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6 1 INTRODUCTION

1 Introduction
The main idea of this work originated from various discussions with my advisor Max
Wardetzky and his friend Keenan Crane. Coming from a differential geometry background
and recently also having started a journey into Wasserstein geometry, in particular being
fascinated Villani’s work [41], we were initially led by a basic comparison of differential
forms and measures. Comparing these various notions for integration, we started wondering
whether a Wasserstein-like way to transport sections on Riemannian manifolds such as
forms and vector field could be constructed. Thus, we started to investigate in this direction
and quickly came up with our own ideas. However, instead of transporting any kind of
object of differential geometry, we quickly restricted ourselves to the case of vector fields on
surfaces since that already proved to have enough complexity.
A nice feature of optimal transport and the Wasserstein distance is that it has such a
beautiful intuition behind it. This intuition has often shown to have an actual meaning
that goes beyond being a purely academic quality. In fact, most applications that rely on
optimal transport do not just experiment with it as one of many possible distances, but
can quite clearly explain why it is the correct metric to use. In particular, applications in
image morphing come to mind.
A remarkable property of optimal transport is its compatibility with smooth structures to
a surprising degree. In fact, Otto showed that the space of probability measures equipped
with the Wasserstein-metric can be seen as a smooth manifold itself in many aspects [25].
Similar to the task of discretization, one can ask which aspects of the classical optimal
transport should be translated to the new setting. In other words, one needs an anchor
point for how to start. Our main idea was to define a distance by using the Wasserstein
distance on a bundle over a surface. This is a novel concept for distances on vector fields.
We considered two approaches for how the bundle over surfaces can be used to yield new
distances for vector fields. One particular approach gave rise to a definition that seemed
very interesting to us and has an intuitive relation to parallel transport.
Having experience in discretization, another natural thing to consider was discretizations
for the Wasserstein space. Reading up on optimal transport and Wasserstein geometry, we
thought about discretising the differential equations involved, in particular the Benamou-
Brenier formulation for the Wasserstein distance. This became a side topic for us and led
to interesting equations. Unfortunately, we later found out that a similar discretization for
the Wasserstein distance on graphs already existed [21] and, even worse, the main formulas
derived for triangulated surfaces were also already given by Lavenant et al. [18]. We still
want to present our own derivation for these equations, as we give some of the operators in
more detail than the mentioned works and the considerations that follow in subsection 3.7
are indeed novel.
Finally, we thought about a possible application for the above mentioned distance and how
to generate some experimental images computationally. Unfortunately, the computational
implementation is not yet finished. Still, we included a last chapter in which we discuss the
possible routes of numerical treatment and supplement some of the necessary formulas.
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Outline of the Dissertation In section 2 we start with a short introduction to equip
the reader with the necessary basics on optimal transport to understand the following parts.
We first give the basic definitions and later focus on the relation of the Wasserstein distance
to Riemannian manifolds. This section is strongly inspired by [2] and sometimes also refers
to [41]. Coming from a differential geometry background, we do not give a comparable
introduction to differential geometry, but instead refer the reader to standard literature
(e.g. [19] and [20]).
Section 3 covers our treatment of the sideproject, in which we discretise the continuity
equation and ultimately present the discrete Wasserstein space as a Riemannian manifold.
As mentioned before, these formulas have already been derived by Lavenant et al. in [18].
However, our exposition is more detailed and the final part 3.7 of this section contains novel
ideas regarding the boundary of the probability measure simplex.
Section 4 constitutes the main part of our contribution. In this part, we explain our idea
of how to use the Wasserstein space over a bundle over a given surface to come up with
interesting distances for vector fields. We go through different approaches, supporting each
with possible intuitions. Moreover, we give two toy examples that recover distances for
signed measured which partly can also be found in the literature [22]. Finally, we focus on
one particular distance for vector fields that relates nicely to parallel transport and collect
properties for it.
Lastly, section 5 contains an idea for an application. We discuss several possibilities for
numerical treatment. For one treatment, we also work out the relevant formulas.

Related Work For discretizations of the Benamou-Brenier formula on triangulated
surfaces, we already mentioned the work of Lavenant et al. [18]. They also use this
approach to solve the dynamical Wasserstein problem. For graphs, a similar approach has
been done by Li [21]. His approach is similar, but in his work any averaging of a density
function is performed over edges instead of triangles. On a more general level, the approach
we took is comparable to the approach of information geometry. For this, we refer the
reader to the standard introduction [1].
Many other versions of optimal transport have been considered before. Ning and Georgiou
[24] used the dual formulation of the Wasserstein-1-distance to define a distance for matrix-
valued measures. Similar approaches for the primal Wasserstein-1-distance have been done
to define distances for vector-valued measure ([14] and [3]). A regularized Wasserstein
distance for matrix-valued functions has been considered in [33]. Ryu et al. [36] use yet
another equivalent optimization problem for the Wasserstein-1-distance, which is sometimes
called the Beckmann-problem (e.g. in [40] referring to a paper by Beckmann [5]) in order
to give a Wasserstein distance for vector- and matrix-valued measures.
Brenier and Vorotnikov [9] introduced a distance for positive-definite matrix-valued measures
using a generalisation of the Benamou-Brenier formula for such measures. In order to
define another distance for vector-valued measures, Chen, Georgiou and Tannenbaum [12]
considered a set of measures indexed by the vertices of a graph and came up with a modified
Benamou-Brenier formula for this setting. Earlier work [11] by Georgiou and Tannenbaum
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used the Lindblad equation from quantum mechanics to give a Wasserstein distance for
positive-definite matrices with trace 1. These last two approaches are similar; Chen et al.
later gave efficient algorithms for both approaches [13].
Optimal transport for differential forms was considered by Dacorogna et al. [16] and Brenier
and Duan [8]. In both works, their definitions were again motivated by the Benamou-Brenier
formulation for the Wasserstein distance.
For numerical aspects of optimal transport, we refer to the text [34] and for methods on
the dynamical Wasserstein problem to [32]. For applications of the Wasserstein distance to
image morphing, we refer the reader to [43], [39].
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2 An Introduction to Optimal Transport
For self-containedness we give a brief section on optimal transport in which we summarize
the basics needed in the following chapters. Most of the following little introduction is
heavily inspired by the text [2] but some of it is also taken from [41] and we will indicate
whenever that is the case. For a more detailed introduction see those two texts.
We start with the purely measure-theoretic definition of optimal transport.

2.1 Definitions
First, we need a cost function. In our case this will always be a distance in a metric space.
In general much less is needed, in fact not even full continuity but only lower semi-continuity
is needed. For more details on this, the reader may consult [41]. For our purposes, however,
we will impose continuity of the cost function c. Also, we will need the notion of a Polish
space which is a separable metric space and a common denizen in any topic involving
topology and measure theory.
Definition 1. Let X be a Polish space and µ and ν be two probability measures on X.
Moreover, let c : X × X → R be a continuous cost function on X. Then the optimal
transport cost between µ and ν is defined as

C(µ, ν) := inf
ρ∈Π(µ,ν)

∫
X×X

c(x, y)dρ,

where the infimum is taken over the space Π(µ, ν) which is the space of probability measures
on X ×X whose marginals are µ and ν, respectively. More precisely, any ρ ∈ Π(µ, ν) will
satisfy (proj1)#ρ = µ and (proj2)#ρ = ν, where proj1 and proj2 denote the projections on
the first and second factor of X×X, respectively, and (·)# as usual denotes the push-forward
of a measure.
Probability measures on X ×X whose marginals are µ and ν are called transport plans
and if an minimizer of the above problem exists it is called an optimal transport plan.
The conditions on c guarantee that a minimizer for the above infimum always exists. More
precisely it can be shown that as long as c is lower semi-continuous and bounded from
below, a minimizer exists.
We want to continue by listing some relevant theorems regarding the optimal transport
cost C without giving any proofs.
For the above minimization problem there does exist a dual formulation known as the
Kantorovich duality. We will state it as a proposition.
Proposition 1. For the optimal transport problem there is the following dual formulation

C(µ, ν) = sup
φ,ψ

∫
X
φdµ+

∫
X
ψdν,

where the supremum is taken over all φ ∈ L1(µ), ψ ∈ L1(ν) that satisfy

φ(x) + ψ(y) ≤ c(x, y).
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Sometimes this is also formulated with a minus sign between the integrals and in the
condition on φ and ψ (as we will see below for the 1-Wasserstein distance).
We can now give the definition of the Wasserstein distance.
Definition 2. Consider a polish space (X, d). For p ≥ 1 the p-Wasserstein-distance is
defined as

Wp(µ, ν) :=
(

inf
ρ

∫
X×X

dp(x, y)dρ(x, y)
)1/p

Moreover, we define the space Pp(X) as the space of measures with finite p-moment, i.e.
µ ∈ Pp(X) is equivalent to

∫
X d

p(x0, x)dµ(x) <∞ (this definition does not depend on the
choice of x0). As the name suggests the Wasserstein distance is indeed a distance on Pp(X)
for any p ≥ 1 (again we omit the proof) and we call (Pp(X),Wp) the Wasserstein space.
Note that for compact X, the space Pp(X) is just the space of all probability measures
P(X).
For p = 1 the dual formulation takes on a special form. It can be shown that the minimum
of the optimal transport problem is attained for ψ = −φ and for φ (and thus ψ) being a
1-Lipschitz function. This is summarised in the next proposition.
Proposition 2. The Wasserstein 1-distance satisfies the following relation.

W1(µ, ν) := sup
φ

∫
X
φd(µ− ν),

where the supremum is taken over all 1-Lipschitz functions φ.

2.2 Inheritance
If we start from a metric space (X, d) and consider its Wasserstein space (Pp(X),Wp), then
(Pp(X),Wp) often inherits various regularity properties of (X, d). For example, one can
show that if (X, d) is a Polish space, so is (Pp(X),Wp) as well. We will go through two such
situations in detail and alongside cover some of the most important theorems that will also
be used in this work. For simplicity we will restrict the following to the coverage of only the
Wasserstein-2-distance and occasionally make remarks about the Wasserstein-1-distance or
the general Wasserstein-p-case.
Geodesic Spaces If one wants to discuss arguments on shortest paths connecting two points
and parametrisations of curves on metric spaces in a similar manner as in a Riemannian
manifold, one needs to introduce those concepts first which is a non-trivial task. A classic
way to do this is the notion of constant speed geodesics. To a geometer, however, this name
might be somewhat confusing and in their language translates better to ’constant speed
shortest path’.
Definition 3. Consider a metric space (X, d) and two points p, q ∈ X. A curve γ : [0, 1]→
X with γ(0) = p, γ(1) = q is called a constant speed geodesics between p and q if it satisfies
the following condition

d(γ(t), γ(s)) = |t− s|d(γ(0), γ(1)) for any t, s ∈ [0, 1].
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The space (X, d) itself is called a geodesic space if for any p, q ∈ X there exists at least one
constant speed geodesic connecting them.

To explain some intuition behind the Wasserstein distances, we will discuss briefly how
constant speed geodesics can look like in the Wasserstein space. For this consider a geodesic
space (X, d) and two points p, q ∈ X as well as a constant speed geodesic γ between them.
We now want to try to connect the Dirac measures δp and δq in the the Wasserstein-2-space.
We define the measure curve µt := δγ(t) and see that this is a constant speed geodesic since
W 2(δx, δy) = d(x, y) for any x, y ∈ X. In fact, all possible geodesics connecting δp and δq
must be of this kind or combinations originating from different constant speed geodesics
between p and q.
Let us now consider another curve that is not a constant speed geodesic, namely the linear
interpolation νt := (1− t)δp + tδq. We can check that W2(νt, νs) =

√
|t− s|d(p, q) since the

optimal transport plan between (1− t)δp + tδq and (1− s)δp + sδq is clearly the one that
fixes the common mass of both measures at p and q and only moves the difference of |t− s|
from p to q (or the other way) and therefore we get for the distance (|t − s|d2(p, q))1/2.
Thus, this does not yield a constant speed geodesic. In fact by the very definition of the
length of a curve in a metric space this would be a curve of infinite length, though still
continuous.
We see that one can think of the Wasserstein distance as an extension of the usual concept of
distance to a setting where we allow for fuzzy points, i.e. a setting where we potentially do
not have complete knowledge of the points’ location but we still have a distance. However,
in case we do have the knowledge of the location of the point (i.e. the measure is given to
us as a Dirac measure), then we just recover the same distance from the underlying base
space.
Finally, we want to note that the above comparison of a curve moving a point on the
base space (displacement interpolation) versus a curve resulting from linear interpolation
actually works for any p > 1 and one would get the distance Wp(νt, νs) = |t− s|1/pd(p, q)
in the case of linear interpolation. For p = 1, however, the linear interpolated curve is
a constant speed geodesic as well. So in that case the geodesics can also do some kind
of teleporting and the above intuition does not fully apply. That is why in this work we
usually prefer to work with the Wasserstein-2-distance over the Wasserstein-1-distance.
Numerically, the problem of finding a Wasserstein geodesic is referred to as the dynamical
Wasserstein problem, whereas finding an optimal transport plan is referred to as the static
Wasserstein problem.
Next, we can ask the question whether the Wasserstein space over a geodesic space is also
a geodesic space and, as indicated above, this is indeed the case.

Theorem 1. If (X, d) is a Polish and geodesic space, then (P2(X),W2) is also a geodesic
space.

The following theorem will again provide us with a bit more intuition for these constant
speed geodesics in Wasserstein space.
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Theorem 2. Assume that (X, d) is a Polish and geodesic space and consider the Polish
and geodesic space (P2(X),W2). Then the following are equivalent:

• The curve µt is a constant speed geodesic between µ0 and µ1.

• There is a measure γ̃ on the space of geodesics such that (e0, e1)#γ̃ is an optimal
transport plan between µ0 and µ1 and µt = (et)#γ̃.

Here et denotes the evaluation map: et(γ) = γ(t).

This theorem offers change of perspective. When considering a curve in the space of
measures, we might have something like a wandering cloud in mind. The second formulation
though makes us think of the measure as consisting of multiple particles, each of which
is travelling along an optimal path (i.e. a shortest geodesic) and the totality of them is
transported in an optimal way. The only thing that needs to be adjusted is at the initial
moment when each element is assigned its determination. That this is done correctly, is
insured in the condition that (e0, e1)#γ̃ is an optimal transport plan between µ0 and µ1.
As an example consider the four vertices (0, 0), (0, 1), (1, 0), (1, 1) of a square in Euclidean
space and consider the measures µ0 = 1

2δ(0,0) + 1
2δ(0,1) and µ1 = 1

2δ(1,0) + 1
2δ(1,1). Clearly an

optimal path between them is given by the curve µt = 1
2δ(t,0) + 1

2δ(t,1) and visually we can
see the point (0, 0) move into the point (1, 0) along the curve γ(t) = (t, 0) and the point
(0, 1) move into the point (1, 1) along the curve η(t) = (t, 1). However, an equivalent view
is given by considering the measure on the space of geodesics γ̃ = 1

2δγ + 1
2δη which satisfies

the properties of the above theorem. In contrast now we might also consider the constant
speed geodesics α(t) = (t, t) and β(t) = (t, 1− t) which move the point (0, 0) to (1, 1) and
(0, 1) to (1, 0), respectively. For them, α̃ = 1

2δα + 1
2δβ indeed satisfies that the marginals

(e0)#α = µ0 and (e1)#α = µ1. However, (e0, e1)#α is not an optimal transport plan since
it is the transport plan that transports (0, 0) to (1, 1) and (0, 1) to (1, 0).

Figure 1: A measure with equal weights on the two left nodes gets transported to a measure
with equal weights on the two right nodes. The first is a constant speed geodesic while the
second is only locally a constant speed geodesic.

Smooth Manifolds Let us briefly revisit the previous theorem and compare the general
non-deterministic setting with the deterministic setting of a Dirac measure. When not
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dealing with measures we just have a geodesic which has for each time a velocity γ̇. In the
measure case instead we have a whole measure on the set of geodesics. As it turns out
there is still a notion of velocity (for any time), though in this case this will be a vector
field. However, there is a question about the regularity of the measure curve that we have
to address first. Therefore, let us start by giving the definition of an absolutely continuous
curve.

Definition 4. A curve γ in a metric space (X, d) is called an absolutely continuous curve
if there exists a function f ∈ L1(0, 1) such that for all 0 ≤ t < s ≤ 1 it holds that

d(γ(t), γ(s)) ≤
∫ s

t
f(x)dx.

Equivalently, γ is absolutely continuous if the metric derivative

|γ̇|(t) := lim
h→0

d(γ(t+ h), γ(t))
h

exists almost everywhere and is a L1−function.

From now on let us work on a Riemannian manifold (M, g) instead of just a metric space
(X, d). It turns out that for absolutely continuous curves in (P2(M),W2), a velocity vector
field exists and the link between the curve and the vector field is given by the so-called
continuity equation, which is the topic of the following theorem.

Theorem 3. Consider a curve µt ⊂ P2(M). Then the following are equivalent:

(i) For the curve µt there exists a Borel family of vector fields vt such that
∫ 1

0 |vt|L2(µt)dt <
∞ and µt and vt satisfy the continuity equation

∂

∂t
µt +∇ · (vtµt) = 0

in the sense of distributions, i.e. for any smooth and compactly supported test function
φ, we have

∂

∂t

∫
φdµt =

∫
〈∇φ, vt〉dµt.

(ii) µt is absolutely continuous in the metric sense described above.

The continuity equation plays a central role in the study of Wasserstein distances and it
will also be revisited multiple times in this work.
The following theorem covers the famous Benamou-Brienier-formula. It shows that a certain
methodology from metric spaces can still be applied to this setting. Moreover, it motivates
the definition of the notion of a tangent space for the Wasserstein space.



14 2 AN INTRODUCTION TO OPTIMAL TRANSPORT

Theorem 4. Consider two measures µ0, µ1 on the Riemannian manifold M . Then, the
Wasserstein distance between them can be expressed via the infimum of measure curves µt
connecting them and satisfying the continuity equation:

W2(µ0, µ1) = inf
{∫ 1

0
‖vt‖L2(µt)dt |

∂

∂t
µt +∇ · (vtµt) = 0

}

where the infimum is taken over all pairs (µt, vt) which satisfy the continuity equation.

This theorem is intuitive in a way since it mirrors a basic situation from classic differential
geometry where the distance between two points can be recovered as an infimum over the
lengths of all curves connecting them. The length can be represented by integrating the
norm of the derivative of the curve in question. Therefore, vt should be considered as an
analogue to the speed of the curve µt.
When discussing the length functional in differential geometry, one will usually also discuss
the energy functional for a curve which relates to the length functional in the sense that
they have the same minimizers. The following version of the Benamou-Brenier formula
reflects that and can be found in [41].

Theorem 5. With the same assumptions as in the previous theorem we also have yet
another very similar form for the Wasserstein-distance between µ0 and µ1:

W2(µ0, µ1)2 = inf
{∫ 1

0
‖vt‖2

L2(µt)dt |
∂

∂t
µt +∇ · (vtµt) = 0

}

This formula reflects a formula from classical differential geometry, namely

d2(x, y) = inf
∫
|γ̇|2dt.

In fact, there is an even deeper intuitive connection: Recall, that a Wasserstein geodesic
can also be represented as a measure on the space of geodesics on M , where intuitively each
geodesic tells us a path along which a particle is transported. The vector fields vt at a point
p can then be thought of as the velocity of the curve (or particle) moving through p at
time t and the Flux at that point and time would correspond to the infinitesimal quantity
vt(p)dµt(p). The reinterpretation of the curve in the measure space as a measure on the
geodesics then corresponds formally to ’sorting’ this integral by the curves and thus obtain
for the term in the infimum the alternative form∫ 1

0

∫
M
|vt|2dµtdt =

∫
γ
E(γ)dµ(γ),

where E(γ) =
∫ 1

0 |γ̇|2dt denotes the usual curve Energy without the factor 1
2 . This yields an

alternative formula

W2(µ, ν)2 = inf
γ̃
{Eγ̃E(γ)},
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where the infimum is taken over all measures γ̃ on the space of geodesics in M with
(e0)#γ̃ = µ and (e1)#γ̃ = ν, where e0 and e1 denote the evaluation functions at times 0 and
1. This is actually true and made precise in [41].
We want to emphasize the intuitive meaning of this: The Wasserstein distance is the
distance for which a constant speed geodesic will transport particles along paths that
minimize the energy E which in turn depends only on the metric of M .
These last two theorems strongly indicate that we can construct a tangent space to P2(M),
that the tangent vectors will be the vector fields vt and that on this tangent space we can
use the L2(µt)-product as a metric. However, there is one caveat, since the vector fields
vt involved in the continuity equation of µt are not unique. Instead, we can introduce
µt-divergence-free vector fields as vector fields wt satisfying

∇ · (wtµt) = 0

in the sense of distributions, i.e. ∫
∇φ · wtdµt = 0

for any smooth and compactly supported function φ.
When adding a µt-divergence-free vector field wt to vt, the vector fields vt + wt will also
satisfy the continuity equation for µt. Thus, it turns out that the best concept for a tangent
space to P (M) consists of those vector fields vt, which are orthogonal to the µt-divergence-
free ones. This, on the other hand can also be described as the image of the gradient or
more precisely as the L2(µt)-completion of that. Let us summarize the definition.

Definition 5. For a compact Riemannian manifold M consider its space of probability
measures P(M). Then for any µ ∈ P(M) we may define the tangent space of P(M) at µ
by

TµP(M) = {v ∈ L2(µ) :
∫
〈v, w〉dµ = 0 for all w with ∇ · (wtµt) = 0}

= {∇φ : φ ∈ C∞c (M)}L
2(µ)

.

In this definition L2(µ) denotes the space of square-integrable vector fields (with respect to
the measure µ), i.e. vector fields v satisfying

∫
|v|2dµ <∞.

This concept of a tangent space allows for some interesting computations. We want to
present one particular computation due to Felix Otto. However, this is only a formal
computation and we also consider a simplified setting with a compact manifold.
Let µt denote a curve in the Wasserstein space. Moreover, assume that this curve is given
by a density at all times

µt = ρtdvol
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where dvol denotes the Riemannian volume measure on the Riemannian manifold M . Then,
for such measures the entropy can be defined as

E(µ) = E(ρ) :=
∫
M
ρ log(ρ)dvol.

This is a functional on the space of measures. In analogy with classical differential geometry,
we can try to define a gradient for E(ρ) as a vector field ∇ρE satisfying

〈∇ρE, vt〉ρ = ∂

∂t |t=0
E(ρt)

for any curve ρt such that (ρt, vt) satisfies the continuity equation and ρ0 = ρ if such a
vector field exists. As usual, 〈v, w〉ρ =

∫
〈v, w〉ρdvol.

Interestingly we can actually compute the above gradient:∫
M
〈∇ρE, vt〉ρdvol = 〈∇ρE, vt〉ρ = ∂

∂t |t=0
E(ρt)

= ∂

∂t |t=0

∫
M
ρ log(ρ)dvol

=
∫
M
ρ̇t log(ρ0)dvol +

∫
M
ρ̇tdvol

=
∫
M
ρ̇t log(ρ0)dvol + ∂

∂t |t=0

∫
M
ρtdvol︸ ︷︷ ︸

=0

= ∂

∂t |t=0

∫
M
ρt log(ρ0)dvol.

This last term now is just the first term from the continuity equation for the test function
φ = log(ρ). Thus, the computation continues

∂

∂t |t=0

∫
M
ρt log(ρ0)dvol =

∫
M
〈∇ log(ρ), v0〉ρ0dvol

and comparing this to the term we started with yields

∇ρE = ∇ log(ρ) = 1
ρ
∇ρ.

Now, Otto considered a gradient flow for the entropy. More precisely, he considered a
measure curve µt satisfying

µ̇t = ∇µtE.

Note that a gradient flow is just the smooth version of gradient descent or in other words:
if we discretize the time parameter in the gradient flow equation, we recover the gradient
descent method.
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Now let us compute what gradient flow means in terms of densities. Above equation tells
us that µt and the vector field ∇µtE = 1

ρ
∇ρ satisfy the continuity equation. Thus, we have

∂

∂s |s=t

∫
M
φρsdvol−

∫
M
〈∇φ, 1

ρt
∇ρt〉ρtdvol = 0.

This last equation can be reformulated to∫
M
φ · ρ̇tdvol =

∫
M
〈∇φ,∇ρt〉dvol

= −
∫
M
φ · div(∇ρt)dvol

= −
∫
M
φ∆ρtdvol

for any test function φ ∈ C∞c . Thus, we may conclude that the density for any measure
curve that follows a gradient flow for the entropy functional will satisfy the heat equation
ρ̇t + ∆ρt = 0. A remarkable result.
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3 A Piecewise Linear Version of Dynamical Optimal
Transport

In this section we introduce an interesting way to study a piecewise linear version of
Wasserstein spaces. As mentioned in the introduction the metric we derive was already
given by Lavenant et al. [18] but the contents of subsection 3.7 are novel. A very similar
thing had been done by Li [21] for graphs.
The core of this discretization will be the Benamou-Brenier formulation for the Wasserstein
distance. We start by setting up some standard notation for piecewise linear analysis before
giving a discrete version of the continuity equation and the Benamou-Brenier formulation.
Finally, we construct a discrete Wasserstein distance from that.

3.1 Notation
In this part we introduce the basic notation for the piecewise linear setting. Let M be a
triangle mesh (V,E, F ) with vertices V , edges E and triangles (or faces) F . Consider M to
be a triangulation of a compact and oriented surface without boundary. In the following,
we will often sum over all vertices, edges or triangles which are part of or contain a certain
vertex, edge or triangle. We call all of these instances adjacency and use the notation
v ∈ ad(e), v ∈ ad(f), e ∈ ad(f) whenever a vertex or edge is part of an edge or triangle and
also the notation f ∈ ad(e), f ∈ ad(v), e ∈ ad(v) whenever a triangle or edge contains an
edge or vertex.
For simplicity, we consider our triangle mesh as embedded into R3 (equipped with the
standard metric) in a way such that all edges are straight lines. Then we inherit a flat
Riemannian metric on each triangle and in particular for every triangle f we can compute
its area area(f) and also its angles. Moreover, we can integrate functions over the triangles
and integration of a function on the whole simplex is given by integrating over each triangle
individually and then summing over all triangles.
Also, we denote the functions from a finite set S to the reals by F(S). The functions on the
vertices for example are denoted by the term F(V ) and on them there is a standard basis
given by {φv : v ∈ V } where the φv(u) := δv,u for all v, u ∈ V are called basic functions in
the literature (e.g. [7]).
In a discretization a natural thing would be to have the measures live on the triangles and
continuous functions being discretized as living on vertices. However, for the discretization
of the continuity equation it will be more useful to have measures live on vertices as well.
Therefore, we think of densities instead of measures, i.e. density functions as well as usual
functions are always elements of F(V ). As usual in piecewise linear settings, we assign to
functions on vertices piecewise linear functions via linear interpolation on each triangle.
We will use the same notation for the function on vertices, the vertex-indexed vector or
the piecewise linear function since it should be clear from the context which one is meant.
Since the mesh is embedded in R3 we can integrate these (piecewise linear) functions over
the mesh as described above. In particular, the (discrete) integral of the density ρ is then
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given by ∑
f∈F

1
3

∑
v∈ad(f)

ρ(v)area(f) =
∑
v∈V

ρ(v)1
3

∑
f∈ad(v)

area(f).

Thus, we can define A(v) := 1
3
∑
f∈ad(v) area(f) and then the above integration can also be

understood as a sum over vertices ∑v∈V ρ(v)A(v).
We then define the space of probability densities as the space

P(M) := {ρ ∈ F(V )|ρ(v) ≥ 0 for all v ∈ V and
∑
v∈V

ρ(v)A(v) = 1},

where the second condition is just the discrete analogue of
∫
ρ = 1.

Another quantity that will show up several times in the upcoming computations is Aρ(f) :=
1
3
∑
v∈ad(f) ρ(v). This comes from sorting above sums by the triangles and represents a

triangle-based (averaged) version of ρ.

3.2 Discrete Continuity Equation
Next, we consider the continuity equation ∂

∂t
µt + ∇ · (vtµt) = 0. Since we work with

absolutely continuous measures or more precisely, their densities, we get the following form
for the continuity equation:

∂

∂t
ρt +∇ · (ρtvt) = 0.

Now, we discretize as follows: Let ρt ∈ F(V ) be a time-dependent density (i.e. an element
of P(M) for any time t ∈ [0, 1]), φ ∈ F(V ) a test-function also living on vertices and X
be a function assigning to each face a vector tangent to that face (i.e. a vector field that
is constant per face). As described above, functions in F(V ) (that is ρt and φ) shall be
understood here as piecewise linear functions on the whole mesh M by linear extension on
each face. Then, we can integrate:

∂

∂t

∫
φρt +

∫
φdiv(ρtX) = 0. (1)

On the left hand side we encounter the term
∫
φρt. Recall that this is literally an integral

over the mesh where φ and ρt are linear functions on each triangle.
If we adopt a vectorial notation for φ and ρt (i.e. φ and ρt are interpreted as vectors
indexed by the set of vertices instead of piecewise linear functions), then in terms of the
input vectors φ ∈ RV and ρt ∈ RV this integral is just a bilinear form and can be written
as φtMρt for a so-called mass-matrix. The mass-matrix is a well-known object in discrete
differential geometry and numerics and is explicitly given by

Muv =


∑
f∈ad(u) area(f)/6, u = v,∑
f∈ad(uv) area(f)/12, u ∼ v,

0, else



20 3 A PIECEWISE LINEAR VERSION OF DYNAMICAL OPTIMAL TRANSPORT

for any pair of vertices u, v ∈ V (see for example [7]). Note, that this matrix just represents
the L2-inner product on the simplex restricted to piecewise linear functions and is therefore
invertible.
However, for the right hand side of (1) we need to come up with a discretization of the
term div(ρX), which for a discrete function and a discrete vector field shall yield a discrete
function.
A Discrete ρ-divergence
In order to make sense of the divergence term in (1) we use a weak formulation approach.

∫
< ∇φ,X > ρ =

∫
φdiv(ρX). (2)

Here, the integration is performed, as described above, on each triangle individually and
then summed up over the triangles. In particular taking the scalar product only needs to
be understood on each triangle individually and the gradient is the usual euclidean gradient
on any (flat) triangle applied to the piecewise linear function φ, yielding a constant vector
per triangle.
Also note that this time φ is the name of the test-function. The approach shall yield the
definition of the operator div(ρ·) : vector fields→ F(V ).
Recall that div(ρX) should be a function on vertices. Then the right hand side of (2) is
φtMdiv(ρX) in vector-matrix notation, where M is the above mentioned mass matrix.
On the left hand side we have the term < ∇φ,X > which is constant per face. In order to
compute the gradient of φ note that for a basic function φu one has ∇φu = e⊥/(2area(f))
on a face f ∈ ad(u), where e⊥ is the vector pointing from u to its opposing edge e in the
triangle f which is orthogonal to e and also of the same length as e. Therefore, on a triangle
f we have

∇φ =
∑

u∈ad(f)
φ(u)e⊥u,f/2area(f) = 1

2area(f)
∑

u∈ad(f)
φ(u)e⊥u,f

where e⊥u,f in accordance with the above notation refers to the vector pointing from u to its
opposing edge e in the triangle f which is orthogonal to e and also of the same length as e.
Thus, the integral over one triangle f is∫

f
< ∇φ,X > ρ = 1

2area(f)
∑

u∈ad(f)
φ(u) < e⊥u,f , X > ·13area(f)

∑
v∈ad(f)

ρ(v)

=Aρ(f)
∑

u∈ad(f)
φ(u)1

2 < e⊥u,f , X > .
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Therefore, for the integral over the whole mesh we get∫
< ∇φ,X > ρ =

∑
f

Aρ(f)
∑

u∈ad(f)
φ(u)1

2 < e⊥u,f , X(f) >

=
∑
u

φ(u)
∑

f∈ad(u)
Aρ(f)1

2 < e⊥u,f , X(f) >

=φtL̃X,

where

L̃ρ(u, f) :=
Aρ(f)1

2e
⊥
u,f , for u ∈ ad(f)

0, else

defines a matrix L̃ρ := Aρ(f)1
2e
⊥
u,f ∈ (R3)V×F indexed by the vertices and the faces of the

mesh whose entries at indices (u, f) are vectors tangent to the face f . A multiplication
of this matrix with a discrete vector field X ∈ (R3)F , which is given by a vector indexed
by the triangles and which has vectors tangent to the triangles as entries, is defined by
L̃ρ ·X = ∑

f∈F Aρ(f)1
2e
⊥
u,f ·X(f).

Now, comparing the discrete notions for the left hand side and the right hand side yield the
discrete divergence operator as div(ρX)(u) = (M−1L̃ρX)u. In other word the divergence
can be identified with the matrix M−1L̃ρ.
A nice remark is that the matrix L̃ can be written as

L̃ = E ·Diag(Aρ(f)),

where E(u, f) = 1
2e
⊥
u,f is the matrix that corresponds to the usual divergence in the literature

for piecewise linear Laplacians and finite elements. Multiplying a vector field with the
matrix Diag(Aρ(f)) can be seen as a discrete analogue of multiplying a smooth vector
field with a smooth function ρ. Thus, the matrix L̃ compares nicely to its smooth version
div(ρ·) in the sense that multiplying it to a vector field X consists of an analogue of a
multiplication with ρ (the matrix Diag(Aρ(f))) and then an analogue to the application of
the divergence (the matrix E).

3.3 ρ-divergence on im(∇)
As we will see later, it is important to understand the ρ-divergence in the case that X is a
gradient thus yielding a discrete version of a ρ-Laplacian. If X is the gradient of a piecewise
linear function ψ (living on the vertices) then

∫
< ∇φ,X > ρ =

∫
< ∇φ,∇ψ > ρ can be

further computed.
A well-known formula from linear finite elements for < ∇φ,∇ψ > on a triangle f is given
by

< ∇φ,∇ψ >= 1
2area(f)

∑
e∈ad(f)

cot(αe,f )δφ(e)δψ(e),
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where αe,f is the angle of the triangle f at the vertex opposite to the edge e in the triangle
f . For the definition of δφ, which is a function on the edges of the mesh one usually
introduces a so-called orientation on the edges first, so that then δφ(uv) = φ(u) − φ(v)
or δφ(uv) = φ(v) − φ(u) depending on the orientation chosen on the edge uv. However,
in this formula, the chosen orientation does not matter since the term δφ(uv)δψ(uv) =
(φ(u)−φ(v))(ψ(u)−ψ(v)) = (φ(v)−φ(u))(ψ(v)−ψ(u)) does not depend on the orientation
of the edge uv. Therefore, the integral over a triangle f is given by

∫
f
< ∇φ,∇ψ > ρ = 1

2area(f)
∑

e∈ad(f)
cot(αe,f )δφ(e)δψ(e) · 1

3area(f)
∑

v∈ad(f)
ρ(v)

=
∑

e∈ad(f)

1
2 cot(αe,f )δφ(e)δψ(e) · Aρ(f).

So, for the total integral we get

∫
< ∇φ,X > ρ =

∑
f

( ∑
e∈ad(f)

1
2 cot(αe,f )δφ(e)δψ(e) · Aρ(f)

)

=
∑
u∼v

1
2
( ∑
f∈ad(uv)

cot(αuv,f )Aρ(f)
)
(φ(u)− φ(v))(ψ(u)− ψ(v))

=φt∆ρψ,

where ∆ρ(u, u) = ∑
v:v∼u ωuv and ∆ρ(u, v) = −ωuv if u ∼ v, where

ωuv = 1
2
( ∑
f∈ad(uv)

cot(αuv,f )Aρ(f)
)
.

Again, by comparing right hand sides and left hand sides we thus find that the discrete
ρ-divergence of the gradient of a function ψ is given by div(ρ∇ψ) = M−1∆ρψ. Clearly,
∆ρ is a sort of discrete distorted Laplace (or more precisely M−1∆ρ is a discrete Laplace
operator which is self-adjoint with respect to the scalar product M and whose induced
bilinear and symmetric form is given by the matrix ∆ρ). Smooth versions of such Laplacians
in the context of Wasserstein geometry were already considered in the literature [41].

3.4 Properties of the ρ-divergence
In this part we want to analyse the image and the kernel of the operator div(ρ·). To ease the
analysis let us for a moment impose the additional condition that the density ρ has has only
positive entries ρ(v) > 0 for all v. Now, let us again have a look at the weak formulation (2)
of the ρ-divergence

∫
< ∇φ,X > ρ =

∫
φdiv(ρX). The left hand side becomes zero if we

plug in a constant function for φ. In particular, this means that div(ρX)⊥1 for any vector
field X, where 1 denotes the constant one-function on vertices 1(v) = 1 for all v ∈ V .
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On the other hand, if φ is not constant, there is a face f on which∇φ is not zero. By choosing
X appropriately we can make the left hand side non-zero. In particular,

∫
φdiv(ρX) is zero

for all X if and only if φ is constant. Thus, we can conclude that (im(div(ρ·)))⊥ = R1 (and
therefore im(div(ρ·)) = (R1)⊥) where the orthogonality comes from the L2-inner product∫
φ · div(ρX) which is given by the mass-matrix M when we think of φ and div(ρX) as

vertex-indexed vectors.
To make this set of arguments more precise, let us fix two scalar products. On functions
F(V ) we use the scalar product < f, g >=

∫
fg. On vector fields we use the scalar product

< X, Y >ρ=
∫
< X, Y > ρ which is indeed a scalar product with our assumption from

above (ρ(v) > 0 for all v). Then by (2), div(ρ·) is the adjoint of the usual gradient ∇.
Therefore,

(ker div(ρ·))⊥ = im(∇).

However, the image of the gradient operator can be parametrized by the functions that are
orthogonal to the constants. This is due to the fact that ∇ is a linear map and thus its
image is isomorphic to its domain modulo its kernel. With our assumptions the kernel just
consists of constant functions and using our scalar product such a quotient is isomorphic to
the orthogonal complement of the kernel. Thus, we have im(∇) ∼= (ker∇)⊥.
On the other hand, since the operators are adjoint we have that

im(div(ρ·)) = (ker∇)⊥

and of course (ker∇)⊥ = (R1)⊥. Thus, after restricting the image to im(div(ρ·)) we get
the following chain of maps:

(ker∇)⊥
∇∼= im(∇) ↪→ vectorfields

div(ρ·)→ (ker∇)⊥.

Since

0→ ker div(ρ·) ↪→ vectorfields
div(ρ·)→ (ker∇)⊥ → 0

is an exact sequence and by the above we know that (ker div(ρ·))⊥ = im(∇) we have that

(ker∇)⊥
∇∼= im(∇) div(ρ·)→ (ker∇)⊥

is actually a sequence of bijections/identification. Thus, under the right restrictions and
identifications we can view div(ρ·) as a map div(ρ·) : (R1)⊥ → (R1)⊥, which is a bijective.

3.5 Definition of the Metric
Recall the Benamou-Brenier formula from the introduction to the Wasserstein space. The
following discussion there showed that people were able to provide a notion of a tangent
space for the Wasserstein space as well as a Riemannian metric for it. Using the discrete
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operators we just introduced one can do the same on triangulated surfaces and thus define
a Wasserstein-Riemannian metric in the following way:
Note that the space P(M) is a simplex of dimension |V | − 1 and therefore a Riemannian
manifold in a natural way. A curve µt in P(M) needs to satisfy

∫ ∂
∂t
µt · 1 = 0. For a density

curve ρt, satisfying ρ0 = ρ for some density ρ, this means that

∂

∂t

∑
v∈V

ρt(v)A(v) =
∑
v∈V

ρ̇t(v)A(v) = 0.

Clearly, the vector ρ̇t is tangent to the simplex P(M). This vector, however, is not a discrete
analogue to the vector fields considered in section 2. Thus, let us adopt an adhoc-notion
and call all vectors U ∈ F(V ) satisfying ∑v∈V U(v)A(v) = 0 simplex tangent vectors. Note
that this condition is equivalent to U being orthogonal to 1 as a function.
The discrete analogue for the tangent vectors to the tangent space of the Wasserstein space
as described in section 2 are not tangent vectors ρ̇t to the simplex. Instead, we use the
discrete continuity equation

∫
φρ̇t+

∫
φdiv(ρtX) = 0 to associate a discrete vector field X to

ρ̇t which is orthogonal to the ρ-divergence-free vector fields. In analogy with section 2 the
discrete tangent space to the Wasserstein space is defined as the set of those vector fields
equipped with the L2(ρ)-metric. To distinguish these from the simplex tangent vectors, let
us call the vector fields X, that are orthogonal to all ρ-divergence-free discrete vector fields,
Wasserstein tangent vectors.
In summary: the discrete Wasserstein tangent space at a density ρ is given by Wasserstein
tangent vectors, i.e. the discrete vector fields that are orthogonal to all ρ-divergence-free
vector fields. The metric on them is given by the L2(ρ)-metric

∫
< X, Y > ρ for two

Wasserstein tangent vectors X, Y .

3.6 Computing the Metric
Instead of giving a Wasserstein distance directly for our setting, we can try to compute this
Riemannian metric in the coordinates given by the simplex tangent vectors. More precisely:
For two given simplex tangent vectors U and V , what is the Wasserstein-Riemannian metric
of their associated Wasserstein tangent vectors?
In accordance with the the non-discrete case we first have to solve the continuity equation
ρ̇t = div(ρX) with an X that is orthogonal to the ρ-divergence free vector fields (recall the
definition of the tangent space for the Wasserstein space). More precisely, we need to find
the div(ρ·)-preimages X and Y of U and W that are orthogonal to the div(ρ·)-free vector
fields and then compute their L2(ρ)-product

∫
< X, Y > ρ.

As we saw in a previous subsection, the orthogonal complement of the kernel of div(ρ·) is
im(∇). Moreover, U and W are orthogonal to 1. Thus, the div(ρ·)-preimages X and Y
(that re orthogonal to all div(ρ·)-free vector fields) exist and are uniquely defined.
Alternatively, the above process is equivalent to solving the following optimization problem:
minimize

∫
< X, Y > ρ subject to div(ρX) = U , div(ρY ) = W . This second formulation

comes directly from a variational approach:
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Proof. Let X ′, Y ′ be such that div(ρ(X + tX ′)) = U, div(ρ(Y + tY ′)) = W for all t ∈ (−ε, ε)
(i.e. div(ρX ′) = div(ρY ′) = 0), then

0 != ∂

∂t

∫
< X + tX ′, Y + tY ′ > ρ =

∫
< X, Y ′ > ρ+

∫
< X ′, Y > ρ

and this is zero for all ρ-divergence free X ′, Y ′ if and only if X and Y are orthogonal to all
ρ-divergence free vector fields.

Here, however, it will be easier to work directly with a vector field orthogonal to all
div(ρ·)-free vector fields instead of considering this minimization problem.
Thus, in order to compute the Riemannian metric, first we have to understand what it
means to take the preimages with respect to div(ρ·).

Inverting div(ρ·) We have to invert the operator div(ρ·) to compute X = (div(ρ·))−1(U)
and Y = (div(ρ·))−1(W ). However, being orthogonal to all ρ-divergence free vector fields
for X and Y means to be in (ker div(ρ·))⊥, which in the last subsection we found to be
im(∇). For X, Y ∈ im(∇) and U,W ∈ (ker∇)⊥ on the other hand, we see that we can
compute X and Y by inverting the map

(ker∇)⊥
∇∼= im(∇) div(ρ·)→ (ker∇)⊥

(which above we proved to be a bijection) and then taking the gradient again. That map
div(ρ∇·), however, is just the distorted Laplacian M−1∆ρ that we computed earlier!
So, to sum things up, we now have to compute ∇((M−1∆ρ)−1U) (and ∇((M−1∆ρ)−1W ),
respectively), where the distorted Laplacian is restricted in its image and its domain to
(ker∇)⊥.

Inverting the distorted Laplacian Since the distorted Laplacian of a discrete function
φ ∈ F(V ) is given by the multiplication with M−1∆ρ, the inverse of the simplex tangent
vector U is given by

∆−1
ρ M · U ∈ (R1)⊥ ⊂ F(V ).

Therefore, the Riemannian metric at ρ for the two simplex tangent vectors U and W is
given by

(U,W ) :=
∫
< X, Y > ρ,

where X = ∇∆−1
ρ M · U and Y = ∇∆−1

ρ M ·W . Thus, we get
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(U,W )ρ =
∫
< X, Y > ρ

=
∫
< ∇∆−1

ρ MU,∇∆−1
ρ MW > ρ

=(∆−1
ρ MU)tMdiv(ρ·)(∇∆−1

ρ MW > ρ)
=U tM∆−1

ρ MM−1∆ρ∆−1
ρ MW

=U tM∆−1
ρ MW.

Therefore, instead of the definition from the earlier subsection, we now have a much more
compact expression for the definition.

Proposition 3. For two simplex vector fields U and W in (R1)⊥ the Riemannian metric
of the Wasserstein space at ρ is given by

(U,W )ρ = U tM∆−1
ρ MW.

Note that the right hand side can be interpreted as U tM(M−1∆ρ)−1W =
∫
U ·(M−1∆ρ)−1W .

Thus, in a way we can say that the Wasserstein metric is given by the inverse of the distorted
Laplacian.

The Smooth Picture Formally, the fact that the Wasserstein metric is given by the
inverse of the Laplacian, can also be seen in the smooth picture: Define the distorted
Laplacian ∆ρf := div(ρ∇f) as for example in [41]. Then, let

(u,w)ρ :=
∫
< X, Y > ρ,

where X = div(ρ·)−1u and Y = div(ρ·)−1w are ρ-divergence-free preimages of simplex
tangent functions u,w (i.e. they satisfy

∫
M u =

∫
M w = 0).

Then assume that X = ∇f and Y = ∇g for function f, g satisfying f = ∆−1
ρ u and

g = ∆−1
ρ w. Thus, we can formally calculate:

(u,w) =
∫
M
< ∇∆−1

ρ u,∇∆−1
ρ w > ρ

=
∫
M
u∆−1

ρ w.

3.7 The Wasserstein Space as a Riemannian Manifold
The Probability measure simplex equipped with this Wasserstein metric is a high-dimensional
Riemannian manifold and an interesting subject in itself. We want to present three
operators/computations.
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Laplacian Recall the formula for the Laplace operator on a Riemannian manifold in
coordinates:

∆f = 1√
|g|
∂i(
√
|g|gij∂jf)

where gij are entries of the inverse metric tensor and |g| refers to the determinant of the
metric tensor.
In our situation, the metric at ρ is given by M∆−1

ρ M . Thus, let us denote the inverse
metric tensor by Ginv

ρ := M−1∆ρM
−1. Let us also use the notation |A| for the determinant

of a matrix A. Then, at a point ρ our Laplace is given by

√
|Ginv

ρ |
∑
i

∂i
( 1√
|Ginv

ρ |
∑
j

(Ginv
ρ )ij∂jf

)
=

√√√√ |∆ρ|
|M |2

∑
i

∂i
(√√√√ |M |2
|∆ρ|

∑
j

(Ginv
ρ )ij∂jf

)

=
√
|∆ρ|

∑
i

∂i
(√ 1
|∆ρ|

∑
j

(M−1∆ρM
−1)ij∂jf

)
.

Alternatively, this can also be written in divergence form:

∆f =
√
|Ginv

ρ |div( 1√
|Ginv

ρ |
·Ginv

ρ ∇f).

What is remarkable here is that in order to compute this, we only need the inverse of the
mass-matrix M which does not depend on ρ. In particular, no inversion of ∆ρ is necessary.
We briefly considered using this to conduct a heat method (see [15], a method that uses heat
flow to compute geodesics) on this space and thus have a new way to compute dynamical
optimal transport. However, it quickly turned out that for solving the heat equation, the
dimension of the space is prohibitively large. A work-around could be to use Monte-Carlo
methods (as in [37]) but the author Keenan Crane noted that even this approach will
probably be very slow.

Where is ∆ρ invertible? The set P(M) consists of functions V → R such that ρ(v) ≥ 0
and ∑v∈V ρ(v)A(v) = 1. In other words: P(M) is a simplex.
The metric is defined by the inverse of ∆ρ and we now want to ask what happens if ρ hits
the boundary of the simplex, on which the metric is not necessarily defined any longer. If ρ
is on the boundary (i.e. if ρ(v) = 0 for one or more vertices v) then the metric exists if and
only if ∆ρ is invertible (with the usual restriction to (R1)⊥).
Let us first consider the case where ρ(v) = 0 for exactly one vertex v. Having a look at (1)
shows us that the reasoning of the Properties of the rho-divergence-subsection still applies
so that the metric still exists at this part of the boundary. Therefore, on the inside of the
facets of the simplex, the metric is still defined. In order to make ∆ρ non-invertible, we
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need ρ to vanish at at least 3 vertices so that Aρ becomes zero on a triangle. However, we
will see that even then the distorted Laplacian is usually invertible.
We want to find a condition that characterises when ∆ρ is invertible. For this we introduce
some notation: Let us call a triangle f a zero-triangle if Aρ(f) = 0, i.e. ρ vanishes for all
three vertices of the triangle. Also, recall the concept of the dual graph which is a the
graph that has the triangles as its vertices and two triangles are adjacent if they share an
edge. Moreover, the vertices of the original graph become faces in the dual graph which,
however, are not necessarily triangles anymore. Now, we can formulate the following result.

Proposition 4. Assume that we have a triangulation for which all the interior angles of
the triangle are acute, i.e. strictly less than π/2. With this assumption we can give a
sufficient and necessary condition for when ∆ρ is invertible:
∆ρ restricted to (R1)⊥ is not invertible if and only if in the dual graph there exists a cycle
of zero triangles, which splits the dual graph into two non-empty parts.
Expressed more algebraically: ∆ρ restricted to (R1)⊥ is not invertible if and only if there
exists a cocycle of zero-faces in the dual graph cohomologous to zero.

Proof. Assume that in the dual graph there exists a cycle of zero triangles and denote the
set of enclosed vertices by S. Fix two numbers a 6= b ∈ R and set a function f to be a
on the vertices of S and b everywhere else. Then for any edge from S to its complement
the two triangles adjacent to it will both be zero-triangles. Thus, for those edges the term
1
2

(∑
f∈ad(e) cot(αe,f )Aρ(f)

)
is zero and we can see that

φt∆ρf =
∑
u∼v

1
2
( ∑
f∈ad(uv)

cot(αuv,f )Aρ(f)
)
(φ(u)− φ(v))(ψ(u)− ψ(v)) = 0

for any function φ. In particular, ∆ρ has elements in its kernel besides the constants and is
therefore not invertible.
On the other hand, let us now assume that there is a function f such that ∆ρf = 0 and
f is taking at least two different values. Choose an arbitrary vertex v and let S be the
connected component of v in {u ∈ V |f(u) = f(v)} = f−1(f(v)). Now, consider all the
edges emanating from S. Obviously, ωe = 1

2

(∑
f∈ad(e) cot(αe,f )Aρ(f)

)
has to be zero for all

those edges. By our assumption on the angles, the cot-terms are positive. Thus, Aρ has
to be zero for all faces adjacent to those edges. Therefore, the boundary of S in the dual
graph is a cycle of zero-faces.

The Volume Form We see that the issues arise precisely for ρs with a certain combina-
torial property. What happens to the volume form if we push ρ to the parts of the boundary
of the simplex that have this property?
Recall the volume form of a Riemannian manifold in coordinates:

dvol =
√
|g|dx1 ∧ · · · ∧ dxn. (3)
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In our case, the scalar factor is given by
√
|M∆−1

ρ M | = |M |/
√
|∆ρ|. For a better under-

standing of this term let us have a look at the eigenvalues of ∆ρ. We sort the eigenvalues
of the matrix ∆ρ: λ1 ≤ λ2 ≤ · · · ≤ λmax.
The largest eigenvalue can be bounded by absolute row sums using the explicit formula
for the weights 1

2

(∑
f∈ad(e) cot(αe,f )Aρ(f)

)
. Since Aρ(f)1

3
∑
v∈ad(f) ρ(v) ≤ maxv∈V { 1

A(v)} (as∑
v∈V ρ(v)A(v) = 1), we get a bound C for λmax := λ|V |−1 that only depends on the mesh

(and not on ρ).
Therefore, for the inverses of the eigenvalues, we have 1

λ1
≥ 1

λ2
≥ · · · ≥ 1

λmax
≥ 1/C > 0.

Thus, we can bound |M |/
√
|∆ρ| from above and from below only in terms of 1

λ1
and we see

that when ρ gets close to the area where ∆ρ is not invertible, λ1 goes to zero and thus the
scalar factor from the coordinate expression of the volume form grows to infinity.
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4 A Wasserstein-like Distance on Vector Fields
The aim of this section is to present two novel distances for vector fields on manifolds that
are inspired by the Wasserstein distance. The second of the two is a bit more intuitive and
seems to allow more interesting relations to other fields. Moreover, the first construction
will usually not even be a distance in many cases due to a lack of the triangle inequality
but due to the similarity in the construction we still want to present both concepts. Before
discussing our approach let us consider some simple thoughts in order to gain intuition.
A first thing to notice is that it is not trivial to copy the algebraic formulation of optimal
transport. The first question that one might ask is how to think of vector fields in a way
that is similar to measures. Our mental picture for this was something like a fuzzy vector
fields. Intuitively speaking, at every point the direction of the vector field could potentially
involve some notion of non-determinism. The question would then be what a transport plan
shall be. Trying to even write something meaningful down for this proved to be awkwardly
difficult. In fact, most Wasserstein-like distances for vector-valued measures or matrices in
the literature involve some alternative formulation for the Waaserstein distance (e.g. the
Benamou-Brenier formula for dynamical optimal transport or dual formulations).
We went for a different, more geometrical approach. Our idea is to conduct the optimal
transport on some bundle over the base space instead of the base space itself. For this, the
objects to transport need to be translated in some way to objects on a bundle and there
are different ideas for how this could be done.
The approach that seemed most interesting to us was an approach that interprets vector
fields as measures on the unit circle bundle over the surface, since this approach allowed for
an intuitive understanding and has a certain connection to parallel transport. Before we
get to that, however, we want to discuss another approach where the optimal transport is
performed on measures on a bundle which project to given vector fields in a certain way.
We will keep most of the survey to a very restricted setting where we transport vector fields
on a compact, oriented 2-dimensional Riemannian manifold (without boundary).

4.1 Projection-Approaches
The concept we introduce here is rather general and can applied to multiple spaces. In
particular, we will recover a distance function that was already considered in other places.
However, unless p = 1, this approach will usually not yield a distance.

We will forget about our resolution of focussing on vector fields on surfaces for the moment
and describe a very general, but also somewhat formal setting. Let us denote a compact
manifold by M and let B be a metric fibre bundle over M (equipped with the distance dB)
such that there exists a surjective map

proj : P(B)→ Ξ(M),

where P(B) is the space of probability measures on B (or, as in our first example, measures
with a given total mass) and Ξ(M) is a space of measure-theoretical objects that we want
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to transport and proj is induced by some algebraic operation on the fibre. Then, we can
define a semi-distance on Ξ(M) in the following way:

Definition 6. For two objects α, β in Ξ(M) we define their semi-distance as

WM
p (α, β) := inf

α̃,β̃
WB
p (α̃, β̃),

where the infimum is over all α̃ and all β̃ in P(B) that satisfy proj(α̃) = α and proj(β̃) = β
and WB

p denotes the Wasserstein p-distance on B.

In this generality it is of course by no means clear why this should be a distance (in fact
it usually is not) and what properties it has. Even the term ’semi-distance’ is chosen
somewhat hopeful since the property that WM

p (α, β) 6= 0 for α 6= β still requires a proof for
any concrete application of the concept. We will, however, not bother with semi-distances
but only discuss whether the objects at hand are distances or not. Thus, in the following
we use the term ’semi-distance’ as an empty expression only there to have a name by which
we call the above function. Let us consider two examples, where we give definitions for
semi-distances for signed measures and for vector fields, respectively.

4.1.1 A Toy Example

To make the above considerations more precise, let us consider a toy example. For this letM
be an oriented, compact Riemannian manifold and B = M×{±1} a trivial bundle equipped
with the obvious metric. Let WB

p denote the Wasserstein distance on B as usual. Note
that B is disconnected and therefore optimal transport on B is conducted by conducting
optimal transport on the connected components M × {+1} and M × {−1} independently.
Taking into account the power p, the Wasserstein distance of two measures µ̃, ν̃ ∈M(B)
on B can then be written as

WB
p (µ̃, ν̃) =

(
WM×{+1}
p (µ̃|M×{+1}, ν̃|M×{+1})p +WM×{−1}

p (µ̃|M×{−1}, ν̃|M×{−1})p
)1/p

,

where µ̃|M×{+1} denotes the restriction of the measure µ̃ to the set M × {+1} and the total
masses of the restrictions of µ̃, ν̃ need to be finite and satisfy |µ̃|M×{+1}| = |ν̃|M×{+1}| and
|µ̃|M×{−1}| = |ν̃|M×{−1}| (such that the Wasserstein distance exists).
Now we use for Ξ(M) = S0(M) := {µ ∈ S(M) :

∫
M dµ = 0} the set of signed measures

with zero total mass. For our projection we notice that there is a map from functions f̃ on
B to functions on M via m(f̃)(x) = f̃(x,+1)− f̃(x,−1). This map easily translates to a
map mapping measures on B to signed measures on M via push-forward, defined by

proj(µ̃) = π#(µ̃|M×{+1})− π#(µ̃|M×{−1}),

or equivalently, via the property
∫
M fdproj(µ̃) =

∫
M×{+1} f(x)dµ̃(x,+1)−

∫
M×{−1} f(x)dµ̃(x,−1).

In other words, we interpret µ̃ restricted to M × {+1} and µ̃ restricted to M × {−1} as
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two measures on M and just take their difference.
We can now consider the above minimization problem

W S0
p (µ, ν) := inf

µ̃,ν̃
WM×{±1}
p (µ̃, ν̃),

where the infimum is taken over all measures µ̃, ν̃ ∈M(B) of finite total mass which project
to the signed measures µ, ν, i.e. proj(µ̃) = µ and proj(ν̃) = ν, and satisfy that the total
mass of µ̃|M×{+1} is the same as the total mass of ν̃|M×{+1} and similarly for M × {−1} (so
that the Wasserstein distance is defined on M × {+1} and M × {−1}).
Intuitively speaking, using this projection means allowing the signed measures µ to have
positive and negative mass at the same time at a given point in M (whenever µ̃|M×{+1}
and µ̃|M×{−1} both have mass there).
Recall that any signed measure µ can be written in a unique way as µ = µ+ − µ− for
measures µ+ and µ− of minimal total mass. Since µ̃|M×{+1} and µ̃|M×{−1} are both (non-
negative) measures, it is clear that µ̃|M×{+1} = µ+ + γ and µ̃|M×{−1} = µ− + γ for some
measure γ ∈M(M) after identifying M×{+1} and M (or M×{−1} and M , respectively).
Thus, the above semi-distance can also be written as

W S0
p (µ, ν) = inf

γ1,γ2

(
WM
p (µ+ + γ1, ν+ + γ2)p +WM

p (µ− + γ1, ν− + γ2)p
)1/p

,

where the infimum is taken over all measures γ1, γ2 ∈M(M) satisfying |µ+|+|γ1| = |ν+|+|γ2|
(or equivalently |µ−|+ |γ1| = |ν−|+ |γ2|). Here the absolute values denote the total mass
of the measures (i.e. |µ+| :=

∫
M dµ+). For p = 1 we can show that this expression can be

simplified a bit.

Proposition 5. For p = 1 the above (semi-)distance can be written as

W S0
1 (µ, ν) = WM

1 (µ+ + ν−, µ− + ν+).

Proof. "≤":
Clearly, in above formula for W S0

p (µ, ν) we can just choose γ1 = ν− and γ2 = µ−. Indeed,
|µ+|+ |γ1| = |µ+|+ |ν−| = |µ−|+ |ν+| = |ν+|+ |γ2| is then fulfilled and thus we have

W S0
1 (µ, ν) = inf

γ1,γ2
{WM

1 (µ+ + γ1, ν+ + γ2) +WM
1 (µ− + γ1, ν− + γ2)}

≤ WM
1 (µ+ + ν−, ν+ + µ−) +WM

1 (µ− + ν−, ν− + µ−)︸ ︷︷ ︸
=0

= WM
1 (µ+ + ν−, µ− + ν+).

"≥": Let γ1, γ2 ∈ P(M) satisfy |µ+|+ |γ1| = |ν+|+ |γ2|. Recall the dual formulation for the
Wasserstein-1-distance by which we have

WM
1 (µ+ + γ1, ν+ + γ2) +WM

1 (µ− + γ1, ν− + γ2)}

= sup
f
{
∫
M
fd(µ+ + γ1 − ν+ − γ2)}+ sup

g
{
∫
M
gd(ν− + γ2 − µ− − γ1)},
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where both suprema are taken over all 1-Lipschitz functions f, g and for the letter term we
changed the order of the argument WM

1 (µ−+ γ1, ν−+ γ2) = WM
1 (ν−+ γ2, µ−+ γ1). Clearly,

the sum of those two suprema can only become smaller if we just choose f = g. So we can
bound this from below by

≥ sup
f
{
∫
M
fd(µ+ + γ1 − ν+ − γ2) +

∫
M
fd(ν− + γ2 − µ− − γ1)}

= sup
f
{
∫
M
fd(µ+ + ν− − µ− − ν+)}

= WM
1 (µ+ + ν−, µ− + ν+).

Since this inequality holds for any γ1, γ2 ∈ P(M) that satisfy |µ+|+ |γ1| = |ν+|+ |γ2|, it
also holds for the infimum. Thus, we get W S0

1 (µ, ν) ≥ WM
1 (µ+ + ν−, µ− + ν+).

In [22] Edoardo Mainini defines a very similar set of semi-distances for signed measures.
Before discussing those and comparing them to our definition, let us quote an important
theorem from his paper:

Theorem 6. Let p ≥ 1, α ≥ 0, and let µ, ν be two measures with total mass α. Then for
any n ∈ N there exists a measure σ with total mass nα, such that

WM
p (µ+ σ, ν + σ)p ≤ 1

(n+ 1)p−1W
M
p (µ, ν)p.

In particular, we can immediately see that for p > 1 we get zero for the our semi-
distance: just choose γ1 = ν+ + σ and γ2 = µ+ + σ such that for W S0

p (µ, ν) we get
W S0
p (µ, ν) ≤ infσ(0 +WM

p (µ− + ν+ + σ, ν− + ν+ + σ)p)1/p = 0.
Therefore, for p > 1 a more sensible definition would be to restrict the distance to signed
measures with bounded total mass |µ| := |µ+|+ |µ−|. Thus, we might fix some numbers
0 < b1 < b2 and consider the semi-distance on the set of signed measures with total mass
less than b1 given by

W S0
p (µ, ν) := inf

µ̃,ν̃
WM×{±1}
p (µ̃, ν̃),

where the infimum is taken over all measures µ̃, ν̃ with with total mass less than b2.
Alternatively, this is given by

W S0
p (µ, ν) = inf

γ1,γ2

(
WM
p (µ+ + γ1, ν+ + γ2)p +WM

p (µ− + γ1, ν− + γ2)p
)1/p

,

where γ1 and γ2 are as above but additionally satisfy that |µ+| + |µ−| + 2|γ1| ≤ b2 and
|ν+|+ |ν−|+ 2|γ2| ≤ b2.
Mainini [22] defines various semi-distances for signed measures with total mass less than
some fixed number b. One of them is given by the formula

WMainini
p,b := WM

p (µ+ + ν−, µ− + ν+).
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So, for p = 1 we recovered one of his semi-distances.
In his paper Mainini also proves that for p = 1, the above semi-distance is actually a
distance. For all other p > 1, he gives an example for which the triangle inequality is not
fulfilled. Due to the addition of the γ1/γ2-terms, it is not clear whether his example also
works for our semi-distances though. In fact, we do not know whether our semi-distances
W S0
p (µ, ν) are distances for p > 1, but our expectation is that they are not.

4.1.2 Vector Fields

The same approach can be done when dealing with vector fields: Assume we equipped
the tangent space itself with a metric dTM . This defines the Wasserstein distance W TM

p .
However, since TM is not compact anymore, the Wasserstein distance is only a distance
for measures of finite p-moment, i.e. measures µ̃ satisfying

∫
TM dpTM (v, v0)dµ̃ <∞ and this

definition does not depend on the choice of v0 (see [41]).
By disintegration, any probability measure µ̃ on TM can be written in the form µ̃ = µ(x)⊗νx
where µ = π#µ̃ is a probability measure on M and νx is a probability measure on TxM .
Since TxM is a vector space, we can take the mean of νx resulting in a vector

∫
TxM

vdνx
of TxM if the mean exists. This motivates the following definition: Define Ξ(M) as the
space X (M) ×F(M) P(M) where F(M) denotes the set of measurable functions over M
and X (M) the vector fields over M with a measurable regularity (i.e. vector fields whose
components are measurable in any coordinate chart). The notation ×F(M) means that
we identify elements of the forms (f ·X,µ) and (X, f · µ) with each other (as is common
for example for the notation for associated vector bundles from principal bundle theory).
More precisely, X (M)×F(M) P(M) = X (M)× P(M)/ ∼ where the equivalence relation is
defined via (f ·X,µ) ∼ (X, f · µ) whenever µ and fµ are both probability measures.
This space can be seen as a way to build dual elements for 1-forms that respect the
local structure of M and do not require any metric on M . Indeed, given a 1-form α the
composition

〈[(X,µ)], α〉 :=
∫
M
α(X)dµ

is well-defined (though from the functional analytical view point X (M)×F(M)M(M) would
probably be the more interesting space).
In order to guarantee that the means

∫
TxM

vdνx exist almost everywhere let Pfinite(TM)
be the space of measures on TM that have finite p-moment as well as finite 1-moment
and assume that there exists some norm ‖ · ‖ on M and a constant c > 0 such that the
metric dTM satisfies: for any x ∈M and any v ∈ TxM we have ‖v‖ ≤ c · dTM (v, 0) where 0
denotes the zero vector in TxM . Indeed, then we have∫

TxM
‖v‖dνx ≤ c

∫
TxM

dTM(v, 0)dνx ≤ cdTM(0, v0) + c
∫
TxM

dTM(v, v0)dνx

and we know that
∫
TxM

dTM(v, v0)dνx <∞ exists almost everywhere since the 1-moment∫
M dTM(v, v0)dµ̃ =

∫
M

∫
TxM

dTM(v, v0)dνxdµ is finite.
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We define a projection proj : Pfinite(TM)→ X (M)×F(M) P(M) by mapping an element
µ̃ ∈ Pfinite(TM) to [(X,µ)], where µ = π#µ̃ and Xx :=

∫
TxM

vdνx are constructed from the
disintegration of µ̃.
Again, we can now define a semi-metric on Ξ(M) in the way described above.

Definition 7. For two elements in [(X,µ)], [(Y, ν)] ∈ X (M)×F(M) P(M) a semi-distance
is defined as

WΞ
p ([(X,µ)], [(Y, ν)]) := inf

µ̃,ν̃
W TM
p (µ̃, ν̃),

where the infimum is taken over all µ̃, ν̃ satisfying proj(µ̃) = [(X,µ)] and proj(ν̃) = [(Y, ν)].

Intuitively speaking, this semi-distance transports vectors on the tangent bundle but
similarly to our toy example we allow the vectors to change instantaneously into a measure
on their respective tangent space which has the same mean.
Clearly, this approach is not very fulfilling since it is difficult to interpret this semi-distance
and the mere fact that we usually do not get actual distances makes the approach less
interesting. One question that seemed interesting though would be whether this could be a
distance for p = 1. Unfortunately, we could not prove this nor refute it but our conjecture
is that the key to answering this question lies in finding a dual formulation, similarly to our
toy example.

4.2 Approaches using Embeddings
In the following we will consider approaches using embeddings into the space of probability
measures over some bundle. This will turn out to be more fruitful than the previous
approach.
In order to gain some intuition, we again start by discussing a toy example. After that
we introduce the needed spaces and discuss a certain energy before giving the definition
of a Wasserstein-like distance for vector fields. Then, we collect some properties and give
intuition for this distance.

4.2.1 A Toy Example

Again, we consider the case of signed measures. As before, let us write the signed measure
µ in terms of its positive and negative parts µ = µ+ − µ−. Define the space

S1/2,1/2 := {µ ∈ S(M) :
∫
M

dµ+ = 1
2 =

∫
M

dµ−}.

Then we again consider the trivial bundle M × {±1} → M . Here we have two sections:
s+(m) := (m,+1) and s−(m) := (m,−1). Our embedding i : S1/2,1/2 → P(B) is now
defined as

i = (s+)#µ+ + (s−)#µ−.
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In other words, we simply put the measure µ+ on M × {+1} and the measure µ− on
M × {−1}. For two signed measures µ, ν ∈ S1/2,1/2, their distance is then given by

Dp(µ, ν) = Wp(i(µ), i(ν)) =
(
Wp(µ+, ν+)p +Wp(µ−, ν−)p

)1/p
.

This is a very simple object as it just transports positive and negative parts independently.
The fact that this is a distance is obvious. For p = 1 this is yet another distance that was
considered by Mainini in [22].
The rest of this section is devoted to vector fields on compact, oriented, 2-dimensional
Riemannian manifolds.

4.2.2 Circle Bundles and the Kaluza-Klein Space

In this subsection, we will give a gentle introduction to some of the concepts needed from
differential geometry. Again we consider the setting of a compact and oriented Riemannian
surface without boundary and denote the Levi-Civita connection by ∇.
A typical way of thinking about vectors is to divide the information into the vector’s
direction and its length. The directional part can be described by the mathematical notion
of the unit circle bundle which is the space that consists of all unit length vectors for a
given surface

SM = {v ∈ TM : |v| = 1}.

This is then a fibre bundle where each fibre is given by a circle. Note that on each fibre
there is a group action given by the group SO(TxM) which can be canonically identified
with the group S1. In particular, we have a group action on this bundle by the group S1

which preserves the fibres and acts by rotating the fibres.
We want to consider moving vectors. A slight change of perspective is given by viewing
a unit vector U moving along a curve γ as a curve γ̃U in SM instead. We know that our
moving vector U will be parallel iff ∇γ̇U = 0. Now, one can ask what being parallel means
for the curve γ̃U whose derivative would lie in the tangent space to the unit circle bundle.
This question is answered by the introduction of the horizontal space. Let us consider a
single unit vector v sitting at a point x ∈M . For any curve γ passing through x we will
then get a curve γ̃ in SM by parallel translating the vector v along γ. One can then show
that the space

Hv := span{ ˙̃γ|t=0 : γ a curve passing through v with γ(0) = x} ⊂ TSM

forms a 2-dimensional linear subspace of the tangent space to the unit circle bundle that
is called the horizontal space at v and which is isomorphic to TM via the isomorphism
dπHv , where π : SM →M is the bundle projection. Then it becomes clear that in terms of
the curve γ̃U , the field U being parallel means that (γ̃U(t))· lies in HU(t) for all times. The
natural complement of the horizontal space is the vertical space which is defined as ker dπ
and indeed, TSMv = Hv + Vv.
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A supremely important property of the unit circle bundle is its symmetry with respect
to the rotations on the respective circles and most meaningful mathematical objects will
respect this symmetry meaning that they are invariant (or equivariant) under the action of
the group S1 that acts on this bundle. Of course this is also true for the horizontal spaces:
Let sθ be the rotation by the angle θ, then (sθ)∗Hv = Hsθ(v) .
Next, we want to turn SM also into a geometric space by endowing it with a metric. This
metric shall be invariant under the group action as well. Thus, the most natural way is to
use the metric g pulled back via π on the horizontal space and requiring horizontal space
and vertical space to be orthogonal. All that is left is then to also endow the vertical space
with an S1-invariant metric. This can also be achieved in a simple manner: The group
S1 itself can be given a (left- and right-)S1-invariant metric by identifying it with R/2πZ.
Since the vertical space consists of the tangent spaces to the unit circles in SM and these
are isomorphic to S1 (e.g. by acting), we can endow the vertical space with the metric from
S1. More precisely: Let X be a tangent vector to the tangent space of S1 at the identity.
Define the Killing vector KX in Vv as the vector originating from X via (the exponential
of) the group action

KX = ∂

∂t |t=0
v. exp(tX).

Note that here we identified S1 with the unit circle in C and its tangent space at the identity
(which now is just 1) with iR. Also, the group action on the unit circle bundle is as usual
written as a right action. Then we define

〈KX , KY 〉SM = 〈X, Y 〉S1

and since the map S1 → π−1(π(v)) is an isomorphism, so is the map K · : T1S1 →
Tvπ

−1(π(v)) = Vv. Thus, this defines a metric on the vertical space that is rotation invariant
by construction. In total, we get a rotation invariant metric on the whole unit circle bundle
SM which we call the Kaluza Klein metric. The space SM endowed with this metric we call
the Kaluza Klein space. The name Kaluza Klein is used here since we were inspired to use
this metric by other work, that used similar metrics on the circle bundle and associated these
constructions with the Kaluza Klein space from physics (e.g. [26] in appendix A). However,
this exact metric was introduced by Sasaki in [27] and is usually known as Sasaki-metric in
the literature. For a more up-to-date survey of the metric we refer the reader to [31] and
[28].
Remark: In the literature the horizontal space is defined in a different manner since it is
usually used to introduce a new language that allows for an alternative way to define the
notions of affine connections and the Levi-Civita connection. Thus, our exposition of using
a connection to introduce the horizontal space is not the usual way. We chose this approach
since it seemed to be the shortest way to introduce the horizontal space.

4.2.3 Energies of Moving Vectors

Before discussing a distance for vector fields, we investigate a certain Energy for a unit
vector moving along the manifold. More precisely, let us consider a unit vector field U
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along a curve γ : [0, 1]→M and define the energy

E(γ, U) :=
∫ 1

0
|γ̇|2 + |∇γ̇U |2dt

where the first term corresponds to the energy associated to the curve while the second
term is a measure for how parallel U is along γ.
One might also consider the starting vector U(0) := Uγ(0) at p = γ(0) and parallel transport
it along γ to a parallel vector field P γ

0,t(U(0)). That would then yield an angle function
that for time t gives the angle between U(t) := Uγ(t) and P γ

0,t(U(0))

θ(t) := ∠(U(t), P γ
0,t(U(0))).

Alternatively, one might view U altogether as a curve in the unit circle bundle SM instead.
We will denote the associated curve in SM by Ũ (instead of the previous notation γ̃U ). Thus,
the splitting of the tangent space of the unit circle bundle into horizontal space and vertical
space yields a splitting of the derivative of Ũ into the horizontal part of the derivative ˙̃UH ,
which has the same norm as γ̇ in TM (with SM equipped with the Kaluza-Klein metric)
and its vertical part ˙̃UV .
In the following lemma we give two alternative forms for the above energy.

Lemma 1. With the notation just introduced, we have

E(γ, U) =
∫ 1

0
|γ̇|2 + |θ̇|2dt

=
∫ 1

0
| ˙̃U |2dt.

This lemma and particularly the second formula here is the motivation for the distance
defined in the next subsection.

Proof. Since the horizontal space is isometrically isomorphic to the tangent space of M , we
have | ˙̃UH | = |dπ( ˙̃U)| = |(π ◦ Ũ)·| = |γ̇|. Thus, the only thing that has to be shown is

|∇γ̇U | = |θ̇| = | ˙̃UV |.

For the first equation, we write U(t) = Rθ(t)P
γ
0,t(U(0))) with Rθ(t) being the rotation by the

angle θ(t). Introducing the parallel fields V (t) = P γ
0,t(U(0))) and V ⊥(t) = Rπ/2P

γ
0,t(U(0))),

we can then write

∇γ̇U = ∇γ̇

(
cos(θ(t))V (t) + sin(θ(t))V ⊥(t)

)
=
(

d
dt cos(θ(t))

)
V (t) +

(
d
dt sin(θ(t))

)
V ⊥(t)

=
(
− sin(θ(t))V (t) + cos(θ(t))V ⊥(t)

)
· θ̇(t).
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Taking norms yields the first equation.
The proof of the second equation is similar: Denote the curve in SM that corresponds to
V (t) by Ṽ , then Ũ(t) = Ṽ (t).θ(t). Thus, by the Leibniz rule we have

˙̃U = ∂

∂t |t=t0
Ũ = ∂

∂t |t=t0
Ṽ (t).θ(t0) + ∂

∂t |t=t0
Ṽ (t0).θ(t)

whose first part is obviously horizontal while the second part is

∂

∂t |t=t0
Ṽ (t0).θ(t) = ∂

∂t |t=t0
Ṽ (t0).θ(t0). exp

(
∂

∂s |s=t0
θ(s) · t

)
,

which is vertical with norm | ∂
∂s |s=t0

θ(s)|.

4.2.4 A Metric for Vector Fields

We now introduce a distance for smooth vector fields by identifying vector fields on the
surface with measures on the circle bundle, which is equipped with the Kaluza-Klein metric.
The starting point for our distance is splitting the information that is given by a vector into
its direction and its length. Parallelism and measuring how parallel a moving vector is are
also concepts that very interest us. Since parallel transport does not affect the length of a
vector, it is natural to restrict ourselves to vectors of unit length. However, we also need to
associate a mass to a moving vector. Thus, we reinterpret a vector by viewing its normalized
version as the unit vector in question, while its length will tell us the infinitesimal mass
of that unit vector. For the case of a zero-vector, the corresponding normalized version
will not be defined, but since in that case there is also no mass, these vectors are never
troublesome. Let us make this more precise.
For a smooth vector field X ∈ X (M), we define a section sX on the circle bundle SM that
is defined whenever X is not zero by

sX(p) := X(p)/|X(p)|.

Also, we associate a measure µMX ∈ P(M) to X via

dµMX (p) = |X(p)|dvol

where dvol denotes the Riemannian volume measure on M .

Definition 8. We define the fuzzy vector field µX ∈ P (SM) associated to X via

µX := (sX)#(µMX ).

Proof. The well-definedness follows from the measure-theoretic fact that for a µ-almost
everywhere-defined function f also f#µ is well-defined. Thus, in this case, all there is to
check is that sX is µMX - almost everywhere defined, which is obvious from the definitions.
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We use the term fuzzy vector since this is now a measure. In fact, we may call the space
P(SM) the space of fuzzy vector fields, which contains the space of smooth vector fields.
Note that this measure’s support is exactly given by the normalized vector field while its
infinitesimal mass is given by the (squared) norm of the vector field. Also, for a smooth
vector field, the support of this measure will look surface-like away from the vector field’s
zeros. Of course, generically, even smooth vector fields will have zeros (compare to the
hairy ball theorem) at which the support will have a singular shape.
Intuitively, the construction of the associated fuzzy vector field corresponds to thinking of
a vector field as consisting of a collection unit vectors with different masses associated.
Now, we can define a Wasserstein-like distance for vector fields:

Definition 9. For two vector fields X, Y on a closed, oriented Riemannian surface satisfying
‖X‖L1 = ‖Y ‖L1, we define a distance via

W2(X, Y ) := W SM
2 (µX , µY ) =

(
inf

ρ∈Π(µX ,µY )
dSM(x, y)2dρ(x, y)

)1/2

where W SM
2 denotes the Wasserstein distance on SM equipped with the Kaluza-Klein metric,

i.e. dSM is the distance on SM induced from the Kaluza-Klein metric.

Note that at this point the number 2, is rather arbitrary. Of course one could define the
Wasserstein-p-distance for vector fields exactly the same way.

Intuition We want to remind the reader of the remark that followed the Benamou-Brenier
formula in section 2. There we noted that intuitively, a geodesic for the Wasserstein distance
will try to move all particles along path that try to minimize the energy

∫ 1
0 |

˙̃U |2dt. Together
with the lemma from the previous subsection regarding curve energies, this yields that our
distance is exactly the metric for which geodesics will try to move all vectors simultaneously
as parallel as possible and along paths as short as possible! However, that dynamical
transportation problem now takes place in the space of fuzzy vector fields. In general, there
is no guarantee that when transporting a smooth vector field to another smooth vector field,
the in-between states are still vector fields but generally we only get fuzzy vector fields.

4.2.5 Variational Analysis

We now want to revisit the above energy

E(γ, U) :=
∫ 1

0
|γ̇|2 + |∇γ̇U |2dt

which shall be minimized over all smooth curves γ and all smooth unit vector fields U
along γ. We want to perform variational analysis on this energy in order to gather more
information on the nature of its minimizers. For this, we will vary the curve γ as well
as the vector field U , for which we look for a critical point subject to |U | = 1 and fixed
start and end points U(0) = U (0) and U(1) = U (1). By a variation with respect to U we
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understand a curve (γ, Us) that depends smoothly on a parameter s ∈ (−ε, ε) and which
satisfies U0 = U as well as Us(0) = U (0) and Us(1) = U (1). The derivative of E(γ, Us) with
respect to s at time s = 0 only depends on V = ∂

∂s |s=0Us (which at any point p ∈M is an
element of TTpM ∼= TpM and can thus be understood as a vector field along γ as well) and
∂
∂s |s=0E(γ, Us) will be denoted by DE(γ, U)(0, V ). On the other hand, under a variation
with respect to γ we understand a curve (γs, Us) where Us is parallel in a sense that will be
made more precise below and ∂

∂s |s=0E(γs, Us) will be denoted as DE(γ, U)(u, 0), where u is
the vector field ∂

∂s |s=0γs along γ. For the reader that is less familiar with variational analysis
we refer to the first and second variation formulas of length (i.e in [20]). In particular the
variation with respect to γ uses tricks similar to the ones from the computation of the
second variation formula.
The energy E =

∫
|γ̇|2 + |∇γ̇U |2dt splits into the two energies

∫
|γ̇|2dt and

∫
|∇γ̇U |2dt.

Therefore, the computation can be split twofold: Considering both of these energies
separately as well as varying with respect to γ and U . The variation of the first energy
with respect to U is clearly zero (since U does not even appear in that term), while the
variation with respect to γ is a classical, very well known variational problem (the first
variation formula for the energy) which has the variation

−2
∫
〈∇γ̇ γ̇, u〉dt

where u denotes the variational vector field along γ.
More interesting are the variations of the latter energy. Varying the latter energy with
respect to U should intuitively yield that U turns with constant speed along γ. Let us
make this more precise. Denote the variation of U by a vector field V along γ, i.e. the
variation is given via Uε = U + εV . Since there is the constraint that |U | = 1 along γ, we
can assume that 〈U, V 〉 = 0. Then for the variation at (γ, U) with respect to V , we get

DE(γ, U)(0, V ) =
∫

2〈∇γ̇U,∇γ̇V 〉dt

= −2
∫
〈∇γ̇∇γ̇U, V 〉dt,

where the zero in the argument means that no variation with respect to γ is taken. Here,
the boundary term originating from

∫ ∂
∂t
〈∇γ̇U, V 〉dt = 〈∇γ̇U, V (1)〉 − 〈∇γ̇U, V (0)〉 vanishes

as V (0) = 0 and V (1) = 0 due to the constraint on U at 0 and 1. From the above, we can
now conclude that 〈∇γ̇∇γ̇U, V 〉 = 0 at a critical point. However, since 〈U, V 〉 = 0 and the
tangent space is only two dimensional, this implies that

∇γ∇γ̇U = λ(t)U

for some function λ along γ. In particular, then ∇γ̇∇γ̇U is collinear to U and thus orthogo-
nal to ∇γ̇U (again since |U | = 1).
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In fact, we can even compute∇γ̇∇γ̇U : We have 〈∇γ̇∇γ̇U,U〉 = ∇γ̇ 〈∇γ̇U,U〉︸ ︷︷ ︸
=0

−〈∇γ̇U,∇γ̇U〉 =

−〈∇γ̇U,∇γ̇U〉 and so (again by |U | = 1), we conclude that

∇γ̇∇γ̇U = −〈∇γ̇U,∇γ̇U〉U = −|∇γ̇U |2U = λ(t)U,

for λ(t) = −|∇γ̇U |2.
Thus, it follows that

∇γ̇〈∇γ̇U,∇γ̇U〉 = 2〈∇γ̇∇γ̇U,∇γ̇U〉 = 0,

which implies our original claim that |∇γ̇U | is constant (and so is λ) and therefore U turns
with constant speed along γ.
A little bit more involved is the variation of the second energy with respect to γ. Denote
the variational vector field along γ by u, then a standard notation is introduced by defining
a function on two parameters on [0, 1]× (ε, ε):

Γ(t, s) = expγ(t)(su(t)).

Since the energy E is independent under reparametrisation, we may assume that u and γ̇
are not collinear.
In that case Γ yields a local coordinate system that satisfies ∂

∂s |s=0Γ(t, 0) = u(t) and
Γ(t, 0) = γ(t). It will be the basis of our analysis and it defines the derivatives ∂

∂t
and ∂

∂s
.

Next, we also define a vector field U(t, s) by setting U(t, 0) to U(t) and defining

U(t, s) = P Γ
0,sU(t),

where P Γ
0,s denotes the parallel transport along the path s 7→ Γ(t, s). Then, for our variation

we get

DE(γ, U)(u, 0) =
∫

2〈∇γ̇U,
∇
∂s

∇
∂t
U(t, s)|s=0〉dt

= 2
∫
〈∇γ̇U,

∇
∂t

∇
∂s
U(t, s)|s=0︸ ︷︷ ︸

=0

〉dt

+ 2
∫
〈∇γ̇U,Riem(u(t), γ̇(t))U(t)〉dt

= 2
∫
R(u(t), γ̇(t), U,∇γ̇U)dt

where R(u, v, w, z) := 〈Riem(u, v)w, z〉 and Riem denotes the Riemann curvature tensor.
Also note that ∇

∂s
U(t, s) vanishes since U(t, s) was defined to be parallel in the s−coordinate.

Recall the symmetries R(u, v, w, z) = R(w, z, u, v), R(u, v, w, z) = −R(u, v, z, w), and
R(u, v, w, z) = −R(v, u, w, z). In particular, we have

R(u(t), γ̇(t), U,∇γ̇U) = R(γ̇(t), u(t),∇γ̇U,U)
= R(∇γ̇U,U, γ̇(t), u(t))
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Since we are working with two-dimensional manifolds, we know that the Riemannian
curvature tensor is just given by

R(u, v)w = K〈u, Jv〉Jw,

where J denotes the rotation by 90 degrees as usual.
Finally, putting together the variations with respect to U for the two energies

∫
|γ̇|2dt and∫

|∇γ̇U |2dt we get for the variation of E :

0 = 2
∫
−〈∇γ̇ γ̇, u〉+K〈∇γ̇U, JU〉〈Jγ̇, u〉dt.

Therefore, we can conclude that a minimizer of the above energy satisfies
∇γ̇ γ̇ = K〈∇γ̇U, JU〉Jγ̇.

In particular, this implies that γ is a constant speed curve since we know that
∇γ̇〈γ̇, γ̇〉 = 2〈∇γ̇ γ̇, γ̇〉

= 2K〈∇γ̇U, JU〉 〈Jγ̇, γ̇〉︸ ︷︷ ︸
=0

= 0.

Note that for the derivative of the term 〈∇γ̇U, JU〉, we have
∇γ̇〈∇γ̇U, JU〉 = 〈∇γ̇∇γ̇U, JU〉 − 〈∇γ̇U,∇γ̇JU〉︸ ︷︷ ︸

=〈∇γ̇U,J∇γ̇U〉=0

= 0

since ∇γ̇∇γ̇U is collinear with U as we have seen above. Therefore, the term 〈∇γ̇U, JU〉 is
constant as well. More precisely we can compute it to

|〈∇γ̇U, JU〉| = |∇γ̇U | = const

since |U | = 1 and so ∇γ̇U is orthogonal to U and thus collinear with JU . Due to continuity,
〈∇γ̇U, JU〉 must be constant as well.
Since we also showed that λ can be computed to −|∇γ̇U |2, we then get

∇γ̇∇γ̇U = const1 · U
∇γ̇ γ̇ = K · const2 · Jγ̇

where const1 = −|∇γ̇U |2 and const2 = ±|∇γ̇U |.
By replacing γ̇ with τ = γ̇

|γ̇| , we can get a statement on the geodesic curvature of γ. Let us
summarize these results in the following theorem.
Theorem 7. Let (γ, U) be a critical point to the energy E . Moreover, let τ := γ̇

|γ̇| , then we
have

∇ττ = 1
|γ̇|3

K · const2 · Jτ and

∇τ∇τU = const · U,

for some constants const and const2, where const2 = 〈∇γ̇U, JU〉 which has absolute value
|∇γ̇U | (i.e. the turning velocity). In particular if the surface has constant Gauss-curvature,
then the geodesic curvature κγ of γ is constant.
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Proof. We showed that a critical point (γ, U) to the energy satisfies that γ is constant
speed. In particular |γ̇| is constant and thus

∇ττ = ∇ γ̇
|γ̇|

γ̇

|γ̇|

= 1
|γ̇|2
∇γ̇ γ̇

= 1
|γ̇|2

K · const2 · Jγ̇

= 1
|γ̇|3

K · const2 · Jτ

and thus

κγ = 〈∇ττ, Jτ〉

= 〈 1
|γ̇|2

K · const2 · Jγ̇, J
γ̇

|γ̇|
〉

= 1
|γ̇|3

K · const2 · 〈Jγ̇, Jγ̇〉

= 1
|γ̇|
K · const2

and, by assumption and as shown above, all of these terms are constant. Thus, the geodesic
curvature of γ is constant.

4.2.6 Relation to Elastic Rods

In the theory of elastic rods, one usually considers a unit-speed space curve γ : [0, 1]→ R3

equipped with a frame (t, n, b), where γ̇ = t and the frame (t, n, b) forms an orthonormal
basis for any time t ∈ [0, 1]. Physically, this describes a thick rod with centerline γ and
a material cross section spanned by n and b. Clearly, the frame is already determined by
t (the tangent) and n (the normal). For such a framed curve one considers two energies:
The so-called bending energy

∫ 1
0 |ṫ|2dt, which describes how strongly the physical curve

is bending and the so-called torsion energy
∫ 1

0 |∇ṫn|2dt, which describes how strongly the
curve is twisting. A compound energy

α
∫ 1

0
|ṫ|2dt+ β

∫ 1

0
|∇ṫn|2dt

is then usually the subject of further study (see for example [6] or [4]).
We want to reformulate this slightly: First, note that since γ is unit-speed, we know that
t : [0, 1]→ S2 and if we know the starting point of γ, we can easily recover γ by integrating
the curve t. So we might as well formulate everything in terms of t.
Now, the frame is determined by t and n. Thus, knowing t, we additionally have to give n
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which for every time is a unit vector orthogonal to t. In other words, we can understand
(t, n) as an element of the unit circle bundle of the sphere! Then for a = b = 1, the energy∫ 1

0
|ṫ|2dt+

∫ 1

0
|∇ṫn|2dt

is exactly the energy that we considered in the previous subsections for the manifoldM = S2.
In other words, the energy considered above is a generalization of the bending-torsion
energy for elastic rods to a setting where the unit tangent t may live in a different manifold
than S2.
Recall, that the Wasserstein geodesic between two Dirac measures at points x and y of a
Riemannian manifold is given by a moving Dirac measure which moves along a geodesic
between x and y. In particular, any algorithm that can solve the dynamical optimal
transport problem for fuzzy vector fields will also be able to minimize the elastic-rod-energy.
Note, however, that for elastic rods there is the additional constraint that the endpoints of
the curve γ are fixed, which is not guaranteed by simply fixing the start- and endvectors.

4.2.7 A Dual Formulation

In this part, we want to consider the dual formulation for the Wasserstein distance on SM
equipped with the Kaluza-Klein metric. Before we do that, we note that there is also a
version for optimal transport for which the two measures in question may live on different
spaces. In that case, we have two Polish spaces X, Y and a cost function c : X × Y → R.
Then the transport cost between two probability measures µ ∈ P(X), ν ∈ P(Y ) is defined
by

C(µ, ν) := inf
ρ

∫
X×Y

c(x, y)dρ,

where the infimum is taken over all ρ that have µ and ν as their marginals, i.e. (proj1)#ρ = µ
and (proj2)#ρ = ν.
Then, with the right assumptions, we again have a dual formulation:

Proposition 6. Assume that the cost function c : X × Y → R is continuous and bounded
from below and that there exist two functions a ∈ L1(µ) and b ∈ L1(ν) such that

c(x, y) ≤ a(x) + b(y).

Then, we have

C(µ, ν) = sup
f,g

∫
X
fdµ+

∫
Y
gdν,

where the infimum is taken over all functions f ∈ L1(µ), g ∈ L1(ν) that satisfy

f(x) + g(y) ≤ c(x, y) for all x ∈ X, y ∈ Y.
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This is well-known and can, for example, be found in [2].
Now, consider the Wasserstein distance on SM for two smooth vector fields X and Y with
‖X‖L1 = ‖Y ‖L1 :

W2(µX , µY ) =
(

inf
ρ∈Π(µX ,µY )

d2
SM(v, w)dρ(v, w)

)1/2

.

The infimum is an optimal transport problem, which we can restrict to the support of µX
and µY , respectively, i.e. to the images of the sections sX and sY . One easily checks that
these spaces then fulfil the assumption of the proposition above. Therefore, we get

W2(µX , µY )2 = sup
f̃mg̃

∫
im(sX)

f̃dµX +
∫
im(sY )

g̃dµY

= sup
f̃mg̃

∫
im(sX)

f̃d(sX)#(|X|dvol) +
∫
im(sY )

g̃d(sY )#(|Y |dvol)

= sup
f̃mg̃

∫
M
f̃ ◦ sX · |X|dvol +

∫
M
g̃ ◦ sY · |Y |dvol,

where the supremum is taken over all f̃ , g̃ satisfying f̃(v) + g̃(w) ≤ d2
SM (v, w). Now we can

define f := f̃ ◦ sX and G = g̃ ◦ sY yielding

W2(µX , µY )2 = sup
f,g

∫
f · |X|dvol +

∫
g · |Y |dvol,

where the supremum is taken over all functions f, g satisfying f(x)+g(y) ≤ d2
SM (sX(x), sY (y)).

This is clearly yet another optimal transport cost, this time between the measures |X|dvol
and |Y |dvol, but for a different cost function c(x, y) = d2

SM(sX(x), sY (y)).
This formula could be interesting for numerical computations since it shows that for smooth
vector fields, the computation of the distance can be formulated as an optimization problem
over M (instead of SM), given that we have an explicit formula for d2

SM(sX(x), sY (y)).

4.2.8 A Benamou-Brenier Formula

In this part, we assume the special case where the Wasserstein geodesic between two smooth
vector fields in the space of fuzzy vector fields is a smooth vector field for all times. In a
similar vein to the computations above, we can then use the Benamou-Brenier formula and
pull the terms back to the base manifold in order to get a simplified formula.
For this, let

• Xt be a time-dependent vector field on M with
∫
M |Xt|dvol = 1 for all times t ∈ [0, 1],

• st = sXt = Xt
|Xt| , µt = |Xt|dvol and µ̃t = (st)#µt as above,

• vt time dependent vector field on SM related to µ̃t via the continuity equation.
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Recall the Benamou-Brenier formula

W (µ̃0, µ̃1)2 = inf
vt
{
∫ 1

0

∫
SM
|vt|2dµ̃tdt |

∂

∂t
µ̃t +∇(vtµ̃) = 0}

Now,we want to ’solve’ the push-forwards.
The energy-term then becomes∫

SM
|vt|2dµ̃t =

∫
SM
|vt|2d(st)#µt =

∫
M
|vt|2dµt,

where the vector field and its norm are both on SM .
In the continuity equation

∂

∂t

∫
SM

φdµ̃t =
∫
SM
〈∇φ, vt〉dµ̃t

there are two integrals to investigate. Before doing that, let us first define the vertical
vector field along im(st): u := ∂

∂t
st and write |Xt|′ for ∂

∂t
|Xt|. Then we have

∂

∂t

∫
SM

φd(st)#µt = ∂

∂t

∫
M
φ ◦ stdµt =

∫
M
〈∇φ, u〉st |Xt|dvol +

∫
M
φ ◦ st · |Xt|′dvol

and ∫
SM
〈∇φ, vt〉d(st)#µt =

∫
M
〈∇φ, vt〉st|Xt|dvol.

Putting them together yields the equation∫
M
φ ◦ st · |Xt|′dvol +

∫
M
〈∇φ, u− vt〉st|Xt|dvol = 0

for all smooth and compactly supported test functions φ ∈ C(SM). However, the first
integral only depends on φ on the image of st. In particular, the term u − vt has to be
tangent to the image of st in SM . Now consider the projection wt := dπ(u − vt), which
is a vector field in M . Clearly, u− vt can be recovered as u− vt = Dst(wt). If we define
ψ = φ ◦ st, we then have

〈∇φ, u− vt〉st = 〈∇φ,Dst(wt)〉st = Dst(wt)(φ) = wt(φ ◦ st) = 〈∇ψ,wt〉.
In particular, we see that the measure curve |Xt|dvol satisfies the continuity equation

∂

∂t

∫
M
ψ · |Xt|dvol +

∫
M
〈∇ψ,wt〉|Xt|dvol = 0

for a different vector field wt on M . Now, we also express vt in terms of wt and decompose
it into horizontal and vertical parts to compute its squared norm

|vt|2 = |u−Dst(wt)|2 = |wt|2 + |u−∇wtst|2,
where ∇wtst denotes the covariant derivative of the unit vector field st interpreted as an
infinitesimal rotation and thus an element in the vertical space.
Thus, the measure curve |Xt|dvol minimizes the energy∫

M
|wt|2 + | ∂

∂t
st −∇wtst|2|Xt|dvol,

subject to all wts that satisfy the above continuity equation.
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4.2.9 An Extension to Cone Spaces

A possible generalization of the previously introduced idea will be presented now. This
generalization is based on the underlying intuition of a vector consisting of a length and a
direction, which was also used above. Let us start by defining a cone space.

Definition 10. Let M be a manifold. Consider a fibre bundle π : B → M over M with
fibre F . Then a cone space C(B) is defined as a fibre bundle over M whose fibres consist
of cones of the fibres of B. More precisely, C(B) is defined as

C(B) = (B × R≥0) / ∼,

where (f, t) ∼ (g, s) iff t = s = 0 and π(f) = π(g) and the projection to M is defined via
[(f, t)] 7→ π(f) (where [(f, t)] is the equivalence class of (f, t)).

Let us assume that the fibre Bm
∼= F and the fibre bundle B are manifolds themselves.

Further, we want to impose that on the fibres Bm we can consistently define a Riemannian
metric. That is, we equip the fibre F with a Riemannian metric and require the transition
functions for two trivializations φi, φj

φi ◦ φ−1
j = (Id, tij) : Ui ∩ Uj × F → Ui ∩ Uj × F

to be such that all the tijs are isometries. In other words, we want the group of isometries
of F as the structure group for the bundle.
Additionally, let us assume that B comes with a connection, i.e. there is a splitting on
each tangent space TfB = Hf ⊕ Vf such that dπ|Hf : Hf → Tπ(f)M is an isomorphism and
Vf = ker dπ for each f ∈ B. In this case, we can define a metric on B in the same way as
we did in the previous section. In accordance with the nomenclature from above, let us call
this metric Kaluza-Klein metric as well.

Definition 11. For a Riemannian manifold M and a fibre bundle π : B →M satisfying
the above assumptions, we can define the Kaluza-Klein-metric on B by using the metric of
M on the horizontal space Hf (using the isomorphism dπ|Hf ) and the metric of the fibre F
on the vertical space Vf .
The latter can be done using a local trivialization

φ−1
j (m, ·) : {m} × F ∼= F → Bm.

This is an isometry and clearly im(Df̃φ
−1
j (m, ·)) = ker dπf = Vf for φ−1

j (m, ·)(f̃) = f . So
Dφ−1

j (m, ·) induces a metric on V and since our structure group is given by isometries of
F , this metric does not depend on the chosen trivialization.
By requiring that Hf and Vf are orthogonal for each f , this then yields a metric for B.

With this definition we can now define a Wasserstein-like distance for sections of the cone
bundle C(B) just the same way we did for vector fields:
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Definition 12. Let π : B →M be a fibre bundle over a Riemannian manifold M satisfying
all the assumptions above. For two sections s1 = [(f1, t1)], s2 = [(f2, t2)] of C(B) satisfying
‖t1‖L1(M) = ‖t2‖L1(M) = 1, we define a distance via

W2(s1, s2) := WB
2 (µs1 , µs2),

where µs1 and µs2 are defined by µs1 = (f1)#(t1 · dvolM), µs2 = (f2)#(t2 · dvolM) for the
Riemannian volume form dvolM . Note that, just as in section 4.2.4, f1 might not be
well-defined whenever t1 is zero (and similarly for f2 and t2). But since there the measure
t1 · dvolM has no mass, the push-forwards are still well-defined.

Note, that if we understand the tangent bundle TM over a Riemannian manifold M as
the cone bundle of the unit circle bundle SM , this definition recovers exactly the definition
from section 4.2.4.
However, since a Riemannian metric g on M also induces a metric on the k-exterior algebra
of T ∗M as well as a splitting into vertical and horizontal spaces of the bundle ΛkT ∗M (via
the Levi-Civita connection), we can here too view the space ΛkT ∗M as a cone bundle of the
space of k-forms of norm 1. In particular, this also leads to a definition of a Wasserstein-like
distance on k-forms. Understanding this distance could be an interesting subject for further
research.
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5 A Possible Application
For the distance on vector fields we came up with one particular application, which
will be described in the following: The Wasserstein distance is often used to interpolate
images. For this use case, two grayscale images are interpreted as functions (or rather
as measures after potential rescaling) and then used for dynamical optimal transport.
The Wasserstein distance seems to be indeed the correct metric to do that. However, for
natural images (like a waving arm), this can lead to distorsions since the Wasserstein
metric will always move particles along geodesics. In particular a circular movement (like
the waving arm) could not be replicated by Wasserstein interpolation and instead we get
movement along a straight line (so the arm would change its length and thus not follow
a natural movement). Another approach could therefore be to take the gradient of two
grayscale images and, instead of transporting the images, transport their gradients using
the distance we introduced in the previous section. This interpolation yields vector fields
and the interpolated states of the grayscale images can then be recovered by solving the
minimisation problem minf

∫
|∇f −X|2 with some scaling constraints on f and where X

denotes the interpolated vector field, which leads to a Poisson problem.
However, recall that the optimal transport of vector fields tries to move every vector on
a path that minimizes the energy E . For the Euclidean case though, a minimizer for the
energy

E(γ, U) =
∫
M
|γ̇|2 + |∇γ̇U |2dt

is given by γ just being a straight line and U turning with constant speed from a given
angle to its target angle along the shortest path in S1 (this follows immediately from the
variational analysis of the energy). In particular, this would not solve the above mentioned
defect since particles of an image would still travel along straight lines, which we wanted
to avoid. Only if the manifold M has curvature, there exists holonomy and thus it might
indeed be better to travel along a non-geodesic line in order to turn the vector U less (since
then, compared to the geodesic path, some of the turning can be compensated by travelling
more parallel along a less optimal path). Therefore, the application described above can
only yield interesting results for curved surfaces M .
Thus, we are interested in a numerical treatment of the Wasserstein problem on fuzzy vector
fields for a curved base manifold. For this we see two fundamental approaches:

Discretisation of the whole Bundle Space One idea is to discretise the whole unit
circle bundle. More precisely, we can consider a discrete surface given by a (compact,
oriented) triangulated mesh embedded in R3 and give a concept for a discrete unit circle
bundle. We want to interpret vector fields again as constant per triangle, i.e. a vector
field is indexed by the triangles and at a triangle f it is also tangent to f as in section
3. The circle bundle with smooth fibre then consists of a unit circle on each triangle. A
discrete connection is given by an S1-equivariant map for each edge between the respective
unit circles of the adjacent triangles (this map represents the parallel transport of a circle
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to a circle on a neighbouring triangle). A discrete Levi-Civita-connection is defined by
the following S1-equivariant map: for two adjacent triangles we first isolate them from
the structure and turn one triangle, using their common edge as a hinge, such that both
triangles lie in a plane. Then just move one circle to the other parallelly in that plane and
turn the triangles back.

Figure 2: Discrete circle bundle with smooth and discrete fibre.

With this definition, one can recover holonomy by transporting a point of a circle (a unit
vector) parallelly along a closed path of triangles (or more precisely, along a path in the dual
graph) and measuring the angular difference of the resulting point to the starting point. If
performed around a vertex we recover the usual angle deficit as a discrete curvature notion.
In order to discretise the whole bundle, one can now additionally discretise the fibres over
each triangle equidistantly (say into l discrete steps such that multiplication with 2π/l
would rotate every discrete step of a circle into the next one with respect to the orientation).
Another way to visualize this as a 3-dimensional bundle over the triangulated surface, would
be to think of prisms stacked onto each other in a way that the lth prism lies beneath the
first one again (see figure 3).
However, generally there is no way to do these discretisations of each fibre in such a way
that the discrete steps of every circle get mapped to the discrete steps of every adjacent
circle via the connection, since that would imply that the recoverable holonomies can only
be multiples of the discretisation step 2π/l. But the holonomies (e.g. the angle deficit) can
clearly take any value in S1. Thus, we consider a discretisation of the unit circle bundle
in terms of collections of prisms over each triangle in such a way that the prisms over
adjacent triangles will be shifted to each other (when compared using the connection). By
constructing incidence relations and discrete differential operators for this space one can
then treat this space numerically.
This is a triangle based discretisation in the sense that the fibres live on the triangles.
Alternatively, one could also construct a vertex based discretisation of the unit circle bundle
and a similar thing is actually done in [17] (without the discretization of the fibre).
One could then try to run an adapted heat method (as in [15]) on this space in order to
compute distances on this space and then use this to solve the static optimal transport
problem.
Moreover, one could try to adapt the common algorithms for the dynamical optimal
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Figure 3: Total space of the discrete circle bundle with discrete fibre.

transport problem based on discretisations of the Benamou-Brenier formulation as in [32].
However, all of these approaches rely on certain discrete differential operators (in particularly
a discrete Laplacian) and therefore they seem to be rather slow since the dimension of
the unit circle bundle is three-dimensional, which means that the dimension of a discrete
Laplacian and related discrete differential operators will be rather large.

Discretisation of the Measures An alternative and simpler approach is to discretise
the measures but keep the circle bundle smooth. Assume that the measures are given by
collections of particles of different masses which in our interpretation corresponds to a
collection of vectors whose sum of norms is 1. If we can explicitly compute the distances
between the particles of the two measures, we can solve the static optimal transport problem
using the Sinkhorn algorithm, a standard algorithm for the static optimal transport problem
(for a detailed description of the algorithm refer to [34]).
This algorithm yields an optimal transport plan. Therefore, given that we can also efficiently
compute the shortest geodesic for any given two points in our bundle, we can also treat the
dynamical optimal transport problem this way.
In the following we will consider this approach for the special case of the hyperbolic disk.

5.1 The Hyperbolic Case
Of the three model geometries in two dimensions, we noted that the Euclidean case is not
interesting for applications, while for the spherical case, the minimization of the energy
involved, is equivalent to the problem of finding elastic rods, which has been researched
with by many people. For this reason we focus on the hyperbolic case, i.e. the hyperbolic
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disk D2 with constant curvature −1. As mentioned above, for the approach for discretised
measures, we need to be able to do two things: compute the distance in SD2 and finding
shortest geodesics on SD2. These formulas will be derived here. The computations use
well-known facts from 2-dimensional hyperbolic geometry, for which we refer the reader to
[35].

5.1.1 The Hyperbolic Disk

We will make all our computations using the hyperbolic disk model D2. Then the unit
circle bundle can be parametrised by a point in D2 and an angle φ, that corresponds to the
unit vector, which has the angle φ with the x-axis. Note, however, that a constant angle φ
along a curve γ is by no means parallel in the hyperbolic space. For example, for a circle
that hits the boundary of the disk in right angles (i.e. a geodesic in D2), an angle with
constant angle to the derivative of γ would be parallel instead.
Since any pair of points with a given distance can be mapped isometrically to any other
pair of points with the same distance in D2, we can without loss of generality assume that
our starting points z0, z1 lie on the x-axis and have the same distance to the origin. For
two angles, φ0 sitting at z0, and φ1 sitting at z1, we want to find the geodesic in SD2.
Computing their distance then becomes a trivial task.
Recall the variational analysis we did in section 4. There we showed that for constant
curvature, a critical point of E will satisfy that γ has constant geodesic curvature. On the
hyperbolic disk, these curves are circles and there are three kinds of circles:

• Circles contained in D2 which are just called circles or cycles. Those are indeed circles
in the sense that there exists a point z such that the circle consists exactly of the
points in D2 that have a given (hyperbolic) distance to z.

• Circles that touch the boundary of D2. These are called horocycles.

• Circles that intersect the boundary of D2 at two points. These are called hypercycles
and geodesics would be one example.

So in our case, we have to consider all the circles that pass through z0 and z1. For simplicity,
let us consider only those circles for which the part below the x-axis is finite (i.e. does not
leave the disk) and parametrise the circle such that the curve γ is unit speed, starts at z0,
ends at z1, and has the part of the circle below the x-axis as its image. These curves will
always have positive constant geodesic curvature and can be parametrised by their angle θ
at z1 with the x-axis (i.e. γ = γθ).
Denote the geodesic curvature of γθ by c(θ) and its length (between z0 and z1) by L(θ).
Note that in the proof of the theorem for the variation of the energy, we showed that

c(θ) = κγ = 1
|γ̇|
K · const2,
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where K is the curvature and const2 = 〈∇γ̇U, JU〉 (which has the turning velocity as
absolute value). Since in this case, K = −1 and |γ̇θ| = 1 and c(θ) > 0, we have

c(θ) = −〈∇γ̇U, JU〉.

In particular, U is turning away from γθ with velocity c(θ).
What does that mean for φt? Well, since γ̇θ is turning positively with speed c(θ), a parallel
vector field along γ would be given by vector field φ̃t whose angle to γ is given by −c(θ) · t
for all times t ∈ [0, L(θ)]. But since we just established that for a critical point, the vector
field has to point away from γ with speed c(θ), we can conclude that the angle of φt and γθ
will be −2c(θ) · t for all times t ∈ [0, L(θ)].
Since this angle difference is given by φ0 + θ at time t = 0 and φ1 − θ at time t = L(θ), we
get the following equation: φ0 + θ − 2c(θ)L(θ) = φ1 − θ or, equivalently

φ1 − φ0 = 2θ − 2c(θ)L(θ).

If we can compute c(θ) and L(θ), this becomes an equation, which we can solve (numerically)
for θ and from that we can recover the curve γθ as well as its length L(θ) and thus find
the geodesic in SD2. Computing these is a rather standard computation in hyperbolic
geometry. The computations differ slightly depending on whether γθ is a cycle, a horocycle
or a hypercycle.

5.1.2 Length and Curvature

We have to distinguish three cases. In all of them we need the two geodesics through z0
and z1 that cut the circle at right angles. Let us call these η0 and η1. Moreover, denote
the geodesic connecting z0 and z1 by η (i.e. the part of the x-axis between them) and the
distance of z0 and z1 by a.

Cycle In this case, the curves η0 and η1 meet in a point, which is the (hyperbolic)
midpoint of the circle γ.
Let us denote the angle between η1 and η by ψ, then θ + π/2 + ψ = π, i.e. ψ = π/2− θ.
Next, we connect the midpoint of η with the center of γ, a curve of length h. Then we
consider the triangle (center of γ, midpoint of η, z1). By symmetry, we have a right angle
at the midpoint of η (i.e. the origin) and we denote the angle at the center of γ by χ/2.
Then by the formulas of hyperbolic trigonometry, we have tan(ψ) = tanh(h)

sinh(a2 ) . Thus, we can
determine h via

h = arctanh(tan(ψ) sinh(a2)).

The same formula can be applied to χ/2 so that tan(χ/2) = tanh(a2 )
sinh(h) . Thus, we can determine

χ via

χ = 2arctan(
tanh(a2)
sinh(h) ).
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Moreover, by the cosine theorem from hyperbolic geometry for this triangle, we get cosh(r) =
cosh(h) cosh(a2), where r is the radius of the circle, i.e. the length of the curve η1 from the
center of γ to z1. Thus,

r = arccosh(cosh(h) cosh(a2)).

From that we can finally compute the length

L = χ sinh(r)

and the curvature

c = 1
tanh(r) ,

from standard equations from hyperbolic geometry.

Horocycle For horocycles, the geodesic curvature is always 1 and the length can be
computed as 2 sinh(a/2), where a is the distance between the points.

Hypercycle In this setting, the two curves η0 and η1 do not intersect. However, the two
points on the boundary of the disk where γ hits the boundary can be joined by a geodesic
called the axis of γ and η0 and η1 will intersect it in right angles at some points z′0 and
z′1. The distance from γ to the axis is denoted by r and can be seen as the length of η1

connecting z1 and z′1. If we connect the midpoint m of η with the midpoint m′ of z′0 and
z′1, then the quadrilateral m,m′, z1, z

′
1 is a so-called Lambert quadrilateral. We call the

length of the halved sides of this quadrilateral a′ = a/2 and d′ = d/2 where d is the distance
between z′0 and z′1. In these Lambert quadrilaterals, we have the relation sin(ψ) = cosh(d′)

a′ .
Therefore, we have

d′ = arccosh(sin(ψ) cosh(a′)).

Moreover, we can define r as the distance of the hypercycle to the axis. Then, there holds
cos(ψ) = tanh(a′) tanh(r) and thus

r = arctanh( cos(ψ)
tanh(a′)).

Finally, the length of the part of γ connecting z0 and z1 can be computed from the formula

L = d cosh(r)

and the geodesic curvature is given by tanh(r).
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