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Abstract

In this thesis, we derive energy estimates for weakly regular hyperbolic boundary value
problems of real type, for which the Lopatinskii condition degenerates in a specific
way in the so-called hyperbolic region. Such boundary problems, commonly known
in the literature as YWR, are easily seen to be stable under small perturbations of the
coefficients and the initial data. Moreover, their applications include many relevant
physical situations like the formation of shock waves in isentropic gas dynamics and the
subsonic phase transitions in a van der Waals fluid. In these and other YWR problems,
the failure of the uniform Lopatinskil condition plays a major role since it is associated
to a loss of regularity in the scale of Sobolev spaces, eventually leading to energy
estimates that might be ill-suited for dealing with nonlinear problems when solved by
iteration. To circumvent this problem, one option is to apply a Nash-Moser-Hormander
iterative scheme consisting of a two-step procedure that includes a smoothing operator
to compensate for the loss of regularity at each iteration. Another alternative is to
modify the underlying function spaces so that the a priori estimates do not experience
a loss of regularity. In the course of this dissertation, we adopt the latter technique
as a starting point and derive linear estimates for the model case that are comparable
to existing results, but using a more robust approach that we later generalise to some
extent to variable coefficients. The result represents a significant progress towards the
ultimate goal of having a one-step technique applicable to nonlinear problems of this
kind.

iii



Zusammenfassung

In dieser Arbeit leiten wir Energieabschitzungen fiir schwach reguldre hyperbolis-
che Randwertprobleme vom reellen Typ her, fiir die die Lopatinskii -Bedingung auf
eine bestimmte Art und Weise in der sogenannten hyperbolischen Region entartet.
Diese Randwertprobleme, in der Literatur allgemein als WR bekannt, sind stabil unter
kleinen Storungen der Koeffizienten und der Anfangsdaten. Dartiiber hinaus finden
sie in vielen relevanten physikalischen Situationen Anwendung, wie beispielsweise bei
der Formierung von StofSwellen in der isentropen Gasdynamik und bei Unterschall-
Phasentibergdngen in Van-der-Waals-Gasen. Bei diesen und anderen WR-Problemen
spielt das Verletztsein der gleichméfiigen Lopatinskii -Bedingung eine wichtige Rolle, da
dies mit einem Regularitdtsverlust in der Skale der Sobolevraume einhergeht. Dies fiihrt
schliefllich zu Energieabschidtzungen, die fiir Behandlung von nichtlinearen Problemen
wenig geeignet sind, wenn die Losung dieser Probleme durch Iteration erfolgt. Eine
Moglichkeit, die genannte Schwierigkeit zu umgehen, ist die Verwendung eines Nash-
Moser-Hormander-Iterationsschemas. Dieses besteht aus einem zweistufigen Verfahren,
wobei ein Glattungsoperator eingefiihrt wird, um den Regularitidtsverlust in jedem
Iterationsschritt zu kompensieren. Eine andere Moglichkeit besteht darin, die zugrun-
deliegenden Funktionenrdume so zu modifizieren, dass die A-priori-Abschdtzungen
ohne einen Regularitdtsverlust auskommen. In dieser Dissertation nehmen wir letztge-
nannten Zugang als Ausgangspunkt und leiten entsprechende lineare Abschidtzungen
fir einen Modellfall her. Die Abschidtzungen sind mit bestehenden Resultaten ver-
gleichbar, jedoch robuster, sodass wir diese spiter in gewissem Umfang auf den Fall
variabler Koeffizienten tibertragen kénnen. Unser Ergebnis stellt einen bedeutenden
Fortschritt auf dem Weg zu einem einstufigen Iterationsverfahren dar, das schiefdlich

auf nichtlineare Probleme der beschriebenen Art anwendbar sein wird.
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CHAPTER ONE

Introduction

Partial differential equations are powerful tools that can be used to describe a wide
range of physical phenomena, including wave propagation, fluid flow, and heat transfer.
Their study has a long and rich tradition and is still a very active area of research in
modern analysis. Within this field, the treatment of initial boundary value problems
occupies a prominent place, largely justified by the immense variety of applications in
science and engineering. In particular, recent years have seen a growing interest in a
class of boundary problems associated with the formation of shock waves in systems of
hyperbolic conservation laws. In this thesis, we focus on investigating the properties of
this class, and seek to derive energy estimates with potential applications to nonlinear
problems.

1.1 Background

Let RY be the half-space {x = (y,x;) € R?: x; > 0} and suppose that L(t,x, D;, Dy) is
a first-order linear differential operator of the form

d
L(t,x,D;,Dy) = Dy + ) Aj(t,x)D;.
=1
Here, D; := —iax], and Aq(t,x), -+, A4(t, x) are n x n matrix-valued functions with

—=d ...
real entries depending on (t,x) € R x R} ~ Rfd. In addition, denote by M, (R)
the set of matrices with dimensions m X n and real entries.

Consider the initial boundary value problem

Lu(t,x) = f(t,x) (t,x) € (0,T) x R%,
Buly,—o(ty) = g(t,y)  (Ly) € (0,T) xR, (1.1)
u(0,x) = ug x e R’i,
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where L is a hyperbolic operator, B € C®(R x R1"1, M, 4 (R)), - |x,0 : C°°(]R ) —
C*(R9~1) means restriction to the boundary (properly extended to larger function
spaces), and the source terms f, g, 1o are chosen from suitable function spaces to be spec-
ified later. We assume the boundary to be non-characteristic for L, i.e., det A;(t, x) # 0
for every (t,x) € R x @i and that the number p of boundary conditions is the number

of positive eigenvalues of A;.

It has been known since the seminal works of Lopatinskii, Kreiss, and Sakamoto that the
weak Lopatinskil condition is both necessary and sufficient for the C* well-posedness
of (1.1), while the uniform Lopatinskii condition is necessary and sufficient for the
H® well-posedness of (1.1) without loss of derivatives (see [BGSo7], [Kreyo], [Sergg],
[Beni4], and [Sakyo] for details). But this lossless scenario is the exception rather than
the rule, and it is observed in many interesting examples that the Lopatinskii condition
is met weakly but not uniformly ', thus raising the question of whether it is possible to
systematically classify such examples. The answer to this issue proves to be positive, and
fits indeed in a more general perspective: besides the two stable classes of hyperbolic
initial boundary value problems (L, B) where either the weak Lopatinskii condition fails
(strongly unstable) or the uniform Lopatinskii holds (strongly stable), Benzoni-Gavage,
Rousset, Serre, and Zumbrun have identified in [BGRSZ02] a third stable class that they
named weakly regular of real type, or WR for short, for which the Lopatinskii condition
degenerates to the first order as one approaches the so-called hyperbolic region.

When it comes to energy estimates, strongly unstable and strongly stable initial bound-
ary value problems are well understood. In the former, there is no hope for any

satisfactory theory; in the latter, the uniform Lopatinskii condition has been shown to
be equivalent to an energy estimate of the type

T T
e [ (T Paxat+ [0 e ulo(ty)Paydt+ [ [ e )P dxds
:

' (1.2)

N/ u(0,x)|*dxdt + =~ / / e 2" |Lu(t, x |2dxdt+/ / e 2| Buly,—o(t,y)|* dy dt,

where we have the remarkable feature that both the input (f, g, 1) and the solution
are estimated in the same norms (L? in this example, or any other Sobolev norm). In
an attempt to establish energy inequalities for the WWR class, we examine the pure

boundary value problem

{ Lu(t,x) = f(t,x) (t,x) e R x R4,
(1.3)

Buly,—o(t,y) = g(t,y)  (ty) e Rx R

where t runs along the whole real line rather than in the interval [0, T). Alternatively, if
we multiply both sides of Lu = f in (1.3) by A;l and solve for D;, we get the equivalent

'this failure being characterised in a distinctive way.
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boundary value problem

{Pu(t,x) = Dy, + A(t,y,D, Dy) = A ' f(t,x) (t,x) e R x R4, )
1.4

Bu|y,=o(t,y) = &(t, ) (t,y) € R x R*1.

It turns out that energy estimates for (1.1) are mainly based on those for (1.4) in
weighted spaces L% = ¢"L? (see Section 2.2.2), so we shall merely analyse Problem (1.4)

hereafter.

1.2 Problem

We shall deal in the sequel with constantly hyperbolic operators. Roughly speaking, an
operator L is said to be symmetrisable of constant multiplicities if every root in 7 of
L(t,x,7,¢) is real and its multiplicity is locally constant and equal to the dimension of
ker L(t,x, T, ). These operators meet the block structure condition, a central notion in the
construction of microlocal symmetrisers for D; + A that allow us to distinguish four

different situations according to the spectrum of A4, more precisely,

> the set of elliptic points £ for which A is diagonalisable with complex conjugate

eigenvalues,

> the set of hyperbolic points H for which A is diagonalisable only with purely

real eigenvalues,

> the set of mixed points £H for which A is diagonalisable with a combination of

complex conjugate and purely real eigenvalues, and

> the set of glancing points G for which A4 is not diagonalisable, but exhibits at
least one Jordan block.

The definition of the W'R class is typically given in terms of the Lopatinskil determinant
A, a function that vanishes exactly at points where the Lopatinskii condition fails.
Equipped with A, we say that a pair (L, B) is WR if the following conditions are
fulfilled:

> The weak Lopatinskil condition holds,

> the uniform Lopatinskii condition is violated to the first order in the hyperbolic
region H, that is to say, d:A # 0 whenever A = 0 in H.

Though formula (1.2) cannot apply to the WTR class by its very definition, it is certainly
possible to deduce energy inequalities with loss of derivatives. For instance?,

> in [Couoz] and [Couos], Coulombel studies the linear stability of multidimen-
sional shock waves for hyperbolic systems of conservation laws assuming that

*We warn the reader that the symbols defined here may have a completely different meaning throughout
the text, as we follow in this chapter the authors’ notation in each case to facilitate comparison with the
original references.
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Majda’s uniform condition is violated (see [Maj83b]). Two concrete examples
motivate his research: planar Lax shocks in isentropic gas dynamics and phase
transitions in isothermal fluids. In both cases, Coulombel modifies Kreiss original
construction of a microlocal symmetriser and derives energy estimates for the
linearised boundary value problem with constant and variable coefficients. Al-
though not explicitly stated in any of these papers, but in a later work from 2010
(see [CG10]), these problems belong to the WR class and satisfy energy estimates

of the type
Tl + Welsg-olRy < 25N + 581 (5)
where .
2, = [ o) dxe,
and

1 [}
2y = Gy [, (7 + 2PV IR@) P

Formula (1.5) remains true when the coefficients have limited regularity (since
Coulombel uses paradifferential calculus) and they are optimal on the scale of
Sobolev spaces, as shown in [CG10] using geometric optics expansions. In the
long run, the loss of one derivative on the interior and one derivative on the
boundary causes some difficulties when applied to nonlinear problems where

iterations are expected.

> Initially in [Seros] and then in collaboration with Benzoni-Gavage in [BGRSZ0z2],
Serre proposes another approach to deriving energy estimates for the WTR class,
for which he applies a specific operator to the solution and the data alike. His
method covers two different scenarios, namely, boundary value problems for
second-order scalar hyperbolic operators with constant and variable coefficients,
and boundary value problems for first-order systems with constant coefficients.
In the scalar case, Serre investigates the wave operator L := —d; — c*A, in a half-
space supplemented by a boundary condition B := —d; — B — d; — vV,,. Then,
through an intricate factorisation, (L, B) is decomposed as follows:

Lz = Pf (t,x) € R1FY,
Pu=z (t,x) € R, (1.6)
(€?

7_1> —4Rg (t,y) € RY,

Ez =
2

where R is a tangential operator (i.e., acting on the variables (t,y)) and P is a
“filter” operator that vanishes at points on the boundary where the Lopatinskif is
violated. The idea is to choose € in (1.6) so that (L, E) satisfies the uniform
Lopatinskii condition and Pu = z can be solved, leading eventually to energy
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estimates like

VIViPuliz g) + | VPl 0y < (IIPfII +\|Rgr|LzaQ)

or
1
YIVieattllrz ) + HvtquLZ 0Q) = 72 <,YHPfH )t HR8HL2 (9Q) >

The variable coefficient case for a general hyperbolic operator of second order L
adheres to the same principle, except that one needs to account for lower order

terms at each step, as the composition formulae are no longer exact.

As for the system case, the treatment is done by taking the Fourier transform to
(1.4) and then writing the unknown i as @I = 711 + 71_il, where 7w_il (resp. 77+1)
is the projection of 7 onto the stable (resp. unstable) subspace (see Definition 2.4.1).
From here, the divergent term #5(0) (see Section 8.4.1 in [BGSo7]) is controlled by
multiplying 7(0) by the Lopatinskil determinant A(t,7), thus paving the way to
obtain energy estimates for i after some manipulations. It should be noted that
one of the inequalities used for this part is only valid in certain region I' of the
frequency space (see Lemma 8.3 in [BGRSZ02]), a fact that necessarily limits the
scope of the statement. In the end, using Plancherel’s theorem we have

v [ e PP dxdt + / e~ 27| P youl|? dac dt (1.7)
QxR O xR

<cC <1 / e 27| P, Lul|? dx dt + / e 27 P, o (A®) "\ MT Bul? dx dt> ,
Y JOXR O xR

where P, is a pseudo-differential operator with symbol p(t,7) = w4 + A(T,17)7_,

7o is the trace operator and M is some matrix such that (A4)~!MTB is a projector.

Finally, the author claims that P, is an operator of real principal type, meaning in

practice that the pseudodifferential problem P,u = z is solvable for u.

In summary, while Serre’s philosophy serves as the starting point for this work,
his techniques rely on ad-hoc steps that barely admit any generalisation beyond
the model problem presented in each case.

1.3 Main results

We now outline the results of this thesis and explain how they address the issues
identified in the references mentioned above. These findings provide a significant
improvement in the overall understanding of various aspects of the W'R class. To start
with, let P := D; + A(Dy, Dy) be an n x n first-order differential operator with constant
coefficients and B a p x n full rank matrix, with p identical to the dimension of the
stable space of A(T,7) (see Definition 2.4.1). In Section 3.2, we begin by exploring the
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model problem

{Pwt,x) = D+ ADL DY) ut ) = flbx) () €REG

Bulx,=o(ty) = 8(t,y) (ty) eR,
subject to a set of auxiliary hypothesis that we make precise in Assumption 2.3.1.
Although we deduce energy estimates for (1.8) that are basically the same as those
in [Seros] and [BGSo7], our approach based on the construction of a symmetriser is
more robust because it extends the validity of (1.7) beyond I', and because it reveals
a necessary condition that must be satisfied by any further generalisation of this

symmetriser. Essentially, we prove the existence of two families of pseudo-differential
operators A, = Op, (¢) and £, = Op, (¢) so that:

> the set of points where the Lopatinskii condition fails is included in the character-
istic set of A,

> %, is self-adjoint,
> if
Ly = {v e S'(RM, R") : Ayo € L2(RI, C")},

then for every vy, v, € L3 there exists a positive constant C satisfying

(Zqv1,02) < ClAyv1[]AD),

> there is a positive constant c such that
Im (Z,A,0,0) > cy|A,0f

for each v € L3,

> there exist positive constants « and B for which
(Z70(0),0(0)) > a|A,0(0)[* — B|Bo(0)[”

holds true for every v € 3.

As we shall see in Chapter 3, when the Lopatinskii condition fails at one point, the
intersection of the stable subspace and the kernel of B is a one-dimensional subspace of
C". Being a special one, we call it the critical direction and denote it by /. Interestingly,
we are in a position to explain in Proposition 3.2.1 how X, degenerates around /: if a is
the principal symbol of A(Dy, D) and A(Zo) = 0, then v — (¢ (Jo)v, v) vanishes on the
Krylov space of ¢({y) with respect to a({p), i.e., the smallest invariant subspace of a({)

containing ¢({p). We take this observation into account in subsequent generalisations
of X,.

Having prepared the ground with the previous case study, we tackle the main problem.
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In order to include higher-order scalar systems as well as first-order matrix systems,

we propose the more general problem

{Pwuy(t,x) = (Dg + A, (t,y, %4, Dy, Dy)) u(t, x) = f(t,x) (t,x) € R,
B, (ty)u(t,y,0) = g(t,y) (ty) e R,

where f,, g, are chosen at least in L;Zy, and A, € OPS}Y is a classical pseudo-differential

operator with parameter whose symbol 4 admits an asymptotic expansion
o0
an~ Z ai1—j,
j=0

each a;_; being an n x n homogeneous matrix of degree 1 —j. In the same spirit,
B, € OPS% is a classical y—dependent pseudo-differential operator with a p X n matrix
b as principal part. If we suppose that (P,, B,) satisfies the definition of the WR class
(besides some other structural assumptions), we show that there exists symbols €, and

0 with the following features:
> €p and 6 are homogeneous of degree 0,

> € € GL,(C) and

is diagonal with entries a1, - - - , a1,

> there exits s < p so that 4 is diagonal with respect to the basis €, and given by

0 =diag(é~, In—p), (1.10)
where
oy 0
5_ = : P
0 6,
I,

with each o being the solution of the transport equation

940, +{6;, a1} =0,

(1.11)
(5]'_ |xd:0 = AI

> If x; = 0, there exist smooth matrix-valued functions g and m with dimensions
p x p and p x n, respectively, so that if b := b&, there holds the identity

qb = ms, (1.12)
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> when nontrivial, ker § is an s—dimensional invariant subspace of 2; containing
the critical direction /.

Next, we generalise the JWR symmetriser Y., that was postulated earlier for the model
problem. Certainly, if A, = Op, (¢) and Q, = Op, (), we claim that it is possible
to find a family %, of C! operator-valued mappings depending on x, so that for -y
sufficiently large,

> X, (x4) is self-adjoint.

> for every vy,v; € Li, there is a positive constant C satisfying
(2 (x2)v1,02) < ClAy(x2) 01|85 (x4)0]-
> There is a positive constant ¢, independent of x;, such that
(04% (x4)0,0) +2Tm (£, (x4) Ay (x4)0,0) > c¥| Ay (x4)0)?

for each v € L3.

> There exist positive constants « and f for which

(21(0)0(0),2(0)) > a|A,(0)v(0)* — BlQyB,v(0)

holds true for every v € 3.

In contrast to the standard case where the uniform Lopatinskii condition is satisfied,
lower order terms in a WR problem are problematic and require some attention. To
deal with them, we have to resort to finer tools, including a technical lemma (see
Lemma 3.3.2) and the following statement.

PROPOSITION (CHAPTER 3 - PROPOSITION 3.3.1). The norms ||A,, - || lie between L2 and H;!
for oy larger than <o > 1, that is to say, there exist positive constants Cy and Cy such that

1
Gl g1 < %HAv <Gl - flys (1.13)

for every vy € (7o, +00].

Due to Proposition 3.3.1, we are able to recover Coulombel’s estimates with loss of one
derivative. Overall, by combining ., with a partition of unity, we can prove the main
theorem of this work.

THEOREM (CHAPTER 3 - THEOREM 3.3.2). Let

{Pyuy(t,x) = (Dd + A, (t,y,x4,Dy, Dy)) u(t,x) = f(t, x) (t,x) € R1+ .
1.14

B, (t,y)u(t,y,0) = g(t,y) (ty) € RY,

where A, € OPS}Y(R}F” X [1,+00)) and B, € OPS?Y(R"Z X [1,400)) are classical pseudo-
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differential operators with matrix-valued symbols a(X) and b(X) of dimensions n x n and
p X n, respectively. Suppose that P, is hyperbolic in the sense of Definition 2.3.1, P, and B,
satisfy Property (C) (see Assumption 2.3.1), and that p = dimE~ (X). Then there exist

(Z) ’)’0 Z 1/
(ii) a family of pseudodifferential operators

A,(t,x,Dy, Dy) € OPS)(RYH x [y, +00)),

(iii) function spaces

L3 = {v e (R, R") : Ao € L2(RT, CM)},
Hj = {v e S'(R}", R") : Aw € L3(RYH, €M)},

(iv) and a positive constant C such that,

if f € L2(RY*) and g € L2(RY), then for all oy > yo and every u € D(RY™) the following
estimate holds

1
ﬂMw%ﬁ+me%ﬁsc(¢u%¢Ha@). (1.15)

More generally, if f € H5(RY) and g € H5(R?),
1
ﬂMwmfumwm;sc(ﬂma+@@). (1.16)

The last result of this thesis concerns the existence, uniqueness and regularity of the
solution of the WR problem. To answer these and other relevant questions about
u, we show that A,u is indeed the solution to a problem satisfying the uniform
Lopatinskii condition. This insight, which is encoded in Theorem 3.3.2, allows us to
use all the machinery developed in Chapter 2 and, ultimately, to draw conclusions for
u by studying the operator A,. As the proposition below indicates, the key element is
that A, is an operator of principal type.

PROPOSITION (CHAPTER 4 - PROPOSITION 4.2.1). Let 6(X) = diag(0™ (X), Ii—p),
o (X) ... 0
57 (X) = S , (1.17)
I,

where 61(X), - -+ ,6,(X) are solutions of (1.11). Then the operator Op,, (5;) is of principal
type for every j € {1, --- ,s}.
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We conclude with a concise description of the propagation of singularities for a WR
problem.

THEOREM (CHAPTER 4 - THEOREM 4.2.1). Consider

O )il = W;,
PW( ]) ! ! (1.18)
ijli=0 = 0,

where @ € H;, (Rfd) and Op, (6;) is as defined in Proposition 4.2.1. Then there exists a
unique solution of (4.10) modulo C* for which

WEe-1(i) \ WE: (Op, (&))11;) C 3 (0). (1.19)

1.4 Thesis structure

This thesis is organised as follows: in Chapter 2, we set much of the notation that
will be used throughout the document and recapitulate some well-known facts on
boundary value problems. This includes, but it is not limited to, a precise notion of
hyperbolicity, parameter-dependent pseudo-differential operators, weighted-in-time
Sobolev spaces, the block structure condition, the Lopatinskif condition, L?>—energy
estimates and its consequences. In Chapter 3, we examine the JWR problem in depth.
Firstly, we establish the concept of a stable class and give some examples. Secondly,
we exhibit an alternative characterisation of the WR class that fits better our purposes
when constructing a symmetriser for the model problem. After that, we implement the
subsequent generalisations to variable coefficients and construct families A, and X,
having all the necessary properties to get a priori estimates. In Chapter 4, we define
operators of (real) principal type and introduce the main theorems in this direction. We
then verify that A, is of this kind and elaborate on how to solve A,u = w. Lastly, we
finish with an appendix that covers miscellaneous results that are of some use over the

course of this discussion.



CHAPTER TWO

Regular boundary problems in a

half-space

In this chapter we synthesise the main aspects of the theory of boundary value problems
in a half-space. In the interest of balancing precision and fluency, we refrain from
including all the proofs and provide instead only those that are of some use to the
discussion, feeling free to cite the rest. As far as possible, we shall introduce the most
relevant concepts from scratch, without assuming any specific knowledge beyond the
classical ideas of mathematical analysis and the standard theory of pseudodifferential
operators.

Let us briefly describe the content. In Section 2.1, we specify some basic notation
and state the target problem of the chapter. In Section 2.2, we explore function
spaces and certain classes of pseudodifferential operators that constitute the basis for
subsequent arguments. In Section 2.4, we detail further results on boundary value
problems, including two cornerstones of this thesis: the block structure condition and
the Lopatinskii condition. In Section 2.5, we derive energy estimates using previously
established facts and some structural assumptions. Finally, we investigate in Section
2.6 the existence, uniqueness, and regularity of the solution by combining the energy
estimates and other tools from functional analysis.

2.1 Problem set-up

2.1.1 Background and notation

Let x = (xq, -+ ,x4) € R and t € R. If we denote by y the variables (x1, - -+ ,x4-1),
the half-space corresponds to

R? = {x = (y,x;) € R?: x5 > 0}.

11
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As may be verified by inspection, the boundary is given by
ORY = {x = (y,x4) € RY: xy =0} ~ R,

Other domains (as long as they are good enough) may be reduced to this situation by
using local charts and a partition of unity, so there is no loss of generality in working
with flat boundaries right from the beginning. Besides the spatial coordinate x, one
of the variables in the type of problems we are interested in may be identified with
time, even though it is defined all over R. Mathematically, we take this into account by
writing the space-time as RL™ = R x R4

Except for the scalar case, which is discussed in Section 2.3, the operators involved are
matrix form and hence it will be useful to fix some basic notation for this purpose. For
example, we denote by M, (R) (resp. My« (C)) the set of matrices with dimension
n x m and real entries (resp. complex entries), by I, the identity matrix of order m € N,
and by M = diag(my, - - - ,m,) a generic diagonal matrix with elements my, - - -, m,.

As for the differential operators, we often write D; instead of Dx]..

Let us establish the concrete problem we wish to tackle. Consider the first order
differential operator

d
L(t,x,Di,Dy) = Di + ) Aj(t,x)Dj, (2.1)
j=1

whose coefficients A;(t, x) are smooth matrix-valued functions with real entries. For
future reference, we take (7,¢) = (7,1,&,) as the set of covariables of (t,x) = (t,y,x;)
and define

Alt,x,m,84) = 277] (t,x) +CaAa
The symbol of L(t,x, Dy, Dy) is then

Lt x, 7,1,84) = T+ At x,77,8a),

and the characteristic polynomial 7ty (¢, x, T, {) of L is given by
nr(t,x,7,8) =detL(t,x,T,1,84) = det (T+ A(t, x,1,E4)). (2.2)

In the sequel, we shall deal with constantly symmetrisable hyperbolic operators in the
t-direction, the precise meaning of which is addressed below.

DEFINITION 2.1.1. The operator L is symmetrisable hyperbolic of constant multiplicities or
constantly hyperbolic for short, if there are positive integers ay, - -+ ,a, and real analytic,
pairwise different functions A(t,x,¢), - -+, Ag(t, x, ) defined on Rfd x R? such that

9

tXT§:HT+/\ktx§) (2-3)

k=1
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and the mappings A1 (t,x,¢), - - -, Ag(t, x, ), when understood as the eigenvalues of A(t, x,1,¢4),
are semi-simple. In particular, when oy = 1 for every k € {1, --- ,q}, the eigenvalues are
simple and L is said to be strictly hyperbolic.

A first compatibility condition follows from the above definition: when L is constantly
hyperbolic, A;(t, x) must be diagonalisable over the reals since A(t,x,0,1) = A;(t,x)
for all (t,x) € R}ﬁd. We shall soon impose the stronger condition that the eigenvectors

of A, are either positive or negative, but in no case equal to 0.

2.1.2 A boundary value problem in a half-space

After this preparation, we shall study a boundary value problem

L(t,x, Dy, Dy)u(t, x) = f(t,x) (t,x) € RLH,
(2.4)

Bulx,—o(t,y) = g(ty)  (ty) €RY,

where B € C®(R?, M,»,(R)), f and g are functions chosen from suitable functions
spaces to be defined, and - |,,—o stands for the trace operator on R? (see Theorem 2.1.1).

Also, we supplement Problem 2.4 with extra hypotheses.
ASSUMPTION 2.1.1.
(i) L is symmetrisable of constant multiplicities.

(ii) The boundary aRf‘i ~ RY is non-characteristic for L, meaning that A, is nonsingular
forall (t,y,0) € R4

(iii) B is assumed to be everywhere of maximal rank p, with p being the number of positive
eigenvalues of Ay (the number of incoming characteristics).

(iv) (L, B) satisfies for all (t,y) € R the normality condition
R" = ker B(t,y) ® E°(A4(t,y,0)),

where E°(A4(t,y,0)) is the stable subspace of A4(t,y,0), i.e., the subspace spanned by
eigenvectors associated with negative eigenvalues.

While the first three items are typical assumptions for (2.4), the last one may seem less
natural. The reason for Condition (iv) is twofold: in the present context, it facilitates the
classification of boundary value problems in Chapter 3; in the broader sense of initial
boundary value problems, normality is a necessary condition to ensure well-posedness
in spaces of considerable importance like L? (see Section 4.1.2 in [BGSo7] for an ample

discussion on this matter).

To bring this section to an end, we formalise the intuition behind restricting u to the
boundary {x; = 0}.

THEOREM 2.1.1 (THEOREM 9.8, [BGS07]). Let (L, B) be a boundary value problem subject to
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Assumption 2.1.1. If the subspace
E = {we *(R): Pw € L2(RLH)}

is endowed with the graph norm, then D(@Td) is dense in E and the trace operator

Jemo : D(R,) — D(RY)

W — W|ga

extends in a unique way to a continuous map from E to H-1/2(R¢).

Provided there is no room for confusion, we shall refer to the trace operator acting on

u as u|y,—o or u(-,0) interchangeably.

2.2 Function spaces and parameter-dependent operators

2.2.1 Pseudodifferential calculus with parameter

In this section, we shall introduce the basic ideas behind the pseudodifferential calculus
with parameter. To make the exposition easier, we stick to the following conven-

tion:

> weset (= (t—iy,n)~(T,1,7),
> we use |-| or || - || depending on whether we are dealing with matrix norms

(single bars) or norms in function spaces (double bars),

> by an abuse of notation, we represent both the inner product of L*(R1*) and
L2(RY) by (-,-).
Just as the Japanese bracket A*(7,7) = (1 + 72 +72)%/2 is the object to compare with

in the conventional pseudodifferential calculus, the parameter-dependent Japanese
bracket

A (T) =A%) = (VP + T ) (2.5)

serves as the model symbol in the new setting. In practice, substituting A*(t,7) by
A*(Z) does not change the results significantly and virtually any concept from the
theory of pseudodifferential operators without parameter may be reformulated into a
parameter-dependent version with only a few changes, usually. Notably, a y—variant
of the familiar Sobolev spaces H® can be obtained by replacing A°(t,7) by /\iy(T, 1) to
get

lull, = 1A% (26)

As might be expected, the hat on top of u in (2.6) refers to the Fourier transform of
u with respect to the variables (t,y). It turns out that Formula (2.6) defines a family
of y-indexed norms that is equivalent to the standard | - ||gs norm. Actually, the
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interactions between || - [|zs and || - |5 are generally simple and merely require some

v factor to be taken into account. For instance,

Julls < [lullps < o llullas s>0,
Vlulles < llullg < lullns s <0,

lll e < flullgs, < v " lullmy s <m,

are common inequalities. We continue with the definition of a class S?(Rd x R x
[70, +00)) of tangential pseudodifferential operators depending on the parameter
Y.

DEFINITION 2.2.1. Let m € Rand vyg > 1. Let us denote by S (R x RY x [0, +00)) the set
of functions a € C*®(RY x R? x [0, +00), Myxm(R)) so that for all multi-indices «, B € N*
there exists a positive constant C, g such that

95, ,)08a(t,y,0)| < CopA™ () (2.7)

forall y > 7.
To any symbol a(t,y,T,7,7) € ST(R? x R? x [y, 4c0)), we may associate a family
Op,, (a) of pseudodifferential operators depending on -y through the expression

(Op, (a)u)(t,y) = (2711-)01 /Rd T Ya(t,y, T, v)A(T, ) dTdy, (2.8)

As in the traditional calculus, the set OPS?(R"Z X [y0,+00]) consists of families of
pseudodifferential operators {Op, (a)},>, for which the mapping property

1Op, (a)ull s < Cllu| g, (2.9)

holds for some positive constant C, every ¢ > 79 > 1, and all s € R. A prototypical
example of a family of order m is A} := Op, (A}), as may be seen from the definition

and the elementary computation
AN ][ gom = | A5 AT ull 2 = [[ASul[r2 = [lul s

As the next theorem shows, compositions and adjoints obey similar rules as in the

ordinary case.

TaEOREM 2.2.1 (THEOREM C.6, [BGS07]). Leta € S, b € Sfr For some yg > 1, it is true
that

(i) {Op, (a)}y2y € OPSY,
(i) {Op,(a)" —Op, (a*) }yzy € OPSfyn_l,
i) 0p, 0)2Op, £) ~ Op(ab)} -,  OPS 1,
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(iv) {[Op.,(a),Op.,(b)] —Op. ([a,b]) }124, € OPSZ“F””,

We shall also make extensive use of the relation
+n—1
[Op,,(a),0p.,(b)] € OPS™",

if the symbols a and b happen to be commutative. Looking ahead to Section 2.5 in this
chapter, we state a parameter-dependent Garding’s inequality in its normal and sharp

version.

THEOREM 2.2.2 (GARDING’S INEQUALITY - THEOREM C.7, [BGS07]). Let a € ST Suppose

that for some positive constant a
Im (a(t,y,¢)o,0) > aA™(Q)[0]%,

for all v € C" and every (t,y,7,1,7) € R x R x [1,+00]. Then there there exists yy > 1
such that for every v > o and each u € HKY”/Z,

o
tm (Op, (a)u,u) = 7 [ullf-

THEOREM 2.2.3 (SHARP GARDING’S INEQUALITY - THEOREM C.8, [BGSo7] - CHAPTER VII,
[Tavo6]). Let a € Si. Suppose that

Im (a(t,y,C,v)v,v) >0,

forall v € C" and every (t,y,7,1,7) € R? x R? x [1,+oo]. Then there there exist vo > 1
and C > 0 such that for every v > o and each u € ngz,

Im (Op, (a)u, u) > —C||u|\2ﬁ<7m—1>/z-

2.2.2  Weighted spaces and conjugated operators

As we shall see in due course, energy estimates for (2.4) are given in weighted-in-time
spaces e”YtLZ(R}Jd), with ¢ > 0. Intuitively, the presence of a large parameter -y allows
us to absorb errors due to lower order terms and focus exclusively on the leading
parts of the operators, just as in the constant coefficients case, where only the principal
symbols are of interest (see [Maj83a] and [Maj83b]). Specifically, we have:

DEFINITION 2.2.2. Let Q) be either R} or 9RLH ~ R¥ with dy being the appropriate measure
in each case. If v € R, the space L2 (Q)) = e""L*(Q) consists of functions u in Q) such that
e~ "u € L*(Q)). Furthermore, L2 (QY) is a Hilbert space endowed with the inner product

(u,0), = (e "u,e""v) = / e " us dy,
)
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and corresponding norm
Julfy = [ e " uldn

We can define weighted Sobolev spaces H,(Q)) = eV H5 (Q)) in the same manner as the set of
elements e~ "'u € H3(Q)), endowed with the norm

2, = [ e 2" |A5u dp.

When v > 0, the elements of L%(Q) must vanish as t — —oco to compensate the
exponential factor e~ 7, so the choice of a positive parameter 1 is consistent with an

orientation of time (see [Méto4]).

We now describe the operators that we will be using hereafter. Given a family of
pseudodifferential operators with parameter A (t, x, Dy, Dy, ) € OPS}(R? x [yo, +00]),
we define the conjugated operator A, by the formula

A, (t,x,Dy, Dy) = e A(t, x, Dy, D,, v)e T (2.10)

When expressed as an oscillatory integral, 4., applied to u € D(R") reads

1
2n)?
1

~ 2n)f /Rd SOty p + iy, 0) (Fu)(p, ) dpdy,  (211)

Ayu(t,x) = / d TN 7 (4 y, 7,0, 7) Fle "u(t,y)] drdy
R

where p := T — iy and F = F; ) is the Fourier transform with respect to (t,y). In fact,

we may deduce from (2.11) that
Ay = A(t,y, Dy +i7,Dy,7),

or simply
ﬂ’y = ﬂ(t/ ]// Dt/ Dy)l

if Z(t,y,p,n) is a polynomial in p and 7. Properties such as (2.9) and the like remain
valid for A, as can be shown in an elementary fashion for operators P, and Q. of
order 0 and —1, for which it is established that (see [CP82, pp. 413])

C
IPyitlloy < Cliulloq  and {1 Qyulloy < fullor,
for all u € D(RL) and v sufficiently large. To close this section, let us present a class of

pseudodifferential operators that captures the idea of the upper half-space as a foliation
of horizontal lines. Denoted by OPS!' (R} x [y, +0)), it consists of 7-dependent
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tangential pseudodifferential operators parametrised by x4, of the form
Ay (t,y,x3) = A(t,y, x4, D¢ + i, Dy, 7).

For each x; > 0, A(t,y,x4,7,1,7) € S (R4 x R x [y0, +0)) and the estimate (2.7) is
satisfied uniformly in x,. Interestingly, the properties of OPS!'(R? x R? x [, 4c0))
transfer to OPS?;(R};“’I X [0, +00)) via standard arguments and the next proposi-

tion.

PROPOSITION 2.2.1 (PROPOSITION 2.4 - CHAPTER 7, [CP82]).

Let A,(t,y,xs) € OPSL(RIM x [yg, +0)). If u € L*(Ry, H(RY)) is such that (Dx, +

Ay (LY, x4))u € Hs_l(Rrrd), then u € HS(led).

2.3 The scalar case

Let L be an m-th order differential operator

m—1
L(t,x, Dy, Dx) = D'+ Y Au_i(t,x, Dx)D;, (2.12)
i=0
whose coefficients are scalar classical pseudodifferential operators A, _; € OPS™~/ with
principal symbols a,,_j € $"7J, each a,,_; being homogeneous of degree m — j and
—1+d
independent of (f,x) outside some compact set of ]Ri+ . As in the system case, we are

interested in the boundary value problem

L(t,x,Dt, Dy)u(t,x) = f(t, x) (t,x) € R+
(2.13)

B(t,y)u(t,y,0) =g(ty)  (ty) €RY,

where Bu is defined by p scalar equations (Bju)j—1,... , so that

m
Bju =Y _ Bjx(t,y, Dy, Dy)v_1u.
k=1

Here above, Bjiis a differential operator of order r; — k + 1 with smooth coefficients
and

it = (=iv)* ulga,

where v is as a fixed vector field transversal to the boundary. To reduce (2.13) to a
matrix system, we assume that the coefficient of D, in (2.12) is non-vanishing (i.e., L is

non-characteristic with respect to B) and write L as

m—1

P=D} + Y P,_(tx,Dy,Dy)D:

d Xq’
i=0
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with P,,_; being homogeneous of degree m — j. If u; := ATﬁjDi;lu and g; := A:Ynflfr"gj,
let us define u, == (uy,--- ,uy) and G, := (g1, -+ ,84)- In the same spirit, set F, =
(0,---,0, f). In the end, we can formulate problem (2.13) as
(Dg+ A (t,y, x4, D, Dy)) u(t,x) = F(t,x) (t,x) e R,
By (t,y))u(t,y,0) = G(t,y) (ty) e R,
where
o A, O -~ 0
0 0 A, 0
Ay = g and By = (Bjky) j=1, p- (2.15)
. k=1,---,m
0 0 LA,
Ay Ayy o o Ay

The entries in (2.15) are given by A; , := Pm,jHA;mH and Bj;, = Amflfrf'VlekA;erk.
If a(X) and b(X) are the principal symbols of A, and B,, respectively, it is clear that
a(X) is homogeneous of degree 1 and that b(X) is homogeneous of degree 0. The notion
of hyperbolicity that fits this situation is therefore the one in Definition 2.3.1.

2.3.1 A more general problem

In order to cover both the scalar and the system case, we shall examine a more general
problem in the rest of the chapter. To put things in perspective, let us first analyse (2.4)
under the Assumption 2.1.1. If u, := e~ ""u, a quick calculation yields

L(e™u) = " (L —ivy)u,

and we see that (2.4) is equivalent to

{L(t, x, Dy, Dy, y)uy (£, x) = fo(t, x) (t,x) € R}ﬁd,
(2.16)

B(t,x/’)’)uy(t/yzo) = g’)‘(t’y) (t’y) e Rd’

where f, = e 'f, g, =e g,

d

L(t,x,D;, Dy, ) :== (Dt — iy + ZA(t,x)D]) and B(f,x,7) := B(t,x).
=1

Evidently, (2.16) can be written in terms of conjugated operators L, and B, as well,
like

L,(t,x, D, Dy)u(t,x) = f(t,x)  (t,x) € RL*,
(2.17)

By(t,x)u(t,y,0) =g(ty)  (ty) €R".
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At this level, we take into account the special role of x; and recast the differential
equation in (2.17) as
-1
Dgu+e" At [ Dy —iy+ Y Ai(t,x)D; | e "u= A f(t,x),
j=1

so we get in the end

{Pyu(t,x) = (Dg + A, (t,y, x4, Dt, Dy)) u(t, x) = A7 f(t, x) (t,x) € R,
By (t,y)u(t,y,0) = g(t,y) (ty) e RY,
(2.18)
with .
1
Ay (t,y,%4,D,Dy) = eWA‘;1 (Dt —iyl, + Z A]-(t,x)Dj) e M (2.19)
=1
and

B, (t,y, Dy, Dy) :== B(t,y).

A reasonable generalisation of (2.18) is therefore the boundary value problem

{Pfyu(t,x) := (Dg+ A, (t,y,x4,Dt, Dy)) u(t, x) = f(t,x) (t,x) € R,
(2.20)

By (t,y)u(t,y,0) = g(t,y) (ty) €RY,

where A, € OPS},(REjd X [0, +0)) is a classical pseudodifferential operator whose
principal part a(t,y, x4, T,7,7) is an n X n matrix-valued function that is homogeneous
of degree 1, B, € OPS%(Rd X [70,+00)) is a classical pseudodifferential operator whose
principal symbol b(t,y, T,7,7) is a p x n matrix-valued function that is homogeneous
of degree 0, and the initial data f and g are chosen at least in L%. It should be noted
that by writing D, alone in (2.20), we are assuming implicitly that the new problem is

non-characteristic.

Let us suggest some notation before proceeding further. The frequency set and its

projection onto {7y = 0} are characterised by
E={l=(t—iv,n) € CxR"1\{0,0}:9>0}, Eo:=En{y=0},
whereas the space-time-frequency set and its projection onto {7y = 0} are given by
Xi={(ty,xa,T,1,7) : (ty, %) ERTY, (T—iy, ) €8}, Xo:=XN{y=0}.

As we have seen already, the symbols in this work are classical and thus reducible to
homogeneous pieces in (T —iv, %), so it may be advantageous to concentrate on the
sphere

ST={(t—iv,y) €E: P+ T2+ y> =1},
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or when required, on the set
Xs:={XeX:(1,17,7) € $}.
In the same vein, we define
Y:={XeX:X=(ty 01,7179} and  Ys:={XeY:(1,1,7) €S

Let X = (t,y,x4,7, T, 7) be here and everywhere a generic point in X. We shall adopt the
following notion of hyperbolicity for Problem 2.20 (see [Méoo] for more details).

DEFINITION 2.3.1. Let X = (LLLQ,I) € X and set tp(X,&;) = det(&y1, + a(X)).

(i) When v # 0, tp(X, 8q) # 0 for every & € R. This may be rephrased by saying that
a(X) has no real eigenvalues when y # 0.

(i1) If {4 € R is such that 7tp (X, @) = 0, there exist « € N together with smooth functions
At x,11,8q) and e(X, g) defined locally around (t,x,1,84) and (X, ¢ ), respectively,
such that they are holomorphic in ¢4,

ip(X, Cq) = e(X,Ca) (T — iy + AL, x,1,84))%, (2.21)

and e(X, q) is nonvanishing at (X, &q). Moreover, A is real when ¢ is real and there is a
smooth matrix-valued function T1(X) on a neighbourhood of X, holomorphic with respect
to &y, such that I1 is a projector of rank « for which ker(& 1, + a(X)) = IT(X)C" when
T—iy+ At x,1,84) =0.

We shall refer to the concrete situation when a« = 1 in (2.21) as the strictly hyperbolic

case.

When A, is the differential operator (2.19), Definitions 2.1.1 and 2.3.1 are compatible,
meaning that Conditions (i) and (ii) above hold if and only if the operator L is hyperbolic.

Indeed, if we assume that ¢; = —pu is a purely real eigenvalue of

d-1
a(X)=a(t,x,t,n,7) =A;" ((T —iy) i+ ) njAj(t,x)> ,
j=1

then

d—
0= mp(X,&;) = det(a(X) — ul,) = det (A;") det (CdAd + (t—iy)L, + Z:l 17]~A]-(t,x)>
j=1

which contradicts the hyperbolicity of L unless oy = 0. This clever observation is known
as Hersh’s lemma. In addition, if X = (¢, x, T, Q,O) € Xpand ¢ p verify that 7p(X,¢,) =
0, then (17,¢,) # 0 because (T, Qd) # 0, and there exists a unique eigenvalue A;
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so that T+ Ax(t, x, 1, g d) = 0 in view of (2.3). Under these circumstances, both /\j
and the eigenprojector I1; extend to functions of §; € C for which Condition (ii) is

applicable.
Back to Problem 2.20, we impose the following set of hypotheses.
ASSUMPTION 2.3.1.
(i) P, is hyperbolic as in Definition 2.3.1.
(ii) The symbols a(X) and b(X) are independent of (t, x) outside certain compact set K. We
shall designate this as property (C).

(iii) b(X) is everywhere of maximal rank p.

2.4 Additional results on boundary value problems

2.4.1 Stable and unstable subspaces

As a first step, let us note that Part (i) in Definition 2.3.1 implies that if v > 0, a(X) is a
hyperbolic matrix in the sense of dynamical systems, i.e., all its eigenvalues have non-
zero imaginary part 3 when 7y > 0. In this way, C" may be decomposed at each X € X
as the direct sum of two invariant subspaces of a(X), which we now explain.

DEFINITION 2.4.1. Let X € X with v > 0. The stable (resp. unstable) subspace E~ (X) (resp.
E* (X)) of a(X) is the subspace generated by the generalised eigenspaces of a(X) associated
with eigenvalues with negative (resp. positive) imaginary part.

Observe that 7tp(X, u) = det(a(X) — pul,) is a polynomial of degree n in u varying
smoothly on X, for which the number of roots with negative imaginary part (counted
with their multiplicities) remains locally constant. What is more, the connectedness of
X ensures that this number persists globally and that dim E~ (X) is independent of X.

In particular, when

a(X) = A;! ((T— i), +Er]iA,-(t,x)> (2.22)
i=1

1

as in Problem 2.18, one can choose Xy = (t,x,1,0,¢;) and conclude from

0 = 7tp(Xo, &) = 7p(t,x,1,0,&4) = det (—a(t, x,1,0) — &4l,) = det (—A;" — Z41,)
(2.23)
that dimE~(X) equals p, the number of incoming characteristics. For the abstract
problem (P,, B, ), which does not necessarily have an analogue (L, B), we add an extra

assumption.

ASSUMPTION 2.4.1. The number of required boundary conditions p agrees with dimE~ (X).

3Depending on the convention used, one could say that a(X) is hyperbolic if all its eigenvalues have
non-zero real part.
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The stable and unstable subspaces may be alternatively written using spectral projectors.
For example, if C~ is a Jordan curve (positively oriented) that encloses the eigenvalues
of a(X) with negative imaginary part, the expression

I (X)

1
= /C (a(X) — ply) dp (2.24)

defines a projector onto E~ (X)), along E* (X), for which
E (X)={IT"(X): XeXN{y>0}} and E"(X)=kerIl (X).

Notice that the map IT™ (X) is automatically smooth in (¢, x), and since we may slightly
perturb the argument X € XN {7y > 0} in (2.24) while keeping the same contour C~, it
is also holomorphic in T — iy and real analytic in 7. Last but not least, it is possible
to find a basis for E~(X) whose elements are homogeneous of degree 0 in (7,7, 7), as
illustrated by Kato in [Kat13]. Needless to say, none of these conclusions has to be true
when 7y = 0. These questions, along with the actual behaviour of E~(X) when v — 0
are yet to be explored.

2.4.2 The block structure condition

In this section, we study a fundamental idea in the construction of symmetrisers: the
block structure condition. This notion was originally introduced by Kreiss in [Kreyo] for
the strictly hyperbolic case, and later adapted by Métivier in [M¢éoo] to the wider class
of constantly hyperbolic operators.

DEFINITION 2.4.2 (BLOCK STRUCTURE CONDITION). Let X € X. The matrix a(X) verifies
the block structure condition if there exists a neighbourhood V of X in X, an integer ¢ > 1, a
partition n = vy + - - - 4+ v, with v; > 1, and a smooth nonsingular map eo(X) defined on V
such that for every X € V

e ! (X)a(X)eo(X) = diag(a1(X), -+, a4(X)),

with blocks ax(X) of size vy X vy that fall exactly into one of the following categories:
(i) The spectrum of ax(X) is contained in C\ R.
(ii) vj =1, ar(X) € R when v = 0, and id,a;(X) € R\ {0}.
(iii) vi>1, ay(X) has real coefficients when -y = 0, and there is pi €R such that

i1 0 - 0
0 u 1 '
aw(X)=1: " 0
o

0 0y
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Additionally, the entry at the lower left corner of i0ax(X) is nonvanishing and real.

PROPOSITION 2.4.1. Let X € X. If a(X) is hyperbolic as in Definition 2.3.1, then a(X) satisfies
the block structure condition.

The proof of this fact is lengthy and highly technical, so we feel free to skip it. If
interested, the reader may find useful the discussions in Chapter 7 in [CP82] (for strictly
hyperbolic operators), Chapter 5 in [BGSo7], and the remarkable paper [Méoo] by
Métivier from which we emphasise Lemmas 2.5 and 2.6, as they support the upcoming

assertion.

PROPOSITION 2.4.2. The stable subspace E~ (X) defines a smooth vector bundle over X N {7y >
0} that extends into a continuous vector bundle (again denoted by E~ (X)) over X with the
same rank.

We stress two things concerning Proposition 2.4.2:

> Although the notation could be misleading, the extension of the stable space to a
point X € X, should be read as E~ (X) = limx_,x E~(X), for X € XN {y > 0},
and in no case as the stable subspace of a(X), which is usually smaller or even
empty.

> For non-constantly hyperbolic operators, the continuous extension of E~(X) to

{7 = 0} may not exist, as shown in [BGSo7], Theorem 8.2.

Based on Definition 2.4.2 and Proposition 2.4.1, Xy may be divided into four regions as
indicated below.

DEFINITION 2.4.3.

> The set of elliptic points £ consists of those X € Xg for which Definition 2.4.2 is satisfied
with blocks of type (i) exclusively (complex conjugate pairs).

> The set of hyperbolic points H consists of those X € X for which Definition 2.4.2 is
satisfied with blocks of type (ii) exclusively.

> The set of mixed points EH consists of those X € X for which Definition 2.4.2 is satisfied
with blocks of type (i) and (ii), but no blocks of type (iii).

> The set of glancing points G consists of those X € Xq for which Definition 2.4.2 is
satisfied with at least one block of type (iii).

The hyperbolic region will be discussed in more detail in Chapter 3, as it is there where
the WR problem occurs.
2.4.3 The weak Lopatinskii condition

To derive a necessary condition for well-posedness, we focus on a concrete, elementary
example. Let us assume for simplicity that P, and B, have constant coefficients, P, is
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strictly hyperbolic and f = 0, so that Problem 2.20 becomes

{ (Dg+ Ay(Dt, Dy)) u =0 (t,x) € RL, (2.25)

Byutlx—0 = & (ty) € R,

for some g € L%(Rd). Putting (2.25) in the form (2.16) and applying Fourier transform
to the tangential variables (t,y) produces

(Da +a(8))(x4,¢) =0,
A . (2.26)
Bi1(0,¢) = &(0)-
We know from the standard theory of differential equations that
(g, ) = e~ "0 (0, ) (2.27)

is the unique solution of (2.26) provided that Bi1(0,{) = §({). The spectrum of a()
brings valuable information about (x4, {) because the exponential function is well-
behaved with respect to matrix conjugation. That said, if py, - -+, pu, are pairwise
different eigenvalues of a({) with corresponding multiplicities By, - - - , B, the whole
space C" may be decomposed into a sum of generalised eigenspaces as

q
= P ker (a(g) — ). (2.28)
k=1

Moreover, if wy represents the components of an arbitrary element w € C" in the basis
prescribed by (2.28), it may be deduced that

Bl o )
(x4, Ze_l”"xd E f — picln) wy (2.29)

after a simple computation (see [CP’82, pp. 422]). Recall that the hyperbolicity of P,
guarantees that y; € C\ R whenever ¢ > 0 and therefore that u(x,) is bounded for
x4 large if and only if w; = 0 for every Im y; > 0. This leads us to the next reasoning.
We claim that (2.26) has a unique bounded solution for every ¢({) if and only if
E~(¢) "kerB = {0}. As a matter of fact, suppose that there is a unique bounded
solution (x4, {) of (2.26) for every ¢({). According to (2.29), #1(0, ) must be an element
of E~({) (otherwise it would be unbounded) and Bi1(0, () = ¢({) must be solvable at
an algebraic level. Together, this means that B restricted to E~ () is an isomorphism.
To prove the converse, let us suppose that B restricted to E~({) is an isomorphism.
Then, for any ¢(0),

1(0,2) = (Blg-(z)) 'g(2) € E7(2),
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and consequently #1(x,) is bounded in light of (2.29). The preceding analysis motivates
the following definition.

DEFINITION 2.4.4. A boundary value problem (P.,, B.) satisfies the weak Lopatinskil condition
if for every X € Ys N {y > 0},

E-(X) Nkerb(X) = {0}.

Definition 2.4.4, when satisfied, implies normality in Assumption 2.1.1, as can be readily
confirmed by a similar calculation to the one outlined in equation (2.23). The validity of
the Lopatinskii condition comprises more general spaces, as the following proposition
reveals.

PROPOSITION 2.4.3 (PROPOSITION 4.2, [BGS07] - CHAPTER 14 [SERQQ]). The weak Lopatin-
skir condition is necessary for the boundary value problem (P.,, B.,) to be well-posed in Holder
and Sobolev spaces. When it fails, there is no chance of having estimates in these norms, even at
the price of a loss of reqularity.

2.4.4 The uniform Lopatinskil condition

Let D(@ljd) be the set of vector-valued test functions on @Td. For reasons that will
become apparent later, we shall say that a boundary value problem (P, B) is strongly
well-posed in L? if, for some 7 > 1, there exists a positive constant C > 0 such that

0% e 2 u(t, x)|? dt dx + /d e 2" u(t,y,0)|* dt dy (2.30)
R

144
R+

1 —2qt 2 —29t 2
SC(’y/RWE |Pu(t, x)| dtdx—i—/Rde |Bu(t,y,0)|"dtdy |,

for each v > 79 and every u € D(@Td).

The word “strong” (or “strongly”) refers to u and the source data (f,g) being es-
timated in the same norms. To make sure this happens, a stricter version of the
Lopatinskii condition is needed.

DEFINITION 2.4.5. A boundary value problem (P., B.,) satisfies the uniform Lopatinskil condi-
tion if for every X € Yg,

E~(X)Nkerb(X) = {0}, (2.31)

that is to say, equation (2.31) holds up to the frequency boundary 4 {~y = 0}.

In practice, we do not rely on Definition 2.4.4 (resp. Definition 2.4.5) to check whether
a given (P,,B,) verifies the weak Lopatinskil condition (resp. uniform Lopatin-
skif condition). Instead, we utilise the so-called Lopatinskii determinant A, a special

map possessing the following features:

4This extension relies on Proposition 2.4.2.
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> for v > 0, X — A(X) is smooth with respect to (¢, x), holomorphic in T — iy and
real analytic in 7,

> A is homogeneous of degree 0,
> A(X) vanishes only at points X € X where the Lopatinskif condition is violated.

To construct such a function, we take the homogeneous basis {e;(X), ---,e,(X)}
briefly described after Assumption 2.4.1 and put

A(X) :=det (b(X)e1(X), - - b(X)ey(X)) . (2.32)

Clearly, it makes sense to evaluate the Lopatinskii determinant wherever the subspace
E~(X) is defined, and in such case A(X) inherits all the properties of E~(X).

2.5 A priori estimates

Energy estimates assuming the uniform Lopatinskii condition were first derived by
Kreiss in the system case (see [Krey0]) and by Sakamoto in the (higher-order) scalar
case (see [Sak7o]). As anticipated at the beginning of Section 2.4.2, the strategy involves
constructing a microlocal symmetriser in the first place, and then using the theory of
pseudodifferential operators to find the desired energy inequalities. Let us start with

the most intricate task.

2.5.1 Construction of a microlocal symmetriser

This section is entirely devoted to the construction of a microlocal symmetriser, assum-
ing that the uniform Lopatinskil condition is fulfilled. In developing the proofs, we
closely follow Chapter 7 in [CP82].

THEOREM 2.5.1. Let (P,, By) be as in Problem 2.20, subject to Assumptions 2.3.1 and 2.4.1.
Suppose that the uniform Lopatinskii condition is satisfied. If X € X, there exist two smooth
matrix-valued symbols r and e of dimensions n x n, both defined in a conic neighbourhood V
of X and homogeneous of order 0, such that

(i) eo(X) is nonsingular,

(i) there is ¢ > 0, independent of X € V, so that if a(X) == €5 ' (X)a(X)eo(X),
Im (r(X)a(X)) > ycly,

and

(iii) when X € Y, there exist positive constants « and B, so that

r(X) + Bb(X)*b(X) > al,,
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where b(X) := b(X)eo(X).

Proof. Although we shall only use in the future the ideas behind the construction
of a symmetriser when X € H, we shall include the other regions for the sake of
completeness. In any case, we stick to the following convention:

> C and c are positive constants that may vary from line to line throughout the
proof.

> Thanks to homogeneity, we just need to pay attention to points on X;.

> Given any X = (t,y,x4,7,1,7) € X, the projection of X onto the frequency
boundary {7y =0} is X := (t,y,x4,7,7,0) € X,.

> To avoid breaking the thread of the proof, we shall postpone the proofs of some
of the lemmas used to Section A.1 in the appendix.

Elliptic region. Let X € £. According to Proposition 2.4.1 and the classification proposed
in Definition 2.4.3, there exists a basis €9(X) depending smoothly on X in which the
matrix a(X) has locally the diagonal form

a(X) = eal(X)a(X)eo(X) — (”(()X) a*C()X)>' (2.33)

Here above, a~ (X) (resp. a* (X)) is a diagonal matrix of size p (resp. n — p) containing
the eigenvalues with negative (resp. positive) imaginary part. Bearing in mind Condi-
tion (ii), we introduce a lemma that allow us to find a lower bound for the imaginary
part of a™(X).

LEMMA 2.5.1. Let M be a square matrix of dimensions n x n. If M has eigenvalues with strictly
positive imaginary part, then one may find a positive definite matrix H such that Im(HM) > 0
in the sense of matrices.

Without further delay, let us apply Lemma 2.5.1 to 4™ (X) to get
FIm(aT (X)) > cI,

for some positive constant c¢. Let p > 1 to be fixed large enough later on. If r(X) is

-1 0
r(X) = ( Op ol >, (2.34)
n—p

taken as

then

[(~Im(a (X)) 0 I, 0
Im(r(X)a(X)) = ( 0 plm(a+(X))) = (0,, pCIn_p> 2 erl

considering that 0 < 7 < 1. This completes Condition (ii). In order to prove Condition
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(iii), let X € Ys and denote by b~ (X) (resp. b™ (X)) the restriction of b(X) to E~(X)
(resp. E~(X)). Likewise, let us represent by v~ (resp. v™) the projection onto E™ (X)
(resp. ET (X)) of v € C" relative to the basis €o(X), so that

For the rest of the argument, it suffices to focus on X by continuity. Note that if we solve
b(X) = b= (X)v™ +b*(X)v* for b~ (X)v~ initially, and then use that b~ (X) restricted

to E~ (X) is an isomorphism, there must be a constant C such that, for all v € C,
[o[> < C(Jo" P + [b(X)o]?).
Thus,

(r(X)v,0) = [0 [ + plo* [ = 2]o™ (2.35)
> o™ + plo [ — 2CJo* |2 — 2C[b(X) o] (2.36)
= [o7[> + (p = 20) [ 2 — 2C|b(X)v .

Finally, choosing p so that p —2C > 0 gives the required inequality.

Hyperbolic region. Having placed ourselves at X € H, Proposition 2.4.2 indicates
that a(X) is smoothly diagonalisable in a neighbourhood V of X with eigenval-
ues a1(X), -+ ,a,(X) (counted according to their multiplicities) and eigenvectors
e1(X), -+ ,en(X) ordered as the columns of a nonsingular matrix €y(X), so that

alll(X) 0 S 0
. 1 0 allz(X) cee 0
i (X) = €5 (X)a1(X)eo(X) = : : . : - (237)
0 0 e a(X)
Let
141 0 0
0 rp o+ 0
r(X)=1. . . . (238)
0 0 '

with every r; € R, 1 < j < n, to be chosen later. If Kj(}NC) = —iaaj(}?)/afy, Taylor’s
theorem with respect to -y yields

aj(X) = a;(X) + ivx;(X) + Y*wi(X), (2.39)

where w;(X) is a smooth function. Now, given that a(X) and r(X) are diagonal, proving



CHAPTER TWO - Regular boundary problems in a half-space 30

Part (iii) amounts to analyzing
Imrja;(X) = Im(rja;(X) + iyric;(X) + riv*wi(X)). (2.40)

The block structure condition implies that 4;(X) € R, so we may discard rja;(X) in
(2.40) and write
Imra;(X) = yriRe K]'()?) + ?ri Imw;(X). (2.41)

Notice that (2.41) is bounded away from zero because of the continuity of x;(X) and
the fact that x; := x(X) € R\ {0} (also ensured by Proposition 2.4.2). We can say a

little bit more about K, actually. By definition,
da; da; (X)—a;(X Ima;(X
K; = Re —iﬁ(X) = Im ﬂ(X) =Im | lim a;(X) - 4;(X) — lim 12/ i ),
! 9y y—0* v Y0ty
showing that Kj and Ima(X) have the same sign for X = (t,y,x,4,7,1,7) sufficiently

close to X. Hence,

E"(X)= & ker(a(X)-aj(X))={veC":v;=0 if x >0},

and it is straightforward to check that Condition (ii) is satisfied when

{—1 for 5j>0,
7’]':

(2.42)
p for K < 0,

with p being a positive constant to be specified when meeting Condition (iii). The
remaining portion of the proof follows exactly the same philosophy as its elliptic

counterpart, so we feel free to omit it.
Mixed region. It is a combination of the two previous cases.

Glancing region. If X € G, Proposition 2.4.2 and Definition 2.4.3 imply that a(X) can be
written locally around X in the block-diagonal form

a(X) = | ap(X) , (2.43)

where at least one block, say u]-(X ), is such that when evaluated at X, it becomes the
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Jordan block
i 1 0 0
0 u 1 :
aG(X)=1: "~ . .0
: 1
0 v o 0

We seek to decompose a;(X) into simpler pieces that are easier to analyse. For this

purpose, we recast Taylor’s expansion with respect to v conveniently as

a;(X) = a]-()N() + i’)/K]'()N() + ’yzw]-(X) = (uil +aj(X) + 6;(X)) +iyx;(X) + 'yzw]-(X),

(2.44)
with
0 1 O 0
0 0 1
aj(X) = 0l (2.45)
: . 1
0 -« -~ 0 0
6;(X) = aj(X) —aj(X), and «;(X) := —id,aj(X). A quick inspection confirms that

6;,x;,w; are smooth, 6;(X) = 0 and the bottom left element &; of x;(X) is real and
nonvanishing. Yet, nothing suggests that 6]»(5( ) has real entries. That this is a mild
assumption is the content of the following lemma.

LEMMA 2.5.2. The basis €y(X) in Definition 2.4.2 may be chosen so that
h(X) 0 -+ 0

6i(X) = , (2.46)

with real entries by(X), - - - ,bvj(f().
With this simplification at hand, we postulate the block-diagonal matrix

V](X)

(X) = () e47)

as a candidate for a symmetriser, where each 7;(X) is hermitian and diag(—1I, pI)
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behaves like (2.34). It is clear that only r; is of interest at the moment, as the others are
covered by the derivations made in previous situations. We opt for

ri(X) = Ej(X) + F(X) +ivG;(X),

where both E; and F; are real symmetric matrices, F; is such that F](X ) =0, and Gjisa
real, skew-symmetric matrix. When combined with a;, the resulting r;(X) produces

Im(r]-a]-) = Im((E]- + F]-)(a]- + 6])) + ’)/Re(EjK]- + G]a]) + ’)’W(X),

for some smooth W(X) such that O(y) + O(|X — X|). At this stage, some restrictions
must be imposed on (E; + F;j)(a; + 6;) and Ejx; + Gja; to make sure Condition (ii) is
met. To do so, let us select E; and F; so that

7)]' = (E]' + F]')(aj + (5]') = Eja]' + Ejﬁj + F]a]‘ + 1:]'(5]‘
is symmetric on one hand (thus implying that Im(7;) = 0) , and on the other that
Q]' = Re(E]'K]' + Gja]-)

is positive definite. In an attempt to understand the precise structure of the matrices
involved, let us evaluate the whole expression at X where we may exploit the identities

6(X) =0and F(X) = 0. The conclusion is summarised in the statement below.

LEMMA 2.5.3. Let a; be as in equation (2.45) and suppose that E; is symmetric. If Eja; is
symmetric, then E; must be triangular of the form

0 €1
(5]

Ei(X) =] N (2.48)
el 62 P . o e em]

Back to P;, we claim that it is possible to find a (v; — 1) x (v; — 1) symmetric sub-matrix

®;(X) such that
F(%) = (q’ff)x) g)

F(X) = 0, and E;6; + Fja; + F;6; is symmetric. Indeed, by plugging the ansatz and
computing the products, we arrive at a linear system of equations of dimension
(vj —1) x (v; — 1) whose coefficients are smooth in X and such that F(X) = 0 when X
is close to X, as desired.
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Having settled the first problem completely, we address the second question. To control
Q; = Re(Ejx; + Gja;) from below, let us note that due to the special shape of the matrix
E; = E;(X), there exists a constant C depending exclusively on the coefficients of E; so
that for every w € CY,

Re (Eji;(X)w, w) > eraj|w:|* — (fw:|* + Cla'[?),
where w' := (wp, - - - ,wv].)t. Moreover,
Re (Ejx;(X)w, w) > elocj|w1\2 — (|un |* + C|w'|?) (2.49)

by continuity. As such, we are left with the single term Re(G;A;) for which the next
lemma applies.

LEMMA 2.5.4. Let C be an arbitrary constant. IF a; is defined as in equation (2.45), there exists

a real, skew-symmetric matrix Gj such that
Re(Gjajw, w) > —|w;[* + Clw' [, (2.50)
Vi /. t
for every w € CVi. As before, w' := (wy, - - - ,wvj) )

In essence, if we merge (2.49) and (2.50) and pick eja; sufficiently large (for instance,
eixj > 3), we see that Condition (ii) is fulfilled. We still have to realise Condition (ii),
which will be enough to check at X € Yy := Y N X, thanks to continuity. That being so,
using that F;(X) = 0, we get

r(X) = Ei(X),

and consequently,
Ey(X)

r(X) = | En(X) . (2.51)

Finally, if we take into account the structure of E~(X) at {7y = 0} (see Proposition 2.4.2)
and represent by v~ (resp. v™) the projection onto E~(X) (resp. E* (X)), the remaining
part of the proof proceeds almost identically as in the elliptic case, provided we admit
the following lemma.
LEmMMA 2.5.5 (v. 171, [METO4]). Let p > 0. There exist matrices Eq, - - - , Ey, such that

(i) each E; is defined as in equation (2.5.3),

(ii) the constraint eya; > 3 holds true,
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(iii) r(X) as in (2.51) verifies the estimate
—(r(X)w,w) > C(~|w"|* + plw|?),

for some positive constant C and for all w € C".

2.5.2 Energy inequalities

In this section, we shall explore the role of the microlocal symmetriser r(X) in connec-

tion with energy estimates. To achieve this, we shall distinguish two Sobolev norms,
1+d

namely, | - |0, for L%(Rd) and | - o,y for L3 (R}™).

THEOREM 2.5.2. Let r(X) be a microlocal symmetriser as indicated in Theorem 2.5.1. Then

there exist positive constants C and g > 1 such that for every v > o and all u € D(@ljd),

1
ﬂw%¢+ww%ﬂsc(vwawafwawmn@), (2.52)

or more generally,

1
ww;+wmﬁﬁscﬁﬂmw;+memQ.

Proof. Due to Property (C) and homogeneity of the symbols under consideration, we
may work in principle on a compact set K x $? C X, and then extend everything beyond
K x S% by means of a standard argument (see [BGSo7, pp.231]). Having said that, let
us cover K x S¥ with finitely many neighbourhoods {V);};c; as stated in Theorem 2.5.1.
Subordinated to {V;}ic;, there is a partition of unity {¢; }ic, together with functions
{6;}ic1 such that 6; = 1 on supp ¢;. If we denote by the same letters the extensions of
¢; and 6; to functions that are homogeneous of degree 0 in (7,7, y), we may associate
pseudodifferential operators ®;, := Op, (¢;) and ©;, := Op, (¢;) that we can use to
localise u and the operators involved. In fact, if we set on one hand?>

‘%'Y = OP7(9€61)ﬂ7 Op'y(eeo)’ B'Y = B'}’ Op"r(ge())/ = Op7<9€51)”/
and on the other f; .= ®;, f, ¢; .= ®; , g, we shall first prove the target inequality (2.52)

for u; := ®;u such that

{pui = (Dg+ Ay) ui(t, x) = fi(t,x), (2.53)

Byui(t,y,0) = gi(t,y),

and then see that the general result follows from controlling the commutators [P,, ®- ]

5¢ is understood as in Theorem 2.5.1.
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and [B,, ®,]. In order to check that u; satisfies (2.52), we introduce the notion of a

functional symmetriser R,.

DEFINITION 2.5.1. A (local) functional symmetriser for (2.53) is a family R., of C! operator-
valued maps parameterised by x; so that, for v > yo > 1,

i) Ry(x;) and 94R.,(x4) are L>—bounded operators with uniform bounds in x4 and 1.
ii) R (xq) is self-adjoint.

iii) There is a positive constant c, independent of x; and -y, such that
Im (Ry (x4) A (x4)0,0) > c¥[of5,

for every v € L2(RL™).

iv) There exist positive constants a and 3 so that
<R7(O)U,ZJ> > “‘v’%,y - .B’B’Yv’%,'y
is valid for each v € L?(RY).

We claim that R, = Opv(r) tulfils Definition 2.5.1. The first two properties follow
directly from the definition of the symbol r(X), whereas Condition (iii) is obtained
by applying the sharp Garding inequality to the first-order symbol r(X)a(X) — cyI,.
Analogously, inequality

r(X) + Bb(X)*b(X) > aly,

along with Gérding’s inequality implies Condition (iv). It then remains to confirm that
the existence of R, gives the promised energy estimates. In doing so, we shall drop the
parameter 7y and the variable x; to keep the calculations as legible as possible. As is

customary, we start with

d
d7xd<Rui/ui> = (94Ruj, u;) + (ROguj, u;) + (Ruj, dqu;)

= <6dRuz-, ui> + 2Re <R8dui, uz->
= (94Ru;, u;) + 2Re (R(f; — iAu), u;)
= (94Ru;, u;) +2Im <Rﬂ7ui, u;) +2Re <sz', u;),

where in the third line we have used the differential equation in (2.53). Integrating with
respect to x; over [0, +o0) and multiplying by -1 leads to

(Rui, Ml'> ’xd:() = — /() (E)dRui, ui> dx — /0 (2 Im (Rﬂ7ui, ui>) dxd

-2 /OOO Re (Rf;, u;) dxg, (2.54)
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an expression that we can bound from above via Condition (i) in Definition 2.5.1 to get

(Ruts, ) -0 < oy | | dxa-+ Co [ |flll dxs

From Condition (iv) and Young’s inequality we have

1l () = BlB(0) < (=ev+en) [ fuildxs+ .- [ I d,
0 €Y Jo

or by shrinking € > 0,
2 : 2 e G %
alus(O)F — BlBur(0)F < ~Cay [ iy + 2 [ IfiP ds
Ultimately, after rearranging terms, we find that
—29t,,.12 —29t,,. 2
7/]Rl++de |14;] dtdx—I—/Rde |u;(0)|~ dt dy (2.55)

1 —2t 2 —29t| 15 2
gC(/y/Rlﬂe |fi dt dx —|—/Rde |Bu; (0) 2 dt dy | .

It is time to generalise (2.55) by showing that it is possible to absorb the contribution of
[P, ®,] and [B,, ®,]. More precisely,

1. . . 1, .. . . .
sl + s (O)? < (7||Puz-||2 4 rBui<o>|2) e (7||Pq>iu||2 4 |B<1>z-u<o>|2)

< (yncbipunz L p, @2 4 |@BaO)? + |[B,<I>i]u<o>|2) .

|
l’)/
Since the symbols commute, [P, ®;] and [B, ®;] are pseudodifferential operators of order

0 and —1, respectively, so we may write

1 . ) 1, .. 1. . . 1. .
Yluil|* + i (0)* < <||P”i||2 + \Bui(0)|2> < —||Pa|> + = [|a|> + [Buf* + = ]1(0)|*.
Y Y Y Y
(2.56)

As for the left-hand side of (2.56), the triangle inequality and the convexity of the power
function x — x? show that

el < 3 M1,
1
u(O)] < Y lui(0)2
1
In the end, putting all the pieces together yields

1 1 1
ylull® + () < ;IIPMII2 + ;Ilul\2 + [Bul* + ?\M(O)IZI
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from which we may deduce that

a2+ [u(0) < (iupuuu \Bu(O)\Z) (2.57)

by taking <y sufficiently large. Let us conclude by extending the above inequality to
Sobolev spaces. As might be expected, the key observation is that v := Aju € L2
whenever u € H. After all, if we substitute v in (2.57), the energy estimate becomes

1
TIasulP + A5 < € (S1PAsuIE + [BAuO)F ) (258)

The new commutators are not significantly different from the ones already investigated.
Actually, we know that

IPASu])? < (1A Pull® + || [P, A5 Ju]®

< A5 Pul + [|ull?,

and
BASu(0)[2 < |A3Bu(0)[* + |[B, A3 Ju(0)
< |ASBul® + [u(0) 2,
1
< |ASBul* + ?|u(0)|2.
Once again, the result follows from choosing v sufficiently large. O

2.6 Existence, uniqueness, and regularity

We shall utilise a duality argument together with classical results from functional
analysis to establish existence, uniqueness, and regularity for the solution of (L, B). To
simplify the exposition, we shall deal with differential operators only, so that Problem
(2.4) reads

Lu(t,x) = (Dt + iA]-(t,x)D]-) u(t,x) = f(t,x)  (tx) € RLH,
=)

i (2.59)

B(t,y)u(t,y,0) =glty)  (ty) € R

As usual, we furnish (2.59) with Assumption 2.1.1 and seek to define and adjoint
problem (L*, B).
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2.6.1 An adjoint boundary value problem

As we did in Section 2.2.1, we abuse the notation and represent both the inner product
of L>(R1*) and L2(R?) by (-, ). Recall that the adjoint operator L* obeys the Green
formula

(Lw,v) — (w, L*v) = i(Agw,v) (2.60)

—1+d _ .
for every v,w € D(R ++ ,R™), and it is easily seen to be

d
L' =Ds-+ Y Dj(Al(t,x)-). (2.61)
j=1

For reasons that will become apparent soon, we need a decomposition of the right-
hand side of (2.60) taking account of the boundary matrix B(t,y). In general, this
decomposition relies upon the existence of a smooth basis for ker B(t, x), a fact that
may not follow from the assumptions we have made when dealing with more general
domains than the upper half-space (or any other contractile manifold). In such cases, it
must be considered part of the hypotheses (see [Hir12] and [BGSo7]). After this remark,

let us continue with a lemma that we state without proof.

LEMMA 2.6.1 (PROPOSITION 6.3, [CP82]). There exists a map N € C®(RY, M,_ ), (C))
such that for every (t,y) € RY,

C" = ker B@ ker N.

In addition, for N(t,y) fixed, there exist unique functions B € C“(Rd,/\/l(n_p)xn(@)) and
M € C®(R, Mpxn(C)) so that for every (t,y) € RY,

(Aqw,v) = (Bw, Mv) + (Nw, Bv), (2.62)

and
ker B = (A ker B)*.

The matrix-valued function N in lemma 2.6.1 is not unique, and by extension there is
also considerable freedom in choosing B and M too. Given equations (2.60), (2.61) and
Lemma 2.6.1, let us now make precise what we understand by an adjoint problem.

DEFINITION 2.6.1. Let (L, B) be a boundary value problem as in (2.59). A pair (L*, B) such
that

(Lw,v) — (w, L*v) —i(Bw, Mv) — i(Nw, Bv) = 0 (2.63)
for every w,v € D(@Td) is called an adjoint problem of (2.59).

We proceed with a short but important statement.
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PROPOSITION 2.6.1. Under the notation of Definition 2.6.1, it is true that
{Mv:v € D(RY,C"),Bv =0} = D(RY,CP).

Proof. 1t suffices to check that the matrix M is onto. Certainly, if v € D(R¢, C") belongs
to ker M N ker B, then (Ajw,v) = 0 for every w. But A; is nonsingular, so the latter
means that w = 0, and consequently that ker M Nker B = {0}. Since the dimension of
ker B is p, the intersection above may be rephrased as saying that

M : ker B — CF

is an isomorphism, which finishes the proof. O

So far, we have studied the forward Lopatinskii condition. Now, we shall introduce its

complementary notion, i.e., the backward Lopatinskii condition.

DEFINITION 2.6.2. The boundary value problem (L*, B) satisfies the backward weak (resp.
uniform) Lopatinskii condition if for every X € Ys N {y < 0} (resp. X € YsN{y <0}),

E~(X)Nker B = {0}.

PROPOSITION 2.6.2 (PROPOSITION 6.6 - CHAPTER 7, [CP82]). Suppose that (L, B) is a bound-
ary value problem satisfying Assumption 2.1.1 and that (L*, B) is an adjoint problem of (L, B).
Then (L, B) satisfies the weak Lopatinskii condition (resp. the uniform Lopatinskil condition)
if and only if (L*, B) satisfies the backward weak Lopatinskii condition (resp. the backward
uniform Lopatinskif condition).

2.6.2  Well-posedness of the boundary problem (L, B)

Let us formulate the central theorem of this section.

THEOREM 2.6.1. Consider the boundary value problem (2.59) under Assumption 2.1.1. If the
uniform Lopatinskii condition is satisfied, it is possible to find a constant vy > 1 such that the
following assertion holds for every v > o : if f € L%(Rfd) and g(t,x) € L2(RY), there is a
unique u(t, x) € L2(RY™) with the properties listed below:

(i) u is a solution of

L(t,x, Dy, Dy)u(t, x) = f(t, x) (t,x) € R,
(2.64)

B(t,y)u(t,y,0) =g(ty)  (ty) €RY,

(ii) the trace of u|y,—o is an element of L%(Rd), and
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(iii) u satisfies the energy estimate
—29t 2 -2t 2
'\//lede lu(t, x| dtdx+/Rde lu(t,y,0) 2 dt dy

1 _ _
<C (7 /Rl:de 20 Lu(t, x)|? dt dx +/Rde 27t|Bu(t,y,O)|2dtdy>
(2.65)

for some C which only depends on .

Moreover, there exists vy, > <o so that if v > <y, it is true that for f € Hﬁ(Rfd) and
g€ H,I;(Rd), there is a unique solution u € H,’;(Rfd) of (L, B) whose trace on R? belongs to
HfY(Rd), and so that u satisfies

1
ul2, + (O, < c (,nyH?,fy T |Bu<o>\§,7) .

Proof. We shall address the fundamental questions of existence, uniqueness, and reg-
ularity for Problem (2.59) following [CP82] and [BGSo7] closely. Since the ideas arise
most naturally by first proving existence, then regularity and finally uniqueness, we
shall adopt this specific order throughout.

Existence. Let us assume that f, € L%Y(R}ﬁd) and g, € L2(R). We show the existence
of a solution u € L%(Rf’d) having the prescribed properties. To begin with, suppose
that (L*, B) is an adjoint problem of (L, B) and define the spaces

E={oeD®"):Bo=0} and LE={L*v:veE},

both endowed with the topology induced by the norm || - ||,. From Proposition 2.6.2,
(L*, B) meets the backward uniform Lopatinskif condition and therefore enjoys the
energy estimate

C. . . _
ol + oy < ZIL oy +1Bol, (2.66)

for some positive constant C and every ¢ > 9 > 1. In particular, inequality (2.66)
reduces to

C s
YlIoll - + [0l < Sl (267)

when v € E, revealing that L* restricted to Eis injective. Thus, the map ¢ : L*E - C
given by
(L*v) = (f,v) —i(g, Mv) (2.68)

is a well-defined, linear form on L*E such that
(L™ o) < [ fllylloll—y + [gly 1ol (2.69)

To obtain an upper bound for (2.69) in terms of L*v, we combine (2.67) and (2.69)
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appropriately to see that

b

VY

That being the case, we infer that ¢ is a continuous linear functional on L*E that we can

* 1 *
16(L0)| < If I llol—y + Igly [0l —y < C (vaHﬁ !gh> 1Ll

extend to L%v(R}ﬁd) owing to the Hahn-Banach theorem. Next, we invoke the Riesz
representation theorem to predict the existence of a unique element u € L%(Rfd) such
that

(u,L70) = £(L70) = (f,v) —i{g, Mv) (2.70)

for all v € E. Notice that if v € D(Rﬁd), we may discard the boundary term in (2.70)
and get Lu = f in the sense of distributions. On the other hand, as D(Rﬁd) is dense in
L%(R}ﬁd ), we may approximate u by a sequence of elements in "D(@}jd) and conclude
from the continuity of (2.63) that

(Lu,v) — (u, L*v) — i(Bu, Mv) — i(Nu, Bv) = 0 (2.71)

= +d)

for every v € D(Ri . To finalise the argument, let us insert (2.70) into (2.71) and take

advantage of the identity Lu = f, so
(Bu, Mv) + (g, Mv) =0 (2.72)

forallv € D(@Td). The surjectivity of M (see Proposition 2.6.1) then indicates that
Bu = g in the sense of distributions.

Regularity. At the heart of this segment there is a technical result that we assume

without demonstration.

PROPOSITION 2.6.3 (PROPOSITION 6.8 - CHAPTER 7, [CP82]). Under the assumptions of

Theorem 2.6.1, for every integer k > —1, there exists a positive constant vy, such that for every

¥ > v the following implication holds true: if u € Hﬂ;(@ljd) NnLZ (@Td), U|x,—0 € HE(RY),

Lyu € Hl;“(@?d), and Byu € HEM(RY), then u € Hk“(@iﬂi) and u)y,—o € HET(RY).

Suppose that u € H 1(@3_%) NL3 (@}jd) satisfies

Lyu(t,x) = f(t,x) (t,x) € R,
(2.73)

Byuly,~0=g(ty)  (ty) €R’,

with f € L2 (@Td) 1andd g € L2(R?). In the present context, Proposition 2.6.3 guarantees
that u|,,—o € L%r (R ++ ), as claimed. Repeating this }d)rocess inductively for k > 1, we
arrive at the conclusion that whenever f € H§ (R? )and g € H,ky(Rd), it occurs that

—1+d
ue ny and uly,—o € H’A‘Y(RJr ).
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Uniqueness. In view of the linearity of (L, B), let us assume that u € L3 (Rfd) is a

solution of

Lou(t,x) =0 (t,x) € R,
(2.74)

Byuy,—0=0  (ty)€R"

At first glance, the validity of (2.65) for test functions merely extends to elements
u € H, (Rf—d) rather than to u € L7 (@}jd), which forces us to check the regularity of u

before using

—29t,,12 —29t 2
0% lede |14 dtdx+/Rde |u(0) | dt dy

1 —29t| £)2 —2t 2
§C<7/lede |f|~dtdx +/Rde |Bu(0)|“dtdy ). (2.75)
That said, as the initial data f = 0 and g = 0 trivially belong to H2, Proposition 2.6.3
ensures that u € H“lr' meaning that we may use the energy inequality (2.75). It is clear
then that u vanishes almost everywhere, hence establishing the uniqueness for (L, B).

Energy estimates in L2 To complete the proof, we only need to verify that (2.75)

1+d
)

applies to u € L2 (]R . As a matter of fact, from the density of D( ) (resp.

D(R?)) in Lz( ) (resp. L2 (Rd )), we may find sequences { f;} and { gj} converging
to f € L%( + d) and g € L2 (Rd) with respect to the norms of Lz( ) and 2 (Rd) If
we examine the boundary value problem (L, B) with data ( fir g]), it is known from the
ideas discussed in previous paragraphs that there is a unique solution u; € H}y (Riﬂl)
for 7y large enough. The resulting sequences {u;} and {u;(0)} thus formed are Cauchy
sequences in L7 (ﬁljd) and L2 (R?), respectively, as we may deduce from the a priori
estimates (2.75) applied to uj — uy. Letu € L3 (R1L+d) and u, € L2(R?) be the corre-
sponding limits of {u;} and {u;(0)}. Note that #;(0) — u(0) in H%(Rd) as j — oo due
to Theorem 2.1.1, so it must be the case that 1(0) = up and, eventually, that Bu(0) = g.
On the other side, since Lu; = f; and Bu; = g; converge to Lu = f and Bu = g in
L2 (]R ) from the uniqueness of the limit in L2 (Rd) it necessarily follows that u = u.

In the end, taking the limit when u; — u in (2.75) gives the result. O



CHAPTER THREE

Weakly reqular boundary problems of real
type in a half-space

It was Kreiss’ belief that initial boundary value problems that fulfilled the weak Lopatin-
skif condition and were stable under perturbations were necessarily strong, in the sense
that they satisfied an estimate of the type (2.30) (see Theorem 2 in [Kreyo]). It was
eventually shown, first through examples and then through a complete characterisation
in [BGRSZo2], that certain problems for which the Lopatinskii condition holds weakly
but not uniformly preserve their defining properties under small perturbations, thus
conforming a new stable class. The main goal of this chapter is to study this class in
depth and ultimately to derive energy estimates applicable to such case.

We provide a brief description of the content. In Section 3.1, we introduce the concept
of a stable class and give some illustrative examples before moving on to a detailed
study of the WTR class. In Section 3.2, as a prelude to more general constructions, we
first examine a YWR problem with constant coefficients, for which we derive energy
estimates equivalent to those in [BGSo7] using a different and more robust approach.
Finally, in Section 3.3, we broaden the discussion and derive energy estimates applicable
to a WR problem with variable coefficients.

3.1 Classification of linear boundary value problems

To illustrate the central ideas of this section, we shall focus initially on

d

Lu(t, x) := <Dt + ZAj(t,x)D]) u(t,x) = f(t,x) (t,x) € R,

j=1 (3.1)

B(t,y)u(t,y,0) =g(ty) (Ly)e R,

equipped with Assumption 2.1.1. As in Chapter 2, the source terms f, g are taken, in
principle, from weighted Sobolev spaces HY, k > 0.

43
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We know from Section 2.3.1 that (3.1) can be recast as

{Pvu(t,x) = (Dg+ A, (t,y,x4,Dt, Dy)) u(t,x) = A7 f(t, x) (t,x) € R,

By (t,y)u(t,y,0) = g(t,y) (ty) e R,
(3-2)
where A (t,y, x4, Ds, Dy) and B, (t,y) are differential operators whose symbols are

d—1
a(X) =alt,x,t,1,7) = A ((T— i+ ) njAj(t,x)> and b(X) = B,(t,y).
j=1

Recall that the Lopatinskil determinant is defined in terms a smooth, homogeneous of
degree 0 basis {e1(X), --- ,e,(X)} of E7(X) by the expression

A(X) = det (b(X)e1(X), - - - b(X)ep(X)) . (3-3)

3.1.1 Stable classes

We shall use the Lopatinskii condition to classify boundary value problems (L, B). To
this end, let 7 be the space of pairs (L, B) such that (L, B) is normal, as explained in
Assumption 2.1.1. The relevant notions for our purposes are those that remain stable
under small perturbations of the coefficients of B for a fixed constantly hyperbolic
operator L. For instance, the unstable and strongly stable classes listed below are
robust.

> The set of boundary problems (L, B) for which the weak Lopatinskii condition
fails. Certainly, when (L, B) is ill-posed, there exists Xo = (to, 0,0, 0, 70, v0) € X,
Yo > 0, such that A(Xp) = 0. If in addition B depends continuously on a
parameter ¢, the Lopatinskii determinant does so, and it follows from Rouché’s
theorem © that the roots of A(-, ¢) persist for ¢ small. Given that (L, B) exhibits a
Hadamard instability, there is no hope of any satisfactory theory for general data

(f,8)-

> The set of boundary problems (L, B) satisfying the uniform Lopatinskii condition.
In such a situation, A(-,0) is nonvanishing, homogeneous of degree 0 in (7,7,7),
and since b(X) does not depend on (t,x) for |t| and |x| large, |A(-,0)| may be
regarded as a smooth function on a compact set K x S¢. Now, considering that

A(-, €) is continuous in € too, we conclude that it cannot vanish for ¢ small.

As briefly mentioned at the beginning, in [BGRSZ0z2] Benzoni-Gavage, Rousset, Serre
and Zumbrun identified a third stable class of boundary value problems (L, B) for
which the Lopatinskii condition holds weakly but not uniformly, so completing the
preceding description. This has been called weakly regular of real type, or VWR for short,

bStriclty speaking, we need to verify that f(t —iy) := A(-,T,70,7) is a nontrivial holomorphic
function of T — iy before applying Rouché’s theorem. Fortunately, this is a straighforward consequence of
homogeneity, continuity, and normality. See Lemma 8.1 in [BGSo7].
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and will be defined soon in Section 3.1.3. It is worth saying that, besides defining the
WR class, the authors also simplify the analysis of transitions between stable classes,
which proves particularly valuable in some physical and mathematical problems (see
Section 4 in [BGRSZo2] for a fully worked example).

3.1.2  Hyperbolic frequency boundary points

According to Definition 2.4.3, the hyperbolic region H comprises the elements X € X
such that a(X) is diagonalizable with purely real eigenvalues, meaning that H is
necessarily confined to the frequency boundary {7y = 0} since a(X) is known to have
no real eigenvalues when 7y > 0 (see Hersh’s lemma). Our next goal is to explore in
detail the stable subspace E~(X) when restricted to H.

DEFINITION 3.1.1. A complex vector space is of real type if it possesses a basis consisting

entirely of real vectors.

PROPOSITION 3.1.1. Let X € Xo. If X € H, then E~ (X)) is of real type.

Proof. Our strategy heavily relies on that discussed in Lemma 3.1 in [CG10], which
is in turn inspired by the more general arguments in [Méoo]. To begin with, let
X = (t,x,7,1,0) € H and ¢, be such that 7p(X,¢,) = det(a(X) + &,I,) = 0. Since L is
constantly hyperbolic, its characteristic polynomial 71 (X, ¢;) factors as

q
L(X,8a) = [ [(t+ A(t x, 17, 84))™, (3-4)

k=1
where ay, - - -, &, are positive integers and Ay, - - - , A, are pairwise distinct, real analytic
functions on R} x R? admitting holomorphic extensions in a complex neighbourhood
of ¢ . The computations performed right after Assumption 2.3.1 validate the dispersion

formula
det(a(X) + &4ly) = det (T — iy + A(t, x,1,84)),

whose roots in ¢; when X = X are real and equal to gd Meanwhile, there is a unique
Ak so that T+ /\k(bLﬁzgd) = 0 and dg,Ai(t, g,g,gd) # 0, for which the eigenspace of
a(X) associated with ¢, = —} agrees with the ay—dimensional subspace

ker <I+ At x, 1, —y)).

We may deduce from the Weierstrass preparation theorem (see Theorem A.2.1 in
Appendix) that there are functions e(X, {;) and ¢(X) so that:

> e(X,¢;) and ¢(X) are smooth in (£, x) and real analytic in 7,

> e(X,¢4) is holomorphic with respect to (T — iy, &;), whereas ¢(X) is holomorphic
with respect to (T —i7),
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> T — iy + Ax(t,x,1,&) factors as

T—iy+ Mt x,7,8) = e(X,8a)(Ca — Ek(X)),

with gx(X) =
(X,6,)-

It is then clear that for every X in the vicinity of X, ¢i(X), ---,¢;(X) are pairwise

and e(X, ¢,;) such that it does not vanish on a neighbourhood of
%4 g

real eigenvalues of a(X) with algebraic multiplicity ay. That & (X) = —pu(X) are
semisimple and their eigenspaces depend holomorphically on T — iy and analytically
on 7 is a delicate point at the heart of Metivier’s work in [Méoo], so we feel free to skip
the details and draw the reader’s attention to Lemmas 2.5 and 2.6 therein. In the end,
we can show that for X € XN {y > 0} close to X,

E-(X)= @ ker(a(X) - (X)) = @ ker(v—iy+Altxn—u(X))).

Im 14 <0 Im 4 <0
(3:5)
Taking the limit of (3.5) as y goes to zero?, we get a matrix T+ A(t,x, 1, —ux(X))
with real entries that is diagonalisable in the reals. This ensures that E~(X) is of real

principal type. O
COROLLARY 3.1.1. When restricted to H, the Lopatinskil determinant A is real-valued.

Proof. The result follows immediately from Proposition 3.1.1, the definition of the
Lopatinskif determinant, and the fact that b(X) is real-valued. O

We complement the last Proposition and its corollary with an assertion that we state
without proof.

ProPOSITION 3.1.2 ([M£too], [CG1o]). The hyperbolic region H is open and contains no
Qlancing points. What is more, E~ (X) depends smoothly on (t,x), holomorphically on (T —
i, ¢4) and analytically on 17 if X € H.

3.1.3 The WR class

We now proceed to define the JWR class and examine its main properties.

DEFINITION 3.1.2. Let (L, B) be as in Problem (3.1), subject to Assumption 2.1.1. The boundary
value problem (L, B) is of class WTR if the following conditions are met:

(i) The weak Lopatinskii condition holds,

(ii) The level set A~'(0) is non-void and contained in the hyperbolic region H. Moreover,
d:A(X) # 0 whenever A(X) = 0.

THEOREM 3.1.1 (THEOREM 2.10, [BGRSZ02]). Definition 3.1.2 describes an open class.

7via Theorem 2.4.2.
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Proof. Suppose that B(t,y) can be parameterised by e in a smooth way. Then the
Lopatinskil determinant depends smoothly on (¢, x, €), holomorphically on T — iy, and
real analytically on 5. If we assume that (L, B) is WR for ¢ = 0, by the same reasoning
as the one sketched for the strongly stable class, the domain of A is compact and
therefore the zero set of A(+, ¢) tends to the zero set of A(+,0) as the parameter € goes
to 0. But A7!(-,0) is by definition a smooth, real variety, so A~!(-,¢) has to be a
smooth, real variety too for ¢ sufficiently small. Consequently, no new components
of A71(-,¢) appear in the hyperbolic region H and A~!(-,¢) does not move into the
interior ¢ > 0. O

Instead of using Definition 3.1.2, we shall utilise an equivalent characterisation of the
the WTR class which is more appropriate for our future discussion.

PROPOSITION 3.1.3 (PrOPOSITION B.1, [CG10] - LEMMA 5.3, [OS75]). Let (L,B) as in
Problem (3.1). The pair (L, B) defines a W'R boundary value problem if and only if:

(i) for every X € Ys N {7y > 0}, it is true that E~ (X) Nker b(X) = {0}. In other words,
the weak Lopatinskii condition is fulfilled.

(ii) The critical set T := {X € Yg : E~(X) Nker b(X) # {0} } is nonempty and included in
the hyperbolic region H. Furthermore, for every X € T, there exist a conic neighbourhood
V of X, and mappings

> e, oo ,e, €CT(V,CY,
> p(X) € C°(V,GLy(C)),
> w € C°(V,R)
such that, for every X € V, e~ (X) = {e;(X), - -+ ,,(X)} is a basis for E~(X),

AN (y+iw(X) 0 - 0
0 1 0

b™(X) = b(X)(e1(X), -+, ¢,(X)) = p(X) : ,
0 0 1

and drw(X) # 0 when w(X) = 0.

Proof. Let us first assume that the boundary value problem (L, B) satisfies Conditions
(i) and (ii) in the statement above. As is customary, we shall focus on a compact set
K x §% C Xg in view of the Property (C) an the homogeneity of A(X). Since by definition
the Lopatinskil determinant vanishes at points where the Lopatinskii condition fails,

[={XeVYs:E (X)Nkerb(X) £ {0}} = {X € Ys: A(X) = 0},

and hence {X € Ys : A(X) = 0} C H. On top of that, as H is known to be open
and disjoint from the set of glancing points G (see Proposition 3.1.2), the Lopatin-
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skil determinant extends analytically to the frequency boundary {y = 0} where it
becomes real-valued, and then similar arguments to the ones offered in the proof of
Proposition 3.1.1 reveal that I is a real analytic submanifold of K x S%. There is still the
question of whether the roots of the Lopatinskii determinant are simple or not. To give

an answetr, let us invoke Condition (ii) to define a second Lopatinskii determinant by
N (X) = det(b™ (X)) = det (b(X)e; (X), -+ ,b(X)e, (X)) = (v +ico(X)) detp(X),

or just by
AX) =7 +iw(X), (3.6)

if we divide by detp(X) # 0. That said, as both €(X) and €(X) span the stable subspace
E~(X), there must be a nonvanishing complex-valued function v(X) defined locally
around X such that

A(X) = 0(X)A(X).

It is then easy to check that d0.w(X) # 0 implies that 0;A(X) # 0 when w(X) = 0,
thereby completing the first part of the proof. For the converse, let us suppose that
(L, B) belongs to the WR class. It is a direct consequence of the definition that
E~(X) Nkerb(X) = {0} for every X € YN {y > 0}, and that I' is non-void and
contained in H. It is yet to be proved that the vanishing of the Lopatinskii determinant
at first order yields the existence a of a basis €¢(X) with the properties indicated in
Proposition 3.1.3, Part (ii). This is addressed in the following proposition and its

corollary. O

PROPOSITION 3.1.4. If (L, B) belongs to the WR class, there exist a neighbourhood V and
two mappings p,c € C*(V, GL,(C)) homogeneous of degree 0 in { = (T —ivy,n) ~ (7,1,7)
such that the factorisation

AN (y+iw(X)) 0 --- 0
0 1 -0

b~ (X) = p(X) : o cH(X) (3-7)
0 0 1

holds true.

Proof. Let X € T be such that A(X) = 0 and 9:A(X) # 0. Since A(X) is holomorphic
in p := 7 — iy and homogeneous of degree 0 with respect to ¢, the implicit function
theorem (see Theorem A.2.3) characterises the zeros of A(X) in a conic neighbourhood
V of X through an equation p = v(t,y,7), where v(t,y,7) is a smooth, homogeneous
function of degree 1 in 7. If €(X) = {e1(X), - -- ,e,(X)} is any basis for E~(X), set

b~ (X) = (b(X)er(X), - -+, b(X)e,p (X)),
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and denote each b(X)e;(X) by b, (X) in the sequel. We claim that b~ (X) has a non-
singular cofactor matrix /1(X) of order p — 1 on V. Indeed, shrinking V if necessary,
d:A(X) # 0 guarantees that

rankb™ (X)>p—1 on V, (3.8)

the equality being realised only when X € VNT. In practice, there is no loss of
generality in assuming that /1(X) is the resulting block after deleting the first column
and the first row of b~ (X). Let b}(X) be the vector b; (X) without its first entry. In
such case, for every X € V), the linear system h(X)d(X) = bj(X) possesses a unique

solution
dr(X)

: = h (X)by (X),

dp(X)
whose entries d(X), - - - ,d,(X) are smooth in (¢, x) and homogeneous of degree 0 in
(p,17). Suppose now that

Except for the first component of k(X), which only vanishes when X € {p = v(t,y,7)},
all other entries are identically zero by construction. Thus, owing to the Weierstrass
preparation theorem (see Theorem A.2.1 in Appendix), there exists a nonvanishing
function z1(X) = z(t,y,p,n) in V, analytic with respect to p and homogeneous of
degree —1in (p, 77), such that

ki(X)=(p—v(t,y,n))z1(X) for X e V.

As a result, if we put

z1(X)
0= 1 |,
zp(X)
with zp(X) = - -+ = z,(X) = 0 along V, we can write k(X) = (0 — v(t,y,1))z(X) and
with it,
4
b (X) = (0 = vty )(X) + L (08 (X).
Let
1 0 0
“d(X) 1 - 0
co(X) = 2:( ) A E (39)
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Observe that c(X) is homogeneous of order 0 in (p,#) and that

b= (X) = (b7 (X) b7 (X) o By(X))
= (= v(Ly,0)2(X) by (X) -+ b (X))e (),

after a straightforward computation. Notably, the latter amounts to writing in matrix

notation
AN Qe —v(ty,m) O -+ 0
0 1 --- 0
b= (X) =p(X) e (x)
0 0 --- 1
AN (y+i(t—v(ty,m)) 0 -+ 0
0 1 --- 0
= p(X) I Pie o}
0 0 1
where

p(X) = (—iz(0ME) b7 (X) -+ by (X))

is homogeneous of degree 0 in { and nonsingular. Lastly, setting w(t,y,7,17) =
T—v(ty,1), it is easily seen that d-w(t,y, T,77) # 0 and that

ATy +iwlty, T ) 0 e 0
0 1 -0

b~ (X) =p(X) : L. c‘l(X). (3.10)
0 0 1

O

COROLLARY 3.1.2. Let w(X) = w(t,y, T, 1) and A(X) = (v +iw(X))/A(Q) be as in (3.6)
(the A=1({) factor has to do with A being originally defined in Xg). Under the assumptions of

Proposition 3.1.4, there is a basis
e (X) ={e(X), -+, e,(X)},

for which

X =) | (3.11)
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Proof. Notice that (3.7) attains its simplest form when choosing

e(X) = er(X) —d2(X)ea(X) — - — dp(X)ep(X), (3.12)

as a basis for E~(X). O

The one-dimensional subspace spanned by e; (X) is special, as it points in the direction
in which the Lopatinskil condition degenerates when X € I'. In what follows, we shall
write £(X) to denote this subspace and refer to it as the critical direction.

3.2 The constant coefficients case

Even though we shall derive deeper results in future sections, exploring the model case
(i.e. when P and B have constant coefficients and (P, B) is posed in the half-space) still
has its value, especially as it leads to an observation that is relevant for more general

constructions to come.

3.2.1 A WR symmetriser for the model problem

Let (P, B) be a WR boundary value problem of the form

{Pu(t,x) i= (Dyg+ A(Dy, Dy)) u(t,x) = f(t,x) (tx) € RLH, oo
3.13

Bu(ty,0)=g(ty)  (ty) R,
subject to Assumptions 2.3.1 and 2.4.1. We continue with the definitions of a Lopatin-
skif family of operators and a YWR symmetriser.

DEFINITION 3.2.1. Let §({) € C®(E, Myxn(C)) such that
(i) 6({) is homogeneous of degree 0 in {,
(ii) If T € S, ker §(Q) is trivial provided that v > 0,
(iii) when { € T, ker §(Q) is nontrivial and £({) C ker 6(().
We shall call A, := Op, (5) € OPS’ (R x [1,4+-00)) a Lopatinskit family of operators.

Having the Lopatinskil operator as a reference, we define the function space
L3 = {v € S'(RY", R") : Ayw € L2(RYM, C")}.

DEFINITION 3.2.2. A WR symmetriser for Problem 3.13 is a family of pseudodifferential
operators ., € OPS?(RL x [1, +00)) so that
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(i) X, is Hermitian,

(ii) for every v1, vy € L3, there is a positive constant C satisfying

(Xy01,02) < ClAy01][Aq02],

(iii) there exists a positive constant c such that
Im (2,40,0) > cy|A0f?,

foreach v € 12,

(iv) there are positive constants o and B, together with a family of pseudodifferential operators
Q, € OPS’(R% x [1,+00)) such that

(Z,0(0),2(0)) > #|Ayv(0)]? — B|QBv(0)[*.

If a WR symmetriser exists, we expect the symbol o () of £, to be somewhat degener-

ate on the critical set I'. More precisely, we have

PrOPOSITION 3.2.1. If { € T, v+ (0({)v, v) vanishes on the Krylov space of

0() =E" () Nkerb(Q)

with respect to a({), that is to say, on the smallest invariant subspace of a({) containing £().

Proof. Recall from Section 2.3.1 that the symbol of A(Dy, Dy) is

d-1
a() = a(t —iv,n) = (A9~ ((T —inh+ ) mAi> - (3.14)

i=1

We prove initially that v — (0({)v, v) restricted to E~({) is positive definite for ¢ > 0.
To do so, let u € E~({) be such that u # 0 and consider the initial value problem

{Dw—l—a(@)v =0,
v(0) = u,

whose solution is well known and equal to

o(s) = e (3.15)
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in the sense of matrices. Then,

;Sw(é)v,w = (0(¢)9sv,0) + (0 ({)v, 950) = i(0(§) Dsv, ) —i{e({)v, Dsv)
= —2Im (Dsa({)v,v)
= 2Im (0(g)a(Z)v,v)
> 2¢7[6(0)v]* > 0, (3-16)

The first inequality being due to (iii) in Definition 3.2.2 and Plancherel’s theorem (see
Theorem A.2.9 in Appendix), while the second one is being due to Condition (ii) in
Definition 3.2.1. Since u € E~({), v — 0 decreases exponentially fast as s — oo and

thus, when integrating over RT,

~((@)0(0),00)) = [ S (e@0(s), 0 ds > 207 [ 5ol ds >0,

or (0(¢)u,u)y < 0, as claimed. Back to the original assertion, let us fix { € T. As
E~(¢) Nkerb({) is nontrivial, for every v € E~({) Nkerb({) such that v # 0, it must

happen on one hand that (¢({)v,v) < 0 by the opening argument of this proof and
by continuity in v, and on the other that (¢({)v,v) > 0 because of a combination of
Plancherel’s theorem and Part (iv) in Definition 3.2.2, which ensures that the restriction

of ({) to kerb({) is non-negative. Together, both facts indicate that o(X)|,(x) = 0.

In order to prove that 0({) certainly vanishes in a larger subspace, we argue in a similar

fashion as above and integrate (3.16) from 0 to a positive real number ¢,

(@00, 0(6)) — (0(0)0(0),00)) = [ S (o(@)o(s), () ds 2 0,

or equivalently,

(e(Q)v(t),v(t)) = (¢(£)0(0),0(0)) = (e (Q)u, u). (3-17)

If we pick u € £({), the right-hand side of (3.17) is automatically zero and it is safe to
say that

(e(Qwo(t),o(t)) = 0. (3.18)

Let Ky () be the smallest invariant subspace of a({) containing ¢({). As £({) is included

in E7({) and E~(() is invariant under a({), we necessarily have that K,({) C E~ (7).

Furthermore, as the solution of a first-order autonomous differential equation whose
initial value belongs to an invariant space remains within the invariant space (see

Theorem A.2.5), it is true that

{e(Qo(t),o(t)) = 0. (3.19)
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The reverse inequality may be inferred from two facts, namely, that (¢({)-,-) <0

when restricted to E~({) (already verified!), and that v(t) € E~ () for every t. O

REMARK 3.2.1. The latter means, roughly speaking, that in general there is no hope that
o({) kills only the critical direction ¢(X), but a larger subspace containing ¢(X).

3.2.2 Construction of a WWR symmetriser and energy estimates for the model
problem

As the present analysis is merely intended to motivate future results, we shall keep
things simple and assume at this early stage that K;({) = E~({), leaving the more
general case K;({) C E({) for the next section where problems with variable coefficients
are explored. Also, considering that the construction proposed in this section is global
in nature and not a set of pieces assembled with a partition of unity, we shall assume
that there are no glancing points for simplicity. Before looking at the construction of
2., let us see how Conditions (i) to (iv) in Definition 3.2.2 imply energy estimates for
the WR class in the current situation. To shorten the notation, we shall often omit the
independent variables and the parameter 7 in the calculations ahead. We pursue the
same strategy as in Chapter 2 and expand the term d(Xu, u) /dx; as shown:

ddxd@u,w = (Zogu, u) + (Su, dqu)

= 2Re (XiDgju, u)
= 2Re (Zi(f — Au),u)
=2Im (Xau, u) —2Im (Xf, u).

Keeping in mind that u € D(R'*¥) vanishes at infinity, an integration over [0, co) with

respect to x; produces
(Zu(0),u(0)) = — 2/ Tm (S Au, 1) dx, +2/ Im (Sf, u) dxg.
0 0

To bound both integrals, we exploit Definition 3.2.2 directly. For example, from
Condition (ii),

20m (Ef,u) < 2|(Sf, u)| < Ci|Af]|Aul

for some positive constant C;, whereas from (iii) it is clear that

(2u(0), u(0)) < —c'y/ooo|Au|2dxd+C1 /000|Af||Au]dxd. (3.20)
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We can control (3.20) from below by means of (iv) in Definition 3.2.2, and from above

via Young’s inequality (see Theorem A.2.6), so that
&|Au(0)2 — B|QBu(0)]? < (—cy +e7) /Ow Al dxg + f;y /Ow AFJ2 dxg.
Taking a sufficiently small value for ¢ implies that
w|Au(0)> — ﬁ]QBu(O)|2 < —szy./ooo |Au|*dxy + % /OOO |Af|2dxd,
for some constant Cp, or what is the same,

0% e 2" | Aul? dtdx + /d e 2" Au(0)|? dt dy (3.21)
R

14
R+

1 29t A £12 —2t 2
SC<7/RW€ AF|? dt dx +/Rde |QBu(0)?dtdy ),

for some C > 0.

Having established energy estimates, let us exhibit a pseudodifferential operator X,
with the properties listed in Definition 3.2.2. As we shall confirm soon, this can be
achieved by slightly modifying the first part of the proof of Theorem 2.5.1, which we

now quickly summarise for the benefit of the reader.

> We pick a hyperbolic frequency { € S% and realise that a({) is diagonalisable
around { with eigenvalues a1(), - - - ,a,({) (counted according to their multiplic-

ities) and eigenvectors

that depend smoothly on (.

> We can expand each a;({) as

a;(¢) = aj(Z) + ivx;(Q) + v*w;(Q) (3.22)

using Taylor’s theorem with respect to . Here, { ~ (T, 7).

> If K} = «;({), then r := diag(ry, - - - ,r,) with

-1 for K} >0,
rp = } (3-23)
p for x; <0,

where p > 0 is to be determined later.

Returning to the main question, let us set

8(¢) = diag (1(2), + - ,0x(0)) = diag (A(L) Iy, In—p) - (324)
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We seek ¢ in the form o = 6*rd and affirm that X, = Op(c) meets Definition 3.2.2. For

instance, Condition (i) is immediate from
(Xv1,v2) = (Op (r)Avy, Ava) < C|Av1]|Avy],

which is valid for arbitrary test functions vy, v;. In contrast, equations (3.22) and (3.23)

yield component-wise
Im3jrja;6;(0) = Tm (rja;(D)16() 12 + ivring (D) 8(0) 2 + 1wy (0)16(2) ) = CHIg(2)12,

for the same reasons as the ones already outlined in Theorem 2.5.1. Plancherel’s formula
then completes Part (iii). To check the last item in Definition 3.2.2, let us suppose that

v~ (resp. v') is the projection component of v € C" onto E~({) (resp. E*({)) so
that
J— v_
G

(0(D)v,0) = (6"(2)rd(2)v,v) = —|AQ)v™ >+ plo™ (3-25)
AQ)v [P+ plo™ P = 2|A(L)0

A direct calculation gives

which suggests using equation (3.7) to link (3.25) with the boundary matrix b. Indeed,

borrowing p(¢) and c¢({) from Proposition 3.1.4, one has

Al = c(2)(AL)e M (2)

0 0 A(Z) 0
=c(0) ?A?)[' ? ? T - ?c*@> (3:26)
0 0 A7) 0 0 1
1 0 0 A7) 0
—p|* 29 Y o | O Y e
0 0 A(Z) 0 0 1
=q(5)b~(2), (3-27)
where g(¢) = ¢()diag(1,A(Z), -+ ,A())p (). Armed with (3.26) and

b7 (Z) = (b(D)ep+1(C), -+, b(Z)en(2)),
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we see that the first term in (3.25) unfolds as

o | [AD)!] 0 v~
S < 0 m) <0>
_[(2@1 q@pT @) (o
0 In—p 0
_ (A@ﬂp v/(é)w(é))(
0 Li—p
_ (q(@b—@ q<é>b+<¢>> —>_<A<c>1p q<c>b+<g>> (0)
0 Li—p ot 0 Iy o
C

(920 + [27]%), (3.28)

2

IN
I
N

3
o
+ X
D
N———

where the final line accounts for the convexity of the power function x + x2. In the
end, combining (3.25) and (3.28), we get

(o (D)v,0) > |AQ)o™ [P + (o = 2C) [o*[* = 2Clg(2)b(Z)v P,

from which the result follows from choosing p such that « := p —2C =1, f:= 2C, and
from Plancherel’s theorem.

To close this section, we show how to recover estimates analogous to those in [BGSo7],
Chapter 8. In there, each term in the energy inequality is “filtered” by A, even the one

containing the boundary condition Bu. For this purpose, let

and observe that

If we take any (n — p) x n matrix x({) such that x() is surjective and

(Mé))
2(2)

is nonsingular, there exist matrices y({) and ¢({) with respective dimensions n x p and
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n x (n—p), so that

L (b((?)> (10 40) = (b@)y@) b(C)&(é)) (329)

Finally, if Y := Op(y), Q := Op(q), and M := Op(m), by invoking Plancherel’s theorem
we conclude that QB = MAYB and

0% e 2" Aul? dtdx—i—/de’z”’t\Au(O)]z dtdy
R

1+d
R+

1 —2t 2 —2t 2
< <7/Rl++de Af2dt dx +/Rde |AQBu(0)|? dt dy

1 —2t 2 —2qt 2
< <7/lede AF|? dt dx —I—/Rde IAYBu(0)2dtdy ),

as desired.

3.3 The variable coefficients case

Our starting point will be once again the general boundary value problem

{Pyun,(t,x) := (Dg+ A, (t,y,x4,Dt, Dy)) u(t, x) = f(t,x) (t,x) € R,
By (t,y)u(t,y,0) = g(ty) (ty) €R,

where A, € OPS'(RL* x [y, +-00)) is a classical pseudodifferential operator whose
symbol a € S}Y(R?d x RY x [yg, +00)) is a matrix-valued function of dimension # x n

that admits an asymptotic expansion
[o°]
a~ Z ay— jr
j=0

each a;_; being homogeneous of degree 1 — j. Likewise, B, € OPS’(R? x [vp, +00)) is
a classical pseudodifferential operator with a p x n principal part b(X) € SO(R? x R? x
[70, +0)). In addition, the source data f and g are chosen at least in L%.

We supplement Problem 3.30 with the following hypothesis.
ASSUMPTION 3.3.1.
(i) P, is hyperbolic as in Definition 2.3.1.
(ii) P, and B., satisfy Property (C), that is, ay and b do not depend on (t, x) outside certain

compact set K.
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(iii) b(X) is everywhere of maximal rank p = dimE~(X).
(iv) (P,,B,) is WR.

3.3.1 Construction of a YWR symmetriser and energy estimates for the general
problem

Taking into account Proposition 3.2.1, we shall generalise the notion of a Lopatin-

skif multiplier to fit Problem 3.3.1

THEOREM 3.3.1. Suppose that (P,, B, ) is a WR boundary value problem furnished with
Assumption 3.3.1. Let X € H. Then there exist symbols €y(X) and 6(X) defined in some conic
neighbourhood V of X such that for every X € V,

(i) €0(X) and 6(X) are homogeneous of degree 0,
(i) €9(X) € GL,(C) and
a1(X) = & ' (X)a1(X) 2o (X)
is diagonal with entries a11(X), - -+, a1,,(X),

(iii) there is s < p so that 6(X) is diagonal with respect to the basis €y(X) and given by
0(X) = diag(6™ (X), In—p),

where

with each § i being the solution of the transport equation

940, +{6;, a1} =0,
(3.31)

(5]'_ |7€d:O = A/

(iv) when X € Yg N H, there exist matrices q(X) and m(X) depending smoothly on X €
V NY with dimensions p x p and p x n, respectively, so that if b(X) = b(X)&y(X),
there holds

9(X)b(X) = m(X)8(X), (3:32)

(v) kerd(X) # {0} if and only if X € T. When nontrivial, ker 6(X) is an s—dimensional
invariant subspace of a1(X) containing the critical direction ¢(X).

Before entering into the proof of Theorem 3.3.1, we shall state an auxiliary result whose

proof can be found in the appendix.

LEMMA 3.3.1. Let V be a finite dimensional vector space. Suppose T € End (V') is diagonalis-
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able with distinct eigenvalues Ay, - - -, Aq, and corresponding eigenspaces V,, - -+, V) . Then
every T—invariant subspace W can be decomposed as

W=(WnVy)s--a(WnW,).

Proof of Theorem 3.3.1. For simplicity’s sake, we shall split the argument into several
steps.

Step 1. We classify points in H. Our strategy focuses on defining §(X) initially for
X = (t,y,x4,7,1,7) with x; small, and then extend 6(X) in a constant way to larger
values of x;. That being said, let us assume that X € H N'Y. We distinguish two cases,
namely when X belongs to I and when it does not. In the latter, we choose €y(X) as
predicted by the block structure condition (see Definition 2.4.2 and Proposition 2.4.1)
and notice that the uniform Lopatinskii condition is fulfilled. As a result, each §;(X),
—which is guaranteed to exist locally by Picard-Lindel6f’s theorem—, never vanishes
in a small neighbourhood V of X, for A(X) never vanishes in V NY either. Hence, §(X)
is nonsingular and it follows that equation (3.32) holds by choosing q(X) = I, and
m(X) = b(X)6~(X). The remaining and most interesting case occurs therefore around
points X € Y N "H where the Lopatinskii determinant vanishes to the first order. We
devote the rest of the proof to examine this situation.

Step 2. We find a suitable basis €(X). Recall that a1 (X) is smoothly diagonalisable around
X in view of Proposition 2.4.2, meaning that for every X in a neighbourhood V of X
there exist eigenvalues

a11(X), -+ ,a1,,(X)

(counted according to their multiplicities) and eigenvectors e (X), - - - , e, (X) organised
as the columns of a nonsingular matrix €y(X), so that

al,l(X) 0 cee 0
W Omex) - | 0 X |
0 0 cag(X)

For X € V, let K/(X) be the Krylov space of ¢(X) with respect to a;1(X). Admitting
that the first p columns of €¢(X) span the stable subspace E~(X) and that repeated
eigenvalues are adjacent, we explain how to pick a different basis for E~(X) that
interacts nicely with K;(X). To this end, let y1(X), - - -, y(X) be pairwise different
eigenvalues of a;(X) with multiplicities &y, - - - ,&,. For every k € {1, --- g}, we can

find a positive integer 7, < n such that

He(X) = a1, (X) = a1 (X) = -+ = ay i —1(X),

with associated eigenspace Vi (X) = span{e; (X), - - -, €j,+4—1(X) }. With this at hand,
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Lemma 3.3.1 suggests that K;(X) can be decomposed as
Ke(X) = K(X) N Vi(X) @ - ® Ko(X) NV, (X),

where Ky(X) N Vi(X) is trivial for every Vi(X) C ET(X), since Ky(X) C E~(X) for
every X € V. If Ky(X) N Vi (X) # {0}, we can choose &(X) € K;(X) N Vi(X) and use
it to replace an existing element in ¢(X) in such a way that the resulting set €,(X)
is still a basis of C". Thus, if s = 4(X) is the number of non-zero coefficients from
di(X), -+ ,dp(X) in (3.12), after rearranging components if necessary, the new basis
€0(X) consists of eigenvectors of a;(X) whose first s elements span Ky(X). To put it
differently,

C" = span{é1(X), - -+ ,&,(X)} @ span{é,+1(X), - -+, €, (X)}
= Ky(X) @ span{e,1(X), -+ (X))

Looking ahead to future stages of this proof, it is of primary interest to us that only one
value of s is chosen for the whole neighbourhood V. This is generally the case, save
possibly when a coefficient d; vanishes point-wise at X while not being identically zero
in V. In these circumstances, K;(X) := span{é;(X), - - - ,&,(X)} with s being the largest
value we encounter while X ranges on V (although K, (X) is no longer the smallest

subspace containing ¢(X) for every X € V, this will suffice for our plans).

Step 3. We define (X ). Having picked an appropriate basis in the previous passage, we

can define
d(X) = diag(d (X), In—p),
with
oy (X) 0
0 (X) = . .
(X) 0 . X (3-33)

Each 4, (X) in (3.33) solves locally the transport equation

B (3-34)
‘Sj ‘Xd:() = é/

{8,15]- + {(5]-_,{5[1,]'} = 0,
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whose characteristic curves coincide with the integral curves of the Hamiltonian system

dye _ 9m,

dxd o 817k !

dige __9m, (335)
dxg o’

(yO/ to /yd7110/770/ T /171171/’)/) S mY’

provided that we interpret xo as t and 79 as 7. The preceding set of equations does
not impose any restriction on 1, so we are free to complement (3.35) with the natural
assumption that dy/dx; = 0 along the bicharacteristic curves. As before, the existence
of such ¢ i (X) in (perhaps a smaller) V is justified by Picard-Lindelof’s theorem (see
Theorem A.2.4).

Step 4. We link 6(X) and b~ (X). To investigate the behaviour of (X) on the boundary
{xs = 0}, we place ourselves at any point X € VNY and take

1 0 --- 0
c(X) = 2.( : . . (3.36)
—dp(X) 0 -+ 1

as in the proof of Proposition 3.1.4 (with €(X) as the underlying basis). In Step 2, we
arranged the columns of &(X) in a way that all the nonvanishing elements in dy, - - -, d,,
are written in the upper left part of ¢(X). In other words, ¢(X) can be seen as a block
diagonal matrix

e(X) = diag(c,(X), I,-.)

with
6 (X) = 2(X) . (3:37)
“d(X) 0 - 1

Meanwhile, since §; (X) = A(X) when X € VN Y forevery j € {1, -+, 4},
5(X) = diag (AX)L, Ly, Tn—yp)
We make use of ¢(X) and its properties to define
5(X) = diag (c(X), L),

which is nonsingular and hence could be regarded as a legitimate change of variables.
What is more, 5(X)é(X)s ! (X) is the product of commuting diagonal blocks, from



63 3.3. The variable coefficients case

which it easily follows that §(X) is invariant under conjugation by s(X). Let v1(X) and
U2(X) be square matrices of dimension s x 4 such that

1 0 ... 0 A(X) 0 ... 0
0 AX) ... 0 0 1 ..0
v1(X) = : : N : and vy(X):= ] ) )
0 0 ... AXX) 0 0 ... 1

SO
Ul(X) Uz(X)
3(X) =s(X) Ipfa Ipfa 5! (X) (339)
Ly Ly
(<CS(X)U1(X) ) ) <<02(x) >c—1 ) )
= Ipfj Ip—)
Ln—p In—p
A(X)
. ((C’(X>”1<X) 1 >p-1<x> ) () 1 (%)
— s
In—p 1

Li—p

I,H) pH(X),

Proposition 3.1.4 and equation (3.39) enable us to conclude that
§(X) = diag (9(X)b™ (X), In—p) -

To finalise, let
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Step 6. §(X) degenerates at critical points. By construction, ker §(X) is nontrivial if and
only if A(X) =0, i.e, if and only if X € I'. That ker §(X) is s—dimensional is evident
from Step 2. O

DEFINITION 3.3.1. A collection of pseudodifferential operators A, (t, x, Dy, Dy) € OPSQ(R}ﬁd X
[0, +00)) is a Lopatinskii family of operators if Ay := Op, (8) and 6(X) = 6,(t,x,T,17) sat-
isfies Theorem 3.3.1.

Before continuing further, we present and prove a crucial lemma that simplifies the
zeroth-order terms in Problem 3.30. Morally, if &, is a pseudodifferential operator
whose symbol is the nonsingular matrix €y(X) found in Theorem 3.3.1, we look for
a correction of &, by an operator of order —1, say £_1 ,, for which D; + A, is block

diagonal up to an error of order —1. Specifically, we have:

LEMMA 3.3.2 (LEMMA 1, [Covoy]). Consider (P, B,,) as in Problem (3.30) with a; and ag
being the first two elements of the asymptotic expansion of a. Under the notation of Theorem
3.3.1, we can define a symbol €_1(X) on V such that e_1(X) is homogeneous of order —1 and

i RN I L
(20 +e_1)(a1 +ag) — (a1 +do) (€0 + €_1) + Dg€o + n Z (0, 8001, 611 — Oy, 110, €0
k=0

is a symbol of order —1, where iy is a block diagonal symbol of order O with blocks having
dimensions ay, - - - , &g as those of a;.

Proof. Let €_1 be a symbol of order —1 to be determined. A first-order approximation
of (89 + e_1) ! shows that

(Bo+e-1)(8' — 2 'e18;') =1, modS.", (3.40)

so (8 +€_1)(E4ly + a1 +ao) (& + €_1) ! can be estimated up to an error of order —1
by

(0 +e1)(Galn + a1 +a0) (8" — & e 18 ")

= (8alu + Bom ey ' — Bom1 8y e_18) " + e_1a18) " + €oap;') mod S
Since €pa1€, L' — 4y, it is true that
éoﬂléale_léal — 6_1ﬂ1€61 = t'11€_1é61 — €_1€alﬁl1 = [ﬂl,e_léal],
and consequently
(éo + 671>(€d1n +a; + Elo)(éal — éale,léal) =Gyl + a1 — [al,e,léal] + éouoéal

modulo S 1. As we always do with involved computations, we shall omit the parameter
7 to facilitate the exposition. That being so, let A := Op(41) and Ag := Op(ip). We
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now utilise the usual symbolic calculus on the operator equation
(So + 571)(Dd + ﬂ) - (Dd + (A1 + Ao))(g() + 5,1) =0 mod¥Y_; (3-41)

to derive precise conditions on dy. As a matter of fact, a first-order expansion of the
symbol of (3.41) yields

(éo + 671)(111 + Elo) — (Cﬁ + ﬁo)(éo + 671)

I L = L
+ D%y + - Y (94 200x,a1 — 9y, 410x,20) =0, (3.42)
k=0

or more concisely,

. T D L = L
—[a1, €18, |80 + €oao — &0 + Do + H Y (94, 00x,81 — 0y, 105, %0) =0 mod ¥_;.
k=0

(3-43)

Alternatively, if we multiply (3.43) from the right by &, and put a9 = egape, ', then
1 d—1
g = —[a1,e_18y "] +do + (Da®0) %, ' + = ) (99001 — 0y 19, %) g, mod ¥_;.
k=0

In general, there is no reason to expect that iy above is block diagonal. Yet, we can
choose the off-diagonal entries of [a1,€_1&; 1] (it is worth remembering that 4, €_1 € 1]
has zero diagonal) to compensate those of

. g 1 o\
a0 + (Da%0)ey " + 5 2 (01, 800,41 — Oy, 410, 20) &) -
k=0

As all the terms we have neglected so far are of lower order, the operator D; + A; + A
is a block diagonalisation of D; + A, modulo an error of order —1. O

We continue with the main result of this chapter, namely, the derivation of energy
inequalities for the YWR class. The details are summarised in the statement below.

THEOREM 3.3.2. Let

{P’yu'y(t,X) = (Dd +ﬂ7(t,y,xd, Dt, Dy)) M(t,x) = f(t,x) (t’x) c R};rd/ (3 4)
4

By (t,y)u(t,y,0) = g(t,y) (t,y) ERY,

where A, € OPS}Y(R}J‘{ X [1,40c0)) and B,, € OPS?Y(Rd X [1,400)) are classical pseudo-
differential operators with matrix-valued symbols a(X) and b(X) of dimensions n x n and
p X n, respectively. Suppose that P, is hyperbolic in the sense of Definition 2.3.1, P, and B,
satisfy Property (C), and that p = dimE™ (X). Then there exist
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(i) vo>1,
(ii) a family of pseudodifferential operators

A,(t,x,Dy,Dy) € OPS)(RYH X [y, +00)),

(iii) function spaces

L3 = {v e S'(RYM, R") : Ao € (R, C)},
Hj = {v € S'(RI", R") : Aw € L3(RYH, C™)},

(iv) and a positive constant C such that,

if f € L2(RY*) and g € L2(RY), then for all y > yo and every u € D(RY™) the following
estimate holds

1
ﬂMw%ﬁ+me%qsc<gu%fuma). (3.45)

More generally, if f € H5(RY) and g € H5(R?),

1
ﬂMwﬁfHMMM%§C<Jﬂ@+m@J- (3.46)

Proof. In the interest of not overloading the notation, we adhere to the following

conventions:

> We shall suppress the parameter <y all through the calculations, except when its
presence is relevant to the point being made (e.g. when we wish to emphasise the
existence of a parameter-dependent family of pseudodifferential operators).

> ¥, represents an error of order m that may be different from line to line.

> When it comes to norms, we shall write || - |ls, = || - ||s or || - [o,, = || - || when
s=0(resp. |- |s, =]-|sor| |0, =] whens=0).

> We shall adopt A, (x;) and A, (x;) as a substitute for

ﬂy(t,y,xd, Dt, Dy) and Ary(t,y,Xd, Dt, Dy)

Once again, we shall divide the analysis into steps for ease of explanation.

Step 1. We pick a pseudodifferential partition of unity. Thanks to homogeneity and Property
(C), we can restrict our attention to a compact region K x S? C X, which we may cover
with finitely many neighbourhoods {V;}ic; as shown in Theorem 3.3.1. Let {¢; }ic; be
a partition of unity subordinate to {V;}ic; and {6;}ic; be a system of functions such
that 6, € C°(V;), and 6; = 1 in a vicinity of supp ¢;. In addition, let us assume that ©;

and ®; are pseudodifferential operators whose symbols are the extensions of 6; and ¢;
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to homogeneous functions of degree 0in { = (7,7, 7).

Step 2. We perform a change of variables in Problem 3.44. To begin with, let us fix
V =V, 0 = 6;, and take €y = €;( as in Theorem 3.3.1. Putting & := Op (6€y) and
&y 1= Op (0%, D), it is readily verified that £&; 1= 1, mod ¥_;, which justifies the
abuse of notation in writing &, ' to refer to Op (0€;') (in rigour, only the inverse of &
mod Y_1). Applying &, ' on both sides of (D + A )u = f bring us to

E ' Dgu + £ Au = &5, (3.47)
or alternatively to
D&y tu+ Ey  Au+ [y, Dalu = &, f. (3.48)
The equivalence
Eg AU = ESTAEE U+ EgTAY _qu = EgTAEE U+ E T AY 1E0E tu+ Ey LAY _ou
modulo an error of order —1 let us recast (3.48) succinctly as
(Dg+ A+ Ep)u=f mod ¥4,

with 1 = &5 'u, A = E;1 A&, Eo = [E;", Daléo + Ey ' AY 1€, and f = &' f. If
we think of Ej as part of A, Lemma 3.3.2 implies the existence of a refined basis
& = &y + £_1 with respect to which D, + A is a block diagonalisation of Dy + A + Eg
modulo ¥_;. In the same vein, if B :== BE, we notice that BE~! .= (B£)E~! differs

from B by an error of order —1. The resulting operator is

{Pu(t,x) i= (Dg + A)u(t,x) = f(t,x), (3.49)

Bu(t,y,0) = g(ty),
where ¢ = g, and A is a classical pseudodifferential operator with symbol
ar~aytig+---,

with 4; and i being block diagonal.

Step 3. We localise u by means of ®. To do so, we fix i such that & = ®; and observe that

the commutator relations

(Dg+A)® =®(Dy+ A)+ [(Dg+ A), D),
B® = ®B + [B, @],

enable us to formulate (3.49) in terms of i = ®u at the expense of a zeroth-order term
[P, ®] and a harmless error [B, ®] of order —1 to be analysed shortly. Thus, we are left
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with

{pa = (Dg+ ) a(t,x) = f(t,x) (3.50)

Bi(t,y,0) = &(ty),
where the ~ everywhere refers to the application of the operator ®. In this setting, we
can define pseudodifferential operators Q := Op(6gq), A := Op(65), M := Op(6m) and
use them to set the auxiliary system

(3-51)

Interestingly, (3.51) satisfies the uniform Lopatinskii condition, for m(X) restricted to
the stable subspace of a1 is the identity I, (see Step 5 in Theorem 3.3.1). This observation
paves the way for the rest of the proof, as we shall soon confirm.

Step 4. We establish the existence of a local WR symmetriser. To leave no room for
ambiguity, let us momentarily reintegrate the parameter -y to describe the spaces

L3(RYM) == {v € S'(RIM, R") : Av € L2(RYH, €M)},
Hy (R := {0 € S'(R}™, R") : ASv € LI(RYH, C™)},
and introduce the next definition.

DEFINITION 3.3.2. A WR symmetriser for Problem (3.50) is a family of pseudodifferential
operators ., € OPSQ(R}:’d X [v0, +0)) for some o > 1, such that for all v > yo > 1,

i) X (x4) is self-adjoint,

ii) for every vy, v, € L3, there is a positive constant C satisfying
(Zy (xa)v1,02) < ClAy(xa)v1]|Aq (xa)02],

iii) there is a positive constant c, independent of x4, so that
(0 (x4)0,0) + 21Im (4 (x0) A, (x0)0,0) > el (34)0

for each v € L3 (RLH),

iv) there exist positive constants «, B and a family of pseudodifferential operators Q. for
which
(Z7(0)2,0) > a| Ay (0)0]* — B|Qy By

holds true for every v € L] (R?).

Let us drop x; and 7y once more to make the idea smoother. A quick glance at the
proof of Theorem 2.5.1 indicates that is possible to find a functional symmetriser for
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the auxiliary problem (3.51). If R := Op(0r) is such a symmetrizer, we claim that
Y~ = A*RA meets (i) to (iv) in Definition 3.3.2. That X is self-adjoint follows because R is
self-adjoint. Condition (ii), on the other hand, stems from the elementary computation

<201, Uz> = <A*RA01,02> = <RAU],AZ)2> S C|A01||A02|,

valid for test functions v1, v2 supported on V and some constant C > 0. The remaining
properties can be obtained from those of R and A as explained hereafter. Firstly,

(04X0,v) +2Im (XAv,v) = ((04R)Av, Av) +2Re (R(04A)v, Av) + 2Im (RAAD, Av)
= ((04R)Av, Av) +2Re (R(Op (940))v, Av) + 2Im (RAAv, Av).

Secondly,

AR = AN+ (B, 4]
= ﬂA +Op([(5,d1] + [(5,1'1'0] — i{dl,(s}) +‘Y_1 = EA — ZOp({lZl,(S}) +‘Y_1,
(3.52)

given that [d,41] and [, dp| vanish identically in light of Lemma 3.3.2. Inserting (3.52)
into 2Im (RAAv, Av) gives

2Im (RAAv, Av) = 2Im (RAAv, Av) + 2Im (R[A, A]v, Av)
= 2Im (RAAv, Av) —2Re (ROp({a1,6})v, Av) + (¥_10, Av),
= 2Im (RAAv, Av) +2Re (ROp ({4, a1})v, Av) + (Y_10, Av),

and eventually,

(04Xv,0) + 2Im (X Av,v) = ((94R)Av, Av) + 2Im (RAAv, Av) (3-53)
+2Re (ROp (946 + {8,a1})v, Av),

modulo a negligible error (¥_1v, Av) (to be seen!). Now, considering that R is a strong

functional symmetriser, the second term in (3.53) obeys the inequality
2Im (RAAv, Av) > Cy|Av)?,

whereas the last bracket is null because 040 + {4, 41} = 0 by construction. Finally, the
identity MA = QB mod ¥_; from Theorem 3.3.1 and Condition (iv) in Definition
2.5.1 result in

(2(0)2(0),2(0)) > #|A(0)2(0)[* — BIMAD(0)* = a[A(0)2(0)[* — BIQBv(0) * — [¥-10(0)[%,

for some positive constants &, 8, and a perturbation |¥_1v(0)|? to be absorbed.
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Step 5. We deduce energy estimates for i via .. We proceed analogously as in the model

case:

Integrating in x; over [0, o) and bearing in mind that 7 vanishes at infinity leads to
(S, ) 5,0 = — /Ow (942, i) + 2Tm (A1, 7)) dxg +2/0°° Im (S, 1) dx.
From Condition (ii) in Definition 3.3.2, it is clear that
21m (2f, @) < 2|(Lf, @) < Ci|Af][Adl,
while from Part (iii) in Definition 3.3.2,
(S, @) 5,0 < —c /000 A2 dxg + Cy /Ooo AF]| M| dxg.

Meanwhile, if we use (iv) in Definition 3.3.2 plus Young’s inequality, we arrive at the
conclusion that

_ . o C; [®. .
()~ BIQBu(O) < (—ey +ey) [ |anP dxs+ 1 [ Afdxg

for all ¢ > 0. By making the parameter ¢ small enough, we initially infer that
. o C oo
&|Ai(0) | — B|QB(0)]? < —cﬂfo |Aﬁ|2dxd+73/o AFI? dxg,
and then by rescaling constants if necessary,

v [ e bR+ [ eaa(0) P dtdy (3:54)
R

1+d
R+

1 =27t A F|2 —2yt )~ 2
SC(W/RWE AF2 dt dx +/Rde QBa(0) 2 dt dy

for some C > 0.

Step 6. We embed L3 into H,. More precisely:

PROPOSITION 3.3.1. The norms ||A, - ||o,, lie between L,ZY and H., ! for a sufficiently large -,
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that is to say, for yo > 1 there exist positive constants C1, Ca such that

1
Gl ll-ay < 20187 - o < Gl lloa (3.55)

for every vy € [yo, +0).

Proof. The upper inequality in (3.55) is straightforward as soon as one realises that A,
is a family of pseudodifferential operators of order 0, so only the lower inequality needs
to be checked. Let us fix 9 > 1. Back to Section 3.1.3, we know that

M) =AE) = (VP + T +7) 2

and

AX) = At y,0) = W

for v > 1 > 0. Let us study the cases x; = 0 and x; > 0 independently for greater
clarity. If x; = 0, then

ME) 1A (D) YoA(T, 1,7) 70
In the same spirit,
11 1 o)
AS oSy 3-57
and a direct comparison reveals that
1, . 1, 1, 1, 1,
ﬁ’u‘zz ﬁu%—i_"'+ﬁu§+ﬁu%+1+”'+ﬁu%
<2 IAX) >+ + L IA(X)1,|* + L S 7 S 16(X)0|?
1A 1 e A il e 2 = .
1% A v

Moreover, if

1 ., 1
C:= 7—%5 (X)o(X) — 2 0,
a simple calculation shows that v/C is bounded as well as all its derivatives, so v/C €
S0 e OPSOAY(R"’ X [1,+00)). Lastly, Hérmander’s square root trick allow us to conclude

that ,
Nty < —=11Ay - oy
|- ll-19 WII v oy

When x; > 0, the situation is more intricate and require some effort. Certainly, as
) ]-_(X) solves the transport equation (3.31), 6;” (X) is the composition of A(X) with the
inverse of the Hamiltonian flow map ¢, ; associated with the eigenvalue a;;(X) (see

the proof of Theorem 3.3.1). This means that if X, = (¢,,v,,0,7,,1,,7,) € Y is such that

6 (X) = (¢4, 8)(X) = A(X;),
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then
1w \/7§+w2(tb/yb,5b) B \/7§+w2(fbryb/é'b))\(gb)
AQ)  7oA() — YoA(0) N YoA(Ep) A(Z)
_AX)1AG) _ 19 (TA,)
S MO T w0 My O

In an attempt to control (3.58) appropriately, we must find an upper bound for
A(Zy)/A(Z). This is addressed in the lemma below.

LEMMA 3.3.3. Let ¢~ 1 = ¢_, j be the inverse of the Hamiltonian map ¢, encoded in equation
(3.35). Under the assumptions of Theorem 3.3.1, there exists a constant C > 0 such that for
every X = (t,y,x4,0) €V,

Proof. Let us argue by contradiction and suppose that for every n € N, there is a
Xn = (tn,Yn, X4 0, Cn) € V such that

)\((P_l (tn/ Ynr Xdn, gn))
i > 1. (3-59)

Since A and ¢! are homogeneous of degree 1 in , we can equally write (3.59) as

A(‘l)il(tn/ynr Xdns Cn)) > n, (3.60)

where ), == {n/|Cn| = Cn/ A(Zn). If we look at the covariables as elements on the sphere
S, the new neighbourhood V' C X is compact (as V can be taken compact in (t,v, x4)
in view of Property (C)), so the sequence {X, },cy has a convergent subsequence, say,
{Xi}ken, so that Xy — X = (t,y,x,4,{’) as k goes to infinity. Then

k < ‘A(qb_l(tk/yk/ xd,k/ g,k))|
= Mo by xar T'0) = Mo Ly xa, I+ AP (L y, 24, T)). (3.61)

For k sufficiently large, the difference on the right-hand side of (3.61) can be made
arbitrarily small because of the continuity of ¢~! and A, meaning that the whole
expression can be bounded by some constant C’ for every k large enough, which is a

contradiction. O

Returning to equations (3.57) and (3.58), we see that

1 _c

A0 S 500 X
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and .
— S .
AT 70
for some positive constant C. The rest of the proof is identical to that for x; =0. O

Proposition 3.3.1 allows us to handle (¥ v, Av) and |¥_10(0)|? effectively using the

philosophy illustrated in the next step.

Step 7. We glue the pieces. To start with, we take note of the inequalities

1 . 1 .
VA2 + |Aa(O)P < C (mmuz n IQBﬁ(0)|2> —cC <7HAP<I>L'¢||2 n \QBCIM(O)\Z) ,
and

|AP®||* < [|[@AP|? + || [A, @] Pil|* + || A[P, ®]u]]?
< I@APa? + | Pil|2 + [|A[R, @]

. 1. .
< lafl?+ ?IIAfII2 + [|A[P, @Ju]?,
0

where we have appealed to Proposition 3.3.1 in the third inequality. It remains to check
that A[P, ®] can be controlled satisfactorily. In essence, taking into account that P is
block diagonal modulo ¥_1, [P, ®] is an operator of order 0 with principal symbol
i{®,&; + a1}, also diagonal, so

A[B/©] = [B/é]A—i_‘F—lr
and therefore,
. : 1 : . .
[APD|* < [|Af[]> + 5 IAF]]* + (I[P, @] Aw|* + |||, (3.62)
Y0
. 1 . ) 1 .

< IAFIP+ AL + | Au]* + =l Au]?
Y0 Y0

< IAFI? + (| au>.

Let us now examine QB®i. In this case,

QB (0)[* < [@QBii(0) | + [[Q, ®]Bi(0) |* + | Q[B, @]u(0)[? (3.63)
< [@Qg[* + [1(0) 24

1. .
< Qg+ —|au(0)]?,
Y0

the second line being a consequence of the fact that [Q, ®]B and Q[B, ®] are operators



CHAPTER THREE — Weakly regular boundary value problems of real type 74

of order —1. In summary, we have

. i 1o, 1o o 1
yllaal? + |aa(0)]* < C (J\MHZ + ;HAqu +1Qg)* + %\AM(O)\Z) ,
0

provided that we pick ¢ (and thereby ) sufficiently large,

1 .
YAl + Az () < C (VHAfHZ T ngrZ) | (364

Recall that A, Q, 7, f, and § in (3.64) are indexed by i, so we can add the pieces to get

1 .
“YZHAz‘ﬁiHZ +Z|Aiﬁi(0)|2 <C <7Z||Aifi||2 + Z|Qigi|2> : (3-65)

Let
A=Y NETD; =Y ADET mod ¥
i i

From Proposition 3.3.1, the triangle inequality, and the convexity of the power function
x — x2, it follows that

Iaul> <} llaa|* and  |Au(0)* < ) 1A (0)[, (3.66)
i i
and consequently,
PldulP + [8u(0)? < € (}YZ a5 +21Qigi12> . (5:67)
i i
The obvious relations ||A; f;|| < £l < || fll and [Qig| < |¢] < |g] then yield

1
ylaulP + |Au(0))2 < <7||f!|2 4 |g|2) . (3.68)

To close the argument, we extend (3.68) to Sobolev spaces. Indeed, A%l € Li when
il € H}, and as such it fulfils (3.54):

N N 1 N . N
BN+ AN T(O)P < C (,Y|\AiPiASui||2 T |Qz-BiASui\2) . (69)

A similar reasoning to that in (3.62) and (3.63) combined with Proposition (3.3.1) gives

upper bounds
AP A% < [|Afill3 + [ A3, (3.70)

s - 1 -
|QiBiA*T:(0)]* < |Qigils + ?‘Ai“i(o) : (3.71)
0
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For the left-hand side of (3.69), we exploit AA = AA® 4 [A®, A] to derive

IASAT|? < AN + [ ¥ syl

- [T -
Iaa])? — = llaall? < [lansa]
To
In the end, collecting terms and choosing 7 large enough produce

N N 1 ~ N
Y8R + |ATO)R < C <7HAf||§+ \le§> . (3.72)

From this point on, we continue in the same way as we did for || - ||. O

REMARK 3.3.1. Formula (3.68) is not a strict generalisation of (3.21), since neither A
nor Q are present on the right hand side of the inequality. This is due to the intrinsic
difficulty in controlling ||A;|| (resp. ||Q;]|) in terms of ||Al| (resp. ||Q||), as may be easily

seen by considering two adjacent charts V;, 1>, and the difference
IET S + 8285 FI2 = (IMET FIP + 182€5 1) = 2Re (METf, 02E57 £))- (3.73)

For instance, when dealing with constant coefficients, local and global constructions
coincide, so A = A} = Ay and €71 = 51_1 = 82_1. Hence, (3.73) is positive and we
can recover the original estimate (3.21). Whether (3.73) can always be absorbed in the

variable coefficient setting is still an open question.



CHAPTER FOUR
The well-posedness of the VWR problem

In this chapter, we address the classical questions of existence, uniqueness, and reg-
ularity for solutions of WWR problems through the lens of Chapter 3 and the results
therein. We anticipate, however, that we do not use the energy inequalities in the same
way as in Chapter 1, but follow an alternative strategy suggested by the very nature
of the estimates. The idea is to verify that w = A, is locally the unique solution of
a strong boundary value problem (i.e., of a problem satisfying the uniform Lopatin-
skif condition), after which the properties of ii can be inferred from the analysis of the

pseudodifferential equation w = A, .

4.1 Operators of real principal type

For a better understanding, we first have a look at the theory of operators of real
principal type in (O C R" and only then we deal with our particular case study.

4.1.1 Definitions and main properties

DEFINITION 4.1.1. Let P(x, D) be a scalar, classical pseudodifferential operator of order m with
principal symbol p(x,&). P is said to be of real principal type if p(x,{) is real-valued and the
Hamiltonian vector field

=Y (3g,p(x, &)y, — 0x,p(x,£)g,)
i=1

is both non-vanishing and not proportional to the radial vector field ¢O¢.
Some remarks on principal type operators:

> Since p(x,¢) is homogeneous of degree m, Euler’s theorem (see Theorem A.2.8 or
[SR18]) yields
mp(x,6) = 9gp(x,¢) - &.

76
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For that reason, we just need to check that dzp(x,¢) # 0 when p(x, ) = 0 to meet
Definition 4.1.1.

> The previous condition can be equivalently formulated by saying that no bichar-
acteristic curve stays over a compact subset K indefinitely ([DHo4]).

> Owing to Euler’s theorem, elliptic operators trivially satisfy Definition 4.1.1 and
thereby are of principal type.

> The canonical example of a non-elliptic operator of real principal type is Dy, = Dj.
Interestingly, any operator of real principal type can be reduced to the composition
of an elliptic operator Q(x, D) and D; with the help of a canonical transformation
(see [Ivr13], [CP82], and [Ivr13] for an ample discussion).

We close this section with the remarkable theorem on the propagation of singulari-
ties by Hormander and Duistermaat (see [DIH94] and [HHS87] for an comprehensive

discussion).

THEOREM 4.1.1 (THEOREM 3.1, [Ivr13]). Suppose that P is an m-th order pseudodifferential
operator of real principal type. If u € D'(Q)) and | is a connected piece of a null bicharacteristic
curve such that ] " WF(Pu) = &, then either ] C WF(u) or JONWF(u) = @.

THEOREM 4.1.2 (THEOREM 3.2, [[vr13]). Let u € D'(Q)) and assume that P is an m-th order
pseudodifferential operator of real principal type. Suppose that WF; represents the Sobolev
wavefront set. If | is a connected piece of a bicharacteristic curve so that | "1 WF;s(Pu) = &,
then either | C WFsy,—1(Pu) or JAWFg 1 1(1) = 2.

4.1.2  Construction of a parametrix

THEOREM 4.1.3 (LEMMA 3.2, [Tavy9]). Let Q) be a compact manifold and suppose that R x ()
has coordinates (t,x). Assume that P is a scalar zeroth-order pseudodifferential operator with
real principal symbol p(t,x,7,&). If f € E'(R x Q) is supported in {t > 0} and o.p is
nonvanishing whenever p = 0, then the pseudodifferential equation

Pu = f (4.1)

has a unique solution modulo C* that vanishes for {t < 0}. Moreover, WF(u) is contained in
the union of WE(Pu) and the set of positively time-oriented null bicharacteristics of p passing
over WF(u).

Proof. Let ¥, be a first-order pseudodifferential operator whose principal symbol ¢ is

a scalar positive function. It suffices to examine the equivalent problem

Qu=g, (4.2)

where Q = ¥;P € OPS'(R x Q) and g := ¥, f. We shall construct a solution of (4.2)
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modulo C*®. A first attempt could be to investigate the formal expressions
we = Qg = (iQ) (i) = —i | e*gas,
0
(U
u=(Q)'g= Q) (ig) =i [ g,

— 00

(4-3)

which might be ill-defined. The integrand w(s) = ¢"*?g, however, verifies the hyperbolic
equation

Dyw — Qw =0,
{ oo (4-4)

w(0) =g
which can be solved up to a smoothing remainder using geometrical optics techniques.
Denote by ele ¢ this approximate solution. Now, observe that d:p # 0 implies that f is

bounded away from zero along the null bicharacteristics of P (and hence along the null
bicharacteristics of ), so we can write

Char(Q) = Char(P) =S, US_,

where S, and S_ correspond to the sets of integral curves for which { > 0 and
f < 0, respectively. Additionally, assume that Sy is the complement in T*(R x Q)
of a e—neighbourhood of Char(Q). After this preparation, let us decompose the
identity I € D'(R x Q) as the sum of three zeroth-order pseudodifferential operators
{ P }ke{+,— 0y, each being supported on a small conic neighbourhood V; C Sy and such
that the principal symbol o (Py) satisfies o(P;) = 1 on a smaller conic neighbourhood
Vi C V. Thus,
§=P.g+P g+ Pog,

and since Q is elliptic on supp(P), we can solve
Puo = Pog

modulo C*®. As for the contributions of P, g, the situation is more complicated. To
this end, let T; < oo, and suppose that Ty < oo is such that for |s| < Ty, the image of
all { = (t,x,7,{) € WF(g) obtained by following the Hamiltonian flow for s units of
time has a t—coordinate that is larger than T;. Consequently, if 6 € C{°(R) is a cutoff
function so that 6 = 1 when |s| < Ty, then

) . 0 .
u=uy— i/ 0(s)e 2P, g ds —|—z'/ 0(s)eS2P_g ds.
0

Finally, a direct computation shows that u satisfies (4.2), while the standard propagation
of singularities theorem enable us to conclude that u is smooth for ¢t < 0, as desired. [
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4.2 The WR problem

4.2.1  The operator A, revisited

As the proof of Theorem 3.3.2 and the author’s comments in [BGSo7] on the model case
tentatively suggest, problem (3.50) (one for each i; piece) can be recast into a strong
system by somehow inserting A; ., into the norms. Eventually, if we are able to use
the properties of A; ., to solve the pseudodifferential problem @; := A, ,i; for i;, we
can reconstruct u as the sum ) ; 7;. Having outlined the strategy, let us revisit Step 3
in Theorem 3.3.2 to confirm that, under the conditions and notation specified there,
W = A, il is a solution of the auxiliary problem

{(Dd +A,) Wt x) = By f(t %), (45)

Ma@(t,y,0) = Qq8(Ly)-
This follows from applying A, to both sides of (3.50) and from the next identities
modulo ¥ _1:

AyAy = AyDy —iOp, ({01, 0}),

A'de = DdAry - lOp 5,
and
Td) and A,§ € ny(@d). Theorem 2.6.1
asserts that there exists a unique @ € H;, (R}:d) with @|y,—o € H%(Rd ) fulfilling (4.5),

At this point, let us suppose that A, f € H; (R

so there is some hope of establishing existence, uniqueness, and regularity for il by
studying Ail = @ equipped with u|;—o = 0. The major step in this direction is given by
the statement below.

PROPOSITION 4.2.1. Suppose that §(X) = diag(é6~(X), I,—p) with

57 (X) = S , (4-6)

Iy,

and 61 (X), - -+ ,0,(X) as described in Theorem 3.3.1. Then the pseudodifferential operators
Op., (1), -+, Op., (8,) are of real principal type.



CHAPTER FOUR — Well-posedness of the JWR problem 8o

Proof. Recall that the unique solution of the transport equation

{adéi + {(5-_,611,]'} = ( )
4.7

0,
(Sji ‘deO = é’

is obtained by composing A with the inverse of the Hamiltonian flow map ¢, , i.e.,
0i(X) = (¢, A)(X). In the sequel, we distinguish two scenarios, namely, when 7 > 0
and when 7 = 0. In the former, A and ¢*, are never vanishing and so ¢;(X) is elliptic.
In the latter, we verify the definition for —ié;(X) rather than for §(X). Certainly, note
that

~i5(%) = —i(, A)(X) = L)

is real-valued and its zeroes match those of w(t,,y,, {,) (see Theorem 3.3.2). To validate
that these roots are simple is more involved, as we see now. For x; > 0, Char(Op,, (¢;))
is the orbit of I' under ¢,,, that is to say,

Char(4;) = I'; .= {I transported along the flow ¢, }.

Therefore, we have to show that ar(sj(x ) is non-vanishing on [, which amounts to
proving that

070; = (99", A) = (0+8)(P—x,)0rP—x, # O (4.8)

on I';. The first factor in (4.8) is different from zero by the very definition of the WR
class, whereas d:¢_,, can be computed via (see [Arngz2])

t
s, = exp ( /O 3 Hy(s)(9s) ds) £0,
where Hg(x4)(-) stands for the vector field associated with the flow ¢,,. O

4.2.2 Existence, uniqueness, and regularity

Let us focus on the pseudodifferential system

Op,, (01) _ ~
Ayl = =] l=2 (49
Op'y (5J) ~ ~
Iy

equipped with homogeneous Cauchy data. Reasoning component-wise, we get s
(nontrivial) initial value problems that can be solved according to Theorem 4.1.3. More
precisely, there holds
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THEOREM 4.2.1. Consider

(4.10)

5 =1+d
where @ € H3 (R} )

unique solution of (4.10) modulo C* for which

and Op,, (0;) is defined as in Proposition 4.2.1. Then there exists a

WF,_1(#;) \ WE(Op,, (6;);) C &;(0). (4.11)
Proof. A direct application of Theorem 4.1.3 and Proposition 4.2.1. O

Formula (4.11) and Proposition 3.3.1 allow us to characterise Hj alternatively.

PROPOSITION 4.2.2. Let
Hy = {v e S (R, R") : ASo € L3(RH, C")}
be the function space introduced in Theorem 3.3.2. Then
Hy={ueH " :AucH}

Proof. Letu € Hy = {u € H"' : Ayu € H}. By definition, u € H5 ' and A*A,u € L2.
We need to prove that Ay A% u € L%. Indeed, from

Ay Nu = N Aqu+ [Aq, Ay lu, (4.12)

it will be enough to check that [A,, A, Ju € L%. But this is a straightforward consequence
of the fact that [A,, A%] is an operator of order s — 1 and u € H;fl. Suppose now that
u € Hy, meaning that AyAju € L%. From Proposition 3.3.1,

Julls—1 < [ AZu] -1 < [[AgAZul] < oo,
and thus it is clear that A A u € L%r from (4.12) and the same argument as before. [

We can interpret Theorem 4.2.1 and Proposition 4.2.2 as follows: given that @ € H?, the
first » components experience a loss of regularity of one derivative, while the others
remain unchanged. This supports Serre’s observation in [Seros] that the solution i
exhibits a polarisation effect around the critical set I'.



Appendix

This appendix contains two sections with relevant material that complements the ideas
presented in this thesis. Let us briefly outline what each of them consists of: in Section
A.1, we include several auxiliary results whose proofs have been skipped in the main
body of the document in order to facilitate the discussion. In Section A.2, on the other
hand, we list for the reader’s reference some classical theorems from real, complex, and

Fourier analysis that have been used throughout the text.

A.1 Auxiliary results

For Lemmas 3 to 5, we shall adopt the hypothesis and notation of Theorem 2.5.1.

LEMMA A.1.3 (LEMMA 5.4 - CHAPTER 7, [CP82]). There exists a basis €o(X) with the
properties described in Definition 2.4.2 (the block structure condition) for which

bi(X) 0 --- 0

(X =| : (13)

and by (X), -+, by (X) € R.

Proof. The key ingredient in the proof is to find a non-singular matrix U(X) of dimen-
sions v; X v such that it behaves smoothly around X and the identity

U (X) (aj +6;(X)U(X) = a; + 6/(X)

holds with 6]’- as in (13). With this goal in mind, let us suppose that ey, - - -, ¢, is the
canonical basis of C'i and notice that

i _
a]6m - em,Z

forevery 1 < i <v;—1. Thus, T := {em, aey_1, - - ,a" te;} is also a basis for CY.
y j j

82
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What is more, since 6(X) = 0, we can slightly perturb 7 with 6 and still get a basis for
CY provided that X remains sufficiently close to X. In other words, the mapping

U(X):C% — CY

defined by the rule U(X )a]lfem = (a;)em is non-singular. It is easy to check that U(X)
has all the required characteristics. O

LEMMA A.1.4 (LEMMA 5.5 - CHAPTER 7, [CP82]). Let a; as in equation (2.45) and suppose
that E; is symmetric. If Eja; is symmetric, then E; must be of the form

0 -+ v v
: €2

Ei(X)=|: R (14)
el 62 .. .« e em]

Proof. The effect of multiplying a symmetric matrix E; by a; from the right is simple:
the first column is zero and the others are obtained by shifting the columns of E; to the

right. The result follows from comparing the off-diagonal entries. O

LEMMA A.1.5 (LEMMA 5.7 - CHAPTER 7, [CP82]). Let C be an arbitrary constant. We can
find a real, skew-symmetric matrix G; such that

Re(Gjajw, w) > —|w 2+ Clw' %, (15)
for every w € CYi.

Proof. Let G; be a real, skew-symmetric, block tridiagonal matrix as depicted below:

The product a;G; looks similar to G; with its components shifted to the right, except
for the first column which has zero entries. Hence, a direct calculation reveals that

1//- 1/]'72
Re(Gjajw,w) = Y_ gii—1|wi]* — Re < gi+1,iwi+2wi> :
i=2 =1

1
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As for the second term, notice that

1/]'*2

Y 8it1,iWit2®;
i=1

1/]'*2

< Y givil|wigo||wil,
i=1

1/]‘*2
Re (Z gi+1,iwi+2wi> <
i=1

so it is enough to invoke Young’s inequality and choose sufficiently large elements

gii—1 to close the argument. O

LEmMMA A.1.8. Let V be a finite dimensional vector space and T : V. — V a diagonalisable
linear map. Suppose that Ay, - - -, A4 are pairwise different eigenvalues with corresponding

eigenspaces Vy,, - -, V) . Then, every T—invariant subspace W can be decomposed as
W:(WHVM)@---@(WHVM). (16)

Proof. To start with, note that W; := W N V), is the intersection of two subspaces of
V, so formula (16) is meaningful. Now, to prove the assertion, we need to show that
Wi N W; = {0} fori # jand that W = W © W, @ - - - © W. Let w € W. To verify the
first part, let us assume that w € W; N W; = {0} for different indices i and j. The latter
necessarily implies that w € E; N E; = {0}, and eventually that w = 0 since A; # A;.
For the remaining claim, let us write w; for the projection onto V.. Clearly, w; € W;,
and consequently w can be expressed as w = wy + - - - + wy. Lastly, if w € W; N W with

Wi=W, & Wa @ W1 ® Wiy1 & W,
then w = 0 for W;NW; = {0} with i # j. In conclusion, W = W; @ --- & W, as

desired. O

A.2  Some results in Analysis

A.2.1 Complex Analysis

THEOREM A.2.1 (WEIERSTRASS PREPARATION THEOREM - THEOREM 7.5.1, [HOR15] - CHAP-
TER 2, [KK11]). Let f(t,z) be an analytic function of the variables (t,z) € C x C" in a
neighbourhood of (0,0). If

B af _ _ akflf _ akflf
f_§_'“_ k=1 =0 and k=1 #0

at (0,0), then there exists a unique factorisation
f(t,z) = c(t,z)(t* + ar_1 ()" T+ - +ap(z)),

with the coefficients a; and ¢ being analytic functions in a neighbourhood of the origin, and such
that ¢(0,0) and a;(0) are non-vanishing.
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THEOREM A.2.2 (RoucHE’S THEOREM, [Gamo1] - [CKPos]). Suppose that D C Cis a
bounded domain having a piece-wise smooth boundary 0D. If f(z) and h(z) are analytic on
D UOID and |h(z)| < |f(z)| on 0D, then the functions f(z) and f(z) + h(z) have the same
number of zeroes in D counting their multiplicities.

A.2.2 Real Analysis

THEOREM A.2.3 (THEOREM 9.2, [MUN18]). Let QO C R¥ and Q) C R" be open sets. Suppose
that

frx— R
(xy) — flxy)

is of class C". If (xo,y0) € O x Oy is sucht that

f(x0,0) =0 and detg]yc(a,b) #0,

there exist a neighbourhood V C R of xo and a unique function g : V — R" of class C" for
which g(xo) = yo and

f(x,8(x)) =0
for every x € V.

THEOREM A.2.4 (PICARD-LINDELOF - THEOREM 3.1, [CLT56]). Let QO C R" be an open set
and x : (a,b) x Q — R" be a continuous function which is Lipschitz continuous with respect
to the second variable. Then for every ty € (a,b) and xo € Q), there exists a positive § such that

the Cauchy problem
= (o)
{ ar (17)
u(to) = xo,

has a unique solution in [ty — J,t, + J].

THEOREM A.2.5. Let A : R" — R" be a linear operator. Suppose that E is an invariant
subspace under A, meaning that A(E) C E and consider the Cauchy problem

dx
{ i Ax, (18)
x(to) = Xp.

If xo € E, then x(t) € E for every t € R.

Proof. From the standard theory of differential equations, the solution of (18) is

I/l(t) = etAX() = kZO HAkXQ.
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If xo € E, then Ax, € E for every k € NU{0}. In addition, since E is finite dimensional,
E must be closed and the result follows. O

THEOREM A.2.6 (YOUNG). For every a,b € R and e > 0, it is true that
2, 15
ab < ea® + —b-.
4e
Proof. Observe that

Vo b 2 ) b2
0< 2eq — —— | =2ea” —2ab+ —,
- ( \/25> 2¢

and therefore

ab < ea® + lbz.
4e

O

THEOREM A.2.7 (THEOREM 2.23, [LL12]). Let M be a smooth manifold and (Vy)uea an
indexed open cover of M. Then there exists a partition of unity subordinate to (Vy)uea, i.€., a
family (@a)aca of real-valued functions on M with the following properties:

(i) foreach w € A, ¢, : M — R is a continuous function such that 0 < ¢, <1,
(ii) for all x € A, @y is supported in V,,

(iii) for every point x € M, there exists a neighbourhood Vy such that V, N supp@, is
non-void only for finitely many indices w,

(iv) Ypea @a(x) =1 for every x € M.

THEOREM A.2.8 (REMARK 6.7, (1v), [N1G18]). A function f € C}(R") is homogeneous of
degree m if and only if

ixj(ajf)(x) = mf(x) (19)
]:
forall x € R".

A.2.3 Harmonic Analysis

THEOREM A.2.9 (PLANCHEREL'S THEOREM, LEMMA 1.5.1, [MET04]). The following two
statements are equivalent:

(i) uecertL?

(ii) F(e~"u) € L% Moreover,

le™ " ull 2wy = 1 Fulli2(Rec=n)-
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