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ABSTRACT

This thesis is about two things: twisted equivariant K-theory and equivariant topo-
logical T-duality. First, we prove a fixed point decomposition theorem for twisted
equivariant K-theory, generalising a result of Atiyah and Segal. This is a description
of joint work with Thomas Schick and Mario Velásquez. Next, we generalise the
Atiyah-Segal completion theorem for families of subgroups to the twisted case. This
is an extension of work by Lahtinen, who generalised the original Atiyah-Segal theo-
rem to the twisted case. Thirdly, we explicitly define the pushforward map in twisted
equivariant K-theory and apply it to the case of equivariant principal circle bundles.
This is an application of techniques that are well-known to non-commutative geome-
ters but have not gained widespread attention among topologists. In the second half of
the thesis, we formulate equivariant topological T-duality and prove that the T-duality
transformation in twisted equivariant K-theory is an isomorphism for all compact Lie
groups.
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CHAPTER 1

INTRODUCTION

Mathematicians’ study of twisted K-theory and topological T-duality is a result of the
constant exchange of ideas between physics and mathematics. The former, a mathe-
matical construction initially defined by Donovan-Karoubi [DK70] and later for gen-
eral twists by Rosenberg [Ros89], first gained recognition in physics as the home of
D-brane charges in the presence of a B-field [Wit98]. It is also conjectured to play a
role in condensed matter theory, where it is involved in the classification of topologi-
cal insulators [SS22]. The latter, a duality of space-time models in string theory, is of
interest to mathematicians because of the T-duality transformation, which is a specific
isomorphism relating the twisted K-theory groups of circle and torus bundles.

This thesis studies these concepts in the equivariant setting; that is, for spaces
equipped with a group action. Twisted equivariant K-theory first gained major atten-
tion in the work of Freed, Hopkins and Teleman [FHT11], who prove a close rela-
tionship between the twisted equivariant K-theory of a compact Lie group with its
conjugation action and the Verlinde algebra of its loop group. There are also links
to elliptic cohomology, in particular twisted equivariant Tate K-theory, which is built
on the twisted equivariant K-theory of loop spaces and has connections with the gen-
eralised Moonshine conjecture [Gan09, Dov19]. Twisted equivariant K-theory also
arises naturally when considering symmetries in quantum field theory [FM13].

We contribute to the theory of twisted equivariant K-theory in three ways; firstly,
we provide a fixed point decomposition theorem for twisted finite group equivariant
K-theory in the style of Atiyah and Segal. This is a description of joint work with
Thomas Schick and Mario Velásquez [DSV22]. Secondly, we extend the work of
Adams, Haeberly, Jackowski, and May [AHJM88a] on the completion theorem in
equivariant K-theory for families of subgroups to the twisted setting. For this, we draw
on the methods of Lahtinen [Lah12], who already used the methods of Adams et al.
to generalise Atiyah and Segal’s completion theorem to twisted K-theory. Thirdly, we
describe a precise construction of the pushforward in twisted equivariant K-theory. All
the necessary results are already present in the non-commutative geometry literature.
Indeed, the relevant Thom isomorphism exists in the more general setting of “real”
groupoid-equivariant KK-theory [Mou13]; we simply apply this to our chosen setting.
The main motivation is to use the pushforward to define the T-duality transformation
in equivariant K-theory.

Topological T-duality over a base space X is a relation between two pairs (E,P )

and (Ê, P̂ ) consisting of Tn-bundles E → X and Ê → X with twists P → E
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and P̂ → Ê. A twist in this context is the same as in twisted equivariant K-theory;
one could, for example, consider principal PU(H)-bundles. Such a setup models
the underlying topology of spacetime models used in string theory and quantum field
theory; the space E is the background spacetime in which strings propagate and the
twist is the “H-flux” representing the B-field. Two pairs (E,P ) and (Ê, P̂ ) are T-dual
if there is an isomorphism between the pullbacks of P and P̂ to E×X Ê that satisfies
a certain “Poincaré bundle” condition.

p∗P p̂∗P̂

P E ×X Ê P̂

E Ê

X

∼=

p p̂

Coming with the T-duality relation is an isomorphism (with degree shift) between
the P -twisted K-theory of E and the P̂ -twisted K-theory of Ê. Such an isomorphism
is an essential component of any formulation of T-duality. The physical motivation
is that two T-dual spacetime models are physically equivalent; the twisted K-theory
groups classify certain physical properties of the model and so such an isomorphism
must exist because the physical quantities measured by the twisted K-theory groups on
each pair must be equivalent. More generally, there is the notion of “T-admissible” co-
homology theories; these are those for which there is a T-duality isomorphism. Among
these are twisted K-theory and twisted periodic de Rham cohomology.

Equivariant (topological) T-duality has until now not been formulated. We have
done so; in Chapter 5 we extend the work of Bunke and Schick on topological T-
duality [BS05, BRS06] to the equivariant setting. This includes a formulation of the
T-duality relation betweenG-equivariant circle bundles equipped with aG-equivariant
twist. We define the notion of G-T-admissibility and show that G-T-admissibility of
a twisted G-equivariant cohomology theory implies that the T-duality transformation
is an isomorphism. The main theorem of this section states that twisted equivariant
K-theory is T-admissible, and hence the T-duality transformation is an isomorphism,
for all compact Lie groups.

Building symmetries into an established theory to produce an equivariant formu-
lation of said theory is a process that is very natural to mathematicians. With that said,
equivariant topological T-duality is expected by physicists as well. The main point
is that T-duality makes sense on orbifolds, which string theory has been formulated
for. Thus we would expect equivariant T-duality to be included in the consideration of
global quotient orbifolds. Thus, equivariant T-duality is a reasonable expectation, at

2



least for finite groups.1

1.1 Twisted Equivariant K-Theory

Here we establish the definition and properties of twisted equivariant K-theory that
we shall use throughout the thesis. Let X be a locally compact space acted on by
a compact group G and let P → X be a stable G-equivariant principal PU(H)-
bundle. For simplicity, we call these bundles G-equivariant twists. Stable equivariant
projective unitary bundles are defined, for instance, in [BEJU14, Def 2.2]. We also
give the definitions and main properties in Appendix A.

Let K denote the space of compact operators on H. PU(H) acts on K via con-
jugation, so for each G-equivariant PU(H)-bundle P → X there is an associated
G-equivariant bundle of compact operators P ×PU(H) K. Let Γ0(P ×PU(H) K) de-
note the C*-algebra of sections of P ×PU(H) K that vanish at infinity. This is a
G-equivariant C*-algebra with action

(g · σ)(x) = g−1σ(g · x),

where g ∈ G, σ ∈ Γ0(P ×PU(H) K), and x ∈ X .
The P -twisted G-equivariant K-theory of X is defined as the G-equivariant K-

theory of Γ0(P ×PU(H) K).

Definition 1.1. K∗G(X,P ) := KG
∗
(
Γ0(P ×PU(H) K)

)
This definition is motivated by Rosenberg’s definition of twisted K-theory [Ros89,

§2]. The equivariant version appears in, for instance, [Kar08, §5.4] and [Mei09, §2.3].
There are of course other formulations of twisted equivariant K-theory; for example,
via equivariant sections of the bundle of Fredholm operators associated with P [AS04,
§7]. The formulation we use allows us to access techniques and results from non-
commutative geometry. Indeed, by the Green-Julg theorem, twisted equivariant K-
theory simply becomes the ordinary K-theory of someC∗-algebra, namely the crossed
product of G with the above algebra of sections. For this reason, we will occasionally
work in the more general context of K-theory for C*-algebras, and then restrict to the
case important to us.

The basic properties of twisted equivariant K-theory are as follows:

Proposition 1.2. Twisted equivariant K-theory satisfies the following:

1. Functoriality with respect to maps of spaces: if f : X → Y is a continuous map

of G-spaces, then there is a natural map

f∗ : K∗G(Y, f∗P )→ K∗G(X,P ).
1We thank Urs Schreiber for his comments on this in a brief email correspondence.
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2. Functoriality with respect to group morphisms: if α : H → G is a group homo-

morphism then there is a natural map

α∗ : K∗H(X,P )→ K∗G(X,P ),

where H acts on X and P via α.

3. Functoriality with respect to twist isomorphisms: if u : P → P ′ is a morphism

of G-twists, then there is a natural homomorphism

u∗ : KG(X,P )→ KG(X,P ′).

4. Mayer-Vietoris sequence: if U and V are G-invariant open sets of X such that

X = U ∪ V , then there is a long exact sequence

· · · → Kn−1
G (U ∩ V, P |U∩V

)
Kn
G(X,P )

Kn
G(U,P |U )⊕Kn

G(V, P |U )

Kn
G(U ∩ V, P |U∩V

)
→ · · ·

5. Bott Periodicity: there are natural isomorphisms

K∗G(X,P ) ∼= K∗+2
G (X,P ).

We shall prove one additional property of twisted equivariant K-theory: the so-
called induction isomorphism.

Proposition 1.3. Let H ⊆ G be a closed subgroup, X a H-space, and P a G-

equivariant twist. Then there is a natural isomorphism

KH

(
X,P

) ∼= KG

(
G×H X,G×H P

)
.

Proof. There is a C*-algebraic analogue to the construction X 7→ G ×H X: given
a H-C*-algebra A one constructs a G-C*-algebra IndGH(A) such that A o H and
IndGH(A)oG are Morita equivalent. This construction is introduced in [Gre78], but we
refer to a textbook account [CELY17, §2.6]. The induced algebra IndGH(A) consists of
bounded functions f : G → A such that f(gh) = h−1f(g) for all h ∈ H and g ∈ G
and such that the function G/H → C defined as gH 7→ ‖f(g)‖ vanishes at infinity.

We consider A = Γ0(X,P ) and show that, in this case, IndGH(A) is isomorphic to
Γ0(G×H X,G×H P ). Then, we will have that Γ0(X,P ) oH is Morita equivalent
to Γ0(G×H X,G×H P ), which proves the result. For A = Γ0(X,P ), an element of
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IndGH(A) is a map f : G→ Γ0(X,P ) such that

f(gh)(x) =
(
h−1f(g)

)
(x) = h · f(g)(h−1x) (1.1)

with gH → ‖f(g)‖ vanishing at infinity. We consider two maps,

Φ: IndGH
(
Γ0(X,P )

)
� Γ0

(
G×H X,G×H P

)
: Ψ,

where Φ(f)([g, x]) = [g, f(g)(x)] and Ψ(σ)(g) = p where [g, p] := σ([g, x]). The
first map is well-defined because

Φ(f)
(
[gh, hx]

)
=
[
gh, f(gh)(hx)

]
=
[
gh, (h−1f(g))(hx)

]
=
[
gh, hf(g)(x)

]
=
[
g, f(g)(x)

]
= Φ(f)

(
[g, x]

)
.

Ψ is also well-defined: Ψ(σ)(gh)(x) = p and h · Ψ(σ)(g)(h−1x) = h · q where
[gh, p] := σ([gh, x]) and [g, q] := σ([g, h−1x]). Then

[g, q] = σ([g, h−1x]) = σ([gh, x]) = [gh, p],

so q = h−1p and we can conclude that Ψ(σ)(gh)(x) = h · Ψ(σ)(g)(h−1x), which
is the condition (1.1). Both sides have a “vanishing at infinity” condition, and one
can check that these correspond with each other. It is also straightforward to check
that Φ and Ψ are inverse to each other. The two C*-algebras are thus isomorphic; this
completes the proof.

Before moving on, we introduce one more definition, which is twisted equivariant
K-theory that is further twisted by a bundle of Clifford algebras.

This is relevant when discussing the Thom isomorphism; a vector bundle that is not
K-oriented still has a Thom isomorphism, except that we need to add a twist coming
from its Clifford bundle.

Definition 1.4. Let V → X be a G-equivariant vector bundle, Cl(V ) the associated
bundle of complex Clifford algebras, and P → X a G-equivariant principal PU(H)-
bundle. We define

K∗G(X,P + Cl(V )) := KG
∗
(
Γ0(X,PK ⊗ Cl(V ))

)
where PK := P ×PU(H)K. Here, the C*-algebra of sections is viewed as a Z2-graded
C*-algebra and we use Kasparov’s KK-theory for graded C*-algebras.

Another way of thinking about this is that the obstruction to V being K-oriented
lies in H3

G(X), so by adding the twist classified by this obstruction, Cl(V ), we still
have a Thom isomorphism.
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1.2 Topological T-Duality

Here, we will provide a history and overview of topological T-duality. T-duality has
its origins in string theory, where it is a duality of spacetime models. From a mathe-
matical viewpoint, the two models may appear very different but are in fact physically
equivalent. In topological T-duality, only the underlying topological information of
the model is considered. In this case, the objects of study are pairs (E,P ) consisting
of S1-bundles π : E → X over a fixed base space X together with a twist P → E.

The first paper on topological T-duality was by Bouwknegt, Evslin, and Mathai
[BEM04]. The main observation was that the presence of a non-trivial twist P (the
so-called H-flux) changes the topology of spacetime when taking the T-dual. In par-
ticular, if (E,P ) is T-dual to (Ê, P̂ ), there is an exchanging of Chern classes with the
fiberwise integral of the twist:

π!([P ]) = c1(Ê), π̂!([P̂ ]) = c1(Ê), (1.2)

Here, [P ] ∈ H3(E;Z) and [P̂ ] ∈ H3(Ê,Z) are the characteristic classes classifying
the twists, c1(−) denotes the first Chern class, and π!, π̂! are the pushforward maps for
the respective S1-bundles. It was already known from geometric considerations that
T-duality changes the global topology of the background spacetime, but this was the
first formal description of the change.

A formalised definition of topological T-duality was made by Bunke and Schick
using a Thom class on an associated S3-bundle, namely the sphere bundle of L ⊕ L̂,
whereL and L̂ are the line bundles associated withE and Ê [BS05]. In this setting, the
authors confirmed the relation (1.2) and proved that every pair (E,P ) has a uniquely
defined T-dual, up to isomorphism. The key part of the proof was the construction
of a classifying space R together with a homeomorphism T : R → R inducing the
T-duality relation.

The same authors, with the addition of Rumpf, further generalised to principal Tn-
bundles in [BRS06], introducing the notion of T-duality triples. They consider pairs
(E,P ) consisting of a principal Tn-bundle π : E → X and a twist P → E, with
the additional assumption that P is trivialisable when restricted to the fibers of E.
There was one further assumption on the characteristic class of P , but this turned out
to be redundant [DS23]. Here, two pairs (E,P ) and (Ê, P̂ ) are T-dual if they belong
to a T-duality triple

(
(E,P ), (Ê, P̂ ), u

)
, where u is a twist morphism fitting into the
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following diagram, which was already shown in the first part of the introduction:

p∗P p̂∗P̂

P E ×X Ê P̂

E Ê

X

u

p p̂ (1.3)

The morphism u must satisfy the Poincaré bundle condition, which we describe now.
First, recall that automorphisms of the trivial twist are in bijection with degree 2 co-
homology of the base space. Now, if x ∈ X , then by choosing trivialisations of P |Ex
and P̂ |Êx , u gives an automorphism of the trivial twist on Ex × Êx ∼= T 2n:

Ptrivial ∼= P |Ex
u−→ P̂ |Êx

∼= Ptrivial

If this automorphism corresponds to the generator of H2(Tn;Z) up to the choice of
trivialisations of P |Ex and P̂ |Êx , then u satisfies the Poincaré bundle condition. This
condition is named after the Poincaré line bundle, which arises in algebraic geometry
and is the canonical line bundle on the product of an abelian variety with its dual.

For n > 1, the situation is quite different to the circle case: the T-dual of a
pair (E,P ) need not exist and if it does exist it need not be unique. Bunke, Rumpf
and Schick provide simple criteria for when a T-dual exists and what the T-duals are
[BRS06, Theorem 2.24]. When the twist is not trivialisable on fibers, there is a non-
classical interpretation of the T-dual as a bundle of noncommutative tori [MR05]. This
fits into an interpretation of T-duality via noncommutative geometry, which we will
not discuss.

Given a diagram (1.3) and a twisted cohomology theory h∗(−), we can define the
following composition:

h∗(E,P )
p∗−−→ h∗(E ×X Ê, p∗P )

u∗−−→ h∗(E ×X Ê, p̂∗P̂ )
p̂!−−→ h∗−1(Ê, P̂ ).

In words, we pull back along p, apply the twist automorphism u, and then push for-
ward along p̂. This is called the T-duality transformation and is an essential aspect of
T-duality. Since a pair and its dual should represent equivalent spacetime models, co-
homological information about each model should be equivalent. Thus the T-duality
transformation should be an isomorphism for cohomological groups that carry phys-
ical information. This is true of twisted K-theory and twisted de Rham cohomology;
see the aforementioned T-duality papers. As a general framework, Bunke and Schick
introduced the notion of T-admissibility; the T-transformation can be defined for any
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twisted cohomology theory (satisfying some prescribed axioms) and is an isomor-
phism if the theory is T-admissible [BS05].

In general, one would like to allow for singularities, that is, cases where the Tn-
action is not free. The main approach for this is to consider T-duality in the context of
stacks, groupoids, and/or orbispaces [BS06,BSS11,Pan18]. A full theory of T-duality
for stacks, including a T-duality isomorphism for the K-theory of stacks, would of
course include the equivariant case considered in this thesis. The aforementioned pa-
pers, however, do not consider this type of T-duality transformation. [BS06] consid-
ers Borel equivariant K-theory, defined by taking the non-equivariant K-theory of the
Borel construction, whereas [BSS11] considers periodic twisted cohomology, which
is a generalisation of de Rham cohomology. Non-free actions have also been dealt
with by passing to the Borel construction [LM18].
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CHAPTER 2

A FIXED POINT DECOMPOSITION THEOREM

In this chapter, we describe joint work with Thomas Schick and Mario Velásquez that
resulted in the paper [DSV22]. We generalise Atiyah and Segal’s decomposition for-
mula for equivariant K-theory, which states that the equivariant K-theory of a compact
space X acted on by a finite group G can, after tensoring with C, be decomposed into
the non-equivariant K-theory of its fixed point spaces [AS89, Theorem 2]. That is,
there is a natural isomorphism

KG(X)⊗ C
∼=−→
[⊕
g∈G

K(Xg)⊗ C
]G
.

We have generalised this to twisted equivariant K-theory. For twists coming only
from the group, that is, those with characteristic class belonging to the image of
H3(G;Z) = H3

G(∗;Z)→ H3
G(X;Z), Atiyah and Segal’s decomposition has already

been generalised to twisted K-theory by Adem and Ruan [AR03, Theorem 7.4]. Our
decomposition map is defined by restriction to the fixed point spaces Xg; we have

KG(X,P )⊗Q→
[⊕
g∈G

K〈g〉(X
g, P |Xg )⊗Q

]G
,

where KG(X,P ) denotes the G-equivariant K-theory of X twisted by an equivariant
principal PU(H)-bundle P . Our main theorem is that this is an isomorphism onto a
subspace defined by a simple relation between the summands required by the natural-
ity of the restriction maps. This is described in detail in Section 2.1.

Our result has to be distinguished from the Atiyah-Segal completion theorem
which describes equivariant K-theory completed at the augmentation ideal as the (rep-
resentable) non-equivariant K-theory of the Borel construction. This has been gener-
alised to the K-theory of C∗-algebras and in particular to twisted equivariant K-theory
in [Phi89]. Some of our decomposition results also hold for the equivariant K-theory
of an arbitrary G-C∗-algebra; these are explained in Section 2.2 and might be useful
in this generality.

The initial motivation for this decomposition is the T-duality transformation in
equivariant K-theory. In Chapter 5, we describe how this decomposition result helps
prove that the T-duality transformation is rationally an isomorphism for finite group
actions. This is a key step in proving the result for compact Lie groups.
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2.1 The Decomposition Theorem

Let us formulate the decomposition theorem in detail. For each g ∈ G, the inclusion
Xg → X of the fixed point set Xg = {x ∈ X | g · x = x} induces a map

KG(X,P )→ K〈g〉(X
g, Pg)

by first restricting the group from G to 〈g〉 and then restricting to Xg . Here, Pg is the
restriction of P to Xg . Applying this to each g ∈ G gives

KG(X,P )→
⊕
g∈G

K〈g〉(X
g, Pg). (2.1)

The inclusion of cyclic subgroups 〈h〉 ⊂ 〈g〉 induces the following commutative dia-
gram:

KG(X,P ) K〈g〉(X
g, Pg)

K〈h〉(X
h, Ph) K〈h〉(X

g, Pg).

Thus there is a relation in the image of (2.1): for each g, h ∈ G with 〈h〉 ⊆ 〈g〉, the
factors in the g- and h-summands map to the same element in K〈h〉(Xg, Pg).

A G-action on the right-hand side of (2.1) is defined as follows. The action of
k ∈ G induces a homeomorphism k : Xg → Xkgk−1

. We then obtain the composition
of isomorphisms

K〈kgk−1〉(X
kgk−1

, Pkgk−1)
∼=−−→ K〈g〉(X

g, k∗Pkgk−1)
∼=−−→ K〈g〉(X

g, Pg). (2.2)

The second isomorphism is obtained by the canonical identification k∗Pkgk−1
∼= Pg

given by the action of k on P . In this way, we get an action of G on the direct sum of
all the K〈g〉(Xg, Pg). Moreover, the image of (2.1) takes values in the G-invariants
due to the following commutative diagram:

KG(X,P ) K〈kgk−1〉(X
kgk−1

, Pkgk−1)

KG(X,P ) K〈g〉(X
g, Pg)

k k

Our main theorem states that, after tensoring with the rationals, these two conditions
on the image of (2.1) are the right ones to produce an isomorphism. From now on we
write (−)Q = (−)⊗Q, and similarly for C.

Theorem 2.1. LetG be a finite group,X a finiteG-CW-complex, andP aG-equivariant
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twist on X . Then, there is an isomorphism

KG(X,P )Q
∼=−→ CSCG(X,P ) ⊆

[⊕
g∈G

K〈g〉(X
g, Pg)Q

]G
onto the subspace CSCG(X,P ) defined by the following relation:

If g, h ∈ G and 〈h〉 ⊆ 〈g〉, then the g-summand and the h-summand map to the same

element in K〈h〉(Xg, Pg)Q.

We shall call this the cyclic subgroup compatibility condition.

Remark 2.2. The subspace CSCG(X,P ) can be described as a limit over all the
spaces K〈h〉(Xg, Pg)Q with 〈h〉 ⊆ 〈g〉 and arrows coming from the cyclic subgroup
compatibility relation.

The theorem is proved in the standard way. First, we must show that the theorem
holds for homogeneous spaces G/H; for this, we will compare our formulation to
Adem and Ruan’s. Then we want to use Mayer-Vietoris to do induction on theG-cells
of X . The difficulty is showing that, after imposing the cyclic subgroup compatibility
condition, the Mayer-Vietoris sequence is still exact. The full proof is in Section 2.4.

Example: Klein four group acting on a point

Let G = Z2 × Z2 act trivially on a point. In this case, since H3(Z2 × Z2;Z) ∼= Z2,
there is one non-trivial twist up to isomorphism. Let τ be a non-trivial twist; the
restriction τg is isomorphic to the trivial twist for all g ∈ G. We have one summand for
each element of G and each of these summands is preserved by the G-action because
the group is abelian. In the following, all K-theory groups are concentrated in degree
0. For each non-identity element ofG, we have a copy of Q⊕Q in

⊕
g∈GK〈g〉(∗, τg)Q

because K〈g〉(∗, τg)Q ∼= Q⊕Q when g has order 2.

g (0, 0) (1, 0) (0, 1) (1, 1)

K〈g〉(∗, τg)Q Q Q⊕Q Q⊕Q Q⊕Q

The action of g ∈ G \ {e} on K〈g〉(∗, τg)Q is non-trivial even though the induced
map g∗ on the space is the identity and τg is isomorphic to the trivial twist. The action
is described in (2.2); we get

K〈g〉(∗, τg)
g∗−−→ K〈g〉(∗, τg)

·g−1

−−−−→ K〈g〉(∗, τg).

The first map is the identity. The second map is induced by a twist automorphism
coming from multiplication by g−1 = g. This automorphism is the one corresponding
to the non-trivial element of H2(Z2;Z) ∼= Z2. This exchanges the two factors in

11



K〈g〉(∗, τg)Q ∼= Q⊕Q. Therefore theG-invariant subspace of each Q⊕Q is precisely
the diagonal ∆Q ⊂ Q⊕Q.

For each g ∈ G, we have that 〈e〉 ⊂ g, and so the cyclic subgroup relation implies
that for each of the (Q ⊕ Q)-summands, one of the factors is determined by the e-
summand K(∗)Q ∼= Q. Together with the G-invariance, we conclude that all the
summands are determined by the e-summand; hence, KG(∗, τ)Q ∼= Q. This example
also appears in [AR03, Example 7.8].

Example: D8 acting trivially on S1

We calculate the twisted equivariant K0-groups of S1 with trivial D8 action, where
D8 = 〈r, s | r4 = s2 = e, srs = r3〉 is the dihedral group of order 8. The twists are
classified by

H3
D8

(S1;Z) ∼= H3(S1 ×BD8;Z)

∼= H3(D8;Z)⊕H2(D8;Z)

∼= Z2 ⊕ (Z2 ⊕ Z2).

We only consider the twists coming from H2(D8;Z) ∼= Z2 ⊕ Z2. One can use
Adem and Ruan’s formula for twists coming from H3(D8;Z). Using the isomor-
phismH2(D8;Z) ∼= H1(D8;S1), the twists we consider are induced from 1-cocycles
D8 → S1. Such maps must factor through the abelianisation D8/〈r2〉 ∼= Z2 × Z2.
The following describes the four possibilities, denoted τ1, τ2, τ3, and τ4:

1, r2 r, r3 s, r2s rs, r3s

τ1 1 1 1 1

τ2 1 −1 1 −1

τ3 1 1 −1 −1

τ4 1 −1 −1 1

The restrictions to the cyclic subgroups of D8 can be read from the table; a twist
restricts to a non-trivial twist whenever there is a −1. Since H2(Z2;Z) ∼= Z2 there is,
up to isomorphism, only one non-trivial twist on the subgroups of order 2. The non-
trivial twist on the r-summand corresponds to the order 2 element ofH2(Z4;Z) ∼= Z4.
Using a Mayer-Vietoris argument, one can compute that

K0
Z2

(S1, ξ1)Q ∼= Q and K0
Z4

(S1, ξ2)Q ∼= Q2,

where ξ1 and ξ2 are these non-trivial Z2- and Z4-equivariant twists, respectively. The
Mayer-Vietoris argument is the same as the computation in [FHT11, Example 1.6].
Here, one can compute the integral twisted equivariant K-theory, not just the rational-
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isation. The untwisted K-theory is K0
Z2

(S1) ∼= R(Z2) and K0
Z4

(S1) ∼= R(Z4), the
complex representation rings.

Let τ be one of the twists τ1, τ2, τ3, or τ4. We want to determine

CSCD8
(S1, τ) ⊆

[⊕
g∈D8

K0
〈g〉(S

1, τg)Q

]D8

We summarise the contribution of each of the group elements:

e r2 r s rs

τ1 Q Q2 Q4 Q2 Q2

τ2 Q Q2 Q2 Q2 Q
τ3 Q Q2 Q4 Q Q
τ4 Q Q2 Q2 Q Q2

Note that we only need to write one element of each conjugacy class, as summands
corresponding to conjugate elements are identified by the group action.

To see the conditions imposed by the cyclic subgroup condition, we investigate the
relations between the cyclic subgroups. These are shown in the following diagram:

〈e〉

〈s〉 〈rs〉 〈r2s〉 〈r3s〉

〈r2〉
〈r〉

〈r3〉

One can check that the maps induced by restriction to subgroups are all injective. The
trivial subgroup is a subgroup of every cyclic group, so the e-summand determines one
factor of each of the other summands. We also have 〈r2〉 ⊂ 〈r〉, so two factors of the
r-summand are determined by the r2-summand. The final relation is that 〈r〉 = 〈r3〉.
This means that the 〈r〉- and 〈r3〉-summands are equal. The elements r and r3 are
also related by conjugation by s, and when the twist τr is trivial this action induces
an automorphism on K0

〈r〉(S
1, τr) ∼= Z4 that swaps the two order 4 elements. The

result is that the invariant subspace of K0
〈r〉(S

1, τ)Q ∼= Q4 is of rank 3. We can now
compute the rational twisted equivariant K-theory by counting dimensions:

τ K0
D8

(S1, τ)Q

τ1 Q5

τ2 Q3

τ3 Q3

τ4 Q3

As a sanity check, we know that K0
D8

(S1, τ1) ∼= R(D8), which is of rank 5 because
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D8 has 5 conjugacy classes. We remark that this example can be computed integrally
using the Mayer-Vietoris technique in [FHT11, Example 1.6]; our discussion serves
as a demonstration of the decomposition theorem.

Comparison with Atiyah-Segal

Before proceeding, we explain how our result is a generalisation of the decompositions
of Atiyah-Segal and Adem-Ruan. The Atiyah-Segal map,

KG(X)C →
[⊕
g∈G

K(Xg)C

]G
,

is defined as a direct sum of maps

KG(X)C → K〈g〉(X
g)C ∼= K(Xg)⊗R(〈g〉)C → K(Xg)C,

where the isomorphism is because 〈g〉 acts trivially onXg and the final map is induced
by sending a character φ to φ(g). The resulting map factors through the map in our
decomposition theorem (using C instead of Q),

KG(X)C →
[⊕
g∈G

K〈g〉(X
g)C

]G
→
[⊕
g∈G

K(Xg)C

]G
. (2.3)

Given an element in the right-most space, we recover the g-summand in the middle
space as follows. For each k ∈ {0, . . . , |g| − 1}, the element in the gk-summand
of the Atiyah-Segal space is a sum Fk =

∑
iEiξ

ik, where E is a G-vector bundle
on X , Ei is the gi-isotopic component of E|Xg , and ξ is the |g|th root of unity. By
appropriately weighting each term by powers of ξ, we can recover each Ei by adding
together the Fk. This is essentially an inverse discrete Fourier transform. The g-
summand in the middle space is then just

∑
iEi ⊗ χi, where χi is the representation

χi(g) = ξi. Repeating this for every summand gives us a split of the second map
in (2.3). The image is precisely the cyclic subgroup compatible elements, giving us
an isomorphism between our decomposition and that of Atiyah and Segal. If we use
twisted characters, then we can similarly recover the decomposition theorem of Adem
and Ruan, as explained in detail in the next subsection. Note that, to use the Fourier
decomposition of Atiyah-Segal or Adem-Ruan, one is forced to work with C instead
of Q.

Comparison with Adem-Ruan

For a twist P classified by an element in the image of H3(G;Z) → H3
G(X;Z), that

is, represented by a C∗-valued group 2-cocycle α, we are in the context of Adem and
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Ruan’s paper [AR03]. Their decomposition also factors through ours:

KG(X,P )C →
[⊕
g∈G

K〈g〉(X
g, Pg)C

]G
→
⊕
[g]

[
K(Xg)⊗ Lg

]Cg
. (2.4)

Here Lg is a one-dimensional representation of the centraliser Cg of g defined by the
map h 7→ α(h, g)α(g, h)−1. The final direct sum is defined over the conjugacy classes
of G; a representative of each conjugacy class is chosen. The second map is given by
the following composition:

K〈g〉(X
g, Pg)C ∼= K(Xg)⊗Rres(α)(〈g〉)C → K(Xg)⊗ Lg.

To explain:

• Rres(α)(〈g〉) is the ring of res(α)-twisted characters of 〈g〉, where res(α) is the
restriction of α to 〈g〉.

• The isomorphism exists because 〈g〉 acts trivially on Xg and the twist comes
only from the group; see [AR03, Lemma 7.3].

• The second map is given by evaluating twisted characters at g, that is, χ 7→
χ(g).

A splitting of the second map in (2.4) can be constructed in the same way as in the
Atiyah-Segal case, except that α-twisted characters are used. Since H3(〈g〉;Z) = 0,
we know that res(α) = δβ where δβ is the boundary map of cocycles applied to
a 1-cochain β : 〈g〉 → C∗. Every α-twisted character is then of the form β · χ for
χ an untwisted character of 〈g〉. One now performs the same calculation as in the
previous section, inserting β in the relevant places. We apply the group action to get
the summands corresponding to elements that are not one of the chosen conjugacy
class representatives.

2.2 Restriction and Induction Maps

For this section, let G be a finite abelian group and A a G-C∗-algebra. We emphasise
that this G is not the same G as in the decomposition theorem; rather, it will be one
of the finite cyclic groups 〈g〉. In our discussion, there are two important maps. Let
H ⊆ G be a subgroup. The two maps, to be defined, are

iH : KH(A)→ KG(A) and rH : KG(A)→ KH(A).

The first is simple to define. By the Green-Julg theorem, we can identify equivariant
K-theory with the K-theory of crossed products. The map K(AoH) → K(AoG)
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corresponding to iH is induced by the inclusion of AoH into AoG.

The restriction map rH is defined as follows. First, suppose that A is unital. Then
AoG is also unital and there is a canonical isomorphismAoG = EndAoG(AoG),
where AoG is viewed as a left-(AoG)-module. We have the following maps:

AoG = EndAoG(AoG) ↪→ EndAoH(AoG)← AoH

The final map sends f0 ∈ AoH to the (AoH)-module map∑
g∈G

agg 7−→
(∑
h∈H

ahh
)
· f0.

This function is isomorphic to the standard block inclusionAoH ↪→M[G:H](AoH)

after identifying the matrix algebra with EndAoH(A o G), and hence induces an
isomorphism on K-theory. Its inverse allows us to define rH as the composition

rH : K
(
AoG

)
= K

(
EndAoG(AoG)

)
→ K

(
EndAoH(AoG)

)
→ K

(
AoH

)
.

When A is non-unital, one defines the map for the unitalisation A+ = A⊕C and then
restricts it to the K-theory of A.

Since H is normal in G, there is a G-action on both A o G and A oH given by
conjugation by G considered as unitary elements in AoG . Indeed, on AoG this is
the inner action. Hence the induced action on KG(A) = K(AoG) is trivial, but the
action onKH(A) = K(AoH) may not be. For x ∈ AoH and g ∈ Gwe write xg for
the element x acted on by g. The maps used to define rH are all G-equivariant (after
defining suitable actions on the endomorphism algebras) and KG(A)G = KG(A), so
rH takes values in KH(A)G, the G-invariant component of KH(A).

Lemma 2.3. iH and rH satisfy the following properties:

(a) If H1 ⊆ H2 ⊆ G, then the following commute:

KH1(A) KH2(A)

KG(A)

iH1

iH1

iH2

KG(A) KH2(A)

KH1(A)

rH2

rH1

rH2

(b) If H ⊆ G and f : A → B is a G-equivariant morphism, then the following
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diagrams commute:

KH(A) KG(A)

KH(B) KG(B)

iH

f∗ f∗

iH

KG(A) KH(A)

KG(B) KH(B)

rH

f∗ f∗

rH

(c) If 0 → J → A → A/J → 0 is an exact sequence of G-C∗-algebras, then iH
and rH commute with the index maps ∂ : K∗(A/J) → K∗−1(J), that is, the

following commute:

KH
∗ (A/J) KG

∗ (A/J)

KH
∗−1(J) KG

∗−1(J)

iH

∂ ∂

iH

KG
∗ (A/J) KH

∗ (A/J)

KG
∗−1(J) KH

∗−1(J)

rH

∂ ∂

rH

As a consequence, the K-theory long exact sequence and Mayer-Vietoris se-

quence are natural with respect to the maps iH and rH .

Proof. iH and rH are defined using the functoriality of K-theory for certain maps
between naturally constructed C∗-algebras. Proving these properties comes down to
writing the relevant diagrams of C∗-algebras and showing that the maps commute.
We leave the details to the reader.

Lemma 2.4. The composition rH ◦ iH : KH(A)Q → KH(A)Q is given by

rH ◦ iH(x) =
[G : H]

|G|
∑
g∈G

g · x.

In other words, rH ◦ iH is [G : H] times the averaging map. In particular, rH ◦ iH is

multiplication by [G : H] when restricted to KH(A)G.

Proof. The map iH : KH(A)Q → KG(A)Q takes values in the G-invariants because
G acts trivially on KG(A). Therefore iH factors through KH(A)GQ via the averaging
map. This is where taking the tensor product with Q is necessary. It now suffices to
show that rH ◦ iH restricted to KH(A)GQ is multiplication by [G : H].

Assume that A is unital; it is sufficient to prove the theorem in this case. Choosing
representatives gi for elements of G/H , one has an isomorphism

EndAoH(AoG) ∼= M[G:H](AoH).

The induced isomorphism on K-theory does not depend on the choice of representa-
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tives. The composition

AoH ↪→ AoG ↪→ EndAoH(AoG) ∼= M[G:H](AoH)

is given by

x 7→


xg1 0 · · · 0

0 xg2
...

...
. . . 0

0 · · · 0 xg[G:H]

 .

The induced map on K-theory is

KH(A)→ KH(A), x 7→
[G:H]∑
i=1

xgi .

After restricting to G-invariants, this is multiplication by [G : H], as required.

Lemma 2.5. Let H1 and H2 be subgroups of G. The following diagram commutes up

to multiplication by [G : H1H2]:

KH1(A)G KG(A)

KH1∩H2(A)G KH2(A)G

iH1

rH1∩H2
rH2

iH1∩H2

(2.5)

Proof. First, we prove the result when G = H1H2. Consider the following diagram:

AoH1 AoH1H2

EndAoH1∩H2
(AoH1) EndAoH2

(AoH1H2)

AoH1 ∩H2 AoH2

(2.6)

The map in the middle row is defined as follows. Let f : A o H1 → A o H1 be an
(A oH1 ∩H2)-module morphism and x =

∑
g∈H1H2

agg ∈ A oH1H2. For each
h2 ∈ H2 we set xh2 :=

∑
h1∈H1

ah1h2
h1 ∈ AoH1. Applying f to xh2

gives another
element, say f(xh2

) =
∑
h1∈H1

ãh1,h2
h1. Thus, given f : A o H1 → A o H1, we

define an endomorphism of AoH1H2 by

x =
∑

g∈H1H2

agg 7−→
∑

h1h2∈H1H2

ãh1,h2
h1h2.
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One must check that if h1h2 = h′1h
′
2 ∈ H1H2 then ãh1,h2 = ãh′1,h′2 . This follows

from the fact that f is an (A o H1 ∩ H2)-module map. One also checks that the
resulting map is an (AoH2)-module map.

Diagram (2.6) commutes, and the two outer paths from AoH1 to AoH2 define
the two maps from KH1(A)G to KH2(A)G described in the theorem. Thus, the result
holds for G = H1H2.

The general case is implied by the case G = H1H2. Consider the following
diagram, which describes the composition KH1(A)G → KG(A)→ KH2(A)G:

KG(A)

KH1(A)G KH1H2(A)G KH1H2(A)G KH2(A)G
rH1H2

rH2
iH1

iH1

iH1H2

·[G:H1H2] rH2

The commutativity of the left and right triangles follows from Lemma 2.3 and the
commutativity of the center triangle is a result of the Lemma 2.4. The composition
KH1(A)G → KH1∩H2(A)G → KH2(A)G remains unchanged, so we conclude that
diagram (2.6) commutes up to multiplication by [G : H1H2].

2.3 The Subgroup Independent Component of KG(A)

LetG remain a finite abelian group. The collection of maps rH : KG(A)→ KH(A)G

give rise to a map KG(A)→
⊕

H(GK
H(A)G. Denote its kernel as follows:

Definition 2.6.
KG
> (A) := ker

(
KG(A)→

⊕
H(G

KH(A)G
)

KG
> (A) is the component of KG(A) that does not depend on any subgroups of

G. As an example, if A = C, then KG(A) = R(G) and KG
> (A) is the subspace of

characters G→ C that vanish on all proper subgroups of G.

Note that, by definition, the restriction of rH : KG(A) → KH(A) to KG
> (A) is

the zero map. Lemma 2.5 then implies that for H1, H2 ( G and x ∈ KH1
> (A)G,

rH2
◦ iH1

(x) =

[G : H1] · x H1 = H2,

0, H1 6= H2.

Lemma 2.7. There is a canonical isomorphism

KG
> (A)Q ∼= KG(A)Q /

∑
H(G

iH
(
KH
> (A)GQ

)
.
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Proof. The isomorphism is the quotient map restricted to KG
> (A). The inverse is

KG(A)Q /
∑
H(G

iH
(
KH
> (A)GQ

)
−→ KG

> (A)Q, [x] 7→ x−
∑
H(G

1

[G : H]
iH◦rH(x).

This is well defined, since if xH ∈ KH
> (A), then

∑
H(G

iH(xH) 7→
∑
H(G

iH(xH)−
∑
H1(G

∑
H2(G

1

[G : H1]
iH1
◦ rH1

◦ iH2
(xH2

)

=
∑
H(G

iH(xH)−
∑
H(G

iH(xH)

= 0,

It is straightforward to check that this is indeed the inverse.

This lemma determines a preferred splitting projection onto KG
> (A)Q given by

KG(A)Q → KG
> (A)Q, x 7→ x−

∑
H(G

1

[G : H]
iH ◦ rH(x).

The following lemma shows that the K>-groups inherit exactness properties from the
K-groups:

Lemma 2.8. Consider a map KG(A)Q → KG(B)Q and an element x ∈ KG
> (B)Q.

If there exists a lift of x to KG(A)Q, then there exists a lift of x to KG
> (A)Q.

Proof. Let x̃ be a lift of x to KG(A). For each H ( G, let x̃>H the projection of
rH(x̃) onto K>

H(A). Then x̃−
∑
H

1
[G:H] iH(x̃>H) is a lift of x to KG

> (A).

Now for the main theorem of this section:

Theorem 2.9. There is the following split short exact sequence:

0 −→
⊕
H(G

KH
> (A)GQ −→ KG(A)Q −→ KG

> (A)Q → 0 (2.7)

This is natural with respect to maps of C∗-algebras and boundary maps in the K-

theory long exact sequence.

Proof. Lemma 2.7 gives the short exact sequence

0 −→
∑
H(G

iH(KH
> (A)GQ ) −→ KG(A)Q −→ KG

> (A)Q → 0.

We obtain (2.7) by noting that the iH -maps give an isomorphism between the direct
sum

⊕
H(GK

H
> (A)GQ and

∑
H(G iH(KH

> (A)GQ ). The splitting can be described in
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two ways. A right split is given by the inclusion KG
> (A) → KG(A). A left split is

given by the restriction maps rH , followed by the projection map onto each KH
> (A).

Naturality follows from the naturality of iH and rH , proved in Lemma 2.3.

Since the K>-groups are no easier to compute than the KG-groups, this is not
exactly a useful result for calculatingKG(A). However, it is useful in our proof of the
decomposition theorem because it allows us to isolate the component of KG(A) that
depends on the subgroups of G and the “free” component that does not depend on any
of these subgroups.

2.4 Proof of the Decomposition Theorem

Before beginning the proof, we restate the theorem.

Theorem 2.10. Let G be a finite group, X a finite G-CW-complex, and P a G-

equivariant twist on X . Then, there is an isomorphism

KG(X,P )Q
∼=−→ CSCG(X,P ) ⊆

[⊕
g∈G

K〈g〉(X
g, Pg)Q

]G
(2.8)

onto the subspace CSCG(X,P ) defined by the following relation:

If g, h ∈ G and 〈h〉 ⊆ 〈g〉, then the g-summand and the h-summand map to the same

element in K〈h〉(Xg, Pg)Q.

Proof. First, consider the homogeneous space X = G/H . This is discrete, so every
G-equivariant twist comes from a group cocycle. The result is then true by comparison
with the isomorphism of Adem and Ruan [AR03]; we compared our decomposition
with Adem and Ruan’s in §2.1.

Now, we wish to use induction on theG-cells ofX via a Mayer-Vietoris argument.
For this, it is required that the functor CSCG satisfies the Mayer-Vietoris property.
The direct sum in (2.8) satisfies this property and restricting to the cyclic subgroup
compatible elements certainly preserves the property that the composition of two con-
sequent morphisms is trivial. It is thus sufficient to show that if a cyclic subgroup
compatible element lies in the kernel of a map in the Mayer-Vietoris sequence, then it
can be lifted to an element that is also cyclic subgroup compatible.

Let
[⊕

g∈GK〈g〉(X
g, Pg)Q

]G → [⊕
g∈GK〈g〉(Y

g, Qg)Q
]G

be a map in the
Mayer-Vietoris sequence. It is the restriction of a direct sum of maps in the Mayer-
Vietoris sequence for each K〈g〉. Let y = (yg)g∈G be a cyclic subgroup compatible
element in the kernel of the next map in the Mayer-Vietoris sequence. We construct a
lift of this element to the cyclic subgroup compatible elements.

Consider the partial order < on G where h < g when 〈h〉 ( 〈g〉. We construct a
lift by induction on this poset. The smallest element in this poset is the identity, and
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e < g for every g ∈ G. Start by choosing a lift xe of ye under the map K(X,P )GQ →
K(Y,Q)GQ . Now consider g ∈ G. Assume that for every h < g we have compatible
lifts xh of yh - compatible meaning that for every h′ < h the lifts satisfy the correct
compatibility relation between the h′ and h-summands. Note that since the elements
are G-invariant, they are also 〈g〉-invariant. By Theorem 2.9 we have the following
commutative diagram:

0
⊕
h<g

K>
〈h〉(X

g, Pg)
〈g〉
Q K〈g〉(X

g, Pg)Q K>
〈g〉(X

g, Pg)Q 0

0
⊕
h<g

K>
〈h〉(Y

g, Qg)
〈g〉
Q K〈g〉(Y

g, Qg)Q K>
〈g〉(Y

g, Qg)Q 0

The K>-groups were defined in the previous section (we now write the > as a su-
perscript because we are using the K-theory of spaces instead of algebras). We have
been given elements in the bottom row and, by assumption, we have a lift (xh)h<g

of (yh)h<g on the left-hand side of the diagram. Let y′ be the projection of y onto
K>
〈g〉(Y

g, Qg)Q. By Lemma 2.8 there exists a lift x′ ∈ K>
〈g〉(X

g, Pg)Q of y′. Then
(xh)h<g and x′ together form an element in K〈g〉(Xg, Pg)Q that is a lift of y and
satisfies cyclic subgroup compatibility. Thus, by induction, we can always construct
the necessary lift and, by averaging over G, we can further ensure that the lift is G-
invariant. This completes the proof.

As a corollary, we can also decompose the twisted equivariant K-theory of a G-
equivariant fiber bundle E → X . Note that this is precisely the situation encountered
in T-duality, where the twisted K-theory of the total space of a U(1)-bundle or Tn-
bundle has to be analysed. We decompose the rational equivariant K-theory of E
into the twisted cyclic group equivariant K-theory of E|Xg , the restriction of E to the
fixed point spaces of X . The maps are induced by the inclusions E|Xg → E, and the
resulting map

KG(E,P )Q →
⊕
g∈G

K〈g〉(E|Xg , P |E|Xg )Q

has image the G-invariant, cyclic subgroup compatible elements.

Corollary 2.11. Let E → X be a G-equivariant fiber bundle with fiber and base

both G-CW-complexes. Let P be a G-equivariant twist on E. Then, there is an

isomorphism

KG(E,P )Q → C̃SCG(E,P ) ⊆
[⊕
g∈G

K〈g〉(E|Xg , P |E|Xg )Q

]G

onto the subspace C̃SCG(E,P ) of cyclic subgroup compatible elements.
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Proof. Consider the following commutative diagram:

KG(E,P )Q
⊕
g∈G

K〈g〉(E|Xg , P |E|Xg )Q

⊕
g∈G

K〈g〉(E
g, P |Eg )Q

⊕
g∈G

|g|−1⊕
i=0

K〈gi〉(E
gi , P |Egi )Q

(2.9)

The upper horizontal map is as described in the theorem. The vertical maps are
obtained by applying the decomposition theorem to E and each E|Xg respectively.
These are isomorphisms onto their images.

The bottom right group is a direct sum over tuples (g, i) with g ∈ G and 0 ≤ i <

|g|. Cyclic subgroup compatibility implies that the (h, i)- and (k, j)-summands must
agree whenever hi = kj .

The lower horizontal map is obtained by sending the element in the g-summand
of the left-hand side to each (h, i)-summand on the right-hand side with g = hi. This
induces an isomorphism between the cyclic subgroup compatible elements of each
side. Diagram (2.9) therefore induces a diagram of isomorphisms:

KG(E,P )Q C̃SCG(E,P )Q

CSCG(E,P )Q

∼=

∼= ∼=

This completes the proof.
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CHAPTER 3

COMPLETION THEORY

This chapter is dedicated to completion theorems in twisted equivariant K-theory. The
first and most famous theorem of this type is Atiyah and Segal’s completion theorem,
which states that there is an isomorphism

KG(X)ÎG
∼=−−→ K(X ×G EG)ÎG , (3.1)

where (−)ÎG denotes the completion with respect to the topology generated by the
augmentation ideal IG [AS69]. This was generalised to families of subgroups by
Adams, Haeberly, Jackowski, and May in [AHJM88a], with (3.1) being the case of the
trivial family. We are of course interested in its generalisations to twisted equivariant
K-theory. Using the methods of [AHJM88a], Lahtinen generalised Atiyah and Segal’s
theorem to twisted equivariant K-theory. We shall use these same methods to prove
the twisted version for families of subgroups.

There is a related theorem by Jackowski that a map KG(X) → KG(Y ) is an
isomorphism if it is an isomorphism when restricted to all the cyclic subgroups of G
[Jac77]. This was later reproved as a corollary of a more general result in [AHJM88a].
We use their techniques to generalise the result to twisted equivariant K-theory, but
only for twists coming from a central extension.

We start by establishing some definitions for families of subgroups.

3.1 Families of Subgroups

In this section, we give the minimum amount of background information needed to
describe the statement and proof of the completion theorem in twisted equivariant K-
theory. For a more thorough discussion of families of subgroups, their classifying
spaces, and their applications, we recommend the survey article [Lüc05].

Definition 3.1. Let G be a group. A family of subgroups of a group G is a collection
F of subgroups of G satisfying the following two properties:

1. F is closed under conjugation: If H ∈ F then gHg−1 ∈ F for all g ∈ G.

2. F is closed under subgroups: IfH ∈ F andK ⊆ H is a subgroup, thenK ∈ F .

In other words, F is closed under subconjugation.

Definition 3.2. A G-space X is F-free if Gx ∈ F for all x ∈ X .
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Note that if X is F-free and H is a subgroup not in F , then XH = ∅.

Definition 3.3. A G map f : X → Y is an F-homotopy equivalence if the induced
map fH : XH → Y H is a homotopy equivalence for all H ∈ F .

Definition 3.4. The classifying space for a family F is the F-free space EF such
that for any F-free space X there exists a G-map X → EF that is unique up to
G-homotopy.

Theorem 3.5. [Lüc05, Theorem 1.9] Let F be a family of subgroups of a group G.

EF is characterised up to G-homotopy by the following property: (EF)H is weakly

contractible when H ∈ F and empty otherwise.

In other words, EF is the unique F-free space that is F-homotopy equivalent to
a point. The following are some examples:

• If F contains only the trivial subgroup, then an F-free space is a just a space
with free G-action and EF = EG.

• If F is the family of all subgroups of G, then all G-spaces are F-free and EF
is a point.

• If F is the family of all finite subgroups, thenEF is called the classifying space
for proper group actions. This appears in the Baum-Connes conjecture.

Definition 3.6. Let F be a family of subgroups. The F-topology on R(G) is the
topology whose neighbourhood basis around 0 is

I(F) :=
{
I(H1) · · · I(Hk) | H1, . . . ,Hk ∈ F

}
,

where I(H) = ker(R(G)→ R(H)) for H ∈ F .

Equivariant K-theory groups, both twisted and untwisted, areR(G)-modules. This
chapter is about their completion with respect to the F-topology.

3.2 The Completion Theorem

We prove the following theorem regarding the completion of twisted equivariant K-
theory with respect to a family of subgroups.

Theorem 3.7. Let G be a compact Lie group, X a finite G-CW-complex, P a G-

equivariant twist on X , and F a family of subgroups of G. Then, the projection map

π : EF ×X → X induces an isomorphism

K∗G(X,P )F̂
∼=−→ K∗G(EF ×X,π∗P ),

where (−)F̂ denotes completion with respect to the F-topology.
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The special case of untwisted K-theory withF containing only the trivial subgroup
is Atiyah and Segal’s completion theorem [AS69]. This was generalised to general
families of subgroups by Adams, Haeberly, Jackowski, and May in [AHJM88a, The-
orem 1.1]. Using the same techniques, the twisted version of the theorem was proven
for the trivial family of subgroups by Lahtinen [Lah12], who also included twists
coming from H1

G(X;Z2).

The theorem is proved via induction on the number of cells of X . For this, we
must consider the case where X is of the form G/H for H a closed subgroup of G.
By general induction arguments, this will reduce the theorem to the case where X is
a point. In this case, the twist comes in the form of an S1-central extension of G. We
first prove the result for these kinds of twists.

Theorem 3.8. Let G be a compact Lie group, X a finite G-CW complex, τ a twist on

X coming from a central extension

1→ S1 → Gτ → G→ 1,

and F a family of subgroups of G. Then, the projection map π : EF × X → X

induces an isomorphism

K∗G(X, τ)F̂
∼=−→ K∗G(EF ×X,π∗τ),

where (−)F̂ denotes completion with respect to the F-topology.

For the main result, we technically only need this theorem in the case that X is
a point. However, since the proof only uses that π is an F-homotopy equivalence,
which is true for all X , the more general case does not require any extra work.

When the twist comes from a central extension, the K-theory of a finite G-CW
complex can be described by Gτ -equivariant vector bundles in which the central S1

acts via scalar multiplication. The following make this precise:

Definition 3.9. Let π be an irreducible representation of S1. For a finite G-CW-
complex X , define K0

Gτ (X)(π) to be the Grothendieck group of isomorphism classes
of Gτ -vector bundles on X on which S1 acts via the representation π. Define the
other K-groups in the usual way via suspension.

Theorem 3.10. LetX be a finiteG-CW-complex and P aG-equivariant twist coming

from a central extension. There is an isomorphism

K∗G(X,P ) ∼= K∗Gτ (X)(1),

where 1 denotes the representation given by the identity S1 id−→ S1 ⊆ C∗.
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This theorem is a particular case of [FHT11, Proposition 3.5]; further details can
be found there.

The completion results in [AHJM88a] and [Lah12] are often stated in terms of
pro-group valued K-theory. This is a more general setting because one does not need
to worry about spaces being finite. Where possible, we have restricted to finite G-
CW-complexes; in this context, the pro-groups satisfy the Mittag-Lefler condition and
so taking the limit gives an isomorphism between the true K-theory groups. In the
proof of Theorem 3.16, however, a non-finite G-space is considered and so we cannot
completely avoid speaking of pro-groups. We refer the reader to [AS69, §2] for an
introduction to pro-group valued K-theory.

Definition 3.11. Let X be a G-CW-complex and π a representation of S1. Define the
pro-group valued K-theory

K∗G(X)(π) =
{
K∗G(Xα)(π)

}
α
,

where Xα runs along the finite subcomplexes of X . If F is a family of subgroups of
G then let

K∗G(X)(π)F̂ =
{
K∗G(Xα)/JK∗G(Xα)

}
α,J

where Xα is as before and J is indexed by I(F) (see Definition 3.6).

Theorem 3.8 will follow from the following result, which comes from [Lah12,
Theorem 9].

Theorem 3.12. Let f : X1 → X2 be a G-map between G-CW-complexes such that

the induced map

f∗ : K∗Hτ (X2)(π)→ K∗Hτ (X1)(π)

is an isomorphism of pro-R(G)-modules for all H ∈ F . Then, the induced map

f∗ : K∗Gτ (X2)(π)F̂ → K∗Gτ (X1)(π)F̂

is an isomorphism of pro-R(G)-modules.

Corollary 3.13. Let f : X1 → X2 be a G-map between finite G-CW-complexes such

that the induced map

f∗ : K∗Hτ (X2)(π)→ K∗Hτ (X1)(π)

is an isomorphism for all H ∈ F . Then, the induced map

f∗ : K∗Gτ (X2)(π)F̂ → K∗Gτ (X1)(π)F̂

is an isomorphism.
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Theorem 3.8 follows from Theorem 3.12 by considering the canonical projection
map π : EF×X → X . We refer the reader to Lahtinen’s paper for the detailed proof.
We comment on the necessary changes: At the beginning of the proof, he uses a result,
Theorem 9, that in our case is replaced by Theorem 3.12. We also need to replace the
inverse system representing EG with the inverse system representing EF . The only
other result needed is the following, which replaces Lemma 6 in Lahtinen’s paper.

Lemma 3.14. If the compactG-spaceX isF-free then theF-topology inK∗Gτ (X)(π)

is discrete.

Proof. Since X is a compact, F-free Gτ -space, Proposition 3.1 from [Jac77] implies
that K∗Gτ (X) is discrete in the F-topology. Therefore, K∗Gτ (X)(π) is also discrete
with respect to the F-topology.

Proof of Theorem 3.12. The proof is once again the same as Lahtinen’s. By consid-
ering the mapping cone of f , it suffices to show that if Z is a space such that ZH is
contractible for each H ∈ F , then K∗Gτ (X)(π)F̂ = 0. Using induction on the sub-
groups of G, an argument first used in [AHJM88a], works in our case as well. The
only change is that we complete with respect to the F-topology instead of just the
augmentation ideal. We note that when Lahtinen uses his Lemma 11, we instead use
Lemma 3.2 in [AHJM88a], which is the same result but for families of subgroups.

The next step is the case of homogeneous spaces G/H:

Theorem 3.15. Let H be a subgroup of G, P a G-equivariant twist on G/H , and F
a family of subgroups of G. Then, the projection map π : EF ×X → X induces an

isomorphism

K∗G(G/H,P )F̂
∼=−→ K∗G(EF ×G/H, π∗P ).

where (−)F̂ denotes completion with respect to the F-topology.

Proof. Let F|H = {K ∈ F : K ⊆ H} be the restriction of F to H . As shown in
Proposition 1.3, we have an induction isomorphism

K∗G(G/H,P ) ∼= K∗H(∗, PH),

where PH is the restriction of P to the neutral element in G/H . By [AHJM88a,
Lemma 3.4], the F-adic topology on R(H) coincides with the F|H -adic topology, so
this isomorphism respects the completions:

K∗G(G/H,P )F̂
∼= K∗H(∗, PH)F̂|H .

Next, note that EF ×G/H ∼= EF ×H G, so using the induction isomorphism we get

K∗G(EF ×G/H, π∗P ) ∼= K∗G(EF ×H G, π∗P ) ∼= K∗H(EF|H , π∗PH).
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Now, we have the following commuting square:

K∗G(G/H,P )F̂ K∗G(EF ×G/H, π∗P )

K∗H(∗, PH)F̂|H K∗H(EF|H , π∗PH).

∼= ∼=
∼=

The lower isomorphism is a result of Theorem 3.8. We conclude that the upper map
is an isomorphism, as required.

Now we are ready for the proof of the full completion theorem.

Proof of Theorem 3.7. We argue by induction on the number of G-cells of X . The
base case is covered by the previous theorem. Assume that X has k cells and that the
theorem holds for all spaces containing less than k cells. Then, X is obtained from a
G-CW-complex X ′ by gluing a single G-cell, that is,

X = X ′ ∪ϕ (en ×G/H).

Let U be a small open neighbourhood around X ′ and V a small open neighbourhood
of the newly added cell, so that

U ' X ′, V ' G/H, and U ∩ V ' Sn−1×G/H.

Using X = U ∪ V and EF × X = (EF × U) ∪ (EF × V ), we consider the
corresponding Mayer-Vietoris sequences. By assumption, we have the completion
isomorphism for X ′, G/H , and Sn−1× G/H , so applying the five lemma gives the
desired result. Note that the isomorphism for Sn−1× G/H does not come directly
from the induction assumption, but we get it by decomposing the sphere into two cells
and applying Mayer-Vietoris.

3.3 Restriction to Cyclic Groups

We can generalise the second main result of [AHJM88a], Theorem 1.2, to twisted
K-theory for twists coming from the group.

For a prime ideal p ofR(G), define Supp(p) to be the set of minimal subgroupsH
such that p is the pre-image of a prime ideal under the restriction mapR(G)→ R(H).
This was defined by Segal in [Seg68b], who also showed that Supp(p) is a collection
of conjugate cyclic subgroups of G. We note that Segal considered Supp(p) to be a
choice of one of these cyclic subgroups; we follow [AHJM88a] and view it as a set of
conjugate subgroups.
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Theorem 3.16. Let S ⊆ R(G) be a multiplicative set, I ⊆ R(G) an ideal, and define

H =
⋃{

Supp(p) : S ∩ p = ∅ and p ⊇ I
}
.

Let f : X → Y be a G-map between finite G-CW-complexes such that the induced

map K∗H(Y,Q) → K∗H(X, f∗Q) is an isomorphism for all H ∈ H, where Q is a

twist on Y coming from a central extension of G. Then, the induced map

S−1K∗G
(
Y,Q

)
Î
→ S−1K∗G

(
X, f∗Q

)
Î

is an isomorphism, where S−1(−) denotes the localisation at S and (−)Î is the I-adic

completion.

Remark 3.17. In [AHJM88a], the authors do not require the spaces to be finite. In-
stead, their theorem states that the isomorphism is an isomorphism of pro-groups. For
finite complexes, the pro-groups satisfy the Mittag-Leffler condition, so taking the
limit gives us an isomorphism of the true K-theory groups.

Our motivation for proving this theorem is the following corollary. Consider the
case S = {1} and I = {0}. Segal showed that, in this case, H is the family of all
cyclic subgroups of G, so we get:

Corollary 3.18. If f : X → Y is a map of finite G-CW-complexes, Q is a twist on Y

coming from a central extension of G, and the induced map

K∗H(Y,Q)→ K∗H(X, f∗Q)

is an isomorphism for all cyclic subgroups H of G, then the induced map

f∗ : K∗G(Y,Q)→ K∗G(X, f∗Q)

is an isomorphism.

The untwisted version of this theorem was proven by Jackowski [Jac77]. Our
proof of Theorem 3.16 directly follows the proof in [AHJM88a]. Ideally, we would
like to generalise it to arbitrary twists. The difficulty is that the mapping cone argu-
ment does not work for such twists and without this one cannot use the usual inductive
argument since there are two different spaces to consider.

Proof of Theorem 3.16. The twist Q comes from an S1-central extension of G:

1→ S1 → Gτ → G→ 1
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By Theorem 3.10, there are isomorphisms

K∗G(Y,Q) ∼= K̃∗Gτ (Y )(1) and K∗G(X, f∗Q) ∼= K̃∗Gτ (X)(1).

By considering the mapping cone of f , it is again sufficient to show that

K̃∗Hτ (X)(π) = 0 for all H ∈ H =⇒ S−1K̃∗Gτ (X)(π)Î = 0.

By general algebraic results, for instance [AHJM88b, Lemma 2.3], we have that

S−1K̃∗Gτ (X)(π)Î = 0

if and only if

S−1
p K̃∗Gτ (X)(π)p̂ = 0 for all primes p with S ∩ p = ∅ and p ⊇ I.

For such a p, letH ∈ Supp(p) and letF be the family of subgroups ofG subconjugate
to H . By Corollary 3.13, for any finite G-space X we have

K̃∗Kτ (X)(π) = 0 for all K ∈ F =⇒ K̃Gτ (X)(π)F̂ = 0. (3.2)

This follows from the theorem by considering the constant map X → ∗. The prime p

contains ker(R(G)→ R(H)), which implies that the p-adic topology is coarser than
the F-topology. Then, K̃Gτ (Y )(π)F̂ = 0 implies that K̃Gτ (Y )(π)p̂ = 0, and hence
S−1
p K̃∗Gτ (Y )(π)p̂ = 0.

In our case, K̃∗Hτ (X)(π) = 0, but the same is not necessarily true for subgroups
of H . This is remedied by embedding X into a space Y such that XK ' Y K for all
K containing a conjugate of H and Y K is contractible otherwise. Such a Y satisfies
the assumption in (3.2), hence S−1

p K̃∗Gτ (Y )(π)p̂ = 0 via the previous discussion.
One can, for instance, take Y = X ∧ S(EG), where S(−) denotes the unreduced
suspension and G is the family of subgroups not containing a conjugate of H as a
subgroup. One observes that this Y is not finite; we instead use the pro-group valued
K-theory version of (3.2) given in Theorem 3.12.

Now, the proof will be complete after constructing an isomorphism

S−1
p K̃∗Gτ (Y )(π)→ S−1

p K̃Gτ (X)(π). (3.3)

Then, after completing with the p-adic topology and using that S−1
p K̃∗Gτ (Y )(π)p̂ = 0,

we have the result.

Let {Yα} denote the inductive system of finite sub-complexes of Y and let Xα =

X ∩ Yα. For each α, an isomorphism

S−1
p K̃∗Gτ (Yα)(π)→ S−1

p K̃Gτ (Xα)(π).
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can be constructed via induction along the finitely many cells of Yα that are not in
Xα. Such cells are of orbit type G/K with K ∈ G. We just need to check that
S−1
p K̃Gτ (G/H)(π) = 0. This follows from the result [Seg68b, 3.7 (iv)], noting that

this is a twisted representation ring; the proof works the same with the twist.
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CHAPTER 4

THOM ISOMORPHISM AND PUSHFORWARDS

In this chapter, we describe the Thom isomorphism in twisted equivariant K-theory
and use it to define the pushforward map along equivariant principal S1-bundles. The
main result we use comes from a paper by Moutuou [Mou13], who proves that there is
a Thom isomorphism in the “real” twisted K-theory of groupoids. Although the “real”
case is of independent interest, for example in the study of topological insulators (see
for instance [MJ22]), we do not require this level of generality and so we restrict the
result to twisted equivariant K-theory. If π : V → X is a G-equivariant vector bundle
(not necessarily K-oriented) and P is aG-equivariant twist onX , then there is a Thom
isomorphism

K∗G(X,P + Cl(V )) ∼= K∗G(E, π∗P ).

This first group is the twisted K-theory that has been further twisted by the complex
Clifford bundle associated with V , see Definition 1.4. Since Moutuou’s result is in
the context of groupoid equivariant KK-theory, we first show that, at least for compact
spaces, the twisted K-theory groups we consider are examples of (GnX)-equivariant
KK-groups. The groupoid equivariant setting is useful to us because the C*-algebras
we use – mainly sections of equivariant bundles – have a natural (G n X)-module
structure that we can take advantage of. In particular, we can take tensor products
over C0(X) instead of just C.

One should notice that this Thom isomorphism exists for all vector bundles, not
just K-oriented vector bundles like in the untwisted setting. This phenomenon occurs
in ordinary cohomology as well; to define the Thom isomorphism for a non-oriented
vector bundle one must use cohomology with local coefficients. Thus, one could
consider this as a motivation for defining twisted K-theory.

In the non-equivariant setting, the Thom isomorphism and pushforward in twisted
K-theory has already been constructed in [CW08], incorporating a variety of ap-
proaches to twisted K-theory; bundle gerbe modules, bundles of Fredholm operators,
and a small amount of KK-theory. Some other work on the Thom isomorphism in-
cludes the thesis of Garvey [Gar22], who proves that the Thom class in groupoid
equivariant KK-theory defined in two ways, by pulling back the Bott element or by
using spin representations and Clifford multiplications are the same.

As a final remark, we comment on the fact that the Thom isomorphism in twisted
equivariant K-theory in the above form does not, to our knowledge, explicitly exist
yet in the algebraic topology literature. That it is just a special case of a broader
KK-theoretic result is a commendation of the richness of Kasparov’s KK-theory and
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its groupoid equivariant generalisations. This should serve as an advertisement to
algebraic topologists about the usefulness of KK-theory when working with K-theory.

To make this chapter as self-contained as possible, we start with some background
information on groupoid equivariant KK-theory. We then prove that our twisted equiv-
ariant K-groups can be written as (GnX)-equivariant K-groups before outlining the
proof of the Thom isomorphism theorem. Finally, motivated by T-duality, we apply
the Thom isomorphism to pushforwards along principal S1-bundles.

4.1 Groupoid Equivariant KK-Theory

Groupoid equivariant KK-theory was introduced by Le Gall [LG99]. For complete-
ness, we use this section to introduce the main definitions and properties. We do not
provide proofs that can be found elsewhere.

Definition 4.1. Let X be a locally compact space. A C0(X)-algebra is a C*-algebra
A together with a nondegenerate homomorphism θ : C0(X)→M(A), meaning that

θ
(
C0(X)

)
A =

{
θ(f)(a) : f ∈ C0(X), a ∈ A

}
is dense in A, where M(A) is the multiplier algebra of A.

Using the characterisation of M(A) as the adjointable maps A → A, one can
view a C0(X)-algebra as a C*-algebra with an action of C0(X) via adjointable maps.
Requiring θ to be nondegenerate allows us to extend a ∗-homomorphism f : A → B

to a map M(f) : M(A) → M(B). A C0(X)-algebra morphism is a non-degenerate
∗-homomorphism f : A→ B such that the following commutes:

C0(X)

M(A) M(B).

θA θB

M(f)

This of course just means that f preserves the C0(X)-action.

Example 4.2. The simplest C0(X)-algebra is of course C0(X) itself, with θ being
the inclusion of C0(X) into its multiplier algebra.

Example 4.3. Let E be a bundle of C*-algebras on X , for example, the bundle of
compact operators associated to a principal PU(H)-bundle. Then the sections of E
that vanish at infinity, Γ0(E), is a C0(X)-algebra. The action is of C0(X) on Γ0(E)

is (ϕ · σ)(x) = ϕ(x) · σ(x), with ϕ ∈ C0(X), σ ∈ Γ0(E).

The algebra of sections of a bundle is more than just an example of a C0(X)-
algebra. Indeed, there is a close connection between a C0(X)-algebra and a bundle
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of algebras on X . The most well-known example of this is the Serre-Swan theorem,
which states that taking the algebra of sections gives a correspondence between the
complex vector bundles on X and the finitely generated projective C0(X)-modules.
Furthering this relationship, we can talk about the fiber of a C0(X)-algebra:

Definition 4.4. The fiber of a C0(X)-algebra A at x ∈ X is defined as Ax = A/IxA,
where Ix = {f ∈ C0(X) : f(x) = 0}. If ϕ : A → B is a map of C0(X)-algebras
and x ∈ X , then ϕx : Ax → Bx denotes the associated map on fibers.

Example 4.5. As expected, the fiber of Γ0(E) at x ∈ X is Ex, where E is a bundle
of C*-algebras over X .

The following definition of a pullback of C*-algebras comes from [RW85, §1].

Definition 4.6. Let f : X → Y be a continuous map between locally compact spaces
and let A be a C0(Y )-algebra. The pullback of A along f is

f∗A := C0(X)⊗C0(Y ) A,

where tensor product is defined as the quotient of C0(X) ⊗ A by the ideal generated
by elements of the form

(ϕ · ψ)⊗ a− ϕ⊗ (ψ · a),

where ϕ ∈ C0(X), ψ ∈ C0(Y ), and a ∈ A.

Two results justify calling this construction the pullback. The first, found in
[RW85, Prop 1.3], is relevant to us because algebras of sections occur in the definition
of K-theory.

Proposition 4.7. Let E be a bundle of C*-algebras over a locally compact space Y

and let f : X → Y be a continuous map. Then the C0(X)-algebras f∗Γ0(E) and

Γ0(f∗E) are isomorphic.

The next also matches our intuition from bundles; if E → Y is a bundle and
f : X → Y , then the fiber of f∗E at x ∈ X is the fiber of E at f(x).

Proposition 4.8. Let A be a C0(Y )-algebra and let f : X → Y be a continuous map.

If x ∈ X , then (f∗A)x is isomorphic to Af(x).

Proof. The isomorphism is given by

Φ: (f∗A)x =
C0(X)⊗C0(Y ) A

Ix(C0(X)⊗C0(Y ) A)
−→ A

If(x)A
= Ax

[ϕ⊗ a] 7→ [ϕ(x)a].
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If ψ ∈ C0(Y ), then

Φ([ϕ · (ψ ◦ f)⊗ a]) = [ϕ(x)ψ(f(x))a] = [ϕ(x)(ψ · a)] = Φ([ϕ⊗ (ψ · a)]).

The second equality comes from the fact that ψ−ψ(f(x)) ∈ If(x), where ψ(f(x)) is
viewed as a constant function. Moreover, if ϕ ∈ Ix then

Φ
(
[ϕ⊗ a]

)
= [ϕ(x)a] = 0.

Therefore, Φ is a well-defined function. Its inverse is given by [a] 7→ [1⊗ a].

Definition 4.9. Let G be a locally compact topological groupoid. A G-algebra is a
C0(G0)-algebra A together with an isomorphism α : s∗A

∼=−→ t∗A of C0(G1)-algebras
satisfying αγ1◦γ2

= αγ1
◦ αγ2

for all (γ1, γ2) ∈ G2.

Remark 4.10. This definition fits into a general framework for defining a groupoid-
equivariant object. For example, a G-equivariant vector bundle consists of a vector
bundle E → G0 together with an isomorphism s∗E ∼= t∗E of bundles over G1 that
satisfies an associativity condition over G2.

Naturally, groupoid equivariant C*-algebras are the objects for which we define
groupoid equivariant KK-theory. The cycles for G-equivariant KK-theory are G-
equivariant Kasparov bimodules.

Definition 4.11. LetB be a G-algebra. A G-equivariant HilbertB-module is a Hilbert
B-module E together with a unitary V ∈ L(s∗E , t∗E) such that Vγ1◦γ2

= Vγ1
◦ Vγ2

for all (γ1, γ2) ∈ G2.

Definition 4.12. Let A and B be two G-algebras. A Kasparov A-B-bimodule is a
triple (E , π, T ) consisting of a G-equivariant Hilbert B-module E , a G-equivariant
representation π : A→ L(E), and a G-equivariant operator T on L(E) such that

1. π(a)(T 2 − 1) ∈ K(E),

2. π(a)(T − T ∗) ∈ K(E),

3. [T, π(a)] ∈ K(E), and

4. [π ⊗ 1](a′)(V (s∗T )V ∗ − t∗T ) ∈ t∗K(E)

for all a ∈ A and a′ ∈ t∗A, with V being the unitary map in the definition of a
G-equivariant Hilbert module.

If one considers graded G-algebras, as is the case when the Clifford algebra is
introduced, then one must use graded Hilbert modules and graded homomorphisms.
Then, T is required to be an operator of degree 1.
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Definition 4.13. Two Kasparov A-B-bimodules (E0, π0, T0) and (E1, π1, T1) are uni-
tarily equivalent if there exists a G-equivariant unitary operator U : E0 → E1 of de-
gree 0 such that Uπ0(a) = π1(a)U for all a ∈ A and UT0 = T1U .

Let EG(A,B) be the semi-group of unitary equivalence classes of G-equivariant
Kasparov A-B-bimodules. For any G-algebra B, let IB be the G-algebra of paths
[0, 1]→ B and evt : IB → B be defined via evaluation at t. For each t ∈ [0, 1], there
is an ’evaluation’ semigroup homomorphism

evt∗ : EG(A, IB) −→ EG(A,B).

See the definitions of KK-theory in [Bla98, 17.2.2] or [Gar22, 2.6.4] for precise details
of this construction.

Definition 4.14. A homotopy between two KasparovA-B-bimodules (E0, π0, T0) and
(E1, π1, T1) is a G-equivariant Kasparov A-IB-bimodule (E , π, T ) such that, for each
i ∈ {0, 1}, we have

evi∗
[
(E , π, T )

]
=
[
(Ei, πi, Ti)

]
∈ EG(A,B).

Definition 4.15. KKG0 (A,B) is the homotopy equivalence classes of EG(A,B).
Moreover,

KKG1 (A,B) := KKG0 (A,B ⊗ C`(1)),

where C`(1) is the complex Clifford algebra with one generator.

The following result is a summary of the main properties of groupoid equivariant
KK-theory:

Proposition 4.16. Groupoid equivariant KK-theory has the following properties:

1. If α : A→ A′ is a morphism of G-algebras, then there is a morphism

α∗ : KKG(A′, B)→ KKG(A,B),

that is, KKG(−, B) is a contravariant functor.

2. If β : B → B′ is a morphism of G-algebras, then there is a morphism

β∗ : KKG(A,B)→ KKG(A,B′),

that is, KKG(A,−) is a covariant functor.

3. A generalised map Φ from G toH induces a map

Φ∗ : KKH(A,B)→ KKG(Φ∗A,Φ∗B),
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where the pullbacks Φ∗A and Φ∗B are defined by Le Gall [LG99, §3].

4. There are exterior product maps

extD : KKG(A,B)→ KKG(A⊗D,B ⊗D)

ext′D : KKG(A,B)→ KKG(D ⊗A,D ⊗B)

5. There is an associative Kasparov product, natural with respect to all the previ-

ous maps:

KKG(A,D)×KKG(D,B)→ KKG(A,B).

We denote the product by (x, y) 7→ x⊗D y.

4.2 Twisted K-Theory as KK-Theory

To make use of groupoid equivariant KK-theory, it is useful to be able to express our
already-defined twisted equivariant K-groups as (GnX)-equivariant KK-groups. To
this end, we shall show that, when X is compact, there is an isomorphism

KKGnX(C0(X),Γ0(X,PK)
) ∼= KKG

(
C,Γ0(X,PK)

)
. (4.1)

Let us start by mentioning the following result, which tells us that the Hilbert modules
of a C*-algebra of sections are always sections of some bundle of Banach algebras.

Proposition 4.17. [TXLG04, Prop A.4]. LetA → X be a bundle of C*-algebras over

X and E a Hilbert Γ0(X,A)-module. Then there exists a bundle of Banach algebras

Ẽ such that E ∼= Γ0(X, Ẽ).

The authors of the cited paper use the term “field of C*-algebras” instead of “bun-
dle” and distinguish between continuous and upper semi-continuous fields of C*-
algebras. A field of C*-algebras A is continuous (resp. upper semi-continuous) if
the norm function A → R≥0 is continuous (resp. upper semi-continuous). In this
thesis, when we say “bundle of C*-algebras” or “bundle of Banach algebras”, upper
semi-continuity will suffice.

The isomorphism (4.1) will follow from the following result, whose proof relies
heavily on the results of [TXLG04].

Theorem 4.18. Let X be a compact G-space and let A be a C0(X)-algebra with

G-action (equivalently a C*-algebra with (GnX)-action). There is an isomorphism

KKGnX(C0(X), A) ∼= KKG(C, A).
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Proof. By [TXLG04, Prop A.3], A is isomorphic to Γ0(X,E) for some bundle E of
C*-algebras over X . Thus we can assume that A = Γ0(X,E).

Let (E , π, T ) be a (GnX)-equivariant Kasparov (C0(X), A)-module. By Propo-
sition 4.17, there exists a bundle Ẽ of Banach algebras such that E ∼= Γ0(X, Ẽ). Then,
since an isomorphism s∗E ∼= t∗E satisfying the associativity property is equivalent
to a G-action on Ẽ , it is clear that E being (G n X)-equivariant is equivalent to Ẽ
being a G-equivariant bundle. Thus we can forget π so that (E , T ) is a G-equivariant
Kasparov (C, A)-module. This defines a map

KKGnX(C0(X), A)→ KKG(C, A).

For the other direction, start with aG-equivariant Kasparov (C, A)-module (E , T ).
Again, we can assume that E is the algebra of sections of a Banach bundle over X ,
and π : C0(X) → L(E) can be defined using the canonical left action of C0(X) on
E . Then, using the same reasoning as the previous paragraph, (E , π, T ) is a (GnX)-
equivariant Kasparov (C0(X), A)-module.

These constructions induce maps in both directions. For them to be inverse to
each other, we need to show that if (E , π, T ) is a (G n X)-equivariant Kasparov
(C0(X), A)-module, then π : C0(X) → L(E) is the map induced by the canonical
C0(X)-structure on the space of sections E . Consider the following diagram:

C0(X)

C0(X)

ZL(E)

ZM(C0(X))

ZM(L(E))

=

ϕ

L1

L2

M(π)π

Let us explain the maps: L1 is the inclusion of C0(X) into its multiplier algebra, so
that L1(f)(g) = fg. The map ϕ : C0(X) → ZL(E) is the one defining the C0(X)-
algebra structure of E . L2 is the inclusion of L(E) into its multiplier algebra, restricted
to the centre. The composition L2 ◦ϕ is then the induced C0(X)-algebra structure on
L(E). The map M(π) is the map that π induces on the multiplier algebras. For M(π)

to exist, π must be non-degenerate, but this is one of the requirements for Kasparov
modules. The condition of π being a C0(X)-algebra map precisely means that the
outer triangle commutes. So, the commutativity of the outer triangle and the square
gives

L2 ◦ ϕ = M(π) ◦ L1 = L2 ◦ π.

Thus, since L2, is injective, we have π = ϕ, as required.

Applying this theorem to A = Γ(X,PK) gives us isomorphism (4.1). As a final
remark, we note that this proof is much less technical than the similar result [TXLG04,
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Proposition 6.10]. This is because they are working in the more general setting of
twisted K-theory of differentiable stacks, which requires more advanced techniques.

4.3 Thom Isomorphism

In this section, we outline Moutuou’s construction of the Thom isomorphism [Mou13,
Theorem 8.1] for our case of interest; twisted equivariant K-theory. We reiterate that
this is not an original result, but is included to make the thesis more self-contained and
to state it in the context of algebraic topology. Moutuou’s Thom isomorphism works
in a more general context, namely for “real” twisted K-theory of groupoids, which
includes our special case.

Theorem 4.19. Let X be a G-space, P → X a stable G-equivariant principal

PU(H)-bundle, and π : V → X a G-equivariant vector bundle of rank n. Then,

there is an isomorphism

K∗G(X,P + Cl(V )) ∼= K∗G(V, π∗P ), (4.2)

where Cl(V ) is the Clifford bundle of V . Moreover, if π : V → X is K-oriented, then

this reduces to an isomorphism

K∗G(X,P ) ∼= K∗+nG (V, π∗P ). (4.3)

In the non-equivariant setting, the Thom isomorphism in twisted K-theory is well
established [CW08, Kar08]. One could consider the Thom isomorphism as one of the
motivations for defining twisted K-theory. Just as local coefficients are needed to de-
fine the Thom isomorphism in ordinary cohomology for non-oriented vector bundles,
twisted K-theory is needed for bundles that are not K-oriented.

Proof. The proof comes down to constructing a KK-equivalence

τV,P ∈ KKG
(
Γ0(V, π∗Pk),Γ0(X,PK ⊗ Cl(V ))

)
.

The Kasparov product then gives us the desired isomorphism:

K∗G(V, π∗P ) ∼= KKG
∗
(
C,Γ0(V, π∗PK)

)
⊗τV,P−−−−→ KKG

(
C,Γ0(X,π∗PK ⊗ Cl(V ))

)
∼= K∗G(X,P + Cl(V )).

Start by constructing the KK-equivalence in the (partially) untwisted case, that is,
when P is trivial but V may not be K-oriented. Any G-vector bundle π : V → X is
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classified up to isomorphism by a generalised map from GnX to O(n). Indeed, any
such vector bundle has an associated principal O(n)-bundle, which, by passing to a
trivialising open cover, gives a generalised morphism from GnX to O(n).

Let Φ: GnX → O(n) be the generalised morphism associated with V . Consider
the Bott element α ∈ KKO(n)

(
C0(Rn),Cln

)
introduced by Kasparov in [Kas81, §5].

Note that Kasparov’s Bott element is actually in Spinc-equivariant K-theory, but is
constructed by first constructing an O(n)-equivariant Bott element. The desired KK-
equivalence in the partially untwisted case is the pullback of the Bott element under
Φ,

τV := Φ∗α ∈ KKGnX(C0(V ),Γ0(X,Cl(V ))
)
.

For this to make sense, one needs to understand how to pullback a C*-algebra along
a generalised morphism; this process was first described by Le Gall [LG99, §3], but
Moutuou also recalls the construction in his paper. We indeed have that

Φ∗C0(Rn) ∼= C0(V ) and Φ∗Cln ∼= Γ0(X,Cl(V )).

An instructive demonstration of the first isomorphism can be found in Example 4.2.5
of [Gar22].

From here, one can incorporate the twist P by taking the exterior product with
Γ0(X,PK). Let τ̃V,P be the image of τV under the map

KKGnX
∗

(
C0(V ),Γ0(X,Cl(V ))

) extΓ0(X,PK)−−−−−−−−→

KKGnX
∗

(
C0(V )⊗C0(X) Γ0(X,PK),Γ0(X,Cl(V ))⊗C0(X) Γ0(X,PK)

)
.

By Proposition 4.7, which says that the pullback of an algebra of sections is the algebra
of sections of the pullback bundle, we have

C0(V )⊗C0(X) Γ0(X,PK) ∼= Γ0(V, π∗PK).

Moreover,

Γ0(X,Cl(V ))⊗C0(X) Γ0(X,PK) ∼= Γ0(X,PK ⊗ Cl(V )).

Therefore, τ̃V,P ∈ KKGnX(Γ0(V, π∗Pk),Γ0(X,PK ⊗ Cl(V ))
)
. To obtain τV,P ,

we use that there is a natural forgetful functor KKGnX → KKG, see the remark
in [Kas88, §2.19]. On the level of cycles this map forgets about the C0(X)-action.
Applying this functor to τ̃V,P gives the desired KK-equivalence τV,P .

When π : V → X is K-oriented, the bundle Cl(V ) is trivial [Mou13, Prop 7.9].
Using Proposition 4.7 again, we have Γ0(X,Cl(V )) ∼= C0(X)⊗̂Cln, since Cl(V ) is
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a pullback of a Clifford bundle over a point. Therefore,

K∗G(X,P + Cl(V )) ∼= KKG
∗
(
C,Γ0(X,P ⊗ Cl(V ))

)
∼= KKG

∗
(
C,Γ0(X,P )⊗̂Cln

)
∼= KKG

∗+n
(
C,Γ0(X,P )

)
∼= K∗+nG (X,P )

So, isomorphism (4.2) implies isomorphism (4.3). This completes the proof.

4.4 Pushforwards for Principal S1-Bundles

With the Thom isomorphism in twisted equivariant K-theory established, it is straight-
forward to define the pushforward along K-oriented maps f : X → Y . One uses
the standard Pontryagin-Thom construction: choose an embedding of X into RN ,
then factor f through RN × Y and use the Thom isomorphism for the normal bun-
dle together with the Pontryagin-Thom collapse map. In this section, we restrict our
attention to G-equivariant principal S1-bundles. These are all K-oriented, and the
pushforward can be constructed relatively explicitly.

Let p : E → X be a G-equivariant principal S1-bundle. In this case, the pushfor-
ward can be constructed very explicitly. We can always factor p through the associated
complex line bundle:

E

E ×S1 C

X
p

i π

The pushforward p! is defined by pushing forward along the embedding i and then
using the Thom isomorphism for π. The second part is clear, since we have estab-
lished the Thom isomorphism in twisted equivariant K-theory. Thus we focus on the
pushforward along the embedding i : E → E ×S1 C.

Lemma 4.20. Let p : E → X be a G-equivariant principal S1-bundle. The normal

bundle of the embedding i : E → E ×S1 C is isomorphic to E × R.

Proof. For notational ease, let Ẽ = E×S1 C. We write elements of TẼ as pairs (e, u)

with e ∈ Ẽ u ∈ TeẼ. Choose the following inner product on Ẽ:

〈
[e, z1], [e, z2]

〉
:= Re

(
z̄1z2

)
.

This comes from the standard inner product on R2 after the canonical identification
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C = R2. This inner product satisfies the following properties

i(E) =
{
e ∈ E ×S1 C : ‖e‖ = 1

}
(4.4)

i∗(TvE) =
{

(e, u) ∈ (TvẼ)|i(E) : 〈e, u〉 = 0
}

(4.5)

We explain property (4.5): TvE and TvẼ denote the vertical sub-bundle of the tangent
bundles on E and Ẽ, respectively. The product 〈e, u〉 makes sense after identifying
(TvẼ)e with Ẽp(e). This is possible because there is a canonical isomorphism TvẼ ∼=
π∗Ẽ. Property (4.4) is straightforward to show directly. For (4.5), it is just a matter of
checking the condition locally.

These conditions are motivated by the standard embedding S1 ↪→ C. The image
of S1 is precisely the unit complex numbers and the tangent vectors to u ∈ S1 are
precisely those orthogonal to u.

From here, we can write the map directly. Let P : TẼ → TvẼ be a choice of
projection map onto the vertical sub-bundle. Consider the map

TẼ|i(E) → E × R, (e, u) 7→
(
e, 〈e, Pu〉

)
, (4.6)

again making the identification (TvẼ)e = Ẽπ(e) for the inner product to make sense.
An element (e, u) ∈ i∗(TE) is mapped to (e, 0), because of (4.5), and thus (4.6)
descends to a map on the normal bundle TẼ|i(E)/i∗(TE). This is an isomorphism;
the inverse sends (e, t) to (e, te), where te ∈ Eπ(e)

∼= (TvẼ)e, and hence lives in the
correct space, TeẼ.

With this done, we define the pushforward along i : E → E ×S1 C. Using the
tubular neighbourhood theorem, choose a neighbourhood U ⊇ i(E) such that U ∼=
Ni, where Ni ∼= E × R is the normal bundle. We can in fact choose U = E ×S1 C∗,
because E × R ∼= E ×S1 C∗ via a map (e, t) 7→ [e, γ(t)], where γ : R → (0,∞) is
any homeomorphism. Then, the pushforward is the composition

i! : K
∗
G(E) ∼= K∗+1

G (E × R) ∼= K∗+1
G (E ×S1 C∗)→ K∗+1

G (E ×S1 C).

The final map is the extension map; it can be described by extending compactly sup-
ported sections on E ×S1 C∗ to E ×E1 C by mapping [e, 0] to 0.

Therefore, the final pushforward map is the composition

p! : K
∗
G(E)

i!−−→ K∗+1
G (E ×S1 C)

π!−−→ K∗+1
G (X),

where π! is the inverse of the Thom isomorphism KG(X) ∼= KG(E×S1 C). We have
written the pushforward for untwisted K-theory, but it works just the same for twisted
K-theory; we have shown that no further orientability conditions are required to pro-
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duce a Thom isomorphism in twisted equivariant K-theory, and since this pushforward
is defined using two Thom isomorphisms, everything works in this setting as well.

The pushforward is a composition of several maps, all of which are isomorphisms
except for one. Hence, the pushforward is an isomorphism if and only if the extension
map K∗G(E ×S1 C∗)→ K∗G(E ×S1 C) in the definition of i! is an isomorphism. The
following results will describe some situations where this is the case:

Theorem 4.21. Let X be a G-space and let P be a G-equivariant twist on X . The

pushforward

Ki
G(X × S1, pr∗1P )→ Ki−1

G (X,P )

is an isomorphism if and only if Ki
G(X,P ) = 0, where G acts trivially on the S1

factor of X × S1.

Proof. The normal bundle of the embedding of X × S1 into X × C is trivial and
homeomorphic to X × C∗, that is, we have U = X × C∗, using the above notation.
Thus we need to show that

Ki−1
G (X × C∗, pr∗1P )→ Ki−1

G (X × C, pr∗1P ) (4.7)

is an isomorphism if and only if Ki
G(X,P ) = 0.

There is the following short exact sequence of C*-algebras:

0→ Γ0(X × C∗, PK × C∗)→ Γ0(X × C, PK × C)→ Γ0(X,P )→ 0

The first map is defined by extending sections by defining σ(x, 0) = 0, where the zero
is the zero in the fiber. This defines a continuous section because σ vanishes at infinity.
The second map sends a section σ to σ(−, 0). We therefore have the following long
exact sequence of K-theory groups:

K0
G(X × C∗, pr∗1P ) K0

G(X × C, pr∗1P ) K0
G(X,P )

K1
G(X,P ) K1

G(X × C, pr∗1P ) K1
G(X × C∗, pr∗1P )

(4.8)
We can show that Ki−1

G (X × C, pr∗1P )→ Ki−1
G (X,P ) is the zero map. This map is

induced by pulling back along the map s : X → X × C, x 7→ (x, 0). On the level of
C*-algebras, noting that pr∗1P = P × C, this gives

Γ0

(
X × C, PK × C

)
→ Γ0

(
X,PK), (4.9)

σ 7→
(
x 7→ pr1 ◦ σ(x, 0)

)
.
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Observe that Γ0(X×C, PK×C) is isomorphic to the sections of PK×D2 → X×D2

that vanish on X ×S1. Denote such sections by Γ0(X ×D2, X ×S1;PK×D2). We
now have the following map

Γ0

(
X ×D2, X × S1;PK ×D2

)
→ Γ0

(
X,PK),

σ 7→ pr1 ◦ σ(x, 0).

This is homotopic to the constant map via

Ft : σ 7→
(
x 7→ pr1 ◦ σ(x, t)

)
,

noting that σ(x, 1) = 0 since σ vanishes on X × S1. Therefore, we can conclude that
(4.9) induces the zero map on K-theory.

Thus, exactness of the sequence implies thatKi
G(X,P ) = 0 if and only if the map

Ki−1
G (X×C∗, pr∗1P )→ Ki−1

G (X×C, pr∗1P ) is an isomorphism. This completes the
proof.

We consider two specific examples. Let Ek := S1 be the S1-space with the kth
power action, that is, with action S1 → S1 ⊆ Aut(S1), z 7→ zk. When k > 0, we
have

K0
S1(Ek) ∼= K0

S1(S1/Zk) ∼= R(Zk) and K1
S1(Ek) = 0.

When k = 0, the action is trivial. Since

H3
S1(E0) = H3(S1 ×BS1) ∼= H1(S1)⊗H2(BS1) ∼= Z,

the isomorphism classes of twist are classified by Z. If Pk is a twist classified by
k ∈ Z, then a Mayer-Vietoris argument shows that

K0
S1(E0, Pk) ∼= 0 and K1

S1(E0, Pk) ∼= R(Zk).

The explicit calculation is found in [FHT11, §1]. The first example, which is a corol-
lary of the previous theorem, considers the bundle Ek × E0 → Ek.

Corollary 4.22. For any S1-equivariant twist P → Ek, the following pushforward

map is an isomorphism:

K1
S1(Ek × E0)

∼=−−→ K0
S1(Ek, P ).

The other pushforward is the zero map, since K1
S1(Ek, P ) = 0.

The second example considers the bundle E0×Ek → E0. It is not a consequence
of the theorem but the main idea of the proof is the same.
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Theorem 4.23. Let Pk → E0 be a twist classified by k ∈ Z ∼= H3
S1(E0;Z). The

following pushforward along p : E0 × Ek → E0,

K0
S1(E0 × Ek, p∗Pk)

∼=−−→ K1
S1(E0, Pk),

is an isomorphism. The other pushforward is the zero map, since K0
S1(E0, Pk) = 0.

Proof. We again need to show that

K1
S1(E0 × C∗, pr∗1Pk)→ K1

S1(E0 × C, pr∗1Pk)

is an isomorphism. Let X = E0 in the long exact sequence (4.8) from the proof of
Theorem 4.21:

K0
S1

(
E0 × C∗, pr∗1Pk

)
K0
S1

(
E0 × C, pr∗1Pk

)
K0
S1

(
E0, Pk

)
K1
S1

(
E0, Pk

)
K1
S1

(
E0 × C, pr∗1Pk

)
K1
S1

(
E0 × C∗, pr∗1Pk

)
SinceK0

S1(E0, Pk) = 0, it suffices to show thatK1
S1(E0×C, pr∗1Pk)→ K1

S1(E0, Pk)

is the zero map.

Let E0 = U ∪ V where U and V are small open neighbourhoods of each hemi-
sphere so that U and V are contractible and U ∩ V is homotopy equivalent to two
points. Then E0 × C = (U × C) ∪ (V × C) and we can consider the resulting
Mayer-Vietoris sequences side by side:

K0
S1(E0 × C, pr∗1Pk)

K0
S1(U × C)⊕K0

S1(V × C)

K0
S1(U ∩ V × C)

K1
S1(E0 × C, pr∗1Pk)

K0
S1(E0, Pk) K0

S1(U)⊕K0
S1(V ) K0

S1(U ∩ V ) K1
S1(E0, Pk)

There is no room for the zeroes on either end, but the first arrows in each row are
injective and the last arrows in each row are surjective. In the centre two columns we
have used trivialisations of the twist to replace the twisted K-groups with untwisted
ones. This changes the centre horizontal map in each row, but for the proof it does not
matter precisely how.

Now, using the contractibility of U and V , it is sufficient to show that the map
K0
S1(C) → K0

S1(∗) is zero. This map is the pullback of the constant map at 0 ∈ C.
Since C is not compact, we have

K0
S1(C) = K̃0

S1

(
C+
) ∼= K̃0

S1

(
S2
)
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We thus show that the map K̃0
S1(S2) → K̃0

S1(S0) is the zero map. The composition
S2 ∨ S0 → S2 × S0 → S2 ∧ S0 gives the exact sequence

K̃0
S1

(
S2
)

= K̃0
S1

(
S2 ∧ S0

)
−→ K̃0

S1

(
S2 × S0

)
−→ K̃0

S1

(
S2
)
⊕ K̃0

S1

(
S0
)
.

Further composing with the projection onto K̃0
S1(S0) gives the map we are consider-

ing, and since it factors through this exact sequence, it is the zero map.

We also have the following consequence of Corollary 3.18.

Theorem 4.24. Let π : E → X be a G-equivariant principal S1-bundle and P a

G-equivariant twist coming from a central extension of G. If the pushforward

π∗ : K∗H(E, π∗P )→ K∗−1
H (X,P )

is an isomorphism for all cyclic subgroups H ⊆ G, then the pushforward

π∗ : K∗G(E, π∗P )→ K∗−1
G (X,P )

is an isomorphism.

Proof. As discussed, the G-equivariant pushforward is an isomorphism if and only if

K∗G(E ×S1 C∗, π∗P )→ K∗−1
G (E ×S1 C, π∗P )

is an isomorphism. This is induced by pulling back along the collapse map, so by
Corollary 3.18, it is an isomorphism when

K∗H(E ×S1 C∗, π∗P )→ K∗−1
H (E ×S1 C, π∗P )

is an isomorphism for all cyclic subgroups H ⊆ G
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CHAPTER 5

EQUIVARIANT T-DUALITY

5.1 Equivariant T-Duality: The Setup

Let G be a compact group and X a locally compact G-space. Equivariant (topolog-
ical) T-duality is a relationship between pairs (E,P ) consisting of a G-equivariant
principal S1-bundle E → X together with a G-equivariant twist P → E. In practice,
there is a choice to be made about which model of twist to use, perhaps depending
on how one wants to define twisted K-theory. Instead of making a choice, we will
define equivariant T-duality and the T-duality transformation for twists satisfying a
set of prescribed axioms, which are detailed in the appendix. When we later discuss
the T-duality transformation in twisted equivariant K-theory, we shall use equivariant
principal PU(H)-bundles.

Consider two G-equivariant pairs (E,P ) and (Ê, P̂ ) fitting into the following
diagram:

p∗P p̂∗P̂

P E ×X Ê P̂

E Ê

X

u

p p̂

π π̂

(5.1)

All of the maps in the diagram are G-equivariant. One can therefore apply the Borel
construction to the entire diagram to get a non-equivariant diagram of circle bundles
and twists over the Borel construction X ×G EG. This leads to our definition of
equivariant T-duality:

Definition 5.1. A G-equivariant T-duality triple is a triple
(
(E,P ), (Ê, P̂ ), u

)
fitting

into a diagram of the form (5.1) and such that the induced non-equivariant triple over
X ×G EG is a T-duality triple.

An obvious question is whether every T-duality triple over X ×GEG comes from
an equivariant triple. We will now prove that this is indeed the case. Let S(E, Ê)

denote the sphere bundle of (E ×S1 C) ⊕ (Ê ×S1 C). We can construct S(E, Ê) as
the gluing of two mapping cylinders:

S(E, Ê) ∼= cyl(p) ∪E×X Ê cyl(p̂).
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There are canonical inclusions i : E → S(E, Ê) and i : Ê → S(E, Ê) that send E
and Ê to the ends of their respective cylinders.

Proposition 5.2. There is a bijection between the set of isomorphisms p∗P → p̂∗P̂

and the set of isomorphism classes of twists T on S(E, Ê) such that T |E ∼= P and

T |Ê ∼= P̂ .

Proof. Let f : cyl(p) → E be the canonical map [e, ê, t] 7→ e, and similarly define
f̂ : cyl(p̂)→ Ê. Let iE , iE×X Ê , and iÊ denote the inclusions of E, E ×X Ê, and Ê
into S(E, Ê), respectively.

The forward direction of the bijection is defined as follows. Note that

(f∗P )|E×Ê = p∗P and (f̂∗P̂ )|E×X Ê = p̂∗P̂ .

Therefore, given an isomorphism u : p∗P → p̂∗P̂ , we can glue together f∗P and f̂∗P̂
along E ×X Ê to obtain a twist T = f∗P ∪u f̂∗P that appropriately restricts to P
and P̂ .

For the inverse map, given a twist T → S(E, Ê) that restricts to P and P̂ , we
define u : p∗P → p̂∗P̂ by the sequence of isomorphisms

p∗P ∼= p∗(T |E) ∼= T |E×X Ê
∼= p̂∗(T |Ê) ∼= p̂∗P̂ . (5.2)

Here, we have used that iE ◦ p ' iE×X Ê ' iÊ ◦ p̂.

Let us confirm that these constructions are inverse to each other. Given an isomor-
phism u : p∗P → p̂∗P̂ , we first need to show that if T = f∗P ∪u f̂∗P̂ the composition
(5.2) is equal to u. In this case, T |E×X Ê = p∗P ∪u p̂∗P̂ and (5.2) becomes

p∗P ∼= p∗P ∪u p̂∗P̂ ∼= p̂∗P̂

x 7→ x ∼ u(x) 7→ u(x),

so this construction indeed returns u.

Now, let T → S(E, Ê) be a twist with T |E ∼= P and T |Ê ∼= P̂ . We show that
T ∼= f∗P ∪u f̂∗P̂ , where u is the isomorphism (5.2). Since iE ◦ f ' id, we know
that

T |cyl(p)
∼= f∗(T |E) ∼= f∗P.

Similarly T |cyl(p̂)
∼= f̂∗P̂ . We need these two parts to glue together according to

(5.2), which means that the composition (f∗P )|E×X Ê
∼= T |E×X Ê

∼= (f̂∗P̂ )|E×X Ê
is equal to (5.2). Both isomorphisms factor through T |E×X Ê , so we can split the maps
into two parts; a map p∗P → T |E×X Ê and another T |E×X Ê → p̂∗P̂ . For the first,
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consider the following diagram:

p∗P p∗(T |E) T |E×X Ê

(f∗P )|E×X Ê (f∗T |E)|E×X Ê

P∼=T |E

p=f◦iE×XÊ

iE◦p'iE×XÊ

P∼=T |E
iE◦f'id

The arrows are labelled with the relations that induce them. The upper path is the first
two maps in (5.2). We need to show that it equals the lower path, which comes from
the isomorphism T |cyl(p)

∼= f∗P restricted to E ×X Ê. The dotted arrow is induced
by p = f ◦ iE×X Ê and produces a commutative square. Since

iE ◦ f ' id =⇒ iE ◦ p = iE ◦ f ◦ iE×X Ê ' iE×X Ê ,

the triangle also commutes. Therefore, the above diagram commutes. The same argu-
ment works for the isomorphism T |E×X Ê → p̂∗P̂ . This completes the proof.

This proposition can be used to formulate an equivalent definition of topological T-
duality, where the twist isomorphism p∗P ∼= p̂∗P̂ is replaced with a twist on S(E, Ê).
See [DS23] for further details.

Theorem 5.3. TheG-equivariant pairs (E,P ) and (Ê, P̂ ) overX areG-equivariantly

T-dual if and only if (E ×G EG,P ×G EG) and (Ê ×G EG, P̂ ×G EG) are non-

equivariantly T-dual over X ×G EG.

Proof. The forward direction follows by definition of equivariant T-duality. For the
reverse direction, we show that every twist morphism u : p∗P ×GEG→ p̂∗P̂ ×GEG
is induced from an equivariant morphism p∗P → p̂∗P̂ .

Consider the following diagram:

{
G-equivariant morphisms

p∗P → p̂∗P̂

} 
G-equivariant twists on
S(E, Ê) that restricts to

P and P̂



{
Morphisms

p∗P ×GEG→ p̂∗P̂ ×GEG

} 
Twists on

S(E×G EG, Ê×G EG)

that restrict to P ×G EG
and P̂ ×G EG



Borel

∼=

Borel

∼=

Here, the horizontal maps are a result of Proposition 5.2 and the vertical maps are ob-
tained by taking the Borel construction. Isomorphism classes of G-equivariant twists
on a space X are in bijection with isomorphism classes of non-equivariant twists on
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X ×G EG; they are both in bijection with H3
G(X;Z). We thus conclude that the ver-

tical map on the right-hand side is an isomorphism. So, the two horizontal maps and
right-hand side vertical map are bijections, implying that the left-hand side map is a
bijection. This completes the proof.

Corollary 5.4. Every T-duality triple over X ×G EG comes from a G-equivariant

T-duality triple over X .

Proof. We need every pair over X ×G EG to be of the form (E ×G EG,P ×G EG)

for some equivariant pair (E,G). This is true because both equivariant S1-bundles
and bundles on X ×G EG are classified by H2

G(X) and a similar statement can be
made for the twists.

The theorem also implies that the existence and uniqueness properties of T-duals
carry over to the equivariant setting:

Corollary 5.5. For each G-equivariant pair (E,P ) over X , there is a unique T-dual

(Ê, P̂ ) characterised by the relations

π!

(
[P ]
)

= c1(E) and π̂!

(
[P̂ ]
)

= c1(Ê).

These pushforward maps were defined in the previous chapter.

Example 5.6. The most trivialG-equivariant T-duality triple is the triple over a trivial
G-space X consisting of trivial circle bundles and trivial twists.

Example 5.7. A G-equivariant S1-bundle E → X equipped with a trivial twist is
T-dual to the bundle X × S1, where G acts trivially on the S1-factor, equipped with a
twist classified by the equivariant Chern class of E,

c1(E) ∈ H2
G(X) ↪→ H3

G(X × S1).

This is summarised by saying that pairs with trivial twists are T-dual to pairs with
trivial bundles.

Example 5.8. If (E,P ) and (Ê, P̂ ) are T-dual, then (E,P ⊗π∗Q) and (Ê, P̂ ⊗ π̂∗Q)

are also T-dual, where Q is an equivariant twist on X .

More specific examples will be given in Section 5.7.

5.2 The T-Duality Transformation

The T-duality transformation can be defined for general twisted equivariant cohomol-
ogy theories. Included in Appendix A is a minimal axiomatic description of equivari-
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ant twists and twisted equivariant cohomology theories for which the T-duality trans-
formation can be defined. Later we will restrict our attention to twisted equivariant
K-theory.

Definition 5.9. Let hG be a twisted equivariant cohomology theory and consider a G-
equivariant T-duality triple

(
(E,P ), (Ê, P̂ ), u

)
. The T-duality transformation is the

composition T = p̂! ◦ u∗ ◦ p∗, that is,

h∗G(E,P )
p∗−−→ h∗G(E ×X Ê, p∗P )

u∗−−→ h∗G(E ×X Ê, p̂∗P̂ )
p̂!−−→ h∗−1

G (Ê, P̂ ).

Note the pushforward gives a degree shift of −1.

Given a G-equivariant T-duality triple
(
(E,P ), (Ê, P̂ ), u

)
over X , one can use a

G-equivariant function f : Y → X to pull back the triple to a G-equivariant T-duality
triple over Y . Similarly, one can restrict along a group homomorphism α : H → G

to obtain a H-equivariant triple on X . The T-duality transformation is natural with
respect to these constructions:

Proposition 5.10. The T-duality transformation is natural with respect to group ho-

momorphisms and continuous functions, that is, given a map f : Y → X and a group

homomorphism α : H → G, the following diagrams commute:

hG(E,P ) hG(Ê, P̂ )

hG(f∗E, f∗P ) hG(f∗Ê, f∗P̂ )

T

f∗ f∗

T

hG(E,P ) hG(Ê, P̂ )

hH(E,P ) hH(Ê, P̂ )

T

α∗ α∗

T

Proof. This follows directly from the naturality properties of p∗, u∗ and p̂!.

Example 5.11. In K-theory, the T-duality transformation for the trivial T-duality di-
agram described in Example 5.6 is the T-duality transformation of the diagram with
forgotten G-action tensored with the identity on R(G), that is,

Ki
G(X × S1) Ki(X × S1)⊗R(G)

Ki−1
G (X × S1) Ki−1(X × S1)⊗R(G).

∼=

T T⊗id

∼=

In particular, this is an isomorphism because the T-duality transformation is an iso-
morphism for non-equivariant T-duality triples.

55



5.3 T-Admissibility

Following Bunke and Schick [BS05], we introduce a notion of T-admissibility for
equivariant T-duality triples. Being T-admissible means that the T-duality transforma-
tion is an isomorphism for 0-cells in a G-CW-complex. This will in turn imply that
the T-duality transformation is an isomorphism for all finite G-CW-complexes.

Definition 5.12. A twisted equivariant cohomology theory is G-T-admissible if for
each closed subgroup H ⊆ G, the T-duality transformation is an isomorphism for all
pairs over the one-point space with trivial H-action.

As a somewhat trivial example, Borel cohomology and Borel equivariant K-theory
are T-admissible because they are defined via non-equivariant cohomology groups. In
general, it is difficult to prove T -admissibility because the equivariant T-duality over
a point is still highly non-trivial; G-equivariant T-duality over a point is the same as
T-duality over BG.

We will show that if a G-equivariant cohomology theory is T-admissible, then
the T-duality transformation is an isomorphism for all G-CW-complexes. This will
be proven by induction on the number of cells. The following two results give the
base case for this induction. They essentially state when H ⊆ G is a subgroup, a
H-equivariant pair over a point can be induced up to a G-equivariant pair over G/H
and that every pair on G/H arises this way.

Lemma 5.13. Let H ⊆ G be a closed subgroup. The function

(
E0, P0

)
7−→

(
E0 ×H G, IndGH(P0)

)
induces a bijection between isomorphism classes of H-equivariant pairs over a H-

space X and the isomorphism classes of G-equivariant pairs over X ×H G.

Proof. Let (E,P ) be a G-equivariant pair over X ×H G. If E0 → X is a H-
equivariant principal S1-bundle thenE0×HG→ X×HG is aG-equivariant principle
S1-bundle, and this construction induces a bijection between isomorphism classes of
H-equivariant bundles on X and G-equivariant bundles on X ×H G. Therefore, we
can assume that E ∼= E0 ×H G for a unique (up to isomorphism) H-equivariant
S1-bundle E0 → X . By the twist axioms, there is an induction construction

IndGH : TwistH(E0)→ TwistG(E0 ×H G)

that induces a bijection on isomorphism classes. Therefore, P ∈ TwistG(E) is iso-
morphic to IndGH(P0) for a unique (up to isomorphism) P0 ∈ TwistH(E0). We
conclude that (E,P ) is isomorphic to (E0 ×H G, IndGH(P0)).
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This lemma tells us that we can induce H-equivariant pairs over a H-space X to
G-equivariant pairs over X ×H G:

P → E → X  IndGH(P )→ E ×H G→ X ×H G.

In the special case where X is a point, Lemma 5.13 says that this is an equivalence
between H-equivariant pairs over a point and G-equivariant pairs over G/H .

Theorem 5.14. If an equivariant cohomology theory h∗−(−) is G-T-admissible and

H ⊆ G is a closed subgroup, then the T-duality transformation is an isomorphism for

all pairs over G/H .

Proof. Let (E,P ) and (Ê, P̂ ) be G-equivariant T-dual pairs over G/H . Let (E0, P0)

and (Ê0, P̂0) be the corresponding H-equivariant pairs over a point. Consider the
following diagram:

h∗G(E,P ) h∗−1
G (Ê, P̂ )

h∗H(E0, P0) h∗−1
H (Ê0, P̂0).

T

∼= ∼=

T
∼=

The diagram commutes because the T-duality transformation commutes with the in-
duction isomorphism. The bottom arrow is an isomorphism by T-admissibility. The
vertical maps are isomorphisms by the induction axiom. Hence the top arrow is an
isomorphism, as required.

Theorem 5.15. If a twisted G-equivariant cohomology theory is T-admissible then

the T-duality transformation is an isomorphism for finite G-CW-complexes.

Proof. This is proven in the same way as in [BS05], except now we use induction on
the number of G-CW-cells. The base case is true by the previous lemma. Then one
checks that the T-duality transformation is natural with respect to pullbacks and the
boundary operator in the Mayer-Vietoris sequence. The induction step is proven by
attaching a cell and using the 5-lemma on the resulting Mayer-Vietoris sequence.

Example 5.16. Z-equivariant K-theory offers a baby example of T-admissibility, since,
for cohomological reasons, there are no non-trivial Z-equivariant pairs over a point.

5.4 Zn-Equivariant K-Theory

The simplest groups to consider are the finite cyclic groups, yet even in this case it is
non-trivial to show that the T-duality transformation is an isomorphism. In this section,
we prove Theorem 5.20, which states that Zn-equivariant K-theory is T-admissible.
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We must start by investigating the possible Zn-equivariant T-duality triples over a
point and the relevant K-theory groups.

Since H2
Zn(∗;Z) ∼= Zn, there are n isomorphism classes of Zn-equivariant prin-

cipal S1-bundle over a point. For each k ∈ Zn, let Ek → ∗ denote the correspond-
ing bundle. Explicitly, Ek is isomorphic to S1 with the action ξ · z = ξkz, where
ξ ∈ Zn ⊆ S1 is the generator. The Gysin sequence for Ek gives

· · · → H3(BZn;Z)→ H3
Zn(Ek;Z)→ H2(BZn;Z)

·k−→ H4(BZn;Z)→ · · · ,

which, because the odd cohomology groups of Zn are trivial, allows us to conclude
that

H3
Zn(Ek;Z) ∼= {l ∈ Zn | kl = 0} ⊆ Zn.

Thus, every Zn-equivariant T-duality pair over a point is of the form (Ek, l) with
kl ≡ 0 mod n. The pair (Ek, l) is T-dual to (El, k), so our task is to show that the
T-duality transformation gives an isomorphism K∗Zn(Ek, l) ∼= K∗−1

Zn (El, k). First, let
us calculate these K-theory groups.

Lemma 5.17. Let Ek = S1 with the Zn-action defined by Zn
×k−−→ Zn ⊆ S1. Let τ`

be the Zn-equivariant twist on Ek classified by ` ∈ ker(Zn
×k−−→ Zn) ∼= H3

Zn(Ek;Z).

Then,

K0
Zn
(
Ek, τ`

) ∼= R
(
Zgcd(n,k)

)ξ gcd(n,k)`
n

and

K1
Zn
(
Ek, τ`

)∼= R
(
Zgcd(n,k)

)
/〈1− ξ

gcd(n,k)`
n 〉,

where ξ is the representation generating R
(
Zgcd(n,k)

)
.

We remark on why gcd(n, k)`/n is an integer. Indeed, the kernel of Zn
×k−−→ Zn is

the subgroup generated by n/ gcd(n, k) and so since ` is an element of this subgroup,
it must be a multiple of n/ gcd(n, k). This implies that gcd(n, k)`/n is an integer.

Proof. The groups are computed using a Mayer-Vietoris argument; the same tech-
nique is used in [FHT11, §1]. For convenience, write d = gcd(n, k). Ek has a
Zn-CW-structure consisting of a 0-cell e0 × Zn/Zd and a 1-cell e1 × Zn/Zd. Now
and throughout the proof, we implicitly identify Zd with the subgroup of Zn generated
by n/d.

Let U be a small open neighbourhood around the 0-cell and V an open set con-
taining Ek \ U disjoint from the 0-cell; see Figure 5.1. Then U ' Zn/Zd ' V and
U ∩ V is a disjoint union of two copies of Zn/Zd. A twist on Ek can be modelled as
a Zn-equivariant line bundle on the intersection; this is equivalent to two choices of
Zd-representation. Up to stable isomorphism (of Hitchin gerbes), we can choose one
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ξ
d`
n

1

ξ
d`
n

1

ξ
d`
n

1

ξ
d`
n

1

U ' Zn/Zd

V ' Zn/Zd

U ∩V ' Zn/Zd ∪ Zn/Zd

Figure 5.1: The open cover {U, V } used to calculate K∗Zn(Ek, τ`).

of these representations to be trivial. To represent τ`, the remaining Zd-representation
is chosen to be ξd`/n. The twist is depicted in Figure 5.1.

Noting that K0
Zn(Zn/Zd) = R(Zd) and K1

Zn(Zn/Zd) = 0, the Mayer-Vietoris
sequence for Ek = U ∪ V is

0→ K0
Zn(Ek, τ`)→ R(Zd)2

(
1 −ξd`/n
1 −1

)
−−−−−−−−−→ R(Zd)2 → K1

Zn(E,τ`)→ 0.

The map in the center is a result of choosing trivialisations of τ` over U and V ; more
details are found in [FHT11, §1]. From the sequence, we conclude that

K0
Zn(Ek, τ`) ∼= ker

(
1 −ξd`/n
1 −1

)
∼= R(Zd)ξ

d`/n

and

K1
Zn(Ek, τ`) ∼= coker

(
1 −ξd`/n
1 −1

)
∼= R(Zd)/〈1− ξd`/n〉.

The final isomorphism is given by [(p, q)] 7→ [p− q].

It will also be useful to know what the restriction maps are:

Lemma 5.18. Consider again the assumptions made in the previous lemma and let

m be an integer dividing n. Restricting the K-theory groups of Ek along the inclusion

Zm ↪→ Zn induce the following diagrams:

K0
Zn(Ek, τ`) R

(
Zgcd(n,k)

)ξ gcd(n,k)`
n

K0
Zm(Ek, τ`) R

(
Zgcd(m,k)

)η gcd(m,k)`
m

∼=

∼=

(5.3)
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K1
Zn(Ek, τ`) R

(
Zgcd(n,k)

)
/〈1− ξ

gcd(n,k)`
n 〉

K1
Zm(Ek, τ`) R

(
Zgcd(m,k)

)
/〈1− η

gcd(m,k)`
m 〉

∼=

∼=

(5.4)

The map on the right-hand side of (5.3) is a restriction ofR(Zgcd(n,k))→ R(Zgcd(m,k)),

which is in turn induced by the inclusion Zgcd(m,k) ↪→ Zgcd(n,k). The map sends ξ to

η = ξ
gcd(n,k)
gcd(m,k) . The vertical map on the right-hand side of (5.4) is given by

[p(ξ)] 7−→
[
(1 + a+ a2 + · · ·+ a

n gcd(m,k)
m gcd(n,k)

−1)p(η)
]
,

where a = η
gcd(n,k)`

n . Here, we write the elements of the representation ring as poly-

nomials, with p(x) denoting a polynomial in x.

Proof. We continue using the notation established in the previous lemma’s proof. In
addition to writing d = gcd(n, k), we write d′ = gcd(m, k). Let ξ be the generator of
R(Zd) and η = ξd/d

′
the generator of R(Zd′). Elements of these rings will be written

as polynomials p(ξ) or p(η).
Start by observing that KZm(Zn/Zd) ∼= R(Zd′)

nd′
md . This is a result of the orbit-

stabiliser theorem: we have Zm acting on n/d points with stabiliser Zm ∩ Zd =

Zd′ (identifying these groups with subgroups of Zn). Consider the Mayer-Vietoris
sequence for the Zm-equivariant K-theory alongside the sequence considered in the
previous proof:

0 K0
Zn(Ek, τ`) R(Zd)2 R(Zd)2 K1

Zn(Ek, τ`) 0

0 K0
Zm(Ek, τ`)

[
R(Zd′)

nd′
md

]2 [
R(Zd′)

nd′
md

]2
K1

Zm(Ek, τ`) 0

(
1 −ξd`/n
1 −1

)

Φ

The two vertical arrows in the center are given by

(
p(ξ), q(ξ)

)
7→
(
p(η), . . . , p(η), q(η), . . . , q(η)

)
.

The map Φ can be defined as

Φ
(
p1, . . . , pj , q1, . . . , qj

)
=
(
p1 − aq1, p2 − aq2, . . . , pj − aqj , p1 − q2, p2 − q3, . . . , pj−1 − qj , pj − q1

)
,

where, for brevity, j = nd′

md and a = ηd`/n. Applying Lemma 5.17, we get

K0
Zm(Ek, τ`) = R(Zd′)η

d′`/m
and K1

Zm(Ek, τ`) =
R(Zd′)

〈1− ηd′`/m〉
.
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We can identify these with ker Φ and coker Φ as follows:

ker Φ
∼=−−→ R(Zd′)η

d′`/m
, (p1, . . . , pj , q1, . . . , qj) 7−→ p1,

coker Φ
∼=−−→ R(Zd′)
〈1− ηd′`/m〉

(5.4)

[(x1, . . . , xj , y1, . . . , yj)]

7−→ [(x1 + axj + a2xj−1 · · ·+ aj−1x2)− (ayj + a2yj−1 + · · ·+ ajy1)].

To make sense of this: first note that if Φ(p1, . . . , pj , q1, . . . , qj) = 0, then

p1 = aq1 = apj = a2qj = · · · = ajp1 and

aj =
(
ηd`/n

)nd′
md = ηd

′`/m,

so p1 ∈ R(Zd′)η
d′`/m

. Furthermore, (5.4) is well defined, since

Φ(p1, . . . , pj , q1, . . . , qj)

= (p1 − aq1, p2 − aq2, . . . , pj − aqj , p1 − q2, p2 − q3, . . . , pj−1 − qj , pj − q1)

7−→ (p1 − aq1) + a(pj − aqj) + · · · aj−1(p2 − aq2)

− [a(pj − q1) + a2(pj−1 − qj) + · · ·+ aj(p1 − q2)]

= (1− aj)p1

= (1− ηd
′`/m)p1.

It is straightforward to confirm that the inverse map is [p] 7→ [(p, 0, . . . , 0)].

Now, to determine the map on K0-groups, consider the following:

K0
Zn(Ek, τ`) ker

(
1 −ξd`/n
1 −1

)
R
(
Zd)
)ξ d`n

K0
Zm,τ`(Ek) ker Φ R

(
Zd′
)ηd′`/m

∼= ∼=

∼= ∼=

On the level of elements, the right-hand square is

(
p(ξ), p(ξ)

)
p(ξ)

(
p(η), . . . , p(η)

)
p(η).
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This proves the first part of the lemma. For the second part, the relevant diagram is:

K1
Zn(Ek, τ`) coker

(
1 −ξd`/n
1 −1

)
R
(
Zd)
)
/〈1− ξd`/n〉

K1
Zm(Ek, τ`) coker Φ R

(
Zd′
)
/〈1− ηd′`/m〉

∼= ∼=

∼= ∼=

On the level of elements, the right-hand side square is:

(
p(ξ), 0

)
p(ξ)

(
p(η), . . . , p(η), 0, . . . , 0

) [
(1 + a+ a2 + · · ·+ a

nd′
md−1)p(η)]

On the bottom row we have used the correspondence (5.4). This completes the proof.

To prove that Zn-equivariant K-theory is T-admissible, we first prove an inter-
mediary theorem that tells us that the T-duality transformation is an isomorphism for
pairs with trivial bundle on one side and trivial twist on the other. The main theorem,
Theorem 5.20, is proved by reducing to this case.

Theorem 5.19. The T-duality transformation for the Zn-equivariant pairs (Ek, 0)

and (E0, k) is an isomorphism.

Proof. We prove this by reducing to the T-duality transformation for the trivial T-
duality relation between (E0, 0) and itself. This is already known to be an isomor-
phism; see Example 5.11.

Let d = gcd(n, k) and consider the following diagram:

K∗Zn(Ek) K∗−1
Zn (E0, τk)

K∗Zd(Ek) K∗−1
Zd (E0, τk)

T

T

(5.5)

The vertical arrows are the restriction along the inclusion Zd ↪→ Zn. The induced Zd
action on Ek is trivial, as is the twist τk when viewed as Zd-equivariant. Therefore,
the lower horizontal map is the T-duality transformation for the trivial T-duality triple,
which is an isomorphism.

All the K-theory groups and restriction maps have been calculated in Lemma 5.17
and Lemma 5.18. We show that, in this case, the restriction maps are isomorphisms.
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Start by considering (5.5) with ∗ = 0. We have the following identifications:

K0
Zn(Ek) R(Zd)

K0
Zd(Ek) R(Zd)

∼=

id

∼=

K1
Zn(E0, k) R(Zn)

〈1−ξk〉

K1
Zd(E0, k) R(Zd).

∼=

∼=

The right-most vertical map is induced by R(Zn)→ R(Zd), which is surjective with
kernel the ideal 〈1−ξk〉. Hence, all of the vertical maps are isomorphisms and diagram
(5.5) implies that the T-duality transformation is an isomorphism for this case.

Now consider the other case. The identifications are as follows:

K1
Zn(Ek) R(Zd)

K1
Zd(Ek) R(Zd)

∼=

∼=

K0
Zn(E0, k) R(Zn)ξ

k

K0
Zd(E0, k) R(Zd).

∼=

∼=

In this situation, the vertical maps are seen to be injective maps onto (n/d)R(Zd).
The T-duality isomorphism K1

Zd(Ek) ∼= K0
Zd(E0, k) restricts to an isomorphism of

the subgroups (n/d)K1
Zd(Ek) ∼= (n/d)K1

Zd(E0, k). Therefore, (5.5) implies that the
T-duality transformation is an isomorphism in this case as well.

We are ready to prove the main theorem of this section.

Theorem 5.20. Zn-equivariant K-theory is T-admissible.

Proof. Consider the Zn-equivariant T-dual pairs (Ek, τ`) and (E`, τk) and for conve-
nience let d = gcd(n, k) and d′ = gcd(n, `). We must show that the corresponding
T-duality transformation is an isomorphism. The idea is to consider the following
commutative diagrams:

K0
Zn(Ek, τ`) K1

Zn(Elτ`)

K0
Zd(Ek, τ`)

Zn K1
Zd(El, τ`)

Zn

T

rest. rest.

T

K1
Zn(Ek, τ`) K0

Zn(Elτ`)

K1
Zd(Ek, τ`)

Zn K0
Zd(El, τ`)

Zn

T

rest. rest.

T

(5.6)
The horizontal maps are T-duality transformations and the vertical maps are restric-
tions along the inclusion Zd ↪→ Zn. We will calculate that on the left-hand side the
restrictions are isomorphisms and on the right-hand side they are injective maps onto
the subgroups C ·K1

Zd(Ek, τ`)
Zn and C ·K0

Zd(El, τ`)
Zn , respectively, for a fixed in-

teger C. Once we have done this, the theorem will be proved, since Theorem 5.19
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implies that the lower T-duality transformations are isomorphisms and, for the right-
hand diagram, this remains true then restricting to the aforementioned subgroups.

Now for the computation. By Lemma 5.17, the K-theory groups are

K0
Zd(Ek, τ`) ∼= R(Zd)ξ

`

, K1
Zd(Ek, τ`) ∼=

R(Zd)
〈1− ξ`〉

, and

K0
Zd(E`, τk) ∼= R(Zgcd(d,`)) ∼= K1

Zd(E`, τk).

One should remember that the notation Ek and τk refers to the Zn-action; as Zd-
equivariant objects we would write E0 and τ0. Acting via the generator of Zn induces
a Zd-equivariant automorphism of Ek and pulling back along this map gives an au-
tomorphism of the K-theory groups. For this, it must be noted that the pullback of
τ` is canonically isomorphic to τ`. Using the Mayer-Vietoris sequence – the same
one used in the proof of Lemma 5.18 – one can calculate that the generator of Zn
acts via multiplication by ξd`/n ∈ R(Zd) on Ki

Zd(Ek, τ`) and via multiplication by
ζd
′k/n ∈ R(Zgcd(d,`)) on Ki

Zd(E`, τk), where ξ and ζ are generators of their respec-
tive representation rings.

We use Lemma 5.18 to write out each of the restriction maps explicitly. The first
we consider is:

K0
Zn(Ek, τ`) R(Zd)ξ

d`/n

K0
Zd(Ek, τ`) R(Zd)ξ

`

∼=

∼=

This restriction map is just the inclusion. This becomes an isomorphism if we restrict
the codomain to the ξd`/n-invariant subgroup. We have seen that this is identified
with the Zn-invariant subgroup, so we have the isomorphism we desire. The next
restriction to consider is:

K1
Zn(E`, τk) R(Zd′)/

〈
1− ξd′k/n

〉
K1

Zd(E`, τk) R(Zgcd(d,`))

∼=

∼=

This map is

[p(ξ)] 7→
(
1 + ηd

′k/` + · · ·+ (ηd
′k/`)

n gcd(d,`)

dd′ −1
)
p(η).

In this case, n gcd(d,`)
dd′ is the multiplicative order of ηd

′k/`. Thus, this becomes an
isomorphism if we restrict to the ηd

′k/`-invariant subgroup. One sees this by noting
that the map induces a bijection between the elements 1, ξ, . . . , ξgcd(d′,d′k/n)−1 and
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the elements
ηj
(
1 + ηd

′k/` + · · ·+ (ηd
′k/`)

n gcd(d,`)

dd′ −1
)

for j ∈ {0, . . . , gcd(d′, d′k/`) − 1}, both of which form a Z-linear basis for their
respective groups. We have now established that the restriction maps in the left-hand
side diagram of (5.6) are isomorphisms.

The next restriction map is:

K1
Zn(Ek, τ`) R(Zd)/〈1− ξd`/n〉

K1
Zd(Ek, τ`) R(Zd)/〈1− η`〉

∼=

∼=

The map is [
p(ξ)

]
7→
[(

1 + ξd`/n + · · ·+ (ξd`/n)
n
d−1

)
p(ξ)

]
.

Since the multiplicative order of ξd`/n is α := gcd(d,`)
gcd(d,`,d`/n) , we have

1 + ξd`/n + · · ·+ (ξd`/n)
n
d−1 =

n

dα

(
1 + ξd`/n + · · ·+ (ξd`/n)α−1

)
We see that the restriction map is an isomorphism onto the subgroup n

dα ·K
1
Zd(Ek, τ`)

ξd`/n .

The final restriction map is:

K0
Zn(E`, τk) R(Zd′)ξ

d′k/n

K0
Zd(E`, τk) R(Zgcd(d,`))

∼=

∼=

This map is again simply p(ξ) 7→ p(η). Note that

1 + ξd
′k/n + · · ·+ (ξd

′k/n)β−1 7−→ 1 + ηd
′k/n + · · ·+ (ηd

′k/n)β−1

=
β

β′
(
1 + ηd

′k/n + · · ·+ (ηd
′k/n)β

′−1
)
,

where, for notational convenience, we write β = d′/ gcd(d′, d′k/n) for the multi-
plicative order of ξd

′k/n and β′ = gcd(d, `)/ gcd(d, `, d′k/n) for the multiplicative
order of ηd

′k/n. Thus, we can conclude that the restriction map is an injection onto
β
β′ ·K

0
Zd(E`, τk)η

d′k/n
.

Now, for our proof to work we need that n
dα and β

β′ are equal. Fortunately, this is
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true:

nβ′

dαβ
=
n · gcd(d, `) · gcd(d′, d′k/n) · gcd(d, `, d`/n)

d · gcd(d, `, d′k/n) · d′ · gcd(d, `)

=
n · gcd(d′, d′k/n) · gcd(d, `, d`/n)

d · gcd(d, `, d′k/n) · d′
Cancel gcd(d, `).

=
gcd(nd′, d′k) · gcd(nd, nl, dl)

d · d′ · gcd(nd, nl, d′k)
Insert n into the gcds.

=
d′ · gcd(n, k) · gcd(nd, nl, dl)

d · d′ · gcd(nd, nl, d′k)
Factor out d and d′.

=
gcd(nd, nl, dl)

gcd(nd, nl, d′k)
Cancel d and d′.

=
gcd(n2, nk, nl, nl, kl)

gcd(n2, nl, nk, k`)
Substitute values of d, d′.

= 1

Therefore n
dα = β

β′ ; this is the constant C mentioned at the beginning of the proof.
We have now shown that all the vertical maps in (5.6) are isomorphisms and so, as
discussed at the beginning of the proof, we are done.

5.5 Rational Equivariant K-Theory for Finite Groups

Using the decomposition theorem from Chapter 2, we prove that the cyclic group case
implies that the T-duality transformation is rationally an isomorphism for all finite
groups.

Theorem 5.21. Let G be a finite group and let (E,P ) and (Ê, P̂ ) be G-equivariant

T-dual pairs over a G-CW-complex X . Then the T-duality transformation on rational

twisted equivariant K-theory,

K∗G(E,P )Q
∼=−−→ K∗−1

G (Ê, P̂ )Q,

is an isomorphism, that is, G-equivariant K-theory is rationally T-admissible.

We use the decomposition result for bundles, Corollary 2.11, which says that there
is a decomposition map

KG(E,P )Q →
[⊕
g∈G

K〈g〉(E|Xg , P |E|Xg )Q

]G
that is an isomorphism onto the elements of the right-hand side satisfying the follow-
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ing relation:

If 〈h〉 ⊆ 〈g〉, then the elements in the 〈h〉- and 〈g〉-summand restrict (*)

to the same element in K〈h〉(E|Xg , P |E|Xg ).

Thus, we will decompose the K-theory groups and use the T-duality isomorphism for
the cyclic group equivariant T-duality triples that we get from the restrictions. By
Theorem 5.20, these are isomorphisms.

Proof. Consider the following diagram:

K∗G(E,P )Q K∗−1
G (Ê, P̂ )Q

[⊕
g∈GK

∗
〈g〉
(
E|Xg , P |E|Xg

)
Q

]G [⊕
g∈GK

∗−1
〈g〉
(
Ê|Xg , P̂ |E|Xg

)
Q

]G
The upper horizontal map is the T-duality transformation. The vertical maps are the
decomposition maps; these are induced by the inclusions E|Xg → E. The lower
horizontal map is induced by the T-duality transformations for the restrictions to Xg .
Since the T-duality transformation is natural with respect to pullbacks and morphisms
of twists, these restrict to the invariant subspace and the diagram commutes. For the
same reason, the map also restricts to a map between the elements satisfying (*). By
Theorem 5.20, the lower map is an isomorphism on this specified subspace, which
implies that the upper map is an isomorphism.

5.6 The General Case: Compact Lie Groups

We are almost ready to prove the main result, which is that the T-duality transforma-
tion for twisted equivariant K-theory is an isomorphism for all compact Lie groups.
Let us give the idea of the proof. We will show that the T-duality transformation being
an isomorphism is equivalent to a certain pullback map being injective. There exist
results that imply that a map in equivariant K-theory is injective if it is injective when
restricted to all finite subgroups. This result will be combined with the fact that the
T-duality transformation is rationally an isomorphism for all finite groups to get to our
main result. As this isomorphism has only been proved rationally, it will be helpful to
know that the involved groups are torsion-free:

Lemma 5.22. Let G be a finite group acting on S1 via a homomorphism ϕ : G→ S1

and let K = ker(ϕ). Let P be a G-equivariant twist on S1. Then there exists a
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1-dimensional representation ξ of K such that

K0
G(S1, P ) ∼= R(K)ξ and K1

G(S1, P ) ∼= R(K)/(1− ξ)R(K).

In particular, K∗G(S1, P ) is torsion-free.

Proof. Give S1 the G-CW-structure S1 = (e0 × G/K) ∪ (e1 × G/K). The twist
P can be represented by a G-equivariant S1-bundle on G/K, which is equivalent to
a 1-dimensional (complex) representation of K. Let ξ be this representation. The
Mayer-Vietoris sequence gives

0→ K0
G(X,P )→ R(K)2 → R(K)2 → K1

G(X,P )→ 0,

where the middle map is (x, y) 7→ (x − ξy, x − y). This implies the isomorphisms
claimed in the lemma.

Being the subgroup of a torsion-free module, it is clear that R(K)ξ is torsion-
free. For the second group, we observe that ξ acts via permutations on the irreducible
representations of K, which form a basis of R(K). By partitioning the irreducible
representations into ξ-orbits, R(K) is isomorphic to a direct sum of modules of the
form Z[ξ]/(1− ξd)Z[ξ], where d divides the multiplicative order of ξ. The quotient of
such a module by the sub-module generated by(1− ξ) is a free abelian group of rank
1. This altogether implies that R(K)/(1− ξ)R(K) is torsion-free.

The following is a key part of the main proof:

Lemma 5.23. LetG be a compact Lie group and
(
(E,Q), (Ê, Q̂), u) aG-equivariant

T-duality triple over a point. Let f : E × Ê → ∗ be the constant map. The map

F ∗ : K∗G(E,Q)→ K∗G(f∗E,F ∗Q) (5.7)

is injective, where F : f∗E → E is the canonical map in the pullback square.

Proof. Let π, π̂, p and p̂ be the maps denoted in the following diagram:

E Ê

∗

E ×X Ê
p p̂

π π̂

Assume, for now, that G is finite. Since f = π ◦ p, we can write (5.7) as the composi-
tion

K∗G(E,Q)
Π∗−−−→ K∗G(π∗E,Π∗Q)

P∗−−−→ K∗G(f∗E,F ∗Q), (5.8)
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where Π: π∗E → E is defined as part of the pullback square. The pullback of a
principal bundle along its own map is trivial, so π∗E → E is the trivial bundle. The
induced map on K-theory is therefore injective, for instance by looking at the Künneth
exact sequence for C*-algebras [Bla98, 23.3.1].

For the second map, observe that P ∗ is the first map in the T-duality transformation
for the pullback of

(
(E,Q), (Ê, Q̂), u

)
along π. By Theorem 5.21, this T-duality

transformation is rationally an isomorphism, so P ∗ is rationally injective. By Lemma
5.22, KG(E,Q) is torsion-free and so the image of Π∗ is torsion-free. We can then
conclude that, for finite groups, the composition (5.8) is injective.

Now we show that the finite group case implies the general case. It was proved
by McClure that if x ∈ KG(X) restricts to zero in KH(X) for every finite subgroup
H of G, then x = 0, see [McC86]. This was generalised to KK-theory by Uuye in
[Uuy12] under the following assumptions:

• KKH
n (A,B) is a finitely generated R(G)-module for all n ∈ Z and all closed

subgroups H ⊆ G.

• KKF
n (A,B) is a finitely generated group for all finite subgroups F ⊆ G.

Under these conditions, if an element x ∈ KKG(A,B) restricts to zero inKKH(A,B)

for all finite subgroups H of G then x = 0. In our case, the relevant K-groups were
calculated in Lemma 5.22. They are either a subgroup or a quotient of the represen-
tation ring of a finite group. These are all finitely generated, so Uuye’s conditions are
satisfied for the K-groups under consideration.

Now, let x ∈ KG(E,Q) be in the kernel of K∗G(E,Q) → K∗G(f∗E,F ∗Q) and
denote by xH ∈ KH(E,Q) the restriction of x for H ⊆ G. If H is finite, we have
already shown that KH(E,Q) → KH(f∗E,F ∗Q) is injective and since xH is in its
kernel, we deduce that xH = 0. Therefore, Uuye’s theorem implies that x = 0, since
xH = 0 for all finite subgroups H ⊆ G. This completes the proof.

For each T-duality triple
(
(E,P ), (Ê, P̂ ), u

)
, we call

(
(Ê, P̂ ), (E,P ), u−1

)
the

dual T-duality triple. The resulting T-duality transformation,

K∗G(Ê, P̂ )→ K∗−1
G (E,P ),

will be called the dual T-duality transformation.

We are now prepared for the proof of the main theorem:

Theorem 5.24. TwistedG-equivariant K-theory is T -admissible whenG is a compact

Lie group.

Proof. We use a method introduced by Bei Liu in his Göttingen PhD thesis [Liu14].
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Consider a T-duality diagram:

p∗P p̂∗P̂

P E ×X Ê P̂

E Ê

X

u

p p̂

π π̂

(5.9)

Let f = π ◦ p = π̂ ◦ p̂ be the canonical map E ×X Ê → X . Pulling back along
f gives a T-duality diagram over E ×X Ê. This pulled-back diagram is the trivial
T-duality diagram, that is, the S1-bundles and twists are trivial. This is because the
pull-back of a principal bundle along itself is trivial. For example, f∗E = p∗π∗E

and π∗E is the trivial principal S1-bundle over E. Here, we mean it is trivial as an
equivariant bundle; G acts trivially on the S1-fiber. It is straightforward to see that
the T-duality transformation for the trivial T-duality triple is an isomorphism; this was
discussed in Example 5.11. Moreover, when X is a point, the inverse of this T-duality
transformation is its dual T-duality transformation.

Let F : f∗E → E and F̂ : f∗Ê → Ê be the resulting maps between the S1-
bundles. By the naturality of the T-duality transformation, we have

K∗G(E,P ) K∗−1
G (Ê, P̂ )

K∗G(f∗E,F ∗P ) K∗−1
G (f∗Ê, F̂ ∗P̂ ).

T

T

T

T

(5.10)

Let X be a point; this is indeed the only case required for T-admissibility. Then, we
know that the lower T-duality transformations are inverse to each other. Moreover,
Lemma 5.23 implies that the vertical maps are injective. We therefore have that the
T-duality transformations in the top row of (5.10) are isomorphisms, as required.

By considering the T-dual pairs introduced in Example 5.7, we have the following
corollary.

Corollary 5.25. Let G be a compact Lie group, X a G-space and E → X a G-

equivariant principal S1-bundle with Chern class c1 ∈ H2
G(X). There is an isomor-

phism

K∗G(E) ∼= K∗−1
G (X × S1, P ),

where G-acts trivially on the S1-factor of X × S1 and P is a S1-equivariant twist

classified by c1 ∈ H2
G(X) ↪→ H3

G(X × S1).
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This result also includes the case where the twist comes from the group, by con-
sidering twists classified by a class in the image of H2

G(∗)→ H2
G(X).

5.7 Examples

The T-duality isomorphism can be a useful tool for calculating the K-theory of princi-
pal S1-bundles. We finish the chapter with some example calculations. The first can
be considered a worked example of the T-duality isomorphism, while the rest are a
result of it.

Example 5.26. We walk through the case where G = S1 and X is a point since
everything can be made explicit in this case. Let Ek be S1 with the kth power S1

action, that is, with the S1-action given by

S1 → S1 ⊆ Aut(S1), z 7→ zk.

This is the same Ek as Section 5.4, except the S1-action there is restricted to a Zn-
action. Note that Ek → ∗ is an S1-equivariant principal S1-bundle over a point and
that all such bundles are of this form, because

H2
S1(∗) = H2(BS1) ∼= Z,

and Ek → ∗ is the bundle classified by k ∈ Z. An application of the corresponding
Gysin sequence shows that H3

S1(Ek) = Z when k = 0 and H3
S1(Ek) = 0 otherwise.

We then have that the pairs (E0, Pk) and (Ek, 0) are T-dual to each other, where Pk is
the twist on E0 corresponding to the integer k. These are all of the possible T-duality
triples. Via the Mayer-Vietoris sequence, the relevant twisted K-groups are

K0
S1(Ek) ∼= R(Zk) ∼= K1

S1(E0, Pk) and K1
S1(Ek) = 0 = K0

S1(E0, Pk).

There are thus only two non-trivial T-duality transformations,

K1
S1(E0, Pk)

T−−→ K0
S1(Ek) and K0

S1(Ek)
T−−→ K1

S1(E0, Pk).

All of the maps defining these transformations are contained in the following diagram:

K1
S1(E0 × Ek, pr∗1Pk) K1

S1(E0 × Ek)

K1
S1(E0, Pk) K0

S1(Ek)

K0
S1(E0 × Ek, pr∗1Pk) K0

S1(E0 × Ek)

∼=
(pr2)!pr∗1

pr∗2(pr1)!

∼=

It turns out that, in this case, each of the individual maps in this diagram is an iso-
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morphism. The pullbacks can be shown to be isomorphism using a Mayer-Vietoris
argument and the pushforwards were shown to be isomorphisms in Chapter 4.

Example 5.27. Consider S1 acting on S2 by rotations. By a standard Mayer-Vietoris
argument, H2

S1(S2) ∼= Z2. Let Ep,q denote the S1-equivariant principal S1-bundle on
S2 classified by (p, q) ∈ Z2. This can be explicitly constructed as

Ep,q = (D2 × S1
p) ∪S1×S1

0
(D2 × S1

q )→ D2 ∪S1 D2 = S2,

where S1
k denotes S1 with the kth power action. The gluing maps come from the fact

that S1 × S1
k is S1-equivariantly homeomorphic to S1 × S1

0 for all k ∈ Z.
Another Mayer-Vietoris argument tells us that

H3
S1(Ep,q) =



Z2, p = q = 0,

Z, p = 0, q 6= 0,

Z, p 6= 0, q = 0,

0, otherwise.

If p = q = 0, thenEp,q is the trivial bundle. Let Pk,` be the twist on E0,0 classified by
(k, `) ∈ Z2. Then (E0,0, Pp,q) is T-dual to (Ep,q, 0). This is the situation described in
Corollary 5.25.

Let Pk and Q` denote the twists on Ep,0 and E0,q classified by k, l ∈ Z, respec-
tively. Then (Ep,0, Pq) is T-dual to (E0,q, Qp). The corresponding T-duality isomor-
phism is

K∗G(Ep,0, Pq) ∼= K∗−1
G (E0,q, Qp).

Example 5.28. Let E → X be a (non-equivariant) principal S1-bundle on X with
Chern class c1 ∈ H2(X). The bundle E⊗k = E ⊗ · · · ⊗ E, which is classified
by ck1 , has a natural action of the symmetric group Σk. This makes E⊗k → X a
Σk-equivariant principal S1-bundle on X , where X is given the trivial Σk-action.
Corollary 5.25 implies that

K∗Σk(E⊗k) ∼= K∗−1
Σk

(X × S1, P ) ∼= K∗−1(X × S1, P )⊗R(Σk),

where P is a twist classified by the image of ck1 under

H2(X) ↪→ H3(X × S1) ↪→ H3
Σk

(X × S1).

If we further assume that Ki(X) = 0 for i ∈ {0, 1}, then a Mayer-Vietoris argument
for X × S1 reveals that

Ki−1(X × S1, P ) ∼= Ki−1(X)L
k

and
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Ki(X × S1, P ) ∼= Ki−1(X)/LkKi−1(X),

where Lk is the line bundle classified by ck1 (in other words the line bundle associated
with E⊗k). So, in this case,

Ki
Σk

(E⊗k) ∼= Ki−1(X)L
k

⊗R(Σk) and

Ki−1
Σk

(E⊗k) ∼=
Ki−1(X)

LkKi−1(X)
⊗R(Σk).
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APPENDIX A

TWISTED EQUIVARIANT COHOMOLOGY

Here, we introduce an axiomatic definition of equivariant twists and twisted equivari-
ant cohomology, following Bunke and Schick [BS05]. The T-duality transformation
and the notion of T-admissibility will be defined for any twisted equivariant cohomol-
ogy theory satisfying these axioms.

With an axiomatic approach, one does not need to choose a specific model for
twists. In K-theory for example, there are many notions of twists, including principal
PU(H)-bundles, Hitchin gerbes, bundle gerbes, and Čech cocycles. It can be difficult
to translate between these directly. Instead of choosing a specific one, we rely on a set
of axioms that are sufficient to prove the results we need. The same is true for twisted
equivariant cohomology. Even though our main focus is K-theory, we are leaving
room for other twisted cohomology theories to have a T-duality isomorphism.

A.1 Equivariant Twists

A model for G-equivariant twists consists of a presheaf of monoidal groupoids

(X,G) 7→ TwistG(X)

on the category of spaces with group action. This must satisfy the following proper-
ties:

1. There is a natural monoidal transformation

TwistG(X)→ H3
G(X;Z), P 7→ [P ],

where the Borel cohomology groupH3
G(X;Z) := H3(X×GEG;Z) is viewed

as a monoidal category with only identity morphisms. This transformation clas-
sifies the isomorphism classes of TwistG(X).

2. There is a natural “Borel construction”, meaning there is a monoidal transfor-
mation

TwistG(X)→ Twist(X ×G EG). P 7→ P ×G EG

This transformation is natural with respect to the classification by H3
G(X;Z).
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3. Let H is a subgroup of G and X a H-space. The map

TwistG(X ×H G)→ TwistH(X)

defined by restricting along the inclusion H ↪→ G and pulling back along the
H-equivariant map X → X ×H G is an equivalence of groupoids. The inverse
will be denoted P 7→ IndGH(P ).

4. (Gluing twists) Let X = U ∪ V where U and V are G-invariant subspaces,
PU ∈ TwistG(U), PV ∈ TwistG(V ) and u : PU |U∩V ∼= PV |U∩V an isomor-
phism. Then, there exists P ∈ TwistG(X) such that there are isomorphisms
ψU : P |U ∼= PU and ψV : P |V ∼= PV satisfying u = ψV ◦ ψ−1

U . Moreover, this
P is unique up to isomorphism.

The first four axioms are used to prove that T-admissibility implies that the T-
duality transformation is an isomorphism. The gluing axiom is used to prove Proposi-
tion 5.2, which allowed us to prove that G-equivariant pairs over X are T-dual if and
only if their Borel constructions are T-dual over X ×G EG.

Example A.1. Our twists of choice when working with twisted K-theory are stable
equivariant PU(H)-bundles. We expand on these twists in A.3.

Example A.2. In [TXLG04], the authors define twisted K-theory for differentiable
stacks. The twists they use are S1-central extensions over groupoids. So, S1-central
extensions over groupoid representatives of the global quotient stackX//G are a model
of equivariant twists.

Example A.3. A Hitchin gerbe for a space X is an open cover {Ui} together with a
collection of line bundles Lij → Ui ∩ Uj and isomorphisms δijk : Lij ⊗ Ljk → Lik

satisfying a cocycle condition, see [Hit01]. By considering equivariant line bundles,
we obtain the notion of equivariant Hitchin gerbes. These can be made quite explicit
and so are useful in calculations, see for example [FHT11, §1].

A.2 Axioms for Twisted Equivariant Cohomology

Fix a model of twists TwistG(X). A twisted equivariant cohomology theory consists
of, for each n ∈ Z, a functor

(X,G,P ) 7→ hnG(X,P )

on the category of spaces equipped with a group action and equivariant twist. In
addition to functoriality with respect to spaces, groups, and twists, these functors must
satisfy the following axioms:
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1. (Homotopy invariance) If f : X → Y and g : X → Y are equivariantly homo-
topic, then

g∗ = u∗ ◦ f∗ : hG(Y, P )→ hG(X, g∗P )

for some isomorphism u : f∗P ∼= g∗P .

2. (Pushforward) If p : Y → X is a G-equivariant hG-oriented map, then there is
an integration map

p! : h
n
G(Y, p∗P )→ hn−dG (X,P ).

This map has a degree shift of d := dimX − dimY and is natural with respect
to pullbacks.

3. (Induction) If H ⊆ G is a subgroup, then there is a natural isomorphism

hnH
(
E,P

) ∼= hnG
(
E ×H G, IndGH(P )

)
.

4. (Mayer-Vietoris) If X = U ∪ V is a decomposition of X into two open sets,
then there is a natural long exact sequence:

· · · → hn−1
G (U ∩ V, P |U∩V

)
hnG(X,P )

hnG(U,P |U )⊕ hnG(V, P |U )

hnG(U ∩ V, P |U∩V
)
→ · · ·

We remark that the category of spaces that a cohomology theory is defined on can
be context-dependent. To define the pushforward, for example, one often restricts to
the category of manifolds.

Example A.4. Given a twisted non-equivariant cohomology theory, one can obtain a
twisted equivariant cohomology theory via the Borel construction, that is,

hG(X,P ) := h(X ×G EG,P ).

A particular example of this is twisted Borel K-theory.

Example A.5. We have discussed the Thom isomorphism in twisted equivariant K-
theory and hence have a pushforward along K-oriented maps. Therefore twisted equiv-
ariant K-theory is a twisted equivariant cohomology theory.

A.3 Principal PU(H)-bundles

We use stable equivariant principal PU(H)-bundles in our definition of twisted equiv-
ariant K-theory. Here, we provide a definition and their basic properties.
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Definition A.6. Let X be a G-space. A G-equivariant principal PU(H)-bundle on
X is a principal PU(H)-bundle P → X together with an action of G on P such that

π(g · p) = g · π(p) and g · (p · u) = (g · p) · u,

where g ∈ G, p ∈ P , and u ∈ PU(H).

Definition A.7. A stable homomorphism f : G → PU(H) is a homomorphism such
that for the induced central extension 1 → S1 → G̃ → G → 1 defined by G̃ :=

f∗U(H), the induced homomorphism f̃ : G̃ → U(H) contains all of the irreducible
representations of G̃ where the central S1 acts via scalar multiplication, countably
infinitely many times.

A homomorphismG→ PU(H) is the same as aG-equivariant principal PU(H)-
bundle over a point. A motivation for considering stable homomorphisms comes from
the bijection

Homst

(
G,PU(H)

)
/PU(H)←→ Ext(G,S1)

between stable homomorphisms up to conjugation and S1-central extensions of G
[BEJU14, Prop 1.6]. In other words, we want G-equivariant twists over a point to
correspond to S1-extensions of G and this is only true if we restrict to the stable
homomorphisms.

A further motivation is that the twisted G-equivariant K-theory of a point should
be the ring of “twisted” representations of G corresponding to the twist, that is, repre-
sentations of the resulting central extension G̃ such that the central S1 acts by scalar
multiplication. This is not guaranteed if the twist is not stable, see [BEJU14, §4.3.4]
and [LU14, §15.2].

We extend this now to the notion of stable equivariant principal PU(H)-bundle.
These are, roughly speaking, G-equivariant principal bundles where, locally, isotropy
groups act via stable homomorphisms. This definition comes from [BEJU14, Def 2.2].

Definition A.8. A stable G-equivariant principal bundle π : P → X is one such that
for each x ∈ X there exists a G-neighbourhood V of x and a Gx-contractible slice U
of x such that V ∼= U ×Gx G together with a local trivialisation

P |V ∼= (PU(H)× U)×Gx G,

where Gx acts on the PU(H)-factor via a stable homomorphism.

Let us show that stable equivariant principal PU(H)-bundles satisfy the twist ax-
ioms we have presented. The first result states that stable equivariant principal bundles
satisfy Axioms 1 and 2.
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Proposition A.9. There is a bijection between the isomorphism classes of stable G-

equivariant principal PU(H)-bundles on X and H3
G(X;Z). This classification fac-

tors through the Borel construction

ProjG(X)→ Proj(X ×G EG) ∼= H3
G(X).

Proof. See [AS04, Prop 6.3] or, in the case that G is discrete, [BEJU14, Theorem
3.8].

The next result proves that stable equivariant PU(H)-bundles have an induction
isomorphism, giving us Axiom 3.

Proposition A.10. If P → X is a H-equivariant stable PU(H)-principal bundle

then P ×H G→ X×H G is a G-equivariant stable PU(H)-principal bundle. There-

fore, the assignment P 7→ P ×H G induces a bijection between the H-equivariant

stable bundles on X and the G-equivariant stable bundles on X ×H G.

Proof. It is clear enough that P×HG→ X×HG is aG-equivariant PU(H)-principal
bundle; we only show that it is stable. Consider [x, g] ∈ X ×H G. The isotropy group
at [x, g] is Hx and this does not depend on the choice of x in the coset [x, g]. We must
prove that there exists an open neighbourhood V of [x, g] and a slice U such that

V ∼= U ×Hx G and (P ×H G)|V ∼= (PU(H)× U)×Hx G,

where Hx acts on PU(H) via a stable homomorphism. Since P → X is stable, there
exists an open neighbourhood V ′ of x and a slice U ′ such that

V ′ ∼= U ′ ×Hx H and P |V ′ ∼= (PU(H)× U ′)×Hx H.

Let V = V ′ ×H G and let U be the image of U in X ×H G under the injection
y 7→ [y, g]. Then U is a slice at [x, g] with

V = V ′ ×H G ∼= (U ′ ×Hx H)×H G ∼= U ′ ×Hx G ∼= U ×Hx G,

and so

(P ×H G)|V = P |V ′ ×H G

∼= (PU(H)× U ′)×Hx H ×H G

∼= (PU(H)× U ′)×Hx G
∼= (PU(H)× U)×Hx G.

Therefore, P ×H G is a G-equivariant stable principal PU(H)-bundle.
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For Axiom 4, we use that bundles can be glued together and that stability is a
local property, so that the gluing of two stable equivariant bundles is again stable. The
outcome of this discussion is the following:

Proposition A.11. Stable equivariant principal PU(H)-bundles satisfy the twist ax-

ioms introduced in Section A.1.
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