase the robustness of the
reconstruction towards dierently scaled datasets. e background relaxation parameters
contribute strongly to the overall signal, which leads to dierent temporal evolutions
of the overall signal. is eect can not be compensated for data scaling that is based
on the 𝑙2-norm. us, the relative strength of the regularization diers between both
experiments, which inuences the convergence and the solution of the optimization.
Another eect to consider is that the reconstruction incorporates an 𝑙1 norm on the
wavelet representation of the parameter maps to remove radial undersampling artifacts.
is spatial constraint enforces smoothness in the maps, which can shi the tubes’ re-
laxation values towards the background value. Even though the eect is weak, it can
inuence the water background experiments more strongly. is potentially leads to the
reduced precision and accuracy. A future study should perform the same analysis without
any regularization. While the precision of the parameter maps is expected to be reduced,
it would provide valuable information about the inuence on their accuracy.
In physical phantom models, strongly varying relaxation parameters typically go along
with rapid changes in the susceptibility, which introduce inhomogeneities in the main
magnetic eld 𝑩0. is eect is not part of the simulation in this study, but is investigated
in the following section.
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Figure 5.3: Comparison of reconstructions from simulated single-shot IR-bSSFP NIST
phantom data with dierent background relaxations. ForA andB, the same
simulations and analyzes as for the numerical study presented in Figure
4.5 were performed. Both simulations only dier in their background
relaxation values. A uses 𝑇1 = 3 s and 𝑇2 = 1 s to represent water at 3 T,
and B uses values for white maer at 3 T (𝑇1/𝑇2 = 0.834/0.08 s) [102]. e
most le column presents the reconstructed 𝑇1 and 𝑇2 parameter maps as
well as the chosen region of interest (ROI) for the Bland-Altman analysis
shown to its right. In the individual Bland-Altman plots the extracted ROI
values are compared to the reference parameters that are passed to the
simulation. e complexity of the forward model increases from the le
to the right.

5.3. Influence of 𝐵0 Inhomogeneities

Scanner systems in magnetic resonance imaging (MRI) are designed to provide a cen-
tral volume with a homogeneous magnetic eld 𝑩0. is homogeneity holds for single
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substances with constant susceptibility but adding multiple dierent ones introduces
susceptibility gradients. For the human head, these changes are strong close to the nasal
cavities, where air and tissue are close together. e susceptibility dierences introduce
local changes in 𝑩0, which leads to o-resonances 𝜔 and changes the Larmor frequency
during acquisition. If the forward model does not include 𝜔 , the reconstruction is physi-
cally biased towards a dierent solution and the accuracy of the mapping is reduced.
In the following analysis, the inuence of 𝑩0 inhomogeneities Δ𝐵0 on the transient state
signal of an IR-bSSFP sequence is investigated. e eect is simulated for representative
Δ𝐵0 which are estimated from a volunteer’s brain slice and their inuence on analytically
ed relaxation parameters is observed. In the end, the Bloch model-based reconstruction
is extended to include the prior knowledge about 𝐵0 and to model them with pixel-wise
o-resonances. e inuence of this correction on the 𝑇1 and the 𝑇2 parameter maps that
are reconstructed from in vivo single-shot IR-bSSFP data is presented.

Theoretical Background e magnetic (volume) susceptibility 𝜒 is a property of
materials that denes their inuence on external magnetic elds. It is dened by the
relation between the magnetization 𝑴 and the magnetic eld strength 𝑯 :

𝑴 = 𝜒𝑯 . (5.1)

e magnetic eld 𝑩 follows with 𝜒 and the permeability in a vacuum `0:

𝑩 = `0(1 + 𝜒)𝑯 . (5.2)

It describes the change in 𝑩0 when heterogeneous materials are placed in it.
e inhomogeneities Δ𝐵0 in the main magnetic eld 𝑩0 introduce variations of the
resonance frequency,

𝜔 = 𝛾Δ𝐵0 , (5.3)

which leads to additional precession eects and locally modied inuences of RF
pulses. A crucial part of this work is the IR-bSSFP sequence of the balanced steady-state
free precession (bSSFP) type sequences, as introduced in Section 2.1.8. It is based on
the assumption that the magnetization switches between two positions on opposite
sites of the 𝑧-axis (Figure 5.4, top le). Being accurately prepared, the magnetization
follows a transient state located on a cone. It requires a phase dierence of 𝜋 rad between
consecutive RF excitations and balanced gradient moments.
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e bSSFP sequences are sensitive to eld inhomogeneities Δ𝐵0 because they introduce
additional rotations during each TR. is moves the magnetization away from its ideal
position on the cone. e eect is illustrated in the top center of Figure 5.4. With an
increased rotation during TE, the signal intensity rapidly decreases1 for higher Δ𝐵0 until it
vanishes for Δ𝐵0 = 𝝅 . is results in characteristic banding artifacts, which are visualized
on the boom of Figure 5.4.

banding
artifacts

Figure 5.4: Visualization of banding artifacts in bSSFP sequences. e top provides an
illustration of the two positions of the magnetization projected onto the
transversal plane. e two positions for ip angles with alternating phases
are presented in the on-resonant case on the top le. e top middle
shows both positions for an o-resonance that leads to a precession angle
𝜔 within one TR. e top right illustrates that the two states are not valid
for o-resonances of 𝜋 rad. e boom le plots the steady-state signal of
a bSSFP with ip angle 45◦, TR/TE=4.5/2.25 ms, 𝑇𝑅𝐹= 1 ms and BWTP=4.
e marked areas present the signal drop, which causes banding artifacts.
e boom right shows a cardiac frame with banding artifacts in regions
associated with fat. Figure modied from [13].

Influence of Δ𝐵0 on IR-bSSFP Fiing To investigate the inuence of Δ𝐵0 on relax-
ation parameters, which are determined by analytical ing of a IR-bSSFP signal, Δ𝐵0
reference values are extracted from an actual in vivo experiment. e map is acquired
with two gradient recalled echo (GRE) sequences with dierent TE and post-processed

1e signal can increase in spikes for low ip angles [117].
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following Section 2.2.1. From the resulting Δ𝐵0 map, the mean value of three representa-
tive ROIs is calculated covering the whole range of occurring Δ𝐵0 values. Aerwards,
simulations of IR-bSSFP sequences are performed for each Δ𝐵0. e shared sequence
parameters are TR/TE=4.5/2.25 ms, 1000 repetitions, 45◦ ip angle and a BWTP of 4. e
relaxation values are set to human white maer at 3 T: 𝑇1/𝑇2=0.834/0.08 s [102]. e
absolute signal curves are visualized next to the ROIs in the in vivo Δ𝐵0 map in Figure
5.5.

Figure 5.5: Investigation into the inuence of o-resonances on the signal evolution
of an IR-bSSFP sequence. e le presents a Δ𝐵0 map of a volunteer’s
brain. It includes colored ROIs, which are analyzed for their mean Δ𝐵0
values.e right presents signal simulations of representative white maer
with 𝑇1=0.834 s and 𝑇2=0.08 s and the extracted mean o-resonances. e
signals are ed with an analytical IR-bSSFP model and the corresponding
signal curves are ploed. e ed parameters are listed in Table 5.1.

e signals are ed with an analytical IR-bSSFP model, which is shown in Equation
(4.31). e underlying physical tissue characteristics are determined from Equations (4.32)
and follow with
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e nominal ip angle 𝛼 was corrected by 𝐵1 variations within the slice of the brain
that was measured with a preconditioned RF pulse sequence following Section 2.2.1. e
ed parameters and errors are listed in Table 5.1.

Table 5.1: Fiing results of the simulated white maer with IR-bSSFP sequence, includ-
ing o-resonances extracted from the in vivo brain slice. e corresponding
plots are presented in Figure 5.5.

𝜔 [rad/s] 𝑇1 [s] 𝑇2 [s] 𝑀0 [a.u.]
7.0 0.834±0.001 0.08±0.001 1.0±0.001
87.0 0.837±0.001 0.078±0.001 1.017±0.001
270.0 0.863±0.004 0.058±0.001 1.183±0.003

While for a small 𝜔 of 7 rad/s the ing result shows the same relaxation parameters
as the underlying reference values, an increase in 𝜔 leads to higher 𝑇1 and decreased 𝑇2
results.

Bloch Model-Based Correction of Δ𝐵0 Aer estimating the inuence of the eld in-
homogeneities Δ𝐵0 on the ing of IR-bSSFP data, the Bloch model-based reconstruction
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technique is extended to include a Δ𝐵0 correction. e inhomogeneities are determined
with two GRE acquisitions with dierent TE. Δ𝐵0 is calculated following Section 2.2.1.
Similarly to the 𝐵1 map, the Δ𝐵0 map is passed to the reconstruction pixel-wisely as prior
knowledge. As the Bloch simulation in the forward model is based on the rotating frame,
Δ𝐵0 is modelled as o-resonance in each voxel following Equation 5.3.

e reconstruction with and without additional Δ𝐵0 correction is presented in Figure
5.6 on the le, while the dierences between both parameter maps are visualized on the
right.

Figure 5.6: Inuence of 𝐵0 inhomogeneities on a Bloch model-based reconstruction of
single-shot IR-bSSFP data. e le presents the 𝑇1 and 𝑇2 maps calculated
with and without additional 𝐵0 correction. On the right, their dierence
maps are shown.

When the dierence maps are compared to the underlying Δ𝐵0 map, which is presented
in Figure 5.5 on the le, the strong inuence of the accuracy of the parameter mapping
with respect to Δ𝐵0 can be observed. Correcting the model with the inhomogeneity
map decreased the 𝑇1 values and increased 𝑇2 in areas showing high Δ𝐵0 values. In the
future, more detailed studies should compare these o-resonance dependencies with their
analytical special cases, which were derived by Ganter in 2004 [118] and the numerical
study for IR-bSSFP sequences by Pster in 2019 [116]. Future studies should also focus on
sequences that are more robust to o-resonance eects [12].
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5.4. Eects of Prior Shimming

In the previous section, the inuences of 𝐵0 inhomogeneities on the accuracy of recon-
structed relaxation parameter maps from IR-bSSFP data are discussed. Due to the strong
eects of Δ𝐵0 on many sequences, typical MRI protocols use automatic shimming pro-
cedures before the measurements. e execution of these corrections depends on the
chosen shim type, the chosen accuracy, and the positioning of the shim volume. Shimming
can drive the magnetization out of equilibrium and can modify the transient state of an
IR-bSSFP sequence. If this eect is not modelled correctly, the accuracy of the determined
parameter maps is reduced. Accurate modelling requires control over the exact time
between shimming and data acquisition, which is not possible on the used MAGNETOM
Skyra and Vida MRI scanners of this work. An alternative oers a temporal break between
shimming and IR-bSSFP acquisition. It can ensure a relaxation to the equilibrium before
the start of measurement.
In this section, the inuence of prior shimming and relaxation breaks on the parame-
ter quantication with an IR-bSSFP sequence is investigated. Two cases are compared,
without shimming procedure and with shimming directly before the data acquisition.

Theoretical Background of Shimming MRI requires a homogeneous magnetic eld
Δ𝑩 = 0. In clinical scanner setups the 𝑥- and 𝑦-component of 𝑩 are small compared to 𝑧,
which leads to a reduction of the goal of shimming to

Δ𝐵𝑧 = 0 , (5.8)

for a heterogeneous object placed in the scanner’s magnetic eld. Heterogeneity in the
measured materials leads to varying magnetic susceptibilities 𝜒 that modify the magnetic
eld 𝑩 according to Equation (5.3).
Two dierent classes of shimming were developed: Passive shimming exploits the

dierent 𝜒 of materials, modies 𝑩 in a static but controlled way and compensates eld
inhomogeneities. Techniques range from ferromagnetic materials installed in the bore
during the setup of the scanner system up to diamagnetic intraoral shims placed in the
mouth during acquisitions [119]. Active shims on the other hand are created with wires
placed around the measured object. is can be close to the measured objects as external
system, integrated into the magnet as superconductive arrays or placed within the bore
but outside the helium cooled area. Active shims are based on the idea of modifying 𝑩0

with magnetic elds that are created from current running through the additional wires.
To understand the basic concept, the cylindrical symmetry of the magnet gives rise to a
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description of 𝑩0 as spherical harmonics [120],

𝐵𝑧 (𝑟,\,𝜙) =
∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝐴𝑛𝑚𝑟
𝑛𝑃𝑚𝑛 (\,𝜙) , (5.9)

with the spherical harmonics 𝑃𝑚𝑛 (\,𝜙) weighted by the factors 𝐴𝑛𝑚 . Shim coils aim for
creating the same harmonics as produced by the inhomogeneities, but with opposite sign
for compensation. Clinically, 𝐵𝑧 (𝑟,\,𝜙) is approximated up to an order of two or three
with specially designed coils [121]. For example, the used MAGNETOM Vida Scanner
in this work provides three rst order and ve second order active shimming channels.
Shim coils can be designed to show a perfect harmonic response, which is the foundation
of projection-based shimming techniques. ey calculate the weighting factors 𝐴𝑛𝑚 from
diagonal projections along the surfaces of the shim volume [122, 123]. ese techniques
can work with small amounts of acquired data and are ecient and fast. Although in
practice, shim coils generally do not have a perfectly harmonic response, which reduces
the accuracy of projection-basedmethods. Volume-based shimming does not require a the-
oretically perfect harmonic coil system. It determines Δ𝐵0 maps from low resolution GRE
images with dierent TE [124, 125] similar to the 𝑩0 mapping method that was introduced
in Section 2.2.1. With provided reference scans performed on a homogeneous phantom
𝑩ref
0 , the optimal currents 𝑰 are found as a solution to the least-squares optimization [120]:

𝑰 = argmin
𝑰

‖𝑩ref
0 (𝒓)𝑰 − Δ𝐵0(𝒓)‖22 . (5.10)

e currents determined on the homogeneous reference phantom during the setup
of the scanner 𝑰 ref can be chosen as correction on Siemens systems. e corresponding
shim mode is called Tune-Up. Siemens scanners provide further modes like Standard and
Advanced, which are dened by the number of optimization steps and by the tolerated
error of the shimming optimization (Equation (5.10)).

Methods In this work, the shim mode Advanced is the default in all acquisitions. e
shimming is performed automatically prior to every rst measurement with a new shim
volume. In the studies of this work, the default shim volumes are the measured slices
themselves. Two acquisitions on an in vivo brain are performed with a single-shot IR-
bSSFP sequence. Both run the same shim currents 𝑰 and have the sequence parameters
TR/TE = 4.5/2.25 ms, 1000 acquired spokes, 45◦ nominal ip angle,𝑇RF=1 ms and BWTP=4.
e shimming procedure runs only at the beginning of one acquisition without any
waiting time until the start of the IR-bSSFP sequence. e reconstructions are performed
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with the Bloch model-based reconstruction and the same assumptions for the forward
model and the same optimization seings. e nominal ip angle is corrected pixel-wisely
with an external 𝐵1 map acquired with a preconditioned RF pulse sequence, as introduced
in Section 2.2.1.

Results e resulting 𝑇1 and 𝑇2 parameter maps, which were reconstructed with the
Bloch model-based technique, are presented in Figure 5.7 on the le. On the right, the
dierences between the same parameter maps acquired with and without prior shimming
are presented. e shimming leads to decreased𝑇1 values, which strength correlates with
the 𝑇1 relaxation time of the tissue. Longer relaxation times are inuenced more strongly.
e 𝑇2 map is less aected than 𝑇1.

Figure 5.7: Inuence of shimming on a Bloch model-based reconstruction of single-
shot IR-bSSFP data. Two reconstructions of 𝑇1 and 𝑇2 maps from datasets
with and without prior shimming are presented on the le. e right
shows their dierences.

Discussion Due to the fact that shimming requires the acquisition of low resolution
GRE images, it involves RF pulses that excite the magnetization and move it away from its
equilibrium. By omiing a temporal break between shim procedure and image acquisition,
sequences based on a transient states, like the IR-bSSFP, follow a modied magnetization
evolution. e incompletely recovered magnetization aects the transient state similarly

123



5. Additional Factors Aecting the antitative Accuracy

to a decreased inversion eciency. e prior shimming inuences tissues with longer
relaxation times more strongly because their magnetization requires more time to relax
back to its equilibrium.

5.5. Influences of Gradient Delays

Aer discussing additional physical eects on the level of individual voxels like Δ𝐵0 or
skipped relaxation breaks between acquisition and shimming, this section has a focus
on inaccuracies in the sampling trajectory. e most prominent error source here are
gradient delays, which result from eddy currents. ey change the sampling trajectory
and break the data consistency in the optimization. In this section, the inuence of such
delays on the parameters that were reconstructed from in vivo single-shot IR-bSSFP data
is investigated.

Theoretical Background of Gradient Delays Sampling trajectories are dened by
local changes of the magnetic eld due to spatial gradients and RF pulses, which are
introduced in Section 2.1.7. In practice, these gradients need to be ramped up and down
within a few hundred microseconds, which leads to currents of multiple hundred amperes
in the corresponding coils. e resulting rapid change in current creates temporary
varying magnetic elds and can induce eddy currents in surrounding electronic hardware
parts [126, 127]. If this aects the gradient system itself, the waveform of their response is
changed and deviations from the actual sampling trajectory occur [128]. is eect varies
for dierent sampling schemes. Cartesian imaging is characterized by the same gradient
waveform that is used for every readout. erefore, gradient delays aect every readout
in the same way, thus creating a constant phase oset in the reconstructed images. Spiral
imaging has single trajectories that span the whole k-space. Here, gradient delays have a
dierent eect on each sampling point, which makes corrections challenging [34]. e
focus of this work is on radial imaging. Gradient delays aect each sampling point along
a spoke similarly. is can be described as a superposition of a parallel and orthogonal
shi with respect to the readout direction. e shis can be measured during each
acquisition with dedicated hardware to correct for these deviations [129, 130]. Another
generic correction estimates the gradient system impulse response function (GIRF) of the
scanner system in prior calibration scans and corrects each gradient waveform with it [131,
132]. Both methods might be superior for correcting complex spiral trajectories, but they
can be challenging to implement and require expensive hardware. Radial trajectories can
be corrected more easily, even on the acquired dataset itself without additional hardware
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or calibration scans. One technique has been developed by Block and Uecker in 2011 [133].
It derives the parallel shi component based on sampled spokes from opposite angles.
A method developed by Rosenzweig in 2018 [134], called radial spoke intersections for
gradient delay estimation (RING), determines both the parallel and orthogonal component
of the gradient delay eect. It takes multiple spokes and ts an ellipse to intersecting
readout samples. Aerwards, the shiing operators that transform the ellipse back to a
unit circle are calculated. ey uniquely dene a correction of the gradient delay eects
from only a few spokes. is technique can also be applied to other sampling trajectories
with radial behavior for low frequencies, like for rosee paerns [135].

Experimental Setup In this analysis, an in vivo brain from a healthy volunteer is mea-
sured with a single-shot IR-bSSFP sequence. e sequence parameters are TR/TE=4.5/2.25
ms, 1000 acquired spokes, 7th tiny golden angle, 45◦ nominal ip angle, 𝑇RF=1 ms and
BWTP=4. For the correction of the nominal ip angle, an external 𝐵1 map is acquired
with a preconditioned RF pulse sequence. e reconstructions are performed with the
Bloch model-based technique, which includes a slice prole simulation that is based on
the known slice-selection gradient strength. e nominal ip angle is corrected pixel-
wisely with the acquired 𝐵1 map. Two reconstructions are performed with and without
RING-corrected sampling trajectories. e relative gradient delay dierence between
both experiments is one sample in parallel and orthogonal direction.

Results & Discussion e results of the reconstructed 𝑇1 and 𝑇2 parameter maps are
presented on the le of in Figure 5.8. On the right, the dierences between the individual
maps are shown. e reconstruction without correction of gradient delay eects shows
many checkerboard artifacts, especially in and close to regions associated with ow.
at indicates that the data consistency is violated because the sampled positions in the
forward model do not match the measured frequencies. If the discrepancy is removed
with a RING-based correction, fewer regions with checkerboard eects occur in the
reconstruction. e strongest inuences of gradient delay eects is observed in the 𝑇1
map. e delays introduce errors especially in the outer parts of the brain with complex
geometries and potential ow eects.
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Figure 5.8: Inuence of gradient delays on a Bloch model-based reconstruction of
single-shot IR-bSSFP data. Two reconstructions of 𝑇1 and 𝑇2 maps from
datasets with and without gradient delay correction based on RING are
presented on the le. On the right, the dierence maps are presented.

5.6. Pixel-Wise Perspective on the In Vivo IR-bSSFP
Oset

Up to now, various inuences on the accuracy of the parameter quantication are dis-
cussed. None leads to large enough dierences that can explain the observed oset in the
in vivo IR-bSSFP analysis shown in Figure 4.6. In this section, an additional validation step
is performed that compares the Bloch model-based reconstruction to a pixel-wise ing
technique based on real-time regularized nonlinear inverse reconstruction (RT-NLINV)
[14]. is analysis aims to provide additional understanding about the accuracy of the
optimization.

Theoretical Background of RT-NLINV e basis for RT-NLINV [14] is regularized
nonlinear inverse reconstruction (NLINV), which is introduced in Section 2.1.9. RT-NLINV
provides additional causal temporal regularization terms,

(𝝆𝑡 ,𝒄𝑡 ) = argmin
(𝝆𝑡 ,𝒄𝑡 )

‖PF C(𝒄𝑡 ,𝝆𝑡 ) − 𝒚 ‖22 + 𝛼
[
‖𝝆𝑡 − 𝜏𝝆𝑡−1‖22 + ‖𝑾 (𝒄𝑡 − 𝜏𝒄𝑡−1)‖22

]
, (5.11)
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the scaling 𝑠=220 and 𝑙=32 as well as a temporal damping factor of 𝜏=0.9. e dierence
between the current solution (𝝆𝑡 ,𝒄𝑡 ) and its predecessor (𝝆𝑡−1,𝒄𝑡−1) is penalized with a
𝑙2 norm. is enforces similarity between consecutive frames in time and adds prior
knowledge to the reconstruction of (𝝆𝑡 ,𝒄𝑡 ), which allows for a further reduction of the
required data.

Methods For this analysis, an in vivo brain from a healthy volunteer is measured with
a single-shot IR-bSSFP sequence. e sequence parameters are TR/TE=4.5/2.25 ms, 1000
acquired spokes, 7th tiny golden angle, 45◦ nominal ip angle,𝑇RF=1 ms and BWTP=4. To
correct the nominal ip angle, an external 𝐵1 map is acquired with a preconditioned RF
pulse sequence from the same slice. e reconstructions with RT-NLINV are performed
on datasets on which ve temporal consecutive spokes have been joined to one frame.
e optimization is performed frame-by-frame starting from the last acquired frame.
is exploits the smooth transitions of the contrast close to the steady-state of the bSSFP
acquisition. e order reversed in time ensures that more accurate prior knowledge
is added to the reconstruction close the inversion pulse. It is crucial for an accurate
ing of the signal because these steps encode the most𝑇1 information. Aer frame-wise
reconstruction, two ROIs are dened and their signals with their standard deviations are
extracted. Both are ed with the analytical signal model for an IR-bSSFP sequence, as
presented in Equation (4.32). e relaxation parameters are calculated following Equation
(5.4) together with their errors dened by the Equations (5.5), (5.6) and (5.7). Aerwards,
two Bloch model-based reconstructions of the same data are performed. One incorporates
a complex signal model with slice prole and hyperbolic secant (HS1) inversion pulse and
the other assumes hard pulses to approximate the analytical ing process performed on
the RT-NLINV reconstructions. e relaxation values of both ROIs are extracted from the
Bloch model-based reconstructions. e temporal evolution of the magnetization of the
ROI’s relaxation values is simulated and compared to the analytical ts.

Results e results are shown in Figure 5.9. On the le, the 𝑇1 parameter map that
has been reconstructed with the complex signal model is presented with the marked
analyzed ROIs. In the le center of Figure 5.9, the 𝑇1 map is shown that is reconstructed
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with the simple signal model to include the same assumptions as for analytical model
of an IR-bSSFP. e mean relaxation values for 𝑇1 and 𝑇2 are extracted from the marked
ROIs and are added to Table 5.2 with standard deviations. On the right side of Figure
5.9, the mean signal of the two ROIs extracted from the RT-NLINV reconstructions with
standard deviations is presented.

Figure 5.9: 𝑇1 and𝑇2 maps reconstructed with the Bloch model-based technique under
the assumption of a complex Bloch model (le) and its approximation of
the analytical IR-bSSFP model (center le). ROIs mark the locations in
which the𝑇1 and𝑇2 values are extracted from both maps. On the right, the
simulated signals based on the extracted relaxation values are presented
(blue, green). e temporal evolution of the marked ROIs during the in-
dividual frames of an RT-NLINV reconstruction of the data is added in
black. eir errors represent the standard deviations in the ROIs in each
frame. e red lines represent the synthetic signals from the analytical t
to the RT-NLINV reconstructions. e corresponding ing results are
listed in Table 5.2.

e RT-NLINV ROI selected signal is ed with the analytical signal model of Equation
(4.32). Both are ploedwith the simulated signals that are based on the𝑇1 and𝑇2 relaxation
values, which are extracted from both Bloch model-based reconstructions.

All simulated signal evolutions overlap with the extracted signal from the RT-NLINV
reconstruction. e relaxation parameters reconstructed with the simple forward model
are similar to the pixel-wise ts on the RT-NLINV signal.

Discussion Both reconstructed 𝑇1 parameters are higher and both 𝑇2 values are lower
than the white maer reference values [102]. Following the analysis in Section S5, the
dierence can partially be explained by MT eects. e strongly overlapping signals
indicate that the Bloch model-based reconstruction is able to nd solutions that accurately
fulll the data consistency. is is the case for both the complex and the simple forward
model. Including a realistic signal model with slice prole simulation and nite RF pulses
leads to an increase in the𝑇1 values and to a decrease in the𝑇2 parameters. Both are in the
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Table 5.2: 𝑇1 and 𝑇2 values calculated from the ROIs in Figure 5.9 for both reconstruc-
tions with complex Bloch model and its approximation of the analytical
IR-bSSFP signal. Additionally, the results of the analytical model ed to
the RT-NLINV reconstructions are added. e error of the Bloch reconstruc-
tions follows the standard deviation in the ROIs. e error of the ing
follows from the ing covariance and propagates according to Equations
(5.5), (5.6) and (5.7).

𝑇1 [s] 𝑇2 [s]

ROI 0
Full Model (Bloch) 1.45±0.025 0.019±0.001

Analy. Approx. (Bloch) 1.047±0.019 0.037±0.002
Analytical Fit 1.034±0.017 0.045±0.001

ROI 1
Full Model (Bloch) 2.063±0.076 0.028±0.001

Analy. Approx. (Bloch) 1.687±0.054 0.058±0.007
Analytical Fit 1.699±0.028 0.062±0.001

range of the in vivo IR-bSSFP oset. Nevertheless, incorporating these additional physical
eects should not move the solution further away from the physical references. is
holds especially as the phantom studies (Figure 4.5) with an IR-bSSFP sequence indicated
beer accuracies for more realistically simulated models.
Overall, this analysis suggests that the optimization works well for various signal model
assumptions. It indicates that the oset is related to the actual physical model used in the
Bloch model-based reconstruction rather than the optimization seings.

5.7. Influence of Spoke Binning

In the RT-NLINV analysis, ve consecutive spokes are binned to a single frame to be
reconstructed together. is averages their individual contrast and their encoded physical
eects. Choosing a too large number of binned spokes reduces the temporal resolution
and can lead to undesired averaging of fast physical behavior. Spoke binning is used in the
Bloch model-based reconstruction to reduce the computational complexity of solving the
linearized problem in each Gauss-Newton step, as described in Equation (4.20). Because
(4.20) is solved with fast iterative shrinkage/thresholding algorithm (FISTA), the normal
operator

N(𝒙𝑛) = 𝐷A𝐻 (𝒙𝑛)𝐷A(𝒙𝑛) , (5.13)

with
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𝐷A(𝒙𝑛) : ℂ𝐵×𝐵×𝑃 ↦→ ℂ𝑁×𝑆×𝐶×𝑇 (5.14)

is required in each iteration. Here, (·)𝐻 is the adjoint, 𝐵 the base resolution, 𝑃 the
parameters, 𝑁 the number of samples in k-space, 𝑆 the number of radial spokes, 𝐶 the
coil sensitivities and 𝑇 the time steps.
While N can be pre-computed, it requires storing a large matrix and does not allow for
exploiting a fast (discrete) Fourier transform (FFT). To reduce the computational costs,N
is designed as an operator and can therefore incorporate an FFT, but needs to be applied
in every FISTA iteration. e current implementation of the non-uniform fast Fourier
transform (nuFFT) exploits a Toeplitz trick for ecient computation of F 𝐻P𝐻PF , but
the numbers of applied FFT operations is still proportional to 𝑇 . By joining consecutive
spokes, 𝑇 is decreased and the computational demands for calculating N are reduced.
is binning of spokes requires the balancing of the number of joined data with the time
scale on which the modelled physical eects appear. Otherwise, undesired averaging
introduces a physical bias. A detailed analysis of this phenomenon for reconstructions
of IR-FLASH sequences has been performed by Roelos in 2016 [43]. In this study, the
inuence of spoke binning on the Bloch model-based reconstruction of single-shot in
vivo IR-bSSFP data is investigated.

Methods An in vivo brain from a healthy volunteer is measured with a single-shot
IR-bSSFP sequence. e sequence parameters are TR/TE=4.5/2.25 ms, 1000 acquired
spokes, 7th tiny golden angle, 45◦ nominal ip angle,𝑇RF is 1 ms and BWTP is 4. To correct
the nominal ip angle, an external 𝐵1 map is acquired with a preconditioned RF pulse.
Two reconstructions are performed with the Bloch model-based technique including a
temporal binning of 15 spokes and no binning at all. e binning is implemented in the
Bloch simulation as averaging over multiple simulated echoes. e nominal ip angle in
both reconstructions is corrected pixel-wisely with the additional 𝐵1 map.

Results e results are shown in Figure 5.10. On the le, the individual parameter maps
for 𝑇1 and 𝑇2 are presented, while the dierence maps are presented on the right.

Discussion For the Bloch model-based reconstruction, the speedup through spoke
binning only aects the solving of the linearized problem. Other model-based techniques
that are based on analytical functions [9, 10] can also benet from the reduced computa-
tional eorts during execution of the forward operator. e relaxation parameter maps

130



5.8. Flip Angle Eects

Figure 5.10: Inuence of spoke binning on the Bloch model-based reconstruction of
single-shot IR-bSSFP data. Two reconstructions of 𝑇1 and 𝑇2 maps from
datasets with and without 15 binned spokes are presented on the le. On
the right, the dierence maps are shown.

reconstructed with both seings are similar. e 𝑇1 map shows errors up to 50 ms, which
might arise from a dierent regularization. is can result from a dierent initial scaling
of the dataset, similar to the analysis in Section 5.2. Because the IR-bSSFP sequence is
more sensitive for changes in 𝑇1 than in 𝑇2, the eect is stronger in 𝑇1. Nevertheless, a
relative error comparison as well as an additional physical and numerical phantom study
would be interesting.

5.8. Flip Angle Eects

e quantitative mapping accuracy with IR-bSSFP sequences is sensitive to ip angle
variations. For low angles (>30◦) the transverse component of the magnetization vanishes.
is reduces the sensitivity of the sequence with respect to𝑇2 and the eective relaxation
rate 𝑅∗1 becomes close to 𝑅1. Higher ip angles (>90◦) increase 𝑅∗1 , which reduces the time
until the steady-state is reached and constraints the reconstruction to a high temporal
resolution. is forced previous work [3] to use ip angles between 30◦ and 90◦ in order
to determine accurate quantitative maps. Model-based reconstructions provide a high
temporal resolution with each single repetition modelled individually, which can resolve
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fast physical dynamics. Nevertheless, large ip angles result in a high specic absorption
rate (SAR) and the application of spoke binning is also more limited. erefore, ip angles
of 45◦ are exploited in previous sections. To validate the assumption, it is investigated in
this analysis which inuence varying ip angles of IR-bSSFP acquisitions have on the
reconstructed parameter maps.

Methods All datasets of this analysis are acquired on a brain of a healthy volunteer. A
single-shot IR-bSSFP sequence is used with the parameters TR/TE = 4.5/2.25 ms, 1000
acquired spokes, 13th tiny golden angle, 𝑇RF=1 ms and BWTP=4. e nominal ip angles
are set to 20, 40, 45, 50, 60, 70, 77◦. To correct the nominal ip angle in IR-bSSFP, an
external 𝐵1 map is acquired with a preconditioned RF pulse sequence. A reference single-
shot IR-FLASH sequence is measured on the same slice with the seings TR/TE=3.8/2.26
ms, 1000 acquired spokes, 13th tiny golden angle, 8◦ ip angle, 𝑇RF=1 ms and BWTP=4.
All reconstructions are performed with the Bloch model-based reconstruction including
a slice prole simulation that is based on the known slice-selection gradient strength.
e nominal ip angle is corrected pixel-wisely with the 𝐵1 map additionally acquired
for the IR-bSSFP datasets. e 𝑇1 and 𝑇2 values of representative ROIs for white maer
and gray maer are extracted from each IR-bSSFP reconstruction and ploed against the
nominal ip angle. eir correlation is linearly ed with

𝑇1(ip angle) =𝑚 · ip angle + 𝑏 . (5.15)

e results with their corresponding errors are listed in Table 5.3.

Table 5.3: Fiing results of the variable ip angle IR-bSSFP analysis for two dierent
ROIs. e data corresponds to the ts that are visualized in Figure 5.11.

#ROI 𝑚 [s/deg] 𝑏 [s]

𝑇1
1 0.01±0.001 0.984±0.016
2 0.008±0.001 1.794±0.013

𝑇2
1 0.0003±2e-05 0.011±0.001
2 0.00026±4e-05 0.023±0.003

Results e results for the variable ip angle analysis are visualized in Figure 5.11. e
relaxation values for 𝑇1 and 𝑇2, which are extracted from the ROIs, increase linearly with
the ip angle. Lower ip angles lead to 𝑇1 values closer to and 𝑇2 values further away
from the reference.
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Figure 5.11: On the top le, a reference 𝑇1 map determined from an IR-FLASH acqui-
sition is presented. e two ROIs that are used for extracting 𝑇1 and 𝑇2
values are marked in the frames on the boom. On the boom, multiple𝑇1
(boom top),𝑇2 (boom boom) and dierence maps (boom center) are
presented that were reconstructed with the Bloch model-based technique
from IR-bSSFP data for varying nominal ip angles (increasing column-
wise to the right). e dierence maps refer to the reference Look-Locker
𝑇1 map. On the top right of the gure, the results for the mean 𝑇1 and 𝑇2
values are shown that are extracted from the IR-bSSFP reconstructions.
ese ROI analysis results are ed linearly with Equation (5.15). e
determined parameters are listed in Table 5.3.

Discussion With a higher ip angle, the MT inuence on the parameter maps increases.
is can lead to higher𝑇1 values and reduced𝑇2. Because the laer actually increases, the
dierences through varying ip angles can not be explained by MT. e decreasing𝑇1 and
𝑇2 for lower ip angles (< 30◦) are expected. ey result from the IR-bSSFP sequence’s
ability to become only sensitive to 𝑇1 in this ip angle range. One potential inuence of
the increasing relaxation values can lay in the regularization dierences. Dierent ip

133



5. Additional Factors Aecting the antitative Accuracy

angles change the transient magnetization contributing to the measured signal, but also
leading to dierent steady-states. is eect, combined with the initial data scaling for
improved robustness, can change the regularization of the individual parameter maps and
can inuence the convergence and the potential solution. Nevertheless, the similar eect
in Section 5.2 does not indicate that the eect is expected to be strong. In future studies,
this analysis should be repeated numerically and on a physical phantom to reduce the
amount of potential dependencies on the acquisition.
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In this thesis, a generic tool for quantitative multi-parameter mapping has been developed.
It combines a new ecient Bloch simulation based on state-transition matrices (STM),
a numerically stable sensitivity analysis of the Bloch equations (SAB) for generic and
accurate calculation of the partial derivatives of the signal, and a nonlinear model-based
reconstruction framework.

In the rst step, the individual parts of the Bloch model-based reconstruction technique
were validated. Starting from the work of the previous proof-of-principle study [13], an
in-depth analysis of the SAB has been performed. One key step was the comparison of
partial derivatives with respect to 𝑇1, 𝑇2 and 𝐵1 calculated with an analytical model, a
dierence quotient (DQ) and the SAB. e SAB showed no amplication of numerical
noise and did not require manual tuning of perturbation limits in contrast to DQ. It
outperformed DQ in precision and accuracy for all calculated derivatives.

e second validation addressed the computational costs of SAB in a Blochmodel-based
reconstruction. Especially when based on the Runge-Kua (RK) 54 ordinary dieren-
tial equation (ODE) solver, the estimation of the temporal evolution of the derivatives
is accurate but rather slow. is becomes challenging for complex dynamics such as
the modelling of strong o-resonances, which requires small step sizes to ensure high
accuracy.

In this work, the speedup of the simulation and SAB was achieved by developing a new
STM-based method. It was veried with slice prole simulations and its accuracy and
computational speed were compared to a RK54 simulation and an asymmetric operator
spliing (ASY) based rotation matrix (ROT) simulation. e STM reproduced the results
of the RK54 as expected because both techniques exploit the same ODE solver. e ROT
simulation showed a higher point-wise error compared to the STM in all experiments. e
reason is the rst order nature of the ASY ROT simulation with its accuracy increasing
linearly with the number of steps until numerical noise dominates. In comparison to
the ASY ROT, the underlying ODE solver for RK54 and STM is a fourth order technique,
which provides higher accuracy for the same decrease in step size.
Aer comparing the accuracy of the simulation techniques, their computational cost was
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investigated. e STM showed substantial eciency gains for sequences with repeating
paerns which occur in many typical magnetic resonance imaging (MRI) sequences such
as inversion-recovery fast low angle shot (IR-FLASH) and inversion-recovery balanced
steady-state free precession (IR-bSSFP). e crossover point where the computation of
the state-transition matrices including the SAB has less computational costs compared to
full simulations with a RK54 is expected to be at 13 repeating paerns. e limit drops to
four when only the Bloch equations are solved and no SAB is included. In comparison to
these theoretical expectations, the current analysis shows the crossover point to be at
about 60, which indicates that the implementation of the STM can still be improved.
By combining the simulation of the Bloch equations and the SAB in the STM, the

computational eciency increased suciently to make an integration into a nonlinear
model-based reconstruction framework feasible.eBlochmodel-based toolwas validated
in a numerical and physical phantom as well as in an in vivo study. First, the technique
was compared to a specialized reconstruction based on the analytical Look-Locker model
for IR-FLASH sequences [9]. To ensure a comparable regularization of the determined
physical quantities, the Look-Locker model was reparameterized. e Bloch model-based
technique reproduced the results of its analytical special case in all studies. For this
on-resonant simulations, the reconstruction speeds for both models were similar.

With the IR-FLASH sequence used for reproducing the special case of a Look-Locker
model-based reconstruction,𝑇1 and a relative ip angle can be determined. e aim of this
work was to realize a simultaneous mapping of multiple relaxation parameters. erefore,
a study with an IR-bSSFP sequence was performed. It provided the same sensitivities as
an IR-FLASH but adds sensitivity to 𝑇2. While 𝑇1 and 𝑇2 are coupled, prior knowledge
about the eective ip angle was used to decouple both. us, both relaxation parameters
can be determined simultaneously. In a rst step, a numerical and physical phantom
study was performed. e exibility of the Bloch model-based method was demonstrated
using dierent reconstructions with varying complexity of the signal model. e most
complex model included a hyperbolic secant (HS1) inversion pulse with non-analytical
magnetization evolution and a slice prole. e simultaneously mapped 𝑇1 and 𝑇2 values
determined with the most complex model were accurate compared to a gold-standard
references. ey became less accurate the further the model moved away from the realistic
physical model. Especially, the missing slice prole simulation decreased the 𝑇2 accuracy
substantially. is is expected because the slice prole signicantly aects the eective
ip angle, which needs to be known to decouple 𝑇1 and 𝑇2.
Aer validating the simultaneous 𝑇1 and 𝑇2 mapping with the Bloch model-based

reconstruction in phantoms, another IR-bSSFP study was performed using in vivo data.
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e most complex and realistic signal model was chosen as the default reconstruction
because of its high accuracy in the phantom studies. Nevertheless, it could not accurately
reproduce the expected 𝑇1 values from a Look-Locker reference scan. e dierences
showed up as positive osets in the 𝑇1 and negative osets in the 𝑇2 values when being
compared to the literature values. e oset could be reduced by using prolonged radio
frequency (RF) pulses and a prolonged repetition time (TR), which hints at magnetization
transfer (MT) as one potential source of the discrepancies. Following this idea, the error
may result from a physical bias because the Bloch equations only model a single substance.
As a result, the inuence from macromolecules that interact with the measured free water
was not modelled and this changed the reconstructed parameters. An additional study
in Section S5 estimated the size of this eect with multiple IR-bSSFP measurements. It
suggested that MT can explain about half of the observed oset in 𝑇1. Consequently, the
extension of the Blochmodel to a two pool Bloch-McConnell model should be investigated
in the future.

Further investigations concentrated on potential other sources of the still unexplained
portion of the oset. First, changes in the optimization algorithm were tested. Here, the
Bloch model-based reconstruction of in vivo IR-bSSFP data has been found to be robust
for a wide range of initialization values. Tests with dierent parameter distributions
indicated that the internal scaling that is based on the 𝑙2 norm of the data makes the
reconstruction sensitive to changes in the overall signal amplitude. is causes dierent
eective regularization strengths that inuence the accuracy of the calculated parameter
maps.
In a second step, other eects that could lead to a physical bias were investigated. e
main focus was on 𝐵0 inhomogeneities. e inuence of dierences in 𝐵0 was measured,
simulated and analyzed. 𝐵0 aected the estimated 𝑇1 and 𝑇2 values of white maer tissue.
is can be taken into account by integration of a prior Δ𝐵0 reference map into the Bloch
model-based reconstruction. A study on in vivo IR-bSSFP data showed slightly increased
osets, which is evidence that 𝐵0 is not the source of the oset.
Following the idea that 𝐵0 inuences the reconstruction results, the eects from shimming
of the 𝐵0 eld were investigated. is showed that the parameter maps are inuenced
when there is not enough time between the automatic shimming procedure and the start
of the IR-bSSFP sequence. An additional break can be inserted between shimming and
acquisition to avoid any inuence on the IR-bSSFP acquisition, but it does not remove
the remaining oset in the in vivo IR-bSSFP reconstructions.
e next investigated physical eects were gradient delays. ey aected the parameter
maps in outer regions of the brain more than in inner regions and increased checkerboard
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artifacts in regions associated with ow. ese delays could also not explain the constant
oset for the used sampling paerns.
An additional analysis investigated a ip angle dependency of the oset. A linear behavior
was found, but no ip angle combination could provide relaxation values close to the
expected reference.
Overall,multiple physical eects were found to inuence the accuracy of the reconstructed
parameter maps, but none of them provided a complete explanation for the observed
oset in the in vivo IR-bSSFP reconstructions.
Additional tests focused on the optimization procedure and related potential error

sources. Tests with dierent amounts of averaged spokes could also not provide a
suciently strong inuence on the relaxation values to explain the oset.
e validity of the data consistency was also conrmed with a pixel-wise t on real-time
regularized nonlinear inverse reconstruction (RT-NLINV) results. Furthermore, the more
realistic physical model can estimate the relaxation parameters accurately, as it was
demonstrated in phantom studies. ese ndings rule out that a numerical issue during
the optimization is the source of the error and indicate that the cause is of physical
nature.

e reconstruction time of the Bloch model-based reconstruction is still long for
complex signal dynamics despite the use of adaptive step-size controlled a ODE solver
and STM simulations. A speedup can be achieved with an optimized implementation that
adds GPU support. Additionally, the STM concept can be generalized. At the moment
the state-transition matrixs (STMs) have to be calculated for many spins along a slice
prole. Future studies should investigate if the STM can be computed more eciently for
multiple related spins by exploiting their relationship.

Moreover, the Bloch model-based reconstruction is sensitive to a large variety of dier-
ent scaling factors. e internal scaling of the data inuences the overall regularization
strength for dierent parameter maps. Additionally, the preconditioning of the parameter
maps aects the relative convergence. Currently, both require manual tuning and future
work should investigate automatic preconditioning techniques based on simulations
[109], eigenvalues [110], or Cramer-Rao bounds.

Besides these conceptional improvements, the major unsolved challenge of this work
is the oset in the in vivo IR-bSSFP reconstructions. e MT eect can be modelled with
an extension to the Bloch-McConnell equations. While this work could exclude various
potential error sources, the variable ip angle analysis opens up interesting questions
that require future investigation.
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In general, the Bloch model-based reconstruction is a rst step into the direction of a
closer integration of reconstruction and acquisition. A future extension of this project
could be the unication of the soware that runs on the scanner and the one that denes
the physical model in the quantitative reconstruction. is would ensure that the scanner
and the simulation process the sequence in the sameway.e integration ofmore complex
signal models could then increase the number of estimated parameters. is requires
special sequences that can be obtained by automatically optimizing their sensitivity to
physical parameters, which would connect this framework with the eld of sequence
design.

Taken together, this work developed a generic calibration-less model-based reconstruc-
tion framework for multi-parameter quantitative mapping. With its exibility to work
with arbitrary sequences, this framework emerges as a versatile tool for the simultaneous
measurement of various important physical quantities. It is my hope that this contribu-
tion will help to improve diagnostics, understanding, and reproducibility of quantitative
magnetic resonance imaging (QMRI) results.
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A. Appendix

A1. Windowed Sinc Integral

In this section the integral of a windowed sinc function,

𝐵1(𝑡) = 𝐴
[
(1 − 𝛼) + 𝛼 cos

(
𝜋𝑡

𝑁𝑡0

)]
sinc

(
𝜋𝑡

𝑡0

)
, (A.1)

is derived with its scaling𝐴, the windowing parameter 𝛼 (0 for no, 0.5 for Hanning- and
0.46 for Hamming-windowed sinc pulse), the maximum of le 𝑛𝑙 and right 𝑛𝑟 sidelobes
𝑁 = max(𝑛𝑙 ,𝑛𝑟 ), the length of the main lobe 𝑡0 =

𝑇RF
𝑛𝑙+𝑛𝑟 , the pulse duration 𝑇RF and the

time 𝑡 .
For simplication of the notation in the following steps 𝑎 = 𝐴(1 − 𝛼), 𝑏 = 𝐴𝛼 , 𝑐 = 𝜋

𝑁𝑡0

and 𝑑 = 𝜋
𝑡0
are substituted in Equation A.1 that leads to

𝐵1(𝑡) = 𝑎 sinc(𝑑𝑡) +
𝑏

𝑑𝑡
cos(𝑐𝑡) sin(𝑑𝑡) . (A.2)

With sin(𝑥) cos(𝑦) = 1
2 (sin(𝑥 − 𝑦) + sin(𝑥 + 𝑦)) Equation (A.2) can be reformulated to

𝐵1(𝑡) = 𝑎 sinc(𝑑𝑡) +
𝑏

2𝑑𝑡
(sin(𝑑𝑡 − 𝑐𝑡) + sin(𝑑𝑡 + 𝑐𝑡)), (A.3)

= 𝑎 sinc(𝑑𝑡) + 𝑏

2𝑑𝑡
sin( [𝑑 − 𝑐]𝑡) + 𝑏

2𝑑𝑡
sin( [𝑑 + 𝑐]𝑡), (A.4)

= 𝑎 sinc(𝑑𝑡) + 𝑏 (𝑑 − 𝑐)
2𝑑𝑡 (𝑑 − 𝑐) sin( [𝑑 − 𝑐]𝑡) + 𝑏 (𝑑 + 𝑐)

2𝑑𝑡 (𝑑 + 𝑐) sin( [𝑑 + 𝑐]𝑡), (A.5)

= 𝑎 sinc(𝑑𝑡) + 𝑏 (𝑑 − 𝑐)
2𝑑

sinc( [𝑑 − 𝑐]𝑡) + 𝑏 (𝑑 + 𝑐)
2𝑑

sinc( [𝑑 + 𝑐]𝑡) . (A.6)

e derivation of the integral of 𝐵1(𝑡) requires the denition of the sine integral

Si(𝑥) =
𝑥∫
0

sin(𝑡)
𝑡

d𝑡 . (A.7)

If combined with the substitution 𝑡 ′ = 𝑡 + 𝑇RF
2 and the chain rule, the integral can be
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determined

𝐼𝐵1 =

𝑇RF∫
0

𝑎 sinc(𝑑𝑡 ′)d𝑡 ′ +
𝑇RF∫
0

𝑏 (𝑑 − 𝑐)
2𝑑

sinc( [𝑑 − 𝑐]𝑡 ′)d𝑡 ′ (A.8)

+
𝑇RF∫
0

𝑏 (𝑑 + 𝑐)
2𝑑

sinc( [𝑑 + 𝑐]𝑡 ′)d𝑡 ′ (A.9)

=
𝑎

𝑑
Si(𝑑𝑡 ′)

����𝑇RF
0

+ 𝑏

2𝑑
Si( [𝑑 − 𝑐]𝑡 ′)

����𝑇RF
0

+ 𝑏

2𝑑
Si( [𝑑 + 𝑐]𝑡 ′)

����𝑇RF
0

(A.10)

=
𝑎

𝑑
Si(𝑑 ·𝑇RF) +

𝑏

2𝑑
Si( [𝑑 − 𝑐]𝑇RF) +

𝑏

2𝑑
Si( [𝑑 + 𝑐]𝑇RF) . (A.11)

By resubstitution of 𝑎, 𝑏, 𝑐 and 𝑑 Equation (A.11) becomes

𝐼𝐵1 =
𝐴(1 − 𝛼)𝑡0

𝜋
Si

(
𝜋 𝑇RF

𝑡0

)
(A.12)

+ 𝐴𝛼𝑡0
2𝜋

[
Si

(
−𝜋 𝑇RF

𝑡0

(
1
𝑁

− 1
))

+ Si
(
𝜋 𝑇RF

𝑡0

(
1
𝑁

+ 1
))]

, (A.13)

which can be reformulated to be

𝐼𝐵1 =

2𝐴(1 − 𝛼)𝑡0 Si
(
𝜋 𝑇RF
𝑡0

)
+𝐴𝛼𝑡0

[
Si

(
𝜋 𝑇RF
𝑡0

(
1 − 1

𝑁

) )
+ Si

(
𝜋 𝑇RF
𝑡0

(
1 + 1

𝑁

) )]
2𝜋

(A.14)

=
𝐴𝑡0

2𝜋

[
𝛼

[
Si

(
𝜋 𝑇RF(𝑁 − 1)

𝑁𝑡0

)
+ Si

(
𝜋 𝑇RF(𝑁 + 1)

𝑁𝑡0

)]
−

(
2(𝛼 − 1) Si

(
𝜋 𝑇RF

𝑡0

))]
.

(A.15)
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im Betreuungsausschuss dieser Dissertation.
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