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CHAPTER 1

Introduction

This dissertation comprises and summarizes four articles, which are appended as Sections A, B, C

and D in the Addenda and explain the results of this dissertation in full detail.

A large part of this work is based on a collaboration with the ’Electron Paramagnetic Resonance’

research group of Marina Bennati at the Max Planck Institute for Multidisciplinary Sciences in

the framework of the Collaborative Research Center (CRC) 1456 with the name Mathematics

of Experiment. In this project, new statistical methods for electron-nuclear double resonance

(ENDOR) spectroscopy experiments have been developed and published in Paper C and Paper D.

In addition, a presentation of my master thesis, which dealt with statistical modeling of ribonucleic

acid (RNA) molecules, led to a collaboration with the famous statistician and major long-term

protagonist in directional statistics Kanti Mardia (Senior Research Professor at University of Leeds

and Visiting Professor at Oxford University). The results of the collaboration have been published

in Paper A and Paper B and more recently led to a joint project with the Richardson Laboratory

from the Duke Department of Biochemistry (consisting of Jane Richardson, David Richardson,

Michael Prisant, Vincent Chen, and Christopher Williams) and Ezra Miller from the Mathematics

Department of the Duke University.

The guiding methodological principle that recurs throughout the various projects is the concept of

generalized Fréchet means, which we briefly introduce below. The expected value µ B E(X) of

an n-dimensional real random vector X with existing second moment, i.e. E(XT X) < ∞, can be

defined as the minimizer of the expected squared Euclidean distance

arg min
y∈Rn

E
(
(X − y)T (X − y)

)
= arg min

y∈Rn

(
yT y − 2yTµ

)
= {µ} .

Fréchet (1948) generalized this geometrical property as a definition for a mean location (see

Hendriks and Landsman (1998)) on a metric space, which was soon called the Fréchet mean in

his honor. The Fréchet mean of a random variable X taking values in a metric space (Q, d) is an

element of the set

E(d2) B arg min
q∈Q

E(d2(X, q))
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where E(d2) is called the set of population Fréchet means. For Hadamard spaces (complete metric

spaces with global non-positive curvature), such as Euclidean spaces, it was proven by Sturm (2003)

that the Fréchet mean is unique.

However, in general, E(d2) may consist not only of a single element, but may also be empty, or

it may consist of several elements. For instance, for (Q, d) = (S2, dS2) with spherical distance

dS2(x, y) = arccos(xT y), the set of population Fréchet means E(d2
S2

) for a random variable X that

only takes values on the north and south poles with the same probability of 1/2 correspond to

the entire equator, which follows directly from the spherical coordinate representation where

q(θ, ϕ) B (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T ∈ Q:

arg min
θ∈[0,π),ϕ∈[0,2π)

E(d2
S2(X, q(θ, ϕ))) = arg min

θ∈[0,π),ϕ∈[0,2π)

(
1
2
θ2 +

1
2

(π − θ)2
)
=

{
(θ, ϕ) : θ =

π

2
, ϕ ∈ [0, 2π)

}
.

In contrast, for (Q, d) = (R \ {0}, dE) with metric function d(x, y) = |x − y|, the set of Fréchet means

E(d2
E) for a random variable taking only the values +1 and −1 with the same probability of 1/2

corresponds to the empty set. Huckemann (2011b) extended this concept to generalized Fréchet

means (defined in Definition 1.1) as follows. Let X be a random variable mapping into the data

space Q, which is a general topological space equipped with the Borel σ-algebra. Moreover, the

parameter space (P, d) is defined as a metric space with the metric function d : P ×P 7→ [0,∞)

and the topology induced by the metric. Then for ρ : Q × P 7→ R which is continuous in P for

all fixed q ∈ Q and measurable in Q for all fixed p ∈ P, the set of generalized population Fréchet

means is defined as

E(ρ) B arg min
p∈P

E (ρ(X, p)) .

For an independent and identically distributed (i.i.d.) random sample X1, . . . Xn ∼ X one then

defines the generalized sample Fréchet mean as an estimator of the population by the following

E(ρ)
n (ω) B arg min

p∈P

n∑
i=1

ρ(Xi(ω), p).

Generalized Fréchet means are a very versatile modeling tool that comprises geometric objects

like Fréchet means, Lp-Fréchet means using ρ(X, p) = dp(X, p) (see Afsari (2009, 2011)), extrinsic

means (see Hendriks and Landsman (1996, 1998)), geodesics (see Fletcher and Joshi (2004);

Huckemann and Ziezold (2006); Huckemann et al. (2010)) and submanifolds, especially backward

nested subspaces (see Jung et al. (2012); Huckemann and Eltzner (2018)). The formulation given

here is identical to the earlier concept of M-estimators (see for example van der Vaart (2000)) which

include Maximum Likelihood (ML) estimators and a wide variety of other estimators of interest,

especially robust estimators like the minimizer of the Huber loss (see Huber (1964)). Since we will

mostly be concerned with geometrical objects, we will use the term ’generalized Fréchet mean’

throughout this thesis. It is highlighted whenever generalized Fréchet means and the associated

methodology and theory are used.



3

This work has been motivated by biomolecular structure reconstruction. There is a wide range

of different methods to determine the structure of biomolecules, which are applicable in different

cases (see Section 2 for an overview). This naturally leads to data at different resolutions (Figure

1.1 shows exemplarily two different RNA structures measured at two different resolutions) and

to the question of how to model data at different scales and develop learning algorithms. To

tackle this issue, Paper B introduces a novel approach to model RNA strands at two scales, the

microscopic (atomic level) and the mesoscopic (intermediate scale between the microscopic scale

and macroscopic scale (e.g. the whole RNA strand)). At the microscopic scale, we work with

suites (see Figure 2.1) which can be represented on the seven-dimensional torus T7 (introduced in

Section 1.1.1). At the mesoscopic scale, we work with mesoscopic shapes, which are modeled in

the size-and-shape space SΣ6
3 (introduced in Section 1.1.2). In order to learn clash-free corrections

for both scales, we developed a new clustering method in Paper A, which can be applied to data

in general metric spaces. It consists of an iterative pre-clustering and a post-clustering which

separates clusters with statistical significance, based on the dimension reduction with Principal

Nested Spheres (PNS) of Jung et al. (2012) (introduced in Section 1.2), which gains power due

to the statistically advantageous geometry of spheres. The correction on both scales is based on

the concept of Fréchet means from the classes learned with this clustering. Note that PNS can be

integrated into the framework of generalized Fréchet means, for which Huckemann and Eltzner

(2018) prove strong consistency and a central limit theorem.

Figure 1.1: Reconstructed RNA structure and electron density contour surface created with PyMOL
at level of one σ (see see Schrödinger, LLC (2015)) at resolution 1.6 Å (left, from Ippolito and
Steitz (2000)) and at resolution 3 Å (right, from benchmark file 1f8v). The Figure is taken from
Paper B.

ENDOR spectroscopy (introduced in Section 2.2) can be used to determine intramolecular distances

(see right panel of Figure 1.2). For this purpose, two different challenges have been worked on. The

first challenge is to denoise the data and is addressed in Paper C: during an ENDOR experiment, the
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spectrometer stores a data matrix Y ∈ CB×N , where B is the number of batches and N is the number

of frequencies (see left panel of Figure 1.2), from which a real-valued spectrum Î ∈ RN has to be

estimated. In Pokern et al. (2021), the homoscedastic drift model for experiments at a microwave

frequency of 263 GHz was presented, which is a parametric model that takes into account various

thermal drifts occurring in experiments and achieves a very good model fit in practice, see Pokern

et al. (2021); Hiller et al. (2022) and Paper D. The homoscedastic drift model allows the application

of the parametric bootstrap, which in turn enables hypothesis testing and confidence intervals for

the spectra, see denoising step of Figure 1.2.

In Paper C, we first develop asymptotic theory for the estimation of the spectrum with the ho-

moscedastic drift model. In the homoscedastic drift model, the complex-valued maximum likelihood

estimator κ̂, which is required to satisfy
∑
ν |κ̂ν|

2 = 1 for identifiability reasons, of the parameter κ is

computed. Subsequently, κ is rotated with a suitable complex rotation by λ ∈ [0, 2π) radians so that

the estimated spectrum Î = ℜ(eiλκ) is the real part. Consequently, we naturally obtain the complex

projective space (defined in Section 1.1.3) as parameter space for κ (see Section 2.2 for a more

detailed explanation). To prove strong consistency for the estimation of κ, we extend the theory

of strong consistency for generalized Fréchet means from Huckemann (2011b) (see Section 1.4).

Subsequently, a central limit theorem for the estimation of both κ and I is proven. Secondly, we

extend the homoscedastic drift model to cover experiments at a microwave frequency of 94 GHz,

for which ENDOR spectrometers are more widely available.

In Paper D we address the issue of how physical parameters describing the conformation of the

biomolecule are estimated (see optimize step from Figure 1.2), including statistically rigorous error

propagation from the spectral uncertainties made accessible by the homoscedastic drift model. To

this end, we drastically accelerated a spectrum simulation code to enable optimizations (a simulated

spectrum is depicted in red in the optimize step of Figure 1.2). Building on this, a Bayesian

optimization-based pipeline was implemented and successfully applied to ENDOR data (see Section

2.2 or Paper D for more details).

The thesis is structured as follows. This section describes the mathematical methods used and

extended in this work. Section 1.1 introduces the torus, landmark-based shape spaces, and the

complex projective space. Then, we discuss prior work on generalizations of principal component

analysis (PCA) for non-Euclidean data in Section 1.2. Section 1.3 gives an overview of the topic

of clustering and motivates our clustering algorithm developed in Paper A and used in Paper B.

Subsequently, in Section 1.4, we review strong consistency for generalized Fréchet means and point

out how we generalize two results in this field. In Section 2, an overview of different methods,

all aiming to obtain structural information of biomolecules, is presented. As part of this, the

necessary fundamentals for both RNA structure analysis and ENDOR experiments are introduced

and subsequently the individual papers are summarized. In addition, for all the papers, my own

contributions are highlighted. Finally, in Section 3 an outlook is given, including some developments

which are currently in progress.
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Figure 1.2: The ENDOR experiment for the fluorine-nitroxide compound (analyzed in Paper D).
Left: the real part (top) and the imaginary part (bottom) of the raw data matrix Y of orientation
gx. Center: the data matrix is denoised with the homoscedastic drift model from Pokern et al.
(2021) (top) to obtain the estimated spectrum Î (including pointwise confidence bands obtained by
parametric bootstrap). In a second step (center bottom), a spectrum simulation software is used to
search for the physical parameters such that the spectrum simulated from those (plotted in red) are
closest to the estimated spectrum. Right: the corresponding energy-minimized structure of Meyer
et al. (2020) predicted by DFT calculations. The interspin distance r between the nitroxide radical
electron (mean location at the bond between the nitrogen atom (blue) and the oxygen atom (red)
that are part of the nitroxide radical) and the 19F nucleus can be inferred from the estimated physical
parameters.

1.1 Non-Euclidean data and parameter spaces

This section serves as an introduction to the manifolds used in the papers. We represent the shape of

biomolecules in Paper A and Paper B either using the torus (Section 1.1.1) or using landmark-based

shape spaces (Section 1.1.2). In Paper C and Paper D we work with the complex projective space

(Section 1.1.3), which is the well-known planar similarity shape space.

1.1.1 Sphere and Torus

The following serves as an introduction to Paper A and Paper B and is thus close in content to parts

of the respective papers.
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We define the k-dimensional real unit sphere Sk := {y ∈ Rk+1 : ∥y∥ = 1}. It is a metric space, which

is usually equipped with the spherical distance

dSk (x, y) B arccos(xT y), for x, y ∈ Sk.

To define the m-dimensional (flat) torus we first start with the one-dimensional case. The one-

dimensional torus is defined by

T B [0, 2π]/ ∼,

where ∼ denotes the identification of 0 with 2π. It is a metric space with canonical distance

dT(ϕ, ψ) = min{|ϕ − ψ|, 2π − |ϕ − ψ]}, for ϕ, ψ ∈ T.

It follows directly that T � S1, however, we use T for consistent notation. The m-dimensional torus

Tm is a metric space defined by the canonical product of m one-dimensional tori. It is a metric space

with canonical distance

dTm(ϕ, ψ) =

√√√ m∑
j=1

dT(ϕ j, ψ j)2, for ϕ = (ϕ1, . . . , ϕm), ψ = (ψ1, . . . , ψm) ∈ Tm.

For the torus case, the Fréchet mean is also called torus mean. Specialized methods for the torus

have been developed by several authors in particular to represent biomolecules, see e.g. Altis et al.

(2008); Kent and Mardia (2009); Sargsyan et al. (2012); Eltzner et al. (2018); Zoubouloglou et al.

(2022). A detailed discussion about dimension reduction on the torus is given in Section 1.2.

1.1.2 Landmark-based shape spaces

The following content serves as an introduction to landmark-based shape spaces and is summarized

from Dryden and Mardia (2016).

Intuitively speaking, the shape is the geometric information that remains after location, scale and

rotation effects have been filtered out. We are often interested in keeping the information about the

size, i.e. the scale information is not filtered out, which leads to the concept of size-and-shape.

In landmark-based shape spaces, k different landmarks x1, . . . , xk (usually in Rm) are considered,

which form a configuration matrix X = (x1, . . . , xk)T ∈ M, where M is typically a subset of Rk×m.

The landmarks are considered modulo a group action of a group G on the set of landmarks M to

compare objects with each other. This leads to a variety of different shape spaces M/G.

Probably the best known shape space is the similarity shape space Σk
m introduced by Kendall (1977),

where we have k landmarks inRm and G is the group of proper (i.e. orientation preserving) similarity

transformations, which include rotation, translation and scale, T (Σ) = (r,R, v) ∈ R+ × SO(m) × Rm
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and act on X via

T (Σ).X := (rRx1 + v, . . . , rRxk + v)T .

Then the similarity shape space is defined by performing each group action for convenience in the

following sequence. The translational shape space Rk×m/Rm resulting from the group of translations

is isometric to R(k−1)×m. Each orthogonal complement H ∈ R(k−1)×k of e0 B
1√
k
(1, . . . , 1)T (i.e.

(HT | e0) ∈ Rk×k is an orthogonal matrix) defines an isometry, as for all X ∈ [X],Y ∈ [Y] ∈ Rk×m/Rm

it holds

dRk×m/Rm([X], [Y]) B min
v∈Rm
||X − e0vT − Y || = ||HX − HY ||.

One possible orthogonal complement is the Helmert sub-matrix where the row vectors are the

Helmert orthonormal basis vectors

h j B
1√

j( j + 1)


 j∑

m=1

em

 − je j+1

 , j = 1, . . . , k − 1.

Landmarks that are transformed with the Helmert sub-matrix are called Helmertized landmarks.

By multiplying the Helmertized landmarks from the left with HT , an isometry is defined between

R(k−1)×m and the centered landmarks {X ∈ Rk×m : eT
0 X = 0} ⊂ Rk×m. Landmarks transformed with

HT H = Idk −
1
k e0eT

0 are called centered landmarks. Removing the configurations, {e0vT : v ∈ Rm} ⊂

Rk×m where all landmarks are the same, corresponds to removing the origin in R(k−1)×m. Then(
R(k−1)×m \ {0}

)
/R+

has the structure of a unit sphere S(k−1)−1×m, which is called pre-shape sphere. The group of

rotations acts isometrically on the pre-shape sphere and the quotient

Σk
m B S

(k−1)−1×m/SO(m) �
(
Rk×m \ {e0vT : v ∈ Rm}

)
/
(
R+ × SO(m) × Rm)

�
(
{X ∈ Rk×m : eT

0 X = 0} \ {e0vT : v ∈ Rm}
)
/ (R+ × SO(m))

is called similarity shape space. The similarity shape space is for example equipped with the full

Procrustes distance dF , the Procrustes distance ρ or the partial Procrustes distance dP, which are

defined respectively by

dF([X], [Y]) B min
r∈R,R∈SO(m)

||X − rYR||

ρ([X], [Y]) B min
R∈SO(m)

dSm×(k−1)−1(X,YR)

dP([X], [Y]) B min
R∈SO(m)

||X − YR||

where X ∈ [X],Y ∈ [Y] are pre-shapes. We call the corresponding Fréchet means full Procrustes

mean, Procrustes mean and partial Procrustes mean, respectively.
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In the applications in Paper B we are working with the size-and-shape space: let M B Rk×m and G

correspond to the proper (i.e. orientation preserving) Euclidean transformations involving rotations

and translations, T (SΣ) B (R, v) ∈ SO(m) × Rm which act on X via

T (SΣ).X B (Rx1 + v, . . . ,Rxk + v)T .

Then the size-and-shape space is defined by

SΣk
m B {[X] : X ∈ Rk×m} where [X] B {T (SΣ).X : T (SΣ) ∈ SO(m) × Rm}. (1.1)

Analogous to the procedure for the similarity shape space follows

SΣk
m � R

(k−1)×m/SO(m) � {X ∈ Rk×m : eT
0 X = 0}/SO(m).

In our applications in Paper A and Paper B we work with centered landmarks and equip them with

the partial Procrustes distance

dP([X], [Y]) := min
R∈SO(m)

∥X − YR∥ (1.2)

where X ∈ [X],Y ∈ [Y]. On SΣk
m we call the Fréchet mean defined by the partial Procrustes distance

partial Procrustes mean.

1.1.3 Planar shape spaces and complex projective space

In this section, we introduce the complex projective space and highlight its relation to the planar

shape space. For k ∈ N0 the complex-valued unit sphere is defined by

S2k+1 B {z ∈ Ck+1 : ||z|| = 1} ⊂ Ck+1.

It is a manifold of real dimension 2k + 1. In particular, we obtain the complex-valued unit circle

S1 B {z ∈ C1 : |z| = 1} = {eiλ : λ ∈ [0, 2π)}.

of real dimension 1. With complex multiplication, it is a one-dimensional Lie group (i.e., a group that

is also a differentiable manifold). The complex projective space CPk is the set of one-dimensional

complex linear subspaces of Ck+1. Each one-dimensional complex linear subspace is determined by

a single v ∈ Ck+1 \ {0} as

{r exp(iϕ)v : r ≥ 0, ϕ ∈ [0, 2π)}

and intersects the unit sphere in an S1 orbit. Consequently, the complex projective space can be

defined as

CPk = S2k+1/S1.
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It is a Riemannian manifold of real dimension 2k and complex dimension k. In the following, we

illustrate that planar shape spaces are isomorphic to complex projective spaces of corresponding

dimension, see for example Huckemann and Hotz (2009).

For k planar landmarks

x1

y1

 , . . . xk

yk

 ∈ R2, the similarity shape space (see Section 1.1.2) is defined

as

Σk
2 B S

(k−1)−1×2/SO(2),

where

SO(2) B


cos(λ) − sin(λ)

sin(λ) cos(λ)

 : λ ∈ [0, 2π)

 .
For all z ∈ C holds cos(λ) − sin(λ)

sin(λ) cos(λ)

 ℜ(z)

ℑ(z)

 = ℜ(eiλz)

ℑ(eiλz)


and consequently SO(2) acts equivalently on the planar landmarks

x1

y1

 , . . . xk

yk

 ∈ R2 as S1 does

on the corresponding complex representation z1 = x1 + iy1, . . . , zk = xk + iyk ∈ C. Thus

CPk−2 � Σk
2.

1.2 PCA for non-Euclidean data

The following serves as an introduction to Paper A and Paper B and is thus close in content to parts

of the respective papers.

PCA is one of the most important exploratory methods in Euclidean multivariate statistics and is

used for dimensionality reduction of data. It was developed for Euclidean data by statisticians Karl

Pearson in 1901 (Pearson (1901)) and Harold Hotelling in the 1930s (Hotelling (1936)). Consider a

Euclidean data matrix X ∈ Rn×p, where p ∈ N corresponds to the number of variables and n ∈ N

corresponds to the number of objects. Usually, the transposed rows x1, . . . , xn ∈ R
p of X form a

random sample. We search for a few linear combinations of the variables that summarize the data

while losing as little variance as possible. For this, we determine the empirical covariance matrix

S X B
1
n

n∑
i=1

(xi − x̄)(xi − x̄)T =
1
n

XT X − x̄x̄T ,

where x̄ = 1
n
∑n

i=1 xi is the sample mean. From the spectral decomposition theorem, it follows that

S X can be written as

S X = GLGT
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where L = diag(λ1, . . . , λp) is a diagonal matrix with λ1 ≥ λ2, . . . ,≥ λp ≥ 0 and G is an orthogonal

matrix. We define the matrix W by the principal component transformation

W =
(
X − 1n x̄T

)
G, where 1n = (1, . . . , 1)T ∈ Rn.

The columns of W are called principal components and represent an uncorrelated linear combination

of the variables, which means that the covariance matrix of W is diagonal

S W =
1
n

WT W =
1
n

GT
(
XT − x̄1T

n

) (
X − 1n x̄T

)
G = GT S xG = L.

The columns of G are called principal directions. In practice, dimension reduction is performed

by taking only the principal components that belong to the highest variance, see e.g. Mardia et al.

(1979). Extending PCA to non-Euclidean data, where data points are assumed to lie on some

manifold rather than in some Euclidean space, is an active area of research and several concepts

have been developed already, some of which are outlined below.

There are several concepts on how to extend PCA to data on non-Euclidean spaces embedded in

Euclidean spaces, for instance tangent space PCA and geodesic PCA. Tangent space PCA attempts

to exploit the locally Euclidean property of manifolds by, in principle, mapping the data to a suitable

Euclidean tangent space of the underlying space and then subjecting it to Euclidean PCA. This can

be accomplished using the tangent space at a suitable Fréchet mean. The next step is to project the

data onto the tangent space of the respective mean. In generalized Procrustes analysis, the data

are orthogonally projected with respect to a suitable ambient space onto the tangent space of the

full Procrustes mean (see Section 1.1.2), see Gower (1975). In contrast, in Principal Geodesic

Analysis (PGA), the inverse Riemannian exponential map at the Fréchet mean is used, see Fletcher

and Joshi (2004). Tangent space PCA methods can be useful when the data are close to the Fréchet

mean. However, note that tangent space PCA may not be the canonical choice due to its dependence

on the chosen tangent space, i.e. the random base point, and that in the presence of curvature, in

general, no tangent space can accurately represent the mutual distance between all data points. As

exemplarily illustrated in Figure 1.3, tangent space PCA methods are limited if the Fréchet mean is

far from the data.

In contrast to tangent space PCA, Geodesic PCA (G-PCA) for Riemannian manifolds is based on

geodesics with respect to the intrinsic metric (e.g. Huckemann and Ziezold (2006); Huckemann

et al. (2010)). In Euclidean space, the best fitting geodesic, i.e. the straight line with the lowest

sum of square distances to the data, always runs through the mean. This is not necessarily the

case in non-Euclidean spaces, therefore flexibility is gained by allowing arbitrary geodesics, in

contrast to exclusively considering geodesics passing through the Fréchet mean. Once the principal

geodesic is identified, the higher order principal geodesics are determined iteratively in a manner that

ensures orthogonality to the previously determined principal geodesics. Alternatively, in Horizontal
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Figure 1.3: A sample of points (black) on a 2-dimensional sphere. In Principal Geodesic Analysis
from Fletcher and Joshi (2004) only great subspheres passing through the Fréchet mean (orange)
are allowed. In Geodesic PCA (e.g. Huckemann and Ziezold (2006); Huckemann et al. (2010)) this
is relaxed to arbitrary great circles, resulting in the blue best fitting great subsphere. In Principal
Nested Spheres (from Jung et al. (2012)), small subspheres, i.e. small circles in this 2-dimensional
example, are additionally allowed, leading to the best fitting small circle (red).

Component Analysis from Sommer (2013), the higher order components are determined using

parallel transport. Since one starts with a one-dimensional approximation of the data and then adds

more dimensions, these methods are classified as mainly forward methods.

Two manifolds of particular interest for biological data are the sphere and the torus, see for example

Mardia and Jupp (2000); Dryden and Mardia (2016). For spheres, a major advance was made

with Principal Nested Spheres (PNS) analysis, introduced by Jung et al. (2012). In the forward

methods introduced above, arbitrary geodesics were allowed, which do not pass through the Fréchet

mean. In generalization of this concept, PNS proposed by Jung et al. (2012) is a backward method

(see Huckemann and Eltzner (2018)), in which a sequence of nested subspheres is determined

by intersecting the sphere with an affine hyperplane in its Euclidean ambient space. As a result,

not only great subspheres but also small subspheres are available, leading to increased flexibility,

depicted in Figure 1.3. For data on an n-dimensional Euclidean space, the family of first principal

components (i.e. of straight lines) has dimension 2(n − 1) (a line is defined by 2 points and both

points can vary on the line) while for data that are on an n-dimensional sphere, the family of main

principal nested components (i.e. of small circles) has dimension 3(n − 1) (a circle is defined by 3

points and all three points can vary on the circle), see Huckemann and Eltzner (2018). Consequently,

PNS is particularly advantageous for dimension reduction based clustering methods, as it allows in

general the separation of three clusters by using only the main nested principal circle, for which two

Euclidean principal components would be required for separation, as demonstrated in Figure 1.4. A

more general approach is barycentric subspace analysis on manifolds by Pennec (2018). For k + 1

given points, the barycentric subspace for a Riemannian manifold is defined by all Fréchet means
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obtained by assigning different weights to each of these points, giving in principle a d-dimensional

space. Consequently, adding or removing points can create nested sequences of subspaces, allowing

the method to be used as a forward or backward technique.

Figure 1.4: Left: a sample of points in a 2-dimensional plane which comprises three clusters
(black, yellow, green), as well as the main principal nested circle of the sample (blue) and the main
Euclidean principal component (red). Right: the projections of the points onto the main principal
nested circle and the main Euclidean principal component, respectively.

For the case of the torus, which is the product space of two or more spheres (see Section 1.1.1), the

situation is more complicated, as neither tangent space PCA nor geodesic PCA are well applicable,

since in the former the periodicity of the torus is not taken into account and in the latter all irrational

slope geodesics approximate any data arbitrarily well, which is a dead end for meaningful statistics.

Kent and Mardia (2009) proposed an approach based on wrapped normals to avoid the problem of

winding geodesics and in Kent and Mardia (2015), an approach is discussed in which the winding

number of geodesics is restricted. In Sargsyan et al. (2012), an approach is presented that maps from

the torus to the sphere and then uses the G-PCA from Huckemann and Ziezold (2006) for dimension

reduction. A major advance is Torus PCA (T-PCA) of Eltzner et al. (2018), which inherits the

positive properties of PNS. It uses a data driven function to map the data from a torus to a stratified

sphere (i.e. a sphere with self-gluing to account for the periodicity of the torus) and then reduces

the dimension using PNS extended to stratified spheres. Recently, scaled torus principal component

analysis was developed by Zoubouloglou et al. (2022). Here, the data are mapped from the torus to

the sphere using spherical multidimensional scaling and then passed to PNS to find the sequence of

best fitting subspheres.
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1.3 Adaptive iterative clustering for metric data

The following is used to introduce the clustering algorithm from Paper A, which is also used in

Paper B and is thus similar in content to parts of the respective papers.

Clustering is an umbrella term for a broad class of unsupervised data segmentation learning

methods widely used in many fields, most prominently pattern recognition, machine learning and

it has particularly many applications in biology. Clustering aims to group n distinct data points

X(1), . . . , X(n) that are assumed to be heterogeneous into m distinct homogeneous groups, where m

is usually unknown. Homogeneous in this context means that the individual members of each group

are close to each other, but further away from the members of the other groups, see Mardia et al.

(1979). This rather broad definition of clustering leads to numerous different clustering algorithms,

see Estivill-Castro (2002) for a detailed review on this topic. Some prominent classes of clustering

algorithms are centroid models, such as k-means clustering, see Lloyd (1982), density models, such

as density-based spatial clustering of applications with noise (DBSCAN), see Ester et al. (1996),

distribution models, such as Gaussian mixture models based on the expectation-maximization

algorithm, see Dempster et al. (1977), or hierarchical clustering. All different clustering algorithms

have different weaknesses and strengths and are useful for different situations.

We use and refine two particular hierarchical clustering methods for metric spaces, namely average

linkage clustering, also known as unweighted pair group method with arithmetic mean, first

developed by Sokal and Michener (1958) and single linkage clustering, also known as nearest

neighbor clustering, developed by Florek et al. (1951). For points X(1), . . . , X(n) in an arbitrary

metric space with distance d, a distance matrix D = (di, j)n
i, j=1, where di, j B d(X(i), X( j)) for all

i, j ∈ {1, . . . n} is used instead of the points themselves. A rooted tree is created by first making each

data point its own cluster. Iteratively, the clusters with the smallest distance are merged to form a

new cluster. The distance between two clusters A and B is defined in average linkage clustering,

respectively single linkage clustering by

da(A, B) B
1

|A| · |B|
·
∑
X∈A

∑
Y∈B

d(X,Y), ds(A, B) B min
X∈A,Y∈B

d(X,Y),

where |A| is the cardinality of the set A. The cluster tree is extended by a parent node above the

merged clusters, which is tagged with the distance between the two merged clusters. We refer to the

top node of the tree, which represents the set of all data points, as the root of the cluster tree. For

both methods, the node values increase: if the clusters A and B are merged into the cluster A ∪ B

and C is another cluster, then the distance between A and B is smaller than between A and C or B

and C, respectively, and therefore

da(A ∪ B,C) =
1

|A ∪ B| · |C|
(|A| · |C| · da(A,C) + |B| · |C| · da(B,C)) ≥ da(A, B) ,

ds(A ∪ B,C) = min
X∈A∪B,Y∈C

d(X,Y) = min
{
ds(A,C), ds(B,C)

}
≥ ds(A, B).
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Consequently, any choice of a distance value r > 0 leads to a clustering in which all elements are in

the same cluster that are in the cluster tree below a joint node carrying a distance of at most r, see

Mardia et al. (1979).

Single linkage clustering tends to return long elongated clusters, an effect called chaining. Two

different clusters can be clustered together because a chain of outliers links them. In addition, both

methods fail when two closely neighboring clusters have a higher density than a third cluster, see the

example in Figure 1.5. To tackle such problems, Langfelder et al. (2007) and Obulkasim et al. (2015)

Figure 1.5: Toy data set featuring four clusters, all of which cannot be separated by single or average
linkage clustering as the first features a large spread, the other three are very dense, two of them
nearby. The Figure is adapted from Paper A.

developed data-adaptive cutting procedures. However, the question remains how to detect with

statistical guarantees whether a found cluster can be further decomposed into several sub-clusters.

For this reason, a clustering was developed in Paper A, which consists of an iterative pre-clustering

(which allows clusters of different densities) and a subsequent post-clustering based on PNS

(introduced in Section 1.2). In Paper A, the clustering method is demonstrated on both Euclidean

and non-Euclidean data. In Paper B this clustering method is a crucial part of a classification based

learning algorithm.

1.4 Strong consistency for generalized Fréchet means

The following section serves as an introduction to the research area of strong consistency theorems

for generalized Fréchet means, to which we contribute in Paper C. The following content is a

condensed version of Section 3 of Paper C.

For real-valued random vectors, the Fréchet mean is unique if it exists. Uniqueness is not necessarily

given in non-Euclidean spaces, as demonstrated in the examples in Section 1. In consequence, a

general formulation in terms of set-valued Fréchet means is required for data on non-Euclidean

spaces. Two versions of the set-valued strong consistency were introduced in Ziezold (1977);
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Bhattacharya and Patrangenaru (2003) and shown under rather broad conditions. In the following

we introduce both versions of consistency, show how they have been generalized and explain how

we extended them in Paper C.

Consider i.i.d. random elements X1, X2, · · · ∼ X mapping from a probability space (Ω,A,P) into the

data space Q, a topological space equipped with the Borel σ-algebra. Also, define the parameter

space (P, d), as a separable (i.e., there exists a dense countable subset) metric space with metric

function d : P ×P 7→ [0,∞) and the topology induced by the metric.

Definition 1.1 (Generalized sample and population Fréchet mean). For ρ : Q ×P 7→ R, which is

continuous in P for all fixed q ∈ Q and measurable in Q for all fixed p ∈ P, we define

E(ρ)
n (ω) B arg min

p∈P

n∑
i=1

ρ(Xi(ω), p), E(ρ) B arg min
p∈P

E (ρ(X, p)) .

E(ρ) and E(ρ)
n (ω) are called the sets of generalized sample and population Fréchet means, respec-

tively.

The sample Fréchet mean sets are closed random sets (studied by Choquet (1954); Kendall (1974);

Matheron (1974), among others) since ρ is continuous. In the following, we introduce two different

definitions of strong consistency, which are commonly named after the authors who proposed them.

Definition 1.2 (Two versions of set strong consistency). We say that the estimator E(ρ)
n (ω) for E(ρ)

is

ZC: Ziezold strongly consistent if

∞⋂
n=1

∞⋃
k=n

E(ρ)
k (ω) ⊆ E(ρ) for all ω ∈ Ω almost surely,

BPC: Bhattacharya and Patrangenaru strongly consistent if E(ρ) , ∅ and if for every ϵ > 0 and

almost surely for all ω ∈ Ω there is a number n = n(ϵ, ω) > 0 such that

∞⋃
k=n

E(ρ)
k (ω) ⊆ {p ∈ P : d(E(ρ), p) ≤ ϵ}.

Ziezold (1977) proved strong consistency in the sense of (ZC) for separable spaces P = Q and

ρ = d2 where d is a quasi-metric (i.e. it holds d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x) and

d(x, z) ≤ d(x, y) + d(y, z)). For metric spaces (Q, d), with the Heine Borel property (all closed and

bounded sets are compact, see Williamson and Janos (1987)), (BPC) was proven by Bhattacharya

and Patrangenaru (2003) for Q = P and ρ = d2. In Huckemann (2011b), (ZC) and (BPC) were

extended for generalized Fréchet means. To show (ZC), a continuity condition in the second

argument, uniformly over the first argument, was required for a non-negative ρ, and for (BPC),

the Heine-Borel property, a nonempty E(ρ), and a coercivity property in the second argument
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were additionally required. Evans and Jaffe (2020) generalized strong consistency for so-called

Fréchet p-means, a special case of Fréchet means, where P = Q and ρ = dp. In Schötz (2022), the

continuity assumptions for ρ required in Huckemann (2011b) were relaxed to lower semi-continuous

assumption and the non-negative assumption on ρ was relaxed to E(in fq∈Qρ(Y, q)) > −∞. However,

to the best of our knowledge, the available strong consistency results for generalized Fréchet

means (Schötz (2022); Huckemann (2011b)) cannot cover the simple case of maximum likelihood

parameters of a univariate or multivariate Gaussian, because the log-likelihood is unbounded from

below.

In Paper C we show (ZC) and (BPC) under even weaker assumptions, namely a modulus of

continuity along with its prefactor for (ZC) and using non-emptiness of Eρ and a weakened

coercivity assumption for (BPC). Unlike the cases treated in the above articles, the ρ function

does not have to be bounded from below and therefore we are able to show that our framework

encompasses consistency in terms of (ZC) and (BPC) for joint estimation of µ and σ in the Gaussian

MLE setting. Such a generalization is typically necessary to cover cases where a generalized Fréchet

mean is estimated along with a (co-)variance-like quantity. This is for example the case for diffusion

means with simultaneously estimated variance, see Eltzner et al. (2022). Moreover, in Paper C

we apply the developed theory to prove strong consistency for the homoscedastic drift model (see

Section 2.2.1).



CHAPTER 2

Contributions to the research publications

This section aims to briefly summarize the main results of each paper and to highlight my contribu-

tion to each paper. For this purpose, we first give an overview of different methods to determine

the structure of biomolecules. Then, in Section 2.1, a more detailed introduction to the structure

of RNA molecules is given and the contents of papers A and B are summarized. Subsequently, in

Section 2.2, an introduction to ENDOR spectroscopy is given and the contents of Paper C and Paper

D are presented.

One of the main objectives of structural biology is to understand the complicated three-dimensional

structure of biomolecules, and thus provide meaningful links between structure and functionality. In

particular, this information can be used in the field of structure-based drug design, see for example

Schlick and Pyle (2017) or Anderson (2003a). The first breakthroughs in this field were made in

the early 1990s, and thanks to the evolution of new experimental methods and the availability of

increasingly effective computational clusters, it has become an essential part of drug design. There

is a wide range of different methods to determine the structure, some of which are listed in the

following.

A popular method is X-ray crystallography (X-ray), in which, using a suitable substrate, molecules

are crystallized and subjected to X-ray imaging. A further emerging method is cryogenic electron

microscopy (cryo-EM), which uses electron microscopes to study the structure of biomolecules

in a frozen state. Although the resolution of cryo-EM has improved greatly in recent years due to

technical advancement, the resolution usually does not approach the atomic resolution of X-ray.

Therefore, both methods are often used complementary, due to the difficulty of crystallizing flexible

and large molecules, cryo-EM is used to understand the overall shape and X-ray is used to better

understand the atomic structure of individual smaller subcomponents, see for example Wang and

Wang (2017). This naturally leads to data at different resolutions and to the question of how to

model data at different scales and develop learning algorithms.

Another approach to obtain structural information of molecules is the use of spectroscopic methods.

There are a variety of different spectroscopic methods. Possibly the best known is nuclear magnetic

resonance (NMR) spectroscopy, which studies the interactions between the atoms of a molecule
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using radio frequency (RF) pulses. On the other hand, electron paramagnetic resonance (EPR),

utilizes microwave (MW) pulses to study the local environment and different kind of interactions

of the spins of unpaired electrons. Since EPR targets only the tiny minority of unpaired electrons

among the large number of electrons in a biomolecule, it can be more selective than NMR. A large

part of this thesis work is concerned with the development of methods for ENDOR spectroscopy

in a collaboration with the ’Electron Paramagnetic Resonance’ research group of Marina Bennati

at the Max Planck Institute for Multidisciplinary Sciences. In a two-step experiment, ENDOR

spectroscopy combines the advantages of EPR spectroscopy and NMR spectroscopy by applying

both techniques to the same sample (see Feher (1956); Gemperle and Schweiger (1991)). Using an

unpaired electron that interacts with both an external magnetic field and the atomic magnetic nuclei

in its vicinity, the ENDOR experiment first irradiates the sample with a microwave (MW) to target

the unpaired electron. In the second step, the sample is irradiated with a radio frequency (RF) that

matches the resonance condition of a specific nucleus. Roughly speaking, the double resonance

approach restricts the unpaired electron to interact with specific magnetic nuclei of a chosen kind

individually at different frequencies, leading to distinct peaks in a RF spectrum. Artificially inserting

labels, i.e., magnetic nuclei that do not occur naturally in biomolecules (for example fluorine labels),

allows determination of certain features, such as distances between interacting spins, see Meyer

et al. (2020). Once the experiment is completed in the laboratory, the following steps are performed

to obtain structural information from the data matrix recorded by the spectrometer during the

experiment, illustrated in Figure 1.2. The first step is to denoise the spectrum, for which we develop

in Paper C asymptotic theory for a drift model developed by Pokern et al. (2021) and develop

a new drift model for 94 GHz data (illustrated in the denoising step in Figure 1.2). In a second

step, an analysis of the spectra was developed in Paper D to determine parameters describing the

conformation of the biomolecules from the spectra (exemplified in the optimize step in Figure 1.2).

2.1 Learning torus PCA-based classification for multiscale RNA cor-
rection

The following is a compilation of the biological foundations and the multiscale approach in Paper

B. The biological foundations are summarized from Watson et al. (2004); Murray et al. (2003).

Ribonucleic acid (RNA) strands are formed of repeating elements that are called nucleotides. A

nucleotide consists of three components: a sugar ring with 5 carbon atoms called ribose, a phosphate

group bonded to the ribose ring at the O5’ atom and one of four nucleobases attached to the ribose

by a bond between the C1’ atom of the ribose sugar ring and a nitrogen atom (which is called N1 or

N9 depending on the corresponding nucleobase). RNA chains are formed by single nucleotides

linking to the next phosphate group through their O3’ atoms, see Figure 2.1. To derive the molecular

structures, usually X-ray and cryo-EM methods are used. In the resulting data, physically and

chemically impossible molecular configurations frequently occur, so-called clashes, in which two

atoms are reconstructed closer to each other than is chemically possible. Clashes between two

backbone atoms are the most relevant and most difficult to correct; for a detailed discussion, see
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Murray et al. (2003). Most clashes of the RNA backbone occur within suites, which is the part

from one sugar ring to the next, see e.g. Murray et al. (2003) and Figure 2.1. In Paper A and

H H H

OH
H

H

O

O H H H H

OH
H

γi δi ϵi ζi αi+1 βi+1 γi+1 δi+1 ϵi+1
C5′ C4′

O4′

C1′

C2′

C3′ O3′ P′ O5′ C5′ C4′

O4′

C1′

C2′

C3′ O3′

N1/N9 N1/N9

Figure 2.1: 2D scheme of backbone suite number i with 7 dihedral angles
δi, ϵi, ζi, αi+1, βi+1, γi+1, δi+1 describing the suite’s 3D structure, adapted from Paper A.

Paper B we work with two different scales: at microscopic scale we work with suites, which can be

represented by a tuple of 7 dihedral angles (each dihedral angle in the RNA backbone chain, defined

by four consecutive atom positions, see Figure 2.2), giving a data point on the seven dimensional

torus T7 for each suite, see Section 1.1.1. Description of suites with dihedral angles is possible

because the bond lengths (distances between two consecutive atoms) and the bond angles (angles

between three consecutive atoms) are approximately constant due to chemical laws. The shape is

therefore determined exclusively by dihedral angles. At mesoscopic scale, we model the mesoscopic

angle atom bonds
α O3’ - P’ - O5’ - C5’
β P’ - O5’ - C5’ - C4’
γ O5’ - C5’ - C4’ - C3’
δ C5’ - C4’ - C3’ - O3’
ϵ C4’ - C3’ - O3’ - P’
ζ C3’ - O3’ - P’ - O5’ O3′

C3′

C4′

C5′

δ

Figure 2.2: Left: names (first column) of dihedral angles along the two central atoms of the four
atoms involved (second column), see Figure 2.1. Right: the dihedral angle δ of the bond between
the atoms C4’ and C3’ is the directed angle between the plane spanned by the atoms C5’, C4’, C3’
and the plane spanned by C4’, C3’, O3’. More precisely, it is the angle determined by turning the
vector normal to the plane spanned by C3’, C4’, C5’ to the vector normal to the plane spanned by
O3’, C3’, C4’ (with fixed orientation of normals determined by the order of spanning points). Taken
from Paper B.

shape belonging to a suite as follows: the mesoscopic strand corresponds to the configuration

matrix obtained by the centers of the sugar rings (pseudo landmarks) belonging to the 2 suites

before and after the central suite, see Figure 2.3. The size-and-shape of the mesoscopic strands
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is not completely defined by the dihedral angles of four consecutive sugar rings alone, as the

distances between two consecutive sugar rings and the angles between three consecutive sugar

rings also vary, leading to data in the size-and-shape space SΣ6
3, see Section 1.1.2. To understand

the interdependence of the different scales and to classify the suites, the following clustering was

introduced in Paper A. Based on this, in Paper B we developed our two scale correction algorithm.

x̄ i−
2

x̄ i−1

x̄i x̄i+1

x̄
i+2

x̄
i+

3

suite i

Figure 2.3: The mesoscopic shape (red lines) centered at the i-th suite is determined by the six
centers of the sugar rings x̄i−2, . . . , x̄i+3. Their connecting backbones (blue and black lines) comprise
5 suites, two before and two after suite i. Taken from Paper B.



2.1. Learning torus PCA-based classification for multiscale RNA correction 21

2.1.1 Paper A: Principal component analysis and clustering on manifolds

The paper Principal component analysis and clustering on manifolds is included in Section A and is

published in the Journal of Multivariate Analysis, see https://doi.org/10.1016/j.jmva.2021.104862.

The paper is a collaboration with Kanti V. Mardia, Benjamin Eltzner, and Stephan F. Huckemann.

In the paper, we developed a clustering called Mode huntIng on the main principle Nested small

Circle of prE-clusters (MINCE) post Adaptive linkaGe clustEring (AGE) for manifold data, which

consists of three main steps, see Section 4 of Paper A. The first step is to cluster with the AGE pre-

clustering to obtain a list of pre clusters, see Algorithm 1 in Paper A. It is a hierarchical clustering

method illustrated in Figure 2.4 and Figure 2.5. First, a rooted tree is created as described in Section

1.3. Then, roughly speaking, branches with decreasing cluster size are iteratively removed from the

cluster tree (see Figure 2.5). This procedure allows the separation of clusters with different densities

(see right panel of Figure 2.4).

Figure 2.4: Left: original data set featuring four clusters, all of which cannot be separated by single
or average linkage clustering as the first features a large spread, the other three are very dense, two
of them nearby. Right: all of the clusters are retrieved by AGE except for two outliers from Cluster
1 (not shown in the right panel). The figure is taken from Paper A and the left panel is taken from
Figure 1.5.

The second step is to map each pre-cluster in a suitable way to a sphere or a stratified sphere. In the

third step, PNS is used to determine the main principal small circle (i.e. the last (one-dimensional)

element in a sequence of nested spheres in the PNS, introduced in Section 1.2) for each pre-cluster.

Then, the data from the pre-cluster are projected onto the main principal small circle and circular

mode hunting (adapted from the non-circular linear case Dümbgen and Walther (2008)) is applied

to assign each mode found with statistical significance a cluster. MINCE post AGE gains strength

from the statistically advantageous geometry of spheres. In principle, with the main principal small

circle three clusters can be separated reliably, while with the principal component of Euclidean
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Figure 2.5: Illustrating four iterations of the AGE Algorithm applied to the data of Fig. 2.4 (with
cluster colors taken from there) with node labels indicating distance of clusters joined and branch
labels indicating the number of data points represented. For each iterate the initial cluster list C, the
current minimal cluster size sP and the resulting auxiliary list L (before Step 8) are shown below.
Further details are given in Algorithm A6 of Paper A. The cluster that is removed from the cluster
tree in each iteration is marked in blue. The figure is taken from Paper A.

PCA only two can be separated reliably, see Figure 1.4. We apply our clustering on three different

datasets: data on a torus, data on a shape space, and Euclidean "worms" data. The first two examples

are SARS-CoV-2 RNA backbone relevant data from the Protein Data Bank (PDB) (compiled from

the Coronavirus Structural Task Force (CSTF)). In the third example, we obtain our benchmark

data from the simulation software worms, see Sieranoja and Fränti (2019). Exemplarily, Figure

2.6 plots the cluster result for the suites (each suite is represented by 7 dihedral angles) from the

SARS-CoV-2 RNA backbone data set, using a scatter plot relating pairs of dihedral angles with one

another.

Structure of the paper:

• Section 1: Introduction.

• Section 2: Notation and terminology are introduced.

• Section 3: The torus PCA from Eltzner et al. (2018) is extensively introduced and explained.

Moreover, asymptotic consistency and asymptotic normality are shown for the principal

nested spheres from the Torus PCA using the framework of backward nested subspaces,

which are an extension of generalized Fréchet means.

• Section 4: The new clustering method MINCE post AGE is introduced, and applied to three

different data sets: data on a torus, data on a shape space, and Euclidean "worms" data.

• Section 5: A model based approach for PCA on the torus, based on wrapped multivariate

normal distributions (see Kent and Mardia (2009)) is briefly presented.

Own contribution: In the collaboration, I mainly worked (guided by the co-authors) on the contents

of Section 4, which is concerned with the following challenges: we developed a clustering method

specifically for processing biological data from the PDB. The data are usually not Euclidean, but are

https://thorn-lab.com/coronavirus-structural-taskforce/
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Figure 2.6: Scatterplots of the clusters found by the cluster algorithm MINCE post AGE. The
original data can be found in Figure A8 of Paper A. Table A1 of Paper A gives the cluster sizes of
each cluster. The figure is taken from Paper A.

usually on manifolds, such as the torus, sphere, shape space, or size-and-shape space. In addition,

there are a lot of outliers, clusters with widely varying densities and numbers of elements. Further

challenges included the compilation of the data, the data analysis and the implementation of the

cluster algorithm for the different data sets. I presented the contents of the paper in the Pizer (Shape

Stats Discussion Group) seminar in two talks in 2021 and at the JMVA Jubilee Edition conference

in 2022.
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2.1.2 Paper B: Learning torus PCA-based classification for multiscale RNA correc-
tion with application to SARS-CoV-2

The paper Learning torus PCA-based classification for multiscale RNA correction with application

to SARS-CoV-2 is included in Section B and can be found in the Journal of the Royal Statistical

Society Series C: Applied Statistics, see https://doi.org/10.1093/jrsssc/qlad004. The paper is a

collaboration with Kanti V. Mardia, Benjamin Eltzner, and Stephan F. Huckemann and has the

following content.

We developed a fast, data-driven reconstruction algorithm called CLEAN MINT-AGE (Classification

based on muLtiscale structurE enhAncemeNt using Mode huntINg after Torus pca on Adaptive

cutting averaGe linkage trEes). Usually, methods based on molecular dynamics are used to correct

clashes, see for example Chou et al. (2013). However, due to the large variability of RNA shapes,

these simulations are very computationally intensive and often molecules corrected in this way may

still contain clashes, see Richardson et al. (2018). In contrast, CLEAN MINT-AGE is based on a

two-scale shape analysis: at the microscopic scale we work with suites (see Figure 2.1) which can

be represented on the seven-dimensional torus T7 (see Section 1.1.1). At the mesoscopic scale, we

model the mesoscopic shapes (see Figure 2.3) in the size-and-shape space SΣ6
3, see Section 1.1.2.

On a benchmark data set, we empirically investigate the interdependence between the mesoscopic

and microscopic scales, which results in the conclusion that for clash-free data, concentrated clusters

on the mesoscopic scale belong to concentrated clusters on the microscopic scale (see left two

panels of Figure 2.7). This is the justification of our CLEAN-MINT-AGE correction algorithm: to

Figure 2.7: Left: four exemplary mesoscopic clusters at mesoscopic scale. Center left: their central
suites at microscopic scale. Right two panels: a clash suite (red) (from benchmark file 1f8v, Tang
et al. (2001), see Table B in the supplement of Paper B) with its clash free neighbors (black) and
proposed clash free correction (green) at mesoscopic scale (center right) and microscopic scale
(right). The figure is composed of different figures from Paper B.

correct clashes at the microscopic scale, classes of clash free suites are learned using the MINCE

post AGE clustering from Paper A (adapted to torus data). The second step is to determine the class

that will be used for structure correction. For this, we determine a set of clash-free mesoscopic

shapes that are closest to the mesoscopic shape corresponding to a clash suite (see center right

panel of Figure 2.7). As a third step, we consider the suites corresponding to this set of closest
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mesoscopic shapes and determine the class that dominates this set (see right panel of Figure 2.7). At

the microscopic scale, the correction is determined by the torus mean (introduced in Section 1.1.1)

of the corresponding class. At mesoscopic scale, our correction is defined by a novel orthogonal

projection (with respect to the partial Procrustes distance defined in 1.1.2) of the partial Procrustes

mean of the closest mesoscopic shapes from the dominant class onto a subset of the size-and-shape

space defined by special distance constraints inherited from mesoscopic and microscopic scale. The

projection is in general unique and can be computed explicitly (see Theorem 2.3 in Paper B). The

corrections are designed to be clash free and, on the benchmark data set, the proposed corrections

are in general well below the order of resolution of the respective measurement.

To show the potential of our method, we apply our method to two suites (one of them is shown in

Figure 2.8 center and right panel) of the frameshift stimulation element (which enables decoding

of more than one protein from a single RNA molecule) of SARS-CoV-2 (depicted in left panel of

Figure 2.8). It is a promising target for drug development and to our knowledge, no consistent 3D

structure has been proposed to date. Based on the cryo-EM map, ten different three-dimensional

structure models are proposed in Zhang et al. (2021). The central and right panel of Figure 2.8

illustrates the correction suite 28/29 (marked with a red arrow in the left panel). In all 10 different

proposed models of Zhang et al. (2021) the suite is a clash suite. In contrast, CLEAN MINTAGE

consistently classifies the clash suites for each of the 10 models into the same class, which is

clash-free by design.

Figure 2.8: Left: one out of 10 proposed 3D RNA structures of the SARS-CoV-2 frameshift
stimulation element by Zhang et al. (2021), graphically reproduced with PyMOL (Schrödinger,
LLC, 2015) with backbone (orange) and nucleobases (blue), yielding helical structures whenever
the latter point to each other. Center and right: ten proposed reconstructions (red) by Zhang et al.
(2021), which are all clashing, for Suite 28/29 (marked with a red arrow in the left panel) connecting
two helical segments in the frameshift stimulation element of SARS-CoV-2 and our ten clash free
corrections (green) at mesoscopic scale (center) and at microscopic scale (right). The figure is
composed of different figures from Paper B.

Structure of the paper:

• Section 1: Introduction.
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• Section 2: Tools from shape analysis are introduced: the torus, the size-and-shape space, the

Fréchet mean for both scales and the novel orthogonal projection onto a constrained-size-and-

shape space.

• Section 3: Biological concepts and tools that are required to understand our data analysis and

correction algorithm are discussed in detail, namely RNA backbone geometry, clash detection

and the concept of multiscale modeling.

• Section 4: A detailed data analysis on a benchmark data set:

– First we learn the classes using the clustering method presented in Paper A.

– We statistically investigate the interdependence between the mesoscopic and micro-

scopic scales.

– We introduce the CLEAN-MINT-AGE correction algorithm, which is subsequently

applied to the benchmark data set.

• Section 5: We apply our method to two suites of the frameshift stimulation element of

SARS-CoV-2.

• Section 6: Discussion.

Own contribution: For the paper, I worked on all sections. This includes (guided by the co-authors)

the development of the statistical methods, statistical analysis and modeling and working with

various biological programs, such as PHENIX (see Liebschner et al. (2019)) and ERRASER (see

Chou et al. (2013)). In addition, I presented the contents of the paper at three conferences: GSI in

Paris 2021, GPSD Mannheim 2021 and ADISTA in Santiago de Compostela 2022.
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2.2 The ENDOR experiment and Drift Models on Complex Projective
Space

This section is intended to provide an introductory exposition of ENDOR spectroscopy necessary

for the contents of Paper C and Paper D and is close in content to the respective papers. A

detailed introduction to the physical theory of ENDOR can be found, for example, in Gemperle and

Schweiger (1991).

During the ENDOR experiment, a chemical sample (for example the model fluorine-nitroxide

compound depicted in the right panel of Figure 1.2) is located in an external temporally constant

and spatially homogeneous magnetic field with magnetic field strength B0. In the first part of the

experiment, the sample is irradiated with a sequence of microwave (MW) pulses. The combination

of the magnetic field strength B0 and the microwave frequency νMW selects a set of orientations

of the molecule relative to the external magnetic field that lead to a certain resonance condition

being satisfied. Those molecules in the chemical sample whose orientation is in this set take part

in the resonance experiment. Usually, the experiment is performed at five orientations, denoted

as gx, gxy, gy, gyz and gz. A receiver records the microwave echo signal emitted by the molecules

for which the resonance conditions are satisfied in two different components. In a technique

called quadrature detection, a reference microwave signal is used to obtain a measurement in two

different components: a first component, which forms the real part and is in phase with the reference

microwave signal and a second component, called the quadrature component, whose phase is shifted

by 90 degrees, which forms the imaginary part. For an orientation, that is, a fixed magnetic field

strength and a fixed MW frequency, the sample is irradiated with each of the RF frequencies from

{ fν : ν ∈ 1, . . . ,N} in a pseudo-random order, each of which affects the echo signal. The set of

measurements on all frequencies is called a scan. The sum of the echo signals of several (typically

50) scans is stored by the spectrometer as a single batch in CN and B different batches resulting in a

data matrix Y ∈ CB×N . Two different pulse sequences are commonly used (see Mims (1965) and

Davies (1974)) in order to synchronize a large number of molecules participating in the resonance

experiment so that combined microscopic signals can be measured macroscopically. Different pulse

sequences result in different characteristics of the experimental noise.

The common practice for extracting ENDOR spectra from a data matrix Y prior to the work in our

CRC project consisted in applying the averaging model. In the averaging model, the batches are

first averaged Zν = 1
B
∑B

b=1 Yb,ν, then phase correction is performed to obtain a real-valued spectrum

Ĩ = ℜ(eiλZ) where λ ∈ [0, 2π), is determined for example with the maximum method, see (2.5).

Subsequently, a normalization is performed to obtain the spectrum I. However, since ENDOR

experiments often run for hours and at low temperatures, significant thermal drifts occur in practice.

To model these, the homoscedastic drift model for spectrometers using a microwave frequency of

νMW = 263 GHz was developed in Pokern et al. (2021). Here, the data matrix is decomposed as

follows

Yb,ν = ψb + ϕbκν + ϵb,ν. (2.1)
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One can interpret ψ ∈ CB as the EPR signal as well as a possible offset of the spectrometer,

ϕ ∈ CB as magnitude and phase of the ENDOR effect and κ ∈ CN as the ENDOR effect consisting

of the ENDOR spectrum I and an orthogonal component ω that contains a resonance artifact

of the spectrometer. The experimental noise is represented by ϵ ∈ CB×N , with the property

vec
(
ϵb,ν

)
B

ℜ(ϵb,ν)

ℑ(ϵb,ν

 ∼ N(0,Σ) where the covariance matrix Σ ∈ SPD(2) is positive definite

symmetric. The following conditions are introduced for the identifiability of κ∑
ν

κν
!
= 0 to avoid non-identifiability from κ̃ = κ + c, ψ̃ = ψ − cϕ (2.2)∑

ν

|κν|
2 !
= 1 to avoid non-identifiability from κ̃ = rκ, ϕ̃ = r−1ϕ, r ∈ R>0. (2.3)

In an iterative procedure, the maximum likelihood estimators ψ̂, ϕ̂, κ̂, Σ̂ are computed and then the

estimated spectrum Î and its orthogonal component ω̂ are extracted from κ̂ using a complex rotation

Î = ℜ(eiλκ̂), ω̂ = ℑ(eiλκ̂), (2.4)

where λ is selected according to an optimality criterion (for example with the maximum method, see

(2.5)). Exemplarily, for orientation gx from a chemical sample of the fluorine-nitroxide compound

depicted in the right panel of Figure 1.2, maximum likelihood estimates (including point-wise

confidence bands obtained by parametric bootstrap using 10, 000 bootstrap samples) are depicted in

Figure 2.9. For different chemical compounds, the Kolmogorov-Smirnov goodness of fit tests of

Figure 2.9: Applying the homoscedastic drift model to a typical ENDOR measurement. Panel A
displays the estimated spectrum Î, while panel B displays the component ω̂ that is orthogonal to
the estimated spectrum Î. Panel C and D show the real (black) and imaginary (red) components of
ϕ̂ and ψ̂, respectively. Panel E displays a kernel-density-estimation of the complex residuals ϵ̂b,ν,
while panels F and G depict q-q-plots for the real and imaginary components of the standardized
residuals, respectively. The Figure is adapted from Paper D.



2.2. The ENDOR experiment and Drift Models on Complex Projective Space 29

the real and imaginary parts of the residuals ϵ̂b,ν = Yb,ν − ψ̂b − ϕ̂bκ̂ν (exemplarily shown in panels

E, F, and G of Figure 2.9) usually cannot be rejected, see Pokern et al. (2021); Hiller et al. (2022);

Wiechers et al. (2023).

2.2.1 Paper C: Drift Models on Complex Projective Space for Electron-Nuclear
Double Resonance

The Paper Drift Models on Complex Projective Space for Electron-Nuclear Double Resonance is in-

cluded in Section C and the paper is submitted to arXiv (https://doi.org/10.48550/arXiv.2307.12414).

The paper has been developed in an interdisciplinary collaboration with the ’Electron Paramagnetic

Resonance’ research group headed by Marina Bennati. From the spectroscopy side, Igor Tkach and

Marina Bennati contributed to the paper. From the statistics group, Markus Zobel, Benjamin Eltzner,

Stephan F. Huckemann, Yvo Pokern and myself contributed to the paper.

The homoscedastic drift model (2.1) is the first of its kind in the field of ENDOR spectroscopy,

achieving surprisingly good model fits for experiments at a microwave frequency of νMW = 263 GHz.

In order to justify statistical methods such as the parametric bootstrap and statistical tests, there

is great interest in asymptotic results for the homoscedastic drift model. For the special case

Σ = diag(c, c) for c > 0, the maximum likelihood estimators ϕ̂ and κ̂ are determined by

(ϕ̂, κ̂) ∈ arg min
ϕ∈CB,κ∈M

∣∣∣∣∣∣Ỹ − ϕκT
∣∣∣∣∣∣2 , where M B

κ ∈ CN :
∑
ν

κν = 0,
∑
ν

|κν|
2 = 1


and Ỹb,ν B Yb,ν − ψ̂b = Yb,ν −

1
B
∑N
ν=0 Yb,ν is the row-centered data matrix. In this case, the estimate

is given by the singular value decomposition of Ỹ , where σ−1
1 ϕ̂ and κ̂ are the left and right singular

vectors, respectively, belonging to the largest singular value σ1. Note that in contrast to PCA, the

row centered matrix is used rather than the column centered matrix (cf. Section 1.2). Thus, the κ of

central tendency that gives the largest variability across frequencies is determined rather than the κ

that corresponds to the largest variability across repeated measures. However, in the more general

real-world case where Σ has two distinct eigenvalues and is not diagonal, this analogy and the

asymptotic results for PCA (for example in Anderson (2003b)) are not applicable. The maximum

likelihood estimators ϕ̂ and κ̂ are determined by

(ϕ̂, κ̂) ∈ arg min
ϕ∈CB,κ∈M

B∑
b=1

N∑
ν=1

vec
(
Ỹb,ν − ϕbκν

)T
Σ−1vec

(
Ỹb,ν − ϕbκν

)
Strong consistency for B→ ∞ can be proved, proceeding as follows: first, we insert the conditional

maximum likelihood estimator

ϕ̂b(κ,Σ, Ỹ) =

 N∑
ν=1

M(κν)TΣ−1M(κν)


−1  N∑

ν=1

M(κν)TΣ−1vec
(
Ỹb,ν

) .
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where M(c) B

ℜ(c) −ℑ(c)

ℑ(c) ℜ(c)

 for c ∈ C. Then we obtain the following minimization problem

κ̂ ∈ arg min
κ∈M

B∑
b=1

N∑
ν=1

vec
(
Ỹb,ν − ϕ̂b(κ,Σ, Ỹ)κν

)T
Σ−1vec

(
Ỹb,ν − ϕ̂b(κ,Σ, Ỹ)κν

)
= arg min

κ∈M

B∑
b=1

ρ(Ỹb, κ),

where

ρ(Ỹb, κ) B
N∑
ν=1

vec
(
Ỹb,ν − ϕ̂b(κ,Σ, Ỹ)κν

)T
Σ−1vec

(
Ỹb,ν − ϕ̂b(κ,Σ, Ỹ)κν

)
.

This can be identified as a generalized Fréchet mean, introduced in Section 1.4. A difficulty is that

due to matrix multiplication with Σ−1 matrices of the form
∑N
ν=1 M(κν)TΣ−1M(κν) ∈ R2×2 appear,

which usually cannot be interpreted as complex numbers. We proceed as follows. The constraint

(2.2) can be eliminated using for example the Helmert sub-matrix (defined in Section 1.1.2), resulting

in a projected κH ∈ CN−1 and ỸH ∈ CB×N−1. We treat the projected row-centered data matrix ỸH as a

sequence of B identically and independently distributed CN−1-valued random variables ỸH
1 , . . . ,Y

H
B .

Thus, our data space is Q = CN−1. Adding the constraint (2.3), the projected κ is an element on a

complex sphere. For any phase λ ∈ [0, 2π), it holds (exp(iλ)ϕ)((exp(−iλ)κ)T = ϕκT . Removing this

additional phase factor gives us the complex projective space CPN−2 as parameter space (introduced

in Section 1.1.3). It is a Riemannian manifold of real dimension 2N − 4.

To show strong consistency for the homoscedastic drift model, we first extend strong consistency in

the sense of (ZC) and of (BPC) as described in Section 1.4. Then (under some technical conditions),

the generalized theory is used to prove strong consistency for κ. For this purpose, in particular,

a local Lipschitz constant is determined (see Theorem 4.3 of Paper C) and the uniqueness of the

population Fréchet ρ-means is proved (see Theorem 4.5 of Paper C). Then the properties required for

Theorem 6 from Huckemann (2011a) are shown to prove a CLT in a suitable chart β around the true

but unknown [κ(0)], which has the property β([κ(0)]) = 0. We denote the gradient of x 7→ ρ(Y, β−1(x))

by grad2ρ(Y, [κ]) and by H2ρ(Y, [κ]) the corresponding Hessian matrix. The regularity conditions

(10) and (11) of Huckemann (2011a) are shown to hold and it is verified that the population Hessian

matrix E[H2ρ(Y, [κ(0)])] is invertible. We obtain the following CLT.

Theorem 2.1 (CLT). For the centered homoscedastic drift model from Definition 4.1 and Assumption

4.7, let [κ̂(B)(ω)] ∈ E(ρ)
B (ω) be a measurable selection for all ω ∈ Ω, then, omitting ω,

√
Bβ([κ̂(B)])

D
→ N

(
0,

(
E

[
H2ρ

(
Y,

[
κ(0)

])])−1 (
cov

[
grad2ρ

(
Y,

[
κ(0)

])]) (
E

[
H2ρ

(
Y,

[
κ(0)

])])−1
)

holds for the chart β defined in Definition 4.8 of Paper C.
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In the ENDOR experiment one is interested in the spectrum I, which is extracted from κ using a

complex multiplication, see (2.4): one possible approach is the maximum method (see for example

Paper D) in which

λopt ∈ arg max
λ∈[0,π)

∣∣∣∣∣∣ℜ(exp(iλ)κ)
∣∣∣∣∣∣ (2.5)

is chosen such that the norm of I = ℜ(exp(iλopt)κ) is maximal. The function that determines

the corresponding I for a given κ is explicitly determined and the corresponding Jacobi matrix is

computed. Using the delta method (see, e.g., van der Vaart (2000)), we show a central limit theorem

(similar to the central limit theorem from Theorem 2.1) for the ENDOR spectrum Î extracted by the

maximum method.

Subsequently, we address the more complicated case of joint estimation of κ and Σ in the profile

likelihood model. It is demonstrated that the joint estimation of κ and Σ is not consistent. To achieve

a consistent estimator for κ and Σ, one would heuristically expect that a proper treatment of the

randomness in both ϵ and ϕ is required, which the profile likelihood does not provide for ϕ. This

calls for further research (see Section 3.3).

The homoscedastic drift model was developed for ENDOR data recorded at νMW = 263 GHz.

Only a handful of groups worldwide have the equipment to perform experiments at such high

MW frequencies. Far more groups have equipment for experiments at νMW = 94 GHz, the so-

called W-band. However, the homoscedastic drift model introduced by Pokern et al. (2021) does

not fit the spectral data recorded at νMW = 94 GHz because heteroscedastic noise is observed.

The heteroscedasticity is attributed to phase noise of the EPR echo, leading to a new parametric

heteroscedastic drift model, which is presented and tested on ENDOR data in Paper C. It achieves a

fair model fit and a remarkable improvement in the signal-to-noise ratio, compared to the averaging

model.

Structure of the paper:

• Section 1: Introduction.

• Section 2: The homoscedastic drift model is introduced.

• Section 3: We introduce the research area of strong consistency for generalized Fréchet means

and prove two new theorems for a general framework.

• Section 4: The theory developed in Section 3 is applied to prove strong consistency for the

homoscedastic drift model under certain assumptions. Subsequently, a central limit theorem

is proved for the maximum likelihood estimator of κ and, building on it, for I.

• Section 5: In Section 5, we demonstrate with detailed calculations that the joint estimate of κ

and Σ is not consistent.
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• Section 6: In Section 6, we introduce, discuss, and apply the heteroscedastic drift model to

data.

• Section 7: Outlook.

Own contribution: With guidance from my supervisors, I developed and formulated all the proofs

and calculations from Sections 2, 3, 4, and 5. In addition, I worked on early versions of the

heteroscedastic drift model. First, I worked on a nonparametric approach that used a penalized

likelihood. This approach achieved a reasonable model fit and improved signal-to-noise, but suffered

from shrinkage. For this reason, I subsequently worked on a first parametric model. This model was

significantly extended and improved in the bachelor thesis of Markus Zobel, who mainly worked on

the corresponding parts of the paper (Section 6 and corresponding parts of the Supplement).

2.2.2 Paper D: Bayesian Optimization to Estimate Hyperfine Couplings from 19F
ENDOR Spectra

The paper Bayesian Optimization to Estimate Hyperfine Couplings from 19F ENDOR Spectra

is published in Journal of Magnetic Resonance (see https://doi.org/10.1016/j.jmr.2023.107491)

and is included in Section D of this thesis. The paper has been developed in an interdisciplinary

collaboration with the ’Electron Paramagnetic Resonance’ research group headed by Marina

Bennati. From the spectroscopy side, Annemarie Kehl, Markus Hiller, Andreas Meyer, Igor Tkach

and Marina Bennati contributed to the paper. From the statistics group, Benjamin Eltzner, Stephan

F. Huckemann, Yvo Pokern and myself contributed to the paper.

In this paper, physical parameters describing the conformation of two different fluoronitroxide

compounds (one of them is shown in the right panel of Figure 1.2) are estimated, including rigorous

statistical error propagation. Previous spectroscopic work (for example Kehl et al. (2021)) proceeds

by laborious manual adjustment of parameters starting from density functional theory (DFT) derived

values. Uncertainties were specified by varying one physical parameter at a time, thereby obscuring

large correlations of uncertainties in the parameter vector. In contrast, in Paper D we replace manual

parameter tuning by an optimization consisting of Bayesian optimization and a local optimization

that uses an accelerated simulation code to determine the parameters that are closest to the estimated

spectrum. In addition to a better fit between measured and simulated spectra, the approach also

provides the stochastic error of the obtained parameter estimates, by propagating the spectral

uncertainties, made available by the homoscedastic drift model, to the parameters. For this purpose,

we developed the following pipeline for 19F ENDOR spectra (simplified for a single orientation).

Notably, it can also be adapted to general ENDOR spectra.

1. Use the drift model to obtain the estimated spectrum Î ∈ RN and the parametric bootstrap to

obtain the corresponding covariance matrix χ ∈ RN×N (denoising step in the Figure 1.2).
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2. Solve the optimization problem

θ̂ ∈ arg min
θ∈Θ

N∑
ν=1

|Îν − Iν(θ)|2,

where θ is a parameter vector and I(θ) is the output of our spectrum simulation software for a

given θ ∈ Θ. We employ Bayesian optimization to perform a global search, followed by a

local optimization by a gradient-based method (optimization step in the Figure 1.2).

3. Calculate the Jacobi matrix J ∈ Rdim(Θ)×N of the simulated spectrum I(θ) with respect to the

parameter vector θ using finite difference approximation. Approximate the covariance matrix

Cov(θ) of the parameters by linear propagation of Gaussian errors

Cov(θ) ≈ (JT )+χJ+ ∈ Rdim(Θ)×dim(Θ),

where J+ is the Moore–Penrose inverse of J.

We successfully apply this pipeline to two different fluoronitroxide compounds to obtain estimates

for parameter values and the covariance matrices of their errors. For the compound shown in the

right panel of Figure 1.2, the following parameters are estimated (a more detailed explanation of the

individual parameters can be found in the Paper D):

• The hyperfine interaction tensor A, which depends on four parameters, all of which provide

information about the structure of the sample. In particular, the tensor A depends on the so-

called dipolar coupling strength T , from which the interspin distance r between the nitroxide

radical and the fluorine nucleus (see infer step of Figure 1.2) can be calculated directly.

• A chemical shielding tensor σ, a symmetric 3 × 3 matrix (with 6 parameters), from which

structural information about the phenyl ring can be derived.

• For each orientation, two experimental parameters (namely magnetic field strength (denoted

with Field in Figure 2.10) and a line broadening parameter (denoted with lw in Figure 2.10)

are estimated. A statistical analysis has shown that these are not as precisely known as

originally expected and the additional estimation of these parameters leads to a significantly

better fit.

Panel A of Figure 2.10 shows the 19F ENDOR spectra estimated with the homoscedastic drift model

and the spectra simulated with the estimated parameters. The spectral residuals are very close to

white noise, which indicates that the optimization procedure results in a very good fit. In panel B,

the correlation matrix of the corresponding parameters is shown. For example, a strong positive

correlation between the magnetic field strengths and the chemical shielding tensor σ can be inferred.

Structure of the paper:

• Section 1: Introduction.
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Figure 2.10: A: the 19F ENDOR spectra Îo,ν (black) extracted with the homoscedastic drift model,
where o stands for the orientations. In different colors: the corresponding spectra Io,ν(θ̂) simulated
with the values that emerged from the optimization from Paper D. The spectral residuals are
plotted below each of the spectra using the same color. B: correlation matrix of the corresponding
parameters (from top to bottom/left to right): the magnetic field strength parameters for each of the
five orientations, the four parameters of the hyperfine matrix A, the six parameters of the chemical
shielding tensor σ and broadening parameter lw for each of the orientations. The figure is taken
from Paper D, where the individual parameters are explained in more detail.

• Section 2: The experiment, the data (EPR and ENDOR), and data processing with the ho-

moscedastic drift model from Pokern et al. (2021) are presented.

• Section 3: The parameters included in the optimization process are discussed and the spectrum

simulation algorithm is presented and compared with the version of Kehl et al. (2021).

• Section 4: The methodology for estimating the parameters and quantifying the stochastic part

of the error is presented.

• Section 5: The exact procedure for the optimization and the optimization results are presented.

• Section 6: Materials and Methods

Own contribution: Since ENDOR spectra are recomputed each time the loss function is called,

both speed and accuracy are crucial for the success of the optimization. When I started working on

the project, it took several minutes to compute a single spectrum with sufficient accuracy, therefore

one of my first challenges was to speed up the code to allow for optimization. By tensorizing the

code to take advantage of powerful numerical linear algebra subroutines, parallelizing blocks of

code that are independent of each other, and precomputing expressions that do not change in the

optimization pipeline, significant speed improvements were achieved (see Table S1 in Paper D and

Section C in the Supplementary Information of Paper D). Furthermore, I developed (guided by my

supervisors) the code for estimating the parameters and quantifying the stochastic error (Section

4 in Paper D and Section E in the Supplementary Information of Paper D). In regular meetings I
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presented intermediate results, ideas or problems to the spectroscopy group, which often resulted

in adjustments of methods or new data analysis both on the spectroscopy and on our side (Section

3 and 5 in Paper D and section A and F in the Supplementary Information of Paper D). I also

presented the project at two different CRC retreats. Together with Markus Hiller in Hofgeismar in

2021 and together with Annemarie Kehl in Goslar in 2022.
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CHAPTER 3

Outlook

In this section, an overview of ongoing work and some research questions that need to be addressed

in the future are presented.

3.1 Impact of the Paper B on the biological community and regression
between stratified spaces

Recently, the methods from Paper B received the attention from the Richardson group from the

Duke Department of Biochemistry (see Section 1), who are experts in the field of three-dimensional

structure analysis of RNA molecules. The aim of the joint work is to understand the interdependence

of two different scales, namely between the so-called low-resolution scale and the high-resolution

scale corresponding to the suites we have studied in Paper A and Paper B. A suite comprises the

RNA region between two sugar rings. The corresponding low-resolution scale is characterized by 5

atoms: atom N1 or N9 (depending on the base) and atom C1’ at both sugar rings and additionally

atom P’ between the two sugar rings (see Figure 2.1). These atoms were chosen because their

coordinates can be identified even in experiments with low resolution, while the atomic positions

in between can only be determined with less accuracy. In the nascent collaboration, we obtained

filtered PDB data from the Richardson group, which we split into four different sub-data sets

depending on the folding of the ribose sugar ring.

At the moment, we are working empirically on how to parameterize the low-resolution scale suitably

(e.g. in a landmark-based shape space (see Section 1.1.2), with Bookstein coordinates (see for

example Dryden and Mardia (2016)) or using angles, dihedral angles and distances between the

consecutive atoms). One of the objectives is to identify small clusters in the sub-data sets. Therefore,

we are currently developing a new mode hunting method together with the master student Franziska

Hoppe, which is specifically suited to identify small clusters.

A first approach to understand the interdependence of the two scales is to model the low-resolution

scale in the similarity shape space (see Section 1.1.2), opening the possibility to perform PNS

(introduced in Section 1.2) from Jung et al. (2012) since the pre-shapes are represented on a high-

http://kinemage.biochem.duke.edu/
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dimensional sphere, similar to Dryden et al. (2019). Analogously, Torus PCA (see Section 1.2) can

be performed on the high-resolution suites. The respective Euclidean matrices of the residuals can

be used, for example, for regression between the two scales.

A more general approach to understand the interdependence of the two scales is to develop non-

linear regression methods between stratified spaces. The low-resolution scale can be modeled on a

stratified (see Huckemann and Hotz (2014)) landmark-based shape space, and data on the torus can

be mapped to a stratified sphere in the same way as in torus PCA (see Section 1.2). A challenge

is to develop regressions between such spaces (see e.g. Marzio et al. (2014, 2019) for regressions

between spheres).

3.2 Nonlinear Regression for DFT-Calculations

In Pokern et al. (2021) and Hiller et al. (2022), 1H Davies ENDOR spectra of E. coli ribonucleotide

reductase Y•122 were measured, revealing broad features that cannot be explained by a single

conformation of the molecule, but by a distribution of molecular conformations. The distribution

of molecular conformations depends on the dihedral angle α determined by the atoms Cα, Cβ,

C1 and C2 (see left panel of Figure 3.1). Using a computationally intensive DFT calculation,

hyperfine tensors which are elements of the symmetric 3 × 3 matrices Sym(3) were computed

for various values of α in 5 degree steps (depicted in the right panel of Figure 3.1). DFT can

Figure 3.1: Left: the atomic structure of Y•122 for the dihedral angle α = 150◦. The corresponding
hyperfine tensors determined with the DFT calculation are displayed as ellipsoids at the centers of
the atomic positions. Right: the β1 and β2 hyperfine tensors determined with DFT calculation for
different dihedral angle values α.

predict both the distributions of conformations and the map from the conformations to the hyperfine

tensors. However, the computations are very time-consuming and are only approximations. In a first

manuscript, we developed a parametric domain knowledge-driven model which, for a given dihedral

angle α, predicts hyperfine tensors. At the moment, Rajan Alexander (a PhD student supervised

by Yvo Pokern) is working on Gaussian process based modeling on manifolds to learn the map

from the conformations to the hyperfine tensors from DFT data (which may provide an alternative

approach to tackle the regression scenarios from Section 3.1).
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In particular such approaches may tackle more complicated molecules, such as the 19F-labeled

nitrosyl radical (studied by the Bennati group), where, on the one hand, domain knowledge-driven

models are hardly feasible and, on the other hand, the distribution is no longer a simple Gaussian

but will be a mixture of different Gaussians. They may even be informed by molecular dynamics

simulations with appropriate adaptive force field refinement.

3.3 New drift models and asymptotic theory

So far, the homoscedastic drift model exists for ENDOR data recorded at νMW = 263 GHz and we

also developed a heteroscedastic drift model for νMW = 94 GHz Mims (see Mims (1965)) data in

Paper C. For the homoscedastic drift model, asymptotic theory was developed for the case where Σ

is known. Since the joint estimate of κ and Σ is not consistent in the profile likelihood model (see

Section 2.2.1), it would be desirable to obtain a consistent estimate by including the randomness of

ϕ in the statistical model. Possible approaches are to model the ϕ as i.i.d. Gaussian or, to reflect

the likelihood being invariant under permutations of batches, as exchangeable random variables or,

perhaps most realistically, as a Gaussian process. For the latter two approaches, one would need

to generalize the theory about generalized strong consistency of Fréchet means (see Section 1.4)

for random variables that are not i.i.d. Furthermore, an asymptotic analysis for the heteroscedastic

model is future work. Especially challenging is that the mean ψb and the variance Σb are dependent

on each other.

Note that only a handful of groups worldwide have the equipment to perform experiments at

νMW = 263 GHz. Far more groups have equipment for experiments at νMW = 94 GHz and even

more groups have equipment at νMW = 34 GHz or νMW = 9 GHz. Therefore, it is challenging to

develop drift models for all microwave frequencies and pulse sequences to make them applicable to

a large audience. The group of Yvo Pokern at UCL has worked on extending the heteroscedastic

drift model to νMW = 94 GHz Davies (a specific pulse sequence, see Davies (1974)) data. In

addition, the Bennati group has collected experimental data at νMW = 34 GHz and νMW = 9 GHz,

for which drift models are not yet available.

3.4 Impact of the accelerated spectra simulation code

The accelerated spectral simulation code (developed in Paper D) is currently used by Laura Remmel

(from the Bennati group) to work on the so-called fluoride riboswitch (see Ren et al. (2012)). Here,

spin labels are present in the frozen sample in different conformations. The ENDOR spectrum

is a sum of these conformations, and to properly simulate the spectrum, a sum of all individual

spectra has to be simulated. Therefore, the accelerated spectral simulation code is crucial for the

realization of this project. In general, these or similar labelling methods can be applied to many

other biomolecules (e.g. proteins, RNA, DNA).
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Addenda

The addenda below contains Articles A, B, C, and D, which form the basis for this thesis. In

addition, an introduction is included that contains the sources and abstracts of each article.

Principal component analysis and clustering on manifolds
Kanti V. Mardia, Henrik Wiechers, Benjamin Eltzner, and Stephan F. Huckemann

Published in Journal of Multivariate Analysis: https://doi.org/10.1016/j.jmva.2021.104862

Abstract
Big data, high dimensional data, sparse data, large scale data, and imaging data are all becoming new

frontiers of statistics. Changing technologies have created this flood and have led to a real hunger

for new modelling strategies and data analysis by scientists. In many cases data are not Euclidean;

for example, in molecular biology, the data sit on manifolds. Even in a simple non-Euclidean

manifold (circle), to summarize angles by the arithmetic average cannot make sense and so more

care is needed. Thus non-Euclidean settings throw up many major challenges, both mathematical

and statistical. This paper will focus on the PCA and clustering methods for some manifolds. Of

course, the PCA and clustering methods in multivariate analysis are one of the core topics. We

basically deal with two key manifolds from a practical point of view, namely spheres and tori. It

is well known that dimension reduction on non-Euclidean manifolds with PCA-like methods has

been a challenging task for quite some time but recently there has been some breakthrough. One

of them is the idea of nested spheres and another is transforming a torus into a sphere effectively

and subsequently use the technology of nested spheres PCA. We also provide a new method of

clustering for multivariate analysis which has a fundamental property required for molecular biology

that penalizes wrong assignments to avoid chemically no go areas. We give various examples to

illustrate these methods. One of the important examples includes dealing with COVID-19 data.

Learning torus PCA-based classification for multiscale RNA correction with application to
SARS-CoV-2
Henrik Wiechers, Benjamin Eltzner, Kanti V. Mardia and Stephan F. Huckemann

Published in Journal of the Royal Statistical Society Series C: Applied Statistics:

https://doi.org/10.1093/jrsssc/qlad004

Abstract
Three-dimensional RNA structures frequently contain atomic clashes. Usually, corrections approx-
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imate the biophysical chemistry, which is computationally intensive and often does not correct

all clashes. We propose fast, data-driven reconstructions from clash free benchmark data with

two-scale shape analysis: microscopic (suites) dihedral backbone angles, mesoscopic sugar ring

centre landmarks. Our analysis relates concentrated mesoscopic scale neighbourhoods to micro-

scopic scale clusters, correcting within-suite-backbone-to-backbone clashes exploiting angular

shape and size-and-shape Fréchet means. Validation shows that learned classes highly correspond

with literature clusters and reconstructions are well within physical resolution. We illustrate the

power of our method using cutting-edge SARS-CoV-2 RNA.

Drift Models on Complex Projective Space for Electron-Nuclear Double Resonance
Henrik Wiechers, Markus Zobel, Marina Bennati, Igor Tkach, Benjamin Eltzner, Stephan F. Hucke-

mann, Yvo Pokern

Submitted to arXiv: https://doi.org/10.48550/arXiv.2307.12414

Abstract
ENDOR spectroscopy is an important tool to determine the complicated three-dimensional structure

of biomolecules and in particular enables measurements of intramolecular distances. Usually,

spectra are determined by averaging the data matrix, which does not take into account the significant

thermal drifts that occur in the measurement process. In contrast, we present an asymptotic analysis

for the homoscedastic drift model, a pioneering parametric model that achieves striking model fits

in practice and allows both hypothesis testing and confidence intervals for spectra. The ENDOR

spectrum and an orthogonal component are modeled as an element of complex projective space, and

formulated in the framework of generalized Fréchet means. To this end, two general formulations

of strong consistency for set-valued Fréchet means are extended and subsequently applied to the

homoscedastic drift model to prove strong consistency. Building on this, central limit theorems for

the ENDOR spectrum are shown. Furthermore, we extend applicability by taking into account a

phase noise contribution leading to the heteroscedastic drift model. Both drift models offer improved

signal-to-noise ratio over pre-existing models.
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Abstract
ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of para-

magnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of
19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in

biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer.

Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggra-

vated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at

high EPR frequencies and fields (≥ 94 GHz/3.4 Tesla), chemical shift anisotropy might contribute
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to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to

examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR

spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior

knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed,

the latter suffer from finding local rather than global minima of a suitably defined loss function.

Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two

and three spin systems lead to physically reasonable solutions, if minima of similar loss can be

distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained

parameter estimates. Future developments and perspectives are discussed.
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Abstract

Big data, high dimensional data, sparse data, large scale data, and imaging data
are all becoming new frontiers of statistics. Changing technologies have created this
flood and have led to a real hunger for new modelling strategies and data analysis by
scientists. In many cases data are not Euclidean; for example, in molecular biology, the
data sit on manifolds. Even in a simple non-Euclidean manifold (circle), to summarize
angles by the arithmetic average cannot make sense and so more care is needed. Thus
non-Euclidean settings throw up many major challenges, both mathematical and sta-
tistical. This paper will focus on the PCA and clustering methods for some manifolds.
Of course, the PCA and clustering methods in multivariate analysis are one of the core
topics.

We basically deal with two key manifolds from a practical point of view, namely
spheres and tori. It is well known that dimension reduction on non-Euclidean manifolds
with PCA-like methods has been a challenging task for quite some time but recently
there has been some breakthrough. One of them is the idea of nested spheres and
another is transforming a torus into a sphere effectively and subsequently use the
technology of nested spheres PCA. We also provide a new method of clustering for
multivariate analysis which has a fundamental property required for molecular biology
that penalizes wrong assignments to avoid chemically no go areas. We give various
examples to illustrate these methods. One of the important examples includes dealing
with COVID-19 data.

Keywords: adaptive linkage clustering, circular mode hunting, dimension reduction,
multivariate wrapped normal, SARS-CoV-2 geometry, stratified spheres, torus PCA
MSC 2020 Primary 62H11, 62H15, Secondary 62P10, 62H3

1 Introduction

PCA and clustering analysis are well established topics in multivariate analysis. There
are more challenging data that have appeared on non-Euclidean manifolds such as tori,
spheres and shape spaces where these new subjects have evolved significantly in the last
two decades (see e.g. Mardia and Jupp (2000); Dryden and Mardia (2016)). However, the
progress with PCA and clustering for these manifolds has just taken a major step change,
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bringing new mathematical tools. Namely the nested sphere methods for PCA on a sphere
by Jung et al. (2012) and torus PCA by Eltzner et al. (2018). In shape space PCA methods
are now well established (see Gower (1975); Dryden and Mardia (2016)). Using the main
principal component of torus PCA we show how a new clustering method for Euclidean
and non-Euclidean data can be developed.

For non-Euclidean data, extrinsic as well as tangent space PCA methods have been
developed, e.g. by Gower (1975), Fletcher and Joshi (2004), Boisvert et al. (2006), Ar-
signy et al. (2006), and more recently, intrinsic (geodesic) methods by e.g. Huckemann and
Ziezold (2006); Huckemann et al. (2010); Sommer (2013), both of which have been usually
successful. Also, methods based on geodesic flow have been proposed, e.g. Panaretos et al.
(2014); Yao and Zhang (2020). For the special case of data on spheres, intrinsic and extrin-
sic methods come close as tangent space PCs naturally map to great circles. Mimicking
the forward and backward nested nature of Euclidean PCA, Jung et al. (2012) intro-
duced principal nested spheres (PNS) analysis. A generalization to arbitrary manifolds
are barycentric subspaces by Pennec (2018). It is a subtle point that PNS approximates
data not only by great subspheres but also by small subspheres, thereby adding increased
flexibility. For instance, for data on a m-dimensional sphere, the family of main principal
nested circle components (i.e. of small circles) has dimension 3(m− 1) while for data on a
m-dimensional Euclidean space the family of first PCs (i.e. of straight lines) has dimension
2(m−1). For PCA-based clustering, this above property is very desirable because clusters
that would require two Euclidean PCs to represent can often be separated along the main
principal nested circle. We show how they can be separated with statistical guarantees by
circular mode hunting.

However, for the torus case (a direct product space of two or more angles), the above
methods are inadequate as tangent space PCA fails to take into account the periodicity
of the torus and, even worse, geodesic PCA is completely inapplicable because almost
all geodesics densely wind around. To circumvent this dead end, one could attempt at
mapping a torus to a sphere. Indeed, it is well known that any well behaved manifold can be
mapped canonically to a sphere: If Q is simplicial complex with single largest dimensional
cell Q∗ of dimension m ∈ N, then the Alexandroff compactification Q/(Q \ Q∗) of Q∗

(identfying all boundary cells of Q∗ with a single point) carries canonically the topological
structure of Sm, see for example (Hatcher, 2005, Proposition 2.22, phrased in more general
terms). For the torus Tm viewed as a cube [0, 2π]m with opposite faces identified (∼) with
one another, see Definition 1, this would mean to identify all opposite faces with a single
point. In contrast, our torus-to-stratified-sphere (TOSS) map introduced in Section 3.1
preserves torus angles nearly unchanged, thus reducing dimensions of faces less drastically
and preserving much more of the cyclic structure, at the price, however, of arriving at a
properly stratified sphere, as depicted in Fig. A2.

Also data on other spaces can be directly mapped to spheres, for instance data on a
shape space can be horizontally lifted to the pre-shape sphere, e.g. Preston and Wood
(2010); Dryden et al. (2019); Tran et al. (2021), which then allows for PNS, e.g. Dryden
et al. (2019); Yang and Vemuri (2021). Another example is data on a Euclidean space that
can be mapped to a best fitting hypersphere. For these three cases: tori, shape spaces
and Euclidean spaces we illustrate the new clustering method Mode huntIng on the main
principle Nested small Circle of prE-clusters (MINCE) post Adaptive linkaGe clustEring
(AGE). The MINCE method is specifically designed for analysis of biomolecular structure:
its strength lies in detecting clusters correctly and avoiding assignment to wrong clusters,
rather it assigns such data to the outlier set. While no previous knowledge of cluster
numbers is required, clusters with too few members are also assigned to the outlier set.
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We give here advances in one of the important topics of PCA and clustering on man-
ifolds. However, statistics on manifolds is a fast growing area which has been motivated
by challenging and cutting edge applications, see e.g., Huckemann (2021); Mardia (2021);
Pewsey and Garćıa-Portugués (2021). It should be noted that this subject is geometry
driven so somewhat more complicated than the traditional multivariate analysis. In this
paper, after introducing our notation and terminology in Section 2, we give a comprehen-
sive introduction to torus PCA in Section 3 followed by a description of the MINCE post
AGE method in Section 4 where we cover three typical applications. The first two address
SARS-CoV-2 structure clustering on the microscopic level of backbone suites using torus
PCA and on a mesoscopic level using PNS on lifts to the pre-shape sphere of shape spaces.
Using simulated data from a recent benchmark algorithm, the last application illustrates
how to apply the method to Euclidean data. One of the simplest model based methods for
torus PCA is to use the wrapped multivariate normal distribution following indirectly a
multivariate normal formulation for Euclidean PCA. However, this method is not yet well
explored. This is briefly presented in Section 5. We conclude with an overview addressing
some important research questions.

2 Notation and Terminology

Let x := (x1, . . . , xk)
T ∈ Rk denote a column vector with Euclidean norm ∥x∥ :=

√
xTx

and Sk := {y ∈ Rk+1 : ∥y∥ = 1} the unit sphere with spherical distance

dSk(x, y) := arccos(xT y), x, y ∈ Sk .

For a space Q with equivalence relation ∼ we set

Q/ ∼:= {[q] : q ∈ Q}, [q] := {q′ ∈ Q : q′ ∼ q} for q ∈ Q .

We will be dealing with many such quotient spaces, most fundamental is the torus.

Definition 1. For k ∈ {1, 2, . . .}, Tk := [0, 2π]k/ ∼ is the k-dimensional torus where

[0, 2π]k ∋ x := (x1, . . . , xk) ∼ (x′1, . . . , x
′
k) =: x′ ∈ [0, 2π]k

either if x = x′ or if there are different indices i1, . . . , ir, j1, . . . , js ∈ {1, . . . , k}, r, s ∈
{1, . . . , k} with r + s ≤ k such that

xi1 = . . . = xir = 0, xj1 = . . . = xjs = 2π, x′i1 = . . . = x′ir = 2π, x′j1 = . . . = x′js = 0

and xℓ = x′ℓ for all l ∈ {1, . . . , k}\{i1, . . . , ir, j1, . . . , js}. The torus distance for [x], [x′] ∈ Tk
is defined as

dTk([x], [x′]) :=

√√√√
k∑

j=1

(
min{|xj − x′j |, 2π − |xj − x′j |}

)2
.

Usually, subscripts denote coordinate indices. When subscripts denote repeated mea-
surements, coordinate indices, if necessary, will be moved to superscripts in parentheses.
Subscripts in parentheses will denote ordered data.

A3

55



3 Torus PCA

Torus PCA consists of four steps: the torus-to-stratified-sphere (TOSS) mapping, choosing
datadriven torus angles, principal nested subsphere analysis for the torus and statistical
tests against overfitting. In Eltzner et al. (2018) torus PCA has been introduced from a
differential geometric perspective illustrating the deformation undergone by a Riemannian
line element. Here we describe the TOSS map more explicitly, give implementation details
and some asymptotic theory.

3.1 The Torus-To-Stratified-Sphere (TOSS) Mapping

We start with a description of the torus-to-stratified-sphere (TOSS) mapping in two di-
mensions and then generalize to higher dimensions. In particular, the stratified sphere is
defined below.

3.1.1 TOSS in Two Dimensions

Topologically, a two-dimensional torus can be viewed as a two-dimensional sphere with
north and south pole identified, maintaining the torus’ periodicity. Geometrically this can
be achieved by the price of creating a singularity, preferably far away from data in practice.
The following is illustrated in Fig. A1.

Fig. A1: Top left: fundamental region of a 2D torus with boundary identification given
by arrows. Bottom left: a 2D torus (non-isometrically) embedded in 3D Euclidean space.
Bottom middle: cutting the torus open at red circles (the lines x1 = 0 and x1 = 2π in top
left) one arrives at a topological cylinder. Top and bottom right: collapsing the two red
circles to points one arrives at a topological sphere with north (N) and south (S). If the
first angle is halved, torus angles naturally become polar angles. Identification of the red
parts (formerly x1 = 0 and x1 = 2π, now north and south pole) results in a stratification
of the sphere (conveyed by red arrows). The black lines (formerly x2 = 0 and x2 = 2π,
now the front part of the meridian) remain identified in the sphere’s topology (conveyed by
blue arrows). In order to depict a standard torus in the bottom left panel, on the sphere
(bottom right panel), north and south pole are left and right of the sphere.

If the torus is suitably parametrized by angles, and the sphere suitably by polar coor-
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dinates, the corresponding TOSS transformation is particularly simple. To this end recall
the 2D torus and the 2D sphere

T2 := {(x1, x2) ∈ [0, 2π]2}/ ∼,
S2 := {(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2) : θ1 ∈ [0, π], θ2 ∈ [0, 2π)} ,

respectively. Here [0, 2π]2 ∋ (x1, x2) = x ∼ x′ = (x′1, x
′
2) ∈ [0, 2π]2 if either x = x′ or if

xi = x′i and either xj = 0, x′j = 2π or xj = 2π, x′j = 0, {i, j} = {1, 2} .

Obviously the second torus coordinate x2 can be mapped directly to the longitude θ2
while, conveniently, the trigonometric functions preserve periodicity. Then the other coor-
dinate x1 can be halved to be mapped directly to the colatitude θ1. Since the trigonometric
functions are not periodic along a half period only, in order to restore periodicity, north
and south pole, corresponding to θ1 = 0 and θ1 = π, respectively, are identified, giving a
stratified sphere S2/ ∼ as follows: for a pair of points y, y′ ∈ S2 the identification is given
by (y1, y2, y3) = y ∼ y′ = (y′1, y

′
2, y

′
3) if either y = y′ or y = (1, 0, 0), y′ = (−1, 0, 0) or

y = (−1, 0, 0), y′ = (1, 0, 0) (north and south pole).
Indeed, the sphere with north and south pole removed (the manifold stratum), topo-

logically a cylinder, is diffeomorphic to a torus with a circle removed, where this circle
is determined by the first coordinate being zero (or equivalently 2π). However, near the
north and south pole (the singular stratum), S2/ ∼ has no manifold structure.

This leads to the following TOSS mapping in two dimensions:

Φ : T2 → S2/ ∼ , [x1, x2] 7→
[
cos

x1
2
, sin

x1
2

cosx2, sin
x1
2

sinx2

]
. (1)

Note that the entire line x1 = 0 is mapped to the north pole (1, 0, 0) of the sphere,
irrespective of x2, and the line x1 = 2π is mapped to the south pole (−1, 0, 0) on the
sphere, again, irrespective of x2. Since both lines are identical on the torus, north and
south pole of the sphere are identified (preserving the torus’ periodicity), making this space
a stratified sphere as it is no longer a manifold at the identified poles. Fig. A1 illustrates
the TOSS mapping step by step.

3.1.2 TOSS in Higher Dimensions

Recall the k-dimensional torus Tk := [0, 2π]k/ ∼ from Section 2 and the polar representa-
tion for the k-dimensional sphere,

Sk := {y ∈ Rk+1 : ∥y∥ = 1} ,

see, for example, (Mardia et al., 1979, p. 35), given by

y1 := cos θ1, yi :=



i−1∏

j=1

sin θj


 cos θi,

yk :=



k−1∏

j=1

sin θj


 cos θk, yk+1 :=



k−1∏

j=1

sin θj


 sin θk (2)

where θj ∈ [0, π], j ∈ {1, . . . , k − 1} and θk ∈ [0, 2π).
As before, the last torus angle xk can be mapped directly to last polar angle θk, and the

trigonometric functions preserve periodicity. All of the other torus angles (x1, . . . , xk−1)
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can be halved and mapped directly to the other polar coordinates (θ1, . . . , θk−1). Since the
trigonometric functions are not periodic along a half period only, periodicity is restored by
identifying

Sk ∋ y := (y1, . . . , yk+1) ∼ (y′1, . . . , y
′
k+1) =: y′ ∈ Sk ,

if y = y′ or if there is an index 1 ≤ ℓ ≤ k − 1 such that

yj =





y′j , if 1 ≤ j < ℓ ,

±y′j , if j = ℓ ,

y′j = 0 , if ℓ < j ≤ k + 1 .

This leads to the following stratified sphere Sk/ ∼ and the TOSS mapping

Φ : Tk → Sk/ ∼ (3)

[x1, . . . , xk] 7→
[
cos

x1
2
, . . . ,



i−1∏

j=1

sin
xj
2


 cos

xi
2
, . . . ,



k−1∏

j=1

sin
xj
2


 cosxk,



k−1∏

j=1

sin
xj
2


 sinxk

]
,

In particular, Sk/ ∼ has the manifold part

Hk := {y ∈ Sk : y2k + y2k+1 > 0}

and its singular part is itself stratified comprising the disjoint stratified sets

Hℓ/ ∼, Hℓ := {(z, 0) ∈ Rk+1 : z ∈ Sℓ+1, zℓ+1 ̸= 0}

of dimensions ℓ ∈ {0, 1, . . . , k − 2}, where (z, 0) ∼ (z′, 0) if z = z′ or zj = z′j for 1 ≤ j ≤ l
and zℓ+1 = −z′ℓ+1. The singular part is the image of k − 1 (k − 1)-dimensional subtori
(each collapsing, the first subtorus losing one dimension, the last subtorus losing k − 1
dimensions sequentially) of Tk as illustrated in Fig. A2 for dimension k = 3.

3.2 Datadriven Torus Angles

Let X1, . . . , Xn be given data on (Tk, dTk). As detailed above, the TOSS map from Tk
to Sk/ ∼ map is singular on k − 1 subtori of dimension k − 1. Datadriven torus angles
place this singularity set as far away as possible from the data, and they order the angles
according to their marginal variances, either increasing or decreasing. Also for the first
goal, there are two options.

3.2.1 Mean and gap centering for dislodging data from the singularity set

First, we assume that the sample X1, . . . , Xn features a unique sample Fréchet mean µ̂ =
(µ̂1, . . . , µ̂k). This is the minimizer of the sum of squared torus distances dTk , it is not the
mean direction on every circle. For some concepts of different means see e.g. (Dryden and
Mardia, 2016, p. 114-115). Choosing (by translation) torus angles (x1, . . . , xk) such that
µ̂j = π, j ∈ {1, . . . , k}, we speak of mean centered (MC) torus angles. From Arnaudon and
Miclo (2014) it is known that every sample X1, . . . , Xn of a random variable X on (Tk, dTk)
that has a density with respect to the uniform measure of Tk, has an almost surely unique
sample Fréchet mean. Alternatively, choosing torus angles such that every component
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Fig. A2: Illustrating the TOSS map for k = 3. Left: fundamental region of a 3D torus
which is a solid cube with opposite faces identified. Middle: after collapsing the faces
x2 = 0 and x2 = 2π to lines and halving x2, the torus becomes a solid cylinder with
the two bounding disks identified and further boundary identifications depicted by arrows.
Right: after collapsing the faces x1 = 0 and x1 = 2π (now to the points N and S) and
halving x1 one obtains a solid ball with upper and lower hemisphere identified (blue arrows,
canonically conveyed by x3 ∈ [0, 2π]) yielding a topological 3D sphere. Its stratification is
illustrated by red arrows: two opposite open meridians (H1) are identified (making H1/ ∼)
and so are north (N) and south pole (S) of the 3D sphere (making H0/ ∼).

is gap centered (as detailed below) with respect to each of the angular components of
X1, . . . , Xn, we speak of gap centered (GC) torus angles.

In order to gap center a sample of angles ϕ1, . . . , ϕn ∈ [0, 2π) having one single angular

component, for ψ ∈ [−π, π) let ϕψ1 , . . . , ϕψn ∈ [0, 2π) be representatives of

ϕ1 + ψ mod 2π, . . . , ϕn + ψ mod 2π .

Setting ϕψ(1) := min{ϕψ1 , . . . , ϕψn}, ϕψ(n) := max{ϕψ1 , . . . , ϕψn} and Φψ := 2π−ϕψ(n)+ϕ
ψ
(1) (this

is the length of the circular gap between ϕψ(n) and ϕ
ψ
(1)), consider

ψ∗ ∈ argmax
ψ∈[−π,π)

Φψ ,

which is the length of the largest circular gap of the angles ϕ1, . . . , ϕn. Then, ϕ
(g)
j :=

ϕψ
∗

j −ϕ
ψ∗

(1)+Φψ
∗
/2 ∈ [0, 2π), j ∈ {1, . . . , n}, are called largest gap centered representatives

of the original ϕ1, . . . , ϕn. Indeed, the smallest of the gap centered representatives is

ϕ
(g)
(1) = Φψ

∗
/2 and the largest is ϕ

(g)
(n) = 2π − Φψ

∗
/2.

3.2.2 Spread inside and spread outside ordering of torus angles

Recall that X1, . . . , Xn are the torus data, the j-th coordinate of Xi will be denoted by

X
(j)
i , 1 ≤ j ≤ k, 1 ≤ i ≤ n. For mean centered data we define X := µ̂ whereas for gap

centered data we define X
(j)

:= 1
2

(
(X(j))ψ(n) + (X(j))ψ(1)

)
. Then, for 1 ≤ j ≤ k,

σj :=
1

n

n∑

i=1

(
X

(j)
i −X

(j)
)2
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is called the data spread of the j-th torus angle. We consider two permutations τmax and
τmin of the 1, . . . , k determined by

σ2τmax(1)
≥ σ2τmax(2)

≥ · · · ≥ σ2τmax(n)
, σ2τmin(1)

≤ σ2τmin(2)
≤ · · · ≤ σ2τmin(n)

.

The case of setting τ = τmax will be denoted with spread outside (SO) and of setting
τ = τmin with spread insided (SI). As there is no ambiguity in the following, the permuted
torus angles

[xτ(1), . . . , xτ(k)]

will be again denoted by
[x1, . . . , xk] .

Eventually we come up with four possible choices of datadriven torus angles

(MC, SO) or (MC, SI) or (GC, SO) or (GC, SI).

These choices will be important for the MINCE algorithm in Section 4.1.

3.3 Principal Nested Subspheres for the Torus

Before describing in detail, we first give an overview of this section. As principal com-
ponents on the torus we will use principal nested small spheres under the TOSS map as
described below. Principal nested small spheres have been first introduced by Jung et al.
(2012). In our setting, these small spheres will live on the manifold part of a stratified
sphere. In fact, this will be the case if the first principal small subsphere does not pass
through the singular stratum. We will see below that the singular stratum is of codi-
mension 2 on the stratified sphere, which will happen with probability one under realistic
conditions. In fact, the space of principal nested subspheres can be equipped with a
manifold structure. This manifold structure from Huckemann and Eltzner (2018) is first
reviewed. We require that the data are approximated by subspheres with respect to the
torus distance. Hence, we use the distance on the stratified sphere as the distance between
the data under the TOSS map and a subsphere. Details are given in the second part of
this section. Those readers who are not familiar with directional data analysis we want
to remind that small subsphere and great subsphere have the same connotation as small
circle and great circle.

3.3.1 Nested small subspheres

Again, we first give an overview of the details following: Every linear subspace of Rk of
dimension ℓ is determined by k− ℓ linearly independent vectors orthogonal to it and these
vectors can be assumed to be orthonormal. In particular, every full rank linear recombi-
nation of these vectors yields the same linear space, so the space of ℓ-dimensional linear
subspaces of Rk is a quotient space modulo (k − ℓ)× (k − ℓ) orthogonal transformations.
Since an affine subspace of dimension ℓ is obtained by translating a linear ℓ-dimensional
space along each of the vectors orthogonal to it, the corresponding affine space is de-
termined by an additional vector α ∈ Rk−ℓ of signed distances from the origin along the
orthogonal vectors. Finally, every pair of k−ℓ orthogonal vectors and k−ℓ signed distances
yields the same affine subspace if the orthogonal vectors and the distance vector are ob-
tained by suitably applying a common orthogonal transformation to both of them. Since
ℓ-dimensional small subspheres can be viewed as intersections of k-dimensional spheres
embedded in Rk+1 with suitable (ℓ + 1)-dimensional affine subspaces, in the following
definitions, some dimensions are increased by one.
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Definition 2. The space

O(r, s) := {V = (v1, . . . , vr) ∈ Rs×r : vTi vj = δij , 1 ≤ i, j,≤ r}, 1 ≤ r ≤ s ,
of matrices with r orthonormal columns with s components is called a Stiefel manifold.
For 1 ≤ ℓ ≤ k − 1 denote by

AV,α := {x ∈ Rk+1 : vTj x = αj , 1 ≤ j ≤ k − ℓ}

the affine subspace of dimension ℓ+ 1 in Rk+1 determined by V = (v1, . . . , vk−ℓ) ∈ O(k −
ℓ, k + 1) and the vector α = (α1, . . . , αk−ℓ)T ∈ Rk−ℓ. Further, denote by

SV,α := AV,α ∩ Sk (4)

the ℓ-dimensional small subsphere of Sk determined by V ∈ O(k − ℓ, k + 1) and

α ∈ Bk−ℓ := {x ∈ Rk−ℓ : ∥x∥ < 1} .
Finally, let

Pℓ :=
(
O(k − ℓ, k + 1)× Bk−ℓ

)
/ ∼

where (V, α) ∼ (V ′, α′), for V, V ′ ∈ O(k − ℓ, k + 1) and α, α′ ∈ Bk−1 if V ′ = V R and
α′ = RTα for some

R ∈ O(k − ℓ) := O(k − l, k − ℓ) .
Note that we restrict ∥α∥ < 1 above to ensure that the intersection in (4) is not void

or just a point. Moreover, we have

SV,α = SV R,RTα

for any R ∈ O(k − ℓ), so that Pℓ parametrizes all small ℓ-dimensional subspheres of Sk.
In the following theorem, we collect more results from (Huckemann and Eltzner, 2018,
Appendix A).

Theorem 1. With the above notation, for 1 ≤ ℓ ≤ k − 1,

(i) Pℓ is a smooth manifold of dimension (l + 2)(k − ℓ),

(ii) and for (V, α) ∈ O(k− ℓ, k+1)×Bk−ℓ, the spherical projection of from Sk to SV,α is
given by

πSV,α
: Sk → SV,α , y 7→ V α+

√
1− ∥α∥2 (Ik+1 − V V T )y

∥Ik+1 − V V T )y∥ ,

which is the same as first projecting to SV ′,α′ ⊃ SV,α and then to SV,α, where V ′

comprises some of the columns of V and α′ the corresponding elements of α. Here
Ik+1 is the (k + 1)× (k + 1) unit matrix.

Remark 1. With the above notation, for 1 ≤ ℓ ≤ k− 1, V = (v1, . . . , vℓ) ∈ O(k− ℓ, k+1)
and α = (α1, . . . , αk−l)T ∈ Bk−l we have a sequence of nested small subspheres from
dimension k to dimension l:

Sk ⊃ Sv1,α1 ⊃ S(v1,v2),(α1,α2)T ⊃ S(v1,v2,v3),(α1,α2,α3)T ⊃ · · · ⊃ SV,α . (5)

Furthermore, on Pℓ we have the canonical extrinsic quotient distance

dPℓ
([V, α], [V ′, α′]) := min

R∈O(k−l)

√
∥RV −RV ′∥2 + ∥α−RTα′∥2 ,

which is due to restricting the Euclidean distance of R(k−ℓ)×(k+1) × Rk−ℓ to O(k − ℓ, k +
1)× Bk−ℓ.
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The following definition gives the analog of the first Euclidean principal component in
principal nested small spheres analysis.

Definition 3 (Main Principal Nested Circle). The main principal nested circle is the last
element in a sequence of nested nested spheres as in (5), down to dimension ℓ = 1.

3.3.2 Estimating nested small subspheres with respect to the stratified
sphere’s distance

For a given combination of torus coordinates from {MC,GC} and {SO, SI} from Section
3.2, we have the following distance ρℓ(SV,α, x) between a torus element x ∈ Tk and a ℓ-
dimensional subsphere SV,α, (ℓ ∈ {1, . . . , k− 1}, V ∈ O(k− ℓ, k+1), α ∈ Dk−l) of Sk given
by

ρℓ(SV,α, x) := min

{
arccos

(
yTπSV,α

(y)
)
, (6)

min
d=0,...,k−1


arccos



√√√√

d+1∑

j=1

y2j


+ arccos

(
(ỹ(d))TπSV,α

(ỹ(d))
)


}
,

where y = Φ(x) with the TOSS map Φ from (3), and

y(d) =
(y1, . . . , yd+1, 0, . . . , 0)√

y11 + · · ·+ y2d+1

,

is its projection to the stratum Hd/ ∼, d ∈ {0, . . . , k − 1}, as in Theorem 1 (ii), and

ỹ(d) :=
(y1, . . . , yℓ,−yd+1, 0, . . . , 0)√

y11 + · · ·+ y2d+1

is identified with y(d). Hence the distance is either spherical distance, or the spherical
distance to a suitable stratum Hd/ ∼ and the shorter spherical distance from that stratum.

We now use the concept of generalized Fréchet ρ-means in their sample and population
version from Huckemann (2014). Let 1 ≤ ℓ < k and define with respect to the above
distances the sequence of sample stratified principal nested small spheres for X1, . . . , Xn

by

(v̂1, α̂1) ∈ argmin
v1∈Sk

α1∈(−1,1)

1
n

∑n
i=1 ρk−1(Sv1,α1 , Xi) ,

(v̂2, α̂2) ∈ argmin
v̂1⊥v2∈Sk

α2∈
(
−
√

1−α̂2
1,
√

1−α̂2
1

)

1
n

∑n
i=1 ρk−2(S(v̂1,v2),(α̂1,α2)T , Xi) ,

...
(v̂k−ℓ, α̂k−ℓ) ∈ argmin

v̂1,...,v̂k−ℓ−1⊥vk−ℓ∈Sk
αk−ℓ∈(−

√
1−∥α̂′∥2,

√
1−∥α̂′∥2)

1
n

∑n
i=1 ρk−ℓ(S(V̂ ′,vk−ℓ),((α̂′)T ,αk−ℓ)T

, Xi) ,





(7)

where V̂ ′ = (v̂1, . . . , v̂k−ℓ−1) and α̂′ = (α̂1, . . . , α̂k−ℓ−1)
T in the last expression. Similarly
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Fig. A3: Depicting a spherical sample represented in black dots from a distribution with
best fitting population great subsphere. It is best fitted among small subspheres in red
of a smaller size. Its best sample great subsphere fit in blue which is not rejected by the
likelihood ratio test given by (12). This prevents overfitting.

define the sequence of population stratified principal nested small spheres for X by

(v∗1, α
∗
1) ∈ argmin

v1∈Sk
α1∈(−1,1)

E [ρk−1(Sv1,α1 , X)] ,

(v∗2, α
∗
2) ∈ argmin

v∗1⊥v2∈Sk
α2∈(−

√
1−(α∗

1)
2,
√

1−(α∗
1)

2)

E
[
ρk−2(S(v∗1 ,v2),(α∗

1,α2)T , X)
]
,

...

(v∗k−ℓ, α
∗
k−ℓ) ∈ argmin

v∗1 ,...,v
∗
k−ℓ−1⊥vk−ℓ∈Sk

αk−ℓ∈(−
√

1−∥α′∥2,
√

1−∥α′∗∥2)

E
[
ρk−ℓ(S(V ∗′,vk−ℓ),((α∗′)T ,αk−ℓ)T

, X)
]
,





(8)

where V ∗′ = (v∗1, . . . , v
∗
k−ℓ−1) and α

∗′ = (α∗
1, . . . , α

∗
k−ℓ−1)

T in the last expression.

If the argminima above are unique up to the action of the corresponding orthogonal
groups we speak of unique sequences. Indeed, then the above subspheres are uniquely
determined.

3.4 Preventing Overfitting

Suppose that for a random variableX on Sk a great subsphere yields its best approximating
population great and small subsphere. For a sample of X, however, usually a proper (not
a great subsphere) small subsphere will yield its best approximating subsphere. In fact,
in realstic scenarios such a best sample small subsphere may have a rather small size, see
Fig. A3. Clearly, this is overfitting and in order to avoid this, in every step, every sample
small subsphere fit is compared to a sample great subsphere fit, both with respect to the
sample fitted to the preceding subsphere.

Without loss of generality we may assume that the preceding ”best” subspere sample
fit is a great sphere Sℓ ⊆ Sk, 2 ≤ ℓ ≤ k and that the data is already projected to it, i.e.,
X1, . . . , Xn ∈ Sℓ. If it was a proper small subsphere, move its center to the origin and
rescale it to unit radius. Further assume that S1 and S2 are the best fitting great subsphere
and small subsphere of dimension ℓ − 1, respectively, to the sample in Sℓ. Since S2 is a
proper small subsphere, it has a unique center denoted by p ∈ Sℓ and it is of positive radius
less than π. We approximate the marginal distribution of the data radii r from p ∈ Sℓ by
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the model

q 7→ r := arccos(pT q) 7→ C(ρ, σ) f(r; ρ, σ) sinℓ−1(r), q ∈ Sl, r ∈ [0, π], ρ, σ > 0 , (9)

with parameters ρ and σ, a suitable integration constant C(ρ, σ) making the above a
density on r ∈ [0, π] and the folded Gaussian

f(r; ρ, σ) :=
1√
2πσ

(
exp

(
−(r − ρσ)2

2σ2

)
+ exp

(
−(r + ρσ)2

2σ2

))

=
2√
2πσ

exp

(
− r2

2σ2
− ρ2

2

)
cosh

(rρ
σ

)
.

Let us briefly explain the role of sinℓ−1 r in (9). It is the size of the (ℓ − 1)-dimensional
small sphere at distance r from the center p divided by the size of the ℓ-dimensional unit
sphere. As detailed in Eltzner et al. (2018), thus taking the change of volume into account
improves the test from Jung et al. (2012). Numerical experiments by Tsagris et al. (2014)
indicate that the function r 7→ f(r; ρ, σ) has a single node located at r = 0 for 0 ≤ ρ ≤ 1
and located at some r > 0 for ρ > 1. Hence, in order to test the two hypothesis

H0 : ρ = 1 (great subsphere) vs. H1 : ρ > 1 (small subsphere) , (10)

after estimation of p by p̂, resulting in r̂i := arccos p̂TXi, with the log likelihoods, up to a
constant, given by

ℓ(ρ, σ|{r̂i}ni=1) =− n lnC(ρ, σ) + (d− 1)
n∑

i=1

ln sin(r̂i)−
nρ2

2
− n ln(σ)

+
n∑

i=1

(
− r̂2i
2σ2

+ ln cosh

(
r̂iρ

σ

))
,

we have the minus two times log likelihood ratio

λ =2 sup{ℓ(ρ, σ|{ri}ni=1) : ρ ∈ (1,∞), σ ∈ R+} − 2 sup{ℓ(ρ, σ|{ri}ni=1) : ρ = 1, σ ∈ R+} .
(11)

This is, under H0, due to Wilks’ theorem (e.g. (Mardia et al., 1979, Theorem 5.2.1)),
asymptotically distributed as χ2

1. We usually use a 5% significance level for our test, which
means that

H0 is rejected if λ > χ2
1,0.95 ≈ 3.84 (12)

and we reject the great subsphere fit and we keep the small subsphere fit; otherwise, we
keep the great subsphere fit. The normalizing constant C(ρ, σ) and the MLEs for ρ and σ
in (11) are obtained using standard numerical optimization.

3.5 Asymptotics of Torus PCA

In Huckemann and Eltzner (2018) asymptotic results for principal nested spheres on
spheres have been derived. The following similar results hold also for torus PCA, as we
prove below. Taking ℓ = 1 below yields the corresponding assertions on the asymptotics
of the main principal circle.
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Theorem 2 (Asymptotic Consistency). Let X1, . . . , Xn
i.i.d.∼ X be random variables on Tk

and 1 ≤ ℓ < k such that the population sequence from (8),

Sv∗1 ,α∗
1
⊃ S(v∗1 ,v∗2),(α∗

1,α
∗
2)

T ⊃ S(v∗1 ,v∗2 ,v∗3),(α∗
1,α

∗
2,α

∗
3)

T ⊃ · · · ⊃ SV ∗,α∗

determined by V ∗ = (v∗1, . . . , v
∗
k−ℓ) ∈ O(k−ℓ, k+1), α∗ = (α∗

1, . . . , α
∗
k−l)

T ∈ Bk−ℓ is unique.
Then, considering any measurable selection of sample sequences from (7)

Sv̂1(n),α̂1(n) ⊃ S(v̂1(n),v̂2(n)),(α̂1(n),α̂2(n))T ⊃ · · · ⊃ SV̂ (n),α̂(n)

determined by

V̂ (n) =
(
v̂1(n), . . . , v̂k−ℓ(n)

)
∈ O(k−ℓ, k+1) and α̂(n) =

(
α̂1(n), . . . , α̂k−ℓ(n)

)T ∈ Bk−ℓ

we have that

SV̂ (n),α̂(n) converges almost surely to SV ∗,α∗ as n→∞ .

Proof. Since Tk is compact, and so is every Pℓ, and since every ϕℓ is continuous, the
assumptions for (Huckemann and Eltzner, 2018, Theorem 4.1) hold, yielding the assertion.

Remark 2 (Asymptotic Normality). With the notation and assumptions of the above
Theorem 1, under additional technical assumptions from (Huckemann and Eltzner, 2018,
Assumption 3.10), with a local chart f : U → R(ℓ+1)(k−ℓ) near [V ∗, α∗] ∈ U open ⊆ Pℓ
with f([V ∗, α∗]) = 0 and a suitable symmetric positive definite matrix Σ, as n→∞,

√
nf([V̂ (n), α̂(n)])

D→ N (0,Σ) .

If the above additional assumptions are not met, slower rates may be possible as discussed
in Eltzner and Huckemann (2019).

4 Mode Hunting on the Main Principal Nested Circle Post
Adaptive Clustering (MINCE post AGE)

We give a new method of clustering for manifold data which involves pre-clustering by an
adaptive clustering procedure followed by a refinement which uses the main nested principal
circle (component). Indeed, this provides a new powerful tool to cluster Euclidean data. As
detailed in Section 1, the main principal nested circle offers more degrees of freedom than
the main Euclidean principal component. Consequently, PNS allows for a simple and rather
powerful dimension reduction method, not only on spheres and tori but also on general
manifolds including Euclidean space. Recall from Section 1, that PNS is parsimonious as it
also allows for curved main principal components (circles) that in Euclidean PCA require
two principal components. We illustrate our method for three data sets: data on a torus,
data on a shape space and Euclidean ”worms” data. The first two examples are taken
from the SARS-CoV-2 RNA backbone data from the protein data bank and for the last
example we obtain our benchmark data from the worms simulation software (Sieranoja
and Fränti (2019)). First, let us detail the MINCE post AGE method Mode huntIng on
the main principle Nested small Circle of prE-clusters post Adaptive linkaGe clustEring).
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4.1 Overview of the MINCE post AGE method

The MINCE post AGE method clusters a data set on an original Euclidean or non-
Euclidean space by proceeding along the following steps:

1. Pre cluster the data set with a given method of choice, for instance with AGE as
detailed in Section 4.2 below.

2. Map every pre cluster to a sphere or a stratified sphere, depending on the topology
or geometry of the original non-Euclidean space. For torus angles, use a combination
of {MC,GC} × {SI, SO} from Section 3.2. If the original space is

• a torus, Section 3.1 above details the torus-to-stratified-sphere (TOSS) map,

• a shape space, Section 4.4 below details how to map the data to a horizontal
sphere,

• a Euclidean space, Section 4.5 below details how to map onto a sphere.

3. Subject each pre-cluster mapped to a sphere to principal nested spheres (Section 3.3)
and compute its main principal small circle (the last principal nested sphere)

4. Subject the pre-cluster data projected to the main principal small circle to circular
mode hunting as detailed below.

5. Assign every mode found with statistical significance as detailed below a post cluster
and return all these post clusters as the final clustering result. For original torus
data, if only one mode has been found for this pre-cluster and other combination of
{MC,GC} × {SI, SO} for torus angles in Step 2 have not been tried, go to Step 2
and try another combination.

0 2π

small bw

large bw

Fig. A4: Adapted from Wiechers et al. (2021): As the circular version of the test from
Dümbgen and Walther (2008) for the number of modes for the data (black asterisks) yields
a significant number of 2 (intervals containing an antimode with statistical significance are
shown in orange), density smoothing with a wrapped normal is performed with varying
bandwidths. While the blue density (small bandwidth) features 6 modes, the brown density
(low bandwidth) features the right number of 2 modes. For the two modes’ case the minima
serve as cluster boundaries (red verticals).

4.1.1 Post clustering based on circular mode hunting

Suppose that 0 ≤ X(1) < · · · < X(n) < 2π are the ordered data projected to the last
(the one-dimensional) nested principal nested small sphere component, which is, after
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re-scaling, the circle S1 = [0, 2π)/ ∼. Recall that this is the main component. Let

Xi,j,k :=





X(i)−X(j)

X(k)−X(j)
, if 1 ≤ j ≤ i ≤ k ≤ n ,

X(i)−X(j)

2π+X(k)−X(j)
, if k < j ≤ i ≤ n ,

2π+X(i)−X(j)

2π+X(k)−X(j)
, if 1 ≤ i ≤ k < j ,

be slopes normalized to lie in [0, 1]. Then, for any pair (j, k) ∈ {1, . . . , n}2 with j ̸= k,
define

Tj,k :=

{ ∑k−1
i=j+1 (2Xi,j,k − 1) , if j < k ,∑n
i=j+1 (2Xi,j,k − 1) +

∑k−1
i=1 (2Xi,j,k − 1) , if k < j ,

where undefined sums are zero.
We can reasonably assume that the projected angular data has come from a circular

distribution with a density. In that case the sign of Tj,k indicates whether this density
is increasing or decreasing between (in the circular sense) X(j) and X(k). An increase
followed by a decrease indicates a mode of the density and a decrease followed by an
increase an antimode. This gives rise to a test simultaneously considering all distinct pairs
(j, k) as above, inferring an increasing or decreasing density between X(j) and X(k), if
Tj,k > cj,k(α) or Tj,k < −cj,k(α), respectively, with statistical significance α ∈ [0, 1]. For
the non-circular linear case, i.e. inferring about a density on R, defining Tj,k in the obvious
non-circular way, optimal cj,k(α) have been determined and simulated by Dümbgen and
Walther (2008). In MINCE we adapt their method and estimate the statistically significant
number of modes (each corresponding to a cluster) based on Monte Carlo simulations for
the circular uniform distribution. Then, antimodes (their number equals the number of
modes on the circle) serve as cluster boundaries and these are located using the WiZer
software from Huckemann et al. (2016) which is the circular analog of the SiZer from
Chaudhuri and Marron (1999, 2000). Due to causality of kernel smoothing (the number of
modes is nonincreasing with increasing bandwidth) of data with the normal distribution
on the line (see Lindeberg (2011)) and the wrapped normal on the circle (see Huckemann
et al. (2016)), respectively, the number of modes and antimodes is non-increasing with
bandwidth, so that the smoothed density will have the statistically significant number of
modes found above for some bandwidth interval. Then, post cluster boundaries will be set
to local minimal loci of the wrapped normal (see Section 5) smoothed densities with the
middle bandwidth as illustrated in Fig. A4.

4.2 Overview of the AGE Method

From the abundance of clustering methods for data X1, . . . , Xn in a metric space (Q, d),
for clustering directional data see e.g. Pewsey and Garćıa-Portugués (2021), we discuss
here briefly the frequent issue of detecting clusters with varying densities as depicted in
left panel of Fig. A5 from a hierarchical linkage tree clustering viewpoint.

Recall that in hierarchical linkage tree clustering, see e.g. (Mardia et al., 1979, pp.
369–375), initially each data point is its own cluster, defining the n leaves of the cluster
tree, eventually obtained. As long as there are at least two elements in the running cluster
list, the clusters with the smallest distance are removed from the running cluster list and
the union of these two is added to the running cluster list. The cluster tree is expanded
by creating a parent node over the two nodes that correspond to the merged clusters and
adding branches that connect them to the parent node. The value indicating the distance
between the two merged clusters is assigned to the node. The iteration terminates when
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the running list contains only one cluster that includes all the data; this forms the root of
the tree.

For the distance of two clusters A and B typically average linkage, also known as
unweighted pair group method with arithmetic mean, developed by Sokal and Michener
(1958) and single linkage, developed by Florek et al. (1951), are often used:

da(A,B) :=
1

|A| · |B| ·
∑

X∈A

∑

Y ∈B
d(X,Y ) , (13)

ds(A,B) := min
X∈A,Y ∈B

d(X,Y ) , (14)

respectively. Importantly, the node values increase monotonically for both linkage meth-
ods, for if clusters A and B are merged to form the cluster A∪B and C is another cluster,
the distance between A and B is smaller than between A and C, and B and C, respectively,
and hence we have

da(A ∪B,C) =
1

|A ∪B| · |C| (|A| · |C| · da(A,C) + |B| · |C| · d(B,C)) ≥ da(A,B) ,

ds(A ∪B,C) = min
X∈A∪B,Y ∈C

d(X,Y ) = min
{
ds(A,C), ds(B,C)

}
≥ ds(A,B).

Cutting the tree at a certain height (distance value) c and taking the running cluster list
where the last node with distance value smaller than c was added to the cluster tree, a
specific clustering is obtained. If clusters feature different densities, however, as in the left
panel of Fig. A5, less dense clusters may be found at the price of joining nearby denser
clusters or the latter are discriminated at the price of missing less dense clusters. This can
be avoided by allowing varying densities in iterative clustering as proposed by Wiechers
et al. (2021), see also Langfelder et al. (2007) and Obulkasim et al. (2015).

Fig. A5: Left: original data set featuring four clusters, all of which cannot be separated
by single or average linkage clustering as the first features a large spread, the other three
are very dense, two of them nearby. Right: all of the clusters are retrieved by AGE except
for two outliers from Cluster 1 (not shown in the right panel).

Algorithm 1 (Adaptive Linkage Clustering (AGE) by Wiechers et al. (2021)). Inputs are

• the three tuning parameters (dmax, κ, q):

dmax = maximal outlier distance, controlling cluster density,
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Fig. A6: Illustrating four iterations of the AGE Algorithm 1 applied to the data of Fig.
A5 (with cluster colors taken from there) with node labels indicating distance of clusters
joined and branch labels indicating the number of data points represented. For each iterate
the initial cluster list C, the current minimal cluster size sP and the resulting auxiliary
list L (before Step 8) are shown below. Further details are given in the text.

κ = minimal cluster size, ensuring that mode hunting from Section 4.1, later
applied, has sufficient power to separate one-dimensional pre-clusters (for all of
the applications below we use κ = 40),

q = relative branching distance, ensuring that two clusters are only split if their
parent node’s distance value is significant in relation to the greatest distance
value of its child nodes (for the applications below it is chosen by the following
rule of thumb: In case of single linkage, it is chosen smaller than all d/r−1 where
r is within cluster neighboring point distance and d is distance to neighboring
clusters) in case of average linkage, r is cluster radius;

• and n data points P = {X1, . . . , Xn}.
Let R be the outlier list and C be the cluster list, each of which are initially empty. They
are filled iteratively as follows.

1. Compute the (single, average or other) linkage clustering tree from P .

2. Perform a tree cut at distance dmax to obtain a clustering, move from P to R all
data points that are in clusters with less than κ data points.

3. Compute the linkage cluster tree for the new P as in Step 1.

4. Set sP =
√
|P |+ κ2 (inspired by the square root rule of thumb used in histogram

binning).

5. Create an empty list L of clusters.

6. Begin at the root and always follow the branch with more points at each node. From
each node add the child node corresponding to the smaller subcluster to L

(a) if it contains more than sP data points,

(b) and if the q-fold of its parent node’s distance value is greater than the two
children nodes’ distance values.

7. At the last node, where the smaller subcluster is added to L, also add the larger
subcluster to L
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8. Consider L:

• if L is empty, move the union of all data points from P to C; these correspond
then to one single cluster,

• else, add the largest cluster in L to C and remove its points from P .

9. If |P | > 0, go to Step 1.

10. Return the clusters list C and the outlier list R.

The four panels of Fig. A6, from left to right, illustrate the iteration in AGE with single
linkage and the tuning parameters q = 0 (reflecting that the distance of neighbors within
the small clusters is of the same order as the distance between the two small clusters) and
dmax chosen such that at most 1% of the suites in the single linkage tree are in a branch
with less than κ+ 1 data points. Indeed, AGE correctly retrieves all clusters at the price
of 2 outliers from 370 original data points, see right panel of Fig. A5.

Iteration 1: In the first iteration, C is initially empty and 2 points from the true Cluster
1 are removed from P as outliers. At the top node the smaller branch comprising
true Clusters 2, 3 and 4 is added to L as a single cluster and following the larger
branch, the iterate terminates and adds the remains of Cluster 1 to L, which, as
being largest is hence moved to C.

Iteration 2: Thus, in the second iterate, C contains Cluster 1 which has been removed
from P . At its top node, now the branch comprising Clusters 3 and 4 is largest.
Hence, the smaller branch, comprising only Cluster 1 is added to L. Then, in the
larger branch, one of the equally large Clusters 3 and 4 is considered smaller, this is
added to L and finally, as the iterate terminates, also the other cluster is added to
L. Finally the largest cluster in L, which is Cluster 2, is moved to C.

Iteration 3: In the third iteration, only the equally large Clusters 3 and 4 are left in P ,
first one is added to L, then the other one, is then moved to C.

Last iteration: In the last iteration, only Cluster 4 is left, no nodes are left, so Cluster
4 as the only cluster left in P is then moved to L and then to C. Then, P is empty
and AGE terminates.

4.3 Example: MINCE post AGE on a Torus

Since the exact geometric configuration of a biomolecule is decisive for its function, it is
of high interest to correctly reconstruct this structure, see Schlick and Pyle (2017). This
is usually done with elaborate methods assessing electron density from which with inverse
methods the locations of atom nuclei are inferred Jain et al. (2015). As this method
is expensive and time consuming, other methods learn how to predict geometry – also
called second order and higher order structure – from the sequences of nucleic bases (RNA
structure) or amino acids (protein structure) – also called primary structure, see, e.g.,
Schlick and Pyle (2017).

Typically such learning methods rely on classification and clustering of geometric struc-
ture Frellsen et al. (2009); Olsson et al. (2011) and in the following application we use rep-
resentations on the torus T7 comprising the seven dihedral angles of RNA suite structure,
detailed in Fig. A7.

From the protein data base (PDB), Berman et al. (2000), we have selected (dated
4/21/2021) 13,439 SARS-CoV-2 and related structures containing atom positions and
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Fig. A7: Adapted from Wiechers et al. (2021): Schematic structure of suite (from one
sugar ring which is attached to a nucleic base to the next sugar ring) number i within an
RNA backbone with seven dihedral angles (red) yielding the suite’s geometric shape.

mesoscopics (detailed in Section 4.4) compiled in a git repository by the Coronavirus
Structural Task Force (CSTF) headed by Andrea Thorn. Fig. A8 illustrates this data
set by a scatterplot relating pairs of dihedral angles with one another (for a discussion
on dihedral angles in biominformatics see e.g. Mardia (2013)). Notably, such data may
contain clashes, in particular reconstructed hydrogen nuclei, which are not found by elec-
tron density as their electrons usually move to bonded neighboring nuclei, may collide
with other atoms’ nuclei reconstructions. Since clashes of atom positions are physically
not possible, clash correction, i.e. clash free reconstruction of molecular geometry is one
major challenge, see e.g. Murray et al. (2003).

We have applied the MINCE post AGE method of Section 4.1. For AGE, Algorithm
1, we choose tuning parameters q = 3/20 (taking into account that, due to chemical
constraints, cluster centers are often highly concentrated and should thus not be separated
from their less dense neighborhood) and dmax such that at most 25% of the suites in the
average linkage tree are in a branch with less than κ + 1 data points (for this and all
applications here, we use κ = 40). This leads to 21 clusters. Their sizes and the size of
the outlier set are listed in Table A1. The clusters’ pairwise dihedral angle scatterplots
are depicted in Fig. A9.

In Wiechers et al. (2021) we have analyzed a similar data set, with higher resolution and
removed clashes using this methods. However, the current data set is of lower quality and
contains an unknown number of clashing suites (suite configurations that are chemically
not possible and thus cannot be assigned to clusters). For this reason, the choice of dmax

anticipates a high but realistic number of outliers. Still most of the clusters from Table
A1 roughly correspond to non clashing suite clusters found in Wiechers et al. (2021), this
is in particular the case for the first two clusters.

Table A1: Clusters and outliers (numbers and sizes, the relative amount of outliers 24.4%
is governed by the choice of dmax) found by MINCE post AGE, as depicted in Figre A9,
in SARS-CoV-2 and related suite structures from the protein data base (PDB), Berman
et al. (2000).

Cluster 1 2 3 4 5 6 7 8 9 10 11 12
Size 7206 687 245 234 222 201 193 157 115 109 98 91

Cluster 13 14 15 16 17 18 19 20 21 R
∑

Size 81 77 64 64 58 54 50 48 44 3281 13439
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Fig. A8: Scatterplots pairwise relating all seven dihedral suite angles of 13,439 SARS-
CoV-2 and related structures from the protein data base (PDB), Berman et al. (2000).

4.4 Example: MINCE post AGE on a Shape Space

Usually, biomolecules come as long strands, along a backbone of repetitive structures, see
Fig. A7. In RNA such a repetitive structure is a sugar ring (called ribose) forming a
suite’s boundary and mesoscopics are shapes of landmark configurations where landmarks
are placed at the centers of k subsequent sugar rings, cf. Fig. A10. Here, as in Wiechers
et al. (2021) we consider k = 6, roughly corresponding to a half helix turn in helical
configurations. Combining suite clustering with mesoscopic clustering is a powerful tool
in RNA structure classification based on statistical learning as detailed in Wiechers et al.
(2021). Here we cluster the mesoscopics of the SARS-CoV-2 data set described in the
previous Section 4.3. To this end, each of the 13,439 mesoscopics is represented in the
shape space Σ6

3 of three-dimensional six-landmark configuration, see Dryden and Mardia
(2016), which, as a metric space, allows for pre-clustering with AGE, Algorithm 1, with
tuning parameters q = 0.0005 (reflecting that some within cluster distances are almost
of the same order as their distances to neighboring clusters) and dmax such that 40% of
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Fig. A9: Scatterplots of data in Fig. A8, now depicting the 21 clusters (Table A1) found
by MINCE post AGE.

the mesosocopic shapes in the average linkage tree are in a branch with less than κ + 1
data points (for this and all applications here, we use κ = 40). In addition to the remarks
on data quality in the previous section, the mesoscopic shape data is geometrically very
variable and contains a high number of small dispersed clusters. Discriminating those from
outliers requires higher sample sizes than used here, see e.g. Jain et al. (2015), so in order
not to misclassify parts of larger disperse clusters, we allow here for 40% of outliers.

For the MINCE method of Section 4.1, every pre-cluster is mapped to the pre-shape-
sphere in optimal position to its Procrustes mean (see e.g. Dryden and Mardia (2016))
and PNS using spherical distance (see e.g. Dryden et al. (2019)) is conducted. Typical
shapes of clusters are depicted in the left panel of Fig. A11. In total, 15 clusters have been
found. Table A2 lists their sizes as well as the number of outliers. Notably, Clusters 5 and
6 depicted in the right panel of Fig. A11 have been separated by circular mode hunting.
More details can be found in Wiechers et al. (2021).
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3

suite i

Fig. A10: Adapted from Wiechers et al. (2021): Centers of the sugar rings from Fig. A7,
their connecting backbones (red and black lines) giving 5 suites (two before and two after
suite i) yielding the mesoscopic shape (blue lines).

Fig. A11: Left: Five mesoscopic clusters found by MINCE post AGE, that can be well
displayed together with cluster numbers in parentheses from Table A1: black (1), red (5),
green (6), magenta (9) and blue (10). Right: A pre-cluster divided into Cluster 5 (green)
and Cluster 6 (green) by circular mode hunting.

Table A2: Clusters and outliers (numbers and sizes, the relative amount of outliers 43.9%
is governed by the choice of dmax) found by applying MINCE post AGE to the mesoscopic
shape data detailed in Section 4.3. Asterisks indicate clusters displayed in Fig. A11.

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R
∑

Size 5788 385 295 180 145 115 100 80 76 69 68 61 60 57 56 5904 13409

4.5 A New Clustering Method: MINCE post AGE on a Euclidean Space

We apply MINCE post AGE on a Euclidean space, thus mapping every pre-cluster found
by AGE to a sphere, performing PNS and, as key ingredient, on the main PNS component,
which is a circle, conducting circular mode hunting to obtain post clusters. This leads to
a new clustering method which we now describe.

First of all, we need to define a mapping from a data pre-cluster x1, . . . , xn ∈ Rd to
a suitable sphere. While several options come to mind, we use the following method.
Estimate a hypersphere of dimension d − 1 in Rd center µ ∈ Rd and a radius r > 0 by
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Fig. A12: Coordinate scatter plots of the challenging worms data set of 20 worm-like
original clusters in R7 produced with an adaption of the Matlab script from Sieranoja and
Fränti (2019).

minimizing the sum of squared residuals

n∑

j=1

(r − ∥µ− xj∥)2 .

Here, we test against overfitting by comparing with a best fitting affine hyperspace Av,α
from (4) defined by v ∈ Sd and α > 0, minimizing the sum of squared residuals

n∑

j=1

(
α− vTxj

)2
.

For an illustration a worms data set has been created using the Matlab script from
Sieranoja and Fränti (2019) for dimension m = 7. In total, 12, 711 data points in R7 have
been produced (for computational feasibility we have changed some of the script’s default
flags to reduce the number of points produced by a factor of approximately 5) in 20 clusters
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Fig. A13: Coordinate scatter plots of clusters found by applying MINCE post AGE to
the challenging worms data set in Fig. A12.

consisting of Gaussian samples centered at initially random positions that drifted in each
step into a random direction with increased variance, thus producing worm-like samples
similar to those depicted in Fig. A12. For AGE, Algorithm 1, choosing tuning parameters
q = 0 (reflecting that within cluster neighboring distances may be of the same order as
between cluster distances) and dmax such that 10% of the elements in the single linkage
tree are in a branch with less than κ+1 data points (for this and all applications here, we
use κ = 40), the MINCE post AGE method from Section 4 detailed above has been able
to correctly retrieve all 20 clusters, only assigning approximately 10% to the outlier set.

4.5.1 The challenging worms data set

For the second experiment, we produce more challenging clusters of varying members and
density. To this end the script of Sieranoja and Fränti (2019) has been modified:

• The step-length parameter stepl has been increased from the default value of 2, to
the value of 5, so that the individual clusters become longer.
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Table A3: MINCE post AGE cluster sizes (2nd colomun) ground truth cluster (sizes in
3rd column) numbers (1st column) and number of data points classified as outliers (4th
column) of the challenging worms data set depicted in Fig. A12.

Cluster number MINCE post AGE size ground truth size unassigned by MINCE post AGE
1 666 768 102
2 666 666 0
3 842 891 49
4 619 720 101
5 604 708 104
6 558 588 30
7 503 540 37
8 589 657 68
9 602 648 46
10 900 900 0
11 486 486 0
12 493 666 173
13 456 585 129
14 714 714 0
15 678 678 0
16 407 543 136
17 405 426 21
18 353 480 127
19 369 369 0
20 530 678 148

Outliers 1271 0 0
Total 12711 12711 1271

• Initially the variance range parameter had value var range = [10, 50], which meant
that for every cluster the variance moved from 10 at first sampling to 50 at the end
of sampling. Now for each cluster a random variable X uniform in [0, 1] is drawn
and setting var range = [X ∗ 20, X ∗ 100] individually, yields clusters of different
densities.

• To obtain clusters with different numbers of elements, the number of steps, called
numsteps is now randomly sampled for each cluster from a normal distribution with
expected value µ = 200 and standard deviation σ = 40. The number is rounded to
the closest integer. As in the original script, in each step 3 points are sampled.

The challenging worms data set’s ground truth clusters are displayed in Fig. A12. Not
changing our tuning parameters for AGE in Algorithm 1, from the challenging worms data
set MINCE post AGE has correctly identified 19 out of the 20 clusters, two clusters could
not be separated with statistical significance. Setting q = 1/5, however, MINCE post
AGE has been able to retrieve all 20 clusters, no data point has been assigned to a wrong
cluster, 7 clusters have been retrieved perfectly and 1,217 data points have been classified
as outliers. For comparison the retrieved clusters are illustrated in Fig. A13 and their true
and retrieved cluster sizes as well as the number of assigned outliers are listed in Table
A3. Notably, this has been achieved at the price of classifying 10% as outliers.
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5 PCA on the Torus through Wrapped Normal Distribu-
tions

So far we have given PCA methods for a torus which are intuitive but one simple way is to
follow classical PCA and use the wrapped normal distribution in place of the multivariate
normal distribution. In fact, the underlying covariance matrix of the multivariate wrapped
normal distribution has simple explicit expressions for its trigonometric moments. We
describe the procedures suggested by Kent and Mardia (2009) and propose a new method.
Suppose that θ is a vector of angles following a wrapped normal torus distribution; that
is, θj = Xj mod 2π, j ∈ {1, . . . , p}, where X ∼ Np(0,Σ). Then it can be shown that

var(cos θ) = DAD − ccT , var(sin θ) = DBD, cov(cos θ, sin θ) = 0. (15)

where the elements of the vector c and matrices A,B are given by

cj = exp{−1

2
σjj}, ajk = cjck cosh(σjk), bjk = cjck sinh(σjk)

and D = diag(c). Thus Σ can be recovered from the trigonometric moments through the
equation

Σ = sinh−1(D−1var(sin θ)D−1). (16)

Here the notation sinh−1(·) applied to a matrix means that the inverse sinh function,
sinh−1(u) = log(u+

√
u2 + 1), is applied to each element of the matrix.

These results suggest a method to estimate Σ from an n× p matrix of torus data:

(a) Calculate the sample first order trigonometric moments for the p angles, and rotate
each angle so that the resultant vector points towards the positive horizontal axis,
leading to an estimate of D.

(b) Calculate the sample second trigonometric moments to get an estimate of corre-
sponding to var(sin θ).

(c) Now use (16) to produce an estimate of Σ.

Similarly, we can also estimate Σ from var(cos θ) using Σ = cosh−1(D−1var(cos θ)D−1) +
11T where 1 is a p-dimensional vector of ones; let these estimates be denoted by Σ̂1 and
Σ̂2 respectively. Now we can obtain a pooled estimate of Σ as given in Kent and Mardia
(2009). Another approach is to get the PCA from each of these estimates and since from
(15) cov(cos θ, sin θ) = 0 , we can get back into the original space as follows. For example,
if y1 and z1 are the first principal components from Σ̂1 and Σ̂2 respectively then the first
angular component ϕ1 say can be obtained by setting y1 = r sinϕ1, z1 = r cosϕ1 and so
on. This and other proposals of Kent and Mardia (2009) need further investigation.

6 Discussion

We have used the word manifold broadly which includes shape spaces Σkm that are no longer
manifolds but stratified spaces, if objects of dimension m = 3 or higher are considered.
Future work aims at extending MINCE to more general manifolds and stratified spaces.

With the AGE algorithm presented, the MINCE method is specifically designed to
deliver perfect cluster assignment, thus avoiding wrong cluster assignment at the price of
a potentially larger outlier set. In particular, this is desirable in view of application in
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biomolecular structure analysis. The AGE algorithm comes with three tuning parameters
that, in future applications, can be learned over larger databanks in molecular biology.
Notably, MINCE post AGE requires no previous knowledge about the numbers of clusters
to be found.

At the core of MINCE is a data adaptive transformation from a Euclidean, manifold
or stratified space to a sphere, possibly a stratified sphere in order to preserve as much
topology and geometry of the original space. For the Euclidean data from Section 4.5 a
different method chooses suitable points p, q ∈ Rd which become north pole (0, . . . , 0, 1)
and south pole (0, . . . , 0,−1), respectively, of Sd to which data are mapped via inverse
stereographic projection

Rd ∋ x 7→ x− p
∥x− q∥ =: y 7→

(
2y

1 + ∥y|∥2 ,
1− ∥y∥2
1 + ∥y|∥2

)
∈ Sd ⊂ Rd+1 .

Alternatively q = ∞ can be chosen (yielding the one-point Alexandroff compactification
of Rd mentioned in Section 1) such that more simply, y = x − p. Additionally choosing
p = 1

n

∑
j=1 xj seems canonical.

As another approach to turn from a metric space into spherical data, one may use
multidimensional scaling, not with a Euclidean space but with an underlying sphere. For
data on a torus, the ST-PCA approach of Zoubouloglou et al. (2021) thus refines our torus
PCA by reducing distortions, followed by PNS.

Finally, let us point to statistical testing, which relies asymptotically on central limit
theorems. Due to curvature, in particular on positive curvature manifolds, limiting rates
for quite large sample sizes can considerably deviate from Euclidean analogs (underlying
Remark 1) for a large number of reasonable data models, requiring specifically designed
bootstrap methods, see Hundrieser et al. (2020). This new effect has been called finite
sample smeariness by Hundrieser et al. (2020) and it is an open problem how this manifests
in the asymptotics of the main principal nested circle.
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Abstract

Three-dimensional RNA structures frequently contain atomic clashes. Usually, cor-
rections approximate the biophysical chemistry, which is computationally intensive and
often does not correct all clashes. We propose fast, data-driven reconstructions from
clash free benchmark data with two-scale shape analysis: microscopic (suites) dihe-
dral backbone angles, mesoscopic sugar ring centre landmarks. Our analysis relates
concentrated mesoscopic scale neighbourhoods to microscopic scale clusters, correct-
ing within-suite-backbone-to-backbone clashes exploiting angular shape and size-and-
shape Fréchet means. Validation shows that learned classes highly correspond with
literature clusters and reconstructions are well within physical resolution. We illustrate
the power of our method using cutting-edge SARS-CoV-2 RNA.

Keywords: angular shape analysis, clash correction, frameshift stimulation element,
Fréchet and Procrustes means, geodesic projection, mesoscopic shape and microscopic
shape, size-and-shape space

1 Introduction

Understanding the structure of active biomolecules is ever more important for maintaining
and improving human health, as has been summarized by Schlick and Pyle (2017). In par-
ticular, this pertains to RNA molecules in designing drugs which target specific structures
(see Batool et al. (2019)), as recently impressively demonstrated by the worldwide effort
confronting the SARS-CoV-2 (severe acute respiratory syndrome) virus responsible for the
COVID-19 (corona virus disease) pandemic (see Croll et al. (2021)).

Extracting RNA primary structure (sequencing) is nowadays fairly well feasible using
currently available gene sequencing technology (e.g. Wang et al. (2009)). Predicting the
3D structure (helices, etc.) from that, however, is a still unsolved fundamental problem
(e.g. Schlick and Pyle (2017)). Although elaborate methods such as X-ray crystallography
and cryo-EM (cryogenic electron microscopy) are used that determine spatial electron
densities – and from these densities individual atom positions can be inferred – frequently,
the inferred molecular structures contain so-called clashes as detailed by Murray et al.
(2003); Chen et al. (2010) and others.
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Definition 1.1. A clash is a forbidden molecular configuration, where two atoms are
reconstructed closer to each other than is chemically possible.

In case of RNA, clashes most relevant and most difficult to correct are between atoms
along the backbone (main chain), in particular when single hydrogen atoms not contribut-
ing to electron densities are added to inferred structures (see Figure B1); a detailed dis-
cussion is given in Murray et al. (2003).

In order to correct such clashes, methods from molecular dynamics are usually em-
ployed: Simulated atoms are allowed to fluctuate into positions of minimal energy, follow-
ing approximations of the laws of biophysical chemistry (e.g. Chou et al. (2013a)). For
RNA molecules, these simulations are highly computation intensive due to the large vari-
ability of RNA shape. If local and not global energy minima are achieved, thus corrected
molecules may still feature clashes and their geometries may be outliers in comparison
to clash free geometries (e.g. Richardson et al. (2018)). Supplement D briefly sketches
the state of the art correction method ERRASER by Chou et al. (2013a) and details this
observation.

As most RNA backbone clashes appear within suites (the section from one sugar
ring to the next, e.g. Murray et al. (2003), see Figure B1 and Notation 3.1, Section
3), we therefore apply our method to within-suite-backbone-to-backbone clashes here;
although it can be more generally applied. For the scope of this article, we call here suites
clash free if they are free of within-suite-backbone-to-backbone clashes. We analyze the
RNA backbone simultaneously at two scales exploiting their interdependence as follows.

H H H

OH
H

H

O

O H H H H

OH
H

base base

γi δi εi ζi αi+1 βi+1 γi+1 δi+1 εi+1
C5′ C4′

O4′

C1′
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Figure B1: 2D scheme of backbone suite number i with 7 dihedral angles (see Figure B7)
δi, ϵi, ζi, αi+1, βi+1, γi+1, δi+1 describing the suite’s 3D structure.

We work on two levels, the microscopic (atomic level) and the mesoscopic (level of
objects). At the microscopic scale we model the backbone of suites by tuples of 7
dihedral angles, each between 0 and 2π from the backbone atoms, giving a data point on
the seven dimensional torus T7. We are thus working on a form of shape analysis from
angles (angular shape analysis). At the mesoscopic scale we model k suites before and k
suites after a central suite of concern represented by 2k+2 pseudo-landmarks, the centers
of sugar rings, see Figure B2. Our interest will be the size-and-shape (see Dryden and
Mardia (2016)) of these landmarks. Setting k = 2. i.e. six landmarks in total (which
depicts roughly a half helix turn), our data analysis leads to the conclusion that for clash
free data, concentrated clusters at mesoscopic scale correspond to clusters at microscopic
scale. This correspondence is at the heart of our two-scale correction method: Since we
aim to correct potential errors at the microscopic scale, we first learn classes of clash free
microscopic shapes by clustering a benchmark data set of clash free data at the microscopic
scale. As illustrated in the left two panels of Figure B3 we provide a data driven correction
(green) for a clash suite (red) by a Fréchet mean on the torus at the microscopic scale (left
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x̄
i+

3
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Figure B2: The mesoscopic shape (red lines) for k = 2 centered at the i-th suite is de-
termined by the six centers of the sugar rings x̄i−2, . . . , x̄i+3. Their connecting backbones
(blue and black lines) give 5 suites, two before and two after suite i.

panel) within a specific class of clash free suites (grey) from Tang et al. (2001) (file 1f8v,
see Table B16). To determine the class which is used for microscopic structure correction,
we leverage the corresponding mesoscopic shape describing the geometry of the RNA
strand in proximity to the clash suites by determining a set of closest mesoscopic shapes to
the mesoscopic shape containing the clash suite. We then consider the microscopic suite
shapes corresponding to these nearby mesoscopic shapes and determine the class which
dominates this set (center left panel, same colors). At the mesoscopic scale, our correction
(green) is the geodesic projection of the corresponding Procrustes mean to the mesoscopic
shape featuring the same endpoints and the length of the corrected suite. Typically, our
correction at mesoscopic scale requires only a few moderate shifts of sugar centers (left
center, see also Figure B13, right panel).

We validate our correction method based on the interdependence of clash free RNA
backbone shape at the two scales (microscopic and mesoscopic) by showing that the correc-
tions proposed stay well below resolution level on the benchmark data. We also validate
our classification by comparison with a suite clustering proposed by Richardson et al.
(2008) who investigated a larger data set (comprising about twice as many suites than our
benchmark data set): The classes we propose correspond well to their clusters, where some
of our classes comprise several of their clusters.

In application, we propose clash free corrections for ten structure proposals from Zhang
et al. (2021) for two suites of the frameshift stimulation element (which facilitates decoding
more than one protein from a single RNA strand) of SARS-CoV-2 which are difficult to
reconstruct, and for which, to the best knowledge of the authors, there are no consistent 3D
structures known to date. Our method proposes structure which are strikingly consistent,
and by design, are clash free. For one of the two suites, the situation is exemplified below
in the two right panels of Figure B3: For each of the ten clashing proposals (red), at
mesoscopic scale (right panel) we propose clash free corrections (green) and at microscopic
scale (center right panel, same colors) our corrections agree nearly unambiguously.

Our paper is structured as follows. First, we introduce the two shape spaces: the torus
(angular shape space) describing the RNA backbone uniquely at microscopic (atomic)
scale and the size-and-shape space describing the RNA backbone at mesoscopic scale.
Then follows the concept of Fréchet means used at both scales for clash correction. At
mesoscopic scale (here Fréchet means are Procrustes means), we provide a novel projection
(preserving constraints from the original mesoscopic shape and its microscopic correction)
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Figure B3: Left two panels: A clashing suite (red) (from benchmark file 1f8v, Tang et al.
(2001), see Table B16 in the supplement) with its clash free neighbors (black) and proposed
clash free correction (green) at microscopic scale (left) and mesoscopic scale (left center).
Right two panels: Ten proposed reconstructions (red) by Zhang et al. (2021), which are all
clashing, for Suite 28/29 (cf. Figure B5) connecting two helical segments in the frameshift
stimulation element of SARS-CoV-2 and our ten clash free corrections (green) at micro-
scopic scale (center right) and at mesoscopic scale (right).

for the Procrustes mean. In Section 3 we link the 3D RNA backbone structure at two
scales to our two shape spaces, overview clash detection and provide our benchmark data.
Section 4 proposes our multiscale RNA backbone correction method, first introducing
learned classes from the clash free benchmark data and validating them. We then present
the interdependence of clash free RNA backbone shape at the two scales (microscopic and
mesoscopic) and detail how we exploit this for the new method proposed and validate it.
Finally we apply our method to the correction of the RNA backbone of SARS-CoV-2. In
Section 6 we discuss further potentials of our method, in particular how multiscale shape
analysis can be more fully developed and how it could be used to complement existing
reconstruction methods for long stranded biomolecules based on molecular dynamics.

While we measure angles in radians, for instant comparison with other research in this
area, some of the Figures report results in degrees.

Finally we list the content of our supplementary material, containing all code and all
data, as well as further data analysis and an overview of the MINT-AGE algorithm from
Mardia et al. (2022).

2 Tools from Shape Analysis

For Fréchet means defined in Section 2.3 below we will need appropriate distances for the
microscopic and mesoscopic scale which we now give in Sections 2.1 and 2.2, respectively.
For the mesoscopic scale we develop in Section 2.4 a geodesic projection since we have to
impose suitable geometric constraints.

2.1 The Torus for Microscopic Scale

The one-dimensional torus is

T := [0, 2π]/ ∼

where “∼” denotes that 0 and 2π are identified. It is a metric space with canonical distance

dT(ϕ, ψ) = min{|ϕ− ψ|, 2π − |ϕ− ψ]}, ϕ, ψ ∈ T . (1)
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The canonical product of m one-dimensional tori is the m-dimensional torus Tm with the
canonical product distance given by

dTm(ϕ, ψ) =

√√√√
m∑

j=1

d(ϕj , ψj)2 , (2)

for ϕ = (ϕ1, . . . , ϕm), ψ = (ψ1, . . . , ψm) ∈ Tm. Several authors have studied data on
the torus, especially representing large biomolecules, and developed specialized methods,
including Parsons et al. (2005); Altis et al. (2008); Kent and Mardia (2009); Sargsyan et al.
(2012); Eltzner et al. (2018); AlQuraishi (2019); Zoubouloglou et al. (2021).

2.2 Size-and-Shape for Mesoscopic Scale

We describe a landmark configuration matrix X = (x1, . . . ,xm) ∈ R3×m encoding m ∈
N, three-dimensional landmark positions xi ∈ R3, i = 1, . . . ,m by its size-and-shape as
follows, see Dryden and Mardia (2016): Proper (i.e. orientation preserving) Euclidean
transformations comprising rotations and translations T = (R, v) ∈ SO(3)× R3 act on X
columnwise via

T.X := (Rx1 + v, . . . , Rxm + v) .

Then

SΣm3 := {[X] : X ∈ R3×m} where [X] := {T.X : T ∈ SO(3)× R3} (3)

is the size-and-shape space which is equipped with the quotient distance, also called Pro-
crustes distance

dΣ([X], [Y ]) := min
T∈SO(3)×R3

∥X − T.Y ∥ (4)

with the standard Frobenius norm on R3×m. We say that X and Y are in optimal position
if

dΣ([X], [Y ]) = ∥X − Y ∥ .
Taking derivatives and using a singular value decomposition (SVD) it follows at once that
configurations X,Y in optimal position have coinciding mean landmarks with symmetric
Y XT (e.g. Dryden and Mardia (2016, Result 7.1)). For this reason, we assume that all
landmark configurations are centered, i.e. their landmarks vectors add up to zero. Optimal
positioning is then conveyed by rotations R ∈ SO(3) only, i.e. RY is in optimal position
to X if R = V SUT with a suitable diagonal matrix S with entries in {−1, 1} and a SVD
Y XT = UDV T (here U, V are orthogonal, D is diagonal with nonnegative entries).

2.3 Fréchet Means for Both Scales

Definition 2.1. For data X1, . . . , Xn ∈ M on an arbitrary metric space (M,d), define
their Fréchet means by

argmin
X∈M

n∑

j=1

d(X,Xi)
2 .

The Fréchet mean is a generalization of the classical Euclidean mean. On complete
spaces, Fréchet means exist, and on manifolds, if samples are drawn from continuous
distributions, they are almost surely unique (see Arnaudon and Miclo (2014)). On stratified
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quotient spaces, such as size-and-shape space for 3D configurations, they lie on the manifold
part (the top-dimensional dense stratum) if the manifold part is assumed with positive
probability (see Huckemann (2012)).

On SΣm3 , Fréchet means defined by Procrustes distance are also called Procrustes
means. On Tm we call them torus means.

2.4 Geodesic Projection to Constrained Size-and-Shape

Our CLEAN MINT-AGE Algorithm in Section 4.3.1 corrects clashes not only at atomic
suite (microscopic) scale but also at mesoscopic scale. The corrected mesoscopic shape mτc

in Section 4.3.1 features two constraints. The first one sets the distance between its first
and last landmark to the corresponding distance of the original mesoscopic shape, thus
assuring its fit into a larger RNA strand. The second one sets the distance between its two
central landmarks to the length of the corrected suite, assuring the fit of the latter into
the former.

With more general future applications in mind, assume that the distances between
r ∈ N, (2 ≤ 2r ≤ m) landmark pairs are constants a1, . . . , ar > 0. With a permutation
σ of (1, . . . ,m) we may assume that landmark σ(j) is paired with landmark σ(j + r) for
j = 1, . . . , r while landmarks σ(j) for 2r < j ≤ m (if 2r < m) are unconstrained.

Definition 2.2. Let r ∈ N with 2r ≤ m, a := (a1, . . . , ar) with a1, . . . , ar > 0 and σ be a
permutation of (1, . . . ,m). Then the constrained-size-and-shape space is given by

SΣm3 (σ, a) := {[Y ] ∈ SΣm3 :Y = (y1, . . . , ym) ∈ R3×m,

∥yσ(j) − yσ(j+r)∥ = aj for j = 1, . . . , r} .

An orthogonal projection from Σm3 to Σm3 (σ, a) can be given explicitly as the following
theorem teaches.

Theorem 2.3. Let r ∈ N with 2r ≤ m, a = (a1, . . . , ar) with a1, . . . , ar > 0, [Z] ∈ SΣm3
with centered Z ∈ (z1, . . . , zm), i.e. z1+ . . .+zm = 0 and σ be a permutation of (1, . . . ,m).
Then Y ∗ = (y∗1, . . . , y

∗
m) with

y∗σ(j) = βσ(j)z
′
σ(j) + (1− βσ(j))z′σ(j+r) ,

y∗σ(j+r) = (1− βσ(j))z′σ(j) + βσ(j)z
′
σ(j+r) , with

βσ(j) =
1

2

(
1 +

aj
∥z′σ(j) + z′σ(j+r)∥

)
,

for j = 1, . . . , r where we set z′σ(j) := zσ(j), z
′
σ(j+r) := zσ(j+r), if zσ(j) ̸= zσ(j+r) and

z′σ(j) := zσ(j) + vj, z
′
σ(j+r) := zσ(j) − vj if zσ(j) = zσ(j+r) with an arbitrary nonzero vector

vj ∈ R3×m, and, furthermore

y∗σ(j) = zσ(j) for j = 2r + 1, . . . ,m ,

gives an orthogonal projection

[Y ∗] ∈ argmin
[Y ]∈SΣm

3 (σ,a)
dSΣm

3
([Z], [Y ]) .

The orthogonal projection is unique if zσ(j) ̸= zσ(j+r) for all j = 1, . . . , r.
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Proof. W.l.o.g. assume that σ is the identity. Furthermore, note that by construction Y ∗

is centered as Z is centered.
Every orthogonal projection is a minimizer of the Lagrange function

L(Y, λ1, . . . , λr) = ∥Y − Z∥2 +
r∑

j=1

λj
(
∥yj+r − yj∥2 − a2j

)

incorporating proximity of Y = (y1, . . . , ym) to Z and the constraining conditions. All of
its critical points Y ∗ are determined by the equations

y∗j − zj = λj(y
∗
j+r − y∗j ) for j = 1, . . . , r (5)

y∗j+r − zj+r = −λj(y∗j+r − y∗j ) for j = 1, . . . , r (6)

y∗j = zj for j ∈ {2r + 1, . . . ,m} .

Notably, the last equations yield the unique minimizers of the non-constrained landmarks.
Now fix j ∈ {1, . . . , r} and subtract (6) from (5) to obtain

(y∗j − y∗j+r)(1 + 2λj) = zj − zj+r . (7)

If zj ̸= zj+r then (5) yields

y∗j = zj −
λj

1 + 2λj
(zj − zj+r) ,

i.e. with βj =
1+λj
1+2λj

y∗j = βjzj + (1− βj)zj+r , (8)

and similarly, (6) yields

y∗j+r = zj+r +
λj

1 + 2λj
(zj − zj+r) ,

i.e.

y∗j+r = (1− βj)zj + βjzj+r . (9)

This implies at once that

∥y∗j − zj∥2 + ∥y∗j+r − zj+r∥2 = 2(1− βj)2∥zj − zj+r∥2

=
2λ2j

(1 + 2λj)2
∥zj − zj+r∥2 . (10)

In order to determine λj we exploit the constraining condition to obtain from (7) that

|1 + 2λj | = ∥zj+r−zj∥
aj

. The cases of 1 + 2λj > 0 and 1 + 2λj < 0 correspond to

λj =
1

2

(∥zj+r − zj∥
aj

− 1

)
and λj = −

1

2

(∥zj+r − zj∥
aj

+ 1

)

respectively, so that, taking into account (10), L assumes the minimal value for the positive
branch yielding

βj =
1

2

(
1 +

aj
∥zj+r − zj∥

)
,
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z2

z3 = y∗3
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Figure B4: Planar representation of the o.g. projection of Z = (z1, z2, z3) to the constraint
∥y1 − y2∥ = a1. Left: The global minimum determined by 1 + 2λ1 > 0 is attained for y∗1
and y∗2 balanced between z1 and z2. Notably, fixing y1 = y∗1 the constrained y2 is confined
to a sphere of radius a1, centered at y∗1. Right: Swapping the minimal y∗1 and y∗2 from the
left side corresponds to 1 + 2λ1 < 0. Fixing y2 = y∗2, the constrained y1 lies on a sphere of
radius a1, centered at y∗2, for which y1 = y∗1 produces a local maximum.

as asserted. Moreover, then the above equations (8) and (9) yield the asserted landmarks
for y∗j and y∗j+r in case of zj ̸= zj+r.

If zj = zj+r adding (6) to (5) yields

y∗j + y∗j+r =
zj
2
,

which, taking into account the constraining condition, is solved by

y∗j = zj + aj
vj

2∥vj∥
, y∗j+r = zj − aj

vj
2∥vj∥

with an arbitrary nonzero vector vj ∈ R3×m. Then the above argument, after replacing zj
with z′j := zj + vj and z

′
j+r := zj − vj above in (5) and (6), yields the asserted equations.

We note that we have indeed found a minimum, for we can reparametrize the matrix
Y by arbitrary Y ′ := (y1, . . . , yr, y2r+1, . . . , ym) ∈ R3×(m−r), and by (w1, . . . wr), each
wj arbitrary on the compact sphere {w ∈ R3 : ∥w∥ = 1} which model the constraining
conditions via yj+r = yj +ajwj for j = 1, . . . , r. Along the columns of Y ′ there is a unique
minimum and along each of the wj (j = 1, 2) there is a maximum and a minimum given
by the two choices of λj as detailed above and illustrated in Figure B4, and each such
minimum is unique if zj ̸= zj+r.

Finally, we claim that Y ∗ is already in optimal position to Z. In fact it suffices to see
this for two landmarks only zj , zj+r (1 ≤ j ≤ r) and y∗j , y∗j+r from (8) and (9). Indeed, in
case of zj ̸= zj+r, with the 3× 3 unit matrix I, minimizing

∥zj−Ry∗j ∥2+∥zj+r−Ry∗j+r∥2 = ∥(I−βR)zj−(1−β)Rzj+r∥2+∥(I−βR)zj+r−(1−β)Rzj∥2

over R ∈ SO(m) can be cast into the two dimensional complex problem with z = zj , w =
zj+r ∈ C, β = βj > 1/2 minimizing

|(1− βeiα)z − (1− β)eiαw|2 + |(1− βeiα)w − (1− β)eiαz|2
= (|z|2 + |w|2)

(
1 + β2 − 2β cosα+ (1− β)2

)
− 4(1− β)Re (z w) (cosα− β)

over α ∈ [0, 2π). Due to 0 ≤ |z±w|2 = |z|2+|w|2±2Re (z w) and β > 1/2 this is minimized
for α = 0, corresponding to R = I above.
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In case of zj = z = zj+r, with arbitrary but fixed vj ∈ R3, ∥vj∥ = 1 such that y∗j =
z + ajvj/2 and y∗j+r = z − ajvj/2, as above, we have similarly for R ∈ SO(3) that

∥zj −Ry∗j ∥2 + ∥zj+r −Ry∗j+r∥2 = ∥z −R(z + ajvj/2)∥2 + ∥z −R(z − ajvj/2)∥2

= 2∥z −Rz∥2 +
a2j
2
,

which is minimized by R = I.

Remark 2.4. The case zj = zj+r has been discussed for exhaustive mathematical treat-
ment. In the application in Section 4.3.1, this only happens if the neighborhoods in the
classes learned feature degenerate Procrustes means, a clear sign that the learning algo-
rithm failed. In this case we suggest to reevaluate learned classes, rather than choosing any
vj of suitable length.

3 Multiscale Modeling of RNA Backbone Geometry, Clash
Detection and Data Sets

Ribonucleic acid (RNA) molecules are composed of repeating elements called nucleotides
and each nucleotide is composed of three building blocks, see Watson et al. (2004) and Fig-
ure B1: A sugar ring called ribose comprising 5 carbon atoms, one of 4 possible nucleobases
which is attached to the ribose at the C1’ position and a phosphate group connected to
the ribose ring at the O5’ atom. The single nucleotides are connected by their O3’ atoms
to the next phosphate group to form long RNA chains.

3.1 RNA Folding

In contrast to DNA which usually forms a double helix of complementary strands, in prin-
ciple, RNA is single stranded and the form of its ribose (which is not “desoxy” as in DNA,
i.e. it has an additional hydroxyl group) allows for complex folding structures. Figure
B5 shows helical structures followed by mismatching sites: a hairpin in a 2D schematic
and the 3D structure of the frameshift stimulation element of the SARS-CoV-2 genome
proposed by Zhang et al. (2021). Its 2D schematic is depicted in the first panel of Figure
B15.

3.2 Multiscale Modeling

In this section we describe the two scales modeled. Their surprising interaction which has
lead to the two Hypotheses 4.1 and 4.2 underlying our method is detailed in Section 4.2.

On a microscopic scale, nucleotides are either studied as suites, i.e. from one sugar to
the next, or as residues, i.e. from one phosphate to the next, e.g. Murray et al. (2003);
Jain et al. (2015). As clashes often occur between neighboring residues but within same
suites, cf. Murray et al. (2003), for our analysis, we use suites. Indexing, however, is
usually done on residue level, so that within a single suite, atom indices change, cf. Figure
B1. For the dihedral angles of concern, Figure B7 lists the 4 consecutive atoms, defining
the respective dihedral angle of the bond between the two central atoms.

On the mesoscopic scale we additionally take the coordinates of the k preceding and
k succeeding sugar rings into account. This can be seen as an intermediate scale between
the microscopic suite scale and the macroscopic scale of a whole RNA strand.
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Loop
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Stem
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3’5’

Figure B5: Left: 2D schematic of the common hairpin structure: Double helices (stems)
formed by bindings between matching nucleobases (blue) are followed by mismatching nu-
cleobases (bulges), not depicted, and a terminating mismatching site (loop). Orientation
is conveyed by the 5’ and 3’ ends. Right: One out of 10 proposed 3D RNA structures of the
SARS-CoV-2 frameshift stimulation element by Zhang et al. (2021), graphically reproduced
with PyMOL (Schrödinger, LLC, 2015) with backbone (orange) and nucleobases (blue),
yielding helical structures whenever the latter point to each other. Arrows indicate suites
with problematic (blue arrow, Suite 2 determined by Residues 33/34) and non-connected
backbone (red arrow, Suite 1 determined by Residues 28/29) proposals discussed in Figures
B3 and B15.

Figure B6: Histograms of the distribution of distances between two successive sugar ring
centers in Å(left) and of the distribution of angles in degrees spanned by three successive
sugar ring centers (right).

Notation 3.1. We consider a connected RNA strand with N ∈ N consecutive nucleotides
indexed by i ∈ {1, . . . , N}.
Microscopic scale: The i-th suite comprises the RNA region between a C5′i atom and the

second next O3′ atom labeled O3′i+1 and the backbone shape of the suite is described
by the seven dihedral angles (δi, ϵi, ζi, αi+1, βi+1, γi+1, δi+1) ∈ T7 for i = 1, . . . , N −1,
cf. Figure B1.

Mesoscopic scale: As each nucleotide comes with a sugar ring formed by the atoms C1′i,
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C2′i, C3
′
i, C4

′
i and O4′i (see Figure B1), denoting their centers of gravity (i.e. average

location) with x̄i, for all i = k+1, . . . , N−k−1, the mesoscopic strand corresponding
to the i-th suite is the configuration matrix X(i) = (x̄i−k, x̄i−k+1, . . . , x̄i+k+1) ∈
R3×(2k+2). Its size-and-shape in SΣ2k+2

3 is called its mesoscopic shape.

Indeed, geometric suite variability is solely governed by the dihedral angles, since bond
lengths (distances between two consecutive atoms) and bond angles (angles between three
consecutive atoms) are approximately constant due to the laws of chemistry, see e.g. Wat-
son et al. (2004). In consequence, the geometry of the i-th suite is described, up to a
proper Euclidean transformation (translation and rotation), by an element of the seven-
dimensional torus T7 given by its seven dihedral angles.

angle atom bonds

α O3’ - P - O5’ - C5’
β P - O5’ - C5’ - C4’
γ O5’ - C5’ - C4’ - C3’
δ C5’ - C4’ - C3’ - O3’
ϵ C4’ - C3’ - O3’ - P
ζ C3’ - O3’ - P - O5’ O3′

C3′

C4′

C5′

δ

Figure B7: Left: Names (first column) of dihedral angles along the two central atoms of
the four atoms involved (second column), see Figure B1. Right: The dihedral angle δ of
the bond between the atoms C4’ and C3’ is the directed angle between the plane spanned by
the atoms C5’, C4’, C3’ and the plane spanned by C4’, C3’, O3’. More precisely, it is the
angle determined by turning the vector normal to the plane spanned by C3’, C4’, C5’ to
the vector normal to the plane spanned by O3’, C3’, C4’ (with fixed orientation of normals
determined by the order of spanning points).

Since distances between two neighboring sugar rings and angles between three consec-
utive sugar rings vary due to folding at microscopic scale, see Figure B6, dihedral angles
defined by four consecutive sugar rings are not sufficient to completely define the geometry
of mesoscopic strands up to proper Euclidean transformations. The size-and-shape repre-
sentation, modeling geometric landmark configurations determined by central positions of
sugar rings modulo translation and rotation, however, suffices.

Remark 3.2. For the mesoscopic strands we include the sugar ring centers of the k = 2
suites preceding and the k = 2 suites following the suite of concern, cf. Figure B2. This
choice of k presents a trade-off, since a small k emphasizes the central, potentially faulty,
suite and a large k leads to a great variety of shapes at transitions between secondary
structure elements. For a given mesoscopic shape, this reduces the number of potentially
similar mesoscopic shapes. Empirically, k = 2 yields a good balance between these two
effects by modelling the local geometry at an intermediate (mesoscopic) scale. On the side
of biochemistry, the 5 + 1 = 6 bases from the 2k + 1 = 5 suites correspond roughly to the
number of bases involved in a half helix turn, see e.g. Watson et al. (2004). For future
applications we anticipate that involving more scales by suitably choosing larger k will prove
useful.
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We only work with suites that have a corresponding mesoscopic strand, i.e. we exclude
the two suites at the end of an RNA strand.

Definition 3.3. For an RNA strand of length N ≥ 2k + 2 the suites numbered i =
k+1, . . . , N−k−1 are called admissible, so that every admissible suite a has a mesoscopic
shape ma ∈ SΣ2k+2

3 and vice versa.

Definition 3.4. We call a suite a clash suite if two of its backbone atoms (including
associated hydrogen atoms and oxygen atoms associated with the phosphate) clash with
each other. All other suites that have 2k = 4 neighboring non-clash suites (i.e. their
mesoscopic strands have no within-suite-backbone-to-backbone clashes) are called clash
free.

3.3 Cryo-EM, X-Ray Crystallography and Clash Detection

Cryo-EM (cryogenic electron microscopy) and X-ray crystallography are popular methods
to determine atomic positions in RNA, protein and similar biomolecular structures, cf.
Jain et al. (2015). For the former, molecules are shock frosted and subjected to electron
microscopy. For the latter, using a suitable substrate, molecules are crystallized and sub-
jected to X-ray imaging. The resolution of X-ray crystallography is defined as the smallest
distance of two objects such that their diffraction patterns can be separated. In cryo-EM,
resolution has been defined in various ways, usually via properties of the Fourier trans-
formed electron density, in order to be comparable to the resolution values given for X-ray
crystallography measurements. For a review, see Liao and Frank (2010). From different
angles, via inverse Fourier transforms, the electron density can be reconstructed and, in
principle, density peaks correspond to atom positions. Figure B8 shows exemplary level
surfaces of electron densities with estimated atom positions.

Figure B8: Left: Histogram of X-ray crystallography resolutions in the benchmark data
set from Section 3.4 below. Middle and right: reconstructed RNA structure and electron
density contour surface created with PyMOL at level of one σ, see Schrödinger, LLC
(2015), at resolution 1.6 Å (middle, from benchmark file 1csl, Ippolito and Steitz (2000),
see Table B16 in the supplement) and at resolution 3 Å (right, from benchmark file 1f8v,
Tang et al. (2001), see Table B16 in the supplement).

At a resolution of 2.5 to 4Å, which is typical for large RNA strands, base pairings can
be predicted well and phosphates are well identified by strong peaks of density Jain et al.
(2015). It is, however, more challenging to precisely estimate single atom positions along
the backbone, see for example Murray et al. (2003). In addition, structural disorder due
to crystallization and thermal oscillation contribute to uncertainties.
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Since it is computationally not feasible to include the positions of all atoms and a
full quantum chemical treatment into the fitting, the ambiguities in the measured density
occasionally result in incompatible reconstructed atom positions. Indeed, our benchmark
data set contains approximately 2.5% clash suites.

The PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography)
software by Liebschner et al. (2019) provides validation tools that detect such errors. Since
hydrogen atoms are not visible in the electron density measurements (H-atoms contain only
one electron which is shifted to the covalent-bond partner atom), first, the PHENIX tool
phenix.reduce adds the hydrogen atoms. Then, phenix.probe performs an all-atom
contact analysis (Word et al., 1999), which declares atoms that are not bonded to each
other as a clash if they are closer together than is physically possible (i.e. if van der Waals
shells overlap by more than 0.4 Å). For each PDB file, phenix.clashscore generates a
list of all clashes. From all of the different types of clashes detected, in this work we are
only concerned with within-suite-backbone-to-backbone clashes as in Definition 3.4.

3.4 The Benchmark, Training and Test Data Sets

In our applications, we analyze a subset of a classical RNA data set. The classical RNA
data set comprises 8665 suites, carefully selected for high experimental X-ray precision
(of 3 Å= 0.3 nanometers) by Duarte and Pyle (1998); Wadley et al. (2007) and analyzed
by them and by others, for example Murray et al. (2003); Richardson et al. (2008) and
Eltzner et al. (2018). The data originate from 71 different measurements and the atomic
positions of each measurement have been stored in the PDB format of a protein data bank
file, online at the Protein Data Bank, see Berman et al. (2000). More details on the PDB
files can be found in Table B16 of Supplement A.

From this classical data set, we consider the 7648 admissible suites (which have an
associated mesoscopic strand, see Definition 3.3) and call this data set the benchmark data
set.

Applying PHENIX as detailed in Section 3.3 to the benchmark data set, we obtain 5957
clash free suites that also have clash free mesoscopic strands (see Definition 3.4) and these
form the benchmark training data set T. Figure B17 in the supplement gives a scatterplot
at microscopic scale for all pairs of the seven dihedral angles.

From the remaining suites we chose those suites that feature within-suite-backbone-to-
backbone clashes, forming the benchmark test data set C, containing 198 suites.

As our purpose lies in demonstrating our methods rather than correcting all clashes, all
other suites (e.g. those not themselves clashing but featuring clashes in their mesoscopic
strands) are disregarded in our analysis.

4 CLEAN-MINT-AGE

After classifying clash free suites by the MINT-AGE algorithm (Mardia et al., 2022) from
the benchmark training data set, we validate the classes obtained by comparing with the
outcome of the clustering method by Richardson et al. (2008). Motivating our multiscale
approach by analyzing clusters at two scales, then we propose and validate the CLEAN
method classifying suites exploiting the observed relationship between the two scales.

4.1 Microscopic Classification and its Validation

We apply the non-supervised cluster learning method from Mardia et al. (2022) to the
microscopic suite representations on the torus T7, of the benchmark training data set.
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Figure B9: Scatterplots of all two dimensional dihedral angle pairs (in degrees) of MINT-
AGE Class 6 (black) and the reported means of Clusters 7a, 3a and 9a from Richardson
et al. (2008).

In brief, in a first step (AGE) it proposes preclusters based on an iterative, adaptive,
average linkage clustering method for general metric spaces, that allows to detect clusters
of different densities and sizes. In a second step (MINT), each precluster is subjected
to torus PCA (see Eltzner et al. (2018)) and its projection to its main one-dimensional
component is subjected to circular mode hunting, so that each statistically significant
antimode corresponds to a post-cluster boundary. For convenience the MINT-AGE (Mode
huntINg on Torus pca post iterative Adaptive linkaGe clustEring) algorithm is reproduced
in supplement Section C including a discussion of parameters and our choices. Its general
version is described in Mardia et al. (2022).

As discussed in detail in Eltzner et al. (2018), performing PCA analogs on non-
Euclidean manifolds may be challenging, in particular on a torus: tangent space PCA
(e.g. Fletcher et al. (2004)) misses data periodicity, intrinsic PCA (see Huckemann and
Ziezold (2006)) produces geodesics winding infinitely often around, each of which approxi-
mating all possible data perfectly, and restricting winding numbers (e.g. Altis et al. (2008);
Kent and Mardia (2009, 2015)) greatly reduces flexibility. In contrast on spheres, principle
nested spheres (PNS, by Jung et al. (2012)) is a PCA analog that is even more flexible
and this flexibility persists on suitably stratified spheres which represent the torus in torus
PCA (see also Mardia et al. (2022)): On the m-dimensional sphere, the dimension of the
family of main principal nested circle components is 3(m− 1), while the dimension of the
family of first PCs for data on an m-dimensional Euclidean space is dimension 2(m − 1).
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This feature is advantageous for PCA-based clustering, since clusters that would require
two Euclidean PCs to be separated can often be separated along the main principal nesting
circle.

MINT-AGE Size Richardson et al. (2008)

1∗ 3933 1a, (1m), (1L), (&a)
2∗ 294 1c
3 203 1b, 1[
4∗ 93 1g
5 91 2a
6 67 7a, 3a, 9a
7 64 0a, (4a)
8 50
9 46 1e
10∗ 40 5z
11 37 6p
12 31 2[
13 29 0i, 6n
14 29 4b, (0b)
15 23
16∗ 23 6g
17 23 4g

Outliers 881

Total 5957

Figure B10: Left: MINT-AGE class numbers and outliers (left column) with size (middle
column) from the benchmark training data set with corresponding two-character cluster
names (a number for the first character and a letter or ”[” for the second character) from
Richardson et al. (2008). Asterisks mark MINT-AGE classes displayed in the right panel.
Right: Five exemplary classes that can be well displayed together at microscopic scale:
Class 1 (black), class 2 (red), class 4 (turquoise), class 10 (yellow), class 16 (magenta).
Parentheses indicate that Richardson et al. (2008) cluster means are at boundaries of
MINT-AGE classes.

Application of MINT-AGE to the benchmark training data set yields 17 classes. The
largest corresponding to the A helix shape contains 3933 elements and is highly dominant.
All classes are rather dense and even the smallest has a credible size of 21 elements. The
number of outliers (881), however, is quite large. We conjecture that a considerable number
of these are due to incorrect structure reconstructions, which have not been detected
because they have not led to clashes. Figure B18 in the supplement displays all classes in
dihedral angle representation.

The table in Figure B10 compares our MINT-AGE classes with clusters found by
Richardson et al. (2008, Table 2) in a larger set encompassing the benchmark training
data set. As they report every cluster only by its mean dihedral angles, we have manually
assigned these means to MINT-AGE classes. Typically, Figure B9 illustrates how three
Richardson et al. (2008) cluster means are assigned to MINT-AGE Class 6. This larger
data set and allowing some clusters with less than 10 elements has lead to a larger number
of 46 Richardson et al. (2008) clusters. Remarkably, more than half (24) of them can be
assigned to MINT-AGE clusters and among the ones that could not be assigned, only two
have more than 20 elements (7p with 27 elements and 8d with 24).
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4.2 Motivation for a Multiscale Ansatz

Figure B11: Left: Four exemplary simple mesoscopic clusters at mesoscopic scale. Center
left: Their central suites at microscopic scale. Simple mesoscopic Cluster 1 (black) of size
77 contains 73 suites from MINT-AGE Class 1, all of the others clusters are in 1-to-1
correspondence to MINT-AGE classes: Cluster 30 (turquoise, size 13) to Class 4, Cluster
55 (blue, size 8) to 7 and Cluster 92 (red, size 6) to Class 2. Center right: Binned torus
(angular) standard deviation of the suites belonging to simple mesoscopic clusters. For
instance, the suites of Cluster 1 from the two left panels have a standard deviation of 0.83,
so that Cluster 1 is counted in the 4th green bar from the left. Right: Percentages of the
largest MINT-AGE class in each cluster. For instance the rightmost bar indicates that for
75 out of the 110 clusters at least 95% of their suites belong to a single MINT-AGE class.

Figure B12: Left: The 198 clash suites from the benchmark data set in Section 3.4 with
carbon (dark red), oxygen (dark blue) and phosphorus atoms (pink), cf. Figure B1 at
microscopic scale. Left center: Same at mesoscopic scale. Right center: At microscopic
scale a typical clash suite c (red), the 46 suites (black) from the dominant MINT-AGE
class and the other 4 suites (blue) in the neighborhood Uc with respect to mesoscopic shape
distance, see also Figure B3. Right: Same at mesoscopic scale where shapes are highly
concentrated. The landmarks (teal) of the clash suite at mesoscopic scale (red), except for
the middle one, require only very moderate correction.

In a first fundamental study, we establish a relationship between suites that have
similar mesoscopic shapes, see Figure B2 and Notation 3.1. To this end, we cluster the
mesoscopic shapes of the suites of the benchmark training data set (Section 3.4) using the
simple version of AGE from Mardia et al. (2022) (Algorithm C.1 from Supplement C.1,
performing only Steps 1 and 2 with κ = 5 and dmax such that 50% of the mesoscopic
strands are outliers) yielding the simple mesoscopic clusters. By design, we obtain many
(110) clusters that are rather concentrated. It turns out that

1. the suites corresponding to each simple mesoscopic cluster also form rather concen-
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trated suite clusters: for most, the standard deviation of angles (between 0 and 2π)
of their suites is less than 0.6 and only very few clusters with low cardinality (close
to the minimum of κ + 1 = 6) have higher suite standard deviation (Figure B11,
third panel);

2. simple mesoscopic clusters are in high correspondence with the 17 MINT-AGE classes
from Section 4.1 above as clearly visible in in the rightmost panel of Figure B11 and
detailed for exemplary clusters in the caption of Figure B11.

This leads to the following hypothesis.

Hypothesis 4.1. Correctly reconstructed suites with similar mesoscopic shapes have also
similar suite shape. In particular, concentrated mesoscopic clusters relate to suite classes.

In a second fundamental study, we consider the 198 clash suites in the benchmark
data set forming the test data set, see Section 3.4. Their suite shapes as well as their
mesoscopic shapes feature a rather larger spread, see Figure B12 (first two panels). As
before, we consider training suites from concentrated neighborhoods in the mesoscopic
shape space, of size ρ ∈ N. For a given clash suite c such a neighborhood is

Uc :=
{
t ∈ T : #

{
t′ ∈ T : dΣ(mt′ ,mc) ≤ dΣ(mt,mc)

}
≤ ρ
}
. (11)

The neighborhood Uc is the set of the ρ suites of the training data, whose mesoscopic
shapes are most similar to mc with respect to mesoscopic shape space distance. Recall
from Section 3.4 that T is the set of training suites (the clash free suites in the benchmark
data set) and that mt denotes the mesoscopic shape of t ∈ T. On close inspection of the
198 Uc’s we find a situation typically illustrated in the last two panels of Figure B12, which
leads to the following hypothesis.

Hypothesis 4.2. While at microscopic scale, clash suite shapes are rather irregular among
the suite shapes of their clash free neighbors, at mesoscopic scale, their mesoscopic shapes
differ only mildly from nearby clash free mesoscopic shapes.

The theoretical argument underlying this hypothesis is that even drastic errors on the
atomic suite scale can still be compatible with electron density measurement results due
to finite resolution, while drastic errors on the mesoscopic scale are excluded since they
would strongly contradict the measured electron density. Indeed, we find empirically at
mesoscopic scale that only one of the four teal landmarks in the middle (FigureB12, right
panel) differs more strongly from the neighboring clash free mesoscopic shapes in Uc. For
all 198 clash shapes the histogram in Figure B13 shows that for the vast majority of clash
suites c ∈ C, the distance (detailed in Section 4.4) of its mesoscopic shape to its clash free
correction is only rarely barely above and mostly well below the resolution order.

Remark 4.3. There are databases that store different RNA motifs and their interaction:
In RNA Bricks (Chojnowski et al., 2013), the elements of simple mesoscopic Clusters 1
and 92 are often found in a stem cluster (corresponding to helical backbone shapes) and the
elements of simple mesoscopic Cluster 30 are found in a loop cluster. Similarly, in Petrov
et al. (2013), the elements of simple mesoscopic Cluster 30 are classified in the hairpin
loop with the name HL 43074.14. Stems and loops are depicted in the hairpin structure
scheme in the left panel of Figure B5.
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4.3 The Multiscale RNA Backbone Structure Correction Prodecure

Exploiting the above Hypotheses 4.1 and 4.2, the following multiscale backbone correction
procedure simultaneously corrects clashing suites at microscopic and at mesoscopic scale,
working with concentrated neighborhoods as in (11), defined by mesoscopic shape distance.
In these concentrated neighborhoods, dominating classes from MINT-AGE of the training
data set provide guidance for correction. Recall from the two left panels of Figure B3,
with more detail in the two right panels of Figure B12, that even a minor correction of one
of the sugar ring centers at mesoscopic scale can have great impact on the shape of the
suite of interest, which is positioned between the third and fourth sugar ring at mesoscopic
scale.

4.3.1 Multiscale Correction (CLEAN)

Input:

• a training data set T comprising only clash free admissible suites (suites that feature
a mesoscopic shape, see Definition 3.3),

• a list of classes C1, . . . , Cr and an outlier set R for T obtained from applying the
MINT-AGE algorithm (see Section 4.1 and Algorithm C.3 from the supplement),

• a clash suite c and its corresponding mesoscopic shape mc.

• the size ρ ∈ N of the neighborhood Uc from (11), we choose ρ = 50 as roughly twice
the size of the smallest class, and

• the flag DOMINATING set to ABSOLUTE or RELATIVE which will return either the ab-
solutely dominating cluster in Uc or the relatively dominating cluster with at least
ρ/10 elements, taking into account cluster size (in Step (b) below).

Implementation steps:

1. Calculate

(a) the neighborhood Uc as defined in (11) of the ρ suites of the training data,
whose mesoscopic shapes are most similar to mc with respect to mesoscopic
shape space distance;

(b) according to flag DOMINATING, the number
jc ∈ arg max

j=1,...,m
#
(
Cj ∩ Uc

)
, (ABSOLUTE), or

jc ∈ arg max
j=1,...,m

1{Cj |#(Cj∩Uc)≥ρ/10}#
(
Cj ∩ Uc

)/
#Cj ,

(RELATIVE), respectively, of the dominant MINT-AGE class in Uc;

(c) a Fréchet mean τc ∈ argmint∈T7

∑
t′∈Cjc∩Uc

dT7(t, t′)2 , of the dominant class’
suites in the neighborhood;

(d) the approximate length ℓτc of the suite by the mean distance of the two central
sugar rings k+1 and k+2 of the mesoscopic shapes corresponding to the suites
of Cjc ∩ Uc;

(e) a Procrustes mean

µc ∈ argmin
m∈SΣ2k+2

3

∑

t∈Cjc∩Uc

dΣ(m,mt)
2 ,

of the corresponding mesoscopic shapes.
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2. With a mesoscopic shape mc = [x1, . . . , x2k+2] defined as in Equation (3) by a land-
mark configuration matrix (x1, . . . , x2k+2), determine the corrected mesoscopic shape
mτc as the orthogonal projection of the size-and-shape Y ∗ of the Procrustes mean
µc = [z1, . . . , z2k+2] to the set

{
m = [y1, . . . , y2k+2] ∈ SΣ2k+2

3 : ∥y1 − y2k+2∥ = a1, ∥yk+2 − yk+1∥ = a2

}
(12)

of mesoscopic shapes whose configurations have distance a1 = ∥x1− x2k+2∥ between
the first and the last landmark given by that of any configuration of mc and whose
distance a2 between the central landmarks is the length ℓτc which is chosen so that the
Fréchet mean suite τc fits between them. By Theorem 2.3, with m = 2k + 2, r = 2,
σ(1) = k + 2, σ(k + 1) = k + 2 and σ(j) = j for j ∈ {2, . . . , k, k + 3, . . . , 2k + 1}, the
(in practice there will no ties between the landmarks) desired orthogonal projection
to SΣ2k+2

3 (σ, a1, a2) which is the space determined by (12) is given by

y∗1 =αz1 + (1− α)z2k+2 , y∗2k+2 =αz2k+2 + (1− α)z1
y∗k+1 =βzk+1 + (1− β)zk+2 , y∗k+2 =βzk+2 + (1− β)zk+1

where

α =
1

2

(
1 +
∥x2k+2 − x1∥
∥z2k+2 − z1∥

)
, β =

1

2

(
1 +

ℓτc

∥zk+2 − zk+1∥

)

and y∗j = zj for j ∈ {1, . . . 2k + 2}\{1, k + 1, k + 2, 2k + 2}.

Output:

• the corrected suite shape τc and its corrected mesoscopic shape mτc := [Y ∗].

As mentioned above, we suggest to choose ρ = 50 as roughly twice the size of the
smallest class. A larger value for ρ would make it very unlikely that the plurality of
neighboring suites for a clash suite are from the smallest cluster, because any other nearby
clusters will outnumber it. A smaller value for ρ would lead to less reliable results and, in
some cases, to a majority of outliers in the set.

For many applications of CLEAN, setting DOMINATING = ABSOLUTE can be used
as we do for analyzing two suites of SARS-CoV-2 RNA in the following Section 5. If
considerably differing class sizes are of concern, setting DOMINATING = RELATIVE
ensures assignment to smaller classes that dominate neighborhoods at mesoscopic scale
only relatively to their total size. This results in greater diversity as illustrated in Figure
B19 in the supplement, applying CLEAN to the entire benchmark test set from Section
3.4.

4.4 Validation of CLEAN

We apply the CLEAN method from Section 4.3.1 to the 198 clash suites which form the test
data set C from Section 3.4. For validation we confirm that backbone correction is realistic
and neither arbitrary nor ambiguous. For the former, we verify that corrections happen
on a scale not larger than the underlying X-ray crystallography resolution, see Section 3.3,
and for the latter we verify that the largest MINT-AGE classes in neighborhoods Uc from
(11) are indeed strongly dominating in most cases.
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In order to relate the amount of correction to resolution, consider the normalized
Procrustes distance between the mesoscopic shape mc of a clash suite c ∈ C and the
mesoscopic shape mτc of its correction by CLEAN,

d̃2c :=
1

resolution2
3

degrees of freedom
dΣ(mc,mτc)

2 . (13)

Recalling that the group of 3D Euclidean transformations is of dimension 6, the degrees of
freedom are given by 3(2k+2)−6 = 3 ·2k, so that the inverse of the second quotient above
gives the number 2k of free landmarks in Σ2k+2

3 taking into account that the resolution
incorporates the spatial dimension 3.

Figure B13: Left: At mesoscopic scale a clash suite (red) and its mesoscopic shape (green)
corrected by CLEAN. Right: Histogram of relative distances d̃c between corrected meso-
scopic shapes and original mesoscopic shapes from (13) over all c ∈ C.

The histogram in Figure B13 shows that for the vast majority of clash suites c ∈ C, d̃c
is smaller than 1. Thus, corrections are only rarely slightly above and mostly well below
the order of resolution.

In order to assess how dominating torus MINT-AGE classes are in neighborhoods Uc

(c ∈ C), the histogram in Figure B14 shows the number of suites in the dominating classes
Cjc . Indeed, for considerably more than half of the neighborhoods, the dominating cluster
contains more than half of the neighboring suites. Remarkably, the negative correlation
visible in the scatter plot in Figure B14 (right) shows that a smaller amount of correction
tends to correlate with more elements being in the dominating cluster.

5 Application to SARS-CoV-2 Suites

With the recent worldwide pandemic of the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), the virus’ RNA structure reconstruction and backbone correction has be-
come ever more relevant. Indeed, effective drug and vaccine development necessitates good
understanding of the three-dimensional RNA structure, see Croll et al. (2021). Recently, a
large number of measurements has been added to the Protein Data Bank, see Berman et al.
(2000), and as part of the Coronavirus Structural Task Force (CSTF) headed by Andrea
Thorn, a large number of data sets of SARS-CoV-2 and related structures are compiled
in a git repository, see Thorn et al. (2021). While X-ray crystallography can achieve very
high resolution in principle, the large viral genome, comprising ∼ 20, 000 bases, is very
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Figure B14: Left: Histogram of the number of suites in Uc from (11), over all (198) clash
suites c ∈ C (test data set), of the dominating MINT-AGE class. Right: Scatter plot
relating the number of suites in the dominating class of Uc and the normalized distance d̃c
from (14), over c ∈ C.

difficult to crystallize. Therefore, many structures are determined by cryogenic electron
microscopy (cryo-EM).

5.1 The Frameshift Stimulation Element

In Zhang et al. (2021), the frameshift stimulation element of the SARS-CoV-2 genome
was studied (see Figure B5, right panel), which, due to its slippery site encodes different
proteins simultaneously (this method of information compression is shared with other
viruses such as HIV-1). As their balanced expression is required for virus replication, this
element is believed to be fairly resistant against mutations. Hence it is a promising target
for antiviral drug design. Its three-dimensional structure has been assessed by cryo-EM
with a resolution of 6.9Å using the ribosolve pipeline from Kappel et al. (2020), see also
Section 3.3. Using a consensus secondary structure of the molecule and the cryo-EM map,
Zhang et al. (2021) proposed 10 possible three-dimensional structure models (based on a
measurement with mean pairwise root mean squared deviation of 5.68Å) and stored them
to the Protein Data Bank. Notably, it was not possible to reliably assign individual atom
positions, but the secondary arrangement of helical segments and the non-helical linking
segments could be reconstructed, see Zhang et al. (2021) and first panel of Figure B15. In
particular, the suites linking different helical segments have been difficult to reconstruct.
Here we focus on the suite determined by Residues 28/29 which we call Suite 1 and on
the suite determined by Residues 33/34 which we call Suite 2 (referring to enumeration in
the PDB file).

5.2 Reconstructing Suite 1

Suite 1 (red arrow in Figure B5, right panel, and the left red dot in Figure B15, left panel) is
a clash suite in all 10 models proposed by Zhang et al. (2021), as determined by PHENIX,
see Section 3.3. Notably, the P’-O3’ bonds are unphysically long (red verticals in Figure
B3, center right panel), hinting towards a bad structure fit of all 10 proposals. Figure B15
(3rd panel) shows c1, the first clashing proposal for Suite 1, at mesoscopic scale and its
highly concentrated neighborhood Uc1 from (11), in which 43 out of the 50 suites belong to
MINT-AGE Class 4. Its torus mean and c1 at microscopic scale are shown in Figure B15
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Figure B15: First: 2D scheme of the SARS-CoV-2 frameshift stimulation element, adapted
from (Zhang et al., 2020, Figure 8), see also Figure B5 (right panel), with double-stranded
helical stems (green, yellow and blue) and connecting Suites 1 and 2 (red dots, only one
nucleotide is on the red branch) Second: Model 1 (c1) of Suite 1 (red, clashing) proposed
by Zhang et al. (2021), the 43 suites from MINT-AGE Class 4 dominating in neighborhood
Uc1 (black) and their torus mean (green) at microscopic scale. Third: The corresponding
mesoscopic shape mc1 (red), the 43 mesoscopic shapes of suites from MINT-AGE Class 4
in neighborhood Uc1 (black) and their Procrustes mean geodesically projected to a meso-
scopic shape featuring length constraints from mc1 and the microscopic correction of c1
(green). Fourth: The ten different model proposals (one in red clashes, the others in black
form two clusters) by Zhang et al. (2021) of Suite 2 and their highly consistent correction
from MINT-AGE Class 1 (green) at microscopic scale. Right: Using same coloring, at
mesoscopic scale all 10 models from Zhang et al. (2021) of Suite 2 form one cluster for
which CLEAN-MINT-AGE provides a moderate correction only.

(2nd panel). The situation is very similar for the other clashing proposals c2, . . . , c10 for
Suite 1: MINT-AGE Class 4 dominates strongly in their concentrated neighborhoods, each
warranting only minor corrections at mesoscopic scale (Figure B3, 4th panel) and all of
their torus means at microscopic scale are nearly indistinguishable (Figure B3, 3rd panel).
Notably, MINT-AGE Class 4 corresponds to one Richardson et al. (2008) cluster only
(namely 2a, see Figure B10) which has been characterized there as GNRA 1-2; U-turn.

5.3 Reconstructing Suite 2

Suite 2 (blue arrow in Figure B5, right panel, and the right red dot in Figure B15, left
panel) is a clash suite only in one out of the 10 models proposed by Zhang et al. (2021), as
determined by PHENIX, see Section 3.3. At microscopic scale (Figure B15, fourth panel,
red and black) these models are inconclusive as they feature two different clusters and
one of the models (red) from the larger cluster has a clash score 0.401Å, slightly above
the threshold of 0.4Å. As before, at mesoscopic scale (Figure B15, fifth panel, red and
black), the shapes of all 10 models proposed are very similar and consistent and there
is a single MINT-AGE class that strongly dominates every neighborhood (11), namely
Class 1. Figure B15 (fifth panel, green) shows its Procrustes means projected to the
mesoscopic shapes featuring length constraints from the corresponding mesoscopic shapes
mc1 , . . . ,mc10 of the 10 models and the suite lengths of the corrections from c1, . . . , c10
as detailed in Section 4.3.1. In consequence, the CLEAN-MINT-AGE corrections are the
torus means of the suites of Class 1 in the respective neighborhoods. Again these are
nearly indistinguishable, giving one consistent correction for Suite 2 in Figure B15 (fourth
panel, green).
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6 Discussion

The CLEAN-MINT-AGE procedure presented here, yielding

1. hierarchical (different shape spaces for multiscale interrelationships),

2. probabilistic (Fréchet means in iterative adaptive torus clusters obtained after circu-
lar mode hunting, projected to a shape space featuring data driven constraints),

3. clash free, and

4. fast,

RNA backbone correction which is an important and challenging contribution warranting
further research in various directions, of which we sketch three.

In particular, we have discovered, described and exploited a relationship of RNA 3D
structure between a microscopic and a mesoscopic scale. Further research, building on
larger datasets, beyond the scope of this paper, will investigate this relationship more
closely and identify relationships between other scales as well and exploit these similarly.
As we have found that shape at different scales is best described by fundamentally different
shape spaces, this involves statistically linking different geometrical models of shape.

At this point, the two-scale correction method CLEAN we propose corrects a central
suite at microscopic scale only. More realistic, again beyond the scope of this paper, are
simultaneous corrections of all suites involved at the mesoscopic scale (notably, adjacent
suites overlap at four atoms), and correction of suites linked by nucleobase bindings, po-
tentially far away along the backbone. Such corrections can, after elaborate extension,
also address backbone-to-backbone-extra-suites clashes and even the more rare nucleobase
clashes. Obviously these methods extend to various other biomolecules and in particular
to protein structure correction, see Hamelryck et al. (2010).

As mentioned in the introduction, there are elaborate correction methods, for exam-
ple ERRASER from Chou et al. (2013b), building on approximations of highly complex
molecular dynamics simulations yielding 3D structures following the laws of biophysical
chemistry. This aims not only at correcting all clashes (i.e. within-suite and between-suites,
as well as backbone or base to backbone or base), it also aims at various other structure im-
provements. While for the test data set this entire process took several days on the ROSIE
servers Chou et al. (2013a), frequently not removing all clashes, our CLEAN method,
removing all within-suite-backbone-to-backbone clashes, ran within minutes. Since in con-
trast to corrections based on molecular dynamics, as demonstrated in Figures B3 and B15,
our proposed corrections can be quite different from original clash suite shapes, they may
serve as additional initial states for subsequent molecular dynamics, and thus provide a
powerful tool.

Supplement Overview

In the supplementary material we

A. list the PDB files making the benchmark data set;

B. give scatterplots of suites (microscopic scale) in pairwise dihedral angle representa-
tion: first of the training data (the clash free suites of the benchmark data set),
secondly of its classification by MINT-AGE and thirdly the corrections of the test
data (the clashing suites of the benchmark data) by CLEAN;
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C. give, for convenience and to make this paper self contained, an overview of the MINT-
AGE algorithm from Mardia et al. (2022) including the parameter choices leading
to the MINT-AGE classes of the training data set and, specifically, the classes found
by circular mode hunting in the MINT-step;

D. briefly sketches the state of the art method ERRASER from Chou et al. (2013a) and
provides some comparison with CLEAN MINT-AGE;

E. provide urls to access code and data (e.g. the PDB files and all the code used to
generate the analyses and plots presented in this paper.).
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Supplementary Information

A The PDB files

Table B16 lists the PDB IDs and the corresponding resolution of the benchmark data set,
see Section 3.4.

Figure B16: PDB IDs and resolutions (see Section 3.3) from the 71 different measurements
from the benchmark data set (see Section 3.4).

PDB ID Resolution

1cvj 2.60
1ddl 2.70
1duh 2.70
1e7k 2.90
1ec6 2.40
1ehz 1.93
1et4 2.30
1f1t 2.80
1f7u 2.20
1f7y 2.80
1f8v 3.00
1f27 1.30
1ffy 2.20
1h3e 2.90
1h4s 2.85
1hmh 2.60
1hr2 2.25
1i6u 2.60
1ivs 2.90
1jbr 2.15
1k8w 1.85
1kh6 2.90
1kq2 2.71
1kxk 3.00
1l2x 1.25
1l9a 2.90
1lng 2.30
1m5k 2.40
1m8v 2.60
1m8x 2.20
1mzp 2.65
1n78 2.10
1ntb 2.90

PDB ID Resolution

1ooa 2.45
1q2r 2.90
1qf6 2.90
1qtq 2.25
1r3e 2.10
1r3o 1.90
1rlg 2.70
1s03 2.70
1s72 2.40
1sds 1.80
1u9s 2.90
1vfg 2.80
1wpu 1.48
1xjr 2.70
1xmq 3.00
1xok 3.00
1y3s 2.25
1yfg 3.00
1yls 3.00
1z43 2.60
2a8v 2.40
2a43 1.34
2atw 2.25
2bh2 2.15
2bte 2.90
2bu1 2.20
2bx2 2.85
2csx 2.70
2fmt 2.80
7msf 2.80
361d 3.00
397d 1.30
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B Scatterplots of all pairwise dihedral angle pairs

Figure B17 illustrates all two dimensional dihedral angle pairs of the suites of the training
data set T, introduced in Section 3.4. Their MINT-AGE classes (see Algorithm C.3) with
the parameters described in Supplement C.1 are shown in Figure B18. The corresponding
cluster sizes are summarized in Figure B10 in the main text. The scatterplots of the 198
clash suites C from the benchmark test data set are depicted in Figures B19 as black
diamonds. Figure B19 shows the CLEAN (Section 4.3.1) corrections as green circles and
blue crosses, respectively.

Figure B17: Scatterplots of all two dimensional dihedral angle pairs (in degrees) of the
suites of the training data set T, see Section 3.4.
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Figure B18: Scatterplots of all two dimensional dihedral angle pairs (in degrees) for the 17
MINT-AGE benchmark classes described in Supplement C.
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Figure B19: Scatterplots of all two dimensional dihedral angle pairs (in degrees) of the 198
clash suites C (black) from the benchmark test data set with their corrections by CLEAN
(green circles correspond to flag DOMINATING = ABSOLUTE in Section 4.3.1 and blue
crosses to flag DOMINATING = RELATIVE). Each correction belongs to a clash free
class.

C MINT-AGE

The following two algorithm (Algorithm C.1 and Algorithm C.3) have been proposed in
Mardia et al. (2022). For convenience, we reproduce them here including an introduction.

The Mode huntINg after Torus pca on Adaptive cutting averaGe linkage trEes (MINT-
AGE) algorithm builds on three components. Initially torus data is pre-clustered by adap-
tively cutting an average linkage clustering tree, as detailed in Supplement C.1. Then, each
cluster is reduced to a one dimensional torus representation using torus PCA, recently de-
veloped by Eltzner et al. (2018), with varying flag parameters, see Supplement C.2. While
the torus is rather inconvenient for PCA based dimension reduction methods (almost all
geodesics are dense and tangent space methods lose periodicity), torus PCA deforms a
torus into a stratified sphere, opening up the toolbox of principal nested spheres from
Jung et al. (2012). This makes the torus even more attractive for PCA based dimension
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reduction methods than Euclidean space, cf. Huckemann and Eltzner (2015). Finally, if
the sum of squared residual distances to these one dimensional torus representations of the
pre-clusters is less than one fourth of the cluster’s total Fréchet variance, these one dimen-
sional representations are subjected to circular mode hunting that identifies subclusters
with statistical significance, as detailed in Supplement C.3.

C.1 AGE: Iterative Adaptive Cutting Average Linkage Tree Clustering
on a Metric Space

The first building block is AGE pre clustering. It builds on average linkage clustering, also
known as the unweighted pair group method with arithmetic mean or simply as UPGMA,
which was first developed by Sokal and Michener (1958). It is a hierarchical clustering
method that creates a rooted tree where each node stands for a cluster comprising all
leaves below that node.

Starting with data X(1), . . . , X(n) in a metric space with distance d, initially, each X(i)

(i = 1, . . . , n) is assigned its own cluster yielding the initial running cluster list. The tree
constructed starts with a graph comprising n leaves labeled from 1 to n, representing each
of these initial clusters. Then, iteratively, if there is more than one cluster in the running
cluster list, the two clusters with the smallest average distance are merged to form a new
cluster which is added to the running list, from which the two merged clusters are deleted.
Here, the average distance between two clusters A and B is given by

d(A,B) =
1

|A| · |B| ·
∑

X∈A

∑

Y ∈B
d(X,Y ). (14)

The graph is extended by adding a parent node above the two nodes corresponding to
the merged clusters and adding branches joining them to the parent node. The iteration
terminates if the running list contains only one cluster, comprising all data, which forms
the root of the tree, called the average linkage clustering tree. Notably, node values increase
when approaching the root. Indeed, if clusters A and B are merged to cluster A ∪B and
C is any other cluster, then d(A,B) ≤ d(A,C), d(B,C) and hence

d(A ∪B,C) = 1

|A ∪B| · |C| (|A| · |C| · d(A,C) + |B| · |C| · d(B,C)) ≥ d(A,B) .

Every choice of a distance value dc > 0 yields a clustering by a tree cut at distance dc, i.e.
by taking that running list when the last node with distance value ≤ dc has been added.

We note that instead of the average distance function in (14), one may consider the
minimal cluster distance yielding single linkage or nearest neighbor clustering, developed
by Florek et al. (1951), which is currently also highly popular. It tends to return long
elongated clusters, an effect called chaining, see Everitt (1993). For our purpose of struc-
ture correction relying on Fréchet means, which are generalizations of averages to metric
spaces, clustering based on average distance ensures that Fréchet means are within or close
to their clusters with a tendency towards isotropic spread.

Obviously, this simple approach fails to separate frequent cluster configurations, for
instance if two closely neighboring clusters have a higher density than a third one. Such
configurations are separated, however, using a data-adaptive cutting procedure, see for
example Langfelder et al. (2007) and Obulkasim et al. (2015). We choose the following
tuning parameters:

• maximal outlier distance dmax controlling cluster density,
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• minimal cluster size κ controlling, if not too small, that our mode hunting from Sup-
plement C.3 can significantly separate one-dimensional clusters with several modes,

• relative branching distance q ensuring that two clusters are only split if their parent
node’s distance value is significant in relation to the greatest distance value of its
child nodes.

Algorithm C.1 (AGE). Consider the set P = {X(1), . . . , X(n)} of n data points. Let R
be the outlier list and C be the cluster list, each of which are initially empty. They are
filled iteratively as follows:

1. Compute the average linkage clustering tree from P

2. Perform a tree cut at distance dmax to obtain a clustering, move from P to R all
data points that are in clusters with less than κ data points.

3. Compute the average linkage cluster tree for the new P as in Step 1.

4. Set sP =
√
|P |+ κ2 (inspired by the square root rule of thumb used in histogram

binning), create an empty list L of clusters.

5. Begin at the root and always follow the branch with more points at each node. From
each node add the child node corresponding to the smaller subcluster to L

(a) if it contains more than sP data points,

(b) and if the q-fold of its parent node’s distance value is greater than the two
children nodes’ distance values.

6. At the last node, where the smaller subcluster is added to L, also add the larger
subcluster to L

7. Consider L:

• if L is empty, move the union of all data points from P to C; these correspond
then to one single cluster,

• else, add the largest cluster in L to C and remove its points from P .

8. If |P | > 0, go to Step 1.

9. Return the clusters list C and the outlier list R.

Some of the pre-clusters resulting from the benchmark training set contain obvious
subclusters that have not be identified by Algorithm C.1, for a similar data set this is
detailed in Mardia et al. (2022). It turns out they can be well separated by mode hunting
(see Section C.3 ) applied to their one dimensional torus PCA representation. To this
end, for the pre-clustering Algorithm C.1 we choose the minimal cluster size κ = 20, the
relative branching distance q = 0.15 and the maximal outlier distance dmax such that 15%
of the suites in the average linkage tree are in a branch with less than κ data points.

Remark C.2. Since we use the clustering results in Section 4.3.1 in the main text to
suggest corrections for clash suites, we aim at larger and concentrated clusters, possibly at
the price of a larger number of outliers which cannot be allocated to any of the clusters.
However, other choices of tuning parameters are conceivable:

B34

118 CLEAN MINT-AGE



• Increasing dmax would result in reducing the number of outliers. If dmax is chosen
too large, outliers will be added to set of clusters, too small dmax will cause elements
that actually belong to clusters to be assigned to the set of outliers.

• Increasing of the minimal cluster size κ would cause some smaller clusters to no
longer be detected. Decreasing κ would result in reduced ability to separate smaller
clusters in the mode hunting step, see Supplement C.3, with statistical significance.

• Cluster centers are often concentrated due to chemical constraints. To ensure that
they are not separated from the less dense neighborhood, q = 0.15 was chosen.

C.2 Torus PCA Based Clustering

Algorithm C.3 (MINT-AGE).

AGE-step: From input suite data X(1), . . . , X(n) obtain a list of pre-clusters using Algo-
rithm C.1 from the supplement and store it as the remaining cluster list R. Create
the initially empty final cluster list F .

MINT-step: While R is non-empty:

1. Take a cluster C from R and set m = 1:

2. For C perform torus PCA from Eltzner et al. (2018) with the flags GC (gap cen-
tered), MC (mean centered), SI (spread inside), SO (spread outside) as detailed
there

• if m = 1: GC, SI

• if m = 2: GC, SO

• if m = 3: MC, SI

• if m = 4: MC, SO

• if m = 5: Remove C from the remaining cluster list R, add it to F and go
to Step 1.

3. For the suite X(j) ∈ C let X(j,1D) denote their one-dimensional torus PCA pro-
jections and let µ denote the torus PCA nested mean from Eltzner et al. (2018).
Whenever
4
(∑n

j=1 dT7

(
X(j), X(j,1D)

)2) ≤ ∑n
j=1 dT7

(
X(j), µ

)2
, perform mode hunting

from Section C.3:

• if subclusters were found, add them to the remaining cluster list R and
remove C from it.

• else: Set m = m+ 1 and go to Step 2.

Return: F .

C.3 Circular Mode Hunting

We cluster the one-dimensional projections obtained by torus PCA in Step 2(c) of Al-
gorithm C.3 using the multiscale method described by Dümbgen and Walther (2008).
Although this method was originally defined for the real line, its numerical implementa-
tion for circular data is even simpler. Since modes are separated by minima, we use this
method to identify regions in which minima are located with a certain confidence level.
(Throughout the applications, we use a fixed confidence level of 95%). In each of these
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regions, we estimate the minima by estimating the density of the one-dimensional pro-
jections using a wrapped Gaussian kernel. As the bandwidth increases, the number of
minima of the density estimate in each of the regions decreases. Whenever there is only
one minimum left in a region – this will inevitably happen due to the causality of the
wrapped normal kernel, see Huckemann et al. (2016) – we take this as a cluster boundary,
see Figure B20 for an illustration of our method.

0 2π

small bw

large bw

Figure B20: Circular mode hunting for data (black asterisks). Intervals containing minima
with statistical significance (red) and wrapped Gaussian kernel smoothed densities with
varying bandwidths having too many minima (brown) and having the statistically significant
number of minima (blue). The latter minima are taken as cluster boundaries (orange),
adapted from Mardia et al. (2022).

From the training data set, the AGE-step of Algorithm C.3 produced 13 pre-clusters,
three of which containing sub-clusters identified by the MINT-step, see Table B1.

Pre-cluster number MINT-AGE class numbers

7 9, 12
4 6, 7, 14
8 8, 15

Table B1: MINT-AGE classes (2nd column) found in single AGE pre-clusters (1st column).

D ERRASER

A popular and well established (see for example Richardson et al. (2018), Jain et al. (2015))
tool for structure correction is ERRASER (Enumerative Real-space Refinement ASsisted
by Electron-density under Rosetta) Chou et al. (2013a). It automatically corrects complete
RNA structures as well as individual residues and usually executes the following three steps
three times in succession, see Chou et al. (2013a):

1. The high-resolution Rosetta energy function, extended by electron density correlation
evaluation, subjects, among others, all dihedral angles to minimization in order to
obtain a new reconstruction.

2. Residues in this new reconstruction are labeled if the PHENIX validation tools (see
Section 3.3 in the main text) detect errors, if the backbone’s configuration is not
recognized, or if other geometric errors occur (e.g. in the structure of the sugar
ring).
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3. Labeled residues are reconstructed one after the other by Single Nucleotide StepWise
Assembly (SWA) which samples all nucleotide atoms from an exhaustive grid search.

D.1 Using ERRASER

To correct a PDB file with ERRASER, one needs a 2mFo-DFc density map in CCP4
format in addition to the raw PDB file. We created the 2mFo-DFc electron density maps
with the PHENIX map tool, see Liebschner et al. (2019). However, some older PDB
files have not published the associated experimental files necessary to create a 2mFo-DFc
density map in CCP4 format and were therefore left out. We used the offered online server
ROSIE (Rosetta Online Server that Includes Everyone) see Chou et al. (2013a) to obtain
the ERRASER corrections. ERRASER returns a statistic for each corrected PDB file that
identifies a clashscore (the number of clashes per 1000 atoms) in the raw data set and the
clashscore in the PDB file corrected by ERRASER.

D.2 ERRASER data set

As explained above, the ERRASER method on the ROSIE server can only correct PDB
files that come with an associated 2mFo-DFc density map in CCP4 format and do not
exceed a specific maximum size. This is the case for only 49 PDB files of the 71 PDB
files from our benchmark data set, comprising 2325 suites. We denote this set by R and
it is a subset of our benchmark data set from Section 3.4. Whether clashing or not, all
of the suites from R are corrected by ERRASER. We obtain the ERRASER test data set
C′ = C ∩R of clash suites which has size 73 (recall that C is the test data set introduced
in Section 3.4 in the main text).

D.3 Clash Reduction by ERRASER

We apply the validation method phenix.clashscore, see Section 3.3, which returns the
number of clashes per 1000 atoms found in a given PDB file. Note that this clash score
includes all clashes between two atoms in a measurement, not just the clashes between two
backbone atoms.

Figure B21: Left: Each of the 73 green points compares the clash score of a single PDB
files before (horizontal) and after (vertical) correction by ERRASER. Right: Histogram of
numbers of atom clashes (horizontal) in clash suites before (black) and after correction by
ERRASER (magenta).
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The left panel of Figure B21 shows that ERRASER effectively reduces clash scores, as
an overwhelming part of the green points (each corresponding to a single PDB file) lies
substantially below the diagonal. The right panel of Figure B21 shows the amount of clash
reduction on suite level: after correction by ERRASER, from C′, approx. 40% (29) of the
suites have been made clash free and almost equally many (30) feature only one clash;
correcting the few suites with a higher number of clashes was only partially possible.

D.4 Comparing CLEAN MIN-TAGE with ERRASER

By design, our CLEAN MIN-TAGE algorithm corrects clashes by assigning clash suites to
one of the clash free classes of the underlying training data set. In contrast, after correction
by ERRASER, many clash suites remain outliers. Figure B22 displays the clash suites C′

before and after correction by ERRASER and CLEAN MIN-TAGE and in Figure B23
displays all two dimensional dihedral angle pairs of the the clash suites C′ before and after
correction by ERRASER. Through ERRASER correction, no distinct structures become
visible. In stark contrast, CLEAN MIN-TAGE assigns most clash suites to the dominating
(first cluster, A helix) and some to smaller clusters, see Figure B22.

Figure B22: RNA backbone suites with carbon (dark red), oxygen (dark blue) and phos-
phorus atoms (pink), see Figure B1 in the main text. Left: 73 clash suites which form our
ERRASER test set C′. Center: Their corrections by ERRASER. More than half of them
still feature clashes. Right: Their corrections by CLEAN MIN-TAGE. Each correction
belongs to a clash free class. See Figures B23 and B19 for both corrections in dihedral
angle representation.

B38

122 CLEAN MINT-AGE



All two dimensional dihedral angle pairs of the suites of the 73 clash suites C′ from the
ERRASER test set are depicted in Figure B23 together with the corresponding ERRASER
corrections as magenta circles.

Figure B23: Scatterplots of all two dimensional dihedral angle pairs (in degrees) of the
73 clash suites C′ (black) from the ERRASER test set with their corrections (magenta)
by ERRASER from Chou et al. (2013a). More than half of them still feature clashes, cf.
Supplement D.3 and Figure B22.
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E Data and Code

The PDB files and all the code used to generate the analyses and plots presented in this
paper can be found https://gitlab.gwdg.de/henrik.wiechers1/clean-mintage-code.
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Abstract

ENDOR spectroscopy is an important tool to determine the complicated three-

dimensional structure of biomolecules and in particular enables measurements of in-

tramolecular distances. Usually, spectra are determined by averaging the data matrix,

which does not take into account the significant thermal drifts that occur in the mea-

surement process. In contrast, we present an asymptotic analysis for the homoscedastic

drift model, a pioneering parametric model that achieves striking model fits in practice

and allows both hypothesis testing and confidence intervals for spectra. The ENDOR

spectrum and an orthogonal component are modeled as an element of complex pro-

jective space, and formulated in the framework of generalized Fréchet means. To this

end, two general formulations of strong consistency for set-valued Fréchet means are

extended and subsequently applied to the homoscedastic drift model to prove strong

consistency. Building on this, central limit theorems for the ENDOR spectrum are

shown. Furthermore, we extend applicability by taking into account a phase noise

contribution leading to the heteroscedastic drift model. Both drift models offer im-

proved signal-to-noise ratio over pre-existing models.
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1 Introduction

One of the main objectives of structural biology is to understand the complicated three-

dimensional structure of biomolecules, and thus provide meaningful links between structure

and functionality. In particular, this information can be used in the field of structure-based

drug design, see for example [And03a]. There is a wide range of different methods to deter-

mine the structure, such as X-ray crystallography (X-ray), cryogenic electron microscopy

(cryo-EM) and spectroscopic methods. Nuclear magnetic resonance (NMR) spectroscopy

is possibly the most widely used spectroscopic method: it studies the interactions between

the nuclei of a molecule using radio frequency (RF) pulses. Electron paramagnetic res-

onance (EPR), on the other hand, studies the local environment and different kinds of

interactions of the spins of unpaired electrons using microwave (MW) pulses. It can be

more selective than NMR in that it targets only the tiny minority of unpaired electrons

among the large number of electrons present in a biomolecule. Additionally, the larger

gyromagnetic ratio of the electron compared to any magnetic nucleus usually leads to

higher detection sensitivity and thus to better signal-to-noise ratio (SNR). Electron Nu-

clear Double Resonance (ENDOR) spectroscopy [Feh56,GS91,Har16] seeks to combine the

advantages of EPR and NMR by interacting with both, nuclei and radical electrons, using

both MW and RF pulses in a single experiment (see Section 2 for an accessible exposi-

tion of how this works). It should be emphasized that NMR, EPR and ENDOR differ in

their domain of applicability, in particular in the range of distances between interacting

spins, rather than one method being generally superior to another. Roughly, ENDOR’s

double resonance approach yields information on how the unpaired electron interacts with

magnetic nuclei of a chosen kind (e.g. protons, deuterium nuclei or fluorine nuclei) and

explores their environment. Artificially inserting labels, i.e. magnetic nuclei rarely present

in biomolecules such as fluorine or deuterium, as well as radicals containing unpaired elec-

trons that do not naturally occur in the biomolecule under study such as nitroxide radicals,

allows highly specific measurements of intramolecular distances and orientations between

selectable parts of the biomolecule, see [MDD+20].

Prior to [PEH+21], the standard approach [EABG03, RB14] for extracting ENDOR

spectra from the recorded echo signals was equivalent to the averaging model [PEH+21]

whereby echo responses are simply averaged across a large number of replications of the

ENDOR experiment and only the average response is processed further. However, as

ENDOR experiments typically run for several hours and at low temperatures, significant

thermal drifts over time occur in practice. In [PEH+21], the homoscedastic drift model

was introduced for ENDOR experiments at a microwave frequency of 263GHz, which uses

the echo signals at each of the N + 1 (with N ∈ N) RF frequencies recorded in B ∈ N
batches over time in a data matrix Y ∈ CB×(N+1). This model accounts for thermal drift

by decomposing the data matrix accounting separately for signal drift and spectrum. It

is the first of its kind in the field of ENDOR spectroscopy and, relative to common prac-

tice in applied statistics, achieves surprisingly good model fit that is maintained across a
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number of chemical compounds in follow-up studies, cf. [PEH+21, HTW+22,WKH+23],

yielding improved SNRs relative to the averaging model. The homoscedastic drift model

enables the application of the parametric bootstrap, which in turn enables hypothesis test-

ing and confidence intervals for the spectra: In [PEH+21], a flatness and a difference test

were introduced and performed, which together confirmed unequivocally the presence of

broad features that were suspected on visual inspection. [WKH+23] utilizes the spectral

uncertainties provided by the drift model to determine stochastic errors in the estimation

of physical parameters from which intramolecular distances can be determined. The pa-

rameter of greatest applied interest in the homoscedastic drift model, κ, is complex-valued

and contains both the ENDOR spectrum as well as an orthogonal component containing

a resonance artefact. It is standardized so that
∑N

ν=0 κν = 0 and
∑N

ν=0 |κν |2 = 1. Addi-

tionally, the spectrum I is extracted in a step following MLE estimation of κ by selecting

a direction in the complex plane that contains the spectrum rather than the resonance

artefact based on application-driven criteria so that I = Re
{
exp

(
iλopt

)
κ
}
holds for some

λopt ∈ [0, 2π] which is determined from κ alone. Indeed, we will show that rotation of κ

in the complex plane leaves the spectrum I invariant and, thus, it is the application that

drives us to consider the complex projective space CPN−1 as the appropriate parameter

space in this estimation problem. This paper addresses two main challenges:

Firstly, in order to justify the use of the above methods, we will address the asymptotic

theory of ENDOR spectra in this paper. More precisely, both strong consistency and a

central limit theorem (CLT) for the parameter κ are proved in the limit of large numbers

of batches B. To this end, the theory of strong consistency of generalized Fréchet means is

extended in Section 3 and applied in Section 4. Fréchet means (introduced by [Fré48]) take

the notion of arithmetic mean to the non-Euclidean setting, and generalized Fréchet means

are non-Euclidean data descriptors that do not necessarily live in the data space, that arises

naturally in our application and create challenges arising from their implicit definition and

potentially set-valued nature. We furthermore establish a CLT for the ENDOR spectrum

I justifying the construction of confidence intervals for the ENDOR spectra at least in the

case of known noise covariance and comment on the case of unknown noise covariance in

Section 5.

Secondly, in Section 6, we extend the homoscedastic drift model to cover other mi-

crowave frequencies such as 94GHz for which EPR spectrometers with an ENDOR ca-

pability are more widely available. This necessitates generalizing the drift model to the

heteroscedastic case. Given the presence of boundary maxima and the unsatisfactory

performance of penalized methods, a carefully devised parametric extension of the ho-

moscedastic drift model is found to work best yielding fairly good fit to the data and

notable improvements in SNR.
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1.1 Merging Complex and Real Notation and Complex Projective Space

Switching conveniently between complex-valued and real-valued matrices, vectors and

scalars, the following notation is used throughout the paper.

For a complex number z = x+ iy ∈ C and a complex vector (z1, . . . , zN )
T ∈ CN define

vec (z) :=

(
x

y

)
∈ R2 , M(z) :=

(
x −y
y x

)
, vec




z1
...

zN


 :=




vec (w1)
...

vec (wN )


 ∈ R2N

Conversely for real vectors (x, y)T ∈ R and (r1, . . . , r2N )
T ∈ R2N , define

c

(
x

y

)
:= x+ iy ∈ C , c̃

(
r1

r2N

)
:=




r1 + ir2
...

r2N−1 + ir2N


 ∈ CN

The following Lemma summarizes basic rules, verified at once.

Lemma 1.1. For z, w ∈ C we have

1. M(z)T =M(z̄)

2. vec(zw) =M(z)vec(w) =M(w)vec(z)

Further, for z, w ∈ CN and A ∈ SPD(2) we define

z ⋄A w :=
N∑

i=1

M(zi)
TAM(wi) ∈ R2×2, z •A w :=

N∑

n=1

M(zn)
TA vec(wn) ∈ R2,

as well as a Mahalanobis inner product, norm and distance,

⟨z, w⟩A :=

N∑

i=1

vec(zi)
TA vec(wi) ∈ R, ||z||A :=

√
⟨z, z⟩A ∈ R

dA(z, w) := ||z − w||A ∈ R.

Next, we introduce complex projective space. It is the space of complex directions in

CN that can be viewed as the space of real directions modulo the phase

λ = Arg(reiλ) ∈ [0, 2π)

of a complex number z = reiλ ∈ C.
For a complex column vector z ∈ CN , zT = (z1, . . . , zN ), its Hermitian conjugate is the

row vector

z∗ := (z1, . . . , zN ) .
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With the unit sphere

S2N−1 := {κ ∈ CN : κ∗κ = 1}

of real dimension 2N − 1, the complex projective space of complex dimension N − 1 and

real dimension 2N − 2 is

CPN−1 := S2N−1/ ∼ ,

where ”∼” denotes the equivalence relation

κ ∼ κ̃ ⇔ ∃λ ∈ R, eiλκ̃ = κ.

Furthermore we define the equivalence class of κ by [κ]. The distance between [κ], [κ̃] ∈
CPN−1 is defined by

d([κ], [κ̃]) = min
λ∈R
||κ− eiλκ̃||

where κ ∈ [κ], κ̃ ∈ [κ̃] are arbitrary representatives.

We say that κ, κ̃ ∈ S2N−1 are in optimal position if

d ([κ], [κ̃])) = ∥κ− κ̃∥ .

Lemma 1.2. For arbitrary κ, κ̃ ∈ S2N−1 we have that they are in optimal position if

κ̃∗κ = 0, or else,

κ,
κ̃∗κ
|κ̃∗κ| κ̃

are in optimal position.

Proof. The assertion follows at once from

d ([κ], [κ̃])) = min
λ∈R

(
κ− eiλκ̃

)∗ (
κ− eiλκ̃

)
= min

λ∈R

(
2− 2Re

(
eiλκ∗κ̃

))
.

2 Homoscedastic Drift Model

In this section, we selectively review those aspects of the ENDOR experiment that are

necessary for the present work with more background available in [GS91] and full exper-

imental details in [PEH+21]. We then introduce the setting for the homoscedastic drift

model from [PEH+21] in preparation for its asymptotic analysis.

In the ENDOR experiment, a sequence of MW and RF pulses is sent into a chemical

sample that is placed in an external magnetic field with field strength B0. The magnetic

field strength B0, as well as the MW frequency νMW and MW pulse lengths together de-

termine the set of orientations relative to the external magnetic field of those molecules

in the chemical sample that participate in the resonance experiment. Typically, five dif-
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ferent field strengths B0 are used to select five different sets of orientations denoted as

gx, gxy, gy, gyz and gz. The microwave echo signal returned by the participating molecules

in the chemical sample is recorded in two separate components: a component that is in

phase with a reference MW signal constitutes the real part and a component whose phase

is shifted by 90 degrees, known as ’in quadrature’, constitutes the imaginary part. This

echo signal is influenced by a RF pulse that is part of the pulse sequence. While the

MW frequency is constant throughout the ENDOR experiment (we report measurements

for νMW = 263GHz and, in Section 6, νMW = 94GHz), the RF frequency is varied in a

pseudo-random sequence covering each of the RF frequencies {fν : ν ∈ {0, . . . , N}}, N ∈ N
once. This is known as a scan. Since the SNR in a single scan is very low, a number S ∈ N of

scans are performed in succession which constitute a batch of measurements. The batches

are enumerated by b ∈ {1, . . . , B}. The resulting echo signals Xs,b,ν ∈ C are summed up to

form Yb,ν =
∑S

s=1Xs,b,ν . Here, S is chosen large enough to yield a SNR sufficient to allow

adjustment of experimental parameters based on a single batch Yb,: ..= (Yb,0, . . . , Yb,N )
T but

small enough for the thermal drift that affects phase and amplitude of the echo signal to

be negligible. Thus, we obtain the data matrix Y ∈ CB×(N+1), and a sample data matrix

is illustrated in Figure C6 of the Supplementary Information (SI). Prior to [PEH+21], the

standard approach [RB14, EABG03] to extract ENDOR spectra from the echo signal Y

was the averaging model :

Definition 2.1 (Averaging Model). In the averaging model, the batches are averaged ac-

cording to

Zν =
1

B

B∑

b=1

Yb,ν . (1)

In a second step, a phase correction, i.e. a complex multiplication by eiλ with a manually

tuned λ ∈ [0, 2π) to obtain a real valued non-normalized spectrum Ĩ = Re(eiλZ) is applied

followed by normalization to obtain the spectrum

Iν =
Ĩν −minν′∈{0,...,N} Ĩν′

maxν′∈{0,...,N} Ĩν′ −minν′∈{0,...,N} Ĩν′
. (2)

In [PEH+21], the statistical flaws of this approach were addressed. Firstly, normaliza-

tion via Zν = ψ + ϕκν with ψ ∈ C, ϕ ∈ R≥0, κν ∈ C and imposing

N∑

ν=0

κν
!
= 0 (3)

N∑

ν=0

|κν |2 !
= 1 (4)

is less sensitive to outliers. Note that the condition 3 removes a complex degree of freedom,

motivating our choice of N+1 rather than N RF frequencies. Secondly, various algorithms
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for phase correction without potentially biased operator intervention were studied to obtain

the spectrum that is now given by Iν = Re(exp(iλopt)κν). In this paper, we exclusively

utilize the maximum method [WKH+23], in which λopt ∈ argmaxλ∈[0,π) ∥Re(exp(iλ)κ)∥
is chosen so that the norm of I is maximal. In measurements where the spectrum Î

consists of little else than the central peak which carries no conformational information,

the minimum method minimizing deviation of ω̂ from a parametric model of the wave has

proven to be very effective in [PEH+21,HTW+22]. In both methods, additionally, a sign

flip is performed when required to ensure that the spectrum’s central peak points in the

positive direction, effectively optimizing λ over [0, 2π].

However, as ENDOR experiments often run for hours, in practice the aforementioned

thermal drift can be substantial, see Figure C6 of the SI. Thus, in [PEH+21] the drift

model was introduced, which allows for thermal drift of ψ and ϕ, decomposing the data

matrix according to the homoscedastic drift model:

Definition 2.2 (Homoscedastic Drift Model). The homoscedastic drift model is given by

Yb,ν = ψb + ϕbκν + ϵb,ν , vec (ϵb,ν)
i.i.d.∼ N (0,Σ), 1 ≤ ν ≤ N, 1 ≤ b ≤ B. (5)

By way of interpretation, ψ ∈ CB represents the signal from electron paramagnetic

resonance (i.e. what the echo signal would be if the RF pulse were absent) as well as

a possible offset of the measurement apparatus, ϕ ∈ CB represents the magnitude and

phase of the ENDOR effect, κ ∈ CN+1 comprises the ENDOR spectrum I as well as an

orthogonal component ω which we call the wave (see panels A and B in Figure C1) and ϵb,ν

represents the experimental noise. We use the notation vec (ϵb,ν) =

[
Re{ϵb,ν}
Im{ϵb,ν}

]
so that the

noise components follow a bivariate normal distribution with positive definite symmetric

covariance matrix Σ ∈ SPD(2).

The condition 3 serves to eliminate non-identifiability due to κ̃ = κ + c, ψ̃ = ψ − cϕ
with ψ̃, ϕ, κ̃,Σ yielding the same Yν,b as ψ, ϕ, κ,Σ for any c ∈ C. Similarly, the condition

4 eliminates non-identifiability due to κ̃ = rκ, ϕ̃ = r−1ϕ with ψ, ϕ̃, κ̃,Σ yielding the same

Yν,b as ψ, ϕ, κ,Σ for any r ∈ R>0.

Maximum likelihood estimators κ̂, ψ̂, ϕ̂, Σ̂ are calculated (see [PEH+21] and Section 2.1

for details) and in a second step, the estimated spectrum Î = Re(eiλopt κ̂) and the or-

thogonal component ω̂ = Im(eiλopt κ̂) are extracted from κ̂ using the maximum method.

Additionally to the above mentioned size non-identifiability of κ, the maximum (mini-

mum) method and optional sign-flip eliminate the phase non-identifiability due to κ̃ = ακ,

ϕ̃ = α−1ϕ yielding the same data distribution for ψ, ϕ, κ,Σ and ψ, ϕ̃, κ̃,Σ for all α ∈ C
with |α| = 1.

The following data example illustrates that the homoscedastic drift model, Defini-

tion 2.2, exhibits unusually good fit to experimental data at νMW = 263GHz, and yields

improved SNR compared to the averaging model, Definition 2.1. Confidence regions are

computed and will be justified via the B →∞ asymptotics developed in Section 4.2. It also

C7

133



prepares for extension to the heteroscedastic drift model, Definition 6.1, for νMW = 94GHz.

Data Example 2.3 (Homoscedastic Drift Model for 263GHz dataset). The maximum

likelihood estimates obtained using Algorithm 1 for the orientation gy from a chemical

sample of the D2-Y •
122 E. coli ribonucleotide reductase using the Davies pulse sequence,

see [Dav74], studied in [PEH+21] are presented in Figure C1. This also includes point-

wise confidence bands obtained via parametric bootstrap using 10000 bootstrap samples. In

simulating data for the bootstrap, an additive bias correction for Σ̂ and a multiplicative

bias correction for ϕ̂ were used owing to substantial bias in these estimators. This bias,

which does not disappear with increasing batch number B, likely arises from omitting the

randomness in ϕ from the model as will be set out in detail in Section 5. A detailed analysis

Figure C1: Applying the homoscedastic drift model (5) to an ENDOR example measure-
ment. Panel A displays the estimated spectrum Î, while panel B displays the component
ω̂ that is orthogonal to the estimated spectrum Î. C and D show the real (black) and
imaginary (red) components of ϕ̂ and ψ̂, respectively. Panel E displays the kernel-density-
estimation of the complex residuals ϵ̂b,ν , while panels F and G depict q-q-plots for the real
and imaginary components of the standardized residuals, respectively. The corresponding
raw data are plotted in Figure C6 in the SI.

of all D2-Y •
122 measurements is presented in Appendix A. The real and imaginary parts

of the residuals ϵ̂b,ν = Yb,ν − ψ̂b − ϕ̂bκ̂ν (shown in panels E, F, and G of Figure C1 for

orientation gy) for all orientations are examined for goodness of fit using a Kolmogorov-

Smirnov test, see [For07]. The resulting p-values are provided in Table C2 of the SI and are

all clearly above the Bonferroni-corrected critical value of 0.05/10=0.005. Additionally, a

comparison of the SNR of the averaging and drift models is performed. The drift model

exhibits a better SNR than the averaging model in 4 out of 5 measurements, as shown in

Table C1 and Figure C7. This is attributable to partial cancellation in (1) of ENDOR

signal components when ϕb changes significantly over batches. As an extreme example,

ϕb = exp(ib/B) would lead to the extracted spectrum from the averaging model being nothing
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but noise. Indeed, the larger the drift of argϕb shown in Figure C8, the more pronounced

the SNR advantage of the drift model over the averaging model in Table C1. This drift in ϕ

is positively correlated with the drift observed in ψ, see panels C and D of Figure C1. While

the correlation is not perfect, which argues against including it as a fixed component of the

model, it points to the dominant source of drift for both ψ and ϕ originating from phase

and amplitude changes due to thermal drift of the MW coupling to the ENDOR resonator

containing the chemical sample.

2.1 Maximum Likelihood Estimation and Parameter Space

Based on the statistical model 5, the log likelihood is easily found to be

ℓY (ψ, ϕ, κ,Σ) = −
B(N + 1)

2
log
(
(2π)2 det(Σ)

)
− 1

2

B∑

b=1

∥∥∥Ỹb,: − ϕbκ
∥∥∥
2

P
, (6)

where the precision matrix P := Σ−1 and the centered data matrix Ỹb,ν := Yb,ν − ψ̂b

have been used. Note that, contrary to rank one principal component analysis (PCA)

where interest is in the direction κ of greatest variability across repeated measurements,

our interest is in a measure of central tendency for κ that shows greatest variability across

frequencies. Hence, we centre the data to achieve zero empirical row mean (removing

ψ̂b =
1
N

∑N
ν=0 Yb,ν) rather than zero empirical column mean. The interest in the direction

of greatest variability across frequencies manifests itself in the use of the maximum method

to estimate λopt which, given a direction κ̂ ∈ CN+1, selects the phase in the complex plane

in which the variability across frequencies is greatest. However, we will see shortly that

the proposed model is not equivalent to PCA of the transpose of the data matrix.

For each parameter, the MLE when assuming all other parameters known is available

in closed form (see [PEH+21]). Note that ϕ⋄P ϕ and κ⋄P κ are invertible due to Lemma D.4

assuming ∥ϕ∥ > 0.

κ̂ν(ϕ, P, Ỹ ) = c
(
(ϕ ⋄P ϕ)−1

(
ϕ •P Ỹ:,ν

))
(7)

ϕ̂b(κ, P, Ỹ ) = c
(
(κ ⋄P κ)−1

(
κ •P Ỹb,:

))
(8)

Σ̂(ϕ, κ, Ỹ ) =
1

B(N+1)

B∑

b=1

N∑

ν=0

(
vec(Ỹb,ν)−M(ϕb)vec(κν)

)(
vec(Ỹb,ν)−M(ϕb)vec(κν)

)T
. (9)

In the special case when Σ = rId2 for r ∈ R>0 is known, this reduces to a rank one

singular value decomposition (SVD) of the centered data matrix Ỹ with ϕ̂

∥ϕ̂∥ and ¯̂κ being

left and right singular vectors and
∥∥∥ϕ̂
∥∥∥ the leading singular value, respectively. Therefore,

an iterative method imitating the standard power iteration method [TI97] would be a

natural algorithm to solve this problem. Indeed, [PEH+21] iterate the formulae 7, 8, 9 to

numerically compute the MLE even though they solve the more general and practically

relevant case involving given correlated, non-isotropic noise ϵ. In this more general case,
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there is no simple analogy to the SVD and its well-established asymptotic theory, see

e.g. [And03b], is not applicable.

While the entries of Ỹ are complex numbers, the metric implied by the presence of

the ∥ · ∥P -norm in the log likelihood and the fact that the 2 × 2 matrix κ ⋄P κ occurring

in the conditional MLE 8 cannot generally be written as the matrix representation M(c)

of any complex number c ∈ C, suggest a different approach. It is possible to conceive of

the entries of Ỹ as 2 × 2 matrices M(Ỹb,ν) so that computation takes place on the ring

R of 2 × 2 real matrices. κ is then an element of the Hilbert module (RN+1, ⟨·, ·⟩P ). A

Cauchy-Schwartz type inequality is available on this Hilbert module [Bul82] which would

facilitate some of our analysis but we ultimately perceive this algebraic sophistication as

a hindrance rather than as a simplification.

Instead, we initially view κ ∈ CN+1 subject to the constraints 3 and 4 as an element

of an N + 1 dimensional complex sphere intersected with the hyperplane defined by 3.

Removing an additional phase factor (since κ and ακ lead to equivalent models for α ∈ C
with |α| = 1 as previously noted), we are naturally lead to identifying those κ that differ

only by a root of unity and hence arrive at the complex projective space P = CPN−1, a

Riemannian manifold of real dimension 2(N − 1) as the relevant parameter space for κ,

where the Riemannian metric tensor is implied by the natural quotient embedding in CN .
We additionally choose a new basis that deals with the constraint 3 by re-writing the

noise ϵ according to Ỹb,ν = ϕbκν + ϵ̃b,ν where

ϵ̃b,ν :=
N

N + 1
ϵb,ν −

1

N + 1

N∑

ν̃=0,ν̃ ̸=ν
ϵb,ν̃ .

Now, we transition from the standard basis vectors ek ∈ RN+1 to the Helmert orthonormal

basis vectors

hj :=
1√

j(j + 1)

((
j∑

k=1

ek

)
− jej+1

)
, j = 1, . . . , N

to form the Helmert sub-matrix H = (h1, . . . , hN )
T ∈ R(N+1)×N which is in turn used to

Helmertize the data matrix Ỹ H := HỸ , error ϵ̃H := Hϵ̃ and spectral parameter κH := Hκ,

see [DM98] for details on this standard approach. While the covariance structure of ϵ̃ is

slightly cumbersome, that of the Helmertized error is simply vec
(
ϵ̃Hb,ν

)
i.i.d.∼ N (0,Σ) as

shown in Lemma B.1 in the SI.
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3 Extending strong consistency for generalized Fréchet

means

For our purpose in Section 4 to infer geometric parameters of the drift model, in this

section we extend the strong law of large numbers for generalized Fréchet means, which

is usually called strong consistency in this context. Let us first introduce this underlying

concept.

Noting that expected values of a random variable in a linear space are equivalently

described as minimizers of expected squared distance, Fréchet [Fré48] used this latter

geometric property as a definition for a mean location (cf. [HL98]) on a metric space, which

was soon called the Fréchet mean in his honor [Kar14]. Further, medians, as minimizers of

expected distance lead to Fréchet medians on metric spaces [FVJ08], and more generally,

any Lp mean can thus be generalized [Afs11]. For Fréchet means, two version of set-valued

strong consistency under rather broad conditions have been shown [Zie77,BP03], followed

by more versions of strong consistency for Fréchet Lp means by [EJ20,Sch22]. The general

formulation in terms of set valued Fréchet means is necessary for data on non-Euclidean

spaces, since for example for a sphere with equal point masses on the north and south pole

the Fréchet mean set is the whole equator, cf. [Huc12]. The generalized consistency results

also apply to generalized Fréchet means introduced by [Huc11b] to extend and model

geometric data descriptors beyond location, such as principal components of the covariance.

For instance in a geodesic space, the first principal component can be generalized to a

best approximating geodesic. Notably, then minimization has to be conducted no longer

over the data space, but over a descriptor space, in case of geodesics, this is the space

of geodesics. Likewise, parameters of a parametric model can be viewed as generalized

Fréchet means.

Curiously, to the best knowledge of the authors, available strong consistency results

for generalized Fréchet means ( [Sch22, Huc11b]) always assume a loss function which

is bounded from below and thus do not cover the simple case of maximum likelihood

parameters of a univariate or multivariate Gaussian. Such a generalization is typically

necessary to cover cases where a generalized Fréchet mean is estimated along with a (co-

)variance-like quantity. This is for example the case for diffusion means with simultaneously

estimated variance, see [EHHS22], and for a generalization of the asymptotic theory of the

drift model to include the covariance of the noise, as discussed in Section 5. As it turns

out such a generalization of strong consistency results is possible with moderate effort.

For all of the following, let X1, X2, · · · ∼ X be i.i.d. be random elements mapping

from a probability space (Ω,A,P) into a topological space Q equipped with its Borel σ-

algebra, called the data space. Moreover, let (P, d) be a separable metric space, called the

parameter space.

Definition 3.1 (Sample and Population and Fréchet ρ-mean). With a function ρ : Q ×
P 7→ R which is continuous in P for all fixed q ∈ Q and measurable in Q for all fixed
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p ∈ P, define, if existent,

F (ρ)
n (ω, p) :=

1

n

n∑

i=1

ρ(Xi(ω), p), F (ρ)(p) := E (ρ(X, p)) ,

ℓn(ω) := inf
p∈P
Fn(ω, p), ℓ := inf

p∈P
F(p),

E(ρ)
n (ω) := {p ∈ P | Fn(p) = ℓn(ω)}, E(ρ) := {p ∈ P | F (ρ)(p) = ℓ} .

The functions F (ρ) and F (ρ)
n are called the population and sample Fréchet ρ-functions,

respectively, and E(ρ) and E
(ρ)
n are the sets of sample and population Fréchet ρ-means,

respectively.

Definition 3.1 is a generalization of a mean originally introduced for the case P = Q

and ρ = d2 by [Fré48] which is called the Fréchet mean, see above. Due to continuity

of ρ, E(ρ) is a closed set and E
(ρ)
n (ω) is a random closed set, introduced and studied

by [Cho54,Ken74,Mat74], see also [Mol05].

Definition 3.2 (Two versions of set strong consistency). We say that the estimator E
(ρ)
n (ω)

for E(ρ) is

ZC: Ziezold strongly consistent if

∞⋂

n=1

∞⋃

k=n

E
(ρ)
k (ω) ⊆ E(ρ) for all ω ∈ Ω almost surely,

BPC: Bhattacharya and Patrangenaru strongly consistent if E(ρ) ̸= ∅ and if for every

ϵ > 0 and almost surely for all ω ∈ Ω there is a number n = n(ϵ, ω) > 0 such that

∞⋃

k=n

E
(ρ)
k (ω) ⊆ {p ∈ P : d(E(ρ), p) ≤ ϵ}.

Remark 3.3. ZC was originally introduced by [Zie77] and established in case of P = Q

and ρ a squared quasi-metric. BP was originally introduced by [BP03] and established

for Fréchet means on Heine-Borel spaces under the additional condition that E(ρ) be not

empty. More generally, [EJ20] put the two concepts of strong consistency into the more

general context of Kuratowski limits, see also [Sch22] (ZC corresponds to outer limits there

and BPC to limits in one-sided Hausdorff distance).

As noted above, Fréchet ρ-means for nonnegative ρ have been introduced by [Huc11b],

studying both versions of consistency under a uniform continuity and a coercivity assump-

tion on ρ. [Sch22] relaxed these assumptions, among others to lower semicontinuity and

some assumtpions on bounds. We show ZC and BPC under even weaker assumptions,

namely a modulus of continuity along with its prefactor for ZC and using non-emptiness

of Eρ for BPC.
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Assumption 3.4. In the setup of Definition 3.1 there are

1. ρ̇ : Q ×P 7→ [0,∞) which is continuous in P for all fixed q ∈ Q and measurable in

Q for all fixed p ∈ P, with E [ρ̇(X, p)] <∞ for all p ∈ P,

2. h : [0,∞)→ [0,∞) continuous with h(0) = 0, and

3. δ > 0, such that for every p, p′ ∈ P with d(p, p′) < δ

∣∣ρ(q, p)− ρ(q, p′)
∣∣ ≤ ρ̇(q, p) h

(
d(p, p′)

)
. (10)

Further, assume that E (ρ(X, p)) exists for all p ∈ P.

Definition 3.5. For ω ∈ Ω, p ∈ P, under Assumption 3.4, define

Ḟn(ω, p) :=
1

n

n∑

i=1

ρ̇(Xi(ω), p), Ḟ(p) := E (ρ̇(X, p)) .

Lemma 3.6. Under Assumption 3.4 there is a dense countable subset P̃ ⊂ P and mea-

sureable A ⊂ Ω with P(A) = 1 such that for all p̃ ∈ P̃ and all ω ∈ A the following

hold:

(i) Fn(ω, p̃) n→∞→ F(p̃) and Ḟn(ω, p̃) n→∞→ Ḟ(p̃),

(ii) for all p ∈ P with d(p, p̃) < δ/2 and (pn)
∞
n=1 ⊂ P with pn → p,

F(p̃)− h
(
d(p̃, p)

)
Ḟ(p̃) ≤ lim inf

n→∞
Fn(ω, pn)

≤ lim sup
n→∞

Fn(ω, pn) ≤ F(p̃) + h
(
d(p̃, p)

)
Ḟ(p̃).

Proof. Since P is a separable space, there is a countable subset P̃ = {p̃i}∞i=1 ⊂ P that is

dense in P. For every p̃i ∈ P̃ there is, due to the classical strong law of large numbers, a

measurable set Ai ∈ A with P(Ai) = 1 such that

Fn(ω, p̃i) n→∞→ F(p̃i) and Ḟn(ω, p̃i) n→∞→ Ḟ(p̃i) for every i = 1, 2, . . . and ω ∈ Ai.

Thus, for A :=
⋂∞
i=1Ai we have Assertion (i).

In order to see Assertion (ii), consider ω ∈ A, p, pn ∈ P with pn → p and p̃ ∈ P̃ with

d(p, p̃) < δ/2 and δ > 0 from Assumption 3.4. Then, there is n0 ∈ N with d(p, pn) < δ/2

for all n ≥ n0, and hence d(pn, p̃) < δ for all n ≥ n0 (illustrated in the left panel of Figure

C2). Thus

Fn(ω, p̃)− |Fn(ω, p̃)−Fn(ω, pn)| ≤ Fn(ω, pn) ≤ Fn(ω, p̃) + |Fn(ω, p̃)−Fn(ω, pn)| , (11)
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and from Assumption 3.4 we have for all n ≥ n0

|Fn(ω, p̃)−Fn(ω, pn)| ≤
1

n

n∑

i=1

|ρ(Xi(ω), p̃)− ρ(Xi(ω), pn)|

≤ h
(
d(pn, p̃)

) 1
n

n∑

i=1

ρ̇(Xi(ω), p̃) = h
(
d(pn, p̃)

)
Ḟn(p̃). (12)

Letting n → ∞ in (11), exploiting (12), continuity of d, continuity of h, h(0) = 0, h ≥ 0

and Assertion (i) yield at once Assertion (ii).

Theorem 3.7. Under Assumption 3.4, ZC holds for the set of Fréchet ρ-means on P.

Proof. We follow the steps originally introduced by [Zie77] and adopted by [Huc11b]. With

A ⊂ Ω of full measure and the dense countable subset P̃ of P, both from Lemma 3.6, fix

p ∈ P and (pn)
∞
n=1 ⊂ P with pn → p. We first show that

Fn(ω, pn) n→∞→ F(p) , (13)

for all ω ∈ A.
To this end, with δ > 0 from Assumption 3.4, let p̃ ∈ P̃ with d(p, p̃) < δ/2. Then, due

to Assertion (ii) from Lemma 3.6,

F(p̃)− h
(
d(p̃, p)

)
Ḟ(p̃) ≤ lim inf

n→∞
Fn(ω, pn) ≤ lim sup

n→∞
Fn(ω, pn) ≤ F(p̃) + h

(
d(p̃, p)

)
Ḟ(p̃),

(14)

for all ω ∈ A.
Letting (p̃k)

∞
k=1 ⊂ P̃ with p̃k

k→∞→ p, there is k0 ∈ N with d(p, p̃k) < δ/2 for all k ≥ k0

(illustrated in the right panel of Figure C2). Plugging these in, into (14) we obtain for all

ω ∈ A,

lim
k→∞

(
F(p̃k)− h

(
d(p̃k, p)

)
Ḟ(p̃k)

)
≤ lim inf

n→∞
Fn(ω, pn) (15)

≤ lim sup
n→∞

Fn(ω, pn)

≤ lim
k→∞

(
F(p̃k) + h

(
d(p̃k, p)

)
Ḟ(p̃k)

)
.

This yields (13), as, due to continuity of F , Ḟ and h, as well as h(0) = 0,

lim
k→∞

(
F(p̃k)− h

(
d(p̃k, p)

)
Ḟ(p̃k)

)
= F(p) = lim

k→∞

(
F(p̃k) + h

(
d(p̃k, p

)
)Ḟ(p̃k)

)
.

Next we show the assertion of the theorem. Since it is trivial in case of

∞⋂

n=1

∞⋃

k=n

E
(ρ)
k (ω) = ∅,
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it is sufficient to show that

if

∞⋂

n=1

∞⋃

k=n

E
(ρ)
k (ω) ̸= ∅ then ℓn(ω)→ ℓ for ω ∈ A.

To see this, we show the following two inequalities for all ω ∈ A

lim inf
n→∞

ℓn(ω) ≥ ℓ, (16)

lim sup
n→∞

ℓn(ω) ≤ ℓ . (17)

Noting that

if p ∈
∞⋂

n=1

∞⋃

k=n

E
(ρ)
k (ω) then p ∈

∞⋃

k=j

E
(ρ)
nk (ω) for all j ∈ N ,

where nj →∞ is a sequence with

lim
j→∞

ℓnj (ω) = lim inf
n→∞

ℓn(ω) ,

and recalling that the closure of a set in a metric space is given by all cluster points of

sequences in it, there is a sequence {pi}∞i=1 with pi → p and pi ∈ E(ρ)
ki

(ω) for a subsequence

{ki}∞i=1 of nj . Using (13) we obtain

lim inf
n→∞

Fkn(ω, pn) = lim
i→∞

ℓki(ω) = F(p) ≥ ℓ.

for all ω ∈ A, yielding (16).

To see (17), set pn := p for some p ∈ E(ρ), so that with (13) there is a nonnegative

random sequence {ϵn(ω)}∞n=1, converging to zero for all ω ∈ A, with

ℓ = F(p) ≥ Fn(ω, p)− ϵn(ω) ≥ ℓn(ω)− ϵn(ω) ,

for all ω ∈ A, yielding at once (17). This completes the proof.

Assumption 3.8. The population Fréchet ρ-mean is not empty: E(ρ) ̸= ∅ and for all

random sequences {pn}n∈N without accumulation points in P, there is a constant ℓ < C ≤
∞ such that a.s.

lim inf
n→∞

ρ(X, pn) ≥ C. (18)

Theorem 3.9. Under Assumptions 3.4, and 3.8 BPC holds for the set of Fréchet ρ-means

on P.

Proof. It suffices to show that for random sequence pn(ω) ∈ E
(ρ)
n (ω) with underlying
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p̃
ppn

δ
δ/2 p̃k

δ
ppn

δ/2

Figure C2: Left: Illustration of Lemma 3.6. For all p̃ ∈ P̃ (red point) with distance
d(p, p̃) < δ/2 to p ∈ P (black point), the inequality (11) holds for (pn)

∞
n=1 ⊂ P with

pn → p (gray points). Right: Illustration of (15) in the proof of Theorem 3.7. Compared
to the left panel, where p̃ ∈ P is fixed, the sequence (p̃k)

∞
k=1 ⊂ P̃ (red dots) converges also

to p (black dot) for k →∞.

random one-sided Hausdorff distance rn(ω), i.e.

pn(ω) ∈ argmax
p∈E(ρ)

n (ω)

(
min

p′∈E(ρ)
d(p, p′)

)
, rn(ω) = max

p∈E(ρ)
n (ω)

(
min

p′∈E(ρ)
d(p, p′)

)
, n ∈ N

rn(ω)→ 0 for all ω ∈ Ω a.s.

If this was not the case, then there would be Ã ⊂ Ω with P(Ã) > 0 such that for all

ω ∈ Ã, there is a subsequence nk(ω) with rnk(ω)(ω) ≥ r0(ω) > 0 and r0(ω) > 0. We now

derive a contradiction.

Due to Theorem 3.7, we have ZC, so that with a null set B, all cluster points of

pnk(ω)(ω) lie in E(ρ) for all ω ∈ Ã \B. In consequence, pnk(ω)(ω) has no cluster points for

all ω ∈ Ã \B. Fixing ω0 ∈ Ã \B, set

p̃k(ω) :=

{
pnk(ω)(ω) if ω ∈ Ã \B

pnk(ω0)(ω0) if ω ∈ Ω \ (Ã \B)
, k ∈ N ,

to obtain a sequence p̃k(ω) without any cluster points for all ω ∈ Ω, so that in consequence

of Assumption 3.8, there is C > ℓ and a.s. m(ω) ∈ N such that

ρ (X(ω), p̃k(ω)) ≥ C

for all k ≥ m(ω), almost surely. Hence, by construction, with a null set B̃ ⊂ Ω,

Fnk(ω)

(
ω, pnk(ω)(ω)

)
=

1

nk(ω)

nk(ω)∑

j=1

ρ
(
Xj(ω), pnk(ω)(ω)

)

≥ C for all ω ∈ Ã \ B̃, if nk(ω) > m(ω). (19)
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By hypothesis there is p ∈ E(ρ) with, due to the strong law of large numbers,

Fnk(ω)(ω, p)
a.s.→ F(p) = ℓ < C,

by construction, i.e. there is n(ω) ∈ N such that Fnk(ω)(ω, p) < C for all nk(ω) > n(ω),

a.s. In conjunction, with (19), letting nk(ω) > max{n(ω),m(ω)} we have thus

Fnk(ω)(ω, p) < C ≤ Fnk(ω)

(
ω, pnk(ω)(ω)

)

on a set of positive measure, a contradiction to pnk(ω)(ω) ∈ Eρnk(ω)
(ω), completing the

proof.

Remark 3.10. The BPC version of the strong law in the literature usually requires that a

Heine-Borel property, e.g. [BP03,EJ20,Sch22]. If (P, d) satisfies the Heine-Borel property,

all sequences without accumulation points diverge, so Assumption 3.8 holds for all ω ∈ Ω.

If P is compact, then Assumption 3.8 holds and BPC follows immediately from ZC.
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4 Strong consistencies and CLTs for the homoscedastic drift

model

In this section, the theory developed in Section 3 is applied to prove strong consistency

for the homoscedastic drift model as the number B of batches tends to infinity. For this

purpose, we reformulate in Definition 4.1 the homoscedastic drift model from Definition

2.2 making ϕ explicitly stochastic and assume it to be i.i.d. Without loss of generality, we

consider Y centered, i.e. ψ has been subtracted and the basis has been transformed with

the Helmert sub-matrix as described in Section 2.1. For ease of notation, we assume that

the original random variable is N + 1 dimensional, so that Y is N dimensional, and we

omit writing the tilde and the superscript H symbol from Section 2.1.

Then, below in Section 4.1 the modulus of continuity h with its prefactor from Assump-

tion 3.4 is explicitly calculated and ZC is proven. With a little more effort it is shown that

the population Fréchet mean Eρ = {[κ(0)]} is unique, in order to establish BPC. Finally,

a central limit theorem for κ̂ is shown in Section 4.2 and one for Î in Section 4.3.

Definition 4.1 (Centered Homoscedastic Drift Model). The complex N -dimensional ran-

dom vector Y is given by

Y = ϕκ(0) + ϵ (20)

where κ(0) ∈ S2N−1 := {κ ∈ CN : ||κ|| = 1} comprises the true but unknown ENDOR

spectrum, ϕ is a complex random value and ϵ = (ϵ1, . . . , ϵN ) is a complex N -dimensional

random vector independent of ϕ with

0 < E[vec (ϕ)T vec (ϕ)] = cϕ <∞, vec (ϵν)
i.i.d.∼ N (0,Σ), 1 ≤ ν ≤ N.

Moreover, we assume that the precision matrix P = Σ−1 has two positive eigenvalues

λ1 > λ2 > 0.

Thus, Q = CN is the data space, as descriptor space we choose P = CPN−1 and for

the loss we choose

ρ : Q×P→ R, (Y, [κ]) 7→ dP

(
Y, ϕ̂(κ, P, Y )κ

)2
, (21)

with

ϕ̂(κ, P, Y ) = c
(
(κ ⋄P κ)−1 (κ •P Y )

)
∈ C. (22)

Thus, for a sample Y (1), Y (2), . . .
i.i.d.∼ Y from (20) we have the following sample and

population Fréchet functions

FB(ω, [κ]) =
1

B

B∑

b=1

ρ(Y (b), [κ]), F([κ]) =
∫
ρ(Y, [κ]) dP (ϕ, ϵ) .
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Remark 4.2. Note that (22) is the MLE (8) for a single b ∈ {1, . . . , B} of the homoscedas-

tic drift model (5).

Further, note that (21) is well defined, since for κ, κ̃ ∈ [κ] there is λ ∈ R such that

κ̃ = eiλκ, whence

ϕ̂(κ̃, P, Y ) = e−iλc
(
(κ ⋄P κ)−1 (κ •P Y )

)

yielding

ϕ̂(κ̃, P, Y )κ̃ = ϕ̂(κ, P, Y )κ.

4.1 Strong consistencies for the centered homoscedastic drift model

Here, we establish that, as more data is accumulated and hence B →∞, the estimator [κ̂]

arising from the centered homoscedastic drift model in Definition 4.1, i.e. the generalized

Fréchet mean, is strongly consistent in the sense of ZC and BPC.

Theorem 4.3. Under Assumption 4.1 ZC holds for the centered homoscedastic drift model.

In particular, in Assumption 3.4 the modulus of continuity can be chosen as

h([κ], [κ′]) = d([κ], [κ′])

with prefactor

ρ̇ (Y, P ) :=
√
λ1

(
λ21 + λ22
λ1λ2

)(
(λ1 + 2)

√
2N + 8

√
2N +

32
√
2N
(
λ21 + λ22

)

λ1λ2

)
||Y ||2 .

Proof. Let [κ], [κ′] ∈ P and κ ∈ [κ], κ′ ∈ [κ′] arbitrary. Recalling

ρ(Y, [κ]) = ⟨Y, Y ⟩P −
〈
ϕ̂(κ, P, Y )κ, Y

〉
P
.

from Lemma D.1 and using the Cauchy–Schwarz inequality we obtain

∣∣ρ(Y, [κ])− ρ(Y, [κ′])
∣∣ =

∣∣∣
〈
ϕ̂(κ′, P, Y )κ′ − ϕ̂(κ, P, Y )κ, Y

〉
P

∣∣∣

≤
√
⟨Y, Y ⟩P dP

(
ϕ̂(κ, P, Y )κ, ϕ̂(κ′, P, Y )κ′

)
.

Since λ1 is the largest eigenvalue of P , by definition of the Mahalanobis inner product in

Section 1.1, the first term of the bottom line above is bounded by

√
⟨Y, Y ⟩P =

√√√√
N∑

ν=1

vec (Yν)
T R

(
λ1 0

0 λ2

)
RTvec (Yν) ≤

√
λ1 ∥Y ∥ . (23)

A bound for the second term can be obtained from Lemma D.17 in conjunction with

C19

145



Lemmata D.5 and D.11,

dP

(
ϕ̂(κ, P, Y )κ, ϕ̂(κ′, P, Y )κ′

)

≤
(
λ21 + λ22
λ1λ2

)(
λ1
√
2N + 8

√
2N +

32
√
2N
(
λ21 + λ22

)

λ1λ2
+ 2
√
2N

)
||Y ||

∣∣∣∣κ− κ′
∣∣∣∣ .

In consequence, since κ ∈ [κ], κ′ ∈ [κ′] have been arbitrary,

∣∣ρ(Y, [κ])− ρ(Y, [κ′])
∣∣

≤
√
λ1

(
λ21 + λ22
λ1λ2

)(
(λ1 + 2)

√
2N + 8

√
2N +

32
√
2N
(
λ21 + λ22

)

λ1λ2

)
||Y ||2 d([κ], [κ′]) ,

yielding the assertion on h and ρ̇.

Further, since P is separable, ρ̇ does not depend on κ, and because of Assumption 4.1

the second moment of Y exists, it follows from Theorem 3.7 that ZC holds.

The stronger BPC hinges on existence and uniqueness of the generalized Fréchet pop-

ulation mean. To this end we first decompose and compute the generalized Fréchet popu-

lation function.

Lemma 4.4. For the centered homoscedastic drift model from Definition 4.1 we have

(i) F([κ]) =
∫
ρ(ϕκ(0), [κ]) dP (ϕ) +

∫
ρ(ϵ, [κ]) dP (ϵ) ,

(ii)

∫
ρ(ϵ, [κ]) dP (ϵ) = 2N − 2 ,

(iii)

∫
ρ(ϕκ(0), [κ]) dP (ϕ) =

(
η̃2 − η̃4

4

)∫
vec (ϕ)T Svec (ϕ) dP (ϕ) ,

where η̃ = d
(
[κ],
[
κ(0)

])
and S is a matrix with eigenvalues greater than or equal to λ2.

Proof. To see (i), note that by Definition (22),

ϕ̂(κ, P, Y ) = ϕ̂(κ, P, ϕκ(0)) + ϕ̂(κ, P, ϵ) ,

whence in conjunction with (21),

F([κ]) =
∫ ∣∣∣
∣∣∣ϕκ(0) + ϵ− ϕ̂(κ, P, ϕκ(0) + ϵ)κ

∣∣∣
∣∣∣
2

P
dP (ϕ, ϵ)

=

∫
ρ(ϕκ(0), [κ]) + 2

〈
ϕκ(0) − ϕ̂(κ, P, ϕκ(0))κ, ϵ− ϕ̂(κ, P, ϵ)κ

〉
P
+ ρ(ϵ, [κ]) dP (ϕ, ϵ)

for any κ ∈ [κ], κ(0) ∈ [κ(0)]. Since ϕ and ϵ are independent and E[ϵ] = 0 the integral over

the mixed term vanishes yielding the first asserted equation.
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To see the (ii), use Lemma D.1 to obtain

∫
ρ(ϵ, [κ]) dP (ϵ) =

∫ (
⟨ϵ, ϵ⟩P −

〈
ϕ̂(κ, P, ϵ)κ, ϵ

〉
P

)
dP (ϵ)

for any κ ∈ [κ] with the MLE from (8). By definition of the Mahalanobis type inner

product, independence of the ϵν ∼ N (0,Σ) (ν = 1, . . . , N) and P = Σ−1, calculate the

first term:

∫
⟨ϵ, ϵ⟩P dP (ϵ) =

N∑

ν=1

Tr
(
P vec (ϵν) vec (ϵν)

T dP (ϵ)
)
=

N∑

ν=1

Tr(PΣ) =
N∑

ν=1

Tr(Id2) = 2N .

Similarly, compute the second term:

∫ 〈
ϕ̂(κ, P, ϵ)κ, ϵ

〉
P
dP (ϵ) =

∫ N∑

ν=1

vec (ϵν)
T PM(κν)vec

(
ϕ̂(κ, P, ϵ)

)
dP (ϵ)

=

∫
(κ •P ϵ)T (κ ⋄P κ)−1 (κ •P ϵ) dP (ϵ) = Tr

(
(κ ⋄P κ)−1

∫
(κ •P ϵ) (κ •P ϵ)T dP (ϵ)

)

= Tr
(
(κ ⋄P κ)−1 (κ ⋄P κ)

)
= 2 ,

since

∫
(κ •P ϵ) (κ •P ϵ)T dP (ϵ) =

∫ ( N∑

ν=1

M(κν)
TPvec (ϵν)

)(
N∑

ν=1

vec (ϵν)
T PM(κν)

)
dP (ϵ)

=

N∑

ν=1

M(κν)
TP

(∫
vec (ϵν) vec (ϵν)

T dP (ϵ)

)
PM(κν) = κ ⋄P κ.

Subtracting the first term from the second gives the second asserted equation.

Proving (iii) is a more elaborate. We have

∫
ρ(ϕκ(0), [κ]) dP

=

∫
vec (ϕ)T

((
κ(0) ⋄P κ(0)

)
−
(
κ(0) ⋄P κ

)
(κ ⋄P κ)−1

(
κ ⋄P κ(0)

))
vec (ϕ) dP (ϕ)

where κ ∈ [κ]. Without loss of generality, assume that κ and κ(0) are in optimal position,

i.e. d
(
[κ],
[
κ(0)

]
)
)
= ||κ− κ(0)|| =: η̃. Therefore, due to Lemma 1.2,

κ∗κ(0) = Re(κ∗κ(0)) = ṽec (κ)T ṽec
(
κ(0)

)
= cos(η) where η = 2arcsin(η̃/2).

We can rewrite the above formula by using matrix notation

κ ⋄P κ =
(
M(κ1)

T . . . M(κN )
T
)



P 0 . . . 0

0
. . . 0

0 . . . 0 P







M(κ1)
...

M(κN )


 .
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Now one can define a matrix containing only rotations on the diagonal, such that allM(κν)

become diagonal, i.e. real:

R1 :=




Rα1 0 . . . 0

0
. . . 0

0 . . . 0 RαN


 ∈ R2N×2N

and then define a matrix R2 = (R̃2 ⊗ Id2) ∈ R2N×2N which rotates these real blocks such

that we get R2R1ṽec (κ) = (1, 0, . . . , 0)T . From the construction of R1 and R2 follows

directly

c̃ (R2R1ṽec (κ))
∗ c̃
(
R2R1ṽec

(
κ(0)

))
= c̃


R2ṽec




eiα1κ1
...

eiαNκN







∗

c̃


R2ṽec




eiα1κ
(0)
1

...

eiαNκ
(0)
N







= c̃


ṽec




eiα1κ1
...

eiαNκN







∗

R̃∗
2R̃2c̃


ṽec




eiα1κ
(0)
1

...

eiαNκ
(0)
N





 = κ∗κ(0) = cos(η).

Thus, it follows that c̃
(
R2R1ṽec

(
κ(0)

))
1
= cos(η). Next, we define a Matrix R3 which

rotates all M(κ
(0)
ν ) for ν ≥ 2 to real numbers and leaves the component ν = 1 unchanged

(thus leaving κ unchanged) and a Matrix R4 = (R̃4 ⊗ Id2) which rotates only the compo-

nents ν ≥ 2, such that we get κ
(0)
ν = 0 for ν ≥ 2. As a trade-off for this simplification, the

matrix in the center becomes more complicated:

(IdN ⊗ P ) → Q := R4R3R2R1(IdN ⊗ P )RT1RT2RT3RT4 .

This leads to

∫
ρ(ϕκ(0), [κ]) dP

=

∫
vec (ϕ)T

(
cos2(η)Q11 + cos(η) sin(η) (Q12 +Q21) + sin2(η)Q22

−
(
cos(η)Q11 + sin(η)Q21

)
Q−1

11

(
cos(η)Q11 + sin(η)Q12

))
vec (ϕ) dP (ϕ)

= sin2(η)

∫
vec (ϕ)T

(
Q22 −QT12Q−1

11 Q12

)
vec (ϕ) dP (ϕ)

=

(
η̃2 − η̃4

4

)∫
vec (ϕ)T

(
Q22 −QT12Q−1

11 Q12

)
vec (ϕ) dP (ϕ)

where Qij are 2×2 blocks from Q. Note furthermore that QTji = Qij since Q is symmetric.
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We define S := Q22 −QT12Q−1
11 Q12. The matrix

Q̃ =

(
Q11 Q12

QT12 Q22

)
∈ R4×4

is positive definite with eigenvalues in [λ2, λ1] since it is a leading principal minor of Q. It

follows for v ∈ R2 \ {0}

vTSv = vTQ22v − vTQT12Q−1
11 Q12v

= vTQT12Q
−1
11 Q11Q

−1
11 Q12v − vTQT12Q−1

11 Q12v − vTQT12Q−1
11 Q12v + vTQ22v

=

(
−Q−1

11 Q12v

v

)T
Q̃

(
−Q−1

11 Q12v

v

)
≥ λ2

(
−Q−1

11 Q12v

v

)T (−Q−1
11 Q12v

v

)
≥ λ2||v||2.

Thus, S has only eigenvalues greater than or equal to λ2.

Theorem 4.5 (Uniqueness). For the centered homoscedastic drift model from Definition

4.1 we have for every ϵ > 0 that

inf
[κ]:d([κ],[κ(0)])>ϵ

F([κ]) > F
([
κ(0)

])
.

In particular, the Fréchet population mean is uniquely
[
κ(0)

]
.

Proof. This follows at once from

F ([κ]) = 2N − 2 +

(
η̃2 − η̃4

4

)∫
vec (ϕ)T S vec (ϕ) dP (ϕ)

with η̃ = d
(
[κ],
[
κ(0)

])
and S having eigenvalues greater than or equal to λ2, due to Lemma

4.4.

Corollary 4.6. Under Assumption 4.1 BPC holds for the centered homoscedastic drift

model.

Proof. Since Eρ =
{[
κ(0)

]}
due to Theorem 4.5, the BPC follows directly from Theorem

3.9 as P is compact.

4.2 The CLT for the centered homoscedastic drift model

To prove a central limit theorem for the centered homoscedastic drift model from Definition

4.1, we apply Theorem 6 of [Huc11a]. For this we need the following additional assumption.

Assumption 4.7. The random variable ϕ has a finite fourth moment

E[(vec (ϕ)T vec (ϕ))2] <∞.
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Definition 4.8. For κ(0) ∈ [κ(0)] ∈ P define a unitary matrix R ∈ CN×N satisfying

Rκ(0) = eN where eN is the N -th vector of the standard basis. For any κ ∈ [κ] define

κ̃ := Rκ and U = {[κ] | κ̃N ̸= 0} and define the chart

β : U→ R2(N−1), [κ] 7→
(
Re

(
κ̃1
κ̃N

)
, Im

(
κ̃1
κ̃N

)
, . . . ,Re

(
κ̃N−1

κ̃N

)
, Im

(
κ̃N−1

κ̃N

))
.

For x ∈ R2(N−1) we define

x̃ =
(
x1 + ix2, . . . , x2(N−1)−1 + ix2(N−1), 1

)

and get

β−1 : R2(N−1) → U, x 7→
[
R∗ x̃

||x̃||

]
.

Note that β([κ]) is indeed independent of the choice of representative κ ∈ [κ] ∈ U and

thus is well-defined. In a local chart (β,U) of P near β−1(0), we denote the gradient of

x 7→ ρ(Y, β−1(x)) by grad2ρ(Y, [κ]) and by H2ρ(Y, [κ]) the corresponding Hesse matrix.

Theorem 4.9 (CLT). For the centered homoscedastic drift model from Definition 4.1,

under Assumption 4.7, let [κ̂(B)(ω)] ∈ E
(ρ)
B (ω) be a measurable selection for all ω ∈ Ω,

then, omitting ω,

√
Bβ([κ̂(B)])

D→ N
(
0,
(
E
[
H2ρ

(
Y,
[
κ(0)

])])−1 (
cov

[
grad2ρ

(
Y,
[
κ(0)

])])(
E
[
H2ρ

(
Y,
[
κ(0)

])])−1
)

holds for the chart β defined in Definition 4.8.

Proof. We show in this proof that the following conditions for Theorem 6 of [Huc11a] are

satisfied.

1. x 7→ ρ(Y, β−1(x)) is smooth for |x| < ϵ,

2. E[grad2ρ
(
Y,
[
κ(0)

])
] exists,

3. E[H2ρ(Y, [κ])] exists for κ near κ(0) and is continuous at κ = κ(0),

4. cov[grad2ρ
(
Y,
[
κ(0)

])
] exists,

5. E[H2ρ
(
Y,
[
κ(0)

])
)] is invertible.

First, we rewrite ρ, see (21), to

ρ(Y, [κ]) = ⟨Y, Y ⟩P −
N∑

ν=1

N∑

ν̃=1

vec (Yν̃)
T fν̃,ν,P ([κ])vec (Yν)
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where

fν̃,ν,P ([κ]) := PM(κν̃) (κ ⋄P κ)−1M(κν)
TP

for κ ∈ [κ]. Using Lemma D.3 we get

fν̃,ν,P ([κ]) =
PM(κν̃)

(
κ ⋄P̃ κ

)
M(κν)

TP

det (κ ⋄P κ)
.

1.) Both κ 7→ PM(κν̃)
(
κ ⋄P̃ κ

)
M(κν)

TP and κ 7→ det (κ ⋄P κ) are fourth degree

polynomials and it follows from Lemma D.4 that det (κ ⋄P κ) ≥ λ2λ1 for κ ∈ P. Using the

chain rule, it follows that the function x 7→ fν̃,ν,P (β
−1(x)) is smooth. Therefore, it follows

that the function x 7→ ρ(Y, β−1(x)) is also smooth.

2.) We start with

∂

∂xi
ρ(Y, β−1(x)) = −

N∑

ν=1

N∑

ν̃=1

vec (Yν̃)
T

(
∂

∂xi
fν̃,ν,P (β

−1(x))

)
vec (Yν)

Since ρ is smooth we get

E
[
∂

∂xi
ρ(Y, β−1(x))

]
= −E

[
N∑

ν=1

N∑

ν̃=1

vec (Yν̃)
T

(
∂

∂xi
fν̃,ν,P (β

−1(x))

)
vec (Yν)

]

= −
N∑

ν=1

N∑

ν̃=1

Tr

((
∂

∂xi
fν̃,ν,P (β

−1(x))

)
E
[
vec (Yν̃) vec (Yν)

T
])

.

Since ρ is smooth with respect to x and we know from Assumption 4.1 that the second

moment of Y exists, it follows that E[grad2ρ
(
Y,
[
κ(0)

])
] exist.

3.) Analogously, we conclude that the following function exists for x near β(κ(0)) and

is continuous at x = β(κ(0))

E
[

∂2

∂xi∂xj
ρ(Y, β−1(x))

]
=−

N∑

ν=1

N∑

ν̃=1

Tr

((
∂2

∂xi∂xj
fν̃,ν,P (β

−1(x))

)
E
[
vec (Yν̃) vec (Yν)

T
])
.

Thus E[H2ρ
(
Y,
[
κ(0)

])
] exists for κ near κ(0) and is continuous at κ = κ(0).

4.) From the smoothness of ρ with respect to x and the Assumption 4.7, the existence

of

E
[
grad2ρ(Y,

[
κ(0)

]
)grad2ρ(Y,

[
κ(0)

]
)T
]

follows, since (
∂

∂xi
ρ(Y, β−1(x))

)(
∂

∂xj
ρ(Y, β−1(x))

)

is a polynomial of fourth degree for all i, j = 1, . . . , N with respect to Y . Consequently,

cov[grad2ρ
(
Y,
[
κ(0)

])
] exists.
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5.) Inserting the calculations from Lemma D.18 into the results of Lemma 4.4 yields:

F(β(x)) = 2N − 2 +

(
d
(
β(x),

[
κ(0)

])2
− d

(
β(x),

[
κ(0)

])
)4

4

)∫
vec (ϕ)T Svec (ϕ) dP (ϕ)

≥ 2N − 2 +


1− 1√

||x||2 + 1
−

(
1− 1√

||x||2+1

)2

4


λ2cϕ

= 2N − 2 +
||x||2
2

λ2cϕ +O(||x||3).

It follows from the Taylor expansion of F(β(x)) at 0:

xTE[H2ρ
(
Y,
[
κ(0)

])
]x ≥ ||x||2λ2cϕ +O(||x||3).

Consequently E[H2ρ
(
Y,
[
κ(0)

])
] is invertible.

4.3 The CLT for the spectrum I

In the ENDOR experiment, one is particularly interested in the spectrum I (see Figure C1,

panel A). Different rotation methods are possible to extract the estimated spectrum Î

from the maximum likelihood estimator κ̂. As discussed in Section 2.1, in this section (as

well as throughout the paper) we work with the maximum method and use the notation

Î = Re(eiλ̂κ̂). Lemma D.19 provides an explicit formula for computing λ̂ according to

the maximum method, from which we derive the function in equation (24) below, which

maps κ to an optimally rotated I. This explicit function is used in Corollary 4.11, which

provides a central limit theorem for Î.

In fact, in conjunction with the chart β from Definition 4.8 we will construct func-

tions g, f, f± making the diagram below commutative (on the corresponding domains) and

smooth outside singularity sets M1 ∪M2 (defined in (26)) in P:

CPN−1 = P
f→ I = RN/ ∼±

β ↓ ↓ f±
R2N−2 g→ RN

For this purpose, we define S1 := [0, 2π]/ ∼ where ”∼” denotes

x1 ∼ x2 ⇔ x1 = x2 or x1, x2 ∈ {0, 2π}

From Lemma D.19 in the SI, with the definition for the complex argument from Section

1.1 follows

argmax
λ∈S1

∣∣∣
∣∣∣Re(eiλκ)

∣∣∣
∣∣∣
2
=





{
π − Arg(κT κ)

2 , 2π − Arg(κT κ)
2

}
, if κTκ ̸= 0

S1, else
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for κ ∈ S2N−1. Note that Re(ei(λ+π)) = −Re(eiλ), which leads to the metric space (I, dI)

given by I := RN/ ∼±, where the equivalence relation ”∼±” is defined as

I ∼± I ′ ⇔ I = I ′ or I = −I ′.

and

dI([I]±, [I
′]±) = min

k∈{0,1}

∣∣∣
∣∣∣I − (−1)kI ′

∣∣∣
∣∣∣
2

where I ∈ [I]±, I ′ ∈ [I ′]±. This gives rise to the function

f̃ : S2N−1 → I, κ 7→





[
Re
(
e

−i
2

Arg(κT κ)κ
)]

±
for κTκ ̸= 0,

[(0, . . . , 0)]± else.
(24)

In Lemma D.20 in the SI, we show that the function f̃ is well-defined for P, which means

that f̃(κ) = f̃(κ̃) for all κ, κ̃ ∈ [κ]. Therefore, we can define a function

f : P→ I, [κ] 7→ f̃(κ).

To obtain the spectrum I ∈ RN from f([κ]) = [I]± ∈ I, an additional sign flip is performed,

if necessary, as one usually wants the peaks to be in the positive direction. This can be

uniquely achieved under the condition

∣∣∣∣ max
ν=1,...N

Iν

∣∣∣∣ >
∣∣∣∣ min
ν=1,...N

Iν

∣∣∣∣ ,

using the following sign flip function

f± : I→ RN , [I]± 7→





I, if |maxν=1,...N Iν | > |minν=1,...N Iν |
−I, if |maxν=1,...N Iν | < |minν=1,...N Iν |
0, else.

(25)

Using the map β from Definition 4.8 we finally define

g : R2N−2 → RN , x 7→ f±(f(β−1(x))).

Ensuring that the functions f̃ and f± are smooth we excluded the following two singularity

sets
M1 := {[κ] ∈ P | ∃κ ∈ [κ] s.t. κTκ = 0},

M2 :=

{
[κ] ∈ P | ∃κ ∈ [κ] s.t.

∣∣∣∣ max
ν=1,...N

f(κ)ν

∣∣∣∣ =
∣∣∣∣ min
ν=1,...N

f(κ)ν

∣∣∣∣
}
.

(26)

Note that the defining relations in the Equation (26) are independent of representative, i.e.

”∃” can be replaced with ”∀” without loss of generality. With R from Definition 4.8, the
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Jacobian matrix of the function g for [κ(0)] ∈ P \ (M1 ∪M2) at location x = 0 is computed

in Lemma D.21 in the SI and is of the following form

Jxg(0) = ±Re

(
e−

iα
2

(
iκ0Re

(
i
(κ(0))Tκ(0)

(
κ(0)

)T
R∗A

r2

)
+R∗A

))
∈ RN×2(N−1).

where
∣∣(κ(0))Tκ(0)

∣∣ =: r, α := Arg
(
(κ(0))Tκ(0)

)
and

A :=




1 i 0 0 0 . . . 0 0

0 0 1 i 0 . . . 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 . . . 1 i

0 0 0 0 0 . . . 0 0



∈ CN×2(N−1). (27)

Remark 4.10. In our applications, we observed a Jacobi-matrix Jxg(0) of full rank (see

plots of the singular values for the different orientations from a chemical sample of the D2-

Y •
122 E. coli ribonucleotide reductase in Figure C9 in the SI). However, this may not be the

case in general. For example, for κ(0) = eN we have R = IdN so that Jxg(0) = ±Re(A),

which has rank N − 1.

Corollary 4.11. If [κ(0)] ∈ P\ (M1∪M2), in the centered homoscedastic drift model from

Definition 4.1, we have the true spectrum I(0) = g◦β([κ(0)]) with β from Definition 4.8 and

under Assumption 4.7 with the estimator Î(B) = g ◦ β([κ̂(B)]) from a measurable selection

[κ̂(B)] ∈ E(ρ)
B that

√
B
(
Î(B) − I(0)

) D→ N
(
0,
(
Jxg(0)

)
Gβ

(
Jxg(0)

)T)

where Gβ =
(
E
[
H2ρ

(
Y,
[
κ(0)

])])−1 (
cov

[
grad2ρ

(
Y,
[
κ(0)

])]) (
E
[
H2ρ

(
Y,
[
κ(0)

])])−1
and

β is defined as in Definition 4.8.

Proof. Follows directly from Theorem 4.9 and Lemma D.21 using the delta method (see,

for example, Section 3 of [vdV00]).

C28

154 Drift Models on Complex Projective Space for Electron-Nuclear Double Resonance



5 Inconsistency for joint estimation of κ and Σ in the ho-

moscedastic drift model

In contrast to Section 4, in this section we do not work with the assumption that Σ is

known, but we investigate the more complicated case that Σ and κ are estimated simulta-

neously. To this end, we reformulate in Definition 5.1 the Centered Homoscedastic Drift

Model from Definition 4.1 from Section 4 by introducing the true but unknown Σ(0). Par-

ticularly, this section demonstrates that the joint estimation of κ and Σ is not consistent.

For ease of notation, as in Section 4, we assume that the original random variable is N +1

dimensional, so that Y below is N dimensional and we omit writing the tilde and the

superscript H symbol from Section 2.1.

Definition 5.1 (Centered Extended Homoscedastic Drift Model). The complex N -dimen-

sional random vector Y is given by

Y = ϕκ(0) + ϵ (28)

where κ(0) ∈ S2N−1 := {κ ∈ CN : ||κ|| = 1} comprises the true but unknown ENDOR

spectrum, ϕ is a complex random value and ϵ = (ϵ1, . . . , ϵN ) is a complex N -dimensional

random vector independent of ϕ with

0 < E[vec (ϕ)T vec (ϕ)] = cϕ <∞, vec (ϵν)
i.i.d.∼ N (0,Σ(0)), 1 ≤ ν ≤ N.

Moreover, we assume that the precision matrix P (0) =
(
Σ(0)

)−1
has two positive eigenvalues

λ1 > λ2 > 0.

Thus, Q = CN is the data space. Since, in contrast to Section 4, we additionally

want to estimate the strictly positive definite symmetric matrix Σ, we obtain the following

parameter space

P := CPN−1 × SPD(2) ,

and for the loss we choose

ρ(Y, ([κ], P )) = dP

(
Y, ϕ̂(κ, P, Y )κ

)2
−N log(det(P )) (29)

with

ϕ̂(κ, P, Y ) = c
(
(κ ⋄P κ)−1 (κ •P Y )

)
∈ C.

Thus, for a sample Y (1), Y (2), . . .
i.i.d.∼ Y from (28) we have the following sample and
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population Fréchet functions

FB(ω, ([κ], P )) =
1

B

B∑

b=1

ρ(Y (b), [κ]), F([κ], P ) =
∫
ρ(Y, [κ]) dP (ϕ, ϵ) .

Analogous to Lemma 4.4, we decompose the first term of F([κ], P ) into the ϵ and ϕ

parts

∫
dP

(
Y, ϕ̂(κ, P, Y )κ

)2
dP (ϕ, ϵ)

=

∫ (
dP

(
ϕκ(0), ϕ̂(κ, P, ϕκ(0))κ

)2
+ 2

〈
ϕκ(0) − ϕ̂(κ, P, ϕκ(0))κ, ϵ− ϕ̂(κ, P, ϵ)κ

〉
P

+ dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
)
dP (ϕ, ϵ) ,

for any κ ∈ [κ]. Since ϕ and ϵ are independent and E[ϵ] = 0 the integral over the mixed

term vanishes and consequently

F([κ], P ) =
∫
dP

(
ϕκ(0), ϕ̂(κ, P, ϕκ(0))κ

)2
dP (ϕ) +

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ)

−N log(det(P )).

In contrast to Section 4.1, the expression

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ) = N Tr

(
Σ(0)P

)
− Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

depends on κ, see Lemma E.1 in the SI. In Lemma E.4 in the SI

∂

∂P

(
N Tr

(
Σ(0)P

)
− Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)
−N log(det(P ))

)

is calculated and from Lemma E.5 in the SI follows

∂

∂P
F([κ], P )

∣∣∣
[κ]=[κ(0)],P=P (0)

= 2

(
κ̄(0) ⋄

(κ(0)⋄
P (0)κ

(0))
−1 κ̄(0)

)

− diag

(
κ̄(0) ⋄

(κ(0)⋄
P (0)κ

(0))
−1 κ̄(0)

)
.

In general, κ̄(0) ⋄
(κ(0)⋄

P (0)κ
(0))

−1 κ̄(0) is not equal to 0. Thus, in general, it does not hold

that E =
{([

κ(0)
]
, P (0)

)}
. This shows that the matrix Σ, which describes the random

vector ϵ, cannot be estimated consistently from the profile likelihood. To achieve a jointly

consistent estimator for κ and Σ, one would heuristically expect that a proper treatment

of the randomness in both ϵ and ϕ is required, which the profile likelihood does not provide

for ϕ. See Section 7 for a fuller discussion.
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6 Heteroscedastic Drift Model

The homoscedastic drift model has been found to fit spectroscopic data recorded at MW

frequency 263GHz well, across a range of RF frequencies (20MHz-400MHz) and nuclei

(1H, 2H, 19F). [PEH+21, HTW+22,WKH+23]. However, application to the lower MW

frequency of 94GHz, more commonly encountered in biochemistry groups, reveals very

poor fit arising from the noise containing a phase noise component that is affected by

phase drift. This necessitated development of a heteroscedastic drift model that we will

detail in this section. It exhibits much improved fit and again results in improved SNR

compared to the averaging model.

6.1 Modelling of the Heteroscedastic Drift Model

We test the homoscedastic drift model with ENDOR data recorded at a MW frequency of

94GHz targeting the 2H resonance in the twice deuterated Y122 Tyrosyl radical [HTW
+22]

and using the Mims pulse sequence, see [Mim65]. This pulse sequence is known for yielding

strong EPR echos, so we expect |ψb| to be large. As in Section 2, the goodness of fit was

assessed by applying Kolmogorov-Smirnov tests to the real and imaginary parts of the

standardized residuals for each of the five datasets (orientations gx, gxy, gy, gyz, gz) yielding

the p−values reported in Table C3 in Section F.1 in the SI. For all orientations except

gz, at least one of the two p-values falls far below the Bonferroni-corrected significance

level of 0.005, with some p−values of order 10−20 indicating very poor fit. This lack of fit

can also be observed from the kernel density estimates and q-q-plots shown in Figure C3.

Further examination of the residuals shown in Panel A of Figure C4 hints at an underly-

Figure C3: Results of the goodness of fit methods for the homoscedastic drift model
applied to 94GHz Mims data. Panel A displays the kernel density estimator applied to
the standardized residuals Σ̂− 1

2 ϵ̂b,ν with Σ̂− 1
2 the inverse of the matrix square root of Σ̂b.

Panels B and C show q-q-plots for the real part (B) and the imaginary part (C) of the
standardized residuals against a standard normal (black) and a reference of perfect fit
(green).

ing heteroscedastic noise structure w.r.t. the batches. Taking a general batch-dependent

covariance matrix for the noise ϵb,ν
ind∼ N (0,Σb),Σb ∈ SPD(2), constitutes a very flexible
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extension of the homoscedastic drift model which is non-parametric in the sense that the

number of parameters {Σb|b ∈ {1, . . . , B}} increases with the amount of data available.

However, the likelihood of this model has boundary maxima which can be obtained by

choosing the parameters ϕ, κ such as to yield zero residuals ϵ̂b∗,ν = 0 for one particular

batch b∗ and letting the covariance matrix Σb∗ tend to zero resulting in −1
2 log detΣb∗

tending to infinity. Such an approach therefore needs additional penalization for the Σb

resulting in shrinkage and a parametric extension was pursued instead. Based on the em-

pirical observation presented in Panels B and C of Figure C4 that the batch-wise principal

component of the homoscedastic residuals ϵ̂b,: is rotated by 90◦ compared to the spectrum

mean vec
(
ψ̂b

)
, the noise was modelled as a sum of a homoscedastic noise source and one

whose covariance is given as a function of vec (ψ). This batch-dependent noise is attributed

to the phase noise of the EPR echo ψb as phase noise is known to be orthogonal in phase

and proportional in amplitude to the carrier signal it arises from [Hag09]. Both these prop-

erties of phase noise are empirically found to apply to the residuals of the homoscedastic

drift model arising from our data: see panels A and B of Figure C4 for orthogonality and

panel C of that figure for amplitude.

The expansion of a phase noise term modeled as a wrapped Gaussian

ψ̃b,ν = ψb exp{iσ̃φb,ν}

φb,ν
i.i.d∼ N (0, 1)

in small σ̃ > 0 up to linear order gives

vec
(
ψ̃b,ν

)
= vec (ψb) + σ̃φb,νvec (iψb) +OP (σ̃2). (30)

This random variable has mean vec (ψb) +OP (σ̃2) and covariance matrix

σ̃2vec (iψb) vec (iψb)
T +OP (σ̃4).

So, this expansion reproduces the homoscedastic drift model mean ψb and the empirical

orthogonality structure of the residuals to linear and quadratic order in σ̃, respectively.

It adds a further dependency of the moments on ψb and therefore ψ̂b =
1

N+1

∑N
ν=0 Yb,ν is

not the MLE estimate anymore. In the homoscedastic case, we needed the condition in

Equation 3 of standardized mean 0 spectra for identifiability. To retain this standardization

for κ, we introduce an additional parameter, the spectrum mean c ∈ C. In total, the

heteroscedastic drift model hence decomposes the data matrix as follows:

Definition 6.1 (Heteroscedastic Drift Model).

Yb,ν = ψb + ϕb(κν + c) + ϵb,ν

ϵb,ν
ind.∼ N (0,Σb)

Σb = Σ0 + σ̃2vec (iψb) vec (iψb)
T .
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Even though this model also has boundary maxima in the limit when Σ0 is rank

deficient, see Lemma F.1 in the SI, this is easily overcome by specifying lower bounds on

the eigenvalues of Σ0 that arise from reasonable estimates of minimal MW receiver noise.

No penalization is needed in practice to enforce these bounds when starting optimizers

from parameter estimates derived from the homoscedastic drift model, see Section F.2 in

the SI for details.
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Figure C4: Examination of the 94GHz data using the results of the homoscedastic drift
model. Panel A shows the comparison of the principal component (direction of black line
segment) of the data from one batch Yb,:. The batch mean ψ̂b is visualized as the dotted line

segment 0ψ̂b. Panel B shows the angle with the real axis of the principal component of the
residuals per batch (orange) and the eigenvector corresponding to the maximal eigenvalue
of Σ̂ (constant, green dot-dashed) both quantified on the left y-axis and the angle of ψ̂b
(light blue dashed) quantified on the right y axis which is offset by 90◦. In Panel C, the

magnitude of the largest singular value of the residuals per batch (orange),
∣∣∣ψ̂b
∣∣∣
2
(light

blue dashed) and the largest eigenvalue of Σ̂ (constant green dot-dashed) are depicted.

In the heteroscedastic drift model, we truncate the expansion of the phase noise term in

σ̃ at the linear order for the mean and quadratic order for the variance, respectively. Careful

comparison of higher order terms with empirically observed values of Σ0, see Section F.3

in the SI, reveals that the former are at least two orders of magnitude smaller than the

latter which justifies our chosen truncation.

6.2 Results of the Heteroscedastic Drift Model

The algorithmic implementation of heteroscedastic drift model estimates a local MLE

by iteratively updating the parameters by their conditional MLE. In contrast to the ho-

moscedastic drift model, the conditional MLE’s have to be approximated for Σ0, σ̃ and ψ.

In order to improve convergence properties of the algorithm, we included an additional

step wherein we calculate the conditional MLE for the parameter ∆c where ψ̃ = ψ−∆cϕ,

c̃ = c+∆c, see Appendix F of the SI for the algorithm and further details.

Finding the optimal rotation and flip of κ̂ to obtain the final spectrum Î is done as in

the homoscedastic drift model. The algorithm will report if one eigenvalue of Σ0 is lower
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than the empirical cut-off δ = 1 × 10−20. The results of applying this algorithm to the

94GHz data can be found in Data Example 6.2.

Data Example 6.2 (Heteroscedastic Drift Model for 94GHz Dataset). The result of

applying Algorithm 2 to the 94GHz dataset are shown in Figure C5. The goodness of fit

methods are applied to the real and imaginary part of the standardized residuals ϵ̃b,ν =

Σ̂
− 1

2
b

(
Yb,ν − ψ̂b − ϕ̂b ˆ̆κν

)
. The results of the kernel-density estimation are in Panel F and

the q-q plots in Panel G and H of Figure C5. The Kolmogorov-Smirnov test is carried

out at the Bonferroni-corrected level of 0.005 = 0.05/10. The p-values can be found in

Table C5. The model is narrowly rejected by the K-S-test as the p value in orientation y

is significant. Still, the graphical goodness of fit results are improved over the results from

applying the homoscedastic drift model. The SNR estimated from the heteroscedastic drift

model is visibly larger than the one from the averaging model in all orientations as can be

seen in Figure C10 and Table C4 in the SI. Thus, while there is potential improvement

to be gained by further modelling, the heteroscedastic drift model is already a successful

extension of the homoscedastic drift model.

Figure C5: The results of applying the heteroscedastic drift model to the 94GHz data.
Panel A displays the estimated spectrum Î, while panel B displays the component ω̂ that
is orthogonal to the estimated spectrum Î. Both panels show Bootstraped confidence
intervalls based on 50 Bootstrap samples with out bias reduction. C and D show the real
(black) and imaginary (red) components of exp{iαopt}ϕ̂ and ψ̂, respectively, where the αopt
was chosen to maximize the correlation between the rotated ϕ̂ and ψ̂. Panel E shows the
angle of the principal component of the residuals per batch (orange) and ψb (light blue
dashed) with the real axis. Panel F displays the kernel-density-estimation of the complex
residuals standardized residuals ϵ̃b,ν , while panels G and H depict q-q-plots for the real
and imaginary components of the residuals, respectively in black with the identity shown
in green.
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7 Outlook

For the homoscedastic drift model, asymptotic theory was developed for the case where Σ

is known (see Section 4). Since the joint estimate of κ and Σ is not consistent in the profile

likelihood model (see Section 5), it would be desirable to obtain a consistent estimate

by including the randomness of ϕ in the statistical model. Possible approaches are to

model the {ϕb}Bb=1 as i.i.d. Gaussian or, to reflect the likelihood being invariant under

permutations of batches, as exchangeable random variables or, perhaps most realistically,

as a Gaussian process. For the latter two approaches, one would need to generalize the

theory about generalized strong consistency of generalized Fréchet means (see Section 3)

for random variables that are not i.i.d.. Furthermore, an asymptotic analysis for the

heteroscedastic model is future work. Here, particular challenges arise as the mean ψb

and the variance Σb are dependent on each other. In addition, it is challenging to develop

drift models for all microwave frequencies and pulse sequences to make them usable for

a large audience. Initial work on Davies νMW = 94GHz data (a special pulse sequence,

see [Dav74]) shows the heteroscedastic drift model not to fit well in this case, likely due

to cancellation of the main echo signal leading to small and noisy ψ̂b. In addition, there

are other experiments at νMW = 34GHz and νMW = 9GHz for which drift models are

not yet available. A possible avenue may be separate modelling of mean and variance via

Σb = Σ0 + αbα
T
b with αb ∈ R2 to be estimated which may subsume homoscedastic and

heteroscedastic noise models and would also apply to pulse sequences where ψ̂ is afflicted

by noise and cancellation effects.
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Supplementary Information

A Homoscedastic drift model

The real part and imaginary part of the raw data matrix Y for orientation gy from a

chemical sample of D2-Y •
122 are presented in Figure C6.

Figure C6: Panel A shows the real component of the raw data matrix Y for orientation
gy from a chemical sample of D2-Y •

122, while panel B displays the imaginary component of
the same data matrix.

The algorithm used to fit the homoscedastic drift model is given in Algorithm 1.

In Figure C7 we compare the SNR of the averaging model with SNR of the homoscedas-

tic drift model. For this purpose, the spectrum is extracted from the data matrices of the

different orientations of the measurements of the chemical sample D2-Y •
122 using both the

averaging model (plotted in green) and the homoscedastic drift model (plotted in black).

In both models, the maximum method is used for phase correction. The regions of RF

frequencies where the true ENDOR spectrum is judged to be constant, referred to as flat

frequency regions defined in [PEH+21], are plotted in the right panel and the standard

deviations of the spectrum in the flat frequency regions are listed in Table C1. In four

out of five orientations, the homoscedastic drift model provides an improved SNR. Only

at orientation gx is the SNR of the averaging model slightly better than that of the ho-

moscedastic drift model, which can be explained by the fact that at orientation gx the

least phase drift of ϕ̂ is observed (see Figure C8).
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Algorithm 1: Homoscedastic drift model MLE

Load y
ψ̂ ← ψ̂hom(y)
ỹ ← y − ψ̂
u, η,v ← SVD(ỹ,1st component)
ϕ̂(0) ← uη
κ̂(0) ← v
k ← 0
while k ≤ maxiter = 200 do

Σ̂(k) ← Σ̂hom(ϕ̂
(k), κ̂(k), ỹ)

ϕ̂(k+1) ← ϕ̂hom(κ̂
(k), (Σ̂(k))−1, ỹ)

κ̂(k+1) ← κ̂hom(ϕ̂
(k+1), (Σ̂(k))−1, ỹ)

κ̂(k+1), ϕ̂(k+1) ← κ̂(k+1)

∥κ̂(k+1)∥ ,
∥∥κ̂(k+1)

∥∥ϕ̂(k+1)

ℓ(k) ← ℓ(ỹ, ϕ̂(k+1), κ̂(k+1), Σ̂(k))
if k > 0 then

if ℓ(k) − ℓ(k−1) < min delta loglik = 10−4 then
break

end if
end if
k ← k + 1

end while
return ψ̂, ϕ̂(k), κ̂(k), Σ̂(k−1)

Orientation Averaging model Homoscedastic drift model

gx 0.0074 0.0107
gxy 0.0072 0.0061
gy 0.0085 0.0033
gyz 0.0045 0.0035
gz 0.0111 0.0042

Table C1: The standard deviation of the spectrum across the flat frequency regions shown
in Panel B of Figure C7, computed for both the averaging model and the homoscedastic
drift model.

Orientation Real Imag

gx 0.098 0.220
gxy 0.023 0.237
gy 0.736 0.938
gyz 0.373 0.271
gz 0.022 0.374

Table C2: Results of Kolmogorov–Smirnov tests for Gaussianity applied to the real and
imaginary parts of the residuals ϵ̂b,ν = Yb,ν− ψ̂b− ϕ̂bκ̂ν , pooled over b and ν, obtained from
the homoscedastic drift model applied to all measurements.
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Figure C7: The estimated spectra Î for all different orientations, using the homoscedastic
drift model (black) and the averaging model (green) for all frequencies (left) and only for
the flat frequency regions (right). The standard deviations of the spectra across the flat
frequency regions from the right panel is given in Table C1.

C41

167



Figure C8: The angle of ϕ̂ for all five orientations of the chemical sample D2-Y •
122 at

263GHz.
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B Lemma for the Helmert Matrix

We prove in the following a lemma related to Section 2.1 from the main text and con-

sequently have the same notation. In particular, the vectors h1, . . . , hN , the ϵ̃Hb,ν and

vec
(
ϵ̃Hb,ν

)
are defined as in Section 2.1 in the main text.

Lemma B.1. In the new basis h1, . . . , hN , the ϵ̃
H
b,ν are i.i.d distributed and vec

(
ϵ̃Hb,ν

)
∼

N (0,Σ) for all b = 1 . . . , B and ν = 1, . . . , N .

Proof. It holds E [vec (ϵ̃b,ν)] = 0 for all b = 1, . . . , B and ν = 1, . . . , N . For all b = 1, . . . , B

and ν = 1, . . . , N we get

E
[
vec
(
ϵ̃Hb,ν
)
vec
(
ϵ̃Hb,ν
)T ]

= E
[
vec
(
hTν ϵ̃b

)
vec
(
hTν ϵ̃b

)T ]

=
1

ν(ν + 1)
E



(

ν∑

k=1

vec (ϵ̃b,k)− νvec (ϵ̃b,ν+1)

)(
ν∑

k=1

vec (ϵ̃b,k)− νvec (ϵ̃b,ν+1)

)T


=
1

ν(ν + 1)
E

[(
ν∑

k=1

vec (ϵ̃b,k)

)(
ν∑

k=1

vec (ϵ̃b,k)

)T
− νvec (ϵ̃b,ν+1)

(
ν∑

k=1

vec (ϵ̃b,k)

)T

− ν
(

ν∑

k=1

vec (ϵ̃b,k)

)
vec (ϵ̃b,ν+1)

T + νvec (ϵ̃b,ν+1) νvec (ϵ̃b,ν+1)
T

]

=
1

ν(ν + 1)

(
ν
(
− ν

N
Σ+ Σ

)
+

2ν2

N
Σ+ ν2

(
1− 1

N

)
Σ

)
=

1

ν + 1

(
ν + ν2

)
Σ = Σ.

For ν1 < ν2 we get

E
[
vec
(
ϵ̃Hb,ν1

)
vec
(
ϵ̃Hb,ν2

)T ]
= E

[
vec
(
hTν1 ϵ̃b

)
vec
(
hTν2 ϵ̃b

)T ]

=
1√

ν1(ν1 + 1)ν2(ν2 + 1)

· E



(

ν1∑

k=1

vec (ϵ̃b,k)− ν1vec (ϵ̃b,ν1+1)

)(
ν2∑

k=1

vec (ϵ̃b,k)− ν2vec (ϵ̃b,ν2+1)

)T


=
1√

ν1(ν1 + 1)ν2(ν2 + 1)

· E



(

ν1∑

k=1

vec (ϵ̃b,k)

)(
ν2∑

k=1

vec (ϵ̃b,k)

)T
− ν1vec (ϵ̃b,ν1+1)

(
ν2∑

k=1

vec (ϵ̃b,k)

)T


+
1√

ν1(ν1 + 1)ν2(ν2 + 1)

· E


−ν2vec (ϵ̃b,ν2+1)

(
ν1∑

k=1

vec (ϵ̃b,k)

)T
+ ν1vec (ϵ̃b,ν1+1) ν2vec (ϵ̃b,ν2+1)

T




=
1√

ν1(ν1 + 1)ν2(ν2 + 1)

(
ν1

(
1− ν2

N

)
Σ− ν1

(
1− ν2

N

)
Σ+

ν1ν2
N

Σ− ν1ν2
N

Σ
)
= 0.
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The independence of ϵ̃Hb1,ν1 from ϵ̃Hb2,ν2 for b1 ̸= b2 and ν1, ν2 = 1, . . . , N follows directly

from the independence of ϵ̃b1,ν1 from ϵ̃b2,ν2 .
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C Example Strong Consistency

We show that using the theory developed in Section 3 in the main text we can prove

strong consistency for the simultaneous estimation of µ and σ in the univariate normal

distribution.

Assumption C.1. The random variable X has distribution X ∼ N
(
µ(0),

(
σ(0)

)2)
where

µ(0) and
(
σ(0)

)2
are the true but unknown parameters of the normal distribution.

For observations x1, . . . , xn we get the following log-likelihood function

ℓx(µ, σ) = −
n

2
ln
(
σ2
)
− 1

2σ2

n∑

i=1

(xi − µ)2 =
n∑

i=1

(
− ln(σ)− 1

2σ2
(xi − µ)2

)
.

Since our theory was developed for minimization we have to change the sign and get

ρ(x, (µ, σ)) = ln(σ) +
1

2σ2
(x− µ)2,

the data space Q = R and the parameter space P := R× R>0 with the metric

d((µ, σ), (µ̃, σ̃)) = |µ− µ̃|+ |ln(σ)− ln(σ̃)|+
∣∣∣∣
1

σ2
− 1

σ̃2

∣∣∣∣ .

Remark C.2. We cannot use [EJ20], because there Q = P is required and we cannot

use [Huc11b], because there ρ ≥ 0 is required. [Sch22] requires

E
(

inf
(µ,σ)∈R×R+

ρ(x, (µ, σ))

)
> −∞.

However, one sees directly, if one inserts x = µ

ρ(x, (x, σ)) = ln(σ)
σ→0−→ −∞.

Theorem C.3. Under Assumption C.1 ZC holds for the normal distribution.

Proof. Let (µ, σ), (µ̃, σ̃) ∈ P with d((µ, σ), (µ̃, σ̃)) < 1

|ρ(x, (µ, σ))− ρ(x, (µ̃, σ̃))| ≤ |ln(σ)− ln(σ̃)|+ 1

2

∣∣∣∣
1

σ2
(x− µ)2 − 1

σ̃2
(x− µ̃)2

∣∣∣∣ (31)

≤ |ln(σ)− ln(σ̃)|+ 1

4

∣∣∣∣
1

σ2
− 1

σ̃2

∣∣∣∣
∣∣(x− µ)2 + (x− µ̃)2

∣∣ (32)

+
1

4

∣∣∣∣
1

σ2
+

1

σ̃2

∣∣∣∣
∣∣(x− µ)2 − (x− µ̃)2

∣∣ .

It follows directly

|ln(σ)− ln(σ̃)| ≤ d((µ, σ), (µ̃, σ̃)),
∣∣∣∣
1

σ2
− 1

σ̃2

∣∣∣∣ ≤ d((µ, σ), (µ̃, σ̃)).
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We get

∣∣(x− µ)2 + (x− µ̃)2
∣∣ ≤ 2x2 + |2x| |µ+ µ̃|+

∣∣µ2 + µ̃2
∣∣

≤ 2x2 + 2 |x| (2 |µ|+ 1) + 2µ2 + 2 |µ|+ 1.

We get for the last part of (31)

∣∣∣∣
1

σ2
+

1

σ̃2

∣∣∣∣ ≤ 2

∣∣∣∣
1

σ2

∣∣∣∣+
∣∣∣∣
1

σ2
− 1

σ̃2

∣∣∣∣ ≤ 2

∣∣∣∣
1

σ2

∣∣∣∣+ 1

and

∣∣(x− µ)2 − (x− µ̃)2
∣∣ ≤ 2 |x| |µ− µ̃|+ 2 |µ| d((µ, σ), (µ̃, σ̃)) + d((µ, σ), (µ̃, σ̃))2

≤ d((µ, σ), (µ̃, σ̃))
(
2 |x|+ 2 |µ|+ 1

)
.

Substituting the inequalities into (31) results in

|ρ(x, (µ, σ))− ρ(x, (µ̃, σ̃))| ≤ d((µ, σ), (µ̃, σ̃))ρ̇(x, (µ, σ))

where ρ̇(x, (µ, σ)) is defined as

ρ̇(x, (µ, σ)) := 1 +
1

4

(
2x2 + 2 |x| (2 |µ|+ 1) + 2µ2 + 2 |µ|+ 1

)

+
1

4

(
2

σ2
+ 1

)
(2 |x|+ 2 |µ|+ 1) .

Therefore we get

Ḟ(µ, σ) = 1 +
1

4

(
2E
(
x2
)
+ 2E (|x|) (2 |µ|+ 1) + 2µ2 + 2 |µ|+ 1

)

+
1

4

(
2

σ2
+ 1

)
(2E(|x|) + 2 |µ|+ 1) ,

which is smaller than infinity and continuous.

Theorem C.4. Under Assumption C.1 BPC holds for the normal distribution.

Proof. It holds

{(
µ(0), σ(0)

)}
= E(ρ).

If (µn, σ
2
n)

∞
n ⊂ P is without accumulation points then a.s. lim inf ρ(X, (µn, σn)) → ∞.

Thus BPC follows immediately.
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D Technical Theorems and Lemmas for the homoscedastic

drift model

In this section, we prove technical theorems and lemmas needed for the strong consistency

and central limit theorem in Section 4 in the main text. In particular, we use the definitions

of ρ,Q and P from Section 4.

Lemma D.1. For ρ : Q×P 7→ R that is defined, as in (21) holds

ρ(Y, [κ]) = ⟨Y, Y ⟩P −
〈
ϕ̂(κ, P, Y )κ, Y

〉
P

for all κ ∈ [κ].

Proof. We start with the Definition of ρ

ρ(Y, [κ]) =
N∑

ν=1

∥∥∥vec (Yν)−M(κν)vec
(
ϕ̂(κ, P, Y )

)∥∥∥
2

P

= ⟨Y, Y ⟩P − 2
〈
ϕ̂(κ, P, Y )κ, Y

〉
P
+
〈
ϕ̂(κ, P, Y )κ, ϕ̂(κ, P, Y )κ

〉
P
.

We get for the last part of the equation

〈
ϕ̂(κ, P, Y )κ, ϕ̂(κ, P, Y )κ

〉
P
=

N∑

ν=1

vec
(
ϕ̂(κ, P, Y )

)T
M(κν)

TPM(κν)vec
(
ϕ̂(κ, P, Y )

)

= vec
(
ϕ̂(κ, P, Y )

)T
(κ ⋄P κ) vec

(
ϕ̂(κ, P, Y )

)

= vec
(
ϕ̂(κ, P, Y )

)T
(κ ⋄P κ) (κ ⋄P κ)−1 (κ •P Y )

= vec
(
ϕ̂(κ, P, Y )

)T
(κ •P Y ) .

It follows directly vec
(
ϕ̂(κ, P, Y )

)T
(κ •P Y ) =

〈
ϕ̂(κ, P, Y )κ, Y

〉
P
and therefore

ρ(Y, [κ]) = ⟨Y, Y ⟩P −
〈
ϕ̂(κ, P, Y )κ, Y

〉
P
.

Definition D.2. For P = R

(
λ1 0

0 λ2

)
RT ∈ SPD(2) we define P̃ = R

(
λ2 0

0 λ1

)
RT

where λ1 ≥ λ2 > 0 and R is a rotation matrix.

For the rest of this section, we simplify the notation of sums. Every sum symbol

without bounds,
∑

, is to be understood as a sum
∑N

ν=1.

Lemma D.3. For κ ∈ S2N−1 and P, P̃ ∈ SPD(2) as defined in Definition D.2 holds

(κ ⋄P κ)−1 =
1

det (κ ⋄P κ)
(
κ ⋄P̃ κ

)
.
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Proof. First, we define M(κ̃ν) := RM(κν) for all ν = 1, . . . , N . Therefore,

κ ⋄P κ = κ̃ ⋄diag(λ1,λ2) κ̃

=

(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2 (λ2 − λ1)
∑

Re(κ̃ν) Im(κ̃ν)

(λ2 − λ1)
∑

Re(κ̃ν) Im(κ̃ν) λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2

)
.

Using the standard rule for calculating a 2× 2 inverse matrix, we get the desired result

(κ ⋄P κ)−1

=
1

det (κ ⋄P κ)

(
λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2 (λ1 − λ2)
∑

Re(κ̃ν) Im(κ̃ν)

(λ1 − λ2)
∑

Re(κ̃ν) Im(κ̃ν) λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2

)

=
1

det (κ ⋄P κ)
(
κ ⋄P̃ κ

)
.

Lemma D.4. For all κ ∈ S2N−1 and P ∈ SPD(2) as defined in Definition D.2 holds

det (κ ⋄P κ) ≥ λ1λ2.

Proof. We define κ̃ν in the same way as in the proof of Lemma D.3. We get using the

Cauchy-Schwarz inequality

det (κ ⋄P κ) = det

(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2 (λ2 − λ1)
∑

Re(κ̃ν) Im(κ̃ν)

(λ2 − λ1)
∑

Re(κ̃ν) Im(κ̃ν) λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2

)

=
(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2
)(

λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2
)

−
(
(λ2 − λ1)

∑
Re(κ̃ν) Im(κ̃ν)

)2

≥
(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2
)(

λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2
)

− (λ2 − λ1)2
(∑

Re(κ̃ν)
2
)(∑

Im(κ̃ν)
2
)

= λ1λ2

(∑
Re(κ̃ν)

2
)2

+ λ1λ2

(∑
Im(κ̃ν)

2
)2

+ 2λ1λ2

(∑
Re(κ̃ν)

2
)(∑

Im(κ̃ν)
2
)

= λ1λ2

(∑
Re(κ̃ν)

2 +
∑

Im(κ̃ν)
2
)2

= λ1λ2.

D.1 Calculating the modulus of continuity along with its prefactor

This section contains all the calculations needed for the Theorem 4.3 from the main text.

4.3

Lemma D.5. For κ, κ′ ∈ S2N−1, Y ∈ CN and P ∈ SPD(2) as defined in Definition D.2

C48

174 Drift Models on Complex Projective Space for Electron-Nuclear Double Resonance



holds

1

2
dP

((
ϕ̂(κ, P, Y ) + ϕ̂(κ′, P, Y )

)
(κ− κ′), 0

)
≤ λ1

√
2N

λ21 + λ22
λ1λ2

||Y || ||κ− κ′||.

Proof. Using first Lemma D.6 and then Lemma D.10 yields

1

2
dP

((
ϕ̂(κ, P, Y ) + ϕ̂(κ′, P, Y )

)
(κ− κ′), 0

)

≤ λ1
2

∣∣∣ϕ̂(κ, P, Y ) + ϕ̂(κ′, P, Y )
∣∣∣ ||κ− κ′|| ≤ λ1

√
2N

λ21 + λ22
λ1λ2

||Y || ||κ− κ′||.

Lemma D.6. For x ∈ C, a ∈ CN and P ∈ SPD(2) as defined in Definition D.2 with

λ1 ≥ λ2 holds

dP (xa, 0) ≤
√
λ1|x| · ||a||.

Proof. Since P ∈ SPD(2) we can write P = RTdiag(λ1, λ2)R where

R =

(
cos(α) − sin(α)

sin(α) cos(α)

)

is a rotation matrix. Therefore

dP (xa, 0) =
√
⟨xa, xa⟩P =

√
⟨eiαxa, eiαxa⟩diag(λ1,λ2) ≤

√
λ1 ⟨eiαxa, eiαxa⟩Id2

=
√
λ1|x| · ||a||.

Lemma D.7. For κ ∈ S2N−1 and P ∈ SPD(2) as defined in Definition D.2 holds

||κ ⋄P κ|| ≤
√
λ21 + λ22.

Proof. We define κ̃ν in the same way as in the proof of Lemma D.3. Using Cauchy–Schwarz
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we get

||κ ⋄P κ||2 =
∣∣∣∣∣

∣∣∣∣∣

(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2 (λ2 − λ1)
∑

Re(κ̃ν) Im(κ̃ν)

(λ2 − λ1)
∑

Re(κ̃ν) Im(κ̃ν) λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2

)∣∣∣∣∣

∣∣∣∣∣

2

=
(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2
)2

+ 2
(
(λ2 − λ1)

∑
Re(κ̃ν) Im(κ̃ν)

)2

+
(
λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2
)2

≤
(
λ1
∑

Re(κ̃ν)
2 + λ2

∑
Im(κ̃ν)

2
)2

+ 2(λ2 − λ1)2
(∑

Re(κ̃ν)
2
)(∑

Im(κ̃ν)
2
)

+
(
λ2
∑

Re(κ̃ν)
2 + λ1

∑
Im(κ̃ν)

2
)2

= λ21

(∑
Re(κ̃ν)

2 +
∑

Im(κ̃ν)
2
)2

+ λ22

(∑
Re(κ̃ν)

2 +
∑

Im(κ̃ν)
2
)2

= λ21 + λ22.

Lemma D.8. For κ ∈ S2N−1 and P ∈ SPD(2) as defined in Definition D.2 holds

∣∣∣
∣∣∣(κ ⋄P κ)−1

∣∣∣
∣∣∣ ≤

√
λ21 + λ22
λ1λ2

.

Proof. We get by using Lemma D.3, Lemma D.4 and Lemma D.7

∣∣∣
∣∣∣(κ ⋄P κ)−1

∣∣∣
∣∣∣ =

∣∣∣∣
∣∣∣∣

1

det (κ ⋄P κ)
(
κ ⋄P̃ κ

)∣∣∣∣
∣∣∣∣ ≤

√
λ21 + λ22
λ1λ2

.

Lemma D.9. For κ ∈ S2N−1, Y ∈ CN and P ∈ SPD(2) as defined in Definition D.2 holds

||κ •P Y || ≤
√
2N
√
λ21 + λ22 ||Y || .

Proof. We define κ̃ν in the same way as in the proof of Lemma D.3. We calculate

||κ •P Y || =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

(
M(κ1)

T . . . M(κN )
T
)
(IdN ⊗ P )




vec (Y1)
...

vec (YN )




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

≤
∣∣∣
∣∣∣
(
M(κ1)

T . . . M(κN )
T
)∣∣∣
∣∣∣ ||(IdN ⊗ P )|| ||Y || =

√
2N
√
λ21 + λ22 ||Y || .
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Lemma D.10. For κ ∈ S2N−1, Y ∈ CN and P ∈ SPD(2) as defined in Definition D.2

holds

∣∣∣ϕ̂(κ, P, Y )
∣∣∣ ≤
√
2N

λ21 + λ22
λ1λ2

||Y || .

Proof. Using Lemma D.8 and Lemma D.9 we get

∣∣∣ϕ̂(κ, P, Y )
∣∣∣ =

∣∣∣
∣∣∣(κ ⋄P κ)−1 (κ •P Y )

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣(κ ⋄P κ)−1

∣∣∣
∣∣∣ ||(κ •P Y )|| ≤

√
2N

λ21 + λ22
λ1λ2

||Y || .

Lemma D.11. For κ, κ′ ∈ S2N−1 and Y ∈ CN and P ∈ SPD(2) as defined in Definition

D.2 holds

1

2
dP

((
ϕ̂(κ, P, Y )− ϕ̂(κ′, P, Y )

)
(κ+ κ′), 0

)

≤
(
λ21 + λ22
λ1λ2

)(
8
√
2N +

32
√
2N
(
λ21 + λ22

)

λ1λ2
+ 2
√
2N

)
||Y ||

∣∣∣∣κ− κ′
∣∣∣∣ .

Proof. First, we use Lemma D.6

1

2
dP

((
ϕ̂(κ, P, Y )− ϕ̂(κ′, P, Y )

)
(κ+ κ′), 0

)
≤
√
λ1
2

∣∣∣ϕ̂(κ, P, Y )− ϕ̂(κ′, P, Y )
∣∣∣ · ||κ+ κ′||

≤
√
λ1

∣∣∣ϕ̂(κ, P, Y )− ϕ̂(κ′, P, Y )
∣∣∣ =

√
λ1

∣∣∣
∣∣∣(κ ⋄P κ)−1 (κ •P Y )−

(
κ′ ⋄P κ′

)−1 (
κ′ •P Y

)∣∣∣
∣∣∣

≤
√
λ1
2

∣∣∣
∣∣∣(κ ⋄P κ)−1 −

(
κ′ ⋄P κ′

)−1
∣∣∣
∣∣∣
∣∣∣∣(κ •P Y ) +

(
κ′ •P Y

)∣∣∣∣

+

√
λ1
2

∣∣∣
∣∣∣(κ ⋄P κ)−1 +

(
κ′ ⋄P κ′

)−1
∣∣∣
∣∣∣
∣∣∣∣(κ •P Y )−

(
κ′ •P Y

)∣∣∣∣ .

From Lemma D.8, Lemma D.9, Lemma D.12 and Lemma D.13 it follows that

1

2
dP

((
ϕ̂(κ, P, Y )− ϕ̂(κ′, P, Y )

)
(κ+ κ′), 0

)

≤
((

4
√
N
√
λ21 + λ22

λ1λ2
+

16
√
N(λ21 + λ22)

3/2

(λ1λ2)2

)
∣∣∣∣κ− κ′

∣∣∣∣
)(

2
√
2N
√
λ21 + λ22 ||Y ||

)

+

(
2

√
λ21 + λ22
λ1λ2

)(√
2N
√
λ21 + λ22 ||Y ||

∣∣∣∣κ− κ′
∣∣∣∣
)

=

(
λ21 + λ22
λ1λ2

)(
8
√
2N +

32
√
2N
(
λ21 + λ22

)

λ1λ2
+ 2
√
2N

)
||Y ||

∣∣∣∣κ− κ′
∣∣∣∣ .

Lemma D.12. For κ, κ′ ∈ S2N−1, Y ∈ CN and P ∈ SPD(2) as defined in Definition D.2

C51

177



holds

∣∣∣∣(κ •P Y )−
(
κ′ •P Y

)∣∣∣∣ ≤
√
2N
√
λ21 + λ22 ||Y ||

∣∣∣∣κ− κ′
∣∣∣∣ .

Proof. Analogous to the proof from Lemma D.9 it follows directly

∣∣∣∣(κ •P Y )−
(
κ′ •P Y

)∣∣∣∣

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

(
M(κ1 − κ′1)T . . . M(κN − κ′N )T

)
(IdN ⊗ P )




vec (Y1)
...

vec (YN )




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

≤
∣∣∣
∣∣∣
(
M(κ1 − κ1′)T . . . M(κN − κ′N )T

)∣∣∣
∣∣∣ ||(IdN ⊗ P )|| ||Y ||

=
√
2N
√
λ21 + λ22 ||Y ||

∣∣∣∣κ− κ′
∣∣∣∣ .

Lemma D.13. For κ, κ′ ∈ S2N−1 and P ∈ SPD(2) as defined in Definition D.2 holds

∣∣∣
∣∣∣(κ ⋄P κ)−1 −

(
κ′ ⋄P κ′

)−1
∣∣∣
∣∣∣

≤
(
4
√
N
√
λ21 + λ22

λ1λ2
+

16
√
N(λ21 + λ22)

√
λ21 + λ22

(λ1λ2)2

)
∣∣∣∣κ− κ′

∣∣∣∣ .

Proof. We get by using Lemma D.3

∣∣∣
∣∣∣(κ ⋄P κ)−1 −

(
κ′ ⋄P κ′

)−1
∣∣∣
∣∣∣ =

∣∣∣∣
∣∣∣∣

1

det (κ ⋄P κ)
(
κ ⋄P̃ κ

)
− 1

det (κ′ ⋄P κ′)
(
κ′ ⋄P̃ κ′

)∣∣∣∣
∣∣∣∣

≤ 1

2

∣∣∣∣
1

det (κ ⋄P κ)
+

1

det (κ′ ⋄P κ′)

∣∣∣∣
∣∣∣∣(κ ⋄P̃ κ

)
−
(
κ′ ⋄P̃ κ′

)∣∣∣∣

+
1

2

∣∣∣∣
1

det (κ ⋄P κ)
− 1

det (κ′ ⋄P κ′)

∣∣∣∣
∣∣∣∣(κ ⋄P̃ κ

)
+
(
κ′ ⋄P̃ κ′

)∣∣∣∣ .

From Lemma D.4, Lemma D.7, Lemma D.14 and Lemma D.16 it follows that

∣∣∣
∣∣∣(κ ⋄P κ)−1 −

(
κ′ ⋄P κ′

)−1
∣∣∣
∣∣∣

≤ 1

2

(
2

λ1λ2

)(
4
√
N
√
λ21 + λ22

∣∣∣∣κ− κ′
∣∣∣∣
)

+
1

2

(
16
√
N(λ21 + λ22)

(λ1λ2)2
∣∣∣∣κ− κ′

∣∣∣∣
)(

2
√
λ21 + λ22

)

≤
(
4
√
N
√
λ21 + λ22

λ1λ2
+

16
√
N(λ21 + λ22)

√
λ21 + λ22

(λ1λ2)2

)
∣∣∣∣κ− κ′

∣∣∣∣ .
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Lemma D.14. For κ, κ′ ∈ S2N−1 and P ∈ SPD(2) as defined in Definition D.2 holds

∣∣∣∣(κ ⋄P̃ κ
)
−
(
κ′ ⋄P̃ κ′

)∣∣∣∣ ≤ 4
√
N
√
λ21 + λ22

∣∣∣∣κ− κ′
∣∣∣∣ .

Proof. First, we use the triangle inequality and the sub-multiplicative property of the

Frobenius norm:

∣∣∣∣(κ ⋄P̃ κ
)
−
(
κ′ ⋄P̃ κ′

)∣∣∣∣ = 1

2

∣∣∣
∣∣∣
(
(κ− κ′) ⋄P̃ (κ+ κ′)

)
+
(
(κ+ κ′) ⋄P̃ (κ− κ′)

)∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣
(
(κ+ κ′) ⋄P̃ (κ− κ′)

)∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣
(
M(κ1 + κ′1)

T . . . M(κN + κ′N )
T
)∣∣∣
∣∣∣
∣∣∣
∣∣∣(IdN ⊗ P̃ )

∣∣∣
∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣




M(κ1 − κ′1)
...

M(κN − κ′N )




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
.

Analogously to Proof of Lemma D.9 we get

∣∣∣
∣∣∣
(
M(κ1 + κ′1)

T . . . M(κN + κ′N )
T
)∣∣∣
∣∣∣
∣∣∣
∣∣∣(IdN ⊗ P̃ )

∣∣∣
∣∣∣ ≤ 2

√
2N
√
λ21 + λ22.

Thus, we get the desired result

∣∣∣∣(κ ⋄P̃ κ
)
−
(
κ′ ⋄P̃ κ′

)∣∣∣∣ ≤ 4
√
N
√
λ21 + λ22

∣∣∣∣κ− κ′
∣∣∣∣ .

Lemma D.15. For A,B ∈ R2×2 we have

∣∣∣ det(A)− det(B)
∣∣∣ ≤ 2||A+B||||A−B||.

Proof. We directly calculate the determinant of the 2 × 2 matrix and use the triangle

inequality

∣∣∣det(A)− det(B)
∣∣∣ =

∣∣∣a11a22 − a12a21 − (b11b22 − b12b21)
∣∣∣

≤
∣∣∣a11a22 − b11b22

∣∣∣+
∣∣∣a12a21 − b12b21

∣∣∣

=
1

2

∣∣∣(a11 + b11)(a22 − b22) + (a11 − b11)(a22 + b22)
∣∣∣

+
1

2

∣∣∣(a12 + b12)(a21 − b21) + (a12 − b12)(a21 + b21)
∣∣∣

≤ 1

2

∣∣∣a11 + b11

∣∣∣
∣∣∣a22 − b22

∣∣∣+ 1

2

∣∣∣a11 − b11
∣∣∣
∣∣∣a22 + b22

∣∣∣

+
1

2

∣∣∣a12 + b12

∣∣∣
∣∣∣a21 − b21

∣∣∣+ 1

2

∣∣∣a12 − b12
∣∣∣
∣∣∣a21 + b21)

∣∣∣.
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Using that
∣∣∣aij + bij

∣∣∣ ≤ ||A+B|| and
∣∣∣aij − bij

∣∣∣ ≤ ||A−B|| for all i, j = 1, 2 we get

∣∣∣ det(A)− det(B)
∣∣∣ ≤ 2||A+B||||A−B||.

Lemma D.16. For κ, κ′ ∈ S2N−1 and P ∈ SPD(2) as defined in Definition D.2 holds

∣∣∣∣
1

det (κ ⋄P κ)
− 1

det (κ′ ⋄P κ′)

∣∣∣∣ ≤
16
√
N(λ21 + λ22)

(λ1λ2)2
∣∣∣∣κ− κ′

∣∣∣∣ .

Proof. It follows from Lemma D.4 and Lemma D.15.

∣∣∣∣
1

det (κ ⋄P κ)
− 1

det (κ′ ⋄P κ′)

∣∣∣∣ ≤
1

(λ1λ2)2
∣∣det

(
κ′ ⋄P κ′

)
− det (κ ⋄P κ)

∣∣

≤ 2

(λ1λ2)2
∣∣∣∣(κ′ ⋄P κ′) + (κ ⋄P κ)

∣∣∣∣ ∣∣∣∣(κ′ ⋄P κ′)− (κ ⋄P κ)
∣∣∣∣ .

Consequently, from Lemma D.7 and Lemma D.14 follows the desired result:

∣∣∣∣
1

det (κ ⋄P κ)
− 1

det (κ′ ⋄P κ′)

∣∣∣∣ ≤
2

(λ1λ2)2

(
2
√
λ21 + λ22

)(
4
√
N
√
λ21 + λ22

∣∣∣∣κ− κ′
∣∣∣∣
)

=
16
√
N(λ21 + λ22)

(λ1λ2)2
∣∣∣∣κ− κ′

∣∣∣∣ .

Lemma D.17. Let x, y ∈ C and a, b ∈ CN . It holds

dP (xa, yb) ≤
1

2
dP

(
(x+ y) (a− b), 0

)
+

1

2
dP

(
(x− y) (a+ b), 0

)
. (33)

Proof. Using the Triangle inequality we get

dP (xa, yb) = dP

(
1

2
(x+ y)(a− b) + 1

2
(x− y)(a+ b), 0

)

≤ 1

2
dP

(
(x+ y) (a− b), 0

)
+

1

2
dP

(
(x− y) (a+ b), 0

)
.

D.2 CLT

In this section we have the same notation as in the Section 4.2 in the main text.

Lemma D.18. For β−1 from Definition 4.8 in the main text holds

d(
[
β−1(x)

]
,
[
κ(0)

]
)2 = 1− 1√

||x||2 + 1
.
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Proof. For [κ], [κ̃] ∈ P it holds

d ([κ], [κ̃])2 = min
λ∈R
||κ− eiλκ̃||2 = min

λ∈R
2
(
1− Re(eiλκ∗κ)

)
.

Consequently, if κ∗κ̃ ∈ R>0, then κ ∈ [κ], κ̃ ∈ [κ̃] are in optimal position and it holds

d ([κ], [κ̃])2 = ||κ− κ̃||2. For
(
R∗ x̃

||x̃||

)
∈ β−1(x) from Definition 4.8 in the main text,

(
R∗ x̃

||x̃||

)T
κ(0) =

1

||x̃|| ∈ R>0

holds and thus

d(β−1(x), [κ(0)])2 =

∣∣∣∣
∣∣∣∣
(
R∗ x̃

||x̃||

)
− κ(0)

∣∣∣∣
∣∣∣∣
2

= 1− 1

||x̃|| = 1− 1√
||x||2 + 1

.

D.3 Auxiliary calculations for Section 4.3

In this section we have the same notation as in the Section 4.3 in the main text.

Lemma D.19. For κ ∈ S2N−1 holds

argmax
λ∈S1

∣∣∣
∣∣∣Re(eiλκ)

∣∣∣
∣∣∣
2
=





{
π − Arg(κT κ)

2 , 2π − Arg(κT κ)
2

}
, if κTκ ̸= 0

S1, else.

Proof. Euler’s formula gives us

argmax
λ∈S1

∣∣∣
∣∣∣Re(eiλκ)

∣∣∣
∣∣∣
2
= argmax

λ∈S1

∣∣∣
∣∣∣eiλκ+ e−iλκ̄

∣∣∣
∣∣∣
2

= argmax
λ∈S1

(
||κ||2 + e2iλκTκ+ e2iλκTκ

)
.

If κTκ = 0, then all λ ∈ S1 maximize the expression. If κTκ ̸= 0, then there is exactly one

α ∈ S1 with α = Arg(κTκ) and we get κTκ = reiα, where r = |κTκ| > 0. Substituting

κTκ = reiα and using the angle addition and subtraction theorems gives us:

argmax
λ∈S1

∣∣∣
∣∣∣Re(eiλκ)

∣∣∣
∣∣∣
2
= argmax

λ∈S1
(r cos(2λ+ α)) .

The expression cos(2λ+ α) is maximized exactly when 2λ+α = 0 mod 2π holds. There-

fore

argmax
λ∈S1

∣∣∣
∣∣∣Re(eiλκ)

∣∣∣
∣∣∣
2
=
{
π − α

2
, 2π − α

2

}
.
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Lemma D.20. Let [κ] ∈ P then it holds for all κ, κ̃ ∈ [κ] that f̃(κ) = f̃(κ̃), where f̃ is

defined as in Equation (24) in the main text.

Proof. For κ ∈ S2N−1 with κTκ = 0 the proposition is trivially satisfied. Let κ ∈ S2N−1

with
∣∣κTκ

∣∣ = r > 0 and let κ̃ ∈ [κ] then there is a λ ∈ S1 with κ̃ = eiλκ. It follows

Arg
(
κ̃T κ̃

)
= Arg

((
eiλκ

)T (
eiλκ

))

= Arg
(
rei(2λ+Arg(κT κ))

)
= 2λ+Arg

(
κTκ

)
mod 2π.

Thus it follows

f̃(κ̃) =
[
Re
(
e

−i
2 (2λ+Arg(κT κ))

(
eiλκ

))]
±
= f̃(κ).

Lemma D.21. Let g be defined as in Equation (25) and let κ(0) ∈ P\ (M1∪M2) then the

Jacobian matrix at x = 0 is given by

Jxg(0) = ±Re

(
e−

iα
2

(
iκ0Re

(
i
(κ(0))Tκ(0)

(
κ(0)

)T
R∗A

r2

)
+R∗A

))
.

where
∣∣(κ(0))Tκ(0)

∣∣ =: r and α := Arg
(
(κ(0))Tκ(0)

)
.

Proof. As κ(0) /∈M1, it follows
∣∣(κ(0))Tκ(0)

∣∣ =: r > 0 and we can write (κ(0))Tκ(0) := reiα,

where α := Arg
(
(κ(0))Tκ(0)

)
. Since κ /∈M2, the outer function f± is the identity or minus

the identity, only the sign of the Jacobian matrix is determined by this function. We

therefore get

g : R2N−2 → RN , x 7→ ±f(β−1(x)) = ±Re

(
e

−i
2

Arg

((
R∗ x̃

||x̃||

)T(
R∗ x̃

||x̃||

))(
R∗ x̃

||x̃||

))

where x̃ and R are defined as in Definition 4.8 in the main text. We first calculate

JxArg

((
R∗ x̃

||x̃||

)T (
R∗ x̃

||x̃||

))
= JxArg

(
(R∗x̃)T (R∗x̃)

)
(34)

=
Re
(
(R∗x̃)T (R∗x̃)

)
Jx
(
Im
(
(R∗x̃)T (R∗x̃)

))

Re ((R∗x̃)T (R∗x̃))2 + Im ((R∗x̃)T (R∗x̃))2

− Im
(
(R∗x̃)T (R∗x̃)

)
Jx
(
Re
(
(R∗x̃)T (R∗x̃)

))

Re ((R∗x̃)T (R∗x̃))2 + Im ((R∗x̃)T (R∗x̃))2
(35)

where

JxRe
(
(R∗x̃)T (R∗x̃)

)
=

1

2

(
Jx
(
(R∗x̃)T (R∗x̃)

)
+ Jx(R∗x̃)T (R∗x̃)

)
,

Jx Im
(
(R∗x̃)T (R∗x̃)

)
=
−i
2

(
Jx
(
(R∗x̃)T (R∗x̃)

)
− Jx(R∗x̃)T (R∗x̃)

)
.
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Substitution of this into (34) results in

JxArg
(
(R∗x̃)T (R∗x̃)

)

=
−1

2

(
Im
(
(R∗x̃)T (R∗x̃)

)
+Re

(
(R∗x̃)T (R∗x̃)

)
i
) (
Jx(R

∗x̃)T (R∗x̃)
)

Re ((R∗x̃)T (R∗x̃))2 + Im ((R∗x̃)T (R∗x̃))2

−
1
2

(
Im
(
(R∗x̃)T (R∗x̃)

)
− Re

(
(R∗x̃)T (R∗x̃)

)
i
) (
Jx(R∗x̃)T (R∗x̃)

)

Re ((R∗x̃)T (R∗x̃))2 + Im ((R∗x̃)T (R∗x̃))2

= −Re

((
Im
(
(R∗x̃)T (R∗x̃)

)
+Re

(
(R∗x̃)T (R∗x̃)

)
i
)
Jx
(
(R∗x̃)T (R∗x̃)

)

Re ((R∗x̃)T (R∗x̃))2 + Im ((R∗x̃)T (R∗x̃))2

)

where

Jx(R
∗x̃)T (R∗x̃) = 2x̃T (R∗)T R∗A,

where

A :=




1 i 0 0 0 . . . 0 0

0 0 1 i 0 . . . 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 . . . 1 i

0 0 0 0 0 . . . 0 0



∈ CN×2(N−1).

Using that same matrix A we get

JxR
∗ x̃

||x̃|| = R∗
(
x̃

(
Jx

1

||x̃||

)
+

1

||x̃|| (Jxx̃)
)

= R∗
(
− 1

||x̃||3/2 x̃x
T +

1

||x̃||A
)
. (36)

Consequently, we get

Jxg(x)

= ±Re

(
e

−i
2

Arg((R∗x̃)T (R∗x̃))

(
− i
2

(
R∗ x̃

||x̃||

)
Jx

(
Arg

(
(R∗x̃)T (R∗x̃)

))
+ JxR

∗ x̃

||x̃||

))
.

Inserting x = 0 gives us

e
−i
2

Arg((R∗x̃)T (R∗x̃))

∣∣∣∣∣
x=0

= ± exp

(−iα
2

)

JxR
∗ x̃

||x̃||

∣∣∣∣∣
x=0

= R∗A

− i
2

(
R∗ x̃

||x̃||

)
Jx

(
Arg

(
(R∗x̃)T (R∗x̃)

)) ∣∣∣∣∣
x=0

= iκ0Re

(
i
(κ(0))Tκ(0)

(
κ(0)

)T
R∗A

r2

)
.
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By substituting into Equation (36) we get

Jxg(0) = ±Re

(
e−

iα
2

(
iκ0Re

(
i
(κ(0))Tκ(0)

(
κ(0)

)T
R∗A

r2

)
+R∗A

))
.

Figure C9: The singular values of Jxg(0) for the different orientations from a chemical
sample of the D2-Y •

122 E. coli ribonucleotide reductase. Remarkably, almost all singular
values are equal to 1, with one value being slightly larger and one value being markedly
smaller (but clearly separated from zero). The variation of the function g stems from
two sources. First, changes in κ are directly translated into changes in the spectrum,
which account for the flat eigenvalue spectrum. Second, the complex rotation by λ, which
depends on κ, changes the spectrum. The eigenvector to the smallest eigenvalue therefore
corresponds very closely to the spectrum itself since we evaluate the Jacobian at this point
and thus, when varying κ and hence λ, the change is mostly tangential to that direction.
The eigenvector to the largest eigenvalue corresponds closely to the “imaginary part of
the spectrum” which is projected out, so when varying κ the corresponding variation in
λ, which mixes more or less of the wave into the spectrum, compounds the change in this
direction, leading to an increased eigenvalue.
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E Technical Theorems and Lemmas for Section 5 in the

main text

In this section, we prove technical lemmas for Section 5 in the main text. Consequently,

we have the same notation, in particular for ρ, Q and P.

Lemma E.1. Under Definiton 5.1, it holds for ([κ], P ) ∈ P

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ) = N Tr

(
Σ(0)P

)
− Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

where κ ∈ [κ]

Proof. Using Lemma D.1 we get

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ) =

∫
⟨ϵ, ϵ⟩P −

〈
ϕ̂(κ, P, ϵ)κ, ϵ

〉
P
dP (ϵ)

First, we calculate

∫
⟨ϵ, ϵ⟩P dP (ϵ) =

N∑

ν=1

Tr
(
V
(√

Pvec (ϵν)
))

=
N∑

ν=1

Tr
(√

PΣ(0)
√
P
)
= N Tr

(
Σ(0)P

)
.

By using the linearity and the cyclic property of the trace operator we get

∫ 〈
ϕ̂(κ, P, ϵ)κ, ϵ

〉
P
dP (ϵ) =

∫ N∑

ν=1

vec (ϵν)PM(κν)vec
(
ϕ̂(κ, P, ϵ)

)
dP (ϵ)

=

∫
(κ •P ϵ)T (κ ⋄P κ)−1 (κ •P ϵ) dP (ϵ) = Tr

(
(κ ⋄P κ)−1

∫
(κ •P ϵ) (κ •P ϵ)T dP (ϵ)

)
.

Since ϵ1, . . . , ϵN ∼ N (0,Σ(0)) are i.i.id random variables, it holds that

∫
(κ •P ϵ) (κ •P ϵ)T dP (ϵ) =

∫ ( N∑

ν=1

M(κν)
TPvec (ϵν)

)(
N∑

ν=1

vec (ϵν)
T PM(κν)

)
dP (ϵ)

=
N∑

ν=1

M(κν)
TP

(∫
vec (ϵν) vec (ϵν)

T dP (ϵ)

)
PM(κν) = κ ⋄PΣ(0)P κ.

Consequently,

∫ 〈
ϕ̂(κ, P, ϵ)κ, ϵ

〉
P
dP (ϵ) = Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)
.

and therefore

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ) = N Tr

(
Σ(0)P

)
− Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)
.
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Lemma E.2. For ([κ], P ) ∈ P, κ ∈ [κ] and Σ(0) ∈ SPD(2) we obtain

(i) Tr

(
(κ ⋄P κ)−1

(
κ ⋄(

∂P
∂pij

)
Σ(0)P

κ

))
= Tr

(
Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)( ∂P

∂pij

))
,

(ii) Tr

(
(κ ⋄P κ)−1

(
κ ⋄

PΣ(0)

(
∂P
∂pij

) κ

))
= Tr

((
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
PΣ(0)

(
∂P

∂pij

))
,

(iii) Tr

(
(κ ⋄P κ)−1

(
κ ⋄ ∂P

∂pij

κ

)
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

= Tr

((
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

)( ∂P

∂pij

))
.

Proof. We start with (i). From the cyclic property of the trace operator we obtain

Tr

(
((κ ⋄P κ)−1

(
κ ⋄(

∂P
∂pij

)
Σ(0)P

κ

))

= Tr

(
(κ ⋄P κ)−1

(
N∑

ν=1

M(κν)
T

(
∂P

∂pij

)
Σ(0)PM(κν)

))

= Tr

(
Σ(0)P

(
N∑

ν=1

M(κν) (κ ⋄P κ)−1M(κν)
T

)(
∂P

∂pij

))

= Tr

(
Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)( ∂P

∂pij

))
.

Analogously, we obtain for (ii)

Tr

(
((κ ⋄P κ)−1

(
κ ⋄

PΣ(0)

(
∂P
∂pij

) κ

))

= Tr

(
(κ ⋄P κ)−1

(
N∑

ν=1

M(κν)
TPΣ(0)

(
∂P

∂pij

)
M(κν)

))

= Tr

((
N∑

ν=1

M(κν) (κ ⋄P κ)−1M(κν)
T

)
Σ(0)P

(
∂P

∂pij

))

= Tr

((
N∑

ν=1

M(κν) (κ ⋄P κ)−1M(κν)
T

)
Σ(0)P

(
∂P

∂pij

))

= Tr

((
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
Σ(0)P

(
∂P

∂pij

))
.
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For (iii) we use the cyclic property of the trace operator

Tr

(
(κ ⋄P κ)−1

(
κ ⋄ ∂P

∂pij

κ

)
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ) (κ ⋄P κ)−1

(
κ ⋄ ∂P

∂pij

κ

))

Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ) (κ ⋄P κ)−1

(
N∑

ν=1

M(κν)
T

(
∂P

∂pij

)
M(κν)

))

Tr

(
N∑

ν=1

(
M(κν) (κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ) (κ ⋄P κ)−1M(κν)

T
)( ∂P

∂pij

))

= Tr

((
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

)( ∂P

∂pij

))
.

Lemma E.3. Let f : SPD(2)→ R be a differentiable function with the property

∂f(P )

∂pij
= Tr

(
A

(
∂P

∂pij

))

where P =

(
p11 p12

p12 p22

)
∈ SPD(2) and A is any symmetric matrix A =

(
a11 a12

a12 a22

)
∈

R2×2. Then holds

∂f(P )

∂P
= 2A− diag(A).

Proof. It holds

Tr

(
A

(
∂P

∂p11

))
= a11, Tr

(
A

(
∂P

∂p22

))
= a22, Tr

(
A

(
∂P

∂p12

))
= 2a12

and therefore

∂f(P )

∂P
= 2A− diag(A).
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Lemma E.4. For ([κ], P ) ∈ P, κ ∈ [κ] and Σ(0) ∈ SPD(2) we obtain

∂

∂P

(
N Tr

(
Σ(0)P

)
− Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)
−N log(det(P ))

)

= 2
(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
PΣ(0) +Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
− 2

(
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

)

− diag
((

κ̄ ⋄(κ⋄P κ)−1 κ̄
)
PΣ(0) +Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)

−
(
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

))

+N
(
2Σ(0) − diag(Σ(0))

)
−N

(
2P−1 − diag

(
(2P−1

))
.

Proof. Since P,Σ(0) ∈ SPD(2) we can write P =

(
p11 p12

p12 p22

)
and Σ(0) =

(
σ
(0)
11 σ

(0)
12

σ
(0)
12 σ

(0)
22

)
.

For the first term in the sum we get

∂ Tr
(
Σ(0)P

)

∂p11
= σ

(0)
11 ,

∂ Tr
(
Σ(0)P

)

∂p22
= σ

(0)
22 ,

∂ Tr
(
Σ(0)P

)

∂p12
= 2σ

(0)
12

and for the third term

∂ log(det(P ))

∂p11
=

p22
det(P )

,
∂ log(det(P ))

∂p22
=

p11
det(P )

,
∂ log(det(P ))

∂p12
=
−2p12
det(P )

.

Thus we get

∂

∂P

(
N Tr

(
Σ(0)P

)
−N log(det(P ))

)

= N
(
2Σ(0) − diag(Σ(0))

)
−N

(
2P−1 − diag

(
(2P−1

))
. (37)

For the second term, we calculate the partial derivatives. For this purpose, we first consider

the following auxiliary calculations

0 =
∂

∂pij

(
(κ ⋄P κ)−1 (κ ⋄P κ)

)

=

(
∂

∂pij
(κ ⋄P κ)−1

)
(κ ⋄P κ) + (κ ⋄P κ)−1

(
∂

∂pij
(κ ⋄P κ)

)

and therefore

∂ (κ ⋄P κ)−1

∂pij
= − (κ ⋄P κ)−1

(
κ ⋄ ∂P

∂pij

κ

)
(κ ⋄P κ)−1 . (38)

We also calculate

∂ (κ ⋄PΣ(0)P κ)

∂pij
=

(
κ ⋄(

∂P
∂pij

)
Σ(0)P

κ

)
+

(
κ ⋄

PΣ(0)

(
∂P
∂pij

) κ

)
. (39)
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By utilizing equations (38) and (39) and Lemma E.2, we can deduce that

∂

∂pij
Tr
(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

= Tr
(
(κ ⋄P κ)−1

(
κ ⋄(

∂P
∂pij

)
Σ(0)P

κ

)
+ (κ ⋄P κ)−1

(
κ ⋄

PΣ(0)

(
∂P
∂pij

) κ

)

− (κ ⋄P κ)−1

(
κ ⋄ ∂P

∂pij

κ

)
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

= Tr

(
Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)( ∂P

∂pij

)
+
(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
PΣ(0)

(
∂P

∂pij

)
(40)

−
(
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

)( ∂P

∂pij

))
.

We obtain from (40) and Lemma E.3

∂

∂P
Tr
(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)

= 2
((
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
PΣ(0) +Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
−
(
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

))

− diag
((

κ̄ ⋄(κ⋄P κ)−1 κ̄
)
PΣ(0) +Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

))

− diag
((

κ̄ ⋄(κ⋄P κ)−1(κ⋄
PΣ(0)P

κ)(κ⋄P κ)−1 κ̄
))

.

Using (37) we get the desired result

∂

∂P

(
N Tr

(
Σ(0)P

)
− Tr

(
(κ ⋄P κ)−1 (κ ⋄PΣ(0)P κ)

)
−N log(det(P ))

)

= 2
((
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
PΣ(0) +Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

)
−
(
κ̄ ⋄(κ⋄P κ)−1(κ⋄

PΣ(0)P
κ)(κ⋄P κ)−1 κ̄

))

− diag
((

κ̄ ⋄(κ⋄P κ)−1 κ̄
)
PΣ(0) +Σ(0)P

(
κ̄ ⋄(κ⋄P κ)−1 κ̄

))

− diag
((

κ̄ ⋄(κ⋄P κ)−1(κ⋄
PΣ(0)P

κ)(κ⋄P κ)−1 κ̄
))

+N
(
2Σ(0) − diag(Σ(0))

)
−N

(
2P−1 − diag

(
(2P−1

))
.

Lemma E.5. For ([κ], P ) ∈ P, κ ∈ [κ] and P (0),Σ(0) ∈ SPD(2) with P (0) =
(
Σ(0)

)−1
we

obtain

∂

∂P
F([κ], P )

∣∣∣
[κ]=[κ(0)],P=P (0)

= 2

(
κ̄(0) ⋄

(κ(0)⋄
P (0)κ

(0))
−1 κ̄(0)

)

− diag

(
κ̄(0) ⋄

(κ(0)⋄
P (0)κ

(0))
−1 κ̄(0)

)
.
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Proof. Analogous to Section 5 in the main text, we decompose F as follows

∂

∂P
F([κ], P )

∣∣∣
[κ]=[κ(0)],P=P (0)

(41)

=
∂

∂P

∫
dP

(
Y, ϕ̂(κ, P, Y )κ

)2
dP (ϕ)

∣∣∣
κ=κ(0),P=P (0)

+
∂

∂P

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ)−N log(det(P ))

∣∣∣
κ=κ(0),P=P (0)

.

From Theorem 4.5 in the main text, it follows that all κ ∈ [κ(0)] minimize the expression

∫
dP

(
Y, ϕ̂(κ, P, Y )κ

)2
dP (ϕ)

for any P ∈ SPD(2). Consequently,

∂

∂P

∫
dP

(
Y, ϕ̂(κ, P, Y )κ

)2
dP (ϕ)

∣∣∣
κ=κ(0),P=P (0)

= 0.

We utilize Lemma E.1 and Lemma E.4 for the second part of (41)

∂

∂P

∫
dP

(
ϵ, ϕ̂(κ, P, ϵ)κ

)2
dP (ϵ)−N log(det(P ))

∣∣∣
κ=κ(0),P=P (0)

= 2

(
κ̄(0) ⋄

(κ(0)⋄
P (0)κ

(0))
−1 κ̄(0)

)
− diag

(
κ̄(0) ⋄

(κ(0)⋄
P (0)κ

(0))
−1 κ̄(0)

)
.
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F Heteroscedastic Drift Model

F.1 Goodness of Fit and Standard Deviations

Orientation Real Imaginary

x 1.13× 10−5 4.19× 10−6

xy 2.08× 10−8 0.929
y 2.71× 10−4 0.262
yz 2.54× 10−10 5.83× 10−20

z 0.173 3.53× 10−2

Table C3: Results of Kolmogorov–Smirnov tests for Gaussianity applied to the real and
imaginary parts of the residuals ϵ̂b,ν = Yb,ν− ψ̂b− ϕ̂bκ̂ν , pooled over b and ν, obtained from
the homoscedastic drift model applied to the 94GHz data.

Orientation heteroscedastic drift model averaging model

x 4.2× 10−3 9.2× 10−3

xy 2.6× 10−3 3.1× 10−3

y 2.9× 10−3 4.4× 10−3

yz 3.9× 10−3 9.0× 10−3

z 9.3× 10−3 1.2× 10−2

Table C4: The standard deviation of the flat regions shown in Panel B of Figure C10,
computed for both the averaging model and the heteroscedastic drift model.

orientation pℜ pℑ
x 0.827 0.321
xy 1.11× 10−3 0.984
y 0.0294 0.587
yz 0.269 0.253
z 0.755 0.889

Table C5: p-values from applying the heteroscedastic drift model to the 94GHz data.

F.2 Boundary Maxima in the Heteroscedastic Drift Model

The heteroscedastic drift model exhibits boundary maxima as Σ0 tends to a rank-deficient

matrix. A detailed example exhibiting these is given in Lemma F.1. The iterative Al-

gorithm 2 fitting the above model did not find these boundary maxima when initialized

from the homoscedastic drift model on the tested datasets. From the log likelihood values

resulting from these fits, we looked at the upper bound for the minimal eigenvalue of Σ0 for

which these log likelihood values can be obtained by the parameter sequence constructed in

Lemma F.1. These are reported in Table C6 and compared with the minimal eigenvalues

of the estimated Σ̂0. From the differences, which are about 200 orders of magnitude, we

concluded that the algorithm did indeed not find the boundary global maxima but found

some local MLE. In practice, we did not actually need to restrict the parameter space for
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Σ0 to impose lower bounds on its eigenvalues, even though this would reasonably represent

minimum receiver noise.

Lemma F.1. The heteroscedastic drift model has boundary maxima.

Proof. Let Yb,ν ∈ C be arbitrary. WLOG Y ̸= 0,
∑N

ν=0 Y1,ν ̸= 0. And choose ψ1 =
1

N+1

∑N
ν=0 Y1,ν . Then we can chose κν such that the residuals R1,ν = 0 for all ν = 0, . . . , N

by just using the averaging model estimator applied to the first batch

κν =
Y1,ν − ψ1√∑N

ν′=0

∣∣Y1,ν′ − ψ1

∣∣2

c = 0

ϕ1 =

√√√√
N∑

ν′=0

∣∣Y1,ν′ − ψ1

∣∣2

⇒ R1,ν = Y1,ν − ψ1 − ϕ1κν = Y1,ν −
1

N + 1

N∑

ν′=0

Y1,ν′ −
(
Y1,ν −

1

N + 1

N∑

ν′=0

Y1,ν′

)
= 0

We then choose a sequence Σ
(k)
0 , σ̃ such that the likelihood diverges to +∞ as k →∞. For

notational convenience, we express all matrices in the basis
{
vec
(
ψ1

|ψ1|

)
, vec

(
i ψ1

|ψ1|

)}
.

Σ
(k)
0 =

1

k
vec (ψ1) vec (ψ1)

T + vec (iψ1) vec (iψ1)
T = |ψ1|2

(
1
k 0

0 1

)

σ̃ = 1

⇒ Σ
(k)
1 = Σ

(k)
0 + σ̃vec (iψ1) vec (iψ1)

T = |ψ1|2
((

1
k 0

0 1

)
+

(
0 0

0 1

))
= |ψ1|2

(
1
k 0

0 2

)

We first focus on the log likelihood contribution ℓ
(k)
Y1,:

associated with batch b = 1 and

consider the remaining contributions later.

ℓ(k)y1,: = −
1

2

(
N∑

ν=0

(
vec (R1,ν)

T P
(k)
1 vec (R1,ν)

)
+ (N + 1)

(
log
(
det
(
Σ
(k)
1

))
+ log

(
(2π)2

))
)

= −N + 1

2

(
log
(
det
(
Σ
(k)
1

))
+ log

(
(2π)2

))
=
N + 1

2
log


 1

det
(
Σ
(k)
1

)


− (N + 1) log(2π)

=
N + 1

2
log

(
k

2|ψ1|4
)
− (N + 1) log(2π)

⇒ lim
k→∞

ℓ
(k)
Y1,:

= +∞
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We now choose ψ
(k)
b for b ̸= 1 such that Σ

(k)
b is constant in k. So let b not equal to 1

ψ
(k)
b = −i

√
1− 1

k
ψ1

vec
(
iψ

(k)
b

)
vec
(
iψ

(k)
b

)T
=

(
1− 1

k

)
vec (ψ1) vec (ψ1)

T = |ψ1|2
(
1− 1

k 0

0 0

)

⇒ Σ
(k)
b = Σ

(k)
0 + σ̃vec

(
iψ

(k)
b

)
vec
(
iψ

(k)
b

)T
= |ψ1|2

((
1
k 0

0 1

)
+

(
1− 1

k 0

0 0

))

= |ψ1|2
(
1 0

0 1

)

⇒ P
(k)
b = |ψ1|−2

(
1 0

0 1

)

But then the only dependency on k for b ̸= 1 in the likelihood is in the residuals. (We

choose ϕb = −iϕ1 for convenience so ϕbκν = −i
(
Y1,ν − 1

N+1

∑N
ν′=0 Y1,ν′

)
= −i(Y1,ν − ψ1))

⇒ R
(k)
b,ν = Yb,ν − ψ(k)

b − ϕbκν = Yb,ν + i

√
1− 1

n
ψ1 + i(Y1,ν − ψ1)

⇒ lim
k→∞

R
(k)
b,ν = Yb,ν + iY1,ν =.. Rb,ν

⇒ ℓ
(k)
Yb,:

= −1

2

(
N∑

ν=0

(
vec
(
R

(k)
b,ν

)T
P

(k)
b vec

(
R

(k)
b,ν

))

+ (N + 1)
(
log
(
det
(
Σ

(k)
b

))
+ log

(
(2π)2

))
)

= −1

2




N∑

ν=0

∣∣∣R(k)
b,ν

∣∣∣
2

|ψ1|2
+ (N + 1)

(
log
(
|ψ1|4

)
+ log

(
(2π)2

))



⇒ lim
k→∞

ℓ(k)yb,:
= −1

2

(
N∑

ν=0

|Rb,ν |2

|ψ1|2
+ (N + 1)

(
log
(
|ψ1|4

)
+ log

(
(2π)2

))
)

So the log likelihood of the residuals for b ̸= 1 does not diverge to −∞ but instead converges

to a finite value. But by design the log likelihood of the first batch diverges like log(k).
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orientation k* smallest ev Σ
(k∗)
0 smallest ev of Σ̂0

̂̃σ
x 10271 10−262 103 1.73× 10−4

xy 10339 10−330 103 1.69× 10−4

y 10468 10−460 103 1.72× 10−4

yz 10316 10−307 10−2 1.51× 10−4

z 10467 10−459 104 1.79× 10−4

Table C6: Applying the example of a parameter sequence with divergent log likelihood from
Lemma F.1 to the datasets, we can compare the algorithmic fit with these parameters by
focusing on the sequence index k∗ for which the log likelihood of the fit is first reached by
the sequence.

Therefore,

lim
k→∞

ℓ
(k)
Y = lim

k→∞

(
ℓ
(k)
Y1,:

+
B∑

b=2

ℓ
(k)
Yb,:

)

= lim
k→∞


N + 1

2
log

(
k

2|ψ1|4
)
− (N + 1) log(2π)

+
B∑

b=2


−1

2




N∑

ν=0

∣∣∣R(k)
b,ν

∣∣∣
2

|ψ1|2
+ (N + 1)

(
log
(
|ψ1|4

)
+ log

(
(2π)2

))







 (42)

= +∞− 1

2

((
B∑

b=2

N∑

ν=0

|Rb,ν |2

|ψ1|2

)
+ (N + 1)(B − 1) log

(
|ψ1|4

)
+ (N + 1)B log

(
(2π)2

)
)

= +∞

F.3 Phase Noise Truncation

Looking at the mean and variance of the wrapped Gaussian

E
[
ψ̃b,ν

]
=ψb exp

(
− σ̃

2

2

)
= ψb

(
1− σ̃2

2

)
+O(σ̃4)

Var
[
ψ̃b,ν

]
..=Cov

[
vec
(
ψ̃b,ν

)
, vec

(
ψ̃b,ν

)]
=M(ψb)




1+e−2σ̃2−2e−σ̃2

2 0

0 1−e−2σ̃2

2


M(ψb)

T

=M(ψb)

(
0 +O(σ̃4) 0

0 σ̃2 +O(σ̃4)

)
M(ψb)

T .

we see that the expansion of the mean to higher than linear order is not consistent with

the mean of Definition 6.1 due to the correction in σ̃2 which comes from the quadratic

term −ψbσ̃
2

2 φ2
b,ν . Replacing ψb by ψ̆b = ψb

2−σ̃2

2 in Definition 6.1 on the other hand, leads
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to a different noise scale parameter σ2 =
(

2
2−σ̃2

)2
σ̃2 as

vec
(
ψ̆b

)
σ2vec

(
ψ̆b

)T
= vec

(
ψ̆b

)( 2

2− σ̃2
)2

σ̃2vec
(
ψ̆b

)T
=.. vec (ψb) σ̃

2vec (ψb)
T .

This second parametrization was used in the heteroscedastic drift model. As σ2 = σ̃2 +

O(σ̃4), the validity of an expansion to linear order in σ2 is equivalent to one in σ̃2.

The next term in the expansion of ψ̃b,ν = ψb exp{iσ̃φb,ν} not modeled is the quadratic

term. The variance contribution of this term is

Var

[
−vec (ψb)

σ̃2

2
φ2
b,ν

]
= vec

(
ψb
|ψb|

) |ψb|2σ̃4
2

vec

(
ψb
|ψb|

)T
.

Given our data, when calculated based on the MLE estimators for ψb and σ̃2, this is

dominated by the marginal variance of Σ̂0 in the subspace spanned by vec
(
ψ̂b

)
given

by

∥∥∥∥
vec(ψ̂b)
|ψ̂b|

∥∥∥∥
Σ̂0

justifying the truncation. Even when minimizing this comparison over

the batch parameter independently, the marginal variance is still larger by 2 orders of

magnitude as reported in Table C7. Based on this, explicit modelling of the quadratic

term was deemed unnecessary.

orientation min
b∈B

vec
(
ψb
|ψb|

)T
Σ0vec

(
ψb
|ψb|

)
max
b∈B

|ψb|2σ4

2

x 8.0× 103 2.6× 101

xy 3.9× 103 2.3× 101

y 2.8× 103 1.5× 101

yz 2.4× 103 8.4
z 1.7× 103 8.1

Table C7: Comparison of the contribution of Σ0 in the direction ψb (minimized over the

batches) with the maximal contribution of σ4

2 |ψb|
2 (maximized over the batches) in the

heteroscedastic drift model. Noise contributions from the quadratic order term in the
wrapped Gaussian expansion for the phase noise are at least two orders of magnitude
smaller than those of Σ0.

F.4 Algorithm

We included the update step ψ̃ = ψ −∆cϕ, c̃ = c+∆c for a numerically optimized value

of ∆c in the optimizer in order to improve convergence properties. It does not change

the residuals but only the covariance matrix. Without it, the log likelihood improvements

stagnate. Adding this update from the beginning led to unstable trajectories of ĉ over the

iterations, so the algorithm we used starts this additional update after the 25th iteration.

The initialization of Σ0 and σ̃ is done by regressing the matrices

vec
(
iψ̂bhom

)
vec
(
iψ̂bhom

)T
,
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which are obtained from the residuals arising from fitting the homoscedastic drift model,

onto the sample covariance matrix of the homoscedastic drift model. The intercept is taken

as an initial value for Σ0 and the slope initializes σ̃.

The full algorithm is given in Algorithm 2.
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Algorithm 2: Heteroscedastic drift model MLE

Load y

ψ̂(0), ϕ̂(0), ̂̆κ(0)
, Σ̂hom ← Algorithm 1(y)

R← vec
(
y − ψ̂(0)(1N+1)

T − ϕ̂(0)(ˆ̆κ(0))T
)

Ψ̂, Ŝ ← vec
(
iψ̂(0)

)
vec
(
iψ̂(0)

)T
, 1
N+1

∑N
ν=0R:,νR

T
:,ν

̂̃σ(0), Σ̂0
(0) ← LinReg

(
Ψ̂, Ŝ

)

k ← 0
while k ≤ maxiter = 200 do

ℓ(k) ← ℓ

(
y, ψ̂(k), ϕ̂(k), ̂̆κ(k)

, ̂̃σ(k), Σ̂0
(k)
)

if k > 0 then
if ℓ(k) − ℓ(k−1) < min delta loglik = 10−4 then

break
end if

end if
̂̃σ(k+1)

, Σ̂0
(k+1) ← L−BFGS −B(x0 = (̂̃σ(k), Σ̂0

(k)
), func = ℓψ̂

(k),ϕ̂(k),̂̆κ(k)

y ,

jac = Dℓψ̂
(k),ϕ̂(k),̂̆κ(k)

y )

ϕ̂(k+1) ← ϕ̂

(
y, ψ̂(k), ̂̆κ(k)

, ̂̃σ(k+1)
, Σ̂0

(k+1)
)

̂̆κ(k+1) ← ̂̆κ
(
y, ψ̂(k)ϕ̂(k+1), ̂̃σ(k+1)

, Σ̂0
(k+1)

)

r̂ ←
∥∥∥∥ ˆ̆κ(k+1) − 1

N+1

N∑
ν=0

̂̆κ(k+1)

ν

∥∥∥∥

ϕ̂(k+1), ̂̆κ(k+1) ← r̂ϕ̂(k+1),
̂̆κ(k+1)

r̂

ψ̂(k+1) ← Nelder −Mead

(
x0 = ψ̂

(k), func = ℓϕ̂
(k+1),̂̆κ(k+1)

,̂̃σ(k+1)
,Σ̂0

(k+1)

y

)

if k ≥ start c opt = 25 then

∆c ← Nelder −Mead
(
x0 = 0, func = ℓθ̂cy

)

ψ̂(k+1), ̂̆κ(k+1) ← ψ̂(k+1) − ϕ̂(k+1)∆c, ̂̆κ
(k+1)

+∆c1N+1

end if
k ← k + 1

end while

ĉ, κ̂← 1
N+1

N∑
ν=0

̂̆κ(k)ν ,
(
̂̆κ(k) − ĉ1N+1

)

return ψ̂, ϕ̂(k), κ̂, ĉ, ̂̃σ, Σ̂0
(k)
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Figure C10: Comparison of the averaging model (green) and the heteroscedastic drift
model (black).
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ENDOR spectroscopy is a fundamental method to detect nuclear spins in the
vicinity of paramagnetic centers and their mutual hyperfine interaction. Re-
cently, site-selective introduction of 19F as nuclear labels has been proposed as a
tool for ENDOR-based distance determination in biomolecules, complementing
pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless,
one main challenge of ENDOR still consists of its spectral analysis, which is ag-
gravated by a large parameter space and broad resonances of hyperfine tensors.
Additionally, at high EPR frequencies and fields (≥ 94 GHz/3.4 Tesla), chemical
shift anisotropy might contribute to broadening and asymmetry in the spectra.
Here, we use two nitroxide-fluorine model systems to examine a statistical ap-
proach to finding the best parameter fit to experimental 263 GHz 19F ENDOR
spectra. We propose Bayesian optimization for a rapid, global parameter search
with little prior knowledge, followed by a refinement by more standard gradient-
based fitting procedures. Indeed, the latter suffer from finding local rather than
global minima of a suitably defined loss function. Using a new and accelerated
simulation procedure, results for the semi-rigid nitroxide-fluorine two and three
spin systems lead to physically reasonable solutions, if minima of similar loss can
be distinguished by DFT predictions. The approach also delivers the stochastic
error of the obtained parameter estimates. Future developments and perspec-
tives are discussed.

KEYWORDS: EPR, electron nuclear double resonance, EPR, fluorine labelling, least-squares fit-
ting, Bayesian optimization, spectral simulation
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1 Introduction

Electron-nuclear double resonance (ENDOR) spectroscopy measures hyperfine (HF) couplings
between a paramagnetic center and nuclear spins. Since the early introduction of the two main
pulse sequences, Davies and Mims [1, 2], ENDOR has been extensively used in combination with
nuclear isotope labelling to map electron spin density distributions [3–6] and to study the active
site of biomolecules and materials [7–15].
Recently, the introduction of fluorine labels has provided an additional opportunity to employ EN-
DOR for distance measurements in structural biology. The approach exploits some unique proper-
ties of the 19F nucleus [16], i.e. its nuclear spin I = 1

2 in combination with the large gyromagnetic
ratio, providing relatively simple ENDOR spectra. The spectra are dominated by dipolar interac-
tion, as long as the 19F nucleus is sufficiently far from the electron spin such that no effective spin
density transfer mechanism is operative. Analysis of the spectra reveals the electron spin-fluorine
dipolar tensor, from which the interspin distance can be extracted [16]. In the last year, the method
has been extended in combination with other paramagnetic labels (trityl, Gd3+) [17, 18] as well
as with endogenous tyrosyl radicals [19], and distances in the range between 0.5 and 2 nm have
been reported so far. As an attractive feature, ENDOR samples can also be investigated by param-
agnetic NMR techniques [20], for instance paramagnetic relaxation enhancements (PRE) [21] or
pseudocontact shifts [22], which opens avenues to an integrative approach for structural biology
studies. Very recently, this approach has been reported for investigations of proteins in cell [23].
Similarly to NMR, ENDOR spectroscopy benefits from high magnetic fields and frequencies, as
nuclear Larmor frequencies become naturally separated, and consequently HF powder patterns
arising from different types of nuclei can be better resolved. This is particularly relevant for studies
with 19F, which has a gyromagnetic ratio very close to that of protons. For instance, at 34 GHz/1.2
Tesla (Q-band) the 19F and 1H Larmor frequencies are separated by only ca. 3 MHz, which means
that 1H/19F overlap will occur in typical nitroxides featuring proton HF coupling constants on
the order of 6 MHz [24]. Even 94 GHz/3.4 Tesla (W-band) can present severe complications
with proton background subtraction, for example if using tyrosyl radicals as paramagnetic centers
[19]. Thus, exploration of ENDOR at even higher frequencies (263 GHz/9.4 Tesla), although
instrumentally demanding [25], becomes crucial for future developments.
Alongside their mentioned advantages, 19F ENDOR spectra at high frequency come with compli-
cations in the analysis due to two factors: (i) a strong orientation selection that usually prevents
immediate read-out of couplings from peak positions, and (ii) the emerging resolution of chemical
shielding (CS) anisotropy. Recently, we have reported 263 GHz 19F Mims ENDOR spectra of
nitroxide-fluorine model systems and demonstrated an unprecedented, visible asymmetry arising
from CS anisotropy [26]. This latter interaction contributes six additional parameters (three tensor
eigenvalues plus three Euler angles) per 19F nucleus in ENDOR spectral simulations, rendering
standard estimation procedures based on least-square fitting with gradient methods unreliable. In
our previous work, spectral simulations were achieved by using a fully DFT-predicted parameter
set as input and subsequent, minor manual adjustment. The study provided the motivation to search
for more rigorous methods of parameter estimation.
Recently, Stoll et al. have presented an example for inferring information about Fermi contact
interaction as well as electron-nuclear distances from ENDOR spectra, including estimation of
their uncertainties and inference on distributions [27]. The method demonstrates that multiple HF
couplings can be extracted from ENDOR spectra if a Bayesian prior distribution based on DFT
calculations is considered.
Herein, we follow an alternative route for determining the best parameter set from 263 GHz EN-
DOR spectra. We employ two representative model fluorine-nitroxide compounds that were in-
vestigated in [26], with one and two fluorine nuclei, respectively, see Figure D1. We first neglect
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distance distributions, an approximation which turned out acceptable for the investigated semi-
rigid model systems, but will be considered in more detail in future work. We combine statistical
spectral uncertainties, recently made available through a statistical drift model [28, 29] called here
SDM, with an accelerated simulation code (SimSpec) that explicitly calculates the effect of ori-
entation selection. Since the parameter space associated with the analysis is of moderately high
dimension (typically 10 dimensions for a single 19F nucleus) and objective functions typically pos-
sess many local minima, we employ Bayesian optimization for determining the set of interaction
parameters that provides the best fit to several ENDOR spectra simultaneously. Using SimSpec,
we then compute how the simulated spectra change when we vary the interaction parameters.
Combining the statistical uncertainty of the spectrum with the dependence of the spectrum on the
interaction parameters in turn yields stochastic uncertainties of the interaction parameters. The

Figure D1: A: Chemical structure of compounds 1 and 2. B: Visualization of the expected ori-
entation of the g-, HF (A) and CS (σ) tensors with respect to the chemical structure, see [16]. C,
D: Energy minimized structure predicted by DFT calculations of compounds 1 (C, [16]) and 2 (D,
[26]). Those DFT calculations also predicted that these compounds assume only one predominant
conformation.

paper is organized as follows: in Section 2 we experimentally determine the g-values of the two
investigated compounds 1 and 2 from EPR spectra and then apply the SDM to 19F Mims ENDOR
data to remove baseline and other experimental artefacts. Subsequently, in Section 3, we describe
the spin and experimental parameters required in the optimization procedure as well as the accel-
erated spectral simulation algorithm. In Section 4 we set out the statistical inference methodology.
We then report and discuss results obtained using the proposed methodology in Section 5 and
provide further details on materials and methods in Section 6.

D3

203



2 Experiments and Data Processing

Estimation of HF and CS tensors from ENDOR data requires a work-flow that starts with the
generation and examination of experimental data. Two types of experimental data are used here:
(i) EPR spectra to characterize the nitroxide radical, i.e. the g- and the 14N hyperfine coupling
tensors, required to simulate orientation selection for ENDOR, and (ii) ENDOR spectra that are
free from background signals and other experimental artefacts as the latter considerably affect the
results of the optimization procedure. Such ENDOR spectra along with their uncertainties are
extracted from recorded ENDOR data using the recently developed SDM [28], here described for
19F-ENDOR.

Figure D2: 263 GHz EPR spectra (black) and their simulations (red). A: compound 1 in a frozen
solution containing an internal C-fibre standard measured both with CW-EPR (top), and ESE (bot-
tom). The C-fibre spectrum is visible only in CW-EPR, whereas compound 1 can be better detected
with ESE. B, C: ESE spectrum of compounds 1 and 2, respectively, with an asterisk indicating the
weaker contribution with a different gx-value. In the case of the ESE experiments, the first deriva-
tives of the smoothed echo-detected spectra are displayed.

2.1 EPR Spectra

For optimization to succeed, we aimed to reduce the number of parameters that needed to be
estimated. To this end, we determined the g-values of the system in a measurement using a car-
bon (C) fibre (g = 2.002644, [30]) as internal reference standard. The 263 GHz continuous
wave (CW-) EPR spectrum of the fibre was recorded directly after measuring the echo-detected
EPR (ESE) spectrum of compound 1 and is displayed in Figure D2 A. To calibrate the mag-
netic field strength, a simulated EPR spectrum of the C fibre was used. Based on this calibration,
the g-values of compound 1 were obtained from a simulation. The HF and quadrupole interac-
tion parameters for the nitroxide’s 14N nucleus were adopted from our previous report [26] with
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a minor modification of the HF tensor A14N eigenvalues to [15, 11, 95.8]MHz to improve the
fit. Moreover, we used eigenvalues of [1.3, 0.5,−1.8]MHz for the quadrupolar tensor P14N and
Euler angles [0, 0, 0] relative to the g tensor for both A14N and P14N. This simulation yielded
gx,y,z = [2.00886, 2.00610, 2.00211].
The EPR spectra of compounds 1 and 2 showed a second, weaker contribution with a smaller gx-
value (see Figure D2 B and C, marked with an asterisk). This was found dependent on the freezing
conditions and is attributed to a fraction of the sample with a different H-bonding environment of
the nitroxide [31]. For the simulation of the second contribution,

gx,y,z = [2.00835, 2.00610, 2.00211]

and A14N eigenvalues of [15, 11, 95.8]MHz were used (relative weight 0.15 for compound 1 and
0.25 for compound 2, inferred from relative gx peak heights in the measured EPR spectra). The
influence of this second contribution on the analysis is discussed in Section 5.

2.2 ENDOR Spectra and Data Processing with the Statistical Drift Model (SDM)
19F 263 GHz Mims ENDOR spectra of compounds 1 and 2 were recorded at orientations of the g
tensor as indicated in Figure D2 B and C. We used quadrature detection yielding an in phase and
an orthogonal component, referred to as real (ℜ(Y )) and imaginary (ℑ(Y )) parts which, as for

complex numbers generally, we equivalently write as two-dimensional vectors
(
ℜ(Y )
ℑ(Y )

)
. Spectra

of compound 1 were adopted from [26] while spectra of compound 2 were recorded again to obtain
a better signal to noise (S/N-) ratio as compared to [26]. Experimental details are given in Section
6.
The spectra were processed with the SDM of [28] whose validity is established here for 19F EN-
DOR at 263 GHz. The SDM allows quantification of the noise in the spectra as well as compensa-
tion of possible phase drifts of the echo signal that maximizes S/N-ratio.
In order to apply the SDM, the ENDOR data are recorded and stored in so-called batches indexed
by b ∈ {1, . . . , B} in a data matrix Y ∈ CB×N with entries Yb,ν ∈ C, where ν ∈ {1, . . . , N}
enumerates the RF frequencies. These data are then modelled as consisting of an offset ψb ∈ C
(mostly the EPR echo but also including a dc offset) which may drift over time, an ENDOR-
component ϕbκν (with ϕb, κν ∈ C) and measurement noise ϵb,ν according to

Yb,ν = ψb + ϕbκν + ϵb,ν ϵb,ν
i.i.d.∼ N (0,Σ). (1)

Here, i.i.d. denotes that the ϵb,ν are independent and all follow the same Gaussian distribution
(with mean zero and covariance matrix Σ ∈ R2×2), i.e. we use additive Gaussian white noise.
In Equation (1), ϕb models the batch-dependent strength and phase of the ENDOR effect and κν
captures the ENDOR spectrum. Applying our procedure delivers maximum likelihood estimates
ψ̂, ϕ̂, κ̂ and Σ̂ as described in [28], where the hat symbol denotes an estimator. To identify the
direction in the complex plane along which κ̂ contains the spectrum, we select λopt such that∑

ν ℜ(eiλopt κ̂ν)2 is maximal and then consider Îν = ℜ(eiλopt κ̂ν) the measured spectrum, see
panel A of Figure D3 and Supplementary Information (SI) A.1. The component orthogonal to the
spectrum is shown in panel B of Figure D3. This figure also provides ϕ̂ and ψ̂ in panels C and D.
The real and imaginary parts of the residuals ϵ̂b,ν = Yb,ν − ψ̂b − ϕ̂bκ̂ν (see panels E,F and G of
Figure D3) are examined for goodness of fit using a Kolmogorov-Smirnov (KS) test [32]. The
resulting p−values are available in SI A.2 and give no concern over a lack of model fit. Therefore,
the SDM is found to also fit 19F 263 GHz ENDOR data.
In order to obtain a confidence region for the estimated spectrum, we employ the bootstrap proce-
dure. This consists of the repeated generation of synthetic data from the estimated spectrum via

D5

205



Figure D3: Representative data processing by the SDM for orientation gx of compound 1. A:
the estimated spectrum Î . B: the component ω̂ that is orthogonal to the estimated spectrum Î
and contains no ENDOR signal, as expected. C, D: the real (black) and imaginary (red) parts of
ϕ̂ and ψ̂, respectively. A small phase and baseline drift is visible, particularly in the imaginary
component. In A-D, 95% approximate pointwise confidence intervals are indicated as shaded
regions; in D, these are so small as to be invisible. E: Kernel-density-estimation of the complex
residuals ϵ̂b,ν . F, G: histograms for the real and imaginary parts of the residuals, respectively.

adding simulated noise, followed by estimation of the spectrum implied by these synthetic data.
The variability of the spectra thus obtained indicates the stochastic error of the spectrum. In de-
tail, following [28], bias-corrected estimates ϕ̌ and Σ̌ of ϕ and Σ are used to generate bootstrap
samples (denoted by the superscript ∗) of the error, ϵ∗b,ν

i.i.d.∼ N (0, Σ̌), and hence the synthetic data
Y ∗
b,ν = ψ̂+ ϕ̌bκ̂ν+ ϵ

∗
b,ν . From J independent samples of these synthetic data, maximum likelihood

estimates ψ∗,j , ϕ∗,j , κ∗,jν and hence I∗,jν of ψ, ϕ, κ and I respectively, indexed by j ∈ {1, . . . , J},
are obtained. Their standard deviation is used to obtain approximate 95% confidence intervals
displayed as shaded regions in panels A, B, C and D of Figure D3. The resulting ENDOR spectra
and their uncertainties for all orientations and compounds are shown in Figure D4. Here, we also
compare these spectra with the spectra obtained through the standard averaging method, i.e. sum-
ming of Yb,ν over batches followed by normalization and phasing. We note that, in contrast with
[28, 29] which tackled 1H ENDOR, there is little difference between the spectra resulting from
these two methods because there is very little phase drift in ϕb. The advantage of the SDM is that
approximate 95% confidence regions naturally arise from the model. If an SDM is not available,
it is possible to extract an indication of the stochastic error from spectra obtained by the averaging
method. This can proceed via comparing the measured spectrum with a smoothed version, as in
the quasi-bootstrap method in SI B. We used the quasi-bootstrap method to compute approxi-
mate 95% confidence regions for those spectra in Figure D4 that result from the averaging method.
However, the distinction between signal and noise is then less reliable and influenced by manual
tuning.
In order to prepare uncertainty estimation of tensor parameters, we also estimate the covariance
matrix(
χν,ν′

)
ν,ν′∈{1,...,N} describing the stochastic error in the spectra. This matrix captures the standard

deviation of the stochastic error at each frequency ν as√χν,ν as well as the dependency of stochas-
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Figure D4: A, B: Comparison of 263 GHz 19F Mims ENDOR spectra of compounds 1 and 2
at different orientations, respectively, estimated via the SDM (black) and the averaging method
(blue). The chemical structures are indicated in the inset. Shaded areas correspond to approximate
95% pointwise confidence intervals obtained via bootstrap for the SDM (grey) and quasi-bootstrap
for the averaging method (light blue). The dipolar splitting corresponding to the nitroxide-fluorine
inter-spin distance is well visible for compound 1. For compound 2, only one dipolar splitting is
well resolved, whereas the second, smaller splitting is partially suppressed by the central spectral
hole of the Mims sequence. The resolved features of the dipolar splittings are indicated by colored
asterisks for both F-atoms. The CS tensor leads to an asymmetry in the spectra and it cannot be
evaluated visually. The MW frequency used for compound 1, orientation gy, differs from the one
used for all other spectra resulting in a shift of the 19F resonance.

tic error at different frequencies ν and ν ′. Empirically, we found χ to be approximately diagonal,
see Figure D10 in SI A.3, which means that the stochastic errors at different RF frequencies are
approximately uncorrelated. Finally, we examine the distribution of the {I∗,1ν , . . . , I∗,Jν } for some
chosen fixed values of ν and find that it is well-approximated by a Gaussian distribution in each
case, see Figure D11 in SI A.3. This justifies a Gaussian error model for the stochastic error of the
spectra.

3 Spectral Simulation: Parameters and Algorithm

In this section, we discuss the parameters included in the optimization process. These comprise the
spin parameters in the spin Hamiltonian and the experimental parameters magnetic field strength
and line broadening.

3.1 Spin Hamiltonian Parameters for the Nitroxide - 19F System

The general spin Hamiltonian for the nitroxide-19F spin system at 9.4 T / 263 GHz was discussed
in our previous publication [26]. Briefly, it consists of two parts, Ĥ1 and Ĥ2:

Ĥ1 =
µB
ℏ
BT

0 gŜ −
µNgn(14N)

ℏ
BT

0 Î14N + ŜTA14NÎ14N + ÎT14NP14NÎ14N (2)
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Ĥ2 =

N19F∑

k=1

[
−
µNgn(19F)

ℏ
BT

0 (1− σ19Fk
)Î19Fk

+ ŜTA19Fk
Î19Fk

]
, (3)

where h = 2πℏ is Planck’s constant, µB and µN are the Bohr and nuclear magnetons, respectively,
gn is the nuclear g factor and k enumerates the fluorine nuclei whose total number is N19F = 1
for compound 1 and N19F = 2 for compound 2. A, P and σ denote HF, quadrupolar and CS
tensors, respectively. Please note that the hat symbol in this section indicates a quantum mechanical
operator, not an estimator.
In the high-field approximation for the 19F nuclei, the spin operators Ŝ and Î19Fk

can be re-
placed by the mS and mI(19Fk) quantum numbers, where σzz(19Fk) and Azz(19Fk) are the scalar
zz-components of the respective σ19Fk

andA19Fk
tensors:

Ĥ2 ≃
N19F∑

k=1

[µNgn(19F)
ℏ

B0(1− σzz(19Fk))mI(19Fk) +mSAzz(19Fk)mI(19Fk)

]
(4)

The parameters of the spin Hamiltonian Ĥ1 are inferred from the simulation of the EPR spectra
using full matrix diagonalization. The parameters of the spin Hamiltonian Ĥ2 report on the inter-
spin distance between the nitroxide and the fluorine and are the subject of optimization. In the case
of compounds 1 and 2, this distance is large so that we assume zero rhombicity [16], whence the
HF interaction tensor can be expressed as

A19F = RA



aiso + 2T

aiso − T
aiso − T


RTA, (5)

where T represents the dipolar coupling strength, which depends on the nucleus and the inter-spin
distance r. The order of the eigenvalues was adopted from [16] as it was assumed that the dipolar
axis of the HF tensor would be close to parallel with gx. Generally, the order is such that the largest
tensor component is along the z direction as detailed in [33]. The value aiso describes the isotropic
part arising through the Fermi contact mechanism. Finally, the rotation matrix RA determines the
orientation of A in the nitroxide g-tensor frame: we use reduced* Euler angles αA, βA. In total,
only four parameters are required to describe theA tensor: aiso, T, αA and βA.

Similarly to the HF tensor, the CS tensor σ19F may be parameterized through its eigenvalues σ̃xx,
σ̃yy and σ̃zz along with an associated rotation matrix Rσ19F

(parameterized using the three Euler
angles ασ, βσ, γσ) as given in Equation (6), left. In our code, we adopt an alternative representation
via the diagonal and off-diagonal entries of the symmetric 3x3 matrix (Equation (6), right) which
avoids singularities of Euler angles as coordinates (for βσ = 0, any combination of ασ and γσ with
the same sum ασ + γσ implies the same orientation, so one degree of freedom is lost) so that we
alternatively use parameters σxx, σyy, σzz, σxy, σxz, σyz .

σ19F = Rσ19F



σ̃xx 0 0
0 σ̃yy 0
0 0 σ̃zz


RTσ19F

=



σxx σxy σxz
σxy σyy σyz
σxz σyz σzz


 (6)

*The complete rotation sequence is z,y’,z” with angles α, β, γ, respectively, with rotation matrix as defined in (B.48)
in [34] but the final rotation about z has angle γ = 0 fixing the orientation ambiguity due to the repeated eigenvalue via
RA,yz

!
= 0. The combination of this choice of Euler angles and order of eigenvalues is mathematically cumbersome

but it is retained here for comparability with [16, 26].
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Finally, we note that a rotation symmetry in the Hamiltonian leads to identical spectra for several
distinct sets of interaction parameters. Careful treatment of this symmetry prevents its interfering
with interaction parameter estimation. In the g-tensor frame, symmetries under rotation of coordi-
nates can be expressed by those rotation matrices M that leave the g-tensor invariant. Since g is
diagonal with distinct diagonal entries in this frame and these matrices must satisfy MgMT = g,
only the rotation matrices M from the set

M :=







1

1
1


 ,



1
−1

−1


 ,



−1

1
−1


 ,



−1

−1
1





 (7)

leave g invariant. Just like g, the HF and quadrupole interaction tensors A14N and P14N are
diagonal in the g frame and will therefore also be invariant under transformation by M ∈ M.
Hence, the interaction parameter subsets (σ19F,A19F) and (Mσ19FM

T ,MA19FM
T ) will yield

equivalent Hamiltonians Ĥ1, Ĥ2 and hence identical spectra for all M ∈M. Geometrically, these
symmetry operations correspond to rotations about axes of the g tensor frame by 0 or 180 degrees.

3.2 Experimental Parameters

Several experimental quantities, particularly those connected to the pulse sequence such as MW
frequency, MW pulse length and shape, inter-pulse delay τ and RF axis values, were assumed
known with sufficient precision as their estimation would add considerable complexity and lead
to non-identifiability absent penalization or prior knowledge. Thus, we considered only those
experimental parameters that are known to be a major source of error: the static magnetic field
strength and the ENDOR line broadening.

Magnetic Field Strength B0

The magnetic field strength affects orientation selection and has been observed to slowly degrade,
likely due to residual resistance losses of the superconducting magnet. This drift amounts to ap-
proximately -2.7G per day. We previously proposed measuring 1H ENDOR resonance frequen-
cies to reference the Larmor frequency of fluorine nuclei [26]. In the present study, we have
re-examined this method to calibrate the absolute magnetic field strength and we found it to be
subject to stochastic errors of several G (data not shown). Thus, the magnetic field strength was
retained as a parameter.

Line Width Convolution Parameter

In ENDOR spectral simulations, a convolution with a line broadening function is usually applied
to account for the experimentally observed line width. While a lower bound for the line broadening
can be determined from the inverse of the RF pulse length, we previously found that optimal line
width typically exceeds this minimum [16] and this depends on the selected orientation. Thus, the
line width was retained as an optimization parameter.

3.3 Accelerated ENDOR Simulation Algorithm (SimSpec)

In order to estimate interaction parameters, frequently repeated simulation of ENDOR spectra for
slightly different parameter values is required. Therefore, a major step of this work consisted in
the acceleration of the spectral simulation code in Matlab, previously reported in [26], to which
we refer as Sim. This was achieved by re-writing Sim in Python along with several algorithmic
improvements detailed below.
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Briefly, the accelerated code SimSpec computes transition energies by exact diagonalization of the
nitroxide Hamiltonian Ĥ1. These resonance energies are utilized to compute orientation selection
and accumulate contributions to the ENDOR spectrum through a histogram weighted by the ’hole’-
function proposed by Mehring [35]. Subsequently, the selected orientations are used to compute
the fluorine resonance according to Ĥ2 in high-field approximation, see Equation (4). The effect
of the Mims ENDOR blind spot is treated analytically as proposed by [36]. For more details, see
[26].
For the powder pattern and orientation selection, SimSpec offers the choice between a Polar grid
and the SOPHE grid [37], whereas Sim uses a grid similar to the Polar grid. Significant speed
improvements were obtained by (i) pre-calculation of trigonometric expressions for all positions
on the grid so that only changed quantities are re-computed and (ii) tensorification of the code
exploiting high performance numerical linear algebra subroutines available through Numerical
Python to reduce the number of explicit for loops.
A speed comparison between Sim and SimSpec to simulate the 263 GHz 19F-ENDOR spectra of
compound 1 yields the execution times in Table D1. All parameters were chosen for comparable
computational accuracy between these codes. Repeating diagonalization of the Hamiltonian is only
necessary if the magnetic field strength B0 or the g eigenvalues have been changed and so com-
putational speed-ups are available by selectively updating subsets of the parameters. Additionally,
considerable computational savings from pre-calculation of the EPR spectrum and trigonomet-
ric expressions are apparent comparing execution times (’w/precalc’ vs ’w/o precalc’). Overall,
speed-ups by a factor between 10 and 100 or more were achieved. More details are available in SI
C.

Code Sim SimSpec
Polar grid SOPHE grid

total ENDOR w/o precalc. w/ precalc. w/o precalc. w/ precalc.
gx 167 128 3.3 0.31 3.7 0.35
gy 364 323 3.7 0.33 3.7 0.34
gyz 336 296 3.4 0.32 4.0 0.33
gz 164 125 3.5 0.31 3.5 0.34

Table D1: Approximate execution times (in seconds) for the simulation of the 263 GHz ENDOR
spectra of compound 1. ’Total’ refers to the full execution time including computation of the EPR
spectrum and other set-up costs, whereas ’ENDOR’ refers to the execution time of the ENDOR
spectrum only. Similarly, ’w/ precalc’ includes the execution time of setting up the grid, pre-
calculating trigonometric expressions and diagonalizing the Hamiltonian whereas ’w/o precalc’
excludes these times.

4 Inference Methodology

In this section, we introduce the methodology employed for estimation and quantification of the
stochastic part of the error in this estimation. Chiefly, this consists of choosing a reasonable loss
function that quantifies the fit between measured and simulated spectrum and an optimization
procedure that needs to be carefully designed. We propose Bayesian optimization to perform a
global search followed by refinement through a gradient-based method. Bayesian optimization is
particularly suited as the loss function exhibits a large number of local minima that many other
optimization algorithms tend to get stuck in.
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4.1 Loss Function

The full set of spin and experimental parameters can be described by a parameter vector θ (not to
be confused with any polar angle) of dimension 2No + 10N19F, where No denotes the number of
orientations available (enumerated as o ∈ {1, . . . , No} corresponding to those gx, gxy, gy, gyz, gz
for which data are available).
For a given θ, our SimSpec code (Section 3.3) simulates spectra Io,ν(θ) which are compared to the
measured spectra† Îo,ν obtained using the SDM from Section 2.2.
We seek a value for θ such as to yield simulated spectra that match the measured spectra for all
five orientations as closely as possible. We quantify the deviation of the simulated spectra from the
measured spectra through the loss function (a re-scaled mean square deviation)

L(θ) =
No∑

o=1

N∑

ν=1

|Îo,ν − Io,ν(θ)|2. (8)

The choice of this particular loss function is partly justified by the properties of Î: for large num-
bers B of batches we expect the estimator Î to approximately follow a Gaussian distribution and
this is also observed approximately in bootstrap experiments (see SI A), hence approximately mak-
ing L(θ) a negative multiple of the log likelihood for θ. The problem of finding those parameter
values θ∗ in the parameter space Θ that yield the best fit between simulated and measured spectra
is hence cast as the problem of minimizing L over θ.

4.2 Optimization Algorithms

We seek to solve the problem of minimizing the loss function from Equation (8):

θ∗ ∈ argmin
θ∈Θ

L(θ), (9)

where L : Rm ⊃ Θ → R, in the context of optimization algorithms, is known as the objective
function. We observed empirically that L was reasonably smooth if sufficiently precise spectral
simulation was used (see Figure D12 in SI C). However, it possessed a multitude of local minima
and its domain is of moderately high dimension (up to 12 in our data depending on the compound
under investigation). Hence, we decided to use Bayesian optimization which is an iterative strategy
to solve the global optimization problem Equation (9). There are two main ingredients involved in
Bayesian optimization: a statistical model for the objective function L and an acquisition function
to determine which θ ∈ Θ should be tried next. A priori, the loss function is modelled as a Gaussian
process with some mean and covariance kernel ideally chosen to reflect pre-existing understanding
of the loss function. Here, we adopted a standard zero mean function and Matérn covariance kernel
[38] of order ν = 1.5 with expected improvement as acquisition function. An introduction to this
algorithm is provided in SI E, a more detailed exposition can be found in [38]. Instead of specifying
a starting value, Bayesian optimization requires boundaries to be specified for all parameters: some
parameters have natural boundaries such as αA and βA in the HF tensors, whereas other parameter
boundaries are chosen to consider only physically reasonable values. One advantage of Bayesian
optimization is that it deals well with large regions of parameter space, which enabled us to include
the full range of theoretically possible Euler angles.
Once Bayesian optimization has identified a parameter value near the global minimum, refining the
estimate using a quasi-Newton method such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) [39] is
standard practice because this will converge to θ∗ quickly. To enhance the performance of BFGS,

†All spectra are normalized by imposing
∑N

ν=1 Io,ν(θ)
!
=

∑N
ν=1 Îo,ν

!
= 0 and

∑N
ν=1 I

2
o,ν(θ)

!
=

∑N
ν=1 Î

2
o,ν

!
= 1

for all orientations o.
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we elected to supply gradients of L approximated via a manually tuned finite difference method,
see Figure D17 in SI E.

4.3 Approximate Confidence Regions

Having approximately computed the best parameter value θ∗, there is a need to assess its er-
ror. Statistical methods allow quantification of the stochastic error, i.e. the parameter uncer-
tainty implied by the measurement error of the spectrum. We start from the approximate co-
variance matrix of the measured spectrum, χ ∈ RN×N , which arises from the measurement
error and is computed using the bootstrap method, see Section 2.2 for details. We then com-
pute the matrix of partial derivatives of the simulated spectrum with respect to the parameters,
J =

(
∂Io,ν(θ)
∂θi

)
i∈{1,...,dim(Θ)}, ν∈{1,...,N}

∈ Rdim(Θ)×N , by finite difference approximation. A lin-

ear approximation of the spectral simulation algorithm, Io,·(θ) ≈ Io,·(θ∗) + JT (θ − θ∗), then
enables us to approximately obtain the covariance matrix describing the stochastic uncertainty in
θ∗ that is implied by the uncertainty in Î via

χ ≈ JTCov(θ)J. (10)

The least-square solution of Equation (10) for Cov(θ) is used to construct approximate confidence
regions for θ∗. This corresponds to linear propagation of Gaussian errors and delivers good results
for small uncertainty ranges but less reliable results for particularly large uncertainty ranges. More
detail on how uncertainties of orientations have been handled is available in SI D.

5 Optimization Results

Bayesian optimization requires the specification of boundaries of the parameter space and is sen-
sitive to its dimension. Hence, we proceeded by firstly fixing the experimental parameters (see
Subsection 3.2) at reasonable initial values (a line width of 20 kHz from [26] and the magnetic
field strengths estimated from 1H Larmor frequencies). Then, we used Bayesian optimization for
all spin parameters except for aiso = 0 which was kept fixed. Examples of intermediate steps
(iterations 20 and 300) of the Bayesian optimization are plotted in Figure D16 in SI F in the case
of compound 1. These show that after 300 iterations, parameter estimates start to yield reasonably
matched spectra and therefore Bayesian Optimization was halted at this point to limit computa-
tional time. In a second step, all experimental and spin parameters including aiso were jointly
optimized using BFGS.
Choosing boundaries for the parameter space requires prior knowledge. Since Bayesian optimiza-
tion deals well with large regions of parameter space, the boundaries were chosen to include all
plausible parameter values. We considered the visible features in the spectrum (e.g. dipolar peaks
in the spectrum, see Figure D4) as well as the spread of DFT-predicted values for CS tensors,
reported in [26]. This resulted in the boundaries given in Table D2.

Parameter name T/kHz αA/
◦ βA/

◦ σxx σyy σzz σxy σxz σyz
Lower boundary 50 -180 0 191 83 115 -118 -129 -87
Upper boundary 320 180 180 325 558 360 118 129 87

Table D2: Boundaries for the spin parameters used in Bayesian optimization for both compounds
1 and 2. For CS tensors, we use the parameterization via matrix entries as per Equation (6). Note
that the precise values of the boundaries (e.g. -129 vs -130) are irrelevant as long as the ranges are
large enough to include all plausible values.
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Compound 1

For compound 1, two local minima of the loss function were identified, corresponding to two
solutions. These two parameter sets are compared in panel A of Figure D5, where blue and or-
ange bars illustrate the approximate 95% confidence interval of each parameter. Notably, the two
minima have indistinguishable HF parameters with narrow confidence intervals. The agreement
of the HF parameters between the two minima is an important finding, since we consider the HF
parameters as the primary source of information from 19F ENDOR spectroscopy for (biological)
structure determination. The two minima differ in their CS parameters and their occurrence is not
surprising because of a lack of resolution of the CS tensor and a parameter space of moderately
high dimension. Based on the optimization procedure alone, we cannot decide which set of param-
eters is preferable. We selected the parameter set represented in blue in this panel (values given
in panel B) because the CS tensor Euler angle βσ shows better consistency with DFT whereas
the eigenvalues differ less between the two minima considering their confidence regions. In this
regard, our approach is similar to that of including DFT-derived information penalizing deviations
of estimated parameter values from their anticipated values [27].
The spectral residuals, shown in panel A of Figure D6, demonstrate that the optimization procedure
leads to a very close fit, substantially improving over the previously published fit shown in panel
A of Figure D7. Close inspection of the spectral residuals reveals some structure, i.e. the spectral
residuals deviate from the expected pure noise indicating the presence of some systematic error
due to imperfect model fit. Our statistical approach also yields correlations between stochastic
errors for different parameters (see panel B of Figure D6): for instance, we observe a strong
positive correlation between magnetic field strengths and CS tensor values and a weaker negative
correlation between magnetic field strengths and HF tensor parameters.
Given the closeness of measured and simulated spectra, the deviation of the estimated T -value
from DFT and the previously reported value visible in panels A and B of Figure D5 is striking.
This triggered an examination of instrumental parameters, which revealed that nominal RF fre-
quency differed from actual RF frequency, possibly by up to 8 kHz, due to a resolution issue in
the commercial RF unit. This lead to a systematic error in the spectra and could partially explain
the observed difference (see panel B in Figure D5) in T -values to the ones previously obtained
at 94 GHz [16], where the RF issue was absent. This finding underlines that a comparison of
stochastic error with observed deviation from theoretical values can trigger a more careful study
of instrumental errors.

Compound 2

Compound 2 exhibits a larger number of parameters due to its two non-equivalent 19F nuclei.
Therefore, we decided first to use Bayesian optimization to search for the CS parameters, keeping
the HF interaction parameters fixed at reasonable values based on the peak positions in the spectra
(Figure D4 B). In a second step, BFGS was carried out over all spin parameters of the two nuclei. In
a third step, we used BFGS over both spin and experimental parameters. Increasing the dimension
of the parameter space via the second step ensures that BFGS stays near the minimum identified
by Bayesian optimization rather than being attracted by another local minimum.
A substantial number of local minima of the loss function were identified: a fairly intensive search
yielded four local minima (enumerated as minimum #1 to #4) but it is probable that there are fur-
ther local minima not yet identified. To decide between the four minima, we relied firstly on the
qualitative reproduction of the m-fluorine HF coupling. We plotted the HF tensor parameters for
both ortho and meta fluorine nuclei for the four minima and compared them with DFT and X-ray-
derived values in Figure D8. Panel A of this figure shows that estimated HF parameters for the
ortho fluorine nucleus are all indistinguishable taking their stochastic error into account. We note a

D13

213



B Spin Parameters for Compound 1
parameter Minimum #1 Sim. [26] DFT [26]
T / kHz 267.2 ± 1.1 260 260
aiso / kHz -0.5 ± 1.1 0 0
αA / ◦ -160.5 ± 0.8 -158 -159
βA / ◦ -19.2 ± 0.5 -19 -23

σ̃xx / ppm 193 ± 7 222 222
σ̃yy / ppm 302 ± 12 287 287
σ̃zz / ppm 386 ± 9 399 399
ασ / ◦ 94 ± 3 65 64
βσ / ◦ 108 ± 5 115 113
γσ / ◦ 108 ± 3 120 121

Figure D5: A: Estimated HF interaction and CS parameters and the corresponding approximate
95% confidence regions for the 19F nucleus in compound 1: minimum #1 in blue, minimum #2 in
orange, DFT values as dotted green line and T -value calculated from X-ray structure as dotted red
line from [16]. B: Comparison of minimum #1 with manual fitting results and DFT values reported
in [26]. g-values were gx,y,z = [2.00886, 2.00610, 2.00211], as reported in Section 2.1. Parameter
uncertainties (approximate 95 % confidence regions) consider only stochastic error, not systematic
error. Parameter estimates in [26] were based on 94 and 263 GHz data whereas optimized values
here are derived solely from 263 GHz data. Uncertainties in [26] were assessed only from the
impact of parameter-wise changes on the spectrum and are therefore not reported here. Similarly,
DFT uncertainties are difficult to assess in general and are therefore not specified here, either.

Figure D6: A: The 19F ENDOR spectra Îo,ν (black) extracted with the SDM for all orientations. In
different colors: the corresponding spectra Io,ν(θ̂) simulated with the values indicated in the Table
D4. The spectral residuals are plotted below each of the spectra using the same color. B: correlation
matrix of the corresponding parameters (from top to bottom/left to right: magnetic field strength
B0 at each of the five orientations gx, . . . , gz , aiso, T, αA, βA, σ̃xx, σ̃yy, σ̃zz, ασ, βσ, γσ and line
width for each of the five orientations gx, . . . , gz) calculated as described in Section 4.3.

slight deviation of the T -value from the DFT and previously reported values in the same direction
and of similar magnitude to that observed for compound 1, likely due to similar systematic errors.
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Figure D7: A, B: Spectra, simulation and spectral residuals resulting from the estimated parameters
reported in [26] for compounds 1 and 2, respectively, with the chemical structures indicated in the
inset. Parameters are given in panel B of Figure D5 for compound 1 and Table D3 for compound
2.

Figure D8: Estimated HF parameters for minima #1, #2, #3 and #4 (blue, orange, pink, yellow)
for compound 2. A: ortho 19F nucleus, B: meta 19F nucleus. For minimum #1, the corresponding
approximate 95% confidence regions are shown in light blue. DFT values are shown in green
dotted lines and the T -value calculated from X-ray structure in red dotted lines from [26].

Panel B displays the values for the m-fluorine nucleus and it is readily visible that minimum #2 (in
orange) exhibits a strong deviation of dipolar tensor orientation from DFT values as well as from
those of all other minima. In spectral simulation, this corresponds to the failure to reproduce the
m−fluorine peak in orientation gy, see panel A of Figure D20 in SI F.3. Therefore, we discarded
minimum #2. In order to decide between minima #1, #3 and #4, we considered the relative ori-
entation of the dominant eigenvectors of the CS tensors (i.e. the eigenvector associated with the
largest eigenvalue of each CS tensor). These should both be orthogonal to the phenyl ring based
on NMR studies [40] and therefore parallel to each other. To visualize this, we computed the angle
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between these two dominant eigenvectors for each minimum, taking stochastic error into account.
This is represented in Figure D21 in SI F.3 which shows that minimum #1 is best compatible with
angle 0◦, although minimum #3 is also acceptable. Minimum #4 can be excluded. The results of
the optimization procedure including correlations for minimum #1 are summarized in Figure D9
and reported in Table D3. The approximate confidence regions for the CS tensors were determined
using error propagation from Section 4.3 and tensor alignment as detailed in SI D. The spectral
residuals are plotted in panel A of this figure. We find a very close fit: spectral residuals consist
mostly of noise. This represents a main result, namely a clear improvement in the spectral residu-
als over the results of previous manual parameter tuning [26] as displayed in panel B of Figure D7.
Moreover, a great advantage is that our optimization procedure typically has computational time
amounting to a few hours on a standard PC as compared to several weeks of manual parameter
tuning underlying the results in [26]. Overall, despite limited resolution of CS tensors and moder-
ately high dimension of the parameter space, we conclude that the method was able to identify a
physically reasonable set of parameter values.

Figure D9: A: the 19F ENDOR spectra Îo,ν (black) extracted with the SDM for all orientations
of compound 2. In different colors: The corresponding spectra Io,ν(θ̂) simulated with HF and CS
parameters from minimum #1 and experimental parameters as in Table D4. The spectral residuals
Îo,ν − Io,ν(θ̂) are plotted below each of the spectra using the same color. B: The correlation matrix
of the corresponding parameters calculated as described in Section 4.3 for compound 2. Parameters
are sorted as in panel B of Figure D6 except for the CS tensors where matrix entries σxx, . . . , σyz
according to Equation (6) are used.

Final Remarks and Conclusion

Finally, we discuss the results regarding estimated magnetic field strengths and line widths which
are reported in Table D4. We observe major deviations between magnetic field strengths previously
used in spectral simulation and their current estimates, particularly for compound 2. This strongly
suggests that in the previous analysis, a systematic error was present in the combined determination
of the magnetic field strengths and g-values. Indeed, only an internal magnetic field strength
calibration (Bruker field linearization) was available in that study.
The ENDOR line widths were also optimized and for most orientations the values obtained are
reasonably close to the ones used in [26] which are based on RF pulse lengths. However, orien-
tations gxy and gz in compound 1 as well as orientation gxy in compound 2 showed a markedly
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Spin Parameters for Compound 2
parameter Minimum #1 Sim. DFT Minimum #1 Sim. DFT

o-F m-F
T / kHz 255 ± 2 250 240 97 ± 5 90 91
aiso / kHz 2± 3 0 0 2 ± 7 0 0
αA / ◦ -166 ± 2 -160 -164 -161 ± 5 -168 -160
βA / ◦ -19 ± 1 -15 -19 -9 ± 7 -16 -14

σ̃xx / ppm 139 ∈ [86, 194] 257 257 117 ∈ [56, 174] 238 238
σ̃yy / ppm 159 ∈ [134, 194] 274 274 184 ∈ [129, 235] 286 286
σ̃zz / ppm 331 ∈ [304, 366] 450 450 289 ∈ [257, 337] 413 413
ασ / ◦ 9 ∈ [−47, 47] 50∗ 49∗ 32 ∈ [−40, 68] 53∗ 53∗

βσ / ◦ 116 ∈ [109, 124] 100∗ 102∗ 71 ∈ [53, 87] 80 83
γσ / ◦ 116 ∈ [57, 73] ∪ [101, 130] 100∗ 102∗ −77 ∈ [−110,−52] -60 -59

Table D3: HF interaction and CS tensor parameters for the 19F nuclei in compound 2. g-values
were gx,y,z = [2.00886, 2.00610, 2.00211], as reported in Section 2.1. Parameter uncertainties
(approximate 95 % confidence regions) consider only stochastic error, not systematic error. Un-
certainties for CS eigenvalues and Euler angles are computed using the method in SI D. Euler
angles marked with an asterisk have been changed by symmetry transformations according to
Equation (7) to map them closer to the current confidence regions. Previous estimated values from
manual parameter tuning (Sim.) and corresponding DFT values (DFT) used as input, both from
[26], are included for comparison. Parameter estimates in [26] were based on 94 and 263 GHz
data whereas optimized values here are derived solely from 263 GHz data. Uncertainties in [26]
were assessed only from the impact of parameter-wise changes on the spectrum and are therefore
not reported here. Similarly, DFT uncertainties are difficult to assess in general and are therefore
not specified here, either.

increased line width, see Table D4. This may be attributable to the observed magnetic field drift
(see Section 3.2) which is not part of the model and results in a mixing of ENDOR spectra across
a narrow range of magnetic field strengths. The resulting broadening is then matched by an in-
creased estimated line width. The combined impact of deviations in line widths and magnetic field
strengths could explain the systematic error observed in the spectral residuals in Figure D7.
Turning to the specified errors, it is important to point out that the specified approximate confi-
dence regions account solely for stochastic error. While the spectral residuals, e.g. in Figure D9,
are small, this does not necessarily mean that the implied systematic parameter errors are small.
Indeed, including additional parameters in the spectral simulation such as two of the eigenvalues
of the g tensor, has been observed to lead to a notable change in estimated parameters, larger
than would be expected from stochastic error. This tendency is especially pronounced when the
additional parameters are strongly correlated with ones already included, as is the case with eigen-
values of g. Out of concern for such larger than expected parameter changes, we have tested an
optimization considering the small spectral contribution with a second gx value for compound 1,
as reported in Section 2.1. The results are displayed in Figure D19 in SI F.2 and show similar spec-
tral residuals as using only a single gx value, so no unexpectedly large parameter changes were
observed in this case.
The main sources of systematic error likely include instrumental error as well as our assumption of
a single molecular conformation. Also, the spectral simulation approach does not consider any spin
dynamics and relaxation. Modelling of these complex effects requires a different mathematical
approach and is left for future work. Our study shows that knowledge of experimental parameters,
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1 2
this work Ref [26] this work Ref [26]

Loss L / a.u. 0.272 N/A 0.704 N/A
Experimental Parameters

B0 / G : gx 93628.6 ± 0.6 93633 93522.0 ± 1.7 93524
B0 / G : gxy 93697.1 ± 0.7 93698† 93573.9 ± 1.7 93585†

B0 / G : gy 93937.5 ± 0.9 93936 93651.6 ± 2.5 93660
B0 / G : gyz 93838.4 ± 0.8 93838 N/A N/A
B0 / G : gz 93943.5 ± 1 93942 93810.1 ± 5.4 93827

lw / kHz : gx 15.2 ± 3.2 20 31.7 ± 6.9 20
lw / kHz : gxy 51.0 ± 4.9 20† 46.7 ± 7 20†

lw / kHz : gy 19.9 ± 2.4 20 23.9 ± 5.5 20
lw / kHz : gyz 23.6 ± 2.8 20 N/A N/A
lw / kHz : gz 31.2± 3.1 20 16.6 ± 6.6 20

Table D4: Magnetic field strengths and line widths obtained from the reported optimization proce-
dure. Parameter uncertainties (approximate 95 % confidence intervals) consider only the stochastic
error, they do not include systematic error. The values yielding the simulated spectra in our previ-
ous report [26] are included for comparison. The values marked with † concern data not presented
in [26] and are obtained using the method employed there.

such as magnetic field strengths or actual RF frequency, is crucial for parameter estimation of
fluorine nuclei; it is easy to over-estimate the precision with which such experimental parameters
are known.

For future work, a Bayesian approach including molecular dynamics as a source of prior informa-
tion is a possible route towards systems of greater relevance. Similarly, replication of the present
results on additional compounds as well as use of ENDOR spectra recorded at other MW fre-
quencies are planned to establish robustness of the method and its ability to deliver HF tensors.
Extension to spin systems with a larger number of nuclei is likely challenging and will require the
imposition of penalties or the adoption of a Bayesian approach. Nonetheless, the present work
provides a first step towards improved and faster parameter estimation through a better fit between
measured and simulated spectra.

6 Materials and Methods

6.1 Sample preparation

Compounds 1 and 2 were synthesized as described in [26]. For ESE and ENDOR, solutions
contained sample concentrations of about 300 µM in a 1:1.5 mixture of deuterated DMSO and
CD3OD. Solutions were loaded into Suprasil capillary tubes (VitroCom CV2033-S-100; O.D./I.D.
= 0.33/0.20 mm), and shock frozen in liquid nitrogen. Then, sample capillaries were inserted into
the precooled resonator immersed in a liquid nitrogen bath. Subsequently, the cold resonator was
transferred into the cryostat, precooled to about 80 K. Samples contained typical volumes of about
50 nL. A carbon fibre was used for g-value calibration, as proposed in [30]. For this measurement,
a solution of compound 1 was loaded into the capillary along with carbon fibre and shock frozen
in liquid nitrogen.
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6.2 263 GHz EPR/ENDOR spectroscopy

263 GHz pulsed and CW EPR (ESE) as well as pulse ENDOR were recorded on a Bruker ElexSys
E780 spectrometer equipped with a Bruker cylindrical TE012-mode EPR/ENDOR resonator (the
model is E9501510) [25]. For ENDOR, the RF was produced by a the Bruker DICE II RF syn-
thesizer and pulse forming unit. A 125 W RF-amplifier (Amplifier Research, model 125W1000)
was used, and the Mims pulse sequence [1] was applied. All ENDOR spectra were recorded in
batches, each containing the sum of between 50 and 100 individual scans. The batches were stored
in one data matrix, containing the batches in one dimension and the RF spectra as a second dimen-
sion. This matrix was used for data processing with the SDM. All spectra, including CW-EPR,
were detected using a quadrature detection scheme, which enabled phasing of the signal prior to
acquisition.

Experimental settings and conditions: ESE (compound 1 or 2): T = 50 K, MW frequency ν =
263 GHz, π/2-pulse = 32-40 ns, delay τ = 300 ns; shot repetition time (SRT) = 3 ms, 256 shots/point,
1 scan, data smoothed with a Savitzky-Golay filter (window length 32 and polyorder 2).
ESE (compound 1 along with C-fibre): T = 40 K, MW frequency ν = 263.185 GHz, MW power
= 50 mW, π/2 -pulse = 40 ns, π-pulse = 80 ns; delay τ = 1000 ns; SRT = 50 ms, 20 shots/point,
20 scans, data smoothed with a Savitzky-Golay filter (window length 16 and polyorder 4).

CW-EPR (compound 1 along with C-fibre): T = 40 K, ν = 263.185 GHz, MW power = 0.5 mW,
modulation frequency = 100 kHz, modulation field amplitude = 1 G, number of scans = 20.

Mims-ENDOR (compound 1 or 2): T = 50 K, ν = 263 GHz, π/2-pulse (MW) = 32-40 ns, τ =
850 ns, π-pulse (RF) = 50µs, SRT = 3 ms, 1 shot/point in stochastic acquisition, RF resolution:
333 RF points recorded at nominal resolution of 3 kHz. During the writing of the manuscript we
became aware of a bug in the Bruker spectrometer software connected with the DICE II unit, which
limits the actual RF resolution to likely up to 8 kHz. While this issue is being addressed, the anal-
ysis in this paper was performed assuming the nominal 3 kHz resolution to be the actual resolution.
Acquisition time between 2 to 21 hours depending on sample and orientation as discussed in [26].

6.3 Data Availability

All raw data files, processing procedures and source codes for figure generation will be made
available in an open repository upon publication. Also, the simulation code developed in [26] is
freely available at
https://data.goettingen-research-online.de/dataset.xhtml?persistentId=doi:10.25625/FLQKPM.
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A Statistical Drift Model

A.1 Phasing Procedure to Extract Spectrum I from ENDOR Effect κ

The direction in the complex plane in which κ contains the spectrum can be found in several
different ways. As explained in the main text, we opted to select λopt such that

∑
ν ℜ
(
eiλoptκν

)2
was maximal. The signal in ℑ

(
eiλoptκν

)
is not necessarily pure white noise but may contain some

artefact such as those identified in [28] where a cosine-like perturbation was observed. However,
in the 19F data, the range of RF frequencies is much narrower than that considered in [28]. Hence,
the cosine-like perturbation is hard to discern because only a fraction of its period is captured: see
panel B of Figure D3 in the main text.

A.2 Goodness of Fit

Goodness of fit was checked via examining the residuals ϵ̂b,ν = Yb,ν − ψ̂b − ϕ̂bκ̂ν . These were
pooled over all batches b ∈ {1, . . . , B} and RF frequencies ν ∈ {1, . . . , N} and their real and
imaginary parts were submitted to a KS test of Gaussianity whose results are provided in Table
D5.

Compound 1 Compound 2
Orientation Real Imag Orientation Real Imag

gx 0.99 1.00 gx 0.93 0.41
gxy 0.70 0.34 gxy 0.72 0.66
gy 0.64 0.80 gy 0.97 0.36
gyz 0.79 0.21
gz 0.58 0.96 gz 0.86 0.71

Table D5: The p−values from KS tests of Gaussianity applied to the real and imaginary parts of
the residuals Rb,ν (pooled over b and ν) resulting from the SDM applied to all measurements.

A.3 Bootstrap Sample Distribution

The covariance matrix of the bootstrap samples of the spectrum, {I∗,j}Jj=1, is obtained according
to

χν,ν′ =
1

J − 1

J∑

j=1

(
I∗,jν −

1

J

J∑

i=1

I∗,iν

)(
I∗,jν′ −

1

J

J∑

i=1

I∗,iν′

)
ν, ν ′ ∈ {1, . . . , N}. (11)

It is plotted in panel A of Figure D10 and its eigenvalues are shown in panel B of that figure.
The smallest eigenvalue is practically zero reflecting the constraint that the data are centred. The
next distinct eigenvalue reflects the constraint of unit size κ, so that spectral deviations are mostly
orthogonal to the mean spectrum.
In order to check the distribution of the deviation of the bootstrap samples I∗,jν of the spectrum from
the estimated spectrum Îν , we plot a histogram of I∗,j1 −Î1 in panel A of Figure D11 and performed
KS goodness of fit tests for a Gaussian distribution for all frequencies ν reporting the results in
panels B and C of Figure D11 for bootstrap sample size J = 104. None of the p−values obtained
are smaller than 10−3 so that the null hypothesis of Gaussian distribution cannot be rejected at the
Bonferroni-corrected standard significance level of 0.05

N ≈ 1.5× 10−4.
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Figure D10: A: the sample covariance matrix (χν,ν′)
N,N
ν,ν′=1 of the bootstrap spectra {I∗,j}Jj=1 (see

Equation (11)). Note that the shading indicating the value of covariance entries starts at a negative
value corresponding to white, so the off-diagonal entries are approximately zero corresponding to
light grey. B: the corresponding sorted eigenvalues {λk}332k=0 (enumerated by k on the horizontal
axis) of the sample covariance matrix plotted on a logarithmic scale.

Figure D11: A: checking for Gaussian distribution of the bootstrap residuals Î1−I∗1 for orientation
gx of compound 1 using a histogram. B: p-values of KS tests for Gaussianity of Îν − I∗ν for
ν ∈ {1, . . . , N}. For no frequency is the p-value below the Bonferroni-corrected critical value
of 0.05/N (indicated by horizontal red line) so that the null hypothesis of Gaussianity cannot
be rejected. C: histogram of the p-values calculated in the middle column. Non-uniformity of
p−values arises from standardization of bootstrap residuals prior to testing.

B Quasi-Bootstrapping for ENDOR Spectra

Here, we briefly describe an alternative method to assess the stochastic error of ENDOR spectra
obtained via the averaging method that does not require an SDM. This method allows approxima-
tion of the covariance matrix of the ENDOR spectrum needed for stochastic error of the spin and
experimental parameters.
This quasi-bootstrap approach, summarized in Algorithm 1, uses the difference between the spec-
trum Î and its smoothed version Ĩ as an indication of the standard deviation s of the stochastic
measurement error. The method then samples new independent and identically distributed (i.i.d.)
Gaussian noise with this standard deviation and adds it (pointwise) to the smoothed spectrum.
Following normalization, we refer to the resulting I∗,k as a quasi-bootstrapped spectrum. Equa-
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tion (11) can then be used. In choosing a smoothing method (e.g. a Savitzky-Golay filter) as well
as its parameters, the aim should be to include as much of the true spectrum in Ĩ as possible while
leaving most of the noise in Î − Ĩ .

For Figure D4 in the main text, we chose a Savitzky-Golay filter with parameters window length
of 37 and polyorder of 4. This choice was adapted to our spectra and has to be carefully selected
based on the properties of the spectra. We then used the standard deviation s as computed in step
3 of Algorithm 1 to compute approximate 95% confidence intervals given by Îν ± 1.96s for each
RF frequency ν. Since only the approximate confidence intervals for the spectra rather than the
covariance matrix from Equation (11) were required for Figure D4, steps 4 to 8 of Algorithm 1
were omitted.

Algorithm 1 Quasi-Bootstrap for the ENDOR Spectrum

1: Input: spectrum Î
2: Smooth Î to get the smoothed spectrum Ĩ .

3: Determine the empirical variance s2 = 1
N

∑N
ν=1

(
Îν − Ĩν

)2
and perform a quasi-bootstrap:

4: for k ∈ {1, . . . ,K} do
5: Sample I∗∗,k by I∗∗,kν = Ĩν + ϵ∗,kν where ϵ∗,kν

i.i.d.∼ N (0, s2).

6: Normalize to mean zero and sum of squares one: I∗,kν =
I∗∗,kν −∑

ν′ I
∗∗,k
ν′√

∑
ν′′

(
I∗∗,k
ν′′ −∑

ν′ I
∗∗,k
ν′

)2

7: end for
8: return The quasi-bootstrap sample {I∗,k}Kk=1.

C Accuracy of Simulation for Comparison of Computational Time

To compare (Section 3.3 in the main text) the speed of the accelerated code SimSpec with the code
underlying [26], to which we refer as Sim, a similar level of accuracy in the simulated spectrum
must be achieved. Additionally, gradient-based optimization is greatly hampered by computing
spectra with insufficient accuracy (see Figure D12) due to the ruggedness of the error. Hence, we
consider accuracy of spectral simulation in this section.

Figure D12: Impact of the choice of the simulation parameters affecting computational time on the
loss using SimSpec (summed squared difference of simulated vs measured spectrum) as a function
of the HF parameter T . There are two different accuracy settings: A: rfBinSize MHz=0.003
and Nknots = 50. B: rfBinSize MHz=0.003

100 and Nknots = 150. All other parameter values
were chosen from [26], Table 1.
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In both spectrum simulation functions (SimSpec and Sim), there are two parameters that signifi-
cantly affect computational time. The first parameter determines (depending on the selected grid)
how finely the sphere is partitioned in powder averaging.
The second parameter is rfBinSize MHz which specifies how finely the RF axis is partitioned.
Four different grids have been implemented in our simulation software: ’Fibonacci’, ’Legacy’,
’Polar’ and ’SOPHE’. For the SOPHE grid, which was implemented in analogy to Easyspin, only
the parameter Nknots is required. Increasing this parameter leads to greater accuracy and com-
putational time in the calculation of the spectrum. In a first experiment, we simulate a reference
spectrum for each of the five orientations from compound 1 with the very high and computationally
costly value Nknots=400 using SimSpec. Then, various smaller values for Nknots are chosen
and the loss (summed squared difference of spectra as in Equation (8)) relative to the reference
spectrum (see panel A of Figure D13) and the computation time for computing the five spectra are
determined (see panel B of Figure D13). The parallelized variant with pre-calculation (displayed
in panel B of Figure D13) is by far the fastest variant, since the SOPHE grid is simply loaded and
does not have to be computed (the grid does not change when changing the parameters to be opti-
mized). The pre-calculation method gains its speed advantage from the fact that the Hamiltonian
only needs to be re-diagonalized when the magnetic field strength is changed.
In a second experiment, we proceeded analogously for the parameter rfBinSize MHz. We fixed
the value Nknots=150 and simulated a reference spectrum with the rfBinSize MHz=0.003

200 us-
ing SimSpec. Then, various larger values for rfBinSize MHz were chosen and the loss relative
to the reference spectrum (see panel A of Figure D14) and the computation time for computing the
five spectra were determined (see panel B of Figure D14).

Figure D13: A: the loss (summed squared differences of simulated spectrum with given Nknots
vs the reference spectra) using SimSpec for different Nknots values. The reference spectra
were calculated with Nknots=400. B: the computation time for calculating the spectra for the
five orientations consecutively (black), parallelized based on multiprocessing (green), parallelized
based on multiprocessing with additional pre-calculation (blue). For all calculations we used
rfBinSize MHz = 0.003

100 .

Finally, for comparison, we simulated spectra using Sim where Ntheta (set to equal Nphimax)
was chosen for the polar grid to yield approximately the same accuracy of the simulated spectrum
as the accuracy attained in the SOPHE grid with Nknots= 150 and rfBinSize MHz= 0.003,
see Figure D15. As usual, the accuracies are considered as the loss relative to the reference spec-
trum for each grid, respectively. Using these values of Ntheta and Nphimax makes for a fair
comparison of computational time across different grids because similar errors in the computed
spectra are achieved.
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Figure D14: A: the loss (summed squared differences of simulated spectrum with given bin
size vs the reference spectra) using SimSpec for different rfBinSize MHz values. The ref-
erence spectra were calculated with rfBinSize MHz=0.003

200 . B: the computation time for cal-
culating the five orientations consecutively (black), parallelized based on multiprocessing (green),
parallelized based on multiprocessing with additional pre-calculation (blue). For all calculations
we used Nknots = 150.

Figure D15: The loss using Sim relative to the reference spectra for different Ntheta=Nphimax
values. The reference spectra were calculated with Ntheta=Nphimax=700. The horizontal line
indicates the loss achieved by SimSpec using the SOPHE grid (relative to the SimSpecSOPHE
reference spectrum) with the settings used for the computational time evaluation in Table D1 in the
main text.

D Symmetries and Uncertainty Quantification

In tensors with considerable uncertainty such as the CS tensors reported in Table D3, specify-
ing confidence regions for Euler angles and eigenvalues in a straightforward manner may lead to
unnecessarily large confidence regions. Taking symmetries of the tensors described by those Eu-
ler angles and eigenvalues into account and using the joint uncertainty of these quantities instead
yields tighter confidence regions. In the following, we show in detail how tensor symmetries are
used in an alignment procedure to obtain tight confidence regions while maintaining unimodal
uncertainty distributions of the eigenvalues.
For a symmetric 3x3 matrix A with entries ai,j ∈ R and distinct eigenvalues, the eigenvalue
decompositionA = U(A)D(A)U(A)T with U(A) ∈ SO(3) (SO(3) is the set of rotation matrices
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in dimension 3) and D(A) =



λ1(A)

λ2(A)
λ3(A)


 ∈ Diag(3) (Diag(3) is the set of 3× 3

diagonal matrices) is not unique. Even fixing the eigenvalues to be in ascending order so that
λ1(A) < λ2(A) < λ3(A) does not lead to uniqueness as the decomposition is invariant under a
choice of U ′ ∈ M in A = UU ′D(U ′)TUT , whereM is given in Equation (7). When aligning
bootstrap samples A∗,k from the sampling distribution of some estimator Â with Â in order to
understand the uncertainty of the estimate, one may therefore wish to choose one of these four
matrices to make the Euler angles implied by U(A∗,k) as similar to those implied by U(Â) as
possible. Additionally, if some eigenvalues, say λ1(A∗,k) and λ2(A∗,k), are close, then it may
be preferable to swap these eigenvalues to again achieve a better match of implied Euler angles
at the cost of a worse match of eigenvalues. In order carry this out in a systematic fashion, we
refer to an adaptation of the distance in [41] to the case of symmetric (rather than positive-definite
symmetric) matrices. This strikes a compromise between the angular deviation and the deviation
of eigenvalues which is apparent from its definition

d(A,B)2 = min
{U,V ∈SO(3), D,Λ∈Diag(3): UDUT=A andV ΛV T=B}

(
k
∥∥log(UV T )

∥∥2
F
+ ∥D − Λ∥2F

)
,

(12)

where ∥A∥2F =
∑3

i,j=1 a
2
i,j is the square of the Frobenius norm and k ∈ R>0 is a positive tuning

parameter. Large choices of k correspond to emphasizing small differences of the rotational part
and hence the Euler angles whereas small k corresponds to emphasizing a close match of the
eigenvalues.
In quantifying the uncertainty for the σ19F tensors in compound 2, we sampled a large num-
ber K of realizations {σ∗,k

19F
}k∈{1,...,K} of the Gaussian distribution of the matrix entries in the

rightmost part of Equation (6) implied by the linear error propagation in Equation (10). We then
aligned these samples with σ̂19F (with a fixed choice of U(σ̂19F ) in Equation (12)) by minimiz-
ing d(σ̂19F ,σ

∗,k
19F

)2 from Equation (12) and extracted Euler angles α∗,k, β∗,k, γ∗,k from V that
attained the minimum in Equation (12). We chose a value of k so as to ensure that only the two
small eigenvalues of the CS tensors are swapped, maintaining a unimodal distribution of the eigen-
values. Approximate confidence regions for the Euler angles were then chosen as those regions
of maximal kernel-density-estimated probability density that accumulate 95% of probability. Us-
ing the alignment described here resulted in unimodal distributions for all Euler angles but one,
as well as unimodal distributions for all eigenvalues. Omission of the described alignment would
have resulted in larger approximate confidence regions for all Euler angles.

E Bayesian Optimization

Here, we provide an overview of Bayesian optimization as well as details on our gradient-based
refinement. For more detail and background on the concepts mentioned, see [38]. Bayesian op-
timization approximately solves the global minimization‡ problem θ∗ ∈ argminθ∈Θ L(θ) for an
objective function L : Rm ⊃ Θ → R. It takes a more global view of the parameter space Θ than
gradient-based methods and necessitates neither computation nor approximation of derivatives of
L with respect to θ. This is achieved in an iterative approach using a Gaussian process statistical
model L̂(θ) for the objective function L and an acquisition function a to determine which θ ∈ Θ
should be tried next. The Gaussian process L̂ is specified through two quantities: its prior expected
value and its prior covariance kernel which are used to specify a priori beliefs about the objective

‡Mimimization of L is equivalent to maximization of −L, so, for ease of presentation, we consider only minimiza-
tion here.
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function L, i.e. beliefs held before any evaluations of L are available. Its expected value (equal
to the average over an infinite number of samples of the Gaussian process) at the point θ ∈ Θ is
denoted by µ(0)(θ) = E(0)[L̂(θ)] which we chose to be identically zero as this is a standard choice,
although it will in general depend on the point θ at which L̂ is evaluated and µ(0) is therefore known
as the prior mean function. The covariance of its value at θ ∈ Θ with its value at θ′ ∈ Θ, denoted
as c(0)(θ, θ′) = Cov(0)

(
L̂(θ), L̂(θ′)

)
was chosen to be a Matérn kernel of order ν = 1.5 again

following a standard choice expressing the prior belief that L is at least once differentiable with
respect to θ. Naturally, this covariance will generally depend on the two points θ and θ′ and c(0) is
therefore known as the prior covariance kernel. In specifying the prior mean function and covari-
ance kernel, the exponent (0) denotes that zero observations of L have been incorporated so far and
expectations and covariances are taken over all possible realizations of the Gaussian process L̂. L
is then computed at a number of parameter values θ(1), . . . , θ(k) ∈ Θ that are selected randomly in
the parameter space. Bayes’ theorem is used to update the Gaussian process combining the prior
mean and covariance with the observations L(θ(1)), . . . ,L(θ(k)) to obtain the posterior Gaussian
process which is specified via its mean function µ(k) (where µ(k)(θ) = E(k)[L̂(θ)]) and its co-
variance kernel c(k) (where c(k)(θ, θ′) = Cov(k)

(
L̂(θ), L̂(θ′)

)
) with the exponent (k) denoting

that k observations have been taken into account. Properties of Gaussian processes ensure that, in
order to compute the posterior mean µ(k)(θ) and the posterior covariance c(k)(θ, θ′) at fixed points
θ, θ′ ∈ Θ, only matrix operations involving matrices of size of order O(k × k) are required. At
points θ close to one of the θ(1), . . . , θ(k), the variance c(k)(θ, θ) of the posterior Gaussian process
is small (it is indeed zero at all θ(1), . . . , θ(k) so that L(θ) = L̂(θ) when θ ∈ {θ(1), . . . , θ(k)}),
whereas in regions of Θ far away from all the θ(1), . . . , θ(k) tried so far, the variance is large.
The problem of how to choose θ(k+1) is at the core of the Bayesian Optimization idea: should we
choose it in the vicinity of some of the θ(1), . . . , θ(k) to minimizeL(θ(k+1)) locally (”exploitation”)
or should we examine a region of Θ that has received less attention so far (”exploration”)? The
purpose of the acquisition function is to strike a balance between exploitation and exploration. We
use a standard choice which is the expected improvement, i.e. our acquisition function a(k) is the
expected value

a(k)(θ) = E(k)

[
max

(
min

θ′∈{θ(1),...,θ(k)}
L̂(θ′)− L̂(θ), 0

)]
.

Based on the current posterior Gaussian process, it assigns a value to each θ ∈ Θ that is thought
of as that point’s propensity to be the new minimizer of L among the θ(1), . . . , θ(k), θ. An approx-
imate maximizer θ ∈ Θ of the acquisition function is used as θ(k+1) and the objective function
L(θ(k+1)) is then computed at this newly chosen point. This new pair of values θ(k+1),L(θ(k+1))
is then incorporated to build the updated posterior distribution with mean function µ(k+1) and
covariance kernel c(k+1) and the process continues in an iterative fashion finding θ(k+2) approxi-
mately maximizing a(k+1), see Algorithm 2 for an overview of the algorithm.
The reasons for replacing one optimization problem (that of minimizing the objective function L)
by yet another optimization problem (that of maximizing the acquisition function a) are: firstly,
only an approximate maximizer of the acquisition function is needed whereas an exact global
minimum of the objective function is sought and, secondly, a well-chosen acquisition function,
being a simple functional of a Gaussian process, is much faster to compute than the objective
function. One potential complication is that exploration would proceed indefinitely if the parameter
space Θ was unbounded whence bounds need to be specified for all parameters.
Bayesian optimization is used to approximately locate the global minimizer of L for a set max-
imum number of observations n to limit computational cost. As can be seen in Figure D16,
which shows an illustration of the improvement in ENDOR spectra when going from incorpo-
rating n = 20 observations to incorporating n = 300 observations, the approximate minimizer

D30

230 Bayesian Optimization to Estimate Hyperfine Couplings from 19F ENDOR Spectra



Algorithm 2 Bayesian Optimization

1: Define a Gaussian process prior L̂ on L.
2: Sample initial points θ(1), . . . , θ(k) ∈ Θ uniformly distributed on Θ and compute
L(θ(1)), . . . ,L(θ(k)).

3: for i ∈ {k, . . . , n− 1} do
4: Update the Gaussian process to posterior based on

(
θ(1),L(θ(1))

)
, . . . ,

(
θ(i),L(θ(i))

)
.

5: Compute θ(i+1) ∈ Θ by approximately optimizing the acquisition function a(i)(θ).
6: Compute L(θ(i+1)).
7: end for
8: Return the best solution θ(i

∗) where i∗ = argmin
i=1,...,n

L(θ(i)).

obtained based on n = 300 observations is still imperfect. Following standard methodology, we
then use a local optimization method to improve on this result. We choose BFGS which is a
gradient-based quasi-Newton method that uses the objective function and its gradient to iteratively
build an approximation to the Hessian of L and uses this to generate iterative improvements to the
approximate minimizer. When started in the vicinity of a local minimum, this method can exhibit
faster convergence to that local minimum than Bayesian optimization because it focuses on the
local problem.

When supplying BFGS with gradient information, finite difference approximations to the gradient
are usually used: ∂L

∂θj
≈ L(θ+ϵej)−L(θ)

ϵ , with ej the j’th standard basis vector. Here, the increment
ϵ needs to be tuned: if ϵ is too large, the difference quotient deviates from the derivative. If ϵ is
too small, the error in computing each ENDOR spectrum, while small in absolute terms, is large
compared to the difference in the numerator of the finite difference formula. See Figure D17 for a
visualization of this issue. We therefore employed increments that were roughly manually tuned,
separately for each parameter.

F Optimization results

F.1 Compound 1: minimum #2

Spin Parameters
T / kHz 267.1± 0.9
aiso / kHz −0.4± 1.0
αA/

◦ −160.2± 0.6
βA/

◦ −19.0± 0.4

σ̃xx / ppm 199± 6
σ̃yy / ppm 281± 9
σ̃zz / ppm 393± 11
ασ/

◦ 80± 5
βσ/

◦ 61± 3
γσ/

◦ 106± 2

Experimental Parameters
B0 / G : gx 93628.6± 0.5
B0 / G : gxy 93697.0± 0.7
B0 / G : gy 93937.1± 0.8
B0 / G : gyz 93837.9± 0.7
B0 / G : gz 93943.1± 0.9

lw / kHz : gx 15.2± 3.1
lw / kHz : gxy 50.2± 5.0
lw / kHz : gy 19.7± 2.5
lw / kHz : gyz 22.8± 2.7
lw / kHz : gz 29.9± 3.2

Table D6: Estimated parameter values for minimum #2 in compound 1
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Figure D16: Spectra (left column) and spectral residuals (right column) after different iterations of
Bayesian optimization from the minimization described in Section 4.2 in the main text. Top row:
After 20 iterations. Bottom row: After 300 iterations.

F.2 Optimization for Compound 1 two g values

F.3 Compound 2

In this subsection, we report on those minima of the loss function L for compound 2 that have been
identified but that have not been reported in detail in the main text. The minimum reported in detail
in the main text is referred to as minimum #1 and Table D8 enumerates the additional minima #2,
#3 and #4 and provides their spin and experimental parameter values.
In detail, we examined the uncertainty distributions of the CS tensors in compound 2 by creating a
bootstrap sample of size K. We sampled

{(
σ∗,k

19F1
,σ∗,k

19F2

)}
k∈{1,...,K}

from the Gaussian distribu-

tion with mean given by the minimum under investigation and covariance matrix Cov(θ) given via
Equation (10) for the matrix entries of these tensors using the parametrization given in the right-
most part of Equation (6). Here, K is chosen sufficiently large to yield a representative sample.
For each of these samples, we determined the angle δ∗,k subtended by the dominant eigenvectors
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Spin Parameters
T / kHz 266.2± 1.0
aiso / kHz −1.3± 1.1
αA/

◦ −160.9± 1.0
βA/

◦ −19.6± 0.5

σ̃xx / ppm 201.3± 8.6
σ̃yy / ppm 304.2± 12.4
σ̃zz / ppm 391.4± 9.5
ασ/

◦ 93.8± 3.4
βσ/

◦ 107.7± 4.5
γσ/

◦ 107.7± 2.6

Experimental Parameters
B0 / G : gx 93629.3± 0.75
B0 / G : gxy 93697.6± 0.75
B0 / G : gy 93938.0± 0.91
B0 / G : gyz 93838.7± 0.81
B0 / G : gz 93943.8± 1.1

lw / kHz : gx 13.0± 3.3
lw / kHz : gxy 51.6± 5.0
lw / kHz : gy 19.2± 2.5
lw / kHz : gyz 23.4± 2.8
lw / kHz : gz 31.2± 3.1

Table D7: Parameter values for the minimum shown in Figure D19 assuming contributions from
two distinct gx values gx,1 = 2.00889 and gx,2 = 2.00835, weighted 90% and 10%, respectively,
in compound 1. The loss value is 0.273.

σ∗,k
z,19F1

and σ∗,k
z,19F2

of σ∗,k
19F1

and σ∗,k
19F2

, respectively, taking into account that σ∗,k
z,19F2

and −σ∗,k
z,19F2

are equivalent eigenvectors and hence restricting the range of values of δ∗,k to between 0 and 90
degrees. To assess whether this uncertainty distribution represented by the sample {δ∗,k}k∈{1,...,K}
was compatible with the dominant eigenvectors being parallel, we computed the quotient of its im-
plied probability density (estimated by kernel density estimation) and the density expected in the
case of a uniformly random distribution of the eigenvectors on the sphere. The resulting relative
densities are plotted in Figure D21 and show that for minimum #1, the maximum of the relative
density is assumed at an angle of δ = 0 with a strong preference for angles close to this value.
For minimum #3, we found that the maximum was instead assumed near δ ≈ 10◦. While the
dominant eigenvectors being parallel could not be ruled out, we thus preferred minimum #1. For
minimum #4, we found a relative density that essentially ruled out the possibility that the dominant
eigenvectors were parallel and therefore we again preferred minimum #1.

Figure D17: The derivative of the simulated ENDOR spectrum of compound 1 with respect to the
parameter T for the orientation gx approximated by finite difference approximation with ϵ = 10−3

(blue), ϵ = 10−4 (black) and ϵ = 10−5 (red).
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Figure D18: Measured (black) and fitted (orientation colour coded) ENDOR spectra for compound
1 using minimum #2. The spectral residuals are plotted below each of the spectra using the same
color. Parameter values of the second minimum are given in Table D6.

Figure D19: A: measured (black) and simulated (orientation colour coded) ENDOR spectra for
compound 1 using the values listed in Table D7 and two contributions weighted 90% and 10% for
the gx-values, namely gx,1 = 2.00889 and gx,2 = 2.00835, respectively. The spectral residuals
are plotted below each of the spectra using the same color. B: The two component spectra plotted
individually (spectrum for gx,1 in black, spectrum for gx,2 in red), each normalized.
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Figure D20: Measured (black) and simulated (orientation colour coded) ENDOR spectra for com-
pound 2 using the parameter values listed in Table D8: minimum #2 (A), minimum #3 (B) and
minimum #4 (C). The spectral residuals are plotted below each of the simulated spectra using the
same color.
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Spin Parameters
o-F

Minimum #2 Minimum #3 Minimum #4
T / kHz 254.8 255.3 254.8
aiso / kHz 4.0 2.1 2.1
αA/

◦ -166.5 -167.0 -166.28
βA/

◦ -19.6 -19.9 -19.39
σ̃xx / ppm 136.5 169.5 152.1
σ̃yy / ppm 168.6 182.1 167.2
σ̃zz / ppm 317.9 335.1 348.9
ασ/

◦ -14.8 5.0 67.0
βσ/

◦ 120.3 58.8 119.9
γσ/

◦ -68.2 109.8 115.8
m-F

Minimum #2 Minimum #3 Minimum #4
T / kHz 89.2 96.17 96.8
aiso / kHz 13.2 1.2 1.1
αA/

◦ -19.7 -163.0 -162.0
βA/

◦ -1.0 -10.9 -10.0
σ̃xx / ppm 137.0 169.5 152.1
σ̃yy / ppm 169.0 182.1 167.2
σ̃zz / ppm 318.0 335.1 348.9
ασ/

◦ 231.9 312.0 239.0
βσ/

◦ 53.5 130.1 27.3
γσ/

◦ 52.1 172.0 153.0
Experimental Parameters

Minimum #2 Minimum #3 Minimum #4
B0 / G : gx 93521.2 93522.6 93522.0
B0 / G : gxy 93572.4 93574.6 93573.8
B0 / G : gy 93651.6 93653.0 93652.4
B0 / G : gz 93810.7 93813.1 93812.8

lw / kHz : gx 36.9 31.9 31.4
lw / kHz : gxy 48.3 48.5 47.8
lw / kHz : gy 35.0 26.5 23.4
lw / kHz : gz 17.8 17.1 15.8

Table D8: Spin and experimental parameters for the minima not reported in detail in the main text.
Minimum #2 has slightly higher loss (L = 0.715) than the other minima which arises from the
shoulders of the m−F HF coupling (see panel A of Figure D20 in SI F) not being reproduced.
Minimum #3 has loss L = 0.705. Minimum #4 has loss L = 0.704.
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Figure D21: Relative approximate density of uncertainty distribution of angles between the dom-
inant eigenvectors of ortho and meta CS tensors. A: minimum #1 (reported in main text, angle
distribution suggests that the eigenvectors are approximately parallel), B: minimum #3 (angle dis-
tribution is compatible with the eigenvectors being parallel but with preference for a slight devia-
tion), C: minimum #4 (angle distribution inconsistent with dominant eigenvectors being parallel).
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