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Abstract

Monte Carlo event generators are nowadays indispensable tools for predictions based on first
principles in high energy physics, and they represent one of the mainstays of particle physics
research at the Large Hadron Collider. In the dawn of the high luminosity upgrade of the Large
Hadron Collider, there is a push to more complex signatures and higher accuracy, rendering the
generation of simulated events more expensive. At the same time, there are strict limitations on
the computational budget. In this situation, the efficiency of event generators can be identified
as a key issue. The recent rapid advancement of machine learning tools, first and foremost deep
neural networks, and their successes in diverse applications make them a promising choice
in addressing this challenge. In this thesis, I consider two central building blocks of event
generation that represent bottlenecks in typical applications. The first is the sampling of phase
space configurations such that their distribution closely approximates a given target. For this I
present two new approaches, one based on normalizing flows and the other on nested sampling.
The second is the unweighting of event samples, that is the generation of unit weight events
that contribute equally to the total scattering cross-section. To accelerate the unweighting
process, I present an unbiased unweighting method based on fast and accurate neural network
surrogates for the event weights. Furthermore, I show how a surrogate optimized for the
factorization properties of the corresponding matrix elements can significantly improve the
performance for suitable processes. All methods are evaluated by means of examples, which
are oriented towards realistic applications. It is also discussed how the different approaches
could be combined and what opportunities there are for further developments.

This work is licensed under a Creative Commons ‘Attribution 4.0 International’ licence.
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1 Introduction
Computer calculations are an essential and growing part of modern particle physics. The
automated computation of event rates in high energy scattering experiments allows for com-
plexities, in terms of accuracy and particle multiplicity, that would be impossible to do by hand.
At the same time, modern collider experiments, like the Large Hadron Collider (LHC), produce
enormous amounts of data. Computers are needed not only to be able to analyse the data
itself, but also to produce quantitative theoretical predictions, based on first principles, that
can keep up in terms of accuracy. Monte Carlo (MC) event generators, like Herwig [1–3],
pythia [4, 5], and Sherpa [6, 7], are one of the main tools in this context. They represent
the link between the experiment, the theory, and the computational tools, as illustrated in
fig. 1.1. While MC event generators can be counted among the computational tools, they have a
prominent position in that they embody our understanding of the fundamental laws of nature
in a manner that allows predictions to be made in a direct way. Using an MC event gener-
ator, total scattering cross-sections, i.e. event production rates, and particle decay rates can
be predicted. Another interesting, and experimentally highly useful, application is to predict
differential cross-sections, i.e. production rates per phase space element, in a fully differential
and exclusive way. This resembles the production of scattering events at collider experiments
and allows for a detailed data analysis and comparisons between theoretical predictions and
experimentally measured data.
In this thesis, the focus lies on a key element of MC event generation—the generation of

the highest energy scale interaction as described by perturbative quantum field theory (QFT).
This includes the efficient sampling of events with a distribution that closely approximates
the predicted differential cross-section as well as producing unit-weight samples from these
events. It is a challenging task that is nowadays approached in a highly automatized way,
using adaptive algorithms with detailed physics knowledge built-in. Nonetheless, there is a
strong interest in a further optimization of the current methods with the goal of achieving
excellent efficiency in terms of computational resource demand. For that purpose, I consider
the incorporation of modern machine learning (ML) techniques. These have proven to be
efficient and versatile tools in a wide variety of domains. It is therefore obvious to investigate
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Figure 1.1: MC event generators are the link between theory, experiment, and computing.
Figure taken from [8]cb.
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1 Introduction

Figure 1.2: The LHC schedule and designed values for instantaneous and integrated luminosity.
Figure taken from [16].

their suitability for increasing the efficiency of MC simulations for event generation. This
thesis is based on four publications, refs. [9–12], which are reprinted, discussed, and put in
relationship. In the following section, I comprehensively motivate the ideas that underpin this
work, emphasizing the relevance of this work. Afterwards, in section 1.2, I provide a detailed
review of literature in the context of this thesis. As the last section of the introduction, it is
followed by an outline of the rest of this thesis.

1.1 Motivation

The high energy physics (HEP) community is facing a challenge which is due to the successes
of the LHC and its experiments. Since the discovery of the Higgs boson [13, 14], the focus has
shifted to precise Standard Model measurements and new discoveries. To boost the potential
for these, an upgrade of the LHC is planned, the High Luminosity Large Hadron Collider (HL-
LHC). It increases the luminosity of the machine, which corresponds to the number of events
detected per unit of time. This will allow established analyses to improve their measurements
with higher statistics and provide access to rare processes for which there is not enough data
yet. In fig. 1.2, the luminosity of the LHC achieved over time and the projection for the future
up to the year 2037 are shown. After the HL-LHC begins operation, planned for 2027 after long
shutdown 3 (LS3), the instantaneous luminosity will reach values of 5 × 1034 cm−2 s−1, two
and a half times the value of the current run. Values as high as 7.5 × 1034 cm−2 s−1 could even
be reached [15].
For the analysis of the measured data, large numbers of simulated events with small un-

certainties will be needed. However, the computational budget of the detector experiments
is limited and could fall short of the expected demand. Consider fig. 1.3a, which depicts the
projected evolution of the annual central processing unit (CPU) consumption of the atlas
experiment, assuming a conservative (blue) and an aggressive (red) research and development
(R&D) scenario. The projection is compared to the expected budget (black), using two sustained
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Figure 1.3: Projections for atlas computing resources consumption. Figures taken from [17]
cb.

budget models with increases of 10% and 20% capacity per year. It can be seen that under
the conservative scenario, the demand exceeds even the 20% budget model for several years
in succession. But also under the aggressive scenario, at least the 10% budget model is not
sufficient. One can conclude that any reduction in the need for computing time will lead to
more physics analyses being possible and avoid competition for computing resources.
Traditionally, the largest fraction of the computational budget of the general-purpose detector

experiments at the LHCwent into the simulation of the detector response. With recent advances
towards reducing the computational effort of detector simulations, however, this fraction is
expected to decrease significantly. In fig. 1.3b a projection to the year 2031 of the CPU usage
of different consumers for the atlas experiment is shown. The detector simulation (‘MC-
Full(Sim)’ and ‘MC-Fast(Sim)’) has a share of 20%, the same as the event generation (‘EvGen’).
This means that the efficiency of event generation becomes more important than it has been
until now. Developments towards faster event generators can lead to large savings in the overall
resource need.
A multipurpose event generator has many different components, which do not contribute to

the CPU consumption equally. If one wants to increase the efficiency of an event generator, it
is important to know which parts of the simulation are the most demanding for the physics
processes that are deemed relevant. However, one should note that these are not necessarily
the ones that are easy to improve. An example for a breakdown into different components for
the generation of event samples is shown in fig. 1.4. The corresponding study, ref. [18], presents
computational strategies, complementary to the ones in this thesis, to reduce the computational
footprint of particle-level event generation. Two processes, which were identified as standard
candles for the LHC [19], are considered, namely �� → �+�− + 0, 1, 2�@NLO + 3, 4, 5�@LO
and �� → � ̄� + 0, 1�@NLO + 2, 3, 4�@LO in a next-to-leading order (NLO) multijet merged
calculation. The setup corresponds to a typical simulation for the atlas experiment using
the Sherpa event generator. This includes, among others, parton distribution function (PDF)
variations and electroweak corrections. In the figure it can be seen how the individual improve-
ments cumulatively change the overall runtime and the shares of the different components
from the baseline at the top to the final result at the bottom. With all the improvements applied,
the two major remaining consumers are the evaluation of the tree-level matrix elements and
the phase space generation. Accordingly, it is of utmost importance to work on optimizing the
efficiency at these stages.
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breakdown into different components of event generation. Figure reproduced with friendly
permission from Chris Gütschow.
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cb.

Both the matrix element (ME) and the phase space generation scale dramatically with the
multiplicity, i.e. dimensionality, of the partonic hard interaction final state, as the number
of contributing diagrams grows quickly. At the same time, there is a drop in unweighting
efficiency, since due to the curse of dimensionality, supposedly small deviations in the phase
space distributions lead to large fluctuations in the event weights. To demonstrate this, the
distribution of the number of trials in unweighted event generation for the process �� →� + + � jets, with � up to nine, at the 14TeV LHC using Sherpa is shown in fig. 1.5. It
can be seen that the number of trials remains moderate for the low multiplicities, while the
distributions stretch to ever larger numbers for the higher multiplicities. The average number
of trials, related to the slope of the distribution, grows significantly. With the number of trials
running into the hundreds of thousands and ME evaluation times reaching �(1 s) [22], the
resource demand is enormous.
A relevant question to ask is for which processes an efficiency increase is most worthwhile.

The answer, of course, depends on who you ask. A pragmatic approach is to look at which
processes are the most abundant at the LHC. Consider fig. 1.6, which shows a recent overview
of cross-section measurements of Standard Model processes with the atlas detector. Among
the processes with the highest cross-section, and therefore frequency, are the production of
vector bosons (photons, �, and�/� bosons) in association with jets as well as top quark pairs
(� ̄�) in association with jets. Consequently, these belong to the most important background
processes for experimental analyses. As we have seen above, for these processes it is most
promising to work on the high multiplicity tree-level contributions. However, in some analyses
the situation can be quite different if, for example, they consider processes which are dominated
by complicated higher-order contributions. Hence, it can be worthwhile to consider possible
speed improvements for these as well. Overall, it would be welcome to achieve improvements
that are as general as possible.
ML has been used routinely in HEP for many years, especially in experimental applications.

However, in recent years the field of Deep Learning, where neural networks (NNs) with many
layers are deployed, has triggered an impressive wave of developments. The size of models
that can be trained successfully has grown significantly, with cutting-edge models having
hundreds of billions of parameters [24]. This was also made possible by the availability of
specialized hardware like graphics processing units (GPUs). Being universal function approx-
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1.2 Context and literature review

imators [25–27], NNs can be applied to various scenarios when they are equipped with an
efficient optimization strategy. Their properties make NNs a suitable and promising tool to try
to achieve efficiency improvements in event generation.
There are a few obstacles that are exceptional in HEP. For example, highly accurate predic-

tions are needed to compare with the measured data. This means that even small deviations,
which would be completely negligible in image generation, for instance, must be avoided as
far as possible. It is a great challenge to achieve this reliably with NNs. In addition, industrial
applications of generative models often seek impressive results for individual items generated,
e.g. an image based on a textual description. However, in HEP we look for an accurate descrip-
tion over the whole phase space, including the peaks as well as the tails of the distributions of
many different observables. A significant mismatch in a small region of phase space can have
adverse consequences if that region is part of an analysis. In addition, the generated data must
be sensible with regard to the physics described, for example by reproducing basic laws such as
Lorentz invariance and conservation of momentum. At the same time, we find ourselves in
the fortunate and extraordinary position that, at least for the hard partonic interaction in focus
here, the training data are exact. Our goal is to generate the same distributions as non-ML
event generators but in a more efficient way. Furthermore, we can in principle generate as
much training data as we want. However, their production is very costly, which means we
should also look for efficient training strategies.
While NNs are certainly very flexible and easy to generalize, there are other ML tools in

the sense that they automatically adapt to their inputs. In section 3.2, an approach based on
nested sampling [28] for event generation is presented. Using a conceptually simple algorithm,
it learns how to efficiently sample the scattering cross-section by monotonically going up
along the contours. This is an unprecedented application for nested sampling. However, the
algorithm is known to be very efficient for Bayesian inference in high dimensions and it is
shown how this can be translated to MC event generation.
Now that the basic ideas of this thesis have been motivated, the following section aims to

outline which previous work it could build on and which other approaches have already been
taken. It is thereby addressed which preliminary work others have contributed. An insight
into other approaches, both alternative and complementary, that have been explored is also
provided. This includes other applications of ML in HEP and other methods for increasing the
efficiency of event generation.

1.2 Context and literature review

The ideas in this thesis did not arise in a vacuum. Many other studies have dealt with the use of
ML in HEP before and after the publication of the articles presented here. An excerpt of these
is provided below in order to place this thesis in the appropriate context. Let us start with the
sampling of the phase space for event generation. In a first study, boosted decision trees (BDTs)
and NNs were applied to a toy example of a mixture of two Gaussians in � dimensions, with �
up to nine [29]. The NNmodel was loosely based on the idea of generative adversarial networks
(GANs) [30] in that the authors trained a generative network together with a regressive one in
an iterative procedure. The regressor served as a cheap surrogate for the actual target to speed
up the training. However, their model does not suffer from the typical stability problems of
GANs. It was found that both BDTs and NNs had a tendency to overestimate in regions of low
probability. Both models outperformed vegas [31, 32] and foam [33], with NNs being better
in high dimensions. The activation functions were chosen to allow the generation of the full
support of the target. In a later study, an NN was trained to generate the distributions of the
two-dimensional three-body decay of a scalar, with and without intermediate resonances, as
well as the leptonic scattering process �+�− → � ̄��, which has five phase-space dimensions and
requires kinematic cuts for regularization [34]. Although their model guarantees to be neither
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injective nor surjective, the authors argue that their training procedure favours approximately
bijective maps given enough training data. They manually smoothed the kinematic cuts by a
function and found good performance, with unweighting efficiencies between 30% and 75%.
For this, they did not have to employ a multichannel sampler. With some extensions, the
same approach was applied to the Higgs boson decay process � → �+�−�+�− in a follow-up
study [35]. The process features two intermediate � bosons and has five dimensions. An
unweighting efficiency of 26% was achieved.
Other studies based their models on normalizing flows (NFs) to design bijective maps and

in turn guarantee full PS coverage. Normalizing flows were first suggested in refs. [36, 37]
and were finally popularized for density estimation in ref. [38]. Besides HEP, they were also
introduced to other fields, such as lattice field theory [39–43] and cosmology [44–46]. The first
applications of NFs to HEP PS sampling were a study by my coauthors and me [9], as well
as a similar study that was undertaken independently in parallel [47]. These approaches are
introduced and discussed in section 3.1. Other authors employed autoregressive flows [48,
49] and trained their model directly on weighted event samples instead of samples from the
NF, which allowed for an efficient training on a GPU [50]. They tested their model on a
leading-order (LO) leptonic top quark pair production process with full decays, giving rise to
a 14-dimensional phase space. Furthermore, they considered top quark pair production in
proton collisions at NLO, which includes negative weights. In both cases, their unweighting
efficiencies surpassed those of vegas. Another example of autoregressive flows, based on
rational-quadratic splines [51], was applied to neutrino-nucleus cross-sections [52]. A high
unweighting efficiency was obtained for a four-dimensional example. Similar to refs. [9, 47],
NFs were used to remap the channels of a multichannel distribution in ref. [53]. In addition, a
local version of the channel weights was introduced, and an NN was used to adapt them. To
increase the training efficiency, the NFs were trained online on samples from the model and
on previously generated events in parallel. As a physical example, a Drell-Yan process with an
additional �′ resonance, �� → �, �∗, �′∗ → �+�−, was used.
An alternative approach is to train a generative model, e.g. a GAN, on simulated data, and

to use the trained model in place of the full event generator, possibly including the detector
simulation as well [54–61]. This needs a sufficient amount of training data in order to reproduce
the actual event distribution well. Such a method becomes interesting when it can be used to
produce additional data beyond the training statistics. At a certain point, the training has paid
off and one benefits from the reduced computational cost of the generative model compared
to the full simulation. However, it is an ongoing discussion to what extent this approach is
useful in practice, and whether a GAN can generate additional statistics beyond the training
data through its interpolation and extrapolation capabilities [62, 63]. Nevertheless, useful
applications are possible, such as an efficient fast simulation tool for detector simulations.
A key ingredient for the surrogate unweighting method presented in chapter 4 is a fast and

accurate surrogate model that emulates the ME or the differential cross-section. In the original
publication of the method, ref. [11], we trained a simple NN model to approximate the event
weights. The gains could be significantly increased [12] by using the factorization-aware ME
emulator of ref. [64]. It takes advantage of the factorization properties of MEs in the form of
dipole formulae [65]. The dipoles capture the singular structure in the soft and collinear limits,
such that the model does not need to learn it from scratch. An NN only learns coefficients that
get multiplied by the dipole terms in a linear combination. The model achieves high accuracy
and is able to extrapolate into regions that are more singular than the training data.
There have been several other approaches to emulating MEs with ML techniques. One of the

first approaches was the application of the gradient boosting machine [66–69] XGBoost [70]
to the loop-induced process �� → �� [71]. The two-dimensional PS was divided into ten
regions, and one regressor was trained on each of them. Errors below 0.1% were achieved.
Another study looked at the example of �+�− → jets at leading and next-to-leading order [72].
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The higher dimensionality makes NNs an eligible choice for the regression. However, the
authors found that a single NN has difficulties finding a good fit across the whole PS due to the
infrared singularities at the edges. Hence, they separated the divergent from the non-divergent
part and further decomposed the latter into more sectors according to the fks subtraction
method [73, 74], thereby integrating physics knowledge into their design. They trained one
NN per sector and found percent-level accuracy even for the more difficult distributions. In a
comparison, the factorization-aware model mentioned above achieved significantly better fits
by building knowledge about the singularities into the model [64]. In a follow-up study [75],
the approach of ref. [72] was applied to the loop-induced processes �� → ��� and �� → ����
contributing to diphoton production at hadron colliders. Although a good approximation
was achieved overall, some PS regions remained challenging. Bayesian NNs were used as
an alternative model in another follow-up [76]. These provide an estimate of the training-
related uncertainties and can also be used to optimize the network training. Boosted training
was used to improve the precision and the uncertainty estimate. It was shown that through
this procedure a relatively simple and small network was able to match the performance of
ref. [64] without a physics-inspired architecture. In ref. [77], the factorization-aware model was
extended to the one-loop level by using it for the prediction of NLO �-factors. The authors based
their factorization on antenna functions [78] and considered the process �+�− → � ̄� + ��, with� up to and including 5. They obtained percent-level accuracy for the most demanding process.
Finally, regression has even been attempted for two-loop helicity amplitudes [79]. An NN with
skip connections [80] was used and physics domain knowledge was exploited by normalizing
the amplitudes by the comparably cheap first-order terms. Furthermore, symmetry arguments
were used to reduce the number of terms.

An argument in favour of ME emulators is that true MEs of high-multiplicity processes are
expensive, and that a lot of computational time can be saved by relying on an emulator instead.
This is certainly tempting, but makes high demands on the quality of the approximation. High
accuracy, at the percent level or below, is needed over the whole fiducial phase space. Further-
more, it would be welcome to have a reliable uncertainty estimate of the approximation, which
is difficult to get with NNs. This is an active area of research that has also gained attention
in the HEP community [81–84]. Proposed methods for uncertainty estimation include NN
ensembles [64, 85, 86] and Bayesian networks [60, 61, 76, 87, 88]. While these show that NN
uncertainties can be modelled over a wide range of phase space regions, they cannot prevent
overconfidence in some regions. This can lead to problems in applications if the uncertainty
estimates are used blindly without knowing where they are not reliable. The surrogate un-
weighting method of chapter 4 offers an alternative application of ME emulators that does not
rely on uncertainty estimates, since the method is unbiased by design. Nevertheless, it requires
accurate predictions from the model to be efficient.

Another interesting application of ML in HEP is reweighting, which has found a multi-
tude of possible uses. One of them is unfolding, that is the correction of measurements for
detector effects to enable comparisons with theoretical predictions or measurements from
other experiments, thereby going from detector level to particle level. Traditionally, this is
done for individual observables based on histograms. The OmniFold method [89] uses an
NN classifier to iteratively reweight a sample of simulated events. This way, the full phase
space information is available. The method is unbinned and not specific to any observable.
Similarly, Dctr [90] can be used to reweight one particle level simulation into another. This is
useful to generate new detector level samples from different particle level simulations given
that one fully simulated sample (at detector level) is available. Furthermore, it can be used
for determining systematic uncertainties with continuous parameter variations and for the
parameter tuning of event generators. The Dctr approach of training a classifier NN is also
used in the post-processing method DctrGan [91]. It reweights samples from a generative
model, e.g. a GAN, to improve their accuracy. As an extension of this, LaSeR [92] pulls back
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the classifier weights to the latent space, which can be done directly for invertible models like
NFs or via OmniFold for other models like GANs. Afterwards, another generative model is
trained to generate the refined latent space such that unweighted samples can be produced. The
authors propose to use a GAN to refine an NF in order to overcome its topological obstructions.
However, they note that rejection sampling or Markov Chain Monte Carlo (MCMC) could also
be used to sample the weighted latent space. Finally, this approach is extended by Elsa [93],
which is a combination of LaSeR and augmented NFs [94–97]. It can be used for approximate
event generation and the authors demonstrate this for� + + {2, 3} jets production at the LHC.
In addition to the examples listed above, many other ML applications in HEP have been

suggested. One of the most active fields, due to its large impact on computational efficiency,
is detector simulation [98–116]. Among the other applications are event subtraction [117],
event unweighting [118], jet super resolution [119, 120], the matrix element method [121],
parton showers [122–128], simulation-based inference [129–132], and solving parametric
integrals [133]. For reviews of the application of modern ML in HEP, see refs. [134–138].
A conceptually different approach is our use of nested sampling for event generation, which

is presented in section 3.2. It uses a different sampling technique, not based on importance
sampling. Although changes in established workflows would be necessary for its introduction,
it also offers advantages. For example, nested sampling achieves remarkably good efficiency,
especially in high dimensions. And while nested sampling itself is not based on modern ML
techniques such as NNs, it opens up many possibilities to combine the advantages and further
increase the performance of nested sampling through NNs. Originally conceived as amethod to
determine the evidence in Bayesian inference, nested sampling has found widespread adoption
in cosmology [139–144]. However, it has also proven to be a versatile tool beyond that. Some
of the main other fields of application are gravitational wave astronomy [145–147], particle
physics [148–152], and materials science [153–158]. It would not be surprising if nested
sampling also finds its place in HEP. This thesis describes one of the first approaches in this
direction.

1.3 Outline of the thesis
In chapter 2, an overview of the theoretical foundations of HEP as well as the established ap-
proaches to the sampling of scattering cross-sections is given. Two newmethods are introduced
in chapter 3, the usage of NFs and nested sampling for PS sampling. In chapter 4 it is shown
how NN surrogates can be used to accelerate the production of unweighted event samples.
Finally, the insights are summarized in chapter 5 and an outlook on future developments is
given.
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2 Phase space sampling in high energy physics
To establish the necessary concepts and terminology that underlie the ideas in this thesis, this
chapter is concerned with the basics of particle physics and standard sampling techniques. In
section 2.1, an overview is given on how to determine scattering cross-sections in the Standard
Model. The main target of this thesis, the fully differential hadronic cross-section, is defined
based on the factorization theorem of quantum chromodynamics (QCD). An introduction to
the problem of sampling the differential cross-section is given in section 2.2. It is followed by
a brief description of MC event generators, which provide a comprehensive solution to this
problem. This chapter ends after section 2.3, where the most important sampling techniques
are presented. These comprise the crude MC technique, importance sampling, multichannel
sampling, and methods to generate non-uniform random numbers.

2.1 Particle physics basics
The Standard Model is the accepted theory in particle physics, which is introduced in sec-
tion 2.1.1. We then consider ourselves with scattering experiments at particle colliders in
section 2.1.2, with the goal of defining scattering cross-sections. In section 2.1.3, it is then
shown how to use perturbation theory to make quantitative predictions in HEP. The topic of
running couplings due to renormalization is touched upon in section 2.1.4. We refine the defin-
ition of cross-sections for collisions of hadrons in section 2.1.5, and finish with a discussion of
jets in section 2.1.6.

2.1.1 The Standard Model
The theory describing our understanding about the fundamental interactions of elementary
particles is the Standard Model. It contains 17 main types of elementary particles, which are
listed with some of their properties in fig. 2.1. We can identify two kinds of fermions, leptons
and quarks, which come in three generations. The leptons are the electron, �, and the electron
neutrino, ν�, as well as the muon, �, and the tau, �, with their respective neutrinos, ν� and ν�.
For the quarks, the three generations comprise the up and down quarks, � and �, the charm
and strange quarks, � and �, and the top and bottom quarks, � and �. Their interactions are
mediated by four vector bosons, the gauge bosons, which act as force carriers. There are three
types of gauge bosons for the electroweak interaction, the massive � and� bosons and the
massless photon, �. The� boson comes in two variations,� + and� −, with electric charges+1 and −1. The gauge boson of the strong interaction is the massless gluon, �. Finally, there is
a scalar Higgs boson, �.
The Standard Model is a QFT collectively describing the electromagnetic, weak, and strong

interactions. The electromagnetic and weak interactions can be unified in an electroweak
theory in the form of a gauge theory with gauge groupSU(2) × U(1) , (2.1)

where the SU(2) part is related toweak isospin, and the�(1) part is related toweak hypercharge.
This gauge group is spontaneously broken to the electromagnetic U(1)EM gauge group via the
Higgs mechanism. This gives rise to the masses of the three massive gauge bosons, {� ±, �0},
and a massive scalar particle, the Higgs boson,�. Yukawa coupling to the Higgs field generates
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2 Phase space sampling in high energy physics

Figure 2.1: Overview of the elementary particles of the Standard Model with their masses,
electric charges and spins. The masses correspond to the status of 2019, as published by the
Particle Data Group [159]. Figure taken from [160]cb.

the fermion masses. With regard to their SU(2) charges, the fermions can be grouped into
left-handed doublets and right-handed singlets.
The strong sector is described by QCD, a non-abelian gauge theory with gauge groupSU(3) . (2.2)

QCD is a complicated theory with properties that make quantitative predictions a challenging
task. The quarks, which come in colour triplets, can change their colour by emitting gluons.
Furthermore, the gluons carry colour charge and can thus interact with themselves. As is
explained in section 2.1.4, perturbative calculations are only possible at high energy scales,
such that effects at lower scales are much more difficult to study. However, QCD is the most
relevant theory for this thesis. This is because we want to make predictions mainly for the LHC.
The LHC collides protons, since they can reach much higher energies than e.g. electrons in a
circular collider, due to less synchrotron radiation. Protons are made of quarks and gluons
and so they interact mainly via the strong interaction, as described by QCD. Furthermore, the
strong interaction dominates the radiation patterns at high-energy colliders, because of its
strong coupling strength.

2.1.2 Scattering experiments

Consider the case of two colliding beams made up of quantum-mechanical particles, one of
type 1 and the other of type 2, as sketched in fig. 2.2. The particles themselves do not have a
sharply defined diameter but if they come close there is some probability of interaction. In this
sense, a particle within the beam has an effective cross-sectional area, even if we may not be
able to find a physical equivalent of this area. This cross-section, �, is proportional to the event
18
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2.1 Particle physics basics

�1 �2 �
Figure 2.2: Two colliding beams.

rate

d�
d� ∝ � , (2.3)

where � is the total number of scattering events. The event rate is directly related to the
interaction probability. We define the proportionality constant belonging to eq. (2.3) as the
instantaneous luminosity ℒ(�). By integration, we get the integrated luminosity,

� = ∫�
0 ℒ d� , (2.4)

which is a measure of the amount of data produced by a collider. The luminosity is defined
by the incoming beams, e.g. the density of particles. In contrast, the cross-section depends
exclusively on the properties of the incoming particles. While not necessarily easy to do in
either case, it is possible to experimentally measure as well as theoretically calculate scattering
cross-sections. The conventional unit for cross-sections is the barn, defined as1 b ≡ 10−28m2 . (2.5)

It is common to encounter fractions of that, like femtobarn, 1 fb = 10−15 b, or picobarn,1 pb = 10−12 b. If there are several possible types of events, e.g. the production of different
final state particles, the total cross-section is the sum over all types,� = ∑� �� . (2.6)

The cross-section provides us with a single number that contains information about the
number of events of a certain type occurring in a unit of time. More inclusive information can
be gained from the differential cross-section for some observable �:

d�
d� . (2.7)

This gives us a distribution of events, which we can visualize and compare, for example with
the use of histograms. The most versatile option is to consider the cross-section differential in
all phase space variables. This object, the fully differential cross-section, can be boiled down to
a certain observable by integrating over the other variables.
Let us now consider how to calculate cross-sections in QFT. Skipping over a lot of details,

the basic approach is to construct wavepackets for the initial-state particles in the early past
and evolve them with the time evolution operator �−���, where � is the Hamiltonian. The
evolved state is then overlapped with wavepackets for the final-state particles in the distant
future, which we are interested in. This provides us with the probability amplitude for the type
of event defined by the desired particles. In a simplified notation, the overlap between the
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�1
�2

�3�4
��⋮

Figure 2.3: Two particles scattering and producing � − 2 particles.
initial and final states is described by the so-called �-matrix:��� = ⟨�|�⟩ . (2.8)

We now confine ourselves to the case of two colliding particles, with four-momenta �1 and �2,
and � final-state particles, with momenta �3, �4,… , ��. This case is illustrated in fig. 2.3. The�-matrix for it can be written as

��� = ��� + � (2�)4 �(4)(�1 + �2 − �∑�=3��)ℳ , (2.9)

whereℳ is called the invariant matrix element, or scattering amplitude. The ��� corresponds
to the case of no interaction, which is of no interest here. Four-momentum conservation is
ensured by the Dirac delta distribution, and it is implied that the external particles are on their
mass shell:�21/2 = �21/2 and (2.10)�2� = �2� . (2.11)

Let us consider the actually interesting part, the matrix elementℳ. It can, with quite general
arguments, be related to the cross-section. Skipping over the calculation, the result is

d� = 12�1�2|�1 − �2| (∏� d3��(2�)3 12��)× ||ℳ(�1, �2 → {��})||2 (2�)4 �(4)(�1 + �2 − �∑�=3��) , (2.12)

where the first factor on the right-hand side is the flux factor, with |�1−�2| being the difference
of the beam velocities in the laboratory frame. To go from a probability amplitude to an
observable, the matrix element is squared. Finally, there is an integral over all final-state
momenta {��}, which is of the form

∫ d� = (2�)4 (∏� ∫ d3��(2�)3 12��) �(4)(�1 + �2 − �∑�=3��) . (2.13)

This is called the Lorentz-invariant phase space and is needed to integrate the differential
cross-section to a total cross-section.

With eq. (2.12) at our hands, the remaining difficulty is to find a recipe for calculating |ℳ|2.
It turns out that for the Standard Model this is possible using perturbation theory. A very
helpful tool for the calculation are Feynman diagrams. In section 2.1.3, an overview of the
approach is given.
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Figure 2.4: An example of a Feynman diagram: Two fermions scatter, producing an intermedi-
ate boson that decays to two fermions again.

2.1.3 Perturbation theory and Feynman diagrams

The idea of using perturbation theory for QCD can be broken down to expanding an observable� in orders of the strong coupling parameter ��, which is defined as�� = �2�4� , (2.14)

where �� is the coupling appearing in the QCD Lagrangian. In schematic form, this expansion
looks like� = �1�� + �2�2� + �3�3� +⋯ (2.15)

Assuming a small coupling, �� ≪ 1, the series converges and the first few terms can deliver
an acceptable approximation. However, even a divergent series can provide a reasonable
approximation with appropriate truncation. We call the lowest order contributing to a given
observable the leading-order (LO), the next higher one next-to-leading order (NLO) and so on.
NLO calculations can be regarded the current standard as they are available largely automatized
for almost arbitrary processes. Many processes are also available at next-to-next-to-leading
order (NNLO) by now. Since the electromagnetic coupling is so small, the leading-order in
quantum electrodynamics (QED) is often sufficient.
A widely used tool for perturbative calculations of scattering amplitudes are Feynman

diagrams. They are visual representations of scattering processes as spacetime diagrams,
whereby many different diagrams can contribute to a single amplitude. Feynman diagrams
simplify the calculation by reducing it to a set of rules. The building blocks of a diagram
are different types of external lines corresponding to real (on-shell) particles, internal lines
corresponding to virtual (off-shell) particles, and vertices, where these lines connect. An
example of a Feynman diagram is shown in fig. 2.4. In the calculation, the external lines are
associated with spinors and polarization vectors, whereas the internal lines are associated
with propagators. The vertices are related to couplings between particles. That means that the
perturbative order of a diagram can be determined by counting the number of vertices. Note
that vertices can differ in order and this is in fact the case for QCD, where a 4-gluon vertex
exists that is of order �2� while the 3-particle vertices are of order ��.
2.1.4 Running coupling

An issue arises in the calculation of loop diagrams. There, virtual particles with high energy or
momentum lead to ultraviolet divergences. Consequently, the Feynman diagrams evaluate to
infinity. These divergences can be regularized by introducing a cutoff scale that implements
our ignorance about high energy scales, much above the collider energy. This leads to a
renormalized definition of the fields, and their masses and couplings. The renormalized
masses and couplings depend on a reference scale, the renormalization scale ��. Their values
can be measured by experiment at a specific scale. To determine their values at other scales,
they can be evolved with a renormalization group equation (known as the beta function), which
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Figure 2.5: The strong coupling constant as a function of the energy. Figure taken from [161]
cp.

can be derived from perturbation theory. A consequence is that the values of the renormalized
coupling constants in the Standard Model depend on the energy scale, a fact known as running
coupling. For QCD, unlike QED, the coupling, ��, decreases with energy, as can be seen in fig. 2.5.
At high energies, the coupling between quarks is small, and they behave like free particles. This
is called asymptotic freedom. However, at small energies we can never observe free quarks.
Due to the strong coupling, they are always confined in hadrons, which are composite particles
made of quarks and bound together by the strong interaction. The same running behaviour
is true for the quark masses. However, in practice we often only consider running masses
of the heaviest quarks, � and �, and assume the light quarks to be massless. This simplifies
calculations while at high energies the approximation has negligible consequences.
Perturbation theory works well for QCD processes at high energies, where the strong coupling

is small. Therefore, it allows us to describe scattering processes between hadrons at colliders
like the LHC. If the hadrons are accelerated to high energies, their interaction is dominated by
the scattering of individual quarks and gluons. The high energy scale suppresses softer effects
that happen at a longer timescale than the hard interaction.

2.1.5 Hadron collisions

Equation (2.12) gives the differential cross-section for the scattering of two fundamental
particles. However, the LHC collides protons, which are composite particles made of quarks
and gluons. It is common to refer to quarks and gluons collectively as partons, and we adopt
this convention here. To describe the scattering of two protons, it is not enough to calculate
the cross-section of two partons, since we cannot observe which of the components interacted
and what fraction of the momentum they carried. So we need to expand our toolbox. We
assume that at high collision energies, the partons within the proton are almost collinear with
its momentum. Furthermore, we suppose that due to their asymptotic freedom, individual
partons collide mostly independently from the proton remnants. This situation is visualized in
fig. 2.6, where an up-quark and a gluon leave their respective fast-moving protons to undergo a
partonic interaction.
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� �� �

Figure 2.6: Exemplary sketch of a hadronic collision at high energy.

Let us denote the momenta of the colliding partons by�� = ���� , (2.16)

where �� are the momenta of the two colliding protons, and �� are the momentum fractions
carried by the partons ��. Necessarily, the fractions are restricted to 0 ≤ �� ≤ 1. With this
notation, we can conceptually write down the total cross-section of a hadronic collision:

� = ∑�,� ∫1
0 d�1∫1

0 d�2 ��(�1) ��(�2) �̂����→{��} . (2.17)

The sum runs over all possible partons, i.e. quarks, antiquarks, and gluons. The partonic
cross-section between partons � and �, as determined by eq. (2.12), is denoted as �̂����→{��}.
Moreover, the parton distribution functions (PDFs) ��(�1) and ��(�2) have been introduced.
These capture the probability to find the partons of types � and � with momentum fractions�1 and �2 inside the protons 1 and 2, respectively. Since they comprise low-scale physics, the
PDFs cannot be calculated in perturbation theory. Instead, they have to be determined from
measured data.
There is a further complication due to the fact that partonic cross-sections can suffer from

infrared divergences, which are triggered by soft and/or collinear emissions. To deal with this,
we assume that we can factorize the cross-section into a perturbative and a non-perturbative
contribution. There is good reason to believe that this is a sensible ansatz and some more
specific factorization properties have been proven [162]. This factorization allows us to move
the infrared divergences out of the partonic cross-section and into the definition of the PDFs.
Thereby, we introduce another scale parameter, the factorization scale ��. This scale separates
the short-distance, perturbatively calculable physics from the long-distance, non-perturbative
physics. As a consequence, we have partonic cross-sections that can be calculated in some
order of perturbation theory, and PDFs that can be determined frommeasured data at a specific
scale ��. Similarly to the renormalized masses and couplings, the PDFs can be evolved to other
energy scales using perturbation theory. The equations describing this evolution are known as
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations [163–165]. Assuming factoriz-
ation, the hadronic cross-section can be written as

� = ∑�,� ∫1
0 d�1∫1

0 d�2 ��(�1, �2�) ��(�2, �2�) �̂����→{��}(�1, �2, �2�) , (2.18)

where the dependence on the factorization scale has been made explicit.

2.1.6 Jets
The result of simulating a high energy hadronic scattering event can be thousands of particles,
with many of them being hadrons. Experimental data tells us that the hadrons are typically
found in condensed cone-shaped arrangements, so-called jets. Consider as an example fig. 2.7,
which shows an event with two jets of high transverse momentum, �⟂, recorded by the atlas
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Figure 2.7: Event display of a dijet event recorded by atlas in 2010. Figure taken from [166]
cb.

collaboration. The left plot shows a cross-section through the detector, perpendicular to the
beam axis. The tracks of the charged particles are projected onto the image layer. It can be
seen that the two jets with the highest �⟂, with tracks coloured in green and red, deposit a
large amount of energy in the hadronic calorimeter (red annulus). In addition, the right plots
show a cross-section through the detector along the beam axis and a histogram of measured
transverse Energy (ET) in the pseudorapidity-azimuth (�-�) plane. Clearly, the energy deposits
are very localized, indicating that the particles are collimated.
From the theory perspective, jets form when highly energetic partons from the hard in-

teraction dress themselves with soft and/or collinear emissions, so-called parton showers.
At sufficiently low energy scales the partons form hadrons, whose energy deposits can be
measured in a calorimeter. Jets are abundant in LHC data and almost all analyses rely on
reconstructed jets.
To be able to compare experimental and simulated data, it is important to use a precise

definition of jets, which can be applied to both simulated and measured events. Such a
definition is available through a jet algorithm, which is a procedure for clustering a set of
hadrons into jets. A useful property of a jet algorithm is infrared and collinear safety, meaning
that the result of clustering is not sensitive to additional soft or collinear emissions. This is
important for reliable comparisons between theory and data. The most important jet algorithm
for the LHC, and the only one considered in this thesis, is the anti-�� algorithm [167]. As a
type of sequential recombination algorithm, it is infrared and collinear safe. These algorithms
work by defining a distance measure ��� between any two particles and clustering the particles
based on their distance. For the anti-�� algorithm, the distance measure is defined as

��� = min(�−2⟂,�, �−2⟂,�) Δ�2���2 , (2.19)

where Δ�2�� = Δ�2 + Δ�2 = (�� − ��)2 + (�� − ��)2, and �⟂,�, �� and �� are respectively the
transverse momentum, the rapidity and the azimuth of the �-th particle. The parameter �
is called the jet radius and has to be set manually. The clustering proceeds as described in
algorithm 1.
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Algorithm 1: The anti-�� jet clustering algorithm.
1 define a list of entities containing all final state particles;
2 repeat
3 compute the distance measure ��� for each pair (�, �) of entities;
4 compute the distance measure ��� between each entity � and the beam �;
5 determine the minimummin({���}, {���}) of the set of all distance variables;
6 ifminimum is a ��� then
7 combine entities � and � by adding their four-momenta;
8 end
9 else
10 declare entity � to be a final state jet, and remove it from the list of entities;
11 end
12 until list of entities is empty;

The algorithm can also be stopped prematurely when a termination criterion has been
reached. For example, one can choose to only consider jets with �⟂,� > �⟂,cut and ��� > �cut.
2.2 The sampling problem in high energy physics

After the essential background has been introduced, the problem of sampling the phase space
is explained in more detail in this section. To this end, some specific aspects are discussed in
section 2.2.1. Then, in section 2.2.2, MC event generators are introduced as an important tool
for tackling the sampling problem.

2.2.1 Sampling the differential cross-section

Combining eqs. (2.12) and (2.18), we can write down the fully differential cross-section of a2 → � parton level scattering process:
d��1�2→{��} = 12�1�2|�1 − �2| �1(�1, ��) �2(�2, ��) |ℳ|2 ||det ��||× d�1 d�2 d��1�2→{��} . (2.20)

This gives only one partonic contribution. To arrive at a hadronic cross-section, one needs
to sum over all possible partonic initial and final states. The Jacobian determinant, ||det ��||,
has been introduced to account for a possible change of variables that increases the sampling
efficiency. For details, see section 2.3.
The main objective in this thesis is the sampling of eq. (2.20), i.e. the production of momenta�1, �2, {��} with a distribution that follows the differential cross-section. This is in fact a

challenging task. Since the parton momenta are given by four-momenta, we have to deal with4� dimensions. However, four-momentum conservation and on-shell conditions reduce this
number to� = 3� − 4 . (2.21)

At high final statemultiplicity, the number of dimensions can thus become quite large. Thereby,
the costs of evaluating the matrix elements, |ℳ|2, scale badly with the multiplicity. Further-
more, the matrix elements can be multimodal, and their peaks can be extremely narrow due
to intermediate resonances with small decay widths and quantum-mechanical interference.
Large samples, containing millions of events, are typically needed for experimental analyses.
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2 Phase space sampling in high energy physics

In addition, it can be necessary to repeat the generation many times with different values of
the renormalization and factorization scales, and for variations of the PDFs. This is useful for
an uncertainty estimation. The variation of the scales, typically between �/2 and 2� of the
nominal value, hints at contributions from higher orders. A strong dependency on the scales
is a sign that large corrections from higher orders can be expected. It is possible, though, to
reduce the number of repeated runs by using on-the-fly reweighting techniques [168]. Another
complication arises from the fact that the differential cross-section can be formally divergent.
This necessitates regularization by using kinematic cuts, which leads to regions in PS with zero
probability and vertical edges at the locations of the cuts. There can be further cuts to select
specific regions of PS. At NLO, which is only touched on in passing here, we also have to deal
with negative weight contributions.
As a first step, the sampling of valid PS configurations is required. In the simplest case, this is

done uniformly. This task was solved long ago by the rambo algorithm [169]. The algorithm
uniformly populates the volume of the �-body PS, eq. (2.13), which is known to be

�� = (�2 )�−1 (�2)�−2(� − 1)!(� − 2)! , (2.22)

where � is the total momentum. Versions for massless and massive particles are available,
but the massive version is not exactly uniform. Due to its simplicity, the algorithm can be
easily applied to arbitrary PS sampling problems. However, the uniform sampling can be very
inefficient. Therefore, realistic applications are restricted to simple processes. Furthermore,
the algorithm can serve as a cross-check for more elaborate ones. A disadvantage of rambo
is that it uses 4� instead of the necessary 3� − 4 random variables. This problem is solved by
the rambo on diet approach [170]. The idea is based on factorizing the PS by separating it
into a sequence of 1 → 2 decays. Due to using the minimal number of random variables, the
algorithm provides an invertible mapping from uniform random numbers to particle momenta.
The factorized approach of ref. [170] was also used in earlier, non-uniform approaches to

PS generation [171–173]. Later, more specialized algorithms became available. These often
focused on multi-parton QCD processes. An example is sarge [174], which generates the
antenna pole structure that provides the leading contribution to the structure of singularities
in QCD amplitudes. It is given by the permutations of1(�1 ⋅ �2)(�2 ⋅ �3)⋯ (��−1 ⋅ ��)(�� ⋅ �1) . (2.23)

For QCD amplitudes, sarge is much more efficient than rambo. An even more efficient
approach to antenna generation is given by haag, which uses a hierarchical strategy and a
multichannel (see section 2.3.3) procedure. More recent PS generators are often integrated
into ME generators and use the same strategies that are employed to evaluate the MEs. These
can be based on Feynman diagrams [175], like in amegic [176] and MadGraph [177], or
recursion relations [178], like in Comix [179]. As part of full-featured MC event generators,
they efficiently generate PS configurations for almost arbitrary processes.

2.2.2 Monte Carlo event generators

MC event generators are general purpose tools that can be used to calculate decay widths,
total cross-sections, and exclusively simulate individual scattering events. See refs. [8, 180] for
extensive reviews of modern MC event generators. They are based on first principles, models for
non-perturbative phenomena, and parameters tuned with measured data. At the core of event
generation lies the partonic hard scattering event, which is the part that is almost exclusively
considered in this thesis. A key assumption in event generators is that the hard process is
factorized from parton showers and non-perturbative phenomena. This allows to simulate
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2.2 The sampling problem in high energy physics

Figure 2.8: Sketch of a � ̄�� event produced from two hadrons colliding at high energy as
generated by an event generator. The two hadrons (green) enter from left and right. After
initial state radiation (blue), a hard interaction between two gluons takes place (big red blob
in the centre). The final state particles undergo final state radiation (red), and the top quarks
and the Higgs boson decay (small red blobs). A secondary partonic interaction is shown in
purple. At sufficiently low scales, the produced partons hadronize (light green blobs) and
eventually the hadrons decay (dark green blobs). Electroweak radiation also occurs (yellow).
Figure taken from [192]cb.

these parts separately. For hadronic collisions, PDFs are used to determine the contributions
of the partonic channels. To calculate the scattering matrix elements of the hard process, an
event generator interfaces specialized ME generators. These tools are largely automated and
can be used for almost arbitrary scattering processes. Examples for tree-level ME generators are
alpgen [181], amegic [176], Comix [179], MadGraph [182], and whizard [183]. The
set of QCD and electroweak one-loop generators includes MadLoop [184, 185], Mcfm [186,
187], NJet [188], OpenLoops [189, 190], powheg box [191], and Recola [189, 190]. In
combination with an efficient PS generator, which provides the kinematic configurations as
inputs, these tools can be used to generate inclusive fixed-order events at the parton level.
General-purpose event generators are able to extend these into fully differential and exclusive
simulations by adding a parton shower simulation, particle decays, hadronization models,
and multiple interactions per collision. With all these ingredients, an event can look like the
example shown in fig. 2.8. Thereby, perturbative and non-perturbative effects are integrated
into a single simulation.
Although automated approaches exist by now, the combination of fixed order MEs and

parton showers is a non-trivial task. They aim to describe different regions of PS, with fixed
order MEs most accurate for well-separated, hard partons, while partons showers are designed
for the soft and collinear parton emissions. Furthermore, with parton showers it is possible to
generate many more partons than with the computationally demanding MEs. A problem for
the combination of the two is that MEs deliver an inclusive description, while parton showers
are exclusive in the number of final state partons. In addition, one needs to be careful to
avoid double counting, i.e. that regions of PS are generated by both, MEs and showers. These
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2 Phase space sampling in high energy physics

problems are addressed through matching [193–201] and merging [202–223] techniques.

2.3 Established methods and their shortcomings

MonteCarlo (MC) event generatorsmake use of various algorithms and techniques for sampling.
The common basis for them is the MC method. In this section, the established methods used
in MC event generators are introduced, and their limitations are discussed. This provides
the basis for the approaches to improvement that are presented in the following chapters.
The crude MC method and its use for numerical integration are explained in section 2.3.1.
In addition, importance sampling is introduced as a technique to reduce the variance of the
integral estimate. In section 2.3.2, the adaptive importance sampling algorithm vegas is
presented. In this context, problems with non-factorizable functions and cuts in phase space
are discussed. Following that, the multichannel method is introduced in section 2.3.3 as an
efficient approach to multimodal target functions. It is furthermore shown how to combine
a multichannel sampler with adaptive remappings based on the vegas algorithm. Since all
approaches based on importance sampling require the efficient generation of non-uniform
random variables, this topic is covered in section 2.3.4. To this end, the inverse transform
method and the rejection sampling algorithm are introduced. Finally, the relevance of rejection
sampling for unweighted event generation in the context of experimental analyses is explained
in section 2.3.5.

2.3.1 Monte Carlo sampling

For integration problems with more than a few dimensions the MC method is typically the tool
of choice since its scaling behaviour is superior to deterministic methods such as quadrature.
The idea is simple. Let �∶ Ω ⊂ ℝ� → [0,∞) be a function defined over the �-dimensional
unit hypercube Ω = [0, 1]�. Its integral is given by

� = ∫Ω �(�) d� . (2.24)

According to the MC method we sample points �� uniformly from Ω and by taking the mean
over the corresponding function values we get an estimate of the integral:

� ≈ �� = 1� �∑�=1�(��) . (2.25)

From the law of large numbers it follows that �� converges to � for � → ∞. For finite � there
is an error which can be estimated by the standard error of the mean:��� = |� − ��| ≈ �̂�� = ��√� , (2.26)

where �� is the sample standard deviation given by

�� =√√√√ 1� − 1 �∑�=1(�(��) − ��)2 . (2.27)

We call �̂�� the MC error. Note that it is a statistical property that has meaning only for a large
number of independent runs. For a single run the estimate can be completely wrong.
An example for uniform MC sampling is shown in fig. 2.9. The target is a truncated Gaussian

distribution with mean � = 0.5 and variance �2 = 0.05 on the interval [0, 1]. A sample of 5000
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Figure 2.9: Uniform sampling of a one-dimensional target function.

points drawn from a uniform proposal is shown as a histogram. The histogram approximates
the uniform distribution. However, if the points are filled into a weighted histogram, with
their weight given by the value of the target function, �(��), the histogram approximates the
target function instead. In essence, fig. 2.9 is a visual illustration of the basic principle of the
MC method.
Equation (2.26) represents the famous 1/√� scaling of MC integration. It is independent of

the number of dimensions but at high dimensionality one might need an undesirably large
number of points to get an integral estimate with an acceptable MC error. A way out is offered
by variance reduction methods, which aim at reducing ��. These can be very effective because
halving the variance has the same effect on the MC error as quadrupling the number of points.
Arguably the most important method for HEP is importance sampling. The idea is to sample
from a non-uniform probability density function (PDF)* �∶ Ω → [0,∞). As a consequence,
the integral in eq. (2.24) becomes

� = ∫Ω �(�)�(�) �(�) d� = ∫Ω �(�)�(�) d�(�) , (2.28)

where � denotes the cumulative distribution function (CDF) corresponding to �. The MC
estimate of the integral is now given by

�′� = 1� �∑�=1 �(��)�(��) = 1� �∑�=1�� , (2.29)

where the �� are sampled from the distribution �. To make clear that they are drawn from a
non-uniform distribution, we switched the notation for the random points to ��. We refer to
the �� as MC weights. The sample standard deviation becomes

�′� =√√√√ 1� − 1 �∑�=1(�� − �′�)2 . (2.30)

It follows that the MC error can be reduced by reducing the variance of the weights ��. This
*I use the acronym PDF for both probability density functions and parton distribution functions. It should be
clear from the context, which of the two is meant.
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Figure 2.10: Importance sampling applied to a one-dimensional target function.

means that one should choose a �(�) that is as similar as possible to the shape of the integrand�(�). However, there is a restriction, namely that we need to be able to efficiently sample from�. Ideally, its quantile function, i.e. the inverse of the CDF, is known analytically such that
inverse transform sampling (cf. section 2.3.4) can be applied.
In fig. 2.10 the importance sampling method is illustrated. The target is the same as in

fig. 2.9. Another truncated Gaussian is used as the proposal. It has a larger variance than the
target, �2 = 0.08 compared to �2 = 0.05. Again it can be seen that by weighting the points
according to their weight, ��, the sample distribution can be shifted from the proposal to the
target. However, compared to uniform sampling, the distance between the proposal and the
target is much shorter. Thus, the spread of the weights is smaller.

2.3.2 Adaptive importance sampling—the Vegas algorithm
vegas is an adaptive importance sampling algorithm that is widely used in HEP. It is based
on a piecewise constant density defined over the unit hypercube [0, 1)�. In � dimensions the
density function is factorized into � functions:

�(�) = �∏�=1 ��(��) . (2.31)

Each function ��(��) is divided into �� bins which are defined by their �� + 1 boundaries0 = ��,0 < ��,1 < ⋯ < ��,�� = 1. Given the bin boundaries, the function can be evaluated at
any point �� using��(��) = 1��(��,� − ��,�−1) , with ��,�−1 ≤ � < ��,� . (2.32)

In the vegas algorithm, each bin is sampled with equal probability and the bin widths are
adapted tominimize the variance of the integral estimate. As a consequence, narrow peaks lead
to many thin bins while flat, low probability regions are covered by few wide bins. Sampling
from �(�) is easy through the inverse transformmethod (cf. section 2.3.4). In each dimension, a
bin is randomly chosen, and a point is sampled from it uniformly. Since the �� are independent
of each other, they can be sampled one after the other or in parallel. The actual algorithm for
adjusting the bin widths is not relevant here. Details can be found in ref. [32].
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Figure 2.11: Sampling with vegas applied to a one-dimensional multimodal target.

In fig. 2.11 the result of applying vegas to a one-dimensional target function is shown.
The target is a mixture of two Gaussians with peaks at �1 = 1/3 and �2 = 2/3. A vegas
density with 30 bins has been trained on batches of 1000 points for 10 iterations. The adapted
bin boundaries are shown in the figure. It can be seen that the bins concentrate around the
peaks while there are fewer bins in regions where the target function has smaller values. The
widest bins are located at the domain boundaries. A histogram of a sample from the vegas
density is also shown. At the outermost bins, it can be seen quite clearly that vegas uses a
uniform distribution within each of its bins. Therefore, within each bin, the target function is
approximated by a constant function. Depending on the width of the bin and the gradient of
the target function, this can lead to large deviations. In the example, vegas overestimates the
target function at the domain boundaries due to the wide bins and underestimates the peaks
as a consequence. Using more bins would reduce the deviations in this example.
As stated above, it is straightforward to sample a vegas density. Accordingly, there is a

simple transformation from a uniform distribution to the vegas one. On the one hand, this
allows to use the inverse transform method for sampling. On the other hand, this means that
vegas can be used more generally as a mapping �∶ Ω → Ω to transform one distribution into
another. Consider for example fig. 2.12, where the mapping � ↦ � is shown for the vegas
density trained on the multimodal target shown in fig. 2.11. The bin boundaries are indicated
in the background, and it can be seen that the mapping function is linear between the bin
boundaries. At the points where the linear parts connect, the function is non-differentiable.
Such an adaptive mapping can be very effective in situations where we have some but not
full knowledge about the target distribution in the form of a sampling density. Consider, for
example, the matrix element squared of a scattering process with an intermediate resonance,
where the shape is dominated by a relativistic Breit-Wigner distribution, which can be sampled
with the inverse transform method. This models the denominator of the propagator of an
unstable particle. However, it neglects the numerator and other contributions. To reduce the
mismatch between the target and the sampling distribution, one can train a vegas mapping
on the function that remains after mapping out the resonance with a Breit-Wigner distribution.
This approach is more efficient than using vegas standalone because the sharp resonance is
already flattened out. It would otherwise require many bins to model. Thus, there are more
bins available to adapt to other features.
The factorized definition of the vegas density, eq. (2.31), is a big advantage with regard to

the efficiency of the adaptation. The computational costs for the optimization scale linearly
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Figure 2.12: vegas as a mapping � ↦ � for a one-dimensional multimodal target.
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(a) The target density.
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(b) The vegas grid.
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(c) The vegas density.

Figure 2.13: Two-dimensional example for vegas.

with the number of dimensions. It is, however, also a big restriction with regard to flexibility.
Inevitably, vegas struggles to adapt to distributions that are not factorizable. An example can
be seen in fig. 2.13. The target, shown in fig. 2.13a, has been chosen to be a two-dimensional
mixture of two Gaussians with peaks at �1 = (1/3, 1/3) and �2 = (2/3, 2/3). An optimized
vegas grid is shown in fig. 2.13b and the corresponding density is shown in fig. 2.13c as
a two-dimensional histogram. The density features two additional peaks, at (2/3, 1/3) and(1/3, 2/3), which have no counterpart in the target. This is because the factorized ansatz only
allows vegas to adapt to the marginal distributions. As a consequence, there are performance
losses for unsuitable targets. In the example shown here, the problem can be solved by rotating
the target function such that the peaks are aligned with one of the coordinate axes. When
this is not possible, a multichannel approach, as discussed in section 2.3.3, can help. Both
approaches require detailed knowledge about the target function.

Phase space cuts

Especially for unweighted event generation (cf. section 2.3.4), where large weights lead to low
efficiencies, the behaviour of vegas in the presence of phase space cuts can be crucial. The
following examples are used to analyse this behaviour. First, a quite trivial one-dimensional
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function defined over [0, 1] is considered, whose PDF is constant except for the range � < 0.3,
for which it is zero. The function has been plotted in fig. 2.14a. A vegas grid has been adapted
to the target density using 10 iterations with 1000 function evaluations each. The grid has 500
bins. In fig. 2.14b the resulting vegas density is shown next to the target density in a region
around the cut at � = 0.3. It can be seen that the boundary of the leftmost bin is not aligned
with the cut edge. The explanation for this is simple: vegas starts from a uniform grid. In
the first iteration, the bin boundaries are adapted based on a uniformly distributed sample of
points. Since there are no non-zero points below � = 0.3, the leftmost bin is stretched up to
the smallest point above the cut. In the subsequent iterations the boundary can move closer to
the cut if a point between the boundary and the cut is sampled. However, this rarely happens
because the corresponding bin is very wide. Even with more training data or more bins a gap
between the bin boundary and the cut would remain. While the vegas density would still be
well suited for integration, the large weights for points just above the cut would pose a problem
for unweighting. In this example, the weights reach values of 215 next to the cut while they
are close to one in the remaining phase space.
The one-dimensional problem allows for several ways out which can also be applied to

the situation where a multidimensional target features a cut that is aligned with one of the
coordinate axes. If the cut is known in the sampling coordinates, the sampling space can
simply be reduced to the uncut region. Otherwise, one could change the algorithm to align the
boundaries of empty bins with the points closest to the cut for which �(�) = 0 instead of the
non-zero ones. This way, the cut edge would be contained in a non-empty bin, alleviating the
undersampling next to the cut. Another solution would be to use a more inclusive cut during
the adaptation of the vegas grid and to use the desired value of the cut only afterwards. This
would allow vegas to properly adapt to the target values next to the cut. The requirement is
that the target function can be evaluated and is not singular for the more inclusive cut.
To determine the consequences of a cut that is not aligned with the coordinate axes we

consider the two-dimensional example shown in fig. 2.15a. The target density is constant
except for the region �+ � < 0.3, where it is zero. A vegas grid is adapted to it using the same
parameters as above. In fig. 2.15b the resulting density is shown. It can be seen that where� > 0.3 and � > 0.3 vegas reproduces the target well. However, since it only adapts to the
marginal distributions, it fails to converge to the target in the remaining phase space. From� = 0.3 to � = 0 and from � = 0.3 to � = 0 the density falls off approximately linearly.
A close-up view of the region 0 < � < 0.08, 0.23 < � < 0.31 is shown in fig. 2.16. The

individual bins of the vegas grid can be clearly distinguished. The location of the cut is
indicated, and it can be seen how it cuts the rectangular bins at an angle. Obviously the bin
boundaries are not aligned with the edge of the cut, and it can be concluded that the density
close to the cut is not a good approximation of the target. More quantitative statements are
facilitated by the illustration in fig. 2.17. Here we consider the two line segments � + � = 0.3
and � + � = 0.9 in the region −0.3 < � − � < 0.3. For the case � + � = 0.9, far away from the
cut, the vegas density is a good approximation of the target density, fluctuating around it with
a slight offset. However, for the case � + � = 0.3, at the very edge of the cut, vegas severely
underestimates the density. The lowest density is given by �vegas = 0.84 leading to a maximum
weight of �max = 1.25. Admittedly, this is less dramatic than in the one-dimensional example.
The essential insight, though, is that the maximum weight is found next to the cut boundary.
Its value is highly specific to the problem at hand since it depends on the shape of the target
function, its dimensionality and the definition of the cut.
If, like in the last example, the cut is not aligned with the coordinate axes, there is no simple

cure to the undersampling problem. In some cases, it may be possible to change to another
coordinate system, where the cut is aligned with one of the axes. Alternatively, one can try to
substitute, for the time the vegas grid is adapted, the target value in the cut region using some
kind of inter- or extrapolation. In our examples, vegas would be perfectly able to learn the
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Figure 2.14: One-dimensional example for vegas encountering a phase space cut.

target densities if we would assume a constant value in the cut region. In many cases, however,
no countermeasures will be taken for the sake of simplicity. Nevertheless, it makes sense to be
aware of these characteristics.

2.3.3 Multichannel sampling
It is difficult to find proposal distributions that are well-suited for multimodal target functions,
i.e. functions with multiple peaks. The difficult part is not to come up with a multimodal
proposal, but to find one that we know how to produce samples from efficiently. In differential
cross-sections we often find multiple peaks scattered over phase space due to e.g. intermediate
resonances or quantum interference effects. While the overall distribution is complicated,
we have rather good knowledge about individual terms. For example, resonances can be
described by a Breit-Wigner distribution. A common trick in these situations is therefore to
use a multichannel, or mixture, density with �� channels,

�(�) = ��∑�=1�� ��(�) , (2.33)

where the mixture weights, �� ≥ 0, sum to one:

��∑�=1�� = 1 . (2.34)

The channels, ��(�), are densities which we can sample easily, e.g. using inverse transform
sampling (cf. section 2.3.4). Due to the normalization of the mixture weights, the multichannel
distribution is a PDF. Provided the individual channels are chosen wisely, it is easy to sample
the multichannel distribution: One chooses one of the channels at random, according to
their mixture weights, and samples that channel. The mixture weights can be set manually
or adapted automatically. A common strategy in HEP is to adapt the weights based on their
influence on the variance of the integral [224]. Many other optimization algorithms, readily
available in modern ML libraries, can be used as well. If a multichannel density is used for
importance sampling, one should note that, according to eq. (2.33), for each point every single
channel has to be evaluated. Therefore, it can be problematic if the number of channels
becomes too large. It can be beneficial to monitor the contribution to the integral of each
channel and deactivate the least important ones by setting their weight to zero.
A fruitful interaction results from the combination of a multichannel density with mappings
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Figure 2.15: Two-dimensional example for vegas encountering a phase space cut that is not
aligned with the coordinate axes. The �-axis is shown in the horizontal direction and the�-axis is shown in the vertical direction. The colourbars below the plots indicate the values
of the densities, with blue corresponding to low values and yellow corresponding to high
values.
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Figure 2.16: A close-up view of the vegas
density around the edge of the cut. The
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Figure 2.17:The vegas density along the di-
agonal slices�+� = 0.3 and�+� = 0.9 for−0.3 < � − � < 0.3. Due to vegas’ grid,
the density is piecewise constant. The tar-
get density is shown as a reference.

based on Vegas. As seen in section 2.3.2, the vegas algorithm can be used to automatically
construct a sampling distribution for a given target. This works well as long as the target
function is factorizable, i.e. there are no correlations between the dimensions. The factoriz-
ability depends on the coordinate system, hence a coordinate transform can help vegas to
properly adapt to a target. However, as noted in ref. [225], there are functions that can not be
factorized in a single coordinate system. In these cases, themultichannel technique provides an
attractive solution: One identifies parts of the target function that are factorizable individually
and constructs a channel in a suitable coordinate system for each of these. To further optimize
the multichannel density, one can use vegas as a mapping for each channel, as described in
section 2.3.2. By doing this, vegas only has to deal with factorized functions, while it is still
possible to encode prior knowledge in the channel mappings. Under this approach, the MC
integral estimate becomes

�� = ��∑�=1�� ⟨� ∘ ��� ∘ �� ⟩�� , (2.35)

where the average is evaluated for points sampled from the channel distribution ��, and where��∶ Ω → Ω is the vegas map associated with the channel �. Put into words, eq. (2.35) means
that for each sampled point we choose a channel at random, according to the weights ��, and
draw a uniform random number, ��. Using the channel’s vegas map, we map �� to a point�� ∈ Ω. This point is the input for the channel ��, which maps it to another point, ��. Finally,
we evaluate the weight �� = �(��)/�(��).
If the target function features phase space cuts, e.g. due to regularized singularities, it is

possible to include knowledge about the cuts in the channels of the sampling distribution.
This can increase the sampling efficiency with regard to the cuts, i.e. fewer points have to
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be rejected because of cut constraints. A complication arises from the fact that the cuts are
typically defined in coordinates that are motivated by physics, like transverse momentum or
rapidity, and not in the ones that are used for sampling. To be considerate of the cuts in the
channel definitions, they have to be translated to the respective coordinate system, which is not
always possible in a factorized way. Therefore, it is often not possible to fully respect the cuts
within the channel definitions. In addition, non-factorizable cuts can generally be problematic
for vegas, cf. section 2.3.2.
For complicated scattering processes there can be numerous subprocesses contributing.

This implies many channels in the multichannel density, which can be prohibitive since we
need to generate a number of events from each channel in order to have training data to
adapt to. To reduce the number of channels, one can use permutation invariance or group
together subprocesses with similar kinematics. However, the latter can also lead to significant
performance losses if not chosen carefully and is therefore a delicate balancing act.

2.3.4 Non-uniform random variables

We have seen above that our problems can require non-uniformly distributed random variables,
for example if we want to apply importance sampling. However, we have not yet discussed
how to generate these. Since uniform (pseudo-) random numbers are always easily available,
the standard method is to use a mapping to transform these into non-uniform ones. Such a
mapping can be found by inverting the CDF of the desired distribution. This can be a difficult
task, but for many typical distributions the solutions are known and often implemented in
standard software libraries. While the inverse transform method can be regarded as the gold
standard, rejection sampling provides an alternative that can always be used, regardless of the
desired distribution. However, it is inefficient because it is based on discarding points that have
already been generated. Often, many trial points have to be generated for a single accepted
point. Below, both methods are introduced.

Inverse transform sampling

To see how the inverse transform method works, let us consider a continuous real-valued
random variable X with CDF

�(�) = Pr(X ≤ �) = ∫�
−∞ �(�) d� , (2.36)

where �(�) is the PDF. The CDF �(�) is a monotone and continuous function, and has an inverse�−1, the quantile function. If we now generate a uniform random variable U and map it toX = �−1(U), we get the cumulated probability
Pr(X ≤ �) = Pr(�−1(U) ≤ �) = Pr(�(�−1(U)) ≤ �(�)) = Pr(U ≤ �(�)) = �(�) . (2.37)

Therefore, X has the desired distribution.
As an example, consider the Cauchy distribution, whose PDF is given by�(�) = 1��[1 + (�−�0� )2] , (2.38)

where �0 specifies the location of the peak and � is a scale parameter. By integrating, the CDF�(�) = 1� arctan(� − �0� ) + 12 (2.39)
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can be found. Its inverse is�−1(�) = �0 + � tan[�(� − 12)] . (2.40)

Therefore, taking X = �0 + � tan[�(U − 0.5)] for a uniform U generates Cauchy random
variables.
The Cauchy distribution is handy for HEP applications because it is related to the relativistic

Breit-Wigner distribution, which can be used to model intermediate resonances. It is defined
as �(�) = �(� − �2)2 +�2Γ2 , (2.41)

where � is the centre-of-mass energy squared, and� and Γ are the mass and the width of the
resonance, respectively. The constant � ensures proper normalization. By substituting the
corresponding parameters, eq. (2.40) can also be used to generate the Breit-Wigner distribution.
Sometimes wewant to generate only part of a distribution, restricted to an interval � < X ≤ �.

For example, we may be interested only in the region around its peak. This can be achieved by
truncating the distribution. The truncated PDF is given by

�(�|� < X ≤ �) = { �(�)�(�) − �(�) if � < � ≤ �,0 else,
(2.42)

and is a density itself. For the CDF, the simple relation is

�(�|� < X ≤ �) = �(�) − �(�)�(�) − �(�) . (2.43)

That means the inverse transform method can be easily adapted for truncated distributions.
We can use the inverse CDF of the distribution before truncation, but transform the uniform
random variable before putting it into the mapping. The transformation simply shifts and
scales the variable according toU ↦ (�(�) − �(�))U + �(�) . (2.44)

Rejection sampling

The rejection sampling algorithm is simple. Consider the situation shown in fig. 2.18, where a
target function �(�) and a proposal density �(�) are given. It is necessary to find a scaling factor� that ensures that � × �(�) ≥ �(�), i.e. the scaled proposal lies above the target everywhere. If
the maximum of the ratio between �(�) and �(�) is known, this can be achieved by taking

� = max(�(�)�(�) ) = �max , (2.45)

that is the maximum weight of all possible events. For a weighted trial event �trial, we define
the acceptance probability

�accept(�trial) = �trial� = 1� �(�trial)�(�trial) ≤ 1 . (2.46)

To decide whether a trial event is accepted as an unweighted event, a uniform random number,�, is drawn between 0 and 1. If � < �accept, the event gets accepted, otherwise it gets rejected.
From eq. (2.46) it is clear that events with large weights have a higher probability of being
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Figure 2.18: Rejection sampling applied to a one-dimensional target function.

accepted than events with small weights. In the end, all accepted events form an unweighted
event sample, where all events contribute equally. The underlying distribution is equal to the
target distribution.

Rejection sampling can lead to many events getting rejected and their information being
lost. Nevertheless, the rejected events have to be generated and consume computational
resources. This is exactly the problem highlighted by fig. 1.5 in the introduction, where for
high-multiplicity processes many generated events have to be rejected. As a measure for the
effectiveness of unweighted event generation, we define the unweighting efficiency as the
average acceptance probability,

� = ⟨�accept⟩ = ⟨�⟩� . (2.47)

It tells us the average ratio between the number of accepted events and the number of trial
events. Note that this definition is not robust, especially for small event samples. If phase space
regions with large weights, and hence small acceptance probabilities, have not been probed,
adding more events can decrease the unweighting efficiency dramatically. However, similar
arguments apply to other statistical estimates, like cross-section integrals and variances. As
the number of events increases, the unweighting efficiency becomes increasingly reliable. In
many cases, it is certainly useful as a performance indicator and to compare the efficiency for
different scattering processes or sampling algorithms. A more robust efficiency estimator can
be defined for partial unweighting, discussed in section 4.1.

Typically, variance reduction techniques, e.g. importance sampling, imply an increase of the
unweighting efficiency. This is clear, since reducing the variance of the event weights should
often bring the mean closer to the maximum. However, the two goals, variance reduction and
increasing the unweighting efficiency, do not align. In general, a reduction of the variance is
easier to achieve than an increase of the unweighting efficiency, since the latter is sensitive to
individual large-weight events. An example that aims at directly increasing the unweighting
efficiency is foam [33], an adaptive algorithm that provides an alternative to vegas. However,
foam has a less favourable scaling behaviour than vegas, which hinders its application to
high-dimensional problems.
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2.3.5 Rejection sampling for unweighted event generation
If an event sample is to be processed by a more time-consuming calculation (on a per-event
basis), e.g. a detector simulation, it can be beneficial to unweight the events. That means
to apply rejection sampling in order to generate a unit-weight sample. In this process, part
of the events (and often the vast majority) is discarded. As a consequence, there is a loss of
information which can be quantified in a reduction of the effective sample size given by

�eff = (∑��=1��)2∑��=1�2� . (2.48)

To see why it can still pay off to generate unweighted events, a back-of-the-envelope calculation
is helpful. Let us assume that generating one weighted event takes �weighted = 10−3 s and
the unweighting efficiency is � = 10−3, such that generating one unweighted event takes�unweighted = 1 s on average. Suppose that � = 1Mweighted events have been generated and
the effective sample size of the weighted sample is �eff = 500k. After unweighting, the sample
size and the effective sample size would be �unweighted = 1k. Let the detector simulation take�detector = 100 s per event. The full simulation of one effective event using weighted events
would then take�full, weighted = (�weighted + �detector) ⋅ ��eff= (10−3 s + 100 s) ⋅ 1 × 1065 × 103= 200.002 s . (2.49)

Using unweighted events it would take�full, unweighted = �unweighted + �detector= 1 s + 100 s= 101 s , (2.50)

which is almost twice as fast. Regardless of how realistic these figures are, it is clear that the use
of unweighted events in appropriate situations can save a lot of resources. In addition, there
are other advantages, such as lower memory requirements and easier downstream processing
when weights do not have to be taken into account. The latter can even be a major argument
in experimental analyses, since unweighted simulated events can be treated in the same way
as events reconstructed from measured data.
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In this chapter, two new methods for efficient PS sampling are presented. The first is the use of
normalizing flows (NFs) as expressive, trainable mappings. Basically, the idea is to use them as
a replacement for vegas in existing multichannel samplers, whereby some of the limitations
of vegas can be avoided. As a preparation, section 3.1 begins with an introduction to neural
networks (NNs) in general and NFs in particular. Afterwards, ref. [9] is reprinted in its original
form. In this publication, the idea of NF-based sampling is presented, and its performance is
studied on representative examples. It is followed by a discussion and the presentation of some
more recent developments.
The second new approach is the use of nested sampling. This idea is introduced in section 3.2.

After introducing the nested sampling algorithm and discussing some of its properties, the
original article, ref. [10], is presented. In the article, it is shown how to apply the nested
sampling algorithm to the sampling and integration of partonic scattering cross-sections. This
idea is then applied to gluon scattering processes as physics-motivated examples. A comparison
between NFs and nested sampling follows. It is also shown which possibilities there are for
combining the two techniques.

3.1 Neural Importance Sampling
We begin this section with a brief introduction to artificial NNs in section 3.1.1. Subsequently,
in section 3.1.2, it is shown how to construct NFs and use them as a generative model. In
addition, their properties are discussed and some variants are presented. This provides the
basis for section 3.1.3, where an article is presented that applies NFs to PS sampling in HEP. The
article is followed by a discussion in section 3.1.4. In section 3.1.5, an interesting observation
regarding the combination of NFs and phase space cuts is illustrated. Finally, somemore recent
developments are discussed in section 3.1.6. These include the idea of local multichannel
weights that can be learned by a NN, and mixtures of NFs.

3.1.1 Artificial neural networks
Before explaining the structure of an NN, let us begin with its building block, the artificial
neuron. An artificial neuron has � inputs and one output. The neuron takes a linear combina-
tion of the inputs, with weights ��, and adds a bias �. Finally, a non-linear activation function� is applied to the sum. The output of the neuron is therefore given by

�( �∑�=1���� + �) . (3.1)

A visualization of an artificial neuron is shown in fig. 3.1. The power of NNs comes from
combining many of these neurons in an interconnected network, which can be done in many
ways. The most popular structure is the fully-connected feedforward NN, or multilayer per-
ceptron. This structure is shown in fig. 3.2. The neurons are arranged in layers, and each
neuron in a layer gets inputs from all the neurons in the previous layer. There are one input
layer, one output layer, and a number of hidden layers. The number of neurons for the input
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Figure 3.1: An artificial neuron.

hidden layersinput layer output layer

Figure 3.2: A feedforward neural network.

and output layers is defined by the application, while the hidden layers can be of arbitrary size.
The information flows from the input layer through the hidden layers to the output layer.
There are many different choices for activation functions and the different layers in an NN

need not use the same activation functions. Popular choices are the sigmoid function,�(�) = 11 + �−� , (3.2)

the hyperbolic tangent

tanh(�) = �� − �−��� + �−� , (3.3)

and the rectified linear unit (ReLU),

ReLU(�) = {� if � > 0,0 otherwise .
(3.4)

Although it is not differentiable at � = 0, the ReLU activation function has proven to be
particularly useful in many applications, allowing fast and effective training [226].
To apply an NN to a problem, one chooses a loss function that quantifies the quality of the

output of the network with respect to some given input. After initializing the weights and
biases, the NN can be trained by adjusting their values in a way that optimizes the loss function
for some training data. This can be done via stochastic gradient descent, using backpropagation
for an efficient determination of the gradients. A popular optimization algorithm for this task
is Adam [227]. Such a training procedure allows NNs to efficiently approximate continuous
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functions in a flexible way.

3.1.2 Normalizing flows

NNs are undoubtedly expressive and flexible tools, and can be used to approximate almost
arbitrary functions. It is in principle also possible to directly use them as generative models.
We can train an NN to learn a transformation from a simple base distribution, e.g. a Gaussian,
to a more complex distribution. The model can then be sampled by generating points from the
base distribution and transforming them with the NN. For the points generated in this way, we
can even calculate the probability by backpropagating through the network. However, there
are two major problems with this approach. First, a generic NN is not invertible and therefore
the density function is not tractable for arbitrary points from the feature space. This prohibits,
among other things, the use in mixture models (i.e. multichannel densities). Second, it is not
guaranteed that the model covers the full support of the distribution we want to model, since
the NN is not necessarily surjective. This is hard to excuse in phase space sampling, where the
part not covered may contain the interesting feature.
An alternative approach that seemsmore suited to our needs is provided by normalizing flows.

Put simply, NFs are generative models based on NNs, where some expressivity is sacrificed in
order to obtain some useful guarantees for modelling probability densities. We can think of
NFs as a sequence of invertible and differentiable mappings that realize a transformation from
a simple distribution to a more complex one. In this regard, they share many similarities with
vegas and the two can be used interchangeably or in combination, taking into account their
respective advantages and disadvantages.
Before moving on to more specific properties and applications, the basics of normalizing

flows shall be laid out here. The presentation is partly based on ref. [228]. Let � ∈ ℝ� be a
random vector sampled from a base distribution ��(�):� ∼ ��(�) . (3.5)

Note that, despite its name, � is not necessarily a uniform variable. In principle, ��(�) can
be any PDF, but due to their simplicity, the most common choices are uniform and Gaussian
distributions. We now construct a transformation � that maps � to another real random vector�: � = �(�) . (3.6)

Let us assume that� is a diffeomorphism, i.e. it is bijective and both� and�−1 are differentiable.
Then we can define the density of � by the change of variables formula:��(�) = ��(�) |det ��(�)|−1 , where � = �−1(�) . (3.7)

The Jacobian, ��(�), quantifies the change of volume due to the transformation �. Since � is
invertible, it is equivalent to consider the inverse direction and write��(�) = ��(�−1(�)) |det ��−1(�)|−1 . (3.8)

This allows us to change between the two distributions at will. In the forward, or generative,
direction we can move samples from a simple base distribution to a more complex one. In the
inverse, or normalizing, direction we can ‘normalize’ samples from a complicated distribution
by mapping them to the base distribution. The transformation � can be thought of as warping
the input space, as is exemplified in fig. 3.3 for a rectangular grid on a square.
A useful property of diffeomorphisms is that they can be composed. If �1 and �2 are dif-

feomorphisms, their composition �2 ∘ �1 is also a diffeomorphism. Its inverse is given by
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Figure 3.3: Illustration of a diffeomorphism from a square to a square. It is shown how a
rectangular grid gets distorted under the diffeomorphism. Figure taken from [229]cp.

(�2 ∘ �1)−1 = �−11 ∘ �−12 , (3.9)

and the chain rule implies that the Jacobian determinant is given by

det ��2∘�1(�) = det ��2(�1(�)) det ��1(�) . (3.10)

This is used in the construction of NFs, where multiple simpler transformations are chained
together to define one complex transformation � = �� ∘ ⋯ ∘ �1. In this way, highly expressive
transformations can be composed by stacking much simpler building blocks. All computations
can be done on the individual blocks ��, and the transformation properties of the composition
can be found by eqs. (3.9) and (3.10). In the simplest case, all �� have the same structure.
The efficiency of NFs depends on the definition of the transformations ��. Increasing the

number of blocks the flow is composed of only comes with a cost of �(�). Themost demanding
part of the calculation comes from the Jacobian determinant. For an arbitrary matrix, using
lower-upper decomposition, the computational costs for calculating the determinant grow as
the cube of the number of dimensions. For practical applications, it is therefore desirable to
find transformations for which the Jacobian has a simpler structure, such that its determinant
can be efficiently evaluated. Here we consider coupling layers [38] as one possible solution.
Another popular choice is given by masked autoregressive flows [48, 49]. For coupling layers,
evaluation and inversion are equally fast, while for masked autoregressive flows one of them is
always slower by a factor depending on the number of dimensions.
To consider individual coupling layers ��, let us introduce another variable ��, defined as�� = ��(��−1) , (3.11)

with �0 = � and �� = �. A coupling layer splits its input ��−1 into two parts and transforms
only the second part elementwise using a function that depends on the first part, while the
other part is not transformed at all. This can be denoted as follows: The input is split into two
partitions � and � that do not need to be in sequence or even of the same size:��−1 = (���−1, ���−1) . (3.12)

The transformation of the coupling layer is then given by��� = ���−1 , (3.13)��� = ��(���−1; ��(���−1)) , (3.14)
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where �� is called the coupling transform and �� is an arbitrary function. The coupling
transform is applied elementwise and needs to be invertible. It can be followed from eqs. (3.13)
and (3.14) that the Jacobian of the transformation is lower triangular, with an identity block
from the derivative of eq. (3.13). The determinant therefore depends only on the derivative of
eq. (3.14):

det( ������−1) = ��∏�=1 ���(���−1; ��(���−1))�(���−1)� , (3.15)

where �� is the number of elements in �. This implies that the computational costs scale
linearly. Furthermore, we see that the Jacobian determinant does not involve derivatives of
the function��. It is therefore obvious to represent it by an NN. Except for the training, we do
not have to calculate its gradient. Its bijectivity renders the training of an NF very convenient,
e.g. via maximum likelihood. Depending on what is considered suitable for the application,
we can use samples from the target distribution as training data and evaluate the density of the
NF, or we use samples from the base distribution and transform them with the NF, which then
requires us to evaluate the target function.
Obviously, a single coupling layer is not very expressive, as it transforms only some compon-

ents of its input. To obtain a useful transformation, several coupling layers have to be chained
in a way, such that every component has the chance to influence the transformation of every
other component in order to capture all correlations. This can be achieved by permuting the
components between the coupling layers. In consequence, the attribution of the components
to the parts � and � changes. It can be shown that the number of coupling layers required is

{2⌈log2 �⌉ for � > 5, and� for � <= 5 , (3.16)

where � denotes the number of dimensions [230].
There are various implementations of coupling layers that differ in complexity and expressiv-

ity. The simplest choices are affine functions [38, 231]. More flexible coupling layers can be
constructed with monotonic splines in the form of quadratic splines [232], cubic splines [233],
linear-rational splines [234], and rational-quadratic splines [51].
As an example, we come back to the two-dimensional density of section 2.3.2, where it is

demonstrated that vegas has difficulties adapting to non-factorizable target functions. The
example density is shown again in fig. 3.4a. An NF has been trained to find a transformation
from a uniform distribution to the target density of the example. The flow features two
coupling layers based on rational-quadratic splines, with 16 spline knots in each layer. The
splines are parameterized by NNs, but the network architecture is not important here. The
Adam optimizer has been used to train the flow for 500 epochs using batches of size 50000.
In fig. 3.4b, the resulting density is shown. Clearly, the NF has been able to learn this simple
distribution very well, even though it has two separated peaks that are not present in the base
distribution. In contrast to vegas (cf. fig. 2.13c), the NF got the correlation right and produced
no phantom peaks.
For an interesting deeper insight, the splines of the coupling layers are shown in fig. 3.5. On

the left side of the figure, the transformation �0 ↦ �0 is shown, which happens in the first
coupling layer. For comparison, the marginal distribution of the target is shown as a shade
in the background. It can be seen how the splines transform the input variable depending on
the value of the untransformed variable, ��� = �1. This dependence is what makes NFs so
flexible. For vegas, on the other hand, we would see only a single curve here, like for the
one-dimensional example shown in fig. 2.12. The shape of the spline in the coupling layer,
by contrast, can vary greatly depending on the untransformed variable. We see that the NN
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1
(a) The target density.

1
(b) The NF density.

Figure 3.4: Two-dimensional example for density estimation with an NF.

learned to separate the peaks in this way. For �1 < 0.5, probability mass is moved towards
the peak at �0 = 1/3, while for �1 > 0.5 it is moved towards the other peak at �0 = 2/3. In
between, for �1 = 0.5, the marginal distribution is more or less reproduced. On the right side
of the figure, the transformation �1 ↦ �1 is shown, which happens in the second coupling
layer. Interestingly, the splines look quite different. They are much closer together and for all
values of the untransformed variable there are approximately equal contributions to both peaks.
The reason for this striking difference is that in the second coupling layer the untransformed
variable is ��� = �0, which is not uniform. By separating the peaks in the first coupling
transform, much of the correlation in the target distribution has been accomplished already.
Therefore, the dependence on the untransformed variable is less pronounced in the second
coupling transform. The symmetry of the target grants the model a certain freedom. In this
case, the splines cross at a point in the centre of the peak at �1 = 2/3, while they run alongside
each other at the other peak around �1 = 1/3. This could look different if the training was
repeated with new data or a different initialization of the NNs.

3.1.3 Publication: Exploring phase space with Neural Importance Sampling

In this section, the article ‘Exploring phase space with Neural Importance Sampling’ is presen-
ted. It is the first application of NFs to phase space sampling in HEP. A similar study, ref. [47],
discussed in section 3.1.4, appeared shortly after. The idea for this article was motivated by
ref. [232], in which the authors use NFs for sampling in light-transport simulation and intro-
duce the piecewise quadratic coupling layers. A lot of similarities between their application
and the ones considered in this thesis can be identified, e.g. the usage of random inputs from a
hypercube and multichannel mappings. Therefore, the proposed method seems well suited to
be transferred to the sampling of cross-sections.
Within the article, the work is embedded in the context of the literature current at the time

of publication. Limitations of existing approaches are pointed out and the advantages of the
proposed method are explained. The performance is studied for top quark decays, leptonic
top quark pair production and gluon scattering to multi-gluon final states. It is shown that
significant gains can be achieved. Finally, problems with scalability are discussed and possible
further developments are suggested.
The article was first published as a preprint on arXiv in January 2020. Subsequently it

was submitted to the journal SciPost Physics. After the referees’ comments were addressed, it
was finally published in April 2020. The version published in the journal is reprinted below.
Copyright and license notices as well as a link to the material are provided on the first page of
the article.
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Figure 3.5: The one-dimensional coupling transforms of the NF for the two-dimensional
example. Left: first coupling transform, �0 ↦ �0. The untransformed variable is �1. Right:
second coupling transform, �1 ↦ �1. The untransformed variable is �0, which is the
output of the first coupling transform. The legend at the bottom shows the value of the
untransformed variable, ��� . In the backgrounds of the plots, the marginal distributions of
the target are shown as a greyscale gradient, with black corresponding to low values and
white corresponding to high values.
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not involving NNs were generated by me. While the top quark examples were standalone
and implemented by Max Knobbe, I implemented the interface to use matrix elements from
Sherpa in python for the gluon scattering examples. Furthermore, I implemented the
haag phase space mapping used therein, provided the rivet analyses, and contributed to
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1 Introduction

An important deliverable in high-energy particle physics are quantitative predictions for the

outcome of collider experiments. This includes total and differential production rates in the

framework of the Standard Model or hypothetical New Physics scenarios. To allow for a di-

rect comparison with experimental data, multi-purpose event generators such as PYTHIA [1],

HERWIG [2] or SHERPA [3, 4] proved to be vital tools. Starting from the evaluation of partonic

hard-scattering cross sections they accomplish a fully differential and exclusive simulation of

individual scattering events by invoking parton shower simulations, particle decays, models

for the parton-to-hadron transition and, in case of composite colliding entities such as protons,

multiple interactions per collision. See [5] for a recent review of Monte Carlo event generators.

In contemporary Standard Model analyses as well as searches for New Physics, hard-

scattering processes featuring a rather high multiplicity of final-state particles are of enor-

mous phenomenological relevance. This includes in particular signatures with multiple hard

jets or a number of intermediate resonances that decay further on. Illustrative examples are

the production of V+ jets final states or top-quark pair production in association with a boson

V = γ, H, Z0, W± in proton-proton collisions at the LHC. Such cutting-edge channels require

the efficient evaluation of the corresponding partonic scattering matrix elements, featuring up

to 8 final-state particles, with easily thousands of Feynman diagrams contributing. This clearly

goes well beyond the traditional realm of multi-purpose generators, such that specialised tools

for this computationally very intense task have emerged over time, known as matrix element

generators or parton-level event generators. These tools largely automate the generation and

evaluation of almost arbitrary scattering matrix elements. At tree-level this includes tools such

as AMEGIC [6], COMIX [7], MADGRAPH [8, 9] or WHIZARD [10]. For one-loop matrix elements

widely-used examples are MADGRAPH5_AMC@NLO [9], OPENLOOPS [11], POWHEGBOX [12] or

RECOLA [13, 14]. Equipped with a phase space generator these tools can be used to compile

partonic cross section evaluations, to calculate decay widths and to probabilistically gener-

ate partonic events. When incorporated into or interfaced to a multi-purpose event generator

they provide the momentum-space partonic scattering events that seed the evolution to fully

exclusive particle-level final states.

State-of-the-art matrix element generators use adaptive Monte Carlo techniques for gen-

erating phase space points with a distribution that reasonably approximates the target distri-

bution, such that event weight fluctuations are reduced. Samples of unit-weight events can

then be generated with a distribution given by the actual target function by applying a simple

hit-or-miss algorithm. However, nowadays matrix element generators are often limited by the

performance of their phase space sampler. An insufficient mapping of the target distribution

results in significant fluctuations of the event weights and correspondingly a large number of

target-function evaluations are needed when generating unit-weight events.

Typically the sampling performance deteriorates significantly with the phase space dimen-

sionality, i.e. particle multiplicity [15], and the complexity of the integrand. In particular the

appearance of intermediate resonances, regularised singularities or quantum-interference ef-

fects complicate the situation. Further limitations arise from non-trivial kinematical cuts that

the integrator can not address, i.e. adapt to.

Compared to the efforts that went into the development of improved scattering-amplitude

construction algorithms, the field of phase space sampling has seen rather little conceptual

developments. For some recent works see [16–21]. Besides the matrix element generator

implementations, there are public libraries like CUBA [22] (implementing the VEGAS, DIVONNE,

SUAVE, CUHRE algorithms) or FOAM [23,24] that are widely used. There have been some efforts

to employ Markov Chain techniques for phase space sampling, cf. [25, 26]. However, very

recently there has been significant interest to employ modern machine-learning techniques
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to the problem of phase space sampling in particle physics, cf. [27–31]. The tremendous

advances in the field of machine learning, driven from very different applications such as

image generation or light-transport simulation, also fuel the work we present here.

The paper is organised as follows. In Sec. 2 we review the basics of Monte Carlo integration

and phase space sampling techniques as used in high-energy event generators, and discuss

potential pitfalls when extending or replacing these methods using neural networks. In Sec. 3

we present our novel sampler that inherits all the properties of an importance sampler, but with

the phase space mapping optimised through bijective maps, so-called coupling layers [32].

These are adjusted by training neural networks, which has originally been proposed in [32].

Our work is in principle an application of ‘Neural Importance Sampling’ [33] as we employ

the ‘polynomial coupling layers’ introduced therein, although we want to point out that the

usage of coupling layers for importance sampling has also been studied in [34]. In Sec. 4 we

discuss benchmark applications of our method from high-energy physics, including top-quark

pair production and gluon scattering into three- and four-gluon final states. Conclusions and

a brief outlook are presented in Sec. 5.

An independent study of applying Neural Importance Sampling to high-dimensional in-

tegration problems is simultaneously presented in [35], and a follow-up application of this

approach to HEP processes appeared in [36].

2 Phase space sampling: existing approaches

To set the scene we start out with a brief review of the basics of Monte Carlo integration and

event sampling. For ease of having a clean nomenclature we consider a simple positive-definite

target distribution f : Ω ⊂Rd → [0,∞) defined over the unit hypercube, i.e. Ω = [0, 1]d . In

our use case hypercube points ui ∈ Ω are mapped onto a set of final-state four-momenta {pi},
the corresponding Jacobian is considered part of the integrand f (ui). The phase space dimen-

sionality d is set by the number of final-state particles n, i.e. d = 3n−4. We thereby implement

on-shell constraints for all external particles and total four-momentum conservation. There

are two standard tasks that we wish to address in what follows, the probabilistic generation of

phase space points according to the target distribution f and the evaluation of integrals over

f .

The Monte Carlo estimate of the integral over the unit hypercube

I =

∫

Ω

f (u′)du′ (1)

is given by

I ≈ EN =
1

N

N
∑

i=1

f (ui) = 〈 f 〉 , (2)

where we assumed uniformly distributed random variables ui ∈ Ω. The corresponding stan-

dard deviation, when assuming large N , is given by

σN ( f ) =

√

√VN ( f )

N
=

√

√ 〈 f 2〉 − 〈 f 〉2
N

, (3)

with VN the corresponding variance.

Interpreting the random points ui as individual events, we call f (ui) the corresponding

event weight wi , such that the integral is estimated by the average event weight 〈w〉N . When

asked to generate N unit-weight events according to the distribution f (u), a simple hit-or-miss
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algorithm can be employed to convert a sample of weighted events into a set of unweighted

events. The corresponding unweighting efficiency is given by

εuw :=
〈w〉N
wmax

, (4)

with wmax the (numerically pre-determined) maximal event weight in the integration region.

An efficient integrator, i.e. sampler, foremost aims for a reduction of the variance VN that will

typically result in an increased unweighting efficiency εuw. Even though these two figures of

merit are interrelated, they provide complementary means for the optimisation of a sampler,

i.e. reducing the variance does not necessarily yield an improved unweighting efficiency. In

the next section we will discuss established methods that achieve a variance reduction.

We close this introductory section by specifying requirements we impose on our improved

cross section integration and parton-level event generation algorithm:

(i) The samples produced by the algorithm should converge to the true target distribution

everywhere in phase space.1

(ii) We demand that the full physical phase space is to be covered for the limit N →∞. This

should be guaranteed, even if potential training samples only feature finite statistics and

thus provide no full coverage of the available phase space volume.

(iii) The method should be general, lending itself to automation. By that we wish the algo-

rithm to be self-adaptive to new integrands, without the need of manual intervention.

(iv) The method should be capable of producing samples of uncorrelated events.2

As discussed in the following, these conditions are naturally fulfilled by traditional sam-

pling algorithms used in high-energy physics, such as importance and stratified sampling.

However, this is not necessarily true for some of the recently proposed samplers based on

neural networks as discussed in Sec. 2.3. In Sec. 3 we will present our novel algorithm em-

ploying neural-network techniques, that indeed fulfils all the above criteria.

2.1 Importance Sampling

As can be seen from Eq. (3) the standard deviation of a Monte Carlo integral estimate scales as

1/
p

N , independent of the dimensionality of the problem. However, besides the sample size,

the variance of the integrand over the integration region determines the quality of the integral

estimate and in turn the unweighting efficiency εuw. In particular for strongly structured,

possibly multi-modal target distributions it is therefore vital to introduce specific variance-

reduction techniques to obtain more accurate integral estimates for a given sample size.

To this end a suitable variable transformation can be utilised, i.e. producing phase space

points with a positive definite non-uniform distribution function G(u) : Ω 7→ Ω, such that

I =

∫

Ω

f (u′)

g(u′)
g(u′)du′ =

∫

Ω

f (u′)

g(u′)
dG(u′) =

�

f

g

�

, (5)

with g(u) : Ω 7→ R. The relevant variance is thus V ( f /g). Hence it can be significantly

reduced by picking g(u) similar in shape to f (u). Obviously, the optimal choice would be

G(u) =

∫

Ω

f (u′)du′ , i.e. g(u) = f (u) . (6)

1On the same basis, in [37] it has been cautioned against the usage of Generative Adversarial Networks to

extrapolate from finite-statistics training data to large-scale event samples for physics analyses.
2This limits the use of algorithms based on Markov Chain samplers, cf. [26].
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However, this presupposes the solution of the actual integration problem.

We often have to deal with multimodal targets. In that case it can be very hard to find

a density that allows for efficient importance sampling. To simplify the task, we can use a

mixture distribution

g(x) =

Nc
∑

j=1

α j g j(x) , (7)

where the g j are distributions and
∑Nc

j=1
α j = 1. Using a mixture distribution for importance

sampling is known as multi-channel importance sampling. The corresponding integral estimate

is given by

I ≈ EN =
1

N

N
∑

i=1

f (x i)

g(x i)
=

1

N

N
∑

i=1

f (x i)
∑Nc

j=1
α j g j(x i)

, (8)

where the x i are non-uniform random numbers drawn from g(x).

It is easy to sample from the multi-channel distribution: for each point one channel is

chosen at random according to the α j and then sampled from using the inverse-transform

method. It is possible to approximate a multimodal target function by using one channel per

peak. The channel weights α j can be optimised automatically [38].

The performance of the multi-channel method is intimately connected with the choice of

channels. In practice, information about the physics problem at hand is used to choose a

suitable distribution g. When integrating squared transition matrix elements in high-energy

physics, the propagator and spin structures of a given process are known and this knowledge

can be used to construct appropriate channels [39], a procedure that is fully automated in

matrix-element generators.

2.2 VEGAS algorithm

It can be very time consuming to find a sampling distribution that results in an efficient sam-

pler for a given target. Because of this, adaptive importance sampling algorithms have been

developed. These are able to adapt automatically to a target distribution. In the following we

describe the VEGAS algorithm [40]. It uses a product density

q(x) =

d
∏

j=1

q j(x j) , (9)

where each q j is a piecewise-constant function. The idea is to split the range [0, 1) into N j

bins I j,l = [x j,l−1, x j,l), where we have defined the break points between the constant pieces

as 0 = x j,0 < x j,1 < · · · < x j,N j
= 1. The corresponding bin widths are ∆ j,l = x j,l − x j,l−1 for

1≤ l ≤ N j . The functions q j are then defined by

q j(x) =
1

N j∆ j,l

for x j,l−1 ≤ x ≤ x j,l . (10)

The width of the bins can vary but per component j they all have the same probability content

1/N j . This means that if we approximate a function with VEGAS we use many thin bins for

narrow peaks and few wide bins for flat regions.

Sampling and evaluating the Jacobian for the density q is straightforward. The important

part is the update of the bin widths. This happens through an iterative procedure, where

in each iteration we sample a number of points with the current q, calculate the importance

weights with respect to the target f and determine the new bin widths by minimising the

variance for this sample. More details can be found in [40].
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VEGAS is very effective for unimodal targets but has difficulties with multimodal functions

if the peaks are not aligned with the coordinate axes. The density then features ‘ghost peaks’

which are not present in the target distribution and which can decrease the efficiency signifi-

cantly.

In the simplest case, we use VEGAS to approximate a target directly in order to use the

resulting density in an importance sampling scheme. However, it can be even more effective

if we use it to remap the input variables (i.e. uniform random numbers) of another density,

e.g. a single channel of a multi-channel distribution [41]. This amounts to adding variable

transforms φ j : Ω→ Ω to Eq. (7) (corresponding to the VEGAS densities q j) as follows:

g =

Nc
∑

j=1

α j(g j ◦φ−1
j )

�

�

�

�

�

�

∂ φ−1
j

∂ u

�

�

�

�

�

�

, (11)

with densities g j : Ω→ [0,∞) and hence g : Ω→ [0,∞). As above we assume that the α j

sum to 1. To sample a point from this distribution we

1. randomly choose a channel according to the channel weights α j ,

2. generate a uniform random number u ∈ Ω,

3. use the channel-specific map φ j to map u to a non-uniform number v and

4. use the inverse transform method to transform v to a point x according to the distribution

g j .

The Monte Carlo estimate of the integral is then still given by Eq. (8) but the Jacobians
�

�

∂ φ−1
j

∂ u

�

�

of the different channels have to be taken into account.

2.3 Existing proposals for neural-network based sampling and possible pitfalls

A multi-layer feedforward fully connected artificial neural network (NN in the following) con-

sists of artificial neurons arranged in several layers which are stacked on top of each other.

Every neuron in a layer is connected to every neuron in the preceding layer. We distinguish

the input layer, the output layer and the hidden layers in between. A single artificial neuron

produces the weighted sum of its inputs and optionally adds a scalar bias. The output of the

neuron is then transformed by a non-linear activation function. This means that the output

z
[l]

i
of the i-th neuron in the l-th layer is given by

z
[l]

i
= ~w

[l]T

i
· ~a[l−1] + b

[l]

i
, (12)

where ~w
[l]

i
denotes the vector of input weights of the neuron, b

[l]

i
the respective bias and

~a[l−1] the output of the activation function of the preceding layer. After applying the activation

function σ[l] the output is given by

a
[l]

i
= σ[l]
�

z
[l]

i

�

. (13)

We assume that all hidden layers use the same activation function. The choice of output

activation function is limited by the particular application. In our case it has to be a function

that maps to the unit hypercube. The input layer does not use an activation function as it only

passes the input variables to the neurons of the first hidden layer.

Two previous studies use this kind of NN to improve phase space sampling [27, 28]. The

number of input and output neurons is there chosen equal to the number of phase space
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dimensions d. Hence the neural network gives effectively an importance sampling mapping g

in the language of Sec. 2.1. The output value of the ith output layer neuron then gives the ith

component of g(u). Both studies described in [27, 28] use output functions that map R into

(0, 1), such that g(u) ∈ (0, 1)d . As the hidden-layer activation function, either the hyperbolic

sine, the exponential linear unit (ELU) [28] or a hyperbolic tangent [27] is used. Note that

ELUs map R into (−1,∞) and tanh maps R into (−1, 1), whereas sinh maps R into itself.

The input space is Rd (sampled from a Gaussian distribution) in [27], and (0, 1)d in [28].

Both studies then set up different training procedures for the NN based on minimising the

Kullback–Leibler (KL) divergence [42] between the NN output and the real target distribution.

The details of these procedures are not important here.

What we want to point out in regards of the requirements set up in Sec. 2 is that restricting

the input space to a subspace of R with an upper and/or lower bound will in general have the

consequence that the NN map g is not guaranteed to be surjective any more. The same is true

if an activation function of the hidden layer maps onto a subspace of R with an upper and/or

lower bound, such as the ELU or the tanh function. In both cases, such finite boundaries will

be transformed several times, but in the end this will yield finite boundaries for the target-

space coordinates, such that the support of the target distribution will be a proper subspace

of the desired target space (0, 1)d . Although a sufficiently long training will guarantee that

the bulk of the target distribution will be within this subspace (the NN will adapt its weights

to extend this subspace as required), the phase space coverage might never reach 100 %. A

sample generated with such a NN will hence suffer from artificial phase space boundaries

far away from the peaks of the distribution and will thus not be distributed according to the

desired target distribution. Instead, it will be suppressed in the tails and enhanced in the peaks.

Moreover, the artificial phase space boundaries will also yield wrong integration results. The

NN structure in [28] is affected by this problem, whereas the structure in [27] is not, since it

uses surjective functions throughout and the input points are given by a Gaussian distribution

without a cut-off, such that the input space is given by Rd .

To illustrate this issue, we study a simple distribution given by a 2d Gaussian centred in

(0, 1)2, i.e. at (x , y) = (0.5, 0.5). The width of the Gaussian is set to 1/10 of the length of

the phase space edges, hence, close to the phase space boundaries the target-function values

are much smaller than around the peak. We test different combinations of activation and

input functions for a fully-connected NN architecture with 5 hidden layers and 64 nodes per

hidden layer, always with a bounded input space of (0, 1)2, as in [28]. We train the networks

using the ADAM optimiser [43] with the learning rate set to 10−2. With a training data set of

Ntrain = 500k events, this setup yields a very poor phase space coverage for the NN regardless

of the activation/output functions, namely around 25 % only:

Input space Activation function Output function Coverage (asymptote)

(0, 1)2 Sinh Sigmoid 0.235 ± 0.027

(0, 1)2 ELU Soft Clipping 0.269 ± 0.037

(0, 1)2 Sigmoid Sigmoid 0.234 ± 0.050

The coverage is estimated by the convex hull of the respective event samples, as introduced

in [44]. Note that the first two rows follow the two choices discussed in [28]. The error of the

asymptotic coverage is given by an average over 10 independently trained NN with different

random initial weights. In Fig. 1a, we show the obtained phase space coverage as a function

of the sample size N for such a NN with sigmoid activation and output functions. This is

compared to unweighted event samples generated from a uniform distribution and through

VEGAS. In addition, the phase space coverage is also shown for a NN with surjective functions

only, and with input points given by an unbounded Gaussian distribution, as in [27]. This

surjective NN is guaranteed to sample the entire phase space and indeed its coverage increases
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with the sample size N in the same way as the uniform and VEGAS samples do, whereas the

non-surjective NN shows an asymptotic behaviour in terms of the coverage. We illustrate

this with three non-surjective NN setups, which are trained using Ntrain = 250k, 1M and 5M

events, respectively. We choose these Ntrain to have similar successive ratios between them, to

illustrate that increasing the size of the training data successively leads to a diminishing return

of investment in terms of the achieved asymptotic phase space coverage.

We study the consequence of an incomplete phase space coverage in Fig. 1b. The target

distribution is averaged over bins with x+ y = const. (resulting in one-dimensional Gaussians)

and compared with the distributions averaged in the same way given by the NN (here with

Ntrain = 500k), by an unweighted uniform sample, by an unweighted VEGAS sample and by

the averaged distribution given by the strictly surjective NN. The uniform and VEGAS samples

and the one from the strictly surjective NN agree very well with the target, whereas the non-

surjective NN undershoots the tails and puts too many events in the peak. We have also studied

the distribution of phase space points in the two-dimensional plane, where we find that the

NN is mapping the input space (0, 1)2 to a slightly deformed rectangular region around the

peak, which is strictly smaller than the target space.

3 Neural-Network assisted Importance Sampling

With the requirements stated in Sec. 2 in mind, we present our NN based approach to impor-

tance sampling. In order to be usable for multi-channel sampling, our adaptive model needs to

be invertible. For this reason, we adopt the “Neural Importance Sampling” algorithm of [33].

The method of using a trainable mapping to redistribute the random numbers going into the

generation of a sample is similar to how VEGAS is often used in practice. We begin this section

by discussing this remapping of a distribution.

Consider a mapping h : X → Y, x 7→ y , where x is distributed as pX (x). If we know pX (x)

and the Jacobian determinant of h(x), we can compute the PDF of y using the change of

variable formula:

pY (y) = pX (x)

�

�

�

�

�

det

�

∂ h(x)

∂ x T

�

�

�

�

�

�

−1

. (14)

Using lower-upper decomposition, the cost of computing the determinant for arbitrary matri-

ces grows as the cube of the number of dimensions and can therefore be obstructive. However,

it is possible to design mappings for which the computation of the Jacobian determinant is

cheap.

In [32], Dinh et al. introduce coupling layers which have a triangular Jacobian. As the de-

terminant of a triangular matrix is given by the product of its diagonal terms, the computation

scales linearly with the number of dimensions only. In the following, we describe the basic

idea of coupling layers.

3.1 Coupling Layers

A coupling layer takes a d-dimensional input x ∈ Rd . It uses a partition {A, B} of the input

dimensions x i such that x = (xA, xB). The output y = (yA, yB) of the coupling layer is defined

as

yA = xA ,

yB = C(xB; m(xA)) ,
(15)
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(a) The phase space coverage for different sampling methods as a function of the number of unweighted

events N . The error bars indicate the spread over 10 statistically independent samples. For the NN,

also the training has been independently repeated, each time with a new set of randomly initialised

weights. For the non-surjective NN setup, the effect of using different number of training points Ntrain
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(b) The two-dimensional distribution of sampling points averaged over bins with x + y = const., com-

pared to the corresponding average of the target distribution.

Figure 1: The phase space coverage and the distribution averaged over diagonals of

the two-dimensional plane for different sampling techniques, with the target distri-

bution being a two-dimensional Gaussian centred in (0, 1)2. The Gaussian width is

σ = 0.1. Besides the Uniform and the VEGAS samples we also show NN-generated

samples. The NN architecture is described in the main text, it uses sigmoids as acti-

vation and output functions, and Ntrain = 500k. The input space is given by (0, 1)2.

The “surjective” NN on the other hand only uses surjective functions and the input

space is unbounded.
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where the coupling transform C is a map that is invertible and separable, where the latter

means that

C(xB; m(xA)) =
�

C1(x
B
1 ; m(xA)), . . . , C|B|(x

B
|B|; m(xA))
�T

. (16)

By |B| we denote the cardinality of the set B.

According to Eq. (15) only the subset B is transformed by the coupling layer, while the

subset A is left unchanged. Because of this, ∂ yA/∂ (xB)T = 0 and the Jacobian determinant

simplifies to

det

�

∂ y(x)

∂ x T

�

=

|B|
∏

i=1

∂ Ci(x
B; m(xA))

∂ (xB)T
. (17)

To see this, we assume that without loss of generality we split the input dimensions in two

consecutive blocks A= [1, n] and B = [n+ 1, d]. In this case, the Jacobian matrix is of block

form
∂ y(x)

∂ x T
=

�

In 0
∂ C(xB;m(xA))

∂ (xA)T
∂ C(xB;m(xA))

∂ (xB)T

�

, (18)

with the determinant given by Eq. (17). As the determinant does not involve the derivative
∂ m(xA)

∂ xA , the function m can be arbitrarily complex. Following [33], we represent m through a

NN.

A single coupling layer transforms only part of the input. To ensure that all components

can be transformed, we use a layered mapping h= hL ◦· · ·◦h2◦h1, where each hi is a coupling

layer. Between two layers, we exchange the roles of A and B. For the functions mi , we use one

NN per layer. If d > 3, we need at least 3 coupling layers if we want each input component to

be able to influence every output component.

Different choices for the coupling transform C are possible. Additive coupling layers re-

sult in a NICE model [32], while affine coupling layers result in a Real NVP model [45]. In

the following, we restrict ourselves to piecewise quadratic coupling layers, which have been

proposed in [33].

3.2 Piecewise Quadratic Coupling Layers

We assume that our variables live in a unit hypercube: x , y ∈ Ω = [0, 1]d . This allows us to

interpret each component Ci of the coupling transform as a cumulative distribution function

(CDF) in a straightforward manner. The idea is to use the output of a NN to construct un-

normalised distributions q̂i and get Ci by integration. We normalise the distributions to get

the PDF qi and model them with piecewise linear functions which have K bins and K + 1 ver-

tices (bin edges) each. The parameters of these functions can be stored in two matrices: The

|B|× (K +1) matrix V contains the height (vertical coordinate) of the functions at each vertex

and the |B| × K matrix W contains the bin widths (which are adaptive).

A NN outputs the unnormalised matrices V̂ and Ŵ . The bin widths should sum to 1, so we

normalise the rows of the matrix Ŵ using the softmax function σ and define

Wi = σ(Ŵi) . (19)

We want the piecewise linear function qi to be a PDF, and therefore normalise the rows of V̂

according to:

Vi, j =
exp(V̂i, j)

K
∑

k=1

1
2(exp(V̂i,k) + exp(V̂i,k+1))Wi,k

. (20)
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Finally, we use linear interpolation to define our PDFs as

qi(x
B
i ) = Vi,b +α(Vi,b+1 − Vi,b) , (21)

where b is the bin that contains the point xB
i

and α = (xB
i
−
∑b−1

k=1 Wi,k)/Wi,b is the relative

position within that bin. By integration we get the piecewise quadratic coupling transform:

Ci(x
B
i ) =

∫ xB
i

0

qi(t)dt =
α2

2
(Vi,b+1 − Vi,b)Wi,b +αVi,bWi,b +

b−1
∑

k=1

Vi,k + Vi,k+1

2
Wi,k . (22)

The corresponding Jacobian determinant is given by

det

�

∂ C(xB; m(xA))

∂ (xB)T

�

=

|B|
∏

i=1

qi(x
B
i ) . (23)

3.3 Importance Sampling with Coupling Layers

Having defined the coupling layers, their application for importance sampling is straightfor-

ward as they can be used in the same way VEGAS is already applied in existing event generators.

The algorithm for a single phase space map, i.e. channel, proceeds as follows.

For each event, we generate a suitable number of uniformly distributed random numbers

x ∈ Ω. These get mapped to non-uniform numbers y ∈ Ω using a layered mapping consisting

of several coupling layers, as described above. These numbers then serve as input variables

for a channel mapping that generates a point z in the target domain. The weight w associated

with an event depends on the value of the target function and the Jacobians involved, namely

the ones from the coupling layers and the channel mapping itself:

w=

�

�

�

�

�

det

�

∂ y(x)

∂ x T

�

�

�

�

�

�

�

�

�

�

�

det

�

∂ z(y)

∂ y T

�

�

�

�

�

�

f (z) . (24)

Note that we do not use the NN model to generate points in the target domain directly as

this could be highly inefficient. For example, if we wanted to generate four-momenta the NN

would have to learn four-momentum conservation and on-shell conditions exactly. Using a

channel mapping we can implement four-momentum conservation and mass shell conditions

directly, lowering the dimensionality of the problem significantly, and also map out known

peak structures that might be difficult to infer otherwise.

As for VEGAS we need a mechanism to train our model in order to actually improve the

efficiency of the sampler. For this purpose, we define a loss function which gets minimised it-

eratively using gradient descent. As a loss function we use the Pearson χ2-divergence between

the target function f and the sample distribution g in a minibatch that consists of n sampling

points:

Dχ2 =
1

n

n
∑

i=1

( f (zi)− g(zi))
2

g(zi)
, (25)

with points zi in the target domain, generated from a uniform distribution and transformed

by a channel mapping.

Minimising Dχ2 will minimise the variance of a Monte Carlo estimator, as recognised in

[33]. Empirically we find that for our applications the mean squared error distance performs

better in terms of variance reduction and unweighting-efficiency increase than the Kullback–

Leibler divergence.

Our method can be used in a multi-channel approach in the same way as described for

VEGAS in Sec. 2.2. It has the additional advantage that we are able to train all mappings for

the different channels simultaneously. The channel mappings are aware of each other and do

not try to adapt to the same features.
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4 Results

We have implemented the NN architecture described in the previous section using

TENSORFLOW [46]. The NN training is guided using the ADAM optimiser [43]. The default

learning rate we use is 10−4, and gradients calculated for the training are clipped at a value

of 100 to avoid instabilities in the training.

We apply our NN-assisted sampling to three standard applications in high-energy physics:

the three-body decay of a top quark which features a single importance sampling channel mod-

elling the Breit–Wigner distribution of the intermediate W boson; top-quark pair production in

e+e− annihilation with the subsequent decay of both top quarks (which also can be modelled

by a single importance sampling channel by using the same mapping for both decays); and

finally QCD multi-gluon production, with two gluons in the initial state colliding at a fixed

centre-of-mass energy and 3 or 4 final-state gluons. For the latter, a multi-channel algorithm

as described in the previous section is used, with one NN per independent channel.3 The re-

quired multi-gluon tree-level matrix elements are obtained from SHERPA through its dedicated

PYTHON interface [47].

In all cases we compare the performance of the novel NN-assisted importance sampling

algorithm with the VEGAS-assisted one which serves as benchmark. We checked that the per-

formance of the VEGAS grids used were not limited by the number of bins or by the number of

optimisation steps used.

4.1 Top quarks

Top quarks decay predominantly to a W boson and a bottom quark. In turn, the W decays either

leptonically or hadronically. This induces an s-channel resonance for the W propagator, which

is usually described in a phase space sampler by a strongly-peaked Breit–Wigner channel, i.e.

g(u) =
1

�

s(u)−M2
W

�2
+M2

WΓ
2
W

, with s(u) = MWΓW tan(u) +M2
W . (26)

This channel captures the behaviour of the denominator of the corresponding squared matrix

element, but assumes a constant numerator, which renders the channel imperfect for the actual

integrand. In the following we study for single top-quark decays and top-quark pair production

with subsequent decays how our NN optimisation compares with VEGAS optimisation to remedy

such imperfections.

The NN architecture for both top-quark examples consists of 6 piecewise-quadratic cou-

pling layers and 150 bins. The trainings conclude after 6000 optimisation steps, where each

step uses a minibatch of 200 phase space points to guide the optimisation.

Top-quark decays: We simulate the decay sequence of a top quark, i.e. t→W+b→ e+νeb.

With three on-shell final-state particles we have 5 dimensions for the kinematics (the top quark

is considered at rest and on-shell). However, we integrate out all dimensions except for the

invariant mass of the W-boson decay products and the angle between them. The number

of phase space dimensions is therefore d = 2. The s-channel propagator of the W boson is

modelled by a Breit–Wigner distribution in the importance sampling, reducing the variance

caused by sampling the strongly-peaked invariant-mass distribution of the lepton-neutrino

pair.

The results of a run with N = 106 events are compared in Tab. 1 with an unoptimised

(“Uniform”) sampling and a VEGAS-optimised sampling. The Monte Carlo integration result,

3Here and in the following, “one NN” refers to a connected set of coupling layers, not to the “sub-NN” used

within each single coupling layer.
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Table 1: Results for sampling the partial top-quark decay width and the total cross

section of top-pair production, i.e. the Monte Carlo integral EN is an estimator for

Γt→be+νe
and σ for e+e− → γ → t[be+νe]̄t[b̄e−ν̄e] at

p
s = 500 GeV, respectively.

Besides EN and its MC error, we also show the unweighting efficiency εuw of the

sample, comparing VEGAS optimisation, NN-based optimisation and an unoptimised

(“Uniform”) distribution. All samples consist of N = 106 (weighted) points.

top decays top-pair production

Sample εuw EN [GeV] εuw EN [fb]

Uniform 59 % 0.1679(2) 35 % 1.5254(8)

VEGAS 50 % 0.16782(4) 40 % 1.5251(1)

NN 84 % 0.167865(5) 78 % 1.52531(2)

i.e. the partial decay width EN given by the estimator for Γt→be+νe
, is given as a consistency

check and to compare its statistical deviation when generating the same number of points

N with the alternative sampling methods. The standard deviation obtained with VEGAS is 5

times smaller than for the Uniform sample. Improving on that, the NN sampling has a stan-

dard deviation which is 8 times smaller than the VEGAS one. As another figure of merit the

unweighting efficiencies εuw are compared. Again, the NN has the best (i.e. largest) efficiency,

with a value of 0.84 compared to 0.50 for the VEGAS and 0.59 for the Uniform sampling. So

while for VEGAS the integral variance is indeed reduced, the unweighting efficiency is some-

what reduced in comparison to the Uniform sampling. This originates from rare outliers in the

event weight distribution.

This is illustrated in Fig. 2a, where the distributions of event weights, cf. Eq. (24), for the

three samples are shown. The optimal sampler would result in events with identical weights,

what leads to a vanishing variance of the integral estimate and an unweighting efficiency of

one, cf. Eq. (4). The NN sample features the sharpest peak here and a steeply falling tail to-

wards larger weights, which corresponds to the significantly improved unweighting efficiency.

Although the VEGAS sample is also more peaked than the Uniform one, it features large-weight

outliers causing the reduced unweighting efficiency.

Leptonic top-quark pair production: As a second application, we study the leptonic pro-

duction of a top–anti-top pair via a virtual photon, and their subsequent leptonic decay, i.e.

e+e− → γ → t[be+νe]̄t[b̄e−ν̄e], at
p

s = 500 GeV. This gives us effectively two copies of the

top-quark decay chain considered in the previous example, plus the scattering angle between

the incoming lepton and the outgoing top quark. This yields a phase space dimensionality of

d = 5.

Both s-channel propagators of the W bosons are modelled by Breit–Wigner distributions,

using a single importance sampling channel. Again, a NN sample with N = 106 points is

generated. It is compared in Tab. 1 with an unoptimised and a VEGAS sample of same sizes.

The standard deviation of the VEGAS sample is 8 times smaller than the one of the unoptimised

sample. The NN sample has the smallest standard deviation, being yet 5 times smaller than the

one of the VEGAS sample. The unoptimised and the VEGAS sample have a similar unweighting

efficiency of 35 % and 40 %, respectively. The NN one’s is about two times better, at 78 %.

Figure 2b depicts the event weight distributions of the three samples. As for the top-decay

samples, the NN-optimised sample for top–anti-top production is most strongly peaked, which

is in accordance with the small standard deviation and the good unweighting efficiency. The

other two samples are significantly broader and have long tails towards large weights.

Overall, the results for top decays and top–anti-top production are similar, which is ex-
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(b) σe+e−→γ→t[be+νe ]̄t[b̄e−ν̄e]

Figure 2: Event weight distributions for sampling the partial decay width Γt→be+νe

and the total cross section σ for e+e− → γ → t[be+νe]̄t[b̄e−ν̄e] at
p

s = 500 GeV,

each with N = 106 points, comparing VEGAS optimisation, NN-based optimisation

and an unoptimised (“Uniform”) distribution.

pected because the main difference is that the Breit–Wigner peak appears in one additional

dimension for the top–anti-top production, with all other dimensions in phase space not featur-

ing any (strongly) peaked structures. Hence we see a similar shape in the weight distributions,

only the unoptimised sample is significantly broader now due to yet another peak it can not

adapt to. Compared to the single top decay setup, there is a moderate degradation of the

Monte Carlo integration/sampling. The unweighting efficiency is reduced by 7 (20) % for the

NN (VEGAS) samples. The unoptimised sample’s efficiency is reduced by 40 %.

Finally, we want to study for the case of top–anti-top production how the overall reduction

in the width of the weight distributions shown in Fig. 2b translates to more differential observ-

ables. We show in Fig. 3 the differential cross section for two observables, the invariant mass of

the electron-positron pair mee and the angle between the electron and the anti-bottom quark

θe−b̄. Note that the invariant mass mee depends on the lepton momenta of both top-quark

decay sequences, whereas the angle θe−b̄ is an observable that depends on the momenta of

only the anti-top quark decay sequence. Comparing the results for VEGAS and NN optimisation

(again using the samples with equal sizes, N = 106), we find that both distributions agree and

feature nearly equal MC errors across the whole range of the observable. However, the two

samples behave differently when we consider the mean weights per bin in the lower panels.

With the weights given by the ratio between the integrand and the sampling distribution, cf.

Eq. (8), the plots illustrate how close the sampling distribution approximates the actual target.

In the perfect case a constant line at 1 would be seen. Any distortion away from 1 directly

translates into a broader global weight distribution. For mee, we find that VEGAS samples both

tails too often to the expense of the intermediate region between 100 and 250 GeV, whereas

the NN sample is nearly constant in comparison. Both samples feature distortions for low θe−b̄,

although in different directions. As for both VEGAS and the NN most of the weights are very

close to 1, which is also reflected in the weight distribution shown in Fig. 2b, the distortions

only have a minor impact on the relative MC errors shown in the middle panels.
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Figure 3: The invariant mass of the electron-positron pair (left) and the angle be-

tween the electron and the anti-bottom quark in top-pair production (right). For

each observable, we compare the nominal distributions for a VEGAS-optimised and

a NN-optimised phase space sampling (upper panes). In the middle panes, Monte

Carlo errors for both samples are compared. The lower panes show the mean event

weights per bin, highlighting regions of the observables where the sampling distri-

butions over- or undershoot the target.

4.2 Gluon-induced multi-jet production

Finally, we test our approach for gg → n gluons with n = 3 and n = 4, at a fixed centre-of-

mass energy
p

s = 1TeV. For this application, the basic importance sampling density follows

the QCD antenna radiation pattern realised by the HAAG algorithm [48,49], with a number of

channels that depends on the number of final-state particles. For n = 3, HAAG constructs 24

channels, but after mapping channels that differ in the permutation of the momenta only, this

boils down to 2 independent channels. For n = 4, there are 120 HAAG channels that can be

mapped onto 3 independent channels. Therefore, in contrast to the top-quark applications,

a multi-channel algorithm is employed, with one independent NN (or VEGAS) per channel.

During the training, the NN are all optimised simultaneously, cf. Sec. 3.3.

Another difference with respect to the top-quark examples is the presence of phase space

cuts, used to regularise the n-gluon cross sections. Hence, the optimisation has to deal with

“dead” regions in phase space and therefore with non-continuous integrands.

For regularisation, HAAG uses a cut-off parameter which we set to s0 = 900 GeV2. On the

final state we employ a cut on the invariant masses of all parton pairs, i.e. mi j > 30 GeV, and

on the transverse momenta of all particles, p⊥,i > 30GeV. To select the jets, we use the anti-kt

algorithm [50] with R= 0.4. The renormalisation scale is given by µR =
p

s. Each NN consists

of 5 coupling layers and 32 bins. The trainings conclude after a maximum of 104 optimisation

steps, where at each step we train the NN on a minibatch of at least 2048 non-zero phase space

points.

In Tab. 2, we show the results of sampling the cross section without optimisation (“Uni-

form”), with VEGAS optimisation and with our NN optimisation. The unweighting efficiencies
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Table 2: Results for sampling the total cross section for gluonic jet production atp
s = 1TeV, i.e. the Monte Carlo integral EN is an estimator for σgg→n jets. Besides EN

and its MC error, we also show the unweighting efficiency εuw of the sample, com-

paring VEGAS optimisation, NN-based optimisation and an unoptimised (“Uniform”)

distribution. All samples consist of N = 106 points with non-zero weights. The table

also lists the acceptance rate Pacc.

3 jets 4 jets

Sample εuw EN [pb] Pacc εuw EN [pb] Pacc

Uniform 3.0 % 24806(55) 89 % 2.7 % 9869(20) 57 %

VEGAS 27.7 % 24813(23) 32 % 31.8 % 9868(10) 17 %

NN 64.3 % 24847(21) 34 % 33.6 % 9859(10) 16 %

εuw for n = 3, 4 are about 3 % for the unoptimised sampling, and increase to about 30 % by

VEGAS optimisation. The NN optimisation achieves to surpass VEGAS for n = 3 by a factor of

two, whereas for n = 4 we find no significant improvement over VEGAS. Both VEGAS and NN

optimisation gives similar improvements for the estimate of the standard deviation for n = 3

and n= 4. We also quote in Tab. 2 the acceptance rate Pacc = N/Ntrials, i.e. the probability that

a proposed point passes the phase space cuts and hence provides a finite contribution to the

integral result. In our gluon production setup, the cuts regularise the matrix elements, and

therefore the matrix element value is expected to be larger close to these cuts than elsewhere.

It is therefore unsurprising that both VEGAS and NN optimisation lead to a decrease in Pacc, as

they enhance the sampling rate close to the cuts, with the side effect of proposing points also

outside of the cuts (since the bin edges of both methods will not perfectly coincide with the

cuts).

The event weight distributions for the samples are compared with each other in Fig. 4.

For 3-jet production, we find that the NN optimisation gives the most strongly peaked weight

distribution. The situation is more ambiguous for 4-jet production. Both the VEGAS and NN

optimisation significantly sharpen the weight distribution, in fact providing quite similar out-

comes. However, while the NN optimisation results in a slightly more pronounced peak com-

pared to VEGAS and a slightly faster fall-off towards large weights, it depletes less quickly

towards small weights. In particular for the 3-jet case it might be surprising that we find a

comparable estimate for the standard deviation for NN and VEGAS optimisation, although the

weight distribution is narrower in the NN case. This apparent discrepancy originates from the

higher fraction of zero-weight events for the optimised samples, i.e. events that fall outside

the physical phase space volume and are thus not accepted. The standard deviation of the

integral estimate is in such a case largely determined by the corresponding acceptance rate,

since the weight distribution will then actually contain two peaks: the one at a finite value

and one at w= 0. A further improvement in the sampling accuracy would therefore require a

modification of the optimisation to reduce the number of discarded phase space points. The

unweighting efficiency is not affected by Pacc < 1, since it takes into account non-zero weights

only.

In Fig. 5 we depict the transverse momentum distributions for the jet with the smallest

transverse momentum p⊥ in three- and four-jet production, i.e. the third and the fourth jet,

respectively, again comparing the NN-optimised sample with a VEGAS-optimised one. In the

comparisons of the mean weight per bin distributions (lower panels) we find a different be-

haviour for the two optimisation methods. For three-jet production, Fig. 5a, the NN weights

stay very close to one for pT ® 240 GeV, whereas VEGAS samples the lower-most two p⊥ bins

with weights smaller than unity, which is compensated by weights larger than unity already
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Figure 4: Event weight distributions for sampling the total cross section for gg→n

jets for
p

s = 1TeV with N = 106 points, comparing VEGAS optimisation, NN-based

optimisation and an unoptimised (“Uniform”) distribution. Note that we now use a

logarithmic scale for the x axis. The inset plot in (b) shows the peak region in more

detail and using a linear scale.
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Figure 5: The transverse momentum of the smallest-p⊥ jet in three-gluon production

(left) and in four-gluon production (right). For both observables, we compare the

nominal distributions for a VEGAS-optimised and a NN-optimised phase space sam-

pling (upper panes). In the middle panes, Monte Carlo errors for both samples are

compared. The lower panes show the mean event weights per bin.

17

3.1.3 Publication: Exploring phase space with Neural Importance Sampling

65

https://scipost.org
https://scipost.org/SciPostPhys.8.4.069


SciPost Phys. 8, 069 (2020)

above 50 GeV. For four-jet production, Fig. 5b, the NN sample differs from unity for p⊥ values

larger than 80 GeV. Then the weights become increasingly smaller, which corresponds to the

long tail of the weight distribution towards smaller weights in Fig. 4b. For VEGAS, weights

again begin to differ from unity above 50 GeV. However, there is a turning point and therefore

the weights remain closer to unity compared to the ones of the NN sample above 100 GeV.

Hence, judging the sample quality is less straightforward in the four-jet case, whereas the NN

sample is clearly better in the three-jet case. This is in agreement with the very similar global

sample performance given in Tab. 2.

Considering the relative MC errors in the middle panel of Fig. 5b we observe that although

the NN distribution differs from the integrand more than the VEGAS distribution in the high-

p⊥ bins, it still leads to smaller relative errors. This is, however, just a consequence of the

statistics: the NN sample features smaller weights in this region as it oversamples the target.

Therefore, it generates more events per bin than VEGAS which results in a smaller variance.

5 Conclusions

We have conducted a proof-of-principle study for applying Neural Importance Sampling with

piecewise-quadratic coupling layers to optimise phase space sampling in Monte Carlo inte-

gration problems in high-energy physics. The approach fulfils the requirements needed to

guarantee a faithful sampling of the target distribution. In particular, full phase space cover-

age is guaranteed. We have investigated the performance of the approach by employing it as a

drop-in replacement of the widely used VEGAS optimiser, which we use for comparison bench-

marks. Specifically, we have studied the efficiency of the approach both for the integration

result and for the generation of weighted and unweighted event samples for the decay width

of a top quark, for the cross section of leptonic production of a top-quark pair with subsequent

decays; and for the cross sections of gluonic 3-jet and 4-jet production.

We find a significantly improved sampling performance for the simpler examples with a

phase space dimensionality up to d = 5, namely top decays, top pair production and 3-jet

production. For the more complex example of 4-jet production with d = 8 and an increased

number of importance sampling channels, we have not been able to outperform VEGAS, e.g. the

gain factor in the unweighting efficiency dropped from 2.3 for 3-jet production to 1.1 for 4-jet

production. Since the complexity of the NN architecture and the number of events per training

batch was limited by our computing resources, we expect that the result for the 4-jet case can be

improved by using more powerful hardware and/or optimising the implementation. Though,

even then the computational challenge would emerge again for 5-jet production, and it is left

to further studies to improve the scaling behaviour of the ansatz. Our findings are consistent

with those in another study [36], where increasing the final-state multiplicity (and hence the

number of channels) in V+ jets production also leads to a rapid reduction in the gain factor.

However, the results for the top quarks and the 3-jet production are promising and indi-

cate that conventional optimisers such as VEGAS can potentially be outperformed by NN-based

approaches also for more complex problems in the future. To this end the computational

challenges outlined above need to be addressed. In future research we will therefore aim

to extend the range in final-state multiplicity while keeping the training costs at an accept-

able level, and—if successful—to implement the new sampling techniques within the SHERPA

general-purpose event generator framework. A starting point should be the further study and

comparison of alternative ways to integrate our NN approach within multi-channel sampling,

beginning with our ansatz and the one proposed in [36], to find out if the scaling behaviour

can be optimised. On the purely NN side, the exploration of possible extensions or alternatives

to piecewise-quadratic coupling layers is promising, such as [51]. Also adversarial training has
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the potential to reduce training times significantly. The limitation of the statistical accuracy by

a large number of zero-weight events found in the jet-production examples furthermore sug-

gests that it is worthwhile to investigate the construction of optimised importance sampling

maps that better respect common phase space cuts, or alternatively to modify the optimisation

procedure to further reduce the generation of points outside the fiducial phase space volume.
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A Auxiliary jet p⊥ distributions in multi-jet production

In this appendix we compile additional plots of the jet p⊥ distributions in 3- and 4-gluon

production from gluon annihilation at
p

s = 1 TeV. Details on the calculational setup are

given in Sec. 4.2.

The leading and second-leading jet p⊥ distribution in 3-gluon production are depicted in

Fig. 6a. The leading, second- and third-leading jet p⊥ distributions in 4-gluon production are

shown in Fig. 6b.
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Figure 6: Distributions of the transverse momentum p⊥ of the leading and second-

leading jets in three-gluon production (a) and for the leading, second- and third-

leading jets in four-gluon production (b). For each observable, we compare the nom-

inal distributions for a VEGAS-optimised and a NN-optimised phase space sampling

(upper panes). In the middle panes of each plot, Monte Carlo errors for both samples

are compared. The lower panes show the mean event weights per bin.
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3.1.4 Impact

3.1.4 Impact

Together with an almost simultanesously published study [47, 230], our article presents the
first application of NFs to HEP PS sampling. It shows that NFs are a promising tool that is able
to improve the efficiency of current tools. The paper was well received by the community. As
of 2 June 2023, according to SciPost there are 46 citations in peer-reviewed journals [236], and
there are several later works with direct relation to our ideas. These include discussions about
bijectivity [35, 237], sampling with autoregressive flows instead of coupling layers [50], neural
importance sampling applied to neutrino-nucleus cross-section models [238], a discussion
about the topological issues of NFs [92], and the usage of NFs in refs. [53, 60, 239].

The work was presented by Enrico Bothmann at ‘The Eighth Annual Conference on Large
Hadron Collider Physics’ (lhcp 2020) in May 2020. This contribution was published as part
of the proceedings in ref. [240]. Another presentation of the work was given by me as part of a
talk at the ‘20th International Workshop on Advanced Computing and Analysis Techniques in
Physics Research’ (acat 2021). A conference paper was subsequently published in ref. [241].
Therein are also new results which were obtained after the publication of the original article.
The new results are based on a reimplementation in PyTorch done by me. It uses rational-
quadratic splines [51] and residual NNs [242] in the coupling layers, but otherwise resembles
the original model. Using this setup, an unweighting efficiency of 49% could be achieved for
the 4 jets gluon scattering example. This is significantly better than the value of 34% printed in
tab. 2 of the original article. As a consequence, the model outperforms the vegas mapping.
Two figures from the conference paper, showing the improvements for the 4 jets example,
are reproduced in fig. 3.6. The first one, fig. 3.6a, shows the weight distributions using the
unoptimized (‘uniform’), vegas-optimized, and NF-optimized samplers. Compared to fig. 4b
of the original article, it can be seen that the weight distribution from the NF-based sampler is
significantly improved. The width of the distribution is clearly reduced and it features a smaller
maximum. In addition, the distribution of the transverse momentum of the smallest �⟂-jet is
shown in fig. 3.6b. A clear improvement is visible in this figure, too. Compared to fig. 5b of the
original article, the mean weights per bin are now much closer to one for the NF-optimized
sampler. Obviously, the sampling distribution approximates the target distribution much better
over a wide range of �⟂. In the original article, there was considerable oversampling of the
high-�⟂ region, as is visible in the lower pane showing the mean weights. With increasing �⟂,
the mean weights drift away from one towards lower values. At the highest �⟂, the values are
below 0.5, meaning the sampling distribution oversamples the target by more than a factor of
two. As a result of this, the relative MC errors, shown in the middle pane, are smaller than with
vegas, for which the oversampling is less pronounced. With the updated results in fig. 3.6b,
this effect is not visible anymore. For both vegas and NF, the relative MC errors are similar,
since the distance between the two sampling distributions has decreased.

3.1.5 Normalization during training

There is an interesting detail that was realized only after the publication of ref. [9]. Specific loss
functions like the mean squared error (MSE) allow to choose a normalization of the concerned
distributions. In the presence of phase space cuts, this normalization can have a big influence
on the result of training. In this section, the observation is illustrated by a toy example. We
consider a function �∶ [0, 1]2 → ℝ≥0, (�, �) ↦ �(�, �). Let us first define coordinates that
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Figure 3.6: Sample results for the process �� → ����. Figures taken from [241]. cb.

allow us to write the target function in a compact form:

�(�, �) = [ ( � − 12 ) ⋅ cos( �4 ) − ( � − 12 ) ⋅ sin( �4 ) + 12 ] , (3.17)�(�, �) = [ ( � − 12 ) ⋅ sin( �4 ) + ( � − 12 ) ⋅ cos( �4 ) + 12 ] , (3.18)

�(�, �) = √(� − 1)2 + ( � − 12 )2 . (3.19)

The coordinates � and � are shifted and rotated such that they correspond to the diagonals of
the square [0, 1]2, while � is a radial coordinate centred at (1, 0.5). Using these coordinates, the
target function is defined as

�(�, �, �) = {�−�⋅� ⋅ 1√2��2 �− 12�2 (�−�)2 + 1� �−3 if � > 0.1 and � > 0.3,0 else.
(3.20)

It features a Gaussian distribution in the � direction with mean � and standard deviation � and
an exponential distribution in the � direction. Added to this is an �−3 term centred at � = 0.
The parameters are set to � = 7, � = 30, � = 0.1 and � = 0.5. While the definition of this
toy function looks complicated, it is in the end a combination of simple functions in different
coordinate systems. The motivation for this is that similar complications can be expected to
appear in squared amplitudes. There are multiple peaks of different shape and large regions
of low probability. In our example, the regions with � < 0.1 or � < 0.3 are deliberately cut
off to imitate PS cuts used in HEP. Due to these cuts there are two modes with vertical flanks.
This is also a typical situation in the sampling of differential cross-sections, where regularized
divergences lead to functions that peak towards the edge of PS. Being defined in terms of
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Figure 3.7: The distribution of the function�. The horizontal axis shows the � co-
ordinate and the vertical axis shows the� coordinate. For comparability, the nor-
malization of the colourmap was chosen
to be the same as in fig. 3.9. As a result, the
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Figure 3.8: Distributions of the weights
from samples of size 1m produced by the
NFs trained with different normalization
factors. Zero weights are excluded and the
weights are normalized to one for compar-
ability.

physics-motivated variables, the cuts are not necessarily aligned with the sampling coordinates.
In fig. 3.7, the distribution of the toy example in the x-y plane is shown. The function can be
expected to be a difficult target for vegas, since neither the modes nor the cuts are aligned
with the coordinate axes. For this example, we deliberately refrain from using a multi-channel
sampler in suitable coordinates.
An NF has been trained on the target function using a batch size of 5000. It uses two coupling

blocks with rational-quadratic splines that have 24 knots each. The parameters of the coupling
transforms have been determined by residual NNs with three hidden layers and 32 nodes. For
optimization, the Adam optimizer with a learning rate of 0.001 has been used. The learning
rate has been reduced on plateaus and the training has been stopped when the validation
loss, based on a sample of 1m points, did not increase for 150 consecutive epochs. In each
epoch, the training data has been produced anew by sampling from a uniform distribution and
transforming the points with the NF. AnMSE loss function has been used. The target function is
normalized such that it integrates to one. The NF is normalized to one by construction but here
we introduce a normalization factor � that increases the normalization by � ∈ {1.0, 1.5, 3.0}.
The training has been repeated for each value of �. In fig. 3.8 the resulting distributions of
the MC weights are shown for the models with the best validation loss. It can be seen that the
normalization has a major impact. The larger normalization factors result in much narrower
distributions with a steeper decline towards large weights and lower maximum values.
To understand how the narrowing of the weight distribution is achieved, we can look at

the distributions defined by the three NFs as shown in fig. 3.9. For � = 1.0, the distribution
looks very similar to the target function and the density is low where �(�, �) = 0. Due to its
surjectivity, the NF’s density cannot be zero anywhere and therefore it ‘spills over’ into the cut
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Figure 3.9: Densities defined by the NFs using three different values of the normalization
factor �. The colourmaps are normalized to the same values, such that the plots can be easily
compared. Note that the ‘turbo’ colourmap is not perceptually uniform.

region. However, it tries to reproduce the sharp edge at the cut. For � = 1.5, there is much
more ‘spillover’ since the NF is allowed to put ⅓ of the points into the cut regions. Especially
around � = 0.3 it can be seen that the vertical edge of the circular cut is smoothed out. Finally,
for � = 3.0, most of the points land in the target’s cut regions such that the NF produces peaks
there. It is no longer apparent from the plot where the cuts actually are.
We can investigate the behaviour around the cuts in more detail by looking at the coordinates

in which the cuts are defined. In figs. 3.10a and 3.10b, the distributions of � and � are shown,
respectively. For � = 1.0, the distribution is close to the target. Some points are generated
below the cuts at � < 0.1 and � < 0.3, and accordingly other regions are slightly undersampled.
However, for the larger normalization factors the distributions significantly differ from the
target. Especially for � = 3.0, it can be seen that the peaks are displaced from their target
positions and there are no more indications of the vertical edges.
In figs. 3.10c and 3.10d, a close-up view around the cuts is shown. For these plots, the

points outside of the cuts have been ignored, such that only points with � > 0.1 and � > 0.3
enter the histograms. In an event generation setting, this would correspond to the situation
where we have applied all phase space cuts and look at the events entering the unweighting
procedure. Clearly, in the cases with � > 1.0 the distributions are much closer to the target,
and we see the best approximation for the largest value, � = 3.0. With unit normalization, the
NF underestimates the peak, since it has trouble to smoothly fit the sharp edge.
Finally, the performance of the NFs is quantified in table 3.1. As expected, the acceptance

probability �acc is close to one for � = 1.0, ⅔ for � = 1.5 and ⅓ for � = 3.0. The relative MC
uncertainty is smallest for unit normalization and grows for increasing normalization factor,
being almost five times as large for � = 3.0. This can be explained by the fact that the variance
of the MC estimator depends strongly on �acc. If �acc is low, the weight distribution has a high
peak at zero, and thus a high variance. For the unweighting efficiency, however, the behaviour
is vice versa. An increase of efficiency can be observed from 71% to over 90% by using � > 1.0.
While the unweighting efficiency is independent of the number of zero weights, it benefits
from the improved approximation near the cuts as shown in fig. 3.10. It leads to smaller weight
maxima as confirmed by fig. 3.8.
In summary, in the presence of cuts, the unweighting efficiency can be positively influenced

by normalizing the NF during training. The ‘spillover’ into the cut-off regions allows the NF
to better model the behaviour at the cut edges. This advantage comes at the price of a lower
acceptance probability with regard to the cuts. In the relevant applications, however, the
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Figure 3.10: Distributions of 1m points sampled from the NFs using three different values of
the normalization factor Z. The diagonal coordinate � (a, c) and the radial coordinate � (b, d)
are shown. For comparison, the target distribution is shown. In the bottom row, (c, d) the
regions around the cuts are shown without including the points lying outside of the cuts.
All histograms have been normalized to unit area after applying the cuts.

Table 3.1: The acceptance probability �acc, the relative MC uncertainty Δ�/� and the unweight-
ing efficiency � for the three normalization factors �, using samples of 1m points. For the
determination of �, a reduced weight maximum as described in section 4.1 has been used.� �acc Δ�/� �

1.0 .92 0.000 29 .71
1.5 .67 0.000 71 .91
3.0 .33 0.001 41 .92
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evaluation of the target function is likely to be many times more expensive than the generation
of a phase space point. The optimal value of Z must be found specifically for the application.
Interestingly, the behaviour of NFs in the presence of phase space cuts is strikingly different

from vegas’, which is examined in section 2.3.2. For � = 1.0, the NF behaves similar to vegas
in that it struggles to properly sample the target function close to the cut. Larger values of �,
however, allow it to inter- and extrapolate in the cut region. This is something that vegas is
not able to achieve. Furthermore, for the NF it does not matter whether the cuts or any other
features are aligned with the coordinate axes.

3.1.6 Recent developments

In this section, two more recent developments are presented. The first is the idea to make the
weights of a multichannel density phase-space dependent by defining them in a local way.
These local multichannel weights lend themselves to automatic optimization with NNs. The
second is a discussion about mixtures of NFs. An interesting idea is the combination of the
two approaches.

Phase space dependent multichannel weights

In section 2.3.3, it is explained how the channel weights of a multichannel density can be
automatically adapted. An obvious idea is to make the channel weights phase space dependent.
This amounts to changing eq. (2.33) into

�(�) = ��∑�=1��(�) ��(�) . (3.21)

Of course the ��(�) still need to sum to one, so we require

��∑�=1��(�) = 1 . (3.22)

It seems sensible to let an NN learn the ��(�). A standard feedforward NN should certainly
be able to do so provided that the output layer uses a softmax activation function to ensure
that eq. (3.22) is satisfied. However, applying this naively can lead to non-optimal results, as is
shown below. The problem is related to the fact that we have taken the channel weights to be
dependent on the input variable � ∼ ��(�), since when we want to sample �(�) we need to
choose a channel based on �. Each channel then maps a given input point, ��, to a different
output point, ��, leading to some counter-intuitive behaviour. This shall be illustrated by an
example to become more clear.
Consider the one-dimensional target function

�(�) = {4� if � < 0.5,4(1 − �) else,
(3.23)

defined over the unit interval � ∈ [0, 1). The function has two linear parts, one with positive
slope for � < 0.5 and one with negative slope for � ≥ 0.5. The graph of the function is shown
in fig. 3.11. To sample the target function, we define two channels that can be combined in a
multichannel density:�1(�) = 2� , (3.24)�2(�) = 2(1 − �) . (3.25)
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Figure 3.11: The target function of the toy
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Figure 3.12: The channels used to sample
the target distribution. For the dotted ver-
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Figure 3.13: The transformations used to sample the channels by mapping the input variable �
to the output variable �. For the dotted versions, the channels have been scaled and shifted.

These are simply two linear functions, which are visualized in fig. 3.12 (solid lines). To sample
the channels, we use the inverse transform method, which provides us with mappings to
transform a uniform input variable � into a linearly distributed output variable � as defined by�1(�) and �2(�). The transformations are given by square root functions:�1∶ � ↦ � = √� , (3.26)�2∶ � ↦ � = 1 − √1 − � . (3.27)

These are shown in fig. 3.13 (solid lines). In the conventional multichannel approach, the
channels can be mixed with constant weights. An equal mixture, �1 = �2 = 0.5, leads to
uniform sampling and an unweighting efficiency of � = 0.5.
In order to try to improve upon this, we make the multichannel weights phase space depend-

ent. Our naive first attempt is to exclusively sample �1 in the left half, � < 0.5, and �2 in the
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right half. This choice corresponds to the weight functions

�1(�) = {1 if � < 0.5,0 else,
(3.28)�2(�) = 1 − �1(�) . (3.29)

However, by looking at fig. 3.13 it is easy to see that this choice does not lead to perfect sampling.
We have split up the �-space between the channels, but there is significant overlap in �-space.
The transformation �1maps [0, 0.5) to [0, 1/√2 ), and �2maps [0.5, 1) to [1−1/√2, 1). It follows
that within [1 − 1/√2, 1/√2 ) the sampling is effectively uniform, while for � < 1 − 1/√2 and
for � > 1/√2 the target is undersampled by a factor of two. Consequently, the unweighting
efficiency is again � = 0.5, which means there is no improvement compared to before.
A small change opens up a way out for us. We slightly modify the definition of our channels

to allow shift and scale transformations:

�′1(�) = 2�1� , � ′1 ∶ � ↦ � =√� − �1�1 , (3.30)

�′2(�) = 2�2(1 − �) , � ′2 ∶ � ↦ � = 1 −√1 − � − �2�2 . (3.31)

If we choose to keep the mixing weight functions, eqs. (3.28) and (3.29), the optimal choices
for the shift and scale parameters are �1 = �2 = 2, �1 = 0, and �2 = −1. In figs. 3.12 and 3.13
(dotted lines), the resulting PDFs, �′1(�) and �′2(�), and the transformations, � ′1 and � ′2 , are
shown, respectively. Note that � ′1 and � ′2 are non-surjective, which means that an individual
channel is not able to generate all values of �. This is, however, not an issue here, since our
choice of mixing weights ensures that in the combination as a multichannel any � can be
reached. With the given parameters, an optimal sampler for the target function has been found,
such that the unweighting efficiency reaches � = 1.
The conclusion of the above example is that phase space dependent multichannel weights

are only effective if they are combined with parameterized channels, which can be optimized in
conjunction with the channel weights. It should be sufficient to let the parameters correspond
to simple shift and scale transformations, which allow moving probability mass to where it is
needed. In the ML literature, the combination of a parameterized mixture model with a NN
that learns the mixture weights and the parameters is known as mixture density networks [243].
They are typically used with Gaussian mixtures for regression and uncertainty estimation.
Deep Gaussian mixture models [244, 245] provide an alternative, where Gaussian mixtures are
stacked in layers.

At this point it is appropriate to point out that the event generator MadGraph also allows
a multichannel sampler with phase space dependent weights [53, 246]. However, it uses
a different definition of multichannel, which is based on single diagram enhancement. It
assumes that the integrand can be written in terms of a basis of � functions,

�(�) = �∑�=1��(�) , with ��(�) ≥ 0 , (3.32)

such that each �� can be efficiently mapped by a single mapping ��. Accordingly, we introduce
a multichannel density

�(�) = �∑�=1 ��(�) . (3.33)
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In the same way as in eq. (2.28), the integral over � can then be written as
∫Ω �(�) d� = �∑�=1∫Ω ��(�) ��(�)��(�) d� = �∑�=1∫Ω ��(�)��(�) d��(�) . (3.34)

The integral has been rewritten as a sum of potentially simpler integrals. Note that in contrast
to the conventional multichannel approach, as introduced in section 2.3.3, we do not have to
evaluate the sum over all channels for every sampled point. Instead, we only have to determine
the cheaper ratio ��(�)/��(�). In MadGraph, the proposed basis for eq. (3.32) is

�� = |��|2∑��=1|��|2 |�tot|2 , (3.35)

where �� is the amplitude corresponding to a single Feynman diagram and �tot = ∑��=1 �� is
the total amplitude. Naturally, the �� are then chosen to be approximations of the squared
amplitudes.
We can identify a quantity that is somewhat similar to our multichannel weights:

��(�) = ��(�)∑��=1 ��(�) . (3.36)

These sum to unity by definition, which can be used to write�(�) = ∑�=1��(�)�(�) . (3.37)

For the integral it follows that

∫Ω �(�) d� = �∑�=1∫Ω ��(�)�(�) d� . (3.38)

Note that the�� depend on the same variable as the function�unlike above, for the conventional
multichannel, where the channel weights are defined in the input space, �, while all other
functions are evaluated in the mapped space, �. Therefore, they are now defined in the same
space as the target function and the channel densities, such that the difficulties described above
do not apply here.
From eq. (3.34) it is not obvious how to generate samples from the multichannel distribution,

specifically how to choose the probabilities for selecting the channels. Ideally, the channels
would be selected by their respective contributions to the integral. This would correspond to
the selection weights

�� = ∫��(�)�(�) d�∫�(�) d� . (3.39)

In practice, these can be estimated from a finite sample of points.
The single diagram enhancedmultichannel has the advantage that the weight in one channel

can be evaluated independently of the others. Remember that the conventional multichannel
always requires evaluating the sum over all channels. It follows that a large number of channels
can be prohibitive in the conventional case and less so in the single diagram enhanced case.
The main disadvantage of the method is that its performance depends entirely on the validity
of the assumption eq. (3.32). Usually, the channel mappings model single Feynman diagrams
squared, whose peak structures can be derived from the involved propagators. If there are
large interference terms, however, this is not a good approximation of the full amplitude. As
noted in ref. [247], this can for example happen for vector boson fusion-type processes, where
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a conventional multichannel can be much faster. The authors propose an alternative definition
of the channel weights to alleviate this problem for that type of process.

Mixtures of normalizing flows

There are known limitations of NFs with regard to the shapes of the targeted functions. These
are related to functions with discrete structure, for example disconnected modes, holes where
the function is zero, or discrete symmetries. When the base distribution, which is usually
normal or uniform, does not have a compatible topology, it is impossible to perfectly learn the
target with an NF, and good approximations require very deep NFs with prohibitively high
training costs [248]. To address this, in ref. [249] the authors propose to use a mixture of several
NFs, where the individual components are restricted to disjoint subsets of the target space.
This results in a piecewise invertible model. As noted in [250], though, the discontinuity at the
transitions between the subsets leads to training difficulties. Instead of mixing several NFs,
it is also possible to use a base distribution that has the desired topology built-in. If we lack
the knowledge to manually construct such a distribution, it can be found automatically by
resampling a simpler distribution, e.g. a Gaussian. In ref. [251], the authors introduce a method
based on learned accept/reject sampling [252], where the base distribution is resampled using
rejection sampling with an acceptance probability learned by an NN. The drawback is that
the resampled base distribution is intractable, since the normalization constant can only be
estimated. Moreover, sampling becomes less efficient due to the rejected proposals. Another
approach, which we will not pursue further in this thesis, is to sacrifice the invertibility of the
flows [248], which, however, makes it impossible to compute the probability density exactly. A
proposal better suited to our needs is a mixture of NFs with learnable mixture weights [250,
253]. This corresponds to a multichannel sampler, where the channels are given by NFs, and
the channel weights are learned by an NN with a softmax output layer. When the channel
weights and the channel mappings are optimized at the same time, such a model fulfils the
requirement introduced above, i.e. the phase space dependent channel weights are combined
with parameterized channels.
While in ref. [9]we only considered static channelweights, it can be expected that phase space

dependent weights are able to further boost the performance. However, although mixtures
of NFs are very powerful models, accurately learning a complex target distribution from the
ground up can require extensive training on large datasets. As for other sampling techniques it
should be beneficial to include prior knowledge.
For the sampling of differential cross-sections, several applications can be imagined. As

an extension of ref. [9], one could use NFs to remap and fine-tune physics-inspired channels
and extend this approach with phase space dependent channel weights. It can be expected
that the variable weights allow the model to yield better approximations in the presence of
non-factorizable structures and phase space cuts. Instead of remapping given channels, one
could also try to use NFs pretrained on normalized versions of typical channels. These could
then be further optimized during the training on the target. In both cases, after an initial
warm-up phase, one can reduce the number of channels by using only those contributing
significantly to the total integral. This can reduce the training costs considerably, while the
model should still be flexible enough, as long as an appropriate number of channels is kept.
Finally, one can also use NFs as additional channels next to physics-inspired ones to learn the
residual structures. In this case, one should optimize the parameters of the physics-inspired
channels together with the channel weights in order to benefit from the latter in the most
effective way. It remains for future work to find out which of the proposed approaches turns
out to be the most promising.
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3.2 Nested Sampling

Markov Chain Monte Carlo (MCMC) methods like the Metropolis-Hastings algorithm [254,
255], and variants thereof, are popular tools for sampling with numerous applications. For
example, they are a standard choice in lattice field theory [256]. While there have been attempts
towards using MCMC for phase space sampling in HEP [257, 258], it never came to large-scale
use. The main reason for this, besides conservatism, can be assumed to be the autocorrelation
intrinsic to MCMC samples. Especially when the MCMC chain does not converge well, there
can be high autocorrelation and even many identical samples. Typical HEP analyses cannot
cope with this since they are designed for conventional MC methods where the samples are
statistically independent. The autocorrelation can be reduced by thinning the chain, but this
in turn decreases the efficiency.
Nested sampling [28, 259] is not an MCMC algorithm per se, but in implementations MCMC

can be used for a crucial step of the algorithm, as is shown below. However, unlike pure MCMC
algorithms, nested sampling then produces many short Markov chains instead of a single long
one. Therefore, one expects only low autocorrelation and the algorithm does not get stuck at
points or small regions of phase space. This makes nested sampling an interesting alternative
to MCMC in the HEP context, and it seems useful to look at what properties the algorithm has
and how it performs in representative problems.
This section is meant to provide some context around the article ‘Exploring phase space

with nested sampling’, which presents the first application of nested sampling to the sampling
of the high-dimensional phase space of particle collision events. Below, in section 3.2.1, the
algorithm is introduced in more detail than the restricted format of the article allows. The
publication itself is reprinted in section 3.2.2.

3.2.1 Basic idea and specifics of the implementation

The nested sampling algorithm was originally introduced in the context of Bayesian inference.
A detailed introduction to the topic of Bayesian inference, as well as a comparison of Bayesian
and frequentist statistics, would go beyond the scope of this thesis. Instead, a pragmatic
approach is appropriate: for our purposes, we consider nested sampling as a generic integration
algorithm that also generates samples from the integrand. Where necessary, terms from the
respective jargon can be translated into each other. These are in particular the following:

phase space mapping → prior,
target function / integrand / differential cross-section → likelihood,
target integral / total cross-section → evidence.

This simple translation is already a big step towards applying nested sampling to HEP phase
space sampling.
Algorithm 2 gives on overview of the nested sampling meta algorithm as applied to the

calculation of scattering cross-sections. The algorithm maintains an ensemble of �live live
points, which get updated until a preselected termination criterion, ��, is reached. It proceeds
iteratively, and in every step the live point with the smallest value of the target function is
chosen for a replacement. In our case, the target function corresponds to the differential
cross-section, while in Bayesian inference it is the likelihood function. The replacement is the
crucial step of the algorithm. It is required that the new point is drawn uniformly from the
phase space volume under the condition that it has a higher value of d�. The meta-algorithm
does not specify how this step is to be implemented. Below, several options are discussed. The
new live point is used to update the estimate of the total cross-section, �. It is based on the value
of the differential cross-section, d�min, and an estimate of the change in phase space volume,ΔΘ. The estimate of the change in volume is made on a statistical basis. It can be shown
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Algorithm 2: The nested sampling meta algorithm applied to the calculation of cross-
sections in particle physics phase space.
1 Choose a termination criterion, �� ∈ [0, 1];
2 initialize the starting phase space volume, Θ = 1, and the cross section integral, � = 0;
3 sample �live points uniformly from the volume — the live point ensemble;
4 define an estimate of the volume compression per iteration, � = �−1/�live;
5 while Θ > �� do
6 find the point in �live with the smallest value of d�, d�min;
7 replace this point with a new sample in the volume defined by the boundary

d� > d�min;
8 increment the estimate of the cross-section, � = � + d�min ΔΘ, with ΔΘ = (1 − �)Θ;
9 contract the remaining volume, Θ = Θ − ΔΘ;
10 end
11 add an estimate of the contribution to the integral from the remaining live points,� = � + ⟨d�⟩ΔΘ, where ⟨d�⟩ is the average differential cross-section of the remaining

live points;
12 return �;
that the compression factor � associated with discarding a live point follows a Beta(�live, 1)
distribution [260]. Thus, the expectation value of log � is⟨log �⟩ = − 1�live . (3.40)

Based on this, the volume compression can be estimated to be� = �−1/�live . (3.41)

The absolute change in volume is ΔΘ = (1 − �)Θ, where Θ is the volume before discarding the
live point. Note that this is an estimate based on probability and does not equal the true change
in volume. This fact should be taken into account where uncertainty estimates are concerned.
The output of the nested sampling algorithm consists of the final ensemble of live points and

an estimate of the total cross-section. Furthermore, we can keep track of the discarded points,
which form the ensemble of dead points. These can be used as samples from the distribution of
the integrand, or posterior distribution in Bayesian terms, by assigning weights to them. The
weights are given by

�� = �� d�min,�� , (3.42)

where the �� are defined as�� = 12(Θ�−1 + Θ�+1) . (3.43)

If desired, the weighted dead points can be unweighted using rejection sampling.
As stated above, there are various options how to do the compression step, i.e. how to sample

new live points under the likelihood constraint. Among them are variants of MCMC and rejec-
tion sampling. In the article reprinted in section 3.2.2, the PolyChord [261] implementation
of nested sampling is used. It realizes the compression step by slice sampling [262]. There-
fore, only this method is considered here. Slice sampling is a kind of Markov chain sampling.
Similar to the Metropolis-Hastings algorithm, it commonly uses a step size parameter. For
Metropolis-Hastings, this is a crucial parameter that needs to be tuned to find a balance between
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random walk behaviour and high rejection rates of proposals. In slice sampling, however, the
step size is adapted automatically in dependence of local properties of the target function.
Slice sampling is based on the observation that sampling from a distribution is equivalent to
uniformly sampling points from underneath its graph. Starting from a position �0, this can be
done in the univariate case by randomly selecting a point � between zero and �(�0), where�(�) is the target function. We then need to sample a new position �1 from the slice defined by�(�) ≥ �, which can consist of several line segments. This is the starting position for the next
iteration. The �� form a sample that, in the long run, converges to the target distribution. In
the multivariate case, we can use the same procedure with multidimensional slices.
The critical step is the sampling from the slice, since the boundaries are not easily available.

This is especially true in the multimodal case, where several disconnected segments can
appear. A possible method is to find boundaries that enclose all segments and to use rejection
sampling until a point within one of the segments has been found. PolyChord uses a
different procedure, which is informed by the set of live points and can be more efficient. At
each iteration, it chooses one of the live points as a starting point. It takes a step of initial width� in a random direction ̂� chosen from a probability distribution �( ̂�), generating the next
starting point. This step is repeated �repeats times, where �repeats should be chosen such that
the final point is sufficiently decorrelated from the starting point. The width can be expanded
during the procedure. Furthermore, PolyChord uses a cluster recognition algorithm to
identify modes of the target distribution, and tries to evolve points within the clusters.
The similarities between slice sampling and sampling from the iso-likelihood contours in

nested sampling are obvious. Therefore, the two seem to be a natural fit. In nested sampling,
additional knowledge about the target distribution is available in the form of the live point
ensemble. These points are used to define the distribution �( ̂�). The points from the first�repeats−1 steps are called phantompoints and are saved alongside the dead points. Although the
phantom points are significantly correlated, they contain valuable information. For example,
they can be used to further inform �( ̂�). If we do notmind the correlation, we can even combine
the phantom points with the dead points to get a larger sample from the posterior distribution.
More details about slice sampling can be found in the original publication, ref. [262], and in
the description of the PolyChord algorithm, ref. [261].
So far we have assumed that the live points are drawn from a uniform distribution. However,

if prior knowledge about the target is available, it can be highly beneficial to use a non-uniform
prior distribution which encodes some of this knowledge. In that case, new live points get
drawn from the prior distribution, which is subject to evolving likelihood constraints. A prior
distribution can prevent that modes are missed, and can increase the sampling efficiency by
mimicking the shape of the target. Similar to the PS mappings used for importance sampling
and rejection sampling in HEP, prior distributions are implemented in the form of mappings
from the unit hypercube to the parameter space of the target.
Nested sampling has some properties that distinguish it from other sampling methods. In

contrast to importance sampling and rejection sampling, it is not possible to generate a fixed
number of events. Based on a few tunable parameters, essentially�live and�repeats, the algorithm
runs until the termination criterion has been reached. A choice for this criterion could be, for
example, that the remaining live points are expected to contribute only some small fraction to
the total cross-section. Now if less events are needed than the algorithm generates, one still
has to wait for the run to finish before the chain of events can be thinned. This is because of
the hierarchy of the events, where events with small values of d� are generated earlier than
events with larger values. If, on the other hand, more events are needed, one has to increase
the number of live points or combine several runs, which is equivalent. In comparison to
MCMCmethods, it can be noted that they are primarily sampling algorithms and do, in general,
not provide good estimates of the integral. By contrast, for nested sampling the integral is the
prime target, and it aims at giving reliable integral estimates even in high dimensions.
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3.2.2 Publication: Exploring phase space with Nested Sampling

In this section, the article ‘Exploring phase space with Nested Sampling’ is presented. Like
the earlier publication by my co-authors and me, ref. [9], it deals in principle with improving
phase space sampling by trying to bring the distribution of drawn events closer to the target.
However, instead of enhancing the phase space mappings used for importance sampling, it is
proposed to replace the existing sampling approach, i.e. adaptive multichannel importance
sampling, by nested sampling. The main motivation of the article is the realization that there
are great similarities between sampling evidence integrals in Bayesian inference and sampling
cross-sections in HEP. Since nested sampling is widely and successfully used for Bayesian
inference, especially in cosmology [260], the question naturally arises to what extent this can
be transferred to other applications. In the article reprinted below, this is examined for the
integration of partonic cross-sections and the generation of corresponding distributions of
events, which to my knowledge is the first such application of nested sampling. The scattering
of high-energy gluons with 3- 4- and 5-gluon final states serves as an example. Although this
example is much less complex than, for example, hadronic collisions with more diverse final
states, it already contains many typical difficulties that arise in the structure of QCD matrix
elements. It is therefore a good testbed, while not oversimplifying, so that the results should be
qualitatively transferable to more realistic applications.
In the article, it is shown how nested sampling can be used for event generation. The implic-

ations and possibly necessary changes in established workflows are discussed. Furthermore, it
is shown how nested sampling can be compared quantitatively with current sampling methods,
also with regard to uncertainties. When applied to the physical example, it is shown that
competitive results can be achieved even without prior knowledge, and that the method scales
advantageously to higher dimensions. Based on this, various ideas for future developments are
presented.
The article was first published as a preprint on arXiv in May 2022. Subsequently it was

submitted to the journal The European Physical Journal C. After the referees’ comments were
addressed, it was finally published in August 2022. The version published in the journal is
reprinted below. A copyright notice and a link to the material are provided on the first page of
the article. The article is licensed under a Creative Commons Attribution 4.0 International
License.

Author contributions

The idea of using nested sampling for HEP PS sampling is attributable to David Yallup. Will
Handley contributed his expertise on the nested sampling algorithm and the PolyChord
implementation of it. The examples considered in the article are based on the experience of
Steffen Schumann and me, especially through our earlier article, ref. [9]. We were able to
reuse my implementations of the rambo and haag phase space mappings as well as my
python interface to Sherpas matrix elements for the gluon scattering processes. For use
with PolyChord, I provided an implementation of the rambo mapping and an interface
to the gluon scattering matrix elements in c++. All nested sampling calculations for the
physics example presented in sec. 3 were done by David Yallup. The equivalent importance
sampling and rejection sampling calculations were done by me. The evaluation and the
presentation of the results in figures and tables were a joint effort of both of us. I contributed
the implementation and evaluation of the toy example and its extension to non-uniform priors
as presented in secs. 2.1 and 4.2. David Yallup added the examination of the posterior mass
profile, which is shown in Fig. 3. The discussion of uncertainties for the nested sampling results
in the appendix is due to David Yallup andWill Handley. All authors contributed significantly
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to the writing of the article.*

*In this work, we collaborated with researchers from the astrophysics community. Therefore, in contrast to
the other publications presented in this thesis, the order of the authors is not alphabetical. The respective
contributions are as indicated above.
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Abstract We present the first application of a Nested Sam-

pling algorithm to explore the high-dimensional phase space

of particle collision events. We describe the adaptation of the

algorithm, designed to perform Bayesian inference computa-

tions, to the integration of partonic scattering cross sections

and the generation of individual events distributed according

to the corresponding squared matrix element. As a first con-

crete example we consider gluon scattering processes into 3-,

4- and 5-gluon final states and compare the performance with

established sampling techniques. Starting from a flat prior

distribution Nested Sampling outperforms the Vegas algo-

rithm and achieves results comparable to a dedicated multi-

channel importance sampler. We outline possible approaches

to combine Nested Sampling with non-flat prior distributions

to further reduce the variance of integral estimates and to

increase unweighting efficiencies.

1 Introduction

Realistic simulations of scattering events at particle collider

experiments play an indispensable role in the analysis and

interpretation of actual measurement data for example at the

Large Hadron Collider (LHC) [1,2]. A central component of

such event simulations is the generation of hard scattering

configurations according to a density given by the squared

transition matrix element of the concrete process under con-

sideration. This is needed both for the evaluation of corre-

sponding cross sections, as well as the explicit generation

of individual events that potentially get further processed,

e.g. by attaching parton showers, invoking phenomenolog-

ical models to account for the parton-to-hadron transition,

and eventually, a detector simulation. To adequately address

the physics needs of the LHC experiments requires the eval-

uation of a wide range of high-multiplicity hard processes

that feature a highly non-trivial multimodal target density

a e-mail: dy297@cam.ac.uk (corresponding author)

that is rather costly to evaluate. The structure of the target

is thereby affected by the appearance of intermediate reso-

nances, quantum interferences, the emission of soft and/or

collinear massless gauge bosons, or non-trivial phase space

constraints, due to kinematic cuts on the final state particles.

Dimensionality and complexity of the phase space sampling

problem make the usage of numerical methods, and in partic-

ular Monte Carlo techniques, for its solution indispensable.

The most widely used approach relies on adaptive multi-

channel importance sampling, see for example [3–7]. How-

ever, to achieve good performance detailed knowledge of

the target distribution, i.e. the squared matrix element, is

needed. To this end information about the topology of scat-

tering amplitudes contributing to the considered process is

employed in the construction of individual channels. Alter-

natively, and also used in combination with importance sam-

pling phase space maps, variants of the self-adaptive VEGAS

algorithm [8] are routinely applied [9–12].

An alternative approach for sampling according to a

desired probability density is offered by Markov Chain

Monte Carlo (MCMC) algorithms. However, in the con-

text of phase space sampling in high energy physics these

techniques attracted rather limited attention, see in particu-

lar [13,14]. More recently a mixed kernel method combin-

ing multi-channel sampling and MCMC, dubbed (MC)3, has

been presented [15]. A typical feature of such MCMC based

algorithms is the potential autocorrelation of events that can

affect their direct applicability in typical use case scenarios

of event generators.

To meet the computing challenges posed by the upcom-

ing and future LHC collider runs and the corresponding event

simulation campaigns, improvements of the existing phase

space sampling and event unweighting techniques will be

crucial [16,17]. This has sparked renewed interest in the sub-

ject, largely driven by applications of machine learning tech-

niques, see for instance [18–36].

In this article we explore an alternative direction. We here

study the application of Nested Sampling [37] as imple-
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mented in PolyChord [38] to phase space integration and

event generation for high energy particle collisions. We

here assume no prior knowledge about the target and inves-

tigate the ability of the algorithm to adapt to the prob-

lem. Nested Sampling has originally been proposed to per-

form Bayesian inference computations for high dimensional

parameter spaces, providing also the evidence integral, i.e.

the integral of the likelihood over the prior density. This

makes it ideally suited for our purpose. In Sect. 2 we will

introduce Nested Sampling as a method to perform cross

section integrals and event generation, including a reliable

uncertainty estimation. In Sect. 3 we will apply the method

to gluon scattering to 3-, 4-, and 5-gluon final states as a

benchmark for jet production at hadron colliders, thereby

comparing results for total cross sections and differential dis-

tributions with established standard techniques. Evaluation

of the important features of the algorithm when applied in

the particle physics context is also discussed in this section.

In Sect. 4 we illustrate several avenues for future research,

extending the work presented here. Finally, we present our

conclusions in Sect. 5.

2 Nested sampling for event generation

The central task when exploring the phase space of scat-

tering processes in particle physics is to compute the cross

section integral, σ . This requires the evaluation of the transi-

tion squared matrix element, |M|2, integrated over the phase

space volume, Ω , where Ω is composed of all possible kine-

matic configurations, �, of the external particles. Up to some

constant phase space factors this amounts to performing the

integral,

σ =
∫

Ω

d�|M|2(�) . (1)

In practice rather than sampling the physical phase space vari-

ables, i.e. the particles’ four-momenta, it is typical to integrate

over configurations, θ ∈ [0, 1]D , from the D-dimensional

unit hypercube. Some mapping, � : [0, 1]D → Ω , is then

employed to translate the sampled variables to the physical

momenta. The mapping is defined as, � = �(θ), and the

integral in Eq. (1) is written,

σ =
∫

[0,1]D

dθ |M|2(�(θ))J (θ) =
∫

[0,1]D

dθL(θ) . (2)

A Jacobian associated with the change of coordinates

between θ and � has been introduced, J , and then absorbed

into the definition of L(θ) = |M|2(�(θ))J (θ). With no

general analytic solution to the sorts of scatterings considered

at the high energy frontier, this integral must be estimated

with numerical techniques. Numerical integration involves

sampling from the |M|2 distribution in a manner that gives

a convergent estimate of the true integral when the samples

are summed. As a byproduct this set of samples can be used

to estimate integrals of arbitrary sub-selections of the inte-

grated phase space volume, decomposing the total cross sec-

tion into differential cross section elements, dσ . Additionally

these samples can be unweighted and used as pseudo-data to

emulate the experimental observations of the collisions. The

current state of the art techniques for performing these tasks

were briefly reviewed in Sect. 1.

Importance Sampling (IS) is a Monte Carlo technique used

extensively in particle physics when one needs to draw sam-

ples from a distribution with an unknown target probability

density function, P(�). Importance Sampling approaches

this problem by instead drawing from a known sampling dis-

tribution, Q(�) (A number of standard texts for inference

give more thorough exposition of the general sampling the-

ory used in this paper, see e.g. [39]). Samples drawn from

Q are assigned a weight, w = P(�)/Q(�), adjusting the

importance of each sampled point. The performance of IS

rests heavily on how well the sampling distribution can be

chosen to match the target, and adaptive schemes like VEGAS

are employed to refine initial proposals. It is well estab-

lished that as the dimensionality and complexity of the target

increase, the task of constructing a viable sampling distribu-

tion becomes increasingly challenging.

Markov Chain based approaches fundamentally differ in

that they employ a local sampling distribution and define an

acceptance probability with which to accept new samples.

Markov Chain Monte Carlo (MCMC) algorithms are widely

used in Bayesian inference. Numerical Bayesian methods

have to be able to iteratively refine the prior distribution to

the posterior, even in cases where the two distributions are

largely disparate, making stochastic MCMC refinement an

indispensable tool in many cases. This is an important con-

ceptual point; in the particle physics problems presented in

this work we are sampling from exact theoretically derived

distributions. The lack of noise and a priori well known struc-

ture make methods with deterministic proposal distributions

such as IS more initially appealing, however at some point

increasing the complexity and dimensionality of the prob-

lem forces one to use stochastic methods. Lattice QCD cal-

culations are a prominent example set of adjacent problems

sampling from theoretical distributions that make extensive

use of MCMC approaches [40]. MCMC algorithms intro-

duce an orthogonal set of challenges to IS; a local proposal

is inherently simpler to construct, however issues with explo-

ration of multimodal target distributions and autocorrelation

of samples become new challenges to address.

Nested Sampling (NS) is a well established algorithm for

numerical evaluation of high dimensional integrals [37]. NS
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differs from typical MCMC samplers as it is primarily an

integration algorithm, hence by definition has to overcome

a lot of the difficulties MCMC samplers face in multimodal

problems. A recent community review of its various applica-

tions in the physical sciences, and various implementations

of the algorithm has been presented in [41].

At its core NS operates by maintaining a number, nlive, of

live point samples. This ensemble of live points is initially

uniformly sampled from θ ∈ [0, 1]D – distributed in the

physical volume Ω according to the shape of the mapping

�. These live points are sorted in order of L(θ) evaluated at

the phase space point, and the point with the lowest L, Lmin,

in the population is identified. A replacement for this point is

found by sampling uniformly under a hard constraint requir-

ing, L > Lmin. The volume enclosed by this next iteration

of live points has contracted and the procedure of identifying

the lowest L point and replacing it is repeated. An illustra-

tion of three different stages of this iterative compression on

an example two-dimensional function are shown in Fig. 1.

The example function used in this case has four identical

local maxima to find, practical exploration and discovery of

the modes is achieved by having a sufficient (O (10)) initial

samples in the basis of attraction of each mode. This can

either be achieved by brute force sampling a large number of

initial samples, or by picking an initial mapping distribution

that better reflects the multi-modal structure. By continually

uniformly sampling from a steadily compressing volume,

NS can estimate the density of points which is necessary for

computing an integral as given by Eq. (1). Once the itera-

tive procedure reaches a point where the live point ensemble

occupies a predefined small fraction of the initial volume,

TC , the algorithm terminates. The fraction TC can be char-

acterised as the termination criterion. The discarded points

throughout the evolution are termed dead points which can

be joined with the remaining live points to form a represen-

tative sample of the function, that can be used to estimate the

integral or to provide a random sample of events.

To estimate the integral and generate (weighted) random

samples, Nested Sampling achieves this by probabilistically

estimating the volume of the shell between the two outermost

points as approximately 1
nlive

of the current live volume. The

volume X j within the contour L j – defined by the point with

Lmin – at iteration j may therefore be estimated as,

X j =
∫

L(θ)>L j

dθ

⇒ X0 = 1,

P(X j |X j−1) =
X

nlive−1
j

nlive X
nlive

j−1

⇒ log X j ≈
− j ±

√
j

nlive
.

Fig. 1 Schematic of live point evolution (blue dots) in Nested Sam-

pling, over a two-dimensional function whose logarithm is the negative

Himmelblau function (contours). Points are initially drawn from the

unit hypercube (top panel). The points on the lowest contours are suc-

cessively deleted, causing the live points to contract around the peak(s)

of the function. After sufficient compression is achieved, the dead points

(orange) may be weighted to compute the volume under the surface and

samples from probability distributions derived from the function
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The cross section and probability weights can therefore

be estimated as,

σ =
∫

dθL(θ) =
∫

d XL(X)

≈
∑

j

L j�X j , w j ≈
�X jL j

σ
. (3)

Importantly, for all of the above the approximation signs indi-

cate errors in the procedure of probabilistic volume estima-

tion, which are fully quantifiable.

The method to sample new live points under a hard con-

straint can be realised in multiple ways, and this is one of the

key differences in the various implementations of NS. In this

work we employ the PolyChord implementation of Nested

Sampling [38], which uses slice sampling [42] MCMC steps

to evolve the live points. NS can be viewed as being an ensem-

ble of many short Markov Chains.

Much of the development and usage of NS has focused

on the problem of calculation of marginal likelihoods (or

evidences) in Bayesian inference, particularly within the field

of Cosmology [43–48]. We can define the Bayesian evidence,

Z , analogously to the particle physics cross section, σ . NS

in this context evaluates the integral,

Z =
∫

dθL(θ)π(θ) , (4)

where the likelihood function, L, plays a similar role to |M|2.

In the Bayesian inference context, the phase space over which

we are integrating, θ , has a measure defined by the prior dis-

tribution, π(θ), which without loss of generality under a suit-

able coordinate transformation can be taken to be uniform

over the unit hypercube. Making the analogy between the

evidence and the cross section explicit will allow us to apply

some of the information theoretic metrics commonly used

in Bayesian inference to the particle physics context [49],

and provide terminology used throughout this work. Among

a wide array of sampling methods for Bayesian inference,

NS possesses some unique properties that enable it to suc-

cessfully compute the high dimensional integral associated

with Eq. (4). These properties also bear a striking similar-

ity to the requirements one would like to have to explore

particle physics phase spaces. These are briefly qualitatively

described as follows:

– NS is primarily a numerical integration method that pro-

duces posterior samples as a by product. In this respect

it is comfortably similar to Importance Sampling as

the established tool in particle physics event generation.

It might initially be tempting to approach the particle

physics event generation task purely as a posterior sam-

pling problem. Standard Markov Chain based sampling

tools cannot generically give good estimates of the inte-

gral, so are not suited to compute the cross section. Addi-

tionally issues with coverage of the full phase space from

the resulting event samples are accounted for by default

by obtaining a convergent estimate of the integral over

all of the phase space.

– NS naturally handles multimodal problems [45,46]. The

iterative compression can be augmented by inserting

steps that cluster the live points periodically throughout

the run. Defining subsets of live points and evolving them

separately allows NS to naturally tune itself to the modal-

ity of unseen problems.

– NS requires a construction that can handle sampling

under a hard likelihood constraint in order to perform

the compression of the volume throughout the run. Hard

boundaries in the physics problem, such as un-physical

or deliberately cut phase space regions, manifest them-

selves in the sampling space as a natural extension of

these constraints.

– NS is largely self tuning. Usage in Bayesian inference has

found that NS can be applied to a broad range of prob-

lems with little optimisation of hyper-parameters neces-

sary [50–52]. NS can adapt to different processes in parti-

cle physics without any prior knowledge of the underlying

process needed.

The challenge to present NS in this new context is to find

an even comparison of sampling performance between NS

and IS. It is typical in phase space sampling to compare the

difference between the target and the sampling distribution as

reducing the variation between these two distributions gives

a clear metric of performance for IS. For NS there is no such

global sampling distribution; the closest analogue being the

prior which is then iteratively refined with local proposals

to an estimate of the target. In Sect. 2.1 we attempt to com-

pare the sampling distribution between NS and IS using a

toy problem, however in the full physical gluon scattering

example presented in Sect. 3 we instead focus directly on the

properties of the estimated target distribution as this is the

most direct equitable point of comparison.

2.1 Illustrative example

To demonstrate the capabilities of NS we apply the algorithm

to an illustrative sampling problem in two dimensions. Fur-

ther examples validating PolyChord on a number of chal-

lenging sampling toy problems are included in the original

paper [38], here we present a modified version of the Gaus-

sian Shells scenario. An important distinction of the phase

space use case not present in typical examples is the empha-

sis on calculating finely binned differential histograms of the

total integral. As a comparison to NS, we sample the same

problem with a method that is well-known in high energy
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physics – adaptive Importance Sampling (IS), realised using

the VEGAS algorithm.

For our toy example we introduce a “stop sign” target

density, whose unnormalised distribution is defined by

f (x, y) =
1

2π2

�r
(

√

(x − x0)2 + (y − y0)2 − r0

)2
+ (�r)2

·
1

√

(x − x0)2 + (y − y0)2

+
1

2πr0

�r

((y − y0) − (x − x0))2 + (�r)2

· 	

(

r0 −
√

(x − x0)2 + (y − y0)2

)

, (5)

where 	(x) is the Heaviside function. It is the sum of a ring

and a line segment, both with a (truncated) Cauchy profile.

The ring is centred at (x0, y0) = (0.5, 0.5) and has a radius

of r0 = 0.4. The line segment is located in the inner part

of the ring and runs through the entire diameter. We set the

width of the Cauchy profile to �r = 0.002. This distribution

can be seen as an example of a target where it makes sense to

tackle the sampling problem with a multi-channel distribu-

tion. One channel could be chosen to sample the ring in polar

coordinates and one to sample the line segment in Cartesian

coordinates. However, here we deliberately use VEGAS as a

single channel in order to highlight the limitations of the algo-

rithm. From the perspective of a single channel, there is no

coordinate system to factorise the target distribution. That

poses a serious problem for VEGAS, as it uses a factorised

sampling distribution where the variables are sampled indi-

vidually. Both algorithms are given zero prior knowledge of

the target, thus starting with a uniform prior distribution.

Our VEGAS grid has 200 bins per dimension. We train it

over 10 iterations where we draw 30k points from the current

VEGAS mapping and adapt the grid to the data. The distribu-

tion defined by the resulting grid is then used for IS without

further adaptation. This corresponds to the typical use in an

event generator, where there is first an integration phase in

which, among other things, VEGAS is adapted, followed by

a non-adaptive event generation phase. We note that VEGAS

gets an advantage in this example comparison as we do not

include the target evaluations from the training into the count-

ing. However, it should be borne in mind that in a realistic

application with a large number of events to be generated,

the costs for training are comparatively low. For NS we use

PolyChord with a number of live points nlive = 1000 and

a chain length nrepeats = 4, more complete detail of Poly-

Chord settings and their implication are given in Sect. 3.1.

Figure 2a shows the bivariate target distribution along with

the marginal x and y distributions of the target, VEGAS and

PolyChord. For this plot (as well as for Fig. 2c) we merged

70 independent runs of PolyChord to get a better visual

(c)

(b)

(a)

Fig. 2 A two-dimensional toy example: a Histogram of the target

function along with the marginal sampling distributions of VEGAS and

PolyChord. b Ratio of the target function and the probability density

function of VEGAS. c Ratio of the target density to the sampling density

of PolyChord
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representation due to the larger sample size. It can be seen

that both algorithms reproduce the marginal distributions rea-

sonably well. There is some mismatch at the boundaries for

VEGAS. This can be explained by the fact that VEGAS, as a

variance-reduction method, focuses on the high-probability

regions, where it puts many bins, and uses only few bins for

the comparably flat low-probability regions. As a result, the

bins next to the boundaries are very wide and overestimate

the tails. PolyChord also oversamples the tails, reflecting

the fact that in this example the prior is drastically different

from the posterior, meaning the initial phase of prior sam-

pling in PolyChord is very inefficient. In addition it puts

too many points where the ring and the line segment join,

which is where we find the highest values of the target func-

tion. This is not a generic feature of NS at the termination

of the algorithm, rather it reflects the nature of having two

intersecting sweeping degenerate modes in the problem, a

rather unlikely scenario in any physical integral.

Figure 2b shows the ratio between the target distribution

and the sampling distribution of VEGAS, representing the IS

weights. It can be seen that the marginals of the ratio are

relatively flat, with values between 0.1 and 5.7. However,

in two dimensions the ratio reaches values up to 1 × 10−2.

By comparing Fig. 2a and b, paying particular attention to

the very similar ranges of function values, it can be deduced

that VEGAS almost completely misses to learn the structure

of the target. It tries to represent the peak structure from the

ring and the line segment by an enclosing square with nearly

uniform probability distribution.

The same kind of plot is shown in Fig. 2c for the Poly-

Chord data. NS does not strictly define a sampling distribu-

tion, however a proxy for this can be visualised by plotting

the density of posterior samples. Here the values of the ratio

are much smaller, between 1 × 10−2 and 7. PolyChord

produces a flatter ratio function than VEGAS while not intro-

ducing additional artifacts that are not present in the original

function. The smallest/largest values of the ratio are found in

the same regions as the smallest/largest values of the target

function, implying that PolyChord tends to overestimate

the tails and to underestimate the peaks. This can be most

clearly explained by examining the profile of where poste-

rior mass is distributed throughout a run, an important diag-

nostic tool for NS runs [53]. It is shown in Fig. 3, where the

algorithm runs from left to right; starting with the entire prior

volume remaining enclosed by the live points, log X = 0, and

running to termination, when the live points contain a van-

ishingly small remaining prior volume. The posterior mass

profile, shown in blue, is the analogue to the sampling density

in VEGAS. To contextualise this against the target function,

a profile of the log-likelihood of the lowest live point in the

live point ensemble is similarly shown as a function of the

Fig. 3 Likelihood (log L) and posterior mass (LX ) profiles for a run of

PolyChord on the example target density. The x-axis tracks the prior

volume remaining as the run progresses, with log X = 0 corresponding

to the start of the run, with the algorithm compressing the volume from

left to right, where the run terminates

remaining prior volume, X . Nested Sampling can be moti-

vated as a likelihood scanner, sampling from monotonically

increasing likelihood shells. These two profiles indicate some

features of this problem, firstly a phase transition is visible in

the posterior mass profile. This occurs when the degenerate

peak of the ring structure is reached, the likelihood profile

reaches a plateau where the iterations kill off the degenerate

points at the peak of the ring, before proceeding to scan up the

remaining line segment feature. An effective second plateau

is found when the peak of the line segment is reached, with

a final small detail being the superposition of the ring likeli-

hood on the line segment. Once the live points are all occu-

pying the extrema of the line segment, there is a sufficiently

small prior volume remaining that the algorithm terminates.

The majority of the posterior mass, and hence sampling den-

sity is distributed around the points where the two peaks are

ascended. This reflects the stark contrast between the prior

initial sampling density and the target, the samples are nat-

urally distributed where the most information is needed to

effectively compress the prior to the posterior.

We compare the efficiencies of the two algorithms for

the generation of equal-weight events in Table 1. It shows

that PolyChord achieves an overall efficiency of ε =
0.0113(90) which is almost three times as high as the effi-

ciency of VEGAS. While for VEGAS the overall efficiency ε

is identical to the unweighting efficiency εuw, determined

by the ratio of the average event weight over the maximal

weight in the sample, for PolyChord we also have to take

the slice sampling efficiency εss into account, which results

from the thinning of the Markov Chain in the slice sampling

step. Here, the total efficiency ε = εssεuw is dominated by the

slice sampling efficiency. We point out that it is in the nature

of the NS algorithm that the sample size is not determinis-

tic. However, the variance is not very large and it is easily

possible to merge several NS runs to obtain a larger sample.

123

3 New sampling methods for efficiency improvements

94



Eur. Phys. J. C (2022) 82 :678 Page 7 of 19 678

Table 1 Comparison of VEGAS and NS for the toy example in terms of

size of event samples produced. NL gives the number of target evalua-

tions, NW the number of weighted events and Nequal the derived number

of equal weight events. A MC slice sampling efficiency, εss, is listed for

NS. A total, ε, and unweighting, εuw, efficiency are listed for both algo-

rithms. We report the mean and standard deviation of ten independent

runs of the respective algorithm

Algorithm NL εss NW εuw Nequal ε

VEGAS 300,000 300,000 0.004(2) 1267 (460) 0.004 (2)

NS 308,755 (17505) 0.041 (3) 12,669 (147) 0.273 (7) 3462 (96) 0.0113 (9)

Table 2 Comparison of integrals calculated in the toy example with

VEGAS and NS, along with the respective uncertainties

Algorithm I �σtot �w �MC

VEGAS 1.71 0.02 0.02

NS 1.65 0.05 0.04 0.02

Table 2 shows the integral estimates along with the corre-

sponding uncertainty measures. While the pure Monte Carlo

errors are of the same size for both algorithms, there is an

additional uncertainty for NS. It carries an uncertainty on

the weights of the sampled points, listed as �w. This arises

due to the nature of NS using the volume enclosed by the

live points at each iteration to estimate the volume of the

likelihood shell. The variance in this volume estimate can be

sampled, which is reflected as a sample of alternative weights

for each dead point in the sample. Summing up these alter-

native weight samples gives a spread of predictions for the

total integral estimate, and the standard deviation of these

is quoted as �w. This additional uncertainty compounds the

familiar statistical uncertainty, listed as �MC for all calcu-

lations. In Appendix A, we present the procedure needed to

combine the two NS uncertainties to quote a total uncertainty,

�σtot, as naively adding in quadrature will overestimate the

true error.

3 Application to gluon scattering

As a first application and benchmark for the Nested Sam-

pling algorithm, we consider partonic gluon scattering pro-

cesses into three-, four- and five-gluon final states at fixed

centre-of-mass energies of
√

s = 1 TeV. These channels

have a complicated phase space structure that is similar to

processes with quarks or jets, while the corresponding ampli-

tude expressions are rather straightforward to generate. The

fixed initial and final states allow us to focus on the under-

lying sampling problem. For regularisation we apply cuts

to the invariant masses of all pairs of final state gluons such

that mi j > 30 GeV and on the transverse momenta of all final

state gluons such that pT,i > 30 GeV. The renormalisation

scale is fixed toμR =
√

s. The matrix elements are calculated

using a custom interface between PolyChord and the matrix

element generator AMEGIC [5] within the SHERPA event gen-

erator framework [54]. Three established methods are used to

provide benchmarks to compare NS to. Principle comparison

is drawn to the HAAG sampler, optimised for QCD antenna

structures [55], illustrating the exploration of phase space

with the best a priori knowledge of the underlying physics

included. It uses a cut-off parameter of s0 = 900 GeV2.

Alongside this, two algorithms that will input no prior knowl-

edge of the phase space, i.e. the integrand, are used; adaptive

importance sampling as realised in the VEGAS algorithm [8]

and a flat uniform sampler realised using the RAMBO algo-

rithm [56,57]. VEGAS remaps the variables of the RAMBO

parametrisation using 50, 70, 200 bins per dimension for the

three-, four-, and five-gluon case, respectively. The grid is

trained in 10 iterations using 100k training points each. Note,

the dimensionality of the phase space for n-gluon production

is D = 3n−4, where total four-momentum conservation and

on-shell conditions for the external particles are implicit.

As a first attempt to establish NS in this context, we treat

the task of estimating the total and differential cross sections

of the three processes starting with no prior knowledge of

the underlying phase space distribution. For the purposes of

running PolyChord we provide the flat RAMBO sampler as

the prior, and the likelihood function provided is the squared

matrix element. In contrast to HAAG, PolyChord performs

the integration without any decomposition into channels,

removing the need for any multichannel mapping. NS is a

flexible procedure, and the objective of the algorithm can

be modified to perform a variety of tasks, a recent example

has presented NS for computation of small p-values in the

particle physics context [58]. To establish NS for the task

of phase space integration in this study, a standard usage of

PolyChord is employed, mostly following default values

used commonly in Bayesian inference problems.

The discussion of the application of NS to gluon-scattering

processes is split into four parts. Firstly, the hyperparam-

eters and general setup of PolyChord are explained in

Sect. 3.1. In Sect. 3.2 a first validation of NS performing

the core tasks of (differential) cross-section estimation from

weighted events – against the HAAG algorithm – is pre-

sented. In Sect. 3.3 further information is given to contex-

tualise the computational efficiency of NS against the alter-
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Table 3 PolyChord hyperparameters used for this analysis, parame-

ters not listed follow the PolyChord defaults

Parameter PolyChord

name

Value Description

Number of

dimensions

ndim [5, 8, 11] Dimension of sampling

space

Number of live

points

nlive 10,000 Resolution of the

algorithm

Number of

repeats

nrep ndim × 2 Length of Markov

chains

Number of prior

samples

nprior nlive Number of initial

samples from prior

Boost posterior nrep Write out maximum

number of posterior

samples

native established tools for these tasks. Finally a considera-

tion of unweighted event generation with NS is presented in

Sect. 3.4.

3.1 PolyChord hyperparameters

The hyperparameters chosen to steer PolyChord are listed

in Table 3. These represent a typical set of choices for a high

resolution run with the objective of producing a large num-

ber of posterior samples. The number of live points is one

of the parameters that is most free to tune, being effectively

the resolution of the algorithm. Typically nlive larger than

O (1000) gives diminishing returns on accuracy, Bayesian

inference usage in particle physics has previously employed

nlive = 4000 [59] to provide some context for the choice

made in this work. The particular event generation use case,

partitioning the integral into arbitrarily small divisions (dif-

ferential cross sections), logically favours a large nlive (res-

olution). The number of repeats is a parameter that controls

the length of the slice sampling chains, the value chosen

is the recommended default for reliable posterior sampling,

whereas nrep = ndim ×5 is recommended for evidence (total

integral) estimation. As this study aims to cover both differ-

ential and total cross sections, the smaller value is favoured

as there is a strong limit on the overall efficiency imposed

by how many samples are needed to decorrelate the Markov

Chains.

An important point to note is in how PolyChord treats

unphysical values of the phase space variables, e.g. if they

fall outside the fiducial phase space defined by cuts on the

particle momenta. This is not an explicit hyperparameter of

PolyChord, rather how the algorithm treats points with zero

likelihood. In both the established approaches and in Poly-

Chord the sampling is performed in the unit hypercube,

which is then translated to the physical variables which can

be evaluated for consistency and rejected if they are not phys-

ically valid. One of the strengths of NS is that the default

behavior is to consider points which return zero likelihood1

as being excluded at the prior level. During the initial prior

sampling phase, unphysical points are set to log-zero and the

sampling proceeds until nprior initial physical samples have

been obtained. Provided each connected physical region con-

tains some live points after this initial phase, the iterative

phase of MCMC sampling will explore up to the unphysi-

cal boundary. This effect necessitates a correction factor to

be applied to the integral, derived as the ratio of total initial

prior samples to the physically valid prior samples. In prac-

tice the correction factor is found in the prior_info file

written out by PolyChord. An uncertainty on this correc-

tion can be derived from order statistics [60], however it was

found to be negligibly small for the purposes of this study so

is not included.

Another standout choice of hyperparameter is the chosen

value of nprior. The number of prior samples is an impor-

tant hyperparameter that would typically be set to some

larger multiple of nlive in a Bayesian inference context,

nprior = 10 × nlive would be considered sensible for a broad

range of tasks. For the purpose of generating weighted events,

using a larger value would generally be advantageous, how-

ever increasing nprior will strongly decrease the efficiency

in generating unweighted events. As the goal is to construct

a generator taking an uninformed prior all the way through

to unweighted events, the default value listed is used. How-

ever it is notable that this is a particular feature of starting

from an uninformed prior, if more knowledge were to be

included in the prior then a longer phase of prior sampling

becomes advantageous. The final parameter noted, the factor

by which to boost posterior samples, has no effect on Poly-

Chord at runtime. Setting this to be equal to the number

of repeats simply writes out the maximum number of dead

points, hence is needed in this scenario. All plots and tables

in the remainder of this section are composed of one single

run of PolyChord with these settings, with the additional

entries in Table 4 demonstrating a join of ten such runs.

3.2 Exploration and integrals

Before examining the performance of NS in detail, it is

first important to validate that the technique is capable of

fully exploring particle physics phase spaces in these cho-

sen examples. The key test to validate this is to compare

if various differential cross sections calculated with NS are

statistically consistent with the established techniques. To do

this, a single NS and HAAG sample of weighted events is pro-

duced, using approximately similar levels of computational

1 Since PolyChord operates in log space, to avoid the infinity associ-

ated with log(0), log-zero is defined as a settable parameter. By default

this is chosen to −1 × 10−25.
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Table 4 Comparison of integrals calculated for the three-, four- and five-gluon processes using RAMBO, VEGAS, NS and HAAG, along with the

respective uncertainties

Process Algorithm σ �σtot �w �MC

3-jet RAMBO 24.580 0.191 0.191

VEGAS 24.807 0.017 0.017

NS 24.669 0.467 0.484 0.100

NS (×10) 24.888 0.145 0.150 0.030

HAAG 24.840 0.017 0.017

4-jet RAMBO 9.876 0.107 0.107

VEGAS 9.849 0.009 0.009

NS 9.837 0.194 0.196 0.036

NS (×10) 9.778 0.064 0.066 0.011

HAAG 9.853 0.006 0.006

5-jet RAMBO 2.644 0.024 0.024

VEGAS 2.680 0.003 0.003

NS 2.612 0.051 0.048 0.009

NS (×10) 2.667 0.017 0.017 0.003

HAAG 2.685 0.001 0.001

overhead (more detail on this is given in Sect. 3.3). Both sets

of weighted events are analysed using the default MC_JETS

Rivet routine [61]. Rivet produces binned differential cross

sections as functions of various physical observables of the

outgoing gluons. For each process, the total cross section

for the NS sample is normalised to the HAAG sample, and a

range of fine grained differential cross sections is calculated

using both algorithms covering the following observables;

ηi , yi , pT,i , �Çi j , mi j , �Ri j , �ηi j , where i �= j label the

final state jets, reconstructed using the anti-kT algorithm [62]

with a radius parameter of R = 0.4 and pT > 30 GeV. The

normalised difference between the NS and HAAG differential

cross section in each bin can be computed as,

È =
dσHAAG − dσNS
√

�2
HAAG + �2

NS

, (6)

in effect this is the differences between the two algorithms

normalised by the combined standard deviation. By sum-

ming up this È deviation across all the available bins in each

process, a test to see if the two algorithms are convergent

within their quoted uncertainties can be performed. Since

over 500 bins are populated and considered in each process,

it is expected that the rate of these È deviations should be

approximately normally distributed. This indeed appears to

hold, and these summed density estimates across all observ-

ables are shown in Fig. 4, alongside an overlaid normal distri-

bution with mean zero and variance one, N (0, 1), to illustrate

the expected outcome. Two example variables that were used

to build this global deviation are also shown; the leading jet

pT in Fig. 5a and �R12, the distance of the two leading jets

in the (η, Ç) plane, in Fig. 5b.

The composition of the quoted uncertainty for the two

algorithms differs, demonstrating an important feature of an

NS calculation. For HAAG, and IS in general, it is conven-

tional to quote the uncertainty as the standard error from the

effective number of fills in a bin. Nested Sampling on the

other hand introduces an uncertainty on the weights used

to fill the histograms themselves, effectively giving rise to

multiple weight histories that must be sampled to derive the

correct uncertainty on the NS calculation. Details on this cal-

culation are supplied in Appendix A. In summary the alter-

native weight histories give an overlapping measure of the

statistical uncertainty, so this effect must be accounted for

in situ alongside taking the standard deviation of the weight

histories. To contextualise this, the middle panels in Fig. 5

show the correct combined uncertainty (using the recipe from

Appendix A) as a grey band, against the bands derived from

the standard error of each individual algorithm (henceforth

�MC) as dashed lines, and the complete NS error treatment

as a dotted line. The standard error (dashed) NS band in these

panels is a naive estimation of the full NS uncertainty (dot-

ted), however this illustrates an important point; at the level

of fine grained differential observables the NS uncertainty is

dominated by statistics and is hence reducible as one would

expect by repeated runs. Based on the example observables

we can initially conclude that whilst both algorithms appear

compatible, when using weighted events NS generally has a

larger uncertainty than HAAG across most of the range (given

a roughly equivalent computational overhead). However, fur-

ther inspection of the resulting unweighted event samples
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Fig. 4 Global rate of occurrence of per bin deviation, È , between HAAG and NS, for each considered scattering process. A normally distributed

equivalent deviation rate is shown for comparison

derived from these weighted samples in the remaining sec-

tions reveals a more competitive picture between the two

algorithms.

The estimates of the total cross sections, derived from

the sum of weighted samples, provided in Table 4, give an

alternative validation that NS is sufficiently exploring the

phase space by ensuring that compatible estimates of the

cross sections are produced between all the methods reviewed

in this study. The central estimates of the total cross sections

are generally consistent within the established error sources

for all calculations considered. In this table the components

of the error calculation for NS are listed separately; �w being

the standard deviation resulting from the alternative weight

histories and �MC being the standard error naively taken

from the mean of the alternative NS weights. In contrast to

the differential observables, the naive counting uncertainty

is small so has negligible effect at the level of total cross

sections. In summary, for a total cross section the spread of

alternative weight histories gives a rough estimate of the total

error, whereas for a fine grained differential cross section the

standard error dominates. The way to correctly account for

the effect of counting statistics within the weight histories is

given in Appendix A.

Repeated runs of NS will reduce these uncertainties. The

anesthetic package [63] is used to analyse the NS runs

throughout this paper, and contains a utility to join samples.

Once samples are joined consistently into a larger sample, the

uncertainties can be derived as already detailed. The result of

joining 10 equivalent NS runs with the previously motivated

hyperparameters is also listed in Table 4. Joining 10 runs

affects the �σtot for NS in two ways; reducing the spread

of weighted sums composing �w (i.e. reducing �MC), and

reducing the variance of distribution for each weight itself

(i.e. the part of �w that does not overlap with �MC). The

former is reduced by simply having an increased size of sam-

ples produced, increasing the number of effective fills by a

factor of ∼10 in this case, with the latter reduced due to the

increased effective number of live points used for the volume

estimation.

3.3 Efficiency of event generation

An example particle physics workflow on this gluon scat-

tering problem would be to take HAAG as an initial map-

ping of the phase space (effectively representing the best

prior knowledge of the problem), and using VEGAS to refine

the proposal distribution to optimally efficiently generate

weighted events. Of the three existing tools presented in this

study for comparison (HAAG, RAMBO, and VEGAS), NS bears

most similarity to VEGAS, in that both algorithms learn the

structure of the target integrand. To this end an atypical usage

of VEGAS is employed, testing how well VEGAS could learn

a proposal distribution from an uninformed starting point

(RAMBO). This is equivalent to how NS was employed, start-

ing from an uninformed prior (RAMBO) and generating pos-

terior samples via Nested Sampling. It was motivated so far

that roughly similar computational cost was used for the pre-

vious convergence checks, and that the hyperparameters of

PolyChord were chosen to emphasise efficient generation

of unweighted events. In what follows, we analyse more pre-

cisely this key issue of computational efficiency.

The statistics from a single run of the four algorithms for

the three selected processes is listed in Table 5. NS is non

deterministic in terms of number of matrix element evalua-

tions (NL), instead terminating from a pre determined con-

vergence criterion of the integral. HAAG, VEGAS, RAMBO
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(a)

(b)

Fig. 5 Two example physical differential observables computed with

weighted events using the HAAG and NS algorithms. The top panels

show the physical distributions, the middle panels display the relative

component error sources, and the bottom panel displays the normalised

deviation. The deviation plot has been normalised such that È = 1

corresponds to an expected 1σ deviation of a Gaussian distribution.

Note that for illustrative purposes the cross sections for the four- and

five-gluon processes have been scaled by global factors
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Table 5 Comparison of the four algorithms for the three processes

in terms of size of event samples produces. NL gives the number of

matrix element evaluations, NW the number of weighted events, NW,eff

the effective number of weighted events and Nequal the derived number

of equal-weight events. A MC slice sampling efficiency, εss, is listed

for NS. A total, ε, and an unweighting, εuw, efficiency are listed for all

algorithms

Process Algorithm NL
(×106) εss NW

(×106) εuw Nequal
(×106) ε

3-jet RAMBO 10.00 10.00 0.0001 0.001 0.0001

VEGAS 10.00 10.00 0.02 0.20 0.02

NS 6.43 0.03 0.17 0.37 0.06 0.01

HAAG 10.00 10.00 0.03 0.29 0.03

4-jet RAMBO 10.00 10.00 0.00003 0.0003 0.00003

VEGAS 10.00 10.00 0.005 0.049 0.005

NS 7.94 0.02 0.19 0.43 0.08 0.01

HAAG 10.00 10.00 0.02 0.23 0.02

5-jet RAMBO 10.00 10.00 0.00004 0.0004 0.00004

VEGAS 10.00 10.00 0.001 0.013 0.001

NS 9.17 0.02 0.19 0.44 0.08 0.01

HAAG 10.00 10.00 0.03 0.25 0.03

are all used to generate exactly 10M weighted events. The

chosen PolyChord hyperparameters roughly align the NS

method with the other three in terms of computational cost.

One striking difference comes from the Markov Chain nature

of NS. Default usage only retains a fraction of the total L

evaluations, inversely proportional to nrep. This results in a

smaller number of retained weighted events, NW , than the

number of L evaluations, NL, for NS. However the retained

weighted events by construction match the underlying dis-

tribution much closer than the other methods, resulting in

a higher unweighting efficiency, εuw, for the NS sample.

Exact equal-weight unweighting can be achieved by accept-

ing events with a probability proportional to the share of the

sample weight they carry, this operation is performed for

all samples of weighted events and the number of retained

events is quoted as Nequal. NS as an unweighted event gen-

erator has some additional complexity due to the uncertainty

in the weights themselves, this is given more attention in

Sect. 3.4.

Due to differences in NL between NS and the other

methods, it is most effective to compare the total effi-

ciency in producing unweighted events, ε = Nequal/NL.

RAMBO as the baseline illustrates the performance one would

expect, inputting no prior knowledge and not adapting to

any acquired knowledge. As such RAMBO yields a tiny ε.

HAAG represents the performance using the best state of prior

knowledge but without any adaptation, in these tests this

represents the best attainable ε. VEGAS and NS start from

a similar point, both using RAMBO as an uninformed state

of prior knowledge, but adapting to better approximate the

phase space distribution as information is acquired. VEGAS

starts with a higher efficiency than NS for the 3-gluon pro-

cess, but the VEGAS efficiency drops by approximately an

order of magnitude as the dimensionality of phase space is

increased to the 5-gluon process. NS maintains a consistent

efficiency of approximately a percent, competitive with the

consistent approximately three percent efficiency obtained

by HAAG.

As the key point of comparison for this issue is the effi-

ciency, ε, this is highlighted with an additional visualisation

in Fig. 6. The scaling behavior of the efficiency of each algo-

rithm as a function of the number of outgoing gluons (cor-

responding to an increase in phase space dimensionality) is

plotted for NS, HAAG and VEGAS. From the same starting

point, NS and VEGAS can both learn a representation of the

phase space, and do so in a way that yields a comparable effi-

ciency to the static best available prior knowledge in HAAG.

As the dimensionality of the space increases it appears that

VEGAS starts to suffer in how accurately it can learn the map-

ping, however NS is still able to learn the mapping in a con-

sistently efficient manner.

3.4 Unweighted event generation

The fact that NS leads to a set of alternative weight his-

tories poses a technical challenge in operating as a gener-

ator of unweighted events in the expected manner. Exact

unweighting, compressing the weighted sample to strictly

equally weighted events leads to a different set of events

being accepted for each weight history. Representative yields

of unweighted events can be calculated as shown in Table 5

using the mean weight for each event, but the resulting dif-

ferential distributions will underestimate the uncertainty if

this is quoted simply as the standard error in the bin, as

described in Appendix A. The correct uncertainty recipe

can be propagated through naively, by separately unweight-
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Fig. 6 Visualisation of the efficiencies listed in Table 5

ing each weight history, however this requires saving as

many event samples as required weight variations. Partial

unweighting is commonly used in HEP event generation to

allow a slight deviation from strict unit weights, to increase

efficiency in practical settings. A modification to the partial

unweighting procedure could be used to propagate the spread

of weights to variations around accepted, approximate unit

weight, events.

To conclude the exploration of the properties of NS as

a generator for particle physics, a representative physical

distribution calculated from a sample of exact unit-weight

events is shown in Fig. 7. This sample is derived from the

same weighted sample described in Table 5 and previously

presented as a weighted event sample in Fig. 5a. The full

set of NS variation weights is used to calculate the mean

weight for each event, which is used to unweight the sample,

for the chosen observable this is a very reasonable approx-

imation as the fine binning means the standard error is the

dominant uncertainty. The range of the leading jet transverse

momenta has been extended into the tail of this distribution

by modifying the default Rivet routine. This distribution

largely reflects the information about the total efficiency pre-

viously illustrated in Fig. 6, projected onto a familiar differ-

ential observable. The total efficiency, ε, was noted as being

approximately one percent from NS, compared to approxi-

mately three percent from HAAG across all processes. If the

total number of matrix element evaluations, NL, were to be

made equal across all algorithms and processes, the perfor-

mance would be further consistent.

4 Future research directions

Throughout Sect. 3, the performance of Nested Sampling

in the context of particle physics phase space sampling and

event generation was presented. A single choice of hyperpa-

rameters was made, effectively performing a single NS run

as an entire end-to-end event generator; starting from zero

knowledge of the phase space all the way through to gener-

ating unweighted events. Simplifying the potential options

of NS to a single version of the algorithm was a deliberate

choice to more clearly illustrate the performance of NS in

this new context, using the same settings for multiple tasks

gives multiple orthogonal views on how the algorithm per-

forms. However this was a limiting choice, NS has a number

of variants and applications that could more effectively be

tuned to a subset of the tasks presented. Some of the possi-

ble simple alterations – such as increasing nprior to improve

weighted event generation at the expense of unweighting effi-

ciency – were motivated already in this paper. In this section

we outline four broad topics that extend the workflow pre-

sented here, bringing together further ideas from the worlds

of Nested Sampling and phase space exploration.

4.1 Physics challenges in event generation

The physical processes studied in this work, up to 5-gluon

scattering problems, are representative of the complexity

of phase space calculation needed for the current precision

demands of the LHC experiment collaborations [64]. How-

ever part of the motivation for this work, and indeed the

broader increased interest in phase space integration meth-

ods, is due to the impending breaking point current pipelines

face under the increased precision challenges of the HL-LHC

programme. Firstly we observe that the phase space dimen-

sionality of the highest multiplicity process studied here is

11. In broader Bayesian inference terms this is rather small,

with NS being typically used for problems O (10) to O (100)

dimensions, where it is uniquely able to perform numerical

integration without approximation or strictly matching prior

knowledge. The PolyChord implementation is styled as

next-generation Nested Sampling, designed to have polyno-

mial scaling with dimensionality aiming for robust perfor-

mance as inference is extended to O (100) dimensions. Ear-

lier implementations of NS, such as MultiNest [46], whilst

having worse dimensional scaling properties, may be a useful

avenue of investigation for the lower dimensional problems

considered in this paper.

This work validated NS in a context where current tools

still can perform the required tasks, albeit at times at immense

computational costs. Requirements from the HL-LHC strain

the existing LHC event generation pipeline in many ways

and pushing the sampling problem to higher dimensions is

no exception [2]. Importance Sampling becomes exponen-

tially more sensitive to how close the proposal distribution

matches the target in higher dimensions, a clear challenge for

particle physics in two directions; multileg processes rapidly

increasing the sampling dimension [65] and corresponding

radiative corrections (real and virtual) make it increasingly
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Fig. 7 The equivalent leading jet transverse momentum observable as calculated in Fig. 5a, using an exact unit weight compression of the same

samples. A modified version of the default MC_JETS routine has been used to extend the pT range shown

hard to provide an accurate proposal, e.g. through the sheer

number of phase space channels needed and by having to

probe deep into singular phase space regions [66]. We pro-

pose that NS is an excellent complement to further investiga-

tion on both these fronts. The robust dimensional scaling of

NS illustrated against VEGAS in Fig. 6 encapsulates both solid

performance with increasing dimension, and the adherence

to an uninformed prior whilst still attaining this scaling is

promising for scenarios where accurate proposals are harder

to construct.

4.2 Using prior knowledge

Perhaps the most obvious choice that makes the application

here stylised is in always starting from an uninformed prior

state of knowledge. Using Equations (2) and (4), the cross

section integral with a phase space mapping was motivated

as being exactly the Bayesian evidence integral with a choice

of prior. To that end there is no real distinction between tak-

ing the non-uniform HAAG distribution as the prior instead

of the flat RAMBO density that was used in this study. In this

respect NS could be styled as learning an additional compres-

sion to the posterior distribution, refining the static proposal

distributions typically employed to initiate the generation of

a phase space mapping (noting that this is precisely what

VEGAS aims to do in this context).

Naively applying a non-flat mapping exposes the conflict-

ing aims at play in this set of problems however; efficiently

generating events from a strongly peaked distribution, and

generating high statistics estimates of the tails of the same

distribution. Taking a flat RAMBO prior is well suited to the

latter problem, whereas taking a HAAG prior is better suited

to the former. One particular hyperparameter of PolyChord

that was introduced can be tuned to this purpose; the num-

ber of prior samples, nprior. If future work is to use a non flat,

partially informed starting point, increasing nprior well above

the minimum (equal to the number of live points required)

used in this study would be needed. A more complete direc-

tion for further work would be to investigate the possibility

of mixing multiple proposal distributions [67,68].

As a demonstration, we again apply NS to the toy example

of Sect. 2.1 but this time using a non-uniform prior distribu-

tion. While a good prior would be an approximation of the

target distribution, we choose to purposely miss an impor-

tant feature of the target, the straight line segment, that the

sampler still has to explore. Considering that in HEP appli-

cations the prior knowledge may be encoded in the mixture

distributions of a multi-channel importance sampler, this is

an extreme version of a realistic situation. As typically the

number of channels grows dramatically with increasing final-

state particle multiplicity, e.g. factorially when channels cor-

respond to the topologies of contributing Feynman diagrams,

one might choose to disable some sub-dominant channels in
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order to avoid a prohibitively large set of channels. However,

this would lead to a mis-modelling of the target in certain

phase-space regions.

Here we use only the ring part of the target, truncated on

a circle that covers the unit hypercube, as our prior. With-

out an additional coordinate transformation this prior would

not be of much use for VEGAS as the line part remains on

the diagonal. To sample from the prior, we first transform to

polar coordinates. Then we sample the angle uniformly and

the radial coordinate using a Cauchy distribution truncated to

the interval (0, 1/
√

2]. In order to have good coverage of the

tails, despite the strongly peaked prior, we increase nprior to

50 × nlive. This results in a total efficiency of ε = 0.037(4),

more than three times the value obtained with a uniform

prior, cf. Table 1. While the unweighting efficiency reduces

to εuw = 0.17(2), the slice sampling efficiency increases to

εss = 0.216(7). In Fig. 8 we show the ratio between the

target function and the PolyChord sampling distribution.

Compared to Fig. 2c, the ratio has a smaller range of values.

Along the peak of the ring part of the target function, the

ratio is approximately one. The largest values can be found

around the line segment with PolyChord generating up to

ten times less samples than required by the target distribution.

It can be concluded that even with an intentionally poor prior

distribution, PolyChord benefits from the prior knowledge

in terms of efficiency and still correctly samples the target

distribution including the features absent from the prior.

4.3 Dynamic nested sampling

In addition to using a more informed prior to initiate the

Nested Sampling process, a previous NS run can be used to

further tune the algorithm itself to a particular problem. This

is an existing idea in the literature known as dynamic Nested

Sampling [69]. Dynamic NS uses information acquired about

the likelihood shells in a previous NS run to varying the num-

ber of live points dynamically throughout the run. This results

in a more efficient allocation of the computation towards

the core aim of compressing the prior to the posterior. We

expect that this would only increase the efficiency of the

unweighting process, as the density of weighted events would

be trimmed to even more closely match the underlying phase

space density. Dynamic Nested Sampling naturally combines

with the proposal of using prior knowledge to make a more

familiar generator chain, however one that is driven primarily

by NS. This mirrors the current established usage of VEGAS

in this context; using VEGAS to refine the initial mapping

by a redistribution of the input variables, to more efficiently

generate from the acquired mapping.

Fig. 8 The ratio of the target function of the two-dimensional toy

example and the probability density function of PolyChord using

a non-uniform prior distribution. Black histogram bins have not been

filled by any data due to limited sample size

4.4 Connection to modern machine learning techniques

There has been a great deal of recent activity coincident to

this work, approaching similar sets of problems in particle

physics event generation using modern Machine Learning

(ML) techniques [70]. Much of this work is still exploratory

in nature, and covers such a broad range of activity that com-

prehensively reviewing the potential for combining ML and

NS is beyond the scope of this work. It is however clear

that there is strong potential to include NS into a pipeline

that modern ML is already aiming to optimise. To that aim,

we identify a particular technique that has been studied pre-

viously in the particle physics context; using Normalising

Flows to train phase space mappings [29–31]. In spirit a flow

based approach, training an invertible probabilistic mapping

between prior and posterior, bears a great deal of similarity

to the core compression idea behind Nested Sampling. The

potential in dovetailing Nested Sampling with a flow based

approach has been noted in the NS literature [71], further

motivating the potential for synergy here.

The ability of NS to construct mappings of high dimen-

sional phase spaces without needing any strong prior knowl-

edge, can be motivated as being an ideal forward model with
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which to train a Normalising Flow. In effect this replaces the

generator part of the process with an importance sampler,

whilst still using NS to generate the mappings. This is par-

ticularly ideal in this context, as the computational overhead

required to decorrelate the Markov Chains imposes a harsh

limit on the efficiency of a pure NS based approach. Com-

bining these techniques in this way could retain the desirable

features of both and serve to mitigate the ever increasing

computational demands of energy frontier particle physics.

We close by noting that also in the area of lattice field

theory Normalising Flows have recently attracted attention,

see e.g. [72,73], to address the sampling of multimodal target

function. We envisage that also in these applications Nested

Sampling could be applied.

5 Conclusions

The establishing study presented here had two main aims.

Firstly to introduce the technique of Nested Sampling,

applied to a realistic problem, to researchers in the particle

physics community. Secondly to provide a translation back

to researchers working on Bayesian inference techniques,

presenting an important and active set of problems in parti-

cle physics that Nested Sampling could provide a valuable

contribution to. The physical example presented used Poly-

Chord to perform an end-to-end generation of events with-

out any input prior knowledge. This is a stylised version of the

event generator problem, intended to validate Nested Sam-

pling in this new context and demonstrate some key features.

For the considered multi-gluon production processes Nested

Sampling was able to learn a mapping in an efficient manner

that exhibits promising scaling properties with phase space

dimension. We have outlined some potential future research

directions; highlighting where the strengths of this approach

could be most effective, and how to embed Nested Sam-

pling in a more complete event generator workflow. Along

these lines, we envisage an implementation of the Nested

Sampling technique for the SHERPA event generator frame-

work [54], possibly also supporting operation on GPUs [74].

This will provide additional means to address the computing

challenges for event generation posed by the upcoming LHC

runs.
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Appendix: Uncertainties in nested sampling

Typical Nested Sampling literature focuses on two main

sources of uncertainty; an uncertainty on the weights of the

dead points due to the uncertainty in the volume contraction

at each iteration, and an uncertainty on the overall volume

arising from the path the Markov Chain takes through the

space to perform each iteration. The former source is what

we consider in this work, and can be calculated as a sam-

ple of weights for each dead point using anesthetic. The

latter source can be estimated using the nestcheck pack-

age [75], the method presented here uses combinations of

multiple runs to form integral estimates meaning the best

strategy to minimise this effect is already baked in. Further

use cases would benefit from more thorough cross checks

using nestcheck.

The usual source of uncertainty in a binned histogram in

particle physics comes from the standard error. Importance

Sampling draws sample events with associated weights wi ,

with the sum of these sample weights giving the estimated

cross section in a bin. The effective number of fills in a bin

using weighted samples is,

N =

(
∑

i wi

)2

∑

i w2
i

. (7)

The inverse square root of N then constitutes the standard

error on the cross section in the bin. In practice this means that

the standard deviation of an integral estimated with Impor-

tance Sampling can be quoted as �MC =

√

∑

i (w
2
i ). In typ-

ical NS applications this is significantly smaller than the pre-
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viously mentioned sources, and thus often not considered.

However, when using NS as a phase space event genera-

tor for finely binned differential observables, the statistical

uncertainty can become a significant effect so must be taken

into account. Adding the standard error to the weight uncer-

tainty in quadrature is a suitable upper bound for the NS

uncertainty but is found to overestimate the uncertainty in

some bins. While the standard error gives a measure of the

spread of weights around the mean weight in a bin, alterna-

tive weights from the sampling history in NS also give an

overlapping measure of this.

To correctly account for the statistical error in this context

a revised recipe is needed. The following proposed procedure

reweights the alternative weight samples to account for the

spread of the resulting effective fills in each bin. The effective

number of entries in a bin arising from a NS run can be written

as,

N j =

(
∑

i w j,i

)2

∑

i w2
j,i

, (8)

where i indexes the number of weighted samples in each

bin, and j indexes the alternative weights. The result of the

j sampled weight variations is a set of j different effective

counts in each bin. These counts can be modelled as j trials

of a multinomial distribution with j categories, written as,

P(N | α) =
j !

∏

j N j !

∏

j

α
N j

j , (9)

where a probability of sampling each category, α j , has been

introduced. The desired unknown distribution of α j can be

found using Bayes theorem to invert the arguments. If an

uninformative conjugate prior to the multinomial distribu-

tion is used, the Dirichlet distribution, the desired inverted

probability can also be written in the form of a Dirichlet

distribution,

P(α | N ) = Γ

⎛

¿

∑

j

N j

À

⎠

∏

j

α
N j −1

j

Γ (N j )
. (10)

A sample vector of α j from this Dirichlet distribution, will

give a probability of observing each category N j . This prob-

ability can be used to weight the categories giving a weighted

set of effective number of fills, {α j N j }. This considers each

alternative weight sample as a discrete sample from an under-

lying continuous distribution N j is sampled from. The set of

weighted effective fills can be used to quote a weighted set of

samples of the bin cross section by multiplying by the square

of the sum of the weights, {σ j } = {α j N j

∑

i (w
2
j,i )}. The esti-

mated cross section in the bin is then the expected value of this

set, σ = E[σ j ], and the total standard deviation on this cross

section is derived from the variance, �σtot = (Var[σ j ])
2.
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3.3 Comparison between the two approaches and opportunities for
synthesis

In sections 3.1.3 and 3.2.2, two very different approaches with a common goal are presented:
NFs as a replacement for the classic vegas algorithm in adaptive multichannel sampling, and
nested sampling as an alternative method for PS sampling. Both try to find an efficient way to
generate PS points whose distribution closely approximates the desired differential cross-section
distribution. In some sense, the NF approach is a minimal change to the current standard. It
does not change any of its guarantees and does not require changes to existing workflows, if
training and evaluation of the NFs is automated. Note, however, that the NFs benefit greatly
from running on GPUs in a parallelized way, which are not yet available in standard workflows.
Nested sampling, on the other hand, is a fundamentally different sampling algorithm. Notable
differences include the non-deterministic number of events and the estimation of uncertainties.
In the examples considered in the publication, we have applied nested sampling without

any prior knowledge, and achieved impressive efficiencies and scaling. It can be expected
that the performance can be further improved by using an informed prior that implements
some of our physics knowledge, e.g. the location and shape of peaks in phase space. Such a
prior distribution can be provided in the form of a transformation from the unit hypercube
to the parameterization of the target function. This is reminiscent of the use of PS mappings
for importance sampling and it should be possible to construct prior distributions for nested
sampling based on these mappings. Consequently, it should also be possible to use adaptive
bijections like vegas and NFs to further tune these prior distributions to the target. Such an
approach was suggested and demonstrated for a cosmological application in ref. [263]. To deal
with the topological issues of NFs, e.g. in the case of multimodal targets, ref. [264] introduced
piecewise normalizing flows, where the target distribution is divided into clusters and an NF is
trained on each cluster. In this way, one can hope to combine the benefits of NFs and nested
sampling. Implementation and evaluation for HEP examples is left to future research.
Another approach that uses NFs for nested sampling was presented in ref. [265]. The authors

trained an NF on a set of live points to map their distribution to a Gaussian latent space. This
can then be used as a proposal to sample new live points within an iso-likelihood contour. If
the mapping is perfect, the complicated iso-likelihood contours in the target space are mapped
to spherical contours in the latent space, which are much easier to sample from. The idea then
is to take the current worst point, map it to latent space, and sample a new point in latent
space with a larger likelihood. The new point can be mapped back to target space, and serve
as a proposal for a new live point. Since the mapping is not perfect in practice, the proposals
have to be resampled to ensure their distribution matches the prior. To this end, the authors
proposed to use rejection sampling. Assuming a well-trained NF, the acceptance rate is high
and the method requires few likelihood evaluations to sample new live points. The method
is suited for applications where the likelihood is expensive to evaluate, such that the costs of
training the NF are offset by the reduced number of likelihood evaluations. The authors used
gravitational-wave inference as an example, finding that they were able to half the number of
likelihood evaluations required. In ref. [266], the method was further developed, including by
the use of a mixture of NFs.
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4 Accelerating unweighted event generation

In chapter 3, two methods for the efficient generation of weighted scattering events, with
the possibility of unweighting them, are presented. Below we consider an alternative, com-
plementary approach. It targets solely unweighted event generation, and offers no benefits
for the generation of weighted events or for calculating the total cross-section. The idea is
to approximate a computationally expensive matrix element by a fast and accurate surrogate
in the form of a neural network. This surrogate is then used for unweighting by taking it as
the target in the rejection sampling step. Unavoidably, we introduce an error by doing this:
we accept or reject events based on the wrong probability, and therefore the distribution of
the unweighted events is biased. The key insight here is that this bias can be fully corrected
by introducing a second unweighting step, which uses the true value of the ME. However,
we only have to call the expensive true ME for those events that have been accepted in the
first unweighting step. Thus, if the first unweighting efficiency is sufficiently low, we can
significantly reduce the number of calls to the true ME and gain overall efficiency.
An important ingredient for themethod is partial unweighting. Thismethod is not introduced

in the previous chapters since it is not relevant to the discussion there. It is, however, a standard
method in MC event generation and routinely used. In the context of this chapter, it takes on a
more important role. Partial unweighting is therefore introduced in section 4.1.
The surrogate unweighting method was first published in the article titled ‘Accelerating

Monte Carlo event generation—rejection sampling using neural network event-weight es-
timates’ [11]. After a short introduction, the article is reprinted in section 4.2. In a second
article, ref. [12], the method was combined with the more sophisticated ME emulation model
of ref. [64]. This article is the subject of section 4.3. Section 4.4 concludes this chapter by
explaining the relationship of the two-step surrogate unweighting method to the efficiency
improvement methods presented in chapter 3.

4.1 Partial unweighting

Partial unweighting is based on the rejection sampling algorithm, which is introduced in
section 2.3.4. In section 2.3.5, it is furthermore explained why it is often desired to use rejection
sampling to generate unweighted event samples. To apply rejection sampling, a scaling factor
is needed that ensures that the proposal always lies above the target. Therefore, it has to
be at least as large as the maximum weight appearing in the weighted event sample. In
practical applications, though the maximum weight is typically unknown a priori, and has to
be determined somehow. One could search for the maximum using a blackbox optimization
algorithm, e.g. Nelder-Mead [267] or Basin-hopping [268]. However, this can take many
function evaluations and be very costly for target functions that are expensive to evaluate.
Therefore, another approach is typically used. It is necessary anyway to have an initial run
of the event generator where weighted events are generated and used to determine the total
cross-section, as well as to optimize the PS sampler. Thus, it is a natural idea to use this run
also to determine the maximum event weight. Note, however, that this can only be done after
the PS optimization has finished, since the maximum weight depends on the shape of the
sampling density.
It is clear that it is unlikely to find the global maximum from a finite event sample. Therefore,

it can happen that we use a scaling factor � < �max and later, during unweighting, encounter
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Figure 4.1: Partial unweighting applied to a one-dimensional target function.

events with weights larger than �. Technically, this means that they have an acceptance
probability larger than one, and will always be accepted. However, if we treat these events the
same as the other accepted events, this will distort their distribution and introduce a deviation
from the target distribution. This situation is demonstrated in fig. 4.1, where the scaled proposal
underestimates the target in the peak region. As a consequence, the second trial point, �trial,2,
has an acceptance probability above one. The correct way to deal with such an event is to
assign a weight to it, given by

�̃� = ��� = �(��)��(��) . (4.1)

Since �̃� is always larger than one, we call it an overweight. The resulting event sample,
consisting of unit-weighted and overweighted events, is not properly unweighted any longer.
We call it a partially unweighted sample.
While at first glance it may not seem desirable to have overweighted events, partial unweight-

ing is often used intentionally. In Sherpa, as well as other generators, it is the default setting.
The reasoning behind this is based on the fact that the appearance of overweights can not be
avoided except by deliberately overestimating the maximum weight, which in turn leads to
low unweighting efficiencies and wasted computational efforts. In this way, the efficiency of
event generation can be dominated by a few rare outliers. At the same time, the actual impact
of overweights is typically small, since they appear at low frequencies and are mostly close to
one. In order to end up with reasonable unweighting efficiencies, it can thus be sensible to
work with a reduced scaling factor, � < �max, in a way that keeps the impact of overweighted
events under control. This can be done in several ways, leading to different choices of scaling
factors. The method that is used by Sherpa monitors the weights appearing in the initial run
and chooses a value for the scaling factor for which it can be expected that the overweights do
not contribute more than a certain percentage to the total cross-section. Note that this requires
a large enough sample of weighted events to be somewhat reliable. However, in practice this is
anyway needed for a good estimate of the total cross-section. More details on the method are
given in section 4.2. An alternative method is also presented there.
It is important to note that a correct statistical treatment requires to always take the over-

weights into account. Ignoring the overweights, and thereby treating a partially unweighted
sample the same as a fully unweighted one, inadvertently introduces bias. However, when
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Figure 4.2: Surrogate unweighting applied to a one-dimensional target function.

the overweights are not too large and not too frequent, the bias can be small in comparison to
other uncertainties.

4.2 Publication: Accelerating Monte Carlo event generation –
rejection sampling using neural network event-weight
estimates

In this section, the article ‘Accelerating Monte Carlo event generation – rejection sampling
using neural network event-weight estimates’ is presented. In contrast to the publications
presented in chapter 3, this article is not concerned with increasing the unweighting efficiency
of event generation. Instead, it introduces the idea of speeding up unweighted event generation
by using fast and accurate surrogates for the event weights. This is illustrated in fig. 4.2, where
in comparison to fig. 4.1 the target function has been replaced by a toy surrogate that changes
the acceptance probability. However, the surrogate unweighting method is unbiased, because
it adopts a second unweighting step that corrects for the approximation errors of the surrogate.
The method is a promising approach in situations where the event weight is expensive to
evaluate, due to complicated matrix elements, and where the unweighting efficiency of an
event generator is low, due to limitations of the phase space mappings. This is typically the
case with high-multiplicity tree-level processes, among others.
In the article, the new unweighting algorithm is introduced, and it is discussed how it differs

from the established approach and in which situations one can expect benefits. To test the
method, a simple NN based surrogate model is presented. Using this model, the performance
is evaluated for different examples contributing to �,� + 4 jets and � ̄� + 3 jets production at
the LHC. It is shown that the time for the generation of unweighted events can be reduced
by factors up to ten for individual partonic channels. Based on differential distributions of
physical observables, the validity of the method is demonstrated. Furthermore, it is shown how
the method can be generalized to non-positive event weights, which appear in NLO (and higher
order) calculations based on subtraction methods. This is demonstrated for a toy example.
The article was first published as a preprint on arXiv in September 2021. Subsequently, it

was submitted to the journal SciPost Physics. After the referees’ comments were addressed, it
was finally published in May 2022. The version published in the journal is reprinted below.
Copyright and license notices as well as a link to the material are provided on the first page of
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the article.
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Abstract

The generation of unit-weight events for complex scattering processes presents a se-

vere challenge to modern Monte Carlo event generators. Even when using sophisticated

phase-space sampling techniques adapted to the underlying transition matrix elements,

the efficiency for generating unit-weight events from weighted samples can become a

limiting factor in practical applications. Here we present a novel two-staged unweight-

ing procedure that makes use of a neural-network surrogate for the full event weight.

The algorithm can significantly accelerate the unweighting process, while it still guar-

antees unbiased sampling from the correct target distribution. We apply, validate and

benchmark the new approach in high-multiplicity LHC production processes, including

Z/W+4 jets and t t̄+3 jets, where we find speed-up factors up to ten.
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1 Introduction

Multi-purpose Monte Carlo event generators such as HERWIG [1,2], PYTHIA [3,4] or SHERPA [5,

6], are indispensable tools for the analysis and interpretation of high-energy particle-collision

experiments, e.g. at the Large Hadron Collider (LHC). They encapsulate our present-day un-

derstanding of the fundamental laws of nature, and provide means to simulate individual

scattering events in a fully exclusive manner. With such virtual collisions we can quantify

expected event yields and predict detailed final-state properties for in principle arbitrary scat-

tering processes.

The central and often the computationally most expensive element of event simulations is

a hard-scattering process – addressing the highest momentum-transfer interactions – that gets

described by transition matrix elements evaluated in fixed-order perturbation theory. Given the

enormous collision energies and impressive luminosities achieved at the LHC, paired with the

excellent performance of the experiments, the need to provide evaluations of higher multiplic-

ity hard-scattering processes is steadily growing. In view of the upcoming HL-LHC this becomes

an even more pressing problem, requiring much faster event generation in order to match the

expected event yields with the projected computing resources [7, 8]. The underlying matrix-

elements are calculated by dedicated matrix-element generators. Widely used tree-level tools

such as ALPGEN [9], AMEGIC [10], COMIX [11], MADGRAPH [12] and WHIZARD [13] automati-

cally construct tree-level amplitudes, but also provide efficient means to generate momentum

configurations for the initial- and final-state particles taking part in the hard scattering. Fur-

thermore, there exist dedicated tools for the construction and evaluation of one-loop ampli-

tudes in QCD and the electroweak coupling, e.g. MADLOOP [14,15], MCFM [16,17], NJET [18],

OPENLOOPS [19,20], POWHEGBOX [21], and RECOLA [22,23]. These tools can be used to compile

fixed-order partonic cross-section computations and to probabilistically generate parton-level

events. When incorporated into or interfaced to a multi-purpose event generator they provide

the momentum-space partonic scattering events that get dressed by QCD parton showers, if

applicable supplemented by an underlying event simulation, and finally transitioned to fully

exclusive hadron-level final states by invoking a hadronisation model [24].

An efficient sampling of the final-state phase space is particularly crucial for complex scat-

tering processes, where a single evaluation of the matrix element can take O(1s) [25]. Es-

pecially for experimental applications, i.e. the actual generation of pseudo data, including a

simulation of the detector response, see e.g. refs. [26–28], unit-weight event samples are re-

quired, that are conventionally obtained from weighted events via rejection sampling. The

resulting unit-weight events are unbiased random samples of fully uncorrelated probes of the

target distribution given by the squared transition matrix element. They appear with frequen-

cies that we would expect in a corresponding experiment. Although information about the

target is lost in the unweighting step, the expensive detector simulation or other post process-

ing of many events with minuscule weight gets avoided.

In modern matrix-element generators importance-sampling techniques are used, that ac-

count and possibly adapt [29] to the modal structures of the target, thereby employing knowl-

edge about the propagator and spin structures of a given process [30]. These methods aim

to reduce the inherent variance of the weight distribution of weighted event samples, and in

turn also improve the unweighting efficiencies.

There have recently been a number of different strands of research to make optimal use

of event-weight information, and, largely driven by algorithmic opportunities provided by

novel machine-learning (ML) techniques, to optimise phase-space sampling and also event

unweighting. On-the-fly reweighting methods are meanwhile routinely used to account for

systematic uncertainties [31–33], or alternative physics models [34, 35]. The use of MCMC

techniques for exploring high-dimensional phase spaces has been studied in [36]. In [37]

2

3 New sampling methods for efficiency improvements

114

https://scipost.org
https://scipost.org/SciPostPhys.12.5.164


SciPost Phys. 12, 164 (2022)

the application of analysis-specific optimal sampling distributions was proposed, similar to

methods of biasing event generation, e.g. to oversample tails of physical distributions [38]. A

number of approaches to accelerate event generation based on (generative adversarial) neu-

ral networks have been presented [39–47]1. An alternative and particularly attractive class

of algorithms is based on normalizing flows [49–51], i.e. trainable bijectors parametrised by

neural networks, see for instance [52–55], that can represent highly expressive importance-

sampling maps [56,57]. Corresponding implementations and first applications of normalizing

flows to Monte Carlo event generation in high-energy physics have been presented in [58–61].

Ref. [62] discussed the usage of GANs, trained on weighted Monte Carlo samples to produce

unit-weight events. However, in order to guarantee the reproduction of the true target distri-

bution, an additional post-processing step is needed. Possible solutions to this problem based

on reweighting have been presented in [63, 64]. The application of Bayesian networks for

event generation including the quantification of uncertainties has been presented in [65,66].

We here propose an alternative approach to accelerate the unweighting procedure using

ML methods. During the initial integration phase of a standard importance sampler we train

a deep neural network to predict the event weight for given phase-space points. For com-

plex processes, this surrogate is much cheaper to evaluate than the actual event weight. We

therefore employ it in an initial rejection sampling. Only when the surrogate event weight

gets accepted, we invoke a second unweighting step, where we account for the difference be-

tween the surrogate and the actual event weight. While a two-step unweighting procedure

has been applied before [9], our combination with a neural-network surrogate gives it a new

purpose. Given the neural network approximates the weight distribution reasonably well, we

can significantly reduce the number of evaluations of the computationally expensive target

function. Our approach easily generalises to non-positive targets and is thus suitable also for

unweighted-event generation beyond the leading order in perturbation theory. We have im-

plemented, validated and benchmarked the method in the SHERPA event-generator framework

and here present results for tree-level Z/W+4 jets and t t̄+3 jets production at the LHC.

The paper is organised as follows, in Sec. 2 we briefly review the basics of Monte Carlo

event generation and event unweighting in the canonical approach. We then introduce our

novel unweighting procedure, exemplified for a simple toy example. In Sec. 3 we discuss the

neural-network setup and the used training procedure to obtain a predictor for the weight of

scattering events. In Sec. 4 we describe our implementation of the new method in the SHERPA

framework and present exemplary results for high-multiplicity LHC production processes. We

conclude and give an outlook in Sec. 5.

2 Phase-space sampling and event unweighting

For sake of simplicity, we begin by considering the generic integral

I =

∫

Ω

f (u′) du′ , (1)

with f a positive-definite target distribution f : Ω ⊂ Rd → [0,∞) defined over the unit

hypercube Ω = [0, 1]d . The Monte Carlo estimate of the integral is given by

I ≈ EN =
1

N

N∑

i=1

f (ui) = 〈 f 〉 , (2)

1A critical review on the application of Generative Adversarial Networks (GANs) in the context of event gen-

eration has been presented in [48].
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where we assumed N uniformly distributed random variables ui ∈ Ω. The random points ui

are interpreted as individual events and wi ≡ f (ui) is called the corresponding event weight2;

the integral is thus estimated by the average of the event weights 〈w〉N . The standard deviation

of the integral estimate is given by

σN ( f ) =

√√VN ( f )

N
=

√√ 〈 f 2〉 − 〈 f 〉2
N

, (3)

with VN the corresponding variance. Variance-reduction techniques aim for a minimisation

of VN , e.g. by a remapping of the input random variables u to a non-uniform distribution

v : Ω→ Ω, called importance sampling [67]. For the desired integral this results in

I =

∫

Ω

f (u′)

g(u′)
g(u′) du′ =

∫

Ω

f (u′)

g(u′)

����
u′=u′(v′)

dv′ with g(u) =

����
∂ v(u)

∂ u

���� . (4)

With suitably chosen probability density g(u), the variance of the integrand can be signifi-

cantly reduced. A prominent example widely used in particle physics is VEGAS [68]. Given

the multimodal nature of high-energy scattering matrix elements, state-of-the-art generators

employ adaptive multi-channel importance samplers [10,11,69,70]. Thereby the probability

density g(u) is decomposed into a sum of Nc channels, i.e.

g(u) =

Nc∑

j=1

α j g j(u) , with

Nc∑

j=1

α j = 1 and 0≤ α j ≤ 1 , (5)

yielding

I =

∫

Ω

f (u′)

g(u′)

Nc∑

j=1

α j g j(u
′) du′ =

Nc∑

j=1

α j

∫

Ω

f (u′)

g(u′)

����
u′=u′(v′

j
)

dv′j . (6)

The channel weights α j can thereby be adjusted dynamically such that the variance of the

integral gets minimised [29].

To sample unit-weight events from the target function f (u), typically a rejection sampling

algorithm [71] is employed that utilises the maximal event weight in the integration volume,

wmax. A sample of N trials weighted events is thus converted into a set of N ≤ N trials unweighted

events, where N corresponds to the number of accepted events. The related unweighting

efficiency for large N is given by

ε :=
N

N trials
=
〈w〉N trials

wmax

. (7)

Its inverse determines the average number of target-function evaluations needed before an

event is accepted with unit-weight.

An exact determination of wmax is often neither possible – given finite statistics – nor desir-

able in a numerical calculation that might exhibit a few points with spuriously large weights,

as this would yield a prohibitively small unweighting efficiency. Instead, to avoid being domi-

nated by such rare outliers, there are various possibilities to define a reduced maximum such

that some “overweight” events with w > wmax are allowed and will be assigned a correction

weight ew = w/wmax, effectively leading to partially unweighted events3. Ref. [59] proposed

a bootstrap method where the maximum is given by the median of n determinations from

2In the following we drop the index i as we are always referring to the generation of a single event.
3While the event weight w is typically a dimensionful quantity, in unweighted events the weights ew are con-

sidered dimensionless. To obtain the correct normalisation of a differential cross section, e.g. in a histogram, they

need to be normalised to the generated inclusive cross section as reported by the event generator, ewi → ewi ·
σgen∑

j ew j
.
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independent event batches. A more conventional approach would be the exclusion (from the

maximum definition) of large-weight events with a certain quantile of the cross section4. In

what follows we will make use of both techniques. The classical unweighting algorithm with

overweight treatment for generating a single event is sketched in Alg. 1.

Algorithm 1: The classic rejection-sampling unweighting algorithm.

while true do

generate phase-space point u;

calculate exact event weight w;

generate uniform random number R ∈ [0, 1);

if w> R ·wmax then
return u and ew=max(1, w/wmax)

end

end

The application of variance-reduction methods will typically also lead to an improved un-

weighting efficiency ε. In fact, an optimal sampler would directly produce event weights

w = const, resulting in an unweighting efficiency of 100%. However, in realistic use cases

this is never achieved. For high-multiplicity scattering processes unweighting efficiencies are

instead often well below 1% [25,59]. To systematically improve ε one needs to reduce wmax.

The FOAM [72,73] algorithm attempts to achieve this and aims for an optimised unweighting

efficiency by gaining control over the maximal event weight.

2.1 A novel unweighting procedure

We here propose an alternative method aiming for a reduction of the computational resources

needed to produce unweighted events that follow the desired target distribution. This can

be achieved through a light-weight surrogate for the full event-weight calculation that enters

a two-staged rejection-sampling algorithm. Given such a local surrogate s for the true event

weight w, that can for example be obtained from a well-trained neural-network predictor, cf.

Sec. 3, we can use this surrogate in an initial rejection sampling against the maximal event

weight wmax. However, to ultimately sample from the correct distribution, we need to account

for the mismatch between the estimated and the actual event weight. This is accomplished

with a correction factor x = w/s. This factor could be applied as an additional weight to

accepted events, or a second rejection sampling step can be added to unweight this against

the (predetermined) maximum, xmax, see below. The resulting unweighting algorithm for

generating a single unit-weight event is sketched in Alg. 2 and explained in more detail in the

following.

For a fast surrogate perfectly reproducing the exact weights, i.e. x = 1, the potential for

saving resources is maximal, even though the unweighting efficiency obtained with the stan-

dard approach is not altered. This is the case, because for all trial configurations failing the

first step only the surrogate gets evaluated, while the full weight is computed for accepted

events only. However, in practice this is not realistic and the x will vary around unity. Note,

we do not require the approximation s to overestimate w, and thus will also face values x > 1.

The appearance of non-unit relative weights x makes a second unweighting step conve-

nient. To this end, we need to predetermine the maximum xmax, against which to perform the

additional rejection-sampling. Again, to avoid being dominated by rare outliers, we reduce

xmax in a controlled way by either excluding a certain quantile of the largest weights or using

4This is also the default in SHERPA for the standard rejection-sampling method.

5

4.2 Publication: Accelerating Monte Carlo event generation – rejection sampling using neural
network event-weight estimates

117

https://scipost.org
https://scipost.org/SciPostPhys.12.5.164


SciPost Phys. 12, 164 (2022)

Algorithm 2: Two-stage rejection-sampling unweighting algorithm using an event-

wise weight estimate.

while true do

generate phase-space point u;

calculate approximate event weight s;

generate uniform random number R1 ∈ [0, 1);

# first unweighting step

if s > R1 ·wmax then

calculate exact event weight w;

determine ratio x = w/s;

generate uniform random number R2 ∈ [0, 1);

# second unweighting step

if x > R2 · xmax then
return u and ew=max(1, s/wmax) ·max(1, x/xmax)

end

end

end

the median from several independent xmax determinations. We correct for the mismatch with

the overweight x/xmax when x > xmax. The final weight for an accepted event u is then given

by

ew=max

�
1,

s

wmax

�
·max

�
1,

x

xmax

�
. (8)

As consequence of this residual weight, one might need to generate more events using the

surrogate approach to achieve the same statistical accuracy as in standard unweighting. To

account for this, we use the Kish effective sample size Neff [74] in the following,

Neff :=

�∑
i ew
�2
∑

i ew2
= αN , (9)

where the sums run over all N events passing the second unweighting and we introduced the

proportionality factor α ≤ 1. The statistical accuracy of the sample is given by 1/
p

Neff. Only

when using the true maximal weight xmax, the effective sample size equals N , corresponding

to α= 1.

We can now introduce the effective gain factor feff of the described two-staged unweighting

procedure:

feff :=
Tstandard

Tsurrogate

=
Neff · 〈tfull〉

εfull

N ·
�

〈tsurr〉
ε1st,surrε2nd,surr

+
〈tfull〉
ε2nd,surr

�

= α · 1
〈tsurr〉
〈tfull〉 ·

εfull

ε1st,surrε2nd,surr
+

εfull

ε2nd,surr

. (10)

It accounts for all timing, efficiency, and statistical differences in the proposed event generation

with Alg. 2 compared to standard (partially) unweighted event generation with Alg. 1. Here
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〈tfull〉 and 〈tsurr〉 denote the average evaluation times of the full weight and the surrogate,

respectively. The quoted unweighting efficiencies are given by

εfull :=
N

N trials
full

, ε1st,surr :=
N trials

2nd,surr

N trials
1st,surr

and ε2nd,surr :=
N

N trials
2nd,surr

, (11)

where the N trials
step denote the number of trials used in the respective unweighting step. We point

out that phase-space cuts are applied before unweighting and therefore events rejected due to

cuts do not count towards the number of trials here.

Significant speed gains can be expected if the standard unweighting efficiency εfull is rather

low and the surrogate approximates the true weights well, i.e. ε1st,surr ≈ εfull and ε2nd,surr ≈ 1,

while still being significantly faster, i.e. 〈tsurr〉 � 〈tfull〉.
Note, the gain factor feff has to be understood as an upper bound of a potential CPU time

saving in an overall budget, as it does not apply to other stages of the event generation like

parton showering and, more importantly, also not to post-processing steps like a detector sim-

ulation.

2.2 Generalisation to non-positive event weights

The above described unweighting method can easily be extended to the case of non-positive

event weights. These naturally appear in higher-order perturbative calculations based on local

subtraction methods such as Catani–Seymour [75] or Frixione–Kunszt–Signer [76] subtraction

for next-to-leading-order (NLO) QCD calculations. In approaches matching and merging NLO

matrix elements with QCD parton showers negative-weight events can resolve potential dou-

ble counting of hard real-emission contributions and shower emissions off Born-like configura-

tions, see for instance [77,78]. However, the appearance of such negative weights reduces the

statistical significance of a fixed-size event sample as possibly large cancellations take place.

In corresponding unweighted samples events contribute with weights ±1. The generalisation

of the standard unweighting algorithm allowing for negative weights is given in Alg. 3. We

thereby make use of a single maximal weight wmax = |w|max > 0 in the rejection sampling,

that is determined by the largest weight modulus observed in an initial exploration run5.

Algorithm 3: Standard rejection-sampling unweighting algorithm allowing for

negative-weight events.

while true do

generate phase-space point u;

calculate exact event weight w;

generate uniform random number R ∈ [0, 1);

if |w|> R ·wmax then
return u and ew= sgn(w) ·max(1, |w|/wmax)

end

end

This can be extended to our two-staged unweighting approach, using a surrogate for the

full event weight that can now also become negative, cf. Alg. 4. We still employ a single max-

imal weight modulus in the first rejection step, where correspondingly we have to use the

modulus of the surrogate, i.e. |s|. Similarly, for the second rejection sampling we use the mod-

ulus of the estimate for the maximal ratio between the full and the surrogate weights. Note

5As before, we consider the reduction of the maximum, compensated for by partial over-weighting.
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that the sign of the ratio w/s is not unique, as the surrogate s might sometimes get the sign of

the true weight wrong. Accordingly, we have to use x = |w/s| also in the (partial) overweight-

ing. The absolute weight value of an accepted event is still given by Eq. (8), however, its sign

is determined by sgn(ew) = sgn(w).

Algorithm 4: Two-stage rejection-sampling algorithm, allowing for negative valued

(surrogate) weights. We hereby assume wmax > 0 and xmax > 0 given by the respec-

tive maximal modulus determined in a pre-run.

while true do

generate phase-space point u;

calculate approximate event weight s;

generate uniform random number R1 ∈ [0, 1);

# first unweighting step with wmax > 0

if |s|> R1 ·wmax then

calculate exact event weight w;

determine ratio x = |w/s|;
generate uniform random number R2 ∈ [0, 1);

# second unweighting step with xmax > 0

if x > R2 · xmax then
return u and ew= sgn(w) ·max(1, |s|/wmax) ·max(1, x/xmax)

end

end

end

To illustrate and validate the proposed algorithm we consider a simple 1d example by

sampling from the target distribution

f (u) = u2 − 0.25 , for u ∈ [0, 1] . (12)

As surrogate we here just use a piecewise constant function over u ∈ [0, 1] given by

s(u) = −0.25χ[0,0.2)(u)−0.15χ[0.2,0.4)(u)+0.05χ[0.4,0.6)(u)+0.25χ[0.6,0.8)(u)+0.75χ[0.8,1](u) ,

(13)

where

χM (u) =

(
1 : u ∈ M

0 : u /∈ M
. (14)

This encloses the cases that the surrogate over- or underestimates the target, as well as predict-

ing its sign wrongly. In the left panel of Fig. 1 we compile the target distribution, the surrogate

and their ratio. Furthermore, we mark the maximum used in the second unweighting step, i.e.

xmax = 1.5. This is chosen such that there are regions where | f (u)/s(u)| > xmax, triggering

the appearance of events with weight |w| > 1. In the right panel of Fig. 1 we present the dis-

tributions obtained from 500k events generated with the standard unweighting algorithm and

the two-staged approach. Comparing to the true target distribution we see that both methods

produce the desired density. To further confirm the proper treatment for those events where

x > xmax, we provide a close-up view of the region around u= 0.6. In the standard approach

the unweighting efficiency is εfull = 0.33, requiring N trials
full
≈ 1.5M calls of the target function

to generate 500k unit-weight events. In contrast, with the given surrogate and the choice of

xmax we obtain ε1st,surr = 0.39 and ε2nd,surr = 0.58, corresponding to N trials
surr ≈ 2.2M. However,

for the given event sample we only had to evaluate the target N trials
full
≈ 875k times.
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Figure 1: One-dimensional toy example for applying the standard unweighting algo-

rithm and the two-staged surrogate method to a non-positive target function. The left

panel shows the target (red) and the employed surrogate (blue), given by Eq. (13),

as well as their ratio (green dashed). Indicated is the (capped) maximal ratio xmax

used in the second unweighting step. The right panel contains the comparison of the

distributions of generated events with the true target.

3 Machine learning event weights

The calculation of transition matrix elements for complicated scattering processes, in partic-

ular when considering higher-order corrections, becomes computationally very expensive. In

applications that require a large number of repeated evaluations this poses a severe bottle-

neck. The generation of unweighted events considered here is only one such example, others

include the fitting of parton density functions (PDFs), or scans over large parameter spaces in

searches for New Physics, i.e. corresponding limit-setting procedures.

For the fast evaluation of fixed-order differential cross sections needed in the determination

of PDFs interpolation grids such as APPLGRID [79], FASTNLO [80], and PINEAPPL [81] are widely

used, and there exist tools for their largely automated construction [82,83]. To facilitate and

accelerate analyses searching for New Physics, there have recently been efforts to use deep-

learning techniques for the regression of cross-section integrals [84–86]. Very recently also

the approximation of scattering matrix elements rather than integrated cross sections through

neural networks has been addressed by several groups [87–90]. These approaches suggest

that high-quality surrogates for full scattering matrix elements are feasible, offering potential

for significant speed-ups in the event-generation process when applied within the unweighting

framework described above.

3.1 Neural-network based matrix-element emulation

For a first application of the surrogate-based unweighting, we introduce a custom ML model,

which learns and predicts the complete weight of partonic scattering events. This combines

the squared matrix element and the phase-space weight, the latter including Jacobian factors

JΦn
from variable mappings of the Lorentz invariant phase-space element Φn used by the un-

derlying integrator. For a given 2→ n parton-level process our surrogate s(pa, pb, p1, . . . , pn)

thus approximates the following part of the fully differential cross section:

dσab→n

��
pa ,pb ,{pi} = fa(xa,µF ) fb(xb,µF )

��Mab→n

��2
���JΦn

���
︸ ︷︷ ︸

≈s

dxa dxb dΦn

��
pa ,pb ,{pi} . (15)

Here fa/b denotes the PDF for the incoming parton a/b with momentum fraction xa/b,
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evaluated at factorisation scale µF . Note, the PDF contribution could also be factored out of

the surrogate and evaluated exactly on an event-wise basis but we here decided to include it.

The external particle momenta satisfy four-momentum conservation and on-shell conditions:

pa + pb =

n∑

i=1

pi , p2
a/b
= 0 , and p2

i = m2
i (∀ i = 1, . . . , n) . (16)

Accordingly, the dimensionality of the physical phase space is d = 3n− 4+ 2.

When comparing Eq. (15) to the first identity in the multi-channel integral given by Eq. (6),

we identify the phase-space element dxa dxbdΦn in momentum space with the differential du′

multiplied by the multi-channel density
∑

j α j g j(u
′). The Jacobian factor |JΦn

| corresponds to

1/g(u′). Our NN thus has to approximate the ratio f (u′)/g(u′), that is obviously dependent

on the total importance sampling density g, but not on the very channel used to produce the

phase-space point, see also Ref. [69].

Alternatively to Eq. (15) one could approximate the squared matrix element only, i.e.

s′ ≈
��Mab→n

��2, and fully calculate the Jacobian factors for each phase-space point. Due to

its factorised nature, this approach would in fact be easier to implement. However, it suffers

from the significant costs of evaluating the phase-space weight for multi-leg processes, which

can sometimes even rival the evaluation cost of the matrix element. Furthermore, the combi-

nation of Jacobian factors and matrix elements often yields a smoother function over phase

space. We thus only consider the approach of replacing the combined matrix-element and

phase-space weight with a fast surrogate here.

Various test cases for surrogate models were considered in the course of this work, includ-

ing (boosted) decision trees, random forests and neural networks. While being faster6, random

forests and (boosted) decision trees yield a poorer prediction accuracy, rendering them inade-

quate for an application in the surrogate-based unweighting [91]. Thus, only neural networks

are discussed further in the following.

Given the specific role of the surrogate in the proposed unweighting procedure, we seek

for light-weight network architectures, flexible enough to approximate the weight of high-

multiplicity scattering events well, and fast to evaluate. To this end we employ rather simple

multi-layer feedforward fully connected neural networks (NN).

As input-layer variables we use the three-momentum components of the initial- and final-

state particles7, i.e. 3n+2 inputs. In general, any set of variables that has an injective mapping

to the phase-space point could be used, even with different dimensionality if adding or remov-

ing variables.

One might alternatively consider a particular set of input variables, namely the random

numbers vi from the phase-space sampling, which have been mapped into momenta as de-

scribed by Eqs. (4) and (6). While this is straightforward for simple sampling methods, it be-

comes more tricky for multi-channel samplers. Here, the mapping between random numbers

and phase-space point is not unique, but depends on the randomly chosen channel j = 1 . . . Nc .

To remedy this situation, one could either train a separate NN for each phase-space channel

j, or one could add the channel number j (or the random number determining it) as another

input variable. We postpone a study of these possibilities to future works.

The single output variable of our NN corresponds to the real-valued event weight. The

network is further defined by the number of hidden layers and the set of nodes per layer as

detailed in Table 1. As output activation function for the network nodes we use the Rectified

6The prediction speed of the machine-learning models depends on their architecture. One can construct simple

neural networks which are able to predict faster than a very deep decision tree. However, the accuracy and ability

to generalise may decrease with simpler topologies.
7Note, we here assume the initial-state momenta of partonic scattering events to be collinear with the incoming

beams, i.e. along the ±z-axis, such that their x and y components vanish.
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Linear Unit (ReLU) [92]. We use HE weight initialisation [93] and train the NN with the ADAM

optimiser [94].

The practical implementation of NN training in the SHERPA framework and the interface

for (general) surrogate models for application in event unweighting will be detailed in Sec. 4.

In the remainder of this section, however, details on the hyperparameters of our NN and the

training procedure are given. The NN performance is first studied for the example process

g g → e−e+g gdd̄. We used this channel as a test bed for investigations on the NN perfor-

mance in terms of timing and the quality of the event-weight predictions as a function of the

hyperparameters. Being primarily interested in a conceptual proof-of-concept and an initial

estimation of the method’s potential to save resources in event unweighting, we do not attempt

to systematically optimise the NN setup. Furthermore, while in principle different scattering

processes might get better approximated by a different NN architecture, we will employ the

hyperparameter set found in the following example also in our other applications presented

in Sec. 4.

3.2 An example: g g → e−e+g gdd̄

We consider the partonic channel g g → e−e+g gdd̄ at the leading order, i.e. O(α2α4
s ), that

represents a tree-level contribution to Z+4 jets production at the LHC. Correspondingly, the

input-parameter space for the NN here is 20-dimensional. The fiducial phase space used

in the training and for the predictions is constrained by requiring a dilepton invariant mass

me−e+ > 66 GeV and four anti-kt jets [95] with radius parameter R = 0.4 and pT, j > 20 GeV.

We consider a proton–proton centre-of-mass energy of
p

s = 13 TeV, and use the NNPDF-3.0

NNLO PDF set [96]. As matrix-element and phase-space generator we employ AMEGIC [10] in

the framework of SHERPA-2.2.

Our NN has four hidden layers with 128 nodes each. The training dataset consists of 1M

events generated with SHERPA after the optimisation phase of the AMEGIC integrator. We split

the dataset such that 80% of the events are used for training and 20% for validation. In order

to normalise the input features, we scale the momenta to the range [−1, 1] using min-max

normalisation with the min-max values given by ±ps/2. As the values of the weights can

span several orders of magnitude, we take the logarithm of the weights in order to avoid

numerical problems. The NN model is fitted to the data by minimising the mean squared error

(MSE) loss using the ADAM optimiser with a learning rate of 10−3. We use a batch size of 1000

and train in epochs containing all training points in random order. Early stopping is used to

end the training when the validation loss does not decrease for 30 epochs and save the model

with the lowest validation loss. Like for the training we also use the MSE loss for validation.

Fig. 2 shows the convergence behaviour of our model. One can see that the loss decreases

fairly smoothly and that the variations between different initialisations of the model are small.

To test the quality of our trained NN surrogate s for the true event weights w we present

in Fig. 3a the resulting distribution of x = w/s for 1M phase-space points generated with

SHERPA. The x-distribution is centred around x = 1, rather symmetric, and falls off quite

steeply. This confirms that the chosen NN is indeed suitable for a prediction of the event weight.

Still we observe that the tails of the distribution stretch beyond | log10(x)| > 4, meaning the

NN sometimes severely over- or underestimates the true weight. In particular the largest x-

values will affect the performance of the unweighting algorithm proposed in Sec. 2.1, as they

determine the maximum xmax against which to perform the second rejection sampling. Fig. 3b

shows that the largest and smallest values of x correspond to small values of w. As opposed to

this, the NN approximation is much better for higher values of w as can be recognized by the

smaller spread of the x-values. This behaviour can be expected given the MSE loss function

used for the training of the NN. While Fig. 3b shows that the largest relative deviations can be

found for small values of w, the absolute deviations in that region are actually small. The MSE
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Table 1: Summary of hyperparameters specifying the employed feedforward NN ar-

chitecture and the means of training.

NN Hyperparameter Value

Hidden Layers 4

Nodes per Layer 128

Activation Function ReLU

Loss Function MSE

Optimiser ADAM

Learning Rate 10−3

Batch Size 1000

0 50 100 150 200 250 300
epoch

100

101

M
SE

 lo
ss

training
validation

Figure 2: Training (blue) and validation (orange) MSE loss of the best performing NN

during training. The dashed line illustrates the stopping point due to early stopping.

The coloured bands show the variations from ten independently trained initialisa-

tions of the same model.

loss function penalizes absolute deviations at larger w-values more than at smaller w-values

which leads to larger relative deviations for small values of w.

As described already in the context of the first unweighting step in Alg. 1, we can use

maximum-reduction techniques also for xmax in the second rejection sampling. These will re-

duce the sensitivity to the tail of the weight distribution and in particular rare outliers by using

a reduced maximum, again at the price of a partial overweighting of events. In our perfor-

mance study in Sec. 4 we will employ two reduction techniques. The first being the quantile

reduction method, where we define x
p.m.
max such that the remaining overweights contribute at

most 1h to the total cross section σ. We consider an event sample of N = 1M events with

weights {wi}. For reference, in the standard unweighting method we can determine w
p.m.
max by

sorting the sequence of weights {wi} such that wi ≤ wi+1 and requiring that

wp.m.
max

:=min



w j

������

N∑

i= j+1

wi < 0.001 ·
N∑

i=1

wi



 . (17)

The equivalent procedure for our two-stage unweighting method is to calculate the values of
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Figure 3: Distribution of weights using 1M test points generated with SHERPA for

the process g g → e−e+g gdd̄ in proton–proton collisions at
p

s = 13 TeV. (a) One-

dimensional histogram of the ratio x = w
s . The two vertical lines indicate the values of

the reduced weight maxima x
p.m.
max (dashed) and xmed

max (dotted). (b) Two-dimensional

histogram showing the relationship between the ratio x = w
s and the true event

weight w.

s and x for all events and to sort the sequence {x i} such that x i ≤ x i+1 and to use the same

order for the {si}. The reduced maximum is then defined as

xp.m.
max

:=min



x j

������

N∑

i= j+1

x isi < 0.001 ·
N∑

i=1

x isi



 . (18)

As a somewhat more aggressive alternative we introduce the median reduction method. Here

we consider N trials
1st,surr = 1M trial points for which we perform the first unweighting n = 50

times with different random seeds. For the accepted events in each iteration we determine

xmax. From the final set of maxima we then determine the median xmed
max , i.e.

xmed
max

:=med
��

x i
max

	�
. (19)

For our example process the resulting values of x
p.m.
max and xmed

max are illustrated by the vertical

dashed and dotted line in Fig. 3a, respectively. In this specific example we obtain x
p.m.
max ≈ 73

and xmed
max ≈ 27, which corresponds to a reduction of x

p.m.
max by about two orders of magnitude

with respect to the naive maximum, and an additional factor of three when using the median

approach.

We close this section with a comment on the timings for the evaluation of the matrix el-

ement and the NN surrogate for a single phase-space point. On average the evaluation of

the full event weight for the g g → e−e+g gdd̄ process from AMEGIC takes about 85ms8. In

contrast, for the NN model this just takes 0.13 ms, which translates into a speed-up of

〈tfull〉
〈tsurr〉

≈ 650 . (20)

8The quoted times correspond to the evaluation on a single core of an Intel® Xeon® Processor E5-2680 v3 @

2.50GHz.
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4 Surrogate-based unweighting: Implementation, Validation and

Results

The event-weight estimator from Sec. 3.1 is optimally suited to be used as light-weight sur-

rogate in the two-stage unweighting method presented in Sec. 2.1. In the following, we will

briefly describe the implementation of the algorithm in the SHERPA generator framework. As a

first application we will again consider the g g → e−e+g gdd̄ process. We will then benchmark

the method in a variety of partonic channels contributing to W+4 jets and t t̄+3 jets production

at the LHC and validate the obtained results.

4.1 Implementation in the SHERPA framework

The SHERPA framework embeds modules to automatically construct the transition matrix el-

ements and suitable multi-channel integrators for in-principle arbitrary tree-level processes.

To this end it has two matrix-element generators built-in, AMEGIC and COMIX. Our current

implementation of the novel unweighting algorithm employs the AMEGIC generator.

In an initial optimisation phase the integrator is adapted to the specific process and fiducial

phase space using the channel-weight optimisation described in [29]. During the integration

phase the value of wmax is determined based on the quantile approach. We use the SHERPA

default of letting overweighted events have a relative contribution of 1h to the inclusive cross

section. The optimised generator is then used to produce a sample of 2M weighted events. We

use the first 1M events as training (80%) and validation (20%) data for our NN model.9 For the

NN implementation and training we use KERAS [97] with the TENSORFLOW [98] backend. The

model parameters leading to the lowest validation loss are written out as an HDF5 [99] file.

While KERAS is based on Python, SHERPA is written in C++. To use the KERAS model in SHERPA

without having to rely on an interface we use the header-only library frugally-deep [100]

which runs the model in prediction mode on a single CPU core.

The second 1M events are used to determine the xmax for the second unweighting using

the per mille quantile or median approach. For the latter we consider n= 50 independent iter-

ations over the data set. This procedure is repeated for ten independently trained NN models

and we finally choose the one achieving the lowest xmax on the test dataset to be used in the

following. The NN and the value of xmax then serve as inputs to SHERPA for subsequent event-

generation runs. We use different events for the determination of xmax than for the training

of the NN. If one were to use the same data set, xmax would likely be underestimated. With

data not seen by the model during training, however, we get a much more reliable estimate.

For the performance analysis we log several quantities during the event generation. To

determine the efficiencies, we count the numbers of trials for the first and second unweighting

steps. Also, we measure the time it takes on average to evaluate the surrogate by taking the

sum of user and system time spent in the respective parts of the code.

4.2 An example: g g → e−e+g gdd̄

Before proceeding with the application of our novel unweighting approach to W+4 jets and

t t̄+3 jets production at the LHC, we examine its technical and physics performance in more

detail for the example process of g g → e−e+g gdd̄. This is the channel initially used to optimise

the NN performance in terms of timing and accuracy, cf. Sec. 3.2.

9In a production implementation in the future, one could also perform the training on the same events that

are generated during the integration phase after the integrator optimisation.
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Performance analysis

The evaluation of the NN surrogate for a single phase-space point was found to be about 650-

times faster than the full weight calculation with AMEGIC. In Fig. 3a we have presented the

obtained distribution of x = w/s, where we also indicated the reduced maxima for the per

mille quantile and the median approach, i.e. x
p.m.
max ≈ 73 and xmed

max ≈ 27, respectively. Using

the trained NN and each of these maxima, we generate from scratch 100k events with our sur-

rogate unweighting algorithm. In Tab. 2 we summarise the obtained efficiency of the default

single-stage unweighting, εfull, the efficiencies of the first and second rejection-sampling step

in the surrogate unweighting, as well as the α-parameter that determines the effective sample

size, cf. Eq. (9), for the two maximum-reduction methods10. Lastly, we give the resulting gain

factors feff, cf. Eq. (10).

Table 2: Sampling measures for the g g → e−e+g gdd̄ partonic channel in pp colli-

sions at
p

s = 13 TeV. All efficiencies, the sample-size parameters and effective gain

factors are determined in the generation of 100k unweighted events.

process: g g → e−e+g gdd̄

εfull ε1st,surr x
p.m.
max ε

p.m.

2nd,surr
αp.m. f

p.m.

eff
xmed

max εmed
2nd,surr

αmed f med
eff

8.8e−3 6.4e−3 72.9 1.9e−2 0.9982 1.73 26.6 5.1e−2 0.9962 4.69

Using the default unweighting algorithm, AMEGIC achieves an unweighting efficiency of

about 0.9%. This in fact is quite remarkable, given that we consider a six-particle final state.

When using the NN surrogate we obtain a similar performance, ε1st,surr ≈ 0.64%, and given

the fast evaluation time for the surrogate this slightly lower efficiency barely affects the over-

all performance. More relevant is the second unweighting, for which we find efficiencies of

ε
p.m.

2nd,surr
= 1.9 % and εmed

2nd,surr
= 5.1%. Accordingly, when using the median-reduction tech-

nique, we need to evaluate the full weight roughly a factor 2.7 less often than for the quantile

approach. For the considered process this almost directly transfers to the effective gain factors

that yield f
p.m.

eff
= 1.73 and f med

eff
= 4.69. These gains are a consequence of the speed of the

surrogate evaluation, and its excellent approximation of the true weights, i.e. the very steep

fall-off of the x = w/s distribution. In fact, the effective sample size reduces only to 99.8 %

and 99.6 % of a unit-weight sample, which will be negligible in practical applications.

The obtained α values close to unity reflect the fact that only few events retain non-unit

weights ew in the end, cf. Eq. (8). This is confirmed by Fig. 4 where we present the final

event-weight distribution for the sample of 100k events generated using the more aggressively

reduced maximum xmed
max in the second unweighting step. Indeed, only a small fraction of events

exhibits weights ew> 1. Furthermore, the overweights rarely exceed ew= 3 and the maximum

we observe within this sample is ew≈ 9.

Physics validation

To prove that our algorithm indeed produces the correct target distribution we now move to

the validation of differential cross sections. Figure 5 collects various physical observables com-

paring the predictions of SHERPA with and without the novel unweighting approach. For both

methods we produced samples of 1M events at the parton level. Parton shower and hadro-

nisation effects are disabled in these and the following simulations to increase the resolution

and sensitivity to potential differences between the two approaches. These were analysed with

10Note, the wmax used in the first unweighting is always reduced using the per mille quantile approach to keep

the full and the surrogate approach comparable.

15

4.2 Publication: Accelerating Monte Carlo event generation – rejection sampling using neural
network event-weight estimates

127

https://scipost.org
https://scipost.org/SciPostPhys.12.5.164


SciPost Phys. 12, 164 (2022)

1 2 3 4 5 6 7 8 9
w

100

101

102

103

104

105

dN
/d
w

100k events with xmed
max = 26.6

gg e e +ggdd

Figure 4: Final event weights ew of 100k g g → e−e+g gdd̄ events in proton–proton

collisions at
p

s = 13TeV generated using surrogate unweighting with xmed
max .

the RIVET3 toolkit [101] using the MC_ZINC and MC_ZJETS analyses. In panel (a) we show

the dilepton invariant mass, (b) the dilepton rapidity distribution, (c) the pT of the jet with

highest transverse momentum, and (d) the azimuthal distance between the two leading jets.

For each plot we provide two sub-panels. In the first we depict the ratio of the predictions

obtained from the surrogate approach and nominal SHERPA, where the errorbars indicate the

bin-wise statistical uncertainty. The second panel displays directly the statistical compatibility

of the two predictions measured in terms of standard deviations.

For all four observables we find full statistical agreement, which proves that the surrogate

approach produces the correct target function. This also applies to the tail of the distributions.

No significant increase in the statistical errors is observed for the surrogate-based prediction,

which verifies the negligible reduction of αmed = 0.9962. Furthermore, there is no visible

imprint of statistical fluctuations from the events that exceed the maximum in the second

unweighting.

For the considered example process we can conclude that when using the surrogate un-

weighting approach we can generate samples of almost identical statistical accuracy that repro-

duce the exact physical distribution. Depending on the method used to reduce the maximum

in the second unweighting step we find effective gain factors up to 4.7.

4.3 Results for LHC production processes

In this section we present results for processes contributing to W+4 jets and t t̄+3 jets produc-

tion at the LHC, providing further insight into the potential and limitations of the surrogate-

unweighting method. Both final states receive contributions from a large number of partonic

channels, from which we pick representatives here. Given the high final-state multiplicity, the

large number of contributing Feynman diagrams, and the complexity in QCD colour space,

these matrix elements are highly non-trivial functions over phase space and rather expensive

to evaluate, such that we can expect gains from employing the surrogate method.

In the following we employ the same network architecture and training measures as de-

scribed in Sec. 3.1 and used in the Z+4 jets example and apply them in each partonic channel

separately. We do not attempt to specifically adjust and optimise the hyperparameters, though

this could potentially further improve performance. As before, all setups are studied with

SHERPA-2.2 for pp collisions at
p

s = 13 TeV, using the NNPDF-3.0 NNLO PDF set and AMEGIC
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Figure 5: Comparison of different differential distributions generated using

SHERPA with (red) and without (black) an NN weight surrogate for the process

g g → e−e+g gdd̄ in proton–proton collisions at
p

s = 13 TeV.
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as matrix-element and phase-space generator.

Besides quantifying timing improvements, we scrutinise the physics description by validat-

ing observable distributions against the standard unweighting approach. It is worth mention-

ing that all presented timing improvements can likewise be translated into energy savings as

no notable additional computing resources are needed for the new approach.

4.3.1 W+4 jets

We consider three partonic channels with varying numbers of external gluons that contribute

to W+4 jets in proton–proton collisions. These are listed along with their respective tree-level

production cross section in Tab. 3. While the dimensionality of the input-parameter space for

the NN surrogate is identical to the Z+4 jets example, we now consider the charged-current

weak interaction and different combinations of initial- and final-state partons.

Table 3: Selection of partonic channels contributing to W+4 jets production at the

LHC and their corresponding leading-order production cross sections.

process cross section [pb]

d g → e−ν̄e g g gu 24.5(2)

dd → e−ν̄e g gdu 4.62(3)

ud → e−ν̄eduud̄ 0.0572(3)

The quoted cross sections correspond to a fiducial phase space requiring four anti-kt jets

with R = 0.4 and pT, j > 20 GeV, and me−ν̄e
> 1 GeV. Due to the high total production rate,

W+4 jets final states constitute an important background to top-quark pair-production and

many searches for new physics phenomena. From Tab. 3 we can infer that the cross sections

of different partonic channels vary significantly. In particular processes with more external

gluons dominate over quarks. An additional driver are the initial-state flavour PDFs. The

larger the contribution of a partonic channel to the total W+4 jets cross section the more

events it will contribute to an inclusive sample. Accordingly, it is desirable to speed up event

generation in particular for the dominant production channels.

Performance analysis

In Tab. 4 we compile the performance measures for unweighted event generation separately

for the three considered W+4 jets partonic channels. They are determined from samples of

100k events generated with the standard and the NN surrogate approach.

Notably, for all three processes the standard unweighting efficiency is lower than for the

Z+4 jets channel. For the process with four external gluons the evaluation of the surrogate

model is again more than 600 times faster than the full weight calculation. However, for the

other two cases we achieve speed-up factors of 162 and 25 only. These lower gains originate

from shorter evaluation times for the full weights of 20ms for dd → e−ν̄e g gdu and 3 ms

for ud → e−ν̄eduud̄, while the NN surrogate takes about 0.12ms for each channel. While the

maxima xmed
max are all of a similar size as in the Z+4 jets case, the values for x

p.m.
max are significantly

higher, ranging up to 1650 for ud → e−ν̄eduud̄. This suggests that the NN provides an inferior

approximation of the weights for the processes and fiducial phase space considered here. To

illustrate this we show in Fig. 6a the distribution of x = w/s for 1M events for the process

dd → e−ν̄e g gdu. When comparing to Fig. 3a we indeed observe a broader distribution that

exhibits more pronounced tails. The two vertical lines indicate the values of x
p.m.
max (dashed)

and xmed
max (dotted). By comparing the relationship between x and w shown in Fig. 6b to the

one shown in Fig 3b, we see that the spread of x-values is much broader overall. However,
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Table 4: Performance measures for partonic channels contributing to W+4 jets pro-

duction at the LHC.

d g → e−ν̄e g g gu dd → e−ν̄e g gdu ud → e−ν̄eduud̄

εfull 1.4e−3 3.1e−4 3.6e−4

ε1st,surr 7.1e−4 1.1e−4 1.3e−4

〈tfull〉/〈tsurr〉 667 162 25

x
p.m.
max 234.03 544.96 1642.77

ε
p.m.

2nd,surr
8.5e−3 5.2e−3 1.8e−3

αp.m. 0.9953 0.9958 0.9953

f
p.m.

eff
1.93 0.29 0.02

xmed
max 40.28 30.53 38.53

εmed
2nd,surr

5.3e−2 8.5e−2 7.3e−2

αmed 0.9285 0.8204 0.4323

f med
eff

10.36 3.91 0.25

otherwise it shows a similar behaviour with the more extreme values of x corresponding to

small values of w.

The efficiencies of the initial unweighting step are also consistently lower than for the

neutral gauge-boson channel. In particular for the process without external gluons, where

〈tfull〉/〈tsurr〉 is ’only’ 25, the factor of three between εfull and ε1st,surr might not be negligi-

ble. As expected given the larger values of x
p.m.
max the corresponding efficiencies for the second

unweighting step are all below 1 %, i.e. as low as 2h for ud → e−ν̄eduud̄. However, for

the median-reduced maximum the situation improves significantly, with εmed
2nd,surr

in the range

of 5− 8 %. This efficiency improvement comes at the expense of the statistical power of the

sample. While in the quantile approach the resulting αp.m. factors are very close to unity, i.e.

the effective sample size is larger than 99.5% of a true unit-weight sample, we observe more

significant fractions of overweights with the median approach. This is true in particular for

dd → e−ν̄e g gdu (Neff ≈ 82%N) and ud → e−ν̄eduud̄ (Neff ≈ 43%N).

These performance measures are condensed into the resulting effective gain factor feff ac-

cording to Eq. (10). For the dominant d g → e−ν̄e g g gu channel we find quite significant gains,

even exceeding a factor of ten for the median approach. For the other channels the situation

is different. For the all-fermion process surrogate unweighting needs more resources than the

standard approach. This can be traced back to the relatively fast evaluation of the full weight,

due to the simpler form of the matrix element, and the inferior performance of the NN in

approximating the true event weights. However, in the global W+4 jets context, this channel

contributes little to the total production rate and thus relatively few events need to be gen-

erated for such a channel. For the intermediate process, dd → e−ν̄e g gdu, we find f med
eff
≈ 4.

This speed-gain, however, also goes along with a more sizeable fraction of overweights, yield-

ing αmed ≈ 0.82. We will therefore compare differential distributions for physical observable

for this channel in the median approach next.

Physics validation

In Fig. 7 we present a comparison of physical distributions for the channel dd → e−ν̄e g gdu

generated with and without the NN surrogate, employing xmed
max in the second unweighting. We

show results for (a) the transverse momentum of the charged boson, (b) the kt 4-jet resolution
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Figure 6: Distribution of weights using 1M test points generated with SHERPA for

the process dd → e−ν̄e g gdu in proton–proton collisions at
p

s = 13 TeV. (a) One-

dimensional histogram of the ratio x = w
s . The two vertical lines indicate the values of

the reduced weight maxima x
p.m.
max (dashed) and xmed

max (dotted). (b) Two-dimensional

histogram showing the relationship between the ratio x = w
s and the true event

weight w.

d34, (c) the scalar sum of the four jet transverse momenta, HT , and (d) the invariant mass of the

two leading pT jets within the RIVET analyses MC_WINC, MC_WJETS, and MC_WKTSPLITTINGS.

For all four differential distributions we observe full statistical compatibility between the

two samples of 1M events each. This further underlines that our surrogate-unweighting ap-

proach produces the exact target distribution. The considered observables all deeply probe

the high-pT tails of phase space. In fact, the pW
T and d34 distributions extend over five or-

ders of magnitude in cross section. While for the given sample size of N = 1M we observe

significant statistical fluctuations in the tails, these are fully consistent between standard and

NN-surrogate generated samples. Even given αmed ≈ 0.82, corresponding to an effective sam-

ple size of Neff = 820k, neither spikes or bumps are manifest in the nominal distributions,

nor a significant increase in the statistical uncertainties for particular observable bins. And

with a resulting gain factor of feff ≈ 4, the surrogate method outperforms standard unweight-

ing drastically. However, to some extent and as noted earlier, this statement depends on the

post-processing procedures for the events. If the overall generation time of parton-level pre-

dictions is small compared to e.g. a full detector simulation, the standard unweighting might

be preferable, at least for sub-channels with medium or low feff.

4.3.2 t t̄+3 jets

Finally, we present results for processes belonging to the t t̄+3 jets group. This probes the

generalisation beyond the production of a single electroweak gauge boson in association with

jets to a pure QCD process with massive particles. Even though the final state contains one

particle less this process still poses a severe challenge. As top quarks carry colour charge

there is a significant proliferation of Feynman diagrams when considering their jet-associated

production. Despite these differences we employ the same neural-network architecture as

before, adjusting the input-space dimensionality for the NN to 17, again utilising the three-

momenta as input variables. We require three anti-kt jets with R= 0.4 and pT, j > 20 GeV and

do not impose phase-space cuts for the external top quarks. The latter are treated as on-shell

in the matrix-element calculation, p2
t = p2

t̄
= m2

t with mt = 173.4 GeV, and only decayed a

posteriori to allow a more realistic definition of observables in the following physics validation.
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Figure 7: Comparison of different differential distributions generated using

SHERPA with (red) and without (black) an NN weight surrogate for the process

dd → e−ν̄e g gdu in proton–proton collisions at
p

s = 13TeV.
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In Tab. 5 we list the four considered partonic channels and their respective leading-order cross

section in proton–proton collisions at
p

s = 13TeV.

Table 5: Selection of partonic channels contributing to t t̄+3 jets production at the

LHC and their corresponding leading-order production cross sections.

process cross section [pb]

g g → t t̄ g g g 108.4(2)

ug → t t̄ g gu 26.00(4)

uu→ t t̄ guu 3.733(8)

uū→ t t̄ gdd̄ 0.01840(6)

Clearly, under LHC conditions the all-gluon process has the largest production rate. In the

second channel, i.e. ug → t t̄ g gu we instead consider an initial-state up-quark. Given that the

QCD interaction does not change flavour, this parton species also appears in the final state.

The third channel contains two up-quarks in the initial- and final state, corresponding to t-

channel dominance in the top-quark production. The last considered process is uū→ t t̄ gdd̄,

here top-quarks can be produced through s-channel gluons. Note, its production rate and

correspondingly its contribution to an inclusive sample of unweighted events is significantly

suppressed.

Performance analysis

In Table 6 we collect the performance measures for the surrogate-unweighting approach ap-

plied to the four top-quark productions channels. The reference unweighting efficiencies εfull

for standard unweighting with AMEGIC are typically higher than the ones found for W+4 jets

before.

Table 6: Performance measures for partonic channels contributing to t t̄+3 jets pro-

duction at the LHC.

g g → t t̄ g g g ug → t t̄ g gu uu→ t t̄ guu uū→ t t̄ gdd̄

εfull 1.1e−2 7.3e−3 6.8e−3 6.6e−4

ε1st,surr 8.7e−3 5.8e−3 4.7e−3 3.6e−4

〈tfull〉/〈tsurr〉 39312 2417 199 64

x
p.m.
max 52.03 32.52 69.76 326.19

ε
p.m.

2nd,surr
2.4e−2 3.8e−2 2.1e−2 5.6e−3

αp.m. 0.9989 0.9984 0.9994 0.9981

f
p.m.

eff
2.21 4.89 1.47 0.19

xmed
max 30.40 19.14 27.78 25.34

εmed
2nd,surr

4.3e−2 6.4e−2 5.1e−2 7.1e−2

αmed 0.9983 0.9966 0.9943 0.9321

f med
eff

3.90 8.26 3.91 2.22

When comparing the evaluation times for the full event weights and the NN surrogate,

quite significant speed-ups are found for g g → t t̄ g g g and ug → t t̄ g gu. As before, a single

evaluation of the surrogate weight takes about 0.12ms. However, the weight calculation for
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the all-gluon channel takes around 5 s, for ug → t t̄ g gu it is still around 0.3 s. Although we

observe this high ratio of weight evaluation times, the effective gain factor feff is much smaller

in the end and of the same order of magnitude than for the other processes. This can be

mostly attributed to the relatively high unweighting efficiencies we start from. With a value of

εfull = 1.1e−2 the process g g → t t̄ g g g has the highest unweighting efficiency of the examples

considered here. According to Eq. 10, this clearly limits the possible gains. The reason for the

high values of εfull is that this kind of multi-gluon channel is well-optimised in the integrator

used by SHERPA.

The results obtained for xp.m. and xmed are less spread out than for the W+4 jets processes.

For ug → t t̄ g gu the NN performs best, with x
p.m.
max ≈ 33 and xmed

max ≈ 19. Only for uū→ t t̄ gdd̄

do we find an inferior performance with x
p.m.
max > 300. The values for the efficiency of the

first unweighting step are comparable to what we found for the Z+4 jets channel, only for

uū → t t̄ gdd̄ it is significantly lower. Similar findings hold for ε
p.m.

2nd,surr
, which is lowest for

uū→ t t̄ gdd̄. All effective sample size parameters are found to be larger than 0.99, with the

exception of the uū process when using the median reduction method, where αmed ≈ 0.93.

However, when using xmed
max in the rejection sampling the effective gain factors are all higher

than two, being largest for ug → t t̄ g gu with f med
eff
≈ 8. For the two computationally most

expensive channels, that also feature the largest production rates, we obtain gains larger than

two even with the per mille maximum reduction.

Physics validation

We close again by comparing predictions for physical observables, obtained with and without

using the weight surrogate for the partonic channel uu → t t̄ guu. Note, the on-shell top-

quarks produced in the hard scattering get decayed with SHERPA’s decay handler [6] prior to

the final-state analysis. We here consider the semi-leptonic decay channel, i.e. t t̄ → lνlqq̄′bb̄

and employ the RIVET analysis MC_TTBAR.

In Fig. 8 we present exemplary results for (a) the invariant mass of hadronic W -boson

candidates, (b) the HT distribution of all final-state jets, (c) the invariant mass of the hadronic

top-quark candidates, and (d) the transverse momentum of the harder of the two final-state

b-quark jets.

As before, we find full statistical agreement between the two samples for all considered ob-

servables. The rather fine binning of the invariant-mass distributions leads to larger statistical

fluctuations for the given sample size of N = 1M. However, as we will illustrate in Sec. 4.3.3

the deviations are in agreement with perfect statistical compatibility, i.e. both samples follow

the same target distribution. Given αmed = 0.9966 we do not expect and in fact do not ob-

serve any visible effects from a reduced statistical accuracy of the sample produced with the

surrogate approach.

4.3.3 Summary of physics validation for LHC processes

In addition to the selected observables for the three processes shown in the previous sections,

we have performed a statistical compatibility analysis between the full and the surrogate setups

based on 190 observables with almost 16,000 bins in total. The predictions are normalised in

each observable for this analysis, to avoid a sensitivity to differences in the integrated cross

section of each run, which would otherwise have to be accounted for as a correlation between

different bins. As can be seen in Fig. 9, the deviations follow a normal distribution N (µ,σ2)

with µ= 0 and σ = 1, thereby validating our approach as faithful and unbiased.
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Figure 8: Comparison of different differential distributions generated using

SHERPA with (red) and without (black) an NN weight surrogate for the process

uu→ t t̄ guu with subsequent leptonic top-quark decays in proton–proton collisions

at
p

s = 13 TeV.
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Figure 9: Distribution of deviations between the full and the surrogate approach in

SHERPA from a comparison in almost 16,000 observable bins for all three processes.

5 Conclusions

Virtual particle collisions as simulated by Monte Carlo event generators play a central role in

high-energy physics. Representing our best-knowledge theoretical expectations, they are used

in the design and development of particle detectors for collider experiments, the planning and

preparation of measurements, and, foremost, in the actual analysis and interpretation of real

experimental data. To match actual measurements, particle-level virtual events need to be

supplemented by a detailed simulation of the detector response. Given the calculational com-

plexity and resource consumption of the detector emulation, ideally particle-level events with

unit weight should be provided. However, the growing need in high-statistics simulations for a

wide range of complex, high-multiplicity partonic scattering processes, including higher-order

perturbative corrections, makes event unweighting a severe and very relevant computational

challenge.

We have presented a novel two-staged unweighting algorithm that has the potential to

significantly accelerate event unweighting. In an initial rejection-sampling step we employ a

light-weight neural-network surrogate for the computationally expensive exact integrand, i.e.

the matrix-element and phase-space weight. The mismatch of the surrogate and the true event

weight is then corrected for in a second unweighting step. To protect against rare outliers in the

true weight distribution as well as in the point-wise ratio of the true and the surrogate weight,

we systematically reduce the respective numerically found maxima using a quantile or median

approach, resulting in a partial overweighting of events. The relevant performance measures

for the algorithm are the quality of the approximation, as well as the evaluation time per phase-

space point, which can be combined into an effective per-event gain factor feff with respect to

conventional rejection sampling. This measure accounts for the reduced statistical power of

the sample due to overweighting. It is used throughout this work to give a rigorous assessment

of the effective improvement to be expected in various example processes. While the proposed

unweighting algorithm has been developed in the context of collision-event simulations, it is

in fact more general and can be used in other applications as well.

In Sec. 3 we have discussed the setup and training procedure used to approximate event

weights with deep feedforward neural networks. As an initial test bed we have used a repre-

sentative partonic channel contributing to tree-level Z+4 jets production at the LHC. We found
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that our neural network is well capable of estimating the true event weights, thereby being

more than 600 times faster.

In Sec. 4 we presented the practical implementation of the novel two-staged unweight-

ing algorithm in the SHERPA event-generator framework. To further validate, benchmark and

gauge the potential of the method, we applied it to high-multiplicity partonic channels con-

tributing to W+4 jets and t t̄+3 jets at the LHC. For the dominant partonic channels with

sizeable cross sections and expensive matrix elements we found gain factors from using sur-

rogate unweighting ranging from two up to ten. By comparing differential distributions of

physical observables we were able to show that the proposed method indeed reproduces the

correct target distribution. We were furthermore able to show that the partial overweight-

ing of events, due to employing reduced maxima in the rejection sampling, barely affects the

statistical accuracy and leaves no visible effect in physical distributions.

The unweighting algorithm presented here can also be applied in event generation beyond

the leading order, where in parts of the phase space the event weights can become negative.

While the proposed algorithm can take negative-valued weights into account, our SHERPA im-

plementation is currently limited to tree-level matrix elements, where only positive weights

appear. We leave the generalisation to NLO event generation and corresponding performance

studies for future work. It will furthermore be interesting to apply our algorithm with alter-

native and potentially more powerful surrogate methods on the market, and evaluate their

performance using the measures introduced in this work.
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In this section the article ‘Unweighted event generation formulti-jet production processes based
on matrix element emulation’ is presented. It is a follow-up to ref. [11], presented above, where
the simple surrogate model used therein is replaced by the more sophisticated, factorization-
aware model of ref. [64]. While that model was originally developed for jet production in�+�− collisions, it was extended to allow hadronic initial states and massive quarks in the final
state for this study. By incorporating knowledge about the factorization properties of QCD
matrix elements in the model, it provides much better approximations to these matrix elements
compared to a naive model.
In the article, the results of applying the unweighting method in combination with the

factorization-aware surrogate to partonic channels contributing to � + 4, 5 jets and � ̄� + 3, 4
jets production at the LHC are presented. Thereby, we went one multiplicity higher than
in ref. [11] and dropped the production of � bosons to reduce the number of examples. A
comparison to the naive model shows that the gain factors increase significantly, reaching
values between 16 and 354. It is shown how the results are influenced by the number of events
in the training data. Furthermore, a discussion about summing versus sampling over theSU(3) colour configurations is given. While the main results of the article relate to colour
summed matrix elements, the scaling behaviour of colour sampling makes it a popular choice
for high-multiplicity processes. In the article, it is shown how to extend the model to make it
applicable in a colour sampling scenario. The achieved gains are not satisfying, though, and
ideas for improving the performance are presented.
The article was first published as a preprint on arXiv in January 2023. Subsequently, it

was submitted to the journal SciPost Physics, where it is currently undergoing peer review. It
received positive comments from the two referees, with only minor changes demanded. The
editor asked for a minor revision to address these points, which we provided in May 2023. The
revised preprint version is reprinted below. The copyright belongs to the authors and the article
is licensed under a Creative Commons Attribution 4.0 International License.

Author contributions

Since the article is based on the combination of two previous publications by the authors,
refs. [11, 64], the implementations used therein provided the foundation for the work on
this project. Accordingly, the surrogate model was implemented by Henry Truong, while I
contributed the implementation of the unweighting algorithm and the naive, non-factorization-
aware model, based on the earlier work of Katharina Danziger and myself. Henry Truong
extended his model to include initial state partons and massive quarks in the final state. He
trained his model on training data that I provided. Subsequently, I used the trained versions
within Sherpa to evaluate the performance by generating unweighted events with our two
stage unweighting method. To make the model available in Sherpa, I ported the python
implementation to c++ code. I also contributed the interface to the onnx Runtime. The
presentation of the surrogate model in sec. 2 was almost solely prepared by Henry Truong,
while the description of the unweighting method in sec. 3 was mostly done by me. For the rest
of the article, all authors contributed significantly to the writing.
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Abstract

In this article we combine a recently proposed method for factorisation-aware matrix el-
ement surrogates with an unbiased unweighting algorithm. We show that employing a
sophisticated neural network emulation of QCD multijet matrix elements based on dipole
factorisation can lead to a drastic acceleration of unweighted event generation. We train
neural networks for a selection of partonic channels contributing at the tree-level to Z+4, 5
jets and tt̄ + 3, 4 jets production at the LHC which necessitates a generalisation of the
dipole emulation model to include initial state partons as well as massive final state quarks.
We also present first steps towards the emulation of colour-sampled amplitudes. We incor-
porate these emulations as fast and accurate surrogates in a two-stage rejection sampling
algorithm within the SHERPA Monte Carlo that yields unbiased unweighted events suit-
able for phenomenological analyses and post-processing in experimental workflows, e.g. as
input to a time-consuming detector simulation. For the computational cost of unweighted
events we achieve a reduction by factors between 16 and 350 for the considered channels.
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1 Introduction

Physics simulations for current and future high-energy accelerator experiments pose a se-
vere computational challenge not only due to the complexity of the studied signatures and
the demand for higher theoretical accuracy, but also owing to the sheer number of simu-
lated events needed to match the enormous collider luminosities. This has sparked a wide
range of algorithmic developments to accelerate key elements of the simulation tool chain
and to improve their computational efficiency and thus reduce their resource requirements.
Machine learning based methods play a prominent role in these developments [3].

Traditionally, the largest fraction of resources has been spent on the complex simulation
of the detector response to collision final states, while the generation of the collision events
constituted only O(10%− 20%) of the budget. With many recent activities reducing the
computational footprint of detector simulations, the event generation speed has become a
more and more important area to facilitate the full exploitation of future collider data.

This situation is amplified with the upcoming increased luminosity at the LHC and
its focus turning to more complex processes. With the advent of matching and merging
techniques theoretical predictions of increased precision have become accessible for these
high multiplicity final states. But as the computational cost increases strongly with the
multiplicity the resources needed for the theoretical description of processes of interest
has surged, see for example [4]. Besides conventional approaches for improving the perfor-
mance of Monte Carlo methods in event generators, more recently also machine learning
methods are explored [5].
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A particular challenge is related to the generation of the hard scattering component
that forms the core of the event evolution, thereby representing the parton-level truth
signal and/or background hypotheses in physics analyses [6, 7]. In Monte Carlo event
generators the hard process is assumed to be factorised from parton showers in the initial
and final state as well as non-perturbative phenomena such as hadronisation and the
underlying event. Algorithmically the generation of hard scattering events corresponds to
the evaluation, i.e. the stochastic sampling, of the phase space integral over the squared
transition matrix element of the considered process at a given order in perturbation theory.

There has been renewed interest in improving phase space integration and sampling
techniques, mostly based on neural networks [8–14], using a variety of methods, but also
Nested Sampling [15], and mixed-kernel Markov chain algorithms [16] have been investi-
gated. Broadly speaking these approaches share the goal of adjusting a sampling distribu-
tion as closely as possible to the true target distribution, i.e. the actual transition matrix
element. In the case of a traditional Monte Carlo integration this will typically result in
events with weights of ideally small spread. However, for a resource efficient generation
process for physics analyses, in particular due to very time-consuming components such
as a detector simulation, events with (largely) unit weight are desirable. This is typically
solved via von Neumann rejection sampling, i.e. an accept–reject procedure for weighted
event samples. However, even with advanced adaptive sampling techniques in particu-
lar for multi-particle final states the efficiency of the unweighting procedure can be quite
small, resulting in the repeated trial evaluation of the scattering matrix element that ul-
timately get rejected. For LHC key processes such as the multijet-associated production
of gauge bosons this might result in O(105) evaluations of the computationally expensive
matrix element for a single unit-weight event [17].

This suggests a complementary opportunity for saving resources, namely the usage of a
fast and accurate surrogate for the trial weights. A corresponding two-stage unweighting
procedure that fully corrects for the potential mismatch between the surrogate weight
and the actual value of the full matrix element has recently been presented in Ref. [2].
To demonstrate the algorithm, a rather simple neural network designed to replicate the
weight of partonic events, represented by their external momenta was used. For tree-level
contributions to Z/W + 4 jets and tt̄ + 3 jets production at the LHC significant gains
have been observed, however, for less complex partonic channels ordinary unweighting
could not be outperformed. Over the last few years more sophisticated matrix element
surrogates based on neural networks have been developed [1, 18, 19], addressing tree-level
and one-loop amplitudes. In particular, Ref. [1] presented a method to emulate scattering
matrix elements employing the factorisation properties of QCD amplitudes in the soft-
and collinear limits.

In this work we explore the potential of a combination of the approaches in Refs. [2]
and [1] in unweighted event generation for multijet production processes at the LHC.
To this end we generalise the method presented in Ref. [1] to the case of colour-charged
initial states and massive final-state partons. We also explore, for the first time, the
emulation of colour-sampled QCD amplitudes in the colour-flow decomposition. With an
implementation in the SHERPA event generator framework [20, 21] we benchmark tree-
level contributions to Z + 4, 5 jets and tt̄ + 3, 4 jets production. The paper is structured
as follows: In Sec. 2 we review the dipole emulation model of Ref. [1] and present our
new developments to address hadronic collisions and massive final-state partons. In Sec. 3
we review the unweighting procedure worked out in Ref. [2]. In Sec. 4 we discuss the
implementation of both algorithms in the SHERPA framework, and present our results
obtained for selected partonic channels contributing to pp → Z+4, 5 jets and pp → tt̄+3, 4
jets.
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2 Improved matrix element emulation using neural networks

To demonstrate the accelerated surrogate unweighting algorithm in Ref. [2] the authors
used only a simple neural network as model for the event weights. It was clear from the
study that a bottleneck in this procedure was the accuracy of the event weight approxima-
tions coming from the surrogate model, leading to low efficiencies in the second unweighting
step. In this work we consider replacing that simple model with the factorisation-aware
neural network model introduced in Ref. [1], which has been shown to exhibit more ac-
curate predictions on a per-point basis compared to existing methods. Below we review
the construction of this model and detail the necessary extensions to facilitate multijet
production processes at the LHC.

2.1 Neural networks based on dipoles

In this section we briefly review the framework from Ref. [1], where an ansatz for matrix
elements based on the factorisation properties of QCD matrix elements in their soft and
collinear limits was used. This factorisation can be depicted as

|Mn+1|2 → |Mn|2 ⊗Vijk , (1)

where the matrix element in the (n + 1)-body phase space reduces to a matrix element
in the momentum mapped n-body phase space multiplied by a singular factor, Vijk. For
single infrared limits, Vijk contains all the singularity structure of the matrix element. In
the dipole formalism (originally presented by Catani and Seymour for massless partons
in [22] and later generalised by Catani, Dittmaier, Seymour and Trócsányi to account for
finite masses in [23]) these singular factors are encapsulated in the dipole functions Dijk.
This factorisation property of matrix elements leads to the form of our ansatz, which is
inspired by the dipole factorisation formula. It is given by

|Mn+1|2 '
∑

{ijk}

CijkDijk , (2)

where i, j, and k denote the three partons involved in the dipole function. Instead of
fitting the matrix element directly where there are divergences in the infrared regions of
phase space, we let the neural network fit the coefficients Cijk as a function of phase
space. These coefficients are more well-behaved than the full matrix element in the soft
and collinear limits as the singular behaviour is described by the dipole functions. By
combining these well-behaved coefficients with the analytically known dipoles, we produce
an approximation for the matrix element. This enables the fitting of matrix elements
across the entire sampled phase space with a single neural network. Whilst the model
predicts the Cijk coefficients, it should be noted that these are not entirely meaningful
by themselves. Only once they are combined with the corresponding dipoles do we get
the approximation of the matrix element. It is this approximation of the matrix element
which should be seen as the model prediction and which appears in the loss function.

In singly unresolved limits, only relevant dipoles are large and so constrain the cor-
responding Cijk in the fit. Outside of these limits all dipoles are of similar order of
magnitude and the ansatz in Eq. (2) is more under-constrained. In these regions of phase
space, the excellent fitting capabilities of neural networks are leveraged to interpolate
the non-singular matrix elements. The accuracy achieved in this approach is due to the
fact that the coefficients being fit by the network, for single soft or collinear kinematics,
are free of divergences. This facet of the emulation model makes it particularly apt for
the case of multijet production processes where matrix elements are plagued with many
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Table 1: Hyperparameters of the neural network and their values.

Parameter Value

Hidden layers 4

Nodes in hidden layers 128

Activation function swish [26,27]

Weight initialiser Glorot uniform [28]

Loss function MSE

Batch size 512

Optimiser ADAM [29]

Initial learning rate 10−3

Callbacks EarlyStopping, ReduceLROnPlateau

well-understood divergent structures. In Sec. 4 we will apply the method to emulate jet-
production processes at the tree level, where the fiducial phase space is constrained by
jet cuts, i.e. a minimal separation of all QCD parton pairs and a moderate transverse
momentum threshold.

We note that Eq. (1) is not to be interpreted as a recursion relation, instead it depicts
the isolation of a single infrared limit into the dipole Dijk leaving the coefficients Cijk

to capture the behaviour of the non-divergent n-body matrix element. In principle, this
model could be extended to cases of multiple unresolved partons where the divergences are
captured by multiple Dijk functions, again leaving Cijk well-behaved. This was examined
briefly in Section 3.3 of Ref. [1] where the model performance was tested on more complex
infrared configurations.

In this work we employ networks of similar size and complexity to those in Ref. [2],
namely, we use KERAS [24] and TENSORFLOW [25] to build a neural network (NN) model
with four hidden layers, each consisting of 128 nodes. These hidden layers use the swish
activation function [26,27] and their weights are initialised according to the Glorot Uniform
distribution [28], which aims to keep the variance of activations similar across all hidden
layers in order to prevent exploding or vanishing gradients during network training.

The swish activation function, x
1+exp(−x) , has a similar shape to the more well-known

ReLU activation function, but it is a smooth continuous function allowing small nega-
tive values, instead of thresholding them to 0 like ReLU does. We find that in practice
swish outperforms ReLU in all our trained models. We also find that instead of using a
linear activation function in the output layer, using a swish activation function is more
performant.

The NN is fitted to the data generated from SHERPA (see Section 4.2 for more informa-
tion on the generation of data) by minimising the loss function encoding the discrepancy
between the prediction made with the neural network to the true matrix element provided
by SHERPA. We use the mean squared error (MSE) as the loss function, with the training
optimised using ADAM [29] with an initial learning rate of 10−3. The learning rate is
reduced when the validation loss shows no improvement for 30 epochs of training by using
the ReduceLROnPlateau callback, and EarlyStopping is used to terminate training when
there is no improvement in the validation loss after 60 epochs. A summary of the neural
network hyperparameters is given in Tab. 1 for reference.

As inputs to our generalised network model we feed: the 4-momenta of all initial- and

5

4.3 To be published: Unweighted event generation for multi-jet production processes based on
matrix element emulation

151



SciPost Physics Submission

final-state particles, the phase-space mapping variables corresponding to the dipoles in the
ansatz, denoted as yijk

1, and the kinematic invariants sij for all pairs of particles in the
process considered. Dipoles can be classified depending on whether the emitter and spec-
tator are in the initial- or final-state, and whether they are massless or massive. The four
classes of dipoles are FF (final-state emitter, final-state spectator), FI (final-state emitter,
initial-state spectator), IF (initial-state emitter, final-state spectator), and II (initial-state
emitter, initial-state spectator), where each class can be massless or massive. Each of
these dipole configurations have a corresponding phase-space mapping. To illustrate the
general form of these mappings, we quote the massless FF case here,

yijk =
pipj

pipj + pjpk + pipk
, (3)

where it is understood that the other mappings are also functions of the external momenta
(and masses if present). Note that the yijk and the sij input variables are not independent
from the external momenta. To aid the neural network training process, we pre-process
the yijk, such that the shape and widths of their distributions are similar for the different
dipole configurations. This amounts to

yijk →







log(1− yijk) if massless FI, IF, or II dipole ,

log(yijk) otherwise.
(4)

The kinematic invariants are also transformed with the logarithm sij → log(sij) as they
can span many orders of magnitude. It should be noted that the particles involved in
the dipole functions and mapping variables denoted by the subscript ijk are the colour-
charged particles in the initial- and final-state. Non colour-charged particles, for example,
electrons and positrons, do not appear in the dipoles, but nevertheless their momenta
and kinematic invariants are fed into the network as inputs such that it learns of their
dependence. All of these inputs are standardised to zero mean and unit variance, with the
4-momenta being standardised along each component.

To use them more effectively in the loss function, we pre-process the matrix elements
as

|Mn+1|2 → arsinh

(

|Mn+1|2
Spred

)

, (5)

and standardise to zero mean and unit variance. Spred is the prediction scale taken to be
the minimum matrix element value found in our training set. This transformation aids
the neural network in training by reducing the span of the target distribution.

The output nodes of our neural network correspond not to the matrix elements directly,
but instead to the dipole coefficients. The raw outputs, denoted by cijk, are transformed
to the coefficients appearing in Eq. (2), Cijk, via the transformation

Cijk = Scoef × sinh (cijk) (6)

where Scoef is the coefficient scale, taken to be Spred/Sdipole. Sdipole is the representative
value of a dipole, which we take to be the median of all dipoles in our training set.
The neural network prediction is made by using Eq. (2) to combine the predicted Cijk

coefficients with the corresponding dipolesDijk. In order to compare with the scaled target
matrix elements, we have to transform the neural network predicted matrix element with
Eq. (5) with the same Spred. We can then compare the matrix element as predicted by
the neural network, with the truth value, as given by SHERPA, in the MSE loss function.
A diagram illustrating the NN emulator architecture is given in Fig. 1.

1The initial-state phase-space mapping variables are referred to as xijk in [22, 23] but we will refer to
all phase-space mappings as yijk for brevity.
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Figure 1: A simplified sketch of our neural network emulator showing inputs, hidden
layers, and outputs Cijk.

In Ref. [1], the neural network predictions were given by the average over an ensemble
of 20 independent replicas trained on different shuffled subsets of the training set and
with different initial random seeds for model weight initialisation. Here we take a similar
approach by training a set of 10 replica models, however, for predictions we select the
model with the lowest validation loss. We stress that this is not a special choice as all
individual replica models converge to a similar point. As an illustrative example, we plot
in Fig. 2 the loss curves for the partonic channel gg → e−e+ggdd̄, which is a leading-
order contribution to Z + 4 jets production at the LHC. We observe convergence across
all replicas with training terminating at similar values of the MSE.

The reasoning behind ensembling a prediction is to reduce the effects of stochasticity of
the training process, to reduce random model weight initialisation, and to reduce variance
in the prediction. In this work we strive for a balance of accuracy and speed, meaning it
is advantageous to use a single model to make predictions. The reasoning is as follows.
In an ensemble of models where replicas are trained on different subsets of the same
training data, there is overlapping information learnt by the individual models. This leads
to diminishing returns in predictive accuracy, meaning that whilst evaluation time grows
linearly with the number of replicas, accuracy does not. We have therefore observed a
single model to be the most performant configuration. It is important to stress that this
does not mean that one model cannot be sufficiently accurate, as we will demonstrate in
Sec. 4.2.

This decision to use only a single NN for predictions also guided our choice of num-
ber of nodes in the hidden layers. With 128 nodes we reach a balance of having enough
parameters to model the matrix elements whilst reducing the effects of overfitting. De-
creasing the number of nodes in the hidden layers to create a more compact NN has little
effect on the evaluation time for a single network when we use the ONNX Runtime [30]
for evaluation, there would only be loss in accuracy which represents a decrease in overall
unweighting efficiency.

2.2 Extension to initial-state and massive partons

In Ref. [1], the authors considered jet production processes initiated via electron–positron
annihilation where only final-state QCD radiation occurs, meaning the set of dipoles built
into the emulation model were of the FF kind. Furthermore, the model was restricted to
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Figure 2: Training and validation loss recorded during training for 10 replica models,
for the gg → e−e+ggdd̄ channel, shown as solid lines. The MSE loss is the mean
squared difference between the transformed predictions and transformed truth values.
The epochs at which training is terminated are illustrated as the solid circles. We depict
the training and validation loss of the selected model in dashed horizontal lines.

the production of massless QCD partons.
In this work we consider the extension to hadronic initial states, which is relatively

straightforward: we need to account for the additional radiation that comes from the
colour-charged initial-state particles. To this end, we add the initial-state dipoles to the
ansatz, namely, we add the IF, FI and II splitting configurations. This means that the
emitter i, and spectator k, in the ansatz can now be in the initial-state. Illustrations for
the complete set of dipoles now included in the model are shown in Fig. 3.

To showcase the extension to massless initial state dipoles we consider the emulation of
tree-level matrix elements for the partonic channels gg → e−e+ggdd̄ and gg → e−e+gggdd̄,
which are leading order contributions to Z +4 jets and Z +5 jets production at the LHC,
respectively. As validation of the emulation accuracy of the NN model for this extension
to initial states, we examine the ability of the model to predict matrix elements across
the sampled phase space, but in particular for the case of soft and collinear kinematics,
where QCD matrix elements are strongly enhanced. We plot in Fig. 4 a 2d histogram
of the truth-to-prediction ratio, |M|2true/|M|2pred, against the true value, |M|2true, for 1M

gg → e−e+ggdd̄ test events with standard cuts as described in Sec. 4.2. Along the sides,
we plot the marginal distributions of the matrix element (top) and the ratio (right). The
results illustrate that the ratio depicting model accuracy is centred around the ideal value
of 1, with a steep drop off. This applies to the bulk of the events, as depicted by yellow
coloured bins, tightly constrained to a narrow band. The purple coloured bins represent
low population bins, or single points, which shows that the tails of the ratio distribution
are primarily seen for smaller matrix element weights. Furthermore, the model accuracy
remains high for the largest values of the matrix element, signalling that the infrared
behaviour is well controlled. This is a key property of the factorisation-aware model. The
emulation performance for the Z + 5 jets process is presented in Sec. 4.2.

An additional extension we study in this article is the inclusion of massive dipoles to
our ansatz. This allows us to examine QCD processes with massive partons which is of
particular importance for top-quark pair production in association with jets. We include
the massive FF, FI, and IF dipoles from Ref. [23] into the emulation model. The massive
dipoles are generalisations of the massless dipoles, meaning in principle it would be possible
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Figure 3: Schematic diagrams of the four classes of dipoles. The dipoles are named
according to whether the emitter and spectator are in the initial (upper indices) or
final state (lower indices). Each dipole consists of a composite particle (denoted by
tilde) that decays into two partons, and a spectator that recoils to conserve momentum.
The grey blob represents the hard scattering process, with incoming and outgoing lines
representing initial- and final-state partons, respectively. The black circle represents the
splitting function within the dipole function which contains the divergent behaviour.

to remove the massless dipoles from the ansatz. However, in practice, we only include the
minimal set of necessary dipoles for a given partonic channel and so the inclusion of
the massless dipoles reduces overall computational cost due to their relatively simpler
expressions. With the massive dipoles implemented, our model contains the complete set
of dipoles and is in principle able to take advantage of the factorisation-aware model for
arbitrary processes involving QCD-enhanced behaviour at tree-level.

In order to showcase the extension to massive dipoles, we consider emulating tree-level
matrix elements of three partonic channels: gg → tt̄ggg, and uū → tt̄gdd̄, contributing to
leading order tt̄+3 jets production, and ug → tt̄gggu which is a leading order contribution
to tt̄+4 jets production. To validate the inclusion of these massive dipoles into the model,
we show in Fig. 5 the deviation similar to Fig. 4 but for 1M tree-level events of gg → tt̄ggg
in proton–proton collisions at

√
s = 13 TeV, with cuts described in Sec. 4.2. We again

observe the narrow yellow band, indicating that the bulk of the test events are accurately
predicted, with the outliers corresponding to smaller matrix element values. The infrared
behaviour is well captured by the model as can be seen by the narrow head for the largest
matrix element values. For emulation performance of channels not described here, we refer
the reader to Sec. 4.2 and App. A.

2.3 Colour-sampled matrix elements

The discussion so far has been focused on the emulation of colour-summed matrix elements
as it was the case for Ref. [1]. In this work we take the first steps towards emulating colour-
sampled matrix elements, such as those obtained from the COMIX generator [31, 32].

Based on the colour-flow decomposition of QCD amplitudes [33,34], for each event, the
generator samples a momentum configuration and a valid colour assignment, i.e. colour
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Figure 4: 2d histogram showing the distribution of truth-to-prediction ratios of the
matrix element against the value of the true matrix element for the Z+4j process gg →
e−e+ggdd̄. Along the axes, we plot the marginal distributions of the matrix element
(top), and the truth-to-prediction ratio (right). High population bins are illustrated as
yellow, with low population bins, down to single points, are depicted in purple.

indices. The colour assignment thereby is represented by a vector of integers, C, where
entries in the vector, ci ∈ {1, 2, 3}, denote the colour assigned to a colour-charged parton
in the process. Gluons have two colour indices corresponding to colour and anti-colour,
whereas quarks/anti-quarks carry only one index.

We add this vector of colour assignments as an additional input to the NN to include the
colour-sampled information from the generator. We one-hot encode the colour assignments
such that colours are represented by 3-element vectors, e.g. R = [0, 0, 1], G = [0, 1, 0], and
B = [1, 0, 0], as the integer representation of colour assignments is not useful to the NN.

Given the actual colour of a parton is ambiguous, the matrix element should be invari-
ant to any cyclic permutation of the specific colour assigned to a given quark or gluon. To
give an example, the three permutations C1 = [R,B,B,G,R], C2 = [G,R,R,B,G], and
C3 = [B,G,G,R,B] of a five colour assignment would lead to the same matrix element
weight. To aid the NN in learning this behaviour, we take the three permutations and du-
plicate the other model inputs such that the training data is enlarged by a factor of three.
This did not cause us to run into any computational bottlenecks in terms of memory or
time taken to train the models. Note that this duplication of data is not required when
making predictions.

The rest of the inputs to the NN model remain identical. We study to what extent
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Figure 5: 2d histogram showing the distribution of truth-to-prediction ratios of the
matrix element against the value of the true matrix element for the tt̄ + 3j process
gg → tt̄ggg. Along the axes, we plot the marginal distributions of the matrix element
(top), and the truth-to-prediction ratio (right).

a naive approach of using the same dipole functions, which are most suitable for colour-
summed matrix elements, works for the case of colour-sampled matrix elements. In the
future, a more promising approach might be the application of coloured dipole terms
directly. Their form has already been derived [35] and implemented for the dipole sub-
traction in the COMIX event generator [31] but is not implemented in our NN-based model
yet.

To illustrate the emulation accuracy of colour-sampled matrix elements, here denoted
|M |2, we plot the truth-to-prediction ratio in Fig. 6 for the gg → tt̄ggg channel. While
we again observe the property of well-behaved predictions for the larger matrix elements,
evidently, the ratio distribution is much wider than in the colour-summed case. This
decrease in accuracy directly translates to a lower expected gain factor when using this
emulator as a surrogate model for event unweighting. This is discussed further in Sec. 4.2
where we elaborate on specific reasons for this decrease in accuracy and present possible
future endeavours.
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Figure 6: Truth-to-prediction ratio for colour-sampled gg → tt̄ggg matrix elements
against the colour-ordered partial amplitudes, |M |2. Marginal distributions are plotted
for the matrix elements (top) and ratios (right).

3 Event unweighting utilising matrix element surrogates

The unweighting of hard-scattering parton-level event samples constitutes an important
step in the simulation of scattering events. The obtained unit-weight events then get passed
on to subsequent evolution stages, including QCD parton showers, hadronisation, and
possibly a detector simulation. However, the unweighting, based on rejection sampling,
can pose a severe computational challenge, in particular when the evaluation time of the
matrix element is long and the efficiency of the unweighting is rather low. To address
this challenge Ref. [2] proposed a novel two-stage rejection sampling algorithm based
on fast surrogates that we briefly review in this section. We furthermore generalise the
performance measures to the case where the surrogate replaces the matrix element only,
rather than its combination with the phase space weight as was the case in Ref. [2].

3.1 Two-stage unweighting method

The Monte Carlo method provides a numerical procedure to estimate integrals, e.g. par-
tonic cross sections in high energy physics. When the integrand is non-trivial we use im-
portance sampling to reduce the variance of the integral estimate. For a positive-definite
target function f : Ω ⊂ R

d → [0,∞) defined over the unit hypercube Ω = [0, 1]d and a
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probability density function g the Monte Carlo estimate of the integral

I =

∫

Ω
f(u′) du′ =

∫

Ω

f(v′)

g(v′)
dv′ with

∫

Ω
g(u′) du′ = 1 (7)

is given by

I ≈ 1

N

N∑

i=1

f(vi)

g(vi)
= 〈w〉g (8)

with the pointwise event weight wi = f(vi)/g(vi). The points vi are drawn from the dis-
tribution g. A suitable g can reduce the variance of the integral estimate and thereby
increase the efficiency of the numerical integration. Finding such a function g is a difficult
task, though, as one needs a way to efficiently draw samples from it. For multimodal
target functions it is attractive to use a multi-channel approach, where g is defined by a
mixture distribution. The weights of the channels can then be adapted automatically [36].
VEGAS [37] is an algorithm to automatically construct a sampling distribution g by op-
timising the bin widths of a piecewise-constant function. It can also be used to remap a
given g or even the individual channels of a multi-channel distribution [38].

Besides the total integral we are typically interested in differential distributions of
the points ui, i.e. histograms of physical observables. Monte Carlo sampling produces
weighted events so every entry in a histogram comes with a weight. Variance reduction
methods like importance sampling also reduce the spread of weights but only a perfect
sampler results in strictly uniform weights. A large weight spread is problematic when the
samples are to be post-processed by detector simulations, as these are very expensive in
terms of computation time per event. It is inefficient to apply them to events that yield
a minuscule contribution to the total cross section. The alternative is to first impose a
rejection sampling step to extract unit-weight samples. This converts a sample of N trials

weighted events into a set of N ≤ N trials unweighted events by randomly accepting or
rejecting every weighted event with the acceptance probability w/wmax where wmax is
the maximal event weight. Even though the information of the rejected events is lost the
overall efficiency can be significantly increased when detector simulation is more expensive
than event generation.

A convenient measure for the performance of a Monte Carlo event generator is the
unweighting efficiency ε of the rejection sampling step, defined as

ε :=
N

N trials
. (9)

For a large number of trial events it can be estimated by

ε ≈ 〈w〉
wmax

, (10)

where 〈w〉 is the mean of the Ntrials weights in the event sample. The average number of
target function evaluations needed to get one accepted event is then given by 1/ε. Similar
to how the uncertainty on the integral estimate can be diminished by variance reduction
methods, the unweighting efficiency can be increased by optimising the sampling density
g for smaller wmax.

There is another way of reducing the computational footprint especially if the target
function takes a long time to evaluate and has a rather low unweighting efficiency. This
is typically the case for high multiplicity scattering processes. The enormous growth in
the number of contributing Feynman diagrams makes high multiplicity matrix elements
increasingly expensive. At the same time, the high dimensionality of phase space renders
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it difficult to find a sampling density g that is well adapted to the target everywhere
in the integration volume. Consequently, the unweighting efficiency typically decreases
with increasing multiplicity, see for example [17]. In this situation one can reduce the
overall event generation time through replacing the expensive matrix element by a fast
and accurate surrogate. The inaccuracy inevitably introduced in this procedure can be
fully corrected for in a second unweighting step, resulting in an unbiased method [2]. An
outline of the algorithm is given in Alg. 1. In addition, a more extensive explanation
follows below.

Algorithm 1: Two-stage rejection-sampling unweighting algorithm using an
event-wise weight estimate.

while true do
generate phase-space point u;
calculate approximate event weight s;
generate uniform random number R1 ∈ [0, 1);
# first unweighting step
if s > R1 · wmax then

calculate exact event weight w;
determine ratio x = w/s;
generate uniform random number R2 ∈ [0, 1);
# second unweighting step
if x > R2 · xmax then

return u and w̃ = max(1, s/wmax) ·max(1, x/xmax)
end

end

end

We begin by generating a weighted trial event in the conventional way. In a first
unweighting step we then compare the surrogate weight s to the weight maximum wmax

and accept the event with probability s/wmax. For an event that gets rejected at this point
we only had to evaluate the cheap surrogate. If the event gets accepted, however, we need
to evaluate the true weight w and attach a correction weight x = w/s to the event. In a
second unweighting step, the event has an acceptance probability of x/xmax. Like wmax,
xmax has to be predetermined. When the surrogate yields an accurate approximation of
the true weight, a large proportion of events gets accepted in the second unweighting step.
We note that the algorithm can easily be extended to the case of not strictly positive event
weights as shown in [2].

Alg. 1 contains a crucial detail regarding the weight maxima, namely that even after
unweighting events can end up with weights w̃ > 1 if s is larger than wmax or if x is
larger than xmax. If the true maxima were used, this could never happen. However,
given finite-sized samples an exact determination of wmax is realistically not possible. It
is often not even desirable since a small number of points with large weights can induce
a prohibitively small unweighting efficiency without contributing significantly to the total
integral. It can therefore be useful to work with a deliberately reduced maximum, provided
the rare mismatches are corrected for by event weights. The resulting events will be
partially unweighted since there can be some events that overshoot the maximum. These
will receive an overweight w̃ = w/wmax > 1. Hereinafter, we adopt the approach used in
SHERPA for finding the reduced maximum. The aim is that the remaining overweights do
not contribute more than a fixed proportion to the integral. We set this share to 0.1%.
This can be achieved by taking the sorted weights of a sample of weighted points and

14

3 New sampling methods for efficiency improvements

160



SciPost Physics Submission

finding the weight that cuts off the desired quantile. In SHERPA this is done automatically
during the integration phase. We point out that using a reduced maximum is a fully
unbiased technique commonly used in event generators. It is especially helpful when
weight surrogates are used since the limited approximation quality of the surrogate can
lead to particularly large outliers.

3.2 Performance analysis

To fairly evaluate the performance gain of the two-stage unweighting algorithm shown in
Alg. 1 we take the average time it takes to generate a single (partially) unweighted event
and compare it to the time it would take to generate the statistical equivalent using the
standard unweighting procedure. We call the ratio between the two the effective gain
factor feff:

feff :=
Tstandard

Tsurrogate
. (11)

In order to separate the actual unweighting from program initialisation and other aspects
of event generation, we break the calculation down to the relevant ingredients:

feff =
N trials

full ·
(
〈tME〉+ 〈tPS〉

)

N trials
1st,surr ·

(
〈tsurr〉+ 〈tPS〉

)
+N trials

2nd,surr · 〈tME〉
(12)

=
1

〈tsurr〉+〈tPS〉
〈tME〉+〈tPS〉

· εfull
ε1st,surrε2nd,surr

+ 〈tME〉
〈tME〉+〈tPS〉

· εfull
ε2nd,surr

. (13)

The average evaluation times of the full matrix element weight, the phase space weight
and the matrix element surrogate, respectively, are denoted as 〈tME〉, 〈tPS〉 and 〈tsurr〉. By
N trials

step we denote the number of trials in the respective unweighting step. The unweighting
efficiencies are defined as

εfull :=
N

N trials
full

, ε1st,surr :=
N trials

2nd,surr

N trials
1st,surr

and ε2nd,surr :=
N

N trials
2nd,surr

. (14)

It should be noted that events rejected due to phase space constraints do not affect the un-
weighting efficiencies since the selection cuts can be applied solely based on the kinematics
without having to evaluate the matrix element.

From Eq. (13) it is clear that an important requirement for significant gains are short
evaluation times for the surrogate in comparison to the full matrix element, i.e. 〈tsurr〉 �
〈tME〉. Furthermore, even with a fast and accurate surrogate gains are only possible
when the original unweighting efficiency εfull is small enough. Therefore, the surrogate
unweighting method is of limited use when the sampling density is very well adapted to
the target. For suitable processes it will thus be important to find a good balance between
fast evaluation and high accuracy of the surrogate.

The efficiency εfull can be estimated by

εfull ≈
〈w〉
wmax

(15)

from the weights w generated during an initial integration run, i.e. after adapting the phase
space generator. For wmax we use the reduced value as described in Sec. 3.1. Analogously,
we estimate ε1st,surr by

ε1st,surr ≈
〈s〉
wmax

(16)
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using the same weight maximum and the surrogate weights s determined for the events in
the test dataset. Since the deviations of the surrogate should average out, one can expect
the values of εfull and ε1st,surr to be close. The second unweighting efficiency ε2nd,surr can
be estimated by

ε2nd,surr ≈
〈x〉
xmax

(17)

using the values x = w/s determined for the events in the test dataset. The reduced
maximum xmax can be calculated analogously to wmax with the restriction that we have
to weight the values of x by their corresponding values of s to take into account the
acceptance probability in the first unweighting step.

To determine the times 〈tME〉, 〈tPS〉 and 〈tsurr〉 we repeat the calculation of the
full/surrogate matrix element and phase space weights for a number of events from the test
dataset. Depending on the complexity of the process we need between 10 and 10 000 events
for a reliable time estimate. Note, the value of 〈tsurr〉 includes the time for preprocessing
the inputs and post-processing the outputs of the surrogate model.

4 Implementation and application to LHC processes

In this section we present the application of the dipole model emulation of QCD matrix
elements in the unweighting of event samples for high-multiplicity scattering processes at
the LHC, i.e. Z + 4, 5 jets and tt̄+ 3, 4 jets production at the LHC. Results presented in
Ref. [2] were based on a simplified neural network surrogate, however, also included an
approximation for the phase space weight. We will here contrast the results obtained before
to the sophisticated dipole model surrogate and also comment on the challenges when using
colour-sampled QCD amplitudes. We furthermore briefly describe an implementation in
the workflow of the SHERPA framework [20,21]. Note that we here only need to consider the
generation of the hard process partons, as this is factorised from the generation of initial-
and final-state parton showers as well as non-perturbative phases such as hadronisation
and the underlying event [6]. Furthermore we note that systematic variations of the
hard event related to alternative PDF sets, or modifications in the scale choices can be
evaluated on-the-fly for unweighted events, represented by variational weights, see for
example [39, 40].

4.1 Implementation in the SHERPA framework

The two-stage unweighting algorithm described in Sec. 3.1 has been implemented in
SHERPA [2]. The framework provides two built-in tree-level matrix element generators:
AMEGIC [41] and COMIX [31]. We use AMEGIC to evaluate colour-summed matrix ele-
ments and COMIX for colour-sampled ones. To adapt the integrator to the integrand
SHERPA runs an initial optimisation phase. This is followed by an integration phase in
which the optimised integrator is used to calculate the total cross section of the process.
From the event weights produced in this phase the value of wmax is determined, based on
the 0.1% maximum reduction method introduced in Sec. 3.1. We take 2M events from the
integration phase as a training dataset by saving the momenta, matrix element and phase
space weights, and, when using colour sampling, colour assignments. From the training
dataset we use 800k events for training the model, 200k for validation during the training
and 1M for testing the performance afterwards. We train the dipole model described in
Sec. 2 using KERAS [24] with the TENSORFLOW [25] backend and save it in the ONNX
format [42]. The 1M events from the test dataset are used to determine the value of xmax.
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After the training of the surrogate model has been completed successfully, the de-
termination of the surrogate matrix element value during event generation with SHERPA
proceeds as follows. At the point where normally the matrix element would be calculated
with AMEGIC or COMIX, we use the momenta of the current trial event to determine the
additional inputs yijk and sij . Along with the momenta these are then fed into the model
which we evaluate on a single CPU core using the C++ API of the ONNX Runtime
package [30]. We find that ONNX Runtime evaluates the model several times faster than
the header-only library frugally-deep [43], which was used in [2]. It is important to note
that this introduces an additional dependency on a software library. We would, however
like to emphasise that our method does not depend on the code with which the surrogate
is evaluated. This affects only the evaluation time. It would even be possible to create
an interface through which any suitable tool could be used for this purpose. The model
evaluation yields the dipole coefficients Cijk which are then combined with the dipole
functions Dijk according to Eq. (2). To determine the relevant dipoles we use a custom
implementation, although there already exists an implementation of the dipole functions
in SHERPA (used in the automated construction of infrared subtraction terms for NLO
QCD and EW calculations [44,45]) which could in principle also be employed for the case
considered here.

4.2 Results for LHC multijet production processes

To study the performance of the method we consider various partonic multijet processes
at tree-level accuracy. We thereby follow the validation and benchmark strategies outlined
in Ref. [2], considering Z+jets and tt̄+jets production in proton–proton collisions at

√
s =

13TeV. In particular we present results for Z + {4, 5} jets and tt̄+ {3, 4} jets final states,
thereby extending our previous study by one multiplicity. Jets get reconstructed with the
anti-kt algorithm [46] with R = 0.4. As parton density functions we use the NNPDF-3.0
NNLO set [47].

Z+jets

We examine the partonic channels gg → e−e+ggdd̄ and gg → e−e+gggdd̄ at the tree-
level that represent leading-order contributions to Z + 4 jets and Z + 5 jets production
at the LHC. Correspondingly, using the four-momenta as inputs for the surrogate model
we have parameter spaces with 32 and 36 dimensions. These get supplemented by the
corresponding dipole mapping variables and kinematic invariants, see Sec. 2.2. Cuts are
implemented to constrain the fiducial phase space and, in turn, to regulate QCD infrared
divergences. A dilepton invariant mass me−e+ > 66GeV and four, respectively, five jets
with pT,j > 20GeV are enforced. Identical cuts are used for the training and the prediction.

As a first assessment of the quality of the surrogate we show in Fig. 7a the distribution
of the ratio between the true event weight w and the surrogate event weight s for 1M test
events for the exemplar channel gg → e−e+gggdd̄. The corresponding plot for the process
with the lower multiplicity is shown in App. A. We compare the results of the dipole
model with the naive model from Ref. [2]. We point out that the naive model learns the
entire event weight, while the dipole model learns only the matrix element weight. For
the representation in Fig. 7a, the approximated matrix element weight of the dipole model
was therefore multiplied by the true phase space weight. While a perfect model would
reproduce the true weight exactly, such that the ratio would be one for all events, our
surrogates show deviations. In both cases the distribution is peaked at one and falls off
rather symmetrically towards higher and lower values. For the dipole model the peak is
more pronounced and has a steep slope towards the tails of the distribution. This indicates
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Table 2: Performance measures for partonic channels contributing to Z + {4, 5} jets
production at the LHC.

SHERPA default with dipole-model surrogate

Process tME[ms] tPS[ms] εfull tsurr[ms] xmax ε1st,surr ε2nd,surr feff

gg→ e−e+ggdd̄ 54 0.40 1.411% 0.14 2.6 1.418% 39% 16

gg→ e−e+gggdd̄ 16 216 5.70 0.076% 0.20 3.6 0.085% 29% 269

that for the bulk of the events the dipole model produces results that are much closer to
the true values than the ones from the naive model. While the naive model seems to tend
to generate an excessive number of large weights, i.e. s > w, both models generate a small
number of outliers with s � w, reaching values for x = w/s of up to 107. We also indicate
the points where the values of xmax lie to show which parts of the distributions are cut
off in the partial unweighting. The dipole model achieves a much smaller xmax than the
naive model, 3.6 compared to 84.8. There are orders of magnitude between the large-x
outliers and the value of xmax used for the unweighting. To underline that this does not
contradict each other, we refer again to Figs. 4–6. There we can see that the large ratios x
are suppressed with respect to the matrix element weight. These events therefore have a
low probability of being accepted in the unweighting. Accordingly, the cut by the reduced
xmax is justifiable because the outliers on average contribute little to the total cross-section
due to their low frequency.

In Tab. 2 we summarise the evaluation times of the full and dipole-model surrogate
weights, the efficiencies of the single- and two-stage unweighting, the maximum xmax for
the second unweighting step and, finally, the effective gain factor feff. The evaluation of the
surrogate is found to be orders of magnitude faster than the full matrix element calculation
with AMEGIC. In the 4-jet case it is more than 300, and in the 5-jet case more than 80.000
times as fast. The evaluation of the phase space weights is fast in comparison to the full
matrix element. However, it is of order, or even larger than 〈tsurr〉. We find that the
additional complexity when increasing the multiplicity from four to five jets increases the
matrix element evaluation time by a factor of 300 and reduces the unweighting efficiency
by a factor of 20. Nevertheless, 〈tsurr〉 grows only by a factor less than two, while the
approximation accuracy, reflected by xmax and ε2nd,surr, remains very similar. We obtain
the values xmax = 2.6 and ε2nd,surr = 0.39 in the 4-jet case compared to xmax = 3.6 and
ε2nd,surr = 0.29 for five jets. The effective gain factors yield 16 and 269, respectively.

tt̄+jets

As contributions to the processes tt̄ + 3 jets and tt̄ + 4 jets in hadronic collisions we
here consider three partonic channels with varying number of external gluons, namely
uū → tt̄gdd̄, gg → tt̄ggg and ug → tt̄gggu. In contrast to the previous examples these are
pure QCD processes featuring massive coloured particles. Even though the final states
contain one particle fewer than the Z+jets channels, these processes still pose a severe
computational challenge. The direct coupling of gluons to the top quarks leads to a
significant proliferation of Feynman diagrams in their jet-associated production. The input
space dimensionalities are now 28 and 32, respectively. For the processes contributing to
tt̄+3 jets we require three anti-kt jets with pT,j > 20GeV. The fiducial phase space of the
tt̄+4 jets channel is constrained by requiring four jets with staggered transverse-momentum
cuts, namely pT,1 > 100GeV, pT,2 > 50GeV, pT,3 > 40GeV and pT,4 > 20GeV. We do
not impose phase space restrictions on the external top quarks, that we treat as on-shell
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(tt̄+ 3 jets).

Figure 7: Ratio distributions of exact weights and their surrogate for the factorisation-
aware emulation of the matrix-element weight (dipole) and the combined matrix-element
and phase-space weight from Ref. [2] (naive).

Table 3: Performance measures for partonic channels contributing to tt̄ + {3, 4} jets
production at the LHC.

SHERPA default with dipole-model surrogate

Process tME[ms] tPS[ms] εfull tsurr[ms] xmax ε1st,surr ε2nd,surr feff

uū→ tt̄gdd̄ 5 0.04 0.092% 0.14 1.5 0.092% 69% 20

gg → tt̄ggg 3262 0.90 1.093% 0.18 1.4 1.128% 69% 61

ug → tt̄gggu 51 200 4.00 0.153% 0.24 1.8 0.160% 57% 354

in the matrix element calculation, i.e. p2t = p2
t̄
= m2

t with mt = 173.4GeV.
In Fig. 7b we show the ratio distributions of the true event weights and their surrogates

for the dipole model and the naive model using the example of the partonic channel
uū → tt̄gdd̄. Note that the corresponding distributions for the other channels are shown
in App. A. In comparison to Fig. 7a it can be seen that the distribution of the naive model
is wider while the one of the dipole model is even narrower in this example. Moreover, it
has visibly fewer outliers. This is also reflected in the values of xmax, where the excellent
result of 1.5 for the dipole model is two orders of magnitude smaller than the one for the
naive model.

In Tab. 3 we compile the results obtained for the three partonic channels comparing the
ordinary unweighting procedure with the two-stage surrogate technique. Again, we find
significant speedups when using the dipole-model surrogate. For the process ug → tt̄gggu
the surrogate is in fact more than 200.000 times faster than the full matrix element weight
evaluation. For all three examples the surrogate gives accurate approximations leading to
values of xmax between 1.4 and 1.8. The gain factors feff lie between 20 for the process
uū → tt̄gdd̄ and 354 for ug → tt̄gggu.

We compare the results for the effective gain factors for all five example processes
in Fig. 8. For comparison we also include the results obtained using the simpler NN
surrogate from Ref. [2] that were not contained in the tables. The values differ from
the original publication because the definition of the renormalisation and factorisation
scales has changed from a momenta-dependent one as used in Ref. [2] to a fixed value
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Figure 8: Effective gain factors for different processes. For comparison the results
obtained using the naive neural network surrogate model from Ref. [2] are shown. Note
that the naive model includes the phase space weight while the dipole model learns the
matrix element weight only.

as used in Ref. [1]. This change leads to a slightly simpler learning problem and thus to
slightly better performance. It can be seen that the dipole model achieves much larger
gain factors. This can be attributed to the fact that the dipole model approximates the
matrix elements much better because it already knows the relevant dipole structures for
QCD emissions that dominate the multijet processes considered here. Furthermore, it is
found that the respective highest multiplicity channels of the two process groups yield
the largest gain factors. Adding an additional external particle causes the complexity of
the calculation of the matrix element to grow significantly. This leads to a considerably
increased evaluation time tME for the full weight, while the time tsurr for the surrogate
changes only insignificantly. The impressive performance of the dipole surrogate model
facilitates high gains even for those channels where the naive model from Ref. [2] led to
minor gains only.

The influence of the training dataset size

In Fig. 9 we show how the value of xmax depends on the event sample size used to train
the surrogate model for the different example processes. The number of training events is
varied between 105 and 106. A hierarchy can be identified: the models with the highest,
i.e. worst, values of xmax gain the most from additional training data. For the process
gg → e−e+gggdd̄ for example the resulting xmax is more than halved by going from 105 to
106 events. The processes with smaller xmax in comparison benefit less. For the process
gg → tt̄ggg the gain is only 23%. These observations carry over to Fig. 10 where the
dependence of feff on the training dataset size is shown. According to Eq. (13) we have
feff ∝ ε2nd,surr and according to Eq. (15) we have ε2nd,surr ∝ 1/xmax. Therefore feff is
inversely proportional to xmax. The largest improvement can again be seen for the process
gg → e−e+gggdd̄ where the value of feff increases by 125% when going from 105 to 106
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Figure 9: Influence of the training data size on the value of xmax.

events. Likewise, the smallest improvement relates to the process gg → tt̄ggg where the
increase is only 22%.
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Figure 10: Influence of the training data size on the value of feff.

Results for colour-sampled amplitudes

The above examples are based on matrix elements with an explicit sum over the SU(3)
colour configurations of the involved partons. Using Monte Carlo integration techniques for
phase space sampling, and possibly partonic flavours, a further option arises: just like the
kinematic variables, we can also sample the colour assignments for the external partons. It
can be shown [48] that colour sampling has a superior scaling behaviour compared to colour
summation and therefore becomes much faster for large parton multiplicities. This holds
even though colour sampling needs more points to reach a certain target precision. With
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6−8 colour charged legs our examples already feature quite high dimensional colour spaces.
It is thus worthwhile to test the performance of our method for colour sampled matrix
elements. As a benchmark we use SHERPA with its built-in matrix element generator
COMIX that implements colour sampling based on the colour-flow decomposition of QCD
amplitudes [31,32]. To keep things simple, we use a naive approach and employ basically
the same surrogate model as before with the colour configuration as an additional input,
see Sec. 2.3. While our model ansatz Eq. (2) is averaged over the colours, the neural
network can try to learn the colour structure and encode it in the coefficients. As discussed
in Sec. 2.3, an improved approach could use a new set of dipoles with explicit colour
assignment in the future.

We trained the dipole model on the processes gg → e−e+ggdd̄ and gg → tt̄ggg and
found gain factors of 0.23 and 0.26, respectively. The performance is thus worse than using
the standard unweighting when sampling colours. We checked that increasing the size of
the training dataset does not lead to much higher gains. Three effects come into play
here: first, the approximation quality of the model is worse because the complexity of the
emulation problem increases significantly due to the additional colour degrees of freedom.
Secondly, the evaluation time tME for the matrix element is now much shorter because
instead of the whole sum only a single colour point needs to be evaluated. Thirdly, the
evaluation time tPS for the phase space weight is now no longer negligible. With COMIX

it is of the same order of magnitude as tME. This makes it much more difficult to achieve
large gains.

A way to deal with the last two points would be to let the surrogate also approximate
the phase space weight such that

s′ ≈ wME · wPS . (18)

Let us demonstrate this for the effective gain factor. In the limit of a highly accurate
surrogate with ε1st,surr ≈ εfull and ε2nd,surr ≈ 1 Eq. (13) becomes:

feff ≈ 1
〈tsurr〉+〈tPS〉

〈tfull〉
+ 〈tME〉

〈tfull〉
· εfull

. (19)

Even in the ideal case where 〈tsurr〉 → 0 and εfull → 0 there is an upper limit given by

feff ≤ 〈tfull〉
〈tPS〉

. (20)

This is unproblematic as long as the evaluation of wPS is cheap compared to wME. If this
is not the case a surrogate that emulates the full weight is beneficial and results in an
effective gain factor of:

f
′

eff =
1

〈t′surr〉
〈tfull〉

· εfull

ε′1st,surrε
′
2nd,surr

+ εfull

ε′2nd,surr

. (21)

Considering again the limit of a highly accurate surrogate leads to

f
′

eff ≈ 1
〈t′surr〉
〈tfull〉

+ εfull
. (22)

The largest possible gain factor is thus f ′max
eff = εfull

−1. This corresponds to the same
acceptance rate as without surrogate but with zero evaluation time. As was done in
Ref. [2] we adapted the dipole surrogate model to include the phase space weight and
evaluated the performance for the same two processes as above. We find gain factors of
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0.02 and 0.22, respectively. Again, we do not achieve any gains compared to the standard
unweighting. In this case the problem is that the neural network gives an even worse
approximation since we include the phase space mapping which already tries to flatten
the structures in the soft and collinear regions. So the model has to deal with a situation
it was originally not designed for. The resulting losses eat up the gain from not having to
calculate wPS for every trial event.

The observations described above open up various options for improvement. One pos-
sibility, as mentioned before, would be to develop a surrogate model with colour-dependent
dipoles, adequately representing amplitudes in a specific colour-flow assignment. In ad-
dition, one could attempt to explicitly incorporate knowledge about the employed phase
space mappings.

5 Conclusions

We presented a case study of using a fast and accurate neural network emulation model
for scattering matrix elements in the context of unweighted event generation for multijet
processes. To this end we have generalised the model originally presented in Ref. [1], based
on dipole factorisation, to account also for initial-state emissions and massive final-state
partons. When considering QCD multijet processes this factorisation-aware model – using
the parton four-momenta, dipole variables and kinematic invariants as inputs – provides
very precise estimates for the squared transition amplitudes. This has been showcased for
a selection of partonic channels contributing at the tree-level to hadronic Z+4, 5 jets and
tt̄+ 3, 4 jets production.

We then considered the trained networks in the ONNX format as fast surrogates for
the full squared matrix elements in a two-stage rejection algorithm, originally presented
in Ref. [2], in the SHERPA framework. This enables the production of unbiased samples
of unweighted events that reproduce the exact target distribution, i.e. the true squared
matrix element of the considered scattering process. Given a fast and accurate surrogate
model, the effective gains are largest when two conditions are met: (i) the unweighting
efficiency of the phase space integrator is rather low, and, (ii) the matrix element is time
consuming to evaluate. For example, for the channels gg → e−e+gggdd̄ and ug → tt̄gggu in
proton–proton collisions at

√
s = 13TeV, featuring default unweighting efficiencies for the

AMEGIC integrator of 0.08% and 0.153%, we found gain factors of 269 and 354, respectively,
when using our dipole-model surrogate. Accordingly, the computational resources needed
to generate a given number of unweighted events get reduced by more than two orders
of magnitude. At the same time, the overheads for training the surrogate network model
are very modest, given that events from the compulsory integration phase prior to the
generation process can be used for that purpose.

The underlying workflow for colour-summed squared matrix elements should be easily
adaptable also for other matrix element providers and usage in experimental computing
frameworks, given that in contrast to the original treatment from Ref. [2] we only employ
the emulation of the matrix element expression and no longer include the generator specific
phase space weight in the first-stage approximation. Furthermore, the ONNX standard
allows one to easily store, transfer and exchange the trained neural networks, offering
much flexibility in the method used to train the model.

Our results are valid for a sequential event generation workflow where events are gen-
erated one after the other on a single CPU core. We expect that the performance can be
further increased by moving to a parallel workflow that generates multiple events at the
same time using parallel hardware. The evaluation of the neural networks, which form
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the basis for the surrogate models, can be easily vectorised and benefits in particular from
accelerators such as GPUs.

Our study targeted high-multiplicity tree-level contributions that constitute a severe
computational challenge in state-of-the-art matrix element plus parton shower simula-
tions of multijet production processes [49–54], given that one can typically achieve NLO
QCD accuracy only for somewhat lower multiplicities, see for instance [55]. However, in
particular for the highest multiplicities sampling the colour assignments of the external
partons outperforms their explicit summation. This poses new challenges to emulation
models, given the high-dimensionality of the colour space. We explored naive extensions
towards a suitably adjusted network model, though we were not able to achieve significant
gains using a surrogate based on colour-summed dipoles. This is partly also due to the
reduced evaluation times for partial amplitudes in the colour-flow decomposition. We are
confident that under the same strategy but using colour-stripped dipoles in the surrogate
ansatz and incorporating the phase space weight into the emulation useful gain factors
could be achieved.

While the current paper addressed the emulation of high-multiplicity tree-level matrix
elements, an extension to NLO calculations is rather straightforward, though there are
additional challenges that have to be addressed. In Ref. [2] it was already shown that
the two-staged unweighting algorithm is applicable also to non-positive definite target
functions, i.e. negative event weights as they appear in subtraction-based higher-order
calculations. In Ref. [56] an extended version of the factorisation-aware emulation model
used here to QCD one-loop matrix elements has been presented. For the considered multi-
jet production channels in electron–positron annihilation percent-level accuracy has been
achieved. Upon generalisation to initial-state partons this could be used to lift unweighted
event generation for LHC applications based on fast neural-network surrogates to NLO
accuracy.
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A Auxiliary weight distributions

In this appendix we collect in Figs. 11a–11c auxiliary plots for the emulation accuracy of
our dipole surrogate model (dipole) and the combined neural network surrogate for the
matrix-element and phase-space weight from Ref. [2] (naive) for the remaining partonic
channels. Shown are the ratios of the true weights and the respective surrogates. The two
vertical lines indicate the corresponding maxima based on the 0.1% maximum reduction
method, see Sec. 3.1.
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Figure 11: Ratio distributions of exact weights and their surrogate for the factorisation-
aware emulation of the matrix-element weight (dipole) and the combined matrix-element
and phase-space weight from Ref. [2] (naive) for different partonic channels.
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[1] D. Mâıtre and H. Truong, “A factorisation-aware Matrix element emulator,” JHEP

11 (2021) 066, arXiv:2107.06625 [hep-ph].

[2] K. Danziger, T. Janßen, S. Schumann, and F. Siegert, “Accelerating Monte Carlo
event generation – rejection sampling using neural network event-weight estimates,”
SciPost Phys. 12 no. 5, (2022) 164, arXiv:2109.11964 [hep-ph].

[3] P. Shanahan et al., “Snowmass 2021 Computational Frontier CompF03 Topical
Group Report: Machine Learning,” arXiv:2209.07559 [physics.comp-ph].

[4] HSF Physics Event Generator WG Collaboration, S. Amoroso et al.,
“Challenges in Monte Carlo Event Generator Software for High-Luminosity LHC,”
Comput. Softw. Big Sci. 5 no. 1, (2021) 12, arXiv:2004.13687 [hep-ph].

[5] S. Badger et al., “Machine Learning and LHC Event Generation,”
arXiv:2203.07460 [hep-ph].

[6] A. Buckley et al., “General-purpose event generators for LHC physics,” Phys. Rept.

504 (2011) 145–233, arXiv:1101.2599 [hep-ph].

[7] J. M. Campbell et al., “Event Generators for High-Energy Physics Experiments,” in
2022 Snowmass Summer Study. 3, 2022. arXiv:2203.11110 [hep-ph].

[8] J. Bendavid, “Efficient Monte Carlo Integration Using Boosted Decision Trees and
Generative Deep Neural Networks,” arXiv:1707.00028 [hep-ph].

[9] M. D. Klimek and M. Perelstein, “Neural Network-Based Approach to Phase Space
Integration,” SciPost Phys. 9 (2020) 053, arXiv:1810.11509 [hep-ph].

[10] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, and S. Schumann, “Exploring
phase space with Neural Importance Sampling,” SciPost Phys. 8 no. 4, (2020) 069,
arXiv:2001.05478 [hep-ph].
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4.4 Relationship to the other methods
The surrogate-based unweighting method presented in sections 4.2 and 4.3 can improve the
efficiency of unweighted event generation by reducing the number of calls to an expensive
integrand, and shows the greatest potential when the initial unweighting efficiency is low.
In contrast, the methods presented in sections 3.1.3 and 3.2.2 aim at directly increasing the
unweighting efficiency. The question naturally arises to what extent the approaches can be
combined. Since all the approaches presented here leave the physics untouched and do not
introduce biases, there is no danger of introducing errors through combining them. However,
it is possible that a single method achieves a higher efficiency than a combination with another.
It is to be expected that at low to moderate dimensionalities, i.e. partonic final state multipli-

cities, the NF-based importance sampling can reach high efficiencies. At the same time, the
MEs in these cases are at the most moderately expensive. Therefore, in these cases, no or only
small efficiency gains can be expected from the surrogate-based unweighting. That method is
more suited for the highest multiplicities, where, due to the curse of dimensionality, expensive
integrands and low unweighting efficiencies typically occur. As shown above, the time for
event generation can be reduced by orders of magnitude for specific partonic subprocesses.
If the unweighting method would be combined with an improved PS sampler, e.g. based on
NFs, these gains would of course be reduced. However, this should be combined with the gain
from improving the PS sampler in the first place. Note that at high dimensionalities it becomes
increasingly hard to improve the unweighting efficiency due to the large PS volume. Thus, it
can still be worthwhile to combine the approaches.
The situation is somewhat different for nested sampling. There, the overall efficiency is

dominated by the efficiency of finding new points under the hard likelihood constraints. The
actual unweighting efficiency is comparatively large, as can be seen in section 3.2.2. This means
that using a surrogate for the unweighting does not appear useful here. However, a combination
of nested sampling with an NF-based prior would be interesting to consider and this option is
discussed in section 3.3. It is worth mentioning that the nested sampling implementation we
used, PolyChord, seems to be especially well suited for very high dimensionalities due to
its excellent scaling behaviour. There are, however, other implementations that can be more
efficient for a moderate number of dimensions. One example is MultiNest [271], which
relies on rejection sampling for finding new live points. It approximates the iso-likelihood
contours by ellipsoids determined from clusters of the current live points. The ellipsoidal
bounds are used to sample new points until one is found within the iso-likelihood contour. For
each trial point, the target likelihood has to be evaluated, and this can be quite expensive if
the efficiency is low. Using a cheaper NN surrogate may actually provide some performance
improvements. Our surrogate unweighting method is in fact generic and can in principle be
applied to any problem involving rejection sampling. It would be an interesting future project
to evaluate the combination of MultiNest with likelihood surrogates.
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5 Summary and conclusions

In this thesis, I have presented different approaches to improving the efficiency of MC event
generators, which I have studied during my time as a doctoral student. As motivated in the
introduction, these aim at contributing to the ongoing efforts towards improving the efficiency
of the computational toolchain in the light of the upcoming HL-LHC. The articles that came
out of my research have been introduced, reprinted and discussed in the previous chapters. In
this chapter I formulate an overall summary, state my conclusions and present my ideas for
future research that could build upon the work presented so far.
A lesson that I learned through this work is that a lot of effort has been spent on achieving

the state of the art of MC event generation. This includes not only refinements in physics
but also various efficiency improvements. Without these, some features of the simulations
would not even be usable. Accordingly, it is not an easy task to further improve the efficiency
of the existing tools. In this thesis, I set the focus on exploring the suitability of modern ML
techniques for this challenge. I applied three different methods to realistic examples and
obtained promising results that could lead to more efficient event generation for relevant
applications by extending or complementing our existing frameworks.
Themain results of this thesis are summarized in section 5.1. I conclude in section 5.2, where

I also highlight some opportunities to combine the ideas in this thesis in order to maximize the
overall efficiency improvement.

5.1 Main results

In section 3.1 the neural importance samplingmethod is considered, which uses NFs as adaptive
mappings for efficient importance sampling and rejection sampling. Due to the bijectivity
of the NFs, the method guarantees unbiased sampling. Spline-based transformers, using e.g.
piecewise-quadratic splines, are defined on the unit hypercube and allow NFs to be used as a
drop-in replacement of the popular adaptive importance sampling tool vegas. Furthermore,
with an NN parameterization and multiple transformation layers, the NF mapping becomes
highly expressive, and it can overcome the limitations of vegaswith respect to non-factorizable
target functions.
A proof of principle study for applying neural importance sampling to efficient PS sampling

in high energy scattering event generation was presented in our publication, ref. [9], and
reprinted in section 3.1.3. We implemented NFs with piecewise-quadratic coupling layers and
used them to optimize process-specific, but non-optimal, PS mappings. The decay width of
the top quark, as well as the cross-sections of leptonic top quark pair production and gluonic
scattering with 3-jet and 4-jet production served as examples. Thereby, the PS dimensionality
ranged from 2 to 8 dimensions. For the top quark examples, we used a single importance
sampling channel, where the �-channel propagators of the W boson were modelled by Breit-
Wigner distributions. A single NF was used to remap that channel. For the more complex
gluon scattering examples, we employed the haag multichannel PS sampler, which is based
on QCD antenna functions. It features 2 and 3 channels, respectively, which we optimized with
one NF each.
For all examples, except for the one with the highest dimensionality, 4-jet production, our

approach outperformed vegas. We were able to significantly improve the unweighting effi-
ciency as well as the variance of the cross-section estimate. As expected, no relevant deviations
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were found in differential distributions of observables. For the example of 4-jet production, the
results were on par with vegas, but not strictly better. We attributed this to the complexity
of the example, and to our limited computing resources that did not allow to increase the
size of the NF model and its training time arbitrarily. However, as stated in section 3.1.4, I
was able to improve the performance significantly at a later stage, so that the unweighting
efficiency is better than vegas by a factor of about 1.5. Still, the gain is below the one of the
3-jet production example, where the factor is 2.3. This is consistent with the results in another
study [47], which used NFs to optimize a recursive multichannel sampler for the production of
vector bosons in association with jets at the LHC. There, the gains also decreased when the
final state multiplicity was increased.
In section 3.2, I presented a study that introduced nested sampling as a technique for PS

sampling. On the one hand, this study was targeted at researchers in the HEP community to
make them aware of this technique and its possible applications. On the other hand, it showed
researchers in the field of Bayesian inference the similarities between their typical problems
and the sampling and integration of high-energy cross-sections. Using the example of gluon
scattering processes with the production of 3-, 4-, and 5-gluon final states, it was shown that
the nested sampling implementation PolyChord can efficiently generate unweighted events
without any prior knowledge. The only ingredient we used was a rambo mapping that maps
the gluon four-momenta to the unit hypercube, and in doing so implements four-momentum
conservation and on-shell conditions. However, the rambo mapping is uniform and therefore
does not provide any information about the shape of the differential cross-section. We were
able to show that nested sampling outperformed vegas for the higher multiplicities and was
comparable, in terms of unweighting efficiency, to the dedicated multichannel sampler haag.
Thereby, nested sampling featured an excellent scaling behaviour that was basically constant
over the considered multiplicities. One could therefore hope that this scaling continues to even
higher multiplicities, such that nested sampling provides an efficient approach in these cases,
which needs very little tuning.
A technique that is complementary to the previous two approaches is the surrogate un-

weighting method presented in chapter 4. It is fully general and can in principle be applied
to any application of rejection sampling. The requirements for the method to be useful are
that the efficiency is low to begin with, and that the target function is expensive in terms of
computational resources needed to evaluate it. It also requires a fast and accurate surrogate,
which is used in place of the actual target function during the unweighting process. The
outstanding quality of the method is that it is fully unbiased. In the worst case, it can reduce
the total efficiency of event generation, in which case it should not be used. However, it will
not alter the distributions of events. This is achieved by correcting the approximation errors of
the surrogate in a second unweighting step, where the value of the true target function is used.
The second unweighting step is comparably expensive, but it only has to be executed for the
events accepted in the first unweighting step. Since the efficiency in the first step is typically
low, and since an accurate surrogate can achieve high efficiency in the second step, the true
target function needs to be evaluated less often in total. This results in an overall reduction of
the time needed for unweighted event generation.
In ref. [11], reprinted in section 4.2, we implemented the method in the Sherpa event

generator and applied it to high-multiplicity partonic channels contributing to the production
of �+4 jets,�+4 jets, and � ̄�+3 jets at the LHC.We used a simple NN surrogate for the full event
weight, i.e. the product of the ME weight and the PS weight. The surrogate was significantly
faster to evaluate than the true weight, between 25 and 40000 times, while it was well capable of
estimating it. For the dominant partonic processes, which contribute the most to the total cross-
sections and feature expensive MEs, we found accelerated unweighted event generation by
factors between two and ten. We found no significant deviations from the expected differential
distributions of physical observables. Since we applied partial unweighting to protect against
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rare outliers, we also looked for imprints of overweighted events in the distributions, which
we did not find. Furthermore, it was shown on a toy example how the surrogate unweighting
method can be applied to NLO event generation, where negative event weights have to be dealt
with.
The surrogate model used in ref. [11] was quite simple and not particularly optimized for

the examples. However, the method itself is completely indifferent to what kind of surrogate is
used. The main constraint is that one has to find a good balance between fast evaluation and
high accuracy. As an extension of our previous work, we combined it with the ME emulation
model of ref. [64]. The results of our follow-up study were published in a preprint [12], which is
reprinted in section 4.3. The model is based on dipole factorization and has built-in knowledge
about the soft and collinear singularity structure of tree-level QCD MEs, allowing it to interpolate
smoothly between the divergent regions. For our study, the model was generalized to account
also for initial-state emissions, which are necessary for hadronic collisions, and massive quarks
in the final state. We applied our surrogate unweighting method in combination with the
factorization-aware model to partonic channels contributing to � + 4, 5 jets and � ̄� + 3, 4 jets
production at the LHC, thereby going one multiplicity higher than in our previous study.
We found that, in comparison to the naive model used previously, the factorization-aware
model increased the efficiency gains by an order of magnitude due to its better approximation.
For the partonic processes �� → �−�+���� ̄� and �� → � ̄�����, contributing to the highest
multiplicities of our examples, we found a reduction in the time needed for unweighted event
generation by factors of 269 and 354, respectively. Although the new model is more complex
in that it requires a more sophisticated pre- and post-processing, it still evaluates much faster
than the true ME. Furthermore, the time needed for training the NN is negligible compared to
the time spent later on in unweighted event generation.
While our naive model represented a surrogate for the full event weight, the factorization-

aware model is an approximation to the ME weight only. This frees the surrogate unweighting
method from dependence on the integrator-specific PS generator. Therefore, the trainedmodels
can be easily transferred to other frameworks and used there for the same processes. This is
especially simplified by the usage of the onnx format, which allows for various ML libraries to
be used for the training of the model and an easy exchange and interfacing of trained models.
In our studies of the surrogate unweighting method, we focused on the use of colour-

summed MEs. However, it is known that an explicit sampling of the colour assignments of the
external partons exhibits a superior scaling behaviour and outperforms their summation at high
multiplicities. Given the higher dimensionality of the input space, it is more difficult to find a
good surrogate model in this situation. This must be seen in the light of the fact that partial
amplitudes in the colour flow decomposition can be evaluatedmuch faster than colour-summed
matrix elements. This gives the evaluation time of the surrogate a new significance. Since also
the evaluation time of the PS weight can be a significant factor, it should be considered again
to include the PS weight in the surrogate, as we did with the naive model in our first study.
Unfortunately, a naive extension of the factorization-aware model with colour assignments as
additional inputs did not achieve satisfactory gains. However, we are confident that also with
colour sampling the efficiency of unweighted event generation can be increased by finding
suitable surrogate models, e.g. based on a colour-stripped dipole ansatz.

5.2 Prospects for the future

Several paths can be identified in which the ideas in this thesis can be extended and used for
further studies in the future. An obvious extension is to pursue the perturbative series and
move to NLO calculations. The work contributing to this thesis concentrated on tree-level
calculations for mainly two reasons. Firstly because tree-level simulations are much easier
than loop calculations and therefore the obvious first choice for proof-of-principle studies.
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Secondly, the high-multiplicity tree-level part is often the most expensive one in key processes.
This is because the NLO contributions in multijet merged calculations are typically at a lower
multiplicity. However, the situation can be different for specific processes, rendering efficiency
improvements for NLO calculations an interesting research path.
For the NF-based sampling there would be no major changes necessary, since it is basically

a replacement for vegas mappings. These are already used for NLO calculations in state-of-
the-art event generators. For nested sampling the situation is more difficult. The algorithm
requires a non-negative integrand, which means the negative weights at NLO would pose
a problem. However, nested sampling in the form of the PolyChord implementation is
possibly best suited for the highest multiplicity tree-level contributions. The reason lies in its
polynomial scaling with dimensionality, which makes it an excellent tool for sampling and
integration in very high dimensions. For the surrogate unweighting method, we have already
shown in ref. [11] how it can be applied to non-positive integrands. The extension is minimal
and requires a surrogate that can become negative. Given a suitable surrogate model for loop
MEs, the method can be readily applied to NLO calculations. In fact, several emulation models
for loop amplitudes have already been developed [72, 76, 77, 79].
An open question is whether NFs can provide an efficient solution for high-multiplicity

processes. In our study, we achieved efficiency gains for all considered examples, up to 4-
gluon final states with 8 PS dimensions. However, the gains slowed down with increasing
dimensionality. At the same time, the costs for training the model rise, especially with the
number of channels that are remapped by individual NFs. One approach to this challenge is the
use of more expressive models, e.g. based on autoregressive NFs possibly trained on weighted
events [50]. Autoregressive transformations are more expressive than coupling layers [272],
but either sampling or evaluating the probability density is more expensive. However, one can
argue that at the rather moderate dimensionalities encountered in PS sampling, compared to
e.g. image generation, this is of secondary importance. Since the evaluation of the ME should
be evenmore expensive, one can afford to use a model that is somewhat more costly to evaluate.
Other approaches to improving NF-based samplers are the use of local multichannel weights,
learned by a NN, and mixtures of NFs. Furthermore, NFs could be a promising companion for
newly developed GPU-based PS generators. These allow efficient training and sampling in a
fully parallelized way. Furthermore, it was shown that good unweighting efficiencies can be
achieved with only few channels [273]. This reduces the number of NF mappings necessary.
In combination with ME generators on GPUs [274–276], a full event generation pipeline on
GPUs would be possible.
As stated above, nested sampling shines at high-dimensional problems. In our study, we

considered scattering problems with up to 5 gluons in the final state. This is representative of
the PS complexity of current simulations for the LHC experiments. The precision demands
increase, though, with the upcoming HL-LHC upgrade, such that even higher multiplicities
can become necessary. Nested sampling may be an interesting choice for these, due to its
scaling properties. An obvious extension of our approach would be the use of prior knowledge.
This can be in the form of physics-motivated mappings or even machine-learned adaptive
mappings, e.g. based on NFs [263]. A well-chosen prior distribution can significantly increase
the efficiency of nested sampling. Similarly, a dynamical refinement in the form of dynamic
nested sampling [277] can also improve the performance.
Concerning the surrogate unweighting procedure, one of themain improvements besides the

extension to NLO would be a fast and accurate surrogate model for the partial amplitudes used
in colour-sampling PS generators. The extension of the dipole-based factorization-aware model
to coloured inputs is a promising idea that we plan to further explore. Lastly, also the surrogate
unweighting method would benefit significantly from a parallel event generation pipeline on
GPUs. The vectorized evaluation of the NNs could lead to a much faster unweighting, which
could also be done on a previously generated set of weighted events.
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