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Abstract

How the cortex performs its intricate computations, and how it adapts to the world around
it, is one of the central mysteries in neuroscience. It is a longstanding belief that one of the
main aims of the brain, and especially the cortex, is to infer the states of the world, such as
the presence of objects, that underlie the sensory observations an animal makes. Currently
the most discussed theory that formalizes this idea and proposes a biological
implementation is classical hierarchical Predictive Coding (hPC), which hypothesizes the
existence of dedicated ’error neurons’ in cortex that signal errors of the internal model.
While this theory has inspired much research, it is not clear how one of its central
elements—the proposed learning algorithm—can be implemented with spiking neurons,
which questions its biological plausibility. In this thesis we propose an alternative theory of
learning and inference with spiking neurons, where errors are computed in neural
dendrites, and synaptic connections are learned with biologically plausible
voltage-dependent plasticity rules. We first build on existing work of inference and learning
in spiking neural networks, and show how dendritic error computation can overcome an
unsolved problem for learning in these networks. Specifically, when neural activity in the
network is correlated, previously assumed Hebbian-like learning leads to pathological
network activity, which learning with dendritic errors prevents. We then combine this
model with other theories of learning in cortex to a theory of hierarchical inference with
spiking neurons, and show that this theory is isomorphic to classical hPC while overcoming
its biological implausibility. Last, we employ our framework to explain how ’mismatch
responses’, i.e., neural responses that signal the mismatch between an internal model and
observations, emerge from inference and learning in cortex. Together, this work proposes a
comprehensive theory of learning, inference and their signatures in cortex, and provides a
range of readily testable predictions.
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Zusammenfassung

Wie der Cortex seine komplexen Berechnungen durchführt und sich an die Welt um ihn
herum anpasst, ist eines der zentralen Rätsel in der Neurowissenschaft. Seit langem wird
vermutet, dass eines der Hauptziele des Gehirns, insbesondere des Cortex, darin besteht,
den Zustand der Welt, wie zum Beispiel das Vorhandensein von Objekten, der den
sensorischen Beobachtungen eines Tieres zugrunde liegt, zu erschließen. Derzeit ist die am
meisten diskutierte Theorie, die diese Idee formalisiert und eine biologische Umsetzung
vorschlägt, die klassische hierarchische Prädiktive Kodierung (hPC), die die Existenz
dedizierter ”Fehlerneuronen” im Cortex postuliert, die Fehler des internen Modells
signalisieren. Obwohl diese Theorie viel Forschung inspiriert hat ist nicht klar wie eines
ihrer zentralen Elemente - der vorgeschlagene Lernalgorithmus - mit Spiking-Neuronen
implementiert werden kann, was ihre biologische Plausibilität in Frage stellt. In der
vorliegenden Arbeit schlagen wir eine alternative Theorie des Lernens und der Inferenz mit
Spiking-Neuronen vor, bei der Fehler in den neuronalen Dendriten berechnet werden und
synaptische Verbindungen mit biologisch plausiblen spannungsabhängigen
Plastizitätsregeln erlernt werden. Wir bauen zunächst auf bestehenden Arbeiten zur
Inferenz und zum Lernen in Spiking-Neuronennetzen auf und zeigen, wie die
Fehlerberechnung in den Dendriten ein ungelöstes Problem des Lernens in diesen
Netzwerken lösen kann. Genauer führt die zuvor angenommene Hebb’sche Lernregel zu
pathologischer Netzwerkaktivität, wenn die neuronale Aktivität im Netzwerk korreliert ist,
was durch das Lernen mit dendritischen Fehlern verhindert wird. Im Anschluss
kombinieren wir dieses Modell mit anderen Theorien des Lernens im Cortex zu einer
Theorie hierarchischer Inferenz mit Spiking-Neuronen und zeigen, dass diese Theorie
isomorph zur klassischen hPC ist aber die biologische Unplausibilität ihrer Lernregeln
überwindet. Schließlich nutzen wir unser Framework, um zu erklären, wie
”Mismatch-Responses”, d.h., neuronale Aktivität, die den Unterschied zwischen einem
internen Modell und Beobachtungen signalisiert, als Folge der Inferenz und dem Lernen
im Cortex entstehen. Zusammenfassend schlägt diese Arbeit eine umfassende Theorie des
Lernens, der Inferenz und ihrer Signaturen im Cortex vor und liefert eine Reihe von direkt
testbaren Vorhersagen.
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1 Introduction and Background

1.1 Theory-driven approaches to brain function

“A wing would be a most mystifying structure if one did not know that birds flew. One might
observe that it could be extended a considerable distance, that it had a smooth covering of
feathers with conspicuous markings, that it was operated by powerful muscles, and that
strength and lightness were prominent features of its construction. These are important facts,
but by themselves they do not tell us that birds fly. Yet without knowing this, and without
understanding something of the principles of flight, a more detailed examination of the wing
itself would probably be unrewarding. I think that we may be at an analogous point in our
understanding of the sensory side of the central nervous system.”

More than 60 years later, and despite significant progress in our understanding of neural
processing, this statement by Barlow (1961) is still relevant for large parts of the the central
nervous system, especially the cortex. By now there is a great deal of data about themolecular,
sub-cellular, cellular, circuit level and area level structure andmechanisms in cortex, but how
this in the end leads to the intelligent behaviour we observe in animals—how the brain flies,
so to speak—mostly remains a mystery. As Barlow argues, this question will not be solved
by gathering more data alone, since this will not immediately reveal how the brain performs
its intricate computations.

Perhaps the biggest challenge when trying to understand the underlying principles of
cortex from observation is the complexity of the associated data. Recent efforts have
recorded several 10.000 cortical cells simultaneously and reconstructed their connectivity
consisting of hundreds of millions of synapses (MICrONS-Consortium et al. 2021), but
understanding the computations in cortex from these vast datasets proves highly nontrivial.
Current approaches make use of advanced machine learning techniques with the goal to
extract the essential computational motives that are at play (Wang et al. 2023). This, for
example, might allow us to understand the inductive biases1 and invariances that are
utilized by neural systems (Baroni et al. 2023; Sinz et al. 2019). Ultimately, while these

1Roughly, inductive biases are prior assumptions of a learning algorithm about the structure of the data, ideally
helping it to learn quickly and generalize well (Goyal et al. 2022; Sinz et al. 2019).



1 Introduction and Background

methods might provide us bias free insights into the algorithms that are used by neural
circuits, it remains a massive undertaking to collect and curate the required data and
implement the necessary data analysis tools to reach an understanding of computations and
plasticity in the brain.

The complementary approach, which Barlow advocates for, is to develop theories of
neural computation from first principles. A general recipe is to follow the hierarchy of
Marr’s three levels (Chater et al. 2011; Marr 2010): One first specifies the computational goal
the system has to solve (level 1), finds an algorithm that reaches this goal (level 2), and lastly
develops a theory how this algorithm might be implemented in neural hardware (level 3),
yielding a direct understanding of neural dynamics in terms of function. Typically such
theories focus on one or few computational aspects, such as inference (Rao and Ballard 1999),

attention (Reynolds et al. 2009), memory (Whittington, Muller, et al. 2020) or criticality (Zeraati

et al. 2021). Most of these theories are therefore by construction incomplete and thus cannot
be expected to make quantitative predictions in neural circuits that likely have many more
requirements than what was specified in the theory. On the bright side, they directly offer a
qualitative understanding of what functions could be implemented by specific neural
mechanism, and they can similarly provide qualitative predictions for how neural systems
behave in experiments.

This thesis follows this theory driven approach to neural function. More specifically, we
develop a theory of how inference in an internal model of the animal can be implemented by
spiking neurons in cortex, and how this internal model is improved via synaptic plasticity.

1.2 Models of successful brains

The reason why many animals and especially humans have such an enormous brain is to
produce behaviour in order to survive and proliferate in a complex world. But what does this
require? From our own experience we know that we handle this to a large extent by having
access to a representation of the world, which we ultimately use to judge consequences of our
actions. While this is only a vague intuition gained by introspection, there exists a formal
equivalent in control theory: The good regulator theorem (Conant et al. 1970), which states
that ”Every good regulator of a system must be a model of that system”. Applied to the brain,
the theorem implies that in order to achieve behavioral goals the brainmustmodel the world,
or to be more specific, at least the animal itself and the ecologically relevant aspects of its
environment.

While a model of the world around the animal can in principle be implicit in the action
generation (e.g., a reflex arc can be understood as modeling the fact that a certain stimulus

2
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assumed
world in itself

known
observation and representation

"birds"

"tree"
"mountain"

Figure 1.1: A world model pθ(x, r∗) can be thought of as an assumption of the animal how
unobservable world states r∗ are distributed (pθ(r∗)) and how observations x are
generated from them (pθ(x|r∗)) (Jones et al. 2011). Given an observation, the goal is
then to compute the possible underlying world states, via an inverse function pψ(r|x).
The goodness of the model can only be evaluated on observations x. Here, and in the
remainder of the thesis, we ignore the temporal aspect of the evolution of world states r,
which in principle is an integral part of any world model. We will come back to this in the
discussion (Chapter 6.2).

implies harm), higher level processing and reasoning likely requires more explicit and
separate general purpose models. Intuitively, the value in such models is that, on the one
hand they can enable predicting future world states and therewith anticipatory actions and
planning (Moerland et al. 2023); on the other hand it is known that a good representation of
sensory states greatly reduces the complexity of finding desired input-output mappings
(Bengio, Courville, et al. 2013)2 and appropriate actions, especially under sparse feedback
regarding the value of these actions (Dayan 1993; Yarats et al. 2021). World models might
therefore form a solid basis for intelligent behavior even in dynamic, uncertain and
unfamiliar situations (Friston et al. 2021; Moerland et al. 2023).

From an outside perspective a successful world model can be defined by requiring that
the internal states of the animal somehow correspond to the states of the environment (e.g.,

through an isomorphism; Conant et al. 1970). In practice, however, such a definition can
become problematic. In mammals there is ample evidence that a big part of the model, that
is, how sensory stimuli are represented in cortex, is learned during the life of the animal
(Dosher et al. 2017; Löwel et al. 1992; Wiesel et al. 1963), for which only indirect access to world

2This principle is also part of the recent success of foundation models (Bommasani et al. 2021).

3



1 Introduction and Background

states through the sensory faculties is available. Typically, theories of brain function and
machine intelligence thus do not refer to objective external states, but require that the
internal representations of world models explain the sensory observations (which result from

external states, Fig 1.1; Friston et al. 2021; Ha et al. 2018).3 While these models therefore do not
necessarily learn internal states that directly correspond to any unobservable world states,
they nevertheless can result in useful representations that enable solving real-world tasks.

Having outlined the basic theory of what the brain aims to achieve (Marr’s level 1), two
immediate follow-up questions arise: What does it take to implement a world model
(level 2)? And how might this be achieved in neural hardware (level 3)? There have been
several heroic attempts at answering these two questions, such as Adaptive Resonance
Theory (Grossberg 2013), the Hierarchical Temporal Memory model (Hawkins et al. 2016),

Predictive Coding and Active Inference (Friston 2010; Rao and Ballard 1999), or more
straightforward Bayesian inference in recurrent neural networks (Deneve 2008; Kappel et al.

2014; Nessler et al. 2013; Rao 2004b), just to name a few. The algorithmic side of many of these
attempts can be subsumed under the umbrella of approximate Bayesian inference and the
Expectation-Maximization (EM) algorithm (Goodfellow et al. 2016a), which provide an
elegant and principled approach to inference and learning in the brain. Because these
methods will also be the formal underpinning of the models in this thesis, I will shortly
introduce their main ideas (section 1.3). I will then briefly outline approaches to
understand how these algorithms might be implemented with spiking neurons in the brain
(sections 1.4 & 1.5).

1.3 A formal basis for world models, inference and learning

Bayesian inference formalizes how an animal extracts the probable state of the world from
noisy and incomplete observations. To illustrate this we can look at a very general form of a
world model, defined by probability distributions

pθ(x, r) = pθ(x|r)pθ(r), (1.1)

3This distinction between estimating objective world states and estimating states under some model is not only
important on a conceptual level. The Bayesian framework from the ground up operates with beliefs, and
it would be wrong to assume that in this framework animals always have to optimally infer external states.
Rather, the animal estimates states under some givenmodel, which alsomeans that experiments can only test
whether an animal performs inference under some model or not. This is often a source of confusion, since in
most models the (very reasonable) core assumption is that the internal model of the animal is in some sense
optimal, which, however, does not necessarily have to be the case. See also the discussions in (Jones et al.
2011; Rahnev et al. 2018) and especially (Ma et al. 2023).

4
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where θ are model parameters, x is the sensory observation and r the representation in the
animal, which stands for the inaccessible underlying state of the world (Fig 1.1). Here,
pθ(x|r) can be understood as the assumed physical process that generates observations
from world states and pθ(r) as a prior over world states. Bayesian inference aims to invert
this generative model, and estimates the world state r given observations x, which can be
achieved using Bayes’ theorem

pθ(r|x) =
pθ(x|r)pθ(r)∑
r pθ(x|r)pθ(r)

. (1.2)

This estimate of the distribution of possible world states can be considered optimal under
the given model, e.g., for decision making (Lindig-León et al. 2022), and the idea that the
brain typically is ’Bayes-optimal’ has long been pervasive throughout theoretical
neuroscience (Fiser et al. 2010; Knill et al. 2004).

Nevertheless, there are also many cases where perception does not seem to be
straightforward Bayesian inference (Rahnev et al. 2018), and the concept of Bayes-optimal
perception has been criticised on several grounds4, importantly for often being
computationally intractable (Jones et al. 2011). Formally, this relates to the problem that the
normalization of the model posterior, which requires a summation over all world states
(Eq 1.2), becomes impossible to compute for most interesting models. One solution to this
issue is to only approximate the posterior pθ(r|x) with a simpler and easily normalizable
distribution pψ(r|x). In this view, the simple distribution then corresponds to the inference
function performed by the brain (Fig 1.1), where ψ are ’physical’ neural parameters. To fit
this approximation to the actual posterior one defines the function (Goodfellow et al. 2016a)

F(ψ, θ) =〈log pθ(x)−DKL[pψ(r|x)||pθ(r|x)]〉p∗(x) (1.3)

=〈log pθ(x, r)− log pψ(r|x)〉pψ(r|x)p∗(x), (1.4)

which is maximized when the Kullback-Leibler distance between approximate and actual
posteriorDKL[pψ(r|x)||pθ(r|x)] is as small as possible (Eq 1.3). The trick here is that F is
easy to find, as we don’t have to compute the actual posterior and its normalization (Eq 1.4).
A good approximation pψ(r|x) of pθ(r|x) can then be found using established optimization
methods, such as gradient ascent onF . This formulation of approximate Bayesian inference
using variational methods thus allows for tractable models of inference in the brain, and

4Another critical point is that models of Bayesian inference in the brain are extremely flexible, and often
observations can be explained using arbitrary prior or likelihood distributions (Jones et al. 2011). A similar
problem as that for these abstract models of cognition applies also the mapping of the algorithm to the
biophysical implementation (Sprevak 2021). We will come back to this in the discussion (chapter 6).

5
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might in some cases also explain why decisionmaking can be Bayes-suboptimal (Lindig-León
et al. 2022).

Aside from performing inference, the brain also has to update its internal model if it
doesn’t explain the sensory observations well. The performance of the internal model can
be measured by comparing the model distribution pθ(x) to the distribution of actual
observations p∗(x)

DKL[p
∗(x)||pθ(x)] ∝ 〈log pθ(x)〉p∗(x). (1.5)

Conveniently, this model log-likelihood is already part of the performance measure F we
defined previously to implement variational inference (Eq 1.3). One of the important
insights for world model learning has been that a world model that is consistent with
sensory observations can be found by performing inference using an approximate posterior
pψ(r|x) and maximizing the lower bound on the log-likelihood F in respect to both θ and
ψ (Neal et al. 1998). This is a generalization of the classical EM algorithm (Goodfellow et al.

2016a), which solves the chicken and egg problem of having to both improve a model of
sensory observations given their representations, and find these representations of sensory
observations given the model (Friston 2018).

1.4 Spiking neurons—the computational building blocks of
cortex

Variational inference and EM-learning provide an elegant framework to understand the
world model algorithm that could be implemented in the brain, but the question remains
how this algorithm can be realized in neural hardware. Since the brain is constrained to use
spiking neurons that communicate with discrete pulses, to understand this connection it is
important to formalize how the required computations could be implemented using this
form of neural communication. One specific example where such a direct connection to
spiking neurons is missing is classical hierarchical predictive coding (hPC), which has only
been formulated within a rate-based framework (Millidge et al. 2021). As we will also discuss
in Chapter 3, this has prevented a clear mapping to single cell physiology which makes
testing of this theory quite difficult (Kogo et al. 2015). This example highlights the
importance of building theories with spiking neurons, also considering that many of the
features of cortical dynamics and plasticity might be a result of this particular neural design.

A major open question encountered when building theories with spiking neurons is how
exactly information is encoded within spike trains (Fiser et al. 2010; Gerstner et al. 2002).

Contributing to this issue, it is not even clear why the brain uses spiking neurons to

6
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compute in the first place, especially since in rare cases neural systems can also employ
neurons with graded potentials (Juusola et al. 1996). Suggestions range from the idea that
transmitting information over long cables is more efficient via spikes (Manwani et al. 1999),

that the sparseness of activity generally improves energy efficiency, as for example targeted
by neuromorphic computing (Marković et al. 2020), or it might also be that the
all-or-nothing nature of spiking provides a powerful inductive bias (Bengio, Courville, et al.

2013) which is very appropriate to model the sparse and event-based statistics of the world.
Whatever the reason, it is evident that information in spike trains has to be encoded such
that downstream neurons can read out and use this information via plausible neural
mechanisms (Gerstner et al. 2002). Formally, these readout mechanisms are described in the
model distribution pθ(x|r), since it dictates how information about sensory states can be
recovered from spike representations. This allows for a dual interpretation of pθ(x|r) as
both part of a world model (Fig 1.1) and a decoder, as it is often understood in machine
learning theory (Goodfellow et al. 2016b). It could be worthwhile to try to separate these
conflated readout and world modeling aspects to improve the interpretability of the theory,
but this dual interpretation also has its merits, as it makes explicit that the inductive biases
imparted by the spike encoding and by the actual world model might not be easily
disentangled. Ultimately, while these theoretical considerations are important, in practice
many theories, including the theory presented in this thesis, make use of highly simplified,
i.e., linear model distributions (e.g., Brendel et al. 2020). Not only does this afford the
analytical tractability of these theories, but it also matches how in most computational
models neurons read out information from other neurons, that is, through a linear
combination of inputs.

1.5 Learning with spiking neurons

Another difficulty when working with spiking neurons, and the main reason why bridging
from rate to spiking models is not easy, is that learning with spiking neurons is not
straightforward. Typically, rate-based artificial neural networks are trained using gradient
based methods (Goodfellow et al. 2016a), but unfortunately the gradient of the often
discontinuous spiking process of most spiking neuron models is not well defined (Neftci

et al. 2019). On top of the gradient issue, biological spiking neurons are constrained to
employ local learning rules, which means plasticity can only rely on locally available
information.

7



1 Introduction and Background

There is no general recipe to obtain biologically plausible local learning rules that are able
to optimize any given goal-function. However, there are several ideas how this problem can
be tackled, most of which can be categorized into three general approaches:

i) Computing gradients using surrogate gradients (Neftci et al. 2019), which heuristically
introduces a well-defined derivative of the spiking mechanism. This allows to employ
backpropagation algorithms as used in machine learning models. However, these
algorithms have to be forcibly localized, for example by leaving away inaccessible
information or projecting it to other neurons with random connections (Bellec et al.

2020).5

ii) Computing gradients through stochastic spikemechanisms, which is possible since the
likelihood of a spiketrain is typically differentiable even if the discrete spikemechanism
is not (Bengio, Léonard, et al. 2013; Pfister et al. 2006). Some of these learning algorithms
are local by design, like REINFORCE learning (Williams 1992), which, however, due to
its slow convergence is not suited to learn world models in recurrent neural networks
(Appendix A.4).

iii) Abstracting away the spiking mechanism (e.g., through neural sampling or minimizing

an energy function; Brendel et al. 2020; Buesing et al. 2011) and only comparing a readout
to a target (Brendel et al. 2020; Kappel et al. 2014; Nicola et al. 2017). The earliest well
knownmodel that applied this approach areHopfield networks, which storememories
with Hebbian plasticity and retrieve them via discrete gradient descent on an energy
function (Hopfield 1982). For simplicity, in the following this general approach will
be referred to as ’energy-based networks’.6 Difficulties are that the required neural
architectures typically can only be derived for relatively simple energy functions, and
the derived learning rules also are not necessarily local.

Overall, energy-based networks so far have proven most fruitful in deriving biologically
plausible spike-timing-dependent plasticity rules for world model learning (Brendel et al.

2020; Kappel et al. 2014). Perhaps the biggest advantage this approach brings is that it can
dissolve the clear distinction between the world model pθ(x, r) and the approximate
posterior pψ(r|x). While in the other approaches we discussed (i & ii) these two

5Note, that there are also several other approaches to implement backpropagation with local learning rules,
most of which update their weights after an equilibration phase (Lillicrap et al. 2020; Whittington and
Bogacz 2019), which is related most closely to approach (iii). However, except for few notable examples
(e.g., Guerguiev et al. 2017), these ideas have typically been only demonstrated with rate-based neurons.

6To define an energy for networks sampling from a distribution p(r) we can take inspiration from statistical
physics. Writing p(r) as a Boltzmann distribution p(r) = 1/Z exp(−βE(r)) (assuming ∀r : p(r) > 0),
we can define E(r) ∝ − log p(r) as the energy.
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distributions in general have to be considered separately, which leaves the question how
their interaction can be thought of in biological terms, in energy-based networks the
posterior pψ(r|x) is found through a network whose parameters directly relate to model
parameters θ.7 Therefore, updating the model parameters θ and updating the neural
network parameters ψ can be considered equivalent, which allows to directly understand
biological synaptic plasticity as learning a model of the world.

1.6 Motivation

The theory of energy-based networks has enabled great progress over the last decades in
providing answers to the question what mechanisms spiking neurons in cortex might use to
learn and perform inference in a model of the world (Brendel et al. 2020; Denève et al. 2016;

Földiak 1990; Kappel et al. 2014; Nessler et al. 2013). In many of these models common themes
have emerged, like the proposal that strong lateral inhibition helps neurons cooperate to
explain the sensory data well (Denève et al. 2016; Földiak 1990; Nessler et al. 2013), to name
one central example. Yet, despite the clear similarities between those models, there exists no
general picture how exactly they could map to cortical physiology, which hinders the direct
testing of their predictions in experiment.

At the same time, classical hPC—even though it is not known how it can be
implemented by spiking neurons—is widely considered to be the most promising unifying
theory of inference and learning in cortex (Friston 2018). Much of this sentiment derives
from the ease with which classical hPC explains the influence of the ubiquitous top-down
connections in cortex, which project from higher-level cortical areas to lower levels (Walsh

et al. 2020). One core feature of these hierarchical interactions are for example mismatch
responses, which seem to signal the mismatch between an internal model of the animal and
sensory observations (Fig 1.2), and commonly classical hPC is invoked to make sense of
these observations (De Lange et al. 2018). In contrast, spiking neuron models of inference
and learning in cortex have only rarely considered the role of top-down connections (e.g.,

Rao 2004a), and a connection of these models to the experimental results that are explained
by classical hPC is missing. It remains to be concluded that in both classical hPC, as well as
spiking models of inference, significant explanatory gaps persist.

7One alternative to the direct relation of parameters θ andψ inmany energy-based networks worthmentioning
is the wake-sleep algorithm (Hinton et al. 1995), where recognition weights ψ are trained to align with
generative weights θ in a separate learning phase.
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1 Introduction and Background

Figure 1.2: Mismatch responses are a prominent feature of cortical processing and might help us
distinguish between different theories of cortical computation. They have been observed
in several forms, such as strong neural activity in response to the omission of an expected
stimulus, to a mismatch of information in different sensory modalities, to an unexpected
stimulus, or reduced activity in response to expected stimuli (Chapter 3; De Lange et
al. 2018). In this thesis we will specifically look at multi-modal mismatch responses
(Chapter 4) and prediction mismatch responses (Chapter 5).

1.7 Thesis overview

In this thesis we aim to address some of these explanatory gaps of existing theories. The
individual chapters will each address specific shortcomings and open questions, outlined
below. Together, they collect a broad range of theoretical considerations and empirical
findings into a coherent framework of world model learning and inference in cortex.

In Chapter 2, we will investigate how local learning for a simple model of sensory data
can be implemented by a population of spiking neurons. While this is an old question in
theoretical neuroscience (Brendel et al. 2020; Földiak 1990), there remains the fundamental
open question how learning can be achieved with neurons that show correlated activity.
The solution we propose is that neurons compute coding errors via a balance of excitation
and inhibition on neural dendrites, and exploit them for both inference and learning. This
provides directly testable predictions for the interaction of excitation and inhibition for
synaptic plasticity.

In Chapter 3 we will then combine this solution with several other previously
unconnected models of neural computation to propose a comprehensive theory of
hierarchical inference and learning in cortex. We will show that this theory is isomorphic to

10



1 Introduction and Background

classical hPC (Rao and Ballard 1999), but overcomes its central open questions, which mostly
regard its biological plausibility. Furthermore, towards making the proposed theory
testable, we suggest how the algorithm might be embedded into the cortical microcircuit
and lay out specific computational roles for clearly defined neuron types in cortex.

In the remainder of the thesis (Chapter 4 & 5) we will look into how specific
experimental observations can be modeled in our framework, and what experimental
predictions this generates. Concretely, we address one of the most important questions
raised when comparing any theory of inference in cortex without explicit error neurons to
classical hPC: Why do we observe strong neural responses in cortex when prediction errors
are large (Fig 1.2)? Because theories with or without error neurons give different answers,
this will allow us to propose various experiments which could be conducted to distinguish
between them.
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How can neural networks learn to efficiently represent com-
plex and high-dimensional inputs via local plasticity mechanisms?
Classical models of representation learning assume that feedfor-
ward weights are learned via pairwise Hebbian-like plasticity.
Here, we show that pairwise Hebbian-like plasticity works only
under unrealistic requirements on neural dynamics and input
statistics. To overcome these limitations, we derive from first
principles a learning scheme based on voltage-dependent synap-
tic plasticity rules. Here, recurrent connections learn to locally
balance feedforward input in individual dendritic compartments
and thereby can modulate synaptic plasticity to learn efficient
representations. We demonstrate in simulations that this learn-
ing scheme works robustly even for complex high-dimensional
inputs and with inhibitory transmission delays, where Hebbian-
like plasticity fails. Our results draw a direct connection between
dendritic excitatory–inhibitory balance and voltage-dependent
synaptic plasticity as observed in vivo and suggest that both are
crucial for representation learning.

efficient coding | synaptic plasticity | balanced state | neural sampling |
dendritic computation

Many neural systems have to encode high-dimensional
and complex input signals in their activity. It has long

been hypothesized that these encodings are highly efficient;
that is, neural activity faithfully represents the input while
also obeying energy and information constraints (1–3). For
populations of spiking neurons, such an efficient code requires
two central features: First, neural activity in the population has
to be coordinated, such that no spike is fired superfluously (4);
second, individual neural activity should represent reoccurring
patterns in the input signal, which reflect the statistics of
the sensory stimuli (2, 3). How can this coordination and
these efficient representations emerge through local plasticity
rules?

To coordinate neural spiking, choosing the right recurrent
connections between coding neurons is crucial. In particular,
recurrent connections have to ensure that neurons do not spike
redundantly to encode the same input. An early result was that
in unstructured networks the redundancy of spiking is minimized
when excitatory and inhibitory currents cancel on average in
the network (5–7), which is also termed loose global excitatory–
inhibitory (E-I) balance (8). To reach this state, recurrent con-
nections can be chosen randomly with the correct average mag-
nitude, leading to asynchronous and irregular neural activity (5)
as observed in vivo (4, 9). More recently, it became clear that
recurrent connections can ensure a much more efficient encoding
when E-I currents cancel not only on average, but also on fast
timescales and in individual neurons (4), which is also termed
tight detailed E-I balance (8). Here, recurrent connections have
to be finely tuned to ensure that the network response to inputs is
precisely distributed over the population. To achieve this intricate
recurrent connectivity, different local plasticity rules have been
proposed, which robustly converge to a tight balance and thereby
ensure that networks spike efficiently in response to input signals
(10, 11).

To efficiently encode high-dimensional input signals, it is ad-
ditionally important that neural representations are adapted to
the statistics of the input. Often, high-dimensional signals contain
redundancies in the form of reoccurring spatiotemporal patterns,
and coding neurons can reduce activity by representing these
patterns in their activity. For example, in an efficient code of
natural images, the activity of neurons should represent the
presence of edges, which are ubiquitous in these images (3).
Early studies of recurrent networks showed that such efficient
representations can be found through Hebbian-like learning of
feedforward weights (12, 13). With Hebbian learning the re-
peated occurrence of patterns in the input is associated with
postsynaptic activity, causing neurons to become detectors of
these patterns. Recurrent connections indirectly guide this learn-
ing process by forcing neurons to fire for distinct patterns in the
input. Recent efforts rigorously formalized this idea for models
of spiking neurons in balanced networks (11) and spiking neuron
sampling from generative models (14–17). The great strength
of these approaches is that the learning rules can be derived
from first principles and turn out to be similar to spike-timing–
dependent plasticity (STDP) curves that have been measured
experimentally.

However, to enable the learning of efficient representations,
these models have strict requirements on network dynamics.
Most crucially, recurrent inhibition has to ensure that neural
responses are sufficiently decorrelated. In the neural sampling
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Neurons have to represent an enormous amount of sensory
information. To represent this information efficiently, neurons
have to adapt their connections to the sensory inputs. An
unresolved problem is how this learning is possible when
neurons fire in a correlated way. Yet, these correlations are
ubiquitous in neural spiking, either because sensory input
shows correlations or because perfect decorrelation of neural
spiking through inhibition fails due to physiological transmis-
sion delays. We derived from first principles that neurons can,
nonetheless, learn efficient representations if inhibition mod-
ulates synaptic plasticity in individual dendritic compartments.
Our work questions pairwise Hebbian plasticity as a paradigm
for representation learning and draws a link between repre-
sentation learning and a dendritic balance of input currents.

Author contributions: F.A.M., L.R., and V.P. designed research; F.A.M. and L.R. performed
research; F.A.M. implemented the simulations and created the figures; and F.A.M., L.R.,
and V.P. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1F.A.M. and L.R. contributed equally to this work.
2To whom correspondence may be addressed. Email: viola.priesemann@ds.mpg.de.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2021925118/-/DCSupplemental.

Published December 7, 2021.

PNAS 2021 Vol. 118 No. 50 e2021925118 https://doi.org/10.1073/pnas.2021925118 1 of 1017



approaches, learning therefore relies on strong winner-take-all
dynamics (14–17). In the framework of balanced networks, trans-
mission of inhibition has to be nearly instantaneous to ensure
strong decorrelation (18). These requirements are likely not met
in realistic situations, where neural activity often shows positive
correlations (19–22).

We here derive a learning scheme that overcomes these lim-
itations. First, we show that when neural activity is correlated,
learning of feedforward connections has to incorporate non-
local information about the activity of other neurons. Second,
we show that recurrent connections can provide this nonlocal
information by learning to locally balance specific feedforward
inputs on the dendrites. In simulations of spiking neural net-
works we demonstrate the benefits of learning with dendritic
balance over Hebbian-like learning for the efficient encoding of
high-dimensional signals. Hence, we extend the idea that tightly
balancing inhibition provides information about the population
code locally and show that it can be used not only to distribute
neural responses over a population, but also for an improved
learning of feedforward weights.

Results
The goal in this paper is to efficiently encode a continuous high-
dimensional input signal by neural spiking. In the following, we
explain how neurons can learn efficient representations of these
inputs through local plasticity mechanisms. We first show how a
tight somatic balance can guide neural spiking to distribute the
encoding over the population. We then show how a tight balance
on the level of dendrites can guide the learning of efficient
representations in the feedforward weights.

Background: Efficient Encoding by Spiking Neurons with Tight E-I
Balance.
Setup. Continuous spatiotemporal inputs x(t) drive a recur-
rently connected spiking neural network, which encodes the
inputs through responses z(t) (Fig. 1A). Feedforward weights
Fji indicate how strongly inputs xi(t) couple to neuron j, and
recurrent weights Wjk provide coupling between the neurons.
Inputs xi(t) are always positive, to ensure that single synapses
act either excitatory or inhibitory, but not both. Neurons in
the network encode the inputs by emitting spikes, which then
elicit postsynaptic potentials (PSPs) z(t). The PSPs are mod-
eled as a sum of exponentially decaying depolarizations zj (t) =∑

t
j
s≤t−δ

exp(− t−δ−tjs
τ

) with decay time τ for each spike of neu-
ron j at times t js . PSPs arrive after one timestep δ, which we
interpret as a finite transmission delay of neural communication.

A

D W

F

B
delay � 

xi

uj

zk

Fig. 1. The task is to efficiently encode analog input signals x by the
response of a population of spiking neurons z. (A) To that end, neurons
couple to the input via feedforward weights F (dominated by excitation)
and to each other via recurrent weights W (dominated by inhibition). From
the encoding an external observer can decode an approximation x̂ of the
original input signal x via a linear transformation D. (B) The membrane
potential uj of neuron j is a linear sum of continuous inputs xi and spike
traces zk. Spikes cause an immediate self-inhibition, which can be seen as an
approximate reset of uj . Spikes of other neurons are transmitted with a delay
δ. When recurrent weights are learned such that recurrent input zk cancels
feedforward input xi , uj is balanced and reflects the global encoding error
x − x̂. In that case, spikes are fired only when the encoding error is high, so
that the spike encoding is efficiently distributed over the population.

Our model is similar to those in previous studies of balanced
spiking networks (11, 23).

The goal is to find the most efficient spike encoding that
enables the best reconstruction of the input, while the av-
erage firing rate of individual neurons is held fixed (see
SI Appendix, section B for details). To test the reconstruction
of the input, we consider the best linear readout x̂(t) =Dz(t)
from the neural response and quantify the mean decoder loss

L=
1

2Nx

〈
||x(t)− x̂(t)||2

〉
t
=

1

2Nx

〈
||x(t)−Dz(t)||2

〉
t
, [1]

where Nx is the number of inputs. It is important to note that the
readout is not part of the network, but serves only as a guidance
to define a computational goal. Hence, learning an efficient code
amounts to minimizing L via local plasticity rules on Fji and Wjk ,
given the best decoder D and a fixed firing rate.
Spiking neuron model. Spiking neurons are modeled as stochas-
tic leaky integrate-and-fire (LIF) neurons. More precisely,
the model employed here is a special case of the spike
response model with escape noise, which is a phenomenological
noise model that summarizes effects of biophysical channel
noise as well as stochastic input on neural spiking (24).
This stochasticity of spiking is required, since deterministic
neurons in balanced networks with transmission delays lead
to erratic network behavior (18), and it allows a direct link to
neural sampling and unsupervised learning via expectation–
maximization (SI Appendix, section B). A neuron j emits spikes
with a probability that depends on its membrane potential uj (t)
according to

pspike(uj (t)) = sig
(
uj (t)− Tj

Δu

)
, [2]

where sig(x ) = [1 + exp(−x )]−1 is a sigmoid function. When
the membrane potential approaches the firing threshold Tj , the
firing probability increases rapidly. To fix the number of spikes
for an efficient code, Tj is adapted to control the average firing
rate of each neuron (Fig. 2C). Furthermore, Δu regulates the
stochasticity of spiking. For increasing Δu the spike emission
becomes increasingly noisy, whereas for Δu → 0 one recovers
the standard LIF neuron with sharp threshold. The membrane
potential itself is modeled as a linear sum of the feedforward
inputs xi(t) and recurrent inputs zk (t); i.e.,

uj (t) =
∑

iFjixi(t)︸ ︷︷ ︸
feedforward input

+
∑

kWjk zk (t)︸ ︷︷ ︸
recurrent input

. [3]

Note that, for simplicity, in this model coding neurons are di-
rectly coupled by inhibitory connections, but similar dynamics
and learning behavior can be implemented in networks with
inhibitory interneurons (11).
Learning an efficient spike encoding with recurrent plasticity.
Spiking neurons can efficiently distribute neural responses to the
input signals over the population, by tightly balancing feedfor-
ward and recurrent input at the soma (4, 11) (Fig. 1B). In fact,
a tight balance of inputs is a direct consequence of learning an
efficient encoding via gradient descent on the decoder loss (see
SI Appendix, section B for derivation). To learn a tight balance
recurrent weights adapt according to

ΔWjk ∝−zkuj (somatic balance). [4]

Hence, when neuron k is active and the somatic potential of
neuron j is out of balance, i.e., uj (t) �= 0, the weight Wjk changes
to balance uj (t). Note that all neurons have an autapse that
learns to balance their own membrane potentials, which can al-
ternatively be interpreted as an approximate membrane potential
reset after spiking.
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Fig. 2. We compare learning in two network models, a point neuron model with somatic balance, and a model with dendritic balance. (A) In the model
with SB, neurons (gray circles) with outputs z receive feedforward network inputs x (white circles) and are coupled via recurrent connections. Recurrent
weights W are adapted to balance other inputs to the somatic membrane potential uj , which ensures an efficient spike encoding. (B) In our proposed model
with DB, neurons receive inputs at specific dendritic compartments. Recurrent connections learn to balance input currents locally at the dendrites. This leads
to dendritic potentials ui

j that are proportional to the coding error for specific feedforward inputs and therefore can be used to learn feedforward weights.
(C) After learning, local feedforward (red) and recurrent (blue) currents have adapted to tightly balance each other in individual dendritic compartments
(Bottom). This dendritic balance also results in a somatic balance of inputs (Top). Here we show a neuron from a network with 80 neurons coding for natural
images. (D) In both models a rapid compensatory mechanism ensures that every neuron fires with rate ρ. If any neuron spikes too rarely, its threshold Tj is
lowered; if it spikes too often, Tj is increased. (E–H) Illustration of learning rules in terms of experimental STDP rules. For easier interpretability we plot weight
changes for spiking inputs xi , whereas in the remainder of this paper, xi are analog input signals. (E) For learning feedforward weights in the point neuron
model (SB) a Hebbian-like STDP rule increases or decreases weights Fji depending on the time difference between pre- and postsynaptic spikes Δtj and the
weight Fji itself. If Fji is high or low, this shifts plasticity toward depression or potentiation, respectively. The same learning rule applies to the DB model, if
a neuron does not simultaneously receive any recurrent input. (F–H) Illustration of how inhibition modulates feedforward plasticity in the proposed model
for a network of two coding neurons zj (with one dendritic compartment) and zk and one input neuron xi . (F) The excitatory weight Fij and the inhibitory
weight Wi

jk attach to the same dendritic potential ui
j . (G) We consider the following example where three spikes are fired: xi at t = 0, zj at t = Δtj , and zk

at t = Δtk. (H) The total change in the weight Fji depends not only on the spike time difference Δtj between the input and the postsynaptic neuron, but
also on the relative inhibitory spike time Δtk. In general, if zj and zk spike close together, Fji will tend to be depressed. All weight changes were calculated
with Fji = −Wi

jk = 0.5.

This tight balance enables an efficient encoding, since once
an input signal is encoded by the spike of a coding neuron,
this spike will approximately cancel the excitatory feedforward
input to all other neurons and therefore discourage further spik-
ing. More technically, learning a balance with recurrent plas-
ticity leads to recurrent weights that “decode” the population
activity onto the membrane potential of each individual neu-
ron Wjk =−

∑
i FjiDik (where Dik is the optimal decoder).

The membrane potentials thus reflect the coding error uj (t) =∑
i Fji (xi(t)− x̂i(t)), i.e., the global coding goal, and subse-

quently drive spiking only when the global encoding is not cap-
turing the signal well.

Learning Efficient Representations with Feedforward Plasticity. To
enable an efficient encoding of high-dimensional signals, feed-
forward weights F should be adapted to the statistics of the
input signal. To that end, it is possible to derive a plasticity rule
for weights Fji that minimizes the decoder loss L via gradient
descent (SI Appendix, section B), which yields

ΔFji ∝ zj (xi − x̂i) = zj (xi −
∑

kDik zk ). [5]

Intuitively, this rule drives neuron j to correlate its output zj to
input xi , except if the population is already encoding it. To extract
the latter information, the plasticity rule requires a decoding x̂i =∑

k Dik zk , which contains information about the neural code for
input i of all other neurons in the population.

We thus conclude that an efficient code relies on information
about other neurons in two ways: 1) Neurons need to know what
is already encoded to avoid redundancy in spiking (dynamics),
and 2) plasticity of feedforward connections requires to know
what neurons encode about specific inputs to avoid redundancy
in representation (learning). While recurrent weights Wjk for
efficient spiking dynamics 1) can be learned locally (Eq. 4),
learning feedforward synapses Fji correctly 2) is not feasible
locally for point neurons, since they lack knowledge about the
population code for single inputs xi .

In the following, we introduce the main result of this pa-
per: Similar to efficient spiking through a tight balance of all
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feedforward and recurrent inputs at the soma, local learning
of efficient representations can be realized by tightly balancing
specific feedforward inputs with recurrent input. Physiologically,
we argue that this corresponds to spatially separated inputs at
different dendritic compartments, where recurrent connections
balance the local membrane potential. We contrast this local
implementation of the correct gradient of the decoder loss with a
common local approximation of the gradient, which is necessary
for point neurons with somatic balance only.
Somatic balance alone requires an approximation for local learn-
ing. Since synapses for point neurons have no access to the
population code for single inputs, previous approaches used a
local approximation to ΔFji where only pre- and postsynaptic
currents are taken into account (Fig. 2E):

ΔFji ∝ zj (xi − Fjizj ) (Hebbian-like learning). [6]

We refer to this learning scheme, consisting of Eqs. 4 and 6,
as somatic balance (SB). A practically identical setup has been
proposed in ref. 11. We take this setup as a paradigmatic example
of a larger group of Hebbian-like learning rules, which have
been used to model representation learning (for a more detailed
discussion of related models and learning rules in the literature
see SI Appendix, section C).

Such Hebbian-like learning rules follow the correct gradient
when neurons do not code simultaneously, and thus nonlocal
dependencies during learning are not present. This is the case
when only a single PSP zj (t) is nonzero at a time, e.g., in winner-
take-all circuits with extremely strong inhibition (15), or when
the PSP is extremely short (14). The learning rule becomes also
approximately exact when neural PSPs z(t) in the encoding are
uncorrelated (11, 12). However, these are strong demands on
the dynamics of the network, which ultimately limit its coding
versatility and are likely not met under realistic conditions.
Dendritic balance allows local learning of efficient representa-
tions. When neural PSPs z(t) in the population are correlated,
learning efficient representations requires that information
about the population code is available at the synapses. To this
end, we introduce local dendritic potentials u i

j at synapses Fji

and couple neurons k via dendritic recurrent connections W i
jk

to these membrane potentials (Fig. 2B). The somatic membrane
potential is then realized as the linear sum of the local dendritic
potentials

uj (t) =
∑

iu
i
j (t)

u i
j (t) = Fjixi(t)︸ ︷︷ ︸

feedforward input

+
∑

kW
i
jk zk (t)︸ ︷︷ ︸

recurrent input

. [7]

Note that this amounts only to a refactoring of the equation
for the somatic membrane potential and does not change the
computational power of the neuron. Given such a network with
recurrent weights W i

jk , a SB network with recurrent weights
Wjk =

∑
i W

i
jk has equivalent dynamics. Hence, any improve-

ment in the neural code in this setup is due to an improvement
in the learning of feedforward weights. In the discussion, we
address how the compartmentalization in Eq. 7 could be realized
in biological neurons and how one can reduce the amount of
recurrent dendritic connections W i

jk without losing the central
benefits of this model.

Introducing dendritic compartments for individual inputs al-
lows us to use the same trick as before: By enforcing a tight
E-I balance locally, recurrent connections will try to cancel the
input as well as possible. Thereby, recurrent weights W i

jk will
automatically learn the best possible decoding of the population
activity z to the input Fjixi . This leads to a local potential that
is proportional to the coding error u i

j = Fji(xi − x̂i). In terms of
recurrent synaptic plasticity, this is realized by

ΔW i
jk ∝−zku

i
j (dendritic balance). [8]

Thus, the dendritic membrane potential u i
j can be used to find

the correct gradient ΔFji from Eq. 5 locally:

ΔFji ∝
1

Fji
zju

i
j (learning by errors). [9]

We refer to this learning scheme as dendritic balance
(DB). As can be seen, the learning rules for feedforward and
recurrent weights both rely on the local dendritic potential,
which they also influence. This enables recurrent inputs to
locally modulate feedforward plasticity. However, this also
requires the cooperation of feedforward and recurrent weights
during learning. We propose three different implementations
that ensure this cooperation, by learning recurrent weights
on a faster or on the same timescale as feedforward weights
(SI Appendix, section B.3). We show that these three approaches
yield similar results, which equal the analytical solution (Eq. 5)
in performance (SI Appendix, Figs. S2 and S3).

It is possible to integrate the learning rules that depend on
membrane potentials over time and obtain learning rules that
depend on the relative spike timings of multiple neurons. If we
consider only one input neuron and one coding neuron, learning
with dendritic balance and somatic balance yields the same spike-
timing–dependent plasticity rule. This rule is purely symmetric
and strengthens the connection when both neurons fire close
in time (Fig. 2E). However, if the spike of the excitatory input
neuron is accompanied by an inhibitory spike in the coding
population, the spike-timing–dependent rule breaks symmetry
(Fig. 2H). This shows how learning with dendritic balance can
take more than pairwise interactions into account to enable the
neuron to find its place in the population code.

Simulation Experiments. To illustrate the differences that arise
between the networks using SB and DB during learning, we set
up several coding tasks of increasing complexity. Most centrally,
we will show that two aspects of realistic neural dynamics make
learning especially difficult: 1) correlated occurrences of the pat-
terns that are represented by coding neurons and 2) transmission
delays of recurrent inhibition. Both aspects lead to correlations in
the activity of coding neurons z, which, as we demonstrate, have
a detrimental effect on the representations learned by Hebbian-
like learning.
Learning an efficient encoding with recurrent and feedforward
synaptic plasticity. In a first test we performed a comparison on
the MNIST dataset of handwritten digits (Fig. 3C). We restricted
the dataset to the digits 0, 1, and 2, which were encoded by nine
coding neurons. Networks were initialized with random feedfor-
ward weights and with zero recurrent weights. To demonstrate
the effects of recurrent and feedforward plasticity, we separated
learning into two stages: First, recurrent plasticity learned to
balance feedforward input to the neurons, which leads to a
decorrelation of neural responses to the input signals (Fig. 3B),
and reduced the decoder loss (Fig. 3A). Later, feedforward
plasticity was turned on, which aligned feedforward weights with
reoccurring patterns in the input (Fig. 3D). This further reduced
the decoder loss and led to better reconstructions (Fig. 3C). Since
images were rarely encoded by more than one or two neurons
(Fig. 3B), interactions in the population were small and thus both
setups found similar solutions.
Dendritic balance can disentangle complex correlations. Our the-
oretical results suggest that DB networks should find a better
encoding than SB networks when correlations between learned
representations are present in the stimuli. To test this, we devised
a variation of Földiak’s bar task (12), which is a classic indepen-
dent component separation task. In the original task neurons en-
code images of independently occurring but overlapping vertical
and horizontal bars. Since the number of neurons is equal to
the number of possible bars in the images, each neuron should
learn to represent a single bar to enable a good encoding. We
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Fig. 3. Learning an efficient encoding with recurrent and feedforward synaptic plasticity. In this simulation experiment, networks consisting of nine coding
neurons encoded 16 × 16 images of digits 0, 1, and 2 from the MNIST dataset. (A) Decoder loss decreases with neural plasticity for both models using either
SB or DB. A naive network with random feedforward and zero recurrent weights shows a large decoder loss (1). Learning recurrent connections results
in a drop in decoder loss (2). Later, feedforward plasticity was turned on, also resulting in an improvement of performance (3). Final performances and
encodings of SB and DB are very similar. (B–D) Results of the DB network for different moments in time during learning. (B) Input signal xi and decoded
signal x̂i for a single pixel i in the center of the image. MNIST digits were presented as constant input signals for 70 ms and faded for 30 ms to avoid
discontinuities. After learning, the decoded signal tracks the input reasonably well given the very limited capacity of the network. Below are the spike
trains of all neurons in the network in response to the input signal. Learning recurrent weights decorrelates neural responses; learning feedforward weights
makes neural responses more specific for certain inputs. (C) Sample of input images x from the MNIST dataset and reconstructions x̂ of the input images.
The reconstructions presented here are calculated by averaging the decoded signal during input signal presentation over 70 ms. (D) Feedforward weights F
and the optimal decoder D. Weights F are first initialized randomly; after learning every neuron becomes specific for a certain prototypical digit. Learning
also causes feedforward and decoder weights to align.

kept this basic setup, but additionally we introduced between-bar
correlations for selected pairs of bars (Fig. 4A). We then could
vary the correlation strength p between the bars within the pairs
to render them easier or harder to separate.

The simulation results indeed showed that the performance
of the SB, but not of the DB model, deteriorates when learned
representations are correlated (Fig. 4B). The decoder loss for
SB grows for increasing p and reaches its maximum at about
p = 0.8. This is because Hebbian-like learning (as used in SB)
correlates a neuron’s activity with the appearance of patterns
in the input signal, irrespective of the population activity. The
correlation between two bars therefore can lead a neuron that
initially is coding for only one of the bars to incorporate also the
second bar into its receptive field (Fig. 4B). Hence, for increasing
correlation p neurons start to represent two bars, which does
not reflect the true statistics of the input, where single bars may
still occur. For p > 0.8 the decoder loss decreases, as here the
occurrence of the correlated pairs of bars becomes so likely that
the representations reflect the statistics of the images again. In
contrast, DB enables neurons to communicate which part of
the input signal they encode and hence they consistently learn
to code for single bars. Accordingly, the decoder loss for DB
is smaller than for SB for every correlation strength of bars
(Fig. 4B).

We expected to see a similar difference between SB and DB
networks when complex stimuli are to be encoded. In a third
experiment we therefore tested the performance of the networks
encoding images of natural scenes (Fig. 4C). To also test whether
the amount of compression (number of inputs vs. number of
coding neurons) would affect SB and DB networks differently,
we varied the number of coding neurons while keeping the
population rate fixed at 1,000 Hz. This way, only the compression,
and not also the total number of spikes, has an effect on the
performance of the networks.

The simulations showed that for natural images, DB net-
works learn more efficient representations than SB networks.
The difference in performance becomes larger the higher the
compression of the input signal by the network is (Fig. 4D). This
effect seems to be related to the observations we made in the bar
task: Networks with few coding neurons have to learn correlated
representations (SI Appendix, Fig. S10), which renders SB less
appropriate. We found that SB networks consistently needed
about twice as many neurons to achieve a similar coding perfor-
mance to that of DB networks (Fig. 4D).
Dendritic balance can cope with inhibitory transmission delays.
Correlations between coding neurons can also be introduced by
transmission delays of inhibition (18). We therefore expected to
find that DB networks are much more robust to long transmission
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Fig. 4. Dendritic balance improves learning for complex correlations in the input signal. (A and B) In one simulation experiment, 16 neurons code for
8 × 8 images containing 2 random of 16 possible bars. Thus, optimally, every neuron codes for a single bar. (A) Creation of input images with correlation
between reoccurring patterns. Two bars are selected in succession and added to the image. With probability p the bars are symmetric around the top left to
bottom right diagonal axis. With probability 1 – p the two bars are chosen randomly. (B) Decoder loss after learning for different correlation strengths for
networks with SB and DB. Displayed is the median decoder loss for 50 different realizations for each datapoint; error bars denote 95% bootstrap confidence
intervals. On the sides, 8 of all 16 converged feedforward weights are shown for representative networks. When correlations between bars are present, the
representations learned by SB overlap, while DB still learns efficient single-bar representations. (C and D) Similarly, for complex natural stimuli DB finds better
representations when coding neurons are correlated. (C) We extracted 16 × 16-pixel images from a set of whitened pictures of natural scenes (3), scaled
them down to 8 × 8 pixels, and applied a nonlinearity (SI Appendix, section D). (D) Decoder loss after learning of SB and DB networks featuring varying
numbers of coding neurons, while keeping the population rate constant at 1,000 Hz. On the sides we show exemplary converged feedforward weights. For
a large number of coding neurons (Left) both learning schemes yield similar representations, but performance is slightly better for DB. For a small number
of neurons (Right) DB learns more refined representations with substantially reduced decoder loss compared to SB. The reason is that for a small number
of neurons the learned representations are more correlated and consequently are harder to disentangle. Notably, different amounts of neurons result in
different coding strategies.

delays than SB networks. To investigate this, we simulated
networks of 200 neurons with a range of timesteps δ, which
we interpret as transmission delays. We varied the delay from
δ = 0.1ms to δ = 10ms and observed how the delay affected
coding performance for natural images. Indeed, performance
of SB networks drastically broke down to a baseline level when
transmission delays became longer than 0.3 ms (Fig. 5A). All
neurons had learned the same feedforward weights (Fig. 5B). In
contrast, DB networks continued to perform well even for much
longer delays. While long delays for DB also lead to a decrease
in coding performance, DB prevented the sudden collapse of the
population code.

To illustrate the mechanism that caused the breakdown in
performance for SB, we also ran simulations of networks learn-
ing to code for MNIST images with longer transmission delays
(Fig. 5C). After learning with Hebbian-like plasticity, neurons
showed highly synchronized activity (Fig. 5D) and had learned
overly similar feedforward weights (Fig. 5E). When transmission
delays become long, inhibition will often fail to prevent that mul-
tiple neurons with similar feedforward weights spike to encode
the same input. Hebbian-like plasticity can exacerbate this effect,
since it will adapt feedforward weights of simultaneously spiking
neurons in the same direction. In contrast, neurons learning with
DB use the information that inhibition provides for learning,
even if it arrives too late to prevent simultaneous spiking. Hence
DB manages to learn distinct representations also in the face of
long transmission delays.

Finally, this difference in the two learning schemes is still
present for input signals with fast and complex temporal dy-
namics. To show this we repeated an experiment from ref. 11,
where natural speech sounds were encoded by a population of
100 neurons (Fig. 5 F–H). In this scenario SB learned only
a proper encoding with instantaneous transmission, i.e., when

simultaneous spiking was prohibited by removing the least likely
spikes in the case of multiple spikes per time bin. However, even
for extremely short transmission delays of δ = 0.05ms, Hebbian-
like plasticity led to pathological network behavior (Fig. 5H).
In contrast, DB learned a similarly efficient encoding in both
conditions (Fig. 5G).

Discussion
In the past, the formation of neural representations has often
been modeled with pairwise Hebbian-like learning rules (11,
12, 14–17, 25–27). However, the learning rules that are derived
directly from neural coding models typically require not only
information about pre- and postsynaptic activity, but also the
coding error of the whole population. Commonly it is maintained
that this information is not locally available to the synapse and
it is left out of the equation, yielding pairwise Hebbian-like
learning rules. Here, we found that omitting this information
about the population code can have a detrimental effect on
learning when neural activity is correlated, which is the case in
realistic conditions. In this case, Hebbian-like learning leads to a
highly inefficient encoding in comparison to the derived learning
by errors or even in comparison to random connections (Figs. 4
and 5). To overcome this problem, we showed how learning by
errors can be implemented locally by neurons with dendritic bal-
ance and a voltage-dependent plasticity rule. This suggests that
dendritic balance could play a crucial role in synaptic plasticity
for the formation of efficient representations.

Why does Hebbian-like learning fail when neural activity
is correlated, and how does learning by errors prevent this?
When the activity of neurons is correlated, Hebbian-like
learning adapts the feedforward weights of these neurons
into a similar direction. This even further strengthens the
correlations between neurons—a vicious cycle, which ultimately
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Fig. 5. Dendritic balance prevents learning of redundant representations for inhibitory transmission delays. (A) Decoder loss of networks of 200 neurons
coding for natural scenes for different inhibitory transmission delays δ. For transmission delays longer than 0.3 ms, Hebbian-like learning in SB networks
leads to highly inefficient representations and large decoder loss. In contrast, for networks learning with DB, the decoder loss increases only moderately
even for long transmission delays. The results are robust with respect to the stochasticity of firing Δu and the firing rate ρ (SI Appendix, Fig. S8). (B) Selection
of learned weights for a transmission delay of 1 ms. DB learns similar weights as before (Fig. 4D), while SB leads to a collapse of representations. (C–E) To
illustrate the effect of feedforward plasticity, we repeated the MNIST experiment in Fig. 3 with long transmission delays of 3 ms (before, 0.1 ms in Fig. 3).
(C) First, only recurrent connections were learned (1); later, feedforward weights were learned (2). As before, recurrent plasticity decorrelates responses and
decreases the decoder loss. When feedforward plasticity was turned on, Hebbian-like plasticity (SB) learned worse representations than random feedforward
weights, which is indicated by the increase in decoder loss. In contrast, our model with DB learned improved representations with substantially reduced
decoder loss. (D) The poor performance of the SB model is a consequence of highly synchronous spiking responses to the inputs, whereas neurons fire
asynchronously in the model with DB. (E) Neurons in the SB model learn overly similar feedforward weights, whereas neurons with dendritic balance learn
feedforward weights that capture the input space well. (F–H) This effect is still present when input signals show fast changes in time. Here, 100 coding
neurons firing at 5 Hz encode a speech signal. (F) Spectrogram of the signal presented in 25 frequency channels. (G) As can be seen in the reconstructed
signal (Top), SB finds a good encoding for instant inhibition (loss = 0.06), but even for extremely small delays of 0.05 ms the learned representations collapse,
leading to pathological network behavior and bad encoding performance (loss = 0.23). (H) In contrast, DB finds a similar encoding for both instant inhibition
(loss = 0.057) and inhibitory delays of 0.05 ms (loss = 0.06).

can lead to highly redundant representations and extremely
correlated spiking. Strong correlations between coding neurons
typically mean that certain inputs are overrepresented and
others underrepresented in the population, which is indicated
by negative or positive coding errors, respectively. In contrast to
Hebbian-like learning, learning by errors selectively weakens
connections to overrepresented inputs and thereby helps to
reduce the correlations between coding neurons. In our model,
correlations between coding neurons can arise through either
correlations of the learned representations in the input signal or
transmission delays of recurrent inhibition. Correlated firing due
to correlations in the input can in principle always be addressed
by increasing the number of coding neurons, as this will increase
the independence of the learned representations (Fig. 4D and
SI Appendix, Fig. S10). Correlations due to transmission delays
of recurrent inhibition, on the other hand, are a fundamental
problem that arises in balanced networks (18, 23, 28). Here, the
exact point of breakdown of Hebbian learning depends on the
specific type of input and network size and might occur for longer
transmission delays in simplistic scenarios. However, already
in the case of moderately large networks receiving complex
input signals the effect is severe—even for submillisecond
delays Hebbian-like learning can lead to a collapse of neural
representations and almost perfectly correlated spiking of
the whole population (Fig. 5). In contrast, learning by errors
consistently avoids this breakdown, and we therefore argue that
it becomes indispensable when transmission delays are present.

To make coding errors available for single synapses locally, we
introduced balanced dendritic potentials that are proportional

to these errors. This can be achieved by learning a balance
through recurrent plasticity on the dendrites, as then the net-
work automatically finds an optimal decoding of neural activity
to the feedforward inputs. Yet, presenting an error through a
balance of inputs is a quite general principle, and theoretically
it would also be possible to present the coding error elsewhere.
Rate-based models of predictive and sparse coding for example
suggest that coding errors are presented in the activity of other
neural populations (29–32). However, this idea cannot be easily
transferred to spiking neurons, where coding errors would be
rectified by neural spiking mechanisms; hence, it is not directly
possible to present negative and positive errors in the same
unit. Neural learning in these theories, however, relies on this,
and indeed, still no conclusive experimental evidence for such
error units exists (33, 34). Another theory therefore suggests that
prediction errors are presented by voltage differences between
soma and dendrite in two-compartment neurons (35–37). In
contrast, our work shows that a coding error, which is calculated
from the mismatch between excitation and inhibition locally in
each dendritic compartment, can act as a very precise learning
cue for single synapses. What supports this idea is that a local
dendritic balance of inputs, which is maintained by plasticity, has
indeed been observed experimentally (8, 38–40). Furthermore,
this balance on single neurons can also explain central charac-
teristics of cortical dynamics (4), such as highly irregular spiking
(41, 42), but correlated membrane potentials of similarly tuned
neurons (43, 44).

An apparent downside of implementing dendritic balance
is the large increase in the number of recurrent inhibitory
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connections. Connecting every neuron to each feedforward
synapse on the dendrites of other neurons would even for
moderately sized networks prove extremely costly. However, we
found that only a small fraction of the inhibitory connections in
our model are required for learning, namely strong connections
between neurons whose firing is correlated. We demonstrated
this in the example of the bars task, where 90% of dendritic
connections can be pruned without changing the learning out-
come (SI Appendix, Fig. S9). Moreover, in our model inhibition
is mediated by direct recurrent connections between coding
neurons, but fewer connections would be required if inhibition
was mediated via interneurons. By incorporating inhibitory
interneurons with broad feature selectivity, it is possible to
merge inhibitory connections that provide largely the same
information (11). We therefore expect that the main benefits of
the proposed learning scheme can be achieved also with relatively
few connections.

Biological Plausibility. Our model presents the simplest extension
of existing point-neuron models (11), which allows us to for-
mally derive and isolate the effect that dendritic balance can
have on representation learning. While more complex models of
dendritic structure and nonlinear dynamics can elucidate their
role for neural computation (45), nonlinear dynamics would
also alter the computational capacity (45), thus hampering a
direct comparison to previous models of learning. Nevertheless,
the question remains whether the proposed learning based on
dendritic balance can be implemented by biological neurons. In
the following we discuss the main requirements of the proposed
learning scheme.

A central element of the dendritic balance model is the de-
pendence of synaptic plasticity on local membrane potentials.
Indeed, it has been argued that the local membrane potential
is a critical factor determining synaptic plasticity (46–49). Such
voltage-dependent plasticity is thought to be mediated mainly
by the local calcium concentration, which closely follows the
local membrane potential (50, 51) and locally modulates neural
plasticity (52). As required by our model, this voltage dependence
implies that inhibition can have a large impact on excitatory
synaptic plasticity locally (53, 54), which also has been found ex-
perimentally (8, 55). Yet, it remains a major open question what
the precise functional role of these voltage-dependent plasticity
mechanisms could be (8, 45). Our work proposes that a central
feature of voltage-dependent synaptic plasticity is to base the
plasticity of single synapses not only on pre- and postsynaptic ac-
tivity, but also on the activity of other neurons in the population.

How are the proposed learning rules related to experimen-
tally observed voltage-dependent plasticity? Many experiments
show that excitatory plasticity requires a strong depolarization
of the membrane potential, which for example happens during
postsynaptic spiking (46). Our feedforward plasticity rule can
be reconciled with plasticity rules that are inspired by these
experiments (56, 57) (see Fig. 6B for details). The voltage de-
pendence of inhibitory (recurrent) plasticity has only recently
started being investigated (8). Recent experimental evidence
suggests that this inhibitory plasticity, like excitatory plasticity,
is calcium dependent and also requires postsynaptic spiking (58,
59). Our recurrent plasticity rule is similar to previous models of
voltage-dependent inhibitory plasticity (11, 60), which set a target
value for the postsynaptic membrane potential. Like our rule,
these rules have not considered the requirement of postsynaptic
spiking for plasticity induction explicitly. We speculate that such
a requirement enables the network to preferentially select con-
nections between neurons with correlated activity, which are es-
pecially relevant for learning (SI Appendix, section B.3). Further
experimental and theoretical research is required to understand
the precise mechanism and purpose of this type of inhibitory
plasticity.

Another requirement of the learning scheme is that different
compartments on the dendritic tree are well isolated, so that
recurrent inputs can modulate the plasticity of specific synapses
(Fig. 6A). In biological neurons, dendrites are electronically
distributed elements, where strong voltage gradients may exist
across the dendritic tree (61, 62). These voltage differences are
the result of strong attenuation of input currents, meaning that
individual synapses can have very localized effects (63). Thus,
the required isolation between compartments exists in biological
neurons if they are sufficiently separated and especially for com-
partments on different dendritic branches (38). This isolation
between spatially separated compartments also reduces nonlin-
ear interactions between them. As a result, the integration of
any net excitation from different compartments at the soma is
approximately linear (63), as required by our model. In contrast
to excitation, though, inhibition on distant dendrites mainly acts
locally by gating excitation, so that dendritic inhibition can have
a very weak effect on the somatic membrane potential (64).
Propagating dendritic inhibition to the soma is, however, not
required for network function, because any remaining net exci-
tation can also be balanced by plastic inhibitory synapses close to
the soma. Therefore, the model’s key requirements for learning
and network function could also be met in biological neurons.

However, how synapses in biological neurons are organized
on these dendritic compartments seems to be at odds with our
model: First, while in our model individual feedforward inputs
(which are mostly excitatory) have isolated dendritic potentials,
it is well known that correlated excitatory synapses often cluster
on dendrites (65–67); second, while in our model we generally
find more inhibitory than excitatory synapses, excitatory synapses
outnumber inhibitory synapses on dendritic branches, e.g., 4:1
on the dendrites of cultured rat hippocampal neurons (38). We
argue that these two disparities can be resolved, if the individual
continuous inputs provided to our model are seen as the resulting
currents of clustered, correlated synapses. How this clustering
could be organized by synaptic plasticity is a matter of ongoing
research (68), and it will have to be the subject of future work
to reconcile these plasticity mechanisms with representation
learning.

Fig. 6. Biologically feasible implementation of the proposed feedforward
learning rule. (A) The proposed learning scheme requires the following dis-
tribution of information in the dendritic tree: First, synapses need to know
when a postsynaptic spike occurred. This information could be provided,
e.g., by backpropagating action potentials (bAPs). Second, the potentials
of the dendritic compartments that sum specific excitatory and inhibitory
inputs have to be sufficiently decoupled. Such a strong attenuation of inputs
exists for example between dendritic branches (38). (B) The inputs ui

j to
the local potential and the postsynaptic spike signal zj can be used by
a voltage-dependent plasticity rule to implement the proposed learning
scheme. Typically such rules assume that plasticity happens in a strongly
depolarized regime that is associated with large calcium concentrations
(shaded red area, compare to ref. 57). To reconcile our model with such
rules, we assume the postsynaptic spike zj shifts the local potential into
the strongly depolarized regime, e.g., through bAPs or dendritic plateau
potentials (72), and local input ui

j determines whether long-term depression
(LTD) or long-term potentiation (LTP) occurs.
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Experimental Predictions. Ultimately, we can generate two
directly measurable experimental predictions from our model:
First, if input currents to a neuron’s dendrites are locally
unbalanced, recurrent plasticity will learn to establish a local
E-I balance. Second, our model predicts that the strength of
local inhibition determines the sign of synaptic plasticity: During
plasticity induction at excitatory feedforward synapses, activating
inhibitory neurons that target the same dendritic loci should lead
to long-term depression of the excitatory synapses. We would
expect this effect to persist, even if the inhibitory signal arrives
shortly after the pre- and postsynaptic spiking. These predictions
mainly apply to populations of sensory coding neurons, but
models similar to the somatic balance model have been proposed
to solve other tasks as well (69, 70), suggesting that dendritic
balance could be of more general relevance for learning. Indeed,
indications of inhibitory modulated plasticity can be found not
only in visual cortex (55), but also in hippocampus (38) and
possibly other areas (8, 71).

To conclude, we here presented a learning scheme that facil-
itates highly cooperative population codes for complex stimuli
in neural populations. Our results question pairwise Hebbian
learning as a paradigm for representation learning and suggest
that there exists a direct connection between dendritic balance
and synaptic plasticity.

Materials and Methods
Neural activity was simulated in discrete timesteps of length δ. Images
were presented as continuous inputs for 100 ms each, that is, as constant
inputs for 70 ms, after which they were linearly interpolated over 30 ms to
the next image to avoid discontinuities in the input signal. In the speech
task, audio signals were encoded in 25 frequency channels, sampled at 200
Hz, and presented with linear interpolation between datapoints. For every
experiment a learning set and a test set were created. The networks learned
online on the training set; in regular intervals the learning rules were turned
off and the performance was evaluated on the test set. Performance was
measured via the instantaneous decoder loss (Eq. 1) by learning the decoder
D alongside the network. The respective update rule for the decoder is
given by

ΔDij ∝ zj(xi −
∑

kDikzk). [10]

For DB networks we propose three learning schemes with fast or slow
recurrent plasticity (detailed in SI Appendix, section B.3). To reduce com-
putation time for large networks, the analytical solution of optimal recur-
rent weights Wi

jk = −FijFik was used as an approximation of the proposed
learning schemes. For Figs. 3 and 5 C–E the dendritic balance learning

scheme with fast recurrent plasticity and the weight decay trick (DB decay
in SI Appendix) is displayed. For Fig. 4, as well as Fig. 5 F–H, we used the
analytical solution. When comparing the proposed learning schemes to the
analytical solution on reference simulations (SI Appendix, Figs. S2 and S3),
they consistently found very similar network parameters and reached the
same performance.

In early simulations we observed that coding performance is largely
affected by the population rate, i.e., how many spikes can be used to encode
the input signal. To avoid this effect when comparing the two learning
schemes, we additionally introduced a rapid compensatory mechanism to
fix the firing rates, which is realized by changing the thresholds Tj . We
emphasize again that this adaptation is in principle not necessary to ensure
stable network function. In fact, error-correcting balanced state inhibition
can already be sufficient for a network to develop into a slow firing
regime (11). The fixed firing rate is enforced by adapting the threshold Tj

according to
ΔTj ∝ (sj − ρ δ),

such that neurons are firing with a target firing rate ρ. Here, ρ δ is the mean
number of spikes in a time window of size δ if a neuron would spike with
rate ρ, and sj is a spike indicator that is 1 if neuron j spiked in the last time
δ; otherwise sj = 0.

Furthermore, in the simulations of correlated bars and natural scenes
(Fig. 4), we aided the learning process by starting with a high stochasticity
in spiking and slowly decreasing it toward the desired stochasticity. While
similar results were obtained without using this method, we observed that
convergence of the networks to an efficient solution was more reliable with
it, as it helped in avoiding local minima of the goal function in early phases
of learning. Specifically, we started with a stochasticity of Δu = 1.0. We then
exponentially annealed it toward the final value Δu∗ by applying every
timestep

Δu(t + 1) = Δu(t) − ηΔu(Δu(t) − Δu∗
).

Data Availability. Full derivations of the network dynamics and learning
rules, more details about the relation of our model to previous models
in the literature, and supplementary figures containing additional infor-
mation for simulation experiments, as well as simulation parameters, are
provided in SI Appendix. Code for reproducing the main simulations is avail-
able in GitHub at https://github.com/Priesemann-Group/dendritic_balance
(73). Computer programs data have been deposited in Zenodo at https://
zenodo.org/record/4133446.
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Where is the error? Hierarchical predictive
coding through dendritic error computation

Fabian A. Mikulasch,1,5,* Lucas Rudelt,1,5 Michael Wibral,2 and Viola Priesemann1,3,4

Top-down feedback in cortex is critical for guiding sensory processing, which
has prominently been formalized in the theory of hierarchical predictive coding
(hPC). However, experimental evidence for error units, which are central to the
theory, is inconclusive and it remains unclear how hPC can be implemented
with spiking neurons. To address this, we connect hPC to existing work on effi-
cient coding in balanced networks with lateral inhibition and predictive computa-
tion at apical dendrites. Together, this work points to an efficient implementation
of hPC with spiking neurons, where prediction errors are computed not in sepa-
rate units, but locally in dendritic compartments. We then discuss the correspon-
dence of this model to experimentally observed connectivity patterns, plasticity,
and dynamics in cortex.

Neural models of inference in cortex
A central feature of perception is that our internal expectations to a large degree shape how we
perceive the world [1]. A long line of research aims to describe these expectation-guided compu-
tations in our brain by Bayesian inference (see Glossary) (i.e., statistically optimal perception)
and, subsequently, could show that Bayesian inference often captures perception extraordinarily
well [2,3] (for a critical discussion see also [4]). In light of these results, it has been proposed that
the primary computation that is performed by the cortex is a hierarchically organized inference
process, where cortical areas combine bottom-up sensory information and top-down expecta-
tions to find a consistent explanation of sensory data [5–8].

While the general idea of hierarchical inference in cortex found considerable experimental support
[7,9,10], it is less clear how exactly this inference could be implemented by cortical neurons. A
popular theory to describe the neural substrate of inference in cortex is classical hierarchical
predictive coding (hPC) [6,11]. A central proposition of this theory is the existence of error
units, which are thought to compare top-down predictions with bottom-up inputs, and guide
neural computation and plasticity. However, classical hPC for the most part remains on the
level of firing-rate dynamics of neural populations and it has proven difficult to connect the theory
to the properties of single neurons with spiking dynamics [12,13].

Here we point towards a different, emerging theory of hierarchical inference in cortex, which relies
on the local membrane dynamics in neural dendrites. The core idea of this theory, which we will
refer to as dendritic hPC, is to shift error computation from separate neural populations into the
dendritic compartments of pyramidal neurons. We will first discuss how this shift in perspective
enables a biologically plausible implementation of hPC with spiking neurons, and how it connects
hPC to theories of efficient coding in balanced spiking networks [14] and neural sampling [2].
In the second part, we will discuss the biological plausibility of dendritic hPC, explain how several
experimental observations of hierarchical cortical computation fit into the picture, and highlight
the experimental predictions that can be generated from the theory.

Highlights
Hierarchical predictive coding has been
considered one of the most promising
unifying theories of cortical computation.
Yet, in its classical form, it remains difficult
to connect to single neuron physiology.

We review work that shows that hier-
archical predictive coding can be im-
plemented by neurons with dendritic
compartments, where prediction er-
rors are computed by the local volt-
age dynamics in the dendrites.

This connects the theories of predictive
coding and efficient coding in balanced
networks and provides a solution to the
open problemof implementing predictive
coding with spiking neurons.

This also links predictive coding to corti-
cal physiology and voltage-dependent
plasticity, which offers new ways to test
for predictive coding in cortex.
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Dendritic predictive coding in balanced spiking neural networks
Classical models of predictive coding
Hierarchical predictive coding (hPC) describes the processing of sensory information as inference
in a hierarchical model of sensory data (see Box 1 for mathematical details, which are not needed
to understand the main text). The central idea of hPC is that activity of prediction units in one
level of the hierarchy:

(i) should accurately predict sensory data or the prediction unit activity in a lower level, and
(ii) should be consistent with top-down predictions generated by higher levels in the hierarchy.

hPC tries to understand how these properties of neural activity can be ensured by neural dynamics
on short timescales, and neural learning and plasticity on long timescales. The theory predicts that
to this end, the prediction units in every level of the hierarchy need access to two types of errors:

Box 1. Mathematical details of classical predictive coding

The goal in hPC is to maximize the model log-likelihood [11] (for a detailed tutorial see [134])

L ¼
XN

i¼1

log pθ r i−1jr i� �
; ½I�

where θ are the model parameters, r i is neural activity of a neural network at level i, and inputs are provided by the previous
level r i−1. This defines a hierarchy of processing stages that, for example, can be associated with different visual cortical
areas (e.g., V1, V2, etc.), where r0 are visual inputs from LGN [11]. Typically, a linear model is assumed, where inputs
are modeled according to

r i−1 ¼ D ir i þ n i−1; ½II�

with decoding matrixD i and Gaussian white noise ni−1 with zero mean and variance σi−1
2. With this model, for a single level

i, the relevant contributions of the negative log-likelihood � Li take the intuitive form of the square sum of coding errors for
bottom-up inputs and errors of top-down predictions:

bottom‐up error : ei−1 ¼ r i−1 −D ir i ;
top‐down error : ei ¼ r i −D iþ1r iþ1;

½III�

�Li ¼ 1
2σ2

i�1

ei�1⊤ei�1 þ 1
2σ2

i

ei⊤ei : ½IV�

The goal is then tominimize the sum of coding errors on a fast timescale τr via neural dynamics d
dt r

i , and with a slow learning
rate ηD via neural plasticity on the weights Di, by performing gradient ascent on L:

dynamics : τ r
d
dt

ri ¼ 1
σ2

i�1

Di⊤ei�1 � 1
σ2

i

ei ½V�

plasticity : η�1
D

d
dt

Di ¼ 1
σ2

i�1

ei�1ri
⊤
: ½VI�

To yield a neural implementation, the key innovation in classical hPC was to represent prediction errors within a distinct
neural population of error units. Error units integrate inputs of prediction units within the same level and subtract top-down
predictions according to

τ e
d
dt

ei ¼ − ei þ r i−D iþ1r iþ1; ½VII�

where decoding weightsDi now correspond directly to weights of neural connections [134]. Together with the dynamics of
prediction units, this results in the hierarchical neural circuit shown in Figure 1A in the main text.
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Glossary
Balanced spiking networks: recur-
rent networks of spiking neurons with
E-I balance; these networks show
asynchronous irregular spiking activity
and can efficiently encode dynamic vari-
ables.
E-I balance: excitatory and inhibitory
currents are ‘balanced’, when their
magnitude approximately matches.
Hierarchical predictive coding
(hPC): a theory of hierarchical inference
in cortex.
Inference: in hPC, inference is the
process of finding the underlying causes
of sensory data; these underlying
causes can be used to predict (or simi-
larly, ‘explain away’) the sensory input or
the activity in lower levels of the hierar-
chy.
Lateral inhibition: pyramidal neurons
in a population compete via lateral inhi-
bition through interneurons, which can
be used to both increase the efficiency of
the neural code and to distinguish
between competing explanations of
sensory data.
Neural sampling: instead of comput-
ing a single best explanation of sensory
data, neural activity can sample possible
explanations according to their likeli-
hood.
Prediction neuron: pyramidal neuron
that aims to predict the activity of other
neurons, as proposed by dendritic hPC.
Prediction unit: abstract unit of neu-
rons that aims to predict the activity of
other units, as proposed by classical
hPC.
Pyramidal neuron: the primary excit-
atory neuron in cortex, typically with a
characteristic long ‘apical’ dendrite.
Tight balance: if the E-I balance is
present not only on average, but also on
short timescales, it is ‘tight’.
Voltage-dependent plasticity (VDP):
changes in synaptic strength that
depend on the postsynaptic membrane
potential in the vicinity of the synapse.
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(i) bottom-up errors (i.e., the mismatch between activity in lower levels and predictions gener-
ated within the level);

(ii) top-down errors (i.e., the mismatch between activity within the level and top-down predictions
from higher levels).

In classical hPC [11], the key innovation was to represent these errors in distinct populations of error
units that compare top-down predictions with the activity within a level (Figure 1A, Key figure). The
elegance of this approach is that the same error units canmediate both, bottom-up errors to update
prediction units in the next level, as well as top-down errors to neurons of the same level. Another
central result of classical hPC is that the learning rules that improve the hierarchical model take the
form [error × prediction], which turns out to be classic Hebbian plasticity (i.e., the multiplication of
pre- and postsynaptic activity).

A functionally equivalent formulation of predictive coding with dendritic error computation
Although the idea of error units is undeniably elegant, it is not the only way to compute prediction
errors in a neural circuit. More recent models showed that error computation can also be per-
formed in the voltage dynamics of individual dendritic compartments [14–16] and, thus, without
specialized error units. Combining these models allows for a reinterpretation of hPC, which we
term dendritic hPC, where every prediction neuron will represent the two types of errors we
discussed before in different sections of its dendritic tree (Figure 1B, see Box 2 for mathematical
details):

Key figure

Implementation of predictive coding with dendritic error computation and spiking neurons

TrendsTrends inin NeurosciencesNeurosciences

Figure 1. (A) Illustration of the classical model of hierarchical predictive coding (hPC). Errors and predictions are computed in different neural populations within one level of
the hierarchy. Errors are sent up the hierarchy, while predictions are sent downwards. (B) In dendritic hPC, prediction neurons implement the same function, but errors are
computed in neural dendrites. Predictions are sent up the hierarchy to basal dendrites, where they are balanced by lateral connections to compute bottom-up prediction
errors (left). At the same time, predictions are sent down the hierarchy to apical dendrites, where they try to predict somatic spiking and guide the inference process (right).
The pathways are shown separately for better visibility. (C) Dendritic hPC can be implemented with spiking neurons. The errors that are computed in the dendritic
membrane potentials are integrated at the soma to form an overall error signal of the neuron’s encoding. A spike is emitted when the somatic error potential grows too
large and a spike would lead to a reduction in the overall error.
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(i) bottom-up errors in basal dendritic compartments [16], where input from lower-level cortical
areas is integrated [17];

(ii) the top-down prediction error (for the neuron’s own activity) in an apical compartment [15],
where higher-level cortical feedback arrives [17].

Besides the absence of error units, two additional central differences arise between the architec-
tures of classical and dendritic hPC. First, in dendritic hPC both bottom-up and top-down signals
are predictions, a possibility that has been discussed before [18]. Second, and more importantly,
while prediction units in classical hPC inhibit each other through error units, prediction neurons in
dendritic hPC directly compete through lateral inhibition on basal dendrites. Such networks
with strong lateral inhibition (or similarly, winner-take-all-like dynamics [19]) have a long tradition
in theoretical neuroscience, as models for the sparse and efficient encoding of sensory data
[16,20–25] and as divisive normalization models of cortical computation [26,27]. Dendritic hPC

Box 2. Mathematical details of dendritic predictive coding

In dendritic hPC, the computation of errors in Equation VII is accomplished by the leaky voltage dynamics of dendritic
compartments. Different models have explored this idea separately for basal dendrites [16,25,40] and apical dendrites
(also with nonlinearities, which we here omit) [15,28], which we here combine to form a model that is equivalent to classical
hPC. To this end, for each prediction neuron j, one introduces basal dendritic compartments bjk

i ≈ Dkj
i ek

i−1, which are each
innervated by a single synapse of a prediction neuron k of the previous level [16], as well as an apical compartment aj

i ≈ − ej
i

that is innervated by prediction neurons of a higher level [15] (see Figure 1B in the main text). The error computation is then
performed by voltage dynamics according to

τb
d
dt

bi
jk ¼ − bi

jk þ Di
kj r

i−1
k −

X
l

Wi
jkl r

i
l ; ½VIII�

τ a
d
dt

aij ¼ − aij − r ij þ
X
l

D iþ1
jl r iþ1

l ; ½IX�

where bottom-up inputs are balanced with lateral connectionsWjkl
i (connection of neuron rl

i to the kth dendritic compartment
of neuron rj

i ), and top-down predictions are matched by the neurons own predictions rj
i. The latter has been proposed to be

implemented via the backpropagating action potential [15], solving the one-to-one connections problem of classical hPC
[135]. To compute bottom-up errors, lateral weights have to be chosen asWjkl

i = Dkj
i Dlj

i. Such weights can be found through
a voltage-dependent plasticity rule, which enforces a tight balance in the kth dendritic compartment [16]

η−1
W

d
dt

Wi
jkl ¼

1
σ2

i−1

bi
jk r

i
l : ½X�

The dynamics of prediction neurons are then simply driven by the dendritic error potentials

τ r
d
dt

r ij ¼
1

σ2
i−1

X
k

bi
jk þ

1
σ2

i

aij ; ½XI�

and weights for bottom-up and top-down inputs can be learned with voltage-dependent rules (Equation XII proposed in
[16], Equation XIII proposed in a generalized form in [15])

η−1
D

d
dt

Di
kj ¼

1
σ2

i−1

1

Di
kj

bi
jk r

i
j ; ½XII�

η−1
D

d
dt

D iþ1
jl ¼ −

1
σ2

i

aij r
iþ1
l : ½XIII�

Here, learning of bottom-up weights requires that lateral and bottom-up weights always align via Wjkl
i = Dkj

i Dlj
i, which in

classical hPC is known as the weight transport problem [49,135]. For dendritic hPC a solution based on weight decay
has been proposed in [16], which was demonstrated in a single-level model and is similar to a solution proposed for
classical hPC [49]. Together, these equations yield an equivalent formulation of hPC for both learning and inference, where
prediction errors are computed locally in dendritic compartments.
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is closely related to these models, except that in these models it was not considered how exactly
top-down connections could guide neural computations with predictions. In a more general
context it has been proposed that top-down connections could provide these predictions by
targeting apical dendrites [15,28–31]. Dendritic hPC combines these ideas of lateral competition
and top-down predictions into a coherent theory of hierarchical inference in cortex.

Since in dendritic hPC error computation takes place in the voltage dynamics of basal and apical
dendritic compartments, these local potentials play an important role for synaptic plasticity. For
basal dendrites, dendritic hPC predicts that plastic lateral connections compute the errors for
bottom-up inputs by establishing a tight balance locally in individual dendritic compartments
(i.e., trying to closely match excitatory with inhibitory currents [32]). The intuitive explanation for
this computation is that in a tightly balanced state, every input that can be predicted from other
neurons is effectively canceled and the remaining unpredictable input constitutes the prediction
error [14,16]. These errors can then be exploited by another voltage-dependent rule for
bottom-up connections, in order to find an optimal encoding of inputs [16]. This learning rule is
Hebbian-like (i.e., pairing postsynaptic firing with presynaptic input will induce potentiation of
the synapse). At the same time, strong local inhibition during the postsynaptic spike would signal
an over-prediction of the input and consequently should lead to long-term depression of the
synapse. For apical dendrites, it has been proposed that error computation relies on the
mismatch between apical prediction and somatic spiking [15]. In this theory of apical learning,
plasticity of top-down connections is Hebbian-like as well, but synapses are depressed for a
depolarization of the apical dendritic potential in the absence of somatic spiking. By employing
these voltage-dependent plasticity (VDP) rules, dendritic hPC implements the same learning
algorithm as classical hPC, but in prediction neurons with dendritic error computation (Box 2).

Dendritic error computation has also been used in a different context to implement the
backpropagation algorithm in a cortical microcircuit [33–36]. Although this model of dendritic
error backpropagation and dendritic hPC employ similar ideas, they ultimately pursue different
goals and thus make distinct predictions for plasticity and E-I balance in basal and apical
dendritic compartments (Figure 2).

Dendritic errors enable an efficient implementation of hPC with spiking neurons
Dendritic errors do not only yield an equivalent formulation of hPC, they also enable inference with
spiking neurons. Here, the inferred variables have to be efficiently represented by spikes, which is

TrendsTrends inin NeurosciencesNeurosciences

Figure 2. Relation of dendritic
predictive coding to dendritic
microcircuits for error
backpropagation. (Left) In dendritic
hierarchical predictive coding (hPC)
the goal is to generate predictions
of bottom-up sensory inputs. Here
prediction errors are computed via
balancing inhibition to basal dendrites
and the mismatch of top-down
predictions and somatic spiking at
apical dendrites. (Right) In models
that employ backpropagation the

goal is to generate a target output at the highest level (e.g., a label) [33]. To this end an ‘inverted’ model of hPC is employed [35],
where balancing inhibition at the apical dendrite is used to compute the backpropagated error of the output. While thorough testing
of both theories remains to be conducted, a recent study indicates that pyramidal neurons learn predictive (and not balanced) apical
activity [31], more consistent with dendritic hPC. However, this particular observation of course would not rule out that cortical
networks could make use of both proposed mechanisms in different modes of operation or different neural populations.
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possible if spikes are only fired if they reduce the overall prediction error [14,37,38] (see Box 3 for
the mathematical details of dendritic hPC with spiking neurons). Since in dendritic hPC prediction
errors are represented in the balanced membrane potentials, an efficient spike encoding can be
found with a simple threshold mechanism that generates a spike when the error potential grows
too large (Figure 1C), as demonstrated in single-level models [39,40]. Predictive coding thus
serves a dual purpose in dendritic hPC, by enabling both inference in a hierarchical model and
an efficient spike encoding of dynamical variables.

A central role in this inference scheme with spikes is played by noise in the neural dynamics, for
two reasons. First, noise enables an efficient spike encoding in the face of transmission delays.
With deterministic neurons, even a small delay of inhibition can lead to erratic network behavior,
since inhibition will often arrive too late to prevent synchronous spiking of large parts of a

Box 3. Mathematical details of dendritic predictive coding with spikes

Spike-based predictions of sensory data

A popular choice to mathematically formalize the prediction generated by a spike at time tsp is via spike traces κ(t, tsp) =
exp(−(t − tsp)/τ) that decay exponentially with some time constant τ [16,40]. Predictions of a neuron then change upon a
spike according to r(t) → r(t) + κ(t, tsp), which approximately corresponds to the way spikes are read out in the
membranes of postsynaptic neurons. With these predictions r(t), the same formalism as before can be used to compute
the instantaneous log-likelihood (see Box 1 in the main text):

L tð Þ ¼
XN

i¼1

log pθ r i−1 tð Þjr i tð Þ� �
: ½XIV�

However, due to the discontinuous nature of spikes, inference can no longer be implemented by simple gradient ascent.

Efficient spiking implementation of predictive coding with dendritic errors

One straightforward approach to implement inference with spikes is to deterministically fire a spike at time t if it instantly
improves bottom-up and top-down errors, that is, the log-likelihood L(t) [40]:

L tjneuron j spikes at time tð Þ > L tjno spike at time tð Þ: ½XV�

This can be seen as a discrete implementation of gradient ascent to find the instantaneous maximum a posteriori (MAP)
estimate for predictions rj

i. From this principle it can be derived that a neuron should spike if its balanced membrane
potential uj

i(t) surpasses a firing threshold Tj [40], that is, if

u i
j tð Þ ¼

1
σ2

i−1

X
k

bi
jk þ

1
σ2

i

aij > T j : ½XVI�

This equation is analogous to Equation XI, where bjk
i (t) are the balanced dendritic potentials of basal dendrites and aj

i(t) the
potential of the apical dendrite.

Predictive coding with neural sampling

A more general approach to inference with spikes is to sample a (binary) spike train S0:T = {si(t)| i ∈ {1,…,N}, t ∈ {0,…,T}}
from the posterior distribution of the generative model S0:T ∼ pθ (S0:T |r0:T

0 ) [16,136]. The posterior is implicitly defined via
the model pθ(r

i-1(t)|ri(t)), a prior on spiking pθ (s
N(t)) and spike traces r i(t) = ∑t′=0

t si(t′)κ(t, t′). While computing the posterior
distribution exactly is intractable [16,136], approximate online sampling can be implemented with the same membrane
potentials uj

i(t) and threshold Tj as before (up to a constant factor) and a soft spiking threshold mechanism

p neuron j spikes at time tð Þ ¼ sig uij tð Þ − T j

� �
; ½XVII�

where sig(x) = 1/(1 + exp(−x)) is the logistic function [16]. Note, that uj
i(t) and Tj are scaled by the precisions of errors 1

σ2
i

(Equation XVI) and thus the stochasticity of spiking will capture the uncertainty in inference. This model is a special case
of the spike response model with escape noise [137] and can be implemented by a leaky-integrate-and-fire neuron with
a noisy membrane potential. Equations XI, XVI, and XVII highlight the intimate relation that exists between the theories of
hPC, efficient coding with spikes, and neural sampling.
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population [41]. Noise relaxes this constraint on the speed of feedback, since it effectively decou-
ples and desynchronizes neural spiking [37,41,42]. Second, noise in spiking neural networks en-
ables neural sampling [2,43–46]. Here, the idea is that neural activity samples possible predictions
according to their likelihood, instead of computing a single best estimate as in classical hPC (Box 3).
Neural sampling therefore is a principled way to represent uncertainty in inference via neural activity
and has, for example, been used to explain variability in neural responses [47,139] and the origin of
multistability in perception [48]. Recent models show that neural sampling and efficient spike coding
with tight E-I balance can be combined in a single model with dendritic error computation [16,43], re-
lating these concepts to the proposed model of dendritic hPC (Box 3).

In addition to neural inference, dendritic errors also enable learning in populations of spiking
neurons. This is not straightforward, since the switch from rate-based to spike-based models
typically requires a modification of the learning algorithms. For example, when using spiking
error units, as in classical hPC, it is not directly possible to represent both positive and negative errors
by non-negative activity [49]. To resolve this, it was proposed that errors are represented by devia-
tions relative to a baseline firing rate [49], but this would require high firing rates and therefore
seems implausible considering the low firing rates in neocortex [50]. An alternative is to represent pos-
itive and negative errors in separate populations [11,50], but it is unclear how in this case biological
plasticity can recombine the positive and negative parts, which are both required for the learning of
single synapses. Due to these difficulties, to date, no complete implementation of hPC that uses spik-
ing error units has been proposed [13]. By contrast, in dendritic hPC the same learning algorithm as
for rate-based units can be straightforwardly applied to spiking neurons. The reason is that dendritic
membrane potentials remain continuous quantities, despite the spiking nature of neural activity, and
thus can easily represent the prediction errors that are required for the learning of bottom-up and top-
down connections (Box 2), which has been successfully applied in [15,16].

Is dendritic predictive coding biologically plausible?
In the previous section we have introduced the twomain assumptions of dendritic hPC, which are: (i)
cortex implements inference in a hierarchical probabilistic model, and (ii) errors of the resulting predic-
tions are computed in the local voltage dynamics of basal and apical dendrites. The implications of the
first assumption have been discussed at length in the context of classical hPC andwere found to align
well with experimental observations [7,10,51]. In the following wewill discuss the biological plausibility
of the second assumption. Ultimately, we will argue that dendritic hPC can indeed be closely con-
nected to many properties of pyramidal neurons and inhibitory connectivity in cortex.

Dendritic error computation and synaptic plasticity in pyramidal neurons
To compute errors in basal dendrites, a tight and local E-I balance is required. Indeed, it has been
found in several instances that inhibitory and excitatory currents are tightly correlated, with inhibi-
tion trailing excitation by fewmilliseconds [14,52,53]. This tight balance leaves neurons only with a
brief window of opportunity for spiking, which effectively decorrelates neural responses to inputs
and thereby ensures an efficient neural code [25]. A tight E-I balance can therefore explain the
origin of the irregular spiking patterns of neurons that have been observed throughout cortex
[14,54]. Although models with a tight balance can reproduce irregular firing on the single neuron
level, incorporating realistic synaptic transmission delays in these models can lead to oscillations
on the population level [37]. Oscillations in cortical activity in the gamma frequency band have
therefore been discussed as signatures of efficient coding in balanced networks [42] (and
might also support efficient neural sampling [45,55]).

Consistent with dendritic hPC, this balance has also been found to extend to individual dendritic
compartments [32,56,57]. Crucially, this local balance can be observed down to the scale of
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(at least) single dendritic branches [56], since the attenuation of dendritic currents prevents that inhib-
itory postsynaptic potentials spread into other dendritic branches and influence the E-I balance there
[58,59]. Experiments could also show that this local balance is maintained through localized synaptic
plasticity, which re-establishes the balance after a perturbation and coordinates excitatory and inhib-
itory plasticity locally [56,60–65]. Overall, these findings are compatible with the idea that a local
balance can compute prediction errors for specific synaptic contacts at basal dendrites.

Another prediction of dendritic hPC, which has been consistently observed in a range of experi-
ments, is that the local membrane potential is a central determinant of synaptic plasticity
[61,65–68]. This VDP is thought to be mainly mediated by the local calcium concentration,
which follows the local membrane potential and modulates synaptic plasticity [59,69,70].
Based on these observations, VDP rules have been proposed that can reproduce several exper-
iments of spike-timing-dependent plasticity in a unified picture [71–73]. An especially important
consequence of locally organized VDP, which is also required by dendritic hPC, is that inhibition
can strongly modulate synaptic plasticity in a very localized manner [32,65,74–76].

Are the VDP rules that can be derived from dendritic hPC consistent with these experimentally
observed VDP rules? A distinction has to be made here between VDP rules in basal dendrites,
which should enable the learning of neural representations [16], and VDP in apical dendrites,
which should enable the prediction of somatic spiking [15]. For representation learning in basal
dendrites, we have argued in [16] that previously proposed VDP rules [71,72] can be reconciled
with the VDP rules derived from dendritic hPC. One prediction of these derived VDP rules is that
strong local inhibition should promote the depression of excitatory synapses, an effect that has
been observed in proximal dendrites of hippocampal pyramidal neurons [75] (similarly found in
[77]). By contrast, for the learning of apical connections, an explicit correspondence to experi-
mental VDP still has to be proposed. Experiments show that synaptic plasticity close to and far
from the soma behaves vastly differently [31,78–80], which could support the different require-
ments for basal and apical synaptic plasticity in dendritic hPC. While more experimental and
theoretical work is needed to clarify the connections between dendritic hPC and experimental
VDP, these results suggest that cortical pyramidal neurons in principle are suited to implement
the learning algorithm proposed by dendritic hPC.

A diversity of inhibitory interneurons is required for dendritic predictive coding
Since pyramidal neurons in general only excite other cells, additional inhibitory interneurons are
required to implement the dendritic hPC model. The central inhibitory motif of dendritic hPC
requires interneurons that balance bottom-up inputs to basal dendrites via lateral connections
[16,25]. These interneurons show strong similarities to parvalbumin-expressing (PV) interneurons
in cortex, which implement a precisely adjusted competition between pyramidal neurons
[24,81–84]. PV positive, fast-spiking basket cells alone make up around 30–50% of all interneu-
rons in the cortical microcircuit [85] and are especially adapted to tightly control pyramidal neuron
spiking and the cortical E-I balance via very fast inhibition to somata and basal dendrites [86,87].
PV interneurons also seem to be responsible for the gamma oscillations that similarly arise
through lateral inhibition in dendritic hPC [87–89]. Dendritic hPC is therefore closely linked to
one of the defining inhibitory motifs of cortex.

Next to PV interneurons, most other interneurons in cortex can be classified as either
somatostatin-expressing (SST) interneurons, which preferentially target the apical dendrites of
pyramidal neurons, or vasoactive intestinal peptide-expressing (VIP) interneurons, which mainly
inhibit other interneurons, especially SST [86,90]. SST and VIP interneurons, for example, have
been observed to be responsible for top-down inhibitory control [91], which is also required in
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dendritic hPC when top-down input predicts a decrease in activity. However, not all of the major
connectivity patterns of SST and VIP cells can be straightforwardly explained by dendritic hPC:
SST interneurons, for example, also mediate short-range lateral inhibition to apical dendrites,
which allows them to contribute to surround suppression [92] and to gate top-down input
[93,94]. The disinhibitory circuit of VIP contributes to this gating mechanism by specifically
suppressing SST neurons during active behavior [93,95,96]. SST and VIP neurons have also
been found to be crucial for gating apical plasticity, for example, during reward-based learning
[97–99]. These connectivity motifs thus play a central role in how predictions are processed by
apical dendrites, but precisely what functions they could implement, especially in the context of
dendritic hPC, has yet to be understood [65].

Dendritic predictive coding in neocortical lamination
Neocortex employs multiple types of pyramidal neurons that reside on different cortical layers and
exhibit specific connectivity [17]. We here propose that dendritic hPC in particular describes the
computations of layer 2/3 neurons (Figure 3D). That layer 2/3 neurons are central in the hierarchi-
cal integration of information and the interpretation of sensory data has been proposed before, for
example, based on cortical physiology [19] or in theories of classical hPC, where errors and pre-
dictions are first computed in layer 2/3 [6] (Figure 3C). There are several arguments for why den-
dritic hPC is particularly well suited to describe layer 2/3: first, like in dendritic hPC, layer 2/3
neurons combine bottom-up signals (sent from layer 4 to their basal dendrites) with top-down

(A)

(B)

(C) (D)
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Figure 3. How could dendritic predictive coding be embedded into neocortical microcircuits and lamination? (A) Core circuitry of mammalian neocortex, as
shown in [102,104]. Input neurons in layer 4 (green) receive sensory information from the dorsal thalamus, layer 2/3 intratelencephalic (IT) neurons (blue) further process this
information, and output neurons in layer 5 (red) project to the brainstem and other areas. Additional connections, for example, from thalamus to layer 1 (mostly relayed from
other cortical areas [94]) or layer 5 (broken lines), or within layer 2/3 between areas exist [17,138], but will be omitted in the following for simplicity. (B) Theories of cortical
evolution hypothesize that these input, IT, and output cells are homologous to cells that existed in the ancestral amniote pallium [104]. Also, in birds and non-avian reptiles,
homologous cell types exist, but are organized in architectures that differ from the laminar organization of mammalian neocortex. (C) The predictive coding microcircuit as
proposed by [6] (here presented in a simplified form) follows the organization of the neocortical microcircuit. Predictions (ri) and prediction errors (ei) are computed in layer 2/
3. Deeper layers mainly act as communication hubs by copying signals from layer 2/3. (D) Speculative microcircuit for dendritic predictive coding. Here, deeper layers fulfill
the same role as communication hubs (and possibly complementary functions [19]), but layer 2/3 only computes predictions.
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signals (sent from layer 5 or layer 2/3 to their apical dendrites) [6,17,19]. Second, layer 2/3 neu-
rons exhibit sparse activity, which is mainly enforced by lateral inhibition via PV interneurons
[83,84,100], a motif that is present in dendritic hPC but not in other theories of hPC [6,35].
Last, superficial cortical layers show pronounced gamma oscillations [6,88,89] that are expected
to arise through lateral inhibition in dendritic hPC [37,42].

Importantly, these properties implied by dendritic hPC are not general features of pyramidal
neurons, which in other layers likely implement different functions. Layer 5 neurons, for example,
employ a dense and not a sparse code [100] and show less gamma oscillations [6,89]. These
properties, together with the position of layer 5 neurons as downstream elements in the microcir-
cuit [17], have led to the suggestion that layer 5 might be employed in long-range communication
[100] and output selection [19]. Layer 4 in turn shows an abundance of PV interneurons [86] and
could implement a preprocessing of bottom-up inputs [17]. These different roles of deeper layers
are also in line with theories of cortical evolution, which hypothesize that deeper layers have
migrated from previously separate ‘input’ and ‘output’ neural populations to neocortex in order
to integrate cortical neurons more deeply with the rest of the brain and other cortical areas
[101–104] (Figure 3A,B). Hence, the different functions of deeper layers could complement the
computations of dendritic hPC in important ways, but how exactly such an interaction could
look has yet to be formulated.

Another aspect of cortical lamination that could support the computations of dendritic hPC are
neuromodulators. Neuromodulators act on a wide range of scales [105] and can target specific
cortical layers, where they might modulate computations in specific dendritic domains of pyrami-
dal cells [94,106–108]. For example, acetylcholine (ACh), which is associated with attention and
learning, has been found to promote (dis-)inhibition of apical or basal dendrites through distinct
mechanisms, possibly in a very targeted manner [96,99,107–109]. In the context of hPC, ACh
and other neuromodulators have been proposed to set the precisions of the internal model and
thereby determine the influence of sensory and top-down information [110–112]. The separation
of top-down and bottom-up inputs across cortical layers, as in dendritic hPC, could therefore be
a central factor to enable the targeted modulation of these pathways. This might not only apply to
the effects of ACh on neural gain, but also to the various other effects ACh and other neuromod-
ulators have on cortical dynamics and plasticity [105].

How can error responses arise in prediction neurons?
One of the central features of classical hPC is its ability to explain a variety of experimental
observations through the concept of error neurons. Error neurons have, for example, been
used to explain extra-classical receptive field effects in visual cortex [11], as well as mismatch
responses in cortex, which are neural responses that appear to signal the mismatch between
an internal model and sensory data [10]. Thus, an important question for dendritic hPC is if and
how these experimental observations can arise in a model without error neurons.

The first experimental observation that has been explained with error neurons in hPC is the extra-
classical receptive field effect of endstopping [11]. In endstopping it is found that, first, the
response of a neuron in V1 to a bar stimulus decreases when the bar extends over its receptive
field, and second, this effect is reduced when feedback from higher-level areas is disabled
[113,114]. Recent theoretical work showed that endstopping behavior, as well as other extra-
classical receptive field effects, also occur in prediction neurons, where top-down connections
strengthen these effects [7,115,116]. Here, endstopping is mainly mediated by lateral inhibition
between neurons with overlapping receptive fields [116]. Top-down connections from higher-
level areas predict the activity patterns that arise from these lateral interactions and enhance
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them, which strengthens endstopping behavior [115]. This cooperation of lateral and top-down
interactions could be important to help the network to cope with noise in the inputs and improve
visual processing [115,117] and has been widely observed in visual cortex [114,117–119].

Mismatch responses have been observed in different forms, such as responses to the omission
of expected stimuli [10], responses to a mismatch between information in different modalities
(e.g., visual and motor information) [120–122], strong responses to unexpected stimuli [7,123],
or suppressed responses to expected stimuli [1,124]. Omission responses can already occur
in straightforward prediction neuron responses, as prediction neurons can be active even without
the expected input [10]. Recent work from our group has also shown that multimodal mismatch
responses can naturally arise in prediction neurons, when different cortical areas jointly infer a
consistent explanation of sensory data [125]. This joint inference aims to find single causes that
underlie stimuli in multiple modalities, meaning cortical areas should suppress predictable ac-
tivity in other areas (as in [122,126]), but might also drive activity in case of a prediction mis-
match (as in [120,121,127]). Strong/suppressed responses to unexpected/expected stimuli
in turn have so far not been explained with pure prediction responses, but it has been argued
that they might be mediated by other mechanisms, such as attention to interesting stimuli, the
variance in neural sampling, or adaptation mechanisms [7,124,128]. In conclusion, the ob-
served mismatch responses can be explained by a variety of plausible mechanisms in predic-
tion neurons, which, however, in some cases might not be directly relatable to the
computations of dendritic hPC.

Testable predictions
To better assess the potential as well as the limitations of dendritic hPC to describe inference in
cortex, we here propose experiments that: (i) test predictions for specific neural mechanisms,
and (ii) aim to distinguish between the different implementations of hPC with and without error
neurons.

Predictions for specific neural mechanisms
• Bottom-up excitation to basal dendrites of layer 2/3 pyramidal cells should be locally matched

and balanced with lateral inhibition, likely via PV interneurons (an indication that such a precise
matching is possible, e.g., in dendritic spines, has been found in [129]). This could be tested in
detail, for example, using large-scale connectomics datasets [130].

• Plasticity for excitatory bottom-up connections is predicted to be modulated by local inhibitory
input, which is expected to turn long-term potentiation into depression.While suchmodulation
of plasticity has been found (e.g., in hippocampal neurons in a spike-timing-dependent plas-
ticity experiment [56]), it would be interesting to test this more specifically in layer 2/3 basal
dendrites, with a particular focus on the predicted impact of the strength and timing of inhibi-
tion on plasticity [16].

• Similar experiments could be conducted for top-down connections to apical dendrites, where
plasticity should be Hebbian, but switch to depression when presynpaptic spikes depolarize
the dendrite while the neuron remains silent. Also, here it would be interesting to explicitly
test for the predicted dependence of plasticity on the dendritic membrane potential [15].

• As a consequence of these plasticity mechanisms, activity in basal dendrites is expected to
be decreased (‘explained away’) in the course of learning, whereas activity in apical den-
drites should increase and become predictive of somatic spiking (similar to what was
found in [31]). An important experiment would be to test explicitly if apical activity indeed be-
comes predictive on a single neuron level, which would also distinguish dendritic hPC from
theories of dendritic error backpropagation that predict a clear decrease of apical activity
(Figure 2).
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Distinguishing between hPC with and without error neurons
The central challenge in distinguishing between different implementations of hPC is that their
underlying mathematical framework is the same, hence they predict the same computations in
prediction neurons. Thus, since classical hPC as yet does not make clear predictions on the
single neuron level, the main distinguishing characteristic between classical and dendritic hPC
is the presence or absence of error units. For specific computations, this might be used to rule
out one of the models:

• As we discussed, mismatch responses are explained via distinct mechanisms in models with
or without error neurons, which could be tested on a case-by-case basis. For example, mis-
match responses in multimodal mismatch experiments are transient [131], where classical
hPC predicts this decrease to be caused by top-down inhibition, while in dendritic hPC one
would expect the origin in adaptation or other bottom-up mechanisms [125] (for other exper-
iments, see also discussion in [7,124]).

• Another, more direct approach would be to map out the functional circuits in cortex, where
classical hPC expects a clear separation between error and prediction units (i.e., error units
only receive predictions and vice versa), but dendritic hPC expects no such separation. For
example, in several experiments reporting ‘error’ and ‘prediction’ neurons, their populations
appear intermixed [123,132] and it would be important to clarify whether or not there exists
a clear feedforward–feedback circuit motif between these populations (e.g., if bottom-up
excitation and inhibition always arrives first in one of the populations).

For these experiments it is important to note that dedicated error neurons (or even classical
hPC) might coexist with dendritic hPC for complementary computations. For example, it is
well known that dopaminergic neurons code for reward prediction errors to guide behavioral
learning [133]. However, it is unclear whether there exists an advantage to implement the
same computation, such as inference in sensory cortex, simultaneously with two different
implementations of hPC.

Concluding remarks
Since its conception over 20 years ago, hPC has been considered one of the most promising
unifying theories of cortical computation, but – in its classical form – it is still facing substantial
questions regarding its biological plausibility. Here, we outlined an emerging hPC scheme
based on dendritic error computation, which is functionally equivalent, but provides solutions
to the most pressing open problems of the established theory of classical hPC: first, it can
explain the lack of clear empirical evidence for the coexistence of error and prediction neurons
[10,51], and second, it overcomes the unresolved question of how learning can be efficiently
implemented with spiking error neurons [13]. Moreover, we explained how dendritic hPC
could connect the microscopic properties of neural dendrites, such as the local E-I balance
[14,32,57] and VDP [72,75], to neural dynamics [14] and learning [15,16,115] in the cortical
hierarchy.

These advances open up several interesting paths for future research. Next to experimen-
tally testing for the predicted mechanisms of inference and learning in cortex (see section
‘Testable predictions’), there are a number of open theoretical challenges, especially con-
cerning the details of the biological implementation (see Outstanding questions). Going
forward, it will also be important to understand how the learning of a hierarchical model of
sensory data interacts with complementary mechanisms, such as attention and behavioral
learning, not only for dendritic hPC, but also for hPC and other theories of inference in
cortex more generally.
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Outstanding questions
Dendritic hPC has been derived under
the assumption of linear dendrites
for a linear encoding of sensory data,
but dendrites often show nonlinear
behavior. How can the ideas of
dendritic hPC be transported to a
model with nonlinear dendrites and
could this allow for a nonlinear and
thus more versatile encoding?

Pyramidal cells show extensive lateral
excitatory connectivity, which could be
used to learn and predict temporal
sequences within a single level. Can
these mechanisms interact purposefully
with the learning of predictions in a
hierarchical model?

When cortical areas communicate
there might be substantial challenges,
such as long transmission delays or
sparse activity in both areas. Are
there additional mechanisms that
could improve neural communication
under these conditions, such as
communication through coherence,
and how could they be integrated
into dendritic hPC?

Pyramidal cells are not a uniform class
of cells, for example, the different
physiology of layer 2/3 and layer 5
apical dendrites leads to different
integration of top-down inputs, but
also layers 2 and 3 contain slightly dif-
ferent subtypes of pyramidal cells.
What are the functional reasons for
these properties and how are they re-
lated to dendritic hPC?

We have suggested that dendritic
hPC describes the computations of
layer 2/3 pyramidal neurons. Under
this assumption, what are the roles
of deeper cortical layers and how can
they be integrated into the framework?

Inference has not only been used to
model sensory processing, but also
computations in hippocampus, and
some of the core predictions of
dendritic hPC also seem to apply to
hippocampal pyramidal cells. Are
principles of dendritic hPC also
employed by different brain regions,
or different neuron types?

Often indirect measures of neural
activity (e.g., electroencephalography,
fMRI) have been used to search for ev-
idence of classical hPC. How would
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How are visuomotor mismatch responses in primary visual cortex em-
bedded into cortical processing? We here show that mismatch responses
can be understood as the result of a cooperation of motor and visual areas
to jointly explain optic flow. This cooperation requires that optic flow is
not explained redundantly by both areas, meaning that optic flow inputs
to V1 that are predictable from motor neurons should be canceled (i.e., ex-
plained away). As a result, neurons in V1 represent only external causes
of optic flow, which could allow the animal to easily detect movements
that are independent of its own locomotion. We implement the proposed
model in a spiking neural network, where coding errors are computed in
dendrites and synaptic weights are learned with voltage-dependent plas-
ticity rules. We find that both positive and negative mismatch responses
arise, providing an alternative to the prevailing idea that visuomotor mis-
match responses are linked to dedicated neurons for error computation.
These results also provide a new perspective on several other recent ob-
servations of cross-modal neural interactions in cortex.

1 Introduction

In recent years, several experiments confirmed the surprising result that
locomotion has a considerable impact on neural activity in visual cortex
(Keller, Bonhoeffer, & Hübener, 2012; Niell & Stryker, 2010; Saleem, Ayaz,
Jeffery, Harris, & Carandini, 2013). Some of these experiments managed
to show that pyramidal cells in layer 2/3 of primary visual cortex (V1)
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compute a visuomotor mismatch, that is, the difference between presented
optic flow and optic flow predicted from the animal’s locomotion (Jordan
& Keller, 2020; Zmarz & Keller, 2016).

An important question to ask is what purpose these computations fulfill
in cortex and how they should be interpreted. A widespread idea is that
these mismatch responses are indicative for the canonical computation of
“error neurons” (Jordan & Keller, 2020) that occurs in a hierarchical pre-
dictive coding model of cortex (Rao & Ballard, 1999). However, as of yet, no
formal model of how exactly these mismatch responses could be embedded
into cortical hierarchical processing has been presented.

Here we argue for a different interpretation of mismatch responses in
visual cortex as a result of explaining away. First, we explain the idea of
this effect and demonstrate it in simulations, where spiking neurons learn
to encode simple optic flow stimuli and locomotion. We then discuss how
this interpretation differs from the prevailing interpretation in terms of ded-
icated error neurons.

2 Theory

The core idea of our model is that visual and motor neurons jointly explain
the optic flow the animal perceives. This does not necessarily require that
motor neurons are actively driven by optic flow stimuli; it means only that
the explanation of optic flow (in the internal model of the animal) is dis-
tributed over different populations. Formally, we can state this with the fol-
lowing model (see Figure 1A), where it is assumed that optic flow rflow can
be reconstructed as a linear sum of the activity of a visual population rV1

and a motor population rM2 plus some gaussian noise nflow with variance
σ 2

flow:

rflow != Dflow←V1rV1 + Dflow←M2rM2 + nflow. (2.1)

Here, Db←a are decoding matrices that decode activity from a to b. To con-
strain the activity of the motor population rM2, we furthermore require that
it encodes the locomotion of the animal rmove according to a linear model,

rmove != Dmove←M2rM2 + nmove. (2.2)

From the model of optic flow, equation 2.1, it is directly visible that (on
average) activity in visual neurons should be proportional to the difference
between optic flow and predictions from motor neurons:

rV1 !∝ rflow − Dflow←M2rM2. (2.3)

46



Visuomotor Mismatch Responses as a Hallmark of Explaining Away 29

Hence, as a result of the cooperation of motor and visual neurons to explain
optic flow, motor neurons should cancel predictable (i.e., self-generated)
optic flow in visual neurons via efference copies. In terms of inference, this
is called explaining away, since activity of one area must not explain aspects
of the input that are already explained by the other area (Moreno-Bote &
Drugowitsch, 2015).

3 Results

To illustrate the emergence of mismatch responses via explaining away, we
simulated inference and learning in this model (see equations 2.1 and 2.2) in
a previously proposed framework of population coding with spiking neu-
rons (Mikulasch, Rudelt, & Priesemann, 2021) (However, any neural im-
plementation of the model should yield similar results). In this framework,
explaining away is implemented via connections between and within neu-
ral populations (see Figure 1B), which cancel (i.e., balance) inputs on a
neuron’s dendrites that can be predicted from the activity of other neurons.
For the encoding of optic flow as in equation 2.3, this framework therefore
requires that motor neurons cancel optic flow inputs on the dendrites of
visual neurons. This can be achieved by learning a balance on neural den-
drites via voltage-dependent plasticity (Mikulasch et al., 2021). Visual neu-
rons can then learn to efficiently encode the residual visual flow via another
voltage-dependent plasticity rule.

Using this model, we recreated the visuomotor mismatch experiment of
Jordan and Keller (2020) in a simplified manner (see Figure 1C). The task
of the network was to encode locomotion and optic flow, which were pre-
sented simultaneously (for details about the data creation, see section 5). We
used simple locomotion signals that indicated a turn to the left or right. Op-
tic flow consisted of the activity of three receptors, which indicated speed
and direction of optic flow and were correlated with the locomotion signal
(see Figure 1D). The idea of this setup is that locomotion can partly predict
the optic flow; hence, motor neurons should cancel this predictable compo-
nent in the dendrites of visual neurons in V1.

In the simulations, the network first learned to represent locomotion and
optic flow by adapting feedforward weights from sensory inputs, as well
as weights within and between populations. After learning, we tested the
responses of V1 neurons with conflicting stimuli (where optic flow in the
center receptor did not match the prediction from locomotion) or noncon-
flicting stimuli. As we expected, we indeed found neurons that specifically
reacted to a mismatch between optic flow and prediction (see Figure 1E).
These neurons were mostly silent when motor prediction and optic flow
input matched, but during a prediction mismatch, they corrected the er-
roneous joint representation and encoded either a positive or a negative
deviation.

47



30 F. Mikulasch, L. Rudelt, and V. Priesemann

Figure 1: Mismatch responses emerge in spiking neural networks from explain-
ing away. (A) Graphical model representation of the assumed model of optic
flow and locomotion (see equations 2.1 and 2.2). Motor neurons (M2) and vi-
sual neurons (V1) explain optic flow together, while M2 also explains the loco-
motion of the animal. This introduces explaining-away effects between motor
and visual neurons. (B) Neural circuit that implements causal inference in the
model in panel A. Here, explaining away is implemented via connections be-
tween and within neural populations (blue arrows), which learn to cancel (i.e.,
balance) sensory inputs that can already be explained from the activity of other
neurons. Because motor neurons also explain optic flow, connections from M2
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4 Discussion

In any causal inference problem where multiple competing explanations
exist for the same observation, having evidence for one of the explanations
will reduce the probability of the other explanations because the probable
causes explain away the data. Here, we showed that explaining away man-
ifests as visuomotor mismatch responses in a model where motor and vi-
sual areas jointly infer the underlying causes of optic flow. In particular, if
an animal is moving, this can partially explain the optic flow, and thus loco-
motion competes with other (external) explanations that are represented in
visual areas. In this case, these external causes are less probable, and hence
activity in visual areas should be suppressed if it is predictable from loco-
motion. Vice versa, a mismatch between prediction and optic flow indicates
an external motion and should result in additional activity in visual neurons
that encodes this difference. Disentangling the potential explanations of the
perceived optic flow in this way could allow the animal to rapidly identify
objects that move independently of its own locomotion (e.g., as similarly
found in Schneider, Sundararajan, & Mooney, 2018).

Importantly, the results presented here do not critically depend on the
specific model we chose. Here, we assumed that optic flow can be lin-
early decoded from a spiking representation in visual and motor areas,
which allows us to derive analytically the interactions that are expected
from the cooperation between areas. However, as outlined above, explain-
ing away is a very general effect that occurs in inference in graphical models
with converging arrows (Bill et al., 2015; see Figure 1A). Thus, qualitatively

to V1 learn to cancel optic flow inputs in V1. To find an efficient encoding, con-
nections from sensory inputs (red arrows) are learned via voltage-dependent
plasticity (Mikulasch et al., 2021). (C) Experimental setup to induce mismatch
responses (Jordan & Keller, 2020). A mouse is placed in a virtual environment,
while the head is fixed. Egomotion of the mouse (red arrow) results in visual
flow (green arrows) that is displayed on a screen. Note that for simplicity of
presentation, we here depict locomotion of the mouse as rotations, while the
original experiment employed translations, which makes no conceptual differ-
ence on our level of modeling. (D) Sample optic flow stimuli that are presented
in our model. A rotation to the left would predict uniform visual flow to the
right. Two mismatch conditions are also presented, where center optic flow is
slower (mismatch #1) or faster (mismatch #2) than expected. (E) Simulation of
optic flow mismatch responses with spiking neurons. The mouse turns to the
left, which is encoded by motor neurons (M2). Visual neurons (V1) with mis-
match responses are indicated by arrows. After learning, neurons emerge that
are active for faster or slower optic flow than expected, which is similarly found
in experiment (Jordan & Keller, 2020). These responses correct the joint repre-
sentation of optic flow in case it is not fully predictable from locomotion.
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similar results are also expected in other models of neural coding that are
not linear (Bill et al., 2015; Heeger, 2017).

Our model specifically applies to layer 2/3 pyramidal cells in V1, where
mismatch responses first seem to emerge (Jordan & Keller, 2020). This is
compatible with the previously proposed idea that layer 2/3 neurons com-
pute a representation of sensory inputs that is consistent with the repre-
sentation in other cortical areas (Douglas & Martin, 2004; Mikulasch et al.,
2022). In this proposal, deeper cortical layers would have distinctly differ-
ent purposes: layer 4 neurons would relay optic flow input from thalamus
(possibly implementing a pre-processing), while layer 5 neurons are spec-
ulated to participate in output selection and long-range communication of
the microcircuit (Douglas & Martin, 2004). Indeed, while V1 layer 5 neurons
are responsive to both optic flow and locomotion, they do not compute a
difference, but rather a weighted sum of visual and motor signals (Jordan
& Keller, 2020; Saleem et al., 2013).

Previously, the observed mismatch responses have been interpreted as
the responses of “error” neurons in a predictive processing context (Keller
& Mrsic-Flogel, 2018). Our model and this previous interpretation mainly
differ in how they expect the neural output to be processed further. While in
our model the output of representation neurons could be used directly as in-
put for other computations, the concept of error neurons implies additional
representation neurons that integrate their outputs for further processing
(Bastos et al., 2012; Keller & Mrsic-Flogel, 2018). So far, no formal predictive
coding model for mismatch responses has been presented, but two plausi-
ble graphical models can be considered (explained in Figure 2). An open
problem for these predictive coding-based explanations is that conclusive
evidence for the additional representation neurons they imply is still miss-
ing (see Figures 2B and 2D for details). Alternatively, mismatch neurons in
V1 could be employed in supervised behavioral learning using a predictive
processing scheme (Jordan & Rumelhart, 1992; Keller & Mrsic-Flogel, 2018).
However, also for this theory a formal model here of how the observed mis-
match responses could be embedded into the learning algorithm has yet to
be presented. Thus, while mismatch responses can be interpreted as error
neuron responses in predictive processing, it is less clear what specific role
they could play in cortical computations.

An important difference that arises between models with error neurons
and our model lies in their expectations of how mismatch responses would
evolve over time. In error neurons, further processing of error neuron out-
put by representation neurons should lead to a top-down mediated sup-
pression of activity (Bastos et al., 2012). While Jordan and Keller (2020) did
not present mismatches long enough to determine such a decay, in a sim-
ilar experiment, movement onset type feedback mismatch responses have
been observed to decay over time, on the order of hundreds of milliseconds
(Keller et al., 2012). This is consistent with the idea of error neurons, but
would imply a relatively slow processing of visual information in mice. In
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Figure 2: How could mismatch responses of dedicated error neurons be embed-
ded into a graphical model? (A) One possibility would be that in a hierarchical
model of inference, motor information in M2 improves the representation of vi-
sual flow in V1 by providing predictions. (B) This model implies the existence of
error neurons in V1 (orange box) that compare representation neuron activity in
V1 to predictions from locomotion. Error neurons would respond to visuomotor
mismatch, while V1 representation neurons would encode optic flow. Neurons
that integrate both visual and motor information like these representation neu-
rons indeed exist in layer 5 (Jordan & Keller, 2020). However, contrary to this
picture, layer 5 neurons are typically expected to receive bottom-up input from
layer 2/3 (i.e., mismatch neurons) and should not be the main driver of activity
in layer 2/3 (Bastos et al., 2012; Jordan & Keller, 2020). (C) Another possibility is
that, as in our model, both V1 and M2 explain optic flow jointly. (D) In this case
the model implies error neurons in V1 that directly compare optic flow and mo-
tor information (orange box). The difference to our model is that, additionally,
representation neurons would be required that integrate and cancel the activity
of error neurons (similar to the circuit proposed in Keller & Mrsic-Flogel, 2018).
Note that these representation neurons would perform the same computation
as the neurons in our model (computing a representation of the residual flow),
but would be updated on the timescale of error neuron responses, that is, hun-
dreds of milliseconds (Keller et al., 2012), compared to a few milliseconds in
our model. In panels B and D, only connections are shown that are essential for
mismatch responses.
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contrast, our model does not show decaying mismatch responses, and addi-
tional mechanisms, such as synaptic depression (Chance, Nelson, & Abbott,
1998) or other adaptation processes (Pozzorini, Naud, Mensi, & Gerstner,
2013), would be required to explain this finding. Interestingly, this might
allow distinguishing these two theories experimentally, as they expect dif-
ferent sources for the decay of mismatch responses: error neuron theories
would expect a top-down mediated suppression, while in our theory, we
would expect the decay to result from population-internal processes or the
preprocessing of bottom-up inputs.

To summarize, we have shown how mismatch responses emerge in
causal inference in a plastic spiking neural network. Mechanistically, our
model is similar to previous models, which showed that mismatch re-
sponses emerge when connections between neural populations learn to es-
tablish a balance on neural dendrites (Hertäg & Sprekeler, 2020). Based on
our results, we argue that experimentally observed mismatch responses are
not a signature of dedicated error neurons, but instead arise in representa-
tion neurons as a hallmark of explaining away, when multiple areas explain
the same sensory inputs. This interpretation of mismatch responses can also
be applied to other such observations, for example audiovisual suppression
in V1 (Garner & Keller, 2021), suppression of auditory responses predictable
from locomotion (Schneider et al., 2018), or mismatch responses in the tac-
tile (Ayaz et al., 2019) and auditory modality (Eliades & Wang, 2008; Keller
& Hahnloser, 2009). If correct, this could signify that cortex, already at the
earliest levels of processing, encodes sensory stimuli as a whole in order to
integrate sensory information in multiple modalities.

5 Methods

Spiking neurons were modeled with the model presented in Mikulasch,
Rudelt, and Priesemann (2021). Neurons were updated in discrete time
steps δ = 0.2 ms. Feedforward weights Fb←a ≈ Da←bT from signals to pop-
ulations were learned online with voltage-dependent learning rules (Miku-
lasch et al., 2021). For weights Wb←a within and between populations, we
used an analytical solution for simplicity:

WM2←M2 = −FM2←moveDmove←M2, (5.1)

WV1←M2 = −FV1← f lowD f low←M2, (5.2)

WV1←V1 = −FV1← f lowD f low←V1. (5.3)

Previously we showed that this analytical solution can be well approxi-
mated by learning a tight balance on neural dendrites (Mikulasch et al.,
2021). Note that in this model, neurons inhibit each other directly, but sim-
ilar neural codes can be obtained by learning a balance that is mediated
by inhibitory interneurons (Brendel, Bourdoukan, Vertechi, Machens, &
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Denéve, 2020; Hertäg & Sprekeler, 2020). Spiking rates of V1 and M2 neu-
rons were homeostatically regulated to 8 Hz and 30 Hz, respectively. After
learning, we probed neural activity with plasticity turned off to produce
the results in Figure 1. Note that plasticity in our model only acts on long
timescales, and thus can be ignored when testing the behavior of the net-
work on a few input patterns.

To simulate the experiment in Jordan and Keller (2020), we created
pairs of locomotion and optic flow signals. Signals were each presented for
100 ms before switching to the next pair. Locomotion is represented by a
one-dimensional signal, where −1 indicated a turn to the left, 0 no move-
ment, and 1 a turn to the right, each occurring with probability p = 1/3.
Optic flow is represented by a three-dimensional signal, where all values
were initially set to 1, 0, or −1 for each movement condition, respectively.
We then added optic flow that could not be predicted from locomotion. Ev-
ery dimension had the chance to be increased by 1 or decreased by 1 (with
probability p = 0.1 each). After the creation of these two vectors, we en-
sured that only positive values were presented to the network, by doubling
dimensions, making a negative copy to the new dimensions, and rectifying
the signal.

Code for reproducing the simulations can be found at https://github
.com/Priesemann-Group/mismatch_responses.
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Prediction mismatch responses in cortex seem to signal the difference between an internal model of the
animal and sensory observations. Often these responses are interpreted as evidence for the existence of
error neurons, which guide inference in models of hierarchical predictive coding. Here we show that
prediction mismatch responses also arise naturally in a spiking encoding of sensory signals, where
spikes predict the future signal. In this model, the predictive representation has to be corrected when
a mispredicted stimulus appears, which requires additional neural activity. This adaptive correction
could explain why mismatch response latency can vary with mismatch detection difficulty, as the
network gathers sensory evidence before committing to a correction. Prediction mismatch responses
thus might not reflect the computation of errors per se, but rather the reorganization of the neural
code when new information is incorporated.

1 Introduction

Strong neural responses in cortex to unexpected events are a common observation. For example, an
early finding was that oddball stimuli result in elevated activity in Electroencephalography recordings,
which now is well-known as mismatch negativity (MMN) [1]. A long standing question is if MMN,
and prediction mismatch responses (PMRs) in general, are a result of (bottom-up) neural adaptation
or (top-down) prediction processes, and both possibilities have found experimental support [2, 3,
4]. Nevertheless, there is increasing evidence for predictions being the primary driver of PMRs in
many cases [5, 6, 7, 8]. For example, in several experiments PMRs to deviant stimuli seem to be
modulated by top-down connections [4, 9, 10, 11], and other experiments show PMRs for events that
become predictable only given a wider context, which speaks against adaptation as the underlying
mechanism [12, 13, 14, 15, 16]. These results suggest that top-down predictions play a central role in
cortical processing, and that PMRs are an important characteristic of their effect on neural dynamics.

What could be the computational function that underlies PMRs? The perhaps most discussed answer
is given by classical hierarchical Predictive Coding (hPC) theories of cortical processing, which propose
that neurons in cortex perform inference in a hierarchical model of sensory data [17]. Classical hPC
argues that PMRs are generated by dedicated error neurons, which enable inference and learning
by comparing top-down predictions to sensory observations [18], and thus it connects the observed
top-down modulated PMRs to a specific cortical function. Following this theory, several models of
spiking neural networks have demonstrated possible mechanisms that could lead to the presence of
error neurons in cortical circuits [19, 20, 21, 22]. However, while these models give mechanistic accounts
of PMRs, so far there is no direct connection of spiking neuron PMRs to the formal model of inference
that is at the heart of the predictive coding theory [23]. This issue is connected to the more general
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open question of how the inference and learning algorithm of classical hPC might be implemented by
spiking neurons [23, 24].

In this paper we offer an alternative account of PMRs, based on theories of hierarchical inference in
cortex that operate without error neurons [24] (see also [25, 26, 27, 28]). In summary, we assume that
the neural spiking code in cortex is predictive, and a mispredicted stimulus requires a correction of the
code, which leads to additional neural activity. This will allow us to connect PMRs to biologically
plausible theories of inference and learning in spiking pyramidal cells [24, 29]. Finally, we will discuss
how PMRs might provide an opportunity to experimentally distinguish between models of hierarchical
inference with or without error neurons.

2 Theory

To illustrate our ideas with a particular example, our aim is to model an experiment by Fiser and
colleagues [13]. In this experiment a mouse traverses a virtual tunnel with landmarks (i.e., the location
in the tunnel is known to the animal). At specific locations the mouse is then presented with visual
patterns that are either predicted by the location, or mispredicted (Fig 1a). In the experiment,
mispredicted stimuli lead to heightened neural activity in visual cortex V1 [13].

The basic assumption of our model is that V1 aims to find a predictive spike encoding of visual
stimuli. This assumption has two motivations: i) in experiment neurons have been found that learn to
predict upcoming stimuli [13, 30], and ii) it might be advantageous to predict stimuli to facilitate rapid
stimulus recognition, anticipatory behaviour and counteract processing delays in the neural system [30,
31, 32]. We realize this idea formally, by assuming that the mouse has an internal (generative) model
of how sensory stimuli are generated (Fig 1b,d), which is inverted by the neural circuits in cortex
(Fig 1c). More specifically, the generative model states that the location is predictive of the encoding
in V1, and the encoding is predictive of the perceived stimulus. Therefore, to find the encoding in
V1, neurons have to combine sensory signals and location information (e.g., provided by the anterior
cingulate cortex [13]).

An important additional component of the generative model is a binary context variable c ∈ {0, 1},
which determines if the location is indeed predictive for the encoding (c = 1) or not (c = 0). This
context variable is necessary to enable the generative model to capture the sensory data in cases where
the location mispredicts the observed stimulus. Intuitively, this enables the mouse to realize that a
predicted stimulus (e.g., an object) is not present at a certain location, and to integrate this information
into the stimulus representation. Otherwise, the mouse would continue to naively combine the wrong
prediction from location with the sensory observation, resulting in a wrongfully biased representation
no matter how much evidence for the inadequacy of the prediction is available. Finding the context
variable while inverting the generative model is a nontrivial problem [33, 34]. To tackle this, we here
build on previous work [33] and deterministically switch from c = 1 to c = 0 if the location prediction
deviates significantly from the encoding in V1 over an extended period, which can be motivated from
the generative model (i.e., this implements a maximum a-posteriori estimate of c, see Methods). In
the neural circuit, the realization that the location is mispredictive (c = 0) then leads neurons in V1 to
ignore inputs from location neurons (Fig 1c). We will outline possible biological mechanisms for this
computation in the Discussion.
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Fig 1. Model of neural coding for spatially predicted visual stimuli. (a) Neurons aim to encode
visual stimuli (A,B) that are associated with specific given locations of the animal. In rare cases the
association can be violated, i.e., 10% of the trials the predicted stimulus B is replaced by A. (b) We
assume the animal forms a generative model of visual data. The location (loc.) predicts the stimulus
representation in V1, and the stimulus representation predicts the sensory observation (stim.). An
additional context variable (c) indicates if the prediction from location is valid. Shaded grey circles
denote signals that are given (fixed) by the experiment. Variables in white circles have to be inferred
to model the given data. (c) Cortical circuits invert the generative model. Depending on the inferred
context variable c the influence of top-down location information is enabled or disabled. (d) Illustration
of how spikes in V1 aim to track visual (x) and location (xTD) input signals. Spikes encode the future
signals via an exponential kernel, or in other words, they predict the future signal. Spikes are fired
such that they simultaneously conform to visual and location signals.

3 Results

To demonstrate how this model leads to heightened neural activity during prediction mismatch, we
simulated the responses of a small network to simple experimental stimuli. A network of 6 neurons
encodes two patterns (A and B) and an inter-stimulus signal, denoted by low-dimensional orthogonal
vectors. Stimulus encoding weights and top-down connections were set fixed for simplicity, but could in
principle also be learned via voltage-dependent plasticity rules [24, 29, 35, 36]. The location generally
perfectly predicts the stimulus, except for pattern B, where it is predictive only 90% of trials.

We now explain how a prediction mismatch leads to a correction of the population code, and with
that to a burst of neural activity. Because a location is predictive, neurons coding for the predicted
pattern (B) will be driven by top-down location inputs, and fire in anticipation to encode the future
signal (Fig 2). When the actual pattern (A) appears, the network starts to find an encoding of the
stimulus (A) that is biased towards the prediction (B). The emerging mismatch between prediction
and encoding leads the network to realize that the prediction is invalid (i.e., c switches from 1 to 0). In
consequence, the top-down prediction is ignored and the encoding in the population fully switches from
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Fig 2. A mechanism for PMRs through corrections of a predictive spiking code. (a) Schematic
illustration of the evolution of the population code over time in case of a prediction mismatch. After
prediction onset the population begins coding for the predicted pattern (B). With stimulus onset
the network starts to encode the observed pattern strongly biased towards the prediction. When
the prediction mismatch is detected (c switches from 1 to 0), the code is corrected by removing the
wrongly predicted pattern and adding the observed pattern. Moving in coding space (arrows) requires
neural spiking. (b) The same evolution of the population code but in simulation. Top panels show the
decoded stimulus code, bottom panel shows network spiking activity. Because past spikes predict the
future signal, the rapid switch during the correction requires neurons that actively pull the population
code for the predicted pattern (B) down.

the predicted pattern (B) to the observed (A). This switch requires activity of two types of neurons: i)
neurons coding for pattern A, which are driven by bottom-up input, and ii) neurons coding for pattern
’-B’, which are driven by neurons coding for B and released from top-down inhibition (Suppl. Fig S1).
These ’correction’ neuron (ii) are required because past spikes predicted pattern B, and this prediction
has to be removed from the predictive encoding. Intuitively, a predictive code has ’momentum’, and a
rapid correction requires strong network action in the form of spikes.

In our simulations, these two processes together resulted in a burst of activity of the population in
response to mispredicted stimuli (Fig 3a). This increase in activity was even more pronounced for
correction neurons (’-B’ neurons), which only become active when the population code over-predicts a
pattern (B) (Fig 3b). Since correction neurons remove wrong predictions from the population code,
they become more active in trials where the activity of mispredictive neurons before the stimulus
was stronger (Fig 3c), which was also found experimentally [13]. In that sense, these neurons can be
considered dedicated ’mismatch’ or ’error’ neurons, although they simply keep the population code in
check by removing the over-predicted pattern from the code.

Finally, we aimed to analyze the proposed context detection mechanism (switching of variable c) in
more detail. c was estimated by selecting the context (’correct prediction’ or ’misprediction’) which
better captures the relation of encoding and prediction. Mechanistically, this was implemented by
comparing the time-window averaged prediction error (context criterion) to a switching threshold
(Fig 4c). We found that this implies a longer time delay before a context switch if the mismatch is
harder to detect (e.g., if it is smaller), which we verified in our simulations (Fig 4). Intuitively, in
situations where it is hard to detect the inadequacy of the prediction the mouse has to deliberate
longer, and gather more evidence, before the internal predictions can be ignored.
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Fig 3. The model recovers several effects of PMRs as observed in experiment [13]. All panels show
simulated fluorescence recordings based on simulated spike trains (see Methods). Stimulus onset is
at Time = 0s. (a) The average population response to a mispredicted pattern (A) is higher than to
a correctly predicted pattern (B). (b) This effect is even more pronounced in neurons that remove
the over-prediction of the mispredicted pattern (’-B’ neurons), and therefore appear as dedicated
’correction neurons’. (c) Same as the mismatch condition in panel b, but with trials separated based on
the strength of predictive activity that precedes stimulus onset. Stronger predictive activity requires a
stronger response of correction neurons. Note that in the modeled experiment these effects (a - c) are
found for the omission of a predicted stimulus (Fig 4 in [13]). To ease interpretation we here consider
a misprediction (B instead of A), but in our model this is equivalent to a omission (B instead of
inter-stimulus signal). Panels a and b show mean and standard deviation for 50 trials in each condition.
Panel c is based on the same data and shows top and bottom 10% of trials sorted by pre-stimulus
activity.

4 Discussion

Building on previous work on efficient spike coding [24, 37], we here proposed that prediction mismatch
responses (PMRs) can result from the correction of a predictive spiking code. In our model, the
correction is initiated when the prediction from other areas is incompatible with the activity in the
coding population over an extended time. When this happens, the old prediction is removed from
the population code and the representation of the perceived stimulus is added, both of which requires
additional neural activity (Fig 2). These dynamics are consistent with experimentally measured
responses of V1 neurons during prediction mismatch (Fig 3).

The correction dynamics were derived from a generative model view of perception (Fig 1). Specifically,
we assumed that the internal model of the mouse distinguishes between two cases: One, where the
location is predictive of the encountered pattern, and one where it is not. Which one of these two
possibilities is the case has to be inferred from observations, and we showed that this process takes
longer in cases where the observations are more ambiguous (Fig 4). As an illustrative example, consider
that you have left an object (e.g., a bottle) in a room, and another person removed it later. Entering
the room you have the expectation to observe the bottle (and are more inclined to perceive it), but
after a short look you realize that the location-object prediction you held was incorrect and you correct
your internal model. If, instead, the room would be only dimly lit, it would take longer for this
realization to occur, and other bottle-shaped objects might deceive your perception in the meantime.
Based on our model, we argue that this realization and the subsequent correction of the representation
of sensory stimuli is what underlies the PMRs observed in experiment.
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Fig 4. The mismatch detection difficulty influences latency of model PMRs. To show this the network
was presented with a pattern that is a mix of the predicted (B, 30%) and the unpredicted pattern (A,
70%), which means the network observes only a partial mismatch between prediction and stimulus.
(a) If the mismatch of prediction and observation is smaller (low error), a longer latency of PMRs can
be observed in the response of mismatch neurons (i.e., -B neurons). Inset shows the same responses
over a longer time-window. (b) The median delay of the mismatch response (here simply measured as
the time of ∆F/F crossing 20%) is several hundred milliseconds longer. Note, that this constitutes
only a qualitative prediction of our model, and smaller or larger delays could be obtained by choosing
different parameters (e.g., Θ). (c) The difference in latency originates from the dynamics of the
criterion for switching the context variable c (time averaged prediction error), which increases with
a slower rate in case of a partial mismatch. This results in the network reaching the threshold for
initiating a correction of the encoding (Θ) later. All panels show results for 50 trials in each condition.
Outliers are not shown in panel b.

Experimental predictions Our model makes three key predictions:

i) When neurons in a population show dedicated mismatch responses resulting from the proposed
mechanism, the same population will also contain stimulus predictive neurons (or, at least,
stimulus selective neurons that are strongly biased towards the prediction). In our model these
neurons cooperate to implement an efficient and responsive spiking code [38]. A possibly similar
co-location of mismatch- and stimulus-selective neurons has been found in several experiments
[9, 13, 39].

ii) Our model predicts that mismatch responses emerge with a longer delay when detecting the
mismatch becomes more difficult (e.g., for a smaller mismatch), since more evidence has to be
gathered before committing to a correction (Fig 4). This could be tested by measuring the
time to the onset of the mismatch response depending on the stimulus noise level, or mismatch
size. There have been several experiments showing the predicted (or a similar) effect in EEG
recordings of MMN [5, 40, 41, 42, 43, 44, 45]. We expect that this effect can also be measured
in single neuron recordings of PMRs, where especially mismatch-selective neurons should be
affected.

iii) Our model predicts distinct origins for the driving connections in positive and negative PMRs
(Supplementary Fig S1). Positive PMRs (i.e., the stimulus is bigger than expected) result from
excess drive through bottom-up connections, which is not cancelled by lateral inhibition in the
population. Negative PMRs, in turn, result from drive within the population, which is not
cancelled by top-down inhibition (these neurons are the ’negative’ coding neurons that appear as
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dedicated error neurons; Fig 3). In practice, however, it might be difficult to achieve situations
where these two types of PMRs can be observed in isolation, and in our simulation both cases
appear. Note, that in both cases the PMRs are nevertheless a result of mispredictions, typically
from top-down inputs. Top-down inputs in our model, however, do not directly drive the delayed
PMRs, but only indirectly cause them when the wrong predictions they have provided are finally
ignored.

How does this model differ from other explanations of mismatch responses? Previously,
prediction mismatch responses have been explained with the dedicated error neurons that are proposed
by classical hPC and similar models [18, 46]. While some neurons in our model show responses that
appear as dedicated error responses (Fig 3), the interpretation of the purpose of PMRs in our model
and in classical hPC is very different. In classical hPC, the responses of error neurons can only
be interpreted in conjunction with associated activity in prediction neurons. That means that any
higher-level area that wants to make sense of these error responses has to maintain predictions in
its activity, which is updated on errors and sent back down to compute the new prediction error. In
our model, mismatch responses simply constitute a part of a predictive population code. In both
interpretations, mismatch responses can be understood to signal that the prediction that was conveyed
up until that point was wrong, and that the target area might have to adapt to this (e.g., by changing
the planned course of action in motor ares). In contrast to classical hPC, however, our model does not
require feedback-signals from every target area that cancel the prediction error.

Experimentally, classical hPC and our model might be distinguished in two ways. First, by looking
at the inputs that drive mismatch responses. In error neurons, PMRs are typically assumed to arise
when bottom-up drive and top-down inhibition do not match (Supplementary Fig S1), as opposed
to the different origins in our model we have discussed before. Second, by looking at the temporal
dynamics of PMRs. As we have discussed, our model predicts that the delay of PMRs depend on the
difficulty of detecting a mismatch, e.g., through noise in the stimulus or the size of mismatch (Fig 4).
In contrast, in error neurons the mismatch would be expected to be signalled as early as possible [19,
20, 21]. Therefore, this idea seems to predict that noise in the signal, or the size of mismatch, would
only influence the magnitude of PMRs but not their latency. This means that the same experiment we
have proposed to test our model in the last section might also be used to distinguish between theories
with or without error neurons.

Another set of work has proposed that prediction mismatch responses could be a signature of an
efficient adaptive code [33, 34]. In this idea the neural code is continually adapted to most efficiently
encode a signal, and a temporary mis-adaptation results in an inefficient encoding, that is, increased
activity. This means that in this theory, similar to error neurons, the mismatch response is immediate,
and ceases with the adaptation. We have employed the same idea of an adaptive code, but showed
that in a population code the correction after an adaptation causes a surge of activity. Therefore, our
model constitutes an extension of these adaptive coding models and is compatible with their ideas.
Future models might look more in detail at the possible interaction of these two proposed components
of mismatch responses that arise early and late after stimulus onset.

In previous work we have also proposed a model for the emergence of multimodal mismatch responses
[47]. In this model, mismatch responses arise when different areas simultaneously encode sensory
information, as these areas compete to encode the signal and thereby cancel activity in their respective
partner area. Here the proposed purpose of mismatch responses (i.e., encoding the signal that is
not explained by the other area) is very different from the presented model, but there is no reason
why not both of these computations could exist alongside each other. Based on our models we
argue that different types of mismatch responses in cortex can have strictly different meanings in
cortical computations, and it might not be appropriate to describe all these observations with a single
computational principle.
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Limitations In a similar vein, the assumptions of our model might not be appropriate for all model
corrections an animal can perform. We here assumed that the top-down predictive signal (i.e., the
location) is perfectly certain and fixed, which makes sense in the modeled experiment where the mouse
can orient itself with landmarks [13]. However, if the animal is not certain of the content of higher-level
representations, in light of new sensory evidence these higher-level representations might be corrected
(instead of the ’coupling’ between levels, as in the presented model). This type of correction likely has
very different temporal dynamics than the one presented here, and future work could investigate these
dynamics in a more complex multi-level model.

Furthermore, to show the essential elements of the proposed mechanism for the generation of PMRs we
made use of a highly simplified model network. Most centrally, the network consisted only of 6 neurons,
neurons inhibited each other directly and not via interneurons, and we employed very low dimensional
orthogonal stimuli as model inputs. Past work with similar networks indicates that such simplifications
are not necessary [35, 48], and future work should be able to relax them for more biologically plausible
models.

Implementation in cortical circuits So far we have operated with an abstract model, but in
the context of a theory of dendritic predictive coding in cortex [24] we can speculate about possible
biological implementations of the proposed mechanism. Consistent with the proposed model, this
existing theory proposes that layer 2/3 pyramidal cells find a predictive encoding of sensory stimuli,
where bottom-up sensory information arrives at basal dendrites, and top-down predictions from other
areas at apical dendrites. Thus, the only component in our model that so far has no biological
interpretation is the adaptive switch that allows/disallows top-down predictions to influence the
population code (i.e., variable c; Fig 1). Since top-down predictions arrive at apical dendrites, one
possibility would be that the coupling of the apical dendrite to soma is adapted [49], which would
imply that apical dendrites decouple from the soma during a mismatch event. Similar mechanism have
been proposed to be responsible for adaptive associations in cortex [50] or the conscious processing
of sensory stimuli [51]. Another, less intrusive mechanism would be that apical inhibition precisely
controls the impact of specific predictions on neural activity, by cancelling apical inputs in case of a
prediction mismatch. Indeed, somatostatin-expressing (SST) interneurons, mostly targeting the apical
dendrite, seem to play a central role in the generation of PMRs [4, 52]. This proposal leads to the
seemingly paradoxical prediction that apical inhibition of pyramidal cells through SST interneurons
would be decreased when top-down inputs are predictive, but increased when they are mis-predictive
and pyramidal cells show strong mismatch responses, for which there are some indications [52].

While these biological connections are speculative, they provide testable predictions for how exactly
cortex can adapt its internal model in cases where internally generated predictions do not match
sensory observations. Testing for the biological mechanism behind these PMRs might be important in
order to understand the causes of mental disorders where PMRs are altered, such as schizophrenia or
certain learning disorders [53].
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Methods

Generation of input signals

We model the experimental setup of Fiser and Keller [13] by defining the input signals model V1
receives. Visual inputs x∗(t) were 2 different patterns (A and B) and an inter-stimulus signal, which
were presented with a one-hot encoding. The location in the tunnel x∗

loc(t) was assumed to be perfectly
known and similarly given by a one hot encoding akin to the representation in place cells, which each
corresponded to the location of a pattern (or inter-stimulus signal) in the tunnel.

Patterns were presented for 1.5 s before switching to the next pattern. Input signals were low-pass
filtered to simulate the integration in visual cortex τ ẋ(t) = x∗(t) − x(t). The location signal was
filtered similarly, but presented shortly (100 ms) before the stimulus to achieve anticipatory spiking.
Intuitively, we argue that the mouse reaches a location in the tunnel where it predicts the pattern
shortly before it actually observes it. Note, that for the effect of mismatch responses this is not strictly
necessary, but a choice we made to model this specific experiment.

Generative model of sensory data

To simulate the perception process of the mouse, we first defined a generative model we assume the
mouse has of sensory data, and then found a network that sampled from the inverted model (i.e., the
posterior for the variables of interest).

The model was defined via a hierarchy of Gaussian distributions, where stimuli x were generated by
activity V 1 corresponding to the hidden causes of sensory data (here the identity of the pattern)

pθ(x|V 1) = Nx(DV 1V 1, σV 1), (1)

and hidden causes V 1 were generated by the location of the mouse xloc

pθ(V 1|xloc) = NV 1(Dlocxloc, σloc(c)). (2)

For simplicity, we set all parameters θ = {DV 1, σV 1, Dloc, σloc(c)} by hand. The decoder weights DV 1

and Dloc might in principle be learned using voltage-based plasticity rules [24], but were here chosen
as the identity matrix.

To model the fact that objects (i.e., patterns) can be absent from a certain location, the variance
σ2
loc(c) of the location prediction of V 1 is adaptive. Specifically, σ2

loc(c) depends on a binary context
variable c ∈ {0, 1} which indicates if the location is predictive (c = 1) or not (c = 0)

σ2
loc(c) =

{
σ2
large, if c = 0

σ2
small, if c = 1.

(3)

The (implicit) prior distribution pθ(c) we use for c will be discussed later.
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Neural dynamics performing inference through sampling

The goal of neural inference is to find an approximation to the posterior pθ(V 1 | x,xloc) using a neural
network. To this end, we replace the continuous variable V 1 by a spike based representation, similar
to previous work on spike-based representations [35, 54]. We define V 1 = Dr(t) as a transformation of
neural responses r(t), generated by 6 neurons. The transformation matrix D was defined as

D = α

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 . (4)

Neural responses are defined as a readout of neural spiking si(t) ∈ {0, 1} convolved with exponential
spike traces ri(t) =

∑
t′≤t κ(t− t′)si(t

′), where κ(∆t) = exp(−∆t/τ). Neural spikes are thus read out
in the future, and can be considered to constitute a prediction of the upcoming signal.

For spike based inference, we introduce an additional prior on neural spiking

pθ(si(t) = 1) = ν δt, (5)

where δt denotes the physical time elapsed between successive timesteps. This prior can also be thought
of as a metabolic cost on neural activity.

Representing V 1 in this manner, combined with the additional prior allows us to heuristically derive
a network of stochastic spiking neurons performing inference. The derivation relies on two key
observations. First, we can write the spiking probability for neuron i in terms of log-probabilities as

pθ(si(t) | x,xloc, r, c) ∝ exp
(
si(t)

(
ln pθ(si(t) = 1,x,xloc, r, c)− ln pθ(si(t) = 0,x,xloc, r, c)

))
, (6)

which is similar to previous approaches for spike-based neural sampling [55], and can be considered a
stochastic generalization of the spike-by-spike framework [35]. We note that in general the spiking
probability for neuron i is not independent from the rest of the network. Our second observation is
that if we suppose δt to be small our metabolic prior in Eq. (5) forces the probability of simultaneous
spiking to approach zero, and therefore introduces an independence between between spiking.

By using these observations and writing out the difference in logarithms in Eq. (6) for our choice of
model and representation we find that the spiking probability of neuron i can be expressed as

pθ(si(t) = 1 | x,xloc, r, c) ∝ δt exp (ui − Ti) , (7)

for a membrane potential ui and threshold Ti given by

u = Fx + Flocxloc + Wr (8)

T =
1

2
diag(W )− ln ν (9)

with

F =
1

σ2
V 1

DTDT
V1 (10)

Floc =
1

σ2
loc(c)

2
DTDloc (11)

W = − 1

σ2
V 1

DTDT
V1DV1D −

1

σ2
loc(c)

DTD (12)
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where diag(W ) denotes the vector containing the diagonal elements of W and the superscript on DT

to denotes the matrix transpose. This form of the spiking probability can be seen as a special case of
the spike response model with exponential escape noise [56]. Alternatively, similar results could be
obtained by simulating neural spiking as performing maximum a-posteriori inference in the generative
model, which can be implemented with similar but deterministic neural dynamics [35]. To obtain
fluctuation based results (e.g., Fig 3c), however, additional noise on neural inputs would be required in
this case.

Context switching algorithm

The context variable c that indicates the validity of the location prediction also has to be inferred.
We performed this inference using an approach that has been proposed in previous research [33, 34].
At time t we selected c as the maximum a-posteriori estimate for the recent past time-window T :
c← max

c

∑
t−T<t′<t log pθ(c|V 1(t′),x(t′),xloc(t

′)). Since c is binary we selected c = 0 iff

1

T

∑
t−T<t′<t

log pθ(c = 0|V 1(t′),x(t′),xloc(t
′)) >

1

T

∑
t−T<t′<t

log pθ(c = 1|V 1(t′),x(t′),xloc(t
′)) (13)

⇔ 1

T

∑
t−T<t′<t

||V 1(t′)−Dlocxloc(t
′)||2 > Θ, (14)

where Θ is a switching threshold that combines the prior on c and the variance of the model pθ(V 1|xloc).
For simplicity, instead of explicitly defining a prior on c we directly chose the switching threshold Θ.

Simulation of calcium fluorescence signals

To simulate fluorescence signals ∆F/F as measured in experiment we first created calcium traces for
each neuron by convolving the spike train with a realistic fluorescence kernel

f(t) = b +
∑
t′<t

κf (t− t′)s(t′). (15)

Here, b = 4.0 is a baseline activity in the signal which models average measurement noise and other
activity, and re-scales the normalized signal ∆F/F . The kernel of the fluorescence elicited by a spike
was defined by κf (∆t) = exp(−∆t/τdecay)(1− exp(−∆t/τrise)), with τrise = 80ms and τdecay = 400ms,
as measured in experiment [57]. The normalized fluorescence signal was then computed via

∆F/F =
f(t)− ⟨f(t)⟩t
⟨f(t)⟩t

. (16)
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Parameters

Parameter Value
δt 1 ms
τ 200 ms
α 0.15

σ2
V 1 1/300

σ2
small 1/300

σ2
large 1

ν 12.18
(context criterion window) T 500 ms

(context criterion threshold) Θ 0.2
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Fig S1. The driving connections of PMRs are slightly different in classical hPC and our model.
Arrows denote excitatory (red) and inhibitory (blue) connections. Yellow arrows indicate the path of
activity that leads to PMRs. Note, that in our model mismatch neurons (-B) only become active once
top-down inhibition ceases after the correction is initiated.
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6 Overall Discussion

In this thesis we have made several contributions towards a theory of inference and learning
in cortex. A special focus has been put on i) finding biologically plausible learning rules that
might allow neurons to learn a model of the world and ii) connecting the developed theory
closely to cortical physiology and dynamics, in order to make it testable.

Towards the first aim (i) we first derived, from the goal of representing sensory stimuli,
learning rules based on voltage-dependent plasticity and the local excitatory-inhibitory
(E-I) balance in neural dendrites (chapter 2). This overcame a limitation of previous
models of representation learning in spiking neurons, which had to rely on a unrealistically
strong decorrelation of spiking in the network. Our theory also provides a possible role for
the experimentally observed influence of the local dendritic voltage on synaptic plasticity.
Building on this model, we then proposed a theory of hierarchical inference in cortex
(chapter 3). Here we found different learning rules for synapses on apical dendrites, which
we propose learn to incorporate hierarchical (top-down) priors for neural activity, and on
basal dendrites, which learn a representation of sensory (bottom-up) information (as in
chapter 2). We then connected this model to existing theories of representation learning
(Brendel et al. 2020), learning of apical predictions (Urbanczik et al. 2014), and hierarchical
predictive coding (Rao and Ballard 1999), showing up the close relation that exists between
these models.

Towards the second aim (ii) we laid out a detailed account of how the theory of
hierarchical inference can map to cortical physiology (chapter 3). Specifically, we proposed
clear roles for some neuron types and connectivity patterns in neocortex. Even more
specifically, we argued that pyramidal neurons in layer 2/3 learn a predictive model of
sensory data, while fast-spiking basket cells are the main mediator of ’explaining-away’
effects between pyramidal neurons. This yields a functional interpretation of some of the
core distinguishing properties of these neurons (e.g., sparse activity in layer 2/3 pyramidal
neurons, extremely fast inhibition by basket cells). It also enables to device concrete
experiments that can test for predicted mechanism (e.g., the exact form of voltage-based
plasticity in neural dendrites, or basal dendrites being balanced, apical dendrites being
predictive). Finally, in chapters 4 and 5 we explained how two different forms of mismatch
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responses can arise in models without dedicated ’error-neurons’ (as proposed by classical hPC;

Rao and Ballard 1999). As the mechanism required to explain the observed phenomena are
different for models with or without error-neurons, this allowed us to suggest experiments
that could enable distinguishing between these two competing possibilities.

6.1 Unifying and extending theories of cortical
computation

A central contribution of the work in this thesis was to show up connections between
formerly mostly parallel lines of research in the study of spiking networks. One the one
hand, previous work introduced the theory of efficient coding in balanced spiking
networks, which casts spiking as the discrete optimization of a quadratic coding goal
function (Brendel et al. 2020; Denève et al. 2016; Kadmon et al. 2020). On the other hand, it has
been proposed that neural activity could code for uncertainty by sampling from probability
distributions (Knill et al. 2004), which has been realized formally in spiking networks
before (Buesing et al. 2011; Nessler et al. 2013). We connected these two frameworks by
pointing out that balance based coding is the deterministic equivalent to spike based
sampling in a linear Gaussian model of sensory data (chapters 2 & 3)1. That sampling in a
linear Gaussian model can imply network dynamics with E-I balance has been found before
in rate-based models, and has been used to understand a range of features in cortical
dynamics (Echeveste et al. 2020; Hennequin et al. 2014). The explicit connection between
efficient spike coding and spike-based sampling in turn might prove fruitful, by enabling a
transfer of insights between the two approaches to spike-based computation.

We furthermore drew a connection between spike-based sampling and theories of
variance adaptation in the cortical model. In the general theory of world modeling, setting
the variances of the model is important to differently weigh sensory and internal
information according to their reliability2, which for example is a central element of
Kalman filtering (Grewal et al. 2020). Applied to the brain, variance adaptation has for
example been used to explain multiple effects of uncertainty on cortical dynamics (Orbán

et al. 2016), retinal coding (Młynarski et al. 2021), or sensorimotor estimation (Kwon et al.

2013), and some predictive coding models have proposed it as a principle that underlies
attention (Feldman et al. 2010). Adding to these proposals, in chapter 5 we have employed

1As an interesting side-note, this connection is analogous to the connection between deterministic pattern
storing networks, which minimize an energy function (Hopfield networks; Hopfield 1982), and their
stochastic generalization (Boltzmann machines; Amit et al. 1985), that has been realized in the 80’s.

2Coincidentally, this year a Japanese lunar lander crashed on account of erroneously readjusting a sensory
variance in its internal model (ispace 2023).
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the idea of adjusting the model variance to show how a switch in variance can result in the
reorganization of the neural representation and, in turn, in a burst in spiking activity. We
used this to explain why mis-predicted stimuli lead to strong neural activity (Fiser et al.

2016). Furthermore, the physiological interpretation of our theory allowed us to conjecture
how changes in the model variance could be mediated by specific neural mechanisms, such
as layer specific neuromodulation (chapter 3) or the action of somatostatin-positive
interneurons (chapter 5). These proposals are admittedly speculative, but there are good
reasons to believe that cortex makes use of adjustable variances in its internal model, and
carefully designed experiments might rule out or strengthen these candidate mechanisms
in the future.

Finally we have pointed out the partial equivalence of the balanced spiking network
formalism (Brendel et al. 2020) and the formalism of classical hPC (Rao and Ballard 1999).

Specifically, a balanced spiking network solves the same computational problem as a
shallow, single layer predictive coding network (and, equivalently, a sparse coding network ;

Boutin et al. 2021; Olshausen et al. 1996). This allowed us to extend the ideas of the balanced
spiking framework to hierarchical networks, by relying on the theory previously developed
in classical hPC (chapter 3). A direct result of this connection is that work that has been
done on models of hPC now also becomes relevant for balanced spiking models, when
extended to the hierarchical case. One example is the finding that hierarchical inference in
a Gaussian model can explain the emergence of extra-classical receptive field effects (chapter

3; Boutin et al. 2021), which now is not anymore exclusive to classical hPC. Such relations
between theories of cortical computation are therefore important to consider when
evaluating which experimental observations are consistent with which theories.

6.2 Missing bits and open avenues

The unification of theories I have outlined in the last section comes with several questions
attached that might be addressed in the future. Perhaps the most immediate open question
is how hierarchical inference in our framework can be implemented by networks consisting
of multiple layers of spiking neurons (but see, e.g., Rao 2004; Rotermund et al. 2019, for a

different approach). We here so far have described the underlying theory (which in the rate
based case is equivalent to that of classical hPC; chapter 3), and used it to implement
inference in a single spiking layer within a hierarchical circuit (chapter 5). What problems
might arise when performing inference with multiple spiking layers? So far, the balanced
spiking framework has been applied only to continuous input signals (chapters 2, 4 & 5;

Brendel et al. 2020), but with interconnected spiking layers it has to be understood how it can
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operate with spiking input. There is no problem in principle for this, as the continuous
inputs can be simply replaced by continuous spike traces. In practice, however, learning
and inference could become difficult if input spikes are sparse and uncoordinated. In this
case, most of the time only very few input dimensions have nonzero values, and thus the
prediction errors for single dimensions would almost always be relatively large. This
problem would arise in hierarchical networks if firing rates of individual neurons are low, as
in cortex. We hypothesize that there are additional mechanisms required to achieve
coordination between the sparse firing of input and coding neurons. One idea, which we
have also touched upon in chapter 2, would be to understand the continuous inputs as a
collection of synaptic inputs into the dendrites, but the implications of this idea on learning
have yet to be explored (see also Appendix A.3). Another possible mechanism for
coordinating neural spiking could be via oscillations, as oscillations can ensure that spikes
arrive roughly simultaneously at the next layer, making it easier to detect the presence of
specific patterns in a signal. The idea that oscillations facilitate communication between
cortical areas has already been discussed in a more general context, for example in the
communication through coherence hypothesis (Fries 2015).

Next to understanding the hierarchical generalization of the balanced spiking
framework, it would be important to understand what role the extensive lateral excitatory
connectivity in cortex could play in our model. In fact, in cat visual cortex, for example,
40-60% of excitatory connections in layer 2/3 originate from within the layer (Binzegger

et al. 2004). In the spike sampling framework, these recurrent connections arise naturally if
the generative model specifies dependencies in the signal over time (see Appendix A.3 for a

derivation in a simple linear model; Kappel et al. 2014). These connections can thus be thought
of as integrating information from the past representation into the spike decision, which in
the control literature is known as Bayesian filtering (Särkkä et al. 2023). In this case, sampling
a single spike trajectory, as we have implemented it here, becomes less meaningful. Two
common alternative approaches are to find the maximum a-posteriori estimate, like in the
Kalman filter (Grewal et al. 2020), or to sample multiple trajectories simultaneously to
approximate the posterior, which is referred to as particle filtering (Kutschireiter et al. 2017).

It is still a matter of ongoing research which of these algorithms is more closely related to
what happens in cortex (although the sampling interpretation of neural inference found

considerable support; Echeveste et al. 2020; Knill et al. 2004), and future work might focus more
on biologically plausible implementations of Bayesian filtering in cortex and its relation to
existing theories of recurrent computation in cortical networks (e.g., Bienenstock 1995;

Boerlin et al. 2013). These and other open questions we also shortly touched upon in
chapter 3 (Outstanding questions).
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In relation to these questions, a more technical aspect of our models that should be
explored in more detail are the spike based sampling algorithms that might be employed by
cortical networks. Much previous work on spike-based sampling developed theories for
networks sampling from binary distributions (Buesing et al. 2011; Deneve 2008) (with a few

exceptions, e.g., Rotermund et al. 2019; Savin et al. 2014). We here derived approximate
algorithms to sample from continuous distributions using probabilistic neural spiking. To
this end we employed a heuristic approach, which prevented us to give strong guarantees
on the convergence of our sampling algorithms (See also Limitations in Appendix A.3).
Future work might tackle this problem with a more sophisticated mathematical formalism
that enables to guarantee unbiased sampling from the posterior distribution of the target
variables.

Taking a step back, in the light of our results it might also be worthwhile to reevaluate
the basic model assumptions made in models of inference in cortex. Our work indicates
that the generative model of cortex might not be well described by a simple hierarchy of
Gaussians, as it has often been conceptualized before (Millidge et al. 2021; Rao andBallard 1999).

In chapter 4 we have introduced a model where multiple areas simultaneously explained
sensory input, which we argued is the reason for the effect of locomotion on activity in V1.
In chapter 5 we have introduced a model where a binary variable decides if top-down inputs
are informative or not, whichwe used to explain the sudden (and delayed) burst of activity for
mis-predictive top-down input. These details of the generative models can be understood as
inductive biases that the brain incorporates to model the underlying states of sensory inputs,
which often follownontrivial distributions. Extrapolating fromour results, I argue thatmuch
of the dynamics of inference in cortex hinges on such inductive biases, such as the forms of
distributions, or the structural assumptions in the generative model. Thus, in order to make
sense of these dynamics, it might be necessary to first understand what particular inductive
biases, what form of generative model, the brain has to implement in order to effectively deal
with the sensory data it acquires.

6.3 Practical applications for theories of cortical
computation

Broadening our outlook on future research, we should also address a hitherto neglected
question: the general contribution of implementation-level theories of neural computation
in cortex, as developed here. Undoubtedly, understanding how animals and humans
function is by itself a sufficient motivation for developing such models, but what might be
their practical impact?
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From a technological perspective, it has been argued that by understanding how neural
systems produce intelligence, we will also improve our ability to construct artificial
intelligence (AI) systems (Hassabis et al. 2017; Zador et al. 2023). A challenge for such a
transfer of insights is that, despite their superficial similarity, current AI systems seem to
operate on quite different basic principles than biological neural systems, and the direct
impact of (implementation-level) theoretical neuroscience on AI models has been limited
in the past (Hassabis et al. 2017). Nevertheless, even if it remains to be seen if the low-level
biological principles of neural computation can be directly relevant for AI research, they are
closely connected to the high-level algorithmic principles of sensory processing and
cognition (we have touched upon such principles while justifying our models in chapters
4 and 5). These principles could help building competent AI systems that act and think in
similar ways as humans, by informing the high-level architectural design of intelligent
algorithms (Lake et al. 2017; Sinz et al. 2019).

Perhaps a more directly relevant field where implementation-level theories of neural
computation in cortex can have significant impact is in health applications. One crucial
area of potential application is brain-computer interfaces, where understanding how
information is encoded in neural circuits can lead to improved interfaces with applications
in treating various diseases (Shih et al. 2012). Another promising avenue lies in
computational psychiatry, which seeks to understand mental disorders through high-level
computational descriptions, and to link them to deficits in specific neural mechanisms
(Huys et al. 2016). This approach opens the possibility of developing better treatments, such
as drug interventions targeting these identified neural mechanisms to address the disorders
effectively.

To illustrate how such a connection might look like in a particular example, we can look
at schizophrenia, a mental disorder which is characterized by a broad range of symptoms
(e.g., dilusions and hallucinations; Fletcher et al. 2009; Sterzer et al. 2018). It is long known that
schizophrenia is connected to altered mismatch negativity (Umbricht et al. 2005), and
subsequent research has related this effect to reduced activity in Somatostatin-expressing
(SST) interneurons in schizophrenia patients (VanDerveer et al. 2021). From the theoretical
side, there have been several attempts to describe schizophrenia in terms of predictive
coding models, which suggest that schizophrenia results from an incorrectly adjusted
precision weighting of top-down and bottom-up information (Sterzer et al. 2018). While
there have been different accounts of how exactly the precisions in the internal model are
maladjusted (Sterzer et al. 2018), in sensory processing the occurrence of hallucinations in
schizophrenia might be explained by an abnormally high top-down precision, which would
lead perception to follow internal predictions rather than sensory evidence.
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6 Overall Discussion

We can build on the work in this thesis to connect these computational considerations to
the experimental observations in SST interneurons. In chapter 5 we have proposed that SST
interneurons could mediate the re-weighting (i.e., cancelling) of top-down inputs at apical
dendrites if they are mispredictive. If SST neurons are affected by the disorder and show
reduced activity, this would imply a continually increased precision of top-down inputs in
the internal model, meaning that these inputs would be cancelled insufficiently and could
thereby mediate the observed hallucinations and alterations in mismatch negativity. It has
to be acknowledged that, for now, these are highly speculative connections of a high-level
theory of schizophrenia to dysfunctions in specific neural mechanisms, and here mainly
serve as an illustration of possible neuro-computational approaches to mental disorders.
There still remain many uncertainties about how exactly cortical neurons implement the
intended computations, and a strong theoretical basis for such continuative conjectures
should first be established through further research.

6.4 Testing theories of cortical computation

It thus remains to reflect on the progress we made on the question we set out to answer:
How does cortex implement a model of the world? Certainly, the theory we have
formulated can only grant us insight insofar it can be tested in experiment. In the work of
this thesis we have encountered two major difficulties that hinder this project: i) The
ambiguity of empirical observations, i.e., multiple theories can explain an isolated empirical
fact (e.g., the mismatch responses discussed in chapters 4 & 5), and ii) the incompleteness
of the theory, i.e., due to the complexity of the cortical circuitry there unquestionably are
computations and dynamics that are not described by the model. In the context of
inference in cortex, to address the latter problem (ii), experiments have often looked at the
sine qua non of certain theories—for example, a much researched prediction is that of
mismatch responses as proposed by classical hPC (Walsh et al. 2020). However, this is
certainly not enough to also tackle the first problem (i). In this thesis we have therefore
tried to seek out predictions that are clearly (and ideally necessarily) different between
theories. One major contribution of our work in this direction is the observation that
delayed prediction mismatch responses are not straightforwardly explained by error
neurons in classical hPC, but by the implementation of inference in our model (chapter 5).
We have also discussed the differences of predictions on the circuit level between the
theories (chapter 3), and differences in how visuomotor mismatch responses might evolve
over time in error neurons or prediction neurons (chapter 4). We expect that conducting
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6 Overall Discussion

experiments that test these and other predictions we have generated will help to constrain
in a systematic way how exactly cortex implements a model of the world.

Given that these experiments have been conducted and they produced a result that rules
out a certain model, how should be proceeded from there? This is not trivial to answer,
since the models in question, such as the one presented here, are often flexible enough to
incorporate these new observations through additional mechanisms or assumptions (see

also Lakatos 1976). There is no problem to salvage a falsified model in this way, because one
otherwise might, as they say, throw out the baby with the bathwater. But what about the
Bayesian framework, shouldn’t it prevent such arbitrariness by introducing a sense of
optimality into the models? Not really. First, the framework also encompasses
’non-optimal’ models, which can justify any computation as Bayesian through a specific
choice of prior and likelihood distributions (Jones et al. 2011). Second, the mapping of the
algorithm to the neural substrate is fundamentally unconstrained (Sprevak 2021). Thus,
models relying on the Bayesian framework are ’regular’ models of neural dynamics, that is,
models based on observations and assumptions, and the framework brings the benefit of
allowing to systematically generate functional interpretations of specific neural
mechanisms (Chater et al. 2011). In consequence, models based on classical hPC, or the
theory of hPC presented in this thesis, have to be treated the same as models without any
principles attached: They have to be questioned in their complexity and biological
plausibility, and their predictions have to be carefully tested in a systematic way.

6.5 Conclusion

Despite these considerations about the challenges in testing the developed theory we can
conclude on a cautiously optimistic note. In this thesis we have started with two
assumptions: i) (sensory) cortex performs spiking inference in a hierarchical model of
sensory data, and ii) errors of the model are computed in neural dendrites. It is remarkable
how many properties of cortical dynamics and plasticity are more or less directly implied by
these very few assumptions (e.g., local E-I balance, voltage-dependent plasticity,
asynchronous irregular activity, Gamma oscillations, Gabor-wavelet receptive fields in V1,
extra-classical receptive field effects and their top-down modulation, ...). We have also
demonstrated that some effects of expectation violations on cortical responses can be
qualitatively reproduced in this model, given rather straightforward additional assumptions
about the precise generative model that cortex implements. Future work might test the
predictions we have generated in experiment, and expand upon our ideas to form a more
comprehensive picture of learning, inference and the generation of behavior in the brain.
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Supporting Information Text

Symbols.
• X0,T = {x(t)|t ∈ {0, ..., T}}: Input signal over time to be encoded
• S0,T = {s(t)|t ∈ {0, ..., T}}: Spikes of coding neurons
• z(t): ‘Outputs’ of coding neurons, proportional to evoked post-synaptic potentials
• x̂(t) = Dz(t): Input signal reconstructed from network activity
• D: Decoder matrix of the decoder model
• σ: Variance of the decoder model
• b: Spiking probability prior of decoder model
• θ: Decoder model parameters {D, σ,b}
• F : Feedforward weights (mostly excitatory)
• W : Recurrent weights connecting to the soma (mostly inhibitory)

• W i: Recurrent weights, connecting to the dendrites to input i (mostly inhibitory)
• Tj : Soft threshold of neuron j
• ∆u: Stochasticity of neural spiking
• τ : Membrane time constant of leak
• η(·): learning rate of parameter (·)
• ρ: Target firing rate of neurons
• 1/Z(·): Normalization of probability function

A. Stochastic neural dynamics

We simulated stochastic leaky integrate and fire neurons in discrete timesteps. The model can be seen as a special case of the
spike response model with escape noise (1). In timestep t ∈ {0, 1, ..., T} with length δ neuron j spikes with a probability

pdyn (sj(t) = 1|x(t), z(t)) = pspike(uj(t)) = sig
(
uj(t)− Tj

∆u

)
, [1]

where sig(x) = [1 + exp(−x)]−1, uj(t) is the membrane potential of the neuron, Tj the firing threshold, ∆u defines how
stochastic the spiking is and sj(t) is a spike indicator, which is 1 if neuron j spiked in time step t, otherwise sj = 0. Emitted
spikes are then transmitted to other neurons and elicit post synaptic potentials (PSPs) z(t) with

zj(t) =
∑
t

j
s<t

exp
(
− t− 1− tjs

τ

)
,

which account for the leaky integration at the membrane. Here, tjs are the spike times of neuron j and τ the membrane time
constant, which was chosen the same for all neurons. Please note that, in order to ease the upcoming derivations, we changed
notation such that t is the index of the discrete timestep and τ has the unit of timesteps. The time delay of PSP arrival of the
length of one time step δ is interpreted as a finite traveling time of neural impulses over axons. The PSPs together with input
signal x(t) are then summed up linearly at the soma to give the membrane potential

uj(t) =
∑
i

Fjixi(t) +
∑
k

Wjkzk(t).

In order to model neurons that make use of dendritic balance we subdivided the somatic potentials such that they are sums of
dendritic potentials: uj(t) =

∑
i
uji (t), where the dendritic potentials u

j
i (t) = Fjixi(t)+

∑
k
W i
jkzk(t). To summarize, stochastic

neural dynamics are modeled through the spike probability pdyn (s(t)|x(t), z(t)) with neural parameters {F,W,T,∆u}.

B. Learning an efficient code with expectation maximization

With the following derivations we provide a link between learned balanced state inhibition (2) and neural sampling in graphical
models (3). Hence we provide new derivations for the network dynamics and learning rules used in (2), showing how they
implement unsupervised learning in a graphical model. Furthermore, with the dendritic balance learning scheme we will address
the linear case of the quite general problem that arises through explaining away effects, i.e. converging arrows in graphical
models: Converging arrows imply that neurons should cooperate to encode the input and lead to non-localities in update rules
when the neural dynamics are based on point neurons. In related studies this problem so far has been avoided in various ways,
which all prevent the network from explaining the input through possibly correlated neurons simultaneously and thus limit
coding versatility (3–7).

The goal of neural spiking dynamics and plasticity throughout this paper is to find an efficient spike encoding, i.e. representing
an input signal X0,T = {x(t)|t ∈ {0, ..., T}} through a collection of spikes S0,T = {s(t)|t ∈ {0, ..., T}}. X0,T can be seen here
as an episode in an organisms life, which we will assume to be distributed according to p∗(X0,T ). We say that S0,T efficiently
encodes X0,T if the following two conditions are met:
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A B

Fig. S1. Graphical representation of the decoder model. A We consider a decoding model where readouts of inputs x(t) (denoted here as xt) are conditioned on preceding
spikes s(t) (denoted as st). B By introducing the spike traces z(t) into the model, the model factorizes over timesteps, which is equivalent to viewing it as a hidden Markov
model (HMM) with hidden states {z(t), s(t)}.

a) X0,T can be accurately estimated from S0,T via a decoding model pθ(X0,T |S0,T ).

b) The number of spikes emitted is small.

Hence we want to maximize the likelihood pθ(X0,T |S0,T ) over both the decoding model parameters θ and the latent variables
S0,T sampled by the (constrained) network dynamics pdyn (s(t)|x(t), z(t)).

To show how a stochastic spiking neural network can unsupervisedly learn such an encoding, we make use of the framework
of online expectation-maximization (EM) learning (8). EM-learning can find maximum-likelihood estimates for parameters of
latent variable models (here pθ(X0,T ,S0,T )) for observed data (X0,T ). For these models it typically is intractable to marginalize
out the latent variables (S0,T ). In order to solve this problem one defines the log-likelihood lower bound

F∗(p̃, θ) = 〈log pθ(X0,T )−DKL(p̃(S0,T |X0,T )|pθ(S0,T |X0,T ))〉p∗(X0,T )

= 〈log pθ(X0,T ,S0,T )− log p̃(S0,T |X0,T )〉p̃(S0,T |X0,T )p∗(X0,T )
, [2]

where p̃(S0,T |X0,T ) can be any (tractable) probability distribution, which in our case will be given through pdyn. Finding
maximum-likelihood parameters θ can then be done by iteratively maximizing F∗(p̃, θ) with respect to p̃ (E-step) and θ
(M-step). In the E-step pθ is approximated by p̃ in order to estimate 〈log pθ(X0,T ,S0,T )〉p̃(S0,T |X0,T )p∗(X0,T ) and in the M-step
this approximation is used to improve the model. This algorithm is guaranteed to converge to a local minimum, also if F∗ is
maximized only partially in every iteration, which makes it applicable to online learning.

Appealing to this theory in the following we show that: (i) Given a linear decoding model, a stochastic spiking neural
network can be connected such that it can sample an efficient encoding online. This relates model- and network-parameters.
(ii) The decoding model can be optimized online in respect to the sampled dynamics of the network. (iii) Combining (i) (the
E-step) and (ii) (the M-step) yields update rules that can be applied by a stochastic spiking neural network to optimize its
parameters in order to encode its inputs.

B.1. Online encoding by spiking neural network. Let us consider the following decoding model and prior on the spiking
probability (Fig S1)

pθ(X0,T |S0,T ) =
∏
t

pθ(x(t)|z(t)) =
∏
t

Nx(t)(Dz(t),Σ)

pθ(S0,T ) =
∏
t

pθ(s(t)|z(t)) =
∏
t

1
Z(b) exp

(
s(t)>b

)
with Σ = σ2I and parameters θ = {D,σ,b}. Notably this model asserts that at every time t, x(t) can be linearly decoded
from spike traces z(t) with variance σ2, where the spike traces are defined as before. Observe that the spike traces z(t) are
deterministically defined given the preceding spikes S0,t−1. Also note that with the diagonal correlation matrix Σ, the decoder
model assumes zero correlations between decoding errors. Input signals for which this assumption likely holds are for example
signals with zero pairwise correlations between dimension, e.g. signals that have been whitened.

Since the model factorizes over time given the spike traces z(t), the log-likelihood lower bound (Eq 2) can be rewritten as

F∗(pdyn, θ) =

〈∑
t

log pθ(x(t), s(t)|z(t))− log pdyn(s(t)|x(t), z(t))

〉
pdyn(S0,T |X0,T )p∗(X0,T )

= 〈log pθ(X0,T )〉p∗(X0,T )−〈∑
t

log pdyn(s(t)|x(t), z(t))− log pθ(s(t)|Xt+1,T , z(t))

〉
pdyn(S0,T |X0,T )p∗(X0,T )
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Here we substituted p̃(S0,T |X0,T ) =
∏
t
pdyn(s(t)|x(t), z(t)) and made use of the facts that spikes alter only the future decoding

and that they are independent of the past given z(t), i.e. pθ(s(t)|X0,T ,S0,t−1) = pθ(s(t)|Xt+1,T , z(t)).
We now perform the E-step. F∗ is approximately maximized over pdyn if pdyn(s(t)|x(t), z(t)) ≈ pθ(s(t)|Xt+1,T , z(t)) at

every time t. However, this poses two problems:
(i) pdyn depends only on x(t) while the spike probability in the model is based on future values Xt+1,T , which are not

available to the network.
(ii) In order to compute pθ(s(t)|Xt+1,T , z(t)) =

∑
St+1,T

pθ(St,T |Xt+1,T , z(t)) future spikes have to be marginalized out,
which is intractable.

For the purpose of this paper we introduced simple approximations that solve these problems and work well in practice for
our inputs. Specifically we assumed input- and network activity to be approximately constant over time. Hence all future
inputs x(t′) ∈ Xt+1,T were assumed to be known to be x(t′) = x(t). Future network activity (independent of the current spike
s(t)) was assumed to be well approximated by a single trajectory, where neural outputs z(t) were constant. With this we can
compute

∑
St+1,T

pθ(s(t)|Xt+1,T , z(t),St+1,T )pθ(St+1,T |Xt+1,T , z(t))

≈
T∏
t′=t

pθ

(
s(t)|x(t′) = x(t), z(t′) = z(t) + s(t) exp

(
− t
′ − 1− t

τ

))

= 1
Z(θ,x) exp

(
s(t)>b

) T∏
t′=t+1

exp
(

z(t′)>

σ2 [D>x(t′)− 1
2D
>Dz(t′)]

)

= 1
Z(θ,x) exp

(
s(t)>b

) T∏
t′=t+1

exp

((
z(t) + s(t) exp

(
− t
′−1−t
τ

))>
σ2

[
D>x(t)−

− 1
2D
>D

(
z(t) + s(t) exp

(
− t
′ − 1− t

τ

))])
= 1
Z(θ,x, z) exp

(
s(t)>

[
b + τ

σ2D
>x(t)− τ

σ2D
>D
(

z(t) + 1
4s(t)

)])
= 1
Z(θ,x, z) exp

(
s(t)>

[
b + τ

σ2D
>x(t)− τ

σ2D
>Dz(t)− 1

4
τ

σ2 diag(D>D)
])

where we approximated
∑T

t′=t+1 exp(− t
′−1−t
τ

) ≈ τ (that is τ and T large) and the last equality follows if timesteps are
sufficiently small such that only one neuron spikes per timestep. Comparing with the network dynamics (Eq 1) from this we
can conclude that a network that performs approximate online sampling from pθ(S0,T |X0,T ) has parameters

F = D>

W = −D>D

Tj = 1
4Wjj −

σ2

τ
bj

∆u = σ2

τ

[3]

These results are similar to those yielded by a greedy spike encoding scheme (2). Please note that the sampling could be
improved by using advanced sampling schemes, such as rejection sampling (6).

B.2. Online learning of an optimal decoder. As we have shown, the network dynamics implement an approximation of the
E-step if the network parameters are chosen correctly. We will now use these samples produced by the network to incrementally
improve the parameters of the decoding model in the M-step.

Recall that in the M-step we want to maximize under θ〈∑
t

log pθ(x(t), s(t)|z(t))

〉
pdyn(S0,T |X0,T )p∗(X0,T )

.

Updates of the decoder model parameters should thus follow the gradient

∆θ = η̃θ
∂F∗

∂θ
= η̃θ

〈∑
t

∂

∂θ
log pθ(x(t), s(t)|z(t))

〉
pdyn(S0,T |X0,T )p∗(X0,T )
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In this paper we’re only interested in the decoder weights Dij from neuron j to input i, where the derivation yields

∆Dij = η̃D

〈∑
t

σ−2zj(t)

(
xi(t)−

∑
k

Dikzk(t)

)〉
pdyn(S0,T |X0,T )p∗(X0,T )

Here, η̃D is the update step size and σ2 the variance of the decoder model. Note that in the following we will drop the
dependence of the learning rate on σ2, which has its motivation in covariant optimization (9). In covariant optimization, the
gradient is multiplied by the inverse curvature of the loss function, because step size should be decreased when the curvature of
the loss function is high. Since the curvature of the likelihood is proportional to the inverse variance, the variance drops out to
yield a covariant gradient. This yields the update rule

∆Dij = η̃D

〈∑
t

zj(t)

(
xi(t)−

∑
k

Dikzk(t)

)〉
pdyn(S0,T |X0,T )p∗(X0,T )

B.2.1. Online approximation. If many episodes X0,T as sampled from p∗(X0,T ) are presented in succession and spikes are sampled
as outlined above, the average over samples from pdyn can be replaced by an average over time〈∑

t

·

〉
pdyn(S0,T |X0,T )p∗(X0,T )

≈
∑
t

〈·〉t .

If the update rules are performed every timestep this lets us rewrite them as

δDij = ηDzj(t)

(
xi(t)−

∑
k

Dikzk(t)

)
[4]

This requires, however, that the learning rate ηD is sufficiently small such that changes in Dij are negligible in a sufficiently
long time window T ′. In that case, summing the equation over time window T ′ yields

T ′∑
t=0

δDij = ηDT
′

〈
zj(t)

(
xi(t)−

∑
k

Dikzk(t)

)〉T ′
t=0

T ′→T
≈ ∆Dij ,

where the learning rates are related via η̃D = ηDT
′. A more refined statement can be made by rewriting the update equation as

∆Dij = η̃D

(
〈zj(t)xi(t)〉pdyn(S0,T |X0,T )p∗(X0,T ) −

∑
k

Dik 〈zj(t)zk(t)〉pdyn(S0,T |X0,T )p∗(X0,T )

)
This makes explicit that the only information required to compute the gradient of the decoder weights are the correlations
between neural outputs and inputs and in between neural outputs over the input sequences. Thus in practice, the learning
rate ηD is ideally chosen as large as possible to allow fast learning, but also sufficiently small such that weight updates are
performed with respect to a time window that provides a good estimate of correlations under the whole sampled spike trains.

B.3. Online learning of network parameters. So far we showed that the parameters of a network that samples from a decoder
model are directly connected to the parameters of the model. We also showed how the decoder weights have to be updated
such that they maximize the model likelihood over the generated samples. We will now combine these two results to find
update rules for neural parameters directly, that can be used by neurons to learn an efficient encoding without supervision
online. To this end we will first show how an approximation to the previously derived gradients can be implemented by regular
stochastic LIF neurons. In a second step we will show how a better approximation can be realized by neurons with dendritic
compartments. The central insight for all derivations will be that learning an E-I balance on membrane potentials corresponds
to the learning of a decoder to the excitatory inputs times a transformation matrix that brings them into the space of the
membrane potentials.

B.3.1. Somatic balance approximation.

Feedforward weights From the equality F = D> (Eq 3) derived earlier and the update rule for D (Eq 4) we directly arive at

δFji = ηF zj(t)

(
xi(t)−

∑
k

Fkizk(t)

)
We follow previous approaches (2) and omit contributions to the decoding

∑
k
Fkizk(t) that are not available for the neuron,

which is equivalent to assuming that neural spiking in the population is uncorrelated ∀j 6= k : 〈zj(t)zk(t)〉t ≈ 0. This yields the
regularized Hebbian rule

δFji = ηF zj(t) (xi(t)− Fjizj(t)) [5]
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Recurrent weights This rule will follow the optimal decoder gradient if spikes are indeed uncorrelated. However, if this is not
the case the solution will be suboptimal and furthermore the previously derived recurrent weights W = −D>D together with
the suboptimal weights F does not enable a reasonable encoding anymore. Both problems can be addressed by observing that
for the optimal membrane potential we derived

uopt(t) = D>x(t)−D>Dz(t) = D>(x(t)−Dz(t)),

i.e. the potentials are proportional to the decoding error. This can be approximately guaranteed even if the feedforward weights
are suboptimal (but not zero) by setting W = −FD, since then

u(t) = Fx(t)− FDz(t) = F (x(t)−Dz(t)) ≈∝ uopt(t).

To make sure that neurons adapt their encoding for an optimal decoder, recurrent weights will adapt along the gradient of
decoder weights. For fixed encoder weights F this yields

δWjk = −
∑
i

FjiδDik

= −ηW zk(t)

(∑
i

Fjixi(t)−
∑
i,l

FjiDilzl(t)

)

= −ηW zk(t)

(∑
i

Fjixi(t) +
∑
l

Wjlzl(t)

)
= −ηW zk(t)uj(t)

[6]

This shows that through an E-I balance, this rule for W self-consistently finds the correct decoder ‘inside’ of the recurrent
weights, and hence allows the projection of the right decoding error x−Dz. Thereby recurrent connections ensure a reason-
able encoding even if feedforward weights are not learned optimally. Since in the equation above Fji is assumed constant,
we chose the learning rate ηW 2-4 times larger than ηF . In simulations we found that recurrent weights that evolve un-
der Eq 6 indeed converged toW = −FD, where D is the optimal decoder weights obtained under the non-local update rule Eq 4 .

B.3.2. Learning encoder weights with dendritic balance . In the following we devise examples for local plasticity rules for feedforward
inputs that follow the correct gradient of the likelihood lower bound. Locality requires that the decoding of other neurons is
made available at the synapse, which can then be used to find the correct gradient. We argue that this can be mediated by
dendritic recurrent connections W i that target dendrites where the feedforward input i has formed a synapse. Due to strong
attenuation between dendritic compartments, the membrane potential uij in the vicinity of synapse i on that dendrite only
integrates inputs that are present locally, i.e.

uij(t) = Fjixi(t)︸ ︷︷ ︸
feedforward input

+
∑

k
W i
jkzk(t)︸ ︷︷ ︸

recurrent input

.
[7]

We then assume a regime where currents from the dendrites are summed linearly, such that the total membrane potential
at the soma is given by uj(t) =

∑
i
uij(t). Similar to recurrent somatic connections, we will show that recurrent dendritic

connections can locally learn an optimal decoding of neural PSPs z by enforcing dendritic balance of feedforward and recurrent
inputs. The central feature of this approach is that feedforward and recurrent connections both use the dendritic potential for
learning, which requires their cooperation. We here show three possible mechanisms that realize this and yield very similar
behaviour to the analytical solution (Fig S2, S3).

Slow feedforward adaptation One possibility to ensure the cooperation of feedforward and recurrent weights is to separate
the timescales on which they are adapting. To that end we make the optimal ansatz for recurrent weights similar to before
W i
jk = −FjiDik. Then, changing recurrent weights in the direction of the decoder gradient of Eq 4 yields

δW i
jk =− FjiδDik

=− ηW zk(t)(Fjixi(t)−
∑

l
FjiDilzl(t))

=− ηW zk(t)(Fjixi(t) +
∑

l
W i
jlzl(t))

=− ηW zk(t)uij(t).

where we again assumed that changes in feedforward weights are slow and can be neglected, and ηW = ηD. We conclude that
enforcing dendritic balance by recurrent plasticity is equivalent to locally optimizing a decoder Dik = −W i

jk/Fji.
The correct gradient of the decoder weights can also be calculated locally, but it can’t be applied to the feedforward weights

directly since this would contradict the previously made assumption of slow changes in feedforward weights. However, it is
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possible to locally integrate the correct gradient and use this to adapt feedforward weights slowly, with a delay. To this end we
introduce the local integration variable Iji = FjiDij , which adapts according to the decoder gradient times Fji

δIji =ηIFjizj(t)
(
xi(t)−

∑
k
Dikzk(t)

)
=ηIzj(t)uij(t),

[8]

with ηI = ηD. Fji then can slowly follow Dij via

δFji =ηF (Iji/Fji − Fji),

with ηF � ηD. Note that for Fji = 0 the gradient for Fji is not defined. In this case the learning process could be kickstarted
via simple Hebbian learning on Fji. Note also that the equation W i

jk = −FjiDik has to hold at the start of learning, which can
be guaranteed by simply choosing W i

jk = Fji = 0. To summarize, slow feedforward adaptation leads to neural parameters
W i
jk = −FjiDik and Fji = Dij . This shows that feedforward synapses slowly can evolve to minimize the decoder error along

its gradient using only local information.

Simultaneous adaptation of feedforward and recurrent weights In principle it would also be possible to adapt feedforward and
recurrent weights simultaneously without a separation of timescales. However, calculating the gradient for the derived recurrent
weights is locally not feasible, since we find

δW i
jk =−DjiδDik − δDjiDik

=− ηD(zk(t)uij(t) + zj(t)uik(t)).

Empirically we found that the contralateral contributions zj(t)uik(t) to the gradient can be approximated by the accessible
contributions zk(t)uij(t). We thus approximate 〈zj(t)uik(t)〉t ≈ 〈zk(t)uij(t)〉t. While this equation does not hold for all i, j, k,
we still find that the resulting learned contributions to the dendritic potentials have the correct magnitude, hence enabling
feedforward learning. The gradient for the recurrent weights now are

δW i
jk =− ηW zk(t)uij(t),

where ηW = 2ηD.
Assuming the correct recurrent weights W i

jk = −DjiDki we can find the decoded population encoding locally at the dendrite.
From the self-consistency Fji = Dij and Eq 7 we have the relation∑

k

Djkzk(t) =
Fjixi(t)− uij(t)

Fji
.

With this we can implement the learning of feedforward weights in way that highlights its similarity to previous approaches
(Eq 5)

δFji = ηF zj(t)
(
xi(t)−

Fjixi(t)− uij(t)
Fji

)
,

i.e. the rule is a regularized Hebbian plasticity rule. Again, for very small Fji the regularization becomes unstable, but can be
left away (since it should go to zero) leaving a purely Hebbian rule. For the derivation we used ηF = ηD, which implies that we
should choose ηW ≈ 2ηF .

In simulations we verified that the approximations we made for this learning scheme are adequate and yield feed forward
weights for which Fji = Dij holds with high accuracy. Note that the network found by the presented learning scheme only
corresponds to the decoding model if ηW ≈ 2ηF . However, if the recurrent learning is faster this only results in a rescaling of
feedforward weights by a factor of 2ηF /ηW , since their adaptation is too slow by this factor. This means that in this case the
“correct” dynamics of the network can be recovered via a rescaling of all weights, or equivalently, with firing rate adaptation a
change in the stochasticity of spiking ∆u by a factor of 2ηF /ηW .

Learning of feedforward and recurrent weights via the weight decay trick For both learning schemes we have presented so far, the
relation of feedforward and recurrent weights and their learning rates η(·) are critical for learning, as changes in recurrent
weights directly impact how feedforward weights are learned and vice versa. This can become problematic, if the recurrent
weights are not initialized as W i

jk = −FjiFki or if for some reason the match of feedforward and recurrent weights is disturbed
during learning. This problematic co-dependence of the learning rules can be avoided via a simple trick, which we will call the
weight decay trick. To this end we introduce a small weight decay with rate λj on the decoder weights

δDij = ηDzj(t)

(
xi(t)−

∑
k

Dikzk(t)

)
− λjDij . [9]

By doing so, we can readily derive an implicit equation for the fixed point of this update rule, which is

D∗ij =

〈
λ−1
j zj(t)

(
xi(t)−

∑
k

D∗ikzk(t)

)〉
t

=
〈
λ−1
j F−1

ji zj(t)u
i
j(t)
〉
t
.
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This equation holds if recurrent weights were learned to approximately equalW i
jk = −FjiD∗ik. This can be achieved by updating

recurrent weights until convergence with

δW i
jk = −FjiδDik

= −ηW
(
zk(t)uij(t)− λkW i

jk

)
.

Now the optimal feedforward weights can be learned by slowly tracking the fixed point D∗ij , which can be computed locally

δFji = ηFλj
(
D∗ij − Fji

)
≈ ηF

(
F−1
ji zj(t)u

i
j(t)− λjFji

)
.

Here the pre-factor λj normalizes the learning speed. Interestingly, this learning rule is simply the gradient for feedforward
weights, as calculated before, with additional weight-decay similar to the recurrent learning rule. The difference of this learning
scheme to the previous two learning schemes is that inhibition will not perfectly balance excitation, but the balance will be
offset by a small amount. Feedforward learning then relies on this small mismatch between excitation and inhibition to find a
good encoding and thereby avoids the problematic co-dependence of feedforward and recurrent learning.

How does this learning scheme, which evidently relies on a different decoder update, relate to the previously derived network
dynamics corresponding to the optimal decoder? A valid concern would be that an offset in the E-I balance could lead to
elevated or reduced spiking rates. The answer is that there exists a close relation between the weight decay λj and the spiking
prior bj , which helps to ensure optimal spiking. More technically, the weight decay of the decoder can be seen as a constraint
on the L2-norm of decoder weights, to compensate for a fixed, sub-optimal threshold. To understand this, we start with the
equation for the optimal threshold Tj (Eq 3). If the threshold Tj is fixed to an arbitrary value, this equation directly implies a
length constraint on the decoder

Tj = −1
4
∑
i

D2
ij −

σ2

τ
bj

⇔
∑
i

D2
ij = −4Tj −

4σ2

τ
bj

def= aj .

This means that neurons can not only fire optimally for a given prior bj by changing their thresholds in accordance with the
strength of incoming connections, but also by changing the overall connection strength while keeping the threshold fixed. This
constraint can be included into the optimization by augmenting the decoder loss (containing all relevant contributions of the
likelihood, Eq 2) via Lagrangian optimization

L(D) = 1
2
〈
||x(t)−Dz(t)||2

〉
t

+
∑
j

λj
1
2
(
||Dj ||2 − aj

)
.

From this loss the decoder update with weight decay (Eq 9) directly arises via gradient descent. Here, the Lagrangian multipliers
λj correspond to specific firing priors of neurons bj for some fixed threshold Tj . It is therefore possible to obtain correct network
dynamics by either adapting λj according to δλj ∝ − ∂L

∂λj
, or by simply treating λj as a parameter of the model instead of bj .

It is therefore also evident that changes in network dynamics in comparison to the analytical network (Eq 3) are minimal as
long as the λj are small. Especially with additional rapid firing rate adaptation, which we are using in our simulations, the
difference to the analytical solution is negligible for small λj , as here the impact of λj on the firing rate is ‘overwritten’ by the
rapidly adapting threshold.

B.3.3. Rapid firing rate adaptation. In the Bayesian framework Habenschuss and colleagues have shown that a rapid rate adaptation
can be interpreted as a constraint on the variational approximation in the E-step (10). For the resulting constrained optimization
formally a Lagrange multiplier is introduced which ‘overwrites’ the analytic threshold Tj = 1

4Wjj − σ2τ−1bj . We will not make
a notational difference between the two thresholds here. The fixed firing rate is enforced by adapting the threshold Tj such
that neurons are firing with a target firing rate ρ.

δTj = ηT (sj − ρ δ)

Here, ρ δ is the mean number of spikes in a time window of size δ if a neuron would spike with rate ρ and sj is a spike indicator
which is 1 if zj spiked in the last time δ, otherwise sj = 0. Since this is a constraint that is applied in the E-step, the learning
rate ηT should be large.
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B.3.4. Pruning recurrent weights. In the proposed learning schemes the number of recurrent connections grows very fast with
network and input size (# of inh. conn. = Nx ×N2

z ). We here propose a principle by which recurrent connections that provide
little contribution to neural learning can be pruned away (Please note that the following principle only considers learning; for
correct dynamics it might be necessary to keep additional somatic weights that ensure efficient spiking). To identify these
weights we again look at the learning rule of the proposed slow feedforward weight adaptation scheme (Eq 8)

δIji =ηIzj(t)uij(t)

=ηIzj(t)
(
Fjixi(t) +

∑
k
W i
jkzk(t)

)
.

Here, recurrent connections that provide no systematic contribution to the gradient can be left away. In particular, those
are connections W i

jk for which 〈zj(t)W i
jkzk(t)〉t ≈ 0. In other words, only large weights matter that connect neurons with

correlated activities. Hence, the number of required weights for learning depends primarily on the sizes of neural receptive
fields (as W i

jk ≈ −FjiFki) and the number of correlated coding neurons and not the size of the network and input.
Based on this observation, one possibility to prune weights is for example to remove a certain fraction of the weights and

leaving only the weights with the largest |〈zj(t)W i
jkzk(t)〉t|. In biological neurons potential connections W i

jk could continuously
be probed and only be stably formed if their contribution is sizeable. For the bar task, we demonstrated that this allows us to
prune a very large fraction of recurrent weights without compromising performance (Fig S9).

It is important to note that in no case feedforward weights should remain un-regularized, that is, the learning rule is
purely Hebbian, as this would lead to unbounded growth of weights. The best solution to this problem is to always keep
self-contributions to the gradient W i

jjzj ≈ −FijFijzj . This results in the same regularization as it is used in the somatic
balance model and can arguably be always computed locally.
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C. Relation to previous studies of representation learning

C.1. Comparison to other Hebbian-like learning rules. The Hebbian-like learning rule used in the somatic balance model is
part of a group of Hebbian-like learning rules that have been used in the past to model representation learning in recurrent
populations of neurons. We here present a (non-exhaustive) overview over such rules that learn feedforward weights Fji (Table
S1). All these rules can be seen as successors of the well known Oja’s rule (11), which can be written in the form

∆Fji ∝ zj(xi − Fjizj),

where xi is some input and zj =
∑

i
Fjixi is the activity of a (linear) neuron. Specifically, all rules we will present can be

written in the more general form
∆Fji ∝ post× (pre− f(Fji)× post),

where "post" and "pre" denote aspects of post- and presynaptic activity, respectively, and f(·) is some function of the weight.
We will write sj ∈ {0, 1} to denote a binary spike indicator and zj to denote some form of analog postsynaptic activity.

Note that by itself Oja’s rule always extracts the largest principal component of the input data xi. This means that in order
to learn non-redundant representations in a network, some form of recurrent inhibitory coupling is required. Importantly, as we
have argued, in order to be generally applicable it requires inhibition that is nearly instantaneous and therefore biologically
implausible. Consequently, most models we present here make use of some form of instantaneous (or implausible) inhibition.
Some of the models get around this constraint by other means, e.g. by forcing zero correlations in an extremely slow-firing
regime (12), or have only been tested for very simple scenarios (13).

Table S1. List of related papers modeling representation learning with Hebbian-like plasticity.

Reference Rule Comment
Foeldiak (1990) (14) ∆Fji ∝ sj(xi − Fjisj) This paper uses binary neurons, where outputs sj are

determined by an optimization scheme.
Kung et al (1990) (15) ∆Fji ∝ zj(xi − Fjizj) This paper uses linear neurons, where outputs zj are

determined in a strictly sequential manner.
Zylberg et al (2011) (12) ∆Fji ∝ zj(xi − Fjizj) zj is a spike-counter over a certain time window. This

paper uses LIF neurons with recurrent inhibition in a
slow-firing regime.

Kappel et al (2014) (6) (similarly
(5))

∆Fji ∝ sj(xi − eFjisj) To achieve "canonical" form we multiplied the rule with
eFji , changing the learning speed, but not the fixed
point. This paper uses stochastic spiking neurons in a
winner-take-all circuit.

Bill et al (2015) (4) ∆Fji ∝ sj(xi − sig(Fji + F0i)sj) sig(·) is the logistic function and F0i is a baseline con-
stant. This paper uses stochastic spiking neurons in a
winner-take-all circuit.

Bahroun et al (2017) (16) ∆Fji ∝ [
∑t

t′
zj(t′)2]−1zj(xi − Fjizj) Learning speed is regulated with a pre-factor. This pa-

per uses analog neurons, where outputs zj are the re-
sults of an optimization scheme.

Pehlevan et al (2017) (17) ∆Fji ∝ [
∑t

t′
zj(t′)2]−1zj(xi − Fjizj) This paper proposes a network with very similar be-

havior to (16), but performs non-negative source sepa-
ration.

Jonke et al (2017) (13) ∆Fji ∝ sj(xi − sig(γFji)sj) sig(·) is the logistic function and γ is a scaling param-
eter. This paper uses stochastic spiking neurons in a
k-winner-take-all circuit.

Tavanei et al (2018) (18) ∆Fji ∝ sj(xi − (1− λ)Fjisj) λ is a sparsity factor. This paper uses spiking neurons
in a winner-take-all circuit.

Brendel et al (2020) (2) ∆Fji ∝ sj(xi − αFjisj) α is some regularization factor. This paper uses LIF
neurons with recurrent inhibition and noisy potentials,
resulting in a model that is practically identical to ours.
Additionally, only one neuron is allowed to spike per
time-bin.

This paper ∆Fji ∝ zj(xi − Fjizj) This paper uses stochastic LIF neurons with recurrent
inhibition and spike traces zj .
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C.2. Comparison to Brendel et al (2020). Our neural model and the model used by Brendel et al (2) are practically identical.
Both models employ stochastic leaky integrate-and-fire neurons, which can be seen as instances of the spike response model
with escape noise (19). Brendel et al employ a formulation with partial differential equations, while we use a formulation
where the shape of PSP’s is solved. Brendel et al add stochasticity to neural firing by adding Gaussian noise to the membrane
potential, while we directly write down a probability function for spiking. Overall, this results in a stochastic neuron that is
approximately equal to our probabilistic formulation (see e.g. (19), chapter 9.4).

The goal of coding is the same in both models. Hence, the feedforward learning rule of the somatic balance model is also,
for all practical purposes in this paper, the same as it has been used by Brendel et al, which reads

δFji ∝ sj(t) (xi(t)− αFjisj(t)) , [10]

where α is some regularization factor. Notably, this rule only updates weights on spike-times, whereas our Hebbian-like rule
(Eq 5) also incorporates non-spike-times into the update (the non-spike-times are an essential contribution in the dendritic
balance learning scheme). For constant xi(t), which we use in our simulations, our rule can be integrated over time for a single
spike zj(t) = sj(ts) exp

(
− t−ts

τ

)
at time ts:

ηF

∫ ∞
t=ts

sj(ts) exp
(
− t− ts

τ

)(
xi(t)− Fjisj(ts) exp

(
− t− ts

τ

))
dt

= ηF τsj(ts) (xi(t)− 0.5Fjisj(ts)) .
[11]

Hence, when spikes are rare events our rule is the same as the rule by Brendel et al, with α = 0.5 and the learning rate ηF
chosen appropriately. For fast spiking neurons the regularization is slightly different, since past spikes are taken into account
when regularizing the weight. However, the overall learning outcome will be very similar since this only slightly changes the
magnitude of the weight-vector. To verify this we adapted their implementation of the network (20), and found that the major
effects we report in Fig 5F-H (SB) are preserved.
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D. Datasets

MNIST The standard MNIST database of handwritten digits was used (21). Images were scaled down from 28× 28 to 16× 16
pixels. No further preprocessing was applied.

Correlated bars See description in Fig 4A. Pixels where bars are displayed (also in the case of overlap) were set to the value
1.0, pixels without bars were set to 0.0.

Natural scenes Images for natural scenes were taken from (22). A simple preprocessing was applied to ensure that they
can be modeled by spiking neurons. Importantly we required that input is always positive. Every image χ in the database
was whitened. This can be seen as an approximation of retinal on/off-cell preprocessing, where one on-cell and one off-cell
with overlapping fields are lumped together in a single value χi, which can be positive or negative. We separated every
value χi into two values x′2i = χi and x′2i+1 = −χi. We then applied a continuous nonlinear activation function to ensure
that activations are positive and bimodally distributed (i.e. mostly close to either 0.0 or 1.0): xi = sig(3.2(x′i − 0.8)), where
sig(x) = 1/(1 + exp (−x)). For the display of learned weights we merge corresponding values again and display x2i − x2i+1.

Speech The speech data-set is the same as used in (2) and was taken from (20). The speech signal was presented in a spectral
decomposition with 25 frequency channels, sampled at 200Hz with linear interpolation between data-points. The signal was
spatially whitened using Cholesky whitening. After whitening we applied the same splitting and rectification procedure as for
the natural scenes input signals.

In contrast to our results in Fig 5F-H, the original task in (2) uses the unwhitened signal directly as input. For this
unwhitened input, (2) show that the somatic balance model requires a learning rule that - additionally to the Hebbian-like
learning - performs spatial whitening to remove pairwise correlations in the signal. To check that our pre-processing does not
significantly alter the results, we also performed simulations without whitening and using this alternative learning rule as used
by (2) (Fig S11), and observed similar behavior as in Fig 5F-H.

E. Parameters

For all tasks parameters were tuned to ensure that networks operate well. DB denotes networks where the analytic so-
lution given the decoder was used for network dynamics. DB slow are networks with slow feedforward adaptation, DB
simultaneous are networks with parallel adaptation of feedforward and recurrent weights. SB are networks learning with
somatic balance. When the parameter η∆u is present the stochasticity of spiking was annealed starting from 1.0 with rate
η∆u. Learning rates ηθ are given in units of ms−1. Networks in all simulations were initialized with zero initial weights,
except for Figs 3 and 5C-E, where feedforward weights were initialized as Fji = exp(max(0, 0.3 ·rji−0.2))−1 with rji ∼ N (0, 1).

MNIST (Fig 3, 5)

Parameter DB decay SB
δ 0.1ms / 0.3ms 0.1ms / 0.3ms
τ 10ms 10ms
∆u 0.1 0.1
ρ 15s−1 15s−1

λ 0.03 -
ηT 7.0 · 10−3 7.0 · 10−3

ηF 1.5 · 10−5 4.0 · 10−6

ηW 3.0 · 10−5 3.0 · 10−5

ηD 1.0 · 10−6 1.0 · 10−6

MNIST (Fig S2)

Parameter DB DB simultaneous DB slow DB decay SB
δ 0.1ms 0.1ms 0.1ms 0.1ms 0.1ms
τ 10ms 10ms 10ms 10ms 10ms
∆u 0.1 0.1 0.1 0.1 0.1
ρ 20s−1 20s−1 20s−1 20s−1 20s−1

λ - - - 0.005 -
ηT 5.0 · 10−3 3.0 · 10−3 5.0 · 10−4 5.0 · 10−4 5.0 · 10−3

ηF 5.0 · 10−6 3.0 · 10−6 4.0 · 10−7 2.0 · 10−6 5.0 · 10−6

ηI - - 4.0 · 10−5 -
ηW - 6.0 · 10−6 4.0 · 10−5 6.0 · 10−5 1.0 · 10−5

ηD 5.0 · 10−6 3.0 · 10−6 5.0 · 10−6 5.0 · 10−6 5.0 · 10−6
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Correlated bars (Fig 4, S3, S9)

Parameter DB DB simultaneous DB slow DB decay SB
δ 1.0ms 1.0ms 1.0ms 1.0ms 1.0ms
τ 10ms 10ms 10ms 10ms 10ms
∆u∗ 0.1 0.1 0.1 0.1 0.1
η∆u 7.0 · 10−8 7.0 · 10−8 7.0 · 10−8 7.0 · 10−8 7.0 · 10−8

ρ 15s−1 15s−1 15s−1 15s−1 15s−1

λ - - - 0.005 -
ηT 1.0 · 10−2 1.0 · 10−2 5.0 · 10−2 5.0 · 10−2 1.0 · 10−2

ηF 5.0 · 10−5 5.0 · 10−5 1.0 · 10−7 2.0 · 10−5 5.0 · 10−5

ηI - - 5.0 · 10−5 - -
ηW - 1.0 · 10−4 5.0 · 10−5 1.0 · 10−4 1.0 · 10−4

ηD 5.0 · 10−5 5.0 · 10−5 5.0 · 10−5 5.0 · 10−5 5.0 · 10−5

Natural scenes (Fig 4, 5, S4, S5, S6, S7, S8, S10)

Parameter DB SB
δ 0.2ms 0.2ms
τ 10ms 10ms
∆u∗ 0.13 0.13
η∆u 7.0 · 10−8 7.0 · 10−8

ρ · # neurons 1000s−1 1000s−1

ηT until t = 6000s 6.0 · 10−3 6.0 · 10−3

ηT until t =∞ 4.0 · 10−3 4.0 · 10−3

ηF until t = 6000s 4.0 · 10−5 4.0 · 10−5

ηF until t =∞ 4.0 · 10−5 3.0 · 10−5

ηW until t = 6000s - 10.0 · 10−5

ηW until t =∞ - 7.0 · 10−5

ηD until t = 6000s 4.0 · 10−5 4.0 · 10−5

ηD until t =∞ 3.0 · 10−5 3.0 · 10−5

Speech (Fig 5, S11)

Parameter DB SB
δ 0.05ms 0.05ms
τ 10ms 10ms
∆u 0.05 0.05
ρ 5s−1 5s−1

ηT 1.4 · 10−2 1.4 · 10−2

ηF 2.1 · 10−4 2.1 · 10−4

ηW - 5.6 · 10−4

ηD 2.1 · 10−4 2.1 · 10−4
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Fig. S2. Comparison of the different learning schemes on the MNIST task. All learning algorithms reach a very similar performance. The dendritic balance learning schemes
with slow feedforward adaptation (DB slow) and the weight decay trick (DB decay) converge somewhat slower than dendritic balance with simultaneous feedforward and
recurrent adaptation (DB simultaneous), dendritic balance with the analytical solution for recurrent weights (DB) and the somatic balance learning scheme (SB), as expected.
DB decay finds smaller weights than other learning schemes, also as expected. As we derived, this can be compensated by a change in the firing threshold, which in our case
is done via rapid firing rate adaptation. The learned feedforward weights are also very similar (bottom images).
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Fig. S3. Comparison of the different learning schemes on the bars task with p = 0.7. All dendritic balance algorithms reach a good performance, again DB slow and DB decay
converge somewhat later. Learning in the SB network finds a sub-optimal solution. These results are reflected in the learned feedforward weights (bottom), where SB finds
representations that do not contain single bars, as it would be optimal, but the collapsed corresponding bars instead.
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Fig. S4. All learning curves for the natural scenes task (Fig 4).
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Fig. S5. All learned feedforward weights for the natural scenes task (Fig 4). For a large number of coding neurons neurons in both SB and DB learn weights with Gabor-wavelet
like appearance. For smaller networks SB and DB learn qualitatively different weights: DB neurons become detectors for small blobs of activity in the images, similar to
center-surround receptive fields. SB neurons also become detectors of blobs of activity but with much less coordination and larger diameter receptive fields.
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Fig. S6. All learning curves for the natural scenes task for different timesteps (Fig 5A). For long timesteps (i.e. transmission delays) SB learning fails.
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Fig. S7. All learned feedforward weights for the natural scenes task for different timesteps (Fig 5A). For long timesteps the representations learned by SB collapse, while DB
continues to find good representations.
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Fig. S8. The results in Fig 5A are robust in respect to the stochasticity of firing ∆u and firing rate ρ. We tested firing rates of A ρ = 5Hz, where learning is mostly stable, and
B ρ = 1.5Hz, where learning becomes slightly unstable. For higher stochasticity (larger ∆u) neural firing becomes extremely random, for more deterministic neurons (smaller
∆u) learning often does not converge.
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Fig. S9. In the dendritic balance learning scheme many of the dendritic recurrent weights can be pruned while retaining learning performance. We here demonstrate this in the
correlated bars task with 4× 4 pixel images and p = 0.6. The results presented here were obtained with DB with slow feedforward adaptation. Weights were pruned based on
the principle presented above. Correlations between neurons were estimated in the first 1% of simulation-time, long before convergence, after which pruning commenced.
Several pruned dendritic connections were replaced by a somatic connection to ensure a somatic balance if necessary. A 90% of the dendritic recurrent weights can be pruned
without losing performance. If more dendritic weights are pruned performance approaches that of the SB learning scheme. B Feedforward weights learned with all dendritic
connections in place. C Decoder corresponding to the network in B. D Feedforward weights learned when 90% of dendritic connections are pruned, which are remarkably
similar to the optimal solution. E In comparison, weights learned by SB find collapsed representations containing two bars, which is a suboptimal solution. F Dendritic recurrent
weights of neuron 1 in D, after pruning. Weights for a single neuron can be displayed in image space, showing which dendrites they connect to. After pruning with the proposed
principle only weights that are important for learning remain. Self-contributions (top left) are always kept and can be computed locally. Other weights only connect to dendrites
of the neuron, which codes for the "corresponding" correlated bar (center left). Only this neuron needs the information provided by the recurrent weights for learning, in order to
prevent the collapse as we see it in E. G Since recurrent plasticity finds a "decoding" by balancing excitation with inhibition, we can find the corresponding "decoder" to the
recurrent weights of neuron 1. This decoder only contains the two relevant bars that correspond to one another, demonstrating that our pruning principle can find exactly the
relevant contributions and discard all the others. H The "decoder" as in G for progressive pruning fractions. It is clearly visible how for larger pruning fractions only the relevant
dendritic connections remain.
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Fig. S10. Average pearson correlation coefficient between outputs zi(t) of pairs of neurons in DB networks coding for natural images (Fig 4D). The correlation of neural
activity increases when the number of neurons decreases. This indicates that the input patterns the neurons learn to represent are more strongly correlated for small networks.
Error-bars denote 95% bootstrapping confidence intervals.
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Fig. S11. This figure corresponds to Fig 5F-H, but uses unwhitened input signals. We observed similar results as in Fig 5F-H, here with transmission delays of δ = 0.5 ms.
For smaller delays we did not observe a collapse of the population code, likely because whitening leads to stimulus dimensions that have faster temporal dynamics than
the original signal, making it harder for inhibition to decorrelate neural responses. For the somatic balance model (SB) the presence of pairwise correlations between inputs
requires a different learning rule, where weights are updated according to ∆Fji ∝ zj(xi − αxi(Fx)jzj) (see (2) for details). Although the dendritic balance model (DB) is
also based on a decoder model that assumes inputs with zero pairwise correlations, it still manages to find a very good encoding. A Spectrogram of the signal presented in
25 frequency channels. B As can be seen in the reconstructed signal (top), SB finds a good encoding for instant inhibition (loss=0.08), but for small delays of 0.5 ms the
learned representations collapse, leading to pathological network behavior and bad encoding performance (loss=1.25). C In contrast, DB finds a very good encoding for instant
inhibition (loss=0.04) and a reasonable encoding with inhibitory delays of 0.5 ms (loss=0.2). Note that whitening changes the scale of the signal, hence decoder losses are not
directly comparable between Fig 5 (where the loss is computed on the whitened signal) and Fig S11.
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A Appendix

A.2 A comment about scaling time-steps

This section is an addendum to clarify some of the derivations in the supplementary
material to Chapter 2 (Appendix A.1). Concretely, there are some intricacies that have to be
considered regarding how the variance of the model should be re-scaled when time-steps
are scaled. The following insights have been used implicitly, and we here make them
explicit for clarity.

Consider the relation of time-step length δt, the kernel timescale τ , the variance of the
model σ2 and the stochasticity of spiking ∆u that have been derived. τ was defined with
units of time-steps, meaning that we can write it as

τ = τ∗/δt, (A.1)

with τ∗ some given timescale in units of time. We here see that for δt → 0 we get τ → ∞,
which in itself is not problematic. It seems to become problematic when considering the
derived value for the stochasticity of spiking

∆u = σ2/τ = δtσ2/τ∗, (A.2)

which for δt → 0 seems to go to zero as well. This would mean that the model neurons
become more deterministic when we simulate in smaller time-steps.

A simple solution would be to also re-scale the variance of the model as σ2 = σ2
∗∗
/δt for

fixed σ2∗∗. This would result in a constant∆u independent of the time-step as we have used
it in Chapter 2. There is a straightforward argument why this is the correct approach. In
short, like for Gaussian white noise, the variance of the model has to go to infinity as δt goes
to zero in order to have finite variance for any finite integral of the signal, or equivalently, to
keep the information contained in the signal fixed. An intuitive explanation follows.

Consider that we have defined the model for some given (very short) time-step length
δt∗ with variance σ2∗. For illustration, say we have sampled a trajectory of random values
using this model and we want to re-scale the time-step length to another length δt which
is a multiple of δt∗ = δt/n. We now collect the sampled trajectory into the new re-scaled
time-bins by averaging over n bins, which creates a new set of samples. By the law of large
numbers, these new samples have a variance of σ2∗/n = σ2

∗
δt∗/δt. This illustrates how the

variance of samples changes when we look at a signal using different time-steps. Conversely
this means that, in order to keep sampling in respect to the same underlying model, we have
to change the variance as σ2 = σ2

∗∗
/δt with σ2∗∗ = σ2

∗
δt∗ fixed, as suggested before.

109



A Appendix

A.3 Generalization to arbitrary spike kernels and
hierarchical and recurrent predictions

Herewe generalize the derivations of AppendixA.1which required exponential spike kernels
and only considered feed-forward driven networks. We propose an alternative approach that
can handle arbitrary kernels and apply it to networks that are modulated by top-down inputs
or recurrent inputs. In the end we will also discuss the limitations of these derivations and
how they might be overcome.

We will use a slightly different notation for kernels κ and encodings r. As a simple
mnemonic, κ(t′|t) is the kernel at t′ given there was a spike at t. For the exponential kernel
(which could be replaced by any desired kernel) the reads as

κ(t′|t) = exp
(
− t

′ − 1− t

τ

)
.

Encodings can then be computed via

r(t′) =

t′∑
t=0

κ(t′|t)s(t).

Top-down modulated network

Here we assume model distributions where the encoding is also modeled by a higher level
population (similar to the model in Rao et al. 1999)

pθ(x(t)|r(t)) = Nx(t)(Dr(t), σ)

pθ(r(t)|rTD(t)) = Nr(t)(DTDrTD(t), σTD)

pθ(s(t)) =
1

Z
exp(s(t)>c)

We employ the same approach as before, by assuming a single future trajectory of inputs x,
representations r and top-down inputs rTD. Inputs x are simply assumed constant, as before.
However, to allow for arbitrary kernels, we have to consider how r will develop depending
on the kernel and past spikes. Ignoring future spikes, this future evolution is given by r(t′) =∑t

t′′=0 s(t
′′)κ(t′|t′′)+ s(t)κ(t′|t). As a simple first guess (which might be improved upon in

the future, but this generalizes the assumption inAppendix A.1) we assume that future spikes
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are amirror image of past spikes, leading to r(t′) = 2
∑t

t′′=0 s(t
′′)κ(t′|t′′)+s(t)κ(t′|t). This

allows us to derive

pθ(s(t)|Xt+1,T , R
TD
t+1,T , S0,t)

=
∑

St+1,T

pθ(s(t)|Xt+1,T , R
TD
t+1,T , S0,t, St+1,T )pθ(St+1,T |Xt+1,T , R

TD
t+1,T , S0,t)

≈pθ(s(t)|Xt+1,T , R
TD
t+1,T , S0,t, St+1,T = reverse(S0,t))

=
T∏

t′=t

pθ

s(t)|x(t′) = x(t), rTD(t
′
), r(t′) = 2

t∑
t′′=0

s(t′′)κ(t′|t′′) + s(t)κ(t′|t)


=

1

Z(θ, x)
exp

(
s(t)>c −

T∑
t′=t

1

2σ2

[
x(t′) −Dr(t′)

]>[
x(t′) −Dr(t′)

]
︸ ︷︷ ︸

b(s(t))

−
T∑

t′=t

1

2σ2
p

[
rTD(t

′
) −DTDxTD(t

′
)
]>[

rTD(t
′
) −DTDxTD(t

′
)
]

︸ ︷︷ ︸
a(s(t))

)

Here, b are bottom-up (basal) contributions and a top-down (apical) contributions. For
bottom-up contributions we find

b(s(t)) ∝
1

σ2

T∑
t′=t

−r(t′)>D>x(t′) +
1

2
r(t

′
)
>
D

>
Dr(t′)

∝
1

σ2

−s(t)>D>x(t)

 T∑
t′=t

κ(t
′|t)

 +
1

2

T∑
t′=t

s(t)κ(t′|t) + 2

t∑
t′′=0

s(t′′)κ(t′|t′′)

>

D
>
D

s(t)κ(t′|t) + 2

t∑
t′′=0

s(t′′)κ(t′|t′′)


∝

s(t)>

σ2

−D>x(t)

 T∑
t′=t

κ(t
′|t)

 +D
>
Ds(t)

 1

2

T∑
t′=t

κ
2
(t

′|t)

 +D
>
D

t∑
t′′=0

s(t′′)

2 T∑
t′=t

κ(t
′|t′′)κ(t′|t)



As before we can identify the inputs

excitation: D>x(t)

[
T∑
t′=t

κ(t′|t)

]

inhibition: −D>D

t∑
t′′=0

s(t′′)

[
2

T∑
t′=t

κ(t′|t′′)κ(t′|t)

]

threshold: − diag(D>D)

[
1

2

T∑
t′=t

κ2(t′|t)

]
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For top-down contributions let rTD(t
′) = s(t)κTD(t

′|t)+2
∑t

t′′=0 s(t
′′)κTD(t

′|t′′) = p(t′)+
2q(t′). We then find

a(s(t)) ∝
1

2σ2
p

T∑
t′=t

[
(p(t′) + 2q(t′)) −DTDxTD(t

′
)
]>[

(p(t′) + 2q(t′)) −DTDxTD(t
′
)
]

∝
1

2σ2
p

T∑
t′=t

p(t′)>p(t′) + 4p(t′)>q(t′) − 2p(t′)>DTDxTD(t
′
)

=
s(t)>

σ2
p

s(t)

 1

2

T∑
t′=t

κ
2
TD(t

′|t)

 +
t∑

t′′=0

s(t′′)

2 T∑
t′=t

κTD(t
′|t)κTD(t

′|t′′)

−DTDxTD(t
′
)

 T∑
t′=t

κTD(t
′|t)



excitation: DTDxTD(t
′)

[
T∑
t′=t

κTD(t
′|t)

]

self-inhibition: −
t∑

t′′=0

s(t′′)

[
2

T∑
t′=t

κTD(t
′|t)κTD(t

′|t′′)

]

threshold: −

[
1

2

T∑
t′=t

κ2TD(t
′|t)

]

Recurrent network

Here we assume recurrent contributions in the prior from slower spike traces rp(t′) =∑
t<t′ κp(t

′|t)s(t)

pθ(x(t)|r(t)) = Nx(t)(Dr(t), σ)

pθ(s(t)|rp(t)) =
1

Z
exp(s(t)>c)Nr(t)(Dprp(t), σp)

pθ(s(t)|Xt+1,T , S0,t)

=
∑

St+1,T

pθ(s(t)|Xt+1,T , S0,t, St+1,T )pθ(St+1,T |Xt+1,T , S0,t)

≈pθ(s(t)|Xt+1,T , S0,t, St+1,T = reverse(S0,t))

=

T∏
t′=t

pθ

s(t)|x(t′) = x(t), r(t′) = 2

t∑
t′′=0

s(t′′)κ(t′|t′′) + s(t)κ(t′|t)


=

1

Z(θ, x)
exp

(
s(t)>c −

T∑
t′=t

1

2σ2

[
x(t′) −Dr(t′)

]>[
x(t′) −Dr(t′)

]
︸ ︷︷ ︸

b(s(t))

−
T∑

t′=t

1

2σ2
p

[
r(t′) −Dprp(t

′
)
]>[

r(t′) −Dprp(t
′
)
]

︸ ︷︷ ︸
a(s(t))

)

Herewe assume r(t′) = s(t)κ(t′|t)+
∑t

t′′=0 s(t
′′)κ(t′|t′′) = p(t′)+q(t′) and rp(t′) similarly.

Assuming future spikes might be detrimental here, as this could lead to overconfidence in
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spiking. It has to be noted that the outcome of these assumptions have not been tested and
might not be appropriate in general.

a(s(t)) ∝
1

2σ2
p

T∑
t′=t

[
(p(t′) + q(t′)) −Dp(pp(t

′
) + qp(t

′
))
]>[

(p(t′) + q(t′)) −Dp(pp(t
′
) + qp(t

′
))
]

∝
1

2σ2
p

T∑
t′=t

p(t′)>p(t′) + 2p(t′)>q(t′) − 2p(t′)>Dppp(t
′
) − 2p(t′)>Dpqp(t

′
)

− 2pp(t
′
)
>
D

>
p q(t′) + pp(t

′
)
>
D

>
p Dppp(t

′
) + 2pp(t

′
)
>
D

>
p Dpqp(t

′
)

=
s(t)>

σ2
p

(
s(t)

 1

2

T∑
t′=t

κ
2
(t

′|t)

 +
t∑

t′′=0

s(t′′)

 T∑
t′=t

κ(t
′|t′′)κ(t′|t)

−Dps(t)

 T∑
t′=t

κ(t
′|t)κp(t

′|t)


−Dp

t∑
t′′=0

s(t′′)

 T∑
t′=t

κ(t
′|t)κp(t

′|t′′)

−D
>
p

t∑
t′′=0

s(t′′)

 T∑
t′=t

κp(t
′|t)κ(t′|t′′)

 +D
>
p Dps(t)

 1

2

T∑
t′=t

κ
2
p(t

′|t)


+D

>
p Dp

t∑
t′′=0

s(t′′)

 T∑
t′=t

κp(t
′|t)κp(t

′|t′′)

)

excitation: Dp

t∑
t′′=0

s(t′′)

[
T∑
t′=t

κ(t′|t)κp(t′|t′′)

]

acausal exc. (ignore): D>
p

t∑
t′′=0

s(t′′)

[
T∑
t′=t

κp(t
′|t)κ(t′|t′′)

]

inhibition: −D>
p Dp

t∑
t′′=0

s(t′′)

[
T∑
t′=t

κp(t
′|t)κp(t′|t′′)

]

self-inhibition (refractory): −
t∑

t′′=0

s(t′′)

[
T∑
t′=t

κ(t′|t′′)κ(t′|t)

]

threshold: −

[
1

2

T∑
t′=t

κ2(t′|t)

]
− diag(D>

p Dp)

[
1

2

T∑
t′=t

κ2p(t
′|t)

]

+ diag(Dp)

[
T∑
t′=t

κ(t′|t)κp(t′|t)

]

Here, the acausal excitation is the overlap between the past encoding and future predictions,
which is small for reasonable kernels and can therefore be ignored.
Limitations
The assumptions and approximations made in the previous derivations are necessary to

compute an analytical approximation of the posterior, when information about the future is
not available, as for biological networks. In preliminary simulations we found that these
approximations are decent and result in functional networks, but the sampled posterior
might be biased. While this bias seems to be small for the scenarios we have tested it, in
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conjunction with the EM algorithm it can in some cases prevent the convergence of
learning (i.e., the bias in the encoding means the model does not capture the relation
between encoding and data, which is also not solved by adapting it, effectively ’pushing’
both encoding and model parameters around indefinitely).

We here propose two ways to address this convergence problem. One is to explicitly use
a constrained posterior distribution, which we have done in chapter A.1 already. This can
cancel possibly wrongly defined parameters of the posterior and thereby stabilize learning
(see also Habenschuss et al. 2012). Another idea would be to use a hybrid approach in the E-
step. The intuition here is that it would be desirable to explicitly minimize the log-likelihood
lower bound in the E-step, e.g., via gradient descent, but this would effectively prevent us
fromderiving biologically plausible update rules as we did before. Our proposal is to keep the
analytical approximation, but to reduce the bias in sampling by explicitly optimizing some
of the parameters of this approximate distribution. A parameter that affords itself to this
is the threshold of neural spiking, which could be adapted by some algorithm that directly
minimizes the loss, e.g., via the REINFORCE algorithm (Appendix A.4). Future work might
investigate the viability of these approaches.

Another problem for hierarchical and recurrent models is that neural activity typically is
sparse. This means that most of the time the representations r are zero, and the Gaussian
prior distributions become inappropriate. A solution to this problem would be not to
assume the Gaussian priors on the single neuron traces, but on functional assemblies of
neurons. This is equivalent to performing the modeling in a lower dimensional space of
continuous variables, rather than the high-dimensional single neuron representation space
(a related model has demonstrated a similar approach before; Boerlin et al. 2013). This solution,
however, results in learning rules that are not easily localizeable anymore, as single synapses
now require information about the entire functional assembly. Future work might look into
how this problem can be circumvented, by extending our results in chapter A.1 where we
have proposed a similar idea (clustering of excitatory synapses), or how different forms of
prior distributions could facilitate recurrent spiking networks (taking inspiration for example

from Kappel et al. 2014).
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A.4 Reinforced spiking algorithm

We start with the goal function as the log-likelihood lower bound as before. Using the fact
that the model factorizes over time given the spike traces, we write the log-likelihood lower
bound as an average of an instantaneous reward

F∗(ψ, θ) = 〈log pθ(X0,T , S0,T )− log pψ(S0,T |X0,T )〉pψ(S0,T |X0,T )p∗(X0,T )
(A.3)

=

〈∑
t

R(xt, rt, st, ψ, θ)

〉
pψ(S0,T |X0,T )p∗(X0,T )

(A.4)

with rewardR(xt, rt, st, ψ, θ) = log pθ(xt, rt)− log pψ(st|xt, rt).

To update the parameters using gradient decent we have to compute ∂
∂ψF

∗(ψ, θ), which
involves taking the derivative ’through’ the expectation. One approach to do that is the score
function trick

∂

∂θ
〈f(z, θ)〉pψ(z) =

〈[
∂

∂ψ
log pψ(z)

]
f(z, θ) +

∂

∂ψ
f(z, θ)

〉
pψ(z)

.

Now the derivative can be written as

∂

∂ψ
F∗(ψ, θ) ∝

〈[∑
t

∂

∂ψ
log pψ(st|xt, rt)

][∑
t

R(xt, rt, st, ψ, θ)

]〉
pψ(S0,T |X0,T )p∗(X0,T )

.

(A.5)

The remaining problem is that these two sums over time cannot be evaluated in an online
fashion, but only after the whole training sequence, which is biologically implausible. To
address this, the REINFORCE algorithm (Williams 1992) replaces the left-hand sum through
an eligibility trace

ė = −1

τ
e+

∂

∂ψ
log pψ(s(t) | x(t), r(t)). (A.6)

The derivative ∂
∂ψ log pψ(s(t) | x(t), r(t)) typically takes a convenient (local) form (as the

dynamics pψ are local), such as the product of pre and postsynaptic activity. Now the update
rule can be implemented online:

∂

∂ψ
F∗(ψ, θ) ≈

∑
t

etR(xt, rt, st, ψ, θ). (A.7)
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Although this algorithm is implementable with local dynamics (assuming the reward is
broadcasted to all neurons), the updates have a high variance, which makes learning very
slow. Intuitively, we correlate all actions of the network with the entire reward, which
means that we will have to sample a large number of ’action trajectories’ in order to
understand which of the actions were beneficial (or not). It is possible to reduce this
variance to some extent, e.g., by redefining the reward (Williams 1992), but ultimately this
algorithm is unsuitable for training recurrent networks of spiking neurons.
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