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Chapter 1

Introduction

This thesis is concerned with the arithmetic properties of cubic forms and

more generally cubic polynomials. By this, we mean polynomials of degree

3 with integer coefficients in possibly many variables x1, . . . , xn. If the poly-

nomial is homogeneous, i.e. does not have any lower order terms, we call it

a cubic form.

Before we restrict to the cubic case, let us first discuss the case of a general

polynomial F with integer coefficients in variables x1, . . . , xn.

The zero set F (x1, . . . , xn) = 0 defines a certain subset of n-dimensional

space, more precisely an algebraic variety. Traditionally, such an equation

with integer coefficients is known as a Diophantine equation.

It has been an immensely fruitful approach in the 20th century to study the

arithmetic properties of polynomials with the help of these associated geo-

metric objects. This field of research is now known as Arithmetic (Algebraic)

Geometry.

For us, at this point the geometric approach merely serves well to illustrate

the questions that we will study in this thesis. The fundamental question

from the perspective of a number theorist is the following:
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Question 1: Given a polynomial F , can we describe the solutions of the

Diophantine equation F (x) = 0 in the set of integers or the rational numbers?

Geometrically, can we describe the integral/rational points on the variety

F (x) = 0, i.e. the points with integral/rational coordinates?

This is clearly not a precise mathematical question and indeed there are

many different ways, depending on the context, to turn this into a meaningful

mathematical problem.

One example with a long history and a very satisfactory answer is given by

the quadratic equation F (x, y) = x2 + y2 − 1 in two variables. Here, the set

of (real) zeroes of F defines the unit circle in the plane. Rational solutions

of x2 + y2 = 1 correspond to Pythagorean triples, i.e. integer solutions to

the equation x2 + y2 = z2, after clearing denominators. For instance, the

classical solution 32+42 = 52 corresponds to the rational point
(
3
5
, 4
5

)
on the

unit circle.

Already the Babylonians studied these triples and it is a classical result,

essentially already known to Euclid, that the rational points (x, y) on the

unit circle x2 + y2 = 1 can be parametrized by the formula

(x, y) =

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)
where u and v are arbitrary integers. In particular, infinitely many essen-

tially different Pythagorean triples exist and we have a systematic way of

generating them.

While this result can be generalized to more general quadratic equations in

two variables (defining a conic), for a general polynomial F we cannot hope

for an explicit description of all its rational solutions.

Instead, a version of Question 1 that in many cases is already very hard, is

the following.

Question 2: Does a (non-trivial) integral/rational solution to F (x) = 0

exist? If yes, are there infinitely many?
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This question still involves the vague notion of non-trivial solutions, the

exact definition of which will typically depend on the context. To give a

very concrete and famous example, Fermat’s Last Theorem asks whether the

equation xn + yn = zn has a non-trivial solution for some n ≥ 3, where here

‘non-trivial’ means precisely that all the variables should be different from 0.

Returning to the case of polynomials in two variables discussed above, the

next simplest case after quadratic equations would be to study cubic equa-

tions. Generically, a cubic polynomial in two variables defines an elliptic

curve.

The theory of rational and integral points on elliptic curves has become an

extremely rich area of research in the last century, forming an important part

of the proof of Fermat’s Last Theorem due to Andrew Wiles, but also leading

to powerful applications in modern-day cryptography.

A special feature of elliptic curves is that they are examples of abelian vari-

eties, which means that the set of rational points forms an (algebraic) group.

Very concretely, this allows us to generate new points from old ones. In geo-

metric terms, this can be described by taking the third point of intersection

of the tangent line to the curve at a given rational point.

As a very concrete example, for the curve given by x3 + y3 = 9, we can start

with the solution (1, 2) to generate iteratively the solution
(
−17

7
, 20

7

)
and then

the next two solutions are given by(
188479

90391
,
36520

90391

)
and

(
1243617733990094836481

609623835676137297449
,
487267171714352336560

609623835676137297449

)
.

What this example shows quite impressively is that while this procedure

has a good chance of producing infinitely many different rational points, the

height of the solutions, which we can think of as the size of numerator and

denominator, grows extremely rapidly.

This line of thought leads us to another refinement of Question 1.
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Question 3: Can we quantify the distribution of solutions to F (x) = 0 in

the case where infinitely many solutions exist?

One way to do this is to count points of bounded height which in the case of

integer solutions means that we should study the counting function

NF (P ) := #{x ∈ Zn : ∥x∥∞ ≤ P, F (x) = 0}

for a real parameter P > 0. In particular, it is an interesting question to

determine the asymptotic growth of NF (P ) as P → ∞.

What kind of behaviour can we expect? A first approximation is given by

the following probabilistic heuristic: The range ∥x∥ ≤ P contains roughly

P n many integer points. If F is a polynomial of degree d, then its values on

this set are roughly bounded by P d, i.e. there are roughly P d many different

values that F can take. If we expect the particular 0 to obtain its ‘fair share’,

we could therefore conjecture that NF (P ) should roughly be of the size P n−d.

A different heuristic leading to a more precise prediction for the size of NF (P )

and indeed in many situations providing a viable approach of actually proving

it, comes from a Fourier-analytic perspective via the Hardy-Littlewood circle

method. The key players here are the linear characters

α 7→ e(nα) := exp(2πinα)

on the torus R/Z and the corresponding orthogonality result

∫ 1

0

e(nα)dα =

1 n = 0,

0 else

which therefore allows us to detect whether an expression is zero by comput-

ing a suitable Fourier integral. Applying this elementary observation with

the value n = F (x) and summing over all values of x in consideration, we

4



thus obtain the following fundamental identity

NF (P ) =

∫ 1

0

S(α)dα,

where

S(α) =
∑
|x|≤P

e(αF (x))

is the Weyl sum associated to F .

Note that the size of S(α) is clearly bounded by (a constant times) P n.

However, since we are summing complex numbers on the unit circle, one

might expect that for generic α, there is a large amount of cancellation,

possibly leading to S(α) being roughly as small as P n/2, a phenomenon known

as square-root cancellation, familiar e.g. from the theory of random walks.

On the other hand, clearly S(0) is as large as P n, and indeed this fact persists

for α appreciably smaller than 1
P d

since then αF (x) remains small.

We thus conclude that such a small interval for α around the point 0 con-

tributes roughly P n−d to the whole integral and hence to N(P ).

Naively, one might now hope to show that for all other α, the sum S(α)

is indeed small and so the contribution computed above indeed leads to an

asymptotic NF (P ) ≈ P n−d.

However, this cannot possibly be the case since so far we have not taken

into account the arithmetic nature of F . For instance, it could happen that

F (x) = 2G(x) − 1 is always odd and hence no integer solution to F (x) = 0

can possibly exist.

Fortunately, this issue can be located in Fourier space as well: In that case

we will have S
(
1
2

)
= −S(0) and a small interval around 1

2
will also make

a contribution of the size P n−d to the whole integral, cancelling out the

contribution from the interval around 0.

As this phenomenon is not restricted to the number 2, it then transpires

that we should do the following: For each rational number a
q
, consider a
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small interval around a
q
and show that it contributes roughly

S(q, a)

qn
· P n−d

to the integral, where

S(q, a) :=
∑

x (mod q)

e

(
aF (x)

q

)
is the Gauß Sum associated to F . Then sum up the contributions from all

these small intervals to end up with the prediction

N(P ) ∼ I ·S · P n−d (1.0.1)

where I is the singular integral, a correction factor that has to be introduced

because S(α) is not quite constant on each of these small intervals (but which

will in general be harmless) and

S =
∞∑
q=1

∑
gcd(a;q)=1

S(q, a)

qn

is the singular series. It is not hard to prove that the Gauß sums S(q, a)

enjoy a certain multiplicativity in the modulus q, allowing us to rewrite

S =
∏
p

χp

where the product is an Euler product over all primes p and

χp =
∞∑
k=0

∑
gcd(a;pk)=1

S(pk, a)

pkn

is a p-adic density which, as the name suggests, measures the density of

solutions of the equation F (x) = 0 in the p-adic numbers.

In very explicit terms, in the example above where F is always odd, we can

conclude that no 2-adic solutions exist and we will have χ2 = 0.
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In general, one can show that χp > 0 if and only if a suitable p-adic solution

exists.

This is very nice because it means that the asymptotic (1.0.1) captures a

Local-Global Principle or Hasse Principle. It is trivial and always the case

that (as in the case above where F is always odd) there can be no integer

solution if there is a congruence obstruction, i.e. if F (x) = 0 is insoluble

modulo a certain number q. The converse however is far from trivial and not

always true: If there are no congruence obstructions, does F (x) = 0 always

have an integer solution? If the prediction (1.0.1) is true, the answer is yes,

because then the leading coefficient is positive so that there are indeed many

solutions!

The terminology Local-Global Principle comes from the fact thatQ is a global

field and its completions are given by the local fields R and Qp for p prime1.

Of course the discussion above leading to (1.0.1) was far from rigorous. By

summing over small intervals around all rational numbers, we would obtain

significant overlaps. Moreover, the approximation to S(α) on each of these

intervals becomes worse with growing denominator q.

In practice, one therefore uses a truncated version of this process. One

only sums over intervals around rationals with small denominator, where

the threshold is determined by the size of P . These major arcs can then be

shown rigorously to lead to a contribution of the shape (1.0.1) involving a

truncated version of S.

Note however, that contrary to what the nomenclature might suggest and

despite contributing the main term to our asymptotic formula, the major

1The alert reader will have noticed that we did not mention local solubility at the

infinite place corresponding to R. Indeed, a local obstruction here would mean that F

does not have a real solution, for example if it is positive definite. In that case one can

show that the singular integral I vanishes, so that this aspect is also captured in our

asymptotic formula.
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arcs in general constitute only a tiny part of the interval [0, 1].

It thus remains to deal with the minor arcs, which are defined as the com-

plement of the major arcs, hence consisting of real numbers that are not too

close to a rational number with small denominator. Here, we can now hope

to realize the ‘random walk principle’ of showing that S(α) is small. This

however is easier said than done and usually constitutes the hardest part of

the method, thus also limiting its applicability significantly.

From this discussion, it transpires that the method will work better when the

number of variables is relatively large. In particular, since we cannot hope

for a better bound than P n/2 on the minor arcs and the expected main term

is of the size P n−d, we cannot in general hope to apply the method when n

is less than 2d. In practice the ideal exponent n
2
on the minor arcs is hardly

ever realized, so that the method usually requires even more variables.

We want to stress, however, that even in the case of many variables where we

expect many solutions to exist, it is not even clear a priori that even a single

solution exists. The Hardy-Littlewood method should therefore be seen as

the primary example of the following fundamental principle of Diophantine

Analysis:

Show that solutions exist by showing that there are indeed many!

We now come to the discussion of the main results of this thesis and for this

purpose we will soon restrict to the case of cubic polynomials.

Why should we study cubic polynomials? It was already discussed earlier that

cubic polynomials in two variables are essentially elliptic curves and indeed

results on cubic surfaces or higher-dimensional cubic hypersurfaces can often

be related to the rich and highly developed theory of elliptic curves. From

another point of view, one can see the theory in the cubic case as the first

interesting instance of the general theory of higher-degree polynomials. The

case of linear equations is of course trivial and the theory of quadratic forms
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is classical and well-understood. In contrast, the cubic case exhibits new

features and we are still far from being able to answer many natural questions.

Most of these questions can then also be raised in the higher-degree case, but

it is natural to first study the simplest non-trivial case.

After this motivation, let us now first consider a homogeneous cubic polyno-

mial C with integer coefficients in n variables x1, . . . , xn.

Since C is homogeneous, the study of rational solutions is equivalent to study-

ing integer solutions, as we may always clear denominators. Moreover, note

that (0, 0, . . . , 0) always is a solution. We thus say that an integer solution

is non-trivial if it is different from this solution.

While there are examples of cubic forms in up to 9 variables for which there

are congruence obstructions to non-trivial solutions, it has been known for a

long time that such obstructions cannot occur when n ≥ 10.

In view of the previous discussion, it is therefore a natural conjecture that

the equation C(x) = 0 should always have a non-trivial integer solution when

n ≥ 10.

This remains an open problem, but recent years have seen progress on this

question, culminating in the seminal work of Heath-Brown [16] who proved

the existence of non-trivial solutions for n ≥ 14.

His method uses the Hardy-Littlewood method as described above, including

a grain of salt. Indeed, let us note that the asymptotic formula

N(P ) = (1 + o(1))I ·S · P n−d, P → ∞ (1.0.2)

cannot possibly hold for all cubic forms, as indeed in certain non-degenerate

situations there are too many solutions. This happens for instance in the case

of a reducible cubic form C(x) = L(x)Q(x) which clearly has N(P ) ≫ P n−1,

and even in cases like

C(x) = L1(x)Q1(x) + L2(x)Q2(x) (1.0.3)

9



for certain linear forms L1, L2 and quadratic forms Q1, Q2, where we still

have N(P ) ≫ P n−2 simply by setting x1 = x2 = 0.

Following an ingenious idea of Davenport, Heath-Brown introduces a di-

chotomy to deal with this issue: If C satisfies a certain genericity condition,

called Davenport’s Geometric Condition, we can apply the Hardy-Littlewood

method to prove (1.0.2) and in particular deduce the existence of solutions.

If the Geometric Condition fails, we cannot use the circle method, but al-

ready Davenport managed to show that this failure can be turned into an

alternative existence proof for a non-trivial solution.

While this alternative argument would still work for n ≥ 10, it is the appli-

cation of the circle method and more precisely our poor understanding of the

Weyl sum S(α) on the minor arcs, that leads to the restriction n ≥ 14.

It is thus natural to conjecture that even the asymptotic formula (1.0.2)

should continue to hold for n ≥ 10, under the assumption of the Geometric

Condition.

In Chapter 2, we make progress towards this conjecture with the following

result:

Theorem 1.0.1. Assume that n ≥ 10 and that C satisfies Davenport’s Ge-

ometric Condition. Then the singular series S is absolutely convergent. In

particular, S > 0.

This can be seen as a step towards the conjecture in two different ways:

Firstly, while a proof of the asymptotic formula (1.0.2) for n ≥ 10 remains

elusive, our result establishes the convergence and positivity of the objects

involved.

Indeed, recall that S can be written as an infinite Euler product
∏

p χp over

all primes. While we know that the individual χp are all positive for n ≥ 10

(since local solutions exist), this alone is not enough to deduce the positivity

of the product, unless we establish its absolute convergence.
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Secondly, the proof of the theorem naturally involves new bounds for the

Gauß sums S(q, a). Recalling that these are complete exponential sums which

are closely connected to the more general Weyl sum S(α), bounds for the

Gauß sums can be seen as a natural model problem for the harder problem

of improving the known bounds for the Weyl sum on the minor arcs, which

would be required to improve on Heath-Brown’s 14-variable result.

We also mention that all previous bounds on the Weyl sum for a general cubic

form were based on Davenport’s Shrinking Lemma, an elementary result on

diophantine inequalities which, however, so far did not have an elementary

proof.

In Chapter 2, we also give a new elementary and short proof of the Shrinking

Lemma. While this is very satisfatory, it does not immediately lead to a bet-

ter result. Instead, we reinterpret the previous use of the Shrinking Lemma

in terms of the Fp-rank of certain matrices. It is this reinterpretation that

eventually allows us to improve the existing bounds and establish the result

for n ≥ 10.

In Chapter 3, which is joint work with Leonhard Hochfilzer, we are interested

in the solubility of the equation C(x) = 0 in the prime numbers.

Many of the most famous problems in classical number theory, such as Gold-

bach’s Problem or the Twin Prime Conjecture can be interpreted as asking

for the solubility of a certain Diophantine equation in the set of prime num-

bers. While we cannot quite prove the existence of prime solutions to the

cubic equation C(x) = 0, we establish the following:

Theorem 1.0.2. Let C be a cubic form in n ≥ 33 variables with rational co-

efficients. Then there are almost prime solutions to C(x) = 0 in the following

sense: There are coprime integers c1, . . . , cn such that the equation

C(c1p1, c2p2, . . . , cnpn) = 0

has infinitely many solutions in primes p1, . . . , pn, not all equal.
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Perhaps surprisingly, this is a consequence of the following geometric result,

in conjunction with the Green-Tao Theorem on primes in arithmetic progres-

sions:

Theorem 1.0.3. Let C be a cubic form in n ≥ 33 variables with rational

coefficients. Then the projective cubic hypersurface defined by C(x) = 0

contains a rational projective line.

Both theorems improve on results of Wooley [29] by four variables. Inter-

estingly, contrary to the question of existence of rational points, there does

not seem to be a clear heuristic of how many variables should be required

to ensure the existence of a rational line, but we certainly do not expect the

bound 33 to be optimal. Indeed, combining our method with recent ideas of

Brandes and Dietmann, one can save another two variables and prove both

results for n ≥ 31.

How does one prove the existence of a rational line? Expanding the condition

C(x + ty) = 0 for the existence of such a line in terms of t, we are led to a

system

C(x) = Qy(x) = Ly(x) = C(y) = 0.

A natural strategy is to start by choosing a point y with C(y) = 0, which

we can do by Heath-Brown’s result. This leaves us with a system of a linear,

quadratic and cubic equation in x. While the linear equation does not con-

stitute a problem, the quadratic equation is an issue as it is hard to control

its signature so that it might be definite or nearly so.

The solution, as pioneered by Wooley, is to pass to an imaginary quadratic

number field K/Q in which the definiteness issue disappears. By an observa-

tion of Lewis, finding a suitable K-rational line would suffice to deduce the

existence of a Q-rational line.

The key problem then becomes to study the existence of solutions to cubic
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homogeneous equations over number fields. We are able to generalize Heath-

Brown’s method and obtain the following:

Theorem 1.0.4. Let K/Q be an imaginary quadratic number field. If C(x)

is a homogeneous cubic form over K in at least 14 variables, then C(x) = 0

has a non-trivial solution.

We remark that this by far does not constitute the first instance of an appli-

cation of the Hardy-Littlewood method over number fields. However, Heath-

Brown needed to introduce several technical innovations to the method in

order to treat the case of 14 variables. In trying to generalize them to the

number field case, one encounters serious difficulties, and indeed we are able

to surmount all these difficulties only in the case of imaginary quadratic

number fields. While one would certainly hope to extend this result to all

number fields, this level of generality is sufficient to deduce Theorems 1.0.3

and 1.0.2.

In total, the proof of Theorem 1.0.2 thus consists of a mixture of results

from classical prime number theory (Green-Tao Theorem), geometric ideas

(Wooley, Lewis) and heavy Fourier-analytic machinery in the form of the

Hardy-Littlewood method over number fields.

In Chapter 4, we finally introduce two new aspects to the problems discussed

previously. The first is the generalization to inhomogeneous cubic equations

ϕ(x) = 0. While many aspects of the method are similar to the homogeneous

case, new phenomena arise in this case.

First of all, it is no longer the case that the assumption of sufficiently many

variables ensures that there are no congruence obstructions. We thus always

need to assume the Necessary Congruence Condition that ϕ(x) ≡ 0 (mod N)

is solvable for all N . However, as the following example

ϕ(x) = (2x1 − 1)(1 + x21 + x22 + · · ·+ x2n) + x1x2
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of Watson shows, the Necessary Congruence Condition is not in general suf-

ficient to ensure the existence of integer solutions, even if the number of

variables is large.

Following an approach of Davenport and Lewis, we introduce the h-invariant

of a cubic form C to be the least positive integer such that

C(x) =
h∑
i=1

Li(x)Qi(x)

for appropriate linear forms L1, . . . , Lh and quadratic formsQ1, . . . , Qh. Equiv-

alently, n − h is the largest dimension of a linear subspace contained in the

cubic hypersurface defined by the equation C(x) = 0. With a slight variant

of the definition of the counting function N(P ), we are then able to prove

the following:

Theorem 1.0.5. Assume that ϕ = C + Q + L + N is of degree 3, non-

degenerate, satisfies the Necessary Congruence Condition and h(C) ≥ 14.

Then

N(P ) = (1 + o(1))S · I · P n−3, P → ∞

where S and I are the usual singular series and singular integral, respectively.

We have S > 0 and I > 0. In particular, there is a solution x ∈ Zn to

ϕ(x) = 0.

Note that this also shows the asymptotic formula in the homogeneous case

under the assumption h(C) ≥ 14. The relevance of the h-invariant can al-

ready be seen from the fact that the counterexample (1.0.3) to the asymptotic

from above has h(C) = 2.

The second new aspect introduced in Chapter 4 is a different approach to

our Question 3 from above, i.e. to quantify the distribution of solutions.

Indeed, one may ask for an upper bound on the size of the smallest non-trivial

solution in terms of the coefficients of the polynomial ϕ.
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In many situations, we expect such a search bound to be polynomial in M ,

where M is the maximal absolute value among the coefficients of ϕ.

Improving on results of Browning-Dietmann-Elliott [4], we are able to prove

the following:

Theorem 1.0.6. With the same assumptions as in Theorem 1.0.5, there

exists a vector x ∈ Zn with ϕ(x) = 0 and

max
i

|xi| ≪M6407n2

.

In the homogeneous case, if n ≥ 14 and C ∈ Z[x1, . . . , xn] is a cubic form,

there exists a vector x ∈ Zn\{0} with C(x) = 0 and

max
i

|xi| ≪M132484.

If, additionally, we assume C to be non-singular, then for n = 14 we can

ensure that

max
i

|xi| ≪M2049.

The proof involves a careful generalization of Heath-Brown’s method, to-

gether with some new ideas regarding uniform lower bounds for the singular

series and the singular integral.

15



16



Chapter 2

The singular series of a cubic

form in many variables and a

new proof of Davenport’s

Shrinking Lemma

2.1 Introduction

In this chapter, let C(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a cubic form. We are

interested in the existence of nontrivial integer solutions, i.e. nonzero vectors

x ∈ Zn with C(x) = 0.

Davenport [10] proved that if n ≥ 16, such nontrivial solutions always exist.

This remained the state of the art for almost half a century until Heath-

Brown [16] could extend the admissible range to n ≥ 14, this has not been

improved to date. Given that 10 variables suffice to guarantee local solubility

[21], it is generally expected that the same result should hold already when

n ≥ 10.

The Hardy-Littlewood Circle Method aims to prove the existence of solutions
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by proving that there are indeed many. If it works, it provides us with an

asymptotic formula of the shape

#{x ∈ Zn, x ∈ PB} = (1 + o(1)) · I ·S · P n−3 (2.1.1)

as P → ∞. Here B ⊂ Rn is a suitably chosen box and I and S denote

the usual singular integral and the singular series of the cubic form C, re-

spectively, measuring the local solubility of C over the fields R and Qp for

all primes p. The singular integral is rather unimportant for this paper, so

we refer the reader to [10] for its precise definition and only mention that

it is known to be positive for a suitable choice of B as soon as n ≥ 4. The

singular series is the key object of the present paper and will be defined and

discussed in more detail in the next section.

For now, let us continue discussing the heuristic asymptotic formula (2.1.1)

and let us note that it clearly fails in certain degenerate situations. Indeed,

when C is reducible, it is easy to see that the count on the left-hand side is

already ≫ P n−1. More generally, if our cubic form is of the shape C(x) =

x1Q1(x) + x2Q2(x) for certain quadratic forms Q1 and Q2, we still have

≫ P n−2 solutions and hence too many for (2.1.1) to possibly hold.

The ingenious idea of Davenport to circumvent this fundamental problem

was to establish a certain dichotomy: If the circle method fails to produce

the asymptotic (2.1.1), then this failure could be turned into an alternative

proof of the existence of solutions, though not in such a precise quantitative

manner.

To describe Davenport’s idea in more detail, we write C(x) =
∑

i,j,k cijkxixjxk

where we assume the cijk to be symmetric and integers (as we may by mul-

tiplying C by 6 if necessary). We then define the bilinear forms

Bi(x,y) =
n∑

j,k=1

cijkxjyk

18



and the matrix M(x) with entries

M(x)jk =
n∑
i=1

cijkxi

so thatM(x)y is the vector with entries Bi(x,y). For later use we let D(x) =

detM(x) and r(x) = rkM(x). For a prime p, we will also need to consider

the Fp-rank of M(x) which we denote by rp(x).

Let us now say that C satisfies Davenport’s Geometric Condition if

#{x ∈ Zn : ∥x∥∞ ≤ P, r(x) = r} ≪ P r+ε (2.1.2)

is satisfied for all integers r with 0 ≤ r ≤ n.

We can then describe Davenport’s result more concisely as follows:

Theorem A. If C does not satisfy Davenport’s Geometric Condition (2.1.2),

then the equation C(x) = 0 has a non-trivial integer solution.

Theorem B. If C satisfies Davenport’s Geometric Condition (2.1.2), then

the asymptotic formula (2.1.1) holds with I,S > 0 as soon as n ≥ 16. In

particular, there are non-trivial integer solutions to C(x) = 0.

Note that Theorem A does not make any assumption on the number of

variables n. This means that in trying to improve on the constraint on the

number of variables, we are free to assume that the Geometric Condition is

satisfied.

Indeed, this is what Heath-Brown did, showing

Theorem C. If C satisfies Davenport’s Geometric Condition (2.1.2), then

the asymptotic formula (2.1.1) holds with I,S > 0 as soon as n ≥ 14. In

particular, there are non-trivial integer solutions to C(x) = 0.

In view of the above discussion, it is natural to conjecture that this should

extend to n ≥ 10:
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Conjecture 2.1.1. If C satisfies Davenport’s Geometric Condition (2.1.2),

then the asymptotic formula (2.1.1) holds with I,S > 0 as soon as n ≥ 10.

In particular, there are non-trivial integer solutions to C(x) = 0.

2.2 Main results

We now describe our main results. To this end, we need to return to the

singular series S. It is defined in terms of the Gauß sums

S(q, a) =
∑

x (mod q)

e

(
aC(x)

q

)
via

S =
∞∑
q=1

∑
(a;q)=1

S(q, a)

qn
.

By standard multiplicativity properties of the Gauß sums, this can (at least

formally) also be written as an Euler product

S =
∏
p

χp

over all primes p where

χp =
∞∑
k=0

∑
(a;pk)=1

S(pk, a)

pkn

is known as the p-adic density. By classical arguments it follows that χp > 0

if and only if C(x) = 0 has a non-trivial solution over Qp. In particular, from

[21] we conclude that χp > 0 for all p whenever n ≥ 10.

So far we have ignored all convergence issues. The rearrangement between

the series and the product representation of S is only valid when either of

the two is known to be absolutely convergent. Proving absolute convergence

of S is therefore crucial for switching between the two representations and
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also to conclude its positivity from the positivity of all individual factors

χp. Only then, the formula (2.1.1) truly captures the expected Local-Global

Principle.

Previously, the absolute convergence for S under the assumption of Dav-

enport’s Geometric Condition (2.1.2) was known for n ≥ 11 by work of

Heath-Brown [16].

We begin by giving a new short and self-contained proof of this result. This

new method then allows us to improve on previous work and establish the

following.

Theorem 2.2.1. Assume that n ≥ 10 and that C satisfies Davenport’s ge-

ometric condition. Then the singular series S is absolutely convergent. In

particular, S > 0.

This can be seen as giving further evidence to Conjecture 2.1.1. Moreover, the

Gauß sums featuring in the definition of the singular series are closely related

to the Weyl sums that would appear in a circle method proof of (2.1.1). It

is therefore to be hoped that the study of the Gauß sums and hence of the

singular series can serve as a good model problem for our understanding of

the more difficult Circle Method Problem.

We can also say something about the case n = 9. We begin by proving

that the only possible obstructions to absolute convergence are the Gauß

sums with prime moduli. To deal with them, we then propose the following

conjecture:

Conjecture 2.2.2. Assume that C satisfied the Geometric Condition (2.1.2).

Then for all n and uniformly in 1 ≤ H ≤ R, we have

#{h ≤ H,R < p ≤ 2R : rp(h) ≤ r} ≪ Hr ·R1+ε.

We are able to prove the following:
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Theorem 2.2.3. Under the assumption of Conjecture 2.2.2, the singular

series is absolutely convergent for n = 9.

In the last section, we return to the work of Davenport and Heath-Brown and

give a short and elementary proof of Davenport’s Shrinking Lemma, which is

a crucial ingredient in the circle method approach to the cubic forms problem

as pioneered by Davenport. The only previous proof of the Shrinking Lemma

is due to Davenport and uses rather intricate tools from the geometry of

numbers.

2.2.1 Notation

We use the usual notation O(. . . ) and ≪ where the implicit constants are

always allowed to depend on the cubic form C(x). Moreover, whenever a

bound involves ε, it means that the bound is true for all sufficiently small

ε > 0, but the implicit constant is allowed to depend on ε.

Moreover, we use the notation e(x) = e2πix and ∥x∥ = minn∈Z |x−n|. When-

ever we write something like
∑

h, the sum is restricted to integer vectors h

and the given restrictions on the summation are to be read component-wise.

Finally, the condition r ∼ R denotes a restriction of r to a dyadic interval

(R, 2R].

2.3 Review of previous bounds for S(q, a)

The following simple lemma is good enough to recover all results previously

obtained:

Lemma 2.3.1. Let q and n be positive integers and let M be a n×n matrix

with integer coefficients. Then the size of the kernel of M viewed as a map

from (Z/qZ)n to itself divides detM . In particular, if q is a prime and M

has Fq-rank at most n− r, then pr | detM .
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Proof. Without loss of generality (that is, up to multiplication from both

sides by invertible matrices), we may assume that M is in Smith Normal

Form with diagonal entries a1, . . . , an. Then the kernel has size
∏n

i=1(ai; q)

which divides detM =
∏n

i=1 ai.

We now recall the classical van der Corput differencing:

Lemma 2.3.2 (Initial van der Corput Bound). Let H ≥ 1 be arbitrary.

Then, in the above notation, we have(
S(q, a)

qn

)2

≪ 1

Hn

∑
1≤h≤H

√
1

qn
#{y (mod q) : q | Bi(y,h)}. (2.3.1)

Proof. We set out by applying Cauchy-Schwarz to the identity

S(q, a) =
1

Hn

∑
x (mod q)

∑
1≤h≤H

e

(
aC(x+ h)

q

)
to obtain after some manipulations

|S(q, a)|2 ≪ qn

Hn

∑
−H≤h≤H

∣∣∣∣∣∣
∑

x (mod q)

e

(
a (C(x+ h)− C(x))

q

)∣∣∣∣∣∣ .
The lemma now follows by noting that the square of the absolute value of

the inner sum is just∑
x,y

e

(
a (C(x+ y + h)− C(x+ y)− C(x+ h) + C(x)

q

)
=
∑
x,y

e

(
a
∑

i xiBi(y,h)

q

)
and using orthogonality.

Next, from Lemma 2.3.1 we see that qr(h)−n#{y (mod q) : q | Bi(y,h)}
divides a non-zero r(h)× r(h) minor of M so that in particular

1

qn
#{y (mod q) : q | Bi(y,h)} ≪

(
H

q

)r(h)
.
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Inserting this into Lemma 2.3.2 and using the geometric condition (2.1.2),

we find that (
S(q, a)

qn

)2

≪ 1

Hn

∑
−H≤h≤H

(
H

q

)r(h)/2
≪ qε

Hn

n∑
r=0

(
H3

q

)r/2
≪ qε

(
1

Hn
+
Hn/2

qn/2

)
and putting H = q1/3, we recover Heath-Brown’s pointwise bound S(q, a) ≪
q5n/6+ε.

Recalling the definition of the p-adic factor in the product expansion of S,

we now find that

χp =
∞∑
k=0

∑
(a;pk)=1

S(pk, a)

pnk

= 1 +
∑

(a;p)=1

S(p, a)

pn
+O

(
∞∑
k=2

pk(1−n/6)+ε

)

= 1 +
∑

(a;p)=1

S(p, a)

pn
+O

(
p2−n/3+ε

)
so that the estimation of the terms with k ≥ 2 is satisfactory for the question

of absolute convergence of S as soon as n > 9.

To establish Theorem 2.2.1, it therefore remains to show that∑
p

∑
(a;p)=1

S(p, a)

pn

converges absolutely for n ≥ 10. It would therefore clearly suffice to show

that ∑
p∼R

max
(a;p)=1

∣∣∣∣S(p, a)pn

∣∣∣∣≪ R−1−δ
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for which, by Cauchy-Schwarz, it suffices to establish

∑
p∼R

max
(a;p)=1

∣∣∣∣S(p, a)pn

∣∣∣∣2 ≪ R−3−δ

for all choices of R ≥ 1.

Using our previous line of argument, the LHS is bounded by

1

Hn

∑
−H≤h≤H

∑
R≤p<2R

√
1

pn
#{y (mod p) : p | Bi(y,h)}

=
1

Hn

∑
−H≤h≤H

∑
R≤p<2R

p−rp(h)/2

where rp(h) is the Fp-rank ofM(h). Heath-Brown’s idea is now to distinguish

two cases:

Those pairs (h, p) with rp(h) = r(h) give a contribution bounded by

1

Hn

∑
−H≤h≤H

∑
R≤p<2R

p−r(h)/2 ≪ 1

Hn

n∑
r=0

Hr+εR1−r/2 ≪ Hε

(
R

Hn
+

R

Rn/2

)
(2.3.2)

by the Geometric Condition (2.1.2). The last term is satisfactory for n > 8.

On the other hand, we need to estimate the contribution from those pairs

(h, p) with rp(h) < r(h). Here we use the implication from Lemma 2.3.1 that

pr(h)−rp(h) must divide a non-zero r(h) × r(h)-minor of M(h) and is hence

O(Hr(h)) so that

p−rp(h) ≪
(
H

p

)r(h)
. (2.3.3)

Moreover, p being a divisor of such a minor, there are at most Hε choices

of such p for any fixed h. The total contribution of such pairs (h, p) can

therefore be bounded by

Hε

Hn

∑
h

(
H

R

) r(h)
2

≪ Hε−n
n∑
r=0

(
H

R

) r
2

≪ Hε

(
1

Hn
+

(
H3

R

)n
2

)
(2.3.4)
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again using the geometric condition.

Comparing the contributions from (2.3.2) and (2.3.4) we find that the optimal

choice is H = R
n+2
3n leading to the bound R−(n−1)/3+ε which is satisfactory

when n > 10.

2.4 The case of ten variables

When n = 10, we observe that H = R2/5+δ for sufficiently small δ > 0 leads

to a satisfatory contribution from (2.3.2) and from all terms in (2.3.4) except

when r = n = 10. Moreover, even for this term it suffices to save another

small power of R, which we do in (2.3.3) unless rp(h) = 6. It therefore suffices

to show that

#{h ≤ H, p ∼ R : r(h) = 10, rp(h) = 6} ≪ H10−δ′

for some δ′ > 0 whenever H = R2/5+δ for sufficiently small δ > 0.

To prove this, we use an argument inspired by a trick of Davenport [10] which

he used to go from 17 to 16 variables. However, the presence of the extra

averaging over p requires a new idea.

By Lemma 2.3.1, we have p4 | D(h) for all such h. Moreover, there are p4

vectors y ∈ {0, 1, 2, . . . , p− 1}n with p | Bi(y,h) for all i.

By the Pigeonhole principle, two of them differ by O(p3/5) in each component

and by linearity of the Bi, this means that for each such h we get one solution

y = y(h) ̸= 0 with ∥y∥∞ ≪ p3/5 and p | Bi(y,h).

Writing Bi(y,h) = pmi, we find that mi = mi(h) ≪ Rδ. Moreover, not all

mi are zero since we assumed r(h) = 10.

We can now count the number of pairs (h, p) in question as follows: There

are ≪ R10δ possible choices of the mi. For a fixed choice of (m1, . . . ,mn), we

then study the number of possible choices of (h, p). The general solution of
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the system Bi(y,h) = pmi is given by

yj = p ·
∑

kmkEjk(h)

D(h)

where the Ejk are certain 9× 9 minors of M(h), in particular homogeneous

forms of degree 9 in h.

Now certainly, for our given choice of the mi, there is one j such that the

degree-9 form E(h) :=
∑

kmkEj,k(h) is not identically zero. We conclude

that D(h) | p · E(h).
Let G be the greatest common divisor of D and E and write D = GD′ and

E = GE ′ so that D′(h) | p · E ′(h) and D′ is coprime to E ′. We thus find

by Bézout’s Theorem a non-zero linear combination F of D′ and E ′ that

depends only on h2, . . . , hn. Hence D′(h) | p · F (h2, . . . , hn). Note that the

coefficients of all the polynomials depend on the mi, but are all polynomially

bounded in terms of R which is sufficient for our application.

Now there are at most H9 values of h where F is zero and then p as a divisor

of D(h) is determined up to Hε many choices, leading to a total bound of

H9+ε for the number of pairs (h, p) in this case.

On the other hand, if F (h2, . . . , h10) is non-zero, we see that p | F (h2, . . . , h10)
by the following ad-hoc bootstrapping argument: Since p4 | D(h) = G(h) ·
D′(h) and degG ≤ 9 we have G(h) ≪ H9 < p4 if δ > 0 is sufficiently small.

Hence p | D′(h). But if δ is small, this forces degD′ ≥ 3 and hence degG ≤ 7

so that G(h) ≪ H7 < p3, again if δ is small. Hence p2 | D′(h) and hence

p | F (h2, . . . , h10) as desired.
Finally, for any choice of h2, . . . , h10 with F (h) ̸= 0, this determines p and

D′(h) up to Hε many choices and then also h1 is determined up to finitely

many choices, unless we are in a proper Zariski-closed subset of h2, . . . , h10. In

any case, the total number of pairs (h, p) can be bounded by H9+ε. Summing

up, we have thus shown that

#{h ≤ H, p ∼ R : r(h) = 10, rp(h) = 6} ≪ R10δ ·H9+ε
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which is satisfactory for δ > 0 sufficiently small. This finishes the proof of

Theorem 2.2.1.

2.5 The case of nine variables

We now set out to discuss the case n = 9, aiming for a proof of Theorem

2.2.3. To begin with, we need to discuss the case of higher prime powers.

The contribution to χp of S(pk, a) for k ≥ 3 is seen to be satisfactory even

for n = 9. For the contribution of the terms with k = 2, our pointwise bound

S(p2, a) ≪ p5n/3+ε just fails to be good enough when n = 9.

However, we can use the averaging trick introduced in the previous section

to also improve on this bound and therefore reduce the problem of absolute

convergence of S for n = 9 to the study of S(p, a) for primes p:

Lemma 2.5.1. For n = 9, the sum∑
p

∑
(a;p2)=1

S(p2, a)

p2n

is absolutely convergent. In particular, the singular series for n = 9 converges

absolutely if and only if ∑
p

∑
(a;p)=1

S(p, a)

pn

is absolutely convergent.

Proof. As before, a dyadic decomposition and an application of Cauchy-

Schwarz reduce the problem to showing that∑
p∼R

max
(a;p2)=1

∣∣∣∣S(p2, a)p2n

∣∣∣∣2 ≪ R−5−δ.

From Lemma 2.3.2, we see that the LHS is bounded by

1

Hn

∑
−H≤h≤H

∑
p∼R

√
1

p2n
#{y (mod p2) : p2 | Bi(y,h)}.
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We continue by separating the cases rp(h) = r(h) and rp(h) < r(h). In the

first case, the expression under the root is (p2)−r(h) and using the geometric

condition (2.1.2) we obtain a contribution bounded by

RHε

Hn

n∑
r=0

Hr

(R2)r/2
≪ R1+ε

(
1

Hn
+

1

Rn

)
(compare this with (2.3.2)). In the second case, for each h, there are at

most Rε choices of p and for each such pair the expression under the root is

bounded by
(
H
p2

)r(h)/2
so that the contribution in this case can be bounded

by

Rε

Hn

n∑
r=0

Hr

(
H

R2

)r/2
≪ Rε ·

(
1

Hn
+

(
H

R2

)n/2)
(compare this with (2.3.4)) and choosing H = (R2)

n+1
3n we end up with the

total contribution of ≪ R1− 2(n+1)
3 from both cases together, which is satis-

factory as soon as n > 8.

We are now ready to prove Theorem 2.2.3:

Proof of Theorem 2.2.3. By Lemma 2.5.1 and the arguments from the pre-

vious discussion, it suffices to prove that∑
p∼R

max
(a;p)=1

∣∣∣∣S(p, a)pn

∣∣∣∣2 ≪ R−1−δ

for all choices of R ≥ 1. Using Lemma 2.3.2, the LHS is bounded by

1

Hn

∑
h

∑
p∼R

p−
rp(h)

2 ≪ 1

Hn

n∑
r=0

R− r
2#{h ≤ H, p ∼ R : rp(h) = r}.

Assuming Conjecture 2.2.2, this can be further estimated as

≪ 1

Hn

n∑
r=0

R−r/2HrR1+ε ≪ R1+ε

Hn
+
R1+ε

Rn/2
.

Choosing e.g. H = R1/2 we see that this is satisfactory as soon as n > 8.
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Indeed, as can be seen from the above proof, only something weaker than

Conjecture 2.2.2 is actually required. However, we do believe that this is the

‘right’ way to put the conjecture, as the proposed upper bound is exactly

the contribution that we a priori get from the terms with r(h) = r and p

arbitrary, using the geometric condition (2.1.2).

We close this section by a few more remarks regarding Conjecture 2.2.2. To

start with, the cases r = 0 and r = n are easy to establish. Moreover, we

can also prove the case r = n − 1: Those h with r(h) = n − 1 produce

a satisfactory contribution by the geometric condition (2.1.2), as explained

above. On the other hand, there can be only O(Hn+ε) pairs (h, p) with

r(h) = n and rp(h) = n− 1 as then p | D(h) and so p is determined by h up

to at most Hε many choices.

2.6 A new proof of Davenport’s Shrinking

Lemma

In previous work on general cubic forms, a crucial tool for dealing with the

bilinear counting problems as seen in (2.3.1) as well as more general versions

for the Weyl sums was the following result of Davenport, also known as the

Shrinking Lemma.

Lemma 2.6.1 (Davenport’s Shrinking Lemma). Let L = (L1, . . . , Ln) ∈
Rn×n be a symmetric matrix. Let P ≥ 1 and 0 < Z < 1 be real numbers.

Then

#

{
x ∈ Zn : |x| ≤ P, ∥Li(x)∥ <

1

2nP
∀i
}

≤
(
4

Z

)n
·#
{
x ∈ Zn : |x| ≤ ZP, ∥Li(x)∥ <

Z

2nP
∀i
}
.

Here, ∥z∥ denotes the distance of z to the nearest integer.

30



In only dealing with the Gauß sums in the above discussion we were able

to circumvent the use of the lemma, using Lemma 2.3.1 and the Pigeonhole

Principle as a substitute, but for the Weyl sums it remains an essential in-

gredient. Since the only previous proof uses rather intricate tools from the

geometry of numbers, it is therefore desirable to present a short and elemen-

tary proof which we do in this section.

Proof of Lemma 2.6.1. We begin by choosing a prime q such that 2
Z
≤ q ≤ 4

Z

which is always possible. Then it will suffice to prove that

#

{
x ∈ Zn : |x| ≤ P, ∥Li(x)∥ <

1

2nP
∀i
}

≤qn ·#
{
x ∈ Zn : |x| ≤ 2P

q
, ∥Li(x)∥ <

1

nqP
∀i
}
.

Denote by [z] the nearest integer to z. For each (a,b) ∈ (Z/qZ)2 let

Na,b = #

{
|x| ≤ P, ∥Li(x)∥ <

1

2nP
,x ≡ a (mod q), ([Li(x)])i ≡ b (mod q)

}
.

Clearly the LHS of our inequality now decomposes as
∑

a,bNa,b. Now observe

that if x1 and x2 are counted by Na,b, then x := x2−x1

q
is counted by the

RHS of our inequality. Hence it follows that

Na,b ≤ #

{
x ∈ Zn : |x| ≤ 2P

q
, ∥Li(x)∥ <

1

nqP
∀i
}

which is already enough to deduce our claimed inequality with a factor of

q2n instead of qn, since there are q2n choices of (a,b).

To conclude the stronger claim, it will thus suffice to show that Na,b ̸= 0

only for at most qn choices of (a,b). Indeed, this will follow immediately if

we can show that the 2n×2n matrix with columns (x, [Li(x)]) for x counted

by the LHS of our inequality has rank at most n.

However, note that by our estimate on ∥Li(x)∥ and the symmetry of L we

have

y · ([Li(x)])i = x · ([Li(y)])i
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for all x and y counted, since both sides are integers and differ by less than

2n · P · 1
2nP

= 1.

Hence, if we add to our matrix the columns (−[Li(x)],x) each column of the

new part will be orthogonal to each column of the old part, and since they

both have the same rank, both parts can have rank at most n, as desired.
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Chapter 3

Cubic forms over imaginary

quadratic number fields and

rational lines on cubic

hypersurfaces

3.1 Introduction

The study of integer solutions to polynomial equations is one of the most fun-

damental mathematical problems. Quadratic forms are very well understood

but the situation already becomes much more difficult when studying cubic

equations. A cubic form C(x) ∈ Z[x1, . . . , xs] is a homogeneous polynomial

of degree 3. We say that C represents zero non-trivially if there is a vector

x ∈ Zs\{0} such that C(x) = 0. Lewis [20] and Birch [1] both independently

showed that every cubic form in sufficiently many variables represents zero

non-trivially.

Using the Hardy-Littlewood circle method, Davenport [11] showed that it

suffices to assume s ≥ 32 in order to show that C represents zero non-
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trivially, which he then improved to s ≥ 16 in a series of papers [9, 10].

The current state of the art is due to Heath-Brown [16] who showed that 14

variables suffice.

The best one can hope for is that every cubic forms in at least 10 variables

represents zero non-trivially since there exist cubic forms in 9 variables, which

do not have non-trivial p-adic solutions and hence also do not represent zero

non-trivially over the integers.

More is known when the cubic form is assumed to be non-singular. In this

case Heath-Brown [17] showed that if s ≥ 10 then the cubic form represents

zero non-trivially, and Hooley [18] established the Hasse Principle if s ≥ 9.

That is, he showed that if a non-singular cubic form over Q in at least nine

variables has a non-trivial p-adic solution for every p and a non-trivial real

solution then it also represents zero non-trivially over the rational numbers.

One may also consider these problems for cubic forms over a number field

K/Q. In fact the above mentioned result by Lewis was proved for any number

field K/Q. Using the circle method the number of variables required was

reduced to 54 by Ramanujam [25], which was subsequently improved to 17

variables by Ryavec [26] and 16 variables by Pleasants [24]. If one assumes

the cubic form to be non-singular then recent work by Browning–Vishe [6]

shows that ten variables suffice in order to infer the existence of a non-trivial

zero, which improves previous work by Skinner [27].

The main result of this paper is the following.

Theorem 3.1.1. Let K/Q be an imaginary quadratic number field. If C(x)

is a homogeneous cubic form over K in at least 14 variables then C(x) rep-

resents zero nontrivially.

It seems likely that our result should remain true for general number fields,

however there are two serious obstructions in generalizing Heath-Brown’s

ideas to the number field setting, as we discuss in the course of our proof.
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We are able to remove these difficulties only in the special case of imaginary

quadratic number fields.

Our result has some interesting applications to problems that do not involve,

prima facie, any number fields. The first of these concerns rational lines on

cubic hypersurfaces.

Theorem 3.1.2. Let C be a cubic form in s ≥ 33 variables with rational

coefficients. Then the projective cubic hypersurface defined by C(x) = 0

contains a rational projective line.

This improves on work of Wooley [29] who had the same result under the

assumption s ≥ 37. We note that another two variables can be saved using

ideas from forthcoming work by Brandes and Dietmann [3], thus leading to

a result for s ≥ 31 variables. More specifically, while our argument (building

on Wooley’s) only requires Theorem 3.1.1 for one imaginary quadratic num-

ber field (e.g. Q(i)), the full generality of Theorem 3.1.1 is required in the

argument of Brandes and Dietmann.

It is also worth mentioning that in a different paper of the same authors [2],

the result for s ≥ 31 variables is already established under the assumption

that the underlying hypersurface is nonsingular.

Based on an observation of Brüdern–Dietmann–Liu–Wooley [7], the existence

of rational lines can be used in conjunction with the Green–Tao Theorem to

produce almost prime solutions to cubic forms as follows:

Theorem 3.1.3. Let C be a cubic form in s ≥ 33 variables with rational co-

efficients. Then there are almost prime solutions to C(x) = 0 in the following

sense: There are coprime integers c1, . . . , cs such that the equation

C(c1p1, c2p2, . . . , csps) = 0

has infinitely many solutions in primes p1, . . . , ps, not all equal.
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We note that one can obtain the same result for s ≥ 31, assuming the

corresponding version of Theorem 3.1.2.

For comparison, the existence of prime solutions is only known for non-

singular cubic forms and under the assumption of a much larger number of

variables, cf. the work of Yamagishi [30] and Liu–Zhao [22]. These authors

require 8996 and 9216 variables, respectively, in the case of cubic forms.

Notation

We use e(α) = e2πiα and the notation O(. . . ) and ≪ of Landau and Vino-

gradov, respectively. All implied constants are allowed to depend on the

number field K, a choice of integral basis Ω for K, the cubic form C and a

small parameter ε > 0 whenever it appears.

As is convenient in analytic number theory, this parameter ε may change

its value finitely many times. In particular, we may write something like

M2ε ≪M ε.

We often use the notation q ∼ R to denote the dyadic condition R < q ≤ 2R.

3.2 Deduction of Theorems 3.1.2 and 3.1.3

In this section, we give the proofs of Theorems 3.1.2 and 3.1.3 assuming

Theorem 3.1.1.

We begin with the observation that the existence of a rational line on the

cubic hypersurface defined by C is equivalent to the existence of linearly

independent vectors v and w such that C(v + tw) = 0 identically in t.

Expanding this formally as a cubic polynomial in t, we obtain the equivalent

C(v) + tQw(v) + t2Lw(v) + t3C(w) = 0

for certain quadratic resp. linear forms Qw and Lw depending on w. We
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therefore need to find linearly independent v and w such that

C(v) = Qw(v) = Lw(v) = C(w) = 0.

If we start by choosing a solution w ̸= 0 of C(w) = 0, the linear equation

Lw(v) = 0 and the linear independence tow reduce the degrees of freedom for

v by two. We are thus looking for a solution to the system C(v) = Qw(v) = 0

of one cubic and one quadratic equation in s− 2 variables. If we knew that

the signature of the quadratic form Qw was sufficiently indefinite, we could

infer the existence of a sufficiently large linear space on which Qw vanishes,

leaving us with a single cubic form in many variables, that can be dealt with

by the work of Heath-Brown[16].

The crux however is that it is in general hard to control the signature of

Qw. Instead we avoid the indefiniteness issue by passing to an imaginary

quadratic number field of Q, thus requiring our Theorem 3.1.1.

We now present the complete argument in order: We begin by choosing a

w ∈ Qs\{0} such that C(w) = 0, which exists by the work of Heath-Brown.

Letting K/Q be any imaginary quadratic number field, we next show the

existence of a vector v ∈ Ks, linearly independent to w and satisfying

C(v) = Qw(v) = Lw(v) = 0.

To this end, we use that a hypersurface Q(x) = 0 defined by a quadratic

form Q in s variables contains a
⌊
s−3
2

⌋
-dimensional K-linear subspace, a fact

that is easily proved by induction.

The linear space of vectors v orthogonal to w and satisfying Lw(v) = 0

is at least (s − 2)-dimensional. Thus, Qw vanishes on a linear subspace of

dimension at least
⌊
(s−2)−3

2

⌋
=
⌊
s−5
2

⌋
. Note that by our assumption on s

we have
⌊
s−5
2

⌋
≥ 14. We are then left to solve the equation C(v) = 0 on a

14-dimensional linear space which can be done by Theorem 3.1.1.

We have thus proved that C(v + tw) = 0 identically in t for some linearly

independent vectors v ∈ Ks and w ∈ Qs.
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By an observation of Lewis, this is enough to deduce the existence of a

rational line, as we explain now, following an argument of Dietmann-Wooley

[13].

Consider the K-rational spaces V spanned by v and w as well as V ∗ spanned

by v∗ and w where ∗ denotes conjugation in K. If v ∈ Qs we are already

done. Else, consider the three-dimensional spaceW spanned by v, v∗ and w.

If C vanishes onW , we are also done asW clearly contains a two-dimensional

Q-rational subspace. Else, by intersection theory the hypersurface defined

by C must intersect W in a third two-dimensional K-rational subspace L.

More precisely, by Theorem I.7.7 in Hartshorne [15] we have

i(W,C;V ) + i(W,C;V ∗) +
∑
j

i(W,C;Zj) · degZj = (degW )(degC) = 3

where i(W,C;V ) denotes the intersection multiplicity and Zi are the other

irreducible components of C ∩W . Since W is invariant under conjugation,

we must have i(W,C;V ) = i(W,C;V ∗) and thus both numbers are equal to

1, implying that there is a unique third component L = Z1 which is then

necessarily linear. Finally, since W and C are conjugation invariant, the

three spaces V , V ∗ and L are permuted under conjugation and thus L itself

is conjugation invariant, i.e. describes the desired rational line.

We remark that the use of intersection theory in the previous argument can

be replaced by an explicit algebraic computation, as shown in Wooley [29].

To deduce Theorem 3.1.3, we follow the strategy in [7]. In particular, we

show that the existence of a rational line implies the existence of almost

prime solutions, regardless of the number of variables. We thus assume that

for some linearly independent vectors a,b ∈ Zs, we have C(at + bu) = 0

identically in t and u. If ai = bi = 0 for some i, then we can set ci = 1

and continue to work with the other variables. By taking a suitable linear

combination, we can then assume that indeed all ai and bi are different from
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0. Rescaling u by a factor of a1a2 . . . as and then rescaling the variables by a

factor of ai (thereby changing ci by a factor of ai), we may even assume that

all the ai are equal to 1, i.e.

C(t+ b1u, t+ b2u, . . . , t+ bnu) = 0

identically in t and u. By the Green–Tao Theorem [14], the primes con-

tain infinitely many arithmetic progressions of length 2M + 1 where M =

2maxi |bi| + 1, i.e. there are infinitely many pairs (ℓ, d) such that ℓ + kd is

prime for all |k| ≤ M . Choosing t = ℓ and u = k then yields the desired

result with ci = 1.

3.3 Algebraic Preliminaries

While our main result is proved only for imaginary quadratic number fields

we will introduce the matter in a general fashion and not restrict ourselves

to these fields for now. We will aim to highlight whenever phenomena occur

that set apart the situation for imaginary quadratic number fields from a

general setting. In particular, even when K/Q is an imaginary quadratic

number field we still sometimes prefer to write n = [K : Q].

Let K be a number field of degree n over Q and denote by O its ring of

integers.

Define the R-vector space KR := K ⊗Q R and note that we have natural

embeddings O ⊂ K ⊂ KR. The space KR is sometimes referred to as the

Minkowski space of K. Note that there exist integers n1 and n2 with n1 +

n2 = n such that K admits n1 real embeddings σ1, . . . , σn1 and 2n2 complex

embeddings σn1+1, σn1+1, . . . , σn1+n2 , σn1+n2 so that KR ∼= Rn1 × Cn2 .

Denote by πi the projection from VR ∼= Rn1×Cn2 to the i-th coordinate, which

may take real or complex values. We define the trace map tr : KR → R and
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norm map Norm: KR → R as

tr(α) =

n1∑
i=1

πi(α) +

n2∑
i=n1+1

Re(πi(α)),

and

Norm(α) =

n1∏
i=1

|πi(α)|
n2∏

i=n1+1

|πi(α)|2 ,

respectively. If α ∈ K then these are just the usual norm and trace function

from algebraic number theory.

Pick a basis Ω = {ω1, . . . , ωn} of O. Any element α ∈ KR may be expressed

in the form α =
∑n

j=1 αjωj for some αj ∈ R. For such α we define a height

|α| := max
j

|αj|.

Note that this depends on the choice of basis Ω for O. Given a vector

α = (α(1), . . . , α(s)) ∈ Ks
R we further denote

|α| := max
k

|α(k)|.

We may alternatively define another height on KR given by

|α|K := max
p

|πp(α)| .

As noted by Pleasants [24, Section 2] we have

|α| ≍ |α|K ,

for all α ∈ KR. If α, β ∈ KR then it is easy to see that this height satisfies

|αβ|K ≤ |α|K |β|K ,

|α + β|K ≤ |α|K + |β|K

|α−1|K ≤ |α|n−1
K

Norm(α)
.

40



The same inequalities therefore hold for | · | if we replace the symbols ≤ by

≪K . It would be desirable to have the last inequality in the form |α−1| ≍
|α|−1 which would result if Norm(α) ≍ |α|n. However, if α is a unit in O then

Norm(α) = 1 while the height |α| may be unbounded, at least whenever K

is not an imaginary quadratic number field. This is one of the points where

our argument crucially depends on the latter assumption.

If K = Q(
√
−d) is an imaginary quadratic number field then, depending

on the value of the residue class of d mod 4 we can choose {1,
√
−d} or

{1, (1 +
√
−d)/2} as an integral basis for O. We thus find that

Norm(α) ≍ |α|2.

In particular we find

|α−1| ≍ |α|−1.

Given an ideal J ⊂ O we recall that O/J is finite and we define as usual the

norm of the ideal to be

N(J) := # (O/J) .

For a fractional ideal of K this norm is, as usual, extended multiplicatively

using the unique factorization into prime ideals inside K. Given γ ∈ K we

further define the denominator ideal of γ as

aγ := {x ∈ O : xγ ∈ O} .

As the name suggests, and this is not very difficult to verify, aγ is an ideal

inside O, contained in the fractional ideal (γ)−1. We will need the following

fact several times.

Lemma 3.3.1. Let J ⊂ O be an ideal. Then there are at most N(J) different

elements γ ∈ K/O such that aγ = J .
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Proof. To see this, note first that for any two fractional ideals b, c ⊂ K with

b ⊃ c there exists some d ∈ O such that db, dc ⊂ O. Thus

[b : c] = [db : dc] =
[O : dc]

[O : db]
= N(dc)/N(db) = N(c)/N(b).

Now note that if aγ = J we must have γ ∈ J−1O, where

J−1 = {x ∈ K : xJ ⊂ O}.

But now [J−1O : O] = N(J) and so the result follows.

We shall further require a version of Dirichlet’s approximation theorem.

Lemma 3.3.2. Let K/Q be a number field of degree n. Let α ∈ KR and let

Q ≥ 1. Then there exist some a, q ∈ O with 1 ≤ |q| ≤ Q such that

|qα− a| ≤ 1

Q
. (3.3.1)

Proof. Consider the set Q of algebraic integers given by

Q =

{∑
j

qjωj ∈ O : 0 ≤ qj ≤ Q

}
.

For any q ∈ Q we may express qα as

qα = aq + xq,

where aq ∈ O and xq =
∑

j xq,jωj such that 0 ≤ xq,j < 1 for j = 1, . . . , n.

We may partition KR/O =
{∑

j xjωj : 0 ≤ xj < 1
}
into Qn boxes such that

the height of the difference of two points in the same box is bounded by 1/Q.

Since Q has (Q + 1)n elements, by the pigeonhole principle there must be

q1, q2 ∈ Q such that xq1 and xq2 lie in the same box according to the partition

above. Therefore we find

|(q1 − q2)α− (aq1 − aq2)| = |xq1 − xq2| ≤ 1/Q.

Taking q = q1 − q2 and a = aq1 − aq2 delivers the result.
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For the application to the mean-square averaging method introduced by

Heath-Brown, we need a fractional form of Dirichlet’s theorem. We are only

able to obtain a satisfactory version for imaginary quadratic number fields,

this being the first of the obstructions regarding possible generalizations men-

tioned in the introduction. Note that this is special to Heath-Brown’s method

and hence was not an issue in the work of Ramanujam, Ryavec and Pleasants.

Lemma 3.3.3. Let K/Q be an imaginary quadratic number field (in partic-

ular n = 2). Let α ∈ KR and let Q ≥ 1. Then there exists some γ ∈ K with

N(aγ) ≤ Qn such that

|α− γ| ≪ 1

N(aγ)
1
nQ

. (3.3.2)

Proof. From Lemma 3.3.3 we find that there exist a, q ∈ O with |q| ≤ Q

such that

|qα− a| ≤ 1/Q.

Set γ = a/q ∈ K and note that (q) ⊆ aγ. In particular from this it follows

that

N(aγ) ≤ N((q)) = Norm(q) ≍ |q|n,

where the last estimate is true since K is an imaginary quadratic number

field. Thus

|q|−1 ≪ N(aγ)
−1/n,

and so we obtain

|α− γ| ≪ |q|−1|qα− a| ≪ 1

N(aγ)
1
nQ

,

as desired.

We shall sometimes require the following easy lemma.
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Lemma 3.3.4. Let J ⊂ O be an ideal. Then there exist constants c1, c2 only

depending on K such that for any non-zero g ∈ J we have

c1N(J)1/n ≤ |g|,

and we may always find a non-zero element a ∈ J such that

|a| ≤ c2N(J)1/n.

Proof. First note that if g ∈ J then (g) ⊂ J and therefore

N(J) ≤ N((g)) = Norm(g) ≪ |g|n.

For the second inequality note that there are at least N(J) + 1 algebraic in-

tegers whose height does not exceed N(J)1/n. By definition N(J) = #(O/J)
and hence at least two of these integers must lie in the same residue class

modulo J . Their difference is therefore an algebraic integer a ∈ J with

|a| ≤ 2N(J)1/n.

Finally we will also need the following.

Lemma 3.3.5. Let K/Q be a number field and let ∆ be the discriminant of

this extension. Let α ∈ KR and assume that {ωi}i is an integral basis for O.

If

∆−1tr(αωi) ∈ Z

holds for all i = 1, . . . , n then α ∈ O.

Proof. Write α =
∑n

j=1 αjωj, where αj ∈ R. Due to the additivity of the

trace we have

tr(αωi) =
n∑
j=1

αjtr(ωiωj).

Denote by T the trace form, that is, the n× n matrix with entries tr(ωiωj).

Then if we identify α = (α1, . . . , αn) ∈ Zn, the assumption of the lemma is

equivalent to

∆−1T(α) ∈ Zn.
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By definition detT = ∆. Hence T′ := ∆T−1 has integer entries. Combining

this with our previous observation yields

α = T−1T(α) = T′(∆−1T(α)) ∈ Zn.

Hence α ∈ O as required.

3.4 The Dichotomy

Let C ∈ O[x1, . . . , xs] be a homogeneous cubic form. Our goal is to show

that there always exists a non-trivial solution to C = 0 over K provided

s ≥ 14 and K is an imaginary quadratic number field. We follow the strat-

egy of Davenport that was later refined by Heath-Brown [16]: Either C

represents zero non-trivially for ’geometric reasons’, or we can establish an

asymptotic formula for the number of solutions of bounded height, using the

circle method.

3.4.1 Davenport’s Geometric Condition

We may express C(x) as

C(x) =
∑
i,j,k

cijkxixjxk,

where the coefficients cijk are fully symmetric in the indices and lie in O,

after replacing C(x) by 6C(x) if required. For i = 1, . . . , s further define the

bilinear forms Bi(x,y) by

Bi(x,y) =
∑
j,k

cijkxjyk.

Finally, we also consider an s× s matrix M(x), the Hessian of C(x), whose

entries are defined by

M(x)jk =
∑
i

cijkxi,
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so that

(M(x)y)i = Bi(x,y).

We note that the entries are linear forms in the variables x. Denote the rank

of the matrix by

r(x) = rank(M(x)).

As in Davenport’s and Heath-Brown’s work we obtain a dichotomy.

Lemma 3.4.1. One of the following two alternatives holds.

1. Davenport’s Geometric Condition: For every integer 0 ≤ r ≤ s we have

#{x ∈ Os : |x| < H, r(x) = r} ≪ Hnr. (3.4.1)

2. The cubic form C(x) has a non-trivial zero in O.

Proof. Consider the least integer h = h(C) such that the cubic form may be

written as

C(x) =
h∑
i=1

Li(x)Qi(x),

where Li are linear and Qi are quadratic forms defined over K. This is the

h-invariant of C. It is easy to see that 1 ≤ h ≤ s holds, and that C(x) = 0

has a non-trivial solution over K if and only if h < s.

We will show that if h = s then alternative (1) holds. In fact, Pleasants [24,

Lemma 3.5] showed that the number of points x ∈ Os such that |x| < H

holds, for which the equations Bi(x,y) = 0, j = 1, . . . , s have exactly s − r

linearly independent solutions y is bounded by O(Hn(s−h+r)). Hence taking

h = s delivers the desired bound (3.4.1).

We will henceforth assume that Davenport’s Geometric Condition (3.4.1) is

satisfied and apply the circle method. In particular as in [16] this condition

implies that we have

#{x,y ∈ Os : |x|, |y| < H,Bi(x,y) = 0,∀i} ≪ Hns, (3.4.2)

for any H ≥ 1.
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3.4.2 The Circle Method

Let B ⊂ Ks
R
∼= Rns be a box of the form

B =


(∑

j

αijωj

)
i

∈ Ks
R : b

−
ij ≤ αij ≤ b+ij

 ,

where b−ij < b+ij are some real numbers . For P ≥ 1 consider the counting

function

N(P ;B) = N(P ) = {x ∈ PB ∩ Os : C(x) = 0} .

For α ∈ KR and P ≥ 1 we define the exponential sum

S(α) = S(α;P ) =
∑

x∈PB∩Os
e (tr(αC(x))) .

Denote by I ⊂ KR the set given by

I =

{
n∑
j=1

αjωj : 0 ≤ αj ≤ 1

}
,

which may also be regarded as KR/O. Due to orthogonality of characters we

obtain

N(P ) =

∫
α∈I

S(α)dα.

We are now able to state the main technical theorem of our paper.

Theorem 3.4.2. Let K/Q be an imaginary quadratic number field and let

C(x) be a cubic form in s ≥ 14 variables over K. Suppose that C(x) is irre-

ducible over K and that Davenport’s Geometric Condition (3.4.1) is satisfied.

Then we have the asymptotic formula

N(P ) = σP n(s−3) + o
(
P n(s−3)

)
, as P → ∞,

where σ > 0 is the product of the usual singular integral and singular series.

Thus Theorem 3.1.1 follows directly from Lemma 3.4.1 and Theorem 3.4.2

where we also note that a reducible cubic form always contains a linear factor

over K and therefore has a non-trivial solution for obvious reasons.

47



3.4.3 The major arcs

For this section we do not need to assume that K is an imaginary quadratic

number field of Q. As in Pleasants, we choose as center of our box B = B(z)
a solution z ∈ KR of C(z) = 0 satisfying ∂C

∂x1
(z) ̸= 0 and z1, . . . , zn ̸= 0. Such

a vector z always exists by [24, Lemma 7.2] provided C is irreducible.

Let γ ∈ K/O and define

Mγ :=
{
α ∈ I : |α− γ| < P−3+ν

}
,

where we regard I = KR/O. We define the major arcs as

M =
⋃

γ∈K/O
N(aγ)≤P ν

Mγ,

and the minor arcs as

m = I \M.

Further, define the sum Sγ via

Sγ =
∑

x mod N(aγ)

e(tr(γC(x)).

Given a parameter R ≥ 1 we define the truncated singular series to be

S(R) :=
∑

γ∈K/O
N(aγ)≤R

N(aγ)
−nsSγ,

and the truncated singular integral to be

I(R) :=

∫
|ζ|<Rν

∫
B
e(tr(ζR−3C(Rξ)))dξdζ.

Pleasants [24, Lemma 7.1] shows that if ν < 1
n+4

is satisfied then we have∫
M

S(α)dα = S(P ν)I(P )P n(s−3) + o(P n(s−3)).
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Moreover, if B = B(z) is the box as in the beginning of the section, pro-

vided that the sidelengths of the boxes are sufficiently small, and if C(x) is

irreducible over K then Pleasants [24, Lemma 7.2] further shows that I(R)

converges absolutely to a positive number I.

We remark that Lemma 7.2 in [24] was originally stated under the weaker

assumption that C(x) is not a rational multiple of a cube of a linear form.

His proof relies on a result by Davenport [11, Lemma 6.2], which assumes

the existence of a non-singular, real solution ξ ∈ Rn of a rational cubic form

G such that
∂G

∂xi
(ξ) ̸= 0, ξi ̸= 0,

holds for some i. In particular Pleasants writes that ”this hypothesis is not

used in the proof of the lemma, however, and in any case the argument that

follows could easily be adapted to provide it”. While one can always find ξ ∈
Rs with ∂G

∂xi
(ξ) ̸= 0 unless G is a rational multiple of a cube of a linear form,

one can not necessarily ensure that ξi ̸= 0 for the same index i. Consider for

example G(x1, . . . , xn) = x1(x
2
2 + · · · + x2n). It is possible that Davenport’s

result [11, Lemma 6.2] holds nevertheless in this generality but at least the

standard method of establishing bounded variation of the auxiliary function

involved in the proof by showing the existence of right and left derivatives,

see for example [8, Lemma 16.1], fails in general.

The singular series S(R) may or may not converge absolutely as R → ∞.

If it does converge, then provided non-singular p-adic solutions of C(x) = 0

exist for all primes p, by standard arguments it follows that S > 0. See for

example the proof of Lemma 7.4 in [24], where this argumentation is carried

out in our setting. Finally, Lewis [21] showed that these non-singular p-adic

solutions always exist whenever s ≥ 10. Therefore we obtain the following.
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Theorem 3.4.3. Let C ∈ O[x1, . . . , xs] be an irreducible cubic form. Assume

that s ≥ 10. If the singular series S(R) converges absolutely as R → ∞ then∫
M

S(α)dα = σP n(s−3) + o(P n(s−3)),

for some σ > 0 as P → ∞.

In particular, in Section 3.7 we will establish the following.

Theorem 3.4.4. Assume that s ≥ 13 and that Davenport’s Geometric Con-

dition (3.4.1) is satisfied then the singular series converges absolutely. There-

fore if C(x) is irreducible we have∫
M

S(α)dα = σP n(s−3) + o
(
P n(s−3)

)
,

for some σ > 0 as P → ∞.

We remark that we show this result for any number field K.

3.5 Auxiliary Diophantine Inequalities

To bound the Weyl sum S(α) of a general cubic form, classical Weyl dif-

ferencing leaves us with the task of examining the number of solutions to

certain auxiliary Diophantine inequalities. Davenport’s crucial idea was to

bootstrap these inequalities using his Shrinking Lemma, combined with the

observation that sufficiently strong Diophantine inequalities already imply

divisibility or even equality.

In this section, we prepare these arguments by providing a version of this

observation adapted to our setting. We are only able to show a satisfactory

version of this lemma if K/Q is an imaginary quadratic number field, this

being the second of the obstructions mentioned in the introduction.
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Lemma 3.5.1. Assume that K/Q is a number field and denote by ∆ the

discriminant of this extension. There exists a real positive constant A > 0

depending only on K and the choice of integral basis Ω for K such that the

following statement holds.

Let M ≥ 0 be a real number and let α ∈ KR. Suppose that α = γ + θ

with γ ∈ K and M |θ|N(aγ)
1/n ≤ A. If m ∈ O is such that |m| ≤ M and

∥∆−1tr(αmωj)∥ < P−1
0 holds for all j = 1, . . . , n where AP0 ≥ N(aγ)

1/n then

m ∈ aγ. In particular if either of the conditions

1. M ≤ AN(aγ)
1/n, or

2. K is an imaginary quadratic number field and A|θ| ≥ N(aγ)
−1/nP−1

0

is satisfied, then we must have m = 0.

Proof. Note first that∥∥∆−1tr(γmωj)
∥∥ ≤

∥∥∆−1tr(αmωj)
∥∥+ ∥∥∆−1tr(θmωj)

∥∥.
Now due to our assumption we have ∥∆−1tr(αmωj)∥ < P−1

0 . Further it is

easy to see that

∆−1|tr(θmωj)| ≪ |θ|M.

Therefore choosing A sufficiently small we find

∥∥∆−1tr(γmωj)
∥∥ < A1/2

N(aγ)1/n
, (3.5.1)

for all j = 1, . . . , n. As before write T = (tr(ωiωj))i,j for the trace form.

Write x ∈ Rn for the real vector obtained from γm under the isomorphism

KR ∼= Rn. Then (3.5.1) is equivalent to saying that there exist a ∈ Zn and

r ∈ Rn with |r| < A1/2

N(aγ)1/n
such that

T(∆−1x) = a+ r.
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Recall that ∆T−1 is an integral matrix whose entries are bounded in terms

of K. Therefore

x = ∆T−1(a) + ∆T−1(r).

Now T−1(a) ∈ Zn and

|∆T−1(r)| < A1/3

N(aγ)1/n
,

after decreasing A if necessary. We thus find that

γm = a+ ρ,

where a ∈ O and |ρ| < A1/3

N(aγ)1/n
. By Lemma 3.3.4 there exists g ∈ aγ with

|g| ≍ N(aγ)
1/n. From the above equation we see that gρ ∈ O, and so, unless

ρ = 0 we have

1 ≤ |gρ| < A1/4,

after decreasing A if necessary. Choosing A suitably small therefore leads to

a contradiction whence we must have ρ = 0, and so m ∈ aγ. This finishes

the first part of the proof.

If we now assume that M ≤ AN(aγ)
1/n is satisfied then by choosing A

suitably small this implies that m = 0 via Lemma 3.3.4.

Finally, assume that A|θ| > (N(aγ)
1/nP0)

−1 is satisfied and that K is an

imaginary quadratic number field. Upon choosing A even smaller if necessary,

we find that

∆−1|tr(θmωj)| ≤
1

2
,

for all j = 1, . . . , n and thus

∆−1|tr(θmωj)| =
∥∥∆−1tr(θmωj)

∥∥ =
∥∥∆−1tr(αmωj)

∥∥ < P−1
0 ,

for all j = 1, . . . , n. Write y = (y1, . . . , yn) for the image of θm under

the isomorphism KR ∼= Rn and let T be the trace form as above. The above
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inequality is equivalent to saying that there exists some t ∈ Rn with |t| < P−1
0

such that

T(∆−1y) = t.

As before the inverse of T is a matrix with rational entries, whose absolute

value is bounded by O(1). Hence

|y| = ∆|T−1(t)| ≪ |t| < P−1
0 .

Further |y| = |θm|, and since K is an imaginary quadratic number field we

have |θ−1| ≍ |θ|−1 and so

|m| ≪ (P0|θ|)−1.

Hence for sufficiently small A we obtain

|m| < A1/2N(aγ)
1/n.

Choosing A to be suitably small implies m = 0 by Lemma 3.3.4.

We now recall Davenport’s shrinking lemma [8, Lemma 12.6].

Lemma 3.5.2. Let L : Rm → Rm be a linear map. Let a > 0 be a real

number and for a real number Z > 0 consider

N(Z) =
{
u ∈ Zm : |u| < aZ, ∥(L(u))i∥ < a−1Z, for all i

}
.

Then if 0 < Z ≤ 1 we have

N(1) ≪m Z−mN(Z).

As noted in [16] the lemma was originally only stated when a ≥ 1 but we

may extend the range of a to all positive real numbers since the result holds

trivially if 0 < a < 1.
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3.6 Weyl Differencing

One of the main innovations in [16] is to introduce an averaged van der

Corput differencing approach in order to bound the contribution from the

minor arcs. Since this cannot handle the entire range of minor arcs we need to

supplement it with an estimate coming from conventional Weyl differencing.

Let α ∈ KR. Throughout this section we will write

α = γ + θ,

where γ ∈ K and θ ∈ KR. Note as in [24, Lemma 2.1] we find

|S(α)|4 ≪ P ns
∑

|x|,|y|<P

s∏
i=1

n∏
j=1

min
(
P, ∥tr(6αωjBi(x,y))∥−1) . (3.6.1)

This estimate is proved using a classical Weyl differencing procedure adjusted

to this context. Following standard arguments as in Davenport [8, Chapter

13] we now transform this into a counting problem.

Given α ∈ R and P ≥ 1 define

N(α, P ) := #
{
(x,y) ∈ O2s : |x| < P, |y| < P, ∥tr(6αωjBi(x,y))∥ < P−1}.

For a fixed x ∈ Os write further

N(x) := #
{
y ∈ Os : |y| < P, ∥tr(6αωjBi(x,y))∥ < P−1, ∀i, j

}
,

so that

N(α, P ) =
∑
|x|<P

N(x).

Let rij be integers such that 0 ≤ rij < P for i = 1, . . . , s, j = 1, . . . , n. We

claim that there exist no more than N(x) integer tuples y ∈ Os, which lie in

a box whose edges have sidelengths at most P such that

rij
P

≤ {tr(6αωjBi(x,y))} <
rij + 1

P
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is satisfied for all i = 1, . . . , s and j = 1, . . . , n, where {x} denotes the

fractional part of a real number x. Indeed, if y1 and y2 are two such integer

tuples satisfying the above system of inequalities then |y1 − y2| < P and

∥tr(6αωjBi(x,y1 − y2))∥ < P−1

holds for all i, j. Hence, since y = 0 is a possible solution, there are no more

than N(x) possible solutions to the system of inequalities above. Dividing

the box PB into 2ns boxes whose edges have sidelength at most P we find

∑
|y|<P

s∏
i=1

i∏
j=1

min
(
P, ∥tr(6αωjBi(x,y))∥−1)

≪N(x)
∏
i,j

P∑
rij=0

min

(
P,

P

rij
,

P

P − rij − 1

)
≪N(x)(P logP )ns.

Upon summing this estimate over |x| < P and using (3.6.1) we obtain

|S(α)|4 ≪ P 2ns(logP )nsN(α, P ). (3.6.2)

We now proceed to estimate N(α, P ) using the results from the previous

section.

For fixed x ∈ Os identifying Os ∼= Rns and given y ∈ Os one may view the

map

y 7→ (tr(6αωjBi(x,y)))i,j

as a linear map Rns → Rns. Hence we can apply Lemma 3.5.2 where N(x) =

N(1) in the notation of the lemma where Z is to be determined in due course.

Summing over the |x| < P then yields

N(α, P ) ≪ Z−ns#
{
(x,y) ∈ O2s : |x| < P, |y| < ZP,

∥tr(6αωjBi(x,y))∥ < ZP−1, ∀i, j
}
. (3.6.3)
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If we apply the same procedure to the quantity on the right hand side

of (3.6.3), but now with the roles of x and y reversed we obtain

N(α, P ) ≪ Z−2ns#
{
(x,y) ∈ O2s : |x| < ZP, |y| < ZP,

∥tr(6αωjBi(x,y))∥ < Z2P−1, ∀i, j
}
. (3.6.4)

At this point we will employ Lemma 3.5.1. We wish to choose Z such that

the bilinear forms appearing in the right hand side of (3.6.4) are forced to

vanish. To this end, in the notation of the lemma we take m = 6∆Bi(x,y),

M ≍ 6Z2P 2 and P−1
0 = Z2P−1. Choose the parameter Z so that it satisfies

0 < Z < 1, Z2 ≪ (P 2|θ|N(aγ)
1/n)−1, Z2 ≪ P

N(aγ)1/n
,

as well as

Z2 ≪ max

(
N(aγ)

1/n

P 2
, N(aγ)

1/n|θ|P
)
,

where the implicit constants involved are sufficiently small such that the

assumptions of Lemma 3.5.1 are satisfied. Provided K is an imaginary

quadratic number field, Lemma 3.5.1 and (3.6.4) give

N(α, P ) ≪ Z−2ns
{
(x,y) ∈ O2s : |x| < ZP, |y| < ZP, Bi(x,y) = 0, ∀i

}
,

where we note that clearly 6∆Bi(x,y) = 0 if and only if Bi(x,y) = 0.

Since we assume that Davenport’s Geometric Condition (3.4.1) is satisfied it

follows from the simple observation (3.4.2) that

N(α, P ) ≪ Z−2ns(ZP )ns.

From (3.6.2) for permissible Z as described above we therefore have

|S(α)|4 ≪ P 3ns+εZ−ns. (3.6.5)

The estimate is optimised when Z is as large as possible. Hence if we take

Z2 ≍ min

{
1,

1

P 2|θ|N(aγ)1/n
,

P

N(aγ)1/n
,max

(
N(aγ)

1/n

P 2
, N(aγ)

1/n|θ|P
)}
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then Z is clearly in the permissible range, and we deduce

|S(α)|4 ≪ P 3ns+ε
(
1 + P 2|θ|N(aγ)

1/n + P−1N(aγ)
1/n

+min
(
PN(aγ)

−1/n,
(
N(aγ)

1/n|θ|P
)−1
))ns

2
.

In particular, if N(aγ)
1/n ≤ P 3/2 then P−1N(aγ)

1/n ≤ P 1/2 and so we find

|S(α)| ≪ P ns+ε
(
N(aγ)

1/n|θ|+ (N(aγ)
1/n|θ|P 3)−1 + P−3/2

)ns
8

in this case. Finally since X1/2 ≤ X/Y +Y for any two positive real numbers

X and Y we see that the last term of the right hand side above is dominated

by the other two summands. We summarise the main result of this section.

Lemma 3.6.1. Let K/Q be an imaginary quadratic number field. Let α ∈
KR and write α = γ + θ where γ ∈ K and θ ∈ KR. If N(aγ)

1/n ≤ P 3/2 then

we have

S(α) ≪ P ns+ε
(
N(aγ)

1/n|θ|+ (N(aγ)
1/n|θ|P 3)−1

)ns
8 . (3.6.6)

This bound will be useful for the range in the minor arcs when the parameter

θ is small.

3.7 Pointwise van der Corput Differencing and

the singular series

In this section we will perform a pointwise van der Corput differencing ar-

gument, in order to show that the singular series converges absolutely. This

argument works over a general number field. We start by considering the

exponential sum S(γ), where γ ∈ K and we set P = N(aγ). Further in

this section we take the box B = BS = {(
∑

j xijωj)i ∈ Ks
R : 0 ≤ xij < 1}
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so that the goal of this section is to study the sum Sγ as it was defined in

Section 3.4.3. To be completely explicit with our choice of box we then have

Sγ = S(γ) =
∑

0≤x<N(aγ)

e (tr(γC(x))) ,

where the condition 0 ≤ x < N(aγ) denotes the sum over elements x =(∑
j xijωj

)
i
∈ Os such that 0 ≤ xij < N(aγ) holds. The main goal of this

section is to establish the bound

Sγ ≪ N(aγ)
s(n−1/6)+ε. (3.7.1)

Let H be a positive integer that satisfies H ≤ N(aγ). Clearly we have

HnsS(γ) =
∑

0≤h<H

∑
0≤x<N(aγ)

0≤x+h<N(aγ)

e (tr(γC(x+ h))) .

Interchanging the order of summation gives

HnsS(γ) =
∑

0≤x<N(aγ)

∑
0≤h<H

0≤x+h<N(aγ)

e (tr(γC(x+ h))) .

Since H ≤ N(aγ) the number of non-zero summands of the inner sum is

bounded by O(N(aγ)
ns). Therefore, an application of Cauchy-Schwarz yields

H2ns|S(γ)|2 ≪ N(aγ)
ns

∑
0≤x<N(aγ)

∣∣∣∣∣∣∣∣
∑

0≤h<H
0≤x+h<N(aγ)

e (tr(γC(x+ h)))

∣∣∣∣∣∣∣∣
2

.

Expanding the square one obtains that H2ns|S(γ)|2 is

≪ N(aγ)
ns

∑
0≤x<N(aγ)

∑
0≤h1,h2<H

0≤x+h1,x+h2<N(aγ)

e (tr(γC(x+ h1)− C(x+ h2))) .
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Set y = x+ h2 and h = h1 − h2. Note that after this change of coordinates

each value of h in the sum above appears at most Hns times. Therefore the

previous display gives

Hns|S(γ)|2 ≪ N(aγ)
ns
∑
|h|≤H

|T (h, γ)| , (3.7.2)

where

T (h, γ) =
∑

y∈R(h)

e (tr(γ(C(y + h)− C(y)))) ,

and where R(h) is a box whose sidelengths are O(N(aγ)). We take the

square of the absolute value of this expression, and expand the resulting sum

in order to obtain

|T (h, γ)|2 =
∑

y,z∈R(h)

e (tr(γ(C(y + h)− C(y)− C(z+ h) + C(z)))) .

Making the change of variables y = z+w we find

|T (h, γ)|2 =
∑

|w|<N(aγ)

∑
z

e (tr(γC(w,h, z))) ,

where the inner sum ranges over a (potentially empty) box S(h,w) whose

sidelengths are O(N(aγ)) and where we write C(w,h, z) for the multilinear

form given by

C(w,h, z) = C(w + h+ z)− C(w + z)− C(h+ z) + C(z).

In particular we have

C(w,h, z) = 6
s∑
i=1

ziBi(w,h) + Ψ(w,h),

where Bi are the bilinear forms associated to C, and where Ψ is a certain

polynomial whose precise shape is of no importance to us. Therefore we find

|T (h, γ)|2 =
∑
w

∑
z

e

(
tr

(
6γ

s∑
i=1

ziBi(w,h) + γΨ(w,h)

))
.
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Writing zi =
∑

j zijωj we may regard the inner sum as an exponential sum

over integer variables zij. This is a linear exponential sum and the coefficient

of zij is given by 6tr(γωjBi(w,h)). A standard argument regarding geometric

sums now yields

|T (h, γ)|2 ≪
∑
w

s∏
i=1

n∏
j=1

min
(
N(aγ), ∥6tr(γωjBi(w,h))∥−1) .

In particular the same argument that led to (3.6.2) shows that

|T (h, γ)|2 ≪ N(aγ)
ns+εN(γ,N(aγ),h), (3.7.3)

where

N(γ,N(aγ),h) = #
{
w ∈ Os : |w| < N(aγ), ∥6tr(γωjBi(w,h))∥ < N(aγ)

−1
}
.

Note that the condition in the sum already implies that 6∆Bi(x,y) ∈ aγ

holds for all i, but we prefer to write it in the above shape in order to

highlight the similarities with the argument in the previous section.

As in Section 3.6 we may regard w 7→ tr(γωjBi(w,h)) as a linear map

Rns → Rns. Hence we can apply Lemma 3.5.2 so that for any Z ∈ (0, 1] we

have

N(γ,N(aγ),h) ≪ Z−ns#
{
|w| < ZN(aγ), ∥6tr(γωjBi(w,h))∥ < ZN(aγ)

−1
}
.

We now wish to choose Z in such a way that we can apply Lemma 3.5.1.

In the notation of this lemma we have m = ∆ωjBi(w,h) and θ = 0. We

take Z ∈ (0, 1] such that Z ≍ H−1N(aγ)
1
n
−1 for a suitable implied constant.

Then Lemma 3.5.1 implies

N(γ, P,h) ≪ HnsN(aγ)
ns−s#

{
w ∈ Os : |w| < H−1N(aγ)

1/n, Bi(w,h) = 0
}
.

Recalling that r(h) is the rank of Bi(h, ·) : Ks
R → Ks

R, using (3.7.3) we find

T (h, γ) ≪ N(aγ)
ns− r(h)

2
+εH

nr(h)
2 .
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Hence (3.7.2) delivers

|S(γ)|2 ≪ H−nsN(aγ)
2ns+ε

∑
|h|≤H

(
HnN(aγ)

−1
) r(h)

2 .

By (3.4.1), for any r the number of h with r(h) = r is O(Hnr). Therefore

we find

|S(γ)|2 ≪ H−nsN(aγ)
2ns+ε

s∑
r=0

(
H3nN(aγ)

−1
) r

2 .

The sum is maximal either when r = 0 or when r = s, and thus

|S(γ)|2 ≪ H−nsN(aγ)
2ns+ε

(
1 +H3ns/2N(aγ)

−s/2) .
Choosing H = ⌊N(aγ)⌋1/3n this finally yields

S(γ) ≪ N(aγ)
s(n−1/6)+ε.

3.7.1 Proof of Theorem 3.4.4

By Theorem 3.4.3 it suffices to show that S(R) converges absolutely as R →
∞.

Given a positive integer k the number of ideals of O of norm k is O(kε) using

the divisor bound. Hence together with Lemma 3.3.1 we obtain that the

number of γ ∈ K/O such that N(aγ) = k is bounded by O(k1+ε). Thus,

using (3.7.1) we find

S(R) ≪
R∑
k=0

k−ns+1+εkns−s/6 =
R∑
k=0

k1−s/6+ε.

Therefore S(R) converges absolutely to some real number S as R → ∞
provided s ≥ 13.

We remark that using the ideas of Heath-Brown [16, Section 7] it would be

possible to establish the absolute convergence of S(R) already for s ≥ 11.
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3.8 Van der Corput on average

In this section, we work towards a bound for the Weyl sum S(α) on the minor

arcs. As observed by Heath-Brown, the simple pointwise van der Corput

differencing is not sufficient to improve on Davenport’s result for s ≥ 16.

It is however possible to exploit the fact that we are averaging both over

the modulus aγ as well as the integration variable β in the minor arcs, thus

leading to a version of van der Corput differencing on average.

From now on we continue to work with the box B = B(z) as defined in the

beginning of Section 3.4.3. Instead of a pointwise bound for S(α), we will

seek to bound the mean-square average

M(α, κ) =

∫
|β−α|<κ

|S(β)|2dβ

for α ∈ KR and a small parameter κ ∈ (0, 1), where we remind the reader

that the integration is over a region of KR.

In conjunction with the Cauchy-Schwarz inequality and an appropriate dyadic

dissection of the minor arcs, a satisfactory bound for M(α, κ) will be suffi-

cient to control the total minor arc contribution.

The idea now is that the mean square integral automatically shortens all

the n coordinates of h1 in the van der Corput differencing, allowing us to

effectively save a factor Hn

Pn
over the pointwise bound. Here and throughout

we denote h = (hi)i =
(∑

j hijωj

)
i
∈ Os.

To this end, we initiate the van der Corput differencing with parameters

1 ≤ Hij ≤ P to be determined, obtaining∏
i,j

HijS(β) =
∑

0≤hij<Hij

∑
x+h∈PB

e (tr(βC(x+ h)))

=
∑
x∈Os

∑
x+h∈PB

e (tr(βC(x+ h))) ,

where implicitly we still restrict to h such that 0 ≤ hij < Hij is satisfied.

Note that the condition Hij ≤ P ensures that the sum over x is restricted to
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O(P ns) many summands. An application of Cauchy-Schwarz thus yields

∏
i,j

H2
ij|S(β)|2 ≪ P ns

∑
x∈Os

∣∣∣∣∣ ∑
x+h∈PB

e (tr(βC(x+ h)))

∣∣∣∣∣
2

.

Opening the square on the RHS, we obtain∏
i,j

H2
ij|S(β)|2 ≪ P ns

∑
x∈Os

∑
x+h1,x+h2∈PB

e (tr(β [C(x+ h1)− C(x+ h2)])) .

On substituting y = x+ h2 and h = h1 − h2, this becomes∏
i,j

H2
ij|S(β)|2 ≪ P ns

∑
|hij |≤Hij

w(h)
∑

y∈R(h)

e (tr(β [C(y + h)− C(y)]))

where w(h) = #{h1,h2 : h = h1−h2} ≤
∏

i,j Hij and R(h) is a certain box

depending only on h.

Instead of taking absolute values, we now first integrate over β =
∑

j βjωj

with a smooth cutoff function to obtain

M(α, κ) ≤ en
∫
KR

exp

(
−
∑

j(βj − αj)
2

κ2

)
· |S(β)|2dβ

≪ P ns∏
i,j H

2
ij

∑
|hij |≤Hij

w(h)
∑

y∈R(h)

I(h,y)

≪ P ns∏
i,j Hij

∑
|hij |≤Hij

∣∣∣∣∣∣
∑

y∈R(h)

I(h,y)

∣∣∣∣∣∣ ,
where

I(h,y) =

∫
KR

exp

(
−
∑

j(βj − αj)
2

κ2

)
· e (tr(β [C(y + h)− C(y)])) dβ

= πn/2κn
n∏
j=1

exp
(
−π2κ2tr(ωj [C(y + h)− C(y)])2

)
· e(tr(α [C(y + h)− C(y)])).

Heuristically, for large h1 ∈ O, we should have C(y+ h)−C(y) ≈ h1 · ∂C(y)
∂x1

so that by our choice of the box B(z), this difference is large. But then
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for some j, the trace of this number multiplied with ωj must be large as

well, leading to a negligible contribution to M(α, κ) from those terms, thus

effectively cutting down the range to small h1.

We now fix the choice Hij = H for i ̸= 1 and H1j = cP for a sufficiently small

constant c and make the above heuristic discussion precise. For y ∈ R(h)

we have

C(y + h)− C(y) = h1 ·
∂C(y)

∂x1
+O(HP 2 + |h1|2|y|).

If the width of the box B(z) and c are sufficiently small, then ∂C(z)
∂x1

̸= 0

implies that

|C(y + h)− C(y)| ≫ |h1| · P 2

unless |h1| ≪ H. Additionally, unless |h1| ≪ (logP )2

κP 2 , we even have that

|C(y + h)− C(y)| ≫ (logP )2

κ

so that for some j we must have

|tr (ωj [C(y + h)− C(y)])| ≫ (logP )2

κ

and we infer from our previous calculations that the contribution of such h

to M(α, κ) is O(1). Hence,

M(α, κ) ≪ 1 +
P ns−n

Hns−n

∑
|hi|≪H

∣∣∣∣∣∑
y

I(h,y)

∣∣∣∣∣
if we choose κ ≍ (logP )2

HP 2 .

Moreover, the range |β−α| ≥ κ logP in the definition of I(h,y) clearly gives

a total contribution of O(1) to M(α, κ) so that we end up with the estimate

M(α, κ) ≪ 1 +
P ns−n

Hns−n

∑
|hi|≪H

∫
|β−α|<κ logP

|T (h, β)|dβ
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with

T (h, β) =
∑

y∈R(h)

e (tr(β [C(y + h)− C(y)])) .

As in Section 3.7, we obtain

|T (h, β)|2 ≪ P ns+εN(β, P,h)

where

N(β, P,h) = #{w ∈ Os : |w| < P, ∥6tr(βωjBi(w,h))∥ < P−1,∀i, j}

so that

M(α, κ) ≪ 1 +
κnP

3ns
2

−n+ε

Hns−n

∑
|hi|≪H

max
β∈I

N(β, P,h)
1
2 (3.8.1)

for I = {β : |β − α| ≤ κ logP}.
We next claim that

max
β∈I

N(β, P,h) ≪ P εN(α, P,h).

Indeed, consider a vector w counted by N(β, P,h). It thus satisfies |w| < P

as well as ∥6tr(βωjBi(w,h))∥ < P−1 so that

∥6tr(αωjBi(w,h))∥ ≪ 1

P
+|β−α|·|Bi(w,h)| ≪

1

P
+κ logP ·HP ≪ (logP )3

P
.

We thus obtain

N(β, P,h) ≪ #{w ∈ Os : |w| < P, ∥6tr(αωjBi(w,h))∥ ≪ (logP )3

P
, ∀i, j}

≪ P εN(α, P,h)

where the last estimate is a consequence of Lemma 3.5.2 upon choosing suit-

able Z ≍ (logP )−3.
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We conclude that

M(α, κ) ≪ 1 +
κnP

3ns
2

−n+ε

Hns−n

∑
|hi|≪H

N(α, P,h)
1
2 .

Let α = γ + θ with γ ∈ K and θ ∈ KR (which we think of as being small).

We are now prepared for an application of Lemmas 3.5.2 and 3.5.1. Indeed,

Lemma 3.5.2 implies that

N(α, P,h) ≪ Z−ns#{w ∈ Os : |w| < ZP, ∥6tr(αωjBi(w,h))∥ < ZP−1}.

Following Heath-Brown, we will make two different choices of Z: In the

first one, we will choose Z = Z1 sufficiently small so that Lemma 3.5.1

implies that Bi(w,h) = 0. In the second choice Z = Z2, we will only force

6∆Bi(w,h) ∈ aγ, a consequence followed by a study of how often such a

divisibility property can occur, crucially using an average over γ.

By Lemma 3.5.1, if we choose Z ≤ 1 satisfying

Z ≪ P

N(aγ)1/n

and

Z ≪ 1

PH|θ|N(aγ)1/n

we can conclude that 6∆Bi(w,h) ∈ aγ. If, moreover

Z ≪ N(aγ)
1/n

PH

or

Z ≪ |θ|PN(aγ)
1/n

we obtain that Bi(w,h) = 0. Here, all the implicit constants need to be

sufficiently small in order to satisfy the conditions in Lemma 3.5.1.

Writing

η = |θ|+ 1

P 2H
(3.8.2)
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we should therefore choose

Z1 ≍ min

(
N(aγ)

1/nPη,
1

PHηN(aγ)1/n

)
,

noting that this automatically implies that Z1 ≤ 1. Similarly we should

choose

Z2 ≍ min

(
1,

1

PHηN(aγ)1/n

)
.

In the application with Z = Z1, we thus obtain

N(α, P,h) ≪ Z−ns
1 #{w ∈ Os : |w| < Z1P,Bi(w,h) = 0,∀i}

≪ Z−ns
1 · (Z1P )

n(s−r)

≪ P ns ·
(

1

N(aγ)1/nP 2η
+HηN(aγ)

1/n

)nr
with r = r(h). Instead, in the application with Z = Z2, we end up with the

bound

N(α, P,h) ≪ Z−ns
2 #{w ∈ Os : |w| < Z2P, 6∆Bi(w,h) ∈ aγ,∀i}. (3.8.3)

We thus need to count vectors w with 6∆Bi(w,h) ∈ aγ. For any prime ideal

p, let rp(h) be the rank of M(h) modulo p. Clearly, rp(h) ≤ r(h) = r with

strict inequality if and only if p divides all r×r minors ofM(h). This means

that there are only relatively few such ‘bad’ primes, which we will exploit

later.

We now decompose aγ = q1 · q2 where q1 contains all the primes p dividing

aγ with rp(h) < r and q2 consists of those with rp(h) = r.

As we are looking for an upper bound, we can replace aγ by the larger q2 in

(3.8.3).

For fixed h with r(h) = r, the condition 6∆Bi(h,w) ∈ q2,∀i defines a lattice

Λ(h) for w ∈ Os which we view as a lattice in Rns.
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To estimate the number of integer points in such a lattice we use [16, Lemma

5.1] implying that

#{x ∈ Λ(h) : |x| ≤ B} ≪
∏
i

(
1 +

B

λi

)
(3.8.4)

where λ1, . . . , λns are the successive minima of Λ(h).

In order to make this estimate useful, we need a bound on the determi-

nant/covolume d(Λ) which is proportional to
∏

i λi as well as a bound on the

skewness of the measure, i.e. upper and lower bounds for the λi.

For the determinant, we note that for pe | q2, the matrix M(h) has rank

r modulo p (hence also modulo pe) and therefore Bi(h,w) has N(pe)s−r

solutions modulo pe so that N(pe)r divides d(Λ). It thus follows that N(q2)
r |

d(Λ) and hence d(Λ) ≥ N(q2)
r.

Regarding the skewness, we clearly have λi ≫ 1 for all i, while in the other

direction we have q2Os ⊂ Λ(h) so that Lemma 3.3.4 implies λi ≪ N(q2)
1/n.

Optimizing the RHS of (3.8.4) with these constraints shows that the max-

imum is obtained when rn of the λi are of order N(q2)
1/n while the others

are of order 1.

This shows that

N(α, P,h) ≪ Z−ns
2

(
1 +

Z2P

N(q2)1/n

)rn
·(Z2P )

(s−r)n = P ns

(
1

Z2P
+

1

N(q2)1/n

)rn
if Z2P ≫ 1 but we note that the bound is trivially true for Z2P ≪ 1.

Recalling our choice of Z2, this bound becomes

N(α, P,h) ≪ P ns

(
1

P
+

1

N(q2)1/n
+HηN(aγ)

1/n

)rn
.

Combining our two estimates, we obtain

N(α, P,h) ≪ P ns

(
1

P
+HηN(aγ)

1/n +min

(
1

N(aγ)1/nP 2η
,

1

N(q2)1/n

))rn
.
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We now need to insert this into our expression for M(α, κ) which already

involves the average over h. Additionally, we want to average over aγ allowing

us to use that N(q2) is almost as large as N(aγ) most of the time.

Our object of study thus becomes

A(θ, R,H, P ) :=
∑

γ:N(aγ)1/n∼R

∑
|hi|≪H

N(α, P,h)1/2 (3.8.5)

where we continue to write α = γ + θ and we remind the reader of the

notation q ∼ R for the dyadic condition R < q ≤ 2R. We then obtain that

A(θ, R,H, P ) is

≪ RnP ns/2
∑

|hi|≪H

∑
N(a)1/n∼R

(
1

P
+HηR +min

(
1

RP 2η
,

1

N(q2)1/n

)) r(h)n
2

where we used that there are at most N(a) choices of γ with aγ = a by

Lemma 3.3.1 and we remind the reader that q2 depends on a and h.

We thus proceed to estimate

V (h, R, η) :=
∑

N(a)1/n∼R

min

(
1

RP 2η
,

1

N(q2)1/n

) rn
2

for r = r(h) via a dyadic decomposition as follows:

V (h, R, η) ≪ P εmax
S≤R

∑
N(q1)1/n∼S

∑
N(q2)1/n∼R

S

min

(
1

RP 2η
,
S

R

) rn
2

≪ P εmax
S≤R

Rn

Sn
min

(
1

RP 2η
,
S

R

) rn
2

#{q1 : N(q1)
1/n ≤ 2S}.

Now recall that q1 only contains prime ideals dividing a certain non-zero

r × r determinant M0 of M(h). In particular, we have M0 ≪ Hr. Applying

Rankin’s trick, we then obtain

#{q1 : N(q1)
1/n ≤ 2S} ≪ Sε

∑
q1

N(q1)
−ε = Sε

∏
p|M0

1

1−N(p)−ε
≪ P ε
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and thus

V (h, R, η) ≪ P εmax
S≤R

Rn

Sn
min

(
1

RP 2η
,
S

R

) rn
2

.

Maximizing for S we find that

V (h, R, η) ≪ P ε Rn

(RP 2η)rn/2
min(1, P 2η)ne(r)

with e(0) = 0, e(1) = 1
2
and e(r) = 1 for r ≥ 2.

Putting everything together, we obtain the estimate

A(θ, R,H, P ) ≪ R2nP
ns
2

∑
|hi|≪H

[(
1

P
+HηR

)nr(h)
2

+
1

Rn
V (h, R, η)

]

≪ R2nP
ns
2
+ε
∑

|hi|≪H

[(
1

P
+HηR

)nr(h)
2

+
1

(RP 2η)
r(h)n

2

min(1, P 2η)ne(r(h))

]

≪ R2nP
ns
2
+ε

s∑
r=0

Hnr

[(
1

P
+HηR

)nr
2

+
1

(RP 2η)
rn
2

min(1, P 2η)ne(r)

]

≪
[
R2P s/2+ε

(
1 + (RH3η)s/2 +

Hs

P s/2
+

Hs

(RP 2η)s/2
min(1, P 2η)

)]n
.

Finally, we argue that the third term Hs

P s/2
is negligible.

Indeed, if HRPη ≥ 1, then it is smaller than the second term. Otherwise, if

HRPη ≤ 1, we have (RPη)s/2 ≤ RPη ≤ 1
H

≤ min(1, ηP 2) on recalling that

η ≥ 1
P 2H

and hence the term Hs

P s/2
is dominated by the fourth term in that

case.

In any case, it now follows that

A(θ, R,H, P ) ≪
[
R2P s/2+ε

(
1 + (RH3η)s/2 +

Hs

(RP 2η)s/2
min(1, P 2η)

)]n
.

(3.8.6)

3.9 The minor arcs

Finally, we synthesize the bounds obtained by Weyl and van der Corput

differencing to estimate the total minor arc contribution
∫
m
S(α)dα.
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We dissect m with the help of the version of Dirichlet’s Approximation The-

orem provided by Lemma 3.3.3, applied for some parameter 1 ≤ Q ≤ P 3/2

to be determined. Thus, every α ∈ KR has an approximation α = γ+ θ with

γ ∈ K and N(aγ) ≤ Qn as well as |θ| ≪ 1
N(aγ)1/nQ

.

The assumption α ∈ m then implies that N(aγ) > P ν or |θ| > P−3+ν . Note

that as the contribution to the minor arcs coming from |θ| ≤ 1
P s

is O(Qn+1),

we may assume that |θ| ≥ P−s.

By a double dyadic decomposition with respect to |θ| and N(aγ)
1/n, we then

obtain that ∫
m

S(α)dα ≪ Qn+1 + P ε max
R≤Q,ϕ≤ 1

RQ

Σ(R, ϕ)

where

Σ(R, ϕ) :=
∑

γ:N(aγ)1/n∼R

∫
|θ|∼ϕ

|S(γ + θ)| dθ

and we note that the region of integration is given by a rectangular annulus.

To establish Theorem 3.4.2, it thus suffices to prove Σ(R, ϕ) ≪ P n(s−3)−ε. To

employ the mean-value estimates from the previous section, we use Cauchy-

Schwarz to obtain

Σ(R, ϕ) ≪ Rnϕn/2

 ∑
γ:N(aγ)1/n∼R

∫
|θ|∼ϕ

|S(γ + θ)|2 dθ

1/2

.

We next cover the annulus |θ| ∼ ϕ with O
((

1 + ϕ
κ

)n)
boxes of size κ, all

centered at values of α = γ + θ with |θ| ∼ ϕ, so that we obtain

Σ(R, ϕ) ≪ Rnϕn/2
(
1 +

ϕ

κ

)n/2
max
|θ|∼ϕ

 ∑
γ:N(aγ)1/n∼R

M(γ + θ, κ)

1/2

and using (3.8.1) and (3.8.5) we obtain

Σ(R, ϕ) ≪ Rnϕn/2
(
1 +

ϕ

κ

)n/2
max
|θ|∼ϕ

(
R2n+ε +

κnP
3ns
2

−n+ε

Hns−n A(θ, R,H, P )

)1/2
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so that (3.8.6) implies that

Σ(R, ϕ) ≪

[
P εR2ϕ1/2

(
1 +

ϕ

κ

)1/2(
1 +

κP 2s−1

Hs−1
E

)1/2
]n

(3.9.1)

where E = 1 + (RH3η)s/2 + Hs

(RP 2η)s/2
P 2η. Here we used min(1, P 2η) ≤ P 2η

which turns out to be sufficient.

Suppose we can show that E ≪ 1. Recall that κ ≍ (logP )2

HP 2 so that

1 +
ϕ

κ
≪ P εη

κ

from the definition (3.8.2) of η.

Since κ≫ 1
P s
, both summands in the last bracket of (3.9.1) are bounded by

κP 2s−1

Hs−1 . Still assuming E ≪ 1, we then obtain

Σ(R, ϕ) ≪

[
P εR2ϕ1/2η1/2

P s− 1
2

H
s−1
2

]n
.

Recalling our desired bound Σ(R, ϕ) ≪ P n(s−3)−ε, it now suffices to prove

that

Hs−1 ≫ R4ϕηP 5+ε,

still under the assumption E ≪ 1. Putting s = 14 for convenience (as we

may without loss of generality) and recalling the definition (3.8.2) of η, it

suffices to have

H13 ≫ R4ϕ2P 5+ε

as well as

H14 ≫ R4ϕP 3+ε.

We thus choose

H ≍ P εmax
{(
R4ϕ2P 5

)1/13
,
(
R4ϕP 3

)1/14
, 1
}
.

In order for this choice to satisfy H ≤ P , we require R4ϕ2 ≪ P 8−ε as well as

R4ϕ≪ P 11−ε.
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Recalling ϕ ≤ 1
QR

≤ 1
R2 , both conditions are satisfied for any Q ≤ P 3/2.

We have thus found an admissible choice of H, leading to a satisfactory

estimate for Σ(R, ϕ) under the assumption of E ≪ 1.

We now enquire under which circumstances this assumption is justified.

For convenience, denote ϕ0 = (R4P 31)−
1
15 . The relevance of this parameter

comes from the observation that for ϕ ≤ ϕ0, one has

H ≍ P εmax
{(
R4ϕP 3

)1/14
, 1
}

and η ≍ 1
HP 2 whereas for ϕ ≥ ϕ0, one has

H ≍ P εmax
{(
R4ϕ2P 5

)1/13
, 1
}

and η ≍ ϕ.

To prove E ≪ 1, we need RH3η ≪ P−ε as well as
(

H2

RP 2η

)7
P 2η ≪ P−ε.

We begin by checking that RH3η ≪ P−ε. First, if ϕ ≤ ϕ0, we have

RH3η ≪ P εQH
2

P 2

≪ P ε Q

P 2

(
1 + (R4ϕP 3)1/14

)
≪ P ε ·

(
Q

P 2
+
Q9/7

P 11/7

)
.

This bound is satisfactory if Q≪ P 11/9−ε.

Next, if ϕ ≥ ϕ0, we have

RH3η ≪ P εRH3ϕ

≪ P ε · 1
Q

·
(
1 +

(
R4ϕ2P 5

)3/13)
≪ P ε · P

15/13

Q

which is satisfactory if Q≫ P 15/13+ε.
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We thus choose Q = P 13/11, ensuring that RH3η ≪ P−ε in both cases, and

noting that this also satisfies our earlier rough assumption Q ≤ P 3/2.

Finally, we need to enquire whether
(

H2

RP 2η

)7
P 2η ≪ P−ε.

For ϕ ≤ ϕ0, we have η ≍ 1
HP 2 so that(

H2

RP 2η

)7

P 2η ≪ P εH
20

R7

so that it suffices to have H ≪ R7/20−ε.

Recalling our choice of H in this case, it is thus sufficient to have R ≫ P ε as

well as additionally ϕ ≤ ϕ1 where

ϕ1 = R9/10P−3−ε.

Similarly, if ϕ ≥ ϕ0 we have η ≍ ϕ so that(
H2

RP 2η

)7

P 2η ≪ H14

R7P 12ϕ6

and hence by our definition of H, it suffices to have R ≫ P ε as well as

additionally ϕ ≥ ϕ2 where

ϕ2 =
1

P
43
25

−εR7/10
.

Summarizing, we have obtained a satisfactory bound for Σ(R, ϕ) if R ≫ P ε

and ϕ ≤ min(ϕ0, ϕ1) or ϕ ≥ max(ϕ0, ϕ2).

Letting R0 = P 4/5+ε, a quick computation shows that ϕ2 ≤ ϕ0 ≤ ϕ1 if R ≥ R0

whereas P−εϕ1 ≤ ϕ0 ≤ ϕ2P
ε if R ≤ R0.

In the first case, our argument already covers all possible values of ϕ. We are

thus left with the case where R ≤ R0 and P−εϕ1 ≤ ϕ ≤ ϕ2P
ε or R ≤ P ε.

It is here that we require the bound obtained by Weyl differencing. Indeed,

applying Lemma 3.6.1 with s = 14 and noting that the assumption Q ≤ P 3/2

is satisfied, we obtain

Σ(R, ϕ) ≪ P ε

[
R2ϕP 14

(
Rϕ+

1

RϕP 3

)7/4
]n
.
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Recalling our goal Σ(R, ϕ) ≪ P 11n−ε, it then suffices to have

R2ϕP 3

(
Rϕ+

1

RϕP 3

)7/4

≪ P−ε.

But this will be satisfied if

R1/3

P 3−ε ≪ ϕ≪ 1

P 12/11+εR15/11
. (3.9.2)

Under the assumption R ≤ R0 and P
−εϕ1 ≤ ϕ ≤ ϕ2P

ε, this will thus be true

as soon as

ϕ1 ≫
R1/3+ε

P 3

as well as

ϕ2 ≪
1

P 12/11+εR15/11
.

The first condition is always satisfied for R ≫ P ε while the second one is

satisfied for R ≪ P
346
365

−ε which is indeed true under the assumption R ≤ R0.

Finally, we need to treat the cases where R ≤ P ε. Here of course, we need

to use that we are on the minor arcs so that ϕ ≥ P−3+ν . But it is easy to see

that in that case (3.9.2) is also satisfied, thus finishing our proof of Theorem

3.4.2.
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Chapter 4

Small solutions to homogeneous

and inhomogeneous cubic

equations

4.1 Introduction

In this chapter, we study the existence of integer solutions to equations

ϕ(x) = 0 where ϕ ∈ Z[x1, . . . , xn] is a (not necessarily homogeneous) in-

teger polynomial of degree 3. We denote the homogeneous parts of degrees

3, 2, 1 and 0 by C,Q,L and N , respectively, so that we can write

ϕ(x) = C(x) +Q(x) + L(x) +N.

Much work has been done in the case of homogeneous equations where Heath-

Brown [16] proved that for n ≥ 14, non-trivial solutions x ∈ Zn\{0} always

exist. Conjecturally, this should be true already in the wider range n ≥ 10.

It is known that no congruence obstructions appear for n ≥ 10 and that the

bound is sharp in this respect.

In the inhomogeneous case, the situation is more complicated. First of all, it
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is easy to produce examples of cubic polynomials in any number of variables

which have a congruence obstruction, e.g.

ϕ(x) = 2C1(x) + 1

where C1(x) ∈ Z[x1, . . . , xn] is an arbitrary cubic form. It is therefore clearly

necessary to stipulate the following Necessary Congruence Condition:

(NCC) For any prime power pk, the equation ϕ(x) ≡ 0 (mod pk) has a

solution.

Slightly more subtly, this necessary condition is still not sufficient in the

inhomogeneous case, even in the case of many variables, as the following

example of Watson shows: The equation

ϕ(x) = (2x1 − 1)(1 + x21 + x22 + · · ·+ x2n) + x1x2

is easily seen to satisfy the NCC as soon as n ≥ 5, but clearly does not admit

any integral solution as the absolute value of the first term is always at least

1 + x21 + x22 and hence larger than the absolute value of the second term.

It is therefore necessary to make further assumptions on the polynomial ϕ.

Hitherto, this has been realized in two variations:

Browning and Heath-Brown [5], following work of Heath-Brown [17] in the

homogeneous case, have shown that a solution to ϕ(x) = 0 exists if ϕ satisfies

the NCC, n ≥ 10 and the cubic part C is non-singular.

Instead, we will focus on an older approach by Davenport and Lewis [12] who

introduced the h-invariant of a cubic form C to be the least positive integer

such that

C(x) =
h∑
i=1

Li(x)Qi(x)

for appropriate linear forms L1, . . . , Lh and quadratic formsQ1, . . . , Qh. Equiv-

alently, n − h is the largest dimension of a linear subspace contained in the

cubic hypersurface defined by the equation C(x) = 0.
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Davenport and Lewis then managed to show, following work of Davenport

in the homogeneous case, that a solution to ϕ(x) = 0 exists if ϕ satisfies the

NCC and h(C) ≥ 17.

Pleasants [24] extended this to cover the range h(C) ≥ 16.

Given the progress on Davenport’s work [10] in the homogenous case made

by Heath-Brown [16], it is natural to ask whether his method can be applied

to extend the range to h(C) ≥ 14.

We achieve this goal, indeed proving an asymptotic formula for the number

of solutions in a bounded region. To this end, let us define the counting

function

N(P ) = N(P,B) = #{x ∈ Zn ∩ PB : ϕ(x) = 0},

where B ⊂ Rn is a box of the shape

B =
∏

1≤i≤n

[zi − 1, zi + 1]

for some vector z ∈ Rn with |z| ≥ 2 (so that B does not contain the origin)

and PB = {Px : x ∈ B}. We then prove the following:

Theorem 4.1.1. Assume that ϕ = C + Q + L + N is of degree 3, non-

degenerate, satisfies the NCC and that h(C) ≥ 14. If the centre z of the box

B is a suitable non-singular point of the hypersurface C(x) = 0, then

N(P ) = (1 + o(1))S · I · P n−3, P → ∞

where S and I are the usual singular series and singular integral, respectively.

We have S > 0 and I > 0. In particular, there is a solution x ∈ Zn to

ϕ(x) = 0.

Note that we do not assume that C is non-degenerate, but that C does not

vanish identically. Also note that the restriction h(C) ≥ 14 automatically

implies n ≥ 15 since Heath-Brown’s result is equivalent to saying that a cubic

form in 14 variables has h(C) ≤ 13.

79



In the culmination of a long series of papers, Watson [28] has established

the existence of integer solutions to ϕ(x) = 0 under the assumptions 4 ≤
h(C) ≤ n − 3 and n ≥ 15. Combining this with Theorem 4.1.1, we obtain

the following:

Theorem 4.1.2. Assume that ϕ = C + Q + L + N satisfies the NCC and

that h(C) ≥ 4 and n ≥ 16. Then there is a solution x ∈ Zn to the equation

ϕ(x) = 0.

Indeed, under the assumption n ≥ 16, one of the conditions h(C) ≤ n − 3

and h(C) ≥ 14 is always satisfied, allowing us to deduce Theorem 4.1.2.

Following a line of investigation revitalized by the work of Browning, Diet-

mann and Elliott [4], we also provide a bound on the smallest solution x in

Theorem 4.1.1 uniform in the coefficients of the polynomial ϕ:

Theorem 4.1.3. With the same assumptions as in Theorem 4.1.1, there

exists a vector x ∈ Zn with ϕ(x) = 0 and

max
i

|xi| ≪M6407n2

,

where M is the maximum of the absolute values of the coefficients of ϕ. The

implicit constant is absolute.

It is natural to ask whether Watson’s method can be made uniform in the

coefficients as well, allowing us to obtain a uniform version of Theorem 4.1.2.

However, due to the intricate structure of Watson’s argument, it is not im-

mediately transparent to the author whether such an extension is possible.

Our method also delivers new results on the smallest solution in the homo-

geneous case:

Theorem 4.1.4. Let n ≥ 14 and let C ∈ Z[x1, . . . , xn] be a cubic form.

Then there exists a vector x ∈ Zn\{0} with C(x) = 0 and

max
i

|xi| ≪M132484.
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If additionally we assume C to be non-singular, then for n = 14 we can

ensure that

max
i

|xi| ≪M2049.

This improves on the work of Browning-Dietmann-Elliott [4], who had the

same results for n ≥ 17 and with the worse exponents 360000 in the general

and 1071 in the non-singular case. However, as we will explain in more

detail later, the result in [4], in particular the lower bound for the singular

series, relies on a computational mistake which, if corrected, would yield

an exponent larger than our exponent 2049 and also larger than what our

method would yield for n = 17.

It also improves on work in the author’s Master Thesis (unpublished) in

which the result for general cubic forms with n ≥ 14 was established with

the slightly larger exponent 141718. The improvement here comes from a

slight variation in the van der Corput differencing argument as well as an

improved treatment of the singular integral.

We already record at this point for later convenience that it suffices to prove

Theorem 4.1.4 for n = 14, as we may always set variables to zero. We may

also assume that C is non-degenerate since otherwise the result is trivial.

In the result for non-singular forms, we have restricted to the case n = 14

for convenience. It is clear that the same method would also give similar

results for all n ≥ 14, but here the general case does not immediately reduce

to the special case n = 14, as setting variables to zero could leave us a with

a singular form.

We also remark that using the Kloosterman refinement of the circle method,

the existence of non-trivial solutions to non-singular cubic forms is known

already for n ≥ 10 due to work of Heath-Brown [17] and – under the as-

sumption of local solubility – even for n = 9 due to work of Hooley [18].

It would be interesting to work out a bound for the smallest solution using

their method and compare it with our result.
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Notation

We use e(α) = e2πiα and eq(x) = e
(
x
q

)
and the notations O and ≪ due

to Landau and Vinogradov, respectively. For a subset A ⊂ Rn, we use the

summation condition
∑

x∈A as a shorthand for
∑

x∈A∩Zn i.e. we sum over all

the lattice points in the set. For such a vector x we write |x| := maxi |xi|.
For a positive number X > 0, we shall also use the notation

∑
x≤X to mean∑

0<x1,...,xn≤X and similarly
∑

x(q) to mean
∑

x1,...,xn (mod q).

The letter ε stands for a sufficiently small positive real number, which by

convention may change its value finitely many times. In particular, we may

write something like M2ε ≪ M ε. Implicit constants are usually allowed to

depend on ε. If we want to stress that it may depend on a parameter d, we

write Od instead of O.

Setup

The general strategy to estimate the counting function N(P ) (and hence to

prove the existence of integer solutions to ϕ(x) = 0) is to use the Hardy-

Littlewood Circle Method. To this end, let

S(α) =
∑
x∈PB

e(αϕ(x)).

It is then clear by orthogonality that

N(P ) =

∫ 1

0

S(α)dα.

The next step is to dissect the interval [0, 1] of integration into two sets M

and m, the major and minor arcs, respectively. In our setup, the major arcs

will be defined by taking

M(a, q) =

[
a

q
− u

P 3
,
a

q
+

u

P 3

]
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for coprime integers a and q with 0 ≤ a < q ≤ P0 and then defining

M =
⋃
q≤P0

⋃
(a;q)=1

M(a, q)

as the major arcs, and the complementm := [0, 1]\M as the minor arcs. Here,

u and P0 are certain parameters which will be chosen as fixed powers of P

eventually. In the proofs of Theorem 4.1.3 and 4.1.4 we will also choose P

as a fixed power of M allowing us to deduce N(P ) > 0 and thus establishing

the existence of a small solution. We note that these results are certainly

true for bounded M (by the above cited results) and so we may assume that

M is sufficiently large, if necessary. In the case of Theorem 4.1.1, we will fix

M and let P → ∞.

We note at this point that under the harmless assumption 2u
P 3 <

1
P 2
0
, the arcs

M(a, q) will be disjoint. We denote the equivalent assumption 2P 2
0 u < P 3

by (M1) for future reference. Since several more such assumptions will be

added in the course of our work, a list of all of them is maintained at the end

of the chapter for the convenience of the reader.

We denote the cubic form by C(x) =
∑

i,j,k cijkxixjxk where we assume the

cijk to be symmetric and integral (as this can be achieved by rescaling the

equation with a factor of 6 if necessary).

For further use let us denote the Hessian matrix of C by M(x), where

M(x)ij =
∑
k

cijkxk,

so that the entries of M(x)y are given by the bilinear forms

Bi(x,y) =
∑
j,k

cijkxjyk.

We also denote by r(x) the rank of M(x) and by rp(x) the Fp-rank of M(x)

for a prime p.

83



It will be convenient to assume that the coefficient c111 is positive and ≫M

and that none of the second partial derivatives of ϕ vanish identically. Both of

this can always be achieved by a suitable change of coordinates with bounded

coefficients.

4.2 Davenport’s Geometric Condition

For general cubic forms, an asymptotic formula of the shape N(P ) ≍ P n−3

cannot always be true. On the technical side, to successfully bound the

contribution from the minor arcs m, we need to be able to bound the number

of solutions to a certain auxiliary system of bilinear equations.

To this end, slightly varying a definition of [4], let us say that a cubic form

C is ψ-good if the assumption

#{x ∈ Zn : |x| < H, r(x) = r} ≪ Hn−14+r+ε (4.2.1)

for all 0 ≤ r ≤ n, holds uniformly in the range 1 ≤ H ≤Mψ. Note that this

estimate is trivially true for r ≥ 14.

To relate this to the assumptions in our results, we require the following

observations: The first is Lemma 28 in [19]:

Lemma 4.2.1. If C is non-singular, then

dim{x : r(x) ≤ r} ≤ r.

Hence,

#{x ∈ Zn : |x| < H, r(x) = r} ≪ Hr+ε

uniformly over all H. In particular, C is ψ-good whenever n ≥ 14.

Lemma 4.2.2. If C is not ψ-good, then it vanishes on a (n−13)-dimensional

subspace containing a non-zero element of size ≪ M97+91ψ. In particular,

h(C) ≤ 13.
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Proof. We follow the proof of Lemma 3 in [12]. By assumption, for some

H ≤ Mψ and for some r, there are more than Hn−14+r+ε points x with

|x| < H and r(x) = r. Note that this already implies r ≤ 13. This means

that for some particular r × r minor of M , the number of points x with

r(x) = r for which this particular minor does not vanish, is more than Hr+ε.

We can then find n−r linearly independent solutions y(1), . . . ,y(n−r) for each

such x, which indeed depend polynomially on x, since they can be expressed

as certain r × r minors of M(x).

These polynomial solutions satisfy∑
i

∑
k

cijkxiy
(p)
k (x) = ∆j,p(x)

identically in x where ∆j,p is a certain (r + 1)× (r + 1)-minor of M(x).

Differentiating this identity with respect to xν , then multiplying by y
(q)
j and

summing over j we obtain∑
j

∑
k

cνjky
(p)
k y

(q)
j +

∑
k

∆k,q
∂y

(p)
k

∂xν
=
∑
j

y
(q)
j

∂∆j,p

∂xν
(4.2.2)

for all 1 ≤ ν ≤ n and 1 ≤ p, q ≤ n− r.

Now, since all ∆k,p vanish on more than Hn−14+r+ε points x with |x| < H

it follows that the dimension of the variety described by the vanishing of all

these determinants must be at least n− 13 + r. In particular, there must be

a point x where the rank of the Jacobian matrix of these derivatives is at

most 13− r.

We now choose x as such a point. This means there are numbers Wj,p,τ and

Uτ,v such that

∂∆j,p

∂xν
=

13−r∑
τ=1

Wj,p,τUτ,ν .

The equation (4.2.2) now becomes∑
j

∑
k

cνjky
(p)
k y

(q)
j =

∑
j

y
(q)
j

13−r∑
τ=1

Wj,p,τUτ,ν .
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Writing

Y = T1y
(1) + · · ·+ Tn−ry

(n−r)

for indeterminates T1, . . . , Tn−r, multiplying the previous display by TpTq and

summing over q we end up with∑
j,k

cνjkYjYk =
∑
j

n−r∑
p=1

n−r∑
q=1

TpTqy
(q)
j

13−r∑
τ=1

Wj,p,τUτ,ν =
13−r∑
τ=1

VτUτ,ν

for certain numbers Vτ . Multiplying by Yν and summing over ν we find that

C(Y) =
13−r∑
τ=1

Vτ

n−r∑
p=1

Tp

n∑
ν=1

y(p)ν Uτ,ν .

Note that the interior double sum is a linear form in the Tp for each τ . If all

of these 13 − r linear forms vanish, we see that C(Y) = 0. But this means

that C vanishes on a linear subspace of dimension (n− r)− (13− r) = n−13

as desired and hence h(C) ≤ 13.

Finally, we estimate the size of the smallest solution in this subspace. From

their definition as r×r-minors we have |y(p)| ≪ HrM r. Moreover, the values

Uτ,ν can be chosen as values of
∂∆j,p
∂xν

and hence are bounded byM r+1Hr. The

coefficients of the linear system for the Ti are therefore bounded byM2r+1H2r.

By an application of Siegel’s Lemma, such a system has a non-trivial solution

with Ti ≪ (M2r+1H2r)13−r. Finally, this means that there is a non-trivial

solution Y of C(Y) = 0 satisfying

Y ≪M rHr(M2r+1H2r)13−r.

It is now readily checked that this is bounded by M97H91 for all choices of

r. Since H ≤Mψ by assumption, the result follows.

Summarizing, we may therefore assume that C is ∞-good for the purpose

of Theorems 4.1.1 and 4.1.3 as well as the non-singular case of 4.1.4. In the

general case of Theorem 4.1.4, we may suppose that C is ψ-good for some

suitable ψ as otherwise Lemma 4.2.2 allows us to deduce the existence of a

relatively small solution.
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4.3 The Major Arcs

We begin with the contribution from the major arcs. As remarked in [4],

using Poisson’s Summation Formula instead of the more elementary Euler

Summation formula yields a better error term. For the usual problem of

establishing an asymptotic formula, this improvement is irrelevant, but for

the uniform version it changes the resulting exponent significantly.

The result of that approximation is the following lemma which is proved

during the proof of Lemma 5 in [4].

Lemma 4.3.1. Suppose that f ∈ Z[X1, . . . , Xn] is a polynomial of degree

d ≥ 3 such that none of the partial derivatives ∂2f
∂X2

i
vanish identically.

Let C =
∏n

i=1[ai, bi] be a box and put RC = maxi |bi − ai|. Let λ ∈ R and

ψ ∈ (0, 1] be chosen so that |λ∇f(x)| ≤ 1− ψ for all x ∈ C . Then

∑
x∈C

e(λf(x)) =

∫
C

e(λf(t))dt+Od

(
ψ−1Rn−1

C

)
.

We now wish to estimate the Weyl sum S(α), where α = a
q
+ β for some

q ≤ P . Sorting the initial sum by congruence classes modulo q, we get

S

(
a

q
+ β

)
=

∑
x∈PB∩Zn

e

((
a

q
+ β

)
ϕ(x)

)
=
∑
r(q)

e

(
aϕ(r)

q

) ∑
y∈Zn:r+qy∈PB

e (βϕ(r+ qy)) .

We continue by applying Lemma 4.3.1 with f(y) = ϕ(r + qy), λ = β and

C = {y : r + qy ∈ PB}, so that RC = 2P
q
. For |β| ≤ u, the bound on the

derivative will be satisfied with ψ = 1
2
as soon as

u · P0 ·M · |z|2 ≪ P (M2)
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with a sufficiently small implicit constant. This yields

S

(
a

q
+ β

)
=
∑
r(q)

e

(
aϕ(r)

q

)(∫
t:r+qt∈PB

e (βϕ(r+ qt)) dt+O
(
P n−1

qn−1

))
=
S(q, a)

qn

∫
PB
e(βϕ(t))dt+O

(
P n−1q

)
,

where we write

S(q, a) =
∑
r(q)

e

(
aϕ(r)

q

)
.

Integrating this approximation over |β| ≤ u
P 3 and summing over a and q, we

obtain∫
M

S(α)dα = S(P0)

∫
|β|≤ u

P3

∫
PB
e(βϕ(t))dt+O

(
P n−4P 3

0 u
)

= S(P0) ·
∫
|β|≤u

∫
B
e

(
β
ϕ(P t)

P 3

)
dt · P n−3 +O

(
P n−4P 3

0 u
)

= S(P0) ·
∫
|β|≤u

∫
B
e

(
βC(t) +O

(
uM |z|2

P

))
dt · P n−3 +O

(
P n−4P 3

0 u
)

= S(P0) ·
(
I(u) +O

(
u2M |z|2

P

))
· P n−3 +O

(
P n−4P 3

0 u
)
,

with

S(P0) :=
∑
q≤P0

∑
(a;q)=1

S(q, a)

qn

and

I(u) :=

∫
|β|≤u

∫
B
e(βC(t))dt.

4.4 The singular integral

We now need to estimate the singular integral I(u). As usual, this is done

by first choosing the center of the box B to be a suitable non-singular point

and then using Fourier’s Inversion Theorem to show that I(u) converges to

a positive number I as u→ ∞.

88



However, to obtain the desired uniform result, we also require a bound on

the difference |I − I(u)|. In [4], a uniform version of Fourier’s Inversion

Theorem was cited from the thesis of Lloyd [23]. Since Lloyd’s Thesis is not

publically available and there actually was a small mistake in the application

of his result, we decided to include a self-contained treatment of the singular

integral, closely following the argument of Lloyd.

The key technical result is the following:

Lemma 4.4.1. Suppose that n ≥ 2 and that B is a box with center z and of

width ρ and suppose that C satisfies

∂C

∂xi
≥ ∂i

for i = 1, 2 on all of B for some positive constants ∂1, ∂2. Then, for

I(Z) :=

∫
|β|≤Z

∫
B
e(βC(x))dxdt,

one has

I(Z) = V (0) ·
(
1 +O

(
1

σZ

))
+O

(
ρn−2

Z

(
1

∂1∂2
+
ρ|z|M
∂31

log(σZ)

))
whenever σZ ≥ 2, where σ = maxx∈B |C(x)|.
We have the bound

V (0) ≫ ρn−1

M |z|2
. (4.4.1)

Some remarks are in order: Compared to Lemma 7 in [4], our last error

term is better. Indeed, as we will explain, it is the precise outcome of Lloyd’s

argument. It has the additional virtue of being scaling invariant: If we replace

B by TB and Z by Z
T 3 , then I(Z) is multiplied by T n−3 and the same is true

for all error terms (in contrast to the version in [4]).

Note that we have also refrained from writing the first term as V (0) +

O
(
V (0)
σZ

)
. This is convenient because it means that we do not require an

upper bound for V (0) in order to deduce a lower bound for I(Z).
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Finally, note that the condition ∂C
∂xi

≥ ∂i on all of B leads to a restriction

on the size of ρ that was overlooked (and indeed not satisfied by the choice

made) in [4].

Proof. We begin by interchanging the order of integration to write

I(Z) =

∫
B

sin 2πZC(x)

πC(x)
dx.

The next step is to make the change of variables (x1, . . . , xn) 7→ (t, x2, . . . , xn)

with t = C(x). The Jacobian of this change of variable is given by ∂C
∂x1

≥ ∂1 >

0 and so this change of variables is invertible. If we denote by g(t, x2, . . . , xn)

the coordinate x1 of the inverse, then 0 < ∂g
∂t

= 1
∂C
∂x1

≤ 1
∂1

and we can write

I(Z) =

∫
R

sin 2πZt

πt

∂g

∂t
(t, x2, . . . , xn)dtdx2 . . . dxn =

∫ σ

−σ

sin 2πZt

πt
V (t)dt

where

V (t) =

∫
(t,x2,...,xn)∈R

∂g

∂t
(t, x2, . . . , xn)dx2 . . . dxn (4.4.2)

and R is the image of B under the change of variables.

For later use, we also record the lower bound

∂g

∂t
=

1
∂C
∂x1

≫ 1

M |z|2
. (4.4.3)

To make use of Fourier’s Inversion Theorem, we need to estimate right and

left derivatives of the function V (t).

To this end, we write

V (t) =

∫
∏n
i=3[zi−ρ,zi+ρ]

∫
x2∈Rt,x3,...,xn

∂g

∂t
(t, x2, . . . , xn)dx2dx3 . . . dxn

where

Rt,x3,...,xn = {x2 ∈ (z2 − ρ, z2 + ρ) : ∃x1 ∈ (z1 − ρ, z1 + ρ) : t = C(x)}

= {x2 ∈ (z2 − ρ, z2 + ρ) : C(z1 − ρ, x2, . . . , xn) < t < C(z1 + ρ, x2, . . . , xn)}

= {x2 ∈ (z2 − ρ, z2 + ρ) : b(1)x3,...,xn(x2) < t < b(2)x3,...,xn(x2)}
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with b(1) and b(2) defined by the last equation so that we have ∂b(i)

∂x2
≥ ∂2 by

assumption. In particular, we can write

Rt,x3,...,xn = (ℓ(1)x3,...,xn , ℓ
(2)
x3,...,xn

)

with ℓ
(i)
x3,...,xn continuous everywhere and continuously differentiable with the

exception of at most two points. At these two points, left and right derivatives

exist and all of these derivatives satisfy 0 < ∂ℓ(i)

∂t
≤ 1

∂2
. We now obtain

V (t) =

∫
∏n
i=3[zi−ρ,zi+ρ]

∫ ℓ(2)

ℓ(1)

∂g

∂t
(t, x2, . . . , xn)dx2dx3 . . . dxn.

Using Leibniz’s rule, we now obtain that V has right and left derivatives

everywhere with them disagreeing only at finitely many points. More pre-

cisely, the left and right derivatives of the inner integral are given by a linear

combination of expressions of the form ∂g
∂t

· ∂±ℓ(i)
∂t

as well as∫ ℓ(2)

ℓ(1)

∂2g

∂t2
dt.

The first type of expressions is bounded by O
(

1
∂1∂2

)
and the second one by

ρM |z|
∂31

on noting that

∂2g

∂t2
= −

∂2C
∂x1(
∂C
∂x1

)3 ≪ M |z|
∂31

(where we used that ρ ≪ |z| and hence |z| + ρ ≪ |z| since the box clearly

can’t contain the origin). It now follows that

∂±V

∂t
≪ ρn−2 ·

(
1

∂1∂2
+
ρM |z|
∂31

)
=: A.

Letting

Φ(t) =
V (t) + V (−t)− 2V (0)

t
,

we now see that Φ(t) ≪ A and Φ′(t) ≪ A
t
for all t > 0.
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Finally, we are ready to estimate

I(Z) = 2V (0)

∫ σ

0

sin 2πZt

πt
dt+

1

π

∫ σ

0

Φ(t) sin 2πZtdt.

The first integral is easily evaluated to 1
2
+O

(
1
σZ

)
. For the second integral,

we split the range of integration into t ≤ τ and t ≥ τ for a suitable parameter

0 ≤ τ ≤ σ. The range t ≤ τ contributes ≪ τA. On the range t ≥ τ we can

integrate by parts to obtain∫ σ

τ

Φ(t) sin 2πZtdt =

[
−Φ(t)

cos 2πZt

2πt

]σ
τ

+

∫ σ

τ

Φ′(t)
cos 2πZt

2πt
dt≪ A

Z

(
1 + log

σ

τ

)
.

The main result of the lemma now follows upon choosing τ = 1
Z
.

Finally, we note that (4.4.1) follows immediately from (4.4.2) and (4.4.3).

To apply Lemma 4.4.1, we now need to choose a suitable non-singular point

z as the center of our box. The strategy is similar to the one in the proof of

Lemma 6 in [4], but we need a variant for the inhomogeneous case.

Lemma 4.4.2. a) If h = h(C), there is a solution z̃ = (ξ,y) ∈ Rn to

C(z) = 0 satisfying |z| ≪ M
1

h−2 and such that (possibly after relabeling the

coordinates and changing signs)

∂C(z̃)

∂x1
≫M−1− 4

h−2

and
∂C(z̃)

∂x2
≫M−2− 7

h−2 .

b) Similarly, unless C(x) = 0 has a non-trivial integer solution with |x| ≪
M

1
n−2 , there is a solution z̃ = (ξ,y) ∈ Rn to C(z̃) = 0 satisfying |z| ≪M

1
n−2

and such that (possibly after relabeling the coordinates and changing signs)

∂C(z̃)

∂x1
≫M−1− 4

n−2

and
∂C(z̃)

∂x2
≫M−2− 7

n−2 .
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Proof. We write the cubic form as

C(x) = ax31 + F1x
2
1 + F2x1 + F3

where as explained in the introduction we may assume that a > 0 and a ≫
M . In the setting of b), by Siegel’s Lemma, we can find a non-trivial integer

solution y to F1(y) = 0 with |y| ≪ M
1

n−2 . If F3(y) = 0, we have found

the desired small integer solution (0,y). Otherwise we may assume that

|F3(y)| ≥ 1.

In the setting of a), we argue instead that we can find linearly independent

integer solutions y(1), . . . ,y(n−h+1) of F1(y) = 0, all of them satisfying y(i) ≪
M

1
h−2 . By definition of h = h(C), one of them must have F3(y) ̸= 0 and

hence |F3(y)| ≥ 1.

From here on, the argument is identical in both cases, so we only treat a).

Flipping signs if necessary, we may assume that F3 = F3(y) ≤ −1. We may

thus find a real zero ξ > 0 of C(ξ,y) = aξ3 + F2ξ + F3 = 0 where we have

written F2 = F2(y). The next step is to establish bounds on ξ.

If F2 ≥ 0, we can use that aξ3 ≤ |F3| ≪ M1+ 3
h−2 , so that ξ ≪ M

1
h−2 and

then

ξ ≥ 1

aξ2 + F2

≫M−1− 2
h−2 .

If F2 < 0, we instead argue that aξ3 ≥ 1, so that ξ ≫ M−1/3, aξ3 =

|F2|ξ + |F3| and

ξ ≪
∣∣∣∣F2

a

∣∣∣∣1/2 + ∣∣∣∣F3

a

∣∣∣∣1/3 ≪M
1

h−2 .

In any case, we have thus established that

M−1− 2
h−2 ≪ ξ ≪M

1
h−2 .

Finally, we need to bound the partial derivatives. We have

∂C(ξ,y)

∂x1
= 3aξ2 + F2 = 2aξ2 − F3

ξ
≥ 2aξ2 ≫M−1− 4

h−2 .
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Using Euler’s identity, we now find that∣∣∣∣y2 ∂C∂x2 + · · ·+ yn
∂C

∂xn

∣∣∣∣ ≥ ∣∣∣∣ξ ∂C∂x1
∣∣∣∣− 3|C(ξ,y)| ≫M−2− 6

h−2

and hence w.l.o.g.
∣∣∣y2 ∂C∂x2 ∣∣∣≫M−2− 6

h−2 , so that
∣∣∣ ∂C∂x2 ∣∣∣≫M−2− 7

h−2 as desired.

We now choose our box B with center z and width ρ = 1 making sure

that the assumptions in Lemma 4.4.1 are satisfied. To this end, we choose

z = AM3+ 8
n−2 z̃ with z̃ as in Lemma 4.4.2 and a sufficiently large constant

A > 0. With the choice of h = 14 or n = 14, respectively, we record the

properties of this choice in the following lemma.

Lemma 4.4.3. The point z ∈ Rn is a solution of C(z) = 0 satisfying |z| ≪
M3.75,

∂C

∂x1
≫M6

and
∂C

∂x2
≫M4.75

on all of B.

For the proof, we only need to note that the bounds for the derivatives at

the point z (which are obtained directly from the bounds for z̃ by scaling)

extend over all of B as

∂C

∂xi
=
∂C(z)

∂xi
+O(M |z|).

It is here that we make use of the fact that A is sufficiently large.

It is clear that we may assume that ∂C
∂xi

≪ ∂C
∂x1

for all i at z and then on all

of B as otherwise we can simply permute the variables.

Finally, we can collect the results of this section in the following lemma.
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Lemma 4.4.4. With the box B = B(z) chosen as above, we have

I(u) = I ·
(
1 +O

(
1

M12.25u

))
+O

(
1

uM10.75

)
for some number I > 0 with

I ≫ 1

M8.5
.

In particular, we have

I(u) ≫ 1

M8.5

for any u ≥ 1.

Under the assumption of (M1) and (M2) as well as

u2M17+ε ≪ P, (I1)

it follows that∫
M

S(α)dα = (1 + o(1))S(P0) · I(u) · P n−3 +O
(
P n−4P 3

0 u
)
.

To discuss the singular series S(P0), we need estimates on the Gauß Sums

S(q, a), a problem which is related to bounding the Weyl Sum S(α) on the

minor arcs. We therefore continue with the discussion of the minor arcs and

return to discuss the singular series at the appropriate point.

4.5 The minor arcs

As in Heath-Brown’s work [16], we make use of three different methods to

bound S(α) on the minor arcs. First of all, there is the classical Weyl dif-

ferencing method, that was used by Davenport to obtain his result for 16

variables. While alone it is therefore insufficient for our purposes, it still out-

performs the other methods in certain regimes of the minor arcs and therefore

remains a crucial ingredient.
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The second method is the pointwise van der Corput differencing. This im-

proves on the Weyl differencing, but again is not good enough to save more

variables. We shall only require it to bound the Gauß Sums S(q, a) and thus

for the convergence of the singular series.

Finally, the third method is the mean-square average version of van der

Corput differencing which is the key innovation of Heath-Brown in allowing

us to obtain results for 14 variables.

Since in all methods, lower order terms of ϕ disappear in the course of dif-

ferencing, the results of this section are essentially identical with those from

the homogeneous case.

4.5.1 Preliminaries

We begin by recalling the general strategy implicit already in Davenport’s

work:

By an appropriate combination of squaring and Cauchy-Schwarz, one reduces

the cubic exponential sum to one over a linear form. While in the classical

case of a diagonal cubic form, the resulting sum is easy to handle, the general

shape of a cubic form begins to cause problems.

In general, this step allows us to reduce a bound for S(α) to one for the

number of solutions to a system of certain auxiliary diophantine inequalities

involving the bilinear forms Bi(x,y).

These diophantine inequalities are dealt with by an application of Daven-

port’s Shrinking Lemma. Roughly speaking, the Shrinking Lemma allows us

to bootstrap the diophantine inequalities in a way that forces equality.

Finally, the number of solutions to the resulting system of auxililary diophan-

tine equations involving the bilinear forms Bi(x,y) can be estimated using

Davenport’s Geometric Condition which for us is captured by the assumption

(4.2.1) that C is ψ-good.
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At this point, we record two of the mentioned key ingredients. The first one

is Davenport’s Shrinking Lemma (see e.g. [16], Lemma 2.2).

Lemma 4.5.1. Let L ∈Mn(R) be a real symmetric n×n matrix. Let a > 0

be real, and let

N(Z) := #{u ∈ Zn : |u| ≤ aZ, ∥(Lu)i∥ < a−1Z, 1 ≤ i ≤ n}.

Then if 0 < Z ≤ 1, we have

N(1) ≪n Z
−nN(Z).

The second one is Lemma 2.3 from [16] and will allow us to deduce that a

sufficiently strong diophantine inequality already forces equality or at least

a divisibility condition:

Lemma 4.5.2. Let a real number X ≥ 0 be given and let α = a
q
+ θ with

(a; q) = 1 and 2qX|θ| ≤ 1. Suppose that m ∈ Z is such that |m| ≤ X and

∥αm∥ ≤ 1
P1

for some P1 ≥ 2q. Then q | m. In particular we will have m = 0

if in addition X < q or |θ| > 1
qP1

.

4.5.2 Weyl Differencing

Recall the definition

S(α) =
∑
x∈PB

e(αϕ(x)).

This leads to the identity

|S(α)|2 =
∑

x,y∈PB

e(α(ϕ(y)− ϕ(x))).

Writing y = x+ d1 we can rewrite this as

|S(α)|2 =
∑
d1

∑
x∈R(d1)

e(α(ϕ(x+ d1)− ϕ(x))),
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where R(d1) = PB ∩ (PB − d1). In particular, the inner sum is empty

unless |d1| ≤ 2P . Squaring again and applying Cauchy-Schwarz, we then

find that

|S(α)|4 ≪ P n
∑
d1

∑
x,z∈R(d1)

e(α(ϕ(z+ d1)− ϕ(z)− ϕ(x+ d1) + ϕ(x))).

Writing z = x+ d2 this can be rewritten as

|S(α)|4 ≪ P n
∑
d1,d2

∑
x∈S(d1,d2)

e(αC(d1,d2,x)) (4.5.1)

where S(d1,d2) = R(d1) ∩ (R(d1)− d2) and

C(d1,d2,x) = ϕ(x+ d1 + d2)− ϕ(x+ d1)− ϕ(x+ d2) + ϕ(x).

Note that the notation C(d1,d2,x) is appropriate as the lower order terms

of ϕ have disappeared at this point.

All we need to know about S(d1,d2) is that it is a certain box inside PB.

Further, note that

C(d1,d2,x) = 6
n∑
i=1

xiBi(d1,d2) + ψ(d1,d2),

where ψ(d1,d2) is independent of x. We now recall the standard bound for

linear exponential sums∑
x∈I

e(αx) ≪ min(|I|, ∥α∥−1),

where I ⊂ R is any interval and ∥α∥ = minn∈Z |α − n|. From this and the

previous discussion, it now follows that

|S(α)|4 ≪ P n
∑

|d1|,|d2|≤2P

n∏
i=1

min
(
P, ∥6αBi(d1,d2)∥−1

)
. (4.5.2)
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The next step is to compute the sum over d1 and d2 or rather relate it to the

previously mentioned number of solutions to a certain system of inequalities.

To this end, let

N(d) = #{x ∈ Zn : |d| ≤ 4P, ∥6αBi(d,x)∥ <
1

4P
}.

It then follows that for fixed d1 and integers r1, . . . , rn with 0 ≤ ri < 4P ,

there are at most N(d1) values of d2 with |d2| ≤ 2P satisfying

ri
4P

≤ {6αBi(d1,d2)} <
ri + 1

4P
,

because for any two such vectors d2 and d2
′ their difference d = d2 − d′

2

must be in the set counted by N(d1). This yields the estimate

|S(α)|4 ≪ P n
∑
d1

N(d1)
4P∑
r1=0

· · ·
4P∑
rn=0

n∏
i=1

min

(
P,

4P

ri

)
≪ P 2n(logP )n

∑
d1

N(d1)

so that

|S(α)|4 ≪ P 2n+ε#

{
(x,y) ∈ Z2n : |x|, |y| ≤ 4P, ∥6αBi(x,y)∥ <

1

4P

}
.

An application of the Shrinking Lemma 4.5.1 now leads to the estimate

|S(α)|4 ≪ Z−nP 2n+ε#

{
(x,y) ∈ Z2n : |x| ≤ 4P, |y| ≤ 4PZ, ∥6αBi(x,y)∥ <

Z

4P

}
.

Reversing the rôles of x and y and applying the argument again with slightly

different parameters, we arrive at

|S(α)|4 ≪ Z−2nP 2n+ε#

{
(x,y) ∈ Z2n : |x|, |y| ≤ 4PZ, ∥6αBi(x,y)∥ <

Z2

4P

}
.

(4.5.3)

We now need to choose Z sufficiently small so that Lemma 4.5.2 allows us

to conclude Bi(x,y) = 0.
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Here we choose m = 6Bi(x,y) so that X ≍M(PZ)2 and P1 ≍ P
Z2 . Thus any

choice of Z satisfying Z ≤ 1 as well as

2q|θ|M(PZ)2 ≪ 1 and Z2q ≪ P

as well as

M(PZ)2 ≪ q or Z2 ≪ |θ|qP

with sufficiently small implicit constants allows us to conclude that

|S(α)|4 ≪ Z−2nP 2n+ε#
{
(x,y) ∈ Z2n : |x|, |y| ≤ 4PZ,Bi(x,y) = 0

}
.

(4.5.4)

In the end we will choose Z as big as possible, subject to the conditions

above, but before making this choice let us see how to estimate the RHS in

(4.5.4). At this point we need the assumption that C is ψ-good. Recall that

this means that the estimate

#{x ∈ Zn : |x| < H, r(x) = r} ≪ Hn−14+r+ε (4.5.5)

holds uniformly in 1 ≤ H ≤Mψ where r(x) is the rank of the matrix M(x).

This is clearly related to the system of equations we are studying by the fact

that the condition Bi(x,y) = 0 for all i is equivalent to M(y)x = 0.

But if y is fixed, the number of x with |x| ≤ 4PZ and M(y)x = 0 is

O ((ZP )n−r). Hence with H ≍ PZ we find that

|S(α)|4 ≪ Z−2nP 2n+ε

n∑
r=0

∑
|w|≪H,r(w)=r

(PZ)n−r

≪ Z−2nP 2n+ε

14∑
r=0

Hn−14+r+ε(PZ)n−r

≪ P 4n+ε(PZ)−14,

assuming PZ ≪Mψ. Here we needed to assume that PZ ≫ 1 but the final

result is trivially true if this assumption fails to be correct. Finally, from
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this result it is clear that the optimal choice for Z is indeed the maximal one

subject to the above conditions. This choice is

Z ≍ min

(
1,

1

(q|θ|M)
1
2P

,

(
P

q

) 1
2

,
Mψ

P
,max

(
q

1
2

M
1
2P

, (qP |θ|)
1
2

))

and leads to the following final result.

Lemma 4.5.3. Assume that C is ψ-good. If α = a
q
+ θ for coprime integers

0 ≤ a < q, then

S(α) ≪ P n+ε

(
1

P 2
+Mq|θ|+ q

P 3
+

1

q
min

(
M,

1

|θ|P 3

)
+M−2ψ

) 7
4

.

4.5.3 A pointwise bound via van der Corput

In this section, we derive a bound for S(q, a) using the version of van der

Corput’s method from [16] instead of Weyl differencing. To this end, we

will temporarily put B = (0, 1]n, P = q and α = a
q
with (a; q) = 1, so that

S(α) = S(q, a). Of course the arguments in this section can be developed

in a much broader context (see [16] for more details), but since in their rôle

as bounds for S(α) on the minor arcs they will be insufficient and in fact

superseded by the results from the next section, we content ourselves with

the treatment of this special case. The basic idea is to write

S(q, a) = H−n
∑
h≤H

∑
x:x+h≤q

eq(aϕ(x+ h)),

where 1 ≤ H ≤ q is a suitable parameter. Interchanging the order of sum-

mation, this yields

S(q, a) = H−n
∑
x∈Zn

∑
h≤H:
x+h≤q

eq(aϕ(x+ h)).
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Note that the inner sum is non-empty only for O(qn) vectors x, due to the

condition H ≤ q. Hence an application of Cauchy-Schwarz leads to

|S(q, a)|2 ≪ H−2nqn
∑
x∈Zn

∣∣∣∣∣∣∣∣
∑
h≤H:
x+h≤q

eq(aϕ(x+ h))

∣∣∣∣∣∣∣∣
2

.

Opening the square, this yields

|S(q, a)|2 ≪ H−2nqn
∑
x

∑
h1,h2≤H:

x+h1,x+h2≤q

eq (a (ϕ(x+ h1)− ϕ(x+ h2))) .

Writing y = x+ h2 and h = h1 − h2, this is equivalent to

|S(q, a)|2 ≪ H−2nqn
∑
|h|≤H

w(h)
∑

y∈R(h)

eq(a(ϕ(y + h)− ϕ(y))),

where w(h) = #{h1,h2 : h = h1 − h2} ≤ Hn and R(h) is a box as before.

We have therefore shown that

|S(q, a)|2 ≪ H−nqn
∑
|h|≤H

|T (h, a, q)|,

where

T (h, a, q) =
∑

y∈R(h)

eq(a(ϕ(y + h)− ϕ(y))).

Again we reduce the degree of the form once more by squaring and expanding

this expression to obtain

|T (h, a, q)|2 =
∑

x,y∈R(h)

eq(a(ϕ(y + h)− ϕ(y)− ϕ(x+ h) + ϕ(x))).

Writing y = x+ d as before, this equals

|T (h, a, q)|2 =
∑
d

∑
x∈S(h,d)

eq(aC(h,d,x))
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with S(h,d) the box and C(x,y, z) the multilinear form defined before.

Again we note that the inner sum is empty unless |d| ≤ 2q. So we are

in a situation very similar to the one in the previous section and the same

argument developed there now shows that

|T (h, a, q)|2 ≪ qn+εN(a, q,h),

where

N(a, q,h) = #

{
d ∈ Zn : |d| ≤ 2q,

∥∥∥∥6aqBi(h,d)

∥∥∥∥ < 1

q

}
.

Again applying Lemma 4.5.1, we find that

N(a, q,h) ≪ Z−n#

{
d ∈ Zn : |d| ≤ 2qZ,

∥∥∥∥6aqBi(h,d)

∥∥∥∥ < Z

q

}

whenever 0 < Z ≤ 1.

Note that of course the condition
∥∥∥6aqBi(h,d)

∥∥∥ < 1
q
already implies that

q | 6Bi(h,d) but we have written it in this form so that we can recognize the

condition to be of the same shape as in the earlier argument.

The next step is to apply Lemma 4.5.2 to turn the inequality into the equality

Bi(h,d) = 0. Here we choose m = 6Bi(h,d) so that X ≍ MHqZ and

P1 ≍ q
Z
. Thus any choice of Z satisfying MHZ ≪ 1 for a sufficiently small

implicit constant allows us to conclude that

N(a, q,h) ≪ Z−n# {d ∈ Zn : |d| ≤ 2qZ,Bi(h,d) = 0} ≪ Z−n(qZ)n−r(h)

and hence

|S(q, a)|2 ≪ q
3n
2
+ε

HnZ
n
2

∑
|h|≤H

(qZ)
n−r(h)

2 .
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If we assume in addition that C is ψ-good and H ≤Mψ, we obtain the bound

|S(q, a)|2 ≪ q
3n
2
+ε

HnZ
n
2

14∑
r=0

Hn−14+r+ε(qZ)
n−r
2

≪ q2n+ε

H14

14∑
r=0

Hr

(qZ)
r
2

≪ q2n+ε
(

1

H
+

1

qZ

)14

.

Again we assumed that qZ ≥ 1, but the final result is trivial otherwise.

So again it will be optimal to choose Z as large as possible i.e. Z ≍ 1
MH

.

Inserting this into our result we obtain the bound

|S(q, a)| ≪ qn+ε
(

1

H2
+
HM

q

) 7
2

. (4.5.6)

The final step is to choose the value of H minimizing the RHS of (4.5.6).

We are given the conditions 1 ≤ H ≤ q and H ≤ Mψ. Putting γ =
(
q
M

) 1
3 ,

we see that the RHS of (4.5.6) is decreasing for H ≪ γ and increasing for

H ≫ γ so that the optimal choice is H ≍ min(Mψ, γ). Note that H ≤ q is

then automatically satisfied. We have thus proved the following result.

Lemma 4.5.4. Let a and q be coprime integers with 0 ≤ a < q. Assume

that C is ψ-good. Then

S(q, a)

qn
≪
(
M

q

) 7
3
+ε

+M−7ψ+ε.

4.5.4 A mean square average via van der Corput

In this section we finally apply the improved version of van der Corput’s

method developed in [16] to obtain a satisfying bound for the minor arc

contribution.

The idea is to exploit that the minor arc contribution already involves an

average over both the modulus q and the integration variable β.
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From now on let our box be again B = B(z) with the center z as chosen

in Lemma 4.4.3. Instead of a pointwise bound for S(α), we now seek to

estimate the mean square average

M(α, κ) :=

∫ α+κ

α−κ
|S(β)|2dβ,

where κ ∈ (0, 1) is a small parameter to be determined. By an appropriate

dissection of the minor arcs and an application of Cauchy-Schwarz, a satisfac-

tory estimate for M(α,H) will allow us to bound the minor arc contribution∫
m
S(α)dα.

We proceed as in the previous section, only now we consider the more general

(but still trivial) identity

H1H2 . . . HnS(β) =
∑

h:hi≤Hi

∑
x+h∈PB

e(βϕ(x+h)) =
∑
x∈Zn

∑
h:x+h∈PB

e(βϕ(x+h))

where H1, H2, . . . , Hn ≥ 1 are certain parameters. We choose H1 = P and

H2 = · · · = Hn = H for a certain parameter H ≤ P . Here the special rôle of

the first variable comes from its special rôle in the construction of z.

Note that the condition Hi ≤ P ensures that the sum over h is non-empty

only for O(P n) values of x. Squaring and applying Cauchy-Schwarz, we then

find that

(H2
1 . . . H

2
n)|S(β)|2 ≪ P n

∑
x∈Zn

∣∣∣∣∣ ∑
h:x+h∈PB

e(βϕ(x+ h))

∣∣∣∣∣
2

.

Opening the square, this yields

(H2
1 . . . H

2
n)|S(β)|2 ≪ P n

∑
x∈Zn

∑
h1,h2:

x+h1,x+h2∈PB

e (β (ϕ(x+ h1)− ϕ(x+ h2))) .

Writing y = x+ h2 and h = h1 − h2, this is equivalent to

(H2
1 . . . H

2
n)|S(β)|2 ≪ P n

∑
|hi|≤Hi

w(h)
∑

y∈R(h)

e(β(ϕ(y + h)− ϕ(y)))
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where w(h) = #{h1,h2 : h = h1 − h2} ≤ H1H2 . . . Hn. Instead of taking

absolute values inside as before, we now first integrate over β. Here we use

a smooth cutoff function to find that

M(α, κ) ≤ e

∫
R
exp

(
−(β − α)2

κ2

)
|S(β)|2dβ

≪ P n

(H1 . . . Hn)2

∑
h

w(h)
∑

y∈R(h)

I(h,y)

and hence

M(α, κ) ≪ P n

H1 . . . Hn

∑
h

∣∣∣∣∣∣
∑

y∈R(h)

I(h,y)

∣∣∣∣∣∣ , (4.5.7)

where

I(h,y) =

∫
R
exp

(
−(β − α)2

κ2

)
e (β(ϕ(y + h)− ϕ(y))) dβ

which can also be written as

I(h,y) =
√
πκ exp

(
−π2κ2 (ϕ(y + h)− ϕ(y))2

)
e(α(ϕ(y + h)− ϕ(y))).

(4.5.8)

Our goal is to bound the contribution of the terms where h1 is large so that

we can effectively bound h1 to a shorter interval. The point is that by our

choice of the box B(z) we have a good lower bound for the partial derivative
∂C
∂x1

inside B. But we expect ϕ(y + h) − ϕ(y) ≈ h1
∂ϕ(y)
∂x1

≈ h1
∂C(y)
∂x1

so that

this difference should be large if h1 is large which means that I(h,y) will be

small.

Let us make this precise. By Lemma 4.4.3 we have the bound

∂C

∂x1
≫M6 (4.5.9)

on all of B.
By homogeneity this implies that

∂C

∂x1
≫ P 2M6
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on PB.

We thus find that

∂ϕ

∂x1
=

∂C

∂X1

+O (PM |z|) ≫ P 2M6

on all of PB as well.

Using |y| ≪ PM3.75 for y ∈ PB, we now have the approximation

ϕ(y + h)− ϕ(y) = h1 ·
∂ϕ

∂x1
(y) +O

(
HP 2max

i

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣+ h21PM

4.75

)
.

Note that h1 ≤ P implies that

h21PM
4.75 ≪ h1P

2M4.75

and so we will have

ϕ(y + h)− ϕ(y) ≫ |h1| · P 2M6

unless |h1| ≪ H. Indeed, unless also |h1| ≪ (logP )2

κP 2M6 , this means that

|C(y + h)− C(y)| ≥ (logP )2

κ

and it is easy to see from (4.5.7) and (4.5.8) that the contribution toM(α, κ)

of such h is O(1). Hence we have shown that

M(α, κ) ≪ 1 +
P n−1

Hn−1

∑
|hi|≪H

∣∣∣∣∣∑
y

I(h,y)

∣∣∣∣∣
if we choose κ ≍ (logP )2

HP 2M6 .

Moreover, the range |β − α| ≥ κ logP in the definition of I(h,y) clearly has

a total contribution of O(1) to M(α, κ) so that we end up with the estimate

M(α, κ) ≪ 1 +
P n−1

Hn−1

∑
|hi|≪H

∫ α+κ logP

α−κ logP
|T (h, β)|dβ,
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where

T (h, β) =
∑

y∈R(h)

e (β(ϕ(y + h)− ϕ(y))) .

The same argument employed already several times now yields

|T (h, β)|2 ≪ P n+εN(β, P,h)

where

N(β, P,h) = #

{
d ∈ Zn : |d| ≤ 2P, ∥6βBi(h,d)∥ <

1

2P

}
,

so that

M(α, κ) ≪ 1 +
κP

3n
2
−1+ε

Hn−1

∑
|hi|≪H

max
β∈I

N(β, P,h)
1
2 (4.5.10)

where I = {β : |β − α| ≤ κ logP}.
We next claim that

max
β∈I

N(β, P,h) ≪ P εN(α, P,h).

Indeed, consider a vector d counted by N(β, P,h). By our assumption, it

satisfies |d| ≪ P as well as ∥6βBi(h,d)∥ ≪ 1
P
so that

∥6αBi(h,d)∥ ≪ 1

P
+ |β − α||Bi(h,d)| ≪

1

P
+ κ(logP )MHP ≪ 1

P

by our choice of κ.

We conclude that

max
β

N(β, P,h) ≤ #

{
d ∈ Zn : |d| ≪ P, ∥6αBi(h,d)∥ ≪ 1

P

}
≪ N(α, P,h),

where the last estimate is a consequence of Lemma 4.5.1 with Z ≍ 1 suffi-

ciently small.

We conclude that
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M(α, κ) ≪ 1 +
κP

3n
2
−1+ε

Hn−1

∑
|hi|≪H

N(α, P,h)
1
2 . (4.5.11)

We now write α = a
q
+ θ in a preparation for applying Lemmas 4.5.1 and

4.5.2. Indeed, Lemma 4.5.1 implies that

N(α, P,h) ≪ Z−n#{d ∈ Zn : |d| < ZP, ∥6αBi(h,d)∥ ≪ Z

P
}.

Following Heath-Brown, we apply this with two different choices of Z. In the

first application we choose Z = Z1 sufficiently small to ensure Bi(h,d) = 0

as before. In the second application however, we make a larger choice of

Z = Z2 which only forces that q | Bi(h,d). We then have to consider the

implications of this weaker result. It was observed in [16] that only this new

trick allows us to handle the case of 14 variables.

To apply Lemma 4.5.2 with m = 6Bi(h,d) we have to choose X ≍ MHPZ

and P1 ≍ P
Z

so that in our application of Lemma 4.5.1 we need to choose

Z ≤ 1 satisfying

|θ| ≪ 1

MHPZq
and Z ≪ P

q

with sufficiently small implicit constants. In the first application we should

also have

MHPZ ≪ q or Z ≪ q|θ|P.

Writing

η = |θ|+ 1

P 2HM
(4.5.12)

for convenience and assuming q ∼ R, this means that we need to choose

Z1 ≍ min

(
RηP,

1

RHMPη

)
,

noting that this automatically implies Z1 ≤ 1. Similarly, we should choose

Z2 ≍ min

(
1,

1

RHMPη

)
.
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In the application with Z = Z1, we thus find that

N(α, P,h) ≪ Z−n
1 #{w ∈ Zn : |w| ≪ P,Bi(h,d) = 0}

≪ Z−n
1 (Z1P )

n−r

≪ P n
(
(RηP 2)−r + (RHMη)r

)
where r = r(h). The argument only works for Z1P ≥ 1 but the estimate is

true in any case because of the trivial bound N(β, P,h) ≪ P n.

On the other hand, in the application with Z = Z2, we obtain

N(α, P,h) ≪ Z−n
2 #{d ∈ Zn : |d| ≪ Z2P, q | Bi(h,d)}.

To make this a useful estimate, we need to count vectors d with q | Bi(h,d).

Here we can copy the results from [16], but we need to introduce some nota-

tion. Recall that we have fixed a vector h with r(h) = r, meaning that the

matrix M(h) has rank r. We now distinguish primes p according to whether

p divides all the r × r minors of M(h). If it does, we say that p is of type I

and if it does not, we say that it is of type II. We then decompose q = q1q2

such that q1 is a product of type I primes and q2 a product of type II primes.

The argument in [16, p. 218 f.] now shows that

#{d ∈ Zn : |d| ≪ Z2P, q | Bi(h,d)} ≪
(
1 +

B

q2

)r
Bn−r

with B = 1 + Z2P . If Z2P ≫ 1 so that B ≍ Z2P , this shows that

N(α, P,h) ≪ Z−n
2

(
1 +

Z2P

q2

)r
(Z2P )

n−r

= P n

(
1

q2
+

1

Z2P

)r
≪ P n

(
1

qr2
+

1

P r
+ (RHMη)r

)
,

but the intermediate and hence the final result is trivially true if Z2P ≪ 1.

Combining the results of the two applications, we obtain that

N(α, P,h) ≪ P n

(
1

P r
+ (RHMη)r +min

(
1

(RηP 2)r
,
1

qr2

))
.
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We now need to insert this into our estimate for M(α, κ) but we also want

to introduce an average over q to make use of the fact that q2 is almost as

large as q most of the time.

Our object of study thus becomes

A(θ, R,H, P ) :=
∑
q∼R

∑
(a;q)=1

∑
|hi|≪H

N(α, P,h)
1
2 , (4.5.13)

where we continue to write α = a
q
+ θ and we remind the reader of our

notation q ∼ R for the dyadic condition R < q ≤ 2R.

The argument above now leads to the bound

A(θ, R,H, P ) ≪ RP
n
2

∑
|hi|≪H

∑
q∼R

[
1

P
+RHMη +min

(
1

RηP 2
,
1

q2

)] r(h)
2

.

We then need to estimate

V (h, R, η) :=
∑
q∼R

min

(
1

RηP 2
,
1

q2

)r/2
for r = r(h). A double dyadic decomposition leads to

V (h, R, η) ≪ P εmax
S≤R

∑
q1∼S

∑
q2∼R

S

min

(
1

RηP 2
,
S

R

)r/2

≪ P εmax
S≤R

R

S
min

(
1

RηP 2
,
S

R

)r/2
#{q1 ≤ 2S}.

Now recall that q1 only contains prime factors dividing a certain non-zero

r × r determinant M0 of M(h). In particular, M0 ≪ M rHr. Applying

Rankin’s trick it now follows that

#{q1 ≤ 2S} ≪ Sε
∑
q1

q−ε1 = Sε
∏
p|M0

1

1− p−ε
≪ SεM ε

0 ≪M ε

and hence

V (h, R, η) ≪M εR

S
min

(
1

(RηP 2)
r
2

,

(
S

R

) r
2

)
.
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Maximizing this function for S we find that

V (h, R, η) ≪M ε R

(RηP 2)
r
2

·min(1, ηP 2)e(r),

where e(0) = 0, e(1) = 1
2
and e(r) = 1 for r ≥ 2. Assuming that C is ψ-good

and H ≤Mψ it now follows that

A(θ, R,H, P ) ≪ R2P
n
2

∑
|hi|≪H

[
1

P
r(h)
2

+ (RHMη)
r(h)
2 +R−1V (h, R, η)

]

≪ R2P
n
2M ε

∑
|hi|≪H

[
1

P
r(h)
2

+ (RHMη)
r(h)
2 +

1

(RηP 2)
r(h)
2

·min(1, ηP 2)e(r(h))

]

≪ R2P
n
2M ε

14∑
r=0

Hn−14+r

[
1

P
r
2

+ (RHMη)
r
2 +

1

(RηP 2)
r
2

·min(1, ηP 2)e(r))

]
≪ R2P

n
2HnM ε

(
1

H14
+

1

P 7
+ (RHMη)7 +

1

(RηP 2)7
·min(1, ηP 2)

)
.

Finally, let us show that the term 1
P 7 is negligble. Indeed, if HRMPη ≥ 1, it

is dominated by the third summand.. Otherwise, if HRMPη ≤ 1, we have

(RηP )7 ≤ RηP ≤ 1
HM

≤ min(1, ηP 2) on recalling that η ≥ 1
P 2HM

and hence
1
P 7 is dominated by the last summand in that case. In any case, we now

conclude that

A(θ, R,H, P ) ≪ R2P
n
2HnM ε

(
1

H14
+ (RHMη)7 +

1

(RηP 2)7
·min(1, ηP 2)

)
.

(4.5.14)

4.6 Intermezzo: The singular series

We are now ready to use the bounds for S(q, a) in order to bound the singular

series S(P0). However, we first require another ingredient which is a lower

bound on the individual p-adic densities. The non-vanishing of these is a

consequence of the existence of a non-singular p-adic solution and Hensel’s
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Lemma. To get a uniform lower bound, we require a quantitative result on

how singular such a solution is.

This is typically described in terms of the invariant ∆(C) which is defined

as the greatest common factor of all n × n-minors of the n ×
(
n+1
2

)
-matrix

(cijk)i,(j,k). In particular, ∆(C) ̸= 0 whenever C is non-degenerate. We also

note that if C is degenerate modulo q, then q | ∆(C).

We note that sometimes the invariant we called ∆(C) is also denoted as h(C),

but this already has a different meaning in our work.

We also define ∆(ϕ) to be ∆(ϕ̃) where ϕ̃ is the homogenized version of ϕ, i.e.

a cubic form in n+ 1 variables. Note that ∆(C) | ∆(ϕ).

We will throughout work with the following consequence of Hensel’s Lemma:

Lemma 4.6.1. If ϕ(x) ≡ 0 (mod p2ℓ−1) and pℓ ∤ ∇ϕ(x), then x lifts to a

non-singular p-adic solution.

In the homogeneous case, Davenport [8, Lemma 18.7] established the follow-

ing:

Lemma 4.6.2. If C ∈ Z[x1, . . . , xn] is a non-degenerate cubic form in n ≥ 10

variables, then for each prime p there is a p-adic solution x to C(x) = 0 such

that pℓ ∤ ∇C(x) for

ℓ = ℓC(p) := 3 ·
⌊
vp(∆(C))

n− 9

⌋
+ 3.

In the inhomogeneous case, as observed by Davenport and Lewis [12], the

Necessary Congruence Condition is in general not enough to deduce the ex-

istence of a non-singular p-adic solution to ϕ(x) = 0. A counterexample in

the 14 variables xi for 1 ≤ i ≤ 4 and xi,j for 1 ≤ i ≤ j ≤ 4 is given by

ϕ(x) = x21 −Nx22 + p(x23 −Nx24) + p2

( ∑
1≤i≤j≤4

xi,jxixj

)
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for a quadratic non-residue N modulo p. However, they managed to prove

that the desired implication holds true if n ≥ 15 and ϕ is non-degenerate. A

quantitative version of their argument leads to the following result:

Lemma 4.6.3. If ϕ ∈ Z[x1, . . . , xn] is a non-degenerate cubic polynomial

in n ≥ 15 variables, then for each prime p there is a p-adic solution x to

ϕ(x) = 0 such that pℓ ∤ ∇ϕ(x) for

ℓ = ℓϕ(p) :=

98 p ∤ ∆(ϕ)

144vp(∆(ϕ)) + 2 p | ∆(ϕ)
.

While the result is probably not optimal and the proof has a certain ad-hoc

structure, we note that the counterexample for 14 variables naturally arises

from the structure of the proof. We will momentarily see that one could

prove a superficially stronger bound, but in the critical case vp(∆(ϕ)) = 1

we do not lose anything.

Proof. Let k = vp(∆(ϕ)) and m = max(6
⌊

k
n−9

⌋
+5, k+1). We will prove the

result for ℓ = 48k + 16m + 18. Note that for k = 0, we have m = 5 so that

ℓ = 98. For k ≥ 1, we have m ≤ 6k − 1 and hence ℓ ≤ 144k + 2 as desired.

Here, we used that
⌊

k
n−9

⌋
≤ k − 1 for k ≥ 1 and n ≥ 11.

First of all, using the congruence condition, we can find a solution modulo

p96k+32m+35 and after translating the variables appropriately, we may assume

that this solution is given by (0, 0, . . . , 0) so that

ϕ(x) ≡ C(x) +Q(x) + L(x) (mod p96k+32m+35).

If L does not vanish identically modulo p48k+16m+18, this solution x = (0, 0, . . . , 0)

satisfies p48k+16m+18 ∤ ∇ϕ(x) and p2(48k+16m+18)−1 | ϕ(x) so that it lifts to a

p-adic solution of the desired shape by Hensel’s Lemma.

Otherwise, we may assume that

ϕ(x) ≡ C(x) +Q(x) (mod p48k+16m+18).
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If Q vanishes identically modulo pm, then C is non-degenerate modulo pm

since otherwise pk+1 | ∆(C) by construction ofm, contradicting the definition

of k.

But if C is non-degenerate modulo pm, by Lemma 4.6.2, there is a solution

of C(x) = 0 with vp(∇C(x)) ≤ 3
⌊

k
n−9

⌋
+ 3 and since m ≥ 6

⌊
k

n−9

⌋
+ 5, this

lifts to a non-singular solution by Hensel’s Lemma.

From now on we assume that Q does not vanish identically modulo pm.

First case: Q has rank at least five modulo pM where M = 12k + 4m + 5.

Then we can find a non-singular solution β of Q(β) = 0 with pM ∤ ∇Q(β).
Rescaling by p2M−1, we have p6M−3 | ϕ(p2M−1β) and p3M−1 ∤ ∇ϕ(p2m−1β) and

we obtain a non-singular solution with p3M−1 = p36k+12m+15 ∤ ∇ϕ(x). Note

that here we used that 4M − 2 = 48k+16m+18 so that p6M−3 | L(p2M−1β).

Second case: Q has rank 1 ≤ r ≤ 4 modulo pM . Hence ϕ(x) is equivalent

to a form ψ(y) with

ψ(y) ≡ y1R1(y)+ · · ·+ yrRr(y)+R(y1, . . . , yr)+Γ(yr+1, . . . , yn) (mod pM)

for some cubic form Γ and some quadratic forms R,R1, . . . , Rr.

First subcase: Γ does not vanish identically modulo p2k+1. We then

choose δ1, . . . , δr such that pm ∤ R(δ1, . . . , δr) and δr+1, . . . , δn such that

p2k+1 ∤ Γ(δr+1, . . . , δn). Let ρ ≤ 2k be chosen so that pρ∥Γ(δr+1, . . . , δn).

We then choose ε = (pρ+1δ1, . . . , p
ρ+1δr, δr+1, . . . , δn) so that pρ∥y1R1 + · · ·+

yrRr + Γ if we insert ε.

We can thus find a p-adic integer µ such that

µ(y1R1 + · · ·+ yrRr + Γ) +R = 0,

still everything evaluated at ε. Choosing y = µε, we then have pM | ψ(y).
Moreover, by Euler’s identity we have that∑

j

εjψ
(j)(µε) ≡ −µ ·R(ε) (mod pM)
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and since

vp(µ ·R(ε)) ≤ 2vp(R(ε))− ρ ≤ 3ρ+ 4 + 2vp(R(δ1, . . . , δr))

≤ 2m+ 3ρ+ 2 ≤ 2m+ 6k + 2,

we have that one of the ψ(j) is divisible at most by 2m + 6k + 2 so that we

have a solution with ℓ = 2m + 6k + 3 modulo pM lifting by Hensel since

M = 2ℓ− 1.

Second subcase: Γ vanishes identically modulo p2k+1. Then we can write

ψ(y) ≡ y1R1(y) + · · ·+ yrRr(y) +R(y1, . . . , yr) (mod p2k+1).

Then we find a solution of the shape (0, . . . , 0, yr+1, . . . , yn) with p
k+1 ∤ ∇ψ

(which then again lifts by Hensel) unless all the Ri vanish modulo pk+1 at

these points. But this means that the variables yr+1, . . . , yn appear at most

linearly in all of the Ri so that we can write

ψ(y) ≡ yr+1Sr+1(y1, . . . , yr)+· · ·+ynSn(y1, . . . , yr)+R(y1, . . . , yr) (mod pk+1).

But then, finally, as there are only at most
(
r+1
2

)
≤ 10 linearly independent

quadratic monomials in y1, . . . , yr and n− r ≥ 11, the Si can not be linearly

independent and so ψ and hence ϕ must be degenerate modulo pk+1 so that

pk+1 | ∆(ϕ) contradicting the definition of k.

We are now equipped with everything needed for a lower bound of the sin-

gular series.

To this end, for each prime p let

kC(p) =

maxt∈N:pt≤P0{t}, p ∤ ∆(C),

maxt∈N:pt≤P0{t, 2ℓC(p)− 1}, p | ∆(C)

in the homogeneous case and

kϕ(p) =

maxt∈N:pt≤P0{t}, p ∤ ∆(ϕ),

maxt∈N:pt≤P0{t, 2ℓϕ(p)− 1}, p | ∆(ϕ)
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in the inhomogeneous case. We then define the truncated Euler product

Sϕ(P0) =
∏
p≤P0

kϕ(p)∑
i=0

A(pi),

where

A(q) =
∑

(a;q)=1

S(q, a)

qn

and we recall the classical fact that

k∑
i=0

A(pi) = p−k(n−1)ρ(pk),

where ρ(pk) denotes the number of solutions of ϕ(x) ≡ 0 (mod pk).

Similarly, we define

SC(P0) =
∏
p≤P0

kC(p)∑
i=0

A(pi).

We will first establish a lower bound for the truncated Euler product S(P0)

and then estimate the difference to the truncated singular series S(P0).

We first deal with the primes not dividing ∆. The key ingredient here is the

following bound which is Lemma 9 in [4].

Lemma 4.6.4. Let C be a cubic form in n ≥ 10 variables. Then for any

p≫ 1 with p ∤ ∆(C) and any k ≥ 1, we have

ρ∗(pk) ≥ pk(n−1)

(
1 +O

(
1

p

))
,

where ρ∗(pk) denotes the number of non-singular solutions of ϕ(x) ≡ 0

(mod pk).

In the homogeneous case, this immediately shows that the contribution from

the primes not dividing ∆(C) to SC(P0) is ≫ P−ε
0 .
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In the inhomogeneous case, we note that

ρ∗ϕ(p) =
ρ∗
ϕ̃
(p)− ρ∗C(p)

p− 1
≥ pn +O(pn−1)

p− 1
≥ p(n−1)

(
1 +O

(
1

p

))
whenever p ∤ ∆(ϕ) by applying Lemma 4.6.4 to the cubic form ϕ̃. Here, we

used that ρ∗C(p) ≪ pn−1 for any cubic form C. This follows from ρ∗C(p) ≤
ρC(p) ≪ pn−1 unless C vanishes modulo p, but in that latter case we have

ρ∗C(p) = 0.

We thus obtain the same bound as in Lemma 4.6.4 for ρ∗(pk) by Hensel’s

Lemma and thus deduce that the contribution from the primes not dividing

∆(ϕ) to Sϕ(P0) is also ≫ P−ε
0 .

Note that in both cases the contribution from the primes p≪ 1 not dividing

∆ is clearly ≫ 1.

We now need to deal with the primes p | ∆.

In the inhomogeneous case, we conclude from Lemma 4.6.3 that

ρ(pk(p)) ≫ pk(p)(n−1)−ℓ(p)(n−1),

so that the contribution to S(P0) from the primes dividing ∆(ϕ) is

≫M−ε
∏
p|∆(ϕ)

p−(n−1)ℓϕ(p) ≫M−ε
∏
p|∆(ϕ)

p−292(n−1)vp(∆(ϕ)) ≫M−292(n2−1)−ε,

using that ∆(ϕ) ≪Mn+1.

In the homogeneous case, we can do a bit better using the ideas from [4]. We

first consider the case that modulo p the form C is not equivalent to one in

less than four variables.

In that case, by Lemma 10 from [4], we have

ρ∗C(p
k) ≥ pk(n−1)

(
1 +O

(
p−1/2

))
.

We thus conclude that primes p | ∆ such that the order of ϕ̃ resp. C modulo

p is at least four, have

ρ(pk(p)) ≫ pk(p)(n−1),
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at least for p≫ 1.

Finally, we need to deal with the case where the order modulo p is t ≤ 3.

Hence, C is equivalent to a cubic form C1(x1, . . . , xt) modulo p. If C1 has

a non-singular zero, then immediately ρ∗C(p) ≥ pn−t ≥ pn−3 as we can vary

xt+1, . . . , xn arbitrarily. Otherwise, if w.l.o.g. (1, 0, . . . , 0) is a singular zero

modulo p, then

C1(x1, . . . , xt) ≡ x1Q(x2, . . . , xt) + C2(x2, . . . , xt) (mod p).

Here, Q cannot vanish identically modulo p as otherwise the order would

be at most t − 1. We can thus choose x2, . . . , xt such that p ∤ Q and then

solve the congruence for x1 to obtain a non-singular solution and conclude

as above.

Finally, we need to consider the case where C1 does not have a non-trivial

zero modulo p, i.e all the roots have all variables divisible by p.

But then if we define

C ′(X1, . . . , Xn) = p−1C(pX1, . . . , pXt, Xt+1, . . . , Xn),

we have ρC(p
k) = pn−tρC′(pk−1). We can iterate this argument and after at

most ℓC(p)−1 steps we will end up with a cubic form that has a non-singular

solution modulo p which we can then treat as above.

Since we lose a factor of at most p2 in each step (pn−3 instead of pn−1), we

eventually end up with the bound

ρC(p
k(p)) ≫ pk(p)(n−1)−2ℓ(p)

and therefore the total contribution to S(P0) of these primes is

≫M−ε
∏

p|∆(C)

p−2ℓ(p) ≫M−ε
∏

p|∆(C)

p−6vp(∆(C)) ≫M−ε∆(C)−6 ≫M−6n−ε,

using ∆(C) ≪Mn.
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Here we again used that ℓ(p) = 3
⌊
vp(∆(C))

n−9

⌋
+ 3 ≤ 3vp(∆(C)) for p | ∆(C)

which is sharp in the critical case vp(∆(C)) = 1. The argument in [4] is not

correct and fails in precisely that critical case.

We summarize our results as follows:

Lemma 4.6.5. We have

SC(P0) ≫M−6n−ε

and

Sϕ(P0) ≫M−292(n2−1)−ε.

Finally, we need to estimate the difference between the truncated singular

series S(P0) and S(P0). To this end, define

Q(P0) = {q ∈ N : q > P0, p
i | q ⇒ p ≤ P0 and i ≤ k(p)}

where k(p) is either kC(p) or kϕ(p), depending on the context.

It is then clear that we have

R(P0) := |S(P0)− S(P0)| ≤
∑

q∈Q(P0)

|A(q)|.

For the case of non-singular forms and the inhomogeneous case, we then have

the following result:

Lemma 4.6.6. If C is ∞-good, then

R(P0) ≪M
7
3P

− 1
3
+ε

0 .

Proof. From Lemma 4.5.4 we have A(q) ≪ M
7
3 q−

4
3
+ε and the claim follows

immediately by summing over q > P0.

In the general case of a cubic form in 14 variables, we need to work slightly

harder. The result is the following.
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Lemma 4.6.7. If C is ψ-good and pk(p) ≤ M1+3ψ for all p ≤ P0 and δ > 2

satisfies

0 <
14

14− 6δ
< 1 + 3ψ, (S1)

then

R(P0) ≪M
14δ

14−6δP 2−δ+ε
0 .

Proof. This is similar to the proof of Lemma 13 in [4] which seems to miss

the factor δ in the exponent of M .

We first note that the bound

A(q) ≪M
7
3 q−

4
3
+ε + q1+εM−7ψ+ε

from Lemma 4.5.4 implies that

A(q) ≪M
7
3 q−

4
3
+ε ≪ q1−δ

holds uniformly for

M
14

14−6δ
+ε ≪ q ≪M1+3ψ. (4.6.1)

Moreover, for q sufficiently large, we actually have the strict bound A(q) ≤
q1−δ in that range.

We now decompose a general q ∈ Q(P0) into factors of the correct size.

Writing A = n
n−6δ

+ ε and B = 1 + 3ψ, we find as in [4] a decomposition of

the form

q = q1q2 . . . qt+1

for each q ∈ Q(P0) with qi pairwise coprime and so that q1, . . . , qt are all in

the range (4.6.1) and qt+1 < MA. Indeed, the only assumption needed for

this iterative decomposition is that 2A ≤ B and pkii ≤MB, which is true by

our assumptions.

It then follows that

A(q) = A(q1)A(q2) . . . A(qt)A(qt+1) ≪ (q1 . . . qt)
1−δqt+1 ≪MA(q1 . . . qt)

1−δ,
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using our result from above and the trivial bound |A(qt+1)| ≤ qt+1. With

q0 = q1q2 . . . qt it now follows that

R(P0) ≪MA
∑

qt+1<MA

∑
q0>

P0
qt+1

q1−δ0 ≪MA
∑
q<MA

(
P0

q

)2−δ

≪MAδP 2−δ
0

as desired.

We note that the condition pk(p) ≤M1+3ψ will be satisfied if P0 ≤M1+3ψ as

well as 5n = 70 ≤ 1 + 3ψ, which we denote by (S2) and (S3).

4.7 Synthesis

4.7.1 The major arc contribution

Together with Lemma 4.4.4 we can summarize the major arc contribution as

follows:

Lemma 4.7.1. In the case of a non-singular cubic form C in 14 variables,

we have

S(P0) ≫M−84−ε

as soon as P0 ≫M259+ε.

In the case of an inhomogeneous cubic polynomial ϕ with h ≥ 14, we have

S(P0) ≫M−292(n2−1)−ε

as soon as P0 ≫M876(n2−1)+7+ε.

Finally, in the case of a general cubic form in 14 variables, we have

S(P0) ≫M−84−ε

if we assume (S2) and (S3) as well as

P0 ≫M
1
δ−2

·(84+ 14δ
14−6δ

)+ε. (S4)

122



Assuming additionally (M1), (M2) and (I1) as well as

P 3
0 u≪ P

M8.5+T+ε
, (M3)

we have in all three cases ∫
M

S(α)dα ≫ P n−3

M8.5+T+ε

where T = 84 in the homogeneous case and T = 292(n2 − 1) in the inhomo-

geneous case.

4.7.2 The minor arc contribution

We now use the different bounds obtained in Section 4.5 to bound the total

minor arc contribution.

We dissect m by an application of Dirichlet’s Approximation Theorem for

some parameter Q to be determined. For every α ∈ R, this yields an approx-

imation

α =
a

q
+ θ with q ≤ Q, |θ| ≤ 1

qQ
.

The assumption α ∈ m then implies that q > P0 or θ > u
P 3 . Note that since

the contribution to the minor arcs from the range |θ| ≤ 1
Pn

is clearly O(Q2),

we may also assume that |θ| ≥ 1
Pn

for q > P0. This allows us to apply a

double dyadic decomposition with respect to both |θ| and q which yields∫
m

S(α)dα ≪ Q2 + P ε max
R≤Q,ϕ≤ 1

RQ

Σ(R, ϕ),

where

Σ(R, ϕ) :=
∑
q∼R

∑
(a;q)=1

∫
|θ|∼ϕ

∣∣∣∣S (aq + θ

)∣∣∣∣ dθ.
We note that the range of integration is a disjoint union of two intervals.
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In view of the major arc contribution estimate from Lemma 4.7.1 it then

suffices to show that

Σ(R, ϕ) ≪ P n−3

M8.5+T+ε
(4.7.1)

if we add the harmless assumption

Q2 ≪ P n−3

M8.5+T+ε
. (m1)

To employ the mean-value estimates developed in Section 4.5, we apply the

Cauchy-Schwarz inequality to obtain

Σ(R, ϕ) ≪ Rϕ1/2

∑
q∼R

∑
(a;q)=1

∫
|θ|∼ϕ

∣∣∣∣S (aq + θ

)∣∣∣∣2 dθ
1/2

.

We next cover the region |θ| ∼ ϕ by O
(
1 + ϕ

κ

)
intervals of size κ centered at

values α = a
q
+ θ with |θ| ∼ ϕ. We conclude that

Σ(R, ϕ) ≪ Rϕ1/2

(
1 +

ϕ

κ

)1/2
∑
q∼R

∑
(a;q)=1

M

(
a

q
+ θ, κ

)1/2

for some θ ∼ ϕ.

Using (4.5.11) and (4.5.13) we thus obtain

Σ(R, ϕ) ≪ Rϕ1/2

(
1 +

ϕ

κ

)(
R2 +

κP
3n
2
−1+ε

Hn−1
A(θ, R,H, P )

)1/2

.

Using the bound (4.5.14) for A(θ, R,H, P ) we then find that

Σ(R, ϕ) ≪ R2ϕ1/2

(
1 +

ϕ

κ

)(
1 + κP 2n−1+εHE

)1/2
(4.7.2)

with

E =
1

H14
+ (RHMη)7 +

ηP 2

(RηP 2)7
,

where we used the bound min(1, ηP 2) ≤ ηP 2 which turns out to be sufficient.
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Suppose that we can show that E ≪ 1
H14 . Recalling that κ ≍ (logP )2

HP 2M6 , we

have

1 +
ϕ

κ
≪ P εη

κ

from the definition (4.5.12) of η. As κ ≫ 1
Pn

, we then obtain that both

summands in the last bracket of (4.7.2) are bounded by κP 2n−1+εH−13. Still

assuming E ≪ 1
H14 , we therefore find that

Σ(R, ϕ) ≪ R2ϕ1/2η1/2P n− 1
2
+εH−13/2.

Recalling our goal (4.7.1), it thus suffices to have

H13 ≫M2T+17R4ϕ2P 5+ε

as well as

H14 ≫M2T+16R4ϕP 3+ε

in view of the definition of η. We hence take

H ≍ P ε ·max
(
(M2T+17R4ϕ2P 5)1/13, (M2T+16R4ϕP 3)1/14, 1

)
.

We need to check whether this choice satisfies H ≤ P and H ≤ Mψ. The

condition H ≤ P will be satisfied if

M2T+17+εR4ϕ2 ≪ P 8−ε and M2T+16R4ϕ≪ P 11−ε.

In view of ϕR ≤ 1
Q
and R ≤ Q, it will therefore be satisfied if

M2T+17 ≪ P 8−ε (m2)

and

M2T+16Q2 ≪ P 11−ε. (m3)

Similarly, if ψ <∞, the condition H ≤Mψ will be satisfied when

P 5+ε ≪M13ψ−2T−17 (m4)
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and

P 3+εQ2 ≪M14ψ−2T−16. (m5)

Summarizing, we have found an admissible choice forH that yields a satisfac-

tory bound for the minor arc contribution under the assumption of E ≪ 1
H14 .

We now need to enquire whether this condition is satisfied.

To this end, it is convenient to introduce the parameter

ϕ0 := (R4P 31M2T+30)−1/15.

One then readily checks that for ϕ ≤ ϕ0, we have

H ≍ P εmax((M2T+16R4ϕP 3)1/14, 1)

and

η ≪ P ε

P 2HM

while for ϕ ≥ ϕ0, we have

H ≍ P εmax((M2T+17R4ϕ2P 5)1/13, 1)

and

η ≪ ϕ.

To prove E ≪ 1
H14 we need to check whetherRH3Mη ≪ 1 and

(
H2

RηP 2

)7
ηP 2 ≪

1. We begin with the first condition.

If ϕ ≤ ϕ0, we have

RH3Mη ≪ P εQH
2

P 2

≪ Q

P 2−ε

(
1 +

(
M2T+16R4ϕP 3

)1/7)
≪ Q

P 2−ε +

(
M2T+16Q9

P 11−ε

)1/7

.
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This is O(1) if we assume that

Q≪ P
11
9
−ε

M
2T+16

9

. (m6)

If, conversely, ϕ ≥ ϕ0, we have

RH3Mη ≪ RH3M1+εϕ

≪ M1+ε

Q
·
(
1 + (M2T+17R4ϕ2P 5)3/13

)
≪ M1+ε

Q
+

(
M6T+64P 15

Q13

)1/13

which will be O(1) if

Q≫ P
15
13

+εM
6T+64

13 . (m7)

We next turn to the question whether or not we have(
H2

RηP 2

)7

ηP 2 ≪ 1. (4.7.3)

Again, let us first suppose that ϕ ≤ ϕ0. Then η ≫ 1
P 2HM

so that(
H2

RηP 2

)7

ηP 2 ≪
(
H3M

R

)7

· 1

HM
=
H20M6

R7
.

With our choice of H, this will be O(1) if R7 ≫ M6P ε as well as ϕ ≤ ϕ1,

where

ϕ1 :=
R

9
10

P 3+εM2T+20.2
.

If, conversely, ϕ ≥ ϕ0, we have η ≍ ϕ so that (4.7.3) is equivalent to H14 ≪
R7ϕ6P 12.

With our choice of H this will be satisfied as soon as ϕ ≥ ϕ2, where

ϕ2 :=
M

7(2T+17)
25

R
7
10P

43
25

−ε
.
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To summarize, we have obtained a satisfactory bound for the minor arc

contribution as soon as R ≫ M6/7P ε as well as ϕ ≤ min(ϕ0, ϕ1) or ϕ ≥
max(ϕ0, ϕ2).

A quick computation shows that we will have ϕ2 ≤ ϕ0 ≤ ϕ1 as soon as

R ≥ R0, where

R0 := P
4
5
+εM

4
5
(2T+17)+2

and so in that case the assumptions are always satisfied, while for R ≤ R0

we have P−εϕ1 ≤ ϕ0 ≤ P εϕ2.

We are thus left to treat the case where R ≤ R0 and P−εϕ1 ≤ ϕ0 ≤ P εϕ2 or

R ≪M6/7P ε.

It is here that we use the bound obtained from the Weyl differencing. Noting

that (m6) certainly implies Q ≤ P 3/2, applying Lemma 4.5.3 we find that

Σ(R, ϕ) ≪ R2ϕP n+ε

(
MRϕ+

1

RϕP 3
+M−2ψ

) 7
4

.

Recalling our goal (4.7.1), it will suffice to show that

R2ϕP 3

(
MRϕ+

1

RϕP 3
+M−2ψ

) 7
4

≪M−8.5−T−ε.

This will be satisfied as soon as

R
1
3M

34+4T
3

P 3−ε ≪ ϕ≪ min

{
1

M
41+4T

11 P
12
11R

15
11

,
M

7ψ
2
−8.5−T+ε

R2P 3

}
. (4.7.4)

Our bound is therefore satisfactory as soon as

ϕ1 ≫
R

1
3M

34+4T
3

P 3−ε

as well as

ϕ2 ≪ min

{
1

M
41+4T

11 P
12
11R

15
11

,
M

7ψ
2
−8.5−T+ε

R2P 3

}
.
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The first condition will be satisfied as soon as R ≥ R1, where

R1 ≍M
50
17

(2T+17)+ 96
17 ,

whereas the second one will be satisfied if

R ≪ P
346
365

−ε

M
254(2T+17)+350

365

and

R ≪ M
35ψ
13

− 3
5
(2T+17)

P
64
65

−ε
.

The latter two conditions are satisfied for R ≤ R0 if we assume

P ≫M
91
9
(2T+17)+ 440

27
+ε (m8)

and

P ≪M
175ψ
116

− 91(2T+17)
116

− 130
116

−ε. (m9)

Finally, we are left to deal with the case where R ≤ R1. Here, we need to

use that we are on the minor arcs. Assuming

P0 ≫M
50
17

(2T+17)+ 96
17

+ε, (m10)

we may now assume that R ≤ R1 ≤ P0 and hence ϕ ≥ u
P 3 .

It then suffices to check that again (4.7.4) is satisfied. Using ϕR ≤ 1
Q
, this

will be the case if

Q≫ P
12
11

+εM
234(2T+17)+503

187 (m11)

and

Q≫ P 3

M
7ψ
2
− 117(2T+17)+192

17

(m12)

as well as

u≫M
28(2T+17)+32

17 . (m13)
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4.7.3 The endgame

We have now successfully bounded the minor arc contribution under all the

assumptions m1 up to m13 and hence shown that N(P ) > 0, so that there is

a solution |x| < P .

Finally, we are ready to choose the parameters and deduce our theorems.

For Theorem 4.1.1, we may assume that ψ = ∞. We then take M fixed and

u and P0 to be a small power of P , we choose Q = P
7
6 and then let P → ∞.

It is then readily checked that all assumptions are indeed satisfied with this

choice. Moreover, we have shown that the minor arcs contribute O(P n−3−ε)

and the major arcs contribute the main term from the claimed asymptotic

formula.

For Theorems 4.1.3 and the non-singular case of Theorem 4.1.4, we may still

assume that ψ = ∞ so that all conditions involving ψ are empty.

We choose P0 = M
50(2T+17)+96

17
+ε to satisfy (m10). We also choose u =

M
28(2T+17)+32

17
+ε to satisfy (m13).

We then choose

P =M
373(2T+17)+640

34
+ε

to satisfy (M13). One now checks that all other conditions are also satisfied

with this choice after choosing e.g. Q = P 11/9

M
2T+16

9
.

We then plug in the values T = 292(n2 − 1) and T = 84, respectively, to

deduce Theorem 4.1.3 and the non-singular case of Theorem 4.1.4.

Finally, we deduce Theorem 4.1.4 in the case of a general cubic form. We

choose u, P0, P and Q as above where now T = 84 so that our choice is

u ≈M306.58, P0 ≈M549.76, P ≈M2048.38.

Condition (m9) now requires ψ ≥ 1454.8.

We choose ψ = 1454.8 and note that with δ = 2.23 all other conditions are

now also satisfied.
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If C is ψ-good, we therefore have a solution |x| ≤ P ≪M2049. On the other

hand, if C is not ψ-good, by Lemma 4.2.2 we have a solution x ≪M97+91ψ ≪
M132484 as desired.

4.8 List of assumptions

2P 2
0 u < P 3 (M1)

u · P0 ·M · |z|2 ≪ P (M2)

P 3
0 u≪ P

M8.5+T+ε
(M3)

0 <
14

14− 6δ
< 1 + 3ψ (S1)

P0 ≤M1+3ψ (S2)

ψ ≥ 23 (S3)

P0 ≫M
1
δ−2

·(84+ 14δ
14−6δ

)+ε (S4)

u2M17+ε ≪ P (I1)

Q2 ≪ P n−3

M8.5+T+ε
(m1)

M2T+17 ≪ P 8−ε (m2)

M2T+16Q2 ≪ P 11−ε (m3)
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P 5+ε ≪M13ψ−2T−17 (m4)

P 3+εQ2 ≪M14ψ−2T−16 (m5)

Q≪ P
11
9
−ε

M
2T+16

9

(m6)

Q≫ P
15
13

+εM
6T+64

13 (m7)

P ≫M
91
9
(2T+17)+ 440

27
+ε (m8)

P ≪M
175ψ
116

− 91(2T+17)
116

− 130
116

−ε (m9)

P0 ≫M
50
17

(2T+17)+ 96
17

+ε (m10)

Q≫ P
12
11

+εM
234(2T+17)+503

187 (m11)

Q≫ P 3

M
7ψ
2
− 117(2T+17)+192

17

(m12)

u≫M
28(2T+17)+32

17 (m13)
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