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Chapter 1

Introduction

Can a number with n 1’s as its digits be an integer power? That is, we consider
the following Diophantine equation:

11 · · · 1| {z }
n 1’s

= y
q with y 2 Z, q � 2. (1.1)

What if left-hand side is not decimal-based but x-based with |x| > 1? In this
case we look at the following Diophantine equation

x
n
� 1

x� 1
= y

q with |x|, |y|, q > 1, n > 2. (1.2)

Along with the well-known Fermat’s Last Theorem and Catalan’s Conjecture,
the Nagell-Ljunggren equation (1.2) itself is a classical problem of Diophantine
equation. This equation is interesting in itself, and it is also linked to other
problems.

Here we give a brief survey on the main contributions towards the Nagell-
Ljunggren equation (1.2).

1.1 History notes on the Nagell-Ljunggren equa-
tion

We must remind the reader that some mathematicians are only concerned with
the positive solutions of equation (1.2). That is why we have the exceptions
about the negative solutions in our main result (8) in this thesis.

It is easy to see that Diophantine equation (1.2) has the following six solu-
tions

(x, y, n, q) 2 S := {(3,±11, 5, 2), (7,±20, 4, 2), (18, 7, 3, 3), (�19, 7, 3, 3)} (1.3)

These solutions carry the exponents q = 2 or q = 3.
The story about Diophantine equation (1.2) began when Nagell and Ljung-

gren first made a contribution to this problem in 1920s and later twenty years.
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Theorem 1 (Nagell, Ljunggren 1920, 1921, 1943). There is no solution outside

S if any of the following conditions satisfied:

1. q = 2

2. 3 | n

3. 4 | n

4. q = 3 and n 6⌘ 5(mod6)

Proof. [Nag20] [Nag21] [Lju43]

Encouraged by Nagell and Ljunggren’s results we can formulate a conjecture
about all solutions of the Diophantine equations (1.2). The following conjecture
states that all solutions in integers with exponents larger than one lie in S.

Conjecture 1. There is no solution outside S to the equation of (1.2).

It is widely believed that Conjecture (8.3) is right. In the following we
present some results on particular cases regarding Conjecture (8.3).

1.2 The prime case and the connection with Cata-
lan’s conjecture

Since the case 4 | n is solved by Nagell in 1921 [Nag21], there is no loss of
generality in assuming that 4 - n. In fact, the general case of equation (1.2) can
be reduced to the prime case.

Lemma 1. If n > 3 is an integer not divisible by 4, q an odd prime. If l is an

odd prime dividing n, n = 2clad, l - d, then there exist non-zero integers h � 1
and t0, t1, · · · , ta such that

(xhi

)l � 1

(xhi�1)l � 1
= t

q
i for 0  i  a; (1.4)

or

x
h
� 1

x� 1
= t

q
0 and

(xhi

)l � 1

(xhi�1)l � 1
= lt

q
i for 1  i  a. (1.5)

Proof. [Rib94]

Therefore Conjecture (8.3) can be reduced to the following set of statements,
relative to pairs of odd primed (p, q) with p > 3, q � 3: the equations

x
p
� 1

x� 1
= p

e
y
q; e =

(
1 if x ⌘ 1 mod p and
0 otherise,

(1.6)
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have no solution outside S.
We call the equation (1.6) the prime case of Nagell-Ljunggren equation. The

Diophantine equation (1.6) has a strong connection to the famous problem of
Catalan. We will see soon below by Cassels’ relations that solutions of equation
(1.6) would imply the famous conjecture of Catalan.

1.3 Catalan’s Conjecture
Because of the close connection between the Nagell-Ljunggren equation and the
Catalan’s equation, we following the first chapter of [BBM14], briefly review
below the history of the Catalan’s conjecture, which has a high value in our
investigation to the Nagell-Ljunggren equation. For more historic information
concerning Catalan’s problem one may consult the books of Ribenboim [Rib94]
and Schoof [Sch10].

Recall that the Catalan’s equation is of the form

x
p
� y

q = 1, (1.7)

where x, y, p, q 2 Z with xy 6= 0 and p, q � 2. In 1842 the Belgian mathematician
Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero
integers.

Particular cases

The investigation of equation (1.7) reduced to the cases when p, q � 3, p, q two
odd prime numbers due to the following three results:

1. Euler [EDA12] showed in 1738 that the equation x
2
� y

3 = 1 has no
nontrivial solution other than 32 � 23 = 1;

2. In 1850 Victor A Lebesgue [Leb50] proved that the equation x
m
� y

2 = 1
has no solution;

3. In 1965 Ko Chao [Ko65] deduced that the equation x
2
� y

n = 1 has no
solution with n � 5.

For more particular cases, Genoro [Ger57] showed in 1857 that (1.7) has no
further solutions if x, y are prime numbers, Hampel [Ham56] deduced in 1956
that there are no further solutions for (1.7) if |x� y| = 1.

1.3.1 Cassels’ relations
The modern approach to Catalan’s problem began in 1960s by Cassels, who
factored the equation (1.7) as

(x� 1) ·
x
p
� 1

x� 1
= y

q
.
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Put z := x� 1, then

x
p
� 1

x� 1
= z

p�1 +
X

2ip�1

✓
p

i

◆
z
i�1 + p, (1.8)

so
gcd(

x
p
� 1

x� 1
, x� 1) = gcd(p, z) | p,

that is, the greatest common divisor of xp�1
x�1 and x� 1 is 1 or p.

Cassels [Cas60] proved that the former case is impossible, so gcd(x
p�1
x�1 , x�

1) = p, in which case we have

p
2 - x

p
� 1

x� 1

because of the identity of (1.8). Thus

x
p
� 1

x� 1
= pa

q
, x� 1 = p

q�1
b
q

y = pab (1.9)

with some x, y, a, b 2 Z. Relations (1.9) are called Cassel’s relations, which are
considered as the beginning of modern approach to Catalan’s conjecture. It
follows that p | y provided (x, y, p, q) is a solution of (1.7). By symmetry we see
that (�y,�x, q, p) is also a solution, hence q | x also holds.

Linear forms in logarithms

To prove Catalan’s conjecture, one approach is to bound the exponents in Cata-
lan’s equation. Evertse [Eve83] showed that the number of solutions is bounded
by mn

min(m,n). This bound does not involve x and y, Baker’s Fields Medal
result on linear forms in logarithms, in 1964, which was improved in 1973 by
explicit lower bounds for non vanishing linear forms, can derive effective bounds
for the solutions of some Diophantine equations, in particular, of Catalan’s prob-
lem. Tijdeman [Tij76] proved the remarkable result that Catalan’s equation has
only finitely many positive solutions. Shortly after Tijdeman’s result, Lavegin
used Baker’s effective bounds to gain explicit, albeit large, upper bounds on the
solutions. Of course, this imply also upper bounds on the exponents. Indeed
Lagevin proved

|x
m
|, |y

n
|  exp exp exp exp(730),

he also showed in the same paper that the greatest prime divisor of mn is less
than exp(241), which is saying max{p, q}  exp(241) in the prime exponent
case.

This extremely large bounds exp(241) has been the subject of continu-
ously work of improvement using special additional results on linear forms
in logarithms of rational numbers. They work on the special case of two
rational numbers and led to successive improvements of the upper bounds.
For example, Glass et al. [GMOS94] showed that min{p, q} < 5.6 ⇥ 519 and
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max{p, q} < 3.42 ⇥ 528 in 1992. Independently in the same year, Mignotte
[Mig92] improved on estimates for logarithmic forms, he replaced the Lagevin’s
bound and showed that max{p, q} < 1.31⇥ 1018.

Another approach is to derive lower bounds for p, q, using algebraic criterion,
see below. Glass et al. [GMOS94] in 1994 showed that min{p, q} � 17. A
series of papers of Mignotte and Roy [MR95] [MR97a] [MR97b] using heavy
computations deduced that

min{p, q} � 105.

1.3.2 Cyclotomic fields
Looking at the Catalan’s conjecture from an algebraic point of view, we can
also obtain some conditions for non-trivial solutions, linear forms in logarithms
provided upper bounds on the exponents, while algebraic approaches provided
complementary bounds and conditions.

We now consider the algebraic track, the algebraic conditions for Catalan,
this track was start by Inkeri, who proved the following two criteria:

Lemma 2 (Inkeri 1964). If p ⌘ 3(mod4), Catalan’s equation has no solution

when the following two relations hold

p
q�1

6⌘ 1(modq2) and q - h(�p),

where h(�p) is the class number of the imaginary quadratic field Q(
p
�p).

Proof. [Ink64]

Lemma 3 (Inkeri 1990). Catalan’s equation has no solution when we both have

p
q�1

6⌘ 1(modq2) and q - hp,

where hp is the class number of the cyclotomic field Q(⇣p).

Proof. [Ink90]

Note that this is a conjunction of two types of conditions, condition one is
the so-called double Wieferich condition, the second condition is a certain class

number condition. Inkeri showed two things for the class number condition, one
is a small condition for quadratic imaginary fields and it holds for p ⌘ 3( mod 4).
The other one is a non-divisibility condition set for large fields which always
holds. Mignotte [MR95] improved the special case p ⌘ 3(mod4) of Inkeri and
showed it holds for arbitrary p. He replaced the imaginary quadratic extension
with the smallest imaginary subextension in Q(⇣p). Then Schwarz proved in
1995 [Sch95] a similar result by replacing the field of Mignotte with an arbitrary
field. This is not an improvement of Mignotte but is useful, since the relative
class number h

�
p is much more easy to compute than the full class number hp.

Bugeaud and Hanrot made a breakthrough by separating the conditions in
[BH00], they proved that a solution (x, y, p, q) of Catalan’s equation satisfies
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either q  p or q | h
�
p . So they removed the Wieferich condition, but with a

size relation between p and q. Shortly after, Mihăilescu [Mih03] came, he used
stronger class field methods, invoking the Stickelberger ideal. He showed that
the double Wieferich condition: p

q�1
⌘ 1 mod q

2 and q
p�1

⌘ 1 mod p
2 must

hold unconditionally between p and q. This result is very strong, in fact, there
are only 7 double Wieferich pairs with min{p, q}  3.2⇥108. While both papers
appeared later, the result of Bugeaud and Hanrot was made public in spring
1999 and the one of Mihăilescu followed in fall the same year. Based on these
results, Mignotte and Roy managed to show the following result by intensive
computer computations:

min{p, q} � 107.

Both upper and lower bounds on p, q were improved by various authors.
By 2001, it was deduced that 107  min{p, q}  7.2 ⇥ 1011 and max{p, q} 

7.8⇥ 1016 [Mig01]; later on, Grantham and Wheeler using heavy computations
showed that min{p, q} � 3.2⇥108. The gap between the upper and lower worlds
remains unbridgeable on a computer.

Mihăilescu [Mih04] in 2002 introduced the so-called Runge method – in con-
junction with approximation by class field theory and an application of Thaine’s
result [Tha88]. He showed that if (x, y, p, q) is a solution of Catalan’s equation,
then p ⌘ 1 mod q or q ⌘ 1 mod p. In combination with certain estimates from
the theory of linear forms in logarithms and a computer calculation, it led to a
complete proof of Catalan conjecture in 2002. In a result communicated in 2003
and published in 2006, Mihăilescu [Mih06] used the theory of cyclomic fields
and was able to avoid the linear forms in logarithms to prove the conjecture of
Catalan.

1.4 On the finiteness of the number of solutions
of Nagell-Ljunggren equation

From now on we return to Nagell-Ljunggren equation, but keep in mind the path

of history to solve the problem of Catalan.

Some partial conclusions can be drawn by assuming conditions on the in-
determinants in the Catalan’s equation. In 1986 Shorey and Tijdeman [Tij86]
obtained the finiteness of the solutions with conditions imposed on the variables
x, y, or m.

Theorem 2 (Shorey, Tijdeman 1986). The Diophantine equation (1.2) has only

finitely many positive solutions if any of the following condition holds:

1. x is fixed

2. m has a fixed prime factor

3. y has a fixed prime factor

Proof. [ST86]
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Unlike Catalan’s conjecture, it is worth mentioning that the equation (1.2)
whether has only finitely many solutions (x, y, n, q) is still an open problem. In
1999 Shorey [Sho00] showed that the generalized ABC conjecture implies the
finiteness of the positive solutions to the equation (1.2). In 1980, Masser and
Oesterlé formulated the following conjecture.

Conjecture 2 (ABC conjecture). Suppose we have three mutually coprime in-

tegers A,B,C satisfying A + B = C. Given any ✏ > 0, it is conjectured that

there is a constant k(✏) such that

max{|A|, |B|, |C|}  k(✏) (rad(ABC))1+✏
,

where rad(n) denotes the he product of the distinct prime factors of the rational

integer n. For exmaple, if n =
Q

1im p
ki
i , then rad(n) =

Q
1im pi.

Following we refine this conclusion of Shorey under the condition of ABC

conjecture (2).

Lemma 4. Assume that ABC conjecture holds, then equation (1.2) has only

finitely many positive integer solutions.

Proof. In view of Theorem (1) we may assume that q � 3 and n � 5.
Write equation (1.2) as 1 + (x � 1)yq = x

n, obviously 1, (x � 1)yq, xn are
three mutually coprime integers, hence the condition of ABC conjecture holds.
Therefore for any ✏ > 0, there is a constant k(✏) > 0 such that

max{1, |(x� 1)yq|, |xn
|}  k(✏) · rad((x� 1)xy)1+✏

. (1.10)

• If |(x� 1)yq|  |x
n
|, so |y|

q
 2|x|n�1. Then by (1.10) we have

|x
n
|  k(✏)rad ((x� 1)xy)1+✏

< k(✏)|x2
y|

1+✏
 k(✏)2

1+✏
3 |x

2
· x

n�1
3 |

1+✏
,

where k(✏) > 0 is a constant depending only on ✏. Put ✏ = 1
10 , we see that

there are only finitely many possibilities for x, we obtain the desire result
because of Theorem (2).

• If |(x� 1)yq| � |x
n
|, so |x|

n�1
 y

q. Then by (1.10) we have

|(x� 1)yq|  k(✏)|(x� 1)xy|1+✏
,

where k(✏) > 0 is a constant depending only on ✏. We consider the in-
equality in terms of yq as follows:

|y|
q�1�✏

 k(✏)x1+2✏
 k(✏)|y|

q(1+2✏)
4

Put ✏ = 1
10 , we see that there are only finitely many possibilities for |y|

q,
hence also for |x| since |x|  |x|

n
 |y|

q. We finish the proof in this case
also because of Theorem (2).

Combining the above two cases together we obtain the lemma.
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1.5 Bounding exponents by linear forms in loga-
rithms

Similar to the Catalan’s equation, certain lower bounds on the exponents in
the Nagell-Ljunggren equation can be obtained by means of linear forms in
logarithms. In 2002, Bugeaud, Hanrot and Mignotte proved the following result:

Lemma 5 (Bugeaud, Hanrot and Mignotte 2002). If p 6⌘ 1(mod8) and q >

64000p(log p)2, then equation (1.2) has no positive solution.

Proof. [BHM02]

Later, Han Di and Guan Wenji in 2014 gave a substantial improvement of
the constant for p ⌘ 3(mod4). More precisely, they proved the following result:

Lemma 6 (Han, Guan 2014). If p ⌘ 3(mod4) and q > 220p(log p)2, then

equation (1.2) has no positive solutions.

Proof. [DW14]

1.5.1 The exclusion of special form of x

Current mathematical techniques are in sufficient for completely solving Con-
jecture 8.3, but some advance can be obatined in the case where x has some
special form. Inkeri excludes the case where x is a certain cubic number.

Lemma 7 (Inkeri 1972). If q = 3, Diophantine equation (1.2) has no solution

if x is a cube or x = z
3 + 1 with |z| > 1.

Proof. [Ink72]

This last conclusion about cubes was generalized by Bugeaud and Mignotte
as follows

Theorem 3 (Bugeaud, Mignotte 1999). Diophantine equation (1.2) has no

solution if x is a q
th

power.

Proof. [BM99]

1.6 The lower and upper bound for the variables
As in the case of other Diophantine equations, we also study the upper and lower
bounds on a variable in the possible solutions of the equation (1.2). We gather
the following results about the estimates of the variables in positive solutions.

Bugeaud, Mignotte and Roy deduced an elementary lower bound for y in
terms of n and for x in terms of q, which has not been improved.

Lemma 8 (Bugeaud, Mignotte and Roy 2000). If Diophantine equation (1.2)

has a positive solution (x, y, n, q) outside S. Then y > 2n, x > 2q + 1.

12



Proof. [BMR00]

Also, Bugeaud, Hanrot and Mignotte obtained a lower bound for odd prime
divisors of n, with the exception of diagonal case.

Lemma 9 (Bugeaud, Hanrot and Mignotte 2002). If Diophantine equation

(1.2) has a positive solution (x, y, n, q) outside S. Then the least odd prime

divisor of n is at least 29 or (p, q) 2 {(17, 17), (19, 19), (23, 23)}.

Proof. [BHM02]

Mihăilescu showed an upper bound for x in terms of p and q.

Theorem 4 (Mihăilescu 2007). If the Diophantine equation (1.6) has a positive

solution (x, y, n, q) outside S, with p, q odd prime numbers. Then we have

1. x < q
10p2

, if q  p,

2. x < 2q10p
2(p�1)

, if q � p+ 2.

Furthermore, if p = q, then x  (2p)p.

Proof. [Mih07]

1.7 The number of prime divisors of n

One approach to attack (1.2) is to decrease upper bounds in the number of
factors of the exponent n in (1.2). Related results in this direction are due to
Bugeaud and Mihăilescu in 2007.

Lemma 10. Let (x, y, n, q) be a positive solution of (1.2) not in S. Then, the

least prime divisor of n is at least equal to 29 and ⌦(n)  4.

Proof. [BM07]

Here we denote by !(n) and ⌦(n) by the number of distinct prime factors
of n and the total number of prime divisors of n, respectively. This result was
improved by Bennett and Levin in 2015 via Runge’s method (without assuming
positive solutions):

Theorem 5 (Bennett, Levin 2015). Let (x, y, n, q) be a solution of (1.2). Then

1  !(n)  ⌦(n)  3.

Proof. [BL15]
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1.8 Recent results about the Diophantine equa-
tion (1.6)

Dupuy treated in 2007 the case of solutions x ⌘ 1 mod p of equation (1.6) – thus
e = 1 – elegantly, under the additional assumption q - h�

p , in [Dup07], proving

Theorem 6 (Dupuy 2007). If q - h�
p , then (1.6) has no solutions with e = 1 –

or, equivalently, with x ⌘ 1 mod p.

In 2007, Mihăilescu studied the diagonal case p = q of equation (1.6), which
case is considered to be the most difficult case. He gave general class number
conditions which are the first known general algebraic necessary conditions for
the equation to have solutions. Among others, these lead, based on computer
results produced for the investigation of the Fermat Equation, to the conclusion
that the equation has no solution for p < 12 000 000. In another paper [Mih07],
he considered the case q 6= p and proved the unconditional criterion

Theorem 7 (Mihăilescu 2007). For q 6= p, two distinct odd primes, the equation

(1.6) has no solution if q > (p� 1)2.

In this paper [Mih07] Mihăilescu derived a new bound q > f(p) for which
there is no solution. For small q the problem is harder and we achieve a condi-
tional result where q - h�

p for q < g(p) and some additional condition on (p, q)
must hold.

This thesis improves on earlier results of Mihăilescu and the aim is to elimi-
nate the case when q - h�

p . This purpose is almost achieved by the result of this
thesis.

1.9 The generalized Ramanujan-Nagell equation
and its recent results

Another Diophantine equation related to the Catalan equation is to replace the
constant 1 with any positive integer C:

x
2 + C = y

n
, (1.11)

where C > 0 is a given integer and x, y, n are positive integer unknowns with
gcd(x, y) = 1 and n � 3. We call this equation as the generalized Ramanujan-

Nagell equation.
The first result concerning the equation (1.11) dates back to Fermat and

Euler, they claimed that (x, y) = (5, 3) is the only solution of (1.11) when
(C, n) = (2, 3). In 1850 V. A. Lebesgue [Leb50] proved that the above equation
has no solutions for C = 1.

In 1993, Cohn [Coh93] solved the equation (1.11) for 77 values of C in the
range 1  C  100. The remaining values of C in this range were taken care
of in [BMS06] by Bugeaud, Mignotte and Siksek, and in [MdW96] by Mignotte
and de Weger.
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In the recent years, several authors became interested in the case when
C = p

a1
1 p

a2
2 · · · p

ak
k , where the pi are distinct primes and k � 1, ai � 0 are

integers.
The solutions of (1.11) for C is a prime power is completely solved by the

combined work of several authors, see [AM02, BP08, BP12, Coh92, HS16, Le02].
When k = 2, the solutions of (1.11) for C = 2apb, p 2 {3, 5, 11, 13, 19} has

been investigated in [L+02, LT08, CDST10, LT09]; the cases C = 5apb, p 2

{11, 13, 17} has been studied in [CDST10, LT08, PR11].
When k = 3, the solutions of (1.11) for C = 2a3bpc, p 2 {11, 13, 17}, C =

2a13bpc, p 2 {5, 17}, C = 2a11b19c and C = 2a73bpc, p 2 {41, 89} have been
studied in [CDI+13, GMT16, Gha19, CHS21, Ray22].

1.10 The plan and results of this thesis
This thesis can be seen as a generalization of the above results about the
Nagell-Ljunggren equation (1.2) and the generalized Ramanujan-Nagell equa-
tion (1.11).

1.10.1 The plan and results about the Nagell-Ljunggren
equation:

In Chapter 2-6 we study the case e = 0 of (1.6), under the premise that q - h�
p

and q 6= p.
In Chapter 2 we introduce the necessary background about the Nagell-

Ljunggren equation.
For primes n 2 N, we define the following two functions of n:

M(n) = max

✓
n,

n(n� 12)

16

◆
; (1.12)

M
0(n) = C(n)n log(n); C(n) =

0

@ log(4)

1 + 1+log log(n)
log(n)

�
4 log(n)

n� 2

1

A
�1

.

The local approach is based on the following technically involved result on Fer-
mat quotients. Let t ⌘ �y/x mod q

2; a system of equations modulo p in the
unknown t is obtained from the property of Fermat quotients. Analysing some
of the coefficients of these equations and classifying the magnitude of p, q, in
Chapter 3 we will arrive at an important conclusion: there are only three pos-
sibilities for t, namely, t 2 {0,±1}.

Proposition 1. Suppose that (1.6) has non trivial solutions with primes p 6= q,

q - h�
p . Then q 2

⇥
M(p), (p� 1)2

�
\ N or q

2
| x� t; t 2 {0;±1}.

When q < M(p), t = 0, we will consider some special unit and calculate the
norm of its q-adic expansion, the condition that this norm equals to ±1 will be

15



equivalent to the condition of some trace equation, and in this case considering
modulo some higher powers of q would get a contradiction, so in Chapter 4 the
following conclusion is obtained:

Proposition 2. Suppose that (1.6) has non trivial solutions with primes p 6= q,

q - h�
p and q < M(p). Then x ⌘ ±1 mod q

2
.

Unfortunately, the above approach for t = 0 cannot extend to the case
t = ±1, instead the local approximation of the local power series expansions
would help, to this end, we use a global bounding approach based on binomial
series expansions. For each element ⇥ 2 Z�0[G], there exists an associated linear
system of equations over Fp, we expect an non-trivial solution with coefficients
of the group ring as small as possible, then deduce in Chapter 5 the following
result:

Proposition 3. Suppose that (1.6) has non trivial solutions with primes p 6= q,

q - h�
p . Then q < M

0(p).

Finally in Chapter 6, we use the condition in Proposition 2 for local develop-
ments of the putative solutions, in order to obtain a contradiction to the upper
bounds on |y| established in [Mih07]. We thus prove

Proposition 4. The equation (1.6) has no solution with q - h�
p if q < M(p).

and then conclude with the proof of the following main theorem of this thesis,
by comparing the results of the last two propositions. The exceptions here is
because the result of the lower bound of p we cite is proved under the condition
that x is positive.

Theorem 8. The equation (1.6) has no integers solutions outside S, if q - h�
p

– except possibly for some solutions with p < 29 and x < 0.

We do not deal here the case when p is small. Perhaps someone can start in
this area later and exclude these cases to get a more complete result.

1.10.2 The plan and results about the generalized Ramanujan-
Nagell equation:

In Chapter 7–8 we concern the generalized Ramanujan-Nagell equation (1.11).
As we show before, the previous papers considering the equation (1.11) in the
case where C is a product of no more than three prime numbers. Below we
allow very general positive C in (1.11), at the cost of a small condition, that p

does not divide the class number of a certain quadratic extension. The main
method we use is the theory of Primitive Divisor Theorem for Lucas sequences,
the background of which will be introduced in Chapter 7. Finally in Chapter 8
we will use this method to show our main result about the Diophantine equation
(1.11):
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Theorem 9. Let C 2 Z+
and write it in the form of C = z

2
d with d square-free

and z positive. Let K be the field Q(
p
�d) and hK be the class number of K.

Assume p � 5 is a prime such that p - hK and for all prime divisors q of z,

p - q ± 1. If d 6⌘ �1 (mod 8), then the Diophantine equation

x
2 + C = y

p (1.13)

has no positive solution with gcd(x, y) = 1 except that

(x, y, C, p) 2
n
(401, 11, 250, 5), (22434, 55, 19, 5), (2759646, 377, 341, 5)

o
.

As an application of Theorem 9, we will prove the following theorem:

Theorem 10. Let C = 2a · 17b · 41c with a, b, c � 0. Then the solution of

Diophantine equation

x
2 + C = y

p
, x, y � 1, gcd(x, y) = 1 (1.14)

is given by

(x, y, C, p) = (38, 5, 1681, 5) or p = 7.
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Chapter 2

Notations and general facts
about the Nagell-Ljunggren
equation

We assume throughout this paper that (x, y; p, q) 62 S; q 6= p is an unknown
solution to (1.6), and q - h�

p . In view of Dupuy’s result (6), we know that e = 0
and in view of Theorem 7, q < (p�1)2. We let K = Q[⇣] be the p�th cyclotomic
extension, with ⇣ a p�th primitive root of unity. We shall at places use also a
primitive q�th root of unity ⇠ and let K0 = Q[⇠],L = Q[⇣, ⇠].

We let �r(x) be the r�th cyclotomic polynomial and define P = {1, 2, . . . , p�
1} and �c 2 G = Gal (Q(⇣)/Q) be the automorphism of K with ⇣ �! ⇣

c, for
c 2 P . Complex conjugation is denoted by |p 2 G, or simply by | when the
group is clear from the context; we may thus write ↵ = �p�1(↵) = |p(↵) = ↵

|.
We let � = (1� ⇣) be an algebraic integer generating the unique ramified prime
ideal } above p in K.

Cyclotomic Properties of the Equation

Recall that x 6⌘ 1 mod p and e = 0. We define herewith the characteristic

number of the equation (1.6) by

↵ = x� ⇣, and ↵c = �c(↵).

The characteristic ideal is A = (↵, y) and one verifies directly that (�a(↵),�b(↵)) =
1 for a, b 2 P , two distinct integers. Indeed, D(a, b) = (�a(↵),�b(↵)) contains
⇣
a
�⇣

b = �b(↵)��a(↵), and thus D(a, b)|}. However, x 6⌘ 1 mod p implies that
↵ 62 }, so D(a, b) = 1. As a consequence, we have

Aq = (↵), N(↵) = y
q; N(A) = (y). (2.1)

We proved:
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Lemma 11. Assume that (1.6) has a non trivial solution (x, y; p, q) with x 6⌘

1 mod p and let �c(↵) = x � ⇣
c
. Then the ideal A = (↵, y) verifies Aq = (↵).

Moreover c 6= d 2 P , we have

(�c(↵),�d(↵)) = 1, (�c(A),�d(A)) = 1, NK/Q(A) = (y).

Class number condition

We assumed q - h�
p ; then the image of the class [A] in the quotient (C(K)/◆(C(K+)))

is trivial. Since the conjugates of A are pairwise coprime, it follows that A is di-
visible by no real prime. It must consequently be a principal ideal, say A = (⇢).
It follows that (↵) = (⇢q) and by transforming the identity of ideals into one of
algebraic numbers, we find:

Lemma 12. Under the premises above, there is a ⇢ 2 Z[⇣] and a unit " 2

(O(K+))⇥ such that

↵ = " · ⇢
q
. (2.2)
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Chapter 3

A general result on Fermat
quotients

In this chapter we prove a general result on the Fermat quotients of certain
binary fractions:

Theorem 11. Let p, q,K be like above, and suppose that x, y 2 Z are such that

there exists a � 2 K such that

x+ ⇣y

x+ ⇣̄y
=

✓
�

�̄

◆q

.

If in addition q < M(p) with the function defined in (1.12), then there is an

f 2 {�1, 0, 1} such that

x+ fy ⌘ 0 mod q
2
.

The proof of this theorem requires the rest of this chapter.

Lemma 13. Let p, q be odd primes and let x and y be coprime integers with

q - x, y and such that there is a � 2 Q(⇣) with

x+ ⇣
q
· y

x+ ⇣
q
· y

= ±

✓
�

�

◆q

. (3.1)

Then

�(⇣q � ⇣
q
)'(t) ⌘

q�1X

k=1

t
k
� t

2�k

k
· (⇣k � ⇣

k
) mod q, (3.2)

where '(a) ⌘ aq�a
q mod q for a 2 Z/(q2Z) is the Fermat quotient function and

t :⌘ �y/x mod q
2
.

Proof. We have
x+ ⇣

q
· y

x+ ⇣
q
· y

⌘

✓
x+ ⇣ · y

x+ ⇣ · y

◆q

mod qZ[⇣],

21



and thus, from (3.1):

±
�

�
=

x+ ⇣ · y

x+ ⇣ · y
+ q · µ,

with µ 2 Q(⇣) being a q-integer. By raising to the power q, it follows again
from (3.1), that

x+ ⇣
q
· y

x+ ⇣
q
· y

⌘ ±

✓
x+ ⇣ · y

x+ ⇣ · y

◆q

mod q
2Z[⇣]. (3.3)

Note that '(a) ⌘
aq�a

q mod q, for (a, q) = 1 and t ⌘ �y/x mod q
2, so

�(y/x)q ⌘ t+ q'(t) mod q
2. Now

(x+ ⇣ · y)q ⌘ x
q
· (1� t · ⇣)q ⌘ (x+ q'(x)) · (1� t⇣)q

⌘ (x+ q'(x)) · (1� t⇣
q + qf(⇣)) mod q

2

where

f(⇣) = �⇣
q
· '(t) +

1

q
·

q�1X

k=1

✓
q

k

◆
(�t⇣)k ⌘ �

 
⇣
q
· '(t) +

q�1X

k=1

t
k
⇣
k

k

!
mod q.

Writing ↵ = 1 + y
x⇣

q = 1 � t⇣
q + q

2
z for some z 2 Z[⇣] and eliminating

denominators in (3.3) we find that

↵ · (x+ q'(x))
�
↵+ q · f(⇣)

�
⌘ ↵ · (x+ q'(x)) · (↵+ q · f(⇣)) mod q

2

and

↵ · f(⇣) ⌘ ↵ · f(⇣) mod q.

We let S =
Pq�1

k=1
tk⇣k

k . Regrouping the terms, we find:

(1� t⇣
q
) · ('(t) · ⇣q + S) ⌘ (1� t⇣

q) · ('(t) · ⇣
q
+ S) mod q,

hence

�(⇣q � ⇣
q
)'(t) ⌘ (1� t⇣

q
)S � (1� t⇣

q)S mod q,

and

�(⇣q � ⇣
q
)'(t) ⌘

X t
k

k

⇣
⇣
k
� ⇣

k
⌘
�

X t
k+1

k

⇣
⇣
k�q

� ⇣
k�q
⌘
mod q.

We regroup the powers of ⇣ using q�k ⌘ �k mod q, thus ⇣k�q
/k ⌘ �⇣

q�k
/(q�

k), which can be applied in the above for k = 1, 2, . . . , q � 1:

�(⇣q � ⇣
q
)'(t) ⌘

q�1X

k=1

t
k
� t

2�k

k
·

⇣
⇣
k
� ⇣

k
⌘
mod q,

which is the statement of (3.2).
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The Lemma 13 essentially yields a system of equations modulo q in the
unknown t. It turns out that under some additional conditions on p and q,
there are only three possible values for t (one of which is t = 0). This reflects
the main ideas which will subsequently lead, by a more in depth study of the
system (3.2), to a sharper inequality between p and q. The light result is the
following:

Proposition 5. Assume that p > q are odd primes and there is a � 2 Q(⇣)
such that (3.1) holds. Then

x+ f · y ⌘ 0 mod q
2 (3.4)

for some f 2 {�1, 0, 1}.

Proof. Assume first that x ⌘ 0 mod q and x = qu with (u, q) = 1. Since
(x, y) = 1 and p 6= q, it follows that (x + ⇣

a
y, q) = 1, so the right hand side of

(3.1) is a q-integer. The equation is Galois-invariant, so we can replace ⇣ by ⇣
q.

Thus (3.1) becomes
y + q⇣

q
u

y + q⇣qu
= �

q
,

with � = ±⇣
�2

· �/�. From the definition, we see that �
q
⌘ 1 mod qZ[⇣].

Let Q ⇢ Z[⇣] be a prime above q, and f be its height. We have a fortiori
�
q
⌘ 1 mod Q and raising the identity to the power q

f�1, we obtain

� ⌘ �
q·qf�1

⌘ 1 mod Q.

This holds for all primes of Z[⇣] above q, so � ⌘ 1 mod q. Consequently, � =
1+ qw for some w 2 Z[⇣], and thus �q = (1+ qw)q ⌘ 1 mod q

2, and y+ qu⇣
q
⌘

y + qu⇣
q

mod q
2. Thus u · (⇣2 � ⇣

2
) ⌘ 0 mod q. Since p is odd, this is only

possible if u ⌘ 0 mod q and thus x ⌘ 0 mod q
2. We can interchange x and y,

so this proves that if x or y is divisible by q, then it is divisible by q
2, which

takes care of f = 0 in this case.
We may now assume that q - x, y and use the previous lemma, which implies

that (3.2) holds under the given premises. Since the set {⇣, ⇣2, . . . , ⇣p�1
} builds

a base of the algebra Z[⇣]/(q · Z[⇣]), the coefficients of the single powers in the
above identity must all vanish and p > q + 1 implies that the coefficient of ⇣ is
a1 = t(1� t

�4) and thus
t
4
⌘ 1 mod q

must hold. Furthermore, if q + 2 < p, then the coefficient of ⇣2 is

2 · a2 = (t2 � t
�4) ⌘ 0 hence t

6
� 1 ⌘ 0 mod q.

The last two congruences in t have the only common solution t
2 = 1 mod q.

One easily verifies that if this holds, then the right hand side in (3.2) vanishes
and thus '(t) ⌘ 0 mod q. This leads to the possible solution x± y ⌘ 0 mod q

2.
Inserting the value back shows that this is indeed a solution of (3.1). If p = q+2,
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then we still have a1 = t
�3(t4 � 1) so t

4
⌘ 1 mod q. If t2 � 1 ⌘ 0 mod q, we

find the previous solution. So let us assume that t
2
⌘ �1 mod q and consider

the second coefficient: but '(t)⇣q = '(t)⇣2 has in this case a contribution to a2.
We estimate this coefficient by using t

2
⌘ �1 mod q :

2 · a2 ⌘ t
2
� t

�4
� 2'(t) ⌘ �t

�4
�
t
6
� t

2 + t
2
� 1 + 2t4'(t)

�

⌘ t
2
� 1 + 2'(t) ⌘ 2('(t)� 1) mod q,

a congruence which is satisfied by '(t) ⌘ 1 mod q. We have to consider also

3 · a3 = (t3 � t
�5)� (tq�1

� t
�q�1) ⌘ 0 mod q ,

0 ⌘ t
�5(t8 � 1)� (1� t

�2) mod q.

If t2 ⌘ �1 mod q, then the first term vanishes while the second is �2 6⌘ 0 mod q,
so t

2
⌘ �1 mod q is not possible. This takes care of the case p = q + 2 as well,

thus completing the proof of the proposition.

It follows from Lemma 13 that

Corollary 1. If p > q > 3 are odd primes for which (1.6) has nontrivial

solutions and such that q - h�
p , then (3.4) holds.

Proof. The premises of Lemma 13 are given and thus (3.2) holds. By setting
� = ⇢1 in this equation, we find that the hypotheses of Proposition 5 also hold,
and by its proof it follows that (3.4) must be true.

3.1 Sharpening
In order to gain more information from (3.2), also in cases when q > p, we
need to introduce first some operations on sequences. Let k be a field and T

be the space of sequences on k(t). We define the following operators on T : For
a = (an)n2N 2 T , the maps ✓+, ✓�,⇥ : T ! T produce the following sequences:

✓+(a)n = an � t · an�1,

✓�(a)n = t · an � an�1,

⇥(a)n = ✓+(✓�(a))n.

(3.5)

Furthermore we let � be the classical forward difference operator

�an = an � an�1

and
n
k = n · (n� 1) . . . (n� k + 1)

be the k-th falling power of n, so �n
k = k · (n� 1)k�1. The main properties of

the operators in (3.5) are given by the following lemma.
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Lemma 14. The operators ✓+ and ✓� are linear and they commute:

⇥ = ✓+ � ✓� = ✓� � ✓+.

Furthermore,

✓+(t
n) = 0, ✓+(t

�n) = (1� t
2)t�n

,

✓�(t
�n) = 0, ✓�(t

n) = �(1� t
2)tn�1

,
(3.6)

and

✓
l
+(n

k
· t

n) =
k!

l!
· (n� l)k�l

· t
n
,

✓
l
�(n

k
· t

�n) =
k!

l!
· (n� l)k�l

· t
�(n�l)

,

(3.7)

where we set a
k�l = 0 if k < l. In particular, we have:

✓
k
+(n

k
· t

n) = k! · tn,

✓
k
�(n

k
· t

�n) = k! · t�(n�k)
,

⇥k(nk
· t

n) = k! · (t2 � 1)k · t
n�k

,

⇥k(nk
· t

�n) = k! · (�1)k · (t2 � 1)k · t
�(n�k)

.

(3.8)

Proof. Commutativity follows by a straightforward computation from

✓+ � ✓�(an) = ✓� � ✓+(an) = t · (an + an�2)� (t2 + 1)an�1.

The rules (3.6) are also easily verified and they yield (3.7) by induction on k.
Finally, the first two actions in (3.8) are obtained by setting l = k in (3.7), while
the action of ⇥ is obtained due to commutativity, by setting ⇥k = ✓

k
� � ✓

k
+ or

⇥k = ✓
k
+ � ✓

k
�, depending whether the operand is t

n or t
�n.

Remark 1. Note that k+1 consecutive values of an are necessary for applying

✓
k
±, while ⇥k

requires 2k + 1 consecutive values.

We shall call the set {�1, 0, 1} the admissible solutions. The task we pursue
is to improve our estimates on pairs p, q for which the system (3.2) has no
other solutions except (3.4). In particular, we are concerned with p < q, since
Proposition 5 deals already with p > q. We shall use the fact on which the
proof of Proposition 5 relies: (⇣k)p�1

k=1 forms a base of the algebra Z[⇣]/(qZ[⇣])
and this allows us to consider (3.2) as a linear system modulo q. Concretely,
the coefficients of ⇣k � ⇣

k in that equation must vanish, for k = 1, 2, . . . , p�1
2 .

Let 0 < ⌫ <
p�1
2 be the value for which ⌫ ⌘ q mod p or ⌫ ⌘ �q mod p. Then,

with �ij the Kronecker �, the previous observation yields the equations:

� �⌫,k · '(t) ⌘
X

j�0;jp+k<q

t
k+pj

� t
2�(k+pj)

pj + k

�

X

j�0;jp+(p�k)<q

t
p�k+pj

� t
2�(p�k+pj)

p� k + jp
mod q. (3.9)
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The index value ⌫ plays a singular role in the equations above: first, it is the only
index for which the equations are not homogeneous. Second the number of terms
in the sums in the right hand side changes between 0 < k < ⌫ and p/2 > k > ⌫.
In these two intervals, (3.9) yields homogeneous equations which manifests itself
in the vanishing of polynomials of fixed degree in k. This suggests the use of the
difference operators defined above. Let 5  p < q be primes. We shall take the
approach of choosing either the interval 0 < k < ⌫ or ⌫ < k < p/2, whichever
has more elements: in that interval; (3.9) translates into polynomial equations
of the type fq(k; t) = 0. Having a contiguous interval on which this equation
holds, one can use the iteration of ⇥ in order to reduce the degree in k of the
polynomial fq. We have thus to distinguish the cases ⌫ < p/4 and ⌫ > p/4.1

Proposition 6. Let 5  p < q be primes such that (3.2) holds and ⌫ be defined

above. Suppose that ⌫ > p/4. If in addition, q <
p(p�12)

16 , then (3.4) holds.

Proof. Let n = bq/pc. The equation (3.9) yields on the interval 0 < k < ⌫ :

X

0jn

t
k+pj

� t
2�(k+pj)

pj + k
⌘

X

0j<n

t
p�k+pj

� t
2�(p�k+pj)

p� k + jp
mod q. (3.10)

After eliminating denominators, this yields a polynomial equation:

(�1)nk2n ·

X

0jn

⇣
t
k+pj

� t
2�(k+pj)

⌘
+O(k2n�1) ⌘

(�1)n�1
k
2n

·

X

0j<n

⇣
t
p�k+pj

� t
2�(p�k+pj)

⌘
+O(k2n�1) mod q.

In order to eliminate the lower order terms in k, we may take ⇥2n on both
sides of the congruence. This requires at least 2(2n) + 1 contiguous points, so
1  k � 2n < k + 2n < p/4, which means 2(2n) + 1 < p/4. If this is provided,
the equation reduces, after simplifying by (�1)n · (2n)! · (1� t

2)2n, to:

X

0jn

⇣
t
k+pj�2n

� t
2�(k+pj�2n)

⌘

+
X

0j<n

⇣
t
p�k+2n+pj

� t
2�(p+2n�k+pj)

⌘
⌘ 0 mod q. (3.11)

If t 62 {�1, 0, 1} then we can apply ✓+ and ✓� independently to the above
congruence. This yields:

0 ⌘

X

0jn

t
2�(k+pj�2n)

�

X

0j<n

t
p�k+2n+pj mod q,

1
One may also take the approach of considering the whole interval 0 < k < p/2. In this

case the polynomials fq(k; t) change the degree and shape when k passes the “singular" value

k = ⌫. The computations become more intricate, for a gain of a factor at most 2. We choose

to analyze here the simpler approach.
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and
0 ⌘

X

0jn

t
k+pj�2n

�

X

0j<n

t
2�(p+2n�k+pj) mod q.

Upon multiplication by the lowest power of t, we obtain

0 ⌘

X

0jn

t
pj

�

X

0j<n

t
p(n+1)�2+pj mod q and

0 ⌘

X

0jn

t
pn+pj�2

�

X

0j<n

t
pj mod q.

(3.12)

Adding the two congruences, we obtain t
pn

⌘ �t
pn�2 mod q with the solutions

t ⌘ 0 and t
2
⌘ �1 mod q. The first solution is admissible. We reinsert t

2
⌘

�1 mod q in (3.11), using the fact that t
m

⌘ (�1)mt
�m mod q for all m. This

yields, after some computations,

(tk + t
�k) ·

0

@1 +
nX

j=1

t
pj(1 + (�1)j)

1

A 0 mod q.

The inner sum is

1+2
X

0<2ln

(�1)l = 1+2(�1+1�1 . . .+(�1)[n/2]) =

(
1 if [n/2] ⌘ 0 mod 2

�1 otherwise,

and the previous condition thus becomes ±(tk + t
�k) ⌘ 0 mod q, and since

t 6⌘ 0, it follows that (�1)k + 1 ⌘ 0 mod q. It suffices to take k even, to obtain
t ⌘ 0 mod q, again, an admissible solution.

We now verify the conditions necessary for our derivation. For the final
application of ✓± and the condition that k be even, we need:

2n+ 1  k  p/4� (2n+ 1),

which is satisfied by the even value k = 2(n + 1), provided that 4n+ 3 < p/4.
On the other hand, we find from the definition of ⌫ and the fact that ⌫ > p/4,
that p(4n+ 3) > 4q, and thus

p
2
/4 > p(4n+ 3) > 4q,

as claimed. On the other hand, we find from the definition of n that if q <
p(p�12)

16 , then

4n+ 3  4bq/pc+ 3 < 4
p� 12

16
+ 3 = p/4.

as claimed.

Proposition 7. Let 5  p < q be primes such that (3.2) holds and ⌫ be defined

above. Suppose that ⌫ < p/4 and q <
p(p�12)

16 . Then (3.4) holds.
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Proof. The proof of this proposition follows the same line as the previous one,
but encounters a few particular obstructions. We shall let

n =

(
bq/pc � 1 if (qmod p) < p/4,

bq/pc if (qmod p) > 3p/4.

The equation (3.9) yields now on the interval ⌫ < k < p/4:

X

0jn

t
k+pj

� t
2�(k+pj)

pj + k
⌘

X

0jn

t
p�k+pj

� t
2�(p�k+pj)

p� k + jp
mod q. (3.13)

Note that there are equally many terms in the sums of both sides of the above
congruences, unlike the case of the previous proposition. If t 62 {�1, 0, 1},
this perpetuates down to the analogue of (3.12), in which the two congruences
become identical:

0 ⌘

X

0jn

t
pj +

X

0jn

t
p(n+1)+pj�2 mod q. (3.14)

If tp ⌘ 1 mod q, we get (n + 1)(t2 + 1) ⌘ 0 mod q and t
2
⌘ �1 mod q, hence

1 ⌘ t
p
⌘ (�1)(p�1)/2

t mod q, showing that t is admissible; so we can assume
t
p
6⌘ 1 mod p. Then

t
p(n+1)

⌘ 1 mod q or t
p(n+1)

⌘ �t
2 mod q. (3.15)

Note that this condition is equivalent to applying any of ✓+⇥2n+1 or ✓�⇥2n+1

to the original system (3.9).
In order to arrive at a contradiction we shall have to consider lower order

terms in k. Let

�j = t
k+pj

� t
2�(k+pj) and ⌧j = t

p�k+pj
� t

2�(p�k+pj)
.

With some additional work, the first congruence yields, after elimination of
denominators:

X

0jn

�j ·
�
k
2n+1

� ((n+ j + 1)p� (2n+ 1)n) · k2n
�

+
X

0jn

⌧j ·
�
k
2n+1

� ((n� j)p� (2n+ 1)n) · k2n
�
+O(k2n�1) ⌘ 0 mod q.

(3.16)

We assume that the first congruence of (3.15) satisfied. Then

X

0jn

t
j =

1� t
p(n+1)

1� tp
⌘ 0 mod q

and
X

0jn

t
�j =

1� t
�p(n+1)

1� t�p
⌘ 0 mod q.
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Herewith, (3.16) reduces to
X

0jn

(tk+pj
� t

2�(k+pj)) · (�jp) · k2n

+
X

0jn

(tp�k+pj
� t

2�p+k�pj) · (jp) · k2n +O(k2n�1) ⌘ 0 mod q

We apply ⇥2n to the above and after simplifying by (2n)! · (1� t
2)2n, get

X

0jn

(tk�2n+pj
� t

2�k+2n�pj) · (�jp)

+
X

0jn

(tp�k+2n+pj
� t

2�p+k�2n�pj) · (jp) ⌘ 0 mod q.

Then we have

(tk�2n
� t

p�k+2n) ·
X

0jn

t
pj
j ⌘ (t2�k+2n

� t
2�p+k�2n) ·

X

0jn

t
�pj

j mod q,

hence

(tk�2n
� t

p�k+2n) ·
1 + n

tp � 1
⌘ (tk�2n

� t
p�k+2n) · (�t

2�p) ·
1 + n

t�p � 1
mod q,

t
k�2n

� t
p�(k�2n)

⌘ t
2(tk�2n

� t
p�k+2n) mod q

Since t2 ⌘ 1 mod q leads to admissible solutions, it remains that tp ⌘ t
2(k�2n) mod

q, which must hold for instance for two successive values of k. Hence, by dividing
the corresponding congruences, we get t2 ⌘ 1 mod q, which has only admissible
solutions.

Now we claim that
t
p(n+1)

6⌘ �t
2 mod q. (3.17)

If not, we have
X

0jn

t
pj

⌘
1� t

p(n+1)

1� tp
⌘

1 + t
2

1� tp
mod q

and
X

0jn

t
�pj =

1� t
�p(n+1)

1� t�p
⌘

1 + t
�2

1� t�p
mod q.

This time, (3.16) is reduced to
0

@t
k
·

X

0jn

t
pj

� t
2�k

X

0jn

t
�pj

1

A · k
2n+1

+

0

@t
p�k

·

X

0jn

t
pj

� t
2�p+k

X

0jn

t
�pj

1

A · k
2n+1 +O(k2n) ⌘ 0 mod q.
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Then we have
✓
t
k
·
1 + t

2

1� tp
� t

2�k 1 + t
�2

1� t�p

◆
· k

2n+1

+

✓
t
p�k

·
1 + t

2

1� tp

1 + t
�2

1� t�p

◆
· k

2n+1 +O(k2n) ⌘ 0 mod q.

It follows that
✓
t
2 + 1

1� tp

◆
· (tk + t

p�k) · 2 · k2n+1 +O(k2n) ⌘ 0 mod q.

We apply ⇥2n+1 to the above and get
✓
t
2 + 1

1� tp

◆
·
�
t
k�2n�1 + t

p�k+2n+1
�
· 2 · (2n+ 1)! · (t2 � 1)2n+1

⌘ 0 mod q.

We have excluded t
2
⌘ �1 mod q and the vanishing of the second factor leads

to t
p
⌘ t

2(k�2n�1), which implies like before, that t
2
� 1 ⌘ 0 mod q, thus only

admissible solutions are possible. This confirms the claim (3.17).

We finally have to derive the inequality between p and q, for which the proof
above holds. The condition is that the interval (p/4, p/2) contains sufficient
contiguous points for applying both ✓±⇥2n+1 and ✓

2
+⇥

2n. This requires at least
2(2n+1)+1 contiguous points, so we need p/4 < k�2(n+1) < k+2(n+1)+1 <

p/2, which means 4n + 3 < p/4. Note that by definition of n, if q <
p(p�12)

16 ,
then

4n+ 3  4bq/pc+ 3 < p/4.

This completes the proof of the Proposition 1.
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Chapter 4

The local approach

We consider the cases when a solution to (1.6) has x ⌘ f mod q
2, with f 2

{�1, 0, 1}. Let µ := ⇢/⇢̄ and note that � := ↵ ·

⇣
µ�1
1�⇣2

⌘q
2 O(K)⇥, as follows by

the following computations:

� = ↵̄·

✓
µ� 1

1� ⇣2

◆q

= �⇣
q
↵̄

✓
⇢� ⇢

(⇣ � ⇣̄)⇢

◆q

= �⇣
q ↵̄

⇢
q ·

✓
⇢� ⇢̄

⇣ � ⇣̄

◆q

= �⇣
q
"̄·

✓
⇢� ⇢̄

⇣ � ⇣̄

◆q

.

We note that A � A ⌘ 0 mod (⇣ � ⇣̄) for arbitrary A 2 Z[⇣], so consequently
⇢�⇢̄
⇣�⇣

2 Z[⇣]. In view of Lemma 12, we have:

↵� ↵̄ = ⇣ � ⇣̄ = " · (⇢� ⇢) ·

✓
⇢
q
� ⇢̄

q

⇢� ⇢̄

◆
, hence

"
�1 =

✓
⇢� ⇢̄

⇣ � ⇣

◆
·

✓
⇢
q
� ⇢̄

q

⇢� ⇢̄

◆
; (4.1)

the two factors on the right hand side are integral, and their product is a unit,
so both must be units, individually1. We note also that ↵ ·

�µ�1
⇡

�q
2 O(K)⇥ for

every ⇡ 2 } that generates the prime above p. We shall adapt various values
for ⇡ to the different values of f . We may write �(1� ⇣

2) in the above case, to
indicate that the unit is defined with respect to the choice ⇡ = 1� ⇣

2.
We shall compute a q-adic developments of � and its norm, and compare

this to 1, which should be the result, since we have seen that � is a unit.

4.1 The case f = 0

Let x = q
l
z with z 2 Z, p - z and l � 2; we have

µ
q = ⇣

2q 1� ⇣
q
x

1� ⇣qx
,

1
We mention for later use, that the decomposition so far is independent of the value of x
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so

µ = ⇣
2
·
1� ⇣

q
q
l�1

z

1� ⇣qql�1z
+O(q2(l�1)) = ⇣

2
·

⇣
1 + q

l�1
z · (⇣q � ⇣

q
)
⌘
+O(q2(l�1)),

hence

µ� 1

⇣2 � 1
= 1 +

x

q
·
⇣
q(1� ⇣̄

2q)

1� ⇣̄2
+O(q2(l�1)),

� = 1 + x ·

✓
⇣
q(1� ⇣̄

2q)

1� ⇣̄2
+ ⇣̄

q

◆
+O(q2(l�1));

by defining B = ⇣q(1�⇣̄2q)
1�⇣̄2 , and taking the norm of �(⇣2 � 1)⇣̄, we see that

N(�) = 1 implies Tr(B � ⇣̄
q) ⌘ 0 mod q and so Tr(B) ⌘ �1 mod q. Let

q ⌘ r mod p, where 1  r  p� 1; since

B̄ = ⇣̄
r(1 + ⇣

2 + . . .+ ⇣
2(r�1)) = ⇣

�r + ⇣
2�r + . . .+ ⇣

r�2
,

we see that for odd r, none of the terms in this sum carries the exponent zero.
There are r terms in the sum B, so

Tr(B � ⇣
�q) =

(
�r + 1 if r is odd
�r + 1 + p otherwise.

(4.2)

If r is even, which only happens when q > p, then 0 < �r + 1 + p < q and
hence q - (�r + 1 + p). If r is odd, the vanishing condition requires r = 1 so
q ⌘ 1 mod p.

In this case we consider some higher order terms:

µ = ⇣
2(1� q

l
z⇣̄

q)1/q(1� q
l
z⇣

q)�1/q
. (4.3)

By expanding (4.3) under the condition ⇣
q = ⇣, we obtain

µ = ⇣
2

✓
1� q

l�1
z⇣̄ + q

2l�2
z
2 1� q

2
⇣̄
2

◆
·

✓
1 + q

l�1
z⇣ + q

2l�2
z
2 1 + q

2
⇣
2

◆
+O(q3l�3)

= ⇣
2

 
1 + q

l�1
z(⇣ � ⇣) + q

2l�2
z
2 ⇣

2
(1� q)� 2 + ⇣

2(1 + q)

2

!
+O(q3l�3),

µ� 1

1� ⇣̄2
= �

 
1 + q

l�1
z
⇣ � ⇣

1� ⇣
2 + q

2l�2
z
2 ⇣

2 1�q
2 � 1 + q+1

2 ⇣
2

1� ⇣
2

!
+O(q3l�3),

implying that

�

✓
µ� 1

1� ⇣2

◆q

= 1+q
l
z
⇣ � ⇣

1� ⇣
2+q

2l�1
z
2

0

@⇣
2 1�q

2 � 1 + q+1
2 ⇣

2

1� ⇣
2 +

 
⇣ � ⇣

1� ⇣
2

!2
q � 1

2

1

A+O(q2l).
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Hence

� = 1 + q
2l�1

z
2

 
⇣
2 1�q

2 � 1 + q+1
2 ⇣

2

1� ⇣
2 + ⇣

2 q � 1

2

!
+O(q2l).

Taking the norm of the last equality, we obtain

N(�) = 1 + q
2l�1

z
2
· Tr

 
⇣
2 1�q

2 � 1 + q+1
2 ⇣

2

1� ⇣
2 + ⇣

2 q � 1

2

!
+O(q2l)

= 1 + q
2l�1

z
2

✓
�
p� 1

2
·
1� q

2
�

p� 1

2
+

q + 1

2
·
p� 3

2
+

1� q

2

◆
+O(q2l)

= 1 + q
2l�1

z
2 1� p

2
+O(q2l) 6⌘ ±1 mod q

2l
.

We assumed that q ⌘ 1 mod p, so the factor 1�p
2 6⌘ 0 mod q and consequently

N(�) = 1+Cq
2l�1+O(q2l), for an integer constant C = z

2 1�p
2 6⌘ 0 mod q. This

is inconsistent with the fact that � is a unit, which completes the proof of case
f = 0 in Proposition 2.
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Chapter 5

Diophantine approximation

• ⇥ =
P

c2P mc�c 2 Z�0 [G]; weight w(⇥) =
P

c2P nc.

• Formal binomial series:

Fn�c(T ) = (1 + ⇣
c
T )n/q = 1 +

1X

k=1

✓
n/q

k

◆
(⇣cT )k; and (5.1)

F⇥(T ) =
p�1Y

c=1

Fmc�c(T ) := 1 +
1X

k=1

ak(⇥)T k
2 K[[T ]].

where the coefficients ak(⇥) are obtained by multiplying out the elementary
series and rearranging in ascending order of the powers of the indeterminate T .

Alternatively, we may fix g 2 P a generator of F⇥
p and fix � = �g 2 G, which

is then a generator of the cyclic galois group. We then write our generic group
ring element as

⇥ =
X

j2P

nj�
j =

X

j2P

nj�gj ,

and the formal power series F⇥(T ) :=
Q

j2P Fnj�gj
(T ).

The series F⇥(�1/x) are absolutely convergent in C, for |x| > 1, and in
particular for integers x 2 Z \ {�1, 0, 1} and

(F�d(�1/x))q = µ
q
,

so there exist exponents a(d), a(d,⇥) 2 Z \ [� q�1
2 ,

q�1
2 ] such that

�
d(⇢/⇢) = ⇠

a(d)
· F(1�|)�d(�1/x), and �

d(⇢/⇢)⇥ = ⇠
a(d,⇥)

F�d(1�|)⇥(�1/x);

we may also write a(⇥) = a(1,⇥). We may estimate the power series by ap-
pealing to Lemma 7 of [Mih06], which leads to

W (�d⇥) :=
��F(1�|)�d⇥(�1/x)� 1

�� < 3
w(⇥)

q|x|
. (5.2)
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By considering the action of ⇥ on �
d(⇢/⇢), one verifies the following:

a(d,⇥) ⌘
p�1X

i=1

nia(d+ i) mod p. (5.3)

Recall that �
p�1
2 is the complex conjugation, hence a(i+ p�1

2 ,⇥) = �a(i,⇥) for
1  i 

p�1
2 . Let ⌫i = ni � ni+ p�1

2
; by inserting in (5.3) we obtain

a(d,⇥) ⌘

p�1
2X

i=1

⌫ia(d+ i) mod p, d = 1, 2, . . . , p� 1. (5.4)

We call the system of equations (5.4) over Fp, the associated linear system of

⇥ 2 Z�0 [G]. Above considerations show that we may interpret the vector
~A := (a(d))

p�1
2

d=1 as given and consider the ⌫i as unknowns for a given constant
vector ~X. We shall impose certain conditions on the vector ~X, which will
determine ni and herewith, a ⇥ 2 Z[G]. For some ⌧ 2 N with 1  ⌧  (p�1)/2,
we let the entries Xj = 0; j  ⌧ in the right hand side vector of the system
(5.4), meaning that we wish to find ⇥, such that the exponents a(�d⇥) = 0 for
d  ⌧ . The remaining entries in ~X are free. We shall maximize ⌧ subject to the
condition that the homogenous system built from the first ⌧ equations in (5.4)
has a non trivial integer solution ~⌫ with ||~⌫||1 < 2. The values Xd; d > ⌧ will be
determined by this solution.

Focusing herewith on the first ⌧ equations we consider the linear map with
matrix M = (a(d, i))⌧,(p�1)/2

d,i=1 and its action on the vectors in V2 = {0, 1}(p�1)/2.
For v 2 V2 we consider the image w = Mv 2 (Z/(q · Z))⌧ . By an application of
the pigeon hole principle, we see that as soon as

2(p�1)/2
> q

⌧
, ⌧ <

p� 1

2 log2(q)
, (5.5)

there are two different vectors v1, v2 2 V2 with identical image, so letting v =
v1 � v2, we obtain an integer vector with entries in {�1, 0, 1} and such that
Mv ⌘ 0 mod q. We may thus choose the value

⌧ =


p� 1

2 log2(q)

�
,

and the previous reasoning implies there is a vector ~⌫ with entries in {�1, 0, 1}
which annihilates modulo q the first ⌧ equations in (5.4). This vector defines
a group ring element ✓ =

P(p�1)/2
i=1 ⌫i�

i
2 Z[G]. It can be transformed into a

positive element ⇥ 2 Z�0[G] as follows: we observe that in ✓, the coefficients
⌫i = 0 for i > p/2. We derive the ⇥ =

P
c2P nc�

c as follows: set all nj = 0

and then, for c = 1, 2, . . . , p�1
2 , let nj = ⌫j if ⌫j � 0 and np�j = �⌫j otherwise.

This defines ⇥ uniquely, and by the above, we know that a(�d⇥) = a(�d✓) = 0

for all d  ⌧ . The weight verifies w(⇥) =
P(p�1)/2

1 |⌫i| 
p�1
2 .
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5.1 The norm of (⇢/⇢)⇥ � 1

We move on to compute the norm of (⇢/⇢)⇥ � 1:

N
�
(⇢/⇢)⇥ � 1

�
=
Y

c2P

�
(�c(⇢/⇢))⇥ � 1

�
=
Y

c2P

⇣
⇠
a(c,⇥)

· F�d(1�|)⇥(�1/x)� 1
⌘
=: P1·P2,

where P1 denotes the products of the factors with a(c,⇥) 6= 0 and P2 denotes
the one with a(c,⇥) = 0. Let the number of factors appearing in P2 be t(⇥), so
by construction, 2⌧  t(⇥).

Then by (5.2), for each factor �c :=
�
⇠
a(c,⇥)

· F�d(1�|)⇥(�1/x)� 1
�

appear-
ing in P1, we have that

���⇠a(c,⇥)
· F�d(1�|)⇥(�1/x)� 1

��� 
��F�d(1�|)⇥(�1/x)� 1

��+ 1

 3
w(⇥)

q|x|
+ 2  2

✓
1 +

3(p� 1)

4q|x|

◆
; (5.6)

similarly, for each factor �c occurring in P2, we have

��F�d(1�|)⇥(�1/x)� 1
��  3

w(⇥)

q|x|


3(p� 1)

2q|x|
. (5.7)

Let q = cp log(p), for some c > 1; we search a minimal value for c, such that
the existence of a solution to (1.6) to which we apply ⇥ derived here, leads to
a contradiction. If p > 29, then 3(p � 1)/2q < 1/2, hence by (5.6), (5.7), we
obtain

|N
�
(⇢/⇢)⇥ � 1

�
| = |P1 · P2| < 3p�1�t(⇥)

· (1/|x|)t(⇥)
.

Therefore

|N
�
(⇢� ⇢)⇥

�
| = |N(⇢⇥)| · |N

�
(⇢/⇢)⇥ � 1

�
| < |y|

w(⇥)
· 3p�1�t(⇥)

· (1/|x|)t(⇥);
(5.8)

recall that (⇢� ⇢) is associated with (⇣ � ⇣̄) by (4.1), hence

N
�
(⇢� ⇢)⇥

�
= p

w(⇥)
,

and (5.8) is equivalent to

1 <

✓
|y|

p

◆w(⇥)

· 3p�1�t(⇥)
· (1/|x|)t(⇥)

.

Recall that we have the known result |y| � 2p + 1, t(⇥) � 2⌧ and w(⇥) 

(p� 1)/2, hence

1 <

✓
|y|

p

◆w(⇥)

·3p�1�t(⇥)
·(1/|x|)t(⇥)



✓
|y|

p

◆(p�1)/2

·3p�1�2⌧
·(1/|x|)2⌧ . (5.9)
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Note that
y
q =

x
p
� 1

x� 1
<

4

3
|x|

p�1;

if p > 9, we obtain from (5.9):

1 <

✓
4

3

◆ p�1
2q

· (9/p)(p�1)/2
· |x|

(p�1)2

2q �2⌧


⇣
|x|

p�1
2q � 2⌧

p�1

⌘p�1
, (5.10)

which is impossible if

⌧ �
(p� 1)2

4q
. (5.11)

We see that if there is an integer ⌧ with upper bound given by (5.5) and lower
bounded by (5.11), then (5.9) leads to a contradiction, derived from the assump-
tion that (1.6) has a solution. In other words, provided that q is sufficiently large
for the interval

(p� 1) log 2

2 log(q)
> ⌧ �

(p� 1)2

4q
. (5.12)

to contain an integer, we may conclude that there are no solutions of (1.6) for
such p, q, if q - h�

p . If the simple inequality

(p� 1) log(2)

2 log(q)
>

(p� 1)2

4q
+ 1 (5.13)

holds, then the given interval necessarily contains an integer. Multiplying both
sides with 4q

(p�1)2 , we get the equivalent inequality

q log(4)

(p� 1) log(q)
> 1 +

4q

(p� 1)2
. (5.14)

For c < 2.7, we use log(q) < 1 + log(p) + log log(p) and (4q)/(p � 1)2 

c log(p)/(p� 2), so
q log(4)

(p� 1) log(q)
>

c log(4)

1 + 1+log log(p)
log(p)

hence the condition is fulfilled if

c ·

0

@ log(4)

1 + 1+log log(p)
log(p)

�
4 log(p)

p� 2

1

A > 1. (5.15)

Defining thus C(p) to be the inverse of the cofactor of c and M
0(p) = C(p)p log(p),

we recover the definitions in (1.12), in which C(p) is a function with asymp-
totic value limp!1 M

0(p) = 1/ log(4) < 0.75. Note that for p = 29 we have
M(p) < M

0(p), while asymptotically we obviously have M(p)/M 0(p) ! 1.
With some elementary analysis, one also verifies that the difference of the two
functions only has one zero on x > 29. This is determined numerically to be
x 2 (113, 127), which confirms the last statement of Proposition 3.
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Finally, for the 29  p  113, we need to check if there is any prime M(p) <
q < M

0(p), such that the pair (p, q) satisfies the previously derived. Note that
there always is a loss, when deriving a general condition that excludes all pairs
verifying it. For concrete numbers, one may still show that no solution exist,
by some concrete verification. We have done this using PARI and the following
three conditions:

1. Existence of an integer ⌧ satisfying condition of (5.12);

2. Using the conditions on µ in Proposition (6) and Proposition (7) that
provide inequalities between µ and 4n+ 3.

3. Showing that the only possible values of t in (3.10) (if µ > p/4) and (3.13)
(if µ < p/4) belong to {0,±1}.

Indeed, the combination of the three criteria helped eliminate all remaining
cases. It turns out that 3. is the most powerful condition. We herewith know
that the only possible cases remaining verify x ⌘ ±1 mod q

2. In order to com-
plete the proof of Theorem 8 we shall eliminate these cases by using a local
power series development method.
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Chapter 6

Local approximation in the
cases x ⌘ ±1 mod q2

In this chapter we use local approximation for eliminating these two remaining
cases. Using local power series expansions, we prove

Proposition 8. The equation (1.6) has no solutions with x ⌘ f mod q
l+1

, for

p > 29 and f 2 {�1, 1}; l � 1.

The proof of the proposition covers the rest of this section. We give first
a brief description of our approach, which starts from the assumption that
(x, y; p, q) is a solution with odd primes p, q and x ⌘ ±1 mod q

2.

The µ-map

Let

DG =

(
t 2 Z[G]⇥ : t =

X

c2P

nc�c with nc 2 {0, 1}; nc + np�c  1; nc · np�c = 0

)
.

Note that the set DG is G-stable, since for t 2 DG, the conjugates �t will also
fulfill the defining conditions of DG.

Then, for t 2 DG, the product Z(t) := y · (⇢/⇢)t 2 Z[⇣], as follows from the
definition of DG together with the fact that the conjugates of ⇢ are pairwise
coprime and have norm y. We note that the map

� : DG ,! O
⇥(K); t 7! Z(t) (6.1)

is indeed injective. This follows, for instance, by induction on the weight of t,
from the coprimality of the conjugates of ⇢.
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Moreover, in the cases of interest, when x ⌘ ±1 mod q
l+1, there is a con-

verging q-adic binomial series

µ(t) = (⇢/⇢̄)t = 1 +
1X

n=1

an(t)q
ln; an(t) 2 Z[⇣] and (6.2)

�(an(t)) = an(�t), 8� 2 G. (6.3)

Here we assume that the coefficients an(t) are elements of the minimal set of
representatives W =

nP
c2P wc⇣

c : �
ql�1
2  wc 

ql�1
2

o
for Z[⇣]/qlZ[⇣]; thus,

the binomial power series has been reordered in order for the coefficients to
match this condition. Thus, Z(t) = y · µ(t) and the coefficients of the power
series are galois covariant, by (6.3). Note also that µ(t) 62 Z[⇣] and herewith,
the power series (6.2) has infinitely many non vanishing coefficienty.

We fix a ✓ 2 DG such that �a✓ 6= �b✓ for a 6= b, so |G✓| = p�1. Let Q = q
N

for some large N , such that
Q > |py|

3
.

The series (6.2) can be regrouped in terms of powers of Q, with some cofficients
bm = bm(✓) 2 WQ, where

WQ =

(
X

c2P

wc⇣
c : �

Q� 1

2
 wc 

Q� 1

2

)

is a set of representatives for Z[⇣]/QZ[⇣]:

µ(✓) = (⇢/⇢̄)✓ = 1 +
1X

n=1

bnQ
n; bn 2 WQ. (6.4)

The coefficients are also galois covariant, so bn(�✓) = �(bn(✓)). Moreover,
||bn||1  (Q� 1)/2.

Scalar products and various representations of field elements

Let � = �g 2 G be a generator of this cyclic group. We endow the number field
K = Q[⇣] with the base Z = {ec = �

c(⇣) : c 2 P}, as a Q-vector space; this
is at the same time the power normal base of the integers in Z[⇣] and a fortiori,
integral numbers are represented by vectors of rational integer coefficients with
respect to this base. We let V = Qp�1 and denote the coefficient map of linear
algebra by

 : K ! V, ↵ =
p�1X

c=1

ac�
c(⇣) 7! ~a = (a1, a2, . . . , ap�1) 2 V.

It will also be convenient to introduce a notation for the vectors of conjugate
elements of K, so let

KG = {(�c(x))c2P 2 Kp�1 : x 2 K} ⇢ Kp�1
,
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and let ⌫ : x 7! (�c(x))c2P be the associated embedding of K in KG.
Let x =

Pp�1
i=1 xc⇣

c
, y =

Pp�1
i=1 yc⇣

c
2 K. Then

Tr(x · y) = Tr

0

@
p�1X

j=1

xjyp�j +
p�1X

m=1

⇣
m

X

j+k⌘m mod p�1

1

A = p ·

p�1X

j=1

xjyp�j � Tr(x) · Tr(y).

We observe that the trace has a particularly simple form, if for instance Tr(y) =
0. Thus

Lemma 15. Notations being like above, let x, y 2 K and assume that Tr(y) = 0.
Then

Tr(x · ȳ) = p · h(x),(y)i,

where h·, ·i is the standard scalar product on Qp�1
. The right hand side does

not depend upon simultaneous permutations of the coefficients, so the coefficient

map may also be .

We note that in the above trace we had to take the complex conjugate of
y, in order to obtain the standard scalar product on the right hand side. At
the same time, the left hand side becomes a non-degenerate hermitian bilinear
form.

Let ✓ be fixed like above and T = G✓ be its orbit. We map the elements of
T in the following way: A D-vector W is a triple of maps

Wc = G ! KN 0

G ; Ws = G ! V ; Wf = G ! K,

⌫
�1 : KG ! K;  : K ! V ; � =  � ⌫

�1 : KG ! V (6.5)
(Gx) 7! x 7! ((x)),

such that the diagram commutes, as illustrated in the diagram below.
T

KG K V

Wc WsWf

⌫�1

�



Thus the vector can be given by any of its three presentations, and the other
two follow. We give some examples of D-vectors that we shall intensively use:

Examples 1.

a) The coefficients bn(t) in (6.4) give raise to a D-vector W(bn) presented in

K by the map Wf : t 2 T 7! bn(t). We denote the image (W(bn)) =: bn 2

V .

b) We present here the standard base of V as a set of D-vectors

� = {D(i) : i = 1, 2, . . . , p� 1}, given by D(i)f : 7! �
i(⇣).

The standard base of V arises also as

E = {ei : i 2 P} = (D(i)c(T ))p�1
i=1 ⇢ V.
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c) Let ` 2 Z[⇣] be an indeterminate. It will be useful to impose the condition

Tr(`) = 0. For this we define the D-vector U induced by Ws(U) = U :=
(1, 1, . . . , 1). The scalar product hU,(`)i = Tr(`) and thus Tr(`) = 0 iff

(`) ? U .

For ~v 2 V we define the norm to be the one norm ||~v|| = ||~v||1 = maxc2P (|vc|)
and for w 2 KG we define ||w|| = ||�(w)||1.

Strategy of proof

The principle of our proof is the following: for the unknown ` we impose the
conditions ` ? U and ` ? b0 and define

d := y · Tr(µ(✓) · `) 2 Z. (6.6)

The choice of ` should assure that d 6= 0. Since the complex absolute value
|µ(�c✓)| = 1 for all c 2 P , assuming that ||`||  L for some L 2 R>0, we have
the upper bound:

|�| < (p� 1)|y|L < Q, if L  Q
1/2

. (6.7)

It will suffice to let L  Q
1/2, in order to reach a contradiction. For this, we

use

The Siegel box principle

This is a simple estimate for short non vanishing solutions of homogenous integer
linear systems. The question being related to the one of successive minima in
lattices, it has known since Siegel’s original use – about hundred years ago
– numerous developments in various heights and different number fields, the
one of Bombieri and Vaaler [BV87] being the most frequently used. Due to
the rational scalar product introduced above, we shall be able to apply here the
original version of Siegel, which is related to the pigeon hole principle application
we used in (5.5). It claims:

Lemma 16. Let A = (ai,j)
r,s
i,j=1 be an integer matrix, with r < s and entries

bounded by B = ||A||1. Then there is a solution X = (X1, X2, . . . , Xs) 2

Zs
\ {0}, with norm

||X||1  (sB)r/(s�r)
. (6.8)

Under the same condition, Bombieri and Vaaler also prove

||X||1 

✓q
det(AAT )

◆1/(s�r)

.
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Finding `

Let ⇤ = Zp�1
⇢ V and B = {x 2 ⇤ : ||x||  Q

1/2
}. In view of the result of

Bugeaud, Hanrot and Mignotte [BHM02], we may assume that p � 29. If A is
an r ⇥ (p � 1) matrix with ||A||1 < Q, and r  8, then (6.8) implies that the
system AX = 0 has at least one non trivial solution in ⇤, with

||X|| < ((p� 1)Q)8/20 < Q
1/2

.

Here is how we use these degrees of freedom. First we impose the conditions
X ? V0 := [U,b1(✓)]Q. The coefficients are clearly dominated by Q, so we let
X1 2 B be a non trivial solution. With this we let V1 = V0 �QX1, and find a
further solution X2 2 B⇤, which is in addition perpendicular to X1. We may
this way find at least six vectors Xi 2 B⇤ which are mutually orthogonal and all
orthogonal to V0. We shall use these degrees of freedom in order to find ` 2 B,
such that d 6= 0 in (6.6).

We note the following substitution, which leaves the sum invariant. For
⌫ 2 ⇤ we define

T⌫(bn, bn+1) = (bn +Q⌫, bn+1 � ⌫). (6.9)

The substitution replaces a pair of successive terms in the sequence of coefficients
of the series, by leaving the sum in (6.4) unchanged. This follows immediately
by considering the contribution of these terms:

Q
n
· (bn +Qbn+1) = Q

n(bn +Q⌫ +Q(bn+1 � ⌫)).

In practice, ⌫ 2 E , the standard basis of V . Then, the modified coefficient
T⌫(bn) still verifies |T⌫(bn)|1 < 3/2Q, while |T⌫(bn+1)|1 < Q.

The choice of ⌫ uses the following

Lemma 17. Let E = {ej : j = 1, . . . , p� 1} be the standard base of V = Q(p�1)

and let x = (x1, x2, . . . , xp�1) 2 V have trace ⌧ =
Pp�1

i=1 xi. Let t 2 Z \ {�⌧, 0}
and

F(t) := x+ tE := {x+ tei : i = 1, 2, . . . , p� 1} ⇢ V

has span F = [F(t)]Q of dimension dim(F ) = p� 1.

Proof. Since the p�2 linearly independent vectors t(e1�ei) 2 F ; i = 2, 3, . . . , p�
1, it follows that dim(F ) � p � 2. Suppose that there is a vanishing linear
combination

Pp�1
i=1 �i(x + tei) = 0 and let L :=

Pp�1
i=1 �i be the "trace" of

~� :=
P

i2P⇤ �iei. Unfolding the vanishing condition, we have

t~�+ Lx = ~0.

If L = 0, then t = 0, which was excluded, or ~� = ~0, so the linear combination
was trivial to start with. If L 6= 0, we take traces again in the previous identity,
and get L(t + ⌧) = 0. Since t 6= �⌧ , we obtain a contradiction, showing that
the dim(F ) = p� 1 indeed.
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Let S0 = B⇤
\ V

?
0 . We show that we may modify b2 by a substitution (6.9)

in such a way, that b2 62 V0 and there is at least one vector z0 2 S0 such that
z0 6? b2. In view of Lemma 17 and since dim(S0) > 4, there is at least one
translation of b2 by some base element ⌫ 2 QE , which is not perpendicular to
S0. We assume thus that the condition is fulfilled, and use no new notation for
the possibly modified coefficients b2,b3.

Let ⌧ = Tr(b2) and t = 1 if ⌧  0 and t = �1 otherwise. We define
wj = b2+ tej and S

(j) = S0\w
?
j . By Lemma 17, the wj span V , and it follows

that

Q ·

0

@
X

j2P⇤

S
(j)

1

A � QS0,

There is a set

; 6= J =
n
j 2 P

⇤ : Q(w?
j \ S0) 6⇢ Q(b?

2 \ S0)
o
.

A fortiori, there is a j 2 P
⇤ such that w

?
j \ S0 6⇢ (b?

2 \ S0). For such j, we
may choose w 2 S0 with w ? wj but w 6? b2. We claim that ` = w satisfies our
needs. Indeed, we have

hb2, `i = hwj , `i � thej , `i = �t`j 6= 0.

Consequently,

d ⌘ Q
2(�pty`j +O(Q)).

But ||pty`j ||  |y|Q
1/2

< Q, and since the choice of `j ascertains that `j 6= 0,
it follows that d 6⌘ 0 mod Q

3 and a fortiori, d 6= 0. But d ⌘ 0 mod Q
2 implies

|d| � Q
2, which contradicts the upper bound (6.7).

The contradiction confirms the Proposition 8, hence completes the proof of
the Theorem (8).
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Chapter 7

General results about the
primitive divisors for Lucas
sequences

A Lucas pair is a pair (↵,�) of algebraic integers such that ↵ + � and ↵� are
non-zero coprime rational integers and ↵/� is not a root of unity.

Given a Lucas pair (↵,�), one defines the corresponding sequence of Lucas
numbers by

Ln := Ln(↵,�) =
↵
n
� �

n

↵� �
, n � 0. (7.1)

Two Lucas pairs (↵,�), (↵1,�1) are equivalent if ↵/↵1 = �/�1 = ±1. For
equivalent Lucas pairs we have Ln(↵,�) = ±Ln(↵1,�1). Therefore one of them
has a primitive divisor if and only if the other has. Below we briefly review the
history of this problem.

Let ↵,� be a Lucas pair. A prime number q is a primitive divisor of Ln if q
divides Ln but does not divide (↵ � �)2L1 · · · Ln�1. In this case we call (↵,�)
as n-defective Lucas.

One of the oldest and important problems about Lucas pairs is the existence

of primitive divisor.
The first result about the existence of primitive divisor problem goes back to

1892, Zsigmondy [Zsi92] proved that Ln(↵,�) has a primitive divisor for n > 6
provided that ↵,� 2 Z (6 is optimal here). In 1913 Carmichael [Car13] general-
ized Zsigmondy’s result to real cases, he proved that if ↵,� 2 R is a real Lucas
pair, then Ln(↵,�) has a primitive divisor for n > 12. For non-real Lucas pair
the situation is much more complicated, in 1974 Schinzel [Sch74] prove the Lucas
pair Ln(↵,�) has a primitive divisor for n exceeding an effectively computable
absolute constant n0. Shortly after, in 1977 Stewart [Ste77], compared with
Schinzel’s conclusion, gave an explicit solution. He showed that n0 = e

452467

would work. The constant n0 later was improved by Voutier to 2 · 1010 in 1996
[Vou96] and to 30030 in 1998 [Vou98].
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In 1995 Voutier [Vou95] showed the following useful result for n  30.

Theorem 12 (Voutier 1995). Let n 6= 6 satisfy 4 < n  30. Then, up to equiv-

alence, all n-defective Lucas pairs are of the form

⇣
(a�

p
b)/2, (a+

p
b)/2

⌘
,

where a, b are given in the following Table.

n (a, b)

5 (1, 5) (1, -7) (2, -40) (1, -11) (1, -15) (12, -76) (12, -1364)
7 (1, -7) (1, -19)
8 (2, -24) (1, -7)
10 (2, -8) (5, -3) (5, -47)
12 (1, 5) (1, -7) (1, -11) (2, -56) (1, -15) (1, -19)
13 (1, -7)
18 (1, -7)
30 (1, -7)

In 2001, Bilu, Hanrot and Voutier [BHV01] made an outstanding contribu-
tion to the problem of existence of primitive divisor, they showed the following
theorem.

Theorem 13 (Bilu, Hanrot and Voutier 2001). Every integer n > 30 is totally

non-defective.

Combining Theorem (12) with Theorem (13), one can obtain

Theorem 14. Let p is prime and suppose that p 62 {2, 3, 5, 7, 13}. Then Lp has

a primitive divisor.

The following statement is well-known, but we give a short proof here for
the reader’s convenience.

Proposition 9. A primitive divisor q of Ln satisfies q ⌘ ±1 (mod n).

Proof. If ↵,� 2 Z, since q does not divide either ↵ or �, the order of ↵/� in the
group F⇥

q is exactly n. So n | q � 1.
Now assume M := Q(↵) = Q(�) is a quadratic field. If q ramifies in OM ,

then q | (↵ � �)2 By definition of primitive divisor, this can not happen. Let
↵/� be the image of ↵/� in the residue fields appearing below. If q splits in
OM , say q = p1p2, then p1 | Ln but p1 - Lt for t < n. The order of ↵/� in the
group (OM/p1)⇥ ⇠= F⇥

q is again n and so n | q�1. If q is inert in OM , the order
of ↵/� in the group (OM/q)⇥ ⇠= F⇥

q2 is n, we have n | q
2
� 1. The subgroup

n
s 2 F⇥

q2 : NFq2/Fq
(s) = 1

o

is of order (q2 � 1)/(q � 1) = q + 1 because this norm map is surjective. ↵/� is
in this subgroup, we must have n | q + 1.
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Remark 2. If Lucas pair (↵,�) 62 Z2
and assume that Ln has a primitive

divisor q. Let M = Q(↵). Then from the proof of Proposition 9 we see that q

is not ramified in M and

(
q ⌘ 1 mod n if q splits in M

q ⌘ �1 mod n if q is inert in M .
(7.2)
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Chapter 8

The Diophantine equation
x2 + C = yp

8.1 Background
In this section we assume that (x, y) 2 N2 is a solution of (1.13), where
gcd(x, y) = 1. We prove in this section two results that we will use to asso-
ciate with a Lucas sequence in the proof of our main result in the next section.

Proposition 10. As notations in Theorem 9. The ideals a := (x+ z
p
�d) and

a := (x� z
p
�d) are coprime in OK .

Proof. We factorize (1.13) in OK as

(x+ z
p
�d) · (x� z

p
�d) = y

p (8.1)

By our assumption that d 6⌘ �1 mod 8, we must have 2 - y. For if 2 | y, we get
2 - x and C = y

p
� x

2
⌘ �1 mod 8, then d ⌘ �1 mod 8.

Note the ideal a + a contains elements 2x and y
p. Since 2 - y, we have

gcd(2x, yp) = 1, thus a+ a = OK .

Proposition 11. As notations in Theorem 9. Let ↵ 2 OK such that ↵
p =

x+ z
p
�d with x, z > 0. Then ↵/↵ is not a root of unity in K.

Proof. By Dirichlet’s unit theorem we have O
⇥
K = WK , where WK is the set of

roots of unity in K. More precisely,

WK =

8
><

>:

{±1,±i} if d = �1

{±1, (±1±
p
�3)/2} if d = �3

{±1} otherwise.

As ↵
p = x + z

p
�d with x, z > 0, write ↵

p = r exp(i') with r > 0 and
0 < ' < ⇡/2, then ↵

p = r exp(�i'). It is easy to see that ⇣ 2 WK satisfying
⇣ · ↵

p = ↵
p must belong to the set {exp (i✓), ✓ = ⇡/3,⇡/2, 2⇡/3}.
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We show all these cases are impossible.

• ✓ = ⇡/3, ↵p = 1+
p
�3

2 · ↵
p, so z

p
d ·

p
3 = x, we must have d = 3. Then

x = 3z. Note that gcd(x, y) = 1, by equation (8.1) we have z = 1. Thus
x = 3 and y

p = 12, impossible.

• ✓ = ⇡/2, ↵p = i↵
p, that is, x + z

p
�d = z

p
d + xi, so x = z

p
d. Then d

must be 1. By (8.1), we get x = 1 and y
p = 2, impossible.

• ✓ = 2⇡/3, ↵p = �1+
p
�3

2 ·↵
p, we get z

p
d = x ·

p
3, so d = 3. By (8.1), we

must have x = 1. This yields y
p = 4, which is impossible since p � 5.

8.2 Proof of Theorem 9
In the following, we assume that (x, y) 2 N2 is a solution of equation (1.13),
where gcd(x, y) = 1. We factorize (1.13) in OK as

(x+ z
p
�d) · (x� z

p
�d) = y

p (8.2)

Proposition 10 shows that a := (x+z
p
�d) and a := (x�z

p
�d) are coprime in

OK . Therefore by the unique factorization of ideals, x+z
p
�d can be expressed

as a p-th power of some ideal I ✓ OK . Because p - hK , such I is principal.
Since |O

⇥
K | 2 {2, 4, 6} is coprime with p, any unit of OK can be written as a

p-th power in O. It follows that

x+ z
p
�d = ↵

p
, x� z

p
�d = ↵

p
, ↵↵ = y (8.3)

for some ↵ 2 OK . Further note that

OK =

(
Z+ Z[(1 +

p
�d)/2] if � d ⌘ 1 mod 4

Z+ Z[
p
�d] if � d ⌘ 2, 3 mod 4.

Therefore there exist u, v 2 Z such that

↵ =

(
(u+ v

p
�d)/2 if � d ⌘ 1 mod 4

u+ v
p
�d if � d ⌘ 2, 3 mod 4.

(8.4)

Then

• If �d ⌘ 1 mod 4, we have ↵+ ↵ = u, ↵� ↵ = v
p
�d.

• If �d ⌘ 2, 3 mod 4, we have ↵+ ↵ = 2u, ↵� ↵ = 2v
p
�d.

In both cases ↵
p
� ↵

p = 2z
p
�d, ↵p + ↵

p = 2x hold and we have the following
claims.

Obviously gcd (↵+ ↵,↵↵) = 1. This is because gcd (↵+ ↵,↵↵) | gcd (↵p + ↵
p
,↵↵) =

gcd(2x, y) = 1.
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This fact and Proposition 11 together show that (↵,↵) is a Lucas pair, the
Lucas sequences Ln associated with (↵,↵) is defined by

Ln :=
↵
n
� ↵

n

↵� ↵
. (8.5)

In particular, when n = p,

Lp :=
↵
p
� ↵

p

↵� ↵
=

(
(2z)/v if � d ⌘ 1 mod 4

z/v if � d ⌘ 2, 3 mod 4.
(8.6)

Hence (2z)/v 2 Q \OK = Z.
[BHV01] confirms the existence of primitive divisors of Lp when p 62 {5, 7, 13}.

Hence for p 62 {5, 7, 13}, we choose a primitive divisor of Lp, denoted by q. In
view of Proposition 9 we have

p | q ± 1, q | 2z. (8.7)

There are no such primes p, q satisfying (8.7) by the assumption.
We now turn to remain cases when primitive divisors may not exist.

8.2.1 The case p = 5

Let ↵ = (a+
p
b)/2, by Theorem (12), L5 has no primitive divisor if only if

±(a,±b) 2
n
(1, 5), (1,�7), (2,�40), (1,�11), (1,�15), (12,�76), (12,�1364)

o
.

We have plus-minus sign before the brackets since the result of is up to equiva-
lence.

• If ↵ = ±(1±
p
5)/2, then

↵
5 = ±

11± 5
p
5

2
= x+ z

p
�d.

This is impossible since 11 is not even.

• If ↵ = ±(1±
p
�7)/2, then

↵
5 = ±

11±
p
�7

2
= x+ z

p
�d,

impossible.

• If ↵ = ±(2±
p
�40)/2, then

↵
5 = ±401± 5

p
�10 = x+ z

p
�d,

so x = 401, z = 5, d = 10 and C = 250, y = 11.
In this case, (x, y, C, p) = (401, 11, 250, 5) and z = 5, d = 10,K = Q(

p
�10).

Therefore hK = 2, C even and 5 - (5± 1). Thus the assumptions of The-
orem (9) satisfied and we have a solution.
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• If ↵ = ±(1±
p
�11)/2, then

↵
5 = ±

31±
p
�11

2
= x+ z

p
�d,

impossible.

• If ↵ = ±(1±
p
�15)/2, then

↵
5 = ±

61± 5
p
�15

2
= x+ z

p
�d,

impossible.

• If ↵ = ±(12±
p
�76)/2, then

↵
5 = ±22434±

p
�19 = x+ z

p
�d,

so x = 22434, z = 1, d = 19 and C = 19, y = 55.
In this case, (x, y, C, p) = (22434, 55, 19, 5) and z = 1, d = 19,K =
Q(

p
�19). Therefore hK = 1, d ⌘ 3 mod 8 and z has no prime divi-

sor. Therefore the assumptions of Theorem (9) satisfied and we get a
solution.

• If ↵ = ±(12±
p
�1364)/2, then

↵
5 = ±2759646±

p
�341 = x+ z

p
�d,

so x = 2759646, z = 1, d = 341 and C = 341, y = 377.
In this case, (x, y, C, p) = (2759646, 377, 341, 5) and z = 1, d = 341,K =
Q(

p
�341). Therefore hK = 28, d ⌘ 5 mod 8 and z has no prime divisor.

The assumptions of Theorem (9) satisfied.

8.2.2 The case p = 7

Let ↵ = (a+
p
b)/2, in view of Theorem (12), L7 has no primitive divisor if only

if
±(a,±b) 2

n
(1,�7)(1,�19)

o
.

• If ↵ = ±(1±
p
�7)/2, then

↵
7 = ±

�13± 7
p
�7

2
= x+ z

p
�d.

This is impossible again since 13 is not even.

• If ↵ = ±(1±
p
�19)/2, then

↵
7 = ±

�559±
p
�19

2
= x+ z

p
�d,

impossible.
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8.2.3 The case p = 13

Let ↵ = (a+
p
b)/2, recall Theorem (12), L13 has no primitive divisor if only if

±(a,±b) = (1,�7).

Then

↵
13 = ±

�181±
p
�7

2
= x+ z

p
�d,

impossible.
Combine all these cases together we complete the proof of Theorem 9.

8.3 Proof of Theorem 10
Write C = z

2
· d with d > 0 square. Then d 2 {1, 2, 17, 34, 41, 82, 697, 1394}

and let K = Q(
p
�d). Denoted by h(�d) the class number of K. Reading

the equation (10) modulo 8 yields y is odd. Now we check the the first two
assumptions of Theorem 9.

We have the following table for h(�d).

h(�1) = h(�2) = 1

h(�17) = h(�34) = h(�82) = 4
h(�41) = h(�697) = 8

h(�1394) = 48

Therefore we see that p - h(�d) when p � 5.
Assume that (x, y) 2 N2 is a solution of (10), in view of Theorem 9 and its

proof, we separate into two cases, depending whether Lp has a primitive divisor
or not.

If Lp has no primitive divisor, as in the proof of Theorem 9 we list all the
possible solutions and no C of these solution is of the form 2a · 17b · 41c, hence
(10) has no solution in this case.

Now assume Lp has a primitive divisor q. We have q | 2z and p | q± 1. Note
that the prime divisor q of 2z belongs to {2, 17, 41}. The only possibilities for
p, q are (p, q) = (5, 41) and (p, q) = (7, 41).

8.3.1 The case p = 5

We have (p, q) = (5, 41) in this case, q ⌘ 1 mod p. By Remark 2 we see q splits
in K = Q(

p
�d). Therefore d = 1 or d = 2.

If d = 1:

In this case, (8.3) becomes

x+ z
p
�1 = (u+ v

p
�1)5, u, v 6= 0,
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and equating the imaginary parts gives

v(5u4
� 10u2

v
2 + v

4) = 2a0 · 17b0 · 41c0 . (8.8)

Note that gcd(q, (↵ � ↵)2) = gcd(q,�4v2) = 1 by the definition of primitive
divisor. Therefore gcd(v, 41) = 1 and

v | 2a0 · 17b0 .

If 2 | v, then u is odd since y = u
2 + v

2 is odd. Hence (8.8) can be reduced
to

5u4
� 10u2

v
2 + v

4 = ±17b1 · 41c1 (8.9)

for some b1  b0, c1  c0. Reading (8.9) modulo 8 it is easy to see that it has
no solution.

If v = ±1, u is even so a0 = 0. We get

5u4
� 10u2 + 1 = ±17b0 · 41c0 . (8.10)

The sign on the right hand side is positive if we consider the equation modulo
8.

Using SageMath[The22] one sees that (8.10) has a solutions {(u, b0, c0) =
(±2, 0, 1)}, which gives y = 5 and x = 38. So we get a solution

(x, y, C, p) = (38, 5, 1681, 5).

If v = ±17b2 for some b2 2 N+, u is even, (8.8) reduced to

5u4
� 10u2

· 172b2 + 174b2 = ±41c2 . (8.11)

for some b2  b0, c2  c0. The sign on the right hand side is positive if we
consider the equation modulo 4. Now SageMath tells us that (8.11) has a solu-
tion {(u, b2, c2) = (±2, 0, 1)}, which would imply the same solution (x, y, C, p) =
(38, 5, 1681, 5) as above.

If d = 2:

In this case, (8.3) becomes

x+ z
p
�2 = (u+ v

p
�2)5

and equating the imaginary parts gives

v(5u4
� 20u2

v
2 + 4v4) = 2a0 · 17b0 · 41c0 . (8.12)

As in the case of the equation (8.8), gcd(v, 41) = 1 and

v | 2a0 · 17b0 .
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If 2 | v, then u is odd since y = u
2 + v

2 is odd. Hence (8.12) can be reduced
to

5u4
� 20u2

v
2 + 4v4 = ±17b1 · 41c1 (8.13)

for some b1  b0, c1  c0. Reading (8.13) modulo 8 it is easy to see that it has
no solution.

If v = ±1, u is even and so a0 = 0. We get

5u4
� 20u2 + 4 = ±2a0 · 17b0 · 41c0 . (8.14)

Therefore a0 = 2 and the sign on the right hand side is positive if we consider
the equation modulo 4.

Using SageMath we see that (8.14) has solutions {(u, b0, c0) = (±2, 0, 0)},
which gives y = u

2 + v
2 = 5 and C = z

2
· d = 16 · 2 = 32. But then y

5
� C is

not a square, contradiction.
If v = ±17b2 for some b2 2 N+, u is even, (8.12) reduced to

20(u/2)4 � 5u2
· 172b2 + 174b2 = ±41c2 . (8.15)

for some b2  b0, c2  c0. The sign on the right hand side is positive if we
consider the equation modulo 4. Using SageMath would deduce that (8.15) has
no solution.

Therefore we show that there is only one solution (x, y, C, p) = (38, 5, 1681, 5)
if p = 5.

Thus we also complete the proof of Theorem (10).
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