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Abstract 
 
 
The naturally occurring Bernal bilayer graphene exhibits a complex low-
energy band structure hosting electric-field-controlled Lifshitz transitions 
and van Hove singularities. The diverging density of states is predicted to 
give rise to interaction-induced phenomena. However, signs of correlated 
phases mediated by these van Hove singularities in Bernal bilayer graphene 
have been elusive so far. 

To find and explore correlated states, high-quality encapsulated Bernal 
bilayer graphene devices are fabricated and electrical transport 
measurements are performed at millikelvin temperatures. A dual-gate 
structure allows to tune the charge carrier density and the electric 
displacement field across the two layers simultaneously. 

First, the trigonally warped low-energy Fermi surface topology of unbiased 
Bernal bilayer graphene is experimentally uncovered. By analyzing the 
Landau level spectrum, it is revealed that the band structure of Bernal 
bilayer graphene consists of four electron-hole asymmetric mini Dirac cones 
with a truly linear energy dispersion. 

Applying a finite electric displacement field deforms the band structure: a 
band gap opens, the mini Dirac cones transform into parabolically-dispersed 
pockets, and the center cone is inverted. The latter results in the formation 
of an inner electron-like pocket in the valence band of Bernal bilayer 
graphene and produces multiple Lifshitz transitions and concomitant van 
Hove singularities. Near the Lifshitz transitions, correlated Stoner half and 
quarter metal phases are identified. More prominently, signatures consistent 
with a competing topologically non-trivial Wigner-Hall crystal, a 
topologically trivial Wigner crystal and two correlated metals whose 
behavior deviates from standard Fermi liquids are reported at zero magnetic 
field.  

Lastly, interaction-driven phases of Stoner-type are revealed near the 
conduction band edge of strongly biased Bernal bilayer graphene where the 
energy bands are flatter, and the density of states is larger compared to hole-
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doped Bernal bilayer graphene. Here, a transition of the Stoner metals into 
a spin- and valley-polarized correlated insulator and a spin-polarized 
insulator is revealed at low magnetic fields. These correlated phases are 
consistent with either charge density waves or Wigner crystals. 

All in all, the measurements presented within this thesis reveal that the 
simple Bernal bilayer graphene hosts intriguing correlated phases in the 
vicinity of tunable van Hove singularities. These results open a new chapter 
for studying strongly interacting electrons using the platform of Bernal 
bilayer graphene. 
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Zusammenfassung 
 
 
Das natürlich vorkommende Bilagen-Graphen mit Bernal-Lagenfolge besitzt 
bei niedrigen Energien eine komplexe Bandstruktur, die kontrollierbare 
Lifshitz-Übergänge und van-Hove-Singularitäten enthält. Es wird erwartet, 
dass die divergierende Zustandsdichte zu wechselwirkungsinduzierten 
Phänomenen führt, dennoch konnten bisher keine durch van-Hove-
Singularitäten getriebenen korrelierten Phasen in Bernal-Bilagen-Graphen 
beobachtet werden. 

Um korrelierte Zustände zu identifizieren und zu untersuchen, werden 
hochreine eingekapselte Bernal-Bilagen-Graphen Proben hergestellt und bei 
Temperaturen von wenigen Millikelvin elektrisch vermessen. Eine 
Feldeffekttransistorstruktur mit zwei Gate-Elektroden ermöglicht es 
gleichzeitig die Ladungsträgerdichte sowie das elektrische Verschiebungsfeld 
zwischen den beiden Graphenlagen zu verändern. 

Zunächst wird die trigonal verformte niederenergetische Fermi-
Oberflächentopologie von Bernal-Bilagen-Graphen experimentell beobachtet. 
Die Analyse der Landau-Niveaus zeigt, dass die Bandstruktur von Bernal-
Bilagen-Graphen, falls kein elektrisches Verschiebungsfeld angelegt wird, aus 
vier kleinen, Elektron-Loch asymmetrischen Dirac-Kegeln mit linearer 
Energiedispersion besteht.   

Das Anlegen von elektrischen Verschiebungsfeldern führt zu einer 
Veränderung der Bandstruktur: eine Bandlücke öffnet sich, die kleinen Dirac 
Kegel werden zu parabolisch-dispergierenden Ausbuchtungen und der innere 
Dirac Kegel wölbt sich nach innen. Letzteres führt zu einer lochartigen 
Einbuchtung im Valenzband von Bilagen Graphen und zu mehreren Lifshitz-
Übergängen und van-Hove-Singularitäten in dessen Nähe korrelierte Stoner 
Halb- und Viertelmetalle identifiziert werden können. Darüber hinaus 
werden Signaturen von konkurrierenden wechselwirkungsgetriebenen 
Zuständen identifiziert, deren Verhalten mit dem eines topologisch trivialen 
Wigner Kristalls, eines topologisch nicht trivialen Wigner-Hall Kristalls und 
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zwei korrelierte Metallen, die andere Eigenschaften als normale Fermi-
Flüssigkeiten aufweisen, übereinstimmt. 

Zuletzt werden wechselwirkungsgetriebene Stoner Phasen auch bei hohen 
elektrischen Verschiebungsfeldern im Leitungsband von Bernal-Bilagen-
Graphen beobachtet. Hier sind die Energiebänder flacher und die 
Zustandsdichte ist höher als in mit Löchern dotiertem Bernal-Bilagen-
Graphen. Bei niedrigen Magnetfeldern wird hier ein Übergang der Stoner 
Metalle in einen spin- und valleypolarisierten korrelierten Isolator und einen 
spinpolarisierten korrelierten Isolator beobachtet. Diese korrelierten Phasen 
sind entweder mit Ladungsträgerdichtewellen oder mit Wigner-Kristallen 
vereinbar.  

Zusammenfassend zeigen die in dieser Arbeit präsentierten Messungen, dass 
das einfache Bernal-Bilagen-Graphen faszinierende korrelierte Phasen in der 
Nähe von kontrollierbaren van-Hove-Singularitäten aufweist. Diese 
Ergebnisse öffnen ein neues Kapitel für die Erforschung von komplexer 
Wechselwirkungsphysik von Elektronen auf der Plattform von Bernal-
Bilagen-Graphen. 
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1 Introduction 

 

1  Introduction 
 

 

In condensed matter physics, the electronic properties of materials are 
described to a first approximation by a single-particle picture. Here, the 
kinetic energy of electrons at the Fermi energy is governed by the dispersion 
of electronic bands that contain the energy states that electrons can populate 
[2–5]. A system behaves insulating when the Fermi energy level lies in 
between two energy bands and the electrons cannot move from the highest 
occupied band (valence band) into the lowest unoccupied band (conduction 
band). On the contrary, a system exhibits metallic behavior when the Fermi 
energy level lies within a band, and electrons can move freely. However, 
since this simple picture does not take interaction between electrons into 
account, it often fails to describe the properties of many systems that exhibit 
a high density of states, such as those in which the energy bands are flat. In 
this case, the kinetic energy is significantly reduced and the Coulomb energy 
between electrons can dominate the system. Interactions between electrons 
can then lead to spontaneous symmetry breaking in the ground state, for 
example to a breaking of the spin degree of freedom [6]. Furthermore, they 
can induce correlated states of matter, such as correlated insulators that are 
insulating states not expected in the absence of correlations [2, 4, 5]. For 
decades, the investigation of the nature of correlated phases has been an 
active field of research, exciting both experimental and theoretical physicists 
[7–9]. 

A playground to study correlated phases are two-dimensional (2D) electronic 
systems, such as silicon or gallium arsenide metal-oxide-semiconductor field-
effect transistors in which the electrons are confined in a plane and are thus 
more likely to interact. These systems are highly tunable as the charge 
carrier density can be controlled precisely by applying electrical gate 
voltages allowing the study of correlation effects in a variety of density 
regimes. Indeed, intensive investigations have led to the discovery of 
multiple interaction-induced effects, such as unexpected metal-insulator 
transitions observed as a function of the charge carrier density [9–11]. At 
low temperatures, the band dispersion in a 2D electronic system can be 
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modified by applying a perpendicular magnetic field. Flat bands, known as 
Landau levels, are then formed in which the density of states diverges. 
Coulomb interactions between electrons can now dominate the system and 
various interaction-induced phenomena, such as fractional quantum Hall 
states in which the Hall conductance shows fractional values of e2/ℎ (where 
e is the electronic charge and ℎ is Planck’s constant), have been revealed [8, 
12, 13]. 

With the first isolation of graphene, a single layer of carbon atoms arranged 
in a hexagonal lattice, a promising and much simpler 2D electronic system 
was found. Although pristine graphene exhibits a low density of states, 
broken symmetry and fractional quantum Hall states were seen in this 
system when applying magnetic fields [14, 15]. Following a landmark 
discovery in 2018, research in the graphene community has recently mainly 
focused on so-called ‘magic-angle’ twisted bilayer graphene where correlation 
effects were found even in the absence of magnetic fields [16–21]. In this 
system, two layers of graphene are stacked on top of another with an angle 
of precisely 1.1 degrees. Thereby, the energy bands of the two layers 
hybridize and become flat. Several correlating states, such as correlated 
insulators [16], ferromagnetism [19, 20] and even superconductivity - the 
complete disappearance of resistance - [17, 21] have been observed. The 
downside of twisted bilayer graphene, however, lies in the complicated 
sample fabrication and in the inhomogeneity and twist angle disorder that 
is always present in the system [22, 23]. Furthermore, the energy bands 
cannot be tuned from flat to non-flat after sample fabrication, limiting the 
extent to which the underlying correlation physics in these systems can be 
probed.   

More recently, correlation-induced ferromagnetism and superconductivity 
were also observed in the naturally-occurring rhombohedral-stacked trilayer 
graphene when a high electric displacement field is applied [24, 25]. In this 
tunable system, the density of states does not diverge due to the presence 
of flat energy bands, but rather due to a van Hove singularity - a saddle 
point in the energy dispersion relation - that can be accessed by electrostatic 
gating. 

The even simpler and more stable Bernal bilayer graphene exhibits a similar 
band structure to rhombohedral-stacked trilayer graphene [26, 27]. However, 
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even though this system has been studied intensively in the past, signs of 
electron-electron interaction have been only seen at large out-of-plane 
magnetic fields [28–32] or when the bilayer graphene is freely suspended in 
vacuum [28, 29, 33, 34]. Another approach for the investigation of Bernal 
bilayer graphene is to encapsulate it in hexagonal boron nitride. Here, 
correlation effects are reduced compared to free-standing bilayer graphene 
samples. Encapsulated samples are in turn less fragile and allow for applying 
the large electric displacement fields needed to reach a regime in which the 
density of states diverges.  

Exotic correlated states that emerge in encapsulated bilayer graphene 
samples when the Fermi energy level is tuned in the vicinity of the van Hove 
singularity have only recently been revealed during the course of this thesis1.  
The primary goal of this work was to observe and analyze the correlated 
states to elucidate the interacting phase diagram of natural bilayer graphene. 

To observe electron-electron correlations, high-quality bilayer graphene 
samples are fabricated in which the bilayer graphene flakes are encapsulated 
in hexagonal boron nitride and equipped with top and bottom gates. 
Afterwards, charge transport measurements are performed at millikelvin 
temperatures. By analyzing the Landau level spectrum of bilayer graphene 
at zero and low electric displacement fields and comparing it to the 
theoretical expected spectrum, an understanding of the non-interacting band 
structure is obtained. Specifically, it is experimentally revealed for the first 
time that, due to trigonal warping - a deformation of the low-energy band 
structure near the K-points, the low-energy band structure of non-biased 
bilayer graphene consists of four linearly-dispersed cones which is consistent 
with theoretical predictions [37]. Furthermore, it is shown that the band 
structure is electron-hole asymmetric, which becomes relevant when 
analyzing the correlated phases that emerge at large electric displacement 
fields. 

Following up on this work, the correlated phases appearing in hole-doped 
bilayer graphene, where the Fermi level sits in the valence band, are 
investigated. Here, a cascade of different correlated phases emerges when 
van Hove singularities are accessed via electrostatic gating. The correlated 
phase diagram includes Stoner phases - metallic phases showing spin and/or 
                                                 

1 See also works by H. Zhou et al. [35] and S. C. de la Barrera et al. [36]. 
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valley polarization even in the absence of magnetic fields, as well as 
correlated insulators and correlated metals of non-Stoner type. To 
distinguish between the different phases, low-temperature transport 
measurements are conducted and regions of similar conductance are traced 
as a function of the charge-carrier density (corresponding to the Fermi 
energy), the electric displacement fields, in-plane and out-of-plane magnetic 
fields, temperature and applied bias currents.  

Finally, exotic correlated insulating states are also identified in the electron-
doping regime (i.e. in the conduction band) where the density of states in 
the vicinity of the van Hove singularities is expected to be even larger than 
at hole doping, since the trigonal warping is less pronounced and the energy 
bands are flatter. The emerging states in electron-doped bilayer graphene 
are analyzed in a similar way as those appearing in hole-doped bilayer 
graphene. They are concluded to be consistent with ferromagnetic Stoner 
phases that transition either into insulating charge-density wave phases or 
Wigner crystal phases with different spin and valley polarization at low 
magnetic fields. 

In summary, the investigations in this thesis reveal that due to its complex 
low-energy band structure, encapsulated Bernal bilayer graphene is suitable 
to study interaction effects when large electric displacement fields are 
applied. Since Bernal bilayer graphene is simpler, more stable, more tunable, 
and easier to fabricate than magic-angle twisted bilayer graphene, this 
system presents a versatile platform to study electron-electron interaction 
and is worth further experimental and theoretical effort.  

The outline of this cumulative thesis is as follows:  

 In Chapter 2, the theoretical background needed to understand the 
experimental results of this thesis is presented. After 2D materials 
and their heterostructures are introduced, the single-particle band 
structure model of bilayer graphene is discussed. Next, the theoretical 
foundations of the quantum Hall effect and electron-electron 
interaction induced quantum phenomena are given. In the last section 
of this chapter, the working principles of dual-gated bilayer graphene 
field-effect transistors are explained in detail.  
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 In Chapter 3, the essential techniques needed to fabricate high-
quality bilayer graphene heterostructures are introduced. These 
include mechanical exfoliation, the identification and characterization 
of suitable flakes, the transfer of flakes via a stamping technique and 
the fabrication of electrical contacts. At the end of this chapter, an 
overview of all devices that have been measured in the course of this 
thesis is provided.  

 In Chapter 4, the electrical transport measurements are discussed. 
Apart from introducing the working principle of the dilution 
refrigerator and the electrical measurement configuration, an 
overview of standard transport measurements that have also been 
conducted by other groups is given in order to provide comparative 
qualification of the samples presented in this work. 

 The results part of this cumulative thesis (Chapters 5, 6, and 7) 
comprises one peer-reviewed article and two manuscripts in 
preparation for publication. 

 In Chapter 8, the key messages presented in Chapters 5 - 7 are 
summarized. Furthermore, complementary works are discussed and 
future perspectives are provided. 

 Finally, in Chapter 9, a conclusion that includes a summary of the 
thesis and a universal outlook is given. 
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2.1 Introduction to two-dimensional materials 

 

2  Theoretical background 
 
 
 

This chapter discusses the fundamental concepts and theories relevant to 
this thesis. It starts with a general introduction to 2D materials and 
continues with a detailed discussion of bilayer graphene's structural and 
electronic properties. Afterwards, an introduction to the quantum Hall effect 
is given. The theory discussed in these sections is based on single-particle 
physics, meaning no interaction between charge carriers is considered. In the 
following section, some of the emergent phenomena that can arise due to 
interaction of charge carriers, starting with broken symmetry quantum Hall 
states and followed by Stoner ferromagnetism and correlated insulators and 
metals, are introduced. In the end, an introduction to dual-gated bilayer 
graphene field-effect transistors is given. 

 

 

2.1 Introduction to two-dimensional materials 
 

The first isolation of graphene in 2004 [38] and the discovery of graphene’s 
exceptional mechanical [39], thermal [40], electrical [41, 42], and optical 
properties [43] stimulated an interest in crystalline materials consisting of 
single- or few-layer atoms. In the next few years, more so-called 2D materials 
such as hexagonal boron nitride, Tungsten Diselenide (WSe2), and other 
dichalcogenides have been theoretically predicted and isolated [44–46]. 
Unlike their three-dimensional (3D) counterparts, 2D materials exhibit 
strong chemical bonds only within 2D layers, while different layers are held 
together by weak van der Waals forces [44, 47–49]. By applying external 
forces, individual layers can be isolated without leaving dangling bonds [47–
49]. When more and more layers are removed, the material changes from 
being 3D to effectively 2D. This reduced dimensionality can result in a 
change of the material properties, which is also the case for graphene. [49, 
50]  
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  Monolayer graphene 

 

 

Figure 2.1  Lattice and band structure of monolayer graphene.  (a) 
Hexagonal lattice structure of monolayer graphene with two atoms per unit 
cell. Atoms corresponding to sublattice A (B) are shown in blue (orange). 
The orange lines illustrate the unit cell that contains one atom of each 
sublattice. The unit cell vectors a1 and a2 are indicated by vectors. (b) First 
Brillouin zone of monolayer graphene. Points of high symmetry interest are 
labeled. (c) Band structure of monolayer graphene. The conduction band 
(blue) and valence band (green) touch at the K and K’ points. A zoom-in of 
one of the K points is shown on the right. Near these points, the energy 
exhibits a linear dispersion.   

 

Monolayer graphene consists of a single layer of carbon atoms arranged in a 
hexagonal lattice as shown in Figure 2.1a [49, 51]. Its triangular unit cell 
has two inequivalent atomic sites, A and B, that belong to different 
sublattices and are separated by a = 0.142 nm [49]. This arrangement results 
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from the sp2 hybridization of the carbon atoms and leads to the formation 
of strong planar covalent 𝜎-bonds between nearest neighbor carbon atoms 
that are responsible for the exceptional mechanical robustness of graphene 
[39]. The remaining electrons lie within the pz-orbital perpendicular to the 
carbon plane, forming 𝜋-bonds. They are delocalized and can move through 
the lattice freely. [48, 49]  

The reciprocal lattice of graphene is also hexagonal. Its primitive unit cell, 
that is known as the first Brillouin zone, exhibits multiple high-symmetry 
points that are labeled in Figure 2.1b. The high-symmetry points sitting at 
the corners of the hexagonal Brillouin zone are of particular importance. 
They are referred to as valleys, K and K’ points, or Dirac points. Two of 
these points (one K and one K’ point) are independent as they belong to 
different sublattices, the others are equivalent by symmetry. 

Using a tight-binding approach and considering only nearest neighbor 
hopping (hopping between atoms A and B, black lines in Figure 2.1a) of 
electrons within the pz-orbital yields the Hamiltonian  
 

 ℋ = −𝛾 (a
< >

b + h. c. ) , (1) 

 
where a  a  is the annihilation (creation) operator for an electron with 
spin degree of freedom 𝜎 (𝜎 = ↑, ↓; spin up or down) on site ri on sublattice 
A and b  b  is the annihilation (creation) operator for an electron with 
spin degree of freedom 𝜎 on site ri on sublattice B. 𝛾  ≈ 2.8 eV is the hopping 
energy. [49]  
 
The energy bands as a function of wavevector 𝒌 can be derived from this 
Hamiltonian. They are given by  
 
 𝐸± = ±𝛾  |𝑓(𝒌)| (2) 

 
with  

 𝑓(𝒌) = 3 + 4 cos 3𝑘 a
2

cos
3𝑘 a

2
+ 2 cos 

√
3𝑘 a   (3) 

 
 and + (-) referring to the conduction (valence) band [49, 51].  
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The energy band structure (plotted in Figure 2.1c from Equation (2)) 
consists of two cosine-like energy bands that touch but not overlap at the K 
and K’ points, resulting in a gapless energy dispersion and in the 
classification of monolayer graphene as a gapless semiconductor. Near these 
points, the energy bands mimic cones, and are also referred to as Dirac cones. 
They exhibit a linear energy dispersion given by 

 𝐸± (𝒌) ≈ ±𝑣  ℏ 𝒌 (4) 

with Fermi velocity 𝑣 = 3𝛾 𝑎 / 2ℏ ≈ 106 m/s. ℏ is the reduced Planck 
constant (Planck constant ℎ divided by 2𝜋). [49–51] Remarkably, this linear 
band structure resembles the energy dispersion of massless relativistic 
(Dirac) particles whereas the Fermi velocity 𝑣  replaces of the speed of light 
[52, 53]. As graphene’s K and K’ points are protected by inversion and time-
reversal symmetry, the band touching without gap opening even persists 
when next-nearest neighbor and higher order couplings are considered [54, 
55]. 

Because of its two sublattices A and B, graphene possesses an additional 
degree of freedom which is, in analogy with the spin degree of freedom, called 
pseudospin. Thus, charge carriers in graphene can be described by two-
component spinors. Another degree of freedom arises from the degeneracy 
of electronic states associated with the two valleys and is called the valley 
degree of freedom. It can be shown that the valley and pseudospin degree of 
freedom are linked to the momentum. In fact, in the K valley, the pseudospin 
of an electron is always parallel to the momentum and the pseudospin of a 
hole is always antiparallel to the momentum while it is the opposite in the 
K’ valley. This property of graphene is called chirality and gives rise to a 
valley contrasting Berry phase of +π in the K-valley and of -π in the K’ 
valley. [49] 
 

  Multilayer graphene and graphite  

The linear energy dispersion vanishes when another graphene sheet is 
stacked on top of the first one. Charge carriers can then not only hop in 
between atomic sites in one layer but also between neighboring layers 
resulting in a much more complex band structure [50, 56]. How this 
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interlayer hopping effects the tight-binding Hamiltonian and the band 
structure will be discussed in detail for Bernal bilayer graphene in Section 
2.2. 

In multilayer graphene with more than two layers, the electronic properties 
depend on how different layers are stacked on top of each other [57, 58]. 
Naturally, two different stacking configurations, Bernal stacking and 
rhombohedral stacking, can occur [57, 59]. Since regions with rhombohedral 
stacking configuration usually transform into regions with Bernal stacking 
configuration during device fabrication [57], It is assumed that all multilayer 
graphene samples used for devices fabricated within this thesis exhibit a 
Bernal stacking configuration. 

In case that Bernal-stacked multilayer graphene exhibits an odd layer 
number, the band dispersion can be viewed as a combination of the energy 
bands of monolayer graphene and of bilayer graphene [57]. In case of even 
layer numbers, a combination of the energy bands of multiple bilayers is 
formed [50, 58]. In addition, a small overlap of the conduction and valence 
band occurs due to interaction of next-nearest-neighboring layers.  

Thus, from three layers on, Bernal-stacked multilayer graphene can be 
treated as a semimetal [50]. The overlap of the two bands increases with 
layer number until the number of layers reaches approximately ten. At ten 
layers, the band overlap reaches 40 meV [50, 60]. In this thesis, multilayer 
graphene consisting of ten or more layers is referred to as graphite. Due to 
its high electrical conductivity and its structural properties very similar to 
graphene, graphite can be used as a contact and gating material for graphene 
heterostructures (see Section 2.5 for more details). 

 
 
 
 
 
 
 
 
 
 



2 Theoretical background 

24 

  Hexagonal boron nitride  

 
 

 
 

Figure 2.2 Lattice structure of hexagonal boron nitride.  (a,b) Hexagonal 
lattice structure of hexagonal boron nitride with one boron (orange) and one 
nitrogen atom (green) per unit cell. (a) One layer and (b) two layers in an 
AA’ stacking configuration are shown.  

 

Shortly after the first isolation of graphene, also other 2D materials such as 
hexagonal boron nitride (hBN) were thinned down to crystalline monolayers 
[45]. Being an isomorph graphene, hBN exhibits a hexagonal lattice structure 
whereas alternating boron and nitrogen atoms are replacing the carbon 
atoms as shown in Figure 2.2a. The lattice constant of hBN is given by 
a = 0.145 nm [61]. Different layers are separated by d = 0.35 nm and are 
stacked in an AA’ stacking configuration meaning that the boron (nitrogen) 
atoms lie on top of the nitrogen (boron) atoms in the consecutive layer 
(Figure 2.2b) [61–64]. 

Unlike in graphene, nearest-neighbor atoms in hBN are of different kind and 
exhibit a difference in electronegativity. Thus, they are not only hold 
together by covalent but also by ionic bonds and the electrons in the 𝜋-
orbitals are localized closer to the nitrogen than to the boron atoms resulting 
in an insulating behavior and in a bandgap of 6 eV. [61, 65, 66]  
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  Van der Waals heterostructures 

One of the biggest advantages of 2D materials comes to light when different 
layers are stacked on top of each other and are combined to 2D 
heterostructures. They are then held together by van der Waals forces just 
like naturally occurring multilayers of one 2D material. Consequently, they 
are also referred to as van der Waals heterostructures. Building such 
heterostructures can fundamentally alter the material’s characteristics. For 
example, bringing monolayers of WSe2 on top of monolayer graphene, which 
intrinsically has weak spin-orbit coupling, induces strong spin-orbit coupling 
in monolayer graphene via proximity effects [67–69]. Apart from the choice 
and order of materials, their relative alignment can also change the 
material’s properties [16, 17, 21, 25, 70, 71]. In particular, aligning two 
monolayer graphene sheets with an angle of 1.1° significantly modifies the 
band structure. The energy bands become strongly flattened and correlated 
insulators as well as superconductivity have been observed [16, 17]. 

Most importantly for this work, the rise of van der Waals heterostructures 
led to an enormous increase in the electronic quality of 2D materials [44, 
72–74]. To protect graphene and its multilayer counterparts from surface 
impurities and strain on the typically used silicon (Si) and silicon dioxide 
(SiO2) substrates, a widely adopted approach is to encapsulate graphene in 
hBN, that exhibits a very similar lattice structure with a lattice mismatch 
of only 1.7 % [73, 75, 76]. Being a 2D material with a precise number of 
layers, the surface of hBN is atomically flat, preventing graphene from 
forming wrinkles [73]. It is chemically and mechanically stable and an 
excellent thermal conductor, which helps to dissipate heat generated by 
graphene when currents flow through the sample [77]. Due to its insulating 
behavior, it does not interfere with the electronic properties of graphene 
unless the two lattices are closely aligned [71]. Furthermore, encapsulation 
in hBN keeps the graphene away from dirt and environmental influences [42, 
74, 78]. By placing a sheet of graphite below the lower sheet of hBN, charge 
inhomogeneities coming from underlying substrates are screened [74].  

Another major advantage of hBN/graphite heterostructures lies in their 
electrostatic tunability. With a relatively low dielectric constant 𝜀  ranging 
from 𝜀 =  3 − 4  [73], hBN can be used as a dielectric material for 
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electrostatic gating [79]. The dielectric breakdown voltages in hBN range 
from 0.8 Vnm-1 [80] to 1.2 Vnm-1 [81]. 

Sheets of graphite or other metals can be added on both sides of the 
heterostructure and can be used as electrical gate electrodes [74, 76]. 
Furthermore, graphite can be used for contacting graphene and other 2D 
materials [82–84].   

 
 

2.2 Structural and electronic properties of Bernal 
bilayer graphene 

 
 

 
 

Figure 2.3. Lattice structure of Bernal bilayer graphene. Atoms A1 and 
B1 belong to different sublattices in one layer while atoms A2 and B2 belong 
to different sublattices in another layer. Electrons can hop within and 
between layers via hopping parameters 𝜸i .  

 

The main focus of this work lies on Bernal bilayer graphene, that is also 
referred to as AB stacked bilayer graphene, and is the most energetically 
stable and naturally occurring form of bilayer graphene. The lattice 
structure of Bernal bilayer graphene is shown in Figure 2.3. In this stacking 
configuration, the upper carbon lattice (layer 2 in Figure 2.3) is shifted to 
the lower carbon lattice (layer 1 in Figure 2.3) in a way that atom A2 in the 
upper lattice is located directly above atom B1 in the lower lattice while 
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atom A1 in the lower lattice sits directly below the center of the upper lattice. 
The interlayer spacing between the two lattices is given by d = 0.334 nm. 

In analogy to monolayer graphene, the band structure of bilayer graphene 
can be determined using a tight-binding approach for the 𝜋-electrons. Apart 
from an intralayer hopping energy 𝛾  describing the hopping energy between 
atoms from different sublattices in one layer, also interlayer coupling 
energies referring to electron hopping between atoms from different layers 
must be considered. These interlayer coupling energies are 𝛾 , corresponding 
to nearest neighbor interlayer hopping between atoms of sublattice B1 and 
A2 that sit directly on top of each other and form dimers, 𝛾 , referring to 
hopping from atoms between non-dimer sites (i.e., hopping in between 
sublattice A1 and B2) and 𝛾 , referring to hopping from atoms between 
sublattices A1 and A2, and B1 and B2 (Figure 2.3). Their values were 
estimated in Reference [85] via a local-density approximation as  
 

𝛾 = 2.61 eV, 
𝛾 = 0.361 eV, 
𝛾 = 0.283 eV, 
𝛾 = 0.138 eV   

and are in good agreement with experimental fits to Raman [86] and infrared 
spectroscopy data [87, 88]. Note that in principle also higher-order couplings, 
e.g. next nearest intralayer couplings, have to be included into this tight-
binding model. However, their effects on the band structure are much 
smaller than the effects of 𝛾 , 𝛾 , 𝛾  and 𝛾  and they are consequently 
ignored in the following [26, 89]. 

Including hopping energies 𝛾 , 𝛾 , 𝛾  and 𝛾 , the tight-binding Hamiltonian 
can be written as a 4 x 4 matrix considering pz-electrons on the four atomic 
sides: 

 ℋ = 

⎝
⎜⎜
⎜⎛

𝜀 −𝛾 𝑓(𝒌) 𝛾 𝑓(𝒌) −𝛾 𝑓∗(𝒌)
−𝛾 𝑓∗(𝒌) 𝜀 𝛾 𝛾 𝑓(𝒌)
𝛾 𝑓∗(𝒌) 𝛾 𝜀 −𝛾 𝑓(𝒌)
−𝛾 𝑓(𝒌) 𝛾 𝑓∗(𝒌) −𝛾 𝑓∗(𝒌) 𝜀 ⎠

⎟⎟
⎟⎞ (5) 
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[26]. Here, 𝜀 , 𝜀 , 𝜀  and 𝜀  are the on-side energies that are not 
necessarily equal. In particular, there is an energy difference between dimer 
and non-dimer sites that is denoted as  

 ∆ =  [(𝜀 + 𝜀 ) − (𝜀 + 𝜀 )]. (6) 

In bilayer graphene, ∆  was found to be 0.0015 eV [85]. f(k) describes 
nearest-neighbor hopping which was already introduced for monolayer 
graphene (see Equation (3)) and can be adapted to bilayer graphene. Near 
the K- and K’-points, 𝑓(𝒌) can be simplified by introducing momentum 𝒑 
with x- and y-components 𝑝  and 𝑝  which are measured from the center of 
the K-points. It can be approximated to 

 𝑓(𝒌) ≈ −
√

3𝑎 𝜉𝑝 − 𝑖𝑝 /2ℏ, (7) 

whereas 𝜉 = ±1 corresponds to the K and K’ points and is denoted as the 
valley index [26]. ℋ  then becomes  

 ℋ = 

⎝
⎜⎜
⎜⎛

𝜀 𝑣𝜋+ −𝑣 𝜋+ 𝑣 𝜋
𝑣𝜋 𝜀 𝛾 −𝑣 𝜋+

−𝑣 𝜋 𝛾 𝜀 𝑣𝜋+

𝑣 𝜋+ −𝜋 𝜋 𝑣𝜋 𝜀 ⎠
⎟⎟
⎟⎞ (8) 

           =  

⎝
⎜⎜
⎜⎛

0 𝑣𝜋+ −𝑣 𝜋+ 𝑣 𝜋
𝑣𝜋 ∆ 𝛾 −𝑣 𝜋+

−𝑣 𝜋 𝛾 ∆ 𝑣𝜋+

𝑣 𝜋+ −𝜋 𝜋 𝑣𝜋 0 ⎠
⎟⎟
⎟⎞ (9) 

with 𝜋 = 𝜉𝑝 + 𝑖𝑝 , 𝜋+ = 𝜉𝑝 − 𝑖𝑝 , 𝜀 = 𝜀 = ∆ , 𝜀 = 𝜀 = 0 and 
effective velocities 𝑣 =

√
3𝑎𝛾 /2ℏ, 𝑣 =

√
3𝑎𝛾 /2ℏ and 𝑣 =

√
3𝑎𝛾 /2ℏ.  

At low energies and for 𝛾 , 𝛾 ≫ 𝛾 , 𝛾 , it can be further simplified to a 
two-band model Hamiltonian describing the two lowest energy bands that 
approach each other at zero energy. It is reduced to the non-dimer sites, A1 
and B2, and includes direct hopping via 𝛾  and 𝛾  as well as hoppings via 
dimer sites [26, 85]. The two-band model Hamiltonian can be expressed as 

 ℋ − = ℋ + ℋ + ℋ  (10) 

whereas  
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 ℋ = − 𝑣
𝛾

0 (𝜋+)
𝜋 0

 (11) 

dominates the band structure at large energies. ℋ  resembles the 
Hamiltonian of monolayer graphene (see Equation (1)) but with a quadratic-
in-momentum term on the off-diagonals. It is responsible for the nearly 
parabolic energy bands of bilayer graphene that touch at zero energy as 
shown in Figure 2.4a.  

 

 
 

Figure 2.4. Band structure of bilayer graphene.  (a) Band structure of 
bilayer graphene calculated from Hamiltonian ℋ −  (Equation (10)). The 
valence band is colored in orange, the conduction band in blue. A zoom-in is 
shown in the right. (b,c) Fermi surface contour of the conduction band (b) 
and valence band (c) of bilayer graphene at different Fermi energies as a 
function of px and py  calculated from Hamiltonian ℋ −  (Equation (10)). 
The band structure calculations were performed by Nils Jacobsen. 
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At low energies below 2 meV, the second term 

 ℋ = 𝑣 0 𝜋
𝜋+ 0 − 𝑣 𝑎

4
√

3ℏ
0 (𝜋+)
𝜋 0

 (12) 

and the third term 

 ℋ = 2𝑣𝑣
𝛾

+ Δ 𝑣
𝛾

𝜋+𝜋 0
0 𝜋𝜋+  (13) 

become relevant and the band structure becomes more complex as displayed 
in the zoom-in which is shown on the right-hand side of Figure 2.4a. [26, 85]  

ℋ  includes the interlayer coupling between non-dimer sites (𝛾 ) and 
consists of two terms. Like ℋ , the second term of ℋ  scales quadratically 
with momentum while the first term of ℋ  scales linearly with momentum. 
The linear term causes the band structure to undergo a trigonal deformation 
called trigonal warping. At energies < 1 meV, the contribution of the linear 
term becomes larger than the contribution of the quadratic terms resulting 
the conduction and valence bands to each break down into four separate 
pockets. While the central pocket is located around the K- or K’-point, the 
three so-called leg pockets exhibit small offsets in momentum. At low 
energies, all pockets exhibit a nearly linear energy dispersion. In analogy to 
the Dirac peak in monolayer graphene, they are referred to as mini Dirac 
cones [26, 90]. ℋ  includes both, the interlayer coupling energy 𝛾  and an 
energy difference between dimer and non-dimer sites Δ  and produces an 
electron-hole asymmetry that becomes relevant in the regime in which the 
band structure consists of four different pockets. It results in an energetic 
shift of the central pocket compared to the three outer pockets that is also 
shown in Figure 2.4a. [26]  

In order to visualize the electron-hole asymmetry better, it is useful to 
introduce the concept of a Fermi surface which is the surface in reciprocal 
space separating occupied from unoccupied electron states at zero 
temperature [91]. When the Fermi energy E of bilayer graphene is set to 
E = 0 meV where the valence and conduction band touch at the K and K’ 
points, the area of the Fermi surface of the center pocket vanishes whereas 
the area of the Fermi surface of the three-leg pockets is finite. At -1 meV < 
E < 0 meV, the Fermi surface of the valence band consists of four 
disconnected pockets whereas the Fermi surface area of each of the three 



2.2 Structural and electronic properties of Bernal bilayer graphene 

31 

leg-pockets is larger than the Fermi surface area from the center pocket due 
to electron-hole asymmetry (see Figure 2.4b). At 0 meV < E < 1 meV, only 
the center pocket contributes to the Fermi surface of the conduction band 
while the three leg pockets give a contribution to the Fermi surface of the 
valence band in the same energy range (see Figure 2.4b,c).  

In Chapter 5, it is shown that the shape of the Fermi surface can be very 
relevant for bilayer graphene’s electronic properties such as its quantum Hall 
effect.  

 
 
Introducing an interlayer asymmetry: 
 
 

 
 

Figure 2.5. Band structure of gapped bilayer graphene.  (a) Band structure 
of bilayer graphene at U = 0.017 eV calculated from Hamiltonian ℋ −  
(Equation (10)). The valence band is colored in orange, the conduction band 
in blue. (b,c) Fermi surface contour of the valence band (b) and conduction 
band (c) of bilayer graphene at U = 0.017 eV at different Fermi energy levels 
as a function of px and py  calculated from Hamiltonian ℋ −  (Equation 
(10)). U was set to 0.017 eV. The band structure calculations were performed 
by Nils Jacobsen. 

 

An interesting characteristic of bilayer graphene appears when an energy 
difference between both layers is created. This can for example be realized 
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by electrostatic gating [92] or doping [93]. The interlayer asymmetry U can 
be expressed as 

 𝑈 =  [(𝜀 + 𝜀 ) − (𝜀 + 𝜀 )] (14) 

and can be embedded into the two-band model Hamiltonian (Equation (10)) 
by adding an additional term [26] 

 ℋ = − 1 0
0 −1 − 𝜋+𝜋 0

0 −𝜋𝜋+   (15) 

which results in the opening of a band gap at the K and K’ points [37, 93, 
94]. The size of the band gap increases with increasing U [94]. The possibility 
of creating a band gap via electrostatic gating allows to classify Bernal 
bilayer graphene as a semiconductor and makes it distinct from monolayer 
graphene where no tunable band gap can be opened. 

Furthermore, a contribution of U results in a drastic change of the low-
energy band structure: the center pocket then diminishes while the three leg 
pockets become more prominent and change their dispersion from being 
linear to being parabolic [26]. Due to electron-hole asymmetry, this happens 
at different energy scales for the valence and conduction band (see Figure 
2.5)  [26, 95]. In the valence band, the center cone vanishes at approximately 
𝑈 ≈ 10 meV and is converted into an electron pocket at U > 10 meV. 
Thus, at U > 10 meV and small Fermi energies, the Fermi surface consists 
of three separated pockets. With increasing Fermi energy, these three 
pockets connect, and the Fermi surface becomes annular. When increasing 
the Fermi energy further, the Fermi surface is fully connected (Figure 2.5b). 
In the conduction band, where the center cone is very prominent at U = 0 
meV (see Figure 2.4c), the center cone also becomes less prominent with 
increasing U. However, the center cone is still dominating at intermediate U 
and the band consequently becomes flatter until it is almost completely flat 
at approximately U ≈ 60 meV. Only above this value, the low-energy Fermi 
surface consists of three pockets that transform into a single, annular Fermi 
surface and into a fully connected Fermi surface with increasing E.  



2.2 Structural and electronic properties of Bernal bilayer graphene 

33 

In summary, the Fermi surface of bilayer graphene undergoes different 
topological transitions when the Fermi energy or the interlayer asymmetry 
is changed. Such topological transitions of the Fermi surface are called 
Lifshitz transitions [96]. They come along with a diverging density of states 
which is shown in the following. 

 

Density of states: 

The density of states (DOS) is defined as the number of available states at 
a particular energy level E 

 DOS(𝐸) = 𝑑𝑛
𝑑𝐸

= 𝑑𝑛
𝑑𝑘

𝑑𝑘
𝑑𝐸

 . (16) 

The DOS exhibits a singularity and diverges when 𝑑𝑘/𝑑𝐸 → ∞, which is 
for example the case of flat bands or when the Fermi topology exhibits 
abrupt changes. The latter is called a van Hove singularity in the DOS. 

 

 

Figure 2.6. Density of states in bilayer graphene. Density of states plotted 
as a function of the Fermi energy for U = 0 meV (a), U = 17 meV (b) and 
U = 100 meV (c) in blue for the valence band and in orange for the 
conduction band. Insets show schematics of the corresponding Fermi surface. 
The calculations of the DOS were performed by Nils Jacobsen. 

 

The evolution of the DOS as a function of the Fermi energy in Bernal bilayer 
graphene is shown in Figure 2.6 for different applied electric displacement 
fields. Note that due to the use of finite step sizes in the energy, the 
simulated DOS shown in Figure 2.6 does not actually diverge. Nevertheless, 
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the DOS exhibits strong peaks when a Lifshitz transition occurs. At U = 0 
(Figure 2.6a), the DOS near the Lifshitz transitions is relatively small 
compared to the DOS near the Lifshitz transition in lightly hole-doped 
bilayer graphene at U = 17 meV (Figure 2.6b). At U = 100 meV (Figure 
2.6c), the DOS in electron-doped bilayer graphene becomes even larger at 
the band edge where the energy bands are almost flat (more details are given 
in Chapter 7). 

 

Connection between the layer and valley degree of freedom: 

In mono- and unbiased bilayer graphene (U = 0 meV), the valley and 
pseudospin degree of freedom are linked to the momentum which is known 
as chiral symmetry (see Section 2.1.1). In low-energy bilayer graphene, the 
pseudospin degree of freedom is also connected to the layer degree of 
freedom. In fact, electrons or holes in bilayer graphene are localized on the 
two non-dimer sites in opposite layers. It is worth noting that this result is 
used above for implementing the two-band model Hamiltonian (Equation 
(10)). It further leads to bilayer graphene’s valley contrasting Berry phase 
of ±2𝜋. [37] 

When a band gap is electrostatically opened in bilayer graphene, an 
imbalance between the two graphene layers is created. Then, the inversion 
symmetry and thus also the chiral symmetry is broken. [26] In this case, 
low-energy electrons or holes are polarized into one of the two layers. Since 
the layer and pseudospin degree of freedom are still connected, the 
pseudospin degree of freedom is broken, too, and electrons “live” on one 
sublattice. When U > 0, electrons are polarized to the bottom layer and 
sublattice A and holes to the top layer and sublattice B. [26, 97, 98]  
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2.3 Landau level quantization and quantum Hall 
effect in a two-dimensional electron gas 

 

At perpendicular applied magnetic fields, low temperatures and in a 2D 
electron gas (2DEG), the energy bands of conductors are reconstructed.  
Charge carriers moving through the conductor are then deflected by the 
Lorentz force perpendicular to their original direction of movement and are 
consequently forced into circular orbits. The Hamiltonian of such a system 
can be written as 

 ℋ = 1
2𝑚

(𝒑 + 𝑒𝑨) = 1
2𝑚

𝑝 + 𝑝 + 𝑒𝐵𝑥  (17) 

when charge carriers with momentum 𝒑  and mass 𝑚  are chosen to be 
confined in the x-y-plane and the magnetic field 𝐵 is applied in the z-
direction (the vector potential A describing the magnetic field can then be 
written as 𝑨 = 𝑥𝐵𝑦)̂. When using that this Hamiltonian is translationally 
invariant in the y-direction and choosing the right Ansatz for the energy 
eigenstates one can see that it resembles the Hamiltonian of a harmonic 
oscillator in x-direction. This leads to energy eigenvalues of  

 𝐸 = 𝑁 + 1
2

ℏ𝜔  (18) 

with N = 0, 1, 2, …, cyclotron frequency 𝜔 = 𝑒𝐵/𝑚. [99]  

Thus, the energy of particles that are confined in 2D and move in a 
perpendicular applied magnetic field is quantized and independent of the 
momentum [99, 100]. The degeneracy of each energy level that is referred to 
as Landau level is given by  

 𝑔 = 𝑒𝐵
ℎ

 (19) 

when excluding spin and valley degeneracies of freedom [100, 101]. According 
to Equation (18) the Landau levels are equally spaced in energy whereas 
their spacing depends on the cyclotron frequency and thus on the applied 
magnetic field. Therefore, increasing the magnetic field leads to an increase 
of the degeneracy.  
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  Quantum Hall effect 

At large magnetic fields, the Landau level quantization gives rise to a 
quantized Hall resistance. This effect is known as the quantum Hall effect 
and was first measured by Klaus von Klitzing et al. in 1980 [101]. The 
following section is based on References [99–101]. 

The deflection of charge carriers moving perpendicular to an applied 
magnetic field due to Lorentz force leads to an accumulation of charge 
carriers at the sample boundary. A so-called Hall voltage perpendicular to 
the electrical current and to the magnetic field builds up. This voltage, VH, 
can be written as 

 𝑉 = 𝐼𝐵
𝑛𝑒𝑑

 (20) 

where I is the applied current, n the charge carrier density and d the 
thickness of the sample. The Hall resistance 𝑅  that can be measured 
across the sample is then given by 

 𝑅 = 𝑉
𝐼

= 𝐵
𝑛𝑒𝑑

 . (21) 

In a 2D limit and considering the Landau level quantization discussed above, 
it becomes 

 𝑅 = 𝐵
𝑛𝑒𝑑

= 𝐵
𝑔𝑁𝑒

= ℏ
𝑒

1
𝑔𝑁

= ℎ
𝑒

1
𝜈
  (22) 

where in the last step the filling factor 𝜈 = 𝑔𝑁  is introduced. Thus, the Hall 
resistance becomes quantized and only depends on the filling factor and the 
two fundamental constants e and ℏ. The filling factor can be tuned as a 
function of the applied magnetic field B and the charge carrier density n and 
can be written as  

 𝜈 = ℎ𝑛
𝑒𝐵

 . (23) 
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Figure 2.7. Quantum Hall effect. (a) Longitudinal resistance (Rxx, black) 
and Hall resistance (Rxy, red) as a function of the magnetic field in the 
quantum Hall regime. Image taken and adapted from Reference [102] under 
a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 licence. (b) 
Schematic illustration of a Hall bar geometry and of the electron trajectories 
in the quantum Hall effect. In the center of the sample, charge carriers move 
in cyclotron orbits. Edge channels emerge at the sample boundary. The Hall 
voltage VH can be measured across the sample while 𝑉 = 𝑅 𝐼  can be 
measured in the longitudinal direction. (c) Energy spectrum of a 2DEG across 
the sample (in y-direction) at a finite magnetic field and low temperatures in 
the presence of disorder. At the edge of the sample, the spatial confinement 
leads to an increase in energy and to conducting edge channels (black dots). 
The position and number of edge channels depends on where the Fermi 
energy level lies. (d) Energy spectrum of a 2DEG as a function of the density 
of states (DOS) at a finite magnetic field and low temperatures in the 
presence of disorder. The Landau peaks are broadened. The blue, green and 
orange lines/ circles shown in (a), (c) and (d) correspond to different Fermi 
energy levels/ filling factors and should illustrate how they connect. For 
example, when the Fermi energy sits in between two Landau levels (blue line 
in (c), (d)), 𝑅  is quantized and 𝑅 = 0 (a). 
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To understand the formation of the famous quantum Hall plateaus shown 
in Figure 2.7a, it is necessary to include finite-sized samples and disorder 
into the model. In a semi-classical picture, charge carriers cannot perform 
closed cyclotron orbits at the sample edges. Instead, they get reflected as 
shown in Figure 2.7b and form conducting channels on both sides of the 
sample in which the charge carriers move in opposite directions. No current 
can flow in the bulk. The conducting channels are also referred to as edge 
states. Backscattering between the conducting channels is suppressed since 
charge carriers with opposite chirality are spatially separated. 

The energy of the Landau levels then depends on the sample space: at the 
edge of the sample, the Landau levels bend upwards due to the confining 
potential imposed by the boundary of the sample. Disorder, that is always 
present in real samples due to finite sample sizes and finite temperature, can 
be accounted for by adding a random energy potential (Figure 2.7c) and 
leads to an energetic broadening of Landau levels (Figure 2.7d).  

If the Fermi energy lies in between two Landau levels, edge channels at the 
sample boundary emerge. Current can flow ballistically along these channels 
and 𝑅 , the resistance measured in direction of the applied current flow 
that is constant in a classical limit, vanishes. As backscattering between the 
edges is suppressed, 𝑅  remains constant. The filling factor is given by the 
number of edge channels. If the Fermi energy level is increased and lies 
within a Landau level, transport between the sample edges can take place 
and 𝑅  jumps by 1 ℎ/𝑒 . Since backscattering is now possible, 𝑅  
becomes finite (see Figure 2.7a). 

A Hall bar geometry, as shown in Figure 2.7b, allows to measure 𝑅  and 
𝑅  independently. This is not the case if a device exhibits two terminal 
contacts that go across the entire sample, e.g., when it exhibits only one 
source and one drain contact. Then, the overall resistance is given by  

 𝑅 = 1

𝑅 +𝑅
 (24) 

[103]. 
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  Landau level degeneracies and quantum Hall effect in 
bilayer graphene 

Bilayer graphene exhibits a unique series of quantum Hall states due to its 
valley and spin degree of freedom and Berry phase of 2𝜋 that lead to a four-
fold degeneracy of quantum Hall states [15, 37, 104]. In addition, the Fermi 
surface topology can alter the degeneracy of quantum Hall states. For 
example, it was shown that at large interlayer asymmetries, quantum Hall 
states in bilayer graphene exhibit an additional three-fold degeneracy due to 
the presence of three pockets [105, 106]. However, as discussed in Chapter 
2.2, bilayer graphene exhibits a complex band structure close to its band 
edge even without applied interlayer asymmetry. A reordering of quantum 
Hall states in this regime was first seen during course of this thesis and is 
discussed in Chapter 5. 

When large magnetic fields are applied (the magnitude of the magnetic fields 
needed depends on applied the interlayer asymmetry), the cyclotron orbits 
of electrons are too large to resolve the different pockets. In this regime, the 
band structure of bilayer graphene can be described by nearly parabolic 
bands that lead to the formation of Landau levels with energy 

 𝐸 = ℏ𝜔 𝑁(𝑁 − 1) (25) 

with N = 0, 1, 2, … [37, 104]. As the energy of the Landau level with zero 
energy (N = 0) equals the energy of the first Landau level (N = 1), the 
lowest Landau level exhibits an additional two-fold degeneracy. This 
additional degeneracy is called orbital degeneracy. Thus, at sufficient high 
magnetic fields or when the Fermi energy level is set far enough away from 
the band edge, 𝑅  in bilayer graphene shows plateaus at filling factors 𝜈 =
±4,±8, ±12,… due to spin and valley degeneracy but no plateau at 𝜈 = 0 
as the lowest Landau Level exhibits an additional orbital degeneracy and is 
split between electron and holes [104].  
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2.4 Exchange interaction 

 

The theory discussed in the previous sections is based on a single-particle 
picture, meaning that no interaction between charge carriers is introduced. 
However, under certain circumstances i.e., when the Coulomb energy, 𝐸 , 
becomes much larger than the kinetic energy 𝐸 , the single-particle picture 
breaks down and several quantum phenomena can appear.  

To quantify the importance of electron-electron interaction one can 
introduce the dimensionless Wigner-Seitz radius 𝑟  as 

 𝑟 = 𝐸
𝐸

 (26) 

with an estimated Coulomb energy 𝐸  of 

 𝐸 = 𝑒
√

𝑛
4𝜋𝜀 𝜀

 (27) 

and a kinetic energy 𝐸  of 

 𝐸 = 1
𝑛

[𝐸 − 𝐸 ] 𝑑 𝒌
(2𝜋)

<

 (28) 

whereas 𝜀  is a material-specific dielectric constant that reduces the strength 
of Coulomb interactions, 𝐸  is the band energy at momentum k, and 𝐸  is 
the valence band energy maximum/ the conduction band energy minimum 
[2, 5].   

In a semi-classical picture, the influence of the kinetic energy and thus by 
the band dispersion can be accounted for by introducing the effective mass 
that is defined as 

 (𝑚∗)− = 1
ℏ

𝜕 𝐸
𝜕𝑘

  (29) 

[5]. The kinetic energy (Equation (28)) then becomes 
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 𝐸 = 𝜋ℏ 𝑛
2𝑚∗  (30) 

and 𝑟  can be written as 

 𝑟 = 𝑒
2𝜋 𝜀 ℏ

 𝑚∗

𝜀
√

𝑛
 . (31) 

Thus, when the energy band is homogenous, 𝑟  is largest in vacuum where 
𝜀 = 1 and when the charge carrier density is small, i.e. the Fermi energy 
level lies in the vicinity of the band edge [107].  

Moreover, 𝑟  diverges when the energy dispersion exhibits minima, maxima 
or saddle points and 𝜕 𝐸/𝜕𝑘  goes down to zero. This is also case for Bernal 
bilayer graphene where several Lifshitz appear transitions that come along 
with saddle points in the energy dispersion (see Section 2.2). In this regime, 
the single-particle picture breaks down and electron-electron or hole-hole 
interactions can lead to intriguing quantum phenomena. In the following 
parts of this chapter, the theoretical foundations of some possible correlated 
phenomena are introduced. 

 

  Broken symmetry quantum Hall states 

One way of creating a large DOS in bilayer graphene is by cooling it down 
and applying a large out-of-plane magnetic field. In this regime, the electrons 
are confined into strongly degenerate Landau level and bilayer graphene 
exhibits an intriguing quantum Hall effect with four-fold degenerate Landau 
level due to spin and valley degeneracies and an eight-fold degenerate lowest 
Landau level due to an additional orbital degeneracy (Section 2.3.2). To 
lower the energy of the system, spontaneous symmetry breaking can occur 
which is known as quantum Hall ferromagnetism [108]. Thereby, energy gaps 
between states with opposite spin and/ or valley quantum number are 
created and the charge carriers become spin and/ or valley polarized. These 
energy gaps are much more pronounced for opposite spins than for opposite 
valleys which is schematically shown by the size of the gaps between Landau 
level shown in Figure 2.8 [108, 109]. Furthermore, also the orbital degeneracy 
is weakly lifted [28, 29, 109]. When the disorder within a sample is lower 
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than these energy gaps, broken-symmetry quantum Hall states with all 
integer filling factors can be observed [28, 29, 109–111].  

 

 
 

Figure 2.8 Schematic illustration of the evolution of Landau level 
with increasing interlayer asymmetry.  Quantum Hall states are 
labeled by numerals in a box. Landau level of different spin are shown 
in green (spin up, arrow pointing up) and blue (spin down, arrow 
pointing down). Landau level with orbital index N=0 are shown by 
dashed lines, Landau level with orbital index N=1 are shown by solid 
lines and Landau level with orbital index N=2 are shown by dotted 
dashed lines. With increasing interlayer asymmetry, states with valley 
index K then are shifted up in energy while states with valley index K’ 
are shifted down. 

 

In bilayer graphene, charge carriers not only become valley polarized when 
the magnetic field is increased but also when an interlayer asymmetry is 
applied. Thereby, charge carrier are pushed into one of the two layers 
breaking the valley degree of freedom [28]. Also the orbital degeneracy of 
freedom is then slightly lifted [28].  

The different dependences of the spin, valley, and orbital degeneracy of 
freedom on the magnetic field and the interlayer asymmetry result in many 
Landau level crossings. They are schematically shown in  

 

Figure 2.8. In a regime where Landau levels cross, 𝑅  is not quantized 
anymore and 𝑅  does not vanish [29, 111].  
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  Stoner ferromagnetism 

According to the Stoner model of ferromagnetism that was proposed by 
Edmund Stoner in the 1930s, the interaction of charge carriers can also lead 
to spontaneous symmetry breaking and concomitant spin and valley 
polarization when no external magnetic field is applied. In case of a spin 
polarization, this leads to a change in energy of electrons with spin up and 
spin down compared to the energy of electrons defined in Equation (27) and 
Equation (28) where no electron spin is considered, i.e. 

 ∆𝐸↑ = − 𝑐 ·  
𝑁↑ − 𝑁↓

𝑁
 (32) 

 and  

 ∆𝐸↓ = 𝑐 · 
𝑁↑ − 𝑁↓

𝑁
 (33) 

with constant c and total number of electrons 𝑁 of which 𝑁↑ have spin up 
and 𝑁↓ spin down. [3, 6] The overall energy is minimized and spontaneous 
spin polarization is possible when the so-called Stoner criterion  

 
1
2
 𝑈  𝐷𝑂𝑆(𝐸 ) > 1 (34) 

is fulfilled (the derivation of the Stoner criterion can be found in References 
[3, 6]). When deriving the Stoner criterion, it is considered that the spin 
polarization leads to a magnetization  

 𝑀  ~ − 𝜇  (𝑁↑ − 𝑁↓) (35) 

with 𝜇  being the magnetic permeability. The energy density 𝑈 , also 
known as Stoner exchange parameter, parameterizes the magnetic 
energy that is gained due to the exchange interaction of two electrons with 
parallel spins and is proportional to 𝑐. 𝑈  can then be derived as  

 𝑈 = 1
2
𝜇 𝜇  (36) 

with 𝜇  being the Bohr magneton.  
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Since 𝑈  is constant in bilayer graphene, the DOS needs to be large for the 
Stoner criterion to be fulfilled. This is for example the case in the vicinity of 
Lifshitz transitions that come along with van Hove singularities in the DOS. 
It is then more favorable for the system to create an imbalance of electrons 
with spin up and spin down whereby the system becomes magnetic. While 
the Stoner criterion was first derived by describing the energy difference 
between particles with opposite spin it also holds for other quantum numbers 
such as for particles in opposite valleys [25]. 

In experiment, one can detect Stoner magnetism by measuring the magnetic 
field, for example via a superconducting quantum interference device 
(SQUID) [112]. Furthermore, Stoner magnetism can be observed when 
tracing down quantum Hall oscillations. While at low magnetic fields 
quantum Hall states in bilayer or trilayer graphene would normally exhibit 
a four-fold degeneracy due to spin and valley degeneracies, quantum Hall 
states within a spin or valley polarized Stoner “half metal phase” are two-
fold degenerate. Quantum Hall states within a spin and valley polarized 
Stoner “quarter metal phase” are fully polarized and non-degenerate. [25] 
 

  Strange metals 

Apart from Stoner metals, there are other kinds of correlated metals such as 
strange metals that are metallic phases that do not obey Landau’s Fermi 
liquid theory [113].  

According to Landau’s Fermi liquid theory, interacting electrons in a metal 
can be described by quasiparticles that behave like nearly free electrons and 
carry an effective mass 𝑚∗ that incorporates all interaction effects. At low 
temperatures T, where electron-electron scattering dominates over electron-
phonon scattering, the resistivity 𝜌 of metals can then be described as  

 𝜌(𝑇 ) = 𝜌 + 𝐴𝑇  (37) 

with A being a constant that is proportional to (𝑚∗)2 and 𝜌  accounting for 
a saturation of the resistance at low temperatures where quantized lattice 
vibrations freeze out. Thus, the resistivity scales quadratically with 
temperature. [114, 115] 
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In strange metals, such as in hole-doped cuprates [116] or in magic-angle 
twisted bilayer graphene [18], the resistivity, however, increases linearly with 
temperature T over a wide temperature range. This linear increase can be 
directly linked to the Planck constant h and the Boltzmann constant kB via  

 𝜌 = 𝑚∗

𝑛𝑒
1
𝜏
 (38) 

with a universal scattering rate  

 
1
𝜏

= 𝑘 𝑇
ℎ/2𝜋

 (39) 

[18, 113, 117]. Thermal vibrations of the underlying lattice that freeze out 
at low temperatures seem to be not relevant anymore indicating that the 
single-particle picture breaks down due to strong correlation effects [113].  

Another interesting aspect of strange metals is that they often appear 
together with high-temperature superconductivity [113, 118]. However, a 
theoretical explanation for strange metal behavior is still under investigation 
and it is not yet proven that these two phenomena are fundamentally linked 
[113, 117]. 

 

  Correlated insulators 

Another kind of correlation effect that can occur when 𝑟 ≫ 1 , is the 
formation of correlated insulators in which the hopping of electrons is 
suppressed and electrons start to localize whereby the energy bands split 
and an energy gap opens. At low temperatures and low disorder, the system 
then becomes insulating. There are various kinds of correlated insulators 
that each exhibit different electronic orderings. Some of them are briefly 
introduced below: 
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Mott insulators: 

 

 

 
Figure 2.9 Schematic diagram of a Mott insulator. The energy band splits 
when rs is increased. The dashed lines mark the position of the Fermi energy 
level EF. 

 

A Mott insulating state can occur in crystalline systems in which electrons 
hop between different lattice sites’ whereas the lattice can be an atomic 
lattice [119], an optical lattice [120] or a superlattice potential [16]. 
According to the Pauli exclusion principle, each lattice site can be occupied 
by two electrons, for example by two electrons of different spin (it can be 
occupied by more than two electrons when the system exhibits additional 
degeneracies such as a valley degeneracy [16]). If the interactions are strong 
and the potential energy exceeds the kinetic energy of the system (𝑟 > 1), 
such double occupancy is forbidden due to Coulomb repulsion. At half filling, 
when there is one electron per lattice site, hopping of electrons is then not 
possible anymore. The electrons become localized, an energy gap opens up 
and the system becomes insulating when the Fermi energy level sits in the 
gap. [121–123] A schematic diagram of a Mott insulator is shown in Figure 
2.9. 

 
 
 
 
 



2.4 Exchange interaction 

47 

Charge density waves: 

 

 
 

Figure 2.10 Schematic illustration of a charge density wave in one-
dimension. The top panel shows electrons (orange) at their original position 
(left) and their new position corresponding to a periodic lattice distortion 
(right). The corresponding band structures are shown below. Filled bands are 
shown in orange, empty bands in black. Adapted from Reference [124]. 

 

A charge density wave is a periodic modulation of the charge density that 
arises due to electron-electron or electron-phonon interactions and is often 
accompanied by a periodic lattice distortion known as Peierls instability 
[125]. The periodicity can either be a multiple of the underlying lattice 
constant (commensurate charge density waves) or can be unrelated to it 
(incommensurate charge density waves) [125, 126]. The redistribution of the 
charge density leads to a shift in the electron’s energy and to a 
reconstruction of the energy bands near the Fermi surface [125].  

This can be visualized best in the one-dimensional (1D) case which is shown 
in Figure 2.10. Here, the top left panel shows a 1D chain of electrons that 
are equally spaced. Below, the corresponding half-filled energy band is 
sketched. When a periodic lattice distortion is created due to a Peierls 
instability (right panel of Figure 2.10), the charge density is modulated with 
a wavevector 2 kF. The electrons exhibit a shift in their energy and an energy 
gap in the band is opened at ± kF. 

In 2D systems, the Fermi surface geometry is generally not favorable for 
Peierls instabilities, since it is often not planar, i.e. the Fermi surface 
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contours do not coincide when they are shifted along a single wavevector. A 
single wavevector can then only displace certain sections of a Fermi surface 
which is known as Fermi surface nesting. Consequently, in 2D, a charge 
density wave usually only opens up a gap in small segments near specific 
points on the Fermi surface whereas the rest of the Fermi surface remains 
gapless [125].  

In 2D, charge density waves cannot only occur due to Fermi surface nesting 
but also due to quantum fluctuations and excitonic insulator instabilities 
[125, 127]. Often it is not clear if the quantum phase transitions are driven 
by electron-phonon coupling or electron-electron interactions.  

In analogion to charge density waves, there are also spin density waves 
which exhibit a real-space spin modulation. 

 

Wigner crystals: 

When the Coulomb energy much larger than the kinetic energy of a system 
(𝑟 > 34) electrons in 2D systems are predicted to spontaneously break 
translation symmetry and form an electronic crystal that is referred to as 
Wigner crystal [5, 9]. In this configuration, the electrons arrange themselves 
to minimize their energy and strongly localize [123, 128]. The exact structure 
of the Wigner crystal cannot be determined a priori [5].  

This localization results in the opening of an energy band gap. Thus, Wigner 
crystals exhibit an insulating behavior that can be revealed by conductivity 
measurements [2, 129]. Recently, scanning tunneling microscopy was used 
to create the first real-space image of a Wigner crystal in a WSe2/WS2 moiré 
heterostructure [130].  

When 𝑟  is decreased, for example by decreasing the charge carrier density 
n (Equation (31)), the Wigner crystal melts, which means that the system 
then transitions into a different ground state. Similarly, melting of the 
Wigner crystal also takes place when the temperature is increased and the 
magnitude of thermal fluctuations exceeds the crystals lattice constant [131]. 
The crystal can then transition into a new correlated state such as a broken 
symmetry state (e.g. a spin-polarized liquid) or a CDW [5, 132, 133]. 
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Correlated insulators with non-trivial band topology: 

Every correlated insulator can in principle also exhibit a non-trivial band 
topology in which electrical current cannot flow in the bulk of the material 
(like in a topologically trivial insulator) but can flow on the sample edges 
[134]. The number of edge states is characterized by a finite Chern number 
𝐶 ≠ 0 and manifests in a quantized resistance of  

 𝑅 = 1
𝐶

ℎ
𝑒

 
 

(40) 

[3].  

For example, topological Mott insulators [135, 136] as well as Wigner Hall 
crystals [137] have been theoretically predicted and a topological charge 
density wave was recently observed in twisted monolayer-bilayer graphene 
[138]. These states manifest in quantum anomalous Hall states, that are 
quantum Hall states that occur in the absence of externally applied magnetic 
fields due to spontaneously broken time-reversal symmetry [139].  

Note that also quantum Hall states can be viewed as topological insulating 
states in which the Chern number C is given by the filling factor 𝜐 (see 
Section 2.3) [3].  
 
 

2.5 Dual gated bilayer graphene field-effect 
transistors 

 

In the previous sections, it is shown that the Fermi surface in bilayer 
graphene undergoes drastic changes when tuning the Fermi energy level. In 
experiment, the Fermi energy can be controlled via electrical gates [140, 
141]. Applying a finite gate voltage creates an electrical field between the 
gate and one graphene layer and changes the charges carrier density n, the 
density of mobile electronic charges, in the bilayer graphene. 

To probe the electronic properties of the bilayer graphene, one can utilize at 
least one source and one drain contact to the bilayer graphene flake and 
measure the current as a function of the gate voltage. Such configuration is 
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called a graphene field-effect transistor and was first realized by Novoselov 
et al. in 2004 [140]. 

By applying a gate voltage, not only the charge carrier density is varied but 
also an electric displacement field across the two graphene sheets is created. 
To allow for an independent tuning of both, the electric displacement fields 
and the charge carrier density, dual-gated bilayer graphene heterostructures 
having a top as well as bottom gate electrode can be fabricated [28, 94]. 
While the electric displacement field allows to modify the band structure, 
tuning the charge carrier density allows to access the topologically different 
Fermi surfaces in the valence and conduction band and the band gap.  

The total charge carrier density n is then given by the sum of the individual 
charge carrier density induced by the bottom gate nB and by the top gate 
nT and depends on the applied bottom gate and top gate voltages VB and 
VT and on the top and bottom gate capacitance per unite area CB and CT, 
respectively. It is defined as 

 𝑛 = 𝑛 + 𝑛 = 𝐶 𝑉 + 𝐶 𝑉
𝑒

. (41) 

The gate capacitance per unit area depends on the dielectric constant in 
vacuum 𝜀 , the reduced dielectric constant of the dielectric material 𝜀  and 
the thickness of the dielectric d via  

 𝐶 = 𝜀 𝜀
𝑑

. (42) 

B and T refer to the bottom (top) gate respectively. It is assumed that the 
same dielectric material is used as a top and bottom gate dielectric. The 
electric displacement field D is defined as  

 𝐷 = 1
2

(𝐷 + 𝐷 ) = 𝑉 𝜀
𝑑

− 𝑉 𝜀
𝑑

 (43) 

whereby the factor of 1/2 results from the fact that the net displacement 
field is an average of the displacement field coming from the bottom gate/ 
top gate alone [94].  

It is worth noting that these definitions of n and D are the standard 
definition used in the graphene community. n, as defined above, is not the 
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real charge carrier density but the charge carrier density in case of a truly 
parabolic band structure and changes in the DOS are not considered [142]. 
𝐷 is often also called electric field E (for example in References [28, 33, 34] 
and also in Reference [1] that is reprinted in Chapter 6) or 𝐷/𝜀  (see for 
example Reference [98]) whereas the definition given in Equation (43) 
remains the same. 

The equations for n (Equation (41)) and D (Equation (43)) are linearly 
independent, meaning that any choice of top and bottom gate voltages 
results in unique values for n and D. [28, 94] 

Following the line of argumentation given in Section 2.1.4, hBN was used as 
a dielectric material for both layers. In all heterostructures, graphite was 
used as a bottom gate material and, in most heterostructures, also as a top 
gate material (for one heterostructure gold was used as a top gate). Source 
and drain contacts were fabricated out of graphite flakes or gold. Schematic 
illustrations of a typical 2D heterostructures are shown in the next chapter 
(Figure 3.1) where the methods needed to fabricate and characterize these 
devices are introduced. 
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3  Fabrication of bilayer 
graphene heterostructures 

 

 

To observe low-energy band structure effects and interaction-driven 
phenomena in Bernal bilayer graphene, it is crucial to have high-quality 
devices. It is well known that the highest quality bilayer graphene flakes can 
be obtained by mechanical exfoliation [143] which was also used to obtain 
the graphene, hBN and graphite flakes used during the course of this thesis 
(Section 3.1). To build bilayer graphene field-effect transistors, the exfoliated 
flakes were then combined to delicate 2D heterostructures. Thereby, I spent 
much time on improving the fabrication process of these heterostructures as 
well as their quality. More specifically, I optimized the process of transferring 
exfoliated flakes by identifying selection criteria for choosing the right flakes 
to start with (Section 3.2) and by modifying the transfer setup as well as 
the stamping routines (Section 3.3). Furthermore, I implemented graphite 
flakes as an alternative contact material into some of my heterostructures 
that allow to contact the bilayer graphene flakes without etching into the 
insulating hBN layers, which is usually required for metal contacting 
(Section 3.4) and lowers the accessible electric displacement field range 
which are discussed in detail in Chapter 4.  

Schematics of the bilayer graphene heterostructures before metal contacting 
are shown in Figure 3.1. An overview of all fabricated devices that are used 
for the results part of this thesis is given in Section 3.5. 
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Figure 3.1. Bilayer graphene heterostructures. Schematic illustration of 
bilayer graphene heterostructures fabricated within this thesis without (a) 
and with graphite contacts (b). The heterostructures are shown without the 
metal contacts. The heterostructure without graphite contacts exhibit a local 
top gate while the other one exhibits a global top gate (see Section 4.5 for 
the corresponding discussion).  

 

3.1 Mechanical exfoliation of two-dimensional 
materials 

 

As mentioned in Section 2.1, layered 2D materials are typically held together 
by strong covalent in-plane bonds and weaker van der Waals forces between 
adjacent layers. Therefore, single or few layers can easily be peeled off from 
a bulk crystal. Mechanical exfoliation is used to cleave thin layers of 
graphene and hBN using commercially available adhesive tape. This method 
reliably gives flakes up to 100 × 100 µm2 in size and is known to yield the 
highest quality flakes as it does not introduce dopants or residual chemicals 
[144]. 

Depending on the desired flakes, different tapes and crystals are used. To 
obtain thin layers of graphene, e.g., bilayer graphene flakes, a highly 
pyrolytic graphite crystal (Momentive Performance Materials Inc.) is first 
stuck onto a piece of tape (Magic Tape, Scotch) and is peeled off afterwards. 
A thin layer of the graphite crystal then remains on the tape. This piece of 
tape is repeatedly stuck onto and peeled off from a new piece of tape to 
further thin the graphite. After repeating this process three to four times, 
the tape is placed on a 130 °C preheated silicon wafer with a 300 nm thick 
layer of Silicon dioxide (SiO2) on top. The tape is then slightly pressed onto 
the wafer and is retracted after approximately 20 s. Afterwards, the wafer 
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is randomly covered by (multilayer) graphene and graphite flakes of different 
sizes. 

On average, larger but thicker flakes are needed to fabricate graphite gates 
and contacts. Such flakes are obtained by using a natural graphite crystal 
(Natural graphite, HQ Graphene) instead of a highly pyrolytic graphite 
crystal. The rest of the exfoliation procedure then remains the same. 

hBN bulk crystals are obtained by K. Watanabe and T. Taniguchi (National 
Institute for Materials Science) [145] and flakes are exfoliated using different 
tape (SWT20+, Nitto inc.). After placing an hBN crystal on a piece of tape, 
the tape is folded and unfolded 18 to 20 times to crush and thin down the 
crystal. It is placed on another preheated wafer (same wafer preparation as 
described above) and is pressed onto it for approximately 30 s. The wafer is 
then covered by multilayer hBN flakes of different thicknesses ranging from 
monolayers to 500 nm thickness. 

 

 

3.2 Identification and characterization of suitable 
flakes 

 

After exfoliating few-layer graphene and hBN flakes, components for bilayer 
graphene heterostructures are identified and selected using optical 
microscopy, Raman spectroscopy and atomic force microscopy. Suitable 
flakes are chosen regarding to their size, cleanliness, and homogeneity. All 
flakes should be free of dirt and wrinkles and should have not been in contact 
with chemicals to ensure that they are not contaminated. Furthermore, to 
allow for a successful pick-up during the transfer process (Section 3.3), care 
is taken that all flakes are located at least 100 μm away from other 
surrounding flakes, glue residuals stemming from exfoliation tape and the 
wafer edge. 
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Figure 3.2 Optical microscopy images of preselected flakes. (a-d) Optical 
microscopy image of a preselected bilayer graphene flake (a), a preselcted 
hBN flake later serving as a bottom gate dielectric (b), a preselected graphite 
gate later serving as a bottom gate (c) and a preselected graphite gate later 
serving as a graphite contact (d). The scalebar is 10 μm in each image. The 
flakes shown in (a)-(c) were used to assemble Stack 70 (see Section 3.5), the 
graphite flake shown in (d) was embedded into the device measured in 
Reference [146]. 

 

First, bilayer graphene flakes are identified via optical microscopy and 
Raman spectroscopy (the corresponding methods are described below). To 
allow for successful alignment when building the heterostructures, flakes 
with lateral dimensions of at least 2 μm x 6 μm are chosen. Since the bilayer 
graphene flakes are the centerpiece of the heterostructures, it is always 
ensured that they are truly homogeneous, especially also at the edge of the 
flakes, which could be verified best by atomic force microscopy. 

hBN flakes, later serving as dielectrics, are always chosen to be larger than 
the bilayer graphene flakes (at least in 1D) to achieve full encapsulation. 
Their thickness should be uniform within a flake (especially within the region 
that later covers the bilayer graphene flake) and is varied from 5 nm to 
80 nm for different heterostructures. This range of thicknesses allows for an 
easy optical identification of the flakes and the flakes can be picked up safely 
during the subsequent transfer process. If the thickness of the hBN flakes 
determines the electronic properties of the heterostructure demands further 
investigation (see Chapter 8.2.1). 
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Graphite gates are chosen to be larger than the bilayer graphene flake to 
enable a full covering of the bilayer graphene. Moreover, the graphite gates 
are chosen to be smaller than the hBN flakes to electrically isolate the bilayer 
graphene flake and its contacts from the gates.  

To ensure that the gates are conducting well, the graphite flakes are chosen 
to be thicker than ten layers but thinner than 40 nm (which corresponds to 
more than 100 layers) to allow for a successful pick-up during the transfer 
process. The last point also holds for graphite flakes serving as contacts that 
are embedded into some of the 2D heterostructures. Here, at least two long 
and narrow graphite flakes of at least 30 μm x 3 μm are chosen for each 
heterostructure. Flakes with these dimensions are easy to pick up and are 
usually sticking out of the hBN flakes allowing for an easy contacting 
procedure (see Section 3.4).  

The properties discussed above are determined using the following set of 
techniques: 
 
 
Optical microscopy: 
 

Monolayer graphene, located on doped Si substrates coated with 300 nm of 
SiO2, absorbs 3.7 % of incident white light whereas the absorbance linearly 
increases with the layer number [147]. Thus, even a single layer of graphene 
gives sufficient contrast to allow for optical detection of few-micrometer 
sized areas when using the magnification range of an optical microscope. 
Also hBN exhibits a thickness dependent contrast, although single layers, 
exhibiting an contrast of less than 1.5 % on Si substrates coated with 
300 nm of SiO2, are more difficult to detect [148, 149]. 

In this work, a reflected light microscope (Axio Scope.A1, Carl Zeiss 
Microscopy) is used in bright field mode. First, the substrates are quickly 
scanned using a 10x magnification (EC Epiplan 10x, Carl Zeiss Microscopy) 
to detect and preselect few-layer graphene, graphite and hBN flakes. 
Afterwards, a 100x magnification objective (LD EC Epiplan-Neofluar 100x, 
Carl Zeiss Microscopy) is used to determine the flakes’ size, to identify dirt, 
winkles or large-scale inhomogeneities and to estimate the flakes’ layer 
number from its optical contrast [147].  
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In Figure 3.2, optical microscopy images of a preselected bilayer graphene 
flake (Figure 3.2a), a preselected hBN (Figure 3.2b), a preselected graphite 
gate (Figure 3.2c) and a preselected Graphite contact (Figure 3.2d) are 
shown.  

 
Raman spectroscopy: 
 

To unambiguously distinguish bilayer graphene from monolayer or trilayer 
graphene which exhibit similar contrasts, Raman spectroscopy is used. 
Thereby, laser light is focused onto the sample where it interacts with 
phonons before it is inelastically scattered back to a detector. During this 
process, the energy of the incident photons changes whereas the change in 
energy can be detected. The difference between the incident and scattered 
photon energy is often referred to as Raman shift. [150] 

 

 
 

Figure 3.3. Normalized Raman spectra of the 2D peak of a monolayer, a 
Bernal bilayer and a Bernal trilayer graphene flake. The Raman spectrum 
shown in the middle is taken from the bilayer graphene flake shown in Figure 
3.2a. On the left-hand side of this spectrum, the 2D peak exhibits a shoulder 
that is marked by an orange circle. 

 

Monolayer graphene exhibits multiple peaks in its Raman spectrum 
including a prominent 2D peak at around 2700 cm-1 that is associated with 
a double-resonant process near the K-points and involves two phonons with 
opposite momentum in the highest optical branch. An example of a 2D peak 
of a monolayer graphene flake is shown in the left panel of Figure 3.3. For 
this and the other presented Raman spectra an excitation wavelength of 
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532 nm and an incident laser power of 0.5 mW was used. The spectrum was 
collected using a spectrometer (iHR550, Horiba Scientific) with 1800 lines 
per millimeter grating. In multilayer graphene, the 2D peak splits into 
several overlapping modes resulting in a distinct shape that varies for 
different numbers of layers. In bilayer graphene, the four components of the 
2D peak result in a broadening of the peak and cause the peak to shift to 
higher wave numbers. Furthermore, the 2D peak of bilayer graphene exhibits 
a unique shoulder on the left-hand side of the primary peak that vanishes 
for higher layer numbers as shown in the middle and right panel of Figure 
3.3, respectively. In the middle panel, showing the Raman spectrum of a 
bilayer graphene flake, the shoulder on the left-hand side of the primary 
peak is highlighted. [150–152]  

 

Atomic force microscopy: 
 

Atomic force microscopy (AFM) is used to determine the homogeneity of all 
flakes and the height of graphite and hBN flakes with sub-nanometer 
resolution. When the AFM is operated in the so-called tapping mode, an 
oscillating tip is brought close to the surface of a sample and performs a 
lateral line scan. Due to interactions with the surface, topographic changes 
in the sample lead to a change in the oscillation amplitude of the tip. A 
feedback loop then adjusts the height of the tip to keep the oscillation 
amplitude of the tip constant whereby a topographic map of the sample is 
obtained. [153] 
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Figure 3.4. Atomic force microscopy images of preselected flakes.  Atomic 
force Microscopy (AFM) images of the bilayer graphene flake (a), hBN flake 
serving as a bottom gate dielectric (b), graphite flake serving as a bottom 
gate (c) and graphite flake serving as a contact (d) shown in Figure 3.2. The 
scalebar is 10 μm in each image. The bilayer graphene flake shown in (a) 
broke while taking the AFM image (this can be seen in the bottom of the 
image). Since it was still large enough, the remaining part of the flake was 
still functional for building a bilayer graphene heterostructure. The hBN flake 
shown in (b) exhibits two wrinkles (vertical lines) that were not seen in the 
optical microscope image. While designing the bilayer graphene 
heterostructure Stack 70 (see Section 3.5), care was taken that the bilayer 
graphene flake was not placed directly on top of these wrinkles.  

 

AFM is not only used to determine the height and homogeneity of exfoliated 
flakes on silicon/ silicon dioxide substrates (see for example Figure 3.4) but 
also to further characterize bilayer graphene heterostructures after 
fabrication. It is worth noting that AFM is not suitable to determine the 
layer number of graphene of few-layer hBN flakes as there is often water or 
air trapped between the flakes and wafer that increases the measured height 
of the flakes [154]. 
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3.3 Transferring flakes and building van der 
Waals heterostructures 

 

 
 

Figure 3.5. Stamping setup. Pictures of one of the stamping setups that is 
located in a glovebox. The stamping stage, the sample stage, the heater and 
the optical microscope are labeled. A zoom-in in the right panel shows a 
stamp that is located on the stamping stamp, this picture was taken by 
Christian Eckel.  

 

A stamping technique [155–158] is employed to successively pick up the 
selected flakes using one out of two home-made “stamping setups”. These 
setups contain an optical microscope (FS70Z, Mitutoyo) with attached 
camera and objectives that provide long working distances of more than 20 
mm (M Plan Apo 5x, 10x, 20x and 50x), a heater that is attached to a 
sample stage, and a stamping stage. Both, the sample and the stamping 
stage exhibit vacuum chucks that allow holding the stamp and the wafer, 
respectively. Micromanipulators and actuators are used to move the sample 
stage in x- and y- direction and the stamping stage in x-, y- and z-direction. 
The sample stage can further be rotated while the stamping stage can be 
tilted. The setups are placed on optical tables whereby vibrations are 
minimized. One setup operates in ambient conditions while the other one is 
located in an argon-filled glove box. The two setups are built in a similar 
way but the one located in the glovebox is controlled by motorized 
micromanipulators while the other one is controlled by manual ones to move 
the sample and the stamp in x- and y-direction. Pictures of the stamping 
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setup in the glovebox are shown in Figure 3.5. This setup was designed and 
assembled by myself during the course of this thesis. As hBN, graphene and 
graphite are all stable in air, both setups are used to fabricate the bilayer 
graphene heterostructures. No setup-dependent differences in the quality of 
the heterostructures is noticed. 

The heterostructures are usually designed in advance by superimposing 
optical microscopy images. Care is taken that the bilayer graphene is fully 
covered by the hBN flakes and by the bottom graphite gate (constrains on 
the top gate are discussed below). In addition, the bottom graphite gate is 
designed to stick out on one side of the heterostructure to make sure that it 
can be easily contacted (see Section 3.4.). In case graphite contacts are used, 
they are chosen to stick out of the top hBN flake for the same reason. 
Furthermore, attention is given that the gates and the graphite contacts are 
separated by hBN flakes to prevent a gate leakage, and that the two graphite 
gates are always separated by both hBN flakes to decreases the chance of a 
dielectric breakthrough when large electric displacement fields are applied. 
In addition, straight edges of flakes lying on top of each other are 
intentionally misaligned to not create a moiré pattern that would change 
the electric properties of the bilayer graphene [71].  

In the beginning of each stamping process, a stamp consisting of a block of 
polydimethylsiloxane (PDMS) used as a cushion layer, and a thin film of 
polycarbonate (PC) used as a transfer medium, is prepared.  

The PDMS is prepared previously using commercially available kit (Sylgard 
184, Dowsil) with a mass ratio of 1:10.5 between base and curing agent. 
After these two components are mixed, the emerging gel is cast into a petri 
dish at a height of 3 mm and is dried in vacuum for at least 72 h to remove 
bubbles. To prepare the PC film, PC (Poly(Bisphenol A carbonate), Sigma-
Aldrich) is first dissolved in chloroform with a mass ratio of 1:12.5 and is 
stirred at room temperature for at least 24 h. Afterwards, a few drops of the 
PC solution are drop casted onto a film casting blade (ZUA 2000, Zehntner) 
with a set height of 1675 𝜇m which is then moved across a glass slide with 
a speed of 6 mm/s leaving a thin and homogeneous film of PC on the glass 
slide. The film of PC on the glass slide is then dried in air for at least 1 h 
but for no more than one day.  
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The stamp is made by cutting out a window of 8 mm x 8 mm into a piece 
of double-sided adhesive tape which is glued onto a cleaned glass slide. 
Afterwards, a 5 mm x 5 mm large block of PDMS is cut and placed into the 
center of the window on the glass slide. A second piece of tape with a cut-
out window of 8 mm x 8 mm is prepared and is used to pick up the previously 
prepared PC film. The PC film below the window is then placed on top of 
the PDMS block where it is hold by the surrounding tape. A picture of a 
stamp lying on the stamping stage of the stamping setup is shown in the 
right panel of Figure 3.5.  

 

 
 

Figure 3.6 Stamping process. Schematic illustration of the stamping 
process. The third step only applies when graphite contacts are used. 
These contacts can either be picked up together from the same wafer 
as shown here or from different wafers. Adapted from Reference [157]. 

 

A schematic overview of the stamping technique that also includes a 
schematic illustration of a stamp is shown in Figure 3.6. A detailed step-by-
step description is given at the end of this section and is based on optical 
images taken during the process of assembling Stack 70 that exhibits no 
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graphite contacts and Stack 99 that exhibits two-terminal graphite contacts 
(see Figure 3.7 and Figure 3.8).  

The flake on top of the 2D heterostructure are picked up first and the bottom 
flake last. As flakes lying below a graphite flake are only weakly visible, the 
upper hBN flake is usually picked up first (Step 1 and 2 in Figure 3.6), 
followed by the successive pick up of the two graphite contacts (if needed, 
Step 3 in Figure 3.6), a bilayer graphene flake (Step 4 in Figure 3.6), the 
lower hBN flake (Step 5 in Figure 3.6) and the lower graphite gate (Step 6 
in Figure 3.6). The two graphite contacts are either picked up from different 
wafers in two steps or, if two parallel graphite flakes separated by 
approximately 5 μm - 10 μm are found on the same wafer, in one step. The 
top graphite gate is stamped on top of this heterostructure in a second 
stamping step using another stamp (Step 9-11 in Figure 3.6).  

Before each transfer step, the wafer with the selected flake, e.g., the top 
hBN flake, is placed on the sample stage, heated to 40 °C, and the prepared 
stamp is placed on the stamping stage and tilted by approximately 1°. The 
stamp is then moved down until it touches the surface of the wafer. By 
moving the stamp further down, the contact area between stamp and wafer 
expands. When the contact line is approximately 50 μm away from the 
desired flake, the temperature of the hotplate is further increased to 60 °C 
within 2 min. Thereby, the stickiness of the PC increases, and the contact 
area expands further due to thermal expansion. When the hotplate reached 
60 °C, the stamp is usually in touch with the desired flake. After waiting for 
one to two more minutes, the stamp is slightly moved upwards until the 
contact area between stamp and wafer starts to decrease. Then, the 
temperature of the hotplate is decreased back to 40 °C. The desired flake 
(and other flakes nearby) then stays on the stamp and detaches from the 
wafer. The optical transparency of the glass slide, the PDMS and the PC 
allows to monitor the entire process via the optical microscope and to locate 
the flake on the stamp. In a next step, the wafer is removed and a new wafer, 
e.g., a wafer with a desired graphite contact, is placed on the sample stage. 
The entire procedure is repeated whereas the new flake is picked up using 
the previously picked up flake. The flakes are aligned according the design 
made previously. If a flake does not stick to the stamp or to the previously 
picked up flakes, the process is repeated with higher temperatures of up 100 
°C. While elevating the temperature increases the chance of picking up a 
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flake, it also increases the chance for the stamp to break. For example, a 
common problem is that the PC film comes off from the block of PDMS.  

Once all flakes are picked up, the PC film and the stack, can be melted onto 
an empty, precleaned wafer. To increase the stickiness of the wafer, the 
wafer is additionally exposed to an oxygen plasma which makes its surface 
more hydrophilic. For the melting process, the cleaned wafer is first placed 
on the sample stage which is heated to 160 °C. Then, the stamp is brought 
close to the wafer and is slowly moved further down until it first touches 
the surface of the wafer. By setting the temperature of the heater to 180 °C, 
the contact area slowly increases until the entire stamp is in contact with 
the wafer. Thereby, interlayer contaminants, that usually get trapped 
between layers, became mobile and are squeezed out [155, 157]. As the 
temperature of the wafer is above 150 °C, the glass transition temperature 
of PC [155, 159], the PC melts onto the surface on the wafer and is released 
from the stamp. After waiting for approximately 10 min, the stamp was then 
retracted and the wafer can be removed from the sample stage. By letting 
the wafer sit in chloroform for at least one hour, the PC dissolves and only 
the heterostructure as well as other picked-up flakes nearby are left on the 
wafer. 

An additional annealing step is performed at 200 °C in vacuum for eight 
hours to increase the adhesion of the heterostructure to the wafer and to 
remove PC residues on the sample surface. At the end, optical microscopy 
and AFM images are taken of each heterostructure to ensure that all flakes 
are located at their desired location and that the stack is clean and mostly 
free of interlayer contaminants.  

In the following, the process of assembling Stack 70 and Stack 99 (Section 
3.5) is shown on the basis of optical microscopy images taken during the 
transfer process: 
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Figure 3.7 Step-by-step assembling of Stack 70. Sequential optical 
microscopy images taken during the process of assembling Stack 70 
that does not have graphite contacts. The scalebar is 80 μm in (a) - 
(g) and 8 μm in (h). (a) The stamp is approaching an hBN flake that 
is outlined in orange and is located on a wafer. It is in contact with 
the wafer in the upper right part of the image (yellow background) but 
not yet in contact with the rest of the wafer (purple background). 
Interference fringes appear in between these two regions. (b) The upper 
hBN shown in (a) as well as parts of the bilayer graphene flake have 
been picked up (outlined in green). The bilayer graphene flake was 
ripped in two part while taking an AFM image (see Figure 3.4) and 
only the outlined part of the bilayer graphene flake was picked up. The 
hBN and the bilayer graphene flake are both located on the stamp. (c) 
The stamp is approaching a wafer with another hBN flake on top 
(bottom hBN flake, outlined in red). (d) The bottom hBN flake was 
picked up and the stamp with the upper hBN flake, the bilayer 
graphene flake and the lower hBN flake on top is approaching a wafer 
with a graphite flake (outlined in purple). (e) The graphite flake was 
picked up and is now placed on the stamp, too. The stamp is 
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approaching a clean wafer that exhibits gold markers (used for later 
contacting the stack via electron-beam lithography) and is heated to 
180 °C. (f) The stack as well as the PC film of the stamp are melted 
onto the wafer. (g) Another graphite flake that was picked up using a 
fresh stamp that is then melted on top of the previously cleaned stack. 
(h) Optical microscope image of the completed heterostructure. All 
flakes are outlined. As the bilayer graphene was in touch with the 
graphite bottom gate after the stamping process which would produce 
a gate leakage, the touching parts were edged away in later step. The 
finished device is shown in Figure 3.10.  
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Figure 3.8 Step-by-step assembling of Stack 99. Sequential optical 
microscopy images taken during the process of assembling Stack 99 
that has graphite contacts. The scalebar is 100 μm in (a) and 10 μm 
in (b) - (k). (a) The stamp is approaching an hBN flake that is outlined 
in orange and is located on a wafer. It is in contact with the wafer in 
the lower left part of the image (yellow background) but not yet in 
contact with the rest of the wafer (grey background). Interference 
fringes appear in between these two regions. Half of the hBN flake is 
in contact with the stamp, the other half of the hBN flake is not yet 
in contact. (b) The hBN flake on the stamp is approaching one of the 
graphite contacts (outlined in pink). (c) The upper hBN flake and one 
graphite contact are located on the stamp, the other graphite contact 
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is located on a wafer. The stamp is approaching the wafer. (d) The 
upper hBN flake and both graphite contacts have been picked up and 
are located on the stamp. The stamp is in contact with a new wafer 
that has a bilayer graphene flake on top (outlined in green). (e) The 
bilayer graphene flake was picked up and is now located on the stamp 
(below the upper hBN flake and the two graphite contacts). The stamp 
is approaching the lower hBN flake that is outlined in red. (f) The 
lower hBN flake was picked up, too and the stamp is now in contact 
with the graphite bottom gate (outlined in purple). (g) After picking 
up the graphite bottom gate, the stack is melted onto an empty wafer 
that exhibits markers and is heated to 180 °C. The stack as well as the 
PC film are melted onto the wafer. (h) To make it easier to pick up 
the graphite top gate, a top hBN (outlined in turquoise) is picked up 
using a fresh stamp. (i) The top hBN is used to pick up the graphite 
top gate that is outlined in blue. (j) The top hBN flake and the 
graphite top gate are both stamped on top of the previously cleaned 
stack. (h) Optical microscope image of the finished stack after it had 
been further contacted with gold contacts (see next section). All flakes 
are outlined. 

 

 

3.4 Fabrication of electrical contacts 
 

Before measuring the electronic properties of the 2D heterostructures, 
electrical contacts have to be applied to the conducting layers. In the absence 
of graphite contacts in heterostructures, edge contacts are fabricated in a 
Hall bar configuration (Section 3.4.1). In a second step, contact lines and 
contact pads are applied to the edge or graphite contacts (Section 3.4.2) 
allowing to make electrical connections from the sample to a universal chip 
carrier (Section 3.4.3). 
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  Fabrication of edge contacts 

 
 

 
 

Figure 3.9 Schematic representation edge contact fabrication 
process. (a) Illustration of a bilayer graphene heterostructure 
consisting of a bottom graphite flake, a bottom hBN flake, a bilayer 
graphene flake, a top hBN flake and a top graphite flake. (b) 
Illustration of the etching process. (c) Illustration of a contacted 
bilayer graphene heterostructure. Only a one-dimensional edge of the 
bilayer graphene flake touches the gold contact. 

 

In the first devices that were fabricated during the course of this thesis, the 
bilayer graphene flakes were fully encapsulated in hBN and no graphite 
contacts were utilized. To electrically contact the bilayer graphene flakes in 
these samples, edge contacts are fabricated in which only the (almost) 1D 
edge of a bilayer graphene flake is contacted [156]. The process of fabricating 
edge contacts is schematically shown in Figure 3.9 and is described below.  

The contacts are designed to be in a Hall bar geometry (see Section 2.3) and 
are patterned using a standard electron-beam lithography process. For this, 
the sample is first spin-coated with the positive resist 
polymethylmethacrylate (PMMA) 950 k dissolved in anisole (AR-P 672.045, 
Allresist) in a 4.5 wt.% solution at 800 rpm for 1 s and subsequently at 4000 
rpm for 30 s. Afterwards, a soft bake is performed at 150 °C for at least 3 
min. Contact lines going to the sample are then exposed with an electron 
beam at 10 kV with a dose of 110 μCcm-2 and an aperture of 7.5 μm. In a 
second step, the sample is developed in a 1:3 solution of methylisobutylketon 
(MIBK) and isopropanol for 2 min and is then rinsed in isopropanol whereby 
the exposed PMMA resist is removed. Afterwards, inductive coupled plasma 
reactive ion etching (ICP-RIE) is used to etch into the heterostructure and 
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to expose the edges of the bilayer graphene flake whereby the PMMA resists 
serves as a mask for the rest of the sample (Figure 3.9b). The etch rate of 
hBN flakes is determined to be 7 nm min-1 when using a gas mixture of 
sulfur hexafluoride (SF6) and argon (Ar) with flow rates of 10 sccm and 
5 sccm, respectively, an ICP power of 70 W and an RF power of 50 W. 
After removing the upper hBN flake, an oxygen plasma with a flow rate of 
10 sccm, an ICP power of 40 W and an RF power of 150 W is generated to 
also etch through the bilayer graphene flake which takes approximately 20 s. 
Directly after the etching process, metals are deposited using electron-beam 
physical vapor deposition at 3 × 10-7 mbar. A 5 nm adhesion layer of 
chromium (Cr) at a rate of 0.2 Å/s and a 30 nm to 80 nm layer of gold (Au) 
at a rate of 1.0 Å/s are evaporated. The thickness of the gold is chosen to 
be always larger than the thickness of the thickest flake to ensure electrical 
contact when the contact lines cross this flake. In a last step, the sample is 
placed in acetone to lift-off the remaining resist. After rinsing it in 
isopropanol and blow-drying it with dry-air, only the contact lines are 
covered with gold (Figure 3.9c). 
 

  Fabrication of contact lines and contact pads 

In order to fabricate the contact pads and to extend contact lines, another 
step of e-beam lithography is performed. To speed up the patterning, an 
aperture of 60 μm and a dose of 170 μCcm-2 is used to expose pads and large 
contact lines (wider than 5 μm). After development, the samples are cleaned 
in an UV/Ozone cleaner (UV Ozone Cleaner, Ossila) for 30 s to improve the 
adhesion of the pads. The deposition rates of Cr and Au are the same as 
described in the previous section although only 1 nm of Cr and 40 nm of Au 
are used. 

After evaporation and lift-off, the devices are in principle completed. All 
lines and pads are tested for connection at a point probe station by bringing 
two conductive needles that are connected with a source-measure unit 
(Keithley 2450, Tektronix), in contact with two pads.  
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  Wire bonding 

To be able to measure the samples in cryogenic setups, they are glued onto 
universal chip carriers using conductive silver paint. The contact pads are 
then connected to pins on the sample holder with gold wires using a wedge 
bonder (MEI 1204W, Marpet Enterprises or K&S 4500 Series, Kulicke & 
Soffa Ltd.). The samples are grounded during the entire procedure to 
prevent electrostatic discharging. 
 
 

3.5 Summary of all devices 
 

In this section, an overview of the four devices used for measurements 
discussed in Chapters 4 - 8 is given. Their labels match the labels given in 
my laboratory notebook. Pictures of all devices are shown in Figure 3.10.  

 

 
 

Figure 3.10 Overview of all devices. Pictures of the devices measured 
during the course of this thesis. Stack 70 (a), Stack 82 (b), Stack 99 
(c) and StackMartinAnna (d). All flakes are outlined. The grey shaded 
regions in (a) mark the region that were edged to prevent electrical 
shorts between the bilayer graphene flake and the gates. The black 
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shaded regions in (c) mark gold lines that were designed to hold the 
stack in place to make sure that it is not washed away while removing 
the PMMA layer after evaporation. All scalebars are 10 µm. 

 
 
 Stack 70 

Stack 70 was already introduced in Sections 3.2 and 3.3 and is shown 
in Figure 3.10a. It was assembled without graphite contacts and has 
edge contacts made out of gold. As Stack 70 is very large (the 
encapsulated part of the bilayer graphene flake has lateral dimensions 
of about 30 µm x 8 µm), three separate devices were fabricated out 
of it that each have six contacts patterned in a Hall bar geometry. 
The top device has a local graphite top gate, i.e., the graphite top 
gate does not cover the entire bilayer graphene flake but only parts 
which made it easier to fabricate edge contact. The middle and 
bottom devices have gold top gates that were patterned using 
electron beam lithography (the fabrication process was the same as 
for the edge contacts but without etching into the hBN). After 
stamping Stack 70, the bilayer graphene flake was partially in touch 
with the graphite bottom gate. These regions where etched away 
using ICP-RIE. The lower hBN flake of Stack 70 has a thickness of 
69.3 nm and the upper hBN flakes a thickness of 29.6 nm (verified 
by AFM). The top device of Stack 70 was used to measure the results 
discussed in Chapter 7. 

 

 Stack 82 

Stack 82 has two-terminal graphite contacts and was fabricated the same 
way as Stack 99 that was already introduced in Section 3.3. It is shown 
in Figure 3.10b. The lower hBN flake of Stack 82 has a thickness of 
32 nm and the upper hBN flakes a thickness of 13 nm (verified by AFM). 
Stack 82 was used to measure the results discussed in Chapter 6. 
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 Stack 99 

Stack 99 has two-terminal graphite contacts. The process of assembling 
Stack 99 is shown in detail in Figure 3.8, the completed device is shown 
in Figure 3.10c. The lower hBN flake of Stack 99 has a thickness of 
42 nm and the upper hBN flakes a thickness of 34 nm (verified by AFM). 
Stack 99 was used to measure the results discussed in Chapter 5, 6 and 
7. 

 

 StackMartinAnna 

StackMartinAnna was fabricated in collaboration with Dr. Martin Statz. 
The measurements conducted with this device are discussed in Appendix 
A. The data shown within this thesis were taken by both of us. 
StackMartinAnna has four graphite contacts instead of two that go 
across the bilayer graphene flake as shown in Figure 3.10d. Since 
stamping a device with four graphite contacts is more complex and 
requires additional stamping steps compared to stamping a device with 
two graphite contacts, the bottom part, consisting of the lower hBN flake 
and the bottom graphite flake, was stamped first and was then melted 
onto a clean wafer. Using a new stamp, the upper hBN flake, four 
graphite flakes serving as contacts and the bilayer graphene flake were 
then successively picked up. Two of the graphite flakes serving as 
contacts were located next to each other on the same wafer so that the 
graphite contacts could be picked up within three steps. The stamp was 
then melted onto the previously cleaned bottom part. The graphite top 
gate was stamped in a last step. The thicknesses of the hBN flakes were 
determined as 58 nm (bottom hBN flake) and 15 nm (top hBN flake) via 
AFM. Despite having four terminals, StackMartinAnna still exhibits a 
finite contact resistance. Likely, this contact resistance stems from the 
fact that different graphite flakes that exhibit different conductivities 
were used as contacts. More investigation is needed to further elucidate 
this aspect. 
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4  Introduction to electrical 
transport measurements 

 
 
 

All measurements discussed within the results part of this thesis were 
conducted in a cryogen-free dilution refrigerator at a base temperature of 
below 7 mK (Dilution Refrigerator BF-LD250, Bluefors). In the first two 
sections of this chapter, the working principle of this dilution refrigerator as 
well as the corresponding electrical setup is described. In the following 
sections, an introduction into the sample calibration is given. Moreover, 
standard transport measurements in bilayer graphene are introduced. Lastly, 
samples with and without graphite contacts are compared. 
 
 
 

4.1 Dilution refrigerator 
 

Cryogen-free dilution refrigerators allow to continuously cool down samples 
to millikelvin temperatures and do not require an external supply of liquid 
nitrogen and helium. A pulse tube is used to frequently compress and expand 
helium gas within a closed volume whereby heat is removed from one end of 
the tube and generated on the other end. By heat exchangers, the heat of 
compression is removed while the cold end is thermally coupled to the 
cryostat and cools down the system to approximately 3 K, the boiling 
temperature of low-pressure helium gas. [160, 161] To achieve temperatures 
below 3 K, a 3He/4He dilution unit is used, whereby 3He and 4He correspond 
to the two isotopes of helium. When the mixture of 3He and 4He is let into 
the cycle, it is first condensed into the system and precooled to 3 K using 
heat exchangers to the compressor line. By pumping the mixture of 3He and 
4He away from the still and letting it back in through the compressor line 
the temperature is decreased further to below 800 mK due to evaporative 
cooling. At this temperature, a phase separation occurs in the mixing 
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chamber and the mixture separates into a 3He concentrated phase with a 
3He concentration of almost 100 % and a diluted phase with a 3He 
concentration of about 6.4 %. By pumping on the diluted phase, 3He atoms 
evaporate due to their lower vapor pressure and 3He from the concentrated 
phase move into the dilute phase. This process dissipates energy and results 
in cooling of the system down to millikelvin temperatures. [162, 163]  

To conduct temperature dependent measurements, a heater is implemented 
at the mixing chamber. Since the mixture evaporates at temperatures above 
1 K, measuring at temperatures between 1 K and 3 K is possible only within 
a very short time frame. Measurements above 3 K can be conducted when 
the mixture is collected from the dilution unit and heat switches are 
activated to thermally link the still and the mixing chamber to the pulse 
tube line. [163] 

The system is further equipped with a superconducting magnet that can 
generate magnetic fields of up to 14 T. By changing the orientation of the 
sample, the magnetic field can be applied perpendicular or in-plane with the 
sample. 

Even though the base temperature of our cryostat, which is measured at the 
mixing chamber, is below 7 mK, the actual sample temperature is likely 
larger than this as the sample is connected to the ambient environment by 
its electric wiring. To reduce the heat transfer coming from the wires and to 
cool down the sample thereby effectively, the wires are thermally linked to 
gold plated copper bobbins at every temperature stage. In addition, the wires 
are twisted in pairs and filtering circuits were added just before the wires 
enter the cryostat and at the mixing chamber to reduce noise. 

From the cryostat and the room-temperature filter box, the wires are 
directed to a breakout box where they are connected to measurement units.  
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4.2 Electrical measurement configuration  
 
 

 
 

Figure 4.1 Electrical measurement configuration of a four-terminal 
device with top and bottom gates.  The details are discussed in the main 
text.  

 
During the course of this thesis, all electrical measurements were 
conducted in a (quasi-)four-point configuration using a standard lock-in 
technique. In case the sample is connected with two graphite contacts, a 
quasi-four-point measurement configuration is used to avoid in-series 
resistances stemming from the filters. In this configuration, the two 
bonding pins that are connected with the graphite contacts, are each 
interconnected with a second bonding pin on the sample holder. The 
electrical measurement setup is shown in  



4 Introduction to electrical transport measurements 
 

78 

Figure 4.1. An AC reference signal 𝑉  with a frequency of 78 Hz is 
generated from a lock-in amplifier (Lock-in amplifier 1; SR865, Stanford 
Research Systems) and is transformed into a small AC current-signal of 
1 nA using a high resistance RAC. This exact frequency is chosen randomly 
but it is ensured that any 50 Hz noise coming from the power lines is 
suppressed and that the noise spectrum is minimized. The current signal 
is then sent through the device. To measure the actual current flow 𝐼 , 
a current amplifier (Model 1211, DL Instruments) is connected to the 
source contact. The amplified current is measured using a second lock-in 
amplifier (Lock-in amplifier 2; SR865, Stanford Research Systems). The 
voltage drops between the probe contacts 𝑉  (referring to the voltage 
drop in direction of the applied current), 𝑉  (referring to the voltage drop 
perpendicular to the direction of the applied current) and VSD (referring 
to the voltage drop between the source and the drain contact) are 
measured using the Lock-in amplifiers 1, 3 and 4 (Lock-in amplifier 4 is 
used to measured 𝑉  and is not shown in  

Figure 4.1) that are all linked to Lock-in amplifier 1 via 𝑉  (this link is 
shown in  

Figure 4.1). For some measurements, an additional DC bias signal is 
generated using a DC source-measure unit (SourceMeter 2450, Keithley) 
and a resistance RDC, and is modulated onto the AC reference signal using 
a transformer. After the overall current signal is amplified, the DC 
component is measured using a multimeter (Multimeter 34461A, 
Keysight). 

The resistances in the sample can then be calculated as  

 𝑅 = 𝑉
𝐼

 ,   𝑅 = 𝑉
𝐼

 ,   𝑅 = 𝑉
𝐼

− 𝑅     (44) 

whereas 𝑅  is the contact resistance that includes the resistance coming 
from the graphite and gold contacts. When measuring 𝑅  or 𝑅  in four-
terminal devices, the contact resistance is eliminated from the measurement 
and no contact resistance has to be subtracted.  
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Two source-measure units (SourceMeter 2450, Keithley) are used to apply 
the top and bottom gate voltages and to simultaneously measure the gate 
leakage currents 𝐼  and 𝐼 . 

To avoid grounding loops, all measurement units, except for the current 
amplifier, are decoupled from the standard power lines using an isolating 
transformer. Only one electrical ground is used. 

 

 

4.3 Device calibration 
 
Before starting with the actual measurements, a set of calibration 
measurements is conducted in order to convert the top and bottom gate 
voltages into the charge carrier density n and the electric displacement field 
D. While this section shows in detail how these calibration measurements 
are conducted and reads rather technical, an introduction to 
magnetotransport measurements in bilayer graphene is given in Section 4.4. 
 
 

 
 

Figure 4.2 Device calibration.  (a) Measured resistance (𝑅 +𝑅  (see 
Equation (44)) as a function of the bottom and top gate voltage without 
applied magnetic field. (b) Measured conductance as a function of the 
preliminary charge carrier density n’ and the actual charge carrier density n 
at an out-of-plane magnetic field B = 2 T and electric displacement field D 
= 0.08 Vnm-1. Quantum Hall states are highlighted in orange and are labeled 
by numerals. These data set were conducted at a temperature of 10 mK using 
Stack 99 that exhibits two-terminal graphite contacts.  
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After a sample is loaded into the cryostat and all connections are checked, 
a sweep of the top and bottom gate voltages at zero magnetic field is usually 
performed first. A bottom gate voltage range of approximately (-0.03 to 
+0.03) nVm/db and a top gate voltage range of approximately (-0.03 to 
+0.03) nVm/dt is mostly sufficient to align the sample. db, the thickness of 
the bottom hBN flake, and dt, the thickness of the top hBN flake, were 
determined previously via AFM. While sweeping the gate voltages, 𝑉  and 
𝐼  are measured allowing to calculate 𝑅 +𝑅  (see Equation (44)). In 
case a device with four-terminal contacts is measured, 𝑉  and 𝑉  are 
measured as well.  

In the following, the device calibration is exemplary discussed for Stack 99, 
a device with two-terminal graphite contacts. This data set is shown in 
Figure 4.2a. By sweeping the top and the bottom gate voltages, the charge 
carrier density n and the electric displacement field D are both varied at the 
same time. The corresponding axes of n and D are indicated by arrows. The 
opening of a band gap at finite D is apparent from the increasing resistance 
with increasing D at n = 0 and will be discussed in more detail in the next 
section. 

The ratio between the height of the top and bottom hBN flake 𝛼 can be 
determined by taking the slope of the n = 0 line in the Vb vs Vt plot (Figure 
4.2a).  

In Stack 99, 𝛼 was determined as 

 𝛼 = ∆𝑉
∆𝑉

= 1.175 𝑉 − (−1.065 𝑉 )
1 𝑉 − (−1 𝑉 )

= 1.12 . (45) 

It is worth mentioning that 𝛼 cannot be determined precisely by dividing db 
by dt since the heights measured via AFM are usually not precise enough. 
In fact, there is often water or residuals underneath the flakes that falsify 
the height measurements. For example, the quotient of the measured heights 
of the two flakes in Stack 99 would give 𝛼 = 1.23. 

Using the SuperFunAnalyzer, a measurement software that was written by 
Felix Winterer and was further advanced by Jonas Pöhls, Christian Eckel 
and Philipp Kaiser, the subsequent data sets are acquired as a function of n 
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and D. Applying Equations (41), (43) and (45), the top and bottom gate 
voltages can be set in the software as 

 𝑉 = 𝑑
2𝜀

 𝑒
𝜀

𝑛 − 2𝐷 + 𝑉  (46) 

and   

 𝑉 = 𝑑
2𝛼𝜀

 𝑒
𝜀

𝑛 + 2𝐷 + 𝑉  . (47) 

Offsets in the applied gate voltages, 𝑉  and 𝑉 , are introduced to correct 
for charge traps screening the gate field.  

Even though 𝑉 , 𝑉  and 𝜀 , the reduced dielectric constant of hBN, are 
still unknown at this point, a 𝑛′ vs 𝐷′ sweep (𝑛′ and 𝐷′ are the preliminary 
values for n and D) is performed at a magnetic field of 2 T. Therefore, 𝑉  
and 𝑉  are both set to zero and 𝜀 , that can in principle vary from 3 to 
4 [73], is set to 3.5. At B = 2 T, Landau level are usually well resolved and 
all integer quantum Hall states can be observed. 

By comparing 𝑛′ with the expected density at certain filling factors (n = 
𝜈 eB/h, Figure 4.2b), the exact value for 𝜀  is determined. This is 
illustrated in Figure 4.2b, where the measured conductance  

 𝐺 = 1
𝑅

= 𝐼
𝑉

 (48) 

is shown as a function of 𝑛′(𝑛) and D at B = 2 T before (after) the sample 
has been aligned. Furthermore, it is checked whether the observed Landau 
level crossings agree with those theoretically predicted and observed 
previously (see Section 2.4.1). As many quantum Hall states, e.g., quantum 
Hall states with 𝜈 = ±2, ±5 and ±7 exhibit crossings at 𝐷 = 0, it is possible 
to extract the 𝐷 = 0 line and 𝑉  and 𝑉  can be determined by extracting 
the top and bottom gate voltages at 𝑛 = 𝐷 = 0 (see Extended Data Fig. 3c 
of Ref. [1] that is reprinted in Chapter 6 for the corresponding data). 

In a last step, 𝑅  is estimated in case two-terminal graphite contacts are 
used. In general, it is possible to estimate 𝑅  by comparing the measured 
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resistance with the expected Hall resistance Rxy since Rxx ≈ 0 when Rxy is 
quantized [33, 105, 156, 164]. However, when using graphite contacts this is 
more challenging since the contact resistance changes as a function of the 
applied top gate voltage (and therefore also as a function of n and D, see 
Section 4.4.1), the magnetic field, the applied current and temperature. How 
the contact resistance can still be approximated for constant values of I and 
T and in a small range of n and D is shown in detail in the Methods of 
Reference [1] that are reprinted in Chapter 6. In the following, the measured 
conductance G of two-terminal devices is shown in arbitrary units (a.u.) and 
𝑅  is not subtracted. 

 
 

4.4 Magnetotransport in bilayer graphene 
 

In the following, some of the standard magnetotransport measurements 
conducted in bilayer graphene samples are discussed. Reproducing these 
results allows to determine the quality of the samples and ensures that they 
do not show unwanted features coming from graphite contacts or gates or 
from a alignment of different flakes. 

 

  Tuning the Fermi energy level and bandgap opening in 
bilayer graphene  

In pristine bilayer graphene, the Fermi energy level lies directly at the 
touching point of the valence and conduction band. Here, the charge carrier 
density n is zero. By applying a top and/or bottom gate voltage, n can be 
tuned whereby the Fermi energy level is moved. At a negative n, 
corresponding to hole doping, it is shifted into the valence band. 
Analogously, it is shifted into the conduction band when a positive n is 
applied. The latter corresponds to electron doping, respectively.     
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Figure 4.3 Tuning the charge carrier density and the electric 
displacement field. (a) Measured conductance as a function of charge carrier 
density n at D = 0 Vnm-1 and D = 0.04 Vnm-1. The dip in the conductance 
corresponds to the charge neutrality point. At this point, the conductance 
decreases with increasing electric displacement field D. The insets 
schematically show the band structure at the corresponding value of n and 
D. The Fermi energy level sits at the interface of the filled/ non-filled bands. 
(b) Measured conductance as a function of n and D. The region of low 
conductance (green line) corresponds to a region that only depends on the 
bottom but not on the top gate voltage (see Section 4.5). These data set were 
conducted at a temperature of 10 mK using Stack 99 that exhibits two-
terminal graphite contacts. 

 

Changing n and thereby the Fermi energy level has direct consequences on 
the resistance R measured along the bilayer graphene sheet. At charge 
neutrality (n = 0), the number of available states is low and charge transport 
is hindered. Thus, 𝑅 is large and the conductance G is minimal. At finite n, 
the Fermi energy level is moved into one of the bands and the bilayer 
graphene sample becomes more conducting. Therefore, G increases (Figure 
4.3a) [140]. 

Apart from n, also the electric displacement field D can be varied. When D 
is increased, a band gap opens up and charge transport is hindered when the 
Fermi energy level lies within the gap. Thus, the conductance at charge 
neutrality is decreasing with increasing D [28, 94, 165]. At D ≈ 0.04 Vnm-1, 
the minimal measured conductance is about 0.003 e2/h corresponding to a 
resistance of approximately 8.6 MΩ which is the highest resistance value 
that can be measured in our setup. 
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A common representation of these results is to use three-dimensional color 
plots, as shown in Figure 4.3b, where the conductance is shown as a function 
of both, n and D  [28, 33, 92]. The opening of the bandgap is apparent from 
the decreased conductance at the charge neutrality point and the broadening 
of this region in n with increasing D. The line of decreased conductance 
(green line across D = 0) and also the electron-hole asymmetry that can be 
seen in Figure 4.3a comes from the contact resistance of graphite contacts 
and is discussed in more detail in Section 4.5. 

 

  Observation of an integer quantum Hall effect in 
bilayer graphene 

 

Figure 4.4 Landau Fan diagrams. Conductance (a) and derivative of the 
conductance (dG/dn) (b) plotted as function of n and B at D = 0 measured 
in a two-terminal device with graphite contacts. Quantum Hall states exhibit 
a constant conductance over a finite regime in n and a vanishing derivative 
of the conductance. The conductance values are not consistent with the 
expected  conductance since the sample exhibits a finite contact resistance. 
The slopes of the lowest quantum Hall states are traced by lines in the mirror 
image. Quantum Hall states with odd 𝝂 are traced by dotted lines, quantum 
Hall states with even ν are traced by solid lines. The corresponding quantum 
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Hall states are labeled by numerals. These data set were conducted at a 
temperature of 10 mK using Stack 99 that exhibits two-terminal graphite 
contacts. 

 
In Chapter 2, it is shown that quantum Hall states in bilayer graphene are 
four-fold degenerate due to spin and valley degeneracies and eight-fold 
degenerate in the lowest Landau level due to spin, valley and orbital 
degeneracies at large B above the magnetic breakdown (Section 2.3.2). In 
very clean samples, at low temperatures and large B, these degeneracies can 
be lifted due to exchange interaction (Section 2.4.1). As the exchange energy 
increases with magnetic field, probing the quantum Hall states as a function 
of B allows to observe a continuous splitting of quantum Hall states [28, 29]. 
An example is shown in Figure 4.4 where the conductance (a) as well as the 
derivative of the conductance (b) is plotted as a function of n and B. This 
graphical representation of quantum Hall states is known as a Landau fan 
diagram as the quantum Hall states move to larger densities with increasing 
B forming a pattern that resembles a fan.  

Notably, quantum Hall states measured in the presented device (Stack 99) 
can be traced down to remarkably low magnetic fields of approximately 
𝐵 = 50 mT which is about one order of magnitude lower than in other 
devices shown in literature [28, 29]. At this magnetic field, the cyclotron 
orbits electrons travel are largest in real space. 𝐵  can thus be used to 
calculated the minimal mean free path of electrons (𝑙 ) that describes the 
minimal average distance that an electron travels before it is scattered or 
adsorbed by other particles or obstacles in its path. Following References 
[24, 156], 𝑙  can be calculated as  

 𝑙 = 2𝜋𝑘 𝑙  (49) 

with Fermi wavevector  

 𝑘 = 𝜋|𝑛| (50) 

and magnetic length 

 𝑙 ≥ ℏ/(𝑒𝐵 ). (51) 
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In Stack 99, 𝑙  was found to be ≥1𝜇𝑚 using 𝑛 = 4 × 10  𝑐𝑚−  and 
𝐵  = 50 mT. This value is about one magnitude smaller than the lateral 
device dimension (≈10 𝜇𝑚 , Figure 3.10c) and comparable with values 
reported in literature hinting towards a high sample quality [24, 156, 166]. 

While a zoom-in of the low-B regime of the fan diagram shown in Figure 4.4 
is discussed in more detail in Chapter 5, the regime in which B > 100 mT 
is discussed in this section. At 100 mT < B < 300 mT (here, the inverse 
magnetic length is larger than the distance between two adjacent mini Dirac 
cones), the lowest Landau level is eight-fold degenerate due to valley, spin 
and orbital degeneracies and only quantum Hall states with ν = ±4 are well 
resolved, i.e., these states exhibit a constant conductance and a vanishing 
derivative of the conductance. At B ≈ 300 mT, also quantum Hall states 
with 𝜈 = ±2 and 𝜈 = 0 appear due to spin, valley or orbital splitting while 
a full splitting of the lowest Landau level can be observed at B > 500 mT. 
This splitting of quantum Hall states in the lowest Landau level is consistent 
with literature [28, 29, 109, 111].  

 

 

Figure 4.5 Quantum Hall effect measured in a four-terminal device.  (a) 
Rxx plotted as a function of n and B at D = 0.1 Vnm-1, a linecut at B = 2 T 
is shown below. (b) Gxy plotted as a function of n and B at D = 0.1 Vnm-1. 
A linecut at B = 2 T is shown below. These data sets were conducted at a 
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temperature of 10 mK using the middle Hall bar of Stack 70 that exhibits 
four-terminal edge contacts and a gold top gate. 

When using four-terminal contacts in a Hall bar configuration, e.g. Stack 
70, Rxx and Rxy can both be measured. Such a measurement is shown in 
Figure 4.5. As derived in Chapter 2.3, Rxx is vanishes when the Fermi energy 
level lies in between two Landau levels and ν is an integer. It is finite when 
the Fermi energy level lies within a Landau level. When Rxx vanishes, Rxy 
(and therefore also the Hall conductance Gxy) is constant and Gxy matches 
exactly νe2h-1 since the contact resistance is eliminated from the four-
terminal measurement. The middle Hall bar of Stack 70 exhibits a gold top 
gate which is why this device is expected to be less clean compared to Stack 
99 [74]. Indeed, quantum Hall states only appear at larger magnetic fields of 
B > 500 mT in Stack 70 (corresponding to 𝑙 ≈ 320 𝑛𝑚) and quantum 
Hall states at B = 2 T and low n are not well resolved, i.e. Gxy is not fully 
quantized and Rxx ≠ 0. 

 

 

4.5 Comparison of samples with edge and 
graphite contacts 

 

In Section 3.5, different devices are introduced that have been fabricated 
during the course of this thesis. Most of these devices exhibit graphite 
contacts while Stack 70 exhibit commonly used edge contacts. In the 
following, the different contacts are compared and their effects on 
magnetotransport measurements are discussed.  

As using graphite contacts involves an extra transfer step for each contact 
it is technically demanding to use four-probe contacts here. Thus, a two-
terminal device configuration is mostly used when using graphite contacts. 
In such devices, Rxx and Rxy cannot be measured independently and 
consequently, some features such as a vanishing Rxx cannot be resolved. 
Another disadvantage of using graphite contacts is that their contact 
resistance depends on the applied current, temperature and the magnetic 
field as graphite exhibits a Hall effect. Furthermore, the location of the 
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graphite contacts leads to a region of decreased conductance that only 
depends on the applied bottom gate voltage but not on the applied top gate 
voltage (e.g. Figure 4.2). Since the bilayer graphene flakes are located below 
the graphite contacts, the contacts screen the field from the top gate. The 
latter does not happen when etched gold contacts are used where only the 
(almost) 1D edge of a bilayer graphene flake is contacted.  

Despite these disadvantages, graphite contacts also offer many advantages 
that are discussed below. Graphite contacts can be used to avoid the process 
of reactive ion etching (Chapter 3.4) that requires a precise calibration of 
etching rates since, on the one hand, the upper hBN flake has to be etched 
away to provide good electrical contact with the bilayer graphene flake and, 
on the other hand, the lower hBN should be etched away as little as possible 
to not significantly lower the electric breakdown voltages (see 
Chapter 2.1.4). When using graphite contacts, no etching is needed and 
larger electric displacement fields can be applied. Another advantage of 
using graphite contacts comes with the fact that they are completely 
embedded into the heterostructures. The bilayer graphene then remains 
intact and does not come in contact with polymers which lowers the sample 
quality. Furthermore, a global top gate can easily be applied when using 
graphite contacts since it can be simply placed on top of the upper hBN 
flake that is serving as a dielectric. For Stack 70, where etched contacts were 
used, only local top gates could be applied resulting in a device region that 
only depends on the bottom gate but not on the top gate voltage. Last, 
graphite contacts are already widely used in the TMDC and recently also in 
the graphene community as they offer good electrical contact [82–84]. 
Different groups have now started to fabricate devices with multi-terminal 
graphite contacts that sit on one side of the bilayer graphene sheet and that 
allow to also measure Rxx but not Rxy [35, 98]. However, fabricating such 
devices was beyond the scope of this thesis. 
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The results presented in this Chapter are currently prepared for publications. 
The current version of the manuscript is reprinted below. The 
supplementary material is reprinted in Appendix A. 
 
 
Contributions: 

I fabricated and measured the device which is discussed in the main text 
(Stack 99, introduced in Chapter 3.5). The device shown in the 
supplementary materials (StackMartinAnna, introduced in Chapter 3.5) was 
fabricated and measured together with Dr. Martin Statz. Furthermore, I 
performed the data analysis, prepared the first version of the manuscript, 
except from some theoretical sections in the supplemental material, and 
designed all figures. The band structure and Landau level calculations were 
performed by Nils Jacobsen. Lastly, I produced the current version of this 
manuscript. 
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Early band structure calculations of Bernal bilayer graphene (BLG) 
predict a complex low-energy band structure consisting of four mini Dirac 
cones with different chiralities in the vicinity of each valley. Even though 
BLG was subject to many experimental studies in the last two decades, 
experimental evidence of this exotic band structure is still elusive, likely 
due to constrictions in the energy resolution. Rather than probing the 
band structure using spectroscopy, we use Landau levels as a marker of 
the energy dispersion and carefully analyze the Landau level spectrum in 
a regime where the cyclotron orbits of electrons or holes in momentum 
space are small enough to resolve the distinct mini Dirac cones. We 
thereby cannot only identify the presence of four distinct Dirac cones but 
also complex electric displacement field induced topological transitions 
and bandgap openings. These findings make BLG the first massless Dirac 
material with truly linear energy dispersion that can be tuned 
electrostatically. 
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Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, 
exhibits intriguing electronic properties due to its linear dispersed bands 
forming Dirac cones at the K and K’ points. Yet, one of the key limitations 
of graphene is its zero-bandgap, which makes it e.g. not-well suited for 
digital electronic applications. Several attempts have been made to 
artificially open up a bandgap in monolayer graphene including chemical 
doping [167–169] and strain engineering [170–173]. However, while these 
methods allow to create a gap in the otherwise gapless dispersion, they also 
create disorder in the system. Opening a tunable band gap in pristine 
monolayer graphene by electrostatic gating, as it can been done in Bernal 
bilayer graphene (BLG) [28, 94, 165], remains challenging since one would 
require electric field control with atomic precision to induce a potential 
difference between the two sublattices. 

Bernal-stacked bilayer graphene (BLG) on the other hand allows 
electrostatic tunability of the high-energy parabolic dispersion – as shown 
by experimental spectroscopy and transport measurements [38, 93, 94] as 
well as theoretical calculations [26, 174]. Surprisingly, there is no consensus 
between experiment and theory regarding its low-energy bandstructure. For 
example, quantum Hall measurements identified an eightfold degeneracy of 
the lowest Landau level (LLL), facilitated by a two-fold spin, valley and 
orbital degeneracy, consistent with a low-energy parabolic dispersion [28, 34, 
104]. When including higher-order hopping terms one would however expect 
four Dirac cones at each valley, inconsistent with experimental findings of 
quantum oscillations. While such quantum Hall measurements provide an 
elegant means to identify band symmetries, also the presence of strong 
exchange-driven phases in suspended bilayer graphene [28, 33, 34, 175] is 
inconsistent with low-energy a linear dispersion of BLG. On the other hand, 
signatures of changes in Fermi surface topology due to trigonal warping have 
been identified in the case strong displacement fields are applied and sizable 
bandgaps are opened. Specifically, in strongly biased BLG [1, 35, 105, 106], 
Bernal trilayer graphene [146, 176], rhombohedral trilayer graphene [24, 25] 
and Bernal tetralayer graphene [177] it was shown that a trigonally warped 
low-energy Fermi surface topology is consistent with the unusual ordering 
of quantum Hall states. 

The goal of the present work is to resolve the puzzle why at zero and low 
electric displacement field the linear dispersion and electric-field controlled 
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changes of topology (Fig. 1a-c) have not been observed experimentally in 
BLG. Signs of topological changes in the bandstructure should be detectable 
e.g. in quantizing magnetic field in which the presence of four Dirac cones 
would lead to a clearly distinct sequence of LL compared to the known 
sequence arising from a parabolic dispersion.  

To reveal the detailed low-energy bandstructure and detect electric-field 
controllable linear dispersing bands, we prefer here the hexagonal Boron 
Nitride (hBN) encapsulated Bernal-stacked bilayer graphene sample system 
over suspended BLG – even though in both samples quality is similar. In 
the latter however, due to the low-dielectric constant of the dielectric 
(vacuum), the exchange energy scale seems to dominate the low-energy 
physics leading to a variety of nontrivial groundstates [28, 33, 34, 175]. Our 
encapsulated BLG is equipped with graphite top-and bottom gates and two 
terminal contacts (see Supplemental Material). All measurements were 
recorded in a cryostat at a temperature of 10 mK employing standard lock-
in techniques at 78 Hz and an ac bias current of 1 nA. By varying both gate 
voltages, we were able to tune n and D independently. Since we on the one 
side use two-terminal measurements (i.e. contact resistance cannot be easily 
determined), and on the other side show measurements down to B=0 the 
respective LL are not fully developed (quantized) yet, and we hence show 
dG/dn values. We complement our measurements with tight binding single 
particle bandstructure calculations of expected quantum Hall states in BLG 
at zero and low D-fields, in which we include also the weaker inter-layer 
coupling parameters γ3 and γ4 as well as an energy difference between dimer 
and non-dimer atomic sites Δ’ [26, 85] (Fig. 1a) (see  Supplemental Material 
for technical details of the calculations). 

We first discuss the tight binding calculations of LL that are used as a tool 
to later experimentally identify the transition from Dirac bands to a gapped 
parabolic dispersion. Without the presence of an interlayer potential 
difference U and in the case trigonal warping is ignored or irrelevant due to 
disorder, the bandstructure of BLG exhibits a nearly low-energy parabolic 
dispersion (Fig 1b (left)) [26, 28, 37]. Consistent with previous experiments 
conducted in quantizing magnetic fields B > 0.5 T [28, 33, 104], this leads 
to an eight-fold degeneracy of the lowest Landau level (LLL) due to spin, 
valley and orbital degrees of freedom, and to a four-fold degeneracy of all 
higher Landau levels due to spin and valley degrees of freedom (see 
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Supplemental Material). In case that the low-energy bandstructure at the 
charge neutrality point can be resolved below a Fermi energy E  ~ ±1 meV, 
the bandstructure dramatically changes when including trigonal warping, 
and three off-center and one center cones emerge in each valley (also referred 
to as mini Dirac cones), resulting from the weaker skew interlayer hopping 
term γ3. The four cones with a Dirac-like spectrum resemble a four-fold copy 
of the spectrum of monolayer graphene, for which the LLL is shared equally 
by electrons and holes, overall leading to a 16-fold degeneracy (2 spins, 2 
valleys, 4 mini Dirac cones). This would result in the appearance of quantum 
Hall states with filling factors 𝜈 =   = ±8 [15, 37, 104]. In addition, the 
second skew interlayer hopping term γ4 and on-site parameter Δ’, describing 
the energy difference between atoms A and A’ or B and B’, create an 
energetic asymmetry between these cones [26]. While the center cone of the 
conduction and valence band meet at zero energy, the off-center cones meet 
at higher energies (Fig. 1b, c; more information on the impact of γ3, γ4, and 
Δ’ is given in Fig. S1 in the Supplemental Material). In quantum Hall 
measurements, these changes in the bandstructure can be discerned only at 
B < 0.2 T since here, the inverse of the magnetic length 𝑙 = ℏ/(𝑒𝐵) with 
ℏ = ℎ/2𝜋 and Planck’s constant h is smaller than the distance in momentum 
space between two adjacent mini Dirac cones (i.e. below the fields at which 
magnetic breakdown appears) [105, 106].  

Fig. 1e shows the calculated inverse compressibility (∂μ/∂n with chemical 
potential μ, n charge carrier density) as function of n and B at D = 0 V/nm 
(Landau fan diagram). Here, larger energy gaps in the Landau level 
spectrum (Fig. 1f) manifest as prominent peaks corresponding to quantum 
Hall states that are labeled by numerals (the calculations include γ0, γ1, γ3, 
γ4 and Δ’, spin splitting is included manually in the LL for the figures, both 
valleys are included in the calculation and are fully degenerate; see 
Supplemental Material for further details). While quantum Hall states with 
𝜈 = ±8 indeed exhibit the largest compressibility and go down to the lowest 
B in the valence/ conduction band also the quantum Hall state with 𝜈 = -4 
(but not  𝜈 = +4) is very robust, i.e., it can be resolved until very low B 
(Fig. 1e), which is a manifestation of the electron-hole asymmetry. 
Neglecting the spin and valley degrees of freedom, the three off-center cones 
exhibit a three-fold degenerate LLL and are shifted to higher energies. Thus, 
the center cone LLL is non-degenerate with the LLL that belong to the off-
center cones (Fig 1f). Since the LLL is shared between electrons and holes, 
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the non-degenerate center cone as well as one of three LL originating from 
the three off-center cones contribute to hole transport and give rise to 
quantum Hall states with 𝜈 = -8 and 𝜈 = -4 respectively. The other two LL 
stemming from the three  off-center cones contribute to electron transport 
and give rise to a quantum Hall state with 𝜈 = +8. The quantum Hall state 
with 𝜈 = +4 only emerges at larger B where the degenerate LL diverge. 
With increasing n, the conventional sequence quantum Hall states with 
filling factors 𝜈 = ±12, ±16, ±20 is recovered the Fermi level lies above the 
Lifshitz transition where the Fermi surface is fully connected. 

The theory thus shows in great detail how the presence of four Dirac cones 
can unambiguously be identified in experiment. Figure 1g shows now the 
normalized derivative of the measured two-terminal conductance |dG/dn| as 
a function of n and B at D = 0 V/nm. Quantum Hall states appear as 
plateaus in the conductance and thus as dips in |dG/dn| and can be assigned 
by their corresponding slopes in the Landau fan diagram (see Supplemental 
Material). Consistent with our theoretical simulations, quantum Hall states 
with 𝜈 = ±8 are the most robust and can be observed at the smallest B, 
down to B ≈ 0.05 T which reveals the presence of four mini Dirac cones. 
Additionally, due to electron-hole asymmetry, the quantum Hall state with 
𝜈 = -4 appears at slightly larger magnetic fields (B ≈ 0.15 T), while the 𝜈 
= +4 quantum Hall state only appears above 0.2 T when the magnetic 
breakdown occurs (indicated by dashed lines in Fig 1e and g). At magnetic 
fields above 0.3 T, a sequence of even integer quantum Hall states appears 
which is consistent with previous measurements in freestanding BLG [28, 
29, 33, 34] and which reveals the high quality of our sample. Here, the spin 
degeneracy is likely lifted due to Coulomb interactions resulting in a two-
fold degeneracy (valley) instead of the predicted four-fold degeneracy (spin 
and valley) [37, 109, 111]. Notably, some of the non-four-fold degenerate 
quantum Hall states including the quantum Hall states with ν = ±6 also go 
down to below 0.3 T and then merge with the quantum Hall states with ν 
= ±4 and demand further investigation. Since spin and valley splitting are 
both neglected in our theoretical simulations, this two-fold degeneracy is 
only observed in our experimental data but not visible in the calculated 
inverse compressibility. 

While the measurements at zero displacement fields show the existence of 
four Dirac cones near charge neutrality, we now show the tunability of the 
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Dirac cones with concomitant bandgap opening controlled by D. We first 
discuss our calculations and corresponding charge transport measurements 
at constant small D, where already a bandgap has opened up in the 
previously linear Dirac spectrum of BLG. This goes along with drastic 
changes of the bandstructure: the center cone diminishes whereas the three 
off-center cones (Fig. 2a,b) with however a parabolic dispersion remain, 
which we consequently refer to as pockets. 

In the valence band, where the three off-center cones already dominate at D 
= 0 due to electron-hole asymmetry, the number of pockets changes from 
four to three at finite D (Fig. 2b) resulting in a reordering of expected 
quantum Hall states (Fig. 2c-e) [85, 178]. We expect the LLL to be six-fold 
degenerate at low B due to the remaining three leg pockets (3 pockets, 2 
spins, the 2 valleys are degenerate, Fig. 2d,e)[105, 106] and the 𝜈  = -6 
quantum Hall state is expected to be the most robust for hole doping (Fig. 
2c). These theoretical considerations are confirmed by our measurements. 
As shown in Fig. 2e, for D = 50 mV/nm the 𝜈 = -6 quantum Hall state can 
be resolved down to very low magnetic fields of B = 100 mT. Surprisingly, 
this also holds for the 𝜈 = -3 quantum Hall state which could result from 
spin or valley polarization at low B and low n due to Stoner ferromagnetism 
that can occur in the vicinity of the Lifshitz transition [1, 35, 36].  At B = 
600 mT, a sudden change in the degeneracy of Landau level takes place for 
n < 0 which can be attributed to the magnetic breakdown. Here the effects 
of the trigonal warping are no longer relevant and we can observe all integer 
quantum Hall states. It is worth noting that at larger densities, quantum 
Hall states with 𝜈 = -7 and 𝜈 = -9 appear below B = 500 mT. In this regime, 
the Fermi energy level lies above the Lifshitz transition and quantum Hall 
states start to become valley and spin polarized with increasing magnetic 
field. 

The effects of band flattening and disappearing of the low-energy Dirac 
spectrum can be also seen in the conduction band (Fig. 2a) where the center 
pocket also becomes less prominent with increasing D. However, due to 
electron-hole asymmetry the center cone is still dominating at U = 17 meV 
and the band becomes flatter with increasing U until U ≈ 60 meV. At U = 
17 meV, the degeneracy of quantum Hall states is not as much affected by 
trigonal warping as in the valence band and quantum Hall states with even 
ν appear first in the magnetic field in our conductance measurements (Fig. 
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2e). Remarkably, the quantum Hall states with ν = +3 and ν = +4 
disappear at a magnetic field of 0.5 T and then reemerge at about 0.6 T 
(Fig. 2c,e) resulting from a crossing of two bands that correspond to different 
valleys (Fig. 2d).  

The active control and lifting of the four-fold Dirac spectrum can be also 
traced by controlling the displacement field at constant B (Fig. 3a,b). For 
example, at B = 0.25 T (Fig. 3a) the magnetic breakdown has already 
occurred for low D resulting in the appearance of eight-fold degenerate 
quantum Hall states at D = 0 mV/nm (2 valleys, 2 spins, 2 orbits). At 3 
mV/nm < |D|< 25 mV/nm the quantum Hall state with ν = ±2 appears 
due to valley polarization [33] while at |D| > 20 mV/nm the three pockets 
can be resolved individually and a crossover from a two-fold (two spins) to 
a three-fold degenerate Landau level spectrum (three pockets) appears at 
hole doping (yellow circle in Fig. 3a). Higher LL are four-fold degenerate (2 
valleys, 2 spins) above a Lifshitz transition since their corresponding Fermi 
surface is fully connected. For larger B, e.g. at B = 0.4 T (Fig. 3b), the 
crossover to the parabolic shifts to larger D where the three pockets are 
more pronounced. Here also the crossings of LL stemming from different 
valleys in the conduction band can be discerned in the n vs. B plot. 

In conclusion, we show that bilayer graphene exhibits a highly tunable low-
energy bandstructure where four distinct Dirac cones merge into a parabolic 
band or into three pockets with a gapped parabolic dispersion. Here, 
topological transitions result in a complex series of Landau levels that we 
extract by virtue of numerical diagonalization methods based on a realistic 
tight binding model and measure for the first time in high quality hBN-
encapsulated samples. These results show that the simple and seemingly well 
understood Bernal bilayer graphene is a true example of a long sought 
tunable Dirac material with linear dispersion at low energies[179]. It remains 
to be investigated, how trigonal warping affects the renormalized many-body 
band structure in high quality freestanding BLG samples where interaction 
effects dominate even at low electric fields [28, 33]. 
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FIG. 1. Lattice, bandstructure and quantum Hall states of Bernal bilayer 
graphene at D = 0 mV/nm. (a) Lattice structure and hopping parameters 
of Bernal bilayer graphene. (b) Bandstructure of bilayer graphene in an 
energy range of -2 mV to +2 mV at D = 0 mV/nm  calculated with a tight 
binding model including various subsets of coupling parameters. The center 
cones are shaded darker. (c,d) Fermi surface contour of the conduction band 
(c) and valence band (d) of bilayer graphene at different Fermi energy levels. 
(e) Calculated inverse compressibility (∂μ/∂n) as a function of charge carrier 
density and magnetic field at D = 0 mV/nm and temperature T = 0.1 K. 
The corresponding quantum Hall states are labeled by numerals. The regions 
in which quantum Hall states with filling factors ν = ±4 end are highlighted 
by dashed circles. (f) Evolution of Landau levels as a function of magnetic 
field at D = 0 mV/nm. The four lowest Landau levels are colored whereas 
Landau levels contributing to hole transport are colored in red and Landau 
levels contributing to electron transport are colored in blue. The lowest red 
colored Landau level is coming from the center mini Dirac cone, the other 
three lowest Landau levels are coming from the three off-center mini Dirac 
cones. Filling factors are indicated by numerals. A larger version of this plot 
is shown in Fig. S1. (g) Derivative of the normalized conductance measured 
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as a function of the charge carrier density and the magnetic field at D = 0 
mV/nm. Blue regions correspond to vanishing differential conductance (i.e. 
a conductance plateau). The slopes of the lowest quantum Hall states are 
traced by lines in the mirror image. Every fourth quantum Hall state is 
colored in green to make comparison with theory (Fig. 1e) easier. The regions 
in which quantum Hall states with filling factors ν = ±4 are highlighted by 
dashed circles.  
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FIG. 2. Bandstructure and quantum Hall states of bilayer graphene at 
finite D. (a,b) Fermi surface contour of the conduction band (a) and valence 
band (b) of bilayer graphene at different Fermi energy levels at U = 17 meV. 
(c) Calculated inverse compressibility (∂μ/∂n) as a function of charge carrier 
density and magnetic field at U = 17 meV and temperature T = 0.1 K. The 
corresponding quantum Hall states are labeled by numerals. Regions 
corresponding to Landau level crossings are marked by dotted circles. (d) 
Evolution of Landau levels as a function of the magnetic field. (e) Derivative 
of the normalized conductance measured as a function of the charge carrier 
density and the magnetic field at D = 50 mV/nm. The slopes of the lowest 
even quantum Hall states are traced by green lines, the slopes of the lowest 
odd quantum Hall states are traced by dashed lines. The corresponding 
quantum Hall states are labeled by numerals. The regions corresponding to 
Landau level crossings are marked by dotted circles. 
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FIG 3. Controlling the magnetic breakdown by applying an electric 
displacement field.  (a, b) Derivative of the normalized conductance 
measured as a function of the charge carrier density and electric displacement 
field at B = 0.25 T (a) and B = 0.4 T (b). Quantum Hall states are labeled 
by numerals and traced by lines. Note, that the quantum Hall states are 
symmetric for positive and negative values of D but the labelling was 
restricted to D < 0 for better visibility. Transitions between quantum Hall 
states due to trigonal warping and electron-hole asymmetry are highlighted 
by yellow dotted lines, crossings between Landau levels of different K valleys 
are highlighted by red dotted circles. Schematics of Fermi contours 
corresponding to regions in which the magnetic breakdown has already 
occurred and to regions in which the magnetic breakdown has not yet 
occurred are shown in red and green, respectively.  
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cascade of correlated Phases 
in trigonally warped bilayer 
graphene  

 

The results presented in this Chapter have been published in Reference [1]. 
The full article is reprinted below with permission from Springer Nature. 
Material from Anna M. Seiler et al., Quantum cascade of correlated phases 
in trigonally warped bilayer graphene, Nature, published 2022, Springer 
Nature. 

Nature 608, 298-302 (2022) 
DOI: 10.1038/s41586-022-04937-1 
 
 
Contributions: 

I fabricated the devices (device A in the article corresponds to Stack 99 
that is introduced in Chapter 3.5 and device B in the article corresponds 
to Stack 82), conducted all measurements, and performed the data 
analysis. I further prepared the first version of the manuscript except from 
some theoretical sections and I designed all figures. In addition, I produced 
the final version of the publication. 
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The results presented in this Chapter are currently prepared for publication. 
The current version of the manuscript is reprinted below. 
 
 
Contributions: 

I fabricated the devices (device 1 in the article corresponds to Stack 99 in 
this thesis and device 2 in the article corresponds to Stack 70), conducted 
all measurements, and performed the data analysis. I further prepared the 
first version of the manuscript except from some theoretical sections and I 
designed all figures. In addition, I produced the current version of the 
manuscript.  
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Interaction-driven quasi-insulating ground states of gapped electron-
doped bilayer graphene 
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Bernal bilayer graphene has recently been discovered to exhibit a wide 
range of unique ordered phases resulting from interaction-driven effects 
and encompassing spin and valley magnetism [1, 35, 36], correlated 
insulators [1], correlated metals [1], and superconductivity [35, 98]. This 
letter reports on a novel family of correlated phases characterized by 
spin and valley ordering, observed in electron-doped bilayer graphene. 
The novel correlated phases demonstrate an intriguing non-linear 
current-bias behavior at ultralow currents that is sensitive to the onset 
of the phases and is accompanied by an insulating temperature 
dependence, providing strong evidence for the presence of 
unconventional charge carrying degrees of freedom originating from 
ordering. These characteristics cannot be solely attributed to any of the 
previously reported phases, and are qualitatively different from the 
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behavior seen previously on the hole-doped side. Instead, our 
observations align with the presence of a charge- or spin-density-wave 
state that opens a gap on a portion of the Fermi surface. The resulting 
new phases, quasi-insulators in which part of the Fermi surface remains 
intact or valley-polarized and valley-unpolarized Wigner crystals, 
coexist with previously known Stoner phases, resulting in an 
exceptionally intricate phase diagram. 

 

Graphene flat-band systems, moiré and non-moiré, provide a rich platform 
in which a wide variety of correlated electronic states can be realized and 
explored [1, 16, 17, 19, 24, 25, 28, 33–36, 98, 180]. After initial observations 
of exchange driven phases in suspended Bernal bilayer graphene at charge 
neutrality [28, 34, 175], a family of exotic interaction-driven orders has been 
found in magic-angle twisted bilayer graphene (TBG), where flat electronic 
bands are created by superposing two layers of graphene with a relative 
twist angle. In TBG, Mott insulating and superconducting phases have been 
found to compete at half filling of either electron or hole Moiré bands [16, 
17]. However, it quickly became evident that TBG does not possess an 
exclusive monopoly on hosting interesting correlated states in the vicinity of 
van-Hove-singularities. These states have also been found in the naturally 
occurring Bernal bilayer graphene (BLG), where strongly correlated 
behavior arises at large electric displacement fields (D), assisted by field-
induced flat bands and a divergence in the density of states (DOS) [1, 35, 
36, 98, 181] at Lifshitz transitions. Close to the band edge interactions 
between charge carriers are large enough to satisfy the Stoner criterion [6] 
and carriers become spin or valley polarized, as can be deduced from varying 
Landau level (LL) spacings at finite magnetic fields B [1, 35, 36]. Previous 
studies on BLG focused on the hole-doped regime where several exotic orders 
beyond Stoner magnetism such as correlated and superconducting[1, 35, 98] 
phases have been observed. These states have often been attributed to the 
presence of annular Fermi surfaces or pocket physics, as found on the hole 
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side in BLG [1, 35] and in ABC trilayer graphene [24, 25]. Yet, at this point 
it is far from clear whether the correlated phases are driven primarily by the 
band dispersion or by some exotic interaction effects [9].   

To shed light on this question, here we report on the previously unexplored 
electron-doped regime of BLG. The low-energy dispersion on the electron 
side is markedly different compared to the hole side. For example, the 
trigonal warping induced rotational symmetry breaking is significantly less 
pronounced at the conduction band minimum (Fig 1a,b). In fact, at large 
D, the bands are flatter and the DOS-peak due to the still remaining Lifshitz 
transition is significantly stronger than in the valence band (Fig. 1c, 
Extended Data Fig. 1). Nevertheless, so far, only metallic Stoner phases 
have been observed in electron-doped Bernal-stacked bilayer graphene[1, 36]. 
Surprisingly, we find a new interaction-driven behavior that is clearly 
beyond Stoner physics. Specifically, complex correlated phases appear close 
to the band edge at large D and low magnetic fields (B) that cannot be 
explained solely by Stoner ferromagnetism. As discussed below, the isospin 
polarized orders in this doping regime show an insulating temperature 
dependence and a striking nonlinear current-bias dependence. These 
behaviors are distinct from the previously reported results [36], indicating 
an unexplored ground state of the electron-doped bilayer graphene. There 
are several theoretical pictures in recent literature that account for these 
observations, such as formation of a spin or charge density wave order that 
gaps out part of the Fermi surface [182] or a Wigner crystal, potentially 
coexisting with mobile carriers [1]. 

The bilayer graphene flakes investigated for this study are encapsulated in 
hexagonal boron nitride (hBN) and equipped with graphite top and bottom 
gates, which allows to continuously tune the displacement field D as well as 
the charge carrier density n (see methods). Measurements shown in the main 
text were conducted in a device with two-terminal graphite contacts (Fig. 
1d), which is why all conductance data except the data presented in 
Extended Data Fig. 2 is given in arbitrary units (a.u., see methods for 
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details). Measurements conducted in a second device with four-terminal edge 
contacts, which shows qualitatively similar behaviour to the device discussed 
in the main manuscript, are shown in Extended Data Fig. 3. All 
measurements, unless stated otherwise, were conducted in a dilution 
refrigerator at a base temperature T of 10 mK.  

Figure 1e shows the measured two-terminal conductance G as a function of 
n and D for electron doping and negative D. At charge neutrality, an 
electric-field induced band gap opens up resulting in a well-known 
conductance minimum [28]. Outside the gap, G increases monotonically as 
a function of n. At large D, where interactions are expected to be strong due 
to a peak in the DOS (Fig. 1c), two steps emerge, separating regions of 
similar conductance that we tentatively label with svi (spin and valley 
polarized insulator), si (spin polarized insulator), and m (metal). In the 
following we will discuss in further detail why we chose these labels. The 
regions of similar conductance can be differentiated best in the normalized 
derivative of G with respect to n (|dG/dn|), where the steps in between 
them appear as peaks (Fig. 1f, see Extended Fig. 3 for a corresponding 4-
terminal measurement). Parts of these features have been observed 
previously in capacitance measurements without magnetic fields (B = 0 T) 
and at finite out-of-plane magnetic fields 𝐵  > 0.6 T [36]. In Ref. [36], one 
of the peaks is suggested to mark the transition between a Stoner quarter 
and a full metal, corresponding to a region with one-fold and another region 
with four-fold degenerate LL. We can reproduce these results (both the 
results at B = 0 T and at 𝐵  > 0.6 T) and find regions with one-fold and 
four-fold degenerate quantum Hall states at 𝐵  > 0.3 T (Extended Data 
Fig. 4, 5).  

At present, however, the nature of the phases at B = 0 T is unclear since 
their nature had previously only been extrapolated from the high-magnetic 
field behavior (at 𝐵  > 0.6 T) [36]. This means, while previous studies 
focused on Stoner ferromagnetism in bilayer [1, 35, 36] and trilayer graphene 
[25] at finite magnetic fields, the true B = 0 T ground state of the system 
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remains unknown. In fact, at magnetic fields 𝐵  < 0.3 T, we were not able 
to observe quantum Hall states in the density regime of the svi and si phases 
(Fig. 2a-c), while quantum Hall states are well visible even below 200 mT 
in the m phase (Fig. 2c, Extended Data Fig. 5). This observation clearly 
indicates that the phases studied at elevated magnetic field likely are distinct 
in nature from the truly interacting B = 0 T ground state.  

To analyze the nature of these phases, we first study the system around B 
= 0 T as function of D. At constant D = -0.6 V nm-1, all three phases are 
well resolved at 𝐵  = 0 T . Wit0h slightly increasing 𝐵  (Fig. 2a), the 
mutual phase boundary of the svi phase and the si phase shifts towards 
larger densities i.e., the svi phase becomes stable in a larger density region. 
Above 𝐵 ≈ 200 – 300 mT, the phase boundary between the svi and si 
phases becomes less pronounced or vanishes. Remarkably, the si phase is 
even less stable against 𝐵  at large D-fields (Fig. 2b,c) while at D-fields 
below |D| = 0.5 V nm-1, small 𝐵  can even stabilize this phase (Fig. 1f, Fig. 
2c). Since in BLG the energy scale given by the coupling between the out-
of-plane magnetic field and the valley degree of freedom via the orbital 
momentum is larger compared to other magnetic field induced splittings 
(e.g. Zeeman) [33], we conclude that the svi and the si phases must have 
different valley orderings. In the simplest case, the svi phase is then valley 
polarized due to exchange-driven Stoner physics, while the si and m phases 
are valley unpolarized [25, 36]. Notably, the phase boundary of the si phase 
and the m phase shifts also slightly with 𝐵 , likely resulting from different 
spin orderings in these phases that are discussed below.  

Next, we investigate the phase transitions as a function of the in-plane 
magnetic field 𝐵|| that primarily couples to the spin degree of freedom via 
the Zeeman effect (Fig. 2d). Whereas increasing 𝐵|| does not change the 
phase boundary between the svi and the si phase (Fig. 2d), the phase 
boundary between the si and the m phase moves towards higher densities 
marking a phase transition with different spin polarization [25]. Since the si 
phase becomes broader with increasing 𝐵||, we assume the si phase to be spin 
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polarized, while we suggest the m phase to be spin degenerate. The svi phase 
is likely spin polarized as well since the phase boundary between the si and 
svi phase does not move in density with increasing 𝐵||. At |D| < 0.6 V/nm, 
where the svi and si phases do not exist at zero magnetic field, 𝐵|| stabilizes 
the spin polarized si phase (Fig. 2e,f).  

The assignment of spin and valley polarization is consistent with the LL 
degeneracies discussed above [25, 36] and also with magnetic hysteresis 
measurements shown in Extended Data Fig. 5. While the spin polarized svi 
and si phases show an in-plane magnetic field hysteresis due to spin 
polarization (Extended Data Fig. 5a), the spin and valley polarized svi phase 
exhibits also an out-of-plane magnetic field hysteresis resulting likely from 
orbital magnetism as there is no out-of-plane magnetic field hysteresis in the 
si phase (Extended Data Fig. 5b). Interestingly, in the svi phase, the in-
plane magnetic field hysteresis induced by spin magnetism is despite weak 
spin-orbit coupling in graphene much larger than the out-of-plane magnetic 
hysteresis induced by orbital magnetism, which might be explained by an 
inter-valley coherent component of this phase [183]. For example, at 
D = - 0.6 Vnm-1, the hysteretic behavior in the in-plane magnetic field ends 
at 𝐵|| = ±0.6 T while in an out-of-plane magnetic field it is only present 
until 𝐵  = ±0.03 T.  

To conclude our initial observation, three phases with spin and valley 
ordering have been identified in electron-doped BLG close to the band edge 
were electron-electron interactions are strong: the svi phase is likely spin 
and valley polarized, the si phase is likely spin polarized and the m phase is 
spin and valley unpolarized. 

While we revealed different regions of spin and valley polarization, our 
measurements up to now cannot identify if the observed phases are 
conventional Stoner phases in which e.g., the absence of LL at low magnetic 
fields stem from flat electronic bands with concomitant large effective masses 
and small LL spacings, or if the ground state of the system is of a more 
exotic nature. This is why we have performed detailed temperature and bias-
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dependent measurements (Fig. 3 and 4). Remarkably, close to the base 
temperature of our cryostat of 10 mK, we observe an increasing conductance 
with increasing temperature (insulating temperature dependence) in the svi 
and si phases which suggests these phases to be different from normal Stoner 
metals, where a metallic temperature dependence would be expected. This 
insulating temperature dependence is likely not connected to contact effects 
since it is only present within the svi and si phases but not at the phase 
boundaries which can be seen best in Fig. 3b (see also below). 

The svi phase displays an insulating temperature dependence until T ≥ 4 K 
(Fig. 3, Extended Data Fig. 6). Since it is closest to the band edge where 
the DOS diverges (Fig. 1c), correlation effects are expected to be the most 
prominent in this phase. The si phase displays an insulating temperature 
dependence in a comparably lower temperature range (critical temperature 
Tcrit < 100 mK at D = -0.6 V nm-1, Fig. 3a), but Tcrit can be increased by 
applying a finite 𝐵|| (e.g. Tcrit ≈ 2.5 K at 𝐵|| = 2 T, Fig. 3b, Extended Data 
Fig. 7). The m phase only shows insulating behavior at Tcrit < 100 mK in 
the vicinity of the phase boundary to the si phase but acts weakly metallic 
at large densities (even at the lowest T) as expected in the non-interacting 
regime of bilayer graphene (Fig. 4, Extended Data Fig. 8). The observation 
of insulating temperature dependence in the svi and si phases aligns well 
with the measured bias current (I) dependence that shows strong 
nonlinearities and is indicative of a comparably larger gap in the svi phase 
and a smaller one in the si phase where it vanishes at small applied bias 
currents of approximately 10 nA at D = -0.8 V nm-1 (Fig. 4a,b, Extended 
Data Fig. 9,10). It resembles the bias current dependence of correlated 
phases in hole-doped bilayer graphene where similar behavior was suggested 
to be consistent with the formation of charge or spin density waves (CDW 
or SDW) [35] or Wigner crystals (WC) [1] in which Coulomb interaction 
breaks translation symmetry and strong electron-electron interactions lead 
to a collective ordering of electrons in a periodic standing wave or crystal.  
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Indeed, for a 2D system in a Stoner regime that is introduced above, theory 
predicts a CDW or SDW instability, arising because the momentum 
dependence of particle-hole susceptibility for 2D systems is in general non-
monotonic - the susceptibility at a finite momentum q can exceed that at 
q = 0. The resulting CDW or SDW instability with a wavelength 
corresponding to the most unstable harmonic q, will modulate the Stoner-
polarized Fermi sea in electron density or spin density [182]. 

The hallmark of this state is a highly nonlinear transport arising due to 
CDW or SDW sliding in the presence of an applied bias current. Indeed, we 
observe a conductance in the svi and si phase that peaks at a finite current 
(see Figure 4a). One possible explanation for this intriguing behavior 
involves the pinning of CDW/SDW sliding at low currents and its 
subsequent depinning at higher currents [184]. Essentially, the conductivity 
experiences a sharp increase beyond a critical current that induces the 
depinning of the CDW/SDW and initiates the sliding motion. However, as 
the current continues to rise, the conductivity begins to decline. This can be 
potentially attributed to the Doppler shift of the particle-hole excitation 
dispersion caused by the sliding CDW/SDW, eventually leading to the 
closure of the CDW/SDW gap at high currents [185, 186]. Consequently, 
the conductivity at high currents remains slightly above that at low 
currents.  

This interpretation is consistent when studying the evolution of nonlinear 
conductance under varying carrier density (Fig. 4a and b, Extended Data 
Fig. 9, 10). The peak current decreases continuously to zero when 
approaching the phase transition into svi phase and m phase. Following our 
interpretation above that the peak corresponds to the CDW/SDW gap, this 
observation implies a gap closing at the phase boundary (Extended Data 
Fig. 11). 

Next, we discuss how the 2D CDW or SDW picture explains the measured 
conductance temperature dependence described above. A CDW/SDW in 2D 
opens up gaps in small segments near the Fermi surface regions where 
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nesting occurs, whereas the rest of Fermi surface remains gapless. The 
coexistence of gapped and gapless segments leads to two effects: 

(i) As temperature rises, the CDW/SDW gap decreases. In that, the 
length of the gapped segments also decreases, whereas the gapless 
segments increase. As a result, the effective carrier density in this 
system increases. This effect leads to conductivity monotonically 
increasing with temperature. 

(ii) However, as in ordinary metals, the conductivity at a fixed carrier 
density should decrease as temperature increases. This effect tends to 
give a conductivity monotonically decreasing with temperature. 

These two effects compete with each other, leading to two possible outcomes. 
If the effect (i) is stronger, the system will mimic an insulator’s behavior 
where a conductivity monotonically increases with temperature. Yet, unlike 
a true insulator, this increase of conductivity will be weak. We call such a 
system a quasi-insulator. This prediction is indeed in line with our 
measurement in svi and si phases (Fig. 4a,b, resistance values in these 
phases are shown in Extended Data Fig. 2).  

Surprisingly, also the m phase exhibits an insulating temperature 
dependence and a non-linear bias current dependence in the vicinity of the 
phase boundary between the si and m phase (but not deep within the 
metallic phase, Extended Data Fig. 8, 11) which we explain by fluctuations 
of the collected electronic mode near the second order phase transition. 

While our experimental data is in line with the picture of CDWs/SDWs that 
are coexisting with the Stoner phases and gap out parts of the Fermi surface 
there are in principle also other possible theories explaining the insulating 
temperature dependence and strong non-linearities with applied dc currents. 
For example, the Stoner phases could transition into weak Wigner crystal 
states that have different spin and valley orderings. To unambiguously 
determine the kind of ordering, further measurements, e.g. using scanning 
tunneling microscopy [130], would be needed. 
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In summary, electron-doped bilayer graphene exhibits an intriguing phase 
diagram at small magnetic fields  characterized by three phases that exhibit 
different spin and valley ordering (a summary of the experimental findings 
is given in Extended Data Table 1). We find a quasi-insulating temperature 
dependence (conductance growing with temperature) and a nonlinear 
current bias dependence in two phases and consequently name them as spin 
and valley polarized insulators (svi) and spin polarized insulators (si). The 
high-density metal phase (m), on the other hand, is consistent with a non-
interacting phase. In contrast to previously studied hole-doped bilayer 
graphene, the phases are only stable at very low n and do not seem to be 
related to changes in the Fermi surface topology within the band but rather 
to flat electronic bands and divergent DOS at the band edge. Here, the DOS 
seems to be large enough to facilitate the formation of an exotic ordering of 
electrons such as in a CDW/SDW or WC. Similar orderings might also 
appear in electron-doped rhombohedral trilayer graphene where Stoner 
phases were investigated at finite magnetic fields using compressibility 
measurements[25]. Possibly, also these phases show an insulating 
temperature and intriguing bias current dependence at B = 0 T. 
 

 

Methods 

 

Sample fabrication and transport measurements 

Bilayer graphene, graphite and hexagonal boron nitride (hBN) flakes were 
prepared by mechanical exfoliation of bulk crystals and identified via optical 
microscopy. The bilayer graphene flakes were then encapsulated in hBN and 
equipped with graphite top and bottom gates using a stamping technique 
with a polycarbonate (PC) film on top of a polydimethylsiloxane (PDMS) 
stamp[146, 155]. In a first step, the heterostructures were assembled without 
top gate which was then added in a second stamping step. The device 
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described in the main text was additionally equipped with graphite contacts 
and also used for measurements shown in Ref.[1] were this device is noted 
as device A and is described in detail. The sample shown in Extended Data 
Fig. 1 was fabricated in the same way but without graphite contacts. For 
this device, contacts were defined using electron-beam lithography and 
etched using an SF6 plasma. The one-dimensional electrical contacts were 
then deposited by electron-beam evaporation of Cr/Au. 

All electrical measurements (unless stated otherwise) were conducted in a 
dilution refrigerator equipped with home-made low-pass filters at a base 
temperature of 10 mK. The conductance was measured in a configuration 
shown in Fig. 1b/ Extended Data Fig. 1a using an a.c. bias current of 1 nA 
and an additional d.c. current where noted. Applying top gate voltages (Vt) 
and bottom gate voltages (Vb) allowed us to tune n and D as follows: 

𝑛 = 𝜀 𝜀
𝑑 𝑒

 (𝛼𝑉 + 𝑉 ) 

𝐷 = 𝜀
𝑑 𝑒

 (𝛼𝑉 − 𝑉 ) 

where 𝜀  is the permittivity in vacuum, 𝜀  is the dielectric constant of hBN, 
𝑑  is the thickness of the bottom hBN flake, e is the charge of an electron 
and 𝛼 is the ratio of 𝑑  and the thickness of the top hBN flake. As contact 
resistance in graphite contacts depends on T, I, n, D and 𝐵⊥[1] we did not 
subtract contact resistance but mostly plotted G in a.u.. Measured 
resistances R = 1/G (with no subtracted contact resistances) are shown in 
Extended Data Fig. 1.  
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Fig. 1. Density of states and phase transitions in electron-doped Bernal 
bilayer graphene without magnetic field. (a)  Calculated band structure of 
bilayer graphene at interlayer potential differences U ranging from 0 meV to 
105 meV. Coupling parameters were taken from Ref. [85]. (b) Derivative of 
the energy bands with respect to the momentum in x-direction px. At large 
U, trigonal warping leads to a large |dE/dpx| in the valence band while the 
conduction band are relatively flat (|dE/dpx| ≈0). (c) Calculated density of 
states (DOS) as a function of the Fermi energy level at an interlayer potential 
difference U = 100 meV. Insets: Fermi surface contour at different Fermi 
energy levels at an interlayer potential difference U = 100 meV (please note 
the different energy scales in the valence and conduction band). At electron 
doping, trigonal warping is less pronounced and bands are flatter, i.e. changes 
in the Fermi surface topology appear in a smaller energy regime, resulting in 



7 Manuscript: Interacting ground states of electron-doped bilayer graphene 
at large electric displacement fields 

 

139 

a larger density of states at the band edge. (d) Schematic of the device as 
well as its electrical wiring used to conduct the transport measurement shown 
in the main text. (e,f) Conductance (e) and normalized derivative of the 
conductance (f) as a function of n and D with 𝐵⊥= 𝐵  = 0. Steps in the 
conductance appear as peaks in the normalized derivative of the conductance. 
The svi, si and m phases are labeled. 
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Fig. 2. Magnetic field dependence of spin and valley ordered phases.  (a,b) 
Normalized derivative of the conductance as a function of n and 𝐵⊥ for D = 
-0.6 V nm-1 (a) and D = -0.8 V nm-1 (b). Quantum Hall states are traced by 
lines and labeled by numerals for 𝐵⊥ > 0. At D = -0.6 V nm-1 they are one-
fold degenerate in the density regime of the svi phase that becomes a spin 
and valley polarized Stoner metal at 𝐵⊥ > 0.3 T and four-fold degenerate in 
the density regime of the m phase. No quantum Hall states appear at D = -
0.8 V nm-1

. (c) Normalized derivative of the conductance as a function of n 
and D for 𝐵⊥ = 0.2 T. Four-fold degenerate quantum Hall states appear in 
the density regime of the m phase. (d,e) Normalized derivative of the 
conductance as a function of n and 𝐵  for D = -0.6 V nm-1 (d) and D = -
0.4 V nm-1 (e). (f) Normalized derivative of the conductance as a function of 
n and D for 𝐵  = 2 T. Line traces of the conductance G as a function of n 
are shown below each plot for different values of D and B. 
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Fig. 3. Temperature dependence of spin and valley ordered phases. (a,b)  
Conductance G as a function of the charge carrier density for D = -0. 6 V 
nm-1 and B|| = 0 T (a) and B|| = 2 T (b) for different temperatures. (insets) 
G as a function of temperature T. Please note the different temperature scales 
in the insets of (a) and (b). The corresponding densities are marked by an 
arrow ((a) svi phase: n = 0.8 x 1011 cm-2, si phase: n = 1.2 x 1011 cm-2, m 
phase: n = 3 x 1011 cm-2 and n = 5 x 1011 cm-2; (b) svi phase: n = 0.8 x 1011 
cm-2, si phase: n = 1.8 x 1011 cm-2, m phase: n = 3 x 1011 cm-2).  
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Fig. 4. Bias current dependence of spin and valley ordered phases.  (a) 
Conductance in arbitrary units (a.u.) as a function of the bias current and 
the charge carrier density at D = -0. 8 V nm-1 and B = 0 T. Line traces of 
the conductance as a function of the bias current are shown in the right panel 
for the svi phase (n = 1.2 x 1011 cm-2), the si phase (n = 2.0 x 1011 cm-2) and 
the m phase (n = 3.0 x 1011 cm-2). (b) Derivative of the conductance as a 
function of the bias current and the charge carrier density at D = -0. 8 V 
nm-1 and B = 0 T.   
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Extended Data Fig. 1.  Density of states in bilayer graphene. (a) 
Calculated density of states as a function of the Fermi energy and the 
interlayer potential difference. Coupling parameters were taken from Ref.[85]. 
(b) Calculated density of states as a function of the Fermi energy for different 
interlayer potential differences. Due to electron-hole asymmetry, the peak in 
the density of states in electron doped bilayer graphene is located closer to 
the band edge than the peak in hole doped bilayer graphene and is more 
pronounced at large interlayer potential differences.  
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Extended Data Fig. 2.  Measured resistance in the svi, si and m phases . 
Resistance as a function of n and D with 𝐵⊥= 𝐵  = 0 and linecut showing 
the resistance as a function of n at D = -0.7 Vnm-1. The svi, si and m phases 
are labeled. 
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Extended Data Fig. 3. Measurements conducted in a second device. (a)  
Optical image of a second device. The corresponding hBN thicknesses were 
69 nm (bottom hBN) and 30 nm (top hBN). (b,c) Normalized derivative of 
the conductance as a function of n and D with 𝐵⊥= 𝐵  = 0 T (b) and 𝐵⊥= 
0.2 T, 𝐵  = 0 T (c) measured in the device shown in (a). The three different 
phases are labeled and show similar behavior as the device analyzed in the 
main text . (d) Derivative of the conductance as a function of I and n at 
𝐵⊥= 𝐵  = 0 T and D = -0.75 V nm-1 measured in the same device. While 
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a gap is clearly present in the svi phase, a gap in the si phase is only weakly 
visible. 
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Extended Data Fig. 4. Quantum Hall states at D = 0.6 V nm -1. (a,b) 
Normalized derivative of the conductance plotted as a function of charge 
carrier density and out-of-plane magnetic field at a temperature of 10 mK 
(a) and 700 mK (b). Quantum Hall states are traced by lines for positive 
out-of-plane magnetic fields. Corresponding filling factors are labeled by 
numerals. In the density regime of the svi phase, Landau levels are one-fold 
degenerate due to spin and valley polarization, in the density regime of the 
m phase they are four-fold degenerate due to spin and valley degeneracy. The 
one-fold degenerate quantum Hall states are even present at 700 mK when 
the svi and si phases at low B are not stable anymore. 
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Extended Data Fig. 5.  Magnetic hysteresis of spin and valley ordered 
phases. (a,b) In-plane magnetic hysteresis (a) and out-of-plane magnetic 
hysteresis (b) of the svi, si and m phases at D = -0.6 V nm-1. The 
corresponding charge carrier densities are n = 1.0 x 1011 cm-2 (svi phase), n 
= 1.2 x 1011 cm-2 (si phase) and n = 3.0 x 1011 cm-2 (m phase). The forward 
sweeps are shown in red and the backward sweeps in blue. The hysteresis 
loop areas are shaded in yellow. Quantum oscillations appear at finite out-
of-plane magnetic fields in the m phase. 
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Extended Data Fig. 6.  Large temperature regime. Conductance as a 
function of n at different temperatures at B = 0 T and D = -0.6 Vnm-1. The 
insets show linecuts of the conductance as a function of temperature for the 
different phases (si phase: n = 0.8 x 1011 cm-2, svi phase: n = 1.2 x 1011 cm-2, 
m phase: n = 3 x 1011 cm-2). The svi phase is insulating until T ≥ 10 K.  
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Extended Data Fig. 7. Magnetic and electric field dependence of spin 
and valley ordered phases at large temperatures.  (a) Normalized 
derivative of the conductance as a function of charge carrier density and 
displacement field at zero magnetic field and at temperatures of 10 mK, 300 
mK, 700 mK and 1 K. (b) Normalized derivative of the conductance as a 
function of charge carrier density and in-plane magnetic field at a 
displacement field of -0.6 V nm-1 and at temperatures of 10 mK, 300 mK, 700 
mK and 1 K. 
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Extended Data Fig. 8.  Large density regime of the m phase. (a)  
Conductance as a function of n and D with 𝐵⊥= 𝐵  = 0. (b) Line traces of 
the conductance as a function of temperature at D = -0.6 Vnm-1 and n = 5 
x 1011cm-2 (metallic phase, marked with a star in (a)). 
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Extended Data Fig. 9. Bias current dependence for different 
displacement fields.  (a-c) Derivative of the conductance as a function of 
bias current and charge carrier density at B = 0 T, T = 10 mK and D = -
0.6 V nm-1 (a), D = -0.7 V nm-1 (b) and D = -0.8 V nm-1 (c). The different 
phases are labeled. 
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Extended Data Fig. 10. Bias current dependence at D = -0.8 V nm-1. (a-
c) Derivative of the conductance as a function of bias current and charge 
carrier density at D = -0.8 V nm-1 and B = 0 T and T = 10 mK (a),  B┴ = 
0.2 T and T = 10 mK (b) and B = 0 T and T = 1 K (c). 
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Extended Data Fig. 11. Bias current dependence near the phase 
boundary between the si and m phases. (a)  Derivative of the conductance 
with respect to bias current (I) as a function of I and the charge carrier 
density at D = -0.8 V nm-1 and B = 0 T. (b) Line traces of the conductance 
as a function of I at different charge carrier densities that are marked with 
arrows in (a). The m phase exhibits a non-linear bias current dependence in 
the vicinity of the phase boundary between the si and m phase that becomes 
weaker with increasing charge carrier density, i.e. the peak becomes less 
pronounced and |dG/dI| becomes smaller. At the phase boundary (n ≈ 2.4 x 
1011 cm-2) the dependence on the applied bias current is weak. Please note 
the different scales in the conductance. 
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 svi phase si phase m phase 
Valley polarization yes no no 
Spin polarization yes yes no 
Hysteresis in 𝐵  yes yes no 
Hysteresis in 𝐵⊥ yes no no 
Onset of quantum 
Hall oscillations 

B⊥~ 300 mT B⊥>300 mT B⊥< 200 mT 

Insulating   
T-dependence? 

yes yes no (only near 
phase boundary to 
si phase) 

Tcrit at D = -0.6 
Vnm-1 and 𝐵  = 0 
T 

≥ 10 K < 100 mK - 

Tcrit at D = -0.6 
Vnm-1 and 𝐵  = 2 
T 

≥ 5 K ≈ 2.5 K - 

Non-linear  
bias-dependence? 

yes yes no (only near 
phase boundary to 
si phase) 

 

Extended Data Table 1.  Summary of our main findings . The table 
summarizes the behavior of the svi, si and m phases that is most consistent 
with experimental measurements shown and discussed in the main text. 
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8  Discussions and outlook  

 
 
 
In this chapter, the key results presented in Chapters 5 - 7 are summarized. 
Furthermore, the impact of the different works is discussed, comments on 
complementary works are given, and an outlook on the developments of 
correlated phases in Bernal bilayer graphene is presented.  

 
 

8.1 Mapping out the tunable band structure in 
bilayer graphene 

 

Theoretical calculations show that Bernal bilayer graphene exhibits a 
complex low-energy band structure. For example, trigonal warping is 
expected to result in the formation of four mini Dirac cones in each valley 
when no electric displacement field is applied. Furthermore, electron-hole 
asymmetry is anticipated to cause an energetic shift of the center cone 
compared to the three off-center cones. When a small electric displacement 
field is applied, a band gap opens in bilayer graphene, and the number of 
pockets is expected to reduce from four to three in the valence band and 
from four to one in the conduction band. In addition, the energy dispersion 
of the pockets is predicted to change from being linear to being parabolic 
(see Chapter 2.2 for more details).  

While theoretical band structure calculations are well established, 
experimental evidence of the formation of four mini Dirac cones is still 
elusive. Moreover, several previous experiments are consistent with a simpler, 
truly parabolic energy dispersion. This includes previous measurements of 
the quantum Hall effect in bilayer graphene down to magnetic fields of 500 
mT [28, 29, 34, 109, 111, 187] and the presence of a quantum anomalous 
Hall octet even below 20 mT [33]. 
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In our manuscript that is reprinted in Chapter 5, the low-energy quantum 
Hall spectrum of Stack 99 and StackMartinAnna is analyzed in detail. In 
these high-quality devices, quantum Hall states can be traced down to 
magnetic fields below 50 mT where the inverse magnetic length and thus 
the cyclotron orbit of an electron in momentum space is smaller than the 
distance between adjacent pockets. In this regime, quantum Hall states are 
used as markers for the low-energy dispersion. By comparing the 
experimentally revealed ordering of quantum Hall states with the 
theoretically predicted ordering of Landau levels, it is revealed that the low-
energy band structure of bilayer graphene indeed consists of four mini Dirac 
cones with a truly linear low-energy dispersion. Furthermore, the Landau 
level spectrum is shown to be consistent with electron-hole asymmetry and 
an energetic shift of the center cone compared to the off-center cones.  

By applying small electric displacement fields, the opening of a band gap 
and a reordering of quantum Hall states are observed. The Landau level 
spectrum is then consistent with the formation of three pockets in the 
valence band and one pocket in the conduction band.  

All in all, we find evidence for electron-hole asymmetry in Bernal bilayer 
graphene at zero and finite electric displacement fields and reveal an electric 
displacement field induced transition from a Dirac spectrum to a parabolic 
energy dispersion. These results not only help to unravel the low-energy 
band structure of a seemingly well-understood material but also classify 
Bernal bilayer graphene as a true example of a long sought tunable Dirac 
material with linear energy dispersion at zero electric displacement field. 

 

  Towards applications of the linearly dispersed energy 
bands in bilayer graphene 

Monolayer graphene is well known for its linear energy dispersion that gives 
rise to intriguing optical and electronic properties [42, 188]. However, these 
properties cannot be used in applications such as in high-performance 
integrated logic circuits since monolayer graphene does not have a band gap, 
and the on/ off ratios are too low [188, 189]. To gain higher on/ off ratios, 
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a controllable band gap needs to be induced. This would, however, imply a 
controlled breaking of the sublattice symmetry which is challenging. 

In Bernal bilayer graphene, the sublattice degree of freedom is coupled to 
the layer degree of freedom (see Chapter 2.2) and previous works showed 
that a band gap can be electrostatically opened [94, 165]. However, signs of 
linear dispersed low-energy bands that give rise to intriguing electronic 
properties were never observed in experiment. Moreover, the mobility of 
bilayer graphene was always measured to be lower than the mobility of 
monolayer graphene which was explained by bilayer graphene’s parabolic 
band structure [190].  

Yet, in our work that is reprinted in Chapter 5, it is experimentally revealed 
that the low-energy band structure of high-quality Bernal bilayer graphene 
samples is indeed linear and compromises four mini Dirac cones. Only when 
electric displacement fields are applied, a band gap opens up and the low-
energy band dispersion changes from being linear to parabolic. These 
findings offer new possibilities for high-quality bilayer graphene field-effect 
transistors that can be turned off effectively but should still incorporate the 
advantages of materials with linear dispersed energy bands such as a high 
mobility [191]. 

In a next step, future experiments will need to confirm that the intriguing 
electronic properties of monolayer graphene survive in high-quality unbiased 
bilayer graphene. For example, the mobility of bilayer graphene needs to be 
determined in high-quality four-terminal devices in which the mini Dirac 
cones can be resolved. In these samples, the mobility is likely comparable or 
even larger than the mobility of monolayer graphene due to the presence of 
four Dirac cones instead of just one Dirac cone [191].  

Lastly, it is worth highlighting that the energy scale at which the dispersion 
is linear in bilayer graphene is very small. Thus, the measurements suggested 
above would need to be conducted in samples with a disorder of < 1 meV 
which is the energy scale at which the mini Dirac cones are present at 
D = 0 Vnm-1 (the corresponding band structure calculations are shown in 
Chapter 5). Presumably, sample disorder is why previously measured bilayer 
graphene samples exhibit a lower mobility compared to monolayer graphene 
samples which have linear dispersed bands also at higher energies. 
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  Suggestions for future experiments using freestanding 
bilayer graphene 

A lot of the research on Bernal bilayer graphene performed in the last few 
years has been conducted using freestanding bilayer graphene devices [28, 
29, 33, 34, 164, 175, 192]. In these systems, electron-electron interaction is 
stronger than in encapsulated bilayer graphene devices which results from 
the reduced dielectric constant of the vacuum (𝜀 = 1) compared to hBN 
(𝜀 > 3, see also Chapter 2.4). 

In a recent work by F. R. Geisenhof et al. [33], it is revealed that at 
D = 0 Vnm-1, quantum Hall states with filling factors 𝜈 = ±4 (instead of 
𝜈 = ±8 in this work) appear at the lowest magnetic fields in freestanding 
bilayer graphene (even below B = 100 mT where the cyclotron orbits are 
expected to be small enough to resolve the mini Dirac cones). At D = ±15 
mVnm-1, quantum Hall states with filling factors 𝜈 = ±2 appear at the 
lowest magnetic fields and can be traced down to < 20 mT. These states are 
consistent with competing ordered ground states with quantum anomalous 
Hall effects in bilayer graphene [33, 193].  

At first glance, these results seem to be consistent with a truly parabolic 
band structure and inconsistent with the results discussed in Chapter 5. A 
potential explanation for this inconsistency is that the mini Dirac cones are 
renormalized in freestanding bilayer graphene due to stronger interaction 
effects [142, 194]. It would be interesting to find a regime, e.g., when the 
freestanding samples are measured in a medium with a dielectric constant 
1 < 𝜀 < 3 or when the metallic gates are brought closer to the bilayer 
graphene, in which electron-electron interactions are suppressed but 
quantum Hall states can still be resolved to very low magnetic fields. The 
interplay between band structure and correlation effects could then be 
analyzed in detail. 
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  Resistive features near Landau level crossings 

 

 
 

Figure 8.1 Resistive features near Landau level crossings.  Conductance as 
a function of the charge carrier density and the out-of-plane magnetic field 
at an electric displacement field of 50 mVnm-1 (a) and as a function of the 
charge carrier density and the electric displacement field at an out-of-plane 
magnetic field of 500 mT (b). Resistive features near Landau level crossings 
are encircled. A magnetic-field dependent contact resistance was subtracted 
(see Appendix A for more information). 

 
In our work, Landau levels are used as markers of the low-energy dispersion 
and Lifshitz transitions manifest as changes in the ordering of quantum Hall 
states. In addition, at finite electric displacement fields and finite magnetic 
fields, resistive features in the conductance appear when the degeneracy of 
the Landau levels changes and Landau levels cross. These features are 
encircled in Figure 8.1 for positive values of B and D. 

It is not clear why the Landau level crossings result in such resistive features. 
Potentially, these features are first signs of correlated insulating states that 
appear due to the increased DOS near the Lifshitz transitions.  

While correlated behavior in the vicinity of Lifshitz transitions was not 
studied in detail for zero or low electric displacement fields during the course 
of this thesis, interaction effects were indeed observed at large electric 
displacement fields where the DOS is larger (see Chapter 2.2). Correlated 
phases in the vicinity of Lifshitz transitions are discussed in Chapters 6 and 
7, and in the following sections.   
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8.2 Quantum cascade of correlated phases in 
trigonally warped bilayer graphene 

 

Bernal bilayer graphene exhibits a complex and exotic band structure 
consisting of four pockets in each valley that merge at finite Fermi energies. 
Applying an electric displacement field across the two layers not only leads 
to the opening of a bandgap but further results in an inversion of the center 
pocket and in a ’mexican hat’ energy dispersion [26]. Close to the valence 
band edge, the Fermi surface is then composed of three disconnected pockets. 
When the Fermi energy is slightly shifted into the valence band, these three 
pockets connect: the Fermi surface becomes annular, and an inner electron-
like pocket appears. When the Fermi energy is tuned far into the valence 
band, the Fermi surface is fully connected. Concomitant with these Lifshitz 
transitions, changes in the Fermi surface topology, in bilayer graphene, are 
van Hove singularities and a diverging DOS. Near the Lifshitz transitions, 
electron-electron interactions are expected to be strong and correlated 
behavior is possible. 

In Chapter 6 (Reference [1]), transport measurements are presented that 
were conducted in Stack 99 and Stack 82 at millikelvin temperatures and 
elevated electric displacement fields. A strong deviation of the single-particle 
picture is observed in the vicinity of Lifshitz transitions and van Hove 
singularities. New phases emerge at zero and low out-of-plane magnetic fields 
and are revealed to be different from the well-known quantum Hall states 
discussed in Chapter 4.4. 

These experimental findings are consistent with the formation of various 
interaction-driven states close to the valence band edge of hole-doped bilayer 
graphene where the DOS is large enough to fulfill the Stoner criterion. More 
specifically, we find evidence of spin and/ or valley polarized half and quarter 
Stoner metals with varying Landau level degeneracy and hysteresis in the 
in-plane and out-of-plane magnetic field. In the direct vicinity of Lifshitz 
transitions, correlated phases that cannot be explained by Stoner physics 
are revealed. These phases include two exotic metals (phase I and phase IV) 
that exhibit a strong linear temperature dependence, do not show signs of 
Landau level quantization and are consistent with strange metals. 
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Furthermore, three insulating phases that show an activated temperature 
behavior (resistance decreases with increasing temperature) and a non-linear 
current bias dependence that is consistent with an energy gap are revealed. 
One of the insulating phases that we call ‘phase II’ exhibits a slope in the 
out-of-plane magnetic field and is consistent with a quantum anomalous Hall 
phase and a Chern number of -2 while the second one (phase III) does not 
have a slope in the out-of-plane magnetic field and seems to be topologically 
trivial. The third insulating phase, phase V, appears at larger densities near 
the Lifshitz transition in the Stoner half metal regime and demands further 
investigation. 

Finding gapped phases in Bernal bilayer graphene that even emerge at zero 
magnetic field and at finite charge carrier densities is surprising since no 
energy gap is expected in the non-interacting phase diagram or in the Stoner 
phases. Most consistent with our results is the formation of a Chern-
insulating Wigner-Hall crystalline state (phase II) and a topologically trivial 
Wigner crystalline state (phase III) in the vicinity of the Lifshitz transitions 
due to strong Coulomb interactions. The formation of Mott insulating states 
or commensurate charge density waves can be excluded since the phases 
appear at very low charge carrier densities that are incommensurate with 
any fractional filling of the energy bands of bilayer graphene. 

Overall, the results show that at large electric displacement fields, hole-
doped bilayer graphene hosts a cascade of different correlated phases and 
offers an ideal platform for studying electron-electron interactions and 
exploring intricating many-body phases. 
 

  Comments on complementary works 

Two complementary articles by H. Zhou et al. (group of Andrea Young, 
Reference [35]) and by S. C. de la Barrera et al. (group of Raymond Ashoori, 
Reference [36]) have been published at around the same time as our work 
that is reprinted in Chapter 6 (Reference [1]). These works show and analyze 
the experimental findings of interaction induced quantum phases in hole-
doped bilayer graphene, too, but have different focuses. [195]  
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One common finding in all three works is the existence of spin and valley 
polarized Stoner phases that were identified by determining the degeneracy 
of quantum oscillations at finite out-of-plane magnetic fields. While we 
performed two-terminal electrical transport measurements [1], S. C. de la 
Barrera et al. [36] conduct compressibility measurements, and H. Zhou et al. 
[35] inspect both, the compressibility as well as the longitudinal resistance. 
In addition, we uniquely analyze the magnetic hysteresis in the Stoner 
phases to determine whether they are spin or valley polarized [1] while S. C. 
de la Barrera et al. [36] study the in-plane magnetic field dependence of all 
Stoner phases in detail. [195]  

While all experiments report the observation of Stoner ferromagnetic states, 
our work uniquely reports on insulating phases and metallic phases of non-
Stoner type (phases I-IV). The phase boundaries of these phases, can also 
be extracted from the experimental data shown in Reference [35], see for 
example Figure 1E and Figure 2A in Reference [35]. For example, our phases 
II and III are located in the same density and electric displacement field 
regime as the first isospin ferromagnet (IF1) and the first partially isospin 
polarized phase (PIP1) reported in Reference [35], where these phases are 
suggested to be metallic Stoner phases. This classification, however, is not 
in agreement with the temperature and current bias dependent 
measurements that are only shown in our work and reveal the insulating 
behavior of these phases. 

In the density regime of the correlated metals of non-Stoner type (phases I 
and IV) [1], Reference [35] reports a twelve-fold degenerate phase which is 
neither valley nor spin polarized and in which the Fermi surface consist of 
three disconnected pockets. This observation is in contrast to our findings 
due to the observed magnetic hysteresis and the absence of Landau levels in 
these phases.  
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Figure 8.2 Attempt to measure superconductivity. Conductance measured 
as a function of density at an electric displacement field D of -1 Vnm-1 and 
different in-plane magnetic fields B|| (a) and at B|| = 200 mT and different D 
(b) at T = 10 mK using Stack 99. Phases I, III and IV are labeled. Phase II 
is not stable at |D | ≥ 0.9 Vnm-1 when no out-of-plane magnetic field is applied. 
According to Reference [35], superconductivity is expected in the density 
regime marked by an arrow. 

 
Remarkably, Reference [35] observes superconductivity when applying an 
in-plane magnetic field of 0.1 T to 1 T. The superconducting phase is located 
near the symmetry breaking transition between a partially isospin polarized 
phase and a non-polarized phase at electric displacement fields of |D | ≥ 
0.92 Vnm-1. Its density regime matches the density regime of the insulating 
phase V that appears at finite out-of-plane magnetic fields and is also 
reported in Reference [35] where it even appears without out-of-plane 
magnetic field. In fact, H. Zhou et al. [35] observe a transition from the 
insulating phase to the superconducting phase when increasing the in-plane 
magnetic field [35].  

Measurements in the D- and B||-field regime in which superconductivity was 
reported in Ref. [35] were also conducted using Stack 99, which exhibits two-
terminal contacts. These measurements are shown in Figure 8.2. In a two-
terminal device, the first sign of superconductivity would be the emergence 
of a region with increased conductance that appears when increasing D or 
B||. However, no such region emerged. A possible reason why there are no 
signs of superconductivity in this device could be that the superconducting 
phase is competing with other correlated phases that are stronger in some 
devices than in others due to differences in the sample quality, possible 
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alignment with one of the hBN flakes or due to different thicknesses of the 
hBN flakes (the thickness of the dielectric medium has an influence on rs, 
see Equation(31)). As the critical temperature dependence of the 
superconducting phase is about 25 mK, it could also be that the effective 
electron temperature of our cryostat is too high to observe superconductivity 
(a short discussion on the effective electron temperature in our cryostat is 
given in Chapter 4.1).  

Superconductivity in pure Bernal bilayer graphene is has not been 
reproduced by any other group. However, recently different groups reported 
the observation of an enhanced region of superconductivity when placing a 
sheet of WSe2 on top of a bilayer graphene flake whereby spin-orbit coupling 
is enhanced [69, 98, 196]. Superconductivity then appears in the same 
density regime and can even be seen without applying an in-plane magnetic 
field. Why spin-orbit coupling enhances superconductivity in bilayer 
graphene is still under investigation [98, 196–199].  

Several pairing mechanisms for superconductivity and different hypotheses 
why superconductivity competes with purely interacting correlated insulator 
states were suggested [198, 200–205]. For example, M. Xie and S. Das Sarma 
[201] suggest that the superconducting phase in bilayer graphene is phonon-
driven and is competing with an intervalley coherent state that is suppressed 
by in-plane magnetic fields, spin-orbit coupling or the screening of Coulomb 
interactions due to nearby metallic gates. A. Jimeno-Pozo et al. [198] suggest 
that screened long-range Coulomb interaction alone gives rise to 
superconductivity in bilayer graphene and suppresses other exchange driven 
phases and Z. Dong et al. [203] suggest that spin triplet superconductivity 
arises from quantum-critical fluctuations whereas without in-plane magnetic 
fields strong repulsive interaction leads to the formation of a correlated 
insulator state. 

Future experiments such as a systematic study on the influence of gate 
screening via controlling the dielectric thickness and testing different 
dielectric mediums are needed to experimentally assess these theoretical 
considerations and to further disentangle the interplay between correlated 
insulators and superconductivity.  
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 Towards a characterization of the quantum cascade of 
correlated phases using four-terminal devices  

The correlated insulator phases II, III and V and correlated metals of non-
Stoner type (phase I and IV) are not yet fully understood and demand 
further investigation. In fact, possible correlated states that are consistent 
with our measurements can only be suggested but cannot be surely assigned. 

 

 

Figure 8.3 Correlated phases measured in Stack 70. (a, b) Measured 
longitudinal conductance Gxx (a) and derivative of the longitudinal 
conductance dGxx/dn as a function of the charge carrier density and the out-
of-plane magnetic field at an electric displacement field of D = 0.6 Vnm-1. 
The correlated phases I-IV are labeled and highlighted in grey for 𝐵⊥ < 0.  
The measurement was conducted at a temperature of T = 10 mK. 

 

Measuring devices with contacts shaped in a Hall bar geometry will allow to 
make more accurate statements on the temperature dependence of these 
phases. For example, it needs to be confirmed that the resistance in phase I 
and IV indeed increases linearly with increasing temperature. Furthermore, 
it would be very interesting to see whether the Hall conductance 𝐺  of 
phase II is indeed 2𝑒 ℎ−  which would support or current understanding of 
this phase.  

First four-terminal measurements of the correlated phases have been 
conducted using the upper device of Stack 70 that exhibits edge contacts 
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shaped in a Hall bar geometry and a local graphite top gate. So far, only 
𝐺  and 𝐺  but not 𝐺  were measured in this device. 𝐺  plotted as a 
function of n and 𝐵⊥ is shown in Figure 8.3a. While in general the phase 
diagram of correlated phases is reproduced, the phases are not as well 
pronounced as in other devices which is likely due to disorder in the sample. 
However, all phase boundaries can be clearly resolved in the derivative of 
the conductance that is shown in Figure 8.3b. If the disorder in this device 
comes from the use of gold contacts, from the use of a local top gate or from 
other factors cannot be revealed at this point. 

 

 

Figure 8.4 Implementation of graphite contacts shaped in a Hall bar 
geometry. (a) Optical microscope image of a graphite flake that is patterend 
into contacts shaped in a Hall bar geometry. (b) Optical microscope image 
of a bilayer graphene heterostructure that has patterned graphite contacts. 
The graphite contacts moved during the sample assembly and are now 
deformed. The scalebar is 10 μm in both images. 

 

Lastly, to better understand phases I - V, high-quality four-terminal devices 
that allow to measure 𝐺  and 𝐺  are needed. Since devices with graphite 
contacts gave the highest quality so far, it would be very useful to fabricate 
devices that exhibit graphite contacts shaped in a Hall bar geometry. In 
cooperation with Dr. Lisa Walter, David Urbaniak, Monica Kolek Martinez 
de Azagra, Jonas Pöhls and Isabell Weimer, I have been working on a 
technique to employ patterned graphite contacts in bilayer graphene 
heterostructures. Therefore, few-layer graphite flakes are patterned using 
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electrode-free anodic oxidation nanolithography that is described in detail 
in Reference [206]. This technique allows to pattern the graphite contacts 
without bringing them in contact with polymers such as a PMMA resist 
which would leave behind residuals and would introduce disorder in the 
sample. A picture of such a patterned contact is shown in Figure 8.4a. In a 
next step, we will need to embed the contacts into our devices using the 
stamping technique described in Chapter 3.3 which is, however, challenging 
since the contacts tend to break and move during this process. This is for 
example illustrated in the optical microscope image presented in Figure 8.4b. 
Here, a heterostructure is shown in which patterned graphite flakes have 
been embedded. The contacts moved during the assembly of the 
heterostructure and are now deformed. 

 

  Suggestions for a characterization beyond electrical 
transport measurements 

When performing electrical transport measurements, it is only possible to 
probe the conductance or resistance in bilayer graphene and to then conclude 
on possible correlation effects. However, to elucidate the correlated phases 
further, a set of different measurement techniques is needed. For example, 
scanning tunneling microscopy could be used to locally map the DOS which 
might reveal ordered states such as Wigner crystals [130] or charge density 
waves [207]. Angle-resolved photoemission spectroscopy would allow to 
determine the effective band structure [93]. In this regard, a graphene 
sensing layer could be used as a top gate to still be able to gate the bilayer 
graphene samples from both sides [130]. Also these measurements would 
need to be conducted at millikelvin temperatures. 
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8.3 Interacting ground states of electron-doped 
bilayer graphene at large electric 
displacement fields 

 
In the previous section, it is shown that hole-doped Bernal bilayer graphene 
exhibits a complex phase diagram at large electric displacement fields where 
multiple Lifshitz transitions give rise to van Hove singularities and a 
divergent density of states. In this regime, we and other groups found Stoner 
ferromagnets [1, 35, 36] as well as other correlated phases such as correlated 
insulators [1, 35], correlated metals of non-Stoner type [1] and even a 
superconducting state [35].  

The electron-doped regime of Bernal bilayer graphene is expected to host 
similar interaction effects. Compared to the valence band, trigonal warping 
in the conduction band is less pronounced and changes in the Fermi surface 
topology only appear at large electric displacement fields and at very low 
electric displacement field where the three-off-center cones disappear (the 
latter electric displacement field regime is ignored for now). However, at 
large electric displacement fields, the energy bands of electron-doped bilayer 
graphene are flatter, and close to the conduction band edge, the DOS 
becomes even larger than the DOS in hole-doped bilayer graphene (see 
Extended Data Fig. 1 in Chapter 7). Nevertheless, only Stoner 
ferromagnetism was reported in electron-doped bilayer graphene in a 
previous work [36]. 

In our manuscript that is reprinted in Chapter 7, electrical transport 
measurements in electron-doped bilayer graphene at large electric 
displacement fields are presented. Two interaction induced phases at zero 
and low out-of-plane magnetic fields that cannot be explained by just Stoner 
ferromagnetism are revealed and analyzed. We label these phases with svi 
(spin and valley polarized insulator) and si (spin polarized insulator) and 
find that they have different spin and valley orderings by investigating their 
in-plane and out-of-plane magnetic field dependence and their hysteresis in 
the magnetic field.  

Furthermore, an insulating temperature dependence (conductance increases 
with increasing temperature) and an intriguing current-bias dependence that 
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is consistent with a gap in both phases are revealed. These results hint 
towards an exotic ground state of the spin and valley polarized phases. We 
conclude that interaction effects in electron-doped bilayer graphene not only 
result in a breaking of the spin and valley degrees of freedom but also in a 
reconstruction of the energy bands. At small Fermi energies, the Fermi 
surface seems to become (partially) gapped and the svi and si phases are 
then consistent with either incommensurate charge density waves or Wigner 
crystals with different spin and valley polarizations. 

 

  Comparing the correlated phases in electron-doped 
and hole-doped bilayer graphene 

 

Figure 8.5 Phase transitions in hole- and electron-doped bilayer graphene. 
Normalized derivative of the conductance as a function of n and D with 𝐵⊥= 
𝐵  = 0 T. Steps in the conductance appear as peaks in the normalized 
derivative of the conductance. Regions in which the bilayer graphene is spin 
and valley degenerate (4x), spin or valley degenerate (2x) or fully polarized 
(1x) are labeled and separated by dashed lined. Insulating phases are 
highlighted in red. The measurement was conducted at a temperature of 
T = 10 mK using Stack 99.  

 
The band structure of Bernal bilayer graphene is electron-hole asymmetric. 
At large electric displacement fields, this leads to the emergence of different 
sets of correlated phases that are compared in the following. 
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At non-zero electric displacement fields, changes in the Fermi surface 
topology of bilayer graphene start to appear at low electric displacement 
fields in the valence band but only at large electric displacement fields in 
the conduction band. Since these Lifshitz transitions come along with an 
increase in the DOS that is needed to fulfill the Stoner criterion, spin and 
valley polarized phases emerge at different electric displacement fields in 
both bands (see Figure 8.5). 

Insulating phases consistent with charge density waves or Wigner crystals 
are revealed on both sides of the phase diagram and are highlighted in red 
in Figure 8.5. On both sides, these phases appear near the regime in which 
the Fermi surface is annular and the DOS is largest. In hole-doped bilayer 
graphene, trigonal warping is more pronounced and the van Hove 
singularities appear at finite energies. Thus, the correlated insulators (phase 
II and phase III) do not emerge at the band edge but in the middle of the 
band. In electron-doped bilayer graphene, however, transitions in the Fermi 
surface appear in a much smaller density regime near the band edge where 
the bands are almost flat. Consequently, the correlated insulators (the svi 
and si phases) appear at the band edge and persist within the entire 
polarized density regime. 

Even though the correlated insulators in hole- and electron-doped bilayer 
graphene appear in the vicinity of Lifshitz transitions where the DOS is high, 
there are some fundamental differences between the phases: 

In hole-doped bilayer graphene, phase II exhibits a slope in the magnetic 
field that is consistent with a Chern number of -2 while the svi and si phases 
in electron-doped bilayer graphene do not have a slope in the out-of-plane 
magnetic field that can be related to a finite Chern number. Furthermore, 
phase II exhibits a conductance of approximately 2 𝑒 /ℎ (at least in Stack 
99 where this phase is most pronounced). We consequently assume this 
phase to be fully gapped and to only exhibit edge states. Thus, phase II is 
consistent with a Wigner Hall crystal phase.  

The svi and si phases in the conduction band (and also phase III in the 
valence band) are likely not fully gapped. These phases can either be Wigner 
crystals that are not fully gapped due to disorder, or charge density waves 
in which the Fermi surface is only partially gapped. These states are, 
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however, difficult to disentangle and can transform into each other via 
second order phase transitions [208, 209].  

Further theoretical and experimental investigation of these phases is needed 
to find out why the different phases emerge. Measurements on four-terminal 
devices as well as complementary measurement techniques that are discussed 
in the previous sections would help in this regard.  

 

  Comparing the correlated phases in Bernal bilayer 
graphene and rhombohedral-stacked trilayer graphene 

Stoner half and quarter metals have recently been investigated in electron-
doped rhombohedral-stacked trilayer graphene at zero and finite magnetic 
fields but no insulating states similar to our svi and si phases have been 
reported [24, 25]. Since the band structure of rhombohedral-stacked trilayer 
and Bernal bilayer graphene is very similar, it is well worth to examine these 
phases in rhombohedral-stacked trilayer graphene or other rhombohedral-
stacked multilayer graphene systems, too, despite the increased experimental 
effort needed to fabricate these samples [25]. In fact, spin and valley 
polarized phases at B = 0 T have been observed at even smaller electric 
displacement fields below 0.1 Vnm-1 but no temperature or current bias 
dependence in these phases has been shown which could potentially reveal 
insulating behavior. The low electric displacement field onset of these phases 
might even allow to observe the phases in freestanding rhombohedral-
stacked multilayer graphene samples that are easier to fabricate. 

Lastly, it is worth mentioning that also superconductivity has recently been 
observed in electron-doped rhombohedral-stacked trilayer graphene at 
≈ 0.1 Vnm-1 in a density regime in which the spin polarized phase emerges 
[166]. Potentially, this superconducting phase can be reproduced in electron-
doped bilayer graphene at even lower temperatures and in cleaner samples 
or when spin-orbit coupling is enhanced [98, 196]. 
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9  Conclusions 
 

In this thesis, investigations into the complex band structure and the 
intriguing correlated phase diagram of Bernal bilayer graphene are 
presented. An essential requirement for gaining insight into these topics is 
the fabrication of high-quality encapsulated bilayer graphene 
heterostructures that can be electrically contacted and measured at 
millikelvin temperatures. The key results of the electrical transport 
measurements that have been performed throughout this thesis can be 
divided into three parts and are summarized below. 

Firstly, the low-energy band structure of unbiased bilayer graphene is 
uncovered. By analyzing the Landau level spectrum of bilayer graphene at 
zero electric displacement field, it is experimentally revealed for the first 
time that the band structure of bilayer graphene consists of four electron-
hole asymmetric mini Dirac cones. This experimental result is shown to be 
consistent with theoretical predictions and makes Bernal bilayer graphene 
the first massless Dirac material with a truly linear energy dispersion that 
can be tuned electrostatically. A reordering of quantum Hall states is 
observed at finite electric displacement fields when Lifshitz transitions in the 
band structure occur and the topology of the Fermi surface changes.  

Next, transport measurements that were conducted at large applied electric 
displacement fields. Here, Lifshitz transitions and concomitant van Hove 
singularities in the low-energy band structure give rise to electron-electron 
interaction-induced states. In hole-doped bilayer graphene, several magnetic 
phases consistent with Stoner ferromagnetic phases are revealed. 
Furthermore, experimental signatures of competing insulating states are 
found. Two insulating states are consistent with a topologically trivial 
Wigner crystal state and a topologically non-trivial Wigner Hall crystal 
state. In addition, two correlated metal phases of non-Stoner type are 
observed in the vicinity of the insulating phases and are concluded to be 
consistent with strange metal phases. 

Lastly, correlated phases at large electric displacement fields are found in 
electron-doped bilayer graphene. In the conduction band, trigonal warping 
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is less pronounced and interaction effects appear in the vicinity of the band 
edge where the conduction band is flatter compared to the valence band. 
Similar to hole-doped bilayer graphene, Stoner ferromagnetic phases with 
different spin and valley polarization are observed. At low magnetic fields, 
phase transitions to an insulating spin- and valley-polarized phase and an 
insulating spin-polarized phase occur. Both phases are consistent with 
electron-electron interaction-induced charge density waves or again Wigner 
crystals.  

In summary, it is clearly shown that the complex low-energy band structure 
of Bernal bilayer graphene hosts several correlated phases when the Fermi 
energy lies in the vicinity of Lifshitz transitions and the density of states 
diverges. While some of the observed phases, including Stoner ferromagnetic 
phases and correlated metal phases of non-Stoner type, were previously 
identified in much more complicated systems, like in magic-angle twisted 
bilayer graphene, the topologically non-trivial Wigner-Hall crystal state has 
only been revealed in Bernal bilayer graphene during the course of this 
thesis. 

These investigations have greatly elucidated the complex correlation physics 
present in bilayer graphene. However, the correlated phase diagram is still 
far from being fully understood and demands further investigation. In 
particular, more-ideal devices with four-terminal graphite contacts are 
needed to investigate how experimental parameters such as the thickness of 
the hBN flakes influence the appearance of interaction-induced phenomena. 
Furthermore, it would be interesting to analyze the phases using a set of 
different measurement techniques, such as scanning tunneling microscopy. 
Thereby, information on the spatial ordering of electrons that cannot be 
gained by conventional transport measurements would possibly be obtained 
(see Section 8.2.3). 

Finally, it is worth highlighting that correlated electronic states in Bernal 
bilayer graphene are currently only stable at temperatures up to 1 K. Thus, 
possible applications, such as in topological quantum computing [210–212], 
that demand stability at higher temperatures are still far off. Nevertheless, 
the tunability and simplicity of Bernal bilayer graphene already provides an 
attractive platform for exploring intricate many-body phases in further 
experiments.  
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A.  Supplementary material for ’Mapping out 
the tunable multi-cone band structure in Bernal 
bilayer graphene’ (Chapter 5) 
 

 
In this supplementary material we give more details on the tight-binding 
and inverse compressibility calculations described in the main text. 
Furthermore, we give a characterization of the device discussed in the main 
text and present data conducted in a second device.  

 

Tight-binding calculations 

The Landau level calculations were based on a realistic tight binding model 
for the 𝜋-electrons as described in Ref. [26]. 

The model includes different hopping processes which are described by 
different parameters: 𝛾   describes the tunneling for neighboring sites within 
a single graphene sheet. 𝛾  accounts for hopping processes between the 
aligned lattice sites of the two sheets, the so-called dimer sites. Finally, 𝛾  
and 𝛾  are the hopping parameters between non-dimer sites. 𝛾  causes the 
trigonal warping of the Fermi sea at low carrier densities. Further 
parameters are Δ , an energy difference between dimer and non-dimer sites, 
and the interlayer potential 𝑈 accounting for an out-of-plane displacement 
field. The magnitudes of these parameters were taken from Ref. [85]. 

We used a two-band model which is reduced to the non-dimer sites and 
includes direct hoppings via 𝛾 and 𝛾 , as well as hoppings via dimer sites. 
It is expected to capture the correct low-energy physics if 𝛾  and 𝛾  are the 
relevant energy scales of the problems. 

Writing  
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𝜋 = 𝜉𝑝 + 𝑖𝑝   and 𝜋+ = 𝜉𝑝 − 𝑖𝑝  with denoting the valley index and 𝑝  
and 𝑝  denoting the  x and y components of the momentum vector, one may 
decompose the Hamiltonian into as ℎ = ℎ + ℎ + ℎ + ℎ  with  

ℎ = − 1
2𝑚

0 (𝜋+)
𝜋 0

, 

ℎ = 𝑣 0 𝜋
𝜋+ 0 − 𝑣 𝑎

4
√

3ℏ
0 (𝜋+)
𝜋 0

, 

ℎ = 2𝑣𝑣
𝛾

+ Δ 𝑣
𝛾

𝜋+𝜋 0
0 𝜋𝜋+ , 

ℎ = − 𝑈
2

1 0
0 −1 − 2𝑣

𝛾
𝜋+𝜋 0
0 −𝜋𝜋+ , 

where we have introduced the velocities 𝑣 =
√

ℏ , 𝑣 =
√

ℏ , 𝑣 =
√

ℏ   
with the lattice constant 𝑎 and the band mass 𝑚 = . A diagonalization 
yields momentum space representations of two component wave functions 
Ψ  =   √ (𝜓 , 𝜓 ) , with the components 𝜓 ( )specifying the wave functions 
projections on the non-dimer sites. 

The first term (ℎ ) describes the simple parabolic two band model with the 
dominant hopping processes between non-dimer sites, the second (ℎ ) 
accounts for trigonal warping, the third one (ℎ ) introduces an intrinsic 
electron-hole asymmetry and the fourth one (ℎ ) the influence of external 
fields. 

The effect of the latter may be understood by realizing that a displacement 
field results in a potential difference 𝑈  between the two graphene sheets. A 
rigorous estimation of the magnitude of the potential requires a self-
consistent computation that includes the screening effects due to the 
redistribution of charge carriers between the two sheets in the presence of a 
displacement field [26].  

Without aiming for an exact quantitative description, we estimate the rough 
magnitude of 𝑈 via a simple plate-capacitor calculation as 𝑈 = 𝑐𝐷 where 
𝑐 = 3.35 Å is the interlayer spacing. This estimate assumes minor 
importance of screening effects at small displacement fields. 

The out-of-plane magnetic field of magnitude 𝐵 is introduced by adding a 
contribution from the vector potential to canonical momenta. In the Landau 
gauge this modifies the momentum operator according to 𝜋 = −𝑖𝜉ℏ𝜕 +
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ℏ𝜕 − 𝑖𝑒𝐵𝑥  and 𝜋+ = −𝑖𝜉ℏ𝜕 − ℏ𝜕 + 𝑖𝑒𝐵𝑥 .  The operators satisfy the 
same algebraic relation as the ladder operators of the harmonic oscillator up 
to prefactors, namely [𝜋, 𝜋+] = −2𝐵𝑒𝜉. One may use this fact to define the 
operators 𝑎 = − √ 𝜋  and 𝑎+ = √ 𝜋+  for the 𝐾+ -valley or 𝑎+ =
− √ 𝜋  and 𝑎 = − √ 𝜋+  for the 𝐾− -valley. These operators act like 
raising and lowering operators for an oscillator with the cyclotron frequency 
𝜔 = .  Their action on the oscillator wave functions reads 𝑎Φ =√

𝑙Φ − and 𝑎+Φ =
√

𝑙 + 1Φ +  

The Hamiltonian in the 𝐾+-valley may then be rewritten as  

ℎ̂ =

⎣
⎢
⎡− 𝑈

2
+ 𝐶+𝑎+𝑎 𝐴(𝑎+) − 𝑖𝑅𝑎

𝐴𝑎 + 𝑖𝑅𝑎+ 𝑈
2

+ 𝐶−𝑎𝑎+
⎦
⎥
⎤
 

with 

𝐴 = ℏ𝜔   1 + 𝛾 𝛾
6𝛾

, 

𝑅 = 𝛾
𝛾

𝛾 ℏ𝜔  

and  

𝐶± = ℏ𝜔 2𝛾
𝛾

+ Δ ± 𝑈
𝛾

. 

 

In the opposite valley the roles of creators and annihilators are switched. 

In the presence of trigonal the eigenvalue problem has no analytic solution. 
In order to get a numerical solution, we used a matrix representation the 
Hamiltonian in a truncated basis. This method is expected to give good 
results for the low-energy spectrum, as the discarded high-energy states do 
not hybridize with those at low energy.  

In the 𝐾+-valley, using  

𝜙
0 , 𝜙

0 , 1√
2

𝜙
𝜎𝜙 −

(𝑛 ≥ 2) 𝜎 = ± , 
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the matrix elements evaluate to   

⟨0|ℎ|0⟩ = −𝑈
2

 ⟨3, 𝜎|ℎ|0⟩ = 𝜎𝑖𝑅√
2

 

⟨1|ℎ|1⟩ = −𝑈
2

+ 𝐶+ ⟨4, 𝜎|ℎ|1⟩ = 𝜎𝑖𝑅 

⟨𝑛, 𝜎|ℎ|𝑛, 𝜎 ⟩ = 𝜎𝛿 𝐴 𝑛(𝑛 − 1) + 𝐷(1 − 𝛿 )

+ 1
2

𝐶+𝑛 + 𝜎𝜎 𝐶−(𝑛 − 1)  

⟨𝑛 + 3, 𝜎|ℎ|𝑛, 𝜎 ⟩ = 𝜎𝑖𝑅
√

𝑛 + 1
2

. 

All remaining matrix elements follow from the requirement of  Hermitian 
adjointness. 

Analogously, for the 𝐾−- valley we used 

0
𝜙 , 0

𝜙 , 1√
2

𝜙 −
𝜎𝜙 (𝑛 ≥ 2) 𝜎 = ±  

 

to obtain 

⟨0|ℎ|0⟩ = 𝑈
2

 ⟨3, 𝜎|ℎ|0⟩ = −𝑖𝑅√
2

, 

⟨1|ℎ|1⟩ = 𝑈
2

+ 𝐶− ⟨4, 𝜎|ℎ|1⟩ = −𝑖𝑅, 

⟨𝑛, 𝜎|ℎ|𝑛, 𝜎 ⟩ = 𝜎𝛿 𝐴 𝑛(𝑛 − 1) + 𝐷(1 − 𝛿 )

+ 1
2

(𝐶+(𝑛 − 1) + 𝜎𝜎 𝐶−𝑛), 

and 

⟨𝑛 + 3, 𝜎|ℎ|𝑛, 𝜎 ⟩ = −𝜎 𝑖𝑅
√

𝑛 + 1
2

. 

For the calculation an upper cutoff for the Landau level index of 𝑛 =
300 was set by observing the convergence behavior of the low-lying energy 
levels. 

To illustrate the impact of 𝛾 , 𝛾 , and Δ  the band structure, calculated 
inverse compressibility as a function of charge carrier density and magnetic 
field and the evolution of Landau levels as a function of the magnetic field 
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is shown in Fig. S1 and Fig. S2 when 𝛾 , 𝛾 , and Δ are not included (a), 
when only 𝛾  is included (b) and when 𝛾 , 𝛾 , and Δ  are all included (c). 

 

Calculation of the inverse compressibility 

The inverse compressibility is defined by . In contrast to the conductance 
𝐺 , it can be extracted from the Landau level spectrum only, which makes 
it a suitable quantity for theoretical considerations. It is related to the 
conductance: Divergences in the inverse compressibility indicate filled 
Landau levels where the conductance exhibits a plateau.  

By fixing the temperature 𝑇 , it is straightforward to calculate the charge 
carrier density 𝑛 as a function of 𝜇  by populating the energy levels 
{𝜖 } according to the Fermi function. Each level comes with a degeneracy of 
𝑔 = ℏ , leading to a charge carrier density of 

𝑛(𝜇) = 2 ∑ ℏ
   

+   −  with another prefactor of 2 due to spin 

degeneracy.  

𝜇(𝑛) and the inverse compressibility were obtained by a numerical inversion 
of this function. To this end, we defined a reservoir 𝑀 of 10⁵ equispaced 
values of 𝜇 in a range that was roughly adjusted to the lowest and highest 
Landau level energies accessible the considered charge carrier densities. For 
these values of 𝜇, the carrier densities were computed. The contribution 
from the lower half of the spectrum, (the hole Landau levels) had to be 
subtracted as an offset. 

Fixing the carrier density to  𝑛∗, the corresponding chemical potential could 
then be determined as  

𝜇(𝑛∗) = min(𝜇 ∈ 𝑀 | 𝑛(𝜇) > 𝑛∗) . This so-defined inverse function may 
attain all values from the reservoir from the bottom to the top when 𝑛 is 
increased. The numerical error of this procedure is controlled by the spacing 
within the reservoir. For the practical implementation the temperature 
entering in the Fermi distribution was chosen to be 0.1 K. This is higher 
than the usual cryogenic temperatures of the actual experimental realization. 
However, the resulting broadening may also mimic the finite width of 
Landau levels due to sample impurities. 
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Device characterization 

We performed quantum Hall measurements in two different devices. 
Measurements conducted in one device are shown in the main text. This 
device and its fabrication is described in detail in Ref. [1] where the same 
device is denoted as Device A. Measurements conducted in a second device 
are discussed in Section C.  

In our dually gated bilayer graphene samples the charge carrier density n as 
well as the electric displacement field D can be tuned individually via the 
use of graphite top and bottom gates. They are defined as 

𝑛 = 𝜀  𝜀  (𝑉 /𝑑 + 𝑉 /𝑑 )/𝑒   

and   𝐷 = 𝜀  (𝑉 /𝑑  − 𝑉 /𝑑  )/2 

where Vt (Vb) is the gate voltage applied to the top (bottom) gate, dt (db) 
the thickness of the upper (lower) hBN flake serving as a dielectric, e the 
charge of an electron, 𝜀  the dielectric constant of hBN and 𝜀  the 
vacuum permittivity. 

In order to determine 𝜀  and to thereby assign n and D, integer quantum 
Hall plateaus at finite magnetic fields were aligned with their corresponding 
slopes in the fan diagram. All observed LL crossings show excellent 
agreement with those observed previously (see Ref. [1] where data from the 
same device is shown). For example, at B = 0.4 T (Fig. 3b) one can see the 
known LL crossings of the ν = ± 1 and ν = 0 quantum Hall states at 
D ≈ 15 mV/nm as well as crossings at ν = ± 2 and D ≈ 0 mV/nm.  

Having aligned the sample by using the slopes of the quantum Hall states 
would in principle allow to determine the contact resistance by comparing 
the measured resistance with the expected quantum Hall resistance. 
However, due to the use of graphite contacts in a two-terminal device 
configuration the contact resistance increases linearly with increasing 
magnetic field (see for example Fig. S3, more details are given in Ref. [1]). 
Furthermore, there is a line of decreased conductance across zero 
displacement field (Fig. S3). This region is only bottom- but not top-gate 
dependent and stems from the region of the BLG that is located below the 
graphite contacts where the top graphite contacts screen the field of the top 
gate but not of the bottom gate. Thus, the contact resistance is additionally 
dependent on the top gate voltage ( therefore also on n and D). To not 
confuse the reader with the line of decreased conductance we only show the 
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derivative of the conductance in the main text. Another advantage of 
showing the derivative of the conductance is that it allows to track quantum 
Hall states at lower magnetic fields where the conductance is not fully 
quantized yet as traceable fluctuations near incompressible quantum Hall 
states can appear [33, 213, 214]. Exemplary, the conductance including a 
subtracted contact resistance is shown in Fig. S4 for D = 0 mV/nm and in 
Fig. S5 for D = 50 mV/nm. Here a contact resistance was subtracted that 
linearly increases with B. However, we did not account for the dependence 
on the charge carrier density. Therefore, the resistance values are only valid 
in a small density regime (negative densities close to the band edge). In Fig. 
S4, we included data taken at larger magnetic fields up to B = 1.5 T which 
we did not show in the main text. At B > 0.6 T and D = 0 V/nm the 
quantum Hall states are fully polarized due to additional valley imbalances 
implying a small residual displacement field. In agreement with previous 
studies [28, 33, 109, 111], the even integer quantum Hall states still show 
wider plateaus compared to the odd integer quantum Hall states. 

 

Measurements conducted in a second Device 

Electrical measurements conducted in a second device are shown in Fig. S6. 
This device was fabricated the same way as the device described in the main 
text [1] but it exhibits four graphite contacts instead of two. The 
corresponding measurement configuration is shown in Fig. S6a. The 
measurements show agreement with the theoretical simulations and the 
electrical measurements discussed in the main text. 
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FIG S1. Impact of Coupling parameters 𝛾 , 𝛾 , and Δ  on the band structure 
shown in an energy range from -2 meV to + 2 meV (left panel), the evolution 
of Landau levels as a function of the magnetic field (middle panel), and the 
calculated inverse compressibility as a function of charge carrier density and 
magnetic field (right panel) at U = 0. (a) 𝛾 , 𝛾 , and Δ are not included into 
the calculations. The parabolic band structure results in four-fold degenerate 
Landau level and an eight-fold degenerate lowest Landau level. This results 
in the appearance of quantum Hall states with ν = -12, -8, -4, +4, +8, +12, 
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… at very low magnetic fields. (b) 𝛾  is included into the calculations, 𝛾 , and 
Δ are not included. At low energies, the band structure consists of four mini 
Dirac cones resulting in a 16-fold degenerate lowest Landau level and in the 
appearance of quantum Hall states with ν = -12, -8, +8, +12, … at very low 
magnetic fields. Quantum Hall states with ν = -4, +4 appear at B > 0.1 T 
after the magnetic breakdown has occurred. (c) 𝛾 , 𝛾 , and Δ are all included 
into the calculations. This case is discussed in detail in the main text.  
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FIG S2. Impact of Coupling parameters 𝛾 , 𝛾 , and Δ  on the band structure 
shown in an energy range from -12 meV to + 12 meV (left panel), the 
evolution of Landau levels as a function of the magnetic field (middle panel), 
and the calculated inverse compressibility as a function of charge carrier 
density and magnetic field (right panel) at U = 0.017 eV. (a) 𝛾 , 𝛾 , and 
Δ are not included into the calculations. The almost parabolic band structure 
results in four-fold degenerate Landau level that split up into two-fold 
degenerate Landau level with increasing magnetic field. This results in the 
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appearance of quantum Hall states with ν = -4, -2, 0, +2, +4, …. (b) 𝛾  is 
included into the calculations, 𝛾 , and Δ are not included. At low energies, 
the band structure consists of three pockets resulting in a 12-fold degenerate 
lowest Landau level at low magnetic field and in the appearance of quantum 
Hall states with ν = -6 and +6 at very low magnetic fields. Quantum Hall 
states with ν = -4, -2, 0, +2, +4, … appear at B > 0.1 T after the magnetic 
breakdown has occurred. (c) 𝛾 , 𝛾 , and Δ are all included into the 
calculations. This case is discussed in detail in the main text. 
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FIG S3. (a) Measured conductance as a function of bottom and top gate. 
There is a region of decreased conductance that only depends on VB but not 
on VT. There is no contact resistance subtracted. b) Measured conductance 
as a function of density and electric displacement field in the same regime 
that is shown in (a). 

 

  



Appendix 
 

188 

 

 

FIG. S4. Conductance G as a function of charge carrier density n and 
magnetic field B in the same n- and B- space at D = 0  mV nm-1 as shown 
in Fig. 1g. A contact resistance of RC = 3300 Ω - 4600 Ω T · B-1 was 
subtracted from the measured resistance. Using this value of RC the 
quantum Hall states with ν < 0 show a quantized conductance where G = 
IνI e2h-1 while the conductance values for ν > 0 are lower due to a higher 
contact resistance (see Fig. S3). A line-cut at B = 1.5 T is shown in the 
top. Here the density n is converted into filling factor ν. 
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FIG. S5. Conductance G as a function of charge carrier density n and 
magnetic field B at D = 50mV/nm in the same n- and B- space as shown in 
Fig. 2e. A contact resistance of RC = 3000 Ω - 3500 Ω T / B was 
subtracted from the measured resistance. Using this value of RC the 
quantum Hall states with ν < 0 show a quantized conductance where G = 
IνI e2 / h  while the conductance values for ν > 0 are lower due to a higher 
contact resistance (see Fig. S3).  
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FIG. S6. Electrical Measurements conducted in a second device. (a) Optical 
microscope image of the second device and corresponding configuration of 
transport measurements. The different flakes are outlined. (b, c) Normalized 
derivative of the conductance as a function of n and B for D = 0 V/nm (b) 
and D = 50 mV/nm (c). Quantum Hall states with ν = ±8 and ν = -4 are 
the most prominent at D = 0 V/nm. At D = 50 mV/nm quantum Hall states 
with ν = -6 and ν = -3 are the most prominent for hole doping while the 
quantum Hall state with ν = +4 is the most prominent for electron doping. 
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