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Abstract

Optimal transport is an area of mathematical research that has been gaining popularity in
recent years in various application fields such as economics, statistics or machine learning.
Two important factors behind its increasing popularity are its modelling flexibility and the
ever-expanding range of available dedicated computational tools.

Unbalanced optimal transport is a generalization that allows for the comparison of measures
with different mass, which is more appropriate in some applications. In this thesis, we consider
the barycenter problem (i.e. finding a weighted average) between several input measures with
respect to the unbalanced Hellinger–Kantorovich metric. In particular, we focus on the case with
an uncountable number of Dirac input measures. We study existence, uniqueness and stability
of the solutions, and demonstrate the intricate behavior of the barycenters with respect to the
length scale parameter using analytical and numerical tools.

Another important variant is branched transport, where the transport cost encourages the
formation of branched transportation networks. We focus in this thesis on its convex relaxation in
terms of multimaterial transport. In particular, we study the multimaterial problem in a setting
when only a single topology of the solution is admissible and describe the simple structure of the
dual solution in this case. We then formulate a problem with 3 sources and 1 sink where two
candidate solutions of different topologies give the same transportation cost, study its properties
and characterize the solution set.
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1 Introduction

Optimal transport is a scientific domain which studies the problem of finding the most cost-
efficient way to transport one input distribution to another. As many processes in various spheres
of life and science are controlled by a shortest path principle or a minimum energy principle,
optimal transport finds applications in different areas. While historically optimal transport was
developed for engineering [97], and logistics and economics [116, 75, 79], nowadays it is also
efficiently used in computer graphics [94], computer vision [114], computational biology [109],
medical imaging [70], statistics [78], machine learning [47], fluid mechanics [6] and many other
fields.

Optimal transport offers a natural way to define a distance in the space of distributions,
allowing to compare and interpolate between input distributions (see [4, Lecture 8] on metric
properties of optimal transport and Wasserstein distance). With its broad range of generalizations
and adaptations, optimal transport offers a powerful analytical tool (e.g. in the studies of
partial differential equations [60]) as well as a rich variety of computational methods [104].
However, it should be noted that optimal transport problems (especially in higher dimensions)
are computationally expensive (as compared to the alternative measure comparison options,
such as Lp or Mahalanobis distance), which leads to a constant interest in the development and
adaptation of computationally efficient numerical methods [49, 67].

A major drawback of the standard optimal transport is that it only works for measures of
the same total mass, which is not suitable in many applications, for example when the initial
data is subject to substantial noise and renormalization can lead to undesired effects. One of
the settings proposed to lift his constraint is unbalanced transport, which generalizes the optimal
transport problem to input measures with unequal total mass. Unbalanced optimal transport
has been studied for example in [10, 40, 42, 86] and found its applications in many fields, such
as machine learning [8], medical imaging [62] or bioinformatics [73]. We focus in this work in
particular on the Hellinger–Kantorovich distance (see [86] for an in-depth study and [36] for a
compact summary of some important properties and comparison with the Wasserstein distance).

An interesting problem arising in different application areas is the barycenter problem –
the problem of finding a (weighted) average of several input distributions with respect to a
chosen metric. The barycenter problem in balanced optimal transport setting (in particular,
in Wasserstein-2 distance) was proposed in [1] and studied in more detail in [103, 50, 21]. The
barycenter problem has also been extended to the unbalanced setting, in particular, for the
Hellinger–Kantorovich distance the barycenter problem has been studied in [65, 43]. One of the
settings proposed in [65] is the barycenter problem between several Dirac measures: While the
Wasserstein barycenter of any number of input Dirac measures is known to be a single Dirac
measure [1], the Hellinger–Kantorovich barycenter exhibited non-trivial structure depending on
the length scale parameter, even including some diffused solutions, which presents an interesting
challenge for further research.
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1 Introduction

While standard optimal transport does not take the interaction between masses into consid-
eration, in many applications combined transfer of resources is more advantageous than the
individual one, leading to the so-called branching behavior. Generally, a lot of natural and man-
made objects appear as branching structures, such as for example vascular systems in plants [95]
and animals [123], tree branches [105], lightning strikes [74] or computer networks [118], gas
pipelines [20], and electric power lines [106].

There are different optimal transport models incorporating the described property: In branched
transport [122, 90, 32], the optimal transport cost is selected to be concave, to encourage the
masses to travel in bulk. In urban planning [31], the cost of transportation is defined separately,
for transport on a network and (a generally higher cost) for transport outside of the network,
thus bringing the network ramification. In multimaterial transport [92], transport of mass of
different types is performed, and the cost of transporting different materials together is reduced
when compared to separate transport. These three problems, although seemingly describing
the optimal transport from different perspectives, turn out to have a lot in common, namely,
under some assumptions, branched transport and urban planning problems can be shown to be
equivalent [88, 89], and the multimaterial transport problem can be shown to be their convex
relaxation [92, 87]. Multimaterial transport has also been gaining some popularity on its own in
recent years, including for example the mailing problem [37] or the power line communication
technology modelling [91].

Multimaterial transport problem (in the general setting) is an infinite dimensional convex
optimization problem. Therefore, the numerical schemes have to rely on discretization [22, 93],
which in the case of the multimaterial problem has to be considered with care, as the chosen mesh
has to be a good representation of the edges of the optimal network. The development of efficient
numerical methods is therefore only possible if the behavior of solutions of the multimaterial
transport problem is examined more closely, at least in simplified settings.

The thesis is organised as follows.

Chapter 2: Background provides some background for this study, and is used to lay out
the notation, recall some definitions from different areas of mathematics, in particular convex
analysis, optimal transport theory, and numerical mathematics, and show the context of the
research presented in this thesis.

Chapter 3: Hellinger–Kantorovich Barycenter discusses the properties of barycenters in
the Hellinger–Kantorovich metric. Motivated by the non-trivial behavior discussed in previous
studies of the problem, we investigate the barycenters in the particular cases of a continuum of
general measures and of Dirac measures using both analytical and numerical tools. The results
presented in this chapter have been published in [23].

Chapter 4: Branched and Multimaterial Transport focuses on the branched and
multimaterial transport problems. As these problems are known to be difficult to solve, we
focus on some specific settings of multimaterial transport, namely, we consider a case when only
one network configuration is possible from the givens, and a low-dimensional case when two
specific configurations are allowed simultaneously. We also present two numerical schemes for
the multimaterial problem and perform some experiments to support our findings and gain more
insights into the intricate behavior of the solutions. The results, presented in this chapter, are
currently being prepared for publication as [24].
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2 Background

This chapter presents the necessary background for the thesis. Here we introduce notation, recall
definitions and provide important theoretical results, which will be used in further chapters.

The first section focuses on optimal transport in balanced and unbalanced settings and provides
a brief discussion of displacement interpolation. The next section is devoted to the elements of
convex analysis and convex duality theory. The last section of this chapter gives a small overview
of common numerical approaches for optimal transport.

Throughout the thesis, for a compact metric space (X, dX) we denote by C(X) the space of
continuous real valued functions equipped with the sup-norm and by C1(X) the set of continuously
differentiable functions whenever applicable.

We denote by M(X) the space of Radon measures equipped with the total variation norm, the
subsets of non-negative and probability measures are denoted by M+(X) and P(X) respectively.
We consider on M(X) the weak* topology induced via duality with C(X). For µ ∈ M+(X) one
has ∥µ∥ = µ(X).

2.1 Optimal transport

2.1.1 Balanced optimal transport

Monge formulation
The Monge formulation of optimal transport problem relies on the notion of push-forward

measures:

Definition 2.1.1. Let X,Y be compact metric spaces, µ ∈ M(X) a signed Radon measure,
T : X → Y a measurable function. The measure T#µ ∈ M(Y ) is called a push-forward of µ
along T if �

Y
σ(y)d(T#µ)(y) =

�
X
σ(T (x))dµ(x) ∀σ ∈ C(Y ).

In modern terms, the formulation of the optimal transport problem first proposed by Gaspard
Monge [97] is as follows: Given two probability measures µ ∈ P(X), ν ∈ P(Y ) and a Borel cost
function c : X × Y → [0,∞], find a transport map T such that

inf
T

{�
X
c(x, T (x))dµ(x)

∣∣∣∣ T : X → Y , T#µ = ν

}
. (2.1.1)

Because of its nonlinearity, problem (2.1.1) and its properties have remained unstudied for
a long time. In 1885 the French Academy of Science announced a prize for the research of
properties of the original problem given by Monge (with the cost function c(x, y) = |x− y|) under
the assumption that the solutions exist. The prize was awarded to Paul Appell (see [5] and [108]

3



2 Background

for historical context). The questions of existence of solutions were only later formulated by
Alexander Vershik in 1970 [119], and then studied further in the works of Vladimir Sudakov [115],
Luigi Ambrosio [3], Lawrence Evance and Wilfried Gangbo [60], Neil Trudinger and Xu-Jia
Wang [117], Luis Caffarelli, Mikhail Fekdman and Robert McCann [35] and others. Some of the
results were obtained using the relaxed formulation of the optimal transport problem, given by
Kantorovich, which we recall next.

Kantorovich formulation
More than 150 years later, the soviet mathematician Leonid Kantorovich introduced a different

formulation of the optimal transport problem [75]. This formulation, usually referred to by his
name, relies on the notion of transport plans or couplings:

Definition 2.1.2. Given two probability measures µ ∈ P(X), ν ∈ P(Y ), the set of transport
plans between the two is defined as

Γ(µ, ν) = {γ ∈ P(X × Y ) | P1γ = µ, P2γ = ν} , (2.1.2)

where operators P1 and P2 map their operands to first and second marginal respectively, that is
P1γ = [(x, y) 7→ x]#γ and P2γ = [(x, y) 7→ y]#γ.

Kantorovich’s formulation of optimal transport is to find a transport plan that solves the
following problem:

inf

{�
X×Y

c(x, y)dγ(x, y)

∣∣∣∣ γ ∈ Γ(µ, ν)

}
. (2.1.3)

One can see that this formulation of optimal transport problem is in fact a (potentially infinite
dimensional) linear program, i.e. an optimization problem with linear objective function under
linear constraints, which makes it far easier to study its properties. It should also be noted that
when an optimal solution of the Monge problem T exists, an optimal solution of the Kantorovich
problem can be constructed as γ = (Id , T )#µ, where Id is the identity function. Therefore, the
Kantorovich formulation is sometimes referred to as the relaxation of the Monge problem.

The transport problem was also considered (in finite-dimensional setting) independently by
other authors, for instance in 1930 by Aleksei Tolstoy [116], in 1941 by Frank Hitchcock [72],
and later in the 1940s by Tjalling Koopmans [79] and George Dantzig [51, 52]. After learning
about each other’s works, Koopmans and Kantorovich have communicated on the topic in the
later 1950s [120], and in 1975 they were awarded the the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel for “their contributions to the theory of optimum allocation
of resources” [99].

Wasserstein distance
An important property of optimal transport is that one can define a distance between probability

measures:

Definition 2.1.3. Assume X = Y , and let c(x, y) = d(x, y)p for some p ∈ [1,∞), where d is a
distance on X. Then the p-Wasserstein distance on X is

Wp(µ, ν) =

{
inf

�
X,X

d(x, y)pdγ(x, y)

∣∣∣∣ γ ∈ Γ(µ, ν)

} 1
p

. (2.1.4)

4



2 Background

The p-Wasserstein distance can be shown to satisfy the distance axioms (see e.g. [104, Propo-
sition 2.3]). An important property of the Wasserstein distance is its relation to the weak
convergence:

Theorem 2.1.4 (Basic properties of Wp [121, Theorems 6.9, 6.18]). Let (X, d) be a compact
metric space. The Wasserstein distance W metrizes the weak* topology over P(X). The metric
space (P(X),W ) is separable and complete.

2.1.2 Unbalanced optimal transport

In the previous section, we were considering the transport between two probability measures
µ ∈ P(X), ν ∈ P(Y ). However in practice the marginals µ ∈ M+(X), ν ∈ M+(Y ) sometimes
have different total mass, meaning that their renormalization could lead to some undesired effects.
Therefore, it has been proposed to use the unbalanced optimal transport – an unconstrained
optimization problem, where the marginal deviation is penalized with some divergence function D
(see [104, Section 10.2]):

inf
γ∈M+(X×Y )

�
X×Y

c(x, y)dγ(x, y) + ε1D(P1γ|µ) + ε2D(P2γ|ν).

One of the common choices is the Kullback–Leibler divergence D(·|·) = KL(·|·).

Definition 2.1.5. For µ ∈ M(X), ν ∈ M+(X) the Kullback–Leibler divergence (or relative
entropy) of µ w.r.t. ν is given by

KL(µ|ν) =


�
X
φ
(
dµ
dν

)
dν, if µ≪ ν, µ ≥ 0,

+∞, else,

where φ : R → R ∪∞ is defined by

φ(s) =


s log(s)− s+ 1, if s > 0,

1, if s = 0,

+∞, else,

µ≪ ν means that µ is absolutely continuous with respect to ν, i.e. for every measurable subset
A ⊂ X, ν(A) = 0 implies µ(A) = 0, and dµ/dν denotes the Radon–Nikodym derivative of µ
w.r.t. ν.

In particular, with D = KL, for c(x, y) = ∥x− y∥2 the unbalanced problem leads to the
squared Gaussian–Hellinger distance [86] and for

c(x, y) =

{
−2 log cos(|x− y|/κ), if |x− y| < κπ/2,

+∞, otherwise

it gives the squared scaled Hellinger–Kantorovich distance (also known as Wasserstein–Fisher–
Rao distance) [41, 86], with κ > 0 a length scale parameter (see a more detailed description in
Chapter 3).

5



2 Background

2.1.3 Displacement interpolation

Returning to the Monge formulation (2.1.1) in Rn and assuming an optimal map T with T#µ = ν
exists, let us select a parameter t ∈ [0, 1] and consider the map

Tt = (1− t)Id + tT.

The interpolation
ρt = (Tt)#µ =

(
(1− t)Id + tT

)
#µ

is called displacement interpolation or McCann’s interpolation and can be interpreted as moving
along a geodesic with respect to the Wasserstein distance Wp [66].

In the case p = 2, displacement interpolation can also be obtained as a solution of

ρt = argmin
ρ

{
(1− t)W2(ρ, µ)

2 + tW2(ρ, ν)
2
}
,

see for example [104, Section 7.1]. This perspective allows generalizing the problem to the
barycenter problem. Let (µk)k with µk ∈ P(X) be the input probability measures, and let (λk)k:
λk ≥ 0,

∑
k λk = 1 be the corresponding weights. The Wasserstein barycenter ρ ∈ P(X) can

then be defined as follows [1]:

ρ ∈ argmin
τ

∑
k

λkW2(τ, µk)
2.

The barycenter problem has also been generalized to the unbalanced optimal transport setting,
see for example [43, 65] and Chapter 5 of this work.

The notion of displacement interpolation is also closely related to the so-called dynamic (or
geodesic) formulations of the optimal transport problem.

Jean-David Benamou and Yann Brenier in the seminal work [11] presented the following
result, which is now often referred to as Benamou–Brenier formula. When X = Rn and
cost c(x, y) = |x − y|2, the squared Wasserstein-2 distance between µ, ν ∈ P(X) (see (2.1.4))
is equivalent to the problem of finding an optimal curve ρt and associated velocity field vt
minimizing the following functional

inf

{� 1

0

�
Rn

|vt(x)|2dρt(x)dt
∣∣∣∣ (ρt, vt) : ∂tρt + divx(vtρt) = 0, ρ0 = µ, ρ1 = ν

}
, (2.1.5)

i.e. the Wasserstein-2 distance can be expressed in terms of solutions of a continuity equation
(here we only present the dynamic problem formally, see the original work [11] and [4, Chapter 9]
for the details). The authors also proposed a momentum change of variables motivated by the
fluid mechanics interpretation which allowed them to obtain a convex objective functional with
affine constraints.

The Benamou–Brenier formula has later been generalized for other spaces and cost functions,
including some results for the unbalanced transport (see for example [10, 63, 13, 42, 111]).

As the dynamic model of Benamou and Brenier is formulated in terms of curves and velocity
fields, it belongs to the class of Eulerian models: Eulerian flow field models focus on space
and characteristics which are associated with it, while the alternative Lagrangian flow field
models focus on individual particles and their properties. There are also Lagrangian dynamic
formulations of optimal transport, which are specifically common in the applications allowing
interaction between mass particles (see for example [15, 33]).

6



2 Background

2.2 Elements of convex analysis and duality theory

This section contains some definitions and known results from convex analysis and (convex)
duality theory which will be used further in the thesis. Unless specified explicitly, the definitions
are given following [9].

Definition 2.2.1. Let X a locally convex space and S ⊂ X a convex set, let f : S → R. A
functional in the dual space v ∈ X∗ is called the subgradient of f at x0 ∈ S if

f(x)− f(x0) ≥ ⟨v, x− x0⟩ ∀x ∈ S. (2.2.1)

The set of all subgradients of function f at x0 is called the subdifferential of f at x0 and is
denoted ∂f(x0).

The subdifferential is by definition a convex and closed set, although it might be empty.

We also introduce here the proximal operator as an important tool for analysis and numerical
methods.

Definition 2.2.2. Let X be a Hilbert space and f : X → R ∪∞ proper lower semicontinuous
convex function. The proximal operator is defined as

proxf (y) = argmin
x∈X

{
f(x) +

1

2
∥x− y∥2X

}
. (2.2.2)

Proximal operator is closely related to the subdifferential:

p = proxf (x) ⇔ x− p ∈ ∂f(p). (2.2.3)

Definition 2.2.3. Let X be a normed vector space and f : X → R ∪∞ be a function operating
on that space. The convex conjugate or Fenchel–Legendre conjugate of function f is the function
f∗ : X∗ → R ∪∞, defined on the dual space X∗ as

f∗(x∗) = sup
x∈X

{⟨x, x∗⟩ − f(x)} ∀x∗ ∈ X∗.

The following useful formula can be shown for the convex conjugate computations (see e.g. [28,
Section 3.3]). For some a, b, d, e ∈ R and c ∈ R++ let g(x) = a+ bx+ cf(dx+ e). Then for the
convex conjugate one finds

g∗(x∗) = −a− e
x∗ − b

d
+ cf∗

(
x∗ − b

cd

)
. (2.2.4)

The following important result relates the convex conjugates and the subgradient.

Proposition 2.2.4 (Fenchel–Young inequality [107, Section 12]). For any function f : X → R∪∞
and its convex conjugate f∗ : X∗ → R ∪∞, for every x ∈ X and x∗ ∈ X∗ it holds that

⟨x, x∗⟩ ≤ f(x) + f∗(x∗).

The equality holds if and only if x∗ ∈ ∂f(x).

7



2 Background

It can easily be seen from the definition that the convex conjugate of a function is always lower
semicontinuous. In the view of that, the following result is important:

Theorem 2.2.5 (Fenchel–Moreau [4, Theorem 3.4]). For a proper function f and its biconjugate
f∗∗ := (f∗)∗, it holds that f = f∗∗ if and only if f is a lower semicontinuous convex function.

We next state an important result on duality for optimization problems, which is used often
throughout the thesis.

Theorem 2.2.6 (Fenchel–Rockafellar [107, Theorem 31.1]). Let X,Y be normed vector spaces,
G : X → R ∪∞ and F : Y → R ∪∞. Let A : X → Y be a linear bounded transformation from
X to Y .
Let p ∈ R ∪∞ be the primal value

p = inf
x∈X

F (Ax) +G(x), (2.2.5)

and d ∈ R ∪ −∞ be the dual value

d = sup
y∗∈Y ∗

−F ∗(−y∗)−G∗(A∗y∗), (2.2.6)

where Y ∗ is the dual space of Y , F ∗ and G∗ are the convex conjugates of functions F and G,
and A∗ is the adjoint operator of A.

Then these values satisfy the weak duality, i.e. p ≥ d.

If additionally functions F and G are proper convex, lower semicontinuous and either of the
following conditions is satisfied

∃x̄ ∈ X : (G(x̄) < +∞) and (F (Ax̄) < +∞) and

[(G is continuous at x̄) or (F is continuous at Ax̄)] , (2.2.7)

∃ȳ∗ ∈ Y ∗ : (F ∗(ȳ∗) < +∞) and (G∗(−A∗ȳ∗) < +∞) and

[(F ∗ is continuous at ȳ∗) or (G∗ is continuous at −A∗ȳ∗)] , (2.2.8)

then the strong duality holds, i.e. p = d. When (2.2.7) is satisfied, the supremum of the dual
problem is attained whenever it is finite. When (2.2.8) is satisfied, the infimum of the primal
problem is attained whenever it is finite.

Next we state and briefly discuss the dual optimal transport problem, for which the following
definition will be useful.

Definition 2.2.7. For a set S ⊂ Rn we denote by ıS its indicator function:

ıS(s) =

{
0, if s ∈ S,

+∞, else.

Function ıS is a convex if and only if S is a convex set.
We note that this function is sometimes called characteristic function of the set, however we

are following the convention of [107].
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Example 2.2.8 (Dual formulation of optimal transport). The dual problem for the balanced
optimal transport problem (2.1.3) is

sup

{�
X
φ(x)dµ(x) +

�
Y
ψ(y)dν(y)

∣∣∣∣∣
(φ,ψ) ∈ C(X)× C(Y ) : φ(x) + ψ(y) ≤ c(x, y) ∀x, y

}
. (2.2.9)

This problem is sometimes called Kantorovich–Rubinstein formula, and the dual variables φ and
ψ are called dual potentials or Kantorovich potentials.

Let us briefly show the derivation using the Fenchel–Rockafellar theorem in the case when the
cost function c(x, y) = ∥x− y∥2 (see [3, Lecture 3] for more general settings). We choose

G : P(X × Y ) → R ∪∞, G(γ) =

{�
X×Y c(x, y)dγ(x, y), if γ ≥ 0,

+∞, otherwise,

F : P(X)× P(Y ) → {0,∞}, F (u, v) = ı{u=µ,v=ν},

A : P(X × Y ) → P(X)× P(Y ), Aγ = (P1γ,P2γ).

Recalling here that the convex conjugate of a linear functional f(x) = ⟨a, x⟩ is f∗(x∗) = ıx∗=a(x
∗)

and the conjugate of an indicator function of the form f(x) = ıx=a(x) is f
∗(x∗) = ⟨a, x∗⟩ (see

for example [28, Chapter 3]), we can then write down the following expressions for the convex
conjugates G∗ and F ∗:

G∗ : C(X × Y ) → {0,∞}, G∗(u) =

{
0, if u(x, y) ≤ c(x, y) ∀x ∈ X, y ∈ Y,

+∞, otherwise,

F ∗ : C(X)× C(Y ) → R, F ∗(φ,ψ) =

�
X
φ(x)dµ(x) +

�
Y
ψ(y)dν(y).

From the definition of the adjoint operator ⟨Ax, x∗⟩ = ⟨x,A∗x∗⟩ ∀x ∈ X,x∗ ∈ X∗, we can
compute also

A∗ : C(X)× C(Y ) → C(X × Y ), A∗(φ,ψ)(x, y) = φ(x) + ψ(y).

We also note that in the chosen setting both F and G are proper convex and lower semicontin-
uous, operator A is a linear bounded map. Let φ(x) = x and ψ(y) = y for x ∈ X and y ∈ Y .
Function F ∗ is continuous and finite at (x, y) and G∗(−A∗(x, y)) = 0 is finite, so condition (2.2.8)
is satisfied and therefore strong duality holds.

Theorem 2.2.9 (Primal–dual optimality conditions [107, Theorem 31.3]). For the optimization
problems as in Theorem 2.2.6, a primal-dual pair (x, y∗) ∈ X × Y ∗ is optimal if and only if

Ax ∈ ∂F ∗(−y∗) ⇔ −y∗ ∈ ∂F (Ax) ⇔ F (Ax) + F ∗(−y∗) = −⟨A∗y∗, x⟩ , (2.2.10)

A∗y∗ ∈ ∂G(x) ⇔ x ∈ ∂G∗(A∗y∗) ⇔ G(x) +G∗(A∗y∗) = ⟨A∗y∗, x⟩ . (2.2.11)
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Example 2.2.10 (Primal-dual optimality conditions for optimal transport). For the balanced
optimal transport, a primal feasible γ (2.1.3) and a dual feasible pair (φ,ψ) (2.2.9) are optimal
if and only if

spt (γ) ⊂ {(x, y) ∈ X × Y : φ(x) + ψ(y) = c(x, y)} . (2.2.12)

For the primal candidate γ, dual candidates (φ,ψ) and F,G and A as in the Example 2.2.8
condition (2.2.10) gives the marginal constraints:

P1γ = µ, P2γ = ν.

The second condition (2.2.11) can be written as

⟨φ+ ψ − c, γ⟩ =

{
0, if γ(x, y) ≥ 0, φ(x) + ψ(y)− c(x, y) ≤ 0 ∀x ∈ X, y ∈ Y,

+∞, otherwise.

By studying the case when the obtained expression is finite, we can find out the following
slackness conditions: Whenever γ(x, y) > 0 and φ(x) + ψ(y)− c(x, y) ≤ 0, the right side of the
expression is equal to 0, and so should the left side, meaning that φ(x) + ψ(y) − c(x, y) = 0;
when γ(x, y) = 0 and φ(x) + ψ(y) − c(x, y) ≤ 0, both sides are equal to 0 even if the second
condition is satisfied as a strict inequality. Therefore, we conclude that for any x ∈ X, y ∈ Y , if
γ(x, y) > 0, then φ(x) + ψ(y) = c(x, y), which can also be written as (2.2.12).

2.3 Numerical approaches for optimal transport

In this section, we briefly discuss some numerical methods and techniques for optimal transport.
It is not meant as a full taxonomy, but rather just shows the diversity and variety of the existing
methods and puts this research into context.

Linear programming
As mentioned earlier in this chapter, optimal transport can be seen as a special case of linear

programming. Therefore, the solvers developed for linear programs can also be applied to discrete
optimal transport problems.

The first broad class of methods for linear programming is the methods which follow the
boundary of the feasible set of the problem until a vertex of the optimal solution is reached. The
methods of this class are the simplex method developed by Dantzig in the 1940s (the original
paper is classified, see instead the paper on generalized simplex method by Dantzig et al. [55]
and the historic overview [53]) and its variations and generalizations, such as network simplex
method [52, 48], dual simplex method [83], or primal-dual simplex method [54].

Another large group of methods commonly used for linear programming is interior point
methods, also known as barrier functions methods. In the methods of this class, the linear
program is converted into an unconstrained minimization problem by adding a barrier term
which penalizes leaving the feasible set. Different versions of interior point methods for linear
programming were proposed among others by Dikin [56], Khachyan [77] and Karmakar [76].

It can be noted that there are also methods for solving linear programs that do not belong
to either of the two classes above (e.g. a method proposed by Seidel [112] or Meggido’s
algorithms [58]), however, the methods from the discussed classes remain prevailing.
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Linear assignment problem
An important special case of optimal transport problem is the linear assignment problem:

min
{
⟨C, x⟩

∣∣ x ∈ {0, 1}n×n : P1x = 1n,P2x = 1n
}
, (2.3.1)

where C ∈ Rn×n is the cost matrix, ⟨·, ·⟩ denotes Frobenius inner product, 1n is the vector with
all entries 1, and the projection operators are P1x =

∑n
j=1 xij and P2x =

∑n
i=1 xij .

One of the first efficient numerical methods for the linear assignment problem called Hungarian
method was proposed by Kuhn [81]. It is a direct method, which first selects a dual feasible
solution and then improves it on every step until the optimal assignment is found or the problem’s
infeasibility is established.

Another commonly used linear assignment solver is the auction algorithm due to Bertsekas [16].
It is an iterative algorithm, which solves a relaxed assignment problem and finds partial assign-
ments on each iteration. The method is especially efficient when implemented together with an
ε-scaling technique – applying the algorithm several times with a decreasing relaxation parame-
ter ε [17]. The auction algorithm has later been adapted to the general discrete transportation
problem [19].

Some of the general linear programming algorithms have also been adapted to the specifics
of the linear assignment problem, for example, the dual simplex [69]. See also [57] for a broad
overview of other algorithms for linear assignment problems.

Although the methods of linear programming are well-developed and well-studied, they
generally lack efficiency when applied to large-scale optimal transport problems, which becomes
particularly daunting when one (or both) of the input measures are not represented as a sum of
single Dirac measures and require discretization.

Based on partial differential equations
As already stated in Section 2.1.3, in some cases, the Wasserstein distance between two

given measures can be expressed through solutions of a continuity equation. The original paper
by Benamou and Brenier proposes a variant of an augmented Lagrangian method on a finite
difference staggered grid for numerical solution of the dedicated optimization problem [11].
Numerical schemes involving similar grids combined with various proximal splitting methods
have been proposed and studied in [102]. A solver based on nested finite volume discretization
and interior point method was proposed in [98].

Another wide class of methods is based on solving the Monge–Ampère equation. The Monge–
Ampère equation is a non-linear elliptic partial differential equation, which we introduce as follows
after [14]. Assuming X,Y ⊂ Rn compact and turning to the Monge formulation of optimal
transport (2.1.1) for quadratic cost c(x, y) = ∥x− y∥2, one can write the mass preservation
condition for a map T : X → Y as

ν(T ) det(∇T ) = µ, (2.3.2)

where ∇u is the gradient of the function u. One can then represent the unique map T∗ minimizing
(2.1.1) as a gradient of a convex function u : X → R, i.e. T∗ = ∇u. Formally substituting it
into (2.3.2), one obtains the Monge–Ampère equation:

det(D2u(x)) =
µ(x)

ν(∇u(x))
, for x ∈ X,

11



2 Background

with the conditions that u is convex and that the gradient map takes X to Y : ∇u(X) = Y (here
D2u is the Hessian of the function u).

The authors of [14] propose relaxation of the boundary conditions and offer a review of several
dedicated domain discretization approaches and solution methods.

Some other insightful examples of partial differential equations in connection with optimal
transport together with a discussion of strategies for their solution can be found in [60].

Semi-discrete transport
In the problems of semi-discrete transport, the transport is conducted between a discrete and

a continuous measure. It should be noted that semi-discrete transport has its own applications,
however it can also be used as a discretization of a continuous transport problem [96]. In
2D and 3D the problem can be constructively viewed from a geometric perspective: For costs
c(x, y) = ∥x− y∥ and c(x, y) = ∥(∥x − y)2, the space of the continuous input measure can be
discretized using Laguerre cells (or their generalizations), where each cell should be mapped into
a separate component of the discrete measure [104, Chapter 5]. Numerical schemes for more
general settings based on solving the Monge–Ampère equation have been proposed and discussed
in [100, 7, 96]. Broad reviews of the numerical approaches can be found in [85] and [26].

Entropic optimal transport
Here we primarily follow the description of the entropic optimal transport and Sinkhorn

algorithm from [104, Chapter 4].

Definition 2.3.1. Entropy-regularized optimal transport problem is

inf

{�
X×Y

c(x, y)dγ(x, y) + εKL(γ | µ⊗ ν)

∣∣∣∣ γ ∈ Γ(µ, ν)

}
, (2.3.3)

where ε > 0 is a regularization parameter, µ⊗ ν ∈ M+(X × Y ) is the product measure, i.e.�
X×Y

f(x, y)d(µ⊗ ν)(x, y) =

�
X×Y

f(x, y)dµ(x)dν(y),

and

KL(γ | π) =
�
X,Y

log

(
dγ

dπ
(x, y)

)
dγ(x, y) +

�
X,Y

(dπ(x, y)− dγ(x, y))

is a generalization of the discrete Kullback–Leibler divergence (see Definition 2.1.5) with a
convention KL(γ | π) = +∞ if γ does not have density w.r.t. π.

With ε > 0, problem (2.3.3) is strictly convex. It can be shown that the unique solution of (2.3.3)
converges with ε→ 0 to the maximum entropy solution of the unregularized problem (2.1.3) [84].

The dual problem to (2.3.3) is given by

sup
{�

X
φ(x)dµ(x) +

�
Y
ψ(y)dν(y)− ε

�
X×Y

e
−c(x,y)+φ(x)+ψ(y)

ε dµ(x)dν(y)∣∣∣ (φ,ψ) ∈ C(X)× C(Y )
}
.

Let the input marginals µ, ν be discrete so that µ =
∑m

i=1 µ̄iδxi and ν =
∑n

j=1 ν̄jδyj with

(xi) ⊂ X, (yj) ⊂ Y , µ̄ ∈ Rm+ , ν̄ ∈ Rn+. Let matrix C ∈ Rm×n store the values of the cost function
c at the support of the discrete measures: Cij = c(xi, yj). Let K ∈ Rm×n be defined as

Kij = e−
Cij
ε .
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Sinkhorn’s algorithm consists in performing subsequent updates

u(k+1) =
µ̄

Kv(k)
, v(k+1) =

ν̄

Ku(k+1)
(2.3.4)

for k = 0, 1, 2, . . . with arbitrary v(0) ∈ Rn+; the division is performed component-wise. Vectors
u ∈ Rm and v ∈ Rn are called (diagonal) scaling factors. The regularized transport plan
γ ∈ Rm×n can then be retrieved as

γij = uiKijvj , i = 1, . . . ,m, j = 1, . . . , n.

The dual potentials φ ∈ Rm, ψ ∈ Rn can be retrieved as

φ = ε log(u), ψ = ε log(v).

The algorithm is named after Richard Sinkhorn who first published convergence results for
iterations of the type (2.3.4) in [113], although methods based on similar iterations have been
considered before (see a short overview in [104, Remark 4.5]).

It is important to note that when the regularization parameter ε→ 0, the regularized optimal
transport problem converges to the unregularized one, but the numerical stability of the Sinkhorn
iterations deteriorates, as the values of matrix K become too small and eventually comparable
to the computational error. This problem can be overcome by performing the computations in
the log domain, which however can lead to increased computational complexity. We refer to [110,
Section 3.1] for an approach offering a balance between stability and speed.

Apart from numerical instability, when ε→ 0, the algorithm also exhibits a slower convergence
rate. To remedy this, it has been proposed to use an ε-scaling scheme [80, 110], similar to the
scheme used in the auction algorithm.

Another potential computational issue is the sparsity of the solution. In unregularized optimal
transport problems, the optimal transport plan is usually concentrated on a small subset of
the product space X × Y , and while the introduction of the regularization term diffuses the
solution, with the decrease of the value of ε the sparsity should be retrieved again. Therefore,
the numerical solver should be flexible to allow for different levels of resolution depending on
the current approximation. A dedicated kernel truncation procedure based on local duality gap
estimations together with a hierarchical multi-scale scheme can be found in [110]. An alternative
technique for sparsity preservation (based on Lagrangian problem description) has been proposed
in [61, Chapter 4].

It should be also noted that the Sinkhorn algorithm can be generalized and adapted to other
optimal transport problems, including unbalanced settings and barycenter problem [12, 41].
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This chapter is devoted to the study of the barycenter problem in the Hellinger–Kantorovich
metric. The results presented in this chapter were published in [23].

Wasserstein barycenter problem introduced in [1] (see the statement in Section 2.1.3) can be
extended to the unbalanced setting by considering the barycenter problem with an unbalanced
optimal transport metric. For scaled Hellinger–Kantorovich distance (see Section 2.1.2), the
barycenter problem has been studied in [65, 43]. In particular, to better understand the role of the
scaling parameter κ, the authors of [65] studied the case where the input measures are all Dirac
measures. Unexpectedly, even on some simple analytical and preliminary numerical examples,
they observed a non-trivial structure depending on the length scale parameter. The behavior
seemed reminiscent of hierarchical clustering methods where the number of clusters is chosen
automatically, depending on κ. Between transitions of different cluster numbers sometimes
a diffuse intermediate solution was observed. In these cases, the solution was shown to be
non-unique and a discrete solution was always shown to exist as well.

The goal of the research presented in this chapter is to study the Hellinger–Kantorovich
barycenter problem and the properties of its solutions in more detail, with a focus on the case of
Dirac marginals. This chapter is organized as follows.

Section 3.1 recalls some background on the Hellinger–Kantorovich distance.

Throughout Section 3.2 we study the HK barycenter problem between a continuum of general
(non-Dirac) input measures. We provide existence and stability under changes in the distribution
of input measures and scaling parameter κ, including the limits κ → 0 (Hellinger limit) or ∞
(Wasserstein limit). A dual problem is derived that will become instrumental in the analysis of
the Dirac case.

Section 3.3 is dedicated to the Dirac case. We give simplified expressions for the primal and
dual objectives and show existence and uniqueness of dual solutions, primal-dual optimality
conditions, and dual stability with respect to the variations in the distribution of the input Dirac
measures and the length scale parameter κ. The solution for the κ = 0 limit is given explicitly
and the asymptotic behavior as κ→ 0 is described in terms of total mass and local mass density
of the minimizer. Finally, we turn to the question of the sparsity of the minimizers. We give an
alternative proof to that of [65] that discrete minimizers exist when the distribution of the input
measures consists of a finite number of Diracs. But conversely, we also give analytical examples
for which no discrete minimizers exist for a continuum of marginal measures.

Section 3.4 discusses numerical approximation and examples. We propose a non-convex
Lagrangian discretization, reminiscent of methods for quantization problems. It provides high
spatial accuracy in the case of sparse solutions. Unlike the quantization problem, missing points
can be detected by sampling the dual potential. We illustrate that the evolution of the barycenter
is stable with respect to κ, but far from a simple successive merging of clusters. Instead, a
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wide variety of transition behaviors is documented. The convergence of the barycenter as the
sequence of sampled empirical distributions of the input data converges to a “true” distribution
is visualized. We observe that for some values of κ the HK barycenter seems to be unique
and can be approximated well numerically, whereas for other values (usually the “transition
regimes”) this proves to be quite challenging since either it is non-unique or the basin around the
minimizer is extremely shallow, as evidenced by very degenerate primal-dual slackness conditions.
Non-uniqueness of minimizers and a vast set of near-optimizers are common phenomena in
non-convex measure quantization, see e.g. [30, Section 4.1].

In conclusion, the HK barycenter between Dirac measures does not provide a novel straightfor-
ward method for hierarchical point clustering, since the evolution of the minimizer with respect
to the length scale parameter does not correspond to a simple successive merging of clusters, and
sometimes even only diffuse solutions exist. But it does provide an interpolation between the
input data and a single Dirac measure, parametrized by a single length scale parameter, that
can be interpreted as gradual coarse graining. It is provably stable with respect to the input
data and scale changes and comes with a corresponding sequence of dual problems with unique
solutions, that provide additional interpretation via the primal-dual optimality relations and
information for numerical approximation. A summarizing discussion is given in Section 3.5.

Author’s contribution
The author has made minor contributions to Section 3.2.
The author has made major contributions to Sections 3.3 and 3.4. In particular, in Section 3.3

the author contributed to formulating, validating or disproving the conjectures about the
properties of the barycenter of a continuum of Dirac measures. In Section 3.4 the author
was responsible for implementing, testing and improving the numerical schemes, as well as for
conducting numerical experiments and interpreting the results.

3.1 Hellinger–Kantorovich distance

Here we briefly recall the properties of Hellinger–Kantorovich distance required in this chapter.
First we give an explicit expression for it already mentioned in Section 2.1.2 and then give an
alternative formulation.

Throughout this chapter we let Ω ⊂ Rn be a compact and convex set with non-empty interior.

For µ, ν ∈ M+(Ω) the scaled Hellinger–Kantorovich distance HKκ is given by [86]

HK2
κ(µ, ν) := inf

{�
Ω2

ĉκ(x, y) dγ(x, y) + KL(P1γ|µ) + KL(P2γ|ν)
∣∣∣∣γ ∈ M+(Ω

2)

}
, (3.1.1)

where

ĉκ(x, y) :=

{
−2 log cos(|x− y|/κ) for |x− y| < κπ/2,

+∞ otherwise.
(3.1.2)

This is an optimal transport problem where the marginal constraints are relaxed and deviations
from the marginals µ and ν are admissible and penalized by the Kullback–Leibler divergence,
allowing for changes of mass. Parameter κ > 0 is a length scale parameter that balances the
trade-off between transport and mass change. From the definition of ĉκ we infer that mass is
never transported further than κπ/2, in particular κ effectively re-scales the Euclidean distance
on Ω, as elaborated in the following Remark.
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Remark 3.1.1. For κ ∈ (0,∞) let S : Ω → Ω/κ, x 7→ x/κ. Then for µ, ν ∈ M+(Ω) one obtains
that HK2

κ(µ, ν) = HK2
1(S#µ, S#ν) where the latter distance is computed on M+(Ω/κ). This

follows quickly from the fact that S is a homeomorphism between Ω and Ω/κ, implying for
instance KL(P1γ|µ) = KL(P1S#γ|S#µ).

We also recall an alternative formulation for HKκ, as given by [42]. Let Cos: R → R denote
the truncated cosine function defined as

Cos(s) := cos (min{|s|, π/2}) for s ∈ R

and consider the following cost function cκ : Ω× R× Ω× R → R ∪ {∞},

cκ(x1,m1, x2,m2) :=

{
m1 +m2 − 2

√
m1m2Cos(|x1 − x2|/κ) if m1,m2 ≥ 0,

+∞ otherwise.

Then, the scaled Hellinger–Kantorovich distance HKκ can be written as

HK2
κ(µ, ν) = inf

{�
Ω2

cκ

(
x, dγ1dγ (x, y), y,

dγ2
dγ (x, y)

)
dγ(x, y)

∣∣∣∣∣
γ1, γ2, γ ∈ M+(Ω

2), γ1, γ2 ≪ γ and P1γ1 = µ,P2γ2 = ν

}
. (3.1.3)

Note that γ in (3.1.3) is just an auxiliary variable and the integral does not depend on the choice
of γ by positive 1-homogeneity of cκ in its second and fourth argument.
A dual formulation for (3.1.1) and (3.1.3) is given by [42]

HK2
κ(µ, ν) = sup

(ψ,ϕ)∈Qκ

[�
Ω
ψ(x) dµ(x) +

�
Ω
ϕ(y) dν(y)

]
, (3.1.4)

where the set Qκ is defined by

Qκ :=

{
(ψ, ϕ) ∈ C(Ω)× C(Ω) s.t.

ψ(x), ϕ(y) ∈ (−∞, 1],

(1− ψ(x))(1− ϕ(y)) ≥ Cos2(|x− y|/κ)
for all x, y ∈ Ω

}
.

(3.1.5)

Theorem 3.1.2 (Basic properties of HKκ). For any κ ∈ (0,∞), the Hellinger–Kantorovich
distance HKκ metrizes the weak* topology over M+(Ω). The metric space (M+(Ω),HKk) is
separable and complete. Furthermore, it is a proper metric space, i.e. every bounded set is
relatively compact (see [86, Section 7.5]).

As we seek to study the evolution of the Hellinger–Kantorovich barycenter over varying length
scales we now recall the corresponding result. For µ, ν ∈ M+(Ω) the Hellinger distance is defined
as

Hell2(µ, ν) :=

�
Ω

(√
dµ

dτ
−
√

dν

dτ

)2

dτ, (3.1.6)

where τ ∈ M+(Ω) is an arbitrary measure such that µ, ν ≪ τ . Again, since the function
(s, t) 7→ (

√
s −

√
t)2 is positively 1-homogeneous, the definition of Hell(µ, ν) does not depend

on the choice of the (admissible) τ . As observed in [86], the Hellinger–Kantorovich distance
converges towards the Hellinger and the Wasserstein distance as one sends κ → 0 or κ → ∞
respectively.
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Theorem 3.1.3 (Scaling limits [86, Theorems 7.22, 7.24]). For µ, ν ∈ M+(Ω), one finds that
the function (0,∞) ∋ κ 7→ HK2

κ(µ, ν) is non-increasing and

lim
κ→0

HK2
κ(µ, ν) ↗ Hell2(µ, ν). (3.1.7)

On the other hand, the function (0,∞) ∋ κ 7→ κ2 ·HK2
κ(µ, ν) is non-decreasing and

lim
κ→∞

κ2HK2
κ(µ, ν) ↗W 2(µ, ν). (3.1.8)

The function (0,∞) ∋ κ 7→ HK2
κ(µ, ν) is continuous.

Continuity of HK2
κ with respect to κ follows directly from the fact that the function is

non-increasing while κ 7→ κ2 · HK2
κ(µ, ν) is non-decreasing. Note that the case ∥µ∥ ̸= ∥ν∥ is

explicitly allowed as κ→ ∞, in which case the limiting value is +∞. These scaling limits can
be guessed from (3.1.1): As κ → 0, the function ĉκ goes to infinity everywhere except on the
diagonal, restricting asymptotically feasible γ to the diagonal. One can then quickly verify that
minimizing (3.1.1) only over diagonal γ yields (3.1.6). Conversely, looking at κ2 · HK2

κ(µ, ν),
one can guess from limκ→∞ κ2 · ĉκ(x, y) = ∥x − y∥2 that the integral

�
Ω2 ĉκdγ converges to

the standard Wasserstein transport cost, while the term κ2 ·KL(P1γ|µ) increasingly penalizes
deviations between P1γ and µ, and likewise for the second marginal term, thus asymptotically
enforcing γ ∈ Γ(µ, ν).
The following bounds can be shown to hold.

Proposition 3.1.4 (Mass-rescaling for HKκ). For κ ∈ (0,∞) and µ, ν ∈ M+(Ω), one finds

HK2
κ(µ, ν) =

√
∥µ∥∥ν∥HK2

κ

(
µ

∥µ∥
,
ν

∥ν∥

)
+ (
√
∥µ∥ −

√
∥ν∥)2 (3.1.9)

with the convention µ/∥µ∥ = 0 in the case of µ = 0 (and likewise for ν). Additionally,

HK2
κ(µ, ν) ≤ ∥µ∥+ ∥ν∥. (3.1.10)

Proof. The equality in (3.1.9) follows from [82, Theorem 3.3]. By Theorem 3.1.3, we have
HK2

κ (µ, ν) ≤ Hell2(µ, ν), and (3.1.10) follows directly.

3.2 Hellinger–Kantorovich barycenter of a continuum of measures

3.2.1 Problem setup

The barycenter between a finite collection of measures with respect to the Hellinger–Kantorovich
metric has been studied in [43, 65]. In this section we generalize these results to infinitely many
input measures, including the uncountable case of a continuum of input measures.
For a constant M ∈ (0,∞), which we will assume to be fixed throughout this chapter, we

define
C := {µ ∈ M+(Ω) | ∥µ∥ ≤M}.

Since C is weak* closed, by Theorem 3.1.2 the metric space (C,HKκ) is compact for all κ ∈ (0,∞).
We will describe the collection of input measures (and their weights) of which to compute the
barycenter as a probability measure Λ ∈ P(C) where C is equipped with the Borel σ-algebra
induced by HKκ (which is the same for any κ ∈ (0,∞)). Since (C,HKκ) is compact, weak*
convergence on P(C) is metrized by the Wasserstein distance over P(C) (see Theorem 2.1.4).
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3 Hellinger–Kantorovich Barycenter

For Λ ∈ P(C) and for κ ∈ (0,∞), the primal problem we are interested in is

inf

{
JΛ,κ(ν) :=

�
C
HK2

κ(µ, ν) dΛ(µ)

∣∣∣∣ν ∈ M+(Ω)

}
. (PΛ,κ)

The finite case of computing the barycenter between input measures µ1, . . . , µn ∈ C with weights
λ1, . . . , λn where λi > 0 and

∑n
i=1 λi = 1 is recovered by setting Λ :=

∑n
i=1 λi δµi .

3.2.2 Existence and stability of minimizers

Proposition 3.2.1. Let Λ ∈ P(C) and κ ∈ (0,∞). Then, (PΛ,κ) admits a minimizer ν ∈ C.

Proof. We first observe that, by means of the upper bound in (3.1.10), we have

(PΛ,κ) ≤ JΛ,κ(0) =

�
C
HK2

κ(µ, 0) dΛ(µ) ≤
�
C
∥µ∥ dΛ(µ) ≤M.

Let (νn)n ⊂ M+(Ω) be a minimizing sequence for (PΛ,κ). For each n > 0, we can assume without
loss of generality that νn ∈ C. Indeed, suppose this is not the case, i.e. ∥νn∥ > M . Then, for all
µ ∈ C, by means of (3.1.9), we have

HK2
κ

(
µ,

M

∥νn∥
νn

)
=
√

∥µ∥M HK2
κ

(
µ

∥µ∥
,
νn
∥νn∥

)
+ (
√

∥µ∥ −
√
M)2

<
√
∥µ∥∥νn∥ HK2

κ

(
µ

∥µ∥
,
νn

∥νn∥

)
+ (
√

∥µ∥ −
√

∥νn∥)2 = HK2
κ(µ, νn),

so that JΛ,κ(M/∥νn∥ · νn) < JΛ,κ(νn). Hence, upon possibly replacing νn with M/∥νn∥ · νn, the
sequence (νn)n is entirely contained in C. By compactness of (C,HKκ), there exists a cluster
point ν ∈ C such that, up to a subsequence, νn ⇀

∗ ν as n→ ∞, or equivalently HKκ(νn, ν) → 0
as n→ ∞. By the upper bound in (3.1.10) and by triangle inequality we also have

|HK2
κ(µ, νn)−HK2

κ(µ, ν)| = |HKκ(µ, νn) + HKκ(µ, ν)||HKκ(µ, νn)−HKκ(µ, ν)|

≤ 2
√
2M ·HKκ(νn, ν) → 0 as n→ ∞ for all µ ∈ C. (3.2.1)

By means of Fatou’s lemma and recalling that (νn)n is a minimizing sequence, we conclude

JΛ,κ(ν) =

�
C
HK2

κ(µ, ν) dΛ(µ) =

�
C
lim
n→∞

HK2
κ(µ, νn) dΛ(µ) ≤ lim inf

n→∞

�
C
HK2

κ(µ, νn) dΛ(µ)︸ ︷︷ ︸
JΛ,κ(νn)

= (PΛ,κ),

which provides minimality of ν for (PΛ,κ).

Proposition 3.2.2 (Stability). Fix κ ∈ (0,∞). Let (Λn)n∈N be a weak* convergent sequence in
P(C) with limit Λ ∈ P(C) and let (νn)n∈N be a weak* convergent sequence in M+(Ω) with limit
ν ∈ M+(Ω). Then,

JΛ,κ(ν) = lim
n→∞

JΛn,κ(νn). (3.2.2)

Proof. As in (3.2.1), the sequence of functions (µ 7→ HK2
κ(µ, νn))n converges uniformly to

(µ 7→ HK2
κ(µ, ν)) in C(C). This, together with weak* convergence of Λn to Λ, leveraging duality

between C(C) and M+(C), leads to

lim
n→∞

JΛn,κ(νn) = lim
n→∞

�
C
HK2

κ(µ, νn) dΛn(µ) =

�
C
HK2

κ(µ, ν) dΛ(µ) = JΛ,κ(ν),

which provides (3.2.2).
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3 Hellinger–Kantorovich Barycenter

Corollary 3.2.3 (Convergence of minimizers). Fix κ ∈ (0,∞). Let (Λn)n∈N be a weak* convergent
sequence in P(C) with limit Λ ∈ P(C) and, for each n, let νn be a minimizer of (PΛn,κ). Then,
the sequence (νn)n∈N is weak* pre-compact and each cluster point ν ∈ C is a minimizer of (PΛ,κ).

Proof. By Proposition 3.2.1, the sequence of minimizers (νn)n∈N lies entirely in C, hence by
compactness of (C,HKκ) it is weak* pre-compact. Fix now any weak* cluster point ν of (νn)n
and a corresponding subsequence (νn′)n′ such that νn′ ⇀∗ ν as n′ → ∞. Fix any ν̃ ∈ M+(Ω).
Minimality of each νn for (PΛn,κ) and a double application of Proposition 3.2.2 provide

JΛ,κ(ν) = lim
n′→∞

JΛn′ ,κ(νn′) ≤ lim
n′→∞

JΛn′ ,κ(ν̃) = JΛ,κ(ν̃),

which proves minimality of ν for (PΛ,κ).

3.2.3 Scaling limits for the metric

Now let us look at the limit problems as we send κ → 0 and κ → ∞ respectively. Based on
Theorem 3.1.3 we expect to recover the pure Hellinger and pure Wasserstein barycenter problems
(after suitable re-scaling). The expected limit functionals are therefore:

JΛ,0(ν) :=

�
C
Hell2(µ, ν) dΛ(µ), JΛ,∞(ν) :=

�
C
W 2(µ, ν) dΛ(µ). (3.2.3)

In particular, we obtain as a by-product the existence of minimizers for such limiting barycenter
problems.

Proposition 3.2.4. Let Λ ∈ P(C), let (κn)n be a sequence in (0,∞) with limn κn = κ∞ ∈
[0,∞)∪ {∞}. For each n, let νn ∈ C be a minimizer of JΛ,κn . Then, the sequence (νn)n is weak*
pre-compact and each cluster point ν∞ ∈ C is a minimizer of JΛ,κ∞. Furthermore,

JΛ,κ∞(ν∞) = lim
n→∞

JΛ,κn(νn) if κ∞ ∈ [0,∞) (3.2.4)

and

JΛ,∞(ν∞) = lim
n→∞

κ2nJΛ,κn(νn) if κ∞ = ∞. (3.2.5)

Proof. By Proposition 3.2.1 the sequence (νn)n lies in C, thus has uniformly bounded mass and
thus is weak* pre-compact. Let us assume for now that the sequence (κn)n is monotone and
that the corresponding sequence (νn)n converges weak* to ν∞ ∈ C.

Step 1.1 (κn ↗ κ∞)

Assume the sequence (κn)n is non-decreasing and converging to κ∞ ∈ (0,∞), and assume the
corresponding sequence (νn)n converges weak* to ν∞ ∈ C. By Theorem 3.1.3 the function
(0,∞) ∋ κ 7→ κ2 · HK2

κ(µ, ν) is non-decreasing for all µ, ν ∈ C(Ω) and limn→∞ κ2n HK2
κn(µ, ν)

↗ κ2∞ HK2
κ∞(µ, ν). Therefore, for each ν ∈ C, the function (0,∞) ∋ κ 7→ κ2 JΛ,κ(ν) is non-

decreasing, so that

κ2m JΛ,κm(ν) ≤ κ2n JΛ,κn(ν) for all n > m > 0, and all ν ∈ M+(Ω), (3.2.6)

and by monotone convergence

κ2n JΛ,κn(ν) ↗ κ2∞JΛ,∞(ν) as n→ ∞, for all ν ∈ M+(Ω). (3.2.7)
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3 Hellinger–Kantorovich Barycenter

Let us fix m ∈ N. Thanks to (3.2.6), applied with ν = νn, we find

κ2m JΛ,κm(νn) ≤ κ2n JΛ,κn(νn) for all n > m,

so that, passing to the limit as n→ ∞, we obtain

κ2m JΛ,κm(ν∞)
(3.2.2)
= κ2m lim

n→∞
JΛ,κm(νn) ≤ lim inf

n→∞
κ2n JΛ,κn(νn).

Passing now to the limit as m→ ∞ we conclude

κ2∞JΛ,κ∞(ν∞)
(3.2.7)
= lim

m→∞
κ2m JΛ,κm(ν∞) ≤ lim inf

n→∞
κ2n JΛ,κn(νn). (3.2.8)

On the other hand, using (3.2.7) with ν = ν∞ and leveraging minimality of each νn, one has

κ2∞JΛ,κ∞(ν∞) ≥ κ2n JΛ,κn(ν∞) ≥ κ2n JΛ,κn(νn) for every n,

and a passage to the limit as n→ ∞ directly provides

κ2∞JΛ,κ∞(ν∞) ≥ lim sup
n→∞

κ2n JΛ,κn(νn). (3.2.9)

Combining (3.2.9) and (3.2.8) provides (3.2.4) for the particular class of sequences under consid-
eration. Assume now ν∞ were not optimal for JΛ,κ∞ , i.e. there exists some ν ′∞ with a strictly
better score. By minimality of each νn, we have JΛ,κn(νn) ≤ JΛ,κn(ν

′
∞) so that, passing to the

limit one has

lim
n→∞

JΛ,κn(νn) ≤ lim
n→∞

JΛ,κn(ν
′
∞)

(3.2.7)
= JΛ,κ∞(ν ′∞) < JΛ,κ∞(ν∞)

(3.2.4)
= lim

n→∞
JΛ,κn(νn),

hence the sought for contradiction. The same argument applies if κn ↗ ∞, taking into account
that limn→∞ κ2n HK2

κn(µ, ν) ↗W 2(µ, ν) for all µ, ν ∈ C(Ω).

Step 1.2 (κn ↘ κ∞)

If we assume instead that the sequence (κn)n is non-increasing and κn ↘ κ∞ ∈ [0,∞), a
completely symmetric argument as in Step 1.1 can be applied after dropping the scaling factors
κ2n. Indeed, by Theorem 3.1.3 the function (0,∞) ∋ κ 7→ HK2

κ(µ, ν) is non-increasing for all
µ, ν ∈ C(Ω) and so limn→∞HK2

κn(µ, ν) ↗ HK2
κ∞(µ, ν) (with limit Hell2(µ, ν) if κ∞ = 0). Thus,

the same monotonicity arguments apply.

Step 2. Assume now ν∞ ∈ C is any cluster point of (νn)n. Hence, there exists a subsequence
(νn′)n′ such that νn′ ⇀∗ ν∞ as n′ → ∞. We can extract an additional subsequence such that
(κn′′)n′′ is either non-increasing or non-decreasing. Step 1 then provides minimality of ν∞ for
(PΛ,κ∞).

We are left to prove that the sequence of energies (JΛ,κn(νn))n converges as a whole. Consider
any subsequence (JΛ,κn′ (νn′))n′ . By pre-compactness of the corresponding sequence (νn′)n′ , we
can identify a further subsequence such that (νn′′)n′′ converges weak* to some cluster point
ν∞ ∈ C. and in turn extract an additional subsequence such that (κn′′′)n′′′ is either non-increasing
or non-decreasing. By Step 1 we have

lim
n′′′→∞

JΛ,n′′′(νn′′′) = (PΛ,κ∞).

Hence, every subsequence of (JΛ,κn(νn))n admits a converging subsequence to the same limit
(PΛ,κ∞). This provides convergence of the full sequence to (PΛ,κ∞) and proves (3.2.4) for the
whole sequence of minimizing energies.
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3 Hellinger–Kantorovich Barycenter

For κ ∈ (0,∞] it is known that barycenters are not necessarily unique (see, e.g., [65, Section
6]), hence there may be multiple corresponding cluster points ν∞ in the above result. We now
show that for κ = 0 uniqueness holds in general.

Corollary 3.2.5 (Convergence of minimizers for κ→ 0). Let Λ ∈ P(C) and for each κ > 0 let
νκ ∈ C be a minimizer of JΛ,κ. Then, there exists some ν0 ∈ C such that νk ⇀

∗ ν0 as κ→ 0. In
particular, ν0 is the unique minimizer of JΛ,0.

Proof. By Proposition 3.2.4, there exists a minimizer ν0 ∈ M+(Ω) of JΛ,0. Such a minimizer
is indeed unique: assume this were not the case, so that there exists a second minimizer
ν ′0 ∈ M+(Ω). Fix any τ ∈ M+(Ω) such that ν0, ν

′
0 ≪ τ and define v0 = dν0/dτ and v′0 = dν ′0/dτ .

Let v̄ =
(
1
2

√
v0 +

1
2

√
v′0

)2
and define ν̄ = v̄τ (note that this definition does not depend on the

choice of τ by positive 1-homogeneity). For any µ ∈ C, fix any τµ ∈ M+(Ω) such that τ, µ≪ τµ
and, by strict convexity of x 7→ x2, compute

Hell2(ν̄, µ) =

�
Ω

(√
dν̄

dτµ
−

√
dµ

dτµ

)2

dτµ

=

�
Ω

(
1

2

(√
v0

dτ

dτµ
−

√
dµ

dτµ

)
+

1

2

(√
v′0

dτ

dτµ
−

√
dµ

dτµ

))2

dτµ

<
1

2

�
Ω

(√
v0

dτ

dτµ
−

√
dµ

dτµ

)2

dτµ +
1

2

�
Ω

(√
v′0

dτ

dτµ
−

√
dµ

dτµ

)2

dτµ

=
1

2
(Hell2(ν0, µ) + Hell2(ν ′0, µ)).

An integration in µ eventually provides JΛ,0(ν̄) <
1
2(JΛ,0(ν0) + JΛ,0(ν

′
0)), which contradicts

minimality of ν0 and ν ′0 simultaneously and provides uniqueness of the minimizer of JΛ,0.
Let now (κn)n be any sequence converging to 0 and (κn′)n′ be any subsequence. By Proposition

3.2.4 there exists an additional subsequence (νn′′)n′′ such that νn′′ converges weak* to a minimizer
of JΛ,0, hence it converges to ν0 by uniqueness. Since every subsequence of (κn)n admits a
subsequence converging to the same limit ν0, we conclude that the whole sequence (νn)n converges
to ν0. In turn, since any sequence (κn)n converging to 0 admits the same limit ν0, the continuous
limit as κ→ 0 follows.

Remark 3.2.6 (Joint stability under changes of κ and Λ). In the case when κ∞ ∈ (0,∞) the
behavior of the HKκ-barycenter w.r.t. variations in κ can be reduced to the study of variations
in Λ via Remark 3.1.1, by working in some finitely re-scaled Ω/κ, for a sufficiently small but
finite κ instead, and by relocating the mass of Λ onto the re-scaled measures µ. By applying the
results from Section 3.2.2 one then finds that one can consider joint limits in Λ and κ, and that
the order in which the limits are taken does not matter.
The situation is more intricate when κ∞ ∈ {0,∞}. In the latter case, it can be problematic

when Λ is not exclusively supported on measures of equal mass. In the former case one may
obtain different cluster points of minimizers ν, depending on the order or relative speed in which
Λ and κ approach their limits. An example is given in Remark 3.3.12 further below. Combining
the above results we find that in both cases one obtains the limit minimizer for Λ∞ and κ∞ by
first going to the limit in Λ and then in κ.
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3 Hellinger–Kantorovich Barycenter

3.2.4 Duality

We now show that a dual problem for (PΛ,κ) can be formulated as

sup

{�
C

�
Ω
Ψ(µ, x) dµ(x) dΛ(µ)

∣∣∣∣∣Ψ,Φ ∈ C(C× Ω), (Ψ(µ, ·),Φ(µ, ·)) ∈ Qκ for all µ ∈ C,

and

�
C
Φ(µ, y) dΛ(µ) ≥ 0 for all y ∈ Ω

}
. (DΛ,κ)

We will study this duality in more detail in Section 3.3 (including dual existence and primal-dual
optimality conditions) for the specific case when Λ is concentrated on the set of Dirac measures.
For the general case we content ourselves with equality of optimal values. In [65] duality of (PΛ,κ)
was established by combining all pairwise optimization problems (3.1.3) for HK2

κ(µi, ν) in the
discrete version of (PΛ,κ) (with a finite collection of input measures µi) and then dualizing them
jointly. Here we generalize this combination to the case of uncountably many input measures.

Proposition 3.2.7. Let Λ ∈ P(C) and κ ∈ (0,∞). Then, (DΛ,κ) is a dual problem to (PΛ,κ),
more precisely

(DΛ,κ) = (PΛ,κ). (3.2.10)

Proof. For given Λ ∈ P(C), define the measure Λ · µ ∈ M+(C× Ω) as

�
C×Ω

ϕ d(Λ · µ) :=
�
C

�
Ω
ϕ(µ, x) dµ(x) dΛ(µ) for ϕ ∈ C(C× Ω).

We start with the primal problem and estimate

(PΛ,κ) = inf
ν∈M+(Ω)

�
C
HK2

κ(µ, ν) dΛ(µ) (3.2.11)

(3.1.3)
= inf

ν∈M+(Ω)

�
C

[
inf

γ1,γ2,γ∈M+(Ω2),γi≪γ
[(x,y)7→x]#(γ1)=µ
[(x,y) 7→y]#(γ2)=ν

�
Ω×Ω

cκ

(
x, dγ1dγ (x, y), y,

dγ2
dγ (x, y)

)
dγ(x, y)

]
dΛ(µ)

(3.2.12)

≤ inf
ν∈M+(Ω)

inf
Γ1,Γ2,Γ∈M+(C×Ω2),Γi≪Γ
[(µ,x,y)7→(µ,x)]#(Γ1)=Λ·µ
[(µ,x,y)7→(µ,y)]#(Γ2)=Λ⊗ν

�
C×Ω×Ω

cκ

(
x, dΓ1

dΓ (µ, x, y), y, dΓ2
dΓ (µ, x, y)

)
dΓ(µ, x, y)

(3.2.13)

= inf
Γ1,Γ2,Γ∈M+(C×Ω2),Γi≪Γ
[(µ,x,y)7→(µ,x)]#(Γ1)=Λ·µ

∃ν∈M+(Ω) s.t. [(µ,x,y) 7→(µ,y)]#(Γ2)=Λ⊗ν

�
C×Ω×Ω

cκ

(
x, dΓ0

dΓ (µ, x, y), y, dΓ1
dΓ (µ, x, y)

)
dΓ(µ, x, y).

(3.2.14)

The inequality from (3.2.12) to (3.2.13) follows since every admissible candidate in the latter
induces a family of admissible candidates for the former. Indeed, let Γ1,Γ2,Γ be admissible in
(3.2.13). By the constraints it follows that [(µ, x, y) 7→ µ]#(Γi) ≪ Λ. As in (3.1.3), since cκ is
positively 1-homogeneous in its second and fourth argument, the value of the integral does not
depend on the choice of Γ, as long as Γi ≪ Γ. Therefore, w.l.o.g. we may choose Γ such that
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3 Hellinger–Kantorovich Barycenter

[(µ, x, y) 7→ µ]#(Γ) ≪ Λ. Let now (γ1,µ)µ∈C, (γ2,µ)µ∈C and (γµ)µ∈C be the disintegrations of Γ1,
Γ2 and Γ with respect to Λ. These three families of measures are then admissible in (3.2.12) and
yield the same score.

Now set X := M(C× Ω2), Y := M(C× Ω), and define

G : X ×X → R ∪ {∞}, (Γ1,Γ2) 7→
�
C×Ω2

cκ

(
x, dΓ1

dΓ , y,
dΓ2
dΓ

)
dΓ,

F1 : Y → R ∪ {∞}, τ 7→

{
0 if τ = Λ · µ,
+∞ else,

F2 : Y → R ∪ {∞}, τ 7→

{
0 if τ = Λ⊗ ν for some ν ∈ M+(Ω),

+∞ else,

where in the definition of G the measure Γ is any positive measure such that Γ1 ≪ Γ and Γ2 ≪ Γ
(note that G(Γ1,Γ2) is finite only if both Γ1 and Γ2 are non-negative). Let us also define the two
linear (projection) operators Q1, Q2 : X → Y as

Q1Γ := [(µ, x, y) 7→ (µ, x)]#(Γ) and Q2Γ := [(µ, x, y) 7→ (µ, y)]#(Γ).

Hence, we can rewrite (3.2.14) as

inf
Γ1,Γ2∈X

G(Γ1,Γ2) + F1(Q1Γ1) + F2(Q2Γ2). (P)

By Fenchel–Rockafellar duality (Theorem 2.2.6) one finds (P) ≤ (D), where (D) is

sup
Ψ,Φ∈C(C×Ω)

−G∗(Q∗
1Ψ, Q

∗
2Φ)− F ∗

1 (−Ψ)− F ∗
2 (−Φ). (D)

Note that we do not insist on a vanishing duality gap here. Direct computation quickly yields

F ∗
1 : C(C× Ω) → R ∪ {∞}, Ψ 7→

�
C×Ω

Ψd(Λ · µ),

F ∗
2 : C(C× Ω) → R ∪ {∞}, Φ 7→

{
0 if

�
CΦ(µ, y) dΛ(µ) ≤ 0 ∀ y ∈ Ω,

+∞ else,

and using [42, Lemma 2.9]

G∗(Q∗
1·, Q∗

2·) : C(C× Ω)2 → R ∪ {∞}, (Ψ,Φ) 7→

{
0 if (Ψ(µ, ·),Φ(µ, ·)) ∈ Qκ for all µ ∈ C,

+∞ else.

With this, (D) becomes

sup

{�
C

�
Ω
Ψ(µ, x) dµ(x) dΛ(µ)

∣∣∣∣∣Ψ,Φ ∈ C(C× Ω), (Ψ(µ, ·),Φ(µ, ·)) ∈ Qκ for all µ ∈ C,

and

�
C
Φ(µ, y) dΛ(µ) ≥ 0 for all y ∈ Ω

}
,
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which is exactly (DΛ,κ). Let us now fix a minimizer νκ ∈ M+(Ω) of JΛ,κ and continue from
above

(PΛ,κ) ≤ (3.2.14) = (P) ≤ (D) = (DΛ,κ) (3.2.15)

= sup
Ψ,Φ∈C(C×Ω)

(Ψ(µ,·),Φ(µ,·))∈Qκ ∀µ∈C�
C Φ(µ,y) dΛ(µ)≥0 ∀y∈Ω

�
C

�
Ω
Ψ(µ, x) dµ(x) dΛ(µ) (3.2.16)

≤ sup
Ψ,Φ∈C(C×Ω)

(Ψ(µ,·),Φ(µ,·))∈Qκ ∀µ∈C�
C Φ(µ,y) dΛ(µ)≥0 ∀y∈Ω

�
C

�
Ω
Ψ(µ, x) dµ(x) dΛ(µ) +

�
Ω

�
C
Φ(µ, y) dΛ(µ) dνκ(y) (3.2.17)

≤ sup
Ψ,Φ∈C(C×Ω)

(Ψ(µ,·),Φ(µ,·))∈Qκ ∀µ∈C

�
C

[�
Ω
Ψ(µ, x) dµ(x) +

�
Ω
Φ(µ, y) dνκ(y)

]
dΛ(µ) (3.2.18)

≤
�
C

 sup
ψ,ϕ∈C(Ω)
(ψ,ϕ)∈Qκ

�
Ω
ψ(x) dµ(x) +

�
Ω
ϕ(y) dνκ(y)

 dΛ(µ) =

�
C
HK2

κ(µ, νκ) dΛ(µ) = (PΛ,κ).

(3.2.19)

The chain of inequalities (3.2.11)-(3.2.19) is then actually a chain of equalities. Hence, (DΛ,κ) is
a dual problem to (PΛ,κ) and the optimal values coincide.

Remark 3.2.8 (Formal Wasserstein limit of (DΛ,κ)). Considering Theorem 3.1.3 and Proposi-
tion 3.2.4 one might expect to recover a dual problem for the Wasserstein-2 distance by considering
κ2 · (DΛ,κ) and then sending κ→ ∞. The problem κ2 · (DΛ,κ) can be written as

sup

{�
C

�
Ω
Ψ(µ, x) dµ(x) dΛ(µ)

∣∣∣∣∣Ψ,Φ ∈ C(C×Ω), (Ψ(µ, ·)/κ2,Φ(µ, ·)/κ2) ∈ Qκ for all µ ∈ C,

and

�
C
Φ(µ, y) dΛ(µ) ≥ 0 for all y ∈ Ω

}
.

At a purely intuitive level one can then consider the limit of the condition (Ψ(µ, ·)/κ2,Φ(µ, ·)/κ2) ∈
Qκ for some µ ∈ C as κ→ ∞:

1−Ψ(µ, x)/κ2 − Φ(µ, y)/κ2 + o(1/κ2) = (1−Ψ(µ, x)/κ2)(1− Φ(µ, y)/κ2)

≥ Cos2(|x− y|/κ) = 1− |x− y|2/κ2 + o(1/κ2).

That is, we expect to obtain the limit condition Ψ(µ, x) + Φ(µ, y) ≤ |x− y|2, which would turn
(DΛ,κ) into a version of the well-known dual problem for the Wasserstein barycenter. To the
best of our knowledge this dual has so far not yet been stated in the literature for the case of a
continuum of input measures.
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3 Hellinger–Kantorovich Barycenter

3.3 Hellinger–Kantorovich barycenter of a continuum of Dirac
measures

3.3.1 Problem setup and basic properties

Throughout Section 3.3 we study the particular case when Λ is concentrated on the set of unit
Dirac measures, i.e. Λ-almost every µ is of the form δx for some x ∈ Ω. In this case Λ can be
represented by a measure ρ ∈ P(Ω) which gives the distribution of the locations x ∈ Ω. More
precisely, for any ρ ∈ P(Ω) we define the measure Λρ := T#ρ where T : Ω → P(Ω), x 7→ δx, or
equivalently �

C
ϕ(µ) dΛρ(µ) =

�
Ω
ϕ(δx) dρ(x) for all ϕ ∈ C(C).

In this particular case the primal problem (PΛρ,κ) simplifies to

inf

{
Jρ,κ(ν) :=

�
Ω
HK2

κ(δx, ν) dρ(x)

∣∣∣∣ν ∈ M+(Ω)

}
. (Pρ,κ)

For the Wasserstein case (i.e. κ = ∞) this problem is trivial, the unique minimizer being given
by ν = δx where x :=

�
Ω x dρ(x) is the center of mass of ρ (x ∈ Ω by convexity of Ω). For ρ

being a finite superposition of Dirac measures, i.e. ρ =
∑n

i=1mi δxi , and κ ∈ (0,∞) the problem
was studied in [65]. It was shown that for κ sufficiently large the minimizer ν is again a single
Dirac measure (consistent with the scaling limit of Proposition 3.2.4). However, for smaller κ,
the minimizer ν may contain multiple Diracs or even be diffuse.
Therefore, we now study (Pρ,κ) in some more depth. First, we will further simplify the

expression of (Pρ,κ) by making the expression HK2
κ(δx, ν) more explicit. Then, in Section 3.3.2

we revisit the dual problem, derive dual existence and primal-dual optimality conditions. In
Section 3.3.3 we present some results on whether barycenters ν are discrete or diffuse and we
study the asymptotic behavior of the barycenter as κ→ 0 in Section 3.3.4.

Proposition 3.3.1. Let κ ∈ (0,∞), m > 0, x̄ ∈ Ω, ν ∈ M+(Ω). One finds

HK2
κ(mδx̄, ν) = sup

ξ<1

[
mξ + ∥ν∥ − 1

1− ξ

�
Ω
Cos2(|x̄− y|/κ) dν(y)

]

= m+ ∥ν∥ − 2
√
m

√�
Ω
Cos2(|x̄− y|/κ) dν(y).

Proof. Let µ = mδx̄. We recall from (3.1.4) that

HK2
κ(µ, ν) = sup

(ψ,ϕ)∈Qκ

�
Ω
ψ(x) dµ(x) +

�
Ω
ϕ(y) dν(y) = sup

(ψ,ϕ)∈Qκ
mψ(x̄) +

�
Ω
ϕ(y) dν(y),

where

Qκ =

{
(ψ, ϕ) ∈ C(Ω)2 s.t.

ψ(x), ϕ(y) ∈ (−∞, 1]

(1− ψ(x))(1− ϕ(y)) ≥ Cos(|x− y|/κ)2
∀x, y ∈ Ω

}
.

Note that only the value of ψ at x̄ enters the energy. For any ψx̄ ∈ R and n ∈ N set ψn(x) :=
ψx̄ − n · ∥x− x̄∥. For each ψn the remaining supremum over ϕ is then attained by

ϕn(y) := inf
x∈Ω

1− Cos2(|x− y|/κ)
1− ψn(x)

,
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3 Hellinger–Kantorovich Barycenter

which is indeed a continuous function in y. As n→ ∞ one has ϕn ↗ ϕ pointwise for

ϕ(y) := 1− Cos2(|x̄− y|/κ)
1− ψx̄

i.e. only the constraint for x = x̄ in Qκ remains. Therefore, by monotone convergence, the
problem reduces to

HK2
κ(mδx̄, ν) = sup

ψx̄<1

[
mψx̄ + ∥ν∥ − 1

1− ψx̄

�
Ω
Cos2(|x̄− y|/κ) dν(y)

]

= m+ ∥ν∥ − 2
√
m

√�
Ω
Cos2(|x̄− y|/κ) dν(y).

Corollary 3.3.2. A primal minimizer for HK2
κ(mδx̄, ν) in (3.1.1) is given by

γ = δx̄ ⊗ σ with σ = ν Cos2(|x̄− ·|/κ)
√

m

∥ν Cos2(|x̄− ·|/κ)∥
. (3.3.1)

Proof. This follows directly by plugging expression (3.3.1) into (3.1.1) and comparing the objective
with Proposition 3.3.1.

If we were to interpret an HK-barycenter ν as a “generalized clustering” of some input data
ρ, then for each x̄ ∈ Ω, the corresponding measure σ (with m = 1) could be interpreted as the
association strength of the point at x̄ with each of the points in the clustering. It would be a
common occurrence that a point is associated with multiple ‘clusters’ at the same time.
Next, Proposition 3.3.1 also yields a simpler form of the primal objective which we will

subsequently study in more detail.

Corollary 3.3.3. Let κ ∈ (0,∞) and ρ ∈ P(Ω). Then (Pρ,κ) admits a minimizer ν ∈ M+(Ω)
and the objective function Jρ,κ in (Pρ,κ) takes the form

Jρ,κ(ν) = 1 + ∥ν∥ − 2

�
Ω

√�
Ω
Cos2(|x− y|/κ) dν(y) dρ(x). (3.3.2)

Proof. Existence of a minimizer follows by Proposition 3.2.1 applied for Λ = Λρ, the simplified
objective in (3.3.2) follows by applying Proposition 3.3.1 for the integrand HK2

κ(δx, ν) inside Jρ,κ
in (Pρ,κ).

3.3.2 Duality

Next, we prove that when Λ = Λρ, the dual (DΛ,κ) takes the specific form

sup

{�
Ω
ψ(x) dρ(x)

∣∣∣∣∣ ψ ∈ C(Ω), ψ < 1

and Fρ,κ(ψ)(y) :=

�
Ω

Cos2(|x− y|/κ)
1− ψ(x)

dρ(x) ≤ 1 for all y ∈ Ω

}
. (Dρ,κ)

In the following, we will refer to Fρ,κ as the constraint function.
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Proposition 3.3.4. Let ρ ∈ P(Ω) and κ ∈ (0,∞). Then,

(i) (Dρ,κ) is a dual problem to (Pρ,κ) and (Dρ,κ) = (Pρ,κ),

(ii) (Dρ,κ) admits a maximizer ψ ∈ C(Ω) which is unique on the support of ρ and for any
primal optimizer ν we have

ψ(x) = 1−

√�
Ω
Cos2(|x− y|/κ) dν(y) for ρ-a.e. x ∈ Ω, (3.3.3a)

Fρ,κ(ψ)(y) = 1 for ν-a.e. y ∈ Ω, (3.3.3b)

(iii) an admissible couple (ν, ψ) ∈ M+(Ω)× C(Ω) is optimal if and only if (3.3.3) holds.

Proof. Step 1. Primal optimality conditions. Let ν ∈ M+(Ω) be an optimizer of (Pρ,κ) and
consider any non-negative measure ν̃ ∈ M+(Ω). By optimality of ν, one has

d

dt
Jρ,κ(ν + tν̃)|t=0+ ≥ 0.

Using (3.3.2), we compute

0 ≤ d

dt
Jρ,κ(ν + tν̃)|t=0+ =

d

dt

(
1 + ∥ν∥+ t∥ν̃∥ − 2

�
Ω

√�
Ω
Cos2(|x− y|/κ) d(ν + tν̃)(y) dρ(x)

)∣∣∣∣∣
t=0+

=

�
Ω

1− �
Ω

Cos2(|x− y|/κ)√�
ΩCos2(|x− z|/κ) dν(z)

dρ(x)

 dν̃(y).

Since ν̃ is an arbitrary non-negative measure, we conclude that, for any optimal ν,
�
Ω

Cos2(|x− y|/κ)√�
ΩCos2(|x− z|/κ) dν(z)

dρ(x) ≤ 1 for all y ∈ Ω. (3.3.4)

Now consider as variation ν̃ = −ν such that ν + tν̃ ≥ 0 for t ∈ [0, 1]. As above, we find

0 ≤ d

dt
Jρ,κ(ν + tν̃)|t=0+ = −

�
Ω

1− �
Ω

Cos2(|x− y|/κ)√�
ΩCos2(|x− z|/κ) dν(z)

dρ(x)

 dν(y).

Since from above we know that the expression in squared brackets must be non-negative, we now
deduce that �

Ω

Cos2(|x− y|/κ)√�
ΩCos2(|x− z|/κ) dν(z)

dρ(x) = 1 for ν-a.e. y ∈ Ω. (3.3.5)

Step 2. Duality. By Proposition 3.2.7 as applied to Λρ, we have (Pρ,κ) = (PΛρ,κ) = (DΛρ,κ). The
latter problem, taking into account the definition of Λρ, reduces to

sup

{�
Ω
Ψ(δx, x) dρ(x)

∣∣∣∣∣Ψ,Φ ∈ C(C× Ω), (Ψ(µ, ·),Φ(µ, ·)) ∈ Qκ for all µ ∈ C,

and

�
Ω
Φ(δx, y) dρ(x) ≥ 0 for all y ∈ Ω

}
(DΛρ,κ)
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We now show that (DΛρ,κ) ≤ (Dρ,κ). Let Ψ,Φ ∈ C(C× Ω) be any two admissible functions for
(DΛρ,κ). Define ψ : Ω → R as ψ(x) := Ψ(δx, x). Then ψ ∈ C(Ω). Since (Ψ(µ, ·),Φ(µ, ·)) ∈ Qκ for
all µ ∈ C, one has ψ(x) = Ψ(δx, x) < 1 for all x ∈ Ω and in particular

(1−Ψ(δx, x))(1− Φ(δx, y)) ≥ Cos(|x− y|/κ) for all x, y ∈ Ω,

so that
Cos(|x− y|/κ)

1− ψ(x)
≤ 1− Φ(δx, y) for all x, y ∈ Ω.

Integrating against ρ and using that ∥ρ∥ = 1, we get

Fρ,κ(ψ)(y) =

�
Ω

Cos(|x− y|/κ)
1− ψ(x)

dρ(x) ≤ 1−
�
Ω
Φ(δx, y) dρ(x) ≤ 1 for all y ∈ Ω.

Hence ψ is admissible for (Dρ,κ) and (DΛρ,κ) ≤ (Dρ,κ). Let now ψ ∈ C(Ω), ψ < 1, be admissible
for (Dρ,κ) and let ν ∈ M+(Ω) be any optimizer of (Pρ,κ). Then, since Fρ,κ(ψ) ≤ 1, one obtains

�
Ω
ψ(x) dρ(x) ≤

�
Ω
ψ(x) dρ(x) +

�
Ω

[
1−

�
Ω

Cos2(|x− y|/κ)
1− ψ(x)

dρ(x)

]
dν(y)

=

�
Ω

[
ψ(x) + ∥ν∥ − 1

1− ψ(x)

�
Ω
Cos2(|x− y|/κ) dν(y)

]
dρ(x)

≤
�
Ω
sup
ξ<1

[
ξ + ∥ν∥ − 1

1− ξ

�
Ω
Cos2(|x− y|/κ) dν(y)

]
dρ(x)

=

�
Ω
HK2

κ(δx, ν) dρ(x) = (Pρ,κ), (3.3.6)

where the first equality in the last line follows by Proposition 3.3.1. All in all, we showed (Pρ,κ)
= (PΛρ,κ) = (DΛρ,κ) ≤ (Dρ,κ) ≤ (Pρ,κ), hence (Dρ,κ) is a dual to (Pρ,κ) and (Pρ,κ) = (Dρ,κ).

Step 3. Existence and characterization of the dual optimizer. Fix a primal optimizer νκ and
define ψκ ∈ C(Ω) as

(1− ψκ(x))
2 =

�
Ω
Cos2(|x− y|/κ) dνκ(y). (3.3.7)

By the optimality condition (3.3.4) we have Fρ,κ(ψκ) ≤ 1, so that ψκ is dual admissible. Fur-
thermore, thanks to (3.3.5), we have Fρ,κ(ψκ) = 1 νκ-almost everywhere. Thus, for ν = νκ
and ψ = ψκ, the chain of inequalities (3.3.6) becomes a chain of equalities and ψκ provides an
optimizer for (Dρ,κ). In particular, from (3.3.6) we also deduce that

• any optimal ψ has to satisfy

(1− ψ(x))2 =

�
Ω
Cos2(|x− y|/κ) dν(y) for ρ-a.e. x ∈ Ω, for any primal optimizer ν,

in order to have an equality between the second and third line (and recall that feasible ψ
must be < 1),

• for any optimal ψ we have

Fρ,κ(ψ)(y) = 1 for ν-a.e. y ∈ Ω, for any primal optimizer ν,

in order to have an equality in the first line.
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Hence, (ii) follows. Assume now (ν, ψ) ∈ M+(Ω)×C(Ω) is an admissible couple such that (3.3.3)
holds. The same derivation as in (3.3.6) provides

�
Ω
ψ(x) dρ(x) =

�
Ω
HK2

κ(δx, ν) dρ(x),

which holds if and only if ν is a primal minimizer and ψ is a dual maximizer, thus completing
the proof.

Corollary 3.3.5. The constraint functions Fρ,κ(ψ) for any dual optimizer ψ are identical.

Proof. This follows from the fact that all dual maximizers agree ρ-a.e., see (3.3.3a), and the
constraint function only evaluates ψ on this set.

Similar to the primal case (see Sections 3.2.2 and 3.2.3) dual maximizers and the constraint
function are stable under small perturbations in ρ and κ.

Proposition 3.3.6 (Dual stability). Let (κn)n and (ρn)n be convergent (weak* in the latter
case) sequences in (0,∞) and P(Ω), with limits κ∞ ∈ (0,∞) and ρ∞ ∈ P(Ω), respectively. Let
(νn)n be a corresponding sequence of primal minimizers and set

ψn(x) := 1−

√�
Ω
Cos2(|x− y|/κn) dνn(y), ψ∞(x) := 1−

√�
Ω
Cos2(|x− y|/κ∞) dν∞(y),

where ν∞ is some cluster point of (νn)n. Then ψ∞ is a dual maximizer of the limit problem
for κ∞ and ρ∞, the sequence (ψn)n converges uniformly to ψ∞ on the support of ρ∞, and the
sequence of constraint functions (Fρn,κn(ψn))n converges uniformly to Fρ∞,κ∞(ψ∞) on Ω.

While the primal minimizer might not always be unique, the set where Fρ,κ(ψ) = 1 for a dual
maximizer ψ is unique and stable under small perturbations in ρ and κ. Since one must have
Fρ,κ(ψ)(y) = 1 for ν-almost all y, the set where Fρ,κ(ψ) is (close to) 1 therefore provides an
alternative and unique interpretation of clustering.

Proof. By Corollary 3.2.3 the sequence (νn)n is weak* pre-compact and any cluster point is a
minimizer of the primal limit problem, see Remark 3.2.6 for the incorporation of a sequence
of changing (κn)n, with limit in (0,∞). By Proposition 3.3.4 a dual maximizer for the limit
problem is then given through (3.3.3a), which gives dual optimality of ψ∞.

Since the family of functions (y 7→ Cos2(|x− y|/κn))x∈Ω,n is uniformly equicontinuous, so are
the (ψn)n and one has that the subsequence of functions (ψnk)k is uniformly convergent for every
weak* convergent subsequence (νnk)k of (νn)n and each limit must be a dual maximizer. Since
the limit dual maximizer is unique on the support of ρ∞, all cluster points of (ψn)n must agree
on this set (and no other cluster points can exist, e.g. since all cluster points (νn)n are primal
minimizers).

Finally, let us consider the sequence of constraint functions. For brevity set Fn := Fρn,κn(ψn).
By assumption the sequence (κn)n is bounded away from zero, so there exists a finite set Y ⊂ Ω
such that

∑
y∈Y Cos(|x− y|2/κn) ≥ 1 for all x ∈ Ω and n. Then, with Fn(y) ≤ 1 for all y ∈ Ω,

n ∈ N it follows that

�
Ω

1

1− ψn(x)
dρn(x) ≤

∑
y∈Y

�
Ω

Cos(|x− y|2/κn)
1− ψn(x)

dρn(x) =
∑
y∈Y

Fn(y) ≤ |Y |.
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Sequence ((1 − ψn)
−1 · ρn)n is therefore a sequence of bounded non-negative measures on Ω

and thus weak* pre-compact. Again, by equicontinuity of the (y 7→ Cos2(|x− y|/κn))x,n follows
the pre-compactness of the sequence (Fn)n for the uniform convergence. Let now (nk)k be a
subsequence such that ((1− ψnk)

−1 · ρnk)k converges weak*, let F∞ be the limit of (Fnk)k. We
find that Fnk(y) converges pointwise to Fρ∞,κ∞(ψ∞)(y) for all y and thus we must have that
F∞ = Fρ∞,κ∞(ψ∞). Since the latter only depends on the value of ψ∞ on the support of ρ∞ and
ψ∞ is unique on this support, this means that all cluster points F∞ must be identical.

3.3.3 Discrete and diffuse barycenters

In [65] it was observed that the HK barycenter between a finite number of Dirac measures was
sometimes discrete and sometimes diffuse. In the latter case it was shown that the solution
is non-unique and that a discrete solution also exists [65, Proposition 6.2]. In this Section we
give an alternative proof for this result. Then we turn to the question of existence of discrete
solutions for a diffuse ρ and provide a negative answer: sometimes no discrete minimizers exist.
For illustration we also briefly discuss an example on the torus.

Proposition 3.3.7 (Discrete barycenters for finite number of Dirac input measures). Let
ρ :=

∑n
i=1mi δxi for n ∈ N, m = (m1, . . . ,mn) ∈ Rn+,

∑n
i=1mi = 1 and x1, . . . , xn ∈ Ω. Then,

(Pρ,κ) has a minimizer ν of the form

ν =

k∑
i=1

m̃i δx̃i

for a positive integer k ≤ n, non-negative mass coefficients m̃1, . . . , m̃k and positions x̃1, . . . , x̃k ∈ Ω.

Proof. Let ν ∈ M+(Ω) be a minimizer of (Pρ,κ) and let ψ ∈ C(Ω) be the optimal dual defined
via (3.3.3). Since ψ is uniquely determined on spt ρ, we can reduce our focus to a vector
ψ = (ψ1, . . . , ψn) ∈ Rn with entries defined as

ψi =

�
Ω
Cos2(|xi − y|/κ) dν(y) for all i = 1, . . . , n.

Consider now a discrete approximating sequence {νs}s∈N for ν, spt νs ⊂ spt ν, with

νs =
s∑
j=1

m̄s
jδxsj for m̄s = (m̄s

1, . . . , m̄
s
s) ∈ Rs+, xs1, . . . , xss ∈ Ω,

such that νs ⇀∗ ν as s→ ∞. Each measure νs defines a vector ψs ∈ Rn by setting

ψsi :=

�
Ω
Cos2(|xi − y|/κ) dνs(y) =

s∑
j=1

Cos2(|xi − xsj |/κ) m̄s
j for all i = 1, . . . , n.

This can be written as ψs = Asm̄s for a matrix As ∈ Rn×s with entries Asij := Cos2(|xi − xsj |/κ).
Clearly we have rank(As) ≤ n, and so we can find a vector m̄s,n ∈ Rs+ with at most n strictly
positive entries such that ψs = As · m̄s,n. In turn, this defines a discrete non-negative measure
νs,n supported on at most n points such that

ψsi =

�
Ω
Cos2(|xi − y|/κ) dνs,n(y) for all i = 1, . . . , n.
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By compactness, there exists a cluster point νn ∈ M+(Ω) such that, up to selection of a
subsequence, νs,n ⇀∗ νn and νn is supported on at most n points because each measure νs,n is.
Hence, using that νs ⇀∗ ν and νs,n ⇀∗ νn as s→ ∞ and that Asm̄s = Asm̄s,n, we obtain

ψi =

�
Ω
Cos2(|xi − y|/κ) dν(y) = lim

s→∞

�
Ω
Cos2(|xi − y|/κ) dνs(y)

= lim
s→∞

�
Ω
Cos2(|xi − y|/κ) dνs,n(y) =

�
Ω
Cos2(|xi − y|/κ) dνn(y).

Since Fρ,κ(ψ)(y) = 1 for every y ∈ spt ν, we also have Fρ,κ(ψ)(x
s
j) = 1 for every j = 1, . . . , s, and

any s > 0. In particular, when passing to the limit as s→ ∞, one observes that Fρ,κ(ψ)(y) = 1
for every y ∈ spt νn. By Proposition 3.3.4, point (iii), νn is primal optimal and the result
follows.

In this manuscript Ω is a subset of Rd and equipped with the Euclidean distance. The
Hellinger–Kantorovich distance can be defined for non-negative measures over more general
metric spaces [86] and in particular it can be shown that the barycenter problem between Dirac
measures can be extended to the d-torus Td = Rd/Zd. One merely has to replace any occurrence
of Ω by Td and the Euclidean distance |x− y| by the geodesic distance dst on Td. We now show
that on the torus it may happen that no discrete minimizer ν exists.

Proposition 3.3.8 (Diffuse barycenters on the torus). Let d ∈ N, Td := Rd/Zd be the d-
dimensional unit torus (with circumference 1 along each dimension), equipped with its geodesic
distance dst and let ρ ∈ P(Td) be the uniform probability measure on Td. Then for d > 1 there
is no discrete barycenter ν. For d = 1 there is no discrete barycenter when κ · π is irrational or
κ · π > 1, otherwise discrete barycenters exist.

Proof. Adapting Proposition 3.3.4 we obtain existence of a dual maximizer ψ ∈ C(Td), which is
unique ρ-a.e., i.e. it is unique since ρ has full support. It is characterized by

(1− ψ(x))2 =

�
Td

Cos2(dst(x, y)/κ) dν(y) (3.3.8)

and the condition ψ(x) < 1, where ν is an arbitrary primal minimizer. By symmetry and
convexity of the problem, ψ must be translation invariant, i.e. it must be constant, and therefore
we have ψ ∈ C∞(Td).
Assume now d > 1. Note that gy : x 7→ Cos2(dst(x, y)/κ) for some fixed y ∈ Td is merely C1

when κπ/2 ≤ 1/2 and even only C0 otherwise, due to its behavior on the sphere of radius κπ/2
around y or on the cut locus of dst(·, y). Also, it is not possible to “cancel” these irregularities
by carefully combining a countable number of gy for different y with positive weights that have a
finite sum. Therefore, ψ cannot be constructed from a discrete ν via (3.3.8).
Now let d = 1. For κπ > 1 the function gy is merely C0 and a finite number of gy cannot be

combined into a smoother function and thus, as above, no discrete barycenter can exist. Let now
κπ ≤ 1 and in addition κπ ∈ Q. Then for any y ∈ T1 the set

Sy := {y + k · κπ | k ∈ Z}

with the obvious interpretation of addition on the torus and identification of points that differ by
an integer, is finite. Then by setting ν := m

∑
y′∈Sy δy′ with a suitable m > 0 (depending on κ),

one will find that it is possible to construct a constant ψ via (3.3.8) and hence this ν is a discrete
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primal minimizer. For κπ /∈ Q this construction fails since Sy will not be finite and therefore
no countable number of gy for different y with positive weights that have a finite sum yields a
C∞-function.

From this example we draw the following intuition for Rd: When ρ has a large (compared to
κ) region of constant density, the question whether the barycenter ν can be discrete or diffuse it
not decided in the bulk of the region but at its boundary. Therefore, by careful design of the
boundary region it might be possible to construct ρ for which no discrete barycenter exists. We
confirm this in the next proposition.

Proposition 3.3.9 (Diffuse barycenters in Rd). Let d ∈ N and κ ∈ (0,∞). There exist a
compact, closed, convex set Ω ⊂ Rd and a measure ρ ∈ M+(Ω) such that (Pρ,κ) has no discrete
optimizer.

Proof. Let L ∈ (0,∞) and let Ω := B̄(0, L+ κπ/2) ⊂ Rd be the closed ball centered at the origin
with radius L+ κπ/2. Define the function σ ∈ C(Ω) as

σ2(x) :=

�
B(0,L)

Cos2(|x− y|/κ) dy for all x ∈ Ω.

Denote Cd := ∥Cos2(| · |)∥L1(Rd) and a := 1/∥σ∥L1(Ω), and consider the probability measure

ρ := a · σ · Ld. Let (ν, ψ) ∈ M+(Ω)× C(Ω) be defined as

ν := C2
dκ

2da2 · Ld⌞B(0, L) and ψ := 1− Cdκ
d · a · σ.

The pair (ν, ψ) ∈ M+(Ω)× C(Ω) is an optimal primal-dual pair for (Pρ,κ) and (Dρ,κ). Indeed,
one readily checks that

Fρ,κ(ψ)(y) =

�
Ω

Cos2(|x− y|/κ)
1− ψ(x)

dρ(x) =
1

Cdκd

�
Ω
Cos2(|x− y|/κ) dx ≤ 1 for all y ∈ Ω

and Fρ,κ(ψ)(y) = 1 for all y ∈ B̄(0, L) = spt ν. Further, by construction,

(1− ψ(x))2 = C2
dκ

2da2σ2(x) = C2
dκ

2da2
�
B(0,L)

Cos2(|x− y|/κ) dy =

�
Ω
Cos2(|x− y|/κ) dν(x).

Hence, optimality of ν and ψ follows from Proposition 3.3.4, point (iii). Since ψ is unique on
spt ρ, the function Fρ,κ(ψ) is unique and identical for all dual maximizers, therefore the set
{y ∈ Ω|Fρ,κ(ψ)(y) = 1} = B̄(0, L) is unique, and finally we find that any primal minimizer must
be concentrated on B̄(0, L).

Denote by Cos2κ : Rd → [0, 1] the function x 7→ Cos2(|x|/κ). Extend the measure ν from Ω to
Rd by zero. Then by the above, one obtains for the convolution

(Cos2κ ∗ν)(y) :=
�
Rd

Cos2κ(y − x) dν(x) =

{
σ2(y) for y ∈ Ω,

0 else,

that is, it is known on all of Rd. Now the proof strategy is to show that since the convolution of
ν with a compact kernel is fully known, ν must indeed be uniquely determined and be equal to
the above, and hence no other primal minimizer exists, in particular none that is discrete.
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Denote by F the Fourier transform on Rd, acting on suitable functions f and measures µ as

(Ff)(k) := 1

(2π)d

�
Rd
f(x) exp(ikx) dx, (Fµ)(k) := 1

(2π)d

�
Rd

exp(ikx) dµ(x)

whenever these integrals are well-defined. Since (Cos2κ ∗ν) ∈ L2(Rd), F(Cos2κ ∗ν) is well-defined.
The convolution theorem now corresponds to the observation that for almost every k one has

(F Cos2κ ∗ν)(k) =
1

(2π)d

�
Rd
(Cos2κ ∗ν)(x) exp(ikx)dx

=
1

(2π)d

�
Rd

�
Rd

Cos2κ(x− y)dν(y) exp(ikx)dx =

�
Rd
(F Cos2κ)(k) exp(iky)dν(y)

= (2π)d(F Cos2κ)(k) (Fν)(k),

where we swapped the order of integration by Fubini’s theorem.
Since Cos2κ has compact support, F Cos2κ(k) ̸= 0 k-almost everywhere and thus we obtain that

(Fν)(k) = (F Cos2κ ∗ν)(k)
(2π)d(F Cos2κ)(k)

for almost all k, i.e. the Fourier transform of all primal minimizers must agree almost everywhere.
We now show that for a finite measure µ on Rd with compact support one finds [Fµ(k) = 0 k-a.e.]

⇒ [µ = 0] and thus by linearity of F this implies that knowing (Fν) k-almost everywhere uniquely
determines ν. Let g be a continuous convolution kernel with compact support and total mass
1, and for ε > 0 let gε(x) := ε−d · g(x/ε) be the re-scaled version. Then clearly gε ∗ µ ⇀∗ µ as
ε→ 0. Let φ ∈ Cc(Rd) be continuous with compact support. Then one finds

�
Rd
φdµ = lim

ε↘0

�
Rd
φ(x) (gε ∗ µ)(x) dx = lim

ε↘0
(2π)d

�
Rd

(Fφ)(k) (F(gε ∗ µ))(k) dk

= lim
ε↘0

(2π)2d
�
Rd

(Fφ)(k) (Fgε)(k)(Fµ)(k) dk = 0,

where we first used unitarity (up to normalization) of the Fourier transform on L2(Rd,C) and
that φ, (gε ∗ µ) ∈ L2(Rd,C) for all ε > 0, then again the convolution theorem as above, and
finally the assumption Fµ(k) = 0 for almost all k. Since this holds for all φ ∈ Cc(Rd), we must
have that µ = 0.
In conclusion, the minimizer ν constructed above must be unique and therefore no discrete

minimizers can exist.

Note that the above argument with the convolution only works since spt ρ ⊃ B(0, κπ/2)+spt ν
(where the plus denotes the Minkowski sum). In other cases, the convolution Cos2κ ∗ν may not
be fully known and consequently ν may be non-unique.

3.3.4 Asymptotic behavior for κ→ 0

Now we look more closely at the limiting behavior of the functional as κ→ 0 (the case κ→ ∞ is
given by the Wasserstein limit and well-understood). We start by specifying the unique minimizer
νκ for κ = 0.
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Proposition 3.3.10. Let ρ ∈ P(Ω) and consider the decomposition

ρ = ρc +
∞∑
i=1

miδxi , xi ∈ Ω,mi ≥ 0 for all i ≥ 1, (3.3.9)

with ρc ∈ M+(Ω) atomless. Then,

ν =
∞∑
i=1

m2
i δxi is the unique optimizier of inf

{�
Ω
Hell2(δx, ν) dρ(x)

∣∣∣∣ν ∈ M+(Ω)

}
.

Proof. Taking into account (3.3.9), for any ν ∈ M+(Ω), we can write

�
Ω
Hell2(δx, ν) dρ(x) =

∞∑
i=1

miHell
2(δxi , ν) +

�
Ω
Hell2(δx, ν) dρc(x).

For the first term, with (3.1.6) observe that for any x ∈ Ω,

Hell2(δx, ν) = (1−
√
ν({x}))2 + ν(Ω \ {x}) = 1− 2

√
ν({x}) + ∥ν∥.

For the second term, let m =
∑

imi ∈ [0, 1] be the total mass of the atomic part of ρ. Observe
now that, since ρc is atomless, we have ν({x}) = 0 for ρc-a.e. x ∈ Ω, so that the second term in
the sum above simplifies into

�
Ω
Hell2(δx, ν) dρc(x) = ∥ρc∥(1 + ∥ν∥) = (1−m) (1 + ∥ν∥).

Therefore, one obtains

�
Ω
Hell2(δx, ν) dρ(x) = 1 + ∥ν∥ − 2

∞∑
i=1

mi

√
ν({xi}).

Hence, any optimal ν must be supported on {xi}∞i=1, and the Hellinger barycenter problem for ρ
reduces to

inf

1 +
∞∑
i=1

ni − 2
∞∑
i=1

mi
√
ni

∣∣∣∣∣∣ν =
∞∑
j=1

njδxj , nj ≥ 0

 .

The result follows by first order optimality conditions for each ni.

For some ρ ∈ P(Ω) and κ ∈ [0,∞) let now νκ be a primal optimizer of (Pρ,κ). Then, by
Corollary 3.2.5, as κ→ 0, νk converges to the unique minimizer ν0 of the Hellinger barycenter
problem for ρ which is specified by Proposition 3.3.10. We find that the only contributions to ν0
arise from the atoms of ρ, all other contributions must tend to 0 as κ→ 0. The following Lemma
provides a rough estimate on the corresponding rate. It is related to the concentration of ρ.

Lemma 3.3.11. Let ρ ∈ P(Ω). For κ ∈ (0,∞), let νκ ∈ M+(Ω) be a minimizer of (Pρ,κ).
Denote

Cρ,κ := sup
y∈Ω

[ρ(B(y, κ · π/2))] .

Then,
∥νk∥ ≤ 4Cρ,κ. (3.3.10)
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Proof. Via reverse Jensen’s inequality, we have

�
Ω

√�
Ω
Cos2(|x− y|/κ) dνκ(y) dρ(x) ≤

√�
Ω

�
Ω
Cos2(|x− y|/κ) dνκ(y)dρ(x) ≤

√
Cρ,κ∥νκ∥.

Taking into account that the zero measure provides an upper bound for the optimal value, the
inequality above provides

1 = Jρ,κ(0) ≥ Jρ,κ(νκ) ≥ 1 + ∥νk∥ − 2
√
Cρ,κ

√
∥νκ∥,

so that ∥νk∥ ≤ 4Cρ,κ, which establishes (3.3.10).

If ρ contains atoms, then limκ↘0Cρ,κ > 0 and ∥ν0∥ > 0, in agreement with Proposition 3.3.10.
If ρ is atomless, then limκ↘0Cρ,κ = 0 (by outer regularity of Radon measures). The rate will
depend on ρ, and will be slower, for instance, when ρ is concentrated on a lower-dimensional
submanifold. When limκ↘0Cρ,κ = 0 we also obtain ψκ → 1 uniformly for dual maximizers
via (3.3.3a).

Remark 3.3.12 (Different limits as κ→ ∞). We briefly resume the discussion of Remark 3.2.6.
Let (κn)n be a positive sequence, converging to κ∞ = 0, let x be in the interior of Ω, and let ρn
be convolutions of δx with some compact mollifier, with width going to zero as n → ∞, such
that ρn

∗→ ρ∞ := δx. Then the minimizer of Jρn,κ∞ will be ν = 0 for all n <∞, whereas it will
be ν = δx for Jρ∞,κn for all n up to n = ∞.

Finally, by assuming that ρ has an L2-density with respect to the Lebesgue measure, we will
now provide a more precise statement on the asymptotic behavior of νκ and ψκ.

Proposition 3.3.13. Let ρ ∈ P(Ω) and assume ρ≪ Ld⌞Ω with dρ/dLd ∈ L2(Ω). Denote by
Cd := ∥Cos2(| · |)∥L1(Rd). For any κ ∈ (0,∞), let (νκ, ψκ) ∈ M+(Ω)× C(Ω) be an optimal pair
for (Pρ,κ) and (Dρ,κ). Then, νκ ⇀

∗ 0 as κ→ 0 with

∥νk∥ ≤ 4Cd

∥∥∥ dρ
dLd

∥∥∥2
L2(Ω)

· κd. (3.3.11)

In particular, νκ/(Cdκ
d)⇀∗

(
dρ
dLd

)2
· Ld and ∥1− ψκ∥∞ = O(κd/2) as κ→ 0.

Proof. Step 0. Preliminaries on mollifiers. For each κ > 0, consider the continuous function
ηκ : Rd → R defined as

ηκ(x) :=
Cos2(|x|/κ)

Cdκd
.

The collection (ηκ)κ>0 provides a family of compactly supported continuous mollifiers, which are
also positive and radially symmetric. For any measure ν ∈ M(Rd), we define as usual

(ηκ ∗ ν)(x) :=
�
Rd
ηκ(x− y) dν(y) for x ∈ Rd

and extend such definition to functions f ∈ Lploc(R
d), p ≥ 1, setting ηκ ∗ f := ηκ ∗ (fLd). We

recall from [59, Appendix C, Theorem 6] the following classical results:

• Let f ∈ Lp(Rd), p ≥ 1. Then, ηκ ∗ f ∈ C(Rd) and ηκ ∗ f → f in Lp(Rd) as κ→ 0.
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• Let f ∈ C(Rd). Then, ηκ ∗ f → f uniformly on compact subsets of Rd as κ→ 0.

From now on, for simplicity, we denote by ρ also the Lebesgue density of ρ, so that ρ ∈ L2(Ω).
We extend ρ to L2(Rd) by assigning the value 0 outside of Ω.

Step 1. Mass bound and dual convergence. Let νκ ∈ M+(Ω) be a minimizer of Jρ,κ. Lemma 3.3.11
combined with the absolute continuity of ρ with respect to Ld provides ∥νk∥ ≤ Ld(B(0, π/2))∥ρ∥2L2(Ω)·
κd/2, which shows a decay rate which is slower than the stated rate. Hence, the estimate of
Lemma 3.3.11 has to be refined. By minimality of νκ we have Jρ,κ(νκ) ≤ Jρ,κ(0) = 1 and so, by
the Cauchy–Schwartz inequality in L2(Ω), we obtain

1 = Jρ,κ(0) ≥ Jρ,κ(νκ) = 1 + ∥νk∥ − 2⟨
√
Cdκd(ηκ ∗ νκ), ρ⟩L2(Ω)

≥ 1 + ∥νk∥ − 2

∥∥∥∥√Cdκd(ηκ ∗ νκ)∥∥∥∥
L2(Ω)

∥ρ∥L2(Ω) ≥ 1 + ∥νk∥ − 2
√
Cdκd

√
∥νκ∥∥ρ∥L2(Ω),

where we used ∥ηκ ∗ νκ∥L1(Ω) = ∥νκ∥, so that ∥νk∥ ≤ 4Cd∥ρ∥2L2(Ω) · κ
d, which establishes (3.3.11).

In particular, thanks to (3.3.3), we also have

(1− ψκ(x))
2 =

�
Ω
Cos2(|x− y|/κ) dνκ(y) ≤ ∥νκ∥

and by recalling that ψκ ≤ 1, see (Dρ,κ), and with (3.3.11) this establishes ∥1− ψκ∥∞ = O(κd/2)
as κ→ 0.

Step 2. Energy bound. Consider ν̂κ = Cdκ
dρ2Ld ∈ M+(Ω). One finds

Jρ,κ(ν̂κ) = 1 + Cdκ
d
(
∥ρ∥2L2(Ω) − 2⟨

√
ηκ ∗ ρ2, ρ⟩L2(Ω)

)
. (3.3.12)

By strong convergence of the mollified functions, we have ηκ ∗ρ2 → ρ2 in L1(Rd) as κ→ 0. Using
that (a− b)2 ≤ |a2 − b2| for any a, b ≥ 0, we eventually obtain that√

ηκ ∗ ρ2 → ρ in L2(Rd) as κ→ 0, which implies ⟨
√
ηκ ∗ ρ2, ρ⟩L2(Ω) = ∥ρ∥2L2(Ω) + o(1).

Thus, substituting this expansion into (3.3.12), one gets

min
ν∈M+(Ω)

Jρ,κ(ν) ≤ Jρ,κ(ν̂κ) = 1− Cdκ
d∥ρ∥2L2(Ω) + o(κd). (3.3.13)

Step 3. Convergence of the rescaled minimizers. Let νκ ∈ M+(Ω) be a minimizer of Jρ,κ. Using
(3.3.13) we estimate

0 =
Jρ,κ(νκ)−minν Jρ,κ(ν)

Cdκd
≥

∥νκ∥ − 2⟨
√
Cdκd(ηκ ∗ νκ), ρ⟩L2(Ω) + Cdκ

d∥ρ∥2L2(Ω) + o(κd)

Cdκd

=

∥∥√ηκ ∗ νκ∥∥2L2(Rd)

Cdκd
− 2

〈√
ηκ ∗ νκ
Cdκd

, ρ

〉
L2(Rd)

+ ∥ρ∥2L2(Rd) + o(1)

=

∥∥∥∥√ηκ ∗ νκ
Cdκd

− ρ

∥∥∥∥2
L2(Rd)

+ o(1),
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where we used again ∥νκ∥ = ∥ηκ ∗ νκ∥L1(Ω) from the first to the second line. Therefore,√
(ηκ ∗ νκ)/(Cdκd) → ρ in L2(Rd) as κ→ 0. In particular,

ηκ ∗ νk
Cdκd

→ ρ2 in L1(Rd) as κ→ 0.

Fix any ϕ ∈ C(Ω) and consider a continuous bounded extension ϕ̃ ∈ C(Rd) such that ϕ̃⌞Ω = ϕ.
We compute�

Ω
ϕ d

(
νk
Cdκd

)
=

�
Rd
ϕ̃ d

(
ηκ ∗ νk
Cdκd

Ld
)
+

�
Rd
ϕ̃ d

(
νk
Cdκd

− ηκ ∗ νk
Cdκd

Ld
)

=

�
Rd
ϕ̃(x) ·

(
(ηκ ∗ νk)(x)

Cdκd

)
dx+

�
Rd
(ϕ̃(x)− (ηκ ∗ ϕ̃)(x)) d

(
νk(x)

Cdκd

)
(3.3.14)

→
�
Rd
ϕ̃(x) · ρ2(x) dx =

�
Ω
ϕ(x) · ρ2(x) dx as κ→ 0,

where the second term in (3.3.14) converges to 0 because ϕ̃− (ηκ ∗ ϕ̃) converges uniformly to 0
on Ω and ∥νk/(Cdκd)∥ ≤ 4∥ρ∥2L2(Ω) by means of (3.3.11). Hence, νκ/(Cdκ

d)⇀∗ ρ2Ld in M+(Ω)
as κ→ 0.

If ρ is substituted by a weak* approximation ρ̂, Corollary 3.2.3 implies that minimizers ν̂ for ρ̂
converge (up to subsequences) to a minimizer ν for ρ as ρ̂

∗→ ρ. When ρ is atomless, for small κ,
by Proposition 3.3.10 and Lemma 3.3.11 we conclude that ν (and thus also ν̂) is close to the
zero measure. If we are now interested in the “residuals” of ν and ν̂ (i.e., if we re-scale them
such that their mass is on the order 1), then Proposition 3.3.13 tells us that we can only expect
the residual of ν̂ to be close to that of ν when ρ̂ approximates ρ well in an L2-sense. Therefore,
if we were interested in using the HK-barycenter to obtain a quantization or clustering of some
measure ρ at a small κ-scale, but only an approximation ρ̂ is available, then the approximate
solution ν̂ will only be useful, if ρ̂ is a good approximation in an L2-sense. (Intuitively, we expect
that it is sufficient if the L2-approximation holds after an optional convolution with a mollifier
at a scale less than κ.)

3.4 Numerical examples

To obtain a better understanding of the behavior of the HK barycenter between Dirac measures
and to illustrate the theoretical results of the previous section we now consider some numerical
approximations.

3.4.1 Lagrangian optimization scheme

Let us first consider the discrete barycenter problem between r ∈ N unit Dirac measures on
Ω with µi = δxi , xi ∈ Ω, and weights λi > 0 for i = 1, . . . , r such that

∑r
i=1 λi = 1. This

corresponds to Λ :=
∑r

i=1 λi δµi in (PΛ,κ) or equivalently ρ :=
∑r

i=1 λi δxi in (Pρ,κ).
For optimization over ν we employ a Lagrangian discretization, i.e. we optimize over the ansatz

νs =
∑s

j=1mjδyj with locations yj ∈ Ω and masses mj ≥ 0 for j = 1, . . . , s for some s ∈ N. The
number of points in the ansatz s may change during optimization due to merging or addition of
new particles. The resulting optimization problem can be written as

min
mj≥0, yj

Jρ,κ(ν
s) = min

mj≥0, yj
1 +

s∑
j=1

mj − 2
r∑
i=1

λi

√√√√ s∑
j=1

mj Cos
2

(
|xi − yj |

κ

)
. (3.4.1)
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For gradient-based minimization we determine the partial derivatives with respect to mass
coefficients mj and locations yj . The components of the gradient in mass are

∂Jρ,κ(ν
s)

∂mj
= 1−

r∑
i=1

λi
Cos2

(
|xi−yj |

κ

)
√√√√ s∑

l=1

ml Cos
2

(
|xi − yl|

κ

) .

If we set ψs(xi) := 1 −
√∑s

j=1mj Cos
2
(
|xi−yj |

κ

)
(which would be the optimal dual ψ if νs is

primal optimal, see Proposition 3.3.4), then we obtain

∂Jρ,κ(ν
s)

∂mj
= 1− Fρ,κ(ψ

s)(yj),

i.e. masses need to be increased when the corresponding constraint function at yj is less than 1
(the constraint is inactive) or decreased when the constraint is violated. A vanishing gradient
corresponds to the optimality condition Fρ,κ(ψ)(yj) = 1 on the support of ν.
For the gradient in coordinates yj one obtains

∂Jρ,κ(ν
s)

∂yj
=

r∑
i=1

λi
2mj Cos

(
|xi−yj |

κ

)
Sin
(
|xi−yj |

κ

)
yj−xi
κ|xi−yj |√∑s

l=1ml Cos
2

(
|xi − yl|

κ

) ,

where Sin(x) := sin(x) for x ∈ [0, π/2] and 0 otherwise. By comparison we find again a relation
to the constraint function (with the same ψ as above),

∂Jρ,κ(ν
s)

∂yj
= −∂Fρ,κ(ψ

s)(yj)

∂yj
,

i.e. the points yj will move “upwards” on the constraint function Fρ,κ(ψ) and only be locally
optimal when sitting at a maximum, which then, by the mass optimality condition, has to be at
value 1.

Due to the Lagrangian ansatz, the resulting optimization problem is non-convex and may get
stuck in non-optimal points. On the other hand, because the points are allowed to move, the
spatial accuracy is not limited to a grid. The issue of poor local minima can be remedied by
testing whether the value of Fρ,κ(ψ) exceeds one at points where no yj is located. This testing
can be performed numerically with reasonable accuracy since Fρ,κ(ψ) is 1/κ-Lipschitz continuous.
Thus it is possible to combine the strengths of Lagrangian and Eulerian schemes: We remove
points from the ansatz when their mass drops to zero, and we may add points when the dual
constraint is violated, thus adaptively determining the appropriate number of point masses.

A Eulerian discretization with entropic smoothing was used in [65] for numerical examples. In
Proposition 3.3.7 and [65, Proposition 6.2] it was shown that discrete minimizers exist when ρ is
discrete. The entropic Eulerian ansatz cannot approximate them with high accuracy due to the
fixed grid, entropic blur, and since we observe that minima are often “shallow” or non-unique.
Therefore, to study these discrete minimizers the non-entropic Lagrangian method is more
appropriate.
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The problem formulated above is then solved with (preconditioned) gradient descent with
gradient steps performed simultaneously in coordinates and in masses; inexact line search as
described in [71].

Naturally, we are also interested in examples where ρ is not discrete, representing an uncount-
able infinite number of input measures. While Corollary 3.2.3 suggests that this case can be
approximated with discrete ρ, we deduce from Proposition 3.3.13 that for small κ it will be
difficult to obtain good approximations for the “residual” of νκ (which will be close to the zero
measure). Therefore, for this regime we employ a slightly different numerical scheme where
ν is also approximated in a (discrete) Lagrangian fashion but the integral over ρ in (3.3.2) is
approximated more accurately by adaptive Gauss–Kronrod quadrature instead of individual
Dirac sums as in (3.4.1). The corresponding formulas for the gradients are derived in analogy.
For optimization of this functional we applied the quasi-Newton BFGS algorithm.

3.4.2 Finite number of input measures

For a discrete number of input Dirac measures, for κ sufficiently close to zero, it is easy to
see that the resulting HK barycenter will be a superposition of Dirac measures, one per input
measure (cf. Prop. 3.3.10). For κ sufficiently large, it will be one single Dirac measure. For κ
increasing from 0 to ∞, a gradual merging of Diracs in the barycenter was observed in [65] on
various examples. Here we demonstrate numerically that the general behavior is more complex.
As κ increases, Diracs may merge and split, disappear and reappear, and the total number of
Diracs may even temporarily increase.
Figure 3.1 illustrates the HK barycenter for

ρ := 0.4 · δ0 + 0.1 · δ0.4 + 0.1 · δ0.6 + 0.4 · δ1 on Ω = [0, 1], for κ ∈ [0.08, 0.8], (3.4.2)

and the constraint function Fρ,κ(ψ) for the corresponding dual optimal ψ.
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Figure 3.1: Left: the HK barycenter on Ω = [0, 1] for ρ and κ as in (3.4.2). For each κ, position
of points indicates positions of Dirac measures, color code indicates the amount of
mass. The vertical lines show locations for which the constraint function Fρ,κ(ψ) is
shown on the right.

For small κ, as expected, the barycenter consists of four individual Dirac masses at the same
locations as in ρ. Eventually the two middle masses merge (where the constraint function briefly
exhibits an extended plateau of value 1, as analyzed in [65]). At some point, the outer masses
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“see” the inner masses (i.e. their relative distance drops below κπ/2). Since their λ-weights are
much higher, the joint Dirac in the barycenter remains much closer to the outer masses until the
Dirac at the center even vanishes. Note that after this vanishing, the constraint function briefly
even exhibits a local maximum at 0.5 which is strictly below 1. Eventually, all masses merge
into one cluster. During the merging the constraint function exhibits an extended plateau of
value 1 for an extended interval of κ values and in this regime a non-discrete barycenter exists
(again, this was already analyzed in [65]).

Figure 3.2 shows a similar example with 6 masses in ρ, given by

ρ := 0.3 · (δ0 + δ1) + 0.16 · (δ0.24 + δ0.76) + 0.03 · (δ0.45 + δ0.55). (3.4.3)

.
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Figure 3.2: Left: the HK barycenter on Ω = [0, 1] for ρ with six Dirac masses (see (3.4.3)),
visualized as in Figure 3.1. Right: the number of masses in the barycenter ν, which
is not decreasing over κ. The regimes with a seemingly diffuse solution are marked
by orange points.

The trajectory of HK barycenters over κ exhibits an even more intricate behavior with the
mass at the center appearing and disappearing several times and even the number of masses
temporarily increasing as κ increases. For at least two regions of scales, a diffuse barycenter
seems to be admissible.

3.4.3 A continuum of input measures

Now we consider a continuum of input measures. Let Ω = [0, 1] and ρ = L1⌞Ω. Following
Section 3.4.1 we consider the functional

Jsρ,κ(y1, . . . , ys,m1, . . . ,ms) = Jρ,κ(ν
s) = 1+

s∑
j=1

mj−2

�
Ω

√√√√ s∑
j=1

mj Cos
2(|x− yj |/κ) dx, (3.4.4)

which corresponds to (3.4.1) with continuous ρ. The integral is approximated by adaptive
Gauss–Kronrod quadrature and minimized via projected BFGS in positions and masses.
Figure 3.3 shows barycenters obtained for κ ∈ [1/12, 1] and the evolution of the total mass

with a detailed view presented in Figure 3.4.
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Figure 3.3: Top-Left: the HK barycenter on Ω = [0, 1] for ρ = L⌞[0, 1] visualized as in Figure 3.1
(here with a logarithmic color map). Top-Right: total mass of the HK barycenter, in
comparison with bound and asymptotic expansion from Proposition 3.3.13. Bottom:
the constraint function Fρ,κ(ψ) for some values of κ (as marked in the top-left), with
positions (yj)j of the primal masses marked by red points (note the range of the
vertical axis, which only shows a very small interval close to one).
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Figure 3.4: Zoom on the transition regions for Figure 3.3 for the given values of κ. For better
visibility the color scale is adjusted to the mass range in each sub-figure.
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In agreement with Proposition 3.3.13 the latter decreases linearly to 0 as κ→ 0. The evolution
seems to consist of intervals in which the number of Dirac masses gradually decreases by one step
at a time until only a single mass is left. However, these intervals are separated by transition
regions, during which the behavior is more complicated and the number of masses also temporarily
increases again.

Due to the uniformity of ρ this problem proved to be quite challenging numerically, as the
constraint function for the optimal ψ was very close to one, almost throughout the entire bulk
of the interval, see Figure 3.3. In particular the transition regions required detailed manual
inspection. It is possible to solve the problem analytically for very small and very large κ, but
the full spectrum seems to be beyond reach. Therefore, it seems ultimately impossible to prove
that the true minimizers have the same structure as our numerical approximations. But via the
primal-dual optimality conditions we can at least guarantee that the numerical approximations
must be very close in terms of objective value. In particular, the observed complicated transitions
seem to outperform simpler variants without additional particles. These transitions are shown in
more detail in Figure 3.4.
It seems that each of the shown transitions follows a different pattern: From one to two

particles, first a fork into three particles is observed, and then the middle particle vanishes
(numerically it seems that in this region also a diffuse solution would be admissible, but we
were unable to find a solution with less than three particles). In the transition from two to
three, the third particle simply appears in the middle. From three to four, the middle particle
splits into two. From four to five, a new particle first appears, then splits, and finally re-merges.
From five to six, a particle first splits, but the two fragments then vanish and are replaced by
appearing new particles. From six to seven, two particles appear and eventually merge. We did
not anticipate such a complicated structure in a convex functional.

3.4.4 Comparison with empirical measures

Next, we study the convergence of the HK barycenter as ρ is approximated through sampling.
For the previous example with ρ being the uniform measure on [0, 1] we now generate ρ̂ by
drawing n points from ρ and using the obtained empirical measure. Corresponding empirical
barycenters are shown in Figure 3.5.
By Corollary 3.2.3 we expect convergence of the empirical barycenter to the true one, as

n→ ∞. However, as κ→ 0, the true barycenter will converge to the zero measure (Proposition
3.3.10). Convergence of the “residual” part is analyzed in Proposition 3.3.13 for the case when
ρ has an L2-density. From this we expect that the residual of the empirical barycenter will be
close to the real residual, when ρ̂ is a good L2-approximation of ρ. As ρ̂ is an empirical measure,
it has no L2-density. Intuitively, we expect the result to still hold when a small convolution on
a length scale below κ is applied to ρ̂, and when this mollified version of ρ̂ is close to ρ in an
L2-sense. In a nutshell, we expect the residuals to become worse as κ decreases and better as n
increases. This is confirmed by the examples in Figure 3.5.
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Figure 3.5: Barycenters for the input measures sampled from uniform distribution on [0, 1]. Points
mark support of masses, mass itself is not visualized. Three different instances are
shown in different colors to visualize the variance between them. Left: 100 points
sampled. Right: 1000 points sampled.

Convergence of the dual solution and constraint function (Prop. 3.3.6) is visualized in Figure 3.6.
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Figure 3.6: The dual (left) and the constraint function (right) at κ = 0.1, for two sampled
solutions with n = 100 and n = 1000 together with the solution obtained from the
continuous ansatz of Section 3.4.3 for comparison.

The uniformity of ρ in the example above makes it not quite clear what kind of “clustering”
to expect for smaller κ. Therefore, we perform similar experiments on mixtures of Gaussian
distributions. That is, ρ is given by a mixture of 5 Gaussians with means and standard deviations
given by

(0.15, 0.05), (0.30, 0.03), (0.46, 0.08), (0.71, 0.03), (0.81, 0.06).

Figure 3.7 shows the corresponding numerical results for sampling ni = 100 and ni = 1000
points from each Gaussian. The coarse structure of the resulting HK barycenters seems to
indicate five major clusters, one per Gaussian, that gradually merge. As expected, cluster masses
are higher for more concentrated Gaussians, and the second cluster seems to absorb some points
from the first Gaussian. As in the earlier examples, the transition between the major cluster
intervals is more complicated, and differs between instances. Occasionally, smaller spurious
particles with low mass are present. The rough structure of the barycenters seems consistent
between all four experiments, in agreement with the proven stability results.
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Figure 3.7: HK barycenters for samples from a mixture of 5 Gaussian distributions. Each column
shows two instances. Left column: 100 samples per Gaussian. Right column: 1000
samples per Gaussian. Empirical distribution is visualized by the vertical histograms
for each instance (50 bins in left column, 100 bins in right column). The mass of the
barycenter for each κ is re-normalized to 1 for better visibility.

Figure 3.8 shows the regions of the constraint function Fρ,κ(ψ) close to one for the examples
presented in Figure 3.7. The threshold is scaled with parameter κ as this seems to produce lines
of approximately constant width over the scales. By Proposition 3.3.6 we know that these regions
are unique and convergent as n→ ∞. They seem to be in good correspondence with the primal
pictures and are reasonably stable under repeated experiments.
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Figure 3.8: Thresholded regions where the dual constraints are close to being active, i.e. where
Fρ,κ(ψ) ≥ 1 − exp(−9.5)

κ , for 2 instances with ni = 100 (left) and ni = 1000 (right)
sampled points in each Gaussian presented in Figure 3.7. The re-scaling with κ was
done based on the empirical observation that it yielded approximately consistent
widths of the lines.

For visual comparison, Figure 3.9 shows four single linkage cluster dendrograms for the sampled
points presented above, computed with the algorithm described in [101].
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Figure 3.9: Single linkage cluster dendrograms for two instances with ni = 100 (left) and for
2 instances with ni = 1000 (right) sampled points in each Gaussian presented
in Figure 3.7, truncated for better visibility. Colorscale represents the number of
points clustered in a branch. Branches carrying less then 2% of the total mass are
shown with narrower lines for better visibility.

The obtained major clusters are qualitatively similar to the results obtained by the HK
barycenter. It differs from the HK barycenter figure in some important features: First, it is well
known that single linkage produces many spurious outliers that show up in the figure as dark, thin
lines. The HK barycenter seems less prone to such outliers. Second, the obtained dendrograms
for ni = 100 and ni = 1000 appear to be shifted horizontally against each other, since the
expected distances between pairs of points are different in both cases. For the HK barycenter the
behavior is qualitatively consistent at a fixed κ for different ni. Third, of course the dendrogram
does provide a strict hierarchical clustering of the data, unlike the HK barycenters, and it can be
computed with simple and efficient algorithms. These are features that the HK barycenter does
not offer. For an approach to making the dendrograms more robust to spurious outliers, see for
instance [39].
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3.4.5 A two-dimensional example

Finally, we present some two-dimensional examples. We start with the uniform density on the
square [0, 1]2, discretized by 1312 discrete Dirac masses, see Figure 3.10. As in one dimension,
an intricate sequence of transitions between relatively regular intervals is observed.
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Figure 3.10: HK barycenter for various κ for uniform ρ. In grayscale: dual feasibility residual in
log-scale (ln(|1− Fρ,κ(ψ)|)). In color scale: locations and masses of barycenter with
maximal mass in each barycenter re-normalized to 1 for better visibility.

An example with a mixture of 3 Gaussians is shown in Figure 3.11. For this experiment, 50
points were sampled from each 2D Gaussian distribution. The sampled points are shown in the
plot in grey, the barycenter for selected κ is shown in color. The HK barycenter in this case
presents a “clustering” behavior similar to the one shown for a mixture of Gaussians in 1D.
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Figure 3.11: HK barycenter for various κ for ρ sampled from mixture of Gaussians in 2D. Sampled
points are shown in grey. The mass of the barycenter for each κ is re-normalized
to 1 for better visibility.
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3.5 Conclusion

In this chapter we have studied in more detail the barycenter between an uncountable number of
input measures with respect to the Hellinger–Kantorovich distance, with a particular focus on
Dirac input measures. We have shown existence and stability with respect to input data and
length scale parameter and derived a corresponding dual problem. For Dirac input measures we
have shown existence of continuous dual maximizers, their uniqueness (ρ-a.e.) and primal-dual
optimality conditions. The behavior of the solutions as κ → 0 was studied in more detail,
including the limit solution and asymptotic mass and density estimates. We showed that in some
cases no discrete minimizers can exist. A numerical scheme based on Lagrangian discretization
was introduced and it was shown numerically that the evolution of the minimizer with respect to
the length scale does not correspond to a simple gradual merging of “clusters”. With these two
properties (non-existence of discrete minimizers, no simple merging behavior) the HK barycenter
does not induce a simple hierarchical clustering of data points in the conventional sense. Instead,
a wide variety of transition behaviors is observed numerically. However, it still provides a one-
parameter family of measures, interpolating between the input data and a single Dirac measure,
which can be interpreted as a gradual coarse graining. It is reasonably robust under empirical
approximation by sampling, as demonstrated theoretically and with numerical examples, and
comes with a corresponding family of dual problems that provide additional interpretation and
information.

As such Hellinger–Kantorovich barycenter might be an interesting tool for the structure analysis
of point clouds and application to real data would be a possible direction for future research.
This would lead to related questions such as the interpretation of the trajectory of barycenters
in high dimensions and their reliable numerical approximation.
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This chapter is devoted to the branched transport problem and its convex relaxation in terms of
the multimaterial transport problem. This chapter is mainly based on a manuscript in preparation
to be submitted for publication [24].

As already mentioned in the introduction, various natural and human-made objects have
branching structures. Figure 4.1 shows a simple example which demonstrates the difference
between the standard optimal transport and branching behavior: The transport is performed
between two sources (at A and B) and a sink (at C); the standard optimal transport is shown
on the left, and the branched transport, where the flows are joining at an intermediate point and
then continue together to the sink, is shown on the right. The observed behavior is modelled
through a special construction of the transportation cost: In the case of branched transport, the
cost is selected to be a concave, subadditive function, which encourages the transport network
ramification.

Figure 4.1: Sketch of Wasserstein-1 transport (left) and branched transport (right) from
1
2(δA + δB) to δC .

The concave cost function, however, makes the problem difficult to analyze. Alternative models
promoting network ramification exist, for example, in the setting of multimaterial transport,
where the input is assigned to be of different “materials”, and the (convex) cost function gives
reduction for transporting different materials together. An example of multimaterial transport
problem giving the same network as in the branched transport problem in Figure 4.1 (right) is
given in Figure 4.2.

Figure 4.2: Sketch of multimaterial transport from
1

2

([
1
0

]
δA +

[
0
1

]
δB

)
to

1

2

[
1
1

]
δC .

Therefore, in this chapter, we first recall the branched transport problem and the multimaterial
transport problem and then study the latter in more detail. This chapter is organized as follows.
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In Section 4.1 we recall the statement of the branched transport problem in Eulerian description.

In Section 4.2 we state the multimaterial transport problem and discuss the properties of
the multimaterial transport cost. We also give a dual formulation and an alternative primal
formulation and analyze the primal-dual optimality conditions. While the results presented in
Section 4.2 are in principle known in the literature, they appear to be scattered throughout
a number of publications and are given in different mathematical formulations. We collected
the results and presented them in a mathematically homogeneous language suitable for the
subsequent research.

Section 4.3 is devoted to a study of a special subclass of multimaterial problems that admits a
single topology. Here we formally state the single topology problem and a free vertex optimization
problem and then show the connection between the two. We also consider the minimal example
of a single topology problem, namely the problem with 2 sources and 1 sink, and provide a full
characterization of its solution set.

Section 4.4 is devoted to the numerical experiments. We present numerical schemes of two
different classes: a scheme based on optimization over graphs and a scheme based on finite-
element-like discretization of the original infinite-dimensional problem. We present some examples,
which support our findings from the previous sections and make observations about the structure
of the problem (especially the seemingly simple structure of the dual), which motivate the
upcoming research.

In Section 4.5 we study a multimaterial problem with 3 sources and 1 sink in a special setting
when two solutions with different topologies are optimal. We study the properties of the problem
from geometric and algebraic perspectives. We discover and prove an interesting connection
between the transportation costs of the candidates and the bisectors of the angles of the graphs.
We then study the set of solutions of the prescribed type and discover some configurations, which
can a priori (i.e. based only on the initial data of the problem) be shown not to admit solutions
of the prescribed type.

Conclusions and discussion of presented results and potential future work are given in Sec-
tion 4.6.

Author’s contribution
The author has made major contributions to all the sections. In particular, the author

contributed to adaptation and presentation of the results given in Sections 4.2 and 4.3. The
author proposed the research question on the properties of the 3-vertex problem presented
in Subsection 4.3.3 and then contributed to formulating conjectures and proving them. The
author contributed to implementing and adapting the numerical schemes discussed in Section 4.4,
conducted the numerical experiments and analyzed the results. The author helped to define the
general direction of the research in Section 4.5 and participated in discovering, formulating and
proving the conjectures on the properties of the specific 4-vertex problem.

4.1 Branched transport

Here we follow the branched transport problem in Eulerian description introduced by Xia [122]
and generalized to concave transportation costs by Brancolini and Wirth [32]. The alternative
Lagrangian model of branched transport was proposed by Maddalena, Solimini and Morel [90].
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Let transportation cost τ(m) : [0,∞) 7→ [0,∞) be a non-decreasing concave function with
τ(0) = 0.

Definition 4.1.1. A polyhedral mass flux between discrete probability measures µ+ ∈ P(Ω) and
µ− ∈ P(Ω) is a vector-valued Radon measure F ∈ M(Ω,Rn) which satisfies in the distributional
sense the Kirchhoff’s mass preservation law

divF = µ+ − µ− (4.1.1)

and can be written as
F =

∑
e

meσeH
1⌞e, (4.1.2)

where e = xe + [0, 1](ye − xe) ⊂ Ω are the non-overlapping edges with orientation σe =
(ye − xe)/|ye − xe|, coefficients me ∈ R++ are positive real weights, and H 1⌞e is the restriction
of the one-dimensional Hausdorff measure to the edge e.

Definition 4.1.2. The branched transport cost of polyhedral mass flux F with respect to a
transportation cost τ is defined as

J τ,µ+,µ− [F ] =
∑
e

τ(me)H
1(e). (4.1.3)

The problem of minimizing functional (4.1.3) in the case τ(m) = mα with α ∈ (0, 1)

inf
{∑

e

mα
eH 1(e)

∣∣∣ F as in Definition 4.1.1
}

(4.1.4)

is called the Gilbert–Steiner problem [68]. Note that the limit case α = 0 corresponds to
the Steiner problem (see [46, 34] for historical overview), while case α = 1 corresponds to
Wasserstein-1 transport.

The branched transport cost of a general Radon measure satisfying Kirchhoff’s mass preserva-
tion law (4.1.1) is defined via relaxation of the branched transport cost of polyhedral mass fluxes
J τ,µ+,µ− :

Definition 4.1.3. A vector-valued Radon measure F ∈ M(Ω,Rn) is called mass flux between
the probability measures µ+ and µ− if there exist two sequences of discrete probability measures
(µk+), (µ

k
−) ⊂ P(Ω) and a sequence of polyhedral mass fluxes Fk with div(Fk) = µk+ − µk− such

that Fk ⇀∗ F and µk± ⇀∗ µ±, where ⇀
∗ indicates the weak-∗ convergence in duality with

continuous functions. In this case, we write (Fk, µk+, µk−)⇀∗ (F , µ+, µ−).
If F ∈ M(Ω,Rn), then the branched transport cost of F is defined as

J τ,µ+,µ− [F ] = inf

{
lim inf

k
J τ,µk+,µ

k
− [Fk]

∣∣∣∣ (Fk, µk+, µk−)⇀∗ (F , µ+, µ−)
}
,

the lower semicontinuous envelope or relaxation of the branched transport cost on polyhedral
mass fluxes.
The corresponding branched transport problem is the optimization problem

inf
{
J τ,µ+,µ− [F ]

∣∣∣F ∈ M(Ω,Rn), div(F) = µ+ − µ−

}
.

As already mentioned above, the concave cost function makes it difficult to solve the problem
both analytically and numerically. Therefore, it has been suggested in [92] to consider a relaxation
of the branched transport, called multimaterial (or sometimes multi-material) transport problem.
The rigorous arguments and results on the relaxation can be found in [92, 87].
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4.2 Multimaterial transport problem

4.2.1 Problem statement

The multimaterial transport problem seeks to find the best (joint) displacement for m materials
between their prescribed initial and final distributions in convex, compact set Ω ⊂ Rn (with non-
empty interior). Let initial and final distributions of material i be denoted by µi+, µ

i
− ∈ M+(Ω),

i = 1, . . . ,m where we impose the consistency condition ∥µi+∥ = ∥µi−∥. These distributions can be
summarized into two vector-valued measures µ+ = (µ1+, . . . , µ

m
+ )⊺, µ− = (µ1−, . . . , µ

m
− )⊺ ∈ P(Ω)m.

The multimaterial transport problem consists in finding a collection of fluxes ω = [ω1, . . . , ωm] ∈
M(Ω)m×n, where row ωi ∈ M(Ω)n is the flux of material i, minimizing the total cost of
transporting all the mass from µ+ to µ−, given by

P(µ+, µ−) = inf
ω

{�
Ω
H

(
dω

d|ω|

)
d|ω|

∣∣∣∣ ω ∈ M(Ω)m×n : Div(ω) = µ+ − µ−

}
, (4.2.1)

where the divergence operator Div acts row-wise on each material flux ωi and is to be understood
in a weak sense. That is, we impose

�
Ω
∇ϕdωi +

�
Ω
ϕd(µi+ − µi−) = 0 (4.2.2)

for all test functions ϕ ∈ C1(Ω) and for all i = 1, . . . ,m. This constraint describes mass
conservation (also known as Kirchoff’s law) for the material fluxes.
The multimaterial transport cost H : Rm×n → [0,∞) is assumed to be convex, lower semi-

continuous and positively 1-homogeneous. More specifically, we assume that H is constructed
from a unit transport cost h : Rm → [0,∞) in way described below, where h(θ) gives the cost of
transporting a combination of materials θ ∈ Rm along one unit of length (signed vectors θ can
represent the case where some materials travel in opposite directions). Further, we assume that
the unit transport cost h is constructed from some prescribed prototypical material combinations
Θ ⊂ Rm and corresponding cost coefficients cθ ∈ R+ for θ ∈ Θ. Given Θ and (cθ)θ∈Θ we set h
to be the largest convex, positively 1-homogeneous, even symmetric function Rm → [0,∞] that
satisfies h(θ) ≤ cθ for θ ∈ Θ. More explicitly, one first introduces a preliminary function ĥ by

ĥ(p) :=

{
|λ|cθ, if p = λθ for some λ ∈ R, θ ∈ Θ,

+∞, else.
(4.2.3)

and then sets h to be its convex lower-semicontinuous envelope h := ĥ∗∗. h inherits positive
1-homogeneity and evenness from ĥ. For the convex conjugate ĥ∗ one finds

ĥ∗(q) = sup
λ

max
θ∈Θ

λ⟨q, θ⟩ − |λ|cθ =

{
0, if |θ⊺q| ≤ cθ ∀θ ∈ Θ,

+∞, else.
(4.2.4)

Since ĥ∗ = ĥ∗∗∗ = h∗ and by positive 1-homogeneity one has that ĥ∗ is the indicator function of
the subdifferential ∂h(0).

Throughout this chapter we assume that

0 ∈ int ∂h(0). (4.2.5)

This implies, for instance, that infθ∈Θ cθ > 0.
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Given h we then construct H, by specifying that the cost for a collection of materials p ∈ Rm
being transported in direction e ∈ Rn is given by h(p) · ∥e∥. For a general multimaterial flux
matrix the cost is defined again via the convex, positively 1-homogeneous envelope. Analogous
to above introduce a preliminary function Ĥ via

Ĥ(P ) :=

{
h(p) ∥e∥ , if P = p⊗ e,

+∞, else.
(4.2.6)

Note that because unit cost function h and the norm ∥ · ∥ are 1-homogeneous, the function Ĥ(P )
is defined consistently even if the decomposition P = p⊗ e is not unique. Then, like before, we
set H = Ĥ∗∗. For Ĥ∗ one finds

Ĥ∗(Q) = sup
p,e

⟨Q, p⊗ e⟩ − h(p) ∥e∥ = sup
p,e

p⊺Qe− h(p) ∥e∥ = sup
e:∥e∥=1

sup
p
p⊺Qe− h(p)

= sup
e:∥e∥=1

h∗(Qe) =

{
0, if |θ⊺Qe| ≤ cθ ∀θ ∈ Θ, e : ∥e∥ = 1,

+∞, else

=

{
0, if ∥θ⊺Q∥ ≤ cθ ∀θ ∈ Θ,

+∞, else.
(4.2.7)

As above, the function H∗ = Ĥ∗ is the indicator function of the subdifferential ∂H(0). H inherits
convexity, positive 1-homogeneity, and lower-semicontinuity from h. Assumption (4.2.5) implies
that

0 ∈ int ∂H(0). (4.2.8)

Further, one has
H(p⊗ e) = h(p) ∥e∥ (4.2.9)

for any mass vector p and direction e [87, Lemma 4.1.0.1]. Note also that by Carathéodory’s
theorem, for any flow P ∈ Rm×n there exists a decomposition P =

∑
i λi θi ⊗ ei for some

{λi} ⊂ R, {θi} ⊂ Θ and {ei} ⊂ Rn, such that H(P ) =
∑

i λi h(θi) ∥ei∥ =
∑

i |λi| cθi ∥ei∥.

Example 4.2.1. Let m = 2, Θ = {[0, 1]⊺, [1, 0]⊺, [1, 1]⊺}, fix a parameter q ∈ [0, 1] and set the
cost of transporting a unit of mass of each individual material to 1, and the cost of transporting
one unit of each material jointly to 1+q, so c[0,1] = 1, c[1,0] = 1, c[1,1] = 1+q. Figure 4.3 illustrates

ĥ and its envelope (or extension) h.
Figure 4.4 shows the subdifferential ∂h(0). As can be seen from (4.2.4), each vector θ ∈ Θ

induces two bounding hyperplanes with orientations given by ±θ and offsets from the origin
given by cθ.

Finally, note that the choice q = 1 corresponds to the regular Wasserstein-1 cost, and q = 0 to
the Steiner cost.
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Figure 4.3: Unit cost function h(m1,m2). Figure 4.4: Subdifferential ∂h(0).

4.2.2 Dual formulation

A dual multimaterial problem can be obtained via Fenchel–Rockafellar duality.

Proposition 4.2.2 (Dual multimaterial problem). Let

D(µ+, µ−) = sup

{�
Ω
φ · d(µ+ − µ−)

∣∣∣∣ φ ∈ C1(Ω)m, −Dφ(x) ∈ ∂H(0)∀x ∈ Ω

}
. (4.2.10)

Then one has D(µ+, µ−) = P(µ+, µ−).

The dual problem (4.2.10) can be interpreted as a generalization of the Kantorovich–Rubinstein
formula. Recalling the characterization (4.2.7) of ∂H(0) the dual constraint can be written as

−Dφ(x) ∈ ∂H(0) ⇔ ∥∇θ⊺φ(x)∥ ≤ cθ ∀θ ∈ Θ, (4.2.11)

where θ⊺φ =
∑m

i=1 θiφi ∈ C1(Ω). That is for every prescribed combination of materials (given by
the set Θ), the norm of the gradient of the corresponding (weighted) sum of dual potentials is
limited by the corresponding unit cost.

Proof. The primal problem (4.2.1) can be written as

inf
ω∈M(Ω)m×n

{F (Aω) +G(ω)}

for F = ι{µ+−µ−}, G(ω) =
�
ΩH( dω

d|ω|)d|ω|, and A = Div. By Fenchel–Rockafellar duality
theorem 2.2.6, the dual problem is then formally given by

inf
ω∈M(Ω)m×n

{F (Aω) +G(ω)} = sup
φ∈C1(Ω)m

{−F ∗(−φ)−G∗(A∗φ)}, (4.2.12)

where A∗ is the adjoint of operator A and F ∗, G∗ are convex conjugates of respectively F and G.
One obtains

F ∗(ϕ) =

�
Ω
ϕd(µ+ − µ−), G∗(ψ) =

{
0, if ψ(x) ∈ ∂H(0)∀x,
+∞, else.

(4.2.13)
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and A∗ = −D where D is the component-wise gradient of functions φ ∈ C1(Ω)m.

To show that the duality gap in (4.2.12) is in fact zero, we need to verify the constraint
qualifications. In this case, this has to be done on the dual side. Indeed, for the function
φ : x 7→ 0 one has that F ∗ is finite at −φ and G∗ is finite and continuous at A∗φ, where the
latter follows from the fact that 0 ∈ int ∂H(0), (4.2.8).

Remark 4.2.3. In problem (4.2.10) the dual potentials φ have to be continuously differentiable,
which is a strong restriction, and solutions to this problem do not always exist. It can be shown
that the class of admissible functions can be relaxed to Lipschitz functions φ ∈ C0,1(Ω,Rm) and
that the relaxed dual problem admits an optimizer [87].

We also note that the dual solutions are often referred to as certificates, as an optimal dual
solution can be used to confirm optimality of a feasible primal candidate. In the context of
multimaterial transport the gradients of the dual potentials are also called calibrations [92].

4.2.3 Primal-dual optimality conditions

It is also useful to consider the primal-dual optimality conditions for this problem. We state
here again the primal-dual optimality conditions (Theorem 2.2.9): For a primal-dual pair of
optimization problems written in the form (4.2.12), candidates (ω, φ) are optimal if and only if

Aω ∈ ∂F ∗(−φ) ⇔ −φ ∈ ∂F (Aω) ⇔ F (Aω) + F ∗(−φ) = −⟨A∗φ, ω⟩ ,
A∗φ ∈ ∂G(ω) ⇔ ω ∈ ∂G∗(A∗φ) ⇔ G(ω) +G∗(A∗φ) = ⟨A∗φ, ω⟩ . (4.2.14)

For the multimaterial transport problem specifically, the two conditions become

Div(ω) = µ+ − µ−, (4.2.15)

−Dφ(x) ∈ ∂H(0) ∀ x ∈ Ω, (4.2.16)〈
−Dφ(x), dω

d|ω|
(x)

〉
F

= H

(
dω

d|ω|
(x)

)
|ω| − almost everywhere. (4.2.17)

Conditions (4.2.15) and (4.2.16) are the primal and dual feasibility constraints and the latter
can be rewritten as in (4.2.11). To interpret condition (4.2.17), assume for simplicity that

dω

d|ω|
(x) = λθ ⊗ e for some λ ∈ R, λ > 0, θ ∈ Θ with h(θ) = cθ, and e ∈ Rn, ∥e∥ = 1

|ω|-almost everywhere on some closed set S ⊂ Ω. Then on S we can rewrite the left side of
(4.2.17) as 〈

−Dφ(x), dω

d|ω|
(x)

〉
F

= −λ⟨θ⊺Dφ(x), e⟩.

The cost on the right side is by definition (4.2.9)

H

(
dω

d|ω|
(x)

)
= λh(θ) ∥e∥ = λ cθ,

and so condition (4.2.17) becomes

−⟨θ⊺Dφ(x), e⟩ = h(θ) ∥e∥ = cθ.
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Comparing this with the feasibility condition (4.2.11), which can be written as

∥θ⊺Dφ(x)∥ ≤ cθ,

and using that e has unit length, we conclude that |ω|-almost everywhere on S it must hold that

θ⊺Dφ = −cθ e. (4.2.18)

This means that if a certain mass combination θ ∈ Θ is flowing in direction e ∈ Rn in an optimal
primal solution, then the corresponding dual optimal solution must satisfy that the weighted
combination of dual potentials θ⊺φ is maximally decreasing in direction e, as far as the constraint
(4.2.11) is concerned. This is a natural generalization of the classical Wasserstein-1 problem
where the single dual potential must be decrease with slope 1.

4.2.4 Momentum condition

The primal-dual optimality conditions become particularly strong when several material fluxes
meet at a vertex. In the following we give a formal discussion and refer to [87], in particular
Remark 4.2.0.4, for rigorous treatment of regularity. Let x ∈ Ω and consider a flow ω where
several fluxes form a vertex at x (see Figure 4.5):

ω =
∑
i

(θi ⊗ ei)σi H 1⌞ℓi.

Figure 4.5: Incoming and outgoing flow at a point x.

Here vectors θi ∈ Θ are the material compositions, ℓi ⊂ Rn denote the straight line segments
between the vertex x and the end-points yi ̸= x with ei = (x−yi)/∥x−yi∥ giving their orientation
(pointing towards the vertex), and scalars σi ∈ {±1} determine the direction of flows along these
edges (+1 for incoming, −1 for outgoing). One finds

Div(ω) =
∑
i

θiσi div(eiH ⌞ℓi) =
∑
i

θiσi (δyi − δx).

As source and sink measure we choose

µ+ =
∑

i:σi=+1

θi δyi , µ− =
∑

i:σi=−1

θi δyi

and thus from the constraint Div(ω) = µ+ − µ− we obtain the mass preservation condition at
the vertex x that ∑

i

θiσi = 0. (4.2.19)
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Applying now condition (4.2.18) to each edge (and taking into account the orientation σi), at
x we obtain for each i that

σi θ
⊺
iDφ = −cθi ei.

Summing this over i and using (4.2.19) one then obtains the condition∑
i

cθiei = 0, (4.2.20)

known as the balance formula [122, Example 2.1] or momentum conservation condition [87,
Remark 4.2.0.4].

In the special case when three edges meet, often referred to as a triple junction, this means
that the relative magnitude of the costs (cθi)

3
i=1 fully determines the relative angles between the

edges, since they prescribe the edge lengths of a triangle. This is visualized in Figure 4.6.

Figure 4.6: Junction with 3 flows (left) and the corresponding cost triangle (right).

For discrete distributions of sources and sinks, the optimal primal solution has been shown to
be represented by a network [92], and so these local optimality conditions provide guidance for
constructing solutions or at least solution candidates.
When fixing three boundary points yi, mass compositions vi and costs cvi it may however

still be that the optimal solution does not exhibit a single vertex x with the implied angles,
since either the three costs might not allow for the formation of a triangle (e.g. one being more
expensive than the other two combined), or since the vertex x cannot be placed between the
yi with the prescribed angles. In these cases the optimal solution will be degenerate and x will
coincide with one of the yi. This is examined in more detail in Section 4.3.3.
For more than three edges there are more degrees of freedom and the relative angles are

therefore not fully fixed by the costs.

4.2.5 Alternative primal formulation

After rewriting the dual constraint of (4.2.10) as in (4.2.11) we can obtain an alternative primal
problem. We use again the Fenchel–Rockafellar duality theorem and pick −F ∗(−φ) as in (4.2.13)
but we now choose G∗(ϕ) = ı∥ϕθ∥≤cθ ∀θ∈Θ and (A∗φ)θ = θ⊺Dφ. Note that in this case each of the
dual constraints (4.2.11) induces a corresponding scalar flux in the primal problem. We denote
the component corresponding to vector θ ∈ Θ by ωθ. Then the alternative primal formulation is
given by

inf

{∑
θ∈Θ

cθ ∥ωθ∥

∣∣∣∣∣ ω ∈ (M(Ω)n)|Θ| :
∑
θ∈Θ

θ div (ωθ) = µ+ − µ−

}
. (4.2.21)

Each scalar flux ωθ represents a potential combination of masses θ. It makes the joint fluxes
more explicit, provides another intuitive view on the multimaterial transport problem, and is
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also practical from a numerical perspective. We refer to [25, Section 4.2] for a more detailed
study of this alternative formulation and numerical examples.

4.3 Problems with single topology

4.3.1 Setting and vertex optimization problem

A challenging aspect of the multimaterial transport problem is the exponentially large number
of potential topologies of the optimal network. Therefore, we defer the problem of identifying
the optimal network topology for now and consider in this section special problem instances
where only a single topology is admissible to gain some insight in the remaining problem of
finding the optimal location of network vertices. We show that this can be re-written as a
finite-dimensional convex optimization problem. Such single-topology problems can be designed
by suitable choice of sources and sinks, as well as the function h via the choice of prototypical
material combinations Θ. We now outline this construction.

Definition 4.3.1 (Single-topology setting). A single-topology multimaterial transport problem
is specified by the following components:

(i) Initial and final distributions are given by

µ+ =
m∑
i=1

ei δxi , µ− = 1mδy, (4.3.1)

i.e. the source consists of m distinct Dirac measures of different materials i (ei is the
canonical i-th basis vector in Rm), located at positions xi ∈ Ω, that all move to a common
sink at y ∈ Ω (1m being the vector with all entries 1).

(ii) The network topology is encoded by an abstract directed graph (V,E) with V = {1, . . . ,K}
where K ≥ m+ 1 and each vertex has an associated position zi ∈ Ω. Vertices 1, . . . ,m and
K are fixed vertices and their positions are given by zi = xi for i = 1, . . . ,m and zK = y.
The positions of the other free vertices will have to be determined by optimization. When
(i, j) ∈ E, then all mass from zi will flow to zj , and so the graph (V,E) describes the
gradual merging of materials from the sources towards the sink. In particular K is the
unique root with no outgoing edge, all other vertices have precisely one outgoing edge, and
the set of leaves with no incoming edges is {1, . . . ,m}. A simple example for such a graph
is shown in Figure 4.7.

(iii) We denote by ch(i) = {j ∈ V : (j, i) ∈ E} the children of i and by pa(i) the unique parent
for i ∈ V \ {K} for which one has (i,pa(i)) ∈ E.

(iv) For (i, j) ∈ E we denote by θ(i,j) the material vector that is flowing on the edge (i, j). By
construction, on the edges emerging from the source vertices, the material vector is the
corresponding unit vector. At each free vertex, the material vector of the outgoing edge
must be the sum of the material vectors of the incoming edges. And the sum of the material
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vectors that are incoming on the sink/root node must be 1m. This means, we have

θ(i,pa(i)) = ei for i = 1, . . . ,m,

θ(i,pa(i)) =
∑

k∈ch(i)

θ(k,i) for i = m+ 1, . . . ,K − 1,

1m =
∑

j∈ch(K)

θ(j,K). (4.3.2)

So the material combinations are fixed by the topology E and independent of the vertex
positions.

(v) Let Θ := {θe|e ∈ E} and associate with each material combination θe, e ∈ E a cost
coefficient ce for the transport per unit length. Together they induce the unit transport
cost function h, as described in Section 4.2. The choice of coefficients ce is arbitrary except
for being strictly positive, which together with finiteness of E implies that (4.2.5) holds.

Figure 4.7: A network with fixed topology, sources represented by white circles, sink represented
by grey-filled circle, free vertices represented by black-filled circle.

We will show that minimizing over the position of the free vertices is equivalent to solving the
flow problem (4.2.1).

Definition 4.3.2 (Primal and dual vertex optimization problem).

(i) The primal vertex optimization problem is given by

inf
z∈RK×n

∑
(i,j)∈E

c(i,j)∥zj − zi∥+
m∑
i=1

ı{xi}(zi) + ı{y}(zK), (4.3.3)

where z ∈ RK×n denotes the collection of all vertex positions, zi ∈ Rn denoting the position
of vertex i. This means, we sum over the edges in the network the respective edge lengths
weighted by the unit cost coefficients for the corresponding material combination. The
positions of the fixed vertices are enforced by the indicator functions.

(ii) The corresponding dual problem is (sketch for duality given below)

sup
{ m∑
i=1

xi · ϕ(i,pa(i)) −
∑

j∈ch(K)

y · ϕ(j,K)

∣∣∣ (ϕe)e∈E ∈ R|E|×n,

|ϕe| ≤ ce for e ∈ E,
∑

j∈ch(i)

ϕ(j,i) = ϕ(i,pa(i)) for all i = m+ 1, . . . ,K − 1.
}

(4.3.4)
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The dual variable ϕ ∈ R|E|×n has one n-dimensional component per edge of the network,
indexed by (i, j) ∈ E.

Problems (4.3.3) and (4.3.4) are finite-dimensional non-smooth convex optimization problems
and can, for instance, be tackled with proximal splitting methods [45, 29].

Remark 4.3.3 (Sketch of duality). Duality between (4.3.3) and (4.3.4) can again be obtained
via Fenchel–Rockafellar duality (Theorem 2.2.6), similar to (4.2.12). Equation (4.3.3) can be
brought into the canonical form by choosing

F : R|E|×n → R, F (w) =
∑
e∈E

ce∥we∥,

G : RK×n → {0,∞}, G(z) =

{
0, if zi = xi for i = 1, . . . ,m and zK = y,

+∞, else,

A : RK×n → R|E|×n, (Az)(i,j) = zj − zi for (i, j) ∈ E.

The function F is the sum of scaled norm terms that can be conjugated separately. The convex
conjugate of the Euclidean norm is the indicator function of the unit ball ı∥·∥≤1, and so we obtain

F ∗(w) =
∑
e∈E

ı∥·∥≤1

(
we
ce

)
=

{
0, if ∥we∥ ≤ ce ∀e ∈ E,

+∞, else.

The conjugate of G, an indicator of a singleton for fixed vertex positions and not depending on
the free vertex positions, is

G∗(w) =

{∑m
i=1wi · xi + wK · y, if wj = 0 for j = m+ 1, . . . ,K − 1,

+∞, else.

For the adjoint of A we find

(A∗ϕ)i = −
∑

j:(i,j)∈E

ϕ(i,j) +
∑

j:(j,i)∈E

ϕ(j,i) = −ϕ(i,pa(i)) +
∑

j∈ch(i)

ϕ(j,i)

with the convention that the first term is zero for i = K where pa(i) is not defined. By
Fenchel–Rockafellar theorem 2.2.6, the dual problem is then formally given by

sup
ϕ∈R|E|×n

−F ∗(−ϕ)−G∗(A∗ϕ),

where we find that the F ∗ term yields the constraints ∥ϕe∥ ≤ ce for e ∈ E. The G∗ term yields
the constraints ϕ(i,pa(i)) =

∑
j∈ch(i) ϕ(j,i) for i = m+ 1, . . . ,K − 1 and the terms

m∑
i=1

ϕ(i,pa(i)) · xi −
∑

j∈ch(K)

ϕ(j,K) · y,

which together yields (4.3.4). Strong duality holds because F and G satisfy the constraint
qualifications on an affine subspace.

The primal-dual optimality conditions, analogous to (4.2.14), in this case yield:

A∗ϕ ∈ ∂G(z), −ϕ ∈ ∂F (Az),
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where the former simply implies the dual constraint

(A∗ϕ)i = 0 ⇔ ϕ(i,pa(i)) =
∑

j∈ch(i)

ϕ(j,i) for i = m+ 1, . . . ,K − 1, (4.3.5)

and the latter becomes

−ϕ(i,j) ∈ c(i,j) · (∂∥ · ∥)((Az)(i,j)) for (i, j) ∈ E, (4.3.6)

which implies the dual constraint ∥ϕ(i,j)∥ ≤ c(i,j), and in particular for zi ̸= zj that ϕ(i,j) =
c(i,j) ·(zi−zj)/∥zi−zj∥. This means that when an edge in the transport network is not degenerate
(i.e. its start and endpoint are different), then the corresponding dual variable must be aligned
against the flux in that edge and its length must be the material cost c(i,j).

We will show below that any configuration of vertex positions z ∈ RK×n with appropriate
fixed vertex locations in (4.3.3) induces an admissible candidate for the primal multimaterial
flux problem (4.2.1). Further, from any admissible dual candidate ϕ ∈ R|E|×n in (4.3.4) one can
construct an admissible candidate for the dual multimaterial problem (4.2.10) by identifying
ϕ(i,j) with θ

⊺
(i,j)∇φ, i.e. we assume that the dual potentials φ are linear functions with constant

derivatives. This will imply the equivalence between the problems. Before turning to the general
equivalence proof, we study an explicit example to gain some intuition.

Example 4.3.4. Consider the case m = 3, K = 6, with four fixed vertices {z1 = x1, z2 = x2, z3 =
x3, z6 = y} and two free vertices {z4, z5}, with edges E = {(1, 4), (2, 4), (4, 5), (3, 5), (5, 6)}, as
illustrated in Figure 4.8.

Figure 4.8: Vertex optimization: Sources denoted with xi, sink denoted with y, free vertices
denoted with zj .

The corresponding collection of material vectors is given by

Θ = {θ(1,4) = e1, θ(2,4) = e2, θ(4,5) = e1 + e2, θ(3,5) = e3, θ(5,6) = 13}.

Flattening the collection of vertex positions z ∈ RK×n into a vector of dimension K · n, the
corresponding matrix representation of the operator A can be written as

A =


−I 0 0 I 0 0
0 −I 0 I 0 0
0 0 0 −I I 0
0 0 −I 0 I 0
0 0 0 0 −I I

 ,
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where I ∈ Rn×n is the identity matrix and 0 here denotes the n × n zero matrix. The primal
problem (4.3.3) for this graph becomes

inf
z4,z5

[
c(1,4) ∥z4 − x1∥+ c(2,4) ∥z4 − x2∥+ c(4,5) ∥z5 − z4∥+ c(3,5) ∥z5 − x3∥+ c(5,6) ∥y − z5∥

]
,

and the dual problem (4.3.4) is to maximize the objective function

sup
ϕ∈R|E|×n

[
m∑
i=1

⟨xi, ϕ(i,pa(i)⟩ − ⟨y, ϕ(5,6)⟩

]
(4.3.7)

under the constraints

ϕ(1,4) + ϕ(2,4) − ϕ(4,5) = 0, ϕ(4,5) + ϕ(3,5) − ϕ(5,6) = 0 (4.3.8)

and

∥ϕ(i,j)∥ ≤ c(i,j) for (i, j) ∈ E. (4.3.9)

In the discrete vertex problem (4.3.3) we have not constrained the free vertices to lie in Ω.
This allowed for a simpler dualization. The following Lemma shows that if all fixed vertices lie
in Ω and the latter is convex, this restriction is not required. The Lemma will also be convenient
in the rest of the chapter.

Lemma 4.3.5. Primal optimal free vertex locations in (4.3.3) lie in the convex hull of the fixed
vertices.

Proof. The coefficients ce, e ∈ E, in (4.3.3) are strictly positive, and each (Az)e is the difference
of two vertex positions. Let C be the convex hull of the fixed vertices, and denote by PC : Rn → C
the projection onto C. Then for x, y ∈ Rn one has

∥PCx− PCy∥ ≤ ∥x− y∥

and for x ∈ Rn \ C and y ∈ C one has

∥PCx− PCy︸︷︷︸
=y

∥ < ∥x− y∥.

Thus in (4.3.3), for admissible fixed vertex positions, if any one of the free vertices are not in C,
the objective can be strictly decreased by projecting them onto C.

4.3.2 Equivalence of vertex optimization and multimaterial transport problem

Proposition 4.3.6. Let z and ϕ be primal and dual optimal in (4.3.3) and (4.3.4). Let

ω =
∑

(i,j)∈E

θ(i,j) ⊗ e(i,j) · H 1⌞l(i,j), φi(x) = ⟨x, ϕ(i,pa(i))⟩ for i = 1, . . . ,m.

Here for (i, j) ∈ E we set

e(i,j) =

{
zj−zi

∥zj−zi∥ if zi ̸= zj ,

0 else,

and l(i,j) ⊂ Rn is the straight line segment between zi and zj. Then ω and φ are primal and dual
optimal for (4.2.1) and (4.2.10).
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Proof. We first show primal feasibility of ω by evaluating Div(ω). We find

Div(ω) =
∑

(i,j)∈E

θ(i,j) · div(e(i,j) · H 1⌞l(i,j)) =
∑

(i,j)∈E

θ(i,j)(δzi − δzj )

=
K∑
i=1

 ∑
j:(i,j)∈E

θ(i,j) −
∑

j:(j,i)∈E

θ(j,i)

 · δzi

=

m∑
i=1

eiδxi − 1mδy = µ+ − µ−.

In the forth equality we use (4.3.2), which implies that in the sum the terms for i = m+1, . . . ,K−1
are zero, for i = 1, . . . ,m there are no incoming edges, and for i = K no outgoing edges.
For the objective we find

�
Rn
H

(
dω

d |ω|

)
d |ω| =

∑
(i,j)∈E

H(θ(i,j) ⊗ e(i,j)) · ∥zj − zi∥ =

∑
(i,j)∈E

h(θ(i,j))∥(Az)(i,j)∥ ≤
∑

(i,j)∈E

c(i,j)∥(Az)(i,j)∥,

where A as in Remark 4.3.3. Here we used (4.2.9) and the inequality h(θe) = ĥ∗∗(θe) ≤ ĥ(θe) = ce
for e ∈ E. From this we conclude that (4.2.1) ≤ (4.3.3).

Now we consider the dual problems. Based on the tree structure (V,E) introduced in Definition
4.3.1, for i = m + 1, . . . ,K − 1 denote by desc(i) the descendants of i, i.e. the vertices j ∈
{1, . . . ,m} for which the unique path to K passes through i. Condition (4.3.2) then implies that
θ(i,pa(i)) =

∑
j∈desc(i) ej for i = m+ 1, . . . ,K − 1, and in particular (θ(i,pa(i)))j = 1 if and only if

j ∈ desc(i). In a similar way, for i = m+ 1, . . . ,K − 1, recursive application of the constraint∑
j∈ch(i) ϕ(j,i) = ϕ(i,pa(i)) of (4.3.4) yields ϕ(i,pa(i)) =

∑
j∈desc(i) ϕ(j,pa(j)). With this we get for the

dual candidate as constructed above and (i,pa(i)) ∈ E that

θ⊺(i,pa(i))Dφ(x) =
m∑
j=1

(θ(i,pa(i)))jϕ(j,pa(j)) =
∑

j∈desc(i)

ϕ(j,pa(j)) = ϕ(i,pa(i)).

Therefore, the constraint ∥ϕ(i,pa(i))∥ ≤ c(i,pa(i)) in (4.3.4) implies the constraint for the dual flow
problem (4.2.11). As for the dual objective, one gets in (4.2.10) for the above φ that

�
φd(µ+ − µ−) =

m∑
i=1

�
φid(δxi − δy) =

m∑
i=1

⟨ϕ(i,pa(i)), xi − y⟩

=

m∑
i=1

⟨ϕ(i,pa(i)), xi⟩ −
∑

j∈ch(K)

⟨ϕ(j,K), y⟩.

With this we find (4.2.10) ≥ (4.3.4), and using strong duality for both problems we eventually
get equality between (4.2.1) = (4.2.10) = (4.3.3) = (4.3.4) and thus optimality of the candidates
constructed above.
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4.3.3 Example: Three vertex problem

As an instructive and popular example of a problem with only a single admissible topology we will
now study the three vertex problem and in particular the explicit solution (or characterization of
solutions) of the corresponding vertex optimization problem, based on the chosen locations of
sources and sink, and of the material costs.
For this concrete case, a slightly more explicit notation will be convenient. Consider two

sources z1 = A = x1, z2 = B and a sink z4 = C in Ω, with a single free vertex z3 = S, i.e. m = 2
and K = 4, and E = {(1, 3), (2, 3), (3, 4)}. For simplicity, we assume that A,B and C are
distinct. Degenerate special cases can be solved separately. According to Lemma 4.3.5, point S
lies in the convex hull of points A,B,C, and the convex hull of 3 distinct points is contained
in a 2-dimensional plane; therefore we restrict our discussion in this section to A,B,C, S ∈ R2

without the loss of generality. For more compact notation we will refer to the cost coefficients by

a = c(1,3), b = c(2,3), c = c(3,4).

As above, we assume that all three coefficients are strictly positive. Then the primal vertex
optimization problem (4.3.3) can be written as

inf
S∈Rn

a · ∥A− S∥+ b · ∥B − S∥+ c · ∥C − S∥,

where again S = z3 denotes the single free vertex. The dual corresponding dual problem (4.3.4)
can be written as

sup
{
⟨A, ϕa⟩+ ⟨B,ϕb⟩ − ⟨C, ϕc⟩

∣∣∣ ϕa, ϕb, ϕc ∈ Rn : ϕa + ϕb = ϕc, ∥ϕx∥ ≤ x for x ∈ {a, b, c}
}
.

Note that the constraint in principle allows to eliminate one of the ϕx, for instance ϕc, which
would correspond to the continuous dual problems (4.2.10), see also Prop. 4.3.6. In particular,
the latter proposition suggests that we can identify ϕx with the gradient of the corresponding
(sum of) dual potential(s), which in turn can be assume to be globally linear, and we will do so
in the following discussion.
In addition, the primal-dual optimality condition implies for the optimal S and (ϕx)x∈{a,b,c}

that

S ̸= A ⇒ ϕa = a · A− S

∥A− S∥
,

S ̸= B ⇒ ϕb = b · B − S

∥B − S∥
, (4.3.10)

S ̸= C ⇒ ϕc = c · S − C

∥C − S∥
.

In addition, Lemma 4.3.5 implies that S must lie in the convex hull of {A,B,C}. When
S /∈ {A,B,C}, then the constraint ϕa + ϕb = ϕc and (4.3.10) fix the relative angles at which the
segments AS, BS and CS meet in S via the “cost triangle” with lengths a, b, c, see Figures 4.6
and 4.9. In particular none of the angles between any two segments can be π, implying that S
cannot lie on the edges of the triangle ABC.
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Figure 4.9: Angles at the free vertex S and the corresponding cost triangle.

This means that one of four cases must occur: S coincides with one of the three vertices,
A,B,C, or S lies in the interior of the convex hull, see Figure 4.10.

Figure 4.10: Possible types of graph (left to right): L-graph (S = A), L-graph (S = B), V-graph
(S = C), Y-graph.

It is easy to see that when a point S can be found, under which the three segments have
the correct relative angles, it will be a primal solution and the segment orientations induce the
corresponding dual solution. In the following we discuss under which conditions such a point S
does or does not exist.
Problem normalization.
Since three vertices A,B,C always lie in a two-dimensional plane and since the optimal S will

lie in the convex hull of A,B,C, it is sufficient to consider the case n = 2 in the following. Further,
the optimization problem is invariant under isometries of R2 such as translations, rotations, and
reflections; and also under scaling in the sense that the solution of the transformed problem is
the transformation of the original problem. We can therefore consider the case where A = (0, 0)⊺,
B = (0, 1)⊺ and C having a non-negative first coordinate.

Figure 4.11: Calibrations for the cases when the cost triangle does not exist.

Cost constraints. A point S with the appropriate angles cannot exist when the angles do
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not exist, i.e. when one cannot form a triangle with edge lengths a, b, c because one of them is
longer than the sum of the other two. Assume c > a+ b (the other cases are symmetric). Then
for any ϕa, ϕb with ∥ϕx∥ ≤ x, x ∈ {a, b} one automatically has for ϕc = ϕa + ϕb that ∥ϕc∥ ≤ c.
So flows a and b can move independently and be calibrated independently by the dual potentials
without having to worry about the constraint for ϕc. The primal solution will therefore be the
V-graph. This and the other two cases are illustrated in Figure 4.11.

Domain constraints. The other situation when a point S with the suitable angles does not
exist is, informally, when the triangle is too small or oblong. For a normalized problem (see
above), the set of points S under which A and B appear under the correct relative angle lies on a
circle (by the inscribed angle theorem, see Figure 4.12). Fixing S on that circle, the set of points
C for which this point S is primal optimal then lie on a ray emerging from S with a prescribed
angle. Thus, with A and B fixed, the set of all C for which a S with the proper angles exists is
the union of all these rays. This set is bounded by the circle and the two extremal rays when S
coincides with either A or B. An elementary geometric consideration yields that these angles are
given by ψB and ψA respectively (see Figure 4.9 for the notation of the angles ψA, ψB).

Figure 4.12: Domain constraints: if the angles at S have to agree with the cost triangle angles,
then C cannot lie in the dashed regions.

One can then verify that when C lies within the circle, that the optimal solution will again
be the V-graph where a and b flows can be calibrated independently without violating the
ϕc-constraint (intuitively, because now ϕa and ϕb meet at an angle larger than the one prescribed
by the cost triangle, and thus the resulting ϕc edge is shorter than c). Likewise, when C lies
beyond one of the two rays, one of the two L-graphs will turn out to be optimal.

4.4 Numerical approximation

This section is devoted to the numerical approximation of solutions of multimaterial transport
problem. Namely, we consider two different discretization options with dedicated numerical
solvers, show some numerical experiments and discuss the observations.

4.4.1 Graph optimization

The fact that for discrete sources and sinks optimal solutions are supported on graphs [92] and
the rich structure of the primal-dual optimality conditions suggest numerical approximation
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schemes that directly optimize over graphs. While this is a simple problem for a fixed topology
where only the locations of the vertices need to be found (as discussed in Section 4.3), interesting
problems usually exhibit a number of potential topologies that is exponential in the number of
sources and sinks. Here we consider a numerical scheme of the described type.
The scheme consists in alternating optimization: First we optimize over the flows on a fixed

graph (the topology and the vertex positions are fixed), and then, for a fixed flow on the graph, we
optimizer over the positions of the free vertices of the graph. While both optimization problems
separately are convex, the joint problem (i.e., optimization over flows and vertex positions)
is a non-convex discretization of the original multimaterial transport problem. Therefore, in
general we cannot expect global optimality of the solutions we obtain from this scheme. As a
heuristic remedy, in both steps with add regularization: in the flow updates we add quadratic
regularization of the flows to encourage spread of the flow over multiple edges and thus to
increase the chances of “observing” more potential topologies. in the vertex position updates we
add a quadratic fidelity to the previous step to avoid that the graph collapses to a degenerate
configuration immediately. We now describe the two alternating steps in more detail.

The first component of the scheme is a numerical solver for a regularized multimaterial
minimum-cost flow problem on a given graph (see for example [2, Chapter 17] or [18, Section
8.3]; compare with the flow minimization problem in Section 4.2.5): Let (V,E) be a connected
directed graph, let m be the number of materials and Θ ⊂ Rm be the finite set of material

combinations with given cost coefficients cθ ∈ R++ for θ ∈ Θ. Let µ+, µ− ∈ R|V |×m
+ be the

matrices associated with the vertices of the graph V giving respectively the initial and the final
distribution of masses for each material such that

∑
i(µ+)ik =

∑
j(µ−)jk = 1, k = 1, . . . ,m. The

regularized multicommodity flow problem is as follows:

min

{∑
θ∈Θ

∑
e∈E

cθ hε(ωe,θ) le

∣∣∣∣∣ ω ∈ R|E|×|Θ| :
∑
θ∈Θ

θ div(ωθ) = µ+ − µ−

}
, (4.4.1)

where le is the length of edge e, hε : R → R+ is the Huber function

hε(z) =

{
|z| − ε/2, if |z| ≥ ε,
z2

2ε , else,

and div : R|E| 7→ R|V | denotes the graph divergence operator.
We introduce the regularization to “spread” the flow over the edges, as the quadratic term of

the Huber function encourages the transport of smaller amounts of mass through a larger subset
of edges. For ε = 0 one recovers the original problem. We will use gradual reduction of ε as an
annealing technique.
We use Chambolle–Pock proximal splitting method [38] to solve problem (4.4.1), as the

necessary proximal operators proxσ,G and proxτ,F ∗ can be evaluated efficiently. Namely, by
selecting

G : R|E|×|Θ| → R+, G(ω) =
∑
θ∈Θ

∑
e∈E

cθ hε(ωe,θ),

F : R|V |×m → {0,∞}, F (v) = ı·=µ+−µ−(v),

A : R|E|×|Θ| → R|V |×m, Aω =
∑
θ∈Θ

θ div(ωθ),
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we find that problem (4.4.1) can be written as minω∈R|E|×|Θ| G(ω) + F (Aω). For the proximal
operators (Definition 2.2.2), we get

(proxσ,G(ω))e,θ =


ωe,θ − σcθ|e|, if ωe,θ > ε+ σcθ|e|,
ωe,θ + σcθ|e|, if ωe,θ < −ε− σcθ|e|,

ε
ε+σcθ|e|ωe,θ, otherwise,

∀e ∈ E, θ ∈ Θ,

proxτ,F ∗(v) = v − τ(µ+ − µ−).

The second component of the alternating optimization scheme is the vertex optimization. We
formulate the problem similar to Definition 4.3.1 as minimization over the free vertex positions
while keeping the flow on edges ω fixed. Let z ∈ Rkz×n denote the free vertex positions (with
kz ∈ N standing for the number of free vertices) and x ∈ R(|V |−kz)×n denote the fixed vertex
positions. Let Afree : Rkz×n 7→ R|E|×n and Afixed : R(|V |−kz)×n 7→ R|E|×n be two operators which
give for each edge the adjacent vertex positions, with the convention that (Afreez)e = zi if edge e
ends in vertex i and (Afreez)e = −zi if edge e starts in vertex i (and similar for operator Afixed ).

Let w ∈ R|E|
+ be the set of non-negative weights; we choose we =

∑
θ∈Θ cθ hε(ωe,θ). Then the

vertex optimization problem can be formulated as follows:

min

{∑
e∈E

we

∥∥∥(Afreez)e + (Afixedx)e

∥∥∥ ∣∣∣∣∣ z ∈ Rkz×n
}
.

For instance, for the problem presented in Example 4.3.4, with n = 2, for the 2 free vertices
z ∈ R2×2 = {z4, z5}, four fixed vertices x ∈ R4×2 = {x1, x2, x3, y}, and the edges defined as
before, the operators Afree and Afixed are as follows:

Afree =


I 0
I 0
−I I
0 I
0 −I

 , Afixed =


−I 0 0 0
0 −I 0 0
0 0 0 0
0 0 −I 0
0 0 0 I

 ,
where I ∈ R2×2 is the identity matrix and 0 ∈ R2×2 is the zero matrix.

We also add a quadratic regularization term to the vertex optimization problem to introduce
damping into the system (i.e. to prevent the vertices from moving too far from their original
positions):

min

{∑
e∈E

we

∥∥∥(Afreez)e + (Afixedx)e

∥∥∥+ λ

kz∑
i=1

∥zi − z̄i∥

∣∣∣∣∣ z ∈ Rkz×n
}
, (4.4.2)

where λ ∈ R++ is the regularization parameter and z̄i is the constant denoting the original
location of point zi.

We also use the Chambolle–Pock method for this problem, and select

G : Rkz×n → R+, G(z) = λ

kz∑
i=1

∥zi − z̄i∥ ,

F : R|E| → R+, F (v) =
∑
e∈E

we

∥∥∥ve + (Afixedx)e

∥∥∥ ,
A : Rkz×n → R|E|, Az = Afreez,
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for which we obtain

proxσ,G(z) =
1

1 + 2λσ
(z + 2λσz̄),

(proxτ,F ∗(v))e =

ve + τ(Afixedx)e, if
∥∥ve + τ(Afixedx)e

∥∥ ≤ we,
ve+τ(Afixedx)e

∥ve+τ(Afixedx)e∥we, otherwise.
.

We perform the numerical optimization as follows. Given the initial data (distribution of
sources and sinks and cost coefficients for material combinations), we first obtain an initial
graph by triangulating the convex hull of the support of sources and sinks. We then select the
parameters of the algorithm (list of values of ε, regularization parameter λ, parameters of the
Chambolle–Pock algorithm) and stopping criteria thresholds. For the stopping criteria, we use a
standard combination of feasibility and optimality conditions. We then proceed to perform a
preset number of alternating optimization steps (edge flows and vertex positions) for the largest
selected value of ε, and then pass the resulting graph with a flow on its edges into the alternating
optimization for the next ε. After going through all the ε in the list, we perform one more round
of alternating minimization steps with unregularized flow problem. Here we show some examples
of the application of the numerical scheme we discussed.

Example 4.4.1 (2 sources, 1 sink). Consider the problem described in Section 4.3.3 with two
material types with a single Dirac source for each and a common sink. We place the sources at
[0, 0]⊺ and [0, 1]⊺ for the materials 1 and 2 respectively, and the sink at [2, 0.5]. We select the
cost coefficients for the individual flows as a = 1, b = 0.5 and for the joint flow as c = 1.3 (see
Section 4.3.3 for the notation). The initial graph generated by area triangulation is shown in
Figure 4.13.

Figure 4.13: Initial graph used in Example 4.4.1 with sources in green and common sink in red.

We use the numerical scheme described above to solve the problem; the evolution of numerical
approximation is shown in Figure 4.14: Each row shows the flows of the individual materials
through the graph (left for material 1, right for material 2) after the alternating optimization for
the given ε, the mass is shown with the α-channel; values p and d are the primal and dual score
respectively.

We compute the angles ψA and ψB at the Steiner point analytically (as in Section 4.3.3), and
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compare them to the values computed numerically. The theoretical values are

ψA = arccos

(
a2 + c2 − b2

2 a c

)
≈ 0.352648, ψB = arccos

(
b2 + c2 − a2

2 b c

)
≈ 0.762550,

while from the numerical experiment we obtain

ψ̃A ≈ 0.352878, ψ̃B ≈ 0.760649,

which shows a good correspondence with the theoretical values (with 0.07% and 0.25% error
respectively).

Figure 4.14: Numerical approximations at the end of ε-scaling iteration for the 2 materials.

Example 4.4.2 (3 sources, 1 sink). Next we consider a similar problem but with 3 materials
with separate sources and common sink. Sources of the materials 1, 2, 3 are located respectively
at [0, 0]⊺, [0, 0.7]⊺, [0, 1]⊺, and the common sink is located at [2, 0.4]⊺. The cost coefficients for
single material flows is set to 1, for any combination of 2 materials to 1.4, and of all 3 materials
to 1.9. The initial graph (obtained by domain triangulation) is shown in Figure 4.15. The results
are shown in Figure 4.16.
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Figure 4.15: Initial graph used in Example 4.4.2 with sources in green and common sink in red.

Figure 4.16: Numerical approximations at the end of ε-scaling iteration for the 3 materials.
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We can observe the solution of expected type: flows of materials 2 and 3 meet in a Steiner
point (which does not coincide with any of the fixed points), the joint flow with materials 2 and
3 then meets the single material flow of type 1 to form another non-degenerate Steiner point,
and from there the joint flow of all 3 materials goes to the common sink.

Example 4.4.3. Next we consider an example very similar to Example 4.4.2, with only a minor
change: The location of the common sink will now be at [2, 0.3]⊺. The evolution of approximations
is shown in Figure 4.17. We observe here a different topology of the solution, namely, the Steiner
point of materials 2 and 3 is now degenerate (as it coincides with the source of material 2).

Figure 4.17: Numerical approximations at the end of ε-scaling iteration for the 3 materials.

However, by adjusting just one parameter of the numerical scheme (namely, changing the
vertex optimization regularization parameter λ from 0.01 to 0.1), one can obtain a different
solution, shown in Figure 4.18. We note that in this solution (after the last unregularized step)
both of the Steiner points are non-degenerate, and the primal value here (p = 4.606984) is lower
than in the previous solution (p = 4.610587). As discussed above, this is a consequence of the
non-convexity of the chosen problem discretization.
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Figure 4.18: Numerical approximations at the end of ε-scaling iteration for the 3 materials:
adjusted parameters of the numerical scheme.

The presented numerical experiments confirm that the developed graph optimization scheme
does not guarantee global optimality of the approximate solutions even in simple cases. Similar
behavior has been observed in other topology optimization approaches, see for example [25, 44].

4.4.2 Finite element discretization

As an alternative, one can apply a finite element discretization to the problem, typically with a
weak divergence constraint on the fluxes. There is a huge body of literature on different discretiza-
tion schemes non-convex branched transport and convex multimaterial transport problems with
different choices for discretization, regularization, adaptive mesh refinement et cetera [93, 27].
This avoids explicit optimization over topologies as they can now be implicitly encoded as

fluxes on the mesh. On the other hand, for a sharp resolution of the resulting network structures
typically a very large number of mesh triangles is required as the weak divergence constraint
induces a strong spatial blur. Here we consider the following approach.

Recalling the dual multimaterial problem (4.2.10) we relax the class of admissible dual functions
from C1(Ω)m to C0,1(Ω,Rm) (see Remark 4.2.3). Assuming there is an underlying triangle mesh
for the spt(µ+) ∪ spt(µ−) we discretize the dual problem on it and enforce the dual constraints
on the elements of the mesh (i.e., on the faces of the triangles). We use the standard finite
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element technique for obtaining the matrix which extracts from the values of the dual potentials
at the nodes their gradients on the elements (see for example [64, Section 7.2.3]). Note that the
dual problem obtained in this manner will be conformal to the original dual problem discussed
in (4.2.10), as its solution will be a feasible candidate for the original problem (taking into account
the relaxation to Lipschitz functions). However, the primal problem obtained by dualization of
the conformal dual will not be conformal to the original primal problem ((4.2.1) or (4.2.21)), as
the new primal will have the flow supported on the faces of the triangles, with only a weak notion
of divergence constraint enforced, and so its solutions cannot directly be used as candidates for
the original primal problem.

We use the Chambolle–Pock proximal splitting method for optimization and adaptive refinement
of the mesh for improving the discretization accuracy. Namely, after computing the solutions to
the conformal dual and non-conformal primal with the Chambolle–Pock method, we compute
the divergence of the primal solution on the edges of the mesh and then refine the discretization
in the vicinity of the edges with the highest absolute value of the weak divergence and repeat
the process. For simplicity, we describe the case n = 2 (i.e., we work in R2), but with suitable
generalizations the scheme can be extended to general n.

Here we show the application of this scheme to the problem from Example 4.4.2.

Example 4.4.4. We start by generating a simple triangulation of the convex hull of the support
of the input measures. In this case, we only start with 2 triangles, as shown in Figure 4.19.

Figure 4.19: Initial mesh used in Example 4.4.4 with sources in green and common sink in red.

We then use the numeric scheme as described above and show the evolution of the primal
and dual solutions, as well as the computed divergence residual and the triangles selected for
refinement. The evolution is presented in Figures 4.20–4.24. The first row shows the absolute
value of the primal flow for each of the 3 individual materials, the second row shows the dual
potentials corresponding to each of the materials interpolated into the faces of the triangles, and
the third row shows the divergence error computed on edges, the error propagated onto the faces
of the elements, and the triangles selected for refinement on the next step.
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Figure 4.20: Numerical approximation of the non-conformal primal and conformal dual with
divergence residual.

Figure 4.21: Numerical approximation of the non-conformal primal and conformal dual with
divergence residual.
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Figure 4.22: Numerical approximation of the non-conformal primal and conformal dual with
divergence residual.

Figure 4.23: Numerical approximation of the non-conformal primal and conformal dual with
divergence residual.
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Figure 4.24: Numerical approximation of the non-conformal primal and conformal dual with
divergence residual.

We can see that the primal flow follows the path we discovered in Example 4.4.2, however
it is too diffused to reliably extract the topology of the true optimal graph. We can also see
that the dual solution seems to be affine and remains stable (not seemingly dependent on the
discretization) after further iterations.

Having performed numerical experiments with the two described approaches, we have confirmed
that solving multimaterial problem in cases when a single topology is not prescribed can be
challenging. We have also noted that the dual solution seemingly requires a much sparser
discretization.

We therefore proceed to study in detail simple prototypical problems with more than one
admissible topology to evaluate if more suitable discretization and mesh adaptation rules can be
inferred from them.

4.5 Problem on 4 vertices

4.5.1 Motivation and overview

In this section we study the case where two networks with different topologies have the same
transport cost. If both are also optimal, any dual solution must act as certificate for both
(i.e. satisfy the corresponding primal-dual optimality conditions), and therefore the gradients of
the dual potential must locally adapt to the direction of the fluxes of the two networks and thus
cannot be globally linear. Already in the case where one network is optimal and the other one
slightly sub-optimal, optimal dual potentials might not be globally linear, since they must still
act as approximate certificates for the slightly sub-optimal network.
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When both networks are indeed optimal, the additional primal-dual optimality conditions
provide further information (or constraints) on the dual solution which might be helpful for their
explicit construction. In future work one could then investigate whether there exist piecewise
affine dual solutions on a simple mesh.
Throughout this section we will study the following example problem. Let there be m = 3

types of materials with sources and sinks as in the single topology case, (4.3.1), i.e.

µ+ =

m∑
i=1

ei δxi , µ− = 1mδy (4.5.1)

for x1, x2, x3, y ∈ Ω. It will be convenient to introduce the notation

A = x1, B = x2, C = x3, D = y. (4.5.2)

Assumption 4.5.1. Within this section, we consider A,B,C,D ∈ R2.

We will consider two potential network topologies. In in the first, flows from A and B merge
first at a point S1, and then with the flow from C at S3, from which the combined materials flow
to D. In the second, flows from A and C merge first at a point S4, and then with the flow from
B at S2, and from there jointly flow to D (by Lemma 4.3.5, S1, S2, S3, S4 ∈ R2). The rationale
behind the indexing of the merging points will become clear in Section 4.5.3. We will label the
corresponding material vectors as

Θ := {θa := e1, θb := e2, θc := e3, θd := 13, θe := e1 + e2, θf := e1 + e3} (4.5.3)

and denote by a, b, c, d, e, f the corresponding strictly positive cost coefficients, that together
with Θ induce the cost function h, as outlined in Section 4.2. Networks for both topologies with
corresponding material vectors are sketched in Figure 4.25.

Figure 4.25: Two potential network topologies for 3 sources, 1 sink, with notation for merging
points and the material vectors.

By removing θe or θf (or by setting the corresponding coefficients e or f to +∞), the problem
is reduced to the single topology setting of Section 4.3. In each case, there are two free vertices
(S1 and S3 if f = ∞, S2 and S4 if e = ∞) and the optimal flow is given by a graph with straight
edges between the appropriate fixed and free vertices.
We are interested in the case where the angles between the edges at the free vertices S1 to

S4 are given by the corresponding cost triangles, as in (4.2.20), as this imposes the strictest
constraints on the dual variables. All four relevant triangles and nomenclature for the involved
angles are shown in Figure 4.26. Where these angles appear in the two networks is shown in
Figure 4.27. We will be referring to these two networks as the e- and the f -graph. We will
explicitly allow cases where some of the edges have zero length, as long as it is possible to
consistently assign orientations to them that still match the cost triangle angles.
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Assumption 4.5.2. We assume that a, b, c, d, e, f > 0 and that all four cost triangles exist and are
not degenerate (i.e., each triangle has a strictly positive area). In particular, we have ψiX ∈ (0, π)
for all appropriate X ∈ {A,B,C,D}, i ∈ 1, 2, 3, 4.

Figure 4.26: Cost triangles for the four free vertices S1, . . . , S4. For each angle ψiX the sup-script
and sub-script indicate the associated free and fixed vertex, see also Figure 4.27.

Figure 4.27: Free and fixed vertices and cost triangle vertices in both networks. The edges of the
graphs follow the directions of the respective gradients of dual potentials to allow
for primal-dual optimality conditions.

In Section 4.5.2 we examine whether both networks exist, with merging angles according to
the cost triangles, and with the same transport cost. In Section 4.5.3 we show that imposing that
both networks have the same transport cost is equivalent to a geometric condition that certain
bisector lines intersect in a single point. These lines then provide a natural candidate mesh for
defining piecewise affine dual solutions. In Section 4.5.4 we then derive necessary conditions for
the cost coefficients (a, b, c, d, e, f) such that two equal cost networks with cost triangle angles
exist.
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4.5.2 Simultaneous existence of two networks with equal cost

We now consider the question for which choices of cost coefficients (a, b, c, d, e, f) there are
positions A,B,C,D such that in both networks (the e- and f -graph) the edges at the free vertices
meet with the angles prescribed by the cost triangles. The cost triangle angles fix the relative
angles between any edges within the two graphs separately. By fixing an additional angle, for
instance between the e and f segment, which we denote by ξ ∈ (−π, π], see Figure 4.27, the
angles between any two edges in both graphs are fixed. By choosing a suitable global coordinate
system we can arrange that the e-segment (between vertices S1 and S3) is horizontal. The
segments then have the following orientations:

∠(S1 −A) = ψ1
A, ∠(S1 −B) = −ψ1

B,

∠(S2 −B) = π + ξ + ψ2
B, ∠(D − S2) = ξ − ψ2

D,

∠(D − S3) = ψ3
D, ∠(S3 − C) = π − ψ3

C ,

∠(S4 − C) = ξ + ψ4
C , ∠(S4 −A) = ξ − ψ4

A,

∠(S3 − S1) = 0, ∠(S4 − S2) = ξ.

(4.5.4)

We will also occasionally use the unit vectors viX , vE and vF aligned with the respective edges,
as shown in Figure 4.27, to denote the orientations.

We now show that for given ξ the question of existence of two networks can then be formulated
as existence of non-negative solutions to a linear system of equations. To this end, denote by

L = (l1A, l
1
B, l

2
B, l

2
D, l

3
D, l

3
C , l

4
C , l

4
A, lE , lF ) ∈ R10 (4.5.5)

the lengths of the corresponding segments in the two networks. We need to find non-negative
values for these lengths such that the two networks both connect the same fixed vertices
(A,B,C,D). This requires, for instance, that if we move along the top cycle (B,S1, S3, D, S2, B)
we must indeed return to the initial point B. Given the edge orientations (4.5.4) and edge lengths
(4.5.5), this yields the condition

lE

[
1
0

]
+ l3D

[
cos(ψ3

D)
sin(ψ3

D)

]
− l2D

[
cos(ξ − ψ2

D)
sin(ξ − ψ2

D)

]
+ l2B

[
cos(ξ + ψ2

B)
sin(ξ + ψ2

B)

]
+ l1B

[
cos(−ψ1

B)
sin(−ψ1

B)

]
=

[
0
0

]
. (4.5.6a)

Likewise, consistency along the cycles (A,S1, S3, C, S4, A) (bottom) and (C, S4, S2, D, S3, C)
(right) leads to the equations

lE

[
1
0

]
+ l1A

[
cos(ψ1

A)
sin(ψ1

A)

]
− l4A

[
cos(ξ − ψ4

A)
sin(ξ − ψ4

A)

]
+ l4C

[
cos(ξ + ψ4

C)
sin(ξ + ψ4

C)

]
+ l3C

[
cos(−ψ3

C)
sin(−ψ3

C)

]
=

[
0
0

]
, (4.5.6b)

and

lF

[
1
0

]
+ l2D

[
cos(ψ2

D)
sin(ψ2

D)

]
− l3D

[
cos(ξ − ψ3

D)
sin(ξ − ψ3

D)

]
+ l3C

[
cos(ξ + ψ3

C)
sin(ξ + ψ3

C)

]
+ l4C

[
cos(−ψ4

C)
sin(−ψ4

C)

]
=

[
0
0

]
. (4.5.6c)

Adding equations for any other cycle in the two graphs will make the system linearly dependent.
For a given ξ ∈ (−π, π] and a corresponding non-negative solution L to (4.5.6) one can then

infer potential positions for all fixed and free vertices. Of course, the edge lengths are invariant
under translation or rotation of all vertex positions. And for any solution L, any positive
re-scaling λ · L, λ > 0, will also induce a solution.

79



4 Branched and Multimaterial Transport

The two networks corresponding to (non-negative) solutions of (4.5.6) may still have the same
cost. The following equation enforces that both networks have the same cost:

a l1A + b l1B + c l3C + d l3D + e lE = a l4A + b l2B + c l4C + d l2D + f lF . (4.5.7)

The left and right side of this equation state the transport cost of the two respective networks (see
Figure 4.27) and thus any L ≥ 0 that satisfies (4.5.6) and (4.5.7) corresponds to two networks
between the same fixed vertices with equal cost.

For the trivial solution L = 0 all vertices lie in the same point, and it is thus of little interest.
The following definition clarifies the relevant set of solutions.

Definition 4.5.3 (Non-degenerate solutions and graphs). We call a solution L ∈ R10 of (4.5.6)
non-degenerate if L ≥ 0 and if all of the implied fixed vertex positions are distinct from each other.
This means that the lengths corresponding to each cycle in the two networks must contain at least
one non-zero entry. If such a solution exists, we also say that two non-degenerate graphs exist. If
the solution in addition satisfies the equal-cost condition (4.5.7), we say it is a non-degenerate
same cost solution or there are two non-degenerate same cost graphs.

The following Lemma gives necessary conditions for ξ, such that non-degenerate solutions can
exist.

Proposition 4.5.4 (Necessary conditions for angle ξ). For fixed ξ, for equations (4.5.6) to
have non-degenerate solutions L ∈ R10 in the sense of Definition 4.5.3 it is necessary (but not
sufficient) that either

ξ ∈ [0, π] ∩ [π −max{ψ1
B, ψ

3
C} −max{ψ2

B, ψ
4
C},max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D}] (4.5.8)

or

ξ ∈ (−π, 0) ∩ [π −max{ψ1
B, ψ

3
C} −max{ψ2

B, ψ
4
C},max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D} − 2π]. (4.5.9)

Proof. For (4.5.6) to have a non-degenerate solution, the equations corresponding to the diagonal
cycles (A,S1, S3, D, S2, S4, A) and (B,S1, S3, C, S4, S2, B) must have non-trivial solutions. Since
the relative orientation of the edges in these cycles will depend on ξ, in the rest of the proof we
will consider the cases ξ ∈ [0, π] and ξ ∈ (−π, 0) separately.

Figure 4.28: Loop (A,S1, S3, D, S2, S4, A). Figure 4.29: Edge orientations in Figure 4.28.
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Case 1: ξ ∈ [0, π]. The cycle (A,S1, S3, D, S2, S4, A) is shown in Figure 4.28 with notation for
unit vectors viX aligned with each of the segments. The orientation of these unit vectors is given
by

∠vE = 0, ∠vF = ξ − π ∈ [−π, 0],
∠v1A = ψ1

A ∈ (0, π), ∠v4A = ξ − π − ψ4
A ∈ (ξ − 2π, ξ − π),

∠v3D = ψ3
D ∈ (0, π), ∠v2D = ξ − π − ψ2

D ∈ (ξ − 2π, ξ − π). (4.5.10)

The orientations are illustrated in Figure 4.29 and their relative ordering is as shown in the
figure, up to swapping v1A, v

3
D and/or v4A, v

2
D.

For the equation

l1A · v1A + lE · vE + l3D · v3D + l2D · v2D + lF · vF + l4A · v4A = 0

to have a non-trivial non-negative solution (l1A, lE , l
3
D, l

2
D, lF , l

4
A) the cone spanned by the cor-

responding vectors (v1A, vE , v
3
D, v

2
D, vF , v

4
A) (i.e. the set of points spanned by these vectors with

non-negative coefficients) must contain at least a half-space. This could be shown, for instance,
by an application of Farkas’ lemma (see Lemma 4.5.20 and Corollary 4.5.21).

By (4.5.10) the only angle between two adjacent vectors that can be larger than π is the one

between v
4/2
A/D and v

1/3
A/D (depending on the relative orientation of v4A, v

2
D and v1A, v

3
D). So for a

non-trivial solution to exist we must impose that

max{∠v1A,∠v3D} −min{∠v4A,∠v2D} ≥ π,

which is equivalent to
ξ ≤ max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D}.

Now apply the same argument to the cycle (C, S3, S1, B, S2, S4, C). By symmetry this corresponds
to substituting

ψ1
A → ψ3

C , ψ4
A → ψ4

C , ψ2
D → ψ2

B, ψ3
D → ψ1

B, ξ → π − ξ

and thus yields the bound

π − ξ ≤ max{ψ3
C , ψ

1
B}+max{ψ4

C , ψ
2
B}.

Together, the two conditions imply that in the case ξ ∈ [0, π] one has

ξ ∈ [0, π] ∩
[
π −max{ψ1

B, ψ
3
C} −max{ψ2

B, ψ
4
C},max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D}
]
. (4.5.11)

Case 2: ξ ∈ (−π, 0). In this case the formulas (4.5.10) for the edge orientations remain valid,
but the bounds and their relative orientation, as shown in Figure 4.29, may change. The updated
bounds can be expressed as

∠vE = 0, ∠vF = π + ξ ∈ (0, π),

∠v1A = ψ1
A ∈ (0, π), ∠v4A = π + ξ − ψ4

A ∈ (ξ, π + ξ),

∠v3D = ψ3
D ∈ (0, π), ∠v2D = π + ξ − ψ2

D ∈ (ξ, π + ξ).

The largest angle (in (−π, π]) will be either that of vF , v
1
A or v3D. The smallest angle will be one

of vE , v
4
A or v2D. From largest to smallest, the difference between any two adjacent angles will

always be strictly less than π. Thus, the only condition to impose for existence of a solution is

max{∠vF ,∠v1A,∠v3D} −min{∠vE ,∠v4A,∠v2D} ≥ π,
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which becomes

max{π − ξ, ψ1
A, ψ

3
D} −min{0, π + ξ − ψ4

A, π + ξ − ψ2
D} ≥ π.

One can see that if π − ξ is maximal in the first term, or 0 is minimal in the second, then the
condition will be false. So we can simplify this to

max{ψ1
A, ψ

3
D} −min{π + ξ − ψ4

A, π + ξ − ψ2
D} ≥ π,

which is finally equivalent to

ξ ≤ max{ψ1
A, ψ

3
D}+max{ψ4

A, ψ
2
D} − 2π.

Applying the same variable substitutions as in the first case (but this time we have to substitute
ξ → −ξ − π to remain in the same interval) for the other diagonal cycle, we obtain the bound

−π − ξ ≤ max{ψ1
B, ψ

3
C}+max{ψ2

B, ψ
4
C} − 2π.

Together, we obtain

ξ ∈ (−π, 0) ∩
[
π −max{ψ1

B, ψ
3
C} −max{ψ2

B, ψ
4
C},max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D} − 2π

]
.

We conjecture that in fact no solutions can exist for ξ ∈ (−π, 0), however this would require a
more careful analysis of combinations of values for the cost triangle angles ψiX .

4.5.3 Equal cost and bisectors

For fixed ξ and cost coefficients (a, b, c, d, e, f), (4.5.6) and (4.5.7) are a linear system of 7
equations for 10 length variables. Unfortunately, the non-linear and coupled dependency between
the angles ψiX and the cost coefficients (a, b, c, d, e, f), as well as the appearance of the parameter
ξ make the analysis of existence of (non-degenerate) solutions to this system quite difficult.

In this section we provide an equivalent condition for the last equation (4.5.7), with a geometric
interpretation, which will then later allow to derive necessary conditions on the coefficients
(a, b, c, d, e, f) for the simultaneous existence of two equal-cost solutions, as well as a candidate
mesh for simple piecewise affine dual solutions.

Consider again the challenge of constructing a piecewise affine dual optimal potential. Assume
that both networks were known, had equal cost and were optimal, arranged in a way similar to
Figure 4.27. Focus now on the dual potential ϕ1 for material type 1, which has its source µ1+ = δx1
at point A = x1. Dual feasibility dictates that ϕ1 must be Lipschitz, with Lipschitz constant a.
The primal-dual optimality conditions imply ϕ1 must decrease with maximal slope a from A
towards S1 and S4. If ϕ1 is to be piecewise affine on a simple mesh (i.e. with few triangles), then
there must be at least two triangles touching the point A and, for symmetry reasons, one may
assume the boundary between the two triangles to run along the bisector between the segments
[A,S1] and [A,S4]. The same consideration applies to the vertices B and C for potentials ϕ2 and
ϕ3, and to vertex D for the sum of potentials

∑3
i=1 ϕi. These four bisector lines therefore seem

to be natural candidates for the basis of the sought-after simple mesh and the question arises
how the central region, where the bisector lines meet, can be triangulated. Figure 4.30 illustrates
the four bisector lines and introduces some related notation to be used in the following. The
main result of this section is that (under minor technical assumptions) for solutions L ∈ R10

of (4.5.6) the four bisectors will intersect in a single point if and only if L also solves (4.5.7),
i.e. when both networks have the same transport cost. This implies that the four lines do indeed
offer a simple and very tempting candidate mesh for dual solutions. Studying the feasibility and
optimality of solutions on such meshes could offer an interesting direction for the future work.
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Figure 4.30: Two prototypical flow networks, the bisectors between the two edges connected to
each of the four vertices A,B,C,D and with some relevant intersections marked by
O1 to O4. In addition, angles between the bisectors are labeled α1 to α4 and the
angles between bisectors and the flow edges are labeled βA to βD.

The following angles, also shown in Figure 4.30, will be instrumental for the rest of this section.
Their values can be determined by elementary geometric considerations.

Definition 4.5.5 (Vertex and splitting angles). We call

βA =
−ξ + ψ1

A + ψ4
A

2
, βB =

ξ + ψ1
B + ψ2

B − π

2
,

βC =
ξ + ψ3

C + ψ4
C − π

2
, βD =

−ξ + ψ2
D + ψ3

D

2

(4.5.12)

the vertex angles between the flow segments and the bisectors at each vertex, and

α1 =
ψ1
A + ψ1

B − ψ4
A − ψ2

B + π

2
, α2 =

ψ2
B + ψ2

D − ψ1
B − ψ3

D + π

2
,

α3 =
ψ3
C + ψ3

D − ψ4
C − ψ2

D + π

2
, α4 =

ψ4
A + ψ4

C − ψ1
A − ψ3

C + π

2

(4.5.13)

the splitting angles (since they split the whole domain into four sectors if all bisectors meet in
one point). Note that the splitting angles no not depend on ξ but are solely determined by the
cost triangle angles (and hence, the cost coefficients).

Remark 4.5.6 (Sign convention for vertex and splitting angles). Some care has to be taken
with the sign convention of these angles. We will show below that βX ∈ (−π/2, π) (Proposition
4.5.8). In an arrangement as shown in Figure 4.30 the convention is that all vertex and splitting
angles are positive. If, for instance, βA were negative (and therefore in (−π/2, 0)) then the free
vertices S1 and S4 would lie on the opposite side of the bisector line (A−O1), respectively. If
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α1 > 0, then the orientation of the B-bisector (B −O1) is obtained from the orientation of the
A-bisector (A−O1) by a clockwise rotation by |α1| = α1.
Formulas (4.5.12) and (4.5.13) also allow for negative values for these angles, which may

appear counter intuitive and it is not obvious for all configurations what the corresponding
transport networks would look like. In the following, we establish some non-existence results,
that clarify that “too negative angle configurations” do not exist (for any admissible choice of
cost coefficients) or that no transport networks with equal cost do exist in these cases. See for
instance Propositions 4.5.8, 4.5.9 and several of the statements of Section 4.5.4.

Remark 4.5.7 (Sectors). If all αi > 0 for i = 1, . . . , 4 and all four bisectors meet in a single point,
then they divide the space R2 into four wedges which we will refer to as sectors, enumerated
by 1 to 4. If all βX ∈ [0, π], then the free vertices S1 to S4 will lie in the sectors with the same
index, and the same index is accordingly also used for the ψ-angles and segments of the transport
networks associated with these free vertices.

Finally, when bisectors do not meet in a single point, we label some of their pairwise intersections
according to the sector that they correspond to.

Proposition 4.5.8. Let ξ ∈ (−π, π] and consider the vertex angles βA, βB, βC and βD defined
in (4.5.12). Assume there exist two non-degenerate graphs. Then

βA, βB, βC , βD ∈
(
−π
2
, π
)
.

Proof. From the definition of the vertex angles (4.5.12), using that angles ψiX are defined via
cost triangles, we immediately observe the following boundaries:

βA, βD ∈
(
−π
2
,
3π

2

)
, βB, βC ∈ (−π, π) .

Observe now that, again via cost triangles, βA + βB = (ψ1
A + ψ1

B + ψ4
A + ψ2

B − π)/2 < π and
βB + βD = (ψ2

B + ψ2
D + ψ1

B + ψ3
D − π)/2 < π. In particular, if βA ≥ π, then βB < 0. Assume

now that βA ∈ [π, 3π/2). Then, we have

ξ ∈ (ψ1
A + ψ4

A − 3π, ψ1
A + ψ4

A − 2π],

and in particular ξ ≤ ψA − 2π < 0. So in order for two non-degenerate graphs to exist, using
Proposition 4.5.4, we must have in addition

ξ ∈ (−π, 0) ∩ [π −max{ψ1
B, ψ

3
C} −max{ψ2

B, ψ
4
C},max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D} − 2π].

Therefore, we can use ψ1
A + ψ4

A − 2π for the upper bound and for the range to be non-empty it
will be necessary that

ψ1
A + ψ4

A +max{ψ1
B, ψ

3
C}+max{ψ2

B, ψ
4
C} ≥ 3π.

As the sum of any two angles from the same cost triangle ψiX + ψiY < π, to have a possibility of
satisfying this inequality we must have ψ3

C > ψ1
B and ψ2

B > ψ4
C , so that it is necessary that

ψ1
A + ψ4

A + ψ3
C + ψ2

B ≥ 3π. (4.5.14)

We then use a technique similar to the one presented in the proof of Proposition 4.5.4 and
consider construction of the right loop (D,S2, S4, C, S3, D) (see Figure 4.31). The angles for the
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Figure 4.31: Loop (D,S2, S4, C, S3, D). Figure 4.32: Edge orientations in Figure 4.31.

unit vectors indicating the segment orientations are

∠vF = ξ + π ∈ (0, π)

∠v2D = ξ + π − ψ2
D ∈ (ξ, ξ + π) ∠v3D = ψ3

D ∈ (0, π)

∠v4C = ξ + π + ψ4
C ∈ (ξ + π, ξ + 2π) ∠v3C = π − ψ3

C ∈ (0, π).

Note that ∠v3C > ∠v3D (from cost triangles) and ∠v4C > ∠vF > ∠v2D, that is, the order of the
green vectors and the order of the red vectors separately is as shown in Figure 4.32. We also can
see from the cost triangles that ∠v3C − ∠v3D < π and using ψ2

B > ψ4
C (see above) and the cost

triangles we find ∠v4C − ∠v2D < π. Therefore, in order for these 5 vectors to be able to form a
non-degenerate a closed loop with positive coefficients, we need that

∠v3C − ∠v2D ≥ π or ∠v4C − ∠v3D ≥ π. (4.5.15)

Consider the first option of (4.5.15). From ξ ≥ ψA − 3π and (4.5.14) we then estimate the left
side of the expression above as

−ψ3
C − ξ + ψ2

D ≤ −ψ3
C − ψA + 3π + ψ2

D ≤ ψ2
B + ψ2

D < π,

with the last inequality given by the cost triangle. I.e. this condition is not satisfied.
Now consider the second option of (4.5.15). Using ξ ≤ ψA − 2π, we estimate the left side as

ξ + π + ψ4
C − ψ3

D ≤ ψ4
A + ψ4

C + ψ1
A − ψ3

D − π < π,

as the sum of the first two terms ψ4
A + ψ4

C < π and the next term ψ4
A < π by the cost triangles.

So neither of the two conditions is satisfied and therefore the loop cannot be constructed. Hence,
we cannot have βA ∈ (π, 3π/2]. With analogous arguments it can be shown that βD /∈ (π, 3π/2]
as well as βB, βC /∈ (−π,−π/2].

Proposition 4.5.9. The splitting angles α1, . . . , α4, (4.5.13), lie in (−π/2, π). At least three
splitting angles are strictly positive.

Proof. By Assumption 4.5.2 the cost triangle angles ψiX all lie in (0, π). The sum of two cost
triangle angles that appear in the same cost triangle must be less than π. This yields the bound
αi ∈ (−π/2, π).
The sum of all the splitting angles is 2π. Let P ⊂ {1, 2, 3, 4} be the indices of strictly positive

angles. One has ∑
i∈P

αi ≥
4∑
i=1

αi = 2π.
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Since each αi < π, the inequality above can be satisfied only if P contains at least three
indices.

Based on the definition of the vertex angles we can assign orientations to the bisector segments
as follows:

∠(A−O1) = ∠(A−O4) = ψ1
A − βA, ∠(B −O1) = ∠(B −O2) = −ψ1

B + βB,

∠(C −O3) = ∠(C −O4) = π − ψ3
C + βC , ∠(D −O3) = ∠(D −O2) = π + ψ3

D − βD.
(4.5.16)

Intuitively, these point “outwards” from the intersection toward the vertices. Using these
orientations we can then assign lengths to the bisector segments, from the vertices towards the
intersection points Oi, as follows.

Definition 4.5.10 (Bisector lengths). Assume α1 ̸= 0. For given l1A, l
1
B ∈ R2, as introduced in

(4.5.5), we define the (potentially negative) bisector lengths (b1A, b
1
B) as the unique coefficients

satisfying

b1B

[
cos(βB − ψ1

B)
sin(βB − ψ1

B)

]
− l1B

[
cos(−ψ1

B)
sin(−ψ1

B)

]
+ l1A

[
cos(ψ1

A)
sin(ψ1

A)

]
− b1A

[
cos(ψ1

A − βA)
sin(ψ1

A − βA)

]
=

[
0
0

]
,

which corresponds to closing the oriented loop (O1, B, S1, A,O1) in Figure 4.30. The solution is
given explicitly by [

b1A
b1B

]
=

1

sin(α1)

[
sin(βA + α1) sin(βB)

sin(βA) sin(βB + α1)

] [
l1A
l1B

]
. (4.5.17)

In the same way we define the bisector lengths (b2B, b
2
D), (b

3
D, b

3
C) and (b4C , b

4
A) whenever the

corresponding splitting angles are nonzero.

These bisector lengths can be used to analyze whether all four bisector meeting points O1 to
O4 coincide, and they can also be used to parametrize solutions to the loop equations (4.5.6).

Lemma 4.5.11. Assume α1, α2 ̸= 0 and βC /∈ {0, π/2}. Then there is a linear bijection between
solutions L ∈ R10 of (4.5.6) and the four bisector lengths (b1A, b

1
B, b

2
B, b

2
D) as given by Definition

4.5.10.

This means that in this case the system of equations (4.5.6) has rank 6 and its four-dimensional
space of solutions can be parametrized by the named bisector lengths. Of course, analogous
results hold for any other pairs of bisector lengths from adjacent sectors.

Proof. Since α1 ̸= 0, the two bisector lengths (b1A, b
1
B) are in linear one-to-one correspondence

with the two lengths (l1A, l
1
B) by Definition 4.5.10, and likewise for (b2B, b

2
D) and (l2B, l

2
D) since

α2 ̸= 0.
Now we show that if βC ̸= 0 and (l1A, l

1
B, l

2
B, l

2
D) are given, the other lengths of the networks

(i.e. entries of L) are uniquely determined by linear equations. Using the orientations of (4.5.4)
we find that

S2 −A = l1A · v1A − l1B · v1B + l2B · v2B = l4A · v4A + lF · vF .

By Assumption 4.5.2 the vectors v4A and vF are not (anti-)parallel. Hence l4A and lF are uniquely
determined through the above equation. The same applies to the two lengths (l3D, lE). At this
point the vector S3 − S4 is known. Since by assumption βC /∈ {0, π/2} and with the bound of
Proposition 4.5.8, the vectors v3C and v4C are linearly independent and S3−S4 uniquely determines
the two lengths (l3C , l

4
C).

86



4 Branched and Multimaterial Transport

Lemma 4.5.12. Assume α1, α3, α4 ̸= 0 and βB, βD /∈ {0, π/2}. Let L ∈ R10 be a solution of
(4.5.6). Then [O1 = O4] ⇔ [O3 = O4].

Proof. By Lemma 4.5.11 there is a linear one-to-one correspondence between the bisector lengths
(b4C , b

4
A, b

1
A, b

1
B), solutions L ∈ R10 to (4.5.6), and (b3D, b

3
C , b

4
C , b

4
A). So in particular there is a linear

bijection between the two 4-tuples of bisector lengths. This means that there are coefficients
(u1, u2, u3, u4) ∈ R such that

b1A − b4A = u1 · b3D + u2 · b3C + u3 · b4C + u4 · b4A. (4.5.18)

These coefficients can be determined by computing the lengths of intersecting line segments,
as described in the proof of Lemma 4.5.11, leading to formulas similar to (4.5.17), and nested
versions thereof. (We recommend a computer algebra tool to keep track of these coefficients.)
For instance, directly after plugging in all subsequent identities one finds that

u1=
1

sin(ψ4
A+ψ

4
C) sin(α1)

(
sin(α1+βA) sin(βA) sin(ψ

4
C+ξ)

sin(ψ1
A)

+
sin(ψ4

C) sin(ψ
1
B+ψ2

D) sin(βA) sin(βB)

sin(ψ2
D) sin(2βB)

+
sin(βA) sin(ψ

1
A−ψ

4
C−ξ) sin(ψ

2
B+ξ) sin(βB)

sin(ψ1
A) sin(2βB)

− sin(α1+βA) sin(ψ
4
A−ξ) sin(α4+βC)

sin(ψ1
A)

+
sin(2βA) sin(ψ

2
B+ξ) sin(βB) sin(α4+βC)

sin(ψ1
A) sin(2βB)

)
.

Careful manipulation with extensive use of trigonometric identities and the law of sines on the
cost triangles, which implies for example that

sinψ1
A

b
=

sinψ1
B

a
=

sin(ψ1
A + ψ1

A)

e
,

reveal that u1 = u4 = 0 and u2 = −u3. Therefore

b1A − b4A = u2 · (b3C − b4C).

Since the linear map from (b3D, b
3
C , b

4
C , b

4
A) to (b4C , b

4
A, b

1
A, b

1
B) is full rank one must have u2 ̸= 0.

Therefore [b1A − b4A = 0] ⇔ [b3C − b4C = 0]. These two conditions correspond to the condition
O1 = O4 and O3 = O4 respectively, which proves the claim.

The following analysis will at times be greatly simplified by the assumption that no two
adjacent bisectors are (anti-)parallel and neither are two graph segments emerging from the same
vertex. This is encoded by the following assumption. We consider this to be the “generic” case.
The remaining special cases could again be studied in more detail if they become relevant.

Assumption 4.5.13. One has βX /∈ {0, π/2} for X ∈ {A,B,C,D} and αi ≠ 0 for i ∈ {1, 2, 3, 4}.

Lemma 4.5.14. Under Assumption 4.5.13, if any two of the bisector meeting points O1 to O4

coincide, then all four coincide.

Proof. If two “opposite” meeting points coincide (i.e. Oi = Oj for (i, j) ∈ {(1, 3), (2, 4)}), then
all four bisectors clearly meet in a single point (cf. Figure 4.30). If two “adjacent” meeting
points coincide (i.e. for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}) then the result follows by repeated
application of Lemma 4.5.12.

Finally, we are able to state the main result of this section.
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Theorem 4.5.15. Under Assumption 4.5.13 and assuming that ψ1
A + ψ1

B + ψ4
A + ψ2

B ̸= π, for
any solution L ∈ R10 of (4.5.6) one has that L also solves (4.5.7), the equal cost condition, if
and only if all four bisectors corresponding to L meet in a single point.

This holds in particular for non-zero, non-degenerate solutions (Definition 4.5.3) and therefore
it implies that two transport networks have equal cost if and only if their implied bisectors meet
in a single point. We will see in Section 4.5.4 that for ψ1

A+ψ1
B +ψ4

A+ψ2
B < π no non-degenerate

same cost solutions L can exist and thus the above assumption excludes the (potentially delicate)
boundary case.

Proof. By Assumption 4.5.13 and Lemma 4.5.11 the lengths (b3D, b
3
C , b

4
C , b

4
A) are in one-to-one

linear correspondence with L. By Lemma 4.5.14, all bisectors meet if and only if any two of
them meet. We can thus restrict ourselves, for example, to the points O3 and O4. The condition
O3 = O4 is equivalent to b3C = b4C . Parametrizing the solution L by (b3D, b

3
C , b

4
C , b

4
A) and plugging

this into (4.5.7) yields an equation of the form

0 = v1 · b3D + v2 · b3C + v3 · b4C + v4 · b4A.

similar as (4.5.18). Again, by careful manipulation similar as in Lemma 4.5.12 one finds that
v1 = v4 = 0 and

v2 = −v3 =
2a sin(α4)

cos(βB)
· cos

(
(ψ1

A + ψ4
A + ψ1

B + ψ2
B)/2

)
.

From the cost triangles it follows that ψ1
A+ψ1

B +ψ4
A+ψ2

B ∈ (0, 3π) and thus by the assumptions
made in this theorem the above expression is non-zero.

It therefore follows that L solves (4.5.7) if and only if b3C = b4C , which completes the proof.

4.5.4 Excluding graph configurations a priori

Theorem 4.5.15 gives a simple geometric interpretation for solutions L to (4.5.6), relating the
equal cost condition to the bisectors. But throughout Section 4.5.3 the non-degeneracy of L, and
potentially negative values for some splitting or vertex angles were not discussed. Figures 4.33
and 4.34 show hypothetical configurations with a negative vertex angle and a negative splitting
angle, respectively. In this section we give some necessary conditions on the cost coefficients such
that non-degenerate solutions with equal costs can exist. These then pose some limits on the
negativity of these angles and thus rule out some particularly counter-intuitive configurations.

Figure 4.33: Example: βA < 0. Figure 4.34: Example: α3 < 0.
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In the following we will abbreviate

ψA = ψ1
A + ψ4

A, ψB = ψ1
B + ψ2

B, ψC = ψ3
C + ψ4

C , ψD = ψ2
D + ψ3

D.

Moreover, we will frequently use that by (4.5.12) for any two adjacent vertices (X,Y ) ∈
{(A,B), (B,D), (D,C), (C,A)} one has

[βX + βY < 0] ⇔ [ψX + ψY < π]. (4.5.19)

Theorem 4.5.16. Assume ψX + ψY < π for two adjacent vertices X and Y and let ξ ∈ (−π, π]
such that Assumption 4.5.13 holds. Then, there cannot exist two non-degenerate same cost
graphs.

The proof involves several case distinctions and is therefore split into numerous smaller Lemmas
and Propositions. A schematic of the proof outline is given in Figure 4.35. The proof itself is
stated further down, after all auxiliary results are assembled. Afterwards, some corollaries are
given. A central object in the various proofs are the cost quadrilaterals that are introduced next.

ψA + ψB < π

f -quadrilateral convex

ψ2
D + ψ4

C ≤ π

e-quadrilateral convex

ψB + ψD < π

4.5.18

ψD + ψC < π
ψC + ψA < π

at least 2 opposite

4.5.19

vertex angles are negative

another vertex angle

is non-negative and

the last one non-positive

4.5.22

2 graphs cannot exist

4.5.23

e-quadrilateral non-convex

ψ1
A + ψ3

C > π

α4 < 0

4.5.24

ψB + ψD < π

4.5.25

ψA + ψB > π
(contradiction)

4.5.26

ψ1
B + ψ3

D > π

α2 < 0

4.5.24

ψA + ψC < π

4.5.25

ψA + ψB > π
(contradiction)

4.5.26

f -quadriateral non-convex

ψ2
D + ψ4

C > π

ψB + ψD > π

4.5.26

ψC + ψA > π

α3 < 0

4.5.27

βA, βD < 0

βB, βC > 0

(contradiction)

βA, βD > 0

βB, βC < 0

(contradiction)

4.5.22

βC , βD ≥ 0

4.5.28

bisector lengths

bA ≥ 0, bB ≥ 0

4.5.29

2 graphs with bisectors

meeting cannot exist

4.5.30

Figure 4.35: Outline of the proof of Theorem 4.5.16. Single-line arrows denote case distinction,
double-line arrows denote implication. The numbers refer to the respective lemmas
and propositions. The cost quadrilaterals are introduced below, see Figure 4.36.

Definition 4.5.17 (Cost quadrilaterals). The quadrilateral obtained by joining the two cost
triangles for the free vertices S1 and S3 at their common e-edge will be referred to as e-quadrilateral.
Likewise, the f -quadrilateral is obtained by joining the cost triangles for free vertices S2 and S4
at their common f -edge. Both are sketched in Figure 4.36.
In each quadrilateral, the angles adjacent to the joining edge are obtained by combining two

angles from the respective cost triangles. They will be referred to as compound angles and their
value can range between (0, 2π), potentially making the respective quadrilateral non-convex. The
two angles opposite the joining edge will be referred to as non-compount and may take values
in (0, π).
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In the e-quadrilateral we denote the length of the diagonal corresponding to the f -edge in the
cost triangles by f ′, and likewise with e′ in the f -quadrilateral.
We use the notation (x̂, y)z to refer to the angle between edges of lengths x and y from the

triangle with edges of lengths x, y, z. For example (see Figure 4.36), (â, e)b = ψ1
A.

Figure 4.36: The two cost quadrilaterals of Definition 4.5.17.

Proposition 4.5.18. Let ψA + ψB < π and all the compound angles in both cost quadrilaterals
be smaller or equal than π, that is ψ4

C + ψ2
D ≤ π, ψ1

A + ψ3
C ≤ π, and ψ1

B + ψ3
D ≤ π. Then

ψA + ψC < π, ψB + ψD < π, and ψC + ψD < π.

Proof. The first condition implies that the angle between sides a and b in the e-quadrilateral is
bigger than in the f -quadrilateral:

ψA + ψB < π ⇔ ψ4
A + ψ2

B < π − (ψ1
A + ψ1

B) ⇔ (â, b)e′ < (â, b)e.

By the law of cosines this implies that e′ < e. The other conditions imply that both quadrilaterals
are convex. The angles in a convex quadrilateral with four fixed edge lengths is fully determined
by specifying either of the two diagonal lengths. Thus, by gradually decreasing e to e′, the
e-quadrilateral can be morphed into the f -quadrilateral.
Again, by the law of cosines, while e is decreasing, so will the angles (â, b)e and (ĉ, d)e and

therefore
(ĉ, d)e > (ĉ, d)e′ ⇔ π − (ψ3

C + ψ3
D) < ψ4

C + ψ2
D ⇔ ψC + ψD < π.

Since the sum of inner angles must remain fixed, this implies that the sum of the two compound
angles must increase during the morphing. Each of these angles is tied to the length of the
diagonal f ′ by the law of cosines. Therefore, since the quadrilateral remains convex during the
morphing, both compound angles individually must strictly increase:

(â, c)f ′ < (â, c)f ⇔ ψ1
A + ψ3

C < π − (ψ4
A + ψ4

C) ⇔ ψA + ψC < π,

(b̂, d)f ′ < (b̂, d)f ⇔ ψ1
B + ψ3

D < π − (ψ2
B + ψ2

D) ⇔ ψB + ψD < π.

Proposition 4.5.19. Let all pairs of adjacent vertex angles sum to a negative value: βA+βB < 0,
βB + βD < 0, βD + βC < 0, βC + βA < 0. Then at least 2 opposite vertex angles are negative.

Proof. This is proved by analyzing all relevant combinations of signs of the vertex angles.

• If all vertex angles are non-negative, all pairwise sums are non-negative.

• If only one vertex angle is negative, then pairwise sums that do not include this angle are
non-negative. E.g. if only βA < 0, then βB + βD ≥ 0.
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• If only two adjacent vertex angles are negative, the sum of the “opposite two” remains
non-negative. E.g. if βA, βB < 0, then βC + βD ≥ 0.

Therefore, at least two opposite vertex angles must be negative.

Several of the following propositions rely on a corollary of the Farkas’ Lemma, which we
therefore state here.

Lemma 4.5.20 (Farkas’ Lemma). Let A ∈ Rm×n and b ∈ Rm, with b ̸= 0. Then exactly one of
the following two assertions is true:

• there exists x ∈ Rn such that Ax = b and x ≥ 0,

• there exists y ∈ Rm such that A⊺y ≥ 0 and b⊺y < 0.

Corollary 4.5.21. Let A ∈ Rm×n. Either there exists x ∈ Rn such that [Ax = 0, x ≥ 0, x ≠ 0],
or there exists y ∈ Rm such that A⊺y > 0 (with the strict inequality holding for each component).

Proof. Let Ã = [A, 1n] ∈ R(m+1)×n be the matrix obtained by stacking A with the row vector
1n ∈ Rn with all entries one. Let b̃ = [0, . . . , 0, 1] ∈ Rm+1 be the vector with m zeros and a
single 1. Existence of solutions x ∈ Rn to Ax = 0, x ≥ 0, x ̸= 0 is then equivalent to existence of
solutions x ∈ Rn, Ãx = b̃, x ≥ 0. By Farkas’ Lemma, either such a solution exists, or there exists
some ỹ = [y, y∗] ∈ Rm+1 with y ∈ Rm, y∗ ∈ R such that Ã⊺ỹ = A⊺y + y∗ ≥ 0 and b̃⊺ỹ = y∗ < 0.
Clearly, such ỹ exists if and only if there exists some y ∈ Rm such that A⊺y > 0, with the
inequality holding strictly for each component.

Lemma 4.5.22. Let ξ ∈ (−π, π]. Assume there exist two non-degenerate graphs and that
βA, βD < 0 (i.e., two opposite vertex angles are negative). Then, either

(ψ1
A < ψ3

D, ψ
4
A > ψ2

D, βC ≤ 0) or (ψ1
A > ψ3

D, ψ
4
A < ψ2

D, βB ≤ 0).

Additionally, in the respective cases, we have

if ψ1
B + ψ3

D ≤ π if ψ4
C + ψ2

D ≤ π

then βB ≥ 0, then βC ≥ 0.

Proof.
Step 1. Find possible configurations.
From βA < 0 we can find ξ > ψ1

A + ψ4
A and similarly from βD < 0 we find ξ > ψ2

D + ψ3
D.

In particular, we have ξ > 0. Since there exist two non-degenerate graphs and ξ is positive,
another boundary for ξ is given by Proposition 4.5.4: ξ ≤ max{ψ1

A, ψ
3
D}+max{ψ4

A, ψ
2
D}. Now,

if the right side of this inequality becomes ψ1
A + ψ4

A or ψ2
D + ψ3

D, we get a contradiction with
the inequalities we obtained from the givens. Therefore, the only configurations possible are
(ψ1

A < ψ3
D, ψ

4
A > ψ2

D) or (ψ1
A > ψ3

D, ψ
4
A < ψ2

D). We are left to prove that in the first case
existence of two graphs implies βC ≤ 0, while in the second case we must have βB ≤ 0.

Step 2. (ψ1
A < ψ3

D, ψ
4
A > ψ2

D) =⇒ βC ≤ 0
Without loss of generality, consider the first configuration, (ψ1

A < ψ3
D, ψ

4
A > ψ2

D). For the other
configuration a symmetric argument applies. Assume by contradiction to the statement of the
lemma that βC > 0.
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We first consider the case βC ≥ π/2. We can write this down in terms of angle ξ as

ξ ≥ 2π − ψ3
C − ψ4

C > ψ3
D + ψ4

A,

where the last inequality follows from the cost triangles. However, the inequality above contradicts
the upper bound for positive angle ξ from Proposition 4.5.4, which can be written as

ξ ≤ max{ψ1
A, ψ

3
D}+max{ψ4

A, ψ
2
D} = ψ3

D + ψ4
A

using that ψ1
A < ψ3

D and ψ4
A > ψ2

D. We can therefore only focus on the case βC ∈ (0, π/2).

Figure 4.37: Loops (A,S1, S3, C, S4, A) and
(C, S4, S2, D, S3, C).

Figure 4.38: Cones of the dual vector com-
ponents.

Now assume βC ∈ (0, π/2). Consider the bottom and the right loop, cf. (4.5.6), along the
vertices (A,S1, S3, C, S4, A) and (C, S4, S2, D, S3, C). We will show that non-negative, non-trivial
solutions to both loops simultaneously cannot exist if βC ∈ (0, π/2). Simultaneously considering
solvability of two loops requires a somewhat elaborate invocation of Farkas’ lemma (and its
corollary). Similar as above, the loop equations can be written as

lAA · v4A + l1A · v1A + lE · vE + l3C · v3C + l4C · v4C = 0,

lF · vF + l2D · v2D + l3D · v3D + l3C · v3C + l4C · v4C = 0,
(4.5.20)

where we choose as orientations for the unit vectors along the segments

∠v4A = ξ − π − ψ4
A, ∠v1A = ψ1

A, ∠vE = 0,

∠vF = ξ, ∠v2D = ξ − ψ2
D, ∠v3D = ψ3

D − π,

∠v3C = −ψ3
C , ∠v4C = ξ + ψ4

C .

Of course, these equations hold up to adding multiples of 2π and in the following we will need to
be vigilant when working with intervals of angles. Both loops with chosen segment orientations
are shown in Figure 4.37.

By Corollary 4.5.21, a non-negative, non-zero solution to (4.5.20) does not exist if there exists
some y ∈ R4 such that A⊺y > 0 (element-wise) where

A =

(
v4A v1A vE v3C v4C

vF v2D v3D v3C v4C

)
∈ R4×8.
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This corresponds to finding two vectors w1, w2 ∈ R2 (and then setting y = (w1, w2) to be the
concatenation) such that

v⊺w1 > 0 for v ∈ {v4A, v1A, vE}, v⊺w2 > 0 for v ∈ {vF , v2D, v3D}, v⊺(w1 + w2) > 0 for v ∈ {v3C , v4C}.

We start by considering the first condition for w1. By the condition βA < 0 we have that
ψ1
A− (ξ−π−ψ4

A) ∈ (0, π). Moreover, 0 ∈ (ξ−π−ψ4
A, ψ

1
A). So v

1
A and v4A span a cone with angle

strictly less than π, with vE contained in this cone. Therefore, for w1 to have strictly positive
inner product with v4A, v

1
A and vE , it must have strictly positive inner product with the former

two, i.e. it must lie in the interior of the dual cone of {v4A, v1A}. So its orientation must satisfy

∠w1 ∈ (ψ1
A − π/2, ξ − π/2− ψ4

A).

See Figure 4.38 for an illustration.
By analogous reasoning for the second condition, for w2 to have strictly positive inner product

with v2D, v
3
D, vF , it must lie in the interior of the dual cone of {v2D, v3D, vF }, which equals (the

interior of) the dual cone of {v2D, v3D}. This imposes the condition

∠w2 ∈ (ψ3
D + π/2, ξ − ψ2

D + π/2).

Next, again using the same reasoning, we find that w1 +w2 must lie in the interior of the dual
cone of {v3C , v4C}, and using βC ∈ (0, π/2), this can be shown to mean

∠(w1 + w2) ∈ (−ψ3
C − π/2, ξ + ψ4

C − 3π/2).

Such w1, w2 exist if and only if the sum of the interiors of the dual cones of {v1A, v4A} and {v2D, v3D}
intersect with the interior of the dual cone of {v3C , v4C}.

Using that ψ1
A < ψ3

D one obtains that

(ψ1
A − π/2 + 2π)− (ψ3

D + π/2) = π + ψ1
A − ψ3

D ∈ (0, π).

Note that we added 2π to the orientation of v1A here to get a meaningful interval. This means that
the sum of the interior of the two dual cones contains at least the interval (ψ3

D+π/2, ξ−ψ4
A+3π/2).

Using that

βD < 0 ⇒ ξ > ψ3
D ⇒ ξ > ψ3

D − ψ4
C ⇔ ξ + ψ4

C + π/2 > ψ3
D + π/2,

βA < 0 ⇒ ξ > ψ4
A ⇒ ξ > ψ4

A − ψ3
C ⇔ ξ − ψ4

A + 3π/2 > −ψ3
C + 3π/2,

we find that the interior of the latter cone is contained in the interior of the sum of the former
two and thus by Farkas’ lemma, a non-trivial solution to (4.5.20) cannot exist.
Step 3. (ψ1

A < ψ3
D, ψ

4
A > ψ2

D, ψ
1
B + ψ3

D ≤ π) =⇒ βB ≥ 0
This is essentially a repetition of the previous argument, using now the top and right loops
instead, and showing that for βB < 0 a non-existence certificate for the solvability of these two
loops can be obtained via Farkas’ Lemma.

Proposition 4.5.23. There exists no choice of costs a, b, c, d, e, f > 0 such that the corresponding
cost triangles are non-degenerate and ψA + ψB < π, ψB + ψD < π, ψD + ψC < π, ψC + ψA < π,
ψC ≤ ψB, ψ

1
A < ψ3

D and ψ4
A > ψ2

D (see Lemma 4.5.22 for these conditions).
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Figure 4.39: Cost quadrilateral with intro-
duced rotation nomenclature.

Figure 4.40: Cost quadrilateral with a and
d-segments parallel.

Proof. The proof works by contradiction, showing that the assumed inequalities for the ψ-angles
cannot all be satisfied simultaneously.

By the assumptions both quadrilaterals are convex, since ψ1
A+ψ3

C < ψA+ψC < π and likewise
for all other compound angles. Since π − ψ3

D − ψ3
C > ψ4

C + ψ2
D one has e > e′. We can therefore,

as earlier, morph the e-quadrilateral into the f -quadrilateral by gradually decreasing e to e′.
Let this be parametrized by some [0, 1] ∋ t 7→ e(t) that continuously and strictly monotonously
interpolates between e(0) = e and e(1) = e′. (By abuse of notation we will in the following
usually drop the explicit time-dependency from the notation for simplicity and merely write
e.) Figure 4.39 provides some notation and intuition for the following arguments. During the

morphing the angle (ĉ, d)e strictly decreases, the angle (â, c)f strictly increases. Hence, points
P1 and P2 rotate counter-clockwise around P3 and P4 on circles of radii a and d respectively.
Denote by v1 and v2 the velocities of points P1 and P2. They must be perpendicular to the faces
a and d respectively, pointing in the counter-clockwise direction. Denote by γ1 and γ2 the signed
angles between v1, v2 and P1 − P2. By convexity of the quadrilateral (which is preserved during
the morphing), one must have γ1, γ2 ∈ (−π/2, π/2) and we adopt the sign convention that γi > 0
if vi is rotated counter-clockwise relative to P1 − P2, cf. Figure 4.39. Since the length b of the
quadrilateral must be preserved during the morphing, the components of v1 and v2 that are
parallel to P1 − P2 must coincide, i.e.

∥v1∥ cos(γ1) = ∥v2∥ cos(γ2).

So one obtains for the perpendicular component of v1 − v2, denoted by vperp,

vperp = (v1 − v2)
⊺(P1 − P2)/b = ∥v1∥ sin(γ1)− ∥v2∥ sin(γ2) = ∥v1∥ cos(γ1) · (tan(γ1)− tan(γ2)).

By monotonicity of tan one has that vperp has the same sign as γ1 − γ2. If vperp < 0, then
the orientation of the b-segment is rotating clockwise, which corresponds to the sum of angles
(ĉ, d)e + (d̂, b)f increasing.

At t = 0 one finds γ1 = π/2 − ψ4
A − ψ2

B and γ2 = π/2 − ψ2
B − ψ2

D and therefore γ1 − γ2 =
ψ2
D − ψ4

A < 0 by assumptions. Likewise, for t = 1 one obtains γ1 − γ2 = ψ1
A − ψ3

D < 0. We
will show below, that indeed γ1 − γ2 ≤ 0 for all t ∈ [0, 1], and thus the b-edge rotates clockwise

and (ĉ, d)e + (d̂, b)f is increasing when morphing from the e to the f -quadrilateral. However,
this would imply ψ1

B − ψ3
C < ψ4

C − ψ2
B, which contradicts the assumption ψC ≤ ψB. Therefore,

such cost coefficients cannot exist, as the corresponding quadrilaterals would have contradicting
properties.
We now rule out that the sign of γ1 − γ2 changes in the interval t ∈ (0, 1). As γ1 − γ2 is

continuous in t, for a sign change one must have an instant where γ1 = γ2, which corresponds to
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the a and d edges being parallel. We show that unless a = d ∧ b = c (i.e. the quadrilateral is a
parallelogram, and stays so during morphing), this can happen at most for one single value of t,
i.e. in our case γ1 − γ2 cannot change it sign from being negative to positive and back within the
interval t ∈ [0, 1]. The case of a parallelogram can be ruled out since γ1 − γ2 ̸= 0 for t ∈ {0, 1}.
Introduce now the auxiliary angles δ1 and δ2 as in Figure 4.40. For the quadrilateral to be closed,
and a and d-segments to be parallel the two following conditions must be satisfied:

c sin(δ1) = b sin(δ2), d− a = c cos(δ1)− b cos(δ2).

By convexity (and non-degeneracy of the cost triangles) we can restrict to potential solutions
with (cos(δ1), cos(δ2)) ∈ (−1, 1)2. By elementary curve sketching arguments it is then possible
to show that unless the quadrilateral is a parallelogram, there can be at most a single solution
(δ1, δ2), which corresponds to a single time t.

Lemma 4.5.24. Let ψA + ψB < π and ψ2
D + ψ4

C ≤ π. In this setting, if ψ1
A + ψ3

C > π then
α4 < 0. If ψ1

B + ψ3
D > π then α2 < 0.

Proof. First note that at most one of the two conditions ψ1
A + ψ3

C > π or ψ1
B + ψ3

D > π can be
satisfied at the same time: If both are satisfied, then ψ1

A+ψ1
B +ψ3

C +ψ3
D > 2π, which is excluded

by the cost triangles.

Figure 4.41: Cost quadrilaterals: ψ1
A + ψ3

C > π.

We now assume ψ1
A + ψ3

C > π. This means that the e-quadrilateral is non-convex due to the
vertex where the a and c edge meet (while the other three angles are each strictly less than
π). We add an auxiliary edge f ′ to the e-quadrilateral and reflect edges a and c to construct a
new convex quadrilateral with edges a, b, c, d (see Figure 4.41). We then add edge e′′ to the new
convex quadrilateral and edge e′ to the f -quadrilateral, as shown in the figure.
The angle formed by the reflected edge a and edge b in the e-quadrilateral is larger than the

angle between the original edge a and the same edge b: (â, b)e′′ > (â, b)e, while the latter is larger
than the corresponding angle in the f -quadrilateral, due to the assumption ψA + ψB < π:

(â, b)e = π − (ψ1
A + ψ1

B) > ψ4
A + ψ2

B = (â, b)e′

The new convex quadrilateral can be morphed into the f -quadrilateral by decreasing e′′ to e,
or equivalently, by increasing f ′ to f , in the process of which the angle between (the reflected) a
and c increases. Therefore,

(â, c)f ′ < (â, c)f ⇔ 2π − ψ1
A − ψ3

C < π − ψ4
A − ψ4

C ⇔
ψ4
C + ψ4

A − ψ3
C − ψ3

A + π < 0 ⇔ α4 < 0.

The case ψ1
B + ψ3

D > π can be treated with a symmetric argument.
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Lemma 4.5.25. Assume α1 < 0. Then the vertex angles in the opposite sector sum to a negative
value: βC + βD < 0.

Note that the opposite statement (from negative sum to negative alpha) is true only with an
additional condition on the angles (see Lemma 4.5.27).

Proof. By definition, (4.5.13), one has

α1 =
1

2

(
ψ1
A + ψ1

B − ψ4
A − ψ2

B + π
)
,

and from the non-degenerate cost triangles we conclude ψ1
A + ψ1

B > 0. Therefore, if α1 < 0, then
π − ψ4

A − ψ2
B < 0. Figure 4.42 shows the two cost quadrilaterals with ψ4

A + ψ2
B > π with an

additional edge e′ in the f -quadrilateral.

Figure 4.42: Cost quadrilaterals, ψ4
A + ψ2

B > π.

From condition α1 < 0 we now infer that

0 > α1 =
1

2

(
ψ1
A + ψ1

B − ψ4
A − ψ2

B + π
)
⇔ 2π − ψ4

A − ψ2
B < π − ψ1

A − ψ1
B ⇔

(â, b)e′ < (â, b)e ⇔ e′ < e⇔ (ĉ, d)e′ < (ĉ, d)e ⇔
ψ4
C + ψ2

D < π − ψ3
C − ψ3

D ⇔ ψ3
C + ψ3

D + ψ4
C + ψ2

D < π < 0 ⇔ βC + βD < 0.

Proposition 4.5.26. Let ψA + ψB < π and ψ4
C + ψ2

D > π. Then ψA + ψC > π, ψB + ψD > π,
and ψC + ψD > π.

Proof. The second condition ψ4
C + ψ2

D > π immediately implies ψC + ψD > π. It therefore
remains to prove that ψA + ψC > π and ψB + ψD > π hold. We do this by showing that the two
cost quadrilaterals have contradicting properties if at least one of the two inequalities fails.

Case 1: assume ψA + ψC ≤ π and ψB + ψD > π
These two inequalities are equivalent respectively to

ψ1
A + ψ3

C ≤ π − (ψ4
A + ψ4

C), (4.5.21)

ψ1
B + ψ3

B > π − (ψ2
B + ψ2

D). (4.5.22)

By non-degeneracy of the cost triangles, we get from (4.5.21) that ψ1
A + ψ3

C < π. Hence, the e-
quadrilateral can be either convex or not depending on the value of ψ1

B+ψ3
D. The f -quadrilateral

is non-convex by assumption, due to the corner between the c and d segments. The cost
quadrilaterals in their potential configurations are shown in Figure 4.43, where we added edges
e′ and f ′ as before.
By (4.5.21) one has

(â, c)f = π − ψ4
A − ψ4

C ≥ ψ1
A + ψ3

C = (â, c)f ′

and therefore f ≥ f ′. Consider now the two possible configurations of the e-quadrilateral.
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Figure 4.43: Case 1: Possible configurations of the quadrilaterals.

• If the e-quadrilateral is convex, i.e. ψ1
B+ψ3

D ≤ π (see Figure 4.43, left), then f ≥ f ′ implies

π − (ψ2
B + ψ2

D) = (b̂, d)f ≥ (b̂, d)f ′ = ψ1
B + ψ3

B,

which contradicts (4.5.22).

• If the e-quadrilateral is non-convex, i.e. ψ1
B + ψ3

D > π (see Figure 4.43, middle), then
f ≥ f ′ implies

π − (ψ2
B + ψ2

D) = (b̂, d)f ≥ (b̂, d)f ′ = 2π − ψ1
B − ψ3

D,

which implies α2 ≤ 0. Similarly, recalling that ψA + ψB < π and considering the triangles
bae′ and bae, one proves e′ < e. Looking now at triangles dce′ and dce, the estimate e′ < e
implies α4 < 0. That means we have two non-positive splitting angles αi, which contradicts
Proposition 4.5.9.

So the combination ψA + ψC ≤ π and ψB + ψD > π is excluded and by a symmetric argument
one can rule out the reverse situation, which is ψA + ψC > π and ψB + ψD ≤ π.

Case 2: assume ψA + ψC ≤ π and ψB + ψD ≤ π
In this case the e-quadrilateral is convex, and as before let f ′ be the second diagonal in the
e-quadrilateral. Since the f -quadrilateral is concave, to morph it into the e-quadrilateral one
must increase f , i.e. f < f ′. But at the same time

(â, c)f = π − ψ4
A − ψ4

C ≥ ψ1
A + ψ3

C = (â, c)f ′ ,

i.e. f ≥ f ′ by the law of cosines, which is a contradiction.

Lemma 4.5.27. Let ψA + ψB < π and ψ4
C + ψ2

D > π. Then α3 < 0.

Proof. The assumption ψ4
C + ψ2

D > π implies that the f -quadrilateral is non-convex, due to
the corner between the c and d edge. As before, we add the e′ edge, which lies outside of the
quadrilateral. By assumption we have

ψA + ψB < π ⇔ ψ4
A + ψ2

B < π − (ψ1
A + ψ1

B) ⇔ (â, b)e′ < (â, b)e

and therefore e′ < e, and finally (ĉ, d)e′ < (ĉ, d)e. By non-convexity of the f -quadrilateral this
means that

2π − ψ2
D − ψ4

C = (ĉ, d)e′ < (ĉ, d)e = π − ψ3
D − ψ3

C ,

which implies that α3 < 0.

97



4 Branched and Multimaterial Transport

Lemma 4.5.28. Assume βA + βB < 0 and βB + βD > 0, βD + βC > 0, βC + βA > 0, and
βX ̸= 0, X ∈ {A,B,C,D}, then one of the following must be true:

1. βA < 0, βB < 0, βC > 0, βD > 0,

2. βA < 0, βB > 0, βC > 0, βD < 0,

3. βA < 0, βB > 0, βC > 0, βD > 0,

4. βA > 0, βB < 0, βC < 0, βD > 0,

5. βA > 0, βB < 0, βC > 0, βD > 0.

Proof. This is easily verified by checking all 16 possible combinations of signs.

Proposition 4.5.29. Assume there exist two non-degenerate same cost graphs with βA+βB < 0,
βC , βD > 0 and α3 < 0. Assume that Assumption 4.5.13 holds. Then bisector lengths bA ≥ 0
and bB ≥ 0.

Proof. Since there exist two non-degenerate same cost graphs, by Theorem 4.5.15 all bisectors
meet in a single point and thus the bisector lengths for any vertex induced by the two adjacent
sectors coincide, see Definition 4.5.10, and can be denoted by bA, bB, bC , dD ∈ R. Since α3 < 0,
Proposition 4.5.9 provides that α2 ∈ (0, π). Hence, by Definition 4.5.10 we have[

bB
bD

]
=

1

sinα2

[
sin(βB + α2) sin(βD)

sin(βB) sin(βD + α2)

] [
l2B
l2D

]
, (4.5.23)

for some lengths l2B, l
2
D ≥ 0. We are interested in showing that bB ≥ 0. Since α2 ∈ (0, π), we

need to check that
sin(βB + α2) l

2
B + sin(βD) l

2
D ≥ 0.

Clearly sin(βD) ≥ 0, and we claim that βB + α2 ∈ [0, π]. Indeed, from βD ≥ 0 we deduce
ξ ≤ ψ2

D + ψ3
D and estimate

βB + α2 =
ξ + 2ψ2

B + ψ2
D − ψ3

D

2
≤ ψ2

B + ψ2
D < π,

where the last inequality follows from non-degeneracy of cost triangles. On the other hand, we
know that ψ2

D − ψ3
D > ψ3

C − ψ4
C + π because α3 < 0 and also ξ ≥ π − ψC because βC ≥ 0, so

that we can estimate

βB + α2 =
ξ + 2ψ2

B + ψ2
D − ψ3

D

2
>
π − ψ3

C − ψ4
C + 2ψ2

B + ψ3
C − ψ4

C + π

2
= π + ψ2

B − ψ4
C > 0

by non-degeneracy of the cost triangles. This proves our claim, and so bB ≥ 0. The analogue
argument for bA via the loop in sector 4 yields bA ≥ 0.

Proposition 4.5.30. Let βA + βB < 0, βC , βD > 0 and α3 < 0, ψA + ψB < π, assume that
two non-degenerate same cost graphs exist and that Assumption 4.5.13 holds. Then the bisector
lengths bA, bB must be negative.

Proof. By Assumption 4.5.13, ψA + ψB < π, and the existence of two non-degenerate same cost
graphs, by Theorem 4.5.15 the four bisectors must meet in a single point, and thus the two
bisector lengths for each fixed vertex induced by any of the two adjacent sectors must coincide.
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Figure 4.44: Possible locations of S1 and S3. Figure 4.45: Invalid triple junction at S1.

By βA + βB < 0 at least one of the two vertex angles must be negative. By symmetry we can
assume without loss of generality that βA < 0.

Given that α3 < 0 and 0 < α1, α2, α4 < π (Proposition 4.5.9), the general configuration of the
bisectors lines is described in Figure 4.44 (note that the order of the C and D bisector lines is
swapped). We first look at the location of point S3, the meeting point of C- and D-branches of
the e-graph. Using that βC , βD > 0 (and therefore in (0, π), see Proposition 4.5.8), we observe
that point S3 has to lie above the C-bisector line and below the D-bisector line. Taking into
account that α2 < π and α4 < π, the open cone defined by these two conditions is entirely
contained in the cone spanned by the A- and B-bisector lines. Hence, point S3 is contained in
the interior of the cone spanned by the A- and B-bisector lines.
As for the point S1, because angle βA < 0 (and therefore in (−π/2, 0) by Proposition 4.5.8),

point S1 must be below or on the A-bisector line.
If bA, bB were non-negative, points A and B would lie on the non-negative part of the A- and

B-bisector lines. Due to α1 < π the latter is above the former, see Figure 4.45. Since S3 must lie
in the interior of the AB-cone, and by the non-degeneracy of Definition 4.5.3 A and B must be
distinct, the three points A, B and S3 are distinct.

In the e-graph, line segments from A, B and S3 will meet at S1 to form a triple junction. We
have just shown that under the given assumptions, A, B and S3 are distinct and will lie on
or above the A-bisector line, whereas S1 will lie below it. But this contradicts the momentum
preservation condition (4.2.20) that needs to be satisfied at free vertices. Hence, the assumed
situation cannot occur.

We can now finally state the proof for the main result of this section.

Proof of Theorem 4.5.16. By symmetry (or by relabeling the cost coefficients) we may without
loss of generality assume that (X,Y ) = (A,B) in the statement of the theorem. The proof follows
the schematic presented in Figure 4.35. We first distinguish the case where the f -quadrilateral
is convex and the case when it is not convex. As ψA + ψB < π by assumption, the only way
convexity can be violated is if ψ2

D + ψ4
C > π.

Let us first assume ψ2
D + ψ4

C ≤ π, i.e. that the f -quadrilateral is convex. If in addition the
e-quadrilateral is also convex, we can use Proposition 4.5.18 to show that all pairs ψB + ψD < π,
ψD+ψC < π, and ψC+ψA < π. Then, by Proposition 4.5.19, we conclude that at least 2 opposite
vertex angles are strictly negative. Assume these angles are βA and βD (the argument for βB and
βC is symmetric). Then, by Lemma 4.5.22, we have either (ψ1

A < ψ3
D, ψ

4
A > ψ2

D, βC ≤ 0, βB ≥ 0)
or (ψ1

A > ψ3
D, ψ

4
A < ψ2

D, βC ≥ 0, βB ≤ 0). Assume the former (again, the latter can be treated
by symmetric arguments). Then βC ≤ βB implies ψC ≤ ψB and therefore Proposition 4.5.23
implies a contradiction.
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Now consider the case when the f -quadrilateral is convex, but the e-quadrilateral is not. The
latter can be due to two pairs of angles: ψ1

A + ψ3
C > π or ψ1

B + ψ3
D > π. As above, we assume that

the former is true, the proof for the latter case is symmetric. First, by Lemma 4.5.24, splitting
angle α4 is negative. Then, by Lemma 4.5.25, we have ψB + ψD < π. Finally, we can apply
Proposition 4.5.26 (but applied to a different sector than stated), which implies that ψA+ψB > π,
which contradicts the assumptions. This concludes the case when the f -quadrilateral is convex.

Assume now that the f -quadrilateral is not convex since ψ2
D +ψ4

C > π. Then by Lemma 4.5.26
one has ψB+ψD > π, ψD+ψC > π and ψC+ψA > π. This means that βB+βD > 0, βD+βC > 0,
βC+βA > 0, while βA+βB < 0. This leaves only five possible combinations of vertex angles signs
(see Proposition 4.5.28). Two of these combinations (βA, βD > 0, βB, βC < 0 and βA, βD < 0,
βB, βC > 0) are impossible, because the conditions of these cases imply a contradicting vertex
angles signs combination by Proposition 4.5.22. We therefore only need to consider the other 3
combinations, where βC , βD > 0 and βA + βB < 0. We now note that from the conditions of the
case, by Lemma 4.5.27, splitting angle α3 is negative. We can then apply Proposition 4.5.29 to get
information about prescribed signs of bisector lengths. Finally, we can apply Proposition 4.5.30,
to see that the construction of two graphs with prescribed geometry and meeting bisectors is
impossible.

Theorem 4.5.16 allows to obtain additional insight into the properties of non-degenerate equal
cost graphs that are given in the following corollaries.

Corollary 4.5.31. Let ξ ∈ (−π, π], assume there exists two non-degenerate same cost graphs
and that Assumption 4.5.13 holds. Then, the following configurations of angles are impossible:

1. Two adjacent vertex angles are both negative.

2. Two opposite vertex angles are both negative.

3. The sum of two adjacent vertex angles is negative.

4. A splitting angle αi is negative.

5. The sum of all ψ-angles satisfies
∑
ψiX < 2π, where the sum runs over

(X, i) ∈ {(A, 1), (A, 4), (B, 1), (B, 2), (D, 2), (D, 3), (C, 3), (C, 4)}.

Proof. 1. For two adjacent vertices X,Y one has [βX + βY < 0] ⇔ [ψX +ψY < π] and thus if
the first sum is negative, then by Theorem 4.5.16 no solution exists.

2. If two opposite vertex angles are negative, by Lemma 4.5.22, a third vertex angle is also
negative. This leads to two negative adjacent vertex angles and hence to the first case.

3. In the first case, in fact not both vertex angles need to be negative, but their sum being
negative is already enough to apply the argument.

4. If some αi were negative, by Lemma 4.5.25 the vertex angles of the two opposite vertices
would sum to a negative value, which is the previous case.

5. If the sum of all ψ-angles is less than 2π, then there must be two adjacent vertices X,Y
such that ψX + ψY < π, which allows to invoke Theorem 4.5.16.
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Corollary 4.5.32. Assume there exist two non-degenerate same cost graphs and that Assumption
4.5.13 holds. Then, all bisector lengths bX have to be non-negative.

Proof. Since the two graphs are non-degenerate and have equal cost, their bisectors meet in a
single point (Theorem 4.5.15) and thus the bisector lengths for each vertex induced by the two
adjacent sectors must coincide.
By Corollary 4.5.31 and Assumption 4.5.13, all αi must be strictly positive, by Proposition

4.5.9 they must lie in (0, π). According to Corollary 4.5.31, at most one vertex angle can be
strictly negative, while by Proposition 4.5.8 all vertex angles lie in (−π/2, π). We split the proof
in two steps: first we assume all vertex angles to be positive, then we treat the case where one of
them is strictly negative.
Case 1: all vertex angles positive
Without loss of generality, consider bA, as defined via the first sector via Definition 4.5.10. The
other lengths can be handled in the same fashion. One has

bA =
1

sin(α1)

(
sin (βA + α1) · l1A + sin (βB) · l1B

)
. (4.5.24)

Hence, since βA, βB ∈ (0, π), non-negativity of bA follows as soon as sin (βA + α1) ≥ 0, which is
equivalent to βA + α1 ∈ [0, π]. This is indeed satisfied because

βA + βB + α1 =
ψ1
A + ψ4

A − ξ + ξ + ψ1
B + ψ2

B − π + ψ1
A + ψ1

B − ψ4
A − ψ2

B + π

2
= ψ1

A + ψ1
B < π.

Case 2: one vertex angle is negative
Assume without loss of generality that the negative angle is βC , so βC < 0. By Corollary 4.5.31,
Assumption 4.5.13, and Proposition 4.5.8 the other three must be strictly positive, contained in
(0, π). Therefore, we can apply the argument from the first case to the bisector lengths in sectors
1 and 2, getting that bA, bB, bD ≥ 0. For bC we get two equations, one each from sectors 3 and 4:

bC =
1

sin(α3)

(
sin (βC + α3) · l3C + sin (βD) · l3D

)
bC =

1

sin(α4)

(
sin (βA) · l4A + sin (βC + α4) · l4C

)
Since all graph lengths, sin(α3), sin(α4), sin(βA), and sin(βD) are all positive bC can only be
negative if sin(βC + α3) < 0 and sin(βC + α4) < 0, which (since αi ∈ (0, π) and βC ∈ (−π/2, 0))
is equivalent to βC + α3 < 0 and βC + α4 < 0, meaning that 2βC + α3 + α4 < 0. On the other
hand, by direct computations, we have

2βC + α3 + α4 = ξ +
ψC + ψA

2
+
ψC + ψD

2
− ψ2

D − ψ1
A.

We observe now that βB ≥ 0 provides ξ ≥ π−ψ1
B−ψ2

B and Theorem 4.5.16 provides ψC+ψA ≥ π
and ψC + ψD ≥ π (otherwise two non-degenerate same cost graphs would not exist). Hence, we
can estimate

2βC + α3 + α4 ≥ π − ψ1
B − ψ2

B +
π

2
+
π

2
− ψ2

D − ψ1
A =

(
π − ψ1

A − ψ1
B

)
+
(
π − ψ2

B − ψ2
D

)
> 0

with the last step guaranteed by the cost triangles. Therefore, bC cannot be negative either,
which concludes the second case and thus the proof.
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4 Branched and Multimaterial Transport

4.6 Conclusion

In this chapter, we have studied the branched and multimaterial transport problems, with a
particular focus on some special cases of the latter. After recalling the branched transport
problem, we focused on its convex relaxation in terms of multimaterial transport. We have
collected and adapted the known formulations and results related to the primal-dual optimality,
and then studied the multimaterial problem in a special setting when only a single topology of
the solution is admissible. We discovered and showed the relation of the single topology problem
to the free vertex optimization problem and observed that the dual solutions are globally linear
in this setting. We also studied an explicit example of a problem of the single topology type
with 2 sources, 1 sink, and 1 free vertex and completely characterized its solution set based on
the initial data (i.e. the cost coefficients of the material vectors and the locations of the fixed
vertices). We then discussed numerical methods for the multimaterial problem, presenting two
different discretization approaches, to show that even with advanced numerical schemes, this
problem is difficult to solve, and concluded that it is necessary to better understand the behavior
of the solutions before attempting to develop more efficient numerical methods. We observed
also that the dual solutions are seemingly piecewise affine in the general case (i.e. when not only
a single topology of solutions is admissible).

Based on these findings, we decided to study the special problem on 4 vertices (i.e. a problem
with 3 sources, 1 sink and 2 free vertices) when 2 networks with different topologies give the
same transportation cost. Investigating the problem from geometric and algebraic perspectives,
we discovered and proved that the non-degenerate graphs have the same cost if and only if the
bisectors (described in Section 4.5.3) meet in one point. We then attempted an investigation
of the solution set (for non-degenerate solutions) and discovered a necessary condition for the
existence of the 2-graph same cost solution based on just the initial data, i.e. the cost coefficients
of the material vectors, which we then used to study and identify the types of solutions that are
not possible in this problem. It should be noted that the conditions that have been found are only
necessary, but not sufficient, and finding sufficient conditions for the existence of non-degenerate
solutions of the described type could be an interesting future research question. Another open
question would be the explicit construction of dual candidates: As we discovered that the bisectors
meet for same cost graphs, the mesh induced by the four bisector lines would be a natural basis
for piecewise affine dual solutions. Unfortunately, preliminary numerical experiments indicated,
that it is not always possible to build feasible dual solution on this simple mesh. Exploring this
issue in more detail would be another potential direction of the future work.
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5 Conclusion

Summary. In this thesis, we studied the optimal and branched transport problems in some
specific settings.

In Chapter 3, we studied the properties of the barycenters in the unbalanced optimal transport
setting, in particular in the Hellinger–Kantorovich distance. We first investigated the problem
between an uncountable number of general input measures, derived a corresponding dual problem,
and showed the existence and stability of the solutions with respect to input data and the length
scale parameter. We then focused on a special case, when all the input measures are single
Dirac masses. In this setting, we showed the existence of continuous dual maximizers, their
uniqueness (almost everywhere with respect to the distribution of the input measures) and
primal-dual optimality conditions. We also studied the behavior of the solutions when the scaling
parameter κ→ 0, including the limit solution and asymptotic mass and density estimates. We
discovered and showed that in some cases no discrete minimizer can exist. We then performed
and presented some numerical experiments using the developed numerical scheme, to demonstrate
the intricate behavior of the barycenters with the change of the scaling parameter and to support
the theoretical findings presented before, such as the role of the dual solution and the robustness
of the solution under empirical approximation.

Chapter 4 was focused on the branched transport problem and the multimaterial transport
problem. After briefly recalling the branched transport problem and the challenges of solving
it because of the concave cost function, we concentrated on the multimaterial problem, which
has been shown under some conditions to be a convex relaxation of the branched transport
problem. We studied the problem in the setting when only a single topology of the solution
is admissible and showed its relation to the free vertex optimization problem. As an explicit
example, we studied the problem with 2 vertices, 1 sink and 1 free vertex, for which, using the
vertex optimization problem, we completely characterized the solution set based on the initial
data. We then studied the multimaterial problem from the numerical perspective. We presented
two numerical schemes based on different discretization approaches and confirmed that the
problem presents difficulties even in some seemingly simple settings. We also observed the simple
structure of the dual solution, which we already described theoretically in the single topology
setting. Based on these findings, we proceeded to study the special problem on 4 vertices that
allows for 2 solutions of different topologies which have the same transportation cost. We showed
the equivalence between the same cost condition and the fact that the bisectors of the 2-graph
solution meet in one point and then investigated the solution set of the problem. We discovered
and proved a necessary condition for the existence of a non-degenerate solution of the prescribed
type and used it to further characterize the possible solution set.
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5 Conclusion

Future work. In the course of this study, we came across some interesting related questions
that we could not fully investigate. Based on our findings and the context of research, we present
some of them here.

• Given the discovered intricate structure presented by the solutions to the Hellinger–
Kantorovich barycenter problem and the preliminary comparison with hierarchical clustering
methods, it would be interesting to use the barycenter problem for structure analysis of
real data point clouds, as it could potentially help to further interpret the behavior of the
barycenters.

• While investigating the special 4-vertex problem from Section 4.5, we discovered the special
role of the bisectors of the 2-graph solution. It would be interesting to investigate meshes
based on the partition of the domain by such bisectors and consider not only optimality
but also feasibility of the solutions obtained on such meshes.

• The described 4-vertex problem is a very special case of the general multimaterial transport
problem, and even of the multimaterial problem on 4 vertices. Our study revealed the
special geometric structure imposed by this problem, and therefore, it would be interesting
to investigate the possibility of applying the findings of this research to the solution of the
general multimaterial transport problem, starting of course from the solution of the general
4-vertex problem in two-dimensional space.
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[84] C. Léonard. From the Schrödinger problem to the Monge–Kantorovich problem. Journal
of Functional Analysis, 262(4):1879–1920, 2012.
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et de Physique, Présentés à l’Académie Royale des Sciences, par divers Savans, et lûs dans
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