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Chapter 1

General introduction
All living matter is based on four classes of small molecules: sugars, amino acids,
nucleotides, and fatty acids. These elementary building blocks are combined with
molecules of the same class or from the other classes to create larger entities:
poly-saccharides, proteins, nucleic acids, and lipids [1]. Two of those building
blocks of life, namely lipids and proteins, are the focus of this thesis.

1.1 The interplay of lipids and proteins

Due to their amphipathic nature, lipids in aqueous solution aggregate into supra-
molecular assemblies such as bilayers or micelles. Lipid bilayers confine and
compartmentalize all living cells [1], but the enormous chemical diversity of lipids
and compositional diversity of membranes is not required for barrier functions
alone [2]. In fact, lipid composition affects membrane properties and specifically
adapted compositions allow biomembranes to fulfill their many functions [3] and
an altered composition is associated with disease [4].

Lipids consist of a polar headgroup and apolar hydrocarbon chains. In mammalian
membranes, there are three major classes of lipids, glycerophospholipids (GPL),
sphingolipids (SL) and sterols [3]. With different headgroups, varying length,
degree of saturation, and hydroxylation of the hydrocarbon chains, thousands of
different combinations are possible [3]. The structural differences of individual
lipids and specific lipid compositions affect the physical properties of membranes
through lipid-lipid and lipid-protein interactions [2]. Figure 1.1 shows two
examples that are relevant in later chapters of this thesis. In the absence of
other curvature regulating factors, such as lateral pressure or curvature-inducing
proteins, membrane curvature is determined by the overall lipid shape, or
more specifically, the volume ratio of headgroup and hydrocarbon chains [2].
Membrane fluidity and phase behavior is largely affected by the acyl chains’
length and degree of saturation [5, 6]. Saturated acyl chains are easily ordered,
resulting in tightly packed gel phases. The effect of cholesterol is complex, it
has an ordering effect, but hinders the tight packing required for the formation of
the gel phase at physiological temperatures. The combination of saturated acyl
chains and cholesterol is therefore a so-called liquid ordered phase. The kinks in
unsatured acyl chains cause disorder and concomitantly fluidize the membrane.
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1. General introduction

Figure 1.1: Lipids regulate biological processes through membrane properties.
a) The size balance of headgroup and hydrophobic tails determines spontaneous
curvature of membranes. Membrane curvature regulates protein sorting and might
additionally be important for membrane remodeling. b) Degree of unsaturation
affects membrane fluidity. Saturated tails and cholesterol form liquid-ordered
phases. Unsaturation in acyl chains fluidizes the membrane. Adapted by
permission from [2]. Copyright 2018, Springer Nature

Beyond curvature and fluidity, lipid properties affect membrane thickness, lateral
pressure, surface charge and interdigitation [3]. Lipid composition also controls
the energetics of stalk formation, the first step in membrane fusion [7].

Often, the regulating influence of lipids on biological processes is mediated by
proteins [2]. Lipids can recruit proteins with specific lipid-binding domains (cf.
Figure 1.2a), either by targeting single lipids, or cooperative binding to multiple
lipids. Through membrane curvature and the related lipid packing defects, i.e.,
hydrophobic regions exposed to the environment, information about membrane
properties is passed on to proteins (cf. Figure 1.2b). While the sensing ability
of banana-shaped BAR domains [8] is reliant on matching geometrical shapes,
packing defects allow sensing of membrane properties such as curvature, but also
composition and tension, by smaller sensing domains. A substantial part of this
thesis (Chapter 2) and the related publications (Papers 2,3,5) [9–11] are devoted
to this topic. The role of hydrophobic mismatch in protein function regulation is
explored in Paper 6 ( [12]).

These examples show that lipid diversity profoundly affects biological processes.
Therefore, a broad range of computational studies, where membrane-related
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The interplay of lipids and proteins

Figure 1.2: Lipids regulate protein-mediated biological processes. a) Specific
lipid binding can recruit proteins. Additionally, lipids can be ligands for proteins,
thereby regulating protein activity. b) Membrane curvature and lipid packing
defects can be sensed by proteins. c) Lipid composition affects conformation,
distribution and oligomerization of transmembrane proteins. The interaction can
be direct by lipid-protein interaction, or indirect through membrane properties.
Reprinted by permission from [2]. Copyright 2018, Springer Nature

effects play a role, rely on a large variety of lipid models to accurately recreate
specific types of membranes. The endeavor for more realistic membrane models
has received significant attention in recent years [13–17].

Lack of a Martini 3 sphingolipid model, a lipid class that constitutes approx-
imately 30 mol% of the plasma membrane lipids [18], to study composition
dependent protein binding to membranes, resulted in the other major subject of
this thesis: automated parameterization of molecules for coarse-grained force
fields.
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1. General introduction

1.2 Methods

One of the fundamental choices that has to be made in any kind of modeling
of physical processes is the level of detail of the model. Evidently, all relevant
degrees of freedom need to be retained, whereas the rest can and should be
integrated out. Figure 1.3 contextualizes the accessible length and time scales
of biophysical modeling methods. In the quantum resolution, processes such as
the formation and breaking of covalent bonds can be modeled, but the quantum
mechanical description is computationally so demanding, that simulation of lipid
membranes is out of reach, even with approximations [19]. On the other end of
the spectrum are continuum models, where rather large time and length scales
are accessible, but all molecular detail is lost [19]. Rather than providing a
detailed description of each of these methods, the choice of the here-employed
coarse-grained description is motivated on the basis of some of the phenomena
introduced in Section 1.1.

On the one hand, it is immediately clear that regulating effects of lipids that
are mediated through a change in membrane properties cannot be studied in a
quantum resolution, as the time and length scales involved are too large. On
the other hand, the model resolution has to be fine enough, such that chemical
specificity is maintained. This can be showcased on the basis of packing defect
sensing. The sensing ability of amphipathic peptides relies on sticking individual
amino acid side chains into these defects. Hence, at least a near to atomistic
model is required to accurately resolve the details of this process. Due to the
subtleness of packing defect or curvature sensing, i.e., small sorting forces, long
sampling times are required. Therefore, usage of full atomistic resolutions is
feasible regarding the length scales but often limiting in terms of time scales, for
these kinds of processes. Mild coarse-graining approaches, where a few atoms
are mapped into one supra-atom, can provide the necessary chemical specificity
in combination with efficient sampling. Typically, a speed up of a factor of
100-1000 of coarse-grained molecular dynamics (CGMD) simulations compared
to all-atom (AA) MD is achieved, based on the reduced number of particles, an
increased time step, and a smoother energy landscape. The Martini force field
(FF) [20, 21], that regularly utilizes a 4-1 mapping, but also 3-1 and 2-1 if a
finer resolution is required, is one example of mild coarse-graining. In a recent
comparison of the Martini FF and the atomistic CHARMM36 FF, we showed
that packing defect sensing is in fact well reproduced in the somewhat coarser
resolution [10].

While a broader introduction to coarse-graining in biomolecular simulations is
given in Chapter 3, Section 1.2.1 aims to familiarize readers from outside this
field with the philosophy of Martini’s building block approach.
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Methods

Figure 1.3: Different length and time scales in simulations regarding cellular
processes. Reprinted from [22] (CC BY 4.0).

1.2.1 Molecular Lego: The building block approach in the
Martini coarse-grained force field

The Martini coarse-grained force-field [20, 21] is a building block force-field, i.e.,
common chemical groups are parameterized as basic building blocks, which can
be combined to build up a large variety of molecules. These basic building blocks
of Martini, the beads, are parameterized top-down, with liquid-liquid partitioning
and miscibility as main targets, while complete molecules are parameterized
with a combination of top-down (experimental data) and bottom-up (atomistic
simulation). Beyond the bead level, the building block approach also applies
to larger molecular fragments, e.g., a hydrocarbon chain has the same mapping
and interaction parameters, no matter if it is part of a glycerophospholipid, a
sphingolipid, or not attached to a lipid at all. Conserving molecular compatibility,
and hereby simplifying application to new problems, is the raison d’être of the
building block approach.

Non-bonded interactions in the Martini FF are described by Lennard-Jones (LJ)
and Coulomb potentials

Vnon-bonded(r1, ..., rN) =
∑

i, j

4ϵi j

(σi j

ri j

)12

−

(
σi j

ri j

)6 +∑
i, j

qiq j

4πϵ0ϵrri j
. (1.1)

Having a fixed set of chemical bead types and sizes directly results in having a
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1. General introduction

Figure 1.4: A: Trends of Martini 3 organic and ion bead types. B: Bead sizes.
Recreated from [21]

fixed set of ϵ and σ values. Additionally, Martini 3 uses a combination rule only
for bead sizes (σi j values). The interaction strength ϵi j is specifically defined for
each pair of bead types. For super repulsive interactions, also σi j is increased.

The generic beads, used to represent all kinds of different chemical moieties,
are arranged in chemical and size classes following trends in hydrophilicity
and miscibility [21], cf. Figure 1.4, meaning polar and charged beads interact
strongly with water and other polar or charged beads. Non-polar beads interact
strongly with other non-polar beads. Cross-group interactions are weak. Correctly
balancing the different interaction levels, is what actually makes the partitioning
and miscibility, and also more complex phenomena, such as self-assembly
of lipids into membranes, work. Particularly, since the entropic part of the
hydrophobic effect is missing due to the coarse-grained description, it has to be
recovered by modified enthalpic terms.

Construction of larger molecules is done by defining bonded interactions
between beads.

Vbonded =
∑
bonds

1
2

kbond(r − r0)2+
∑

angles

1
2

kangle(cos θ − cos θ0)2

+
∑

n,dihedrals

kdihedral [1 + cos(nϕ − ϕs)
] (1.2)

Martini 3 uses a center-of-geometry (COG) based mapping to define the position
of beads. Importantly, parameterization of bonded and non-bonded parameters
should be performed simultaneously since bonded and non-bonded interactions
are not independent – they are directly influencing each other via the density of
interactions [21, 23, 24]. This effect can be easily exemplified by varying the
equilibrium bond length b0 of molecules consisting of two C1 beads, which are
solvated in single C1 beads. With an equilibrium bond length b0 = 0.47 nm, which
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Methods

Figure 1.5: Martini 3 bonded interactions. A | Center of geometry mapping.
B-C | C1-C1 molecules solvated in C1 beads, B C1-C1 equilibrium bond length
b0 = 0.47 nm, C | C1-C1 equilibrium bond length b0 = 0.20 nm.

corresponds to the bead size, good miscibility can be observed (cf. Figure 1.5B).
With the decreased bond length b0 = 0.20 nm the two-bead molecules tend to
aggregate, due to the increased density of interactions (cf. Figure 1.5B).
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Chapter 2

Quantifying membrane
curvature sensing of
peripheral proteins by
simulated buckling and
umbrella sampling

Kai Steffen Stroh, Herre Jelger Risselada

Reprinted with permission from
Journal of Chemical Theory and Computation,
2021, volume 17, issue 8, pp. 5276-5286.
DOI: 10.1021/acs.jctc.1c00021.
Copyright 2021 American Chemical Society.
https://pubs.acs.org/articlesonrequest/AOR-MZ7XJYKWIQX2XTV5UKMF

I

Abstract

Membrane curvature plays an essential role in the organization and traf-
ficking of membrane associated proteins. Comparison or prediction of the
experimentally resolved protein concentrations adopted at different mem-
brane curvatures requires direct quantification of the relative partitioning
free energy. Here, we present a highly efficient and simple to implement
free energy calculation method which is able to directly resolve the relative
partitioning free energy of proteins as a direct function of membrane cur-
vature, i.e. a curvature sensing profile, within (coarse-grained) molecular
dynamics simulations. We demonstrate its utility by resolving these profiles
for two known curvature sensing peptides, namely ALPS and α-synuclein,
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2. Quantifying membrane curvature sensing

for a membrane curvature ranging from -1/6.5 to +1/6.5 nm−1. We illustrate
that the difference in relative partitioning (binding) free energy between
these two extrema is only about 13 kBT for both peptides, illustrating that
the driving force of curvature sensing is subtle. Furthermore, we illustrate
that ALPS and α-synuclein sense curvature via a contrasting mechanism,
which is differentially affected by membrane composition. In addition,
we demonstrate that the intrinsic spontaneous curvature of both of these
peptides lies beyond the range of membrane curvature accessible in mi-
cropipette aspiration experiments, being about 1/7 nm −1. Our approach
offers an efficient and simple to implement in silico tool for exploring and
screening the membrane curvature sensing mechanisms of proteins.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.A Supporting Information . . . . . . . . . . . . . . . . . . 30

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Introduction

Membrane curvature is an ubiquitous feature of cells. On one hand proteins
can shape membranes. This curvature generation plays an important role in
membrane fusion and fission. On the other hand membrane curvature sensing
can control protein function by providing spatial information, thus providing
a cue when and where biological processes are happening [1, 2]. Membrane
curvature-dependent biomechanical coupling mechanisms may thus contribute to
the sorting, trafficking and function of transmembrane proteins and membrane
associated proteins[3–9]. Membrane binding proteins have been observed to sort
toward membrane regions with a positive curvature [10–12], negative curvature
[13], and even micrometer-scale membrane curvature (flat membranes) [14].
Furthermore, membrane proteins may even dynamically alter their curvature
preference upon external stimuli. For example, the curvature mediated sorting of
G protein-coupled receptors (GPCRs) is dynamically and differentially regulated
in living cells via ligand-specific binding [6, 15]. Sensing of negative [13] or
micrometer scale curvature [14] is facilitated by a fixed, effective overall protein
shape which matches such a curvature, analogous to the sensing (and generation)
of positive curvature by scaffold proteins such as banana-shaped bar domains
[16]. In contrast, amphipathic protein motifs such as the ALPS motifs as well as
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Introduction

the protein α-synuclein rather sense positive membrane curvature because of the
concomitant increase in hydrophobic lipid packing defects [9].

The driving force of curvature-mediated protein sorting (the sorting force) is the
minimization of the relative free energy of membrane adhesion. A quantitative
relationship between membrane curvature and the concomitant relative free energy
of membrane adhesion therefore yields valuable information regarding a protein’s
ability to sense membrane curvature. However, such a detailed quantification
of sensing requires a large continuous range of different membrane curvatures.
Conveniently, uni-dimensional lateral compression of a bilayer results in a stable
buckled membrane whose curvature gradually ranges from highly negative to
highly positive and whose shape can be analytically derived [17]. Previous
computational approaches exploited a buckled membrane to test a protein’s
preference for membrane curvature [18–21]. However, unbiased MD simulations,
being restricted to thermal fluctuations, often only sample the region close to the
resolved free energy minimum. Although this suffices to quantify the preferred
curvature of a protein (or lipid), if one is additionally interested in free energy
differences and sorting forces over a wider range of curvatures, enhanced or
biased sampling is essential. In particular, these insights would uniquely enable
quantitative in silico screening of proteins and protein mutation on curvature
sensing properties as well as furthering the rational design of proteins. In addition,
quantifying differences in curvature dependent membrane adhesion free energy
would enable direct prediction (and comparison) of the protein concentration
differences measured in, for example, micropipette-aspiration experiments [22].

Umbrella sampling requires the selection of a suitable reaction coordinate and
a bias potential that restrains the system to a desired state along the reaction
coordinate. Because of the small magnitude of the sorting force, relatively long
sampling times are needed within a large system (e.g., 203 = 8000 nm3 or more).
Therefore, calculation of the bias potential must be computationally efficient, i.e.
it should not hamper the optimization of simulation engines. Our general approach
is to first calculate the relative free energy along the arc length s of the buckled
membrane. Membrane undulations are suppressed to ensure a unique and well-
defined mapping from s to local curvature, being a collective property of lipids.
Then, a Jacobian transformation is performed to reconstruct the concomitant free
energy as a function of local membrane curvature. This final step only relies on
highly efficient and easily implemented pre- and post-processing steps.

Here, we will illustrate how a buckled membrane setup can be used in combination
with umbrella sampling to efficiently obtain a direct and quantitative relationship
between local membrane curvature and the protein’s relative adhesion free energy
– the curvature sensing profile of a protein. To this aim, we will resolve the

11



2. Quantifying membrane curvature sensing

curvature sensing profiles of two known curvature sensing peptides, namely
ALPS and α-synuclein, within a curvature ranging from -1/6.5 to +1/6.5 nm−1.
We illustrate that the difference in relative adhesion free energy between these
two extrema is only about 13 kBT for both peptides, illustrating that curvature
sensing is rather subtle. Importantly, both sensing profiles do not reveal the
existence of a free energy minimum within the studied range. This suggests that
the actual intrinsic spontaneous curvature of these peptides lies beyond the range
of membrane curvature accessible in micropipette aspiration experiments, being
about 1/7 nm−1[23].

2.1.1 Analytical shape of buckled membranes

In the Helfrich framework the bending energy of a lipid bilayer can be expressed
as a functional of its surface shape contour S [24]

F[S ] =
∫

S
dA

(
1
2
κ(K(S ) − K0)2 + κ̄KG(S )

)
(2.1)

with the mean and the Gaussian curvature modulus, κ and κ̄, the total curvature K
and the Gaussian curvature KG. K0 denotes the spontaneous bilayer curvature.

Following the work of Hu et al.[17] we describe the membrane shape by the
angle ψ(s) as a function of arc length parameter s (Fig. 2.1). Assuming the
membrane lies in the xy-plane of a box with side lengths (Lx, Ly, Lz), and the
buckle undulation follows the x-direction, the energy can be written as

F[ψ(s)] =
Lyκ

2L

∫ 1

0
ds(ψ′(s) − LK0)2 (2.2)

where L is the membrane contour length along the buckle and ψ′(s) = KL. The
compressive strain γ relates the contour or uncompressed length L to the projected
length Lx

γ = 1 − Lx/L (2.3)

Minimizing F while keeping the projected length Lx = L
∫ 1

0
ds cos(ψ(s)) fixed

leads to
∂2ψ(s)
∂s2 = −λL sin(ψ(s)) (2.4)

with the Lagrange multiplier λL. The analytical solution of Eq. 2.4 leads to Jacobi
elliptic functions. Integration of the cosine and sine of ψ(s) yields the cartesian
coordinates

12
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X(s) =
∫ s

0
dσ cos(ψ(σ)), (2.5a)

Z(s) =
∫ s

0
dσ sin(ψ(σ)) (2.5b)

of the buckled shape. Starting from here Elías-Wolff et al. developed the
following approach that we use in our work and summarize here for the sake
of completeness [19]. To avoid the use of Jacobi elliptic functions, the shape
equations (2.5) are numerically solved for ψ(s) with the boundary conditions

ψ(0) = ψ(L) = 0, X(0) = Z(L = 0), X(L) = Lx. (2.6)

The numerical solution is then approximated by a Fourier series:

XM(s, γ) = Lx[s +
M∑

n=1

a(x)
n (γ) sin(4πns)] (2.7a)

ZM(s, γ) = Lx[a
(z)
0 (γ)

+

M∑
n=1

a(z)
n (γ) cos(2π(2n − 1)s)]

(2.7b)

where the coefficients a(x)(γ), a(x)
n (γ) are obtained by fitting to the numerical

solution. M is the number of series elements used. Lookup-tables are constructed
for range 0 ≤ γ ≤ 0.85 and interpolated by splines. [19] For later use, we write
the curve coordinates as

X = (x0 + X(s, γ), z0 + Z(s, γ))T (2.8)

with the offsets x0 and z0.

The actual fit minimizes the distances of the lipids’ last tail beads to the theoretical
shape description:

min
x0,z0,γ,s j

χ2 = min
x0,z0,γ,s j

1
2

N∑
j=1

[(x0 + X(s j; γ) − x j)2 + (z0 + Z(s j; γ) − z j)2] (2.9)

Where (x j, z j are the coordinates, and N is the number of beads included in the
fitting procedure.

The position of a peptide or lipid along the arc length is given by the projection
of its center of mass coordinate (xp, zp) onto the curve X:

sp = arg min
s

[(x0 + X(s, γ) − xp)2 + (z0 + Z(s, γ) − zp)2] (2.10)

13



2. Quantifying membrane curvature sensing

E F

C D

BA

Figure 2.1: A: Superposition of the coarse-grained and backmapped [25] atomistic
structure of aa 1-38 of α-synuclein, yellow: hydrophobic residues, violet: polar
residues (visualized with nglview [26]) B: Wheel representation of aa 1-38 of
α-synuclein (generated with HELIQUEST [27]) C: Superposition of the coarse-
grained and backmapped atomistic structure of ALPS. D: Wheel representation
of ALPS. E: Analytical membrane shape for a compression γ = 0.39, with lipids
in grey. F: Midplane curvature as a function of arc length parameter s for the
same compression.

With the sign convention that curvature is positive when the membrane bends
away from the peptide, midplane curvature is given by:

K(s) =
Z′(s)X′′(s) − X′(s)Z′′(s)

(X′(s)2 + Z′(s)2)3/2
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2.1.2 Umbrella sampling on a buckled membrane

Our goal is to calculate the free energy profile in the full curvature range of the
buckled membrane. In principle, assuming ergodicity, the free energy or potential
of mean force (PMF) can be extracted from MD simulations by monitoring the
probability distribution P(ξ) [28]:

F(ξ) = −kBT ln
[
P(ξ)

]
+ const. (2.11)

As regions high in free energy are typically not well sampled in unbiased
simulations we employ umbrella sampling [29], i.e., we split the reaction
coordinate ξ into a number of windows and apply a biasing potential to restrain
the system to a reference value of ξ. The typical choice is a harmonic potential

wi(ξ) =
k
2

(ξ − ξref
i )2. (2.12)

Where k is the force constant of the harmonic potential. A biased simulation
yields the distribution Pb

i (ξ) and the unbiased free energy of each window can be
calculated in the following way[29]:

Fu
i (ξ) = −kBT ln

[
Pb

i (ξ)
]
− wi(ξ) + Fi (2.13)

The unknown constants Fi have to be calculated to combine the free energies of
different windows. This is often done by using the weighted histogram analysis
method (WHAM)[30]. The estimation of Fi can also be avoided, by calculating
the unbiased mean force ∂Fu

i /∂ξ instead of Fu
i . This approach is called umbrella

integration (UI)[31].

An important factor in umbrella sampling is the selection of a suitable reaction
coordinate. In our system, the obvious choice would be the arc length parameter
s, since the shape description is based on that. This would mean evaluating the
projection sp to calculate the biasing potential

wi(sp) =
ks

2
(sp − sref

i )2 (2.14)

at every MD step. While this could be done by extending the simulation
package of one’s choice or by using additional software like PLUMED [32],
the choice of s as the reaction coordinate is not trivially implemented and would
introduce additional computational overhead, since the projection operation
involves nonlinear optimization. We therefore decided to go a different route and
use a local linear approximation instead. That is, for a given sref

i we calculate the
cartesian reference coordinates X ref

i and the tangent t̂i, cf. Fig. 2.2, and apply
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2. Quantifying membrane curvature sensing

the umbrella potential along the tangent direction. Since we inhibit membrane
fluctuations during umbrella sampling, the membrane shape properties remain
constant. In particular, suppressing fluctuations ensures that the tangent directions
are time independent. Otherwise, correctly applying the bias potential would
necessitate a refit of the membrane shape at every MD step, rendering time
integration prohibitively slow.

The following derivation is based on the work of Song and Zhu [33]. With the
curve coordinates in the xz-plane described by

X = (x0 + X(s), z0 + Z(s))T (2.15)

and
X ref

i ≡X(sref
i ) (2.16)

the linear expansion of the curve at a reference value sref
i has the form

X(sref
i + ∆s) ≈X ref

i + ∆s
dX ref

i

ds
. (2.17)

With the unit tangent vector

t̂i ≡
dX ref

i

ds
/L (2.18)

The projection onto the linearized arc length parameter s can be written as

sp = sref
i + (Xp −X ref

i ) · t̂i (2.19)

This transforms the nonlinear optimization problem in Eq. (2.10) to a linear
operation.

The bias potential now takes the form

wi(Xp) =
k
2

[
(Xp −X ref

i ) · t̂i

]2
. (2.20)

with

k = ks/L2 (2.21)
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This way, we only rely on GROMACS’ built in functionality of restraining the
probe-molecule motion along a prescribed direction and our own pre- and post-
processing. Thus, this approach is easily transferable to other simulation packages
and has minimal additional computational cost.

An overview of a typical umbrella sampling setup with reference positions and
corresponding tangents is given in Fig. 2.3.

After obtaining the free energy as a function of arc length parameter s one needs
to apply the following variable transformation [34]:

F(K) = F(s) + kBT ln
[∣∣∣∣∣∂K
∂s

∣∣∣∣∣] , (2.22)

that finally yields the binding free energy as a function of curvature. The full
derivation of this change of variable of a PMF is given in the SI. This Jacobian
correction accounts for the fact that in differently curved regions, traveling a
certain distance along s corresponds to different amounts of curvature change.
Obviously, the derivative ∂K/∂s becomes zero at the extrema of K(s), that means
as s approaches 0; 0.5; or 1, the logarithmic term in Eq. (2.22) tends to minus
infinity and F(K) cannot be calculated in this way at these points.

We note that for a probe whose center of mass is not close to the membrane
midplane, e.g. a peripheral protein, the linear approximation to the midplane
introduces a systematic error dependent on the sign and magnitude of the
curvature, as the arc length travelled on the membrane surface is not the same
as on the midplane. For negative curvature a certain distance along the surface
corresponds to a larger distance in s. For positive curvature the opposite is
true. This results in an under-/overestimation of the free energy in the respective
regions.

To avoid this problem one can introduce a parallel or offset curve and apply a
transformation similar to eq. (2.22).

The offset Xo(s) is defined by

Xo(s) =X(s) + d · n̂(s) (2.23)

with the signed distance d and the unit normal vector n̂(s) [35].

The offset’s derivative can be expressed in terms of properties of the generator
curve X(s):

X ′
o = (1 + K d)X ′ (2.24)

17



2. Quantifying membrane curvature sensing

With this we can immediately write down the unit tangent and normal vectors to
the offset curve

t̂o =
1 + K d
|1 + K d|

t̂ (2.25a)

n̂o =
1 + K d
|1 + K d|

n̂ (2.25b)

and we see that both curves are always parallel in membranes under consideration,
as 1 + K d cannot become negative without the membrane touching itself.

The arc length between two points on the offset curve is:

ξ(s2) − ξ(s1) =
∫ s2

s1

|X ′
o|ds (2.26a)

=

∫ s2

s1

|1 + K d| |X ′|ds (2.26b)

=

∫ s2

s1

|1 + K d|L ds (2.26c)

When the offset curve is the reaction coordinate a similar transformation to
Eq. 2.22 has to be applied to obtain F(s).

F(s) = F(ξ) + kBT ln
[∣∣∣∣∣∂s
∂ξ

∣∣∣∣∣] (2.27)

with ∣∣∣∣∣∂s
∂ξ

∣∣∣∣∣ = |1 + K d|−1L−1 (2.28)

For the midplane ds
dξ = L−1 is a constant and such a transformation would simply

shift the whole free energy profile up or down, and since the free energy is only
defined up to an undetermined constant, this can be omitted.

Finally, for going directly from ξ to midplane curvature, we have:

F(K) = F(ξ) + kBT ln
∣∣∣∣∣∂K
∂ξ

∣∣∣∣∣ (2.29a)

= F(ξ) + kBT ln

∣∣∣∣∣∣ |1 + K d|−1

L
∂K
∂s

∣∣∣∣∣∣ (2.29b)

Throughout the paper, we exclusively use midplane curvature, if not stated
otherwise. Alternatively, one could use the curvature of the membrane surface.
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With the offset curvature expressed in terms of midplane curvature [35]

Ko =
K

|1 + Kd|
(2.30)

we can immediately write down the free energy as a function offset curvature

F(Ko) = F(K) + kBT ln
[

1
|1 + Kd|2

]
. (2.31)
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Figure 2.2: Local linear approximation of the reaction coordinate. The difference
between probe and reference position is projected onto the tangent of the
membrane midplane at sref

i . It is clearly visible that for small fluctuations around
the reference position, the error due to the linearization is small. An increasing
error in strongly curved regions could be further improved by adapting the force
constant of the bias potential, i.e., a large k for strongly curved regions and smaller
k in flatter regions.

2.1.2.1 Umbrella integration

To analyze umbrella sampling data, we use the aforementioned UI method [31].
UI is less reliant on window overlap than WHAM [28] and therefore allows more
flexibility when trading off number of windows vs. error size [36].

In curvature sensing, we generally expect smooth and shallow free-energy profiles,
without small barriers and UI is expected to perform optimally within such a
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Figure 2.3: Umbrella sampling setup. The upper figure gives an overview of a
typical setup. To generate the initial configurations the protein is pulled along
the membrane surface. From this pulling trajectory frames are selected where
the projection of the protein’s COM onto the arc length is closest to the selected
s-values. The umbrella potential acts along the tangent (dashed lines) at the
selected arc length.
The lower figure shows the membrane midplane curvature as a function of the
x-coordinate.

scenario. If the windows are chosen such that there is ample overlap, WHAM
can be used just as well. In this case, comparisons of both methods have shown
no significant difference.

The biased probability distribution Pb
i is approximated by a normal distribution

Pb
i (ξ) =

1
√

2πσb
i

exp

−1
2

ξ − ξb
i

σb
i


2 , (2.32)

which is well justified in the case of smooth free-energy profiles [28]. The mean
ξb

i and the standard deviation σb
i are extracted from simulations. The mean force

of a window is
∂Fu

i

∂ξ
= kBT

ξ − ξb
i

(σb
i )2
− k

(
ξ − ξref

i

)
(2.33)
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Combining the local mean forces yields the global mean force

∂F
∂ξ
=

∑
i

pi(ξ)
∂Fu

i

∂ξ
(2.34)

with

pi(ξ) =
NiPb

i∑
j N jPb

j

. (2.35)

Where Ni is the number of timesteps in window i. The global potential of mean
force F(ξ) can be obtained by numerical integration of Eq. (2.34).

Statistical error: To ensure a well-equilibrated system and get confidence limits
of the mean ξb

i and the variance (σb
i )2, we employ a procedure similar to ref. [37].

This procedure consists of dividing the trajectory ξi into nonoverlapping segments
to decorrelate the data and a series of statistical tests: i) Mann-Kendall test for
trend [38] in the mean of the segments, ii) Mann-Kendall test for trend in the
variance of the segments, iii) D’Agostino’s K2 test for normality [39] of the mean
of the segments, iv) von Neumann test for serial correlation [40]. After adjusting
the starting timestep and the segment length such that all test are passed, the
segmented data yields an estimate of the variance of ξb

i , var(ξb
i ), and the variance

of (σb
i )2, var((σb

i )2), caused by sampling [36].

With var(ξb
i ) and var((σb

i )2) error propagation of Eq. (2.33) leads to [36]:

var
(
∂Fu

i
∂ξ

)
= 1

β2(σb
i )4

(
var(ξb

i ) + (ξ−ξb
i )2

(σb
i )4 var((σb

i )2)
)

(2.36)

For the variance of the combined mean force one obtains

var
(
∂F
∂ξ

)
=

∑
i p2

i var
(
∂Fu

i
∂ξ

)
(2.37)

where variations of the weights are neglected [36].

Integrating over an interval [ξa, ξb] and accounting for correlations between ∂F/∂ξ
of different bins, finally yields [36]:

var(∆F) ≈ var
(
∂F
∂ξ

) [
(ξb − ξa)σb

√
2π − 2(σb)2

]
(2.38)

Where var(∂F/∂ξ) is averaged over the interval [ξa, ξb]. Likewise σb is the
average of σb

i over all windows in that interval.

21



2. Quantifying membrane curvature sensing

2.1.3 Simulation details

Initial configurations were generated with the python script insane.py [41].
Approximately 675 lipids per leaflet (for details see Tab. 2.1) were put in the x-y
plane of a 40 nm · 10 nm · 20 nm simulation box. The ALPS peptide was placed
close (∆z ≈ 1nm) to the upper leaflet. Subsequently the system was solvated with
standard Martini water and a 0.15 M NaCl concentration.

The initial x-dimension can be calculated for a given compression γ and minimal
curvature radius1 by [17]

L = 4πRmin
√
γ

[
1 +

3
16
γ +

39
512

γ2 +
303
8192

γ3...

]
(2.39)

After steepest-descent energy minimization and initial equilibration (10 ns NVT
and 50 ns NPT) the system was compressed in x-direction by applying a pressure
of 3 bar in x-direction and allowing the system to expand in z-direction only
(the y-dimension was kept fixed) using the Berendsen barostat (τp = 12.0 ps,
compressibility of 3 · 10−4 bar−1). From this compression-trajectory, the frame
closest to the chosen compression was selected. This chosen frame, then served as
starting configuration for another equilibration run using the Parrinello-Rahman
barostat (τp = 12.0 ps, compressibility of 3 · 10−4 bar−1). This equilibration
phase is up to 5µs long. This additional equilibration serves several purposes:
i) In systems with inhomogeneous membrane composition, a curvature-induced
partitioning of lipids is observed, governed by the lipids’ intrinsic molecular
shape [20, 42]. With a comparatively long simulation time, we ensure that lipid
resorting is finished. ii) A buckled membrane fluctuates around its analytical
shape. For umbrella sampling the membrane will be restrained to that analytical
shape. To minimize disturbance of the system we select the frame with the
smallest deviation from the optimal shape and then restrain large scale movements
of the lipids in the lower leaflet, such that the analytical shape is exactly
maintained. For this purpose, position restraints with a small force constant
(10 kJ ·mol−1

· nm−2) are applied to the headgroup (PO4 beads) of lower leaflet
lipids. This way, influence on upper leaflet dynamics is minimized.

In the case of α-synuclein, an equilibrated configuration of the ALPS/membrane-
system was taken, the ALPS peptide was deleted and α-synuclein inserted into the
free volume. This was followed by energy minimization and NVT equilibration.

Initial configurations for the umbrella sampling were generated by pulling the
protein along the membrane. All umbrella sampling runs are 1.05µs long, with

1corresponding to the maximal curvature
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the first .05µs for equilibration. For ASYN PC55PE30PA15 sampling was
subsequentially extended by 1µs. We used harmonic potentials with a force
constant of k = 100 kJ mol−1 nm−2 to restrain the peptide to a defined point along
the reaction coordinate.

All simulations were coupled to a constant heat-bath using the V-rescale algorithm
[43]. The Umbrella sampling simulations were performed in the NVT ensemble
in order to fully conserve the derived analytical shape of the buckle. It should be
noted, however, that these umbrella simulations were pre-equilibrated within the
NPT ensemble at a hydrostatic pressure of 1 bar (coupling to the z-direction).

Simulations were performed with GROMACS 2019.3 [44, 45] and GRO-
MACS 2020.3 [46] using the Martini 2.2 force field [47–49]. Data analysis
was performed with an in-house Python module, based on MDAnalysis [50, 51].
The shape fitting procedure is based on mdxrfile [52].

2.1.3.1 Protein models

The here-used model of ALPS is also used in ref. [53] and is based on previous
atomistic simulations [54]. Based on the peptide’s hydrogen bonding pattern, a
helical secondary structure was assigned to all residues according to the definition
used by DSSP [55, 56]. The backbone angle parameters of the central region of
the peptide (GWSSFTTG) were relaxed to MARTINI’s default values for loop
regions (k = 20 kJ rad−2 mol−1, angle = 96◦) to allow for some flexibility, which
is believed to play a role in defect sensing [57].

The model of α-synuclein only included the N-terminal region (residue 1-38) of
α-synuclein, i.e. its curvature sensing motif, conform with earlier work of Pranke
et al [9]. We will refer to this section of α-synuclein as ASYN throughout the
paper. Its secondary structure was based on the crystal structure of α-synuclein,
as obtained by Rao et al [58]. MARTINI parameters were assigned based on the
DSSP definition of secondary structure.

2.1.3.2 Lipid composition

The choice of lipids used in our study is motivated by the main phospholipids
found within highly curved mitochondrial membranes [59]. We vary the lipid
composition to model the following scenarios: (i) A pure POPC membrane, i.e. as
simple as possible, (ii) A negatively charged POPC/POPS membrane with uniform
charge spatial distribution along the arc-length of the buckled membrane conform
with the experiment work of Pranke. et al [9], and (iii) POPC/POPE/POPA
negatively charged with a non-uniform spatial charge distribution, i.e., POPA
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2. Quantifying membrane curvature sensing

preferentially sorts to regions with a negative membrane curvature. A detailed
overview of the here-studied membrane setups is illustrated in table. 2.1

# lipids per leaflet umbrella sampling
system POPC POPE POPA POPS # water # NA # CL # win. time / µs

ALPS PC100 676 - - - 51507 567 567 60 1.0
ALPS PC55PE30PA15 371 202 101 - 51696 670 468 56 1.0
ALPS PC40PS60 270 - - 405 51515 970 162 60 1.0
ASYN PC100 676 - - - 51507 565 567 60 1.0
ASYN PC55PE30PA15 371 202 101 - 51696 668 468 60 2.0
ASYN PC40PS60 270 - - 405 51515 972 162 60 1.0

Table 2.1: System details. Membranes are labeled by the percentage of their lipid
constituents. Upper and lower leaflets have equal lipid compositions. Number of
windows used in umbrella sampling and sampling time per window is also given.

2.2 Results

Contrasting curvature sensing mechanisms of ALPS and α-synuclein can be
distinguished.

Figure 2.4 illustrates the binding free energy of ALPS and ASYN as a function of
membrane curvature for different membrane compositions. For both peptides, the
free energy difference between the two extrema in analyzed membrane curvature,
i.e. -1/6.5 to +1/6.5 nm−1, is in the range of 13 kBT . Such a moderate free energy
scale illustrates that curvature sensing is in practice mediated by a subtle driving
force. The magnitude of the thermodynamic sorting force acting on the peptide
depends on the spatial gradient of membrane curvature. In our setup, which
features a strong spatial gradient, the typical average sorting force acting on a
peptide within the simulation is about a few pN.

However, ALPS and ASYN have contrasting chemistries and curvature sensing
is believed to be mediated by distinct sensing mechanisms [9]. ALPS is
electrically neutral and features a hydrophobic interface consisting of bulky
hydrophobic residues, in contrast ASYN features a positive net charge with a
"poorly developed" hydrophobic interface. Indeed, our simulation protocol is
able to discern these mechanistic differences. In case of an electrically neutral
membrane, the slope of the obtained binding free energy profile – sensing profile
– is shallower for ASYN than ALPS within the positively curved region. Positive
membrane curvature is accompanied by an increase in surface hydrophobicity due
to the increased formation of lipid packing defects (cf. Fig. S7). As a consequence,
owing to the poor hydrophobic face of ASYN, the concomitant sorting force is
reduced with respect to ALPS. In contrast, introduction of negatively charged
POPA lipids in the membrane affects the sensing of ASYN, due to its positive net
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charge, whereas the sensing behavior of ALPS is not affected. These negatively
charged POPA lipids mainly accumulated in the negatively curved region (cf.
Fig. S3), thereby alleviating the unfavorable hydrophobic interactions in that
region. In contrast, such a curvature dependent accumulation of charged lipids
is not observed for equivalent negatively charged POPS lipids. Consequently,
the presence of PS lipids does not differentially affect the sensing behavior of
ALPS and ASYN, despite increasing the absolute binding free energy of ASYN
with respect to ALPS. The sorting behavior of charged proteins seems thus only
modulated by charged lipid species with a preferential membrane curvature.

The spontaneous curvature of ALPS and α-synuclein lies below the
experimentally accessible curvature range.

Interestingly, the absence of a free energy minimum in Fig. 2.4 indicates that there
in fact exists no optimal preferential curvature for the peptide within our buckled
membrane system. The peptide is attracted to the region of maximal positive
membrane curvature only because of a spatially dependent free energy minimum.
An even stronger positive curvature would in fact still be more favorable. This can
be understood from the expected increase in surface hydrophobicity associated
with a stronger positive membrane curvature. The curvature range in our
membrane protocol, from -1/6.5 upto 1/6.5 nm−1, well captures the curvature
of the membrane tubes formed by α-synuclein in experiments, being 1/5 to
1/20 nm−1 [60]. In the limit of high peptide concentration, the relationship
between the radius of a spontaneously formed membrane tube, Rs, and the
peptide’s spontaneous curvature, K̄p, is given by, Rs = (1 + κ

κ̄
)K̄−1

p , where κ is
the bending modulus of the protein free membrane and κ̄ an elastic constant
describing the effective curvature coupling between peptide and membrane [23,
61]. Since κ̄ has a positive value, K̄−1

p is smaller than Rs. For BAR-domain protein
families the inverse spontaneous curvature K̄−1

p has been reported to be in the
range of 5 nm or less [62–64], which is somewhat puzzling given the 20 nm-sized
dimension of these protein complexes. Visual inspection (extrapolation) of the
sensing profiles of ALPS and α-synuclein suggests similar small values for K̄−1

p ,
i.e. values that are similar or less than the hydrophobic thickness of the membrane
itself (about 4 nm).

The membrane binding free energy of peptides is assumed to quadratically scale
with curvature, F =

∫
A
ϕ κ̄2 (K − K̄p)2, with ϕ being the peptide concentration [23].

Since ϕ→ 1/A in our example, the ϕ term effectively drops out when integrating
over the membrane area A. Therefore, the peptide’s spontaneous curvature K̄p and
the coupling parameter κ̄ can be extracted from the data. Our results (cf. Tab. 2.2)
suggest a K̄−1

p of roughly 4 nm for ALPS. For ASYN on the two membranes with
little or no gradient in lipid composition (PC40PS60 and PC100, respectively)
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Figure 2.4: Relative binding free-energy as a function of curvature. The grey
areas indicate curvature values that are present in the system but are not included
in the final analysis. Anything below a radius of 6.5 nm is discarded. Close to
the extrema several problems accumulate. PMF ∝ K2 is not valid any more. The
linearization error increases and the ln |∂K

∂s | correction to the free energy breaks
down.

fitting yields K̄−1
p ≈ 7 nm. In the case of the PC55PE30PA15 membrane, which

has a notable curvature-dependence in lipid composition, the apparent K̄−1
p is

reduced to 5.7 nm. Furthermore, the value of κ̄ is estimated to be in the range of
200 kBT (cf. Tab. 2.2), which is tenfold larger than the bending modulus of the
membrane κ, about 20 kBT [65]. This agrees with the notion that κ̄ > κ, which is
essential for a membrane curvature inducing peptide [23].

These here-reported values indicate that K̄−1
p lies below an experimentally

accessible length scale. This implies that stronger membrane curvatures are
always preferable in practice despite the existence of a finite preferential curvature.
In addition, these extreme curvatures may simultaneously challenge the accuracy
and validity of its underlying second-order continuum elastic approximation
[65]. Finally, it should be noted that membrane tubulation can be alternatively
understood within the concept of a protein induced spontaneous tension and a
concomitant spontaneous membrane curvature, thereby excluding the need for an
explicit description of K̄−1

p and κ̄ [66, 67].
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system ∆F / kBT κ̄ / kBT K̄p / nm−1 K̄−1
p / nm

ALPS PC100 13.2 ± 1.4 143.9 0.29 3.5
ALPS PC55PE30PA15 12.0 ± 1.4 146.9 0.24 4.2
ALPS PC40PS60 11.4 ± 1.4 157.0 0.23 4.4
ASYN PC100 10.2 ± 1.4 193.5 0.14 7.0
ASYN PC55PE30PA15 9.5 ± 1.0 156.3 0.18 5.7
ASYN PC40PS60 9.9 ± 1.4 182.2 0.15 6.6

Table 2.2: Results from fitting the sensing profiles to the free energy F →
κ̄
2(K − K̄p)2. Uncertainties in free energy differences are calculated from the
statistical error (cf. Eq. 2.38) and are given as the 95% percent confidence
interval: 1.96

√
var(∆F).

2.3 Discussion

Recent works have illustrated both the utility and versatility of buckled
membranes to study the curvature preference of different membrane constituents
[18–21, 42]. Here, we have illustrated how a buckled membrane can be combined
with umbrella sampling techniques to calculate the relative binding free energy
as a function of membrane curvature for curvature sensing peptides. This method
is able to discern the distinct sensing mechanisms of ALPS and ASYN and
enable in silico extraction of elastic properties such as the spontaneous curvature
of the peptide and the elastic coupling modulus. The Jacobian transformation,
required to reconstruct the relative binding free energy as a function of membrane
curvature rather than the spatial coordinate s, becomes ambiguous near the
curvature minima of the buckle. This challenges accurate quantitative extraction
of binding free energies in unbiased simulations. In contrast, our biased simulation
method circumvents this problem by sampling otherwise inaccessible regions
where the Jacobian transformation can be accurately applied. In addition, this
approach provides the obvious advantage that a wide continuous range of different
curvatures can be studied within the same computationally efficient setup, in
contrast to approaches that utilize membrane vesicles of a different size [13, 68].

Our method is sufficiently accurate to capture the subtle nature of curvature
sensing. Error estimations suggest that the obtained free energy differences are
within an error of 1.4 kBT . To reconstruct the potential of mean force, we used
the aforementioned umbrella integration (UI) method [31]. UI is less reliant on
window overlap than weighted histogram methods [28] and therefore allows us
to reduce the number of umbrella windows and thus the number of performed
simulations, albeit at the cost of potentially larger errors [36]. However, in
curvature sensing, we generally expect smooth, monotonous and shallow free-
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energy profiles, without small barriers and UI is expected to perform optimally
within such a scenario.

Peptides can display a curvature dependent preferential rotation angle (see
Fig. S5). Rotation of the peptide is particularly restricted within regions
of strong negative curvature. In this region the rotation angle is restricted
to an approximately 40 rather than 360◦ range. In contrast, regions with
a strong positive curvature enable full rotation of the peptide, but display a
weak preferential orientation as evident from a non-uniform angle distribution.
However, this rotational entropy contribution can be considered as an intrinsic
property of membrane curvature and is therefore included in our definition of
relative binding free energy. Hence, a similar cost in rotational entropy is expected
when a peptide partitions on a membrane tube or tether in experiments, i.e. a
cylindrical membrane surface that is subject to two different principal curvatures
[23]. The associated free energy contribution due to a difference in rotational
entropy is small in our example: Restriction of peptide rotation to a range of
40◦ results in a free energy cost of ∆F = −kBT ln(40/360) = −2.2 kBT . Thus,
the rotational free energy cost associated with partitioning in a region with a
strong negative curvature is only about 2 kBT . For regions of positive membrane
curvature – where only a weak preferred directionality exists – such a contribution
is expected to become even smaller (≤ kBTA more detailed analysis of the
relationships between peptide orientation angle and curvature sensing can be
found in the SI.

Since all degrees of freedom but ξ are integrated out in the derivation of F(ξ),
sufficient sampling of the configuration space perpendicular to ξ has to be ensured,
for the estimate of F(ξ) to be accurate [28]. As we have discussed in the SI as
an example, extending our umbrella sampling protocol with enhanced sampling
methods such as Hamiltonian replica exchange [69, 70] is straightforward.

Incorporating enhanced sampling methods might become particularly useful when
considering larger conformational rearrangements of proteins. E.g., for ALPS
it is assumed that its curvature sensing ability involves changes in secondary
structure[54]. As the Martini model cannot capture such changes, this aspect is
not included in our present study. However, our protocol is independent of this
force field choice.

In principle, such free energy estimations are feasible employing an all-atom (AA)
force field, albeit at significantly higher computational effort. The rather weak
sorting force ∂F/∂K entails relatively long sampling times. Compressing the
membrane, initial equilibration, lipid resorting, and conformation generation or
the umbrella sampling could still be done in a coarse-grained representation. The
starting conformation of each window would be back-mapped to full atomistic

28



Discussion

detail. Optimizing the window spacing and the force constant of the umbrella
potential, would be particular important for AA simulations.

Our buckling approach seems particularly suited for studying curvature sensing
of peptides and smaller proteins or protein complexes of up to a size of 5 nm.
Since the approach critically relies on a spatial gradient in membrane curvature,
local membrane curvature is less accurately defined for wider protein complexes
such as scaffold proteins. Moreover, the soluble parts of large protein complexes
may actively interact with the membrane and thereby compromise accuracy,
especially within the negative curvature region. This problem can be somewhat
circumvented by increasing the length-scale of the buckled membrane. However,
this would simultaneously result in a smaller sorting force therefore requiring
additional sampling time.

Our current study focused on studying membrane binding proteins and peptides
rather than transmembrane proteins such as GPCRs [6, 15]. In this work, the
distal monolayer was restrained to conserve the shape of the membrane during the
umbrella simulations and more accurately reconstruct local membrane curvature.
To avoid artifacts caused by interactions of restrained lipids with transmembrane
domains, shape conservation has to be achieved while enabling free diffusion in
the whole bilayer, e.g., by employing a custom potential similar to a flat bottom
potential or dummy particles that are placed on the membrane surface and interact
with lipids only [71].

Finally, the here-presented method offers a unique possibility to directly compare
curvature dependent partitioning free energies from simulations with experiments.
In particular, the ability to screen proteins in silico for their potential curvature
sensing properties while simultaneously quantifying enables a high throughput in
comparison to present experimental approaches, which rely on labor intensive
fluorescent labeling of proteins and/or careful tweaking of the setup with optical
tweezers [23]. This time efficiency of simulations could be exploited to pin-point
relevant regions in either chemical or protein space which are subsequently studied
by experiments. GPCRs have recently been shown able to dynamically alter their
curvature sensing properties upon ligand binding [6, 15]. Our approach may offer
an efficient tool for directly exploring the curvature switching mechanisms of
GPCRs and other proteins by molecular dynamics simulations.
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Appendix 2.A Supporting Information

2.A.1 Relative binding free energy

Free energy profiles are shown in Fig. 2.5 as a function of reaction coordinate
ξ and arc length parameter s. Since ξ represents an offset curve (cf. Fig. 2.6), a
correction term kBT ln | ∂s

∂ξ
| is applied to transform F(ξ) to F(s). The offset distance

d, that is used in the construction of the offset curve Xo(s) =X(s) + d · n̂(s), is
extracted from the umbrella sampling trajectories by

d =
1

Nwin

Nwin∑
i

〈
(Xp −X ref

i ) · n̂i

〉
(2.40)

with the peptide’s center of mass Xp, the reference position on the midplane X ref
i

of the i-th window, and the unit normal vector n̂i. Table 2.3 lists the values of d
for every system used.

system d / nm
ALPS PC100 1.78 ± 0.12
ALPS PC55PE30PA15 1.91 ± 0.22
ALPS PC40PS60 1.80 ± 0.14
ASYN PC100 1.81 ± 0.17
ASYN PC55PE30PA15 1.91 ± 0.22
ASYN PC40PS60 1.84 ± 0.19

Table 2.3: Mean offset d in all simulated membrane systems.

A few general remarks about the representation of a potential of mean force (PMF)
as a function of ξ or s: i) Due to the membrane’s symmetry, free energy profiles
are expected to be symmetric around s = 0.5. ii) For a peptide that has a preferred
curvature Kp equal or larger than the maximum curvature of a given membrane,
there will be a free energy minimum at s = 0.5. If a peptide’s Kp is beyond
what is available on the membrane, the sorting force will drive the peptide to the
top of the buckle, where the mean force will be zero, i.e., ∂F(s)

∂s |s=0.5 = 0. This
does not automatically mean, that the relative binding free energy with respect to
curvature has a minimum at this point. iii) In this representation, comparability
of a peptide’s curvature sensing ability on different membranes is not given in
general. Membrane shape obviously influences the free energy profile. In our
case membranes were constructed to have similar shape, but minor differences
still exist. Membrane length differs slightly, as one can see in the plots of F(ξ).
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Figure 2.5: Potential of mean force. With F(s) = F(ξ) + kBT ln | ∂s
∂ξ
|. The curves

are shifted such that the free energy is 0 in the flat region of the membrane, i.e.,
F(s = 0.25) = 0 kBT .
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Figure 2.6: A: Midplane (blue) and offset curve (red). B: Cumulative arc length.
C: Curvature.

2.A.2 Lipid partitioning

Figure 2.7 shows lipid partitioning of the upper layer. A lipids center of mass is
projected onto the midplane. The obtained histograms are normalized by the total
number of lipids in a specific bin. A pronounced curvature dependent sorting
is observed in the PC55PE30PA15 membrane. Lipids with a small headgroup-
to-tail volume ratio are increasingly found in the negatively curved region. This
is in agreement with previous work [20, 42]. The accumulation of POPA to the
negative region leads to an curvature-dependent surface charge of the membrane.
The PC40PS60 membrane has a nearly constant lipid composition over the whole
curvature range.

2.A.3 Peptide orientation

Peptide orientation is measured as the angle θ between the vector p from N- to
C-terminus and the tangent t in the tangent plane (cf. Fig. 2.8) defined at the
peptide’s center of mass. In moderately curved regions, i.e., s ∈ [0.2, 0.3], both
peptides can freely rotate around the membrane normal (see Fig. 2.9). In strongly
curved regions both peptides have distinct preferred orientations. As ASYN
is one stiff helix, it is no surprise that it favors an orientation perpendicular to
the buckling direction. ALPS, on the other hand, has a flexible middle section
and therefore can adapt to the curved membrane. Our data suggests that at the
very top of the buckle (s = 0.5) ALPS has two preferred orientations, namely
θ ≈ −45◦ and θ ≈ +135◦. This kind of symmetry is expected, as the membrane
is symmetric around s = 0.5, rotating the peptide by 180◦ is identical in terms
of free energy. The fact that θ ≈ +45◦ and θ ≈ −135◦ are clearly less favorable,
indicates that ALPS has some kind of asymmetry that favors one orientation
relative to the top of the buckle. Therefore, when moving away from the top,
only one of the states θ ≈ −45◦ or θ ≈ +135◦ will represent a minimum in the
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Figure 2.7: Overall composition as indicated by the dashed vertical lines.
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Figure 2.8: Cartoon illustrating the orientation of the peptide on the tangent plane.

rotational free energy landscape, which is what is observed.

2.A.4 Umbrella sampling with restrained rotation

Due to the anisotropic nature of the buckled membrane, a peptide that is not
perpendicular to the buckle direction samples a range of different curvature
values at once. This can be avoided by forcing the peptide into a perpendicular
orientation. For this purpose the peptides were restrained to a conformation
parallel to the y-axis with GROMACS’ pull code, using a force constant of
100 kJ ·mol−1

·rad−2. Figure 2.10 shows a comparison of free energy profiles with
(Frestr(K)) and without (Ffree(K)) an angle restraint. Following a semi-quantitative
line of reasoning, one can see that for ASYN (Fig. 2.10b) the differences of the
free energy profiles are mostly due to changes in rotational entropy. As before, we
define Ffree(K = 0) = 0 for the case of free rotation. As can be seen from Fig. 2.9,
the peptide samples all possible angles in the flat region of the membrane. With
the angle restraint in place, rotation is restricted to a range of roughly 30◦, resulting
in a free energy difference ∆F ≈ −kBT ln(30◦/360◦) = 2.5 kBT . Assuming the
system is quasi-isotropic in the flat region, we expect no other contributions to
the free energy difference, and set Frestr(K = 0) = 2.5 kBT . Around the curvature
extrema, ASYN is oriented perpendicular to the buckling direction even without
the angle restraint. Since, the number of available conformations is reduced by
1/2 by the rotational restraint (the peptide is parallel or antiparallel to the y-axis
without the angle restraint and parallel with the angle restraint), the difference in
rotational entropy results in a free energy difference of −kBT ln(1/2) = 0.7 kBT ,
which is consistent with the data shown in Figure 2.10b.
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For ALPS the free energy difference (cf. Fig 2.10a) cannot be explained by
the differences in rotational entropy. As discussed above and in section 2.A.5,
on top of the buckle ALPS prefers an orientation of θ ≈ −45◦ and θ ≈ +135◦.
From the probability distribution P(θ) of the replica exchange simulations (cf.
Fig. 2.11b) it is clear that θ = ±90◦ is not a minimum of the free energy in
rotation space F(s = 0.5, θ). The difference in frequency that these states are
observed (cf. Fig. 2.11b), rather suggests a free energy difference of a few
kBT between θ = ±90◦ and θ ∈ {−45◦, 135◦}. A detailed investigation of the
underlying physical processes is beyond the scope of this paper. However, the
results are in line with what is observed for LL-37 on a buckled membrane [18], an
antimicrobial peptide, that, similar to ALPS, consists of two α-helices connected
by a flexible middle section.

How to treat peptide orientation, i.e., to intregrate out or suppress this degree of
freedom, or even resolve a 2d free energy with curvature K and orientation θ as
reaction coordinates, is problem specific and depends mostly on the peptide size,
structure, and internal degrees of freedom.

2.A.5 Hamiltonian replica exchange

To corroborate that there are only two preferred orientations of ALPS at s = 0.5,
we employed Hamiltonian replica exchange (HREX) in combination with our
otherwise unchanged umbrella sampling setup for one window only. Enhanced
sampling enables us to discern whether infrequent visiting of states with θ ≈ +45◦

and θ ≈ −135◦ in the simulations is either caused by poor sampling or the
existence of a free energy barrier against rotation.

The data shown in Fig. 2.11 support the finding that there is a symmetry between
θ ≈ −45◦ and θ ≈ +135◦ and that θ ≈ +45◦ and θ ≈ −135◦ are indeed
energetically unfavorable in comparison.

We followed an approach similar to Refs. [69, 70], where the system is divided in
a hot and cold part. In the hot part, the force-field parameters are scaled down,
such that interactions inside the hot region have an effective temperature of T/λ,
with the scaling parameter λ. For interactions between hot and cold regions the
effective temperature is T/

√
λ. Inside the cold region interactions are unchanged.

In our system the peptide was defined as the hot region. We used 6 replicas and
a geometric distribution of lambdas between 1 and 0.48. The simulations were
750 ns long, with the first 50 ns for equilibration. Simulations were performed
using GROMACS 2019.6[72] patched with PLUMED 2.6.2[32, 73]. Otherwise,
simulation parameters were set as described in the main paper.
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Figure 2.11: Enhanced sampling of ALPS angular orientation with HREX.

Extension of our umbrella sampling protocol for buckled membranes with HREX
is straightforward and recommended, especially for strongly curved regions, or
where some kind of energy barrier is expected. Furthermore, regular free energy
reconstruction methods such as UA and WHAM can be employed, since HREX
does not alter the statistics of the unscaled system (λ = 1) [69].

2.A.6 Curvature and packing defects

An in-house modified version of PackMem [74] was used to calculate and
visualize the lipid packing defects. To this aim, the standard version was extended
to include calculation of hydrophobic defects with respect to the normal vector
on the tangent plane of buckled membranes.

2.A.7 Change of variables of a potential of mean force

The PMF along a reaction coordinate ξ is defined from the probability density
function P(ξ)[75],

F(ξ) = −kBT ln
[

P(ξ)
P(ξ∗)

]
+ const. (2.41)

where ξ∗ is an arbitrary constant. P(ξ∗) is absorbed into the other arbitrary
constant in most texts, explicitly including it ensures proper normalization later.
From (2.41) it is clear that changing the variable of F(ξ) means changing the
variable of P(ξ). This is done by the standard change-of-variables formula of a
probability density function that is given in many textbooks on probability theory

37



2. Quantifying membrane curvature sensing

0
10
20
30
40
50
60
70
80
90

100

y 
gr

id
po

in
ts

-0.246 0.0 0.25 0.5 0.751
s

0.2

0.1

0.0

0.1

0.2

K(
s)

 / 
nm

1

Figure 2.12: top: Lipid packing defects in the upper leaflet (black: deep defects,
red: shallow). Unrolled topview. bottom: Curvature of the membrane midplane
as a function of arc length parameter s.

and statistics, e.g., Held and Bové [76]. When γ(ξ) is a one-to-one transformation
and dγ(ξ)

dξ is nonzero, the transformed probability density is given by

P(γ(ξ)) =
P(ξ)∣∣∣∣dγ(ξ)

dξ

∣∣∣∣ . (2.42)

Which follows from the fact that the probability contained in |P(γ(ξ))dγ(ξ)| is the
same as in |P(ξ)dξ|. Writing the PMF as a function of γ and plugging (2.42) into
(2.41) yields

F(γ(ξ)) = −kBT ln
[

P(γ(ξ))
P(γ(ξ∗))

]
+ const. (2.43a)

= −kBT ln

 P(ξ)
P(ξ∗)

∣∣∣∣dγ
dξ

∣∣∣∣
ξ=ξ∗∣∣∣∣dγ

dξ

∣∣∣∣
 + const. (2.43b)

= −kBT ln
[

P(ξ)
P(ξ∗)

]
+ kBT ln


∣∣∣∣dγ

dξ

∣∣∣∣∣∣∣∣dγ
dξ

∣∣∣∣
ξ=ξ∗

 + const. (2.43c)
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= F(ξ) + kBT ln


∣∣∣∣dγ

dξ

∣∣∣∣∣∣∣∣dγ
dξ

∣∣∣∣
ξ=ξ∗

 . (2.43d)

While the constant
∣∣∣∣dγ

dξ

∣∣∣∣
ξ=ξ∗

is technically necessary to make the argument of the

logarithm dimensionless, we absorb it into the arbitrary constant and write

F(γ) = F(ξ) + kBT ln
∣∣∣∣∣dγdξ

∣∣∣∣∣ . (2.44)
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3. CG molecule parameterization

3.1 Introduction

Atomically detailed molecular dynamics (MD) simulations provide great insights
into the structure and dynamics of biomolecular and other soft matter systems,
but larger time- and length scales often require a coarse-grained (CG) description.
In coarse-graining a group of atoms is mapped into one bead or supra-atom.
Coarse-grained descriptions achieve computational efficiency by reducing degrees
of freedom while preserving relevant aspects. This not only allows for
bridging larger time and length scales but also enhances our understanding
of the fundamental physics underlying molecular processes within biological
cells. For example, it can enable fundamental insights into phenomena like
the self-organization of lipid membranes and the formation of characteristic
thermodynamic phases, including liquid-ordered, liquid-disordered, and gel
phases [1–3]. Systematic coarse-graining approaches such as inverse Boltzmann
and inverse Monte-Carlo approaches [4, 5] as well as force-matching approaches
[6, 7] parameterize coarse-grained force-fields by reproducing the structural part
of the partition function of the fine-grained system by either matching relevant
radial distribution functions or (combined) forces within the fine-grained system.
However, because the partition function only describes a single thermodynamic
state point at equilibrium, i.e., a unique combination of pressure & temperature
values, systematically parameterized ’bottom-up’ coarse-grained force-fields
are not suited to describe phase transitions over a wider temperature range.
Phase-transitions or phase-diagrams can, however, be optimally modeled using
coarse-grained force-fields based on the alternative Statistical Associating Fluid
Theory (SAFT) parameterization approach, which uses a scaled Lennard-Jones
interaction potential whose functional form (the exponent) is uniquely adapted
for each interaction type [8, 9]. However, the main practical problem of all
of these coarse-grained force-fields is their lack of chemical transferability, i.e.
inclusion of a new molecule (interaction type) within the system would require
reparameterization of all the existing interaction parameters.

The Martini coarse-grained force-field [10, 11] is a building block Force-
Field (FF), i.e., common chemical groups are parameterized as basic building
blocks, which can be combined to build up any existing molecule. These
basic building blocks of Martini, the beads, are parameterized top-down and
reproduce the thermodynamic properties of the chemical groups they model,
such as partitioning free energies in liquid-liquid systems, while complete
molecules are parameterized with a combination of top-down (experimental
data) and bottom-up (atomistic simulation). Such a parameterization enables
the qualitative simulation of phase transitions as well as phase segregation
in lipid membranes while simultaneously conserving molecular compatibility
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(transferability) by describing all non-bonded interactions with the same 12-6
Lennard-Jones potential form. However, a major drawback compared to other
systematic coarse-grained approaches is that parameterization of molecules in
Martini can be highly complex and often involves the selection and fine tuning of a
large number of parameters (e.g., bead types and bond lengths) to optimally match
multiple relevant targets simultaneously. A task that is time consuming when done
by human labor. Additionally, it is not always obvious which parameters have
to be changed in what manner to enhance a certain behavior, particularly when
cooperative processes are involved. While the choice of individual bead types can
be made using chemical intuition, still a sizable subset of combined possibilities
exists. Importantly, parameterization of bonded and non-bonded parameters
should be optimally performed simultaneously since bonded and non-bonded
interactions are not independent – they are directly influencing each other via the
density of interactions [12, 13]. Recent versions of the Martini force-fields such
as Martini 3 rebalanced the density of interactions by introducing an even larger
number of possible interaction types, thereby rendering the parameterization
of molecules often a non-tractable problem to common users. Automation of
coarse-graining is thus critical, especially when constructing large databases of
molecules. Automation offers a solution to address the challenge of force-field
development, which typically involves collaboration among multiple researchers
working on interdependent parameters. The automation approach therefore
facilitates collaborations by allowing researchers to focus on selecting a set
of relevant objectives and assigning importance or weights to each objective.
These objectives, along with their individual weights, define the force-field’s
philosophy. Furthermore, automation empowers collaborations to prioritize two
key aspects: the generation and provision of reference data for the objectives at
hand, and the design of analysis tools to quantitatively assess how each objective
is addressed within the automation pipeline. By automating the parameterization
process, collaborators can allocate their efforts towards obtaining high-quality
reference data that accurately represents the desired objectives. Simultaneously,
they can focus on developing comprehensive analysis tools that enable thorough
quantitative evaluation, ensuring the effectiveness of the automation pipeline in
achieving the defined objectives. This collaborative approach maximizes the
efficiency, reliability, and reproducibility of the parameterization process while
facilitating a deeper understanding of the force field’s performance.

Earlier works on automated parameterization for building block FFs focused on
optimizing bonded interactions only [14–16]. For example, a method such
as PyCGTOOL generates coarse-grained model parameters from atomistic
simulation trajectories using a user-provided mapping. However, it does
not perform parameter optimization, instead equilibrium values and force
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constants, are generated by Boltzmann inversion [14]. No other targets are
used. The SwarmCG method performs parameter optimization with traditional
PSO and targets only bond length and angle distributions, as well as bilayer
dimensions [16]. The melting temperature is only used in validation after
optimization. Non-bonded parameters are not being optimized, although a
previous SwarmCG implementation [17] could also perform optimization of
continuous non-bonded parameters. No bead assignment is proposed, which is
problematic for molecule parameterization in building block FFs, as explained
further down. Other approaches that addressed both the automation of mapping
as well as the parametrization of bonded and non-bonded parameters solely
focused on small molecules, and rather provide an initial guess than an optimized
parameterization [18, 19]. In Auto-Martini bead type selection is done via
ALOGPS [20, 21] partitioning prediction of fragments [18]. Bonded parameters
use generic values, without any optimization. The approach from Potter et al.
is similar to Auto-Martini, but features an improved mapping scheme, and non-
bonded interactions are derived in a similar fashion, bond lengths are taken from
relaxed atomistic structures, and the force constants use generic values [19]. We
note that fast methods such as Auto-Martini and the method from Potter et al.
could be used as a complementary approach to CGCompiler by providing an
initial mapping as well as an initial non-bonded/bonded parameter guess for
CGCompiler. Automation schemes exist also for systematic coarse-graining
approaches [22, 23].

Particle swarm optimization (PSO) is a powerful computational method used to
optimize problems by iteratively improving candidate solutions based on a defined
objective function. Compared to evolutionary optimization methods like genetic
algorithms, PSO offers advantages in efficiently finding global optima within
high-dimensional continuous spaces due to its vectorial search direction. PSO
has been successfully employed in various coarse-grained (CG) parameterization
tasks, as demonstrated in previous studies [15–17, 24, 25].

PSO is primarily designed for continuous variables, making it well-suited for
optimizing structure-based coarse-grained (CG) models where bonded and non-
bonded parameters can be chosen from a continuum of values. However, in
building block models like Martini, the non-bonded parameters are predefined
and discrete, representing different interaction levels. Consequently, the
parameterization of molecules in a building block CG force field becomes a
mixed-variable optimization problem.

When using PSO for parameterization in building block models, a transformation
from the continuous space to the discrete space of force field parameters is
necessary. This transformation introduces cumulative rounding errors, which
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can potentially affect the quality of the parameterization, especially in larger
molecules. Therefore, additional evaluation and reparameterization steps are
often required to ensure the optimal performance of the force field.

It is crucial to parameterize both bonded and non-bonded interactions simultane-
ously since they are not independent and their optimization should be performed
in a coordinated manner [13]. By considering their interplay during the parameter-
ization process, the resulting force field can better capture the complex behavior
of molecules in the system.

To address the limitations of existing PSO approaches, we employ a mixed-
variable PSO scheme (mv-PSO) for parameterization. This approach allows
for the simultaneous optimization of both discrete parameters (representing
non-bonded interactions) and continuous parameters (representing bonded
interactions), enhancing the accuracy and reliability of the parameterization
process.

Furthermore, due to the chaotic nature of MD simulations, observables measured
in MD simulations are subject to noise. Since standard PSO was designed
for deterministic objective functions, straightforward application to noisy
optimization problems is error prone, because the algorithm can no longer
correctly identify global and personal best solutions when noise levels are similar
to differences between objective function values [26]. Noise-mitigation strategies
are particularly important when utilizing thermodynamic data as targets, as
these are notoriously expensive to estimate accurately in MD simulations, even
when employing CG models. Particularly problematic is the targeting of phase
transition temperatures, which involve a first order phase transition and are thus
subject to nucleation and concomitant hysteresis.

In this paper, we pioneer the application of mixed-variable particle swarm
optimization in automated parameterization of molecules within the Martini
3 coarse-grained force-field by matching both structural (e.g., RDFs) as well as
thermodynamic data (phase-transition temperatures). The important advantage of
this approach is that both bonded- and non-bonded interactions are simultaneously
optimized while conserving the search efficiency of vector guided particle swarm
methods over other metaheuristic search methods such as genetic algorithms. In
addition, we explore noise-mitigation strategies in matching the phase transition
temperatures, where nucleation and concomitant hysteresis introduces a dominant
noise term within the objective function. To the best of our knowledge, the
impact of noisy objective function values has not been previously addressed in the
context of applying PSO for CG parameterization. The manuscript is structured
in the following way: Section 3.2 describes the mixed-variable PSO algorithm
and parameterization procedure. As an example, we parameterized the linker

51



3. CG molecule parameterization

region of sphingolipids, a biological highly relevant class of lipid molecules, that
constitutes approximately 30 mol% of the plasma membrane lipids [27], but has
not been updated for Martini 3, yet. Details of the simulated molecules, systems
and observables are given in Section 3.3. Results are presented in Section 3.4,
followed by conclusions in Section 3.5.

3.2 CG molecule parameterization via
mixed-variable particle swarm optimization

With CGCompiler we present a Python package that streamlines CG molecule
parameterization. It employs mixed-variable particle swarm optimization to
simultaneously optimize categorical (beadtype) and continuous (bonds, angles,
dihedrals, ...) variables. Therefore, CGCompiler is particularly well suited for,
but not limited to, parameterization tasks in CG FFs that follow a building block
approach. To enable the application of the building block approach also to larger
molecular fragments, consisting of more than one CG bead, the method allows for
optimization of shared building blocks in different molecules, e.g. the headgroup,
linker, or tails of lipids.

Molecule parameterization in Martini 3 follows three steps: i) Choice of mapping
and bead sizes ii) Assignment of chemical bead types iii) Choice of bonded
terms and assignment of bonded parameters [11]. While a mapping from
atomistic to CG model and the set of of bonded terms have to be predefined, the
here-presented algorithm optimizes bead size, chemical bead type and bonded
parameters simultaneously.

The parameterization workflow is shown in Figure 3.1. For a given parame-
terization task, the user provides or generates the target data, and creates a set
of CG training systems, that allows measurement of the target observables. In
the initial iteration, the optimization algorithm generates a number Np, i.e., the
swarm size, of candidate solutions with random FF parameters, and runs MD
simulations for each candidate solution and each training system. Candidate
solutions are then scored by how well the parameterization targets are reproduced.
By utilizing the swarm’s knowledge of the fitness landscape, candidate solutions
are updated, and a new cycle of MD simulations, analyses, and fitness evaluations,
starts. This is repeated until a termination criterion is fulfilled. Due to noise in
the objective function evaluation, the selection of the true best parameters can
only be done with a certain probability. Therefore, the set of the best, statistically
equal candidate solutions undergoes a screen-to-the-best procedure, which either
provides one solution that is significantly better than the rest, or reduces the
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Figure 3.1: Parameterization workflow. i) A set of training systems from
which the target properties can be extracted. ii) Target data is acquired from
atomistic simulations and experiments. iii) An initial swarm is generated with FF
parameters randomly selected from a predefined range of feasible parameters. iv)
All candidate solutions are simulated in all training systems, the target observables
are measured and compared to the target data, i.e., the fitness of the candidate
solutions is estimated. New candidate solutions are generate by utilizing the
swarm’s knowledge of the fitness landscape. v) Step iv is repeated until a
termination criterion is fulfilled. vi) A screen-to-the best procedure yields the
optimized set of FF parameters.

field of viable candidate solutions further, on which more expensive evaluation
simulations would be performed.

3.2.1 Mixed-variable particle swarm optimization

In the original PSO algorithm for continuous optimization problems in a D-
dimensional parameter space, particle i has a position vector Xi = (x1

i , ..., x
D
i ) and

a velocity Vi = (v1
i , ..., v

D
i ) [28]. At each iteration t the velocity and position are

updated by

Vi(t + 1) = w ∗ Vi(t)
+ c1r1(pbesti(t) − Xi(t))
+ c2r2(gbest(t) − Xi(t))

(3.1)

Xi(t + 1) = Xi(t) + Vi(t + 1) (3.2)

Where pbesti(t) is the personal best position of particle i and gbest(t) is the best
position found by the whole swarm. w is an inertia weight, which balances
global vs. local search. The coefficients c1 and c2 are balancing personal vs.
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social experience. r1 and r2 are vectors of random numbers. In the mv-PSO
algorithm, that is utilized in our work, the position vector of a particle takes a
hybrid form, where Z dimensions encode continuous variables and V dimensions
encode categorical variables [29].

Xi = (x1
i , x

2
i , ..., x

Z
i︸        ︷︷        ︸

continuous

, xZ+1
i , xZ+2

i , ..., xZ+V
i︸                 ︷︷                 ︸

categorical

) (3.3)

The continuous and categorical parts of the position vector are updated separately.

3.2.1.1 Continuous reproduction method

In classical PSO the swarm can get trapped in local optima and therefore
prematurely converge [29]. To promote diversity while maintaining good
convergence efficiency Wang et al. proposed an altered continuous reproduction
scheme, where particle i learns from the best position of a randomly selected
particle [29]. In order to guide the swarm towards improved solutions, the pool
of pbest to choose from, only consists of solutions whose fitness is superior to
pbesti(t).

Vi(t + 1) = w · Vi(t) + c · r · (pbestr(t) − Xi(t)) (3.4)

Algorithm 1 Continuous reproduction method
1: Input: sorted swarm, particle i, parameter wi

2: for j = 1..Z do
3: Randomly choose r, i ≤ r ≤ N
4: v j

i (t + 1) = wi · v
j
i (t) + c · r · (pbest j

r − x j
i )

5: x j
i (t + 1) = x j

i (t) + v j
i (t + 1)

6: end for
7: return (x1

i , x
2
i , ..., x

Z
i )

3.2.1.2 Categorical reproduction method

Values of categorical variables are assigned according to a probability. Initial
probabilities are given by

Prob j,n(0) =
1
n j

(3.5)

where n j is the number of available values for the jth variable. To leverage the
swarm’s knowledge of good solutions, only the superior half of the sorted swarm
is utilized in updating the probabilities of available categorical values. To avoid
premature extinction of available values, a lower limit is assigned for Prob j,n. If
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Prob j,n falls below that lower limit, Prob j,n is set to that threshold value, and all
probabilities are renormalized such that

∑
n Prob j,n = 1. The categorical update

method is shown in Algorithm 2.

Algorithm 2 Categorical reproduction method
1: Input: sorted swarm, particle i, parameter αi

2: for j = 1..V do
3: for each available value n, n = 1 to n j do Count j,n = 0
4: for each personal best pbesti, i = N/2 to N do
5: if pbesti, j == Values j,n then
6: Count j,n+ = 1
7: end if
8: end for
9: Prob j,n(t + 1) = αi · Prob j,n(t) + (1 − αi) ·

Count j,n

N/2
10: end for
11: end for
12: for j = 1..V do
13: Assign an available value to xZ+ j

i according Prob j

14: end for
15: return (xZ+1

i , xZ+2
i , ..., xZ+V

i )

3.2.1.3 Cost function

Molecule parameterization is typically a multiobjective optimization problem
(MOP). A simple way to scalarize an MOP is by linear weighting. The scalarized
optimization problem is solved by minimizing the cost, which is given by

cost =
∑

o

wo fo(x) (3.6)

Where wo is an objective weight, fo the objective cost function, and x the
parameter vector. The objective weights can be used to balance the importance
of the utilized parameterization targets. The weights are set by the user. Setting
weights might require some intuition about the parameterized molecule, quality
of target data, etc.

Each objective can have a different objective cost function fo. New objective
cost functions can be added by the user easily. In its present form, the
parameterization algorithm uses two distinct objective cost functions. For
single valued observables, such as area per lipid, membrane thickness, melting
temperature, solvent accessible surface area (SASA) the objective cost function
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is defined as

fo(x) =
1∑Ns

s wo,s

 Ns∑
s

wo,s
1

Ntypes,s

Ntypes,s∑
t

max(0, S AE(ys,t(x), ŷs,t) − Etol
o,s)

 . (3.7)

ys(x) is the observed value, given the FF parameters x. ŷs is the target value. Ns

is the number of training systems that is used for the current parameterization
objective. Ntypes is the number of bond or angle types being parameterized. The
deviation from the target is calculated by the scaled absolute error S AE(y, ŷ) =∣∣∣∣ ŷ−y

ŷ

∣∣∣∣. With the error tolerance Etol
o,s, uncertainties in target data can be accounted

for. Each training system has an additional weight wo,s, which can be used in case
of differences in target data quality or similar cases. Generally these are set to 1.

For observables that are given in the form of distributions, such as bond lengths,
angles, or radial distribution functions (RDF), the objective cost function is given
by:

fo(x) =
1∑

s wo,s

∑
s

wo,s
1

Ntypes,s

Ntypes,s∑
t

EMD(ϕ(xs,t), ϕ̂s,t)

 (3.8)

Where ϕ(x) is the observed distribution, given the FF parameters x. ϕ̂ is the
target distribution. The earth mover’s distance EMD(ϕ(xs,t), ϕ̂s,t) is a measure of
the distance between the two distributions [30].

3.2.2 Noise mitigation strategies for PSO

PSO was designed for deterministic objective functions. Due to the chaotic
nature of MD simulations hereby measured observables are subject to noise. With
noise in objective functions, selection of the true best solutions is not guaranteed.
Since solutions, that are identified as the best, attract the swarm toward regions
of interest in parameter space, noise can misguide the swarm and therefore
deteriorate PSO performance.

3.2.2.1 Resampling

Resampling is a widely applied strategy for noise mitigation within the objective
function. Relatively simple resampling methods are equal resampling (PSO-ER),
extended equal resampling PSO-EER, and equal resampling with allocation to top-
N solutions PSO-ERN[31]. These simpler methods are regularly outperformed by
state-of-the-art resampling methods, such as optimal computing budget allocation
PSO-OCBA [32], but the quality of results depends on the specific optimization
problem and noise levels[26, 31]. OCBA aims to maximize the probability of
correctly selecting good solutions. This is done by first allocating a primary
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computational budget equally to all current solutions to estimate their cost means
and variances. A secondary budget is then sequentially allocated to solutions
with lower means and higher variances to improve the fitness estimations of
potentially good solutions. For efficient secondary budget allocation at least 5
primary evaluations should be executed for mean and variance estimation [33].
This might make application of OCBA prohibitively expensive for regular CG
molecule parameterization tasks. Based on the observation that most observables
utilized in the multiobjective optimization of the sphingomyelin (SM) linker
region have a low variance and only a few suffer from a larger variance (cf.
Figure S5), we hypothesize that in the molecule parameterization task at hand,
one primary objective function evaluation is sufficient to differentiate potentially
good solutions from bad solutions, but to maximize the probability of correctly
selecting the true best solution, the accuracy of the fitness estimates has to be
increased. Therefore, we propose a somewhat pragmatic approach, that salvages
the core idea of OCBA, i.e., allocate additional computational budgets to where it
is the most useful (low mean and high variance). At each iteration, our resampling
method involves one full objective function evaluation of the current solutions.
The current solutions are then ranked by their fitness, and for the best N solutions
only the observables that have significant variance are reevaluated.

3.2.2.2 Set of statistically equivalent solutions

Even with noise mitigation, at the end of an optimization run, there will be a
number of solutions with very similar scores. While in a deterministic setting,
the global best position is determined by

gbest = arg min
x∈Pt

f (x), (3.9)

where Pt is the set of all positions that have been visited by the swarm up to
iteration t, with noise in the objective function no solution can be declared the
best with 100% certainty [26]. With the screen-to-the-best procedure of Boesel
et al. [34] a set of positions Pg

t ⊆ Pt can be selected, such that the true global
best solution gbest is contained in Pg

t with probability of at least 1 − α (with
0 < α < 1) [26].

For solutions i, j ∈ Pt, f̄i and S 2
i denote the sample mean and sample variance

of objective function values. The elementary steps of the screen-to-the-best
procedure are:

1. Compute Wi j,

57



3. CG molecule parameterization

Figure 3.2: CG description of sphingomyelin and ceramide.

Wi j =

 tiS 2
i

ni
+

t jS 2
j

n j

1/2

,∀ i , j ∈ Pt (3.10)

where ti = t(1−α)1/|Pt |−1,ni−1 and tβ,ν is the β quantile of the t distribution with ν
degrees of freedom

2. Set Pg
t = {i : i ∈ Pt, f̄i ≤ f̄ j +Wi j,∀ i , j ∈ Pt}

3. Return Pg
t

Wi j is the half-width of pooled t-confidence intervals on the difference between
the scores of solutions i and j [26]. Therefore, the procedure entails a pair-wise
comparison of solutions and determines if differences of the sample averaged
scores are statistically significant [26].

3.3 Example application: Sphingolipid linker
parameterization

As an example application of CGCompiler, we reparameterize the linker region
of sphingomyelin in Martini 3 [11]. Fig. 3.2 depicts the CG models of two
sphingolipids, sphingomyelin and ceramide. Except for the differing head group,
the two CG models share the same parameters, following Martini’s building block
approach.

3.3.1 Simulation details

The Python package is based on evo-MD [35]. All simulations were performed
with GROMACS 2020.4 and 2021.4 [36] and analyzed with in-house Python
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scripts that are utilizing MDAnalysis [37, 38], LiPyphilic [39], SciPy[40], and
pyemd, which is a Python wrapper for Pele and Werman’s EMD implementa-
tion [41, 42]. Visualization was done with NGLview [43].

3.3.1.1 Atomistic models

All atomistic models were simulated using the CHARMM36 [44–46] force field.
Table 3.1 provides details about the atomistic target systems. Initial configurations
of the membrane systems were generated with the CHARMM-GUI membrane
builder [47–49]. Following energy minimization and equilibration, all systems
were simulated with a 2 fs time step. Bonds of hydrogen atoms were constrained
employing the LINCS algorithm [50]. Van der Waals forces were gradually
switched off between 1.0 nm and 1.2 nm. The PME algorithm [51] was used
for electrostatic interactions. Temperature coupling was done via the velocity
rescale algorithm [52] with a coupling time τt = 1.0 ps. System pressures were
held at 1 bar by using the Parinello-Rahman barostat [53] with a coupling time
τp = 5.0 ps. Pressure coupling was applied isotropically for aqueous solutions
and semi-isotropically for membrane systems.

system lipids # TIP3P # NA # CL T / K sim. time / ns

DPSM128 328K 128 SSM 5120 - - 328.15 150
POPC SSM CHOL 100 POPC 100 SSM 100 CHL1 9000 18 18 321.15 300

Table 3.1: Atomistic target system details. In the naming scheme of the
CHARMM FF, SSM and CHL1 denote sphingomyelin (18:0) and cholesterol,
respectively.

3.3.1.2 Coarse-grained models

All coarse-grained models were simulated using the Martini 3 [11] force field.
Beta version 14 of the Martini 3 cholesterol parameters was used [54, 55]. Initial
configurations of membrane systems were generated with the Python script
insane [56]. Details of the employed training systems are listed in Table 3.2.
All systems were energy minimized and equilibrated with the current version
of DPSM, that made the Martini 2 model of sphingomyelin compatible with
Martini 3. During the particle swarm optimization each system was equilibrated
with the candidate FF parameters in two stages, with time steps of 2 fs and 20 fs,
respectively. For all coarse-grained production simulations a time step of 20 fs
was used. Non-bonded interactions were cut off at 1.1 nm. For electrostatic
interactions the reaction-field method was used with a dielectric constant of 15
and the reaction-field dielectric constant was set to infinity.
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Temperature coupling was obtained via the velocity rescale algorithm [52] with
a coupling time τt = 1.0 ps. System pressures were held at 1 bar by using the
Parinello-Rahman barostat [53] with a coupling time τp = 12.0 ps. Pressure
coupling was applied isotropically for aqueous solutions and semi-isotropically
for membrane systems. In simulations for melting temperature estimation
anisotropic pressure coupling was employed, using the Berendsen barostat [57]
with a coupling time τp = 4.0 ps.

system lipids # W # NA # CL T / K

DPSM128 328K 128 DPSM 1177 - - 328.15
DPSM256 biphasic 256 DPSM half gel/half liquid 2300 26 26 286, 291, 296, 301, 303,

305, 307, 308, 309, 310,
311, 316, 321, 326

POPC SSM CHOL 96 POPC 96 DPSM 96 CHOL 2124 23 23 321.15

Table 3.2: Coarse-grained training system details.

3.4 Results

Our aim was the development of an automatization framework for molecule pa-
rameterization in building-block force fields. As an example we parameterized the
sphingolipid linker region. Section 3.4.1 shows the results of the parameterization
with CGCompiler using a simple noise-mitigation strategy. Since noise-mitigation
strategies can only reduce the effects of noise when selecting the true best solution,
the best statistically equivalent solutions generated during the mv-PSO run are
subsequently screened-to-the-best, as described in Section 3.2.2.2.

3.4.1 Parameterization of the sphingolipid linker region

Table 3.3 shows the observables and their weights used in the parameterization.
The swarm size was 64. Noise-mitigation was done by reevaluating the melting
temperature of the 16 best candidate solutions of the current iteration 12
times, i.e., results were obtained with noise-mitigation setting mv-PSO-R16 (cf.
Section 3.4.2). As Tm is the major contribution to cost variance, but the employed
Tm estimation method is good for differentiating good from bad solutions, i.e., it
has an accuracy of a few K. Other observables were only evaluated once, area per
lipid (APL) fluctuations were the second largest cause of cost variance. For more
details on noise-mitigation efficacy see Section 3.4.2.

All results shown include the complete set of the best statistically equivalent
candidate solutions Pg that remained after two rounds of the screen-to-the-best
procedure (cf. Section 3.2.2.2). This set contains 18 candidate solutions.

60



Results

observable wo wo, DPSM128 wo, DPSM256 wo, POPC SSM CHOL

bond length dist. 1 1 0 1
angle dist. 100 1 0 1

dHH 500 1 0 0.25
APL 1000 1 0 0.25
Tm 250 0 1 0

RDF COM DPSM-CHOL 1 0 0 1

Table 3.3: Weights of observables wo and system specific observable weights wo,s

for optimization run 1.

3.4.1.1 Improved reproduction of membrane properties

Figure 3.3 shows thickness, average area per lipid and melting temperature of
pure DPSM membranes for the set of statistically equal candidate solutions
that remained after the second screen-to-the-best procedure performed after
reevaluating the initial set 20 times. All new candidate solutions outperform
the current DPSM model regarding thickness. The average area per lipid of the
current model is closer to the target value, but most of the candidate solutions
are within the tolerance of 1.5% deviation. In general, thickness and APL are
inversely correlated, increasing one will always result in decreasing the other,
therefore, with both values inside the tolerance, the new models represent a better
balance of thickness and APL. It is important to note that in the comparison,
SM(18:0) was used as the atomistic target. The current tail model of the Martini
FF represents both SM(16:0) and SM(18:0). The CHARMM model for SM(16:0)
exhibits a reduced thickness when compared to SM(18:0) [45]. It is therefore not
unexpected that the Martini DPSM models show a reduced thickness compared
to SM(18:0).

While the melting temperatures estimated with the biphasic approach, that is
used during optimization for performance reasons, are not within the specified
tolerance regime of 2 K but ≈ 5 − 6 K below the target value and ≈ 3 − 4 K
below the lower target threshold, the new models are greatly improved compared
to the current model, which was 20 K off target. Notably, the estimation
of Tm is approach dependent. Estimations using the alternative, reversible
melting approach with slow melting rates, based on Kowalik et al. [58] and
Sun and Böckmann[59] (see SI for further details), which requires a very
large computational budget (as done here, total simulation time for one Tm

estimation > 90 µs) show an even better agreement with the experimental melting
temperature.

The here-performed biphasic approach utilizes a bilayer that is half gel and half
liquid. The gel phase is fabricated by quenching to a temperature well below the
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Figure 3.3: Thickness, average area per lipid and melting temperature for the set
of statistically equal candidate solutions that remained after the second screen-to-
the-best procedure performed after reevaluating the initial set 20 times.

melting temperature, and the gel phase system is combined with a preequilibrated
liquid system. The combined system is then equilibrated with thermostats set to
different temperatures for the two phases. As quenching and equilibration can
take up to several hundreds of ns, reconstructing the starting structure for every
candidate solution would significantly increase computational cost of a PSO run.
Therefore, starting structures for this procedure were generated with the current
DPSM parameters beforehand and equilibrated using the parameters of each
candidate solution. While equilibration of the fluid phase is generally fast, this
certainly is not the case for the gel phase. Considering that an unequilibrated phase
is inherently less stable, the presence of an equilibrated liquid phase alongside an
unequilibrated gel phase may lead to a slight systematic underestimation of the
melting temperature (Tm) [60]. However, this potential underestimation can be
anticipated and taken into account during the analysis.

The equilibrium melting rate approach does not suffer from this potential problem
of unequally equilibrated phases. To minimize bias caused by the quenched
starting structures used in this approach, for each validated candidate solution
eight different starting conformations were generated.

3.4.1.2 Structural properties of the parameterized sphingomyelin
models

Figure 3.4 shows the distributions of the newly parameterized bonds and angles
for the candidate solutions in Pg. The atomistic target distributions are matched
reasonably well in all cases. Some finer details of the atomistic model, like
double peaks or extensive shoulders cannot be matched in the CG model. The
parameterization philosophy of Martini 3 adopts a size-shape concept, where bond
lengths are determined based on the molecular volume of the atomistic fragment
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mapped by the beads, rather than simply center of masses. This complication
further underscores the necessity of employing multi-objective optimization
algorithms to achieve effective molecule parameterization.

The solvent accessible surface area (SASA) is commonly used to further compare
the molecular volumes and shapes between CG and AA models [11, 61].
Figure 3.5 shows the SASA values of Pg in comparison to the AA and current CG
DPSM models. The SASAs are computed for the linker beads AM1 and AM2, as
well as all supra-atoms that are directly connected to the linker, i.e., beads PO4,
T1A, and C1B, as these connections are also parameterized. With SASA values
of ≈ 6.24 nm2 all newly parameterized CG models show a better reproduction
of the AA value (5.24 nm2) compared to the current model (6.45 nm2), but with
discrepancy of ≈ 19 % all SASA values remain grossly too high. It appears
that solely reparameterizing the linker region is not enough to fix this issue.
Furthermore, using SASA directly as a target in the high-throughput optimization
scheme is not necessarily beneficial, since a specific SASA value is not a unique
representation of a certain shape. Therefore, comparisons of solvent accessible
surface areas between AA and CG models are most helpful when done by
simultaneous visual inspection. For automated parameterization, however, more
detailed shape descriptors should be used.

3.4.1.3 Force field parameters

Non-bonded interactions: Due to the polar nature of the linker region of
sphingolipids, only the chemical types of the P-block of the Martini 3 FF were
eligible. As groups of 3 or 4 heavy atoms were combined into supra-atoms in
the specified mapping, bead sizes small (S) and regular (default) could be chosen
by the algorithm. Both bead sizes were permitted for both interaction sites, to
allow for some wiggle room, even though 4 heavy atoms are grouped together
into supra-atom AM1 and 3 into AM2. A slight miscount of mapped atoms is
not uncommon in Martini, e.g., the mapping of the NC3 bead is actually 6-to-
1 [10]. Generally, eligible bead types should be chosen with the Martini rules in
mind. Martini’s pragmatic philosophy allows for some freedom to match certain
properties more accurately, but the bead type should not deviate strongly from
the chemical identity of the molecule fragment[11].

One feature of the mixed-variable approach is that the optimization procedure
directly yields a probability distribution of bead types, cf. Figure 3.6A. While for
the interaction site AM2 there is clear consensus on the bead type, for AM1 only
the size (small) is clearly determined, but there is some ambiguity regarding the
interaction strength. The reduced size of one of the beads seems to be warranted,
given the still too high SASA values shown above, and is also inline with the
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Figure 3.4: Validation of targets from rerun simulations for the set Pg. A) Bond
length distributions. B) Angle distributions.
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Figure 3.5: Solvent accessible surface area of the linker and beads connected
directly to it. Beads involved in SASA calculation are highlighted.
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new Martini 3 models of glycerolipids [11]. It is also worth mentioning that the
chemical bead types chosen by our algorithm match the expected assignment
suggested by Martini 3.

A converged "degenerate" probability distribution of bead types is the result of
two or more bead types having indistinguishable effects on fitness. This can be
caused by noise levels being larger than the fitness differences or the employed
set of observables and training systems is lacking the necessary discriminatory
power. Both issues can be remedied in post-optimization screening, but should
optimally be addressed during optimization. As the former option would merely
improve selection from the pool of generated candidate solutions, the later would
potentially allow the generation of truly better solutions.

Additionally, for both, non-bonded and bonded FF parameters, diversity can be
caused by the fact that the objective cost function for single valued observables
(Eq. 3.7) has an error tolerance to accommodate for uncertainties in target data.
With respect to these observables, different parameterizations with different
"phenotypes" can have the same objective cost, as long as they are within the
specified tolerances.

Bonded interactions: Table 3.4 lists the range of permitted bond parameters
used in the optimization. The resulting bonded parameters of Pg are shown
in Figure 3.6. For equilibrium bond lengths b0 there is little variation between
different candidate solutions. This strong consensus suggests that the optimization
has converged and that small changes in equilibrium bond length are linked to
significant cost changes. The situation for the force constants is quite different.
The values fluctuate over a relatively large range, compared to the predefined
domain of permitted values. The measured bond length distributions (Figure 3.4A)
show that these seemingly substantial differences in force constant values have
only minor effects on the molecule’s behavior.

The situation for the angle FF parameters is similar. The equilibrium values show
smaller variances than the force constants, compared to their respective domain
sizes of applicable values. Again, the differences in FF parameters have little
effect on the observed distributions (cf. Figure 3.4B). Notably, the optimal force
constants for the angles PO4-AM1-T1A and AM2-C1B-C2B were close to or at
the maximum of their permitted ranges. Further optimization was therefore likely
hindered, and a wider range should have been chosen.

In a similar vein to the discussion surrounding non-bonded parameters, the
relatively wide range of force constants in Pg indicates that additional metrics or
training systems could be employed to further optimize the overall performance
of candidate solutions while maintaining the quality of the employed observables.
For instance, exploring lipids in environments other than a bilayer, which induce
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GROMACS
bond bond func. type b0 / nm fc / kJ/mol/nm2

PO4-AM1 1 0.25 − 0.40 1000 − 9000
AM1-AM2 1 0.20 − 0.35 1000 − 9000
AM1-T1A 1 0.40 − 0.55 1000 − 9000
AM2-C1B 1 0.25 − 0.50 1000 − 9000

GROMACS
angle angle func. type a0 / deg fc / kJ/mol
PO4-AM1-AM2 2 90 − 180 5 − 100
PO4-AM1-T1A 2 90 − 180 5 − 100
AM1-T1A-C2A 2 180 5 − 100
AM2-C1B-C2B 2 180 5 − 100

Table 3.4: Bonded interactions. GROMACS function type; permitted parameter
ranges for equilibrium bond length / angle, and corresponding force constants.

different lipid conformations, could benefit from a candidate solution with a lower
angle force constant to allow for increased conformational variation.
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A

C

B

Figure 3.6: Force field parameters of the set of statistically equivalent solutions
Pg for the sphingolipid linker region. A) Bead probability distributions. B)
Bond parameters. Dashed lines are upper and lower parameter limits. C) Angle
parameters. Dashed lines are upper and lower parameter limits. The equilibrium
angles of AM1-T1A-C2A and AM2-C1B-C2B are not varied during optimization.
They are fixed at 180◦.
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3.4.2 Noise-mitigation improves quality of parameterized
models

We investigated whether the simple noise-mitigation strategy described in
Section 3.2.2.1 can improve the quality of solutions found by the algorithm.
The swarm size, training systems, observables and weights are the same as
in Section 3.4.1. We tested three different resampling allocation settings and
compared these to the mv-PSO without noise-mitigation. Each optimization run
was given a fixed computational budget of 16128 MD simulation slots.

With the given number of MD simulation slots, a swarm size of 64 particles,
and 3 training systems required for one full objective function evaluation, this
amounts to 84 iterations for the mv-PSO without resampling (named mv-PSO-
R0). In the optimization runs with resampling an initial computational budget
of 64 · 3 = 192 MD simulation slots was used for one full objective function
evaluation of each particle, and a second equally sized computational budget
was allocated to reevaluate the melting temperature (the target observable with
the largest variance) of the best 16, best 32, or all 64 candidate solutions of the
current iteration. For brevity we will refer to these as mv-PSO-R16, mv-PSO-
R32, and mv-PSO-R64. Due to the fixed computational budget, for each particle
involved in resampling, Tm was reevaluated 12, 6, or 3 times. As half of the total
computational budget was used for resampling, the number of iterations was set
to 42 in these runs.

From the literature on PSO noise-mitigation[31, 62] we draw the expectation
that which of the resampling, or no resampling, strategies is the best, depends
on the level of noise. If noise levels are very low, the additional number of
possible iterations, when forgoing resampling, could lead to better solutions.
For intermediate noise levels, initial fitness evaluation results in a sufficient
differentiation of good and bad solutions, i.e., overall sorting is roughly correct,
and the focus on improving sorting of the very best solutions is most helpful. In
case of even higher noise levels initial sorting would be vastly incorrect and a
larger fraction of the swarm needs to be resampled to achieve satisfactory overall
sorting. As a consequence, the sorting quality of the very top would be degraded,
as there is less computational budget allocated here.

The true quality of a candidate solution is not necessarily reflected by the cost
estimated during an optimization run, as there is some uncertainty in estimates of
target observables other than Tm, and the confidence level of the Tm estimation
with different resampling settings differs vastly. Therefore, validation is required.
As we are mostly interested in the quality verification of the best solutions, the
first step of the screen-to-the-best procedure from Boesel et al. [34] can be used
to select the statistically equivalent set of candidate solutions. For mv-PSO-R16
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the set Pg
t contains 69 candidate solutions. Due to the increased uncertainty in

mv-PSO-R32 and mv-PSO-R64, their respective sets Pg
t contain hundreds of

candidate solutions. To keep the computational cost for validation manageable,
we selected only the 72 best solutions of these optimization runs for validation.
As there are no variance estimates in the optimization run without resampling,
the selection procedure is not applicable. Again, the 72 best solutions from the
optimization run were selected for validation. All candidate solutions chosen for
validation were fully (all training systems, all observables) reevaluated 20 times.
The resulting rerun cost vs. the originally estimated cost is shown in Figure 3.7.
Clearly, mv-PSO-R16 gave the best results, while the quality of the best solutions
in the three other cases does not differ much. Furthermore, the fact that for all
selected candidate solutions of mv-PSO-R0 the rerun cost estimate is substantially
higher than the original cost estimate indicates that these original estimate are
particularly favorable. While there are also candidate solutions with substantial
differences in original and rerun cost for the resampling systems – in this case
mostly caused by APL fluctuations – these are much less frequent and there
is much better correlation between original and rerun cost (Pearson correlation
coefficient 0.21 vs. 0.64, for mv-PSO-R0 and mv-PSO-R16, respectively).

Our interpretation of these results is the following: The noise level is low enough,
so that even without noise-mitigation, the sorting of candidate solutions is correct
in a coarser sense and the swarm is guided towards the "correct" vicinity in
parameter space. Yet, noise levels are substantial enough, so that resolution
of finer cost differences is impeded. Only the concentrated allocation of the
resampling budget on the top 16 solutions lowers the cost estimation errors
sufficiently such that improved candidate solutions can be found.
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Figure 3.7: Comparison of cost estimated during the optimization run and average
cost estimated from repeated reruns of Pg

t in (A) and the 72 best candidate
solutions in (B)-(D). Error bars are standard errors. (A) Original cost: 16 particles
resampled, 1+12 Tm samples. (B) Original cost: 32 particles resampled, 1+6 Tm

samples. (C) Original cost: 64 particles resampled, 1+3 Tm samples. (D) No
resampling during optimization, but twice as many iterations
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3.4.3 Validation: Phase behavior of binary
sphingomyelin-cholesterol membranes

To discern the universality of the parameterization, we conducted a validation
test on a target that was not included in the optimization process. Specifically,
we assessed whether the optimized model (ranked 0 within the set Pg) could
accurately replicate the phase behavior of binary sphingomyelin-cholesterol
membranes. Experimental results show that below Tm, increasing cholesterol
content fluidizes the otherwise frozen systems[63]. For very low cholesterol
concentrations the system remains in the gel phase (So), at around 10 mol% there
is a transition to coexistence of gel and liquid ordered (Lo) domains, and above
≈ 30 mol% there is a (So+Lo)/Lo transition [63]. As can be seen in Figure 3.8 the
optimized model correctly reproduces the experimental findings, while systems
simulated with the current DPSM model are always in the fluid phase, regardless
of the cholesterol concentration. These findings therefore highlight the robust
universality and transferability of the parameterization acquired with GCCompiler.

Figure 3.8: Phase behavior of binary sphingomyelin-cholesterol membranes.
T = 300 K. Production simulations were 1 µs. Snapshots are from the last frame.
To help with the nucleation of the gel phase, all systems were pre-equilibrated for
50ns at 290K (CGCompiler result ) or 270K (original DPSM). A) CGCompiler
optimized (rank 0 of Pg) B) current DPSM
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3.5 Discussion & Conclusion

We have illustrated how to apply mixed-variable particle swarm optimization
for automated CG molecule parameterization. As an example application, we
parameterized the sphingolipid linker region for the Martini 3 FF. The newly
parameterized sphingomyelin model reproduces important target observables
accurately, including the melting temperature, which was ≈ 20 K off target before
and is now within ≈ 2 K of the experimental reference. Notably, reproduction of
experimental melting temperatures had been historically problematic in Martini
lipid models[64].

The mixed-variable approach offers a major advantage when parameterizing
molecules for building-block force fields. Due the explicit use of building blocks,
every candidate model is a valid parameterization in the given FF. Otherwise,
changing non-bonded interaction parameters of the FF’s building blocks breaks
the validity of their parameterization. Candidate solutions generated by a
continuous treatment of non-bonded interactions have to be converted to a valid
FF model, followed by additional validation of this model.

A drawback of the mixed-variable treatment is that some advanced improvements
to PSO, such as fuzzy parameter tuning of Nobile et al.[65], are not directly
applicable to mv-PSO, because in the categorical representation there is no
similarity metric, which is utilized in the PSO parameter tuning. This could be
overcome by using discrete ordered representation for non-bonded interactions
instead of the categorical treatment.

One of the great benefits of automated parameterization algorithms is the
simultaneous optimization against multiple structural and thermodynamic target
data. As thermodynamic observables can be expensive to estimate accurately
in MD simulations, the formal consideration of noise in objective function
values is an important conceptual improvement. As demonstrated, optimization
with applied noise-mitigation produced significantly better solutions and the
utilized screen-to-the-best procedure provides a systematic approach to the post-
optimization selection of the best model.

Although we have demonstrated the adverse effects of objective function value
noise on the sorting and performance of PSO, it is important to note that the
non-deterministic nature of particle swarm optimization necessitates multiple
repetitions of full optimization runs to confidently determine the most effective
noise-mitigation setting. Achieving a high level of confidence in identifying the
optimal approach would require a significant number of iterations. Furthermore,
the ‘ground truth’, i.e., the true score of a candidate parameterization, is unknown,
hence a large amount of validation simulations would be required. This is not
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feasible, due to a high computational cost. Rigorous development and testing of
noise-mitigation strategies should not be done with objective function evaluations
that require costly MD simulations, and are therefore beyond the scope of this
paper. Moreover, the additionally gained insight, would only be of moderate value.
The PSO literature has shown that under significant noise PSO performance is
degraded and performance differences between resampling methods for noise-
mitigation are problem and noise-level dependent. Generally, noise-mitigation
methods employing OCBA perform the best under various circumstances[31,
66], but its sequential secondary budget allocation puts constraints on the
parallelization of the parameterization algorithm. Still, its integration into the
parameterization pipeline should be explored in the future.

Together with the general benefits of automation, the here-presented conceptual
advantages will further facilitate rigorous CG molecule parameterization. The
CGCompiler Python package that comes with our method is tailor-made for
parameterization tasks in building-block FFs, such as Martini. Also larger
building blocks, i.e., a molecule class with shared regions can be parameterized
simultaneously. Our approach is not limited to lipid parameterization, but can be
applied to any kind of molecule. CGCompiler can be easily adapted to the needs
of a specific parameterization task. Implementing new observables is not much
different from writing Python functions for analyzing MD data. Importantly, our
automation platform eases collaborations between individual researchers since
a clear overview of the parameterization flow is provided. This also renders
force-field reproducibility as well as retrospective force-field corrections, such
as corrections to the targets (e.g., improved atomistic force-fields or simulation
settings) or inclusion of additional targets rather straightforward.

The here-presented study focuses on method development and the sphin-
golipid linker parameterization was merely a test case. The parameters of
the head group and lipid tails, predefined in our study, are still actively im-
proved/(re)parameterized by the core developers [11]. Once these final parame-
ters are released, reparameterization of the linker may be necessary, ideally with
an even broader set of training systems, including liquid ordered-disordered phase
behavior.

Properly defining the set of feasible bead type choices, for the fragments that are
to be optimized with CGCompiler, is a crucial step in the parameterization of a
molecule. In the Martini FF, bead type assignment is based on partitioning data
of isolated beads [10], and as of Martini 3 also partitioning of whole molecules
and miscibility data are considered [11]. The Martini 3 supporting material
lists defaults bead type choices [11]. For more accurate bead type assignment
proximity and connectivity effects between fragments need to be considered, and
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perturbations around the default solution are therefore allowed [11]. In complex
cases, bead type selection can become non-trivial when several proximity effects
are present in a molecule [11]. The use of target data other than the free energies
of transfer is recommended and regularly employed [54, 61, 67–71] when refining
bead type choices. In our proof of concept parameterization, we have chosen to
use the full range of P-block beads to showcase the capabilities of the algorithm.
As the free energy of transfer was not explicitly part of the loss function, this
choice could have possibly resulted in a deviation of free energies of transfer in
the order of a few kJ/mol per linker fragment. As the final best bead type choices
closely match the default bead type choices, this is not an issue for the optimized
CG model of sphingomyelin. In a normal parameterization run and when a
fragment’s partitioning and miscibility behavior is encoded by the choice of
possible bead types and not explicitly part of the loss function, it is recommended
to restrict the set of feasible bead types more narrowly. Otherwise, if applicable
to the molecule that is to be parameterized, researchers should consider including
the free energy of transfer into the loss function, either by calculating the free
energy of transfer for the whole molecule, or by making use of partitioning data
for individual fragments.

In order to achieve fully automated molecule parameterization in high-throughput
applications, the development of an automated mapping and selection of
bonded terms remains a crucial component. Currently, mapping and parameter
optimization are separate tasks, but integrating an automated mapping scheme
into the parameterization pipeline could be facilitated prior to employing mixed-
variable particle swarm optimization, utilizing CGCompiler. The choice of
bonded parameters not only influences the accuracy of the model but also
impacts simulation stability. Various strategies, such as the use of virtual sites,
restricted bending potentials, hinge and "divide and conquer" constructions [68,
72], have been previously described to address instability. Additionally, careful
consideration of constraints is necessary to ensure simulation stability and prevent
artificial temperature gradients [73, 74]. These aspects should be incorporated as
essential steps in a future fully automated parameterization pipeline.

Reweighting of CG trajectories could be an interesting route to decrease the
computational effort required for parameterization [75–77], particularly in a
high-throughput setting. However, this currently is not part of CGCompiler for
the following reason. The applicability of reweighting critically depends on the
overlap of the original and the reweighted trajectory [75, 76]. As the candidate
solutions in the swarm at a given iteration can have rather different potentials,
it is unknown beforehand for how many candidate solutions reweighting can
be applied and for how many a new CG trajectory has to be generated. As
CGCompiler is intended to be used with a high degree of parallelization on
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compute clusters, where a compute job runs on a fixed hardware allocation, not
having to run a simulation for some of the candidate solutions does not directly
result in decreased usage of a computational budget. For reweighting to be of use,
an adaptive scheduling algorithm would be required, which could be implemented
in future versions of CGCompiler.

When linearly increasing the number of optimized parameters, the search space
grows exponentially, which negatively affects convergence of the optimization
algorithm. In the here presented study 2 categorical (non-bonded) and 14
continuous (bonded) parameters were optimized simultaneously. In a recent
reparameterization of PC lipid tails [16] 77 bonded parameters were calibrated
using a different flavor of PSO. As both parameterizations required only moderate
swarm sizes and number of iterations for convergence, we expect that our PSO
approach can be used for the parameterization of larger molecules as well.
However, for very large molecules with several hundreds or even thousands
of unique parameters, parameterization with CGCompiler or similar approaches
likely becomes unfeasible. On one hand standard PSO in general is not the
method of choice to tackle such Large Scale Optimization Problems (LSOP) [78].
On the other hand, even if the PSO part of CGCompiler would be replaced by
an optimization algorithm more suitable for an LSOP, the number of required
function evaluations, i.e., MD simulations, likely remains too large to be of
practical use in a molecule parameterization task.

No matter the number of parameters that are co-optimized, in order to lessen
the computational cost, convergence can be facilitated by restricting the search
space. Optimization with CGCompiler must then be performed on an initial,
close guess, rather than scanning a broad parameter range. Such an initial guess
can be constructed either manually by following the Martini 3 rule book, or by an
automated tool. (Auto-Martini [18] and the method of Potter et al. [19] would
need to be adapted for Martini 3, in order to be used in such a parameterization
pipeline.) A not too narrow restriction of search space will not hinder discovery
of good solutions, as parameters that are very far away from the standard Martini
rules are not of interest anyway. Bond lengths that are very different to the
atomistic reference would result in misshaped molecules. Very different bead
types would, for example, result in incorrect partitioning behavior. In principle,
these unwanted regions of the search space are filtered out by the cost function,
but they can be excluded beforehand to save computational effort. A narrower
search space restriction is expected to be more important when the number of
parameters is large.

Another future prospect is the advancement of true non-scalarized multi-objective
optimization, which eliminates the need for user-defined weights on the targets
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within the objective function. However, it can also be argued that these user-
defined weights, which reflect the importance of targets based on intuition,
experience, or additional knowledge, along with the predefined set of relevant
structural and thermodynamic targets for the CG force-field, encompass what is
commonly known as the "force-field’s philosophy". In this sense, the user-defined
weights embody the guiding principles that shape the force-field.

Appendix 3.A Supporting Information

3.A.1 Melting temperature

Due to the slow kinetics of the gel-liquid phase transition, estimating the melting
temperature can be difficult to estimate in simulations [60]. For use in automated
parameterization methods, where the melting temperature of many candidate
solutions has to be estimated, the trade-off between accuracy and computational
cost is of particular high importance. Preparing the system in stripes, i.e.,
half gel and half fluid (cf. Figure 3.9A), bypasses the slowest step in the
transition, the nucleation[60]. By simulating the biphasic system at a range
of temperatures, observing the direction and rate of domain growth, and fitting
rates to an Arrhenius-like equation, Coppock and Kindt have estimated Tm for
atomistic DPPC and DPSM [60]. In tests performed by us with Martini DPPC and
DPSM, this procedure did not provide results reliable enough for application in a
high-throughput manner. A similar biphasic system setup was used by Carpenter
et al. [79] in Martini lipid refinement. Instead of fitting domain growth rates, they
used the area per lipid as a proxy for which phase prevails at a certain temperature,
utilizing the fact that the highly ordered tails in the gel phase result in a much
smaller area per lipid compared to the liquid phase. Phase identification with this
procedure is very fast and reliable at temperatures more than a few Kelvin away
from the transition temperature. The melting temperature is then given as a range
between the highest temperature where the system converges to a gel phase and
the lowest temperature the system ends up in the liquid phase. The accuracy of
this method is strongly influenced by the employed temperature-spacing. Close
to the transition temperature, longer and repeated simulations are necessary, due
to the stochasticity of the melting/freezing process (cf Figure 3.9B).

The area per lipid has a positive linear relationship with temperature and a sharp
increase at the melting temperature, as shown in Figure 3.10a. Therefore, to
estimate the melting temperature from the temperature-dependent APL data, we
fit the sigmoidal function

APL(T ) = APL0 + c · T +
∆APL

(1 + exp(−k · (T − Tm)))
(3.11)
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A

B

Figure 3.9: Melting temperature estimation. A: Snapshot of initial configuration
of a DPSM bilayer, where half of the lipids is in the gel phase, while the other
half is in the fluid phase. B: Area per lipid vs. time at different temperatures. The
shaded area represents the time window over which the area per lipid is averaged
for use in the fit of Eq. 3.11. Production simulations during PSO are typically
25 ns long.
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Figure 3.10: Estimation of melting temperatures with two independent methods
for the old DPSM model.

where T is the temperature, APL0 is the theoretical area per lipid at T = 0 K, c is
the slope in the linear regime, ∆APL describes the height of the APL jump at the
melting temperature Tm, and k determines the broadness of the transition.

When using this method in an automated parameterization setting, the case that Tm

might be outside of the predefined temperature range has to be handled properly.
To this end we additionally fit a line to the APL(T ) data and use the Akaike
information criterion (AIC)[80, 81] with the modification for small sample sizes
(AICc)[82] to determine which model (sigmoidal or linear) is a better description
of the data. If the linear model is better, i.e., it has a lower AICc, and all APL
values are above or below a threshold (the average initial APLs), Tm is considered
to be out of range and Tm is set to a particular low or high value, respectively.
Hereby, candidate solutions with a melting temperature far off the target value
receive a high cost value in the PSO. If the sigmoidal model is selected, or the
linear model is a better fit but the APL values cross the threshold, Tm is taken
from the sigmoidal fit. A few typical examples of this procedure are shown in
Figure 3.11.

All of the above biphasic methods are sensitive to the construction of the stripe
structure. In particular, an improperly equilibrated gel phase can lead to an
underestimation of Tm [60]. An alternative, independent approach to estimate Tm

is based on a two-state kinetic rate model from Kowalik et al [58]. In this approach
a system in the gel phase is heated with different heating rates. According to the
two-state kinetic rate model, the melting process can be divided into regimes of
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Figure 3.11: Examples of fit model selection in the biphasic approach to estimate
Tm.

reversible and irreversible melting. In the reversible melting regime, for slow
heating rates, the system is assumed to be close to thermal equilibrium and melting
and freezing can both occur. In this regime the apparent melting temperature
is independent of the heating rate r, i.e., T app

m (r) ≈ T eq
m . For fast heating rates,

melting is assumed to be irreversible. In the irreversible melting regime, the
two-state model predicts a dependency of the apparent melting temperature on
the heating rate which can be approximated by T app

m (r) ∝ ln r. Both regimes are
divided by a characteristic heating rate req.

Kowalik et al. used a series of melting simulations with fast heating rates,
i.e., in the irreversible regime, to obtain several T app

m (r) values, determine the
characteristic melting rate req, and finally extrapolate the equilibrium melting
temperature T eq

m . Based on the two-state kinetic rate model from Kowalik et al.,
Sun and Böckmann [59] simply used a broad range of heating rates, including
the reversible regime. The equilibrium melting temperature was calculated by
averaging over the Tm(r) in the reversible regime, i.e., r < req.

Due to the slow rates and concomitant long simulation times, we use this
approach only for validation. To minimize bias caused by the quenched starting
conformations we typically generate eight independent conformations for each
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validated candidate solution.

The rate dependent melting temperatures in this approach are obtained by fitting

H(T ) = H0 + cp · T +
∆H

(1 + exp(−k · (T − Tm)))
(3.12)

where H is the enthalpy, cp the heat capacity, H0 is the enthalpy at T = 0 K,
∆APL describes the height of the APL jump at the melting temperature Tm, and k
determines the broadness of the transition. The functional form is the same as in
Eq. 3.11. Figure 3.10b shows results of this approach for the old DPSM model.
The heating rate dependency matches the prediction of the two-state model.
Comparision of Figures 3.10a and 3.10b show that the melting temperatures for
the old DPSM model, obtained with both approaches, are in good agreement.
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3.A.1.1 Melting temperature validation of 4 best candidate solutions
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Figure 3.12: Tm of the 4 best candidate solutions with the reversible melting
approach.
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3.A.2 Noise
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3.A.3 DPSM-CHOL 2d center-of-mass radial distribution
function

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r / nm

0.2

0.4

0.6

0.8

1.0

1.2

2d
 C

OM
 R

DF
DPSM-CHOL

gbest
ranks 1 - 17
target

Figure 3.15: 2d COM radial distribution function (RDF). The distance r is
measured in the x-y plane, i.e., parallel to the membrane. The 2d RDF is
calculated per leaflet and averaged.
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3.A.4 DPSM topology for Gromacs
[ moleculetype ]
; molname nrexcl
DPSM 1

[ atoms ]
; id type resnr resname atomname cgnr charge
1 Q1 1 DPSM NC3 1 1.0
2 Q5 1 DPSM PO4 2 -1.0
3 SP2 1 DPSM AM1 3 0.0
4 P1 1 DPSM AM2 4 0.0
5 C1 1 DPSM T1A 5 0.0
6 C1 1 DPSM C2A 6 0.0
7 C1 1 DPSM C3A 7 0.0
8 C1 1 DPSM C1B 8 0.0
9 C1 1 DPSM C2B 9 0.0
10 C1 1 DPSM C3B 10 0.0
11 C1 1 DPSM C4B 11 0.0

[ bonds ]
; i j funct r0 fc

1 2 1 0.40000 7000
2 3 1 0.33632 8207
3 4 1 0.29241 6909
3 5 1 0.50190 5239
5 6 1 0.47000 3800
6 7 1 0.47000 3800
4 8 1 0.34964 4483
8 9 1 0.47000 3800
9 10 1 0.47000 3800
10 11 1 0.47000 3800

[ angles ]
; i j k funct theta0 fc

2 3 4 2 147.805 81.78
2 3 5 2 173.718 88.64
3 5 6 2 180.000 45.16
5 6 7 2 180.000 35
4 8 9 2 180.000 96.23
8 9 10 2 180.000 35
9 10 11 2 180.000 35
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Chapter 4

Summary and general
discussion
Both lines of work presented in this thesis are related to sampling mathematical
spaces in a biomolecular context, i.e., phase space (curvature sensing) and
parameter space (molecule parameterization).

4.1 Curvature / packing defect sensing

There is substantial interest in curvature sensing proteins, due to their involvement
in a large variety of biological processes [25, 26]. It is therefore rather surprising
that methods to explore curvature-dependent free-energy landscapes are quite
rare.

In Chapter 2, a method to quantify membrane curvature sensing of peripheral
membrane proteins was developed. Through umbrella sampling along a buckled
membrane, this method allows the generation of curvature-dependent free energy
profiles. When moving along the buckled membrane, curvature is sampled in a
continuous fashion from the minimum curvature Kmin = −1/Rmin to the maximum
curvature Kmax = 1/Rmin, where the minimal radius Rmin can assume extreme
values of ≈ 4 nm. Thus, the relative free energy can be estimated over a very
broad curvature range. Albeit, the buckled geometry comes with some limitations.
i) The protein can only have small binding domains. Otherwise, the protein covers
a broad curvature range, i.e., the position in curvature space is ill-defined. ii) For
proteins that extend far away from the membrane, steric clashes in negatively
curved region cannot be avoided.

Buckled membranes in conjunction with unbiased MD simulations were used
before to study curvature sensing of proteins [27, 28], but this is of limited use
in a quantitative approach. Without a biasing potential, sampling is limited to
states close to the system’s minimum free energy. Obviously, for a curvature
sensing protein, this means only a limited curvature range will be sampled. A less
obvious consequence comes to pass when the protein’s preferred curvature Kp

lies outside the buckled membrane’s curvature range. Assuming Kp ≥ Kmax, then
the protein will mostly sample the top of the buckle, since this is the free-energy
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minimum of the system. As the membrane shape description is based on the
arc length parameter s in all of these methods, the free energy as a function of
curvature is given by F(K) = F(s) + kBT ln (|dK/ds|), and dK/ds→ 0 at the top
of the buckle. Therefore, the transformation to the desired quantity F(K) breaks
down in the region that is sampled the most.

Curvature sensing quantification was showcased using two known curvature
sensing peptides (ALPS and α-synuclein), which have contrasting chemical
properties and curvature sensing mechanisms. The estimated intrinsic curvature
of α-synuclein matched findings from tubulation experiments [29].

The method was employed to investigate the curvature sensing ability of the lipid
transport protein Ups1 in Paper 2 [11]. The protein complex comprised of Ups1
and Mdm35 is believed to shuttle phosphatidic acid (PA) from the outer to the
inner membrane of mitochondria [30]. Ups1 binds to membranes with the help
of a hydrophobic loop [31, 32]. Similarly to amphipathic helices, such loops can
act as membrane curvature sensors [25]. The umbrella sampling and buckling
method was used to resolve the relative free energy of binding to a membrane with
a lipid composition resembling that of mitochondrial membranes. Preferential
binding to positively curved regions of the membrane was found. This result
was confirmed via a co-flotation assay, which probed binding to differently sized
vesicles. Additionally, the buckled membrane was used to estimate relative free
energies of lipid extraction. It was found that the work required to extract a PA
lipid is lowered for positively curved regions and increased for negatively curved
regions.

In Paper 3 [10], the relationship of curvature sensing with lipid packing defect
sensing was exploited further. In this work, membrane defects were generated by
applying tension to the membrane. Additionally, an end state free energy method
was developed that allows for rapid comparison of the binding free energies of
peptides. Its usefulness lies therefore more in quick estimation in high-throughput
approaches, while the buckling method provides a detailed curvature-dependent
free energy profile.

4.2 Automated coarse-grained molecule
parameterization

Automation in simulation is becoming more and more important [33]. As
applications become wider and more complex, automation seems to be the only
way to handle this. There is a broad range of automated set-up and analysis
tools – e.g., CHARMM-GUI [34–37], MemProtMD [38, 39], Polyply [40] – and
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automation in FF development and parameterization [41–43], is one manifestation
of this trend. The desire from basic research and technological applications
to replicate nature’s complexity, makes the need for a growing number of
parameterized molecules, and therefore automation, even more pressing [44,
45]. The broader coverage of chemical space in Martini 3 opened up new
possibilities [21], but has concomitantly made parameterization less intuitive. A
problem that can be alleviated with standardized parameterization pipelines.

Former automated parameterization methods focused on bonded interactions
only [43, 46]. Others that addressed mapping, bonded and non-bonded parameters
were solely focused on small molecules, and simple target objectives [41,
42]. The parameterization method presented in Chapter 3 is tailor-made for
parameterization tasks in building-block force fields, such as Martini 3. The
mixed-variable PSO approach is particularly suited for force fields, where non-
bonded interactions are specified by a fixed set of bead types. Parameterization of
bonded and non-bonded parameters is not independent, rather they are connected
via the density of interactions [21, 23, 24], as shown in Section 1.2. While the
demonstration of the method was performed on a lipid and focused strongly on
optimization of targets where Martini lipids have not performed well in the past,
the method is applicable for any kind of molecule. The method is applicable
in high-throughput setups as well. Training systems and observables are easily
modified for a specific parameterization task.

For high-throughput applications, inclusion of an automated mapping scheme
would be desirable. When parameterizing a molecule in the traditional non-
automated fashion, mapping, and the choice of bonded and non-bonded
parameters are two distinct steps. The existing automated tools have treated
this problem in the same way. When mapping and parameter choice are
addressed individually, an automated mapping scheme would simply be a step
in the parameterization pipeline that happens before the mixed-variable particle
swarm optimization (mv-PSO) algorithm, and mv-PSO can be used without any
adaptation. Automated mapping for small molecules had been done for Martini
2, but due to the changes in Martini 3 this problem needs to be revisited [45]. A
promising way of going about this task seems to be the implementation of small
molecule design rules proposed by Alessandri et al. [47].

A much more complex task is an adaptive mapping that is part of the optimization.
As the number of possibilities explodes quickly with molecule size, this seems
feasible only for small parts of a molecule. An example would be a change
of resolution, e.g., using one regular bead (4-1 mapping) or two tiny beads (2-
1 mapping). How to overcome the concomitant change of PSO search space
dimensionality is an open problem.
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While Martini lipid models do capture important membrane phase behavior, such
as the gel to fluid phase transition [48], and liquid-ordered liquid-disordered
phase separation [49], they do so rather inaccurately. Melting temperatures are
tens of K too low (cf. ref. [48] and Chapter 3). Liquid-ordered liquid-disordered
phase separation, which is generally observed in ternary mixtures consisting of a
high-Tm lipid species (e.g. DPPC, sphingomyelin), a low-Tm lipid species (e.g.
DLiPC, DOPC), and cholesterol, is captured in Martini only with polyunsaturated
lipids (e.g. DLiPC), but not monounsaturated lipids (e.g. DOPC) [50]. Such
inaccuracies are not entirely unexpected, given that these phenomena were not
targeted in the original parameterization [20]. Given the need for higher fidelity
models, phase behavior should be targeted in a reparameterization of Martini
lipids. While a recent reparameterization of the Martini 2 tails claimed to capture
the phase behavior of ternary lipid mixtures [51], the phase separation was actually
a result of non-converged constraints in the CHOL model causing a temperature
gradient in the bilayer [52, 53].

As membrane phase behavior is based on collective processes, accurately
measuring the corresponding observables, such as melting temperature or
enrichment index [54], which can be used to gauge phase separation in ternary
mixtures, usually requires a substantial computational effort. Therefore, their
usage in an automated parameterization tool is no easy feat. The challenge lies in
finding a measurement procedure that is sufficiently efficient and accurate. In a
multi-objective optimization problem, which is what molecule parameterization
is, large inaccuracies of one observable will not only hamper optimization of the
corresponding objective, but deteriorate overall performance. In this regard, the
usage of noise-mitigation methods can help. As shown in Chapter 3, focused
resampling of observables with large variances for good solutions, lead to overall
better sphingomyelin models.

Reparameterization of the sphingolipid linker region with Tm as one of several
target observables gave satisfactory results, cf. Chapter 3. Instead of Tm being
≈ 20 K too low, as was the case for the old model, Tm of the best candidate
solutions is within ≈ 2 K of the experimental value, which corresponds to the
experimental and computational uncertainties. Other important targets, such as
bond length and angle distributions, area per lipid and membrane thickness, were
matched as well.

The parameterization shown in Chapter 3 did not explicitly include phase behavior
of ternary mixtures as an objective. In principle, the algorithm is capable
of generating solutions, that reproduce liquid-ordered liquid-disordered phase
separation in a DOPC/DPSM/CHOL mixture (cf. Figure 4.1), as established
in experiments [55], but matching phase separation seemed incompatible with
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Figure 4.1: Phase behavior of ternary mixture with 22 % DOPC (blue) 48 %
DPSM (white) 30 % CHOL (yellow). A old DPSM B DPSM model optimized
solely on reproducing correct phase separation behavior.

reproduction of other target observables. Phase behavior of lipid membranes is
largely influenced by tail-tail interactions. When only reparameterizing the linker
region, it seems therefore likely that the linker parameters have to compensate for
the lack of accuracy in the tail parameters, at the cost of lowered quality regarding
other objectives. A reparameterization of other lipid building blocks, particularly
the acyl chains, appears to be required for an overall improved model. A task for
which mv-PSO is the ideal tool, as parameterization of one building block can be
done simultaneously for different molecules that share this building block, e.g.,
a linker region, with different head groups and tails, or tails with several lipid
classes.

In general, tools such as mv-PSO are perfectly suited for large collaborative
parameterization efforts and the population of databases such as the Martini
database MAD [56], as this allows for a clear definition and reproducible
implementation of a force field’s parameterization philosophy, i.e., choice of
thermodynamic state points, target observables, target data sources, training
systems, and importance of different observables. Consistency in parameterization
can be beneficial to transferability [41, 57].

Automated parameterization with a preset pipeline could also be applied in novelty
design of molecules, such as functional lipids for soft nanoparticles (drug-delivery,
etc. [45]). An expert with domain knowledge makes chemical adjustments, and
the mv-PSO algorithm provides an automated, standardized parameterization
pipeline, that ensures good reproduction of important targets.

An alternative would be a physics-based inverse-design approach, where a CG
model is optimized for a certain behavior. Optimizing bead types and charge
(equivalent to changing functional groups) is already possible with the current
implementation. A flexible mapping scheme, i.e., the ability to add beads and
bonds, would open up even more possibilities. Also combinations with a genetic
algorithm, similar to ref. [58], are imaginable. Notably, any physics-based inverse
design strategy would strongly profit from an improved quality of CG models, as
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such design strategies rely heavily on the relevant physics being embedded in the
FF and molecule parameterizations.
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