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Abstract

This thesis focuses on improving the analysis of aeroacoustic imaging methods using automated data
processing and machine learning. Imaging methods result in beamforming maps that are challenging
to explore manually since they comprise complex, high-dimensional data, including spatial coordin-
ates, frequency, and flow properties. The manual, iterative analysis is time-consuming, biased, and
typically based on 2D beamforming maps that only insufficiently capture the complex source distri-
bution of airframe sources. Further, acoustic array imaging methods often assume monopole sources
and, thus, suffer from mismatches between model assumptions and actual sources.

This thesis addresses these issues by proposing novel broadband beamforming methods based on the
observation that most airframe noise sources are spatially compact and parameters such as their loc-
ation do not change over frequency. A broadband approach improves the ratio of known to unknowns
in the mathematical formulation of the problem, which allows for the inclusion of advanced model
assumptions, such as dipoles and distributed sources. The resulting novel methods are broadband
Global Optimization, a gridless covariance matrix fitting method, Broadband-CLEAN-SC, an adapt-
ation of CLEAN based on Source Coherence (CLEAN-SC), and gridless beamforming using artificial
neuronal networks with a permutation invariant loss. All proposed methods share that a beamforming
solution is obtained for multiple frequencies simultaneously. The broadband approach improves the
resolution at low frequencies. It suppresses side- and grating lobes (aliasing), improves the identifica-
tion and spectra extraction from the results, and outperforms the corresponding small-band methods.

This thesis proposes two clustering methods that identify sources in the high-dimensional beam-
forming maps and extract their spectra to post-process the industrial gold standard conventional
beamforming and CLEAN-SC methods. The proposed “Source Identification based on Spatial Nor-
mal Distribution” (SIND) method is a clustering algorithm similar to a Gaussian Mixture Model. It is
tailored to the source identification problem, with spatial discretization, a large number of estimated
sources, and statistical noise as its main challenges. To determine the number of clusters, SIND
does not rely on a priori hyper-parameters but determines the unknown number of sources iteratively
from the spatial distribution of the data. The proposed “Source Identification based on Hierarchical
Clustering” (SIHC) method clusters the data directly in space and frequency using the established
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm.
The introduced automatic source identification capabilities allow the precise source identification
and spectra extraction of 3D beamforming maps with no added effort, compared to the standard
manual process, typically based on planar 2D beamforming maps with insufficient spatial resolution.

This thesis provides an overview and insight into the aeroacoustic theory and introduces numerical
features that explicitly formulate physical properties, enabling the deduction of aeroacoustic source
mechanisms. The proposed formulas are robust towards noisy and degenerate spectra typically result-
ing from deconvolution methods such as CLEAN-SC. They are independent of the measured object,
the amount of measured Mach numbers, and the Mach numbers themselves. Thus, they offer a com-
parability of the properties across different measurements, which was previously impossible. Sources
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can be visualized utilizing their high-dimensional feature space through dimensional-reduction meth-
ods and effectively clustered with HDBSCAN, offering a manual classification and interpretation
guideline. This process facilitates the creation of an Expert Decision Support System (EDSS). The
clusters proposed by the EDSS strongly correlate with the manually determined categories so that the
expert can interpret them. Clustering results from industrial wind tunnel experiments on a Dornier
728 and Airbus 320 models are presented. The clustering accuracy, determined from a confusion
matrix and a manual selection of its correct entries, is 77.04 % for the Dornier 728 and 61.52 % for
the Airbus 320 experiment.

The thesis presents a detailed aeroacoustic analysis and manual classification of all occurring airframe
sources. Novel aeroacoustic observations are described, such as that the flap side edge and strake
are composed of two sources each with different mechanisms and that many sources depend on the
Mach number weaker than the one of a true Strouhal number. Also, some sources, such as the strake
and cavity noise, show a Mach number dependency, even at a constant Reynolds number, while most
sources are self-similar within a large Reynolds number range.

In summary, this thesis presents an improved workflow for beamforming, post-processing, interpret-
ation, and knowledge generation from aeroacoustic experiments. The proposed EDSS enables a
complete aeroacoustic analysis of wind tunnel experiments, offering detailed insights into the nature
of the sources. Further, the EDSS has proven its capabilities to be employed in situ to detect and
fix spurious noise sources during experiments, offering new perspectives and a practical tool for
researchers and practitioners in the field.
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1 Introduction

Severe acoustic emissions and their associated health issues have been a persistent challenge since
the beginning of industrialization. In 2011, the WHO estimated up to 1.6 million disability-adjusted
life years in the EU alone due to environmental noise pollution, with traffic noise being the main
burden [42] due to sleep disturbance-induced cardiovascular disease [100]. Consequently, social and
governmental pressure is increasing to reduce sound emission levels. Although advancements in new
technologies, such as the electrification of the transportation sector, hold promise for reducing traffic
noise pollution, other scenarios, such as landing aircraft, continue to be dominated by aeroacoustic
noise sources. These sources become even more significant once the currently dominating propulsion
noise is reduced.

The assessment of aeroacoustic noise often relies on wind tunnel facilities, where microphone ar-
ray technology, particularly beamforming, has proven to be a reliable method [87]. Beamforming,
a correlation-based imaging technique, estimates the spatial sound power distribution by steering
microphone cross-powers to different locations based on specific source assumptions, like a spatially
compact, incoherent monopole. This assumption implies that the sound radiation originates from a
point-like source and radiates its energy uniformly in all directions into the observed far-field. How-
ever, this established approach faces several challenges.

The main challenges are that the assumptions of beamforming often do not align with the actual
nature of aeroacoustic noise, which typically involves dipole and quadrupole sources [40] that are
not spatially compact and incoherent. Additionally, the resolution of beamforming depends on the
wavelength. It deteriorates at low and high frequencies due to the Rayleigh limit and sensor spa-
cing, resulting in aliasing and noisy beamforming maps. This poses challenges in manually identifying
sources in the noisy maps. The beamforming maps are integrated within spatial regions into spectra
to reduce visual complexity so that the estimated sound power depends solely on the frequency. How-
ever, the manual and biased process of defining integration regions for analysis can hinder the accurate
deduction of properties of individual sources within these regions. Furthermore, the labor-intensive
and expert-dependent analysis of integration areas and the resulting spectra leads to potential errors
and biases in interpreting aeroacoustic properties and source mechanisms.

In detail, an expert has performed the time-consuming process of defining integration regions manu-
ally for decades and depends on implicit knowledge, experience, intuition, and the model geometry.
It requires several iterations since one has to analyze the resulting spectra to determine if the integ-
ration regions are well chosen. This makes the process biased towards the expert’s expectations and
prone to errors, which contradicts the fundamental idea of beamforming – to measure the spatial
sound distribution without assuming it a priori. Due to the precision limitation of this manual defin-
ition and the subsequent time-consuming analysis, large integration regions are often defined for 2D
beamforming maps, encompassing regions like the whole slat, flap, and nacelle, without obtaining
and analyzing spectra for all individual sources [4, 7]. This approach proves insufficient as such large
regions usually contain multiple sources with different mechanisms, like the flap side edge, composed
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of two different source mechanisms, making the deduction of their individual properties difficult.

The aeroacoustic analysis based on spectra has been performed manually and is susceptible to the
same bias as the integration region definition. The noisy spectra and the limited range of measured
Mach numbers strongly influence important scaling variables such as the source’s power scaling or the
determination of self-similarity over the Strouhal and Helmholtz number. Furthermore, the analysis
relies on the expert’s aeroacoustic background, experience, and knowledge of historical measure-
ments. Often, properties are only implicitly assessed, such as tonal components, due to the lack of
rigorous mathematical definitions. Consequently, comparing results obtained by different scientists
becomes difficult. The manual spectra analysis process typically involves identifying the exact source
location within the integration region when detecting interesting or atypical behavior in a spectrum,
determining its nature, and connecting it to a geometric property (e.g., a slat track or a cavity). The
source type and mechanism are then deduced based on manual spectrum analysis, attributing inter-
esting observations to the identified source location. This knowledge generation process is extremely
time-consuming, scaling linearly with the number of analyzed measurements and integration regions.

This thesis introduces novel methods to improve the analysis of beamforming results in aeroacoustic
wind tunnel testing. It addresses the challenges above by introducing beamforming methods and
automising the post-processing, thereby enhancing knowledge generation. In detail, the thesis in-
troduces the gridless broadband Global Optimization method, which, in contrast to the established
covariance fitting method “Global Optimization”, improves reliability and resolution by obtaining a
solution for all frequencies simultaneously and not sequentially. The thesis introduces B-CLEAN-SC,
an improved broadband adaptation of the CLEAN-SC algorithm, which outperforms CLEAN-SC in
resolution and noise. Additionally, beamforming methods are advanced using supervised machine
learning, where an Artificial Neuronal Network (ANN) is trained with synthetic data. This problem is
similar to inverse beamforming, as the ANN learns the inverse of the acoustic propagation operator
to predict the source distribution. This approach is an ill-posed problem for grid-based methods, thus
a permutation invariant loss function for a gridless ANN architecture is proposed.

This thesis proposes using two unsupervised learning methods to automatically extract individual
sources from sound maps without a priori knowledge. Sources appear normally distributed in sparse
beamforming maps, enabling identification by clustering. The thesis introduces the meta-clustering
method “Source Identification based on spatial Normal Distribution” (SIND), specifically designed
for deconvolved beamforming maps and iteratively fits normal distributions to a histogram of the
spatial data distribution. Alternatively, the established algorithm Hierarchical Density-Based Spatial
Clustering of Applications with Noise can cluster the source maps so that the resulting clusters are
good approximations of sources.

Further, this thesis introduces the explicit and machine-readable formulation of several acoustic prop-
erties via feature engineering, visualization of aeroacoustic properties via dimensionality reduction,
and clustering source types based on their aeroacoustic properties, forming an Expert Decision Sup-
port System. This system allows for a detailed and automated evaluation of aeroacoustic testing
campaigns within minutes, reducing high-dimensional data to low-dimensional metadata that can
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be compared to previous experiments by both the aeroacoustic expert and the machine. This thesis
presents results from previously presented experiments, which have never been fully analyzed in full
scope due to the aforementioned time consumption.

In the future, this enables researchers to improve, compare, and track the acoustic performance of
their designs in the transport sector.

1.1 Research hypothesis

This thesis examines how machine learning techniques can be employed in aeroacoustic wind tunnel
testing to find, identify, and analyze aeroacoustic source types and their physical properties. The
main challenges are that data is often confidential, no ground truth exists, and many physical sound
generation mechanisms are still up for debate. Also, the results must be usable in a scientific environ-
ment and, thus, cannot be „black-box“ results. The hypothesis is that machine learning methods can
estimate the existence and type of aeroacoustic sources based on mathematically modeled data. Fur-
ther, source types are assumed to be uniquely distinguishable based on their aeroacoustic properties.
Thus, the hypothesis is that physically driven feature engineering allows the clustering of acoustic
source types and enables a physical interpretation and knowledge generation through average cluster
features. These help experts identify, classify, and quantify interesting sources and their properties.

1.2 Outline

The thesis is structured as follows. Chapter 2 presents the aeroacoustic theory and machine learning
foundations on which the proposed methods are based. Chapter 3 presents wind tunnel experiments
used to develop and test the methods. Chapter 4 presents established beamforming techniques and
introduces new beamforming methods. Chapter 5 presents the definition of spatial integration re-
gions, called Regions Of Interest, and discusses how acoustic spectra are obtained from beamforming
maps. Chapter 6 presents aeroacoustic properties and corresponding machine-readable features used
to cluster the identified acoustic sources. Chapter 7 presents the discussion of the presented results,
and Chapter 8 presents a summary of the main findings.

1.3 Impact

This thesis is based on the original research in chronological order:
• A. Goudarzi, C. Spehr, S. Herbold. “Expert Decision Support System for Aeroacoustic Classi-

fication from Deconvolved Beamforming Maps”. AIAA Aviation, 2020 [46],
• A. Goudarzi, C. Spehr, S. Herbold. “Automatic source localization and spectra generation from

deconvolved beamforming maps”. Journal of the aeroacoustic Society of America, 2021 [47],
featured in the Council of European Aerospace Societies Aeroacoustics Specialists Committee’s
(CEAS) 2020/21 aeroacoustic highlights report [94],
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• A. Goudarzi, C. Spehr, S. Herbold. “Expert Decision Support System for aeroacoustic source
type identification using clustering”. Journal of the aeroacoustic Society of America, 2022 [48],
featured in the CEAS 2022 aeroacoustic highlights report [110],

• A. Goudarzi. “Frequency domain beamforming using neuronal networks”. Berlin Beamforming
Conference, 2022 [51],

• T. Ahlefeldt, D. Ernst, A. Goudarzi, H. G. Raumer, C. Spehr. “Aeroacoustic testing on a full
aircraft model at high Reynolds numbers in the European Transonic Windtunnel”. Journal of
Sound and Vibration, 2023 [8],

• A. Goudarzi. “Global, and Local Optimization Beamforming for Acoustic Broadband Sources”,
ArXiv preprint, 2023 [53],

• A. Goudarzi. “B-CLEAN-SC: CLEAN-SC for broadband sources”. JASA Express Letters, 2023 [52].
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2 Theory

This chapter presents the theory necessary to follow the concepts and methods introduced in this
thesis. Section 2.1 presents aeroacoustic theory, Section 2.2 presents a brief overview of supervised
learning, and Section 2.3 provides an overview of different clustering methods. Beamforming will be
discussed in detail in the following Chapter 4.

Variables will be denoted in italic (v), vectors in bold (v), matrices in capitalized bold letters (V).
Due to the computational orientation of this thesis, italic indices and Einstein summation notation is
used to indicate the dimensionality of the variables. Thus, an I-dimensional vector v will be denoted
with vi, with i = 1, . . . , I. The averaging of a variable v over its i-th dimension is denoted with ⟨vi⟩i

⟨vi⟩i =
∑I

i=1 vi

I
, (2.0.1)

and the corresponding standard deviation σi(vi) with

σi(vi) =

√∑I
i=1(vi − ⟨vi⟩i)2

I
. (2.0.2)

The imaginary unit is displayed with “j”.

2.1 Aeroacoustics

This section is base on original work [8, 46, 47, 48, 50, 51, 53] and presents the in aeroacoustics.
This section provides an overview about aeroacoustics, sound generation mechanisms, and source
modeling in the frequency domain. An overview of how to generate compact and distributed sources,
and monopole and dipole sources is provided. The existence of N sources, located at the position
yn ∈ R3 for n = 1, . . . , N are assumed. The microphone positions are denoted by xm ∈ R3 for
m = 1, . . . , M , observer positions are denoted with x.

2.1.1 Sound generation mechanisms

This subsection is based on the lectures of Delfs [30] and will outline the theory necessary to under-
stand the various mechanisms that drive aeroacoustic sound generation, such as the wave equation
and acoustic analogies. In acoustics, the pressure p is the main variable of interest, which consists of
a fluctuating part in a medium with an ambient pressure pa. In this thesis, p describes the fluctuating
part of the complex pressure in the frequency domain. The propagation of a disturbance with the
speed a in a medium is described by the wave equation □, where □ is the d’Alembert operator in
Minkowski space and ∆ = ∇2 is the Laplacian and the ∇ is the Nabla operator

□ = 1
a2

∂2

∂t2 −∆ . (2.1.1)
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The inhomogeneous pressure wave equation is

□p = −Q (2.1.2)

with the arbitrary source term Q, which yields the Helmholtz equation in the frequency domain

−k2p−∆p = −Q , (2.1.3)

where the k is the wavenumber k = 2πf/a, f is the frequency. The corresponding convective
Helmholtz equation for a uniform medium at flow is

−(k − jM∇)2p−∆p = −Q , (2.1.4)

where M = u/a is the Mach number (non-dimensional flow velocity) for the medium speed u ∈ R3.

To study how sound is generated in a medium one can derive Lighthill’s wave equation [79, 80] from
the Navier Stokes equations, assuming that only normal and shear stresses work on the medium,
other forces such as gravity are abandoned. For Newtonian fluids the shear stresses can be expressed
with the viscosity µ

τij = µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.1.5)

This yields the Lighthill pressure wave equation

□p = 1
a2

∂2

∂xi∂xj
(ρuiuj − τij) + ∂2

∂t2

(
p

a2 − ρ

)
, (2.1.6)

with
Tij = (ρ + ρa)uiuj − τij + δij(p− a2ρ) . (2.1.7)

The far-field approximation solution is

ρ = − k2

4πa2

∫
VQ

er0(Ter0) exp (−jkr)dVQ , (2.1.8)

where er0 is the unit vector in the direction of the observer, so that it describes the projection of the
source terms in the according direction.

No simplifications (except for the absence of gravitational forces) have been made. The equation
is typically not used to calculate sound propagation since the pressure and density field have to be
known beforehand. However, this equation allows the calculation of any kind of sound generation in
fluids based on the inhomogeneous part of the equation. Thus, the right-hand part of the equation
can be interpreted as sound-generating mechanisms in a flow. There are three main components on
the source term: The Reynolds stresses (ρuiuj), the shear stresses (τij), and the nonlinear relation-
ship between pressure and density (p − a2ρ). One can argue that for high Reynolds numbers, the
changes in viscous friction stresses can be neglected, and for isentropic flows, the third term can
be neglected so that the dominating term in flows is typically caused by the Reynolds stress tensor,
which often originates from vortex interactions in turbulent flows. The two derivatives of the Tensor
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indicate that it is a quadrupole source.

Similarly to the Lighthill equation, the Ffowcs-Williams and Hawkings (FW-H) equation can be
derived for objects in flows, which describes the sound generation as a boundary integral instead of
an integral over the whole domain. The far-field approximation is

p(x, t) = 1
4πa2r0

∂2

∂t2

∫
V +

B

Ter0

|1−Mr|
dV (η)

+ 1
4πar0

∂

∂t

∫
VB

er0(p′I− τ)n
|1−Mr|

dS(η)

+ 1
4πr0

∂

∂t

∫
VB

ρ∞un
|1−Mr|

dS(η) , (2.1.9)

with the isontropic pressure-density relation

p = a2ρ . (2.1.10)

Here, un is the velocity normal to the rigid object surface, and I is the identity matrix. The integ-
ration region V +

B is outside of the object body in the coordinate system that moves with η, so that
dV (η) = dηndS(η).

The equation describes the noise generated by an object moving through a flow (both the object
and flow may move). Due to the motion a convective amplification of |1−Mr| is observed. The first
term is the unsteady flow volume quadrupole noise term, already observed in the Lighthill equation.
The second term is the so-called dipole “loading noise” and is related to the aerodynamic load on
the object. The third term is the so-called monopole “thickness noise” and is related to the unsteady
volume displacement of the body geometry and the kinematics in the medium.

These acoustic analogies can be used to assess the behavior of the source mechanisms using several
simplifications. For the quadrupole sources, the dominating Reynolds stress tensor ρuu is of interest
in eq. 2.1.9 and eq. 2.1.8. Assuming the density is approximately the ambient density ρ ≈ ρ∞, and
the velocity of the turbulence fluctuations is approx. the free-flow velocity |u| ≈ u∞. The temporal
derivative on an eddy is proportional to its velocity u∞ and inversely proportional to its size D, so
that ∂/∂t ≈ u∞/D. This yields for the Lighthill equation 2.1.8

ρ ∝ 1
a4

∞r0

(
u∞
D

)2
ρ∞u2

∞D3 . (2.1.11)

With the isentropic pressure density relation, see eq.2.1.10, the acoustic intensity I = pu ≈ p/(ρ∞a∞),
the far-field pressure p2 is

p2
quadrupoler

2
0

ρ2
∞a4

∞D2 ∝ M8
∞ . (2.1.12)

This result shows that isentropic free-flow turbulence is mainly generated by a quadrupole source
that scales in intensity by M8 (for subsonic flows u∞ ≪ a∞).
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The integral of the second term can be interpreted as a force F ≈
∫

(pI− τ)ndS. Using the previous
approximation of a temporal derivative and assuming the force F = |F| is proportional to the surface
pressure and surface area F ≈ pD2 ≈ ρ∞u2

∞D2 this yields

p2
com. dipoler

2
0

ρ2
∞a4

∞D2 ∝ M6
∞ . (2.1.13)

The source is a dipole and its axis is aligned with the force exerted on the body. For non-compact
sources such as airfoil slats the intensity reduces to M5, but the reason for this is up to de-
bate [40, 55, 54]. Most often, airframe noise sources are dipole sources [67, 55, 120, 31]

Finally, the intensity of a monopole source is a volume source with a volumetric flow Q̂ ≈ ρuD2

in normal direction through VB in the third term in eq. 2.1.9. The term is usually called “thickness
noise” as sound is generated by the displacement of the medium through the moving body or by a
volume flow of the source itself (e.g., a car exhaust system). With Q̂ and the approximations from
above the far-field pressure then is

p2
monopoler

2
0

ρ2
∞a4

∞D2 ∝ M4
∞ , (2.1.14)

so that the monopole scales at M4. Generally, one can deduce from the derivatives in the acoustic
analogy source terms that it requires a change in the boundary or flow conditions for sound to be
generated and that the intensity depends on the abruptness of the change.

2.1.2 Similarity laws

A basic assumption in aeroacoustic source modeling is that small changes in subsonic Mach numbers
do not alter the source mechanism [66]. Also, a source may exist in extended spatial areas or fre-
quency intervals, for instance, the sound generated from vertices in Kármán’s vortex street [102, 139].
Sources may have a frequency-dependent spatial location and shift their peak frequencies with chan-
ging Mach number. One example is jet noise, where the location of dominant sound generation shifts
downstream, and the peak frequency decreases with increasing Mach number, while the power in-
creases [79]. However, a normalization of the PSD or frequency using the Mach number reveals that
the spectrum shape, Mach-normalized peak frequencies, and Mach-normalized PSDs collapse [104].
This is referred to as self-similarity. The underlying physical sound-generating mechanism has not
changed; we only observe a different realization of the source mechanism. However, source mech-
anisms can change completely for large variations of their Reynolds numbers. One example is the
radiated acoustics from a flow around a cylinder [139], where the flow properties may change due
to, for instance, the transition from a laminar to a turbulent flow.

According to this theory, we consider aeroacoustic sources similar if the dimensionless quantities
Reynolds number (Re), Mach number (M), and Strouhal number (St) or Helmholtz number (He)
coincide.
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M = u

a
(2.1.15)

St = fD

Ma
(2.1.16)

He = fD

a
(2.1.17)

Re = ρMaD

µ
(2.1.18)

Depending on the quantity, the self-similarity implies different properties. If all dimensionless quant-
ities are equal for different flow configurations, then the resulting dimensionless aeroacoustic nature
is still the same, as they satisfy the dimensionless Navier Stokes equations. The Reynolds number
determines the ratio of inertial and viscous forces and indicates the flow’s chaoticness. At low Reyn-
olds numbers, viscous forces dominate, resulting in a laminar flow. A laminar-turbulent transition is
observed at Reynolds numbers above Re ≥ 2000 and depends on the smoothness of the initial flow. In
the receptivity phase, small disturbances, such as Tollmien–Schlichting waves, are introduced in the
boundary layer and either decay or grow depending on their nature and amplitude. Depending on the
Reynolds number, frequency, and boundary conditions, different mechanisms and instabilities lead to
the observed flow characteristics. The Reynolds number is significant for assessing aeroacoustic noise
since the flow drives sound generation in the medium. While the generated noise mechanism remains
typically constant over some variations of the Reynolds number, it can also abruptly change [139].
Sources are typically not observed at constant Reynolds number over increasing Mach number, as an
increase of the medium speed u also increases the Reynolds number, see eq. 2.1.18. Only an increase
in medium density or decrease in temperature can counter this effect, which is how cryogenic wind
tunnels operate.

Self-similarity over the frequency means that tonal components in a spectrum are observed at the
same (normalized) frequency over a variation of the Mach number. The frequency can be normal-
ized by the speed of sound a and a characteristic length D, resulting in a Helmholtz number, or
by the Mach number M and D, resulting in the Strouhal number. The FW-H and Lighthill ana-
logies show that the frequency of flow-induced noise typically depends on the flow itself. Thus, for
turbulence-induced noise, one assumes it depends on the Strouhal number rather than the Helmholtz
number. However, through resonance mechanisms and propagation effects such as spatial coherence,
a Helmholtz number dependence may be observed in the far-field [90, 91], even though the driving
mechanism is the flow itself and, thus, connected to the Strouhal number. The amplitude can be
assumed to be subject to all dimensionless quantities, thus dependent on u∞, a, the density ρ, and a
characteristic length D. Since the Strouhal number often depends on the convective Mach number
MC , which is unknown and can differ from the known free-flow Mach number M∞, observed sources
often neither perfectly scale over the free-flow Strouhal or Helmholtz number. To overcome this issue
this thesis introduces a generalized frequency f̂

f̂ = fD

Mma
(2.1.19)
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with the modification exponent m, that can express a Helmholtz number for m = 0, a Strouhal
number for m = 1, and everything in-between. A modification exponent m ≤ 0.5 indicates a
Helmholtz-like scaling and m > 0.5 indicates a Strouhal-like scaling behavior of the sources [48].

Self-similarity of the source power means that the (normalized) sound power does not change over
a variation of the Mach number. This is true for an M8 law for isothermal, subsonic quadrupole jet
noise, see eq. 2.1.12, an M6 law for short cylinders in a flow causing dipole noise, see eq. 2.1.13, and
an M4 law for automobile exhaust monopole noise, see eq. 2.1.14. The power scaling is expressed by
the Mach number’s exponent n, and results in a scaled level ŜPL over the generalized frequency f̂

ŜPL(f̂) =
〈

SPL(f̂ , Mi)− 10 log10

(Mi

M0

)n〉
i

. (2.1.20)

Here, the angle brackets indicate that averaging over the different Mach numbers i is performed.
The ŜPL is scaled with the given power exponent n from the given Mach number to the reference
Mach number M0. The Sound Pressure Level (SPL) is given by

SPL = 10 log10

(
p2

4× 10−10 Pa2

)
. (2.1.21)

If a source is self-similar for the given frequency type and power exponent, their spectra from different
Mach numbers will collapse using eq. 2.1.20 so that the spectra averaged over the different Mach
numbers show a low standard deviation. Then, the resulting averaged spectrum is valid for all flow
conditions as long as self-similarity holds. If different normalized spectra show the same scaling
behavior, frequency type, and spectral shape, independently of absolute levels or observed Mach
numbers, we conclude that the driving aeroacoustic mechanism is the same. Further, the self-similarity
parameters may indicate the driving mechanism, e.g., the quadrupole-like M8 scaling, and Strouhal
number scaling indicates free-flow turbulence, such as present in jet noise. In contrast, a M5 scaling
indicates a non-compact, dipole-like 2D object in the flow.

2.1.3 Source definition

This thesis defines a source as a phenomenon that radiates acoustic energy to the far-field. This
thesis deals with quasi-stationary sources in the frequency domain, and thus, all source properties
are assumed to be stationary and ergodic so that with the signal variance σ2

p

lim
T →∞

E

( 1
T

T∑
t=1

(p′
t)2 − σ2

p

)2 = 0 . (2.1.22)

Ergodic signals are characterized by their statistical properties so that ensemble averages are equal
to time averages. Thus, we can determine the statistical properties of a signal by observing a single
realization of that signal for a sufficiently long period. In the case of acoustic signals, ergodicity
implies that the statistical properties, such as the mean, variance, and power spectral density, can be
accurately estimated by analyzing a sufficiently long segment of the signal. This assumption allows
for the simplification of statistical analysis, as it eliminates the need to gather ensemble data or
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average over multiple realizations of the signal.

A source has an amplitude p0(f) that typically depends on the frequency f , an arbitrary phase, a loc-
ation y that can be spatially distributed, and a spatial orientation described by the polar angles θ, φ.
For monopole sources, the orientation angles can be neglected; for poles of higher order, the angles
determine the sound radiation direction. While the orientation angle typically depends on the object’s
orientation in the flow, see eq. 2.1.9, this thesis assumes no prior knowledge of the source orientations.

This thesis introduces the definition of a source object to specify the nature of a source further. A
source object describes an abstract source s with a collection of properties. These properties are all
expressed by a finite number of numerical variables. The main idea is to define properties that hold
for the idealized source independently of their location, frequency, and other parameters. A monopole
source object has the following properties: A fixed location y and a Power Spectral Density (PSD).
A dipole has the additional properties: The spatial dipole rotation angles θ, φ, and the dipole PSD.
Together, they can form a multipole source object with a single location, rotation, and separate
monopole and dipole PSDs, as opposed to a conventional source that typically is defined as a power
for a single frequency and location.

2.1.4 Compact, free-field Green’s function

This subsection is based on the lectures of Delfs [30]. A free-field solution to the convective Helm-
holtz equation 2.1.2 is the convolution of the source term Q and a Green’s function for compactly
supported, radiating sources that satisfy the Sommerfield condition [122]. The convective free-field
monopole Green’s function is

g0(x, y) = exp
(
−jkr+)

4πr∗ , (2.1.23)

where r = ||x−y||2, || . . . ||2 is the l2-norm between the source position y and the observer position
x, Mr = Mer, M = |M| and

r+ = r∗ − rMr

1−M2 , (2.1.24)

r∗ = r
√

M2
r + 1−M2 , (2.1.25)

which simplify to r∗ = r+ = r for M = 0. The monopole has no directivity, so it radiates its energy
equally distributed in all directions. All spatial derivatives of this equation are equally valid solutions
to the Helmholtz equation and are called poles of higher orders such as the dipole g1, quadrupole g2,
and further derivatives. They also result from the Taylor approximation of a general Green’s function
so that any Green’s function can be expressed as a multipole, the superposition of ∑I

i gi.

The first derivative of this function is the so-called dipole, which in polar coordinates for M = 0 is
given by

g1(x, y) = eT
y · ex

exp (−jkr)
(4πr)2 (−1− jkr) (2.1.26)
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where ey is the normalized direction vector of the dipole at y, and ex between the microphone
position and source position with

e = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]T . (2.1.27)

Thus, the dot product of unit vectors incorporates the dipole directivity, based on the dipole rotation
and relative location of receiver and source.

2.1.5 Cross spectral matrix

The CSM is the most compact form for quasi-stationary, proper, and circular data [2]. This thesis
assumes these properties. In closed wind tunnel data, where these assumptions can be violated, higher-
order statistics improve the performance of the beamforming process [106]. The CSM corresponding
to a source s is given by the complex microphone pressure vector p

p =


p(x1)

...
p(xN )

 (2.1.28)

with
C = pp† (2.1.29)

where † denotes the Hermitian (conjugate transpose). In measurements, it is typically obtained with
the Welch method, which splits the signal in i = 1, . . . , I blocks, Fourier-transforms them, and
then estimates C ≈ ⟨pi(f)p†

i (f)⟩i. Given a source signal s(yn), the complex pressure at microphone
position xm, is given by

pm = sngnm + ξm , (2.1.30)

where ξm describes uncorrelated measurement noise such as sensor noise. Depending on the angle
of incidence and the array’s size, the signal offset can lead to a decrease in coherence [50] and can
be compensated with pre-steering by shifting the signals in the time-domain. However, the offset
is typically small compared to the Welch block length, and since often incoherent sources are of
interest, the offset is neglectable [36].

2.1.6 Distributed sources and source coherence

In real-world scenarios, sources are often spatially distributed, and spatially distributed sources are
typically (partially) coherent. We approximate a distributed source of any shape with a superposition
of N̂ compact sub-sources sn̂ for n̂ ∈ N̂ at source locations yn̂

s =


s1
...

sN̂

 . (2.1.31)
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The number and distance of sub-sources should be chosen so that |∆yn̂| ≪ λ, to prevent aliasing in
the resulting sound field. Using any Green’s function g, the propagation matrix G from all sub-sources
to all microphones is given by

Gn̂m = g(xm, yn̂) n̂ = 1, . . . , N̂ m = 1, . . . , M . (2.1.32)

Given that s ∈ CM is a vector-valued random variable, its correlation matrix is E(ss†) and the CSM
C at the microphone array (without self-noise) is given by

C = GE(ss†)G† . (2.1.33)

The expected value of ss† depends on the coherence between the sub-sources and will result in a
Hermitian matrix, with the sub-source strengths on the diagonal and the coherent parts on the upper
and lower triangular matrix. For incoherent sub-sources, the expected value yields

E(ss†) = diag
(
ss†
)

= |s|2 , (2.1.34)

whereas for perfectly coherent sources, the expected value yields the matrix

E(ss†) = ss† . (2.1.35)

The unknown source covariance matrix is replaced with an explicit expression, depending on the
sub-source vector ŝ ∈ CN̂ (defined later) and a coherence matrix Γ ∈ CN̂×N̂ , 0 ≤ |Γ| ≤ 1 to obtain
a formulation for partially coherent sources. More precisely, excluding self-noise, eq. 2.1.33 is replaced
by

C = G
(
Γ⊗

(
ŝŝ†
))

G† , (2.1.36)

where ⊗ denotes the Hadamard (pointwise) product. A function for Γ can be freely defined, e.g.
Γ = 1 (matrix of ones) for coherent sub-sources or Γ = I (identity matrix) for incoherent sources.
Additionally, Γ may include phase relations between the sub-sources si and sj under the condition
that Γ must be Hermitian so that the CSM is also Hermitian. For the purpose of this thesis a simple
variable coherence length Lc is defined based on the sub-sources wave-length λ and distance matrix
between all sub-sources D with

Dij = ||yi − yj ||2 , (2.1.37)

the coherence matrix for exponential decay over the distance is

Γ =


I for Lc = 0

exp
(
− 2D

λLc

)
for 0 < Lc <∞

1 for Lc →∞

. (2.1.38)

The total power of a distributed source is the spatial integration of its source power. The sub-source
powers must be deduced from the total strength based on the formulation in eq. 2.1.36, explicitly
formulated based on the total source strength q. With increasing sub-sources of constant source
strength, the total source strength increases (assuming no phase cancellation for coherent sources).
Since the total source power is supposed to be independent of the number of sub-sources, it is



16 Chapter 2

normalized by the number of sub-sources. However, it can be easily observed that the normalization
must depend on the coherence between the sub-sources. Assuming they are located in the same
position, doubling the number of sources will increase the sound power and far-field SPL by 6 dB,
an incoherent source only by 3 dB. Thus, a simple normalization of the total power by the number
of sub-sources is insufficient.

The exact normalization can be derived analytically by calculating the CSM entries for the given
sub-sources si with amplitude Ai = |si| and phase Qi = ∠si, so that

si = AiQi . (2.1.39)

The coherence ηij (not magnitude squared) between the sub-sources si and sj is given by

ηij =
√
|sij |2
s2

iis
2
jj

= E
[
QiQ

∗
j

]
(2.1.40)

with 0 ≤ |η|2 ≤ 1. We assume the sub-sources are located and evaluated in the same location since
this thesis seeks a sub-source strength normalization based on the source description and not on a
receiver position. The observed sound field might still experience deviations from the total source
strength due to interference. For illustration purposes, the Cross Spectral Density (CSD) is calculated
for the summed signals sa and sb from two sub-sources s1 and s2 with

sa = A1Q1 + A2Q2 (2.1.41)
sb = A1Q1 + A2Q2 . (2.1.42)

The CSD is defined as Cab = sas∗
b .

Cab = A2
1 + 2A1A2E

[
QiQ

∗
j

]
+ A2

2 (2.1.43)

All sub-sources are assumed to have the same amplitude Ai = A, so with eq. 2.1.40 the CSD is

Cab = 2A2 (η + 1) . (2.1.44)

The amplitude of the super-positioned sources depends on their level of coherence. If the amplitude
of the total source is supposed to be constant, the sub-sources have normalized by N̂η. For a total
amplitude of A2 for N̂ = 2 sub-sources this yields

A2 = 2
(

A

2η

)2
(1 + η) , (2.1.45)

which is the case for
η = 1

2 log2 (2(η + 1)) . (2.1.46)

Here, the normalization exponent η was derived, which explicitly depends on the coherence between
the sub-sources. The original assumption that the difference between the sum of two coherent and
incoherent sources is ∆PSD = 3 dB is validated when plugging ηcoher. = 1 and ηincoher. = 0 in
eq. 2.1.46. If Cab is incoherent one simply expects Cab = 2A2 (see eq. 2.1.34), which yields a
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normalization exponent of η = 0.5. A normalization exponent of η = 1 is obtained for coherent
sources. It can easily be seen that this derivation works for N̂ sources and results in a normalization
of 1/N̂η, thus 1/

√
N̂ for incoherent and 1/N̂ for coherent sub-sources. For a varying coherence level

in Γ (e.g. with eq. 2.1.38) one simply uses the averaged coherence from the upper triangular matrix
(without its diagonal)

η = ⟨|γ2
ij |⟩ for i ̸= j . (2.1.47)

It follows for a distributed source with total power A (that is the power integrated over all N̂

sub-sources) the normalized sub-source amplitudes in eq. 2.1.36 are with eq. 2.1.46

|ŝn̂| =
A

N̂η
. (2.1.48)

Figure 4.2 shows for a monopole line source how the coherence length affects the CSM. Figure 4.2
(a) and (b) show the incoherent case LC = 0, (c) and (d) show the partially coherent case LC = 3,
and (e) and (f) show the coherent case LC → ∞. In the resulting absolute CSM, a long source is
visible with repeating side lobes, with a strong diagonal pattern in the corresponding phase for the
incoherent case. The same is not true for the coherent case, where a checkerboard pattern is visible.
The partially coherent case is a mix of both, where it is more related to the incoherent case in its
absolute value but more similar to the coherent case in its phase.

2.1.7 Propagation forward operator

In beamforming literature, the CSM is often computed from eq. 2.1.29, since measurements obtain
the pressure and the source strength is unknown. In terms of source strength, this implies that the
CSM is

GqG† = C , (2.1.49)

which requires the application of a Green’s function to the source. This formulation is not com-
putationally efficient for theoretic applications or if one seeks to calculate a synthetic CSM for a
known source strength. It gives no direct description of a propagation operator. Instead, the acoustic
propagation can be formulated as

Tq = c , (2.1.50)

with c being the vectorized CSM, q(y) are the source strengths, and T being the propagation
operator. The propagation operator T is of dimension microphones M× focus points N , the source
vector q of dimension focus points, and the vectorized CSM c of dimension M2. The propagation
operator is derived from the Green’s Matrix G with

T = G⊙ G† , (2.1.51)

where ⊙ is the Khatri-Rao product [130], a column-wise Kronecker product so that T is of dimension
[F ×M2×Q], where F is the number of frequencies, M is the number of microphones, and Q is the
number of sources (or focus points). The advantage of this formulation is that the whole propaga-
tion problem is reduced to a matrix-vector product and that the propagation operator is formulated
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Figure 2.1: Conditioning number of the forward operator T for M = 5 microphones with x1 =
[−0.25 m, . . . , 0.25 m]T and an increasing number of focus points at −1 m ≤ y1 ≤
1 m, ∆y2 = 0.5 m, f = 3400 Hz. The case where N = (M2 −M)/2 (T is bijective)
is marked with a dot.

explicitly.

Given that for the beamforming problem c is known, q is wanted, the problem can be solved by
obtaining T−1

q = T−1c . (2.1.52)

T has the rank min((M2−M)/2, N). Thus, T is injective for N ≤ (M2−M)/2. However, T can be
ill-conditioned, see Figure 2.1 for a sample 1D setup with M = 5 equidistantly spaced microphones.
This is especially true for the bijective case. The strong peak at the bijective case originates from the
equidistant array design and is relaxed with an array design with lower side lobes but never vanishes.

2.2 Artificial neuronal networks

Given enough training data, supervised learning has recently become widely popular and outperformed
other classification and regression algorithms. Especially successful are multi-layer perceptrons, so-
called Artificial Neuronal Networks (ANN), which are universal function approximators based on the
universal approximation theorem [64]. They try to learn a mapping implicitly from training data. The
ANN will learn any function if its learning capacity is large enough, there is a global minimum and
no local minimum, and the amount of training data approaches infinity.

Deep learning refers to ANN with multiple hidden layers and typically a feed-forward model so that
an ANN comprises a series of nested functions along multiple layers. A fully connected feed-forward
architecture typically models each neuron by a linear function F(x) = ax + b, where a and b are
called weights and biases. A non-linear function G(x) is evaluated on F to introduce non-linearity to
the ANN, so that G(F(x)) = G(ax + b). Popular non-linear functions are the Rectified Linear Unit
(ReLU), a softmax, and a sigmoid, depending on the use-case, such as regression or classification
tasks.
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For an input (or hidden) layer xn with n = 1, . . . , N , the output layer ym with m = 1, . . . , M for a
fully connected architecture then is defined by the sum

ym = G(amnxn + bmn) . (2.2.1)

The weights and biases are randomly initialized in the ANN and then optimized during supervised
learning. Given that the output is known, an error metric can be defined as a loss L. Then, the
loss gradient is calculated for the weights and biases via back-propagation (chain rule) through the
nested functions. The loss is then minimized with a step towards the negative gradient with a step
size α < 1 for stability. A popular training algorithm is Adaptive Moment estimation, which will be
used throughout this thesis.

2.3 Clustering

Opposed to supervised learning, where a function is learned from data with known input and output,
clustering is an unsupervised learning method that does not require a known output or a training
phase. Instead, data is analyzed based on its distribution and clustered into groups. This section
provides an overview of clustering methods with an emphasis on Hierarchical Density-Based Spatial
clustering of Applications with Noise [21] (HDBSCAN), which this thesis primarily employs.

Many clustering algorithms exist to group data into clusters. The typical problem associated with
clustering methods is that the outcome strongly depends on hyper-parameters such as the expected
number of clusters or that an underlying distribution is assumed. Other challenges include noisy data,
outliers, or a large cluster-member-count mismatch.

Figure 2.2 shows exemplary popular clustering methods and their outcome for different problems for
2D spatially distributed data. The clustering problem in the first row contains two concentric circles.
The second row contains two moon-shaped distributions. The third row contains three Gaussian
distributions with different densities. The fourth row contains correlated Gaussian distributions. The
fifth row contains a random uniform distribution. The different methods show different strengths
and weaknesses, depending on their assumptions and the nature of the data. For example, Gaussian
Mixture Models (GMM) show the best result for Gaussian distributions, as the data matches its
assumptions. Clustering methods that show promising results throughout the different problems are
Density-Based Spatial clustering of Applications with Noise [118] (DBSCAN), and its derivatives
HDBSCAN, and Ordering points to identify the clustering structure [13] (OPTICS).

As shown in Figure 2.2, violating the clustering methods’ assumptions results in wrong cluster es-
timations. The underlying distribution is typically unknown for real data and does not satisfy these
models. DBSCAN is a two-parameter algorithm that accounts for clusters with different densities and
noisy data, which does not assume an underlying distribution and, thus, performs well for all presen-
ted cases in Figure 2.2. Instead, the algorithm determines if a point belongs to a cluster based on the
minimum number of neighbored points Ns and the distance ε to them. The algorithm distinguishes
between core points, which are points that have at least Ns neighbored points within ε distance,
reachable points, which are points that have at least one reachable core point within ε, and noise
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Figure 2.2: Outcome for popular clustering methods (shown on the columns) for different clustering
problems (shown on the rows). The correct number is provided for algorithms that depend
on the number of clusters. Taken from Scikit-learn’s standard examples [99].

points, which have no neighbors within ε. The advantages of DBSCAN over algorithms such as GMM
or k-Means are that the number of clusters does not have to be predetermined, and the algorithm
can cluster points with any underlying, unknown distribution. The underlying distribution can be es-
timated after the clustering process based on the density of the cluster members. The algorithm can
also identify outliers, which typically distort the outcome of algorithms such as GMM and k-means.
However, the two parameters Ns and ε must be set manually, and a fixed ε implies that all clusters
have the same densities. This results in an unwanted behavior for the third case in Figure 2.2, where
the middle distribution with little density is broken down into sub-clusters by the algorithm, and
many points are wrongly estimated as noise. One can interpret Ns as a smoothing parameter for the
estimated cluster PDF so that several sub-clusters will be merged with an increasing Ns. With a de-
creasing Ns, a cluster will break down into sub-clusters (for Ns → 1, each point may form a cluster).

HDBSCAN is an extension to DBSCAN that allows a variable ε per cluster (that does not have to be
determined manually). It uses λ = 1/ε as an inverse distance measure and computes a spanning tree
of the data using the mutual reachability distance. To do so, HDBSCAN constructs a cluster tree,
an upside-down version of the estimated PDF, where λ is proportional to the underlying PDF value.
Figure 6.17 shows an exemplary cluster tree for the Do728 sources, with a parent branch at λ = 0,
splitting into the first branches at λ ≈ 1.5. The width and color of the branches indicate the number
of contained points, which shrink with increasing λ, as some points will first transition from core
points to reachable points and then from reachable points to noise (so that they no longer belong to
any cluster). The cluster tree always divides into branches if a super-cluster breaks into sub-clusters
with a shrinking ε, which can be interpreted as local minima in the estimated PDF. A cut through
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the cluster tree at any given ε is identical to the DBSCAN solution at the identical ε. The remaining
question is how to choose λ on each branch to form either sub-clusters or super-clusters. The ques-
tion relates to the overfitting problem so that sub-clusters are prone to fitting local maxima in the
estimated PDF as individual distributions, even though they are only artifacts from the insufficient
PDF estimation.

HDBSCAN solves this question with the persistence measure to determine λ for adjacent sub-clusters
so that they are either merged at a low λ or separated for larger values of λ. The persistence is the
integrated branch area, spanning from the number of points and the λ range, and for sub-clusters to
maximize the persistence, their integrated area has to be larger than the area of their parent branch
in the cluster tree. Figure 6.17 shows how this approach results in different λ-values for the different
branches so that they have a different estimated density. The chosen branches are encircled, and
the circles’ colors represent the cluster number. The chosen λ value corresponds to the top splitting
point in the branch, i.e., λ ≈ 1.5 for cluster one. Note how cluster two is chosen as a super-cluster,
while clusters seven to ten are chosen as sub-clusters in their branches due to the differences in their
persistence.

Based on the clustering result, HDBSCAN estimates an underlying PSF for each cluster to yield
a soft-clustering result. For each clustered point, it estimates the underlying PDF by calculating
the probability of belonging to any cluster so that the clustering result is an Np × Nc probability
matrix, where Np is the number of clustered points, and Nc is the number of resulting clusters. This
probability can also be interpreted as a clustering confidence. The estimation is based on the distance
between a point and the core cluster points, which are the points that persist longest within the cluster
(independently from the corresponding cluster λ), and the persistence of the point compared to the
persistence of the core points within the cluster.
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3 Experimental data

This chapter provides an overview of the different experimental wind tunnel data used for this thesis.
The data consists of four experiments. First, a generic dataset with a monopole speaker with known
source position and sound power [47]. Second, a Dornier 728 1:10.8 half-model [4], based on which the
methods presented in this thesis were developed. Third, an Airbus 320 1:13.6 half-model [7, 5, 123],
based on which the developed methods were assessed. Fourth, an Embraer full-model [8] (confidential
scale), where the developed methods were applied in situ during the measurement campaign for the
first time.

Wind tunnel testing has a long history in the development, validation, and certification of air-
craft [60, 96, 121]. In recent years, the demand for reliable aeroacoustic testing has increased due to
the need for reduced sound emission levels [100, 134]. Nevertheless, one main driver of aircraft testing
is still optimizing aerodynamics, thus reducing fuel consumption and other economic or ergonomic
aircraft design improvements. Another challenge is the drive concept of the open rotor for passenger
aircraft as part of the reduction in fuel consumption, leading to more noise [39, 68]. The resulting
designs are driven by the increasing accuracy of computational predictions [119, 126], which require
careful calibration and validation measurements [32, 41, 124]. Since these tests are performed before
the build of actual prototypes, small-scale models must be built to fit in the wind tunnel facilities.
One of the various challenges is to observe the model under realistic flight Reynolds numbers since
many studies show that acoustic phenomena observed at low Reynolds numbers are vastly differ-
ent [11, 4, 139]. Thus, pressurized and cryogenic wind tunnel facilities were developed, drastically
increasing the range of observable Reynolds numbers [98, 103].

Aeroacoustic measurements often use half-models (i.e., the Do728 and A320 models). Half-models
offer advantages over full-span models, such as a higher achievable Reynolds number and frequency
range due to the increased model size and the upper limited measurement frequency [129]. On the
downside, half-models impact the airflow close to the symmetry axis [43] and limit the measurement
of acoustic directivity perpendicular to the flow direction in closed wind tunnels due to the floor
and ceiling. Source directivity will not be studied as part of this thesis but may severely affect the
observed sound radiation [49].

3.1 Streamlined speaker, open test section

A generic monopole dataset with known source location and sound power was acquired for this
thesis [47] to test the capabilities of the presented imaging and source identification methods. The
data features an equidistant 7x7 microphone array −0.27 m ≤ x1,2 ≤ 0.27 m, x3 = −0.65 m, with
∆x1 = ∆x2 = 0.09 m, the sensors are mounted with d = 30 cm long rods on a 7 cm Basotect
covered back-plate in a mostly reverberation-free environment. The source is a generic monopole
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Figure 3.1: Experimental setup, the monopole source is located in the core flow of the open wind
tunnel section (left), the housing opening is at the downstream end (positive x1 direction).
On the right, the equidistant 7x7 B&K 4961 multi-field microphone array is mounted with
30cm long rods on a back-plate that is then covered with 7cm Basotect absorbers. The
coordinate system only indicates the directions, the actual coordinate origin lies roughly
at the speaker housing opening.

source (streamlined housing with a circular r = 2.5 mm opening at the downstream end). The source
is moved to the three locations 

yI

yII

yIII

 =


−0.05 0.1 0.0

0.10 0.1 0.0
0.25 0.1 0.0

 (3.1.1)

during separate measurements and uses uncorrelated white noise with different band-pass frequencies
and amplitudes to generate different spectral shapes. Figure 3.1 shows the experimental setup. The
source is positioned in the jet core of the open wind tunnel, and four different Mach numbers are
measured M = [0.00, 0.03, 0.06, 0.12]. The CSM has a sampling frequency of fS = 216Hz. Results
presented for Global Optimization in Section 4.5 use a blocksize of 26, which results in around 6×104

Welch averages and ∆f = 210Hz. Results presented for SIND, SIHC in Chapter 4.5.1, and CLEAN-
SC in Section 4.3 use a blocksize of 28 resulting in ∆f = 28Hz. The ground truth source powers are
obtained by dividing the CSMs by the propagation matrices T′ = G†G, see eq. 2.1.32, for an ideal
monopole source, see eq. 2.1.23. Then, the absolute upper triangular CSM entries ı̂ are averaged to
obtain an average ground truth spectrum with standard deviation.

PSDtrue(f) =
〈∣∣∣∣ C(f)

T′(f)

∣∣∣∣〉
ı̂

(3.1.2)

The ground truth excludes self-noise since it does not use the CSM diagonal. The three measurements
are super-positioned (addition of their CSM) to obtain a single CSM that contains three incoherent
sources. To evaluate how close the real sound source is to an ideal monopole, a synthetic CSM
is generated based on the average ground truth spectra, see eq. 3.1.2, the true source locations,
and the compact monopole assumption. Thereafter, the Mean Absolute Error (MAE) of the upper
triangular synthetic and measured CSM is calculated to measure the distance of the assumption and
data. Figure 3.2 shows the resulting error, which is calculated for the absolute PSD difference (a)
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Figure 3.2: Differences between measurement and synthetic monopole. (a) shows the Mean Absolute
Error (MAE) of the upper triagonal CSM entries (̂ı) between the synthetic and measured
CSMs for the three source positions (SI depicted in blue, SII in orange, SIII in green)
with 1σ standard deviation (shaded area). (b) shows the MAE of the corresponding phase
difference.

Figure 3.3: Photo of Do728 model and microphone array in the closed wind tunnel test section.

and absolute phase difference (b). The errors show that the monopole assumption is reasonable at
2 kHz ≤ f ≤ 25 kHz. At lower frequencies, the assumption is probably violated by reflections of
the array’s back-plate, see Figure 3.1. At higher frequencies, the assumption is gradually violated
by the speaker design (non-compactness, asymmetric orientation towards the array). The influence
of the speaker’s asymmetric orientation towards the array can also be observed from the increased
error from source position yI to yII , and finally yIII , where the average observation angle further
increases. It will be of particular interest how different methods perform at these very low and high
frequencies, where the compact monopole assumptions are violated.

3.2 Dornier 728, closed test section

A large, cryogenic dataset of a Do728 [4] is used to develop the methods presented in this thesis.
The Mach-averaged Reynolds numbers ⟨Re⟩M, the ambient pressures p0 and cryogenic temperatures
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configuration D1 D2 D3 D4 D5
⟨Re⟩M[1× 106] 1.4 1.8 2.5 3.8 10.6

T [K] 290 250 200 150 100
p0[1× 105 Pa] 1.0 1.0 1.0 1.0 1.0

Table 3.1: Do728 flow configurations.

Figure 3.4: Photo of A320 model and microphone array in the closed wind tunnel test section.

T are shown in Table 3.1 based on the mean aerodynamic cord length D0 = 0.353 m. Values of
αa = [1◦, 3◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦] were chosen for angle of attack for every Reynolds number
configuration and Mj = [0.125, 0.150, 0.175, 0.200, 0.225, 0.250] as Mach number for every angle of
attack. In total, the Do728 dataset contains 5⟨Re⟩M× 8α× 6M = 240 different flow configurations.
The array consisted of 144 microphones at an oval aperture of 1.756 m × 1.3 m and a data sample
frequency of fS = 120 kHz was used. Note that the Reynolds numbers are averaged over the Mach
number, as the Reynolds number is not kept constant over varying Mach numbers. The CSM is
calculated using Welch’s method with a block size of 210 samples and 50 % overlap, which results in
around 7000 averages. Conventional beamforming results for Chapter 5 and Chapter 6 is performed
on an equidistant grid with a focus point resolution of ∆x = 0.5 mm. For 2D beamforming maps
the focus plane is around ∆x3 ≈ 1 m away from the D = 1 m spiral array, where D is the aperture.

configuration A1 A2 A3 A4
⟨Re⟩M[1× 106] 1.4 5.1 5.1 19.9

T [K] 310 311 125 120
p0[1× 105 Pa] 1.10 3.99 1.15 4.19

Table 3.2: A320 flow configurations.
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Figure 3.5: Photo of model and part of the microphone array in the closed wind tunnel test section.
The microphones are positioned in the wooden cut-outs on the floor.

3.3 Airbus 320, closed test section

For the validation of the methods presented in Chapter 5 and Chapter 6, a second dataset of an
Airbus 320 model [5] is used. The A320 model was observed at αa = [3◦, 7◦, 7.15◦,9◦] for every
Reynolds number configuration, and Mj = [0.175, 0.200, 0.225] for every angle of attack. The Mach
averaged Reynolds numbers, the ambient pressures p0 and cryogenic temperatures T are shown in
Table 3.2 based on D0 = 0.353 m. In total, the A320 dataset contains 48 different flow configur-
ations. The array consisted of 96 microphones at an aperture of 1.06 m × 0.5704 m and the data
was recorded at fS = 150 kHz. The CSM is calculated using Welch’s method with a block size of
210 samples and 50 % overlap, which results in around 9000 averages. Conventional beamforming
for Chapter 5 and Chapter 6 is performed on an equidistant grid with a focus point resolution of
∆x = 0.5 mm. For 2D beamforming maps the focus plane is around ∆x3 ≈ 1 m away from the
D1 = 1.1 m, D2 = 0.6 m oval array, where D are the apertures in x1 and x2 direction.
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M T [K] p0 [kPa] Re [106]
DP 1 0.220 137.4 134.10 03.33
DP 2 0.220 137.2 403.45 10.00
DP 3 0.220 115.0 405.50 13.00
DP 5 0.250 126.3 313.20 10.00
DP 6 0.289 115.0 235.00 10.00

Table 3.3: Embraer flow configurations.

3.4 Embraer, closed test section

In this study, a full-span aircraft model by Embraer is located in the center of the test section as
depicted in Figure 3.5. The scaled model is installed in landing configuration, has a mean aerody-
namic chord length of about 0.2 m, and is not equipped with landing gear. It is mounted around
∆z = 1 m away from the randomly optimized array. The model’s material was chosen so that its
temperature dependence compensates the increased dynamic pressures q at increased static pressures
pa. Thus, the model deformation does not change at cryogenic conditions, which allows a wide range
of combinations of temperatures T and static pressures pa to achieve a desired Reynolds number.
All selected data points were obtained at the elastic deformation, see Table 3.3. Each data point was
recorded at fS = 250 kHz.

In comparison to the model scale, the large array aperture produces a low depth of field, which in
return leads to an increased depth resolution. Conventional beamforming results for Chapter 6 is
performed on an equidistant grid with a focus point resolution of ∆x = 1 mm. The increased spatial
resolution is a significant difference compared to the other datasets. A second difference is that the
Reynolds number is constant (for DP 2, 5, and 6) over the variation of the Mach number, as opposed
to the increasing Reynolds number with increasing Mach number for the Do728 and A320 datasets.
This dataset was acquired after developing the methods introduced in this thesis. Thus, it can be
seen as a test set for the methods proposed in Chapter 5 and Chapter 6.
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4 Beamforming

For the localization and estimation of the sound power of complex source geometries, beamforming
(referring to any covariance matrix-based imaging method) is well-established [78, 87]. Each field
of application in acoustical imaging has its own challenges. In aeroacoustic imaging, the number of
sensors is typically favorably large compared to the number of observed sources. The array’s aperture
is favorably large compared to the observed object and its distance. However, the Signal to Noise
Ratio is unfavorably low (the noise typically exceeds the signal by over 10 dB), so that blind source
separation methods and signal subspace-based methods fail for this application.

Idealized, noise-free correlation measurements in a bounded measurement domain uniquely determ-
ine an unknown, compactly supported source power function [63]. However, it is well known that
correlated sources are not uniquely determined from distant measurements of acoustic waves since
so-called non-radiating sources exist. Additionally, most methods are grid-based so that in the area
where sources are expected, focus points are defined in the area of interest. Beamforming is then
evaluated on these predefined points. Due to the increasing computational power, many algorithms
are now evaluated on 3D problems, where the number of focus points is typically vast compared to
the number of microphones so that even a solution for radiating sources is no longer unique. Thus,
various beamforming methods and algorithms emerged over the last decades to account for different
use cases, configurations, and assumptions.

These include assumptions about the source and propagation, such as distributed sources [20, 34],
the incorporation of wind tunnel flow effects, such as shear layer decorrelation [37, 38, 56, 58, 117],
partially coherent source regions [25, 51, 73, 92, 97, 136], imposing real steering vectors through a
measured or simulated flowing medium [77, 92], the speed of sound [6, 10, 83], and reflections [72],
correlated in-flight or closed wind tunnel shear layer noise [9, 57, 59], beamforming on multiple CSMs
at different subsonic flow speeds, assuming self-similarity and a Mach power law [4, 7, 48], multipoles
such as dipoles and quadrupoles, and source directivity [44, 51, 97].

The main strategies can be summarized as follows. Solving the inverse problem leads to eq 2.1.52.
Given that T is known and can be inverted, the unknown source powers q can be estimated based
on the CSM c. However, in real-world scenarios, neither T nor the source positions and the number
of sources are known. A propagation model for T is assumed to solve this equation. Further, several
estimated source positions are assumed, typically called focus points. Still, T is rarely bijective since
the number of unknowns (focus points) typically exceeds the number of equations ((M2 −M)/2,
given that the diagonal of the CSM is dominated by self-noise). To solve this problem, a regularization
that enforces sparseness is introduced, commonly also known as compressive sensing. This approach
is known as the inverse beamforming method [138, 125, 15, 28, 105].

A similar strategy is the gridless CSM Fitting Method (CFM) “Global Optimization”, where a
propagation model is modeled for T, and both T and q are optimized in such a way that a norm
between the observed CSM and the estimated CSM is minimized, see Section 4.5. The main dif-
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ference between CFM and the inverse method is that one trades linearity for an improved ratio of
equations to unknowns.

In the time domain, a delay-and-sum beamformer works by shifting the observed signals so that
the shift negates the propagation time differences to the estimated source positions. Then, all ob-
served time-shifted signals are averaged. The signals will interfere constructively if the estimated
source position and propagation assumption are correct. Otherwise, they will randomly cancel each
other out. This method is a naïve method in that it estimates a sound power for each focus point
without determining if a source exists without considering the other focus point. In the frequency
domain, this type of beamforming is known as conventional beamforming. Instead of performing
the correlation-based signal averaging during the beamforming process, the coherence between the
signals is calculated first, then the weighted matrix is steered to the focus points and summed. While
this naïve estimation is a limitation of the method, it also makes it extremely robust, which is why it
is still primarily used in wind tunnel applications. Since it will be used throughout this thesis, different
weighting and steering strategies are discussed in detail in the next section.

More methods exist, such as subspace-based methods [109, 71, 14, 35, 34, 140], which will not be
further discussed in this thesis. These methods assume that the CSM comprises eigenvectors repres-
enting individual sources. However, this is not true for closed wind tunnel measurements, where the
CSM diagonal is strongly dominated by noise from the medium flow of the sensors, so the eigen-
vectors mainly represent self-noise.

The following sections discuss the mathematical foundations of beamforming and how the afore-
mentioned limitations arise. Then, this thesis introduces two methods that seek to overcome these
limitations by performing beamforming at all frequencies at once in Section 4.5. While the method’s
results are superior over traditional beamforming methods, the computational time makes the method
in its current form not applicable to large-scale measurement campaigns. Section 4.6 and Section 4.7
discuss how these methods can be translated into data-driven machine learning models.

4.1 Steering vectors

Conventional beamforming requires a Green’s function to model the propagation between the source
and receiver. Four steering vectors h are typically regarded [107, 25] which differ in how the Green’s
function is normalized.

hI = 1
M

g
|g| (4.1.1)

hII = 1
M

g
|g|2 (4.1.2)

hIII = g
|g||22

(4.1.3)

hIV = 1√
M

g
||g||2

(4.1.4)
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Here, a steering vector is simply a normalized Green’s function. The desired property of a steering
vector is that the beamforming map b(y) achieves the correct level at the true source location yS ,
so that

q(yS) = h†(x, yS)C(x)h(x, yS) = b(yS) . (4.1.5)

Additionally, the source location is desired to be correct so that the maximum level of the source
map appears at the source location

b(y = yS) > b(y ̸= yS) . (4.1.6)

In the following, the different formulations are analyzed with respect to the two conditions for
monopole sources, see eq. 2.1.23. Formulation I is normalized by the absolute value of the Green’s
function and, thus, only compensates the phase. While it satisfies the second conditions [107, 25]
based on its spatial derivatives at the true source position, the first condition is only met at a reference
position yR, so that dS = |x− yS |, dR = |x− yR|

g(x, yS , yR) = exp (−jk(dS − dR))
4π(dS − dR) , (4.1.7)

and thus

b(yS) =
(

1
M

M∑
m=1

dR

dS

)2

q . (4.1.8)

With an increasing distance d = |y−yR|, the source power estimation error will increase. Formulation
II additionally compensates for the Green’s function’s amplitude and thus meets condition one.
Condition two is violated so that the maximum in the beamforming map does not reassemble the
true source location. Formulation III is typically connected to “conventional beamforming” and can
be interpreted as the Maximum Likelihood Estimator because its l2-norm normalization

A = g∗C
||g||2

(4.1.9)

minimizes the Mean Squared Error (MSE) between the observed CSM and the estimated source
power

MSE = |C−Ag|2 . (4.1.10)

The MSE and the variance of Formulation III are smaller or equal compared to Formulation II [25].
Formulation IV seeks to minimize the MSE with h∗h = 1/N , which satisfies condition two but only
yields the power estimation

b(yS) = 1
M

M∑
m=1

d2
R

d2
S

2q , (4.1.11)

of which the error is less or equal to formulation I [25]. D. Ernst [37] formalized the steering vector
normalization with

h(y) = ĥ(y) exp (jφ(y)) (4.1.12)

and
ĥ(y) = |g(y)|β−1(∑M

m |gm(y)|β
)α (4.1.13)
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Figure 4.1: Comparison of the steering vector influence on the PSF at f = 4096 Hz for (a), (b) a
source at y = [0.5, 1, 0], and (c), (d) two sources at yI = [0.5, 1, 0], yII = [0.5, 0.5, 0].
The equidistant array is located at y = z = 0, and −0.5 ≤ x ≤ 0.5, M = 11 sensors.
(a), (c) show the PSF for y = 1, z = 0, and (b), (d) show the PSF for x = 0.5, z = 0.

that satisfies condition one for α = 1, β ∈ R, and condition two for α = 1−1/β. Both conditions can
only be met at β →∞, where beamforming renders useless due to the weighting of the microphones.
However, we can use the generalization to analyze the steering vector behavior. With

∠h = h

|h|
(4.1.14)

the steering vectors result from eq. 4.1.13 with

hI α = 0 β = 1 ĥ = 1
M

(4.1.15)

hII α = 1 β = 0 ĥ = 1
M

1
|g| (4.1.16)

hIII α = 1 β = 2 ĥ = |g|
||g||22

(4.1.17)

hIV α = 1
2 β = 1 ĥ = 1√

M

|g|
||g||2

(4.1.18)

Figure 4.1 shows the PSF that results from the different steering vector formulation for two cases.
First, a single source. Second, two sources are located behind each other in relation to the array. The
PSF for formulations I and IV is scaled to yield the correct result at y = 1 m. Figure 4.1 (a) shows that
the side lobes of formulation IV are lowest parallel to the array and increase through formulations
I, III, and IV. The main lobe width and grating lobe strength are identical for the formulations.
Figure 4.1 (c) shows that for two cases, the PSF of IV is not strictly lower for all focus points, but
the general observation still holds. The grating lobe of the second source is projected to a different
location due to the wrong focal plane. Figure 4.1 (b) shows that perpendicular to the array, the best
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choice of the steering vector depends on the estimated source region. Formulations II and III suffer
from distance normalization, producing distance-dependent side lobe strengths. While closely behind
the source, the main lobe is still dominant. At increasing distances, the side lobe always dominates
the PSF. Figure 4.1 (d) shows that the same is true for two sources. The main lobe strength for I
and IV at yII shows that they do not produce the correct amplitude.

4.2 Conventional beamforming

The result of conventional beamforming depends on the employed steering vector, as discussed in
Section 4.1. Throughout this thesis steering vector formulation III is used for planar beamforming at
a fixed distance from the array, and steering vector formulation IV is used for 3D beamforming.

The conventional beamforming [115] result b is calculated with

b = h†Ch . (4.2.1)

Since the CSM diagonal is dominated by self-noise, it is typically excluded in the beamforming process,
known as Diagonal Removal (DR). If so, the steering vectors must be adjusted with weights. E.g.,
formulation IV [107] with diagonal removal then reads

h = g(
M(M − 1) ∥g∥42 − ∥g∥

4
4

)1/4 . (4.2.2)

If the medium is not at rest, the propagation vector g is derived from the Green’s function for the
convective Helmholtz equation [106]. For the l-th focus point g is given by

gl(y) =
exp

(
− −jk

1−|M|2 (−(xl − y) ·M + |xl − y|M)
)

4π|xl − y|M
(4.2.3)

and depends on the frequency f , the speed of sound a, the mean flow velocity vector u∞, the m-th
microphone position xm and the focus position y with

|xm − y|M =
√

((xm − y) ·M)2 + (1− |M|2) |xm − y|2 , (4.2.4)

M = u∞
a

, (4.2.5)

k = 2πf

a
. (4.2.6)

Conventional beamforming has many similarities to optical imaging. While the focus points can be
freely defined, an increase in focus points only yields an increase in pseudo resolution, as the array’s
aperture determines the resolution of the optical system. The Rayleigh criterion with a sinus small
angle approximation (sin x ≈ x) yields

∆x ≈ 1.22λdz

D
(4.2.7)

where dz is the source distance, and D is the array’s aperture. Below the Rayleigh criterion, sources
can no longer be spatially separated. For practical application, the true resolution depends on the
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Figure 4.2: The Figure shows a comparison of (a), (b) an incoherent, (c), (d) a partially coherent,
and (e), (f) totally coherent monopole line-source with l = 0.5 m, f = 4096 Hz, LC = 3,
PSD = 100 dB m−1. (a) through (f) show the observed CSMs, (g), (h) show the 3D
setup, and (i) shows the CBF results b (steering vector III, see Section 4.1) based on these
CSMs, assuming compact, incoherent monopole sources (M) for the incoherent (red),
partially coherent (purple), and coherent case (brown). Thus, the resulting deviations
originate from the mismatch of the propagation assumption and true data.

exact sensor positions, the steering vector, and the source type and source position. Additionally,
aliasing at around and above the wavelength that equals the spacing of the microphones occurs.

As shown in Section 2.1.6, distributed sources and dipole sources are of particular interest, as they
violate the main assumption of conventional beamforming: spatially compact, incoherent monopole
sources. Figure 4.2 shows for a monopole line source how the coherence length affects the CSM, and
thus, the estimated source power using conventional beamforming. Note, that the beamforming levels
are normalized to dB Hz−1 m−1 using the correct η from eq. 2.1.47. As explained in Section 2.1.6,
the integration over the line source is supposed to yield the total power, but the power is displayed
over a spatial variable. The problem is that the number of sub-sources and focus points is unequal.
This is similar to why a PSD (in Pa2 Hz−1) is used over an SPL (in Pa2), as the frequency normaliz-
ation makes the power independent of the step size between the discrete frequency bins. Thus, the
normalization by the length is necessary, which, as shown with eq. 2.1.48, requires the knowledge of
the coherence between the sub-sources. Note that this is only a problem concerning the display of
the results but not obtaining the results. However, one should keep this issue in mind for the inter-
pretation of distributed sources. The source coherence has a strong influence on the beamforming
results. While the conventional beamforming assumptions are not violated for the incoherent case
(the line source is simply comprised of spatially compact monopoles), the results for a (partially)
coherent line source show that the line source is not reconstructed properly. The coherence between
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Figure 4.3: The Figure shows a comparison of (a), (b) an incoherent, (c), (d) a partially coherent,
and (e), (f) totally coherent dipole line-source with l = 0.5 m, f = 4096 Hz, LC = 3,
PSD = 100 dB m−1. (a) through f show the observed CSMs, (g), (h) show the 3D setup,
and (i) shows the CBF results (steering vector III, see Section 4.1) based on these CSMs,
assuming compact, incoherent monopole sources (solid lines) and compact, incoherent
dipole sources with the correct dipole orientation angle (dashed lines).

the sub-sources results in observing a single source that is not well localized. Additionally, the power
estimation error is large compared to the incoherent case. Still, the overall detection of a source in
the correct area and estimation of the source power shows how robust conventional beamforming is
against violations of its assumptions.

Figure 4.3 shows the corresponding result for the same setup from Figure 4.2 for a dipole line source.
The monopole beamforming results are additionally normalized by the absolute value of the dipole’s
Green’s function, see eq. 2.1.23 and eq. 2.1.26, which compensates the large frequency-dependent
offset in source power compared to the monopole. The result is very similar to the monopole source,
even for the beamforming using either a monopole or dipole assumption for the steering vector. The
results show that distributed coherent and incoherent sources are observed differently, as the locked
phase difference leads to interference in the sound field for the coherent source. Thus, the coherent
source is observed as a much more compact source through beamforming with a compact, incoherent
monopole assumption, compared to the incoherent source. For the dipole case, the monopole and
dipole assumptions yield very similar results since the observed CSM is also very similar. This is
because the dipole’s main lobe is orientated in the direction of the array, from where it is mostly
indistinguishable from a monopole. With an increasing deviation of the dipole’s main lobe angle, the
results will increasingly differ. In the worst case, at θ = 0◦, the dipole will radiate nearly no energy
in the directions of the sensors. Thus, its amplitude will be greatly underestimated by conventional
beamforming. This means that if the dipole is visible in the conventional beamforming results, its
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main lobe must be roughly orientated towards the array, and thus, the results are fairly valid. Oth-
erwise, other sources will dominate the result, and the dipole will not be visible.

The results show that the general reconstruction of distributed, partially coherent dipole sources
is qualitatively possible with a compact monopole assumption. When mixing dipole and monopole
beamforming results, a drastic over- and underestimation of the source power can be avoided by not
calculating the true source power but referencing it to a normalized distance, i.e., d = 1 m, so that
the frequency dependency in the dipole’s Green’s function cancels out. Again, this concerns only the
display and interpretation of the results rather than their calculation.

4.3 CLEAN-SC

CLEAN-SC is a popular “deconvolution” algorithm for conventional beamforming methods. It is
based on the idea that each focal point represents a compact, incoherent source. Thus, any coherence
measured between two focal points originates from the PSF. The coherence between two signals is
given by

γ2 = |Gxy|2

GxxGyy
. (4.3.1)

CLEAN-SC is based on the idea that the coherence Γ2
jk between an arbitrary focus point xk and all

other focus points xj can be estimated by steering the CSM to the focus points with

Γ2
jk =

|w∗
j Cwk|2

(w∗
j Cwj)(w∗

kCwk) = |Ajk|2

AjjAkk
, (4.3.2)

where w is an arbitrary steering vector [107]. Removing the coherent parts of a source removes
the PSF (but also distributed sources) from the map. The advantage over CLEAN-PSF, where the
theoretical PSF for a monopole source is subtracted from the beamforming map, is that CLEAN-SC
“measures” the PSF. This is performed iteratively with the Algorithm 1, where n is the current
iteration, for a maximum number of N iterations, or until a stopping criterion is met [114]. f ∈ f is
the current frequency, A is the conventional beamforming result for the steering vector w, and x is
a list of all focus points. C is the dirty CSM, G is the CSM of the iteratively identified source, and
Q is the final CLEAN-SC estimation of the “deconvolved” map. For stability, a loop gain 0 < α ≤ 1
is used. The algorithm can be performed with Diagonal Removal (DR) [114] to remove self-noise.
Typical stopping criteria for the iterations include a certain dynamic range of the remaining source
map compared to the initial maximum or the norm of the remaining CSM.

The method assumes that the global maximum in the beamforming map is the true source position
to estimate the source position and strength. While the method is robust towards errors in the local-
ization of the source, one still has to identify the source’s main lobe so that the coherence between
the estimated source position and all other focus points yields a meaningful result. Thus, a dense
focus grid is necessary to achieve satisfying results, especially at short wavelengths, where the spatial
resolution is higher than the focus-grid resolution. However, refining the focus points will only solve
this problem partially due to the basis mismatch [29]. More advanced methods exist, such as High
Resolution HR-CLEAN-SC [116]. However, standard CLEAN-SC will be employed in this thesis due
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Algorithm 1 Standard CLEAN-SC.
FUNCTION CLEAN-SC(C, w, α):
Q(f , x)← 0
for f in f do

n← 0
Ajj ← w∗

j (f)C(f)wj(f)
while n ≤ N do ▷ or an other arbitrary stopping criterion is met

n← n + 1
k ← argmaxj(Ajj)
Akk ← Ajj(xk) ▷ find pos. of max. amplitude
h← C(f)wk(f)

Akk
▷ find steering vector to the corresp. loc.

if DR then
H← I⊗ hh∗ ▷ diag. matrix from steering vector
h← 1

1+w∗Hw

(
C(f)w

w∗C(f)w + Hw
)

▷ iteratively find steering vector if DR
end if
G← Akkhh∗ ▷ calc. CSM for the identified source
C(f)← C(f)− αG ▷ subtract identified source from dirty CSM
Ajj ← Ajj − αw∗

j (f)G(f)wj(f) ▷ subtract clean beam from dirty map
Q(f, xk)← Q(f, xk) + αAkk ▷ add identified source strength to CLEAN-SC output

end while
end for
return Q(f , x)

to its computational efficiency and large datasets.

Since CLEAN-SC will be used as the main method throughout this thesis to evaluate airframe noise,
the following results assess how it behaves if the assumptions of spatially compact, incoherent sources
are not met. The 1D set-up from Section 2.1.6 will be used to asses this issue, with a 1D focus grid
at −0.5 m ≤ x ≤ 0.5 m with N = 500 focus points at ∆y = 0.5 m, and an equidistant array at
−0.25 m ≤ x ≤ 0.25 m with M = 100 microphones. Figure 4.4 shows the result for a spatially
compact monopole that meets the CLEAN-SC assumptions. Thus, the source is well reconstructed,
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Figure 4.4: Spatially compact source. (a) shows the conventional beamforming solution with steering
vector III. The black dashed lines show the outer edges of the true source location, (b)
shows the corresponding CLEAN-SC solution. (c) shows the spatially integrated PSD,
where the red line shows the integration of the total area, the black line indicates the
source area between the black, dashed lines in (a) and (b), and the blue line outside the
source area (noise).
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Figure 4.5: Line source with 100 LC = 0 (incoherent) sub-sources according to the description in
Figure 4.4 and the setup in Figure 4.2.
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Figure 4.6: Line source with 100 LC = ∞ (coherent) sub-sources according to the description in
Figure 4.4 and the setup in Figure 4.2.

except at very low frequencies, where the main lobe cannot be sufficiently resolved spatially.

Figure 4.5 shows the corresponding results for an incoherent line source, presented in Figure 4.2.
The line source is constructed from N̂ = 100 sub-sources, spaced in a ∆x = 0.5 m interval along
the focus grid. The amplitude of the line source is PSD(f) = 100 dB Hz−1 according to the sub-
source scaling presented in Section 2.1.6. The conventional and CLEAN-SC results reconstruct the
line source well from medium to high frequencies, where it is spatially well resolved. At lower fre-
quencies, only a few of the sub-sources are reconstructed. The total source spectrum is well estimated.

Figure 4.5 shows the results for a coherent line source, presented in Figure 4.2. The conventional
beamforming resolves the spatial location of the source reasonably well. The SPL is underestimated
at high frequencies due to the increasing interference from the source at the microphone positions.
As a consequence, the right edge of the line source cannot easily be identified. CLEAN-SC recon-
structs a single source position at any given frequency, corresponding to its assumptions. Since it
assumes incoherent sources, any measured coherence between focus points will be (wrongly) attrib-
uted to the PSF. Thus, the SPL is underestimated for distributed, coherent sources, in addition to
the underestimation due to the interference at small wavelengths (compared to the size of the source).

Figure 4.5 shows the results for a partially coherent line source with LC = 3, presented in Figure 4.2,
with the coherence model presented in Section 2.1.6. Since the coherence model features an exponen-
tial coherence decay over increasing frequency, see eq. 2.1.38, the coherence decay counters exactly
the power underestimation due to interference, see Figure 4.6 (c). Still, the SPL is underestimated by
∆PSD ≈ 4 dB. The spatial estimation lies somewhere between the coherent and the incoherent case.
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Figure 4.7: Line source with 100 LC = 3 (partially coherent) sub-sources according to the description
in Figure 4.4 and the setup in Figure 4.2.

The coherent solution dominates at low frequency due to the long coherence length. At increasing
frequency, more sub-sources are estimated at decreasing spatial distances, which corresponds to the
coherence model.

In summary, CLEAN-SC will estimate several sources in the area of distributed sources, where the
number and density depend on the coherence of the source. The distance between the reconstructed
sources increases with an increasing coherence and decreasing frequency. With increasing frequency
and increasing coherence, the power is gradually underestimated. However, for real-world sources
where we expect the coherence length to shrink with increasing frequency, the effect is countered so
that it is reasonable to assume a constant power underestimation over frequency.

Figure 4.8 shows a real-world example of conventional beamforming and CLEAN-SC results of the
Embraer model [8] with a traditional display of the map. The Figure shows the over z-integrated
third-octave source maps, which show a complex spatial distribution of sources that vary over fre-
quency and Reynolds number. We observe mostly point-like sources along the slat that spatially
correlate with the slat tracks. A graphical indication of the source types and their names is shown
in Figure 5.3. The locations are mostly consistent over frequency (opposed to the location of coher-
ent, non-compact sources shown in Figure 4.6 and Figure 4.7). This indicates that the CLEAN-SC
assumptions are mostly reasonable for the dominant sources at the Embraer wing.

Figure 4.9 shows the corresponding integrated spectra of the full maps presented in Figure 4.8 for
DP 2, DP 5, and DP 6, which allow a comparison of the sound emission at increasing Mach number
and constant Reynolds number, see Table 3.3 and Section 2.1.2. Figure 4.8 (a) shows the integrated
spectra over the Strouhal number, Figure 4.8 (b) over the Helmholtz number, and Figure 4.8 (c)
shows the scaled spectra for an M5-law, typically proposed for airframe noise [55]. Figure 4.9 and
Figure 4.8 are the standard visualization and analysis methods.

4.4 B-CLEAN-SC

This section introduces Broadband-CLEAN-SC (B-CLEAN-SC), based on original work [52], which
aims to relax the problems of CLEAN-SC at high and low frequencies by adapting the idea of broad-
band Global Optimization, see Section 4.5: The processing of multiple frequencies at once, so that
the side lobes cancel out, and actual source positions can be identified. This is achieved by introdu-
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Figure 4.8: Comparison of over x3 and 3rd octaves integrated source maps for the Embraer DP 1:
(a) to (e), DP 2: (f) to (j), and DP 3: (k) to (o), for Stc numbers (a), (f), (k): 32, (b),
(g), (l): 40, (c), (h), (m): 50, (d), (i), (n): 63, (e), (j), (o): 80.

cing a simple change to the CLEAN-SC algorithm: Instead of processing each frequency individually,
B-CLEAN-SC processes frequency intervals at once (but still obtains smallband solutions). Here, the
only difference lies in determining the location from which the source power is sampled. B-CLEAN-SC
averages the dirty maps over the frequency interval and uses the location of the maximum averaged
source power. It then performs a standard CLEAN-SC iteration for each of the frequencies in the
interval with individual source powers per frequency but at the shared location. Thus, the recon-
struction at lower frequencies benefits from the resolution at higher frequencies, and the averaging
of side- and grating lobes stabilized the process at very high frequencies.

4.4.1 Methodology

The B-CLEAN-SC algorithm is nearly identical to the CLEAN-SC algorithm when CLEAN-SC is
performed for all frequencies in parallel with the exception that B-CLEAN-SC performs each iteration
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Figure 4.9: Integrated sources for DP 2, DP 5 and DP 6 of the left wing vs (a) Strouhal number and
(b) and (c) Helmholtz number. The SPL in (c) is normalized with M5.

n at a shared location xk for all frequencies (within the processed interval f). To determine the
location, instead of using the maximum of the dirty map Ajj(f) separately for each frequency, the
maximum of the over frequency averaged dirty map is used

k = argmaxj

(〈
Aijj

maxj(A0
ijj)

〉
i

)
. (4.4.1)

Here, A0
ijj denotes the original dirty map prior to subtractions. i denotes the index of the frequency

fi ∈ f , j denotes the index of the focus point xj . The subscript of the average operator ⟨. . . ⟩ or
the maximum argument operator indicates the dimension over which they are applied. A0

ijj is an
estimation for the frequency-dependent amplitude of the overall source power (which typically de-
creases over frequency for aeroacoustic sources). The normalization by its maximum compensates
for this behavior. Eq. 4.4.1 is the only addition to the CLEAN-SC algorithm to obtain B-CLEAN-SC,
see Algorithm 2. The algorithm is given for a frequency interval f . If the frequency interval does not
cover the full frequency range, B-CLEAN-SC is performed sequentially for multiple intervals.
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Algorithm 2 B-CLEAN-SC for a frequency interval f .
FUNCTION B-CLEAN-SC(C, w, α):
Q← 0
n← 0
A0

ijj ← w∗
ijCiwij

while n ≤ N do
n← n + 1
Âjj ←

〈
Aijj

maxj(A0
ijj)

〉
i

k ← argmaxj(Âjj) ▷ change to the CLEAN-SC algorithm
Aikk ← Aijj(xk)
hf ← Ciwik

Aikk

if DR then
Hikk ← hikh∗

ikIkk

hik ← 1
1+w∗

ik
Hikkwik

(
Ciwik

w∗
ik

Ciwik
+ Hikkwik

)
end if
Gi ← Aikkhih∗

i

Ci ← Ci − αGi

Aijj ← Aijj − αw∗
ijGiwij

Q(fi, xk)← Q(fi, xk) + αAikk

end while
return Q(f , x)

Note that the position xk is not necessarily located on the main lobe of a dominant source for all
frequencies if the sources have a frequency-dependent power. Especially at low frequencies, where
the PSF of a dominant source may cover all other sources and dominate the estimated power at their
true positions, this would lead to an overestimation of their power and a subtraction of the main lobe
when subtracting coherent portions of the map [116]. A low gain factor α is needed to relax this issue
so that the number of necessary B-CLEAN-SC iterations increases. Since only the initial calculation
of the dirty map is computationally expensive, the extra iterations are not performance-relevant.

4.4.2 CLEAN-SC and B-CLEAN-SC Results

This thesis proposes three evaluation cases. Case 1) is a synthetic 1D example that highlights the
differences between standard CLEAN-SC and B-CLEAN-SC. The array is located at −0.5 ≤ x ≤ 0.5,
y = 0. There are three sources Si at xI = 0, xII = 0.1, xII = 0.5, y = 0.5. The CSM is calcu-
lated at 256 frequencies fmax = 8192 Hz, ∆f = 32 Hz. The focus grid is located at −1 ≤ x ≤ 1,
y = 0.5, ∆x = 0.004 m. The PSD of SI linearly increases over frequency from PSDI(f0) = −10 dB
to PSDI(f256) = 0 dB. The PSD of SII linearly decreases in the same way so that SII dominates
at low frequencies and SI dominates at high frequencies. Additionally, SIII is a smallband source
that is only present at 3616 Hz ≤ f ≤ 3840 Hz at −10 dB. For B-CLEAN-SC, the frequencies are
processed in intervals of ∆f = 2048 Hz.

Throughout this section, CLEAN-SC is performed with DR, a maximum of 3NS iterations per fre-
quency where NS is the number of true sources, and a gain factor of α = 0.9 per iteration. B-CLEAN-
SC is performed with DR, a maximum of 10NS iterations, and α = 0.1 per iteration. Beamforming
maps are obtained only in 1D for case 1), and 2D for cases 2) and 3) with steering vector formulation
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Figure 4.10: Case 1), the top row shows CLEAN-SC, the bottom row B-CLEAN-SC results. (a)&(d)
show the OASPL(x/D), integrated over all frequencies. The sensor positions are marked
at an arbitrary y-location. The shaded areas represent the ROI. (d)&(e) show the con-
ventional beamforming result and the sparse (B-)CLEAN-SC result, the color indicates
the PSD. (e)&(f) show the resulting spectra, integrated from the ROI in (a)&(d). The
sources are depicted with different colors: S1 (blue), S2 (orange), S3 (green), and the
total integrated power (magenta). (B-)CLEAN-SC results that are not located within
any ROI are spatially integrated and classified as noise (black). The ground truth is
depicted with dotted lines and Latin numbers, the ROI estimation with full lines and
Arabic numbers.

#f 1 2 4 8 16 32 64 128
correct PSD [%] 61.7 62.8 62.5 65.6 66.7 66.7 66.1 64.8
mean error [dB] 2.3 2.2 2.5 2.5 1.3 2.5 3.9 8.9

SNR [dB] 14.5 14.4 14.8 16.4 17.8 18.4 22.6 19.1
Table 4.1: Influence of the frequency interval f on the resulting error metrics, where #f = 128 are

all frequencies. #f = 1 corresponds to the CLEAN-SC result in Figure 4.11, and #f = 16
to the B-CLEAN-SC result, all with DR, α = 0.1, N = 30.

III [107] instead of 3D to reduce the visual complexity of the results. The results are presented over
the Helmholtz number He = fD/a, where D is the array’s aperture in this case.

Figure 4.10 shows the results of case 1). Figure 4.10 (e)&(f) show the estimated PSD, integrated
from the same colored ROI in Figure 4.10 (a)&(d). The black lines represent noise integrated from
the area that does not correspond to any ROI, indicating beamforming and deconvolution artifacts.
Additionally, a magenta line shows the integration of all sources within the map to estimate the
overall sound power. The ground truth is depicted with dotted lines for reference.

CLEAN-SC reconstructs the dominant source S2 down to He ≥ 0.8, below which the maximum
within the dirty map is estimated with a wrong level along the side lobes and then at the edges of
the focal range. For S1, the PSD reconstruction works down to He ≥ 4, below which it underestim-
ates its power and misses the correct location. The smallband source S3 is reconstructed perfectly.
B-CLEAN-SC perfectly estimates the sources’ locations. The PSDs are reconstructed throughout the
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Figure 4.11: Case 2), the top row shows CLEAN-SC and the bottom row B-CLEAN-SC results.
(a)&(d) show the OASPL(x/D, y/D) with colored ROI centered around the true source
locations, (b)&(e) show the PSD(x/D, He) integrated over the y-dimension, (c)&(f)
show the ground truth (dotted, Latin numbers) and estimated PSD (solid, Arabic num-
bers) from the identical colored ROI in (a)&(d). The black line represents noise, integ-
rated from the areas that do not correspond to any ROI.

frequency range, except for S1 at He ≈ 3. For B-CLEAN-SC, there is no noise.

Figure 4.11 shows the results for case 2). Figure 4.11 (a)&(d) show that CLEAN-SC results in noisier
OASPL maps than B-CLEAN-SC. When integrating the maps over x, Figure 4.11 (b)&(e) show that
CLEAN-SC can determine the correct location down to He ≈ 3. B-CLEAN-SC correctly determines
throughout the frequency range. Strong side lobes are reconstructed as “ghost sources” that move
closer to the true source position with increasing frequency. Figure 4.11 (c)&(f) shows the spectrum
estimation. Source S1 is estimated well by CLEAN-SC at He ≥ 8. Source S2 is estimated well down
to He ≈ 1.5, below which it can no longer be separated from S3, estimated well down to He ≥ 2.
Below this frequency, the overall power was estimated well but could not be attributed to a true
source position, so it was integrated as noise. Both S1 and S3 are reconstructed down a Signal-
to-Signal Ratio (SSR) of around SSR = 30 dB, which was used as an iteration stopping criterion.
B-CLEAN-SC shows similar results, with improved reconstructions of S2 and S3 and lower noise levels.

Table 4.1 compares three metrics for exemplary frequency intervals, where #(. . . ) is the number of
elements. The relative frequency interval of the PSD that is correct (within a ±3 dB margin of the
ground truth (GT)) is defined for multiple sources S as

corr. PSD =
〈

#f (−3 ≤ |PSD(S, f)− GT(S, f)| ≤ 3)
#f PSD(S, f)

〉
S

, (4.4.2)

the mean absolute error (for frequencies where the PSD is defined, so that PSD ̸= −∞ dB)

mean error = ⟨⟨|PSD(f)− GT(f)|⟩f ⟩S , (4.4.3)
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Figure 4.12: Case 3), the top row shows CLEAN-SC and the bottom row B-CLEAN-SC results.
(a)&(d) show the OASPL(x/D, y/D), (b)&(e) show the normalized PSD(y/D, He)
integrated over the x-dimension and normalized per frequency, the model is depicted
for reference (but its x-information should be ignored). (c)&(f) show the estimated
PSD from the identical colored ROI in (a)&(d). While (c) shows the CLEAN-SC results
(solid), the B-CLEAN-SC solution is displayed with dotted lines, and in (f) vice versa
for comparison. Black lines indicate noise.

and the SNR is the ratio of the maximum source level to the noise level (for frequencies where both
are defined)

SNR = ⟨max
S

(PSD(S, f))− noise(f)⟩f . (4.4.4)

Note that eq. 4.4.3 and eq 4.4.4 are conditional errors since they require a defined PSD estimation.
Figure 4.11 (c)&(f) show that this is not always the case, so they must be evaluated as subsidiary
results of eq. 4.4.2. For example, the low-frequency CLEAN-SC noise is not captured with the SNR
metric, as no signal is present. Table 4.1 shows that B-CLEAN-SC outperforms CLEAN-SC with an
increasing frequency interval, with an optimum at 16 ≤ #f ≤ 32. The SNR further improves with an
increasing frequency interval, which indicates an improvement in spatial localization, but the spectral
estimation deteriorates in return.

Case 3) uses the Dornier 728 data at Re = 1.4× 106, α = 1◦, M = 0.125, see Section 3.2. This con-
dition is especially challenging because the background noise strongly dominates over the sources,
which are weak due to the low Mach number and low angle of attack. The results will be only
discussed qualitatively since there exists no ground truth. Figure 4.12 (a)&(d) show the estimated
OASPL(x/D, y/D). The results correspond well to the geometric features of the wing, but CLEAN-
SC shows noise in the top right corner, and sources such as the flap side edge are not well localized.
Figure 4.12 (b)&(e) show the PSD(y, He), integrated over x and normalized per frequency. Thus,
the only sources that can be confused in this depiction are an outboard slat track and the flap
side edge at y ≈ 0.3 m. The model is depicted for reference so that the estimated sources can be
attributed to its geometrical features, such as the slat tracks. Note that the x-component of the
model is plotted along the frequency axis, but the color map does not include any x-information. The
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CLEAN-SC result clearly identifies slat tracks in a frequency range of 10 ≤ He ≤ 100. Otherwise,
the result mostly shows the inboard Krüger slat, the nacelle area, and the noise for y/D ≥ 0.5.
The source separation fails below He ≤ 10. The B-CLEAN-SC result shows the same slat tracks as
dominant sources. However, they are also reconstructed at low and high frequencies. Additionally,
there is nearly no noise for y/D ≥ 0.5. Additional sources are visible between the slat tracks, typically
connected to slat cove tones [48]. Overall, the location of the estimated sources strongly correlates
to the geometrical features of the model and is consistent over the whole frequency range.

Based on the analysis of this data [48] ROI are defined that cover the inner (Krüger) slat and
the slat tracks (blue), the outer slat (orange), and the flap side edge (green). The ROI is chosen
so that the integrated source types are similar [8, 48]. Figure 4.12 (a)&(d) show the (identical)
ROI, and Figure 4.12 (c)&(f) show the corresponding PSD. Below He ≤ 10, CLEAN-SC fails
to reconstruct individual sources, resulting in strong noise, additional to the noise He ≥ 40. B-
CLEAN-SC reconstructs the PSD throughout the frequency range with approx. 20 dB less noise. For
frequencies where both methods produce a source spectrum, they coincide.

4.5 Global Optimization

This section presents broadband Global Optimization (GO) and is based on original work [53]. Beam-
forming relies on several assumptions to obtain a solution. The main assumptions generally include
one or all of these: spatially compact sources, monopole sources, incoherent sources, and independent
sound radiation for each frequency, as well as undisturbed sound propagation through the medium,
which are typically violated in real-world scenarios [6, 16, 77, 88].

Recently, gridless methods emerged that have several advantages over grid-based methods. In these
gridless methods, the focus points are no longer fixed in space. Thus, the inverse problem becomes
nonlinear, but the number of unknown variables is reduced by multiple orders of magnitude in return
since fewer focus points are needed. These methods include subspace beamforming [108], machine
learning based methods [71], and Covariance Matrix Fitting (CMF) methods [24, 26, 27, 28].

GO is a gridless CMF method, employing a global optimizer such as Differential Evolution [132, 83].
In this method, a synthetic CSM is directly fitted against an observed CSM based on a Mean Squared
Error (MSE) energy function that is minimized based on varying the estimated source positions and
source strengths. While the method is straightforward, global optimizers are computationally expens-
ive and not guaranteed to find the global minimum [26, 95]. Conversely, the advantage is that CMF
methods do not impose any limitations on the model. Thus, including and optimizing parameters
often neglected in beamforming methods is possible. This Section includes multipoles in the source
model as proof of concept for advanced properties that can be obtained with GO.

Quasi-stationary aeroacoustic sound sources are typically geometry-driven (e.g., leading and trailing
edges). Thus, the resulting source locations are constant over frequency [47]. This thesis uses this
observation to introduce source objects with multiple properties, such as a location and dipole rota-
tion, which are constant over frequency. This thesis introduces a modified broadband energy function
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to GO that allows the CSM-fitting of all frequencies at once, using the source and propagation para-
meters shared for all frequencies. This thesis shows that the PSF drives the energy, which, depending
on the problem, can lead to strong local minima. The proposed broadband energy averages the MSE
over all frequencies, equivalent to averaging the PSF and resulting in a much smoother energy func-
tion.

4.5.1 Methodology

This subsection uses source objects introduced in Section 2.1.3 and the energy function E for the
CSM-fitting. Further, it presents the spectra generation problem from beamforming results and typical
solution approaches.

Energy function and optimization

To optimize q and T, we need an energy function E to solve eq. 2.1.50, also referred to as a cost
function. Von den Hoff et al. [132] suggest the MSE between the measured CSM cmeas and the
estimated CSM cmod, that is

E(f) =
∑

ı̂

(
|cmod,̂ı(f)− cmeas,̂ı(f)|2

)
. (4.5.1)

Only elements ı̂ corresponding to the Vectorized Upper Triangular (VUT) CSM without diagonal
should be evaluated to exclude uncorrelated self-noise. Note that according to eq. 2.1.50 cmod is the
superposition of the uncorrelated source CSMs so that the energies are added for multiple sources.

Here, the energy function is evaluated for each frequency separately. We will reformulate the energy
function so that it is evaluated for all frequencies simultaneously. Since the energy is compared for
a varying number of frequencies and microphones, the sum is replaced by an average ⟨. . . ⟩ over
all employed frequencies and upper CSM entries. The average subscript indicates which variable is
averaged. An additional normalization for each frequency accounts for different source strengths at
different frequencies. The new energy function is

E =
〈
|cmod,̂ı(fj)− cmeas,̂ı(fj)|2

⟨|cmeas,̂ı(fj)|2⟩ı̂

〉
ı̂,j

. (4.5.2)

Note that the normalization is based on the measured CSM and thus corresponds to the maximum
observed source level per frequency, combined for all sources. Thus, this normalization does not
change the relative amplitude levels between several sources at a given frequency. It only changes
the combined source levels over frequency so that the energy is weighted equally at each frequency.

We will refer to GO with eq. 4.5.2 for a single frequency (essentially equal to eq. 4.5.1) as standard
GO, and eq. 4.5.2 for multiple frequencies as broadband GO. To make the error more robust for
real-world applications, and since eq. 2.1.50 is no longer linear, it is also possible to choose the l1

norm over the l2 norm (typically chosen to ensure a convex error), which does not prefer single large
CSM deviations in the optimization process. A weighted norm, based on the standard deviation of
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Ntrue datatype sourcetype Section Figures
case 1 1 syn. monopole 4.5.1 4.13, 4.14, 4.15, 4.16
case 2 2 syn. monopole 4.5.1 4.17, 4.18, 4.19
case 3 1 syn. monopole 4.5.2 4.20, 4.21, 4.22
case 4 2 syn. monopole 4.5.2 4.20, 4.21, 4.22
case 5 3 real monopole 4.5.2 4.24,4.25,4.26
case 6 2 syn. multipole 4.5.2 4.27

Table 4.2: Main cases considered in this thesis and their differences, e.g. the number of true sources
Ntrue. The cases typically contain sub-cases, where depending on the employed method
the properties Nest., broad- and small-band energy, and Mach number are varied.
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Figure 4.13: Case 1a). (a) shows isocontour lines of the energy for (x1,q) variations from eq. 4.5.2
for x2 = 0.5 m, x3 = 0 m, and f = 6144 Hz. The true source position is marked (red x).
(b) shows the corresponding PSF (steering-vector IV [107, 77, 25]) for a source location
at y = [0.5, 0.5, 0]T m.

the CSM Welch averages [106], may further improve the estimation. To limit the several options, we
will only analyze the formulation 4.5.2 as a baseline for broadband GO in this thesis.

Energy of a single synthetic monopole

The energy is explored numerically due to the nonlinearity of the propagation operator, the non-
convex energy function, and non-uniqueness (the solution is at least permutation invariant). This
thesis will contain several different setups summarized in Table 4.2. First, a synthetic monopole at
y = [0.5, 0.5, 0]T m with q(f) = 1 Pa2 Hz−1 is generated. An equidistant 1D-array at −0.5 m ≤
x1 ≤ 0.5 m, x2 = 0 m, x3 = 0 m detects the sound-field with M = 5 microphones. The broad-
band GO energy from eq. 4.5.2 is calculated for a single frequency (equivalent to standard GO, see
eq. 4.5.1) as case 1a) at f = 6144 Hz, and for multiple frequencies as proposed in this thesis at
210Hz ≤ f ≤ 215Hz with ∆f = 1024 Hz as case 1b). Note, due to the normalization over frequency
in eq. 4.5.2, the broad-band energy in case 1b) will be identical for frequency-dependent source amp-
litudes.

Figure 4.13 (a) shows the case 1a) log-energy for the variation of (q, x1) for x2 = 0.5 m, x3 = 0 m.
The variables not shown in the energy maps (i.e., x2,x3) are set correctly so that the energy devi-
ations from zero are only caused by the displayed variables (i.e., x1,q). The global minimum is at
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Figure 4.14: Case 1b). (a) shows the energy for (x1,q) variation from eq. 4.5.2 for x2 = 0.5 m,
x3 = 0 m, and 100 Hz ≤ f ≤ 20 kHz, ∆f = 100 Hz. (b) shows the corresponding PSF
(steering-vector IV [107, 77, 25]), averaged over the frequency, for a source location at
y = [0.5, 0.5, 0]T m.
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Figure 4.15: Case 1a), energy for (x1,x2) variation from eq. 4.5.2 for x3 = 0 m, q = 1 Pa2, and
f = 6144 Hz.

E = 0, where the variables coincide with the true monopole location and source strength. Multiple
local minima are visible for case 1a), so that for a given q, the energy looks like a reciprocal Point
Spread Function (PSF) with grating lobes, shown in Figure 4.13 (b). With the averaging over the
frequency in case 1b), the PSF and local minima are also averaged, see Figure 4.14 (a) and (b).
Thus, the energy becomes mostly smooth.

Figure 4.15 and Figure 4.16 show the corresponding energy of variations of (x1,x2) for the correct
amplitude. Again, most of the local minima of the single-frequency energy are smoothed for the
broadband energy. Additionally, the gradient towards the global minimum is much steeper for the
broadband energy. The depicted energy map will increase in smoothness with an increasing number
of frequencies (either due to faster sampling rates or larger Welch block sizes, not shown here).

Energy of multiple synthetic monopoles

We will now examine the energy function for a two-source problem. The true sources will be de-
noted with Roman numbers. The synthetic monopoles are located at yI = [0.5, 0.5, 0]T m, yII =
[0.5, 0.6, 0]T m, qI(f) = 1 Pa2 Hz−1, qII(f) = 0.5 Pa2 Hz−1, so that source SII is located slightly
behind source SI . Again, the energy will be calculated for a single frequency f = 6144 Hz as case 2a)
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Figure 4.16: Case 1b), energy for (x1,x2) variation from eq. 4.5.2 for x3 = 0 m, q = 1 Pa2, and
210Hz ≤ f ≤ 215Hz.
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Figure 4.17: Case 2a), slices of the six-dimensional energy, see eq. 4.5.2. All variables for each slice are
chosen correctly, except for the shown combinations of (a) (xI,1, xII,1), (b) (xI,1, xII,2),
(c) (xI,2, xII,2), (d) (xII,1, xI,2). The source positions are marked (x) for SI (orange),
and SII (red).

and multiple frequencies 210Hz ≤ f ≤ 215Hz with ∆f = 1024 Hz as case 2b). Since the energy space
is six-dimensional (three coordinates per source, one amplitude per source, because the amplitude
is constant over frequency), only 2D (x1,x2)-slices of the energy space are presented. The slices are
chosen so that all variables are correct except for the two being displayed.

Figure 4.17 shows the single frequency energy from eq. 4.5.2 for case 2a). The true source positions
are marked with an x. For the single frequency energy map (a), (b), and (d), there is a trend of low
energy at the correct x1 positions visible. However, periodically repeating local minima are visible due
to the array’s PSF at the given frequency. Figure 4.18 shows the corresponding broadband energy
for case 2b), which, in comparison, shows a clear global minimum with steep gradients. However, the
energy map is not smooth and exhibits minor local minima. Note that these minima appear magnified
due to the logarithmic plot of the energy. Figure 4.17 and Figure 4.18 (c) show the variation of x2 for
both sources, for the correct x1 = 0.5. Here, one can see that the main local minimum is caused by
the spatial permutation of the sources (when SI and SII swap their positions), again showing that
the problem does not have a unique solution. These results show that the energy function, minimized
during the GO CSM-fitting optimization, contains local minima caused by the array’s PSF. These
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Figure 4.18: Case 2b), slices of the six-dimensional energy, see eq. 4.5.2. All variables for each slice are
chosen correctly, except for the shown combinations of (a) (xI,1, xII,1), (b) (xI,1, xII,2),
(c) (xI,2, xII,2), (d) (xII,1, xI,2). The source positions are marked (x) for SI (orange),
and SII (red).
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Figure 4.19: Case 2c), (a) smallband energy at f = 6144 Hz and (b) broadband energy, with a
mismatch of Ntrue = 2, and Nest. = 1 for q = 0.5 Pa2 Hz−1, x3 = 0 m.

minima can be reduced using multiple frequencies at once with the broadband energy formulation in
eq. 4.5.2 so that the energy function is mostly smooth.

A question remains if an estimated source is guaranteed to approximate a single true source or if a
single estimated source may be located between two real sources, trying to approximate both. This
question is of interest since all estimated sources are fitted at once so that the errors of the estimated
sources are not independent. While it seems that this is the case from Figure 4.17 and Figure 4.18,
where there is no strong local minimum between two true source positions, it is hard to tell, since
we only observed slices of the high-dimensional energy function.

This thesis proposes case 2c) to explore this topic further. Case 2c) has a mismatch of the true
number of sources Ntrue = 2, and estimated sources Nest. = 1. Figure 4.19 (a) shows the resulting
single frequency energy, and Figure 4.19 (b) the corresponding broadband energy. The energy is
reduced for an estimation of any true source position. However, due to the closer distance of SI

to the array and the decay in amplitude over distance, see eq. 2.1.23, an estimation of SI reduces
the energy significantly more than an estimation of SII . For both energies, the gradient around the
source positions leads towards the true positions, and again, there is no local minimum between the
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source positions. While this observation might be different for coherent and distributed sources, this
means for spatially compact, incoherent monopoles that each estimated source will approximate a
single true source. If a local minimum is found for a source, the global minimum for other sources is
at the correct location, see Figure 4.17 and Figure 4.18.

A mismatch between the number of true and estimated sources is not problematic, and either an
iterative addition of estimated sources [26] until the energy is not reduced anymore or a simple
overestimation of sources will be a viable strategy to find all true sources.

Source identification and spectra generation

Another issue for beamforming methods that calculate results independently for each frequency share
is that generating a spectrum is not trivial, see Chapter 5. The first challenge is that it is typically
unknown how many sources are located within the map, how they are distributed, and in which
frequency ranges they can be observed. The second challenge is that true sources are masked by
beamforming artifacts, such as side lobes of other sources. The third challenge is generating the
correct spectrum from the beamforming map. All single-frequency methods have in common that
spectra are obtained by estimating the number and locations of the sources, assigning the source-
parts either to a source or rejecting them as noise, and then integrating all source-parts per frequency
assigned to a source.

This procedure will be different for the proposed broadband GO method since the source objects
already include a full spectrum. However, multiple source objects may be located very close together,
either because they approximate a distributed source with multiple point-like source objects or because
the solution of GO is not unique. Due to the super-position invariance of the CSM-fitting process,
any number of source objects may be located at the exact location, and the true source strength may
be arbitrarily distributed between the estimated source objects. This thesis proposes the definition of
a minimum spatial distance for these cases, below which source objects will be grouped, and their
spectra will be integrated. This can be only performed for spatially compact monopole sources, as
more complex properties such as a dipole rotation must be considered when integrating sources.

4.5.2 Results

This section presents standard GO, broadband GO, and CLEAN-SC results with steering vector IV for
increasingly complex problems, such as synthetic monopoles, real monopoles, and synthetic dipoles,
listed in Table 4.2. Many algorithms exist for GO, which feature a variety of hyper-parameters that
can be tuned [83, 132]. Since the main goal is to establish a baseline of broadband GO, hyper-
parameter tuning and an exploration of different GO algorithms are out of the scope of this thesis.
Thus, Dual annealing [131] with SciPy’s standard hyper-parameters is used. L-BFGS-B [131] with
SciPy’s standard hyper-parameters is used for local optimization.

Global optimization on synthetic monopoles

To evaluate the proposed method, and to compare it to standard GO and CLEAN-SC [114] two
examples are proposed. First, case 3) contains a monopole located at yI = [0.5, 0.5, 0]T m, with
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Figure 4.20: CLEAN-SC result for top row case 3), bottom row case 4). (a) and (b) show the spatial
distribution of microphones (⋆), and of the source-parts (·), their color encodes the
corresponding frequency. The opacity indicates the per frequency normalized log-power.
(c) and (d) show the integrated spectra, based on the corresponding ROI (o) in (a) and
(b). The ground truth PSD is depicted in black.

QI(f) = 100 dB Hz−1, where Q = 10 log10

(
q/4× 10−10 Pa2

)
. Second, case 4) contains two inco-

herent monopoles with yI = [0.5, 0.5, 0]T m, QI(f) = a0f + b0dB Hz−1 with a0 = 5/7936 and b0 =
2770/31 so that it increases linearly from QI(210Hz) = 90 dB Hz−1 to QI(215Hz) = 110 dB Hz−1,
and yII = [0.5, 0.6, 0]T m, QII = 100 dB Hz−1. Thus, source SII is located behind source SI (similar
to Section 4.5.1). The array is an equidistant 1D-array at −0.5 m ≤ x1 ≤ 0.5 m, x2 = 0 m, x3 = 0 m
with M = 11 microphones. To acquire depth-information with conventional beamforming, steering
vector formulation IV [107, 77, 25] and a focus grid −1 m ≤ x1 ≤ 1 m, 0.3 m ≤ x2 ≤ 0.7 m with
∆x1 = ∆x2 = 0.01 m, and x3 = 0 m is chosen.

Figure 4.20 shows the corresponding CLEAN-SC result, top row case 3), bottom row case 4). The
first column shows the spatial position of the reconstructed source-parts. A source-part is defined
as a single q in a single location and frequency with q(x, f) > 0 Pa2 Hz−1, that - once integrated
through a ROI - provides a source spectrum [47], see Section 4.5.1. The source-parts’ color indic-
ates their frequency, and their opacity indicates their log power-level log(q + 1), normalized for each
frequency independently to [0, 1]. In Figure 4.20 (a), all source-parts are (correctly) located at the
same position. Thus, only one source-part is visible. The ROI are manually defined at the true source
locations with case 3) radii rI = 0.1 m, and case 4) rII = 0.05 m so that the ROI do not overlap.
Figure 4.20 shows in the right column the corresponding integrated spectra. Outside of any ROI,
source-parts are integrated and labeled as (background) noise. The position and PSD of the single
monopole configuration in case 3) are estimated perfectly. For case 4), the dominant source-parts
are close to the true source position. However, there is much noise at low frequencies, and the PSD
of source SII is underestimated.

GO requires a fixed number of estimated sources, which is typically unknown beforehand. To be
able to find and resolve all sources, a simple strategy is to overestimate the number of sources, see
Section 4.5.1. Thus, the solution is approached with two sub-cases. First, standard GO is performed
with the correct number of estimated sources N = 1 as case 3a), then standard GO is performed with
an additional estimated source N = 2 as case 3b). For case 4) we will underestimate Nest. = 1 as
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Figure 4.21: Standard GO. First row: case 3a), second row: case 3b), third row: case 4a), forth row:
case 4b). (a), (b), (c), and (d) show the estimated source locations (·), the color displays
the corresponding frequency, the opacity the per frequency normalized log-power. (e),
f), g), and (h) show the PSD estimation (-), integrated from the corresponding ROI
(o) in the left row. The ground-truth is depicted in black, sources that do not lie in any
ROI are integrated as noise (blue).

case 4a) and overestimate Nest. = 3 as case 4b). True sources will be denoted with Roman numbers
(e.g. SI), and estimated sources with Arabic numbers (e.g. S1).

Figure 4.21 shows the results of standard GO. The left column shows the estimated position of the
source-parts, the color encodes their frequency. For cases 3a) and 3b), the source-parts are located
mostly in the same (correct) location. For case 4), the source-parts are scattered around the map at
medium to high frequencies. A ROI according to the CLEAN-SC result is defined, see Section 4.5.1,
since for standard GO a source location is estimated for each frequency separately. The spectra are
correctly reconstructed for cases 3a) and 3b). For case 4a), the single estimated source always (cor-
rectly) estimates the dominant source. For case 4b), the reconstruction fails for SII(f ≥ 17 kHz),
which is likely due to the spatial aliasing and local minima in the energy caused by the side- and
grating lobes, see Section 4.5.1. Thus, one can expect the results to gradually improve by increasing
the number of global optimization searches [132].

Figure 4.22 shows the result of the proposed broadband GO method. For case 3a) and case 3b),
the source location and amplitude are estimated correctly, like for standard GO, and CLEAN-SC.
For case 3b), S2 is arbitrarily positioned with a low PSD and can be neglected. For case 4a) S1

spatially estimates the source with the highest overall contribution to the CSM (SI), but at very low
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Figure 4.22: Broadband GO. First row: case 3a), second row: case 3b), third row: case 4a), forth row:
case 4b). (a), (b), (c), and (d) show the true source locations (o) and estimated source
object locations (x), (e), (f), (g), and (h) show the corresponding PSD estimations
(-). The dashed, red line represents the PSD summation of S1 (blue) and S2 (orange),
which are located at the same spatial position.

frequencies where the array cannot resolve SI and SII anymore, S1 estimates SII , which contributes
more towards the CSM. For case 4b), SII is estimated with the superposition of S1 and S3, since their
position is identical, see Section 4.5.1. The spectral density is arbitrarily distributed between them,
but the summation of both spectra reveals that their sum approximates the true PSD. The spectra
are reconstructed well throughout the frequency range, and the method outperforms CLEAN-SC and
standard GO (for the given number of iterations). The results indicate that overestimating sources
is a viable strategy to find and reconstruct all true sources with low errors.

Global optimization on real monopoles

The generic monopole data is used at Mach M = 0 as case 5a), see Section 3.1, to evaluate the
proposed method on real data.

Conventional beamforming and CLEAN-SC with steering vector formulation IV [107, 77, 25] is per-
formed as a benchmark, see Figure 4.23. The left column depicts the spatial setup and source-parts,
their color indicates the frequency, and their opacity indicates the per-frequency normalized SPL.
Since the problem is three-dimensional, (a) shows a (x1, x2) and (b) shows a (x1, x3) projection.
There are three ROI defined based on the true source positions with a radius of r1 = r2 = 0.075 m,
r3 = 0.3 m. Due to the low array resolution in x3, the ROI are elongated with r3 = 4r1,2. Every
source-part within these radii is integrated for the estimated source spectrum, and every source-part
not contained in any ROI is integrated and classified as noise. Figure 4.23 (c) shows the corres-
ponding spectra, the estimated ROI spectra are depicted with dashed lines, and the ground truth is
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Figure 4.23: CLEAN-SC results for case 5a). (a) and (b) show projections of the spatial distribution
of source-parts, their frequency, and normalized amplitude. (c) shows the PSD recon-
struction (dotted lines), based on same colored ROI with r1 = r2 = 0.075 m, r3 = 0.3 m.
The ground truth is depicted in the same color with ±1σ standard deviation.
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Figure 4.24: Standard GO results for case 5a), three true sources, and N = 4. (a) and (b) show
projections of the spatial distribution of source-parts, their frequency, and normalized
amplitude. (c) shows the PSD reconstruction (dotted lines), based on same colored ROI
with r1 = r2 = 0.075 m, r3 = 0.3 m. The ground truth is depicted in the same color
with ±1σ standard deviation.

depicted as the mean ±1σ standard deviation. Overall, CLEAN-SC is able to reconstruct the spectra
up to a SNR ≈ 30 dB at around f ≈ 10 kHz. There is an underestimation of the source power of S2

at f ≈ 17 kHz. At high frequencies f ≥ 28 kHz the source reconstruction fails. Additionally, there
is much noise at all frequencies that does not correspond to any ROI. It is mainly located at the
grating- and side lobe locations [47]. Thus, an optimized array geometry would improve the results.

Figure 4.24 shows the standard GO results for N = 4. The space-frequency source-part distribu-
tion is very similar to CLEAN-SC. While the reconstruction of SI at f ≈ 17 kHz is more accurate,
CLEAN-SC outperforms standard GO at low frequencies and low SNR. Generally, the PSD estimation
is good for dominant sources. However, the locations of the source-parts are not well estimated, so
they are often located in the wrong ROI. It is assumed that the results improve with an optimized
array geometry and an increasing number of global searches.
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Figure 4.25: Broadband GO result for case 5a), three true sources, and Nest. = 4. (a) and (b) show
projections of the spatial distribution of the estimated source objects Si, their ordering
is shown in (b). (c) shows the PSD reconstruction (dotted lines), based on the single
or integrated source objects (SII is approximated by S2 and S4). The ground truth is
depicted in the same color with ±1σ standard deviation.

Figure 4.25 shows the proposed broadband GO result for N = 4. In the left column, the estimated
source positions are depicted. On the right, the corresponding PSD is depicted. The estimated source
object positions (x) are depicted in the same color as the true sources, SII (orange) is estimated by
two source objects. Since the ordering of the sources is random, these correspondences were identified
based on the spatial distances to the true positions. Note that this assignment problem only arises
because of the comparison to the ground truth and does not need to be solved for typical beamform-
ing applications. Similar to the CLEAN-SC result, the sources are well localized in x1 and x2, and
SII is slightly distributed in x3 direction. Figure 4.25 (c) depicts the estimated source spectra by
integrating all estimated source objects that correspond to a true source position, which correspond
well to the ground source, except for SIII which shows two prominent high-frequency bumps.

Overall, the CLEAN-SC and broadband GO results are very similar in terms of SNR, but broadband
GO outperforms CLEAN-SC at f ≈ 17 kHz and high frequencies. The main difference is that the
CLEAN-SC result is very noisy, while there are two prominent bumps in the estimated spectrum
of SIII . The similar shape of the CLEAN-SC noise and GO bumps are likely caused by the before-
mentioned monopole assumption violation and reflections, as can also be seen for the same frequencies
in Figure 3.2. This inclusion seems to minimize the observed CSM, similar to case 4a) in Figure 4.22
(g), where at low frequencies, the dominant source PSD is estimated instead of the true PSD.

Local optimization on real monopoles

Given that one uses a method like SIND [47] to automatically obtain source positions and spectra
from CLEAN-SC maps, this information can be used as initial guesses to transition from Global Op-
timization to Local Optimization (LO), since the error function is smooth in the amplitude dimension,
see Section 4.5.1. The main reason to perform broadband GO or LO after acquiring a CLEAN-SC
result would be to include properties in the source object that are neglected by conventional beam-
forming and CLEAN-SC, such as multipoles. The main reason to perform LO over GO is that GO is
computationally very expensive [95, 26].
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Figure 4.26: Broadband LO result for case 5b). (a) and (b) show spatial projections of the estimated
source objects, (c) shows the PSD reconstruction for three true sources at M = 0.00
(x, dash dotted line), M = 0.03 (▽, dotted line), M = 0.06 (+, dashed line), M = 0.12
(D, solid line), Nest. = 3, with initial start positions close to the true positions, and
PSDstart = 50 dB.

As an example, LO is performed on the generic monopole sources from case 5a), but with M =
[0.00, 0.03, 0.06, 0.12] as case 5b). The Amiet open wind tunnel correction [12] is incorporated into
the propagation operator for M > 0. As initial start values, the true source positions with a random
normal error of σx = 0.025 are used and bounded by the optimizer with ±4σx. The initial amplitude
is PSDstart = 50 dB, and not bounded. Figure 4.26 shows the result of LO. The results are nearly
identical to broadband GO, and the Mach number has a neglectable influence on the outcome.
This shows that the proposed broadband energy is robust to uncorrelated background noise (i.e.,
noise from the open wind tunnels). High background-noise situations such as closed wind tunnel
measurements are likely to require a noise model [58, 56, 59] either subtracted from the measurement
or incorporated in the estimated CSM because the hydrodynamic noise is partially coherent and
typically dominates the CSM. The main advantage of LO is that due to the initial guess, the number
of true sources is known, which makes the post-processing integration of source objects obsolete,
and the optimization process much faster (GO takes approximately 100x longer for the used SciPy
implementations [131]). Since the initial source objects are initialized with the error σx, the results
also show that the broadband energy is smooth enough around the true positions for its gradient to
lead towards the global minimum.

Local optimization on synthetic multipoles

As described in the previous section, evaluating complex sources by including parameterized properties
in the propagation operator is of interest. One example is a multipole that contains poles of any order,
such as a monopole and a dipole, see Section 2.1.4. This is incorporated by super-positioning the
estimated, incoherent multipole CSMs in eq. 4.5.2 with

cmod = cmonop. + cdip. + . . . , (4.5.3)

using a shared location and rotation angle for all frequencies and poles in a source object. More
complex parameterization may be used here, e.g., allowing for a frequency-dependent multipole ro-
tation, which relaxes the source assumptions but results in more free variables. Thus, it is generally a
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var. x1 x2 x3 pole Q(f) θ φ
unit m dB Hz−1 rad

SI 0.5 0.5 0.0 monop. 100 - -
dip. 60 π/2 0

SII 0.0 0.5 0.0 monop. −∞ - -
dip. 40 π/2 π/2

Table 4.3: Multipole parameters for case 6). The multipoles’ amplitudes are constant over frequency.
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Figure 4.27: Broadband LO result for case 6) with Ntrue = 2 multipole sources, consisting of incoher-
ent monopoles (blue and green), and dipoles (orange and red). (a) shows the true spatial
location of the sources. The radius of the source shape is proportional to its strength.
(b) shows the broadband LO (Nest. = 2) spectral estimation with ground truth (solid)
and the estimation (dashed lines) for the monopoles (·) and dipoles (♢). (c) shows
the perceived PSD at the array location due to the Green’s functions eq. 2.1.23 and
eq. 2.1.26, which indicates the pole’s contribution to the observed CSM.

good idea to include a priori information, such as that a dipole’s orientation depends on the object’s
orientation in the flow and, thus, should be approximately constant over frequency, see Section 2.1.
Here, a dipole has two additional variables compared to the monopole, the rotation angle θ, and φ.
For θ = φ = 0, the dipole’s main lobe is orientated in x3 direction, θ turns the dipole around x2, φ

around x3.

As proof of concept, LO is performed on two synthetic multiples, consisting of monopoles and di-
poles, with the parameters given in Table 4.3 with the array setup from Section 4.5.2. The setup is
visualized in Figure 4.27 (a). For LO, the initial positional start values are chosen according to the
last section with σx = 0.025m. The start amplitude for the optimizer is PSD(f) = 80 dB Hz−1. The
start values for the dipole rotation angles φ are random since they cannot be obtained from naive
beamforming methods. The rotation angle perpendicular to the array is fixed θ = π/2, as it cannot
be obtained with a 1D array.

Figure 4.27 shows case 6) results. Figure 4.27 (b) shows the true and estimated pole PSDs. The true
and estimated PSDs coincide, except for SII where a monopole amplitude around Q ≈ 60 dB Hz−1

is estimated, whereas the true amplitude is Q = −∞dB Hz−1. Note that the SNR of this estimation
appears distorted in (b), since the monopole and dipole contribute differently to the total CSM, due
to their different Green’s functions, see eq. 2.1.23 and eq. 2.1.26. For reference, Figure 4.27 (c) shows
the perceived PSD at the array’s position x = [0, 0, 0]T , based on the Green’s Matrix H. The SNR
is SNR ≈ 40 dB. The dipoles’ rotation angles are estimated with errors below ϵφ < 10−5 rad.
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4.6 Grid-based supervised learning beamforming

This section is based on original research [51] and discusses the use of Artificial Neuronal Networks
(ANN) to improve grid-based beamforming. The general approach of deep learning is appealing for
wind tunnel experiments since an ANN has to be trained only once for a given array design, which
typically stays the same within an experimental campaign. The inference, that is, the processing of
the experiments, can then be performed efficiently for all measurements.

For grid-based beamforming, the problem is given in eq. 2.1.50, where the CSM is observed, and the
corresponding source distribution is to be estimated. Thus, the task of an ANN in beamforming is to
invert the propagation operator. While T−1 is rarely injective and badly conditioned, see Figure 2.1,
and the function contains local minima, which will be shown in Section 4.5. Thus, an ANN is not
guaranteed to be able to solve this problem. However, the source vector q is typically sparse. Thus,
the ANN may implicitly learn a regulation that improves the performance on source vectors with few
real sources.

While ANN research in non-acoustical time-domain beamforming has already advanced significantly,
acoustical frequency-domain ANN beamforming is still relatively new. Different architectures have
been proposed. On the input side, the ideas can be separated into methods that either use the CSM
or conventional beamforming maps. Fully Connected Layers (FCL), Convolutional Layers (CL), and
Attention Layers are used for the hidden ANN layers. For the output, either the source distribution
is estimated on a grid or gridless. The published research is summed up in Table 4.4 and separated
into the different input and output designs.

gridless grid-based

CB map Kujawski et al. [70] Pinto et al. [101]
Lee et al. [75, 76]

CSM Castellini et al.[23] Ma and Liu [82]
Kujawski and Sarradj [71] Xu et al. [135]

Table 4.4: Overview of the research that has been conducted, separated according to the input and
output designs.

4.6.1 Synthetic measurement setup

This thesis uses a simple 1.5D (x, y)-measurement setup, that consists of an equidistant M = 5
microphone setup x = [−0.25 m, . . . , 0.25 m]T , y = −0.5 m, z = 0 m and N = 15 focus points
x = [−0.5 m, . . . , 0.5 m]T , y = 0 m, z = 0 m. The true source distribution and the corresponding
CSM must be known for supervised learning beamforming in the frequency domain. Thus, training
data will be generated synthetically for spatially compact monopole sources.

Since ANN architectural design possibilities provide endless combination options, a simple baseline
model is proposed, and several parameters are varied. Then, based on the observations, multiple
architectures are defined and tested. All architectures are trained on 106 training samples for 100
epochs with a 0.9/0.1 validation split, and the error metrics are evaluated on 103 test samples.
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Note that sources are only located on the focus points (not between them) to prevent aliasing and
assignment ambiguities.

4.6.2 Metrics

Three metrics for sparse beamforming maps are defined to evaluate the grid-based ANN results,
which are inspired by Lehmann et al. [77], and Herold and Sarradj [61]. For sparse maps, in the
sense that the number of non-zero Pa2 entries is small compared to the number of grid points, the
task contains classification, i.e. finding the correct focus points where there exists a source, and
regression, i.e., finding the correct source power. Thus, the classification is implicitly based on the
regression task. For the classification, a lower threshold is defined (e.g., LT = 0 dB), above which a
focus point y is classified as a source S, and below which a focus point is classified as no source ¬S.
Then, we can define the sensitivity and specificity of the method given the number of True Positives
(TP) Strue ∧ Spred., True Negatives (TN) ¬Strue ∧ ¬Spred., False Positives (FP) and False Negatives
(FN).

sensitivity = TP
TP + FN (4.6.1)

specificity = TN
TN + FP (4.6.2)

The sensitivity describes how many of the real sources are identified. The specificity describes how
many of the no sources are identified. Additionally, an error is needed to estimate for the regression
task, i.e., the sound power estimation. We want the error to be relative (in decibels) and independent
from the FP and FN classifications. Thus, the Source Strength Deviation (SSD) [77] is used as a
Mean Absolute Error (MAE) between the estimated PSD and true PSD for the TP and the average
Noise to Signal Ratio (NSR) for the TN.

SSD = ⟨|PSDest.(yTP)− PSDtrue(yTP)|⟩ (4.6.3)

NSR = ⟨P̂SDest.(yTN)⟩
max

(
P̂SDtrue(yStrue)

) (4.6.4)

The NSR instead of the typical Signal to Noise Ratio (SNR) is used because, in the best case scenario,
the modified PSD (see section 4.6.3 and eq. 4.6.6) of the noise is zero, which can only be used as
a numerator (the signal is non-zero by definition). The NSR captures how low the average PSD of
an FP is compared to the maximum PSD in the ground truth. We also want to know how close the
estimated sources can reconstruct the given CSM. Solving the forward problem in eq. 2.1.50 from
the predicted sources to obtain a predicted CSM Cpred, the reconstruction error (RE) is defined by

RE = ⟨|Cij,true −Cij,pred.|⟩ for i > j (4.6.5)

The MAE is used to keep it consistent with the SSD formulation. The RE provides an overall grasp
of how well the combined classification and regression task is performed.
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In summary, the RE gives a SPL-weighted single metric for both the classification and regression
results. The sensitivity and specificity together describe the classification results. The SSD and NSR
describe the regression results for TP and FN, thus, based on the classification accuracy.

4.6.3 ANN architectures

For the ANN architectural design different input and output configurations are tested described in
the following.

CSM input dimensions

Given that the microphone array is structured so that every inner microphone has 3D − 1 neighbors
in the D-dimensional array, we can reshape the CSM into an (Mx ×My ×Mz)2 tensor. For a 1D-
array this is always the case. This allows for two options. First, the upper diagonal of the CSM is
reshaped into a row (VUT). Second, the entire CSM is used in tensor form, which contains redundant
information but may benefit CNN architectures.

Handling of complex input

Since the CSM is C ∈ C, there are three options. Recently, complex-valued neuronal networks were
established [18], allowing the complex CSM input. Alternatively, the CSM can be split into their real
and imaginary part. Third, the CSM can be split into magnitude and phase. It should be noted that
only the first two options are holomorphic mappings, but there is a linear relationship between the
absolute CSM and the absolute source power. Suppose the CSM input in tensor form is chosen in
combination with a separation of the complex values. In that case, we can either add an additional
dimension for the two real-valued CSM parts or use the upper diagonal for the real part and the
lower diagonal for the imaginary part.

In- and output layer transformation

Beamforming results are typically evaluated in decibels. However, it is not possible to directly predict
the resulting maps in decibels due to the sparseness of the target map. Most of the target values will
be ytrue = 0 Pa2 = −∞dB. First, this thesis proposes a modified SPL formulation with

ŜPL = 10 log10

(
p2

p2
0

+ ϵ

)
. (4.6.6)

Second, this thesis proposes a natural logarithm with

p2
log = log

(
p2 + 1

)
. (4.6.7)

Third, it is possible to predict ytrue directly in Pa2. The corresponding input CSM will be transformed
according to the output layer. The input and output layers are also normalized to 0 ≤ |y| ≤ 1,
0 ≤ |C| ≤ 1.
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Figure 4.28: Error metrics of section 4.6.2 for the baseline model with variation of the complex input
handling (see Section 4.6.3), and the input and output transformation (see Section 4.6.3)
for NS = 1 source.

Loss function

The Mean Squared Error is a typical loss function for the regression.

MSE = ⟨|ytrue − ypred.|2⟩ (4.6.8)

However, since the output vector is very sparse, we can add a weighting function w to prefer the
correct SPL at focus points that feature a true source

wMSE = ⟨w|ytrue − ypred.|2⟩ (4.6.9)

For the total number of focus points that have a true source NS and the total number of focus
points that do not have a source N¬S , the weight then is

w =

1/NS for ytrue ∈ S

1/N¬S for ytrue ∈ ¬S
. (4.6.10)

Optionally, to prevent the sparse output vector, we can use a Fourier Transformation to predict the
SPL as a wavenumber. According to the handling of the complex values of the CSM, we can either
use a fully complex ANN or split the complex numbers into real and imaginary parts. Adding an
additional dimension for a CNN allows the use of convolutions separately on the real and imaginary
parts throughout the network.

Baseline Model

The baseline model is a simple, fully connected (FC) network with Rectified Linear Units (ReLU),
three Hidden Layers (HL), and 256 Neurons Per Layer (NPL) with an MSE loss. We use M = 5
microphones and N = 15 focus points. On each grid, there is only Ntrue = 1 true spatially compact
monopole source with 50 dB ≤ SPL ≤ 100 dB and the threshold for the source classification is set
to LT = 30 dB.

Figure4.28 shows the performance of the baseline model for a variation of the handling of complex
numbers and normalization for NS = 1 source, and Figure4.29 for NS = 5 sources. For the compared
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Figure 4.29: Error metrics of section 4.6.2 for the baseline model with variation of the complex input
handling (see Section 4.6.3), and the input and output transformation (see Section 4.6.3)
for NS = 5 sources.
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Figure 4.30: Error metrics of section 4.6.2 for the complex baseline model with dB transformation
and an increasing number of microphones.

configurations, the complex ANN with the modified dB-transformation according to eq 4.6.6 outper-
forms the other configurations. The combination of a low CSM RE and an NSR close to unity means
that in some instances, the ANN predicted the correct source strength on a wrong but close to the
true focus point. Figure 4.29 shows the same setups for NS = 5 sources. Again, the complex ANN
in combination with the dB transformation outperforms the other models on the classification task.
The other transformation methods are more precise for the regression task. The low CSM RE on the
other models combined with the low classification accuracy shows that the models cannot produce
sparse results. E.g., the complex ANN with no transformation predicts a source (that is SPL ≥ 30 dB)
on each focus point, but overall, the predicted pressure distribution is quite reasonable. Since we are
both interested in the regression and classification, we will focus on the complex ANN in combination
with the dB transformation in the following.

Section 2.1.7 discussed the uniqueness of the solution, given the number of microphones and focus
points. We expect that the results of a model depend on whether the problem is ill-posed or over-
determined. Figure 4.30 shows the corresponding results for an increasing number of microphones.
Given the N = 15 focus points, the problem has a unique solution for M = 7 microphones. For
NS = 1, the ANN achieves good results for the over-determined case at M = 8, with a strongly
increasing error for the unique case and further degrading results for under-determined cases. Inter-
estingly, for NS = 5, the results are much worse, also for the over-determined case. At M = 7, we
can see an increased CSM RE, which might be connected to the bad conditioning of the propagation
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Figure 4.31: Error metrics of section 4.6.2 for the complex baseline model with dB transformation,
the MSE and wMSE at an increasing number of focus points.

matrix, see Figure 2.1. While the ANN does not achieve good results for the injective setups, the
results for the underdetermined cases with M < 7 are impressive (even for M = 2 and NS = 5,
where the ANN receives only a single complex input, the ANN correctly classifies around 50 % of the
sources).

Finally, the proposed loss functions are evaluated for the base model, see Section 4.6.3. Figure 4.31
shows the results for the MSE and wMSE for a variation of the number of focus points at M = 5,
NS = 5. The wMSE outperforms the regular MSE in all cases (except for M = 5 where all focus
points are weighted with zero for NS = 5).

Combining a wMSE for the loss function and a complex-valued ANN with dB transformation yields
the most promising results. Based on this observation, different ANN architectures are evaluated in
the following.

4.6.4 Results

This Section compares different ANN architectures. The architectures will be separated into the CSM
input, the ANN encoder, the ANN decoder, and the output. For the input, a CSM row structure
and tensor structure are compared; for the encoder, a fully connected (FC) and convolutional lay-
ers (CL) are used; for the decoder, FC and CL are used, and the output will be predicted on the
focus points (FP), and the wavenumber domain (WN) (with an MSE loss). The number of hidden
layers of the encoder (EHL) and decoder (DHL) is stated for an FC network (which does not have
an encoder-decoder structure), the total number of HL is listed in EHL, see Table 4.5. Since the
number of input and output neurons differ based on the given architecture, the numbers of hidden
convolutional layers with a (3)-kernel and a (1)-stride also differ. For the tensor input the CSM is
2D, and the convolution kernel is (3× 3) with a (1× 1)-stride.

Figure 4.32 shows the resulting metrics for the model architectures from Table 4.5. All models per-
form similarly except for the Baseline model that predicts the complex wavenumber vector. The Auto
Encoder 2 model has a slight advantage in terms of SSD and CSM RE, which makes it the best
model overall.
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model CSM shape encoder EHL decoder DHL output loss
Base 1 row FC 3 FC FP wMSE
Base 2 row FC 3 FC WN MSE
EC 1 row CL 3 FC 3 FP wMSE
EC 2 tensor CL 2 FC 3 FP wMSE
DC row FC 3 CL 5 FP wMSE

AE 1 row CL 3 CL 5 FP wMSE
AE 2 tensor CL 2 CL 7 FP wMSE

Table 4.5: ANN architectures for benchmark.
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Figure 4.32: Error metrics of section 4.6.2 for the different model architectures from Table 4.5.

4.7 Permutation invariant, gridless ANN beamforming

Recently, gridless beamforming methods emerged that use creative approaches to address the central
challenge: The number of sources is unknown, and the sources are permutation invariant. Lee et
al. [75, 76] solved this issue using a hybrid, three-step approach, where they first predicted a grid-
based beamforming map. Second, they deconvolved the map (still grid-based). Third, they used small
map snippets around the peaks in the deconvolved map and serially predicted the gridless source
positions from there. Castellini et al. [23] used a straightforward approach where a predefined number
of output sources are ordered from the highest to lowest source strength, and the source strengths
are predicted relative to the dominating source. The classification problem is solved implicitly, simply
by regarding the source amplitudes. Kujawski and Sarradj [71] solve this challenge by predicting a
predefined number of gridless output sources. The sources are then clustered with K-Means to solve
the permutation assignment problem and prediction of the number of sources. Thus, a true source
can be approximated with multiple estimated sources. All of the presented literature discusses the
detection of compact monopoles at single frequencies in (nearly) noise-free environments. Further,
they predict sources on planes parallel to the array in nearly noise-free environments for sources with
similar source strengths.

This section proposes a novel gridless architecture for beamforming with ANN to overcome the
inherent challenges of the grid-based approach. The approach is similar to GO, see Section 4.5,
where source objects are predicted. The source objects have several properties, such as a spectrum
and their location, to be estimated. Since their location is no longer fixed in space, the source objects
are no longer ordered, i.e., a vector of source objects, but instead a permutation invariant set of source
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Figure 4.33: Sketch of the proposed ANN architecture. The input is the complex-valued, VUT CSM,
normalized according to Section 4.7.1. There follow N = 3 complex hidden dense layers
with a complex ReLU activation function. A complex dense layer with an absolute-
value activation function follows to obtain positive, real values, and a final real-valued
hidden layer without an activation function follows to obtain any real output value.
For the classification variables, a sigmoid function for binary cross-entropy is employed.
The output is the (unsorted) set of the real-valued Nmax source-objects, each member
containing the [S, r, θ, φ, (L1, . . . , LF )]-vector, normalized according to Section 4.7.1.

objects. This section presents a permutation invariant structure and loss for ANN and corresponding
metrics to evaluate the results, based on tensor-to-set learning [137, 74, 81, 22].

4.7.1 Architecture

A simple complex valued [18] dense network ANN architecture will be employed since the main focus
of this approach is the permutation invariant loss of the estimated source objects. The ANN consists
of the input layer of size [F (M2−M)/2], three complex valued hidden layers with 256 neurons each,
and a real-valued output layer.

The output of the ANN is the desired source objects. A source object for a monopole contains a
classification variable s, that is, either s = 0 (¬S) if the source does not exist, or s = 1 (S) if the
source exists, which is a binary classification problem. This way, the ANN is designed to identify up
to Nmax sources, but also less. Additionally, a source object contains regression variables such as the
source location and power. For the location, spherical (or polar in 2D) coordinates r, θ, φ are chosen
with respect to the array’s geometric mean due to the large range a source can be located at, and
since it is well known that for distant sources the problem typically reduces to a direction of arrival
problem. For the strength estimation, the source object contains a Power Spectral Density (PSD) of
dimension F . This results in a source object of size of [4 + F ], and a total number of output neurons
for ypred of [(4 + F )Nmax].
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Normalization

For acoustic applications, one is typically interested in relative errors (such as a decibel difference)
and not the absolute error in Pa2. Thus, the source level is predicted logarithmically with

ptrue = log
(
p2
)

. (4.7.1)

The same holds for the radius
rtrue = log

(
r2
)

, (4.7.2)

which accounts for the squared decay in level. Since the CSM and the resulting source level describe
the same physical property in Pa2, the VUT CSM should be treated accordingly

cinput = log
(
c2
)

. (4.7.3)

Afterward, the source object regression variables are scaled to [0, 1] to be equally weighted in an
error norm.

Permutation invariant loss

The introduced method is a vector-to-set problem, and a set is permutation invariant. Thus, the loss
is designed to be permutation invariant as well. Also, since the ANN has a fixed number of output
neurons, i.e., a fixed number of maximum sources, the problem consists of a regression error for the
source location and source strength and a classification error. A regression error can only be obtained
for Strue, i.e., if the source exists. Thus, the regression error for ¬Strue will be set to zero. For the
classification error, the binary cross-entropy B is chosen. For the regression, the MAE is chosen. The
loss is defined as

loss = αB(ytrue, ypred) + (1− α)MAE(ytrue, ypred)δ(Strue) (4.7.4)

with

δ(Strue) =

0 for ¬Strue

1 for Strue
(4.7.5)

and
MAE(ytrue, ypred) = MAEr + MAEθ + MAEφ + MAEL

4 (4.7.6)

where α is a weighting coefficient. For this thesis, α = 0.01 is used. Preliminary investigations show
that this weight has no impact on the results. However, the training is accelerated for low α due to
the different orders of magnitude of the regression and classification errors.

The permutation invariant loss (for one sample) works as follows:

• Reshape the output vector ypred into a tensor of shape [Nmax, 4 + F ]

• Calculate all Nmax! permutations for ypred

• Calculate the loss between ytrue and ypred,perm, see eq. 4.7.4
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• Set the regression loss MAE(ytrue, ypred,perm) to zero for ytrue(s) = 0, see eq. 4.7.5 (otherwise
it is undefined, as there is no ground truth)

• find the minimum loss over all permutations

This algorithm is also performed to match the predicted source objects with the true test set. While
this matching is not computationally efficient with O(N !), one can solve this via bipartite matching
such as the Hungarian algorithm, which scales with O(N3) and, thus, is faster for N ≥ 7.

Evaluation metrics can be obtained directly from the source object variables, as opposed to the grid-
based approach, where the classification is approached implicitly via the source power. Two extreme
cases are considered to put errors into perspective. First, a CSM contains i = 1, . . . , Nmax source
objects, with a dominant source PSDj

PSDj ≫ PSDi for i ̸= j . (4.7.7)

Here, the ratio between the source strengths is defined as the Signal to total Signal Ratio (SSR)

SSRj = PSDj −
∑

i

PSDi = (−∞, 0] dB . (4.7.8)

In the case of a single dominant source, the SSR = 0 dB. The second extreme case is a source with
a low power compared to the dominant source or is located far away from the array r →∞ so that
SSR→ −∞dB. From an acoustic standpoint, errors made at large SSR are worse than errors made
for weaker sources. Thus, errors should be evaluated with respect to the SSR.

Suppose more than one frequency is employed at the same time. In that case, a separate SSR exists
for each frequency so that a classification and positional variable has multiple SSR(f). Here, the
total SSR from the OASPL is used with

SSRj =
∑

f

PSDj,f −
∑

i

∑
f

PSDi,f = (−∞, 0] dB . (4.7.9)

4.7.2 Evaluation metrics

The true SSR can only be obtained for existing true sources. These are True Positives (TP) Strue ∧
Spred., and False Negatives (FN) Strue ∧ ¬Spred., but not for True Negatives (TN) ¬Strue ∧ ¬Spred.,
False Positives (FP) ¬Strue ∧Spred.. No true SSR can be obtained for FP and TN since they have an
undefined true source strength. Deduced from the extreme cases, one may argue that a TN source
has a (normalized) SSR of SSR → −∞ dB (it can be very far away or have a neglectable source
strength). For the FN, one can estimate an SSR based on the predicted source strength PSDj,pred.

and the true source strengths PSDi,true

SSRj,pred. = PSDj,pred. −
∑

i

(PSDi) = (−∞,∞) dB . (4.7.10)

The predicted SSR for FP may exceed zero decibels since it may exceed the true source strength,
which would be considered a worst-case scenario. Evaluation metrics based on TN are excluded since
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their SSR is undefined, which yields for the classification the sensitivity, False Discovery Rate (FDR),
and F1-score

sensitivity = TP
TP + FN , (4.7.11)

FDR = FP
FP + TP , (4.7.12)

F1 = 2TP
2TP + FP + FN . (4.7.13)

The FPR is given based on the estimated SSR

FDR(SSR) = FP(SSRest.)
FP(SSRest.) + TP(SSRtrue)

, (4.7.14)

and the F1-score respectively. The sensitivity shows the impact of the SSR on the ability to detect
sources. The FDR shows how many sources are wrongly estimated and, via the SSR, how much
source power is wrongly introduced into the total configuration. The F1-score shows how well the
model performs overall. The classification variable is mapped to [0,1] during the training using the
sigmoid activation function. During the evaluation of the classification metrics, the variable is roun-
ded so that the estimated source exists for s ≥ 0.5.

As described above, one can only obtain regression errors for true sources. These contain TP and FN
classifications and can be evaluated separately for them. Since the classification and regression errors
are independently evaluated in the loss, the regression variables will be predicted independently of
the classification, i.e., also for ¬S. Thus, for FP, the SSR can be evaluated without ground truth as
a regression metric with eq. 4.7.10. If SSR≪ 0, the FP has little impact on the result, for SSR ≥ 0,
the FP has a large, undesired impact on the result.

The regression metrics are the mean absolute error of the Source Strength Deviation (SSD)

SSD = |PSDpred. − PSDtrue| . (4.7.15)

The angular deviation εθ is
εθ = |θpred. − θtrue| . (4.7.16)

Since the sources are distributed over a large range of radii, the relative error εr is used

εr = |rpred. − rtrue|
rtrue

. (4.7.17)

Finally, the number of correct estimations is evaluated, where a correct estimation means the clas-
sification is correct and the regression errors are low. Here, low errors are defined as SSD ≤ 3 dB,
εθ ≤ 5◦, and εr ≤ 10 %.

4.7.3 Cases and setup

Three cases are presented to evaluate the approach. The array contains the third row of the generic
experiment (M = 7,−0.27 m ≤ x ≤ 0.27 m) so that it simplifies to a 2D problem with θ, r in polar
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case ⟨SSD⟩ [dB] ⟨εr⟩ [%] ⟨εθ⟩ [°]
1) 0.87 ± 0.77 2.33 ± 1.92 1.94 ± 1.30
2) 6.06 ± 6.76 25.14 ± 41.59 17.50 ± 18.75
3) 9.22 ± 7.36 14.65 ± 13.62 10.00 ± 10.86

Table 4.6: Regression metrics for the cases from all test samples with ground truth, i.e. TP, and FN
in case 3)
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Figure 4.34: Case 1), three random test set results with NS = 1. The true (x) and estimated (o)
locations are marked. The underlying colormap shows the OASPL conventional beam-
forming result with steering vector IV. The microphone positions are marked (⋆).

coordinates. The training data is simulated without noise in the frequency domain and contains spa-
tially compact monopoles, according to eq. 2.1.50 and eq. 2.1.23. The PSD of the training data is
uniformly random distributed with 20 dB ≤ PSD ≤ 70 dB. The radius is 0.2 ≤ r ≤ 2, and the angle
−π/3 ≤ θ ≤ π/3. All models are trained for 100 epochs on 106 training samples with a 0.9/0.1
training/validation split and are evaluated on 104 unseen test samples.

Case 1) contains a single source and the total frequency vector f = [1024, 2048, . . . , 32768] Hz of the
generic experiment. The problem simplifies to a regression problem without permutations so that the
general ability to localize a source in polar coordinates using the VUT CSM with the proposed model
can be evaluated. Case 2) uses a single frequency f = 8192 Hz and several variations of parameters.
The base model uses NS = 3 sources and M = 7 sensors. Then, the number of sources and sensors
is varied to study their influence on the model while keeping the array aperture constant. Further,
the use of dropout on the input layer is studied. Finally, the classification variable is added to the
problem. Case 3) contains NS ≤ 3 sources and the total frequency vector, representing the final
architecture.

4.7.4 Results

All cases and models are evaluated on a machine with a Nvidea RTX 2060 graphics card with 6 GB
VRAM, 32 GB DDR 3 RAM, Intel i7 4770 processor, and Google TensorFlow. The training takes up
to 10 min for each model, including the training data generation.

Table 4.6 shows the regression metrics for all cases from all test samples with ground truth (TP+FN).
For case 1), the model accurately predicts the location and source power. Figure 4.34 shows a com-
parison of the conventional beamforming OASPL with steering vector IV, see Section 4.1, and the
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Figure 4.35: Case 1), the corresponding power estimation and SSD for the examples from Figure 4.34.
(a) to (c) show the true (dashed) and estimated (solid) source strength, (d) to (f) show
the corresponding SSD MAE.
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Figure 4.36: Case 2), NS = 3, M = 7, regression metrics over SSR. (a) shows the SSD(SSR), (b)
shows εr(SSR), and (c) shows εθ(SSR). The blue line shows the mean and standard
deviation, and the orange line the maximum error occurring in the test set. (d) shows
the cumulated relative correct estimations for SNR > SNR0.

ANN model for three random examples from the test set. The radius is depicted logarithmically for
r ≥ 0.1 m so that only five of the seven sensors are visible. Figure 4.35 shows the corresponding
source powers, which are estimated well throughout the frequency range. The SSD shows no de-
pendency on the frequency. The approach shows that the gridless ANN model is able to estimate
the spatial location and source strength of a single source perfectly.

For case 2) the errors increase compared to case 1). Each source has a unique SSR since each source
has only a single frequency. Figure 4.36 shows that the errors depend on the SSR of the sources.
For the SSD, a local minimum of the error is observed around SSR ≈ −20 dB. The local minimum
originates from regression-to-the-middle guesses, i.e., if the ANN predicts the average source power
to reduce the average error. The same is not observed for the radius and angle. Below SSR ≈ −30 dB,
the model cannot predict reasonable values, but with increasing SSR the errors decrease. Figure 4.36
(d) shows the number of correct estimation based on the predictions with a low error SSD ≤ 3 dB,
εθ ≤ 5◦, and εr ≤ 10 %. These maximum errors are chosen based on experience so that the devi-
ations from the predictions and the ground truth are reasonable. The number of accurate predictions
decreases with decreasing SSR. The number of correct estimations is reduced to a single numerical
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NS ⟨SSD⟩ [dB] ⟨εr⟩ [%] ⟨εθ⟩ [°] corr. est. [%]
1 0.56 ± 0.39 1.43 ± 1.49 1.31 ± 1.03 99.04
2 3.17 ± 4.31 20.68 ± 39.93 14.31 ± 17.44 63.23
3 6.06 ± 6.76 25.14 ± 41.59 17.50 ± 18.75 51.11
4 6.94 ± 7.08 24.50 ± 39.17 16.56 ± 17.85 49.20
5 8.28 ± 7.37 24.65 ± 37.39 16.79 ± 17.30 40.20
6 8.88 ± 7.44 23.44 ± 34.51 16.38 ± 16.86 35.10

Table 4.7: Regression metrics for case 2) M = 7, and number of correct estimations for sources
SSR ≥ −10 dB for a variation of the number of sources NS .

M ⟨SSD⟩ [dB] ⟨εr⟩ [%] ⟨εθ⟩ [°] corr. est. [%]
2 10.50 ± 7.67 35.38 ± 45.44 24.16 ± 18.43 0.54
3 8.34 ± 7.40 32.88 ± 42.80 20.69 ± 18.44 13.70
4 6.30 ± 6.83 37.36 ± 65.49 17.96 ± 18.41 39.91
5 6.31 ± 6.81 35.50 ± 65.18 17.63 ± 18.57 45.00
7 6.06 ± 6.76 25.14 ± 41.59 17.50 ± 18.75 51.11

11 5.85 ± 6.54 30.18 ± 56.48 16.38 ± 19.09 55.60
15 5.77 ± 6.43 26.14 ± 43.22 15.93 ± 19.35 57.37
31 5.24 ± 5.93 24.84 ± 40.99 13.61 ± 17.62 62.09

Table 4.8: Regression metrics for case 2) NS = 3, and number of correct estimations for sources
SSR ≥ −10 dB for a variation of the number of microphones M .

value for comparison. Due to the typical decrease with decreasing SSR, it is evaluated for sources
with SSR ≥ −10 dB. Table 4.7 shows that the errors increase with an increasing number of sources
and that the number of correct estimations at SSR ≥ −10 dB decays logarithmically. Table 4.8
shows that the errors decrease with an increasing number of microphones, and the correct number of
estimations increases. Figure 4.37 shows the logarithmic relationship between the number of correct
estimations and the number of microphones and sources. The results show that the dynamic range
of the proposed architecture strongly depends on the number of sources and microphones, similar
to conventional beamforming. Due to this behavior, it is likely that the performance also strongly
depends on the array geometry, such as the aperture and microphone spacing.

Table 4.9 shows that the dropout corresponds to fewer microphones so that the errors increase pro-
portionally. A dropout of 20 % for M = 7 microphones results in 18 vs. 21 active input neurons
and decreases the number of correct estimations by 5 %. This may be a reasonable trade-off if many
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Figure 4.37: Case 2), (a) shows the number of correct estimations for sources SSR ≥ −10 dB over
a variation of the number of sources NS , (b) shows the number of correct estimations
over a variation of the number of microphones M .
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dropout [%] ⟨SSD⟩ [dB] ⟨εr⟩ [%] ⟨εθ⟩ [°] corr. est. [%]
0 6.06 ± 6.76 25.14 ± 41.59 17.50 ± 18.75 51.11

20 6.33 ± 6.92 26.50 ± 42.37 18.15 ± 19.01 45.76
40 7.13 ± 7.14 28.99 ± 44.42 19.19 ± 19.06 36.59

Table 4.9: Regression metrics for case 2) M = 7, NS = 3, and number of correct estimations for
sources SSR ≥ −10 dB for a variation of a dropout on the input layer.

⟨SSD⟩ [dB] ⟨εr⟩ [%] ⟨εθ⟩ [°] corr. est. [%]
NS = 3 6.06 ± 6.76 25.14 ± 41.59 17.50 ± 18.75 51.11
NS ≤ 3 2.93 ± 4.12 15.98 ± 25.00 14.29 ± 17.24 48.87
NS ≤ 5 3.82 ± 4.40 18.62 ± 22.85 17.15 ± 16.87 34.61

Table 4.10: Regression metrics for case 2) M = 7, and number of correct estimations for sources
SSR ≥ −10 dB with and without classification.

microphones are used since the dropout will be beneficial to avoid over-fitting and can be used to
generate multiple estimations since dropout needs to be active during inference as well for regression
tasks. Thus, the generation of different estimations for a single problem can be used to decrease
the statistical likelihood of predicting arbitrary results with large errors, which seems to happen in
Figure 4.36, where the maximum error is large.

Table 4.10 shows the results for introducing the classification problem so that the number of true
sources is no longer fixed. Since for NS ≤ 3 the average number of sources per sample is only
⟨NS⟩ = 2, results are also given for NS ≤ 5 where ⟨NS⟩ = 3. The classification reduces both
the average errors and the number of correct estimations. This may be because the distribution
of occurring SSR in the data changes. For example, while the average number of sources is equal
⟨NS⟩ = 3 for NS ≤ 5, a fifth of the samples have only a single source, so that the SSR = 0 dB,
which the model predicts perfectly, see Table 4.7. However, the classification task and the samples
where NS ≤ 3 introduce an additional challenge so that the number of correct estimations is reduced.

For case 3) the average SSD is larger compared to case 2) (also for the variation of case 2) with
NS ≤ 3), but the spatial estimation is improved. The spatial estimation improvement corresponds to
the B-CLEAN-SC and GO results: Obtaining a broadband solution allows for the separation of main
and side lobes, and the resolution of medium frequencies compensates for the difficulty at low and
high frequencies. Note that the small-band solution with f = 8192 Hz in case 2) is considered an
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Figure 4.38: Case 3), three random test set results with NS ≤ 3.
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⟨SSD⟩ [dB] ⟨εr⟩ [%] ⟨εθ⟩ [°] ⟨SSR⟩ [dB]
TP+FN 9.22 ± 7.36 14.65 ± 13.62 10.00 ± 10.86

TP 9.16 ± 7.34 14.56 ± 13.55 9.81 ± 10.66
FN 11.39 ± 7.61 17.97 ± 15.64 17.06 ± 14.94
FP -12.67 ± 7.45

Table 4.11: Case 3), regression metrics, separated for TP, and FN. Additionally, the SSR for FP is
shown.
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Figure 4.39: Case 3), classification metrics over SSR. (a) shows the accumulated, relative occurrence
of TP, the F1-score, and sensitivity for SSR > SSR0. (b) shows the corresponding FN,
FP and FDR, with an overall sensitivity = 0.98, F1 = 0.97, FDR = 0.03. (c) and (d)
show the corresponding averaged classification confidence, i.e. the estimated S without
rounding, accumulated for SSR > SSR0. The overall averaged values are STP = 0.98,
SFN = 0.28, and SFP = 0.73.

optimal medium frequency. The second reason for the improved localization and larger SSD is that
each source has multiple SSRs, so statistically, each source is dominant for at least one frequency.
Thus, using an SSR is no longer as meaningful as for the single frequency case 2). In the same way,
sources have more often low SSR for some frequencies so that the overall SSD increases. Figure 4.38
shows exemplary results for case 3). The classification is correct for all examples so that the number
of estimated sources matches the number of true sources. Further, the estimated source locations
correspond well to the true source locations. The underlying OASPL shows that with conventional
beamforming, it would be difficult to identify non-dominant sources, as opposed to the ANN solution.

As discussed in Section 4.7.2, regression metrics can be obtained for TP, FP, and FN separately.
Thus, it is of interest if they differ. Table 4.11 shows that TP errors are lower than FN. However,
they are not arbitrarily large, so the proposed architecture performs the classification and regression
task explicitly and separately. The SSR of FP is below SSR < −10 dB so that they introduce only
little unwanted energy into the estimation. This is important so wrongly predicted FP sources do not
dominate the overall result.

Figure 4.39 shows the classification results for case 3) over the SSR, i.e., the total number of sources
per sample. Here, the total SSR (integrated over all frequencies) is used, see eq. 4.7.9. Figure 4.39 (a)
and (b) show how many samples are classified correctly (independently of the predicted location and
strength). At large SSR, nearly all test samples are classified correctly. Below SSR ≤ −5 dB around
2 % are FN, and below SSR ≤ −10 dB up to 3.5 % are FP. This shows that with a decreasing SSR,
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first samples are more likely to be FN, and with a further decreasing SSR, FP occurs. At an average
of −13 dB, see Table 4.11, the influence of the FP on the overall prediction is low. Figure 4.39 (c)
and (d) show the averaged classification confidence at the given SSR. At large SSR, the confidence
of true positives approaches unity. With decreasing SSR, it decreases down to 0.98. The first FN
appear at SSR ≤ −1 dB with a classification confidence of approx. 0.3, the first FP at SSR ≤ −10 dB.
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5 Regions Of Interest

This chapter is based on original work [47, 48, 8] and discusses source identification and how spectra
are obtained from beamforming results.

Beamforming measurements usually result in 2D or 3D beamforming maps for each observed fre-
quency. They are often varied over Mach number M, angle of attack of the flow α, and geometrical
parameters of the observed model. The level of the beamforming map entries indicates a sound
source emission power, usually described by the PSD(x, f, M, . . . ) for each frequency f and each
focus point x, but can also result from background noise, spurious noise sources, and beamforming
artifacts. Additionally, the localization can be disturbed by sound reflections, scattering, and refrac-
tion. Consequently, the resulting beamforming maps must be analyzed to extract the desired source
information. For this process, it is useful to integrate the high dimensional PSD(x, f) over spatial
regions of the map to obtain a low-dimensional PSD(f) that can be properly displayed in 2D. Ideally,
the process only includes the locations of the respective source of interest while rejecting locations
of other sound sources. This is aggravated by the fact that the source location may vary over the
frequency and Mach number due to the flow-dependent nature of the sources themselves or due to
the aforementioned scattering and refraction within the sound propagation from the source to the
array microphones.

A common way to handle this source identification is the spatial integration of resulting beamforming
maps over so-called Regions Of Interest (ROI). This results in low-dimensional data such as spec-
tra [86], which human experts can interpret. Three approaches exist for the manual definition of
ROIs. First, the whole beamforming map is integrated into a single spectrum, which is then analyzed
for prominent features, such as tones or peaks, as shown in Figure 4.9. Then, the 2D beamforming
map, as shown in Figure 4.8, at these frequencies or frequency bands is observed to determine the
origin of these sources, and ROIs are defined to account for these. Second, the beamforming maps
are observed at a variety of chosen frequency intervals, such as octaves, and ROIs are defined based
on the consistent appearance of sources at multiple frequencies, intuition, and experience. Third,
ROIs are defined based on the studied geometry, e.g., leading and trailing edges of a wing, as shown
in Figure 5.1. A challenge for these methods is the distinction between beamforming artifacts and
real sources; the correct separation of close and overlapping sources; the detection of sources with
a low PSD and small-band sources; and the detection of sources that appear only at some of the
measurement variations described above, e.g., they only appear at one angle of attack. Therefore,
the definition of the ROI may not only depend on the wind tunnel model but on the array resolution
as well as the signal-to-noise ratio and the methods used to process the beamforming maps [87]. A
wrong or insufficient ROI definition results in degraded or wrong spectra, which is especially prob-
lematic since most of the following aeroacoustic analysis is based on these.

For aeroacoustic measurements, the expert performs the important task of defining ROIs manually.
It typically takes hours to days, depending on the complexity of the beamforming maps, the studied
model, and the number of different configurations (e.g., some sources only appear at specific angles
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Figure 5.1: Representation of subgrid volumes on the model for the Wing Leading Region (WLR),
the Wing Trailing Region (WTR) and two sub-volumes for the Nacelle Region (NR).

of attack or flow configurations). For highly complex models and configurations, such as the presen-
ted Do728 and A320 experiments, individual sources and ROI have only been defined and analyzed
exemplarily, such as the strake [4].

While the introduced broadband GO and gridless ANN methods solve this problem during the beam-
forming step by directly predicting source objects, these methods are still only validated on generic
problems. Even though conventional beamforming is very limited in terms of resolution and dynamic
range, it is still primarily used in wind tunnel experiments in combination with deconvolution meth-
ods [4, 7, 8]. The reason for this is the low SNR which is often below ⟨SNR⟩f ≤ −10 dB [19] (the
noise exceeds the sources by more than 10 dB), that it does not require prior knowledge of the source
configurations and distributions, that it is robust and fast. Thus, this chapter focuses on methods
that can be deployed after the use of various existing state-of-the-art imaging techniques in the fre-
quency domain, such as conventional beamforming in combination with CLEAN-SC or DAMAS. The
main advantage is that the underlying beamforming methods can be improved while the presented
post-processing methods are still applicable. The methods are evaluated on CLEAN-SC results of the
generic dataset, the Do728, A320, and Embraer model.

5.1 Manual ROI definition

Typically, ROI are manually defined based on experience and a priori knowledge of the expected
sound sources. As an example, the result of manual ROI will be shown for the Embraer. Figure 5.1
shows the manually defined ROI for the Wing Leading Region (WLR), for the Wing Trailing Region
(WTR), and two sub-volumes for the Nacelle Region (NR I and NR II).

Figure 5.2 shows the resulting ROI spectra. One can argue that for many aeroacoustic analyses,
these spectra are sufficient. However, when trying to perform an in-depth analysis to extract the
aeroacoustic source mechanism, these spectra are insufficient, see Section 2.1.2. Figure 4.9 showed
the self-similarity analysis of the spatially integrated source maps. Subfigures (a) and (b) show that
a Strouhal-like scaling is appropriate for some frequency ranges. For others, a Helmholtz-like scal-
ing is appropriate. However, no perfect self-similarity is observed. Further, a different Mach power
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Figure 5.2: Integrated sources of the subgrid volumes (a) WLR, (b) WTR, (c) NR I and (d) NR II
vs Strouhal number for DP 1, DP 2 and DP 3.

Figure 5.3: A320, CLEAN-SC result on 2D-plane using conventional beamforming, the z-axis displays
the frequency. The color represents the normalized PSD in decibel at M = 0.2, α = 3◦.

scaling is observed for different frequency ranges. While for low to medium frequencies, a M5-scaling
seems appropriate, as the aeroacoustic literature suggests, this exponent does not scale the tonal
components of the spectra. Further, the ROI spectra in Figure 5.2 still contain broadband and tonal
components with different scaling behavior.

This exemplary result emphasizes that for an in-depth source analysis, ROI for individual sources
must be defined to observe their individual spectra. A priori information about the source locations
should be neglected, as they contradict the idea of beamforming: Integrating large areas can lead
to integrating different source types and may result in accidentally ignoring sources in unexpected
regions.



80 Chapter 5

5.2 Source identification results

A general problem concerning beamforming is that the localization of acoustic sources is difficult at
long wavelengths. Furthermore, imaging artifacts may occur due to the sparse spatial distribution of
the microphone array. These artifacts result from background noise, the array’s PSF, and aliasing or
insufficient Welch estimations [87].

This section proposes two ideas on identifying sources from beamforming maps contaminated with
noise and obtaining their spectrum. The ideas are based on the sparsity of beamforming maps, in
the sense that the quantity of zero elements (PSD = 0 Pa2 Hz−1) is large compared to the non-
zero elements in the maps (PSD ≥ 0 Pa2 Hz−1). This can be achieved using inverse beamforming
methods or conventional beamforming [87] in combination with what is known in the aeroacoustic
beamforming community as “deconvolution”, such as CLEAN-SC [114] or DAMAS [16].

Conventional beamforming with diagonal removal [87] in combination with CLEAN-SC is used over
DAMAS because of the huge number of computed beamforming maps and the high spatial resolu-
tion of the maps. CLEAN-SC results in a sparse representation of the estimated sound power, see
Section 4.3, which allows us to analyze the spatial distributions of non-zero elements in space and
frequency. For terminology, every non-zero element in the map is called a “source-part” s since they
represent full sources once integrated over space and frequency. Thus, the resulting sparse beamform-
ing maps can be reduced to a list of n source-part vectors si = [xi, fi, αi, Mi, PSDi], with i = 1, . . . , I.

Figure 5.3 displays the source-parts of the CLEAN-SC result on a 2D-focus grid for the A320. On
the z-axis, the frequency is displayed, and the color represents the normalized PSD. We can identify
multiple vertical pillars of source-parts s which, spatially integrated, represent a source spectrum
PSD(f). However, we also observe pillars that suddenly split with increasing frequency (e.g., at the
flap side edge) or dense point clouds that are spatially scattered around (e.g., the inner slat). A
source-part pillar that splits with increasing frequency can either be caused by a complex aeroacous-
tic mechanism or the limitations of beamforming and CLEAN-SC. It is expected to observe this
behavior for frequencies around the Rayleigh Criterion fR below which two separate sources cannot
be spatially resolved. This frequency is in the range of 5 kHz ≤ fR ≤ 6 kHz for the Do728 and
8 kHz ≤ fR ≤ 16 kHz based on the oval array apertures and the distance between the high-frequency
pillars. Since the frequencies at which the pillars separate coincide with the Rayleigh frequencies fR,
this behavior is probably caused by the latter. Unfortunately, beamforming and deconvolution meth-
ods do not provide any information on which source-parts (in space and frequency) are generated by
the same turbulence-induced aeroacoustic source-mechanism.

Figure 5.4 displays the source-parts of the CLEAN-SC result on a 2D-focus grid for the Do728
similarly. However, the delta PSD from the mean per frequency is displayed with

∆PSD(f) = PSD(f)− ⟨PSD(f)⟩f . (5.2.1)

This way, the frequency-dependent decrease in SPL is compensated, and one can observe dominant
sources per frequency. One can observe that in some frequency regions, the inboard slat is domin-
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Figure 5.4: Do728, CLEAN-SC result on 2D-plane using conventional beamforming. The color rep-
resents the per frequency normalized PSD in decibel at Re = 1.4 × 106, M = 0.125,
α = 1◦.

ant, the nacelle region, the outboard slat between the last two slat tracks, as well as the flap side edge.

As shown in the previous subsection, large spatial ROIs were defined manually as integration areas to
obtain spectra [113] such as the whole slat and flap region. This partly contradicts the beamforming
idea, as we often do not know where sources are located and whether all source-parts within the
integration region belong to the same source. The following section introduces two methods to
estimate the existence and positions of individual sources in sparse beamforming maps and how to
assign the corresponding source-parts to them correctly.
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Figure 5.5: A320, section of the CLEAN-SC map at M = 0.175, α = 3◦. (a) shows the normalized
OASPL, (b) shows a log-histogram of the n source-parts s per focus point x.
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5.2.1 Source Identification based on spatial Normal Distributions (SIND)

Figure 5.5 (a) shows the normalized Overall Sound Pressure Level (OASPL) for each spatial location
x for the A320. The OASPL is the integration of the source-parts Sound Pressure Level (SPL) over
frequency. We observe that the individual slat tracks, which are assumed to be individual sources,
cannot be easily distinguished based on the OASPL because the sound carries most energy at long
wavelengths. Due to the array resolution, beamforming is not able to localize sources well at these
wavelengths (see Figure 5.3). However, ignoring the SPL and simply counting how often a source-part
s was reconstructed by CLEAN-SC at every location x in the entire map over frequency provides
a better grasp on individual source distributions, which are shown in the logarithmic histogram
in Figure 5.5 (b). Thus, the OASPL(x) gives an estimation of a source emission power while the
histogram(x) estimates how many frequencies emit sound per location in the source map. In the
log-histogram, we observe mostly distinguishable blobs with maxima in their center that probably
represent aeroacoustic sources, as the blobs’ positions coincide with the location of the slat tracks,
the slat side edge, and the flap side edge. These blobs probably originate from point-like sources
that are smeared out in the beamforming map due to the Gaussian nature of the turbulence-induced
source mechanisms and the scattering and refraction of sound waves in turbulent structures [37].

While the blobs in the log-histogram do resemble normal distributions, statistical tests such as the
Shapiro-Wilk or the Anderson-Darling test do not determine that data as normal. This is because
of the discrete spatial sampling, the overlapping of sources, and the large population of source-
parts. Thus, to verify the normality assumption, the histogram of individual sources is compared to
a normal distribution. To do so, a normal distribution is fitted to the log-distribution of source-parts’
appearance by minimizing the absolute difference between the source-part’s position histogram and
the estimated normal distribution using a l1-norm. Then, the estimated distribution is compared
to the observed data. The normal distribution in 2D is calculated with eq. 5.2.2 [1]. For practical
applications, it is recommended to optimize for the normal distribution’s amplitude Â, the standard
deviations σxi , the distribution rotation θ, and the location xi,0 by using a bounded optimization
method with equations 5.2.3. The histogram’s global maximum determines the starting values for
the first source’s Â, x0; the bounds Â ± εÂ, x ± εx prevent the optimizer from wandering off to a
completely different source.

N2D = Â exp
(
−
(
a(x1 − x1,0)2 + 2b(x1 − x1,0)(x2 − x2,0)) + c(x2 − x2,0)2)) (5.2.2)

a = cos2 θ

2σ2
x1

+sin2 θ

2σ2
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b =−sin 2θ
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+sin 2θ
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(5.2.3b)

c = sin2 θ

2σ2
x1

+cos2 θ

2σ2
x2

(5.2.3c)

The following Do728 and A320 results are based on 2D beamforming with steering vector formula-
tion III. Figure 5.6 (a) shows the normalized log-distribution of the source-parts (dotted lines) for the
Do728 flap side edge region. The histogram shows the summation of all source-part from all beam-
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Figure 5.6: Do728, flap side edge region. (a) shows the isocontour lines of the by Â normalized distri-
bution (dotted lines) and its fitted PDF (full lines). (b) shows the normalized distribution
and PDF on its principal axis x̂1 and x̂2 which result from the θ-rotation of the fitted
distribution and are marked with arrows of the same color in (a).

forming maps in the dataset containing 48 individual measurement configurations. We observe two
overlapping blobs in this region, a major one upstream and a minor one downstream. As described
above, a 2D normal distribution is fitted to minimize the major source-part blob (full lines) using
eq. 5.2.2. Two principal axes x̂1 and x̂2 are introduced for which the normal distributions standard
deviations σxi are independent. They are obtained for each source from the fitted normal distribu-
tion’s angle θ. Figure 5.6 (b) compares the normalized histogram and fitted distribution along these
axes to verify the normality assumption. For terminology, the fitted, amplitude-normalized normal
distributions are referred to as the Probability Density Function (PDF) of the source-part distribution
of a source. While a PDF in the traditional mathematical sense is defined as a normalized distribution
so that its integrated area is unity, here the PDF is normalized so that 0 ≤ PDF(x) ≤ 1. This means
that the integrated area of the defined source-part PDF can be any real number R ≥ 0 and that the
PDF can be interpreted as the probability of a spatial location x belonging to a source.

As shown in Figure 5.6, an individual source can be approximated with a normal distribution in the
histogram. To find and fit all sources in the beamforming map (e.g., the second source on the right in
Figure 5.6), the distance metric dSi is introduced, see eq. 5.2.4, to measure and minimize the l1-norm
of the estimated PDF of a source Si and the histogram. With the set XSi containing all focus points
xj , we want to minimize dSi for all assumed sources Si ∈ S in the beamforming map so that the
l1-norm of the source-part histogram and the fitted normal distributions achieves a minimum.

dSi =
∑

xj∈XSi

|hist(xj)− PDFSi(xj)| (5.2.4)

This thesis proposes a greedy algorithm that uses this metric to find all sources by minimizing
dS =

∑
i dSi by iteration. First, we find the maximum in the source-part histogram; second, we fit a

normal distribution that minimizes the histogram, see eq. 5.2.4; third, we subtract the fitted distri-
bution from the histogram and fourth, repeat the process until the remaining histogram-maximum
drops below a threshold tI . This threshold represents a lower significance bound and prevents endless
fitting iterations since dS will decrease with an increasing number of sources that are either irrel-
evant or fitting artifacts. Thus, the order in which the method identifies sources in the histogram
corresponds to their descending magnitude ÂSi in the histogram. Note that this magnitude ÂSi does
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Figure 5.7: A320. The SIND solution for tI = 20 is shown. The source numbers correspond to the
order of found sources via the maxima in the histogram n, which is displayed with the
underlying colormap. The ellipses around the sources represent the PDF functions at
1− 3σ.

not explicitly depend on the source-part’s PSD and, thus, does not necessarily indicate a dominant
source. Instead, a large ÂSi indicates either a broad-band source, a spatially well-localized source,
or a combination of these features. However, since CLEAN-SC works within a certain SNR, a set of
source-parts that represent a source implicitly indicate that the source was somewhat relevant within
the beamforming map.

This makes this method similar to an iterative GMM. Traditionally, a degree-of-freedom weighted
residual such as the Bayesian Information Criterion is used for GMM to determine the optimal number
of sources [111]. Since the result of GMM heavily relies on the chosen number of sources, the number
of sources must be estimated before clustering, as opposed to the proposed method because it works
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Figure 5.8: Do728. The SIND solution for tI = 30 is shown. The source numbers correspond to
the order of found sources via the maxima in the histogram n, which is displayed with
the underlying colormap. The ellipses around the sources represent the PDF functions at
1− 3σ.

iteratively. The number of sources can be estimated after the fitting process is complete. To do so,
the fitted normal distributions are integrated, see eq.5.2.2, to obtain an area ASi

ASi =
∫

x1

∫
x2

ÂPDFSi(x1, x2)dx2dx1 (5.2.5)

for each source. This area reflects the impact of the estimated individual sources on the l1-norm for
dS . If ASi drops below a threshold tA we can reject it as a fitting artifact or negligible source. ASi of
artifacts is orders of magnitude below ASi of real sources. However, if the threshold tI is sufficiently
large, SIND’s iterations often stop before fitting artifacts occur.

Figure 5.7 shows the result of the procedure for the A320 with the selected thresholds given in
Table 5.1. No sources are rejected as fitting artifacts (tA=0). The crosses mark the determined cen-
ters of the sources. The numbers correspond to the order in which they are identified (descending Â).
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n SIND SIHC
tI tA tσ t tσ

Do728 106 30 0 1− 3σ 500 1− 3σ
A320 104 20 0 1− 3σ 105 1− 3σ

generic 103 20 0 1− 3σ 100 1− 3σ

Table 5.1: SIND and SIHC parameters for the A320, Do728, and generic dataset and the total number
n of source-parts present in the datasets.
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Figure 5.9: (a) shows the source-parts of the A320 upstream flap side edge region (source number
2 in Figure 5.7) at M = 0.175, α = 9◦, (b) shows the same source-parts without the
xi-information. The color represents the source-parts’ conditional probability of belonging
to the source P (s ∈ Sj) under the condition that they were assigned to it, gray source-
parts were rejected as noise or assigned to another source. The black line represents the
integrated spectrum from all source-parts that were assigned to the source.

Figure 5.8 shows the procedure result for the Do728. Then, the probability P of belonging to each
source using PDFSi is calculated for all source-parts. Finally, source-parts with a PDF value below a
threshold tσ are discarded as noise. The remaining source parts are assigned to the source with the
highest probability and integrated for each frequency. Thus, each source-part is either assigned to a
single source or classified as noise if P (s ∈ S) < tσ. In Figure 5.7 and Figure 5.8, the ellipses around
the marked sources represent PDFS(x) = 1− 3σ and thus indicate the spatial locations (ROI) that
are assigned to the corresponding sources.

Figure 5.9 shows the method’s result in detail for the leading flap side edge (LFSE) source location
(see also Figure 5.6 for the Do728 LFSE fit, which shows two source-part distributions in this region)
and all source-parts in this region. The source-parts’ color encodes their corresponding PDF value.
This can be interpreted as the conditional probability that they belong to the assigned source under
the condition that they were assigned to it. Gray source-parts were either rejected as noise or as-
signed to another source, as its PDF (i.e., probability of belonging to this source) was higher in these
spatial locations. Figure 5.9 (a) shows the source-part distribution on the 2D focus grid, and the
z-axis displays the frequency. Figure 5.9 (b) shows all source-parts from the region depicted in (a),
neglecting the xi-information. In Figure 5.9 (b), we observe multiple horizontal rows of points. They
can either have a different shape, which indicates that these are the source-parts from two different
sources, or a similar shape with a simple vertical decibel offset. If the latter is observed, these rows
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Figure 5.10: The Figure shows the source-parts of the A320 downstream flap side edge region (source
number 8 in Figure 5.7) at M = 0.175, α = 9◦, according to the description in Figure 5.9.
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Figure 5.11: (a) shows the source-parts of the Do728 upstream flap side edge region (source number
4 in Figure 5.8) at M = 0.250, α = 6◦, according to the description in Figure 5.9.

at a lower PSD are artifacts from the CLEAN-SC process due to the gain factor, see Section 4.3.
If the source-part rows have a different shape and are expected to belong to different source PSDs,
the optimal scenario would be if one is assigned to the source with high confidence (color) and the
others are rejected (gray).

Figure 5.10 shows the same for the downstream flap side edge region. The top row of source parts
in the Figures shows, from low to high frequencies, a tonal peak around f ≈ 6 kHz, and then three
humps at f ≈ 15 kHz, f ≈ 30 kHz, and f ≈ 50 kHz. Most source-parts of the first peak and hump
were assigned to the TFSE, the source-parts of the two high-frequency humps were mainly assigned
to the LFSE. A detailed analysis of how well this separation is performed is given in section 5.2.3.
After integrating all source-parts assigned to the source over the frequency, we obtain the source
spectra, indicated by the black line in Figure 5.9 and Figure 5.10. In these examples, the spectra are
mostly smooth, but around f ≈ 20 kHz there are strong artifacts from incorrectly assigned source-
parts.

Figure 5.11 and Figure 5.12 show the corresponding results for the Do728 flap side edge. Figure 5.13
shows an exemplary Do728 slat / slat track source. This source will be analyzed in detail in sec-
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Figure 5.12: (a) shows the source-parts of the Do728 downstream flap side edge region (source
number 13 in Figure 5.8) at M = 0.250, α = 6◦, according to the description in
Figure 5.9.
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Figure 5.13: (a) shows the source-parts at the DO728 slat track (source number 5 in Figure 5.8) at
M = 0.250, α = 1◦, according to the description in Figure 5.9.

tion 5.2.3 since it is presumably a complex spatial superposition of a line source (slat) and a point
source (slat track).

SIND assumes that the source positions do not fundamentally change in the beamforming map over
M or α (considering a focus grid that rotates and moves with α) so that the source-parts of different
measurement configurations can be stacked and fitted at once to obtain global source positions and
distributions, as shown in the results above. However, beamforming can suffer from the approximation
of Greens Functions in complex medium flows to calculate the sound propagation from the source
position to the microphone array or errors in the position of the focal plane [87]. The first results in
a shift or stretch of the beamforming maps, the second results in a source that moves through the
map with increasing angle α because of the projection error (the strakes of the Do728 in Figure 5.8
show this behavior). The first problem can be fixed by aligning the beamforming maps before fitting
the normal distributions. To do so, the source-part histogram of each configuration is calculated
individually. Then, a histogram is chosen as a reference. All remaining histogram positions are then
linearly modified with

F(xi) = aixi + bi (5.2.6)
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Figure 5.14: A320, beamforming map alignment stretch ai and shift parameters bi for the source-part
positions xi relative to the reference beamforming map at M1 = 0.175, α1 = 3◦.

to achieve a maximum spatial correlation with the reference histogram using standard optimization
methods, using nonlinear interpolation due to the discrete spatial sampling of the data. Eq. 5.2.6 is
then used to modify the source-parts’ positions xi before calculating the global histogram. Figure 5.14
shows the obtained parameters ai, bi for the A320. While the stretch factors ai are small, the shift
factors bi show a clear trend. The beamforming maps shift slightly with increasing angle of attack
and substantially with increasing Mach number downstream (more than b1 ≥ 2∆x1).

5.2.2 Source Identification based on Hierarchical Clustering (SIHC)

A second approach to identifying sources and assigning the corresponding source-parts is clustering
methods, which can automatically group source-parts in a multidimensional space. Since we do not
know the number of expected clusters (sources) and their distribution beforehand, this thesis employs
HDBSCAN [21, 84], see Section 2.3. Similar to SIND, HDBSCAN requires a threshold t below which
a cluster is rejected as noise. The threshold significantly affects the resulting clusters and must be
determined with the expert in the loop. The source-parts are clustered based on their normalized
location xi, normalized Strouhal number Sti and Mach scaled, normalized PSD level (all normal-
ized to the range [0, 1]), thus in 6D-space. When clustering source-parts of maps at different Mach
numbers at the same time, it is recommended using a Mach scaled PSD, see. eq. 2.1.20 with n ≈ 5
and a normalized frequency like the Strouhal or Helmholtz number. This scaling ensures that the
source-parts of sources at different Mach numbers are roughly at the exact location in the frequency
and PSD-level space, as aeroacoustic noise generally scales around this Mach exponent [55], see
Section 2.1.1.

Figure 5.15 shows the result of HDBSCAN for the A320 at t = 105 and Figure 5.16 for the Do728
at t = 500, see Table 5.1. The crosses mark the cluster midpoints of the corresponding source-parts,
displayed in the same color. Gray source-parts are rejected as noise as their confidence of belonging
to any source is below tσ = 1 − 3σ. The color intensity displays the classification confidence. Fig-
ure 5.17 shows the resulting integrated spectra from the A320 flap side edge region in comparison
to the SIND method, Figure 5.18 shows the same for the Do728. Figure 5.19 shows the same slat
track source from the SIND solution in Figure 5.13 as well as the upper part of the corresponding
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Figure 5.15: A320. Resulting clusters from HDBSCAN at t = 105, using an Euclidean distance
metric. The cluster midpoints are marked, the corresponding source-parts are displayed
in the same color. The color intensity displays the probability of belonging to the cluster.
Gray source-parts were rejected as noise.

slat for the SIHC solution.

5.2.3 Comparison of SIND and SIHC

To assess the quality of the ROIs, both methods are compared to each other and sources from the
literature. Both methods yield comparable ROIs and can identify the prominent source locations
such as the flap side edge, slat tracks, wingtip, or strakes that are indicated by the blobs in the
corresponding histograms in Figure 5.7 and Figure 5.8. SIND often separates individual sources in
dense and overlapping source regions that are clustered together by SIHC, especially at the inner
slat or the flap side edge region. SIHC finds additional source regions that are not well localized and
spread over the map, especially sources that are not located on the wing, such as what are assumed
to be wind tunnel noise reflections. We observe that SIND and SIHC often find comparable sub-
or super-sources in the sense that some sources detected in SIND correspond to multiple sources
detected by SIHC or vice-versa, e.g., the flap side edge in Figure 5.17 and Figure 5.18 or the slat
/ track in Figure 5.19 for the Do728. To assess the quality and legitimacy of the ROI separation,
a self-similarity analysis is performed. Thus, the spectra levels are power scaled with eq. 2.1.20 and
displayed over Strouhal and Helmholtz numbers. While a single self-similarity across the whole spec-
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Figure 5.16: Do728. Resulting clusters from HDBSCAN at t = 500, using an euclidean distance
metric. The cluster midpoints are marked, the corresponding source-parts are displayed
in the same color. The color intensity displays the probability of belonging to the cluster.
Gray source-parts were rejected as noise.

trum does not necessarily imply that the whole spectrum is generated by the same mechanism, a
self-similarity over multiple combinations of the frequency, Helmholtz and Strouhal number in differ-
ent frequency intervals doubtlessly shows that there exist multiple source mechanisms [93].

For the A320 flap side edge, a self-similarity analysis shows that the up- and downstream separation
of SIND is reasonable, see Figure 5.20 and Figure 5.21. While the low-frequency peak scales over
the Strouhal number, the high-frequency humps scale over the Helmholtz number, which suggests
different aeroacoustic source mechanisms and justifies the spatial separation. Dobrzynski points out
that the complex acoustical behavior of the flap side edge is a combination of trailing-edge noise,
noise of a primary suction side vortex, a secondary suction side vortex, their mixing, and accelerated
free turbulence in the vortex flow [31], which supports this result. We explicitly see in Figure 5.21
that the smaller, high-frequency hump is also self-similar over the Strouhal number, which indicates
that it is assigned to the correct source. The analysis of the Do728 flap side edge shows the same
self-similarities (not shown). While SIND and SIHC separate most slat and slat tracks, SIHC re-
constructs more smooth spectra than SIND by correctly identifying the corresponding source-parts.
Figure 5.13 shows that the low-frequency slat tones are not well localized and scattered around
the slat area, which matches Dobrzynski’s hypothesis that these tones result from model-scale low
Reynolds numbers and are generated by coherent laminar flow separation at the slat cove and, thus,
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Figure 5.17: Comparison of the resulting source spectra from the SIND and SIHC method at M =
0.175, α = 9◦ for the A320 flap side edge (FSE), respectively leading flap side edge
(LFSE) and trailing flap side edge (TFSE).
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Figure 5.18: Comparison of the resulting source spectra from the SIND and SIHC method at M =
0.125, α = 7◦ for the Do728 flap side edge (FSE), respectively leading flap side edge
(LFSE) and trailing flap side edge (TFSE).

are line sources [33, 31]. By distribution assumption, SIND assumes point-like sources, which cannot
properly detect these line sources. Even if so, SIND only assigns the source-parts based on their
spatial distribution to the sources, but these sources spatially overlap. SIHC, on the other hand, not
only separates the Strouhal number scaling slat tones, see Figure 5.22, from the Helmholtz number
scaling slat track source, see Figure 5.23, it assigns the source-parts mostly correct in terms of self-

104

f [Hz]

20

30

40

50

60

70

PS
D 

[d
B/

Hz
]

SIND slat & track
SIHC slat
SIHC slat track

Figure 5.19: Comparison of the resulting source spectra from the SIND and SIHC method at M =
0.250, α = 1◦ for the Do728 slat, the slat track and the combined SIND ROI.
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Figure 5.20: The A320 spectra of the SIND leading flap side edge source (number 2 in Figure 5.7)
at α = 9◦ over (a) Strouhal number and (b) Helmholtz number. The spectra are Mach
scaled with the scaling exponent n, see eq. 2.1.20.
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Figure 5.21: The A320 spectra of the SIND trailing flap side edge source (number 8 in Figure 5.7)
at α = 9◦ over (a) Strouhal number and (b) Helmholtz number. The spectra are Mach
scaled with the scaling exponent n, see eq. 2.1.20.

similar behavior to the corresponding source spectra. This is possible due to the additional frequency
and SPL information, which helps to identify the correct cluster members.

Performance-wise SIHC’s computation time scales around O(n log n) for the number n of source-
parts [84]. Since SIND does not cluster the points directly, the computation time is independent of
the number of points, which is a huge advantage for large datasets. The total number of source-parts
in the Do728 dataset is around n = 106, which SIND processes within seconds and SIHC within an
hour on a standard laptop. Both methods process the A320 dataset within seconds, which contains
around n = 104 source-parts.

5.2.4 SIND 3D

SIND and SIHC can be performed for 3D beamforming maps. For SIND, the solution for the 3D
case can be derived from the multiplication of a 3D normal distribution with at least two different
rotation matrices. For practical applications, it is recommended to use all three rotation matrices.
This adds an additional rotation angle to the optimization process but yields more stable and better
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Figure 5.22: The Do728 spectra of the SIHC slat source (number 20 in Figure 5.16) at α = 1◦ over
(a) Strouhal number and (b) Helmholtz number. The spectra are Mach scaled with the
scaling exponent n, see eq. 2.1.20.
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Figure 5.23: The Do728 spectra of the SIHC slat track source (number 29 in Figure 5.16) at α = 1◦

over (a) Strouhal number and (b) Helmholtz number. The spectra are Mach scaled with
the scaling exponent n, see eq. 2.1.20.

results than only two rotations since the l1-norm is not convex, and the rotation is non-commutative.
With the rotations Rx1(α), Rx2(β), and Rx3(γ) the 3D normal distribution is

N3D = Â exp
(
−
(
a(x1 − x1,0)2 + 2b(x1 − x1,0)(x2 − x2,0)) + 2c(x1 − x1,0)(x3 − x3,0))+

d(x2 − x2,0)2 + 2e(x2 − x2,0)(x3 − x3,0)) + f(x3 − x3,0)2)) (5.2.7)

a = cos2(α) cos2(β)
σ2

x1

+ (cos(α) sin(β) sin(γ)− sin(α) cos(γ))2

σ2
x2

+ (cos(α) sin(β) cos(γ) + sin(α) sin(γ))2

σ2
x3

(5.2.8a)
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b = cos(α) sin(α) cos2(β)
σ2

x1

+ (cos(α) sin(β) sin(γ)− sin(α) cos(γ))(sin(α) sin(β) sin(γ) + cos(α) cos(γ))
σ2

x2

+ (sin(α) sin(β) cos(γ)− cos(α) sin(γ))(cos(α) sin(β) cos(γ) + sin(α) sin(γ))
σ2

x3

(5.2.8b)

c = −cos(α) cos(β) sin(β)
σ2

x1

+ cos(β) sin(γ)(cos(α) sin(β) sin(γ)− sin(α) cos(γ))
σ2

x2

+ cos(β) cos(γ)(cos(α) sin(β) cos(γ) + sin(α) sin(γ))
σ2

x3

(5.2.8c)

d = sin2(α) cos2(β)
σ2

x1

+ (sin(α) sin(β) sin(γ) + cos(α) cos(γ))2

σ2
x2

+ (sin(α) sin(β) cos(γ)− cos(α) sin(γ))2

σ2
x3

(5.2.8d)

e = −sin(α) sin(β) cos(β)
σ2

x1

+ cos(β) sin(γ)(sin(α) sin(β) sin(γ) + cos(α) cos(γ))
σ2

x2

+ cos(β) cos(γ)(sin(α) sin(β) cos(γ)− cos(α) sin(γ))
σ2

x3

(5.2.8e)

f = sin2(β)
σ2

x1

+ cos2(β) sin2(γ)
σ2

x2

+ cos2(β) cos2(γ))
σ2

x3

(5.2.8f)

Figure 5.24 shows the 3D histogram of the source-parts of the 3D CLEAN-SC beamforming res-
ult with steering vector formulation IV. Here, we observe that the source distribution is convoluted
with the array’s PSF since the sources form ovals in the direction of the array. The main advantage
of the 3D result is that sources overlapping in the 2D result can now be spatially well separated,
such as in the nacelle region. Also, since sources that are not in the plane of focus are projected
onto the focus plain with the use of steering vector formulation III, which is not the case with
formulation IV, which results in less noise and artifacts (e.g., sources 1, 2, 9, 15, 26, 19, and 20
in Figure 5.15 and sources 1, 3, 4, 5, 10, 11, and 12 in Figure 5.16 which are not located on the wing).

Figure 5.25 shows an exemplary result of an by SIND 3D identified slat track source. The true source
(normalized) distribution is shown with dashed lines. The fitted normal distribution is shown with
full lines. They show a good agreement, considering that multiple sources are present on the slat.
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Figure 5.24: Do728 histogram of source-parts at Re = 1.4 × 106, α = 7◦, all Mach numbers. The
histogram is integrated over the dimension not shown. The array is depicted in red for
reference and is located at z = 0 m.
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Figure 5.25: SIND 3D solution on an exemplary slat track source of the Do278 according to the
description in Figure 5.6. The subfigures show projections of the 3D distribution. The
main component of the fitted distribution are indicated with colored arrows.



Regions Of Interest, Method errors 97

103 104

f [Hz]

20

10

0

10

20

er
ro

r [
dB

]

a)

103 104

f [Hz]

b)

103 104

f [Hz]

c)

M=0.00, M=0.03, M=0.06

Figure 5.26: Figure shows the error ε = PSDCLEAN-SC−PSDtrue, see eq. 3.1.2, for each Mach number
for (a) S1, (b) S2, and (c) S3. The shaded area depicts the standard deviation of the
ground truth sound power over all microphones.

5.3 Method errors

As stated in the sections above, it is not possible to quantitatively estimate the methods’ errors on
the real-world datasets due to the lack of a ground truth. Thus, the generic dataset from Section 3.1
is used to validate the 2D methods to estimate how well the source spectra are reconstructed and
how well the source positions are estimated.

Conventional beamforming and CLEAN-SC are performed on the individual source CSMs. This allows
us to estimate how well the individual source powers obtained by CLEAN-SC correspond to the ground
truth. To obtain CLEAN-SC reference spectra from the beamforming maps, all source-parts within a
spatial radius r = 0.1 m of the true source positions are integrated. Additionally, these source-parts’
positions are averaged to obtain a source position estimation of the CLEAN-SC process. Figure 5.26
shows the error ε = PSDCLEAN-SC − PSDtrue for each individual source and all Mach numbers. The
standard deviation depicts the variance over the microphone averaged ground-truth, see eq. 3.1.2.
A cut-on frequency can be observed, below which CLEAN-SC cannot reconstruct the sound source
correctly. For source SI , below f < 1.5 kHz, the beamforming results over- or under-predict the PSD.
The reason for this might be the low SNR at these frequency intervals. The Mach and frequency
averaged position errors |φ| and Mach and frequency averaged spectra errors |ε| of the CLEAN-SC
process are given in Table 5.2 for the individual source maps. Multiple averages are computed at once,
including all individual errors ⟨|ε(S, M, f)|⟩M,f and not sequentially, i.e., ⟨⟨|ε(S, M, f)|⟩f ⟩M, because
the errors contain a different quantity of frequency bins for different sources and Mach numbers. The
position errors are given as angular errors with respect to the microphone array center instead of ∆xi

since beamforming localization usually depends on the distance of the focal plane. For comparison,
the focus point resolution is ∆xi = 0.005 m ≈ 0.44◦ in the center of the focus grid. The total errors
are additionally averaged over all three sources.

Then, a source-separation problem is created by superpositioning the three individual source CSMs
for each Mach number and performing conventional beamforming in combination with CLEAN-SC,
see Figure 5.27. The performance of SIND and SIHC is evaluated on their ability to detect the dom-
inant sources correctly and by comparing the reconstructed spectra to the ground truth.
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SIND SIHC CLEAN-SC

S
1 |φ| [◦] 0.48± 0.01 0.46± 0.02 0.61± 0.32

|ε| [dB] 1.62± 2.35 1.64± 2.71 1.59± 1.72

S
2 |φ| [◦] 0.28± 0.06 0.28± 0.06 0.45± 0.92

|ε| [dB] 2.19± 3.00 2.19± 3.00 1.13± 1.16

S
3 |φ| [◦] 0.28± 0.11 0.43± 0.20 0.28± 0.10

|ε| [dB] 2.73± 7.34 3.45± 7.88 2.47± 2.97
to

ta
l |φ| [◦] 0.35± 0.09 0.39± 0.08 0.45± 1.13

|ε| [dB] 2.03± 3.66 2.14± 3.99 1.73± 2.16
fr 65.6 % 66.8 % 96.8 %

Table 5.2: Absolute positional errors |φ| in degree, absolute spectrum reconstruction errors |ε| in
decibel, and relative reconstructed spectrum frequency interval 0 ≤ fr ≤ 1 of SIND and
SIHC performance and the integration of the individual CLEAN-SC source-maps.

Figure 5.27: CLEAN-SC result of the superpositioned, denoised CSMs at M3 = 0.06. The true
positions are marked with black lines.
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Figure 5.28: The top row (1) shows the Mach-averaged absolute error |ε| = |⟨PSDmethod⟩M −
PSDreference| for each source in (a) for SIND and (b) for SIHC. The shaded area depicts
the corresponding standard deviation. The bottom row (2) shows the corresponding
Signal To Noise ratios, see eq. 5.3.1.
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Figure 5.29: A cumulative histogram of the spectra SNR from all sources and Mach numbers, see
eq. 5.3.1, that were not reconstructed SNR(PSD(f) = −∞dB).

Both methods identify the three dominant monopole sources with the parameters given in Table 5.1.
Figure 5.28, top row, shows the resulting absolute source power reconstruction error |ε| for SIND
and SIHC, and Table 5.2 lists the frequency and Mach averaged reconstruction errors and averaged
position errors |φ|. For the localization, both methods perform similarly on all sources with an es-
timation error smaller than two focus points. For the reconstruction of the corresponding spectra,
both methods perform identically on source SII , similar on source SI , and different in terms of
reconstructing the low frequencies on source SIII , with SIHC performing slightly better.

For evaluating the PSD reconstruction error in detail, two points will be considered. First, we often
prefer a correct spectrum for high SNRs over minor deviations at low SNRs in real-world applications.
In this context, the SNR is the difference between the true single source’s PSD and the summed
PSD of all sources (also later referred to as the Signal to Signal Ratio) is

SNRSi(f, M) = PSDSi −
∑
Si

10 log10

(
10

PSDSi
10

)
. (5.3.1)

Figure 5.28, bottom row, shows the corresponding SNRs, see eq. 5.3.1. The SNR can also be in-
terpreted as the per frequency normalized true source spectra from eq. 3.1.2. We observe that at
frequencies above f ≥ 1 kHz the spectra reconstruction failed or resulted in significant errors when
the SNR was low (SNR ≤ −15 dB). Since at high frequencies, the beamforming map and resulting
source-parts are well localized, see Figure 5.27, and SIND and SIHC performed somewhat similar, see
Figure 5.28, these errors are mainly produced by the beamforming process itself. Also, the relative
frequency interval 0 ≤ fr ≤ 1 of a valid spectrum reconstruction is essential but not captured in
the average error |ε|. The relative interval is defined by the ratio of reconstructed frequency bins to
the total number of frequency bins in a spectrum. A value of fr = 1 indicates that a spectrum is
reconstructed at each frequency bin, and a value of fr = 0 indicates an empty spectrum with no in-
formation. The Mach averaged relative frequency interval is given in Table 5.2. Both methods perform
similarly and reconstruct approximately fr = 2/3, while the individual CLEAN-SC references contain
nearly full spectra. However, the CLEAN-SC reference was obtained from the individual source-maps
(no CSM superposition) and thus the SNR was SNR = 0 dB (for high frequencies that were above
the wind tunnel noise-floor). Figure 5.29 shows the corresponding SNR of the parts of the source
spectra that were not reconstructed in a cumulative histogram. Thus, for each given SNR on the
x-axis, the cumulative relative frequency shows how much percent of the failed reconstructions are
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below this SNR (e.g., 50 % of the failed reconstructions are below SNR ≤ −40 dB and 75 % are below
SNR ≤ −25 dB). Both methods perform nearly identically on the generic dataset. The CLEAN-SC
reference confirms that the failed reconstructions are mainly due to the CLEAN-SC process.
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6 Expert Decision Support System

This chapter presents an Expert Decision Support System for the analysis of aeroacoustic data and
is based on original work [46, 47, 48].

The main goal of this thesis is to provide a method of automatically identifying sources and analyzing
their behavior. Currently, supervised machine learning often outperforms other methods given enough
training data. However, wind tunnel experiments are expensive, the results are typically confidential,
and the results cannot be easily classified, even by experts. An additional challenge is that super-
vised machine learning can only classify into known categories (or detect novelty). At the same time,
wind tunnel experiments are typically performed to detect irregularities and unknown sources. The
results strongly depend on the wind tunnel facility, the used microphones and the setup, the model,
and the use case. An additional constraint is that the results of such a source identification must
be reproducible and comprehensible to the expert. Thus, only unsupervised learning is considered,
emphasizing comprehensibility and knowledge generation in the form of an Expert Decision Support
System (EDSS).

Figure 6.1 compares the proposed EDSS process to a standard manual source analysis process for
beamforming maps PSD(x, fi, Mj , αa, Ree), which typically includes spatial variables x, multiple fre-
quencies or frequency intervals fi, angles of attack αa, Mach numbers Mj , and Reynolds numbers
Ree. In the manual process, multiple ROI Rr(x) are defined and spatially integrated to derive acous-
tic spectra PSD(Rr, fi, Mj , αa, Ree). This first step is already challenging since the ROIs must only
contain the individual sources to obtain individual source spectra, which can only be verified us-
ing the resulting spectra. This often requires several iterations, as described in the following. After
definition, the ROI spectra are analyzed, often requiring expert knowledge and intuition. Based on
the analysis, the ROIs are then redefined (e.g., if two separate sources are detected within a ROI).
Based on the spectra at different Mach numbers, expert knowledge, intuition, and meta-information
(e.g., the source is located at a trailing edge and, thus, must be trailing edge noise) aeroacoustic
properties are derived, and the source type is then identified or vice versa. The main challenge for
this process is the high dimensionality of the properties Pk(Rr, fi, Mj , αa, Ree) and the requirement
for an iterative approach.

In comparison, the EDSS aims at automating most of these tasks. First, the ROI definition R(x) and
spectra generation was shown to have the capacity to be automated [47], see Chapter 5. The EDSS
then defines a source Srae for each ROI Rr, at each angle of attack αa, and at each Reynolds number
Ree. This results in multiple sources Srae(PSD(fi, Mj)), for which aeroacoustic features Fk(Srae)
are then calculated. Finally, the sources are clustered based on the k-dimensional feature space with
the process ĉ(Fk), which results in a cluster prediction for each source Cc(Srae). This provides c-
dimensional prediction information (each source is assigned to a cluster). Also, additional information
about the similarity of source groups based on their cluster-averaged features is provided. The source
types can then be identified manually based on the expert’s knowledge and the low-dimensional
information provided by the EDSS.
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Figure 6.1: Comparison of the evaluation process of wind tunnel beamforming measurements. Left:
a standard process using manual analysis. Right: the proposed Expert Decision Support
System. Manual processing steps are displayed in blue, while automatic steps are displayed
in red. The resulting variables of each step are displayed in green. The indices indicate
the dimensionality of these variables.

6.1 Quasi-stationary, self-similar sources

For the proposal of an EDSS, we need to clarify what a source is and for which variations of para-
meters we consider that it is still the same source. The proposed EDSS is based on the assumption of
self-similarity, see Section 2.1.2. Thus, only small, subsonic Mach number variations are considered.
All variations except for the Mach number, such as the angle of attack α, Reynolds number, or
changes in geometry may alter the dominant source mechanism abruptly (e.g., slat tones and flow
separation in airframe noise may appear). This thesis treats these variations as potentially different
source mechanisms and, thus, different sources.

Since we are interested in clustering the sources according to their underlying physical mechanisms
rather than clustering them by their dominance, we need to analyze the scaling behavior over Mach
number and the similarity laws [66] rather than absolute levels at specific Mach numbers. Therefore,
this thesis defines the properties of a source as follows. First, a source is connected to a spatial region
R(x). Second, when a source is observed at different Mach numbers, it is still the same source. Third,
a source may be observed for small variations of the Reynolds number due to the change in the Mach
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(a) (b) (c) (d) (e) (f) (g)
m 0.90 0.00 0.75 0.00 1.09 0.00 0.71
n 4.44 5.47 3.43 4.23 4.43 4.09 3.43

α [◦] 3 5 9 9 3 5 9
⟨Re⟩M [1× 106] 1.4 1.4 1.4 1.4 1.4 10.6 1.4

(h) (i) (j) (k) (l) (m) (n)
m 0.00 0.94 0.00 1.00 0.00 0.66 0.00
n 3.87 3.68 5.47 3.26 6.07 3.59 5.26

α [◦] 10 3 5 10 3 9 1
⟨Re⟩M [1× 106] 2.5 10.6 1.4 10.6 1.4 1.8 1.4

Table 6.1: Generalized frequency exponents m, Mach scaling exponents n, angles of attack α, and
Mach averaged Reynolds numbers ⟨Re⟩M for the displayed sources in Fig. 6.2.

number. A significant variation of the Reynolds number due to changes in temperature or pressure
results in a different source. Fourth, any change in the angle of attack results in a different source.
Based on this definition, a sound source’s PSD, obtained from the spatially integrated ROI, possesses
the free variables PSD (f, M) at a fixed ⟨Re⟩M and α. For example, a ROI R(x) that was identified
by SIND within the Do728 beamforming maps is treated as a unique source for each angle of attack
and Reynolds number (which results in 8α×5⟨Re⟩M = 40 individual sources for any identified spatial
ROI), each represented by six spectra at different Mach numbers M = [0.125, . . . , 0.250]. We can
derive the acoustic properties not only from the individual spectra but from the changes over Mach
number or as an average property of the spectra since multiple spectra of different Mach numbers
are assigned to one source. This has the advantage that the Mach-normalized features of different
datasets are comparable despite their measurement at different Mach numbers. Additionally, the
averaging reduces the uncertainty of the feature estimation.

6.2 Manual source identification

First, this thesis identifies source types manually. It presents labels for the sources in the Do728 and
A320 datasets based on their spectra and self-similarity so that they can be visualized and analyzed
and the EDSS results can be quantified. The labels for the manually identified source types are
mainly chosen based on the sources’ spatial location. The source spectra are also compared to each
other to identify sub and super-categories. To make this process transparent to the reader, Figure 6.2
presents exemplary Do728 spectra for the most common categories. The sources in the left column
are displayed over the modified Strouhal number, and sources in the right column are displayed over
the Helmholtz number. The manual source type identification and label choices may be ambiguous,
contain errors, and misinterpretations. Also, the source groups and corresponding labels cannot be
held as ground truth since they have not been obtained by independent researchers.

• The slat cove features Strouhal number scaling peaks with overtones that decay in level and
prominence with increasing frequency, see Figure 6.2 a). They are mainly located at or between
the slat tracks, see Figure 6.12 source locations 2, 4, 8, 9, 17, 20, 21, and 28.
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Figure 6.2: Do728, normalized spectra of the typical source types: (a) slat, (b) slat track, (c) slat
tone, (d) flap tone, (e) trailing flap side edge, (f) leading flap side edge, (g) strake
at low Reynolds number and high angle of attack, (h) wind tunnel, (i) strake tone
at high Reynolds number and low angle of attack, (j) outer nacelle, (k) slat edge,
(l) flap track, (m) wing tip, and (n) slat resonance. The horizontal grid lines depict
∆20 dB. The frequency modification exponents m, the Mach scaling exponents n, and
the corresponding angles of attack α and Reynolds numbers are given in Table 6.1.
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• The slat tracks scale over Helmholtz number, see Figure 6.2 b). At high frequencies they often
exhibit a Helmholtz scaling hump that is Mach number dependent. In Figure 6.12 they are at
the source locations 2, 3, 4, 7, 8, 9, 11, and 16.

• The slat tones feature extremely dominant Strouhal number scaling small-band tones, see
Figure 6.2 c). They are mainly located at the slat positions, see Figure 6.12 locations 4, 7, 9,
11, 16, 21, 22, 25, and 28.

• The flap (track) tones feature a small Helmholtz scaling tone and are a sub-category of the
flap track, see Figure 6.2 d). In Figure 6.12 they are at the locations 23, 29, and 32.

• The trailing flap side edges (TFSE), Figure 6.12 at location 12, feature a prominent Strouhal
scaling peak, see Figure 6.2 e).

• The leading flap side edges (LFSE), Figure 6.12 at location 6, feature a smaller Helmholtz
scaling peak, see Figure 6.2 f). At increasing Reynolds numbers, a second Helmholtz number
scaling peak emerges.

• The strakes feature a Strouhal number scaling hump, see Figure 6.2 g). It increases in intensity
with increasing angle of attack and disappears with increasing Reynolds number. In Figure 6.12
they are at the locations 18, and 26.

• The wind tunnel noise, Figure 6.12 at location 31, scales over Helmholtz number, see Fig-
ure 6.2 (h). It appears next to the wing and is considered as a spurious noise source in this
measurement [4].

• The strake tone, Figure 6.12 at location 18, is a dominant Strouhal scaling tone, see Figure 6.2
i). It appears only at high Reynolds numbers and low angles of attack and decreases in intensity
with increasing angle of attack. It is a sub-category of the strake.

• The outer nacelle area, Figure 6.12 source location 13, features a broadband hump that scales
over Helmholtz number, see Figure 6.2 j).

• The slat edge is located close to the wing tip, Figure 6.12 position 10, and its noise scales over
Strouhal number, see Figure 6.2 k). The spectrum level decays over frequency and features an
additional, low-level Helmholtz scaling hump at high frequencies. It is a sub-category of the
slat track.

• The flap tracks feature a low-level Helmholtz number scaling hump, see Figure 6.2 l). They
are located in Figure 6.12 at locations 23, 29, and 32.

• The wing tip, Figure 6.12 source location 27, features a Strouhal number scaling hump, see
Figure 6.2 l), that increases in intensity with increasing angle of attack. The spectra are often
contaminated with wind tunnel noise.

• The Krüger slat resonances exhibits strong, Helmholtz number scaling peaks and are a sub-
category of the slat track, see Figure 6.2 n). In Figure 6.12 they are at the slat tracks 1, and
5.

The fuselage (Figure 6.12 location 19), nacelle track (appearing only at very high Reynolds numbers
at location 30 in Figure 6.12, scaling over Helmholtz number with a very high Mach power exponent
n ≈ 7.02), inner slat gap (Helmholtz scaling hump, similar to the LFSE, location 15 in Figure 6.12),
and flap gap (location 24 in Figure 6.12) are identified and named based on their spatial appearance.
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Figure 6.3: A320. The figure shows the Reynolds number effect on the source types (a) leading flap
side edge at α = 7◦, M = 0.175, (b) high Strouhal number scaling tone at α = 9◦,
M = 0.200, located on the slat and flap, and (c) trailing flap side edge at α = 7◦,
M = 0.200.

Noise occurring at the flap gap was caused by loose tape on the model during the measurement.
Additionally, the category slat / slat track is introduced to account for various spectra that are
located on the slat or slat tracks but are ambiguous, e.g., the slat / slat track shown in Figure 6.10,
containing some Strouhal number scaling low-frequency peaks, and some Helmholtz number scaling
high frequencies.

The manual source type identification in the A320 dataset is more challenging than for the Do728.
The smaller microphone array results in less reliable spectra, especially at low frequencies, and due
to the small variation in Mach number, the correct scaling behavior and scaling exponent are difficult
to identify. Additionally, the typical spectra do not consistently correlate with the spatial appearance
of the sources, e.g., the spectra are different for different flap tracks. Finally, the sources are strongly
affected by the large range of Reynolds numbers, which often result in sources transitioning from
one mechanism to another, see Figure 6.3. Thus, there are multiple sources that we assign the same
label but that feature different spectra (e.g., the fuselage, the slat tracks, and leading flap side edge,
see Figure 6.2), and vice versa. However, many of the sources are similar to the one found in the
Do728 dataset (e.g., LFSE, TFSE, strake, strake tone, slat, slat resonance, slat tone). In addition
to the Do728 source types, there exist multiple A320 sources on the slat and flap that feature a
high Strouhal number scaling tone (high St tone) that increases in intensity with increasing Reynolds
number like the strake tone, see Figure 6.3 (b).

6.3 Source identification results

This section presents exemplary source identification results based on 3D conventional beamforming
with steering vector IV, SIND 3D, see Section 5.2.4, for the Do728, A320, and Embraer models.
The source types were identified manually based on their spatial location and spectral features, and
the results from Section 6.2. They will give the reader an impression of which sources dominate the
airframe sound radiation and how they behave regarding scaling and self-similarity, see Section 2.1.2.
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6.3.1 Do728

Figure 6.4 shows the 3D SIND result for the Do728 at α = 3◦. Figure 6.4 (a) and (b) shows the
spatial source distribution. All main sources are located on the wing. The sources were labeled based
on Section 6.2 and the clustering results that will be presented in Section 6.6. Figure 6.4 (c) shows
for M = 0.2 the contributions of the source types to the total sound emission, integrated from all
focus points. At low frequencies St ≤ 30, tonal components from the slat cove dominate the sound
emission. At medium frequencies 30 ≤ St ≤ 250 the slat tracks dominate with broadband noise.
Above St ≥ 250 the inboard Krüger slats dominate the sound emission. However, the spectra are
noisy and degenerated from the beamforming and CLEAN-SC process. Figure 6.4 (d) shows the
resulting similarity spectra, referenced to M0 = 0.2, with 1σ standard deviation with the scaling
parameters given in Table 6.2. If the standard deviation is low, self-similarity holds. We observe
that this is not the case for the Krüger slat and the high-frequency content of the slat cove. For
the Helmholtz-scaling Krüger slat, we observe a true Mach-dependency f̂ ≥ 10. Below f̂ ≤ 10 the
Krüger slat scales at M6.1, which indicates a dipole, see Section 2.1.2. Note again that while the
absolute level of the sources may be over- or underestimated due to the monopole assumption for
a dipole source, see Section 2.1.6, the relative increase due to the increased Mach number does
not change. Thus, the scaling exponent holds, even for dipole sources, but may incorporate other
effects such as convective amplification or a change in directivity over Mach number (e.g., jet noise).
For the Strouhal-scaling slat cove the large standard deviation results from the fact, that the high
frequency source spectrum is driven by a Helmholtz number scaling mechanism, see Figure 6.10.
Thus, the 2D beamforming and SIND method was not able to separate the overlapping two source
mechanisms (slat cove and slat track) into separate spectra. The slat cove scales at M4.1 over the
Strouhal number, which indicates a monopole, see Section 2.1.2. The slat tracks which contain two
Helmholtz-scaling broadband humps. Another prominent source is the Helmholtz-scaling Leading
Flap Side Edge (LFSE). Here, we observe a monopole behavior. The Trailing Flap Side Edge scales
over the Strouhal number with m > 1, which indicates a locally accelerated flow. At this angle of
attack, the strakes and the wing tip do not contribute towards the sound emission, except for the
tip of the outer strake, which produces a major and a minor Strouhal-scaling tone. It scales perfectly
over the Strouhal number, as it is located in the undisturbed free-flow.

Figure 6.5 shows the corresponding results at α = 7◦. Some source types on the slat have changed.
Slat tones are now present, and the outer slat edge exhibits a strong source. Additional strake sources
and the wing tip appeared. In return, the slat cove sources disappeared. The dominating Strouhal-
scaling slat tones were presented in Figure 6.9 in detail and show that the strength of the individual
tones vary with Mach number, so self-similarity only holds partially.

6.3.2 A320

Figure 6.6 and Figure 6.7 show the corresponding A320 results, with the self-similarity parameters
given in Table 6.3. The beamforming result and ROI are also calculated in 3D, but due to a lack of a
3D model only the (x, y)-projection is displayed. Due to the low spatial resolution and small variety in
measure Mach numbers, the parameters of some source types show strong deviations with respect to
the angle of attack and the Do728. Also, compared to the Do728, the same source types show similar
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Figure 6.4: Do728 sources at Re = 1.4× 106, α = 3◦. The Figure shows source type based 3D-ROI
in (a) and (b). Identical colors depict the same source type, for which the integrated
spectra are shown in (c) at M = 0.2. The total integrated SPL from all focus points is
depicted in black. (d) shows the averaged spectra with 1σ standard deviation of all Mach
numbers. The SPL is scaled according to eq. 2.1.20 with M0 = 0.2, and displayed over
the generalized frequency, see eq. 2.1.19. Helmholtz-like scaling spectra are depicted with
solid lines, Strouhal-like scaling spectra are depicted with dotted lines. The corresponding
scaling exponents are given in Table 6.2.
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Figure 6.5: Do728 sources at Re = 1.4 × 106, α = 7◦, according to the description in Figure 6.4.
The corresponding scaling-exponents are given in Table 6.2.

LFSE TFSE flap
track

Krü-
ger

na-
celle

slat
cove

slat
edge

slat
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slat
track

strake strake
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tip

m(3◦) 0.00 1.23 0.04 0.05 0.05 0.89 - 0.21 0.34 - 1.00 -
m(7◦) 0.00 1.17 0.05 0.03 0.00 - 0.88 0.73 0.05 0.73 1.00 0.74
n(3◦) 4.2 3.1 5.7 6.3 4.0 4.1 - 4.2 4.3 - 4.2 -
n(7◦) 2.9 3.5 6.1 4.4 5.1 - 3.6 4.1 5.4 2.4 5.7 4.6

Table 6.2: Do728 modification exponent m for the generalized frequency f̂ , and Mach power-scaling
exponent n for the source types displayed in Figure 6.4 and Figure 6.5.
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Figure 6.6: A320 sources at Re = 1.4× 106, α = 3◦, according to the description in Figure 6.6. The
corresponding scaling-exponents are given in Table 6.3.

Figure 6.7: A320 sources at Re = 1.4× 106, α = 7◦, according to the description in Figure 6.7. The
corresponding scaling-exponents are given in Table 6.3.

generalized frequency modification exponents, but overall higher Mach scaling exponents. Prominent
examples are both the LFSE and TFSE. For both wings the power scaling exponents decreases with
increasing angle of attack. While the reason for these elevated scaling exponents is unknown, they

LFSE TFSE flap
track

fuse-
lage

na-
celle

slat
cove

slat
edge

slat
res.

slat
tone

slat
track

strake

m(3◦) 0.00 1.08 0.63 - 0.53 0.84 0.00 0.03 0.81 0.55 -
m(7◦) 0.00 1.02 0.55 0.00 1.09 0.54 0.00 0.03 0.80 0.02 0.78
n(3◦) 5.0 4.3 3.3 5.8 0.9 6.4 3.8 5.4 3.2 4.6 -
n(7◦) 4.6 4.1 5.8 6.3 4.0 6.3 0.0 4.7 6.0 5.3 3.2

Table 6.3: Do728 modification exponent m for the generalized frequency f̂ , and Mach power-scaling
exponent n for the source types displayed in Figure 6.6 and Figure 6.7.
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Figure 6.8: The Figure shows source type based 3D-ROI in (a) and (b). Identical colors depict the
same source type, for which the integrated spectra of the exemplary DP 2 are shown
in (c). The total integrated SPL from all focus-points is depicted in black. (d) shows
the averaged spectra with 1σ standard deviation of DP 2, 5 and 6. The SPL is scaled
according to eq. 2.1.20 with M0 = 0.220, and displayed over the generalized frequency,
see eq. 2.1.19. Helmholtz-like scaling spectra are depicted with solid lines, Strouhal-like
scaling spectra are depicted with dotted lines. The corresponding scaling-exponents are
given in Table 6.4.

WTR I WTR II NR I NR II cavity WLR I WLR II WLR III
m 0.26 0.03 0.96 1.01 0.25 0.81 0.22 0.28
n 2.26 6.14 6.40 -1.63 -10.52 3.89 4.86 3.64

Table 6.4: Modification exponent m for the generalized frequency f̂ , and Mach power-scaling expo-
nent n for the source types displayed in Figure 6.8.

are subject to some uncertainty due to the small Mach number range obtained in the experiment
and the degraded spectra due to the array aperture.

6.3.3 Embraer model

Figure 6.8 shows the corresponding Embraer results. The identified locations coincide with the main
sources of the Do728 and A320. We observe that the WLR I sources dominate the SPL at low
Strouhal number 10 ≤ St ≤ 30, the NR I and cavity show a prominent peak around St ≈ 45, the
NR II shows a prominent peak around St ≈ 110, and above St ≥ 120 the SPL is dominated by
broad-band noise from the WTR I. Interestingly, for all three models, the inner wing trailing regions
are silent or cannot be reconstructed by CLEAN-SC due to the limited dynamic range. A major dif-
ference is the WTR I source, where there are two distinct (leading and trailing edge) sources on the
Do728 and A320 [47, 48, 17] but only one (presumably leading, based on the aeroacoustic behavior)
source on the Embraer. The positions of the sources remain approximately the same for the variation
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of the Reynolds number, Mach number, and the slotted and closed test section.

6.4 Feature engineering

We require a set of features that describe the aeroacoustic properties of a source for clustering. For
optimal clustering results and interpretability of the results, we require a feature-set that meets the
following conditions:

• All features together must unambiguously describe a source or its mechanism.

• A feature must describe a basic property of a source and must provide additional information.

• The calculation of a feature must be automatable and robust.

• A feature must be represented by a single numerical value.

• A feature must correspond to a physical property.

In real-world applications, it is typically not possible to fulfill these requirements completely. Addi-
tionally, it can only be analyzed how well the introduced features meet these requirements in the
context of the observed sources. In the following, this thesis identifies aeroacoustic properties and
breaks them down to numerical features in the subsequent sections. A complete list of the features
is given in Table 6.5.

Broadband self-similarity

An essential property of any aeroacoustic source is the self-similarity or scaling behavior over increas-
ing Mach number, see Section 2.1.2, indicated by the Strouhal and Helmholtz number, see eq. 2.1.16
and eq. 2.1.17. Suppose a source is self-similar over a frequency type (here, the absolute frequency,
the Helmholtz number, and the Strouhal number are referred to as frequency types). In that case,
there is a linear dependency between the PSD levels over frequency at different Mach numbers. Thus,
the self-similarity is based on the Pearson correlation coefficients ρjj′ between all spectra at different
Mach numbers Mj and Mj′ .

ρjj′ =
∑I

i

[
(PSD(Mj , fi))− ⟨PSD(Mj , fi)⟩i)× (PSD(Mj′ , fi))− ⟨PSD(Mj′ , fi)⟩i)

][
σi(PSD(Mj , fi))σi(PSD(Mj′ , fi))

] (6.4.1)

Note that for the calculation of eq. 6.4.1 using the Strouhal or Helmholtz number, the spectra have to
be interpolated on the same Strouhal or Helmholtz number vectors for different Mach numbers. For
the results presented in this thesis, a linear interpolation on a logarithmic Strouhal and Helmholtz
number vector with 12 bins per octave is used. This way, each frequency bin corresponds to a
relative interval. Since the correlation matrix is symmetric and the diagonal entries are unity, the
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property feature var. eq. log range

self-
similarity

scal. over St number scal(St) 6.4.4 no [0, 1]
scal. over He number scal(He) 6.4.4 no [0, 1]

freq. norm. exp. m⋆ 6.4.7 no [0,∞[
power- M scal(St) nSt 2.1.20 no [0,∞[
scaling M scal(He) nHe 2.1.20 no [0,∞[

tonality

number of tones P̂n 6.4.10 yes [0,∞[
tone St shape kSt 6.4.11 yes [0,∞[
tone St scale θSt 6.4.11 yes [0,∞[
tone St loc lSt 6.4.11 yes [0,∞[

tone width shape kw 6.4.11 yes [0,∞[
tone width scale θw 6.4.11 yes [0,∞[
tone width loc lw 6.4.11 yes [0,∞[

tone prom shape kp 6.4.11 yes [0,∞[
tone prom scale θp 6.4.11 yes [0,∞[
tone prom loc lp 6.4.11 no [0,∞[

scal. over St number scalp(St) 6.4.14 no [0, 1]
scal. over He number scalp(He) 6.4.14 no [0, 1]

tone intensity propp 6.4.15 no [0, 1]
source loc. source movement ∆l 6.4.16 no [0,∞[

spatial
dist.

source compactness A 6.4.17 no [0,∞[
source shape Rσ 6.4.18 yes [0,∞[

spectrum
shape

regression slope ŝ 6.4.19 yes [0,∞[
regression r2-value r2 6.4.21 no [0, 1]

avg. St number St 6.4.23 yes [0,∞[
std. St number Stσ 6.4.24 yes [0,∞[

PSDmax St number StLmax 6.4.25 yes [0,∞[
Table 6.5: Table of all aeroacoustic properties, their corresponding features, their variables, equations,

if they are used logarithmically with log(|v|+ 1), and their (log) value range.

Mach average corr and standard deviation corrσ of the correlation coefficients is determined using
the upper triangular matrix j > j′ with J = #j(Mj).

corr = 2
J(J − 2)

∑
j>j′

ρjj′ (6.4.2)

corrσ =
√√√√ 2

J(J − 2)
∑
j>j′

(ρjj′ − corr)2 (6.4.3)

Most aeroacoustic spectra decay in SPL over frequency due to the corresponding turbulent energy
decay. If this decay is stronger than local structures or peaks in the spectra, this can result in
elevated correlations for frequency types over which the spectra are not self-similar. However, the
correlation matrix ρjj′ often exhibits a substantial variance. Thus, a mean correlation corr is not
an optimal definition for the self-similarity. It can be improved by considering its standard deviation
corrσ and the mean p-value p. The p-values are averaged as shown in eq. 6.4.2 and represent the
reliability of the correlation estimation. Due to the beamforming process in combination with CLEAN-
SC, the discrete spectra often contain missing values. If we drop the corresponding frequencies f

where PSD(M, f) = −∞dB Hz−1 before the calculation, the standard deviation, and the p-value will
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increase drastically due to the decreasing sample size when the spectra are not self-similar. Using
these properties, this thesis introduces the final broadband self-similarity (scal) with

scal = (corr− corrσ)
(
1− p

)
, (6.4.4)

which can be calculated over all frequency types separately. This definition strongly penalizes a high
p-value and a large correlation variance.

Frequency normalization exponent

As stated in Section 2.1.2, a source scales over the Strouhal or the Helmholtz number. However,
we observe in the presented data that spectra that are supposed to scale over the Strouhal number
are often not perfectly aligned as depicted in Figure 6.1 (a). In this rare case of multiple cryogenic
measurement conditions, the experiments allow us to observe spectra at constant absolute Reynolds
number over increasing Mach number (at decreasing temperatures and increasing pressure). Using
spectra at different Mach numbers from different Reynolds configurations so that the absolute Reyn-
olds number is kept constant, most sources show a true Strouhal scaling, but not all, see Figure 6.8.
Thus, increasing the Reynolds number over the Mach number at constant pressure and temperature
may cause some sources to decrease or increase the Strouhal number’s dependency on the Mach
number. Additionally, some sources show an altered Mach number dependency even at constant
Reynolds number over increasing Mach number.

To overcome this issue, this thesis proposes a modified normalized frequency f̂ that compensates for
this altered Mach dependency by introducing the generalized frequency normalization exponent m in
eq. 2.1.19. This normalized frequency is a generalization of the Helmholtz number (for m = 0) and
the Strouhal number (for m = 1). For convenience, we will speak of a modified Strouhal number
if m ≥ 0.5. To obtain the generalized frequency normalization exponent, we optimize the collapse
of the spectra by maximizing its broadband self-similarity (see Section 6.4). Figure 6.9 shows the
comparison of the (a) normal Strouhal number and (b) the modified Strouhal number with m = 0.72.
Figure 6.9 (c) shows the mean spectra correlation corr (black line), and its standard deviation corrσ

(gray area) over the modification exponent m. The blue line is the mean p-value p, indicating the
reliability of the correlation estimation. The optimal value m⋆ (shown with the red x) is achieved at
the global maximum of the self-similarity, see equation 6.4.4.

m⋆ = argmax
m∈[0,∞[

(scal(m)) (6.4.5)

In the example of these slat tones, the increase in Reynolds number results in a weaker Mach de-
pendency of the normalized frequency than a regular Strouhal number.

The following acoustic properties are derived from spectra at different Mach numbers, which can be
displayed over the Strouhal number, the Helmholtz number, or the introduced modified normalized
frequency. Since aeroacoustic experts are used to analyze spectra displayed over Strouhal and Helm-
holtz numbers, all features are calculated separately over both Helmholtz and modified Strouhal
numbers. If a spectrum is dominated by a Helmholtz number scaling mechanism, the frequency
modification exponent will result in values m ≈ 0. To present spectra over both Helmholtz and
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Figure 6.9: Do728, Re = 1.4× 106, slat tones at α = 8◦. Comparison of source spectra at different
Mach numbers over (a) normal Strouhal number and (b) modified Strouhal number, see
eq. 2.1.19, with m = 0.74. (c) shows the mean and standard deviation σ of the Pearson
correlation coefficient of the source spectra at different Mach numbers over the variation
of the modification exponent, the mean p-value, and the resulting self-similarity (scal),
see Section 6.4. The modification exponent m = 0.74 achieves the optimal self-similarity,
marked with an x.

(modified) Strouhal numbers, we have to find a local maximum of the self-similarity function around
mSt ≈ 1 to account for spectra that include minor, Strouhal number scaling mechanisms. To do
so, a standard peak detection is performed over the self-similarity function scal(m) to find a local
maximum m̃ ≥ 0.5 with a peak prominence P̂p ≥ 0.1. If none is detected and m⋆ < 0.5, we set
mSt = 1 to obtain a Strouhal number.

m̃ = peak
m∈[0.5,∞[

max(P̂p)≥0.1

(scal(m)) (6.4.6)

mSt =


m⋆ if m⋆ > 0.5

m̃ if m⋆ ≤ 0.5

1 else

(6.4.7)

Sound power scaling

The power of aeroacoustic noise generally increases with increasing Mach number, captured by the
Mach power exponent n in eq. 2.1.20. A regression on the OASPL or peak levels of eq. 2.1.20 is
typically used to determine the scaling exponent. This does not work for spectra from CLEAN-SC
maps since the microphone array aperture in combination with deconvolution acts like a high-pass
filter at an absolute frequency. This is problematic when scaling over the Strouhal number (and
Helmholtz number at different temperatures and pressures). It effectively creates a Mach-dependent
low-cut filter, which, in combination with a typical SPL decrease over frequency for aeroacoustic
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Figure 6.10: Do728 slat / slat track source at Re = 1.4 × 106, α = 3◦. Comparison of the power
scaling over modified Strouhal (m = 0.9) and Helmholtz number to collapse the PSDs
with eq. 2.1.20. The scaling exponents are nSt = 4.2, nHe = 5.3, nOASPL = 6.3.

sources, results in a wrong OASPL and, thus, a scaling exponent. Instead, the mean distance between
all power scaled spectra P̂SD(fi, Mj) is minimized bin-wise over frequency with a standard bounded
minimization algorithm. The spectra’s standard deviation σ at every discrete frequency is employed
to calculate the distance between multiple spectra simultaneously. Since parts of a spectrum with a
high SPL are often considered more important for the scaling, we can weight the standard deviations
at every frequency with the Mach averaged spectrum power ⟨PSD(fi, Mj)⟩κMj

. The hyperparameter
κ of this weight determines how much we want to prefer the scaling of high levels. Thus, we minimize

min
0≤n<∞

〈
σj
(
PSD(fi, Mj)− n10 log10(Mj)

)〈
PSD(fi, Mj)

〉κ
j

〉
i

, (6.4.8)

with n, κ ∈ R ≥ 0. At least spectra at three different Mach numbers should be used to calculate
a reliable power scaling exponent. A large variation in Mach number also increases the scaling’s
reliability. Figure 6.10 shows the resulting power scaling for a slat / slat track source and κ = 10
over modified Strouhal and Helmholtz numbers. Note the different scaling behavior over Strouhal
and Helmholtz numbers for the low and high-frequency part of the spectrum and that the OASPL
scaling nOASPL obtained by a linear regression neither matches the Helmholtz nor the Strouhal
scaling exponent correctly, as described above. Figure 6.2 displays more examples of scaled PSDs
with κ = 10, used for all results presented in this thesis, yielding reasonable and robust results for
the partially degenerate spectra.

Tonality

Accounting for the tonal behavior of the sources results in less straightforward feature descriptions
since the number of tonal peaks varies from source to source and within a source for different Mach
numbers. However, their properties must be captured by a finite amount of features, see section 6.4.
These properties are the peak-width intervals P̂w, peak prominences P̂p, peak frequencies P̂f, and
the number of peaks P̂n. First, a standard automated peak detection on the spectra results in a set
of peak prominences Pp(Mj), peak widths Pw(Mj), and peak frequencies Pf(Mj) for every Mach
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Figure 6.11: Do728, Re = 1.4 × 106, slat tones at α = 8◦. Top, the spectra and the automatically
detected peaks, depicted with an x. Bottom, a normalized histogram and the fitted PDF
of the (a) peaks prominence, (b) peak width, and (c) peak Strouhal number.

number Mj . Additionally, sets of frequency bins Pf̃(Mj) are defined that include all frequency bins
that lie within the peak width intervals Pw(Mj).

Pf̃(Mj) = {fi|s.t. fi belongs to a peak for Mj} (6.4.9)

The number of peaks P̂n is defined as the Mach averaged number of elements in the sets.

P̂n = ⟨|Pp(Mj)|⟩j (6.4.10)

As stated in section 6.4, we have to break down the properties of the peaks to single value features.
This can be achieved by describing the distribution of the peaks’ properties instead of using the
individual peaks’ properties directly. Naturally, peaks with lower prominence appear more often than
peaks with very high prominence in Pp. This assumption is also used for the peak width in Pw.
This behavior can be modeled using a gamma distribution [1]. With the gamma function Γ(k), the
Probability Density Function (PDF) γ of the gamma distribution over a variable v with a shape k,
scale θ and location l is

γ(v, k, θ, l) =
(v − l)k−1 exp(−v−l

θ )
θkΓ(k) for v, k, θ, l ≥ 0 . (6.4.11)

For the peak frequency locations in Pf̃ a log-normal distribution fits most of the sources best. The
distributions of these properties have unknown shape (standard deviation), scale (distribution me-
dian), and location (distribution offset) parameters, which can be approximated from any number of
samples greater than one by fitting the gamma or log-normal distribution to the data with standard
fitting methods. The shape, scale, and location for each peak width, peak prominence, and peak
frequency are used as comparable feature values, independent of the number of tones in the PSDs
and the number of different Mach numbers. Figure 6.11 shows the peak detection and the corres-
ponding distributions for all Mach numbers of a Do728 slat tone source. A lower threshold of 3 dB
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for the peak prominence prevents the algorithm from detecting many irrelevant low-level peaks that
dominate the distributions. If only one or fewer tones are detected, the feature values are set to zero
(no distribution can be obtained).

The ratio of how many peaks overlap at every detected peak frequency interval is used to determine
how well the prominent peaks scale over Strouhal or Helmholtz number (scalp). Working with logar-
ithmically spaced, discrete frequencies fi, I sets Ei are introduced, each containing up to J Mach
numbers for which the frequency bin of the corresponding spectrum lies within a peak interval. Î is
a single set, that contains the frequency indices i for which at least one spectrum features a peak.

Ei = {Mj | so that fi ∈ Pf̃(Mj)} (6.4.12)
Î = {i|∃Mj so that fi ∈ Pf̃(Mj)} (6.4.13)

The resulting scaling of the tones is then the ratio of spectra that share a peak at the same frequency
to the total number of spectra at different Mach numbers J , averaged over all frequency bins i for
which at least one peak was detected is

scalp = 1
|Î|

∑
i∈Î

|Ei| − 1
J − 1 . (6.4.14)

The minus ones ensure a soft feature value 0 ≤ scalp ≤ 1 for the modified Strouhal and Helmholtz
number, since each Ei contains at least one element. Finally, the tonal intensity propp is defined as
the Mach averaged ratio of tonal SPL to total SPL. It expresses how much percent of the energy in
the spectra is caused by tones.

propp =
〈∑

fi∈Pw(Mj) PSD(fi, Mj)∑
i PSD(fi, Mj)

〉
j

(6.4.15)

Source location dependency on the Mach number

The spatial location of some aeroacoustic sources may change with the Mach number. An example
of a moving source would be a flow detachment, at which the sound-generating eddies move further
downstream with increasing Mach number or jet noise, while cavity noise would remain at the exact
location. Figure 6.12 (a) shows the variation of source positions on the Do728 with increasing Mach
number. Here, the positional change of the source with increasing Mach number is defined as the
source movement ∆l, that is, the mean movement of the local source position x, normalized by the
change in Mach number, shown in Figure 6.12 (b). A limitation of this feature is that it assumes the
monotonous movement of the source in one direction with the Mach number.

∆l =
〈
|xj − xj−1|
Mj −Mj−1

〉
j

for j ≥ 2 (6.4.16)

Spatial source distribution

Aeroacoustic sources can be spatially distributed, such as line or volume sources. The sources’ spatial
PDFs obtained with SIND can be used to describe this behavior. SIND approximates the spatial
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Figure 6.12: Do728. (a) shows the source positions at Re = 1.4×106, α = 10◦ (if the source is present
at this configuration) for the given Mach numbers. (b) shows the mean movement of
the sources calculated with eq. 6.4.16.

source distributions with 2D normal distributions, described by the standard deviations σxi . Here,
the integrated, normalized PDF area A represents the spatial compactness of the source.

A =
∫

x1

∫
x2

PDF(x1, x2)
||PDF(x1, x2)||∞

dx2dx1

= 2πσx1σx2 (6.4.17)

The ratio of the PDFs standard deviations σxi is an indicator for line sources with

Rσ = max
(

σx1

σx2
,
σx2

σx1

)
− 1 . (6.4.18)

Thus, Rσ ≈ 0 indicates a point or sphere-like source while an increasing Rσ indicates a line source.

Spectrum shape

A linear regression L(f) for PSD(f) captures the general shape of the spectrum, which consists of
two values: the interception i0 of the line at f = 0 Hz and the slope ŝ

L(f) = ŝf + i0 . (6.4.19)
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The interception is an absolute value, varies with the Mach number, and is discarded. The slope is
the increase or decrease of the PSD level over the frequency. Additionally, the regression’s r2-value
describes how well the linear regression explains the spectrum. A low r2 value indicates that the
linear regression is not capturing the movement in the spectrum well. Thus, it is an indication of the
waviness of the spectra. With the error e of the regression model

eij = PSD(fi, Mj)− L(fi, Mj) (6.4.20)

the Mach-averaged r2 value is then calculated with

r2 =
〈

1−
∑

i eij∑
i(PSDij − ⟨PSDij⟩i)2

〉
j

(6.4.21)

Similar to the spatial source distribution, a source distribution over frequency is defined. Since we
work on sparse spectra that are not defined on all frequency bins, the mean f and standard deviation
fσ of the frequencies can be used for which the source PSD is real-valued to capture the source’s
radiation frequency interval. With the sets Qj that contain the real-valued frequency bins fi for the
spectra at Mach number Mj

Qj = {fi| such that PSD(fi, Mj) ∈ R} (6.4.22)

f = 1
J

∑
j

 1
|Qj |

∑
f∈Qj

f

 (6.4.23)

fσ =

√√√√√ 1
J

∑
j

 1
|Qj |

∑
f∈Qj

(f − f)2

 (6.4.24)

Finally, the frequency fLmax for which the PSD level has a maximum is defined with

fLmax = ⟨argmaxi(PSD(fi, Mj))⟩j . (6.4.25)

6.5 Feature results

Figure 6.13 presents the distributions of exemplary features for exemplary source types and compares
them for the Do728 and A320 datasets. The horizontal lines within the distributions display the
0.25, 0.50, and 0.75 percentiles. The exemplary source types were chosen because they were manu-
ally identified in Section 6.2 with great confidence based on their spectral features in Figure 6.2,
and they showed interesting acoustical properties. The features were chosen to cover the variety of
aeroacoustic properties introduced in Section 6.4.

Figure 6.13 shows the self-similarity over (a) the modified Strouhal number, and (b) the Helmholtz
number, see Section 6.4. Based on the exemplary source spectra in Figure 6.2 and the aeroacoustic
literature, the slat track, slat resonance, and leading flap side edge strongly scale over the Helmholtz
number and the slat tone, strake, trailing flap side edge, slat and strake tone to strongly scale over
the (modified) Strouhal number. For the slat tracks the feature does not achieve satisfying results
since it wrongly predicts a strong self-similarity over the Strouhal number for both datasets. This is
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Figure 6.13: Violin plot comparison of the A320 (blue) Do728 (orange) for exemplary source types
and exemplary features from Table 6.5. (a) shows the broadband self-similarity over the
modified Strouhal number, see Section 6.4. (b) shows the broadband self-similarity over
the Helmholtz number. (c) shows the Mach power scaling over the modified Strouhal
number, see Section 6.4. (d) shows the generalized frequency modification exponent,
see Section 6.4. (e) shows the logarithmic number of tones, and (f) shows the gamma
distribution’s logarithmic scale of the tone prominence, see Section 6.4. (g) shows the
r2-value of the linear regression of the spectrum, see Section 6.4, and (h) shows the
logarithmic spatial source shape, see Section 6.4.

because of the strong decay in SPL over frequency, which dominates the correlation stronger than
the local spectral features such as tonal peaks or humps. For the Do728 strake tones, a low Strouhal
self-similarity is wrongly predicted. This is due to the inclusion of the p-value in eq. 6.4.4, which
becomes large for small-band sources. For the A320 slat tone and LFSE the feature is not robust
and results in a large range of values. The expected self-similarity over the Helmholtz number is well
captured in Figure 6.13 (b). This is also true for Strouhal number scaling slat sources with additional
Helmholtz scaling high-frequency content, see Figure 6.3 (a) at 100 ≤ St ≤ 200.

Figure 6.13 (c) shows the Mach power scaling over the modified Strouhal number. Similar power
scalings around M scal(St)≈ 3.73 (averaged over the displayed source types) are observed. This is
expected as aeroacoustic noise is known to scale within a small range (e.g., M4 for monopoles, M6

for dipoles, and M8 for quadrupoles), depending on the source mechanism. However, the variance
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Figure 6.14: Symmetric heatmap of all Do728 feature Pearson correlation coefficients and their hier-
archy based on hierarchical clustering with a correlation distance metric (top).

within the source types often exceeds the variance between the source types. Also, as seen for the
trailing flap side edge the Mach scaling can differ for the same source type for different datasets. At
this point, it is not clear if this is caused by the assumptions of the method (e.g., ignoring the source
directivity) or by the different model geometries.
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Figure 6.13 (d) shows the generalized frequency normalization exponent m, see Section 6.4. Most
of the slat tracks and slat resonances show an exponent around m ≈ 0. This indicates a Helmholtz
scaling and corresponds to the presented self-similarities. For both datasets, there are two groups
of LFSE, one that features m ≈ 0, and one that features m ≈ 1. For the Do728 strakes, a mean
exponent m ≈ 0.79 is observed, for the A320 strakes m ≈ 0.95. For the Do728 TFSE m ≈ 1.13
is observed, for the A320 m ≈ 1.06. For the Do728 slat m ≈ 0.78 is observed, for the A320 m ≈ 0.72.

Figure 6.13 (e) shows the Mach averaged occurrence of tones (logarithmic), see Section 6.4. Some
source types feature few tones, i.e., the strake and strake tone, some source types feature many
tones, i.e., the slat tones. Figure 6.13 (f) shows the corresponding scale parameter of the tone
prominence distribution (logarithmic). A large scale feature indicates that the distribution is spread
out, including tones with small and large prominence. A small scale parameter indicates that all tones
have a similar prominence. Both datasets show similar distributions for the features. Generally, the
features correspond to our expectations. However, the gamma distribution approximation fails for
sources that contain only one prominent tone, such as the Do728 strake tone sources.

Figure 6.13 (g) shows the spectrum shape r2 based on a linear regression, see Section 6.4. For the
Do728, the distributions of the strake, the TFSE, and the strake tone are spread out compared to the
A320 distribution. Overall, they show similar trends. The feature mainly highlights the fact that many
aeroacoustic sources are broad-band sources with a linear decay in SPL over logarithmic frequency
and correctly identifies small-band sources such as the strake and strake tone.

Figure 6.13 (h) shows the source shape (logarithmic). A value close to zero indicates a point source
and an increasing value indicates a line source. The results directly depend on the output of SIND,
which correctly identified the slat track, LFSE, strake, and TFSE as point-like sources. The Do728
slat was correctly identified as a line-like source. However, the A320 slats were wrongly identified
as point-like sources. While SIND yielded overall comprehensible results, on some occasions, sources
were wrongly spatially separated or combined. E.g., the slat tones sometimes appear on slat track
positions and, thus, are identified as point-like sources, while they should be line-like sources [33].

Figure 6.14 shows a Pearson correlation coefficient heatmap for the Do728 feature space. On the
top, a feature hierarchy is displayed based on hierarchical clustering with a correlation distance metric
based on the Unweighted Pair Group Method with Arithmetic mean algorithm. This hierarchy shows
which features are similar based on the displayed correlations to all other features. The heatmap and
hierarchy show that many of the introduced features correlate strongly, especially features that were
introduced together to cover an aeroacoustic property such as tonality or self-similarity. The feature
hierarchy shows that these features originate from the same branch. From left to right, the first major
branch includes the linear regression’s slope (log), the source movement, the generalized frequency
exponent, and the source compactness. The first three features correlate negatively with the features
that correspond to the tonality and form a sub-branch. The second main branch on the right contains
all other features. Its left sub-branch contains the Mach scaling over the Strouhal and Helmholtz
number, as well as the linear regression’s r2-value, and the self-similarity (scal) over Strouhal and
Helmholtz number. The other branch contains all features that describe the frequency content of the
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Figure 6.15: Do728. UMAP [85] components for ncomponents = 2, nneighbors = 90 (≈ 10 % of the
dataset), and a correlation distance metric for the presented feature space.

spectrum (StLmax, mean and std Strouhal numbers) and its strongly correlated tonality features.

Figure 6.15 shows a Uniform Manifold Approximation and Projection for Dimension Reduction [85]
(UMAP) of the Do728 sources. The colors and symbols both represent the manual labels. UMAP
estimates a manifold that locally (and to some extent globally) preserves the data structure in a
low-dimensional space, based on which the data can be displayed in low-dimensional space. UMAP
requires a distance metric, such as a spatial metric (e.g., Mahalanobis, Minkowski), or a similarity
metric (e.g., cosine, correlation). All mentioned metrics yield similar results for the presented feature
space. Figure 6.15 shows a 2D feature space projection, in which we can observe how similar source
types are in the introduced feature space and how well the introduced feature space separates the
proposed source types. The slat track and slat edge sources are similar and gradually transition to slat
/ track sources, and then to slat sources. These groups are not well separated, which corresponds to
the manual classification in Section 6.2, since the spectra often smoothly transition from one shape
to another and show great variance. The slat tone sources are not captured well in the feature space,
since they are manually identified with very high confidence but do not form a well-separated group.
Other source types, such as the wing tip and the trailing flap side edge are well captured in the
feature space and show little variance.

The figure shows that sources of the same manually introduced source type are close to each other in
the introduced feature space. The ability of UMAP to form separable source-type groups highlights
two results. First, the introduced feature space captures sufficient aeroacoustic information for the
presented sources under the condition that the labeling is correct. Thus, groups of multiple sources
are formed in the UMAP based on the feature space. Second, the labeling is sufficiently good under
the condition that the feature space correctly captures the sources’ aeroacoustic behavior. Thus, the
groups mainly contain unique source types. Since the source types were identified manually based on
the source spectra and not on the introduced feature values, see Section 6.2, this indicates that the
label choices are reasonable.
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Figure 6.17: Do728, cluster tree for Ns = 11. The chosen clusters are marked with colored ellipses.

6.6 Source-type clustering

This section presents unsupervised clustering of the aeroacoustic spectra based on the presented
features. The advantage of unsupervised over supervised learning is that no ground truth is necessary.
Instead of classifying sources into predetermined classes, unsupervised learning groups the presented
data into by the expert previously unknown clusters. The main aim is to aid the expert in the manual
classification of the sources and the following analysis and gain a deeper insight into the sources and
their aeroacoustic behavior.

6.6.1 Methodology

For clustering HDBSCAN [21, 84] is selected due to its soft clustering support without prior know-
ledge about the number of clusters, i.e., an expectation of the number of different source types,
see Section 2.3. Here, the clustering probability can also be interpreted as the clustering confidence.
Since the distances between sources in a high dimensional feature space become alike [3], the feature
space must be reduced prior to the distance-based clustering. The most prominent dimensionality re-
duction technique is Principal Component Analysis, which orthogonalizes the feature space and sorts
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Figure 6.18: Do728, mean clustering confidence per label and cluster.

the dimensions based on their explained variance. Then, dimensions with little statistical variance
can be discarded. For the presented method, a Kernel Principal Component Analysis (KPCA) [112]
with a Radial Basis Function (RBF) as a kernel is employed. The KPCA uses a nonlinear convolution
kernel, which allows the PCA to embed the feature space in a nonlinear manifold. For dimensionality
reduction, 2σ ≈ 95 % of the explained variance is retained by discarding the KPCA dimensions with
the least variance. Before using a PCA or KPCA, the feature space must be normalized to zero mean
and unity variance. This normalization assumes that the features are normally distributed. However,
most of the features F are distributed exponentially and are transformed to a log-space prior to
the KPCA with log10(F + 1), see Table 6.5. Thus, the feature space is partially transformed into a
log-space, normalized, orthogonalized, and reduced to 95 % explained variance using a KPCA and
then clustered using HDBSCAN.

HDBSCAN requires a minimum sample size, determining how many source members a cluster must
have. Smaller clusters are discarded as noise. We can determine a reasonable sample size by examining
the resulting cluster numbers. With an increasing sample size, the resulting number of clusters first
drops massively and then decreases only slightly. Figure 6.16 demonstrates this for the Do728 dataset.
We pick the sample size after which the total quantity of clusters nclusters only decreases slightly,
in this case around Ns = 7. This is sometimes called the “elbow-method” or “knee-method” [128].
It is noteworthy that picking a bad sample size may result in sub-clusters (splitting a cluster) or
super-clusters (merging clusters), but the overall results remain comparable. Thus, it can be helpful
to start with a large sample size to obtain a few clusters that are manageable to analyze manually and
then transition towards smaller sample sizes. The methodology for this EDSS is called “Clustering
sources based on their aeroacoustic features” (CRAFT).

6.6.2 Results

The results presented are based on the Do728 and A320 datasets, obtained from 2D CLEAN-SC
beamforming maps, see Section 4.3, with steering vector III and DR, see Section 4.1, 2D SIND, see
Section 5.2.1, and CRAFT. Figure 6.17 shows an exemplary HDBSCAN cluster tree for the Do728
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Figure 6.19: Do728, clustering result at Re = 1.4 × 106. For each source location the predictions
are given for each angle of attack in the corresponding table. Each cluster number
is assigned a corresponding color for visual support. The color opacity indicates the
clustering confidence. If the cluster number is -1, the source does not exist at this angle
of attack.

data and 20 clusters. On the vertical axis, the λ value shows the distance between the sources in the
feature space, and on the horizontal axis, the thickness of the bars (and color) indicates the number
of cluster members. The ellipses show the selected clusters by HDBSCAN. If clusters are located on
the same branches, they are sub-clusters of a super-cluster. Larger values of the minimum sample
size will lead to the formation of super-clusters, while smaller values will increase the number of
sub-clusters.

Since HDBSCAN estimates the PDF of each cluster in the high-dimensional feature space, it allows
the calculation of the probability of each source belonging to each cluster. Thus, we can manually
define how sources should be clustered based on the resulting PDF. Given that this thesis proposed
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Figure 6.20: Do728, soft cluster confidences of source five 5 in Figure 6.19 (Krüger slat) for (a)
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Figure 6.21: Do728, confusion matrix of the occurrences of our manually identified source types in
CRAFT’s determined clusters. The color intensity displays the mean clustering confid-
ence. Cluster choices this thesis consides correct are marked with a green box. The tree
above the clusters displays their hierarchy.

manual labels for the sources, we can compare the resulting clusters to the manual labels (typically
not the case, as we cluster the sources to identify and label the sources, not vice versa). Figure 6.18
shows the resulting clustering confidence, averaged over all label members. Most clusters correspond
to the manual labels.

For the final Do720 clustering results a minimum sample size of seven was used for HDBSCAN.
CRAFT determined fifteen source clusters. Figure 6.21 shows a confusion matrix of the manually
determined labels, see Section 6.2, and the clustering results. The matrix shows how often a source
from a manually determined category was clustered into the corresponding clusters. Given that the
manual source type identification is correct, a perfect clustering would result in a cluster group for
every manual label, and all corresponding sources would be clustered within their corresponding
group. Thus, a perfect clustering would achieve a square confusion matrix with all results on the
diagonal. The underlying color in the confusion matrix depicts the mean clustering confidence. Since
most clusters correlate to the manual labels (they are mostly located on the diagonal axis), our
definition of correct clustering results (which are marked with a green box in the confusion matrix)
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Figure 6.22: Do728, (a) shows a histogram of the total wrong and correct cluster choices over
their clustering confidence. (b) shows the relative number of cluster choices above the
confidence threshold tC on the x-axis.

will be based on its comparison to the manual labels.

To identify the clusters corresponding to the manual labels, we will take the occurrences of source
types per cluster, their estimated confidence, their similarity to other source types, and the cluster
hierarchy into account. Thus, cluster number one is assigned to the slat sources. Here, slat sources
that are assigned to cluster one are considered as correct clustering results, slat sources assigned to
other clusters are considered as wrong clustering results. A slat resonance, which was categorized
as cluster number nine or ten (which consists mainly of slat tracks) instead of cluster number six
(which consists solely of slat resonances), is considered correct since it is a sub-type of a slat track
source. All sub-categories clustered with their super-categories are considered correct, but not vice
versa. Thus, slat tracks that are clustered in group six (slat resonances, a sub-category of slat tracks)
are considered wrong. Slats and slat tracks that fall in cluster four (slat / slat track) and vice versa
are considered correct, which is a super-category of these ambiguous sources. Cluster numbers three,
four, fourteen, and fifteen comprise multiple source types. As long as the corresponding source types
were assigned to the cluster containing most sources, they are considered correct. The slat tracks
occupy the two clusters, nine and ten, with high clustering confidence, which are considered equally
correct, as the clusters are both branches of a super-cluster. The leading flap side edge occupies both
cluster numbers three and seven with high confidence. Thus, both clusters are considered as correct.
All other clustering results are considered as wrong.

The following clustering assessment is based on the thesis’ manual source labeling and manual defin-
ition of correct confusion matrix entries. In total, 213 out of 928 Do728 source predictions (22.95 %)
are considered wrong and 715 (77.04 %) are considered correct. Figure 6.22 (a) shows the number
of clustering choices at the given clustering confidence. The correct and wrong clustering choices
decrease with increasing confidence. Figure 6.22 (b) shows the relative number of wrong and correct
clustering choices that lie above the confidence threshold tC . We observe that the wrong clustering
results decrease much more rapidly than the correct clustering results. As an example, if the clustering
results with confidence below tC = 0.1 are discarded, only a prediction for 59.26 % of the sources is
retained, but the clustering accuracy increases to 91.45 %.

Figure 6.23 shows the confusion matrix of our manually identified source types and the clustering
results for the A320. The correct clusters are determined as stated above for the Do728. In particular,
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Figure 6.23: A320, confusion matrix of the occurrences of our manually identified source types in
CRAFT’s determined clusters. The color intensity displays the mean clustering confid-
ence. Cluster choices this thesis considers correct are marked with a green box. The tree
above the clusters displays their hierarchy.

the super-cluster 14, 15, and 16 represent Strouhal number scaling tones. Thus, the clustering results
for the nacelle track, flap gap, and wing tip are considered as wrong. The super-cluster 7, 8, and 9
represent slat / tracks, with sub-cluster 7 including the slats and sub-clusters 8, and 9 including the
slat tracks and the slat edge. In total, 154 out of 408 source predictions (37.75 %) are wrong and 254
(62.25 %) are correct. As shown for the Do728 results, if the clustering choices with confidence below
tC = 0.1 are discarded, only a prediction for 51.47 % of the sources is retained, but the clustering
accuracy increases to 74.29 %.
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7 Discussion

The subsequent sections discuss the results presented in the previous chapters for beamforming,
Regions Of Interest, the Expert Decision Support System, and the implications on aeroacoustics.

7.1 Beamforming

Beamforming in noisy environments proved to be a valuable tool to suppress noise and estimate the
source power and source distribution in an area of interest. The accuracy and limitation depend on
the method and its assumptions, discussed in the following.

7.1.1 Conventional beamforming

Conventional beamforming proved to be a robust algorithm in the presence of strong background
noise. It yields systematic errors when the compact, incoherent monopole assumption is violated, but
the resulting spatial and power estimations are still reasonable approximations of the ground truth.
Conventional beamforming uses a normalized Green’s function to estimate the sound radiation, which
cannot be correct in estimating the source’s power and locations. Thus, two (out of four) steering
vector formulations are used.

Formulation III yields the correct source power estimation but not the correct source position and
formulation IV yields the correct positions but not the correct power estimation due to how sources
are projected on the source map. If the steering grid does not cover the sources, formulation III es-
timates distributed, blurred sources. This contaminates the locations where true sources are located.
At the same time, it is forgiving towards slight errors in the focal plane. They result in a source
power estimation error. For 3D focus grids, formulation III cannot be combined with CLEAN-SC
since sources estimated further away appear louder due to the steering vector distance normalization.
Effectively, CLEAN-SC always estimates the source positions at the focal plane furthest away from
the array.

Formulation IV suppresses sources not located in the focal plane strongly compared to formulation III.
Thus, the source maps are less contaminated with background noise, reflections, and source projec-
tions. In return, errors in the focal plane lead to drastic underestimations in the source power. In
the worst case, a source is not detected. Thus, formulation IV must be used with 3D focus grids
spanning the entire wing.

If the array is small compared to the focus distance and compared to the model itself, a 2D grid with
formulation III is appropriate. Otherwise, formulation IV and a 3D focus grid is advantageous.
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7.1.2 CLEAN-SC and B-CLEAN-SC

Given the discussed steering vector limitations, CLEAN-SC yields the correct estimation for inco-
herent monopole sources as intended. When CLEAN-SC’s assumptions, such as compactness and
incoherence, are violated, the source power and spatial distribution are wrongly estimated. Fully co-
herent, distributed sources are wrongly estimated in a single location. Further, CLEAN-SC is limited
by the resolution of conventional beamforming, which cannot resolve sources below the Raleigh fre-
quency limit that depends on the array’s aperture. Aliasing occurs above a frequency that depends
on the sensor spacing, so sources are often estimated at the locations of side and grating lobes.

B-CLEAN-SC overcomes the spatial estimation issue by assuming that source locations do not change
over frequency. CLEAN-SC results in arbitrary errors at low frequencies in combination with steering
vector III. B-CLEAN-SC fixed this by averaging frequency intervals of dirty maps to improve the
source location estimation. This works, as the locations of side and grating lobes change with fre-
quency so that they cancel out during the averaging, whereas true source locations add. Additionally,
the source location at low frequencies below the Rayleigh resolution limit is determined based on
higher frequencies, where the source positions can still be resolved. B-CLEAN-SC also works for
sources with a frequency-dependent spectrum and smallband sources. Here, the initial location es-
timation is only guaranteed to be simultaneously on the dominant source for some frequencies. Thus,
B-CLEAN-SC is prone to “confuse” the power contribution of these sources. A low iteration gain
factor must be used to relax this issue. Additionally, using frequency intervals instead of the whole
spectrum further relaxes this issue.

B-CLEAN-SC can correctly determine the location and power of the sources at low frequencies in an
open wind tunnel experiment and a lower overall noise level compared to CLEAN-SC. B-CLEAN-SC
spatial and spectral accuracy depends on the used frequency interval and showed an optimum at
1/4 of the total frequency interval, after which spatial accuracy is traded for a deteriorating spectral
estimation. One can account for this by defining frequency-dependent intervals so that the inter-
vals are large at low and high frequencies and small at medium frequencies, where B-CLEAN-SC
then effectively transitions to standard CLEAN-SC. A lower gain factor further relaxes this issue but
increases the number of iterations. The number of iterations is not performance-relevant since the
computationally costly part of the algorithm is only the initial calculation of the steering matrix and
initial dirty map.

The Do728 data showed that B-CLEAN-SC works well on wind tunnel data. B-CLEAN-SC estim-
ated consistent source locations throughout the frequency range, compared to CLEAN-SC, which
identified sources mainly at medium frequencies. B-CLEAN-SC’s spatial estimations are presumably
correct due to their consistency and correlation to geometric features such as slat tracks and the
flap side edge. Further, B-CLEAN-SC suppresses noise effectively compared to CLEAN-SC. The ROI
spectra showed identical results for both methods at medium frequencies where CLEAN-SC identified
sources. However, the estimated frequency range was limited compared to B-CLEAN-SC. CLEAN-SC
strongly overestimated the source power at low frequencies because of the distance scaling issue of
steering vector III, which was also observed for the synthetic example.
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The popularity of CLEAN-SC lies in its robustness and computational efficiency. Larger arrays and
high-resolution focus domains are likely to increase the computational effort and mitigate many of
CLEAN-SC’s shortcomings, such as the spatial resolution at low frequencies, further manifesting its
leading position in industrial applications. B-CLEAN-SC and other computationally efficient deriv-
atives, such as HR-CLEAN-SC, have the potential to be used in large-scale industrial applications.
It is unlikely that they will be replaced by advanced but computationally expensive methods such
as GO or machine learning beamforming soon. Instead, these methods should be treated as subsidi-
ary methods for specific use cases where complex acoustic properties, such as coherent, distributed
multipole sources, are of primary interest.

7.1.3 Global Optimization

generalized frequency Global Optimization is an established, non-linear imaging method, different
from grid-based methods. Conventional beamforming is a linear transformation, and due to the
steering vector problem, one cannot obtain a correct solution for the amplitudes and locations. Grid-
based inverse beamforming potentially solves this issue but suffers from the basis mismatch problem,
so sparsity has to be enforced artificially using regularization. GO offers a different solution since
the introduced propagation matrix is no longer fixed and can include any number of parameters,
such as the speed of sound, dipole source rotations, and other model properties, which can all be
subject to the optimization process. Optimizing any parameter in the source or propagation model is
possible, making the method suitable for incorporating the previously mentioned neglected properties.

A solution is obtained by minimizing the observed and estimated CSM error. The established error
metric is the MSE of the observed and estimated CSM, which is proportional to the inverse PSF
of the sources. Therefore, the method suffers from similar problems as conventional beamforming
and CLEAN-SC at low and high frequencies and estimates sources at local minima (side-lobes). This
thesis introduced a new energy function with parameters shared over the frequency, such as the
source locations. This model assumption is based on the observations throughout this thesis that a
source position is reasonably constant over large frequency intervals. This assumption increases the
ratio of equations to unknowns in the GO problem and smooths out the PSF and, thus, the energy.
A smooth energy function is essential since global optimizers are slow compared to local optimizers,
especially if the number of variables and their domain are large. While the proposed broadband GO
method outperformed CLEAN-SC and standard GO with nearly perfect results for the generic data-
set, the method is computationally expensive compared to CLEAN-SC.

Since the broadband energy function is somewhat smooth, Local Optimization offers a computation-
ally less demanding solution to the problem. The optimization results are nearly identical, given a
reasonable initial spatial estimation. An initial spatial estimation can be determined with CLEAN-SC
and SIND. As discussed above, it makes sense to use GO and LO as subsidiary methods to investig-
ate complex acoustic properties neglected by CLEAN-SC. Exemplary results for a synthetic multipole
showed that LO identifies the pole rotation, location, and source strength well. Thus, the presented
method is a viable candidate for these complex phenomena.
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GO, and LO require a predetermination of the number of sources, which is unknown prior to beam-
forming. A simple method is to overestimate the number of sources in the domain. Then, multiple
estimated sources approximate a true source, or spare estimated sources are randomly scattered
around the domain with zero source strength. The energy for multiple sources suggested that under-
estimating the number of sources will not lead to an estimated source approximating multiple true
sources. Thus, it may also be a computationally efficient strategy to solve GO and LO iteratively for
multiple sources.

Another challenge is the stability of the GO and LO results. Suppose one optimizes parameters such
as a dipole rotation or distributed source coherence with an underlying model. In that case, one
will obtain a result that estimates these parameters, even if the model does not fit the data. Thus,
the optimization loss should be evaluated with the results to estimate how well the results actually
approximate the data.

The results introduce further complexity to the interpretation due to increased parameters. Partially
coherent, distributed multipole sources can no longer integrated but must be evaluated individually
and manually, and the literature currently proposes no guideline for such an endeavor.

7.1.4 Grid-based ANN beamforming

This thesis evaluated grid-based ANN beamforming. Various researchers simultaneously proposed this
method during the period of the thesis. The elegance of supervised learning methods in aeroacoustic
testing is that the setup does not change during experiments, so the training must be only performed
once before the experiment, and results can be produced efficiently during the experiment in situ.
While the method quickly advanced in terms of ANN sizes and focus grid resolution, it proved diffi-
cult to interpret the results since there did not exist a rigorous definition of metrics that assess the
result’s quality.

This thesis introduced several metrics that enable an interpretation of the sparse results that com-
prise classification and regression errors. Here, the classification can only be assessed implicitly based
on the estimated source strength. The thesis surveyed different architectures and proposed several
input and output designs, of which a complex-valued ANN in combination with a logarithmic nor-
malization performed best. The under-performance of the absolute number casting may be because
the mapping is not holomorphic. The increasing sparseness on an increasingly dense focus grid was
partially overcome using a weighted loss, but the results still degraded with increasing focus point
resolution.

The architecture inherits all downsides of grid-based imaging methods, as it is difficult to handle
multiple source types at once, suffers from aliasing, and does not scale well for real-world focus grid
sizes. The ANN is supposed to learn the inverse, ill-conditioned propagation operator, a sub-optimal
task for ANNs. It also suffers from the problematic mapping from distributed sources on focus points
and spatial aliasing. Furthermore, the result is a high-dimensional map in which real sources and their
spectra must be identified. Due to the above reasons, this thesis sees limited use cases for grid-based
ANN beamforming and recommends transitioning to gridless methods.
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7.1.5 Gridless ANN beamforming

Gridless ANN beamforming results in a set of unordered predicted sources and, thus, requires a per-
mutation invariant error. GO is permutation invariant because it solves the forward problem, i.e.,
GO estimates a CSM based on the predicted sources and uses a MSE between the observed and
estimated CSM. However, the loss has local minima. Further, the existence of sources is determined
implicitly by their estimated power, similar to the grid-based ANN approach. Thus, this approach
should be avoided. Instead, this thesis proposed to predict the set of sources directly. This is known
as a tensor-to-set problem and uses a two-step loss function. First, a set member matching must
be performed, and then the best match loss is calculated. Here, the loss itself is used to calculate
the best match. For multiple source objects, the sets can be efficiently matched using the Hungarian
sorting algorithm; for a few sources, calculating all permutations is computationally more efficient.
The architecture allows directly including and learning properties, such as an explicitly formulated
classification variable. Hence, the classification is no longer implicitly assessed based on the source
power like in the grid-based approaches.

The proposed approach fixes the inherent problems of grid-based approaches, such as the discretized
mapping of distributed sources and detecting real sources from the resulting beamforming maps.
The estimation of a single monopole in a large domain showed that the architecture can accurately
estimate its location and spectrum, unlike the grid-based approach. The approach included distance
estimation, a difficult problem for beamforming methods due to the limited spatial resolution. Pre-
liminary tests showed that the estimation can be arbitrarily improved with further model training.

The architecture could accurately predict multiple sources’ existence, location, and power, but the
results showed a significant dependency on the SSR. This dependency was influenced by the total
number of sources and microphones, similar to conventional beamforming. The accuracy increased
logarithmically with increasing sensors, compared to conventional beamforming, which improves with
the inverse square root of microphones. The proposed model showed that the general approach of a
permutation invariant loss with a combined explicit regression and classification metric is viable.

The only comparable publication in this field is by Kujawski and Sarradj [71] with accurate spa-
tial resolution and source power estimations for up to ten sources. However, only a maximum
SSRmax = 10 dB was used (instead of 50 dB for this thesis), with a Rayleigh distribution of the
source strength (instead of a uniform distribution for the PSD). Further, sources are located on a
plane parallel to the array (instead of perpendicular). Thus, this thesis’s problem is drastically more
complex to solve with beamforming.

Dropout was introduced in the architecture to make it robust towards overfitting and ensure that
all frequencies are used to learn the source location. Since a regression task is performed, dropout
must be used not only during training but also during the inference. Dropout effectively results in
fewer sensors during the prediction and, thus, a lower dynamic range. Since modern arrays use many
microphones, dropout offers a unique solution to the “black box” machine learning problem. The
problem is that machine learning models can predict arbitrary results under unpredictable circum-
stances. Dropout allows the generation of multiple results for different active sensor pairings. Since
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the inference is computationally fast, many different results can be generated to obtain statistically
sound predictions and reduce the risk of observing an outlier prediction, e.g., caused by a defect sensor.

At this point, it must still be determined why the ANN only works within a limited dynamic range.
Due to the limited SSR in Kujawski and Sarradj’s work, it is unclear if the model could resolve
sources at a lower SSR. They use a subspace approach, decomposing the CSM into its eigenvalues
and eigenvectors before beamforming. This might be a viable approach for noise-free environments
so that the sources are separated prior to ANN beamforming with conventional machine precision.
However, in noisy environments such as closed wind tunnels, the eigenvalues are dominated by flow
noise, so subspace methods generally do not work. Further, it is unclear why an architecture should
predict multiple sources at once if the subspace approach separates the total CSM into individual
source CSMs that can be processed sequentially.

Since the proposed model is small, it may be possible to improve further the dynamic range with
advanced architectures such as transformers, as successfully employed by Kujawski and Sarradj, and
throughout the machine learning community for other tasks. Compared to Kujawski and Sarradj’s
model, the proposed architecture trains fast (10 min versus 60 h).

Like generalized frequency Global Optimization, the proposed approach can be extended to complex
sources by adding more regression variables, such as a dipole spectrum and orientation. Additional
classification variables can be used with cross-entropy for multi-class classification and mask the loss
for the regression variables if the source type is absent.

7.2 Regions Of Interest

This thesis presented two methods to detect sources and extract their spectra from sparse beamform-
ing maps. The methods were developed and evaluated on real-world wind tunnel experiments since
aeroacoustic experts only need support identifying sources in maps of complex, ambiguous data. The
drawback of this choice is the lack of a ground truth to quantify the results with a related metric.
Thus, the results are only discussed qualitatively by comparing them to each other, their consistency,
and the literature. Additionally, the results of the generic dataset are discussed quantitatively with
known source distribution, location, and emission power.

7.2.1 SIND

SIND assumes that compact acoustic sources appear spatially normally distributed in sparse beam-
forming maps. Note that while SIND is very similar to GMM, GMM (with an exponential kernel)
fails to reproduce the results of SIND. This is because of the high noise level, the arbitrary domain
borders (which randomly cut parts of the source distributions), and some distributions that viol-
ate the Gaussian assumption (such as line-like sources on the slat). An additional problem poses the
manual definition of the number of expected clusters and its strong influence on the cluster outcome.
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SIND correctly identified point-like sources such as slat tracks, strakes, flap tracks, or the wing
tip. It also identified overlapping sources like the flap side edge or point-like sources embedded in
distributed sources such as the nacelle and the slat tracks in the inner slat region. It profits from
stacking the histograms of multiple measurements at different Mach numbers and angles of attack
to increase the sample size for the histogram, yet fails to recognize sparsely distributed source blobs
with no clear midpoint. wind tunnel noise is a prominent example of this, as this source is projec-
ted on different parts of the image with increasing angle of attack due to the mismatched focal plane.

SIND can be efficiently employed on datasets of any size, which makes it a viable candidate for 3D
source identification in the future, where larger arrays and increased processing power will result in
more detailed, high-resolution beamforming maps. The results on the Embraer model already showed
a drastic improvement in resolution over the Do728 and A320 experiments where SIND extracted
clean spectra compared to the degenerate Do728 and A320 spectra.

SIND is robust against variations of the introduced thresholds and, thus, is consistent with the expert
out of the loop. Furthermore, the introduced change only the selection of the clusters, but not the
clusters themselves, as opposed to GMM. The source positions on the two similar airframe mod-
els are consistent and correlate to the blobs in the underlying source-part histogram. The correct
identification of line-like sources, such as the slat, needs to be improved for this approach. Com-
bined with CLEAN-SC, line-like sources’ source-parts do not reassemble normal distributions. SIND
tends to wrongly identify these as multiple point-like sources due to its distribution assumption in
combination with CLEAN-SC processing. However, the airframe datasets showed that SIND’s nor-
mal distribution approach was suited for most sources. A second distribution more suited towards
fitting line-like sources is of interest for future improvements. Using DAMAS over CLEAN-SC and
the analysis of aeroacoustic line sources such as leading and trailing edges might provide a more
suited starting point for this endeavor. SIND completely ignores the predicted source-part’s power in
its current implementation. Since the resulting spectra are expected to be smooth in a mathematical
sense, this information could be potentially used additionally to the spatial criterion, as shown with
the SIHC method.

7.2.2 SIHC

SIHC does not assume a predefined source distribution. Instead, it learns the underlying source distri-
bution from the presented data using the established clustering algorithm HDBSCAN. This requires
the expert in the loop, which means a threshold has to be determined manually to give accurate
results. The threshold, the minimum number of source parts for a cluster to form, can be roughly es-
timated based on the number of frequency bins in a spectrum. Based on the threshold, HDBSCAN can
form sub- and super-clusters. Thus, the expert can iteratively obtain a desired clustering result. This
thesis presented several novel visualization methods for beamforming and source identification, which
can aid the expert in judging if the clustering outcome approximates the true source distribution well.

Because of the additional frequency and SPL information, SIHC has the potential to separate spa-
tially overlapping sources, such as slat tracks and slats. On the one hand, it clustered the inner slat
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and the flap side edge to single sources for which the SIND solution is superior. On the other hand,
it was able to identify sources containing source-parts that are too far scattered around the map to
be identified by SIND, such as spurious noise sources that are not located on the wing. This is an
advantage, as these sources originate from the wind tunnel and steering vector III, and an early in
situ detection during test measurements can potentially help to find and eliminate them.

7.2.3 Comparison of both methods

Despite the similar identified source regions, SIND’s estimation of individual source positions is more
refined than the SIHC solution. Both methods identified the individual slat tracks (except for the
A320 inner slat), where two slat tracks exist, embedded in a distributed high-frequency noise source
belonging to the Krüger slat. Both methods identified the strakes, the wing tip, and the flap tracks
on the Do728, but SIHC did not identify the outer flap track on the Do728 and A320. The same is
true for SIND and the Embraer model. The source analysis showed that the outer flap track is quiet
compared to other sources and is only statistically deduced by SIND when simultaneously analyzing
multiple maps at different angles and Mach numbers. Its reconstructed spectrum is very degenerated,
so this issue can be attributed to the SNR of the beamforming process and CLEAN-SC.

SIHC also clustered the inner slat region of the Do728 to a single ROI, the nacelle region of the
A320, and Do728’s outer slat edge of the A320 and Do728. This thesis analyzed the Do728 and
A320 flap side edge and a Do728 slat source to evaluate the ROI quality. While the source-parts
of the flap side edge form two overlapping normal distributions, SIHC identified a single, combined
source. However, the flap side edge is composed of multiple spatially distributed aeroacoustic source
mechanisms [65, 31] and showed that its spectrum is driven by at least two, confirmed by independ-
ent studies [17]. Thus, the SIND result is superior to the SIHC result. The exemplary Do728 slat
source showed that the low Strouhal number scaling tones are a distributed line source superimposed
with point-like slat track sources that scale over the Helmholtz number at high frequencies. While
SIND identified most of the slat sources as point-like sources between the slat tracks, it could not
assign the low-frequency source-parts to the slat located at the slat track positions. Since SIHC has
the additional SPL and frequency information of each source-part and had no prior assumption of
the source distribution, it could assign the source-parts of overlapping sources to the correct sources
in this case. Thus, the SIHC result is superior for the slat sources, especially at low frequencies.

Both methods identify similar ROIs with different advantages and disadvantages to wind tunnel air-
frame experiments. SIHC works well for small datasets (e.g., a single angle of attack and few Mach
variations) with little statistical noise. It is advantageous for exploring the dataset because a single
threshold drastically changes the ROI outcome. Generally, density-based clustering methods fail to
separate clusters when too much noise is present that connects the clusters, so-called bridge points.
Consequently, SIHC yields better results when decreasing the Welch block size, which increases the
number of averages and results in less statistical noise but a lower frequency resolution.

SIND works well for noisy datasets with high-resolution spectra (large Welch block sizes) and yields
stable results mostly independent of the selected thresholds and profits from large datasets, i.e., sim-
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ultaneously clustering multiple parameter variations. Multiple parameter variations ensure that each
source is observed multiple times. Thus, the total number of source-parts increases, which allows
the detection of sources that are not detectable in single noisy beamforming maps. Since SIND’s
thresholds only limit the processing time and drop sources after the identification, increasing or de-
creasing these values will not change the outcome of the remaining sources. This makes the results
reproducible and the method robust.

SIHC is well-suited for an iterative process with the expert in the loop that can be fine-tuned to
the desired outcome, while SIND requires no tuning to generate stable results and can be employed
autonomously. The quality of SIND’s results decreases with smaller datasets (fewer measurements)
as the number of source-parts decreases. SIHC’s results improve as it has to handle less statistical
noise and vice versa. In specific cases, when two sources overlap spatially but can be distinguished
based on their spectrum, such as slat sources, the SIHC method has a clear advantage over SIND,
which naively assigns the source-parts based on their spatial probability alone. While dense source
distributions with bridge points are problematic for SIHC, it can detect sparse source distributions
without a clear midpoint, which SIND cannot detect (it relies on a well-localized distribution center
as a starting point during the iterations). Thus, SIND’s results heavily rely on a well-resolved beam-
forming map but can handle statistical noise due to insufficient CSM averages. SIHC, on the other
hand, can, to some degree, correctly assign the source-parts that are far away from their corres-
ponding source due to a low beamforming resolution based on their SPL and frequency information.
Thus, it can compensate for the deficiencies of conventional beamforming and CLEAN-SC. However,
its results suffer from statistical noise, requiring long measurement times or small block sizes for
sufficient CSM block averaging. Combining both methods by first employing SIND to extract the
high-density clusters and then performing SIHC on the remaining source-parts is possible.

The ability to identify sources quantitatively and estimate their position accuracy and acoustic power
was evaluated on the generic dataset with ground truth. This dataset provides a limited source iden-
tification challenge, consisting only of three spatially separated monopole sources. The challenging
aspect is the equidistant array spacing, which results in strong side and grating lobes. These are visible
in the CLEAN-SC maps at high frequencies. Also, the array resolution provides a separation challenge
at low frequencies. These limitations resulted in CLEAN-SC failing to reconstruct the beamforming
map at frequencies at low frequencies and estimating the correct PSD at high frequencies.

Both proposed methods identified the three sources in the CLEAN-SC maps with similar spatial
accuracy. Out of the total spectrum range, both proposed methods could reconstruct around 2/3
of the spectrum. Most of the failed reconstructions happened at a low SNR. These are caused not
by the proposed methods’ misidentification of source-parts but by CLEAN-SC’s failure to predict
correctly deconvolute the beamforming map at low SNR and low frequencies.

Performance-wise, SIND is superior to SIHC and can be employed on datasets of any size. It does
not cluster the points directly but estimates only the underlying distribution from a histogram, which
can be calculated very efficiently for structured grids used in conventional beamforming. Additionally,
both methods provide a confidence estimation for each source-part belonging to all sources. While
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the manual definition of ROIs determines if a source-part is part of a source, this information is
valuable for an expert in estimating the reliability of the source spectra. Together, both methods
cover the automatic source identification and spectrum generation from single, sparse, low-resolution
beamforming maps to high-resolution beamforming maps, including multiple parameter variations
with speed and accuracy that are unmatched by human experts.

7.3 Expert Decision Support System

This thesis presented the EDSS CRAFT, which clusters sources in a feature space that corresponds
to physical properties, to help the expert analyze the data and gain new insights into aeroacoustic
source mechanisms.

7.3.1 Manual classification

To evaluate the quality of the features and CRAFT, the thesis author labeled the presented data-
sets manually. Sources can gradually shift their spectrum shape with an increasing Reynolds number
and feature multiple frequency regions with different mechanisms. Thus, this thesis heavily relied on
meta-information for the manual source type identification, such as the source position. Since the
proposed method was designed to overcome this problem, the resulting metrics should be evaluated
cautiously. Also, the labeling was not performed by independent researchers.

To assess the combined quality of the feature space and the manual labels, the dimensionality re-
duction UMAP was performed, visualizing the data in two dimensions. The distance between the
source groups, distribution density, and connections relate well to the manual classification. Also,
the source type distribution emphasizes the problem of manually labeling the sources based on their
spectra because source types gradually transition from one category to another in the feature space,
e.g., slat cove noise that gradually transitions to slat track noise. The projected source distribution
showed that the source labels are reasonable since the sources form groups in the projection, and the
manual labels correspond well to the location of the members within their group. This shows that
both the feature space and the labels are appropriate to describe the sources in the presented dataset.

7.3.2 Aeroacoustic features

CRAFT is built on the assumption that an aeroacoustic source is driven by a mechanism that reveals
its nature over the variation of the Mach number. The aeroacoustic self-similarity theory showed how
the variation of the Mach number reveals the physical mechanism of a source. The limitation of this
very general and strong assumption is that any changes in the source mechanism over the Mach
number are neglected. However, the resulting standard deviations from the self-similarity optimiza-
tion showed at high Helmholtz numbers that sources can exhibit a substantial Mach dependency,
not captured by the proposed method. The Embraer data suggests that sources such as a cavity can
exhibit a Mach number dependency even at a constant Reynolds number based on their aeroacoustic
mechanism, which contradicts the initial EDSS self-similarity assumption. Reasons why some sources
show this violation of self-similarity are up to debate and may include resonance effects that are
coupled to the flow speed and the thickness of the shear layer depending on the Mach number



Discussion, EDSS 141

when the object is small, such as the strake. These are exceptions to the general observation that
self-similarity holds for nearly all observed sources.

Based on this assumption, this thesis proposed various features that are supposed to formalize
aeroacoustic properties and are robust towards degraded spectra, typically resulting from CLEAN-SC.
This is necessary since the source spectra are often unreliable at low frequencies or contain missing
values, as discussed above for conventional beamforming, CLEAN-SC, and the SIND/SIHC methods.
This is especially problematic since their dominant source power, which is preferred in many features,
occurs at these low frequencies. It is neither claimed that the list of the properties is complete and
covers all acoustic phenomena, nor is it claimed that the feature calculation is robust in all data
scenarios. Alternative feature definitions may outperform the ones proposed in this thesis. In other
scenarios, more features may be necessary to describe time-dependent phenomena, such as rotor
noise, jet noise, or landing gear noise, to name a few. However, since the proposed features are based
on fundamental aeroacoustic laws, they are assumed to capture the essence of any aeroacoustic
spectrum. Since the features were originally designed for the Do728 dataset but worked very well on
the A320 and Embraer datasets (which showed similar sources), they are assumed to generalize well
on airframe noise experiments.

The thesis proposed a definition of how self-similar the source spectra are over a given frequency
type, i.e., the Helmholtz and Strouhal numbers. The feature did not achieve satisfying results for
several source types, such as slat noise. The reason for this is the substantial decay in sound power
over the frequency of aeroacoustic noise due to its turbulence-induced origin, which dominates the
correlation stronger than the local spectral features such as tonal peaks or humps. Additionally, while
the slat tones are somewhat self-similar, as the normalized frequency of the tones does not change,
their intensity does over Mach number. The increased Mach number acts as an amplitude modulation
filter on the spectrum so that self-similarity, as defined, is violated. This behavior is not captured in
the proposed definition and degrades the results.

The true Strouhal number definition is insufficient for aeroacoustic source spectra since it does not
scale sources well. Thus, this thesis introduced normalized frequency, a generalization of the Strouhal
and Helmholtz numbers. This is the first time this phenomenon was described, but it is too complex
to be fully covered within the scope of this thesis. More research is necessary to understand the
underlying acoustic mechanisms and the implications on wind tunnel measurements. It is presumably
caused by local flow acceleration and deceleration around the complex object, so the aeroacoustic
mechanism is driven by the local flow instead of the free flow Mach number. This local accelera-
tion itself must be Mach-dependent. Otherwise, it would not alter the scaling exponent. While the
presented airframe models are somewhat similar, their detailed geometries are very different. The
presented data showed that the trailing flap side edge depends more strongly on the Mach number
than a true Strouhal number and that slat cove tones depend weaker on the Mach number for all
models. It is of interest for future research if the modification exponent generalizes well for source
types, as this thesis’ observations suggest.



142 Chapter 7

After obtaining the estimated self-similarity (i.e., Helmholtz-like and Strouhal-like scaling) modific-
ation exponent, two approaches can calculate further properties. The first approach is to calculate
features based on the best self-similarity estimation, i.e., the Helmholtz or Strouhal numbers. The
second approach is to calculate features over both the Strouhal and Helmholtz numbers. The advant-
age of the first approach is that it reduces feature redundancy and is closer to what the aeroacoustic
expert is used to do. However, this thesis showed that aeroacoustic spectra can include multiple
mechanisms that exhibit different self-similarities, such as the Do728 and A320 slat tracks. At this
point, it is unclear whether this behavior is caused by the insufficient spatial resolution of beamform-
ing and the source identification methods or if it is driven by a complex aeroacoustic mechanism
such as jet noise, where the low frequencies are well-known to scale over the Strouhal number, while
high frequencies scale over the Helmholtz number due to source coherence and propagation effects
such as convective amplification [89, 90, 91, 49]. Note that while this behavior was not observed for
the high-resolution Embraer experiment, the occurring Helmholtz scaling frequencies lie outside the
frequency range due to the smaller model size. Thus, this thesis employed the second approach and
calculated all features for both the Strouhal number and Helmholtz number independently.

This thesis presented a method to determine the power exponent for a separate scaling over the
Strouhal and Helmholtz numbers. The literature traditionally proposes to use linear regression on the
OASPL, but as discussed above, the aeroacoustic spectra show a substantial decay in power over
frequency. Since CLEAN-SC acts at low frequencies like a cut-on filter in absolute frequency, this
results in a different cut-on frequency for sources that scale over the Strouhal number. Thus, the
relative OASPL is larger at increasing Mach number as the cut-on frequency is lowered. Thus, this
method should be avoided for deconvoluted beamforming results. The proposed calculation method
is still sensible to degenerated spectra, especially since the assessed Mach number range is typically
small but yields stable results for most sources. Since the resulting feature is an exponent, it may
vary significantly with little influence on the observed scaling and cause significant variances within
source types, which can exceed the variances between different source types. Generally, many Mach
numbers and a large Mach number range are beneficial to assess the self-similarity of the spectra.
However, the Embraer results showed that high-resolution arrays and reliable spectra result in reliable
power exponents, where the standard deviation between the scaled spectra is very low, even for a
few Mach numbers.

A definition for the tonality of the spectra was introduced, resulting in several features. The tonality
features are highly correlated and belong to the same branch of the feature hierarchy. At this point,
it is unclear if fewer features with less correlation can capture the tonal behavior. Also, the features
are based on the statistical properties of the tones and yield unstable results if only one strong tone
exists, such as for the trailing flap side edge and strake.

This thesis introduced a method to detect if sources spatially move with increasing Mach number
if they are point-like or line-like. The results suggest that the source movement feature currently
estimates the position uncertainty instead of the true movement of sources (e.g., downstream mov-
ing vortex detachments). The source movement, shape, and compactness are mostly correlated and
belong to the same branch in the feature hierarchy. This suggests that they are subjected to an
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underlying, yet unknown, phenomenon. When comparing different datasets, the variance due to the
different array resolutions typically exceeds the variance between the source types. Thus, these fea-
tures should only be used to compare sources within one dataset.

Overall, the feature results showed that they strongly depend on the quality of the spectra. An
interesting effect is that, while self-similarity holds for most sources, a continuous change of the self-
similarity parameters was observed over increasing angle of attack and increasing Reynolds number.
While the latter may be related to actual changes in the sources’ aeroacoustic properties, a change in
the angle of attack should not alter a source’s self-similarity. The change in the generalized frequency
exponent may be caused by a further accelerated flow due to the change in the angle of attack, but
the reason for an altered Mach power exponent is unknown. A possible explanation might be a change
of the source’s directivity with increasing Mach number due to the aforementioned source coherence
and convective amplification since beamforming estimates the sound power of a source from a small
angular range (technically, the average sound intensity within the array’s area is estimated and not
the sound power).

7.3.3 Clustering

This thesis used HDBSCAN to cluster the sources without any prior assumption of the expected
number of source types or source distributions in the feature space. For the Do728, the resulting
clusters related well to the manual classification. This is a promising result since the feature space
not only captures enough information to separate most of the source types, but the variance between
the different source types is also greater than the variance of a phenomenon that is not of interest
(e.g., sources could be clustered based on their loudness and not based on their physical mechan-
ism). Since the manual source classification was often ambiguous and not all clusters related to the
labels, the exact accuracy of CRAFT and the reason for the wrong cluster choices is up for debate.
The quantitative evaluation of the Do728 clustering was based on the introduced confusion matrixes
and, thus, dependent on the manual determination of correct cluster estimations. The accuracy for
the Do728 is 77.04 %. The clustering accuracy was improved to 91.45 % using a lower confidence
threshold tC ≥ 0.1 by ignoring predictions below the threshold. This shows that wrong clusters are
often chosen with low confidence so that the expert can use high-confidence clusterings as a guideline
for the different source types and their representative spectra.

The usefulness of the chosen clusters can only be evaluated qualitatively based on their consistency,
ability to separate source mechanisms from each other, and ability to identify sources with a spatially
misleading location. Regarding the Do728 slat region, CRAFT showed that typical slat sources (slat
cove and slat tones) distinctly differ from slat track sources based on the cluster hierarchy. Occa-
sionally, slat tones appeared with decreasing probability towards high Reynolds numbers. Often, they
occurred at the slat positions but at different angles of attack (slat noise appeared mainly at low
angles of attack). CRAFT was able to separate these slat-related phenomena very well.

In comparison, multiple source types were clustered into a single cluster (typically the last cluster).
Decreasing the sample size for HDBSCAN results in a separation of these sources eventually, but
also in numerous sub-clusters for the other source types, especially the slat / track sources. The
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reason for this is the substantial mismatch of expected members per cluster. While there are ten slat
tracks on the Do728, only one strake is present, which is silent at most angles of attack. The expert
should keep this in mind when evaluating the clustering results, especially for clusters further down
the hierarchy branches.

Additionally, the clustering probability of HDBSCAN can be used to study the sources further. The
clustering probability can be used to identify ambiguous sources and sources that are prominent
examples of a cluster. If sources showed an ambiguous behavior so that the probability for more
than one cluster was dominant, both clusters would be typically correct clustering choices based on
the aeroacoustic behavior. An example is the Krüger slat, which showed an elevated probability of
belonging to the clusters associated with the slat resonance (at the Krüger slat), but also the leading
flap side edge (which features strong Helmholtz number scaling tones), the slat tones (Strouhal
number scaling tones), and a cluster that includes both slat resonances and the slat gap (also driven
by Helmholtz number scaling tones).

For the A320, CRAFT’s clusters did loosely correlate to the manually classified source types, and
thus, the accuracy of the result is more challenging to evaluate. Readers are encouraged to interpret
the confusion matrix results based on their experience. The evaluation based on the proposed con-
fusion matrix resulted in an accuracy of 61.52 %. The lower clustering accuracy can be attributed
to the larger feature variance compared to the Do728 sources. This is mainly caused by the worse
spectra quality due to the smaller microphone array employed for the measurements, fewer Mach
numbers, and smaller Mach number range.

Generally, the clustering results strongly depended on the feature quality, which depends on the
spectra quality. Thus, dominant sources within the dataset were clustered with much more confid-
ence than weak sources. Prominent examples are the flap side edge and the Krüger slat, which were
clustered correctly with high confidence. While the 3D beamforming results showed improvements in
spatial accuracy and source spectra reconstruction over the 2D results, the array resolution limits its
application for the Do728 and A320 datasets. Due to the intensive manual work of classifying the
sources and clustering results, the EDSS was not reperformed on the 3D beamforming data, com-
pared to the original publication [48]. For the Embraer experiment no clustering result or additional
results over the original publication [8] were presented, due the confidentiality of the data.

7.4 Aeroacoustics

This section discusses the implications of the thesis’ results on aeroacoustics. Note that the Do728
and A320 results are obtained for a Reynolds number that increases with an increasing Mach number,
while the results of the Embraer model were obtained at a constant Reynolds number. This allows
us to separate the effects of a change in Mach number and Reynolds number.
The first observation is that the prominent sources are nearly identical for all three models. The
dominant sources are the Krüger slat tracks, the outer slat track next to the nacelle, the vicinity
between the slat and the nacelle, the slat between the outer slat tracks, the flap side edge, and with a



Discussion, Aeroacoustics 145

strong overall contribution, the slat tracks. Lesser contributions yielded the wing tip, a source next to
the slat on the fuselage, and the flap tracks. At increasing angles of attack, the strakes also become
a dominant source.

The continuous location of the sources over the frequency indicates that the sources are spatially
compact. An exception is the slat between the slat tracks, particularly between the outer slat tracks,
related to the low Strouhal-scaling slat cove tones since it shows a continuous distribution similar
to the one presented for the synthetic line source model. The B-CLEAN-SC result supports further
evidence since B-CLEAN-SC’s algorithm tries to enforce spatially compact sources, but the estimated
outer slat area is still distributed.

This thesis presented various sources and their similarity spectra. They comprise different aeroacoustic
mechanisms with different scaling behaviors, Mach power scaling, and spectral features. Comparing
the source types between the models, the strake shows m = 0.79 for the Do728, m = 0.95 for the
A320, m = 0.78 for the Do728 slat cove, and m = 0.72 for the A320. However, these are obtained at
increasing Reynolds numbers over increasing Mach numbers and show a dependency on the angle of
attack. For the Do728 and A320, it remains unclear to which degree the increased Reynolds number
or Mach number causes the modification exponent. The deviation of the Embraer strake modification
exponent m = 1.01 from the other models suggests that it is caused by the increase in Reynolds
number and not by the increase in Mach number. The small deviation of the Embraer slat cove
modification exponent m = 0.81 from the other models suggests that the increase in Mach number
mostly causes it.

The slat cove tones are caused by Rossiter modes [62], where the peak frequencies depend on the
convective Mach number at the cove, which might have a non-linear relationship with the free-flow
Mach number. For cavity noise, a slight increase in the Helmholtz number over the Mach number is
described in the literature [45] for Rossiter modes, matching the experimental observations. A similar
increase in frequency with increasing Mach number is observed for the slat tracks, slat edges, and
flap side edges. The Embraer flap side edge source probably corresponds to a leading flap side edge
on the Do728 and A320 based on the Helmholtz-like scaling behavior and spectral shape. Trailing
flap side edge noise is not present on the Embraer wing. Note that due to the small (31 %) and
few variations in Mach number in the Embraer dataset, low modification exponents are subject to
some uncertainty and may not indicate a deviation of a true Helmholtz number. Thus, the flap side
edge, cavity, slat tracks, and slat edges should be regarded as a true Helmholtz-like scaling. For the
nacelle region and strake, a true Strouhal scaling is observed, which indicates an acoustic mechanism
depending on the free-stream Mach number.

For the power scaling of aeroacoustic noise, the literature proposes M5 for low frequencies [55]
based on 2D source-mechanisms [54], and M6 for high frequencies because of the dipole character of
sources [55]. This yielded a reasonable overall scaling for the broadband SPL of the Embraer model.
However, the sources that dominate the total broadband level, and roughly follow a M5-law are the
slat track sources. Williams [133] proposes that sharp geometrical edges cause these sources and
also follow a M5-law. Further investigations are necessary to clarify which theory is better supported
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by the data. This should be studied using reconstruction algorithms that preserve spatially extended
sources such as DAMAS. The slat cove tones strongly depend on the angle of attack [127] and
dominate the total SPL at lower frequencies and low angles of attack. However, their power scaling
is lower than the slat track broadband sources. This means they will be masked if present at higher
Mach numbers, which may explain why we do not experience such tonal noise in real aircraft noise.

The Embraer flap tracks and nacelle scaling exponents exceed M6, which might indicate the dipole
source mechanism. However, their source power contributes little to the total power at the observed
Mach numbers. Hence, the scaling exponents are subject to the uncertainty introduced by CLEAN-
SC due to the limited SNR. Similar scaling exponents for the Do728 and A320 are observed for the
flap tracks, while the sources at the nacelle are of different origins.

Negative scaling exponents were observed for sources such as the Embraer cavity and the strake, in-
dicating that their power decreases with increasing Mach number. The cavity phenomenon might be
due to a growing misalignment of the convective Mach number and the cavity resonance frequency.
For the strake, the absolute frequency of the tonal peak increases with increasing Mach number so
that the dominant wavelength shrinks compared to the shear layer, which was shown to decrease
the source power and lead to spectral broadening [69]. The Do728 showed that strake noise can be
composed of two parts, one originating upstream and one originating downstream at its tip, with
different scaling behaviors. However, the spatial resolution and SNR of this experiment are too low
to obtain reliable spectra to study this phenomenon further.
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8 Summary

This chapter provides a summary of the discussed methodologies, such as conventional beamforming,
CLEAN-SC, B-CLEAN-SC, GO, and LO, supervised learning beamforming, identifications of sources
and ROI, and the employment of an EDSS for automated feature calculation, and clustering of the
sources, their results and main findings, and key points from the discussion.

8.1 Beamforming

This thesis showed how conventional beamforming and CLEAN-SC compare against proposed meth-
ods custom-tailored to broadband sources. Results were presented for synthetic compact monopoles,
dipoles, and partially coherent line sources. Experimental results were presented for a streamlined
speaker in an open wind tunnel and a Dornier 728, Airbus 320, and Embraer model in closed wind
tunnels.

8.1.1 Conventional beamforming

Conventional beamforming results depend on the steering vector, a normalized Green’s function, of
which four formulations are typically considered. D. Ernst’s steering vector generalization showed
that they can either be used to obtain the correct source location or the correct source strength,
but never both. While this is an inherent problem to the linear transformation and naïve approach of
conventional beamforming, the method is fast and robust towards violations of the spatially compact,
incoherent monopole at the same time. While violating the method’s assumptions increases the
localization and power estimation error, the result is often still sufficient to identify and analyze the
source’s behavior.

8.1.2 CLEAN-SC

CLEAN-SC is designed to identify spatially compact, incoherent monopole sources. It is robust to-
wards distributed, coherent sources. While the positional estimation of the source suffers from totally
coherent sources, partially coherent sources are reconstructed as a point cloud that reassembles the
true source distribution fairly well, depending on the frequency and array setup. Depending on the
wavelength, a coherent distributed source will create an interference pattern in the resulting sound
field, leading to an underestimation of the source strength with increasing frequency. With decreasing
frequency, the source appears more and more compact compared to the wavelength so that the error
of the estimated power is reduced.

The quality of the CLEAN-SC result strongly depends on the conventional beamforming result, which
in return depends mainly on the experimental setup, that is, how many sensors are used, how large
the array’s aperture is, and the distance between the model and array. Due to the increasing distance
to the array, center side lobes at the edges of the focus domain can exceed the main lobe with
steering vector III for 2D planar beamforming and are reconstructed at the wrong position. Further,
sources not located within the focus domain still spill their side lobes into the domain, which then
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are estimated as sources. This is a problem in closed wind tunnel sections, where the walls are re-
flective, and strong sources of interference exist. These effects are mostly mitigated with steering
vector formulation IV, a 3D focus domain, and a large array so that beamforming is assessed in the
near-field of the array, as presented for the Embraer experiment.

8.1.3 B-CLEAN-SC

This thesis introduced B-CLEAN-SC, a variation of CLEAN-SC specifically tailored to broadband
sources. B-CLEAN-SC assumes that the location of broadband sources is constant over frequency
intervals. For synthetic and experimental wind tunnel data, B-CLEAN-SC outperformed CLEAN-SC
at low frequencies. For experimental real data, B-CLEAN-SC also reduced noise throughout the fre-
quency range. On wind tunnel data of a Dornier 728, both methods showed that the source location
assumption is valid, improves the spatial estimation of sources, and reduces noise.

The algorithmic difference between CLEAN-SC and B-CLEAN-SC is small. B-CLEAN-SC processes
multiple frequencies simultaneously and uses one additional operation per iteration compared to
CLEAN-SC. As it requires a lower gain factor, the number of iterations increases inverse proportionally
to the gain factor to meet a convergence criterion, which is not performance-relevant. The necessary
memory scales linearly with the number of employed frequencies within the interval compared to
standard CLEAN-SC, which is not an issue in terms of today’s computational capacities. This makes
B-CLEAN-SC a viable method for little computational effort but improved results at low and high
frequencies.

8.1.4 Global Optimization

This thesis introduced the gridless Global and Local Optimization for acoustic broadband sources,
with parameters like the spatial location or source orientation shared for all frequencies. The advant-
age over the single-frequency optimization process is the increased ratio of equations to unknown
variables, the smoothing of local minima in the energy function, which results from the array’s point
spread function, and the simple process of extracting the source positions and spectra from the results.

While the approach outperformed methods such as CLEAN-SC and standard GO on synthetic data,
the results were similar for the generic monopole experiment, with the proposed methods having an
advantage in low- and high-frequency regions, similar to B-CLEAN-SC. The main difference is the
handling of noise and the violation of the monopole assumption due to the speaker. While CLEAN-SC
results in strong noise scattered around the map, GO includes these violations in the estimated source
spectra, which results in an error in the predicted sound power. Thus, naïve beamformers seem to
be more forgiving towards violated assumptions, but GO provides the remaining energy to indicate
the violation’s severity.

One challenge for broadband Global Optimization is correctly determining the number of source ob-
jects. It was shown that an overestimation is a valid approach to finding all sources or to accounting
for properties not included in the Green’s functions, such as reflections or distributed sources. Then,
multiple source objects approximate a single source. However, they can be identified based on their
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spatial distance and integrated much simpler than CLEAN-SC or standard Global Optimization res-
ults.

GO is computationally expensive, and global optimizers are not guaranteed to find the global min-
imum. However, the problem reduces to Local Optimization by using reasonable initial locations and
multiple frequencies, which reduces local minima in the energy function. A reason to perform Local
or Global Optimization after obtaining reasonable initial values might be to identify source properties
neglected by grid-based beamformers, such as multipoles and distributed sources. The thesis pro-
posed a synthetic multipole problem, which was estimated with low errors.

8.1.5 Supervised learning beamforming

This thesis analyzed the capabilities of neuronal networks for beamforming using supervised machine
learning. Typical challenges that arise from the standard method, which maps the CSM to a focus
point vector, like conventional beamforming, are, first and foremost, the complex input and CSM
tensor dimensions and the sparsity of the resulting output vector. Several proposed evaluation met-
rics showed that a weighted loss and a vectorized upper triangular matrix of the CSM are promising
components for a successful machine learning model. At the same time, the neuronal network learns
the inverse of the propagation operator, which is ill-conditioned and rarely invertible, which leads to
unsatisfactory results.

This thesis proposed a novel gridless architecture similar to GO. Instead of predicting sources on
a fixed grid, few source objects are predicted, including their spatial location and spectrum. The
advantage of this method is that the output vector is small (a few sources times the number of
properties, e.g., source power and source location) compared to the grid-based approach (typically
several thousand grid points for 2D grids and several million points for 3D grids). The architecture
demonstrated a high classification accuracy, a low positional error, and a low spectrum estimation
error for dominant sources on a problem with up to three sources. The error increased with de-
creasing source strength. Weak sources were insufficiently estimated below a ratio of approx. 10 dB
compared to the dominant source. Thus, the permutation invariant loss with an explicit classification
and regression metric works in general, but the results suffer from low Signal to total Signal Ratios
(SSR), compared to CLEAN-SC and Global optimization where typically SSR of approx. 30 dB can
be achieved.

8.2 Regions Of Interest

Identifying sources manually, defining ROI, and extracting their spectrum from beamforming maps
is difficult and time-consuming. This thesis presented the two methods SIND and SIHC, which auto-
matically detect aeroacoustic sources in deconvolved beamforming maps. They identify underlying
source distributions and, thus, allow for the automatic determination of ROI. These are the first
automated approaches to identify sources and generate corresponding spectra from sparse beam-
forming maps without prior information about the source locations and the number of sources. Both
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methods cover various real-world scenario use cases, from single measurements with sparse source
distributions to high-dimensional datasets with parameter variations, and can be combined.

The resulting ROI and spectra for exemplary sources showed that SIND is superior in separating
dense, overlapping source regions, while SIHC is superior in assigning the source-parts to the correct
sources. This results in an improved reconstruction of spectra at low frequencies, typically scattered
around the whole map due to the shortcomings of conventional beamforming and CLEAN-SC. A
three-dimensional implementation of SIND in combination with steering vector IV showed improved
abilities to separate sources since the 3D source distributions are no longer projected on a 2D plane,
so the sources show less overlapping. Thus, a 3D domain of interest is advantageous if the array’s
resolution is sufficient. The elegance of SIND and SIHC is that they can be performed on any
sparse beamforming map. Thus, the underlying beamforming methods can be improved (e.g., with
HR-CLEAN-SC, B-CLEAN-SC, or DAMAS) without changing the source identification process.

8.3 Expert Decision Support System

This thesis presented the Expert Decision Support System Clustering source based on Aeroacoustic
Features (CRAFT), which aims to identify and analyze acoustic sources from beamforming maps
automatically. CRAFT uses clustering to group multiple sources based on their aeroacoustic prop-
erties to reveal underlying physical mechanisms and guide the acoustic expert in identifying and
analyzing the sources correctly. The general assumption of CRAFT is that the physical mechanism of
a source can be determined by the change of its properties over the Mach number, also referred to
as self-similarity. Thus, measurements at multiple flow speeds are required. The results showed that
self-similarity holds for nearly all airframe sources, except for slat tones and the Krüger slat resonance.

This thesis introduced a feature set that expresses aeroacoustic properties as a combination of single
numerical values. This reduces the complex acoustic properties to a data space that both machine
and expert can understand. The features are independent or averaged over the spectra at different
Mach numbers, which enables CRAFT to compare and cluster sources from different experiments,
typically obtained at different Mach numbers. The features directly correspond to meaningful phys-
ical properties. The results for the different experiments showed that the features are robust towards
degenerate spectra, but their estimation improves with improved spectra quality.

Exemplary source spectra and corresponding manual labeling of the sources were presented to eval-
uate the data further. The manual labeling of the sources is often ambiguous due to degenerated
spectra, multiple source mechanisms, or Reynolds number-dependent trends. Despite the ambiguous
manual source type identification, the source types formed distinguishable distributions in the intro-
duced feature space, which was visualized with a Uniform Manifold Approximation and Projection
for Dimension Reduction. Thus, the feature space captures enough variance between the proposed
source types, and the manual labeling corresponds to the observed feature variance.

The established Hierarchical Density Based Clustering for Applications with Noise algorithm was
used to group the sources in the introduced feature space, which did not include meta-information
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such as the source position, the angle of attack, or the Reynolds number. Thus, the clustering result
was purely based on the aeroacoustic properties of the sources. The estimated clusters corresponded
mostly to the manually identified source types, were consistent between the datasets, and provided
the necessary information to identify sources that behaved atypically for their spatial locations. For
example, it allowed the correct identification of the different source types located on a single slat po-
sition at different angles of attack, such as slat cove tones. The clustering also provides a confidence
estimation. Sources are mostly clustered wrongly by CRAFT at low confidence, while the clustering
at high confidence is mostly correct. Experts can discard predictions below a confidence threshold,
increasing the prediction accuracy.

8.4 Aeroacoustics

The acoustic analogies propose mainly dipole and quadrupole sources that scale around M6 to M8.
In contrast, dipole line sources scale at M5 and monopoles at M4. Sources scaling over the Strouhal
number can be attributed to free-flow effects and turbulence-induced noise, whereas sources over
the Helmholtz number indicate resonance phenomena and propagation effects such as spatially dis-
tributed source coherence and radiation modes. The scaling theory is based on the assumption of
self-similarity, which assumes that the observed phenomenon changes continuously over the flow
speed variation. However, a normalization of the observed phenomenon reveals that the underlying
mechanism has not changed.

Self-similarity holds for nearly all observed acoustic airframe phenomena. Exceptions are the strake
on the Do728, the cavity on the Embraer model, slat tones on the Do728 and A320, and the Krüger
slat on the Do728 at low angles of attack. The self-similarity analysis showed that sources either
scale over the Helmholtz number or around the Strouhal number. Some sources, such as the slat
cove-induced tonal noise at low frequencies, are self-similar over a by Mm, m ≈ 0.8 normalized fre-
quency, which indicates that the phenomenon depends on a convective Mach number that is slower
than the free flow Mach number, matching the Rossiter modes theory. Other sources, such as the
trailing flap side edge, show an increased Mach number dependency, such as the trailing flap side
edge with m ≈ 1.2 for the Do728, which indicates a locally accelerated local flow. This observation
was described for the first time in the literature, presumably because sources are typically evaluated
isolated in generic experiments where the local Mach number is assessed or because of the lack of
capabilities to investigate a large number of sources systematically.

The power scaling exponent of the sources showed deviations over the different experiments for
similar source mechanisms. These can be attributed to the small sampled Mach number range
and the degenerate spectra, but also possible aeroacoustic mechanisms. The continuous shift of the
exponent over parameters such as the angle of attack and Reynolds number indicate the influences of
an underlying phenomenon. A possible explanation might be that beamforming observes the sources
only at a small angular range so that convective amplification and source directivity are neglected
but may have an unpredictable influence on the scaling. To address this issue, further testing with
larger arrays from which subarrays are sampled to derive a source directivity is necessary.
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8.5 Thesis conclusion

This thesis introduced the necessary tools to advance broadband beamforming, either with con-
ventional optimization methods such as Global and Local Optimization or statistical optimization
and machine learning means. Since conventional beamforming and deconvolution methods such as
CLEAN-SC are still regarded as state-of-the-art for wind tunnel applications, this thesis provides with
B-CLEAN-SC, SIND, and SIHC Clustering the necessary tools to identify sources in sparse beam-
forming maps and extract their corresponding spectra.

For decades, the analysis and comparison of the resulting spectra depended on the often implicit
knowledge of the aeroacoustic expert. This thesis introduced features that capture that implicit know-
ledge of aeroacoustic properties in explicit formulas, which are robust towards degenerate spectra,
typically resulting from beamforming and deconvolution methods. The result is a machine-readable
high-dimensional feature space independent of the observed model and the employed Mach numbers.
Thus, different experiments are comparable by both experts and machines, and experts can interpret
the physically meaningful features. The introduced Expert Decision Support System allowed for the
first time to analyze complete datasets with hundreds of configurations and thousands of individual
sources. It was able to determine meaningful source clusters that relate well to manually determined
categories and proved fast and reliable during experiments for the in situ detection of spurious noise
sources.
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