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Abstract

In this thesis, we derive energy estimates for weakly regular hyperbolic boundary value
problems of real type, for which the Lopatinskiı̆ condition degenerates in a specific
way in the so-called hyperbolic region. Such boundary problems, commonly known
in the literature as WR, are easily seen to be stable under small perturbations of the
coefficients and the initial data. Moreover, their applications include many relevant
physical situations like the formation of shock waves in isentropic gas dynamics and the
subsonic phase transitions in a van der Waals fluid. In these and other WR problems,
the failure of the uniform Lopatinskiı̆ condition plays a major role since it is associated
to a loss of regularity in the scale of Sobolev spaces, eventually leading to energy
estimates that might be ill-suited for dealing with nonlinear problems when solved by
iteration. To circumvent this problem, one option is to apply a Nash-Moser-Hörmander
iterative scheme consisting of a two-step procedure that includes a smoothing operator
to compensate for the loss of regularity at each iteration. Another alternative is to
modify the underlying function spaces so that the a priori estimates do not experience
a loss of regularity. In the course of this dissertation, we adopt the latter technique
as a starting point and derive linear estimates for the model case that are comparable
to existing results, but using a more robust approach that we later generalise to some
extent to variable coefficients. The result represents a significant progress towards the
ultimate goal of having a one-step technique applicable to nonlinear problems of this
kind.
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Zusammenfassung

In dieser Arbeit leiten wir Energieabschätzungen für schwach reguläre hyperbolis-
che Randwertprobleme vom reellen Typ her, für die die Lopatinskiı̆ -Bedingung auf
eine bestimmte Art und Weise in der sogenannten hyperbolischen Region entartet.
Diese Randwertprobleme, in der Literatur allgemein als WR bekannt, sind stabil unter
kleinen Störungen der Koeffizienten und der Anfangsdaten. Darüber hinaus finden
sie in vielen relevanten physikalischen Situationen Anwendung, wie beispielsweise bei
der Formierung von Stoßwellen in der isentropen Gasdynamik und bei Unterschall-
Phasenübergängen in Van-der-Waals-Gasen. Bei diesen und anderen WR-Problemen
spielt das Verletztsein der gleichmäßigen Lopatinskiı̆ -Bedingung eine wichtige Rolle, da
dies mit einem Regularitätsverlust in der Skale der Sobolevräume einhergeht. Dies führt
schließlich zu Energieabschätzungen, die für Behandlung von nichtlinearen Problemen
wenig geeignet sind, wenn die Lösung dieser Probleme durch Iteration erfolgt. Eine
Möglichkeit, die genannte Schwierigkeit zu umgehen, ist die Verwendung eines Nash-
Moser-Hörmander-Iterationsschemas. Dieses besteht aus einem zweistufigen Verfahren,
wobei ein Glättungsoperator eingeführt wird, um den Regularitätsverlust in jedem
Iterationsschritt zu kompensieren. Eine andere Möglichkeit besteht darin, die zugrun-
deliegenden Funktionenräume so zu modifizieren, dass die A-priori-Abschätzungen
ohne einen Regularitätsverlust auskommen. In dieser Dissertation nehmen wir letztge-
nannten Zugang als Ausgangspunkt und leiten entsprechende lineare Abschätzungen
für einen Modellfall her. Die Abschätzungen sind mit bestehenden Resultaten ver-
gleichbar, jedoch robuster, sodass wir diese später in gewissem Umfang auf den Fall
variabler Koeffizienten übertragen können. Unser Ergebnis stellt einen bedeutenden
Fortschritt auf dem Weg zu einem einstufigen Iterationsverfahren dar, das schießlich
auf nichtlineare Probleme der beschriebenen Art anwendbar sein wird.
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CHAPTER ONE

Introduction

Partial differential equations are powerful tools that can be used to describe a wide
range of physical phenomena, including wave propagation, fluid flow, and heat transfer.
Their study has a long and rich tradition and is still a very active area of research in
modern analysis. Within this field, the treatment of initial boundary value problems
occupies a prominent place, largely justified by the immense variety of applications in
science and engineering. In particular, recent years have seen a growing interest in a
class of boundary problems associated with the formation of shock waves in systems of
hyperbolic conservation laws. In this thesis, we focus on investigating the properties of
this class, and seek to derive energy estimates with potential applications to nonlinear
problems.

1.1 Background

Let Rd
+ be the half-space {x = (y, xd) ∈ Rd : xd > 0} and suppose that L(t, x, Dt, Dx) is

a first-order linear differential operator of the form

L(t, x, Dt, Dx) = Dt +
d

∑
j=1

Aj(t, x)Dj.

Here, Dj
..= −i∂xj and A1(t, x), · · · , Ad(t, x) are n × n matrix-valued functions with

real entries depending on (t, x) ∈ R×Rd
+ ≃ R1+d

+ . In addition, denote by Mm×n(R)
the set of matrices with dimensions m × n and real entries.

Consider the initial boundary value problem
Lu(t, x) = f (t, x) (t, x) ∈ (0, T)×Rd

+,

Bu|xd=0(t, y) = g(t, y) (t, y) ∈ (0, T)×Rd−1,

u(0, x) = u0 x ∈ Rd
+,

(1.1)

1



CHAPTER ONE – Introduction 2

where L is a hyperbolic operator, B ∈ C∞(R×Rd−1,Mp×n(R)), · |xd=0 : C∞(Rd
+) →

C∞(Rd−1) means restriction to the boundary (properly extended to larger function
spaces), and the source terms f , g, u0 are chosen from suitable function spaces to be spec-
ified later. We assume the boundary to be non-characteristic for L, i.e., det Ad(t, x) ̸= 0
for every (t, x) ∈ R×Rd

+ and that the number p of boundary conditions is the number
of positive eigenvalues of Ad.

It has been known since the seminal works of Lopatinskiı̆, Kreiss, and Sakamoto that the
weak Lopatinskiı̆ condition is both necessary and sufficient for the C∞ well-posedness
of (1.1), while the uniform Lopatinskiı̆ condition is necessary and sufficient for the
Hs well-posedness of (1.1) without loss of derivatives (see [BGS07], [Kre70], [Ser99],
[Ben14], and [Sak70] for details). But this lossless scenario is the exception rather than
the rule, and it is observed in many interesting examples that the Lopatinskiı̆ condition
is met weakly but not uniformly 1, thus raising the question of whether it is possible to
systematically classify such examples. The answer to this issue proves to be positive, and
fits indeed in a more general perspective: besides the two stable classes of hyperbolic
initial boundary value problems (L, B) where either the weak Lopatinskiı̆ condition fails
(strongly unstable) or the uniform Lopatinskiı̆ holds (strongly stable), Benzoni–Gavage,
Rousset, Serre, and Zumbrun have identified in [BGRSZ02] a third stable class that they
named weakly regular of real type, or WR for short, for which the Lopatinskiı̆ condition
degenerates to the first order as one approaches the so-called hyperbolic region.

When it comes to energy estimates, strongly unstable and strongly stable initial bound-
ary value problems are well understood. In the former, there is no hope for any
satisfactory theory; in the latter, the uniform Lopatinskiı̆ condition has been shown to
be equivalent to an energy estimate of the type

e−2γT
∫
Rd
+

|u(T, x)|2 dx dt +
∫ T

0

∫
Rd−1

e−2γt|u|xd=0(t, y)|2 dy dt +
∫ T

0

∫
Rd
+

e−2γt|u(t, x)|2 dx dt

(1.2)

≲

∫
Rd
+

|u(0, x)|2 dx dt +
1
γ

∫ T

0

∫
Rd
+

e−2γt|Lu(t, x)|2 dx dt +
∫ T

0

∫
Rd−1

e−2γt|Bu|xd=0(t, y)|2 dy dt,

where we have the remarkable feature that both the input ( f , g, u0) and the solution
are estimated in the same norms (L2 in this example, or any other Sobolev norm). In
an attempt to establish energy inequalities for the WR class, we examine the pure
boundary value problem{

Lu(t, x) = f (t, x) (t, x) ∈ R×Rd
+,

Bu|xd=0(t, y) = g(t, y) (t, y) ∈ R×Rd−1,
(1.3)

where t runs along the whole real line rather than in the interval [0, T). Alternatively, if
we multiply both sides of Lu = f in (1.3) by A−1

d and solve for Dd, we get the equivalent

1this failure being characterised in a distinctive way.



3 1.2. Problem

boundary value problem{
Pu(t, x) ..= Dxd +A(t, y, Dt, Dy) = A−1

d f (t, x) (t, x) ∈ R×Rd
+,

Bu|xd=0(t, y) = g(t, y) (t, y) ∈ R×Rd−1.
(1.4)

It turns out that energy estimates for (1.1) are mainly based on those for (1.4) in
weighted spaces L2

γ ≡ eγtL2 (see Section 2.2.2), so we shall merely analyse Problem (1.4)
hereafter.

1.2 Problem

We shall deal in the sequel with constantly hyperbolic operators. Roughly speaking, an
operator L is said to be symmetrisable of constant multiplicities if every root in τ of
L(t, x, τ, ξ) is real and its multiplicity is locally constant and equal to the dimension of
ker L(t, x, τ, ξ). These operators meet the block structure condition, a central notion in the
construction of microlocal symmetrisers for Dd +A that allow us to distinguish four
different situations according to the spectrum of A, more precisely,

▷ the set of elliptic points E for which A is diagonalisable with complex conjugate
eigenvalues,

▷ the set of hyperbolic points H for which A is diagonalisable only with purely
real eigenvalues,

▷ the set of mixed points EH for which A is diagonalisable with a combination of
complex conjugate and purely real eigenvalues, and

▷ the set of glancing points G for which A is not diagonalisable, but exhibits at
least one Jordan block.

The definition of the WR class is typically given in terms of the Lopatinskiı̆ determinant
∆, a function that vanishes exactly at points where the Lopatinskiı̆ condition fails.
Equipped with ∆, we say that a pair (L, B) is WR if the following conditions are
fulfilled:

▷ The weak Lopatinskiı̆ condition holds,

▷ the uniform Lopatinskiı̆ condition is violated to the first order in the hyperbolic
region H, that is to say, ∂τ∆ ̸= 0 whenever ∆ = 0 in H.

Though formula (1.2) cannot apply to the WR class by its very definition, it is certainly
possible to deduce energy inequalities with loss of derivatives. For instance2,

▷ in [Cou02] and [Cou04], Coulombel studies the linear stability of multidimen-
sional shock waves for hyperbolic systems of conservation laws assuming that

2We warn the reader that the symbols defined here may have a completely different meaning throughout
the text, as we follow in this chapter the authors’ notation in each case to facilitate comparison with the
original references.
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Majda’s uniform condition is violated (see [Maj83b]). Two concrete examples
motivate his research: planar Lax shocks in isentropic gas dynamics and phase
transitions in isothermal fluids. In both cases, Coulombel modifies Kreiss original
construction of a microlocal symmetriser and derives energy estimates for the
linearised boundary value problem with constant and variable coefficients. Al-
though not explicitly stated in any of these papers, but in a later work from 2010

(see [CG10]), these problems belong to the WR class and satisfy energy estimates
of the type

γ|||u|||20,γ + ∥u|xd=0∥2
0,γ ≲

1
γ3 ||| f |||21,γ +

1
γ2 ∥g∥2

1,γ, (1.5)

where
|||u|||2s,γ

..=
∫ ∞

0
∥u(·, xd)∥2

s,γ dxd,

and
∥u∥2

s.γ
..=

1
(2π)d

∫ ∞

0
(γ2 + |ξ|2)s|û(ξ)|2 dξ.

Formula (1.5) remains true when the coefficients have limited regularity (since
Coulombel uses paradifferential calculus) and they are optimal on the scale of
Sobolev spaces, as shown in [CG10] using geometric optics expansions. In the
long run, the loss of one derivative on the interior and one derivative on the
boundary causes some difficulties when applied to nonlinear problems where
iterations are expected.

▷ Initially in [Ser05] and then in collaboration with Benzoni-Gavage in [BGRSZ02],
Serre proposes another approach to deriving energy estimates for the WR class,
for which he applies a specific operator to the solution and the data alike. His
method covers two different scenarios, namely, boundary value problems for
second-order scalar hyperbolic operators with constant and variable coefficients,
and boundary value problems for first-order systems with constant coefficients.
In the scalar case, Serre investigates the wave operator L ..= −∂d − c2∆x in a half-
space supplemented by a boundary condition B ..= −∂d − β − ∂t − v∇y. Then,
through an intricate factorisation, (L, B) is decomposed as follows:

Lz = P f (t, x) ∈ R1+d
+ ,

Pu = z (t, x) ∈ R1+d
+ ,

Ez =
(ϵ2 − 1)

c2 − 4Rg (t, y) ∈ Rd,

(1.6)

where R is a tangential operator (i.e., acting on the variables (t, y)) and P is a
“filter” operator that vanishes at points on the boundary where the Lopatinskiı̆ is
violated. The idea is to choose ϵ in (1.6) so that (L, E) satisfies the uniform
Lopatinskiı̆ condition and Pu = z can be solved, leading eventually to energy



5 1.3. Main results

estimates like

γ∥∇t,xPu∥L2
γ(Q) + ∥∇t,xPu∥2

L2
γ(∂Q) ≤ C

(
1
γ
∥P f ∥2

L2
γ(Q) + ∥Rg∥2

L2
γ(∂Q)

)
,

or
γ∥∇t,xu∥L2

γ(Q) + ∥∇t,xu∥2
L2

γ(∂Q) ≤
C
γ2

(
1
γ
∥P f ∥2

L2
γ(Q) + ∥Rg∥2

L2
γ(∂Q)

)
.

The variable coefficient case for a general hyperbolic operator of second order L
adheres to the same principle, except that one needs to account for lower order
terms at each step, as the composition formulae are no longer exact.

As for the system case, the treatment is done by taking the Fourier transform to
(1.4) and then writing the unknown û as û = π+û + π−û, where π−û (resp. π+û)
is the projection of û onto the stable (resp. unstable) subspace (see Definition 2.4.1).
From here, the divergent term ûs(0) (see Section 8.4.1 in [BGS07]) is controlled by
multiplying ûs(0) by the Lopatinskiı̆ determinant ∆(τ, η), thus paving the way to
obtain energy estimates for û after some manipulations. It should be noted that
one of the inequalities used for this part is only valid in certain region Γ of the
frequency space (see Lemma 8.3 in [BGRSZ02]), a fact that necessarily limits the
scope of the statement. In the end, using Plancherel’s theorem we have

γ
∫

Ω×R
e−2γt∥Pγu∥2 dx dt +

∫
∂Ω×R

e−2γt∥Pγγ0u∥2 dx dt (1.7)

≤ C
(

1
γ

∫
Ω×R

e−2γt∥PγLu∥2 dx dt +
∫

∂Ω×R
e−2γt|Pγγ0(Ad)−1MTBu|2 dx dt

)
,

where Pγ is a pseudo-differential operator with symbol p(τ, η) = π+ +∆(τ, η)π−,
γ0 is the trace operator and M is some matrix such that (Ad)−1MTB is a projector.
Finally, the author claims that Pγ is an operator of real principal type, meaning in
practice that the pseudodifferential problem Pγu = z is solvable for u.

In summary, while Serre’s philosophy serves as the starting point for this work,
his techniques rely on ad-hoc steps that barely admit any generalisation beyond
the model problem presented in each case.

1.3 Main results

We now outline the results of this thesis and explain how they address the issues
identified in the references mentioned above. These findings provide a significant
improvement in the overall understanding of various aspects of the WR class. To start
with, let P ..= Dd + A(Dt, Dy) be an n × n first-order differential operator with constant
coefficients and B a p × n full rank matrix, with p identical to the dimension of the
stable space of A(τ, η) (see Definition 2.4.1). In Section 3.2, we begin by exploring the
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model problem{
Pu(t, x) ..=

(
Dd + A(Dt, Dy)

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bu|xd=0(t, y) = g(t, y) (t, y) ∈ Rd,
(1.8)

subject to a set of auxiliary hypothesis that we make precise in Assumption 2.3.1.
Although we deduce energy estimates for (1.8) that are basically the same as those
in [Ser05] and [BGS07], our approach based on the construction of a symmetriser is
more robust because it extends the validity of (1.7) beyond Γ, and because it reveals
a necessary condition that must be satisfied by any further generalisation of this
symmetriser. Essentially, we prove the existence of two families of pseudo-differential
operators ∆γ = Opγ(δ) and Σγ = Opγ(σ) so that:

▷ the set of points where the Lopatinskiı̆ condition fails is included in the character-
istic set of ∆γ,

▷ Σγ is self-adjoint,

▷ if
L∆

..= {v ∈ S ′(R1+d
+ , Rn) : ∆γv ∈ L2

γ(R1+d
+ , Cn)},

then for every v1, v2 ∈ L2
∆ there exists a positive constant C satisfying

⟨Σγv1, v2⟩ ≤ C|∆γv1||∆γv|,

▷ there is a positive constant c such that

Im ⟨Σγ Aγv, v⟩ ≥ cγ|∆γv|2

for each v ∈ L2
∆,

▷ there exist positive constants α and β for which

⟨Σγv(0), v(0)⟩ ≥ α|∆γv(0)|2 − β|Bv(0)|2

holds true for every v ∈ L2
∆.

As we shall see in Chapter 3, when the Lopatinskiı̆ condition fails at one point, the
intersection of the stable subspace and the kernel of B is a one-dimensional subspace of
Cn. Being a special one, we call it the critical direction and denote it by ℓ. Interestingly,
we are in a position to explain in Proposition 3.2.1 how Σγ degenerates around ℓ: if a is
the principal symbol of A(Dt, Dy) and ∆(ζ0) = 0, then v 7→ ⟨σ(ζ0)v, v⟩ vanishes on the
Krylov space of ℓ(ζ0) with respect to a(ζ0), i.e., the smallest invariant subspace of a(ζ0)

containing ℓ(ζ0). We take this observation into account in subsequent generalisations
of Σγ.

Having prepared the ground with the previous case study, we tackle the main problem.
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In order to include higher-order scalar systems as well as first-order matrix systems,
we propose the more general problem{

Pγuγ(t, x) ..=
(

Dd + Aγ(t, y, xd, Dt, Dy)
)

u(t, x) = f (t, x) (t, x) ∈ R1+d
+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(1.9)

where fγ, gγ are chosen at least in L2
γ, and Aγ ∈ OPS1

γ is a classical pseudo-differential
operator with parameter whose symbol a admits an asymptotic expansion

a ∼
∞

∑
j=0

a1−j,

each a1−j being an n × n homogeneous matrix of degree 1 − j. In the same spirit,
Bγ ∈ OPS0

γ is a classical γ−dependent pseudo-differential operator with a p × n matrix
b as principal part. If we suppose that (Pγ, Bγ) satisfies the definition of the WR class
(besides some other structural assumptions), we show that there exists symbols ℯ̃0 and
δ with the following features:

▷ ℯ̃0 and δ are homogeneous of degree 0,

▷ ℯ̃0 ∈ GLn(C) and
ȧ1

..= ℯ̃−1
0 a1ℯ̃0

is diagonal with entries a1,1, · · · , a1,n,

▷ there exits s ≤ p so that δ is diagonal with respect to the basis ℯ̃0 and given by

δ = diag(δ−, In−p), (1.10)

where

δ− ..=




δ−1 . . . 0
...

. . .
...

0 . . . δ−s


Ip−s

,

with each δ−j being the solution of the transport equation∂dδ−j + {δ−j , a1,j} = 0,

δ−j |xd=0 = ∆,
(1.11)

▷ If xd = 0, there exist smooth matrix-valued functions q and m with dimensions
p × p and p × n, respectively, so that if ḃ ..= bℯ̃0, there holds the identity

qḃ = mδ, (1.12)
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▷ when nontrivial, ker δ is an s−dimensional invariant subspace of a1 containing
the critical direction ℓ.

Next, we generalise the WR symmetriser Σγ that was postulated earlier for the model
problem. Certainly, if ∆γ = Opγ(δ) and Qγ = Opγ(q), we claim that it is possible
to find a family Σγ of C1 operator-valued mappings depending on xd so that for γ

sufficiently large,

▷ Σγ(xd) is self-adjoint.

▷ for every v1, v2 ∈ L2
∆, there is a positive constant C satisfying

⟨Σγ(xd)v1, v2⟩ ≤ C|∆γ(xd)v1||∆γ(xd)v|.

▷ There is a positive constant c, independent of xd, such that

⟨∂dΣγ(xd)v, v⟩+ 2 Im ⟨Σγ(xd)Aγ(xd)v, v⟩ ≥ cγ|∆γ(xd)v|2

for each v ∈ L2
∆.

▷ There exist positive constants α and β for which

⟨Σγ(0)v(0), v(0)⟩ ≥ α|∆γ(0)v(0)|2 − β|QγBγv(0)|2

holds true for every v ∈ L2
∆.

In contrast to the standard case where the uniform Lopatinskiı̆ condition is satisfied,
lower order terms in a WR problem are problematic and require some attention. To
deal with them, we have to resort to finer tools, including a technical lemma (see
Lemma 3.3.2) and the following statement.

Proposition (Chapter 3 - Proposition 3.3.1). The norms ∥∆γ · ∥ lie between L2
γ and H−1

λ

for γ larger than γ0 ≥ 1, that is to say, there exist positive constants C1 and C2 such that

C1∥ · ∥γ,−1 ≤ 1
γ0

∥∆γ · ∥ ≤ C2∥ · ∥γ, (1.13)

for every γ ∈ (γ0,+∞].

Due to Proposition 3.3.1, we are able to recover Coulombel’s estimates with loss of one
derivative. Overall, by combining Σγ with a partition of unity, we can prove the main
theorem of this work.

Theorem (Chapter 3 - Theorem 3.3.2). Let{
Pγuγ(t, x) ..=

(
Dd + Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(1.14)

where Aγ ∈ OPS1
γ(R1+d

+ × [1,+∞)) and Bγ ∈ OPS0
γ(Rd × [1,+∞)) are classical pseudo-
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differential operators with matrix-valued symbols a(X) and b(X) of dimensions n × n and
p × n, respectively. Suppose that Pγ is hyperbolic in the sense of Definition 2.3.1, Pγ and Bγ

satisfy Property (C) (see Assumption 2.3.1), and that p = dimE−(X). Then there exist

(i) γ0 ≥ 1,

(ii) a family of pseudodifferential operators

∆γ(t, x, Dt, Dy) ∈ OPS0
γ(R1+d

+ × [γ0,+∞)),

(iii) function spaces

L2
∆

..= {v ∈ S ′(R1+d
+ , Rn) : ∆γv ∈ L2

γ(R1+d
+ , Cn)},

Hs
∆

..= {v ∈ S ′(R1+d
+ , Rn) : Λs

γv ∈ L2
∆(R1+d

+ , Cn)},

(iv) and a positive constant C such that,

if f ∈ L2
γ(R1+d

+ ) and g ∈ L2
γ(Rd), then for all γ > γ0 and every u ∈ D(R1+d

+ ) the following
estimate holds

γ∥∆γu∥2
0,γ + |∆γu(0)|20,γ ≤ C

(
1
γ
∥ f ∥2

0,γ + |g|20,γ

)
. (1.15)

More generally, if f ∈ Hs
γ(R1+d

+ ) and g ∈ Hs
γ(Rd),

γ∥∆γu∥2
s,γ + |∆γu(0)|2s,γ ≤ C

(
1
γ
∥ f ∥2

s,γ + |g|2s,γ

)
. (1.16)

The last result of this thesis concerns the existence, uniqueness and regularity of the
solution of the WR problem. To answer these and other relevant questions about
u, we show that ∆γu is indeed the solution to a problem satisfying the uniform
Lopatinskiı̆ condition. This insight, which is encoded in Theorem 3.3.2, allows us to
use all the machinery developed in Chapter 2 and, ultimately, to draw conclusions for
u by studying the operator ∆γ. As the proposition below indicates, the key element is
that ∆γ is an operator of principal type.

Proposition (Chapter 4 - Proposition 4.2.1). Let δ(X) = diag(δ−(X), In−p),

δ−(X) ..=




δ−1 (X) . . . 0
...

. . .
...

0 . . . δ−s (X)


Ip−s

, (1.17)

where δ1(X), · · · , δs(X) are solutions of (1.11). Then the operator Opγ (δj) is of principal
type for every j ∈ {1, · · · , s}.
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We conclude with a concise description of the propagation of singularities for a WR
problem.

Theorem (Chapter 4 - Theorem 4.2.1). ConsiderOpγ (δj)ũj = w̃j,

ũj|t=0 = 0,
(1.18)

where w̃ ∈ Hs
γ(R

1+d
+ ) and Opγ (δj) is as defined in Proposition 4.2.1. Then there exists a

unique solution of (4.10) modulo C∞ for which

WFs+m−1(ũj) \ WFs(Opγ (δj)ũj) ⊂ δ−1
j (0). (1.19)

1.4 Thesis structure

This thesis is organised as follows: in Chapter 2, we set much of the notation that
will be used throughout the document and recapitulate some well-known facts on
boundary value problems. This includes, but it is not limited to, a precise notion of
hyperbolicity, parameter-dependent pseudo-differential operators, weighted-in-time
Sobolev spaces, the block structure condition, the Lopatinskiı̆ condition, L2−energy
estimates and its consequences. In Chapter 3, we examine the WR problem in depth.
Firstly, we establish the concept of a stable class and give some examples. Secondly,
we exhibit an alternative characterisation of the WR class that fits better our purposes
when constructing a symmetriser for the model problem. After that, we implement the
subsequent generalisations to variable coefficients and construct families ∆γ and Σγ

having all the necessary properties to get a priori estimates. In Chapter 4, we define
operators of (real) principal type and introduce the main theorems in this direction. We
then verify that ∆γ is of this kind and elaborate on how to solve ∆γu = w. Lastly, we
finish with an appendix that covers miscellaneous results that are of some use over the
course of this discussion.



CHAPTER TWO

Regular boundary problems in a
half-space

In this chapter we synthesise the main aspects of the theory of boundary value problems
in a half-space. In the interest of balancing precision and fluency, we refrain from
including all the proofs and provide instead only those that are of some use to the
discussion, feeling free to cite the rest. As far as possible, we shall introduce the most
relevant concepts from scratch, without assuming any specific knowledge beyond the
classical ideas of mathematical analysis and the standard theory of pseudodifferential
operators.

Let us briefly describe the content. In Section 2.1, we specify some basic notation
and state the target problem of the chapter. In Section 2.2, we explore function
spaces and certain classes of pseudodifferential operators that constitute the basis for
subsequent arguments. In Section 2.4, we detail further results on boundary value
problems, including two cornerstones of this thesis: the block structure condition and
the Lopatinskiı̆ condition. In Section 2.5, we derive energy estimates using previously
established facts and some structural assumptions. Finally, we investigate in Section
2.6 the existence, uniqueness, and regularity of the solution by combining the energy
estimates and other tools from functional analysis.

2.1 Problem set-up

2.1.1 Background and notation

Let x = (x1, · · · , xd) ∈ Rd and t ∈ R. If we denote by y the variables (x1, · · · , xd−1),
the half-space corresponds to

Rd
+

..= {x = (y, xd) ∈ Rd : xd > 0}.

11
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As may be verified by inspection, the boundary is given by

∂Rd
+ = {x = (y, xd) ∈ Rd : xd = 0} ≃ Rd−1.

Other domains (as long as they are good enough) may be reduced to this situation by
using local charts and a partition of unity, so there is no loss of generality in working
with flat boundaries right from the beginning. Besides the spatial coordinate x, one
of the variables in the type of problems we are interested in may be identified with
time, even though it is defined all over R. Mathematically, we take this into account by
writing the space-time as R1+d

+ = R×Rd
+.

Except for the scalar case, which is discussed in Section 2.3, the operators involved are
matrix form and hence it will be useful to fix some basic notation for this purpose. For
example, we denote by Mn×m(R) (resp. Mn×m(C)) the set of matrices with dimension
n × m and real entries (resp. complex entries), by Im the identity matrix of order m ∈ N,
and by M = diag(m1, · · · , mn) a generic diagonal matrix with elements m1, · · · , mn.
As for the differential operators, we often write Dj instead of Dxj .

Let us establish the concrete problem we wish to tackle. Consider the first order
differential operator

L(t, x, Dt, Dx) = Dt +
d

∑
j=1

Aj(t, x)Dj, (2.1)

whose coefficients Aj(t, x) are smooth matrix-valued functions with real entries. For
future reference, we take (τ, ξ) = (τ, η, ξd) as the set of covariables of (t, x) = (t, y, xd)

and define

A(t, x, η, ξd) =
d−1

∑
j=1

ηj Aj(t, x) + ξd Ad.

The symbol of L(t, x, Dt, Dx) is then

L(t, x, τ, η, ξd) = τ + A(t, x, η, ξd),

and the characteristic polynomial πL(t, x, τ, ξ) of L is given by

πL(t, x, τ, ξ) = det L(t, x, τ, η, ξd) = det (τ + A(t, x, η, ξd)). (2.2)

In the sequel, we shall deal with constantly symmetrisable hyperbolic operators in the
t-direction, the precise meaning of which is addressed below.

Definition 2.1.1. The operator L is symmetrisable hyperbolic of constant multiplicities or
constantly hyperbolic for short, if there are positive integers α1, · · · , αq and real analytic,
pairwise different functions λ1(t, x, ξ), · · · , λq(t, x, ξ) defined on R1+d

+ ×Rd such that

πL(t, x, τ, ξ) =
q

∏
k=1

(τ + λk(t, x, ξ))αk , (2.3)
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and the mappings λ1(t, x, ξ), · · · , λq(t, x, ξ), when understood as the eigenvalues of A(t, x, η, ξd),
are semi-simple. In particular, when αk = 1 for every k ∈ {1, · · · , q}, the eigenvalues are
simple and L is said to be strictly hyperbolic.

A first compatibility condition follows from the above definition: when L is constantly
hyperbolic, Ad(t, x) must be diagonalisable over the reals since A(t, x, 0, 1) = Ad(t, x)
for all (t, x) ∈ R1+d

+ . We shall soon impose the stronger condition that the eigenvectors
of Ad are either positive or negative, but in no case equal to 0.

2.1.2 A boundary value problem in a half-space

After this preparation, we shall study a boundary value problem{
L(t, x, Dt, Dx)u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bu|xd=0(t, y) = g(t, y) (t, y) ∈ Rd,
(2.4)

where B ∈ C∞(Rd,Mp×n(R)), f and g are functions chosen from suitable functions
spaces to be defined, and · |xd=0 stands for the trace operator on Rd (see Theorem 2.1.1).
Also, we supplement Problem 2.4 with extra hypotheses.

Assumption 2.1.1.

(i) L is symmetrisable of constant multiplicities.

(ii) The boundary ∂R1+d
+ ≃ Rd is non-characteristic for L, meaning that Ad is nonsingular

for all (t, y, 0) ∈ Rd.

(iii) B is assumed to be everywhere of maximal rank p, with p being the number of positive
eigenvalues of Ad (the number of incoming characteristics).

(iv) (L, B) satisfies for all (t, y) ∈ Rd the normality condition

Rn = ker B(t, y)⊕ Es(Ad(t, y, 0)),

where Es(Ad(t, y, 0)) is the stable subspace of Ad(t, y, 0), i.e., the subspace spanned by
eigenvectors associated with negative eigenvalues.

While the first three items are typical assumptions for (2.4), the last one may seem less
natural. The reason for Condition (iv) is twofold: in the present context, it facilitates the
classification of boundary value problems in Chapter 3; in the broader sense of initial
boundary value problems, normality is a necessary condition to ensure well-posedness
in spaces of considerable importance like L2 (see Section 4.1.2 in [BGS07] for an ample
discussion on this matter).

To bring this section to an end, we formalise the intuition behind restricting u to the
boundary {xd = 0}.

Theorem 2.1.1 (Theorem 9.8, [BGS07]). Let (L, B) be a boundary value problem subject to
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Assumption 2.1.1. If the subspace

E ..= {w ∈ L2(R1+d
+ ) : Pw ∈ L2(R1+d

+ )}

is endowed with the graph norm, then D(R1+d
+ ) is dense in E and the trace operator

· |xd=0 : D(R1+d
+ ) −→ D(Rd)

w 7−→ w|Rd

extends in a unique way to a continuous map from E to H−1/2(Rd).

Provided there is no room for confusion, we shall refer to the trace operator acting on
u as u|xd=0 or u(·, 0) interchangeably.

2.2 Function spaces and parameter-dependent operators

2.2.1 Pseudodifferential calculus with parameter

In this section, we shall introduce the basic ideas behind the pseudodifferential calculus
with parameter. To make the exposition easier, we stick to the following conven-
tion:

▷ we set ζ ..= (τ − iγ, η) ≃ (τ, η, γ),

▷ we use | · | or ∥ · ∥ depending on whether we are dealing with matrix norms
(single bars) or norms in function spaces (double bars),

▷ by an abuse of notation, we represent both the inner product of L2(R1+d
+ ) and

L2(Rd) by ⟨· , ·⟩.

Just as the Japanese bracket λs(τ, η) = (1 + τ2 + η2)s/2 is the object to compare with
in the conventional pseudodifferential calculus, the parameter-dependent Japanese
bracket

λs
γ(τ, η) ≡ λs(ζ) ..= (γ2 + τ2 + η2)s/2 (2.5)

serves as the model symbol in the new setting. In practice, substituting λs(τ, η) by
λs(ζ) does not change the results significantly and virtually any concept from the
theory of pseudodifferential operators without parameter may be reformulated into a
parameter-dependent version with only a few changes, usually. Notably, a γ−variant
of the familiar Sobolev spaces Hs can be obtained by replacing λs(τ, η) by λs

γ(τ, η) to
get

∥u∥Hs
γ
= ∥λs

γû∥L2 . (2.6)

As might be expected, the hat on top of u in (2.6) refers to the Fourier transform of
u with respect to the variables (t, y). It turns out that Formula (2.6) defines a family
of γ-indexed norms that is equivalent to the standard ∥ · ∥Hs norm. Actually, the
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interactions between ∥ · ∥Hs and ∥ · ∥Hs
λ

are generally simple and merely require some
γ factor to be taken into account. For instance,

∥u∥Hs ≤ ∥u∥Hs
γ
≤ γs∥u∥Hs s > 0,

γs∥u∥Hs ≤ ∥u∥Hs
γ
≤ ∥u∥Hs s < 0,

∥u∥Hs ≤ ∥u∥Hs
γ
≤ γs−m∥u∥Hm

γ
s ≤ m,

are common inequalities. We continue with the definition of a class Sm
γ (Rd × Rd ×

[γ0,+∞)) of tangential pseudodifferential operators depending on the parameter
γ.

Definition 2.2.1. Let m ∈ R and γ0 ≥ 1. Let us denote by Sm
γ (Rd ×Rd × [γ0,+∞)) the set

of functions a ∈ C∞(Rd ×Rd × [γ0,+∞),Mn×m(R)) so that for all multi-indices α, β ∈ Nd

there exists a positive constant Cα,β such that

|∂α
(t,y)∂

β
ζ a(t, y, ζ)| ≤ Cα,βλm−|β|(ζ) (2.7)

for all γ ≥ γ0.

To any symbol a(t, y, τ, η, γ) ∈ Sm
γ (Rd × Rd × [γ0,+∞)), we may associate a family

Opγ(a) of pseudodifferential operators depending on γ through the expression

(Opγ(a)u)(t, y) =
1

(2π)d

∫
Rd

ei(tτ+yη)a(t, y, τ, η, γ)û(τ, η) dτ dη. (2.8)

As in the traditional calculus, the set OPSm
γ (Rd × [γ0,+∞]) consists of families of

pseudodifferential operators {Opγ(a)}γ≥γ0 for which the mapping property

∥Opγ(a)u∥Hs−m
γ

≤ C∥u∥Hs
γ

(2.9)

holds for some positive constant C, every γ ≥ γ0 ≥ 1, and all s ∈ R. A prototypical
example of a family of order m is Λm

γ
..= Opγ(λ

m
γ ), as may be seen from the definition

and the elementary computation

∥Λm
λ u∥Hs−m

γ
= ∥Λs−m

γ Λm
γ u∥L2 = ∥Λs

γu∥L2 = ∥u∥Hs
γ
.

As the next theorem shows, compositions and adjoints obey similar rules as in the
ordinary case.

Theorem 2.2.1 (Theorem C.6, [BGS07]). Let a ∈ Sm
γ , b ∈ Sn

γ. For some γ0 ≥ 1, it is true
that

(i) {Opγ(a)}γ≥γ0 ∈ OPSm
γ ,

(ii) {Opγ(a)∗ − Opγ(a∗)}γ≥γ0 ∈ OPSm−1
γ ,

(iii) {Opγ(a) ◦ Opγ(b)− Opγ(ab)}γ≥γ0 ∈ OPSm+n−1
γ ,
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(iv) {[Opγ(a), Opγ(b)]− Opγ([a, b])}γ≥γ0 ∈ OPSm+n−1
γ .

We shall also make extensive use of the relation

[Opγ(a), Opγ(b)] ∈ OPSm+n−1
γ ,

if the symbols a and b happen to be commutative. Looking ahead to Section 2.5 in this
chapter, we state a parameter-dependent Gårding’s inequality in its normal and sharp
version.

Theorem 2.2.2 (Gårding’s inequality - Theorem C.7, [BGS07]). Let a ∈ Sm
γ . Suppose

that for some positive constant α

Im ⟨a(t, y, ζ)v, v⟩ ≥ αλm(ζ)|v|2,

for all v ∈ Cn and every (t, y, τ, η, γ) ∈ Rd ×Rd × [1,+∞]. Then there there exists γ0 ≥ 1
such that for every γ ≥ γ0 and each u ∈ Hm/2

γ ,

Im ⟨Opγ(a)u, u⟩ ≥ α

4
∥u∥2

Hm/2
γ

.

Theorem 2.2.3 (Sharp Gårding’s inequality - Theorem C.8, [BGS07] - Chapter VII,
[Tay06]). Let a ∈ Sm

γ . Suppose that

Im ⟨a(t, y, ζ, γ)v, v⟩ ≥ 0,

for all v ∈ Cn and every (t, y, τ, η, γ) ∈ Rd ×Rd × [1,+∞]. Then there there exist γ0 ≥ 1
and C > 0 such that for every γ ≥ γ0 and each u ∈ Hm/2

γ ,

Im ⟨Opγ(a)u, u⟩ ≥ −C∥u∥2
H(m−1)/2

γ

.

2.2.2 Weighted spaces and conjugated operators

As we shall see in due course, energy estimates for (2.4) are given in weighted-in-time
spaces eγtL2(R1+d

+ ), with γ > 0. Intuitively, the presence of a large parameter γ allows
us to absorb errors due to lower order terms and focus exclusively on the leading
parts of the operators, just as in the constant coefficients case, where only the principal
symbols are of interest (see [Maj83a] and [Maj83b]). Specifically, we have:

Definition 2.2.2. Let Ω be either R1+d
+ or ∂R1+d

+ ≃ Rd with dµ being the appropriate measure
in each case. If γ ∈ R, the space L2

γ(Ω) ≡ eγtL2(Ω) consists of functions u in Ω such that
e−γtu ∈ L2(Ω). Furthermore, L2

γ(Ω) is a Hilbert space endowed with the inner product

⟨u, v⟩γ
..= ⟨e−γtu, e−γtv⟩ =

∫
Ω

e−2γtuv dµ,
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and corresponding norm

∥u∥2
0,γ =

∫
Ω

e−2γt|u|2 dµ.

We can define weighted Sobolev spaces Hs
γ(Ω) ≡ eγtHs

λ(Ω) in the same manner as the set of
elements e−γtu ∈ Hs

λ(Ω), endowed with the norm

∥u∥2
s,γ =

∫
Ω

e−2γt|Λs
γu|2 dµ.

When γ > 0, the elements of L2
γ(Ω) must vanish as t → −∞ to compensate the

exponential factor e−γt, so the choice of a positive parameter γ is consistent with an
orientation of time (see [Mét04]).

We now describe the operators that we will be using hereafter. Given a family of
pseudodifferential operators with parameter A(t, x, Dt, Dy, γ) ∈ OPSm

γ (Rd × [γ0,+∞]),
we define the conjugated operator Aγ by the formula

Aγ(t, x, Dt, Dy) = eγtA(t, x, Dt, Dy, γ)e−γt. (2.10)

When expressed as an oscillatory integral, Aγ applied to u ∈ D(R1+d
+ ) reads

Aγu(t, x) =
1

(2π)d

∫
Rd

ei(t(τ−iγ)+yη)A(t, y, τ, η, γ)F [e−γtu(t, y)] dτ dη

=
1

(2π)d

∫
Rd

ei(tρ+yη)A(t, y, ρ + iγ, η, γ)(Fu)(ρ, η) dρ dη, (2.11)

where ρ ..= τ − iγ and F ≡ F(t,y) is the Fourier transform with respect to (t, y). In fact,
we may deduce from (2.11) that

Aγ = A(t, y, Dt + iγ, Dy, γ),

or simply
Aγ = A(t, y, Dt, Dy),

if A(t, y, ρ, η) is a polynomial in ρ and η. Properties such as (2.9) and the like remain
valid for Aγ, as can be shown in an elementary fashion for operators Pγ and Qγ of
order 0 and −1, for which it is established that (see [CP82, pp. 413])

∥Pγu∥0,γ ≤ C∥u∥0,γ and ∥Qγu∥0,γ ≤ C
γ
∥u∥0,γ,

for all u ∈ D(R1+d
+ ) and γ sufficiently large. To close this section, let us present a class of

pseudodifferential operators that captures the idea of the upper half-space as a foliation
of horizontal lines. Denoted by OPSm

γ (R1+d
+ × [γ0,+∞)), it consists of γ-dependent
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tangential pseudodifferential operators parametrised by xd, of the form

Aγ(t, y, xd) = A(t, y, xd, Dt + iγ, Dy, γ).

For each xd ≥ 0, A(t, y, xd, τ, η, γ) ∈ Sm
γ (Rd ×Rd × [γ0,+∞)) and the estimate (2.7) is

satisfied uniformly in xd. Interestingly, the properties of OPSm
γ (Rd ×Rd × [γ0,+∞))

transfer to OPSm
γ (R1+d

+ × [γ0,+∞)) via standard arguments and the next proposi-
tion.

Proposition 2.2.1 (Proposition 2.4 - Chapter 7, [CP82]).
Let Aγ(t, y, xd) ∈ OPS1

γ(R1+d
+ × [γ0,+∞)). If u ∈ L2(R+, Hs

γ(Rd)) is such that (Dxd +

Aγ(t, y, xd))u ∈ Hs−1(R1+d
+ ), then u ∈ Hs(R1+d

+ ).

2.3 The scalar case

Let L be an m-th order differential operator

L(t, x, Dt, Dx) = Dm
t +

m−1

∑
i=0

Am−i(t, x, Dx)Di
t, (2.12)

whose coefficients are scalar classical pseudodifferential operators Am−j ∈ OPSm−j with
principal symbols am−j ∈ Sm−j, each am−j being homogeneous of degree m − j and

independent of (t, x) outside some compact set of R1+d
+ . As in the system case, we are

interested in the boundary value problem{
L(t, x, Dt, Dx)u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

B(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(2.13)

where Bu is defined by p scalar equations (Bju)j=1, ··· ,p so that

Bju ..=
m

∑
k=1

Bj,k(t, y, Dt, Dy)γk−1u.

Here above, Bj,k is a differential operator of order rj − k + 1 with smooth coefficients
and

γku ..= (−iν)k u|Rd ,

where ν is as a fixed vector field transversal to the boundary. To reduce (2.13) to a
matrix system, we assume that the coefficient of Dd in (2.12) is non-vanishing (i.e., L is
non-characteristic with respect to B) and write L as

P = Dm
xd
+

m−1

∑
i=0

Pm−i(t, x, Dt, Dy)Di
xd

,
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with Pm−j being homogeneous of degree m − j. If uj
..= Λm−j

λ Dj−1
xd u and gj

..= Λ
m−1−rj
γ gj,

let us define uγ
..= (u1, · · · , um) and Gγ

..= (g1, · · · , gd). In the same spirit, set Fγ =

(0, · · · , 0, f ). In the end, we can formulate problem (2.13) as{(
Dd +Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = F(t, x) (t, x) ∈ R1+d

+ ,

Bγ(t, y))u(t, y, 0) = G(t, y) (t, y) ∈ Rd,
(2.14)

where

Aγ
..=



0 Λγ 0 · · · 0
0 0 Λγ · · · 0
...

...
. . . . . .

...

0 0
. . . Λγ

A1γ A2γ · · · · · · Amγ


and Bγ

..= (Bj,k,γ) j=1, ··· ,p
k=1, ··· ,m

. (2.15)

The entries in (2.15) are given by Aj,γ
..= Pm−j+1Λ−m+j

γ and Bj,k,γ
..= Λm−1−rj,γBj,kΛ−m+k

γ .
If a(X) and b(X) are the principal symbols of Aγ and Bγ, respectively, it is clear that
a(X) is homogeneous of degree 1 and that b(X) is homogeneous of degree 0. The notion
of hyperbolicity that fits this situation is therefore the one in Definition 2.3.1.

2.3.1 A more general problem

In order to cover both the scalar and the system case, we shall examine a more general
problem in the rest of the chapter. To put things in perspective, let us first analyse (2.4)
under the Assumption 2.1.1. If uγ

..= e−γtu, a quick calculation yields

L(eγtu) = eγt(L − iγ)u,

and we see that (2.4) is equivalent to{
L(t, x, Dt, Dy, γ)uγ(t, x) = fγ(t, x) (t, x) ∈ R1+d

+ ,

B(t, x, γ)uγ(t, y, 0) = gγ(t, y) (t, y) ∈ Rd,
(2.16)

where fγ = e−γt f , gγ = e−γtg,

L(t, x, Dt, Dy, γ) ..=

(
Dt − iγ +

d

∑
j=1

A(t, x)Dj

)
and B(t, x, γ) ..= B(t, x).

Evidently, (2.16) can be written in terms of conjugated operators Lγ and Bγ as well,
like {

Lγ(t, x, Dt, Dy)u(t, x) = f (t, x) (t, x) ∈ R1+d
+ ,

Bγ(t, x)u(t, y, 0) = g(t, y) (t, y) ∈ Rd.
(2.17)
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At this level, we take into account the special role of xd and recast the differential
equation in (2.17) as

Ddu + eγt A−1
d

(
Dt − iγ +

d−1

∑
j=1

Aj(t, x)Dj

)
e−γtu = A−1

d f (t, x),

so we get in the end{
Pγu(t, x) ..=

(
Dd +Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = A−1

d f (t, x) (t, x) ∈ R1+d
+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(2.18)

with

Aγ(t, y, xd, Dt, Dy) ..= eγt A−1
d

(
Dt − iγIn +

d−1

∑
j=1

Aj(t, x)Dj

)
e−γt (2.19)

and
Bγ(t, y, Dt, Dy) ..= B(t, y).

A reasonable generalisation of (2.18) is therefore the boundary value problem{
Pγu(t, x) ..=

(
Dd +Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(2.20)

where Aγ ∈ OPS1
γ(R1+d

+ × [γ0,+∞)) is a classical pseudodifferential operator whose
principal part a(t, y, xd, τ, η, γ) is an n × n matrix-valued function that is homogeneous
of degree 1, Bγ ∈ OPS0

γ(Rd × [γ0,+∞)) is a classical pseudodifferential operator whose
principal symbol b(t, y, τ, η, γ) is a p × n matrix-valued function that is homogeneous
of degree 0, and the initial data f and g are chosen at least in L2

γ. It should be noted
that by writing Dd alone in (2.20), we are assuming implicitly that the new problem is
non-characteristic.

Let us suggest some notation before proceeding further. The frequency set and its
projection onto {γ = 0} are characterised by

Ξ ..= {ζ = (τ − iγ, η) ∈ C×Rd−1 \ {0, 0} : γ ≥ 0}, Ξ0
..= Ξ ∩ {γ = 0},

whereas the space-time-frequency set and its projection onto {γ = 0} are given by

X ..= {(t, y, xd, τ, η, γ) : (t, y, xd) ∈ R1+d
+ , (τ − iγ, η) ∈ Ξ}, X0

..= X∩ {γ = 0}.

As we have seen already, the symbols in this work are classical and thus reducible to
homogeneous pieces in (τ − iγ, η), so it may be advantageous to concentrate on the
sphere

Sd ..= {(τ − iγ, η) ∈ Ξ : γ2 + τ2 + |η|2 = 1},
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or when required, on the set

XS
..= {X ∈ X : (τ, η, γ) ∈ Sd}.

In the same vein, we define

Y ..= {X ∈ X : X = (t, y, 0, η, τ, γ)} and YS
..= {X ∈ Y : (τ, η, γ) ∈ Sd}.

Let X = (t, y, xd, η, τ, γ) be here and everywhere a generic point in X. We shall adopt the
following notion of hyperbolicity for Problem 2.20 (see [Mé00] for more details).

Definition 2.3.1. Let X = (t, x, τ, η, γ) ∈ XS and set πP(X, ξd) = det(ξd In + a(X)).

(i) When γ ̸= 0, πP(X, ξd) ̸= 0 for every ξd ∈ R. This may be rephrased by saying that
a(X) has no real eigenvalues when γ ̸= 0.

(ii) If ξd ∈ R is such that πP(X, ξd) = 0, there exist α ∈ N together with smooth functions
λ(t, x, η, ξd) and e(X, ξd) defined locally around (t, x, η, ξd) and (X, ξ

d
), respectively,

such that they are holomorphic in ξd,

πP(X, ξd) = e(X, ξd)(τ − iγ + λ(t, x, η, ξd))
α, (2.21)

and e(X, ξd) is nonvanishing at (X, ξd). Moreover, λ is real when ξ is real and there is a
smooth matrix-valued function Π(X) on a neighbourhood of X, holomorphic with respect
to ξd, such that Π is a projector of rank α for which ker(ξd In + a(X)) = Π(X)Cn when
τ − iγ + λ(t, x, η, ξd) = 0.

We shall refer to the concrete situation when α = 1 in (2.21) as the strictly hyperbolic
case.

When Aγ is the differential operator (2.19), Definitions 2.1.1 and 2.3.1 are compatible,
meaning that Conditions (i) and (ii) above hold if and only if the operator L is hyperbolic.
Indeed, if we assume that ξd = −µ is a purely real eigenvalue of

a(X) ≡ a(t, x, τ, η, γ) = A−1
d

(
(τ − iγ)In +

d−1

∑
j=1

ηj Aj(t, x)

)
,

then

0 = πP(X, ξd) = det(a(X)− µIn) = det (A−1
d )det

(
ξd Ad + (τ − iγ)In +

d−1

∑
j=1

ηj Aj(t, x)

)
= det (τ − iγ + A(t, x, η, ξd)) ,

which contradicts the hyperbolicity of L unless γ = 0. This clever observation is known
as Hersh’s lemma. In addition, if X = (t, x, τ, η, 0) ∈ X0 and ξ

d
verify that πP(X, ξ

d
) =

0, then (η, ξ
d
) ̸= 0 because (τ, η

d
) ̸= 0, and there exists a unique eigenvalue λj
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so that τ + λk(t, x, η, ξ
d
) = 0 in view of (2.3). Under these circumstances, both λj

and the eigenprojector Πj extend to functions of ξd ∈ C for which Condition (ii) is
applicable.

Back to Problem 2.20, we impose the following set of hypotheses.

Assumption 2.3.1.

(i) Pγ is hyperbolic as in Definition 2.3.1.

(ii) The symbols a(X) and b(X) are independent of (t, x) outside certain compact set K. We
shall designate this as property (C).

(iii) b(X) is everywhere of maximal rank p.

2.4 Additional results on boundary value problems

2.4.1 Stable and unstable subspaces

As a first step, let us note that Part (i) in Definition 2.3.1 implies that if γ > 0, a(X) is a
hyperbolic matrix in the sense of dynamical systems, i.e., all its eigenvalues have non-
zero imaginary part 3 when γ > 0. In this way, Cn may be decomposed at each X ∈ X
as the direct sum of two invariant subspaces of a(X), which we now explain.

Definition 2.4.1. Let X ∈ X with γ > 0. The stable (resp. unstable) subspace E−(X) (resp.
E+(X)) of a(X) is the subspace generated by the generalised eigenspaces of a(X) associated
with eigenvalues with negative (resp. positive) imaginary part.

Observe that πP(X, µ) = det(a(X) − µIn) is a polynomial of degree n in µ varying
smoothly on X, for which the number of roots with negative imaginary part (counted
with their multiplicities) remains locally constant. What is more, the connectedness of
X ensures that this number persists globally and that dimE−(X) is independent of X.
In particular, when

a(X) = A−1
d

(
(τ − iγ)In +

d−1

∑
i=1

ηi Ai(t, x)

)
(2.22)

as in Problem 2.18, one can choose X0 = (t, x, 1, 0, ξd) and conclude from

0 = πP(X0, ξd) = πP(t, x, 1, 0, ξd) = det (−a(t, x, 1, 0)− ξd In) = det (−A−1
d − ξd In)

(2.23)
that dimE−(X) equals p, the number of incoming characteristics. For the abstract
problem (Pγ, Bγ), which does not necessarily have an analogue (L, B), we add an extra
assumption.

Assumption 2.4.1. The number of required boundary conditions p agrees with dimE−(X).

3Depending on the convention used, one could say that a(X) is hyperbolic if all its eigenvalues have
non-zero real part.
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The stable and unstable subspaces may be alternatively written using spectral projectors.
For example, if C− is a Jordan curve (positively oriented) that encloses the eigenvalues
of a(X) with negative imaginary part, the expression

Π−(X) =
1

2iπ

∫
C−

(a(X)− µIn) dµ (2.24)

defines a projector onto E−(X), along E+(X), for which

E−(X) = {Π−(X) : X ∈ X∩ {γ > 0}} and E+(X) = ker Π−(X).

Notice that the map Π−(X) is automatically smooth in (t, x), and since we may slightly
perturb the argument X ∈ X∩ {γ > 0} in (2.24) while keeping the same contour C−, it
is also holomorphic in τ − iγ and real analytic in η. Last but not least, it is possible
to find a basis for E−(X) whose elements are homogeneous of degree 0 in (τ, η, γ), as
illustrated by Kato in [Kat13]. Needless to say, none of these conclusions has to be true
when γ = 0. These questions, along with the actual behaviour of E−(X) when γ → 0
are yet to be explored.

2.4.2 The block structure condition

In this section, we study a fundamental idea in the construction of symmetrisers: the
block structure condition. This notion was originally introduced by Kreiss in [Kre70] for
the strictly hyperbolic case, and later adapted by Métivier in [Mé00] to the wider class
of constantly hyperbolic operators.

Definition 2.4.2 (Block structure condition). Let X ∈ X. The matrix a(X) verifies
the block structure condition if there exists a neighbourhood V of X in X, an integer q ≥ 1, a
partition n = ν1 + · · ·+ νq with νi ≥ 1, and a smooth nonsingular map ℯ0(X) defined on V
such that for every X ∈ V

ℯ−1
0 (X)a(X)ℯ0(X) = diag(a1(X), · · · , aq(X)),

with blocks ak(X) of size νk × νk that fall exactly into one of the following categories:

(i) The spectrum of ak(X) is contained in C \R.

(ii) νj = 1, ak(X) ∈ R when γ = 0, and i∂γak(X) ∈ R \ {0}.

(iii) νj > 1, ak(X) has real coefficients when γ = 0, and there is µj ∈ R such that

ak(X) =



µj 1 0 · · · 0

0 µj 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 µj


.
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Additionally, the entry at the lower left corner of i∂γak(X) is nonvanishing and real.

Proposition 2.4.1. Let X ∈ X. If a(X) is hyperbolic as in Definition 2.3.1, then a(X) satisfies
the block structure condition.

The proof of this fact is lengthy and highly technical, so we feel free to skip it. If
interested, the reader may find useful the discussions in Chapter 7 in [CP82] (for strictly
hyperbolic operators), Chapter 5 in [BGS07], and the remarkable paper [Mé00] by
Métivier from which we emphasise Lemmas 2.5 and 2.6, as they support the upcoming
assertion.

Proposition 2.4.2. The stable subspace E−(X) defines a smooth vector bundle over X∩ {γ >

0} that extends into a continuous vector bundle (again denoted by E−(X)) over X with the
same rank.

We stress two things concerning Proposition 2.4.2:

▷ Although the notation could be misleading, the extension of the stable space to a
point X ∈ X0 should be read as E−(X) = limX→X E−(X), for X ∈ X ∩ {γ > 0},
and in no case as the stable subspace of a(X), which is usually smaller or even
empty.

▷ For non-constantly hyperbolic operators, the continuous extension of E−(X) to
{γ = 0} may not exist, as shown in [BGS07], Theorem 8.2.

Based on Definition 2.4.2 and Proposition 2.4.1, X0 may be divided into four regions as
indicated below.

Definition 2.4.3.

▷ The set of elliptic points E consists of those X ∈ X0 for which Definition 2.4.2 is satisfied
with blocks of type (i) exclusively (complex conjugate pairs).

▷ The set of hyperbolic points H consists of those X ∈ X0 for which Definition 2.4.2 is
satisfied with blocks of type (ii) exclusively.

▷ The set of mixed points EH consists of those X ∈ X0 for which Definition 2.4.2 is satisfied
with blocks of type (i) and (ii), but no blocks of type (iii).

▷ The set of glancing points G consists of those X ∈ X0 for which Definition 2.4.2 is
satisfied with at least one block of type (iii).

The hyperbolic region will be discussed in more detail in Chapter 3, as it is there where
the WR problem occurs.

2.4.3 The weak Lopatinskiı̆ condition

To derive a necessary condition for well-posedness, we focus on a concrete, elementary
example. Let us assume for simplicity that Pγ and Bγ have constant coefficients, Pγ is
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strictly hyperbolic and f = 0, so that Problem 2.20 becomes{(
Dd +Aγ(Dt, Dy)

)
u = 0 (t, x) ∈ R1+d

+ ,

Bγu|xd=0 = g (t, y) ∈ Rd,
(2.25)

for some g ∈ L2
γ(Rd). Putting (2.25) in the form (2.16) and applying Fourier transform

to the tangential variables (t, y) produces{
(Dd + a(ζ))û(xd, ζ) = 0,

Bû(0, ζ) = ĝ(ζ).
(2.26)

We know from the standard theory of differential equations that

û(xd, ζ) = e−ixda(ζ)û(0, ζ) (2.27)

is the unique solution of (2.26) provided that Bû(0, ζ) = ĝ(ζ). The spectrum of a(ζ)
brings valuable information about û(xd, ζ) because the exponential function is well-
behaved with respect to matrix conjugation. That said, if µ1, · · · , µq are pairwise
different eigenvalues of a(ζ) with corresponding multiplicities β1, · · · , βq, the whole
space Cn may be decomposed into a sum of generalised eigenspaces as

Cn =
q⊕

k=1

ker (a(ζ)− µk)
βk . (2.28)

Moreover, if wk represents the components of an arbitrary element w ∈ Cn in the basis
prescribed by (2.28), it may be deduced that

û(xd, ζ) =
q

∑
k=1

e−iµkxd

βk−1

∑
j=0

xj
d

j!
(a(ζ)− µk In)

jwk (2.29)

after a simple computation (see [CP82, pp. 422]). Recall that the hyperbolicity of Pγ

guarantees that µk ∈ C \R whenever γ > 0 and therefore that u(xd) is bounded for
xd large if and only if wj = 0 for every Im µj > 0. This leads us to the next reasoning.
We claim that (2.26) has a unique bounded solution for every ĝ(ζ) if and only if
E−(ζ) ∩ ker B = {0}. As a matter of fact, suppose that there is a unique bounded
solution û(xd, ζ) of (2.26) for every ĝ(ζ). According to (2.29), û(0, ζ) must be an element
of E−(ζ) (otherwise it would be unbounded) and Bû(0, ζ) = ĝ(ζ) must be solvable at
an algebraic level. Together, this means that B restricted to E−(ζ) is an isomorphism.
To prove the converse, let us suppose that B restricted to E−(ζ) is an isomorphism.
Then, for any ĝ(ζ),

û(0, ζ) = (B|E−(ζ))
−1g(ζ) ∈ E−(ζ),
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and consequently û(xd) is bounded in light of (2.29). The preceding analysis motivates
the following definition.

Definition 2.4.4. A boundary value problem (Pγ, Bγ) satisfies the weak Lopatinskiı̆ condition
if for every X ∈ YS ∩ {γ > 0},

E−(X) ∩ ker b(X) = {0}.

Definition 2.4.4, when satisfied, implies normality in Assumption 2.1.1, as can be readily
confirmed by a similar calculation to the one outlined in equation (2.23). The validity of
the Lopatinskiı̆ condition comprises more general spaces, as the following proposition
reveals.

Proposition 2.4.3 (Proposition 4.2, [BGS07] - Chapter 14 [Ser99]). The weak Lopatin-
skiı̆ condition is necessary for the boundary value problem (Pγ, Bγ) to be well-posed in Hölder
and Sobolev spaces. When it fails, there is no chance of having estimates in these norms, even at
the price of a loss of regularity.

2.4.4 The uniform Lopatinskiı̆ condition

Let D(R1+d
+ ) be the set of vector-valued test functions on R1+d

+ . For reasons that will
become apparent later, we shall say that a boundary value problem (P, B) is strongly
well-posed in L2 if, for some γ0 > 1, there exists a positive constant C > 0 such that

γ
∫
R1+d
+

e−2γt|u(t, x)|2 dt dx +
∫
Rd

e−2γt|u(t, y, 0)|2 dt dy (2.30)

≤ C
(

1
γ

∫
R1+d
+

e−2γt|Pu(t, x)|2 dt dx +
∫
Rd

e−2γt|Bu(t, y, 0)|2 dt dy
)

,

for each γ ≥ γ0 and every u ∈ D(R1+d
+ ).

The word “strong” (or “strongly”) refers to u and the source data ( f , g) being es-
timated in the same norms. To make sure this happens, a stricter version of the
Lopatinskiı̆ condition is needed.

Definition 2.4.5. A boundary value problem (Pγ, Bγ) satisfies the uniform Lopatinskiı̆ condi-
tion if for every X ∈ YS,

E−(X) ∩ ker b(X) = {0}, (2.31)

that is to say, equation (2.31) holds up to the frequency boundary 4 {γ = 0}.

In practice, we do not rely on Definition 2.4.4 (resp. Definition 2.4.5) to check whether
a given (Pγ, Bγ) verifies the weak Lopatinskiı̆ condition (resp. uniform Lopatin-
skiı̆ condition). Instead, we utilise the so-called Lopatinskiı̆ determinant ∆, a special
map possessing the following features:

4This extension relies on Proposition 2.4.2.
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▷ for γ > 0, X 7→ ∆(X) is smooth with respect to (t, x), holomorphic in τ − iγ and
real analytic in η,

▷ ∆ is homogeneous of degree 0,

▷ ∆(X) vanishes only at points X ∈ X where the Lopatinskiı̆ condition is violated.

To construct such a function, we take the homogeneous basis {e1(X), · · · , ep(X)}
briefly described after Assumption 2.4.1 and put

∆(X) ..= det
(
b(X)e1(X), · · · b(X)ep(X)

)
. (2.32)

Clearly, it makes sense to evaluate the Lopatinskiı̆ determinant wherever the subspace
E−(X) is defined, and in such case ∆(X) inherits all the properties of E−(X).

2.5 A priori estimates

Energy estimates assuming the uniform Lopatinskiı̆ condition were first derived by
Kreiss in the system case (see [Kre70]) and by Sakamoto in the (higher-order) scalar
case (see [Sak70]). As anticipated at the beginning of Section 2.4.2, the strategy involves
constructing a microlocal symmetriser in the first place, and then using the theory of
pseudodifferential operators to find the desired energy inequalities. Let us start with
the most intricate task.

2.5.1 Construction of a microlocal symmetriser

This section is entirely devoted to the construction of a microlocal symmetriser, assum-
ing that the uniform Lopatinskiı̆ condition is fulfilled. In developing the proofs, we
closely follow Chapter 7 in [CP82].

Theorem 2.5.1. Let (Pγ, Bγ) be as in Problem 2.20, subject to Assumptions 2.3.1 and 2.4.1.
Suppose that the uniform Lopatinskiı̆ condition is satisfied. If X ∈ X, there exist two smooth
matrix-valued symbols r and ℯ0 of dimensions n × n, both defined in a conic neighbourhood V
of X and homogeneous of order 0, such that

(i) ℯ0(X) is nonsingular,

(ii) there is c > 0, independent of X ∈ V , so that if ȧ(X) ..= ℯ−1
0 (X)a(X)ℯ0(X),

Im (r(X)ȧ(X)) ≥ γcIn,

and

(iii) when X ∈ Y, there exist positive constants α and β, so that

r(X) + βḃ(X)∗ḃ(X) ≥ αIn,
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where ḃ(X) ..= b(X)ℯ0(X).

Proof. Although we shall only use in the future the ideas behind the construction
of a symmetriser when X ∈ H, we shall include the other regions for the sake of
completeness. In any case, we stick to the following convention:

▷ C and c are positive constants that may vary from line to line throughout the
proof.

▷ Thanks to homogeneity, we just need to pay attention to points on Xs.

▷ Given any X = (t, y, xd, τ, η, γ) ∈ Xs, the projection of X onto the frequency
boundary {γ = 0} is X̃ ..= (t, y, xd, τ, η, 0) ∈ X0.

▷ To avoid breaking the thread of the proof, we shall postpone the proofs of some
of the lemmas used to Section A.1 in the appendix.

Elliptic region. Let X ∈ E . According to Proposition 2.4.1 and the classification proposed
in Definition 2.4.3, there exists a basis ℯ0(X) depending smoothly on X in which the
matrix a(X) has locally the diagonal form

ȧ(X) = ℯ−1
0 (X)a(X)ℯ0(X) =

(
a−(X) 0

0 a+(X)

)
. (2.33)

Here above, a−(X) (resp. a+(X)) is a diagonal matrix of size p (resp. n − p) containing
the eigenvalues with negative (resp. positive) imaginary part. Bearing in mind Condi-
tion (ii), we introduce a lemma that allow us to find a lower bound for the imaginary
part of a∓(X).

Lemma 2.5.1. Let M be a square matrix of dimensions n× n. If M has eigenvalues with strictly
positive imaginary part, then one may find a positive definite matrix H such that Im(HM) > 0
in the sense of matrices.

Without further delay, let us apply Lemma 2.5.1 to a∓(X) to get

∓ Im(a∓(X)) ≥ cI,

for some positive constant c. Let ρ > 1 to be fixed large enough later on. If r(X) is
taken as

r(X) =

(
−Ip 0

0 ρIn−p

)
, (2.34)

then

Im(r(X)a(X)) =

(
− Im(a−(X)) 0

0 ρ Im(a+(X))

)
≥
(

cIp 0
0 ρcIn−p

)
≥ cγI,

considering that 0 ≤ γ ≤ 1. This completes Condition (ii). In order to prove Condition
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(iii), let X ∈ YS and denote by b−(X) (resp. b+(X)) the restriction of b(X) to E−(X)

(resp. E−(X)). Likewise, let us represent by v− (resp. v+) the projection onto E−(X)

(resp. E+(X)) of v ∈ Cn relative to the basis ℯ0(X), so that

v =

(
v−

v+

)
.

For the rest of the argument, it suffices to focus on X by continuity. Note that if we solve
ḃ(X) = ḃ−(X)v− + ḃ+(X)v+ for ḃ−(X)v− initially, and then use that ḃ−(X) restricted
to E−(X) is an isomorphism, there must be a constant C such that, for all v ∈ C,

|v−|2 ≤ C(|v+|2 + |ḃ(X)v|2).

Thus,

⟨r(X)v, v⟩ = |v−|2 + ρ|v+|2 − 2|v−|2 (2.35)

≥ |v−|2 + ρ|v+|2 − 2C|v+|2 − 2C|ḃ(X)v|2 (2.36)

= |v−|2 + (ρ − 2C)|v+|2 − 2C|ḃ(X)v|2.

Finally, choosing ρ so that ρ − 2C > 0 gives the required inequality.

Hyperbolic region. Having placed ourselves at X ∈ H, Proposition 2.4.2 indicates
that a(X) is smoothly diagonalisable in a neighbourhood V of X with eigenval-
ues a1(X), · · · , an(X) (counted according to their multiplicities) and eigenvectors
e1(X), · · · , en(X) ordered as the columns of a nonsingular matrix ℯ0(X), so that

ȧ1(X) = ℯ−1
0 (X)a1(X)ℯ0(X) =


a1,1(X) 0 · · · 0

0 a1,2(X) · · · 0
...

... . . . ...
0 0 · · · a1,n(X)

. (2.37)

Let

r(X) =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn

 (2.38)

with every rj ∈ R, 1 ≤ j ≤ n, to be chosen later. If κj(X̃) ..= −i∂aj(X̃)/∂γ, Taylor’s
theorem with respect to γ yields

aj(X) = aj(X̃) + iγκj(X̃) + γ2wj(X), (2.39)

where wj(X) is a smooth function. Now, given that a(X) and r(X) are diagonal, proving
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Part (iii) amounts to analyzing

Im rjaj(X) = Im(rjaj(X̃) + iγrjκj(X̃) + rjγ
2wj(X)). (2.40)

The block structure condition implies that aj(X̃) ∈ R, so we may discard rjaj(X̃) in
(2.40) and write

Im riaj(X) = γri Re κj(X̃) + γ2ri Im wj(X). (2.41)

Notice that (2.41) is bounded away from zero because of the continuity of κj(X̃) and
the fact that κ j

..= κ(X) ∈ R \ {0} (also ensured by Proposition 2.4.2). We can say a
little bit more about κ j, actually. By definition,

κ j = Re
(
−i

∂aj

∂γ
(X)

)
= Im

(
∂aj

∂γ
(X)

)
= Im

(
lim

γ→0+

aj(X)− aj(X)

γ

)
= lim

γ→0+

Im aj(X)

γ
,

showing that κ j and Im a(X) have the same sign for X = (t, y, xd, τ, η, γ) sufficiently
close to X. Hence,

E−(X) =
⊕

Im aj(X)<0

ker (a(X)− aj(X)) = {v ∈ Cn : vj = 0 if κ j > 0},

and it is straightforward to check that Condition (ii) is satisfied when

rj =

{
−1 for κ j > 0,

ρ for κ j < 0,
(2.42)

with ρ being a positive constant to be specified when meeting Condition (iii). The
remaining portion of the proof follows exactly the same philosophy as its elliptic
counterpart, so we feel free to omit it.

Mixed region. It is a combination of the two previous cases.

Glancing region. If X ∈ G, Proposition 2.4.2 and Definition 2.4.3 imply that a(X) can be
written locally around X in the block-diagonal form

a(X) =



a1(X)
. . .

am(X)

a−(X)

a+(X)


, (2.43)

where at least one block, say aj(X), is such that when evaluated at X, it becomes the
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Jordan block

aj(X) =



µj 1 0 · · · 0

0 µj 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 µj


.

We seek to decompose aj(X) into simpler pieces that are easier to analyse. For this
purpose, we recast Taylor’s expansion with respect to γ conveniently as

aj(X) = aj(X̃) + iγκj(X̃) + γ2wj(X) = (µj I + aj(X̃) + bj(X̃)) + iγκj(X̃) + γ2wj(X),
(2.44)

with

aj(X̃) ..=



0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 0


, (2.45)

bj(X̃) ..= aj(X̃) − aj(X), and κj(X̃) ..= −i∂γaj(X̃). A quick inspection confirms that
bj, κj, wj are smooth, bj(X) = 0 and the bottom left element αj of κj(X) is real and
nonvanishing. Yet, nothing suggests that bj(X̃) has real entries. That this is a mild
assumption is the content of the following lemma.

Lemma 2.5.2. The basis ℯ0(X) in Definition 2.4.2 may be chosen so that

bj(X̃) =


b1(X̃) 0 · · · 0

...
...

...
...

...
...

bνj(X̃) 0 · · · 0

, (2.46)

with real entries b1(X̃), · · · , bνj(X̃).

With this simplification at hand, we postulate the block-diagonal matrix

r(X) =



r1(X)
. . .

rm(X)

−I
ρI


(2.47)

as a candidate for a symmetriser, where each rj(X) is hermitian and diag(−I, ρI)
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behaves like (2.34). It is clear that only rj is of interest at the moment, as the others are
covered by the derivations made in previous situations. We opt for

rj(X) = Ej(X) + Fj(X̃) + iγGj(X),

where both Ej and Fj are real symmetric matrices, Fj is such that Fj(X) = 0, and Gj is a
real, skew-symmetric matrix. When combined with aj, the resulting rj(X) produces

Im(rjaj) = Im((Ej + Fj)(aj + bj)) + γ Re(Ejκj + Gjaj) + γW(X),

for some smooth W(X) such that O(γ) + O(|X − X|). At this stage, some restrictions
must be imposed on (Ej + Fj)(aj + bj) and Ejκj + Gjaj to make sure Condition (ii) is
met. To do so, let us select Ej and Fj so that

Pj
..= (Ej + Fj)(aj + bj) = Ejaj + Ejbj + FJaj + Fjbj

is symmetric on one hand (thus implying that Im(Pj) = 0) , and on the other that

Qj
..= Re(Ejκj + Gjaj)

is positive definite. In an attempt to understand the precise structure of the matrices
involved, let us evaluate the whole expression at X where we may exploit the identities
b(X) = 0 and F(X) = 0. The conclusion is summarised in the statement below.

Lemma 2.5.3. Let aj be as in equation (2.45) and suppose that Ej is symmetric. If Ejaj is
symmetric, then Ej must be triangular of the form

Ej(X) =



0 · · · · · · · · · e1
... . . . e2
... . . . . . .

...
... . . . . . .

...
e1 e2 · · · · · · emj


. (2.48)

Back to Pj, we claim that it is possible to find a (νj − 1)× (νj − 1) symmetric sub-matrix
Φj(X) such that

Fj(X̃) =

(
Φj(X̃) 0

0 0

)
,

F(X) = 0, and Ejbj + FJaj + Fjbj is symmetric. Indeed, by plugging the ansatz and
computing the products, we arrive at a linear system of equations of dimension
(νj − 1)× (νj − 1) whose coefficients are smooth in X̃ and such that F(X) = 0 when X̃
is close to X, as desired.



33 2.5. A priori estimates

Having settled the first problem completely, we address the second question. To control
Qj = Re(Ejκj + Gjaj) from below, let us note that due to the special shape of the matrix
Ej ≡ Ej(X), there exists a constant C depending exclusively on the coefficients of Ej so
that for every w ∈ Cνj ,

Re (Ejκj(X)w, w) ≥ e1αj|w1|2 − (|w1|2 + C|w′|2),

where w′ ..= (w2, · · · , wνj)
t. Moreover,

Re (Ejκj(X)w, w) ≥ e1αj|w1|2 − (|w1|2 + C|w′|2) (2.49)

by continuity. As such, we are left with the single term Re(Gj Aj) for which the next
lemma applies.

Lemma 2.5.4. Let C be an arbitrary constant. IF aj is defined as in equation (2.45), there exists
a real, skew-symmetric matrix Gj such that

Re(Gjajw, w) ≥ −|w1|2 + C|w′|2, (2.50)

for every w ∈ Cνj . As before, w′ ..= (w2, · · · , wνj)
t.

In essence, if we merge (2.49) and (2.50) and pick e1αj sufficiently large (for instance,
e1αj ≥ 3), we see that Condition (ii) is fulfilled. We still have to realise Condition (ii),
which will be enough to check at X ∈ Y0

..= Y∩X0 thanks to continuity. That being so,
using that Fj(X) = 0, we get

rj(X) = Ej(X),

and consequently,

r(X) =



E1(X)
. . .

Em(X)

I
−ρI


. (2.51)

Finally, if we take into account the structure of E−(X) at {γ = 0} (see Proposition 2.4.2)
and represent by v− (resp. v+) the projection onto E−(X) (resp. E+(X)), the remaining
part of the proof proceeds almost identically as in the elliptic case, provided we admit
the following lemma.

Lemma 2.5.5 (p. 171, [Mét04]). Let ρ > 0. There exist matrices E1, · · · , Em such that

(i) each Ej is defined as in equation (2.5.3),

(ii) the constraint e1αj ≥ 3 holds true,
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(iii) r(X) as in (2.51) verifies the estimate

−⟨r(X)w, w⟩ ≥ C(−|w+|2 + ρ|w−|2),

for some positive constant C and for all w ∈ Cn.

2.5.2 Energy inequalities

In this section, we shall explore the role of the microlocal symmetriser r(X) in connec-
tion with energy estimates. To achieve this, we shall distinguish two Sobolev norms,
namely, | · |0,γ for L2

γ(Rd) and ∥ · ∥0,γ for L2
γ(R1+d

+ ).

Theorem 2.5.2. Let r(X) be a microlocal symmetriser as indicated in Theorem 2.5.1. Then
there exist positive constants C and γ0 ≥ 1 such that for every γ ≥ γ0 and all u ∈ D(R1+d

+ ),

γ∥u∥2
0,γ + |u(0)|20,γ ≤ C

(
1
γ
∥Pγu∥2

0,γ + |Bγu(0)|20,γ

)
, (2.52)

or more generally,

γ∥u∥2
s,γ + |u(0)|2s,γ ≤ C

(
1
γ
∥Pγu∥2

s,γ + |Bγu(0)|2s,γ

)
.

Proof. Due to Property (C) and homogeneity of the symbols under consideration, we
may work in principle on a compact set K × Sd ⊂ X, and then extend everything beyond
K × Sd by means of a standard argument (see [BGS07, pp.231]). Having said that, let
us cover K × Sd with finitely many neighbourhoods {Vi}i∈I as stated in Theorem 2.5.1.
Subordinated to {Vi}i∈I , there is a partition of unity {φi}i∈I , together with functions
{θi}i∈I such that θi ≡ 1 on supp φi. If we denote by the same letters the extensions of
φi and θi to functions that are homogeneous of degree 0 in (τ, η, γ), we may associate
pseudodifferential operators Φi,γ

..= Opγ(φi) and Θi,γ
..= Opγ(θi) that we can use to

localise u and the operators involved. In fact, if we set on one hand5

Ȧγ
..= Opγ(θℯ

−1
0 )Aγ Opγ(θℯ0), Ḃγ

..= Bγ Opγ(θℯ0), u̇ ..= Opγ(θℯ
−1
0 )u,

and on the other fi
..= Φi,γ f , gi

..= Φi,γg, we shall first prove the target inequality (2.52)
for ui

..= Φiu̇ such that {
Ṗui

..=
(

Dd + Ȧγ

)
ui(t, x) = fi(t, x),

Ḃγui(t, y, 0) = gi(t, y),
(2.53)

and then see that the general result follows from controlling the commutators [Pγ, Φγ]

5ℯ0 is understood as in Theorem 2.5.1.
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and [Bγ, Φγ]. In order to check that ui satisfies (2.52), we introduce the notion of a
functional symmetriser Rγ.

Definition 2.5.1. A (local) functional symmetriser for (2.53) is a family Rγ of C1 operator-
valued maps parameterised by xd so that, for γ ≥ γ0 ≥ 1,

i) Rγ(xd) and ∂dRγ(xd) are L2−bounded operators with uniform bounds in xd and γ.

ii) Rγ(xd) is self-adjoint.

iii) There is a positive constant c, independent of xd and γ, such that

Im ⟨Rγ(xd)Ȧγ(xd)v, v⟩ ≥ cγ|v|20,γ

for every v ∈ L2(R1+d
+ ).

iv) There exist positive constants α and β so that

⟨Rγ(0)v, v⟩ ≥ α|v|20,γ − β|Ḃγv|20,γ

is valid for each v ∈ L2(Rd).

We claim that Rγ = Opγ(r) fulfils Definition 2.5.1. The first two properties follow
directly from the definition of the symbol r(X), whereas Condition (iii) is obtained
by applying the sharp Gårding inequality to the first-order symbol r(X)ȧ(X)− cγIn.
Analogously, inequality

r(X) + βḃ(X)∗ḃ(X) ≥ αIn

along with Gårding’s inequality implies Condition (iv). It then remains to confirm that
the existence of Rγ gives the promised energy estimates. In doing so, we shall drop the
parameter γ and the variable xd to keep the calculations as legible as possible. As is
customary, we start with

d
dxd

⟨Rui, ui⟩ = ⟨∂dRui, ui⟩+ ⟨R∂dui, ui⟩+ ⟨Rui, ∂dui⟩

= ⟨∂dRui, ui⟩+ 2 Re ⟨R∂dui, ui⟩

= ⟨∂dRui, ui⟩+ 2 Re ⟨R( fi − iȦu), ui⟩

= ⟨∂dRui, ui⟩+ 2 Im ⟨RȦγui, ui⟩+ 2 Re ⟨R fi, ui⟩,

where in the third line we have used the differential equation in (2.53). Integrating with
respect to xd over [0,+∞) and multiplying by -1 leads to

⟨Rui, ui⟩|xd=0 = −
∫ ∞

0
⟨∂dRui, ui⟩ dx −

∫ ∞

0

(
2 Im ⟨RȦγui, ui⟩

)
dxd

− 2
∫ ∞

0
Re ⟨R fi, ui⟩ dxd, (2.54)
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an expression that we can bound from above via Condition (i) in Definition 2.5.1 to get

⟨Rui, ui⟩|xd=0 ≤ −cγ
∫ ∞

0
|ui|2 dxd + C1

∫ ∞

0
| fi||ui| dxd.

From Condition (iv) and Young’s inequality we have

α|ui(0)|2 − β|Ḃui(0)|2 ≤ (−cγ + εγ)
∫ ∞

0
|ui| dxd +

C1

4εγ

∫ ∞

0
| fi|2 dxd,

or by shrinking ε > 0,

α|ui(0)|2 − β|Ḃui(0)|2 ≤ −C2γ
∫ ∞

0
|ui|2 dxd +

C3

γ

∫ ∞

0
| fi|2 dxd.

Ultimately, after rearranging terms, we find that

γ
∫
R1+d
+

e−2γt|ui|2 dt dx +
∫
Rd

e−2γt|ui(0)|2 dt dy (2.55)

≤ C
(

1
γ

∫
R1+d
+

e−2γt| fi|2 dt dx +
∫
Rd

e−2γt|Ḃui(0)|2 dt dy
)

.

It is time to generalise (2.55) by showing that it is possible to absorb the contribution of
[Ṗγ, Φγ] and [Ḃγ, Φγ]. More precisely,

γ∥ui∥2 + |ui(0)|2 ≲
(

1
γ
∥Ṗui∥2 + |Ḃui(0)|2

)
= C

(
1
γ
∥ṖΦiu̇∥2 + |ḂΦiu̇(0)|2

)
≲

(
1
γ
∥Φi Ṗu̇∥2 +

1
γ
∥[Ṗ, Φi]u̇∥2 + |Φi Ḃu̇(0)|2 + |[Ḃ, Φi]u̇(0)|2

)
.

Since the symbols commute, [Ṗ, Φi] and [Ḃ, Φi] are pseudodifferential operators of order
0 and −1, respectively, so we may write

γ∥ui∥2 + |ui(0)|2 ≲
(

1
γ
∥Ṗui∥2 + |Ḃui(0)|2

)
≲

1
γ
∥Ṗu̇∥2 +

1
γ
∥u̇∥2 + |Ḃu̇|2 + 1

γ2 |u̇(0)|
2.

(2.56)

As for the left-hand side of (2.56), the triangle inequality and the convexity of the power
function x 7→ x2 show that

∥u∥2
≲ ∑

i
∥ui∥2,

|u(0)| ≲ ∑
i
|ui(0)|2.

In the end, putting all the pieces together yields

γ∥u∥2 + |u(0)|2 ≲
1
γ
∥Pu∥2 +

1
γ
∥u∥2 + |Bu|2 + 1

γ2 |u(0)|
2,



37 2.6. Existence, uniqueness, and regularity

from which we may deduce that

γ∥u∥2 + |u(0)|2 ≤ C
(

1
γ
∥Pu∥2 + |Bu(0)|2

)
(2.57)

by taking γ sufficiently large. Let us conclude by extending the above inequality to
Sobolev spaces. As might be expected, the key observation is that v ..= Λs

γu ∈ L2

whenever u ∈ Hs
γ. After all, if we substitute v in (2.57), the energy estimate becomes

γ∥Λs
γu∥2 + |Λs

γu(0)|2 ≤ C
(

1
γ
∥PΛs

γu∥2 + |BΛs
γu(0)|2

)
. (2.58)

The new commutators are not significantly different from the ones already investigated.
Actually, we know that

∥PΛs
γu∥2

≲ ∥Λs
γPu∥2 + ∥[P, Λs

γ]u∥2

≲ ∥Λs
γPu∥2 + ∥u∥2,

and

|BΛs
γu(0)|2 ≲ |Λs

γBu(0)|2 + |[B, Λs
γ]u(0)|2

≲ |Λs
γBu|2 + |u(0)|2−1

≲ |Λs
γBu|2 + 1

γ2 |u(0)|
2.

Once again, the result follows from choosing γ sufficiently large.

2.6 Existence, uniqueness, and regularity

We shall utilise a duality argument together with classical results from functional
analysis to establish existence, uniqueness, and regularity for the solution of (L, B). To
simplify the exposition, we shall deal with differential operators only, so that Problem
(2.4) reads

Lu(t, x) =

(
Dt +

d

∑
j=1

Aj(t, x)Dj

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

B(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd.

(2.59)

As usual, we furnish (2.59) with Assumption 2.1.1 and seek to define and adjoint
problem (L∗, B̃).
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2.6.1 An adjoint boundary value problem

As we did in Section 2.2.1, we abuse the notation and represent both the inner product
of L2(R1+d

+ ) and L2(Rd) by ⟨· , ·⟩. Recall that the adjoint operator L∗ obeys the Green
formula

⟨Lw, v⟩ − ⟨w, L∗v⟩ = i⟨Adw, v⟩ (2.60)

for every v, w ∈ D(R1+d
+ ,Rn), and it is easily seen to be

L∗· = Dt ·+
d

∑
j=1

Dj(AT
j (t, x)·). (2.61)

For reasons that will become apparent soon, we need a decomposition of the right-
hand side of (2.60) taking account of the boundary matrix B(t, y). In general, this
decomposition relies upon the existence of a smooth basis for ker B(t, x), a fact that
may not follow from the assumptions we have made when dealing with more general
domains than the upper half-space (or any other contractile manifold). In such cases, it
must be considered part of the hypotheses (see [Hir12] and [BGS07]). After this remark,
let us continue with a lemma that we state without proof.

Lemma 2.6.1 (Proposition 6.3, [CP82]). There exists a map N ∈ C∞(Rd,M(n−p)×n(C))
such that for every (t, y) ∈ Rd,

Cn = ker B ⊕ ker N.

In addition, for N(t, y) fixed, there exist unique functions B̃ ∈ C∞(Rd,M(n−p)×n(C)) and
M ∈ C∞(Rd,Mp×n(C)) so that for every (t, y) ∈ Rd,

(Adw, v) = (Bw, Mv) + (Nw, B̃v), (2.62)

and
ker B̃ = (Ad ker B)⊥.

The matrix-valued function N in lemma 2.6.1 is not unique, and by extension there is
also considerable freedom in choosing B̃ and M too. Given equations (2.60), (2.61) and
Lemma 2.6.1, let us now make precise what we understand by an adjoint problem.

Definition 2.6.1. Let (L, B) be a boundary value problem as in (2.59). A pair (L∗, B̃) such
that

⟨Lw, v⟩ − ⟨w, L∗v⟩ − i(Bw, Mv)− i(Nw, B̃v) = 0 (2.63)

for every w, v ∈ D(R1+d
+ ) is called an adjoint problem of (2.59).

We proceed with a short but important statement.
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Proposition 2.6.1. Under the notation of Definition 2.6.1, it is true that

{Mv : v ∈ D(Rd,Cn), B̃v = 0} = D(Rd,Cp).

Proof. It suffices to check that the matrix M is onto. Certainly, if v ∈ D(Rd,Cn) belongs
to ker M ∩ ker B̃, then ⟨Adw, v⟩ = 0 for every w. But Ad is nonsingular, so the latter
means that w = 0, and consequently that ker M ∩ ker B̃ = {0}. Since the dimension of
ker B̃ is p, the intersection above may be rephrased as saying that

M : ker B̃ 7−→ Cp

is an isomorphism, which finishes the proof.

So far, we have studied the forward Lopatinskiı̆ condition. Now, we shall introduce its
complementary notion, i.e., the backward Lopatinskiı̆ condition.

Definition 2.6.2. The boundary value problem (L∗, B̃) satisfies the backward weak (resp.
uniform) Lopatinskiı̆ condition if for every X ∈ YS ∩ {γ < 0} (resp. X ∈ YS ∩ {γ ≤ 0}),

E−(X) ∩ ker B̃ = {0}.

Proposition 2.6.2 (Proposition 6.6 - Chapter 7, [CP82]). Suppose that (L, B) is a bound-
ary value problem satisfying Assumption 2.1.1 and that (L∗, B̃) is an adjoint problem of (L, B).
Then (L, B) satisfies the weak Lopatinskiı̆ condition (resp. the uniform Lopatinskiı̆ condition)
if and only if (L∗, B̃) satisfies the backward weak Lopatinskiı̆ condition (resp. the backward
uniform Lopatinskiı̆ condition).

2.6.2 Well-posedness of the boundary problem (L, B)

Let us formulate the central theorem of this section.

Theorem 2.6.1. Consider the boundary value problem (2.59) under Assumption 2.1.1. If the
uniform Lopatinskiı̆ condition is satisfied, it is possible to find a constant γ0 ≥ 1 such that the
following assertion holds for every γ ≥ γ0 : if f ∈ L2

γ(R1+d
+ ) and g(t, x) ∈ L2

γ(Rd), there is a
unique u(t, x) ∈ L2

γ(R1+d
+ ) with the properties listed below:

(i) u is a solution of {
L(t, x, Dt, Dy)u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

B(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(2.64)

(ii) the trace of u|xd=0 is an element of L2
γ(Rd), and
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(iii) u satisfies the energy estimate

γ
∫
R1+d
+

e−2γt|u(t, x)|2 dt dx +
∫
Rd

e−2γt|u(t, y, 0)|2 dt dy

≤ C
(

1
γ

∫
R1+d
+

e−2γt|Lu(t, x)|2 dt dx +
∫
Rd

e−2γt|Bu(t, y, 0)|2 dt dy
)

(2.65)

for some C which only depends on γ0.

Moreover, there exists γk ≥ γ0 so that if γ ≥ γk, it is true that for f ∈ Hk
γ(R1+d

+ ) and
g ∈ Hk

γ(Rd), there is a unique solution u ∈ Hk
γ(R1+d

+ ) of (L, B) whose trace on Rd belongs to
Hk

γ(Rd), and so that u satisfies

γ∥u∥2
s,γ + |u(0)|2s,γ ≤ c

(
1
γ
∥ f ∥2

s,γ + |Bu(0)|2s,γ

)
.

Proof. We shall address the fundamental questions of existence, uniqueness, and reg-
ularity for Problem (2.59) following [CP82] and [BGS07] closely. Since the ideas arise
most naturally by first proving existence, then regularity and finally uniqueness, we
shall adopt this specific order throughout.

Existence. Let us assume that fγ ∈ L2
γ(R1+d

+ ) and gγ ∈ L2
γ(Rd). We show the existence

of a solution u ∈ L2
γ(R1+d

+ ) having the prescribed properties. To begin with, suppose
that (L∗, B̃) is an adjoint problem of (L, B) and define the spaces

Ẽ = {v ∈ D(R1+d
+ ) : B̃v = 0} and L∗Ẽ = {L∗v : v ∈ Ẽ},

both endowed with the topology induced by the norm ∥ · ∥γ. From Proposition 2.6.2,
(L∗, B̃) meets the backward uniform Lopatinskiı̆ condition and therefore enjoys the
energy estimate

γ∥v∥−γ + |v|2−γ ≤ C
γ
∥L∗v∥−γ + |B̃v|−γ, (2.66)

for some positive constant C and every γ ≥ γ0 > 1. In particular, inequality (2.66)
reduces to

γ∥v∥−γ + |v|2−γ ≤ C
γ
∥L∗v∥−γ (2.67)

when v ∈ Ẽ, revealing that L∗ restricted to Ẽ is injective. Thus, the map ℓ : L∗Ẽ → C
given by

ℓ(L∗v) = ⟨ f , v⟩ − i⟨g, Mv⟩ (2.68)

is a well-defined, linear form on L∗E such that

|ℓ(L∗v)| ≤ ∥ f ∥γ∥v∥−γ + |g|γ∥v∥−γ. (2.69)

To obtain an upper bound for (2.69) in terms of L∗v, we combine (2.67) and (2.69)
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appropriately to see that

|ℓ(L∗v)| ≤ ∥ f ∥γ∥v∥−γ + |g|γ∥v∥−γ ≤ C
(

1
γ
∥ f ∥γ +

1√
γ
|g|γ

)
∥L∗v∥−γ.

That being the case, we infer that ℓ is a continuous linear functional on L∗Ẽ that we can
extend to L2

−γ(R1+d
+ ) owing to the Hahn-Banach theorem. Next, we invoke the Riesz

representation theorem to predict the existence of a unique element u ∈ L2
γ(R1+d

+ ) such
that

⟨u, L∗v⟩ = ℓ(L∗v) = ⟨ f , v⟩ − i⟨g, Mv⟩ (2.70)

for all v ∈ Ẽ. Notice that if v ∈ D(R1+d
+ ), we may discard the boundary term in (2.70)

and get Lu = f in the sense of distributions. On the other hand, as D(R1+d
+ ) is dense in

L2
γ(R1+d

+ ), we may approximate u by a sequence of elements in D(R1+d
+ ) and conclude

from the continuity of (2.63) that

⟨Lu, v⟩ − ⟨u, L∗v⟩ − i(Bu, Mv)− i(Nu, B̃v) = 0 (2.71)

for every v ∈ D(R1+d
+ ). To finalise the argument, let us insert (2.70) into (2.71) and take

advantage of the identity Lu = f , so

(Bu, Mv) + (g, Mv) = 0 (2.72)

for all v ∈ D(R1+d
+ ). The surjectivity of M (see Proposition 2.6.1) then indicates that

Bu = g in the sense of distributions.

Regularity. At the heart of this segment there is a technical result that we assume
without demonstration.

Proposition 2.6.3 (Proposition 6.8 - Chapter 7, [CP82]). Under the assumptions of
Theorem 2.6.1, for every integer k ≥ −1, there exists a positive constant γk such that for every
γ ≥ γk the following implication holds true: if u ∈ Hk

γ(R
1+d
+ ) ∩ L2

γ(R
1+d
+ ), u|xd=0 ∈ Hk

γ(Rd),

Lγu ∈ Hk+1
γ (R1+d

+ ), and Bγu ∈ Hk+1
γ (Rd), then u ∈ Hk+1(R1+d

+ ) and u|xd=0 ∈ Hk+1
γ (Rd).

Suppose that u ∈ H−1
γ (R1+d

+ ) ∩ L2
γ(R

1+d
+ ) satisfies

{
Lγu(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bγu|xd=0 = g(t, y) (t, y) ∈ Rd,
(2.73)

with f ∈ L2
γ(R

1+d
+ ) and g ∈ L2

γ(Rd). In the present context, Proposition 2.6.3 guarantees

that u|xd=0 ∈ L2
γ(R

1+d
+ ), as claimed. Repeating this process inductively for k ≥ 1, we

arrive at the conclusion that whenever f ∈ Hk
γ(R

1+d
+ ) and g ∈ Hk

γ(Rd), it occurs that

u ∈ Hk
γ and u|xd=0 ∈ Hk

γ(R
1+d
+ ).
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Uniqueness. In view of the linearity of (L, B), let us assume that u ∈ L2
γ(R

1+d
+ ) is a

solution of {
Lγu(t, x) = 0 (t, x) ∈ R1+d

+ ,

Bγu|xd=0 = 0 (t, y) ∈ Rd.
(2.74)

At first glance, the validity of (2.65) for test functions merely extends to elements
u ∈ H1

γ(R
1+d
+ ) rather than to u ∈ L2

γ(R
1+d
+ ), which forces us to check the regularity of u

before using

γ
∫
R1+d
+

e−2γt|u|2 dt dx +
∫
Rd

e−2γt|u(0)|2 dt dy

≤ C
(

1
γ

∫
R1+d
+

e−2γt| f |2 dt dx +
∫
Rd

e−2γt|Bu(0)|2 dt dy
)

. (2.75)

That said, as the initial data f ≡ 0 and g ≡ 0 trivially belong to H1
γ, Proposition 2.6.3

ensures that u ∈ H1
γ, meaning that we may use the energy inequality (2.75). It is clear

then that u vanishes almost everywhere, hence establishing the uniqueness for (L, B).

Energy estimates in L2
γ. To complete the proof, we only need to verify that (2.75)

applies to u ∈ L2
γ(R

1+d
+ ). As a matter of fact, from the density of D(R1+d

+ ) (resp.

D(Rd)) in L2
γ(R

1+d
+ ) (resp. L2

γ(Rd)), we may find sequences { f j} and {gj} converging

to f ∈ L2
γ(R

1+d
+ ) and g ∈ L2

γ(Rd) with respect to the norms of L2
γ(R

1+d
+ ) and L2

γ(Rd). If
we examine the boundary value problem (L, B) with data ( f j, gj), it is known from the

ideas discussed in previous paragraphs that there is a unique solution uj ∈ H1
γ(R

1+d
+ )

for γ large enough. The resulting sequences {uj} and {uj(0)} thus formed are Cauchy

sequences in L2
γ(R

1+d
+ ) and L2

γ(Rd), respectively, as we may deduce from the a priori

estimates (2.75) applied to uj − uk. Let u ∈ L2
γ(R

1+d
+ ) and u0 ∈ L2

γ(Rd) be the corre-
sponding limits of {uj} and {uj(0)}. Note that uj(0) → u(0) in H1

γ(Rd) as j → ∞ due
to Theorem 2.1.1, so it must be the case that u(0) = u0 and, eventually, that Bu(0) = g.
On the other side, since Luj = f j and Buj = gj converge to Lu = f and Bu = g in

L2
γ(R

1+d
+ ), from the uniqueness of the limit in L2

γ(Rd), it necessarily follows that u = u.
In the end, taking the limit when uj → u in (2.75) gives the result.



CHAPTER THREE

Weakly regular boundary problems of real
type in a half-space

It was Kreiss’ belief that initial boundary value problems that fulfilled the weak Lopatin-
skiı̆ condition and were stable under perturbations were necessarily strong, in the sense
that they satisfied an estimate of the type (2.30) (see Theorem 2 in [Kre70]). It was
eventually shown, first through examples and then through a complete characterisation
in [BGRSZ02], that certain problems for which the Lopatinskiı̆ condition holds weakly
but not uniformly preserve their defining properties under small perturbations, thus
conforming a new stable class. The main goal of this chapter is to study this class in
depth and ultimately to derive energy estimates applicable to such case.

We provide a brief description of the content. In Section 3.1, we introduce the concept
of a stable class and give some illustrative examples before moving on to a detailed
study of the WR class. In Section 3.2, as a prelude to more general constructions, we
first examine a WR problem with constant coefficients, for which we derive energy
estimates equivalent to those in [BGS07] using a different and more robust approach.
Finally, in Section 3.3, we broaden the discussion and derive energy estimates applicable
to a WR problem with variable coefficients.

3.1 Classification of linear boundary value problems

To illustrate the central ideas of this section, we shall focus initially on
Lu(t, x) ..=

(
Dt +

d

∑
j=1

Aj(t, x)Dj

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

B(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,

(3.1)

equipped with Assumption 2.1.1. As in Chapter 2, the source terms f , g are taken, in
principle, from weighted Sobolev spaces Hk

γ, k ≥ 0.

43
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We know from Section 2.3.1 that (3.1) can be recast as{
Pγu(t, x) ..=

(
Dd +Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = A−1

d f (t, x) (t, x) ∈ R1+d
+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(3.2)

where Aγ(t, y, xd, Dt, Dy) and Bγ(t, y) are differential operators whose symbols are

a(X) ≡ a(t, x, τ, η, γ) = A−1
d

(
(τ − iγ)In +

d−1

∑
j=1

ηj Aj(t, x)

)
and b(X) = Bγ(t, y).

Recall that the Lopatinskiı̆ determinant is defined in terms a smooth, homogeneous of
degree 0 basis {e1(X), · · · , ep(X)} of E−(X) by the expression

∆(X) = det
(
b(X)e1(X), · · · b(X)ep(X)

)
. (3.3)

3.1.1 Stable classes

We shall use the Lopatinskiı̆ condition to classify boundary value problems (L, B). To
this end, let T be the space of pairs (L, B) such that (L, B) is normal, as explained in
Assumption 2.1.1. The relevant notions for our purposes are those that remain stable
under small perturbations of the coefficients of B for a fixed constantly hyperbolic
operator L. For instance, the unstable and strongly stable classes listed below are
robust.

▷ The set of boundary problems (L, B) for which the weak Lopatinskiı̆ condition
fails. Certainly, when (L, B) is ill-posed, there exists X0 = (t0, y0, 0, τ0, η0, γ0) ∈ X,
γ0 > 0, such that ∆(X0) = 0. If in addition B depends continuously on a
parameter ε, the Lopatinskiı̆ determinant does so, and it follows from Rouché’s
theorem 6 that the roots of ∆(·, ε) persist for ε small. Given that (L, B) exhibits a
Hadamard instability, there is no hope of any satisfactory theory for general data
( f , g).

▷ The set of boundary problems (L, B) satisfying the uniform Lopatinskiı̆ condition.
In such a situation, ∆(·, 0) is nonvanishing, homogeneous of degree 0 in (τ, η, γ),
and since b(X) does not depend on (t, x) for |t| and |x| large, |∆(·, 0)| may be
regarded as a smooth function on a compact set K × Sd. Now, considering that
∆(·, ε) is continuous in ε too, we conclude that it cannot vanish for ε small.

As briefly mentioned at the beginning, in [BGRSZ02] Benzoni-Gavage, Rousset, Serre
and Zumbrun identified a third stable class of boundary value problems (L, B) for
which the Lopatinskiı̆ condition holds weakly but not uniformly, so completing the
preceding description. This has been called weakly regular of real type, or WR for short,

6Striclty speaking, we need to verify that f (τ − iγ) ..= ∆(·, τ, η0, γ) is a nontrivial holomorphic
function of τ − iγ before applying Rouché’s theorem. Fortunately, this is a straighforward consequence of
homogeneity, continuity, and normality. See Lemma 8.1 in [BGS07].
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and will be defined soon in Section 3.1.3. It is worth saying that, besides defining the
WR class, the authors also simplify the analysis of transitions between stable classes,
which proves particularly valuable in some physical and mathematical problems (see
Section 4 in [BGRSZ02] for a fully worked example).

3.1.2 Hyperbolic frequency boundary points

According to Definition 2.4.3, the hyperbolic region H comprises the elements X ∈ X
such that a(X) is diagonalizable with purely real eigenvalues, meaning that H is
necessarily confined to the frequency boundary {γ = 0} since a(X) is known to have
no real eigenvalues when γ > 0 (see Hersh’s lemma). Our next goal is to explore in
detail the stable subspace E−(X) when restricted to H.

Definition 3.1.1. A complex vector space is of real type if it possesses a basis consisting
entirely of real vectors.

Proposition 3.1.1. Let X ∈ X0. If X ∈ H, then E−(X) is of real type.

Proof. Our strategy heavily relies on that discussed in Lemma 3.1 in [CG10], which
is in turn inspired by the more general arguments in [Mé00]. To begin with, let
X = (t, x, τ, η, 0) ∈ H and ξ

d
be such that πP(X, ξ

d
) = det(a(X) + ξ

d
In) = 0. Since L is

constantly hyperbolic, its characteristic polynomial πL(X, ξd) factors as

πL(X, ξd) =
q

∏
k=1

(τ + λk(t, x, η, ξd))
αk , (3.4)

where α1, · · · , αq are positive integers and λ1, · · · , λq are pairwise distinct, real analytic
functions on R1+d

+ ×Rd admitting holomorphic extensions in a complex neighbourhood
of ξ

d
. The computations performed right after Assumption 2.3.1 validate the dispersion

formula

det(a(X) + ξd In) = det (τ − iγ + A(t, x, η, ξd)) ,

whose roots in ξd when X = X are real and equal to ξ
d
. Meanwhile, there is a unique

λk so that τ + λk(t, x, η, ξ
d
) = 0 and ∂ξd λk(t, x, η, ξ

d
) ̸= 0, for which the eigenspace of

a(X) associated with ξ
d
= −µ agrees with the αk−dimensional subspace

ker
(

τ + A(t, x, η,−µ)
)

.

We may deduce from the Weierstrass preparation theorem (see Theorem A.2.1 in
Appendix) that there are functions e(X, ξd) and ξ(X) so that:

▷ e(X, ξd) and ξ(X) are smooth in (t, x) and real analytic in η,

▷ e(X, ξd) is holomorphic with respect to (τ − iγ, ξd), whereas ξ(X) is holomorphic
with respect to (τ − iγ),
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▷ τ − iγ + λk(t, x, η, ξ) factors as

τ − iγ + λk(t, x, η, ξ) = e(X, ξd)(ξd − ξk(X)),

with ξk(X) = ξ
d

and e(X, ξd) such that it does not vanish on a neighbourhood of
(X, ξ

d
).

It is then clear that for every X in the vicinity of X, ξ1(X), · · · , ξq(X) are pairwise
real eigenvalues of a(X) with algebraic multiplicity αk. That ξk(X) = −µk(X) are
semisimple and their eigenspaces depend holomorphically on τ − iγ and analytically
on η is a delicate point at the heart of Metivier’s work in [Mé00], so we feel free to skip
the details and draw the reader’s attention to Lemmas 2.5 and 2.6 therein. In the end,
we can show that for X ∈ X∩ {γ > 0} close to X,

E−(X) =
⊕

Im µk<0

ker (a(X)− µk(X)In) =
⊕

Im µk<0

ker (τ − iγ + A(t, x, η,−µk(X))).

(3.5)
Taking the limit of (3.5) as γ goes to zero7, we get a matrix τ + A(t, x, η,−µk(X))

with real entries that is diagonalisable in the reals. This ensures that E−(X) is of real
principal type.

Corollary 3.1.1. When restricted to H, the Lopatinskiı̆ determinant ∆ is real-valued.

Proof. The result follows immediately from Proposition 3.1.1, the definition of the
Lopatinskiı̆ determinant, and the fact that b(X) is real-valued.

We complement the last Proposition and its corollary with an assertion that we state
without proof.

Proposition 3.1.2 ([Mé00], [CG10]). The hyperbolic region H is open and contains no
glancing points. What is more, E−(X) depends smoothly on (t, x), holomorphically on (τ −
iγ, ξd) and analytically on η if X ∈ H.

3.1.3 The WR class

We now proceed to define the WR class and examine its main properties.

Definition 3.1.2. Let (L, B) be as in Problem (3.1), subject to Assumption 2.1.1. The boundary
value problem (L, B) is of class WR if the following conditions are met:

(i) The weak Lopatinskiı̆ condition holds,

(ii) The level set ∆−1(0) is non-void and contained in the hyperbolic region H. Moreover,
∂τ∆(X) ̸= 0 whenever ∆(X) = 0.

Theorem 3.1.1 (Theorem 2.10, [BGRSZ02]). Definition 3.1.2 describes an open class.

7via Theorem 2.4.2.
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Proof. Suppose that B(t, y) can be parameterised by ε in a smooth way. Then the
Lopatinskiı̆ determinant depends smoothly on (t, x, ε), holomorphically on τ − iγ, and
real analytically on η. If we assume that (L, B) is WR for ε = 0, by the same reasoning
as the one sketched for the strongly stable class, the domain of ∆ is compact and
therefore the zero set of ∆(·, ε) tends to the zero set of ∆(·, 0) as the parameter ε goes
to 0. But ∆−1(·, 0) is by definition a smooth, real variety, so ∆−1(·, ε) has to be a
smooth, real variety too for ε sufficiently small. Consequently, no new components
of ∆−1(·, ε) appear in the hyperbolic region H and ∆−1(·, ε) does not move into the
interior γ > 0.

Instead of using Definition 3.1.2, we shall utilise an equivalent characterisation of the
the WR class which is more appropriate for our future discussion.

Proposition 3.1.3 (Proposition B.1, [CG10] - Lemma 5.3, [OS75]). Let (L, B) as in
Problem (3.1). The pair (L, B) defines a WR boundary value problem if and only if:

(i) for every X ∈ YS ∩ {γ > 0}, it is true that E−(X) ∩ ker b(X) = {0}. In other words,
the weak Lopatinskiı̆ condition is fulfilled.

(ii) The critical set Γ ..= {X ∈ YS : E−(X)∩ ker b(X) ̸= {0}} is nonempty and included in
the hyperbolic region H. Furthermore, for every X ∈ Γ, there exist a conic neighbourhood
V of X, and mappings

▷ e1, · · · , ep ∈ C∞(V ,Cn),

▷ p(X) ∈ C∞(V , GLp(C)),

▷ ω ∈ C∞(V ,R)

such that, for every X ∈ V , ℯ−(X) = {e1(X), · · · , ep(X)} is a basis for E−(X),

b−(X) ..= b(X)(e1(X), · · · , ep(X)) = p(X)


λ−1(ζ)(γ + iω(X)) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

,

and ∂τω(X) ̸= 0 when ω(X) = 0.

Proof. Let us first assume that the boundary value problem (L, B) satisfies Conditions
(i) and (ii) in the statement above. As is customary, we shall focus on a compact set
K×Sd ⊂ XS in view of the Property (C) an the homogeneity of ∆(X). Since by definition
the Lopatinskiı̆ determinant vanishes at points where the Lopatinskiı̆ condition fails,

Γ = {X ∈ YS : E−(X) ∩ ker b(X) ̸= {0}} = {X ∈ YS : ∆(X) = 0},

and hence {X ∈ YS : ∆(X) = 0} ⊂ H. On top of that, as H is known to be open
and disjoint from the set of glancing points G (see Proposition 3.1.2), the Lopatin-
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skiı̆ determinant extends analytically to the frequency boundary {γ = 0} where it
becomes real-valued, and then similar arguments to the ones offered in the proof of
Proposition 3.1.1 reveal that Γ is a real analytic submanifold of K × Sd. There is still the
question of whether the roots of the Lopatinskiı̆ determinant are simple or not. To give
an answer, let us invoke Condition (ii) to define a second Lopatinskiı̆ determinant by

∆′(X) ..= det(b−(X)) = det
(

b(X)e1(X), · · · , b(X)ep(X)
)
= (γ + iω(X))det p(X),

or just by
∆(X) = γ + iω(X), (3.6)

if we divide by det p(X) ̸= 0. That said, as both ℯ(X) and ℯ(X) span the stable subspace
E−(X), there must be a nonvanishing complex-valued function υ(X) defined locally
around X such that

∆(X) = υ(X)∆(X).

It is then easy to check that ∂τω(X) ̸= 0 implies that ∂τ∆(X) ̸= 0 when ω(X) = 0,
thereby completing the first part of the proof. For the converse, let us suppose that
(L, B) belongs to the WR class. It is a direct consequence of the definition that
E−(X) ∩ ker b(X) = {0} for every X ∈ Y ∩ {γ > 0}, and that Γ is non-void and
contained in H. It is yet to be proved that the vanishing of the Lopatinskiı̆ determinant
at first order yields the existence a of a basis ℯ(X) with the properties indicated in
Proposition 3.1.3, Part (ii). This is addressed in the following proposition and its
corollary.

Proposition 3.1.4. If (L, B) belongs to the WR class, there exist a neighbourhood V and
two mappings p, c ∈ C∞(V , GLp(C)) homogeneous of degree 0 in ζ = (τ − iγ, η) ≃ (τ, η, γ)

such that the factorisation

b−(X) = p(X)


λ−1(ζ) (γ + iω(X)) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

c−1(X) (3.7)

holds true.

Proof. Let X ∈ Γ be such that ∆(X) = 0 and ∂τ∆(X) ̸= 0. Since ∆(X) is holomorphic
in ρ ..= τ − iγ and homogeneous of degree 0 with respect to ζ, the implicit function
theorem (see Theorem A.2.3) characterises the zeros of ∆(X) in a conic neighbourhood
V of X through an equation ρ = ν(t, y, η), where ν(t, y, η) is a smooth, homogeneous
function of degree 1 in η. If ℯ(X) = {e1(X), · · · , ep(X)} is any basis for E−(X), set

b−(X) ..= (b(X)e1(X), · · · , b(X)ep(X)),
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and denote each b(X)ei(X) by b−i (X) in the sequel. We claim that b−(X) has a non-
singular cofactor matrix h(X) of order p − 1 on V . Indeed, shrinking V if necessary,
∂τ∆(X) ̸= 0 guarantees that

rank b−(X) ≥ p − 1 on V , (3.8)

the equality being realised only when X ∈ V ∩ Γ. In practice, there is no loss of
generality in assuming that h(X) is the resulting block after deleting the first column
and the first row of b−(X). Let b′1(X) be the vector b−1 (X) without its first entry. In
such case, for every X ∈ V , the linear system h(X)d(X) = b′1(X) possesses a unique
solution 

d2(X)
...

dp(X)

 = h−1(X)b′1(X),

whose entries d2(X), · · · , dp(X) are smooth in (t, x) and homogeneous of degree 0 in
(ρ, η). Suppose now that

k(X) = b−1 (X)−
p

∑
i=2

di(X)b−i (X).

Except for the first component of k(X), which only vanishes when X ∈ {ρ = ν(t, y, η)},
all other entries are identically zero by construction. Thus, owing to the Weierstrass
preparation theorem (see Theorem A.2.1 in Appendix), there exists a nonvanishing
function z1(X) ≡ z(t, y, ρ, η) in V , analytic with respect to ρ and homogeneous of
degree −1 in (ρ, η), such that

k1(X) = (ρ − ν(t, y, η))z1(X) for X ∈ V .

As a result, if we put

z(X) ..=


z1(X)

...
zp(X)

,

with z2(X) = · · · = zp(X) = 0 along V , we can write k(X) = (ρ − ν(t, y, η))z(X) and
with it,

b−1 (X) = (ρ − ν(t, y, η))z(X) +
p

∑
i=2

di(X)b−i (X).

Let

c(X) =


1 0 · · · 0

−d2(X) 1 · · · 0
...

...
. . .

...
−dp(X) 0 · · · 1

. (3.9)
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Observe that c(X) is homogeneous of order 0 in (ρ, η) and that

b−(X) =
(

b−1 (X) b−2 (X) · · · b−p (X)
)

=
(
(ρ − ν(t, y, ζ))z(X) b−2 (X) · · · b−p (X)

)
c−1(X),

after a straightforward computation. Notably, the latter amounts to writing in matrix
notation

b−(X) = p(X)


λ−1(ζ)i(ρ − ν(t, y, η)) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

c−1(X)

= p(X)


λ−1(ζ)(γ + i(τ − ν(t, y, η))) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

c−1(X),

where
p(X) ..=

(
−iz(X)λ(ζ) b−2 (X) · · · b−p (X)

)
is homogeneous of degree 0 in ζ and nonsingular. Lastly, setting ω(t, y, τ, η) ..=

τ − ν(t, y, η), it is easily seen that ∂τω(t, y, τ, η) ̸= 0 and that

b−(X) = p(X)


λ−1(ζ)(γ + iω(t, y, τ, η))) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

c−1(X). (3.10)

Corollary 3.1.2. Let ω(X) ≡ ω(t, y, τ, η) and ∆(X) = (γ + iω(X))/λ(ζ) be as in (3.6)
(the λ−1(ζ) factor has to do with ∆ being originally defined in XS). Under the assumptions of
Proposition 3.1.4, there is a basis

ℯ−(X) = {e1(X), · · · , ep(X)},

for which

b−(X) = p(X)


∆(X) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

. (3.11)
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Proof. Notice that (3.7) attains its simplest form when choosing

e1(X) ..= e1(X)− d2(X)e2(X)− · · · − dp(X)ep(X), (3.12)

e2(X) ..= e2(X),
...

ep(X) ..= ep(X),

as a basis for E−(X).

The one-dimensional subspace spanned by e1(X) is special, as it points in the direction
in which the Lopatinskiı̆ condition degenerates when X ∈ Γ. In what follows, we shall
write ℓ(X) to denote this subspace and refer to it as the critical direction.

3.2 The constant coefficients case

Even though we shall derive deeper results in future sections, exploring the model case
(i.e. when P and B have constant coefficients and (P, B) is posed in the half-space) still
has its value, especially as it leads to an observation that is relevant for more general
constructions to come.

3.2.1 A WR symmetriser for the model problem

Let (P, B) be a WR boundary value problem of the form{
Pu(t, x) ..=

(
Dd +A(Dt, Dy)

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bu(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(3.13)

subject to Assumptions 2.3.1 and 2.4.1. We continue with the definitions of a Lopatin-
skiı̆ family of operators and a WR symmetriser.

Definition 3.2.1. Let δ(ζ) ∈ C∞(Ξ,Mn×n(C)) such that

(i) δ(ζ) is homogeneous of degree 0 in ζ,

(ii) If ζ ∈ Sd, ker δ(ζ) is trivial provided that γ > 0,

(iii) when ζ ∈ Γ, ker δ(ζ) is nontrivial and ℓ(ζ) ⊆ ker δ(ζ).

We shall call ∆γ
..= Opγ(δ) ∈ OPS0(R1+d

+ × [1,+∞)) a Lopatinskiı̆ family of operators.

Having the Lopatinskiı̆ operator as a reference, we define the function space

L2
∆ = {v ∈ S ′(R1+d

+ , Rn) : ∆γv ∈ L2
γ(R1+d

+ , Cn)}.

Definition 3.2.2. A WR symmetriser for Problem 3.13 is a family of pseudodifferential
operators Σγ ∈ OPS0(R1+d

+ × [1,+∞)) so that
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(i) Σγ is Hermitian,

(ii) for every v1, v2 ∈ L2
∆, there is a positive constant C satisfying

⟨Σγv1, v2⟩ ≤ C|∆γv1||∆γv2|,

(iii) there exists a positive constant c such that

Im (ΣγAv, v) ≥ cγ|∆γv|2,

for each v ∈ L2
∆,

(iv) there are positive constants α and β, together with a family of pseudodifferential operators
Qγ ∈ OPS0(Rd

+ × [1,+∞)) such that

⟨Σγv(0), v(0)⟩ ≥ α|∆γv(0)|2 − β|QγBv(0)|2.

If a WR symmetriser exists, we expect the symbol σ(ζ) of Σγ to be somewhat degener-
ate on the critical set Γ. More precisely, we have

Proposition 3.2.1. If ζ ∈ Γ, v 7→ ⟨σ(ζ)v, v⟩ vanishes on the Krylov space of

ℓ(ζ) = E−(ζ) ∩ ker b(ζ)

with respect to a(ζ), that is to say, on the smallest invariant subspace of a(ζ) containing ℓ(ζ).

Proof. Recall from Section 2.3.1 that the symbol of A(Dt, Dy) is

a(ζ) ≡ a(τ − iγ, η) ..= (Ad)
−1

(
(τ − iγ)In +

d−1

∑
i=1

ηi Ai

)
. (3.14)

We prove initially that v 7→ ⟨σ(ζ)v, v⟩ restricted to E−(ζ) is positive definite for γ > 0.
To do so, let u ∈ E−(ζ) be such that u ̸= 0 and consider the initial value problem{

Dsv + a(ζ)v = 0,

v(0) = u,

whose solution is well known and equal to

v(s) = e−ia(ζ)su (3.15)
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in the sense of matrices. Then,

d
ds

⟨σ(ζ)v, v⟩ = ⟨σ(ζ)∂sv, v⟩+ ⟨σ(ζ)v, ∂sv⟩ = i⟨σ(ζ)Dsv, v⟩ − i⟨σ(ζ)v, Dsv⟩

= −2 Im ⟨Dsa(ζ)v, v⟩

= 2 Im ⟨σ(ζ)a(ζ)v, v⟩

≥ 2cγ|δ(ζ)v|2 > 0, (3.16)

The first inequality being due to (iii) in Definition 3.2.2 and Plancherel’s theorem (see
Theorem A.2.9 in Appendix), while the second one is being due to Condition (ii) in
Definition 3.2.1. Since u ∈ E−(ζ), v → 0 decreases exponentially fast as s → ∞ and
thus, when integrating over R+,

−⟨σ(ζ)v(0), v(0)⟩ =
∫ ∞

0

d
ds

⟨σ(ζ)v(s), v(s)⟩ ds ≥ 2Cγ
∫ ∞

0
|δ(ζ)v(s)|2 ds > 0,

or ⟨σ(ζ)u, u⟩ < 0, as claimed. Back to the original assertion, let us fix ζ ∈ Γ. As
E−(ζ) ∩ ker b(ζ) is nontrivial, for every v ∈ E−(ζ) ∩ ker b(ζ) such that v ̸= 0, it must
happen on one hand that ⟨σ(ζ)v, v⟩ ≤ 0 by the opening argument of this proof and
by continuity in γ, and on the other that ⟨σ(ζ)v, v⟩ ≥ 0 because of a combination of
Plancherel’s theorem and Part (iv) in Definition 3.2.2, which ensures that the restriction
of σ(ζ) to ker b(ζ) is non-negative. Together, both facts indicate that σ(X)|ℓ(X) = 0.

In order to prove that σ(ζ) certainly vanishes in a larger subspace, we argue in a similar
fashion as above and integrate (3.16) from 0 to a positive real number t,

⟨σ(ζ)v(t), v(t)⟩ − ⟨σ(ζ)v(0), v(0)⟩ =
∫ t

0

d
ds

⟨σ(ζ)v(s), v(s)⟩ ds ≥ 0,

or equivalently,

⟨σ(ζ)v(t), v(t)⟩ ≥ ⟨σ(ζ)v(0), v(0)⟩ = ⟨σ(ζ)u, u⟩. (3.17)

If we pick u ∈ ℓ(ζ), the right-hand side of (3.17) is automatically zero and it is safe to
say that

⟨σ(ζ)v(t), v(t)⟩ ≥ 0. (3.18)

Let Kℓ(ζ) be the smallest invariant subspace of a(ζ) containing ℓ(ζ). As ℓ(ζ) is included
in E−(ζ) and E−(ζ) is invariant under a(ζ), we necessarily have that Kℓ(ζ) ⊆ E−(ζ).
Furthermore, as the solution of a first-order autonomous differential equation whose
initial value belongs to an invariant space remains within the invariant space (see
Theorem A.2.5), it is true that

⟨σ(ζ)v(t), v(t)⟩ ≥ 0. (3.19)
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The reverse inequality may be inferred from two facts, namely, that ⟨σ(ζ) · , · ⟩ ≤ 0
when restricted to E−(ζ) (already verified!), and that v(t) ∈ E−(ζ) for every t.

Remark 3.2.1. The latter means, roughly speaking, that in general there is no hope that
σ(ζ) kills only the critical direction ℓ(X), but a larger subspace containing ℓ(X).

3.2.2 Construction of a WR symmetriser and energy estimates for the model
problem

As the present analysis is merely intended to motivate future results, we shall keep
things simple and assume at this early stage that Kℓ(ζ) = E−(ζ), leaving the more
general case Kℓ(ζ) ⊂ E(ζ) for the next section where problems with variable coefficients
are explored. Also, considering that the construction proposed in this section is global
in nature and not a set of pieces assembled with a partition of unity, we shall assume
that there are no glancing points for simplicity. Before looking at the construction of
Σγ, let us see how Conditions (i) to (iv) in Definition 3.2.2 imply energy estimates for
the WR class in the current situation. To shorten the notation, we shall often omit the
independent variables and the parameter γ in the calculations ahead. We pursue the
same strategy as in Chapter 2 and expand the term d⟨Σu, u⟩/dxd as shown:

d
dxd

⟨Σu, u⟩ = ⟨Σ∂du, u⟩+ ⟨Σu, ∂du⟩

= 2 Re ⟨ΣiDdu, u⟩

= 2 Re ⟨Σi( f −Au), u⟩

= 2 Im ⟨Σau, u⟩ − 2 Im ⟨Σ f , u⟩.

Keeping in mind that u ∈ D(R1+d) vanishes at infinity, an integration over [0, ∞) with
respect to xd produces

⟨Σu(0), u(0)⟩ =− 2
∫ ∞

0
Im ⟨ΣAu, u⟩ dxd + 2

∫ ∞

0
Im ⟨Σ f , u⟩ dxd.

To bound both integrals, we exploit Definition 3.2.2 directly. For example, from
Condition (ii),

2 Im ⟨Σ f , u⟩ ≤ 2|⟨Σ f , u⟩| ≤ C1|∆ f ||∆u|

for some positive constant C1, whereas from (iii) it is clear that

⟨Σu(0), u(0)⟩ ≤ −cγ
∫ ∞

0
|∆u|2 dxd + C1

∫ ∞

0
|∆ f ||∆u| dxd. (3.20)
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We can control (3.20) from below by means of (iv) in Definition 3.2.2, and from above
via Young’s inequality (see Theorem A.2.6), so that

α|∆u(0)|2 − β|QBu(0)|2 ≤ (−cγ + εγ)
∫ ∞

0
|∆u| dxd +

C1

4εγ

∫ ∞

0
|∆ f |2 dxd.

Taking a sufficiently small value for ε implies that

α|∆u(0)|2 − β|QBu(0)|2 ≤ −C2γ
∫ ∞

0
|∆u|2 dxd +

C3

γ

∫ ∞

0
|∆ f |2 dxd,

for some constant C2, or what is the same,

γ
∫
R1+d
+

e−2γt|∆u|2 dt dx +
∫
Rd

e−2γt|∆u(0)|2 dt dy (3.21)

≤ C
(

1
γ

∫
R1+d
+

e−2γt|∆ f |2 dt dx +
∫
Rd

e−2γt|QBu(0)|2 dt dy
)

,

for some C > 0.

Having established energy estimates, let us exhibit a pseudodifferential operator Σγ

with the properties listed in Definition 3.2.2. As we shall confirm soon, this can be
achieved by slightly modifying the first part of the proof of Theorem 2.5.1, which we
now quickly summarise for the benefit of the reader.

▷ We pick a hyperbolic frequency ζ ∈ Sd, and realise that a(ζ) is diagonalisable
around ζ with eigenvalues a1(ζ), · · · , an(ζ) (counted according to their multiplic-
ities) and eigenvectors

ℯ0(ζ) =
(

e1(ζ) · · · en(ζ)
)

that depend smoothly on ζ.

▷ We can expand each aj(ζ) as

aj(ζ) = aj(ζ̃) + iγκj(ζ̃) + γ2wj(ζ) (3.22)

using Taylor’s theorem with respect to γ. Here, ζ̃ ≃ (τ, η).

▷ If κ′j
..= κj(ζ), then r ..= diag(r1, · · · , rn) with

rj =

−1 for κ′j > 0,

ρ for κ′j < 0,
(3.23)

where ρ > 0 is to be determined later.

Returning to the main question, let us set

δ(ζ) ≡ diag (δ1(ζ), · · · , δn(ζ)) ..= diag
(
∆(ζ)Ip, In−p

)
. (3.24)
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We seek σ in the form σ = δ∗rδ and affirm that Σγ = Op(σ) meets Definition 3.2.2. For
instance, Condition (i) is immediate from

⟨Σv1, v2⟩ = ⟨Op (r)∆v1, ∆v2⟩ ≤ C|∆v1||∆v2|,

which is valid for arbitrary test functions v1, v2. In contrast, equations (3.22) and (3.23)
yield component-wise

Im δjrjajδj(ζ) = Im
(

rjaj(ζ̃)|δj(ζ)|2 + iγrjκj(ζ̃)|δ(ζ)|2 + rjγ
2wj(ζ)|δj(ζ)|2

)
≥ Cγ|δj(ζ)|2,

for the same reasons as the ones already outlined in Theorem 2.5.1. Plancherel’s formula
then completes Part (iii). To check the last item in Definition 3.2.2, let us suppose that
v− (resp. v+) is the projection component of v ∈ Cn onto E−(ζ) (resp. E+(ζ)) so
that

v =

(
v−

v+

)
.

A direct calculation gives

⟨σ(ζ)v, v⟩ = ⟨δ∗(ζ)rδ(ζ)v, v⟩ = −|∆(ζ)v−|2 + ρ|v+|2 (3.25)

= |∆(ζ)v−|2 + ρ|v+|2 − 2|∆(ζ)v−|2,

which suggests using equation (3.7) to link (3.25) with the boundary matrix b. Indeed,
borrowing p(ζ) and c(ζ) from Proposition 3.1.4, one has

∆Ip = c(ζ)(∆Ip)c−1(ζ)

= c(ζ)


1 0 . . . 0
0 ∆(ζ) . . . 0
...

...
. . .

...
0 0 . . . ∆(ζ)




∆(ζ) 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 c−1(ζ) (3.26)

= c(ζ)


1 0 . . . 0
0 ∆(ζ) . . . 0
...

...
. . .

...
0 0 . . . ∆(ζ)

 p−1(ζ)p(ζ)


∆(ζ) 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 c−1(ζ)

= q(ζ)b−(ζ), (3.27)

where q(ζ) ..= c(ζ)diag(1, ∆(ζ), · · · , ∆(ζ))p−1(ζ). Armed with (3.26) and

b+(ζ) ..= (b(ζ)ep+1(ζ), · · · , b(ζ)en(ζ)),
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we see that the first term in (3.25) unfolds as

|∆(ζ)v−|2 =

∣∣∣∣∣
(

∆(ζ)Ip 0
0 In−p

)(
v−

0

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

∆(ζ)Ip q(ζ)b+(ζ)
0 In−p

)(
v−

0

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

∆(ζ)Ip q(ζ)b+(ζ)
0 In−p

)(
v−

v+

)
−
(

∆(ζ)Ip q(ζ)b+(ζ)
0 In−p

)(
0

v+

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

q(ζ)b−(ζ) q(ζ)b+(ζ)
0 In−p

)(
v−

v+

)
−
(

∆(ζ)Ip q(ζ)b+(ζ)
0 In−p

)(
0

v+

)∣∣∣∣∣
2

≤
(∣∣∣∣∣
(

q(ζ)b(ζ)v
v+

)∣∣∣∣∣+ C|v+|
)2

≤ C
(
|q(ζ)b(ζ)v|2 + |v+|2

)
, (3.28)

where the final line accounts for the convexity of the power function x 7→ x2. In the
end, combining (3.25) and (3.28), we get

⟨σ(ζ)v, v⟩ ≥ |∆(ζ)v−|2 + (ρ − 2C)|v+|2 − 2C|q(ζ)b(ζ)v|2,

from which the result follows from choosing ρ such that α ..= ρ − 2C = 1, β ..= 2C, and
from Plancherel’s theorem.

To close this section, we show how to recover estimates analogous to those in [BGS07],
Chapter 8. In there, each term in the energy inequality is “filtered” by ∆, even the one
containing the boundary condition Bu. For this purpose, let

m(ζ) ..=
(

Ip q(ζ)b+(ζ)
)

,

and observe that

q(ζ)b(ζ) =
(

q(ζ)b−(ζ) q(ζ)b+(ζ)
)
=
(

Ip q(ζ)b+(ζ)
)(δ−(ζ)

In−p

)
= m(ζ)δ(ζ).

If we take any (n − p)× n matrix x(ζ) such that x(ζ) is surjective and(
b(ζ)
x(ζ)

)

is nonsingular, there exist matrices y(ζ) and d(ζ) with respective dimensions n × p and
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n × (n − p), so that

In =

(
b(ζ)
x(ζ)

)(
y(ζ) d(ζ)

)
=

(
b(ζ)y(ζ) b(ζ)d(ζ)
x(ζ)y(ζ) x(ζ)d(ζ)

)
. (3.29)

From (3.29), we may deduce that b(ζ)y(ζ) = Ip, and then that

q(ζ)b(ζ) = q(ζ)b(ζ)y(ζ)b(ζ) = m(ζ)δ(ζ)y(ζ)b(ζ).

Finally, if Y ..= Op(y), Q ..= Op(q), and M ..= Op(m), by invoking Plancherel’s theorem
we conclude that QB = M∆YB and

γ
∫
R1+d
+

e−2γt|∆u|2 dt dx +
∫
Rd

e−2γt|∆u(0)|2 dt dy

≲

(
1
γ

∫
R1+d
+

e−2γt|∆ f |2 dt dx +
∫
Rd

e−2γt|∆QBu(0)|2 dt dy
)

≲

(
1
γ

∫
R1+d
+

e−2γt|∆ f |2 dt dx +
∫
Rd

e−2γt|∆YBu(0)|2 dt dy
)

,

as desired.

3.3 The variable coefficients case

Our starting point will be once again the general boundary value problem{
Pγuγ(t, x) ..=

(
Dd +Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(3.30)

where Aγ ∈ OPS1(R1+d
+ × [γ0,+∞)) is a classical pseudodifferential operator whose

symbol a ∈ S1
γ(R1+d

+ ×Rd × [γ0,+∞)) is a matrix-valued function of dimension n × n
that admits an asymptotic expansion

a ∼
∞

∑
j=0

a1−j,

each a1−j being homogeneous of degree 1 − j. Likewise, Bγ ∈ OPS0(Rd × [γ0,+∞)) is
a classical pseudodifferential operator with a p × n principal part b(X) ∈ S0(Rd ×Rd ×
[γ0,+∞)). In addition, the source data f and g are chosen at least in L2

γ.

We supplement Problem 3.30 with the following hypothesis.

Assumption 3.3.1.

(i) Pγ is hyperbolic as in Definition 2.3.1.

(ii) Pγ and Bγ satisfy Property (C), that is, a1 and b do not depend on (t, x) outside certain
compact set K.
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(iii) b(X) is everywhere of maximal rank p = dimE−(X).

(iv) (Pγ, Bγ) is WR.

3.3.1 Construction of a WR symmetriser and energy estimates for the general
problem

Taking into account Proposition 3.2.1, we shall generalise the notion of a Lopatin-
skiı̆ multiplier to fit Problem 3.3.1

Theorem 3.3.1. Suppose that (Pγ, Bγ) is a WR boundary value problem furnished with
Assumption 3.3.1. Let X ∈ H. Then there exist symbols ℯ̃0(X) and δ(X) defined in some conic
neighbourhood V of X such that for every X ∈ V ,

(i) ℯ̃0(X) and δ(X) are homogeneous of degree 0,

(ii) ℯ̃0(X) ∈ GLn(C) and
ȧ1(X) ..= ℯ̃−1

0 (X)a1(X)ℯ̃0(X)

is diagonal with entries a1,1(X), · · · , a1,n(X),

(iii) there is s ≤ p so that δ(X) is diagonal with respect to the basis ℯ̃0(X) and given by

δ(X) = diag(δ−(X), In−p),

where

δ−(X) ..=




δ−1 (X) . . . 0
...

. . .
...

0 . . . δ−s (X)


Ip−s

,

with each δ−j being the solution of the transport equation∂dδ−j + {δ−j , a1,j} = 0,

δ−j |xd=0 = ∆,
(3.31)

(iv) when X ∈ YS ∩H, there exist matrices q(X) and m(X) depending smoothly on X ∈
V ∩Y with dimensions p × p and p × n, respectively, so that if ḃ(X) ..= b(X)ℯ̃0(X),
there holds

q(X)ḃ(X) = m(X)δ(X), (3.32)

(v) ker δ(X) ̸= {0} if and only if X ∈ Γ. When nontrivial, ker δ(X) is an s−dimensional
invariant subspace of a1(X) containing the critical direction ℓ(X).

Before entering into the proof of Theorem 3.3.1, we shall state an auxiliary result whose
proof can be found in the appendix.

Lemma 3.3.1. Let V be a finite dimensional vector space. Suppose T ∈ End(V) is diagonalis-
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able with distinct eigenvalues λ1, · · · , λq, and corresponding eigenspaces Vλ1 , · · · , Vλq . Then
every T−invariant subspace W can be decomposed as

W = (W ∩ Vλ1)⊕ · · · ⊕ (W ∩ Vλq).

Proof of Theorem 3.3.1. For simplicity’s sake, we shall split the argument into several
steps.

Step 1. We classify points in H. Our strategy focuses on defining δ(X) initially for
X = (t, y, xd, τ, η, γ) with xd small, and then extend δ(X) in a constant way to larger
values of xd. That being said, let us assume that X ∈ H ∩Y. We distinguish two cases,
namely when X belongs to Γ and when it does not. In the latter, we choose ℯ̃0(X) as
predicted by the block structure condition (see Definition 2.4.2 and Proposition 2.4.1)
and notice that the uniform Lopatinskiı̆ condition is fulfilled. As a result, each δj(X),
—which is guaranteed to exist locally by Picard-Lindelöf’s theorem—, never vanishes
in a small neighbourhood V of X, for ∆(X) never vanishes in V ∩Y either. Hence, δ(X)

is nonsingular and it follows that equation (3.32) holds by choosing q(X) = Ip and
m(X) = ḃ(X)δ−1(X). The remaining and most interesting case occurs therefore around
points X ∈ Y ∩H where the Lopatinskiı̆ determinant vanishes to the first order. We
devote the rest of the proof to examine this situation.

Step 2. We find a suitable basis ℯ̃(X). Recall that a1(X) is smoothly diagonalisable around
X in view of Proposition 2.4.2, meaning that for every X in a neighbourhood V of X
there exist eigenvalues

a1,1(X), · · · , a1,n(X)

(counted according to their multiplicities) and eigenvectors e1(X), · · · , en(X) organised
as the columns of a nonsingular matrix ℯ0(X), so that

ℯ−1
0 (X)a1(X)ℯ0(X) =


a1,1(X) 0 · · · 0

0 a1,2(X) · · · 0
...

... . . . ...
0 0 · · · a1,n(X)

.

For X ∈ V , let Kℓ(X) be the Krylov space of ℓ(X) with respect to a1(X). Admitting
that the first p columns of ℯ0(X) span the stable subspace E−(X) and that repeated
eigenvalues are adjacent, we explain how to pick a different basis for E−(X) that
interacts nicely with Kℓ(X). To this end, let µ1(X), · · · , µq(X) be pairwise different
eigenvalues of a1(X) with multiplicities α1, · · · , αq. For every k ∈ {1, · · · , q}, we can
find a positive integer ik ≤ n such that

µk(X) = a1,ik(X) = a1,ik+1(X) = · · · = a1,ik+αk−1(X),

with associated eigenspace Vk(X) = span{eik(X), · · · , eik+αk−1(X)}. With this at hand,
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Lemma 3.3.1 suggests that Kℓ(X) can be decomposed as

Kℓ(X) = Kℓ(X) ∩ V1(X)⊕ · · · ⊕ Kℓ(X) ∩ Vq(X),

where Kℓ(X) ∩ Vk(X) is trivial for every Vk(X) ⊂ E+(X), since Kℓ(X) ⊆ E−(X) for
every X ∈ V . If Kℓ(X) ∩ Vk(X) ̸= {0}, we can choose ẽk(X) ∈ Kℓ(X) ∩ Vk(X) and use
it to replace an existing element in ℯ(X) in such a way that the resulting set ℯ̃0(X)

is still a basis of Cn. Thus, if s = s(X) is the number of non-zero coefficients from
d1(X), · · · , dp(X) in (3.12), after rearranging components if necessary, the new basis
ℯ̃0(X) consists of eigenvectors of a1(X) whose first s elements span Kℓ(X). To put it
differently,

Cn = span{ẽ1(X), · · · , ẽs(X)} ⊕ span{ẽs+1(X), · · · , ẽn(X)}

= Kℓ(X)⊕ span{ẽs+1(X), · · · , ẽn(X)}.

Looking ahead to future stages of this proof, it is of primary interest to us that only one
value of s is chosen for the whole neighbourhood V . This is generally the case, save
possibly when a coefficient di vanishes point-wise at X while not being identically zero
in V . In these circumstances, Kℓ(X) ..= span{ẽ1(X), · · · , ẽs(X)} with s being the largest
value we encounter while X ranges on V (although Kℓ(X) is no longer the smallest
subspace containing ℓ(X) for every X ∈ V , this will suffice for our plans).

Step 3. We define δ(X). Having picked an appropriate basis in the previous passage, we
can define

δ(X) = diag(δ−(X), In−p),

with

δ−(X) ..=




δ−1 (X) . . . 0
...

. . .
...

0 . . . δ−s (X)


Ip−s

. (3.33)

Each δ−i (X) in (3.33) solves locally the transport equation∂dδ−j + {δ−j , a1,j} = 0,

δ−j |xd=0 = ∆,
(3.34)
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whose characteristic curves coincide with the integral curves of the Hamiltonian system

dyk

dxd
=

∂a1,j

∂ηk
,

dηk

dxd
= −

∂a1,j

∂yk
,

(y0, · · · , yd−1, 0, η0, · · · , ηd−1, γ) ∈ V ∩Y,

(3.35)

provided that we interpret x0 as t and η0 as τ. The preceding set of equations does
not impose any restriction on γ, so we are free to complement (3.35) with the natural
assumption that dγ/dxd = 0 along the bicharacteristic curves. As before, the existence
of such δ−j (X) in (perhaps a smaller) V is justified by Picard-Lindelöf’s theorem (see
Theorem A.2.4).

Step 4. We link δ(X) and b−(X). To investigate the behaviour of δ(X) on the boundary
{xd = 0}, we place ourselves at any point X ∈ V ∩Y and take

c(X) =


1 0 · · · 0

−d2(X) 1 · · · 0
...

...
. . .

...
−dp(X) 0 · · · 1

 (3.36)

as in the proof of Proposition 3.1.4 (with ℯ̃(X) as the underlying basis). In Step 2, we
arranged the columns of ℯ̃(X) in a way that all the nonvanishing elements in d1, · · · , dp

are written in the upper left part of c(X). In other words, c(X) can be seen as a block
diagonal matrix

c(X) = diag(cs(X), Ip−s)

with

cs(X) ..=


1 0 · · · 0

−d2(X) 1 · · · 0
...

...
. . .

...
−ds(X) 0 · · · 1

. (3.37)

Meanwhile, since δ−j (X) = ∆(X) when X ∈ V ∩Y for every j ∈ {1, · · · , s},

δ(X) = diag
(
∆(X)Is, Ip−s, In−p

)
.

We make use of c(X) and its properties to define

s(X) = diag
(
c(X), In−p

)
,

which is nonsingular and hence could be regarded as a legitimate change of variables.
What is more, s(X)δ(X)s−1(X) is the product of commuting diagonal blocks, from
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which it easily follows that δ(X) is invariant under conjugation by s(X). Let υ1(X) and
υ2(X) be square matrices of dimension s× s such that

υ1(X) ..=


1 0 . . . 0
0 ∆(X) . . . 0
...

...
. . .

...
0 0 . . . ∆(X)

 and υ2(X) ..=


∆(X) 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Note that δ(X) can be factored as

δ(X) =

∆(X)Is
Ip−s

In−p

 =

υ1(X)υ2(X)

Ip−s

In−p

 , (3.38)

so

δ(X) = s(X)

υ1(X)

Ip−s

In−p


υ2(X)

Ip−s

In−p

s−1(X) (3.39)

=


(

cs(X)υ1(X)

Ip−s

)
In−p



(

v2(X)

Ip−s

)
c−1(X)

In−p



=


(

cs(X)υ1(X)

Ip−s

)
p−1(X)

In−p



p(X)


∆(X)

1
. . .

1

 c−1(X)

In−p


.

In this manner, if

q(X) ..=

(
cs(X)υ1(X)

Ip−s

)
p−1(X),

Proposition 3.1.4 and equation (3.39) enable us to conclude that

δ(X) = diag
(
q(X)b−(X), In−p

)
.

To finalise, let
b+(X) ..=

(
b(X)ẽp+1(X) · · · b(X)ẽn(X)

)
.

If m(X) ..=
(

Ip q(X)b+(X)
)

, then

q(X)b(X) =
(

q(X)b−(X) q(X)b+(X)
)
=
(

Ip q(X)b+(X)
)(δ−(X)

In−p

)
= m(X)δ(X).
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Step 6. δ(X) degenerates at critical points. By construction, ker δ(X) is nontrivial if and
only if ∆(X) = 0, i.e., if and only if X ∈ Γ. That ker δ(X) is s−dimensional is evident
from Step 2.

Definition 3.3.1. A collection of pseudodifferential operators ∆γ(t, x, Dt, Dy) ∈ OPS0
γ(R1+d

+ ×
[γ0,+∞)) is a Lopatinskiı̆ family of operators if ∆γ

..= Opγ(δ) and δ(X) ≡ δγ(t, x, τ, η) sat-
isfies Theorem 3.3.1.

Before continuing further, we present and prove a crucial lemma that simplifies the
zeroth-order terms in Problem 3.30. Morally, if E0,γ is a pseudodifferential operator
whose symbol is the nonsingular matrix ℯ̃0(X) found in Theorem 3.3.1, we look for
a correction of E0,γ by an operator of order −1, say E−1,γ, for which Dd + Aγ is block
diagonal up to an error of order −1. Specifically, we have:

Lemma 3.3.2 (Lemma 1, [Cou04]). Consider (Pγ, Bγ) as in Problem (3.30) with a1 and a0

being the first two elements of the asymptotic expansion of a. Under the notation of Theorem
3.3.1, we can define a symbol ℯ−1(X) on V such that ℯ−1(X) is homogeneous of order −1 and

(ℯ̃0 + ℯ−1)(a1 + a0)− (ȧ1 + ä0)(ℯ̃0 + ℯ−1) + Ddℯ̃0 +
1
i

d−1

∑
k=0

(
∂ηk ℯ̃0∂xk ȧ1 − ∂ηk ȧ1∂xk ℯ̃0

)
is a symbol of order −1, where ä0 is a block diagonal symbol of order 0 with blocks having
dimensions α1, · · · , αq as those of ȧ1.

Proof. Let ℯ−1 be a symbol of order −1 to be determined. A first-order approximation
of (ℯ̃0 + ℯ−1)

−1 shows that

(ℯ̃0 + ℯ−1)(ℯ̃−1
0 − ℯ̃−1

0 ℯ−1ℯ̃−1
0 ) = In mod S−1

γ , (3.40)

so (ℯ̃0 + ℯ−1)(ξd In + a1 + a0)(ℯ̃0 + ℯ−1)
−1 can be estimated up to an error of order −1

by

(ℯ̃0 + ℯ−1)(ξd In + a1 + a0)(ℯ̃−1
0 − ℯ̃−1

0 ℯ−1ℯ̃−1
0 )

= (ξd In + ℯ̃0a1ℯ̃−1
0 − ℯ̃0a1ℯ̃−1

0 ℯ−1ℯ̃−1
0 + ℯ−1a1ℯ̃−1

0 + ℯ̃0a0ℯ̃−1
0 ) mod S−1

γ .

Since ℯ̃0a1ℯ̃−1
0 = ȧ1, it is true that

ℯ̃0a1ℯ̃−1
0 ℯ−1ℯ̃−1

0 − ℯ−1a1ℯ̃−1
0 = ȧ1ℯ−1ℯ̃−1

0 − ℯ−1ℯ̃−1
0 ȧ1 = [ȧ1, ℯ−1ℯ̃−1

0 ],

and consequently

(ℯ̃0 + ℯ−1)(ξd In + a1 + a0)(ℯ̃−1
0 − ℯ̃−1

0 ℯ−1ℯ̃−1
0 ) = ξd In + ȧ1 − [ȧ1, ℯ−1ℯ̃−1

0 ] + ℯ̃0a0ℯ̃−1
0

modulo S−1
γ . As we always do with involved computations, we shall omit the parameter

γ to facilitate the exposition. That being so, let Ȧ1
..= Op(ȧ1) and Ä0

..= Op(ä0). We
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now utilise the usual symbolic calculus on the operator equation

(E0 + E−1)(Dd +A)− (Dd + (Ȧ1 + Ȧ0))(E0 + E−1) = 0 mod Ψ−1 (3.41)

to derive precise conditions on ä0. As a matter of fact, a first-order expansion of the
symbol of (3.41) yields

(ℯ̃0 + ℯ−1)(a1 + a0)− (ȧ1 + ä0)(ℯ̃0 + ℯ−1)

+ Ddℯ̃0 +
1
i

d−1

∑
k=0

(
∂ηk ℯ̃0∂xk a1 − ∂ηk ȧ1∂xk ℯ̃0

)
= 0, (3.42)

or more concisely,

−[ȧ1, ℯ−1ℯ̃−1
0 ]ℯ̃0 + ℯ̃0a0 − ä0ℯ̃0 + Ddℯ̃0 +

1
i

d−1

∑
k=0

(
∂ηk ℯ̃0∂xk a1 − ∂ηk ȧ1∂xk ℯ̃0

)
= 0 mod Ψ−1.

(3.43)

Alternatively, if we multiply (3.43) from the right by ℯ̃−1
0 and put ȧ0 = e0a0e−1

0 , then

ä0 = −[ȧ1, ℯ−1ℯ̃−1
0 ] + ȧ0 + (Ddℯ̃0)ℯ̃−1

0 +
1
i

d−1

∑
k=0

(
∂ηk ℯ̃0∂xk a1 − ∂ηk ȧ1∂xk ℯ̃0

)
ℯ̃−1

0 mod Ψ−1.

In general, there is no reason to expect that ä0 above is block diagonal. Yet, we can
choose the off-diagonal entries of [ȧ1, ℯ−1ℯ̃−1

0 ] (it is worth remembering that [ȧ1, ℯ−1ℯ̃−1
0 ]

has zero diagonal) to compensate those of

ȧ0 + (Ddℯ̃0)ℯ̃−1
0 +

1
i

d−1

∑
k=0

(
∂ηk ℯ̃0∂xk a1 − ∂ηk ȧ1∂xk ℯ̃0

)
ℯ̃−1

0 .

As all the terms we have neglected so far are of lower order, the operator Dd + Ȧ1 + Ä0

is a block diagonalisation of Dd +Aγ modulo an error of order −1.

We continue with the main result of this chapter, namely, the derivation of energy
inequalities for the WR class. The details are summarised in the statement below.

Theorem 3.3.2. Let{
Pγuγ(t, x) ..=

(
Dd +Aγ(t, y, xd, Dt, Dy)

)
u(t, x) = f (t, x) (t, x) ∈ R1+d

+ ,

Bγ(t, y)u(t, y, 0) = g(t, y) (t, y) ∈ Rd,
(3.44)

where Aγ ∈ OPS1
γ(R1+d

+ × [1,+∞)) and Bγ ∈ OPS0
γ(Rd × [1,+∞)) are classical pseudo-

differential operators with matrix-valued symbols a(X) and b(X) of dimensions n × n and
p × n, respectively. Suppose that Pγ is hyperbolic in the sense of Definition 2.3.1, Pγ and Bγ

satisfy Property (C), and that p = dimE−(X). Then there exist
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(i) γ0 ≥ 1,

(ii) a family of pseudodifferential operators

∆γ(t, x, Dt, Dy) ∈ OPS0
γ(R1+d

+ × [γ0,+∞)),

(iii) function spaces

L2
∆

..= {v ∈ S ′(R1+d
+ , Rn) : ∆γv ∈ L2

γ(R1+d
+ , Cn)},

Hs
∆

..= {v ∈ S ′(R1+d
+ , Rn) : Λs

γv ∈ L2
∆(R1+d

+ , Cn)},

(iv) and a positive constant C such that,

if f ∈ L2
γ(R1+d

+ ) and g ∈ L2
γ(Rd), then for all γ > γ0 and every u ∈ D(R1+d

+ ) the following
estimate holds

γ∥∆γu∥2
0,γ + |∆γu(0)|20,γ ≤ C

(
1
γ
∥ f ∥2

0,γ + |g|20,γ

)
. (3.45)

More generally, if f ∈ Hs
γ(R1+d

+ ) and g ∈ Hs
γ(Rd),

γ∥∆γu∥2
s,γ + |∆γu(0)|2s,γ ≤ C

(
1
γ
∥ f ∥2

s,γ + |g|2s,γ

)
. (3.46)

Proof. In the interest of not overloading the notation, we adhere to the following
conventions:

▷ We shall suppress the parameter γ all through the calculations, except when its
presence is relevant to the point being made (e.g. when we wish to emphasise the
existence of a parameter-dependent family of pseudodifferential operators).

▷ Ψm represents an error of order m that may be different from line to line.

▷ When it comes to norms, we shall write ∥ · ∥s,γ = ∥ · ∥s or ∥ · ∥0,γ = ∥ · ∥ when
s = 0 (resp. | · |s,γ = | · |s or | · |0,γ = | · | when s = 0).

▷ We shall adopt Aγ(xd) and ∆γ(xd) as a substitute for

Aγ(t, y, xd, Dt, Dy) and ∆γ(t, y, xd, Dt, Dy).

Once again, we shall divide the analysis into steps for ease of explanation.

Step 1. We pick a pseudodifferential partition of unity. Thanks to homogeneity and Property
(C), we can restrict our attention to a compact region K × Sd ⊂ XS, which we may cover
with finitely many neighbourhoods {Vi}i∈I as shown in Theorem 3.3.1. Let {φi}i∈I be
a partition of unity subordinate to {V i}i∈I and {θi}i∈I be a system of functions such
that θi ∈ C∞

c (Vi), and θi ≡ 1 in a vicinity of supp φi. In addition, let us assume that Θi

and Φi are pseudodifferential operators whose symbols are the extensions of θi and φi
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to homogeneous functions of degree 0 in ζ = (τ, η, γ).

Step 2. We perform a change of variables in Problem 3.44. To begin with, let us fix
V ≡ Vi, θ ≡ θi, and take ℯ̃0 ≡ ℯ̃i,0 as in Theorem 3.3.1. Putting E0

..= Op (θℯ̃0) and
E−1

0
..= Op (θℯ̃−1

0 ), it is readily verified that E0E−1
0 = In mod Ψ−1, which justifies the

abuse of notation in writing E−1
0 to refer to Op (θℯ̃−1

0 ) (in rigour, only the inverse of E0

mod Ψ−1). Applying E−1
0 on both sides of (Dd +A)u = f bring us to

E−1
0 Ddu + E−1

0 Au = E−1
0 f , (3.47)

or alternatively to

DdE−1
0 u + E−1

0 Au + [E−1
0 , Dd]u = E−1

0 f . (3.48)

The equivalence

E−1
0 Au = E−1

0 AE0E−1
0 u+E−1

0 AΨ−1u = E−1
0 AE0E−1

0 u+E−1
0 AΨ−1E0E−1

0 u+E−1
0 AΨ−2u

modulo an error of order −1 let us recast (3.48) succinctly as

(Dd + Ȧ + E0)u̇ = ḟ mod Ψ−1,

with u̇ ..= E−1
0 u, Ȧ ..= E−1

0 AE0, E0
..= [E−1

0 , Dd]E0 + E−1
0 AΨ−1E0, and ḟ ..= E−1

0 f . If
we think of E0 as part of Ȧ, Lemma 3.3.2 implies the existence of a refined basis
E = E0 + E−1 with respect to which Dd +A is a block diagonalisation of Dd + Ȧ + E0

modulo Ψ−1. In the same vein, if Ḃ ..= BE , we notice that ḂE−1 ..= (BE)E−1 differs
from B by an error of order −1. The resulting operator is{

Pu̇(t, x) ..= (Dd +A) u̇(t, x) = ḟ (t, x),

Ḃu̇(t, y, 0) = ġ(t, y),
(3.49)

where ġ ≡ g, and A is a classical pseudodifferential operator with symbol

a ∼ ȧ1 + ä0 + · · · ,

with ȧ1 and ä0 being block diagonal.

Step 3. We localise u by means of Φ. To do so, we fix i such that Φ ≡ Φi and observe that
the commutator relations

(Dd +A)Φ = Φ(Dd +A) + [(Dd +A), Φ],

ḂΦ = ΦḂ + [Ḃ, Φ],

enable us to formulate (3.49) in terms of ũ = Φu̇ at the expense of a zeroth-order term
[P , Φ] and a harmless error [Ḃ, Φ] of order −1 to be analysed shortly. Thus, we are left
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with {
Pũ = (Dd +A) ũ(t, x) = f̃ (t, x)

Ḃũ(t, y, 0) = g̃(t, y),
(3.50)

where the ∼ everywhere refers to the application of the operator Φ. In this setting, we
can define pseudodifferential operators Q ..= Op(θq), ∆ ..= Op(θδ), M ..= Op(θm) and
use them to set the auxiliary system{

(Dd +A) w̃(t, x) = ∆ f̃ (t, x),

Mw̃(t, y, 0) = Qg̃(t, y).
(3.51)

Interestingly, (3.51) satisfies the uniform Lopatinskiı̆ condition, for m(X) restricted to
the stable subspace of ȧ1 is the identity Ip (see Step 5 in Theorem 3.3.1). This observation
paves the way for the rest of the proof, as we shall soon confirm.

Step 4. We establish the existence of a local WR symmetriser. To leave no room for
ambiguity, let us momentarily reintegrate the parameter γ to describe the spaces

L2
∆(R1+d

+ ) ..= {v ∈ S ′(R1+d
+ , Rn) : ∆γv ∈ L2

γ(R1+d
+ , Cn)},

Hs
∆(R1+d

+ ) ..= {v ∈ S ′(R1+d
+ , Rn) : Λs

γv ∈ L2
∆(R1+d

+ , Cn)},

and introduce the next definition.

Definition 3.3.2. A WR symmetriser for Problem (3.50) is a family of pseudodifferential
operators Σγ ∈ OPS0

γ(R1+d
+ × [γ0,+∞)) for some γ0 ≥ 1, such that for all γ ≥ γ0 ≥ 1,

i) Σγ(xd) is self-adjoint,

ii) for every v1, v2 ∈ L2
∆, there is a positive constant C satisfying

⟨Σγ(xd)v1, v2⟩ ≤ C|∆γ(xd)v1||∆γ(xd)v2|,

iii) there is a positive constant c, independent of xd, so that

⟨∂dΣγ(xd)v, v⟩+ 2 Im ⟨Σγ(xd)Aγ(xd)v, v⟩ ≥ cγ|∆γ(xd)v|2

for each v ∈ L2
∆(R

1+d
+ ),

iv) there exist positive constants α, β and a family of pseudodifferential operators Qγ for
which

⟨Σγ(0)v, v⟩ ≥ α|∆γ(0)v|2 − β|QγḂγv|2

holds true for every v ∈ L2
∆(Rd).

Let us drop xd and γ once more to make the idea smoother. A quick glance at the
proof of Theorem 2.5.1 indicates that is possible to find a functional symmetriser for
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the auxiliary problem (3.51). If R ..= Op(θr) is such a symmetrizer, we claim that
Σ = ∆∗R∆ meets (i) to (iv) in Definition 3.3.2. That Σ is self-adjoint follows because R is
self-adjoint. Condition (ii), on the other hand, stems from the elementary computation

⟨Σv1, v2⟩ = ⟨∆∗R∆v1, v2⟩ = ⟨R∆v1, ∆v2⟩ ≤ C|∆v1||∆v2|,

valid for test functions v1, v2 supported on V and some constant C > 0. The remaining
properties can be obtained from those of R and ∆ as explained hereafter. Firstly,

⟨∂dΣv, v⟩+ 2 Im ⟨ΣAv, v⟩ = ⟨(∂dR)∆v, ∆v⟩+ 2 Re ⟨R(∂d∆)v, ∆v⟩+ 2 Im ⟨R∆Av, ∆v⟩

= ⟨(∂dR)∆v, ∆v⟩+ 2 Re ⟨R(Op (∂dδ))v, ∆v⟩+ 2 Im ⟨R∆Av, ∆v⟩.

Secondly,

∆A = A∆ + [∆,A]

= A∆ + Op([δ, ȧ1] + [δ, ä0]− i{ȧ1, δ}) + Ψ−1 = A∆ − i Op({ȧ1, δ}) + Ψ−1,
(3.52)

given that [δ, ȧ1] and [δ, ä0] vanish identically in light of Lemma 3.3.2. Inserting (3.52)
into 2 Im ⟨R∆Av, ∆v⟩ gives

2 Im ⟨R∆Av, ∆v⟩ = 2 Im ⟨RA∆v, ∆v⟩+ 2 Im ⟨R[∆,A]v, ∆v⟩

= 2 Im ⟨RA∆v, ∆v⟩ − 2 Re ⟨R Op({ȧ1, δ})v, ∆v⟩+ ⟨Ψ−1v, ∆v⟩,

= 2 Im ⟨RA∆v, ∆v⟩+ 2 Re ⟨R Op({δ, ȧ1})v, ∆v⟩+ ⟨Ψ−1v, ∆v⟩,

and eventually,

⟨∂dΣv, v⟩+ 2 Im ⟨ΣAv, v⟩ = ⟨(∂dR)∆v, ∆v⟩+ 2 Im ⟨RA∆v, ∆v⟩ (3.53)

+ 2 Re ⟨R Op(∂dδ + {δ, ȧ1})v, ∆v⟩,

modulo a negligible error ⟨Ψ−1v, ∆v⟩ (to be seen!). Now, considering that R is a strong
functional symmetriser, the second term in (3.53) obeys the inequality

2 Im (RA∆v, ∆v) ≥ Cγ|∆v|2,

whereas the last bracket is null because ∂dδ + {δ, ȧ1} = 0 by construction. Finally, the
identity M∆ = QḂ mod Ψ−1 from Theorem 3.3.1 and Condition (iv) in Definition
2.5.1 result in

⟨Σ(0)v(0), v(0)⟩ ≥ α|∆(0)v(0)|2 − β|M∆v(0)|2 = α|∆(0)v(0)|2 − β|QḂv(0)|2 −|Ψ−1v(0)|2,

for some positive constants α, β, and a perturbation |Ψ−1v(0)|2 to be absorbed.
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Step 5. We deduce energy estimates for ũ via Σ. We proceed analogously as in the model
case:

d
dxd

⟨Σũ, ũ⟩ = ⟨∂dΣũ, ũ⟩+ ⟨Σ∂dũ, ũ⟩+ ⟨Σũ, ∂dũ⟩

= ⟨∂dΣũ, ũ⟩+ 2 Re ⟨ΣiDdũ, ũ⟩

= ⟨∂dΣũ, ũ⟩+ 2 Re ⟨Σi( f̃ −Aũ), ũ⟩

= ⟨∂dΣũ, ũ⟩+ 2 Im ⟨ΣAũ, ũ⟩ − 2 Im ⟨Σ f̃ , ũ⟩.

Integrating in xd over [0, ∞) and bearing in mind that ũ vanishes at infinity leads to

⟨Σũ, ũ⟩|xd=0 =−
∫ ∞

0
(⟨∂dΣũ, ũ⟩+ 2 Im ⟨ΣAũ, ũ⟩) dxd + 2

∫ ∞

0
Im ⟨Σ f̃ , ũ⟩ dxd.

From Condition (ii) in Definition 3.3.2, it is clear that

2 Im ⟨Σ f̃ , ũ⟩ ≤ 2|⟨Σ f̃ , ũ⟩| ≤ C1|∆ f̃ ||∆ũ|,

while from Part (iii) in Definition 3.3.2,

⟨Σũ, ũ⟩|xd=0 ≤ −cγ
∫ ∞

0
|∆ũ|2 dxd + C1

∫ ∞

0
|∆ f̃ ||∆ũ| dxd.

Meanwhile, if we use (iv) in Definition 3.3.2 plus Young’s inequality, we arrive at the
conclusion that

α|∆ũ(0)|2 − β|QḂu(0)|2 ≤ (−cγ + εγ)
∫ ∞

0
|∆ũ|2 dxd +

C1

4εγ

∫ ∞

0
|∆ f̃ |2 dxd

for all ε > 0. By making the parameter ε small enough, we initially infer that

α|∆ũ(0)|2 − β|QḂũ(0)|2 ≤ −C2γ
∫ ∞

0
|∆ũ|2 dxd +

C3

γ

∫ ∞

0
|∆ f̃ |2 dxd,

and then by rescaling constants if necessary,

γ
∫
R1+d
+

e−2γt|∆ũ|2 dt dx +
∫
Rd

e−2γt|∆ũ(0)|2 dt dy (3.54)

≤ C
(

1
γ

∫
R1+d
+

e−2γt|∆ f̃ |2 dt dx +
∫
Rd

e−2γt|QḂũ(0)|2 dt dy
)

for some C > 0.

Step 6. We embed L2
∆ into Hs

γ. More precisely:

Proposition 3.3.1. The norms ∥∆γ · ∥0,γ lie between L2
γ and H−1

γ for a sufficiently large γ,
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that is to say, for γ0 ≥ 1 there exist positive constants C1, C2 such that

C1∥ · ∥−1,γ ≤ 1
γ0

∥∆γ · ∥0,γ ≤ C2∥ · ∥0,γ, (3.55)

for every γ ∈ [γ0,+∞).

Proof. The upper inequality in (3.55) is straightforward as soon as one realises that ∆γ

is a family of pseudodifferential operators of order 0, so only the lower inequality needs
to be checked. Let us fix γ0 ≥ 1. Back to Section 3.1.3, we know that

λγ(ζ) ≡ λ(ζ) = (γ2 + τ2 + η2)1/2,

and
∆(X) ≡ ∆(t, y, ζ) =

γ + iω(t, y, ζ)

λ(ζ)
,

for γ ≥ γ1 > γ0. Let us study the cases xd = 0 and xd > 0 independently for greater
clarity. If xd = 0, then

1
λ(ζ)

=
γ0

γ0λ(ζ)
<

√
γ2 + ω2(t, y, ζ)

γ0λ(τ, η, γ)
=

|∆(X)|
γ0

. (3.56)

In the same spirit,
1
λ
≤ 1

γ
<

1
γ0

, (3.57)

and a direct comparison reveals that

1
λ2 |û|

2 =
1

λ2 û2
1 + · · ·+ 1

λ2 û2
p +

1
λ2 û2

p+1 + · · ·+ 1
λ2 û2

n

<
1

γ2
0
|∆(X)û1|2 + · · ·+ 1

γ2
0
|∆(X)ûp|2 +

1
γ2

0
û2

p+1 + · · ·+ 1
γ2

0
û2

n =
1

γ2
0
|δ(X)û|2.

Moreover, if

C ..=
1

γ2
0

δ∗(X)δ(X)− 1
λ2 > 0,

a simple calculation shows that
√

C is bounded as well as all its derivatives, so
√

C ∈
S0 ∈ OPS0

γ(Rd × [1,+∞)). Lastly, Hörmander’s square root trick allow us to conclude
that

∥ · ∥−1,γ ≤ 1
γ0

∥∆γ · ∥0,γ.

When xd > 0, the situation is more intricate and require some effort. Certainly, as
δ−j (X) solves the transport equation (3.31), δ−j (X) is the composition of ∆(X) with the
inverse of the Hamiltonian flow map ϕxd, j associated with the eigenvalue a1,j(X) (see
the proof of Theorem 3.3.1). This means that if X♭ = (t♭, y♭, 0, τ♭, η♭, γ♭) ∈ Y is such that

δ−j (X) = (ϕ∗
−xd, j ∆)(X) = ∆(X♭),
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then

1
λ(ζ)

=
γ0

γ0λ(ζ)
≤

√
γ2
♭
+ ω2(t♭, y♭, ζ♭)

γ0λ(ζ)
=

√
γ2
♭
+ ω2(t♭, y♭, ζ♭)

γ0λ(ζ♭)

λ(ζ♭)

λ(ζ)

=
|∆(X♭)|

γ0

λ(ζ♭)

λ(ζ)
=

|δ−j (X)|
γ0

λ(ζ♭)

λ(ζ)
. (3.58)

In an attempt to control (3.58) appropriately, we must find an upper bound for
λ(ζ♭)/λ(ζ). This is addressed in the lemma below.

Lemma 3.3.3. Let ϕ−1 ≡ ϕ−xd, j be the inverse of the Hamiltonian map ϕxd encoded in equation
(3.35). Under the assumptions of Theorem 3.3.1, there exists a constant C > 0 such that for
every X = (t, y, xd, ζ) ∈ V ,

λ(ϕ−1(X))

λ(ζ)
≤ C.

Proof. Let us argue by contradiction and suppose that for every n ∈ N, there is a
Xn = (tn, yn, xd,n, ζn) ∈ V such that

λ(ϕ−1(tn, yn, xd,n, ζn))

λ(ζn)
> n. (3.59)

Since λ and ϕ−1 are homogeneous of degree 1 in ζ, we can equally write (3.59) as

λ(ϕ−1(tn, yn, xd,n, ζ ′n)) > n, (3.60)

where ζ ′n
..= ζn/|ζn| = ζn/λ(ζn). If we look at the covariables as elements on the sphere

Sd, the new neighbourhood V ′ ⊂ XS is compact (as V can be taken compact in (t, y, xd)

in view of Property (C)), so the sequence {Xn}n∈N has a convergent subsequence, say,
{Xk}k∈N, so that Xk → X = (t, y, xd, ζ ′) as k goes to infinity. Then

k < |λ(ϕ−1(tk, yk, xd,k, ζ ′k))|

= |λ(ϕ−1(tk, yk, xd,k, ζ ′k))− λ(ϕ−1(t, y, xd, ζ ′))|+ λ(ϕ−1(t, y, xd, ζ ′)). (3.61)

For k sufficiently large, the difference on the right-hand side of (3.61) can be made
arbitrarily small because of the continuity of ϕ−1 and λ, meaning that the whole
expression can be bounded by some constant C′ for every k large enough, which is a
contradiction.

Returning to equations (3.57) and (3.58), we see that

1
λ(ζ)

≤ C
γ0

|δ−j (X)|
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and
1
λ
≤ C

γ0

for some positive constant C. The rest of the proof is identical to that for xd = 0.

Proposition 3.3.1 allows us to handle ⟨Ψ−1v, ∆v⟩ and |Ψ−1v(0)|2 effectively using the
philosophy illustrated in the next step.

Step 7. We glue the pieces. To start with, we take note of the inequalities

γ∥∆ũ∥2 + |∆ũ(0)|2 ≤ C
(

1
γ
∥∆Pũ∥2 + |QḂũ(0)|2

)
= C

(
1
γ
∥∆PΦu̇∥2 + |QḂΦu̇(0)|2

)
,

and

∥∆PΦu̇∥2
≲ ∥Φ∆Pu̇∥2 + ∥[∆, Φ]Pu̇∥2 + ∥∆[P, Φ]u̇∥2

≲ ∥Φ∆Pu̇∥2 + ∥Pu̇∥2
−1 + ∥∆[P, Φ]u̇∥2

≲ ∥∆ ḟ ∥2 +
1

γ2
0
∥∆ ḟ ∥2 + ∥∆[P, Φ]u̇∥2,

where we have appealed to Proposition 3.3.1 in the third inequality. It remains to check
that ∆[P , Φ] can be controlled satisfactorily. In essence, taking into account that P is
block diagonal modulo Ψ−1, [P , Φ] is an operator of order 0 with principal symbol
i{Φ, ξd + ȧ1}, also diagonal, so

∆[P , Φ] = [P , Φ]∆ + Ψ−1,

and therefore,

∥∆PΦu̇∥2
≲ ∥∆ ḟ ∥2 +

1
γ2

0
∥∆ ḟ ∥2 + ∥[P, Φ]∆u̇∥2 + ∥u̇∥2

−1 (3.62)

≲ ∥∆ ḟ ∥2 +
1

γ2
0
∥∆ ḟ ∥2 + ∥∆u̇∥2 +

1
γ2

0
∥∆u̇∥2

≲ ∥∆ ḟ ∥2 + ∥∆u̇∥2.

Let us now examine QḂΦu̇. In this case,

|QḂΦu̇(0)|2 ≲ |ΦQḂu̇(0)|2 + |[Q, Φ]Ḃu̇(0)|2 + |Q[Ḃ, Φ]u̇(0)|2 (3.63)

≲ |ΦQg|2 + |u̇(0)|2−1

≲ |Qg|2 + 1
γ2

0
|∆u̇(0)|2,

the second line being a consequence of the fact that [Q, Φ]Ḃ and Q[Ḃ, Φ] are operators
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of order −1. In summary, we have

γ∥∆ũ∥2 + |∆ũ(0)|2 ≤ C
(

1
γ
∥∆ ḟ ∥2 +

1
γ
∥∆u̇∥2 + |Qġ|2 + 1

γ2
0
|∆u̇(0)|2

)
,

provided that we pick γ0 (and thereby γ) sufficiently large,

γ∥∆ũ∥2 + |∆ũ(0)|2 ≤ C
(

1
γ
∥∆ ḟ ∥2 + |Qġ|2

)
. (3.64)

Recall that ∆, Q, ũ, f̃ , and g̃ in (3.64) are indexed by i, so we can add the pieces to get

γ ∑
i
∥∆iũi∥2 + ∑

i
|∆iũi(0)|2 ≤ C

(
1
γ ∑

i
∥∆i ḟi∥2 + ∑

i
|Qi ġi|2

)
. (3.65)

Let
∆ ..= ∑

i
∆iE−1

i Φi = ∑
i

∆iΦiE−1
i mod Ψ−1.

From Proposition 3.3.1, the triangle inequality, and the convexity of the power function
x → x2, it follows that

∥∆u∥2
≲ ∑

i
∥∆iũi∥2 and |∆u(0)|2 ≲ ∑

i
|∆iũi(0)|2, (3.66)

and consequently,

γ∥∆u∥2 + |∆u(0)|2 ≤ C

(
1
γ ∑

i
∥∆i f̃i∥2 + ∑

i
|Qi ġi|2

)
. (3.67)

The obvious relations ∥∆i ḟi∥ ≲ ∥ ḟi∥ ≲ ∥ f ∥ and |Qi ġ| ≲ |ġ| ≲ |g| then yield

γ∥∆u∥2 + |∆u(0)|2 ≤ C
(

1
γ
∥ f ∥2 + |g|2

)
. (3.68)

To close the argument, we extend (3.68) to Sobolev spaces. Indeed, Λs
γũ ∈ L2

∆ when
ũ ∈ Hs

∆, and as such it fulfils (3.54):

γ∥∆iΛsũi∥2 + |∆iΛsũi(0)|2 ≤ C
(

1
γ
∥∆iPiΛ

sũi∥2 + |Qi ḂiΛsũi|2
)

. (3.69)

A similar reasoning to that in (3.62) and (3.63) combined with Proposition (3.3.1) gives
upper bounds

∥∆iPiΛ
sũi∥2

≲ ∥∆i f̃i∥2
s + ∥∆iũi∥2

s , (3.70)

|Qi ḂiΛsũi(0)|2 ≲ |Qi g̃i|2s +
1

γ2
0
|∆iũi(0)|2s . (3.71)
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For the left-hand side of (3.69), we exploit Λs∆ = ∆Λs + [Λs, ∆] to derive

∥Λs∆ũ∥2
≲ ∥∆Λsũ∥2 + ∥Ψs−1ũ∥2.

∥∆ũ∥2
s −

1
γ2

0
∥∆ũ∥2

s ≲ ∥∆Λsũ∥2.

In the end, collecting terms and choosing γ0 large enough produce

γ∥∆ũ∥2
s + |∆ũ(0)|2s ≤ C

(
1
γ
∥∆ f̃ ∥2

s + |Qg̃|2s
)

. (3.72)

From this point on, we continue in the same way as we did for ∥ · ∥.

Remark 3.3.1. Formula (3.68) is not a strict generalisation of (3.21), since neither ∆
nor Q are present on the right hand side of the inequality. This is due to the intrinsic
difficulty in controlling ∥∆i∥ (resp. ∥Qi∥) in terms of ∥∆∥ (resp. ∥Q∥), as may be easily
seen by considering two adjacent charts V1,V2, and the difference

∥∆1E−1
1 f + ∆2E−1

2 f ∥2 −
(
∥∆1E−1

1 f ∥2 + ∥∆2E−1
2 f ∥2

)
= 2 Re ⟨∆1E−1

1 f , ∆2E−1
2 f )⟩. (3.73)

For instance, when dealing with constant coefficients, local and global constructions
coincide, so ∆ = ∆1 = ∆2 and E−1 = E−1

1 = E−1
2 . Hence, (3.73) is positive and we

can recover the original estimate (3.21). Whether (3.73) can always be absorbed in the
variable coefficient setting is still an open question.



CHAPTER FOUR

The well-posedness of the WR problem

In this chapter, we address the classical questions of existence, uniqueness, and reg-
ularity for solutions of WR problems through the lens of Chapter 3 and the results
therein. We anticipate, however, that we do not use the energy inequalities in the same
way as in Chapter 1, but follow an alternative strategy suggested by the very nature
of the estimates. The idea is to verify that w = ∆γũ is locally the unique solution of
a strong boundary value problem (i.e., of a problem satisfying the uniform Lopatin-
skiı̆ condition), after which the properties of ũ can be inferred from the analysis of the
pseudodifferential equation w = ∆γũ.

4.1 Operators of real principal type

For a better understanding, we first have a look at the theory of operators of real
principal type in Ω ⊂ Rn and only then we deal with our particular case study.

4.1.1 Definitions and main properties

Definition 4.1.1. Let P(x, D) be a scalar, classical pseudodifferential operator of order m with
principal symbol p(x, ξ). P is said to be of real principal type if p(x, ξ) is real-valued and the
Hamiltonian vector field

Hp
..=

n

∑
i=1

(∂ξi p(x, ξ)∂xi − ∂xi p(x, ξ)∂ξi)

is both non-vanishing and not proportional to the radial vector field ξ∂ξ.

Some remarks on principal type operators:

▷ Since p(x, ξ) is homogeneous of degree m, Euler’s theorem (see Theorem A.2.8 or
[SR18]) yields

mp(x, ξ) = ∂ξ p(x, ξ) · ξ.

76
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For that reason, we just need to check that ∂ξ p(x, ξ) ̸= 0 when p(x, ξ) = 0 to meet
Definition 4.1.1.

▷ The previous condition can be equivalently formulated by saying that no bichar-
acteristic curve stays over a compact subset K indefinitely ([DH94]).

▷ Owing to Euler’s theorem, elliptic operators trivially satisfy Definition 4.1.1 and
thereby are of principal type.

▷ The canonical example of a non-elliptic operator of real principal type is Dx1 ≡ D1.
Interestingly, any operator of real principal type can be reduced to the composition
of an elliptic operator Q(x, D) and D1 with the help of a canonical transformation
(see [Ivr13], [CP82], and [Ivr13] for an ample discussion).

We close this section with the remarkable theorem on the propagation of singulari-
ties by Hörmander and Duistermaat (see [DH94] and [HH87] for an comprehensive
discussion).

Theorem 4.1.1 (Theorem 3.1, [Ivr13]). Suppose that P is an m-th order pseudodifferential
operator of real principal type. If u ∈ D′(Ω) and J is a connected piece of a null bicharacteristic
curve such that J ∩ WF(Pu) = ∅, then either J ⊂ WF(u) or J ∩ WF(u) = ∅.

Theorem 4.1.2 (Theorem 3.2, [Ivr13]). Let u ∈ D′(Ω) and assume that P is an m-th order
pseudodifferential operator of real principal type. Suppose that WFs represents the Sobolev
wavefront set. If J is a connected piece of a bicharacteristic curve so that J ∩ WFs(Pu) = ∅,
then either J ⊂ WFs+m−1(Pu) or J ∩ WFs+m−1(u) = ∅.

4.1.2 Construction of a parametrix

Theorem 4.1.3 (Lemma 3.2, [Tay79]). Let Ω be a compact manifold and suppose that R× Ω
has coordinates (t, x). Assume that P is a scalar zeroth-order pseudodifferential operator with
real principal symbol p(t, x, τ, ξ). If f ∈ E ′(R× Ω) is supported in {t > 0} and ∂τ p is
nonvanishing whenever p = 0, then the pseudodifferential equation

Pu = f (4.1)

has a unique solution modulo C∞ that vanishes for {t < 0}. Moreover, WF(u) is contained in
the union of WF(Pu) and the set of positively time-oriented null bicharacteristics of p passing
over WF(u).

Proof. Let Ψ1 be a first-order pseudodifferential operator whose principal symbol ψ is
a scalar positive function. It suffices to examine the equivalent problem

Qu = g, (4.2)

where Q ..= Ψ1P ∈ OPS1(R× Ω) and g ..= Ψ1 f . We shall construct a solution of (4.2)
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modulo C∞. A first attempt could be to investigate the formal expressions
u+ = Q−1g = (iQ)−1(ig) = −i

∫ ∞

0
eisQg ds,

u− = (Q)−1g = (iQ)−1(ig) = i
∫ 0

−∞
eisQg ds,

(4.3)

which might be ill-defined. The integrand w(s) ..= eisQg, however, verifies the hyperbolic
equation {

Dsw − Qw = 0,

w(0) = g,
(4.4)

which can be solved up to a smoothing remainder using geometrical optics techniques.
Denote by eisQ

+ g this approximate solution. Now, observe that ∂τ p ̸= 0 implies that ṫ is
bounded away from zero along the null bicharacteristics of P (and hence along the null
bicharacteristics of Q), so we can write

Char(Q) = Char(P) = S+ ∪ S−,

where S+ and S− correspond to the sets of integral curves for which ṫ > 0 and
ṫ < 0, respectively. Additionally, assume that S0 is the complement in T∗(R× Ω)

of a ε−neighbourhood of Char(Q). After this preparation, let us decompose the
identity I ∈ D′(R× Ω) as the sum of three zeroth-order pseudodifferential operators
{Pk}k∈{+,−,0}, each being supported on a small conic neighbourhood Vk ⊂ Sk and such
that the principal symbol σ(Pk) satisfies σ(Pk) ≡ 1 on a smaller conic neighbourhood
Ṽk ⊂ Vk. Thus,

g = P+g + P−g + P0g,

and since Q is elliptic on supp(P0), we can solve

Pu0 = P0g

modulo C∞. As for the contributions of P±g, the situation is more complicated. To
this end, let T1 < ∞, and suppose that T0 < ∞ is such that for |s| ≤ T0, the image of
all ζ = (t, x, τ, ξ) ∈ WF(g) obtained by following the Hamiltonian flow for s units of
time has a t−coordinate that is larger than T1. Consequently, if θ ∈ C∞

0 (R) is a cutoff
function so that θ ≡ 1 when |s| ≤ T0, then

u = u0 − i
∫ ∞

0
θ(s)eisQ

+ P+g ds + i
∫ 0

−∞
θ(s)eisQ

+ P−g ds.

Finally, a direct computation shows that u satisfies (4.2), while the standard propagation
of singularities theorem enable us to conclude that u is smooth for t < 0, as desired.
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4.2 The WR problem

4.2.1 The operator ∆γ revisited

As the proof of Theorem 3.3.2 and the author’s comments in [BGS07] on the model case
tentatively suggest, problem (3.50) (one for each ũi piece) can be recast into a strong
system by somehow inserting ∆i,γ into the norms. Eventually, if we are able to use
the properties of ∆i,γ to solve the pseudodifferential problem w̃i

..= ∆i,γũi for ũi, we
can reconstruct u as the sum ∑i ũi. Having outlined the strategy, let us revisit Step 3

in Theorem 3.3.2 to confirm that, under the conditions and notation specified there,
w̃ = ∆γũ is a solution of the auxiliary problem

{(
Dd + Aγ

)
w̃(t, x) = ∆γ f̃ (t, x),

Mγw̃(t, y, 0) = Qγ g̃(t, y).
(4.5)

This follows from applying ∆γ to both sides of (3.50) and from the next identities
modulo Ψ−1:

∆γ Aγ = Aγ∆γ − i Opγ({ȧ1, δ}),

∆γDd = Dd∆γ − i Op δ,

and
Mγ∆γ = QγBγ.

At this point, let us suppose that ∆γ f̃ ∈ Hs
γ(R

1+d
+ ) and ∆γ g̃ ∈ Hs

γ(R
d
). Theorem 2.6.1

asserts that there exists a unique w̃ ∈ Hs
γ(R

1+d
+ ) with w̃|xd=0 ∈ Hs

γ(Rd) fulfilling (4.5),
so there is some hope of establishing existence, uniqueness, and regularity for ũ by
studying ∆ũ = w̃ equipped with u|t=0 = 0. The major step in this direction is given by
the statement below.

Proposition 4.2.1. Suppose that δ(X) = diag(δ−(X), In−p) with

δ−(X) ..=




δ−1 (X) . . . 0
...

. . .
...

0 . . . δ−s (X)


Ip−s

, (4.6)

and δ1(X), · · · , δs(X) as described in Theorem 3.3.1. Then the pseudodifferential operators
Opγ (δ1), · · · , Opγ (δs) are of real principal type.
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Proof. Recall that the unique solution of the transport equation∂dδ−i + {δ−j , a1,j} = 0,

δ−j |xd=0 = ∆,
(4.7)

is obtained by composing ∆ with the inverse of the Hamiltonian flow map ϕxd , i.e.,
δj(X) = (ϕ∗

−xd
∆)(X). In the sequel, we distinguish two scenarios, namely, when γ > 0

and when γ = 0. In the former, ∆ and ϕ∗
−xd

are never vanishing and so δj(X) is elliptic.
In the latter, we verify the definition for −iδj(X) rather than for δ(X). Certainly, note
that

−iδj(X̃) = −i(ϕ∗
−xd

∆)(X̃) =
ω(t♭, y♭, ζ♭)

λ

is real-valued and its zeroes match those of ω(t♭, y♭, ζ♭) (see Theorem 3.3.2). To validate
that these roots are simple is more involved, as we see now. For xd > 0, Char(Opγ(δj))

is the orbit of Γ under ϕxd , that is to say,

Char(δj) = Γj
..= {Γ transported along the flow ϕxd}.

Therefore, we have to show that ∂τδj(X) is non-vanishing on Γj, which amounts to
proving that

∂τδj = (∂τϕ∗
−xd

∆) = (∂τ∆)(ϕ−xd)∂τϕ−xd ̸= 0 (4.8)

on Γi. The first factor in (4.8) is different from zero by the very definition of the WR
class, whereas ∂τϕ−xd can be computed via (see [Arn92])

∂τϕ−xd = exp
(∫ t

0
∂τ Hϕ(s)(ϕ−s) ds

)
̸= 0,

where Hϕ(xd)(·) stands for the vector field associated with the flow ϕxd .

4.2.2 Existence, uniqueness, and regularity

Let us focus on the pseudodifferential system

∆γũ =




Opγ (δ1)
. . .

Opγ (δs)


In−s




ũ1
...

ũn

 =


w̃1
...

w̃n

 = w̃ (4.9)

equipped with homogeneous Cauchy data. Reasoning component-wise, we get s

(nontrivial) initial value problems that can be solved according to Theorem 4.1.3. More
precisely, there holds
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Theorem 4.2.1. Consider Opγ (δj)ũj = w̃j,

ũj|t=0 = 0,
(4.10)

where w̃ ∈ Hs
γ(R

1+d
+ ) and Opγ (δj) is defined as in Proposition 4.2.1. Then there exists a

unique solution of (4.10) modulo C∞ for which

WFs−1(ũj) \ WFs(Opγ (δj)ũj) ⊂ δ−1
j (0). (4.11)

Proof. A direct application of Theorem 4.1.3 and Proposition 4.2.1.

Formula (4.11) and Proposition 3.3.1 allow us to characterise Hs
∆ alternatively.

Proposition 4.2.2. Let

Hs
∆

..= {v ∈ S ′(R1+d
+ , Rn) : Λs

γv ∈ L2
∆(R1+d

+ , Cn)}

be the function space introduced in Theorem 3.3.2. Then

Hs
∆ = {u ∈ Hs−1

γ : ∆γu ∈ Hs
γ}.

Proof. Let u ∈ Hs
∆

..= {u ∈ Hs−1
γ : ∆γu ∈ Hs

γ}. By definition, u ∈ Hs−1
γ and Λs∆γu ∈ L2

γ.
We need to prove that ∆γΛs

γu ∈ L2
γ. Indeed, from

∆γΛs
γu = Λs

γ∆γu + [∆γ, Λγ]u, (4.12)

it will be enough to check that [∆γ, Λγ]u ∈ L2
γ. But this is a straightforward consequence

of the fact that [∆γ, Λs
γ] is an operator of order s − 1 and u ∈ Hs−1

γ . Suppose now that
u ∈ Hs

∆, meaning that ∆γΛs
γu ∈ L2

γ. From Proposition 3.3.1,

∥u∥s−1 ≤ ∥Λs
γu∥−1 ≤ ∥∆γΛs

γu∥ < ∞,

and thus it is clear that Λs
γ∆γu ∈ L2

γ from (4.12) and the same argument as before.

We can interpret Theorem 4.2.1 and Proposition 4.2.2 as follows: given that w̃ ∈ Hs
γ, the

first s components experience a loss of regularity of one derivative, while the others
remain unchanged. This supports Serre’s observation in [Ser05] that the solution ũ
exhibits a polarisation effect around the critical set Γ.
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This appendix contains two sections with relevant material that complements the ideas
presented in this thesis. Let us briefly outline what each of them consists of: in Section
A.1, we include several auxiliary results whose proofs have been skipped in the main
body of the document in order to facilitate the discussion. In Section A.2, on the other
hand, we list for the reader’s reference some classical theorems from real, complex, and
Fourier analysis that have been used throughout the text.

A.1 Auxiliary results

For Lemmas 3 to 5, we shall adopt the hypothesis and notation of Theorem 2.5.1.

Lemma A.1.3 (Lemma 5.4 - Chapter 7, [CP82]). There exists a basis ℯ0(X) with the
properties described in Definition 2.4.2 (the block structure condition) for which

bj(X̃) =


b1(X̃) 0 · · · 0

...
...

...
...

...
...

bνj(X̃) 0 · · · 0

, (13)

and b1(X̃), · · · , bνj(X̃) ∈ R.

Proof. The key ingredient in the proof is to find a non-singular matrix U(X̃) of dimen-
sions νj × νj such that it behaves smoothly around X and the identity

U−1(X̃)(aj + bj(X̃))U(X̃) = aj + b′j(X̃)

holds with b′j as in (13). With this goal in mind, let us suppose that e1, · · · , eνk is the
canonical basis of Cνj and notice that

a i
jem = em−i

for every 1 ≤ i ≤ νj − 1. Thus, T ..= {em, aem−1, · · · , am−1
j e1} is also a basis for Cνj .
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What is more, since b(X) = 0, we can slightly perturb T with b and still get a basis for
Cνj provided that X̃ remains sufficiently close to X. In other words, the mapping

U(X̃) : Cνj → Cνj

defined by the rule U(X̃)a i
jem = (a i

j)em is non-singular. It is easy to check that U(X)

has all the required characteristics.

Lemma A.1.4 (Lemma 5.5 - Chapter 7, [CP82]). Let aj as in equation (2.45) and suppose
that Ej is symmetric. If Ejaj is symmetric, then Ej must be of the form

Ej(X) =



0 · · · · · · · · · e1
... . . . e2
... . . . . . .

...
... . . . . . .

...
e1 e2 · · · · · · emj


. (14)

Proof. The effect of multiplying a symmetric matrix Ej by aj from the right is simple:
the first column is zero and the others are obtained by shifting the columns of Ej to the
right. The result follows from comparing the off-diagonal entries.

Lemma A.1.5 (Lemma 5.7 - Chapter 7, [CP82]). Let C be an arbitrary constant. We can
find a real, skew-symmetric matrix Gj such that

Re(Gjajw, w) ≥ −|w1|2 + C|w′|2, (15)

for every w ∈ Cνj .

Proof. Let Gj be a real, skew-symmetric, block tridiagonal matrix as depicted below:

Gj =


0 0

0 0


The product ajGj looks similar to Gj with its components shifted to the right, except
for the first column which has zero entries. Hence, a direct calculation reveals that

Re⟨Gjajw, w⟩ =
νj

∑
i=2

gi,i−1|wi|2 − Re

(
νj−2

∑
i=1

gi+1,iwi+2wi

)
.
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As for the second term, notice that

Re

(
νj−2

∑
i=1

gi+1,iwi+2wi

)
≤
∣∣∣∣νj−2

∑
i=1

gi+1,iwi+2wi

∣∣∣∣ ≤ νj−2

∑
i=1

|gi+1,i||wi+2||wi|,

so it is enough to invoke Young’s inequality and choose sufficiently large elements
gi,i−1 to close the argument.

Lemma A.1.8. Let V be a finite dimensional vector space and T : V → V a diagonalisable
linear map. Suppose that λ1, · · · , λq are pairwise different eigenvalues with corresponding
eigenspaces Vλ1 , · · · , Vλq . Then, every T−invariant subspace W can be decomposed as

W = (W ∩ Vλ1)⊕ · · · ⊕ (W ∩ Vλq). (16)

Proof. To start with, note that Wi
..= W ∩ Vλi is the intersection of two subspaces of

V, so formula (16) is meaningful. Now, to prove the assertion, we need to show that
Wi ∩ Wj = {0} for i ̸= j and that W = W1 ⊕ W2 ⊕ · · · ⊕ Wk. Let w ∈ W. To verify the
first part, let us assume that w ∈ Wi ∩ Wj = {0} for different indices i and j. The latter
necessarily implies that w ∈ Ei ∩ Ej = {0}, and eventually that w = 0 since λi ̸= λj.
For the remaining claim, let us write wi for the projection onto Vλi . Clearly, wi ∈ Wi,
and consequently w can be expressed as w = w1 + · · ·+ wk. Lastly, if w ∈ Wi ∩ W̆ with

W̆ ..= W1 ⊕ W2 ⊕ Wi−1 ⊕ Wi+1 ⊕ Wk,

then w = 0 for Wi ∩ Wj = {0} with i ̸= j. In conclusion, W = W1 ⊕ · · · ⊕ Wk, as
desired.

A.2 Some results in Analysis

A.2.1 Complex Analysis

Theorem A.2.1 (Weierstrass preparation theorem - Theorem 7.5.1, [Hör15] - Chap-
ter 2, [KK11]). Let f (t, z) be an analytic function of the variables (t, z) ∈ C× Cn in a
neighbourhood of (0, 0). If

f =
∂ f
∂t

= · · · = ∂k−1 f
∂tk−1 = 0 and

∂k−1 f
∂tk−1 ̸= 0

at (0, 0), then there exists a unique factorisation

f (t, z) = c(t, z)(tk + ak−1(z)tk−1 + · · ·+ a0(z)),

with the coefficients aj and c being analytic functions in a neighbourhood of the origin, and such
that c(0, 0) and aj(0) are non-vanishing.
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Theorem A.2.2 (Rouché’s theorem, [Gam01] - [CKP05]). Suppose that D ⊂ C is a
bounded domain having a piece-wise smooth boundary ∂D. If f (z) and h(z) are analytic on
D ∪ ∂D and |h(z)| ≤ | f (z)| on ∂D, then the functions f (z) and f (z) + h(z) have the same
number of zeroes in D counting their multiplicities.

A.2.2 Real Analysis

Theorem A.2.3 (Theorem 9.2, [Mun18]). Let Ω1 ⊂ Rk and Ω2 ⊂ Rn be open sets. Suppose
that

f : Ω1 × Ω2 −→ Rn

(x, y) 7−→ f (x, y)

is of class Cr. If (x0, y0) ∈ Ω1 × Ω2 is sucht that

f (x0, y0) = 0 and det
∂ f
∂y

(a, b) ̸= 0,

there exist a neighbourhood V ⊂ Rk of x0 and a unique function g : V → Rn of class Cr for
which g(x0) = y0 and

f (x, g(x)) = 0

for every x ∈ V .

Theorem A.2.4 (Picard-Lindelöf - Theorem 3.1, [CLT56]). Let Ω ⊂ Rn be an open set
and χ : (a, b)× Ω → Rn be a continuous function which is Lipschitz continuous with respect
to the second variable. Then for every t0 ∈ (a, b) and x0 ∈ Ω, there exists a positive δ such that
the Cauchy problem 

du
dt

= χ(t, u),

u(t0) = x0,
(17)

has a unique solution in [t0 − δ, to + δ].

Theorem A.2.5. Let A : Rn → Rn be a linear operator. Suppose that E is an invariant
subspace under A, meaning that A(E) ⊆ E and consider the Cauchy problem

dx
dt

= Ax,

x(t0) = x0.
(18)

If x0 ∈ E, then x(t) ∈ E for every t ∈ R.

Proof. From the standard theory of differential equations, the solution of (18) is

u(t) = etAx0 =
∞

∑
k=0

tk

k!
Akx0.
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If x0 ∈ E, then Akx0 ∈ E for every k ∈ N∪ {0}. In addition, since E is finite dimensional,
E must be closed and the result follows.

Theorem A.2.6 (Young). For every a, b ∈ R and ε > 0, it is true that

ab ≤ εa2 +
1
4ε

b2.

Proof. Observe that

0 ≤
(√

2εa − b√
2ε

)2

= 2εa2 − 2ab +
b2

2ε
,

and therefore
ab ≤ εa2 +

1
4ε

b2.

Theorem A.2.7 (Theorem 2.23, [LL12]). Let M be a smooth manifold and (Vα)α∈A an
indexed open cover of M. Then there exists a partition of unity subordinate to (Vα)α∈A, i.e., a
family (φα)α∈A of real-valued functions on M with the following properties:

(i) for each α ∈ A, φα : M → R is a continuous function such that 0 ≤ φα ≤ 1,

(ii) for all α ∈ A, φα is supported in Vα,

(iii) for every point x ∈ M, there exists a neighbourhood Vx such that Vx ∩ suppφα is
non-void only for finitely many indices α,

(iv) ∑α∈A φα(x) = 1 for every x ∈ M.

Theorem A.2.8 (Remark 6.7, (iv), [Nig18]). A function f ∈ C1(Rn) is homogeneous of
degree m if and only if

n

∑
j=1

xj(∂j f )(x) = m f (x) (19)

for all x ∈ Rn.

A.2.3 Harmonic Analysis

Theorem A.2.9 (Plancherel’s theorem, Lemma 1.5.1, [Mét04]). The following two
statements are equivalent:

(i) u ∈ eγtL2,

(ii) F (e−γtu) ∈ L2. Moreover,

∥e−γtu∥L2(R) = ∥Fu∥L2({Re ξ=γ}).
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