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Abstract

Semiparametric models are well-established, versatile and effective statistical models for analysing

complex data by combining both parametric and non-parametric components and are used in a wide

range of applications and fields. Meanwhile, deep learning models are a type of machine learning

model designed to identify and represent intricate patterns and relationships in data, which are

gaining popularity due to their impressive performance in various applications, including analysing

structured tabular data and, in contrast to statistical models, unstructured data such as images,

text, and sound recordings. However, the complexity of these models can make them challenging

to understand and interpret, limiting their transparency and interpretability.

The purpose of this thesis is twofold. Firstly, develop more efficient model selection and eval-

uation methods that can handle model uncertainty for semiparametric and deep learning models.

Secondly, to merge traditional statistical methods with machine and deep learning concepts, com-

bining their strengths to mitigate their weaknesses.

Based on Stein’s unbiased risk estimate, part one of this thesis introduces a criterion for de-

termining squared loss optimal weights for model averaging of (conditional) linear mixed models.

Furthermore, the complicated underlying optimisation of the presented criterion is discussed, and

a possible solution via a specifically customised algorithm based on the augmented Lagrangian is

introduced.

An essential part of model evaluation and selection in statistics is model complexity, often

measured in degrees of freedom. In the second part of this thesis, three different methods for

measuring model complexity based on the concept of covariance penalties associated with degrees

of freedom are presented and ultimately compared and analysed using different simulations.

The third and final section of the thesis introduces a new type of neural additive models for

location, scale, and shape by combining the GAMLSS distribution regression framework with neural

network techniques and principles. This approach differs from previous deep learning methods as it

can model the entire response distribution rather than just the mean response. The effectiveness of

this method is evaluated using simulated and real data and compared against established statistical

and deep learning methodologies.
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Zusammenfassung

Semiparametrische Modelle sind bewährte, vielseitige und effiziente statistische Modelle für die

Analyse komplexer Daten, die parametrische und nichtparametrische Komponenten kombinieren

und in einer Vielzahl von Anwendungen und Bereichen eingesetzt werden. Deep Learning Modelle

sind eine Art Machine Learning-Modelle, die darauf ausgelegt sind, komplexe Muster und Beziehun-

gen in Daten zu erkennen und darzustellen. Sie erfreuen sich aufgrund ihrer beeindruckenden Leis-

tungsfähigkeit in verschiedenen Anwendungen immer größerer Beliebtheit, z.B. bei der Analyse von

strukturierten Tabellendaten oder, im Gegensatz zu statistischen Modellen, von unstrukturierten

Daten wie Bildern, Text und Ton. Die Komplexität dieser Modelle führt jedoch dazu, dass sie schwer

zu verstehen und nachzuvollziehen sind, was ihre Transparenz und Interpretierbarkeit einschränkt.

In dieser Arbeit werden zwei Ziele verfolgt. Erstens sollen effizientere Methoden zur Model-

lauswahl und -bewertung entwickelt werden, die mit Modellunsicherheiten sowohl bei statistischen

als auch bei Deep Learning Modellen umgehen können. Zweitens sollen traditionelle statistische

Methoden mit Konzepten des Machine Lernens und des Deep Learning zusammengeführt werden,

um die jeweiligen Schwächen eines Ansatzes durch die Stärken des anderen zu kompensierten.

Basierend auf Stein’s Unbiased Risk Estimate wird im ersten Teil dieser Arbeit ein Kriterium zur

Bestimmung der optimalen Gewichte für das Model Averaging von (konditionalen) linearen gemis-

chten Modellen eingeführt. Darüber hinaus wird die komplizierte zugrundeliegende Optimierung

des vorgestellten Kriteriums diskutiert und eine mögliche Lösung durch einen speziell angepassten

Algorithmus auf der Basis des augmented Lagrangian vorgestellt.

Ein wesentlicher Bestandteil der Modellauswahl- und bewertung in der Statistik ist die Model-

lkomplexität, die oft in Freiheitsgraden gemessen wird. Im zweiten Teil dieser Arbeit werden drei

verschiedene Methoden zur Messung der Modellkomplexität auf der Grundlage des Konzepts der mit

Freiheitsgraden verbundenen Covariance Penalties vorgestellt und schließlich anhand verschiedener

Simulationen verglichen und analysiert.

Im dritten und letzten Teil der Arbeit wird die neue Klasse der Neural Additive Models for Loca-

tion, Scale and Shape vorgestellt, dafür wird der GAMLSS-Modellansatz mit Techniken und Prinzip-

ien neuronaler Netze kombiniert. Dieser Ansatz unterscheidet sich von anderen Deep Learning-

Methoden, da er die gesamte Response-Verteilung und nicht nur die mean Prediction modellieren

kann. Die Wirksamkeit dieser Methode wird anhand von simulierten und realen Daten bewertet

und mit etablierten statistischen und Deep Learning-Methoden verglichen.
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Chapter 1: Introduction

The following sections will introduce different statistical and mathematical concepts that have

played an essential role in my thesis research. Section 1.1 introduces regression models, focusing on

linear mixed models in Section 1.1.1 and distributional regression models in Section 1.1.3, as these

play a central role in Part I and III. Section 1.2 introduces the fundamental ideas of deep learning,

while Section 1.3 deals with the concept of model complexity, its meaning and how to measure it.

Where the complexity of deep learning models constitutes the central point of focus of the research

presented in Part II of this thesis, Part III, on the other hand, builds upon the combination of

distributional regression approaches, namely generalised additive models for location, scale and

shape, and artificial neural networks.

1.1 Regression models

Regression models aim to measure the influence of covariates x1, . . . , xk, independent explanatory

variables, on the response or dependent variable y with all its realisations y = (y1, . . . , yn)′ ∈ Rn. In

the classical linear regression model the relationship between an individual yi and the corresponding

covariates is assumed to be linear plus some noise, the error term εi, such that the systematic

component of the model can be represented as a linear combination of the underlying covariates as

yi = β0 + β1xi1 + · · · + βkxik + εi = x′
iβ + εi,

for each observation i = 1, . . . , n, where xi = (1, xi1, . . . , xik)′ and the unknown parameters β =

(β0, β1, . . . , βk)′ ∈ Rk+1, the regression coefficients, determine the influence of the corresponding

covariates on the response. Such that changing the value of x1 by one (unit) leads to a corresponding

increase of β1 in the outcome variable y. This phenomenon is valid under the condition that all

other covariates that affect y remain unchanged.

1



2 Chapter 1. Introduction

The underlying covariates are, however, usually summarized in the desgin matrix X, and to-

gether with the vector of responses y, coefficients β and errors ε resulting in the notation of the

classical model as

y = Xβ + ε.

In order to estimate these unknown parameters we collect observation pairs (y1,x1), . . . , (yn,xn),

and introduce the following assumptions for the error term ε:

1. The errors have mean or expectation zero, i.e. E(ε) = 0.

2. The errors are homoscedastic, i.e. all follow the same constant finite variance 0 < σ2 < ∞.

3. The errors are uncorrelated, i.e. Cov(εi, εj) = 0,∀i ̸= j.

These assumptions also play a role in the Gauss-Markov theorem, that determines the estimator

with the lowest sampling variance within the class of all possible linear unbiased estimators. In

addition to the assumptions about the error terms, we introduce further that:

4. The assumed design matrix X has a full column rank(X) = k + 1 = p, such that X ′X is

nonsingular and thus an invertible matrix.

And in order to obtain the classical normal regression model the follow has to hold as well:

5. Identically independent normally distributed errors such that ε ∼ Nn(0, σ2In).

However, the normality assumption here serves mainly to construct confidence intervals and hy-

pothesis tests for the regression coefficients and it is not mandatory for the linear model to work.

Following all assumptions for the classical normal regression model we obtain for the underlying

response that E(y) = Xβ and Cov(y) = σ2I such that y ∼ N (Xβ, σ2I).

The unknown regression coefficients β can be estimated using the least squares method. This

minimises the expected squared error with quadratic L2-norm as follows

β̂ = arg min
β∈Rp

E ∥y − Xβ∥2 ,

solving this, we get the least squares estimator β̂ = (X ′X)−1X ′y. The least squares estimator also

corresponds with the solution obtained by a maximum-likelihood estimation, a method that finds

the maximiser of the underlying log-likelihood of the model under normality assumption. Many of

the strict assumptions made here are relaxed in the following chapters to derive other, more flexible

models. For more information, see Faraway (2006) and Fahrmeir (2013).
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1.1.1 Linear mixed models

The linear model can be extended to include random effects, creating the class of linear mixed

models. The new effect on the expectation equation assumes that the random variables follow a

zero mean distribution. Interestingly, these effects have different roles and interpretations depending

on the task or user. They allow, for example, the incorporation of dependent observations in the

data by including of an implied correlation in the model structure (Fisher, 1919). Another way to

understanding random effects is to consider them as a regularising effect, as they can collect the

influences of comparable observations to improve model estimation (Bates et al., 2015).

The resulting linear mixed model equation is as follows

y = Xβ + Zb + ε,

where y represents the vector of n observed responses y = (y1, . . . , y
′
n),X ∈ Rn×p and Z ∈ Rn×q

represent the full column rank design matrices, with the vector of fixed effects β ∈ Rp and the

random effects b ∈ Rq. The vector ε represents the unobserved random errors. Both b and ε are

assumed to be independent and follow a multivariate Gaussian distribution such that

 b

ε

 ∼ N


 0

0

 ,
 D 0

0 Σ


 ,

where D is a block-diagonal, positive, semidefinite variance-covariance matrix depending on a covari-

ance parameter vector, however, the normality assumption is not mandatory and is only introduced

for convenience, allowing for likelihood-based procedures to estimate unknown parameters in D and

of the residual variance (Laird and Ware, 1982).

For linear mixed models, there are two different interpretations depending on the understanding

and application of the random effects. The marginal form treats the random effects as an additional

part of the already random error term ε, resulting in the marginal distribution y ∼ Nn(Xβ,V :=

ZDZ ′ + Σ)(Fahrmeir, 2013). The conditional form, on the other hand, approaches the random

effects differently by treating them as penalised coefficients resulting in the form of the conditional

distribution y ∼ Nn(Xβ + Zb,Σ) (Säfken et al., 2021).
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Fixed as well as random effects can be estimated respectively predicted via

β̂ =
(
XT V −1X

)−1
XT V −1y,

b̂ = DZT V −1(y − Xβ̂),

where the resulting estimator of the fixed effects β̂ is the best linear unbiased estimator and is

also the maximum-likelihood estimator of β and the predictor of the random effects b̂ is also the

best linear unbiased predictor of b (Harville, 1976). In the case that D or Σ contain unknown

parameters, denoted as θ , the estimator of the unknown parameters θ̂ is given by the maximiser

of the profile log-likelihood and is thus up to a constant equal to

ℓP (θ) = −1
2
[
log |Vθ| + (y − Xβ̂)T Vθ

−1(y − Xβ̂)
]
.

Instead of estimating θ via profile log-likelihood, it is also possible to determine θ via the marginal

or restricted log-likelihood. However, this estimator underestimates the components (Fahrmeir,

2013). A possible alternative is a REML based estimator of θ̂, which is less biased towards zero.

For a more detailed overview of linear mixed models see Faraway (2006), Fahrmeir (2013) and Wood

et al. (2017).

1.1.2 Additive models

An additional extension of the classical linear model is the inclusion of nonparametric terms in the

linear predictor in the so-called class of additive models. With this extension, the equation of the

underlying model is changed to the following form

y = Xβ +
J∑

j=1
fj(zj) + ε, with ε ∼ Nn(0,Σ),

where fj(zj) represents smooth functions of the underlying covariates in zj ∈ Rn with j =

1, . . . , J infinite dimensional smooth effects, which can be approximated and thus represented by

a finite number of basis functions. The underlying concept of basis functions is to approximate

an infinite-dimensional function via a linear combination of coefficients γ1, . . . , γK and a finite

number of basis functions B1, B2, . . . , BK , obtaining the function f ≈
∑K

k=1Bkγk. The implied

basis function for the covariate z = (z1, . . . , zn) is evaluated at each of the observed points zi,,

as a result of this obtaining the matrix B, where the k-th basis function evaluation at the i-th
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observation zi corresponds to the k-th column and row of B. The B-spline basis is one of the

most widely used basis representations (Schoenberg, 1946). For this approach, the domain of the

covariates is divided by the so-called knots κ1, . . . , κd. While the assumed smooth function f(z)

is represented via K = q + d − 1 B-spline basis functions of degree q. These are q + 1 piecewise

continuously differentiable connected polynomial functions of degree q. The underlying knots can

be defined in different ways via an equidistant grid or, for example, via quantiles of the underlying

covariates in z. A B-spline of degree zero is represented by an indicator function using the knots as

B0
k(zi) = I(κk ≤ zi ≤ κk+1).

Higher order B-splines can be defined recursively as

Bq
k(zi) = zi − κk−1

κk − κk−1
Bq−1

k−1(zi) + κk+1 − zi

κk+1κk+1−q
Bq−1

k (zi).

For sufficiently high degree q, the resulting splines are continuous and differentiable; there-

fore, they are efficient to evaluate and thus provide directly available (higher-order) derivatives, in

addition to other mathematically and numerically desirable properties (Eilers and Marx, 1996).

Using this definition of B-splines to determine basis functions requires 2l outer knots outside

the original domain. Together with the inner knots, resulting in a total number of knots of

κ1−l, κ1−l+1, . . . , κm+l−1, κm+l.

Since the number and, in particular, the position of the knots affect the fit of the functions,

their choice can directly contribute to the over- or underfitting of the function. In order to avoid

the problem of selecting an appropriate number of knots, Eilers and Marx (1996) have introduced

a penalty term to the B-Spline to enforce overall smoothness, creating the so-called P-Splines. P-

Splines allow a flexible definition of f , while preventing overly rough estimates through a penalty

term by estimating coefficients for a generous number of B-Spline basis functions with an appropriate

penalty. Giving a new form of the criterion for estimating the underlying regression coefficients as

||f(z) − Bγ||2 + λγ ′P γ → min
γ
,

where P ∈ RK×K represents the penalty matrix, and the variable λ is the smoothing parameter

that determines the smoothness of the underlying function estimator f̂ . This term is based on a

relatively large number of knots, allowing the smoothness to be approximated by the difference of the
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adjacent B-splines. For the determination of an optimal smoothing parameter λ, several approaches

have been successful. Optimisation based on (generalised) cross-validation (GCV) or the Akaike

information criterion (AIC) can be employed. An alternative approach uses the relationship between

the restricted maximum likelihood (REML) estimator and the penalised least criterion. For more

detailed illustrations and discussion of additive models, see Fahrmeir (2013) and Wood et al. (2017).

1.1.3 Distributional regression

Additive models are limited by their narrow focus on mean prediction and the implicit assumption

of constant variance. An extension and further development of the additive models is the model

class of generalised additive models for location, scale and shape or short GAMLSS by Rigby and

Stasinopoulos (2005).

GAMLSS relaxes the assumptions about the distribution of the response variable and replaces

them with a general distribution family. The underlying systematic part of the GAMLSS model

is extended to not only addressing one arbitrary parameter, but all parameters of the conditional

distribution of the response variable. The model assumes that the responses are conditionally

independent given the respective covariates and the response to exhibit a parametric density f(yi|θi).

The assumed conditional density can depend on up to K different distribution parameters θi =

(θi1, . . . , θiK)′. The distributional parameters are each modelled via a separate additive predictor

ηθk
, depending additively on the underlying covariates. An essential component of the GAMLSS

model is the monotonic link function gk(·), which allows each parameter of the distribution vector to

be conditional on different sets of covariates. Similarly to (generalized) additive models, the variable

is modelled using additive nonparametric functions of the covariates, resulting in the GAMLSS to

be defined by the set of equations as

gk(θk) = β0θk
+

Jk∑
j=1

fjθk
(xjk) = ηθk

,

where k = 1, . . . ,K represents the kth parameter, β0θk
the intercept of the respective submodel, and

j = 1, . . . , Jk denotes the corresponding covariate. Due to the parametric assumption, it is possible

to employ likelihood-based approaches for estimation. Depending on the implementation, GAMLSS

models are numerically estimated either using a back-fitting algorithm with Newton-Raphson steps

(Rigby and Stasinopoulos, 2005), using trust-region algorithms (Marra and Racine, 2022), or using

a functional gradient descent boosting approach (Mayr et al., 2010).
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1.2 Deep learning

Deep learning is a type of machine learning that involves training artificial neural networks with

many layers to learn increasingly abstract and hierarchical representations of data. Multiple layers

allow deep neural networks to automatically discover more complex and nuanced features from data

without the need for explicit feature engineering. One of the critical challenges in deep learning

is avoiding overfitting, where the neural network becomes too specialized to the training data and

performs poorly on new data. Various techniques have been developed to address this challenge,

including dropout regularization, weight decay, and early stopping (Goodfellow et al., 2016). Deep

learning has been successfully applied to various tasks, including image and speech recognition,

natural language processing, and autonomous driving. For example, convolutional neural networks

(CNNs) have achieved state-of-the-art performance on image classification and object detection

tasks (Krizhevsky et al., 2012; He et al., 2016), while recurrent neural networks (RNNs) have been

used for sequence modelling and language processing (Sutskever et al., 2014; Cho et al., 2014). Deep

learning has also been used to generate novel content, such as images (Radford et al., 2015), music

(Huang et al., 2018), and text (Brown et al., 2020). One of the most popular deep learning architec-

tures for natural language processing is the transformer model, which has achieved state-of-the-art

performance on various language tasks, including language translation and generation (Vaswani

et al., 2017). Overall, deep learning has revolutionized the field of artificial intelligence and has led

to significant advances in a wide range of domains. Ongoing research is focused on developing even

more powerful and efficient deep learning models and understanding their underlying mechanisms

and limitations.

1.2.1 The fundamentals of deep learning

Deep learning models are a very broad and complex class of models that can take different forms

and functions depending on their architecture and assumptions. However, the mathematical and

statistical theory on which all the models are based can be generalised.

To motivate and properly establish this, the following example is provided. Consider a problem

where the data is of the form Z := X × Y with a joint probability. Moreover, observed data points

are given as d = (z(i))m
i=1 = ((xi, yi))m

i=1 ∈ Zm. This data in turn comes from an assumed true, but
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unknown, data-generating process. In this context, this process is given as

y = ϕ(x) + ϵ,

where ϕ(·) : R → R, y ∈ Y ⊆ R, x ∈ X ⊆ Rm and ϵi ∼ N (0, σ2) for all i = 1, . . . , n.

The task in deep learning is to find a model that performs measurably well on the given known

training data d and performs well on previously unknown test data. This performance is measured

by the respective assumed loss function L or given error measurement.

To find such a well performing model, assume that Z,X , and Y are known and measurable.

Further, for the assumed loss function L overall measurable functions Y,X holds L : M(X ,Y)×Z →

R. The goal is now to create a hypothesis set F ⊂ M(X ,Y) to create a learning algorithm of the

following form

A :
⋃

m∈N
Zm → F ,

which uses the given data to find a model md = A(d) ∈ F , exhibiting strong performance on

unknown data. The assumed hypothesis set here consists of all realisations of a given neural network

given assumed architecture and parameter set.

For a more detailed mathematical description, see Berner et al. (2021) and Roberts et al. (2022).

1.2.2 Artificial neural networks

Deep learning models use neural networks as function approximators, where a series of operations

are repeated one after the other in so-called layers to achieve better results through repeated learning

(Roberts et al., 2022).

The most fundamental component of the neural network is the neurons, with each layer of a

model consisting of several neurons in tandem (Goodfellow et al., 2016). Each of these neurons

performs two different computational steps. In the first step, the so-called net input of the neurons

zi is calculated, which is essentially a linear aggregation of the incoming inputs xj , where all inputs

are weighted and summed, and finally a bias bi is added as given by

zi(x) = bi +
n∑

j=1
W ijxj , for i = 1, . . . ,m,

where m neurons each form a layer that takes an n-dimensional input vector, and W ij represents

the underlying matrix of weights. This stage also demonstrates the link between statistical models
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and neural networks, as both approaches can be oversimplified as a summation over weighted inputs

(covariates) and a bias (intercept). The resulting value is then passed to the activation function σ,

which transforms the net input as σ(zi). Activation functions can take various forms, from simple

linear to complex non-linear functions (Chollet, 2018). See Figure 1.1 for a graphical representation.

Figure 1.1: Stylised representation of a neuron in an artificial neural network.

In deep learning models, many of these neurons are combined into a layer, whereas many layers

are, in turn, joined together in such a fashion that the output of one layer becomes the input of the

next. This structure allows for increasingly flexible function sets to be created as the number of

neurons, but also as the number of layers increases (Roberts et al., 2022). The number of neurons,

layers and the chosen activation function create the so-called network architecture. Over time,

various of configurations and unique forms of model architectures have emerged (Goodfellow et al.,

2016; Berner et al., 2021). The concatenation of several layers, with all outputs of one layer as

inputs of all neurons in the next layer, creates a so-called multilayer perceptron (MLP). MLPs are,

in many ways, the simplest of the deep learning architectures and, therefore, a useful minimal model

to illustrate deep learning (Roberts et al., 2022).

An MLP can be defined recursively in the first layer as

z
(1)
i (xα) ≡ b

(1)
i +

n0∑
j=1

W
(1)
ij xjα,

for i = 1, . . . , n1 and all subsequent layers as

z
(ℓ+1)
i (xα) ≡ b

(ℓ+1)
i +

nℓ∑
j=1

W
(ℓ+1)
ij σ

(
zℓ

j(xα)
)
,
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for i = 1, . . . , nℓ+1 and ℓ = 1, . . . , L − 1. Every layer ℓ of all layers L assumed here comprises of

a total of nℓ neurons. The layers between the input and the output are also known as the hidden

layers. An exemplary MLP is shown in Figure 1.2.

Figure 1.2: Representation of a deep (fully-connected) multilayer perceptron with five hidden layers,
each with seven neurons. Green represents the input nodes, blue the hidden nodes and red the
output nodes.

The number of neurons in layer ℓ is also known as the width of the layer, which is defined

as nℓ=1,...,L−1, where the number of neurons in the first and last layer is fixed at n0 and nL to

the dimension of the model input and the dimension of the model output, respectively. The total

number of neurons and associated parameters of the MLP is given by ∑L
ℓ=1 (nℓ + nℓnℓ−1) (Roberts

et al., 2022).

A large number of model parameters of a deep learning model thus served as an inspiration for

the subject of model complexity of deep learning models discussed in Part II.

1.2.3 Hybrid statistical deep learning models

Deep learning models are often criticised for their lack of transparency and the incomprehensibility

of their predictions and calculations to humans (Buhrmester et al., 2019). Therefore, the decision-

making process of a deep learning model is often criticised as a black box, where the user knows

the inputs and the resulting outputs but cannot understand what happened in between (Savage,

2022). One area that is therefore becoming more and more of a focus is explainable machine

learning. Researchers aim to develop tools and frameworks for machine learning models to make

the underlying decision-making process more comprehensible for humans. One such approach is to
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combine statistical models and their inherent explanatory strength with deep learning methods and

their strong predictive power to create a new class of hybrid models with strong predictive properties

and increased explanatory capacity. Approaches of this type include deep regression by Rügamer

et al. (2021). This semi-structured deep distributional regression framework attempts to learn

conditional distributions by combining additive regression models and deep networks. This approach

relies on orthogonalizing the different model components to allow an interpretable combination of

different subnetworks.

Another approach is neural additive models (NAMs), which combine some of the expressiveness

of deep neural networks (DNNs) with the inherent intelligibility of generalised additive models from

statistics. NAMs learn a linear combination of neural networks, each dedicated to a single input

feature.

These networks are trained jointly and can learn arbitrarily complex relationships between their

input and the output feature and can be applied to a wide range of tasks, including regression,

classification, and time series forecasting. The basic structure of a NAM consists of a sum of several

components, each of which represents a different aspect of the relationship between the response

and predictor variables. These can be linear, non-linear or combined and can be learned using a

variety of optimising algorithms.

The general form of a NAM can be written as

E(y) = h

β +
J∑

j=1
fj(xj)

 ,
with h(·) the activation function used in the output layer, x ∈ Rj the input features, β the global

intercept term, and fj : R → R representing the multi-layer perceptrons corresponding to the j-th

feature. As the two frameworks differ mainly how which individual characteristics are modelled,

the similarity with GAMs is obvious. The role of the h(·) activation function in the NAM is akin

to that of the link function of GAMs (Wood et al., 2017). Part III will present an extension of the

NAM approach by incorporating a more comprehensive distributional focused approach akin to the

GAMLSS framework of Rigby and Stasinopoulos (2005).
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1.3 Model evaluation, choice and the role of complexity

When applying statistical or machine learning models, a key question is selecting the model that

provides the best insights into scientific questions or has the greatest predictive power among all

considered candidate models. Furthermore, a scientifically sound and replicable model selection is

necessary to draw reliable and reproducible conclusions and is a cornerstone of the scientific method.

Therefore, it is unsurprising that this topic has long been the focus of research, and many different

approaches have emerged from fields as diverse as statistics, signal processing, and information

theory (Ding et al., 2018).

1.3.1 Model choice and selection

Model selection remains perhaps the most popular approach to dealing with the uncertainty of

finding a fitting data analysis approach. Based on a given data set, model selection is the task of

selecting a statistical, machine or deep learning model from a set of possible candidates. Several

selection methods have been developed and proposed for this purpose.

Information criterion

One of the most widely used methods for model evaluation and selection are information criteria.

Information criteria are generally based on likelihood functions and are mostly related to parametric

model selection problems. One of the most famous and widely used is the Akaike information

criterion (Akaike, 1973), which in itself is an estimator of the relative Kullback-Leibler distance

(KLD) (Kullback and Leibler, 1951).

The Kullback-Leibler distance stems from the field of information theory, and its purpose is to

measure the distance between two probability distributions, however, in the context of model selec-

tion, it is instead to be understood as a measure of the distance between a true but unknown data

generating process given by the density g(y) producing the observed values of y and a parametric

model f(y|ϑ); whose parameters are estimated in practice via maximum likelihood estimator ϑ̂(y)

based on the observed y (Greven and Kneib, 2010). The overall aim is to minimise the expected

relative Kullback-Leibler distance in order to obtain a good approximating model. It can be shown

that the minimisation of the Kullback-Leibler distance is equivalent to the minimisation of the

Akaike information (AI) of

AI = −2EyEz log f(z|ϑ̂(y)),
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where z represents a new, previously unknown realisation of g, however, due to its sole dependence

on y, the maximising log-likelihood in the estimation process for ϑ̂(y) assumed here is biased.

Akaike was able to determine a, under certain regularity assumptions, bias correction which is

asymptotically equal to twice the value of the dimension of ϑ, such that the bias corrected version

of the Akaike information becomes the Akaike information criterion of the following form

AIC = −2 log f(y|ϑ̂(y)) + 2k,

where k is equal to the dimension of ϑ, corresponding to the respective (effective) degrees of freedom

and covariance penalties of the model under consideration (Efron, 2004). The more complex the

model of interest, the larger the correction term. Consequently, when used as an approximation

to a true underlying data-generating process, the resulting information-theoretic interpretation of

AIC is as an estimator of the relative information lost by the model.

For the derivation of the AIC, some assumptions have to be made, which depending on the model

approach, are no longer considered reasonable and the AIC has to be adjusted. As an example,

for the linear mixed models considered in Part I, the AIC must be adjusted for the differing model

assumptions, depending on whether they are marginal or conditional, as presented in Section 1.1.1;

for a detailed presentation of possible adjustments, see Greven and Kneib (2010).

Cross-validation

Information criteria are not the only approach to evaluation and model selection. Other approaches

have emerged as reliable alternatives, including cross-validation (CV) methods (Allen, 1974; Geisser,

1975). Unlike approaches such as AIC, CV-based methods relax the assumption that the models

under consideration must be parametric, requiring only that the underlying data be permutable

and that the predictive quality of the model is sufficiently measurable, however, intriguingly, it is

possible to establish a link between AIC and cross-validation and other model selection techniques

(Efron, 2004).

There are different approaches to cross-validation, but the general procedure can be stated as

follows. First, the underlying data is divided into training and validation data. Each model under

consideration is then fitted to the training data or, in the case of machine or deep learning models,

trained and then validated based on the validation data. To minimise the underlying variability,

this training and validation process is repeated several times, each time with a different split of the
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underlying data. Subsequently, the average validation loss of the considered models is compared

and the model with the lowest average loss is selected. The final step is to fit or respectively train

the selected model on the whole data set once more (Burman et al., 1994).

A unique form of the CV method plays a role in Part II, the k-fold cross-validation, randomly

dividing the data into k subsets of approximately equal size. Then, the models are trained on k− 1

of the folds and validated on the omitted one until each has been used once for validation. See

Hastie et al. (2009) for a more detailed procedure discussion.

1.3.2 Model averaging

In contrast to the classic model selection, model averaging deals with model uncertainty by averaging

over the set of candidate models rather than having the user select a model according to a selection

criterion. To motivate model averaging, assume K classical linear candidate models, as presented

in Section 1.1.

The respective assumed models are given as

yk = Xkβk + ε.

Let in the following the estimated values for y be given by ŷk = Xkβ̂k = Ĥky, where Ĥ is the

corresponding hat matrix of the fitted model. Classical model selection would now select the one

model that would be considered preferable by one or more model selection criteria like AIC or other

suitable techniques. Model averaging, however, computes a weighted average over all candidate

models.

For this, assume a weight vector of the form w = (w1, . . . , wK)′. This vector must satisfy some

assumptions to be a weight vector, which are defined as follows

1. The sum of all weights must equal one, i.e. ∑K
k=1wk = 1.

2. Each weight must be equal or less than one, i.e. wk ≥ 1.

3. Any individual weight must be greater than or equal to zero, i.e. 0 ≤ wk.

In summary, this implies that the weights must be non-negative and belong to the set W =

{w ∈ [0, 1]K : ∑K
k=1wk = 1}. Given such a vector, the model averaging estimator can be defined as

follows as

ŷ =
K∑

k=1
wkŷk =

K∑
k=1

wkĤkyk.
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The presented model averaging approach depends significantly on the weights chosen for the

estimation process (Hansen and Racine, 2012). Weights are commonly selected according to different

information criteria, such as AIC. One of the most popular such approaches is based on a suggestion

by Buckland et al. (1997) as

wk = exp (−ICk/2)∑K
i=1 exp(−ICi/2)

,

where wk denotes the corresponding weight of model k, with IC as the value of an arbitrarily

assumed information criterion for the considered model k of all K candidate models. Similar to

the different approaches to model selection, there are alternatives to weighting schemes based on

information criteria. Akin to model selection, an application of cross-validation proposed by Hansen

and Racine (2012) has emerged as one of the main alternatives for determining weight vectors. The

authors’ jackknife model averaging approach uses leave-one-out cross-validation to minimise a least

squares weighting criterion. This approach is particularly suitable for general formulations of linear

models, as it allows for the error to violate the homoscedasticity assumption and still leads to correct

weights within the framework of the approach.

For a more in-depth overview of the topic of model averaging, see Claeskens and Hjort (2008),

Wang et al. (2009) and Burnham and Anderson (2011).

1.3.3 Model complexity

The complexity of a statistical model is often understood as the ability of the approach to fit the

data. For many users and in the literature, the term degrees of freedom is synonymous with model

complexity and is used to measure or parameterise the inherent bias-variance trade-off in model

selection (Janson et al., 2015).

The number of dimensions in which a random vector may vary is the original meaning of degrees

of freedom in statistics and is essential for many different methods from model selection to prediction

error estimation. For simple linear regression, where we have an n-dimensional response vector y

and an n× p design matrix X with full column rank, the fitted values ŷ = Xβ̂ are an orthogonal

projection of the vector y onto the p-dimensional column space of X. The residuals of the model

ε̂ = y − ŷ assumed here are thus the projection onto the orthogonal complement of the dimension

n − p. Put simply, this means that for linear regression, the degrees of freedom are equal to the

dimension p.
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This definition of degrees of freedom is also called model degrees of freedom and is used to

investigate model complexity; another form of degrees of freedom are the residual degrees of freedom,

which are calculated as n−p.1 Degrees of freedom also quantify the optimism of the residual sum of

squares of an out-of-sample estimator. For example, in a simple linear regression, the residual sum

of squares understates the mean squared prediction error by 2σ2p on average (Janson et al., 2015).

Thus, it is possible to construct an unbiased estimator of the prediction error out of the residual

sum of squares and a bias correction term based on the underlying model degrees of freedom as

proposed by Mallows (1973). Therefore, the underlying degrees of freedom can also be regarded

as a kind of penalty term for how closely the model fits the data (Mallows, 1973). However, this

definition of degrees of freedom is less useful once beyond the scope of simple linear regression. For

smoothing spline models or models with an inherent penalty, such as ridge models, the number of

free parameters, is a poor measure of complexity. Consequently, several proposals for generalising

the concept of degrees of freedom, extend the concept to other model classes and frameworks. One

such proposal is that of Efron (1986), who formulated the degrees of freedom in the context of his

optimism theorem.

Efron’s approach can be summarised as follows. For i = 1, . . . , n let the mean µi be non-random

and further let yi = µi + εi hold. Assume that εi is zero in the mean and has a finite variance. In

addition, let ŷi be the estimator of µi and let y∗
i be new, unknown, independent observations from

the same data generating process as yi and identically distributed. Then the following will hold

2
n∑

i=1
Cov(yi, ŷi) = E

[
n∑

i=1
(y∗

i − ŷi)2
]

− E
[

n∑
i=1

(yi − ŷi)2
]
.

According to Efron, for iid residuals with finite variance the degrees of freedom can thus be defined

as follows

df = 1
σ2 trace (Cov(y, ŷ)) = 1

σ2

n∑
i=1

Cov (y, ŷ) .

This definition of degrees of freedom2 and their relationship to the so-called covariance penalties

is essential in the complexity measures for neural networks considered in Part III.

1In the remainder of this thesis, the term ’degrees of freedom’ will always refer to the concept of model degrees of
freedom.

2For linear regression models with well-defined hat matrix this will reduce to df = trace(H).



Chapter 2: Outline and contributions

This thesis deals with the theoretical and technical problems of combining statistical and deep

learning models for better estimation and questions of expanding on existing model evaluation

methods in statistics and deep learning. Each goal poses different research questions and challenges,

which are addressed in three parts of this dissertation.

The first research question this thesis is concerned with is:

Can the application of conditional degrees of freedom, as initially presented by Greven and Kneib

(2010) and utilized in the study by Zhang et al. (2014), be used to establish a model weighting

mechanism that can effectively create an asymptotically optimal model averaging method for

conditional linear mixed models?

A weight-finding criterion for asymptotically optimal weights for model averaging of conditional

linear mixed models is derived in Part I, based on the work of Greven and Kneib (2010) and

Zhang et al. (2014). Furthermore, the unique nonlinear optimisation problem under equality and

inequality constraints of the underlying weight finding procedure is illustrated. In order to solve

this inherently complex problem, an optimiser based on the augmented Lagrangian Nocedal and

Wright (2006), specifically adapted to the problem set at hand, is developed and presented in the

text. The corresponding Part I of the dissertation is based on the elaborations of the paper:

Kruse, Silbersdorff, and Säfken (2022). ”Model averaging for linear mixed models via

augmented Lagrangian.” Computational Statistics & Data Analysis 167: 107351.

Methods and algorithms developed in this paper are used in the published R-package:

Säfken, Rügamer, Baumann, and Kruse (2021). ”R-Package ‘cAIC4’”. https://cran.r-

project.org/package=cAIC4.

17



18 Chapter 2. Outline and contributions

The second research question that is discussed is:

Can concepts for the evaluation and measurement of statistical models be transferred to models

from the field of deep learning? Moreover, how does it relate to methods that attempt to measure

model complexity, such as degrees of freedom and covariance penalties?

In Part II, different methods for measuring the model complexity of deep learning models are

presented. For artificial neural networks, model complexity cannot be measured directly, but a

direct link can be shown to covariance penalties as presented by Efron (1983, 2004). Methods for

estimating these penalties are derived in the forms of direct approximation of underlying derivates,

in the form of a bootstrap based approach, and in the form of a k-fold cross-validation method.

The introduced methods are presented and discussed in the context of model complexity of deep

learning models. Furthermore, the properties and results of these methods are investigated and

analysed in simulation studies. The corresponding Part II is based on the paper:

Kruse, Säfken, and Kneib (2023). ”Measuring Neural Complexity: A Covariance Penalty

Approach”. Under review at the 26th European Conference on Artificial Intelligence

The third research question that is discussed is:

Can a hybrid modelling approach be used to combine distributional regression methods like

GAMLSS with artificial neural networks?

Part III presents neural additive models for location, scale, and shape (NAMLSS) framework

that combines the predictive power of classical deep learning models with the inherent advantages

of distributional regression, while retaining the interpretability of additive models. Investigation of

the method on various simulated and real data sets demonstrates the performance and advantages

of the presented NAMLSS approach compared to other already established methods from statistics

and deep learning alike. This proves to be an essential advantage, as an increasing focus of the deep

learning community is on improving the interpretability and reliability of the approach.

Thielmann, Kruse, Kneib, and Säfken (2023). ”Neural Additive Models for Location

Scale and Shape: A Framework for Interpretable Neural Regression Beyond the Mean.”.

Under review at the Thirty-seventh Conference on Neural Information Processing Sys-

tems. arXiv preprint arXiv:2301.11862.
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3.1 Conclusion

The combination of statistics and deep learning methods for estimating and evaluating semi-

parametric models, or hybrid approaches as described in Part III, can take varying forms and

impose different demands on the theoretical and practical aspects of the approaches, depending on

the task and data at hand.

For statistical and deep learning models, performance in terms of prediction error plays an

essential role in evaluating candidate models. In Part I, it can be seen how vital the prediction

error, and in particular, the difference between the apparent error and the expected value of the

prediction error, is for finding a scheme for optimal weights for model averaging. This difference,

measured as a covariance penalty, is significant not only for statistical models, but also in the

measurement of the complexity of deep learning models, as seen in Part II. It can be shown that

while both approaches have different advantages and disadvantages, they also have many things in

common and that different approaches in one area are also suitable for applications in the other.

In Part III, it has also been shown that it is not only possible to transfer model evaluation and

assessment approaches from statistics to deep learning and vice versa, but that it is also possible

to combine whole modelling frameworks such as generalised additive models for location, scale,

and shape and artificial neural networks to create new hybrid modelling concepts. In this way,

a simple mean prediction can be performed, and the ideas of the distributional regression of the

GAMLSS approach can be combined with the neural network methods as the proposed NAMLSS

framework. In particular, Part I presents the role of relative degrees of freedom as a special form of

covariance penalty in determining the target criterion, which, when optimised, finds asymptotically

optimal weights for model averaging of conditional linear mixed models. However, the new objective

criterion represents a complex optimisation problem with equality and simultaneous inequality

constraints, which must be solved via a multi-step optimisation process. For this purpose, a specially
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adapted version of the augmented Lagrangian was derived, illustrated and demonstrated. With the

new criterion and the self-developed optimisation strategy, it is possible to achieve results where

the targeted weighting of different models based on the newly obtained weights achieves superior

performance compared to other weighting schemes based on information criteria such as conditional

AIC.

The need to identify and measure the underlying model complexity is obvious when considering

statistical methods. However, moving away from statistical models and considering the class of deep

learning models, it becomes apparent that model complexity is less explored and poses significant

hurdles to model comparison and selection. Previous approaches attempted to introduce the concept

of model complexity in terms of degrees of freedom from statistics into the world of deep learning

through direct approximation based on finite difference methods. Part II, to further broaden our

understanding of the complexity of deep learning models, focuses on generalising the topic of predic-

tion error and the related topic of model complexity for a wide range of different model architectures

and error measures. Three methods for estimating model complexity regarding covariance penalties

a direct approximation based on an ensemble perturbation approach, k-fold cross-validation, and

a (parametric) bootstrap method. The methods have demonstrated their advantages and possible

shortcomings in various settings. The k-fold cross-validation exhibits a higher variance in its results.

However, due to the relatively modest number of model training runs required, it has a relatively

minor impact on computational cost. The direct approximation produces more consistent results,

but at the cost of computational time, as it requires all underlying observations to be perturbed

once. Bootstrapping proves to be a good compromise, and the approach is less resource-intensive

than direct approximation, but more than cross-validation; however, it produces more consistent

results than cross-validation. An interesting observation in the analysis of different deep learning

architectures is that the complexity of deep learning models is less dependent on the number of

model parameters or the depth of the assumed network, illustrating that the complexity of deep

learning models is driven by more than just the number of parameters.

The popularity of deep learning models is largely based on their high effectiveness in various

tasks regarding the high-level predictive power of the models used. One problem with these models

is that their inner workings are not transparent, leading to poor interpretability of results. As a

result of this black-box criticism, an increasing amount of research is focused on the explainability

of deep learning models. One approach towards better explainability is the creation of hybrid

models that try to combine the strengths of neural networks, i.e. the high predictive power, with
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statistical models and their inherently good explanatory power. These hybrid models, like NAM

(Agarwal et al., 2021), focus on models that only predict the mean and ignore other properties of

the response distribution. Part III presents a combination of the ideas and concepts of the NAM

approach with the ideas and inherent flexibility of GAMLSS-type distributional regression models,

allowing the proposed NAMLSS framework to model the entire underlying response distribution,

in addition to maintaining the same level of interpretability as the original NAM models. It can

be seen that the proposed framework performs better than comparable deep learning or statistical

models. Furthermore, it introduces a new level of (graphical) interpretability by modelling the

different effects via their networks, which is a useful and important development compared to

pure deep learning models. In contrast to other distribution-focused approaches such as GAMLSS,

NAMLSS benefits from increased predictive power due to its underlying neural network structures

and produces comparably better values regarding of log-likelihood results.

3.2 Outlook and direction of future research

The following section presents possible exciting avenues for future research based on the underlying

paper findings in the order of the contributions.

Optimal weights for model averaging

The presented method so far focuses only on (conditionally) linear mixed models and neglects other

forms of mixed models that deviate from the assumption of linearity. An extension or reimplemen-

tation of a criterion for determining squared loss-optimal weights for generalised linear models is

another exciting step in weight optimisation research. The conditional model selection methods

presented by Wood et al. (2016) are a particularly promising avenue.

Another possible extension is substituting the assumed error function in deriving the weighting

criterion. In this way, a departure from the mean squared error could provide a generalisation

of the approach. This goal could be achieved in conjunction with the research by Säfken and

Kneib (2020) and the research on the covariance penalty approach presented in Part II. This may

be particularly interesting for distributional regression models; see Kneib et al. (2021). Finally,

extending the proposed method to boosting might also represent a compelling avenue for future

research (Griesbach et al., 2021).
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Deep learning model complexity

A phenomenon often encountered in the literature and practice is the so-called double descent,

where the test error decreases even below the sweet spot of the u-shaped bias-variance curve as

the model complexity is increased, which can occur not only for neural networks but also for other

models such as regression trees or linear models (Belkin et al., 2020; Berner et al., 2021). An

abstract definition of model complexity often measures this phenomenon. However, it needs to be

clarified to what extent classical definitions, such as model complexity as the number of parameters

of a model or, as shown in Part II, based on model inherent properties such as covariance penalties,

should be used. Investigating of different possible definitions of model complexity and their relation

to double descent presents an intriguing future research opportunity.

As a departure from the idea of the complexity of a model in terms of its parameters, there is also

the concept of model complexity in terms of learnability. For example, the Rademacher complexity

can be used to derive data-dependent upper bounds on the learnability of function classes, which

helps us to make statements about how difficult it is to learn the underlying function class (Berner

et al., 2021). This could also serve as a good measure of model complexity and for possible model

selection, making exploring this approach an attractive possibility.

Neural additive models for location, scale and shape

In many situations, the data situation makes it necessary to model more than one response condi-

tional on the covariates simultaneously.

One way of dealing with this is to incorporate copula-based methods into the NAMLSS frame-

work. Copulas (Joe, 1997) allow the construction of multivariate continuous distributions over

so-called copula functions and the corresponding marginal distributions. Copulas are particularly

suitable for modelling correlation structures in the outcome of a regression. The use of copula

methods is already possible within the GAMLSS framework. It would therefore be a natural ex-

tension of the NAMLSS approach presented and would only increase its utility and applicability.

Similar to the extension of the GAMLSS framework based on Bayesian methods to Bayesian addi-

tive models for location, scale and shape by Umlauf et al. (2018), a similar approach lends itself to

NAMLSS. Introducing a Bayesian-based training approach in conjecture with Bayesian modelling

methods becoming increasingly popular makes this a logical next step in developing the NAMLSS

framework.
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Model averaging for linear mixed
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Abstract:

Model selection for linear mixed models has been a focus of recent research in statistics. Yet, the

method of model averaging has been sparsely explored in this context. A weight finding criterion

for model averaging of linear mixed models is introduced, as well as its implementation for the

programming language R. Since the optimization of the underlying criterion is non-trivial, a fast

and robust implementation of the augmented Lagrangian optimization technique is employed. Fur-

thermore, the influence of the weight finding criterion on the resulting model averaging estimator

is illustrated through simulation studies and two applications based on real data.



Model averaging for linear mixed models via

augmented Lagrangian

4.1 Introduction

The class of linear mixed models (Henderson, 1950) is a very powerful and flexible analytic tool, that

enjoys popularity especially for the analysis of clustered and longitudinal data (Laird and Ware,

1982; Verbeke and Molenberghs, 2009), for spline smoothing (Ruppert et al., 2003; Wager et al.,

2007) and for functional data analysis (Guo, 2002; Di et al., 2009).

Especially the development and advancement of software for fitting and evaluating linear mixed

models is a very active field. It ranges from implementations for commercial statistics programs

like SAS, to open-source versions like the de-facto standard in R lme4 (Bates et al., 2015) or the

MixedModels (Bates et al., 2020) Package for Julia. Due to the flexibility and thus, possible

complexity of the models, the question of suitable model selection procedures becomes a focal point

of research.

However, linear mixed model deviate from the imposed regularity conditions of classical linear

models and thus introduce a problem with the use of information criteria for model choice, such as

the widely adopted Akaike Information Criterion (Akaike, 1973; Wager et al., 2007). Furthermore,

evaluating the suitability of the included random effects of models with nested or clustered structures

suffer from limitations like boundary issues with likelihood-ratio tests (Crainiceanu and Ruppert,

2004; Wood, 2013). An overview of measures of explained variation and model selection in linear

mixed-effects models can be found in Cantoni et al. (2021).

Vaida and Blanchard (2005) show, however, that it is possible to derive an AIC from the

conditional form of the linear mixed effect model, which has proven to be particularly suitable

accounting for possible shrinkage within the random effects (Säfken et al., 2021). Liang et al. (2008)

suggest a version of the conditional AIC that corrects for the estimation uncertainty of the variance
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parameters of the random effects. Still, this proposed version is computationally intensive as it

relies on numerical approximation. Greven and Kneib (2010) prove that an analytical solution can

be derived and thus, reduce the computational intensity of the corrected version of the conditional

AIC.

Another approach addressing model uncertainty is model averaging. Instead of choosing a single

model from a list of candidate models based on information criteria such as AIC or the Bayesian

information criterion (Schwarz et al., 1978), a weighted average of the considered models is calculated

and then used for analysis. An important key factor when applying model averaging is the selection

of the underlying weights. Different proposals have been brought forward, the most prominent

being the approach of information criteria based weights by Buckland et al. (1997). Yet, a majority

of proposals aim at classical linear models and do encounter difficulties when applied to the model

framework of linear mixed models. A proposal by Zhang et al. (2014) demonstrates that it is possible

to construct an asymptotically optimal weight finding criterion for model averaging of linear mixed

models based on the conditional AIC and a quadratic loss function. However, a computationally

stable and fast optimization of such a weight determination criterion is not available up to date.

The nonlinear nature of the criterion itself, as well as the nature of the underlying constraints in

the form of simultaneous equality and inequality conditions, necessitates complex and advanced

optimization methods that are not part of the basic version of the programming language R (R Core

Team, 2019).

In this paper we present a weight finding criterion for the calculation of asymptotically optimal

weights based on the work of Greven and Kneib (2010) and Zhang et al. (2014). In addition we

present an implementation of the proposed weight finding criterion for the programming language

R, which we have released as part of the R-Package cAIC4 (Säfken et al., 2021). Furthermore, we

describe the special nonlinear optimization under equality and inequality constraints of the under-

lying problem. We illustrate the approach of solving such a problem by applying the augmented

Lagrangian method (Hestenes, 1969; Li et al., 2013) and present our implementation of the algo-

rithm.

This paper is structured as follows: Section 4.2 introduces the theory and formulations of lin-

ear mixed models, as well as the estimation and the application of linear mixed models for spline

smoothing. Section 4.3 presents the concept of the conditional AIC. This section also induces the

concept of conditional model averaging and the proposed weight finding criterion. The following

Section 4.4 provides an introduction to the underlying mathematical concepts of the augmented La-
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grangian method, as well as its application to our weight finding optimization problem. Section 4.5

analyzes the properties of the implemented methods by applying them in three different simulation

settings. Section 4.6 studies the proposed model averaging method applied to real-world examples,

whereas the last Section 4.7, gives a summary of the findings of the previous sections and also gives

an outlook of further work concerning model selection and model averaging of linear mixed models.

4.2 Linear mixed models

The general design of linear mixed models assumed in the following sections is

y = Xβ + Zb + ε,

where y represents the vector of the n observed responses y = (y1, . . . , yn)T , X and Z representing

design matrices with full column ranks p and q, with the p× 1 vector of fixed β and b as the q × 1

vector of random effects. The n× 1 vector ε represents the unobserved random errors. Both b and

ε are assumed to be independent and follow a multivariate Gaussian distribution, such that

 b

ε

 ∼ N


 0

0

 ,
 Dθ 0

0 Σ


 ,

with Dθ being a q × q block-diagonal, positive, semi-definite variance-covariance matrix that

depends on a covariance parameter vector θ = (θ1, . . . , θj)T and Σ the overall model covariance

matrix with dimension n× n, which in the following illustrations is assumed to follow the standard

case of σ2I. The normality assumption, however, is not mandatory and is only introduced for

convenience, allowing for likelihood-based procedures to estimate unknown parameters in Dθ and

of the residual variance.

Furthermore let the marginal covariance matrix Vθ of y be defined as follows

Vθ = cov(y) = σ2I + ZDθZT .

The inherent randomness of the random effects makes it possible to formulate linear mixed

models in two different forms, in a marginal or in a conditional ways. The marginal formulation

treats the random effects as an additional part of the already random error term ε (Fahrmeir,

2013). The conditional formulation on the other hand approaches the random effects differently,
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by treating them as penalized coefficients. In this form the conditional responses are distributed as

follows

y|b ∼ N (Xβ + Zb, σ2I).

4.2.1 Estimation of linear mixed models

For given variance parameters θ, fixed as well as random effects can be estimated respectively pre-

dicted via

β̂ =
(
XT Vθ

−1X
)−1

XT Vθ
−1y,

b̂ = DθZT Vθ
−1(y − Xβ̂),

(4.1)

where the resulting estimator of the fixed effects β̂ is the best linear unbiased estimator and it

is also the maximum-likelihood estimator of β and the predictor of the random effects b̂ is also the

best linear unbiased predictor of b (Harville, 1976). The corresponding profile log-likelihood for all

underlying variance parameters θ is thus up to a constant equal to

ℓP (θ) = −1
2
[
log |Vθ| + (y − Xβ̂)T Vθ

−1(y − Xβ̂)
]
. (4.2)

The maximization of the profile log-likelihood with respect to θ delivers the ML-estimator θ̂ML.

Instead of estimating θ via profile log-likelihood, it is also possible to determine θ via the marginal

or restricted log-likelihood. Whereas the complementary restricted log-likelihood for θ takes the

following form (up to an additive constant) of

ℓR(θ) = ℓP (θ) − 1
2 log

∣∣∣XT Vθ
−1X

∣∣∣ , (4.3)

maximizing this restricted log-likelihood results in the REML-estimator for θ, θ̂REML (Harville,

1976). In a general setting the REML-estimator leads to a less biased estimation result than the

ML-estimator (Fahrmeir, 2013).

4.2.2 Linear mixed models for spline smoothing

Apart from using the linear mixed models as a data analysis tool itself, this model class can also be

used as a vehicle to fit semi-parametric models (Ruppert et al., 2003). This connection can most

easily be explained for the case of truncated polynomials.
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For the simple univariate smoothing case consider the following model

yi = f (xi) + εi, i = 1, . . . , n,

where f(xi) is represented by a sum of scaled basis functions and εi ∼ N (0, σ2). In the case of

truncated polynomials, the following basis representation is utilized

f(x) =
d∑

j=0
βjx

j +
K∑

j=1
bj (x− κj)d

+ ,

where the domain of x is partitioned by K ∈ N knots κ1 < · · · < κK in such a way that for

d ∈ N

(z)d
+ = zd · I(z > 0) =

 zd if z > 0,

0 if z ≤ 0.

The penalised least-squares criterion is employed to prevent overfitting and to ensure smoothness

of the estimated function, resulting in

lspen(β, b) = (y − Xβ − Zb)T Σ−1(y − Xβ − Zb) + bT D−1
θ b,

with Dθ = τ2IK where θ = τ2 and Σ = σ2I. Thus the relation between the variances is

τ2 = ξσ2. In this case, given a fixed smoothing parameter ξ, the equation coincides with the best

linear unbiased estimator for β and the best linear unbiased predictor for b from equation (4.1) in

the linear mixed model case with fixed τ2. The underlying parameter ξ = τ2/σ2 can be understood

as a trade-off between function fit and -smoothness. Interpreting this problem as a linear mixed

effect model allows ξ to be understood as the variance ratio of random and fixed effects and therefore

to be determined via the presented ML (4.2) or REML (4.3) approaches (Ruppert et al., 2003).

It is possible to represent penalized regression smoothers as part of mixed models, this allows

the smoothing parameters to be estimated as part of the variance component parameters using

the introduced likelihood procedures. As a consequence, linearly mixed models can be used to fit

generalized additive mixed models (Wood, 2017).
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4.3 Conditional model choice and model averaging

When it comes to the choice of linear mixed models and their random effect structures, the question

arises as to which of the two likelihoods should be the basis for information criteria such as the AIC.

The rationale for the choice depends on the intended application of the model (Vaida and Blanchard,

2005). The marginal approach allows statements about fixed population effects or of predictions

about changed random effects structures. In contrast if the interest lies in statements based on the

random effects of fitted models or in predictions based on existing random effect structures, the

conditional form is particularly suitable. Due to these characteristic, the corresponding conditional

AIC is, thus, better suited to select which random effects to include and which not to (Säfken et al.,

2021). For a more mathematical investigation of the differences between the conditional and the

marginal AIC, see Greven and Kneib (2010).

4.3.1 Conditional Akaike information criterion

One of the most widely used criteria for model selection is the Akaike Information Criterion (AIC)

(Akaike, 1973). The AIC is an estimator of the relative Kullback-Leibler-Distance (Kullback and

Leibler, 1951) and for simple linear regression models is up to a constant given by

AIC = −(y − Xβ̂)T (y − Xβ̂)
σ̂2 + 2p,

with the number of parameters or degrees of freedom p. Considering a number of possible

candidate models, the model that displays the lowest AIC value among all candidate models is

most favourable. In more general this model selection criterion can also be derived as an estimator

for the squared prediction error (Efron, 2004) as

AIC = (y − Xβ̂)T (y − Xβ̂) + 2σ̂2
n∑

i=1

(
∂ŷi

∂yi

)
,

with a substitution for the degrees of freedom first formalized by Stein et al. (1972)

n∑
i=1

∂ŷi

∂yi
= ∂ŷ

∂y
= tr(H) = ρ, (4.4)

for simple linear regression models with hat matrix H.



32 Chapter 4. Contributions: Model Averaging

Two different AIC criteria can be employed when working with linear mixed models, the marginal

AIC which is based on the marginal formulation of the log-likelihood, and the conditional AIC which

is based on the conditional log-likelihood. Depending on the research question, the intention, as

well as the interpretation, the respective approach varies (Vaida and Blanchard, 2005; Greven and

Kneib, 2010).

The proposed estimator of the conditional AIC of Vaida and Blanchard (2005) takes the form

of

cAIC = (y − Xβ − Zb)T Vθ(y − Xβ − Zb) + 2(ρ+ 1).

The derivation of Vaida and Blanchard (2005) requires that the variance-covariance matrix of the

random effects has to be known. Liang et al. (2008) propose a corrected version of the conditional

AIC based on the numerical approximation of the degrees of freedom as in (4.4) and therefore

mitigate the strictness of the assumptions in respect to the variance-covariance matrix.

This approach, however, introduces high computational costs. Greven and Kneib (2010) offer

an analytical version of the bias correction term and allow the calculation of the corrected form of

the cAIC without having to resort to complex numerical approximation. Theorem 3 of Greven and

Kneib (2010) allows ρ to be formulated as

ρ = tr
(
Ĥ
)

+
J∑

j=1

∂θ̂j

∂yT
ÂQjÂy,

where Ĥ = I −σ2V̂θ
−1 +σ2V̂θ

−1/2(V̂θ
−1/2

X(XT V̂θ
−1

X)−1XT V̂θ
−1/2)V̂θ

−1/2, Qj = ∂Vθ/∂θj , fur-

thermore θ̂j is the j-th element of θ̂ and with Â = σ2V̂θ
−1/2(I−(V̂θ

−1/2
X(XT V̂θ

−1
X)−1XT V̂θ

−1/2))V̂θ
−1/2.

To cover possible parameters on the boundary of the parameter space, we have to partition it

similar to Self and Liang (1987). In this case, θ consists of all elements of the matrix Dθ and

it is sorted in such a way that the last s elements of the estimator θ̂ are equal to zero and with

η̂ = (θ̂1, . . . , θ̂J−s)T it can be shown under Theorem 3 of Greven and Kneib (2010) that

∂θ̂j

∂yT
= 0, j = J − s+ 1, . . . , J, ∂η̂

∂yT
= B−1G = 0,
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where B is a (J − s) × (J − s) matrix with (i, j)-th element such that

(b)ij = − tr(V̂ −1
Q̂iV̂

−1
Q̂j) − nyT ÂQ̂iÂyyT ÂQ̂jÂy(yT Ây)−2

+ 2nyT ÂQ̂iÂQ̂jÂy(yT Ây)−1,

with G being a (J − s) × n matrix with the i-th row given by

gi = 2n
{

−(yT Ây)−2yT ÂQ̂iÂyyT Â + (yT Ây)−1yT ÂQ̂iÂ
}
.

These expressions allow to calculate ρ directly so that no numerical procedures are necessary.

The R-package cAIC4 (Säfken et al., 2021) incorporates the corrected conditional AIC form and

bias correction, and thus allows to perform model selection based on the conditional AIC and to

calculate a analytical version of the degrees of freedom for models under consideration.

4.3.2 Conditional model averaging

Consider a given series of K possible linear mixed-effects candidate models according to (4.2), with

the following form

y = Xkβk + Zkbk + ε, bk ∼ N (0,Dθk) , k = 1, . . . ,K.

The fixed and random effects, as well as the variance-covariance matrices, can be determined via

the REML approach, presented in (4.1). Hence the conditional mean is given by ŷk = Xkβ̂k +Zkb̂k,

leading to the following representation of the predicted values in terms of the estimated hat matrix

Ĥk as ŷk = Ĥky.

The purpose of model averaging is to compose a weighted average over the random, as well as

the fixed effect, estimators. For this consider a corresponding weighting vector w = (w1, . . . , wK)T

belonging to the set W = {w ∈ [0, 1]K : ∑K
k=1wk = 1}. The model averaging estimator is thus

described by

ŷ(w) =
K∑

k=1
wkŷk =

K∑
k=1

wkĤky = Ĥ(w)y,

with Ĥ(w) = ∑K
k=1wkĤk.
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One of the more straightforward and widely used methods to determine the weights for the

model average is based on a proposal by Buckland et al. (1997). This approach can be sometimes

found in the literature labeled as smoothed weights and the weight finding criterion takes on the

following form

wk = exp (−Ik/2)∑K
i=1 exp (−Ii/2)

, (4.5)

with Ik representing the information criteria value for the respective candidate model k. A

second approach is to derive the weights in such a way that in theory the model averaging estimator

is asymptotically optimal, as in Zhang et al. (2014). The resulting estimator is optimal in the sense

that the squared error of the calculated model average estimator is asymptotically equal to that

of the infeasible best possible model average estimator. The authors achieve this by utilizing the

squared loss of the model averaging estimator to derive a suitable criterion for weight determination.

The underlying loss-function takes the following form of

L(w) = (ŷ(w) − µ)T (ŷ(w) − µ),

where ŷ(w) represents the model average estimator and µ the true but unknown mean.

By applying the theorem by Stein et al. (1972) the expected loss is given by

Ey|b
(
(ŷ(w) − µ)T (ŷ(w) − µ)

)
=

Ey|b
(
(y − ŷ(w))T (y − ŷ(w)) + 2σ2wT ρ − nσ2

)
, (4.6)

the K × 1 elements of ρ are being defined as ρk = tr
(
∂ŷk/∂yT

)
. The method presented here

and especially formula (4.6) essentially rely on Stein’s theorem.

In turn, this requires the normality assumption to hold for the conditional model y|b. There

are approaches to generalize this method beyond normality, see for Ye (1998) and Efron (2004) or

Säfken and Kneib (2020) in the context of mixed models. Such an extension is highly relevant as it

would not only allow for other error distributions but also for other random effects distributions that

as are used for robust linear mixed models which are based on skewed t distributions as proposed

in Lin and Lee (2006) and Ho and Lin (2010).
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Based on the design of the model averaging estimator, the weight finding criterion is, therefore,

defined as follows

C(w) = (y − ŷ(w))T (y − ŷ(w)) + 2σ2wT ρ, (4.7)

thus, the optimal vector of weights ŵ for the ŷ(ŵ) minimizes this criterion, such that ŵ =

argminw∈W Ĉ(w).

4.4 Practical model averaging with cAIC4

The weight selection criterion (4.7) can be seen as a nonlinear optimization problem, where the

weights are subject to equality constraints and to bound constraints alike and can be formulated as

min C(w) subject to
K∑

k=1
wk = 1 and 0 ≤ wk ≤ 1, k = 1, . . . ,K. (4.8)

A generalized representation of the optimization problem of the target criterion is shown in

Figure 4.1.
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Figure 4.1: All possible values of the target weight finding criterion (4.7) for an example with two
candidate models. The red dot marks the global minimum, the white line the assumed possible
maximum values of the weights, and the green dot the optimum of the weights resulting from the
restrictions.
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To minimize a nonlinear problem such as (4.8), that is subject to equality and inequality con-

straints a more complex optimization approach has to be employed. The R-Packages Alabama

(Varadhan, 2015) and Rsolnp (Ghalanos and Theussl, 2015) offer existing implementations of solvers

for such a kind of optimization problem. The methods, however, implemented in the packages above

require specific knowledge of the optimization methods and are further complicated by their broad

general form. In response we propose a new implementation that is constructed in such a way that

the setup, configuration and optimization of the underlying system can be performed easily.

4.4.1 The augmented Lagrange method with equality constraints

A common approach for solving such a problem is the augmented Lagrangian method (Hestenes,

1969; Powell, 1969). This approach adds a penalty term to the original target function, that rep-

resents a multiple of the constraint violations at each iteration and thus attempts to force the

optimization result into the bound constraint’s feasible solution space (Avriel, 2003). The aug-

mented Lagrangian approach is based on the penalty method but aims to circumvent potential

ill-conditioning inherent to these methods by directly integrating an estimator of the Lagrange

multiplier into the target function (Nocedal and Wright, 2006). To introduce the augmented La-

grangian in its general form, let us assume a simple limited optimization problem with respect to

a set of weight variables which, for the sake of simplicity, will all be assumed to be real-valued for

the moment, i.e. w ∈ RK with following form of

minC(w) subject to h(w) = 0, (4.9)

where C(w) is the cost function of the optimisation with C : RK → R and the equality constraint

functions h = (h1, . . . , hm)T : RK → Rm. The Lagrange function is described by

L(w,λ) = C(w) + λTh(w),

the Lagrange multiplier is given as λ ∈ Rm.

A possible problem with the general form of the objective function is that it does not necessarily

have to be convex near the solution, which prevents duality methods like the Lagrangian from

being effective. By adding the penalty term γ
2h(w)Th(w) with γ > 0, it is possible to impose a

local convexity on the objective function, such that when the penalty γ term is sufficiently large,

the Lagrangian will be locally convex (Luenberger et al., 2008).
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The resulting augmented Lagrange function LA is defined as follows

LA(w,λ; γ) def= C(w) + λTh(w) + γ

2h(w)Th(w).

The resulting problem is equivalent to the original problem (4.9), since the penalty term does

not change the objective function, the Lagrange multiplier and the optimal values and solution

point. This in turn allows to solve the underlying problem by an interactive process in λ. The

approach for the optimization of the augmented Lagrangian can be seen in Algorithm 1.

Algorithm 1 Augmented Lagrangian method
Input: Initial weights w0 ∈ Rn, tolerance η, multipliers λ0, penalty γ0 > 0, increment ϵ

Output: Optimal values w⋆, multipliers λ⋆, penalty parameter γ⋆

while ∥∇LA(wl,λl; γl)∥ > η do solve for the target function with respect to wl+1 in a way that

LA(wl+1,λl; γl) < LA(wl,λl; γl)

update the Lagrange multipliers such that

λl+1 = λl + h(wl+1);

set the constraint γ such that

γl+1 = ϵγl

set l = l + 1

4.4.2 Weight optimization via augmented Lagrangian

In its general form, the augmented Lagrangian only applies to equality constraint problems. To

employ the method to our problem, the constraints have to be modified in such a fashion, that

they include the bound constraints, i.e. the restrictions of the upper and lower limits of the possible

weight values. The augmented Lagrange function subject to the problem at hand can be formulated

as follows

LA(w,λ; γ) = C(w) + λh(w) + γ

2h(w)Th(w).

The optimization under both constraints makes it necessary to divide the optimization into two

different operations.
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In the first, the augmented Lagrangian is applied only to the equality condition i.e. the sum of

all weights must add up to one. After an approximate solution for the problem has been found, the

next part of the optimization is to incorporate the bound-constraints. The lower and upper value

bound-constraints of the weights are here left out and are considered explicitly in an additional step

of the optimization. In this sub-problem, a sequential quadratic programming approach is used to

solve the following nonlinear quadratic problem of (Nocedal and Wright, 2006)

min LA(w,λ; γ) subject to 0 ≤ wk ≤ 1, k = 1, . . . ,K.

At each iteration step j, a quadratic problem qj(w) with fixed γ and λ stemming from the

results of the first step of the optimization, is solved for w according to

min qj(w) = ∇LA(wj ,λj ; γ)T (w − wj) + 1
2 (w − wj)T H (w − wj) .

The Lagrangian’s gradient assumes the form of

∇LA(w,λ; γ) = (∇wLA(w,λ; γ),∇λLA(w,λ; γ))

=
(
∇wLA(w,λ; γ), h(w)T

)
∈ R1×(K+m),

with ∇wLA(w,λ; γ) = ∇C(w) + (λ + γh(w))T ∇h(w) ∈ R1×K . The corresponding Hessian of

the augmented Lagrangian can be formulated as a block matrix

H = ∇2LA(w,λ; γ) =

 ∇2
wwLA(w,λ; γ) ∇h(w)T

∇h(w) 0

 ∈ R(K+m)×(K+m),

where∇wwLA(w,λ; γ) = ∇2C(w,λ; γ) + (λ + γh(w))T ∇2h(w) + γ∇h(w)T ∇h(w) ∈ RK×K .

The projection on the convex set B = {w | a ≤ wk ≤ b} is described by P, which is defined

component-wise as

P(wk, a, b) =


a if wk ≤ a,

wk if wk ∈ (a, b) , for all k = 1, 2, . . . ,K.

b if wk ≥ b,
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such that given a vector w ∈ B and the imposed bound constraints for each weight, we can

show that the defining necessary properties of an w to be considered the solution of such problem,

as well as the needed first-order-condition, are given by adjusting the general Karush-Kuhn-Tucker

(KKT) conditions (Ruszczynski, 2011) such that

w − P(w − ∇wLA(w,λ; γ), 0, 1) = 0.

If the calculated weights meet both the equality and the bound constraints, the optimal solution

is found. If, however, only the equality constraints are fulfilled by the resulting weights, the Lagrange

multiplier estimates λ are adjusted to allow a better estimation in the next iteration. If the equality

constraints are not met, the value of the penalty parameter γ is increased with the aim of forcing

the results into the feasible space to minimize the constraint violations.

4.5 Simulation studies

To illustrate the features and capabilities of the model averaging approach presented above, we

conduct three different simulation studies in which we investigate its finite-sample properties.

4.5.1 Augmented Langrangian weights for smoothing splines

In the first simulation setting we use the connection between mixed models and smoothing splines

as presented in Section 4.2.2 and investigate the behaviour of the proposed methods presented from

Section 4.4 on these types of models. Comparing parametric and semiparametric models by means

of information criteria is often difficult. In particular due to their inherent flexibility, spline models

will generally offer superior in-sample predictive capacity in comparison to standard linear models –

at the cost of consuming a much higher number of degrees of freedom. Thus the question arises how

the presented model weighting criterion (4.8) incorporates different linear and nonlinear candidate

models.

For this purpose, we simulate data where the underlying data-generating model incorporates a

quadratic P-spline term. Notice that we use P-splines instead of the truncated polynomial splines

presented in Section 4.2.2 due to their enhanced numerical and computational stability (Eilers and

Marx, 1996). Subsequently a linear model and a linear mixed model are fitted to the data, where the

mixed model includes a spline term. The variance of the spline term takes on different increasing

values for each simulation τ2
b ∈ {0, 0.5, 1, . . . , 9, 9.5, 10}. The variance of the residuals is kept
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constant, where each model combination is simulated for σ2
ε ∈ {1, 2, 4}. Every model combination

is simulated 1000 times, with each simulation containing 100 observations.

Two models are fitted to the simulated data, a P-spline based semiparametric model (model 1

associated with w1) of the form

Model 1 (w1) : yi = β0 + f(xi) + εi, (4.10)

which is fitted using a linear mixed model as described in Section 4.2.2 and a classical linear

model (model 2 associated with w2 = 1 - w1)

Model 2 (w2) : yi = β0 + β1xi + εi. (4.11)

The proposed weight finding criterion (4.7) is applied to the two candidate models. Subsequently,

the resulting weights are averaged over all simulations for each model constellation. The results of

these calculations for the given combination of variances are shown in Figure 4.2.
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Figure 4.2: Weight of model (4.10) associated with weight w1 in comparison to the weight w2 of
model (4.11) for different random effects variance values and different values of the error variance.

It can be seen that with the increasing variance of the random effect (i.e. a decreasing penalty

parameter) used to generate the data, the weight for the model with the spline element increases
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as well. This demonstrates that the improvement in the explanatory power of the spline model

is detected by the proposed weight selection criterion and thus leads to a higher contribution of

the semiparametric (or mixed) model to the resulting average model estimator. It also appears

that given a higher residual variance the increase of the weights is slower, however, with a rising

signal to noise ratio (τ2/σ2
ε), we observe the anticipated shift towards a higher weight given to the

semiparametric (or mixed) model.

4.5.2 Weights for multi-cluster hierarchical models

The second simulation study investigates the algorithm’s behaviour in a multi-cluster mixed effects

model framework as well as accounting for both non-normally distributed error terms entailing

outliers and correlated error terms.

For the baseline data simulation, a true data generating linear mixed model is assumed that

contains an intercept and two cluster levels with a random intercept each. The data generating

model takes on the following form

yi,j,l = β0 + b1,j + b2,l + εi,j,l, j, l = 1, . . . , 10, i = 1, . . . , 100.

At first, the residuals and the random effects follow normal distributions, i.e. εi,j,l ∼ N (0, σ2),

b1,j ∼ N (0, τ2
1 ) and b2,l ∼ N (0, τ2

2 ). For both levels the number of clusters in the true underlying

model is 10 each. Each cluster consists out of 100 simulated individual observations. The random

effects of the respective clusters are simulated such that the variances of the random effects fulfill

τ2
1 = 1 − τ2

2 . Each model setup is simulated 1000 times. Two linear mixed models are fitted to each

dataset, whereby each model contains only one of the two random intercepts, i.e.

Model 1 (w1): yi,j = β0 + b1,j + εi,j ,

and

Model 2 (w2): yi,l = β0 + b2,l + εi,l.

The implemented weight choice criterion (4.7) is used to calculate an model average estimator

based on the two candidate models. Table 4.1 and Figure 4.3 show the results of the simulations

for changing variances of the random effect and a constant residual variance.
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τ2
1 0 0.25 0.50 0.75 1

Mean 0.002 0.260 0.499 0.499 0.989
Std.Error 0.002 0.136 0.174 0.137 0.004

Table 4.1: Calculated mean weights (and standard errors) for model 1 (w1) for different given
variance values.

Figure 4.3: Histograms of calculated weights for the first model for five different given variances of
the random effects

It becomes apparent that with an increasing variance of the first random effect, and therefore a

decrease of the variance of the second random effect, the weight choice favours the first random effect.

Furthermore, as can be seen in Table 4.1, the weights show an analogous behaviour in the case of a

decrease of the first random effect variance. In the case that the variance of one of the two random

effects is on the boundary, i.e. equal to zero, the corresponding weight is close to but not exactly

zero. Furthermore the calculated weights show, that for τ1 = τ2 = 0.5 on average a model weight of

0.499 is chosen for model 1 and thus reflects the proportion of variation from the associated random

effects. Ultimately, it can be observed that the computed weights reflect the respective simulated

random effect variance. This indicates that the presented model averaging estimator can recognize

the information from the multi-level mixed model structure and consequently calculate weights that

lead to a model that closely represents the underlying true data generating model.

The framework of linear mixed models assumes normally distributed random effects and errors

terms allowing for computational more convenient approaches. Violations of these assumptions,

such as those caused by outliers or serially correlated within-subject errors, lead to less robust
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models and unreliable inference results. To explore the extent to which the presented method is

affected by these violations, two additional simulations are conducted. The first simulation adapts

the first simulation design, however, outliers are introduced by selecting one to 50 values of the first

random effect, where the number of potential outliers is drawn from a discrete uniform distribution,

and scaled with random draws from a continuous uniform distribution ranging from 3 to 5 such that

the adapted random effect b̃1,j is given by b̃1,j = ψb1,j , where ψ ∼ U(3, 5). In the second simulation

the original simulation design is modified by including serial within-subject correlated errors. These

are introduced by inducing a first order serial correlation with a correlation parameter of 0.5 such

that ε̃i,j,l = 0.5ε̃i−1,j,l + εi,j,l. The results of both simulations are displayed in Figures 4.4 and 4.5

as well as Tables 4.2 and 4.3.

Figure 4.4: Histograms of calculated weights for the first model for five different given variances of
the random effects with simulated correlated within-subject errors for the first random effect.

τ2
1 0 0.25 0.50 0.75 1

Mean 0.001 0.271 0.482 0.742 0.989
Std.Error 0.001 0.135 0.163 0.131 0.003

Table 4.2: Calculated mean weights (and standard errors) for model 1 (w1) for different given
variance values with simulated correlated within-subject errors for the first random effect.

The results indicate that the presented method is relatively robust to the portrayed violations

of the standard assumptions. This primarily stems from the fact that our method examines the

relative fits of the models in comparison to each other. If a model is less able to explain the

underlying data, then that model receives a smaller weight. It should be noted that linear mixed
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Figure 4.5: Histograms of calculated weights for the first model for five different given variances of
the random effects with simulated outliers for the first random effect.

τ2
1 0 0.25 0.50 0.75 1

Mean 0.001 0.292 0.534 0.765 0.989
Std.Error 0.001 0.145 0.172 0.134 0.003

Table 4.3: Calculated mean weights (and standard errors) for model 1 (w1) for different given
variance values with simulated outliers for the first random effect.

models, which attempt to make the model class more robust against these influences, such as Ho

and Lin (2010) are a valid alternative to the classic linear mixed model in these settings. However

the distributions of these robust models deviate from the normality assumption, thus an extension

of the proposed model averaging scheme especially for formula (4.6) needs to be found in order to

overcome the misspecification.

4.5.3 Relationship between weights and fixed effects

In this section, we compare our method with other model averaging methods, whereby to allow

for comparisons between our implementation with the concept of Zhang et al. (2014) we employ a

design based on Example 1 of their paper. In contrast to the two previous simulation settings the

focus of this simulation study lies on the calculated model average estimator and the accuracy of the

method in comparison to already implemented approaches. For this analysis, data is generated by

a data-generating model which contains three fixed effects in the form β = (1, 0.2, 0.4) whereby the

j-th row of the Xi matrix takes the following form (1, xi,j2 , xi,j3). The true underlying model also
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features three random effects, one random intercept and two random slopes. The elements of the

j-th row of the Zi matrix take the following form (1, zi,j2 , zi,j3). The respective values of the design

matrices X and Z originate independently from an N (0, 1) distribution. The underlying data-

generating model has 20 groups with 10 observations each. The data is simulated with a standard

deviation of the residuals of σ ∈ {0.3; 0.9}. Furthermore, each model combination is simulated with

four different random effect co-variance matrices. These four matrices are as follows

D1 =


1 0 0

0 1 0

0 0 1

 , D2 =


1.4 0 0

0 1.2 0

0 0 0.4

 ,

D3 =


1.4 0.4 0

0.4 1.2 0

0 0 0.4

 , D4 =


1.4 0.4 0.6

0.4 1.2 0.2

0.6 0.2 0.4

 .

These covariance structures were chosen to incorporate various levels of complex random effect

structures into this study, and to therefore determine to what extent these influence the ability

of the different methods of finding weights for model averaging. For each of the configurations,

100 independent datasets are generated. The candidate models used for approximation include at

least the fixed and the random intercept, the further candidate models include one of the two fixed

coefficients and further random effects. Based on the fitted candidate models, weights for model

averaging are now calculated as smooth weights as introduced in (4.5) based on the conditional

AIC, as well as weights based on the presented asymptotic optimal approach (4.7). The ability of

the different methods to calculate the model averaging approach is evaluated over the respective

average squared loss.

σ D1 D2 D3 D4

Asymptotic 0.3 323.751 264.324 274.753 256.289
0.9 360.498 285.706 290.286 290.674

Smoothed 0.3 337.241 275.546 285.849 266.612
0.9 373.372 296.281 298.929 300.176

Table 4.4: Simulation results: averaged squared losses. Asymptotically optimal model averaging
and cAIC smoothed weights

Table 4.4 presents the calculated squared losses for the respective methods for each underlying
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covariance matrix and the residuals standard deviation. The model averaging approach presented

and implemented in this work proves to be the superior method in terms of minimum average

squared loss in all scenarios presented here.

4.6 Applications

In this section, we apply the proposed weight finding technique for model averaging on models

fitted to two different real-world datasets. The first one is about the sensory assessment of TV

characteristics. The second one is a common linear mixed model benchmarking dataset from an

orthodontic study over time for several subjects.

4.6.1 Bang & Olufsen dataset

The first dataset was provided by the Danish electronics company Bang & Olufsen. Different

characteristics of TV sets are measured using three response variables. The explanatory variables

given are the TV set and image quality as measured and recorded by a panel of eight different

assessors. See Kuznetsova et al. (2017) for the details of this study.

In the first application, we are interested in the influence of the explanatory variables on the

response variable of the sharpness of motion and model it by means of random effects on the different

assessors. To model the relationship we create three different linear mixed effects models, assuming

that the response variable is influenced by the fixed effects of the TV set and the image quality, as

well as an interaction of both. However, the three models differ in how the effects of the assessors

are incorporated into the model. In the first model, it is assumed that there is a simple fixed random

effect per assessor, in the second model a fixed random effect per assessor with an interaction effect

between the TVs and the assessor is assumed and in the third, we assume an interaction between

the assessor and the image quality. To compare the models, we calculate information criteria, the

relative degrees of freedom and the mean squared error of the respective models. See Table 4.5 for

the results.

If one decides to use the classical model selection approach of choosing the model with the

smallest possible value for the information criterion under consideration, as well as a model averaging

based on smooth weights, the second model with the assumed random effect relationship of an

interaction between assessor and TV set would be chosen or respectively would receive a weight of

one.
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Weights
Model rel. DF cAIC MSE smoothed asymptotic

1 30.47 864.88 3.806 0.000 0.327
2 36.48 844.10 3.188 1.000 0.673
3 19.61 864.18 4.213 0.000 0.000

Table 4.5: The values of various model choice criteria, smoothed weights based on the cAIC and
weights resulting of the proposed model averaging estimator

Figure 4.6 shows the development of the weights and their trajectories during the optimization

process. It can be observed that from the outset the weights quickly converge towards their final

estimates. More specifically, from the tenth iteration onwards, the change of the weights becomes

negligible. It should be noted that the starting values for all weights are set to be wi = 1/K, K

being the number of candidate models. By doing so, it is ensured that all weights are already within

the feasible region of the optimization problem. Thereby, the equality constraints do not need to

be explicitly enforced on the starting values and the algorithm can directly start minimizing the

underlying weight choice function.

Figure 4.6: Representation of the trajectories of the weights during the optimisation. Large black
dots indicate weight values resulting from major iteration, small coloured dots indicate the results
of a minor iteration.
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The augmented Lagrangian is constructed as a robust method with regard to the starting values,

see chapter 17.4 in Nocedal and Wright (2006). If the starting values are misspecified and as such

chosen that they are not within the feasible region the convergence often takes longer. The authors

however did not find any convergence problems leading to wrong solutions in the simulations and

applications due to misspecified starting values.

We compare the results of our proposed method based on the mean squared error, with the results

of a model averaging estimator based smoothed weights, as well as a model averaging estimator build

upon the assumption of equal weights. The mean squared error is calculated by

MSE = 1
n

(y − ŷ(ŵ))T (y − ŷ(ŵ)),

where y represents the responses, ŷ(ŵ) the model averaging estimator based on the calculated

weights and n the number of observations. The model average estimator based on the proposed

method achieves the smallest MSE value of all with 3.153, whereas the estimator based on equal

weighting and on conditional AIC based smoothed weights offer MSE values of 3.491 and 3.188,

respectively.

4.6.2 Orthodont dataset

The second application uses candidate models based on the well known Orthodont dataset. The

dataset stems from a study at the University of North Carolina Dental School following the growth

of 27 children from the age of 8 until age 14. Every second year, the distance between the pituitary

and the pterygomaxillary fissure was measured via X-ray examination. For more details see Potthoff

and Roy (1964). For this application, we fit three different models. The first models the measured

distance with the help of an intercept and the fixed effect of age, as well as a random intercept

per individual. The second model extends the first model by including the fixed effect of gender.

The third model introduces an additional fixed effect by including an interaction between age and

gender. Model defining quantities such as the conditional Akaike information criterion, the relative

degrees of freedom and the mean squared error of the respective models can be observed in Table

4.6. In addition, the table includes the calculated weights of our proposed method in addition to

the smoothed weights based on the conditional AIC values of each candidate model.

The resulting estimator based on the proposed method provides the lowest overall MSE with

an value of 1.462 of all model averaging estimators considered. The equal weights estimator has an
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Weights
Model rel. DF cAIC MSE smoothed asymptotic

1 27.12 405.47 1.463 0.910 0.839
2 25.92 411.23 1.582 0.051 0.000
3 26.57 411.79 1.569 0.039 0.161

Table 4.6: The values of various model choice criteria, smoothed weights based on the cAIC and
weights resulting of the proposed model averaging estimator

MSE value of 1.509 and the smoothed weights estimator has an MSE value of 1.463. This indicates

a better ability of our methodology to evaluate, weigh and merge the underlying candidate models

into a new model averaging estimator.

4.6.3 Computational aspects and suitability for applied users

To assess the computational requirements, all required calculations were executed a thousand times

for both applications and the performance of the presented algorithm was contrasted with exis-

tent optimization routines in R. While the presented algorithm needs 10.764 milliseconds for the

TVbo model set and 9.676 milliseconds on average for the Orthodont models, the general nonlin-

ear optimiser solnp of the Rsolnp package (Ghalanos and Theussl, 2015) need 12.654 and 11.706

milliseconds. The nonlinear optimiser with constraints constrOptim.nl of the alabama package

(Varadhan, 2015) requires an average of 35.18 milliseconds for the first application and 7.194 mil-

liseconds for the second application. In both applications, the method presented has either the

least required computing time or one that is close to the fast method. In contrast to solnp and

constrOptim.nl, the proposed algorithm does not require the user to provide any complex input

of starting weights or the underlying gradient. Furthermore, in comparison to the much more gen-

eral implementations of nonlinear optimizers, all necessary quantities and objects are automatically

created and calculated in the background. This in turn allows the implementation to be more

straightforward and convenient to use for researchers willing to employ the proposed approach for

determining asymptotic optimal weights for model averaging of linear mixed models.

4.7 Outlook

Model choice for the class of linear mixed models plays an important role due to their wide distri-

bution and application in different fields. Especially the question of including random effects plays
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a crucial part, which is complicated by the inherent problem of classical model choice methods

concerning the underlying model assumptions. Thus, the use of classical information criteria such

as AIC is discouraged due to the deviation from the classical model by the assumptions of the linear

mixed model, while the usefulness of other methods such as likelihood-ratio test based approaches

is impaired by the possibility of boundary issues.

Therefore, due to its nature of combining different candidate models, the technique of model

averaging presents an interesting alternative to model selection of linear mixed models. On a tech-

nical level the choice of weights is critical for model averaging. As we have shown the proposed

weight finding method by Zhang et al. (2014) of using the Steinian approximation of derivatives

for an underlying weight criterion shows superior performance when compared to other approaches

based on information criteria such as the conditional AIC. The proposed method is implemented as

part of the R-Package cAIC4 facilitating the use by applied researchers. Given that there is no uni-

versally applicable unbiased estimator of conditional AIC in analytical form without distributional

assumptions (Saefken et al., 2014), the proposed method stops short of offering an all model-class

encompassing solution for model averaging.

Such a generalisation would be especially valuable as further interesting models such as robust

linear mixed models would fall under such an extended framework, see Lin and Lee (2006) and Ho

and Lin (2010). Therefore misspecifications could be identified as in Bartolucci et al. (2017). This

requires further research that we are planning to conduct in the future. An implementation of a

criterion for finding a squared loss-optimal weights for generalised linear mixed models is another

extension that is still required. A possible approach could be to use the methods proposed in Wood

et al. (2016) for conditional model selection. A further possible extension could be to apply another

error function than the squared error proposed in Zhang et al. (2014). Different possible error

functions and the corresponding covariance penalties are presented in Säfken and Kneib (2020).

This could be especially interesting for distributional regression models, see Kneib et al. (2021).

Also an extention to boosting (Griesbach et al., 2021) would be interesting.

In terms of fields of applications, the proposed framework offers great potential for model aver-

aging for applied researchers in order to offer more robust predictive capacity. One avenue which

will be pursued by the authors of this paper is the use of model averaging in the context of epi-

demiological research along the lines of Silbersdorff et al. (2018).
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Abstract:

We are witnessing the spectacular success of predictive deep learning algorithms in science and

industry. However, the deep learning framework lacks a mature, rigorous, mathematically based

approach to model evaluation and selection. For the development and application of possible de-

cision regimes, the specifics of the variety of deep learning algorithms need to be considered. This

paper addresses the question of how to quantify the underlying complexity of neural networks and

how to utilise the knowledge gained to evaluate and select models. We introduce the concept of

covariance penalties as a means of measuring the complexity of deep learning models and illustrate

the theoretical and practical challenges of translating this concept to the domain of deep learning.

Furthermore, we present the proposed methodologies with different simulation studies to demon-

strate the validity of the given approaches and try to identify factors that drive model complexity

for deep learning models.



On measuring complexity of deep learning mod-

els: A covariance penalty approach

5.1 Introduction

From classification to regression to language processing, deep learning methods have many poten-

tial applications and are shaping up to be one of the most important tools for data analysis and

processing in the 21st century. In addition to the early widespread applications in image recognition

and processing (Lecun et al., 1998; He et al., 2016), the later well-known examples such as playing

games and eventually defeating world-class players in chess or Go (Silver et al., 2016, 2018), or the

current advances in large-scale language models transforming the way we interact with information

and the web (OpenAI, 2023), deep learning methods are becoming more widely used in scientific

applications. From cancer tumour detection (Karabatak and Ince, 2009; Esteva et al., 2017) to

drug development (Ma et al., 2015), deep learning methods are already widely used in medicine.

However, these techniques are also very popular in the social sciences, with applications such as text

analysis of conspiracy theories on Twitter (Kant et al., 2022) or the prediction of economic variables

such as stock prices (Thormann et al., 2021). But only recently has attention focused on an integral

part of scientific applications: model selection, interpretation and especially model evaluation.One

of the focal points of the current research is the attempt to achieve a better explainability of the

deep learning models and the associated evaluation of the models. One such approach towards more

explainable deep learning is to merge statistical techniques with deep learning concepts to achieve

greater explainability and transparency, like deep regression (Rügamer et al., 2021), NAM (Agarwal

et al., 2021) or NAMLSS (Thielmann et al., 2023). An alternative to model selection and the han-

dling of the associated uncertainty is the application of ensemble deep learning, in which the same

model is trained several times and then an average is formed over all models (Kook et al., 2022).

When applying methods as ensemble learning, however, the question arises as to which criteria

53
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are used to select, or how to weight the underlying models and finally compare them. A selection

according to pure loss performance leaves out many important characteristics of the models and

neglects, especially in science, important aspects such as robustness and replicability. In classical

statistical data analysis, model complexity plays an important role in model selection, but has only

been superficially considered in the context of deep learning model evaluation. A common concept

to quantify complexity are degrees of freedom, which are often defined as the number of parameters

of the model, however, this is only valid for the simplest models and is more generally defined as

the trace of the hat or projection matrix of the model (Zhang et al., 2014). More complex and

non-linear models deviate from this simplified view and highlight the importance of a more mathe-

matically stringent definition. A broader and more rigorous mathematical definition of the concept

of degrees of freedom can be derived via Stein’s lemma as the expected sensitivity of the estimated

or predicted mean values with respect to the underlying response observations (Stein, 1981; Efron,

1986). Following Stein, Efron (2004) formulated degrees of freedom, and thus model complexity,

in terms of covariance penalties. This definition is difficult to formulate analytically, especially for

non-linear complex procedures, but it provides a broader understanding of model complexity and

a more comprehensive approach. Ye (1998) proposes a numerical approximation of the degrees

of freedom via a perturbation-based approach, which circumvents the need for closed form. Gao

and Jojic (2016) were able to show that Ye’s form of defining and computing degrees of freedom

can be applied to deep learning models for classification and, under certain conditions, produce

reliable results. Hauenstein et al. (2016) extend Ye’s concept of degrees of freedom to approximate

complexity of machines and deep learning models, and use the resulting values to compute model

evaluation metrics such as AIC (Akaike, 1973). While the methods proposed have been shown to

be effective for simple model architectures, they reach their limits when applied to deeper and more

complex models and yield less reliable results due to the inherent inherently stochastic nature of

neural networks.

In this paper, we define and illustrate algorithms to compute the covariance penalties of deep

learning models and show how model architecture and regulation techniques influence the underlying

model complexity. Our algorithms require additional runs of the modelling procedure, but allow a

more targeted model choice and allow users to consider the issue of complexity and hence sparsity

of a model. In our applications and experiments, we try to answer the following questions:

1. How do architecture and regularisation techniques affect model complexity? And, in particu-

lar, how do the various proposed methods differ in their results?
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2. Are there any identifiable factors driving the complexity of models?

5.2 Measuring complexity of deep learning models

In this section we discuss the general concept of degrees of freedom, covariance penalties and their

relation to prediction error estimation. We also introduce a generalisation of error measures, the

Q-class of prediction errors formulated by Bregman (1967) and Efron (1986), as well as Efron’s

optimism theorem.

5.2.1 Definitions

Regardless of the multitude of possible architectures and applications, the underpinning mathematical-

statistical theory of deep learning algorithms can be generalized. Assume a given problem with data

of the form of Z := X × Y with an given joint-probability p(x,y). Further assume that we have

n observed data points as d = (z(i))m
i=1 = ((xi, yi))m

i=1 ∈ Zm of the underlying true data-generated

process

y = ϕ(x) + ϵ,

where ϕ(·) : R → R, y ∈ Y ⊆ R, x ∈ X ⊆ Rm and ϵi ∼ N (0, σ2) for all i = 1, . . . , n. The

task is to identify a model that performs well on the training data d and that also performs well on

unknown out-of-sample data. In order to find such a model, assume that Z,X and Y are known

and measurable. Moreover, let there be a loss function over all measurable functions of X ,Y as

L : M(X ,Y) × Z → R. Based on a subset of M(X ,Y) a hypothesis set is now selected to create a

mapping

A :
⋃

m∈N
Zm → F ,

which uses the given data to find a model md = A(d) ∈ F , that will also exhibit a strong

performance on unknown data. Where the hypothesis set F represents all possible realisations of

the neural network, given the respective assumed underlying architecture. For a more in-depth

rigorous mathematical definition of neural networks see Berner et al. (2021).

5.2.2 Prediction error measurements and covariance penalties

Having selected and trained a model md, we now want to measure the performance of the model

on new unknown test data. However, the error of a given prediction ŷ = md(x) can be measured
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in several ways depending on the underlying data and task, thus creating the need for a more

generalised approach. A more general approach to working with different error functions ia a

generalisation of a broad class of error measures introduced by Bregman (1967) and Efron (1986)

respectively. Using a concave function q(·), a large class of error measures, called the Q-class of

error measures or also known as the Q-class Bregman divergence, can be constructed via

Q(y, ŷ) = q(ŷ) + q′(ŷ)(y − ŷ) − q(y). (5.12)

This class includes many different error measures, with the squared error and the AIC as the most

prominent representatives (Säfken and Kneib, 2020).
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Figure 5.7: Graphical depiction of the Q-class as defined in (5.12): The curve represents the
concave q function. The dashed lines indicate the positions of yi and ŷi. The difference between
the tangent q(ŷi) + q′(ŷi)(yi − ŷi) and q(ŷi) represents the error Q(yi, ŷi).
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From the Q-class follows a notation of the total error equal to the sum of all error components

such that

Q(y, ŷ) =
n∑

i=1
Q(yi, ŷi).

However, the presented sum leads to a too-optimistic error estimator, such that the observed

error does not equal the underlying true error. This is a problem for the evaluation of a model

in terms of its theoretical performance on new, unknown data. Thus, rather than focusing on the

overall error, we are focusing on the expectation of the overall predictive error, with respect to new,

unknown data from the same data generation process as the original data.

The optimism theorem proposed by Efron (1983) establishes a connection between observed

prediction error and the expected prediction error and allows for the calculation of the expectation

of the total error. If one considers the observed error and the true underlying error of an arbitrary

prediction rule, i.e. ŷ = m(x) the total error for the i-th component of an independent copy of y,

denoted by y0
i , based on the aforementioned theorem can be formalted in quadratic loss example as

follows

E
[
Q(y0

i , ŷ)
]

= E [Q(yi, ŷi) + 2 · cov(yi, ŷi)] .

The covariance part of the equation can be seen as an adjustment correcting for the biases of

the apparent error, hence the name of the covariance penalty. It should be noted, however, that

cov(ŷi, yi) cannot be observed directly and must in most cases be estimated.

The first proposal to approximate the covariance term was made by Stein (1981) for the simplified

case of Gaussian distributed data, where it was shown that

1/σ2
n∑

i=1
cov(ŷi, yi) = E

(
n∑

i=1
∂ŷi/∂yi

)
, (5.13)

illustrating the link between the covariance penalties and the expected optimism (Efron, 2004).

Since the derivatives in (5.13) are observable, it is possible to construct an estimator for the total

prediction error as follows

Q̂(y, ŷ) = Q(yi, ŷi) + 2σ2
n∑

i=1

∂ŷi

∂yi
, (5.14)

which has since become known as Stein’s Unbiased Risk Estimation (Efron, 2004). Moreover, it

can be seen in Efron (1986, 2021) that the estimated covariance turns out to be further a good

asymptotic approximator of the underlying model complexity.
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5.3 Complexity of deep learning models

Covariance penalties, are in themselves not observable statistics and require estimation. Various

parametric and non-parametric methodologies have been proposed, three of these, which are par-

ticularly suited to the application of more complex models and applications such as deep learning

networks, will be discussed in the following section.

5.3.1 Direct Approximation of Complexity of Neural Networks

For deep learning models, as for many other models, the assumed derivatives ∑i ∂ŷi/∂yi of the

predictions in (5.13) with respect to the underlying inputs are not available in closed form.

A direct approximation of model complexity as presented in Ye (1998) proves difficult for complex

deep learning models. Thus, Ye proposed a simple linear regression to repeated perturbations of

the underlying data of the form (ŷi
∗ − ŷi) = β0 +β1(y∗

i −yi) and summing the slope coefficients over

all data points to arrive at the approximated derivatives and thus the estimated model complexity.

This method, also known as the horizontal method, was proven in more detail by Elder (2003) as

a more robust method compared to the direct calculation of differences, but was found to be less

suitable for non-linear modelling methods (Hauenstein et al., 2016). On the other hand, Ramani

et al. (2008) were able to show in a theoretical context that there exists a stochastic direct estimator

of the model complexity of any nonlinear model of the form

∑
i

∂f(y)
∂yi

= lim
ϵ→0

Eb

[
bT
(
f(y + ϵb) − f(y)

ϵ

)]
, (5.15)

with f(y) begin an approximate function used on response data y, b a zero mean random vector with

unit variance and ϵ is a small perturbation value. This demonstrates the possibility of approximating

the derivatives of non-linear models by perturbing the input and thus, in the simplest form, allowing

methods such as finite differences or even more sophisticated Monte Carlo methods, as proposed by

Gao and Jojic (2016) and Ramani et al. (2008), to be used to approximate the underlying derivatives

and hence the underlying covariance penalties. An important question that arises, however, is how

to choose the number of perturbations that are introduced in each of the iterations.

While it is possible to change one point at a time, two problems arise. Firstly, the methods

would require (n+1) computations to obtain the result, which seems disproportionate for large data

sets and complex models such as those in deep learning. Second, due to the stochastic nature of
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the models and their training, the expected values are variable, which can lead to the change being

much smaller than the perturbation itself, and thus much smaller or even negative values. This has

been observed previously with various machine learning algorithms, such as random forests (Gao

and Jojic, 2016; Hauenstein et al., 2016).

In fact, the direct approximation methodology proposed in this paper makes use of data-driven

perturbations to estimate the underlying complexity. The introduced perturbations consist of a fixed

small value h, equal to 10−6 in our applications, scaled in each iteration by ϵ(σ2
y) randomly drawn

from a normal distribution N (0, ϵ ·σ2
y). The factor ϵ in our simulations is 1/4 and σ2

y represents the

variance of the underlying response variable. Each computation is performed T times to account

for the stochastic nature of the deep learning models, averaging out stochastic initialisation effects.

The process continues until each point in the data set has been perturbed once. A summarising

illustration of the method can be seen in Algorithm 2. To minimise the inherent stochasticity of the

deep learning model, all models are initialised with the same random seeds, using the same batch

number, stopping criteria and learning rates. Similar to ensemble deep learning, each calculation is

repeated several times to account for the inherent randomness of the models.

Algorithm 2 Perturbation-based approximation
Input: Training data X,y, number of passes p, number of perturbation k

Output: Estimated covariance penalty ĉov via approximated ∂f(yi)/∂yi

1: for p times do

2: while length(unperturbed y) > 0 do

3: Sample k values of the still unperturbed y

4: Perturb the corresponding response values and create y∗

5: Train model X and new y∗

6: Predict new ŷ∗ based on X

7: end while

8: Use horizontal method (ŷi
∗ − ŷi) = β0 + β1(y∗

i − yi)

9: Sum of slope coefficients ĉovp = ∑
i β1i

10: end for

11: Calculate mean over passes ĉov = 1/p∑p ĉovp

12: return ĉov =0
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In the case of continuous responses, the form of the underlying perturbation is a matter of adding

the perturbation term to the responses in y. The difficulty with non continuous responses, such

with a classification task whether binary or multi-class, is that we are dealing with fixed integer or

boolean values, and thus the form of the perturbation must be adapted to the underlying data and

the task of the model. In the simplest case of a binary problem, perturbation occurs by changing

the target variable from True to False, 0 to 1, or the given encoding, and vice versa.

5.3.2 Bootstrap estimation of covariance penalties of deep learning models

While the direct approximation of the covariance penalties relies on the underlying derivatives,

which can be sampled directly from the underlying observations in y by evaluating the associated

Jacobian, this approach inherently suffers from drawbacks. One approach is to formulate a closed-

form expression of the Jacobian, which is generally difficult and would need to be done for each new

application. The numerical evaluation of the Jacobian in the case of large dimensions, such as in

neural network applications, proves to be extraordinarily difficult, such that even if it were possible,

it may lead to severe numerical instabilities. An alternative to estimating the covariance penalty

directly is a bootstrap approach (Efron, 2004). This involves generating a bootstrap distribution

based on the original model and its fitted or predicted values ŷ for the mean prediction and an

estimator for the variance σ̂2. Assuming normally distributed data, this gives a distribution f̂ =

N (µ̂, σ̂2) from which B new values for the response y∗b
i are calculated for the underlying values of the

inputs in xi . Using the new bootstrap response values and the original model m(), new predictions

are obtained in the form of ŷ∗b
i = m(y∗b

i ). Following these results, the covariance penalties are

estimated from the observed bootstrap covariance via

ĉovi =
B∑

b=1
ŷ∗b

i

(
y∗b

i − ȳ∗
i

)
/(B − 1) with ȳ∗

i =
∑

b

ŷ∗b
i

B
.

For this type of parametric bootstrap, Borra and Di Ciaccio (2010) have shown that it may

be necessary to adapt the procedure for non-parametric complex models such as deep learning

models. The main problem here is that deep and machine learning models can fit noise and thus

produce mean predictions equal to the response variable and a variance of σ̂2 = 0. In the light

of such findings, the approach originally proposed by Efron can prove to be impractical in some

applications. Thus, the authors propose to introduce an optional step of generating first preliminary

estimates for µ and σ2 based on the underlying data to avoid potential drawbacks. An important
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point of comparison with the presented approaches is that the bootstrap method represents a so-

called global method, as in each simulation step all underlying data points are altered to compute

the covariance penalty, contrasting direct perturbation and cross-validation based approaches. Like

the direct approximation of the derivatives, the bootstrap is a model-based approach, i.e. it assumes

that the model under consideration is true.

5.3.3 Cross-validation estimation of covariance penalties of deep learning mod-
els

Cross-validation is a widely used error prediction estimation method that automatically incorporates

the underlying model complexity to measure the predictive performance of a model. The advantage

of cross-validation over other approaches is model independence. Equally to the direct approxima-

tion approach based on the Steinian, only the i-th value is changed, such that this approach can be

called a local method (Efron, 2004). Following the Q-class error notation presented earlier in (5.12),

it is possible to formulate the covariance penalty as an estimate of the cross-validation. Given the

data set y−i = (y1, . . . , yi−1, yi+1, . . . , yn) reduced by the i-th data point and the corresponding

mean estimator ŷ−i utilising Efron’s optimism theorem as in (5.13) allows to construct the connec-

tion between the expected prediction error of the cross-validation Q(yi, ŷ−i) and the apparent error

Q(yi, ŷi) as

2ĉovi = Q(yi, ŷ−i) −Q(yi, ŷi).

This relationship allows the establishment of the underlying covariance penalty estimator, based

on cross-validation, as follows

n∑
i=1

ĉovi = 1
2

n∑
i=1

[
Q(yi, ŷ−i) −Q(yi, ŷi)

]
.

Rather interestingly, it can be shown that the covariance penalties are a Rao-Blackwellization

of the cross-validation approach (Efron, 2004). This suggests at least theoretically less accurate

results of cross-validation compared to the direct approximation and bootstrap methods presented.

An additional concern with estimating prediction error, and thus covariance penalty, via cross-

validation is the high variance of the resulting estimates, the resulting unstable and thus less reliable

estimates (Stone, 1977; Efron, 1983). A possible solution to this issue is to adopt K-fold cross-

validation, which decreases the overall variance of the estimator but introduces a larger bias, such

that K-fold cross-validation will never leads to an unbiased estimator (Hastie et al., 2009; Rosset
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and Tibshirani, 2020). However, Burman (1989) demonstrated that there exists a version of the

apparent error estimator, corrected for K-fold cross-validation, which depends on the number of

folds K. Giving an indexing function κ : {1, . . . , N} 7→ {1, . . . ,K} which indicates the partitioning

into disjoint subsets after randomising the sample, while ŷ−k
i denotes the fitted or predicted values

computed with the kth part of the data removed. The result of the K-fold error estimate can be

described as follows

Q
(
yi, ŷ

−κ(i)
i

)
= 1
K

K∑
h=1

1
m

∑
j∈κ(h)

Q
(
yj , ŷ

−κ(h)
j

)

+ 1
n

n∑
i=1

[
Q (yi, ŷi) − 1

K

K∑
h=1

Q
(
yi, ŷ

−κ(h)
i

)]
.

This allows the estimator of Efron’s optimism for a K-fold CV approach to be rewritten as

2
n∑

i=1
ĉovi = 1

K

K∑
h=1

n−m

nm

∑
j∈κ(h)

Q
(
yj , ŷ

−κ(h)
j

)
− m

mn

∑
j /∈κ(h)

Q
(
yi, ŷ

−κ(h)
j

)
= n−m

n

 1
K

K∑
h=1

1
m

∑
j∈κ(h)

Q
(
yi, ŷ

−κ(h)
j

)
− 1
K

∑
h

1
n−m

∑
j /∈κ(h)

Q
(
yi, ŷ

−κ(h)
j

) .
This corrected version uses the mean function of the test sets, corrected for the K-fold training

set fit, to estimate the corrected optimism (Borra and Di Ciaccio, 2010). Consequently, the method-

ology used relies on a K-fold cross-validation approach involving multiple repetitions to account for

the inherent stochastic influences of initialisation, the deep learning model itself, and the K-fold

sampling procedure. The method used here, like the direct approximation of derivatives and the

bootstrap, uses multiple runs with re-initialisation of the underlying models to better address the

inherent stochasticity of the deep learning approach.

5.4 Applications

We investigate the influence of different architectural characteristics of deep learning models, such as

depth or number of neurons per layer, on model complexity, and the influence of regulatory effects,

such as weight decay or dropout, on model complexity using the proposed methods. Another area

of focus is the extent to which deep learning models are self-regulating through their inherent

mechanics, and to what extent this determines or limits the overall complexity of the model.
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5.4.1 Influence of model architecture on complexity

In order to assess the influence of the architecture on complexity, various deep learning models with

different depths and widths are examined. In order to cover the different application scenarios,

the simulations are carried out once for a continuous and once for a discrete response setting,

representing a regression and a classification based task. In the case of continuous response variable,

tabular data is generated from a normal distribution N (µ, σ). The data generating model for µ are

considered here with xi ∼ U(0, 1).

µ = β0 + β1x1 + β2x
2
2 + β3x

2
3 + β4x1 · x4 + β5x

2
5

For the classification set-up, data for a binary response variable is simulated using ten feature

variables, half of which are redundant. The two response categories are unequally weighted, with the

first category with a prevalence of 20% and the second class at 80%. This inequality, together with

the presence of redundant features, is intended to simulate the necessary more complex underlying

characteristics of the data in the model training process, and thus the possible impact of the data

on model complexity. The models considered vary in depth of hidden layers of ∈ [0, 1, 2, 3] and the

number of hidden units for each layer in the regression set up with ∈ [5, 10, 15, 20]. For the sake

of comparability, all hidden layers have the same number of hidden units over the entire network.

The deep learning models under consideration are trained via stochastic gradient descent with a

maximal number of epochs of 1.000 and a patience of 100. This relatively long training period and

patience is required to ensure convergence among the models, as even minor changes in the models

can produce noticeable effects on the results for perturbation-based methods, therefore highlighting

another drawback of this approach. We did not attempt to optimise the model settings for each data

set, as we are not interested in developing the best overall model. Although the models used here

are far removed from the parameter-rich architectures of modern applications, the lessons learned

from the various models reviewed here can well illustrate the impact of architectural differences.

Possible regularising effects of an optimiser will be looked at in the second simulation study.

Figure 5.8 illustrates the relationship between the total number of parameters of the deep learn-

ing models trained on the synthetic data sets presented and the calculated covariance penalty values.

Note that the estimated covariance penalty values increase rapidly with the number of parameters.

However, the calculated complexity values reach a plateau early and stay relatively constant for

the continuous response application, whereas the estimated complexity for the classification setting
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Figure 5.8: Influence of number of parameters: Graphs for the complexity of the models in
terms of the number of parameters. We observe a rapid increase in complexity with few model
parameters, but quickly reach a plateau for the continuous response. Although the calculated
complexity increases with classification, there is more variation, implying that there are more factors
driving complexity. A correlation as seen with simple linear models between model parameter and
complexity are not present in the results.

seems to indicate that an increase in model parameter increases the complexity to some degree.

The graph combines different models with different depths and widths, such that the variations,

especially in the classification setting, suggest that there are several driving factors. A comparison

of the three methods presented suggests, in line with the literature, that K-fold cross-validation

produces a higher variance in its results whereas bootstrap and the direct approximator produce

more constant results (Efron, 2004; Borra and Di Ciaccio, 2010).

In the regression set-up, we have relatively simple data structures, which in combination with the

graphs suggests that the complexity of a neural network is governed by its self-regulating properties.

As long as a deep learning model has sufficient parameters to map the data, such that increasing

the number of parameters does not lead to an improvement in model performance, increasing the

number of parameters does not increase model complexity. The influence of hidden layers and

hidden units per layer can be seen in Figure 5.9.

Similar to the number of model parameters, there is a sharp increase in the estimated covariance

penalty values and a plateau. Although the computed complexity increases with classification, there

is more variation, suggesting that there are more factors driving complexity than the number of

total parameters. A breakdown of the calculated complexities according to the respective depth of

the models considered can be seen in Figure 5.10.

In the more complex classification setup, we can observe that the deeper models tend to have

a higher level of complexity, indicating the role of depth in model complexity. Interestingly, again,
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Figure 5.9: Influence of architecture: Graphs for the complexity of the models in terms of the
number of hidden layers and units per hidden layer. We can see an increase in model complexity,
but this plateaued relatively early. No single aspect seems to soley drive model complexity in this
simulation study.
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Figure 5.10: Influence of number of parameters: Graphs for the complexity of the models
in terms of the number of parameters given the number of underlying hidden layers. Complexity
increases rapidly with few model parameters, but soon reaches a plateau. A correlation as seen with
simple linear models is not present in the result. However, a relationship between model depth and
overall model complexity becomes apparent.

the increase in complexity is only partly due to an increase in model parameters. Instead, the

depth of the model is an important factor influencing complexity. Also with this approach, as with

the simple data set, we can observe that models eventually reach an equilibrium where increasing

the number of model parameters does not lead to an increase in complexity. Based on the initial

findings from the first data set and simulation, this suggests that the models eventually reach their
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maximum complexity, supporting the hypothesis that the self-regulation of neural networks leads

to a neural network that is as complex as it needs to be, and no more, in order to approximate

the underlying data sufficiently well. The observation is consistent with the theoretical property

that neural networks with at least two layers are universal approximators (Cybenko, 1989; Berner

et al., 2021). Once this state has been reached, it follows that more hidden layers or more neurons

per layer will not improve performance and that even if we increase the number of hidden layers or

neurons per layer, the underlying model performance and complexity will not increase.

5.4.2 Regularisation impact on complexity

The ability of the neural network to learn from the given data is not only influenced by the archi-

tecture itself, i.e. the depth, width and activation functions, but regularisation techniques also play

a major role. A demonstrable influence of the regularisation on underlying degrees of freedom and

thus the accompanying complexity of the models can be shown for various statistical models (Tib-

shirani and Taylor, 2012). For the purpose of this analysis, we use the same setup as presented in

the previous chapter. However, we train the respective models with different regularising influences.

Here we focus on weight decay and dropout.

Weight decay itself represents a form of penalty, similar to approaches such as Ridge (Hoerl and

Kennard, 1970) or Lasso regression (Santosa and Symes, 1986; Tibshirani, 1996). Here, the L2-norm

of all weights w of the model under consideration is calculated and added to the loss. The impact

on the loss can be controlled via a decay parameter. Dropout is a regularisation technique used to

reduce overfitting of artificial neural networks by randomly dropping hidden units from the neural

network during training. Dropout has been shown to have a positive effect on the performance of

neural networks (Srivastava et al., 2014).

To evaluate the influence of the regularisation methods, we perform repeated simulations to

analyse the impact of dropout and weight decay on the model complexity, where for the former we

add dropout layers to the model architecture and for the latter we apply weight decay with different

decay rates and estimate the underlying covariance penalties for them. Here we take the data set

for a continuous response variable from the first simulation study and train a simple two hidden

layer MLP with ten neurons per layer on the data. To investigate the effect of dropout, we run

the training for models with different values of dropout in the range [0, 0.1, . . . , 0.9]. For the effect

of weight decay, we use the same data and the same baseline model, but instead introduce weight

decay in training and let the weight decay take different values with [0, 10−7, 10−6, ..., 10−2].
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The effect of dropout and weight decay on the resulting model complexity is illustrated in Figure

5.11. Both dropout and weight decay affect the value of the estimated covariance penalty values.
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Figure 5.11: Influence of regularisation: The plots display the calculated values of covariance
penalties on synthetic data given different dropout and weight decay rates as regularisation tech-
niques. The results of the perturbation, cross-validation and bootstrap methods are depicted in the
three different coloured graphs.

It is worth noting that the result for the influence of dropout for our synthetic data contradicts the

results of Gao and Jojic (2016), who in their paper based on the concept of generalised degrees of

freedom as complexity measures for classification deep learning models Ye (1998) show that dropout

does not affect model complexity with synthetic data. The dropout leads to a constant decrease

in the covariance penalty values as the dropout value increases. In terms of progression over the

dropouts, the bootstrap and the perturbation-based results are very close to each other. The K-fold

cross-validation results show a similar progression, but higher variance in the results, as expected

from a cross-validation approach. The weight decay, on the other hand, shows a non-constant

influence on the estimated model complexity. This influence of weight decay is consistent with

experience with statistical models, where it can be shown in statistics that weight decay leads to a

reduction in overall model complexity. The results of all three methods follow each other closely,

with the bootstrap method tending to yield the lowest values and the perturbation-based method

the largest. As in the first simulation study, the K-fold approach produces a higher variance in the

results.
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5.5 Discussion and conclusion

Attempts at complexity measures for deep learning models, such as the generalised degrees of

freedom popular in statistics, have produced promising initial results, but have been limited in

their approach to classification, as in the work of Gao and Jojic (2016), or have demonstrated

that perturbation-based approaches reaches its limits due to the architecture’s inherent processes

of weighted averaging, as in the work of Hauenstein et al. (2016). We were able to establish that

the concepts of covariance penalties as a measure of model complexity can be transferred from

statistics to deep learning and can be implemented effectively. In different simulations, we have

been able to show how the different methods relate to one another, but also how different features

of deep learning models, such as architecture or regularisation techniques, influence the underlying

model complexity. Specifically, the observation that models tend to reach a model complexity limit

that, that once reached, cannot be further increased by additional model parameters. This finding

suggests that deep learning models may only become as complex as they need to be due to their

inherent ability to self-regulate, thus maintaining a level of self-controlled sparsity.

The comparison of the different methods presented provides an interesting insight into our

covariance penalty approaches, showing that cross-validation tends to produce values for the upper

bounds of complexity with higher complexity, while bootstrap produces lower bounds and the direct

perturbation-based approach produces results in between. An inherent disadvantage of the methods

presented here shows up in varying degrees in the additional computational effort that is introduced.

In particular, the perturbation-based computation of the Steinian-like complexity estimator requires

up to a total of (n + 1) additional runs, depending on the number of perturbations per iteration.

In comparison, cross-validation and bootstrap based approaches are less computationally intensive,

but still have a significant impact on the computation time. In all our applications, regardless of the

method, we were able to show that there is no clear complexity-driving factor such as the number

of model parameters, the number of neurons per layer or the depth. Overall, the results show that

cross-validation and bootstrap are the more appropriate methods for estimating complexity, both

methods require less computation than the direct perturbation-based approximation approach and

yield more reliable results over all presented use cases.
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Abstract:

Deep neural networks (DNNs) have proven to be highly effective in a variety of tasks, making them

the go-to method for problems requiring high-level predictive power. Despite this success, the inner

workings of DNNs are often not transparent, making them difficult to interpret or understand. This

lack of interpretability has led to increased research on inherently interpretable neural networks

in recent years. Models such as Neural Additive Models (NAMs) achieve visual interpretability

through the combination of classical statistical methods with DNNs. However, these approaches only

concentrate on mean response predictions, leaving out other properties of the response distribution of

the underlying data. We propose Neural Additive Models for Location Scale and Shape (NAMLSS),

a modelling framework that combines the predictive power of classical deep learning models with the

inherent advantages of distributional regression while maintaining the interpretability of additive

models.



Neural additive models for location, scale, and

shape: A framework for interpretable neural

regression beyond the mean

6.1 Introduction

Deep learning models have shown impressive performances on a variety of predictive tasks. They

are state-of-the-art models for tasks involving unstructured data, such as image classification (Yu

et al., 2022; Dosovitskiy et al., 2020), text classification (Huang et al., 2021; Lin et al., 2021), audio

classification (Nagrani et al., 2021), time-series forecasting (Zhou et al., 2022; Zeng et al., 2022)

and many more. However, the predictive performance comes not only at the price of computational

demands. The black-box nature of deep neural networks poses hard challenges for interpretability.

To achieve sample-level interpretability, existing methods resort to model-agnostic methods. Locally

Interpretable Model Explanations (LIME) (Ribeiro et al., 2016) or Shapley values (Shapley, 1953)

and their extensions (Sundararajan and Najmi, 2020) try to explain model predictions via local

approximation and feature importance. Sensitivity-based approaches (Horel and Giesecke, 2020),

exploiting significance statistics, can only be applied to single-layer feed-forward neural networks

and can hence not be used to model difficult non-linear effects, requiring more complex model

structures.

Subsequently, high-risk domains, such as e.g. medical applications often cannot exploit the

advantages of complex neural networks due to their lack of innate interpretability. The creation

of these innately interpretable models hence remains an important challenge. Achieving the in-

terpretability from flexible statistical models as e.g. Generalized Linear Models (GLMs) (Nelder

and Wedderburn, 1972) or Generalized Additive Models (GAMs) (Hastie, 2017), in deep neural

networks, however, is inherently difficult. Recently, Agarwal et al. (2021) introduced Neural Ad-
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ditive Models (NAMs), a framework that models all features individually and thus creates visual

interpretability of the single features. While this is an important step towards interpretable deep

neural networks, any insightfulness of aspects beyond the mean is lost in the model structure. To

counter that, we propose the neural counterpart to Generalized Additive Models for Location, Scale

and Shape (GAMLSS) (Rigby and Stasinopoulos, 2005), the Neural Additive Model for Location,

Scale and Shape (NAMLSS). NAMLSS adopts and iterates on the model class of GAMLSS, in the

same scope as NAMs (Agarwal et al., 2021) on GAMs.

The GAMLSS framework relaxes the exponential family assumption and replaces it with a

general distribution family. The systematic part of the model is expanded to allow not only the

mean (location) but all the parameters of the conditional distribution of the dependent variable to

be modelled as additive nonparametric functions of the features, resulting in the following model

notation:

θ(k) = g(k)−1
β(k) +

Jk∑
j=1

f
(k)
j (x(k)

j )

 = ηθ(k) ,

with the superscript k = 1, . . . ,K denoting the k-th parameter and j = 1, . . . , J denoting the

features.

The model assumes that the underlying response observations yi for i = 1, 2, . . . , n are condi-

tionally independent given the covariates. The assumed conditional density can depend on up to

K different distributional parameters3. Each of these distribution parameters θ(k) can be modelled

using its additive predictor ηθ(k) for k = 1, . . . ,K, allowing for complex relationships between the

response and predictor variables, as well as the flexibility to choose different distributions for dif-

ferent parts of the response variable. An additional important component of the GAMLSS model

is the link function g(k)(·), which allows each parameter of the distribution vector to be conditional

on different sets of covariates. In the case that the distribution under consideration features only

one distribution parameter, the model simplifies to an ordinary GAM model. Therefore, GAMLSS

is to be seen as a conceptual extension of the GAM idea and is suitable for the extension and

generalisation of approaches such as NAMs which are themselves built upon the GAM idea. For

an overview of the current state of regression models that focus on the full response distribution

approaches see Kneib et al. (2021).

While NAMs learn linear combinations of different input features to learn arbitrary complex

functions and at the same time provide improved interpretability, these models, like their statistical

3In practice most application focus on up to four θi =
(

θ
(1)
i , θ

(2)
i , θ

(3)
i , θ

(4)
i

)
.
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Figure 6.12: California Housing: Graphs for longitude and latitude respectively learned by the NAMLSS
model. NAMLSS capture changes in mean as well as variance. Therefore the plotted standard deviations
change in dependence of the longitude and latitude. The house price jumps around the location of Los
Angeles are depictable. Additionally, we find a decrease in variance for areas further away from the large
cities.

counterparts GAMs, focus exclusively on modelling mean and dispersion. This is in contrast to

the GAMLSS and subsequently, the proposed NAMLSS, which substantially broadens the scope

by allowing all underlying parameters of the response distribution to potentially depend on the

information of the covariates.

Contributions The contributions of the paper hence can be summarized as follows:

• We present a novel architecture for Neural Additive Models for Location, Scale and Shape.

• Compared to state-of-the-art GAM, GAMLSS and DNNs our NAMLSS achieves similar results

on benchmark datasets.

• We demonstrate that NAMLSS effectively captures the information underlying the data. Espe-

cially NAMLSS allows for prediction beyond point estimates, for instance prediction intervals.

• Lastly, we show that the NAMLSS approach allows to go beyond the mean prediction of the

response and to model the entire response distribution.
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6.2 Literature review

The idea of generating feature-level interpretability in deep neural networks by translating GAMs

into a neural framework was already introduced by Potts (1999) and expanded by de Waal and

du Toit (2007). While the framework was remarkably parameter-sparse, it did not use backprop-

agation and hence did not achieve as good predictive results as GAMs, while remaining less inter-

pretable. More recently, Agarwal et al. (2021) introduced NAMs, a more flexible approach than the

Generalized Additive Neural Networks (GANNs) introduced by de Waal and du Toit (2007) that

leverages the recent advances in the field of Deep Learning.

NAMs are a class of flexible and powerful machine learning models that combine the strengths of

neural networks and GAMs. These models can be used to model complex, non-linear relationships

between response and predictor variables, and can be applied to a wide range of tasks including

regression, classification, and time series forecasting. The basic structure of a NAM consists of a

sum of multiple components, each representing a different aspect of the relationship between the

response and predictor variables. These components can be linear, non-linear, or a combination of

both, and can be learned using a variety of optimization algorithms. One of the key advantages of

NAMs is their inherent ability to learn the interactions between different predictor variables and the

response without the need for manual feature engineering. This allows NAMs to capture complex

relationships in the data that may not be easily apparent to the human eye.

The general form of a NAM can be written as:

E(y) = h

β +
J∑

j=1
fj(xj)

 , (6.16)

where h(·) is the activation function used in the output layer, x ∈ Rj are the input features,

β is the global intercept term, and fj : R → R represents the Multi-Layer Perceptrons (MLPs)

corresponding to the j-th feature. The similarity to GAMs is apparent, as the two frameworks

mostly distinguish in the form the individual features are modelled. h(·) is comparable to the link

function g(·).

Several extensions to the NAM framework have already been introduced. Pairwise or higher

order interaction effects can be accounted for (Yang et al., 2021; Enouen and Liu, 2022; Wang et al.,

2021; Dubey et al., 2022). Chang et al. (2021) introduced NODE-GAM, a differentiable model based

on forgetful decision trees developed for high-risk domains. All these models follow the additive
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framework from GAMs and learn the nonlinear additive features with separate networks, one for

each feature or feature interaction, either leveraging MLPs (Potts, 1999; de Waal and du Toit, 2007;

Agarwal et al., 2021; Yang et al., 2021; Radenovic et al., 2022), using decision trees (Chang et al.,

2021) or using Splines (Rügamer et al., 2020; Seifert et al., 2022; Luber et al., 2023).

The applications of such models range from nowcasting (Jo and Kim, 2022), financial applica-

tions (Chen and Ye, 2022), to survival analysis (Peroni et al., 2022). While the linear combination

of neural subnetworks provides a visual interpretation of the results, any interpretability beyond

the feature-level representation of the model predictions is lost in their black-box subnetworks.

6.3 Beyond the mean

Obviously, the mean (or the arithmetic mean as its empirical counterpart) provides only a rather

incomplete description of a probability distribution (the empirical distribution of corresponding

observations, in case of the arithmetic mean). While this fact is widely acknowledged when it comes

to exploratory data analysis, it is also widely ignored in the context of prediction models where the

focus is typically on predicting expected outcomes. This narrow focus reflects an interest in common

or average observations, but is misleading when phenomena such as risk, extremes, or uncertainty

are central to an analysis. With the GAMLSS-based framework considered in this paper, we are

able to quantify effects of covariates not only on the mean, but on any parameter of a potentially

complex distribution assumed for the responses. As major advantage, the resulting models can

determine changes in all aspects of the response distribution, such as variance, skewness or tail

probabilities. This also contributes to properly disentangling aleatoric from epistemic uncertainty.

Changing the focus from regression models for the mean to regression for distributions also

requires changes in the evaluation metric that is used to compare rivalling model specifications.

More precisely, the evaluation metric should be proper Gneiting and Raftery (2007), i.e. enforce

the analyst to report their true beliefs in terms of a predictive distribution. While the MSE that is

commonly employed in mean-based modelling is proper for the mean, it is not for general distribu-

tions. We therefore will rely on the negative log-likelihood (also refereed to as the log-score) as a

proper score for comparing distributional regression models.

While predicting all parameters from a distribution may not always improve predictive power,

understanding the underlying data distribution is crucial in high-risk domains and can provide

valuable insights about feature effects. As an example, Figure 6.13 illustrates the fit of our approach
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Figure 6.13: Johnson’s SU distribution: Simulated Johnson’s SU distribution and the fit of a
simple NAMLSS (see Figure 6.14) and a MLP. While the MLP achieves an impressive fit concerning
the quadratic loss, it clearly cannot capture the underlying distribution adequately.

on data following a Johnson’s SU distribution, including 3 features, compared to the fit of a MLP

that minimizes the Mean Squared Error (MSE). The MLP has a better predictive performance with

an MSE of 0.0002, however, NAMLSS is able to reflect the underlying data distribution much more

accurately (as shown in Figure 6.13), even though it has an MSE of 0.0005. The idea of focusing

on more than the underlying mean prediction is thus certainly relevant and has been an important

part, especially of the statistical literature in recent years. There has been a strong focus on the

GAMLSS (Rigby and Stasinopoulos, 2005) framework, conditional transformation models (Hothorn

et al., 2014), density regression (Wang et al., 1996) or quantile and expectile regression frameworks.

However, these methods are inferior to machine and deep learning techniques in terms of pure

predictive power; the disadvantage of not being able to deal with unstructured data forms such as

images, text or audio files; or the inherent problems of statistical models in dealing with extremely

large and complex data sets. One resulting development to deal with these drawbacks is frameworks

that utilize statistical modelling methods and combine them with machine learning techniques such

as boosting to create new types of distributional regression models such as boosted generalized

additive model for location, scale and shape as presented by Hofner et al. (2014). However, the

models leveraging boosting techniques, while successfully modelling all distributional parameters,

lack the inherent interpretability from GAMLSS or even the visual interpretability from NAMs.
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Figure 6.14: The network structure of a simple NAMLSS model. Each input variable as well as each
distributional parameter is handled by a different neural network. h(k) are different activation functions
depending on the distributional parameter that is modelled. E.g. a quadratic transformation for modelling
the variance in a normally distributed variable to ensure the non-negativity constraint. The presented
structure demonstrates a NAMLSS modelling a distribution with two parameters, e.g. a normal distribution.

6.4 Methodology

While NAMs incorporate some feature-level interpretability and hence entail easy interpretability of

the estimated regression effects, they are unable to capture skewness, heteroskedasticity or kurtosis

in the underlying data distribution due to their focus on mean prediction. Therefore, the presented

method is the neural counterpart to GAMLSS, offering the flexibility and predictive performance

of neural networks while maintaining feature-level interpretability and which allows estimation of

the underlying total response distribution.

Let D = {(x(i), y(i))}n
i=1 be the training dataset of size n. Each input x = (x1, x2, . . . , xJ)

contains J features. y denotes the target variable and can be arbitrarily distributed. NAMLSS are

trained by minimizing the negative log-likelihood as the loss function, − log (L(θ|y)) by optimally

approximating the distributional parameters, θ(k).
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Each parameter, θ(k), is defined as:

θ(k) = h(k)

β(k) +
J∑

j=1
f

(k)
j (xj)

 , (6.17)

where h(k)(·) denotes the output layer activation functions dependent on the underlying dis-

tributional parameter, β(k) denotes the parameter-specific intercept and f
(k)
j : R → R represents

the feature network for parameter k for the j-th feature, subsequently called the parameter-feature

network.

Just as in GAMLSS, θ(k) can be derived from a subset of the J features, however, due to the

inherent flexibility of the neural networks, defining each θ(k) over all J is sufficient, as the individual

feature importance for each parameter, θ(k), is learned automatically. Each parameter-feature

network, f (k)
j , can be regularized employing regular dropout coefficients in conjunction with feature

dropout coefficients, λ(k)
1j and λ

(k)
2j respectively, as also implemented by Agarwal et al. (2021). For

e.g. a normal distribution, NAMLSS would hence minimize

− log
(
L(µ̂, σ̂2|y)

)
= −

(
−n

2 log(2πσ̂2) − 1
2σ̂2

n∑
i=1

(yi − µ̂)2
)
, (6.18)

where

µ̂ = β(1) +
J∑

j=1
f

(1)
j (xj) and σ̂2 = log

1 + exp

β(2) +
J∑

j=1
f

(2)
j (xj)

 ,
utilizing a Softplus activation function for the scale parameter and a linear activation for the location

parameter.

Integrating possible feature interactions can easily be achieved in both architectures, either

following Wang et al. (2021) by training a fully connected MLP on the residuals after the NAMLSS

has converged, or by following Enouen and Liu (2022); Radenovic et al. (2022) and modelling

pairwise (or higher order) feature interactions for all distributional parameters:

θ(k) = h(k)

β(k) +
J∑

j=1
f

(k)
j (xj) +

J∑
j,t:j ̸=t

f
(k)
jt (xj , xt)

 . (6.19)

We propose two different network architectures that can both flexibly model all distributional

parameters. The first is depicted in Figure 6.14 and creates J subnetworks for each of the K distribu-

tional parameters. Each distributional subnetwork is comprised of the sum of the parameter-feature

networks f (k)
j . Hence we create K × J parameter-feature networks. To account for distributional



Chapter 6. Contributions: NAMLSS 79

restrictions, each distributional subnetwork is specified with possibly differing activation functions

in the output layer. The second model architecture, possible due to the flexibility of neural net-

works, leverages the architecture of NAMs (see Formula (6.16)) and is depicted in Figure B.1 in the

Appendix. Here, only J subnetworks are created, with each subnetwork having a K-dimensional

output layer. This architecture thus creates the same number of subnetworks as a common NAM.

Each distributional parameter, θ(k), is subsequently obtained by summing over the k-th output of

the J subnetworks. Every dimension in the output layer can be activated using different activation

functions, according to parameter restrictions. This allows the capture of interaction effects be-

tween the given model parameters in each of the subnetworks4. Equation 6.17 would only slightly

be adjusted, to account for the subnetwork fj now mapping to Rk, fj : R → Rk:

θ(k) = h(k)

β(k) +
J∑

j=1
fj(xj) [:, k]

 , (6.20)

with [:, k] denoting an index and representing the k − th index of fj : R → Rk. Note, that the

superscript (k) is missing from the subnetwork fj , as only J subnetworks are trained.

6.5 Benchmarking

To demonstrate the competitiveness of the presented method, we perform several analyses. First, we

compare NAMLSS with the most common statistical distributional regression approach GAMLSS

(Stasinopoulos et al., 2000).

Synthetic data comparison study The synthetic data used for this task is generated from the

same underlying processes. Five features are included in each application. The data-generating

functions used to generate the true underlying distributional parameters can be found in Appendix

B.1.5. Each of the five input vectors xj is sampled from a uniform distribution U(0, 1), with a

total of n = 3000 observations per data set. The remaining parameters are generated based on the

input vectors and the chosen distribution. We selected distributions that are widely used, popular

in science, or relatively complex to reflect a diverse range of scenarios. We compare models that

specifically model all distributional parameters in this simulation study. The results can be found

in Table 6.7.
4Note, that for distributions where only one parameter is modelled, the two proposed NAMLSS structures are

identical.
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Table 6.7: Results for synthetic data: We compare NAMLSS with the baseline of additive
distributional models, GAMLSS.

Distribution GAMLSS NAMLSS Gain (%)
Neg Log-Likelihood ↓

Binomial 397 274 30%
Poisson 800 802 -0.25%
Normal 600 589 1.83%
Inv. Gaussian 385 377 2.1%
Weibull 625 621 0.64%
Johnson’s SU 370 326 11.9%
Gamma 426 410 3.8 %
Logistic 731 682 7.2 %
Average 7.18 %

We find that the presented NAMLSS outperforms GAMLSS for all distributions except the

Poisson distribution. This can be attributed to the fact that the Poisson distribution only involves

a single distributional parameter.

Experiments with real world data We compare the performance of NAMLSS with several

state-of-the-art models including neural as well as non-neural approaches and orientate on the

benchmarks performed by Agarwal et al. (2021). Additionally, we compare related methods of

distribution-focused data analysis approaches that overcome the focus on relating the conditional

mean of the response to features and instead target the complete conditional response distribution.

We choose the following baselines for the comparisons:

• Multi-layer perceptron (MLP): Unrestricted fully connected deep neural network trained

with either a mean squared error loss function (regression) or binary cross entropy (logistic

regression).

• Gradient boosted trees (XGBoost): Decision tree based gradient boosting. We use the

implementation provided by Chen and Guestrin (2016).

• Neural additive models (NAMs): Linear combination of DNNs as described in equation

(6.16) and presented by Agarwal et al. (2021).

• Explainable boosting machines (EBMs): State-of-the-art generalized additive models

leveraging shallow boosted trees (Nori et al., 2019).
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• Neural generalized additive model (NodeGAM): State-of-the-art generalized additive

models leveraging neural oblivious decision trees (Chang et al., 2021).

• Deep distributional neural network (DDNN): Similar to the multi-layer perceptron a

fully connected neural network. However, not trained to minimize the previously mentioned

loss functions but to minimize the negative log-likelihood of the specified distribution. All

distributional parameters are predicted.

• Generalized additive models for location scale and shape (GAMLSS): Standard

GAMLSS models using the R implementation from Rigby and Stasinopoulos (2005).

• gamboost for location scale and shape (gamboostLSS): Fitting GAMLSS by employing

boosting techniques as proposed by Hofner et al. (2014).

We preprocess all used datasets exactly as done by Agarwal et al. (2021). We perform 5-fold

cross-validation for all datasets and report the average performances over all folds as well as the

standard deviations. For reproducability, we have only chosen publicly available datasets. The

datasets, as well as the preprocessing and the seeds set for obtaining the folds, are described in

detail in the Appendix, B.1.4.

Table 6.8: Average Rank

Model Avg. Rank

MLP 7.4

XGBoost 8.2

NAM 7.4

EBM 6.5

NodeGAM 7.8

DDNN 4.0

GAMLSS 4.5

gamboostLSS 4.2

NAMLSS1 1.9

NAMLSS2 1.6

We fit all models without an intercept and explicitly do not

model feature interaction effects.

For datasets following a Gaussian distribution we use the Cali-

fornia Housing (CA Housing) dataset (Pace and Barry, 1997) from

sklearn (Pedregosa et al., 2011), the Insurance dataset Lantz (2019),

the Abalone dataset (Dua and Graff, 2017) and standard normal-

ize the response variables. Thus, a normal distribution N
(
µ, σ2I

)
of the underlying response variables is assumed. As the (negative)

log-likelihood of a normal distribution (see equation (B.1.1)) is de-

pendent on two parameters, but models as an MLP or XGBoost only

predict a single parameter, we adjust the computation accordingly

and use the standard deviation calculated from the underlying data

for XGBoost, EBM, NAM and MLP. For a (binary) classification

benchmark we use the FICO dataset (FICO, 2018), the Shrutime

dataset and the Telco dataset. A logistic distribution, LO (µ, s), of



82 Chapter 6. Contributions: NAMLSS

the underlying response variable was assumed (see equation (B.1.1) for the log-likelihood). Again,

we use the true standard deviation of the underlying data for the models only resulting in a mean

prediction. For the Melbourne and Munich datasets, also analyzed by Rügamer et al. (2020), we

assume an Inverse Gamma distribution IG(α, β) as the underlying data distribution (see equation

(B.1.1) for the log-likelihood)5.

Table 6.9: Benchmark results for normal and inverse-gamma datasets: For models not explicitly
modelling a shape parameter, the shape is approximated with a constant as the true standard deviation of the
dependent variable. Lower negative log-likelihoods (ℓ) are better. We report results on five commonly used
datasets. The California housing dataset for predicting house prices (Pace and Barry, 1997), an Insurance
dataset for predicting billed medical expenses (Lantz, 2019), the Abalone dataset for predicting number of
rings in trees (Dua and Graff, 2017) and two AirBnb datasets.

Negative log-likelihood ℓ (↓)
Normal Inv. Gamma

Model CA Housing Insurance Abalone Munich Melbourne

MLP 4191 ±(42) 266.8 ± (11) 966.2 ±(27) 6827 ± (178) 22999 ± (232)
XGBoost 4219 ±(40) 266.8 ± (9) 982.0 ±(33) 5618 ± (152) 20471 ± (242)
NAM 4251 ±(43) 474.7 ± (73) 956.8 ±(22) 5892 ± (37) 25375 ± (844)
EBM 4202 ±(42) 263.8 ± (10) 965.1 ±(22) 5474 ± (56) 20361 ± (207)
NodeGAM 4206 ±(89) 279.1 ± (11) 958.3 ±(23) 5984 ± (135) 21896 ± (261)
DDNN 2681 ±(1279) 178.2 ± (30) 897.2 ±(159) 5555 ± (34) 20790 ± (29)
GAMLSS 3512 ±(67) 175.5 ± (28) 870.8 ±(16) 5419 ± (61) 26353 ± (45)
gamboostLSS 3812 ±(52) 173.0 ± (28) 815.1 ± (29) 5421 ± (33) 26436 ± (48)

NAMLSS1 2667 ± (91) 172.7 ± (23) 869.8 ±(118) 5383 ± (24) 19517 ± (68)
NAMLSS2 2329 ± (176) 172.6 ± (20) 802.3 ±(41) 5422 ± (22) 19675 ± (67)

1 With J ×K subnetworks. See Table 6.14 for an exemplary network structure.
2 With J subnetworks and each subnetwork returning a parameter for the
location and shape respectively.
See Table B.1 for an exemplary network structure.

The NAMLSS approach achieves the lowest negative log-likelihood values for all of the datasets

which speaks for its good approximation capabilities. One of the advantages of NAMLSS compared

to DNNs is the feature level interpretability. Similar to NAMs, we can plot and visually analyze the

results (see Figures 6.15 and 6.12). Additionally, we are capable of accurately representing sharp

price jumps around the location of San Francisco, depicted by the jumps in the graphs for longitude

and latitude (see Figure 6.12) as compared to GAMLSS, NAMLSS are additionally capable of

representing jagged shape functions.

5See Appendix for further details on activation functions.
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Table 6.10: Benchmark results for Logistic and categorical datasets For models not explicitly
modelling a shape parameter, the shape is approximated with a constant as the true standard deviation of
the dependent variable. Lower negative log-likelihoods (ℓ) are better. We report results on several commonly
used datasets. FICO dataset (FICO, 2018)

Negative log-likelihood ℓ (↓)
Logistic

Model FICO Shrutime Telco

MLP 1813 ±(6) 1240 ± (22) 1027 ± (19)
XGBoost 1976 ±(13) 1314 ± (18) 1123 ± (22)
NAM 1809 ± (8) 1247 ± (26) 1023 ± (28)
EBM 1944 ±(21) 1290 ± (26) 1094 ± (22)
NodeGAM 1942 ±(21) 1308 ± (29) 1097 ± (27)
DDNN 1230 ± (48) -211 ± (364) 27 ± (314)
GAMLSS 1321 ± (30) 391 ± (126) 85 ± (173)
gamboostLSS 1191 ± (30) -∗ - ∗

NAMLSS 1 1201 ± (41) -220 ± (210) -22 ± (137)
NAMLSS 2 1160 ± (49) -237 ± (219) -11 ± (114)

1 With J ×K subnetworks. See Table 6.14 for an exemplary network structure.
2 With J subnetworks and each subnetwork returning a parameter for the location and shape respectively.

See Table B.1 for an exemplary network structure.
∗ gamboostLSS was not able to execute.

Figure 6.15: California housing: Graphs for median income and population respectively learned
by the NAMLSS model. We see an increase in housing prices with a larger median income. Addi-
tionally, we find a larger variance in housing prices in less densely populated areas.

Additionally, we are able to accurately depict shifts in variance in the underlying data. It is, for

example, clearly distinguishable, that with a larger median income, the house prices tend to vary

much stronger than with a smaller median income (see Figure 6.15). A piece of information, that

is lost in the models focusing solely on mean predictions
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6.6 Conclusion and future work

We have presented neural additive models for location, scale and shape and their theoretical founda-

tion as the neural counterpart to GAMLSS. NAMLSS can model an arbitrary number of parameters

of the underlying data distribution while preserving the predictive quality of NAMs. The visual

intelligibility achieved by NAMs is also maintained by NAMLSS, with the added benefit of gaining

further insights from knowledge of additional distribution characteristics. Hence, NAMLSS are a

further step in the direction of fully interpretable neural networks and already offer interpretability

that may make them suitable for high-risk domains.

The extensibility of NAMLSS offers many different further applied and theoretical research

directions. One important point is the extension of the modelling of the distribution of the response

variable. Many empirical works focus on modelling not just one, but several responses conditionally

on covariates. One way to do this is to use copula methods, which are a valuable extension of our

approach, hence including a copula-based approach for NAMLSS models would greatly improve the

overall general usefulness.

Another possible extension would be the adaptation to mixture density networks, as e.g. done by

Seifert et al. (2022). Another possible focus is to switch our approach to a Bayesian-based training

approach. Bayesian approaches are particularly well suited to deal with epistemic uncertainty and

to incorporate it into the modelling. Another advantage is that Bayesian approaches are particularly

suitable in cases where insufficiently small training datasets have to be dealt with and have been

shown to have better prediction performance in these cases. Finally, there should be a focus on

incorporating unstructured data to extend the previously purely tabular data with high-dimensional

input structures.

6.7 Limitations

Although the presented method of NAMLSS takes advantage of the interpretation capabilities of

the NAM framework and thus offers a better and easier interpretation of the results compared to

pure deep learning approaches, it is still beholden to classical statistical models with their inherent

interpretability and explainability. A critical point in the application of our proposed method,

as well as comparable distributional statistical methods, is the choice of the correct distributional

assumptions. The choice of the assumed distribution can strongly influence the results of the
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model. Our approach requires some basic mathematical-statistical knowledge from the user. Also,

the understanding that the presented approach focuses on (log)-likelihood and thus deviates from

the classical approach of simply minimising an error measure may require some users to rethink

their understanding of the model results. An obvious drawback of NAMLSS is that it requires more

parameters to be trained. It is therefore computationally more expensive, as several additional

subnetworks are required to model more parameters per feature.
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Model selection for linear mixed models has been a focus of recent research in statistics. 
Yet, the method of model averaging has been sparsely explored in this context. A weight 
finding criterion for model averaging of linear mixed models is introduced, as well as its 
implementation for the programming language R. Since the optimization of the underlying 
criterion is non-trivial, a fast and robust implementation of the augmented Lagrangian 
optimization technique is employed. Furthermore, the influence of the weight finding 
criterion on the resulting model averaging estimator is illustrated through simulation 
studies and two applications based on real data.
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1. Introduction

The class of linear mixed models (Henderson, 1950) is a very powerful and flexible analytic tool, that enjoys popularity 
especially for the analysis of clustered and longitudinal data (Laird and Ware, 1982; Verbeke and Molenberghs, 2009), for 
spline smoothing (Ruppert et al., 2003; Wager et al., 2007) and for functional data analysis (Guo, 2002; Di et al., 2009).

Especially the development and advancement of software for fitting and evaluating linear mixed models is a very active 
field. It ranges from implementations for commercial statistics programs like SAS, to open-source versions like the de-facto 
standard in R lme4 (Bates et al., 2014) or the MixedModels (Bates et al., 2020) Package for Julia. Due to the flexibility 
and thus, possible complexity of the models, the question of suitable model selection procedures becomes a focal point of 
research.

However, linear mixed model deviate from the imposed regularity conditions of classical linear models and thus in-
troduce a problem with the use of information criteria for model choice, such as the widely adopted Akaike Information 
Criterion (Akaike, 1973) (Wager et al., 2007). Furthermore, evaluating the suitability of the included random effects of mod-
els with nested or clustered structures suffer from limitations like boundary issues with likelihood-ratio tests (Crainiceanu 
and Ruppert, 2004; Wood, 2013). An overview of measures of explained variation and model selection in linear mixed-
effects models can be found in Cantoni et al. (2021).
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Vaida and Blanchard (2005) show, however, that it is possible to derive an AIC from the conditional form of the linear 
mixed effect model, which has proven to be particularly suitable accounting for possible shrinkage within the random effects 
(Säfken et al., 2018). Liang et al. (2008) suggest a version of the conditional AIC that corrects for the estimation uncertainty 
of the variance parameters of the random effects. Still, this proposed version is computationally intensive as it relies on 
numerical approximation. Greven and Kneib (2010) prove that an analytical solution can be derived and thus, reduce the 
computational intensity of the corrected version of the conditional AIC.

Another approach addressing model uncertainty is model averaging. Instead of choosing a single model from a list of 
candidate models based on information criteria such as AIC or the Bayesian information criterion (Schwarz et al., 1978), a 
weighted average of the considered models is calculated and then used for analysis. An important key factor when apply-
ing model averaging is the selection of the underlying weights. Different proposals have been brought forward, the most 
prominent being the approach of information criteria based weights by Buckland et al. (1997). Yet, a majority of proposals 
aim at classical linear models and do encounter difficulties when applied to the model framework of linear mixed models. 
A proposal by Zhang et al. (2014) demonstrates that it is possible to construct an asymptotically optimal weight finding 
criterion for model averaging of linear mixed models based on the conditional AIC and a quadratic loss function. However, a 
computationally stable and fast optimization of such a weight determination criterion is not available up to date. The non-
linear nature of the criterion itself, as well as the nature of the underlying constraints in the form of simultaneous equality 
and inequality conditions, necessitates complex and advanced optimization methods that are not part of the basic version 
of the programming language R (R Core Team, 2019).

In this paper we present a weight finding criterion for the calculation of asymptotically optimal weights based on the 
work of Greven and Kneib (2010) and Zhang et al. (2014). In addition we present an implementation of the proposed 
weight finding criterion for the programming language R, which we have released as part of the R-Package cAIC4 (Säfken 
et al., 2018). Furthermore, we describe the special nonlinear optimization under equality and inequality constraints of the 
underlying problem. We illustrate the approach of solving such a problem by applying the augmented Lagrangian method 
(Hestenes, 1969; Li et al., 2013) and present our implementation of the algorithm.

This paper is structured as follows: Section 2 introduces the theory and formulations of linear mixed models, as well 
as the estimation and the application of linear mixed models for spline smoothing. Section 3 presents the concept of the 
conditional AIC. This section also induces the concept of conditional model averaging and the proposed weight finding 
criterion. The following Section 4 provides an introduction to the underlying mathematical concepts of the augmented 
Lagrangian method, as well as its application to our weight finding optimization problem. Section 5 analyzes the properties 
of the implemented methods by applying them in three different simulation settings. Section 6 studies the proposed model 
averaging method applied to real-world examples, whereas the last Section 7, gives a summary of the findings of the 
previous sections and also gives an outlook of further work concerning model selection and model averaging of linear 
mixed models.

2. Linear mixed models

The general design of linear mixed models assumed in the following sections is

y = Xβ + Zb + ε, (1)

where y represents the vector of the n observed responses y = (y1, . . . , yn)T , X and Z representing design matrices with 
full column ranks p and q, with the p × 1 vector of fixed β and b as the q × 1 vector of random effects. The n × 1 vector ε
represents the unobserved random errors. Both b and ε are assumed to be independent and follow a multivariate Gaussian 
distribution, such that(

b
ε

)
∼ N

{(
0
0

)
,

(
Dθ 0
0 �

)}
,

with Dθ being a q × q block-diagonal, positive, semi-definite variance-covariance matrix that depends on a covariance 
parameter vector θ = (

θ1, . . . , θ j
)T

and � the overall model covariance matrix with dimension n ×n, which in the following 
illustrations is assumed to follow the standard case of σ 2 I . The normality assumption, however, is not mandatory and is 
only introduced for convenience, allowing for likelihood-based procedures to estimate unknown parameters in Dθ and of 
the residual variance.

Furthermore let the marginal covariance matrix V θ of y be defined as follows

V θ = cov(y) = σ 2 I + Z Dθ Z T .

The inherent randomness of the random effects makes it possible to formulate linear mixed models in two different 
forms, in a marginal or in a conditional ways. The marginal formulation treats the random effects as an additional part of 
the already random error term ε (Fahrmeir et al., 2013). The conditional formulation on the other hand approaches the 
random effects differently, by treating them as penalized coefficients. In this form the conditional responses are distributed 
as follows

2
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y|b ∼ N (Xβ + Zb,σ 2 I).

2.1. Estimation of linear mixed models

For given variance parameters θ , fixed as well as random effects can be estimated respectively predicted via

β̂ =
(

X T V −1
θ X

)−1
X T V −1

θ y,

b̂ = Dθ Z T V −1
θ (y − X β̂),

(2)

where the resulting estimator of the fixed effects β̂ is the best linear unbiased estimator and it is also the maximum-
likelihood estimator of β and the predictor of the random effects b̂ is also the best linear unbiased predictor of b (Harville 
et al., 1976). The corresponding profile log-likelihood for all underlying variance parameters θ is thus up to a constant equal 
to

�P (θ) = −1

2

[
log |V θ | + (y − X β̂)T V −1

θ (y − X β̂)
]
. (3)

The maximization of the profile log-likelihood with respect to θ delivers the ML-estimator θ̂ ML . Instead of estimating 
θ via profile log-likelihood, it is also possible to determine θ via the marginal or restricted log-likelihood. Whereas the 
complementary restricted log-likelihood for θ takes the following form (up to an additive constant) of

�R(θ) = �P (θ) − 1

2
log

∣∣∣X T V −1
θ X

∣∣∣ , (4)

maximizing this restricted log-likelihood results in the REML-estimator for θ , θ̂ R E ML (Harville et al., 1976). In a general 
setting the REML-estimator leads to a less biased estimation result than the ML-estimator (Fahrmeir et al., 2013).

2.2. Linear mixed models for spline smoothing

Apart from using the linear mixed models as a data analysis tool itself, this model class can also be used as a vehicle 
to fit semi-parametric models (Ruppert et al., 2003). This connection can most easily be explained for the case of truncated 
polynomials. For the simple univariate smoothing case consider the following model

yi = f (xi) + εi, i = 1, . . . ,n,

where f (xi) is represented by a sum of scaled basis functions and εi ∼ N (0, σ 2). In the case of truncated polynomials, the 
following basis representation is utilized

f (x) =
d∑

j=0

β j x
j +

K∑
j=1

b j
(
x − � j

)d
+ ,

where the domain of x is partitioned by K ∈N knots �1 < · · · < �K in such a way that for d ∈N

(z)d+ = zd · I(z > 0) =
{

zd if z > 0,

0 if z ≤ 0.

The penalised least-squares criterion is employed to prevent overfitting and to ensure smoothness of the estimated 
function, resulting in

lspen(β,b) = (y − Xβ − Zb)T �−1(y − Xβ − Zb) + bT D−1
θ b,

with Dθ = τ 2 I K where θ = τ 2 and � = σ 2 I . Thus the relation between the variances is τ 2 = ξσ 2. In this case, given a fixed 
smoothing parameter ξ , the equation coincides with the best linear unbiased estimator for β and the best linear unbiased 
predictor for b from equation (2) in the linear mixed model case with fixed τ 2. The underlying parameter ξ = τ 2/σ 2

can be understood as a trade-off between function fit and -smoothness. Interpreting this problem as a linear mixed effect 
model allows ξ to be understood as the variance ratio of random and fixed effects and therefore to be determined via the 
presented ML (3) or REML (4) approaches (Ruppert et al., 2003). It is possible to represent penalized regression smoothers as 
part of mixed models, this allows the smoothing parameters to be estimated as part of the variance component parameters 
using the introduced likelihood procedures. As a consequence, linearly mixed models can be used to fit generalized additive 
mixed models (Wood, 2017).

3
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3. Conditional model choice and model averaging

When it comes to the choice of linear mixed models and their random effect structures, the question arises as to which 
of the two likelihoods should be the basis for information criteria such as the AIC. The rationale for the choice depends on 
the intended application of the model (Vaida and Blanchard, 2005). The marginal approach allows statements about fixed 
population effects or of predictions about changed random effects structures. In contrast if the interest lies in statements 
based on the random effects of fitted models or in predictions based on existing random effect structures, the conditional 
form is particularly suitable. Due to these characteristic, the corresponding conditional AIC is, thus, better suited to select 
which random effects to include and which not to (Säfken et al., 2018). For a more mathematical investigation of the 
differences between the conditional and the marginal AIC, see Greven and Kneib (2010).

3.1. Conditional Akaike information criterion

One of the most widely used criteria for model selection is the Akaike Information Criterion (AIC) (Akaike, 1973). The 
AIC is an estimator of the relative Kullback-Leibler-Distance (Kullback and Leibler, 1951) and for simple linear regression 
models is up to a constant given by

AIC = − (y − X β̂)T (y − X β̂)

σ̂ 2
+ 2p,

with the number of parameters or degrees of freedom p. Considering a number of possible candidate models, the model 
that displays the lowest AIC value among all candidate models is most favourable. In more general this model selection 
criterion can also be derived as an estimator for the squared prediction error (Efron, 2004) as

AIC = (y − X β̂)T (y − X β̂) + 2σ̂ 2
n∑

i=1

(
∂ ŷi

∂ yi

)
,

with a substitution for the degrees of freedom first formalized by Stein et al. (1972)

n∑
i=1

∂ ŷi

∂ yi
= ∂ ŷ

∂ y
= tr(H) = ρ, (5)

for simple linear regression models with hat matrix H .
Two different AIC criteria can be employed when working with linear mixed models, the marginal AIC which is based 

on the marginal formulation of the log-likelihood, and the conditional AIC which is based on the conditional log-likelihood. 
Depending on the research question, the intention, as well as the interpretation, the respective approach varies (Vaida and 
Blanchard, 2005; Greven and Kneib, 2010).

The proposed estimator of the conditional AIC of Vaida and Blanchard (2005) takes the form of

cAIC = (y − Xβ − Zb)T V θ (y − Xβ − Zb) + 2(ρ + 1).

The derivation of Vaida and Blanchard (2005) requires that the variance-covariance matrix of the random effects has to 
be known. Liang et al. (2008) propose a corrected version of the conditional AIC based on the numerical approximation 
of the degrees of freedom as in (5) and therefore mitigate the strictness of the assumptions in respect to the variance-
covariance matrix.

This approach, however, introduces high computational costs. Greven and Kneib (2010) offer an analytical version of 
the bias correction term and allow the calculation of the corrected form of the cAIC without having to resort to complex 
numerical approximation. Theorem 3 of Greven and Kneib (2010) allows ρ to be formulated as

ρ = tr
(

Ĥ
)

+
J∑

j=1

∂ θ̂ j

∂ yT
Â Q j Â y,

where Ĥ = I − σ 2 V̂ θ
−1 + σ 2 V̂ θ

−1/2
(V̂ θ

−1/2
X(X T V̂ θ

−1
X)−1 X T V̂ θ

−1/2
)V̂ θ

−1/2
, Q j = ∂V θ/∂θ j , furthermore θ̂ j is the j-th 

element of θ̂ and with Â = σ 2 V̂ θ
−1/2

(I − (V̂ θ
−1/2

X(X T V̂ θ
−1

X)−1 X T V̂ θ
−1/2

))V̂ θ
−1/2

.
To cover possible parameters on the boundary of the parameter space, we have to partition it similar to Self and Liang 

(1987). In this case, θ consists of all elements of the matrix Dθ and it is sorted in such a way that the last s elements of the 
estimator θ̂ are equal to zero and with η̂ = (θ̂1, . . . , ̂θ J−s)

T it can be shown under Theorem 3 of Greven and Kneib (2010)
that

∂ θ̂ j

∂ yT
= 0, j = J − s + 1, . . . , J ,

∂η̂

∂ yT
= B−1G = 0,

4
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where B is a ( J − s) × ( J − s) matrix with (i, j)-th element such that

(b)i j = − tr(V̂
−1

Q̂ i V̂
−1

Q̂ j) − n yT Â Q̂ i Â y yT Â Q̂ j Â y(yT Â y)−2

+ 2n yT Â Q̂ i Â Q̂ j Â y(yT Â y)−1,

with G being a ( J − s) × n matrix with the i-th row given by

g i = 2n
{
−(yT Â y)−2 yT Â Q̂ i Â y yT Â + (yT Â y)−1 yT Â Q̂ i Â

}
.

These expressions allow to calculate ρ directly so that no numerical procedures are necessary. The R-package cAIC4
(Säfken et al., 2018) incorporates the corrected conditional AIC form and bias correction, and thus allows to perform model 
selection based on the conditional AIC and to calculate a analytical version of the degrees of freedom for models under 
consideration.

3.2. Conditional model averaging

Consider a given series of K possible linear mixed-effects candidate models according to (1), with the following form

y = Xkβk + Zkbk + ε, bk ∼ N
(
0, Dθk

)
, k = 1, . . . , K .

The fixed and random effects, as well as the variance-covariance matrices, can be determined via the REML approach, 
presented in (2). Hence the conditional mean is given by ŷk = Xkβ̂k + Zkb̂k , leading to the following representation of the 
predicted values in terms of the estimated hat matrix Ĥ k as ŷk = Ĥk y.

The purpose of model averaging is to compose a weighted average over the random, as well as the fixed effect, esti-
mators. For this consider a corresponding weighting vector w = (w1, . . . , w K )T belonging to the set W = {w ∈ [0, 1]K :∑K

k=1 wk = 1}. The model averaging estimator is thus described by

ŷ(w) =
K∑

k=1

wk ŷk =
K∑

k=1

wk Ĥk y = Ĥ(w)y,

with Ĥ(w) = ∑K
k=1 wk Ĥk .

One of the more straightforward and widely used methods to determine the weights for the model average is based on 
a proposal by Buckland et al. (1997). This approach can be sometimes found in the literature labeled as smoothed weights 
and the weight finding criterion takes on the following form

wk = exp (−Ik/2)∑K
i=1 exp (−Ii/2)

, (6)

with Ik representing the information criteria value for the respective candidate model k. A second approach is to derive the 
weights in such a way that in theory the model averaging estimator is asymptotically optimal, as in Zhang et al. (2014). The 
resulting estimator is optimal in the sense that the squared error of the calculated model average estimator is asymptotically 
equal to that of the infeasible best possible model average estimator. The authors achieve this by utilizing the squared loss 
of the model averaging estimator to derive a suitable criterion for weight determination. The underlying loss-function takes 
the following form of

L(w) = ( ŷ(w) − μ)T ( ŷ(w) − μ),

where ŷ(w) represents the model average estimator and μ the true but unknown mean. By applying the theorem by Stein 
et al. (1972) the expected loss is given by

E y|b
(
( ŷ(w) − μ)T ( ŷ(w) − μ)

)
=

E y|b
(
(y − ŷ(w))T (y − ŷ(w)) + 2σ 2 w T ρ − nσ 2

)
, (7)

the K × 1 elements of ρ are being defined as ρk = tr
(
∂ ŷk/∂ yT

)
.

The method presented here and especially formula (7) essentially rely on Stein’s theorem. In turn, this requires the nor-
mality assumption to hold for the conditional model y|b. There are approaches to generalize this method beyond normality, 
see for Ye (1998) and Efron (2004) or Säfken and Kneib (2020) in the context of mixed models. Such an extension is highly 
relevant as it would not only allow for other error distributions but also for other random effects distributions that as are 
used for robust linear mixed models which are based on skewed t distributions as proposed in Lin and Lee (2006) and Ho 
and Lin (2010).

5
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Based on the design of the model averaging estimator, the weight finding criterion is, therefore, defined as follows

C(w) = (
y − ŷ(w)

)T (
y − ŷ(w)

) + 2σ 2 w T ρ, (8)

thus, the optimal vector of weights ŵ for the ŷ(ŵ) minimizes this criterion, such that ŵ = argminw∈W Ĉ(w).

4. Practical model averaging with cAIC4

The weight selection criterion (8) can be seen as a nonlinear optimization problem, where the weights are subject to 
equality constraints and to bound constraints alike and can be formulated as

min C(w) subject to
K∑

k=1

wk = 1 and 0 ≤ wk ≤ 1, k = 1, . . . , K . (9)

A generalized representation of the optimization problem of the target criterion is shown in Fig. 1.

Fig. 1. All possible values of the target weight finding criterion (8) for an example with two candidate models. The red dot marks the global minimum, 
the white line the assumed possible maximum values of the weights, and the green dot the optimum of the weights resulting from the restrictions. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

To minimize a nonlinear problem such as (9), that is subject to equality and inequality constraints a more complex opti-
mization approach has to be employed. The R-Packages Alabama (Varadhan, 2015) and Rsolnp (Ghalanos and Theussl, 2015) 
offer existing implementations of solvers for such a kind of optimization problem. The methods, however, implemented in 
the packages above require specific knowledge of the optimization methods and are further complicated by their broad 
general form. In response we propose a new implementation that is constructed in such a way that the setup, configuration 
and optimization of the underlying system can be performed easily.

4.1. The augmented Lagrange method with equality constraints

A common approach for solving such a problem is the augmented Lagrangian method (Hestenes, 1969; Powell, 1969). 
This approach adds a penalty term to the original target function, that represents a multiple of the constraint violations at 
each iteration and thus attempts to force the optimization result into the bound constraint’s feasible solution space (Avriel, 
2003). The augmented Lagrangian approach is based on the penalty method but aims to circumvent potential ill-conditioning 
inherent to these methods by directly integrating an estimator of the Lagrange multiplier into the target function (Nocedal 
and Wright, 2006). To introduce the augmented Lagrangian in its general form, let us assume a simple limited optimization 
problem with respect to a set of weight variables which, for the sake of simplicity, will all be assumed to be real-valued for 
the moment, i.e. w ∈RK with following form of

6
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min C(w) subject to h(w) = 0, (10)

where C(w) is the cost function of the optimisation with C : RK → R and the equality constraint functions h =
(h1, . . . , hm)T :RK →Rm . The Lagrange function is described by

L(w,λ) = C(w) + λT h(w),

the Lagrange multiplier is given as λ ∈Rm .
A possible problem with the general form of the objective function is that it does not necessarily have to be convex 

near the solution, which prevents duality methods like the Lagrangian from being effective. By adding the penalty term 
γ
2 h(w)T h(w) with γ > 0, it is possible to impose a local convexity on the objective function, such that when the penalty γ
term is sufficiently large, the Lagrangian will be locally convex (Luenberger et al., 2008). The resulting augmented Lagrange 
function LA is defined as follows

LA(w,λ;γ )
def= C(w) + λT h(w) + γ

2
h(w)T h(w).

The resulting problem is equivalent to the original problem (10), since the penalty term does not change the objective 
function, the Lagrange multiplier and the optimal values and solution point. This in turn allows to solve the underlying 
problem by an interactive process in λ. The approach for the optimization of the augmented Lagrangian can be seen in 
Algorithm 1.

Algorithm 1: Augmented Lagrangian method.

Input : Initial weights w0 ∈Rn , tolerance η, multipliers λ0, penalty parameter γ0 > 0, increment ε
Output : Optimal values w� , multipliers λ� , penalty parameter γ �

while ‖∇LA(wl, λl; γl)‖ > η do
solve for the target function with respect to wl+1 in a way that

LA(wl+1,λl;γl) < LA(wl,λl;γl)

update the Lagrange multipliers such that

λl+1 = λl + h(wl+1);
set the constraint γ such that

γ l+1 = εγ l

set l = l + 1
end

4.2. Weight optimization via augmented Lagrangian

In its general form, the augmented Lagrangian only applies to equality constraint problems. To employ the method to our 
problem, the constraints have to be modified in such a fashion, that they include the bound constraints, i.e. the restrictions 
of the upper and lower limits of the possible weight values. The augmented Lagrange function subject to the problem at 
hand can be formulated as follows

LA(w,λ;γ ) = C(w) + λh(w) + γ

2
h(w)T h(w).

The optimization under both constraints makes it necessary to divide the optimization into two different operations. In 
the first, the augmented Lagrangian is applied only to the equality condition i.e. the sum of all weights must add up to 
one. After an approximate solution for the problem has been found, the next part of the optimization is to incorporate 
the bound-constraints. The lower and upper value bound-constraints of the weights are here left out and are considered 
explicitly in an additional step of the optimization. In this sub-problem, a sequential quadratic programming approach is 
used to solve the following nonlinear quadratic problem of (Nocedal and Wright, 2006)

min LA(w,λ;γ ) subject to 0 ≤ wk ≤ 1, k = 1, . . . , K .

At each iteration step j, a quadratic problem q j(w) with fixed γ and λ stemming from the results of the first step of 
the optimization, is solved for w according to

min q j(w) = ∇LA(w j,λ j;γ )T (
w − w j

) + 1

2

(
w − w j

)T H
(

w − w j
)
.

7
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The Lagrangian’s gradient assumes the form of

∇LA(w,λ;γ ) = (∇wLA(w,λ;γ ),∇λLA(w,λ;γ ))

=
(
∇wLA(w,λ;γ ),h(w)T

)
∈R1×(K+m),

with ∇wLA(w, λ; γ ) = ∇C(w) + (λ + γ h(w))T ∇h(w) ∈ R1×K . The corresponding Hessian of the augmented Lagrangian 
can be formulated as a block matrix

H = ∇2LA(w,λ;γ ) =
( ∇2

w wLA(w,λ;γ ) ∇h(w)T

∇h(w) 0

)
∈R(K+m)×(K+m),

where ∇w wLA(w, λ; γ ) = ∇2C(w, λ; γ ) + (λ + γ h(w))T ∇2h(w) + γ∇h(w)T ∇h(w) ∈RK×K .
The projection on the convex set B = {w | a ≤ wk ≤ b} is described by P , which is defined component-wise as

P(wk,a,b) =

⎧⎪⎨
⎪⎩

a if wk ≤ a,

wk if wk ∈ (a,b) , for all k = 1,2, . . . , K .

b if wk ≥ b,

such that given a vector w ∈ B and the imposed bound constraints for each weight, we can show that the defining necessary 
properties of an w to be considered the solution of such problem, as well as the needed first-order-condition, are given by 
adjusting the general Karush-Kuhn-Tucker conditions (Ruszczynski, 2011) such that

w − P(w − ∇wLA(w,λ;γ ),0,1) = 0.

If the calculated weights meet both the equality and the bound constraints, the optimal solution is found. If, however, 
only the equality constraints are fulfilled by the resulting weights, the Lagrange multiplier estimates λ are adjusted to allow 
a better estimation in the next iteration. If the equality constraints are not met, the value of the penalty parameter γ is 
increased with the aim of forcing the results into the feasible space to minimize the constraint violations.

5. Simulation studies

To illustrate the features and capabilities of the model averaging approach presented above, we conduct three different 
simulation studies in which we investigate its finite-sample properties.

5.1. Augmented Langrangian weights for smoothing splines

In the first simulation setting we use the connection between mixed models and smoothing splines as presented in 
Section 2.2 and investigate the behaviour of the proposed methods presented from Section 4 on these types of models. 
Comparing parametric and semiparametric models by means of information criteria is often difficult. In particular due to 
their inherent flexibility, spline models will generally offer superior in-sample predictive capacity in comparison to standard 
linear models – at the cost of consuming a much higher number of degrees of freedom. Thus the question arises how the 
presented model weighting criterion (9) incorporates different linear and nonlinear candidate models.

For this purpose, we simulate data where the underlying data-generating model incorporates a quadratic P-spline term. 
Notice that we use P-splines instead of the truncated polynomial splines presented in Section 2.2 due to their enhanced 
numerical and computational stability (Eilers and Marx, 1996). Subsequently a linear model and a linear mixed model are 
fitted to the data, where the mixed model includes a spline term. The variance of the spline term takes on different in-
creasing values for each simulation τ 2

b ∈ {0, 0.5, 1, . . . , 9, 9.5, 10}. The variance of the residuals is kept constant, where each 
model combination is simulated for σ 2

ε ∈ {1, 2, 4}. Every model combination is simulated 1000 times, with each simulation 
containing 100 observations.

Two models are fitted to the simulated data, a P-spline based semiparametric model (model 1 associated with w1 ) of 
the form

Model 1 (w1) : yi = β0 + f (xi) + εi, (11)

which is fitted using a linear mixed model as described in Section 2.2 and a classical linear model (model 2 associated with 
w2 = 1 - w1)

Model 2 (w2) : yi = β0 + β1xi + εi . (12)

The proposed weight finding criterion (8) is applied to the two candidate models. Subsequently, the resulting weights 
are averaged over all simulations for each model constellation. The results of these calculations for the given combination 
of variances are shown in Fig. 2.
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Fig. 2. Weight of model (11) associated with weight w1 in comparison to the weight w2 of model (12) for different random effects variance values and 
different values of the error variance.

It can be seen that with the increasing variance of the random effect (i.e. a decreasing penalty parameter) used to gener-
ate the data, the weight for the model with the spline element increases as well. This demonstrates that the improvement 
in the explanatory power of the spline model is detected by the proposed weight selection criterion and thus leads to a 
higher contribution of the semiparametric (or mixed) model to the resulting average model estimator. It also appears that 
given a higher residual variance the increase of the weights is slower, however, with a rising signal to noise ratio (τ 2/σ 2

ε ), 
we observe the anticipated shift towards a higher weight given to the semiparametric (or mixed) model.

5.2. Weights for multi-cluster hierarchical models

The second simulation study investigates the algorithm’s behaviour in a multi-cluster mixed effects model framework as 
well as accounting for both non-normally distributed error terms entailing outliers and correlated error terms.

For the baseline data simulation, a true data generating linear mixed model is assumed that contains an intercept and 
two cluster levels with a random intercept each. The data generating model takes on the following form

yi, j,l = β0 + b1, j + b2,l + εi, j,l, j, l = 1, . . . ,10, i = 1, . . . ,100.

At first, the residuals and the random effects follow normal distributions, i.e. εi, j,l ∼ N (0, σ 2), b1, j ∼ N (0, τ 2
1 ) and 

b2,l ∼ N (0, τ 2
2 ). For both levels the number of clusters in the true underlying model is 10 each. Each cluster consists out of 

100 simulated individual observations. The random effects of the respective clusters are simulated such that the variances 
of the random effects fulfill τ 2

1 = 1 − τ 2
2 . Each model setup is simulated 1000 times. Two linear mixed models are fitted to 

each dataset, whereby each model contains only one of the two random intercepts, i.e.

Model 1 (w1): yi, j = β0 + b1, j + εi, j,

and

Model 2 (w2): yi,l = β0 + b2,l + εi,l.

The implemented weight choice criterion (8) is used to calculate an model average estimator based on the two candidate 
models. Table 1 and Fig. 3 show the results of the simulations for changing variances of the random effect and a constant 
residual variance.

Table 1
Calculated mean weights (and standard errors) for model 1 (w1) for different given variance 
values.

τ 2
1 0 0.25 0.50 0.75 1

Mean 0.002 0.260 0.499 0.499 0.989
Std.Error 0.002 0.136 0.174 0.137 0.004

9
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Fig. 3. Histograms of calculated weights for the first model for five different given variances of the random effects.

It becomes apparent that with an increasing variance of the first random effect, and therefore a decrease of the variance 
of the second random effect, the weight choice favours the first random effect. Furthermore, as can be seen in Table 1, the 
weights show an analogous behaviour in the case of a decrease of the first random effect variance. In the case that the 
variance of one of the two random effects is on the boundary, i.e. equal to zero, the corresponding weight is close to but 
not exactly zero. Furthermore the calculated weights show, that for τ1 = τ2 = 0.5 on average a model weight of 0.499 is 
chosen for model 1 and thus reflects the proportion of variation from the associated random effects.

Ultimately, it can be observed that the computed weights reflect the respective simulated random effect variance. This 
indicates that the presented model averaging estimator can recognize the information from the multi-level mixed model 
structure and consequently calculate weights that lead to a model that closely represents the underlying true data generating 
model.

The framework of linear mixed models assumes normally distributed random effects and errors terms allowing for 
computational more convenient approaches. Violations of these assumptions, such as those caused by outliers or serially 
correlated within-subject errors, lead to less robust models and unreliable inference results. To explore the extent to which 
the presented method is affected by these violations, two additional simulations are conducted.

The first simulation adapts the first simulation design, however, outliers are introduced by selecting one to 50 values of 
the first random effect, where the number of potential outliers is drawn from a discrete uniform distribution, and scaled 
with random draws from a continuous uniform distribution ranging from 3 to 5 such that the adapted random effect b̃1, j is 
given by b̃1, j = ψb1, j , where ψ ∼ U(3, 5).

In the second simulation the original simulation design is modified by including serial within-subject correlated errors. 
These are introduced by inducing a first order serial correlation with a correlation parameter of 0.5 such that ε̃i, j,l =
0.5ε̃i−1, j,l + εi, j,l . The results of both simulations are displayed in Figs. 4 and 5 as well as Tables 2 and 3.

Fig. 4. Histograms of calculated weights for the first model for five different given variances of the random effects with simulated correlated within-subject 
errors for the first random effect.

The results indicate that the presented method is relatively robust to the portrayed violations of the standard assump-
tions. This primarily stems from the fact that our method examines the relative fits of the models in comparison to each 
other. If a model is less able to explain the underlying data, then that model receives a smaller weight. It should be noted 
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Fig. 5. Histograms of calculated weights for the first model for five different given variances of the random effects with simulated outliers for the first 
random effect.

Table 2
Calculated mean weights (and standard errors) for model 1 (w1) for different given variance 
values with simulated correlated within-subject errors for the first random effect.

τ 2
1 0 0.25 0.50 0.75 1

Mean 0.001 0.271 0.482 0.742 0.989
Std.Error 0.001 0.135 0.163 0.131 0.003

Table 3
Calculated mean weights (and standard errors) for model 1 (w1) for different given variance 
values with simulated outliers for the first random effect.

τ 2
1 0 0.25 0.50 0.75 1

Mean 0.001 0.292 0.534 0.765 0.989
Std.Error 0.001 0.145 0.172 0.134 0.003

that linear mixed models, which attempt to make the model class more robust against these influences, such as Ho and Lin 
(2010) are a valid alternative to the classic linear mixed model in these settings. However the distributions of these robust 
models deviate from the normality assumption, thus an extension of the proposed model averaging scheme especially for 
formula (7) needs to be found in order to overcome the misspecification.

5.3. Relationship between weights and fixed effects

In this section, we compare our method with other model averaging methods, whereby to allow for comparisons between 
our implementation with the concept of Zhang et al. (2014) we employ a design based on Example 1 of their paper. In 
contrast to the two previous simulation settings the focus of this simulation study lies on the calculated model average 
estimator and the accuracy of the method in comparison to already implemented approaches. For this analysis, data is 
generated by a data-generating model which contains three fixed effects in the form β = (1, 0.2, 0.4) whereby the j-th 
row of the X i matrix takes the following form (1, xi, j2 , xi, j3 ). The true underlying model also features three random effects, 
one random intercept and two random slopes. The elements of the j-th row of the Z i matrix take the following form 
(1, zi, j2 , zi, j3 ). The respective values of the design matrices X and Z originate independently from an N (0, 1) distribution. 
The underlying data-generating model has 20 groups with 10 observations each. The data is simulated with a standard 
deviation of the residuals of σ ∈ {0.3; 0.9}. Furthermore, each model combination is simulated with four different random 
effect co-variance matrices. These four matrices are as follows

D1 =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , D2 =

⎛
⎝ 1.4 0 0

0 1.2 0
0 0 0.4

⎞
⎠ ,

D3 =
⎛
⎝ 1.4 0.4 0

0.4 1.2 0
0 0 0.4

⎞
⎠ , D4 =

⎛
⎝ 1.4 0.4 0.6

0.4 1.2 0.2
0.6 0.2 0.4

⎞
⎠ .

These covariance structures were chosen to incorporate various levels of complex random effect structures into this 
study, and to therefore determine to what extent these influence the ability of the different methods of finding weights for 
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model averaging. For each of the configurations, 100 independent datasets are generated. The candidate models used for 
approximation include at least the fixed and the random intercept, the further candidate models include one of the two 
fixed coefficients and further random effects. Based on the fitted candidate models, weights for model averaging are now 
calculated as smooth weights as introduced in (6) based on the conditional AIC, as well as weights based on the presented 
asymptotic optimal approach (8). The ability of the different methods to calculate the model averaging approach is evaluated 
over the respective average squared loss.

Table 4
Simulation results: averaged squared losses. Asymptotically optimal model averaging and cAIC 
smoothed weights.

σ D1 D2 D3 D4

Asymptotic 0.3 323.751 264.324 274.753 256.289
0.9 360.498 285.706 290.286 290.674

Smoothed 0.3 337.241 275.546 285.849 266.612
0.9 373.372 296.281 298.929 300.176

Table 4 presents the calculated squared losses for the respective methods for each underlying covariance matrix and 
the residuals standard deviation. The model averaging approach presented and implemented in this work proves to be the 
superior method in terms of minimum average squared loss in all scenarios presented here.

6. Applications

In this section, we apply the proposed weight finding technique for model averaging on models fitted to two different 
real-world datasets. The first one is about the sensory assessment of TV characteristics. The second one is a common linear 
mixed model benchmarking dataset from an orthodontic study over time for several subjects.

6.1. Bang & Olufsen dataset

The first dataset was provided by the Danish electronics company Bang & Olufsen. Different characteristics of TV sets are 
measured using three response variables. The explanatory variables given are the TV set and image quality as measured and 
recorded by a panel of eight different assessors. See Kuznetsova et al. (2017) for the details of this study.

In the first application, we are interested in the influence of the explanatory variables on the response variable of the 
sharpness of motion and model it by means of random effects on the different assessors. To model the relationship we 
create three different linear mixed effects models, assuming that the response variable is influenced by the fixed effects of 
the TV set and the image quality, as well as an interaction of both. However, the three models differ in how the effects of 
the assessors are incorporated into the model. In the first model, it is assumed that there is a simple fixed random effect 
per assessor, in the second model a fixed random effect per assessor with an interaction effect between the TVs and the 
assessor is assumed and in the third, we assume an interaction between the assessor and the image quality. To compare 
the models, we calculate information criteria, the relative degrees of freedom and the mean squared error of the respective 
models. See Table 5 for the results.

Table 5
The values of various model choice criteria, smoothed weights based on the cAIC and weights 
resulting of the proposed model averaging estimator.

Model rel. DF cAIC MSE Weights

smoothed asymptotic

1 30.47 864.88 3.806 0.000 0.327
2 36.48 844.10 3.188 1.000 0.673
3 19.61 864.18 4.213 0.000 0.000

If one decides to use the classical model selection approach of choosing the model with the smallest possible value for 
the information criterion under consideration, as well as a model averaging based on smooth weights, the second model 
with the assumed random effect relationship of an interaction between assessor and TV set would be chosen or respectively 
would receive a weight of one.

Fig. 6 shows the development of the weights and their trajectories during the optimization process. It can be observed 
that from the outset the weights quickly converge towards their final estimates. More specifically, from the tenth iteration 
onwards, the change of the weights becomes negligible. It should be noted that the starting values for all weights are set to 
be wi = 1/K , K being the number of candidate models. By doing so, it is ensured that all weights are already within the 
feasible region of the optimization problem. Thereby, the equality constraints do not need to be explicitly enforced on the 
starting values and the algorithm can directly start minimizing the underlying weight choice function.
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Fig. 6. Representation of the trajectories of the weights during the optimisation. Large black dots indicate weight values resulting from major iteration, 
small coloured dots indicate the results of a minor iteration.

The augmented Lagrangian is constructed as a robust method with regard to the starting values, see chapter 17.4 in 
Nocedal and Wright (2006). If the starting values are misspecified and as such chosen that they are not within the feasible 
region the convergence often takes longer. The authors however did not find any convergence problems leading to wrong 
solutions in the simulations and applications due to misspecified starting values.

We compare the results of our proposed method based on the mean squared error, with the results of a model averaging 
estimator based smoothed weights, as well as a model averaging estimator build upon the assumption of equal weights. 
The mean squared error is calculated by

M S E = 1

n
(y − ŷ(ŵ))T (y − ŷ(ŵ)),

where y represents the responses, ŷ(ŵ) the model averaging estimator based on the calculated weights and n the number 
of observations. The model average estimator based on the proposed method achieves the smallest MSE value of all with 
3.153, whereas the estimator based on equal weighting and on conditional AIC based smoothed weights offer MSE values 
of 3.491 and 3.188, respectively.

6.2. Orthodont dataset

The second application uses candidate models based on the well known Orthodont dataset. The dataset stems from 
a study at the University of North Carolina Dental School following the growth of 27 children from the age of 8 until 
age 14. Every second year, the distance between the pituitary and the pterygomaxillary fissure was measured via X-ray 
examination. For more details see Potthoff and Roy (1964). For this application, we fit three different models. The first 
models the measured distance with the help of an intercept and the fixed effect of age, as well as a random intercept per 
individual. The second model extends the first model by including the fixed effect of gender. The third model introduces an 
additional fixed effect by including an interaction between age and gender. Model defining quantities such as the conditional 
Akaike information criterion, the relative degrees of freedom and the mean squared error of the respective models can be 
observed in Table 6. In addition, the table includes the calculated weights of our proposed method in addition to the 
smoothed weights based on the conditional AIC values of each candidate model.

Table 6
The values of various model choice criteria, smoothed weights based on the cAIC and weights 
resulting of the proposed model averaging estimator.

Model rel. DF cAIC MSE Weights

smoothed asymptotic

1 27.12 405.47 1.463 0.910 0.839
2 25.92 411.23 1.582 0.051 0.000
3 26.57 411.79 1.569 0.039 0.161

The resulting estimator based on the proposed method provides the lowest overall MSE with an value of 1.462 of all 
model averaging estimators considered. The equal weights estimator has an MSE value of 1.509 and the smoothed weights 
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estimator has an MSE value of 1.463. This indicates a better ability of our methodology to evaluate, weigh and merge the 
underlying candidate models into a new model averaging estimator.

6.3. Computational aspects and suitability for applied users

To assess the computational requirements, all required calculations were executed a thousand times for both appli-
cations and the performance of the presented algorithm was contrasted with existent optimization routines in R. While 
the presented algorithm needs 10.764 milliseconds for the TVbo model set and 9.676 milliseconds on average for the Or-
thodont models, the general nonlinear optimiser solnp of the Rsolnp package (Ghalanos and Theussl, 2012) need 12.654 
and 11.706 milliseconds. The nonlinear optimiser with constraints constrOptim.nl of the alabama package (Varadhan, 
2015) requires an average of 35.18 milliseconds for the first application and 7.194 milliseconds for the second application.

In both applications, the method presented has either the least required computing time or one that is close to the 
fast method. In contrast to solnp and constrOptim.nl, the proposed algorithm does not require the user to provide 
any complex input of starting weights or the underlying gradient. Furthermore, in comparison to the much more general 
implementations of nonlinear optimizers, all necessary quantities and objects are automatically created and calculated in 
the background. This in turn allows the implementation to be more straightforward and convenient to use for researchers 
willing to employ the proposed approach for determining asymptotic optimal weights for model averaging of linear mixed 
models.

7. Outlook

Model choice for the class of linear mixed models plays an important role due to their wide distribution and application 
in different fields. Especially the question of including random effects plays a crucial part, which is complicated by the 
inherent problem of classical model choice methods concerning the underlying model assumptions. Thus, the use of classical 
information criteria such as AIC is discouraged due to the deviation from the classical model by the assumptions of the 
linear mixed model, while the usefulness of other methods such as likelihood-ratio test based approaches is impaired by 
the possibility of boundary issues. Therefore, due to its nature of combining different candidate models, the technique of 
model averaging presents an interesting alternative to model selection of linear mixed models.

On a technical level the choice of weights is critical for model averaging. As we have shown the proposed weight 
finding method by Zhang et al. (2014) of using the Steinian approximation of derivatives for an underlying weight criterion 
shows superior performance when compared to other approaches based on information criteria such as the conditional 
AIC. The proposed method is implemented as part of the R-Package cAIC4 facilitating the use by applied researchers. 
Given that there is no universally applicable unbiased estimator of conditional AIC in analytical form without distributional 
assumptions (see Saefken et al., 2014), the proposed method stops short of offering an all model-class encompassing solution 
for model averaging. Such a generalisation would be especially valuable as further interesting models such as robust linear 
mixed models would fall under such an extended framework, see Lin and Lee (2006) and Ho and Lin (2010). Therefore 
misspecifications could be identified as in Bartolucci et al. (2017). This requires further research that we are planning to 
conduct in the future. An implementation of a criterion for finding a squared loss-optimal weights for generalised linear 
mixed models is another extension that is still required. A possible approach could be to use the methods proposed in 
Wood et al. (2016) for conditional model selection. A further possible extension could be to apply another error function 
than the squared error proposed in Zhang et al. (2014). Different possible error functions and the corresponding covariance 
penalties are presented in Säfken and Kneib (2020). This could be especially interesting for distributional regression models, 
see Kneib et al. (2021). Also an extension to boosting (Griesbach et al., 2021) would be interesting.
In terms of fields of applications, the proposed framework offers great potential for model averaging for applied researchers 
in order to offer more robust predictive capacity. One avenue which will be pursued by the authors of this paper is the use 
of model averaging in the context of epidemiological research along the lines of Silbersdorff et al. (2018).
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B.1 Supplemental material for NAMLSS

B.1.1 Log-likelihoods

As the presented method minimizes negative log-likelihoods, we created a comprehensive list of all

the log-likelihoods of the distributions used in the paper.

(Bernoulli) Logistic distribution The log-likelihood for a logistic distribution is given by

log (L(µ, σ|y)) =
n∑

i=1

[
yi log( 1

1 + e−( yi−µ

σ
)
) + (1 − yi) log(1 − 1

1 + e−( yi−µ

σ
)
)
]
,

with n number of observations and the parameters location µ ∈ R, scale σ ∈ R+ and x ∈ R.

Binomial distribution The log-likelihood function for a binomial distribution is given by

log (L(k|n, p)) = k log(p) + (n− k) log(1 − p) + log
(
n

k

)
,

where n is the number of trials, the parameters success probability is given by p ∈ [0, 1] and the

number of successes is denoted as k ∈ N0.

Inverse Gamma distribution The log-likelihood function of the invers gamma distribution is

log (L(α, β|y)) = −n (α+ 1) log y − n log Γ(α) + nα log β −
n∑

i=1
βy−1

i .

with α > 0 and β > 0 and where the upper bar operand indicates the arithmetic mean
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Normal distribution The log-likelihood function for a normal distribution is given by

log
(
L(µ, σ2|y)

)
= −n

2 log(2πσ2) − 1
2σ2

n∑
i=1

(yi − µ)2,

where n is the underlying number of observations and parameters y ∈ R, location µ ∈ R and scale

σ ∈ R+.

Inverse Gaussian distribution The log-likelihood function of the inverse Gaussian distribution

is given by

log (L(µ, σ|x)) = n

2 ln(σ) −
n∑

i=1

σ(xi − µ)2

2µ2xi
,

with n is as the number of observations and the parameters location µ ∈ R+, scale σ ∈ R+ and

x ∈ R+.

Poisson distribution The log-likelihood function for a Poisson distribution with parameter λ is

given by

log (L(λ|x)) =
n∑

i=1
[xi log(λ) − λ− log(xi!)]

where x = (x1, x2, ..., xn) is the sample, n is the number of observations and xi are non-negative

integers.

Johnson’s SU The log-likelihood function of the Johnson’s SU distribution is defined as

log (L(β, ω, µ, σ|y)) = n log
[

β

ω
√

2π

]
− β2

2ω2

n∑
i=1

[
(yi − µ)2

σ2 + ln
(

1 + (yi − µ)2

ω2σ2

)]
,

with n is as the number of observations and the parameters location µ ∈ R, scale σ ∈ R+, shape

ω ∈ R+, skewness β ∈ R and y ∈ R.

Weibull distribution The log-likelihood function of the Weibull distribution is defined as

log (L(λ, β, |y)) = n ln β − nβ lnλ−
n∑

i=1

(
yi

λ

)β

+ (β − 1)
n∑

i=1
ln yi,

with n is the number of observations and with the location λ ∈ R+, the shape β ∈ R+ and y ∈ R+.
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B.1.2 Activation functions

For DDNN and NAMLSS, independent of the implementation, we use a Softplus activation for the

scale parameter σ2 to ensure non-negativity and a linear activation for the mean µ.

For the AirBnB datasets, also analyzed by Rügamer et al. (2020), we assume an inverse Gamma

distribution IG(α, β) as the underlying data distribution (see equation (B.1.1) for the log-likelihood).

For NAMLSS as well as DDNN we have to adjust the activation functions, as both models minimize

the log-likelihood via the parameters α and β. However, the mean prediction resulting from these

parameters is defined via

µ = β

α− 1

and is hence only defined for α > 1. The activation functions thus need to ensure an α prediction

that is larger than 1 and a β prediction that is larger than 0. Hence we again use a Softplus

activation for the β output layer 6. For the α prediction, we use the following activation function

element-wise

h(x) =


log(1 + exp(x)), if log(1 + exp(x)) > 1,

1
log(1+exp(x)) , else.

(B.1)

To compute the log-likelihood for the models resulting in a mean prediction we compute the pa-

rameters α and β as follows

α = µ2

σ2 + 2 ,

β = µ
µ2

σ2 + 1 ,

with σ2 denoting the variance of the mean predictions. For XGBoost and EBM we use a simple

transformation of the target variable to ensure that µ > 0. Hence we fit the model on log(y)

and re-transform the predictions accordingly with exp(ŷ). For a (binary) classification benchmark

we use the FICO dataset (FICO, 2018), the Shrutime dataset and the Telco dataset. A logistic

distribution, LO (µ, s), of the underlying response variable was assumed (see equation (B.1.1) for the

log-likelihood). Again, we use the true standard deviation of the underlying data for the models only

resulting in a mean prediction. The models resulting in a mean prediction use binary cross-entropy

as the loss function and hence a sigmoid activation function on the output layer.
6Interestingly, the NAM did not converge using the Softplus activation function as the MLP did. Using the Softplus

activation resulted in tremendously large mean gamma deviances and log-likelihoods, as the model kept predicting
values that were nearly zero. Hence, we were only able to achieve good results for the NAM using the activation
function given by formula (B.1).
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B.1.3 Network architecture

We propose two different network architectures that can both flexibly model all distributional

parameters. The first one is depicted in Figure 6.14 and creates J subnetworks for each distributional

parameter. Each distributional subnetwork is comprised of the sum of f (k)
j . Hence we create K×J

subnetworks. To account for distributional restrictions, each distributional subnetwork is specified

with possibly differing activation functions in the output layer.

The second model architecture is depicted in Figure B.1. Here we only create J subnetworks

and hence have the same amount of subnetworks as a common NAM. Each subnetwork then has

a k-dimensional output layer. Each distributional Parameter, θ(k), is subsequently obtained by

summing over the k-th output of the J subnetworks. Each dimension in the output layer can be

activated using different activation functions, adjusting to parameter restrictions.

θ̂(1)
h(1)

θ̂(2)
h(2)

.........

z1
z2

x1 ∑J
j=1

∑J
j=1

...............

z1
z2

xJ

Figure B.1: The network structure of a simple NAMLSS model. Each input variable as well as each distribu-
tional parameter is handled by a different neural network. hk are different activation functions depending on the
distributional parameter that is modelled. E.g. a quadratic transformation for modelling the variance in a normally
distributed variable to ensure the non-negativity constraint.

B.1.4 Benchmarking

The benchmark study for used real-world datasets was performed under similar conditions. All

datasets are publicly available and we describe every pre-processing step as well as all model spec-

ifications in detail in the following.
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B.1.5 Synthetic data generation

For the simulation of the data, respectively their underlying distribution parameters θ =
(
θ(1), θ(2), θ(3), θ(4)

)
,

the following assumptions are made

θ(1) = 30
13x1

(
(3x2 + 1.5) − 2 sin

(
x3
2

))−1
+ 113

115x4 + 0.1x5,

θ(2) = exp
(
−0.0035x1 + (x2 − 0.23)2 − 1.42x3

)
+ 0.0001x4,

θ(3) = 1
42(4x1 − 90x2),

θ(4) = exp (0.0323 ∗ x2 + 0.0123 − 0.0234 ∗ x4) ,

where each of the five input vectors xj is sampled from a uniform distribution U(0, 1), with a

total of n = 3000 observations per data set.

Preprocessing

We implement the same preprocessing for all used datasets and only slightly adapt the preprocessing

of the target variable for the two regression problems, California housing and Insurance. We closely

follow Gorishniy et al. (2021) in their preprocessing steps and use the preprocessing also implemented

by Agarwal et al. (2021). Hence all numerical variables are scaled between -1 and 1, all categorical

features are one-hot encoded. In contrast to Gorishniy et al. (2021) we do not implement quantile

smoothing, as one of the biggest advantages of neural models is the capability to model jagged

shape functions. We use 5-fold cross-validation and report mean results as well as the standard

deviations over all datasets. For reproducibility, we use the sklearn (Pedregosa et al., 2011) Kfold

function with a random state of 101 and shuffle equal to true for all datasets. For the two regression

datasets, we implement a standard normal transformation of the target variable. This results in

better performances in terms of log-likelihood for all models only predicting a mean and is hence

even disadvantageous for the presented NAMLSS framework.

Datasets

California housing The California housing (CA Housing) dataset Pace and Barry (1997) is a

popular publicly available dataset and was obtained from sklearn Pedregosa et al. (2011). It is

also used as a benchmark in Agarwal et al. (2021) and Gorishniy et al. (2021) and we achieve
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Table B.1: Statistics of the benchmarking datasets.

Dataset No. Samples No. Features Distribution Task
California housing 20640 8 Normal N (µ, σ) Regression
Insurance 1338 6 Normal N (µ, σ) Regression
Abalone 4177 10 Normal N (µ, σ) Regression
Munich 4568 9 Inverse Gamma IG(α, β) Regression
Melbourne 16868 11 Inverse Gamma IG(α, β) Regression
Fico 10459 23 Logistic LO(µ, s) Classification
Shrutime 10000 10 Logistic LO(µ, s) Classification
Telco 7032 19 Logistic LO(µ, s) Classification

similar results concerning the MSE for the models which were used in both publications. The

dataset contains the house prices for California homes from the U.S. census in 1990. The dataset

is comprised of 20640 observations and besides the logarithmic median house price of the blockwise

areas as the target variable contains eight predictors. As described above, we additionally standard

normalize the target variable. All other variables are preprocessed as described above.

Insurance The Insurance dataset is another regression type dataset for predicting billed medical

expenses (Lantz, 2019). The dataset is publicly available in the book Machine Learning with R by

Lantz (2019). Additionally, the data is freely available on Github and Kaggle. It is a small dataset

with only 1338 observations. The target variable is charges, which represents the Individual medical

costs billed by health insurance. Similar to the California housing regression we standard normalize

the response. Additionally, the dataset includes 6 feature variables. They are preprocessed as

described above, which, due to one-hot encoding leads to a feature matrix with 9 columns.

Abalone The Abalone dataset contains information for the prediction of the age of abalone, a

type of sea snail, based on their physical measurements. The data set is taken from the original

publication (Nash et al., 1994) and today is a part of UCI Machine Learning Repository. A dataset

of 4177 observations, 10 features and one response variable is obtained after processing the data.

Munich For the AirBnB data, we orientate on Rügamer et al. (2020) and used the data for

the city of Munich. The dataset is also publicly available and was taken from Inside AirBnB on

January 15, 2023. After excluding the variables ID, Name, Host ID, Host Name, Last Review and

after removing rows with missing values the dataset contains 4568 observations. Additionally, we

drop the Neighbourhood variable as firstly the predictive power of that variable is limited at best

and secondly not to create too large feature matrices for GAMLSS. Hence, in addition to the target

https://github.com/stedy/Machine-Learning-with-R-datasets
https://www.kaggle.com/code/gloriousc/insurance-forecast-by-using-linear-regression/data
https://archive.ics.uci.edu/ml/datasets/abalone
http://insideairbnb.com/get-the-data/
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variable, the dataset contains 9 variables. All preprocessing steps are subsequently performed as

described above and the target variable, Price, is not preprocessed at all.

Melbourne The dataset is also publicly available and was taken from Inside AirBnB. The second

Airbnb dataset (Melbourne) originates from the same source as the Munich Airbnb dataset. The

data processing follows the same procedure as described in the Munich section. All preprocessing

steps are then performed as described above and the target variable Price is not preprocessed at

all.

FICO Similar to Agarwal et al. (2021) we also use the FICO dataset for our benchmarking study.

However, we use it as described on the website and hence use the Risk Performance as the target

variable. A detailed description of the features and their meaning is available at the Explainable

Machine Learning Challenge. The dataset is comprised of 10459 observations. We did not implement

any preprocessing steps for the target variable.

Shrutime This dataset contains information on the customers of a bank and the target variable is

a binary variable reflecting whether the customer has left the bank (closed his account) or remains a

customer. The corresponding data set can be found at Kaggle and is introduced by Kaggle (2019).

After the processing described above, the set consists of 10000 observations, each with 10 features.

Telco The Telco customer churn data contains information about a fictitious telco company that

provided home phone and internet services to 7043 customers. It details which customers left, stayed

or signed up for their service. Several key demographics are included for each customer, as well as

a satisfaction score, a churn score and a customer lifetime value (CLTV) index and was introduced

by IBM (2019). After the processing described above, the set consists of 7043 observations, each

with 19 features.

Model architectures and hyperparameters

As we do not implement extensive hyperparameter tuning for the presented NAMLSS framework,

we do not perform hyperparameter tuning for the comparison models. We fit all models without

an intercept. However, we try to achieve the highest comparability by choosing similar modelling

frameworks, network architectures and hyperparameters where possible. All neural models are

hence fit with identical learning rates, batch sizes, hidden layer sizes, activation functions and

http://insideairbnb.com/get-the-data/
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
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regularization techniques. Through all neural models and all datasets, we use the ADAM optimizer

(Kingma and Ba, 2014) with a starting learning rate of 1e-04. For the larger datasets, California

housing, Abalone, FICO, Telco and Shrutime we orient on Agarwal et al. (2021) and use larger batch

sizes of 1024. For the smaller dataset, Insurance, we use a smaller batch size of 256 and for the

Munich and Melbourne dataset we use a batch size of 512. For every dataset and for every neural

model, the maximum number of epochs is set to 2000. However, we implement early stopping with

a patience of 150 epochs and no model over no fold and no dataset ever trained for the full 2000

epochs. Additionally, we reduce the learning rate with a factor of 0.95 with patience of 10 epochs

for all models for all datasets. We use the rectified linear unit (ReLU) activation function for all

hidden layers for all models

h(x) =


0, x < 0

x, else.

We also experimented with the Exponential centred hidden Unit (ExU) activation function pre-

sented by Agarwal et al. (2021) but found no improvement in model performance and even a slight

deterioration for most models.

For the statistical models used from the GAMLSS and gamboostLSS frameworks, we do not

optimize the model hyperparameters, as with neural networks. We use the respective default settings

unless otherwise stated in the modelling descriptions included in the Appendix. We try to keep

the model settings equal between all models, if applicable. All GAMLSS models use the same RS

solver proposed by Rigby and Stasinopoulos (2005), in cases where this approach does not lead to

convergence, the alternative CG solver presented by Cole and Green (1992) is employed. To exclude

possible numerical differences, the same distributions from the GAMLSS R package are used for

modelling the response distribution and calculating the log-likelihoods. gamboostLSS allows the use

of different boosting approaches. Here we use the implemented boosting methods based on GAMs

and GLMs and choose the model that performs better in terms of log-likelihood and the assumed

loss.

California housing and Abalone We orient again on Agarwal et al. (2021) and use the following

hidden layer sizes for all networks: [1000, 500, 100, 50, 25]. The second hidden layer is followed by

a 0.25 dropout layer. While subsequently the NAM and NAMLSS have much more trainable

parameters than the MLP and the DNN, we find that the MLP and DNN outperform the NAM

and NAMLSS in terms of mean prediction. Additionally, we encountered severe overfitting when
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Table B.2: Hyperparameters for the neural models for the California housing and the Abalone
dataset

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM
Learning rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.25 0.25 0.25 0.25 0.25

Hidden layers [1000, 500, [1000, 500, [1000, 500, [1000, 500, [1000, 500,
100, 50, 25] 100, 50, 25] 100, 50, 25] 100, 50, 25] 100, 50, 25]

LR decay, patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output activation Linear, Softplus Linear, Softplus Linear, Softplus Linear Linear

1 With 2 ×8 subnetworks. See Table 6.14 for an exemplary network structure.
2 With 8 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
See Table B.1 for an exemplary network structure.

using the same number of parameters in an MLP as in the NAM and NAMLSS implementation.

For the mean predicting models, we use a one-dimensional output layer with a linear activation. For

the DNN and both NAMLSS implementations, we use a linear activation over the mean prediction

and a Softplus activation for the variance prediction with

h(x) = log(1 + exp(x)).

For the NAMLSS implementation depicted in Figure 6.14 we use a smaller network structure for

predicting the variance with two hidden layers of sizes 50 and 25 without any form of regularization

as Dürr et al. (2020) found that using smaller networks for predicting the scale parameters is

sufficient. For XGBoost we use the default parameters from the Python implementation. For the

explainable boosting machines, we increased the number of maximum epochs to the default value of

5000 but set the early stopping patience considerably lower to 10, as otherwise, the model reached

far worse results compared to the other models. We additionally increased the learning rate to 0.005

compared to the learning rate used in the neural approaches as a too small learning rate resulted

in bad results. Otherwise, we kept all other hyperparameters as the default values. The GAMLSS

and gamboostLSS models assume a normal distribution, with a location estimator µ employing an

identity link and a scale estimator σ with a log-link function. Due to numerical instabilities, we

choose to use the GLM-based boosting method instead of the default GAM-based version.

Insurance As the insurance dataset is considerably smaller than all other datasets we use slightly

different model structures, as the model structure used for the California housing and Abalone
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Table B.3: Hyperparameters for the neural models for the Insurance dataset

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM
Learning rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.5 0.5 0.5 0.5 0.5
Hidden layers [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25]
LR decay, patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output activation Linear, Softplus Linear, Softplus Linear, Softplus Linear Linear

1 With 2 ×9 subnetworks. See Table 6.14 for an exemplary network structure.
2 With 9 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
See Table B.1 for an exemplary network structure.

datasets led to worse results. Hence, for all neural models, we use hidden layers of sizes [250, 50, 25].

The first layer is followed by a 0.5 dropout layer. Again, we use a simple linear activation for the

models only predicting the mean and a linear and a Softplus activation for the models predicting

the mean and the variance respectively. For the first NAMLSS implementation (see Figure 6.14) we

again use a smaller network for predicting the variance with just one hidden layer with 50 neurons.

For XGBoost and EBM we use the same hyperparameter specifications as for the California

housing and Abalone datasets.

The GAMLSS and gamboostLSS models assume a normal distribution, with a location estimator

µ employing an identity link and a scale estimator σ with a log-link function. The boosting for

location, scale and shape method employed uses the GLM based, instead of the GAM, based version.

FICO, Telco and Shrutime For the logistic datasets, we use the exact same model structure as

for the Insurance dataset, as the model structures implemented for the California housing dataset

resulted in worse results. However, as it is a binary classification problem we use a Sigmoid activation

for the MLP as well as the NAM. For the DNN and both NAMLSS implementations, we use a

Sigmoid activation for the location and a Softplus activation for the scale. To generate the log-

likelihoods for the models only predicting a mean, we again use the true standard deviation of the

underlying data.

For XGBoost and EBM we had to adjust the hyperparameters in order to get results comparable

to the MLP, NAM or NAMLSS. Hence, for EBM we use 10 as the maximum number of leaves, 100

early stopping rounds and again the same learning rate of 0.005. For XGboost we use 500 estimators

with a maximum depth of 15. η is set to 0.05. For the GAMLSS and gamboost models we use a

logistic distribution to model the response distribution, where µ estimator uses identity and the σ

estimator uses a log-link function.
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Table B.4: Hyperparameters for the neural models for the FICO, Telco and Shrutime datasets

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM
Learning rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.5 0.5 0.5 0.5 0.5
Hidden layers [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25]
LR decay, patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output activation Sigmoid, Softplus Sigmoid, Softplus Sigmoid, Softplus Sigmoid Sigmoid

1 With 2 ×23 subnetworks. See Table 6.14 for an exemplary network structure.
2 With 23 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
See Table B.1 for an exemplary network structure.

Munich and Melbourne We fit the AirBnB datasets, with an Inverse Gamma distribution

where applicable. However, we train the models that only predict the mean with the squared error

loss function. While one might suspect worse performances due to that, we find that using the

squared error actually leads to much smaller gamma deviances compared to the models leveraging

the Inverse Gamma distribution. Additionally, we use slightly smaller model structures than for

the California housing dataset.

For all neural models, we use hidden layers of sizes [512, 256, 50]. The first hidden layer is followed

by a 0.5 dropout layer. Throughout the hidden layers, we use ReLU activation functions. However,

we deviate from that for the output layer activation functions. For the MLP we use a Softplus

activation function for the output layer, ensuring that strictly positive values are predicted. For

NAMLSS as well as the DNN we have to adjust the activation functions, as both models minimize

the log-likelihood via the parameters α and β.

However, the mean prediction resulting from these parameters is defined via

µ = β

α− 1

and is hence only defined for α > 1. The activation functions thus need to ensure a α prediction that

is larger than 1 and a β prediction that is larger than 0. Hence we again use a Softplus activation

for the β output layer.

For the α prediction, we use the following activation function element-wise

h(x) =


log(1 + exp(x)), if log(1 + exp(x)) > 1

1
log(1+exp(x)) , else.
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To compute the log-likelihood for the models resulting in a mean prediction we compute the pa-

rameters α and β as follows

α = µ2

σ2 + 2 ,

β = µ
µ2

σ2 + 1 ,

with σ2 denoting the variance of the mean predictions.

For XGBoost and EBM we use a simple transformation of the target variable in order to ensure

that µ > 0. Hence we fit the model on log(y) and re-transform the predictions accordingly with

exp(ŷ). Otherwise, we use the same hyperparameters as for the California housing dataset. Inter-

estingly, the NAM did not converge using the Softplus activation function as the MLP did. Using

the Softplus activation resulted in tremendously large mean gamma deviances and log-likelihoods,

as the model kept predicting values that were nearly zero. Hence, we were only able to achieve good

results for the NAM using the activation function given by formula (B.1). The presented GAMLSS

and gamboostLSS models assume an inverse Gamma distribution with both µ and σ utilizing the

log-link function. It should be noted that the RS algorithm does not converge with GAMLSS, which

is why CG is used.

Table B.5: Hyperparameters for the neural models for the Munich and Melbourne datasets

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM
Learning rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.5 0.5 0.5 0.5 0.5
Hidden layers [512, 256, 50] [512, 256, 50] [512, 256, 50] [512, 256, 50] [512, 256, 50]
LR decay, patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output activation Gamma∗, Softplus Gamma∗, Softplus Gamma∗, Softplus Linear Linear

1 With 2 ×23 subnetworks. See Table 6.14 for an exemplary network structure.
2 With 23 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
∗ See formula (B.1) for the detailed element-wise activation function.
See Table B.1 for an exemplary network structure.
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