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ABSTRACT 
 

Recently, the microbiome was associated with hallmark features of pancreatic ductal 

adenocarcinoma (PDAC). This dismal human disease with one of the lowest survival rates of 

below 10% is characterized by clinical challenges such as unspecific symptoms, lack of 

biomarkers, late diagnosis, refractoriness against systemic therapies, and a high recurrence 

rate after surgery. The biology behind these difficulties has been approached in multiple 

ways, for instance by tackling the pronounced desmoplastic stroma or investigating 

chemotherapy-inactivating enzymes. To date, no significant progress with clinical usage was 

made. After being long known for its impact on a plethora of physiological and 

pathophysiological processes, studies of considerable impact have lately demonstrated the 

microbiome to be involved in all kinds of aspects of various cancer types. Moreover, the 

discovery of tumors and healthy organs to harbor differential microbiota was 

groundbreaking. These findings were also and most notably shown in PDAC. Being one of 

the deadliest cancers, PDAC would benefit immensely from systematic, reliable microbiome 

research. Being convinced that third generation sequencing is the most effective technology 

for precise and reproducible microbiome studies, a sequencing platform by Oxford 

Nanopore Technologies (ONT) together with a comprehensive workflow for DNA 

extraction, library preparation and bioinformatic analysis was established as a major project 

within the scope of this thesis. This comprised testing seven different DNA isolation 

protocols and benchmarking several other parameters. Further, the pipeline was optimized 

for murine high (feces) and low microbial biomass (pancreatic) samples. Ensuing successful 

establishment of ONT sequencing, the presence of bacterial material in murine KPC tumor 

and human PDAC tissue was shown via IHC targeting lipopolysaccharide and FISH 

targeting the 16s rRNA gene. The occurrence of both components was visualized and, for 

KPC tumors, also quantified demonstrating a significantly higher abundance in diseased 

tissue as compared to healthy controls. The characterization of the fecal microbiome at 

various time points during disease progression as well as the end stage tumor microbiome in 

the KPC mouse model via ONT sequencing impressively showed significant differences in 

beta diversity metrics compared to their healthy counterparts. Furthermore, the similarity 

with recently published human stool and PDAC microbiomes could be ascertained via 

regression models. Finally, first experiments involving FFPE tissue material as most 



| xx 
 

commonly available sample source in the clinical setting were performed aiming at 

evaluating the impact of PDAC subtypes on their intratumoral microbiomes. Therefore, 

samples from tumors derived from orthotopically transplanted human PDAC cell lines of the 

classical and basal-like subtype, as well as xenografted classical tumors treated with TNFα 

causing lineage reprogramming, and resected human PDAC which was subtyped via IHC 

were employed. In the course of these experiments, contamination issues were encountered 

and are explicitly discussed in the following. The results were not as conclusive as the KPC 

data, however, first evidence for the PDAC subtype to impinge on the microbiome is given. 

Taken together, new sequencing technology by ONT was installed in a customized way, 

distinct local microbiomes of the KPC model were characterized and found to be similar to 

the situation in humans, and PDAC subtypes seem to influence the microbiome.  
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1 Introduction 
 

1.1 Pancreas physiology 

 

1.1.1 Macro- and microscopic structures of the pancreas 

 

Gastroenterology, the study of the digestive tract and associated diseases, well-defines the 

pancreas as a solitary organ, specifically one of the accessory organs of digestion which also 

include gallbladder and liver. It is a heterocrine gland characterized by both endocrine and 

exocrine function (1.1.2). Anatomically, it is situated in the abdomen beneath and partially 

behind the stomach and stretches horizontally in the medial plane between duodenum and 

spleen (Dolenšek et al., 2015). In humans, the pancreas may roughly be subdivided into 

head, body, and tail, however, these parts are not precisely demarcated (Bockman, 1993) 

(figure 1).  

 

Figure 1: Illustration of the human and murine pancreas. While they are both situated 

partially behind the stomach between duodenum and spleen, they present with partially 

different anatomy. Although the murine pancreas is rather dispersed, both organs are 

loosely divided in three parts. The human pancreas is subdivided into head, body, and 

tail; the murine pancreas in duodenal lobe, gastric lobe, and splenic lobe. Both are heavily 

lobulated and intercalated with a plethora of ducts. Own illustration created with 

(biorender.com). 
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It weighs about 90 g on average in adults (Caglar et al., 2014; Innes and Carey, 1994). The 

pancreas is irregularly lobulated with each lobe consisting of smaller lobules. These 

glandular lobules are each provided with a duct uniting in the main duct that runs through 

the entire pancreas opening into the duodenum. Additionally, the common bile duct joins 

the pancreatic main duct (Standring, 2016). These ductal structures are relevant access points 

to the pancreatic tissue which are of great importance regarding the matter of this thesis. 

Both endocrine and exocrine parts of the pancreas are of great clinical and scientific interest. 

Their structures have been studied and characterized intensely over a long period of time. In 

his thesis of 1869, Paul Langerhans described the Islets of Langerhans which form the 

endocrine tissue of the pancreas (Langerhans, 1869). They vary in size from a few to a couple 

of thousands of endocrine cells that form irregular roundish clusters in the sea of exocrine 

cells from where also the term islets arises. Endocrine cells comprise beta cells, alpha cells, 

delta cells, pancreatic polypeptide (PP) cells, and epsilon cells in order of decreasing 

abundance. The endocrine part makes up for only 1% of the pancreatic tissue. In terms of 

severely malignant diseases of the pancreas and, by association, in the context of this thesis, 

the more relevant exocrine tissue accounts for the vast majority of the pancreas accordingly, 

about 99%. As illustrated in figure 2, the lobules are structured in so-called acini, clusters of 

pyramidal acinar cells arranged in domes to secrete zymogens into the intercalating ducts 

which in turn drain into the intra-, then interlobular ducts. Acinar cells are characterized by a 

large endoplasmic reticulum and their nuclei are oriented towards the basement membrane 

(Young et al., 2014). 

As for most other diseases, pancreas research still strongly relies on animal experiments. 

Observations and findings are then translated to humans what makes the understanding of 

similarities, but in particular, the characterization of differences absolutely crucial. In 

pancreas research, mice are the most often and best studied animal model and, to a great 

extent, today’s knowledge about the human pancreas is based on murine studies (Dolenšek 

et al., 2015). Paradoxically, the murine pancreas is less clearly defined, although it has been 

studied even in living mice since decades ago (Covell, 1928; Flory and Thal, 1947). This is 

mainly due to its rather diffuse appearance. However, analogously to the human organ, 

attempts have been undertaken to define three major parts, namely the duodenal, splenic, 

and gastric lobe (Liu et al., 2010) (figure 1). These lobes are usually interspaced by adipose 
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and connective tissue. Regarding endocrine cells, there are more beta cells and less alpha 

cells in murine Islets of Langerhans as compared to humans (Dolenšek et al., 2015). The 

ductal organization also differs between humans and mice. Still, despite these structural 

differences, mice are genetically very similar to humans with many gene homologues as well 

as many pathophysiological and functional aspects being highly similar in both organisms 

rendering the mouse a suitable model regarding many applications, particularly within the 

scope of this thesis.  

 

Figure 2: Illustration of human exocrine pancreas structures. Both endocrine (Islets of 

Langerhans) and exocrine (acini) pancreas compartments coexist. Although single acini 

are usually smaller than Islets of Langerhans, in total they make up the largest part of the 

pancreatic tissue. The exocrine pancreas also contains ductal structures which intercalate 

the acini. Acinar cells produce zymogens, precursors of enzymes, and secrete them in 

digestive fluid into the ducts. In human adults, the exocrine pancreas is the organ with 

the highest protein synthesis levels wherefore acinar cells are packed with corresponding 

cell organelles such as endoplasmic reticula. Own illustration created with 

(biorender.com). 

 

1.1.2 Dual function of the pancreas 

 

Besides the gonads, the pancreas is the only organ that executes simultaneous endocrine and 

exocrine functions. Hence, it is also referred to as the organ of the endocrine system and the 

digestive system with the endocrine Islets of Langerhans producing essential hormones 
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controlling the blood sugar level and the exocrine pancreas serving as a source of digestive 

enzymes (Zhou and Melton, 2018). The blood glucose regulation is achieved by beta cells 

secreting insulin if the blood glucose level is too high, and by their counterparts, the alpha 

cells, which secrete glucagon to increase the level (Baum et al., 1962; Lacy, 1959). 

Somatostatin inhibits the release of both insulin and glucagon and is synthesized by delta 

cells (Young et al., 2014). PP cells secrete pancreatic polypeptide which generally regulates 

pancreatic secretion in response to food intake (Batterham et al., 2003). Finally, epsilon cells 

release ghrelin, a growth hormone-releasing peptide increasing with the sensation of hunger 

(Müller et al., 2015). Taken together, pancreatic islet cells are responsible for hormone 

production and secretion contributing to homeostasis of glucose levels in the wake of food 

uptake. The function of the exocrine cells is also vital. Acinar cells contain granules that hold 

the pre-form of digestive enzymes, so-called zymogens. Proenzymes prevent autodigestion 

of the pancreas. Only when the digestive fluids secreted by the acini ultimately reaches the 

duodenum which is the first part of the small intestine receiving food from the stomach, the 

proenzymes are activated via cleavage. Enzymes such as trypsin, lipase and amylase then 

help to break down proteins, lipids and carbohydrates contained in the food. Although 

structurally very different, Henderson and colleagues have already suggested the functional 

relationship between endocrine and exocrine tissue as well as the hormonal effects of the 

endocrine over the exocrine pancreas in the early 80s (Henderson et al., 1981). For instance, 

insulin had been found to increase the synthesis on amylase in fed animals (Söling and 

Unger, 1972).  

 

1.2 Pancreatic ductal adenocarcinoma (PDAC) 

 

1.2.1 Description and dissociation of PDAC from other pancreatic cancer forms 

 

Of all pancreatic diseases, the most malignant is pancreatic cancer (PC) which is even among 

cancer entities one of the most aggressive malignancies with one of the worst prognoses and 

highest death rates. In this, pancreatic cancer is an umbrella term comprising endocrine 

tumors as well as neoplasms of the exocrine pancreas. Only about 1-2% of the PC cases arise 

from the endocrine compartment of the pancreas, so-called neuroendocrine tumors (NET) 

(Sonbol et al., 2022). The vast majority derives from the exocrine part. The most common 
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type of PC also belongs to this latter type, namely pancreatic ductal adenocarcinoma (PDAC) 

accounting for 95% of all PC cases (Milan et al., 2021). Thus, the general term pancreatic 

cancer is often used synonymously for PDAC. Yet, it is important to discriminate between 

the different entities as NETs are generally less aggressive than adenocarcinomas of the 

pancreas. 

PDAC is not the most common, yet one of the deadliest cancers worldwide. Both incidence 

and mortality of PDAC are either stable or even increasing in many countries according to 

the Global Cancer Statistics 2020 (Sung et al., 2021). It is projected to become the third-

leading cause of cancer-related deaths by 2025 after lung and colorectal cancers, then even 

the second-leading by 2030 with only lung cancer to stay at the top of predicted cancer 

deaths per year (Ferlay et al., 2016; Rahib et al., 2014). These numbers are impressively 

accentuated by the alarming 5-year survival residing below 10% worldwide. Only for the 

United States of America (USA), the American Cancer Society stated an overall 5-year 

survival rate of 10% for the first time in 2020 (Scholten, 2020). An interplay of various factors 

contributes to this dreadful prognosis. To begin with, patients usually present with 

unspecific clinical symptoms, such as abdominal or back pain, unexplained weight loss and 

loss of appetite, or even no symptoms at early disease stages (Siegel et al., 2021). This is why 

PDAC is often diagnosed late, and at the time of diagnosis, the disease is already locally 

advanced or even metastasized. Options of systemic therapy are very limited and mostly 

ineffective. The only curative treatment option is surgery, however, only 10-15% patients 

presenting with early local disease are qualified for surgery at diagnosis, but even if 

operated, the post-surgical recurrence rate is high (Park et al., 2021). All of this results in a 

median survival of 6-9 months for locally advanced PDAC, respectively 3 months for 

metastatic PDAC (Adamska et al., 2017; Kleeff et al., 2016).  

PDAC is very heterogenous, and the associated lack of biomarkers poses a major problem 

(Neesse et al., 2019). Compared to homogenous cancers such as breast cancer that is also 

characterized by a much higher survival rate due to personalized medicine, for instance, 

PDAC features an extremely high degree of heterogeneity among tumors but especially also 

within one tumor alone (Peng et al., 2019; Waks and Winer, 2019). Depending on where the 

samples are taken from in the 3D tumor mass, they present with very different looking 

histology. This can even hold true for smaller regions on the same sectional plane. This 
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intratumoral and regional heterogeneity is a hallmark of PDAC (Grünwald et al., 2021). 

Generally, PDAC is characterized by a highly desmoplastic stroma. Up to 90% of the tumor 

mass are stromal cells, thus, PDAC has a relatively low content of cancerous cells (Neesse et 

al., 2011). Stromal cells comprise the non-malignant cells in the tumor microenvironment 

(TME) such as endothelial cells, neurons, immune cells, and cancer-associated fibroblasts 

(CAF). Moreover, acellular components of the TME include collagen, hyaluronic acid, and 

proteoglycans forming a robust extracellular matrix (ECM) (Neesse et al., 2019, 2011). Small 

signaling molecules, such as cytokines and growth factors, and blood vessels form part of the 

TME as well, however, PDAC is remarkably hypovascularized as a result of high 

intratumoral pressure by the ECM destroying the vessels (Neesse et al., 2019; Pereira et al., 

2019).  

Only in recent years, a new contributor was found and described to play a considerable role 

in the complex TME of cancers, in particular pancreatic cancer. Microbiota, meaning a 

community of microorganisms including bacteria, archaea, viruses, and fungi, are not only 

characteristic but also functional players in PDAC. They are also referred to as the 

microbiome, the genetic collectivity of all microbiota, which will be further introduced in the 

second half of this chapter being of central interest in this thesis.  

 

1.2.2 Risk factors and development of PDAC 

 

While other rare forms of PC may also occur in the younger population, PDAC is rarely 

diagnosed in patients under the age of 40. In fact, the median age at diagnosis is 71 in the 

USA and almost all deaths occur after the age of 55 (Rawla et al., 2019; Ryan et al., 2014). For 

this reason, PDAC is also referred to as a disease of the elderly. Moreover, men are 

somewhat more often affected than women (Rawla et al., 2019). The age-standardized 

incidence rate of PC is the highest in Europe and North America and remarkably lower in 

Asia and especially Africa (Sung et al., 2021). While this might also, at least partially, be 

attributed to the incomplete reporting of case numbers from these regions, some risk factors 

for PDAC can be rather unambiguously ascribed to Western countries. Risk factors may be 

grouped into modifiable and non-modifiable variables. Modifiable risk factors include 

tobacco smoking, heavy alcohol consumption, obesity, certain diets, and the exposure to 
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toxic substances (Aune et al., 2012; Bosetti et al., 2012; Larsson and Wolk, 2012; Rawla et al., 

2019; Wang et al., 2016). Besides gender, age and ethnicity as non-modifiable risk factors, also 

medical conditions, such as long-term diabetes mellitus, infections, and chronic pancreatitis, 

may be accounted to this group since their onset can only be influenced to a very limited 

extent (Ben et al., 2011; Duell et al., 2012; Maisonneuve and Lowenfels, 2015). Some 

conditions may also be hereditary and other genetic factors, such as genetic variation or 

(germ-line) mutations, are also not amenable to influence (Ghiorzo, 2014). Some mutations 

have been identified to play a role in increasing the risk to hereditary forms of PC. 

The exact mechanisms by which most of these risk factors transform cells and induce PDAC 

are not entirely understood. However, the progression from neoplastic cells to PDAC is 

comparatively well described. The majority of adenocarcinomas, about 60 to 70%, manifest 

in the pancreas head (Ryan et al., 2014). Although PDAC belongs to the group of exocrine 

tumors, it does not rise from acinar cells but starts in the epithelial cells of the pancreatic 

ducts as the name suggests. However, a process called acinar-to-ductal metaplasia (ADM) in 

which acinar cells undergo differentiation to duct-like cells due to genetic and environmental 

pressure can potentially lead to precancerous lesions in the event of oncogenic genetic 

alterations (Wang et al., 2019). In any case, PDAC is preceded by precursor lesions, mostly 

so-called pancreatic intraepithelial neoplasia (PanIN). PanINs develop in several stages 

through the accumulation of somatic mutations in a well-studied order. The four stages are 

PanIN-1A, -1B, -2, and -3 (figure 3). PanIN-1A, -1B, and -2 are classified as low-grade, 

PanIN-3 as high-grade (Hruban et al., 2001). Normal ducts have a cuboidal epithelium with 

the nuclei being tightly packed and no atypia. The first mutation to occur in over 90% of 

PDAC cases is a KRAS mutation in PanIN-1A and -1B (Fischer and Wood, 2018). These two 

are highly similar. The cells become tall and columnar with the nuclei arranged at the 

basement membrane. Solely, in PanIN-1B, the lesions are more papillary. With the 

progression to PanIN-2, an inactivating CDKN2A mutation and nuclear abnormalities 

accumulate with, for the most part, loss of nuclear polarity (Kanda et al., 2012). PanIN-3 

lesions, also formerly referred to as carcinoma in situ, are characterized by dystrophic goblet 

cells and small epithelial cell clusters in the lumen ready for dissemination (Hruban et al., 

2001). Typical sites of metastasis are liver, lymph nodes, and lung (Park et al., 2021). This last 

stage of PanIN lesions is associated with TP53, SMAD4 and BRCA2 mutations (Guo et al., 

2016; Yachida and Iacobuzio-Donahue, 2009). There are many more genes known to be 
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possibly mutated in PDAC contributing to the extreme heterogeneity of this cancer entity on 

the molecular level which will be of further interest in the following. 

 

Figure 3: Stages of pancreatic intraepithelial neoplasia PanIN-1A, -1B, -2, and -3. The 

malignant transformation of the epithelial cells in the pancreatic ducts marks the start in 

the development of PDAC. PanINs are precursor lesions that develop in several stages 

through the accumulation of somatic mutations. PanIN-1A (tall columnar cells; KRAS 

mutation), -1B (papillary architecture; KRAS mutation), and -2 (nuclear abnormalities; 

CDKN2A mutation) are low-grade, PanIN-3 (cell clusters budding off, carcinoma in situ; 

TP53, SMAD4 and BRCA2 mutations) is classified as high-grade. Illustration taken from 

(pathology.jhu.edu/pancreas/medical-professionals/duct-lesions, accessed on 2023-07-24 

12:26:00). 

 

1.2.3 PDAC subtypes 

 

Although PDAC is characterized by complex heterogeneity, attempts have been undertaken 

to classify it into different subtypes. This subtyping is of special interest regarding 

personalized medicine. However, the extreme genetic heterogeneity, including over 100 to 

150 described somatic mutations, in turn explains why precision medicine is particularly 

difficult to practice in PDAC (Martincorena and Campbell, 2015). In addition, the fact that 

most somatic mutations are currently not druggable is part of the problem (Stott et al., 2022).  

During the last couple of years, several groups developed classification systems of PDAC 

that are similar or even overlapping. In 2011, Collisson and colleagues pointed out the 

necessity to define PDAC populations since multiple drug trials failed in unselected ones 
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(Collisson et al., 2011). They analyzed transcriptional profiles of primary PDAC and defined 

three subtypes, classical (CLA), quasimesenchymal (QM), and exocrine-like. Moreover, they 

associated these subtypes with significantly different overall survival between individuals of 

all three subtypes. Hereby, patients with CLA PDAC had the highest median survival, 

whereas QM PDAC patients performed extremely worse and were characterized by a 

significantly shorter overall survival (Collisson et al., 2011). A couple of years later, Moffitt et 

al. made use of a PDAC gene expression microarray to identify tumor subtypes (Moffitt et 

al., 2015). Two tumor-specific subtypes, CLA and basal-like (BL), were identified with the BL 

subtype resembling the QM subtype of Collisson et al. and also having a significantly worse 

overall survival (Collisson et al., 2011; Moffitt et al., 2015). Since PDAC tumors are mainly 

composed of stroma, they additionally defined two stroma-specific subtypes termed 

“normal” and “activated”. In this, the activated stromal subtype presented with a worse 

median survival than the normal subtype. In combination, CLA tumors with normal stroma 

performed the best, while BL tumors performed the worst almost independently of their 

stromal subtype (Moffitt et al., 2015). Just one year later, Bailey and colleagues ran an 

integrated genomic analysis on more than 450 PDAC samples by which they identified 32 

recurrently mutated genes (Bailey et al., 2016). From this, the famous “Bailey circle” arose 

summarizing these genes under ten pathways. As in the other studies, expression analysis 

led to the definition of four subtypes, namely squamous, pancreatic progenitor, 

immunogenic, and aberrantly differentiated endocrine exocrine (ADEX). The squamous 

subtype is comparable to Collisson’s QM and Moffitt’s BL subtype and it is also presented as 

the subtype of poor prognosis (Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015). 

Eventually, Puleo and colleagues presented another gene expression analysis-based 

classification system comprising five PDAC subtypes: pure BL, stroma activated, 

desmoplastic, pure CLA, and immune CLA (Puleo et al., 2018). The overlap with the 

previous publications is evident, yet, they questioned the existence of an ADEX subtype as 

did Moffitt et al. regarding the predictive power of Collisson’s subtypes when applied to 

their data. Puleo et al. also associated their subtypes with patient outcomes and found the 

pure BL to have the worst outcome, while the pure and immune CLA had a good prognosis 

(Puleo et al., 2018). Taken together, general recurrent subtypes of PDAC are the 

QM/BL/squamous and the CLA subtypes characterized by a worse prognosis and bad 
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therapy response, and a better prognosis as well as more effective therapy response, 

respectively. Therefore, they will be referred to as BL and CLA in this thesis. 

Considering the pronounced heterogeneity in PDAC, however, it is not trivial to classify 

these tumors strictly into two categories. Usually, PDAC samples show both CLA and BL 

features in adjacent areas. Depending on the degree of this subtype heterogeneity, it is 

advisable to take a mixed form into account. Most recently, Chan-Seng-Yu and colleagues 

introduced the so-called hybrid (HYB) PDAC subtype as they found BL and CLA programs 

to co-exist intratumorally (Chan-Seng-Yue et al., 2020). The hybrids presented multiple 

expression signatures wherefore they were classified inconsistently in previous studies. 

Because of that, the HYB subtype was additionally included in the analysis of this thesis. 

Apart from these patient stratification approaches based on genomic and transcriptomic 

signatures, metabolic subtypes have been defined since metabolic reprogramming toward 

high glucose consumption and increased lipid uptake characterizes PDAC tumors (Espiau-

Romera et al., 2020; Liang et al., 2016). The subtypes termed “glycolytic” and “lipogenic” are 

characterized by distinct metabolite levels corresponding to glycolysis and lipogenesis, 

respectively (Daemen et al., 2015). Most importantly, the lipogenic subtype is associated with 

the CLA signature, while the glycolytic correlates with the BL profile thereby also providing 

evidence for differential prognosis and the potential to predict PDAC patient survival 

(Espiau-Romera et al., 2020). 

 

1.2.4 Therapeutic strategies 

 

One of the main challenges with PDAC are the late diagnosis at an advanced or even 

metastasized disease state which demands for potent treatment options. However, available 

therapeutics are limited and mostly ineffective. PDAC is very refractory to systemic 

therapies due to rapid resistance mechanisms and its unique tumor architecture posing 

physical barriers, such as the pronounced stroma and hypovascularization, to the agents, 

although stromal depletion did not result in enhanced therapeutic response either (Neesse et 

al., 2015). 

In line with this clinical situation, the only curative treatment option is resection, however, 

only few patients are diagnosed early enough for surgery (Heinemann et al., 2013; 
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Konstantinidis et al., 2013). Resectability depends on the disease progress, so in order to 

stratify patients, tumor staging is performed (figure 4). At stages I and II, tumors may be 

surgically resectable if they are not involved in the local vessels. These stages are further 

defined by no invasion to lymph nodes and no spread to distant sites (stage I) or only local 

spread to close organs or lymph nodes (stage II). In stage III, the tumor has reached the major 

blood vessels, and in stage IV, it has metastasized to distant organs, such as typically liver 

and lung.  

 

Figure 4: Tumor stages of pancreatic ductal adenocarcinoma. The development of 

PDAC may be divided in several stages (I-IV) depending on the disease progress and 

invasiveness of the tumor. In this illustration, surrounding organs that are not (yet) 

affected in the regarded stage are grayed out. Stage I is also referred to as carcinoma in 

situ which usually developments in the pancreas head. In stage II, nearby tissues which 

may include lymph nodes are affected by the growing tumor. When PDAC reaches stage 

III, it invades the major surrounding blood vessels facilitating spreading to distant sites 

what happens in stage IV, the metastasis to typical organs such as liver and lung. Own 

illustration created with (biorender.com). 
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Neoadjuvant (before surgery) chemotherapy is administered in order to increase the 

percentage of surgical candidates from patients that are considered “borderline resectable” 

although this may also unfavorably delay surgery (Heinemann et al., 2013; Park et al., 2021). 

Adjuvant (after surgery) chemotherapy is given due to the poor prognosis despite surgery 

due to the high recurrence rate (Ryan et al., 2014). The two most frequently deployed 

chemotherapeutic agents are in fact usually combination therapies. Antimetabolites, such as 

gemcitabine (GEM) and 5-fluorouracil (5-FU), or agents with DNA damage effects, such as 

oxaliplatin and irinotecan, are the main chemotherapeutics used in the clinics (Park et al., 

2021). GEM is usually administered to patients with worse performance status, i.e., who are 

older and show overall stronger symptoms and weakness. A common combinatory drug is 

nano-formulated albumin-bound paclitaxel (nab-PAC). GEM alone does not significantly 

prolong survival and patients who received GEM show a median survival of 6.7 months in a 

study by Von Hoff and colleagues (Von Hoff et al., 2013). In the same study, patients treated 

with GEM/nab-PAC combination therapy had a significantly prolonged survival of 8.5 

months as compared to GEM monotherapy. Another multiagent chemotherapy commonly 

made use of in the clinics is the combination of fluorouracil, irinotecan, leucovorin, and 

oxaliplatin (FOLFIRINOX). A study from 2011 found a significant difference in the median 

survival of patients receiving FOLFIRINOX (11.1 months) and GEM (6.8 months) (Conroy et 

al., 2011). However, FOLFIRINOX is only recommended for patients with high functional 

status after resection, usually meaning younger patients with overall good health (Park et al., 

2021). 

Radiotherapy is controversially discussed as an adjuvant therapy for resected PDAC, 

however, there are novel therapies considered to treat stratified subgroups of PDAC 

patients. For example, for individuals with BRCA mutations targeted (immune) therapy are 

tested (O’Reilly et al., 2020). However, although immunotherapies revolutionized cancer 

treatment across various tumor entities, immune checkpoint inhibitors (ICI) have proven to 

be ineffective in PDAC (Hosein et al., 2022; Ott et al., 2019; Royal et al., 2010). Still, targeting 

immune cells or other components of the TME such as CAFs in a subset-specific manner are 

again on the rise (Biffi et al., 2019; Buechler et al., 2021; Elyada et al., 2019). Gene alterations 

in KRAS, the most frequently mutated gene in PDAC, are subject to targeted agent 

development and may be of great value. Despite all of these approaches, PDAC remains one 
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of the deadliest cancers and the need for novel therapies and biomarkers persists. In this 

thesis, the latter will be of special interest with regard to the aforementioned microbiome. 

 

1.3 Mouse models of PDAC 

 

1.3.1 The KPC model 

 

The traits and challenges of PDAC have been elucidated in 1.2. Many observations were 

made in humans first, however, in order to understand the origins of this malignancy, to 

investigate tumor biology, and to develop new therapies and biomarkers, model systems are 

required. As for most other diseases, animal models are indispensable to recapitulate this 

complex human disease and to conduct comprehensive research on PDAC. Mice are the 

most often used animals to study PDAC and a plethora of models are established for 

different aspects of the disease, such as different mutations or tumor progression rates. 

Conclusions drawn from these mouse models may then later be translated to the clinics and 

tested on humans. Hereby, it is primarily crucial to understand and characterize the model 

itself in order for it to serve as reliable research foundation which is also part of this thesis 

regarding the microbiome. 

The most commonly used genetically engineered mouse model (GEMM) in PDAC research 

is the Lox-Stop-Lox (LSL) system-based LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) 

model. It has first been developed and described about 20 years ago in order to define the 

genetic basis of PDAC, and comprises oncogenic Kras and a heterozygous Trp53 mutation 

(Hingorani et al., 2005). Both transgenic gene alterations are activated exclusively in the 

pancreas by the tissue-specific Cre recombinase under the Pdx-1/Ipf1 promotor (Gopinathan 

et al., 2015). However, Pdx-1 promotor leakage still exists to a low percentage causing benign 

papilloma growth in the facial and anal area of these mice. Therefore, the Cre in this GEMM 

may also be expressed under the P48/Ptf1 promotor whose expression is restricted to acinar 

cells (Hingorani et al., 2003). Pdx-1 is expressed in a stochastic manner in the early 

developmental phase of the pancreas and confined to islet cells (Hingorani et al., 2003; 

Offield et al., 1996). In this thesis, exclusively KPC mice with Pdx-1 Cre were used. 
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As mentioned before, the Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most 

frequently mutated proto-oncogene in humans and postulated a critical event in the 

oncogenesis of exocrine PCs (Almoguera et al., 1988). The most common codon mutation is 

the G12D variant with a frequency of 39.2% (Luo, 2021). It causes uncontrolled cell grow and 

proliferation via a constitutively active KRAS (Gopinathan et al., 2015). Therefore, it is an 

essential part of the KPC model.  

Tumor protein p53 (TP53) is a tumor suppressor and the most frequently mutated gene in all 

cancers. Also in PDAC, it has a mutation rate of 50 to 75% (Morton et al., 2010). Mutated 

TP53 prevents apoptosis and simultaneously upregulates the cell division rate (Gopinathan 

et al., 2015). Several hotspot mutations in the DNA binding domain of TP53 are described. 

They are mostly missense mutations with oncogenic gain-of-function. This is also the case for 

the R175H which has the highest occurrence in cancer (Chiang et al., 2021). In PDAC, it has a 

mutational frequency of 4.5% (Cicenas et al., 2017). The respective homolog in mice R172H is 

a crucial part of the KPC model as a requirement for aggressive disease progression 

(Hingorani et al., 2005).  

Driven by the Kras and Trp53 transgenes, the KPC model has almost 100% tumor penetrance. 

After approximately 8 weeks, PanIN lesions develop, and between 12 to 50 weeks, fibrotic 

tumors grow out. This stage is accompanied by the typical features of human PDAC 

including liver and lung metastases, cachexia, jaundice, and ascites (Gopinathan et al., 2015; 

Lee et al., 2016). Further, also on the molecular, histological, and pathological level, murine 

KPC tumors resemble human PDAC to a great extent, including an immunosuppressive 

TME, for instance (Lee et al., 2016; Mallya et al., 2021). Generally, the KPC model is well-

described and has been studied in many regards including different therapeutic options and 

biomarkers for PDAC (Eresen et al., 2020; Ligat et al., 2015; Orr et al., 2023; Ray et al., 2012; 

Zhang et al., 2022). KPC mice feature a median survival of 5 to 6 months (Westphalen and 

Olive, 2012). 

 

1.3.2 Orthotopic transplantation of tumor cells 

 

Besides in vivo experiments, in vitro studies with established and primary PDAC cell lines are 

put into practice in PDAC research. The combination of both via the orthotopic 
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transplantation of tumor cells into the pancreas of mice offers some advantages over 

transgenic mouse models. For instance, experiments may be timed according to the 

researcher’s needs and tumors grow much faster to the desired size, wherefore the costs for 

orthotopic transplantation experiments are comparably low. Orthotopic models are more 

standardized with less variance in tumor latency and progression (Qiu and Su, 2013a). Still, 

orthotopically transplanted mice show metastasis and ascites formation like GEMMs (Mallya 

et al., 2021). 

When referring to orthotopic transplantation, the direct injection of tumor cells to the site of 

interest is meant, in this case the pancreas. Various publications have elucidated the 

procedure and provide guidance for the cautionary steps during the surgery (Erstad et al., 

2018; Qiu and Su, 2013a). Two types of orthotopic transplantation may be discriminated. In 

syngenic mouse models, cells that are genetically (sufficiently) identical and 

immunologically compatible to the receiving animal are used for transplantation. For 

instance, KPC-based tumor cells are orthotopically transplanted to the pancreas of wildtype 

C57BL/6 mice. These are immunocompetent allograft tumor models that can replicate 

essential features of PDAC such as the complex TME since all involved cells and components 

are murine. Predictable growth kinetics make these models very suitable for therapeutic 

studies (Erstad et al., 2018). In the other scenario of orthotopic transplantation, the goal is to 

graft human PDAC cells to mice (xenograft) in order to grow more humanized tumor 

material. However, the disadvantage of this model is that immunodeficient mice, such as 

athymic nude mice, are needed which do not fully recapitulate the course of natural human 

PDAC oncogenesis (Qiu and Su, 2013a). Immunodeficiency is of course necessary to prevent 

graft rejection in this xenograft tumor model. Further, it is important to consider that the 

tumor stroma derives from the mouse. Still, this mouse model is widely used for its 

advantages, such as a high metastasis rate and the option to label the tumor cells in culture 

prior to transplantation in order to track tumor growth in vivo (Loukopoulos et al., 2004; Qiu 

and Su, 2013b). 

Within the scope of this thesis, tumor samples of orthotopic pancreatic cancer xenograft 

models were used. Tumors from nude mice orthotopically transplanted with the established 

human PDAC cells lines MiaPaCa2, Capan-2, and Capan-1 were subject to microbiome 

signature investigation in a PDAC subtype-dependent manner since these cell lines are 
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representatives of more BL or CLA tumors. MiaPaCa2 derived from the primary tumor of a 

65-year-old male patient which had infiltrated surrounding tissues (Yunis et al., 1977). It has 

a mesenchymal phenotype and is poorly differentiated. Therefore, it is classified as BL. 

Capan-2 also originates from a primary tumor of a 56-year-old male, however, it is well 

differentiated and therefore assigned to the CLA subtype (Kyriazis et al., 1986). Finally, the 

Capan-1 cells arose from the liver metastasis of a 40-year-old man with pancreatic 

adenocarcinoma, and are also members of the CLA subtype as they are well differentiated 

(Kyriazis et al., 1982).  

MiaPaCa2- and Capan-2-derived tumors are used in direct comparison in this thesis with 

histologically adjacent normal tissue as additional differential tissue compartment groups. 

Capan-1-derived tumors were treated with tumor necrosis factor α (TNFα) and its vehicle 

control (VC) water (H2O), respectively (Tu et al., 2021). TNFα was reported to cause lineage 

reprogramming of CLA tumor cells towards a BL phenotype, and this effect was even 

reversible via  bromodomain and extra-terminal motif (BET) protein inhibitors (Tu et al., 

2021). Due to these highly interesting new insights into PDAC subtype plasticity, these 

tumors samples were of great interest within the scope of this thesis.  

 

1.4 The microbiome in health and disease 

 

1.4.1 The gut microbiome 

 

The entirety of bacteria, archaea, viruses, and fungi are summarized as microbiota, or 

microbiome if referring to their genetic total more precisely, but these terms are also used 

synonymously. The microbiome may also refer to a microbial community with their 

accompanying structural elements in a habitat (Berg et al., 2020). Since all ecosystems and 

organisms, living and dead, are colonized by microbiota, specific sub-microbiomes are 

usually discussed and compared. For instance, site-specific microbiomes in soil, fresh or salt 

water are examined in environmental sciences, and organ-specific microbiomes of skin, oral 

cavity, or intestines in humans are regarded in biomedical sciences. In addition, institution-

specific microbiomes from different hospitals or laboratories can be of interest.  
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Before the age of modern sequencing techniques, microbiota, in particular bacteria, have 

been studied traditionally on agar plates, in liquid cultures or under the microscope. The 

advent of next generation sequencing (NGS) then offered a method to investigate microbial 

populations on a large scale and to characterize them more precisely based on genetic 

relationship rather than on similar visual appearances. This led to the fundamental 

observation in biomedical microbiome research which is a dependency of the microbiome on 

a plethora of extrinsic factors such as ethnicity, food, lifestyle, and wealth, as well as intrinsic 

factors such as age and diseases leading to a massive inter- and even intra-group variability 

of the microbiome. While significant inter-group differences are widely published, the intra-

group differences can also be profound meaning that although two samples derive from 

healthy subjects, they might look highly different in their microbial compositions (del 

Castillo et al., 2019). 

The gut microbiome is by far the best-studied and in many regards the largest human sub-

microbiome. Up to 1,000 different inhabiting microorganisms have been described, with the 

vast majority being represented by bacteria and only up to 40 different species of such 

(Beaugerie and Petit, 2004; Guarner and Malagelada, 2003; Sears, 2005). This is the largest 

number compared to other body sites (Quigley, 2013). Feces consist of up to 60% of bacteria 

in their dry mass which makes them an excellent sample material to study the microbiome 

(Stephen and Cummings, 1980). Gut bacteria are mostly anaerobic with few site-specific 

exceptions, however, in feces, there is a gradient of aerobic to anaerobic bacteria towards the 

inside. It is also known that the microbial composition varies along the intestinal system with 

the colon harboring the largest microbial density (Shapira, 2016). Typical human gut 

bacterial genera are Bacteroides, Clostridium, Faecalibacterium, Eubacterium, various Cocci, and 

Bifidobacterium (Beaugerie and Petit, 2004; Guarner and Malagelada, 2003).  

The healthy gut microbiome is much more than a community of commensals which refers to 

a mere non-harmful coexistence of microorganisms and human cells. Instead, an essential 

symbiotic relationship between the human body and the gut microbiome establishes 

throughout lifetime where the latter exceeds a plethora of physiological functions. As 

reflected by the enormous number of publications since the start of gut flora research in the 

mid-90s, particularly the mere existence of several review articles all simply termed “The gut 

microbiome”, it is a topic of great extent and importance (Brody, 2020; Gibson and 
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Roberfroid, 1995; Kuziel and Rakoff-Nahoum, 2022; Sidhu and van der Poorten, 2017). The 

intestinal microbiome is involved in basically all aspects of the organism, such as the 

circadian rhythm, brain function, psychiatric concerns, immune system, metabolism, pH 

regulation, and many more (Kiss et al., 2020; Mohajeri et al., 2018; Shi et al., 2017; Van 

Ameringen et al., 2019; Voigt et al., 2016). 

In diseased states of the organism, the gut flora may be the cause, a contributor or an 

indicator, so-called biomarker. However, it is not trivial to determine whether the 

microbiome is in fact causal for the respective disease. When investigating the microbiome in 

a disease context, it is first a shift in the microbial composition that is observed, called 

dysbiosis. The central question in disease-related microbiome research is the “chicken or 

egg” paradigm, so whether changes in the microbiome are the cause or an epiphenomenon 

of the disorder (Gorkiewicz and Moschen, 2018). The gut microbiome is often involved in 

gastrointestinal diseases such as bowel perforation, inflammatory bowel diseases, and 

intestinal cancers, in the leaky gut syndrome, and subsequently in maladies such as sepsis, 

but also connections to other cancer types have been found (Adelman et al., 2020; Liu et al., 

2019). In the context of the latter, the gut microbiome is often discussed as a possible 

biomarker and many studies reported associations between the microbiome and the 

regarded disease. The challenge is then to transfer these associations to the clinics. To date, 

there are several options established how to modulate the microbiome. Besides unintentional 

gut flora disturbances via drugs such as antibiotics, there are pre-, pro-, and postbiotics 

available. Moreover, procedures such as dietary modulation, phage therapy, and fecal 

microbiome transplantations (FMT) are available (Cullin et al., 2021). The relation between 

the gut microbiome and pharmaceuticals is in fact bidirectional. It is manipulated by the 

drugs (pharmacodynamics) but microbes can just as well metabolize drugs and influence 

their structure, bioavailability, activity, and toxicity (pharmacokinetics) (Weersma et al., 

2020). 

Investigating the microbiome requires appropriate measures to quantify and display the 

composition of samples and differences between groups. The most commonly used readouts 

are alpha and beta diversity. Other than that, there is gamma diversity, though rarely 

applied in this context. These terms derive from the field of ecology and describe species 

diversity at different scales. As illustrated in figure 5, alpha diversity means the mean 
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species diversity at a local site, while beta diversity describes the differentiation between 

those sites, and gamma diversity comprises the total species diversity in a certain area 

(Whittaker, 1972, 1960).  

 

Figure 5: Schematic representation of alpha, beta, and gamma diversity. These three 

diversity levels originating from the field of ecology describe heterogeneity at different 

scales. Applied to microbiology, alpha diversity refers to the diversity in single samples 

and considers their richness and evenness, for instance. Beta diversity compares two 

sample (sites) or more among each other and works with distances and dissimilarities. 

Finally, gamma diversity is about an even broader spectrum and means the total species 

diversity in a defined area, e.g., the laboratory. Own illustration created with 

(biorender.com). 

 

In the context of molecular biology, samples can be conceived as sites. Regarding alpha 

diversity, the most common measure is observed species (OS), also known as richness. It 

counts the number of different species in one sample. Moreover, the Shannon index (SI) and 

inverse Simpson index (InvS) are applied in this thesis. SI gives an idea about the species 

entropy within one sample, i.e., how evenly the different species are distributed (evenness) 

and it is the higher the more equal the abundances of the present species are. InvS derives 

from the Simpson index which gives a probability that two species randomly picked from a 

population are the same (Simpson, 1949). Thus, the lower the Simpson index value is, the 

higher is the diversity in the regarded system. Since this is rather non-intuitive, InvS is often 

reported. It is defined by one divided by the Simpson index. Regarding beta diversity, 
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measures based on species abundance and their phylogenetic relation are commonly used. 

UniFrac distance metrics reflect the relative relation between the contained species via the 

phylogenetic distance. Unweighted UniFrac distance (uwUF) only respects the presence or 

absence of species, while weighted UniFrac distance (wUF) also takes their abundances into 

account (Lozupone and Knight, 2005; Lozupone et al., 2007). In contrast, Bray-Curtis 

dissimilarity (BC) focuses on the compositional dissimilarities between the groups by 

considering species counts (Bray and Curtis, 1957).  

Making use of the gut microbiome as a biomarker is a strongly pursued research area as 

there are many diseases for which no reliable markers are established. In particular, the 

possibility to predict cancer cases from the microbiome would be a milestone, especially in 

PDAC research. The interdependence between gut and pancreas microbiome has been 

described and some studies have already suggested the fecal microbiome as a non-invasive 

biomarker (Half et al., 2019; Kartal et al., 2022; Li et al., 2020; Nagata et al., 2022; Ren et al., 

2017). This is also of special interest within the scope of this thesis. 

 

1.4.2 The pancreatic microbiome 

 

As shortly introduced in 1.2.1, the microbiome has recently become a highly intriguing new 

player in the predominantly TME- and subtype-driven PDAC research area. This is due to 

today’s understanding of the microbiome as an integrated part of the human organism 

rather than a pure bystander. This perception started to change historically with the 

introduction of high-throughput sequencing methods allowing to discover microbiomes in 

internal organs that had long thought to be sterile. It is now broadly accepted that they 

harbor at least a low biomass of microbiota. Even more so, the human microbiome has been 

termed a complex organ itself (Baquero and Nombela, 2012). 

The pancreas as one of the organs that was discovered to be colonized by a low amount of 

microbes in samples of organ donors is now offered a new vantage point for PDAC research 

(Geller et al., 2017). However, in contrast to the gut microbiome which can easily be sampled 

via stool or swabs, for instance, the pancreatic microbiome is harder to study in living 

organisms as it requires invasive biopsies. Although it is very important to learn about the 

pancreatic microbiome, the connection between gut and pancreas may also be exploited in 
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this regard. The pancreas influences the gut via the secretion of antimicrobial peptides 

physiologically, and pancreatic insufficiency in turn may lead to small intestine bacterial 

overgrowth (SIBO) and dysbiosis in the intestinal microbiome (Ammer-Herrmenau et al., 

2020) (figure 6). Therefore, the correlation of the intestinal microbiome with diseases of the 

pancreas is of great interest (Ammer-Herrmenau et al., 2021a). 

 

Figure 6: Summary of current findings and knowledge about the orointestinal and 

tumoral microbiome in PDAC and pancreatitis. Red boxes refer to PDAC-related, 

orange boxes to pancreatitis-related key findings. Illustration taken from (Ammer-

Herrmenau et al., 2020) (CC BY 4.0). 

 

The pancreatic microbiome of healthy individuals has been studied only sparsely compared 

to the PDAC tumor microbiome. This is mostly due to technical difficulties in obtaining 

healthy pancreas sample material. Most studies only applied histologically normal tissue 

from adjacent to tumor tissue or even benign pancreatic disease samples as controls for their 

tumor samples. Yet, in order to elucidate microbiome alterations associated with PDAC, a 
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profound characterization of the normal pancreatic microbiome is necessary. A few studies 

examined normal human pancreatic tissue and found Chlamydiales, Brevibacterium, 

Acinetobacter, Enterobacter, Pseudomonas, and Lactobacillus in higher relative abundances as 

compared to PDAC samples, however, not all of these differences were reported to be 

significant (del Castillo et al., 2019; Pushalkar et al., 2018; Thomas et al., 2018). 

Although the microbiomes of all pancreatic diseases may offer platforms for new research, 

the focus within the frame of this thesis is set on PDAC. To date, the tumoral pancreatic 

microbiome has been investigated in multiple studies. Generally, microbes were found to be 

more abundant in tumors as compared to healthy pancreatic tissue. The most prominent 

phylum across published microbial compositions is Proteobacteria, comprising mainly 

Gamma- and Alphaproteobacteria (Chakladar et al., 2020; Pushalkar et al., 2018; Riquelme et al., 

2019). The constantly increasing number of publications has shown the impact of the 

microbiome on cancer, and PDAC in particular, including aspects such as subtypes, 

development, and therapy response. It can be broken down to three most significant 

findings. First, tumors harbor their own specific microbiome which differs amongst tumor 

entities and is distinct to their respective healthy control tissue (del Castillo et al., 2019; 

Nejman et al., 2020; Pushalkar et al., 2018). Second, the BL subtype of PDAC which shows a 

higher inflammatory response has a more diverse microbiome as compared to the less 

aggressive subtypes, CLA and HYB (Guo et al., 2021). And last, there is evidence for the 

tumoral microbial signature and diversity of PDAC to predict patient long-term survival 

(Riquelme et al., 2019). These findings underpin the importance and the potential of the 

microbiome in being a highly relevant factor in PDAC. In the following, its role in PDAC 

pathogenesis, diagnostics, therapy, and prognosis will be described in more detail.  

 

1.5 The impact of the microbiome on different aspects of PDAC 

 

1.5.1 The role of the microbiome in PDAC pathogenesis 

 

Regarding the microbiome as causal for PDAC pathogenesis in the “chicken or egg” 

paradigm is not too far-fetched considering the well-established knowledge about infectious 

microorganisms leading to cancer formation via chronic inflammation. Furthermore, the fact 
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that healthy pancreas does not harbor that kind of microbes to that extend seems to at least 

make this consideration plausible. Over 16% of all cancer cases can directly be traced back to 

pathogen infections and of most the mechanisms are well-described (de Martel et al., 2012; 

Schwabe and Jobin, 2013). So far, eleven distinct “oncomicrobes” are known to induce cancer 

(IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2012). This is not 

yet the case for PDAC. However, some microbes leading to the formation of other cancer 

entities, for instance, via dysregulation of the Wnt/β-catenin signaling pathway, were also 

found in PDAC, such as Clostridium, Bacteroides, and Escherichia (Silva-García et al., 2019). The 

Wnt/β-catenin signaling pathway is also one of the significantly altered pathways in PDAC, 

wherefore associations like this offer vantage points for functional studies of the microbiome 

in PDAC carcinogenesis (Bailey et al., 2016). 

Besides the activation of oncogenic signaling, there are some additional feasible ways of how 

microbes may contribute to PDAC onset and maintenance. On the one hand, direct 

carcinogenic effects can be achieved via mutagenesis. Here, a similar analogue as for 

oncogenic signaling can be drawn which once again underpins the likelihood of microbes to 

at least contribute to PDAC. Fusobacterium nucleatum is speculated to contribute to 

carcinogenesis and oncogenesis of oral squamous cell carcinoma cells by causing DNA 

double strand breaks via the Ku70/p53 pathway (Geng et al., 2020). This bacterial species was 

found in human PDAC samples as well (Nejman et al., 2020). On the other hand, indirect 

carcinogenic effects may be conferred via chronic inflammation. Association studies have 

shown the oral microbiome and periodontitis to connect with PC development in some way 

(Farrell et al., 2012; Michaud et al., 2007). Another study stated that bacterial structures such 

as lipopolysaccharide (LPS), also called microbe-associated molecular patterns, promote PC 

(Ochi et al., 2012). Indirect oncogenic effects can also be transmitted via microbial metabolites 

which has been shown in colonic cancer for short-chain fatty acids (SCFA), for example (P. 

Liu et al., 2021). Eventually, the interplay between the microbiome and the immune system is 

a highly relevant point to revisit with regard to immunogenic TME reprogramming. Since 

PDAC is characterized by a pronounced inflammatory reaction, this consideration seems 

natural. Based on various study results, microbial invasion is perceived as a potential driver 

of carcinogenesis via immune system remodeling (Alam et al., 2022; Chakladar et al., 2020; 

Pushalkar et al., 2018). 
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Although the exact mechanisms of how microbes, as a cause or contributor, are involved in 

PDAC are not clear to date, there is evidence suggesting that there indeed is a link between 

the microbiome and the pathogenesis of PDAC. Detailed functional studies are not part of 

this thesis; however, their meaning and impact are noted in chapter 6.  

 

1.5.2 Application of the microbiome in PDAC diagnosis 

 

As a consequence of knowing that the microbiome is an important, possibly even central part 

of the PDAC TME, its exploitation for urgent open needs in the clinical context of PDAC is 

the next logical step. The high demand for reliable biomarkers for PDAC has been addressed 

earlier in this chapter, and both the tumoral and intestinal microbiomes are considered 

relevant sampling sources. At this point, the imperative of thorough microbiome 

characterizations becomes clear. By defining a common base despite inter- and intra-group 

differences, the microbiome may ideally be used as a biomarker to distinguish cancer from 

non-cancerous cases and as a target for new therapeutic strategies which will be further 

covered in 1.5.3. 

The missing of a reliable, non-invasive screening method for PC even today poses a major 

problem in the clinics. The tumoral microbiome can obviously not be considered for this 

purpose, yet, needs to be studied to understand tumor biology to tackle the other 

fundamental problems of PDAC such as the alarmingly limited therapy options. Other local 

microbiomes of PDAC patients are studied to find patterns and differences compared to 

healthy individuals. Some of the most convenient microbial sites for clinical practice are the 

oral cavity and gut. Indeed, the orointestinal microbiome was investigated in a great number 

of studies as potential PDAC biomarker (Fan et al., 2016; Nagata et al., 2022; Olson et al., 

2017; Pushalkar et al., 2018). The sampling is non-invasive and easily realizable via oral 

washes, salvia, different oral and rectal swabs, or stool. However, this is also what bears the 

risk of heterogenous results and makes it more difficult to standardize the outcome. 

Moreover, the sequencing technique applied in these studies introduces great variability 

which will be discussed in detail as part of the results in this thesis.  

What is also routinely sampled from patients at hospital admission, both outpatient and 

in-patient, is blood. Blood draws are minimally invasive, easy to access and a new parameter 
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to be determined could potentially be implemented in laboratory routine analyses. In 2013, 

Michaud et al. conducted a prospective study with blood samples from PDAC patients pre 

diagnosis and found high levels of the oral Porphyromonas gingivalis, the periodontitis-

causing pathogen correlated with 2-fold increased PDAC risk (Michaud et al., 2013). A more 

recent but less PDAC-specific study analyzed microbial nucleic acid plasma profiles of more 

than 10,000 patients and found that these were capable of predicting different cancer types 

(Poore et al., 2020). A third microbial structural element that are currently considered to be 

exploited for diagnostic assessments are bacterial extracellular vesicles (bEV). A 

metagenomic study analyzing bEVs in serum samples demonstrated their diagnostic 

potential to differentiate ovarian cancer from benign ovarian tumors (Kim et al., 2020). This 

differential diagnosis is of strong importance in the context of PDAC as well since other 

benign pancreatic conditions are often confused with it and needless surgeries could 

potentially be avoided. In a retrospective propensity score matching study, the composition 

of bEVs was indeed found to be distinguishable in blood samples of PC patients (Kim et al., 

2021). However, these studies are still quite preliminary and require refinement, in particular 

regarding the biggest issue in microbiome research, namely contamination.  

 

1.5.3 Influence of the microbiome on PDAC therapy and prognosis 

 

The fact that the very poor prognosis of PDAC did not improve significantly during the last 

couple of decades is a wake-up call for researchers to reach out for alternative ways how to 

tackle this problematic challenge. Learning about the microbiome, a new option to perform 

prognostic assessment via microbial signature profiling could indeed be feasible. Moreover, 

exploiting the microbiome for therapy is no longer hypothetical but in fact possible in 

multiple ways. 

Anticancer treatment involving the microbiome is not performed routinely yet, but there are 

several conceivable strategies. Considering the existence of a tumoral microbiome which 

differs from the healthy organ’s microbiome, the most straightforward concept is of course to 

modulate the microbiome. Intervening with the microbiome has the potential to support and 

improve other standard anticancer therapy effects as it was reported to act against 

chemotherapy, for instance (Geller et al., 2017). Possible intervention techniques include 
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change of diet, pre- (compounds to enhance beneficial microorganisms), pro- (living 

microorganisms), post- (metabolic products of microorganisms), and antibiotics 

(antimicrobial substance), phage therapy, and FMT (Han et al., 2021; Rodriguez-Arrastia et 

al., 2021; Routy et al., 2018; Tanoue et al., 2019; Zheng et al., 2019). In phage therapy, 

bacteriophages are equipped with nano-sized chemotherapy molecules that are directly 

delivered to the requiring site. This could potentially limit side effects that are known from 

systemic therapy. Moreover, it offers the possibility to target specific bacteria depending on 

the bacteriophage that is chosen. Compared to broad spectrum antibiotic treatment, this 

would be a real game changer also for in vivo studies that aim at elucidating the effect of 

certain bacteria within the microbial community of a particular microbiome.  

Microbes may have a direct impact on anticancer therapies, including chemotherapy, 

immunotherapy, and even radiotherapy (Geller et al., 2017; J. Liu et al., 2021; Sivan et al., 

2015; Vétizou et al., 2015). For example, dysbiosis in the gut microbiome was found to elicit 

ICI resistance in cancer patients (Routy et al., 2018). The evidence on microbes influencing 

chemotherapy efficiency, positively and negatively, has remarkably increased recently 

(Guenther et al., 2022; Kesh et al., 2022; Panebianco et al., 2022). Also, it is not limited to 

PDAC, a fact that further confirms the validity of the hypothesis.  

Besides the sole association of the microbiome with subtypes of PDAC mentioned in 1.4.2 as 

one of the major findings in PDAC microbiome research of recent years, this reveals the 

predictive value of the microbiome as subtypes have varying prognosis as a consequence of 

their differing response to chemotherapy (Guo et al., 2021). When thinking about prognosis 

in PDAC, the rare cases of long-term survival of this dismal disease, i.e., more than 5 years 

after surgery, come to mind. To date, there is no uniform explanation why this is the case for 

a few patients to live for 10 or 20 years after PDAC diagnosis. Riquelme and colleagues 

found a specific microbiome signature in long-term survivors (LTS) that was not present in 

short-term survivors (STS) (Riquelme et al., 2019). With this microbial indicator of patient 

outcome, a new era of PDAC perspectives was heralded.  
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2 Thesis objectives 
 

Conceiving the enormous shortcomings in basically all aspects of PDAC which is about to 

become the deadliest human malignancy, this is a wake-up call for researchers hard to beat 

for its urgency. Having approached PDAC research in many other regards before, it was 

now the time to explore a new field with great potential to be exploited for all aspects of the 

disease including diagnostics, therapy, and prognosis. There is emerging evidence and 

promising data from the field for a tumor- and tumor entity-specific microbiome to exist as 

well as for its involvement in regards such as patient long-term survival. Thus, the project of 

this thesis aimed at this new player in the highly dynamic network system of PDAC: the 

microbiome. The objective within the scope of this thesis towards this new research focus 

comprises four precise aims: 

(i) Provision of evidence for the presence of bacteria in murine KPC tumors and 

human PDAC samples. 

(ii) Establishment of third generation sequencing by Oxford Nanopore Technologies 

and its optimization for murine fecal and pancreatic samples. 

(iii) Analysis of the microbial composition differences in KPC mice in  

a. fecal samples during tumor progression,  

b. tumor vs. healthy pancreas samples, and  

c. tumor center vs. periphery samples,  

with the comparison to published human stool and PDAC microbiomes. 

(iv) Investigation of impact of transcriptional PDAC subtypes on the microbiome in  

a. orthotopically transplanted human PDAC cell lines of the CLA (Capan-2) vs. 

BL (MiaPaCa2) subtype,  

b. orthotopically transplanted human PDAC cell lines of the CLA subtype 

(Capan-1) with TNFα and control treatment, and  

c. human PDAC samples with their subtyping via IHC targeting marker 

proteins GATA6 and CK5. 

With intent to answer open questions asking for the dynamics of the microbiome during 

tumor evolution and the host genetic/transcriptomic profile influences on the microbiome, 

the overall hypothesis of this thesis is that PDAC subtypes impinge on their intratumoral 
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microbiome potentially offering new therapeutic options. Using the microbiome as a key to 

change BL to CLA subtypes and exploiting it to improve therapy response is highly 

theoretical but a somewhat ideal conception.  
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3 Material and methods 
 

3.1 Material 

 

3.1.1 Laboratory equipment 

 

Device, Type Company, Headquarters 

Analog rotator, RS-RD 5 
Pheonix Instrument GmbH, Garbsen, 

Germany 

Autoclave Fedegari FVA2/A1 ibs/tecnomara GmbH, Fernwald, Germany 

Automatic Benchtop Tissue Processor, Leica 

TP1020, semi-enclosed 

Leica Biosystems Nussloch GmbH, 

Nussloch, Germany 

Beaker, 500 mL, 1 L, Duran 
Schott AG, Mainz/DWK Life Sciences 

GmbH, Wertheim, Germany 

Biological safety cabinet, class II, Thermo 

Scientific Safe 2020 

Thermo Electron LED GmbH, 

Langenselbold, Germany 

Cellometer Cell Counter Auto 1000 
Nexcelom Bioscience LLC, Lawrence, MA, 

USA 

Centrifuge, Heraeus Megafuge 1 
Thermo Fisher Scientific Waltham, MA, 

USA 

CO2 incubator, HERAcell 240i 
Thermo Fisher Scientific, Waltham, MA, 

USA 

Cryo boxes with grid inserts, Labsolute 
Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Dewar flask for liquid nitrogen 

KGW-Isotherm/Karlsruher Gastechnisches 

Werk – Schieder GmbH, Karlsruhe, 

Germany 

Dry bath incubator, BSH 5002-E 
Benchmark Scientific Inc., Sayreville, NJ, 

USA 

Flattening table for histopathology, HI 1220 
Leica Biosystems Nussloch GmbH, 

Nussloch, Germany 

Fluorescence microscope, Leica DMi8 
Leica Microsystems CMS GmbH, Wetzlar, 

Germany 

Fluorometer, Qubit 3.0 
Life Technologies/Thermo Fisher Scientific, 

Waltham, MA, USA 

Fridge and freezer, Mediline, Profi line, 

Glass line 

Liebherr-International Deutschland GmbH, 

Biberach an der Riß, Germany 

Glass bottles, 100 mL, 250 mL, 500 mL, 1 L, 

Duran 

Schott AG, Mainz/DWK Life Sciences 

GmbH, Wertheim, Germany 

Graduated cylinders, 500 mL, 1 L, 

Silberbrand Eterna 

Brand GmbH + Co. KG, Wertheim, 

Germany 

GridION Mk1/X5 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 
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Hybridizer, ThermoBrite StatSpin Abbott Molecular, Des Plaines, IL, USA 

Ice machine, CoolNat, S-Nr. 202086 
Ziegra Eismaschinen GmbH, Isernhagen, 

Germany 

Immunostaining slide rack and slides, 

Thermo Scientific Shandon Sequenza 

Thermo Shandon LTD./Thermo Fisher 

Scientific, Waltham, MA, USA 

Incubator, UF260 
Memmert GmbH & Co. KG, Schwabach, 

Germany 

Incubator, UN55pa 
Memmert GmbH & Co. KG, Schwabach, 

Germany 

Magnet, DynaMag-2 
Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA 

Microscope, Olympus BX43F Olympus Corp., Tokyo, Japan 

Microscope, Olympus CKX53 Olympus Corp., Tokyo, Japan 

Microtome, Leica RM2265 
Leica Biosystems Nussloch GmbH, 

Nussloch, Germany 

Microwave, NN-E201WM 
Panasonic Marketing Europe GmbH, 

Hamburg, Germany 

Micro scales, AC1215, max. 120 g Sartorius AG, Goettingen, Germany 

Minicentrifuge, Sprout Heathrow Scientific, Vernon Hills, IL, USA 

MinION Mk1B (MIN-101B) 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Multi dispenser, Multipette plus Eppendorf AG, Hamburg, Germany 

Nanophotometer, P330 Intas Science Imaging, Göttingen, Germany 

Paraffin embedding module, EG1150 H, 

HistoCore Arcadia C 

Leica Biosystems Nussloch GmbH, 

Nussloch, Germany 

pH meter, FiveEasy Plus 
Mettler Toledo AG, Schwerzenbach, 

Switzerland 

Pipets, ErgoOne, 10, 20, 200, 1000 µL 
Starlab International GmbH, Hamburg, 

Germany 

Pipets, Research plus, 2.5, 100 µL Eppendorf AG, Hamburg, Germany 

Pipette filler, pipetus akku 
Hirschmann Laborgeräte GmbH & Co. KG, 

Eberstadt, Germany 

Precision scales, EW, max. 2200 g Kern & Sohn GmbH, Balingen, Germany 

Reaction tube racks, 80 wells for 1.5, 2 mL 

tubes, polypropylene 

Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Refridgerated microcentrifuge, Perfect Spin 

24R, Peqlab 

VWR International, LLC/Avantor, Inc., 

Radnor, PA, USA 

Staining troughs, type Schiefferdecker, 

chalk biocarbonate glass 

Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

ThermoBrite Humidity Control Cards Abbott Molecular, Des Plaines, IL, USA 

ThermoMixer compact Eppendorf AG, Hamburg, Germany 

Timer, WB-388 Oregon Scientific, Gennevilliers, France 

Tissue homogenizer, Precellys 24 
Bertin Technologies, Montigny-le-

bretonneux, Ile-de-France, France 

Tweezers and dissecting scissors 
Karl Hammacher GmbH, Solingen, 

Germany 



Material and methods | 

31 | 

 

Ultrapure water system, Arium pro Sartorius AG, Goettingen, Germany 

Virtual Slide Microscope, VS120 Olympus Corp., Tokyo, Japan 

Vortexer, REAX2000 
Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany 

Vortexer, RS-VA 10 
Pheonix Instrument GmbH, Garbsen, 

Germany 

Water bath, WNB 14 
Memmert GmbH & Co. KG, Schwabach, 

Germany 

 

 

3.1.2 Consumables 

 

Item, Type Company, Headquarters 

Adhesion slides for IHC, SuperFrost Plus 
Gerhard Menzel B.V. & Co. KG, 

Braunschweig, Germany 

Bead Tubes 
Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA 

Bed Mat, 60 x 90 cm, MoliCare Premium Paul Hartmann AG, Heidenheim, Germany 

Cell culture dish, 100 x 22 mm, Labsolute 
Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Cellometer Cell Counting Chambers, 

SD1000 

Nexcelom Bioscience LLC, Lawrence, MA, 

USA 

CombiTips advanced, 5 mL, sterile Eppendorf AG, Hamburg, Germany 

CryoPure tube, 1.6 mL, red 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

Embedding cassettes 
Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Feather disposable scalpel, No. 15, No. 21, 

sterile 

Feather Safety Razor Co. LTD., Osaka, 

Japan 

Filter tips, TipOne, 10, 20, 100, 1000 μL 
Starlab International GmbH, Hamburg, 

Germany 

Flexible mounting adhesive, Fixogum Marabu GmbH & Co. KG, Tamm, Germany 

Flongle Adapter, ADP-FLG001 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Flongle Flow Cell, Pk. 1, FLO-FLG001 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Folded filters, 185 mm 
Schleicher & Schuell BioScience GmbH, 

Dassel, Germany 

Gloves, latex/nitrile, Starguard 
Starlab International GmbH, Hamburg, 

Germany 

Kimwipes, Delicate Task Wipes 7558, white, 

20.5 x 20 cm 

Kimberly-Clark Professional, Dallas, TX, 

USA 

Microscope cover slips, 24 x 32 mm 
Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Microtome blades, Feather S35 pfm medical AG, Cologne, Germany 
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Microtube 1.5, 2 mL DNA LowBind 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

Microtube, 0.5, 1.5, 2 mL 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

Needles, Microlance 3, 0.9 x 40 mm, 20 G x 

1 ½ ‘‘, Nr. 1 
Becton Dickinson S.A., Fraga, Spain 

Needles, Sterican, 0.45 x 12 mm, 26 G x ½ ‘‘ 
B. Braun Melsungen AG, Melsungen, 

Germany 

PCR tubes, 200 μL, Multiply μStrip Pro 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

Pipette tips, TipOne, 10, 200, 1000 μL 
Starlab International GmbH, Hamburg, 

Germany 

Qubit Assay Tubes 
Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA 

Rolled edge glass vials with polyethylene 

lids, 5 mL 

Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Serological pipette, 2, 25, 50 mL Sarstedt AG & Co. Nuembrecht, Germany 

Serological pipette, 5, 10 mL 
Greiner Bio-One GmbH, Frickenhausen, 

Germany 

Single use filter unit, 0.2 µm, sterile, 

Labsolute 

Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Spot-ON Flow Cell, R9 version (R9.4.1) 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

TC Dish 100, Standard, sterile 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

TC flask T75 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

Tube, 5, 15, 50 mL 
Sarstedt AG & Co. KG, Nuembrecht, 

Germany 

Weighing boats 
Lab Logistics Group GmbH, Meckenheim, 

Germany 

 

 

3.1.3 Chemicals, reagents, and enzymes 

 

Chemical/Reagent/Enzyme, Type Company, Headquarters 

2-Propanol, z. A., 2.5 L, Chemsolute 
Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

5X NEBNext Quick Ligation Reaction Buffer New England Biolabs, Ipswich, MA, USA 

Acetic acid, 100% p.A., 2.5 L 
PanReac AppliChem GmbH/ITW Reagents, 

Darmstadt, Germany 

Actinomycin D-Mannitol 
Sigma-Aldrich/Merck KGaA, Darmstadt, 

Germany 
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Albumin Bovine Fraction V, pH 7.0 
Serva Electrophoresis GmbH, Heidelberg, 

Germany 

Ammonium Acetate (Emsure, ACS, Reag. 

Ph Eur) 

Sigma-Aldrich/Merck KGaA, Darmstadt, 

Germany 

AMPure XP beads Beckman Coulter Inc., Brea, CA, USA 

Ampuwa, water for injection purposes, 

1000 mL 

Fresenius Kabi Deutschland GmbH, Bad 

Homburg, Germany 

Blunt/TA Ligase Master Mix New England Biolabs, Ipswich, MA, USA 

Citric acid monohydrate, p.a. 
Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Cytoseal 60 
Thermo Fisher Scientific, Waltham, MA, 

USA 

DAPI, 4′,6-Diamidino-2-phenyl-indol-

dihydrochlorid, 5 mg 

Sigma-Aldrich/Merck KGaA, Darmstadt, 

Germany 

Desinfectant, Desomed Rapid AF 
Desomed Dr. Trippen GmbH, Freiburg, 

Germany 

Dulbecco’s Modified Eagle Medium 

(DMEM), gibco 

Life Technologies/Thermo Fisher Scientific, 

Waltham, MA, USA 

Dulbecco’s Phosphate Buffered Saline 

(PBS), gibco 

Life Technologies/Thermo Fisher Scientific, 

Waltham, MA, USA 

Embedding wax (Paraffin) 
Engelbrecht GmbH, Edermünde/Besse, 

Germany 

Eosin Y solution, aqueous, 1 L 
Sigma-Aldrich/Merck KGaA, Darmstadt, 

Germany 

Ethanol, 99%, denatured/absolute p. a., 

Chemsolute 

Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Ethylenediaminetetraacetic acid tetra-

sodium salt dihydrate 

Sigma-Aldrich/Merck KGaA, Darmstadt, 

Germany 

Fetal bovine serum (FBS), gibco 
Life Technologies/Thermo Fisher Scientific, 

Waltham, MA, USA 

Formaldehyde solution, 4.5%, phosphate 

buffered, Chemsolute 

Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Hematoxylin solution according to Mayer, 

1 L 
Merck & Co., Inc., Kenilworth, NJ, USA 

Hydrochloric acid, 2 N 
Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Hydrogen Peroxide, 30% p.a., Rotipuran 
Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

Isoflurane CP 1 mL/mL 
CP-Pharma Handelsgesellschaft mbH, 

Burgdorf, Germany 

LongAmp Hot Start Taq 2X Master Mix New England Biolabs, Ipswich, MA, USA 

NEBNext FFPE DNA Repair Buffer New England Biolabs, Ipswich, MA, USA 

NEBNext FFPE DNA Repair Mix New England Biolabs, Ipswich, MA, USA 

Nuclease free water, 2 mL 
Integrated DNA Technologies, Inc. (IDT), 

Coralville, IA, USA 

Nuclease-free water, 25 mL New England Biolabs, Ipswich, MA, USA 
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PBS Dulbecco, powder Biochrom GmbH, Berlin, Germany 

Penicillin-Streptomycin solution 100X, 

100 mL 
Biowest LLC, Riverside, MO, USA 

Proteinase K solution, 20 mg/mL, 10 mL 
PanReac AppliChem GmbH/ITW Reagents, 

Darmstadt, Germany 

Quick T4 DNA Ligase New England Biolabs, Ipswich, MA, USA 

Ribonuclease, >70 U/mg, salt-free, protease-

free, 100 mg 

Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

RPMI 1640 Medium, gibco 
Life Technologies/Thermo Fisher Scientific, 

Waltham, MA, USA 

Sodium chloride, Fluka 
Honeywell International Inc., Charlotte, 

NC, USA 

Tris, Tris-HCl, p. a., Pufferan 
Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Tris-EDTA buffer solution, BioUltra for 

molecular biology, pH 7.4 

Sigma-Aldrich/Merck KGaA, Darmstadt, 

Germany 

Trypsin-EDTA 0.5% 10X, gibco 
Life Technologies/Thermo Fisher Scientific, 

Waltham, MA, USA 

Tween 20 
PanReac AppliChem GmbH/ITW Reagents, 

Darmstadt, Germany 

Ultra II End-prep enzyme mix New England Biolabs, Ipswich, MA, USA 

Ultra II End-prep reaction buffer New England Biolabs, Ipswich, MA, USA 

Vectashield Antifade Mounting Medium 
Biozol Diagnostica Vertrieb GmbH, Eching, 

Germany 

Xylene, 2.5 L, J. T. Baker Avantor, Inc., Radnor, PA, USA 

 

 

3.1.4 Laboratory-made buffers 

 

Buffer Composition 

Citrate buffer, pH 6.0 
10 mM Citric acid monohydrate 

in aqua bi-dest 

Elution buffer (16S rRNA sequencing) 

10 mM Tris-HCl, pH 8.0 

50 mM NaCl 

in aqua bi-dest 

TBS buffer, pH 7.4 

50 mM Tris-HCl 

150 mM NaCl 

in aqua bi-dest 

TBS-T buffer 
0.1% Tween 20 

in TBS buffer 

TE buffer, pH 9.0 

1 mM EDTA 

1 mM Tris-HCl 

in aqua bi-dest 
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3.1.5 Antibodies and probes 

 

Antibody/Probe, Specification Company, Headquarters 

Cytokeratin 5, clone XM26, monoclonal, 

mouse, IgG1 κ, NCL-L-CK5 
Leica Biosystems, Nussloch, Germany 

EUB338, 5’- GCT GCC TCC CGT AGG 

AGT -3’, 5’ and 3’ modification: Cyanine 3, 

100 pmol/µL 

biomers.net GmbH, Ulm, Germany 

GATA6, polyclonal, goat, IgG, AF1700 R&D Systems, Minneapolis, MN, USA 

Lipopolysaccharide (LPS), polyclonal, 

rabbit, IgG, PAB526Ge01 
Cloud-Clone Corp., Katy, TX, USA 

Non-specific complement probe, 5’- CGA 

CGG AGG GCA TCC TCA -3’, 5’ and 3’ 

modification: Cyanine 3, 100 pmol/µL 

biomers.net GmbH, Ulm, Germany 

 

 

3.1.6 Kits 

 

Kit, Specification Company, Headquarters 

16S Barcoding Kit 1-24 (SQK-16S024) 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Flow Cell Priming Kit (EXP-FLP002) 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

ImmPACT DAB Substrate Kit, Peroxidase 

(HRP) 

Vector Laboratories, Inc., Burlingame, CA, 

USA 

Ligation Sequencing Kit (SQK-LSK109) 
Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Native Barcoding Expansion 1-12 (EXP-

NBD104) 

Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Native Barcoding Expansion 13-24 (EXP-

NBD114) 

Oxford Nanopore Technologies Ltd., 

Oxford, UK 

OneStep PCR Inhibitor Removal Kit ZymoResearch, Irvine, CA, USA 

PureLink Microbiome DNA Purification Kit 
Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA 

QIAamp DNA Investigator Kit Qiagen, Venlo, the Netherlands 

Qubit dsDNA HS Assay Kit 
Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA 

RecoverAll Total Nucleic Acid Isolation Kit 
Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA 

Vectastain ABC Kit, peroxidase (Rabbit IgG) 

(PK-4001) (with normal goat serum) 

Vector Laboratories, Inc., Burlingame, CA, 

USA 

Vectastain ABC Kit, peroxidase, Goat IgG 

(PK-4005) (with normal rabbit serum) 

Vector Laboratories, Inc., Burlingame, CA, 

USA 
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Vectastain ABC Kit, peroxidase, Mouse IgG 

(PK-4002) (with normal horse serum) 

Vector Laboratories, Inc., Burlingame, CA, 

USA 

ZytoLight FISH-Tissue Implementation Kit ZytoVision GmbH, Bremerhaven, Germany 

 

 

3.1.7 Software and data bases 

 

Software Developer/Company, Headquarters 

Google Scholar Google LLC, Mountain View, CA, USA  

GraphPad Prism 9.4.0.673 GraphPad Software Inc., La Jolla, CA, USA 

ImageJ 1.50b open-source software 

Wayne Rasband, Research Services Branch, 

National Institutes of Health, Bethesda, MD, 

USA 

Leica LAS X – Application Suite X, Imaging 

and Analysis Software 

Leica Microsystems CMC GmbH, Wetzlar, 

Germany 

Microsoft Word/Excel/PowerPoint for 

Microsoft 365 MSO (Version 2208, Build 

16.0.15601.20660), 32 Bit 

Microsoft Corp., Redmond, WA, USA 

MinKNOW software v. 22.08.09 with 

Guppy toolkit 6.2.11 

Oxford Nanopore Technologies Ltd., 

Oxford, UK 

Olympus cellSens Entry v2.3 (Build 18987) Olympus Corp., Tokyo, Japan 

PubMed 

National Institute of Health (NIH)/National 

Library of Medicine/National Center for 

Biotechnology Information (NCBI), 

Bethesda, MD, USA 

R, RStudio v2.4 and later Posit PBC, Boston, MA, USA 

Web of Science Clarivate Analytics, Philadelphia, PA, USA 
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3.2 Methods 

 

3.2.1 Animal studies 

 

All animal experiments were performed in accordance with national and institutional laws 

and regulations. They were conducted in the “Zentrale Tierexperimentelle Einrichtung” 

(ZTE) at the University Medical Center Göttingen (UMG), Göttingen, Germany, after 

approval through the “Landesamt für Verbraucherschutz und Lebensmittelsicherheit” 

(LAVES) of Lower Saxony, Germany. The experiments involving KPC mice run under the 

application number 19/3085 and were entirely conducted within the scope of this thesis. 

Studies on the pancreatic microbiome of NMRI-Foxn1nu/nu (nude) mice orthotopically 

transplanted with human pancreatic tumor cells were performed with archived formalin-

fixed paraffin-embedded (FFPE) tissue samples. The transplantation experiments run under 

the application number 15/2057 and were conducted by Dr. Mengyu Tu and Lukas Klein, 

working group of Dr. Shiv Singh, Department of Gastroenterology, Gastrointestinal 

Oncology and Endocrinology, UMG, Göttingen, Germany. 

Mice were housed under constant conditions in the ZTE, including a light-dark-cycle of 

12 h/12 h, 23 ± 1 °C room temperature (RT), and 40-60% humidity. They were kept in 

individually ventilated cages with up to five animals of the same sex per cage and were fed 

regular vegetarian mouse chow together with normal tap water. Animal care takers and 

scientists handling the mice were both male and female.  

KPC mice were bred in the Animal Facility of the European Neuroscience Institute 

Göttingen, Göttingen, Germany, and transferred to the ZTE at the age of approximately 

5 weeks after weening and genotyping. Control (CTRL) mice of either LSL-KrasG12D/+;LSL-

Trp53R172H/+ or Pdx-1-Cre genotype were taken from the same litters. General termination 

criteria at which the experiments had to be discontinued by sacrificing the animals comprise 

overall morbidity, lethargy, signs of pain, rough fur, loss of self-care and social behavior, 

ascites, and cachexia as manifested by a body weight loss of 20%. Respecting these criteria, 

the end point (EP) was defined as 6 months or when tumor-bearing for CTRL and KPC mice, 

respectively. Subsequently, the EP varied for KPC mice. For each batch, the age range is 

indicated separately in the respective results section.  
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The orthotopic transplantation of immortalized human PDAC cell lines Capan-2, MiaPaCa2, 

and Capan-1, the treatment of the Capan-1-transplanted animals with TNFα and H2O, 

respectively, and the sacrifice of the animals including tumor isolation was performed by Dr. 

Mengyu Tu and Lukas Klein as previously published (Tu et al., 2021). The FFPE tumor 

samples were received and further processed as described in the following. 

 

3.2.2 Sample acquisition, processing, and storage 

 

Four different types of samples were used in this thesis: snap-frozen fecal samples of KPC 

and CTRL mice, snap-frozen pancreatic samples (bulk tumor and healthy control pancreas, 

tumor center and tumor periphery) of KPC and CTRL mice, FFPE pancreatic samples (tumor 

with adjacent normal pancreas, TNFα- and H2O-treated tumor) from NMRI-Foxn1nu/nu mice 

orthotopically transplanted with different human PDAC cell lines, and FFPE pancreatic 

samples (tumor and healthy control pancreas) from human PDAC patients. 

Feces were collected from KPC and CTRL mice at the age of 6 weeks (6w), 12 weeks (12w), 

and the EP. Therefore, the animals were placed separately in clean cages without embedding 

under the hood until defecation. EP feces were directly taken from the colon at sacrifice. 

Importantly, only feces that were not in contact with urine were collected in cryovials and 

subsequently snap-frozen in liquid nitrogen. The samples were stored at -80 °C until further 

use. 

Tumor and healthy pancreas from KPC and CTRL mice were sampled at EP sacrifice. After 

isoflurane anesthesia and cervical dislocation, organs were harvested from the animals and 

either snap-frozen or formalin-fixed. Regarding the pancreas, one part was transferred to 

cryovials and snap-frozen in liquid nitrogen for subsequent DNA extraction. These vials 

were then stored at -80 °C until further use. The other part was fixed in 4.5% formaldehyde 

(formalin) for at least 24 h and subsequently dehydrated in an ethanol (EtOH) and xylene 

series of increasing percentage. This dehydration process was performed automatically 

overnight in a benchtop tissue processor. The program is shown in table 1. Eventually, these 

samples were embedded in paraffin and stored in blocks at RT protected from light until 

further use.  
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Table 1: Automated overnight program of the semi‐enclosed Leica 

TP1020 benchtop rotary tissue processor for tissue dehydration. 

Solution Time [hh:mm] 

Formalin 01:15 

55% EtOH 00:30 

85% EtOH 00:45 

96% EtOH 01:00 

99% EtOH 1 01:15 

99% EtOH 2 01:10 

99% EtOH 3 01:30 

Xylene 1 00:20 

Xylene 2 00:30 

Xylene 3 01:10 

Liquid paraffin 1 00:30 

Liquid paraffin 2 00:45 

Liquid paraffin 3 01:30 

 

Large tumors of KPC mice were cut in half and used specifically to study the microbiome of 

tumor center and periphery if the tumor showed a fibrotic and necrotic whitish center 

macroscopically clearly distinguishable from the softer pinkish periphery. Of one tumor half, 

tumor center and periphery were carefully separated with a sterile scalpel in a sterile petri 

dish and transferred into two separate cryovials, snap-frozen in liquid nitrogen and stored at 

-80 °C until further use. The other tumor half was formalin-fixed and paraffin-embedded as 

described above with the sectional plane horizontally embedded in order to obtain full cross 

sections of the entire tumor. The paraffin blocks were stored at RT protected from light until 

further use. 

Tumor samples from NMRI-Foxnnu/nu mice orthotopically transplanted with human PDAC 

cell lines Capan-2 and MiaPaCa2, as well as Capan-1 with additional TNFα or H2O 

treatment, respectively, were directly obtained as FFPE samples in paraffin blocks. All 

preceding work was done and the samples kindly provided by Dr. Mengyu Tu and Lukas 

Klein (Tu et al., 2021).  

Human PDAC and corresponding healthy pancreas from the same patients were kindly 

provided as FFPE samples in separate paraffin blocks by Prof. Dr. Philip Ströbel and Dr. 

Hanibal Bohnenberger from the Institute of Pathology, UMG, Göttingen, Germany. The 

samples were taken from patients at surgery by Prof. Dr. Michael Ghadimi, Prof. Dr. Jochen 
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Gaedcke and Prof. Jens Jakob, Department of General, Visceral and Pediatric Surgery, UMG, 

Göttingen, Germany. Sampling was approved by the ethics committee (application number 

5/11/19) within the scope of the P-MAPS study (NCT04777812).  

Required FFPE samples were cut at 4 µm thickness using a microtome. The sections were 

dried at 37 °C overnight and subsequently subject to various staining methods described in 

the following. 

 

3.2.3 Hematoxylin and eosin staining 

 

To perform hematoxylin and eosin (H&E) staining, the tissue sections were first subject to 

paraffin removal with xylene (table 2). Secondly, rehydration of the tissue was performed in 

an EtOH series of decreasing percentages (table 2). Then, the slides were quickly washed in 

aqua bidest followed by 6 min incubation in double-filtered hematoxylin. From there, they 

were transferred to 0.2% acetic acid for 15 s. Subsequently, the sections were placed under 

running tap water for about 6 min until the hematoxylin turned blue. Next, they were 

incubated in eosin for 3 min, then washed again in tap water for 30 s. Afterwards, the tissue 

was again dehydrated by passing an EtOH series of increasing percentages followed by 

incubation in xylene (table 2).  

 

Table 2: Paraffin removal, tissue rehydration and dehydration of tissue 

sections for hematoxylin and eosin staining. 

Step Solution Time [mm:ss] 

Paraffin removal 
Xylene 1 10:00 

Xylene 2 10:00 

Tissue rehydration 

99% EtOH 01:00 

96% EtOH 01:00 

70% EtOH 01:00 

Tissue dehydration 

70% EtOH 00:30 

96% EtOH 01:30 

99% EtOH 02:00 

EtOH removal 
Xylene 1 10:00 

Xylene 2 10:00 
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Finally, the tissue sections were mounted with Cytoseal 60 mounting medium and a cover 

slip of adequate size. The slides were left to set under the hood overnight before prolonged 

microscoping and image acquisition using an Olympus light microscope with camera 

controlled by the Olympus cellSens Entry software v2.3. 

 

3.2.4 Immunohistochemistry 

 

Immunohistochemistry (IHC) was performed on murine and human pancreatic tissue 

sections targeting LPS, GATA binding protein 6 (GATA6), and cytokeratin 5 (CK5). For all 

three targets, the basic protocol was the same. Differences are listed in table 3. Initially, the 

tissue sections were subject to paraffin removal and tissue rehydration for which solutions 

and times are indicated in table 4. Then, the slides were quickly washed in tap water. Next, 

epitope unmasking was performed by heat in the respective buffer (table 3). Therefore, the 

slides were cooked for approximately 15 min in the buffer in a microwave with a subsequent 

cool down for 10 min inside the microwave. Eventually, the cuvette containing buffer and 

slides was transferred to ice for further cool down. Thereafter, the slides were rinsed three 

times in tap water before immersing them in freshly prepared 3% H2O2 for 10 min at RT to 

quench endogenous peroxidases. Again, they were briefly rinsed three times in tap before 

aligning them in a Shandon Sequenza immunostaining slide rack with matching plastic 

cover plate assemblies. The formation of air bubbles between slide and cover plate was 

explicitly precluded. Next, the slides were washed three times with Tris-buffered saline 

(TBS) with 0.1% Tween 20 (TBS-T) wash buffer. Subsequently, unspecific antigen blockage 

was carried out by adding 200 µL TBS-T with 10% normal serum (table 3) and 1% bovine 

serum albumin (BSA) to each slide and incubating it for 1 h at RT. Slides were again rinsed 

once with TBS-T wash buffer before 200 µL of the respective antibody in the respective 

dilution (table 3) in TBS-T with 1% BSA was added and incubated at 4 °C overnight. The 

next day, the slides were washed three times with TBS-T before 200 µL of the respective 

secondary antibody (table 3) from the respective Vectastain ABC Kit diluted 1:200 in TBS-T 

with 1% BSA were added to each slide. Subsequently, the tissue sections were incubated for 

1 h at 37 °C. Meanwhile, the AB complex to enhance the antibody signal was made from 

10 µL of each reagent A and B from the same Vectastain kit and 1 mL TBS-T. The 
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components were merged in a reaction tube which was then carefully inverted. The mix was 

incubated for 30 min at RT. Finally, the tissue sections were washed again three times with 

TBS-T before 200 µL of the AB complex were added per slide. After another 1 h incubation at 

RT, the slides were once more subject to three TBS-T washes before being disassembled from 

the cover plate assemblies in the slide rack and quickly washed in tap water three times. 

Diaminobenzidine (DAB) working solution was prepared from 30 µL DAB chromogen per 

1 mL DAB diluent from the ImmPACT DAB Substrate Kit, Peroxidase (HRP) and mixed well 

by pipetting. Approximately 100 µL DAB working solution or a sufficient volume to cover 

the entire tissue section was directly added on top of each slide retrieved from the tap water 

rinse. The DAB working solution was incubated on the tissue to develop for the respective 

time indicated in table 3 before the reaction was stopped by placing the slides in tap water.  

 

Table 3: Specification of parameters for antibodies against the respective IHC targets. 

Target Buffer Serum 
Primary antibody 

dilution 

Secondary 

antibody 

Development 

time [mm:ss] 

LPS citrate goat 1:50 anti-rabbit 04:00 

GATA6 citrate rabbit 1:350 anti-goat 03:30 

CK5 TE horse 1:750 anti-mouse 02:00 

 

Eventually, counterstaining was performed by 3 min incubation in double-filtered 

hematoxylin. The sections were placed under running tap water for about 6 min until the 

hematoxylin turned blue followed by dehydration of the tissue sections in an EtOH series 

with increasing concentrations and xylene incubation (table 4). Lastly, the tissue sections 

were mounted with Cytoseal 60 mounting medium and a cover slip of adequate size. The 

slides were left to set under the hood overnight before prolonged microscoping and image 

acquisition using an Olympus light microscope with camera controlled by the Olympus 

cellSens Entry software v2.3. Quantification was carried out using a color deconvolution 

macro in ImageJ 1.50b open-source software. Plotting and statistical evaluation were 

performed in GraphPad Prism 9.4.0.673, the latter by checking for normal distribution using 

the Shapiro-Wilk test and subsequently calculating the appropriate significance test. GATA6 

and CK5 stainings were imaged with an Olympus whole slide scanner for overview scans. 

After excluding staining artifacts, positive-stained cells were quantified using the QuPath 
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v0.4.3 software for subtyping. Z-scores were calculated from the percentages. The CLA, HYB 

and BL subtypes were discriminated by dividing the z-scores in three quantiles and 

comparing those of GATA6 and CK5. The subtyping results were entered in the metadata of 

the human FFPE tumor samples sequencing data.  

 

Table 4: Paraffin removal, tissue rehydration and dehydration of tissue 

sections for immunohistochemistry. 

Step Solution Time [mm:ss] 

Paraffin removal 
Xylene 1 10:00 

Xylene 2 10:00 

Tissue rehydration 

99% EtOH 1 04:00 

99% EtOH 2 04:00 

96% EtOH 04:00 

80% EtOH 04:00 

70% EtOH 04:00 

Tissue dehydration 

70% EtOH 03:00 

80% EtOH 03:00 

96% EtOH 03:00 

99% EtOH 03:00 

EtOH removal 

Xylene 1 05:00 

Xylene 2 05:00 

Xylene 3 05:00 

Xylene 4 05:00 

 

3.2.5 Fluorescence-in situ-hybridization 

 

To visualize the bacterial 16S rRNA gene fluorescence-in situ-hybridization (FISH) was 

conducted. Therefore, the ZytoLight FISH-Tissue Implementation Kit was used according to 

the manufacturer’s instructions with minor modifications. Two slides of each sample were 

processed in order to stain one with the target probe and the other with the control probe. To 

dewax, the tissue slides were incubated in a hybridizer for 10 min at 70 °C in addition to 

subsequent xylene incubation (table 5). Next, the tissue was rehydrated in an EtOH series of 

decreasing concentrations (table 5). It was then washed twice in aqua bidest for 2 min and 

subsequently incubated for 15 min in the kit’s Heat Pretreatment Solution Citric preheated to 

98 °C. Again, the slides were transferred to aqua bidest and washed twice for 2 min. Using a 

clean Kimwipe, the slides were carefully dried and transferred to the hybridizer. Proteolysis 
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was performed by applying three drops of the kit’s Pepsin Solution directly to each tissue 

section and incubating them for 10 min at 37 °C. Afterwards, the slides were washed in the 

kit’s Wash Buffer SSC for 5 min and in aqua bidest for 1 min. Next, the tissue was subject to 

dehydration via an EtOH series (table 5). Eventually, the slides were air-dried before 3 µL of 

the respective probe, EUB338 or non-specific complement probe (nonEUB338), were applied 

directly onto the tissue sections. The probe sequences had been published previously 

(Amann et al., 1990; Prudent and Raoult, 2019; Wallner et al., 1993). To spread out the probe 

evenly, the tissue sections were covered with cover slips of adequate size without 

introducing air bubbles, and the edges were sealed with Fixogum. Then, the slides were 

transferred to the hybridizer again and incubated for 10 min at 75 °C to denature the DNA. 

Thereafter, wet stripes were placed in the hybridizer to keep the interior moist and prevent 

the slides from drying out. Finally, the slides were incubated at 37 °C overnight to hybridize 

the probes to the DNA. The next day, the slides were degummed and transferred to the kit’s 

1X Wash Buffer A pre-warmed to 37 °C. The wash buffer-containing cuvette was carefully 

shaken after approximately 2 min to facilitate the cover slip to come off. Then, the slides were 

again washed twice for 5 min in 1X Wash Buffer A pre-warmed to 37 °C. Subsequently, the 

tissue was dehydrated according to the EtOH series in table 5 and air-dried protected from 

light.  

Table 5: Paraffin removal, tissue rehydration and dehydration of tissue 

sections for fluorescence-in situ-hybridization. 

Step Solution Time [mm:ss] 

Paraffin removal 
Xylene 1 05:00 

Xylene 2 05:00 

Tissue rehydration 

99% EtOH 1 05:00 

99% EtOH 2 05:00 

90% EtOH 02:00 

70% EtOH 02:00 

Tissue dehydration 

70% EtOH 01:00 

90% EtOH 01:00 

99% EtOH 01:00 

 

Finally, the tissue sections were mounted with one drop of Vectashield Antifade Mounting 

Medium supplemented with Actinomycin D-Mannitol (1:20) and DAPI (1:1000) and a cover 

slip of adequate size. The slides were kept at 4 °C protected from light and images were 
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acquired using a Leica fluorescence microscope with camera controlled by the LAS X 

software (n = 4 conditions, n = 10 slides per condition, n = 5 images per slide). Quantification 

was carried out manually by counting light signals in a total of 200 image fields (200x 

magnification). Plotting and statistical evaluation were performed in GraphPad Prism 

9.4.0.673, the latter by checking for normal distribution using the Shapiro-Wilk test and 

subsequently calculating the appropriate significance test. 

 

3.2.6 DNA extraction from snap-frozen pancreatic bulk tissue (Qiagen) 

 

To establish the most efficient and reliable microbial DNA extraction method for the 

different sample types, particularly the challenging pancreatic tumor tissue with its high 

fibrotic content and low microbial biomass, two different DNA extraction kits and protocols 

were tested. First, the Qiagen QIAamp DNA Investigator Kit with its protocol “Isolation of 

Total DNA from Tissues” was assessed. In addition to the establishment sample batch, a 

negative control (NTC) was introduced to control for environmental contamination using 

only consumables, buffers, and reagents but no true sample material (buffer control). Other 

than that, it was treated the same way. The deep-frozen tissue samples were placed on a 

sterile petri dish on dry ice to avoid thawing of the entire sample. Using sterile scalpels, 

small pieces were cut off, transferred to a 1.5 mL reaction tube and 180 μL of the kit’s Buffer 

ATL were added immediately. Additionally, 20 µL proteinase K from the kit were added and 

the tube mixed in pulses with the help of a vortex for approximately 15 s. Then, the tubes 

were put on a thermomixer set to 56 °C and 650 rpm overnight for most efficient tissue lysis. 

The next day, the tubes were briefly centrifuged to collect the liquid drops in the lid before 

200 µL of the kit’s Buffer AL were added to each tube. These were then pulse-vortexed for 

approximately 15 s. Next, 200 µL 99% EtOH were added, the tubes again quickly pulse-

vortexed and incubated for 5 min at RT. Subsequently, they were briefly spun down to 

collect the lysate before it was transferred to a QIAamp MinElute column in a collection tube. 

In case there was a viscous part of the lysate remaining in the tube, it was discarded in order 

to prevent obstruction of the column. The column was centrifuged at 6,000 × g for 1 min. 

After this step, the collection tube was exchanged and the flow-through discarded. Next, the 

membrane-bound DNA was washed several times. First, 500 μL of the kit’s Buffer AW1 were 
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added to the column which was again centrifuged at 6,000 × g for 1 min and assembled with 

a new collection tube. This step was repeated with 700 µL Buffer AW2 from the kit and with 

700 µL 99% EtOH. Eventually, the column was once more centrifuged at 15,000 × g for 3 min 

to free the membrane from residual EtOH. Then, the column was transferred to a new 1.5 mL 

reaction tube and further dried for 3 min at 56 °C with the lid open to allow residual EtOH to 

evaporate. Finally, 50 μL of the kit’s Buffer ATE were directly applied to the membrane, 

incubated for 5 min at RT and the column centrifuged at 14,000 × g for 1 min. The eluted 

DNA was stored at -20 °C until further use. 

 

3.2.7 DNA extraction from snap-frozen pancreatic bulk tissue and feces 

(Invitrogen) 

 

The second kit tested for consistent DNA extraction was the Invitrogen PureLink 

Microbiome DNA Purification Kit. The user manual was adjusted according to 

recommendations by the International Human Microbiome Standard (IHMS). The resulting 

protocol was published and referred to as “Invitrogen IHMS” (Ammer-Herrmenau et al., 

2021b). Aside from samples used to establish the method (Results Chapter 1), all snap-frozen 

tissue and feces samples in this thesis were isolated according to this protocol. With each 

sample batch to be isolated, at least 1-2 NTCs were introduced to control for environmental 

contamination using only consumables, buffers, and reagents but no true sample material 

(buffer controls). Apart from that, they were not treated differently than real samples. To 

prepare for the protocol, small pieces were cut off the snap-frozen bulk tissue samples on a 

sterile petri dish on dry ice using sterile scalpels and transferred to 2 mL bead tubes. Feces 

were directly transferred to bead tubes (2 feces from each sample). To each tube, 600 µL of 

the kit’s Lysis Buffer S1 and 100 µL Lysis Enhancer S2 were added. Then, the tubes were 

vortexed vigorously before they were incubated on a thermomixer shaking at 850 rpm for 

15 min at 95 °C. Thereafter, the sample-containing bead tubes were transferred to a tissue 

homogenizer and a program at 6500 rpm was run twice with a 5 min break for cool down to 

RT between both cycles (table 6). After this mechanical disruption of the samples, they were 

centrifuged at 16,000 × g for 5 min at 4 °C. Subsequently, the supernatant was transferred to 

2 mL low binding reaction tubes. Then again, 300 µL Lysis Buffer S1 and 50 µL Lysis 

Enhancer S2 were added to the bead tubes in which residual solid parts of the samples 
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remained and the same process was repeated. After centrifuging, the supernatant was added 

to the previous supernatant in the 2 mL low binding tubes from the first lysis round. Next, 

260 µL 10 M ammonium acetate were added to these tubes which were then inverted to mix. 

Subsequently, they were incubated for 10 min on ice followed by centrifugation at 16,000 × g 

for 10 min at 4 °C. The resulting supernatant was transferred to new 2 mL low binding tubes 

without disturbing the pellet of debris. To each tube, 250 µL Cleanup Buffer S3 from the kit 

were added and the tubes were immediately vortexed to ensure a thorough mixing of the 

contained components. Again, incubation for 10 min on ice and centrifugation at 16,000 × g 

for 10 min at 4 °C followed before the supernatant was transferred to new 2 mL low binding 

tubes without touching the pellet. Subsequently, DNA precipitation was induced by adding 

1 mL isopropanol, vortexing the tubes thoroughly, and incubating them for at least 30 min on 

ice. Afterwards, the precipitated DNA was pelleted by centrifugation at 16,000 × g for 15 min 

at 4 °C. The supernatant was discarded, and the remaining DNA pellet was washed with 

300 µL 70% EtOH. To prevent discarding loosened DNA after this washing step, the tubes 

were again centrifuged at 16,000 × g for 5 min at 4 °C. The EtOH was then discarded. With 

the lid open, the tubes were turned upside down and placed on clean Kimwipes to dry the 

DNA pellet for approximately 15 min. Thereafter, the pellet was resuspended in 100 µL 

sterile filtered Tris-EDTA (TE) buffer. For fecal samples which returned a very firm large 

pellet, the TE buffer was incubated for 10 min at RT on the DNA pellet to solvate it before 

resuspending it by pipetting. Next, 2 µL DNase-free RNase (10 mg/mL) were directly added 

to the resolved DNA and incubated for 30 min at 37 °C. Then, both 15 µL proteinase K and 

200 μL of the kit’s Binding Buffer S4 were added to the samples, the tubes were vortexed and 

incubated for 10 min at 65 °C. Then, 200 µL 99% EtOH were added and the tubes again 

vortexed. Eventually, the sample mix was transferred to a spin column with collection tube 

from the kit and centrifuged at 14,000 × g for 1 min at 4 °C. Then, the sample was washed 

again with 200 µL 99% EtOH which was incubated for 3 min before the column was again 

centrifuged at 14,000 × g for 1 min at 4 °C. Thereafter, the flow-through-containing tube was 

discarded, and the column placed into a new collection tube. Subsequently, 500 µL of the 

kit’s Wash Buffer S5 were added to the column which was again centrifuged at 14,000 × g for 

1 min at 4 °C. The flow-through-containing tube was once more discarded, the column 

placed into a new collection tube and again centrifuged at 14,000 × g for 1 min at 4 °C to 

remove residual wash buffer. Finally, the columns were placed in new 1.5 mL low binding 
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reaction tubes and 55 μL of the kit’s Elution Buffer S6 were directly added to the center of 

each column membrane. After an incubation for 5 min, the DNA was eluted from the 

membrane via centrifugation at 14,000 × g for 1 min at 4 °C. The samples were stored at -20 °C 

until further use.  

Table 6: Precellys 24 Tissue Homogenizer program for DNA extraction 

from snap-frozen samples. 

Step Revolutions [rpm] Time [mm:ss] 

Shake 6500 00:30 

Pause 0 00:30 

Shake 6500 00:30 

Pause 0 00:30 

Shake 6500 00:30 

Pause 0 00:30 

Cool down 0 05:00 

Shake 6500 00:30 

Pause 0 00:30 

Shake 6500 00:30 

Pause 0 00:30 

Shake 6500 00:30 

Pause 0 00:30 

 

3.2.8 DNA extraction from FFPE pancreatic tissue 

 

To extract DNA from FFPE orthotopic and human patient pancreatic tissue, the Invitrogen 

RecoverAll Total Nucleic Acid Isolation Kit was applied with the protocol “RecoverAll 

Multi-Sample RNA/DNA Workflow” which allows sequential extraction of RNA and DNA 

from FFPE samples. The manual was followed with some adaptations. However, only the 

DNA was made use of within the scope of this thesis wherefore only the corresponding parts 

of the protocol are elucidated in the following. Using H&E stainings of each sample and a 

light microscope, the area of interest was located and circled with a marker pen on the cover 

slips. Regarding FFPE orthotopic samples, tumor and adjacent normal tissue were located on 

the same slide, so both were marked. Concerning FFPE patient samples, tumor and normal 

pancreatic samples were embedded separately wherefore only on the tumor slides the area 

of interest had to be marked. This was done by pathologists. From the normal pancreatic 

samples, the entire section was used. The paraffin blocks were cut at 10 µm and dried 

overnight at 37 °C. Depending on the size of the tissue area of interest, DNA was isolated 



Material and methods | 

49 | 

 

from 2-8 sections per sample. The initial step of the protocol involving paraffin removal was 

skipped. Regarding NTCs, not only buffer controls but also paraffin controls were 

introduced since paraffin as supporting material is a considerable source of contamination. 

The kit’s Digestion Buffer was diluted as suggested by mixing 25 µL Digestion Buffer and 

75 µL nuclease-free H2O per sample. 100 µL of this dilution were aliquoted to the 

corresponding number of 1.5 mL low binding reaction tubes. Then, the 10 µm sections were 

aligned in registry with their corresponding marked H&E stainings if applicable. With the 

help of a sterile scalpel which was pre-wetted by dipping it into the diluted Digestion Buffer, 

the tissue was scratched of the slide. The tissue was collected in a cohesive mass and 

transferred to the reaction tube containing the Digestion Buffer with the scalpel. For each 

sample, a new sterile scalpel was used. Paraffin controls were prepared by scratching off 

paraffin from around the tissue which was exactly treated like the paraffin-embedded true 

sample material. For each FFPE orthotopic experiment, 6 paraffin controls and 2 buffer 

controls to control for environmental contamination using only consumables, buffers, and 

reagents but no paraffin or tissue were introduced. For the FFPE human patient sample 

experiment, one paraffin control from each sample (n = 24 tumor paraffin controls, n = 24 

normal pancreas paraffin controls) and two buffer controls per DNA isolation batch (n = 10 

buffer controls) were introduced. After collecting the respective material in the Digestion 

Buffer, 4 μL of the kit’s Protease were added. The samples were then mixed by gently 

flicking the tubes. They were quickly spun down in a tabletop centrifuge to collect droplets 

in the lid. Sample material that sticked to the walls of the tube was pushed back down into 

the Digestion Buffer using a sterile pipet tip. Subsequently, the samples were incubated for 

1 h at 55 °C. Thereafter, the tubes were again quickly spun down to collect condensation 

before they were subject to incubation at 90 °C for 1 h followed by another brief 

centrifugation. Next, 120 µL of Isolation Additive from the kit were added and mixed with 

the sample by pipetting. The mixture was then transferred to a column placed in a collection 

tube. Here, Filter Cartridges with Collection Tubes from the RecoverAll Total Nucleic Acid 

Isolation Kit were used instead of PureLink RNA Mini Columns and PureLink Viral 

Collection Tubes as originally suggested in the “RecoverAll Multi-Sample RNA/DNA 

Workflow”. Then, the columns were centrifuged at 10,000 × g for 30 s. The flow-through was 

subsequently used for RNA isolation while thereafter DNA was recovered from this column. 

Therefore, 600 µL Wash 1 Buffer from the kit were applied to the column. Again, 
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centrifugation at 10,000 × g for 30 s was carried out. The flow-through was discarded and the 

column put back into the same collection tube. Next, the column was washed with 500 µL 

Wash 2/3 Buffer from the kit followed by centrifugation at 10,000 × g for 30 s. The flow-

through was again discarded and the column reinserted into the collection tube. This wash 

step involving Wash 2/3 Buffer was repeated. Then, the column was once more centrifuged 

to remove residual fluid (14,000 × g, 2 min) and transferred to a 1.5 mL low binding reaction 

tube. A respective amount of the kit’s elution buffer sufficient for the respective number of 

samples was aliquoted to a 2 mL reaction tube and pre-heated to 95 °C. The pipet tip was 

pre-wetted three times with the hot elution buffer before 50 µL were directly added to the 

center of the column. Incubation for 1 min at RT was followed by centrifugation at 14,000 × g 

for 1 min. The eluted DNA was stored at -20 °C until further use.  

 

3.2.9 DNA extraction from human pancreatic cancer cell lines 

 

As a control experiment to the analysis of tumors derived from orthotopically transplanted 

Capan-2 and MiaPaCa2 cells, DNA was extracted directly from these cultured human 

pancreatic cancer cell lines (n = 5 from each cell line) wherefore the Invitrogen IHMS DNA 

extraction protocol described in 3.2.7 was applied. The cells were cultured under sterile 

conditions in T75 cell culture flasks at 37 °C with 5% carbon dioxide. Capan-2 cells were 

supplied with Roswell Park Memorial Institute (RPMI) 1640 medium with 10% fetal calf 

serum (FCS) and 1% penicillin/streptomycin (P/S). MiaPaCa2 cells were grown in Dulbecco’s 

Modified Eagle Medium (DMEM) with 10% FCS and 1% P/S. DNA was isolated from 5 

different passages of the cells when they reached about 90% confluency in the T75 flask. 

Additionally, several NTCs were introduced, namely supernatant (Capan-2 n = 6, MiaPaCa2 

n = 5), medium only (Capan-2 n = 6, MiaPaCa2 n = 4), and buffer controls (n = 3). 550 µL of 

both supernatant and pure medium were aliquoted from each passage in 1.5 mL reaction 

tubes before cells were harvested for DNA extraction. These NTCs were frozen at -20 °C until 

DNA extraction. After collecting the NTCs, the cells were washed with phosphate-buffered 

saline (PBS) and detached by incubation with 2 mL trypsin at 37 °C for 5 min. The enzymatic 

digestion was stopped by adding 8 mL medium to the flask. The cell suspension was 

transferred to a 15 mL Falcon tube and counted with the help of an automatic cell counter. 

1 mL of the suspension was aliquoted to 1.5mL reaction tubes and stored at -20 °C until 
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further use. At the time of DNA extraction, supernatant and medium NTCs were either 

directly subject to DNA extraction or first centrifuged at 1,200 rpm for 3 min to extract DNA 

from a putative contamination pellet after disposal of the liquid. If directly processed, 500 µL 

of the NTC aliquot were transferred to a bead tube and 600 µL Lysis Buffer S1 from the 

Invitrogen kit were added. If centrifuged first, the putative contamination pellet was 

resuspended in 600 µL Lysis Buffer S1 which was then transferred to a bead tube. The buffer 

controls were prepared from consumables, buffers, and reagents only but treated exactly like 

sample material. The cell samples were centrifuged at 1,200 rpm for 3 min, the supernatant 

was discarded, and the cell pellet was resuspended in 600 µL Lysis Buffer S1 which was then 

transferred to a bead tube. Subsequently, the Invitrogen IHMS protocol (3.2.7) was 

conducted. The eluted DNA was stored at -20 °C until further use. 

 

3.2.10 DNA purification and quantification 

 

All DNA samples from pancreatic bulk tissue, feces, FFPE tissue, and cells were purified 

prior to sequencing wherefore the ZymoResearch OneStep PCR Inhibitor Removal Kit was 

used. To prepare, the column containing a powder matrix was inserted into provided 

collection tubes and 600 μL of the kit’s Prep Solution was added to the column. Then, it was 

centrifuged at 8,000 × g for 3 min. The collection tube containing the flow-through was 

discarded and the column was inserted to a 1.5 mL low binding reaction tube. The entire 

DNA sample was added to the prepped column before it was centrifuged at 16,000 × g for 

3 min. The recovered DNA was then ready for downstream analysis. Primarily, purity and 

concentration of the samples were determined by means of a Nanophotometer and Qubit 

fluorometer, respectively. To assess purity, the A260/A280 and A260/A230 ratios referring to 

the quotients of absorbance at 260 nm and 280 nm or 230 nm, respectively, were looked at 

with the photometer by applying 1 µL shortly vortexed DNA sample to it. Regarding DNA, 

ratios of 1.8 and 2.0-2.2, respectively, indicate purity. For reasons of accuracy, the 

fluorometer was employed with the Qubit dsDNA HS Assay to assess DNA contents of the 

samples. For orientation, the concentration calculated by the photometer was noted down as 

well. At >120 ng/µL, the sample was diluted 1:10 prior to measuring it in the fluorometer. 

Therefore, 5 µL DNA and 45 µL of the respective elution solution were mixed in a new 

1.5 mL low binding reacting tube. A working solution was prepared by diluting the 
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concentrated assay reagent (fluorescent dye) 1:200 with the provided dilution buffer 

corresponding to 1 µL and 199 µL per sample to be measured. 199 µL of this working 

solution were aliquoted to the respective number of Qubit Assay tubes and 1 µL of the 

(diluted) DNA sample was added. The assay tubes were quickly vortexed, then incubated 

for 2 min in the dark. Eventually, they were briefly vortexed again just before inserting them 

into the fluorometer for measurement. The assessed DNA concentration is required for 

subsequent library preparation. 

 

3.2.11 Oxford Nanopore 16S rRNA gene sequencing 

 

Due to their low microbial biomass, all DNA samples except for feces were subject to 16S 

rRNA gene sequencing via third generation sequencing by Oxford Nanopore Technologies. 

The ONT 16S Barcoding Kit 1-24 (SQK-16S024) was employed according to the protocol “16S 

Barcoding Kit 1-24 (SQK-16S024), Version: 16S_9086_v1_revJ_14Aug2019/Last update: 

03/12/2020”. In the establishment experiments, different amounts of input DNA (10 ng, 50 ng, 

100 ng) and different numbers of polymerase chain reaction (PCR) cycles (25, 35) were tested. 

In all following experiments, 50 ng input DNA and 35 PCR cycles were applied for library 

preparation. For each sample to be sequenced, 50 ng DNA were transferred to a PCR tube 

and the volume was adjusted to 10 µL with nuclease-free H2O. In case the concentration was 

too low, the maximum volume of 10 µL DNA was used. This also applied to the NTCs. In the 

experiment involving FFPE human patient samples, additional PCR NTCs were introduced 

with every sample batch that underwent library preparation. To this end, 10 µL nuclease-free 

H2O were used instead of DNA eluate (no template control). The PCR tube holding the 10 µL 

input DNA was gently flicked, then shortly centrifuged to collect all liquids at the bottom. 

Subsequently, a master mix from 5 µL nuclease-free H2O and 25 µL LongAmp Hot Start Taq 

2X Master Mix per sample (includes NTCs) to be sequenced was prepared. 30 µL of this 

master mix were distributed to each input DNA and again the tube was gently flicked 

followed by a quick spin down. Next, for each sample, an individual barcode was selected 

from the kit. The barcodes were mixed by pipetting up and down approximately ten times. 

10 µL of each barcode were transferred to its sample and the reaction was mixed thoroughly 

by pipetting up and down several times. Each barcode is attached to a specific 16S rRNA 

gene primer (27F and 1492R) and holds a 5’ tag that later enables ligase-free attachment of 
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Rapid Sequencing Adapters. Subsequently, the PCR tubes were transferred to a thermocycler 

and the program displayed in table 7 was run. After the PCR, the samples were transferred 

to 1.5 mL low binding reaction tubes. AMPure XP beads were resuspended vigorously by 

vortexing. 30 µL beads were added to and mixed with the sample by pipetting until the 

beads were evenly submerged. Subsequently, the tubes were placed on a spinning rotator 

mixer and the samples incubated for 5 min to ensure proper annealing of the DNA fragments 

to the beads. Meanwhile, 500 µL 70% EtOH per sample were freshly prepared with nuclease-

free H2O. After the incubation on the rotator mixer, the samples were briefly spun down to 

collect all liquids at the bottom of the tubes which were then transferred to a magnet and 

kept there. With the beads pelleting to the wall of the tube facing the magnet, the 

supernatant was carefully pipetted off and discarded. The pellet was washed with 200 µL 

70% EtOH which was again removed and discarded. This washing step was repeated once. 

Then, the tubes were quickly spin down und placed back on the magnet. Residual EtOH was 

pipetted off and the bead pellets holding the DNA samples were dried for approximately 

30 s with the tube lids open. These were then removed from the magnet and the bead pellet 

resuspended in 10 µL 10 mM Tris-HCl (pH 8.0) with 50 mM NaCl buffer. The samples were 

incubated for 2 min before they were put back on the magnet. When the eluates were cleared 

from beads, 10 µL containing DNA freed from other PCR components were retained and 

transferred to new 1.5 mL low binding reaction tubes. The DNA concentration was measured 

as elucidated in 3.2.10 using a Qubit fluorometer and 1 µL eluate. Based on the 

concentrations, the samples were pooled in a new 1.5 mL low binding tube in a total volume 

of 10 µL. As far as possible, equal amounts of a maximum of 12 samples were multiplexed. 

True samples and NTCs were multiplexed in separate pools but conditioned samples and 

control-treated samples were run together in one pool on one flow cell (FC) whenever 

possible in order to avoid batch effects. The pool of barcoded DNA samples was provided 

with 1 µL rapid adapters (RAP) from the kit. The tube was flicked to mix and subsequently 

shortly spun down. Then, the reaction was incubated for 5 min at RT before transferred to ice 

until further use. Meanwhile, the FC was prepared using the ONT Flow Cell Priming Kit 

(EXP-FLP002). It is essential to avoid the introduction of air into the FC during the entire 

process. True samples were run on R9.4.1 FCs while NTCs were run on FLO-FLG001 Flongle 

FCs. For R9.4.1 FCs, a priming mix was prepared by adding 30 µL Flush Tether from the kit 

directly to one vial of Flush Buffer from the kit which was then mixed by vortexing. These 
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FCs require the removal of remaining air from the priming channel prior to introducing 

800 µL of the priming mix via the priming port. During a 5 min incubation, the library was 

prepared by combining the components listed in table 8 in a new 1.5 mL low binding 

reaction tube. The two FC types have different loading capacities wherefore the libraries had 

to be prepared from different volumes (table 8). The library was mixed by pipetting just 

prior to loading it onto the respective FC in order to ensure an even distribution of the kit’s 

fast settling Loading Beads. Additionally, just prior to loading, R9.4.1 FCs were again primed 

with another 200 µL priming mix from the Flush Buffer vial with the SpotON sample port 

open to ensure a smooth flow through all channels and ports of the FC. Regarding Flongle 

FCs, 3 µL Flush Tether and 117 µL Flush Buffer were mixed in a separate reaction tube. This 

priming mix was directly and entirely pipetted into the Flongle FC’s port without incubation 

time prior to library loading. Loading the FCs with the respective library volume was 

conducted in a dropwise fashion into the sample port. The FCs were run on a ONT GridION 

or MinION device controlled by the MinKNOW software v. 22.08.09. 

 

Table 7: Adjusted PCR program of the ONT “16S Barcoding Kit 1-24 

(SQK-16S024)” protocol used for 16S rRNA gene sequencing. 

Number of cycles  Temperature [°C] Time [mm:ss] 

1 95 01:00 

35 

95 00:20 

55 00:30 

65 02:00 

1 65 05:00 

Hold 4 ∞ 

 

 

Table 8: Volumes of components from the ONT “16S Barcoding Kit 1-

24 (SQK-16S024)” protocol for DNA library preparation according to 

flow cell type. 

Component 
Volume [µL] for 

R9.4.1 

Volume [µL] for 

FLO-FLG001 

Sequencing Buffer 34 13.5 

Loading Beads 25.5 11 

Nuclease-free H2O 4.5 0 

DNA library 11 5.5 

Total 75 30 
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3.2.12 Oxford Nanopore metagenomic sequencing 

 

Due to their high quality high molecular weight DNA contents, fecal samples were subject to 

metagenomic sequencing via third generation sequencing by ONT. The ONT Ligation 

Sequencing Kit (SQK-LSK109) in combination with the ONT Native Barcoding Expansion 1-

12/13-24 (EXP-NBD104/114), respectively, was employed according to the protocol “Native 

barcoding genomic DNA (with EXP-NBD104, EXP-NBD114, and SQK-LSK109), Version: 

NBE_9065_v109_revV_14Aug2019/Last update: 21/02/2020” with minor adaptations. The 

protocol consists of 3 major parts: DNA repair and end-prep, native barcode ligation, and 

adapter ligation and clean-up. For each sample to be sequenced, 1 µg DNA was transferred 

to a new 1.5 mL low binding reaction tube in a maximum volume of 48 µL. If the volume was 

lower, it was adjusted to 48 µL with nuclease-free H2O. Regarding the NTCs, the maximum 

volume was applied. The tubes were flicked to mix DNA and nuclease-free H2O followed by 

a quick spin down. Next, a master mix was prepared from the components listed in table 9 

per sample (includes NTCs) in a new 1.5 mL reaction tube. 12 µL of the mix were distributed 

to each sample adding up to a total of 60 µL per reaction. Then, master mix and DNA were 

mixed thoroughly by pipetting, and the tubes were incubated on a thermomixer at 20 °C for 

5 min, then at 65 °C for 5 min. Meanwhile, the AMPure XP beads were resuspended 

vigorously by vortexing. After the incubation, 60 µL beads were added to each end-prep 

reaction and both were mixed by flicking the tubes. Subsequently, the tubes were 

additionally inserted on a spinning rotator mixer for 5 min. During this DNA annealing time, 

500 µL 70% EtOH were freshly prepared per sample. The following steps involving washing 

and elution are equivalent to the procedure after PCR described in 3.2.11 except the bead 

pellets were resuspended in 25 µL nuclease-free H2O. After quantifying the end-prepped 

DNA as elucidated in 3.2.10 using a Qubit fluorometer and 1 µL eluate, a unique barcode 

was selected for each sample from the kit. 500 ng end-prepped DNA were transferred to a 

new 1.5 mL low binding reaction tube in a maximum volume of 22.5 µL. If the required 

volume was lower, it was adjusted to 22.5 µL with nuclease-free H2O. If the concentration 

was too low, the maximum volume was applied. Subsequently, 2.5 µL of the respective 

Native Barcode and 25 µL Blunt/TA Ligase Master Mix were added to each DNA sample and 

the reaction was mixed well by pipetting. Then, the AMPure XP beads were resuspended 

vigorously by vortexing before 50 µL were added to each reaction and it was mixed well by 
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pipetting. Again, the tubes were placed on a spinning rotator mixer followed by a 5 min 

incubation. The following washing and elution steps involving 500 µL freshly prepared 70% 

EtOH are equivalent to the procedure after PCR described in 3.2.11 except the bead pellets 

were resuspended in 26 µL nuclease-free H2O. After quantifying the barcoded DNA as 

elucidated in 3.2.10 using a Qubit fluorometer and 1 µL eluate, equal amounts of each 

sample were pooled in a new 1.5 mL low binding reaction tube adding up to a total of 700 ng 

in a maximum volume of 66 µL. As for 16S rRNA gene sequencing, a maximum of 12 

samples were merged per sequencing run. Also, true samples and NTCs were separately 

pooled since they were run on different FC types. Depending on the number of samples to be 

pooled, the individual amounts of barcoded DNA varied. For instance, if 12 samples were to 

be pooled, 58.33 ng of each sample were merged in the pool. After quantifying the pooled 

DNA as elucidated in 3.2.10 using a Qubit fluorometer and 1 µL pool, the volume was 

adjusted to 65 µL with nuclease-free H2O. Next, adapter ligation was performed by adding 

5 µL Adapter Mix II, 20 µL 5X NEBNext Quick Ligation Reaction Buffer, and 10 µL Quick T4 

DNA Ligase to the DNA pool with mixing the tube contents by flicking and spinning them 

down between each sequential addition. After the final spin, the reaction was incubated for 

10 min. Then, the AMPure XP beads were resuspended by vortexing them vigorously. 50 µL 

were added to the reaction and mixed in by pipetting. Again, a 5 min incubation on the 

spinning rotator mixer followed. The subsequent two washing steps were essentially carried 

out as the procedure after PCR described in 3.2.11, however, for both washes 250 µL of the 

kit’s Short Fragment Buffer (SFB) were used and the bead pellet was resuspended in the SFB 

by flicking the tube, then returning it to the magnet to re-pellet the beads and pipet off the 

supernatant. After drying the pellet, it was resuspended in 15 µL Elution Buffer (EB) and 

incubated for 10 min. Subsequently, the eluate was retained after placing the tube back on 

the magnet into a new 1.5 mL low binding reaction tube and the adapter ligated DNA was 

quantified as elucidated in 3.2.10 using a Qubit fluorometer and 1 µL eluate. From the DNA 

concentration, the weight was calculated in the remaining 14 µL eluate. Assuming an 

average DNA fragment size of 4 kb, the amount of substance in fmol was calculated. The 

protocol recommends loading a maximum of 50 fmol per FC which correspond to 129.8 ng at 

4 kb nucleic acid size. Hence, the volume corresponding to 129.8 ng of the adapter ligated 

DNA pool was calculated, transferred to a new 1.5 mL low binding reaction tube, and 

adjusted to 12 µL with EB. By adding the remaining components in the respective volumes 
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listed in table 10, the DNA library was prepared for true samples (R9.4.1 FC) and NTCs 

(FLO-FLP001 Flongle FC), respectively. The two different FC types were primed and loaded 

as elaborated in 3.2.11. Eventually, both were run on a ONT GridION or MinION device 

controlled by the MinKNOW software v. 22.08.09. 

 

Table 9: Components and corresponding volumes for 1X master mix 

for DNA repair and end-prep in ONT metagenomic sequencing with 

the ONT “Native barcoding genomic DNA (with EXP-NBD104, EXP-

NBD114, and SQK-LSK109)” protocol. 

Component Volume [µL] per reaction 

NEBNext FFPE DNA Repair Buffer 3.5 

NEBNext FFPE DNA Repair Mix 2 

Ultra II End-prep reaction buffer 3.5 

Ultra II End-prep enzyme mix 3 

Total 12 

 

 

Table 10: Volumes of components from the ONT “Native barcoding 

genomic DNA (with EXP-NBD104, EXP-NBD114, and SQK-LSK109)” 

protocol for DNA library preparation according to flow cell type. 

Component 
Volume [µL] for 

R9.4.1 

Volume [µL] for 

FLO-FLG001 

Sequencing Buffer 37.5 13.5 

Loading Beads 25.5 11 

DNA library 12 5.5 

Total 75 30 

 

3.2.13 Bioinformatic analysis pipeline for sequencing data 

 

Sequencing was conducted under Ubuntu 18.04 and the output was analyzed essentially as 

previously published in our comprehensive method paper for complex microbiota analysis 

using ONT (Ammer-Herrmenau et al., 2021b). In brief, the workflow consists of pre-

processing, taxonomic classification, and post-processing. Specifically, pre-processing 

comprises high accuracy base calling of the fast5 files (raw data format) performed by the 

Guppy toolkit 6.2.11 integrated in the MinKNOW software v. 22.08.9 by ONT. Per default, 

MinKNOW applies a quality score (QS) of 9 which was not changed. Base calling returns 
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fastq files containing the nucleotide sequences. Next, taxonomic classification of those was 

conducted by per-read manner using the Metagenomic Taxonomy Pipeline for ONT 

sequencing (MeTaPONT). This pipeline comprises classification via the classifier Centrifuge. 

To this end, two different indices were used. The nt library contains all complete and 

incomplete genomes from the NCBI BLAST’s nt database and was built on October 15, 2020. 

This index was used to classify all sequencing data derived from snap-frozen samples. For all 

FFPE sample data, the abv library was applied for classification. This index was built 

manually on September 10, 2020 containing all complete NCBI bacterial, fungal, archaea, 

human, and mouse RefSeq genomes. MeTaPONT further implies alignment control via 

Minimap2 including an alignment score (AS) of 1000 and an alignment coverage (Cov) of 50. 

The workflow was implemented as a wrapper program and can be retrieved as a docker 

from github (github.com/microbiome-gastro-UMG/MeTaPONT). Eventually, regarding post-

processing of the classified sequencing data, subsequent analysis was performed in R version 

2.4 or later and R studio. MeTaPONT output and meta data were combined in a phyloseq 

object. Then, all reads were filtered to bacteria on species level. Next, prevalence filtering was 

applied using the PERfect package with the simultaneous approach (Smirnova et al., 2019). 

Subsequently, decontamination was conducted using the decontam package with the 

prevalence method (Davis et al., 2018). To normalize the microbial data, the samples in the 

phyloseq object were rarified to a defined read number which was chosen as a compromise 

between reaching the rarefaction curve asymptote and losing samples due to insufficient 

sequencing depth. To assess alpha diversity metrics OS, SI, and InvS, non-rarified data was 

used, while the calculation of beta diversity metrics uwUF, wUF, and BC was conducted 

from rarified data. Statistics were performed on alpha diversity metrics by testing for normal 

distribution and homogeneity of variance via Shapiro-Wilk and Levene’s test, respectively, 

followed by t-test or Wilcoxon signed-rank test according to the result of the normality test. 

Beta diversity metrics were ordinated via principal coordinates analysis (PCoA) and tested 

for significance by permutational multivariate analysis of variance (PERMANOVA) which 

was conducted using adonis2 of the vegan package. Differential abundances were 

determined via the linear discriminant analysis effect size (LEfSe) approach. Eventually, 

regression models using published human microbiome data to be compared with the murine 

microbial compositions from this thesis were built by logistic regression based L2 

regularization (Ridge regression) which was calculated using the cv.glmnet function. 
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4 Results 
 

4.1 Chapter 1 | Establishment of Oxford Nanopore sequencing and 

bioinformatic analysis workflow for murine fecal and pancreatic 

samples 

 

4.1.1 Impact of the DNA extraction protocol on DNA concentration, sequenced 

species and read count 

 

Modern microbiome research requires a high throughput sequencing technique with 

accompanying steps such as DNA isolation and bioinformatic analysis. Therefore, the 

establishment of an experimental pipeline was a prerequisite for this thesis and constitutes a 

major part of it. Most of the results presented here in 4.1 are published under the Creative 

Commons Attribution 4.0 International license (CC BY 4.0) in the method paper 

“Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using 

Oxford Nanopore Technologies” which I co-authored (Ammer-Herrmenau et al., 2021b). 

The experimental pipeline consists of three major steps: DNA preparation, sequencing, and 

data processing. Regarding sequencing, third generation sequencing by ONT was chosen 

with the MinION and GridION sequencing platforms. Although Illumina NGS platforms 

established in other departments have undisputed competence, the nanopore-based 

technology has some advantages which are of great relevance for microbiome research and 

will be discussed in chapter 5. Establishing the most suitable DNA extraction and 

preparation method compatible with ONT sequencing required testing different DNA 

isolation kits in combination with different protocols. The initial experiments were 

performed with buccal and rectal swabs as elucidated in the method paper because they are 

easy-to-access samples, relevant for future clinical studies, and prevented wasting valuable 

murine samples (Ammer-Herrmenau et al., 2021b). Hence, most results in 4.1 were generated 

using swabs, however, the developed pipeline was eventually validated and accommodated 

to murine fecal and pancreatic samples in 4.1.4. 

The DNA extraction method is known to have relevant impact on the results of microbial 

analyses (Bjerre et al., 2019; Teng et al., 2018). Therefore, four different DNA isolation kits 

from three different vendors were tested. They are referred to as “Applied Biosystems” 
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(MagMAX Microbiome Ultra Nucleic Acid Isolation Kit), “Invitrogen” (PureLink 

Microbiome DNA Purification Kit), “Qiagen investigator” (QIAamp DNA Investigator Kit), 

and “Qiagen microbiome” (QIAamp DNA Microbiome Kit) in the following. For each of 

these kits, two different protocols were tested, the original manufacturer’s protocol (referred 

to as “original”) and an adapted version thereof modified according to the IHMS 

recommendations (referred to as “IHMS”). For the QIAamp DNA Microbiome Kit, only the 

original protocol was tested because a meaningful implementation of the IHMS 

recommendations was not possible. Thus, a total of seven different protocols were assessed. 

The Qiagen investigator original and Invitrogen IHMS protocols are described in detail in 

3.2.6 and 3.2.7 since only these two are relevant for the further experiments presented in this 

thesis. The pre-experiments narrowed the protocols down to these two as best candidates for 

murine tissue samples which were then tested in 4.1.4. The other protocols and specifications 

can be retrieved from the method paper (Ammer-Herrmenau et al., 2021b). 

DNA concentration and purity, number of observed species and read counts were adduced 

as readouts to determine the best-fitting DNA extraction protocol for ONT 16S rRNA and 

metagenomic sequencing. For both buccal and rectal swabs, both the Qiagen investigator 

original and Invitrogen IHMS protocols achieved significantly higher DNA concentrations 

compared to the other DNA extraction protocols (figure 7a,b). They were also the only two 

protocols that achieved median concentrations above the threshold of 10.42 ng/µL indicated 

by the dashed line in figure 7a,b. This DNA concentration is necessary to provide at least 

500 ng input DNA in 48 µL reaction mixture for metagenomic sequencing. The median DNA 

concentration extracted from buccal swabs was the highest when using the Qiagen 

investigator original protocol. The median DNA concentration extracted from rectal swabs 

was the highest when using the Invitrogen IHMS protocol. 

Besides the concentration, a high level of DNA purity is essential for sensitive downstream 

applications such as sequencing. Impurities may potentially interfere with the chemical 

properties and physical modules of the sequencing platform. A260/A280 and A260/A230 

ratios estimated by Nanophotometer measurements are indicators of purity. Regarding the 

A260/A280 value, little derivation from the desired ratio of 1.8 (dashed line) was registered 

across all seven protocols (figure 7c). Applied Biosystems IHMS and Invitrogen IHMS were 

the closest in their median A260/A280 ratios to 1.8. Concerning the A260/A230 value, major 
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derivation from the desired ratio of 2.0-2.2 (dashed line) was noted across the tested DNA 

extraction protocols (figure 7d). The Invitrogen IHMS protocol showed by far the median 

values closest to 2.0 as compared to the other protocols, however, the variance was still high 

ranging from 1.0 to 2.5.  

 

Figure 7: DNA yield and purity as readouts for DNA extraction kit performance on 

buccal and rectal swab samples. (a) DNA concentrations of buccal swab samples isolated 

with different original and IHMS-modified DNA extraction kit protocols. N-numbers 

indicated in graph legend (upper panel row). Dashed line indicates DNA concentration 

threshold for metagenomic sequencing (10.42 ng/µL). (b) DNA concentrations of rectal 

swab samples isolated with different original and IHMS-modified DNA extraction kit 

protocols. N-numbers indicated in graph legend (upper panel row). Dashed line indicates 

DNA concentration threshold for metagenomic sequencing (10.42 ng/µL). (c) Photometric 

A260/A280 ratios of buccal and rectal swab samples isolated with different original and 

IHMS-modified DNA extraction kit protocols. N-numbers indicated in graph legend 

(lower panel row). Dashed line indicates ideal A260/A280 ratio for pure DNA (1.8). (d) 

Photometric A260/A230 ratios of buccal and rectal swab samples isolated with different 

original and IHMS-modified DNA extraction kit protocols. N-numbers indicated in 

graph legend (lower panel row). Dashed line indicates ideal A260/A230 ratio for pure 

DNA (2.0-2.2). All statistical testing performed with Kruskal-Wallis and pairwise 

Wilcoxon signed-rank tests. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001. 
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Next, the performance in 16S rRNA and metagenomic sequencing of the differently extracted 

DNA samples was tested to assess their quality for the target application. For that purpose, 

the rarefaction curves, in which the read count is plotted against the number of observed 

species, were evaluated to determine the sequencing depth (read count) threshold at which 

most samples reached their curve’s asymptote (figure 8a,b).  

 

Figure 8: Evaluation of 16S rRNA and metagenomic sequencing of buccal and rectal 

swab samples via rarefaction curves and alpha diversity metric observed species. (a) 

Rarefaction curves of buccal and rectal samples isolated with different DNA extraction 

kits as determined via 16S rRNA sequencing. The vertical dashed line indicates the 

determined sequencing depth threshold of 250,000 reads. (b) Rarefaction curves of buccal 

and rectal samples isolated with different DNA extraction kits as determined via 

metagenomic sequencing. The vertical dashed line indicates the determined sequencing 

depth threshold of 250,000 reads. (c) Alpha diversity metric OS of buccal and rectal swab 

samples isolated with different original and IHMS-modified DNA extraction kit protocols 

and analyzed via 16S rRNA gene sequencing. (d) Alpha diversity metric OS of buccal and 

rectal swab samples isolated with different original and IHMS-modified DNA extraction 

kit protocols and analyzed via metagenomic sequencing. All statistical testing performed 

with Kruskal-Wallis and pairwise Wilcoxon signed-rank tests. 
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This threshold was set to 250,000 for both 16S rRNA and metagenomic sequencing (dashed 

line). Except for samples extracted with the Qiagen microbiome protocol, most samples were 

able to cross this threshold. Especially in metagenomic sequencing, exclusively all samples 

extracted with the Qiagen microbiome kit failed to reach the threshold. The alpha diversity 

metric OS showed the highest median absolute numbers for both buccal and rectal swab 

samples when isolated with Invitrogen IHMS and undergoing 16S rRNA sequencing, 

although these results were not statistically significant (figure 8c). Regarding metagenomic 

sequencing, the Invitrogen IHMS-isolated rectal swab samples also achieved the highest 

number of OS as compared to the rectal swab samples isolated via the other protocols, 

however, the results here did not reach statistical significance either (figure 8d). 

Eventually, read counts achieved with metagenomic sequencing were compared between the 

DNA extraction protocols (figure 9). The samples were pooled equimolarly in the libraries to 

ensure highly similar DNA input amounts and the read counts normalized to the Qiagen 

investigator IHMS protocol to compensate varying FC pore counts. Still, the Invitrogen 

protocols achieved the highest count of sequenced DNA stretches (figure 9). 

 

Figure 9: Comparison of read counts achieved via metagenomic sequencing of swab 

samples isolated with different original and IHMS-modified DNA extraction kit 

protocols. N = 5 metagenomic sequencing experiments are pooled. Read counts are 

plotted in percent relatively to the Qiagen investigator IHMS results. Statistical testing 

performed with Kruskal-Wallis and pairwise Wilcoxon signed-rank tests. **, p ≤ 0.01; ***, 

p ≤ 0.001. 
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4.1.2 Read classification using Centrifuge and evaluation of different classifier 

indexes 

 

Sequenced DNA fragments need to be base called meaning the translation of the primary 

raw data format to bases. In the case of nanopore sequencing, raw data are voltage changes 

along the membrane when bases with different properties pass the membrane through the 

pore. For ONT sequencing, base calling is performed by Guppy, the official base caller 

integrated in the control software MinKNOW. Thereafter, base called DNA fragments need 

to be classified meaning their assignment to a specific species. Finally, this classification 

undergoes alignment control. Here, the classifier Centrifuge was chosen for its sensitive and 

fast annotation with rather low computational capacity. Minimap2 was selected as a 

sequence alignment tool for its fast mapping of long noisy reads against large databases. 

Comparing read to taxonomic identification number (taxID) annotations by Centrifuge only 

and Centrifuge combined with Minimap2 revealed over a quarter of sequence-to-taxID 

classifications mismatched when using Centrifuge only as visualized by the Venn diagram in 

figure 10a. To dispose of low-quality reads, a Centrifuge QS and a maximum number of 

annotations per single read were defined. As QS, 150 was chosen as proposed in the 

literature because, although an increase of this value removed considerably more reads, 

Minimap2 already removes a great part of these sequences (Sanderson et al., 2018). This is 

emphasized by the slopes of Minimap2-controlled read counts decreasing with increasing 

Centrifuge QS (figure 10b). However, the Minimap2-controlled read counts are not as much 

influenced than the Centrifuge only-classified reads. To show that reads with low 

information content can safely be omitted to save computational time, to minimize false 

positive hits, and thus to limit the number of matches per single read, a hit length-to-query 

length ratio was calculated. Centrifuge usually assigned below 50 taxIDs and the required 

annotation length (hit length) for classification only took up 40% of the sequence length 

(query length) (figure 10c). Eventually, the indexes used for classification had to be judged 

by their excellence and performance. To this end, four libraries were assessed: two 

preformed indexes from Centrifuge, pvh (2016) and p (2018), the NCBI complete genomes 

index (2020), also referred to as abv library in 3.2.13, as well as the nt database with all 

complete and incomplete NCBI genomes (2020). Precision, recall and area under precision-

recall curve (AUPR) were adduced as readouts to test the four indexes on a commercially 
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available metagenomically sequenced gut mock community consisting of 17 species (14 

common gut bacteria, one archaeon, and two fungi) (figure 10d). The indexes pvh and p 

identified only 11 and 13 species, respectively. The NCBI complete genomes index identified 

only 14 species. A recall of 100% was only achieved by the complete and incomplete 

genomes nt database. This index also had the highest AUPR. The NCBI genomes reached the 

second highest recall and AUPR percentages. All four indexes had about equally low 

precision percentages.  

 

Figure 10: Evaluation of read classifier Centrifuge and different classifier indexes. (a) 

Venn diagram of sequence-to-taxID classification by Centrifuge only as well as 

Centrifuge and Minimap2 (no further filters). (b) Influence of Centrifuge quality score on 

read counts of n = 4 metagenomically sequenced samples classified by Centrifuge and 

controlled by Minimap2 with different coverages. Difference quotient g is indicated for 

each classification setting in the graph legend. (c) N = 12 rectal samples classified with 

Centrifuge and sorted by their number of taxID matches are plotted against the hit 

length-to-query length (classified length-to-total sequence length) ratio. Each red dot 

corresponds to one taxID. Sequences with more than 50 taxIDs are dropped. (d) Readout 

parameters precision, recall, and AUPR of four different Centrifuge classification indexes. 
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4.1.3 Benchmarking experiment testing different Minimap2 parameters  

 

As elucidated, alignment control by Minimap2 is indispensable since Centrifuge has in fact a 

high sensitivity, however, also an intolerably high false positive rate. Benchmarking was 

conducted to determine the best AS and Cov values that remove minimum true positives 

and maximum false positives by excluding low quality reads. Precision, recall and AUPR 

percentages were calculated for each AS/Cov combination tested (figure 11a). AS1500/Cov50 

achieved almost the highest precision and AUPR with a simultaneous recall of 100%. 

However, although AS2000/Cov50 reached a slightly higher precision and AUPR values, this 

combination also excluded true positives. Precision and AUPR were comparable between 

Cov10- and Cov50-classified samples. The read counts declined with increasing AS and Cov 

as expected (figure 11b). In this, a higher AS was more decisive than a higher Cov, in 

particular for 16S rRNA sequencing. The same trend applied to the alpha diversity metric OS 

(figure 11c). Here, the number of OS was generally lower in metagenomic sequenced 

samples compared to 16S rRNA sequenced samples except for the Minimap2 settings 

AS1000/Cov50. Samples classified with these parameters presented with the lowest but an 

about equal median OS for both 16S rRNA and metagenomic sequencing. Picking up on the 

impact of Cov changes, a benchmarking experiment with rectal swabs showed that a Cov of 

50 (and AS1500) was able to exclude incorrectly annotated environmental bacteria compared 

to Minimap2 without any thresholds and with Cov10 (and AS1500) as visualized by the 

microbial composition of the samples in figure 11d. All of these establishment experiments 

resulted in a methodological and bioinformatic workflow (Invitrogen IHMS, nt database, 

Minimap2 AS1000 or 1500/Cov50) with highly accurate and reproducible sequencing data 

output and, although tested on swab material, also transferable to other sample material. In 

the following 4.1.4, ONT sequencing parameters are optimized for murine tumor material.  
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Figure 11: Benchmark experiment testing different Minimap2 parameters. (a) Readout 

parameters precision, recall, and AUPR of various combinations of AS and Cov tested on 

metagenomic gut mock community sequencing data. (b) Read counts in percent of 16S 

rRNA gene and metagenomically sequenced rectal swab samples determined by different 

AS/Cov combinations. Statistical testing performed with Kruskal-Wallis test. (c) Number 

of observed species in 16S rRNA gene and metagenomically sequenced rectal swab 
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samples determined by different AS/Cov combinations. Statistical testing performed with 

Kruskal-Wallis test. (d) Microbial compositions (species level) of n = 9 rectal swab 

samples with three different grades of stool contamination (0, +, ++) that were subject to 

Centrifuge classification and different Minimap2 filtering (no threshold, AS1500/Cov10, 

AS1500/Cov50). Black arrows point out contaminating species that are dropped by 

AS1500/Cov50. 

 

4.1.4 Evaluation of different DNA extraction protocols and PCR settings for 

murine tumor samples 

 

After establishing the experimental pipeline with swab samples, the technical details in the 

ONT 16S rRNA sequencing protocol were optimized for low biomass murine bulk tumor 

samples with special requirements. Therefore, the two most promising DNA extraction 

protocols, Invitrogen IHMS and Qiagen investigator original (a specific version for tissues), 

were tested as well as three different amounts of DNA input into the PCR, namely 10 ng, 

50 ng, and 100 ng, and two different numbers of PCR cycles, 25 and 35. These parameters 

were evaluated on four different bulk tumor tissue samples in all possible combinations 

resulting in 48 differently prepared samples.  

 

Figure 12: Overview on read counts of four KPC tumor samples (AN-numbers) 

analyzed in different ways. DNA was isolated according to the Invitrogen IHMS and the 

Qiagen investigator original DNA extraction protocols. 16S rRNA sequencing was 

performed with varying parameters (10 ng, 50 ng, or 100 ng DNA input and 25 or 35 PCR 

cycles). 
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The number of reads was employed as readout to evaluate the best sequencing parameters 

knowing high read count samples performed better in the downstream normalization 

process. In figure 12, the read counts of all four tumor DNA samples library-prepared in 12 

different ways each are displayed. In this linear notation, the heterogeneity among the 

samples is directly visible. Even among equally prepared samples, the strongly varying read 

numbers are remarkable. To decide on the best DNA extraction and library preparation, the 

samples were clustered according to the different parameters. 

To begin with, Invitrogen and Qiagen extraction methods were compared with regard to 25 

(figure 13a) and 35 PCR cycles (figure 13b), respectively. Samples extracted with Invitrogen 

IHMS had significantly more reads than Qiagen investigator original-extracted samples 

when undergoing PCR with 25 cycles. Contrary, there was no significant difference in the 

read count between Invitrogen and Qiagen samples sequenced after PCR with 35 cycles. 

However, there was a trend towards more reads in Invitrogen samples. Also, the median 

read count was higher than in Qiagen samples. Generally, 35 PCR cycles resulted in 

considerably higher read numbers than 25 PCR cycles. For a direct comparison of the 

number of PCR cycles, the samples were also plotted for the Invitrogen IHMS (figure 13c) 

and Qiagen investigator original DNA extraction protocol (figure 13d) separately. On the 

one hand, DNA samples isolated with Invitrogen IHMS did not reach read counts of 

significant difference when amplified with 25 and 35 PCR cycles, respectively. Still, there was 

a considerable number of samples resulting in clearly higher read count if they underwent 

PCR with 35 cycles which also shows up in the slightly higher median read number. On the 

other hand, samples extracted with Qiagen had significantly higher read counts after PCR 

with 35 cycles compared to 25 cycles. However, the determining factor was the overall 

higher read counts achieved by Invitrogen-isolated DNA samples. Also, although this did 

not reach statistical significance, 35 PCR cycles tended to result in more reads than 25 cycles. 

Thus, the DNA extraction protocol of choice was Invitrogen IHMS in combination with 35 

PCR cycles for library preparation. Eventually, the three different DNA input amounts were 

compared among samples extracted by Invitrogen and amplified in 35 PCR cycles (figure 

13e). 50 ng and 100 ng DNA input for PCR amplification and barcoding resulted in clearly 

higher median read counts compared to 10 ng DNA input suggested by the original ONT 

16S rRNA sequencing protocol, however, these differences were not significant. The median 

numbers of reads of 50 ng and 100 ng DNA input were the same, wherefore 50 ng DNA as 
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PCR input were chosen for all further experiments involving 16S rRNA sequencing of 

murine pancreatic samples.  

 

Figure 13: Evaluation of DNA extraction protocols and PCR settings for KPC tumor 

samples (low microbial biomass). (a) Significant difference between read counts of KPC 

tumor samples isolated with the Invitrogen IHMS and the Qiagen investigator original 

protocol, respectively, and 16S rRNA gene sequenced with varying DNA input amounts 

(10 ng: n = 4, 50 ng: n = 4, 100 ng: n = 4) and 25 PCR cycles. (b) Read counts of KPC tumor 

samples isolated with the Invitrogen IHMS and the Qiagen investigator original protocol, 

respectively, and 16S rRNA gene sequenced with varying DNA input amounts (10 ng: 

n = 4, 50 ng: n = 4, 100 ng: n = 4) and 35 PCR cycles. (c) Read counts of KPC tumor samples 

isolated with the Invitrogen IHMS protocol, and 16S rRNA gene sequenced with varying 
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DNA input amounts (10 ng: n = 4, 50 ng: n = 4, 100 ng: n = 4) as well as 25 and 35 PCR 

cycles, respectively. (d) Significant difference between read counts of KPC tumor samples 

isolated with the Qiagen investigator original protocol, and 16S rRNA gene sequenced 

with varying DNA input amounts (10 ng: n = 4, 50 ng: n = 4, 100 ng: n = 4) as well as 25 

and 35 PCR cycles, respectively. (e) Read counts of KPC tumor samples isolated with the 

Invitrogen IHMS protocol, and 16S rRNA gene sequenced with varying DNA input 

amounts (10 ng: n = 4, 50 ng: n = 4, 100 ng: n = 4) and 35 PCR cycles. All statistical testing 

performed with Wilcoxon rank test. 

 

DNA isolation from murine fecal samples was tested as well using the Invitrogen IHMS 

protocol and resulted in excellent DNA concentrations of several hundred ng/µL. 

Additionally, the purity was very close to the reference ratios for A260/A280 (1.8) and 

A260/A230 (2.0-2.2). Only very few exceptions deviated from these values which was usually 

the case when the feces were rather mucoid. In summary, DNA from murine samples was 

also extracted with Invitrogen IHMS, followed by 50 ng DNA input and 35 PCR cycles in 16S 

rRNA sequencing for pancreatic samples, and maximum suggested DNA input (1 µg) in 

metagenomic sequencing for fecal samples. The bioinformatic workflow established with 

swabs was followed for murine samples as well.  
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4.2 Chapter 2 | The fecal and pancreatic microbiome in KPC mice 

 

4.2.1 The fecal microbiome of KPC mice is significantly different from healthy 

controls 

 

The results presented here in 4.2 are submitted for publication and the manuscript entitled 

“Dynamics of intestinal and intratumoral microbiome signatures in genetically engineered 

mice and human pancreatic ductal adenocarcinoma” which I wrote as a first author is 

currently under revision. After establishing the experimental and bioinformatic pipeline for 

ONT sequencing of microbiota, in particular bacteria, the primary focus was set to the 

characterization of the fecal and tumoral microbiome of KPC mice. The inevitable necessity 

of mouse models, in particular GEMMs, as a fundamental basis in translational science was 

introduced in 1.3. However, they need to be clearly understood in their properties in order to 

draw meaningful translatable conclusions. To date, KPC mice are insufficiently studied 

regarding their microbiome. 

Knowing about the microbial presence in the gut and the comparably profound 

characterization thereof, first, the fecal microbiome of KPC mice was evaluated. Against the 

background of the microbiome undergoing continuous shifts in response to many influences, 

fecal samples of KPC and CTRL mice were collected at multiple time points (6w, 12w, and 

the EP as defined in Methods 3.2.1) to learn about the dynamics and possible changes in the 

microbial composition over time. KPC mice at the EP were between 4.5 and 6.5 months old 

with a median age of 5.75 months. Hence, they were approximately age-matched with the 

CTRLs sacrificed at an age of 6 months. The fecal DNA of all three age groups (n = 31 KPC 

and n = 30 CTRL samples in total) was sequenced metagenomically.  

Alpha diversity metrics OS, SI, and InvS did not show any significant differences between 

KPC and CTRL feces at any age (figure 14). The normalization process to determine beta 

diversity metrics reduced the sample number to n = 28 KPC and n = 27 CTRL feces. 

Calculating uwUF, wUF, and BC returned statistically significant differences between KPC 

and CTRL feces in all three age groups across all three metrics with decreasing p-values in 

increasing ages (figure 15).  
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Figure 14: Alpha diversity in feces of 6w, 12w, and EP KPC and CTRL mice. (a) 

Numbers of observed species are not significantly different between KPC and CTRL fecal 

samples in any of the regarded age groups. (b) Shannon indexes are not significantly 

different between KPC and CTRL fecal samples in any of the regarded age groups. (c) 

Inverse Simpson indexes are not significantly different between KPC and CTRL fecal 

samples in any of the regarded age groups. All metrics calculated with non-rarified 

library sizes. All statistical testing performed with t-test or Wilcoxon rank test according 

to normal distribution test results.  
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Figure 15: Beta diversity between feces of 6w, 12w, and EP KPC and CTRL mice. (a-c) 

Beta diversity metrics uwUF, wUF, and BC show significant differences between feces of 

6-weeks-old KPC and CTRL mice. Metrics calculated with rarified library sizes. (d-f) Beta 

diversity metrics uwUF, wUF, and BC show significant differences between feces of 12-

weeks-old KPC and CTRL mice. Metrics calculated with rarified library sizes. Two 

samples dropped in each group by rarefaction. (g-i) Beta diversity metrics uwUF, wUF, 

and BC show significant differences between feces of EP KPC and CTRL mice. Metrics 

calculated with rarified library sizes. One sample dropped in each group by rarefaction. 

All statistical testing performed with PERMANOVA. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. 

 

Performing linear discriminant analysis (LDA) with the LEfSe algorithm on all age groups 

separately to determine the taxa responsible for these differences found Lactobacillales 

significantly enriched in CTRL feces as opposed to KPC feces regardless of age (figure 16a-c). 

In feces of 6w- and 12w-old CTRL mice, Lactobacillus murinus, and in feces of EP CTRL mice, 

Lactobacillus reuteri were more pronounced according to the LDA score compared to the 

corresponding KPC feces. In turn, KPC feces were significantly enriched with different 

Bacteroides spp. independently of age. More precisely, in feces of 6w-old KPC mice, 
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Duncaniella, in feces of 12w-old KPC mice, Helicobacter, and in feces of EP KPC mice, 

Escherichia coli and Parabacteroides distasonis were more abundant as calculated by LEfSe. 

Looking at the more detailed microbial composition of all samples separately, these species 

were found as well and were clearly responsible for the prominent difference between KPC 

and CTRL feces (figure 16d). 

 

Figure 16: Investigation of the differences between KPC and CTRL fecal microbiomes 

over time. (a-c) Linear discriminant analysis (LDA) plots of KPC vs. CTRL fecal 

microbiomes of 6w, 12w, and EP mice. Taxa that reached an LDA score of >4 (6w) or >3.5 

(12w, EP) are plotted. Species that also appear in the microbial composition plots in (d) 

are highlighted with red (KPC) and blue (CTRL) boxes and arrow heads. (d) Microbial 

compositions of KPC and CTRL fecal samples over time. Relative abundances of species 

in percent are plotted. Species that also appear in the LDA plots (a-c) are highlighted with 

red (KPC) and blue (CTRL) boxes and arrow heads. 
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The objection may be raised that the differences between KPC and CTRL feces are not due to 

the genotype but other confounding variables. Murine samples are more homogeneous than 

human samples and less confounded by varying clinical features or lifestyle habits. KPC and 

CTRL animals were housed together under the same conditions, yet, the variables sex and 

age (at least in the EP cohort) had to be considered as potential confounders.  

 

Figure 17: Confounder analysis in KPC vs. CTRL fecal microbiome data. (a) Age- and 

sex-separated numbers of KPC and CTRL mice from which feces are collected. (b) Ages 

in months of EP KPC and CTRL mice from which feces are collected. Mann-Whitney U 

test returns a significant difference between the age distributions of feces from KPC and 

CTRL EP mice. p ≤ 0.05 *. (c) Weighted UniFrac distance in two separate age bins of EP 

KPC and CTRL mice. CTRL mice: youngest: 6.0-6.1 months, oldest: 6.2 months. KPC 

mice: youngest: 4.5-5.7 months, oldest: 5.8-6.5 months. The dashed line marks the overall 

median of all EP KPC and CTRL mice, respectively. 
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Sex could be excluded as possible confounder since Fisher’s exact test was not significant 

between male and female mice in any age cohort. Figure 17a shows the equal distribution of 

males and females in both KPC and CTRL groups separated by age. However, testing ages in 

KPC and CTRL mice of the EP cohort against each other using the Mann-Whitney U test 

resulted in a significant difference (figure 17b). Thus, the influence of age on the beta 

diversity needed to be evaluated. Two equally distributed age subgroups (bins) were formed 

from both KPC and CTRL mice separately and pairwise wUF was determined. In figure 17c, 

the dashed line marks the general median across all KPC and CTRL mice, respectively. While 

the age did not have an impact on the microbiome of KPC mice, the divergence between the 

youngest and oldest CTRL mice was found to diverge from the general median across all 

groups. However, stratifying the data for both age groups and applying PERMANOVA still 

returned significant results for all distance metrics. It is therefore highly likely that beta 

diversity differences in KPC and CTRL feces do not result from factors sex or age. 

 

4.2.2 KPC tumors harbor significantly more bacterial components than healthy 

control pancreas 

 

The awareness of tumoral tissue being colonized by microbiota only arose in recent years 

and although it is increasingly accepted that these diseased organs harbor a microbiome, at 

least to a certain extent, many studies are questionable due to their sequencing methodology 

and way of dealing with contamination (Eisenhofer et al., 2019). Moving on to the tumoral 

microbiome of KPC mice for a comprehensive characterization of the KPC microbiome, first, 

evidence for bacterial presence in tumor tissue was provided. Staining KPC tumor and 

healthy murine pancreatic tissue via FISH targeting the 16S rRNA gene and via IHC 

targeting LPS proved the presence of bacterial components in these samples (figure 18). 16S 

rRNA probes identified intracellular, cytoplasmic localization of this bacterial marker gene in 

both tumor and healthy pancreas material (figure 18a), however, quantifying the stainings 

confirmed significantly more 16S rRNA in KPC tumor tissue (figure 18b). To control for 

unspecific binding, non-complementary probes were employed which did not show any 

light signal. Antibodies against LPS revealed distinct dot-shaped staining of this gram-

negative bacterial surface marker molecule in the cytoplasm of particularly KPC tumor tissue 
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cells (figure 18c). Quantification demonstrated a significantly higher percentage of LPS-

stained areas in these tissues (figure 18d).  

 

Figure 18: Visualization and quantification of bacterial components in KPC tumor and 

healthy pancreatic control tissue. (a) FISH of the 16S rRNA probe EUB338 and a non-

complementary CTRL probe to DNA of KPC tumor and healthy pancreas FFPE tissue. 

Nucleic counterstaining with DAPI. White arrows indicate the yellow, dot-shaped 16S 

rRNA gene light signals against yellow background autofluorescence. (b) Mean number 

of 16S rRNA light signals of n 200x magnified image frames of KPC tumor and healthy 

pancreas. One slide of each of 10 mice per group was processed and 5 images of each 

slide were manually quantified resulting in the given n. (c) IHC staining of LPS on KPC 

tumor and healthy pancreas FFPE tissue. Black arrows indicate the reddish-brown, dot-

shaped LPS antibody signals against the light brown background staining. Nucleic 

counterstaining with hematoxylin. (d) Mean LPS-stained area in percent of n 200x 

magnified image frames of KPC tumor and healthy pancreas. One slide of each of 10 mice 

per group was processed and 5 images of each slide were quantified by a color 

deconvolution macro in ImageJ resulting in the given n. Regarding the KPC group, from 

one slide only 4 frames could be acquired. All statistical testing performed with Mann-

Whitney U test. p ≤ 0.0001 ****. 
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Figure 19: Pancreatic histology of KPC and CTRL (Pdx-1-Cre) mice. H&E staining and 

IHC targeting LPS on pancreatic tissue samples of 6w, 12w, and EP KPC and Pdx-1-Cre 

mice qualitatively demonstrate the development of pancreatic lesions and ultimately 

PDAC in KPC mice over time with simultaneous increasing invasion of gram-negative 

bacteria. In contrast, healthy Pdx-1-Cre mice are not affected to that extent. Black arrows 

indicate the reddish-brown, dot-shaped LPS antibody signals against the light brown 

background staining. 



| Results Chapter 2 

| 80 
 

Retrospectively, it was also interesting to evaluate the presence of LPS in pancreatic tissue of 

6w- and 12w-old KPC mice in comparison to CTRL mice. However, not enough tissue 

samples of animals sacrificed at 6w and 12w of age were available to quantify the stainings. 

Still, the observation made about KPC tumors harboring more LPS than respective CTRLs 

could be confirmed in 6w- and 12w-old KPC mice presenting with earlier stages of 

pancreatic tumors which can be seen in the corresponding H&E stainings (figure 19). In 

conclusion, quantitative differences between KPC tumor and healthy CTRL tissue were 

assessed regarding bacterial components 16S rRNA gene and LPS. 

 

4.2.3 The KPC tumoral microbiome differs significantly from its normal 

pancreatic counterpart 

 

Providing evidence for bacterial presence in both healthy and diseased murine pancreatic 

tissue was taken as basis to further extend the characterization of the KPC microbiome. The 

tumoral and healthy pancreatic microbiomes as two distinct microbial niches were analyzed 

in detail. KPC tumors of EP mice with a median age of 4 months and healthy pancreas 

samples from EP CTRL mice sacrificed at 6 months, each n = 15, were subject to 16S rRNA 

sequencing.  

 

Figure 20: Alpha diversity in KPC tumor and healthy pancreas samples of age-matched 

CTRL mice. Numbers of observed species, Shannon indexes, and inverse Simpson 

indexes are not significantly different between KPC tumor tissue and healthy pancreas 

samples. All metrics calculated with non-rarified library sizes. All statistical testing 

performed with t-test or Wilcoxon rank test according to normal distribution test results.  
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As for KPC feces, no significant differences between KPC tumor and healthy CTRL samples 

were found regarding alpha diversity metrics OS, SI and InvS (figure 20). Regarding OS, a 

tendency towards statistical significance (p = 0.0675) may be identified. The normalization 

process to determine beta diversity metrics reduced the sample number to n = 12 KPC tumor 

and n = 13 healthy pancreas samples. Although the separation between KPC and CTRL 

pancreatic samples was not as clear as for feces, significant differences between these two 

groups in all three beta diversity metrics uwUF, wUF, and BC were found (figure 21a-c).  

 

Figure 21: Differences of the microbiomes in KPC tumors and healthy control pancreas 

samples. (a-c) Beta diversity metrics uwUF, wUF, and BC show significant differences 
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between KPC tumor and healthy pancreas samples. Metrics calculated with rarified 

library sizes. Two healthy pancreas and three KPC tumor samples dropped by 

rarefaction. N-numbers indicated in graph legend in (a) apply to all three panels. 

Statistical testing performed with PERMANOVA. p ≤ 0.05 *. (d) LDA plot of KPC tumoral 

vs. healthy pancreatic microbiomes. Taxa that reached an LDA score of >3.5 are plotted. 

(e) Microbial compositions of healthy pancreas and KPC tumor samples. Relative 

abundances of species in percent are plotted. 

 

Looking at the microbial compositions of all samples, Escherichia coli appeared to a relatively 

large extent in both tumor and healthy samples (figure 21e). Thus, employing LEfSe, the 

differentially abundant taxa were again determined (figure 21d). Comparably to the fecal 

samples, Lactobacillales were the dominant order in murine healthy pancreas, in particular 

Lactobacillus fermentum and Streptococcus. In KPC tumor tissue, Gammaproteobacteria, 

comprising Enterobacteriaceae with Shigella and Citrobacter, were found to be more abundant. 

Eventually, as for the fecal data, potentially confounding factors had to be re-assessed. 

Notably, both Fisher’s exact test examining sex and Mann-Whitney U test checking age 

returned no significant results. In figure 22a, the equally distributed numbers of male and 

female KPC and CTRL animals are depicted, figure 22b shows the age distribution of 

healthy and tumor mice with no significant difference between them. Therefore, sex and age 

could be excluded as confounding variables.  

 

Figure 22: Confounder analysis in KPC tumoral vs. healthy control pancreatic 

microbiome data. (a) Sex-separated numbers of KPC and CTRL mice from which 

pancreatic samples were collected. (b) Ages in months of KPC and CTRL mice from 

which pancreatic samples were collected. Mann-Whitney U test did not return a 

significant difference between the age distributions of pancreatic samples from KPC and 

CTRL mice. ns, not significant. 



Results Chapter 2 | 

83 | 

 

4.2.4 The microbiomes of KPC tumor center and periphery are not significantly 

different from each other 

 

The microstructure of a pancreatic tumor with its pronounced stroma and TME components 

is of exceptional interest for various reasons such as chemoresistance as elucidated in the 

introduction. Against this background, the logical consequence was to examine the KPC 

tumor itself in more detail regarding its microbiome. Macroscopically, two different tissue 

zones can be discriminated when cutting the solid tumor in half (figure 23a). The tumor 

periphery is well perfused, has a rather reddish color and is comparably translucent with a 

softer consistency, while the tumor center is firmer and fairly white with hardly any blood 

vessels. Both regions are clearly demarcated, so it was possible to separate them with a 

sterile scalpel and to store them in separate tubes. H&E stainings of entire cross sections 

impressively recapitulate the macroscopic appearance with a distinct border between the 

fibrotic and necrotic tumor center containing barely any stain and the active tumor periphery 

with many vital cells taking up the dyes (figure 23b,c).  

After separating the tumor sub-compartments, they were analyzed by 16S rRNA sequencing. 

Alpha diversity metric OS reached significantly (p < 0.01) different numbers between tumor 

center and periphery. Notably, KPC tumor centers seem to harbor generally more species 

than the periphery (figure 24a). No significant differences were found regarding SI and InvS 

(figure 24b,c). Surprisingly, there were also no significant differences found between tumor 

center and tumor periphery in any of the assessed beta diversity metrics, uwUF, wUF, and 

BC (figure 24d-f). The microbial composition of all tumor center and periphery samples on 

species level reveals that Escherichia coli is contained in almost any sample indicating 

contamination issues (figure 24g). Besides E. coli, Helicobacter spp., Lactobacillus spp. and 

Staphylococcus spp. were recurrently appearing species.  
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Figure 23: Macro- and microscopic KPC tumor anatomy. (a) Entire KPC tumor resected 

and cut in half as indicated by the vertical white dashed line. Tumor center (blue arrow) 

and tumor periphery (red arrow) are macroscopically distinguishable via their different 

colors and textures. The black dashed line outlines the solid white tumor center which is 

surrounded by the softer flesh-colored periphery. One half of the tumor was FFPE and 

used for histology, the other half was subject to compartment-separated DNA extraction. 

(b) H&E staining of a full cross section of an entire KPC tumor. The necrotic and fibrotic 

tumor center appearing light pink (eosin) is demarcated by a black dashed line. The black 

box marks the image detail magnified in (c). (c) Magnified image detail from H&E 

stained KPC tumor cross section. Histological tumor heterogeneity is clearly visible 

microscopically. The two zones are delineated by a black dashed line and labelled in red 

(tumor periphery) and blue (tumor center). The scale bar corresponds to 400 µm. 
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Figure 24: Analysis of the microbiomes in corresponding KPC tumor center and 

periphery samples. (a-c) Alpha diversity metrics OS, SI and InvS calculated with non-

rarified library sizes. Observed species is significantly different between KPC tumor 

center and periphery samples. Shannon and inverse Simpson indexes are not 
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significantly different between the two groups. Statistical testing performed with t-test or 

Wilcoxon rank test according to normal distribution test results. **, p ≤ 0.01. ns, not 

significant. (d-f) Beta diversity metrics uwUF, wUF, and BC do not show significant 

differences between KPC tumor center and periphery samples. Metrics calculated with 

rarified library sizes. Three KPC tumor periphery samples dropped by rarefaction. 

Statistical testing performed with PERMANOVA. n.s., not significant. (g) Microbial 

compositions of KPC tumor center and periphery samples. Relative abundances of 

species in percent are plotted. 

 

4.2.5 Murine KPC fecal and tumoral microbiomes are similar to corresponding 

microbiomes of human PDAC patients 

 

After studying locally distinct microbiomes in KPC and CTRL mice and collecting a large set 

of characterizing data as a profound basis for the future application of this mouse model in 

(functional) microbiome studies, the logical consequence is to evaluate the comparability of 

murine and human microbiome with regard to translational and clinical studies. The fecal 

and tumoral microbiomes were considered separately.  

First, the murine feces microbiome data gathered in 4.1.1 was compared to recently 

published human PDAC patients’ stool microbiome data. Kartal et al. and Nagata et al. 

provide metagenomic classifiers for stool samples from which species and genera were taken 

to perform L2 regularization-based logistic regression (Kartal et al., 2022; Nagata et al., 2022). 

Kartal and colleagues published 10 species/genera as their stool microbiota set in PDAC 

patients’ stool which were narrowed down to 8 genera (figure 25a). Nagata and colleagues 

came up with a list of 16 microbes, whereby one article was termed “unknown cellular 

organism” which was omitted leaving 15 species and 9 genera to be compared for the murine 

fecal microbiome data (figure 25a). In these data, 4 genera and 1 species from the Kartal data 

were found as well as 4 genera and 3 species from the Nagata data. These taxa are printed in 

bold in figure 25a. The others were not prevalent in the here gathered murine fecal 

microbiome data. To assess the applicability of these adjusted human PDAC classifiers in 

order to predict disease status from murine feces in the KPC context, the receiver operating 

characteristic (ROC) was determined. The model was built for fecal samples of EP mice, as 

the human stool samples also stemmed from patients with manifested disease. This was 

done for both Kartal and Nagata data with the exception of the Kartal data on species level 

since only one of their listed species was confirmed in the murine feces data. The ROC curves 
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revealed area under the curve (AUC) values of 80% for Nagata et al. data on species level, 

70% for Nagata et al. data on genus level, and 66.7% for Kartal et al. data on genus level 

(figure 25b).  

 

Figure 25: Comparison of murine KPC fecal microbiome data to published stool 

microbiome data of human PDAC patients. (a) Table containing bacterial species found 

in PDAC patients’ stool samples by (Kartal et al., 2022) and (Nagata et al., 2022). Further, 

the species and genera extracted from these publications and used for the Ridge 

regression model in (b) are listed. Species and genera printed in bold are also found in the 

KPC fecal microbiome data. (b) Applying Ridge linear regression, the adjusted human 

metagenomic classifiers published by (Kartal et al., 2022) and (Nagata et al., 2022) were 

tested for their applicability on the murine KPC data in terms of disease prediction. ROC 

curves of the Ridge regression model of the KPC vs. CTRL fecal microbiome data are 

plotted. AUC values with confidence intervals are indicated in the plot.  
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Next, the murine tumor microbiome data gathered in 4.1.3 was compared to its 

corresponding CTRL data by means of data from Nejman et al. on human PDAC patients’ 

tumor material (Nejman et al., 2020). Relative abundances of Nejman’s most abundant 

genera and species in the murine data were determined. In n = 12 KPC tumors and n = 13 

healthy pancreas samples, n = 3 genera (Citrobacter, Enterobacter, Klebsiella) and n = 4 species 

(Citrobacter freundii, Enterobacter asburiae, Enterobacter cloacae, Klebsiella pneumoniae) from 

Nejman et al. human PDAC tumors were found. Both genera and species from human PDAC 

were found to be significantly more abundant in KPC tumors than in healthy murine 

pancreas (figure 26a,b).  

 

Figure 26: Comparison of the murine KPC tumoral and healthy pancreatic microbiome 

data to published human PDAC microbiome data. (a) Relative abundances of the most 

abundant genera from (Nejman et al., 2020) in the murine pancreatic microbiome data; 

n = 3 genera per sample. (b) Relative abundances of the most abundant species from 

(Nejman et al., 2020) in the murine pancreatic microbiome data; n = 4 species per sample. 

(c) Relative abundances of the most abundant genera found in CRC samples from 

(Galeano Niño et al., 2022) in the murine pancreatic microbiome data; n = 5 genera per 

sample. (d) Relative abundances of the most abundant genera found in OSCC samples 

from (Galeano Niño et al., 2022) in the murine pancreatic microbiome data; n = 1 genus 

per sample. All statistical testing performed with Mann-Whitney U test. 
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Eventually, after demonstrating the presence of human PDAC microbiota in murine KPC 

tumors, it was interesting to compare the microbiota of other cancer entities to the murine 

microbiome data. To this end, the 10 most dominant genera from recently published human 

colorectal carcinoma (CRC) and oral squamous cell carcinoma (OSCC) microbiome data by 

Galeano Niño et al. were assessed for their prevalence in the murine KPC tumors and 

healthy pancreas samples, respectively (Galeano Niño et al., 2022). In n = 12 KPC tumors, 

n = 6 CRC genera were found, and another n = 6 genera in n = 13 healthy pancreas samples. In 

both KPC tumors and healthy pancreas, an overlap of n = 5 CRC genera (Bacteroides, 

Escherichia, Gemella, Shigella, Streptococcus) were found. Regarding the OSCC genera, n = 2 

appeared in KPC tumors, and thereof only n = 1 genus (Alistipes) was detected in healthy 

pancreas. These genera present in KPC tumors and healthy pancreas did not differ 

significantly in their relative abundances between both tissue groups (figure 26c,d). In short, 

genera from other cancer entities are not, if at all, differentially abundant in KPC tumor and 

healthy pancreas tissue.  
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4.3 Chapter 3 | The microbiome of tumors derived from orthotopically 

transplanted human PDAC cell lines of different subtypes 

 

4.3.1 Capan-2 and MiaPaCa2 tumors do not differ in their tumoral but normal 

adjacent pancreatic microbiomes 

 

Creating the basis for preclinical PDAC microbiome research by characterizing transgenic 

mouse model systems entailed investigations of xenograft PDAC models with a stronger 

relation to the human disease. To this end, FFPE tumors with adjacent normal tissue from 

orthotopically transplanted Capan-2 and MiaPaCa2 human PDAC cells were obtained. The 

former is a representative of the CLA PDAC subtype, the latter belongs to the BL variety. 

The comparison of their microbiomes aims at understanding the dynamics and interactions 

between tumor cells and TME, and the impact of the subtype. With the help of H&E 

stainings, tumor and histologically normal adjacent pancreatic tissue were delineated from 

each other and investigated separately. Figure 27a illustrates the experimental design with 

exemplary H&E-stained tissue sections. Tissue samples were obtained in FFPE blocks at 

which step the workflow was executed within the work frame of this thesis. 

Since the samples stemmed from another study, there were only limited animals available 

that had not received treatment other than non-toxic control treatment such as H2O. While 

n = 10 MiaPaCa2 tumor samples were available from 5 of which additionally adjacent normal 

pancreatic tissue was recovered, only n = 5 Capan-2 tumor samples could be attained from all 

of which adjacent normal pancreatic tissue was sampled. Isolating DNA from these samples 

and analyzing their microbiomes via 16S rRNA gene sequencing, revealed no significant 

differences in alpha diversity metrics OS, SI, and InvS between the four groups (figure 27b-

d), except for the observed number of species in MiaPaCa2 normal adjacent tissue and 

MiaPaCa2 tumor tissue which differed significantly from one another (figure 27b). 

MiaPaCa2 normal adjacent tissues showed the highest median number of species with up to 

around 150 in one sample, whereas the OS numbers of all other groups resided below 50 

(figure 27b). 
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Figure 27: Investigation of the microbiomes in Capan-2 and MiaPaCa2-derived 

orthotopic tumor and tumor-adjacent histologically normal pancreatic tissue samples. 

(a) Experimental design of pancreatic microbiome analysis employing xenograft PDAC 

mouse models with tumors derived from orthotopically transplanted human Capan-2 

and MiaPaCa2 cells; with exemplary H&E stainings of the four regarded tissue groups. 

DNA was extracted from FFPE tissue sections and subject to 16S rRNA gene sequencing. 

(b-d) Alpha diversity metrics OS, SI, and InvS are not significantly different between the 

four regarded tissue groups, except for the number of observed species between 

MiaPaCa2-derived tumor and normal adjacent tissue samples. All metrics calculated with 

non-rarified library sizes. All statistical testing performed with t-test or Wilcoxon rank 

test according to normal distribution test results. **, p ≤ 0.01. ns, not significant.  
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The decontamination and normalization processes were more difficult for the FFPE data sets 

as compared to the data from self-sampled, snap-frozen tissue. In the case of long-term 

stored FFPE tissues from other sources, the contamination issue is even stronger and requires 

very stringent decontamination approaches. Besides a substantial number of NTCs, an 

additional filter pipeline developed by the Department of Medical Bioinformatics was 

applied to the FFPE data phyloseq objects on top of the standard procedure described in the 

methods 3.2.13. This procedure resulted in a rigorous removal of alleged contaminants 

leaving only very few reads and species per sample, some even in the one-digit range. This 

outcome in turn required an unusually low rarefaction threshold in order to keep the already 

low number of samples. Calculating beta diversity metrics uwUF, wUF, and BC to assess 

differences between the groups was done for each tumor and tissue origin groups separately. 

Neither Capan-2 nor MiaPaCa2 tumors showed significant clustering away from their 

respective normal adjacent pancreatic counterparts in any of the three beta diversity metrics 

(figure 28a-f). Surprisingly, Capan-2 and MiaPaCa2 tumors did not show significant 

differences in any of the beta diversity metrics in question either (figure 28j-l). Most 

interestingly however, normal pancreatic tissue samples derived from next to Capan-2 and 

MiaPaCa2 tumors, respectively, differed significantly from each other regarding uwUF and 

wUF (figure 28g,h). BC could not be plotted properly using PCoA, the multidimensional 

scaling method of choice to visualize the dissimilarity, due to the data properties. Thus, non-

metric multidimensional scaling (NMDS) was applied as the best alternative to plot the data. 

Independently, the two groups did not reach statistical significance regarding BC (figure 

28i).  

Eventually, the microbial composition was of major interest for an even more in-depth 

understanding of the data set. Figure 29 illustrates the low number of species left in each 

sample after rarefaction. Among these few bacterial species per sample, environmental 

contaminants, such as Bradyrhizobium, Curtobacterium, and Haliangium, stand out in the color-

coded legend. Within one tissue group, great species variation can be observed, MiaPaCa2 

tumors being the only group repeatedly presenting Bradyrhizobium vignae and Bradyrhizobium 

guangxiense as a discernible pattern but also being the tissue group with the most samples. 

Overall, many species were identified, however, basically every sample has a different 

bacterial composition.  
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Figure 28: Beta diversity between Capan-2 and MiaPaCa2-derived orthotopic tumor 

and tumor-adjacent histologically normal pancreatic tissue samples. (a-c) Beta diversity 

metrics uwUF, wUF, and BC do not show significant differences between Capan-2-

derived tumor and normal adjacent tissue samples. (d-f) Beta diversity metrics uwUF, 

wUF, and BC do not show significant differences between MiaPaCa2-derived tumor and 

normal adjacent tissue samples. (g-i) Beta diversity metrics uwUF and wUF show 

significant differences between Capan-2- and MiaPaCa2-derived normal adjacent tissue 

samples. BC, plotted with NMDS instead of standard PCoA, does not show significant 

differences between these two tissue groups. (j-l) Beta diversity metrics uwUF, wUF, and 

BC do not show significant differences between Capan-2- and MiaPaCa2-derived tumor 

tissue samples. All metrics calculated with rarified library sizes. All statistical testing 

performed with PERMANOVA. *, p ≤ 0.05. n.s., not significant. 
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Figure 29: Microbial compositions of Capan-2 and MiaPaCa2-derived orthotopic tumor 

and tumor-adjacent histologically normal pancreatic tissue samples. Relative 

abundances of species in percent are plotted. Sequencing data passed extensive filter 

processes, therefore leaving only one to five different taxa per sample.  

 

4.3.2 2D-cultured Capan-2 and MiaPaCa2 cells do not harbor different 

microbiomes 

 

Being aware of the issues with the FFPE Capan-2/MiaPaCa2 data set, the following control 

experiment was even more important. Although cell culture is performed under the highest 

sterile conditions possible, even in S1 labs with the lowest safety standards, contamination 

must be considered. Also, the moment the cells are transplanted from the seemingly sterile 

environment of 2D cell culture flasks to the recipient animal, the introduction of 

contaminants cannot be excluded. Furthermore, analyzing Capan-2 and MiaPaCa2 cells 

aimed at clarifying the origin of differences between the tissue groups based on the 

assumption that the microbes found in tumor samples are mouse-born. For these reasons, 

DNA from both cell lines was extracted in 5 biological replicates each and tested for bacteria 

via 16S rRNA gene sequencing. NTCs were introduced in an almost 3:1 ratio, outnumbering 

the true samples by far. 

With no surprise, bacterial DNA was detected by Nanopore sequencing in all samples. Like 

the FFPE tissue samples, the cell data was subject to contamination correction by applying 

the additional filter pipeline. Following the standard analysis pipeline next, alpha diversity 
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metrics were calculated using non-rarified phyloseq objects. There were no significant 

differences found between Capan-2 and MiaPaCa2 cells in neither OS, SI, nor InvS (figure 

30a-c).  

 

Figure 30: Analysis of the microbiomes of 2D-cultured Capan-2 and MiaPaCa2 cells. (a-

c) Alpha diversity metrics OS, SI, and InvS are not significantly different between Capan-

2 and MiaPaCa2 cells. Metrics calculated with non-rarified library sizes. Statistical testing 

performed with t-test or Wilcoxon rank test according to normal distribution test results. 

ns, not significant. (d-f) Beta diversity metrics uwUF, wUF, and BC do not show 

significant differences between Capan-2 and MiaPaCa2 cells. Metrics calculated with 

rarified library sizes. Statistical testing performed with PERMANOVA. n.s., not 

significant. 
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The median observed number of species was 20 and 15 for Capan-2 and MiaPaCa2 cells, 

respectively, after the extreme filtering process which again caused the drop of many reads 

requiring an unusually low rarefaction threshold to keep all samples. None of the beta 

diversity metrics, neither uwUF, wUF, nor BC, showed significant differences between 

Capan-2 and MiaPaCa2 cells (figure 30d-f). Regarding the species identified in the cell 

culture samples, the composition exhibits great variation among all samples, also within one 

cell line, and the vast amount of environmental contaminating bacteria is evident (figure 31). 

For instance, Bradyrhizobium vignae and Bradyrhizobium guangxiense are again found. In 

addition, Sphingomonas, Sphingobium and Novosphingobium, known as typical environmental 

bacteria, appear in the microbial composition.  

 

Figure 31: Microbial compositions of 2D-cultured Capan-2 and MiaPaCa2 cells. 

Relative abundances of species in percent are plotted.  

 

4.3.3 The microbiomes of TNFα-treated Capan-1 tumors differ in parts from 

vehicle-treated controls 

 

Another available sample set subject to investigation consisted of xenograft mouse model 

tumors derived from orthotopically transplanted human Capan-1 cells. Like Capan-2, they 

are representatives of the CLA PDAC subtype. After tumor development, the transplanted 

mice received either TNFα or H2O in two cohorts for three weeks followed by sacrifice, 

tumor isolation and paraffin embedding. The study from which these samples derived found 

the CLA Capan-1 tumors to become more BL after TNFα treatment (Tu et al., 2021). These 

tissues were analyzed for their microbiomes via 16S rRNA gene sequencing in order to learn 

more about the subtype as determinator of the microbiome. Figure 32 illustrates the 
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experimental design with exemplary H&E-stained tissue sections of the FFPE blocks at 

which step the workflow was executed within the work frame of this thesis. 

 

Figure 32: Experimental design of pancreatic microbiome analysis in TNFα/H2O-

treated Capan-1 xenograft PDAC mouse models. Mice orthotopically transplanted with 

human Capan-1 cells were intraperitoneally (i.p.) treated with TNFα or its vehicle control 

H2O, respectively, to introduce lineage reprogramming prior to tumor isolation. 

Exemplary H&E stainings of the two tissue groups. DNA was extracted from FFPE tissue 

sections and subject to 16S rRNA gene sequencing.  

 

Following the standard analysis pipeline, the double filtered FFPE samples sequencing data 

were unrarefied employed to calculate alpha diversity metrics. Both treatment groups were 

composed of n = 8 tumor samples. According to statistical testing, there were no significant 
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differences between TNFα- and H2O-treated Capan-1 tumor microbiomes in OS, SI and InvS 

(figure 33a-c). However, noticeably, the variance in H2O-treated Capan-1 tumors was always 

greater than in TNFα-treated tissues, and at least regarding OS, the median diverged visibly 

between the two groups. Capan-1 tumors +H2O presented with a median OS number of 

about 55, Capan-1 tumors +TNFα had a median OS of just under 80 (figure 33a).  

 

Figure 33: Analysis of the microbiomes of TNFα/H2O-treated Capan-1-derived 

orthotopic tumor tissue samples. (a-c) Alpha diversity metrics OS, SI, and InvS are not 

significantly different between TNFα- and H2O-treated Capan-1 tumors. Metrics 

calculated with non-rarified library sizes. Statistical testing performed with t-test or 

Wilcoxon rank test according to normal distribution test results. ns, not significant. (d-f) 

Beta diversity metrics are calculated with rarified library sizes. UwUF and wUF do not 
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show significant differences between TNFα- and H2O-treated Capan-1 tumors. BC shows 

a significant difference between TNFα- and H2O-treated Capan-1 tumors. Statistical 

testing performed with PERMANOVA. *, p ≤ 0.05. n.s., not significant.  

 

Rarefying the read numbers, calculating and plotting uwUF, wUF and BC beta diversity 

metrics with PCoA revealed homogeneity of both Capan-1 tumors treated with TNFα and 

H2O in both UniFrac measures (figure 33d,e). Interestingly, in BC, indeed a statistically 

significant difference prevailed between the two differently treated tumor sample 

populations (figure 33f). Generally, the samples are composed of very different 

combinations of bacteria with contaminating species again dominating in some (figure 34). 

Streptococcus thermophilus, Escherichia coli, Curtobacterium flaccumfaciens, and an unspecified 

oral bacterium are among the most prominent species.  

 

Figure 34: Microbial compositions of TNFα/H2O-treated Capan-1-derived orthotopic 

tumor tissue samples. Relative abundances of species in percent are plotted.  
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4.4 Chapter 4 | The pancreatic microbiome of human PDAC patients with 

different tumor subtypes 

 

4.4.1 The human PDAC microbiome is distinguishable from its matched healthy 

pancreatic counterpart 

 

Ensuing orthotopic transplantation experiments towards more translational, patient-oriented 

microbiome research, human resected PDAC samples as well as healthy tissue samples from 

the surrounding pancreas of the same patients were examined. The samples taken at surgery 

by the Department of General, Visceral and Pediatric Surgery were provided as FFPE tissue 

blocks by the Department Pathology alongside with H&E stainings of the samples which had 

the tumor areas marked by pathologists. Figure 35a illustrates the workflow which started 

with cutting the blocks for the experiment presented here, and also contains exemplarily 

H&E stainings of the normal pancreatic and PDAC tissue samples. Further, FFPE human 

PDAC material was subject to 16S rRNA gene FISH and LPS IHC qualitatively 

demonstrating the greater abundance of bacterial components in tumor tissue as compared 

to adjacent normal human pancreas (figure 35b,c). 

To start with, diseased and healthy pancreatic microbiomes were compared by analyzing 

n = 30 human PDAC tumor samples and n = 24 matched healthy pancreas tissues via 16S 

rRNA gene sequencing. Unlike the tissue samples derived from orthotopically transplanted 

human cells which were scratched from the same slide after histological examination and 

demarcation of tumor from adjacent normal tissue, the patient-derived healthy pancreas 

samples were sampled and embedded separately. Moreover, for every sample, a paraffin 

NTC was taken from the same section and further buffer-only controls were introduced into 

the data set, again causing the NTCs to outnumber the true samples. As already highlighted 

in 4.3, an extra filter pipeline was applied to FFPE sample data in addition to the standard 

decontamination process. Before rarifying the data, alpha diversity was estimated in the 

three metrics OS, SI, and InvS none of which unveiled significant differences in the diversity 

within samples between the two groups normal pancreas and tumor (figure 36a-c). The 

median number of observed species was approximately 12 in both groups.  
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Figure 35: Investigation and visualization of bacterial components in matched tumor 

and normal pancreatic tissue samples of human PDAC patients. (a) Experimental 

design of pancreatic microbiome analysis employing tumor and normal pancreas tissue 

samples from the same human PDAC patients who underwent surgery. Exemplary H&E 

stainings of the two tissue groups. DNA was extracted from FFPE tissue sections and 
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subject to 16S rRNA gene sequencing. (b) FISH of the 16S rRNA probe EUB338 to the 

DNA of human PDAC and adjacent normal pancreas FFPE tissue. Nucleic 

counterstaining with DAPI. White arrows indicate the yellow, dot-shaped 16S rRNA gene 

light signals against yellow background autofluorescence. (c) IHC staining of LPS on 

human PDAC and adjacent normal pancreas FFPE tissue. Black arrows indicate the 

reddish-brown, dot-shaped LPS antibody signals. Nucleic counterstaining with 

hematoxylin. 

 

 

Figure 36: Analysis of the microbiomes in matched tumor and normal pancreatic tissue 

samples of human PDAC patients. (a-c) Alpha diversity metrics OS, SI, and InvS are not 

significantly different between human PDAC and normal pancreas samples. Metrics 

calculated with non-rarified library sizes. Statistical testing performed with t-test or 
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Wilcoxon rank test according to normal distribution test results. ns, not significant. (d-f) 

Beta diversity metrics are calculated with rarified library sizes. Eight normal pancreas 

samples and nine tumor tissue samples dropped by rarefaction. UwUF and wUF do not 

show significant differences between human PDAC and normal pancreas samples. BC 

shows a significant difference between human PDAC and normal pancreas samples. 

Statistical testing performed with PERMANOVA. *, p ≤ 0.05. n.s., not significant. 

 

The notably reduced read numbers throughout the data set after strict filtering demanded a 

rarefaction threshold considerably lower than usual and still about a third of the samples 

were eliminated. Normal pancreas remained with n = 16 samples and n = 21 tumor samples 

were left. Concerning beta diversity, no differences between healthy and diseased pancreas 

were identified calculating uwUF and wUF (figure 36d,e). However, BC indeed 

demonstrated statistical significance of the difference between human PDAC and 

corresponding samples from still healthy areas of the pancreas (figure 36f). The separation of 

the data points may not be as clear compared to the murine KPC data in 4.2, however, this is 

a commonly observed data property in microbiome studies by now, especially with human 

samples which do not derive from such standardized conditions and need to be checked for 

confounders.  

 

Figure 37: Microbial compositions of matched tumor and normal pancreatic tissue 

samples of human PDAC patients. Relative abundances of species in percent are plotted. 
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Yet, looking at the microbial composition, it displays a subtle divergence between normal 

pancreas and tumor tissue samples, although contaminants happen to appear here as well 

(figure 37). For instance, one normal pancreas sample supposedly consisted exclusively of 

Mycoplasma cynos, the only species left after the filter process.  

 

4.4.2 Stratifying by classical, basal-like and hybrid PDAC subtypes reveals 

significantly different microbiome in hybrid tumors 

 

In view of personalized medicine with more effective treatment impact in the battle against 

cancer, stratifying patients has been a successful concept so far. Also regarding PDAC, this 

seems to be a quite promising approach, at least in the laboratory-based research context to 

better understand tumor biology. As elucidated in detail in the introduction, CLA and BL 

forms of PDAC are discussed for several years now. More recently, the HYB subtype was 

additionally proposed, a mixed form of the two established ones. Its inclusion is 

consequential considering the extremely heterogeneous histology of PDAC masses which 

also applied to the samples processed here, wherefore the HYB subtype was covered as well 

within the scope of this thesis. 

To begin with, the resected tumor samples had to be subtyped. This was done by IHC 

staining for the CLA tumor marker protein GATA6 and the BL marker CK5 as previously 

published (O’Kane et al., 2020). Staining serial tissue sections allowed the direct comparison 

of the markers’ presence in the respective area. Of the 30 PDAC tumor samples sequenced, 

n = 6 samples derived from pre-experiments in which two different DNA extraction methods 

for the pathology samples had been tested (data not presented within the scope of this thesis) 

but the other 24 paraffin blocks were immediately available. These were cut and the sections 

stained, however, technical issues arose scanning 4 of the slides which could not be solved in 

due time leaving n = 20 tumor samples for subtyping. Employing QuPath, the area to be 

measured was pre-defined whereby staining anomalies were excluded (yellow lines in 

figure 38). Within this marked area, positively stained cells were then automatically detected 

by QuPath (displayed in red in the QuPath overlays in figure 38). The percentage of positive 

cells was determined and thereof z-scores were calculated. The latter were divided into three 

quantiles (lowerQ, mid, upperQ) and by comparing those for GATA6 and CK5, the three 



Results Chapter 4 | 

105 | 

 

subtypes (CLA, HYB, BL) were defined. The groups sizes were about equal with n = 6 

samples accounting for BL tumors, n = 7 CLA and n = 7 HYB specimen. Figure 38a-c shows 

examples of GATA6 and CK5 stainings of samples classified as CLA, BL and HYB, 

respectively. While in CLA and BL tumor samples, the section was uniformly characterized 

by either GATA6 or CK5 staining for the greatest part (figure 38a,b), in hybrid tumors, both 

GATA6 and CK5 were pronounced depending on the tissue region (figure 38c).  

 

Figure 38: Human PDAC subtyping (CLA, BL, HYB) via IHC targeting marker proteins 

GATA6 (CLA) and CK5 (BL). (a) Two consecutive FFPE sections of a human PDAC 

sample are stained for GATA6 and CK5, respectively, via IHC. Employing QuPath, 

GATA6/CK5-positive cells (red) are separated from hematoxylin only-stained cells (blue). 
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Quantifying the GATA6- and CK5-positive stained areas and evaluating the difference 

between these fractions via z-scores and quantiles leads to the classification of this 

sample as classical PDAC subtype. (b) Following the procedure described in (a), the 

tumor sample of this human PDAC patient is subtyped as basal-like. (c) Following the 

procedure described in (a) unravels simultaneous appearance of GATA6 and CK5 to 

about equal extents in the here presented human PDAC sample. Two image details (i) 

and (ii) illustrate the predominant occurrence of GATA6 and CK5 in different areas of the 

tumor sample. This is confirmed by quantification and results in the assignment to the 

hybrid PDAC subtype.  

 

This subtyping information was added to the metadata of each of the 20 samples and joined 

with the sequencing data in the adjusted phyloseq objects. Stratified by CLA, BL and HYB, 

the data was analyzed again. Alpha diversity did not return significant differences between 

the three groups in any of the considered metrics OS, SI and InvS (figure 39a-c). Except the 

number of observed species was significantly different between BL and HYB tumor samples 

with about 12 and 5 median species, respectively. Although rarefying the data with a low 

threshold, one CLA and one HYB sample were excluded leaving n = 6 samples in each group. 

Calculating and plotting beta diversity metrics uwUF, wUF and BC using PCoA next 

recapitulated and emphasized the finding of the hybrid tumor form being different from the 

two others which in turn were found to be rather similar in their microbial composition 

(figure 39d-f). This was also the case when trying to evaluate the data only stratified by CLA 

and BL based on the z-score alone where no significant difference between the two subtypes 

was found (data not shown). Regarding uwUF, HYB and BL tumors were significantly 

different from each other, while HYB vs. CLA almost reached statistical significance 

(p = 0.051) (figure 39d). Concerning wUF, the groups did not display any differences (figure 

39e). Eventually, BC clearly demonstrated a significant difference between HYB and BL as 

well as HYB and CLA (figure 39f). The origin of this separation of hybrid tumors illustrated 

in rather abstract distances becomes concrete in the microbial composition at species level in 

figure 40. While the samples of BL and CLA tumors greatly vary in their microbial 

composition, the HYB tumors comprise samples with mostly similar bacteria. Here, the 

dominant species are Sphingosinicella microcystinivorans and Sphingomonas insulae. However, 

this simultaneously points out the problem commonly shared by the FFPE data, namely the 

retention of contaminating species in the data set. 
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Figure 39: Analysis of the microbiomes in tumor samples of human PDAC patients 

stratified by PDAC subtypes BL, CLA, and HYB. (a-c) Alpha diversity metrics OS, SI, 

and InvS are not significantly different between the three regarded tumor subtypes, 

except for the number of observed species between basal-like and hybrid tumors. Metrics 

calculated with non-rarified library sizes. Statistical testing performed with t-test or 

Wilcoxon rank test according to normal distribution test results. *, p ≤ 0.05; ns, not 

significant. (d-f) Beta diversity metrics are calculated with rarified library sizes. One 

classical tumor sample and one hybrid tumor sample dropped by rarefaction. UwUF 

shows a significant difference between hybrid and basal-like tumor samples. BC shows 

significant differences between hybrid and basal-like tumor samples as well as between 

hybrid and classical tumor samples. The other group comparisons and wUF remain 

insignificant. Statistical testing performed with pairwise PERMANOVA. sig, significance; 

*, p ≤ 0.05; **, p ≤ 0.01; n.s., not significant. 
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Figure 40: Microbial compositions of tumor samples from resected human PDAC 

patients stratified by PDAC subtypes BL, CLA, and HYB. Relative abundances of 

species in percent are plotted. 
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5 Discussion 
 

5.1 Chapter 1 | Chances and challenges of third generation sequencing in 

the context of high and low microbial biomass samples 

 

5.1.1 Oxford Nanopore sequencing outcompetes NGS technology for microbiome 

research 

 

Scientific progress most often goes hand in hand with technical advances. This is also 

mirrored in the clinical setting where, for instance, modern imaging procedures allow to 

detect and distinguish what formerly had escaped from being discovered at all. For 

laboratories of different specializations, it usually poses a challenge to implement new 

techniques outside their commonly used toolboxes in terms of money, time, and expertise. 

Establishing a sequencing pipeline customized to the laboratory’s needs also turned out to be 

a time-consuming, labor-intensive project itself within this thesis requiring many 

benchmarking experiments and the acquisition of new competences. Yet, methodological 

advancements are often inevitable in order to realize certain project goals.  

After observing its involvement in a plethora of diseases, the microbiome also attracted great 

attention in the oncology field. Therefore, it was only a matter of time until pancreatology 

picked up on this trend and implemented microbiology as a joint discipline. Studying the 

microbiome in cancer is highly compelling for various reasons. It was shown to be able of 

inducing neoplastic transformation, certain pathogens may cause and promote cancer, 

dysbiosis is capable of influencing cancer progression, and some microbes have proven to 

serve as target for cancer prevention (Schwabe and Jobin, 2013). As introduced in 1.4.2, 

significant findings about tumoral microbiomes were made that pushed PDAC research to a 

new vantage point which clearly offers innovative perspectives for the persistent problems 

with this tumor entity.  

To date, the vast majority of studies addressing the microbiome in cancer has employed 

amplicon sequencing using an Illumina platform, the most popular representative of NGS 

(del Castillo et al., 2019; Geller et al., 2017; Nejman et al., 2020; Pushalkar et al., 2018; 

Riquelme et al., 2019). Only very few studies can be found that chose a different approach 
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like whole-genome sequencing as performed by Guo and colleagues, however, it was still 

NGS-based (Guo et al., 2021). Although NGS is well-established and most papers rely on it 

for its low error rate of below < 1% and comparably low costs, it also comes along with 

disadvantages. Short fragment sequencing of usually 150 to 250 bases is not suitable for a 

1,500 bp long region of interest if the integrity of this gene decides on the specificity of the 

detected microbe. In most cases, the experiments of the aforementioned studies were 

performed only sequencing one or two of the nine variable regions (V) of the bacterial 

marker gene 16S rRNA (figure 41), most often single V4 or a combination of V3-V4 which are 

known to give genus level resolution at best. This constitutes a major drawback since 

depending on the selected variable region, the sequencing results vary significantly (Bukin et 

al., 2019). Therefore, it is difficult to compare studies with different sequencing approaches. 

The only study that covered multiple Vs was conducted by Nejman et al. and included 5 

amplicons covering 68% of the 16S rRNA gene (Nejman et al., 2020). NGS has been the best 

methodology available for a long time, however, with the advent of third generation 

sequencing better options are now on the market.  

 

Figure 41: Schematic illustration of 16S rRNA gene with variable regions and 

established primers for NGS. The 16S rRNA gene, simplified depicted in blue, contains 

nine variable regions (V1-V9) of different length with varying spacing. Black numbers at 

the top indicate the number of the DNA base at which the regarded V starts. The 16S 

rRNA gene has a total length of ~1500 bp. Green arrows mark forward primers (F), 

purple arrows mark reverse primers (R). All primers contain the DNA base number at 

which they start. Most studies employing NGS amplify V4 or V3-V4. The ONT SQK-

16S024 16S rRNA gene sequencing kit used in this thesis includes the barcode-coupled 

16S primers 27F and 1492R. Own illustration adapted from (help.ezbiocloud.net/16s-rrna-

and-16s-rrna-gene, accessed on 2023-07-24 22:58:00). 

 

Besides offering a portable sequencing platform, rendering the own work independent of 

sequencing units as well as the option of real-time sequencing, the biggest advantage of ONT 

sequencing is the possibility to analyze long fragments. Several 100 kb in one stretch are not 

uncommon and the longest read officially reported in a publication was about 2.3 Mb long 

(Payne et al., 2019). The ability to sequence long fragments allows the resolution of bacterial 
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communities on species level. For these reasons, it was decided to establish third generation 

sequencing by ONT in our laboratory. This enabled independence from in-house NGS-based 

sequencing facilities in view of future real-time bed-side sequencing.  

It goes without saying that every method comes along with pitfalls and weaknesses, 

especially on the level of such high complexity. Nanopore sequencing is not yet broadly 

established, although it would render microbiome studies a lot more comparable. This may 

partially be attributed to the complex bioinformatics that need to be mastered. Also, the 

comparably high error rate of 10% surely still deters users from relying on this technology. 

This is due to the physical properties of the nanopores which, despite their small size, are 

passed by more than one nucleic base at the same time, wherefore inaccurate voltage 

changes along the membrane may occur and it is difficult to precisely match them to a single 

DNA base (figure 42).  

 

Figure 42: Schematic illustration of nanopore sequencing mode of operation. Lipid 

membrane-integrated protein channels (nanopores) bond with unwinding enzymes 

(helicases) which feed the DNA strands through the pores. While one nucleotide at a time 

is pushed into the nanopore, the latter technically holds several bases at the same time. 

Simultaneously, the electrostatic potential applied at the membrane causes an ion current 

to pass through the nanopore. Changes of this current caused by different DNA bases are 

translated to the DNA sequence in a computational process called base calling. Own 

illustration created with (biorender.com). 

 

At the time of running sequencing experiments for this thesis, the QS of base caller Guppy 

was 9, however, ONT recently developed new sequencing chemistry reaching a QS of 20 and 

higher representing a 1 in 100 chance of an incorrectly annotated base, thereby promising 
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single molecule accuracy of over 99% (nanoporetech.com). Taken together, this means ONT 

sequencing is not only capable of keeping up with NGS options but in fact outcompetes 

them regarding microbiome studies, even though this technology is overall still in its infancy 

compared to its predecessors. To the present day, the established pipeline in our laboratory 

stands the test, runs multiple clinical trials such as P-MAPS (NCT04777812) and is 

continuously refined. For instance, the enormously reduced error rate pledging ONT Q20+ 

chemistry is currently being established.  

P-MAPS (NCT04777812) is only one example for the growing number of clinical studies 

registered at ClinicalTrials.gov that aim at investigating the multiple impact layers of the 

microbiome in the context of PDAC. However, most other trials still employ NGS 

techniques. The choice of ONT sequencing does not only serve as reliable platform with high 

specificity but also may directly be employed for deployment in clinical practice. This sets 

new perspectives to the elucidation of the microbiome-PDAC-axis and the translation of the 

obtained insights.   

 

5.1.2 Optimized workflow for sequencing bacteria in murine fecal and pancreatic 

tumor samples  

 

Besides sequencing, the workflow requires other crucial steps that had to be established 

according to the specific needs in examining murine samples of different origins. The most 

efficient DNA preparation method is a key element in investigating microbial communities. 

As mentioned before, the way of sampling, extracting and sequencing DNA has a strong 

impact on the outcome of the analysis (Bjerre et al., 2019; Teng et al., 2018). Hence, testing 

different DNA extraction kits was necessary to set the gold standard for the here presented 

samples to be sequenced by nanopores.  

The International Human Microbiome Standards project aims at a precise characterization of 

the human microbiome via the coordinated development of standard operating procedures 

(SOP) to foster the comparability between studies in human microbiome research (human-

microbiome.org). Incorporating the instructions and suggestions from these SOPs into the 

original manual of the different manufacturer’s kits resulted in two protocols for each kit 

except for the QIAamp DNA Microbiome Kit which is conceptualized in a way not offering 
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feasible implementation of the IHMS recommendations, and it is anyway designed 

specifically for the extraction of microbial DNA. Therefore, it was generally expected to 

return lower DNA concentrations than the other kits which pick up host DNA as well. 

Surprisingly, the Invitrogen IHMS protocol still performed the best regarding the chosen 

readout parameters DNA concentration, DNA purity, OS, and read counts, while the Qiagen 

microbiome kit achieved the worst values for most parameters besides DNA concentration. 

Regarding the A260/A280 values for pure DNA, all protocols achieved median ratios close to 

1.8 arguing against the presence of contaminants absorbing around 280 nm such as proteins 

and phenols. Contrary, most kits failed to reach acceptable A260/A230 ratios and resided at 

appreciably lower values than 2.0. This indicates contamination with substances that absorb 

close to 230 nm such as carbohydrates or phenol. Carbohydrate carryover often happens 

with plants, phenol is used in conventional DNA extraction with TRIzol reagent, for 

instance. In column-based kits such as the ones used here, guanidinehydrochlorid 

(guanidine-HCl) is often employed and denatures proteins. Guanidine is known to disturb 

ONT library preparation and sequencing as stated on the company’s website. The conclusion 

may be drawn that DNA samples isolated with the Invitrogen IHMS protocol achieve a 

higher throughput in sequencing due to more intense washing. The sequencing depth (read 

count) is remarkably higher using this protocol, likely due to lower amounts of substances 

interfering with downstream sequencing removed by these additional washing steps.  

Following the ONT protocols for library preparation which were directly taken from the 

company, the data processing was the most advanced step in establishing the pipeline. It has 

been published before that Centrifuge as a classifier needed to assign taxa to reads is a high 

sensitivity tool (Leidenfrost et al., 2020; Sanderson et al., 2018). However, previously, it was 

only used with preformatted indexes pvh and p which failed to annotate all 17 species in the 

more complex mock community used here. Assuming this was due to incomplete databases, 

not due to incomplete sequencing, new libraries were built according to official Centrifuge 

instructions. First, an index containing a large set of complete NCBI RefSeq genomes was 

applied to the data. Still, three species were not found in the data including Candida albicans, 

the most common human fungal pathogen (Sagué et al., 1993). The NCBI complete genomes 

index (abv library) only comprises 18 fungi. Consequently, it is not advisable to employ this 

index in case of analyzing diverse microbiomes containing many different fungi. Because of 

this result, the nt library (complete and incomplete genomes) was applied for classification in 
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the pre-experiments of the method establishment (4.1) as well as the KPC experiments (4.2). 

Yet, the disadvantage of using such comprehensive libraries is that it takes a high 

computational memory capacity, and the analyses are a lot more time-consuming. Within the 

scope of this thesis, the focus was set on bacteria which were filtered from the sequencing 

data at an early step in the analysis R script. Therefore, it was decided to classify the FFPE 

sample data using the abv library. Technically, it is possible to detect specifically fungi by 

performing 18S rRNA gene sequencing. NGS-based studies performed amplicon sequencing 

of the internal transcribed spacer between the eukaryotic 18S and 5.8S rRNA genes for this 

purpose (Aykut et al., 2019). Beyond that, ONT metagenomic sequencing also provides the 

opportunity to perform de novo sequencing. Regarding the pre-defined mock community, 

however, classification with the nt database returned the best recall and AUPR values. 

Solely, the precision remained low as for the other indexes. This can be attributed to the 

mock community containing some very low abundant species of < 0.1%. Thus, only taxa with 

abundances below this prevalence filter threshold could be removed by calculating overall 

precision and recall which in turn led to the annotation of many incorrect species.  

Feces are high microbial biomass samples that are comparably straightforward to 

investigate. The workflow, established with rectal swabs among others, could directly be 

transferred to these murine specimens. Metagenomic sequencing was chosen to analyze the 

microbiome of these DNA samples due to extremely high concentrations of several hundred 

ng/µL and almost unexceptionally excellent purity ratios after Invitrogen IHMS isolation and 

the application of a purification kit. Concerning tumor samples, the methodology was not 

that trivial. In their identity as low microbial biomass samples, it was set to apply 16S rRNA 

gene sequencing since this technique works with amplifying PCR and can therefore deal 

with low template material and highly host contaminated samples (in this case murine 

DNA). Still, it was necessary to test the two best performing DNA isolation kits as well as the 

PCR parameters DNA input and number of cycles. The strongly varying read numbers 

among samples that were prepared the same way underline the general feasibility of the 

pipeline, yet also the great heterogeneity even among tumors of the same genetic origin. This 

strongly argues for other factors influencing the abundance of a tumoral microbiome when 

comparing animals of the same genetic background. It is important to mention that in 

experiments performed on snap-frozen bulk tumor tissue, a random piece was cut off 

without paying attention to the exact tumor area. It is likely that this approach contributes to 
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the varying sequencing depth, speculating about an uneven distribution of the microbiome 

across the pancreas and subsequently the tumor. While different PCR parameters were 

tested, the PCR reaction mix was left unchanged. Higher amounts of input DNA and an 

increased number of PCR cycles do not necessarily result in an elevated amount of PCR 

product since too much DNA template may cause steric hindrance and at some point, the 

reagents needed for amplification are used up. In this benchmarking experiment, however, it 

worked, presumably because the microbial to murine DNA ratio is very low in tumors so 

more template and amplification time in fact results in more PCR product potentially to be 

sequenced. For these samples, the Invitrogen IHMS protocol, 50 ng input DNA and 35 PCR 

cycles resulted in considerably higher read counts compared to 10 ng and 25 cycles 

suggested by the original ONT sequencing protocol. 
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5.2 Chapter 2 | Dynamics of intestinal and tumoral microbiomes in KPC 

mice and human PDAC patients 

 

5.2.1 Locally distinct microbiomes in KPC mice are unique in health and disease 

 

Regarding human PDAC, the involvement of the microbiome in various aspects of the 

disease from inception to clinical prognosis due to its impact on therapeutics and the 

immune system is acknowledged by now. Convincing association studies have connected 

changes in the microbial composition with distinct tumor stages and various publications 

discuss how to use microbiota in therapy and diagnostics although this is not yet put into 

practice (Pfisterer et al., 2022). Moreover, attempts have been undertaken to characterize the 

tumoral microbiome (del Castillo et al., 2019; Geller et al., 2017; Guo et al., 2021; Nejman et 

al., 2020; Pushalkar et al., 2018; Riquelme et al., 2019). This will also be further discussed in 

5.4 regarding humans. On the contrary, murine models of PDAC, such as the widely 

deployed transgenic KPC model, are far less studied regarding their disease-related 

microbiome. Yet, it is crucial for basic and translational science to reproducibly define the 

exact intestinal and intratumoral microbial composition in order to implement the 

microbiome as a reliable diagnostic and therapeutic tool in the future.  

The comprehensive characterization of fecal and tumoral microbiomes of mice with a KPC 

background is fundamental for further functional studies focusing on the mechanisms 

behind the microbiome-disease-relation. As main readouts, alpha and beta diversity were 

estimated. Although alpha diversity is an important measure to evaluate single samples or 

one group, beta diversity is more relevant in the context of group comparison. Alpha 

diversity metrics not showing any significant differences, which was mostly the case in the 

experiments presented in this thesis, does not necessarily mean that there is no difference 

between the regarded groups overall but states that the groups themselves have an about 

equal level of diversity. For instance, the same number of observed species does not 

necessarily imply the same kind of species. A large degree of variance in alpha diversity 

within one group may indicate that confounding variables were not considered causing 

inhomogeneity within the group, and it will most likely be difficult to identify a common 

microbial factor to be associated with the group’s main uniting property. Nevertheless, beta 

diversity measures may show differences between groups depending on the composition of 
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their individual samples. Typical measures consider phylogeny and species abundance as 

elucidated in the introduction (1.4.1). This knowledge about quantitative and qualitative 

diversity metrics enables the interpretation of microbial ecology in the context of PDAC. In 

addition, the familiarization with the normalization method rarefaction for beta diversity 

estimation is important. Although it is critically reviewed, rarefaction is currently the best 

normalization technique available for microbial sequencing data (Weiss et al., 2017). In order 

to handle the at times greatly varying library sizes, samples are rarefied which means 

random subsampling of reads from the original pool (Lin and Peddada, 2020). The larger the 

number of species subsampled is, the more species will be found in the sample. This draws 

rarefaction curves that start out growing fast, then approach a plateau. In the results chapter 

2 (4.2) discussed here, the optimized ONT sequencing-based analysis workflow established 

in 4.1 proved its quality and suitability for murine microbiome research via the application 

of rarefaction and evaluating measures of diversity. It was not only a technical success, but 

also significant differences were found between both fecal and tumor samples of KPC mice 

and their respective healthy controls.  

The gut is one of the best-studied microbial niches in humans as well as in mouse models. 

Especially compared to other internal organs and tumors that are low microbial biomass 

sites, it harbors an exceptional load of microbiota, additionally facilitating the technical 

aspects that form part of microbiome studies. Typical gut microbes as well as their functional 

implications in metabolizing nutrients and drugs are described. In the case of PDAC, 

positive correlations between gut and pancreas microbiome were drawn. For instance, Ren et 

al. first declared the stool microbiota to be unique in PDAC, and others additionally stated 

that it can serve as a non-invasive biomarker (Kartal et al., 2022; Nagata et al., 2022; Ren et 

al., 2017). The finding that the fecal microbiome of tumor-bearing KPC mice mimicking 

human PDAC differs significantly from the one of healthy controls was in line with these 

human studies. Feces of two more time points during pancreatic tumorigenesis were 

investigated and even at an early age of only 6 weeks, accurately distinguishable microbial 

compositions were revealed comparing KPC and CTRL mice. Notably, invasive tumors have 

not formed yet at this age, even tumor lesions have usually not developed in these tissues 

(Westphalen and Olive, 2012). At 12 weeks, when tumors start to manifest, this difference 

persists, and regarding uwUF which considers presence/absence of species as elucidated 

before, it becomes clearer and statistically more significant over time. This finding hints 
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towards the fecal microbiome being an early sensor and indicator of changes in the 

seemingly healthy pancreatic tissue and underlines its biomarker potential. Since other 

confounders were excluded as potential reasons for the changes in the gut microbiome, it can 

be concluded with great certainty that the genotype of the mice, i.e., Kras and Trp53 

mutations responsible for pancreatic carcinogenesis, is the determinant of these microbial 

differences. Confounder control is particularly important as it was recently shown that, 

comparably to humans, factors such as sex have major impact on the gut microbiome of mice 

that carry established tumors (Kaune et al., 2023). 

In contrast to these results, a study by Pushalkar and colleagues found the feces of their 

PDAC mouse model to have similar bacterial profiles at a young age compared with the 

controls (Pushalkar et al., 2018). They studied the LSL-KrasG12D/+;P48-Cre (KC) transgenic 

mouse model that does not harbor a Trp53 mutation and is therefore characterized by, unlike 

the KPC model, a slowly progressive tumor development. Interrelating these observations, 

the gut microbiome really seems to be influenced by the time-dependent tumor onset and 

simultaneous disease severity. This fits in with the hypothesis of this thesis that the tumor 

(subtype) impinges on the microbiome. However, functional questions remain unanswered, 

such the exact mechanisms how PC causes changes in the fecal microbiome. ONT 

metagenomic sequencing enables functional analyses and may be exploited in this regard. 

Bacterial translocation via the digestive route, the duodenum and pancreatic ducts has been 

reported before, however, bacteria found here in feces and pancreas were not necessarily the 

same (del Castillo et al., 2019; Glaubitz et al., 2023; Pushalkar et al., 2018). Only Lactobacillales 

were found in both healthy compartments, a fact that allows the consideration of the bacteria 

migrating from the gut to the pancreas perceiving the latter as an initially sterile organ.  

The pancreatic microbiome is of special interest because of possible direct implications on 

pathogenesis and impact on treatment such as sequestering of chemotherapy (Geller et al., 

2017). Also, the exocrine pancreatic function affected by PDAC has been reported to 

influence the composition and maintenance of gut microbiota (Ahuja et al., 2017; Frost et al., 

2019). This may at least partially explain the shift in the fecal microbiome and argue for its 

potential implication as biomarker. The presence of bacterial components in PDAC tissue 

had been shown before but mainly in humans (Geller et al., 2017; Nejman et al., 2020; 

Pushalkar et al., 2018). In this thesis, this finding was reproduced and confirmed for KPC 
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mice. As opposed to healthy pancreatic tissue, cancerous pancreas harbors a more abundant 

microbiome and the intratumoral bacterial particles were mainly found intracellularly. Like 

the fecal microbiome, the microbiome of KPC tumors also proved to be significantly different 

from its healthy counterpart in beta diversity metrics. Yet, the difference was a little less clear 

between tumor and healthy pancreas than for the fecal sample communities. This may be 

traced back to the fecal microbiome being more robust and high microbial biomass samples 

generally being less prone to contamination issues. Tumors and most internal organs are low 

biomass samples, wherefore contamination poses a severe problem. Escherichia coli, for 

instance, was found in both KPC tumor and healthy pancreas samples. Since contaminants 

are usually systematically introduced and therefore present in all samples handled together, 

they may mask the species in fact causing differences between groups. The detection of 

contaminants mostly distorted the results in preceding studies with the exception of the 

Nejman study that contained a large set of NTCs and a striking filter pipeline (Nejman et al., 

2020). Together with their unique methodological approach of sequencing multiple Vs with 

NGS elucidated in 5.1.1, this marks the study as pioneering work. Contamination as one of 

the biggest pitfalls in microbiome research and ways to deal with it will be further discussed 

in 5.3.1. 

Regarding the tumor areas, no difference between tumor center and tumor periphery was 

found regarding beta diversity. This was rather unexpected since these sub-compartments, 

also referred to as reactive and deserted sub-TMEs in human PDAC in a study by Grünwald 

et al., differ greatly in their cellular and structural composition potentially offering habitats 

to various species of differing specializations due to an oxygen gradient and differing 

nutrients from the periphery to the center of the tumor (Grünwald et al., 2021). Looking at 

the microbial composition detected in both groups unveils the uniform presence of 

Escherichia coli in these tumor samples as well. While it is a common gut bacterium 

comprising not only pathogenic but also commensal strains, it appears to be the main 

contaminant in this setting (Martinson and Walk, 2020). Therefore, it is highly likely that the 

missing differences in beta diversity are due to methodological pitfalls rather than given 

biological conditions. Yet, surprisingly, the number of observed species was significantly 

different between center and periphery with a higher median OS in KPC tumor centers, 

although a median OS of 500 admittedly also argues for the presence of contaminating 

species. It is possible that most of these species are only low abundant, hence not causing 
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differences in abundance-dependent measures such as wUF. Galeano Niño and colleagues 

published a study where they showed that bacteria preferably colonize less vascularized 

tumor areas (Galeano Niño et al., 2022). This matches with the higher number of OS in KPC 

tumor centers that are also less vascularized in their fibrotic and necrotic properties. 

 

5.2.2 Similarities between murine KPC and human PDAC microbiomes present 

the prospect of clinically relevant microbiome studies  

 

Finding the locally distinct fecal and tumoral microbiomes to be unique in the context of 

modelled PDAC and systematically building up the fundamental knowledge about these 

microbiomes in one of the most important mouse models of PDAC with characterizing data, 

the comparison to human PDAC was more than encouraged. Both fecal and tumoral 

microbiomes were assessed for consistency with the complex human disease in two different 

approaches. 

The fecal microbiome was analyzed by applying stool classifiers lately developed from 

human data and testing their predictive value on the KPC data (Kartal et al., 2022; Nagata et 

al., 2022). These two publications found stool samples of human PDAC patients to be unique 

and distinguishable from healthy subjects. Being able to predict tumor cases from stool 

samples would be a milestone in PDAC research. Making use of preselected genera and 

species from the Kartal and Nagata data, the accuracy of predicting PDAC from KPC fecal 

samples reached AUC values of up to 80% from plotting the applied Ridge regression which 

is generally regarded as good performance (D’Agostino et al., 2013). The model calculated 

here based on the Nagata et al. features performed even slightly better than the accuracy 

achieved by Nagata and colleagues themselves. In summary, it was possible to predict 

tumors from murine KPC feces employing metagenomic classifiers built from recent 

publications. This means human and murine fecal microbiomes are highly similar in their 

dysbiosis to a degree that allows drawing conclusions from one species to another. This adds 

another point to the list in which the KPC mouse model recapitulates human PDAC, an 

extraordinarily complex malignant disease. Also, it is extremely remarkable since the 

published human data was ascertained with NGS and still compares to the here presented 

ONT sequencing results of the murine microbiome. 
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Since there is less biological relevance to predict cancer cases directly from PDAC tissue as it 

is not routinely available, there was no regression model calculated at this point. However, it 

is still highly relevant to learn about the comparability between the tumoral microbiomes of 

KPC mice and human PDAC patients to better understand tumor biology and the 

pronounced TME. As already mentioned, Nejman et al. published an outstanding study with 

reliable human PDAC microbiome data which was used to compare the KPC tumoral 

microbiome data to (Nejman et al., 2020). Finding their most abundant tumoral genera and 

species in the KPC tumors, additionally also with a higher abundance in the tumor samples 

than in the healthy organ, highlights the validity of the comparison of human and murine 

pancreatic tumors. Comparing the tumoral microbiome of KPC mice to the ones of other 

human cancer entities such as CRC and OSCC demonstrated the clear distinction between 

them (Galeano Niño et al., 2022). This is of particular interest as it loosens species boundaries 

in microbiome research and strengthens the specificity of the pancreatic tumoral 

microbiome, although oral cavity, gut and pancreas all form part of the digestive tract and 

are therefore highly interconnected. Inversely, regarding the oral cavity, for instance, a 

pronounced heterogeneity and rather low specificity of the microbial pattern to PDAC is 

known, meaning the microbial signatures may also be found in the context of other diseases 

(Stasiewicz et al., 2021). Current literature has mainly investigated the pancreatic tumoral 

microbiome in humans, some in orthotopic transplantation mouse models, whereas the data 

presented here on KPC tumors are novel and of essential importance in contributing to an 

integral picture of this mouse model.  
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5.3 Chapter 3 | PDAC subtype-microbiome-relations and the nature of 

contamination in microbiome research 

 

5.3.1 FFPE samples are extremely prone to harbor contaminants rendering data 

analysis challenging 

 

The advent of NGS offered an entirely new dimension to microbiome research allowing high 

throughput studies and an extreme sensitivity even to exceptionally low abundant species. 

However, at the same time these advantages come with the risk of also detecting 

contaminants that do not form part of the original sample community. This mainly poses a 

problem in low biomass samples in which contaminants can quickly become the 

predominant microbes (Davis et al., 2018; Eisenhofer et al., 2019; Salter et al., 2014). Tumor 

and healthy organ samples are popular examples for low biomass specimen, and they 

require particular attention regarding this important topic. The FFPE data sets discussed in 

the following serve as prime example for this aspect of microbiome research. Fortunately, the 

awareness for contamination being a serious challenge rose with an increasing number of 

publications addressing this issue and proposing ways of dealing with it (Glassing et al., 

2016; Rampelotto et al., 2019). Yet, interestingly, studies still publish environmental bacteria 

as part of tumoral microbiomes without explaining their decontamination approaches.  

As part of the results in 4.3, the sequencing data of Capan-2- and MiaPaCa2-derived tumors 

revealed the presence of environmental bacteria in their microbial composition as well. 

Regardless of the efforts to keep everything as clean as possible, the introduction of 

contamination during every step of microbiome analysis workflows cannot be avoided 

entirely. Regarding FFPE samples, this carries even more weight than concerning snap-

frozen tissue samples collected at animal sacrifice since they are only touched once with 

sterile tweezers, then directly frozen in sterile tubes until DNA isolation. Tissue-holding 

paraffin blocks, especially when derived from other groups or departments, cannot be 

controlled and have been touched by various people before entering the DNA extraction 

process. This is a structurally inevitable event, and generally, FFPE samples are the most 

common form of specimen in clinics, wherefore it is even more important to focus on 

contamination avoidance strategies and decontamination methods when working with this 

sample type. Receiving FFPE tissues, not readily isolated DNA, was essential in doing so 
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because it allowed to control number and kind of NTCs introduced to the sample pool 

(figure 43). Their extraordinary relevance is also described by Eisenhofer and colleagues as 

the most essential step in controlling for contamination (Eisenhofer et al., 2019). Further ways 

of dealing with contamination besides taking along NTCs at every step of the workflow are 

running samples and NTCs on separate FCs to avoid computational cross-over, and 

eventually, the bioinformatic removal of contamination via filter pipelines and R packages 

such as decontam. 

 

Figure 43: Sources of microbial contamination along the wet- and dry-lab workflow 

with adequate negative controls. The originally sampled microbiome is enriched with 

contaminants from the environment and paraffin as well as DNA extraction kit and PCR 

reagents. Because this cannot be entirely avoided, it is crucial to carry along NTCs from 

every putative contaminating step. These controls only hold contaminating microbiota 

which may be removed computationally from the true samples. However, sequencing 

errors may cause computational cross-contamination via index switches in multiplex 

sequencing approaches (barcode leakage). Therefore, NTCs should be run on separate 

FCs in order to prevent the assignment of those sequences to true samples. Illustration 

taken from (Pfisterer et al., 2022) (CC BY 4.0). 
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The main issue with low biomass samples is that they may contain as much true species 

DNA as the NTCs hold DNA concentrations of contaminating species. As discussed in 5.1.2, 

samples containing very low abundant but true species provoke the prevalence filter 

threshold to be set below these abundances leading to the persistence of contaminants of 

higher abundances. For this reason, it is extremely difficult to find the right thresholds and to 

filter out the correct species without eradicating all true species in the samples. This can lead 

to very low read counts and subsequently species numbers. Consequently, in workflows 

applying rarefaction new issues open up with low rarefaction thresholds only discovering 

few species in the samples. This may putatively prevent the unraveling of differences in the 

microbial compositions of distinct groups. In contrast, removing contaminants efficiently 

may open a chance to render the data significant by unveiling differences that had been 

covered up by contaminants evenly distributed across all groups to be compared.  

In this data set comparing tumors derived from orthotopically transplanted human PDAC 

cell lines of different subtypes, also no differences between both tumoral microbiomes were 

encountered. While there is a chance that this might be a biologically true finding, it is de 

facto debatable whether this really represents the situation in the in vivo tumor or whether 

there are in fact microbial differences hidden between Capan-2- and MiaPaCa2-based 

tumors. These differences between CLA and BL PDAC subtypes have been reported recently 

by Guo and colleagues who found the BL subtype of PDAC, characterized by a higher 

inflammatory response, to have a more diverse microbiome as compared to CLA tumors 

(Guo et al., 2021). They also hypothesized a functional contribution of the microbiome in 

shaping the tumor subtype. However, this study worked with human material, whereas the 

data presented here derives from samples of a xenograft mouse model without a fully 

functional immune system (extremely low T cell count due to absence of thymus), a key 

factor in tumor biology, although even in individuals with a functional immune system 

tumors develop and escape immune surveillance (Gonzalez et al., 2018). Putatively, the 

immunogenic landscape in the tumor also plays a major role in microbiome formation. 

Conversely, immunogenic reprogramming of the TME via immune suppression by the 

PDAC microbiome has been described (Pushalkar et al., 2018). In any case, the impaired 

immune system in the xenograft mouse model is a serious drawback in this experiment and 

needs to be kept in mind. It is possible that the environmental contaminants were transferred 

to the mice during the transplantation procedure or even ingested via the plant-based chow 
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without the animals being capable of controlling them. Rhizobium, a symbiont of legumes, 

and Agrobacterium are associated with mouse chow and have been found to be the most 

abundant genera in both wild type and KC mouse pancreas before (Pushalkar et al., 2018). 

Eventually, in the course of establishing the biologically and statistically most legitimate way 

of analyzing the data, some preliminary results reached statistical significance. This shows 

how much the results also depend on the analysis strategy and that they always need to be 

critically reviewed. Although the primary focus in this experiment was set on differences 

between the two tumor subtypes as well as between the tumor and its corresponding tumor-

surrounding histologically normal pancreatic tissue, it is still an interesting finding of the 

two different tumor-adjacent normal tissues being significantly different from each other in 

their microbiomes. It argues for the tumor subtype to influence the microbiome in 

surrounding non-malignant cells that do not (yet) exhibit a transformed phenotype. If this 

holds true in future repetition experiments, it might give hints towards the microbial role in 

tumor development and possibly even be exploited for early PDAC subtype discrimination.  

 

5.3.2 First evidence suggests that the tumoral microbiome is impacted by the 

PDAC subtype 

 

Finally, despite knowing about the pitfalls of contamination and the low immune system in 

the xenograft mouse model, an attempt was made to approach more functional microbiome 

studies. A recent study by Tu and Klein et al. investigated the influence of TNFα produced 

by macrophages on PDAC subtype identity (Tu et al., 2021). These macrophages are actively 

recruited via MCP1 by the BL neoplastic cells to maintain their pronounced stromal immune 

landscape and associated aggressiveness. Lineage reprogramming even enabled a subtype 

switch from CLA to BL triggered by these TNFα-producing macrophages (Tu et al., 2021).  

The authors demonstrated this subtype switch by treating orthotopically Capan-1-

transplanted nude mice with TNFα and subsequent tissue analysis. Receiving the FFPE 

tumor tissues from this study, they could be investigated regarding their microbiomes with 

the aim to get an idea about the impact of the PDAC subtype on the bacterial composition 

and to find out what drives the tumoral microbiome. If the microbiome changed with the 

subtype, the tumor subtype, determined by exogenous TNFα recruiting macrophages in turn 
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secreting more TNFα switching the CLA to a more BL phenotypic state via lineage 

reprogramming, would also be responsible for an altered microbiome. If the microbiome is 

not influenced by these cellular processes and alternations, it is more likely that other factors 

act on the microbial TME component.  

The results were not uniform in all three beta diversity metrics evaluated; however, BC 

indeed showed a significant difference between TNFα- and H2O-treated Capan-1 tumors. 

This argues for a change in the bacterial composition, at least focusing on dissimilarities 

taking abundances into account, in tumors undergoing a forced subtype switch towards a 

mesenchymal phenotype accompanied by higher invasiveness and chemoresistance (Moffitt 

et al., 2015). Tu and Klein et al. had stated that cJUN, a transcription factor of the BL gene 

signature, leads inflammatory immune cells enriched in poorly differentiated BL tumors into 

TNFα production, thus causing the subtype switch via a TNFα-mediated cytokine storm (Tu 

et al., 2021). The infiltration of macrophages and general change in the immune landscape 

may possibly also alter the microbial composition in the TME regarding abundance and 

types of bacteria. It is conceivable that this only happens as side effect, still it may end up in a 

positive feedback loop in which the altered microbiome further shapes the tumor subtype 

identity via immunogenic TME reprogramming (Chakladar et al., 2020; Neesse et al., 2015; 

Pushalkar et al., 2018). Although a higher number of observed species in TNFα-treated 

tumors does not seem to fit in this picture expecting the pronounced inflammatory immune 

environment to eradicate some species, it needs to be kept in mind that in this data set a high 

number of contaminating species were found that most likely distort the findings to a certain 

degree. 

In view of improving the methodology applied in this thesis, more profound differences 

between the regarded tissue groups can be expected to be found. This will also facilitate 

future functional analysis of the subtype-specific microbiome. For instance, the evaluation of 

chemosensitivity and therapy resistance, respectively, upon bacterial ablation in subtype-

specific orthotopic mouse models, as well as the identification of microbiota-derived 

metabolites, e.g., in bEVs, in the blood of mice with CLA/BL pancreatic tumors are major 

goals.  
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5.4 Chapter 4 | The significance of human PDAC tumor microbiomes in 

patient stratification  

 

5.4.1 Adjacent microbial niches ‘tumor’ and ‘normal’ in human PDAC patients 

differ from each other 

 

Studies on transgenic and xenograft mouse models are indispensable and very useful due to 

their genetic similarity with humans rendering them a valid and valuable reflection of 

complex human PDAC. Yet, their lifestyle and other extrinsic factors underlie stringent 

control und influence modifiable according to the experimental need on all individuals of the 

regarded group at the same time. This is essential in basic microbiome research since any 

kind of intrinsic or extrinsic factor can cause microbial changes, so-called dysbiosis, even in 

healthy subjects. However, translational science requests the transfer and validation of 

knowledge gained from in vivo studies to the human subject. Patients are by far less uniform 

in their living habits and prerequisites, therefore automatically presenting with diverse 

microbiomes due to a plethora of reasons other than the disease status of interest. 

Confounders such as sex, age, diet, or smoking may heavily impact on the microbial 

composition. For instance, in lung tumors of current smokers, bacteria metabolizing 

nicotinate and phenolic compounds are found to be significantly enriched (Nejman et al., 

2020). Hence, in human studies, it is important to register potential microbiome 

manipulators such as antibiotics uptake in the metadata and to stratify patients subsequently 

in order to narrow the influential factors down and to detect true differences between patient 

groups.  

In this experimental setting, the patient background was not incorporated in detail yet, what 

might give an explanation why the data points do not show such a strict separation and 

continuous significant difference throughout all beta diversity metrics in comparison with 

the murine KPC data. However, this is commonly seen in microbiome studies and can 

probably be traced back to the heterogeneity among the assessed individuals. Nonetheless, 

human PDAC specimen significantly differed from healthy pancreas samples of the same 

patients regarding BC. Also in uwUF, a tendency might be observed of the two groups 

diverging apart. With larger group sizes and patient stratification or outlier elimination, it is 

likely to achieve more specific results reaching statistical significance. The median OS 
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number of around 12 is comparable to numbers found in the literature where Nejman et al. 

for example reported a median OS of approximately 4 for pancreatic tumor samples with 

maximum OS numbers around 30 in their sample cohort (Nejman et al., 2020). 

The differing microbiome of PDAC tumors as opposed to healthy pancreas has been 

described before and is of exceptional interest with regard to its future employment as a 

biomarker, for instance (del Castillo et al., 2019; Geller et al., 2017; Pushalkar et al., 2018). 

Several clinical studies are currently ongoing to elucidate the role of the microbiome in 

PDAC and different application options. Here, the most interesting finding is that the 

microbiomes of PDAC tumors tend to differ from histologically healthy pancreas of the same 

patients, not only pancreas samples of other healthy subjects or even benign pancreatic 

diseases. Finding locally distinct sub-microbiomes within the same organ is remarkable. As 

mentioned before in the murine context, this contributes to the understanding of the 

microbial role in therapy resistance. Although the microbiome might not be different in 

tumor sub-compartments, the gradient between diseased and healthy parts of one organ 

calls questions about chemoresistance to mind and why therapeutics often do not reach the 

tumor.  

 

5.4.2 The biological relevance of a hybrid PDAC form is highlighted by its 

outstanding microbiome 

 

Arguing that patient stratification is the key to successful PDAC management, the human 

tumor sequencing data were subdivided according to PDAC subtypes CLA, BL, and HYB in 

the final analysis approach (Chan-Seng-Yue et al., 2020; Moffitt et al., 2015). Subtyping the 

samples was performed after IHC staining for markers GATA6 and CK5 as elucidated 

before. GATA6 is a vital protein for pancreas development and has been recognized as 

potential oncogene in PC (Decker et al., 2006; Fu et al., 2008). GATA6 is an unambiguous 

marker gene for CLA subtype tumors due to its high expression in the latter and low 

expression in the BL counterparts (Collisson et al., 2011). Its expression was lately tested 

successfully as surrogate biomarker to discriminate CLA and BL forms of advanced PDAC 

(O’Kane et al., 2020). The same study also successfully evaluated the possibility of 

identifying BL tumors by CK5. 
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The human sample set assessed in this thesis was subtyped according to O’Kane et al. as 

elucidated in 4.4.2, with the addition of a third subtype, the recently described HYB form 

(Chan-Seng-Yue et al., 2020; O’Kane et al., 2020). Surprisingly, despite the small number of 

20 samples technically successfully subtyped and the CLA subtype usually being more 

frequent (Juiz et al., 2020), the three subtypes were evenly distributed. This facilitated 

statistical analysis which returned unexpected, yet intriguing results. It was assumed to find 

microbial differences between CLA and BL tumors as published before (Guo et al., 2021). 

Instead, CLA and BL presented to be quite congruent, while HYB tumors were significantly 

different from both established PDAC subtypes, at least regarding uwUF and BC. In wUF, 

this did not reach statistical significance, still the data points tended to cluster. On the one 

hand, this fits the finding of Capan-2 (CLA) and MiaPaCa2 (BL) xenograft tumors not 

differing from each other regarding their microbial compositions. On the other hand, it 

emphasizes the eligibility of the HYB PDAC subtype to be regarded as its independent 

subtype also based on the properties of its microbiome. Of course, it needs to be considered 

that the sample numbers are comparably small in this pioneering experiment and yet again, 

contaminating species are present in the sequenced microbial composition. 

The expansion of PDAC subtyping and patient stratification is essential in exploring new 

vantage points for personalized medicine. Besides transcriptional profiles, also different 

types of metabolic pathways were employed to discriminate between sub-forms of PDAC. 

Microbiome-based PDAC subtyping is surely still speculative but might bear profitable 

chances in the future.  

The clinical trial PDA-MAPS (NCT04922515), “PDAC microbiome as predictor of subtypes”, 

tackles this research question employing buccal and rectal swabs. PDAC patients with 

different tumor subtypes indeed show significant differences in beta diversity in preliminary 

data. The possible future application of these promising results has the potential to greatly 

improve PDAC prognosis by differential diagnosis. The study by Riquelme et al. on LTS and 

STS of PDAC exhibiting different microbiomes further adds to this concept. The answer to 

the question why some patients outlive PDAC for an extraordinarily long time might 

implicate instructions in dealing with this deadly disease in order to change the clinical 

situation for the better. However, the predictive value of the microbiome so far restricts to 

research studies (Guo et al., 2021). Even the transcriptome-based PDAC subtyping is not 



| Discussion Chapter 4 

| 130 
 

(yet) applied in the clinics regarding patient stratification for personalized medicine, a 

concept that PDAC would certainly benefit from considering its massive heterogeneity 

(Topham et al., 2021). Further research efforts are crucial on the way to efficient and 

successful PDAC management.  
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6 Conclusion 
 

The thesis at hand unites the fields of oncology and microbiology in a joint research interest 

and interdisciplinary project. It addresses PDAC, one of the worst human malignancies 

regarding survival rate, in multiple regards. Divided in four main result chapters, it covers 

(i) the implementation and optimization of third generation sequencing by Oxford Nanopore 

Technologies for low biomass samples, (ii) the characterization of murine KPC fecal and 

tumoral microbiomes and their comparison to appropriate human data with predictive value 

estimation of stool classifiers, (iii) the investigation of the impact of transcriptional and 

phenotypic PDAC subtypes on their microbiomes in samples of xenograft mouse models 

including a functional subtype switch experiment, and (iv) the microbiome analysis of 

human PDAC with regard to the discrimination from surrounding normal pancreas and 

considering the subtypes CLA, BL, and HYB after their determination via marker protein 

IHC.  

Modern microbiome research requires efficient high throughput technology. For various 

reasons, in particular the ability of long fragment sequencing, nanopore sequencing by ONT 

was chosen to be established. This comprehensive project included the evaluation of seven 

different DNA extraction protocols, testing of several PCR parameters, and benchmarking of 

multiple settings in the bioinformatic data processing resulting in a workflow specified for 

murine (low biomass) samples. It comprises the IHMS-modified Invitrogen protocol for 

DNA extraction, 50 ng input DNA and 35 PCR cycles in 16S rRNA gene sequencing, or 1 µg 

input DNA in the metagenomic sequencing protocol, Centrifuge classification using the nt 

database for snap-frozen samples, or the abv library for FFPE samples, and the Minimap2 

alignment parameters AS1000 and Cov50. The successful establishment of this method in our 

laboratory was the basis for the following experiments. 

In the second main project of this thesis, evidence for the presence of bacteria in murine PC 

was provided via FISH and IHC staining methods. Subsequently, the fecal and tumoral 

microbiomes of the widely used transgenic KPC mouse model were successfully 

characterized. Doing so for the first time using Nanopore sequencing, both microbial niches 

were proven to differ significantly from their corresponding healthy controls and, most 

interestingly, simultaneously to resemble the situation in human PDAC. Thus, it can be 
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concluded that the KPC model is a suitable GEMM to study the microbiome in the context of 

PDAC and the data adds to a profound understanding of this model system which is 

indispensable for future preclinical studies. 

Eventually, FFPE pancreatic tissue samples from xenograft mouse models orthotopically 

transplanted with immortalized human PDAC cell lines Capan-2 (CLA), MiaPaCa2 (BL), and 

Capan-1 (CLA) which were additionally treated with TNFα/H2O, as well as from resected 

human PDAC patients were studied. The idea of subtyping tumors, in other words 

stratifying patients by different aspects to maximize treatment efficiency, is no new concept 

and quite a success so far in other cancer entities. However, in PDAC, this is still under 

investigation and the missing variety of treatment options remains a problem even if there 

were reliable tumor subtypes in clinical practice. Connecting the current standard of 

knowledge on the microbiome and PDAC subtypes, however, is a new vantage point for this 

research field. The pioneering data presented here are undoubtedly rather preliminary and 

need further attention with modulation and repetition of the experiments due to 

contamination issues, as well as the correlation with patient information and orointestinal 

data. Still, there are promising hints for PDAC subtypes to impinge on the intratumoral 

microbiome potentially offering new therapeutical options. 

After decades of studying PDAC tumor biology and reaching a continuously better 

understanding of the major molecular mechanisms in this highly complex disease, an age of 

new perspectives began with the discovery of microbes in and around PDAC. Today, it can 

no longer be claimed that bacteria and other microbiota are chance discoveries and mere 

contamination in these tissues. There is an extensive organ-microbiome-crosstalk, yet, the 

mechanisms are still mostly unknown. In particular, the prime question for the dysbiosis to 

be contributing cause or consequent outcome of PDAC pathogenesis remains open. 

Functional studies focusing on subtype-specific microbiome targeting are the future of 

PDAC (microbiome) research. 
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