Aus dem Institut für Humangenetik (Prof. Dr. med. B. Wollnik)

der Medizinischen Fakultät der Universität Göttingen

Genetische Ursachen syndromaler und nicht-syndromaler Formen der Lippen-Kiefer-Gaumenspalte und funktionelle Analyse möglicher Kandidatengene

INAUGURAL-DISSERTATION

zur Erlangung des Doktorgrades der Medizinischen Fakultät der Georg-August-Universität zu Göttingen

vorgelegt von

Jonas Herbert Fiedler

aus

Bad Nauheim

Göttingen 2023

Dekan: Prof. Dr. med. W. Brück

Betreuungsausschuss

Betreuer/in Prof. Dr. med. B. Wollnik

Ko-Betreuer/in: Prof. Dr. med. Dr. med. dent. H. Schliephake

Prüfungskommission

Referent/in Prof. Dr. med. B. Wollnik

Ko-Referent/in: Prof. Dr. med. Dr. med. dent. H. Schliephake

Drittreferent/in: Prof. Dr. med. R. Dressel

Datum der mündlichen Prüfung: 12.12.2023

Hiermit erkläre ich, die Dissertation r	nit dem Titel "Genetische Ur-	
sachen syndromaler und nicht-syndromaler	romaler Formen der Lippen-	
Kiefer-Gaumenspalte und funktionelle Analyse möglicher Kandi-		
datengene" eigenständig angefertigt und keine anderen als die von		
mir angegebenen Quellen und Hilfsmittel verwendet zu haben.		
Göttingen, den		
gennigen, wen in	(Unterschrift)	

Inhaltsverzeichnis

Inhaltsverzeichnis

I Abbi	ildung	sverzeichnis	V
II Tab	ellenv	erzeichnis	VII
III Ab	kürzu	ngen	IX
1 Einle	eitung		1
1.1	Lipp	oen-Kiefer-Gaumenspalten	2
1.	1.1	Spaltformen	2
1.	1.2	Embryologische Entwicklung des Mittel- und Untergesichts	4
1.	1.3	Häufigkeit und Ursachen von Lippen-Kiefer-Gaumenspalten	6
1.	1.4	Genetische Grundlagen syndromaler und nicht-syndromaler Formen von pen-Kiefer-Gaumenspalten	-
1.2	Phä	notypische und genetische Spektren kraniofazialer Malformationen	10
1.2	2.1	Unspezifische Kraniosynostosen	10
1.2	2.2	Crouzon-Syndrom	13
1.2	2.3	Pierre-Robin-Syndrom	14
1.2	2.4	Saethre-Chotzen-Syndrom	14
1.2	2.5	Apert-Syndrom	15
1.2	2.6	Carpenter-Syndrom	16
1.3	Nex	t-generation sequencing	16
1.4	Ziel	setzung und Fragestellung	17
2 Mate	erial u	nd Methoden	20
2.1	Mat	erial	20
2.	1.1	Chemikalien, Reagenzien und Verbrauchsmittel	20
2.	1.2	Geräte	20
2.	1.3.	Lösungen, Puffer und Medien	21
2.	1.4	Enzyme	21

Inhaltsverzeichnis

2.1.5	Restriktionsendonukleasen	22
2.1.6	Primer/Synthetische Oligonukleotide	22
2.1.7	Kits	25
2.1.8	Vektoren	26
2.1.9	Bakterien	26
2.1.10	Zelllinien	27
2.1.11	Datenbanken, Online-Tools und verwendete Software	27
2.1.12	Patientenmaterial	28
2.2. Metho	oden	31
2.2.1	Isolierung von DNA/RNA aus Blut	31
2.2.2	Isolierung von Gesamt-RNA aus eukaryotischen Zellen	31
2.2.3	Erststrang-cDNA-Synthese aus Gesamt-RNA	31
2.2.4	Bestimmung der Konzentration und des Reinheitsgrads von Nukleinsäure	2 32
2.2.5	Polymerase-Kettenreaktion (PCR)	32
2.2.6	Agarose-Gelelektrophorese	35
2.2.7	Enzymatische Aufreinigung von PCR-Produkten mittels ExoI/TSAP-Ver	dau 36
2.2.8	Sanger-Sequenzierung	36
2.2.9	Multigen-Panel-Analyse	38
2.2.10	Exomsequenzierung	39
2.2.11	Restriktionsverdau von DNA	40
2.2.12	Aufreinigung von DNA-Fragmenten aus Agarosegelen	41
2.2.13	Ligation von DNA-Fragmenten	41
2.2.14	TOPO Klonierung von DNA-Fragmenten	42
2.2.15	Herstellung transformationskompetenter E. coli TOP10F`-Bakterien	43
2.2.16	Transformation kompetenter E. coli TOP10F`-Bakterien	44
2.2.17	Übernachtkultur	44
2.2.18	Plasmidpräparation (MiniPrep)	44
2.2.19	Kolonie-PCR	45

2.2.20	Zielgerichtete Mutagenese-PCR
2.2.21	Transiente Transfektion von eukaryotischen Zellen
2.2.22	Luciferase Reporter Assay
3 Ergebnisse	49
3.1 Mut	ationsanalyse bei Patienten mit klinisch diagnostizierter syndromaler oder
isoli	erter Kraniosynostose
3.1.1	Identifizierung von <i>Hotspot</i> -Mutationen in bekannten Kraniosynostose-assozi- ierten Genen
3.1.2	Multigen-Panel-Analyse bei Patienten mit einer Kraniosynostose
3.1.3	Genetische Untersuchung eines Patienten mit der Verdachtsdiagnose eines Carpenter-Syndroms
3.2 Mut	ationsanalyse in Familien mit isolierten Lippen-Kiefer-Gaumenspalten mittels
Exo	msequenzierung66
3.2.1	Familie LKG867
3.2.2	Familie LKG11
3.2.3	Genetische Analysen der Familien LKG12, LKG21 und LKG-Kamerun 118
4 Diskussion	
4.1 Mut	ationsanalyse bei Patienten mit syndromalen Formen der Kraniosynostose 144
4.1.1	Genetische Charakterisierung von Varianten in MEGF8
	ationsanalyse mittels Multigen-Panels bei ausgewählten Patienten mit isolierter niosynostose
	tifizierung molekulargenetischer Ursachen für isolierte, nicht-syndromale ben-Kiefer-Gaumenspalten
4.3.1	Identifizierung einer pathogenen Veränderung in <i>PAX7</i> als molekulare Ursache für isolierte Lippen-Kiefer-Gaumenspalten
4.3.2	Identifizierung einer pathogenen Veränderung in <i>NEDD4L</i> als molekulare Ursache für isolierte Lippen-Kiefer-Gaumenspalten
4.3.3 4.4 Aus	Ergebnis der genetischen Analysen der Familien LKG12, LKG21 sowie LKG- Kamerun

Inhaltsverzeichnis	IV

5 Zusammenfassung	165
6 Literaturverzeichnis	168

I Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung unterschiedlicher Spaltformen
Abbildung 2: FGF-Signalkaskade
Abbildung 3: Unterschiedliche Formen der Kraniosynostose
Abbildung 4: Stammbaum der Familie LKG8 mit Lippen-Kiefer-Gaumenspalte
Abbildung 5: Stammbaum der Familie LKG11 mit Lippen-Kiefer-Gaumenspalte29
Abbildung 6: Stammbaum der Familie LKG12 mit Lippen-Kiefer-Gaumenspalte 30
Abbildung 7: Stammbaum der Familie LKG21 mit Lippen-Kiefer-Gaumenspalte 30
Abbildung 8: Stammbaum der Familie LKG-Kamerun mit Lippen-Kiefer-Gaumenspalte 30
Abbildung 9: Elektropherogramme der identifizierten FGFR2-Mutationen in Patienten mit
der Verdachtsdiagnose Apert-Syndrom. 52
Abbildung 10: Elektropherogramme der identifizierten FGFR2-Mutationen in Patienten mit
der Verdachtsdiagnose Crouzon-Syndrom
Abbildung 11: Elektropherogramme der identifizierten TWIST1-Mutation im Patienten Gö238
mit der Verdachtsdiagnose Saethre-Chotzen-Syndrom
Abbildung 12: Bestätigung der diagnostisch identifizierten Veränderungen in MEGF8 mittels
PCR und Sanger-Sequenzierung an genomischer DNA des Patienten Gö332
Abbildung 13: Nachweis der heterozygoten Sequenzvariante c.5210C>A in MEGF8 auf
cDNA Ebene
Abbildung 14: Nachweis des korrekten Übergangs zwischen Exon 13 und 14 in MEGF8 auf
cDNA-Ebene
Abbildung 15: Stammbaum der Familie LKG8 mit Lippen-Kiefer-Gaumenspalte 67
Abbildung 16: Exemplarische Darstellung der in Familie LKG8 identifizierten
Sequenzveränderung c.229C>T im <i>PAX7</i> -Gen
Abbildung 17: Stammbaum der Familie LKG8 mit Lippen-Kiefer-Gaumenspalte; Ko-
Segregation86
Abbildung 18: Schematische Darstellung des Transkriptionsfaktors PAX7 sowie der im
Rahmen dieser Arbeit identifizierten Veränderungen p.Arg77Cys (rot) und der von Leslie et
al. beschrieben Variante p.Ala259Val (schwarz) in <i>PAX7</i>
Abbildung 19: Konservierung der Aminosäureposition 77 in PAX7 im Vergleich zu anderen
Mitgliedern der humanen <i>PAX</i> -Familie
Abbildung 20: Speziesübergreifender Vergleich der Konservierung der Aminosäureposition
77 des humanen PAX7-Proteins 88

Abbildung 21: Graphische Darstellung der gemittelten, normalisierten relativen Luciferase-
Aktivität91
Abbildung 22: Stammbaum der Familie LKG11 mit Lippen-Kiefer-Gaumenspalte
Abbildung 23: Exemplarische Darstellung der in Familie LKG11 identifizierten
Sequenzveränderung c.551C>T im NEDD4L-Gen. 118
Abbildung 24: Stammbaum der Familie LKG11 mit Lippen-Kiefer-Gaumenspalte; Ko-
Segregation. 118
Abbildung 25: Stammbaum der Familie LKG12 mit Lippen-Kiefer-Gaumenspalte 119
Abbildung 26: Stammbaum der Familie LKG21 mit Lippen-Kiefer-Gaumenspalte
Abbildung 27: Stammbaum der Familie LKG-Kamerun mit Lippen-Kiefer-Gaumenspalte. 121
Abbildung 28: Schematische Darstellung der Domänenstruktur des Transkriptionsfaktors
PAX7
Abbildung 29: NEDD4L-Protein. 160

II Tabellenverzeichnis VII

II Tabellenverzeichnis

Tabelle 1: Ausgewählte syndromale Erkrankungen mit verschiedenen Formen der Lippe	:n-
Kiefer-Gaumenspalte.	8
Tabelle 2: Ausgewählte genetische Ursachen nicht-syndromaler Lippen-Kiefer-	
Gaumenspalten.	9
Tabelle 3: Übersicht über die verwendeten Geräte.	20
Tabelle 4: Allgemein genutzte Puffer.	21
Tabelle 5: Enzyme	21
Tabelle 6: Restriktionsendonukleasen	22
Tabelle 7: Übersicht über die verwendeten Primer.	22
Tabelle 8: Kits.	25
Tabelle 9: Vektoren.	26
Tabelle 10: Bakterien.	26
Tabelle 11: Zelllinien.	27
Tabelle 12: Datenbanken, Online-Tools und verwendete Software.	27
Tabelle 13: Übersicht über die verwendeten Polymerasen.	33
Tabelle 14: Zusammensetzung der PCR-Ansätze in Abhängigkeit von der verwendeten	
Polymerase	33
Tabelle 15: PCR-Programme für unterschiedliche Polymerasen	34
Tabelle 16: Verwendete Puffer zur Gelelektrophorese.	35
Tabelle 17: Zusammensetzung eines Exol/TSAP-Ansatzes zur Aufreinigung von PCR-	
Produkten.	36
Tabelle 18: Zusammensetzung eines Sequenzieransatzes.	37
Tabelle 19: PCR-Programm zur Sanger-Sequenzierung	37
Tabelle 20: Übersicht der Gene, die mittels des CRANIO-QXT-Panels untersucht wurde	n 38
Tabelle 21: Standard-Ansatz eines Restriktionsverdaus.	41
Tabelle 22: Standard-Ansatz einer Ligationsreaktion.	42
Tabelle 23: Standard-Ansatz einer TOPO Klonierung.	42
Tabelle 24: Benötigte Reaktionsansätze zur Herstellung transformationskompetenter E.	coli
TOP10F'-Bakterien.	43
Tabelle 25: Herstellung von LB-Agarplatten.	44
Tabelle 26: Standard-Ansatz einer Kolonie-PCR.	45
Tabelle 27: Standard-Ansatz einer Mutagenese-PCR.	46

II Tabellenverzeichnis VIII

Tabelle 28: Standard-Transfektionsansatz (24-well-Maßstab) mittels FuGENE HD47
Tabelle 29: Transfektionsansatz zur funktionellen Analyse der <i>PAX7</i> -Mutation
Tabelle 30: Zusammensetzung des molekulargenetisch charakterisierten Kraniosynostose-
Patientenkollektivs
Tabelle 31: Übersicht über die getesteten Hotspot-Regionen, die Anzahl der getesteten
Patienten sowie die identifizierten Varianten
Tabelle 32: Übersicht über die Anzahl der identifizierten ursächlichen Varianten
aufgeschlüsselt nach der initialen klinischen Verdachtsdiagnose
Tabelle 33: Übersicht aller identifizierten Mutationen
Tabelle 34: Patient K4081, Sequenzvarianten
Tabelle 35: Patient Gö224, Sequenzvarianten
Tabelle 36: Übersicht der im Rahmen der diagnostischen Analyse bei Patient Gö332
identifizierten Varianten in MEGF8
Tabelle 37: Filterungsergebnis nach heterozygoten Varianten bei betroffenen Individuen aus
Familie LKG8
Tabelle 38: Filterungsergebnis nach heterozygoten Varianten bei betroffenen sowie nicht
betroffenen Individuen aus Familie LKG8
Tabelle 39: Übersicht der in Familie LKG8 identifizierten Variante in PAX7 und ihre
Charakterisierung mittels unterschiedlicher Prädiktionsprogramme
Tabelle 40: Tabellarische Darstellung der relativen Luciferase-Aktivität90
Tabelle 41: Tabellarische Darstellung der relativen Luciferase-Aktivität normalisiert auf die
relative Luciferase-Aktivität der Kontrolle (K) pGL3-basic-Id3 eines jeden Experiments 90
Tabelle 42: Filterungsergebnis in Familie LKG11
Tabelle 43: Übersicht der in Familie LKG11 identifizierten Varianten und ihre
Charakterisierung mittels unterschiedlicher Prädiktionsprogramme
Tabelle 44: Übersicht der in Familie LKG12 identifizierten Varianten und ihre
Charakterisierung mittels unterschiedlicher Prädiktionsprogramme
Tabelle 45: Filterungsergebnis in Familie LKG-Kamerun
Tabelle 46: Übersicht der in Familie LKG-Kamerun LKG12 identifizierten Varianten und
ihre Charakterisierung mittels unterschiedlicher Prädiktionsprogramme

III Abkürzungen IX

III Abkürzungen

Array-CGH Array-based Comparative Genomic Hybri-

dization

bp Basenpaare

CCG Cologne Center for Genomics

cDNA complementary DNA

ddNTP dideoxynucleotide triphosphate,

Didesoxyribonukleosidtriphosphat

DMEM Dulbecco's Modified Eagle Medium

DMSO Dimethylsulfoxid

DNA deoxyribonucleic acid,

Desoxyribonukleinsäure

dNTP deoxynucleotide triphosphate,

Desoxynukleosidtriphosphat

E.coli Escherichia coli

EDTA Ethylendiamintetraessigsäure

ExoI Exonuclease I

FCS fetal calf serum

FISH Fluoreszenz-in-situ-Hybridisierung

GWAS Genomweite Assoziationsstudie

HEK Human Embryonic Kidney

HeLa Henriette Lacks, humane Epithel-Zelllinie

etabliert aus einem Zervixkarzinom

III Abkürzungen X

HGMD[®] Human Gene Mutation Database

Kb Kilobasen

LB lysogeny broth

LKG Lippen-Kiefer-Gaumenspalte innerhalb fa-

miliärer Bezeichnungen

min Minute

MOPS 3-(N-Morpholino)propansulfonsäure

mRNA messenger RNA

NP 40 Nonident P-40

PBS phosphate buffered saline

PCR polymerase chain reaction

Polymerase-Kettenreaktion

PenStrep Penicillin-Streptomycin

Pfi Platinum SuperFi

PNH Periventrikuläre Heterotopie

RNA ribonucleic acid,

Ribonukleinsäure

rpm revolutions per minute

TSAP Thermosensitive Alkaline Phosphatase

TRIS Tris(hydroxymethyl)-aminomethan

SDS sodium dodecyl sulfate

SNP single nucleotide polymorphism

Taq Thermus aquaticus

III Abkürzungen XI

TBE TRIS-Borat-EDTA

WES whole-exome sequencing

1 Einleitung

Die Lippen-Kiefer-Gaumenspalte ist eine Fehlbildung des Gesichtsbereiches beim Menschen (Schwenzer und Arold 1998; Bhattacharya et al. 2009), die nach Dixon et al. (2011) mit einer mittleren Inzidenz von etwa 1:700 Lebendgeborenen auftritt.

Lippen-Kiefer-Gaumenspalten umfassen eine Vielzahl verschiedener Krankheitsbilder mit unterschiedlichen Ausprägungsformen. Spalten können isoliert die Lippe, den harten Gaumen, den weichen Gaumen sowie die Uvula betreffen. Auch der Kiefer kann in Kombination mit einzelnen oder mehreren anderen Segmenten von einer Spalte betroffen sein. Hierbei sind unterschiedliche Kombinationen und Schweregrade der genannten Segmente möglich (Moore et al. 2007; Ehrenfeld et al. 2011).

Eine Lippen-Kiefer-Gaumenspalte kann mit diversen Einschränkungen einhergehen. So können unter anderem Probleme in den Bereichen Ernährung, Atmung, Sprache und Sprechen, Kieferwachstum, Zahnstellung und Gehör auftreten (Ehrenfeld et al. 2011; Cavalheiro et al. 2019). Neben physischen Einschränkungen kann eine Lippen-Kiefer-Gaumenspalte bei Betroffenen auch psychische Beeinträchtigungen, wie zum Beispiel Angstzustände, Verhaltensauffälligkeiten oder ästhetische Unzufriedenheit mit dem eigenen Gesicht bis hin zu Depressionen, auslösen (Kapp-Simon 2004; Grollemund et al. 2010; Feragen et al. 2016). Aufgrund der Vielschichtigkeit der Probleme, die mit einer Lippen-Kiefer-Gaumenspalte einhergehen können, ist eine multiprofessionelle Behandlung indiziert, die eine interdisziplinäre Zusammenarbeit verschiedener Professionen erfordert (Schwenzer und Arold 1998).

In den vergangenen Jahren konnten verschiedene Faktoren ermittelt werden, die ursächlich für eine Spaltbildung sein können. Hierbei kann es sich sowohl um äußere Faktoren als auch genetische Ursachen handeln, die die Spaltbildung hervorrufen. Zu den äußeren Einflussfaktoren, die die häufigste Ursache für diese Art der Fehlbildungen darstellen, zählen zum Beispiel unterschiedliche Einflüsse während der Schwangerschaft, wie etwa der Kontakt zu Giftstoffen, zum Beispiel zu Nikotin, oder zu Medikamenten, wie Kortikosteroiden oder aber auch Überdosierungen von Vitamin A und E, wobei der genaue Pathomechanismus und der konkrete Beitrag der einzelnen Faktoren bislang in den meisten Fällen nicht detailliert geklärt werden konnte. Auch verschiedene Mängel, wie zum Beispiel Sauerstoff- oder auch Nährstoffmängel, können mit dafür verantwortlich sein (Schwenzer und Arold 1998; Ehrenfeld et al. 2011). Daneben können auch genetische Einflussfaktoren ursächlich für die Spaltbildung sein (Dixon et

al. 2011; Ehrenfeld et al. 2011). Hierauf soll in der vorliegenden Arbeit ein besonderes Augenmerk gelegt werden.

Trotz des breiten Spektrums an bekannten Einflussfaktoren, die zu einer Spaltbildung führen können, ist eine gänzliche Vermeidung einer Spaltbildung bisher nicht möglich. Prophylaxe-Maßnahmen, die eine Spaltbildung bei Ungeborenen suffizient unterbinden können, sind demnach – und vor allem aufgrund der vielschichtigen Ursachen – noch nicht bekannt. Daher kommen der Therapie und der Behandlung der Lippen-Kiefer-Gaumenspalte nach der Geburt eine besondere Bedeutung zu.

1.1 Lippen-Kiefer-Gaumenspalten

Die nachfolgenden Kapitel geben einen kurzen Überblick über die verschiedenen Formen, Ursachen und genetischen Grundlagen der Lippen-Kiefer-Gaumenspalten.

1.1.1 Spaltformen

Betrachtet man die internationale Klassifikation, auf die sich Wissenschaftler 1967 in Rom einigten, so lassen sich drei Gruppen der Lippen-Kiefer-Gaumenspalten unterscheiden (Schwenzer und Arold 1998):

- 1. Embryonale Spalten des vorderen Gaumens, die die Lippen- bzw. die Lippen-Kieferspalten einer Seite (rechts oder links) sowie beider Seiten umfassen.
- 2. Embryonale Spalten des hinteren und vorderen Gaumens, die die Lippen-Kiefer-Gaumenspalte rechts, links oder beider Seiten beinhalten.
- 3. Embryonale Spalten des hinteren Gaumens, die die Gaumenspalte des harten Gaumens rechts, links oder beider Seiten sowie die des weichen Gaumens (mittig) umfassen.

Nach Sadler et al. (2008), Ehrenfeld et al. (2011) sowie Moore et al. (2007) gibt es verschiedene Erscheinungsformen von Spalten im Gesichtsbereich. Die Ausprägungsformen reichen von kompletten über partielle bis hin zu sehr kleinen Spalten.

In Bezug auf das *Foramen incisivum* werden durch Moore et al. (2007) zwei große Gruppen von Lippen- und Gaumenspalten unterschieden: Die Gruppe der vorderen sowie die Gruppe der hinteren Spalten. Die vorderen Spalten betreffen den Oberkiefer bis zum *Foramen incisivum*

und die obere Lippe. Zurückzuführen sind diese Spalten meist auf einen Mangel an Mesenchym im Oberkieferfortsatz und im Zwischenkiefersegment. Die hinteren Spalten erstrecken sich vom hinteren Ende des Gaumens bis zum *Foramen incisivum*. Ursache ist hierbei meist eine mangelnde Entwicklung der lateralen Gaumenfortsätze. Auch eine mechanische Verlegung beispielsweise durch die Zungenanlage kann ein Annähern der Gaumenplatten verhindern und so zu einer Spalte, meist im sekundären Gaumen, führen (Moore et al. 2007).

Moore et al. (2007) unterscheiden weiterhin zwischen unilateralen Lippenspalten, bilateralen Lippenspalten, medianen Oberlippenspalten sowie medianen Spalten der Unterlippe. Unilaterale Lippenspalten entstehen dadurch, dass sich der Oberkieferfortsatz der entsprechenden Seite nicht ausreichend mit dem Nasenfortsatz verbindet. Als Grund wird eine unzureichende Proliferation des Mesenchyms innerhalb der jeweiligen Fortsätze diskutiert. Bilaterale Lippenspalten sind bedingt durch ein Ausbleiben der Verschmelzung der Oberkieferfortsätze mit den Nasenfortsätzen auf beiden Seiten. Die mediane Lippenspalte im Bereich des Oberkiefers ist eine seltene Erscheinungsform der Lippenspalte. Sie ist vermutlich durch einen Mangel an Mesenchym bedingt. Das Zwischenkiefersegment kann sich aufgrund einer ausbleibenden Verschmelzung der medialen Nasenfortsätze nicht richtig ausbilden. Ist die mediane Unterlippe betroffen, so wird von einem Ausbleiben der Verschmelzung der Unterkieferfortsätze ausgegangen.

Neben den Lippen kann auch der Gaumen eine Spalte tragen. Dementsprechende Entwicklungsstörungen können auf das Gaumenzäpfchen (*Uvula*) beschränkt sein, aber auch den harten und den weichen Gaumen (*Palatum molle und Palatum durum*) betreffen. Der Grund für eine Gaumenspalte ist auf eine fehlende Verschmelzung der Gaumenfortsätze zurückzuführen (Moore et al. 2007). Hartgaumenspalten treten in der Regel nur in Kombination mit Weichgaumenspalten oder als durchgehende Lippen-Kiefer-Gaumenspalten auf. Dabei können diese einseitig rechts oder links oder beidseitig auftreten (Ehrenfeld et al. 2011).

Kieferspalten treten nach Ehrenfeld et al. (2011) nicht isoliert auf. Sie kommen mit Lippenbeteiligung als Lippen-Kieferspalte vor. Außerdem können sie mit einer Gaumenspalte im Sinne einer Lippen-Kiefer-Gaumenspalte auftreten. Dabei kann die jeweilige Kieferspalte nur eine, aber auch beide Seiten betreffen. In Abbildung 1 werden die verschiedenen Spaltformen zusammengefasst.

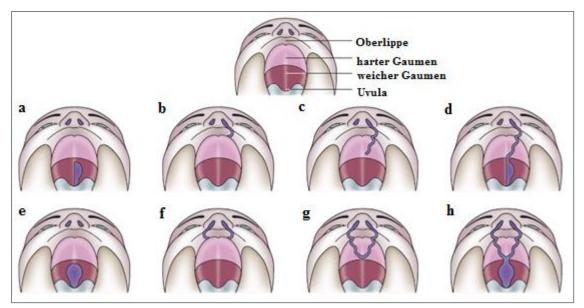


Abbildung 1: Schematische Darstellung unterschiedlicher Spaltformen.

(Quelle: modifiziert nach Dixon et al. (2011)). (a) unilaterale Gaumenspalte (weicher Gaumen), (b-d) unterschiedlich ausgeprägte unilaterale Lippen-, Kiefer- sowie Gaumenspalten und deren Kombinationen, (e) bilaterale Gaumenspalte (weicher Gaumen), (f-h) unterschiedlich ausgeprägte bilaterale Lippen-, Kiefer-, sowie Gaumenspalten und deren Kombination.

Wie in Abbildung 1 deutlich wird, können Spalten isoliert auftreten und sich nur im Bereich der Lippe oder des Gaumens manifestieren. Auch können Kombinationen von Spalten in verschiedenen Segmenten auftreten. Es ist ein unilaterales (auch medianes) und bilaterales Auftreten möglich (Moore et al. 2007). Dabei ist die Lippen-Kiefer-Gaumenspalte die häufigste Erscheinungsform (40-65%). Die linke Hälfte ist doppelt so häufig betroffen wie die rechte Seite (Schwenzer und Arold 1998; Ehrenfeld et al. 2011).

In seltenen Fällen kann es zu Gesichtsspalten kommen, die neben dem Kiefer, dem Gaumen und den Lippen auch weitere Teile des Kopfes bis hin zum Ohr betreffen können und in unterschiedlichen Ausprägungsformen zu finden sind (Moore et al. 2007).

1.1.2 Embryologische Entwicklung des Mittel- und Untergesichts

Um die Entstehung von Lippen-Kiefer-Gaumenspalten verstehen zu können, ist ein Blick auf die Entwicklung des Embryos im Mutterleib und diesbezüglich insbesondere die Entwicklung des Mittel- und Untergesichts nötig. Wichtige Entwicklungsschritte werden im Folgenden erläutert.

Am 28. Tag der embryonalen Entwicklung sind die ersten drei Schlundbögen entstanden. Die Schlundbögen definieren die spätere Hals- und Kopfregion (Sadler et al. 2008). Für die Gesichtsentwicklung, die in der vierten Embryonalwoche beginnt und in der achten Embryonalwoche bereits eindeutig differenzierte Züge aufweist, sind unter anderem der erste und zweite Schlundbogen wichtig (Sadler et al. 2008). Aus dem ersten Schlundbogen gehen der Oberkieferfortsatz und der Unterkieferfortsatz hervor. Kranial und weiter medial gelegen im Vergleich zum Oberkieferfortsatz ist der Stirnfortsatz zu finden. Somit sind fünf Fortsätze (unpaariger Stirnfortsatz, paariger Oberkieferfortsatz und paariger Unterkieferfortsatz) an der Entstehung des Stomatodeum (primäre Mundhöhle) beteiligt (Moore et al. 2007; Sadler et al. 2008). Der Unterkiefer und die Unterlippe entstehen aus dem Unterkieferfortsatz. Der Oberkieferfortsatz enthält das Anlagenmaterial für den Oberkiefer, Teile des Os temporale und des Os zygomaticum (Moore et al. 2007; Sadler et al. 2008). Auf den ventrolateralen seitlichen Flächen des Stirnfortsatzes tritt aus dem Ektoderm die sogenannte Riechplakode hervor. Das Gewebe proliferiert und es entsteht ein Wulst auf beiden Seiten, der dann aus einem lateralen sowie einem medialen Nasenwulst besteht. Die Riechplakode verlagert sich in die Tiefe und es entsteht die Riechgrube (Moore et al. 2007).

Die medialen Nasenwülste bewegen sich im weiteren Verlauf aufeinander zu und verschmelzen miteinander. Ebenfalls nähern sich die Oberkieferfortsätze an. Es entsteht das sogenannte Zwischenkiefersegment, welches aus dem Philtrum der oberen Lippe, dem Oberkieferanteil, der die Anlage für die Schneidezähne trägt, und einem Teil des Gaumens, der den primären Gaumen hervorbringt, besteht. Das Zwischenkiefersegment geht mit seinem kranialen Anteil in den rostralen Anteil des Nasenseptums über, welches aus dem Stirnfortsatz entsteht. Die Gaumenplatten, welche ein Teil des Oberkieferwulstes sind, bilden sich in der sechsten Entwicklungswoche aus. In der siebten Embryonalwoche entwickelt sich aus den Gaumenplatten der sekundäre Gaumen. Dieser verschmilzt am *Foramen incisivum* mit dem primären Gaumen. Das Nasenseptum wächst weiter nach kaudal und vereinigt sich mit dem entstandenen Gaumen (Moore et al. 2007; Sadler et al. 2008).

Im Verlauf dieser Entwicklung kann es zu Komplikationen kommen, die eine Spaltbildung auslösen können. Nach Moore et al. (2007) sind dabei hauptsächlich drei Punkte relevant, die im Laufe der beschriebenen embryonalen Entwicklung die Grundlage der Spaltbildung darstellen:

- 1. Sich aufeinander zubewegende Epithelien haben nicht genug Kontakt.
- 2. Die Proliferation, Wanderung und Durchmischung des Mesenchyms reichen nicht aus.
- 3. Bereits entstandene Verschmelzungszonen reißen wieder auf.

Alle drei genannten Entwicklungskomplikationen können dazu führen, dass im embryonalen Gesicht ein Spalt gebildet wird, der wiederum die oben genannten unterschiedlichen Segmente betreffen kann.

1.1.3 Häufigkeit und Ursachen von Lippen-Kiefer-Gaumenspalten

Die Lippen-Kiefer-Gaumenspalte gehört zu den an häufigsten auftretenden angeborenen Fehlbildungen des Menschen. Je nach sozioökonomischer Lage, Ethnie und geografischer Verteilung ist die Frequenz für eine Lippen-Kiefer-Gaumenspalte unterschiedlich hoch. Im Mittel liegt sie bei ungefähr 1:700 Lebendgeborenen. Somit zählen Lippen-Kiefer-Gaumenspalten nicht zu den seltenen Erkrankungen, deren Prävalenz geringer als 1:2.000 definiert ist, es sei denn sie treten zum Beispiel im Rahmen eines Syndroms auf, wenn dieses per Definition zu seltenen Erkrankungen zählt. In der asiatischen und amerikanischen Bevölkerung wird die höchste Inzidenz für das Auftreten einer Lippen-Kiefer-Gaumenspalte mit etwa 1:500 Lebendgeborenen angegeben. In Europa liegt sie bei ungefähr 1:1.000 Lebendgeborenen, in der afrikanischen Bevölkerung bei ca. 1:2500. Neben geographischen Unterschieden gibt es zusätzlich auch geschlechtsspezifische Unterschiede. So liegt das Verhältnis bei 2:1 (Mann zu Frau) für die Spalten mit Beeinflussung der Lippe. Hingegen ist das Verhältnis für eine isolierte Gaumenspalte ohne Lippenbeteiligung mit 1:2 (Mann zu Frau) angegeben (Christensen und Mitchell 1996; Moore et al. 2007; Mossey et al. 2009; Beaty et al. 2010; Dixon et al. 2011; Thompson et al. 2016).

Es gibt verschiedene Ursachen, die zu einer Lippen-Kiefer-Gaumenspalte führen können. Neben teratogenen Ursachen kann mütterliches Rauchen, vor allem im ersten Trimester der Schwangerschaft, bei einem ungeborenen Kind zu einer Hypoxie führen, welche die Entstehung von Spalten im orofazialen Bereich begünstigen kann. Neben dem Rauchen kann auch Alkoholkonsum die Entstehung einer Lippen-Kiefer-Gaumenspalte begünstigen (Romitti et al. 1999). Ebenso kann ein Folsäuremangel oder die Einnahme von bestimmten Medikamenten (zum Beispiel Kortikosteroide, Überdosen von Vitamin A und E) oder auch ionisierende Strahlung während der Schwangerschaft das Risiko auf die Bildung eine orofazialen Spalte beim ungeborenen Kind erhöhen (Schwenzer und Arold 1998; Brooklyin et al. 2014).

Lippen-Kiefer-Gaumenspalten können auch durch genetische Varianten und Veränderungen hervorgerufen werden. Dabei unterscheidet man syndromale und nicht-syndromale Formen. Etwa 70% aller Lippen-Kiefer-Gaumenspalten sind nicht-syndromal, treten also unabhängig von zusätzlichen Fehlbildungen und Dysmorphien auf. Bei den isolierten Gaumenspalten liegt

die Häufigkeit für nicht-syndromale Fälle bei ungefähr 50% (Jones 1988; FitzPatrick et al. 1994; Marazita et al. 2002; Dixon et al. 2011; Welzenbach et al. 2021).

Es gibt Familien, in denen ein gehäuftes Auftreten einer speziellen Spaltform zu beobachten ist, was darauf hindeutet, dass es eine genetische Komponente in Bezug auf die Entstehung einer Lippen-Kiefer-Gaumenspalte gibt. Die Wiederholungswahrscheinlichkeit richtet sich danach, wer in der Familie mit welcher Spaltform betroffen ist und nach dem jeweiligen Vererbungsmodus.

Neben nicht-syndromalen Fällen sind über 400 Syndrome beschrieben, die mit einer Lippenspalte, einer Gaumenspalte oder einer Lippen-Kiefer-Gaumenspalte assoziiert sind. Die ursächlichen genetischen Veränderungen reichen dabei von strukturellen Veränderungen, die große genomische Regionen betreffen, bis hin zu Punktmutationen einzelner Basen in bestimmten Genen. (Schwenzer und Arold 1998; Dixon et al. 2011).

1.1.4 Genetische Grundlagen syndromaler und nicht-syndromaler Formen von Lippen-Kiefer-Gaumenspalten

Der Lippen-Kiefer-Gaumenspalte als Fehlbildung liegen, wie bereits beschrieben, multifaktorielle Ursachen zugrunde. Prinzipiell unterschieden werden diese in äußerliche Faktoren – wie zum Beispiel Noxen und genetische Faktoren oder Prädispositionen. Neben Genen, die mit einer syndromalen Form der Lippen-Kiefer-Gaumenspalte einhergehen können, kann eine durch genetische Ursachen hervorgerufene Fehlbildung auch isoliert, also nicht-syndromal, auftreten. Eine Übersicht über ausgewählte, bisher identifizierte, genetische Ursachen, die zur Entstehung einer Lippen-Kiefer-Gaumenspalte beitragen können, ist in Tabelle 1 (syndromale Form der Lippen-Kiefer-Gaumenspalte) und Tabelle 2 (nicht-syndromale Form der Lippen-Kiefer-Gaumenspalte) zusammengefasst (Dixon et al. (2011).

Tabelle 1: Ausgewählte syndromale Erkrankungen mit verschiedenen Formen der Lippen-Kiefer-Gaumenspalte.

(Quelle: modifiziert nach Dixon et al. (2011)).

Erkrankung	Gen	Quelle
Van-der-Woude-Syndrom	IRF6 (autosomal dominant)	Kondo et al. (2002)
Roberts-Syndrom	ESCO2 (autosomal rezessiv)	Vega et al. (2005)
Hydrolethalus-Syndrom	HYLS1 (autosomal rezessiv)	Mee et al. (2005)
Crouzon-Syndrom	FGFR2 (autosomal dominant)	Reardon et al. (1994)
Saethre-Chotzen-Syndrom	TWIST1 (autosomal dominant)	el Ghouzzi et al. (1997); Howard et al. (1997)
Kabuki-Syndrom	KMT2D, KDM6A (autosomal	Ng et al. (2010); Miyake et
	dominant)	al. (2013); Van Laarhoven et
		al. (2015); Carla und Maria
		(2017)
Apert-Syndrom	FGFR2 (autosomal domi-	Wilkie et al. (1995)
	nant)	
Frontonasale Dysplasie	ALX1, ALX4 (autosomal re-	Kayserili et al. (2009); Uz et
	zessiv)	al. (2010); Bertola et al.
		(2013)

Tabelle 2: Ausgewählte genetische Ursachen nicht-syndromaler Lippen-Kiefer-Gaumenspalten.

(Quelle: modifiziert nach Dixon et al. (2011)).

Gen	Forschungsstand	Quelle
VAX1	Bestätigt (autosomal rezes-	Beaty et al. (2010); Mangold
	siv)	et al. (2010)
IRF6	Bestätigt (autosomal domi-	Zucchero et al. (2004); Ra-
	nant)	himov et al. (2008); Birn-
		baum et al. (2009)
FGFR2	Kandidatengen (autosomal	Riley et al. (2007); Riley
	dominant)	und Murray (2007); O-
		soegawa et al. (2008)
MSX1	Kandidatengen (autosomal	Lidral et al. (1998); van den
	dominant)	Boogaard et al. (2000); Je-
		zewski et al. (2003); Vieira
		et al. (2003); Suzuki et al.
		(2004); Zucchero et al.
		(2004)
BMP4	Kandidatengen (autosomal	Suzuki et al. (2009); Jianyan
	dominant)	et al. (2010)
FGF8	Gegenstand weiterer For-	Riley et al. (2007); Riley
	schung (autosomal domi-	und Murray (2007)
	nant)	
TGFB3	Gegenstand weiterer For-	Lidral et al. (1998); Beaty et
	schung (autosomal domi-	al. (2002); Vieira et al.
	nant)	(2003); Suazo et al. (2010)
GSTT1	Gegenstand weiterer For-	Shi et al. (2007)
	schung (keine Daten über	
	Vererbungsmuster)	

1.2 Phänotypische und genetische Spektren kraniofazialer Malformationen

Kraniofaziale Fehlbildungen können unterschiedliche phänotypische Züge annehmen. Dabei gibt es verschiedene genetische Ursachen, die den jeweiligen Malformationen zugrunde liegen. Der folgende Abschnitt gibt eine Übersicht über ausgewählte Erkrankungen und Syndrome dieses Spektrums, die in der vorliegenden Arbeit behandelt werden.

1.2.1 Unspezifische Kraniosynostosen

Die Kraniosynostose – auch Kraniostenose genannt – charakterisiert einen vorzeitigen Verschluss einer oder mehrerer Schädelnähte (Moore et al. 2007). Kraniosynostosen können in zwei Hauptgruppen eingeteilt werden, nämlich in syndromale und nicht-syndromale Kraniosynostosen. Nicht-syndromale Kraniosynostosen betreffen in der Regel nur die Suturen des Kopfes, während bei syndromalen Kraniosynostosen häufig auch das Gesicht, das Skelettsystem oder andere Organsysteme beeinflusst sind (Vlad Ciurea und Toader 2009).

Nach French et al. (1990); Kimonis et al. (2007); Akingbola et al. (2011); Rachwalski et al. (2013) liegt die Inzidenz für eine Kraniosynostose bei etwa 1:2.000 bis 1:3.000. Die Ursache wird bei nicht-syndromalen Kraniosynostosen, die etwa 80% der Fälle ausmachen, als multifaktoriell angenommen. Letztlich ist die Ätiologie von nicht-syndromalen Kraniosynostosen weitestgehend ungeklärt. Der frühzeitige Verschluss der Schädelnähte kann zu Deformationen des Schädels- bzw. der Gesichtsknochen führen. Hier sind nicht nur ästhetische Beeinträchtigungen möglich, auch können die Atmung, das Sehen, das Hören und weitere physiologisch wichtige Eigenschaften beeinträchtigt sein (Rachwalski et al. 2013).

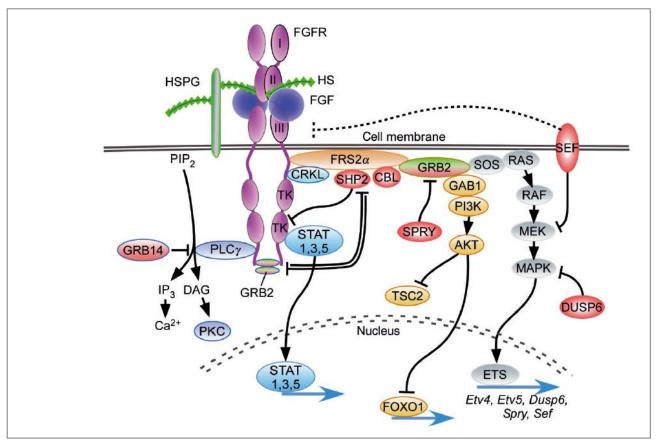


Abbildung 1: FGF-Signalkaskade.

(Quelle: modifiziert nach Ornitz und Itoh (2015)).

In der Pathogenese der Kraniosynostose spielt auf zellulärer Ebene im Rahmen der embryonalen Entwicklung insbesondere die *fibroblast growth factor*-(FGF-)Signalkaskade, eine wichtige Rolle, die für die Entwicklung des Schädels von entscheidender Bedeutung ist (Moosa und Wollnik 2016). Nach Beenken und Mohammadi (2009); Drafahl et al. (2010); Teven et al. (2014) sind 18 FGF-Liganden im Säugetier bekannt. Diese können mit unterschiedlichen FGF-Rezeptoren (FGFR) interagieren, die durch die vier unterschiedlichen Gene *FGFR1 – 4* kodiert werden. Durch alternatives Spleißen der prä-mRNA kann die Rezeptordiversität erhöht werden. FGFR haben eine strukturelle Ähnlichkeit zur Klasse der Rezeptor-Tyrosinkinasen, welche unterschiedliche Signalkaskaden in der Zelle regulieren. Dabei handelt es sich um Transmembran-Rezeptoren, die über ihre extrazellulären Domänen unterschiedliche Liganden binden können. Die Ligandenbindung führt dabei im intrazellulären Teil des Rezeptors zur Dimerisierung der Tyrosinkinase-Domäne, wodurch die Autophosphorylierung von Tyrosinresten in unterschiedlichen Zielproteinen induziert wird, was seinerseits deren Aktivierung hervorruft und somit den Ausgangspunkt verschiedener intrazellulärer Signalkaskaden darstellt. Hierzu zählen die

RAS/MAPK-Signalkaskade, PI3K/AKT- und die PLCγ-Signalkaskade (Drafahl et al. 2010; Teven et al. 2014; Ornitz und Itoh 2015), welche unter anderem mit Zellproliferation, Zelldifferenzierung oder auch Zellapoptose einhergehen und wichtige Signalkaskaden bei der embryonalen Entwicklung des Schädels darstellen (vgl. Abbildung 2). Die Signalkaskaden beeinflussen insbesondere die Wachstumsgeschwindigkeit und Feinabstimmung im Rahmen der Entwicklung des embryonalen Schädels und sind entscheidend für die Verknöcherung der Suturen. Liegt in diesen Signalwegen eine Störung vor, häufig in Form einer gain-of-function-Mutation in den FGFRs, welche zu einer erhöhten katalytischen Aktivität der Rezeptoren führt, so können verschiedene Erkrankungen bzw. Fehlbildungen aus dem Spektrum der Kraniosynostosen die Folge sein (Belov und Mohammadi 2013; Rachwalski et al. 2013).

Je nachdem welche Sutur frühzeitig verschließt bzw. welche Suturen verschließen, kann der Schädel kompensatorisch in eine andere, nicht regelrechte Richtung wachsen und es entstehen die für Kraniosynostosen typischen Schädeldeformitäten. Die Ausprägungen können verschieden stark und unterschiedlicher Art sein. Wenn sich die Sutura sagittalis (Pfeilnaht) vorzeitig verschließt, so wird der Schädel schmal und keilförmig. Dieses Phänomen wird Kahnschädel (Scaphocephalus) genannt (Moore et al. 2007). Nach Vlad Ciurea und Toader (2009) macht diese Form etwa 40 – 58% der Kraniosynostosen aus. Ein sogenannter Plagiocephalus entsteht, wenn sich die Sutura coronalis (Plagiocephalus anterior, 20 – 29% der Kraniosynostosen) oder die Sutura lambdoidea (Plagiocephalus posterior, 2 – 4% der Kraniosynostosen) nur auf einer Seite vorzeitig verschließt. In diesen Fällen entwickelt sich der Schädel im weiteren Entwicklungsverlauf asymmetrisch. Verschließt sich die Sutura Coronalis (Kranznaht) auf beiden Seiten, so kommt es zur Entstehung eines Brachycephalus (Kurzschädel). Die Sutura Coronalis ist bei der Entstehung einer Kraniosynostose nach Vlad Ciurea und Toader (2009) zu 20 – 29% betroffen. Um ausreichend Platz zu haben, kann sich bei entsprechender Beeinträchtigung ein Turricephalus (Turmschädel) entwickeln. Der vorzeitige Verschluss der Sutura frontalis (Stirnnaht) kann wiederum zu einem Trigonocephalus (Dreieckschädel) führen. Dies betrifft ca. 4 – 10% aller Kraniosynostosen (Moore et al. 2007; Vlad Ciurea und Toader 2009; Zöller 2011). Veranschaulicht werden die möglichen Ausprägungsformen von Kraniosynostosen in Abbildung 3.

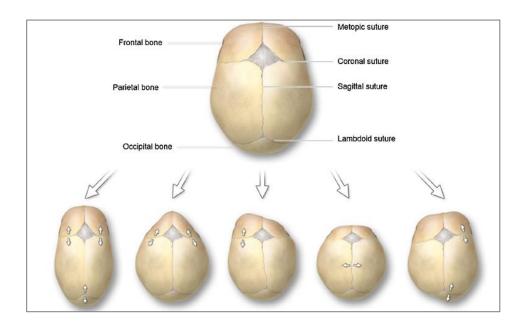


Abbildung 3: Unterschiedliche Formen der Kraniosynostose.

(Quelle: modifiziert nach Moosa und Wollnik (2016)). Oberes Bild: Normocephalus; Untere Reihe von links nach rechts: Scaphocephalus, Trigonocephalus, Plagiocephalus anterior, Brachycephalus, Plagiocephalus posterior.

1.2.2 Crouzon-Syndrom

Das Crouzon-Syndrom ist eine seltene genetische Erkrankung, welche autosomal dominant vererbt wird (Meyers et al. 1995). Als ursächlich für dieses Syndrom sind in den meisten Fällen dominante, ursächliche Mutationen im *FGFR2*-Gen beschrieben. Selten wird das Syndrom autosomal rezessiv über das *IL11RA*-Gen vererbt (Jabs et al. 1994; Oldridge et al. 1995; Nieminen et al. 2011; Keupp et al. 2013; Rachwalski et al. 2013; Ko 2016). Das Crouzon-Syndrom ist dadurch gekennzeichnet, dass die Schädelnaht oder die Schädelnähte der betroffenen Personen vorzeitig zusammenwachsen und so eine normale Entwicklung des Schädels nicht möglich ist. So sind etwa 5% aller Kraniosynostose-Fälle auf das Crouzon-Syndrom zurückzuführen. Mit den Fehlbildungen des Schädels einhergehen können unter anderem Gesichtsfehlbildungen ebenso wie ein Exophthalmus, Strabismus, Wirbelverwachsungen, Verkalkungen der Stylhoid-Ligamente und weitere Anomalien (Zöller 2011). Je nach Ausprägung der Schädelnahtverschließung kann in seltenen Fällen auch die geistige Entwicklung beeinträchtigt sein (Zöller 2011; Kumar et al. 2013).

Etwa einer von 25.000 Lebendgeborenen ist von diesem Syndrom betroffen. Nach Bowling und Burstein (2006); Kaur et al. (2006); Kumar et al. (2013) sind weder das Geschlecht noch die geographische Herkunft für ein gehäuftes Auftreten des Crouzon-Syndroms ausschlaggebend.

Jones et al. (1975) beschreiben, dass das Alter des Vaters mit dem Auftreten des Crouzon-Syndroms in Verbindung gebracht werden kann. Es wird beschrieben, dass *de novo* Mutationen mit erhöhtem väterlichen Alter assoziiert sind und die Vielzahl der *FGFR*-Mutationen auf dem väterlichen Allel entstehen (Glaser et al. 2000; Martin et al. 2014). Das Crouzon-Syndrom zeigt überlappende Merkmale zu dem Apert-Syndrom, dem Pfeiffer-Syndrom und dem Saethre-Chotzen-Syndrom. Allerdings zeigen sich bei Patienten mit Crouzon-Syndrom in der Regel keine Anomalien an den Extremitäten, die häufig im Zusammenhang mit den übrigen Syndromen dieses Spektrum auftreten (Kumar et al. 2013).

1.2.3 Pierre-Robin-Syndrom

Das Pierre-Robin-Syndrom – synonym als Pierre-Robin-Sequenz bekannt – wurde erstmals 1923 von Pierre Robin beschrieben (zur Übersicht Sesenna et al. (2012)). Es ist auch als Syndrom "des ersten Kiemenbogens" (Moore et al. 2007) bekannt. Ursächlich für das Auftreten des Syndroms soll eine nicht ausreichende Einwanderung von Neuralleistenzellen in den ersten Schlundbogen sein (Moore et al. 2007). Das Pierre-Robin-Syndrom ist durch folgende Symptomtrias gekennzeichnet: Gaumenspalte, Glossoptose (die Zunge ist in den Pharyngealbereich zurückverlagert) und Hypoplasie der Mandibula (Mikrogenie). Diese Symptomtrias kann vor allem zu einer respiratorischen Dysfunktion führen. Deshalb ist es auch Ziel der Behandlung, die Atemwege frei zu machen (Kreiborg et al. 1992; Mantilla-Capacho et al. 2005; Metodiev et al. 2011; Zöller 2011). Die Inzidenz des Pierre-Robin-Syndroms wird mit 1:8500 angegeben (Bush und Williams 1983). Da die Diagnostik aber bisher nicht immer eindeutig ist, ist diese angenommene Inzidenz fraglich (Tan et al. 2013). Die genetische Ursache des Pierre-Robin-Syndrom ist Gegenstand aktueller Forschung. Es gibt starke Hinweise darauf, dass unter anderem eine Beeinträchtigung der Gene bzw. des nicht kodierenden Bereichs um die Gene SOX9 bzw. KCNJ2 ursächlich für das Pierre-Robin-Syndrom ist (Jakobsen et al. 2007; Benko et al. 2009).

1.2.4 Saethre-Chotzen-Syndrom

Bei dem Saethre-Chotzen-Syndrom handelt es sich um eine autosomal dominante vererbte Erkrankung. Es wird eine Inzidenz von 1:25.000 – 50.000 bei Lebendgeborenen angegeben (Gripp et al. 2000; Ko 2016). Phänotypisch fallen Saethre-Chotzen-Syndrom-Patienten durch Kraniosynostosen, Syndaktylien, tiefsitzenden Ohren, und weitere Symptome wie zum Beispiel

Hirndrucksteigerung, Atrophie des *Nervus opticus* oder Hörverlust auf. Die Intelligenz kann unter Umständen beeinträchtigt sein (Saethre 1931; Rachwalski et al. 2013). Auf genetischer Ebene sind ursächliche Varianten in den Genen *TWIST1* sowie *TCF12* bekannt, welche zu dem Saethre-Chotzen-Syndrom führen können (Sharma et al. 2013). Eine Abgrenzung zu anderen Syndromen wie zum Beispiel dem Muenke-Syndrom sind schwierig, aber dennoch möglich. Deshalb ist eine gute klinische Untersuchung äußerst wichtig (Rachwalski et al. 2013). *TWIST1* ist dafür verantwortlich, dass sich das Mesenchym im Schädel richtig entwickelt. Dabei wird auch ein Zusammenhang zu *FGFR2* angenommen (El Ghouzzi et al. 1999; Ko 2016). Studien von Shishido et al. (1993) in Drosophila legen nahe, dass *TWIST1* die Transkription von *FGFR2* verändert, so dass eine Beeinflussung der *FGFR*-Signalkaskade möglich wäre. Wie in Kapitel 1.2.1 beschrieben, hat die *FGF*-Signalkaskade erheblichen Einfluss auf die Entwicklung der Schädelregion. Ein Blick auf die Art der Veränderung in *TWIST1* lässt erkennen, dass Deletionen mit einer höheren Wahrscheinlichkeit für Entwicklungsverzögerung bei betroffenen Patienten einhergeht als andere Mutationen (Kilcoyne et al. 2019).

1.2.5 Apert-Syndrom

Beim Apert-Syndrom handelt es sich um eine autosomal dominante Erkrankung. Mutationen treten oft de novo auf. Das Apert-Syndrom wurde erstmals vor ca. 100 Jahren beschrieben (zur Übersicht Poggiani et al. (2007)). Phänotypisch tritt das Apert-Syndrom meist mit Kraniosynostosen, Gesichtsdysmorphien, Hypertelorismus, typischen Syndaktylien an Händen (sogenannte Löffelhände) und Füßen sowie diversen Skelett- und Körper-Malformationen, wie zum Beispiel der Fusion von Wirbelkörpern, vor allem der Wirbelkörper C5 und C6, auf. Seltener werden Anomalien der Lunge bzw. Trachea, des Herzens, der Niere oder des Uterus beschrieben (Kreiborg et al. 1992; Mantilla-Capacho et al. 2005; Metodiev et al. 2011; Zöller 2011). Cohen et al. (1992) geben an, dass das Apert-Syndrom bei ungefähr 15,5:1.000.000 Lebendgeborenen auftritt. Aufgrund der körperlichen Entwicklung kann es auch zu geistigen Fehlentwicklungen kommen. Das Apert-Syndrom tritt in der Regel de novo auf und wird unter anderem durch paternale Keimzellmosaike getriggert (Ko 2016). Dabei ist das Apert-Syndrom vornehmlich mit zwei Mutationen im FGFR2-Gen verknüpft. Es treten die Mutation p.Pro253Arg in 33% und p.Ser252Trp in 66% aller Fälle des Apert-Syndroms auf. Dabei neigt p.Pro253Arg zur Ausprägung von Syndaktylien und p.Ser252Trp zum Entstehen einer Lippen-Kiefer-Gaumenspalte (Cohen et al. 1992; Wilkie et al. 1995; Lajeunie et al. 1999; Von Gernet et al. 2000; Michael Cohen Jr. 2011; Agochukwu et al. 2012; Ko 2016)

1.2.6 Carpenter-Syndrom

Das Carpenter-Syndrom wurde 1901 erstmalig von George Carpenter beschrieben (zur Übersicht (Twigg et al. 2012)). Das Carpenter-Syndrom kann unter anderem mit Herzfehlbildungen, mentaler Retardierung, Nabelbruch/-Hernie, kraniofazialen Malformationen, Syndaktylien der Extremitäten oder auch erhöhtem Geburtsgewicht einhergehen und wird autosomal rezessiv vererbt (Cohen et al. 1987; Jenkins et al. 2007; Twigg et al. 2012). Das Carpenter-Syndrom wird durch ursächliche Mutationen in *RAB23* hervorgerufen (Jenkins et al. 2007; Haye et al. 2014). Es gibt auch eine überlappende Form, die ähnliche phänotypische Züge wie das Carpenter-Syndrom aufweist. Hierbei gibt es ursächliche Veränderungen in *MEGF8* (Twigg et al. 2012). Engelhard et al. (2013) konnten zeigen, dass *MEGF8* unter anderem eine wichtige Rolle bei der Entwicklung des Herzens, des Skeletts oder auch der Körpersymmetrie übernimmt.

1.3 Next-generation sequencing

Für Patienten und Familienangehörige ist die Entschlüsselung der genetischen Ursache einer vererbten Erkrankung von herausragender Bedeutung. So beeinflusst die Bestimmung der molekulargenetischen Ursache von Erkrankungen nicht nur mögliche Therapieoptionen, sondern sie ist auch von entscheidender Bedeutung für die genetische Beratung der Betroffen und ihrer Angehörigen, insbesondere hinsichtlich eines möglichen Wiederholungsrisikos. Auch die molekulare Diagnosestellung bei fehlender klinischer Zuordnung hat eine große Bedeutung. Neben der Testung bekannten genetischen Veränderungen von im Rahmen routinediagnostischer Anwendungen kommt dabei der Entschlüsselung neuer genetischer Komponenten, die ursächlich für genetische Erkrankungen sind, eine wichtige Rolle zu. Dies war bislang äußerst zeitaufwendig und arbeitsintensiv. Durch die Entwicklung und Etablierung von Methoden aus dem Bereich des next-generation sequencing ist es seit über zehn Jahren möglich, große genetische Bereiche parallel oder aber das gesamte menschliche Genom zu sequenzieren und dadurch auf Veränderungen zu untersuchen.

Dabei zeichnen sich *next-generation-sequencing*-basierte Analysemethoden durch eine hohe Flexibilität und im Vergleich zu konventionellen Methoden geringeren Kosten pro analysierter Base aus. So kann, basierend auf der zugrundeliegenden Fragestellung, eine unterschiedlich große Zahl an Genen analysiert werden. Dies kann bis hin zum sogenannten "Exom" erfolgen, also der Sequenzierung der proteinkodierenden Bereiche aller etwa 19.000 menschlichen Gene. Ebenso ist die Untersuchung des gesamten humanen Erbguts, also aller etwa 3,2 Milliarden Basenpaare, innerhalb weniger Wochen möglich (Markl et al. 2018). Neben Veränderungen auf

Einzelbasen-Ebene können mittels *next-generation sequencing* auch kleinere und größere Insertionen oder Deletionen, CNVs (*copy number variations*; Veränderungen der Kopienzahl) sowie Translokationen detektiert werden.

Eine große Herausforderung stellt die Analyse der generierten genetischen Daten dar. Pro Exom werden durchschnittlich etwa 20.000 Varianten detektiert, die Abweichungen zum humanen Referenzgenom darstellen und hinsichtlich einer möglichen Kausalität und des Einflusses auf das Krankheitsbild beurteilt werden müssen. Eine Filterung dieser Varianten kann basierend auf der Qualität der detektierten Varianten, dem zugrundeliegenden Vererbungsmuster, der Frequenz der Varianten in nicht betroffenen Kontrollkollektiven sowie des Effekts der Varianten auf Proteinebene erfolgen. Die Anwendung dieser Filterkriterien und ihre spezifische Anpassung an den zu untersuchenden Fall ermöglicht die Reduzierung der enormen Variantenzahl auf wenige Hundert, die mittels weiterer Analysen wie zum Beispiel der kopplungsbasierten Strategie, Ko-Segregationsanalysen, Homozygotie-Untersuchungen, de-novo-Analysen oder Kandidatengen-Strategien weiter reduziert und gezielt untersucht werden können (Neveling und Hoischen 2012). Diese Flexibilität und die Effizienz next-generation-sequencing-basierter Verfahren hat dazu geführt, dass in den letzten Jahren eine Vielzahl neuer krankheitsverursachender Gene und ursächlicher Varianten identifiziert werden konnten, welche dann in der Praxis im Rahmen routine-diagnostischer Analysen am Patienten untersucht werden können.

1.4 Zielsetzung und Fragestellung

Krankheiten und deren Ursachen besser zu verstehen, Therapiemöglichkeiten abzuleiten sowie Patienten adäquat beraten und behandeln zu können, sind verschiedene Aufgaben von hoher Relevanz im Bereich der Medizin. Hierzu leistet die Humangenetik einen entscheidenden Beitrag, denn neben zahlreichen äußeren Einflussfaktoren sind es vor allem auch genetische Gegebenheiten, die ein Krankheitsbild mitbestimmen. Diesen Aufgaben widmet sich die vorliegende Arbeit auf verschiedenen Ebenen. Unterschiedliche Krankheiten und Ausprägungsformen sollen anhand von bestehenden und dafür ausgewählten Patientenkollektiven näher betrachtet und in Bezug auf genetische Zusammenhänge analysiert werden. Über verschiedene humangenetische Verfahrensansätze sollen Ursachen entschlüsselt und genetische Zusammenhänge hergestellt sowie Mutationen herausgearbeitet und analysiert werden.

Im Rahmen dieser Arbeit sollte für Patienten mit genetischen Formen nicht-syndromaler Lippen-Kiefer-Gaumenspalten sowie Erkrankungen aus dem Spektrum der Kraniosynostosen die

genetische Ursache mittels neuester *next-generation-sequencing*-basierter Analysemethoden ermittelt und nachfolgend charakterisiert werden. Die vorliegende Arbeit lässt sich dazu in zwei Unterpunkte gliedern:

1. Untersuchung eines Patientenkollektivs mit der klinisch bestätigten Diagnose "Kraniosynostose"

Im ersten Teil dieser Arbeit soll ein Patientenkollektiv mit den klinischen Verdachtsdiagnosen aus dem Formenkreis der Kraniosynostosen untersucht und die genetische Ursache der Erkrankung entschlüsselt werden. Dafür stand ein Patientenkollektiv von 32 Patienten und ihrer Angehörigen zur Verfügung, welches die Verdachtsdiagnosen Crouzon-Syndrom, Pierre-Robin-Syndrom, unbestimmte Formen der Kraniosynostosen, Saethre-Chotzen-Syndrom und Apert-Syndrom umfasst. Die Untersuchung sollte initial mittels Sanger-Sequenzierung von *Hotspot*-Mutationen in bekannten genetischen Faktoren erfolgen. Für ausgewählte Fälle, für die auf diesem Wege keine pathogenen Veränderungen identifiziert werden konnten, sollen weitergehende *next-generation-sequencing*-basierte Analysemethoden, wie zum Beispiel Multigen-Panel-Analysen, Mendeliom oder Exomanalysen durchgeführt werden.

Bei einem weiteren Patienten wurden in der Diagnostikabteilung des Instituts für Humangenetik Göttingen zwei Varianten im *MEGF8*-Gen entdeckt, wobei sich bei einer Veränderung um eine intronische Variante handelt. Da Krankheiten im Zusammenhang mit *MEGF8* als autosomal rezessiv beschrieben sind ergibt sich die Frage, ob die zwei Varianten für die Symptomatik des Patienten (unter anderem Kraniosynostose) ursächlich sind oder nicht, weshalb durch Analysen auf cDNA- und genomischer Ebene betrachtet werden soll, ob die jeweiligen Transkripte vorhanden sind oder ob sich hier eine Unregelmäßigkeit ergibt.

2. *Next-generation-sequencing-*basierte Analyse von fünf Familien mit nicht-syndromalen Lippen-Kiefer-Gaumenspalten

Im zweiten Teil meiner Arbeit soll für fünf Familien mit nicht-syndromalen Lippen-Kiefer-Gaumenspalten die genetische Ursache der Erkrankung ermittelt werden. Mittels Exomanalysen sollten die genetischen Daten unterschiedlicher betroffener Individuen aus diesen Familien generiert und verglichen werden mit dem Ziel, neue Kandidatengene für nicht-syndromale Lippen-Kiefer-Gaumenspalten zu ermitteln. Identifizierte Varianten sollen mit Hilfe verschiedener Prädiktionsprogramme auf ihren funktionellen Effekt untersucht und mittels Sanger-Sequenzierung auf ihrer Ko-Segregation in den Familien analysiert werden. Für neue, ausgewählte

Kandidatengene sollen mittels funktioneller Analysen der Einfluss der identifizierten Varianten auf die Proteinfunktion untersucht und charakterisiert werden.

2 Material und Methoden

2.1 Material

2.1.1 Chemikalien, Reagenzien und Verbrauchsmittel

Alle Chemikalien und Reagenzien wurden, sofern nicht gesondert aufgeführt, von den Firmen Fresenius Kabi (Bad Homburg), Sigma-Aldrich (Hamburg), J.T. Baker (Teil von Fisher Scientific, Schwerte) und Merck (Darmstadt) bezogen und, sofern nicht anders angegeben, in p.a.-Qualität eingesetzt. Zellkultur-Materialien und Plastikwaren wurden von den Firmen Greiner (Solingen), Eppendorf (Hamburg), Sarstedt (Nümbrecht), Nunc (Wiesbaden), Th. Geyer GmbH (Renningen), Sigma-Aldrich (Hamburg) und NIPPON Genetics EUROPE GmbH (Düren) bezogen.

2.1.2 Geräte

Tabelle 3: Übersicht über die verwendeten Geräte.

Gerät	Hersteller
2100 Bioanalyzer	Agilent
3500xL Genetic Analyzer (Sequenzer)	Thermo Fisher Scientific
Autoklav	Thermo Scientific/Integra Bioscience
Chemagic MSM I (DNA-Isolation)	Perkin Elmer
Geldokumentationssystem	Nippon Genetics EUROPE
HiSeq4000 Sequenziergerät	Illumina
Inkubator HERA cell 240	Heraeus
Mikroskop Primo Vert	Carl Zeiss Microscopy GmbH
Mikrowelle	Panasonic
NanoDrop One C	Thermo Fisher Scientific
Präzisionswaage	VWR International
Qubit 2.0 Fluorometer	Thermo Fisher Scientific
Sterilbank HeraSafe	Thermo Fisher Scientific
Thermocycler C1000 und S1000 Touch	BIO RAD Labaratories
Thermomixer compact	Eppendorf AG
Tischzentrifuge Ministar Silverline	VWR International
Vortex Genie 2	Scientific Industries

Gerät	Hersteller
Wasserbad SW22	Julabo
Gefriertruhe (-80°C)	Panasonic
Schwenktisch/Schüttler	VWR
Synergy Mx	BioTek

2.1.3. Lösungen, Puffer und Medien

Die Zusammensetzungen sämtlicher verwendeter Puffer und Lösungen sind in Kapitel 2.2 bezogen auf ihre jeweilige experimentelle Verwendung aufgeführt. Alle Puffer und Lösungen werden in doppelt destilliertem Wasser angesetzt und wurden, sofern nicht anders aufgeführt, bei Raumtemperatur aufbewahrt.

Tabelle 4: Allgemein genutzte Puffer.

Bezeichnung	Zusammensetzung
PBS	137 mM NaCl; 2,7 mM KCl; 1,5 mM
	KH ₂ PO ₄ ; 8,6 mM Na ₂ HPO ₄ ; pH ~ 7,3
Tris/HCl	0,5 – 1,5 M Tris; pH 6,8 – 8,8 mit HCl
TE-Puffer	10 mM Tris/HCl, pH 8,0; 1 mM EDTA, pH
	8,0

2.1.4 Enzyme

Tabelle 5: Enzyme.

Enzym	Hersteller
T4 DNA Ligase	Thermo Fisher Scientific
ExoI	New England Biolabs
TSAP	Promega
Taq-Polymerase (5 U/μl)	Thermo Fisher Scientific
Pfi-Polymerase (Invitrogen TM Platinum TM	Thermo Fisher Scientific
SuperFi TM DNA Polymerase)	
Pfu-DNA Polymerase	Promega

2.1.5 Restriktionsendonukleasen

Tabelle 6: Restriktionsendonukleasen.

Restriktionsendonukleasen	Hersteller
EcoRI (FastDigest)	Thermo Fisher Scientific
DpnI	Thermo Fisher Scientific
NotI (FastDigest)	Thermo Fisher Scientific
HindIII (FastDigest)	Thermo Fisher Scientific
KpnI	Thermo Fisher Scientific
BamHI	Thermo Fisher Scientific

2.1.6 Primer/Synthetische Oligonukleotide

Alle verwendeten Oligonukleotide wurden von Eurofins Genomics (Ebersberg) hergestellt und im lyophilisierten Zustand bezogen. Die Oligonukleotide wurden mittels dH₂O auf eine Konzentration von 100 pmol/µl (Stammlösung) eingestellt und bei -20°C gelagert. Ausgehend von dieser Stammlösung wurden Arbeitslösungen von 10 pmol/µl hergestellt und eingesetzt.

Tabelle 7: Übersicht über die verwendeten Primer.

Bezeichnung	Sequenz (5' -> 3')
ABCA4_42_Forward	TACTCACCACACCTCTGTGC
ABCA4_42_Reverse	TTCTCATGTGGCTAGTGGAAG
ARHGAP33_20_Forward	AGGAGATGTGCAGCAAGC
ARHGAP33_20_Reverse	AACTGGGCTGGAAGGATG
FGFR1_17+18_Forward	AAGAGTGGGCTTGAGGGG
FGFR1_17+18_Reverse	GACGGACAGGTGGTGGG
FGFR2c_7_Forward	GTGGACAGCCAATAACCT
FGFR2c_7_Reverse	ATCAACACTGGCACAATG
FGFR2c_8c_Forward	TCAGTGTTGCTCCGTGTCTC
FGFR2c_8c_Reverse	TAAATGTGAGTGTGGGATCTC
FGFR3_16_Forward	CTCCTGGGTGTGGTTTCT
FGFR3_16_Reverse	ACAGCCACCTCTGTGCC
FGFR3_7_Forward	ATCCGGCAGACGTACAC
FGFR3_7_Forward	TGGACGTGCTGGGTGAG
FGFR3_7_Reverse	GACTTGGCCCCACAAGC

Bezeichnung	Sequenz (5' -> 3')	
FGFR3_7_Reverse	AACCCCTAGACCCAAATCC	
GLI1_Ex12_1_FWD	CAGAATAGGCATGGGAGAAG	
GLI1_Ex12_1_REV	CTCGCTCCATAAGGCTCAG	
GLIPR1L2_Ex5_Forward	AAGTCCAGTTTCTTAACCCG	
GLIPR1L2_Ex5_Reverse	AGATGATACTGTGTCAACCATCC	
HOXC4_2_Forward	CTGAGGATGGGGTGAGG	
HOXC4_2_Reverse	GTCAATTTGTGTGTGAGGGG	
HOXC4_4_Forward	GCTTGATGACTTTATTTCCACC	
HOXC4_4_Reverse	CTGACAAGGGACAAGGTGAG	
LETM1_Exon1_FWD	GCCTCTGTCAGCCGTCC	
LETM1_Exon1_REV	CCTAAGGTCACAACACACGG	
M13 Primer Forward	CAGGAAACAGCTATGAC	
M13 Primer Reverse	GTAAAACGACGGCCAG	
MEGF8_DNA_Ex14f	TCTCAGGATCTAAGGAGCTC	
MEGF8_DNA_Ex14r	AGAGTTAAGGAGTCCGAGG	
MEGF8_Ex11_f	CTGGGCTGCGTGC	
MEGF8_EX12_f	AGCAGATCTCAGGCACTGT	
MEGF8_EX12f_neu	GTCACCCAGAGCTTCCTG	
MEGF8_Ex13r	GCTGCCTCCTGGCACAC	
MEGF8_Ex14_r	ACAGCCCTGGTCTGCCA	
MEGF8_Ex14r_neu	AGCCCAGGCAGGAAGAATA	
MEGF8_Ex15_r	GCTGGTGCTCTGATGCC	
MEGF8_Ex2_3f	TTCCTCAGGCAAGATGCTG	
MEGF8_Ex27_28_f	CCACAGGTCTCTATGGTCA	
MEGF8_Ex29_f	CGTATGAGGAATGTGCGTG	
MEGF8_Ex3_4r	CAGGGGCGAGGCGCA	
MEGF8_Ex31_r	AGGGGTCAGGGGCAG	
MEGF8_Ex32_33_r	GGGGTGGACGCCTC	
MEGF8-Exon31-fwd	TGAAGAGGGTTAGGATTGGG	
MEGF8-Exon31-rev	ATAATCCAGAAGAGCGGGAG	
mID3-prom-BamHI-rev	GGAACCGGATCCAGCGCCTTCATGTTG-	
	GAGAGTAGAGAT	

Bezeichnung	Sequenz (5' -> 3')		
mID3-prom-KpnI-fwd-2	GGAACCGGTACCTTTGGTTCTATGTAT-		
	GCCCGTGGA		
mID3-prom-Seq1	CTTCTGCAATCTCAGCGCC		
mID3-prom-Seq2	GCCTCTCCTCGGTATCAG		
NEDD4L_9_Forward	GGGAATTTACTCAAATGTGGC		
NEDD4L_9_Reverse	TACCACACCACCATCTGCTC		
PAX7-NotI-Flag-R (inkl. Flag-Tag)	GGAACCGCGCCGCTTACT-		
	TATCGTCGTCATCCTTGTAATCG-		
	TAGGCCTGGCCAGTTTCCAC		
PAX 7 NotI-Flag-rev-n (inkl. Flag-Tag)	CCGCGGCCGCTTACTTATCGTCGTCA-		
	TCCTTGTAATCGGTGAACTGTT-		
	CCATCTGGCT		
PAX6_12_Forward	TACCAACCAATTCCACAACC		
PAX6_12_Reverse	ACTGTCTCCGACTTGACTGG		
PAX7_1000	TGCACCAGGGCGGCT		
PAX7_1000rev	AGCCCGCCCTGGTGCA		
PAX7_500	AATCAAGTTCGGGAAGAAGAG		
PAX7_500rev	TCCTCCTCTTTCTTCC		
PAX7_EX2_Forward	ATTGCTGTCTGAGGTCTTGG		
PAX7_EX2_Reverse	GGGAGTAGAAGACACCCTCC		
PAX7_ins_fwd	GACCGAAGCACTGTGCCCTCAGGTT-		
	TAGTGAGTTCGATTAGCCGCG		
PAX7_ins_rev	CGCGGCTAATCGAACTCACTAAACCT-		
	GAGGGCACAGTGCTTCGGTC		
PAX7_Mut_F	GACAGCTGTGTGTCTCCCAC		
PAX7_Mut_F_länger	CAGCTGTGTGTCTCCCACGGCTGCGTC		
PAX7_Mut_R	GTGGGAGACACACAGCTGTC		
PAX7_Mut_R_länger	AGACACACAGCTGTCGGGAGATGACAC		
PAX7-HindIII-F	GGAACCAAGCTTATGGCGGCCCTT-		
	CCCGGCAC		
TG_Ex_9_1_Forward	GGTTTCAAACGTAGGTGTCC		
TG_Ex_9_1_Reverse	ATTTGAGGGCATTTTGGTTC		

Bezeichnung	Sequenz (5' -> 3')
TMTC2_Ex_3_2_Forward	ACTGGACTCCTTCTCCTTGC
TMTC2_Ex_3_2_Reverse	AAGAATGAAAGATACAGGTACTGC
TWIST_1F	CCGTCCGTCCTCCTC
TWIST_1R	AAATCGAGGTGGACTGGGAAC
TWIST1_Ex1_1_F	ATCCACACCGTCCCCTC
TWIST1_Ex1_1_R	GTTCAGCGACTGGGTGC
TWIST1_Ex1_2_F	AAGAAGTCTGCGGGCTG
TWIST1_Ex1_2_R	GAGCGGAGAGTGGGAGAG
TWIST1_F1a	GGGAAGCTGGCGGGCTGAGGC
TWIST1_R1a	TGGACTGGGAACCGCGGCCTG
ZNF655_7_Forward	GTCAAACATCACAACTTGCAAG
ZNF655_7_Reverse	CTCGAGACCTCAGGTGATC

2.1.7 Kits

Tabelle 8: Kits.

Kit	Hersteller
Total RNA Kit, peqGOLD	Peqlab
RevertAid First Strand cDNA Synthesis Kit	Thermo Fisher Scientific
QIAquick Gel Extraction Kit	QIAGEN
Zero Blunt® TOPO® PCR Cloning Kit	Thermo Fisher Scientific
QIAprep Spin Miniprep Kit	QIAGEN
NucleoSpin® Plasmid Transfection-grade	MACHEREY-NAGEL
QIAGEN Multiplex PCR Kit	QIAGEN
NucleoSpin® gDNA Clean-up Kit	Macherey-Nagel
Qubit® dsDNA BR Assay Kit	Thermo Fisher Scientific
Dual-Luciferase® Reporter Assay System	Promega GmbH

2.1.8 Vektoren

Tabelle 9: Vektoren.

Plasmid	Hersteller
pcDNA TM 3.1 (+) Mammalian Expression	Thermo Fisher Scientific
Vector	
pGL3 -basic	Promega GmbH
pGL3-control	Promega GmbH
pRL-TK	Promega GmbH

26

2.1.9 Bakterien

Tabelle 10: Bakterien.

E. coli-Stamm	Genotyp	Verwendung
TOP10F'	F-[lacIq Tn10 (TetR)] mcrA	Amplifikation von Plasmiden
	Δ(mrr-hsdRMS-mcrBC)	
	Φ80lacZΔM15 ΔlacX74	
	recA1 araD139 Δ(ara-	
	leu)7697 galU galK rpsL	
	endA1 nupG	

2.1.10 Zelllinien

Tabelle 11: Zelllinien.

Zelllinie	Merkmale/Referenz
HeLa	Hierbei handelt es sich um eine abgeleitete Zelllinie
	aus einem Zervixkarzinom. Benannt wurde diese
	nach einer 31-jährigen Patientin namens Henrietta
	Lacks, von der die Zelllinien-Probe stammt. Die Pati-
	entin verstarb im Jahr 1951 (Callaway 2013; Sigma-
	Aldrich 2020b).
HEK293T	Hierbei handelt es sich um eine Zelllinie aus embryo-
	nalen Nierenzellen. HEK steht für Human Embryo
	Kidney. Die Zelllinie kann für wissenschaftliche
	Zwecke erworben werden (Sigma-Aldrich 2020a).

2.1.11 Datenbanken, Online-Tools und verwendete Software

Tabelle 12: Datenbanken, Online-Tools und verwendete Software.

Bezeichnung	Link
Blast	https://blast.ncbi.nlm.nih.gov/
Clustal Omega	https://www.ebi.ac.uk/Tools/msa/clustalo/
Ensembl	http://www.ensembl.org/index.html
ExAC	http://exac.broadinstitute.org/
FinchTV	https://finchtv.software.informer.com/1.4/
Genome aggregation database	https://gnomad.broadinstitute.org/
Human Gene Mutation Database	http://www.hgmd.cf.ac.uk/ac/index.php
Human Splicing Finder	http://www.umd.be/HSF3/
Microsoft Office 365 ProPlus	https://www.microsoft.com/de-de
Microsoft Windows 10	https://www.microsoft.com/de-de
Microsoft Windows 7 Ultimate	https://www.microsoft.com/de-de
Mutationtaster	http://www.mutationtaster.org/

Bezeichnung	Link
National Centre for Biotechnology Infor-	https://www.ncbi.nlm.nih.gov/
mation	
Online Mendelian Inheritance in Man	https://omim.org/
PolyPhen-2	http://genetics.bwh.harvard.edu/pph2/
RCSB Protein Data Bank	https://www.rcsb.org/
Sequence Pilot	jsi medical systems GmbH
SIFT	https://sift.bii.a-star.edu.sg/
UCSC Genome Browser	https://genome.ucsc.edu/
Uniprot	https://www.uniprot.org/
Varbank	https://varbank.ccg.uni-koeln.de/
Zotero	https://www.zotero.org/

2.1.12 Patientenmaterial

Im Rahmen dieser Arbeit wurden molekulargenetische Untersuchungen von *Hotspot*-Mutationen an DNA-Proben von insgesamt 32 Patienten und ihren Angehörigen mit Verdacht auf eine syndromale Kraniosynostose analysiert. Die Rekrutierung sowie die klinische Diagnostik der Patienten erfolgte über Dr. Krzysztof Dowgierd (Department of Maxillofacial, Reconstractive and Aesthetic Surgery, Children's Hospital, Olsztyn, Polen). Eine verwendete Probe stammt aus dem Institut für Humangenetik (Universitätsmedizin Göttingen) und wurde zuvor im Rahmen routinediagnostischer Untersuchungen analysiert.

Des Weiteren wurden im Rahmen dieser Arbeit molekulargenetische Untersuchungen an verschiedenen Familien, welche eine isolierte (nicht-syndromale) Form der Lippen-Kiefer-Gaumenspalte aufweisen, durchgeführt. Die klinische Diagnose und die Rekrutierung der Familien (Familien LKG8, LKG11, LKG12 und LKG21) erfolgte durch Herrn Prof. Dr. Dr. Schliephake (Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsmedizin Göttingen) sowie Dr. Abhilash Pasare Ravindranath (Department of Oral and Maxillofacial Pathology, Oxford Dental College, Bangalore, Indien). Eine weitere Familie mit einer isolierten, nicht-syndromalen Form der Lippen-Kiefer-Gaumenspalte wurde in Zusammenarbeit mit Dr. Martin Rachwalski (Department of Maxillofacial and Plastic Surgery, National Reference Center for Cleft Lip and

Palate, Hopital Universitaire Necker-Enfants Malades, Paris, Frankreich) sowie Dr. Dr. Jürgen Lichtensteiner (MKG-Chirurgie, Uniklinik Kiel) rekrutiert (Familie LKG-Kamerun).

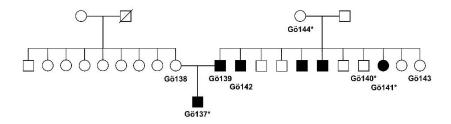


Abbildung 4: Stammbaum der Familie LKG8 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

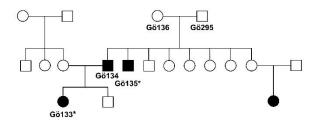
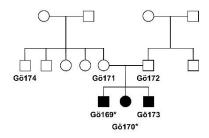
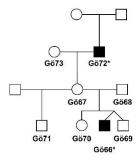



Abbildung 5: Stammbaum der Familie LKG11 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.


Abbildung 6: Stammbaum der Familie LKG12 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Abbildung 7: Stammbaum der Familie LKG21 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Abbildung 8: Stammbaum der Familie LKG-Kamerun mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Die EDTA-Blutproben der Patienten, ihrer Eltern sowie Angehörigen wurden entnommen und zusammen mit deren Einverständnis zugesandt. Aus den erhaltenen EDTA-Blutproben wurde die genomische DNA aus peripheren Blutlymphozyten isoliert und bis zur molekulargenetischen Analyse bei -18°C asserviert.

2.2. Methoden

2.2.1 Isolierung von DNA/RNA aus Blut

Bei allen Patienten wurden mittels venöser Punktionen EDTA-Blutproben gewonnen. In einem Standardverfahren wurde anhand dieser am Institut für Humangenetik Göttingen aus den Lymphozyten die DNA gewonnen. Die Aufreinigung der DNA erfolgte mittels des Chemagic MSM I (PerkinElmer) und die Proben wurden anschließend bis zur weiteren Verwendung bei -18°C gelagert.

Die Gewinnung von RNA aus peripherem Blut erfolgte mit Hilfe des PAXgene® Blood RNA Systems (PreAnalytix). Dazu wurde eine Blutprobe des jeweiligen Patienten unter Verwendung spezieller PAXgene-Monovetten abgenommen, für mindestens zwei Stunden bei Raumtemperatur gelagert und anschließend unter Verwendung des Gesamt-RNA Kits, peqGOLD nach Herstellerangaben aufgereinigt. Die isolierte Gesamt-RNA wurde bis zur weiteren Verwendung bei -80°C gelagert.

2.2.2 Isolierung von Gesamt-RNA aus eukaryotischen Zellen

Zur Isolierung von Gesamt-RNA aus eukaryotischen Zellen wurde das RNA Kit, peqGOLD (Peqlab) verwendet. Dabei wurde nach Herstellerangabe verfahren und die isolierte Gesamt-RNA entweder direkt für weitere Untersuchungen eingesetzt oder bis zur weiteren Verwendung bei -80°C gelagert.

2.2.3 Erststrang-cDNA-Synthese aus Gesamt-RNA

Die reverse Transkription und Erststrang-cDNA-Synthese aus Gesamt-RNA, die aus humanen peripheren Lymphozyten oder eukaryotischen Zelllinien isoliert wurde, erfolgte mit dem Re-

vertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). Für die Erststrangsynthese wurde 1 µg Gesamt-RNA eingesetzt und die reverse Transkription erfolgte mittels Oligo (dT)-Primer nach den Angaben des Herstellers. Jeweils 2 µl dieses cDNA-Ansatzes wurden nachfolgend pro PCR-Reaktion eingesetzt.

2.2.4 Bestimmung der Konzentration und des Reinheitsgrads von Nukleinsäure

Die Konzentrationsbestimmung von DNA und RNA erfolgte spektralphotometrisch mit Hilfe des NanoDrop One C (Thermo Fisher Scientific). Dazu wurde 1 µl einer DNA-/RNA-Lösung eingesetzt. Nach initialer Null-Eichung des Geräts mittels einer geeigneten Referenzlösung wurde durch Messung der Absorption bei 260 nm die Konzentration der DNA-/RNA-Lösung bestimmt. Die Bestimmung des Reinheitsgrades der Lösungen wurde durch die simultane Messung der Absorptionen bei 230 nm (Detektion organischer Substanzen) sowie 280 nm (Detektion von Proteinen und Phenolen) ermittelt.

2.2.5 Polymerase-Kettenreaktion (PCR)

Die Polymerase-Kettenreaktion ist eine Methode zur selektiven Amplifikation spezifischer DNA-Abschnitte und bildet die Basis für die *in vitro* Analyse der Nukleotidabfolge eines DNA-Abschnitts. Grundlage der PCR bilden thermostabile, DNA-abhängige Polymerasen, die mittels spezifischer Oligonukleotidprimer, die den zu amplifizierenden DNA-Abschnitt flankieren, durch die Verknüpfung einzelner Desoxynukleotide komplementäre einzelsträngige DNA-Moleküle synthetisieren. Bei der PCR handelt es sich um eine zyklische Reaktion, bei der sich die drei Grundprozesse Denaturierung, Hybridisierung und Elongation mehrfach wiederholen.

Im ersten Schritt eines jeden Zyklus, der Denaturierung, wird das Reaktionsgemisch für drei Minuten auf 94°C erhitzt. Dadurch denaturiert der DNA-Doppelstrang, was bedeutet, dass sich die Wasserstoffbrückenbindungen zwischen komplementären Basenpaaren lösen und zwei komplemetäre Einzelstränge entstehen. Diese Einzelstränge dienen nachfolgend als Vorlage für die weitere Vervielfältigung des gewünschten DNA-Abschnittes.

Im zweiten Schritt, dem Annealing (Hybridisierung), wird die Temperatur auf 50 – 65°C herabgesetzt, um die Anlagerung der Oligonukleotide (Primer) an ihre komplementären Bereiche in den DNA-Einzelsträngen zu gewährleisten. Die genaue Hybridisierungstemperatur ergibt sich dabei aus der Länge der Oligonukleotide sowie ihrer Basenzusammensetzung.

Im letzten Schritt eines PCR-Zyklus, der Elongation, findet die Synthese des komplementären DNA-Stranges statt. Dieser Schritt wird in der Regel bei 72°C durchgeführt, kann allerdings, je nach verwendeter DNA-Polymerase, auch bei abweichender Temperatur durchgeführt werden. Die Elongationszeit wird durch die Länge des zu amplifizierenden Abschnitts bestimmt und ist darüber hinaus ebenfalls abhängig von der Syntheserate der verwendeten Polymerase.

Dieser PCR-Zyklus wird 25- bis 35-mal wiederholt, wobei sich in jedem Schritt eines PCR-Zyklus die Menge des spezifischen PCR-Produkts verdoppelt. Tabelle 13 gibt eine Übersicht über die verwendeten DNA-Polymerasen sowie ihre spezifischen Eigenschaften. In Tabelle 14 ist die Zusammensetzung der PCR-Ansätze für verschiedenen Polymerasen dargestellt.

Tabelle 13: Übersicht über die verwendeten Polymerasen.

Polymerase	Syntheserate	Annealing-Temperatur	Anwendung
Taq-Polymerase	2,5 kb/min	72°C	Standard-PCR
Pfi-Polymerase	2 kb/min	72°C	Klonierungen,
			Mutagenesen
HotStarTaq-Polymerase	2 – 4 kb/min	72°C	Standard-PCR

Tabelle 14: Zusammensetzung der PCR-Ansätze in Abhängigkeit von der verwendeten Polymerase.

	Taq-	Pfi-	HotStarTaq-	
	Polymerase	Polymerase	Polymerase	
DNA (20 ng/μl)	2 μ1	2 μ1	2 μ1	
Puffer (10 x)	2,5 μ1	5 μ1	5 μl*	
MgCl2 (25mM)	1,5 μl	-	-	
dNTPs (je 10 mM)	4 μ1	8 μ1	-	
Fwd-Primer (10 pmol/µl)	1 μ1	1 μ1	1 μ1	
Rev-Primer (10 pmol/μl)	1 μ1	1 μ1	1 μ1	
Polymerase	0,3 μ1	0,5 μl	-	
DNA (20 ng/μl)	2 μ1	2 μ1	2 μ1	
dH ₂ O	ad 25 µl	ad 50 µl	ad 20 µl	

^{*}enthält zusätzlich dNTPs, MgCl₂ sowie die HotStarTaq-Polymerase.

In Tabelle 15 sind die PCR-Programme für unterschiedliche Polymerasen und Ansätze zusammengefasst. Die Annealing-Temperatur (X) sowie die Elongationszeit (Y) wurden für jede PCR in Abhängigkeit von der Zusammensetzung der verwendeten Primer, der Größe des Amplicons sowie der Synthesegeschwindigkeit der verwendeten Polymerase zuvor separat berechnet. Alle PCRs wurden mit *Touch down-*Programmen durchgeführt. Bei diesem Vorgehen wird die Annealing-Temperatur im Laufe der PCR schrittweise gesenkt, was dazu führt, dass initial aufgrund der stringenteren Bedingungen hochspezifisch die gewünschten DNA-Abschnitte amplifiziert werden und keine unspezifischen Nebenprodukte entstehen. In späteren Zyklen wird dann die Annealing-Temperatur herabgesetzt und somit eine hohe Amplifikation der initial angereicherten Matrizen gewährleistet.

Tabelle 15: PCR-Programme für unterschiedliche Polymerasen.

	Taq-Polymerase		Pfi-Polymerase		HotStarTaq-Poly- merase	
	°C	Zeit	°C	Zeit	°C	Zeit
		(min)		(min)		(min)
Initiale Denaturierung	95	30 – 35	3	30 – 35	95	15
Denaturierung	95	0.5	95	0.5	95	0.5
Annealing	X+4	0.5	X+4	0.5	X+4	0.5
Elongation	72	Y	72	Y	72	Y
Zyklenzahl	3	3 3			3	
Denaturierung	95	0.5	95	0.5	95	0.5
Annealing	X+2	0.5	X+4	0.5	X+4	0.5
Elongation	72	Y	72	Y	72	Y
Zyklenzahl	3		3		3	
Denaturierung	95	0.5	95	0.5	95	0.5
Annelaling	X	0.5	X	0.5	X	0.5
Elongation	72	Y	72	Y	72	Y
Zyklenzahl	30 – 35		30 – 35		30 – 35	
Finale Elongation	72	10	72	10	72	10
Reaktionsstopp	4	10	4	10	4	10

2.2.6 Agarose-Gelelektrophorese

Die Agarose-Gelelektrophorese stellt eine Methode zur Auftrennung von DNA-Fragmenten auf der Grundlage ihrer Größe dar. DNA-Fragmente, welche aufgrund ihres anionisch vorliegenden Phosphats des Zucker-Phosphat-Rückgrates eine negative Gesamtladung aufweisen, wandern in einem elektrischen Feld zur positiv geladenen Anode.

Im Rahmen dieser Arbeit wurden 1%ige oder 1,5%ige Agarose-Gele verwendet. Für ein 1,5%iges Gel wurden 2,25 g Agarose mit 150 ml TBE vermischt und bis zum vollständigen Lösen der Agarose in der Mikrowelle aufgekocht. Anschließend wurden 7,5 μl des Farbstoffs Gel-Red hinzugegeben, per Schütteln des Reaktionsgefäßes gut miteinander gemischt und das Gemisch zum Aushärten auf einen Gelträger mit einem entsprechenden Kamm gegossen. Bei Gel-Red handelt es sich um einen Farbstoff, welcher sich an die DNA anlagert und somit die Visualisierung einzelner DNA-Fragmente ermöglicht. Das flüssige Gel wurde nachfolgend bis zum vollständigen Aushärten bei Raumtemperatur stehen gelassen. Anschließend wurden 5 μl des zu untersuchenden PCR-Produktes zur Beschwerung der Probe mit 1 μl 6x Ladepuffer versetzt und gemischt. Das Gemisch wurde nachfolgend in eine Tasche des Gels pipettiert. Die Gelelektrophorese erfolgte in einer mit TBE-Puffer befüllten Elektrophorese-Kammer (Tabelle 16). Zur Beurteilung der Größe der einzelnen DNA-Fragmente des PCR-Produktes wurde zusätzlich ein Größenstandard aufgetragen. Die Gelelektrophorese erfolgte bei 140 Volt für eine Dauer von 25 – 45 Minuten und die aufgetrennten Banden wurden nachfolgend mittels eines LED-Transilluminators visualisiert und das Ergebnis dokumentiert.

Tabelle 16: Verwendete Puffer zur Gelelektrophorese.

Puffer	Reagenzien
10x TBE-Puffer	1 M Tris,
	0,9 M Borsäure,
	0,01 M EDTA;
	pH 8.0
6x Ladepuffer	10 mM Tris-HCl (pH 7.6); 0.03 % Bromphenolblau, 0.03 % Xylen-
	cyanol; 60 mM EDTA; 60 % Glycerol

2.2.7 Enzymatische Aufreinigung von PCR-Produkten mittels ExoI/TSAP-Verdau

Die Aufreinigung von PCR-Produkten, die einer Sanger-Sequenzierreaktion zugeführt werden sollen, ist ein notwendiger Schritt, um überschüssige Primer und Nukleotide zu entfernen, die zuvor für die PCR-Reaktion eingesetzt wurden. Ihre Entfernung ist notwendig, da sie ansonsten die Sequenzierreaktion beeinflussen können. Die enzymatische Aufreinigung wurde mittels Inkubation der PCR-Produkte mit Exonuklease I (ExoI), einem Enzym, welches freie DNA-Einzelstränge zwischen der 5`Phosphatgruppe und der 3`Hydroxylgruppe des benachbarten Nukleotids hydrolytisch spaltet, und der thermosensitiven alkalischen Phosphatase (TSAP), die die Phosphatgruppe am 5`Ende freier Nukleotide entfernt, durchgeführt. Die Zusammensetzung eines Reaktionsansatzes ist in Tabelle 17 zusammengefasst.

Tabelle 17: Zusammensetzung eines ExoI/TSAP-Ansatzes zur Aufreinigung von PCR-Produkten.

Komponente	Volumen
dH ₂ O	1,625 μ1
TSAP	0,3 μ1
ExoI	0,075 μ1
PCR-Produkt	8 μ1

Anschließend wurde der Reaktionsansatz zunächst für 20 min bei 37 °C und nachfolgend für 15 min bei 85°C inkubiert und, basierend auf der Menge des ursprünglich eingesetzten PCR-Produkts mit $10-50~\mu l$ dH₂O versetzt. 0,5 μl dieser Verdünnung wurden zur Sequenzierreaktion eingesetzt.

2.2.8 Sanger-Sequenzierung

Die Bestimmung der genauen Basenabfolge von DNA-Abschnitten erfolgte mittels der Kettenabbruchmethode nach Sanger et al. (1977). Bei diesem Verfahren wird im Gegensatz zu einer
konventionellen PCR nur ein Oligonukleotid eingesetzt, wodurch eine lineare Amplifikation
der Ziel-DNA, ausgehend von einer Seite der eingesetzten DNA, erfolgt. Zusätzlich werden bei
der Sequenzreaktion nach Sanger neben dNTPs auch Didesoxynukleotide (ddNTPs) eingesetzt,
die ihrerseits mit verschiedenen Fluoreszenzfarbstoffen markiert sind. Der Einbau eines ddNTP

führt zu einem Abbruch der Kettenverlängerung, da ddNTP aufgrund ihrer fehlenden 3'Hydoxygruppe nicht in der Lage sind eine Bindung zu einem weiteren Nukleotid einzugehen. Der Einbau von ddNTPs anstelle dNTPs erfolgt zufällig und resultiert in der Synthese von DNA-Fragmenten unterschiedlicher Länge. Diese Fragmente werden nachfolgend mittels Kapilar-elektrophorese ihrer Länge nach aufgetrennt. Die Fluorenszenzfarbstoffe der eingebauten ddNTPs werden dabei angeregt und die emittierten Fluoreszenzen detektiert. Jedes der vier ddNTPs (ddATP, ddCTP, ddGTP und ddTTP) ist dabei mit einem unterschiedlichen Fluoreszenzfarbstoff markiert, dessen Detektion die Bestimmung des zuletzt eingebauten ddNTPs erlaubt. Die Zusammensetzung der Sequenzierreaktion ist nachfolgend in Tabelle 18 zusammengefasst.

Tabelle 18: Zusammensetzung eines Sequenzieransatzes.

Komponente	Volumen
dH ₂ O	6,75 µl
Puffer V3.1 (5x)	2,25 μ1
Aufgereinigtes PCR-Produkt	0,5 μ1
Primer (10 pmol/μl)	0,5 μ1
Big Dye-Mix V3.1	0,25 μ1

Die Proben wurden anschließend mit folgenden PCR-Programm amplifiziert (Tabelle 19).

Tabelle 19: PCR-Programm zur Sanger-Sequenzierung.

	Temperatur	Dauer
Initiale Denaturierung	96°C	30 s
Denaturierung	96°C	10 s
Annealing	55°C	5 s
Elongation	60°C	4 min
Zykluszahl	40x	
Reaktionsstopp	10°C	5 min

Die Proben wurden nachfolgend mit 10 µl dH₂O versetzt, über eine Sephadex-Säule zur Entfernung vorhandener Salzionen und nicht verbrauchter, mit Fluoreszenzfarbstoff markierter ddNTPs aufgereinigt und mittels eines 3500xl Genetic Analyzer analysiert.

2.2.9 Multigen-Panel-Analyse

Bei zwei Patienten mit einer diagnostizierten Kraniosynostose wurde mittels *next-generation-sequencing*-basierter Technologie ein erkrankungsspezifisches Multigen-Panel analysiert. Die Sequenzierung wurde in der Molekulargenetischen Diagnostik des Instituts für Humangenetik (Universitätsmedizin Göttingen) durchgeführt. Die Multigen-Panel-Analyse ermöglicht die parallele Anreicherung und Analyse einer großen Anzahl an Genen in einem einzelnen Reaktionsansatz. Mittels des im Rahmen dieser Arbeit verwendeten CRANIO-QXT-Panels kann die Untersuchung auf Punktmutationen und kleinen Insertionen/Deletionen in den kodierenden Bereichen (einschließlich der Exon/Intron-Übergänge) von 29 Genen (Tabelle 20) durchgeführt werden.

Tabelle 20: Übersicht der Gene, die mittels des CRANIO-QXT-Panels untersucht wurden.

ADAMTS10	FGFR3	MN1	SKI
ALX1	GLI3	Р4НВ	SMO
ALX3	IFT122	POR	TWIST1
ALX4	IFT43	RAB23	WDR19
EFNB1	IL11RA	RECQL4	WDR35
ERF	LRP2	RUNX2	ZIC
FGFR1	MEGF8	SEC24D	ZIC1
FGFR2			

Die Multigen-Panel-Analyse wurde mittels des SureSelect^{QXT} Anreicherungsverfahrens der Firma Agilent Technologies durchgeführt. Dazu wurden die kodierenden Bereiche der 29 Gene aus genomischer DNA angereichert, amplifiziert und mittels *next-generation-sequencing*-Technologie mit dem Illumina MiSeq-System sequenziert. Die erhaltenen Sequenzdaten wurden nachfolgend mit der Sequence Pilot Software (jsi medical systems GmbH) ausgewertet und zur Detektion von Sequenzvarianten mit der jeweiligen Referenzsequenz der erfassten Gene verglichen.

2.2.10 Exomsequenzierung

Im Gegensatz zur Multigen-Panel-Analyse handelt es sich bei der Exomsequenzierung (wholeexome sequencing, WES) um eine Hochdurchsatz-DNA-Sequenzierung, die die parallele Sequenzanalyse der proteinkodierenden Bereiche aller etwa 19.000 humanen Gene in einem Reaktionsansatz ermöglicht (Shendure und Ji 2008; Illumina, Inc. 2019). Die Exomsequenzierung lässt sich dabei in drei Schritte unterteilen. In einem ersten Schritt wird die genomische DNA des Patienten zunächst definiert fragmentiert. Dies kann enzymatisch, mittels Transposasen oder Restriktionsendonukleasen, oder mechanisch erfolgen. An diese DNA-Fragmente werden anschließend Adapter ligiert, die Sequenzabschnitte enthalten, welche komplementäre Bereiche zu den später verwendeten Sequenzierprimern sowie den Oligonukleotid-Sequenzen auf der Oberfläche der Fließzelle (flow cell) enthalten, auf der die Sequenzierreaktion stattfindet. Zusätzlich sind in diesen Adaptern Sequenzen eingebracht, die individuelle Patienten- und Probenspezifische Indizes erhalten, und so eine Zuordnung der generierten Sequenzinformation zu einem Patienten ermöglichen. Nach Amplifikation dieser so erstellten DNA-Bibliothek erfolgt anschließend im zweiten Schritt die Anreicherung der Zielsequenzen (target enrichment). Dieses erfolgt mittels Hybridisierung der DNA-Bibliothek mit einzelsträngigen, Biotin-markierten DNA-Sonden, die komplementär zu den exomischen Zielsequenzen sind. Über Streptavidinmarkierte, magnetische beads können nachfolgend diese Biotin-markierten DNA-Sonden inklusive der exomischen Zielsequenzen aufgereinigt und von nicht-hybridisierten DNA-Fragmenten getrennt werden. Der dritte Schritt ist die Sequenzierung, die nach dem sequencing-bysynthesis Verfahren erfolgt. Dabei wird zunächst die DNA-Bibliothek auf die Fließzelle gegeben und mittels eines weiteren Amplifikationsschrittes, der sogenannten bridge amplification, klonal amplifiziert. Die so entstandenen DNA-Cluster bilden den Ausgangspunkt für die Sequenzierung, die nach dem paired-end Verfahren durchgeführt wird, bei der die DNA-Fragmente von beiden Enden her sequenziert werden, wodurch eine hohe Genauigkeit der DNA-Sequenzierung gewährleistet wird. Im Rahmen dieser Arbeit wurden die Exomsequenzierungen mit genomischen DNAs von insgesamt elf Patienten durchgeführt. Die Exomsequenzierungen erfolgten dabei in Zusammenarbeit mit dem Cologne Center for Genomics (CCG, Universität zu Köln). Dazu wurden mit Hilfe des SureSelectXT-Verfahrens (Agilent Technologies) die kodierenden Bereiche aller humanen Gene inklusive der Exon-/Intron-Übergänge mittels des Agilent Human All Exon V6-Anreicherungskits angereichert, amplifiziert und nachfolgend auf einem HiSeq4000 Sequenziergerät (Illumina) sequenziert. Die erhaltenen Sequenzdaten wurden nachfolgend mittels der Exom- und Genomanalysesoftware Varbank (v2.24, CCG, Univer-

sität zu Köln) ausgewertet und zur Detektion von Sequenzvarianten mit der jeweiligen Referenzsequenz der erfassten Gene verglichen. Im Institut für Humangenetik der Universität Göttingen kommt das Verfahren sequencing-by-synthesis von Illumina zu tragen. Diese Methode bietet die Möglichkeit des massively parallel sequencing. Dabei können das komplette Genom, Exom, Mendeliom oder auch einzelne Abschnitte der DNA dargestellt werden. Kurz zusammengefasst wird die zu untersuchende Probe in einzelsträngige Fragmente aufgebrochen. An diese Fragmente werden Adapter angebracht. Die angebrachten Adapter sind dabei komplementär zu Adaptern auf einem Flow Cell (glasähnlicher Objektträger) und binden an diesen Objektträger. Hier findet die eigentliche Sequenzierungsreaktion statt. Durch die sogenannte Bridge Amplification werden klonale Cluster von DNA-Abschnitten generiert. Ausgehend vom einzelsträngigen Fragment wird der komplementäre Strang generiert. Dabei kommen fluoreszierende Nukleotide zum Einsatz. Diese können erkannt und so die Basenabfolge bestimmt werden. Da diese Reaktion millionenfach und parallel stattfindet, können enorme Mengen an Daten generiert werden. In einem späteren Schritt können die einzelnen Fragmente anhand von beispielsweise einem Referenzgenom wieder in die richtige Reihenfolge gebracht werden (Shendure und Ji 2008; Illumina, Inc. 2019).

2.2.11 Restriktionsverdau von DNA

Restriktionsendonukleasen ermöglichen die sequenzspezifische, hydrolytische Spaltung von DNA. Dabei werden je nach verwendeter Restriktionsendonuklaese spezifische, palindromische Tetra- bis Oktamersequenzen erkannt und nachfolgend der DNA-Doppelstrang innerhalb oder in Nähe dieser Erkennungssequenz gespalten. Die Spaltung der DNA kann dabei glatt erfolgen (Generierung von *blunt end* Fragmenten) oder es können Nukleotidüberhänge generiert werden (*sticky ends*). Die in dieser Arbeit verwendeten Restriktionsendonukleasen sind in Tabelle 6 (vgl. Kapitel 2.1.5) zusammengefasst und wurden gemäß den Herstellerangaben in den mitgelieferten Puffern eingesetzt. Ein Standartansatz für einen Restriktionsverdau ist in Tabelle 21 angegeben.

Tabelle 21: Standard-Ansatz eines Restriktionsverdaus.

Komponente	Volumen
DNA (1 – 5 μg)	xμl
Enzym (10 U/µl)	1 μ1
Puffer (10x)	2 μ1
dH ₂ O	add 20 µl

2.2.12 Aufreinigung von DNA-Fragmenten aus Agarosegelen

Zur Aufreinigung und Trennung von Restriktionsendonuklease-verdauter DNA wurde der gesamte Ansatz des Restriktionsverdaus auf ein Agarosegel aufgetragen und aufgetrennt. Das gewünschte Produkt wurde anhand seiner Größe identifiziert und nachfolgend mit einem Skalpell ausgeschnitten. Die Aufreinigung der DNA aus dem Gelfragment erfolgte mittels des QIAquick Gel Extraction-Kits (Qiagen) gemäß der Herstellerangaben und die DNA wurde abschließend in $20-50~\mu l$ eluiert.

2.2.13 Ligation von DNA-Fragmenten

Zur Ligation eines DNA-Fragments (Insert) mit einem linearisierten Vektor wurde die DNA-Ligase des Bakteriophagen T4 verwendet. Die Fragmente, welche kloniert werden sollten, wurden dazu zuvor mit jeweils den gleichen Restriktionsenzymen verdaut, so dass komplementäre Überhänge in den Insert- und Vektorfragmenten vorhanden waren. Im Zuge der Ligationsreaktion wurden diese komplementären Enden durch die Ligase miteinander verbunden, was zur Bildung eines zirkulären Vektors führt. Das Verhältnis der eingesetzten Mengen von Insert zu Vektor betrug dabei etwa 3:1, wobei die Menge der jeweiligen Komponenten anhand der Bandenintensität unter Berücksichtigung der jeweiligen Größe der Fragmente in Zuge einer zuvor durchgeführten Agarose-Gelelektrophorese bestimmt wurde. Ein Standard-Ansatz für einen Ligationsreaktion ist in Tabelle 22 angegeben.

Tabelle 22: Standard-Ansatz einer Ligationsreaktion.

Komponente	Volumen
Vektor, linearisiert	xμl
Insert, linearisiert	yμl
Puffer (10x)	1 μ1
T4 DNA Ligase (5 U/μl)	1 μ1
dH ₂ O	add 10 µl

Die Ligationsreaktion wurde für mindestens eine Stunde bei 22°C inkubiert. Parallel zum Ligationsansatz wurde zusätzlich ein Kontrollansatz hergestellt, der mit Ausnahme des Inserts alle Komponenten des Ligationsansatzes enthielt und als interne Negativkontrolle diente. Alle Reaktionsansätze wurden nachfolgend direkt für die Transformation kompetenter Bakterien (vgl. Kapitel 2.2.16) eingesetzt.

2.2.14 TOPO Klonierung von DNA-Fragmenten

Die TOPO Klonierung ermöglicht eine direkte Insertion von DNA-Fragmenten mit beliebigen Enden in den pCR®4Blunt-Topo-Vektor (Invitrogen), ohne dass ein vorhergehender Restriktionsverdau erforderlich ist. Dazu wurde im Rahmen dieser Arbeit das Zero Blunt® TOPO® PCR Cloning Kit (Invitrogen) verwendet. Für die TOPO Klonierung wurden zuvor aufgereinigte, lineare DNA-Fragmente (vgl. Kapitel 2.2.12) und PCR-Produkte eingesetzt. Es wurde nach Herstellerangaben verfahren. Ein Standard-Ansatz für eine TOPO Klonierung ist in Tabelle 23 angegeben.

Tabelle 23: Standard-Ansatz einer TOPO Klonierung.

Komponente	Volumen
DNA-Fragment/PCR-Produkt	4 μ1
salt solution (Puffer)	1 μ1
TOPO Vektor	1 μ1

Der Reaktionsansatz wurde 15 Minuten bei Raumtemperatur inkubiert und anschließend direkt für die Transformation kompetenter Bakterien (vgl. Kapitel 2.2.16) eingesetzt.

2.2.15 Herstellung transformationskompetenter E. coli TOP10F`-Bakterien

Zur Herstellung transformationskompetenter *E. coli* TOP10F-Bakterien wurde 5 ml LB-Medium mit *E. coli* TOP10F'-Bakterien angeimpft und über Nacht bei 37°C unter Schütteln inkubiert. 900 μl dieser Kultur wurden zum Animpfen von 150 ml LB-Medium verwendet und die Kultur wurde bis zum Erreichen einer OD_{600nm} von 0.45 – 0.55 über Schütteln bei 37°C inkubiert. Anschließend wurde die Bakterienkultur für 10 Minuten auf Eis inkubiert und danach bei 2.000 rpm zentrifugiert. Der Überstand wurde verworfen und das Pellet in 30 ml TFB I Puffer resuspendiert. Die Suspension wurde für 10 Minuten auf Eis inkubiert, nachfolgend zentrifugiert und das Pellet anschließend in 6 ml eiskaltem TFB II Puffer resuspendiert. Die Suspension wurde in 50 μl Aliquots mittels flüssigen Stickstoffs schockgefroren und bis zur weiteren Verwendung bei -80°C gelagert. Die Ansätze werden wie in der nachfolgenden Tabelle 24 aufgeführt, hergestellt.

Tabelle 24: Benötigte Reaktionsansätze zur Herstellung transformationskompetenter *E. coli* TOP10F'-Bakterien.

Medium/Puffer	Reagenzien/Vorgehen
LB-Medium	10 g Pepton
	5 g Hefeextrakt
	10 g NaCl
	auf 1 l mit H ₂ O auffüllen; autoklavieren; 4°C
TFB I Puffer	50 mM MnCl2
	100 mM KCl
	10 mM CaCl ₂
	30 mM KOAc
	15 % (v/v) Glyzerin
	pH mit HOAc auf 6,1 einstellen; sterilfiltrieren; 4°C
TFB II Puffer	75 mM CaCl ₂
	10 mM KCl
	10 mM MOPS
	15 % (v/v) Glyzerin
	pH mit KOH auf 7,0 einstellen; sterilfiltrieren; 4°C

2.2.16 Transformation kompetenter E. coli TOP10F`-Bakterien

Unter Transformation versteht man die natürliche Aufnahme von Fremd-DNA in eine Bakterienzelle. Dieses Prinzip wurde im Rahmen der vorliegenden Arbeit verwendet, um künstlich hergestellte Vektoren in transformationskompetente Bakterien einzubringen und diese Vektoren dadurch *in vivo* zu vervielfältigen.

Zur Transformation wurden 50 μl kompetenter *E.coli* TOP10F' Bakterien mit 10 μl eines Ligations-Ansatzes (vgl. Kapitel 2.2.13) oder 6 μl eines TOPO Klonierungsansatzes (vgl. Kapitel 2.2.14) versetzt und für 30 Minuten auf Eis inkubiert. Es folgte ein Hitzeschock bei 42°C für 30 Sekunden. Anschließend wurde der Ansatz für zwei bis fünf Minuten auf Eis abgekühlt. Es wurden 200 μl LB-Medium hinzugegeben und nachfolgend für 30 – 45 Minuten bei 37°C im Schüttelinkubator inkubiert. Abschließend wurde die Bakteriensuspension auf einer Agarplatte ausgestrichen, welche mit einem entsprechenden Antibiotikum (Ampicillin, Kanamycin) versetzt war, und über Nacht bei 37°C inkubiert (siehe Tabelle 25).

Tabelle 25: Herstellung von LB-Agarplatten.

Medium	Reagenzien/Vorgehen
LB-Agarplatten	20 g Select Agar auf 1.000 ml LB-Medium
	autoklavieren und auf etwa 60 °C abkühlen lassen.
	Zugabe von 50 – 100 μg/ml Ampicillin bzw. 30 –
	50 μg/ml Kanamycin, Lagerung mit Parafilm ver-
	siegelt bei 4 °C.

2.2.17 Übernachtkultur

Zur Herstellung von Bakterienkulturen wurden 5 ml LB-Medium mit dem entsprechenden Antibiotikum (50 – 100 µg/ml Ampicillin/30 – 50 µg/ml Kanamycin) versetzt und mit einer einzelnen Bakterienkolonie oder einer Bakteriensuspension angeimpft. Anschließend wurde die Suspension über Nacht bei 37 °C unter Schütteln inkubiert.

2.2.18 Plasmidpräparation (MiniPrep)

Die Aufreinigung und Isolierung von Plasmid-DNA im kleineren Maßstab wurde mit Hilfe des QIAprep Spin Miniprep Kits (Qiagen) und des NucleoSpin® Plasmid Transfection-grade Mini Kits (Macherey-Nagel) durchgeführt. Dazu wurden 1,5 ml einer Bakterienkultur verwendet. Es

wurde nach Herstellerangabe verfahren. Anschließend wurde die Konzentration der isolierten Plasmide (vgl. Kapitel 2.2.4) bestimmt und die Plasmide wurden bei Bedarf direkt für die Sequenzanalysen (vgl. Kapitel 2.2.8) eingesetzt.

2.2.19 Kolonie-PCR

Um zu überprüfen, ob einzelne Bakterienkolonien, die auf Agarplatten gewachsen sind, die gewünschten Konstrukte und Plasmide erfolgreich aufgenommen haben, wurde eine Kolonie-PCR durchgeführt. Bei dieser PCR wurde als *template* keine reine DNA, sondern ein Bakterienkolonienigesetzt. Dazu wurde zunächst eine einzelne Bakterienkolonie mittels einer sterilen Impföse von einer Agarplatte entnommen und in 20 µl dH₂O resuspendiert. 5 µl dieser Bakteriensuspension wurden dann in einer Standard-PCR-Reaktion anstelle des DNA *templates* eingesetzt. Als Primer wurden in dieser PCR Oligonukleotide verwendet, die im jeweiligen Vektor nach einer erfolgreichen Ligation/TOPO Klonierung das eingebrachte Insert flankieren. Anhand der Größe des entstandenen PCR-Produkts konnte dann nachfolgend abgeschätzt werden, ob das Insert erfolgreich in den Zielvektor eingebracht werden konnte. Ein Standard-Ansatz für eine Kolonie-PCR ist in Tabelle 26 angegeben.

Tabelle 26: Standard-Ansatz einer Kolonie-PCR.

Komponente	Volumen
Bakteriensuspension	5 μl
Puffer (10 x)	2,5 μ1
M13 Forward Primer (10 pmol/μl)	1 μl
M13 Reverse Primer (10 pmol/µl)	1 μl
Taq-Polymerase	1 μl
dNTPs (je 10 mM)	4 μl
dH ₂ O	add 25 µl

2.2.20 Zielgerichtete Mutagenese-PCR

Bei der zielgerichteten Mutagenese-PCR werden im Gegensatz zur herkömmlichen PCR Oligonukleotide verwendet, die nicht vollständig komplementär zur Matrizen-DNA sind, sondern an den gewünschten Nukleotidpositionen die spezifischen Veränderungen (Insertion/Deletion, Substitution) tragen. Die Mutagenese erfolgte im Rahmen dieser Arbeit auf Plasmid-DNA mit

Hilfe von Oligonukleotiden, in denen die gewünschte Mutation mittig zur ansonsten komplementären Sequenz platziert war. Ein Standard-Ansatz für eine Mutagenese-PCR ist in Tabelle 27 angegeben.

Tabelle 27: Standard-Ansatz einer Mutagenese-PCR.

Komponente	Volumen
Plasmid-DNA (100 – 500 ng)	1 μ1
Puffer (10 x)	5 μ1
Mutagenese Primer fwd (10 pmol/µl)	1 μ1
Mutagenese Primer rev (10 pmol/μl)	1 μ1
Pfi-Polymerase	1 μ1
dNTPs (je 10 mM)	8 μ1
dH ₂ O	add 50 µl

Parallel zum Mutageneseansatz wurde ein zweiter Reaktionsansatz pipettiert, der mit Ausnahme der Polymerase alle Komponenten des Mutageneseansatzes enthielt und als interne Negativkontrolle diente. Im Anschluss an die Mutagenese-PCR wurden 5 μl der Reaktionsansätze auf ein Agarosegel aufgetragen. Im Falle einer erfolgreichen Mutagenese-PCR wurden die Reaktionsansätze zum Verdau der methylierten Template-Plasmid-DNA mit der Endonuklease DpnI versetzt, für mindesten zwei Stunden bei 37°C inkubiert und nachfolgend direkt für die Transformation kompetenter TOP10F′-Bakterien eingesetzt (vgl. Kapitel 2.2.16).

2.2.21 Transiente Transfektion von eukaryotischen Zellen

Unter Transfektion versteht man das Einbringen von Fremd-DNA in eukaryotische Zellen. Ist diese Fremd-DNA nur für eine begrenzte Zeit in den Zellen vorhanden, spricht man von einer transienten Transfektion. Die Transfektion ermöglicht die Expression von Genen und die Untersuchung der zellulären Effekte der kodierten Genprodukte in den Zielzellen. Das Einbringen der Fremd-DNA kann dabei durch unterschiedliche Methoden wie Elektroporation, Lipofektion oder durch virale Genfähren erfolgen. Im Rahmen dieser Arbeit wurden Zellen mittels der Transfektionsreagenzien FuGENE HD (Promega) transfiziert. Dazu wurden HEK293T- oder HeLa-Zellen einen Tag vor der Transfektion so ausgesät, dass sie zum Zeitpunkt der Transfektion etwa eine Konfluenz von 70 % erreichten. Die Komponenten eines Transfektionsansatzes

(siehe Tabelle 28) wurden anschließend zusammengegeben und für 15 Minuten bei Raumtemperatur inkubiert.

Tabelle 28: Standard-Transfektionsansatz (24-well-Maßstab) mittels FuGENE HD.

Komponente	Volumen
Optimem	40μ1
FuGENE HD	1,2 μl
DNA	0,3 μg

Parallel dazu wurde das Medium der zu transfizierenden Zellen abgenommen und durch frisches Kulturmedium ersetzt. Anschließend wurde der Transfektionsansatz vorsichtig und tropfenweise auf die Zellen gegeben. Die Zellen wurden 24 Stunden nach Transfektion entweder zur Isolierung der Gesamtproteine lysiert oder zu funktionellen Analysen mittels Luciferase Reporter Assays (vgl. Kapitel 2.2.22) eingesetzt.

2.2.22 Luciferase Reporter Assay

Die funktionelle Analyse einer Mutation im Transkriptionsfaktor *PAX7*, die im Rahmen dieser Arbeit identifiziert wurde, erfolgte mittels des Luciferase Reporter Assays. Dabei wurde im Rahmen dieser Arbeit das Dual-Luciferase Assay System Kit (Promega) verwendet. Dieses basiert auf der Firefly- und Renilla-Luciferase, deren Aktivitäten innerhalb eines Reaktionsansatzes parallel ermittelt werden können. Luciferasen sind Enzyme, die die Oxidation von Luciferine zu energiereichen Dioxetanen oder Dioxetanonen katalysieren (Oxidation). Diese Verbindungen sind instabil und setzen bei ihrem Zerfall Biolumineszenz frei, die mit Hilfe eines Luminometers gemessen werden kann. Die Firefly-Luciferase ist ein Enzym, welches aus dem Glühwürmchen *Photinus pyralis* stammt, während die Renilla-Luciferase ursprünglich aus der Seefeder *Renilla reniformis* kommt. Das in dieser Arbeit verwendete Firefly-Luciferase-Reportergen-Konstrukt enthält die Promotorregion des murinen *Id3*-Gens, eines natürlichen Zielpromotors des *PAX7*-Transkriptionsfaktors. Die parallel verwendeten Expressionskonstrukte für humanes wildtypisches und mutiertes *PAX7* führen im Falle einer Bindung an den *Id3*-Promotor zur Transkription und somit zur Expression der Firefly-Luciferase, deren Aktivität nachfolgend luminometrisch gemessen werden.

Dazu wurden HeLa-Zellen in 24-well Platten ausgesät und am nächsten Tag bei einer Konfluenz von etwa 70 % mit wildtypischen oder mutanten *PAX7*-Expressionskonstrukten sowie

dem *Id3*-Promotor-Reportergen-Konstrukt und dem Expressionskonstrukt der Renilla-Luciferase co-transfiziert. Alle Transfektionen wurden im Triplikat durchgeführt und die Zusammensetzung der einzelnen Transfektionsansätze ist in der Tabelle 29 zusammengefasst.

Tabelle 29: Transfektionsansatz zur funktionellen Analyse der *PAX7*-Mutation.

Vektoren	Ansatz 1	Ansatz 2	Ansatz 3	Ansatz 4	Ansatz 5
pcDNA3.1 lac Z	-	150 ng	-	-	-
pGL3-basic [luc+]	150 ng	-	-	-	
pGL3-basic-Id3 [luc+]	-	150 ng	150 ng	150 ng	150 ng
pcDNA3 PAX7 WT	150 ng	-	150 ng	-	-
pcDNA3 PAX7 Arg77Cys	-	-	-	150 ng	-
pcDNA3 PAX7 Ala259 Val	-	-	-	-	150 ng
pRL-TK [Rluc]	10 ng				
transfizierte Gesamt-DNA	310 ng				

24 Stunden nach der Transfektion wurden die Zellen lysiert. Dazu wurde der vorhandene Überstand abgesaugt, die Zellen vorsichtig mit etwa 1 ml PBS gewaschen und anschließend mit 100 ul des im Kit erhaltenen Passive-Lysis-Puffer lysiert. Die Zellen wurden 15 min bei Raumtemperatur unter Schütteln inkubiert, nachfolgend bei -80°C über Nacht eingefroren und bis zur Messung bei -80°C gelagert. Die Messung erfolgte mit Hilfe des Synergy Mx Microplate Readers (BioTek). Die hergestellten Zelllysate wurden zunächst auf Eis aufgetaut und 50 µl jedes Lysats wurden für die Messung in 96-well Mikrotiterplatte aufgetragen. Die Substrate und Puffer für die Aktivitätsmessung der Firefly-Luciferase (LAR II) und der Renilla-Luciferase (Stop & Glow) wurden nach Herstellerangaben vorbereitet und die Injektoren des Luminometers mit diesen befüllt. Mit Start der Messung wurden automatisch 100 µl der Puffer nacheinander durch die Injektoren zugegeben und jeweils die Aktivität der Luciferasen sequenziell gemessen. Die Bestimmung der relativen Aktivität des Firefly-Luciferase-Reportergen-Konstruktes erfolgte durch Normalisierung der Messergebnisse für die Firefly-Luciferase mit den Messwerten der Renilla-Luciferase, wodurch Schwankungen in der Gesamtzellzahl sowie der Transfektionseffizienz ausgeglichen und berücksichtigt wurden. Pro Experiment wurden alle in Tabelle 29 angegebenen Ansätze im Triplikat durchgeführt und der gesamte Versuchsablauf wurde insgesamt vier Mal unabhängig voneinander wiederholt.

3 Ergebnisse

3.1 Mutationsanalyse bei Patienten mit klinisch diagnostizierter syndromaler oder isolierter Kraniosynostose

Im Rahmen dieser Arbeit wurden die Proben von 32 nicht miteinander verwandten Patienten untersucht, bei denen eine syndromale oder isolierte Form der Kraniosynostose diagnostiziert wurde. Bei den Patienten handelt es sich um betroffene Einzelpatienten klinisch unauffälliger Eltern, weitere betroffene Familienmitglieder wurden nicht beschrieben (vgl. Tabelle 30) und auch nicht analysiert. Zur Bestimmung der genetischen Ursache der Erkrankung wurden initial bereits beschriebene *Hotspot*-Mutationen in bekannten Kraniosynostose-Genen mittels molekulargenetischer Methoden untersucht.

Tabelle 30: Zusammensetzung des molekulargenetisch charakterisierten Kraniosynostose-Patientenkollektivs.

Erkrankung	OMIM Referenz	Anzahl der Patienten
Apert-Syndrom	101200	11
Crouzon-Syndrom	123500	9
Pierre-Robin-Syndrom	261800	1
Saethre-Chotzen-Syndrom	101400	4
isolierte Kraniosynostose	keine Angabe	7

3.1.1 Identifizierung von *Hotspot*-Mutationen in bekannten Kraniosynostose-assoziierten Genen

In einem ersten Schritt wurde das Patientenkollektiv auf bekannte *Hotspot*-Mutationen in den Genen *FGFR2*, *FGFR3* und *TWIST1* untersucht. Die Mutationsanalyse erfolgte dabei durch Amplifikation des entsprechenden Exons mittels PCR, der enzymatischen Aufreinigung der erhaltenen PCR-Produkte sowie der Sanger-Sequenzierung der aufgereinigten PCR-Produkte. Das Ergebnis dieser Mutationsanalyse ist in Tabelle 31 zusammengefasst.

Tabelle 31: Übersicht über die getesteten *Hotspot*-Regionen, die Anzahl der getesteten Patienten sowie die identifizierten Varianten.

Gen	Exon	Anzahl getesteter Patienten	Patienten mit Mutationen
FGFR2	7	32	13
FGFR2	8	30	4
FGFR3	7	13	-
TWIST1	1	4	1

Insgesamt wurden bei 18 von 32 untersuchten Patienten (56,3 %) heterozygote dominante Sequenzveränderungen in den untersuchten, proteinkodierenden Bereichen der Gene *FGFR2*, *FGFR3* und *TWIST1* gefunden, die als ursächlich eingeschätzt wurden. Die Aufklärungsrate war dabei stark von der initialen klinischen Verdachtsdiagnose abhängig und variierte zwischen 100 % (11/11 Patienten bei mit Verdacht auf Apert-Syndrom) und 0 % (0/7 Patienten mit der klinischen Diagnose einer isolierten Kraniosynostose) (Tabelle 32).

Tabelle 32: Übersicht über die Anzahl der identifizierten ursächlichen Varianten aufgeschlüsselt nach der initialen klinischen Verdachtsdiagnose.

Erkrankung	Anzahl getesteter Patienten	Patienten mi	t Mutationen
		absolut	[%]
Apert-Syndrom	11	11	100
Crouzon-Syndrom	9	6	66,6
Pierre-Robin-Syndrom	1	0	0
Saethre-Chotzen-Syndrom	4	1	25
isolierte Kraniosynostose	7	0	0

Tabelle 33 gibt eine Übersicht über die identifizierten Mutationen in *FGFR2* und *TWIST1* bei den 18 Patienten. Bei den gefundenen Mutationen in *FGFR2* handelt es sich um bereits zuvor in der Literatur beschriebene Mutationen. Die Mutation in *TWIST1* ist erstmalig im Rahmen dieser Arbeit identifiziert worden.

Tabelle 33: Übersicht aller identifizierten Mutationen.

Patient	Verdachtsdiagnose	Gen	Exon	Mu	Mutation		be-
				cDNA	Proteinebene	bung	kannt
K4084	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	de novo	ja
K4089	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	de novo	ja
K4092	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	de novo	ja
K4100	Apert-Syndrom	FGFR2	7	c.758C>G	p.Pro253Arg	?	ja
Gö190	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	de novo	ja
Gö230	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	de novo	ja
Gö233	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	de novo	ja
Gö236	Apert-Syndrom	FGFR2	7	c.758C>G	p.Pro253Arg	?	ja
Gö243	Apert-Syndrom	FGFR2	7	c.755C>G	p.Ser252Trp	?	ja
Gö464	Apert-Syndrom	FGFR2	7	c.758C>G	p.Pro253Arg	de novo	ja
Gö470	Apert-Syndrom	FGFR2	7	c.758C>G	p.Pro253Arg	de novo	ja
K4020	Crouzon-	FGFR2	8	c.1025G>T	p.Cys342Phe	?	ja
	Syndrom						
K4038	Crouzon-	FGFR2	8	c.1052C>G	p.Ser351Cys	de novo	ja
	Syndrom						
K4102	Crouzon-	FGFR2	7	c.868T>G	p.Trp290Gly	de novo	ja
	Syndrom						
Gö193	Crouzon-	FGFR2	7	c.833G>T	p.Cys278Phe	de novo	ja
	Syndrom						
Gö467	Crouzon-	FGFR2	8	c.1026C>G	p.Cys342Trp	paternal	ja
	Syndrom						
Gö473	Crouzon-	FGFR2	8	c.1025G>A	p.Cys342Tyr	?	ja
	Syndrom						
Gö238	Saethre-Chotzen-	TWIST1	1	c.80_92del	p.Gln27Profs	de novo	neu
	Syndrom				*94		

Die identifizierten ursächlichen Varianten wurden nachfolgend in einem zweiten, unabhängigen Sequenzier-Ansatz bestätigt und auf ihre Segregation in entsprechenden Familien hin überprüft. Für 5/18 Proben lagen keine elterlichen DNA-Proben oder DNA-Proben nur eines Elternteils vor, so dass die Segregationsanalyse nur unvollständig durchgeführt werden konnte (vgl. Tabelle 33, markiert mit "?"). In den 13/18 Fällen, in denen beide elterlichen Proben vorlagen, konnte für 12 Proben gezeigt werden, dass die bei den Patienten identifizierten Mutationen höchst wahrscheinlich *de novo* entstanden sind (Tabelle 33). Die Mutationen konnten in

diesen Fällen also nicht in den elterlichen DNA-Proben nachgewiesen werden. Für eine Probe, Gö467, konnte gezeigt werden, dass die Mutation c.1026C>G/p.Cys342Trp in *FGFR2* von dem initial als klinisch unauffällig beschriebenen Vater vererbt wurde. Eine nachfolgende klinische Reevaluation des Vaters ergab, dass dieser ebenfalls mild betroffen war, die identifizierte *FGFR2*-Variante in der Familie also mit der Erkrankung ko-segregiert. Die Ergebnisse der Sanger-Sequenzierungen sowie der Ko-Segregationanalyse für die identifizierten Mutationen sind in Abbildung 9, Abbildung 10 und Abbildung 11 für jede identifizierte Mutation exemplarisch zusammengefasst.

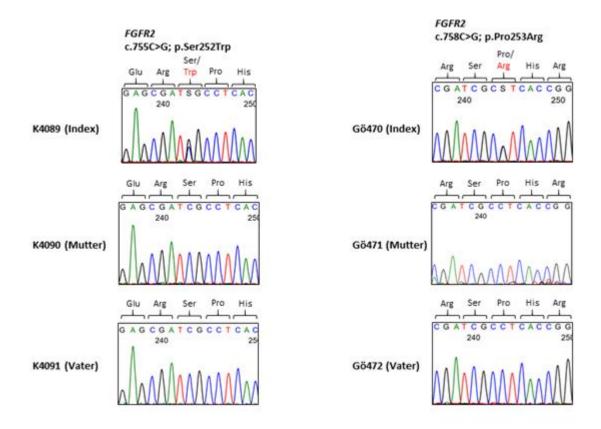


Abbildung 9: Elektropherogramme der identifizierten *FGFR2*-Mutationen in Patienten mit der Verdachtsdiagnose Apert-Syndrom.

Die oberen Elektropherogramme zeigen die heterozygoten Mutationen c.755C>G/p.Ser252Trp (links) bzw. c.758C>G/p.Pro253Arg (rechts) in *FGFR2*, die in den Patienten gefunden wurden. Die mittlere Elektropherogramme zeigen die Ergebnisse der Sequenzierungen an maternaler DNA, die unteren der Sequenzierung an paternaler DNA. Die Mutationen wurden insgesamt bei sieben (c.755C>G/p.Ser252Trp) bzw. vier (c.758C>G/p.Pro253Arg) Patienten mit Apert-Syndrom identifiziert.



Abbildung 10: Elektropherogramme der identifizierten *FGFR2*-Mutationen in Patienten mit der Verdachtsdiagnose Crouzon-Syndrom.

Die Elektropherogramme zeigen die sechs unterschiedlichen, heterozygote Mutationen c.833G>T/p.Cys278Phe; c.868T>G/p.Trp290Gly; c.1025G>T/p.Cys342Phe; c.1025G>A/p.Cys342Tyr; c.1026C>G/p.Cys342Trp und c.1052C>G/p.Ser351Cys in *FGFR2*, die in den Patienten gefunden wurden.

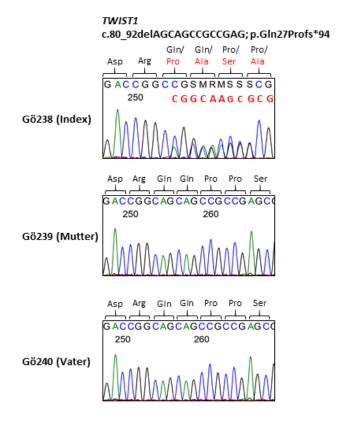


Abbildung 11: Elektropherogramme der identifizierten *TWIST1*-Mutation im Patienten Gö238 mit der Verdachtsdiagnose Saethre-Chotzen-Syndrom.

Das obere Elektropherogramm zeigt die heterozygote 13 bp Deletion in Exon1 des *TWIST1*-Gens, die im Patienten Gö238 gefunden wurden. Das mittlere Elektropherogramm zeigt das Ergebnis der Sequenzierungen an maternaler DNA, das untere der Sequenzierung an paternaler DNA.

3.1.2 Multigen-Panel-Analyse bei Patienten mit einer Kraniosynostose

In zwei Patienten des untersuchten Patientenkollektivs konnte keine kausale Variante in den Hotspot-Regionen der Gene FGFR2 und FGFR3 mittels PCR-Amplifikation und Sanger-Sequenzierung identifiziert werden. Bei beiden Patienten, K4081 und Gö224, handelt es sich um Patienten mit einer isoliert, nicht-syndromalen Kraniosynostose. Zur weiteren Untersuchung einer genetischen Ursache der Kraniosynostose bei diesen Patienten wurde nachfolgend eine Multigen-Panel-Analyse unter Verwendung des CRANIO-QXT-Panels durchgeführt. Dieses Panel ermöglich die simultane Analyse der proteinkodierenden Bereiche, inklusive angrenzender Exon-Intron-Übergänge, von insgesamt 29 Genen (FGFR1, FGFR2, FGFR3, GLI3, MEGF8, RAB23, TWIST1, ADAMTS10, ALX1, ALX3, ALX4, CD96, EFNB1, ERF, IFT122, IFT43, IL11RA, LRP2, MN1, P4HB, POR, RECQL4, RUNX2, SEC24D, SKI, SMO, WDR19, WDR35, ZIC1 (Institut für Humangenetik der Universitätsmedizin Göttingen 2021)), in denen pathogene Veränderungen in Patienten mit isolierten und syndromalen Formen der Kraniosynostose beschrieben wurden (Stand Februar 2021). Das Design und die Etablierung dieses Multigen-Panels erfolgten durch die Abteilung "molekulargenetische Diagnostik" des Instituts für Humangenetik, Universitätsmedizin Göttingen. Die Analyse der Patientenproben fand ebenfalls in Zusammenarbeit mit der Abteilung "molekulargenetische Diagnostik" des Instituts für Humangenetik statt.

Die Auswertung der Sequenzanalyse der 29 untersuchten Gene erfolgte mittels der Software *Sequence Pilot* (jsi medical systems GmbH). Für beide Proben konnte eine mindestens 20-fache Abdeckung an >99 % (K4081) bzw. >96 % (Gö224) der Zielsequenzen ermittelt werden. Für Patient K4081 wurden insgesamt 61 Varianten in den kodierenden Bereichen der 29 untersuchten Gene detektiert, die Abweichungen zu den Referenzsequenzen (humanes Referenzgenom hg19) der erfassten Gene darstellen. Bei Gö224 wurden 55 Sequenzvarianten detektiert. Die Ergebnisse dieser Analyse und die Klassifikation der Varianten sind in Tabelle 34 und Tabelle 35 zusammengefasst.

Tabelle 34: Patient K4081, Sequenzvarianten.

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr19:8669931	ADAMTS10	ENST00000597 188.5	c.401C>G	p.Thr134Ser	het	0.7910	rs7255721	Polymorphismus
chr19:8654106	ADAMTS10	ENST00000597 188.5	c.2158+20C>T	-	het	0.09851	rs73501572	Polymorphismus
chr19:8651562	ADAMTS10	ENST00000597 188.5	c.2283T>C	p.Pro761=	het	0.2149	rs4476282	Polymorphismus
chr19:8649943- 8649944	ADAMTS10	ENST00000597 188.5	c.3043-12_3043- 6dupGCCCCCT	-	het	0.000008328	rs138501563	Polymorphismus
chr19:8645786	ADAMTS10	ENST00000597 188.5	c.3303T>G	p.His1101Gln	hom	0.000004163	rs7252299	Polymorphismus
chr11:44331509	ALX4	ENST00000329 255.3	c.104G>C	p.Arg35Thr	het	0.4962	rs3824915	Polymorphismus
chr11:44331309	ALX4	ENST00000329 255.3	c.304C>T	p.Pro102Ser	het	0.00002764	rs12421995	Polymorphismus
chr11:44297054	ALX4	ENST00000329 255.3	c.621A>G	p.Ser207=	hom	0.000003977	rs10769028	Polymorphismus
chr11:44286566	ALX4	ENST00000329 255.3	c.1074C>T	p.Ser207=	het	0.3652	rs3802805	Polymorphismus
chr3:111260975	CD96	ENST00000283 285.9	c121C>T	-	het	0.5243	rs2276873	Polymorphismus
chr3:111356083	CD96	ENST00000283 285.9	c.1410G>C	p.Pro470=	hom	0.00001061	rs1533270	Polymorphismus
chr19:42753649	ERF	ENST00000222 329.8	c.615C>G	p.Arg205=	het	0.00001231	rs11557114	Polymorphismus
chr8:38271466	FGFR1	ENST00000447 712.6	c.2262G>A	p.Leu754=	het	0.006561	rs56341011	Polymorphismus
chr10:123298158	FGFR2	ENST00000358 487.9	c.696A>G	p.Val232=	hom	0.7801	rs1047100	Polymorphismus

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr10:123243197	FGFR2	ENST00000358 487.9	c.2301+15C>T	-	het	0.5474	rs2278202	Polymorphismus
chr4:1807894	FGFR3	ENST00000440 486.6	c.1953G>A	p.Thr651=	hom	0.9865	rs7688609	Polymorphismus
chr7:42088232	GLI3	ENST00000395 925.7	c.537C>T	p.His179=	het	0.07009	rs3898405	Polymorphismus
chr7:42088222	GLI3	ENST00000395 925.7	c.547A>G	p.Thr183Ala	hom	0.5561	rs846266	Polymorphismus
chr7:42079765	GLI3	ENST00000395 925.7	c.900C>T	p.Ser300=	het	0.07166	rs35961850	Polymorphismus
chr7:42064852	GLI3	ENST00000395 925.7	c.1356+11G>C	-	hom	0.9750	rs846273	Polymorphismus
chr3:129196984	IFT122	ENST00000296 266.7	c.1426C>T	p.Arg476Trp	het	0.005279	rs61744639	Polymorphismus
chr14:76543004	IFT43	ENST00000238 628.10	c.280G>A	p.Asp94Asn	het	0.2577	rs17783366	Polymorphismus
chr2:g.170218847	LRP2	ENST00000263 816.7	c.63G>C	p.Ala21=	hom	0.9965	rs1559014	Polymorphismus
chr2:g.170218816	LRP2	ENST00000263 816.7	c.79+15A>G	-	hom	0.9964	rs1559013	Polymorphismus
chr2:g.170175334	LRP2	ENST00000263 816.7	c.248A>G	p.Asn83Ser	hom	0.2789	rs2229263	Polymorphismus
[chr2:g.17015067	LRP2	ENST00000263 816.7	c.639C>T	p.Asp213=	het	0.3226	rs2229266	Polymorphismus
chr2:g.170129528	LRP2	ENST00000263 816.7	c.2025C>T	p.Val675=	hom	0.6276	rs830994	Polymorphismus
chr2:g.170063471	LRP2	ENST00000263 816.7	c.6759T>C	p.Asp2253=	het	0.03814	rs35114151	Polymorphismus
chr2:g.170032989	LRP2	ENST00000263 816.7	c.10503G>A	p.Gln3501=	het	0.4768	rs2229265	Polymorphismus
chr2:g.170010985	LRP2	ENST00000263 816.7	c.12280A>G	p.Lys4094Glu	hom	0.7637	rs2075252	Polymorphismus

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr2:g.170009481	LRP2	ENST00000263 816.7	c.12296-7T>A	-	het	0.001019	rs200755164	Polymorphismus
chr2:g.170003432	LRP2	ENST00000263 816.7	c.12628A>C	p.Ile4210Leu	hom	0.7113	rs4667591	Polymorphismus
chr2:g.169997051	LRP2	ENST00000263 816.7	c.13113C>T	p.Ile4371=	het	0.6821	rs990626	Polymorphismus
chr19:g.42848764	MEGF8	ENST00000334 370.8	c.1933+27A>G	-	het	0.7415	rs874002	Polymorphismus
chr7:g.75614082	POR	ENST00000461 988.5	c.1067-13C>G	-	hom	0.9052	rs4732516	Polymorphismus
chr7:g.75614953	POR	ENST00000461 988.5	c.1455T>C	p.Ala485=	hom	0.9159	rs2228104	Polymorphismus
chr7:g.75615287	POR	ENST00000461 988.5	c.1716G>A	p.Ser572=	hom	0.2806	rs1057870	Polymorphismus
chr6:g.57055354	RAB23	ENST00000317 483.4	c.619G>A	p.Gly207Ser	het	0.1013	rs1040461	Polymorphismus
chr8:g.145742879	RECQL4	ENST00000428 558.2	c.132A>G	p.Glu44=	het	0.5368	rs2306386	Polymorphismus
chr8:g.145742514	RECQL4	ENST00000428 558.2	c.274T>C	p.Ser92Pro	hom	0.9711	rs2721190	Polymorphismus
chr8:g.145742479	RECQL4	ENST00000428 558.2	c.309G>A	p.Pro103=	het	0.006720	rs4251688	Polymorphismus
chr8:g.145741765	RECQL4	ENST00000428 558.2	c.738C>T	p.Ser246=	het	0.4354	rs4244613	Polymorphismus
chr8:g.145741702	RECQL4	ENST00000428 558.2	c.801G>C	p.Glu267Asp	het	0.4354	rs4244612	Polymorphismus
chr8:g.145741130	RECQL4	ENST00000428 558.2	c.1258+18G>A	-	het	0.4657	rs4251689	Polymorphismus
chr8:g.145739924	RECQL4	ENST00000428 558.2	c.1621-15C>T	-	het	0.4657	rs4244611	Polymorphismus
chr8:g.145737816	RECQL4	ENST00000428 558.2	c.3014G>A	p.Arg1005Gln	het	0.4564	rs4251691	Polymorphismus

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr8:g.145737636	RECQL4	ENST00000428 558.2	c.3127T>C	p.Leu1043=	hom	0.9712	rs4925828	Polymorphismus
chr8:g.145737514	RECQL4	ENST00000428 558.2	c.3236+13C>T	-	het	0.4808	rs4244610	Polymorphismus
chr8:g.145737286	RECQL4	ENST00000428 558.2	c.3393+8C>T	-	het	0.4652	rs756627	Polymorphismus
chr4:g.119745768	SEC24D	ENST00000379 735.5	c.248+7T>C	-	het	0.004359	rs139956480	Polymorphismus
chr4:g.119736598	SEC24D	ENST00000379 735.5	c.673+8G>A	-	hom	0.8737	rs6843524	Polymorphismus
chr4:g.119674051 _119674	SEC24D	ENST00000379 735.5	c.1425-9dupT	-	het	0.00002255	rs71595318	Polymorphismus
chr7:g.128845223	SMO	ENST00000249 373.7	c.717C>T	p.Ala239=	het	0.004944	rs111482521	Polymorphismus
chr7:g.128846328	SMO	ENST00000249 373.7	c.1164G>C	p.Gly388=	hom	0.7976	rs2228617	Polymorphismus
chr4:g.39207318	WDR19	ENST00000399 820.7	c.852A>G	p.Ser284=	het	0.1533	rs17584431	Polymorphismus
chr4:g.39216221	WDR19	ENST00000399 820.7	c.891C>T	p.Cys297=	het	0.2864	rs2167494	Polymorphismus
chr4:g.39259190	WDR19	ENST00000399 820.7	c.3183+16A>G	-	het	0.3134	rs11096987	Polymorphismus
chr2:g.20133221	WDR35	ENST00000345 530.7	c.2632G>A	p.Ala878Thr	het	0.05293	rs2293669	Polymorphismus
chr2:g.20131184	WDR35	ENST00000345 530.7	c.2857-14G>T	-	hom	0.9878	rs1191779	Polymorphismus
chr2:g.20131079	WDR35	ENST00000345 530.7	c.2948A>G	p.Glu983Gly	het	0.3343	rs1191778	Polymorphismus
chr3:g.147121751	ZIC4	ENST00000525 172.2	c.135G>A	p.Lys45=	het	0.1724	rs6766244	Polymorphismus

Tabelle 35: Patient Gö224, Sequenzvarianten.

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr19:g.8669931	ADAMTS10	ENST00000597 188.5	c.401C>G	p.Thr134Ser	hom	0.7910	rs7255721	Polymorphismus
chr19:g.8654106	ADAMTS10	ENST00000597 188.5	c.2158+20C>T	-	het	0.09851	rs73501572	Polymorphismus
chr19:g.8645786	ADAMTS10	ENST00000597 188.5	c.3303T>G	p.His1101Gln	hom	0.000004163	rs7252299	Polymorphismus
chr11:g.44331544	ALX4	ENST00000329 255.3	c.69G>C	p.Pro23=	het	0.000004451	rs115968657	Polymorphismus
chr11:g.44331509	ALX4	ENST00000329 255.3	c.104G>C	p.Arg35Thr	het	0.4962	rs3824915	Polymorphismus
chr11:g.44297054	ALX4	ENST00000329 255.3	c.621A>G	p.Ser207=	hom	0.000003977	rs10769028	Polymorphismus
chr11:g.44289183	ALX4	ENST00000329 255.3	c.778-11G>A	-	het	0.08051	rs75147697	Polymorphismus
chr11:g.44289071	ALX4	ENST00000329 255.3	c.879C>T	p.Leu293=	het	0.1090	rs12419361	Polymorphismus
chr3:g.111260975	CD96	ENST00000283 285.9	c121C>T	-	het	0.5243	rs2276873	Polymorphismus
chr3:g.111356083	CD96	ENST00000283 285.9	c.1410G>C	p.Pro470=	hom	0.00001061	rs1533270	Polymorphismus
chr10:g.12329815	FGFR2	ENST00000358 487.9	c.696A>G	p.Val232=	hom	0.7801	rs1047100	Polymorphismus
chr10:g.12324764	FGFR2	ENST00000358 487.9	c.1864-17T>G	-	het	0.01937	rs3135802	Polymorphismus
chr10:g.12324319	FGFR2	ENST00000358 487.9	c.2301+15C>T	-	het	0.5474	rs2278202	Polymorphismus
chr4:g.1807894	FGFR3	ENST00000440 486.6	c.1953G>A	p.Thr651=	hom	0.9865	rs7688609	Polymorphismus

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr7:g.42212180	GLI3	ENST00000395 925.7	c.230G>A	p.Gly77Glu	het	0.1110	rs2286293	Polymorphismus
chr7:g.42088222	GLI3	ENST00000395 925.7	c.547A>G	p.Thr183Ala	hom	0.5561	rs846266	Polymorphismus
chr7:g.42064852	GLI3	ENST00000395 925.7	c.1356+11G>C	-	het	0.9750	rs846273	Polymorphismus
chr7:g.42005678	GLI3	ENST00000395 925.7	c.2993C>T	p.Pro998Leu	het	0.4084	rs929387	Polymorphismus
chr2:g.170218847	LRP2	ENST00000263 816.7	c.63G>C	p.Ala21=	hom	0.9965	rs1559014	Polymorphismus
chr2:g.170218816	LRP2	ENST00000263 816.7	c.79+15A>G	-	hom	0.9964	rs1559013	Polymorphismus
chr2:g.170150671	LRP2	ENST00000263 816.7	c.639C>T	p.Asp213=	het	0.3226	rs2229266	Polymorphismus
chr2:g.170129528	LRP2	ENST00000263 816.7	c.2025C>T	p.Val675=	het	0.6276	rs830994	Polymorphismus
chr2:g.170053505	LRP2	ENST00000263 816.7	c.8614G>A	p.Ala2872Thr	het	0.2674	rs2228171	Polymorphismus
chr2:g.170032989	LRP2	ENST00000263 816.7	c.10503G>A	p.Gln3501=	het	0.4768	rs2229265	Polymorphismus
chr2:g.170010985	LRP2	ENST00000263 816.7	c.12280A>G	p.Lys4094Glu	het	0.7637	rs2075252	Polymorphismus
chr2:g.170003432 (hg19)]	LRP2	ENST00000263 816.7	c.12628A>C	p.Ile4210Leu	het	0.7113	rs4667591	Polymorphismus
chr2:g.169997051	LRP2	ENST00000263 816.7	c.13113C>T	p.Ile4371=	het	0.6821	rs990626	Polymorphismus
chr19:g.42848764	MEGF8	ENST00000334 370.8	c.1933+27A>G	-	het	0.7415	rs874002	Polymorphismus
chr19:g.42859917	MEGF8	ENST00000334 370.8	c.3951C>T	p.Leu1317=	het	0.0007405	rs34225188	Polymorphismus
chr19:g.42879810	MEGF8	ENST00000334 370.8	c.7220G>A	p.Arg2407His	het	0.00001236	rs45623135	Polymorphismus

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr7:g.75609677	POR	ENST00000461 988.5	c.387A>G	p.Pro129=	het	0.2687	rs1135612	Polymorphismus
chr7:g.75614082	POR	ENST00000461 988.5	c.1067-13C>G	-	hom	0.9052	rs4732516	Polymorphismus
chr7:g.75614288	POR	ENST00000461 988.5	c.1248+12C>T	-	het	0.3066	rs2286822	Polymorphismus
chr7:g.75614296	POR	ENST00000461 988.5	c.1248+20G>A	-	het	0.3031	rs2286823	Polymorphismus
chr7:g.75614953	POR	ENST00000461 988.5	c.1455T>C	p.Ala485=	hom	0.9159	rs2228104	Polymorphismus
chr7:g.75615006	POR	ENST00000461 988.5	c.1508C>T	p.Ala503Val	het	0.3019	rs1057868	Polymorphismus
chr8:g.145742879	RECQL4	ENST00000428 558.2	c.132A>G	p.Glu44=	het	0.5368	rs2306386	Polymorphismus
chr8:g.145742514	RECQL4	ENST00000428 558.2	c.274T>C	p.Ser92Pro	hom	0.9711	rs2721190	Polymorphismus
chr8:g.145741765	RECQL4	ENST00000428 558.2	c.738C>T	p.Ser246=	het	0.4354	rs4244613	Polymorphismus
chr8:g.145741702	RECQL4	ENST00000428 558.2	c.801G>C	p.Glu267Asp	het	0.4354	rs4244612	Polymorphismus
chr8:g.145741130	RECQL4	ENST00000428 558.2	c.1258+18G>A	-	het	0.4657	rs4251689	Polymorphismus
chr8:g.145739924	RECQL4	ENST00000428 558.2	c.1621-15C>T	-	het	0.4657	rs4244611	Polymorphismus
chr8:g.145737816	RECQL4	ENST00000428 558.2	c.3014G>A	p.Arg1005Gln	het	0.4564	rs4251691	Polymorphismus
chr8:g.145737636	RECQL4	ENST00000428 558.2	c.3127T>C	p.Leu1043=	hom	0.9712	rs4925828	Polymorphismus
chr8:g.145737514	RECQL4	ENST00000428 558.2	c.3236+13C>T	-	het	0.4808	rs4244610	Polymorphismus
chr8:g.145737286	RECQL4	ENST00000428 558.2	c.3393+8C>T	-	het	0.4652	rs756627	Polymorphismus

Genomische Lokalisation (hg19)	Gen	Transkript	HGVS cDNA	HGVS Protein	Zygotie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	rs Nummer	Einschätzung
chr4:g.119736598	SEC24D	ENST00000379 735.5	c.673+8G>A	-	hom	0.8737	rs6843524	Polymorphismus
chr4:g.119674051 _119674052	SEC24D	ENST00000379 735.5	c.1425-9dupT	-	het	0.00002255	rs71595318	Polymorphismus
chr7:g.128846328	SMO	ENST00000249 373.7	c.1164G>C	p.Gly388=	het	0.7976	rs2228617	Polymorphismus
chr4:g.39207318	WDR19	ENST00000399 820.7	c.852A>G	p.Ser284=	hom	0.1533	rs17584431	Polymorphismus
chr4:g.39216221	WDR19	ENST00000399 820.7	c.891C>T	p.Cys297=	hom	0.2864	rs2167494	Polymorphismus
chr4:g.39259190	WDR19	ENST00000399 820.7	c.3183+16A>G	-	hom	0.3134	rs11096987	Polymorphismus
chr2:g.20135283	WDR35	ENST00000345 530.7	c.2529A>G	p.Glu843=	het	0.00001197	rs6741091	Polymorphismus
chr2:g.20131184	WDR35	ENST00000345 530.7	c.2857-14G>T	-	hom	0.9878	rs1191779	Polymorphismus

Die bioinformatische Analyse sowie persönliche Einschätzung und Interpretation dieser Varianten unter Einbeziehung ihrer populationsgenetischen Frequenz sowie des prädizierten, funktionellen Effekts der Sequenzveränderung ergab, dass keine der ermittelten Sequenzveränderungen als pathogen oder möglicherweise pathogen einzuschätzen ist. Alle ermittelten Sequenzveränderungen sind sehr häufig in der nicht betroffenen Allgemeinbevölkerung zu finden (Allelfrequenzen siehe Tabelle 34 und Tabelle 35) oder/und haben keinen funktionellen Effekt auf das kodierte Protein. Mittels der durchgeführten Multigen-Panel-Analyse konnte also keine ursächliche, genetische Veränderung in den Patienten K4081 und Gö224 in den 29 untersuchten Genen ermittelt werden.

3.1.3 Genetische Untersuchung eines Patienten mit der Verdachtsdiagnose eines Carpenter-Syndroms

Im Rahmen der diagnostischen Auswertung des CRANIO-QXT-Multigen-Panels eines Patienten mit der Verdachtsdiagnose einer Kraniosynostose wurden zwei heterozygote Varianten im *MEGF8*-Gen identifiziert (vgl. dazu Tabelle 36). Ursächliche Varianten in diesem Gen wurden zuvor bereits in einem autosomal rezessiven Vererbungsmuster als ursächlich für das Carpenter-Syndrom, Typ2 (CRTP2, OMIM 614976) beschrieben (Twigg et al. 2012).

Tabelle 36: Übersicht der im Rahmen der diagnostischen Analyse bei Patient Gö332 identifizierten Varianten in *MEGF8*.

Geno- mische Lokali- sation (hg19)	Gen	Tran- skript	HGVS cDNA	HGVS Protein	Zygo- tie	Allel- frequenz in gnomAD ^a [Anzahl Ho- mozygote]	Einschät- zung
Chr19:4 2863317	MEGF8	ENST000 00334370 .8	c.5210C>A	p.Ser1737 *	het	0.00003820	pathogen
Chr19:4 2853636 _428536 39	MEGF8	ENST000 00334370 .8	c.2098- 15_2098- 12delT- CAC	unklar	het	-	Variante unklarer Signifikanz (VUS)

Während es sich bei der Variante c.5210C>A um eine *nonsense*-Veränderung handelt, die zur Bildung eines Stopp-Codons und einem verfrühten Abbruch der Proteinbiosynthese des MEGF8-Proteins führt, ist der Einfluss der intronischen Deletion c.2098-15_2098-12delTCAC

auf das MEGF8-Protein unklar. Im Rahmen dieser Arbeit sollte daher der Effekt dieser intronischen Veränderung hinsichtlich eines möglichen Einflusses auf das korrekte Spleißen der *MEGF8*-prä-mRNA und der Generierung reifer *MEGF8*-mRNA untersucht werden.

Dazu wurden zunächst beide Veränderungen in *MEGF8* mittels PCR und nachfolgender Sanger-Sequenzierung auf genomischer Ebene bestätigt (vgl. Abbildung 12).

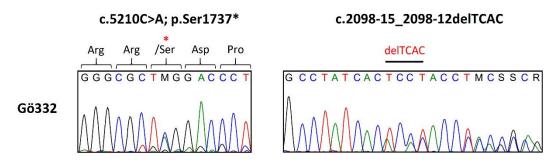


Abbildung 2: Bestätigung der diagnostisch identifizierten Veränderungen in *MEGF8* mittels PCR und Sanger-Sequenzierung an genomischer DNA des Patienten Gö332.

Mittels PCR und Sanger-Sequenzierung konnten beide Veränderungen, die zuvor mittels Multigen-Panel-Analyse identifiziert wurden, auf genomischer Ebene im heterozygoten Zustand nachgewiesen werden. Um einen möglichen Einfluss der identifizierten c.2098-15_2098-12del-TCAC Variante auf die angrenzende 3′-Akzeptor-Spleißstelle im Intron 14 zu überprüfen, wurde nachfolgend die Bildung regulär gespleißter Transkripte untersucht. Hierzu wurde RNA, die aus einer PaxGene-Blutprobe des Patienten Gö332 isoliert wurde, zunächst in cDNA umgeschrieben und nachfolgend als Template für eine PCR eingesetzt. In einem ersten Schritt wurde zunächst das Vorhandensein von Transkripten aus beiden Allelen untersucht. Dazu wurde die heterozygote Veränderung c.5210C>A als Marker verwendet. Es konnte gezeigt werden, dass diese Variante auf cDNA-Ebene im heterozygoten Zustand vorliegt, dass also beide *MEGF8*-Allele exprimiert werden (Abbildung 13).

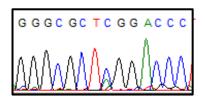


Abbildung 13: Nachweis der heterozygoten Sequenzvariante c.5210C>A in *MEGF8* auf cDNA Ebene.

In einem zweiten Schritt wurde mittels PCR auf cDNA-Ebene untersucht, ob die identifizierte c.2098-15_2098-12delTCAC Variante die 3´-Donorspleißstelle in Intron 14 des *MEGF8*-Gens beeinflusst und zu einem irregulär gespleißten *MEGF8*-mRNA-Transkript führt. Der Nachweis erfolgte unter Verwendung verschiedener *MEGF8*-spezifischer Primer, die zur Amplifikation des Bereichs zwischen Exon 11 und Exon 15 führen (vgl. Tabelle 36). Die Auftrennung der entstandenen PCR-Produkte mittels Agarosegelelektrophorese ergab für alle unterschiedlichen PCR-Ansätze nur jeweils ein Produkt, welches der berechneten Größe entsprach. Um auszuschließen, dass die identifizierte c.2098-15_2098-12delTCAC Variante ein alternatives Spleißen induziert, wurden diese PCR-Produkte zur Überprüfung der Integrität des Übergangs zwischen den Exons 13 und 14 nachfolgend sequenziert (Abbildung 14). Die Sequenzanalyse zeigte keine Auffälligkeiten in Bereich des Übergangs zwischen dem Exon 13 und 14 des *MEGF8*-Transkripts.

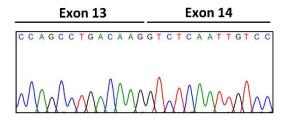


Abbildung 14: Nachweis des korrekten Übergangs zwischen Exon 13 und 14 in *MEGF8* auf cDNA-Ebene.

Mittels der durchgeführten Analysen wurden keine Hinweise auf alternatives Spleißen gefunden.

Zusammenfassend konnte mit Hilfe der hier verwendeten Methodik keine Beeinträchtigung der 3'-Akzeptorspleißstelle in Intron 13 des *MEGF8*-Gens durch die identifizierte Sequenzvariante c.2098-15_2098-12delTCAC festgestellt werden. Es kann allerdings zum jetzigen Zeitpunkt nicht ausgeschlossen werden, dass aufgrund technischer Limitierung der Methoden ein spezifischer Splice-Effekt nicht nachgewiesen werden konnte.

3.2 Mutationsanalyse in Familien mit isolierten Lippen-Kiefer-Gaumenspalten mittels Exomsequenzierung

Um molekulargenetische Ursachen isolierter Lippen-Kiefer-Gaumenspalten genauer aufzuklären und neue, kausale genetische Faktoren für diese Erkrankung zu identifizieren, wurden im Rahmen dieser Dissertation Exomanalysen an insgesamt elf betroffenen und nicht betroffenen

Individuen aus fünf Familien durchgeführt. Dabei handelt es sich um Familien, in denen eine familiäre Häufung der isolierten Lippen-Kiefer-Gaumenspalten zu beobachten war. Syndromale Erkrankungen, die mit einer Lippen-Kiefer-Gaumenspalte einhergehen, wurden vorab klinisch ausgeschlossen. Die Familien wurden in Zusammenarbeit mit Herrn Prof. Dr. Dr. Schliephake (Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsmedizin Göttingen), Dr. Abhilash Pasare Ravindranath (Department of Oral and Maxillofacial Pathology, Oxford Dental College, Bangalore, Indien), Dr. Martin Rachwalski (Department of Maxillofacial and Plastic Surgery, National Reference Center for Cleft Lip and Palate, Hopital Universitaire Necker-Enfants Malades, Paris, Frankreich) sowie Dr. Dr. Jürgen Lichtensteiner (MKG-Chirurgie, Uniklinik Kiel) rekrutiert und klinisch charakterisiert. Die Exomsequenzierungen wurden in Zusammenarbeit mit dem CCG (Universität zu Köln) durchgeführt und die generierten Daten mittels der Analysesoftware Varbank untersucht.

3.2.1 Familie LKG8

In dieser aus Indien stammenden Familie ist bei sechs betroffenen Individuen die klinische Verdachtsdiagnose einer isolierte Lippen-Kiefer-Gaumenspalte gestellt worden. Die Erkrankung wird dabei über zwei Generationen autosomal dominant vererbt (vgl. Abbildung 4 und Abbildung 15).

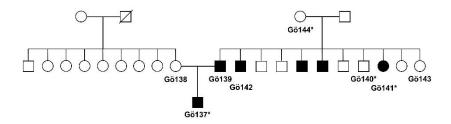


Abbildung 15: Stammbaum der Familie LKG8 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Insgesamt lagen DNA-Proben von vier betroffenen sowie vier nicht betroffenen Familienmitgliedern vor, von denen jeweils zwei zur Exomsequenzierung verwendet wurden. Aus genomischer DNA der Patientenproben wurden dabei die Exons und angrenzenden Exon-Intron-Übergänge mittels des Agilent SureSelect Human All Exon V6-Kits angereichert und auf einem Illumina HiSeq4000-Sequenziergerät analysiert. Insgesamt wurden dabei pro Probe zwischen

125 Mio und 162 Mio *reads* generiert und eine Abdeckung von >10x an über 96,4 % der Zielsequenzen erzielt.

Im Zuge der initialen Analyse der Exomsequenzierungen wurden zum Ausschluss falsch positiver Ergebnisse zunächst Varianten aussortiert, für die eine niedrige Qualität vorlag (Qualitäts-Score <10). Nachfolgend wurden Varianten, die in den Datenbanken der ExAC und gnomAD browser, dbSNP sowie der *inhouse* Datenbank des CCGs mit einer Frequenz von >0,5 % annotiert waren, außer Betracht gelassen. Diese Filterung diente dem Ausschluss von häufigen, in der gesunden Allgemeinbevölkerung vorkommenden Varianten. Ausgehend von einem vollständig penetranten, autosomal dominanten Vererbungsmuster wurden die generierten Exomsequenzierungsdaten der vier Individuen anschließend nach heterozygoten Varianten gefiltert, die in beiden betroffen Individuen vorlagen, in den beiden nicht betroffenen Individuen dieser Familien aber abwesend waren. Diese Veränderungen wurden nachfolgend hinsichtlich ihres Effekts auf das kodierte Protein hin untersucht und Varianten, die keinen funktionellen Einfluss auf die kodierte Proteinsequenz hatten, wurden herausgefiltert. Insgesamt führte dies zur Identifizierung von 64 Varianten in 59 Genen (Tabelle 37).

Tabelle 37: Filterungsergebnis nach heterozygoten Varianten bei betroffenen Individuen aus Familie LKG8.

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	167905	167905				ENSG000001	ENST000002	ENSP000002		NM_015415			rs150529	0,00
1	024	024	1	Т	C	43158	71373	71373	BRP44	.3	c.56A>G	p.K19R	062	14
	228476	228476				ENSG000000	ENST000002	ENSP000002		NM_020161				
2	172	172	1	C	G	42304	64387	64387	C2orf83	.3	c.391G>C	p.E131Q		
	164750	164750				ENSG000000	ENST000002	ENSP000002		NM_001041				
3	459	459	1	Т	C	90402	64382	64382	SI	.3	c.2587A>G	p.T863A		
	165547	165547				ENSG000001	ENST000002	ENSP000002		NM_000055				
3	360	360	1	C	T	14200	64381	64381	ВСНЕ	.2	c.1462G>A	p.E488K		
	639866	639866				ENSG000001	ENST000003	ENSP000003		NM_001164			rs144658	0,00
5	09	09	1	C	A	45642	89074	73726	FAM159B	442.1	c.159C>A	p.F53L	157	21
	724695	724695				ENSG000001	ENST000002	ENSP000002		NM_153217				0,00
5	93	93	1	G	A	64325	96776	96776	TMEM174	.2	c.523G>A	p.A175T		01
	754280	754280				ENSG000001	ENST000005	ENSP000004		NM_014979				
5	44	44	1	G	A	22012	02798	23541	SV2C	.1	c.469G>A	p.V157I		
	475636	475636				ENSG000001	ENST000003	ENSP000003		NM_012120			rs138727	0,00
6	08	08	1	A	G	98087	59314	52264	CD2AP	.2	c.1120A>G	p.T374A	736	37
	526976	526976		(A)		ENSG000001	ENST000002	ENSP000002		NM_153699	c.532_533de	p.F178S		
6	70	71	2	2	A	82793	84562	84562	GSTA5	.1	l(T)2insT	fs*4		
	564941	564941				ENSG000001	ENST000002	ENSP000002		NM_015548				
6	41	41	1	Т	A	51914	44364	44364	DST	.4	c.2771A>T	p.Y924F		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	904813	904813				ENSG000001	ENST000003	ENSP000003		NM_014611		p.Q706		
6	08	08	1	G	Т	12159	69393	58400	MDN1	.1	c.2116C>A	K		
	101923	101923				ENSG000002	ENST000002	ENSP000002		NM_001913				
7	380	380	1	C	A	57923	92538	92538	CUX1	.3	c.1732C>A	p.R578S		
	107749	107749				ENSG000000	ENST000002	ENSP000002		NM_007356			rs149874	0,00
7	668	668	1	C	G	91128	05386	05386	LAMB4	.2	c.350G>C	p.R117T	137	44
	114619	114619				ENSG000001	ENST000003	ENSP000003		NM_001166		p.K147		
7	784	784	1	G	C	35272	93486	77126	MDFIC	345.1	c.441G>C	N		
	131194	131194				ENSG000001	ENST000003	ENSP000003		NM_005397			rs141183	0,00
7	291	291	1	T	C	28567	22985	19782	PODXL	.3	c.760A>G	p.S254G	338	01
	134617	134617				ENSG000001	ENST000004	ENSP000003		NM_033140			rs753587	0,00
7	927	927	1	G	A	22786	24922	93621	CALD1	.3	c.389G>A	p.R130K	73	43
	140301	140301				ENSG000001	ENST000004	ENSP000004		NM_015689				
7	308	308	1	G	C	46966	96613	19654	DENND2A	.3	c.890C>G	p.P297R		
	140302	140302				ENSG000001	ENST000004	ENSP000004		NM_015689				
7	144	144	1	G	С	46966	96613	19654	DENND2A	.3	c.54C>G	p.S18R		
	145577	145577				ENSG000002	ENST000005	ENSP000004		NM_001252			rs145236	0,00
8	618	618	1	G	A	14597	26263	35362		404.1	c.343C>T	p.R115*	969	27
	145641	145641				ENSG000001	ENST000002	ENSP000002		NM_017767			rs187080	0,00
8	411	411	1	G	A	47804	76833	76833	SLC39A4	.2	c.182C>T	p.P61L	747	17
	544368	544368				ENSG000001	ENST000003	ENSP000003		NM_001004				
11	9	9	1	C	T	67360	00778	00778	OR51Q1	757.2	c.259C>T	p.L87F		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	171566	171566				ENSG000000	ENST000002	ENSP000002		NM_002645				
11	80	80	1	G	C	11405	65970	65970	PIK3C2A	.2	c.1875C>G	p.D625E		
	625592	625592				ENSG000001	ENST000003	ENSP000003		NM_001080				
11	70	70	1	G	A	68569	07366	03987	TMEM223	501.2	c.197C>T	p.A66V		
	640294	640294				ENSG000001	ENST000002	ENSP000002		NM_000932		p.Q662		
11	96	96	1	G	C	49782	79230	79230	PLCB3	.2	c.1986G>C	Н		
	640294	640294				ENSG000001	ENST000005	ENSP000004		NM_000932		p.Q662		
11	96	96	1	G	C	49782	40288	43631	PLCB3	.2	c.1986G>C	Н		
	661918	661918				ENSG000001	ENST000003	ENSP000003		NM_178864		p.D499		
11	57	57	1	A	G	74576	11034	11196	NPAS4	.3	c.1496A>G	G		
	663338	663338				ENSG000001	ENST000003	ENSP000003		NM_003793		p.R205		
11	70	70	1	G	A	74080	10325	10832	CTSF	.3	c.613C>T	W		
	687733	687733				ENSG000001	ENST000004	ENSP000004		NM_145015				
11	59	59	1	T	C	72935	41623	03660	MRGPRF	.4	c.419A>G	p.E140G		
	719066	719066				ENSG000001	ENST000003	ENSP000003		NM_016729		p.V132		
11	92	92	1	G	A	10195	93681	77286	FOLR1	.2	c.394G>A	M		
	107914	107914				ENSG000001	ENST000002	ENSP000002		NM_001018		p.N397		
12	317	317	1	A	G	51136	80758	80758	BTBD11	072.1	c.1189A>G	D		
	207633	207633				ENSG000001	ENST000003	ENSP000003		NM_004004			rs111033	0,00
13	41	41	1	C	Т	65474	82848	72299	GJB2	.5	c.380G>A	p.R127H	196	23
	889002	889002				ENSG000001	ENST000003	ENSP000003		NM_015421				
16	9	9	1	C	Т	84857	33050	31640	TMEM186	.3	c.422G>A	p.R141Q		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	200437	200437				ENSG000001	ENST000005	ENSP000004		NM 001002		A		
16	34	34	1	C	T	80269	70682	58791	GPR139	911.2	c.385G>A	p.A129T		
	204352	204352				ENSG000001	ENST000003	ENSP000003		NM_017888				
16	61	61	1	C	T	83549	31849	27916	ACSM5	.2	c.791C>T	p.S264F		
	207814	207814				ENSG000000	ENST000002	ENSP000002		NM_005622				
16	89	89	1	Т	C	05187	89416	89416	ACSM3	.3	c.133T>C	p.S45P		
	207889	207889				ENSG000000	ENST000002	ENSP000002		NM_005622				
16	05	05	1	G	A	05187	89416	89416	ACSM3	.3	c.638+3G>A			
	208099	208099				ENSG000001	ENST000003	ENSP000003		NM_001142				
16	66	66	1	Т	C	96678	57967	50651	ERI2	725.1	c.1156A>G	p.T386A		
	208141	208141				ENSG000001	ENST000003	ENSP000003		NM_080663				
16	56	56	1	G	C	96678	00005	00005	ERI2	.2	c.265C>G	p.L89V		
	209598	209598				ENSG000001	ENST000002	ENSP000002		NM_017539		p.Y3773		
16	30	30	1	Т	C	58486	61383	61383	DNAH3	.1	c.11318A>G	C		
	209756	209756				ENSG000001	ENST000002	ENSP000002		NM_017539		p.R3175		
16	82	82	1	C	T	58486	61383	61383	DNAH3	.1	c.9524G>A	Н		
	209762	209762				ENSG000001	ENST000002	ENSP000002		NM_017539		p.V2999		
16	11	11	1	C	T	58486	61383	61383	DNAH3	.1	c.8995G>A	M		
											c.1054_1057			
	229268	229268		(TA		ENSG000001	ENST000002	ENSP000002		NM_006043	del(TA)2in-	p.Y352*		
16	33	36	4)2	TA	22254	61374	61374	HS3ST2	.1	sTA	fs		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	481747	481747				ENSG000001	ENST000003	ENSP000003		NM_033226			rs141807	0,00
16	65	65	1	C	A	40798	11303	11030	ABCC12	.2	c.490G>T	p.G164*	269	14
	507445	507445				ENSG000001	ENST000003	ENSP000003		NM_022162		p.Y252		
16	76	76	1	T	C	67207	00589	00589	NOD2	.1	c.754T>C	Н		
	579939	579939				ENSG000000	ENST000003	ENSP000003		NM_001135				
16	68	68	1	C	Т	70729	11183	11670	CNGB1	639.1	c.585G>A			
	668041	668041				ENSG000002	ENST000004	ENSP000004		NM_001136				0,00
16	24	24	1	C	Т	49961	33154	63762	CCDC79	505.1	c.1361G>A	p.R454Q		02
	706993	706993				ENSG000001	ENST000003	ENSP000003		NM_138383	c.1128+4A>			
16	65	65	1	T	G	32613	38779	41171	MTSS1L	.2	С			
	812499	812499				ENSG000001	ENST000003	ENSP000003		NM_001076			rs117142	0,00
16	19	19	1	C	Т	66473	37114	37397	PKD1L2	780.1	c.394G>A	p.G132R	104	29
	339049	339049				ENSG000001	ENST000002	ENSP000002		NM_000286			rs147530	0,00
17	39	39	1	T	A	08733	25873	25873	PEX12	.2	c.102A>T	p.R34S	802	49
	481906	481906				ENSG000001	ENST000004	ENSP000003		NM_002747				
18	38	38	1	G	A	41639	00384	83234	MAPK4	.3	c.310G>A	p.V104I		
	517959	517959				ENSG000001	ENST000005	ENSP000004		NM_007195				0,00
18	90	90	1	C	G	01751	79534	62664	POLI	.2	c.74C>G	p.A25G		06
	775416	775416				ENSG000001	ENST000003	ENSP000003		NM_001207			rs145322	0,00
19	2	2	1	C	Т	04921	60067	53178	FCER2	019.2	c.880G>A	p.G294S	667	02
	836742	836742				ENSG000001	ENST000005	ENSP000004		NM_001165		-	rs146190	0,00
19	4	4	1	G	A	67775	37716	37697	CD320	895.1	c.646C>T	p.R216C	802	04

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	139197	139197				ENSG000001	ENST000002	ENSP000002		NM_023072			rs149065	0,00
19	61	61	1	A	G	32003	54323	54323	ZSWIM4	.2	c.824A>G	p.Y275C	965	05
	140231	140231				ENSG000001	ENST000003	ENSP000003		NM_017721			rs184172	0,00
19	90	90	1	C	T	32024	18003	13601	CC2D1A	.4	c.251C>T	p.P84L	956	09
	187174	187174				ENSG000000	ENST000003	ENSP000003		NM_004750				
19	17	17	1	G	T	06016	92386	76188	CRLF1	.4	c.50C>A	p.P17Q		
	243092	243092				ENSG000002	ENST000003	ENSP000003		NM_203282				
19	24	24	1	G	A	13096	57002	49494	ZNF254	.2	c.422G>A	p.G141E		
	388827	388827				ENSG000001	ENST000003	ENSP000003		NM_001042				
19	52	52	1	G	A	88766	38502	45405	SPRED3	522.1	c.344G>A	p.R115Q		
	393065	393065				ENSG000001	ENST000002	ENSP000002		NM_001398		p.D284	rs587504	0,00
19	29	29	1	C	T	04823	21418	21418	ECH1	.2	c.850G>A	N	31	41
	402221	402221				ENSG000001	ENST000002	ENSP000002		NM_001828				
19	39	39	1	C	G	05205	21804	21804	CLC	.5	c.310G>C	p.V104L		
	446350	446350				ENSG000002	ENST000002	ENSP000002		NM_013362				
19	90	90	1	C	A	56294	62894	62894	ZNF225	.2	c.323C>A	p.S108*		
	462702	462702				ENSG000001	ENST000003	ENSP000003		NM_175875				
19	64	64	1	G	A	77045	17578	16842	SIX5	.4	c.953C>T	p.S318F		
	504636	504636				ENSG000001	ENST000004	ENSP000003		NM_001135	c.461-			
19	94	93	1	-	Т	61640	58019	94949	SIGLEC11	163.1	15_16insA			
	509170	509170				ENSG000000	ENST000004	ENSP000004		NM_002691			rs145473	0,00
19	23	23	1	G	A	62822	40232	06046	POLD1	.3	c.2275G>A	p.V759I	716	14

Diese Varianten wurden mittels bioinformatischer Prädiktionsprogramme in Bezug auf ihre mögliche Pathogenität und Konservierung charakterisiert und die zelluläre Funktion der kodierten Proteine bestimmt. Da die Analyse der Exomsequenzierungsdaten mittels dieser Filterstrategie nicht zur Identifizierung eines Kandidatengens und einer in Frage kommenden Sequenzveränderung führten, wurden die Filterkriterien nachfolgend modifiziert. Unter Annahme einer reduzierten Penetranz wurden in den Exomdatensätzen Varianten untersucht, die in beiden betroffenen Individuen heterozygot vorlagen, zusätzlich aber auch in einem der beiden klinisch als unauffällig beschrieben Individuen Gö140 oder Gö144 vorkamen. Insgesamt wurden mit Hilfe dieser Strategie 99 Varianten in 97 unterschiedlichen Genen identifiziert (Tabelle 38).

Tabelle 38: Filterungsergebnis nach heterozygoten Varianten bei betroffenen sowie nicht betroffenen Individuen aus Familie LKG8.

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	964909	964909				ENSG000001	ENST000003	ENSP000003		NM_001				
1	1	1	1	A	C	88807	40305	44772	TMEM201	010866.3	c.103A>C	p.I35L		
	111340	111340				ENSG000001	ENST000003	ENSP000003		NM_001	c.2105G>		rs117771	0,00
1	43	43	1	C	Т	71824	76936	66135	EXOSC10	001998.1	A	p.R702H	172	31
	111581	111581				ENSG000001	ENST000003	ENSP000003		NM_002			rs626234	0,00
1	05	05	1	C	T	71824	04457	07307	EXOSC10	685.2	c.220G>A	p.E74K	43	45
	172947	172947				ENSG000000	ENST000003	ENSP000003		NM_014	c.4951A>			
1	88	88	1	A	G	58453	75541	64691	CROCC	675.3	G	p.T1651A		
	189609	189609				ENSG000000	ENST000004	ENSP000003		NM_013				
1	40	40	1	C	T	09709	00661	83502	PAX7	945.2	c.229C>T	p.R77C		
	192096	192096				ENSG000001	ENST000002	ENSP000002		NM_170				
1	82	82	1	G	A	59423	90597	90597	ALDH4A1	726.2	c.614C>T	p.A205V		
	221555	221555				ENSG000001	ENST000003	ENSP000003		NM_005	c.12044G		rs150189	0,00
1	21	21	1	C	Т	42798	74695	63827	HSPG2	529.5	>A	p.R4015H	852	09
	244336	244336				ENSG000001	ENST000003	ENSP000003		NM_152				0,00
1	52	52	1	C	T	42661	74434	63557	МҮОМ3	372.3	c.313G>A	p.G105S		02
	265245	265245				ENSG000001	ENST000004	ENSP000003		NM_198				
1	51	51	1	A	G	88782	56354	90423	CATSPER4	137.1	c.661A>G	p.I221V		
	527031	527031				ENSG000001	ENST000003	ENSP000003		NM_007			rs413091	0,00
1	69	69	1	Т	С	57077	61625	55358	ZFYVE9	323.1	c.80T>C	p.V27A	81	34

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut- CDNA	MutProt	Var- Name	VarFreq
	528235	528235				ENSG000001	ENST000003	ENSP000003		NM_032	c.1504G>		rs763207	0,00
1	46	46	1	C	G	54222	71586	60642	CC2D1B	449.2	C	p.V502L	28	33
	554577	554577				ENSG000001	ENST000003	ENSP000003		NM_182			rs777260	0,00
1	62	62	1	C	T	43001	71268	60315	TMEM61	532.1	c.619C>T	p.R207W	87	23
	145555	145555				ENSG000001	ENST000003	ENSP000003		NM_144			rs147155	0,00
1	756	756	1	G	A	98483	55594	47802	ANKRD35	698.3	c.104G>A	p.R35H	265	11
	173934	173934				ENSG000001	ENST000003	ENSP000003		NM_172	c.1529G>			
1	064	064	1	C	Т	35870	67696	56669	RC3H1	071.2	A	p.R510Q		
	186925	186925				ENSG000001	ENST000003	ENSP000003		NM_024	c.1408A>			
1	305	305	1	A	G	16711	67466	56436	PLA2G4A	420.2	G	p.M470V		
	207644	207644				ENSG000001	ENST000003	ENSP000003		NM_001	c.1274A>			
1	133	133	1	A	Т	17322	67057	56024	CR2	006658.2	Т	p.H425L		
	208315	208315				ENSG000000	ENST000003	ENSP000003		NM_025	c.1393C>			
1	787	787	1	G	A	76356	67033	56000	PLXNA2	179.3	Т	p.H465Y		
	213414	213414				ENSG000001	ENST000003	ENSP000003		NM_001	c.1688A>		rs560608	0,00
1	543	543	1	A	G	36643	66959	55926	RPS6KC1	136138.1	G	p.N563S	94	46
	216497	216497				ENSG000000	ENST000003	ENSP000003		NM_206	c.1229del	p.E410Gfs		
1	609	609	1	Т	-	42781	07340	05941	USH2A	933.2	A	*15		
	222716	222716				ENSG000001	ENST000003	ENSP000003		NM_024				
1	944	944	1	C	A	43512	43410	42118	HHIPL2	746.3	c.909G>T	p.K303N		
	247050	247050				ENSG000001	ENST000003	ENSP000003		NM_015	c.2417C>			
1	595	595	1	G	С	53207	26225	55465	AHCTF1	446.4	G	p.S806C		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut- CDNA	MutProt	Var- Name	VarFreq
	246927	246927				ENSG000001	ENST000003	ENSP000003		NM_016	c.1010C>			
1	567	567	1	C	T	43653	66510	55467	SCCPDH	002.2	T	p.T337M		
	505307	505307				ENSG000001	ENST000003	ENSP000003		NM_199				
10	60	60	1	C	T	77354	23868	18713	C10orf71	459.3	c.170C>T	p.P57L		
	645730	645730				ENSG000001	ENST000002	ENSP000002		NM_001	c.1352G>		rs138967	
10	46	46	1	C	A	22877	42480	42480	EGR2	136178.1	T	p.G451V	272	
	706523	706523				ENSG000001	ENST000003	ENSP000003		NM_001			rs185349	0,00
10	45	45	1	G	A	65730	99165	82118	STOX1	130159.2	c.664G>A	p.D222N	094	23
	734757	734757				ENSG000002	ENST000005	ENSP000004		NM_001				
10	60	60	1	C	T	14688	45760	40187	C10orf105	168390.1	c.335G>A	p.R112Q		
	737681	737681				ENSG000001	ENST000003	ENSP000003		NM_004	c.1373A>			
10	62	62	1	A	C	22863	73115	62207	CHST3	273.4	С	p.D458A		
	490354	490354				ENSG000001	ENST000003	ENSP000003		NM_001				0,00
11	9	9	1	C	G	76900	80378	69738	OR51T1	004759.1	c.501C>G	p.D167E		01
	580994	580994				ENSG000001	ENST000003	ENSP000003		NM_001				0,00
11	7	7	1	A	G	81001	17078	22823	OR52N1	001913.1	c.100T>C	p.C34R		01
	124767	124767				ENSG000001	ENST000003	ENSP000003		NM_019				
11	622	622	1	C	Т	54133	06534	04945	ROBO4	055.5	c.70G>A	p.G24R		
	562217	562217				ENSG000001	ENST000003	ENSP000003		NM_032				0,00
12	91	91	1	G	A	35392	57606	50223	DNAJC14	364.5	c.652C>T	p.P218S		01
	592768	592768				ENSG000001	ENST000003	ENSP000003		NM_153	c.1328C>			
12	03	03	1	G	A	39263	20743	26759	LRIG3	377.4	Т	p.T443I		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	124297	124297				ENSG000001	ENST000004	ENSP000003		NM_207	c.2848G>			
12	768	768	1	G	A	97653	09039	86770	DNAH10	437.3	A	p.E950K		
	250341	250341				ENSG000001	ENST000003	ENSP000003		NM_006	c.2248G>			
13	60	60	1	C	T	02699	81989	71419	PARP4	437.3	A	p.A750T		
	392655	392655				ENSG000001	ENST000002	ENSP000002		NM_207	c.4031G>		rs143044	0,00
13	12	12	1	G	A	50893	80481	80481	FREM2	361.4	A	p.R1344H	921	18
	529520	529520				ENSG000001	ENST000002	ENSP000002		NM_018	c.2054C>			
13	51	51	1	G	T	36114	58613	58613	THSD1	676.3	A	p.T685K		
	863697	863697				ENSG000001	ENST000004	ENSP000003		NM_032				
13	81	81	1	G	A	84564	00286	83143	SLITRK6	229.2	c.863C>T	p.T288I		
	207816	207816				ENSG000001	ENST000004	ENSP000004		NM_182				
14	99	99	1	Т	C	00814	37553	09896	CCNB1IP1	852.3	c.559A>G	p.T187A		
	208471	208471				ENSG000001	ENST000002	ENSP000002		NM_007	c.5248T>			
14	44	44	1	A	G	29566	62715	62715	TEP1	110.4	C	p.C1750R		
	212158	212158				ENSG000001	ENST000003	ENSP000003		NM_006			rs116985	0,00
14	33	33	1	G	C	81562	26842	15098	EDDM3A	683.4	c.94G>C	p.E32Q	083	18
	754715	754715				ENSG000001	ENST000002	ENSP000002		NM_014				
14	06	06	1	C	T	19718	66126	66126	EIF2B2	239.3	c.500C>T	p.T167I		
	884781	884781				ENSG000001	ENST000002	ENSP000002		NM_003				
14	12	12	1	C	A	40030	67549	67549	GPR65	608.3	c.921C>A	p.F307L		
	884781	884781				ENSG000001	ENST000002	ENSP000002		NM_003				
14	32	32	1	C	Т	40030	67549	67549	GPR65	608.3	c.941C>T	p.T314I		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	578157	578157				ENSG000001	ENST000002	ENSP000002		NM_032	c.2776A>			0,00
15	47	47	1	A	Т	28849	81282	81282	CGNL1	866.4	Т	p.S926C		01
	635699	635699				ENSG000001	ENST000002	ENSP000002		NM_031			rs778342	0,00
15	01	01	1	A	G	38613	61879	61879	APH1B	301.3	c.79A>G	p.T27A	10	31
	725582	725582				ENSG000001	ENST000002	ENSP000002		NM_020				
15	74	74	1	A	G	37817	87196	87196	PARP6	214.2	c.140T>C	p.V47A		
	783699	783699				ENSG000001	ENST000003	ENSP000003		NM_144				
15	46	46	1	C	A	67202	00584	00584	TBC1D2B	572.1	c.49G>T	p.G17C		
	801913	801913				ENSG000001	ENST000004	ENSP000004		NM_001				
15	28	28	1	C	Т	80953	85386	53693	ST20	199757.1	c.185G>A	p.G62D		
	689053	689053				ENSG000000	ENST000004	ENSP000003		NM_001	c.1367G>		rs744148	0,00
18	8	8	1	G	Т	88756	19673	92660	ARHGAP28	010000.2	Т	p.R456L	91	13
	882527	882527				ENSG000001	ENST000003	ENSP000003		NM_015	c.3763C>		rs115783	0,00
18	1	1	1	C	Т	68502	59865	52927	SOGA2	210.3	Т	p.R1255C	507	17
	328457	328457				ENSG000001	ENST000003	ENSP000003		NM_014	c.1967T>			
19	03	03	1	Т	A	68813	11921	12277	ZNF507	910.4	A	p.I656N		
	348846	348846				ENSG000001	ENST000003	ENSP000003		NM_000				
19	47	47	1	G	A	05220	56487	48877	GPI	175.3	c.880G>A	p.E294K		
	354499	354499				ENSG000001	ENST000004	ENSP000003		NM_175				
19	51	51	1	C	Т	80884	04801	85099	ZNF792	872.4	c.808G>A	p.V270I		
	362782	362782				ENSG000000	ENST000003	ENSP000003		NM_052	c.2314C>			0,00
19	64	64	1	С	Т	04777	14737	20038	ARHGAP33	948.3	Т	p.R772C		01

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut- CDNA	MutProt	Var- Name	VarFreq
	432429	432429				ENSG000002	ENST000003	ENSP000003		NM_021				0,00
19	65	65	1	C	Т	21826	27495	32215	PSG3	016.3	c.341G>A	p.R114Q		01
	436892	436892				ENSG000002	ENST000003	ENSP000003		NM_002				
19	28	28	1	A	T	04941	42951	44413	PSG5	781.3	c.136T>A	p.S46T		
	443768	443768				ENSG000001	ENST000003	ENSP000003		NM_001	c.1466G>			
19	94	94	1	C	A	76222	24394	19479	ZNF404	033719.2	Т	p.G489V		
	588683	588683				ENSG000001	ENST000003	ENSP000003		NM_198			rs148776	0,00
19	98	98	1	Т	C	74586	11044	11183	ZNF497	458.2	c.604A>G	p.S202G	391	02
	653097	653097				ENSG000000	ENST000003	ENSP000003		NM_015	c.2200A>			0,00
2	65	65	1	A	G	11523	77990	67229	CEP68	147.2	G	p.M734V		05
	120219	120219				ENSG000000	ENST000000	ENSP000000		NM_002				
2	444	444	1	C	Т	80293	19103	19103	SCTR	980.2	c.769G>A	p.G257R		
	377827	377827				ENSG000001	ENST000003	ENSP000003		NM_021				
20	0	0	1	G	A	01224	40833	39170	CDC25B	872.2	c.202G>A	p.E68K		
	302844	302844				ENSG000001	ENST000003	ENSP000003		NM_030				
20	7	7	1	C	Т	25901	80325	69682	MRPS26	811.3	c.550C>T	p.R184W		
	477129	477129				ENSG000001	ENST000003	ENSP000003		NM_001	c.2703G>		rs353674	0,00
20	30	30	1	G	Т	24207	96192	79495	CSE1L	256135.1	Т	p.Q901H	15	45
	478740	478740				ENSG000001	ENST000003	ENSP000003		NM_021	c.2555A>		rs617299	0,00
20	63	63	1	Т	C	24201	71752	60817	ZNFX1	035.2	G	p.E852G	93	26
	473188	473188				ENSG000000	ENST000004	ENSP000004		NM_022				
3	64	64	1	Т	G	88727	44589	14987	KIF9	342.4	c.1A>C	p.M1L		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut- CDNA	MutProt	Var- Name	VarFreq
	653649	653649				ENSG000001	ENST000004	ENSP000004		NM_004	c.3034G>			
3	81	81	1	C	Т	51276	83466	20323	MAGI1	742.2	A	p.V1012I		
	664281	664281				ENSG000001	ENST000003	ENSP000003		NM_001			rs145474	
3	27	27	1	G	A	44741	36733	36801	SLC25A26	164796.1	c.457G>A	p.V153I	090	
	731117	731117				ENSG000002	ENST000005	ENSP000004		NM_018				
3	47	47	1	C	Т	55423	33473	32104	EBLN2	029.3	c.515C>T	p.P172L		
	121204	121204				ENSG000000	ENST000002	ENSP000002		NM_199	c.5636C>		rs147121	0,00
3	025	025	1	G	A	51341	64233	64233	POLQ	420.3	Т	p.S1879L	503	03
	121305	121305				ENSG000001	ENST000003	ENSP000003		NM_001				
3	265	265	1	C	Т	86103	34384	35578	ARGFX	012659.1	c.766C>T	p.P256S		
	121342	121342				ENSG000001	ENST000003	ENSP000003		NM_016	c.1892C>		rs147922	0,00
3	168	168	1	C	Т	63833	38040	37510	FBXO40	298.3	Т	p.T631I	715	01
	130403	130403				ENSG000001	ENST000003	ENSP000003		NM_014	c.3539G>			
3	162	162	1	C	Т	96455	56763	49205	PIK3R4	602.2	A	p.C1180Y		
	178968	178968				ENSG000001	ENST000003	ENSP000003		NM_014			rs227680	0,00
3	568	568	1	A	C	71121	14235	19370	KCNMB3	407.3	c.223T>G	p.L75V	2	36
	208343	208343				ENSG000001	ENST000003	ENSP000003		NM_181	c.2230C>		rs145784	0,00
4	8	8	1	G	Т	30997	82865	72316	POLN	808.2	A	p.P744T	942	07
	552709	552709				ENSG000000	ENST000001	ENSP000001		NM_005				
4	2	2	1	A	G	82929	95455	95455	C4orf6	750.2	c.35A>G	p.N12S		
	687253	687253				ENSG000001	ENST000002	ENSP000002		NM_004			rs144036	0,00
4	92	92	1	С	Т	53802	83916	83916	TMPRSS11D	262.2	c.13G>A	p.A5T	048	02

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut- CDNA	MutProt	Var- Name	VarFreq
	110740	110740				ENSG000001	ENST000002	ENSP000002		NM_032				
4	184	184	1	A	G	09534	26796	26796	GAR1	993.2	c.397A>G	p.M133V		
	175897	175897				ENSG000001	ENST000004	ENSP000003		NM_014				
4	169	169	1	G	A	68594	04450	84229	ADAM29	269.4	c.493G>A	p.G165R		
	132085	132085				ENSG000002	ENST000003	ENSP000003		NM_001	c.633+1G		rs140882	0,00
5	115	115	1	G	C	05089	78731	68005	CCNI2	039780.2	>C		152	11
	140047	140047				ENSG000001	ENST000003	ENSP000003		NM_017				
5	854	854	1	A	C	20314	58337	51100	WDR55	706.4	c.227A>C	p.E76A		
	140202	140202				ENSG000002	ENST000005	ENSP000004		NM_018	c.1248C>			
5	608	608	1	C	A	04965	29859	36557	PCDHA5	908.2	A	p.S416R		
	140214	140214				ENSG000002	ENST000003	ENSP000003		NM_031	c.1006G>		rs149493	
5	974	974	1	G	C	04963	78125	67365	PCDHA7	852.1	C	p.V336L	398	
	140625	140625				ENSG000001	ENST000002	ENSP000002		NM_018				
5	897	897	1	G	A	13248	31173	31173	PCDHB15	935.2	c.751G>A	p.V251I		
	140755	140755				ENSG000002	ENST000005	ENSP000004		NM_032	c.2153G>			0,00
5	803	803	1	G	Т	53731	17434	29601	PCDHGA6	086.1	Т	p.R718L		01
	279250	279250				ENSG000001	ENST000002	ENSP000002		NM_012			rs150850	0,00
6	76	76	1	C	G	24657	44623	44623	OR2B6	367.1	c.58C>G	p.R20G	606	06
	296413	296413				ENSG000002	ENST000004	ENSP000004		NM_001				0,00
6	97	97	1	C	Т	04644	88757	18259	ZFP57	109809.2	c.491G>A	p.R164Q		11
	303083	303083				ENSG000002	ENST000003	ENSP000003		NM_172			rs142278	0,00
6	26	26	1	A	G	04599	96548	79797	TRIM39	016.2	c.848A>G	p.E283G	420	07

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
											c.444_445			
	303145	303145				ENSG000002	ENST000004	ENSP000004		NM_024	delT-		rs352871	
6	66	67	2	TC	GA	41370	42966	03833	RPP21	839.2	CinsGA	p.Q149K	37	
	306406	306406				ENSG000002	ENST000003	ENSP000003		NM_003			rs141617	
6	09	09	1	G	C	04560	76442	65625	DHX16	587.4	c.10C>G	p.P4A	781	
	136687	136687				ENSG000001	ENST000003	ENSP000003		NM_003			rs141768	0,00
6	151	151	1	G	A	35525	54570	46581	MAP7	980.4	c.995C>T	p.P332L	328	09
	797104	797104				ENSG000001	ENST000002	ENSP000002		NM_001				
8	02	02	1	C	T	04432	63851	63851	IL7	199887.1	c.52G>A	p.V18I		
	131848	131848				ENSG000001	ENST000002	ENSP000002		NM_001	c.2675A>			
8	523	523	1	T	G	55897	86355	86355	ADCY8	115.2	C	p.E892A		
	144332	144332				ENSG000002	ENST000005	ENSP000004		NM_173			rs150904	0,00
8	449	449	1	G	A	64668	22452	28966	ZFP41	832.3	c.436G>A	p.G146R	855	02
	428640	428640				ENSG000001	ENST000003	ENSP000003		NM_001				
9	6	6	1	C	G	07249	81971	71398	GLIS3	042413.1	c.20G>C	p.S7T		
	187069	187069				ENSG000001	ENST000003	ENSP000003		NM_001	c.1816G>			
9	86	86	1	G	A	78031	80548	69921	ADAMTSL1	040272.5	A	p.D606N		
	326321	326321				ENSG000001	ENST000002	ENSP000004		NM_153	c.3421G>			
9	57	57	1	C	T	22728	42310	18379	TAF1L	809.2	A	p.E1141K		
	464665	464665				ENSG000000	ENST000003	ENSP000003		NM_032	c.1978G>			0,00
X	87	87	1	C	Т	65923	28306	30320	SLC9A7	591.2	A	p.D660N		01

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	479202	479202				ENSG000002	ENST000004	ENSP000003		NM_001				
X	87	87	1	G	A	21994	09324	86393	ZNF630	037735.2	c.53C>T	p.T18M		0
	480471	480471				ENSG000001	ENST000003	ENSP000003		NM_021				
X	34	34	1	C	G	65583	11798	12415	SSX5	015.3	c.623G>C	p.R208T		

Die nachfolgende Charakterisierung dieser Varianten hinsichtlich der Funktion der kodierten Proteine sowie des funktionellen Effekts der Veränderungen führten zur Identifizierung einer Variante, die als potenziell ursächliche Variante in Betracht gezogen wurde. Dabei handelte es sich um die heterozygote Variante c.229C>T im *PAX7*-Gen. Diese Veränderung führt dazu, dass auf Aminosäureebene an Position 77 des *PAX7*-Proteins ein Arginin durch ein Cystein substituiert (p.Arg77Cys) wird.

Zur Bestätigung der Variante und zur Ko-Segregationsanalyse innerhalb der Familie LKG8 wurde das Exon 2 des *PAX7*-Gens, in welchem die heterozygote Veränderung lokalisiert ist, bei den betroffenen und nicht betroffenen Individuen der Familie amplifiziert und mittels Sanger-Sequenzierung analysiert (Abbildung 16).

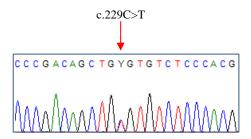


Abbildung 3: Exemplarische Darstellung der in Familie LKG8 identifizierten Sequenzveränderung c.229C>T im *PAX7*-Gen.

Die Abbildung zeigt die Sequenzveränderung für Patienten Gö137.

Diese Analyse bestätigte das Vorhandensein der c.229C>T Variante in drei von vier betroffenen Individuen (Gö137, Gö139, Gö141) der Familie, von denen DNA-Proben zur Untersuchung vorlagen. Bei drei von vier gesunden Familienmitgliedern konnte die Variante dagegen nicht nachgewiesen werden (Gö138, Gö140, Gö143, vgl. dazu die Stammbäume in Abbildung 4, Abbildung 15 und Abbildung 17).

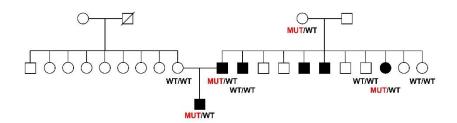


Abbildung 17: Stammbaum der Familie LKG8 mit Lippen-Kiefer-Gaumenspalte; Ko-Segregation.

Ausgefüllte Symbole, betroffene Individuen; MUT= Mutation; WT=Wildtyp.

Die bioinformatische Charakterisierung der Auswirkung dieser Veränderung unter Verwendung verschiedener Prädiktionsprogramme ergab, dass diese Variante als pathogen eingeschätzt wurde (Tabelle 39).

Tabelle 39: Übersicht der in Familie LKG8 identifizierten Variante in *PAX7* und ihre Charakterisierung mittels unterschiedlicher Prädiktionsprogramme.

Genomische	Gen	Transkript	HGVS	HGVS	Allelfre-		Präd	liktion	
Lokalisation			cDNA	Protein	quenz	SIFT	Poly-	Muta-	CADD
(hg19)					(gno-		Phen- 2	tion Taster	
					mAD)				
chr5:140866189	PAX7	ENST00000375375	c.229C>T	p.(Arg77Cys)	0.0000279	D	PD	DC	31

D, deleterious; PD, probably damaging, DC, disease causing.

Bei *PAX7* handelt es sich um einen Transkriptionsfaktor, der eine wichtige Rolle während der embryologischen Entwicklung, insbesondere im Rahmen der Neuralleisten-Induktion, spielt (Relaix et al. 2005). Im Jahre 2015 beschrieben Leslie et al. (2015) eine Variante in der Homö-obox-Domäne des *PAX7*-Gens in einer Patientin mit einer Lippen-Kiefer-Gaumenspalte, die die transaktivierenden Eigenschaften von *PAX7* beeinflusst und von den Autoren als möglicherweise ursächlich klassifiziert wurde. Weitere Patienten mit Veränderungen in diesem Gen wurden bislang in der wissenschaftlichen Literatur nicht beschrieben. Die im Rahmen meiner Arbeit identifizierte Veränderung p.Arg77Cys ist innerhalb der N-terminalen *paired-box* Domäne des Proteins lokalisiert, welche die Bindung des Transkriptionsfaktors an die Zielsequenzen innerhalb der DNA vermittelt (Abbildung 18).

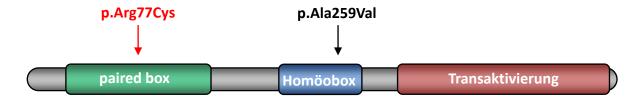


Abbildung 4: Schematische Darstellung des Transkriptionsfaktors *PAX7* sowie der im Rahmen dieser Arbeit identifizierten Veränderungen p.Arg77Cys (rot) und der von Leslie et al. beschrieben Variante p.Ala259Val (schwarz) in *PAX7*.

(Quelle: modifiziert nach Leslie et al. (2015)).

Mit dem Programm Clustal Omega wurde nachfolgend die Konservierung der veränderten Aminosäure sowohl innerhalb der Proteinfamilie der humanen *PAX*-Proteine als auch spezies-übergreifend untersucht (Abbildung 19, Abbildung 20).

Die Analyse zeigte, dass es sich bei dem Arginin an Position 77 um eine evolutionär sowohl speziesübergreifend als auch innerhalb der humanen *PAX*-Proteinfamilie hochkonservierte Aminosäure handelt, die innerhalb der *paired-box* Domäne des *PAX7*-Proteins lokalisiert ist. Diese hohe Konservierung wurde ebenso für die direkte Umgebung der Aminosäure vorhergesagt. Um die kausale Relevanz dieser Veränderung weitergehend einzuordnen und zu bestätigen, wurde diese Veränderung nachfolgend mittels eines Luciferase-basierten Reportergen Assays funktionell charakterisiert.

PAX9	LRIVELAQLGIRPCDISRQLRVSHGCVSKILARYNETGSILPGAIGG
PAX1	LRIVELAQLGIRPCDISRQLRVSHGCVSKILARYNETGSILPGAIGG
PAX8	QRIVDLAHQGVRPCDISRQLRVSHGCVSKILGRYYETGSIRPGVIGG
PAX2	QRIVELAHQGVRPCDISRQLRVSHGCVSKILGRYYETGSIKPGVIGG
PAX5	QRIVELAHQGVRPCDISRQLRVSHGCVSKILGRYYETGSIKPGVIGG
PAX3	HKIVEMAHHGIRPCVISRQLRVSHGCVSKILCRYQETGSIRPGAIGG
PAX7	HKIVEMAHHGIRPCVISRQLRVSHGCVSKILCRYQETGSIRPGAIGG
PAX6	QKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRAIGG
PAX4	QQIVRLAVSGMRPCDISRILKVSNGCVSKILGRYYRTGVLEPKGIGG
	** * * * *** *** * ** ** ** * * **

Abbildung 5: Konservierung der Aminosäureposition 77 in *PAX7* im Vergleich zu anderen Mitgliedern der humanen *PAX*-Familie.

Der Sequenzvergleich sowie die Bestimmung der Konservierung erfolgte mit dem Programm Clustal Omega. Schwarz eingerahmt die Aminosäure an Position 77 in *PAX7*.

Fadenwurm	VIGTRAMMQLRWTTTSRDRCGCEFIDNQN
Zebrafisch	EMAHHGIRPCVISRQL RVSHGCVSKILCRYQETGSIR
Pavian	-MAHHGIRPCVISRQLRVSHGCVSKILCRYQETGSIR
Huhn	EMAHHGIRPCVISRQL RVSHGCVSKILCRYQETGSIR
Maus	EMAHHGIRPCVISRQL RVSHGCVSKILCRYQETGSIR
Ratte	EMAHHGIRPCVISRQL RVSHGCVSKILCRYQETGSIR
Mensch	EMAHHGIRPCVISRQL RVSHGCVSKILCRYQETGSIR
Pferd	EMAHHGIRPCVISRQL RVSHGCVSKILCRYQETGSIR
	* *** * * * *

Abbildung 6: Speziesübergreifender Vergleich der Konservierung der Aminosäureposition 77 des humanen PAX7-Proteins.

Der Sequenzvergleich erfolgte mit dem Programm Clustal Omega. Schwarz eingerahmt die Aminosäure an Position 77 des humanen *PAX7*.

3.2.1.1 Reportergen Assay

Paired-box (PAX) Gene kodieren für eine Familie von gewebespezifischen Transkriptionsfaktoren, die eine wichtige Rolle während der embryonalen Entwicklung und in der Differenzierung von Geweben spielen. In Säugetieren umfasst die Familie der PAX-Proteine neun Mitglieder (PAX1 – 9), deren gemeinsames Merkmal die *paired-box-*Domäne sowie eine partielle oder vollständige Homöobox-Domäne ist, über die die Bindung der Transkriptionsfaktoren an die Zielsequenzen in der DNA vermittelt wird. Zur Untersuchung, ob die im Rahmen dieser Arbeit identifizierte Variante in der N-Terminalen paired-box-Domäne von PAX7 die Expression der PAX7-Zielgene beeinträchtigt, wurde ein Luciferase Reportergen Assay durchgeführt. Dazu wurden zunächst die kodierenden Sequenzen für wildtypisches PAX7 sowie der Variante c.229C>T (p.Arg77Cys), die in dieser Arbeit identifiziert wurde, sowie der von Leslie et al. (2015) beschriebenen Variante c.766C>T (p.Ala259Val) in den Expressionvektor pcDNA3.1 kloniert. Zusätzlich wurde die Promotorregion des murinen Id3-Gens, einer Zielsequenz, an die die Bindung PAX7 und die nachfolgende Aktivierung der Genexpression bereits beschrieben wurde, von Position -1 bis -2222 (bezogen auf das Start-ATG des Id3-gens) in den Vektor pGL3-basic [luc+] kloniert. Nachfolgend wurde HeLa-Zellen mit dem Id3-Promotor-Reportergenkonstrukt sowie zusätzlich mit einem der pcDNA3-Expressionsvektoren für wildtypisches PAX7, PAX7 p.Arg77Cys oder PAX7 p.Ala259Val transfiziert (vgl. Kapitel 2.2.22). Zusätzlich wurden als Kontrolle Zellen entweder nur mit dem pcDNA3.1 *lacZ* Plasmid (Negativkontrolle) oder dem Id3-Promotor-Reportergenkonstrukt allein zur Bestimmung der basalen Aktivierung der Reportergenkonstrukts transfiziert. Als interne Transfektionskontrolle wurden alle Ansätze zusätzlich mit dem Expressionskonstrukt pRL-TK ko-transfiziert, welches für die Renilla-Luciferase kodiert. Das transaktivierende Potential der unterschiedlichen PAX7-Varianten wurde über die Luciferase-Expression mittels Bestimmung der Luciferase-Aktivität luminometrisch bestimmt. Alle Transfektionen wurde für jedes Experiment im Triplikat durchgeführt und die Luciferase-Aktivität wurde insgesamt in vier unabhängigen Experimenten ermittelt. Die Mittelwerte der relativen Luciferase-Aktivität für alle vier Experimente sind in Tabelle 40 zusammengefasst.

Tabelle 40: Tabellarische Darstellung der relativen Luciferase-Aktivität.

Die Mittelwerte der in Triplikaten gemessenen relativen Luciferase-Aktivität (Firefly-Luciferase/Renilla-Luciferase) ist für jedes der vier durchgeführten Experimente angegeben.

Ansatz	1. Experiment	2. Experiment	3. Experiment	4. Experiment
(1) pGL3-basic [luc+] (-)	0,0026	0,01484	0,02175	0,01841
(2) pGL3-basic-Id3 (K)	0,73278	0,39083	0,50961	0,57667
(3) PAX7 WT	11,54603	8,02878	8,04272	8,85822
(4) PAX7 p.Arg77Cys	9,72234	6,44509	8,45928	8,11803
(5) PAX7 p.Ala259Val	11,3965	7,78027	9,13324	8,91654

Für den Kontroll-Vektor pcDNA3.1 *lacZ* lag die relative Luciferase-Aktivität erwartungsgemäß in allen vier Experimenten bei 0 (nicht dargestellt). Ebenso wurden für die Negativkontrolle (pGL3-basic [*luc+*]; -), bei dem ein Luciferase-Reporter-Konstrukt transfiziert wurde, das nicht die *Id3*-Promotorregion enthält, Messwerte ±0 ermittelt (vgl. Tabelle 40). Zellen, die lediglich mit dem Reporterplasmid pGL3-basic-Id3 transfiziert wurden, weisen bereits eine geringe Luciferase-Aktivität auf (vgl. Tabelle 40, Ansatz 2). Diese ist auf die Expression von endogenen *PAX7* in den Zellen zurückzuführen, welches ebenfalls transaktivierend auf das Reporterplasmid wirkt. Um diese endogene Expression von *PAX7* zu berücksichtigen, wurden im Rahmen der Analyse der Daten zunächst die Ergebnisse für jedes Experiment auf die ermittelte relative Luciferase-Aktivität der Kontrolle (K, pGL3-basic-*Id3* [luc+]) normalisiert und alle übrigen Werte in Relation zu diesem Ansatz angegeben (vgl. Tabelle 41). Diese Normalisierung gewährleistet die Berücksichtigung von endogen in den Zellen gebildeten und funktionellem *PAX7*.

Tabelle 41: Tabellarische Darstellung der relativen Luciferase-Aktivität normalisiert auf die relative Luciferase-Aktivität der Kontrolle (K) pGL3-basic-Id3 eines jeden Experiments.

Ansatz	1. Experiment	2. Experiment	3. Experiment	4. Experiment	
(2) pGL3-basic-Id3 (K)	1	1	1	1	
(3) PAX7 WT	15,76	20,54	15,78	15,36	
(4) PAX7 p.Arg77Cys	13,27	16,49	16,60	14,08	
(5) PAX7 p.Ala259Val	15,55	19,90	17,92	15,46	

Die ermittelten normalisierten relativen Luciferase-Aktivitäten aus allen vier Experimenten wurden nachfolgend gemittelt (Abbildung 21).

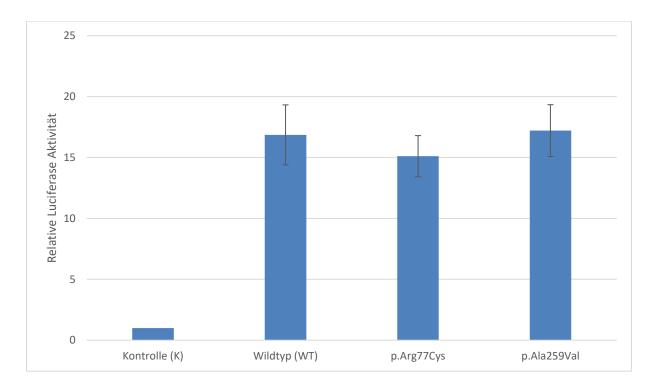


Abbildung 21: Graphische Darstellung der gemittelten, normalisierten relativen Luciferase-Aktivität.

Alle Zellen wurden mit dem Reportergen-Konstrukt pGL3-basic-Id3 [luc+] sowie Expressionsvektoren für wildtypisches (WT) oder mutiertes (p.Arg77Cys oder p.Ala259Val) *PAX7* transfiziert. Die gemessenen absoluten Werte der firefly-Luciferase-Aktivitäten wurden mit den entsprechenden Renilla-Luciferase-Aktivitäten normalisiert. Die relative Luciferase-Aktivität der Kontrolle (K) wurde gleich 1 gesetzt und die übrigen Werte in Relation zu dieser Probe für jedes der vier durchgeführten Experimente bestimmt.

Die Expression von wildtypischen PAX7 führt in den HeLa-Zellen zu einer deutlich, etwa 16,8-fachen ($\pm 2,4$) erhöhten Luciferase-Aktivität, verglichen mit der Luciferase-Aktivität, die bei der Transfektion mit dem Reportgen-Konstrukt durch endogen in den Zellen vorhandenes PAX7 erreicht wurde (Kontrolle; K). Die Überexpression von PAX7 mit der Veränderung p.Arg77Cys, die im Rahmen dieser Arbeit bei in der Familie LKG8 identifiziert wurde, führte ebenfalls zu einer Steigerung der Luciferase-Aktivität, allerdings in einem etwas geringerem Ausmaß (etwa 15,1-fach $\pm 1,7$). Die Überexpression von PAX7 mit der durch Leslie et al. (2015) beschrieben Veränderung p.Ala259Val führte zu einer Steigerung der Luciferase-Aktivität auf das 17,2fache (± 2.1) verglichen mit der Kontrolle K. Zusammenfassend konnte für beide mu-

tanten *PAX7*-Proteine gezeigt werden, dass die Luciferase-Aktivitäten etwa der von wildtypischem *PAX7* entsprachen. Für *PAX7* p.Arg77Cys konnte zwar eine leichte Reduktion der gemessenen Luciferase-Aktivität ermittelt werden, allerdings lag in diesem Fall keine statistisch signifikante Abweichung von den Werten des wildtypischen *PAX7* vor.

3.2.2 Familie LKG11

Analog zur genetischen Untersuchung, welche für Familie LKG8 in Kapitel 3.2.1 beschrieben wurde, wurde auch bei Familie LKG11 eine Exomsequenzierung mit dem Ziel der Identifizierung einer ursächlichen genetischen Veränderung für das Auftreten von Lippen-Kiefer-Gaumenspalten durchgeführt. Dazu wurde mittels DNA der betroffenen Individuen Gö133 und Gö135 eine Exomsequenzierung durchgeführt und die erhaltenen genetischen Daten wurden mit Hilfe der Software Varbank unter der Annahme eines autosomal dominanten, vollständig penetranten Erbgangs analysiert (vgl. Abbildung 5 und Abbildung 22).

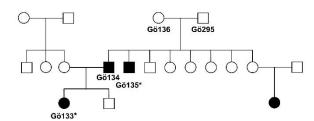


Abbildung 22: Stammbaum der Familie LKG11 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Insgesamt führte diese Filterstrategie zur Identifizierung von 256 Varianten (Tabelle 42).

Tabelle 42: Filterungsergebnis in Familie LKG11.

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	11134	11134				ENSG000	ENST000	ENSP0000		NM_0010019			rs1177	0,0
1	043	043	1	C	Т	00171824	00376936	0366135	EXOSC10	98.1	c.2105G>A	p.R702H	71172	031
	11158	11158				ENSG000	ENST000	ENSP0000					rs6262	0,0
1	105	105	1	C	Т	00171824	00304457	0307307	EXOSC10	NM_002685.2	c.220G>A	p.E74K	3443	045
	12336	12336				ENSG000	ENST000	ENSP0000				p.C1091		0,0
1	917	917	1	G	A	00048707	00358136	0350854	VPS13D	NM_015378.2	c.3272G>A	Y		001
	16262	16262				ENSG000	ENST000	ENSP0000				p.T3244		
1	465	465	1	A	С	00065526	00375759	0364912	SPEN	NM_015001.2	c.9730A>C	P		
	16381	16381				ENSG000	ENST000	ENSP0000						
1	951	951	1	Т	C	00184908	00375679	0364831	CLCNKB	NM_000085.4	c.1778T>C	p.I593T		
	20678	20678				ENSG000	ENST000	ENSP0000		NM_0010395		p.S1046		
1	646	646	1	G	A	00158816	00375089	0364230	VWA5B1	00.2	c.3137G>A	N		
	22174	22174				ENSG000	ENST000	ENSP0000				p.R2673		
1	190	190	1	G	A	00142798	00374695	0363827	HSPG2	NM_005529.5	c.8017C>T	*		
	45250	45250				ENSG000	ENST000	ENSP0000						
1	167	167	1	A	G	00142959	00372207	0361281	BEST4	NM_153274.2	c.1149-12T>C			
	55251	55251				ENSG000	ENST000	ENSP0000						
1	796	796	1	G	A	00006555	00371274	0360321	TTC22	NM_017904.3	c.880C>T	p.Q294*		
	55643	55643				ENSG000	ENST000	ENSP0000						
1	810	810	1	С	T	00162402	00294383	0294383	USP24	NM_015306.2	c.325-5G>A			

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var-	VarFreq
	75677	75677				ENSG000	ENST000	ENSP0000		NM_0011300				
1	174	174	1	C	G	00137968	00370859	0359896	SLC44A5	58.1	c.2026G>C	p.E676Q		
	16702	16702				ENSG000	ENST000	ENSP0000						0,0
1	5002	5002	1	G	A	00143167	00367868	0356842	GPA33	NM_005814.1	c.656C>T	p.T219M		001
	18631	18631				ENSG000	ENST000	ENSP0000				p.R1148		0,0
1	3197	3197	1	C	Т	00047410	00367478	0356448	TPR	NM_003292.2	c.3443G>A	Н		011
	20668	20668				ENSG000	ENST000	ENSP0000						
1	1098	1098	1	G	A	00136653	00367117	0356084	RASSF5	NM_182664.2	c.163G>A	p.G55R		
	20710	20710				ENSG000	ENST000	ENSP0000						
1	6388	6388	1	G	A	00162896	00356495	0348888	PIGR	NM_002644.3	c.1829C>T	p.A610V		
	22353	22353				ENSG000	ENST000	ENSP0000			c.45_65del(GCA		rs1439	
1	6703	6723	21	(TGC)7	(TGC)6	00143502	00343846	0344219	SUSD4	NM_017982.3)7ins(GCA)6	p.Q22del	29528	
	22836	22836				ENSG000	ENST000	ENSP0000		NM_0010108				
1	2386	2386	1	C	A	00181873	00366711	0355672	IBA57	67.2	c.342-7C>A			
	22844	22844				ENSG000	ENST000	ENSP0000			c.4521_4523del	p.V1508		
1	4563	4565	3	GGT	AGA	00154358	00284548	0284548	OBSCN	NM_052843.2	GGTinsAGA	D		
	22973	22973				ENSG000	ENST000	ENSP0000						
1	8579	8579	1	G	A	00135801	00366676	0355636	TAF5L	NM_014409.3	c.335C>T	p.P112L		
	23049	23049				ENSG000	ENST000	ENSP0000		NM_0012583			rs4131	0,0
1	2801	2801	1	С	Т	00177614	00391860	0375733	PGBD5	11.1	c.253G>A	p.A85T	5609	044

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
											c.301-			
	23079	23079				ENSG000	ENST000	ENSP0000			9_11delGTCins(
1	8876	8878	3	GTC	(T)3	00135775	00366669	0355629	COG2	NM_007357.2	T)3			
	23093	23093				ENSG000	ENST000	ENSP0000					rs1459	0,0
1	0967	0967	1	G	Т	00135773	00271971	0271971	CAPN9	NM_006615.2	c.1929G>T	p.E643D	39347	017
	14816	14816				ENSG000	ENST000	ENSP0000					rs1441	0,0
10	378	378	1	G	C	00065809	00181796	0181796	FAM107B	NM_031453.2	c.285C>G	p.H95Q	31218	027
	89621	89621				ENSG000	ENST000	ENSP0000		NM_0011260			rs1448	0,0
10	800	800	1	A	Т	00227268	00445946	0392204	KLLN	49.1	c.445T>A	p.W149R	11392	05
	89621	89621				ENSG000	ENST000	ENSP0000		NM_0011260			rs1479	0,0
10	853	853	1	Т	C	00227268	00445946	0392204	KLLN	49.1	c.392A>G	p.N131S	32146	05
	89621	89621				ENSG000	ENST000	ENSP0000		NM_0011260				
10	863	863	1	G	C	00227268	00445946	0392204	KLLN	49.1	c.382C>G	p.R128G		
	97445	97445				ENSG000	ENST000	ENSP0000						
10	323	323	1	A	G	00119977	00265993	0265993	TCTN3	NM_015631.5	c.959T>C	p.V320A		
	99141	99141				ENSG000	ENST000	ENSP0000					rs1394	0,0
10	192	192	1	C	Т	00052749	00370992	0360031	RRP12	NM_015179.3	c.1369G>A	p.V457M	84717	005
	99150	99150				ENSG000	ENST000	ENSP0000						
10	569	569	1	G	A	00052749	00370992	0360031	RRP12	NM_015179.3	c.563C>T	p.S188F		
	10114	10114				ENSG000	ENST000	ENSP0000						
10	7624	7624	1	C	G	00119946	00356713	0349147	CNNM1	NM_020348.2	c.2388C>G	p.D796E		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	11597	11597				ENSG000	ENST000	ENSP0000					rs1454	0,0
10	1741	1741	1	A	G	00095627	00251864	0251864	TDRD1	NM_198795.1	c.1777A>G	p.I593V	41323	005
	11603	11603				ENSG000	ENST000	ENSP0000						
10	2567	2567	1	A	G	00165816	00298715	0298715	VWA2	NM_198496.1	c.440A>G	p.N147S		
	12078	12078				ENSG000	ENST000	ENSP0000						
10	9494	9494	1	C	Т	00188613	00425699	0393275	NANOS1	NM_199461.2	c.181C>T	p.P61S		
	12439	12439				ENSG000	ENST000	ENSP0000				p.V1412		
10	2814	2814	1	G	A	00187908	00368956	0357952	DMBT1	NM_004406.2	c.4234G>A	M		
	12459	12459				ENSG000	ENST000	ENSP0000						
10	8653	8653	1	Т	C	00138161	00545804	0441590	CUZD1	NM_022034.5	c.328A>G	p.N110D		
	99375	99375				ENSG000	ENST000	ENSP0000						0,0
11	0	0	1	C	G	00183020	00448903	0413234	AP2A2	NM_012305.3	c.1551-4C>G			002
	10286	10286				ENSG000	ENST000	ENSP0000						0,0
11	65	65	1	C	G	00184956	00421673	0406861	MUC6	NM_005961.2	c.1572G>C	p.Q524H		003
	15795	15795				ENSG000	ENST000	ENSP0000						
11	19	19	1	C	G	00184545	00397374	0380530	DUSP8	NM_004420.2	c.538-18G>C			
	49035	49035				ENSG000	ENST000	ENSP0000		NM_0010047				0,0
11	49	49	1	C	G	00176900	00380378	0369738	OR51T1	59.1	c.501C>G	p.D167E		001
	26681	26681				ENSG000	ENST000	ENSP0000						
11	857	857	1	G	A	00134343	00256737	0256737	ANO3	NM_031418.2	c.2812G>A	p.V938I		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var-	VarFreq
											c.271-			
											12_23del(TTT-			
	28232	28232		(TTT-	TTT-	ENSG000	ENST000	ENSP0000			TCT)2insTTT-			
11	586	597	12	TCT)2	TCT	00169519	00303459	0307251	METTL15	NM_152636.2	TCT			
	31815	31815				ENSG000	ENST000	ENSP0000						
11	056	056	1	G	C	00007372	00379107	0368401	PAX6	NM_001604.5	c.1004C>G	p.A335G		
	65784	65784				ENSG000	ENST000	ENSP0000						
11	653	653	1	T	G	00175294	00312106	0309052	CATSPER1	NM_053054.3	c.2202-8A>C			
	65784	65784				ENSG000	ENST000	ENSP0000						
11	657	657	1	С	G	00175294	00312106	0309052	CATSPER1	NM_053054.3	c.2202-12G>C			
	95595	95595				ENSG000	ENST000	ENSP0000						0,0
11	495	495	1	C	Т	00087053	00393223	0376915	MTMR2	NM_201281.2	c.82G>A	p.A28T		001
	13028	13028				ENSG000	ENST000	ENSP0000						
11	1380	1380	1	C	G	00134917	00257359	0257359	ADAMTS8	NM_007037.4	c.1682G>C	p.G561A		
	13029	13029				ENSG000	ENST000	ENSP0000			c.41_64del(TGC		rs7216	
11	8118	8141	24	(GCA)8	(GCA)7	00134917	00257359	0257359	ADAMTS8	NM_007037.4)8ins(TGC)7	p.L21del	1928	
	36497	36497				ENSG000	ENST000	ENSP0000			c.95_96delAG-			
12	91	92	2	AG	(C)2	00111218	00382622	0372067	PRMT8	NM_019854.4	ins(C)2	p.Q32P		
	73032	73032				ENSG000	ENST000	ENSP0000						
12	11	11	1	С	Т	00139182	00266546	0266546	CLSTN3	NM_014718.3	c.2317C>T	p.L773F		
	10783	10783				ENSG000	ENST000	ENSP0000					rs1401	0,0
12	893	893	1	G	A	00060140	00075503	0075503	STYK1	NM_018423.2	c.202C>T	p.P68S	74760	003

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	33003	33003				ENSG000	ENST000	ENSP0000						
12	706	706	1	T	C	00057294	00070846	0070846	PKP2	NM_004572.3	c.1372A>G	p.I458V		
	40345	40345				ENSG000	ENST000	ENSP0000						
12	102	102	1	C	Т	00151229	00280871	0280871	SLC2A13	NM_052885.3	c.991G>A	p.G331S		
	41966	41966				ENSG000	ENST000	ENSP0000						
12	885	885	1	T	G	00165966	00539469	0439990	PDZRN4	NM_013377.3	c.1530T>G	p.N510K		
	48578	48578				ENSG000	ENST000	ENSP0000		NM_0010136				
12	302	302	1	C	G	00177875	00316554	0320849	C12orf68	35.3	c.397C>G	p.R133G		
	51385	51385				ENSG000	ENST000	ENSP0000		NM_0011741				
12	388	388	1	Т	C	00110911	00547688	0449200	SLC11A2	25.1	c.1502A>G	p.N501S		
	52565	52565				ENSG000	ENST000	ENSP0000		NM_0010814				
12	505	505	1	Т	G	00167767	00313234	0369361	KRT80	92.1	c.1179-8A>C			
	52965	52965				ENSG000	ENST000	ENSP0000					rs1479	0,0
12	165	165	1	A	G	00170484	00305620	0307240	KRT74	NM_175053.3	c.821T>C	p.F274S	62513	002
	56755	56755				ENSG000	ENST000	ENSP0000						0,0
12	422	422	1	C	Т	00175336	00398189	0381250	APOF	NM_001638.2	c.568G>A	p.G190R		001
	57499	57499				ENSG000	ENST000	ENSP0000						
12	139	139	1	C	Т	00166888	00454075	0401486	STAT6	NM_003153.4	c.813-17G>A			
	58166	58166				ENSG000	ENST000	ENSP0000						
12	903	903	1	C	G	00123427	00300209	0300209	METTL21B	NM_015433.2	c.281C>G	p.A94G		
	58193	58193				ENSG000	ENST000	ENSP0000						
12	664	664	1	Т	С	00135407	00257861	0257861	AVIL	NM_006576.3	c.2260A>G	p.S754G		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	89891	89891				ENSG000	ENST000	ENSP0000		NM_0011997				0,0
12	131	131	1	T	C	00139323	00549035	0447916	POC1B	77.1	c26-12A>G			001
	10553	10553				ENSG000	ENST000	ENSP0000					rs7617	
12	8491	8491	1	G	Т	00136051	00332180	0328062	KIAA1033	NM_015275.1	c.2180-5G>T		4691	
	10557	10557				ENSG000	ENST000	ENSP0000						
12	0712	0712	1	G	C	00136044	00258530	0258530	APPL2	NM_018171.3	c.1754C>G	p.S585C		
	32360	32360				ENSG000	ENST000	ENSP0000						
13	761	761	1	C	A	00133105	00298386	0298386	RXFP2	NM_130806.3	c.1060C>A	p.Q354K		
	32828	32828				ENSG000	ENST000	ENSP0000				p.T2449	rs1923	0,0
13	460	460	1	A	G	00073910	00380250	0369600	FRY	NM_023037.2	c.7345A>G	A	51218	028
	78272	78272				ENSG000	ENST000	ENSP0000		NM_0012428	c.229_230del(C)	p.L78Ffs	rs7110	
13	277	278	2	(C)2	(C)3	00139737	00466548	0419730	SLAIN1	71.1	2ins(C)3	*31	2772	
	36096	36096				ENSG000	ENST000	ENSP0000						0,0
14	533	533	1	A	G	00174373	00307138	0302647	RALGAPA1	NM_194301.2	c.5102T>C	p.I1701T		001
	50101	50101				ENSG000	ENST000	ENSP0000		NM_0010839				
14	033	033	1	C	Т	00165506	00406043	0384862	DNAAF2	08.1	c.835G>A	p.V279M		
	56117	56117				ENSG000	ENST000	ENSP0000		NM_0010795				
14	131	131	1	G	A	00126777	00395311	0378722	KTN1	22.1	c.2491G>A	p.V831I		
	10134	10134				ENSG000	ENST000	ENSP0000		NM_0011348		p.R1279		
14	7290	7290	1	C	G	00254656	00534062	0435342	RTL1	88.2	c.3836G>C	P		
	10520	10520				ENSG000	ENST000	ENSP0000						
14	7171	7171	1	Т	G	00185100	00330877	0331260	ADSSL1	NM_152328.3	c.585-5T>G			

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	75651	75651				ENSG000	ENST000	ENSP0000					rs6202	
15	040	040	1	Т	C	00140400	00267978	0267978	MAN2C1	NM_006715.3	c.2246+5A>G		9712	
	33319	33320				ENSG000	ENST000	ENSP0000			c.25_39del(CTG	p.L13_L		
16	4	8	15	(CTG)5	(CTG)6	00185615	00219406	0219406	PDIA2	NM_006849.2)5ins(CTG)6	14insL		
	73487	73487				ENSG000	ENST000	ENSP0000						
16	7	7	1	C	Т	00127580	00293883	0293883	WDR24	NM_032259.2	c.2230G>A	p.A744T		
	84574	84574				ENSG000	ENST000	ENSP0000					rs1181	0,0
16	2	2	1	G	A	00127586	00262315	0262315	CHTF18	NM_022092.2	c.2233G>A	p.A745T	13142	037
	11298	11298				ENSG000	ENST000	ENSP0000		NM_0011725			rs1259	0,0
16	66	66	1	C	Т	00162009	00397547	0380680	SSTR5	60.1	c.998C>T	p.T333M	6873	021
	18271	18271				ENSG000	ENST000	ENSP0000						
16	45	45	1	Т	G	00162032	00566339	0457206	SPSB3	NM_080861.3	c.1021A>C	p.S341R		
	28153	28153				ENSG000	ENST000	ENSP0000				p.R1595		0,0
16	13	13	1	G	A	00167978	00301740	0301740	SRRM2	NM_016333.3	c.4784G>A	Н		001
	30215	30215				ENSG000	ENST000	ENSP0000					rs1477	0,0
16	63	63	1	C	Т	00162073	00318782	0321804	PAQR4	NM_152341.3	c.436C>T	p.R146C	46550	001
	43102	43102				ENSG000	ENST000	ENSP0000						
16	18	18	1	Т	G	00090447	00204517	0204517	TFAP4	NM_003223.2	c.695A>C	p.H232P		
	49418	49418				ENSG000	ENST000	ENSP0000						
16	48	48	1	G	C	00118898	00345988	0340510	PPL	NM_002705.4	c.1932C>G	p.S644R		
	20410	20410				ENSG000	ENST000	ENSP0000					rs1438	0,0
16	421	421	1	G	A	00169340	00302451	0305465	PDILT	NM_174924.1	c.202C>T	p.H68Y	73904	003

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	20448	20448				ENSG000	ENST000	ENSP0000					rs1486	0,0
16	430	430	1	C	G	00183549	00331849	0327916	ACSM5	NM_017888.2	c.1365C>G	p.D455E	10822	026
	22546	22546				ENSG000	ENST000	ENSP0000		NM_0011358			rs1063	
16	129	129	1	Т	C	00243716	00424340	0440703		65.1	c.1825T>C	p.Y609H	837	
	22546	22546				ENSG000	ENST000	ENSP0000		NM_0011358				
16	136	136	1	Т	C	00243716	00424340	0440703		65.1	c.1832T>C	p.L611P		
	27751	27751				ENSG000	ENST000	ENSP0000						
16	920	920	1	G	A	00047578	00261588	0261588	KIAA0556	NM_015202.2	c.2302G>A	p.G768S		
	28074	28074				ENSG000	ENST000	ENSP0000		NM_0011097				
16	523	523	1	Т	С	00169181	00447459	0394954	GSG1L	63.1	c.223A>G	p.T75A		
	47628	47628				ENSG000	ENST000	ENSP0000		NM_0010318				
16	046	046	1	A	G	00102893	00566044	0456729	РНКВ	35.2	c.1106-2A>G			
	56536	56536				ENSG000	ENST000	ENSP0000					rs1503	0,0
16	660	660	1	Т	C	00125124	00245157	0245157	BBS2	NM_031885.3	c.865A>G	p.I289V	84293	011
	58576	58576				ENSG000	ENST000	ENSP0000						
16	486	486	1	Т	G	00125107	00317147	0320949	CNOT1	NM_016284.4	c.4435-14A>C			
	58576	58576				ENSG000	ENST000	ENSP0000						
16	483	483	1	A	G	00125107	00317147	0320949	CNOT1	NM_016284.4	c.4435-11T>C			
	66592	66592				ENSG000	ENST000	ENSP0000		NM_0010401				0,0
16	150	150	1	A	G	00217555	00417030	0416678	CKLF	38.2	c.136A>G	p.I46V		001
	67919	67919				ENSG000	ENST000	ENSP0000						
16	606	606	1	A	C	00188038	00339176	0342411	NRN1L	NM_198443.1	c.80-19A>C			

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	67919	67919				ENSG000	ENST000	ENSP0000						
16	612	612	1	G	C	00188038	00339176	0342411	NRN1L	NM_198443.1	c.80-13G>C			
	70841	70841				ENSG000	ENST000	ENSP0000				p.R5069		
16	641	641	1	G	A	00157423	00316490	0313052	HYDIN	NM_032821.2	c.15205C>T	W		
	70954	70954				ENSG000	ENST000	ENSP0000			c.7678_7680del	p.E2560d		
16	596	598	3	CTC	-	00157423	00316490	0313052	HYDIN	NM_032821.2	GAG	el		
	71610	71610				ENSG000	ENST000	ENSP0000						
16	186	186	1	G	A	00198650	00355962	0348234	TAT	NM_000353.2	c.133C>T	p.P45S		
	81249	81249				ENSG000	ENST000	ENSP0000		NM_0010767			rs1171	0,0
16	919	919	1	C	Т	00166473	00337114	0337397	PKD1L2	80.1	c.394G>A	p.G132R	42104	029
	70771	70771				ENSG000	ENST000	ENSP0000		NM_0011972				0,0
17	22	22	1	C	Т	00141505	00574388	0459169	ASGR1	16.2	c.615G>A	p.W205*		001
	71279	71279				ENSG000	ENST000	ENSP0000		NM_0010338				
17	43	43	1	A	C	00072778	00350303	0344152	ACADVL	59.1	c.1613-18A>C			
	77493	77493				ENSG000	ENST000	ENSP0000		NM_0010804				
17	78	78	1	A	C	00132510	00254846	0254846	KDM6B	24.1	c.237-18A>C			
	16593	16593				ENSG000	ENST000	ENSP0000						0,0
17	767	767	1	C	Т	00170160	00360524	0353717	CCDC144A	NM_014695.1	c.53C>T	p.P18L		001
	19644	19644				ENSG000	ENST000	ENSP0000		NM_0011351				
17	449	449	1	G	A	00108602	00444455	0388469	ALDH3A1	68.1	c.764C>T	p.S255L		
	20483	20483				ENSG000	ENST000	ENSP0000		NM_0011907	c.621_622delCG			
17	817	818	2	CG	TA	00214819	00399044	0382000	CDRT15L2	90.1	insTA	p.G208R		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	20483	20483				ENSG000	ENST000	ENSP0000		NM_0011907				
17	978	978	1	A	Т	00214819	00399044	0382000	CDRT15L2	90.1	c.782A>T	p.K261M		
	30349	30349				ENSG000	ENST000	ENSP0000						0,0
17	288	288	1	G	A	00185158	00341671	0340519	LRRC37B	NM_052888.2	c.1123G>A	p.E375K		001
	38420	38420				ENSG000	ENST000	ENSP0000						0,0
17	822	822	1	G	A	00171475	00585043	0462826	WIPF2	NM_133264.4	c.394G>A	p.G132R		001
	38935	38935				ENSG000	ENST000	ENSP0000					rs1879	0,0
17	880	880	1	C	Т	00171446	00301656	0301656	KRT27	NM_181537.3	c.847-1G>A		44199	018
	40214	40214				ENSG000	ENST000	ENSP0000		NM_0012427			rs1925	0,0
17	866	866	1	C	Т	00187595	00436535	0411514	ZNF385C	04.1	c.209G>A	p.R70Q	00977	014
	41165	41165				ENSG000	ENST000	ENSP0000						
17	784	784	1	Т	G	00068079	00438323	0395590	IFI35	NM_005533.4	c.569-9T>G			
	41246	41246				ENSG000	ENST000	ENSP0000					rs8176	
17	725	725	1	C	Т	00012048	00493795	0418775	BRCA1	NM_007297.3	c.682G>A	p.G228S	153	
	42170	42170				ENSG000	ENST000	ENSP0000		NM_0010150				
17	192	192	1	Т	G	00108840	00225983	0225983	HDAC5	53.1	c.645-18A>C			
	42739	42739				ENSG000	ENST000	ENSP0000		NM_0011450			rs7817	0,0
17	823	823	1	A	Т	00180336	00409122	0386452	C17orf104	80.2	c.343A>T	p.I115F	9276	023
	43013	43013				ENSG000	ENST000	ENSP0000		NM_0012645				0,0
17	460	460	1	С	G	00186185	00438933	0412798	KIF18B	73.1	c.253G>C	p.V85L		018
	43911	43911				ENSG000	ENST000	ENSP0000		NM_0011451			rs1134	
17	064	064	1	A	C	00120088	00352855	0344068	CRHR1	47.1	c.810-16A>C		66703	

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	43911	43911				ENSG000	ENST000	ENSP0000		NM_0011451				
17	068	068	1	G	C	00120088	00352855	0344068	CRHR1	47.1	c.810-12G>C			
	43911	43911				ENSG000	ENST000	ENSP0000		NM_0011451				
17	073	073	1	A	C	00120088	00352855	0344068	CRHR1	47.1	c.810-7A>C			
	48458	48458				ENSG000	ENST000	ENSP0000		NM_0011661				
17	239	239	1	G	A	00154920	00511648	0421700	EME1	31.1	c.1691G>A	p.R564K		
	60765	60765				ENSG000	ENST000	ENSP0000				p.S1026	rs1414	0,0
17	878	878	1	C	G	00011028	00303375	0307513	MRC2	NM_006039.4	c.3078C>G	R	22219	004
	67293	67293				ENSG000	ENST000	ENSP0000						
17	389	389	1	C	G	00154265	00392676	0376443	ABCA5	NM_172232.2	c.1379G>C	p.S460T		
	73888	73888				ENSG000	ENST000	ENSP0000					rs6175	0,0
17	431	431	1	G	A	00141569	00269383	0269383	TRIM65	NM_173547.3	c.661C>T	p.R221W	5877	024
	47091	47091				ENSG000	ENST000	ENSP0000						
18	704	704	1	A	C	00101670	00261292	0261292	LIPG	NM_006033.2	c.115A>C	p.K39Q		
	19144	19144				ENSG000	ENST000	ENSP0000						
18	171	171	1	A	C	00141446	00269214	0269214	ESCO1	NM_052911.2	c.1814T>G	p.L605W		
	50832	50832				ENSG000	ENST000	ENSP0000						
18	036	036	1	G	A	00187323	00442544	0389140	DCC	NM_005215.3	c.2000G>A	p.R667H		
	55328	55328				ENSG000	ENST000	ENSP0000						
18	615	615	1	C	Т	00081923	00536015	0445359	ATP8B1	NM_005603.4	c.2498G>A	p.R833Q		
	55992	55992				ENSG000	ENST000	ENSP0000						
18	265	265	1	С	Т	00049759	00382850	0372301	NEDD4L	NM_015277.5	c.551C>T	p.S184F		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	56202	56202				ENSG000	ENST000	ENSP0000				p.R1595		
18	636	636	1	G	A	00198796	00361673	0354991	ALPK2	NM_052947.3	c.4783C>T	C		
											c.392_409del(C			
											CGCGGCCG)2i			
	60383	60383		(CCGCG	CCGCG	ENSG000	ENST000	ENSP0000			nsCCGCGGCC	p.A135_		
18	308	325	18	GCCG)2	GCCG	00081913	00262719	0262719	PHLPP1	NM_194449.3	G	A137del		
	14608	14608				ENSG000	ENST000	ENSP0000						
19	12	12	1	G	A	00115266	00535453	0442954	APC2	NM_005883.2	c.1477G>A	p.A493T		
	18800	18800				ENSG000	ENST000	ENSP0000		NM_0011301				
19	51	51	1	A	C	00129968	00292577	0292577	FAM108A1	11.1	c.396T>G	p.I132M		
	37600	37600				ENSG000	ENST000	ENSP0000						
19	55	55	1	C	Т	00011132	00316757	0315136	APBA3	NM_004886.3	c.208G>A	p.D70N		
	75325	75325				ENSG000	ENST000	ENSP0000			c.2442+6_7delC			
19	76	77	2	CG	TA	00104880	00319670	0319200	ARHGEF18	NM_015318.3	GinsTA			
	75899	75899				ENSG000	ENST000	ENSP0000						
19	57	57	1	T	C	00090674	00264079	0264079	MCOLN1	NM_020533.2	c.142T>C	p.F48L		
	79385	79385				ENSG000	ENST000	ENSP0000		NM_0011904				
19	98	98	1	G	Т	00183248	00539422	0438970		67.1	c7-17C>A			
	79746	79746				ENSG000	ENST000	ENSP0000						
19	27	27	1	C	G	00076984	00397979	0381066	MAP2K7	NM_145185.2	c.125-13C>G			
	83674	83674				ENSG000	ENST000	ENSP0000		NM_0011658			rs1461	0,0
19	24	24	1	G	A	00167775	00537716	0437697	CD320	95.1	c.646C>T	p.R216C	90802	004

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	90096	90096				ENSG000	ENST000	ENSP0000				p.H1303		
19	37	37	1	Т	C	00181143	00397910	0381008	MUC16	NM_024690.2	c.39089A>G	0R		
	90097	90097				ENSG000	ENST000	ENSP0000			c.39020_39021d	p.V1300		
19	05	06	2	(A)2	GC	00181143	00397910	0381008	MUC16	NM_024690.2	el(T)2insGC	7G		
	90097	90097				ENSG000	ENST000	ENSP0000						
19	11	11	1	Т	A	00181143	00397910	0381008	MUC16	NM_024690.2	c.39015A>T			
	92367	92367				ENSG000	ENST000	ENSP0000		NM_0010019			rs1175	0,0
19	24	24	1	C	G	00170920	00305444	0302867	OR7G3	58.1	c.903G>C	p.L301F	81914	046
	92970	92970				ENSG000	ENST000	ENSP0000					rs1451	0,0
19	79	79	1	G	A	00188000	00344248	0345563	OR7D2	NM_175883.2	c.622G>A	p.V208I	18134	01
	10370	10370				ENSG000	ENST000	ENSP0000						
19	280	280	1	A	C	00105364	00253099	0253099	MRPL4	NM_146387.1	c.740-13A>C			
	15353	15353				ENSG000	ENST000	ENSP0000				p.H1021		
19	818	818	1	T	G	00141867	00263377	0263377	BRD4	NM_058243.2	c.3062A>C	P		
	15758	15758				ENSG000	ENST000	ENSP0000						0,0
19	064	064	1	C	Т	00186529	00221307	0221307	CYP4F3	NM_000896.2	c.455C>T	p.T152M		001
	17317	17317				ENSG000	ENST000	ENSP0000						
19	048	048	1	A	C	00099331	00397274	0380444	МҮО9В	NM_004145.3	c.5258-9A>C			
	17434	17434				ENSG000	ENST000	ENSP0000				p.Q1186		
19	468	468	1	Т	G	00074855	00159087	0159087	ANO8	NM_020959.2	c.3557A>C	P		
	17434	17434				ENSG000	ENST000	ENSP0000				p.A1184		
19	475	475	1	C	G	00074855	00159087	0159087	ANO8	NM_020959.2	c.3550G>C	P		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	17566	17566				ENSG000	ENST000	ENSP0000						
19	481	481	1	T	C	00171773	00301944	0305631	NXNL1	NM_138454.1	c.614A>G	p.E205G		
	19824	19824				ENSG000	ENST000	ENSP0000						
19	930	930	1	Т	C	00105708	00344099	0340514	ZNF14	NM_021030.2	c.161A>G	p.D54G		
	18649	18649				ENSG000	ENST000	ENSP0000					rs1133	0,0
19	227	227	1	G	C	00105701	00222308	0222308	FKBP8	NM_012181.3	c.571C>G	p.P191A	07565	009
	36277	36277				ENSG000	ENST000	ENSP0000		NM_0011726				
19	888	888	1	Т	C	00004777	00378944	0368227	ARHGAP33	30.1	c.2108T>C	p.L703P		
	41076	41076				ENSG000	ENST000	ENSP0000				p.P2414		
19	555	555	1	C	G	00160460	00352632	0263373	SPTBN4	NM_020971.2	c.7240C>G	A		
	42083	42083				ENSG000	ENST000	ENSP0000		NM_0010985				
19	557	557	1	C	A	00007129	00401445	0385739	CEACAM21	06.1	c.70C>A	p.L24I		
	42799	42799				ENSG000	ENST000	ENSP0000						
19	299	299	1	Т	C	00079432	00160740	0160740	CIC	NM_015125.3	c.4783T>C	p.S1595P		
	44660	44660				ENSG000	ENST000	ENSP0000						
19	888	888	1	G	C	00263002	00426739	0400878	ZNF234	NM_006630.2	c.719G>C	p.G240A		
	46280	46280				ENSG000	ENST000	ENSP0000		NM_0010815			rs1429	0,0
19	721	721	1	G	C	00104936	00447742	0413417	DMPK	60.1	c.1010C>G	p.P337R	36719	005
	51052	51052				ENSG000	ENST000	ENSP0000		NM_0010804				
19	134	134	1	T	G	00131409	00389201	0373853	LRRC4B	57.1	c35-4A>C			
	51172	51172				ENSG000	ENST000	ENSP0000				p.H1014		
19	176	176	1	Т	G	00161681	00293441	0293441	SHANK1	NM_016148.2	c.3041A>C	P		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	53432	53432				ENSG000	ENST000	ENSP0000		NM_0012024				
19	353	353	1	T	C	00221874	00391777	0375656	ZNF321P	73.1	c.505A>G	p.I169V		
	54872	54872				ENSG000	ENST000	ENSP0000					rs1180	0,0
19	611	611	1	A	Т	00167613	00391742	0375622	LAIR1	NM_002287.3	c.276T>A	p.S92R	56835	032
	54872	54872				ENSG000	ENST000	ENSP0000					rs3745	0,0
19	698	698	1	C	G	00167613	00391742	0375622	LAIR1	NM_002287.3	c.189G>C	p.E63D	442	034
	55106	55106				ENSG000	ENST000	ENSP0000						
19	765	765	1	G	A	00104974	00251372	0251372	LILRA1	NM_006863.1	c.559G>A	p.V187M		
	55738	55738				ENSG000	ENST000	ENSP0000						
19	691	691	1	G	A	00180089	00327042	0321038	ТМЕМ86В	NM_173804.4	c.539C>T	p.T180M		
	57640	57640				ENSG000	ENST000	ENSP0000						
19	830	830	1	A	G	00131864	00254181	0254181	USP29	NM_020903.2	c.787A>G	p.S263G		
	27292	27292				ENSG000	ENST000	ENSP0000						0,0
2	520	520	1	C	G	00084693	00360131	0353249	AGBL5	NM_021831.5	c.2435C>G	p.P812R		001
	61145	61145				ENSG000	ENST000	ENSP0000						
2	512	512	1	G	Т	00162924	00295025	0295025	REL	NM_002908.2	c.641-17G>T			
	97643	97643				ENSG000	ENST000	ENSP0000		NM_0011726				
2	678	678	1	Т	G	00168754	00417561	0413245	FAM178B	67.1	c.402-9A>C			
	97808	97808				ENSG000	ENST000	ENSP0000		NM_0011643			rs7535	
2	562	562	1	A	С	00135976	00461153	0419530	ANKRD36	15.1	c.891A>C	p.K297N	9815	
	11960	11960				ENSG000	ENST000	ENSP0000						
2	4523	4523	1	A	G	00163064	00295206	0295206	EN1	NM_001426.3	c.221T>C	p.L74P		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	21152	21152				ENSG000	ENST000	ENSP0000		NM_0011226	c.2206-			
2	1243	1244	2	(G)2	G	00021826	00451903	0406136	CPS1	34.2	5_6del(G)2insG			
	21933	21933				ENSG000	ENST000	ENSP0000						
2	9593	9593	1	G	A	00135913	00258399	0258399	USP37	NM_020935.2	c.2059C>T	p.P687S		
	22037	22037				ENSG000	ENST000	ENSP0000						
2	9295	9295	1	C	Т	00072182	00347842	0326627	ASIC4	NM_182847.2	c.230C>T	p.S77L		
	48604	48604				ENSG000	ENST000	ENSP0000						
20	396	396	1	G	A	00124216	00244050	0244050	SNA11	NM_005985.3	c.611-13G>A			
	23993	23993				ENSG000	ENST000	ENSP0000			c.277_278delGT			
20	6	7	2	GT	AC	00186458	00382376	0371813	DEFB132	NM_207469.2	insAC	p.V93T		
	38338	38338				ENSG000	ENST000	ENSP0000		NM_0012427				
21	738	738	1	G	C	00159267	00399120	0382071	HLCS	85.1	c1202+6C>G			
	38338	38338				ENSG000	ENST000	ENSP0000		NM_0012427				
21	742	742	1	A	C	00159267	00399120	0382071	HLCS	85.1	c1202+2T>G			
	24640	24640				ENSG000	ENST000	ENSP0000						
22	612	612	1	C	Т	00099998	00327365	0330080	GGT5	NM_004121.2	c.82G>A	p.V28I		
	26879	26879				ENSG000	ENST000	ENSP0000		NM_0010136	c.129_132del(G			
22	985	988	4	(GA)2	(C)4	00100104	00215917	0215917	SRRD	94.2	A)2ins(C)4	p.R44P		
	37465	37465				ENSG000	ENST000	ENSP0000						
22	391	391	1	T	G	00187045	00346753	0334962	TMPRSS6	NM_153609.2	c.1869-7A>C			
	37465	37465				ENSG000	ENST000	ENSP0000						
22	396	396	1	Т	G	00187045	00346753	0334962	TMPRSS6	NM_153609.2	c.1869-12A>C			

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	37465	37465				ENSG000	ENST000	ENSP0000						
22	401	401	1	T	G	00187045	00346753	0334962	TMPRSS6	NM_153609.2	c.1869-17A>C			
	39811	39811				ENSG000	ENST000	ENSP0000						
22	620	620	1	G	A	00100324	00331454	0333049	TAB1	NM_153497.2	c.286G>A	p.E96K		
	40814	40814				ENSG000	ENST000	ENSP0000						
22	743	743	1	C	G	00196588	00407029	0385835	MKL1	NM_020831.3	c.1699G>C	p.A567P		
	42609	42609				ENSG000	ENST000	ENSP0000						
22	636	636	1	G	A	00100207	00335626	0335561	TCF20	NM_181492.1	c.1676C>T	p.S559L		
	43089	43089				ENSG000	ENST000	ENSP0000						
22	747	747	1	A	G	00128274	00249005	0249005	A4GALT	NM_017436.4	c.211T>C	p.S71P		
	45309	45309				ENSG000	ENST000	ENSP0000						
22	916	916	1	A	G	00056487	00313237	0324403	PHF21B	NM_138415.4	c.617T>C	p.L206P		
	50691	50691				ENSG000	ENST000	ENSP0000						
22	914	914	1	C	G	00188130	00215659	0215659	MAPK12	NM_002969.3	c.1025-5G>C			
	99525	99525				ENSG000	ENST000	ENSP0000						0,0
3	38	38	1	C	Т	00163701	00295980	0295980	IL17RE	NM_153483.2	c.803-11C>T			001
	99913	99913				ENSG000	ENST000	ENSP0000					rs1510	0,0
3	69	69	1	G	C	00163704	00412055	0392511	PRRT3	NM_207351.3	c.431C>G	p.P144R	64606	014
	10081	10081				ENSG000	ENST000	ENSP0000					rs3493	0,0
3	411	411	1	A	G	00144554	00287647	0287647	FANCD2	NM_033084.3	c.577A>G	p.T193A	6017	013
	14770	14770				ENSG000	ENST000	ENSP0000		NM_0011849				0,0
3	005	005	1	A	Т	00131379	00435614	0402933	C3orf20	58.1	c.1384A>T	p.M462L		002

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	38938	38938				ENSG000	ENST000	ENSP0000						
3	538	538	1	T	C	00168356	00302328	0307599	SCN11A	NM_014139.2	c.2201A>G	p.K734R		
	38962	38962				ENSG000	ENST000	ENSP0000						
3	699	699	1	C	A	00168356	00302328	0307599	SCN11A	NM_014139.2	c.760G>T	p.V254F		
	47451	47451				ENSG000	ENST000	ENSP0000						
3	435	435	1	C	Т	00076201	00265562	0265562	PTPN23	NM_015466.2	c.2147C>T	p.P716L		
	47890	47890				ENSG000	ENST000	ENSP0000						
3	558	558	1	G	A	00132153	00446256	0392601	DHX30	NM_014966.3	c.2801G>A	p.R934H		
	49159	49159				ENSG000	ENST000	ENSP0000				p.G1676		
3	190	190	1	C	A	00172037	00418109	0388325	LAMB2	NM_002292.3	c.5027G>T	V		
	49159	49159				ENSG000	ENST000	ENSP0000			c.5026_5027del(
3	190	191	2	(C)2	AT	00172037	00418109	0388325	LAMB2	NM_002292.3	G)2insAT	p.G1676I		
	49694	49694				ENSG000	ENST000	ENSP0000				p.P2484		
3	439	439	1	C	A	00164061	00296452	0296452	BSN	NM_003458.3	c.7450C>A	Т		
	49744	49744				ENSG000	ENST000	ENSP0000						
3	320	320	1	G	A	00164068	00327697	0328287	RNF123	NM_022064.3	c.2485G>A	p.V829I		
	50293	50293				ENSG000	ENST000	ENSP0000						
3	609	609	1	A	C	00114353	00313601	0312999	GNAI2	NM_002070.2	c.465-15A>C			
	10871	10871				ENSG000	ENST000	ENSP0000					rs3527	0,0
3	9436	9436	1	C	G	00114487	00232603	0232603	MORC1	NM_014429.3	c.2155G>C	p.D719H	6036	031
	13366	13366				ENSG000	ENST000	ENSP0000						
3	6229	6229	1	С	Т	00174640	00310926	0311291	SLCO2A1	NM_005630.2	c.1166G>A	p.R389H		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	14152	14152				ENSG000	ENST000	ENSP0000					rs1508	0,0
3	6640	6640	1	G	A	00114124	00264952	0264952	GRK7	NM_139209.2	c.1204G>A	p.D402N	40377	021
	15048	15048				ENSG000	ENST000	ENSP0000					rs1373	
3	0489	0489	1	C	Т	00181788	00312960	0322457	SIAH2	NM_005067.5	c.148G>A	p.A50T	419	
	15709	15709				ENSG000	ENST000	ENSP0000					rs1476	0,0
3	9066	9066	1	C	Т	00197415	00362010	0354919	VEPH1	NM_024621.2	c.1006G>A	p.D336N	44993	021
	17283	17283				ENSG000	ENST000	ENSP0000						
3	5032	5032	1	G	A	00144962	00351008	0341765	SPATA16	NM_031955.5	c.490C>T	p.H164Y		
	19033	19033				ENSG000	ENST000	ENSP0000						
3	8053	8053	1	A	Т	00196083	00072516	0072516	IL1RAP	NM_002182.3	c.538-11A>T			
	16027	16027				ENSG000	ENST000	ENSP0000				p.T1402		
4	7040	7040	1	A	C	00109756	00264431	0264431	RAPGEF2	NM_014247.2	c.4204A>C	P		
	16405	16405				ENSG000	ENST000	ENSP0000						
4	0104	0104	1	A	G	00145414	00274054	0274054	NAF1	NM_138386.2	c.1430T>C	p.L477P		
	11872	11872				ENSG000	ENST000	ENSP0000					rs7697	
5	8510	8510	1	G	Т	00145779	00503646	0421848	TNFAIP8	NM_014350.2	c.32-1G>T		7268	
	16902	16902				ENSG000	ENST000	ENSP0000						
5	0350	0350	1	G	Т	00040275	00265295	0265295	CCDC99	NM_017785.4	c.337-8G>T			
	16930	16930				ENSG000	ENST000	ENSP0000		NM_0011298				
5	9989	9989	1	G	Т	00204767	00377365	0366582	FAM196B	91.1	c.914C>A	p.S305Y		
	75856	75856				ENSG000	ENST000	ENSP0000		NM_0010088		p.K2107		
6	12	12	1	A	Т	00096696	00418664	0396591	DSP	44.1	c.6320A>T	M		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var-	VarFreq
	20548	20548				ENSG000	ENST000	ENSP0000						
6	808	808	1	A	Т	00145996	00378610	0367873	CDKAL1	NM_017774.3	c.174-16A>T			
	32084	32084				ENSG000	ENST000	ENSP0000					rs1454	0,0
6	259	259	1	T	C	00213676	00375203	0364349	ATF6B	NM_004381.4	c.1880A>G	p.N627S	10874	039
	32489	32489				ENSG000	ENST000	ENSP0000						
6	933	933	1	T	C	00198502	00374975	0364114	HLA-DRB5	NM_002125.3	c.119A>G	p.D40G		
	32800	32800				ENSG000	ENST000	ENSP0000						
6	192	192	1	Т	C	00204267	00374897	0364032	TAP2	NM_000544.3	c.1190A>G	p.Q397R		
	41118	41118				ENSG000	ENST000	ENSP0000					rs3592	0,0
6	000	000	1	A	G	00161911	00373127	0362219	TREML1	NM_178174.2	c.620T>C	p.M207T	9443	018
	42819	42819				ENSG000	ENST000	ENSP0000						
6	894	894	1	G	A	00112624	00394167	0377722	KIAA0240	NM_015349.1	c.1904G>A	p.R635K		
	47846	47846				ENSG000	ENST000	ENSP0000		NM_0010137				
6	965	965	1	Т	C	00244694	00339488	0341914	PTCHD4	32.3	c.1615A>G	p.R539G		
	66204	66204				ENSG000	ENST000	ENSP0000					rs1126	0,0
6	970	970	1	C	Т	00188107	00342421	0341818	EYS	NM_198283.1	c.334G>A	p.V112I	09906	036
	76618	76618				ENSG000	ENST000	ENSP0000					rs7537	
6	195	195	1	G	Т	00196586	00369977	0358994	MYO6	NM_004999.3	c.3281-18G>T		1739	
	90347	90347				ENSG000	ENST000	ENSP0000						
6	546	546	1	C	Т	00083099	00523377	0430025	LYRM2	NM_020466.4	c.101G>A	p.R34Q		
	11691	11691				ENSG000	ENST000	ENSP0000						
6	4129	4129	1	G	Т	00111832	00392526	0376311	RWDD1	NM_016104.2	c.323-14G>T			

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	13781	13781				ENSG000	ENST000	ENSP0000					rs1177	0,0
6	4509	4509	1	A	G	00177468	00367734	0356708	OLIG3	NM_175747.2	c.799T>C	p.S267P	70313	039
	13856	13856				ENSG000	ENST000	ENSP0000						
6	6721	6721	1	G	A	00112379	00251691	0251691	KIAA1244	NM_020340.4	c.658G>A	p.A220T		
	16049	16049				ENSG000	ENST000	ENSP0000				p.N1734		
6	6913	6913	1	A	G	00197081	00356956	0349437	IGF2R	NM_000876.2	c.5201A>G	S		
	16772	16772				ENSG000	ENST000	ENSP0000		NM_0011439				
6	8900	8900	1	Т	C	00112494	00366829	0355794	UNC93A	47.1	c.1208T>C	p.V403A		
	21946	21946				ENSG000	ENST000	ENSP0000		NM_0011273				
7	208	208	1	A	G	00164649	00373934	0363045	CDCA7L	71.2	c.593T>C	p.V198A		
	73011	73011				ENSG000	ENST000	ENSP0000						
7	713	713	1	Т	G	00009950	00429400	0406296	MLXIPL	NM_032952.2	c.1402A>C	p.T468P		
	73254	73254				ENSG000	ENST000	ENSP0000						
7	749	749	1	G	A	00165171	00297873	0297873	WBSCR27	NM_152559.2	c.383C>T	p.P128L		
	73790	73790				ENSG000	ENST000	ENSP0000						
7	332	332	1	C	Т	00106665	00223398	0223398	CLIP2	NM_003388.4	c.1601C>T	p.P534L		
	77003	77003				ENSG000	ENST000	ENSP0000						
7	444	444	1	G	Т	00186088	00257626	0257626	PION	NM_017439.3	c.814C>A	p.Q272K		
	87912	87912				ENSG000	ENST000	ENSP0000						
7	485	485	1	Т	C	00127954	00380079	0369419	STEAP4	NM_024636.3	c.457-2A>G			
	10030	10030				ENSG000	ENST000	ENSP0000					rs1454	0,0
7	4745	4745	1	G	A	00172336	00303151	0304353	POP7	NM_005837.2	c.292G>A	p.V98M	47976	022

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	10769	10769				ENSG000	ENST000	ENSP0000				p.T1274		
7	2637	2637	1	G	Т	00091128	00205386	0205386	LAMB4	NM_007356.2	c.3821C>A	K		
	12276	12276				ENSG000	ENST000	ENSP0000					rs1389	0,0
7	8941	8941	1	C	Т	00081800	00194130	0194130	SLC13A1	NM_022444.3	c.1091G>A	p.R364Q	89506	003
	12848	12848				ENSG000	ENST000	ENSP0000		NM_0011274			rs3493	0,0
7	0629	0629	1	G	A	00128591	00346177	0344002	FLNC	87.1	c.1577G>A	p.R526Q	2223	013
	13461	13461				ENSG000	ENST000	ENSP0000						
7	7968	7968	1	G	A	00122786	00424922	0393621	CALD1	NM_033140.3	c.430G>A	p.E144K		
	37692	37692				ENSG000	ENST000	ENSP0000						0,0
8	731	731	1	C	Т	00020181	00412232	0406367	GPR124	NM_032777.9	c.1648C>T	p.P550S		001
	38869	38869				ENSG000	ENST000	ENSP0000					rs6175	0,0
8	207	207	1	G	A	00168615	00487273	0419446	ADAM9	NM_003816.2	c.226G>A	p.E76K	3672	039
	87076	87076				ENSG000	ENST000	ENSP0000					rs3403	0,0
8	250	250	1	Т	G	00147613	00276616	0276616	PSKH2	NM_033126.1	c.796A>C	p.S266R	7815	028
	88218	88218				ENSG000	ENST000	ENSP0000						
8	218	218	1	G	Т	00176571	00518476	0430073	CNBD1	NM_173538.2	c.432-3G>T			
	95403	95403				ENSG000	ENST000	ENSP0000						
8	896	896	1	A	Т	00197275	00336148	0336606	RAD54B	NM_012415.3	c.1750T>A	p.C584S		
	99560	99560				ENSG000	ENST000	ENSP0000		NM_0012563				
8	206	206	1	T	C	00104375	00523601	0429744	STK3	12.1	c.1216A>G	p.T406A		
	12150	12150				ENSG000	ENST000	ENSP0000					rs1481	0,0
8	2795	2795	1	Т	G	00172167	00305949	0303398	MTBP	NM_022045.3	c.1432T>G	p.L478V	51530	016

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-CDNA	MutProt	Var- Name	VarFreq
	13982	13982				ENSG000	ENST000	ENSP0000						
8	4118	4118	1	T	G	00169436	00303045	0303153	COL22A1	NM_152888.1	c.1373A>C	p.Q458P		
	12614	12614				ENSG000	ENST000	ENSP0000						
9	4211	4211	1	T	G	00119522	00373624	0362727	DENND1A	NM_020946.1	c.2530A>C	p.T844P		
	13964	13964				ENSG000	ENST000	ENSP0000					rs4880	0,0
9	2896	2896	1	A	G	00204003	00341206	0339621	LCN6	NM_198946.2	c.40T>C	p.S14P	139	026
	13974	13974				ENSG000	ENST000	ENSP0000					rs1479	
9	9114	9114	1	G	A	00177943	00317446	0319388	MAMDC4	NM_206920.2	c.920G>A	p.R307Q	96833	
	14012	14012				ENSG000	ENST000	ENSP0000						
9	9083	9083	1	G	A	00198569	00361134	0355353	SLC34A3	NM_080877.2	c.1235G>A	p.R412Q		
	14017	14017				ENSG000	ENST000	ENSP0000						0,0
9	4327	4327	1	G	A	00198113	00357503	0350102	TOR4A	NM_017723.2	c.1186G>A	p.A396T		001
	15223	15223				ENSG000	ENST000	ENSP0000			c.1646-			
X	83	84	2	CT	-	00169093	00381317	0370718	ASMTL	NM_004192.3	1_2delAG			
	41056	41056				ENSG000	ENST000	ENSP0000		NM_0010395				
X	599	599	1	A	C	00124486	00324545	0316357	USP9X	90.2	c.4234-18A>C			
	15320	15320				ENSG000	ENST000	ENSP0000						
X	7399	7399	1	Т	С	00102032	00393700	0377303	RENBP	NM_002910.5	c.769+4A>G			

Nach dem Ausschluss von Sequenzierartefakten wurden diese Varianten nachfolgend hinsichtlich ihres funktionellen Einflusses auf das kodierte Protein und ihrer Frequenz in der gesunden Allgemeinbevölkerung charakterisiert und gefiltert. Mittels dieser Strategie konnten in der Familie LKG11 zwei heterozygote Veränderungen in den Genen *NEDD4L* und *PAX6* bestimmt werden. Die Veränderung c.551C>T führt an der Position 184 zu einem Austausch der Aminosäure Serin durch Phenylalanin in *NEDD4L* (p.Ser184Phe), während die Veränderung c.1004C>G zu einem Austausch der Aminosäure Alanin an Position 335 des *PAX6*-Proteins durch Glyzin führt (p.(Ala335Gly)) (Tabelle 43).

Tabelle 43: Übersicht der in Familie LKG11 identifizierten Varianten und ihre Charakterisierung mittels unterschiedlicher Prädiktionsprogramme.

Genomische	Gen	Transkript	HGVS	HGVS	Allelfre-		Präd	liktion	
Lokalisation (hg19)			cDNA	Protein	quenz (gno- mAD)	SIFT	Poly- Phen- 2	Muta- tion Taster	CADD
chr11:31815056	PAX6	ENST000004190 22.1	c.1004C >G	p.(Ala335Gly)	0.0000278	Т	В	DC	6.3
chr18:55992265	NED D4L	ENST000004003 45.3	c.551C> T	p.(Ser184Phe)	0.0000963	Т	PoD	DC	22.8

T, tolerated; B, benign; PoD, possibly damaging; DC, disease causing.

Während die identifizierte *PAX6*-Variante aufgrund fehlender Ko-Segregation innerhalb der Familie LKG11 sowie der bioinformatischen Prädiktion als Polymorphismus klassifiziert wurde, ergab die Sanger-Sequenzierung der *NEDD4L*-Veränderung für die restlichen Proben dieser Familie eine weitgehende Ko-Segregation dieser Variante mit dem Phänotyp in der Familie (vgl. Abbildung 5, Abbildung 23 und Abbildung 24). Mit Ausnahme von Individuum Gö295, für welches die klinischen Angaben nahelegten, dass es sich um eine nicht betroffene Person handelt, konnte die Veränderung c.551C>T in *NEDD4L* bei allen betroffen Personen innerhalb der Familie nachgewiesen werden. Patienten, die von einer Spalte betroffen sind, weisen die Mutation auf und Familienmitglieder, die nicht Träger einer Spalte sind, tragen die Veränderung nicht.

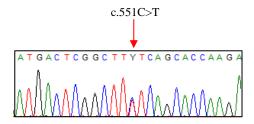


Abbildung 7: Exemplarische Darstellung der in Familie LKG11 identifizierten Sequenzveränderung c.551C>T im *NEDD4L*-Gen.

Die Abbildung zeigt die Sequenzveränderung für Patient Gö135.

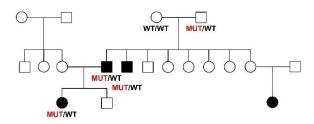


Abbildung 24: Stammbaum der Familie LKG11 mit Lippen-Kiefer-Gaumenspalte; Ko-Segregation.

Ausgefüllte Symbole, betroffene Individuen; MUT= Mutation; WT=Wildtyp.

3.2.3 Genetische Analysen der Familien LKG12, LKG21 und LKG-Kamerun

Im Rahmen dieser Arbeit wurden drei weitere Familie mit Patienten mit isolierter Lippen-Kiefer-Gaumenspalte analog zu unter 3.2.1 und 3.2.2 beschriebenem Vorgehen genetisch untersucht.

In Familie LKG12 waren zwei Patienten von einer Lippen-Kiefer-Gaumenspalte betroffen (vgl. Abbildung 6 und Abbildung 25).

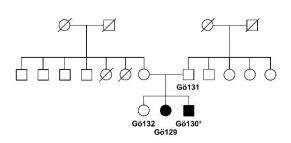


Abbildung 25: Stammbaum der Familie LKG12 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Es wurde eine Exomanalyse mit DNA eines Patienten, Gö130, durchgeführt und durch Anwendung von verschiedenen Filterstrategien konnten zwei potenzielle heterozygote Varianten in *FGFR1* und *FGFR3* identifiziert werden, die als mögliche, ursächliche Veränderungen in Frage kamen und näher charakterisiert wurden (vgl. Tabelle 44).

Tabelle 44: Übersicht der in Familie LKG12 identifizierten Varianten und ihre Charakterisierung mittels unterschiedlicher Prädiktionsprogramme.

Genomische	Gen	Transkript	HGVS	HGVS	Allelfre-		Präd	liktion	
Lokalisation (hg19)			cDNA	Protein	quenz (gno- mAD)	SIFT	Poly- Phen- 2	Muta- tion Taster	CADD
chr4:1808270	FGFR3	ENST00000340 107	c.2037- 3C>T	-	0.0000520	-	-	-	0.06
chr8:38271462	FGFR1	ENST00000425 967	c.2359C >T	p.(Arg787Cys)	0.000004	D	PD	DC	32

D, deleterious; PD, probably damaging; DC, disease causing.

Die Variante c.2037-3C>T, die bei Patient Gö130 identifiziert wurde, befindet sich in Intron 15 des *FGFR3*-Gens in unmittelbarer Nähe zur Akzeptor-Spleißstelle des Introns. Veränderungen an dieser Position können daher einen Einfluss auf den Spleißvorgang haben und somit die Expression von funktionellem *FGFR3*-Protein direkt beeinflussen. Die Veränderung c.2359C>T in *FGFR1* führt an der Position 787 zu einem Austausch der Aminosäure Arginin durch Cystein in *FGFR1* (p.Arg787Cys). Bei beiden Varianten handelt es sich um Veränderungen, die eine sehr niedrige Frequenz in der gesunden Allgemeinbevölkerung aufweisen. Die nachfolgende Untersuchung der Ko-Segregation der Veränderungen ergab jedoch für beide Varianten keine Ko-Segregation innerhalb der Familie LKG12. Beide Varianten konnten bei dem klinisch unauffälligen Individuum Gö131 nachgewiesen werden, zusätzlich lag die c.2037C>A Veränderung in *FGFR3* nicht bei der betroffenen Patientin Gö129 vor.

Für die Familie LKG21 lagen insgesamt DNA-Proben von sechs Individuen vor (vgl. Abbildung 7 und Abbildung 26).

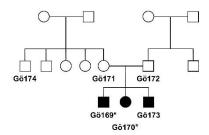


Abbildung 26: Stammbaum der Familie LKG21 mit Lippen-Kiefer-Gaumenspalte.

Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Zur Identifizierung einer möglichen genetischen Ursache für die vorliegende Lippen-Kiefer-Gaumenspalte bei den Individuen Gö169 und Gö170 und Gö173 wurde eine Exomanalyse mit DNA der Patienten Gö169 und Gö170 durchgeführt und im Rahmen dieser Arbeit auf mögliche ursächliche Varianten hin untersucht. Basierend auf den Angaben im Stammbaum der Familie wurden die erhaltenen Daten unter der Annahme eines autosomal rezessiven Vererbungsmusters nach homozygoten und compound heterozygoten Varianten analysiert, die bei beiden betroffenen Individuen vorlagen. Insgesamt konnten so vier Varianten ermittelt werden, die bei beiden Betroffenen homozygot vorlagen, sowie elf Varianten, für die beide betroffenen Individuen compound-heterozygot waren. Diese Veränderungen wurden anschließend hinsichtlich ihres Effekts auf das kodierte Protein und die zelluläre Funktion der kodierten Proteine charakterisiert und eingeordnet. Dies führte zum Ausschluss aller identifizierten homozygoten und compound-heterozygoten Varianten, so dass in dieser Familie mittels dieser Analysestrategie bislang keine ursächliche pathogene Veränderung für die vorliegende Lippen-Kiefer-Gaumenspalte gefunden werden konnte.

Für die Familie LKG-Kamerun lagen insgesamt acht familiäre DNA-Proben vor, darunter zwei Proben von Patienten, bei denen klinisch die Diagnose einer Lippen-Kiefer-Gaumenspalte gestellt wurde (vgl. Abbildung 8 und Abbildung 27; Gö66 sowie Gö72).

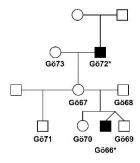


Abbildung 27: Stammbaum der Familie LKG-Kamerun mit Lippen-Kiefer-Gaumenspalte. Ausgefüllte Symbole, betroffene Individuen; *, Proben, die mittels Exomanalyse untersucht wurden.

Mit DNA dieser beiden Patienten wurde eine Exomanalyse durchgeführt und die erhaltenen genetischen Daten wurden unter der Annahme eines autosomal dominanten Erbgangs analysiert. Dies führte zur Identifizierung von insgesamt 217 Varianten, die in beiden Patienten heterozygot vorlagen und nachfolgend hinsichtlich des Vorkommens von Artefakten und ihres funktionellen Einflusses auf das kodierte Protein näher charakterisiert wurden (Tabelle 45).

Tabelle 45: Filterungsergebnis in Familie LKG-Kamerun.

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	980452	980452				ENSG00000	ENST00000	ENSP00000		NM_001009			rs77609	0,00
1	5	5	1	Т	C	171603	377298	366513	CLSTN1	566.1	c.1162A>G	p.I388V	933	22
	101908	101908				ENSG00000	ENST00000	ENSP00000		NM_001105				
1	48	48	1	C	G	130939	343090	343001	UBE4B	562.2	c.1888C>G	p.Q630E		
	119187	119187				ENSG00000	ENST00000	ENSP00000		NM_002521			rs15122	0,00
1	94	94	1	C	G	120937	376468	365651	NPPB	.2	c.97G>C	p.G33R	2918	07
	160969	160969				ENSG00000	ENST00000	ENSP00000		NM_017556				
1	30	30	1	G	A	162458	375766	364921	FBLIM1	.2	c.568G>A	p.V190M		
	165340	165340				ENSG00000	ENST00000	ENSP00000		NM_153213			rs14317	0,00
1	74	74	1	G	T	142632	270747	270747	ARHGEF19	.3	c.817C>A	p.P273T	8874	47
	175508	175508				ENSG00000	ENST00000	ENSP00000		NM_013358			rs14296	0,00
1	89	89	1	G	A	142623	375471	364620	PADI1	.2	c.374G>A	p.R125H	4003	06
	284767	284767				ENSG00000	ENST00000	ENSP00000		NM_001164			rs14086	0,00
1	13	13	1	С	T	169403	539896	442658	PTAFR	723.2	c.820G>A	p.A274T	6472	45
	151742	151742				ENSG00000	ENST00000	ENSP00000		NM_001134			rs11506	0,00
1	689	689	1	Т	C	143450	321531	313922	OAZ3	939.1	c.386T>C	p.V129A	9090	49
	158612	158612				ENSG00000	ENST00000	ENSP00000		NM_003126				
1	683	683	1	A	C	163554	368148	357130	SPTA1	.2	c.4526T>G	p.L1509R		
	161069	161069				ENSG00000	ENST00000	ENSP00000		NM_152366			rs15049	0,00
1	277	277	1	G	A	162755	368011	356990	KLHDC9	.4	c.669G>A	p.W223*	3322	15

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	159779	159779				ENSG00000	ENST00000	ENSP00000		NM_001004	c.877_878del			
1	464	465	2	TC	CT	181036	368106	357086	FCRL6	310.2	TCinsCT	p.S293L		
	167666	167666				ENSG00000	ENST00000	ENSP00000		NM_052862			rs75676	0,00
1	706	706	1	C	T	198771	367854	356828	RCSD1	.3	c.845C>T	p.P282L	729	32
	173881	173881				ENSG00000	ENST00000	ENSP00000		NM_000488			rs14352	0,00
1	032	032	1	G	A	117601	367698	356671	SERPINC1	.3	c.529C>T	p.R177C	1873	08
	201352	201352				ENSG00000	ENST00000	ENSP00000		NM_005558			rs11502	0,00
1	206	206	1	C	Т	159166	391967	375829	LAD1	.3	c.1382G>A	p.R461Q	5356	24
	201981	201981				ENSG00000	ENST00000	ENSP00000		NM_004433			rs35303	0,00
1	129	129	1	A	G	163435	367284	356253	ELF3	.4	c.208A>G	p.T70A	464	33
	204394	204394				ENSG00000	ENST00000	ENSP00000		NM_002646			rs11514	0,00
1	081	081	1	C	Т	133056	367187	356155	PIK3C2B	.3	c.4804G>A	p.V1602I	0808	37
	207010	207010				ENSG00000	ENST00000	ENSP00000		NM_013371			rs14961	0,00
1	072	072	1	A	G	142224	270218	270218	IL19	.3	c.65A>G	p.N22S	8619	06
	209799	209799				ENSG00000	ENST00000	ENSP00000		NM_001127			rs14172	0,00
1	366	366	1	C	Т	196878	367030	355997	LAMB3	641.1	c.1603G>A	p.D535N	3352	12
	214815	214815				ENSG00000	ENST00000	ENSP00000		NM_016343			rs14298	0,00
1	994	994	1	A	G	117724	366955	355922	CENPF	.3	c.4313A>G	p.Y1438C	4971	08
	215814	215814				ENSG00000	ENST00000	ENSP00000		NM_206933				
1	062	062	1	C	Т	042781	307340	305941	USH2A	.2	c.14806G>A	p.A4936T		
	223853	223853				ENSG00000	ENST00000	ENSP00000		NM_001143				0,00
1	119	119	1	C	Т	203697	419193	401665	CAPN8	962.1	c.230G>A	p.R77Q		04

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	226016	226016				ENSG00000	ENST00000	ENSP00000		NM_001136			rs11540	0,00
1	551	551	1	G	A	143819	272167	272167	EPHX1	018.2	c.121G>A	p.A41T	967	09
	748820	748820				ENSG00000	ENST00000	ENSP00000		NM_015901				
10	61	61	1	A	C	166321	357321	349874	NUDT13	.4	c.352A>C	p.I118L		
	768544	768544				ENSG00000	ENST00000	ENSP00000		NM_001007			rs61737	0,00
10	62	62	1	C	T	079393	372700	361785	DUSP13	272.1	c.719G>A	p.R240Q	441	32
	778184	778184				ENSG00000	ENST00000	ENSP00000		NM_032024				
10	37	37	1	T	C	148655	372499	361577	C10orf11	.3	c.328T>C	p.Y110H		
	915225	915225				ENSG00000	ENST00000	ENSP00000		NM_016195			rs14323	0,00
10	58	58	1	A	G	138182	260753	260753	KIF20B	.2	c.4835A>G	p.K1612R	5231	09
	915325	915325				ENSG00000	ENST00000	ENSP00000		NM_016195			rs14524	0,00
10	86	86	1	G	A	138182	260753	260753	KIF20B	.2	c.5263G>A	p.V1755M	2589	09
	952752	952752				ENSG00000	ENST00000	ENSP00000		NM_018131			rs14670	0,00
10	73	73	1	C	A	138180	371485	360540	CEP55	.4	c.640C>A	p.H214N	0713	05
	960841	960841				ENSG00000	ENST00000	ENSP00000		NM_016341			rs11192	0,00
10	22	22	1	A	G	138193	260766	260766	PLCE1	.3	c.6518A>G	p.K2173R	9795	32
	977869	977869				ENSG00000	ENST00000	ENSP00000		NM_001159			rs11168	0,00
10	73	73	1	G	A	188649	451649	411217	CC2D2B	747.1	c.844G>A	p.E282K	7262	23
	105651	105651				ENSG00000	ENST00000	ENSP00000		NM_024928			rs14686	0,00
10	955	955	1	G	A	107960	224950	224950	OBFC1	.4	c.809C>T	p.A270V	7381	23
	751133	751133		TG		ENSG00000	ENST00000	ENSP00000		NM_001260	c.266_268del		rs14183	
11	58	60	3	G	-	149273	278572	278572	RPS3	506.1	TGG	p.V90del	7939	

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	961176	961176				ENSG00000	ENST00000	ENSP00000		NM_024725			rs14517	0,00
11	41	41	1	G	C	149231	423339	397156	CCDC82	.3	c.271C>G	p.Q91E	1089	17
	108559	108559				ENSG00000	ENST00000	ENSP00000		NM_004398			rs14304	0,00
11	761	761	1	G	A	178105	322536	314348	DDX10	.2	c.947G>A	p.S316N	9163	06
	111583	111583				ENSG00000	ENST00000	ENSP00000		NM_015191			rs14208	0,00
11	019	019	1	G	A	170145	304987	305976	SIK2	.1	c.1186G>A	p.V396M	9853	13
	116729	116729				ENSG00000	ENST00000	ENSP00000		NM_025164				0,00
11	221	221	1	G	A	160584	292055	292055	SIK3	.3	c.2642C>T	p.P881L		01
	118772	118772				ENSG00000	ENST00000	ENSP00000		NM_182557			rs14863	0,00
11	018	018	1	G	A	186174	334801	335320	BCL9L	.2	c.2434C>T	p.L812F	0206	49
	122817	122817				ENSG00000	ENST00000	ENSP00000		NM_024806			rs14464	0,00
11	429	429	1	C	Т	109944	227349	227349	C11orf63	.2	c.1858C>T	p.R620C	5253	02
	123989	123989				ENSG00000	ENST00000	ENSP00000		NM_014622			rs14573	0,00
11	718	718	1	G	A	110002	456829	407726	VWA5A	.4	c.682G>A	p.V228M	1633	26
	124757	124757				ENSG00000	ENST00000	ENSP00000		NM_019055			rs14802	0,00
11	039	039	1	A	Т	154133	306534	304945	ROBO4	.5	c.2269T>A	p.C757S	9461	15
	128710	128710				ENSG00000	ENST00000	ENSP00000		NM_153767			rs13918	0,00
11	122	122	1	C	Т	151704	392665	376433	KCNJ1	.2	c.17G>A	p.R6Q	5738	1
	437713	437713				ENSG00000	ENST00000	ENSP00000		NM_025003			rs76289	0,00
12	62	62	1	C	Т	173157	389420	374071	ADAMTS20	.3	c.4801G>A	p.A1601T	805	44
	491656	491656				ENSG00000	ENST00000	ENSP00000		NM_020983			rs13846	0,00
12	48	48	1	G	A	174233	550422	446730	ADCY6	.2	c.2737C>T	p.R913C	5901	05

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	499939	499939			AT	ENSG00000	ENST00000	ENSP00000		NM_032130	c.1494_1495i	p.E498_M4		
12	29	28	3	-	C	135436	257894	257894	FAM186B	.2	nsGAT	99insD		
	578642	578642				ENSG00000	ENST00000	ENSP00000		NM_001160				
12	85	85	1	С	G	111087	543426	437607	GLI1	045.1	c.1378C>G	p.L460V		
											c.1476_1478			
	580191	580191		GG	CG	ENSG00000	ENST00000	ENSP00000		NM_133489	delGGCinsC			
12	95	97	3	С	T	135502	320442	320217	SLC26A10	.2	GT	p.A493V		
	640618	640618				ENSG00000	ENST00000	ENSP00000		NM_173812			rs14211	0,00
12	82	82	1	C	A	177990	324472	315988	DPY19L2	.4	c.292G>T	p.E98*	9548	49
	650852	650852				ENSG00000	ENST00000	ENSP00000		NM_178169			rs80197	0,00
12	33	33	1	C	T	153179	336061	336616	RASSF3	.3	c.458-17C>T		243	46
	806331	806331				ENSG00000	ENST00000	ENSP00000		NM_173591				0,00
12	34	34	1	A	C	165899	458043	400895	OTOGL	.3	c.940A>C	p.I314L		02
	861987	861987				ENSG00000	ENST00000	ENSP00000		NM_005447			rs11130	0,00
12	73	73	1	T	C	198774	361228	354884	RASSF9	.3	c.1015A>G	p.I339V	5817	38
	250277	250277				ENSG00000	ENST00000	ENSP00000		NM_006437	c.2806_2807			
13	44	45	2	AT	GC	102699	381989	371419	PARP4	.3	delATinsGC	p.M936A		
	368279	368279				ENSG00000	ENST00000	ENSP00000		NM_001198			rs79770	0,00
13	69	69	1	G	A	242715	503173	426174	CCDC169	908.1	c.439C>T	p.R147C	535	24
	381589	381589				ENSG00000	ENST00000	ENSP00000		NM_006475			rs95942	0,00
13	45	45	1	G	A	133110	379747	369071	POSTN	.2	c.1016C>T	p.T339I	23	49

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	413330	413330				ENSG00000	ENST00000	ENSP00000		NM_005830			rs19078	0,00
13	97	97	1	G	A	102738	323563	315397	MRPS31	.3	c.586C>T	p.R196*	9123	01
	428739	428739				ENSG00000	ENST00000	ENSP00000		NM_016248			rs15053	0,00
13	15	15	1	A	G	023516	025301	025301	AKAP11	.3	c.1033A>G	p.I345V	3586	32
	428744	428744				ENSG00000	ENST00000	ENSP00000		NM_016248			rs14664	0,00
13	25	25	1	Α	G	023516	025301	025301	AKAP11	.3	c.1543A>G	p.I515V	6278	18
	428744	428744				ENSG00000	ENST00000	ENSP00000		NM_016248			rs14139	0,00
13	34	34	1	A	G	023516	025301	025301	AKAP11	.3	c.1552A>G	p.I518V	2488	34
	462881	462881				ENSG00000	ENST00000	ENSP00000		NM_152719				0,00
13	49	49	1	T	C	174015	310521	309189	SPERT	.1	c.989T>C	p.M330T		17
	532827	532827				ENSG00000	ENST00000	ENSP00000		NM_007015			rs13840	0,00
13	31	31	1	A	C	136110	377962	367198	LECT1	.2	c.729T>G	p.N243K	7146	05
	619881	619881				ENSG00000	ENST00000	ENSP00000		NM_022843	c.133-			
13	07	06	1	_	G	197991	409186	386653	PCDH20	.3	7_8insC			
	759363	759363				ENSG00000	ENST00000	ENSP00000		NM_014832			rs11560	0,00
13	34	34	1	Т	G	136111	377636	366863	TBC1D4	.2	c.908A>C	p.D303A	0951	31
	761119	761119				ENSG00000	ENST00000	ENSP00000		NM_203495			rs11163	0,00
13	29	29	1	Т	C	188243	406936	385660	COMMD6	.2	c.13A>G	p.S5G	3743	43
	863691	863691				ENSG00000	ENST00000	ENSP00000		NM_032229				
13	88	88	1	Т	С	184564	400286	383143	SLITRK6	.2	c.1456A>G	p.K486E		
	102675	102675				ENSG00000	ENST00000	ENSP00000		NM_001242			rs61731	0,00
14	307	307	1	G	C	140153	556807	450636	WDR20	416.1	c.617G>C	p.C206S	156	42

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	105410	105410				ENSG00000	ENST00000	ENSP00000		NM_138420				
14	629	629	1	T	C	185567	333244	353114	AHNAK2	.2	c.11159A>G	p.H3720R		
											c.4555_4557			
	105417	105417		AG	GG	ENSG00000	ENST00000	ENSP00000		NM_138420	delTC-			
14	231	233	3	A	T	185567	333244	353114	AHNAK2	.2	TinsACC	p.S1519T		
	161018	161018				ENSG00000	ENST00000	ENSP00000		NM_004996			rs18776	0,00
16	09	09	1	G	A	103222	399410	382342	ABCC1	.3	c.185G>A	p.R62Q	9078	13
	285494	285494				ENSG00000	ENST00000	ENSP00000		NM_012385			rs14999	0,00
16	71	71	1	C	Т	176046	324873	315559	NUPR1	.2	c.118G>A	p.G40R	7819	07
	574905	574905				ENSG00000	ENST00000	ENSP00000		NM_020312				0,00
16	04	04	1	G	A	088682	262507	262507	COQ9	.3	c.467G>A	p.R156Q		02
	672202	672202				ENSG00000	ENST00000	ENSP00000		NM_178516			rs73586	0,00
16	56	56	1	A	G	179044	314586	325674	EXOC3L1	.3	c.1386-6T>C		907	5
	673274	673274				ENSG00000	ENST00000	ENSP00000		NM_001100			rs73592	0,00
16	70	70	1	C	Т	168676	304372	305702	KCTD19	915.1	c.2195G>A	p.S732N	842	49
	701874	701874				ENSG00000	ENST00000	ENSP00000		NM_017990				
16	60	60	1	G	A	090857	288050	288050	PDPR	.3	c.2219G>A	p.R740Q		
	728315	728315				ENSG00000	ENST00000	ENSP00000		NM_001164				
16	87	87	1	G	Т	140836	397992	438926	ZFHX3	766.1	c.2252C>A	p.T751N		
	812192	812192				ENSG00000	ENST00000	ENSP00000		NM_001076				0,00
16	92	92	1	G	A	166473	337114	337397	PKD1L2	780.1	c.1802C>T	p.A601V		01

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	842147	842147				ENSG00000	ENST00000	ENSP00000		NM_001243				
16	01	01	1	C	G	103168	570117	455247	TAF1C	159.1	c.338G>C	p.G113A		
	842297	842297				ENSG00000	ENST00000	ENSP00000		NM_001145			rs14335	0,00
16	68	68	1	G	A	140955	315906	325153	ADAD2	400.1	c.1318G>A	p.A440T	4458	08
											c.6693_6695			
	885006	885006		GA	AA	ENSG00000	ENST00000	ENSP00000		NM_001127	delGAAin-			
16	55	57	3	A	G	225614	437464	402343	ZNF469	464.1	sAAG	p.K2232R		
	888047	888047				ENSG00000	ENST00000	ENSP00000		NM_001142			rs11440	0,00
16	65	65	1	Т	C	103335	301015	301015	PIEZO1	864.2	c.718A>G	p.I240V	3731	5
	892912	892912			GT	ENSG00000	ENST00000	ENSP00000		NM_001201			rs11356	
16	11	10	4	-	GA	170100	306502	305203	ZNF778	407.1			0259	
	431018	431018				ENSG00000	ENST00000	ENSP00000		NM_024819				0,00
17	06	06	1	C	T	172992	342350	341504	DCAKD	.4	c.691G>A	p.A231T		04
	456737	456737				ENSG00000	ENST00000	ENSP00000		NM_006310			rs19079	0,00
17	95	95	1	G	C	141279	322157	320324	NPEPPS	.3	c.1503G>C	p.M501I	5420	03
	291264	291264				ENSG00000	ENST00000	ENSP00000		NM_001943			rs15086	0,00
18	31	31	1	G	A	046604	261590	261590	DSG2	.3	c.3082G>A	p.G1028S	4240	16
	441404	441404				ENSG00000	ENST00000	ENSP00000		NM_144612			rs11504	0,00
18	23	23	1	G	C	167210	536736	444586	LOXHD1	.6	c.2684C>G	p.T895S	2043	12
	441744	441744				ENSG00000	ENST00000	ENSP00000		NM_144612			rs11539	0,00
18	02	02	1	Т	С	167210	536736	444586	LOXHD1	.6	c.1162A>G	p.I388V	5163	1

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	105416	105416				ENSG00000	ENST00000	ENSP00000		NM_001111			rs28610	0,00
19	83	83	1	C	G	065989	293683	293683	PDE4A	308.1	c.163C>G	p.P55A	998	47
	168610	168610				ENSG00000	ENST00000	ENSP00000		NM_001007			rs14802	0,00
19	84	84	1	G	A	188039	379808	369136	NWD1	525.3	c.1631G>A	p.R544Q	9259	22
	169185	169185				ENSG00000	ENST00000	ENSP00000		NM_001007			rs14401	0,00
19	49	49	1	G	A	188039	379808	369136	NWD1	525.3	c.3889G>A	p.E1297K	3868	36
	169189	169189				ENSG00000	ENST00000	ENSP00000		NM_001007			rs14798	0,00
19	18	18	1	C	T	188039	379808	369136	NWD1	525.3	c.4258C>T	p.R1420C	4852	39
	175664	175664				ENSG00000	ENST00000	ENSP00000		NM_138454				
19	81	81	1	T	C	171773	301944	305631	NXNL1	.1	c.614A>G	p.E205G		
	429059	429059				ENSG00000	ENST00000	ENSP00000		NM_005357				
19	79	79	1	G	C	079435	244289	244289	LIPE	.2	c.3216C>G	p.C1072W		
	469730	469730				ENSG00000	ENST00000	ENSP00000		NM_018215			rs11539	0,00
19	02	02	1	G	A	182013	313683	318131	PNMAL1	.3	c.1291C>T	p.R431C	5326	25
	515192	515192				ENSG00000	ENST00000	ENSP00000		NM_145888				0,00
19	00	00	1	C	T	129451	358789	351640	KLK10	.2	c.482G>A	p.R161H		03
	522494	522494				ENSG00000	ENST00000	ENSP00000		NM_002029			rs14221	0,00
19	42	42	1	C	Т	171051	304748	302707	FPR1	.3	c.806G>A	p.R269H	0016	45
	529193	529193				ENSG00000	ENST00000	ENSP00000		NM_032423				
19	25	25	1	G	C	167555	360465	353652	ZNF528	.2	c.1220G>C	p.R407T		
	530865	530865				ENSG00000	ENST00000	ENSP00000		NM_001172				
19	65	65	1	Т	A	167562	540331	444339	ZNF701	655.1	c.1451T>A	p.V484D		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	534537	534537				ENSG00000	ENST00000	ENSP00000		NM_001202			rs14507	0,00
19	64	64	1	C	T	180257	357666	350295	ZNF816	457.1	c.1264G>A	p.E422K	4022	28
	573255	573255				ENSG00000	ENST00000	ENSP00000		NM_006210			rs13957	0,00
19	37	37	1	G	C	198300	326441	326581	PEG3	.2	c.4273C>G	p.P1425A	0920	31
	577167	577167				ENSG00000	ENST00000	ENSP00000		NM_003417			rs61730	0,00
19	68	68	1	G	A	083844	536056	440376	ZNF264	.4	c.164G>A	p.C55Y	300	34
	578675	578675				ENSG00000	ENST00000	ENSP00000		NM_020657			rs61731	0,00
19	93	93	1	G	A	131845	282286	282286	ZNF304	.2	c.356G>A	p.R119H	266	43
	586395	586395				ENSG00000	ENST00000	ENSP00000		NM_024620				
19	91	91	1	Т	C	181894	358067	350773	ZNF329	.3	c.1280A>G	p.Y427C		
	320080	320080				ENSG00000	ENST00000	ENSP00000		NM_003310			rs14058	0,00
2	1	1	1	C	Т	032389	382125	371559	TSSC1	.2	c.517-13G>A		2772	22
	365379	365379				ENSG00000	ENST00000	ENSP00000		NM_001255			rs14103	0,00
2	8	8	1	C	G	118004	402922	385653	COLEC11	988.1	c.17C>G	p.P6R	2325	5
	117184	117184				ENSG00000	ENST00000	ENSP00000		NM_033090			rs11133	0,00
2	99	99	1	C	A	196208	381483	370892	GREB1	.2	c.714C>A	p.F238L	7760	14
	154328	154328				ENSG00000	ENST00000	ENSP00000		NM_015909			rs14086	0,00
2	66	66	1	Т	C	151779	281513	281513	NBAS	.2	c.4822A>G	p.M1608V	8609	26
	272613	272613				ENSG00000	ENST00000	ENSP00000		NM_017727				0,00
2	75	75	1	G	C	119777	238788	238788	TMEM214	.4	c.1268G>C	p.S423T		03
	290928	290928				ENSG00000	ENST00000	ENSP00000		NM_017910			rs13893	0,00
2	25	25	1	С	Т	171103	306108	302801	TRMT61B	.3	c.319G>A	p.G107R	4242	11

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	314722	314722				ENSG00000	ENST00000	ENSP00000		NM_014600			rs11641	0,00
2	83	83	1	G	A	013016	322054	327116	EHD3	.2	c.451G>A	p.V151I	7209	26
	152476	152476				ENSG00000	ENST00000	ENSP00000		NM_001164			rs13979	0,00
2	093	093	1	C	T	183091	427231	416578	NEB	507.1	c.10744G>A	p.V3582I	8654	2
	177053	177053				ENSG00000	ENST00000	ENSP00000		NM_024501				
2	728	728	1	G	C	128645	331462	328598	HOXD1	.1	c.199G>C	p.A67P		
	183822	183822				ENSG00000	ENST00000	ENSP00000		NM_205842				
2	314	314	1	Т	C	061676	360982	354251	NCKAP1	.1	c.1910A>G	p.K637R		
	196729	196729				ENSG00000	ENST00000	ENSP00000		NM_018897	c.7006_7007	p.H2336Cfs		
2	372	373	2	TG	_	118997	312428	311273	DNAH7	.2	delCA	*23		
	196729	196729				ENSG00000	ENST00000	ENSP00000		NM_018897	c.7002_7003			
2	376	377	2	TG	GA	118997	312428	311273	DNAH7	.2	delCAinsTC	p.S2335R		
	211456	211456				ENSG00000	ENST00000	ENSP00000		NM_001122			rs10478	
2	637	637	1	A	Т	021826	430249	402608	CPS1	633.2	c.1048A>T	p.T350S	83	
	216176	216176				ENSG00000	ENST00000	ENSP00000		NM_004044			rs13898	0,00
2	870	870	1	C	Т	138363	236959	236959	ATIC	.6	c.5C>T	p.A2V	8481	34
	219263	219263				ENSG00000	ENST00000	ENSP00000		NM_001206				
2	158	158	1	C	Т	144579	443891	392248	CTDSP1	878.1	c.23C>T	p.T8I		
	219508	219508				ENSG00000	ENST00000	ENSP00000		NM_001105				0,00
2	180	180	1	C	Т	115568	411696	398798	ZNF142	537.1	c.3059G>A	p.R1020H		04
	219603	219603				ENSG00000	ENST00000	ENSP00000		NM_014640			rs14865	0,00
2	790	790	1	A	G	135912	392102	375951	TTLL4	.4	c.1391A>G	p.N464S	9460	11

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	219617	219617				ENSG00000	ENST00000	ENSP00000		NM_014640			rs14035	0,00
2	897	897	1	T	G	135912	392102	375951	TTLL4	.4	c.3247T>G	p.S1083A	2764	04
	219874	219874				ENSG00000	ENST00000	ENSP00000		NM_194302			rs14224	0,00
2	702	702	1	C	G	181378	441968	413377	CCDC108	.2	c.4414G>C	p.A1472P	4209	02
	299770	299770				ENSG00000	ENST00000	ENSP00000		NM_153323	c.83_84delA-			
20	11	12	2	GT	AC	180483	376315	365492	DEFB119	.3	CinsGT	p.H28R		
	195115	195115				ENSG00000	ENST00000	ENSP00000		NM_003277				0,00
22	20	20	1	C	T	184113	403084	384554	CLDN5	.3	c.514G>A	p.A172T		22
	213853	213853				ENSG00000	ENST00000	ENSP00000		NM_004173			rs14775	0,00
22	93	93	1	C	Т	099960	403586	384278	SLC7A4	.2	c.709G>A	p.V237I	2463	32
	251155	251155				ENSG00000	ENST00000	ENSP00000		NM_001255			rs11593	0,00
22	24	24	1	T	C	184571	332271	330031	PIWIL3	975.1	c.2564A>G	p.Y855C	7238	45
	261813	261813				ENSG00000	ENST00000	ENSP00000		NM_032608			rs11290	0,00
22	97	97	1	C	T	133454	536101	441229	MYO18B	.5	c.2315C>T	p.T772M	0389	48
	262702	262702				ENSG00000	ENST00000	ENSP00000		NM_032608				
22	92	92	1	C	A	133454	536101	441229	MYO18B	.5	c.3991C>A	p.Q1331K		
	296599	296599				ENSG00000	ENST00000	ENSP00000		NM_012265			rs22313	0,00
22	53	53	1	G	A	100263	216085	216085	RHBDD3	.1	c.403C>T	p.R135C	94	34
											c.1407_1409			
	329142	329142		CT		ENSG00000	ENST00000	ENSP00000		NM_133633	delGAG-			
22	31	33	3	C	(T)3	185666	358763	351614	SYN3	.2	ins(A)3	p.S470N		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	313309	313309				ENSG00000	ENST00000	ENSP00000		NM_014941			rs14449	0,00
22	17	17	1	C	T	133422	215862	215862	MORC2	.1	c.1858G>A	p.V620I	3873	05
	361249	361249				ENSG00000	ENST00000	ENSP00000		NM_030642			rs14358	0,00
22	37	37	1	C	T	128313	249044	249044	APOL5	.1	c.1294C>T	p.R432*	1523	07
	367082	367082				ENSG00000	ENST00000	ENSP00000		NM_002473	c.1555-		rs14864	0,00
22	79	79	1	G	A	100345	216181	216181	МҮН9	.4	12C>T		1114	45
	385652	385652				ENSG00000	ENST00000	ENSP00000		NM_001199			rs11570	0,00
22	47	47	1	Т	C	184381	335539	335149	PLA2G6	562.1	c.187A>G	p.R63G	606	41
	453124	453124				ENSG00000	ENST00000	ENSP00000		NM_138415			rs15084	0,00
22	30	30	1	G	C	056487	313237	324403	PHF21B	.4	c.294C>G	p.F98L	4420	11
	509627	509627				ENSG00000	ENST00000	ENSP00000		NM_005138				
22	62	62	1	C	T	130489	535425	444242	SCO2	.2	c.79G>A	p.G27R		
						ENSG00000	ENST00000	ENSP00000		NM_001253			rs13800	0,00
3	407753	407753	1	G	A	134121	397491	380628	CHL1	387.1	c.1658G>A	p.S553N	0940	1
	998480	998480				ENSG00000	ENST00000	ENSP00000		NM_001031				
3	5	5	1	C	T	163703	326434	321856	CRELD1	717.3	c.862C>T	p.R288C		
	429566	429566				ENSG00000	ENST00000	ENSP00000		NM_207404			rs13984	0,00
3	70	70	1	Т	G	182983	440367	405047	ZNF662	.3	c.1105T>G	p.F369V	1182	03
	430743	430743				ENSG00000	ENST00000	ENSP00000		NM_001129			rs11567	0,00
3	71	71	1	G	C	144649	430121	407301	FAM198A	908.2	c.616G>C	p.A206P	2213	41
	522557	522557				ENSG00000	ENST00000	ENSP00000		NM_017442				
3	39	39	1	C	Т	239732	360658	353874	TLR9	.3	c.2593G>A	p.E865K		

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	575285	575285				ENSG00000	ENST00000	ENSP00000		NM_198564			rs11606	0,00
3	09	09	1	A	G	174844	311202	312554	DNAH12	.3	c.89T>C	p.I30T	6702	18
	645472	645472				ENSG00000	ENST00000	ENSP00000		NM_182920	c.4698+6T>			0,00
3	48	48	1	A	G	163638	498707	418735	ADAMTS9	.1	C			03
	670545	670545				ENSG00000	ENST00000	ENSP00000		NM_032505			rs35999	0,00
3	64	64	1	A	T	163376	417314	401878	KBTBD8	.2	c.1173A>T	p.K391N	415	18
	111297	111297				ENSG00000	ENST00000	ENSP00000		NM_005816			rs61733	0,00
3	908	908	1	A	C	153283	352690	342040	CD96	.4	c.578A>C	p.Q193P	706	46
	165688	165688				ENSG00000	ENST00000	ENSP00000		NM_001174				0,00
4	3	3	1	G	C	174137	461064	418243	FAM53A	070.1	c.704C>G	p.P235R		43
	185763	185763				ENSG00000	ENST00000	ENSP00000		NM_012318				
4	8	8	1	G	A	168924	302787	305653	LETM1	.2	c.40C>T	p.P14S		
	428123	428123				ENSG00000	ENST00000	ENSP00000		NM_017816			rs13990	0,00
4	0	0	1	G	A	145220	452476	397367	LYAR	.2	c.373C>T	p.H125Y	8100	18
	579879	579879				ENSG00000	ENST00000	ENSP00000		NM_153717			rs14490	0,00
4	0	0	1	G	A	072840	264956	264956	EVC	.2	c.1928G>A	p.R643H	6677	02
	809883	809883				ENSG00000	ENST00000	ENSP00000		NM_001130				
4	2	2	1	A	C	163995	447017	393511	ABLIM2	083.1	c.332T>G	p.V111G		
	389244	389244				ENSG00000	ENST00000	ENSP00000		NM_138389			rs35331	0,00
4	09	09	1	Т	C	197712	358869	351740	FAM114A1	.2	c.964T>C	p.S322P	702	3
	424031	424031				ENSG00000	ENST00000	ENSP00000		NM_001080				
4	34	34	1	A	G	178343	319234	326445	SHISA3	505.1	c.383A>G	p.E128G		

Chr	Start	End	Size	Ref	Allele	Ens-	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	528608	528608				ENSG00000	ENST00000	ENSP00000		NM_001024			rs19173	0,00
4	84	84	1	A	C	188993	343457	341944	LRRC66	611.1	c.2304T>G	p.N768K	6191	04
	128816	128816				ENSG00000	ENST00000	ENSP00000		NM_014264			rs11386	0,00
4	138	138	1	A	G	142731	270861	270861	PLK4	.4	c.2593A>G	p.T865A	7661	07
	126355	126355				ENSG00000	ENST00000	ENSP00000		NM_024582			rs14510	0,00
4	433	433	1	A	G	196159	394329	377862	FAT4	.4	c.7052A>G	p.N2351S	5421	12
	140213	140213				ENSG00000	ENST00000	ENSP00000		NM_002494			rs72939	0,00
4	733	733	1	C	G	109390	394223	377770	NDUFC1	.3	c.202G>C	p.E68Q	460	07
	727945	727945				ENSG00000	ENST00000	ENSP00000		NM_001037				0,00
5	25	25	1	C	G	145741	380591	369965	BTF3	637.1	c.33C>G	p.D11E		08
	763730	763730				ENSG00000	ENST00000	ENSP00000		NM_032367	c.636_637del			
5	67	68	2	GC	(T)2	132846	255198	255198	ZBED3	.2	GCins(A)2	p.P213T		
	763732	763732				ENSG00000	ENST00000	ENSP00000		NM_032367	c.463_464del			
5	40	41	2	AG	GC	132846	255198	255198	ZBED3	.2	CTinsGC	p.L155A		
	790259	790259				ENSG00000	ENST00000	ENSP00000		NM_153610			rs11413	0,00
5	99	99	1	G	A	164309	446378	394770	CMYA5	.3	c.1411G>A	p.A471T	4827	35
	806596	806596				ENSG00000	ENST00000	ENSP00000		NM_130767				
5	84	84	1	C	Т	172497	307624	303246	ACOT12	.2	c.283G>A	p.D95N		
	981289	981289				ENSG00000	ENST00000	ENSP00000		NM_001012			rs11603	0,00
5	37	37	1	G	A	174136	308234	308219	RGMB	761.2	c.917G>A	p.S306N	8820	16
	112228	112228				ENSG00000	ENST00000	ENSP00000		NM_001204			rs19122	0,00
5	031	031	1	A	G	212643	391338	375133	ZRSR1	199.1	c.695A>G	p.Y232C	7399	18

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	139940	139940				ENSG00000	ENST00000	ENSP00000		NM_006051			rs14612	0,00
5	345	345	1	G	A	113108	354402	346378	APBB3	.3	c.938-6C>T		2293	45
	140235	140235				ENSG00000	ENST00000	ENSP00000		NM_031859			rs13809	0,00
5	760	760	1	T	C	250120	307360	304234	PCDHA10	.1	c.127T>C	p.F43L	2357	1
	140579	140579				ENSG00000	ENST00000	ENSP00000		NM_018931			rs14927	0,00
5	537	537	1	G	A	197479	354757	346802	PCDHB11	.2	c.190G>A	p.A64T	7755	02
	140810	140810				ENSG00000	ENST00000	ENSP00000		NM_032094			rs11218	0,00
5	888	888	1	G	Т	253159	252085	252085	PCDHGA12	.1	c.562G>T	p.G188C	6927	48
	141243	141243				ENSG00000	ENST00000	ENSP00000		NM_032420				
5	593	593	1	C	Т	156453	287008	287008	PCDH1	.2	c.2303G>A	p.G768E		
	148682	148682				ENSG00000	ENST00000	ENSP00000		NM_001146			rs14302	0,00
5	030	030	1	A	G	157510	515000	424427	AFAP1L1	337.1	c.377A>G	p.Y126C	1070	13
	149431	149431				ENSG00000	ENST00000	ENSP00000		NM_014983			rs19269	0,00
5	516	516	1	G	A	113716	502717	421917	HMGXB3	.2	c.3640G>A	p.G1214S	6313	04
	149751	149751				ENSG00000	ENST00000	ENSP00000		NM_001195			rs18827	0,00
5	795	795	1	G	A	070814	439160	406888	TCOF1	141.1	c.866G>A	p.S289N	9654	05
	168244	168244				ENSG00000	ENST00000	ENSP00000		NM_003062			rs14362	0,00
5	341	341	1	C	Т	184347	519560	430333	SLIT3	.2	c.757G>A	p.V253M	7388	03
	740473	740473				ENSG00000	ENST00000	ENSP00000		NM_153005			rs78123	0,00
6	8	8	1	G	A	124784	379834	369162	RIOK1	.1	c.942G>A	p.M314I	723	3
	788899	788899				ENSG00000	ENST00000	ENSP00000		NM_030810			rs14530	0,00
6	0	0	1	G	A	239264	379757	369081	TXNDC5	.3	c.911C>T	p.T304I	5681	2

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	294085	294085				ENSG00000	ENST00000	ENSP00000		NM_013941	c.762_763del			
6	54	55	2	AC	CA	206474	444197	419119	OR10C1	.3	ACinsCA	p.L255I		
	333857	333857				ENSG00000	ENST00000	ENSP00000		NM_001014			rs14891	0,00
6	59	59	1	G	A	112514	488034	417544	CUTA	840.1	c.19C>T	p.P7S	8153	19
	350463	350463				ENSG00000	ENST00000	ENSP00000		NM_015245				
6	92	92	1	C	G	064999	360359	353518	ANKS1A	.2	c.2242C>G	p.H748D		
	354713	354713				ENSG00000	ENST00000	ENSP00000		NM_003322			rs74461	0,00
6	62	62	1	C	Т	112041	229771	229771	TULP1	.3	c.1297G>A	p.E433K	100	18
	369766	369766				ENSG00000	ENST00000	ENSP00000		NM_173558			rs73730	0,00
6	54	54	1	A	G	146192	274963	274963	FGD2	.3	c.113A>G	p.H38R	511	4
	426180	426180				ENSG00000	ENST00000	ENSP00000		NM_015255			rs13988	0,00
6	68	68	1	T	C	024048	372899	361990	UBR2	.2	c.2509T>C	p.C837R	9031	2
	431937	431937				ENSG00000	ENST00000	ENSP00000		NM_199184			rs22338	0,00
6	59	59	1	T	G	112667	393987	377556	C6orf108	.1	c.388A>C	p.K130Q	25	5
	564017	564017				ENSG00000	ENST00000	ENSP00000		NM_015548				0,00
6	38	38	1	C	A	151914	244364	244364	DST	.4	c.8740G>T	p.V2914L		06
	758486	758486				ENSG00000	ENST00000	ENSP00000		NM_004370				
6	60	60	1	T	C	111799	322507	325146	COL12A1	.5	c.4975A>G	p.T1659A		
	758581	758581				ENSG00000	ENST00000	ENSP00000		NM_004370				0,00
6	65	65	1	C	Т	111799	322507	325146	COL12A1	.5	c.4196G>A	p.R1399H		01
	759535	759535				ENSG00000	ENST00000	ENSP00000		NM_001865			rs11312	0,00
6	16	16	1	С	G	112695	370081	359098	COX7A2	.3	c.31G>C	p.V11L	3058	5

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	759692	759692				ENSG00000	ENST00000	ENSP00000		NM_001143				0,00
6	26	26	1	G	C	112697	475111	431007	TMEM30A	958.1	c.434-20C>G			03
	117681	117681				ENSG00000	ENST00000	ENSP00000		NM_002944				
6	036	036	1	A	G	047936	368508	357494	ROS1	.2	c.3584T>C	p.M1195T		
	119177	119177				ENSG00000	ENST00000	ENSP00000		NM_017696				
6	592	592	1	C	T	111877	316316	314505	МСМ9	.2	c.1267G>A	p.D423N		
	128150	128150				ENSG00000	ENST00000	ENSP00000		NM_001010			rs14132	0,00
6	821	821	1	T	C	172673	368248	357231	THEMIS	923.2	c.509A>G	p.E170G	6956	39
	138566	138566				ENSG00000	ENST00000	ENSP00000		NM_020340			rs75188	0,00
6	719	719	1	C	Т	112379	251691	251691	KIAA1244	.4	c.656C>T	p.A219V	756	34
	147798	147798				ENSG00000	ENST00000	ENSP00000		NM_182924	c.2130_2131			
7	1	2	2	AG	CA	164877	297508	297508	MICALL2	.3	delCTinsTG	p.L711V		
	451227	451227				ENSG00000	ENST00000	ENSP00000		NM_001146			rs58222	0,00
7	62	62	1	G	A	136274	490531	420477	NACAD	334.1	c.3017C>T	p.A1006V	681	19
	727568	727568				ENSG00000	ENST00000	ENSP00000		NM_003602			rs61735	0,00
7	09	09	1	G	A	077800	252037	252037	FKBP6	.3	c.896G>A	p.C299Y	965	11
	730107	730107				ENSG00000	ENST00000	ENSP00000		NM_032952				
7	47	47	1	G	A	009950	429400	406296	MLXIPL	.2	c.1885C>T	p.R629C		
	979415	979415				ENSG00000	ENST00000	ENSP00000		NM_018842			rs14039	0,00
7	70	70	1	C	Т	006453	005260	005260	BAIAP2L1	.4	c.646G>A	p.E216K	4537	27
	100170	100170				ENSG00000	ENST00000	ENSP00000		NM_001168			rs13876	0,00
7	497	497	1	G	A	205307	538735	442339	SAP25	682.1	c.203C>T	p.A68V	5930	14

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	127251	127251				ENSG00000	ENST00000	ENSP00000		NM_006193				
7	134	134	1	A	G	106331	341640	339906	PAX4	.2	c.1016T>C	p.L339P		
	130023	130023				ENSG00000	ENST00000	ENSP00000		NM_001868			rs61735	0,00
7	543	543	1	C	A	091704	011292	011292	CPA1	.2	c.604C>A	p.Q202K	962	46
	149418	149418				ENSG00000	ENST00000	ENSP00000		NM_032534	c.434_435del			
7	594	595	2	GT	TC	133619	255992	255992	KRBA1	.2	GTinsTC	p.G145V		
	273248	273248				ENSG00000	ENST00000	ENSP00000		NM_000742			rs13868	0,00
8	12	12	1	C	T	120903	407991	385026	CHRNA2	.3	c.383G>A	p.G128D	2847	05
	273625	273625				ENSG00000	ENST00000	ENSP00000		NM_001256			rs13965	0,00
8	15	15	1	G	A	120915	521780	430302	EPHX2	483.1	c.191G>A	p.R64H	7060	1
	306946	306946				ENSG00000	ENST00000	ENSP00000		NM_031271			rs13953	0,00
8	18	18	1	Т	C	133863	256246	256246	TEX15	.3	c.8033A>G	p.Y2678C	5218	04
	366420	366420				ENSG00000	ENST00000	ENSP00000		NM_001031			rs11221	0,00
8	02	02	1	C	T	215262	399881	382770	KCNU1	836.2	c.74C>T	p.A25V	6721	21
	395256	395256				ENSG00000	ENST00000	ENSP00000		NM_014237				
8	94	94	1	Т	C	168619	265707	265707	ADAM18	.2	c.1504T>C	p.C502R		
	710505	710505				ENSG00000	ENST00000	ENSP00000		NM_006540				0,00
8	25	25	1	C	Т	140396	452400	399968	NCOA2	.2	c.3071G>A	p.S1024N		03
	776172	776172				ENSG00000	ENST00000	ENSP00000		NM_024721				
8	12	12	1	G	A	091656	521891	430497	ZFHX4	.4	c.889G>A	p.A297T		
	860897	860897				ENSG00000	ENST00000	ENSP00000		NM_001951			rs41508	
8	08	08	1	G	С	133740	416274	398124	E2F5	.3	c.53G>C	p.G18A	41	

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	861272	861272				ENSG00000	ENST00000	ENSP00000		NM_001099			rs14370	0,00
8	39	39	1	Т	A	176731	524353	427911	C8orf59	673.1	c.142A>T	p.N48Y	5255	24
	910311	910311				ENSG00000	ENST00000	ENSP00000		NM_001359				
8	62	62	1	G	A	104325	220764	220764	DECR1	.1	c.298G>A	p.A100T		
	145649	145649				ENSG00000	ENST00000	ENSP00000		NM_183057	c.403-		rs14581	
8	670	671	2	AT	-	160948	377348	366565	VPS28	.1	19_20delAT		0259	
	146033	146033				ENSG00000	ENST00000	ENSP00000		NM_213605				
8	692	692	1	Т	C	197363	359971	353058	ZNF517	.2	c.1391T>C	p.L464P		
	846061	846061				ENSG00000	ENST00000	ENSP00000		NM_207416				
9	57	57	1	Т	C	214929	344803	341988	FAM75D1	.2	c.772T>C	p.S258P		
	866168	866168				ENSG00000	ENST00000	ENSP00000		NM_024945			rs14621	0,00
9	98	98	1	A	G	178966	325875	317039	RMI1	.2	c.997A>G	p.T333A	9782	43
	959475	959475				ENSG00000	ENST00000	ENSP00000		NM_006648				
9	30	30	1	G	A	165238	395477	378860	WNK2	.3	c.319G>A	p.A107T		
	978430	978430				ENSG00000	ENST00000	ENSP00000		NM_001193			rs14307	0,00
9	13	13	1	A	G	148120	375315	364464	C9orf3	329.1	c.2270A>G	p.K757R	4032	03
	107591	107591				ENSG00000	ENST00000	ENSP00000		NM_005502			rs11462	0,00
9	223	223	1	C	Т	165029	374736	363868	ABCA1	.3	c.2089G>A	p.A697T	0717	26
	139878	139878				ENSG00000	ENST00000	ENSP00000		NM_207510			rs14981	0,00
9	950	950	1	G	A	214402	408973	386162	LCNL1	.3	c.131G>A	p.G44D	9699	09
	139906	139906				ENSG00000	ENST00000	ENSP00000		NM_212533			rs19203	0,00
9	828	828	1	C	Т	107331	341511	344155	ABCA2	.2	c.5188G>A	p.V1730I	8143	05

Chr	Start	End	Size	Ref	Allele	Ens- Gene	EnsRNA	EnsProt	HGNC	RefSeq	Mut-	MutProt	Var- Name	VarFreq
	140344	140344				ENSG00000	ENST00000	ENSP00000		NM_015537				0,00
9	053	053	1	T	A	165802	265663	265663	NELF	.4	c.1487A>T	p.Q496L		02
	299084	299084		(C)		ENSG00000	ENST00000	ENSP00000		NM_001243	c.89_90del(G			
16	32	33	2	2	TG	174938	537485	439412	SEZ6L2	333.1)2insCA	p.R30P		

Mittels dieser Strategie konnten zwei heterozygote Varianten in den Genen *LETM1* und *GLI1* identifiziert werden, die als mögliche, ursächliche Veränderungen infrage kamen (Tabelle 46).

Tabelle 46: Übersicht der in Familie LKG-Kamerun LKG12 identifizierten Varianten und ihre Charakterisierung mittels unterschiedlicher Prädiktionsprogramme.

Genomische	Gen	Transkript	HGVS	HGVS	Allelfre-	Prädiktion			
Lokalisation (hg19)			cDNA	Protein	quenz (gno- mAD)	SIFT	Poly- Phen- 2	Muta- tion Taster	CADD
chr4:1857638	LETM1	ENST00000302 787	c.40C>T	p.(Pro14Ser)	0,0162	Т	В	Poly	11.43
chr12:57864285	GLI1	ENST00000228 682	c.1762C >G	p.(Leu588Val	-	Т	В	Poly	16.04

T, tolerated; B, benign, Poly, polymorphism.

Bei beiden Varianten handelt es sich um Veränderungen, die auf Proteinebene zu einer Aminosäuresubstitution führen. Die Veränderung c.40C>T in *LETM1* führt an der Position 14 zu einem Austausch der Aminosäure Prolin durch Serin (p.Pro14Ser), während in *GLI1* ein Leucin an Position 558 durch Valin ersetzt wird p.(Leu588Val). Die bioinformatische Analyse der beiden Varianten mittels unterschiedlicher Prädiktionsprogramme ergab keine eindeutige Einordnung der Veränderungen als pathogen oder möglicherweise pathogen. Alle vier verwendeten Programme klassifizierten beide Varianten als Polymorphismus bzw. benigne Veränderungen (Tabelle 46). Zusätzlich zeigte die Ko-Segregationsanalyse zusätzlicher Familienmitglieder mittels Sanger-Sequenzierung für beide Veränderungen keine Überlappung der Varianten mit dem beobachteten Phänotyp in der Familie, so dass im Rahmen dieser Arbeit in dieser Familie keine ursächliche Variante für die vorliegende Lippen-Kiefer-Gaumenspalte identifiziert werden konnte.

4 Diskussion

Kraniofaziale Anomalien umfassen eine Vielzahl unterschiedlicher Krankheitsbilder und Ausprägungsformen, die durch ein abnormes Wachstum und Entwicklungsstörungen des Schädels sowie des Gesichts hervorgerufen werden können. Neben Umweltfaktoren können kraniofaziale Anomalien auch durch eine Vielzahl verschiedener genetischer Faktoren hervorgerufen werden, die bislang allerdings nur teilweise aufgeklärt werden konnten. In der vorliegenden Arbeit sollte daher ein Patientenkollektiv mit unterschiedlichen syndromalen Formen der Kraniosynostose sowie isolierter Lippen-Kiefer-Gaumenspalte genetisch untersucht werden mit dem Ziel, bekannte und neue ursächliche genetische Faktoren zu identifizieren sowie ihren Einfluss auf die molekularen Mechanismen, die an der Entstehung der Erkrankungen beteiligt sind, zu charakterisieren.

4.1 Mutationsanalyse bei Patienten mit syndromalen Formen der Kraniosynostose

Im Rahmen dieser Arbeit wurden eine Kohorte von 32 Patienten mit unterschiedlichen syndromalen Formen der Kraniosynostose bzw. nicht-syndromaler Form der Kraniosynostose untersucht. Die Patienten wurde von Dr. Krzysztof Dowgierd (Department of Maxillofacial, Reconstractive and Aesthetic Surgery, Children's Hospital, Olsztyn, Polen) klinisch charakterisiert und Blutproben wurden zur Untersuchung der genetischen Grundlage der vorliegenden Erkrankungen zur Verfügung gestellt. Das klinische Spektrum des Patientenkollektivs umfasste dabei Fälle mit den klinischen Verdachtsdiagnosen Crouzon-Syndrom (9 Fälle), Apert-Syndrom (11 Fälle), Saethre-Chotzen-Syndrom (4 Fälle), Pierre-Robin-Syndrom (1 Fall) sowie unspezifische Kraniosynostosen (7 Fälle). Da eine molekulargenetische Untersuchung dieser Patienten zuvor nicht erfolgt war, wurde initial das Patientenkollektiv hinsichtlich Mutationen in bekannten Genen untersucht, in denen bereits pathogene Veränderungen bei Patienten mit syndromalen Formen der Kraniosynostose beschrieben wurden. Diese initiale molekulargenetische Untersuchung umfasste dabei sogenannte *Hotspot*-Mutationsregionen der Gene *FGFR2* und *FGFR3* sowie des *TWIST1*-Gens, in denen Mutationen bei betroffen Patienten dieses Erkrankungsspektrums gehäuft auftreten.

In sechs von neun Patienten (66,7 %), die klinisch die Diagnose eines Crouzon-Syndroms erhalten haben, konnte mittels dieser Strategie die genetische Ursache der vorliegenden Erkrankung ermittelt werden. Mittels PCR-basierter Amplifikation und Sequenzierung konnten bei

diesen Patienten heterozygote Missense-Veränderungen im *FGFR2*-Gen identifiziert werden, die bereits als kausale Veränderungen bei Patienten mit Crouzon-Syndrom beschrieben wurden (Robin et al. 1993; Cohen 1995; Meyers et al. 1996; Shotelersuk et al. 2003; Lajeunie et al. 2006; Al-Namnam et al. 2019). Auf molekularer Ebene konnte für drei der neun Patienten mit Crouzon-Syndrom die klinische Diagnose nicht molekulargenetisch abgesichert werden. Hier wurden in den untersuchten Bereichen im *FGFR2*-, *FGFR3*- sowie *TWIST1*-Gen keine ursächlichen Varianten detektiert. Die Gründe hierfür können unterschiedlicher Natur sein. Durch die gezielte Beschränkung der molekulargenetischen Analyse auf einzelne Abschnitte des *FGFR2*-Gens wird eine schnelle und effiziente Untersuchung großer Patientenkollektive ermöglicht. Gleichzeitig werden allerdings Mutationen, die sich außerhalb dieser Bereiche befinden, nicht detektiert. So beschreiben zum Beispiel Meyers et al. (1995), dass Mutationen in *FGFR3* zu Crouzon-Syndrom mit Acanthosis nigricans führen können. Eine Ausdehnung der untersuchten Regionen über die Grenzen der *Hotspot*-Bereiche im *FGFR2*-Gen hinweg könnte also gegebenenfalls zur Aufklärung der drei mutationsnegativen Patienten beitragen.

Mit rund 66,7% konnte mittels *Hotspot*-Mutation Screening eine recht hohe Aufklärungsrate erreicht werden. Das Crouzon-Syndrom ist assoziiert mit autosomal dominanten *gain-of-function*-Mutationen, Deletionen, Insertionen und Missense-Mutationen in *FGFR2*. In diesem Zusammenhang beschreiben Ornitz und Itoh (2015) die im Rahmen der vorliegenden Arbeit gefundene Mutation an der Stelle p.Cys342Tyr, die u.a. zu Formveränderungen des Gehirns, aber nicht zu einer Gesamtvolumenänderung führt. Insgesamt führen Veränderungen im *FGFR*-Signalweg zu multiplen Veränderungen, da sie schon in der frühen Entwicklung der Organogenese beim Embryo oder auch später zum Beispiel bei dem Zellmetabolismus eine Rolle spielen (Ornitz und Itoh 2015).

Im Rahmen dieser Arbeit lag die Probe eines Patienten vor, bei dem die klinische Verdachtsdiagnose eines Pierre-Robin-Syndroms bestand. Bei diesem Patienten konnte mittels der angewandten Analysemethode eine genetische Ursache für die vorliegende Erkrankung nicht detektiert werden. Es wurden sequenzielle Untersuchungen des *FGFR2*- und *FGFR3*-Gens vorgenommen und keine pathogenen Veränderungen in den untersuchten Bereichen gefunden. Das Pierre-Robin-Syndrom wird in den weiten Kreis der kraniofazialen Malformationen eingeordnet. Bislang wurden Mutationen in *BMPR1B* (Yang et al. 2017), *SOX9* sowie *KCNJ2* (Jakobsen et al. 2007) als ursächlich für das Pierre-Robin-Syndrom beschrieben. Ferner können auch strukturelle Veränderungen wie Translokationen zu diesem Krankheitsbild führen. Diese Arten von Mutationen sind aber mit der für die vorliegende Arbeit gewählten Technik der PCR kaum

aufzudecken. Die Ausweitung der molekulargenetisch untersuchten Gene sowie die Anwendung zusätzlicher zytogenetischer sowie molekular-zytogenetischer Untersuchungsmethoden wie zum Beispiel Array-CGH, FISH könnten in diesem Fall dazu beitragen, die genetische Ursache der vorliegenden Erkrankung zu entschlüsseln (Ratan et al. 2017).

Ferner lagen sieben Proben von Patienten mit klinisch diagnostizierten Kraniosynostosen vor. Wie zuvor beschrieben werden bei Kraniosynostosen syndromale sowie nicht-syndromale Formen unterschieden. In ca. 80% der Fälle liegt eine nicht-syndromale Kraniosynostose vor (Rachwalski et al. 2013). Aufgrund von Zwillingsstudien wird derzeit angenommen, dass nichtsyndromale Kraniosynostosen multifaktoriellen Ursprungs sind, für deren Entstehung also sowohl genetische Faktoren als auch Umwelteinflüsse kausal sind (Lajeunie et al. 2005). In der Literatur wird oft ein Zusammenhang von FGFR zu Kraniosynostosen, vor allem zu syndromalen Formen von Kraniosynostosen, hergestellt (Buchanan et al. 2017). Um zu prüfen, ob dieser Zusammenhang auch auf die vorliegenden Patienten mit einer klinisch gestellten Verdachtsdiagnose einer nicht-syndromalen Kraniosynostose zutrifft, wurden hier Teile der Gene FGFR2 und FGFR3 untersucht, in denen bei syndromalen Kraniosynostosen häufig pathogene Veränderungen zu finden sind. Dabei konnten keine ursächlichen Mutationen identifiziert werden. Die Ergebnisse decken sich mit Beobachtungen aus der wissenschaftlichen Literatur. Während bei Patienten mit der Verdachtsdiagnose einer syndromalen Kraniosynostose häufig eine genetische Ursache identifiziert werden kann, bleiben isolierte Kraniosynostosen bzgl. ihrer genetischen Grundlage häufig ungeklärt (Robin et al. 1993; Massimi et al. 2012; Buchanan et al. 2017).

Aufgrund der multifaktoriellen Entstehung der letztlichen Ausschlussdiagnose einer nicht-syndromalen Kraniosynostose wäre an dieser Stelle eine Erweiterung oder Fortführung der Untersuchung bzw. eine Anschlussuntersuchung möglich. Neben Lebensstilinformationen, Gewohnheiten oder Verhalten während der Schwangerschaft könnten auch erweiterte genetische Analysen zum Beispiel aus dem Bereich des *next-generation sequencings* genutzt werden, um bei multifaktoriellen Erkrankungen mittels genomweiten Untersuchungen genetische Faktoren zu identifizieren, die einen Einfluss auf das Entstehen der Erkrankung haben. Grundlage dieser Untersuchungen bilden allerdings sehr große Patientenkollektive. Erst durch diese ist man in der Lage, bei multifaktoriellen Erkrankungen den Einfluss genetischer Komponenten zu ermitteln und konkrete genetische Veränderungen mit dem Auftreten einer Erkrankung in Verbindung zu bringen.

Im Rahmen dieser Arbeit wurden darüber hinaus vier Patienten mit der klinischen Diagnose Saethre-Chotzen-Syndrom untersucht und hinsichtlich einer möglichen Mutation in den Genen FGFR2 und TWIST1charakterisiert. Bei einem der vier Patienten konnte die kausale Mutation mit hoher Wahrscheinlichkeit in TWIST1 gefunden werden. Die identifizierte Mutation wurde allerdings bisher noch nicht beschrieben, kann jedoch trotzdem als höchstwahrscheinlich kausale Mutation, die zu dem beschriebenen Phänotyp führt, eingeordnet werden. Einige Mutationen, die zum Saethre-Chotzen-Syndrom führen, sind in TWIST1 bekannt (Howard et al. 1997; Paznekas et al. 1998). In diesem Fall liegt eine Deletion von 13 Basenpaaren vor, welche zu einer Leserasterverschiebung führt und einen verfrühten Abbruch der Proteinbiosynthese hervorruft, was sehr wahrscheinlich einen Funktionsverlust des TWIST1-Proteins induziert. Diese Veränderung ist bei dem beschriebenen Patienten wahrscheinlich de novo aufgetreten. Die Mutter des Patienten trägt die Veränderung in TWIST1 nicht. Eine paternale Probe lag nicht zur Testung vor. Trunkierende Mutationen, die zu einem verfrühten Abbruch der Proteinsbiosynthese und zu einem Funktionsverlust des TWIST1-Proteins führen, sind in der wissenschaftlichen Literatur bereits bei Patienten mit Saethre-Chotzen-Syndrom beschrieben worden (Gripp et al. 2000; Elanko et al. 2001; Foo et al. 2009). Darüber hinaus zeigt ein Abgleich mit der gnomAD Datenbank, die die Genom- und Exom-Datensätze von etwa 120.000 gesunden Individuen umfasst, dass es sich bei der Sequenzveränderung c.80_92del, p.Gln27Profs*94 nicht um eine auch bei Normalpersonen nachweisbare Normvariante handelt. Trunkierende Veränderungen, die mit einem Funktionsverlust des TWIST1-Proteins einhergehen, sind in den Datensätzen dieser Datenbank stark unterrepräsentiert. Im Gegensatz zu den statistisch, aufgrund der Größe des Gens ermittelten 4,5 Varianten, die zu einem Funktionsverlust des Gens führen, befindet sich nur eine Variante in dieser Datenbank. Die Unterrepräsentierung von loss-of-function-Veränderungen in TWIST1 in gesunden Kontrollindividuen unterstützt daher ebenfalls die Klassifizierung der identifizierten Varianten c.80_92del im TWIST1-Gen als pathogenen und ursächlich für die vorliegenden Erkrankung des Patienten.

Bei den übrigen drei Patienten konnte auf molekulargenetischer Ebene die klinische Verdachtsdiagnose Saethre-Chotzen-Syndrom nicht bestätigt werden. Paznekas et al. (1998) weisen neben Veränderungen in *TWIST1* auch auf einen möglichen Zusammenhang zu einer *FGFR*-Mutation und dem Saethre-Chotzen-Syndrom hin. Diese Verbindung konnte bei keinem der in dieser Arbeit vorliegenden Patientendaten festgestellt werden, da auch hier Teile von *FGFR2* und *FGFR3* untersucht wurden. Allerdings müssen auch bei dieser Beurteilung die Grenzen der angewandten molekulargenetischen Untersuchungsmethoden berücksichtigt werden. Größere strukturelle Deletionen oder Rearrangements im Bereich des *TWIST1*-Gens werden durch die

PCR-basierte Sequenzanalyse, die im Rahmen dieser Arbeit durchgeführt wurde, nicht erfasst. Sie wurden in der wissenschaftlichen Literatur allerdings bereits bei Patienten mit Saethre-Chotzen-Syndrom beschrieben. Darüber hinaus müssen bei der Verdachtsdiagnose eines Saethre-Chotzen-Syndroms differenzialdiagnostisch zum Beispiel das Muenke-Syndrom oder die isolierte, einseitige Koronarnahtsynostosen berücksichtig werden, die ihren genetischen Ursprung in anderen im Rahmen dieser Arbeit nicht untersuchten Genen und genetischen Veränderungen haben (Gallagher et al. 1993).

Bei 100% (11 von 11) der Patienten aus dem vorliegenden Patientenkollektiv, bei denen die klinische Verdachtsdiagnose eines Apert-Syndroms vorlag, konnte diese Diagnose auch molekulargenetisch bestätigt werden. Bei vier Patienten konnte die heterozygote Mutation c.758C>G (p.Pro253Arg) in FGFR2 gefunden werden. Bei sieben Patienten lag die heterozygote Mutation c.755C>G (p.Ser252Trp) in FGFR2 vor. Alle Mutationen sind in FGFR2 gelagert. In diesem Fall kongruieren die klinischen Ergebnisse mit der in der vorliegenden Arbeit durchgeführten genetischen Untersuchung. Die gefundenen ursächlichen Varianten im vorliegenden Patientenkollektiv sind bereits in der Literatur beschrieben (Wilkie et al. 1995; Slaney et al. 1996). Zieht man einen Vergleich mit Slaney et al. (1996), lässt sich erkennen, dass dieser bei 45 von 70 untersuchten Patienten die Ursache mit der Mutation p.Ser252Trp in FGFR2 beziffern konnte. Dies entspricht in diesem Kollektiv einer Quote von ~64,3%. Vergleicht man dieses Ergebnis mit der in dieser Arbeit untersuchten Gruppe von elf Patienten, so wird deutlich, dass von elf Patienten sieben die Mutation p.Ser252Trp in FGFR2 trugen. Dies entspricht ~63,6% der hier betrachteten Patienten. Weiterhin haben Slaney et al. (1996) in dem untersuchten Patientenkollektiv von 70 Personen bei 25 Patienten die Mutation p.Pro253Arg gefunden. Dies entspricht im Patientenkollektiv von Slaney et al. (1996) ~35,7%. Analog konnte im Rahmen dieser Arbeit bei vier von elf Patienten die Mutation p.Pro253Arg in FGFR2 nachgewiesen werden. Dies entspricht ~36,4%. Diese durchaus vergleichbare Tendenz lässt sich weiter untermauern, wenn eine weitere Verbindung zu Lajeunie et al. (2006) gezogen wird. Diese konnten bei 29 von 47 Patienten (~61,7%) mit dem Apert-Syndrom die Mutation p.Ser252Trp finden, wobei in dem hier vorliegenden Kollektiv ~63,6% diese Mutation tragen. Weiterhin lagen bei Lajeunie et al. (2006) bei 17 von 47 Patienten die Mutation p.Pro253Arg vor. Dies entspricht ~36,2%, wohingegen in dieser Arbeit der Anteil der Pro253Arg Mutationen bei ~36,4% in FGFR2 gefunden werden konnte. Ferner konnten Lajeunie et al. (2006) bei einem der 47 Patienten mit dem Apert-Syndrom die Mutation p.Ser252Phe in FGFR2 zeigen (~2,1%).

Vergleicht man den Anteil der gefundenen Mutationen innerhalb dieser unterschiedlichen Kollektive so wird ersichtlich, dass trotz einer in der vorliegenden Arbeit recht kleinen untersuchten

Patientengruppe die Mutationen in ähnlicher Frequenz auftreten. Um diese Tendenz weiter zu untermauern, könnte es im Weiteren von Interesse sein, die phänotypischen Ausprägungen, die Lebensstile der Vorfahren oder auch weitere mögliche Ursachen, die das Auftreten der gefundenen Mutationen begünstigen können, zu untersuchen. Glaser et al. (2003) haben sich bereits einem Teilaspekt dieses Thema angenommen und konnten eine erhöhte Auftretungswahrscheinlichkeit in Bezug auf das steigende Alter der Väter durch Mutationen in Spermien zeigen, die zum Apert-Syndrom führen können. Jedoch korrelierte die erhöhte Anzahl in prädispositionierenden FGFR2-Mutationen in den Spermien nicht mit der Auftretungswahrscheinlichkeit bei den Kindern. Ein Vergleich von 70 Patienten gegenüber 11 Patienten mit dem Apert-Syndrom könnte durch eine größere Gesamtzahl der untersuchten Patienten in weiterführenden Studien mit höherer Evidenz untersucht werden. Denn im Vergleich von nur wenigen, ähnlichen Studien könnte es auch Zufall sein, dass eine ähnliche Verteilung der gefundenen Mutation in der vorliegenden Untersuchung aufgetreten ist. Pollock et al. (2007) beschreiben auch einen Zusammenhang von der p.Ser252Trp-Mutation in FGFR2 mit auftretenden Endometriumkarzinomen. Hieraus lassen sich neue, weiterführende und interessante Fragestellungen ableiten. So könnte geprüft werden, ob die Keimbahn-Mutation in FGFR2, p.Ser252Trp auch zu einer erhöhten Auftretungswahrscheinlichkeit von Endometriumkarzinomen führt. Das vorliegende Patientenkollektiv lieferte keine Anzeichen für ein erhöhtes Auftreten von Tumoren, zum Beispiel Endometriumkarzinomen oder anderen Tumoren.

Die erzielten Ergebnisse untermauern ebenso wie die Angaben in der wissenschaftlichen Literatur, dass es sich beim Apert-Syndrom um eine homogene Erkrankung handelt, deren Ursache spezifische Veränderungen in *FGFR2* sind, die zu einer Aktivitätssteigerung des Signalweges führen.

Von dem betrachteten Patientenkollektiv, das 32 Patienten umfasste, konnten insgesamt 18 Fälle aufgeklärt werden. Zusammenfassend lässt sich sagen, dass die Aufklärungsquote dabei stark abhängig von der jeweiligen Verdachtsdiagnose war. Die syndromalen Formen, die etwa mit einem Crouzon- oder Apert-Syndrom einhergingen, wiesen eine sehr gute, hohe Aufklärungsquote auf. Allerdings gab es auch bei den syndromalen Patienten nicht aufgeklärte Fälle, was für eine genetische Heterogenität (insbesondere bei zum Beispiel dem Pierre-Robin-Syndrom oder auch Saethre-Chotzen-Syndrom) spricht. Auch könnte hier die eher niedrige Anzahl der vorliegenden Fälle eine Ursache für die geringere Aufklärungsquote darstellen. Neue *next*-

generation-sequencing-basierte Methoden können einen zukünftigen Beitrag dazu leisten, ungelöste Fälle aufzuklären und neue, genetische Faktoren zu identifizieren. Darüber hinaus ist es wichtig, eine gute klinische Diagnostik durchzuführen. Denn wenn beispielsweise klinisch die Diagnose eines Saethre-Chotzen-Syndroms gestellt wird, dann wird – sofern die PCR-Technik zum Einsatz kommt – zunächst in anderen Genen gesucht als dort, wo gegebenenfalls bei der klinischen Diagnose eines Apert-Syndroms geforscht worden wäre. Hier bietet der Einsatz einer modernen Panel-Diagnostik einen Vorteil.

4.1.1 Genetische Charakterisierung von Varianten in MEGF8

Neben der Untersuchung und Bestimmung von pathogenen Varianten in Mutationsschwerpunkten der Gene FGFR2, FGFR3 und TWIST1 bei Patienten mit syndromalen und isolierten Kraniosynostosen wurde im Rahmen dieser Arbeit auch ein Patient genetisch charakterisiert, der zuvor im Institut für Humangenetik (UMG) diagnostisch untersucht wurde. Mittels der Multigen-Panel-Analyse konnte bei diesem Patienten eine heterozygote Sequenzvariante in Exon 31 des MEGF8-Gens identifiziert werden. Diese Veränderung, c.5210C>A, generiert ein Stoppcodon und führt auf Proteinebene zu einem vorzeitigen Abbruch der Proteinsynthese des MEGF8-Proteins an Position 1737 (p.Ser1737*) (König 2018). Zusätzlich wurde bei diesem Patienten eine weitere Veränderung in Intron 13 des MEGF8-Gens identifiziert. Dabei handelt es sich um eine Deletion von 4 bp in unmittelbarer Nähe der Akkzeptor-Spleißstelle von Intron 13, c.2098-15_-12delTCAC, die diagnostisch als Variante unklarer Signifikanz eingestuft wurde. Biallelische pathogene Veränderungen in MEGF8 sind in der wissenschaftlichen Literatur als ursächlich für das autosomal rezessiv vererbte Carpenter-Syndrom beschrieben (Jenkins et al. 2007; Twigg et al. 2012). MEGF8 gilt speziesübergreifend als stark konserviert und Mutationen können zu unterschiedlichen phänotypischen Ausprägungen führen (Zhang et al. 2009). Das Carpenter-Syndrom stellt eine syndromale Form einer Kraniosynostose dar, zu welchem der hier untersuchte Patient klinische Überlappungen aufwies. Daher stellte sich die Frage, ob die im diagnostischen Rahmen identifiziert Veränderung c.2098-15_-12delTCAC in MEGF8 einen pathogenen Effekt ausübt, indem zum Beispiel das korrekte Spleißen des MEGF8-Primärtranskripts beeinflusst wird. Dieses wurde im Rahmen dieser Arbeit untersucht Durch Analysen auf RNA-Ebene konnte gezeigt werden, dass der Spleißvorgang an dieser Position nicht durch die Variante beeinflusst wird (vgl. Kapitel 3.1.3). Vor diesem Hintergrund kann eine Ursächlichkeit der identifizierten intronischen Veränderung in MEGF8 ausgeschlos-

sen werden. Trotzdem stellt die Tatsache der Detektion einer eindeutig als pathogen eingestuften Variante, wie sie bei diesem Patienten bei der nonsense-Veränderung c.5210C>A (p.Ser1737*) in MEGF8 vorliegt, in einem klinisch relevanten Gen ein seltenes Ereignis dar. Im Rahmen der diagnostischen Untersuchung und der nachfolgenden wissenschaftlichen Aufarbeitung der identifizierten Veränderungen konnte zwar ein Effekt der intronischen Veränderung auf die unmittelbar angrenzenden exonischen Regionen ausgeschlossen, weitere Analysen der MEGF8-Transkripte wurden jedoch nicht durchgeführt (König 2018). Somit kann nicht ausgeschlossen werden, dass bei diesem Patienten weitere, tief intronische Veränderungen vorliegen, die einen Einfluss auf den Spleißvorgang ausüben. Solche tief intronischen Varianten sind bereits für andere Gene und Erkrankungen beschrieben und werden im diagnostischen Rahmen nur teilweise erfasst, da sich routinediagnostische Genanalysen in der Regel auf die kodierenden Regionen sowie die unmittelbar angrenzenden intronischen Bereiche (+/- 30 bp von den jeweiligen Exon-/Intron- Übergänge) beschränken (Vaz-Drago et al. 2017; Malekkou et al. 2020). Es bedarf weiterführender Analysen der MEGF8-Transkripte zum Ausschluss bislang nicht entdeckter struktureller Veränderungen. Die Bestätigung oder das Ausschließen der Kausalität und Pathogenität von MEGF8 sollte daher im Mittelpunkt der weiteren Untersuchungen stehen.

4.2 Mutationsanalyse mittels Multigen-Panels bei ausgewählten Patienten mit isolierter Kraniosynostose

Im Rahmen dieser Arbeit wurden zwei Patienten, bei denen klinisch eine Kraniosynostose festgestellt wurde, zur Identifizierung einer kausalen genetischen Veränderung einer Multigen-Panel-Analyse unterzogen. Diese bietet die Möglichkeit, größere DNA-Abschnitte und/oder mehrere Gene parallel auf pathogene Veränderungen zu untersuchen. Die Multigen-Panel-Analyse erfolgte auf Basis eines etablierten Kraniosynostose-Gen-Panels in Kooperation mit dem Molekulargenetischen Diagnostiklabor des Instituts für Humangenetik (Universitätsmedizin Göttingen). Das verwendete Kraniosynostose-Gen-Panel deckte dabei die kodierenden Bereiche von insgesamt 29 Genen ab, für die pathogene Veränderungen bei Patienten mit syndromalen und isolierten Kraniosynostosen beschrieben wurden. Eine Auswertung der 29 Gene ergab im Rahmen dieser Arbeit keine Veränderungen, die als kausale genetische Ursache für den vorliegenden Phänotyp der beiden Patienten infrage kommen. Die klinische Diagnose einer isolierten Kraniosynostose konnte also für diese beiden Patienten nicht auf eine ursächliche genetische Veränderung in den untersuchten Bereichen eines dieser Gene zurückgeführt werden.

Klinisch betrachtet handelt es sich bei nicht-syndromalen Kraniosynostosen um ein Erkrankungsspektrum, welches multifaktorielle Ursachen haben kann. Neben genetischen Faktoren können bei der Entstehung von Kraniosynostosen auch äußere Faktoren wie maternale Medikamenteneinnahme, Alkohol oder Rauchen während der Schwangerschaft, der vorgeburtliche Aufenthaltsort der Mutter oder eine Schilddrüsenerkrankung der Mutter und deren Behandlung ursächlich sein (Alderman et al. 1995; Reefhuis et al. 2003; Källén und Robert-Gnansia 2005; Rasmussen et al. 2007; Carmichael et al. 2008). Genetische Faktoren spielen insbesondere bei der Entstehung von syndromalen Formen von Kraniosynostosen eine Rolle. Andere Faktoren können aber auch für isolierte Kraniosynostose-Fälle verantwortlich sein (Messing-Jünger und Martini 2018). Daher ist die Wahrscheinlichkeit groß, dass primär keine genetische Ursache für die Kraniosynostose der Patienten Gö224 und K4081 vorliegt. Die klinischen Angaben, die für diese beiden Patienten und ihre Familie vorlagen, zeigten nämlich darüber hinaus, dass es sich bei beiden Patienten um sporadische Fälle handelt. Für beide Betroffenen lagen keine Angaben über weitere Familienmitglieder mit isolierter Kraniosynostose vor, was die Möglichkeit einer genetischen Ursache der Erkrankung unterstützt hätte. Zur Klärung der Faktoren, die bei diesen beiden Patienten zur Entstehung der Kraniosynostose geführt haben, ist also eine weitere klinische Abklärung wichtig, mit dem Ziel, nicht-genetische Ursachen abzuklären, die im Zusammenhang mit der Erkrankung stehen können. Zusätzlich kann im Rahmen einer klinischen Reevaluation auch abgeklärt werden, ob weitere Symptome bzw. phänotypische Merkmale bei den Patienten vorliegen, die richtungsweisend bezüglich eines (überlappenden) Krankheitsbildes sein können.

Generell stellt die Multigen-Panel-Analyse eine gute Möglichkeit dar, klinisch relevante Gene eines Erkrankungsspektrums zusammenzufassen und simultan auf Veränderungen zu analysieren. Die Beschränkung auf eine definierte Anzahl an Genen, die mit einer Erkrankung assoziiert sind, gewährleistet eine schnelle und kosteneffiziente Untersuchung der häufigsten genetischen Faktoren für eine Erkrankung oder ein Erkrankungsspektrum. Die Anzahl der identifizierten Varianten, die hinsichtlich ihrer möglichen Ursächlichkeit beurteilt und klassifiziert werden müssen, ist aufgrund des klar definierten Gen-Sets gering und erleichtert die Interpretation der gefundenen Veränderungen in Zusammenhang mit dem klar definierten klinischen Kontext. Ein weiterer Vorteil der Multigen-Panel-Analyse im Vergleich zur Exomsequenzierung ist die bessere und uniformere Abdeckung der Gene, wodurch strukturelle Varianten wie Deletionen und Duplikationen besser ermittelt werden können. Die Beschränkung auf eindeutig erkrankungsspezifische Gene vermindert zudem die Wahrscheinlichkeit von sekundären, zufälligen Befunden, die nicht der aktuellen Untersuchungsindikation entsprechen und häufig schwierig

zu interpretieren sind, wodurch eine zeitnahe und schnelle Analyse der genetischen Daten gewährleistet werden kann (Arnemann 2019). Insgesamt hat die Multigen-Panel-Analyse als Methode auch in anderen Gebieten der Medizin u.a. zu erheblicher Kostenreduktion und auch zu höherer Effizienz geführt (Eggermann et al. 2018; Pilarski 2021).

Allerdings werden im Rahmen der Multigen-Panel-Analyse in erster Linie genetische Faktoren untersucht, für die bereits ein Zusammenhang zur in Frage stehenden Erkrankung aufgezeigt werden konnte. Für die Identifizierung neuer, bislang nicht beschriebener Gene ist diese Methodik daher nicht geeignet. Für diese Zielsetzung ebenso wie für die Untersuchung von Patienten, die Merkmale unterschiedlicher Erkrankungsspektren aufweisen und daher nicht eindeutig klinisch einem bestimmten Syndrom zugeordnet werden können, bietet sich die Durchführung einer Exomsequenzierung an. Bei dieser werden die proteinkodierenden Bereiche aller etwa 19.000 humanen Gene simultan untersucht, wodurch sowohl bereits bekannte, erkrankungsspezifischen Gene analysiert als auch neue genetische Varianten in bislang nicht mit dieser Erkrankung assoziierten Genen identifiziert werden können. Zwar stellt die Auswertung von Exomsequezierungsdaten in einem diagnostischen Rahmen eine größere Herausforderung dar, da eine höhere Anzahl an Varianten detektiert wird und diese klassifiziert und hinsichtlich ihrer Ursächlichkeit eingeordnet werden müssen. Sie stellt aber insbesondere bei wissenschaftlichen Fallanalysen eine geeignete Methode zur molekulargenetischen Aufarbeitung von Patientenproben dar. Ein Vorteil dieser Methode stellt insbesondere auch für weitere Diagnoseschritte – etwa in der Zukunft – der bereits gewonnene Datensatz dar. Ist dieser einmal vorhanden, kann er, angepasst an neue wissenschaftliche Erkenntnisse oder auch Verdachtsdiagnosen, auch nachträglich wieder genutzt und untersucht werden. Dies kann als Chance betrachtet werden, es sollte jedoch auch bedacht werden, dass bei einer Begutachtung von vielen Genen auch Neben-bzw. Zusatzbefunde erkannt werden können (Fisher et al. 2015).

Die Durchführung einer Exomsequenzierung stellt daher einen möglichen nächsten Untersuchungsschritt zur Abklärung einer genetischen Ursache bei den beiden im Rahmen dieser Arbeit untersuchten Patienten dar und sollte insbesondere für den Fall in Erwägung gezogen werden, dass eine neue klinische Reevalutation der Patienten zusätzliche Hinweise auf eine genetische Ursache der Kraniosynostose der Patienten liefert. Bei der Entschlüsselung von neuen krankheitsassoziierten Genen kommen unterschiedliche Methoden bzw. Analyseverfahren zum Tragen. So wird unter anderem auch auf die entsprechende Ko-Segregation geachtet und nach weiteren Patienten mit Mutationen in dem entsprechenden Gen bzw. Genen gesucht.

4.3 Identifizierung molekulargenetischer Ursachen für isolierte, nicht-syndromale Lippen-Kiefer-Gaumenspalten

Im Rahmen dieser Arbeit wurden fünf Familien mit isolierten Lippen-Kiefer-Gaumenspalten mittels next-generation-sequencing-basierter Exomsequenzierung untersucht, mit dem Ziel, neue kausale Gene für diese Erkrankung zu identifizieren. (vgl. Kapitel 3.2). Dazu wurden die Exomsequenzierungsdaten neun betroffener und zwei klinisch unauffälliger Familienmitglieder mittels der Exomanalysesoftware Varbank analysiert und mögliche Kandidatengene für das Auftreten einer Lippen-Kiefer-Gaumenspalte ermittelt. Die gefundenen Varianten wurden nachfolgend hinsichtlich ihrer funktionellen Effekte sowie der zellulären Rolle der kodierten Proteine aufgearbeitet und priorisiert sowie ausgewählte Varianten mittels Sanger-Sequenzierung auf ihre Ko-Segregation in den jeweiligen Familien untersucht. Insgesamt konnten mit dieser Strategie in zwei Familien Varianten in Kandidatengenen identifiziert werden, die als genetische Ursache für die klinischen Merkmale der betroffenen Patienten in Frage kommen. In drei weiteren Familien ergab die Analyse der Exomsequenzierungsdaten keine Varianten, für die ein pathogener oder möglicherweise pathogener Einfluss im Zusammenhang mit der klinischen Diagnose einer isolierten Lippen-Kiefer-Gaumenspalte ermittelt werden konnte.

4.3.1 Identifizierung einer pathogenen Veränderung in *PAX7* als molekulare Ursache für isolierte Lippen-Kiefer-Gaumenspalten

Im Zuge der Untersuchung der molekulargenetischen Ursache für isolierte Lippen-Kiefer-Gaumenspalten in der indischen Familie LKG8 konnte im Rahmen meiner Arbeit eine Variante im *PAX7*-Gen identifiziert werden, die als ursächlich für den vorliegenden Phänotyp eingeschätzt werden kann. In beiden betroffenen Individuen dieser Familie konnte die heterozygote Nukleotidsubstitution c.229C>T im *PAX7*-Gen nachgewiesen werden, die auf Proteinebene zu einem Austausch der evolutionär hochkonservierten Aminosäure Arginin an Position 77 durch Cystein führt (p.Arg77Cys) (vgl. Abbildung 19 und Abbildung 20).

Das *paired-box-7-(PAX7)*-Gen ist auf Chromosom 1 lokalisiert und kodiert für den 520 Aminosäuren umfassenden Transkriptionsfaktor *PAX7*. Insgesamt umfasst die humane *PAX-*Familie neun Mitglieder, welche Heteorodimere bilden können, die insbesondere in der Differenzierung von Geweben in frühen Entwicklungsstadien von Vertebraten eine wichtige Rolle spielen (Dahl et al. 1997; Monsoro-Burq 2015). Für *PAX7* wurde dabei eine wichtige Funktion in der embryonalen Entwicklung ermittelt. Diesbezüglich wird *PAX7* früh im Bereich des Schädels

exprimiert und ist entscheidend für die Neuralleisten-Induktion, indem es unter anderem die Expression der Neuralleisten-Marker *SOX9* und *SOX10* reguliert (Basch et al. 2006; Leslie et al. 2015; Monsoro-Burq 2015). In Untersuchungen transgener Mäusen konnte gezeigt werden, dass Mäuse, bei denen das *PAX7*-Gen deletiert wurde, unter anderem nasale und maxilläre Malformationen aufzeigen (Mansouri et al. 1996; Leslie et al. 2015). Unterstützt wird die Rolle, die *PAX7* insbesondere in der maxillären und nasalen Entwicklung ausübt, auch durch eine Genomweite Assoziationsstudie, in deren Zuge ein Zusammenhang zwischen *PAX7* und Lippen-Kiefer-Gaumenspalten hergestellt werden konnte (Beaty et al. 2013).

Die PAX7-Variante, die in dieser Familie identifiziert wurde, betrifft dabei eine Aminosäure innerhalb der paired-box-Domäne des PAX7-Proteins. Eine bioinformatische Analyse unter Verwendung vier unterschiedlicher Prädiktionsprogramme, die im Rahnem dieser Arbeit durchgeführt wurde, ordnete den Austausch der Aminosäure Arginin an Position 77 des PAX7-Porteins durch Cystein als pathogen ein. Die betroffene Aminosäure ist dabei nicht nur speziesübergreifend in PAX7-Proteinen hochkonserviert, sondern ebenfalls innerhalb der humanen PAX-Proteinfamilie (vgl. Abbildung 19 und Abbildung 20). Die paired-box-Domäne der PAX-Proteinfamilie vermittelt konzertiert mit der Homöobox-Domäne des Proteins die Bindung des Transkriptionsfaktors an seine Zielsequenzen. Untersuchungen des paired-Proteins, dem Drosophila homolog des humanen PAX3, zeigten, dass die funktionelle Integrität beider Domänen notwendig für die Bindung an die DNA ist (Miskiewicz et al. 1996). Punktmutationen, bei denen die DNA-Bindefähigkeit der beiden Domänen separat und in Kombination ausgeschaltet wurde, führten zu einem Verlust der transaktivierende Eigenschaften des paired-Proteins (Miskiewicz et al. 1996). Auf struktureller Ebene führt die hier in der Arbeit identifizierte Veränderung zum Austausch der positiv geladenen Aminosäure Arginin durch Cystein. Arg77 befindet sich innerhalb der paired-box-Domäne von PAX7 in einer loop-Region, die sich im Komplex mit DNA in unmittelbarer Nähe zum DNA-Rückgrat befindet, wie mittels kristallstruktureller Untersuchungen des humanen PAX6 ermittelt werden konnte (Xu et al. 1999). Dies eröffnet die Möglichkeit, dass der Austausch des Arginin 77 zu einer beeinträchtigten Interaktion mit der (negativ geladenen) DNA führt, wodurch die DNA-Bindekapazität der paired-box-Domäne reduziert und damit die Funktionen des gesamten PAX7-Proteins beeinflusst wird.

Die Ko-Segregationsanalyse der c.229C>T Variante in *PAX7* innerhalb der Familie LKG8 mittels Sanger-Sequenzierung ergab eine Ko-Segregation der Variante mit dem Auftreten der Lippen-Kiefer-Gaumenspalte innerhalb der Familie bei allen mit Ausnahme von zwei Individuen, von denen DNA-Proben zur Untersuchung vorlagen: Bei dem ebenfalls betroffenen Individuum

Gö142 konnte die PAX7-Variante nicht nachgewiesen werden, während Gö144, eine klinisch als unauffällig charakterisierte Person, Trägerin der Veränderung in PAX7 ist. Unterschiedliche Erklärungen für die fehlende Übereinstimmung des Genotyps dieser beiden Personen mit ihrem Phänotyp sind möglich. Es handelt sich bei der Lippen-Kiefer-Gaumenspalte um eine Erkrankung, die unterschiedliche Ursachen haben kann und häufig ist. Neben genetischen Faktoren, die hier im Fokus der Untersuchung standen, können zum Beispiel auch Umwelteinflusse eine wichtige Rolle in der Entstehung dieses Phänotyps haben (vgl. Kapitel 1.1.3). Daher kann bei Patient Gö142 das Vorliegen einer Phänokopie nicht ausgeschlossen werden, also einer abweichenden, möglicherweise ebenfalls genetisch bedingten Ursache für die Lippen-Kiefer-Gaumenspalte im Vergleich zu den übrigen betroffenen Individuen in der Familie. Gö144, als klinisch unauffällig beschrieben, ist dagegen Träger der identifizierten PAX7-Variante. Eine klinische Reevaluation des Phänotyps dieses Individuums im Rahmen dieser Arbeit war nicht möglich, so dass nicht ausgeschlossen werden kann, dass Gö144 aufgrund von variabler Expressivität initial als klinisch gesund charakterisiert wurde, trotzdem aber, wenn auch schwächer ausgeprägt, krankheitsspezifische Merkmale zeigt. Ebenso muss ein Erbgang mit reduzierter Penetranz für diese PAX7-Variante bei Patienten mit isolierter Lippen-Kiefer-Gaumenspalte berücksichtigt werden, da es sich bei PAX7 um ein Gen handelt, welches bereits von Leslie et al. (2015) in Verbindung mit dem Auftreten einer Lippen-Kiefer-Gaumenspalte bei einem Patienten als pathogene de novo Veränderung (c.766C>T, in PAX7) beschrieben wurde. Es liegen allerdings bislang noch keine ausreichenden genetischen Daten vor, die die Ermittlung der Penetranz ermöglichen. Diese könnten auch mutationsabhängig sein. Die von Leslie et al. (2015) beschriebene Veränderung (c.766C>T, in PAX7) führt zum Aminosäureaustausch innerhalb der Homöobox-Domäne des *PAX7*-Proteins (p.Ala259Val), welcher essentiell für die Bindung des Transkriptionsfaktors an die DNA und damit die Funktion des PAX7-Proteins ist. Mittels eines Luciferase-basierten Reportergenassays konnten Leslie et al. (2015) nachweisen, dass durch diesen Aminosäureaustausch die transaktivierende Fähigkeit von PAX7 reduziert wird, was zu einer verminderten Aktivierung der Expression von PAX7-Zielgenen führt (Leslie et al. 2015). Der Patient, der Träger dieser Veränderung ist, wurde durch Leslie et al. (2015) im Rahmen der Untersuchung eines Kollektivs an 1500 Patienten mit Lippen-Kiefer-Gaumenspalten identifiziert. Die phänotypischen Merkmale dieses Patienten entsprechen also denen, die für die Familie LKG8 klinisch zusammengefasst wurden. In beiden Fällen handelt es sich um Patienten mit isolierter, nicht-syndromaler Lippen-Kiefer-Gaumenspalte.

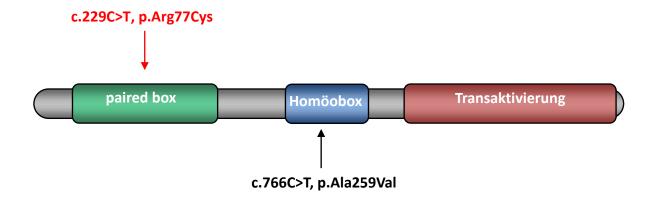


Abbildung 8: Schematische Darstellung der Domänenstruktur des Transkriptionsfaktors *PAX7*.

(Quelle: modifiziert nach Leslie et al. (2015)). Die Position der im Rahmen dieser Arbeit identifizierten Variante ist in Rot, die durch Leslie et al. (2015) beschriebene Veränderung in Schwarz markiert (Pfeile).

Um den Einfluss der in dieser Arbeit identifizierten Veränderung p.Arg77Cys auf die PAX7-Funktion zu untersuchen, wurde analog zu der von Leslie et al. (2015) durchgeführten Untersuchung ein Luciferase-Assay etabliert. Zusätzlich zu dieser Variante wurden dabei auch Expressionskonstrukte für wildtypisches PAX7 sowie PAX7 mit der Veränderung p.Ala259Val, die von Leslie et al. (2015) gefunden wurden, verwendet. Die Auswertung des Assays ergab ein starkes transaktivierendes Potential für wildtypisches PAX7, welches allerdings weder durch die p.Arg77Cys Variante noch durch die von Leslie et al. (2015) beschriebene Veränderung signifikant beeinflusst wurde. Im Rahmen der vorliegenden Untersuchung konnte also weder ein möglicher Einfluss der p.Arg77Cys Variante nachgewiesen noch die Beeinträchtigung der PAX7-Funktion durch die von Leslie et al. (2015) beschriebenen Veränderung bestätigt werden. Ein direkter Vergleich der Luciferase-Assays, die zur Ermittlung der transaktivierenden Kapazität von PAX7 durch Leslie et al. (2015) sowie im Zuge dieser Arbeit verwendet wurden, zeigt jedoch einige Unterschiede auf. In beiden Versuchsabläufen wurde die Promotorregion des murinen Id3-Gen als Zielsequenz für die Bindung von PAX7 und Aktivierung der Luciferase-Expression verwendet. Bei dieser handelt es sich um eine Region, für die bereits die Bindung von PAX7 sowie die Aktivierung der Expression des Id3-Gens nachgewiesen wurde (Kumar et al. 2009). Leslie et al. (2015) haben in ihrer Studie jedoch Reporterkonstrukte verwendet, in denen diese Sequenz in vierfacher Kopienzahl vor das Reportergen kloniert wurde, während in dieser Arbeit nur eine einzelne Kopie dieser PAX-Zielregion verwendet wurde. Zusätzlich wurden unterschiedliche PAX7-Expressionsvektoren verwendet. In dieser Arbeit wurde PAX7 in den pcDNA3-Vektor eingebracht. Dieser ermöglicht eine sehr starke Expres-

sion der Zielgene in den zellulären Systemen, die mit dem Vektor transfiziert werden. Möglicherweise wurden durch diese teilweise unphysiologisch hohen *PAX7*-Proteinmengen funktionelle Effekte der Varianten maskiert, was insgesamt zu dem negativen Ergebnis bezüglich einer funktionellen Beeinträchtigung sowohl durch die hier identifizierte p.Arg77Cys-Variante als auch die p.Ala259Val-Veränderung, die durch Leslie et al. (2015) als beschrieben wurde, geführt haben könnte. Zusammenfassend führen die im Rahmen dieser Arbeit gewonnenen Erkenntnisse zu dem Ergebnis, dass die vorliegende Variante in *PAX7* ursächlich für die Lippen-Kiefer-Gaumenspalte in der entsprechenden Familie ist, und führen unter Berücksichtigung des aktuellen Stands der Forschung *PAX7* als neues, ursächliches Gen für isolierte Lippen-Kiefer-Gaumenspalten ein.

4.3.2 Identifizierung einer pathogenen Veränderung in *NEDD4L* als molekulare Ursache für isolierte Lippen-Kiefer-Gaumenspalten

Im Zuge dieser Arbeit konnte in einer weiteren Familie mit isolierter Lippe-Kiefer-Gaumenspalte ebenfalls ein weiteres Kandidatengen ermittelt werden, welches möglicherweise ursächlich für die Erkrankung in dieser Familie ist. In Familie LKG11 konnte mittels Exomsequenzierung die Variante c.551C>T in *NEDD4L* identifiziert werden, die auf Proteinebene zu einem Austausch von Serin zu Phenylalanin an der Position 184 (p.Ser184Phe) führt.

Das neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L)-Gen kodiert für eine 975 Aminosäuren umfassende E3-Ubiquitin Ligase (Harvey et al. 2001). NEDD4L wird ubiquitär exprimiert und spielt unter anderem in der Zellproliferation, Zellmigration und Apoptose eine wichtige Rolle (Broix et al. 2016). 2016 beschrieben Broix et al. (2016) erstmalig pathogene Veränderungen in NEDD4L in Patienten mit einer neuronalen Entwicklungsstörung mit periventrikulärer nodulärer Heterotopie. Sie identifizierten heterozygote, meist de novo Veränderungen in NEDD4L in sieben Patienten, die neben dem neuronalen Phänotyp zusätzlich faziale Auffälligkeiten sowie bilaterale Syndaktylien aufwiesen. Bei allen beschriebenen Varianten handelte es sich um missense-Veränderungen, die zu einem Aminosäureaustausch im NEDD4L-Protein führen, und Broix et al. (2016) konnten zeigen, dass diese Veränderungen, welche im C-Terminalen Bereich des Proteins clustern, die Funktion von NEDD4L beeinträchtigen. Die Veränderungen innerhalb der katalytisch aktiven HECT-Domäne des Proteins führen zu einer erhöhten Autoubiquitylierung von NEDD4L und induzieren dadurch einerseits den proteolytischen Abbau des Proteins selbst sowie darüber hinaus eine

Fehlregulation in mTor-/AKT-abhängigen Signalweg. In weiteren Studien konnte diese Schlüsselposition, die *NEDD4L* in der Kommunikation zwischen den PI3K-mTORC2 und TGF-β-activin-Smad2-Smad3 Signalwegen innehat, bestätigt werden (Gao et al. 2009; Yu et al. 2015). Neben den oben genannten Merkmalen zeigten sechs der sieben durch Broix et al. (2016) beschriebenen Patienten zusätzlich eine Gaumenspalte. Neben seiner Funktion in neuronalem Gewebe unterstützt dies eine mögliche Rolle von *NEDD4L* in der Entstehung dieses Merkmals (Hsia et al. 2014). Im Gegensatz dazu liegt die hier im Zuge dieser Arbeit gefundene Variante in der N-terminalen Region des *NEDD4L*-Proteins und führt dort zum Austausch einer hochkonservierten Aminosäure innerhalb der C2-Domäne des Proteins, welche in die Ca²+abhängige Bindung von Phospholipiden involviert ist (Rizo und Südhof 1998). Anders als die von Broix et al. (2016) beschrieben Varianten ergibt sich also für die p.Ser184Phe-Variante kein direkter Einfluss auf die katalytische Aktivität des Proteins, was eine Erklärungsmöglichkeit für den klinisch zwar überlappenden, dennoch aber distinkten Phänotyp bieten kann.

Durch die Analyse der Verteilung der Variante innerhalb der Familie LKG11 konnte gezeigt werden, dass die c.551C>T-Veränderung in *NEDD4L* mit der Erkrankung ko-segregiert. Ein Individuum, Gö295, welches klinisch als unauffällig charakterisiert wurde, konnte allerdings ebenfalls als Träger der *NEDD4L*-Variante identifiziert werden. Wie bereits in Kapitel 4.3.1 beschrieben, kommen unterschiedliche Gründe dafür in Frage, die trotz des möglicherweise pathogenen Effekts der Variante ihr Vorliegen bei diesem Individuum erklären.

Zusammenfassend kann die im Rahmen dieser Arbeit identifizierte Variante c.551C>T in *NEDD4L* (vgl. Abbildung 29) als mögliche genetische Ursache für die Lippen-Kiefer-Gaumenspalte in dieser Familie angesehen werden. Allerdings sind weitere genetische und insbesondere funktionelle Untersuchungen notwendig, um einerseits die Kausalität dieser Variante zu bestätigen, zusätzlich aber auch die Pathomechanismen aufzuklären, die zu den unterschiedlichen klinischen Erscheinungsformen führen, die mit pathogenen Veränderungen in *NEDD4L* einhergehen, zu erklären.

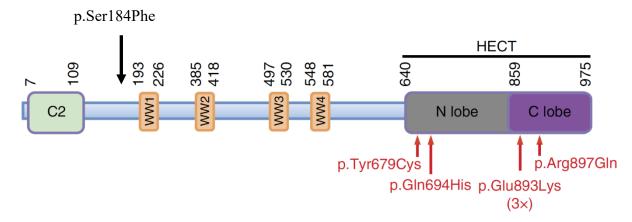


Abbildung 9: NEDD4L-Protein.

(Quelle: modifiziert nach Broix et al. (2016)). Positionen der beschrieben Mutationen gegenüber der gefundenen Mutation von Broix et al. (2016) sind in Rot dargestellt. Im Rahmen der vorliegenden Arbeit gefundene Mutationen ist in Schwarz dargestellt.

4.3.3 Ergebnis der genetischen Analysen der Familien LKG12, LKG21 sowie LKG-Kamerun

Für Patienten mit Lippen-Kiefer-Gaumenspalten aus drei weiteren Familien aus Indien sowie Kamerun konnten innerhalb der vorliegen Arbeit keine krankheitsverursachenden Veränderungen mittels Exomsequenzierung identifiziert werden. Insgesamt wurden fünf betroffene Individuen aus den Familien LKG12, LKG21 sowie LKG-Kamerun mittels Exomsequenzierung untersucht. Die Analysen ergaben keine Kandidatengene, welche kausale, pathogene oder möglicherweise pathogene Veränderungen enthielten.

Für zwei Varianten, die in Familie LKG12 in den Genen FGFR1 und FGFR2 identifiziert wurden, konnten durch nachfolgende molekulargenetische und bioinformatische Analysen gezeigt werden, dass diese Veränderungen keinen Einfluss auf die Funktion des kodierten Proteins ausübten (FGFR1) oder nicht mit der Erkrankung in der Familie ko-segregierten (FGFR3). Weitere Veränderungen konnten im Zuge der Analyse der Exomsequenzierungsdaten nicht ermittelt werden. In der Familie LKG-Kamerun konnte aufgrund der fehlenden funktionellen Konsequenz der ermittelten Varianten ein Effekt für zwei identifizierte Veränderungen in den Genen LETM1 und GLI1 in Bezug auf die Entstehung der Erkrankung ausgeschlossen werden. Die bioinformatische Analyse dieser Varianten mittels unterschiedlicher Prädiktionsprogramme ergab, dass beide Veränderungen keinen Einfluss auf die Funktion der kodierten Proteine ha-

ben. In der Familie LKG21, in der ein Patient mit Lippen-Kiefer-Gaumenspalte molekulargenetisch untersucht wurde, konnte im Rahmen dieser Arbeit kein Kandidatengen ermittelt werden.

Insgesamt zeigen die Ergebnisse aus diesen drei Familien die Grenzen der hier verwendeten molekulargenetischen Methodik auf. Generell kann zwar nicht ausgeschlossen werden, dass die Lippen-Kiefer-Gaumenspalten in diesen drei Familien einen nicht-genetischen Ursprung haben, durch die Auswahl der Familien und die Vielzahl der betroffenen Personen innerhalb jeder Familie wurde die Wahrscheinlichkeit dafür allerdings versucht zu minimieren. Eher verdeutlichen diese Ergebnisse daher die Limitierungen und Grenzen der Exomsequenzierung als Methodik zur Identifizierung krankheitsverursachender Veränderungen genetischer Erkrankungen. Im Rahmen der Exomsequenzierung werden die (protein-)kodierenden Bereiche aller etwa 19.000 Gene des humanen Genoms sequenziert und einer Analyse zugänglich gemacht. Die generierten Sequenzdaten beschränken sich dabei auf die Exons der Gene sowie angrenzende intronische Bereiche. Tief intronische Veränderungen ebenso wie Varianten, die sich in intergenen Bereichen befinden, werden dagegen durch Exomsequenzierungsansätze nicht erfasst (Punetha und Hoffman 2013). Dadurch können Veränderungen, die sich zum Beispiel in regulatorischen Bereichen für bestimmte Gene befinden, nur zu einem geringen Anteil detektiert werden. Darüber hinaus stellt die Exomsequenzierung, die im Rahmen dieser Arbeit durchgeführt wurde, eine Methodik dar, die auf der Hochdurchsatz-Sequenzierung kurzer DNA-Fragmente, sogenannter short reads von 50 bis 400 bp Länge, basiert. Während sich diese Methodik durch eine hohe Genauigkeit und geringe Fehlerquote bei der Detektion einzelner Nukleotide auszeichnet, ist sie nur bedingt geeignet, um strukturelle genomische Veränderungen zu erfassen. Dies gilt insbesondere für balancierte Veränderungen, die nicht mit einer veränderten Kopienzahl einzelner Gene oder Teilen von Genen einhergehen. Molekular-zytogenetische Untersuchungsmethoden, die zur Detektion dieser strukturellen genomischen Veränderungen geeignet sind, wie zum Beispiel Array-CGH, wurden im Rahmen der genetischen Aufarbeitung dieser Patienten bislang nicht durchgeführt und stellen somit einen möglichen nächsten Schritt zur Aufklärung einer ursächlichen genetischen Komponente für die vorliegende Erkrankung in Familien dar (Shashi et al. 2014; Ferguson 2020).

Auch genetische Untersuchungen mittels Genomsequenzierung stellen eine mögliche weiterführende Untersuchung in diesen Familien dar (Markl et al. 2018; Schwarze et al. 2018). Diese ebenfalls auf einer Hochdurchsatz-Sequenzierung kurzer, 50 bis 400 bp langer DNA-Fragmente basierende Methode liefert Sequenzinformationen über das gesamte Genom und ermöglicht

somit auch die Detektion von Veränderungen außerhalb unmittelbar proteinkodierender Bereiche. Zusätzlich können Genomsequenzierungsdaten aufgrund ihrer uniformen Qualität und einheitlicheren Sequenzierungstiefe im Gegensatz zu Exomsequenzierungsdaten eine wesentlich zuverlässigere Detektion von (insbesondere heterozygoten) Kopiezahlveränderungen (copy number variations, CNVs) gewährleiten. Der großen Herausforderung, die die Analyse und Auswertung von Genomsequenzierungsdaten insbesondere aufgrund der Vielzahl an detektierten Varianten und einer häufig unklaren direkten funktionellen Relevanz derzeit noch darstellt, kann im Fall der vorliegenden Familien dadurch begegnet werden, dass möglichst viele Mitglieder der entsprechenden Familien untersucht werden (Biesecker 2012). Dies ermöglicht über das Filtern nach gemeinsamen Varianten in den Betroffenen eine Reduktion der hohen Anzahl an initial detektierten Veränderungen und bietet somit eine Möglichkeit zur Aufklärung einer möglichen genetischen Komponente, die zur Entstehung der Lippen-Kiefer-Gaumenspalten in den vorliegenden Familien geführt hat. Neben der Generierung von short reads, welche einige hundert bp lang sein können, gibt es auch andere Ansätze, die auch zukünftig von hoher Relevanz sein könnten. Bei long reads-Sequenzierungstechnologien können reads bestehend aus bis zu mehreren tausend Kilobasen generiert werden. Dies macht es einfacher, das ganze Genom zu analysieren, da das Zusammenfügen der erstellten Sequenzen erleichtert wird. So können zum Beispiel auch strukturelle Veränderungen, wie etwa Deletionen, Insertionen oder balancierte Translokationen, besser und genauer erkannt und die Bruchpunkte exakter bestimmt werden (Logsdon et al. 2020).

4.4 Ausblick/Perspektive

Für Patienten mit erblichen Erkrankungen haben die diesbezüglichen Untersuchungsmöglichkeiten, so wie sie auch im Rahmen der vorliegenden Arbeit zum Einsatz kamen, eine hohe Relevanz. Zum einen können sie Klarheit in Bezug auf mögliche Verdachtsdiagnosen bringen, zum anderen sind – zumindest teilweise – weiterführende Therapien daraus identifizierbar, ableitbar oder zu entwickeln. Auch können für die betroffenen Personen in Bezug auf die Familienplanung individuelle Vererbungsrisiken abgeklärt werden. Eine humangenetische Diagnose benennen zu können, kann demnach einen persönlichen Wert sowie Einfluss auf die medizinische Betreuung haben. Aber nicht nur für die explizit betroffenen Individuen selbst, sondern auch für weitere Forschungsarbeiten und -schwerpunkte sind Erkenntnisse, die aus speziellen humangenetischen Untersuchungen hervorgehen, Basis und Anknüpfungspunkt zugleich.

Insbesondere next-generation-sequencing-basierte Untersuchungen ermöglichen es, effizient, vergleichbar kostengünstig und in kurzer Zeit enorme Datenmengen zu generieren, die dann Aufschluss über genetische Erkrankungen geben können. So ist es möglich, ein ganzes Mendeliom, Exom oder Genom zu analysieren, nicht nur in Bezug auf die hier beschriebene Lippen-Kiefer-Gaumenspalten, Syndrome und unspezifische Formen von Kraniosynostosen. Next-generation-sequencing-basierte Methoden kamen auch im Rahmen der vorliegenden Arbeit zum Tragen und es gelang so, für einen Teil des betrachteten Patientenkollektivs Kandidatengene für klinisch auffällige Krankheitsbilder einzelner Individuen und Familien ausfindig zu machen. Dies kann für diese Patienten, aber auch für weitere Forschungsschritte oder bei der Klärung ähnlicher Auffälligkeiten als relevant eingeschätzt werden. Es wird deutlich, dass das Finden und Bewerten von Genen, die im Zusammenhang mit bestimmten Erkrankungen stehen können, durch next-generation-sequencing-basierte Methoden erleichtert und vorangebracht werden können. Vergleicht man next-generation sequencing mit der Sanger-Sequenzierung ist der Datensatz bei der neueren Methode um ein Vielfaches größer und die Chance, Krankheiten aufzuklären, somit wahrscheinlicher. Auch das Kosten-Nutzen-Verhältnis erscheint durch die Weiterentwicklung besser zu sein.

Deutlich wurde im Laufe der vorliegenden Untersuchungen aber auch, dass jede Technik ihre Vor- und Nachteile sowie Grenzen hat. So war es nicht möglich, alle im Rahmen der Arbeit betrachteten Krankheitsbilder mit den angewandten humangenetischen Untersuchungsmethoden und Sequenzierungen aufzuklären. Dementsprechend hat auch das *next-generation sequencing* limitierende Aspekte. So werden etwa *short reads* generiert, die strukturelle chromosomale Veränderungen, große Deletionen und Duplikationen unter Umständen gar nicht sichtbar machen. Hier haben dann andere Techniken ihren Vorteil und sollten, insbesondere dann, wenn das *next-generation sequencing* innerhalb einer Forschungsarbeit zu keinen signifikanten Ergebnissen führt, in Betracht gezogen werden. Auch hier bietet die vorliegende Arbeit Anknüpfungspunkte für weitere Untersuchungen. Ein weiteres Problem, welches bei der Generierung von großen Datenmengen mitschwingt, ist, dass diese Daten erst einmal analysiert und bewertet werden müssen. Ursächliche Varianten müssen von benignen Varianten unterschieden werden. Es muss differenziert werden zwischen Polymorphismen und tatsächlich pathogenen Mutationen bzw. Varianten.

Allerdings hat sich das *next-generation sequencing* aufgrund der Kosten- und Zeiteffektivität, der Genauigkeit und des hohen Durchsatzes in der klinischen Praxis trotz limitierender Faktoren immer mehr etabliert, vor allem in Bezug auf hereditäre Erkrankungen. So waren lange Zeit

Sequenzierungsuntersuchungsmethoden durch zu hohe Kosten begrenzt. Next-generation sequencing als Sequenzierung der jetzigen und nächsten Generation bietet demnach die Möglichkeit, die Medizin immer mehr zur personalisieren und für mehr Patienten zugänglich zu machen, denn Krankheiten können genauer klassifiziert werden. Pharmakogenetische Marker können leichter detektiert werden und den Patienten somit auch gezieltere Therapien zukommen. Auch für Labore, das Gesundheitswesen im Allgemeinen und Forscher verschiedener Gebiete werden Sequenzierungsmethoden zunehmend zugänglicher. Next-generation sequencing könnte somit in Zukunft immer mehr als Routinediagnostik zum Einsatz kommen. Longread sequencing wäre diesbezüglich dann auch zur Detektion von strukturellen Veränderungen denkbar. Es ist davon auszugehen, dass in Zukunft die Sequenzierung einzelner Genome von zunehmender Bedeutung sein wird. Diese Annahme wird auch im aktuellen wissenschaftlichen Diskurs und in der Literatur vertreten (Shendure und Ji 2008; Gonzalez-Garay 2014; Goodwin et al. 2016; Gupta und Verma 2019; Hartman et al. 2019). Auch auf bundesweiter Ebene und im politischen Diskurs wird die Relevanz von genetischen Untersuchungen deutlich. So ist die genomDE Initiative hervorzuheben, die auf die Verbesserung der Versorgung von Patientinnen und Patienten mit genetischen Erkrankungen zielt. Die Vernetzung von gewonnenen Daten sowie individuell angepasste Behandlungskonzepte sollen mithilfe dieser Initiative ermöglicht werden. Ziel ist es, Forschung und Gesundheitsversorgung aufeinander abzustimmen und so zu optimieren. In diesem Zusammenhang ist Deutschland im Jahre 2020 einem europaweiten Genomprojekt beigetreten (Bundesministerium für Gesundheit 2021).

Die Ergebnisse der hier beschriebenen Untersuchungen sowie die generierten Daten und gefundenen Kandidatengene stellen eine gute Basis sowie Anknüpfungsmöglichkeit für weitere Forschungsarbeiten dar, denn sie könnten im Sinne eines internationalen *Data Sharing* genutzt werden (Sobreira et al. 2015). Sie wären dann nicht nur relevant für das betrachtete Patientenkollektiv, sondern könnten die Suche nach weiteren Patienten mit ähnlicher Symptomatik und den Abgleich sowie die Bewertung der gefunden Varianten erheblich erleichtern.

5 Zusammenfassung 165

5 Zusammenfassung

Die moderne Humangenetik leistet einen großen Beitrag dazu, Krankheiten besser zu verstehen und hilft dabei, deren Ursachen herauszufinden. Sie macht es möglich, Therapieschritte und verfahren (weiter) zu entwickeln. Indem verschiedene humangenetische Verfahren zur Anwendung kommen, können menschliche Gene untersucht und so herausgefunden werden, ob und inwiefern sie eine Rolle bei klinisch gestellten Diagnosen spielen. Hierzu soll auch die vorliegende Arbeit einen konkreten Beitrag leisten. Im Rahmen der vorliegenden Arbeit wurden verschiedene Diagnosen betrachtet. Die genutzten Materialien sowie die angewandten Methoden wurden hierzu genauer dargestellt und erläutert.

Zu den für die Untersuchungen vorliegenden Krankheiten zählten sowohl syndromale Diagnosen aber auch Krankheitsbilder, die nicht mit einem klinisch diagnostizierten Syndrom einhergehen. Ziel war es zum einen, die molekulare Diagnose zu stellen und den untersuchten Patienten die Ursache für ihre Erkrankung besser erläutern zu können, zum anderen ging es auch darum, anhand von exemplarischen Untersuchungen neue humangenetisch gestützte Erkenntnisse zu den vorliegenden Erkrankungen zu liefern, die – im weiteren Verlauf und in Bezug zum aktuellen Forschungsstand – Basis für weitere humangenetische Arbeiten liefern können.

Oro- und kraniofaziale Fehlbildungen umfassen eine Gruppe an angeborenen Entwicklungsstörungen des Gesichts und/oder Schädels. Diese können unterschiedliche Ausprägungsformen annehmen und zusätzlich sowohl als isolierte Fehlbildungen des Kopfes als auch in Kombination mit anderen, nicht-fazialen Dysmorphien als Bestandteil eines übergeordneten Syndroms auftreten. Die Ursachen oro- und kraniofazialer Fehlbildungen können sowohl genetischer als auch nicht-erblicher Natur sein, hervorgerufen zum Beispiel durch Kontakt des Ungeborenen mit unterschiedlichen Noxen während der Schwangerschaft. Ziel dieser Arbeit war die Untersuchung und Identifizierung ursächlicher genetischer Faktoren für oro- und kraniofaziale Fehlbildungen mittels unterschiedlicher molekulargenetischer Analysemethoden sowie die bioinformatische und funktionelle Charakterisierung dieser Veränderungen.

In der vorliegenden Arbeit wurde ein Patientenkollektiv mit syndromalen und nicht-syndromalen Kraniosynostosen genetisch charakterisiert. Dazu wurden sowohl klassische molekulargenetische Untersuchungsmethoden als auch neue, *next-generation-sequencing*-basierte Analysen durchgeführt. Von den insgesamt 32 untersuchten Patienten konnten mit Hilfe dieser Strategie in 18 Patienten die ursächlichen genetischen Veränderungen identifiziert werden. Die

5 Zusammenfassung 166

Aufklärungsquote war dabei abhängig von initialen Verdachtsdiagnose und schwankte zwischen 100% (11/11 Patienten mit Verdacht auf Apert-Syndrom) und 0% (0/7 Patienten mit isolierter Kraniosynostose). Im Zuge dieser Analysen konnte zusätzlich bei einem Patienten mit Verdacht auf Saethre-Chotzen-Syndrom eine genetische Veränderung im *TWIST1*-Gen identifiziert werden, die bislang in der wissenschaftlichen Literatur noch nicht beschrieben wurde. Durch bioinformatische und molekulargenetische Analysen konnte die Ursächlichkeit dieser Veränderung für die Erkrankung des Patienten nachgewiesen werden.

Bei einem weiteren Patienten mit der Verdachtsdiagnose der Kraniosynostose und einer mutmaßlichen ursächlichen Variante im *MEGF8*-Gen konnte die genetische Ursache nicht bestätigt werden.

Im weiteren Verlauf dieser Arbeit wurden fünf Familien mit nicht-syndromalen Lippen-Kiefer-Gaumenspalten mittels Exomanalysen zur Ermittlung der zugrundeliegenden, genetischen Ursache der Erkrankung untersucht. Die genetischen Daten betroffener sowie klinisch unauffälliger Familienmitglieder wurden verglichen und detektierte Varianten in Bezug auf ihre funktionellen Effekte sowie ihre Pathogenität und ihres Vorkommens in der gesunden Allgemeinbevölkerung bioinformatisch analysiert und klassifiziert. Ausgewählte Varianten in Kandidatengenen wurde nachfolgend molekulargenetisch hinsichtlich ihrer Ko-Segregation in den jeweiligen Familien untersucht. Mit Hilfe dieser Analysestrategie konnten in zwei Familien Varianten in Kandidatengenen ermittelt werden, die als möglicherweise pathogen und ursächlich eingestuft wurden. So konnte mittels Exomanalyse in einer Familie mit isolierter Lippen-Kiefer-Gaumenspalte die missense-Varianten p.Arg77Cys (c.229C>T) in PAX7 identifiziert und durch nachfolgende molekulargenetische, bioinformatische sowie funktionelle Untersuchungen mittels Luciferase-basierten Reportergenassays als möglicherweise pathogen charakterisiert werden. Ursächliche Veränderungen im PAX7-Gen wurden bislang erst bei einem Einzelpatienten mit Lippen-Kiefer-Gaumenspalte beschrieben. Die im Rahmen dieser Arbeit erfolgte Identifizierung einer vorbeschriebenen Variante in PAX7 in zusätzlichen Patienten ermöglicht somit die Etablierung des PAX7-Gens als kausales Gen für nicht-syndromale Lippen-Kiefer-Gaumenspalten. In einer weiteren Familie konnte durch die Verwendung von Exomsequenzierungen eine Variante, c.551C>T; p.Ser184Phe, in NEDD4L identifiziert werden. Pathogene Veränderungen in NEDD4L sind bislang in der wissenschaftlichen Literatur im Zusammenhang neuronalen Entwicklungsstörungen mit periventrikulärer nodulärer Heterotopie beschrieben worden.

5 Zusammenfassung 167

Die Identifizierung einer möglicherweise ursächlichen Variante in Patienten mit isolierten Lippen-Kiefer-Gaumenspalten kann somit erste Hinweise auf das Vorliegen von genetischer Variabilität für Veränderungen in diesem Gen liefern.

Zusammenfassend erweitern die in dieser Arbeit ermittelten Ergebnisse unser Verständnis über die genetischen Ursachen und die zugrundeliegenden Pathomechanismen für unterschiedliche Formen der Kraniosynostose sowie für isolierte und nicht-syndromale Lippen-Kiefer-Gaumenspalten. Die Identifizierung einer bislang unbekannten, pathogenen Veränderung in *TWIST1* sowie der zwei neuen Kandidatengene *PAX7* und *NEDD4L* kann zukünftig die molekulargenetische Diagnostik von Erkrankungen dieses Spektrums beeinflussen und den Betroffenen und ihren Familien eine schnelle Klärung möglicher genetischer Ursachen liefern.

Die vorliegende Arbeit bietet Anknüpfungspunkte für weitere Untersuchungen, die auch in Zukunft bei der Klärung von unterschiedlichen humangenetischen Fragestellungen, bei der Ursachenforschung für verschiedene medizinische Diagnosen sowie bei der weiterführenden Therapieentwicklung und -bereitstellung helfen sollen. Dieses Ziel betrifft – so wie in dieser Arbeit – konkrete Patientenkollektive, Familien oder auch Einzelpersonen, die mit Hilfe von Untersuchungen wie der vorliegenden beim Leben mit einer (genetisch assoziierten) Erkrankung unterstützt werden sollen. Grundlegend ist das genannte Ziel aber auch auf prinzipielle medizinische Fragestellungen zu beziehen, um diese mit Hilfe der Humangenetik aufdecken, verstehen und lösen zu können.

6 Literaturverzeichnis

Agochukwu NB, Solomon BD, Muenke M (2012): Impact of genetics on the diagnosis and clinical management of syndromic craniosynostoses. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 28, 1447–1463

- Akingbola OA, Singh D, Srivastav SK, Walsh JW, Jansen DA, Frieberg EM (2011): Intensive care unit course of infants and children after cranial vault reconstruction for craniosynostosis. BMC Res Notes <u>4</u>, 347
- Alderman BW, Zamudio S, Barón AE, Joshua SC, Fernbach SK, Greene C, Mangione EJ (1995): Increased risk of craniosynostosis with higher antenatal maternal altitude. Int J Epidemiol <u>24</u>, 420–426
- Al-Namnam NM, Hariri F, Thong MK, Rahman ZA (2019): Crouzon syndrome: Genetic and intervention review. J Oral Biol Craniofacial Res 9, 37–39
- Arnemann J: Panel-Sequenzierung. In: Gressner AM, Arndt T (Hrsg.): Lexikon der Medizinischen Laboratoriumsdiagnostik (Springer Reference Medizin). Springer, Berlin, Heidelberg 2019, 1814–1814
- Basch ML, Bronner-Fraser M, García-Castro MI (2006): Specification of the neural crest occurs during gastrulation and requires Pax7. Nature <u>441</u>, 218–222
- Beaty T, Taub M, Scott A, Murray J, Marazita M, Schwender H, Parker M, Hetmanski J, Balakrishnan P, Mansilla M, et al. (2013): Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum Genet 132, 771–781
- Beaty TH, Hetmanski JB, Zeiger JS, Fan YT, Liang KY, VanderKolk CA, McIntosh I (2002): Testing candidate genes for non-syndromic oral clefts using a case-parent trio design. Genet Epidemiol <u>22</u>, 1–11
- Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, Liang KY, Wu T, Murray T, Fallin MD, et al. (2010): A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet 42, 525–529
- Beenken A, Mohammadi M (2009): The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov $\underline{8}$, 235–253
- Belov AA, Mohammadi M (2013): Molecular Mechanisms of Fibroblast Growth Factor Signaling in Physiology and Pathology. Cold Spring Harb Perspect Biol 5, 1–24
- Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, et al. (2009): Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41, 359–364
- Bertola DR, Rodrigues MG, Quaio CRDC, Kim CA, Passos-Bueno MR (2013): Vertical transmission of a frontonasal phenotype caused by a novel ALX4 mutation. Am J Med Genet A 161A, 600–604
- Bhattacharya S, Khanna V, Kohli R (2009): Cleft lip: The historical perspective. Indian J Plast Surg Off Publ Assoc Plast Surg India 42, 4–8

Biesecker LG (2012): Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genet Med 14, 393–398

- Birnbaum S, Ludwig KU, Reutter H, Herms S, Steffens M, Rubini M, Baluardo C, Ferrian M, Almeida de Assis N, Alblas MA, et al. (2009): Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet 41, 473–477
- Bowling EL, Burstein FD (2006): Crouzon syndrome. Optom J Am Optom Assoc $\underline{77}, 217-222$
- Broix L, Jagline H, L Ivanova E, Schmucker S, Drouot N, Clayton-Smith J, Pagnamenta AT, Metcalfe KA, Isidor B, Louvier UW, et al. (2016): Mutations in the HECT domain of NEDD4L lead to AKT–mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet 48, 1349–1358
- Brooklyin S, Jana R, Aravinthan S, Adhisivam B, Chand P (2014): Assessment of folic Acid and DNA damage in cleft lip and cleft palate. Clin Pract <u>4</u>, 608
- Buchanan EP, Xue Y, Xue AS, Olshinka A, Lam S. https://www.dovepress.com/multidiscip-linary-care-of-craniosynostosis-peer-reviewed-fulltext-article-JMDH; abgerufen am 21.07.2019
- Bundesministerium für Gesundheit. https://www.bundesgesundheitsministerium.de/the-men/gesundheitswesen/personalisierte-medizin/genomde-de.html; abgerufen am 04.09.2021
- Bush PG, Williams AJ (1983): Incidence of the Robin Anomalad (Pierre Robin syndrome). Br J Plast Surg 36, 434–437
- Callaway E (2013): Deal done over HeLa cell line. Nat News 500, 132
- Carla L, Maria PA (2017): Unravelling molecular pathways shared by Kabuki and Kabuki-like syndromes. Clin Genet 283–295
- Carmichael SL, Ma C, Rasmussen SA, Honein MA, Lammer EJ, Shaw GM, National Birth Defects Prevention Study (2008): Craniosynostosis and maternal smoking. Birt Defects Res A Clin Mol Teratol 82, 78–85
- Cavalheiro MG, Lamônica DAC, de Vasconsellos Hage SR, Maximino LP (2019): Child development skills and language in toddlers with cleft lip and palate. Int J Pediatr Otorhinolaryngol 116, 18–21
- Christensen K, Mitchell LE (1996): Familial recurrence-pattern analysis of nonsyndromic isolated cleft palate-a Danish Registry study. Am J Hum Genet <u>58</u>, 182–190
- Cohen DM, Green JG, Miller J, Gorlin RJ, Reed JA (1987): Acrocephalopolysyndactyly type II-Carpenter syndrome: clinical spectrum and an attempt at unification with Goodman and Summit syndromes. Am J Med Genet <u>28</u>, 311–324
- Cohen MM (1995): Craniosynostoses: Phenotypic/molecular correlations. Am J Med Genet 56, 334–339

Cohen MM, Kreiborg S, Lammer EJ, Cordero JF, Mastroiacovo P, Erickson JD, Roeper P, Martínez-Frías ML (1992): Birth prevalence study of the Apert syndrome. Am J Med Genet 42, 655–659

- Dahl E, Koseki H, Balling R (1997): Pax genes and organogenesis. BioEssays 19, 755–765
- Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011): Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet <u>12</u>, 167–178
- Drafahl KA, McAndrew CW, Donoghue DJ: Chapter 237 Signaling from Fibroblast Growth Factor Receptors in Development and Disease. In: Bradshaw RA, Dennis EA (Hrsg.): Handbook of Cell Signaling (Second Edition). Academic Press, San Diego 2010, 1939–1947
- Eggermann T, Söllner L, Kurth I, Eggermann K, Begemann M (2018): Next Generation Sequencing (NGS) von DNA: Mehr Informationen durch mehr Daten? BU Prakt Online-J Für Den Biol 1, 6–6
- Ehrenfeld M, Schwenzer N, Bacher M, Schramm T: Lippen-Kiefer-Gaumen-Spalten. In: Schwenzer N, Ehrenfeld M (Hrsg.): Mund-Kiefer-Gesichtschirurgie (Zahn-Mund-Kiefer-Heilkunde Lehrbuchreihe zur Aus-und Weiterbildung / hrsg. von Norbert Schwenzer ...; Bd. [2]). 4. Auflage; Thieme, Stuttgart 2011, 186–226
- El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonaventure J (1997): Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 15, 42–46
- El Ghouzzi V, Lajeunie E, Le Merrer M, Cormier-Daire V, Renier D, Munnich A, Bonaventure J (1999): Mutations within or upstream of the basic helix–loop–helix domain of the *TWIST* gene are specific to Saethre-Chotzen syndrome. Eur J Hum Genet <u>7</u>, 27–33
- Elanko N, Sibbring JS, Metcalfe KA, Clayton-Smith J, Donnai D, Temple IK, Wall SA, Wilkie AO (2001): A survey of TWIST for mutations in craniosynostosis reveals a variable length polyglycine tract in asymptomatic individuals. Hum Mutat 18, 535–541
- Engelhard C, Sarsfield S, Merte J, Wang Q, Li P, Beppu H, Kolodkin AL, Sucov HM, Ginty DD (2013): MEGF8 is a modifier of BMP signaling in trigeminal sensory neurons. eLife <u>2</u>, 1–16
- Feragen KB, Stock NM, Sharratt ND, Kvalem IL (2016): Self-perceptions of romantic appeal in adolescents with a cleft lip and/or palate. Body Image 18, 143–152
- Ferguson E. https://inspirestudentjournal.co.uk/wp-content/uploads/2020/10/Inspire-Student-Journal-Emily-Ferguson.pdf; abgerufen am 30.05.2021
- Fisher E, Achilles S, Tönnies H, Schmidtke J (2015): Konzepte zur Mitteilung genetischer Zusatzbefunde in der medizinischen Diagnostik und Forschung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 58, 166–173
- FitzPatrick DR, Raine PA, Boorman JG (1994): Facial clefts in the west of Scotland in the period 1980-1984: epidemiology and genetic diagnoses. J Med Genet 31, 126–129

Foo R, Guo Y, McDonald-McGinn DM, Zackai EH, Whitaker LA, Bartlett SP (2009): The natural history of patients treated for TWIST1-confirmed Saethre-Chotzen syndrome. Plast Reconstr Surg 124, 2085–2095

- French LR, Jackson IT, Melton LJ (1990): A population-based study of craniosynostosis. J Clin Epidemiol 43, 69–73
- Gallagher ER, Ratisoontorn C, Cunningham ML: Saethre-Chotzen Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (Hrsg.): GeneReviews®. University of Washington, Seattle, Seattle (WA) 1993
- Gao S, Alarcón C, Sapkota G, Rahman S, Chen P-Y, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massagué J (2009): Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF βsignaling. Mol Cell 36, 457–468
- Glaser RL, Jiang W, Boyadjiev SA, Tran AK, Zachary AA, Van Maldergem L, Johnson D, Walsh S, Oldridge M, Wall SA, et al. (2000): Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet <u>66</u>, 768–777
- Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW (2003): The Paternal-Age Effect in Apert Syndrome Is Due, in Part, to the Increased Frequency of Mutations in Sperm. Am J Hum Genet <u>73</u>, 939–947
- Gonzalez-Garay ML (2014): The road from next-generation sequencing to personalized medicine. Pers Med <u>11</u>, 523–544
- Goodwin S, McPherson JD, McCombie WR (2016): Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet <u>17</u>, 333–351
- Gripp KW, Zackai EH, Stolle CA (2000): Mutations in the human TWIST gene. Hum Mutat 15, 150–155
- Grollemund B, Galliani E, Soupre V, Vazquez MP, Guedeney A, Danion A (2010): [The impact of cleft lip and palate on the parent-child relationships]. Arch Pediatr Organe Off Soc Francaise Pediatr <u>17</u>, 1380–1385
- Gupta N, Verma VK (2019): Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. Microb Technol Welf Soc <u>17</u>, 313–341
- Hartman P, Beckman K, Silverstein K, Yohe S, Schomaker M, Henzler C, Onsongo G, Lam HC, Munro S, Daniel J, et al. (2019): Next generation sequencing for clinical diagnostics: Five year experience of an academic laboratory. Mol Genet Metab Rep 19
- Harvey KF, Dinudom A, Cook DI, Kumar S (2001): The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J Biol Chem 276, 8597–8601
- Haye D, Collet C, Sembely-Taveau C, Haddad G, Denis C, Soulé N, Suc AL, Listrat A, Toutain A (2014): Prenatal findings in carpenter syndrome and a novel mutation in RAB23. Am J Med Genet A 164, 2926–2930

Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, Garcia Delgado C, Gonzalez-Ramos M, Kline AD, Jabs EW (1997): Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet <u>15</u>, 36–41

- Hsia HE, Kumar R, Luca R, Takeda M, Courchet J, Nakashima J, Wu S, Goebbels S, An W, Eickholt BJ, et al. (2014): Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc Natl Acad Sci U S A 111, 13205–13210
- Illumina, Inc. https://www.youtube.com/watch?v=fCd6B5HRaZ8; abgerufen am 11.02.2019
- Institut für Humangenetik der Universitätsmedizin Göttingen. https://www.humangenetik-umg.de/wp-content/uploads/2019/10/hg-umg-untersuchungsauftrag_kraniosynostosen.pdf; abgerufen am 07.02.2021
- Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M, Mao J, Charnas LR, Jackson CE, Jaye M (1994): Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet <u>8</u>, 275–279
- Jakobsen LP, Ullmann R, Christensen SB, Jensen KE, Mølsted K, Henriksen KF, Hansen C, Knudsen MA, Larsen LA, Tommerup N, Tümer Z (2007): Pierre Robin sequence may be caused by dysregulation of SOX9 and KCNJ2. J Med Genet 44, 381–386
- Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D, Josifova D, Mathijssen IMJ, et al. (2007): RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet <u>80</u>, 1162–1170
- Jezewski PA, Vieira AR, Nishimura C, Ludwig B, Johnson M, O'Brien SE, Daack-Hirsch S, Schultz RE, Weber A, Nepomucena B, et al. (2003): Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. J Med Genet <u>40</u>, 399–407
- Jianyan L, Zeqiang G, Yongjuan C, Kaihong D, Bing D, Rongsheng L (2010): Analysis of interactions between genetic variants of BMP4 and environmental factors with nonsyndromic cleft lip with or without cleft palate susceptibility. Int J Oral Maxillofac Surg 39, 50–56
- Jones KL, Smith DW, Harvey MA, Hall BD, Quan L (1975): Older paternal age and fresh gene mutation: data on additional disorders. J Pediatr 86, 84–88
- Jones MC (1988): Etiology of facial clefts: prospective evaluation of 428 patients. Cleft Palate J <u>25</u>, 16–20
- Källén B, Robert-Gnansia E (2005): Maternal drug use, fertility problems, and infant craniostenosis. Cleft Palate-Craniofacial J Off Publ Am Cleft Palate-Craniofacial Assoc 42, 589–593
- Kapp-Simon KA (2004): Psychological issues in cleft lip and palate. Clin Plast Surg <u>31</u>, 347–352
- Kaur H, Singh Waraich H, Sharma CM (2006): Crouzon syndrome: A case report and review of literature. Indian J Otolaryngol Head Neck Surg <u>58</u>, 381–382

Kayserili H, Uz E, Niessen C, Vargel I, Alanay Y, Tuncbilek G, Yigit G, Uyguner O, Candan S, Okur H, et al. (2009): ALX4 dysfunction disrupts craniofacial and epidermal development. Hum Mol Genet 18, 4357–4366

- Keupp K, Li Y, Vargel I, Hoischen A, Richardson R, Neveling K, Alanay Y, Uz E, Elcioğlu N, Rachwalski M, et al. (2013): Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol Genet Genomic Med <u>1</u>, 223–237
- Kilcoyne S, Luscombe C, Scully P, Jayamohan J, Magdum S, Wall S, Johnson D, Wilkie AOM (2019): Language Development, Hearing Loss, and Intracranial Hypertension in Children With TWIST1-Confirmed Saethre-Chotzen Syndrome. J Craniofac Surg 30, 1506–1511
- Kimonis V, Gold JA, Hoffman TL, Panchal J, Boyadjiev SA (2007): Genetics of craniosynostosis. Semin Pediatr Neurol <u>14</u>, 150–161
- Ko JM (2016): Genetic Syndromes Associated with Craniosynostosis. J Korean Neurosurg Soc <u>59</u>, 187–191
- Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RLLF, Daack-Hirsch S, Sander A, et al. (2002): Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 32, 285–289
- König E-M. https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/in-dex/docId/17518/file/Koenig_EvaMaria_Dissertation.pdf; abgerufen am 30.05.2021
- Kreiborg S, Barr M, Cohen MM (1992): Cervical spine in the Apert syndrome. Am J Med Genet 43, 704–708
- Kumar D, Shadrach JL, Wagers AJ, Lassar AB (2009): Id3 Is a Direct Transcriptional Target of Pax7 in Quiescent Satellite Cells. Mol Biol Cell <u>20</u>, 3170–3177
- Kumar GR, Jyothsna M, Ahmed SB, Lakshmi KS (2013): Crouzon's Syndrome: A Case Report. Int J Clin Pediatr Dent <u>6</u>, 33–37
- Lajeunie E, Cameron R, El Ghouzzi V, de Parseval N, Journeau P, Gonzales M, Delezoide AL, Bonaventure J, Le Merrer M, Renier D (1999): Clinical variability in patients with Apert's syndrome. J Neurosurg <u>90</u>, 443–447
- Lajeunie E, Crimmins DW, Arnaud E, Renier D (2005): Genetic considerations in nonsyndromic midline craniosynostoses: a study of twins and their families. J Neurosurg <u>103</u>, 353–356
- Lajeunie E, Heuertz S, Ghouzzi VE, Martinovic J, Renier D, Merrer ML, Bonaventure J (2006): Mutation screening in patients with syndromic craniosynostoses indicates that a limited number of recurrent FGFR2 mutations accounts for severe forms of Pfeiffer syndrome. Eur J Hum Genet 14, 289
- Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, Carlson JC, Hetmanski JB, Wang H, Larson DE, et al. (2015): Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am J Hum Genet 96, 397–411

Lidral AC, Romitti PA, Basart AM, Doetschman T, Leysens NJ, Daack-Hirsch S, Semina EV, Johnson LR, Machida J, Burds A, et al. (1998): Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. Am J Hum Genet <u>63</u>, 557–568

- Logsdon GA, Vollger MR, Eichler EE (2020): Long-read human genome sequencing and its applications. Nat Rev Genet <u>21</u>, 597–614
- Malekkou A, Sevastou I, Mavrikiou G, Georgiou T, Vilageliu L, Moraitou M, Michelakakis H, Prokopiou C, Drousiotou A (2020): A novel mutation deep within intron 7 of the GBA gene causes Gaucher disease. Mol Genet Genomic Med <u>8</u>
- Mangold E, Ludwig KU, Birnbaum S, Baluardo C, Ferrian M, Herms S, Reutter H, de Assis NA, Chawa TA, Mattheisen M, et al. (2010): Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nat Genet 42, 24–26
- Mansouri A, Stoykova A, Torres M, Gruss P (1996): Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122, 831-838
- Mantilla-Capacho JM, Arnaud L, Díaz-Rodriguez M, Barros-Núñez P (2005): Apert syndrome with preaxial polydactyly showing the typical mutation Ser252Trp in the FGFR2 gene. Genet Couns Geneva Switz 16, 403–406
- Marazita ML, Field LL, Cooper ME, Tobias R, Maher BS, Peanchitlertkajorn S, Liu Y (2002): Nonsyndromic Cleft Lip With or Without Cleft Palate in China: Assessment of Candidate Regions. Cleft Palate Craniofac J 39, 149–156
- Markl J, Sadava D, Hillis DM, Heller HC, Hacker SD (2018): Genome. Purves Biol 513–541
- Martin LA, Assif N, Gilbert M, Wijewarnasuriya D, Seandel M (2014): Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation. Stem Cell Rep 3, 219–226
- Massimi L, Caldarelli M, Tamburrini G, Paternoster G, Di Rocco C (2012): Isolated sagittal craniosynostosis: definition, classification, and surgical indications. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 28, 1311–1317
- Mee L, Honkala H, Kopra O, Vesa J, Finnilä S, Visapää I, Sang TK, Jackson GR, Salonen R, Kestilä M, Peltonen L (2005): Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1. Hum Mol Genet 14, 1475–1488
- Messing-Jünger AM, Martini M: Ätiologie und Genetik der KraniosynostosenKraniosynostoseGenetikKraniosynostoseÄtiologie. In: Bächli H, Lütschg J, Messing-Jünger M (Hrsg.): Pädiatrische Neurochirurgie. Springer, Berlin, Heidelberg 2018, 305–310
- Metodiev Y, Gavrilova N, Katzarov A (2011): Anesthetic management of a child with Apert syndrome. Saudi J Anaesth <u>5</u>, 87–89
- Meyers GA, Orlow SJ, Munro IR, Przylepa KA, Jabs EW (1995): Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 11, 462–464

Meyers GA, Day D, Goldberg R, Daentl DL, Przylepa KA, Abrams LJ, Graham JM, Feingold M, Moeschler JB, Rawnsley E, et al. (1996): FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: evidence for missense changes, insertions, and a deletion due to alternative RNA splicing. Am J Hum Genet <u>58</u>, 491–498

- Michael Cohen Jr. MM: Apert, Crouzon, and Pfeiffer Syndromes. In: Muenke M, Kress W, Collmann H, Solomon BD (Hrsg.): Monographs in Human Genetics. Band 19; KAR-GER, Basel 2011, 67–88
- Miskiewicz P, Morrissey D, Lan Y, Raj L, Kessler S, Fujioka M, Goto T, Weir M (1996): Both the paired domain and homeodomain are required for in vivo function of Drosophila Paired. Dev Camb Engl 122, 2709–2718
- Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, et al. (2013): MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A 161A, 2234–2243
- Monsoro-Burq AH (2015): PAX transcription factors in neural crest development. Semin Cell Dev Biol 44, 87–96
- Moore KL, Persaud TVN, Viebahn C: Embryologie: Entwicklungsstadien, Frühentwicklung, Organogenese, Klinik. 5. Auflage, [Nachdr.]; Elsevier, Urban & Fischer, München 2007
- Moosa S, Wollnik B (2016): Altered FGF signalling in congenital craniofacial and skeletal disorders. Semin Cell Dev Biol <u>53</u>, 115–125
- Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC (2009): Cleft lip and palate. Lancet Lond Engl <u>374</u>, 1773–1785
- Neveling K, Hoischen A (2012): Exom-Sequenzierung zur Identifizierung von Krankheitsgenen. Med Genet <u>24</u>, 4–11
- Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin M, Gildersleeve H, Beck AE, Tabor HK, Cooper GM, Mefford HC, et al. (2010): Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42, 790–793
- Nieminen P, Morgan NV, Fenwick AL, Parmanen S, Veistinen L, Mikkola ML, van der Spek PJ, Giraud A, Judd L, Arte S, et al. (2011): Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet <u>89</u>, 67–81
- Oldridge M, Wilkie AOM, Slaney SF, Poole MD, Pulleyn LJ, Rutland P, Hockley AD, Wake MJC, Goldin JH, Winter RM, et al. (1995): Mutations in the third immunoglobulin domain of the fibroblast growth factor receptor-2 gene in Crouzon syndrome. Hum Mol Genet <u>4</u>, 1077–1082
- Ornitz DM, Itoh N (2015a): The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4, 215–266
- Osoegawa K, Vessere GM, Utami KH, Mansilla MA, Johnson MK, Riley BM, L'Heureux J, Pfundt R, Staaf J, van der Vliet WA, et al. (2008): Identification of novel candidate

- genes associated with cleft lip and palate using array comparative genomic hybridisation. J Med Genet <u>45</u>, 81–86
- Paznekas WA, Cunningham ML, Howard TD, Korf BR, Lipson MH, Grix AW, Feingold M, Goldberg R, Borochowitz Z, Aleck K, et al. (1998): Genetic Heterogeneity of Saethre-Chotzen Syndrome, Due to TWIST and FGFR Mutations. Am J Hum Genet <u>62</u>, 1370–1380
- Pilarski R (2021): How Have Multigene Panels Changed the Clinical Practice of Genetic Counseling and Testing. J Natl Compr Canc Netw 19, 103–108
- Poggiani C, Zambelloni C, Auriemma A, Colombo A (2007): Acrocephalosyndactyly, Apert type, in a newborn: Cerebral sonography. J Ultrasound <u>10</u>, 139–142
- Pollock P, Gartside M, Dejeza L, Powell M, Mallon M, Davies H, Mohammadi M, Futreal P, Stratton M, Trent J, Goodfellow P (2007): Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene <u>26</u>, 7158–7162
- Punetha J, Hoffman EP (2013): Short Read (Next-gen) Sequencing: A Tutorial with Cardio-myopathy Diagnostics as an Exemplar. Circ Cardiovasc Genet <u>6</u>, 427–434
- Rachwalski M, Wollnik B, Kress W (2013): Klinik und Genetik syndromaler und nichtsyndromaler Kraniosynostosen. Med Genet <u>25</u>, 373–387
- Rahimov F, Marazita ML, Visel A, Cooper ME, Hitchler MJ, Rubini M, Domann FE, Govil M, Christensen K, Bille C, et al. (2008): Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip. Nat Genet 40, 1341–1347
- Rasmussen SA, Yazdy MM, Carmichael SL, Jamieson DJ, Canfield MA, Honein MA (2007): Maternal thyroid disease as a risk factor for craniosynostosis. Obstet Gynecol <u>110</u>, 369–377
- Ratan ZA, Zaman SB, Mehta V, Haidere MF, Runa NJ, Akter N (2017): Application of Fluorescence In Situ Hybridization (FISH) Technique for the Detection of Genetic Aberration in Medical Science. Cureus <u>9</u>, 1–13
- Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S (1994): Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet <u>8</u>, 98–103
- Reefhuis J, Honein MA, Shaw GM, Romitti PA (2003): Fertility treatments and craniosynostosis: California, Georgia, and Iowa, 1993-1997. Pediatrics <u>111</u>, 1163–1166
- Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005): A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948–953
- Riley BM, Murray JC (2007): Sequence Evaluation of FGF and FGFR Gene Conserved Non-Coding Elements in Non-Syndromic Cleft Lip and Palate Cases. Am J Med Genet A 143A, 3228–3234

Riley BM, Mansilla MA, Ma J, Daack-Hirsch S, Maher BS, Raffensperger LM, Russo ET, Vieira AR, Dodé C, Mohammadi M, et al. (2007): Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci U S A 104, 4512–4517

- Rizo J, Südhof TC (1998): C2-domains, Structure and Function of a Universal Ca2+-binding Domain. J Biol Chem <u>273</u>, 15879–15882
- Robin NH, Falk MJ, Haldeman-Englert CR: FGFR-Related Craniosynostosis Syndromes. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, Amemiya A (Hrsg.): GeneReviews®. University of Washington, Seattle, Seattle (WA) 1993
- Romitti PA, Lidral AC, Munger RG, Daack-Hirsch S, Burns TL, Murray JC (1999): Candidate genes for nonsyndromic cleft lip and palate and maternal cigarette smoking and alcohol consumption: evaluation of genotype-environment interactions from a population-based case-control study of orofacial clefts. Teratology <u>59</u>, 39–50
- Sadler TW, Langman J, Drews U: Medizinische Embryologie: Die normale menschliche Entwicklung und ihre Fehlbildungen. 11. Auflage; Thieme, Stuttgart 2008
- Saethre H (1931): Ein Beitrag zum Turmschädelproblem, (Pathogenese, Erblichkeit und Symptomatologie). Dtsch Z Für Nervenheilkd <u>117–119</u>, 533–555
- Sanger F, Nicklen S, Coulson AR (1977): DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A <u>74</u>, 5463–5467
- Schwarze K, Buchanan J, Taylor JC, Wordsworth S (2018): Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20, 1122–1130
- Schwenzer N, Arold R (1998): Lippen-Kiefer-Gaumenspalten Dtsch Arztebl 1998; 95(37). A-2262-2267
- Sesenna E, Magri AS, Magnani C, Brevi BC, Anghinoni ML (2012): Mandibular distraction in neonates: indications, technique, results. Ital J Pediatr 38:7, 1–8
- Sharma VP, Fenwick AL, Brockop MS, McGowan SJ, Goos JAC, Hoogeboom AJM, Brady AF, Jeelani N u O, Lynch SA, Mulliken JB, et al. (2013): Mutations of TCF12, encoding a basic-helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet <u>45</u>, 304–307
- Shashi V, McConkie-Rosell A, Rosell B, Schoch K, Vellore K, McDonald M, Jiang Y-H, Xie P, Need A, Goldstein DB (2014): The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 16, 176–182
- Shendure J, Ji H (2008): Next-generation DNA sequencing. Nat Biotechnol 26, 1135–1145
- Shi M, Christensen K, Weinberg CR, Romitti P, Bathum L, Lozada A, Morris RW, Lovett M, Murray JC (2007): Orofacial Cleft Risk Is Increased with Maternal Smoking and Specific Detoxification-Gene Variants. Am J Hum Genet 80, 76–90

Shishido E, Higashijima S, Emori Y, Saigo K (1993): Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117, 751–761

- Shotelersuk V, Mahatumarat C, Ittiwut C, Rojvachiranonda N, Srivuthana S, Wacharasindhu S, Tongkobpetch S (2003): FGFR2 mutations among Thai children with Crouzon and Apert syndromes. J Craniofac Surg 14, 101–104; discussion 105-107
- Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/pro-duct/sigma/cb_85120602?lang=de&re-gion=DE&gclid=CjwKCAjw57b3BRBlEiwA1ImytgoXpn1ue3GF4BRr6jqaY_HzO-GOrcsrsRR-HIJ7ofGxBQRWtHL-8VBoCymUQAvD_BwE; abgerufen am 20.06.2020a
- Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/pro-duct/sigma/cb_93021013?lang=de&re-gion=DE&gclid=CjwKCAjw57b3BRBlEiwA1Imy-thuxHr455mpwRZyTmV0ze9bZDs42yP683xe9-Yn5sV3kORnVjJ9k0BoCRa-QQAvD_BwE; abgerufen am 20.06.2020b
- Slaney SF, Oldridge M, Hurst JA, Moriss-Kay GM, Hall CM, Poole MD, Wilkie AO (1996): Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet <u>58</u>, 923–932
- Sobreira N, Schiettecatte F, Valle D, Hamosh A (2015): GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat <u>36</u>, 928–930
- Suazo J, Santos JL, Scapoli L, Jara L, Blanco R (2010): Association between TGFB3 and nonsyndromic cleft lip with or without cleft palate in a Chilean population. Cleft Palate-Craniofacial J Off Publ Am Cleft Palate-Craniofacial Assoc 47, 513–517
- Suzuki S, Marazita ML, Cooper ME, Miwa N, Hing A, Jugessur A, Natsume N, Shimozato K, Ohbayashi N, Suzuki Y, et al. (2009): Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am J Hum Genet 84, 406–411
- Suzuki Y, Jezewski PA, Machida J, Watanabe Y, Shi M, Cooper ME, Viet LT, Nguyen TDT, Hai H, Natsume N, et al. (2004): In a Vietnamese population, MSX1 variants contribute to cleft lip and palate. Genet Med Off J Am Coll Med Genet <u>6</u>, 117–125
- Tan TY, Kilpatrick N, Farlie PG (2013): Developmental and genetic perspectives on Pierre Robin sequence. Am J Med Genet C Semin Med Genet 163, 295–305
- Teven CM, Farina EM, Rivas J, Reid RR (2014): Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis <u>1</u>, 199–213
- Thompson JM, Stone PR, Sanders M, van der Zee H, Borman B, Fowler PV (2016): The incidence of Orofacial Cleft in live births in New Zealand. N Z Med J 129, 64–71
- Twigg SRF, Lloyd D, Jenkins D, Elçioglu NE, Cooper CDO, Al-Sannaa N, Annagür A, Gillessen-Kaesbach G, Hüning I, Knight SJL, et al. (2012): Mutations in Multidomain Protein MEGF8 Identify a Carpenter Syndrome Subtype Associated with Defective Lateralization. Am J Hum Genet 91, 897–905

Uz E, Alanay Y, Aktas D, Vargel I, Gucer S, Tuncbilek G, von Eggeling F, Yilmaz E, Deren O, Posorski N, et al. (2010): Disruption of ALX1 Causes Extreme Microphthalmia and Severe Facial Clefting: Expanding the Spectrum of Autosomal-Recessive ALX-Related Frontonasal Dysplasia. Am J Hum Genet <u>86</u>, 789–796

- Van den Boogaard MJ, Dorland M, Beemer FA, van Amstel HK (2000): MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet <u>24</u>, 342–343
- Van Laarhoven PM, Neitzel LR, Quintana AM, Geiger EA, Zackai EH, Clouthier DE, Artinger KB, Ming JE, Shaikh TH (2015): Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum Mol Genet 24, 4443–4453
- Vaz-Drago R, Custódio N, Carmo-Fonseca M (2017): Deep intronic mutations and human disease. Hum Genet 136, 1093–1111
- Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, et al. (2005): Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37, 468–470
- Vieira AR, Orioli IM, Castilla EE, Cooper ME, Marazita ML, Murray JC (2003): MSX1 and TGFB3 contribute to clefting in South America. J Dent Res 82, 289–292
- Vlad Ciurea A, Toader C (2009): Genetics of craniosynostosis: review of the literature. J Med Life 2, 5–17
- Von Gernet S, Golla A, Ehrenfels Y, Schuffenhauer S, Fairley JD (2000): Genotype-phenotype analysis in Apert syndrome suggests opposite effects of the two recurrent mutations on syndactyly and outcome of craniofacial surgery. Clin Genet <u>57</u>, 137–139
- Welzenbach J, Hammond NL, Nikolić M, Thieme F, Ishorst N, Leslie EJ, Weinberg SM, Beaty TH, Marazita ML, Mangold E, et al. (2021): Integrative approaches generate insights into the architecture of non-syndromic cleft lip with or without cleft palate. Hum Genet Genomics Adv 2, 100038
- Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P (1995): Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9, 165–172
- Xu HE, Rould MA, Xu W, Epstein JA, Maas RL, Pabo CO (1999): Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Dev 13, 1263–1275
- Yang Y, Yuan J, Yao X, Zhang R, Yang H, Zhao R, Guo J, Jin K, Mei H, Luo Y, et al. (2017): BMPR1B mutation causes Pierre Robin sequence. Oncotarget <u>8</u>, 25864–25871
- Yu JSL, Ramasamy TS, Murphy N, Holt MK, Czapiewski R, Wei SK, Cui W (2015): PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun <u>6</u>, 1–12

Zhang Z, Alpert D, Francis R, Chatterjee B, Yu Q, Tansey T, Sabol SL, Cui C, Bai Y, Koriabine M, et al. (2009): Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy. Proc Natl Acad Sci 106, 3219–3224

- Zöller JE: Kraniofaziale Fehlbildungen. In: Schwenzer N, Ehrenfeld M (Hrsg.): Mund-Kiefer-Gesichtschirurgie (Zahn-Mund-Kiefer-Heilkunde Lehrbuchreihe zur Aus-und Weiterbildung / hrsg. von Norbert Schwenzer ...; Bd. [2]). 4. Auflage; Thieme, Stuttgart 2011, 263–277
- Zucchero TM, Cooper ME, Maher BS, Daack-Hirsch S, Nepomuceno B, Ribeiro L, Caprau D, Christensen K, Suzuki Y, Machida J, et al. (2004): Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N Engl J Med 351, 769–780

Danksagung 181

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich beim Anfertigen der vorliegenden Arbeit unterstützt haben.

Danken möchte ich an erster Stelle Herrn Prof. Dr. Bernd Wollnik (Institut für Humangenetik der Universitätsmedizin Göttingen) für die langjährige Betreuung vor, während und auch nach Anfertigung der Arbeit, das Vertrauen, die großartige Unterstützung, die fachliche Begleitung, die hilfreichen Ratschläge und konstruktive Kritik. Danke, dass ich ein Teil des Teams und ein Teil der Forschung am Institut für Humangenetik sein durfte und dass mir dieses Projekt anvertraut wurde.

Mein Dank gilt auch Herrn Prof. Dr. Dr. Henning Schliephake (Abteilung für Mund-, Kieferund Gesichtschirurgie der Universitätsmedizin Göttingen) für die Betreuung und Begleitung, die Update-Gespräche sowie die Begutachtung meiner Arbeit.

Den Kooperationspartnern des Instituts für Humangenetik der Universitätsmedizin Göttingen danke ich für die Organisation und Bereitstellung von Patientenmaterial. Diesbezüglich möchte ich mich insbesondere bei Dr. Martin Rachwalski (Department of Maxillofacial and Plastic Surgery, National Reference Center for Cleft Lip and Palate, Hopital Universitaire Necker-Enfants Malades, Paris, Frankreich) sowie Dr. Dr. Jürgen Lichtensteiner (MKG-Chirurgie, Uniklinik Kiel) und Dr. Abhilash Pasare Ravindranath (Department of Oral and Maxillofacial Pathology, Oxford Dental College, Bangalore, Indien) bedanken. Auch ein Dank an alle Patientinnen und Patienten, die auf unterschiedlichen Wegen Teil dieser Arbeit waren. Es ist nicht selbstverständlich, auf diese Art und Weise an wissenschaftlicher Forschung teilzunehmen. Danke für die gute Zusammenarbeit.

Mein besonderer Dank richtet sich an Dr. Gökhan Yiğit. Danke für deine jahrelange Unterstützung, deine konstruktive Kritik und die zahlreichen Rückmeldungen zu meiner Arbeit, deine Geduld und dafür, dass ich mich bei Hürden und Schwierigkeiten immer an dich wenden konnte. Darüber hinaus möchte ich mich bedanken bei meinen Kolleginnen und Kollegen sowie allen Mitarbeiterinnen und Mitarbeitern des Instituts für Humangenetik der Universitätsmedizin Göttingen für die freundliche Aufnahme ins Team, die vielen offenen Ohren, die tatkräftige Unterstützung, die Beantwortung verschiedener Fragen und das umfassende Feedback. Auch an der täglichen "Werkbank-Arbeit" hatte ich viel Spaß mit den Kolleginnen und Kollegen. Ich möchte mich hier explizit für die vielen praktischen Tipps und Tricks sowie die Unterstützung im Labor bedanken.