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Abstract

Chemical problems nowadays are explored not only with experiments but also with
accompanying theoretical studies. The advancement in computer hardware and improved
accuracy of quantum chemical algorithms has even facilitated the exploration of chemical
problems that are not yet feasible with current experimental facilities. Most interpretations
of the theoretical results are based on the calculated numbers, which presents a challenging
task. In order to alleviate the difficulty, local descriptors can facilitate the interpretation
of different chemical phenomena. This can be very helpful to analyze the intricate
energy balance of chemical systems and can efficiently assist in the design of target
experiments/molecules. Local correlation serves as an excellent means of providing such
descriptors. Furthermore, local correlation methods are highly cost-effective as these
efficiently lower the computational cost without sacrificing the accuracy. Importantly,
local correlation makes use of localized orbitals bridging classical concepts with quantum
chemical results.

In this thesis, several tools were developed using local correlation to provide new approaches
to solve diverse chemical problems. Dispersion-free gradient LMP2 was developed to
investigate the impact of chirality recognition in diols. This tool provided a clear picture
of the impact of dispersion in chirality recognition in both structures and energies of
the dimers. On the other hand, the PNO-SCS-LMP2, in tandem with the extended
Kitaura-Morokuma (KM) energy decomposition scheme, has helped unlock the delicate
energy balance between the dimers of fenchone and fenchol systems. This combination
of energy decomposition analysis showed that most of the SR systems exhibit a stronger
electrostatics than their some of their RR counterparts. For the most stable structures
(indicated by -I), the dispersion contribution is higher in the RR-I than in SR-I. This is
affirmed by the dispersion interaction density (DID) visualization done on both species.
Furthermore, the inversion mechanism of expanded helicenes was also evaluated, and
it was observed that the in-fjord substitution, provided that the substituent interacts
with the arm, helps in stabilizing the reactant thereby raising the energy barrier of the
inversion process. DID visualization also affirmed the presence of moieties interacting due
to dispersion.

It was also of interest to examine forces, specifically dispersion in this case, as an overlap
between molecules. This gives a different perspective on the interacting fragments and
provides a directionality of the force upon interaction. In this thesis, this approach is

iii



called o-DID. Different toy systems were evaluated and revealed the capabilities of the
method. This is well complemented by pair orbital analysis, which helps to quantify the
extent of dispersion interaction at an orbital level.

Another tool implemented herein is dedicated to aid chemists in pinpointing the specific
orbital that needs a multireference treatment. Not all systems can be adequately described
by a single determinant. Hence, if some important configurations are neglected, the
system’s description is already on the wrong footing. To remedy this, the extent of
multireference character must be assessed. In this research, the D2 diagnostic from the
OI-MP2 formulation was used to examine the multireference character in an orbital level.
It is a targeted approach which can, within the capabilities of D2 from OI-MP2, examine
a potentially problematic orbital.

Overall, a multitude of tools have been developed to enhance the proficiency of chemists in
chemical analysis. The diverse applications of local orbital analysis, as presented, offer a
refined, targeted approach for both qualitative and quantitative analyses across a spectrum
of complex chemical problems.
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Chapter 1

Introduction

The rapid advancement of computer hardware in the last few decades has also brought
with it a revolutionary development in the field of chemistry. In the domain of electronic
structure calculations, this progress has not only enabled the modeling of increasingly
larger systems but also ushered in a plethora of highly accurate computational methods
for simulating complex chemical systems. This facilitated a change in the way chemists
approach their investigations. Over the years, theoretical calculations became a significant
tool to predict chemical properties, assisting in rationalizing the obtained experimental
results. At the same time, theoretical chemistry can save a huge effort of experimental
trial-and-error, as seen in drug design and material development, for example. A step
further than that is conducting pure theoretical studies, exploring chemical phenomena
which are often challenging to capture in the experimental bench.

Quantum mechanical calculations have been extremely successful in describing the
electronic structure of molecules, particularly isolated molecular systems. Their precision
has, in some cases, come very close to high resolution spectroscopic results. The methods
developed have not been only tested against the high-level methods available but have
also been rigorously compared with existing experimental results, for example the Gn1–5

and Wn6–8 methods. This has been a significant step towards a closer collaboration
between theory and experiment. However, upon looking closer at these benchmarking
practices, more often both parties rely on numbers (e.g., enthalpies of formation, rate
constants, atomization energies, bond distances, to mention a few). In fact, a lot of
chemical interpretations are based on the numbers obtained from both ends. While this is
not necessarily incorrect and serves as a critical link between the theory and experiment,
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CHAPTER 1. INTRODUCTION

drawing chemical interpretations from a single quantity can be quite challenging.

Despite the advances from both ends of theory and experiment, chemists continue to seek
descriptors that will supplement the numerical results with a chemical picture. This proves
to be helpful in instances where there is little to no change in a measurable quantity but also
has an important effect in terms of structure. In fact, this becomes increasingly relevant
for systems with non-covalent interactions. Since these systems are not covalently bonded,
a significant change in their structures is not necessarily reflected in, say for example, their
relative energies. Thus, experimental approaches to probe their structures, e.g., Fourier
transform infrared (FTIR) jet spectroscopy and microwave spectroscopy, are important.
Such experiments can be well supplemented by theory, but a deeper analysis regarding the
delicate interplay of different forces responsible for the interaction needs more than the
typical geometry optimizations.

Local correlation is a powerful tool to extract ab initio properties from a molecular system.
Not only are these methods very cost-effective without compromising chemical accuracy,
but the use of localized molecular orbitals effectively bridges the gap between quantum
chemical results and classical chemical concepts. This facilitates the development of a
chemical picture that aids chemists in rationalizing results. In this thesis, we utilize local
correlation to offer a set of tools for chemists to investigate various chemical phenomena,
with a particular emphasis on systems with noncovalent interactions. In the next chapters,
these tools are discussed in depth, accompanied by insights into their applications.

In Chapter 3, we examined the significance of dispersion in chirality recognition and
molecular inversions. This chapter aims to demonstrate that examining both the energy
and the molecular structure of compounds is very crucial for understanding chemical
phenomena, particularly chirality recognition in this case. A dispersion-free gradient local
2nd-order Møller Plesset (LMP2) method was implemented to see how dispersion affects
chirality recognition. Additionally, local correlation methods were used to isolate and
quantify the extent of the influence of this subtle force. Furthermore, local orbital analysis
was utilized to identify specific molecular moieties responsible for the dispersion interaction.

After establishing the importance of structure and how it affects the energy as well as the
chemical property of the system, Chapter 4 discusses a newly developed tool. This tool
allows chemists to connect quantum mechanical results and chemical intuition. Specifically,
this tool is exclusive for isolating and viewing overlaps in systems resulting from dispersion
interactions. This comes with a quantitative analysis which equips the user with a targeted
approach in pinpointing which specific orbital interacts significantly due to dispersion.

2



In benchmarking, the goal is to attain accurate values for justifiable reasons, rather than
relying on error cancellation by chance. However, this is not possible when the calculation
starts on an incorrect foundation. In reality, single-reference methods encounter significant
limitations if there are one or more relevant electron configurations that need to be
considered in the calculation. In Chapter 5, a collection of tools and approaches using
local correlation is presented to guide the user on whether a single-reference method is
appropriate or if a multireference method is necessary. More importantly, this chapter
introduces a targeted approach to diagnose ‘problematic’ orbital(s) using local orbital
analysis.
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2.1. SCHRÖDINGER EQUATION AND THE HARTREE-FOCK APPROXIMATION

2.1 Schrödinger Equation and the Hartree-Fock
Approximation

The mathematical description of the behavior of electrons, and thus of chemistry, is all
reflected in quantum mechanics (QM). In principle, a property of an individual atom or
molecule can be predicted by QM exactly, but in practice, due to their mathematical
complexity, QM equations have only been solved exactly for one-electron systems. To
remedy this, a multitude of approximations has been developed to approximate the solution
for multi-electron problems, some of which will be introduced in the later part of the
chapter.

Schrödinger and Heisenberg formulated QM in equivalent ways, but in this chapter, the
Schrödinger form will be presented as it is the most familiar to chemists. The time-
independent Schrödinger equation is expressed as follows:

ĤΨ = EΨ. (2.1)

In the eigenvalue equation above, the wavefunction Ψ is a function of electrons and nuclear
positions, where the description of the electron is a wave (as the name ‘wavefunction’
implies). The energy E is the eigenvalue which connects to physical observables. The Ĥ is
the Hamiltonian operator, which will consist of a kinetic energy part (T̂ ) and the potential
energy part (V̂ ), generally expressed as follows (in atomic units):

Ĥ = T̂n + T̂e + V̂ne + V̂ee + V̂nn

= −
M∑
A

1

2mA
∇2

A −
N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA

|Ri − RA|
+

N∑
i>j

1

rij
+

M∑
A>B

ZAZB

RAB
,

(2.2)

where n are the nuclei, e are electrons, M is the number of nuclei, N is the number of
electrons, A,B are nuclei indices and i, j are electron indices. Charges are represented by
Z while masses are indicated by m. The first two terms in the equation above represent
the nuclear and electronic kinetic energy, respectively. On the other hand, the last three
terms are the potential energy between particles.

Note that the above formulation is the time-independent, nonrelativistic Schrödinger
equation. As shown in Equation 2.2, the nuclear and electronic motions are separated.
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CHAPTER 2. THEORY BACKGROUND

Such decoupling of electronic and nuclear motions is possible because the electrons, due
to their very small mass relative to the nuclei, can move much faster. This fundamental
assumption is called the Born-Oppenheimer approximation. By virtue of this assumption,
the last term in Equation 2.2, V̂nn, is constant.

To complete the description of the Equation 2.2, the ∇2
i is the Laplacian operator acting

on (for example) particle i, as shown below:

∇2
i =

∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i
. (2.3)

Once the wavefunction is established, molecular properties can be determined. This is
done by taking the expectation value (denoted with angled brackets) of the operator for a
specific property. Energy, for example, is the expectation value of the Hamiltonian operator
(for a normalized function) given by

⟨E⟩ =
∫

Ψ∗ĤΨ. (2.4)

The type of QM approximations discussed in this book is the ab initio (Latin for ‘from
the beginning’) methods. This set of approximations is applied to computations which
are derived directly from theoretical principles and do not include experimental data.
The Hartree-Fock (HF) approximation is the most common type of ab initio calculation,
usually serving as the foundational calculation for post-HF methods to account for electron
correlation. In this method, the primary approximation is the mean field approximation,
which means electron-electron repulsion is treated in an ‘average’ manner. In other words,
each electron is considered to be moving in an electrostatic field of nuclei and the average
field of the rest (N − 1, where N is the total number of electrons) of the electrons.

Taking into account the Pauli principle, an HF wavefunction can be built from molecular
orbitals using an anti-symmetrized product represented by a Slater determinant, as shown
below:

ΨHF(x1,x2, ...,xn) =
1√
N !


ψ1(x1) ψ2(x1) . . . ψN (x1)

ψ1(x2) ψ2(x2) . . . ψN (x2)
...

... . . .
...

ψ1(xN) ψ2(xN) . . . ψN (xN)

 , (2.5)
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2.1. SCHRÖDINGER EQUATION AND THE HARTREE-FOCK APPROXIMATION

where each function used in the determinant is a spin orbital consisting of a spatial and
spin component (xi = {ri, si}). In closed-shell representation where the number of α and
β spin electrons are the same, the spin orbitals can be integrated out and the same spatial
orbitals {ϕi} can be used for both sets. Note also that the wavefunction is reflected in a
single Slater determinant, earning the classification of a single-reference method.

Using Dirac’s bra-ket notation and with the help of Slater-Condon rules, the HF energy
can be obtained in a similar manner as in Equation 2.4:

EHF = ⟨ΨHF| Ĥ |ΨHF⟩

= 2

N/2∑
i=1

⟨i| ĥ |i⟩+ 1

2

N/2∑
i=1

N/2∑
j=1

[2(ii|jj)− (ij|ji)],
(2.6)

where the ĥ is the one-electron operator, T̂e+ V̂ne from Equation 2.2. The first term in the
above equation (Eq. 2.6) is the one-electron integral, while the second term are composed
of two-electron integrals, where (ii|jj) is the Coulomb expression (denoted by J) while
(ij|ji) represents the exchange term (denoted by K). On one hand, the one-electron
integral illustrates the energy of the electron due to its motion (T̂e) and the attraction
of the nuclear core V̂ne. On the other hand, the second sum represents the Coulombic
repulsions resulting from the interaction of the electron with all the other electrons within
the atom or molecule, plus exchange non-classical terms.9

Hartree-Fock is a variational method, which means that the approximate energies
calculated are all equal to or greater than the exact energy. This can be used to improve
the form of the wavefunction, and the lower the energy obtained, the closer it is to the
‘correct’ description of the system. To minimize the energy, a gradient can be built from
Equation 2.6 under the constraint that the orbitals are orthonormal. This can be done by
using a Lagrange functional, which can be built in the form:

⟨∂i| ĥ |i⟩+
N/2∑
j

[2(∂ii|jj)− (∂ij|ji)]−
N/2∑
j

εji ⟨∂i|j⟩ = 0. (2.7)

This can be simplified by defining the Fock operator,
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CHAPTER 2. THEORY BACKGROUND

f̂ |i⟩ =
n/2∑
j

εji |j⟩ , (2.8)

where f̂ is

f̂(1) = ĥ(1) +

N/2∑
j=1

[2ĵj(i)− k̂j(i)]

= ĥ(i) + ĝ(i).

(2.9)

The operator ĵj(i) is the Coulomb operator and the k̂j(i) is the exchange. It is important
to note that the Fock operator is a one-electron operator.

Essentially, HF theory provides a stepping stone on the way to the exact solution of the
Schrödinger equation. This approach provides a very well-defined energy, one which can
be converged in the limit of an infinite basis set. Unfortunately, this does not mean that
it does not suffer from certain chemical limitations. The pinnacle of its limitation is the
one-electron nature of the Fock operators. The only ‘correlation’ accounted for so far in
Equation 2.6 is the exchange. All the rest is ignored. Of course, it is an interesting point to
make, just how important other types of correlation are for other molecular properties? HF
energy commonly recovers 99% of the total energy, but the remaining 1% which describes
the instantaneous correlation as electrons move with respect to each other, is an important
factor to take into account to when describing different chemical phenomena. Dispersion,
for example, does not exist at all in the HF-approximation and in the recent years, this
force has been proven to be a relevant driving force in a number of chemical problems - a
point that will be emphasized in the next chapters. This, and all the other wavefunction-
based methods discussed in the succeeding sections, belong to the field of wavefunction
theory (WFT).

Note that the HF method is based on several constraints. First, the Born-Oppenheimer
approximation, which decouples nuclear and electronic motion. Second, the mean field
approximation, which assumes that electronic repulsion is due to the movement of every
electron in an average electrostatic field. Third is the single-reference approximation, where
it is assumed that a single determinant is enough to describe the electronic configuration
of the system.
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2.2. ELECTRON CORRELATION

2.2 Electron Correlation

In HF theory, the interaction of two electrons can be seen in the second term of Equation
2.6, which contains the Coulomb (J) and exchange (K) terms. In this treatment, the
handling of electron-electron repulsion is via electron movement in a smeared-out, average
electrostatic field due to the rest (N − 1) of other electrons. This also means that the
probability of an electron having a particular set of spatial coordinates at some moments
does not depend on the coordinates of the other electrons in the same moment. However,
this model is flawed. In reality, every electron moves under the influence of repulsion due to
the presence of other electrons (i.e., their movement is ‘correlated’ with one another), not
of an average electrostatic field. As a consequence, in real atom or molecule, the electrons
are better at dodging each other. Such behaviour means that the electronic energy in
reality is lower (more negative) than the one predicted by the HF calculation. Even with
the biggest basis set approaching the HF limit, the HF method still overestimates the
electron-electron repulsion because of its failure to treat electron correlation properly.

Correlation energy is a measure of the extent to which any ab initio calculation fails
to deal with electron correlation perfectly. Löwdin, in a canonical exposition, provided
the definition “... The correlation energy for a certain state with respect to a specified
Hamiltonian is the difference between the exact eigenvalue of the Hamiltonian and its
expectation value in the HF approximation for the state under consideration.”10 In other
words, the correlation energy is the difference between the restricted HF (RHF) energy
and the energy calculated by some ‘perfect’ quantum mechanical procedure with the same
basis set. Mathematically, this is expressed as:

Ecorr = Eexact − ERHF. (2.10)

From the definition above, the correlation energy is always negative since Eexact is more
negative than ERHF. Essentially, the correlation energy is the energy that the HF procedure
failed to account for. Of course, this is under the assumption that relativistic effects and
other effects like spin-orbit coupling are negligible (same Hamiltonian).

2.2.1 Dynamic and Static Correlation

In terms of the ‘permanence’ of electrons avoiding each other, electron correlation can also
be classified as static and dynamic. When electrons ‘instantly’ avoid each other, such as
in the case of those occupying the same spatial orbital, that contributes to the dynamic
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correlation. If the avoidance of electrons is in a more ‘permanent’ basis, such as those with
different spatial orbitals, that is referred to as the static correlation. The latter becomes
more relevant if there are other configurations close in energy to the ground state, thus
sometimes called near-degeneracy effect. Classic example is the H2 molecule under an
RHF description. At the equilibrium bond distance, the correlation is mainly dynamic.
However, at its dissociation limit, H2 is dominated by static correlation. At this point,
two relevant configurations must be considered so as to properly calculate the energy of
the system.

In some chemical cases, like stretching of H2, unrestricted Hartree-Fock procedure (UHF)
can partially model static correlation by relaxing the constraint that the α and β orbitals
are equivalent, yielding a lower total energy.11,12 In case of O3 at its equilibrium geometry,
UHF recovers 10% of the correlation energy.

Since UHF can capture part of the static correlation, this led Pople to propose an
alternative definition of the correlation energy:13

Ecorr = Eexact − EHF, (2.11)

where EHF is the lowest energy of any single determinant wavefunction. Pople correlation
energies may be more robust than the Löwdin ones despite avoiding anomalous behaviour
in multireference systems.14

Many workers have found it useful to subdivide the electron correlation into dynamic and
static.10

Ecorr = Edyn + Estat. (2.12)

The accuracy of electronic structure calculations relies heavily on the proper description
of electron correlation. In this section, a thorough discussion about the differences in both
types of correlation, and how they are accounted for, are presented.

Dynamic Correlation

Strictly speaking, HF method allows a certain degree of electron correlation - i.e., two
electrons of the same spin cannot be in the same place at the same time (Pauli’s exclusion
principle). Since there is zero probability at any moment that two electrons of the same
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spin are at the same point in space, given that the wavefunction is continuous, there
should be a smooth decrease of the probability of finding that at the same space versus
their separation.

The inability of the HF wavefunction to model interelectronic cusps15 and dispersion
interactions16,17 is due to dynamic correlation.18 Recall that under this assumption (as
discussed earlier), the electrons do not see other electrons individually but just as an
average electrostatic field. This type of correlation is regarded as a universal contribution.
Simply put, this type of correlation arises from the need for mixing the Hartree-Fock state
with higher-order excited states and is a correction to the second constraint imposed on
HF method, i.e., the mean field approximation. This means that there is a large number
of excited state determinants with comparable, small occupations which are relevant to
properly describe the molecular system.

If a quantitative prediction of experimental observables is desired, a significant
consideration of dynamic correlation is required. Usually, this can be treated using post-
HF methods with two dominant classes of methods: perturbative and coupled cluster (CC)
approaches. These will be discussed further in succeeding sections.

Static Correlation

Systems with stretched bonds or multiple bonds, electronically excited or partially occupied
degenerate orbitals have a considerable static correlation.19 This arises from the near-
degeneracies of the HF occupied and virtual orbitals. These types of systems are poorly
described by a single Slater determinant. This shows that static correlation energy (also
called non-dynamical, near-degeneracy, left-right, or first-order) is a system-dependent
correlation effect. This is mainly due to the inaccuracy introduced by the third constraint
to the HF method, i.e., the description of the wavefunction using a single determinant.

Hollet and Gil18 classified static correlation into two flavors: Type A as absolute near-
degeneracy and Type B as relative near-degeneracy. The distinction between these types
lies in their susceptibility to different electronic structure methods. Specifically, Type A
static correlation can be effectively captured by UHF, while Type B static correlation eludes
such treatment. According to this classification, stretched H2 molecule is dominated by
Type A static correlation while Be-like ions with large nuclear charge (Z ) are dominated
by Type B static correlation.

In systems with ‘quasidegenerate’ electronic structures, several electronic configurations
need a proper description. If a single determinant assumption is required, this can lead
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to significant errors. In such cases, not even a very good method to capture dynamic
correlation can help. Multireference (MR) treatments will be necessary, for example
full configuration interaction (FCI), multireference treatment of different flavors (e.g.,
MCSCF, MRCI, MRCC) and complete active space (CAS) approaches of different varieties
(CASSCF or CASPT2).

2.2.2 Møller-Plesset Perturbation Theory

In perturbation methods, electron correlation is treated as perturbation or ‘fluctuation’ or
‘small deformation’ of the reference HF energy. The Hamiltonian is written as:

Ĥ = Ĥ(0) + λ ˆH(1), (2.13)

where Ĥ(0) is the unperturbed Hamiltonian, λ is the scaling parameter defining the strength
of the perturbation operator ˆH(1). The latter accounts for the electron-electron repulsion
beyond mean field approximation.

There are two approaches to use the perturbation theory applied to chemical systems.
One is Brillouin–Wigner perturbation theory which, unfortunately, is not size consistent
and the Rayleigh-Schrödinger perturbation theory, which is size consistent. In the latter
method, the total energy is computed in a step-wise manner and has a nice feature that
the correction of a particular order is independent of the maximum order chosen. For a
detailed derivation of both perturbation methods, see Reference 20.

Møller-Plesset perturbation theory21 (MPPT) is a version of Rayleigh-Schrödinger
perturbation theory where the electronic Hamiltonian is partitioned as in Equation 2.13
with:

Ĥ(0) =

N∑
i

f̂(i), and (2.14)

Ĥ(1) = Ĥ − Ĥ(0). (2.15)

Note that f̂ is the Fock operator which represents the zero-order operator and the Ĥ(1) as
the perturbation. The wavefunction and energy is expanded via Taylor series, as follows:
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|Ψ⟩ =
∑
i=0

λi |Ψ(i)⟩ , and

E =
∑
i=0

λiE(i).
(2.16)

Inserting Equation 2.16 in the Schrödinger equation provided in Equation 2.1, the general
expression for such expansion is the following:

(Ĥ(0) − E(0)) |Ψ(0)⟩+ λ[(Ĥ(0) − E(0)) |Ψ(1)⟩+ (Ĥ(1) − E(1)) |Ψ(0)⟩] + ... = 0. (2.17)

In this perturbation approach, one can carry out calculations through a given order of
n, and is referred to as MPn approximations. Note that for each power of λ, the terms
associated with it must be zero.

Applying the standard procedure of perturbation theory, the following breakdown of
energies is obtained:

E
(0)
MP = ⟨ΨHF| Ĥ(0) |ΨHF⟩ =

∑
i

εi, (2.18)

E
(1)
MP = ⟨ΨHF| Ĥ(1) |ΨHF⟩ =

1

2

∑
ij

[2(ii|jj)− (ij|ji)], (2.19)

E
(2)
MP =

∑
µ ̸=0

∣∣∣⟨ΨHF | Ĥ(1) | Ψ(1)⟩
∣∣∣2

E(0) − E(1)
(2.20)

where µ is the eigenstate index and µ ̸= 0 refers to determinants which are constructed from
different spin orbitals than the ground state determinant, and Ψ(1) refers to the excited
determinants. The Fock operator represents the zero-order operator, thus the zeroth-order
energy is basically the sum of occupied orbital energies, as reflected in Equation 2.18.
Equation 2.19 is the first-order energy, whose operator can be interpreted as the mean-field
approximation.22 The sum of Equations 2.18 and 2.19 is basically the Hartree Fock energy.
This means that the inclusion of explicit electron-electron correlation via perturbation only
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starts to appear from the second-order energy reflected in Equation 2.20.

By virtue of Brillouin’s theorem and orthonormality conditions between orbitals, there
is no coupling between the reference wavefunction and singly excited determinants |Ψa

i ⟩.
Double excitations |Ψab

ij ⟩, on the other hand, contribute to the energy. By integrating out
the spin component, the total MP electronic energy with 2nd order correction (MP2) can
be expressed as:

EMP2 = E
(0)
MP + E

(1)
MP + E

(2)
MP

= EHF +
∑
i<j

∑
a<b

| (ia∥jb) |2

ϵi + ϵj − ϵa − ϵb
,

(2.21)

where i, j represents occupied orbitals and a, b the virtual ones. The term (ia∥jb) simply
means (ia | jb) − (ib | ja). As an extension of Rayleigh-Schrödinger perturbation theory,
MPPT is size-extensive, which means it scales properly with the size of the system. This
method, however, is non-variational since the wavefunction is not optimized by going for
the lowest energy, therefore it does not provide an upper bound for the ground state energy
of the Schrödinger equation. Despite that, in the scope of wavefunction theory approaches,
MP2 is the ‘go-to’ method to integrate correlation with a good compromise in cost and
accuracy. By all means, the order of correction can be increased (using MPn notation,
e.g., MP3, MP4 ... MPn), but this does not guarantee convergence. In fact, several
studies22,23 show that the energy oscillates and sometimes diverges with the inclusion of
higher excitations as well as being affected by the use of augmented basis functions.

The inclusion of MPn algorithms in computer programs since the mid-1970s made the
approach easily accessible to chemists. Rapid development and implementation greatly
benefited from the competition of the Bartlett group in Florida and the Pople group in
Pittsburgh.24 Its availability made it easier for chemists to deploy chemical investigations
beyond mean-field approximations. In practice, nowadays, higher order of MP methods
(MP3 and beyond) are not often used due to steep scaling. However, MP2 is still very
useful because even if it is less accurate than many DFT methods,25 it still has certain
advantages. For example, in cases of understanding dispersion forces or charge-transfer
processes. In fact, in the last 30 years, MP methods have been greatly developed to reduce
their scaling and increase their accuracy. A good overview of such developments can be
read in the review of Cremer.24
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Spin Component Scaled MP2 (SCS-MP2)

In the original MP2 ansatz, the E(2) in Equation 2.20 and 2.21 can be reformulated as:

E(2) = E(2)
ss + E(2)

os , (2.22)

where ss is the same-spin or parallel spin (αα, ββ,‘triplet’) spin of electrons while os is
the opposite spin or antiparallel-spin (αβ, ‘singlet’) electron pairs. Integrating out spin
component, terms of Equation 2.22 can be expressed as:

E(2)
ss =

∑
ij

∑
ab

(ia | jb)[(ia | jb)− (ib | ja)]
ϵi + ϵj − ϵa − ϵb

,

E(2)
os =

∑
ij

∑
ab

(ia | jb)(ia | jb)
ϵi + ϵj − ϵa − ϵb

.

(2.23)

Accordingly, MP2 is biased toward same spin (ss) excitations and correlations. This results
in inaccurate quantification of several experimental observables (e.g., atomization energies,
reaction energies, etc.). In response to this, Grimme26 proposed in 2003 to scale spin
components ss and os separately, yielding

E
(2)
SCS−MP2 =

1

3
E(2)

ss +
6

5
E(2)

os . (2.24)

In general, the separate scaling significantly improved the MP2 performance (see their
original paper in Reference 26 for the mean absolute error values). SCS-MP2 is still a single-
reference method, so in cases where static correlation is important, multiconfigurational
treatment is still advised. This spin component scaling methods are also extended to
SCS-MP3, and further chemical properties have been examined.27–29

2.2.3 Coupled-Cluster Theory

It is well known that one of the pitfalls of configuration interaction (CI) method is its
lack of size consistency and its slow convergence toward the full CI (FCI) limit. To
remedy this, the coupled-cluster (CC) model was introduced, a mathematically elegant
technique to estimate electron correlation pioneered by Čížek in 1966.30 This particular
model represents a nonlinear but separable parametrization of the correlated electronic
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state. It is size consistent and size extensive, however, it is not variational.

The main assumption of CC theory is that the full-CI wavefunction (within the basis set
approximation) can be described as:

|ΨCC⟩ = eT̂ |ΨHF⟩ , (2.25)

where

T̂ = T̂1 + T̂2 + T̂3 + ...T̂N . (2.26)

The subscript represents the excitation state while N is the total number of electrons. For
example, T̂1 and T̂2 can be expressed as

T̂1 |ΨHF⟩ =
∑
i

∑
a

tai |Ψa
i ⟩ , and

T̂2 |ΨHF⟩ =
∑
i<j

∑
a<b

tabij |Ψab
ij ⟩ .

(2.27)

Recall that i, j are occupied orbitals while a, b are virtual orbitals. The terms tai and tabij are
single and double excitation amplitudes, respectively, which are basically the coefficients
in front of determinants.

The exponential excitation operator eT̂ from Equation 2.25 is defined by the Taylor
expansion:

eT̂ = 1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + ..., (2.28)

where T̂ is expressed in Equation 2.26. Collecting the terms of the same excitation number,
one can obtain:

|ΨCC⟩ = [1 + T̂1︸ ︷︷ ︸
singles

+ (T̂2 +
1

2
T̂ 2
1 )︸ ︷︷ ︸

doubles

+ (T̂3 + T̂1T̂2 +
1

6
T̂ 3
1 )︸ ︷︷ ︸

triples

+ ...] |ΨHF⟩ . (2.29)

From Equation 2.29, two types of excitations can be observed. The excitations T̂1, T̂2, T̂3, ...
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are referred to as connected excitations and usually have large contributions. Via Slater-
Condon rules, T̂1 has a small contribution because singles only come in the second order
wavefunction, but T̂2 directly connects to the HF configuration and is the dominant
contributor to the correlation energy. It is expected that T̂3 is the second largest
contributor, and for well-behaved systems, the higher excitations have lesser contribution
to the energy. On the other hand, excitation operators which are a product of two or
more excitation operators (e.g., 1

2 T̂
2
1 , T̂1T̂2) are called disconnected excitations. Assuming

the normal behaviour of the system, the disconnected excitation 1
2 T̂

2
1 will have the third

largest contribution. It is important to note that one of the advantages of coupled cluster
theory is even if the wavefunction only has singly and doubly excited determinants, it is
possible to account for some higher excitations via disconnected excitations. So even with
CCSD (coupled cluster singles and doubles), one can obtain a large combination of higher
excitations.

The next challenge is the determination of the cluster amplitudes for all the operators
included in the specific CC model. The standard implementation follows the usual
procedure of left-multiplying the Schrödinger equation by trial wavefunctions expressed
as determinants from HF orbitals. This results in a set of coupled, non-linear equations
in the amplitudes which must be solved iteratively. With the amplitudes available, the
coupled cluster energy is calculated as:

ECC = ⟨ΨHF| Ĥ |eT̂ΨHF⟩ . (2.30)

The scaling of CCSD is O(N 6) while the inclusion of the full, connected triples T̂3 in
CCSDT increases the scaling to O(N 8), making the latter very computationally costly and
intractable for all but small molecules. Several approaches were done to include connected
triples without incurring much cost. One of the most robust methods was introduced by
Raghavachari et al.31 in 1989 and is called CCSD with perturbative triples, CCSD(T).
This is currently regarded as the gold standard of single-reference calculations in quantum
chemistry. The latter method has a scaling of O(N 7).

In the past decades, notable developments were made in CC methods. This includes the
use of localized orbitals exploiting the short-range character of the dynamical electron
correlation, which decays as r−6

ij . When local basis functions are used, the integrals
over distant pairs (in two electron integrals) can be neglected, thereby lowering the
computational cost.32–37 On the other hand, standard CC methods are still plagued with
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problems presented by the electron-electron cusp which hampers the fast convergence of
CC to the full basis set limit. This is caused by discontinuous higher derivatives of the
wavefunction where the coordinates of the two particles coincide. This can be removed
by including terms in the wavefunction that depend on the interelectronic distance r12.
Explicit inclusion of r12 or f12 ansatz can significantly improve convergence (see review
of Ma and Werner38 for an extensive list of references). PNO-LCCSD(T)-F12,39,40 which
utilizes explicit correlation using f12 ansatz, was used in several investigations in Chapter
3 for high level energy calculations.

2.2.4 Multireference Diagnostics

The methods described above – HF, MP2, CC – are generally suitable if a single
determinant is enough to describe the system. Unfortunately, as discussed in Section 2.2.1,
some systems need more than one determinant to properly get the qualitative description of
the system, which in turn is crucial for any quantitative results to be calculated. A classic
case is that of O3. Looking at its enthalpy of formation ∆H◦

f , a deviation of ∼3 kcal mol−1

using CCSD(T)/CBS when compared to the experimental result, 34.10±0.4kcalmol−1.7,41

It obviously provides an insufficient description of O3 at its molecular ground state.

Unfortunately, multireference methods have a steep scaling with respect to the system
size. Large systems that can be treated quickly by single-reference methods may be
computationally unviable with multireference approaches due to the inclusion of all
chemically relevant electrons and orbitals into the active space. Although restricted active
space (RAS), generalized active space (GAS) or occupation restricted multiple active space
(ORMAS) can be utilized, the selection of active space typically relies on the user’s chemical
intuition which can significantly affect the predicted properties.

Before the deployment of the computationally expensive and cumbersome multireference
calculations, several molecular diagnostic tools are available to preliminarily evaluate the
need of an multireference treatment. In this section, the general idea of some diagnostic
tools relevant to Chapter 5 are presented. The diagnostics discussed here are mainly those
which are derived from the behaviour of single-reference methods.

C0 and C2
0 Diagnostics

A typical diagnostic tool is the absolute value of the leading coefficient C0 or its weight C2
0

in a CISD or CASSCF calculations.42–45 This indicates the contribution of the dominant
configuration state function to the wavefunction. Values of C0 ≤ 0.95 or C2

0 ≤ 0.90 is
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an indication of significant multireference character.42 If the coefficient values are from
the reference HF configuration in a CISD wavefunction, the diagnostic might be biased
towards the HF determinant of a pathological system which can result in a misleadingly
large coefficient for the HF determinant.43 On the other hand, if the calculation is based
on the CASSCF wavefunction, the weight of the principal configuration is only considered
reliable if CASSCF is feasible and includes all the critical orbitals in the active space. The
requirement of large active spaces can lead to computationally prohibitive calculation and
small active spaces may lead to unreliable diagnoses.

Moreover, this diagnostic gets unreliable with increasing system size. In the case of a system
of non-interacting water molecules C2

0 approaches zero in the limit of infinite number of
monomers.22 However, this is a well known single-reference case. This means that a
threshold limit for classifying multireference character based solely in C0 is difficult to
define.

Total Atomization Energy Diagnostic, %TAEe

Total atomization energy (TAE) is calculated as the difference in the electronic energy
(same basis set and level of theory) between the system and all its component dissociated
atoms, shown below:

TAE =

(
N∑
i

Ei

)
− Etotal. (2.31)

Martin and co-workers,8 when developing their W4 composite method, proposed that
the percentage of the connected quadruple and quintuple excitations contribution
%TAEe[T4 +T5] to the total atomization energy is a good a posteriori indicator of
the extent of non-dynamical correlation. This is based on the performance of the
%TAEe[T4 +T5] versus the largest double excitation amplitude and HOMO-LUMO
occupation number.8,46 However, there is a formidable cost to go to quadruple and
quintuple excitations, and they found a strong correlation between %TAE[(T)] and
%TAEe[T4 +T5] (R2 = 0.941, provided the removal of BeO and MgO). This led them
to propose %TAE[(T)] as an affordable a priori energy-based diagnostic to assess non-
dynamical correlation of the system. Such diagnostic is defined as follows:

%TAEe[(T)] = 100×
(
%TAEe[CCSD(T)]−%TAEe[CCSD]

%TAEe[CCSD(T)]

)
(2.32)

21



CHAPTER 2. THEORY BACKGROUND

Using the diagnostic in Equation 2.32, the following threshold was proposed:
%TAEe[CCSD(T)] less than 2% are appropriately described by single-reference methods,
2-5% indicates mild static correlation, 5-10% hints at moderate static correlation and if the
value exceeds 10%, an multireference treatment is needed.46 Even if this diagnostic has the
capability to predict the contributions from T4 and T5 excitations and how important these
higher excitations to the system in question, the neccessity to go to CCSD and CCSD(T)
can be cost-prohibitive for larger molecules.

T1 Diagnostic

One of the oldest and most commonly used diagnostics (even with large systems nowadays)
is the T1 diagnostic, proposed by Lee and Taylor in 1989.43 In a different paper,47 it was
already observed that the Euclidean norm of t1 gave large values for problematic systems
and smaller values for the well behaved ones. Further studies regarding its reliability of
prediction was then expanded by Lee and Taylor. This is based on the single excitation
amplitudes t1 from the CCSD wavefunction. Formally, the diagnostic is defined as follows:

T1 =

√
t1 · t1
ncorr

, (2.33)

where t1 is the vector of t1 and ncorr is the number of correlated electrons. This diagnostic
basically quantifies the averaged value of the single excitation amplitudes. If the values
of T1 exceeds 0.02, this diagnostic indicates that a single-reference method may not be
reliable for the system, and will certainly not yield accurate results. However, since T1

diagnostic is an averaged value, the non-homogeneity of the t1 vector is not reflected or
possible singular t2 amplitudes. This diagnostic has been extended to open shell CC theory
in a consistent manner with the original definition to that of closed shell CCSD.48

T2 Diagnostic

One significant limitation of T1 diagnostic previously described is the need to access
the single excitation amplitude from the CCSD wavefunction, which in 1990s, was still
a formidable task. This prompted an extension to have the same diagnostic tool but from
perturbation theory, proposed by Lee et al.49 The t1 amplitudes from a full coupled-cluster
wavefunction may be thought of as a sum of the singles coefficients from the mth-order
wavefunctions of the MBPT
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t1 =
∑
m

u
(m)
1 λm, (2.34)

where λ is the perturbation parameter and m is the order. Based on Equation 2.33, the
T2 diagnostic can be defined as

T2 =

√
u
(2)
1 · u(2)

1

ncorr
. (2.35)

When using canonical orbitals within the context of restricted MP and restricted open
shell MP (ROMP), u(2)

1 can be obtained by

u
(2)
1 ≡ uai =

1

fi − fa

(∑
cdk

(ac|kd)tcdik −
∑
clk

(ck|il)taclk

)
. (2.36)

Recall that tabij are the double excitation coefficients from the first order wavefunction,
while i, j and a, b are the occupied and unoccupied orbitals, respectively. Lastly, f is the
Fock operator. A more detailed explanation as to the derivation of the single excitation
amplitudes via MPBT can be found in the article of Lee.49 For this specific diagnostic,
the following guideline was established: T2 ≤ 0.012 indicates an appropriate description
by low orders of perturbation theory, if T2 is between 0.012 and 0.015, care must be taken
when analyzing results from low order MBPT and finally, if T2 ≥ 0.015, low order MBPT
methods will not likely yield accurate results, except in cases where there is significant
error cancellation. One problem of T2 is that it is system size dependent. T2 values have
been calculated for a series of molecules - HNC, CH3NC, C2H5NC, C3H7NC - where H is
basically replaced by larger alkyl groups. Results gave different values, i.e. 0.0146, 0.0122,
0.0108 and 0.0099, respectively.50 The proposed threshold of the diagnostic suggests that
MP2 should be reliable for the larger molecules in the series but probably not for the
smallest one. This dependence makes it unsuitable for comparing molecules of different
size.

A quick note on its computing time. The MP2 T2 diagnostic, due to the contractions
done in Equation 2.36 to obtain the single excitation amplitudes, requires more operations
than the MP2 energy evaluation itself. However, it becomes free if the analytic gradient is
computed.49
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D1 Diagnostic from MP2 and CCSD

To overcome problems with size inconsistency, Janssen and Nielsen50 proposed a new
diagnostic D1 using single excitations (thus the subscript 1) arising from MP2 and CCSD
wavefunctions. This is basically the same set of excitations as the previous ones, except
that instead of using the Euclidean norm (or its equivalent Frobenius norm), it uses a
2-norm matrix. This means that instead of the averaged values of excitation amplitudes,
utilizing the 2-norm matrix is closely related to the value of the largest single excitation
amplitude. Simply put, D1 is defined as follows:

D1 =

√
λmax(TTT). (2.37)

The elements of the matrix T are the single excitation amplitudes from MP2 and CCSD.
These amplitudes are obtained the same way as T1 and T2 single excitation amplitudes
described previously. The following cut-offs were proposed for the D1 diagnostic: single-
reference methods are generally applicable if D1(MP2) ≤ 0.015 and D1(CCSD) ≤ 0.020.
MP2 and CCSD methods are inadequate if D1(MP2) ≥ 0.040 and D1(CCSD) ≥ 0.050. In
between values of the defined thresholds indicate that MP2 and CCSD theory generally
perform well, but caution must be taken for systems where factors other than orbital
relaxation could affect the quality of the reference wavefunction. This was initially extended
to open shell CCSD wavefunction by Leininger et al.51 and then revised by Lee.52

D1 diagnostics are invariant with respect to orbital rotations and are not size dependent
(size-intensive). The latter property makes it appropriate for large systems and for system
comparison with different sizes.

D2 Diagnostic from MP2 and CCSD

There have been concerns regarding the reliability of single excitation amplitudes as a
metric to detect the inadequacy of the HF reference determinant, especially when this is
due to the low-lying double excited states. Thus, it has been suggested to utilize the largest
double substitution amplitude as a diagnostic.53 However, it has been demonstrated50 that
this diagnostic is dependent on the system size and lacks invariance to orbital rotations
within each of the occupied and virtual spaces, making it inappropriate for systematic
comparison of different molecules.

To address this issue, double excitation amplitudes from MP2 and CCSD were utilized in
a formulation similar to D1, i.e., using 2-norm matrix. The diagnostic value is obtained as
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follows:

D2 =
√
λmax(TTT), (2.38)

where the overall matrix can be built from the respective occupied (To)TTo and virtual
(Tv)TTv matrices. These are then diagonalized, and the largest eigenvalue is selected.
The elements of the matrices are given as

[(To)TTo]i,j =
∑
kab

T ik
abT

kj
ab ,

[(Tv)TTv]a,b =
∑
ijc

T ij
acT

ij
cb .

(2.39)

MP2 and CCSD are generally applicable if D2(MP2) and D2(CCSD) values are 0.15 or
below. It is encouraged to go beyond MP2 if D2(MP2) > 0.17 and beyond CCSD if
D2(CCSD) > 0.18. Values in between imply that both single-reference methods can be
used with caution. These diagnostics are size-intensive, have the same invariance properties
as the energy with respect to orbital rotations, and are easily computed since double
excitation amplitudes are readily available.

2.3 Local Correlation Methods

The previous discussions in this chapter were mainly focused on methods which use
canonical molecular orbitals (CMOs). CMOs consist of eigenvectors of the self-consistent
field (SCF) Fock operator and are usually delocalized over large parts of a molecule. The
use of such orbitals presents two challenges: 1) steep scaling and 2) chemical interpretation.

Conventional wavefunction methods, such as MP2 and CCSD(T) discussed in the previous
sections, are still very costly when applied to large systems. Despite the advancement in
computer hardware and efficient parallelization of the existing algorithms, the ‘scaling wall’
of these conventional methods still cannot be overcome. It is well known that the dynamic
correlation is a short-range effect. The pair correlation energies decay at short range,
i.e. r−6, where r is the distance between two localized spin orbitals. The use of CMOs
inhibits the conventional correlation approaches from benefiting from the electron locality.
This also makes the ‘steep scaling’ unphysical. Another challenge presented by the use of
CMOs is the chemical interpretation chemists can obtain after deploying quantum chemical
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Local

Canonical

1σ (O-H) 2σ (O-H)1LP (O)

Figure 2.1: Selected occupied valence orbitals of water molecule. Canonical (top) and local
(bottom) representations were obtained from the calculation at the LMP2/cc-pVDZ level using
Molpro 2022.54 LP refers to lone pair, while σ refers to the sigma bond indicated. Orbitals were
visualized using PyMOL.55

calculations. The delocalized nature of CMOs does not often coincide with the molecular
orbital pictures chemists have learned. See for example, in Figure 2.1 the top part are the
valence occupied orbitals of a water molecule. These are selected molecular orbitals (MOs)
from calculations conventional calculations, and as shown, the orbital density is scattered
and difficult to associate with any physical meaning.

The challenges mentioned above can be addressed by the use of local correlation methods.
These sets of methods are the traditional ones where the whole molecule is treated in
one calculation, and various approximations that take advantage of the fast decay of the
correlation energy are applied. The other approach is called fragmentation methods, in
which the whole system is divided into smaller subsystems and these pieces are treated
independently, mainly via conventional methods but local correlation methods are also
possible. The latter approach is beyond the scope of this discussion, but further reading
can be done in Reference 56.

In local correlation methods, the type of orbitals used are the localized molecular orbitals
(LMOs). In contrast to CMOs, these are normally restricted to one or two atoms with a
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small intensity on the nearby atoms. In the case of π-delocalized systems, LMOs might have
a significant intensity on three or more atoms. The use of LMOs addresses the difficulty
of chemical interpretation which is inherent with the use of CMOs. Localizing molecular
orbitals bridge the gap between chemical intuition and molecular wavefunctions, making it
easier to connect with classical chemical concepts, for example in Figure 2.1. In this case,
the lower orbitals can be viewed as Lewis representations of the two O−H bonds and one of
the lone pairs of oxygen. From the practical point of view, LMOs significantly reduce the
scaling of conventional correlated wavefunction methods due to a dramatic reduction of
the virtual orbitals needed for the correlation of each electron pair, as well as the number
of pairs overall computed.

The idea of local correlation is almost as old as the idea of electron correlation itself, and
has been suggested even before HF was feasible for medium sized systems.57,58 However, it
took two decades to revive the idea through the pioneering works of Pulay and Saebø,59–64

and in the last 25 years, enormous progress has been made towards the development of
accurate local correlation methods. One of the ways to go about the scaling problem of
the conventional methods is to take advantage of the short-range character of electron
correlation. This can be done by the use of LMOs (discussed above) and by introducing
local approximations. Two basic approximations are central to local correlation methods:
first, the total correlation energy is the sum of pair energies where each pair describes
the correlation of electrons in a pair of occupied LMOs, where each pair describes the
correlation of the electrons in a pair of LMOs. A hierarchy is introduced depending on the
magnitude of pair energies, and this is discussed further in Section 2.3.4, and depending
on the method, approximations can be introduced for each class, ranging from full LCCSD
for strong pairs to a non-iterative perturbation correction for distant pairs. Second is the
domain approximation, which is applied to each individual pairs. A domain is a subset of
local virtual orbitals which is spatially close to the LMO pair under consideration. With
these local approximations in hand, the accuracy of the wavefunction-based correlation is
preserved as much as possible. This approach also reduces the unfavorable scaling due to
system size, ideally reaching linear scaling.

2.3.1 Localization of Orbitals

Pulay’s main idea59 regarding local description of electron correlation is to transform the
occupied orbitals into local orbitals, as follows:
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|i⟩ ≡ |ϕloci ⟩ =
val∑
k

|ϕcank ⟩U loc
ki . (2.40)

The equation above shows that unitary transformation (U) of CMOs |ϕcank ⟩ results to LMOs
|i⟩ ≡ |ϕloci ⟩. Superscript ‘can’ refers to CMOs, ‘loc’ to LMOs and ‘val’ to valence orbitals.
Note that localization excludes uncorrelated core orbitals. This is because mixing of core
and valence orbitals, even without any local approximation, would affect the correlation
energy.

|i⟩ =
NAO∑
µ=1

|µ⟩Lui,

where Lµi =
val∑
k

CµkU
loc
ki .

(2.41)

The localized valence orbitals |i⟩ can also be expressed in AO basis |µ⟩ using a rectangular
transformation matrix L, whose dimension is given by NAO × Nval. The transformation
matrix L is related to the canonical MO coefficient C by the unitary transformation matrix
Uloc. In the following text, LMOs are indicated by indices i, j, k, l while Greek letters
µ, ν, ρ, σ are used for AOs.

2.3.2 Localization Schemes

In general, local orbitals are obtained by maximization or minimization procedures of
certain properties to determine the transformation matrix U loc

ki from Equation 2.41. One
of the most common localization schemes is the Foster-Boys (FB).65,66 In this approach,
the spatial extension of orbitals is minimized. Despite providing well-localized orbitals,
the method suffers from the so-called ‘banana bonds’.67 This can be seen, for example, in
the double bonds between carbons. The FB method generates two equal banana-shaped
orbitals resulting from sp2 hybridization of the carbons. Another approach to localization
is the Edmiston-Ruedenberg (ER) method.68,69 This approach is mainly based on the
maximization of the self-repulsion energy, 1

r12
. It is not used as extensively as others,

probably due to the high scaling of 5th order compared to the 3rd order scaling of FB.

In 1989, Pipek and Mezey introduced a localization function that measures the number of
atomic centers over which a molecule extends.70,71 Pipek-Mezey (PM) scheme generally
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maximizes the sum of the squared Mulliken partial charges, qiA

PPM =
atoms∑
A

val∑
i

q2iA, (2.42)

where

qiA = 2
∑
µ∈A

Lµi

∑
ν

SµνLνi. (2.43)

The first sum in Equation 2.43 indicates that it runs over all the basis functions µ centered
on atom A. In the end, this minimizes the number of centers at which orbitals are localized.

In Mulliken population analysis, the overlap populations occur since the AO basis is not
orthogonal. Thus, this overlap population is equally divided between different atomic
centers. This ignores the possibility of both atoms having different electronegativity. This
results in Mulliken’s population displaying some unphysical behaviour which increases
with the AO basis set size. This problem is aggravated when, on top of a large basis set,
augmented functions are included.

The problematic definition of Mulliken partial charges in Equation 2.43 can be avoided
by using intrinsic bond orbitals (IBOs).72 To expand the occupied Hartree-Fock orbitals
exactly, the molecule-intrinsic minimal basis of polarized orbitals (IAOs) |ρ⟩ is created.72–75

A suitable minimal basis of free-atom AO |ρ̃⟩ generates the IAOs using projection operators,
which are then symmetrically orthogonalized. The redefined partial charges are then

qiA = 2
∑
ρ∈A

⟨i|ρ⟩ ⟨ρ|i⟩ . (2.44)

Equation 2.44 is used in PM localization shown in Equation 2.42.

2.3.3 Population Analysis

Chemical models are very important for aiding the understanding of various chemical
phenomena. For example, in the context of reactivity, the concept of ‘electron rich’ and
‘electron poor’ regions is vital to predict possibilities of reaction or to rationalize the
outcome of a synthetic route. From the quantum mechanical perspective, this can be
aided by the mapping of atomic charges through population analysis.
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Population analysis is a mathematical way of partitioning a wavefunction (or electron
density) into charges on the nuclei, bond orders, or other related information. Since partial
charges do not correspond to any unique physical properties, these are non-observables. In
reality, there are no partial charges on each atom, just the fact that there is a positive
nucleus and negative electrons. However, pinning down electron density and nuclear
charges into partial charges per atom greatly helps chemists to understand the electron
density distribution. Although an artificial construct, it is often useful for synthesis design
and mechanism prediction.

Mulliken population analysis was partially discussed in the previous section (Section 2.3.2).
In this approach, the electron population of an atom A is calculated as:

ρA =

Nbas∑
µ∈A

Nbas∑
ν

DµνSµν . (2.45)

The density matrix Dµν can be obtained from

Dµν =
occ∑
i

niCµiCνi, (2.46)

where ni is the occupation number of the orbital. Note that the Mulliken charges in
Equation 2.43 are related to the Mulliken population in Equation 2.45 by

ρA =
∑
i

qiA. (2.47)

As mentioned, large basis sets with augmented functions can yield unreasonable results.
Diffuse functions may describe adjacent atoms more than the atom which they are centered.
For example, this approach tends to underestimate the charge separation in ionic bonded
systems. Regardless of the deficiencies, this scheme is still popular because, as seen in the
above equations, it is easy to implement.

2.3.4 Local MP2

In Section 2.3.1, the localization method was discussed, where it mainly focused on
localizing occupied orbitals. The virtual space, on the other hand, is spanned by a set
of nonorthogonal functions {ϕ̃r}. This can be done in several ways, e.g. projected atomic
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orbitals (PAOs),59 pair natural orbitals (PNOs),76 or orbital-specific virtuals (OSVs).77

Using PAOs, the virtual space is obtained directly from AOs {χµ}. This can be done by
projecting the occupied space as

|ϕ̃r⟩ =

(
1−

m∑
i=1

|ϕi⟩ ⟨ϕi|

)
|χµ⟩ =

∑
µ

|χµ⟩Pµr, (2.48)

in which the projection matrix can be obtained via

P = 1− LL†S. (2.49)

The same notation is followed for the occupied LMOs (i, j, ...) while notation r, s, ... is
assigned to projected AOs. Projected AO basis is indicated with tilde.

In the context of LMP2,78 a subset [i] (orbital domain) of the projected AOs |ϕ̃r⟩ is assigned
to each LMO |ϕi⟩. In the local basis, the first order wavefunction is

|Ψ(1)⟩ = 1

2

∑
ij∈P

∑
rs∈[ij]

T̃ ij
rs |Φrs

ij ⟩ with T̃ ij
rs = T̃ ji

sr . (2.50)

From the equation above, P is the pair list. The pair domains [ij] are defined as:

1. Strong pairs (R ≤ 1 bohr) - treated with highest level, e.g. LCCSD.

2. Weak pairs (1 < R ≤ 8 bohr) - treated (optionally) with LMP2.

3. Distant pairs (8 < R ≤ 15 bohr) - treated (optionally) with LMP2.

4. Very distant pairs (R ≥ 15 bohr) - can be entirely neglected.

In this context, however, strong and weak pairs are both treated by LMP2. Note that the
number of projection functions r, s ∈ [ij] for a given pair (ij) is independent of molecular
size. R is the closest distance between atoms in the primary domains [i] and [j].

The amplitudes T̃ ij are determined using iterative procedures since a local orbital basis
does not diagonalize the zeroth-order Hamiltonian. The linear equations can be obtained
by minimizing the Hylleraas functional:61
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R̃ij
rs = K̃ij

rs +
∑

tu∈[ij]

f̃rtT̃
ij
tuS̃us +

∑
tu∈[ij]

S̃rtT̃
ij
tu f̃us

−
∑
k

 ∑
tu∈[kj]

S̃rtfikT̃
kj
tu S̃us +

∑
tu∈[ki]

S̃rtfkjT̃
ik
tu S̃us


= 0,

(2.51)

where S̃ and f̃ are the overlap and Fock terms in projected basis, respectively. These
residuals R̃ij

rs must vanish to zero for r, s ∈ [ij]. The exchange term K̃ij
rs represents a small

subset of the transformed two-electron integral, which is expressed as:

K̃ij
rs = (ri|sj) =

∑
µν

PµrPνs

[∑
ρσ

LρiLσj(µρ|νσ)

]
, (2.52)

where all r, s are close to either i or j. Once the amplitudes have converged, the second-
order energy can be obtained by:

ELMP2 =
∑
ij∈P

∑
rs∈[ij]

(2T̃ ij
rs − T̃ ij

sr)K̃
ij
rs. (2.53)

2.4 Energy Decomposition Analysis

The intermolecular forces governing the interaction of chemical systems, like in a dimer
or in the bulk, represent a fascinating facet of chemistry and an intriguing area for
chemical investigations. These interactions are ubiquitous, with their influence significantly
affecting many fields, such as catalysis, biochemistry, material science and medicinal
chemistry. However, gaining a deeper insight into the intricate interplay of these forces is
a substantial challenge for theoretical chemistry. Despite the difficulty, several methods
have been developed in the attempt to isolate and (approximately) quantify these forces
from the interaction energy of the system. In this section, two schemes will be discussed,
distinguishing between the decomposition of the HF energy or the correlation energy.
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A B
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Charge transfer

Occupied MOs

Virtual MOs

Figure 2.2: Energy decomposition of the HF interaction energy proposed by Kitaura and
Morokuma.79

2.4.1 Kitaura-Morokuma Energy Decomposition Scheme

Consider a dimer system with closed-shell molecule A and B. The interaction energy of
the dimer is defined as

Eint = EAB − EA − EB, (2.54)

where EA and EB are energies of molecules A and B computed at the dimer geometry.
The individual energies should be calculated at a consistent level of theory and basis set.
If calculations are done using the HF approximation, Eint is obtained by:

EHF
int = ∆EHF

AB −∆EHF
A −∆EHF

A . (2.55)

In 1976, Kitaura and Morokuma proposed a decomposition scheme within the Hartree-Fock
approximation. In their scheme, the interaction energy EHF

int is divided into the following
contributions:

EHF
int = ∆Eele +∆Epol +∆Eex +∆Ect. (2.56)

The components in Equation 2.56, referred to here as KM-EDA, are defined as follows:
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1. Electrostatic (ele) is the classical electrostatic interaction between occupied MOs. It
does not cause any mixing of MOs, thus it does not appear in Figure 2.2.

2. Polarization (pol) is shown in red arrows in Figure 2.2. This type of interaction causes
the mixing of occupied MOs (dark red/blue) with virtual MOs (light red/blue).

3. Exchange (ex) is the interaction between the occupied MOs of molecule A and B
and virtual MOs of A and B (see green arrow in Figure 2.2). This interaction causes
exchange and delocalization between molecules.

4. Charge transfer (ct) involves the mixing of occupied MOs of A with the virtual MOs
of B, and vice versa, as indicated by the blue arrow in Figure 2.2. This type of
interaction causes intermolecular delocalization.

The ‘charge transfer’ term in Equation 2.56 includes the rest of the contributions after
isolating electrostatic, polarization, and exchange. This term can be further divided into
1) true charge transfer term, Ect, 2) exchange-polarization term, Eexpl and 3) coupling
term Emix, where

Emix = ∆E − (∆Eele +∆pol +∆Eex +∆Ect +∆Eexpl). (2.57)

In 2009, Su and Li80 extended the described energy decomposition of the interaction
energy from HF approximation. Their approach differs from the original KM-EDA in
that it isolates the exchange and repulsion terms. The isolation of electrostatic, exchange,
and repulsion terms was done according to Hayes and Stone’s method.81 This new
implementation is formulated with spin orbitals that accommodate both closed and open-
shell systems described by RHF, ROHF, and UHF. This enables the analysis of covalent
bonds and intermolecular interactions.

Additionally, in this extension, the polarization energy is redefined as orbital relaxation,
describing the transition from monomer HF spin orbitals to the supermolecule HF spin
orbitals. This conceptually resembles the electronic interaction energy defined by Ziegler
and Rauk82 for the Hartree-Fock-Slater method.

To simplify things, assume that the dimer is composed of similar molecules, called A (i.e.,
A=B), and the dimer is called X. The total interaction energy of the dimer X composed
of molecules A is described as
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∆EHF = ⟨ΨX | ĤX |ΨX⟩ −
∑
A

⟨ΨA| ĤA |ΨA⟩ . (2.58)

ΨX and ΨA are the HF wavefunctions for the dimer X and monomers A. The following
equations will show how each individual contribution to the total interaction energy is
calculated.

Before defining the terms of different energy contributions to the total interaction energy,
three energy approximations are first defined. The approximate energy expression E(1)

X for
a dimer X composed of monomers A is:

E
(1)
X =

α,β∑
i∈X

hi +
1

2

α,β∑
i∈X

α,β∑
j∈X

⟨ii|jj⟩ −
∑
A

1

2

α∑
i∈A

α∑
j∈A

⟨ij|ij⟩+ 1

2

β∑
i∈A

β∑
j∈A

⟨ij|ij⟩

+ Enuc
X .

(2.59)

In this equation (Eq. 2.59) hi, ⟨ii|jj⟩ and ⟨ij|ij⟩ represent one-electron and two-electron
Coulomb and exchange integrals. Enuc is the nuclear repulsion energy. The spin orbitals
i and j are the variationally optimized HF orbitals that minimize the HF energy of
each monomer and are orthonormal to each other within each monomer. They are not
variationally optimized to minimize the dimer molecule HF energy and are not necessarily
orthonormal to each other between the monomers. Note that this specific equation does
not contain an exchange term between the monomers.

The approximate energy expression E(2)
X is provided by

E
(2)
X =

α,β∑
i∈X

hi +
1

2

α,β∑
i∈X

α,β∑
j∈X

⟨ii|jj⟩ − 1

2

α∑
i∈X

α∑
j∈X

⟨ij|ij⟩ − 1

2

β∑
i∈X

β∑
j∈X

⟨ij|ij⟩+ Enuc
X . (2.60)

The spin orbitals i and j are the orthonormal HF spin orbitals of the monomers. Similar
to Equation 2.59., they are not necessarily orthonormal to each other between monomers.
Note that this energy approximation, unlike 2.59, already contains the exchange terms
between monomers.

The last approximate energy is E(3)
X , given by
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E
(3)
X =

α,β∑
i∈X

α,β∑
j∈X

hij(S
−1)ij +

1

2

α,β∑
i∈X

α,β∑
j∈X

α,β∑
k∈X

α,β∑
l∈X

⟨ij|kl⟩

× (S−1)ij(S
−1)kl −

1

2

α∑
i∈X

α∑
j∈X

α∑
k∈X

α∑
l∈X

⟨ik|jl⟩

× (S−1)ij(S
−1)kl −

1

2

β∑
i∈X

β∑
j∈X

β∑
k∈X

β∑
l∈X

⟨ik|jl⟩

× (S−1)ij(S
−1)kl + Enuc

X .

(2.61)

The equation above for the dimer X can be obtained if the monomer orbitals are used to
form a single-determinant wavefunction. Orbital orthonormality is enforced by S−1. The
indices i, j, k and l are orthonormal HF spin orbitals of the monomers. Like the previous
approximate energies, these may not necessarily be orthonormal between monomers. S is
the overlap matrix or the monomer spin orbitals. Since orthonormality between monomers
is not imposed, S and its inverse S−1 are not unit matrices.

From the approximate energies outlined above, the individual energy contributions to the
total interaction energy can now be defined. The electrostatic interaction energy between
the monomers A and dimer X is

∆Eele = E
(1)
X −

∑
A

EHF
A

=
1

2

α,β∑
i∈X

α,β∑
j∈X

⟨ii|jj⟩+ Enuc
X −

∑
A

1

2

α,β∑
i∈A

α,β∑
j∈A

⟨ii|jj⟩+ Enuc
A

 (2.62)

In RHF cases, Equation 2.62 is the same as in the original KM-EDA. This energy
component is additive for a supermolecule consisting of many monomers.

The exchange energy is basically the difference of E(2)
X and E(1)

X :

∆Eex = E
(2)
X − E

(1)
X . (2.63)

The exchange energy in Equation 2.63 is additive for a molecule composed of several
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monomers.

The repulsion contribution, on the other hand, can be obtained as:

∆Erep = E
(3)
X − E

(2)
X . (2.64)

In the case of RHF, ∆Eex+∆Erep is the same as the exchange repulsion term in KM-EDA
formulation. Unlike the first two contributions defined above, the repulsion energy is not
pairwise additive for a supermolecule consisting of many monomers. This is due to the
enforced simultaneous orthonormalization of all the orbitals from all monomers by using
the inverse of the supermolecule overlap matrix S, as reflected in Equation 2.61.

Lastly, the polarization term is defined as:

∆Epol = EHF
X − E

(3)
X , (2.65)

where EHF
X is the HF energy of the dimer X. For a supermolecule consisting of many

monomers, ∆Epol is not additive. This term is equivalent to the sum of polarization,
charge transfer and the mixing term in the original formulation of KM-EDA.

Using the extended and modified version of Su and Li,80 the total HF interaction energy
∆EHF is decomposed into the following:

∆EHF = ∆Eele +∆Eex +∆Erep +∆Epol. (2.66)

Note that the new decomposition scheme in Equation 2.66 will be referred to as extended
KM-EDA. Any reference to extended KM-EDA in the succeeding chapters pertain to this
definition.

2.4.2 PNO-LMP2 Energy Decomposition Scheme

In the framework of the energy decomposition scheme introduced by Su and Li,80 the
assessment of dispersion contributions to the overall interaction energy is accomplished
through a supermolecular approach, coupled with the utilization of size-consistent
correlation methods, such as MP2 and CCSD(T). This means they are treating the
correlation energy as a pure dispersion contribution. However, that is not appropriate
since correlation energy includes other forces on top of dispersion.
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In the recent years, several approaches have been developed to dissect not only the
HF total interaction energy but also the correlation energy. One of which is the
perturbative approach where the Hamiltonian is partitioned into contributions of non-
interacting fragments and a series of perturbating potentials.83 One of its very well known
methods is the Symmetry-Adapted Perturbation Theory (SAPT),84 which is unfortunately
very computationally demanding as its scaling is O(N 7). Within SAPT, the total
interaction energy is the sum of its electrostatic, induction, dispersion and exchange-
repulsion contributions.

On a different front, Neese and colleagues have introduced the Local Energy
Decomposition85 (LED) scheme, designed to partition the Hartree-Fock and correlation
energy into distinct components. This approach uses pairs of localized occupied orbitals
and the contributions are grouped into various families, 1) intrafragment excitations, 2)
dispersion contributions (composed of genuine dispersion and exchange dispersion) and
3) charge transfer contributions (two types of dynamic charge polarization and double
dynamic charge polarization). Notably, LED has recently been extended to facilitate the
analysis of interaction energies of open-shell molecular systems, utilizing the UHF-DLPNO-
CCSD(T).86

Pair natural orbitals (PNOs) represent a cutting-edge in the local correlation methods.
PNO-based coupled cluster methods are currently stand as the most accurate and efficient
approaches in this domain.38,39,87–91 It is noteworthy that the computational cost scales
linearly with system size.91–93 Their capability to treat big molecules at high accuracy
makes them an interesting tool to explore the intricate interplay of intermolecular forces
in a given system.

Within the Molpro quantum chemical package, a decomposition scheme using projected
atomic orbital (PAO) LMP2 provides a way to breakdown the correlation energy into
several components, i.e., dispersion, exchange-dispersion and ionic contributions. This is
similar to the scheme presented by Schütz et al. in Figure 2.3. Recently, Wuttke and
Mata modified the scheme by introducing the the charge transfer terms between distinct
fragments, in contrast to the traditional bundling of all charge transfer components into
ionic contributions. A detailed derivation of PNO-LMP2, as well as the technicalities of its
implementation, is discussed Reference 94. In this section, the relevant equations towards
the PNO-LMP2 decomposition scheme are highlighted.

Consider a dimer consisting of monomers A and B. At the correlation energy level, the
dispersion and exchange-dispersion interactions of the orbitals i and j are located on
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different fragments A and B, respectively. In this context, LMOs i are excited to PNOs a,
same as j to b. These contributions are expressed as follows:

∆Edisp(ij) =
PNOs∑
ab

T̃ ij
abK

ij
abP

A
a P

B
b ,where i ∈ A, j ∈ B, (2.67)

∆Eexdisp(ij) =
PNOs∑
ab

T̃ ij
abK

ij
abP

B
a P

A
b ,where i ∈ A, j ∈ B. (2.68)

From the equation above, PA
a is the percent weight of PNO a on fragment A and

T̃ ij
ab is the contravariant amplitudes in the localized PNO basis. As for the charge

transfer contributions, two types of contributions are present – between intermolecular
and intramolecular orbital pairs. These contributions are calculated as:

∆ECTA→B
(ij) =

PNOs∑
ab

T̃ ij
abK

ij
ab(P

B
a P

B
b + PA

a P
B
b + PB

a P
A
b ),where i, j ∈ A (2.69)

∆ECTA→B
(ij) =

PNOs∑
ab

T̃ ij
abK

ij
abP

B
a P

B
b ,where i ∈ A, j ∈ B. (2.70)

Finally, the intramolecular energy term, which is derived by the excitations from LMOs to
PNOs located in the same fragment, is written as:

∆Eintra(ij) =
PNOs∑
ab

T̃ ij
abK

ij
abP

A
a P

A
b ,where i, j ∈ A. (2.71)

These contributions are printed in the output file of the calculations. PNO-MP2 as well as
PNO-SCS-LMP2, in which the latter is used, are both available in the in-house program
of the group and is implemented in Molpro 2018 developer’s version.95

2.5 Local Orbital Analysis of Molecular Interactions

As mentioned in the earlier sections of this chapter, the use of LMOs instead of CMOs is
beneficial in two ways – for chemical interpretation and computational speed. The former
is an important point but is often not highlighted in quantum mechanical investigations.
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The use of local orbital subspaces bridges the gap between the chemists’ perceived chemical
picture and the results derived from quantum mechanical calculations. In this section, the
basics of local methods as well as the derivation yielding to the physical interpretation of
the dispersion forces are discussed.

2.5.1 Basic Principles

For any correlated wavefunction-based methods, the energy expression can be written as
the sum of the reference (Eref) and correlation (Ecorr) contributions:

Etot = Eref + Ecorr, (2.72)

where Eref is the HF energy.

For any correlated energy decomposition analysis (EDA) scheme, a useful starting point is
the observation that the correlation energy of a closed-shell system can be written as:

Ecorr =

occ∑
i≥j

virt∑
ab

(ia|jb)τ̃ ijab, (2.73)

where i, j are the occupied orbitals, a, b are virtual orbitals and τ̃ ijab are the contravariant

amplitudes τ̃ ijab =
4τ ijab−2τ ijab

1+δij
. Note that in MP2, τ ijab are the double excitation amplitudes

T ij
ab. Equation 2.73 can be expressed as the sum of double excitation contributions from

pairs of occupied orbitals to the virtual orbitals. Therefore, Ecorr can be expressed as pair
correlation energies, ϵij ,

Ecorr =
occ∑
ij

ϵij . (2.74)

The correlation energy can be further divided into inter-fragment and intra-fragment
contributions (using Equation 2.74) if each orbital is assigned to the fragment where it
is dominantly localized. As initially suggested by Schütz,96 if a local representation of
the virtual orbitals is used, virtual orbitals can also be assigned to the fragments where
they are predominantly localized. Looking at Equation 2.73, the double excitations can
be regrouped into several classes corresponding to the different physical components of the
interaction using the LMP2 method.
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intra
(a)
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(b)

disp-exch
(c)

ionic
(d)

BSSE
(e)

Ionic BSSE
(f)

Figure 2.3: Schematic representation of different types of double excitation in the local correlation
approach in the context of intermolecular interactions. Red represents fragment A and blue for
fragment B. Dark colors (bottom part) depicts occupied orbitals while the lighter ones (upper part)
are for virtual orbitals.

The decomposition of different double excitations in a local correlation approach is
illustrated in Figure 2.3. In (a), the double substitution occurs within the same monomer
and this corresponds to intramolecular correlation effects. If there is simultaneous
single excitations on two different monomers to orbitals in the same domain, as in (b),
this substitution class is responsible for the dispersive coupling between the individual
monomers. On the other hand, cross excitations transferring one electron from an occupied
LMO of monomer A (blue) to the correlating virtual space of monomer B (light red), and
vice versa as shown in (c), this class refers to the dispersion-exchange effects. Lastly, we
have three types of ionic substitutions which can be generally categorized as charge transfer.
Excitation in (d) shows an ionic substitution transferring one electron from an occupied
LMO of monomer B to the correlating virtual space of monomer A coupled with single
excitation in monomer A. Excitations in (e) corresponds to the doubly ionic excitations
from the occpied LMO of monomer B to the virtual space of monomer A. Lastly in (f),
the type of ionic substitution is when the electrons are transferred from an occupied LMO
of monomer A to the correlating virtual space of monomers A and B.

Per the construction of PAO-based local methods, (e) and (f) are automatically excluded.96

Double excitation in (e) is mainly responsible for the BSSE in conventional calculations.
This, of course, only considers the post-HF energy. The double excitations on (f), on the
other hand, may contribute to some extent to the interaction energy, most especially when
hydrogen bonds are involved.

Using the partition scheme described above, the correlation energy using a local
wavefunction method (LMP2 in this case) is as follows:
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Ecorr = ϵintra + ϵdisp + ϵdisp−exch + ϵionic. (2.75)

2.5.2 Dispersion Analysis Using Local Orbitals

The relevance of dispersion, most especially with an increasing number of electrons, is
undeniable. This will be established in Chapter 3 and recent studies continuously prove
its importance.97–101 In local correlation methods, excitations are spatially resolved (see
Figure 2.3), which allows one to distinguish London dispersion energy terms from other
correlation contributions. Given a dimer system with monomer A and B, this arises from
the excitation pairs which involves both monomers, but the ‘ownership’ of the electrons is
untouched. Dispersion energy, as defined by each orbital pair, is as follows:

ϵdisp
ij =

∑
a∈A,b∈B

Kij
ab(2K

ij
ab −Kji

ab)

ϵi + ϵj − ϵa − ϵb
, (2.76)

with an excitation {ij} → {ab} where i, a is located in one monomer (say A) while j, b
in a different monomer (say B). The monomers should be defined, but such approach is
flexible enough that it can also handle intramolecular terms. Note that in both cases, it is
necessary to define grouping criteria for different orbitals.102,103

To build a visual representation of dispersion interactions, the pair energy terms ϵdisp
ij can

be used. Considering fragment A, a matrix density DA in the AO fragment is computed
as

DA
µν =

∑
i∈A

1

Ni

(
ϵdisp
ij

)
P i
µν , (2.77)

where P i
µν corresponds to the closed-shell orbital density of orbital i. This density matrix

is obtained as

P i
µν = 2CµiCνi, (2.78)

which is simply the AO density matrix for orbital ϕi.

In order to recover the dispersion interaction between fragment A and B, ΓA(r) is integrated
over the whole space, as in the following equation:
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ΓA(r) =
∑
µν

DA
µνχµ(r)χν(r). (2.79)

This is interpreted as the dispersion interaction density (DID) in AO matrix representation.
Such definition has already been used in previous works as well as by other groups.104–106
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Chapter 3

Dispersion Forces in Diols, Ketone-Alcohols
and Helicenes

Some parts of this chapter are reproduced from the results, discussion and conclusion
sections of the following published access articles:

X. Aniban, B. Hartwig, A. Wuttke, and R.A. Mata. Dispersion Forces in Chirality
Recognition – A Density Functional and Wave Function Theory Study of Diols. Phys.
Chem. Chem. Phys., 23(21):12093–12104, 2021

S. Suárez-Pantiga, P. Redero, X. Aniban, M. Simon, C. Golz, R.A. Mata, and M. Alcarazo.
In-Fjord Substitution in Expanded Helicenes: Effects of the Insert on the Inversion Barrier
and Helical Pitch. Chem. Eur. J., 27(53):13358–13366, 2021
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3.1. INTRODUCTION

3.1 Introduction

The interaction between enantiomers and diastereomers is a determining factor for the
structure of the chiral molecular aggregates and is tied to their function and corresponding
molecular properties. One scenario involves chirality recognition, which is the ability of a
chiral probe to distinguish between two enantiomers of different molecules. The interactions
between these molecules subtly change once one of the systems is replaced by its mirror
image, making the study of non-covalent interactions more interesting albeit challenging.
Since chiral molecules constitute the building blocks of life, understanding the fundamentals
of such phenomena provides a lot of insight as to how nature works. No wonder this has
fascinated chemists and physicists since its discovery in the middle 19th century.109

The homochirality of life represents a very striking aspect of chirality recognition
and remains one of the great, unanswered questions in evolutionary science.110,111

Macrobiomolecules, for example, consist of units of the same chirality. In human beings
the proteinogenic amino acids have the L configurations while bacterial cell walls contain
their D enantiomers. The interaction of drugs with enzymes or protein receptors is also
characterized by marked enantioselectivity.112 That is why in the fields of synthesis,
drug development and toxicology, chirality recognition plays a very important role.113–117

The most prominent example involves the drug thalidomide, which contained a racemic
mixture of the active ingredient. This latter was prescribed to (pregnant) women to
alleviate morning sickness. Unfortunately, it was later realized that the (R)-enantiomer
produced the desired result, but the (S )-enantiomer caused severe birth defects.118–120

Thus, chirality recognition is a very important consideration in biochemistry121 and
organic synthesis.122,123 These interactions also find their relevance in supramolecular
chemistry124–127 and chirality effects in molecular imprinting.128

Chirality recognition is thought to take place when weakly bound contact pairs form,
which involve specific interactions, one of which is hydrogen bonding. Experimental
methods have been developed to gauge these interactions, and indirect information can
be obtained through optical spectroscopy,129 NMR spectroscopy,130 circular dichroism131

and some thermodynamic measurements.132 However, there remains a scarcity of direct
characterization at the molecular level. This would be very helpful in acquiring an accurate
understanding of forces at play in this phenomenon. Experimental techniques that do
not involve perturbation brought by solvent are highly desirable. Chirality recognition
in molecular encounters can then be effectively studied by gas-phase experiments on
isolated neutral or ionic clusters. Linking supersonic expansions with high- or medium-
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resolution spectroscopic techniques allows for the formation of non-equivalent weakly
bound diasterioisomer complexes and their spectroscopic characterization (see a review
of methods in Ref. 133).

High-level quantum chemistry calculations thrive very well with experiments done in gas
phase. The electronic, vibrational, rotational as well as photoionization spectroscopic
data serve as excellent benchmarks for ab initio calculations. In a number of chirality
recognition studies done using theory and experiment, DFT (Density Functional Theory)
has always been the workhorse on the theory side.133–135 This is understandable because
WFT methods are usually more expensive. Conventional MP2, for example, scales to
O(N )5 and the ‘gold standard’ CCSD(T) scales to O(N )7. However, developments in
WFT led to local methods which, apart from making WFT methods more affordable, also
provide a better picture of orbitals and orbital interactions which is highly favorable for
chemists’ interpretation.

In this chapter, several forms of chirality are explored. Molecules with stereogenic centers
- a common form of molecular chirality and perhaps the most familiar to chemists (e.g.
ketone-alcohol systems), are investigated. Several systems whose chirality is due to
molecular asymmetry caused by steric hindrance (e.g., diols) are also explored. Lastly,
molecules that are chiral due to internal steric strains are probed.

Throughout this chapter, we address a central question concerning subtle intermolecular
forces responsible for chirality recognition. Specifically, we inquire about the role of
dispersion in the chirality recognition of diols. Our investigation covers not only the
energetic aspect but also the extent to which dispersion has affected the molecular
structure. Additionally, the intriguing case of fenchone-fenchol systems is featured in this
chapter. The different molecular systems are isoenergetic, which means that if chirality
recognition is only viewed from the energy perspective, it does not exist on these systems.
However, their structural aspect differ significantly and such difference is evident on
spectroscopic data available. This prompts us to scrutinize the delicate balance of the
various forces that dictate and stabilize these configurations. Lastly, we delve into the
realm of expanded helicenes where the effect of substituent in the fjord of the helix was
reviewed. Specifically, we investigated how the substituent affected the potential energy
surface of the system, as well as how dispersion plays a role in shaping the helicenes
particularly when in-fjord substitution and helix expansions were performed.
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3.2 Definition of Dispersion-Free LMP2 Gradients

In order to properly describe non-covalent interactions, especially the weak forces that
significantly contribute to the molecular stability of the system under scrutiny, a proper
treatment of the electron correlation is necessary. The simplest useful post-HF method
which can incorporate dynamic electron correlation is MP2. In MP2, unlike in HF, London
dispersion forces are naturally accounted for. One drawback, though, is that it typically
overestimates the non-covalent interaction energies for dispersively bound systems. Despite
that, MP2 generally outperforms HF and exchange correlation functionals which have not
been corrected for dispersion in the calculation of interaction energies.

Based on Equation 2.75 and Figure 2.3, the class of excitation responsible for dispersion
contribution can be easily identified. In order to remove the dispersion gradients from
(SCS)-LMP2 method, the following steps are taken:

1. An LMP2 energy calculation is carried out at each step. Using non-canonical orbitals,
the amplitudes are obtained in an iterative fashion.

2. The amplitudes for pair excitations describing dispersion are set to zero at the end
of the LMP2 iterations, i.e., T ij

ab with i, a ∈ A and j, b ∈ B ̸= A.

3. Using the altered amplitudes matrix, the coupled perturbed localization equations
are solved and the (SCS)-LMP2 gradients are computed.

4. If the Hess-matrix is computed, the same amplitudes matrix is used, consistent with
the gradients.

The results for dispersion-free LMP2 and SCS-LMP2 gradients were confirmed by
numerical gradients. All of these methods were integrated in the Molpro 2018.1136

development version as an internal program for the research group.

3.3 Chirality Recognition in Diol Systems

As mentioned earlier, studying non-covalently bound systems without the perturbations
brought by the solvent is of great interest because it can provide a more accurate
understanding of how different forces are at play. Thus, benchmarking by gas phase
experiments is highly favorable for quantum mechanical studies. In the case of studying
chirality recognition via supersonic jet expansions, the use of jet cooling allows for low
temperatures, which closely coincide with the commonly assumed 0 K for the quantum
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mechanical calculations. This allows an optimal collaboration between theory and
experiment.

From the theory perspective, one of the aspects that is of interest is the relative
stability of some local minima representing possible structures observed in the gas phase
experiments. IR, Raman and microwave spectroscopy experiments are helpful in deducing
these structures. In the case of neutral molecular aggregates, the choice of electronic
structure method plays an important role because their relative stability is strongly
influenced by van der Waals interactions.

3.3.1 The Interesting Case of Diols

When systems contain hydrogen bonding, their conformational stability is usually
interpreted on the basis of charge transfer and electrostatic effects. While this is often
correct, other intermolecular forces of attraction are also present, for example, dispersion.a

Despite the latter being considered weak, its contribution usually increases with system
size and can become an important driving force of some molecular properties, e.g., for
molecular stability and reactivity. Dispersion has long been neglected in theoretical
treatments because it is a weak force (which is only true for smaller systems) decaying
at R−6 and percentage-wise. In general, it was thought to have a small effect on the
total energy of the system. However, in recent years, it was shown that this force is not as
negligible as the scientific community thought earlier. In some instances, it is a key force for
stabilization138,139 and is an important point to consider in interpreting reactivity.140–146

With its demonstrated relevance, quantum chemical approaches have evolved to capture
this, and for methods which naturally account for dispersion, prime importance is given
to its quantitative approximation.

In studying chirality recognition in gas phase, the importance of hydrogen bonding as well
as dispersion interactions has been explored extensively using infrared, Raman, microwave
and mass spectroscopy.135,147–156 Although most studies are concerned with intermolecular
chiral interactions, intramolecular recognition can also occur. One example is the folding of
n-alkanes where all the gauche angles in the kink of the most stable hairpin-like structure

aIt is unfortunate that some literature interchange dispersion and van der Waals forces. Sometimes,
even if the intermolecular force referred to is van der Waals, the community has an implicit assumption
that this is dispersion. It is important to highlight here that van der Waals force is defined by IUPAC as
the attractive or repulsive forces between molecular entities (or between groups within the same molecular
entity) other than those due to bond formation or to the electrostatic interaction of ions or of ionic groups
with one another or with neutral molecules. The term includes: dipole–dipole, dipole-induced dipole and
London (instantaneous induced dipole-induced dipole) forces. The term is sometimes used loosely for the
totality of nonspecific attractive or repulsive intermolecular forces.137
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exhibit the same sign.157 In reactions involving chiral molecules, dispersion is also vital, as
in the case of catalytic asymmetric Diels-Alder reactions.145 In this case, a chiral ion forms
a pocket for the diene unit, and dispersion is responsible for stabilizing its enantioselectivity.
Moreover, in host-guest interactions, dispersion is a relevant force responsible for the chiral
separation in chromatographic methods.158–161

Chirality induced spin selectivity (CISS) is one interesting mechanism proposed to explain
chirality recognition between chiral species. According to Kumar et al.,162 spin polarization
interaction is less repulsive for homochiral molecules than their heterochiral counterpart.
This results in an enantiospecific overall interaction between each type of species. It should
be noted, however, that this is a short-range interaction where a significant orbital overlap
is important. From the theoretical end, it is not clear which level of quantum chemistry is
appropriate to capture CISS accurately. Also, it is of interest to know if dispersion can at
all drive chirality recognition.

In the quest to understand better the phenomena of chirality recognition, the aggregation
of axially chiral 1,2-diols via conventional hydrogen bonds are particularly interesting.
Such molecular species offer a multitude of directional intermolecular hydrogen bond
patterns. This has interesting consequences in solids because the simplest 1,2-diol, i.e.,
ethanediol, crystallizes separately depending on the handedness and extended hydrogen-
bonded networks.163 This occurs despite the fact that this molecular species is only
transiently chiral in the liquid phase.

In this section, several species of diols were investigated as shown in Figure 3.1. It is
important to note that two systems, i.e., ethanediol (EDO) and pinacol, exhibit transient
chirality while cyclohexanediol (CHexDO) has permanent chiral properties. Note that
the first two are examples of chirality cases whose molecular asymmetry is due to steric
hindrances (in this case, depending on the phase). Cyclohexanediol, on the other hand, is
an example of a chiral system with stereogenic centers.

3.3.2 DFT and Dispersion Corrections

In standard DFT methods, energies are approximated on the basis of local quantities of the
local electron density or reduced density gradient in GGA functionals.164 However, London
dispersion is an interaction which originates from non-overlapping densities which cannot
be accounted for in classical DFT functionals. The failure of DFT to describe dispersion
interactions has long been documented since at least 25 years ago.165–167 The success
of some functionals (most notably B3LYP/6-31G(d)) was due to error compensation

51



CHAPTER 3. STUDY OF CHIRAL SYSTEMS WITH LOCAL CORRELATION
METHODS

HO H
OH

H

H OH
OH

H

H

HO H
OH

HH
H

H OH
OH

HH
CH3

HO CH3
OH

CH3H3C
CH3

H3C OH
OH

CH3H3C

a) ethanediol b) pinacol

c) cyclohexanediol

Figure 3.1: Molecular systems studied here, represented using their respective Newman
projection. The gauche + and - conformers are portrayed for a) ethanediol (EDO) and b) pinacol,
showing the transient nature of these systems. On the other hand, the permanent chirality of c)
cyclohexanediol (CHexDO) are depicted between its R,R and S,S conformers.

because of lack of complete description of dispersion and pronounced BSSE.168 To
remedy this problem, several dispersion corrections devised by Grimme were incorporated.
This involves a ‘correction’ potential function that is added to the exchange-correlation
functional of choice.169–171 However, this does not only capture dispersion but corrects
other shortcomings of the functionals as well.

Note that DFT does not completely lack dispersion. The functionals themselves have
already some dispersion incorporated albeit incomplete. The addition of the empirical
dispersion corrections gives a better description of this force in chemical systems. However,
in investigations that require a total neglect of dispersion, simply removing D-terms will
not necessarily eliminate it. One reason is that density functionals already account for
dispersion-like contributions at short distances. Also, the extent of empirical correction is
not clear in terms of how it corrects for other shortcomings like correlation and exchange
parts of the functional. In hybrid functionals, for example, the degree to which the exact
HF exchange is mixed introduces another uncertainty.

3.3.3 Local Orbital Scheme in Chirality Recognition

WFT, unlike DFT, captures dispersion not as a separate term but as a part of the total
energy. To isolate dispersion contributions and non-covalent interactions in general, a
multitude of approaches are available. Some of these methods have been discussed in
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Section 2.4.2, such as SAPT. An energy decomposition scheme based on local correlation
methods can naturally describe long-range correlation effects like London dispersion. This
approach has been described in detail in Section 2.5.1. If one wants to go to coupled cluster
level, there is also local variants of the method to compute non-covalent interactions. PNO-
LCCSD(T)-F1240 and DLPNO-CCSD(T) LED85,104,106 are representative methods. The
inclusion of orbital relaxation terms and the incorporation of the triples in the CCSD(T)-
based energy decomposition schemes make it problematic; thus triples are commonly
excluded in the analysis.85

In the context of local orbital approaches, excitation terms contributing to dispersion
can be pinpointed and isolated. This section delves into an examination of whether
dispersion effects play a role in chirality recognition for some selected diols shown in
Figure 3.1. To address this, dispersion contributions for both DFT and local WFT
were activated and deactivated to see how the energy and structure of the systems were
affected. Since most works quantify dispersion by examining energy differences in fixed
structures, a different approach was taken by also carefully analyzing the changes in
structures – something that is often neglected. Two important structural parameters were
analyzed: intermolecular hydrogen (OH−−−O) bonding and the distance between the center
of masses of each monomer in the dimer, R(CM-CM). These are important considerations
in benchmarking, especially when experimental techniques such as high resolution infrared
and microwave spectroscopies are involved. In the energy aspect, the range of relative
stabilities and more importantly, the energy gap between heterochiral-homochiral (het-
hom) species were carefully analyzed. To provide further insights, DID visualization103,172

was used to delineate specific moieties within the system that interact due to dispersion
effects.

3.3.4 Computional Methods

DFT calculations

Conformational sampling was done using the CREST (Conformer-Rotamer Ensemble
Sampling Tool)173,174 program with the semi-empirical GFN2-xtb (Geometries Frequencies
Noncovalent Interactions version 2- extended Tight Binding)175,176 method. Non-covalent
interaction (keyword: NCI) mode was specified in the said approach. To ensure that no
conformers have been overlooked, multiple sampling runs, as well as manual cross checking
were done.

The large number of conformers generated by CREST were pre-optimized with B97-3c/ma-
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def2-TZVP.177–179 Relevant structures were then optimized using BP86,180–182 PBE,183

PBE0184,185 and B3LYP180,186,187 using the same basis set. This basis set was chosen for
these set of structures because it is cost-effective. It was also observed that when using
the mentioned basis set with B3LYP, it can get aVQZ level of results in terms of relative
energies but in a very fast computation time (approximately 90 times faster). Note that
density fitting (RI-J) was used for PBE and BP86.188 The optimization was followed by
frequency calculation within the double harmonic approximation. All these calculations
were run using ORCA (version 4.2.1).189,190 Dispersion effects were incorporated using
D3(BJ,abc).170,191 DFT calculations ‘without’ dispersion were done by removing the
D3(BJ,abc) keyword.

WFT Calculations

Relevant structures found in the DFT calculations above were used for the WFT
calculations. Optimization and frequency calculations of the molecular systems were done
using PAO-based LMP264,192 and spin component scaled LMP2 (SCS-LMP2)26 methods
with the aug-cc-pVTZ, H=cc-pVTZ basis set.193,194 For the localization part, Pipek-Mezey
localization scheme was used.70,71 Density fitting was also utilized for both the reference
wavefunction and (SCS)-LMP2 calculations. All these calculations were conducted using
Molpro 2018.1 commercial version.136

For WFT calculations without dispersion, the same specifications as in the calculations
above were employed, except that the local methods were modified as described in Section
3.2 in an in-house program. Calculations were carried out using the Molpro 2018.1
development version.136 For the DID calculations, Molpro 2019.2 was used.195

Unless otherwise stated, all presented energies are zero-point corrected.

Naming Scheme for the Molecular Species

To identify each species, the nomenclature used was the same as in Ref. 135.

• It distinguishes between dimers of the same chirality (homochiral = hom) and
different chirality (heterochiral = het).

• The different conformers are characterized by the amount of intermolecular hydrogen
bonds and how the terminal hydrogen bond is oriented (only the intermolecular
hydrogen bonds), thus the number after het or hom.
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112°
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97°

138°
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Figure 3.2: Sample illustration of O-OH angle and how different specifiers are determined.
A structure with four intermolecular hydrogen bonds is labeled as het4 and does not require
additional specification because no terminal nor dangling OH groups exist. On the other hand, a
structure with three intermolecular hydrogen bonds with bifurcation is labeled as hom3b’.

• As shown in Figure 3.2, an apostrophe (’) sign is added if the terminal O−OH angle
is below 120◦, as shown in the figures labeled as hom3 and hom3’.

• Each label must be unique, so in cases where any label reoccurs, an ‘a’ is added.
This also represents its own structural motif, where the C−C backbone is oriented
parallel whereas it is more orthogonal otherwise.

• For bifurcated hydrogen bond arrangements, a subscript ‘b’ is added. As shown in
Figure 3.2, the bifurcated arrangement makes it necessary to account for two different
O-OH angles which overall results in hom3b’ as its label. On the other hand, het4
does not have terminal/dangling OH groups, thus no more specification is needed.

• All conformers with the same name of the different compounds share close structural
similarity.
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3.3.5 Is Dispersion a Driving Force of Chirality Recognition?

Structural Changes

For systems with hydrogen bonding, the intermolecular hydrogen bond distances are very
important to examine because the simulated vibrational frequency calculations are highly
dependent on the structure. Thus, care must be taken in benchmarking signature peaks.
In this section, geometry optimizations, with and without dispersion, were done on the
structures of different diol systems. The impact of dispersion on the different structures of
the selected diol systems is presented.

As shown in Figure 3.3, the density distribution of the HO···H bond distances was noted in
the presence of dispersion and once it was removed. Uniform scaling was ensured to make
sure that comparisons among different systems can be made. A 0.20 Å and 0.17 Å average
HO···H bond shift was observed in EDO for LMP2 and SCS-LMP2 results, respectively.
B3LYP results showed a lesser degree of shift, i.e., 0.05 Å. The same was observed for
CHexDO. The mean values of the intermolecular hydrogen shift were 0.18 Å (LMP2), 0.14
Å (SCS-LMP2) and 0.06 Å (B3LYP). For pinacol systems, there was an increase in the
mean values, notably from B3LYP which gave 0.11 Å shift. The WFT methods also showed
higher shifts for this system, i.e., 0.27 Å for LMP2 and 0.22 Å for SCS-LMP2.

Based on the values discussed above, WFT methods indicated a more pronounced shift
in HO···H bonding once dispersion was removed. There was also a broadening in the
distribution alongside with the shift. DFT methods, however, had a very slight shift relative
to their WFT counterparts on the same system once D3 correction was not included in the
geometry optimization. Structurally, longer hydrogen bonds were observed once dispersion
was neglected, resulting in weaker hydrogen bonds. The larger impact in (SCS)-LMP2 is
easy to explain. With uncorrected DFT, dispersion is still included in the short range,
that is why the impact is lesser. This is a common issue in interpretations of the impact
of dispersion based solely on the D3 correction. Overall, the changes in intermolecular
hydrogen bonding (which can be seen from the density shifts) as well as the broadening of
the density peaks reflects the scattering of distances after dispersion was removed - a clear
indication on how dispersion strongly affects the structure during geometry optimization.

Another structural aspect worthy of analysis is the distance between the center of masses of
the two monomers in the dimer. This is important because any changes to the structure,
either the monomers are closer or farther from each other, can affect interpretations in
microwave spectroscopy. This change, denoted as ∆R(CM-CM), indicates whether or not
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Monomer A Monomer B

CMA CMB
R(CMA – CMB)

Figure 3.4: Differences in the center of mass (CM), ∆R(CM-CM), of each monomer in the
dimer. Positive values indicate the increase in the distances of the monomers once dispersion was
not included.

the monomers move towards or far from each other. We now observe how average ∆R(CM-
CM) changes once dispersion was removed.

Upon analyzing the trend in R(CM-CM), it was observed that it has a similar behavior
with the HO···H bond mapping. In EDO, for example, the removal of dispersion caused
the monomers to move away from each other by 0.22 Å (SCS-LMP2) and 0.27 Å (LMP2).
Removal of D3 in B3LYP showed only a slight increase in separation, i.e., 0.12 Å. Pinacol
shows a similar pattern. Then again, B3LYP only resulted in an average of 0.16 Å
separation, while the ∆R(CM-CM) doubled for LMP2, at 0.32 Å. SCS-LMP2 also resulted
in a wide separation of 0.26 Å. In a slightly contrasting picture, CHexDO has a similar
trend to others but the differences between the methods are not as much as the EDO
and pinacol. LMP2 indicated an average separation of 0.30 Å while B3LYP has 0.20 Å.
SCS-LMP2 has closer results to B3LYP, with only 0.23 Å increase in the distances of
the monomers once dispersion was removed. The explanation regarding this particular
structural aspect is similar to the intermolecular hydrogen bond distances.

Energy Differences: Het–Hom Gaps

Chirality recognition is often discussed in terms of relative energies, which determine the
populations of different conformers. As shown in Figure 3.5, one of the noticeable effects
of dispersion is in the energy range of the relative stability of every molecular system being
examined, as shown in the energy range of the red and blue dots. These dots represent
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het4 hom3’

het4 hom3’

het4 hom3b’

het3 hom3b’

het4 hom3a

het2’’ hom3b’

het2’’ hom3b’

het4 hom3b’

het2’’ hom3b’

het4 hom3b’

het4 hom3’

het4 hom3’

het3b’ hom3b’

het4 hom4

het3b’ hom3b’

het4 hom4

het3’ hom3b’

het4 hom4

Figure 3.5: Chirality recognition in diols, as reflected by their heterochiral-homochiral (het-hom)
gaps. Relative stabilities of all relevant species (red dots: heterochiral, blue dots: homochiral)
were plotted and are indicated by the length of blue bar, which reflects the het-hom gap of every
species. To benchmark with a higher level calculation, PNO-LCCSD(T)-F12/cc-pVTZ-F1240,196

calculations were executed for the structures responsible for the het-hom gap, corrected with the
ZPVE values of their respective optimization methods.
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the optimized structure using three different methods, each with and without dispersion.
In the case of EDO, a range of 8.4–11.0 kJ mol−1 decreased to 3.4–6.1 kJ mol−1 once
dispersion was removed. For CHexDO, a change from 6.1–9.1 kJ mol−1 to 4.1–6.4 kJ
mol−1 was observed, while 5.5–9.6 kJ mol−1 for pinacol was reduced to at most 5.5 kJ
mol−1 when optimization was done without dispersion.

The decrease in the energy range of the relative stability of the molecular species has
also affected the heterochiral-homochiral (het-hom) gap. This gap represents the energy
difference between the most stable heterochiral and homochiral structure and it is the
most important value to consider regarding chirality recognition. A significant decrease in
this gap, when comparing methods with and without dispersion, indicates that dispersion
is a driving force of chirality recognition. As shown in Figure 3.5, the het-hom gap is
represented by the blue bar and is calculated using both DFT and WFT.

Looking at the blue bars of EDO, a dramatic decrease in the het-hom gap was observed
using LMP2 with no dispersion, leading to isoenergetic hetero- and homochiral structures
(6.6 down to 0.2 kJ mol−1), while the het-hom gap of SCS-LMP2 went down to 0.1 kJ
mol−1 from 4.0 kJ mol−1, a 3.9 kJ mol−1 difference. When B3LYP was used, the removal
of D3 correction decreased the het-hom gap to more than half, i.e., 6.7 kJ mol−1 was
reduced to 2.7 kJ mol−1. For the CHexDO, the LMP2 gap was lowered by 4.2 kJ mol−1

while SCS-LMP2 gap was reduced by approximately 1/3 of its gap with dispersion (3.1 to
1.1 kJ mol−1). B3LYP gap decreased more than half, i.e., 3.6 kJ mol−1. Finally, in the
case of pinacol, the het-hom gaps were decreased by 5.3 kJ mol−1, 3.7 kJ mol−1 and 4.4
kJ mol−1 for LMP2, SCS-LMP2 and B3LYP methods, respectively. Evidently, dispersion
in these three systems is a determining component in chirality recognition.

It is interesting to note that the structures responsible for the het-hom gap change
depending on 1) the choice of method and 2) the presence of dispersion (see Figure 3.5).
What is constant is that for structure optimizations with dispersion, het4 is always the most
stable structure. For homochiral species, however, it varies depending on the method and
the system. For calculations with dispersion, hom3 is the most stable structure for EDO
and CHexDO while it is hom4 for pinacol. Unfortunately, hom4 for EDO and CHexDO
were not included in this specific set of comparison because the removal of dispersion for
both systems causes the structure to converge into something else. This inhibits a proper
comparison on the effect of dispersion.

Calculations of PNO-LCCSD(T)-F12/cc-pVTZ-F1240,196 energies provide an overview
of how B3LYP, LMP2 and SCS-LMP2 energies fare in terms of predicting the het-
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Figure 3.6: Het-hom gaps of different systems evaluated to determine if the chirality recognition is
due to electron correlation or a structural effect. Different LMP2 approaches were used. Structural
effects were reflected in bars colored dark blue to light blue as well as dark red to light red. Any
change from blue to red indicates an electron correlation effect. When dispersion is added, -d is
shown. Otherwise, -nd is written.

hom gaps. Note that this is only possible on structures optimized with dispersion,
as an in-house program for PNO-LCCSD(T)-F12 without dispersion is not available.
For example, for the pink bar in B3LYP in pinacol, het4 and hom4 structures were
picked and had their electronic energies recalculated using the PNO-LCCSD(T)-F12 level
of theory. Note that ZPVEs used were those of the structures at which they were
optimized. Going back to pinacol, the trend was clear - all the WFT and DFT methods
employed slightly overestimated the het-hom gap compared to the values given by PNO-
LCCSD(T)-F12. A mixed behavior was observed for EDO and CHexDO where some
gaps were overestimated while some were underestimated. For both systems, SCS-LMP2
significantly underestimated the het-hom gap when compared to the coupled cluster energy
(approximately 3 kJ mol−1).

Since the het-hom gap in Figure 3.5 is a result of optimization with and without dispersion,
is the het-hom gap then a result of a structural effect or solely an electron correlation effect?
To answer this question, LMP2 optimized structures responsible for the het-hom gaps for
each species were subjected to a series of single point energy calculations. Results are
shown in Figure 3.6. These are all ZPVE-corrected, using the ZPVE of the optimization
procedure. Blue bars show the final total electronic energy with dispersion while red bars
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represent gaps for total electronic energy without dispersion. The shift from dark blue to
light blue as well as dark red to light red reflects the structural effect. Any shift from blue
to red indicates the correlation effect.

As shown in Figure 3.6, there is an insignificant structural effect on the het-hom gap,
as reflected in the small energy change between dark and light colors. Note that dark
blue represents LMP2 with dispersion, light blue is a single point energy calculation with
dispersion on top of structures optimized with dispersion. Same goes with red bars. These
results support the common approach to quantify dispersion effects – taking fixed structures
and observing solely the energy differences. This happens despite the significant structural
changes observed earlier.

Which Moiety Contributes the Most?

The previous discussions have clearly shown the impact of dispersion in chirality
recognition, both in energies and structures of the conformations investigated. It is then of
great interest to know which specific part of the dimer has a larger dispersion contribution.
To help map the source, DID visualization103 was employed. Density contribution to the
interaction was calculated using PAO-based SCS-LMP2. In this section, only the structures
responsible for the het-hom gaps were examined.

In Figure 3.7, the most stable heterochiral and homochiral conformations for the three
systems are shown, except for pinacol where hom3b’ was chosen to be consistent with the
other two molecular systems. A consistent range of density (3.0 × 10−10 to 1.5 ea−3

0 ) was
chosen for the visualization to ensure comparability. The red color in the map indicates
a strong interaction while blue indicates a weak interaction. The DID plot shows that
the OH moieties of the monomers contribute the most in terms of dispersion. More
specifically, more pronounced dispersion contributions are coming from the oxygen atom,
and an observable dispersion density on the hydrogen atom. This is due to the increased
polarizability of the oxygen when involved in a hydrogen bond.

The het4 systems in Figure 3.7 showed larger dispersion interaction density compared to
its homochiral counterpart. This means that dispersion, as a stabilizing force, is stronger
in these set of conformations. Looking closely, this is because of the nature of the structure
itself. The het4 structures have four hydrogen bond networks while hom3b’ family only has
three. When comparing the DIDs, it becomes obvious that the OH groups are strongly
interacting in het4 while in hom3b’, the density in the OHs are not as strong as in their
het4 counterparts. Furthermore, the hydrogen in the free OH group in hom3b’ does not
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(R)-camphor (R)-fenchone (R)-⍺-fenchol
(1R,4R) -1,7,7-trimethyl

bicylo[2.2.1]heptan-2-one

(1R,4S) -1,3,3-trimethyl
bicylo[2.2.1]heptan-2-one

(1R,2R,4S) -1,3,3-trimethyl
bicylo[2.2.1]heptan-2-ol

Figure 3.8: Structural formulas of camphor, fenchone and α-fenchol. The molecules in the box
are considered in this study.

significantly contribute to the DID. It is notable that the density is symmetric among het4
structures due to its S4 symmetry (see Appendix A.1, Figure A.2). Since the intermolecular
hydrogen bonds make the distances of oxygen atoms from different monomers closer, this
leads to stronger dispersion interactions.

3.4 Energy Balances in Ketone-Alcohol Systems

As mentioned, one aspect of chirality with which chemists are very familiar is the presence
of stereogenic centers. Since this type of chirality is permanent, it is interesting to see
how different structural handedness affects the relative stability between homochiral and
heterochiral species, revealing information about their chirality recognition. For largely
rigid molecules with stereogenic centers, chirality recognition can be used in benchmark
studies for theoretical methods, because one molecule is just merely mirrored and not a
significant amount of deformation energy is necessary. This also means that shortcomings
of the methods, e.g., not including anharmonicity, should mostly cancel.

In a recent study by Schnell and co-workers198 regarding chirality recognition of (R)- and
(S)-camphor with (R)-α-fenchol, they uncovered the delicate balance of intermolecular
forces responsible for the stabilization of SR and RR species. They found that larger
London dispersion forces are present in the SR isomer than the RR and pointed to it as a
reason of the SR’s more compact structure and larger rotational constants. On the other
hand, the RR isomer features a slightly larger electrostatic and inductive contributions,
which are correlated to its OH bonding strength. The latter is evident in the OH
stretching fundamental wavenumber observed in vibrational spectroscopy, thereby allowing
the discrimination between the two isomers.
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Slightly changing the structure may or may not have a big effect on the chirality recognition
of the system. In this section, instead of camphor as in the previous study,198 fenchone
was utilized. Fenchone and camphor are bicyclic monoterpenes. Their constitutional
isomers differ in the position of their two geminal methyl groups. As shown in Figure
3.8, the geminal methyl group is located at C7 for camphor while it is at C3 for fenchone.
Essentially, for fenchone and α-fenchol, they just differ in the substituent, one being alcohol
and the other being ketone.

In this section, chirality recognition of (S)- and (R)-fenchone with (R)-α-fenchol was
investigated. Specifically, the relative energies of the SR and RR configurations were
given special attention and were benchmarked with the observed results of vibrational and
microwave spectroscopy. A subtle balance of the forces keeping the RR and SR species
was also explored using energy decomposition methods and was used to rationalize the
fundamental OH stretching wavenumbers. Lastly, using DID visualization, the parts of
the molecule interacting due to dispersion were mapped.

3.4.1 Computational Methods

To search for possible conformations of the SR and RR systems, a combination of manual
conformational search, CREST173,174 (version 2.11.1) based on GFN2-xtb175,176 (version
6.4.0), and AIMD (ab initio molecular dynamics) was utilized. ORCA189,190 4.0.1 was
used to carry out AIMD calculations, at the HF-3c199 level of theory. The Berendsen
thermostat at 298K and 450K were utilized. With the available conformational samples,
geometry optimizations were done using B3LYP/may-cc-pVTZ180,186,187,200,201 using the
Gaussian 16202 quantum chemical package. Grimme’s dispersion correction with Becke-
Johnson damping (D3BJ) was incorporated.170,191 Unique species within 2 kJ mol−1

relative energies were picked for further analysis. To better account for dynamic correlation,
high level PNO-LCCSD(T)-F12/cc-pVTZ-F1240,196 calculations were done on top of the
B3LYP structures. The ZPVEs of the B3LYP calculations were used along with the
electronic energies calculated from PNO-LCCSD(T)-F12 level of theory.

Since it is of great interest to uncover the forces that govern the interactions of the
molecular aggregates and have a more grounded view of the dimerization energies, energy
decomposition analyses have been carried out. However, the interpretation of these forces
may vary, depending on the decomposition scheme employed toward the total (interaction)
energy of the system. The Kitaura-Morokuma (KM) scheme was utilized to decompose
the reference HF energy.79 The original form, however, is prone to numerical instability

65



CHAPTER 3. STUDY OF CHIRAL SYSTEMS WITH LOCAL CORRELATION
METHODS

and basis set sensitivity, which mainly comes from the antisymmetric intermediate
wavefunction. Thus, we used the KM method as extended by Su and Li,80 which is referred
here as extended KM. In this scheme, the supermolecular approach is used to calculate
the interaction energy, and the latter is decomposed into four components: electrostatic,
exchange, repulsion and polarization. For the dynamic correlation contribution to the
interaction energy, this is decomposed using local correlation analysis. Such scheme was
first proposed by Schütz et al.,96 which initially used projected atomic orbitals (PAOs).
This has been recently extended to pair natural orbital-based methods in the Molpro
program package. One notable consideration when using PNOs as virtual spaces is their
lack of intrinsic locality like PAOs. This can result to instabilities since localization of the
pair domains is required. To overcome this, bundling some terms is a possible solution.104

The procedure can be made robust by the use of Boys localization65 and Løwdin partial
charges. Thus, the original interaction classes of Schütz are still used here.96 In this
approach, the correlation part of the interaction energy is divided into three contrubutions:
dispersion (which contains dispersion and exchange dispersion), ionic and intramolecular
contributions. The final two terms are bundled into non-dispersion contributions.

For both energy decomposition schemes (extended KM and PNO-SCS-LMP2, see Section
2.4), an in-house code implemented in Molpro 2018.1 developer’s version136 was utilized.
All calculations pertaining to energy decomposition use cc-pVTZ194 basis set. In order to
visualize which part of the fenchone and α-fenchol were interacting due to dispersion, DID
visualization103 was done on most stable structures of SR and RR systems using Molpro
2021.3 commercial version.54

3.4.2 Relative Stability of Dimers

For molecular species within the window of 1 kJ mol−1 from the most stable structure, the
four most stable conformers of RR and SR species were selected for further analysis, as
shown in Figure 3.9. For the SR conformers, B3LYP and PNO-LCCSD(T)-F12 energies
predicted the same species, SR-I, as the global minimum. However, in the case of RR
conformers, B3LYP predicted RR-IV, which is 0.31 kJ mol−1 lower than RR-I. The PNO-
LCCSD(T)-F12 results, however, indicated otherwise, pointing to RR-I as the global
minimum. Note that the energy differences of these species are very small, even below
the chemical accuracy of quantum mechanical methods. Thus, vibrational and rotational
spectroscopies are of great help in determining which among these structures are observed
in experiment.

66



3.4. ENERGY BALANCES IN KETONE-ALCOHOL SYSTEMS

RR-I
ΔECC = 0.00 
ΔEB3LYP = 0.00 

RR-II
ΔECC = 0.11 
ΔEB3LYP = 0.58 

RR-III
ΔECC = 0.18 
ΔEB3LYP = 0.61 

RR-IV
ΔECC = 0.26 

ΔEB3LYP = - 0.31 

(a)

SR-III
ΔECC = 0.64 
ΔEB3LYP = 0.09 

SR-IV
ΔECC = 0.80 
ΔEB3LYP = 0.43 

SR-I
ΔECC = 0.00 
ΔEB3LYP = 0.00 

SR-II
ΔECC = 0.23 
ΔEB3LYP = 0.30 

(b)

Figure 3.9: Most stable conformations of a) RR and b) SR species within 1 kJ mol−1 energy
window. Relative energies are in kJ mol−1 and are ZPVE corrected. ∆ECC is a high-level
energy correction from PNO-CCSD(T)-F12/cc-pVTZ-F12 using Molpro 2019.1. ZPVEs for the
CC energies are obtained from the B3LYP/may-cc-pVTZ calculations. Note that as much as
possible, the projection of the (R)-α-fenchol remains constant so differences on how the different
fenchone conformations rearrange themselves are noticeable.
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Figure 3.10: Superimposed structures of RR-I (green) and SR-I (blue). The two conformations
were fitted via the fenchol molecule (bottom structure) because this is the common structure of
both systems. The pair fitting was done via PyMOL.55

As demonstrated in Section 3.3, chirality recognition manifests through various molecular
features, one of which is the energy difference between homochiral and heterochiral species.
In the case of the fenchone-fenchol systems, the relative energy between RR-I and SR-I is
essentially zero based on the calculations done. One cannot discriminate between the most
stable complexes on the basis of energetics. On the other hand, vibrational spectroscopy
(FTIR jet spectroscopy) and microwave spectroscopy results provide tangible evidence
for the discernible existence of RR-I and SR-I. This evidence is elucidated by notable
discrepancies in the observed band shifts and rotational constants.

According to the results of FTIR jet spectroscopy (see Appendix A.1, Figure A.3), assigned
spectra for RR and SR species are on the opposite ends of the shown spectrum, i.e., RR -I
with 3526 cm−1 while SR-I with 3470 cm−1. These are associated with the OH stretching
fundamentals of hydroxy groups acting as a donor for hydrogen bonds. A 56 cm−1 difference
in the experimental results is a clear indication that these belong to different structures with
different OH stretching fundamentals, a manifestation of unique structural characteristics
of the system.
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Experimental rotational constants for the heterochiral and homochiral species are available
(see Appendix A.1, Table A.6 for the data). The experimental results match well with the
predicted rotational constants of the global minima of every category, i.e., RR-I and SR-
I. The experimental rotational constants corresponding to RR-I and SR-I are not very
similar. Looking at the structures, this is not surprising. Shown in Figure 3.10 are the
superimposed structures via the fenchol molecule. The spatial distribution of the systems
shown is very different, i.e., at different structural motifs relative to the reference fenchol
system.

These specific systems indicate that the usual approach of benchmarking, i.e., looking
only at the energy observables like relative energies or dimerization energies, can lead
to wrong interpretations. Structures and structural effects are equally important to look
at, especially when there are existing high-end experimental techniques that can help
elucidate how the structures of these systems look like. This further illustrates the prime
importance of complementary approaches with theory and experiment in disentangling
chemical phenomena, for example in explaining delicate balances of isoenergetic systems.

3.4.3 Analysis of Interaction Energies

Table 3.1: Local orbital analysis of the interaction energy of SR and RR fenchol-fenchone systems.
∆Eelec, ∆Eexch, ∆Erep and ∆Epol were calculated using extended KM scheme while the rest
were calculated using PNO-SCS-LMP2. The interaction energy, ∆Eint, was calculated using the
supermolecular approach at the same level of theory PNO-SCS-LMP2. The basis set used for all
calculations was cc-pVTZ. All values in kJ mol−1.

∆E(HF) ∆E(PNO-SCS-LMP2)
EintIsomer ∆Eelec ∆Eexch ∆Erep ∆Epol ∆Edisp ∆Enon-disp

Fenchone-fenchol
SR-I −54.2 −75.6 135.2 −23.4 −17.7 −0.1 −35.8
SR-II −50.5 −70.2 125.1 −22.0 −17.9 0.0 −35.5
SR-III −44.8 −70.5 123.5 −19.3 −21.4 −0.6 −33.1
SR-IV −48.9 −72.9 129.1 −20.9 −19.3 −0.3 −33.2
RR-I −44.3 −72.2 126.2 −19.6 −22.5 −1.3 −33.7
RR-II −49.0 −71.2 125.9 −21.2 −19.5 −0.3 −35.1
RR-III −54.1 −75.1 134.4 −23.2 −17.7 0.1 −35.6
RR-IV −45.4 −74.0 129.1 −19.3 −22.3 1.2 −33.2

Despite the SR-I and RR-I systems being isoenergetic, spectroscopic data (FTIR and
MW) revealed the presence of both species and that they are distinguishable. It is then
interesting to uncover which force(s) dominates one over the other, thereby leading to the
observed spectra and constants. Table 3.1 shows energy decomposition analysis using the
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SR-I RR-I Density
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weak 
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Figure 3.11: Density map of dispersion interaction using DID visualization.103 Conformations
considered are only SR-I and RR-I since they are the most stable structures of both systems.
Calculations were done using SCS-LMP2/aug-cc-pVTZ,H=cc-pVTZ. Density range: 2.5−4 to 0.5
using ParaView 5.4.0.197

extended KM and PNO-SCS-LMP2 schemes. Note that the sum of individual contributions
corresponds to the total interaction energy, Eint. As described in the methods, the ionic
and intramolecular contributions are added together as non-dispersion contributions. In
case one is curious of the non-bundled values, see Table A.7 in Appendix A.

Looking at the values in Table 3.1, higher (more negative) electrostatic and exchange
contributions were calculated for SR-I than for that of RR-I. This can be the reason why
the signature OH-stretching of SR-I is at lower wavenumbers (3470 cm−1) than that of
RR-I (3526 cm−1). The 56 cm−1 experimental shift is large enough to distinguish the
two bands from each other. This is nicely supported by theory, which indicated a shift
difference of 67 cm−1 in the double harmonic approximation, or 64 cm−1 after rescaling
(scaling factor of 0.9613 was used).

On the other hand, Table 3.1 shows that the dispersion contribution is higher in RR-I
than in SR-1 by about 5 kJ mol−1, as provided by the PNO-SCS-LMP2 results. Looking
at their structures in Figure 3.10, there is more contact surface of the RR-I that can be a
source of dispersion interaction. This is confirmed by the DID visualization, which shows
the relevant parts of the monomers are interacting via London dispersion as they form
the dimer. As shown in Figure 3.11, RR-I has more regions of space interacting due to
dispersion (more blobs lighting up) compared to SR-I. Based on the RR-I structure, on
top of the OH groups nearby each other, some −CH moieties are also nearer in proximity,
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thus contributing to the dispersion interaction. Note that dispersion is a function of the
number of electrons near each other which can interact due to instantaneous dipole, as well
as the polarizability of the moieties available.
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Figure 3.12: Behaviour of selected intermolecular energies versus the computed scaled harmonic
frequencies. ∆Eelec (light blue) and ∆Edisp (light red) as a function of the experimental (■ (SR-I)
and ♦ (RR-I)) or scaled harmonic (•) OH stretching wavenumber.

Overall, the total interaction energy of the dimers does not correlate with their relative
stability. This set of dimers exhibits a small energy range concerning their relative
stability, effectively making them isoenergetic. Moreover, their respective interaction
energies display only marginal differences. For instance, in the RR category, the maximum
difference of Eint is 2.4 kJ mol−1, while it is 2.7 kJ mol−1 for the SR counterpart. It
also does not necessarily reflect that the global minimum has the strongest interaction
(more negative interaction energy). This is true for the SR-I but not for the RR-I. It is
important to note that these differences fall below the chemical accuracy of the methods
used. On the other hand, these dimers are structurally very different, particularly in the
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spatial arrangement of S- or R-fenchone with respect to fenchol. The decomposition of
their interaction energies revealed a more notable difference in contributions, highlighting
that there is a delicate interplay of different components in the interaction energy.

The energy decomposition analysis in Table 3.1 can also provide insights on the behaviour
of selected non-covalent force in relation to the observable indicators of hydrogen bond
strength. Figure 3.12 illustrates the relationship regarding the dynamics of electrostatics
and dispersion forces with respect to both experimentally observed and computationally
determined scaled stretching wavenumber. As shown in the graph, the light red dots
indicate a negative correlation between dispersion forces and increasing scaled frequencies.
It displays a substantial correlation with a correlation coefficient of −0.93. In stark
contrast, the same graph shows that the electrostatic contributions have a positive
correlation with the increasing trends in experimental and calculated harmonic O−H
stretching. In this regard, a 0.99 correlation coefficient indicates a robust correlation
between these parameters.

The fenchol O-H stretch frequency in the complexes is found to be red-shifted in good
correlation with the electrostatic component of the interaction. This relates well to the
common assumption that hydrogen-bonds with larger electrostatic contributions are, in
fact stronger, implying a weaker O−H bond (lower force constant). In contrast, there is
an inverse relationship between the hyrodgen bond strength and dispersion contributions
among these systems.

3.5 Inversion Mechanisms in Substituted Helicenes

In the preceding two sections, we probed into the intricacies of chirality recognition with
a focus on the dynamic interplay within molecular aggregates displaying either transient
or permanent chirality. In this section, the main point of discussion revolves around the
configurational stability of the systems and its influence on the enantiomerization from
one chiral form to the other. As we transition from our prior discussion of dimers, we
now direct our attention to an interesting system: the expanded helicene molecule. This
large molecular structure derives its chirality from a unique combination of chiral molecular
strain and the presence of axial chirality.

Helicenes and their related compounds represent a distinctive class of polyaromatic
hydrocarbons (PAHs) that have garnered considerable scientific interest. Unlike other
PAHs like acenes and nanographenes, helicenes are characterized by unique properties:
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chirality originating from their non-planar, helical structure. The handedness of the
helicity is a consequence of the presence of axial chirality. Consequently, the clockwise
and counterclockwise helices are non-superposable. This family of compounds is of great
interest because of their unique properties they demonstrate in areas such as molecular
recognition203,204 molecular machines205 and asymmetric catalysis,206,207 to mention a
few.

a) Helicene
(only angular fusions)

b) Expanded Helicene
(alternating angular and

 linear fusions)

c) In-Fjord Substituted
 Expanded Helicene

angular

angular

linear

inner-
substitutions

Figure 3.13: Geometric and structural features of the different families of helicenes. Classical
helicene is shown in a), while expanded helicenes with alternating angular and linear fusions are
depicted in b). The helicenes discussed in this section are a form of expanded helicene with in-fjord
substituent, as presented in c).

The skeleton of helicene is typically composed of ortho-fused rings, as shown in Figure
3.13a. The helical structure is induced due to the steric hindrance between its terminal
rings, making its backbone twist in opposite directions. Typically, helicenes are denoted as
[n]helicene, where n is the number of rings. According to IUPAC, only the structures with
n > 4 are helicenes.137 The unsubstituted [4]helicene, due to its poor configurational
stability, has never been resolved into enantiomers.208 [5]helicene displays partial
configurational stability, making it a borderline case. This means that it can be resolved
into enantiomers but then racemizes within a couple of days at room temperature.
Configurationally stable [n]helicenes with n≥6 can be resolved at room temperature, and
∆G‡(T) for inversion increases with increasing number of ortho-fused rings.

Configurational stability is one of the most important stereodynamic feature of helicenes,
and is usually quantified in terms of the Gibbs activation energy, ∆G‡(T). This value
is a metric if the compound can or cannot be resolved into enantiomers under ambient
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conditions. The higher ∆G‡(T), the better access there is to the chiral functional materials
from helicenes. This makes the mechanism of helicene inversion an interesting feature. In
1970s, Martin et al.209 proposed three hypotheses for the helicene interconversion: 1)
bond breaking at the inner helix, 2) intramolecular double Diels-Alder reaction and 3)
‘conformational pathway’. The first one was easily ruled out because this would lead to a
diradical species in which the C−C bond breaking would require a huge energy. The second
one, involves an intermediate which, in principle, can be detected by 1H-NMR spectroscopy.
However, this intermediate was not observed in the spectrum so this hypothesis was
discarded. Recent studies have shown that intramolecular Diels-Alder reactions were
attainable but unfavorable.210–212 The last hypothesis, i.e., via conformational pathway,
is the most reasonable possibility arguing that helicenes are more flexible than previously
believed. This hypothesis justified the low potential barriers observed until nonahelicenes
since necessary molecular deformations are spread over a large number of bonds. This
justification was supported by several theoretical simulations over the years, as discussed
below.

The inversion of [n]helicenes were revisited by Grimme and Peyerminhoff208 in 1994 for
n = 3− 6, 8. They used semiempirical AM1, ab initio SCF and density functional theory
calculations using BLYP functional (basis set: SV+d+p).213 In their study, they affirmed
the flexibility of the fused benzene rings. The older notion about fused benzene rings is
that they are rigid and would prefer a planar structure. They also validated the increasing
barrier of helicenes with increasing rings until n = 6. Beyond that point, an increase
led to a plateau of energy. Unfortunately, their predictions led to large overestimation
using ab initio SCF method, with 10 − 14 kcal mol−1 error for n > 5. However, BLYP
calculations were able to approximate the barrier height of inversion with an accuracy of
±1 kcal mol−1. It is important to note that the activation barriers referred to here are
activation enthalpies, ∆H‡.

Janke et al.,214 in 1996, reevaluated the inversion barriers of [n]helicenes with n = 5 −
9. They used several computational approaches but this discussion only highlights their
results using B3LYP/3-21G//B3LYP/3-21G results (other approaches are semiempirical
methods). Their reference experimental results showed a plateau of activation barrier
(∆H‡) from n = 7 − 9. The increase of barrier with increasing n was supported by
the calculations, although within maximum deviation of approximately 3 kcal mol−1. Of
particular interest is the inversion path of most unsubstituted helicenes. For most cases,
it follows a one-step mechanism with C2 ground state and Cs transition state. However,
in the case of [9]helicene, it follows a three-step mechanism as well as an intermediate
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Figure 3.14: Helicoidal structures synthesized in the work of Suárez-Pantiga et al.108

structure near the Cs transition state in the second step. Furthermore, this Cs transition
state in the second step has a lower energy than the other two transition state structures
found.

The most recent theoretical explorations in helicenes were done by Barroso et al.215 in 2017.
In this study, they scrutinized the inversion mechanism of [n]helicenes with n = 4 − 24.
For this analysis, they used PBE0/def2-TZVP//PBE0/6-31G(d), where dispersion effects
were accounted by using Grimme’s D3170 correction. They validated that for n = 4−7 the
inversion mechanism follows a single-step pathway but with n ≥ 8, the process involves
multi-step pathways with 2n − 14 intermediates. These computations showed that the
inversion mechanism is more complex than previously conceived, particularly when more
rings are involved. More importantly, their results underscored the delicate effect of the
steric hindrance and the number of π interactions as crucial factors influencing the changes
in inversion barrier heights.

The helicenes with ortho-fused benzene rings possess a fixed diameter of the inner and outer
helix. In contrast, expanded helicenes, as depicted in Figure 3.13b, exhibit an alternating
linear and angular connectivity. One significant distinction between expanded helicenes and
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the ‘orthodox’ ones is the helix diameter. The order of ortho and meta-fused rings dictates
the diameter of the helix. Unfortunately, with the expanded helix diameter comes the lower
configurational stabilities. Up to date, no configurationally stable helicene which follows
the alternating pattern in 3.13b has been reported, although the ones which follow angular-
angular-linear fusions are available.216–221 The synthesis of helicene-type compounds with
larger radius, featuring sufficiently high barriers to be resolved into enantiomers, remains
a formidable challenge.

Recently, Suarez-Pantiga et al.108 synthesized a series of expanded helicenes of different
sizes and shapes. Unlike ordinary unsubstituted expanded helicenes in Figure 3.13b, they
incorporated phenyl and bi-phenyl substituents at the deepest part of their fjord, as shown
in Figure 3.13c. The products (see Figure 3.14) were accessed via sequential Au-catalyzed
hydroarylation of appropriately designed diynes. Most experimental work done, such as
synthesis, x-ray crystal structure as well as photophysical characterization, can be found
in the published article.

In this section, the helical inversion processes were assessed using state-of-the-art quantum
chemical methods. Specifically, the potential energy surface during inversion was evaluated,
and density mapping of London dispersion was conducted to elucidate how certain in-
fjord substituents enhance the system’s stability in comparison to non-substituted helical
structure.

3.5.1 Computational methods

Density functional theory (DFT) was employed to explore the conformational dynamics
of the synthesized compounds. While the compounds presented in this study were all
substituted, the conformational dynamics of their unsubstituted counterparts, specifically
those with no substitutions in their fjord region, were also examined to gain insights into
the impact of inner substitution. Substituents on the outer rim were removed to expedite
computation.

The structures were optimized at the PBEh3c222 level of theory, and the energies were
subsequently recomputed using B2PLYP,223 with both calculations conducted using the
def2-TZVP178 basis set and default fitting basis. The inclusion of D3 corrections with
Becke-Johnson damping was integral to these computations.170,191 To construct the
inversion profile, nudged elastic band (NEB) calculations were carried out where the energy
estimates for the barrier was provided by the climbing image (CI). In cases where the
inversion mechanism passed through a Cs-symmetric intermediate, the energy profile was
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only calculated in one part of the mechanism, specifically from the optimized ground state
geometry to transition state structure and, subsequently symmetrized. The energy barriers
presented in the results are determined based on the electronic energy difference between
the global structure minimum and the NEB CI. Convergence criteria were set for the
maximum component of the atomic force acting on the CI, with the tolerance of 5× 10−4,
ensuring for a tight convergence close to the maximum. Note that the deviations from the
optimized transition states were found to be below 2 kJ mol−1 (for example, [1]Ph and
[4]H). All these computational procedures were carried out using the Orca 4.2.1 program
package.189,190

For the calculation part, the structures are represented by the number of the the compounds
as indicated in Figure 3.14 enclosed in brackets, with the inner substituent indicated as a
subscript. Intermediates are designated as INT while transition state structures are labeled
as TS. Unless specified otherwise, the structure represents a reactant state structure.
The energies reported are in electronic energies, unless specifically noted otherwise. The
difference between the latter values and Gibbs free energy barriers are minimal, mainly
because no bond breaking and bond formation happened which would significantly impact
other energetic contributions.

In order to understand the trends of some mechanisms, dispersion interaction density
(DID)103 analyses of the structures were done. The energies were computed at the SCS-
LMP2/cc-pVTZ26,194 level with the Molpro 2020.1 program package.224
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3.5.2 Inversion Mechanism

From the synthesized helicenes in the work shown in Figure 3.14, this section gives a
detailed discussion of the inversion mechanism of every compound. Analyses are mainly
focused on the configurations of reactant and transition state structures as well as the
inversion mechanism and the barrier associated with it. Note that substituents outside the
expanded helicenes were replaced by H atoms to reduce computational costs.

[1]Ph TS1

[1]Ph

Figure 3.15: Enantiomerization profiles of Compound 1, labeled as [1]Ph. Energy profiles were
provided using NEB calculations. The independent coordinate λ is the normalized abelian distance
between atoms from reactant to transition state.

Compound 1, [1]Ph, is the ‘shortest’ expanded helicene examined in this chapter. A
phenyl group is inserted in-fjord position, and the inversion profile is shown in Figure
3.15. The inversion process is characterized by a one-step mechanism involving a C2

symmetric reactant state and a Cs symmetric transition state, wherein the phenyl group
is perfectly perpendicular to the benzene ring to which it is attached to. Note that its
mechanism is similar to those of [n]helicenes where n ≤ 7.215 The symmetry of the
reactant and transition states also resembles that of the ‘orthodox’ helicenes. Despite its
considerable number of rings in the helix (9 rings), the alternating linear and angular
fusions enable this compound to possess a sufficiently large helix diameter, which allows
its inversion to proceed seamlessly, even with the in-fjord phenyl substituent. Indeed, the
barrier (calculated in the NEB profile) is quite small, only 15.9 kJ mol−1 (free barrier for
activation of 19.1 kJ mol−1).
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[2]Ph

[2]Ph TS1

[2]Ph INT1

[2]Ph TS2

Figure 3.16: Enantiomerization profiles of Compound 2. Energy profiles were provided using
NEB calculations. The independent coordinate λ is the normalized abelian distance between atoms
from reactant to transition state.

Moving to Compound 2, here labeled as [2]Ph, this features a longer expanded helicene arm
compared to [1]Ph, yet still bearing one phenyl substituent in-fjord. Its enantiomerization
process is presented in Figure 3.16. A glance at its profile already reveals that this is not the
typical inversion profile observed in helicenes, including other expanded helicenes. Firstly,
the enantionerization profile does not exhibit symmetry. In this two-step mechanism,
the initial step involves a relatively significant barrier while the second step is merely a
small elevation. The transition states lack definite symmetry either, and only the reactant
enantiomer adhere to the more ‘typical’ C2 symmetry. The barrier has been computed to
be ∆E‡ = 59.0 kJ mol−1, closely resembling the barrier of its unsubstituted counterpart
(i.e. no phenyl ring in the middle), which is ∆G‡ = 54.3 kJ mol−1.217 This implies that the
addition of phenyl ring does not significantly affect the height of inversion barrier, which
can be attributed to the diameter of the ring. Despite the extension of the arm length
compared to [1]Ph, the sequence of angular and linear fusion allows for an increase of the
diameter of the helix, where the phenyl ring in the fjord position has minimal interaction
with the arms. This interaction, or the lack thereof, is a primary factor influencing the
heights of the inversion barriers. In terms of configurational stability, the inversion barrier
remains quite low, making the conversion between chiralities relatively facile.

If a single phenyl substituent does not have any effect in the inversion barrier due to its
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[3]Bi-Ph

[3]BI-Ph TS1

[3]BI-Ph INT1

[3]BI-Ph TS2

Figure 3.17: Enantiomerization profiles of Compound 3. Energy profiles were provided using
NEB calculations. The independent coordinate λ is the normalized abelian distance between atoms
from reactant to transition state.

diameter size, what if there is a substituent in the middle which can interact with the
arms? This is precisely what [3]Bi-Ph looks like. In terms of the helix structure, it is
identical to Compound 2. The only difference lies in the substituent in the middle, where,
instead of a single phenyl ring, a biphenyl ring is incorporated. A brief examination of
its enantiomerization process in Figure 3.17 reveals a symmetric, three-step mechanism.
The profile closely resembles that of the nonahelicene, which was simulated by Janke et
al.214As expected, the reactant maintains a C2 symmetry. TS1 (which is the mirror image
of TS3) lacks a specific symmetry, but one arm is visibly reaches a planar position while
the other arm remains in its position. TS1 also displays the highest barrier, i.e., ∆E‡ =
82.7 kJ mol−1, around 20 kJ mol−1 increase to that of [2]Ph. This can be considered
an intermediate case, not extremely low but not exceptionally high either, making it
challenging to resolve the two enantiomers. Two factors contribute to this situation: 1) the
π interaction of the end phenyl ring in the biphenyl substitutent, which interacts with the
arm starting when the inversion is complete, and 2) the need for a more abrupt rotation of
the internal substituent compared to [2]Ph to reduce steric hindrance. In the second step,
this is where the Cs symmetric transition state is observed. The barrier from [3]Bi-Ph

INT1 to [3]Bi-Ph TS2 is very low. The overall profile of the inversion shows that the
arms operate independently upon inversion, one after the other.
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[4]H TS1

[4]H TS2

[4]H INT1

[4]H

(a)

[4]Ph TS1

[4]Ph INT1

[4]Ph

(b)

Figure 3.18: Enantiomerization profiles of Compound 4, (a) without substituent and (b) with
phenyl substituent. Energy profiles were provided using NEB calculations. The independent
coordinate λ is the normalized abelian distance between atoms from reactant to transition state.
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A shorter arm with fewer linearly fused rings as the previous molecules essentially combines
the characteristics of classical and expanded helicenes. Compound 4, both with and
without in-fjord phenyl substituent, is an example of this hybrid. Due to its structural
configuration, Compound 4 (in general) is more rigid than Compounds 1-3. To gain a
better understanding of its behavior, the inversion processes for both [4]Ph and [4]H were
investigated.

The inversion mechanism of [4]H is straightforward, as shown in Figure 3.18a, essentially
following a 3-step mechanism. Initially, one of the arms undergoes inversion via [4]H TS1,
resulting in an intermediate state where the inverted arm points towards the opposing arm,
which remains stationary at this stage. This transition continues to a Cs-symmetric [4]H
TS2 (transition state) exhibiting a barrier similar to [4]H TS1. The second TS shows two
arms facing each other, pointing in the same directions. A comparable process involving
the other arm completes the inversion. The calculated inversion barrier for this process
was calculated to be ∆E‡ = 25.5 kJ mol−1, determined by the barrier height from [4]H
TS2.

Intriguingly, the in-fjord insertion of phenyl substituent significantly altered the shape of
isomerization profile, shifting it from a 3-step mechanism to a 2-step mechanism. It is worth
noting that in Figure 3.18a, three transition states were identified. However, in this case,
only two symmetric but relatively high barriers were observed (∆E‡ = 74.2 kJ mol−1).
The transition state [4]Ph TS1 is similar to [4]H TS1, where one arm moves to a semi-
planar position relative to the backbone where the substituent is attached. However, the
Cs-symmetric structure with two arms facing each other is no longer the highest transition
state as in [4]H TS2. Instead, this becomes a minimum, leading to an intermediate [4]Ph

INT1. This might seem counterintuitive because the Ph-substituent would be expected
to increase the steric strain, leading to a more pronounced deformation the the helical
framework. However, other factors come into play. To provide a more comprehensive
insight of what is happening, it is important to note that the Ph-substituent introduces
a penalty when one arm points towards the center of the helix. The barrier heights
between [4]H TS1 and [4]Ph TS1 is 22.7 versus 74.2 kJ mol−1, respectively, representing
a significant difference of 51.1 kJ mol−1. Such comparison is fair given the structural
similarities. This difference can be attributed to the increased steric clash in [4]Ph.

Taking a closer look, it becomes evident that the Ph-substituent in the Cs-symmetric
structure actually serves as a slightly stabilizing element. The [4]Ph INT1 is only
18.5 kJ mol−1 above the energy minimum, while the same structural motif in [4]H is
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Figure 3.19: Map of dispersion interaction density for [4]H and [4]Ph, depicting the interactions
between the arms and the inner substituent in the latter case. Visualization was done using
ParaView 5.4.0.197

25.5 kJ mol−1 above the starting configuration, and is in fact a transition state. The
reduced energy difference in the former structure is a manifestation of the attractive
London dispersion forces that come into play between the terminal parts of the arm and
the central phenyl group. Despite the presence of a phenyl substituent in a helix with a
smaller diameter compared to Compounds 2 and 3, the inversion energy is relatively low,
not permitting the resolution into its respective enantiomers.

3.5.3 Dispersion’s Role in Stabilizing Intermediates

Mapping out the density resulting from dispersion interactions proves invaluable in
elucidating the specific atom groups where such a force is in effect. Quantified at the
SCS-LMP2 level, the DIDs of [4]H were evaluated in comparison with its substituted
counterpart, [4]Ph. For the latter, the interaction with the arms and the phenyl group in
the fjord position was analyzed. As seen in Figure 3.19, the presence of the substituent
leads to a radical change in the density. Calculations revealed that for [4]Ph INT1, the
dispersion contribution amounts to 29 kJ mol −1, while [4]H TS2 only exhibits 3 kJ mol −1.
Thus, the London forces due to the presence of phenyl insertion effectively compensates the
energetic penalty of [4]Ph INT1, mainly because of the more pronounced deformation of
the polyaromatic skeleton. Such deformation favors the electronic interaction via London
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dispersion. This attractive force is also significantly operating in [4]Ph TS1. Despite the
inversion barrier height of 74.2 kJ mol−1 in [4]Ph, the latter is significantly lowered by
dispersion since this interaction is partially present between the phenyl center and the
terminal end of one arm of the helicene.

The inversion mechanism of helicenes is a fascinating subject, especially when in-fjord
substituents are involved. Unlike the typical helicenes, several factors are crucial in the
inversion of expanded helicenes, as elaborated in this section. Firstly, the sequence of ring
fusion is very important. The series of angular and linear fusion is relevant to the diameter
of the helix. The bigger the diameter, the less likely the arms would interact, the lower
the inversion barrier will be. Secondly, the presence of in-fjord substituents is important,
but their impact is only observed when these substituents can interact with the helicene
arms. This interaction is evident in the mapped inversion barrier of helicenes [2]Ph and
[3]Bi−Ph, as illustrated in Figures 3.16 and 3.17, respectively.

In scenarios where interactions occur between helicene arms (e.g., Compounds 2, 3 and
4 with Ph-substituent), steric hindrance is a major factor resulting in a higher inversion
barrier. However, one should not neglect the stabilizing force of dispersion stemming from
π-π interactions between benzene rings. The latter stabilizes the reactant state, needing
more energy to move towards the transition state. The stronger the dispersion forces come
into play, the more difficult it is to transition from the reactant structure to the transition
state, leading to high energy barriers.

In the context of molecular design, several recommendations emerge. One is that depending
on the sequence of ring fusion, the resulting arm length which allows the arm interactions
will more likely lead to a higher inversion barrier due to steric hindrace. In-fjord
substitution is also a clever way of stabilizing the reactant, provided that it interacts
with the arms, enhancing the reactant’s stability and influencing the conversion between
isomers. One can take advantage of adding substituents which will facilitate an increase
of dispersion interaction since it was shown that this force is vital in the inversion process.
In this manner, the inversion barrier will be high, leading to an expanded helicene which
can be resolved experimentally.
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4.1. INTRODUCTION

4.1 Introduction

Based on the findings presented in Chapter 3, it is imperative to examine carefully not only
the energies but also give due consideration to structural attributes. This is particularly
significant, given that high-end tools for structure elucidation are readily available and quite
effective for theoretical benchmarking. For some systems, the changes in energy effectively
imply changes in structures as well. However, utmost care must be taken because in cases
of isoenergetic species where energy differences are little to none, the structural motifs
can be starkly different. Most importantly, when making conclusions regarding a certain
phenomenon, e.g., chirality, it is highly advised to look not only on the energy observables
but also at structural changes which may not be obvious with energy differences.

Particularly prominent in non-covalently bound systems is the ease of changing structural
motifs without much change in energy. This is seen in the results in Section 3.4, and is
observed in some other dimer systems.198,225 This is because, unlike in covalent bonding,
there are more subtle effects in non-covalent interactions which affects the electronic
structure of the interacting species only to a slight extent. That means the dominant
intermolecular force in one conformer might be lower (or higher), and it is compensated
by a different force in its other conformer. The net result leads to a close to zero-sum, as
reflected in their relative stabilities of these conformers.

Leveraging advanced spectroscopic techniques like FTIR jet spectroscopy and microwave
spectroscopy, one can discern these subtle structural differences, which may not be readily
apparent in terms of their energy characteristics. More importantly, such results are
amenable to quantum chemical benchmarking. Given the recent advances in theoretical
frameworks, interaction energies are not only captured accurately but can also be
decomposed into several categories providing tangible physical interpretation. Of course,
since these distinct intermolecular forces are not experimentally measurable, theoretical
approaches can provide an approximate overview of the different intermolecular forces at
play.

Unfortunately, describing the interactions in non-covalently bound systems is challenging.
This is mainly because the forces in these interactions are non-observable terms so there
is no experiment that can track their behaviour which will serve as a benchmark for the
models developed. Amidst the difficulty, there are several approaches to assess them. Some
methods like SAPT,83 and the Interacting Quantum Atoms (IQA)226 framework proceed
by partitioning the Hamiltonian and the resulting integrals. The development of real
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space approaches were done which enabled the revision of some classical concepts. Such
approaches are based on a chemically grounded scalar or vector field. Several examples
include restricted partitioning,227 Quantum Theory of Atoms in Molecules (QTAIM),228

Electron Localization Function (ELF)229 and NonCovalent Interaction (NCI) index.230

This chapter is dedicated to the development of a method for isolating and analyzing
the London dispersion forces between interacting fragments. Qualitatively, the method
allows the visualization of dispersion as a contact surface between the fragments, providing
a visual guide to interpret the spatial domains of dispersion effects. Quantitatively,
this method is an excellent complement using the already available orbital-specific
approximation of the pair interaction forces. These approximations are crucial for
determining the scope and magnitude of dispersion interactions at the orbital level.

4.2 Dispersion-Weighted Orbital Overlap

When it comes to orbital information, local correlation analysis has the upper hand, mainly
because electrons are localized on a specific orbital. Its advantage not only lies in the
reduction of computational effort compared to calculations which use canonical orbitals,
local orbital subspaces are also able to isolate different physical forces at play in a non-
covalently bound system. This affords chemists a deeper insight on what is happening.
Using local correlation methods, a space-resolved analysis is proposed to carry out orbital
decomposition of non-covalent interactions, with a specific focus on London dispersion.

4.2.1 Overlap of Dispersion Interaction Densities

The local orbital representation can effectively highlight the dispersion densities in each
monomer which interacts productively, and this has been described thoroughly in Section
2.5.2. Such a depiction is closer to the London picture of dispersion. This means that
most of the time, the electron clouds maintain their form while also interacting with the
space separation between them. NCI index,230 on the other hand, describes a volume with
subtle changes in the density to represent a contact - closer to the Feynman interpretation
of dispersion. To come closer to the latter description, an overlap of DID was devised,
which we will refer to as o-DID.

In this work, we aim to develop an extension to current local correlation methods that
provides a parallel approach to visualizing non-covalent interaction akin to NCI index.
Since NCI index represents a contact between systems analyzed, to align more closely with
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this concept, it is necessary for o-DID to define interaction zones between monomers. This
can be achieved by displaying the regions of space where the dispersion interaction density
of different monomers overlap. To this end, we employ the following expression:

Γo-DID(r) =
∑
i∈A

∑
j∈B

ρi(r)ρj(r) e
disp
ij . (4.1)

The equation above simply means that the orbital density contribution from monomer
A (ρi(r))is multiplied by the orbital density contribution from monomer B (ρ(r)). This
product is then further multiplied by the dispersion energy associated with that specific
pair of orbitals (edisp

ij ). The summation of all the individual orbital contributions, as
they interact via dispersion, represents the dispersion contact between the dimer. The
computation of each orbital density contribution is facilitated by the following equation:

ρi(r) = 2
∑
µν

CµiCνiχµ(r)χν(r). (4.2)

4.2.2 Removal of Orthogonalization Tails

Several localization approaches have been mentioned in Section 2.3.2. In the development
of our methodology, we mainly employ Pipek-Mezey localization scheme.70,71 This
scheme involves a minimization procedure done on a functional correlated to the Mulliken
population analysis. However, even with alternative localization procedures (e.g., Foster-
Boys65,66 and Edmiston-Ruedenberg68,69) centered on small subunits, the residual presence
of orthogonalization tails persists. The coefficient values for these tails are very low, and
these are usually beyond the localization region. In this chapter, one important objective
of using LMOs is that it connects the quantum chemical results with classical chemical
concepts, for example looking at specific orbitals or interacting orbitals. Unfortunately, the
presence of orthogonalization tails poses difficulty in bridging these concepts. Truncation
of these tails, however, can lead to errors which are not negligible (∼ 1.5 eV).231,232

For the purpose of obtaining a meaningful picture of the dispersion density overlap, these
tails must be eliminated. Several a priori strategies have been devised for this purpose.
Notable among them are the concept of absolutely localized molecular orbitals (ALMOs)233

and the development of extremely localized molecular orbitals (ELMOs),234,235 both
originated from the idea proposed by Stoll et al.236 in 1980. On the other hand, a posteriori
method like preliminary deorthogonalization of LMOs before truncation does not show an
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Figure 4.1: Anatomy of the single orbital density matrix, Di
µν . Quadrants II and IV represent

the MO centers exclusively for that fragment. Quadrants I and III, on the other hand, represent
the part where MOs are partially present in both fragments A and B. Orthogonalization tails are
present in quadrants (I, III and IV) if the fragment considered is A.

increase in localization nor lead to disappearance of tails. This is well demonstrated by
Sundberg et al..237

Where do these tails come from? When examining Equation 4.2, this can be simplified
further into

Di
µν = 2CµiCνi. (4.3)

The resulting density matrix (see Figure 4.1) is partitioned into four quadrants. Quadrant
I: µ ∈ A, ν ∈ B, quadrant II: µ, ν ∈ A, quadrant III: µ ∈ B, ν ∈ A and quadrant IV:
µ, ν ∈ B. Assuming MOs are centered in fragment A, there are still values of the density
showing up in quadrants I, III, and IV. These are usually very low values and are a result of
orthogonalization procedure, thus called orthogonalization tails. These tails are necessary
for the orthonormality condition of the SCF procedure. For the purpose of our analysis,
the aforementioned quadrants have to be ‘cleaned-up’.

ALMOs is one of the approaches to remove these tails. This is based on the expansion of
molecular orbitals (MOs) in local subsets of atomic orbitals (AOs). The only computational
disadvantage is its non-orthogonality. It was first based on the work of Stoll et al.236 where
they generalized the SCF equations for the non-orthogonal ALMOs. Subsequently, Nagata
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et al.238 proposed that such schemes will be referred to as locally projected self-consistent
field for molecular interactions (LP SCF MI), or simply SCF MI. Khaliullin et al.233 later
demonstrated that SCF MI equations can replace diagonalization with a procedure that
has a better scaling properties and significantly reduces computational time.

In a nutshell, nuclei and electrons of the entire system are divided into fragments. Note that
these fragments are non-overlapping subsets, and each fragment must contain a specific
number of electrons. This is partitioned naturally and does not rely on any cut-off threshold
or bonds. Upon division, the AOs which are localized in the atoms are also partitioned
into subsets {|χµi⟩}, where the first index denotes the number of subsets and the second
number is the number of basis function within the given subset. The (occupied) LMOs
can be labeled in a similar way as the basis functions, {|ϕµi⟩} where µ now denotes the
localization center and k are the different orbitals that can be attributed to the same
center. This one to one correspondence naturally leads to the following approximations for
the (occupied) LMOs:236

|ϕγk⟩ = Cµi,γk |χµi⟩ (4.4)

where Cµi,γk = 0 if γ ̸= µ. Under these conditions, MOs are localized on fragments in the
same way AOs are localized on atoms. Dealing with the non-orthogonality of these MOs
is discussed elsewhere (see References 233,236).

The approach developed here employs the same concept of constraints. However, instead
of implementing these constraints while in the SCF procedure, these are introduced once
the final density matrix has been generated. These constraints can be applied to either
the final coefficient matrix Cµi or density matrix Di

µν . In this work, the modification was
made to the density matrix, which after the imposition of constraints, is now denoted as
D̃i

µν :

D̃i
µν =

Di
µν , if µ, ν ∈ A

0, if µ ∈ B ∪ ν ∈ B
(4.5)

This simply means that values of the new density matrix D̃i
µν are retained from the final

Di
µν if AOs µ and ν belong to the fragment where they are localized. If not, these values

are set to zero. An alternative way that gives the same result is if the conditions are
imposed on the final Cµi matrix. In this scenario, the new coefficient matrix C̃µi is defined
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as:

C̃µi =

Ci
µi, if µ ∈ A

0, if µ ∈ B.
(4.6)

Analysis on Single Orbital Density Matrices

To investigate the impact of removing the orthogonalization tails through constraints
imposed in Equation 4.5, a toy system of water dimer (non-optimized, geometry available
at Appendix B) was used. Given that the matrix can become considerably large with
larger basis set, for the purpose of matrix analysis, a single point calculation for the water
dimer was done at the LMP2/3-21G level. All the occupied valence orbitals of water were
included in the examination (total of eight orbitals).

For simple illustration, one orbital was selected and is shown in Figure 4.2. In Figure 4.2a,
a linear scale is provided. Unfortunately, due to small density values, the orthogonalization
tails are not readily apparent. When changing the scaling into logarithmic scale in Figure
4.2b, the tails are now more visible. However, caution should be taken when interpreting
the log scale. In this case, a single change of color means 10 times more (or less) than the
reference value. By defining the new density matrix D̃i

µν , the orthogonaliztion tails are
effectively ‘cleaned up’ (see Figure 4.2c). Note that the constraints to generate the new
density matrix D̃i

µν is only applied on the last density matrix of the SCF iteration using
LMOs.

o-DID in Parallel Benzene Dimer

The gravity of the orthogonalization tails problem becomes more visible in bigger systems,
for example, the benzene dimer. The optimized structure of a parallel benzene dimer, as
provided in Reference 240, was used and the algorithm for o-DID implemented in Molpro
2018 developer’s version136 was utilized. As illustrated in the results presented in Figure
4.3a, the dispersion density is not just an overlap between the dimer, but are also present
in the each benzene unit. This complicates the interpretation that we seek to derive from
o-DID. By applying the constraints as expressed in Equation 4.5, the tails are effectively
eliminated, as demonstrated in Figure 4.3b. This is consistent with the desired description
outlined in Equation 4.1.
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(a) (b)

(c)

Figure 4.2: Analysis of the single orbital density matrix of a water dimer at the LMP2/3-21G
level of theory using the Pipek-Mezey localization scheme. A water dimer was used just to see how
the density looks like before and after removing tails. Single orbital density matrix of the water
dimer,Di

µν , in a) on a linear scale and b) on a logarithmic scale. After setting constraints, D̃i
µν in

c) reflects the single orbital density without orthogonalization tails.
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(a) (b)

Figure 4.3: o-DID images of parallel benzene a) with and b) without orthogonalization tails.
Calculations were done at the SCS-LMP2/cc-pVDZ level using a Molpro 2018 developer’s version.95
Visualized using VMD software version 1.9.4239 with an isovalue of 0.15.

4.3 Model Systems and Computational Methods

The removal of orthogonalization tails gives a clearer view of the dispersion overlap between
systems. To further explore the capabilities of o-DID, four dimer systems were employed as
model systems, as shown in Figure 4.3. Two of these, argon dimer (Ar···Ar) and methane
dimer (CH4···CH4), are characterized by dispersion-dominated interactions. To introduce
diversity from the polar end, water dimer (H2O···H2O) was utilized, known for its strong
electrostatic and polarization interactions. The benzene-acetylene dimer (C6H6···C2H2)
was selected as an intermediate system between the two interaction regimes.

Optimization of the dimer systems were done at SCS-MP2/aug-cc-pVTZ,H=cc-pVTZ
using Molpro 2021.2.54 The coordinates are available in Appendix B. The optimized
structures were used as reference structures to generate the o-DID. Single point calculations
at the SCS-LMP2 level, using the same basis set, were carried out using Molpro 2018
developer’s version,95 which integrated the o-DID algorithm. Absolute localization of the
orbitals was achieved using the Pipek-Mezey scheme.70,71 In the following sections, the
density overlap due to dispersion is shown. This is followed by an in-depth analysis of the
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Argon dimer Methane dimer

Benzene-acetylene Water dimer

Figure 4.4: Selected model systems to evaluate the o-DID performance.

interacting orbital pairs.

4.4 Contact Surfaces

Using the toy systems (Figure 4.4) examined in this chapter, it is intriguing to explore
the overlap of dispersion interaction density between the dimers/systems. In this case,
the dispersion force is isolated from other forces. A brief scan of the overlapping densities
in Figure 4.5 already reveals that the shape is significantly influenced by the interacting
system. Additionally, it is noteworthy to observe the directionality of the contact surfaces.

Looking at the argon dimer in Figure 4.5a, the overlapping density between the two argon
atoms resembles a prolate ellipsoid (with the major axis passing through both argon atoms).
It is a symmetric density situated between the two atoms, indicating that the orbitals
interacting from both directions contribute equally.

Another dispersion-dominated system presented here is the methane dimer, shown in
Figure 4.5b. The overlapping density prominently elucidates the C−H interactions within
the dimer. Since the methane geometry used here is in a gauche conformation, one C−H
arm from one methane does not directly face the other C−H arm from the other methane,
resulting in the slight decrease of density in the middle. Nevertheless, this still shows the
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(a)

(b)

(c)

(d)

Figure 4.5: Total densities generated by o-DID method at the SCS-LMP2/aug-cc-pVTZ, H=cc-
pVTZ. Molecular systems and their respective isovalues in parenthesis are as follows: a) argon dimer
(0.2), b) methane dimer (0.11), c) benzene–acetylene (7.0) and d) water dimer (52). Visualization
was done using VMD software version 1.9.4.239
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‘pyramidal’ density coming from both methane, showing a uniform density contribution
from all the C−H arms in the middle of two molecules. The shape of the density suggests
that the majority of contribution originates from the C−H arms facing the other molecule.
The trailing C−H arm does not appear to significantly influence the shape of the overall
contact shape.

Moving on to the intermediate system, which lies in the spectrum between dispersion-
dominated and electrostatic-dominated, we probe the benzene-acetylene dimer, as depicted
in Figure 4.5c. Similar to the previously discussed systems, this T-shaped configuration
retains a degree of symmetry. The density overlap due to dispersion exhibits a pear-shape
distribution, with a semi-flat base near the benzene ring. This itself is a consequence of
contributions from multiple orbitals originating from the benzene ring, more likely the π-
orbitals. As we move towards the acetylene end, the density gets more pointed,influenced
by the shape of the molecule and the proximity of the contributing orbitals. In contrast
to the first two systems discussed earlier, the contact density does not center between the
systems. Instead, it is skewed more towards the acetylene molecule. This observation
suggests that the density contributing to the contact surface is not only due to C−H
interaction with the π orbitals in the benzene ring system but also from the other orbitals
in the C−C bonds of acetylene which are significantly overlapping with the π orbitals of
benzene. Consequently, the total overlap is drawn closer to the acetylene.

Finally, we examine the contact density of the eletrostatic and polarization-dominated
water dimer system, as shown in Figure 4.5d. The shape of the overlapping density is
interesting in itself, resembling the lone pair of the oxygen atom from the water molecule on
the left, engaging with the O−H orbital of the water molecule on the right. Furthermore,
the density highlights that the dispersion interaction in this system is due to the O−H
orbital interaction with the lone pairs of the oxygen atom of the other water molecule. The
bigger blob of the density engulfing the O−H arm of the water molecule is an indication
that the majority of the dispersion interaction emanates from this region of the molecule,
as it interacts with several orbitals from the other water molecule.

4.5 Pair Orbital Interactions

To complement the qualitative information regarding dispersion overlap in Section 4.4,
this section employs an additional method – pair orbital interaction analysis. This type of
analysis offers quantitative information regarding the magnitude of the orbital interaction
due to dispersion. These pair energies serve as the foundation for the DID and o-DID
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methods and are inherently available in any EDA calculation within the Molpro quantum
chemistry package.

Recall that for each pair of orbitals, the interaction arising from dispersion is computed,
and the sum of these interactions constitutes the total dispersion energy of the system
under scrutiny. The information for the pair interaction due to dispersion is readily
accessible, given the calculations conducted in the preceding sections were done. In this
section, these values were analyzed to get a more vivid picture of what contributes to the
interactions observed in the previous discussion (Section 4.4). A general note: to make the
pair interactions easier to visualize, orbital densities are chosen as a representation.

Figure 4.6: Pair orbital analysis of the Argon dimer. The inset illustrates the different active
valence orbital densities of the argon atoms. Isovalue used for the orbital is 0.05. The total
dispersion interaction amounts to −1.2 kJ mol−1.

The uniform ellipsoidal shape of the total dispersion density in the argon dimer is the
consequence of contributions from multiple orbital pairs, elucidated in Figure 4.6. The inset
picture depicts different localized orbital densities of Argon atoms. These are supposed
to be the sp hybridized orbitals which serve as the lone pairs of each argon atoms.
However, note that in cases of atomic systems, the orbital assignment is arbitrary. So
instead of focusing on individual orbital shapes, it is better to focus on the totality of the
interactions. In this analysis, there is a distinct peak which stands out among the orbital
pair contributions (around 22%). This phenomenon is due to the head-on dispersion overlap
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between this specific orbital pair from each argon atom. Overall, each pair contribution
leads to a symmetric overlap dispersion density between these atoms. For details regarding
the different orbital pair contributions, please refer to Appendix B, Table B.1.

Figure 4.7: Pair orbital analysis of the methane dimer. The inset picture of the dimer system
shows the different active valence orbital densities of the methane molecules. Isovalue used for the
orbital is 0.07. The total dispersion interaction amounts to −2.0 kJ mol−1.

The pair orbital analysis of the methane dimer in Figure 4.7 serves as an insightful
illustration of how dispersion manifests as a function of distance and orientation. In this
discussion, the focus is on the set of interactions responsible for o-DID pictures. In the
inset of Figure 4.7, the dark blue bars represent the interactions from facing C−H orbitals
between the methane dimer (refer to the picture inset). The overall σC−H interactions
contribute around 71% to the total dispersion interaction density. All the high dark blue
bars are due to the interaction of one C−H orbital with its adjacent C−H orbitals in
the other molecule, while the shorter dark blue bars denote the interactions between one
C−H orbital and the opposite C−H orbitals in the adjacent molecule. Specific values
for each orbital interaction are reflected in the Appendix B, Table B.2. This substantial
contribution from these orbital pairs is attributed to their close proximity, rendering them
favorable for dispersion interactions. Conversely, the light blue bars on the right side of
the graph represent the interactions between the trailing C−H orbital and the all other
orbital of the other CH4 molecule. Noticeably, these pairs constitute the remaining 29%
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Figure 4.8: Pair orbital analysis of the benzene-acetylene system. The inset pictures show the
different active valence orbital densities available for interaction. Isovalue used for the orbital is
0.04. The total dispersion interaction amounts to −8.8 kJ mol−1. Pair interaction values below
1% are not included for ease of analysis and visualization.

of the dispersion contribution (approximately 3-4% each pair), with the tailing orbital
pair having the least contribution. This discrepancy is visibly apparent due to the greater
distance and less favorable orientation of these trailing orbitals.

The detailed orbital interaction of the intermediate system, benzene-acetylene, is shown in
Figure 4.8. In a similar style as that of the methane dimer, the color gradient is employed
to indicate the percentage of each orbital contribution. Simply put, the higher pair orbital
contribution has a darker color, and it fades with the value of contribution. In this analysis,
the set of interactions is classified according to the type of orbital interaction, as reflected
by the several pictures directly above the pair orbitals representing each.

As indicated by the pair orbital analysis, the most significant contributor to the dispersion
interaction occurs between the π orbitals of benzene (πC6H6

) and the sigma orbital of
nearest C−H of acetylene (σC2H2

), as shown in the dark blue bar on the leftmost part of
the graph. Among these three orbital pairs, this already constitutes 28% of the dispersion
contribution (with 9.3% per orbital pair). Among the orbitals of benzene, the π ring system
is the most polarizable, thus easier to interact with the C−H sigma bond. It is noteworthy
that, in comparison to the sigma orbitals of benzene, the π-orbitals of the ring exhibit a
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more favorable orientation (in terms of formation of instantaneous dipole moments) for
interaction and are closer in electronic distances. All these factors collectively contribute
to a stronger interaction between the orbitals.

Another significant contributor, albeit not chemically intuitive, is the π-π interactions
between C6H6 and C2H2, as reflected in the blue bar on the right part of the graph.
This specific interaction is intriguing because these π orbitals are already far from each
other, yet the overall contribution still amounts to 27%, almost as high as the σC2H2

–
πC6H6

interaction on the left. This can again be attributed to the polarizable nature of π-
orbitals. These orbitals lie outside of the internuclear axis and on average, less tightly held
because of its farther distance from the nuclei. Such polarizability favors the emergence
of temporary dipoles resulting in significant dispersion interactions. Although each orbital
pair is contributes around 4.7% each, this is a good illustration of not undermining the
cumulative effect of the weaker π-π interactions. This substantial interaction explains the
o-DID shape; not positioned in the middle of the system, but rather skewed toward C2H2.

Lastly, one might think that σ-σ interaction does not have a significant contribution to
dispersion interaction because of the nature of the orbital itself - electrons are tightly
bound to the nucleus compared to a π orbital. That is indeed the case, as seen in the light
blue bars in the middle part of Figure 4.8. Each pair contributes around 1-2%. However,
since there are several pairs responsible for this set of interaction, the total contribution
is still high, i.e., 18%, to the dispersion interaction. All other orbital pairs which are
below 1% were not included as these also do not represent an intuitive chemical picture.
Further details on the pair orbital interactions, including those below 1% contributions,
are available on Appendix B, Table B.3.

The uniform contribution from the π and σ orbitals of the benzene ring towards all other
active orbitals of acetylene is the reason why the dispersion overlap shown in Figure 4.5c is
somehow flat near the benzene ring. On the other hand, the slight decrease in the volume
of the overlap density in the acetylene part is mainly due to the more constrained orbitals
of the acetylene interacting with the orbitals of benzene.

From the polar end of the toy systems, the detailed orbital interaction of the water dimer is
shown in Figure 4.9. The lone pair shaped dispersion density overlap of the molecule shown
in Figure 4.5d was mainly contributed by the O−H orbital in the upper water molecule
(see inset picture with dark blue frame) pointing towards the available lone pair of oxygen
of the lower water molecule. Specifically, these interactions are between the σ-orbital and
p-orbital which accounts for 24% of the dispersion interaction. This is followed by the same
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Figure 4.9: Pair orbital analysis of the water dimer. Inset pictures show the active valence orbital
densities interacting due to dispersion. Isovalue used for orbitals is 0.15. The total dispersion
interaction amounts to −3.5 kJ mol−1.

σO−H orbital, but this time interacting with the hybrid orbital (sp orbital) of the other
molecule, which contributes 18% of the interaction due to dispersion. The aforementioned
interactions (dark blue bars) account for a total of 42% dispersion contribution and can be
easily rationalized because of the polarizability of the lone pairs as well as their distance
and orientation towards the O−H orbital. These factors have been discussed in detail
above. What is also interesting is the kind of interaction which one might not put so much
attention, but in the overall picture, is still a significant contributor, the σO−H orbital
pair interactions between the two H2O molecules shown in the left side of the graph in
light blue bars. Normally, σ bonds have the electrons tightly held in space between the
nuclei involved in a bond. But in the case of water molecules, the high electronegativity
of oxygen relative to hydrogen effectively pulls the electron density towards it, resulting in
an electron-rich oxygen atom which has a higher probability of forming dipole moments
with the other monomer. In this specific case, this set of orbitals accounts for 20% of the
total dispersion, making the overall interaction of the σO−H of the top water molecule with
all the active valence orbitals of the bottom water molecule about 62%. The rest of the
interacting orbitals contribute between 1 to 7%, as reflected in pale blue bars from the
middle to right side of the graph. Since it is the σO−H of the top water molecule that
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interacts most significantly, thus the bigger blob of o-DID in this region as shown in Figure
4.5. Details of the pair orbital analysis for the water dimer is shown in Appendix B, Table
B.4.

One may observe differences in the orbital shapes of each monomer in some dimers
consisting of the same molecules. For instance, consider the argon dimer in Figure 4.6.
Here, one argon atom (lower part) features perfectly localized valence orbitals, one s-orbital
and three p-orbitals, while the other argon atom (upper part) has two p-orbitals and two
sp-orbitals. A similar case can be observed in the water dimer presented Figure 4.9. For
both oxygen atoms, instead of having two p-orbitals or two sp-orbitals to act as lone pairs,
localization resulted in one p-orbital and one sp-orbital as lone pair per oxygen atom. These
variations in orbital configurations are a direct consequence of the localization approach
used, in this case, which is the Pipek-Mezey scheme. It is important to acknowledge that
different localization schemes may yield slightly different orbital pictures. This can affect,
to a minor extent, the pair orbital interactions. However, it is imperative to emphasize
that these differences do not significantly impact the overall dispersion density overlap,
and the overall dispersion interaction energy remains. Ultimately, different localization
schemes can yield slightly different chemical pictures, and it is up to the user to decide
which one is more appropriate to use depending on the system under investigation.
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Chapter 5

Local Orbital Multireference Diagnostics
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5.1. INTRODUCTION

5.1 Introduction

Chapter 3 has shown the relevance of benchmarking, not only in terms of energy
considerations but also in terms of its structural aspects. This evaluation is supported
by several advanced spectroscopic techniques. In Chapter 4, a novel method for the
visualization of dispersion interactions has been developed, elucidating them as an overlap
between interacting molecular fragments. This innovative approach serves as a valuable
tool for identifying the specific regions within a given system that are involved in productive
dispersion interactions. Furthermore, this method also allows for the quantification of
dispersion at the orbital level, thereby facilitating the identification of strongly interacting
orbitals influenced by this intermolecular force. However, all these studies are based on the
premise that a single-reference determinant is appropriate to represent the wavefunction
describing our systems and that the dynamic correlation is the main aspect of interest.
This can then be effectively captured by high-level calculations such as CC and its different
variants.

Unfortunately, not all chemical systems can be described by single-reference methods.
In some instances, the use of single-reference methods for systems with multireference
character can lead to a discrepancy between theoretical and experimental results. This
can provide an opportunity to consider the suitability of the method. Unfortunately, there
are cases where theoretical predictions fit well with experiments due to error compensation,
resulting in accurate numbers obtained for the wrong reasons. The fatal error starts
showing up when exploring different chemical properties, e.g., relative energies, barrier
heights, excitation energies, atomization energies and dissociation energies, to mention a
few.

Multireference character is prevalent in many chemical systems but it is not merely defined
by the molecular species under focus. A change in the geometry can significantly alter the
wavefunction character of the system. A typical example is H2 molecule. At equilibrium
geometry, a single-reference wavefunction adequately captures the chemical properties of
the molecule. Stretch it towards dissociation and another wavefunction is necessary to
account for its ionic character, thereby requiring multiple wavefunctions to accurately
calculate its energy. The complexity is magnified when dealing with multiple bonds, such
as in stretched N2. Multireference character is not limited to stretched molecules; it is also
present in ground-state systems like ozone (O3)7,41 and the small but terrible C2

241–243

molecule. This problem becomes more pronounced when dealing with low lying electronic
states are present, as is often the case of metals. In light of these considerations, it is
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highly desirable to incorporate multireference diagnostic testing as a routine step before
doing quantum mechanical calculations.

Recent developments in the multireference diagnostic tools have equipped chemists
with the capability to assess which kind of methods are appropriate for their systems.
These tools span from a range of the very affordable T1 and D1 diagnostics to
computationally expensive and/or technically difficult diagnostics like assessing the natural
orbital occupation number (NOONs) of a DMRG calculation,244 %TAEe[(T)]46 and the
orbital-entanglement based multi-configurational diagnostic, Zs(1),245 to name a few. If
a routine check is desired, the affordable ones are more attractive tools because they are
automatically generated upon calculations. However, the sensitivity of such tools is not
guaranteed.

One interesting case on multireference character assessment pertains to non-heme iron
complexes. T1, D1, %TAE[T] and |t2,max| all suggest a single-reference character for the
systems investigated.246 However, the NOONs of the most important MOs reveal that
triplet states have single-reference character, whereas quintet states exhibit significant
multireference character. This is particularly relevant in light of the discussion around
their postulated two-state reactivity. In a system where experiment predicts triplet as
a ground state while theoretical results suggest otherwise (i.e., quintet is a low-lying
state),247 it is necessary to achieve a proper description of the wavefunction to settle
the dispute. Unfortunately, existing diagnostics are also in disagreement, despite the
exhaustive computational efforts to determine which CC ‘flavor’ can best describe the
system. Theoretical calculations still exhibit a 5 kcal mol−1 error when compared to
experimental data available.246

Such instances are sufficient reasons to test the waters before embarking on expensive
explorations. It may be necessary to find a better diagnostic tool or, perhaps, to discover
more effective ways to utilize the existing ones. The results of both approaches will greatly
assist in warning chemists to the potential high degree of multireference character within
the molecular systems they investigate.

In this chapter, second excitation amplitudes of orbital invariant (OI) MP2 were utilized
to examine the multireference character of small molecular systems. This approach
corresponds to the application of the D2(MP2) diagnostic developed by Nielsen and
Janssen,248 but our version utilizes the excitation amplitudes obtained from localized
orbitals using the orbital-invariant version of MP2. This will be noted as D2(OI-MP2).
We demonstrate that by analyzing the D2(OI-MP2) values of every orbital, it becomes
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possible to identify the specific orbital(s) with a higher degree of multireference character.
This information will aid users in selecting which orbitals to include if they intend to
proceed to multireference treatments, such as complete active space (CAS).

5.2 The Orbital-Invariant MP2 Residual

One desirable quality of a molecular diagnostic tool is its orbital invariance. This means
that the diagnostic tool should be ideally independent of the type of orbitals used in
the calculations. For instance, when local methods are employed due to their affordable
computational costs as well as the more chemically intuitive picture they provide to
chemists, the value of the molecular diagnostic should not change compared to when
canonical orbitals are used.

OI-MP2 is a reformulation of the MP2 theory (based on the Hylleraas functional) in terms
of localized internal orbitals and the atomic orbitals in the virtual space.61 Despite the
use of local orbitals in the active (valence) space, the results are strictly equivalent to the
canonical results under the condition that no further approximations are introduced. This
type of formulation is helpful when it is desired to interpret pair correlation energies with
clear chemical meaning (e.g., energy decomposition analyses). This is particularly difficult
to do with canonical orbitals. There are several additional advantages of the use of local
orbitals, but it is beyond the scope of this Section. Nonetheless, in this context, it is helpful
to have a diagnostic which is independent of the choice of orbitals used.

The first-order perturbed wavefunction, |Ψ(1)⟩, consists of doubly-excited configurations
which are used as a linear combination. This is written as: e

|Ψ(1)⟩ = 1

2

∑
ij

∑
ab

T ij
ab |Φ

ab
ij ⟩ , (5.1)

where i, j are occupied and a, b are virtual orbitals. In this context, the occupied orbitals
are only correlated valence orbitals. The expansion coefficients T ij

ab are referred to as double
excitation amplitudes. Note that:

T ij
ab = T ji

ba. (5.2)

The doubly excited configurations, |Φab
ij ⟩, can be obtained by applying spin-summed

excitation operators Êa
i to the reference Hartree Fock wavefunction. These spin-adapted
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excitation operators denote the excitation of an electron from an occupied orbital to a
virtual orbital. Since we deal with doubly excited determinants, this leads to

|Φab
ij ⟩ = Êa

i Ê
b
j |Ψ(0)⟩ , (5.3)

where |Ψ(0)⟩ is the reference wavefunction.

One caveat of these doubly excited configurations |Φab
ij ⟩ is that they are pairwise non-

orthogonal for ij and ji. One solution is to use contravariant configurations and amplitudes

Φ̃ab
ij =

1

6
(2 |Φab

ij ⟩+ |Φba
ij ⟩), and (5.4)

T̃ ij
ab = 2T ij

ab − T ij
ba. (5.5)

The contravariant configurations have the following properties:

⟨Φ̃ab
ij |Ψ(1)⟩ = T ij

ab,

⟨Φ̃ab
ij | Ĥ |Ψ(0)⟩ = Kij

ab

(5.6)

Note that the Hylleraas functional, when minimized, can result to MP2 energy in the form

E(2) = 2 ⟨Ψ(1)| Ĥ |Ψ(0)⟩+ ⟨Ψ(1)| Ĥ(0) − E(0) |Ψ(1)⟩ . (5.7)

When contravariant configurations are used, this results in the following second-order
correlation energy:

E(2) =
∑
ij

∑
ab

⟨Φ̃ab
ij | Ĥ |Ψ(0)⟩ T̃ ij

ab

=
∑
ij

∑
ab

Kij
abT̃

ij
ab

(5.8)

This then leads to the following first-order amplitude equations

Rij
ab = ⟨Φ̃ab

ij | Ĥ |Ψ(0)⟩+ ⟨Φ̃ab
ij | Ĥ(0) − E(0) |Ψ(1)⟩ !

= 0. (5.9)
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The terms Rij
ab are called residuals, which are equal to zero for the optimized amplitudes.

The Hylleraas functional can now be written as

E(2) =
∑
ij

∑
ab

(Kij
ab +Rij

ab)T̃
ij
ab. (5.10)

As mentioned, the residuals Rij
ab vanish when amplitudes are optimized, then E(2) becomes

equal to the Equation 5.8.

The orbital-invariant form of the MP2 residuals is written as

Rij
ab = Kij

ab +
∑
c

(facT
ij
cb + T ij

acfcb)−
∑
k

(fikT
kj
ab + T ik

abfkj), (5.11)

where the quantities frs are matrix elements of the Fock matrix which in case of the
canonical case is diagonal. If canonical orbitals are used, the residuals Rij

ab are equal to
zero, which then results in

T ij
ab =

Kij
ab

εi + εj − εa − εb
. (5.12)

Recall that T ij
ab are the MP2 amplitudes and the εa, εb are the orbital energies of the virtual

space while εi, εj are orbital energies of the occupied space.

However, in cases where the virtual orbitals remain canonical while occupied orbitals are
local (and such is the case in this chapter), the residuals can be written as

Rij
ab = Kij

ab +
∑
c

(facT
ij
cb + T ij

acfcb)−
∑
k

(fikT
kj
ab + T ik

abfkj) +Gij
ab +Gji

ba, (5.13)

where
Gij

ab = −
∑
k ̸=i

fikT
kj
ab . (5.14)

Finally, by applying the first-order perturbation theory, the amplitudes update by solving
the linear amplitude equations iteratively. This can be done by computing the residuals in
each iteration, as in the following equation:
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∆T ij
ab =

Rij
ab

εi + εj − εa − εb
. (5.15)

5.3 D2 Diagnostic from OI-MP2

In Section 2.2.4, several diagnostic tools have been discussed in detail. In this section,
the D2 diagnostic is utilized. However, rather than resorting to conventional canonical
orbitals, we adopt the orbital invariant MP2 discussed in Section 5.2. This formulation
works by localizing the valence occupied orbital and the rest remains as canonical. The
resulting amplitudes are used in the same as D2(MP2) by Nielsen and Janssen,248 in which
the 2-norm matrix is invoked to address the system size dependence of previous diagnostics
(i.e. T1 and T2).

There has been some skepticism regarding the use of double excitation amplitudes as a
‘measure’ of the quality of the wavefunction, mainly because of the use of canonical orbitals.
Canonical orbitals, by nature, tend to be delocalized. In instances where molecular systems
grow in size, the dominant double excitations may be ‘hidden’ primarily due to several
double excitations with smaller coefficients. This has been a problem for M2 diagnostics (for
both MP2 and CCSD variants) which effectively lack size-intensivity.50 Thus, a diagnostic
tool using localized orbitals is an interesting alternative.

The D2(OI-MP2) diagnostic can be simply calculated using the following expression:

D2(OI−MP2) =
√
λmax(TTT) (5.16)

where TTT is composed of matrices (To)TTo from the occupied space and (Tv)TTv from
the virtual space. These matrices are diagonalized separately and the largest value is
chosen. The elements of the matrices are given as

[(To)TTo]i,j =
∑
kab

T ik
abT

jk
ab ,

[(Tv)TTv]a,b =
∑
ijc

T ij
acT

ij
bc .

(5.17)

The routine to calculate the double excitation amplitudes using OI-MP2 (see Section 5.2)
and the corresponding diagnostic derived from it were implemented with Numpy interface
in Psi4, an open-source quantum chemistry package.249,250 Unless otherwise noted, a
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frozen-core approximation was used.

5.4 Evaluation of D2(OI-MP2)

Unlike the D2(MP2) developed by Nielsen and Janssen,248 the D2(OI-MP2) makes use
of locally correlated valence orbitals. Localization was done using the Pipek-Mezey
scheme.70,71 Several examinations on its properties were conducted to demonstrate the
capabilities of this new diagnostic tool.

To investigate the performance of the D2(OI-MP2) diagnostic, we compared its calculated
values to the literature values of D2(MP2)248 using several small molecular systems. The
same geometries as those in their MP2 calculations were used, and the cc-pVTZ basis set
was employed to ensure comparability with the reference values.

Table 5.1 shows the D2 diagnostics from MP2 and OI-MP2. As shown in the table,
the maximum difference among the molecular systems examined is 0.00007 from the N2

molecule. Even on well known difficult systems like C2 and O3, the D2(OI-MP2) diagnostic
values match well with the reference values, with 0.00005 and 0.00006 difference for their
D2(MP2) and D2(OI-MP2), respectively. These results show that even with the use of
localized orbitals for the correlated valence electrons, the maximum double excitation
amplitudes captured using canonical or localized orbitals are very similar. Thus, the
threshold for D2(MP2) will be adapted for the D2 diagnostic values using OI-MP2.

5.5 Local Orbital Analysis Using D2(OI-MP2)

If, indeed, one would like to use a priori approach to examine the extent of multireference
character of a molecular system, one usually launches CCSD calculations where T1 or
D1 diagnostic values are printed in the output file. These values are automatically
provided when programs like Molpro or Orca are used. Note that only the ‘affordable’
and readily available diagnostic tools are being referred to here. Typically, the whole
system is examined. Depending on the type of diagnostic tool used, either first excitation
amplitudes or second excitation amplitudes are being picked up and mathematically
processed. Depending on the predefined threshold values published in the literature is
the interpretation of the possible multireference character.

In this section, a more targeted approach is presented on how to measure the multireference
character of system. Unlike the conventional approach, our method operates by capturing
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Table 5.1: Comparison of D2(MP2)248 and D2(OI-MP2) diagnostics with the cc-pVTZ basis set.

Molecular system D2(MP2) D2(OI-MP2)

BCl 0.15038 0.15038
BF 0.14339 0.14339
C2 0.26411 0.26406
C2H2 0.16498 0.16499
C3 0.19579 0.19579
CH2NH 0.16578 0.16577
CH2O 0.16182 0.16180
CH4 0.11542 0.11541
Cl2 0.15253 0.15251
Cl2O 0.16269 0.16269
ClOH 0.15542 0.15542
CO 0.14638 0.14632
CO2 0.15078 0.15075
F2 0.18164 0.18166
H2O 0.11618 0.11619
HCl 0.12399 0.12397
HCN 0.16775 0.16778
HF 0.11003 0.11003
N2 0.16665 0.16672
NH3 0.11843 0.11843
O3 0.26972 0.26978
P2 0.19442 0.19436
SiH4 0.11533 0.11532

the double excitation amplitudes of each valence orbital and calculating the D2(OI-MP2)
diagnostic value for each orbital. This technique not only provides a broader overview of
the behaviour of each orbital in terms of excitation amplitudes but also assists in situations
where one would specifically need a multireference calculation. This provides insights into
which specific orbitals are more likely to be relevant to the active space.

This targeted approach works by defining the centers of the active valence orbital using
Mulliken population. A function for this purpose is integrated in the in-house OI-MP2
routine developed for this study. Note that since the excitation amplitude is orbital-
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specific, diagnostic thresholds commonly used are not necessarily applicable.

When stretching the molecule, as mentioned, it is one method to increase the static
correlation of the system, hence increasing its multireference character. Such a case is
observed in the process of, for example, proton transfer. In this section, we explored the
behavior of two molecular systems to investigate how the multireference character of each
orbital evolves during stretching towards the point where (approximately) dissociation
occurs and to identify which orbitals do not present issues. Two systems are investigated,
namely CH3OH and NCOH. These are optimized at the MP2/cc-pVTZ level of theory
using Gaussian 16 program.202 Using their respective equilibrium geometries, the
behaviour of the orbital-specific D2(OI-MP2) diagnostic was evaluated as the O−H bond
is stretched. The results are shown in Figure 5.1, and optimized structures can be found
in Appendix C, Section C.1.

Upon analyzing the first system, CH3OH, as shown in Figure 5.1a, all the σ-bonds
(C−H and C−O) as well as the lone pair of oxygen remains unaffected while O−H is
being stretched. As anticipated, the multireference character of the O−H σ-bond steadily
increases as its length is extended. Intuitively, the behaviour of this specific orbital also
mirrors the overall behaviour of the D2(OI-MP2) diagnostic.

Another system examined is the NCOH molecule, as depicted in Figure 5.1b. Similar to
the previous analysis, the O−H bond was stretched, while all other orbitals remained
unchanged. Unquestionably, this specific bond exhibits an increase in multireference
character as it elongates, as indicated by D2(OI-MP2) orbital diagnostic. This reflects
the same behaviour observed in the CH3OH molecule. Interestingly, the O−H bond is
not the only bond where an increase in static correlation is noticed. Surprisingly, one
of the N−C bonds is also impacted, resulting in an increase in the static correlation, as
highlighted by the D2(OI-MP2) orbital values. What is more striking is that, unlike in
CH3OH where the O−H D2(OI-MP2) diagnostic values reflects the overall D2(OI-MP2)
diagnostic behavior, in the case of NCOH, one of the N−C bonds takes the central role.

Based on the systems investigated above, the use of local orbital analysis to assess the
degree of static correlation is a useful targeted approach to analyze the multireference
character of the system. This orbital-based analysis of static correlation not only provides
a more comprehensive overview of the behaviour of each valence orbital of the system in
question, but can also aids in identifying orbitals which may not be obviously contributing
to the multireference character of the system. The latter is particularly helpful to the
chemists as it allows a logical identification of which orbitals to incorporate in the active

115



CHAPTER 5. LOCAL ORBITAL MULTIREFERENCE DIAGNOSTICS

(a)

(b)

Figure 5.1: Orbital-specific D2(OI-MP2) diagnostic calculation for a) CH3OH molecule and b)
NCOH molecule upon O−H stretching (indicated by the black arrow). Overall D2(OI-MP2) of the
system is also included.
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space when deploying multireference calculations.

5.6 Molecular Diagnostic Inconsistencies

To ensure an accurate description of the molecular system in a particular calculation, it is
advisable to look at the existing parameters that signal the presence of other significant
configurations. Usually, one employs molecular diagnostics that are readily available in
program packages that are computationally affordable. This, in itself, is not a problem.
However, the scientific community has not reached a consensus on which diagnostic tool
to use, and the choice may vary depending on the molecular system under investigation.
Moreover, diagnostic thresholds are being adjusted based on the specific nature of the
molecular system. For example, D1(CCSD) signals a multireference character in main
group atoms once value is >0.05. However, when systems involve 3d transition metals,
Jiang et al.251 suggested a value of 0.15 to indicate multireference character. Conversely,
for systems involving 4d transition metals, Wang et al.252 proposed a threshold of 0.12.
These adjustments have not been limited to for D1(CCSD) but also for T1 as well as
%TAE.

Before accepting or disputing the proposed adjustments, it is noteworthy to revisit to the
original data set on which diagnostics based on single and double excitation amplitudes
were initially developed. Historically, these diagnostics were established for small, well-
behaved main group species. However, a critical question arises: Are these diagnostic
tools consistently reflective of the multireference signal they give on different molecular
systems? In this section, a comprehensive analysis delves into how different diagnostic
tools ‘diagnose’ diverse molecular systems. This endeavor aims to provide a context to
the reliability of the existing diagnostics and their consistency of assessing the molecular
characteristics of the system.

The original data set of Janssen and Nielsen50,248 comprised 29-34 small closed-shell
molecules examined. From their calculations, eight molecular systems were selected and
closely inspected in this section. Specifically, the T1, T2, D1(MP2), D1(CCSD), D2(MP2)
and D2(CCSD) diagnostic values were used in comparison. The bar charts follow a specific
coloring scheme, akin to a traffic light. Green signals a single-reference character, typically
indicating the suitability of single-reference calculations. Yellow represents intermediate
diagnostic values, suggesting the need for caution in systems where other factors beyond
orbital relaxation can significantly affect the quality of the reference wavefunction. Lastly,
red signals a multireference character, indicating that single-reference methods are totally
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Table 5.2: Threshold values of several molecular diagnostics, where x is the calculated diagnostic
value for a molecular system. Adjusted thresholds for 3d and 4d transition metals are not included
in this table.

Diagnostic tool Single-reference Intermediate Multireference

T1
43,49 ≤ 0.02 – > 0.02

T2
49 ≤ 0.012 0.012 < x < 0.015 ≥ 0.015

D1(MP2)50 ≤ 0.015 0.015 < x < 0.040 ≥ 0.040
D1(CCSD)50 ≤ 0.02 0.02 < x < 0.05 ≥ 0.05
D2(MP2)248 ≤ 0.15 0.15 < x ≤ 0.17 > 0.17
D2(CCSD)248 ≤ 0.15 0.15 < x ≤ 0.18 > 0.18

inadequate for the system.

For the selected molecules, Figure 5.2 reveals the approximations of T1 and T2 diagnostics
(thresholds are summarized in Table 5.2). Recall from Section 2.2.4 that T1 utilizes single-
substitution amplitudes in the CCSD wavefunction, while T2 employs single-excitation
amplitudes from the MP2 wavefunction. When comparing both graphs in Figure 5.2a
and b, a change in color of every bar from top (a) to bottom (b) signifies a disagreement
between the diagnostic assessments. In this case, the T2 diagnostic identifies CO and CO2

as possessing multireference character, while HCN gives an intermediate value, suggesting
that care must be taken when using single-reference methods - contradicting T1 diagnosis.
For the rest of the molecules, especially with well-known difficult systems like C2 and
O3, both diagnostic tools yield identical predictions. It is worth noting that the only
difference between the two diagnostics is the source of the single-excitation amplitude is
from (Equation 2.33 for T1 and Equation 2.35 for T2), yet these differences manifest in
their results.

Turning to D1 diagnostics, the multireference character of the same molecules was analyzed
with D1 calculations, as reflected in Figure 5.3. This particular diagnostic tool uses
a 2-norm matrix and relies on the single-excitation amplitudes of the MP2 and CCSD
wavefunction, selecting a maximum value of the resulting vector. The same color scheme
is applied; a change in bar color from top (a) to bottom (b) indicates a discrepancy between
the diagnostics. In most cases, there is an agreement on both diagnostics, with one notable
exception being CO2. D1(MP2) suggests a multireference character, while D1(CCSD)
implies that single-reference may still be applicable with caution. From their results,
utilizing a 2-norm matrix appears to reduce the dependence of the diagnostic results on
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Figure 5.2: Comparison of T1 and T2 diagnostics.50
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the source of single excitation amplitudes. Additionally, it is interesting to observe how the
D1 results compare to T1 and T2. There is an obvious disagreement between D1 diagnostic
and T1 and T2 diagnostics in classifying F2 molecule, with D1 indicating that the system
in the yellow zone (intermediate value) while T1 and T2 place it in the green zone (single-
reference). These diagnostics also differ in their assessment of whether or not CO2 exhibits
multireference character. Nevertheless, these diagnostics are consistently categorize HCl
and HF as single-reference, while identifying the well known problematic systems O3 and
C2 in the red zone (multireference).

In their subsequent paper, Nielsen and Janssen248 also used the same data set when they
developed their D2(MP2) and D2(CCSD) diagnostics. In this iteration, the 2-norm matrix
of double-excitation amplitudes was utilized, selectively extracting the maximum value
of the resulting vector (see Equation 2.38). The same set of molecules, characterized
by unaltered geometries, were used as data set. The D2 diagnostic values are shown in
Figure 5.4. At first glance, one might think that finally there is more agreement in the
predictions than the previous diagnostics, except of course with that of CO. Although
D2(MP2) and D2(CCSD) agrees that single-reference methods are sufficient for most of
the systems examined, D2(CCSD) issues a warning that CO molecule might still have
problems with single-reference methods (thus in the yellow zone). What is striking though
is how the D2 diagnostics (both MP2 and CCSD) classifies the F2 molecule. While all the
other diagnostics predict F2 to be a well-behaved system where single-reference methods
pose no issues, D2(MP2) and D2(CCSD) says otherwise. The results reflected in Figure
5.4 indicates that the choice of second excitation amplitudes, either from MP2 or CCSD
wavefunction, gives the same prediction of the molecular character of the systems. However,
this choice does not necessarily coincide with the results of other diagnostics, i.e., compared
to T1, T2, D1(MP2) and D1(CCSD).

The results above show that, despite the existence of several affordable diagnostic tools,
their diagnoses of the molecular character of some systems remain inconclusive. The
different results for certain systems add to the confusion rather than offering a clear
guidance on which methods can be used with confidence. Is the Euclidean norm adequate,
or does the 2-norm matrix offer better results in terms of the values obtained? Is single
excitation amplitude sufficient to indicate a possibility of multireference character, or is
double excitation amplitude necessary? Can the arbitrary thresholds assigned be generally
applied, or is there a need for further adjustments based on specific systems? The
disparities in these diagnoses and the question regarding the reliability of the established
thresholds leave the end users in a state of uncertainty.
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Figure 5.3: Comparison of the different D1 diagnostics.50,248
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Figure 5.4: Comparison of the different D2 diagnostics.248
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5.7 The Case of Differential Diagnostics

One of the outstanding issues in current molecular diagnostics is the reliability of their
thresholds. As mentioned, the diagnostic thresholds were established using small molecules
from the main group. Specifically, the thresholds for T1 were calibrated against the leading
coefficient, C0, of the CISD wavefunction.43 On the other hand, the thresholds of T2 were
mainly based on the performance of T1 on several molecules, specifically tailored to gauge
the reliability of perturbation theory to approximate chemical properties.49 D1 (MP2 and
CCSD) thresholds were established by looking at the error of equilibrium bond distances
and harmonic vibrational frequencies of MP2 and CCSD methods compared to CCSD(T)
values.50 Similarly, the thresholds of D2 (MP2 and CCSD) were determined, albeit this
time using 34 molecular systems from the main group, an expansion from the 29 used for
D1 diagnostic.248

In 2012, Jiang et al.251 introduced a comprehensive recalibration of the threshold values for
T1 and D1 diagnostics when applied to systems containing transition metal species. Their
in-depth analysis of the ccCA-TM/11all dataset253 indicated that the historical criterion
T1 < 0.02 and D1 < 0.05, originally designed for main group atoms, lacked practicality
in the context of transition metal containing species. Through a meticulous examination
involving linear fitting of T1 and D1 diagnostic for 225 molecules in the ccCA-TM/11all
data set, they recommended a new cut-off of T1 < 0.05 and D1 < 0.15 for a reliable
single-reference calculations. Furthermore, they proposed using the tandem of T1, D1 and
|%TAE| < 10 as a combination to properly identify pathological species. The recalibration
of the criteria was extended to 4d transition metals. Wang et al.252 examined 118 4d
transition metal-containing molecules, and established new threshold values based on the
T1, D1 and |%TAE| diagnostics. They propose that although previous adjustment for 3d
transition metal are still applicable for 4d transition metals, their newly proposed threshold
values are more fine-tuned for 4d metals to enhance precision in identifying the reliability
of single-reference methods for these molecular species.

However, in 2017, Aoto et al.254 contested the proposal of modifying the threshold of
diagnostics based on their location in the periodic table. They examined the reliability of
the adjusted threshold in reference to the ∆MR value of 60 diatomic molecules containing
transition metals. This ∆MR represents the disparity between a single-reference and
multireference treatments using icMRCCSD(T)/awCVTZ for an array of several molecular
properties, including dissociation energy ∆MRDe , harmonic frequency ∆MRωe , and bond
distances ∆MRRe . To consolidate these values it into a single dimensionless value, the
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they used the following criteria:

∆MRmax =

{
|∆MRDe |

1kcalmol−1
,
|∆MRRe |

1pm
,
|∆MRωe |
15cm−1

}
(5.18)

where the denominators are the established benchmarks for chemical accuracy across
various molecular properties. For example, if the difference of single-reference and
multireference treatment for dissociation energy does not exceed 1 kcal mol−1, that means
single-reference method is an appropriate treatment for the system.

Their analysis revealed that the new threshold proposed by Jiang251 is, in fact, not reliable
for T1 and D1 diagnostics. Their results indicated many of false negatives, resulting in
significant misdiagnosis of the molecular properties. This means that the diagnostic tool
gives false confidence in the appropriateness of single-reference methods, whereas they
actually result in a significant error compared to the established chemical accuracy of the
calculated molecular properties. They concluded that the traditional criteria of T1 ≤ 0.02
and D1 ≤ 0.05 render these diagnostics highly reliable but significantly less efficient.

Most of the values of the multireference diagnostics are based on the behaviour of a single
species when, in reality, the observables that often concern chemists are based on properties
which often involve several molecules. Common benchmark values include atomization
energies, dissociation energies, enthalpies of formation/reaction, interaction energies, high
spin–low spin energy states, and excitation energies, among others. For example, in a
typical reaction mechanism, usually it is the starting ground state geometry of molecule
that is examined. Depending on the values calculated by the diagnostic for the ground
state system is then the type of calculation deployed to all of the species, regardless of
their electronic state. In other words, while most of the molecular properties desired to
benchmark involves a differential approach (e.g., relative energies), the diagnostic measure
is just often conducted on one participating species and a uniform interpretation is assumed
for all other participating species. What if, all along, the approach of using the existing
diagnostics is not the most appropriate?

In Figure 5.5, a subset of 36 out of 60 of Aoto’s dataset254 of transition metals diatomics
was analyzed in a form of a confusion matrix. Specifically, the dissociation energy, as a
benchmark molecular property is utilized. In this specific analysis, the common approach
of using molecular diagnostics was used. For example, in a dissociation reaction CuF −−→
Cu++F– , the D2 diagnostic is only used for the CuF species. The horizontal line indicates
the maximum error (absolute deviation) of the calculated dissociation energy from single-
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Figure 5.5: Performance of D2(CCSD) diagnostic on selected transition metal complexes.
D2(CCSD) values were computed using Molpro 2020.2 developer’s version.224

reference and multireference treatments, set at the chemical accuracy of 1 kcal mol−1.
The vertical bar, on the other hand, indicates the D2(CCSD) threshold as established
by Nielsen and Janssen248 based on the original formulation of this diagnostic (see the
threshold in Table 5.2). However, instead of accounting for any intermediate values, the
threshold in this analysis is considered at 0.18, and anything exceeding that requires a
multireference treatment. Points falling within the white region of the confusion matrix
indicate that the diagnostic tool makes a proper prediction as to the reliability of single-
reference method or if the multireference treatment is necessary based on the calculated
∆MR of the dissociation energy. Species which fall on the upper left red region contain
false negative predictions, while those which fall on the lower right red region are the
false positives. Among the two regions, the false negatives are the most critical results.
This region means that the diagnostic tool gives the user false confidence that the systems
are classified as single-reference appropriate systems, whereas in reality, the systems need
multireference treatment. As shown in Figure 5.5, using the traditional approach, there
are still a number of species that fall into the false positives and false-negative regions,
which means that the D2 diagnostic as well as its thresholds do not necessarily ensure the
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indication of the need to use multireference treatment. Worst is, it signals some species
which have a very high values of ∆MRDe as safe for the use of a single-reference treatment.
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Figure 5.6: Performance of D2(CCSD) diagnostics to selected transition metal complexes if the
whole reaction is examined. Diagnostic values were computed using Molpro 2020.2 developer’s
version.224

In this section, an alternative approach to the evaluation of molecular diagnostics is
proposed. Staying within the context of a dissociation reaction, e.g., CuF −−→ Cu+ +F– ,
we dapart from the conventional practice of assessing the diagnostic value of individual
species, like CuF. Instead, we analyze all the participating species are tested using
D2(CCSD). The maximum value of D2(CCSD) among all the species serves as a parameter
to decide whether or not single-reference treatment is suitable. Since only the maximum
value of the diagnostic results is taken per reaction, the D2(CCSD) thresholds still hold.

The results of this approach are shown in Figure 5.6. The same value of ∆MRDe is
used, along with the D2(CCSD) thresholds employed. To provide a clearer picture of
the chemical species involved in each reaction, these are color-coded according to the
diagnostic values of all the chemical species in the reaction. Green dots signify that the
transition metals diatomic as well as its dissociated species are considered as well behaved
system according to the D2(CCSD) standards, indicating that single-reference methods are
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suitable. Yellow dots represent cases where at least one species in the reaction exhibits
a D2(CCSD) > 0.18. Lastly, red dots indicate that all species involved are characterized
as having multireference character according to D2(CCSD) standards. Upon analyzing
Figure 5.6, it becomes evident that this approach effectively shifts all the species from the
false negative region (upper left corner) to the white region, indicating a proper diagnosis
of D2(CCSD). Although the false positives are still present, the fatal misdiagnoses in the
false-negative region have been eliminated.

While this type of analysis currently pertains to a single molecular property, it serves as
a proof of concept for an alternative approach to the utilization of molecular diagnostics.
Future work can explore the application of the same approach to other molecular properties
such as excitation states (HS–LS) and atomization energies, to mention a few.
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Chapter 6

Summary and Outlook

This thesis primarily advocates giving equal attention to both the energy and the structural
features of chemical systems under investigation. For some systems, advanced spectroscopic
techniques are available to probe their structure, and this can be well complemented
by state-of-the-art quantum chemical methods. Nevertheless, achieving a comprehensive
chemical representation remains a challenging endeavor in many cases. Local correlation
methods provide not only accurate results at a modest computational cost but also bridge
the gap between quantum chemical results and classical chemical concepts. Thus, we
presented several tools and approaches to explore both aspects in rationalizing several
chemical phenomena.

One of the main focuses of this investigation is chirality recognition discussed in Chapter
3. This research delves into various types of chiral systems, including transiently chiral
molecules, permanently chiral molecules, and molecules with chirality arising from its
molecular strain and the presence of axial chirality. For the first two types of chiral sytems,
EDO, CHexDO and pinacol were examined, with a specific emphasis on the impact of
dispersion on their chirality recognition. Specifically, the energy and structural effects due
to dispersion were explored. To accomplish this, dispersion-free LMP2 gradients for the
WFT part was developed, and removal of D3 corrections for the DFT part was used. The
results demonstrated a significant influence on the structure of molecular aggregates when
dispersion was neglected, evidently on the intermolecular HO···H bonds of the diols as
well as the differences in the center of masses, ∆R(CM-CM). In terms of the differential
chiral binding of these molecular systems, it was also found that dispersion is a relevant
driving force. A significant decrease in the het-hom gap of the systems was observed once
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dispersion was eliminated. These results were more obvious with WFT results, although
DFT methods still reflected these observations.

In systems with stereogenic centers (i.e., permanent chirality), the fenchone-fenchol systems
were explored. These systems are pretty rigid, so there is not much deformation from its
isolated structure and when it interacts in a dimer form. They are interesting because the
RR and SR species are isoenergetic, so if chirality recognition is judged based on its het-
hom gap, in this case it is non-existent. Although no experiment were done to conclude the
chirality recognition in these systems, initial results from FTIR and microwave spectroscopy
show that the stable conformers are very different in the structural aspect. To unravel the
delicate balance of intermolecular forces at play, a tandem of extended KM and PNO-SCS-
LMP2 energy decomposition schemes were employed. The most stable SR, SR-I, exhibits
a higher electrostatic and exchange contribution than its most stable RR counterpart, RR-
I. This can be the cause of OH-stretching at a lower wavenumber of SR-I relative to RR-I,
thus resulting to a distinguishable peaks in the IR spectrum (exp.: 56 cm−1, theory: 64
cm−1 after rescaling). In contrast, the RR-I has more dispersion contribution than SR-I.
There is more surface of interaction of the monomers of the former, facilitating dispersion
interactions. This observation is substantiated by DID visualization.

The third system examined are expanded helicenes, whose chirality is due to molecular
strain and the presence of axial chirality. In this case, the inversion mechanism holds a
great significance as it constitutes the key to resolving into its different enantiomers. The
systems investigated were synthesized by Suárez-Pantiga et al.108 Regarding the theoretical
work, NEB calculations were done to explore the PES of the inversion mechanism. Several
critical factors were observed to play a crucial role in the inversion barrier. One factor is the
diameter of the arms, which is influenced by the manner and series of ring fusions (linear
and angular modes). Expanded helicenes with longer arms shows a mechanism with higher
inversion barrier. Equally important factor is the presence of substituent in the in-fjord
position. When the substituent can interact with the arms, e.g., in the case of Compound
3 and 4 shown in Section 3.5, it significantly raises the inversion barrier to a significant
extent, compared to the helicene lacking a substituent. Apart from steric hindrance which
significantly affect the inversion barrier, both the interaction of arms with each other,
as well as the interaction of the in-fjord substituent with the arms, are also affected by
dispersion. The π-π interactions facilitate dispersion interactions, and the greater the
available surface areas for these interactions, the more stable the reactant state, and thus
the greater the inversion barrier. As for the mode of inversion itself, it strongly depends
on the type of helicenes and the presence of substituents. Knowing which factors can
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effectively affect the inversion mechanism, these concepts can be used to further improve
molecular designs of expanded helicenes.

In all the systems mentioned above, dispersion interactions play a crucial role. It is one
thing to see how they affect the calculated values, it is another to discern the origin of
dispersion forces. Through local correlation, DID visualization103 was possible and it
stirred us to a good direction in rationalizing the results.

Chapter 3 hopefully convinced the reader about the relevance of exploring both energies
and structures when investigating a chemical phenomena. Results from the previous
chapter also underscore the importance of considering dispersion forces, particularly when
noncovalent interactions are involved. Chapter 4 presented a new way of looking at
dispersion, where instead of focusing on its source, it is viewed from the perspective of
an overlap. This chapter introduced a new approach, referred to as o-DID, which employs
the overlap of dispersion densities to elucidate noncovalent interaction resulting from this
force. This approach highlights the directionality of the overlap, as exemplified in Figure
4.5, serving as a valuable guide to identify regions of high dispersion density. This method
is complemented by pair orbital analysis, which can pinpoint which specific orbital(s) with
the strongest dispersion interaction, offering enhanced guidance for rationalizing diverse
chemical phenomena.

In launching calculations, we hope to get the right numbers for the right reasons.
To facilitate this, the foundation of the calculation should be right from the onset.
Unfortunately, some systems are not adequately described by a single electronic
configuration. There are systems, such as C2, O3, and metal-containing compounds,
which often requires more than one relevant single electronic configuration that needs
to be treated, indicating multireference character. Various diagnostic tools are available to
detect the inadequacy of single-reference methods, but these diagnostics are inconsistent
with each other or prove too costly and complicated for use as a preliminary test.

In Chapter 5, we employed OI-MP2 as source of double excitation amplitudes to calculate
the D2 diagnostics for several molecules. We also developed a targeted approach capable of
identifying any problematic orbital that may contribute to multireference character. This
strategy proves valuable in defining active spaces or deciding which orbitals to include
in multireference treatment. This chapter also explored the potential of utilizing the
existing diagnostics in a different manner, for example differential approach. For instance,
in dissiocation reactions AB −−→ A + B, diagnostic analysis is often performed on the
molecule AB alone. We proposed to use the diagnostic in all species, taking the maximum
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value as a metric whether or not multireference calculations are necessary. This procedure,
at least in the case of dissociation reactions, have shown to remove false negative results,
i.e., a diagnosis saying there is no need for an multireference treatment where in reality,
the system has to be treated with multireference calculations. However, this work is not
yet complete as additional datasets for such a methodology are still necessary, and other
types of currently available diagnostic tools need further examination.

Regarding multireference diagnostics using local orbitals, it remains a task for future work
to establish their advantages over existing methods. The creation of a more comprehensive
database is also imperative to properly establish a consistent metric for evaluating the
current and future multireference diagnostic tools. This can involve the establishment
of database containing information about excitation states, dissociation energies, and
bond dissociation curves, to mention a few. Such a varied dataset could provide unique
insights into the nature of dynamic and static correlation, a pivotal question central to the
development of wave function methods.

In general, this research provides chemists with relevant tools and approaches to interpret
energy results, which, in turn, are reflected in the molecular structures, specifically through
the use of local correlation methods. The dispersion-free gradient LMP2 offers an effective
means of eliminating dispersion, facilitating the examination of the extent of dispersion
contribution in the systems under study. This thesis also demonstrates the use of extended
KM and PNO-SCS-LMP2 as to how they can disentangle the delicate interplay of forces
reflected in the balance of energy, particularly in the context of chiral recognition. Of
course, this approach is applicable in a broad chemical problems involving the examination
of intermolecular forces of attraction. The relevance of dispersion has been established in
several chemical problems, thus this thesis also presented a new method to view such
a force, specifically through the use of o-DID. This method provides chemists with a
novel perspective of the dispersion as an overlap, which features directionality. It can
be effectively complemented with pair orbital analysis to assess the extent of orbital
interactions between non-interacting fragments. Lastly, this research introduces a new
aspect on addressing multireference problems, one approach is via local orbital analysis to
evaluate multireference character at an orbital level, and the other is using the diagnostics
in a differential manner.
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Supplemental Materials for Chapter 3

A.1 Energy and Structural Analysis of Diols
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APPENDIX A. SUPPLEMENTAL MATERIALS FOR CHAPTER 3

Table A.1: Relative energies of different conformations of EDO, CHexDO and pinacol.
Optimization and frequency calculations were done using (SCS)LMP2/aug-cc-pVTZ, H=cc-pVTZ
and B3LYP-D3(BJ,abc)/ma-def2-TZVP. With dispersion is indicated by disp while without
dispersion considerations were labeled as nodisp. PNO-F12 in the table refers to the PNO-
LCCSD(T)-F12/cc-pVTZ level of theory.

SCSLMP2 LMP2 B3LYP
EDO disp nodisp disp nodisp disp nodisp
het2” 4.38 0.12 6.95 0.00 9.25 5.14
het3 1.70 0.00 3.40 0.06 4.78 1.14
het3b’ 3.42 0.05 6.17 0.19 8.86 3.64
het3’ 3.36 0.54 5.44 0.60 5.93 1.63
het4 0.00 1.50 0.00 1.29 0.00 0.00
hom2” 6.93 3.25 8.81 2.65 10.62 7.47
hom3 4.90 2.64 6.90 2.69 7.23 3.15
hom3b’ 4.01 0.10 6.74 0.20 8.02 3.18
hom3’ 5.17 2.44 7.20 2.44 6.73 2.66
hom3a 4.36 0.73 6.58 0.83 7.98 2.94
hom3a’ 8.35 3.39 10.84 3.53 11.09 6.10
PNO-F12 7.12 6.32 7.19
CHexDO
het2” 2.23 0.00 4.50 0.00 6.91 4.34
het3 2.25 1.06 4.18 1.15 5.84 1.72
het3b’ 2.85 0.56 5.35 0.55 7.64 2.81
het3’ 3.18 1.27 5.35 1.32 5.87 1.56
het4 0.00 2.67 0.00 2.67 0.00 0.00
hom2” 4.12 2.42 5.62 1.95 7.32 6.36
hom3 6.15 4.24 7.97 4.11 8.21 4.11
hom3’ 5.03 2.92 6.81 2.76 6.54 2.93
hom3a 4.55 2.00 6.92 2.22 9.11 3.95
hom3b’ 3.12 1.08 5.30 1.14 6.78 3.05
PNO-F12 6.14 5.86 6.32
Pinacol
het2” 5.79 0.86 8.25 0.72 9.56 5.42
het3b’ 1.68 0.00 4.59 0.00 4.88 0.01
het3’ 2.35 0.80 4.70 0.71 4.19 0.00
het4 0.00 2.50 0.00 2.32 0.00 0.67
hom3b’ 5.46 1.54 8.93 1.65 9.38 2.54
hom4 5.20 5.52 6.98 5.40 6.96 4.87
PNO-F12 4.93 6.08 6.31
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Table A.2: Intermolecular H-bonding (HO···H) of EDO systems at different levels of theory.
Units in Å.

LMP2/aug-cc-pVTZ, H=cc-pVTZ
Molecular System with dispersion without dispersion
het2” 1.983 1.983 2.133 2.133
het3b’ 2.188 2.031 1.892 2.532 2.112 2.000
het3 1.905 1.998 1.899 2.045 2.152 2.063
het3’ 1.928 1.976 1.920 2.085 2.131 2.100
het4 1.959 1.959 1.959 1.959 2.111 2.111 2.111 2.111
hom2 1.926 1.973 2.081 2.145
hom3a 1.841 1.972 2.065 1.956 2.215 2.244
hom3a’ 1.822 1.961 2.021 2.034 3.390 2.046
hom3b’ 2.145 1.983 1.886 2.491 2.083 2.006
hom3 1.847 1.980 1.959 1.956 2.154 2.136
hom3’ 1.876 1.971 1.961 2.004 2.159 2.135

SCS-LMP2/aug-cc-pVTZ, H=cc-pVTZ
Molecular System with dispersion without dispersion
het2” 2.052 2.052 2.178 2.178
het3b’ 2.255 2.083 1.944 2.510 2.152 2.030
het3 1.968 2.059 1.964 2.079 2.181 2.096
het3’ 1.997 2.038 1.992 2.119 2.161 2.133
het4 2.024 2.024 2.024 2.024 2.144 2.144 2.144 2.144
hom2” 1.992 2.051 2.116 2.196
hom3a 1.897 2.051 2.140 1.987 2.250 2.288
hom3a’ 1.866 2.075 2.102 2.063 3.474 2.073
hom3b’ 2.232 2.031 1.937 2.499 2.112 2.035
hom3 1.900 2.044 2.026 1.986 2.183 2.169
hom3’ 1.936 2.039 2.025 2.035 2.188 2.166

B3LYP-D3(BJ,abc)/ma-def2-TZVP
Molecular System with dispersion without dispersion
het2” 1.939 1.939 1.980 1.980
het3b’ 2.141 1.988 1.876 2.203 2.046 1.915
het3 1.881 1.973 1.865 1.925 2.008 1.911
het3’ 1.885 1.943 1.877 1.913 2.000 1.935
het4 1.951 1.951 1.951 1.951 1.997 1.997 1.997 1.997
hom2” 1.898 1.932 1.957 1.977
hom3a 1.810 1.926 2.018 1.832 1.998 2.091
hom3a’ 1.792 1.916 2.001 1.811 2.018 2.044
hom3b’ 2.062 1.956 1.864 2.114 2.024 1.909
hom3 1.828 1.940 1.916 1.852 2.015 1.987
hom3’ 1.841 1.935 1.921 1.870 2.019 1.990
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Table A.3: Intermolecular H-bonding (HO···H) of CHexDO systems at different levels of theory.
Units in Å.

LMP2/aug-cc-pVTZ, H=cc-pVTZ
Molecular System with dispersion without dispersion
het2” 2.002 2.002 2.175 2.175
het3b’ 2.176 2.002 1.873 2.378 2.131 2.007
het3 1.910 1.988 1.898 2.089 2.139 2.077
het3’ 1.960 1.956 1.921 2.140 2.122 2.106
het4 1.939 1.939 1.939 1.939 2.099 2.099 2.099 2.099
hom2” 2.013 1.947 2.196 2.142
hom3a 1.869 1.907 2.065 2.011 2.203 2.301
hom3b’ 2.174 1.957 1.880 2.415 2.087 2.024
hom3 1.866 1.952 1.942 1.987 2.153 2.159
hom3’ 1.923 1.959 1.948 2.055 2.172 2.173

SCS-LMP2/aug-cc-pVTZ, H=cc-pVTZ
Molecular System with dispersion without dispersion
het2” 2.071 2.071 2.215 2.215
het3b’ 2.232 2.060 1.928 2.386 2.166 2.035
het3 1.976 2.050 1.965 2.120 2.167 2.109
het3’ 2.031 2.019 1.993 2.171 2.150 2.138
het4 2.005 2.005 2.005 2.005 2.132 2.132 2.132 2.132
hom2” 2.091 2.015 2.248 2.174
hom3a 1.935 2.046 2.142 2.045 2.229 2.344
hom3b’ 2.257 2.007 1.934 2.443 2.113 2.052
hom3 1.916 2.020 2.016 2.014 2.182 2.192
hom3’ 1.985 2.028 2.019 2.085 2.197 2.204

B3LYP-D3(BJ,abc)/ma-def2-TZVP
Molecular System with dispersion without dispersion
het2” 1.959 1.959 2.007 2.007
het3b’ 2.137 1.961 1.853 2.175 2.036 1.908
het3 1.877 1.950 1.849 1.921 2.005 1.926
het3’ 1.912 1.922 1.868 1.947 1.986 1.939
het4 1.928 1.928 1.928 1.928 1.988 1.988 1.988 1.988
hom2” 1.967 1.915 2.015 2.002
hom3a 1.830 1.930 2.005 1.851 2.010 2.079
hom3b’ 2.102 1.925 1.850 2.124 2.007 1.905
hom3 1.834 1.913 1.896 1.860 2.009 1.993
hom3’ 1.860 1.917 1.907 1.898 2.017 2.003
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Table A.4: Intermolecular H-bonding (HO···H) of CHexDO systems at different levels of theory.
Units in Å.

LMP2/aug-cc-pVTZ, H=cc-pVTZ
Molecular System with dispersion without dispersion
het2” 1.982 1.982 2.394 2.394
het3b’ 2.192 2.069 1.883 2.361 2.298 2.081
het3’ 1.975 1.980 1.995 2.223 2.207 2.256
het4 1.963 1.963 1.963 1.963 2.185 2.185 2.185
hom3b’ 1.906 2.099 2.090 2.193 2.306 2.313
hom4 1.887 1.887 2.343 2.343 2.091 2.091 2.733 2.733

SCS-LMP2/aug-cc-pVTZ, H=cc-pVTZ
Molecular System with dispersion without dispersion
het2” 2.054 2.054 2.430 2.430
het3b’ 2.232 2.144 1.948 2.364 2.331 2.109
het3’ 2.056 2.048 2.075 2.243 2.235 2.277
het4 2.035 2.035 2.035 2.035 2.212 2.212 2.212 2.212
hom3b’ 2.029 2.155 2.159 2.220 2.322 2.335
hom4 1.953 1.953 2.473 2.475 2.113 2.113 2.758 2.757

B3LYP-D3(BJ,abc)/ma-def2-TZVP
Molecular System with dispersion without dispersion
het2” 1.965 1.964 2.066 2.066
het3b’ 2.173 2.014 1.853 2.226 2.138 1.937
het3’ 1.909 1.948 1.923 1.999 2.053 2.055
het4 1.950 1.950 1.950 1.950 2.036 2.036 2.036 2.036
hom3b’ 1.916 1.986 2.094 2.014 2.055 2.234
hom4 1.864 1.878 2.462 2.181 1.966 1.975 2.788 2.359
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Table A.5: Distance of the center of masses R(CM-CM) of different systems optimized at
different levels of theory with and without dispersion (disp and nodisp, respectively). Units in Å.
Optimizations were done at (SCS)LMP2/aug-cc-pVTZ,H=cc-pVTZ and B3LYP-D3(BJ,abc)/ma-
def2-TZVP.

SCSLMP2 LMP2 B3LYP
EDO disp nodisp disp nodisp disp nodisp
het2” 3.46 3.60 3.40 3.58 3.38 3.48
het3b’ 3.41 3.57 3.34 3.54 3.30 3.41
het3 3.27 3.46 3.18 3.42 3.14 3.26
het3’ 3.35 3.53 3.26 3.50 3.21 3.32
het4 3.06 3.23 2.98 3.20 2.97 3.04
hom2” 3.39 3.53 3.33 3.51 3.32 3.40
hom3a 3.50 3.71 3.41 3.68 3.38 3.48
hom3a’ 3.44 4.06 3.33 4.01 3.30 3.45
hom3b’ 3.41 3.59 3.33 3.56 3.25 3.41
hom3 3.31 3.51 3.22 3.47 3.14 3.30
hom3’ 3.33 3.55 3.23 3.52 3.17 3.33
Average 3.36 3.58 3.27 3.54 3.23 3.35

CHexDO
het2” 5.24 5.43 5.17 5.41 5.18 5.37
het3b’ 5.65 5.82 5.56 5.78 5.53 5.68
het3 5.66 5.84 5.57 5.80 5.53 5.66
het3’ 5.66 5.85 5.56 5.81 5.50 5.66
het4 5.49 5.67 5.40 5.62 5.39 5.48
hom2” 5.14 5.34 5.07 5.32 5.09 5.25
hom3a 5.47 5.79 5.36 5.76 5.38 5.61
hom3b’ 5.24 5.52 5.12 5.48 5.07 5.39
hom3 5.50 5.76 5.36 5.72 5.27 5.53
hom3’ 5.35 5.69 5.20 5.65 5.19 5.49
Average 5.44 5.67 5.34 5.64 5.31 5.51

Pinacol
het2” 4.88 5.29 4.78 5.26 4.75 4.92
het3b’ 4.82 5.03 4.74 5.00 4.69 4.83
het3’ 4.81 5.03 4.72 5.01 4.65 4.81
het4 4.56 4.79 4.47 4.76 4.45 4.57
hom3b’ 4.96 5.19 4.87 5.17 4.80 4.98
hom4 4.68 4.90 4.58 4.87 4.56 4.73
Average 4.78 5.04 4.69 5.01 4.65 4.81
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Figure A.1: Histogram counterpart of Figure 3.3 from Section 3.3

Generation of KDE Plots. To demonstrate the impact of omitting dispersion
contributions on the intermolecular HO···H bond distance, a kernel density estimate (KDE)
plot was utilized. This plot provides a visual representation of the distribution of O–H
values, akin to a histogram. The KDE presents the data through a continuous probability
density curve in one or more dimensions.

Given that the HO···H bond distances in the preceding tables are reported with precision
up to three decimal places, a bin width of 0.001 was selected to depict the data. This
choice ensures that each value finds representation within its respective bin, with higher
frequencies in the plots indicating multiple occurrences of the same HO···H bond distances.
In this section, a parallel histogram is presented to illustrate the data’s appearance before
applying the continuous probability density curve through KDE.
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(a) S4 axis facing the viewer (b) S4 axis, side view (c) S4 axis rotated 90 degrees
with respect to b

Figure A.2: Dispersion interaction density of het4 EDO viewed in different perspectives of its S4

symmetry. Visualization was done using ParaView 5.4.0.

Optimized Structures. All the optimized structures of EDO, CHexDO and Pinacol
are deposited in the university repository. Collection of data can be found here:
DOI:10.25625/UQWQKZ
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A.2. ENERGY VALUES AND EXPERIMENTAL DATA FOR FENCHONE-FENCHOL
SYSTEMS

A.2 Energy Values and Experimental Data for Fenchone-
Fenchol Systems

Figure A.3: FTIR jet spectroscopy spectra, both experimental and theoretical results are reflected
(supplement information for Section 3.4. Theoretical results were obtained from calculations using
B3LYP/may-cc-pVTZ with D3BJ corrections. Results provided by Dr. Robert Medel from the
group of Prof. Dr. Martin Suhm.

Optimized Structures. All the optimized structures of EDO, CHexDO and Pinacol
are deposited in the university repository. Collection of data can be found here:
DOI:10.25625/UQWQKZ
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Table A.6: Final fits from the SR and RR systems, alongside the two similarly predicted
structures from the B3LYP-D3(BJ)/may-cc-PVTZ level of theory using Gaussian 16202

(supplement information for Section 3.4. Experimental data provided by Johann Benedikt Meyer,
Moritz Niessner, Pablo Pinacho, Jun. Prof. Daniel Obencahin and Prof. Melanie Schnell, collected
in Hamburg. Experiments were ran using COMPACT spectrometer.

Rotational Constants (exp) Rotational Constants (theo)
Rotational parameters SR system RR system SR-I isomer RR-I isomer
A/MHz 589.54132(28) 521.84039(21) 590.47 522.66
B/MHz 139.076286(45) 171.675050(47) 141.56 175.02
C/MHz 130.289328(42) 160.028737(52) 132.48 162.07
DJ/kHz 0.003870(27) 0.009598(50) 0.003707 0.009575
DJK/kHz 0.01322(85) 0.02470(57) 0.008742 0.032014
DK/kHz −0.0141(67) −0.0284(36) −0.002202 −0.030713
d1/kHz −0.000320(20) 0.000228(36) −0.000371 0.000435
d2/kHz −0.000056(15) [0] −0.000046 −0.000135
N 370 (248/0/122) 307 (226/0/81)
rms/kHz 6.9 6.9
µ(a/b/c) /D −3.9/0.2/0.8 −3.5/−0.2/−1.9

Table A.7: The specifics of energy decomposition analysis (EDA) are elucidated in Table 3.1,
wherein the distinct energy components ∆Eionic and ∆Eintra have been individually outlined. Note
that these components, previously collected under the ∆Enon-disp term in the primary text, have
now been segregated for detailed examination.

∆E (HF) ∆E (PNO-SCS-LMP2)
EintIsomer ∆Eelec ∆Eexch ∆Erep ∆Epol ∆Edisp ∆Eionic ∆Eintra

SR-I −54.2 −75.6 135.2 −23.4 −17.7 −66.0 65.9 −35.8
SR-II −50.5 −70.2 125.1 −22.0 −17.9 −59.8 59.7 −35.5
SR-III −44.8 −70.5 123.5 −19.3 −21.4 −57.0 56.4 −33.1
SR-IV −48.9 −72.9 129.1 −20.9 −19.3 −60.9 60.6 −33.2
RR-I −44.3 −72.2 126.2 −19.6 −22.5 −57.1 55.8 −33.7
RR-II −49.0 −71.2 125.9 −21.2 −19.5 −59.4 59.2 −35.1
RR-III −54.1 −75.1 134.4 −23.2 −17.7 −65.5 65.6 −35.6
RR-IV −45.4 −74.0 129.1 −19.3 −22.3 −57.4 56.2 −33.2
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A.3. FRAGMENTATION OF HELICENES

A.3 Fragmentation of Helicenes

Fragment 1: Rings A-D
Atoms 1-26

Fragment 2: Rings H-K
Atoms 47-72

B

C

D

E F

A

G

H

I

JK

(a) Compound [4]H

B

C

D

E F

A

G

H

I

JK

Fragment 1: Rings A-D
Atoms 1-26

Fragment 3: Rings H-K
Atoms 58-72

Fragment 2:Phenyl group
Atoms 46-56 

(b) Compound [4]Ph

Figure A.4: The partitioning scheme applied to Compounds [4]H and [4]Ph for the DID
visualization in Figure 3.19. Each image illustrates the fragment partitioning considered in the DID
visualization, excluding rings E-G which serves as backbone in both compounds. DID visualization
was done at the SCS-LMP2/cc-pVTZ level of theory using Molpro 2021.2.
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Appendix B

Supplemental Materials for Chapter 4

B.1 Geometries, Sample Calculations and Details of Pair
Orbital Analysis

Optimized Coordinates of Argon Dimer, Figure 4.4

2

Energy: -1054.041738286098

Ar 0.0000000000 -1.9425700937 -0.0218263000

Ar 0.0000000000 1.9425700937 0.0218263000

Optimized Coordinates of Water Dimer, Figure 4.4

6

Energy: -152.657596241358

O -0.0104947690 1.5497297660 -0.0000001037

H -0.0877621489 0.5854519968 0.0000004501

H -0.9184599534 1.8630206428 -0.0000001205

O 0.0213336613 -1.4000084528 -0.0000001150

H 0.5094776987 -1.7291486597 0.7609377676

H 0.5094776812 -1.7291489631 -0.7609378784
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Optimized Coordinates of Methane Dimer, Figure 4.4

10

Energy: -80.843830700383

C 0.0000002216 0.0000000000 1.8918007919

H 0.0000000451 0.0000000000 2.9793383957

H 1.0250198064 0.0000000001 1.5285616208

H -0.5125094820 0.8876929479 1.5285613702

H -0.5125094819 -0.8876929480 1.5285613703

C -0.0000002216 -0.0000000000 -1.8918007919

H -0.0000000455 0.0000000001 -2.9793383958

H -1.0250198063 0.0000000000 -1.5285616204

H 0.5125094820 -0.8876929481 -1.5285613705

H 0.5125094822 0.8876929479 -1.5285613703

Optimized Coordinates of Benzene-Acetylene System, Figure 4.4

16

Energy: -308.894597826092

C -2.3293162906 0.7342620543 -1.5946266252

C -3.0779601496 -0.4173327486 -1.3442317014

C -0.9385648289 0.6558776950 -1.6895064544

H -4.1560848293 -0.3558127943 -1.2662468804

H -0.3576820314 1.5496253822 -1.8792671039

C -2.4358527041 -1.6473123469 -1.1887181082

C -0.2964572553 -0.5741016941 -1.5339925477

H -3.0160510414 -2.5395881650 -0.9901408024

H 0.7823518298 -0.6341491509 -1.6031601089

C -1.0451010377 -1.7256967257 -1.2835977429

H -0.5468321624 -2.6787556440 -1.1585943349

H -2.8269002945 1.6887932099 -1.7108130588

C -1.3268089448 0.2798573647 3.2055552436

C -1.4192496567 0.0807922207 2.0135942491

H -1.5004657325 -0.0941007482 0.9663731850

H -1.2457481336 0.4544170129 4.2507740484
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B.1. GEOMETRIES, SAMPLE CALCULATIONS AND DETAILS OF PAIR ORBITAL
ANALYSIS

Unoptimized Water Dimer for Single Orbital Density Matrix Analysis,
Figure 4.2

6

Unoptimized Water Dimer

O 0.0 0.0 0.0

H 1.0 0.0 0.0

H 0.0 1.0 0.0

O 0.0 0.0 2.2

H 1.0 0.0 2.2

H 0.0 1.0 2.2

167



APPENDIX B. SUPPLEMENTAL MATERIALS FOR CHAPTER 4

Table B.1: Details of the pair orbital analysis of argon dimer in Figure 4.6. The picture above
shows the valence orbital densities for each monomer in a dimer. These numbers are the valence
orbitals of every system automatically assigned in the procedure. Two perspectives are shown in
order to clearly see the some valence orbitals which are hidden.

11

11

12

12

13

13

17 17

18

18

14

16

15

Perspective 1 Perspective 2

Argon 1

Argon 2

Orbital pair ∆Edisp,
kJ mol−1

% ∆Edisp per
orbital pair

15–11 −0.05 4.1
15–12 −0.02 2.1
15–13 −0.03 2.2
15–14 −0.01 0.6
16–11 −0.11 9.2
16–12 −0.06 5.2
16–13 −0.07 5.7
16–14 −0.01 1.2
17–11 −0.12 10.3
17–12 −0.08 6.5
17–13 −0.07 5.9
17–14 −0.02 1.4
18–11 −0.26 22.0
18–12 −0.12 10.3
18–13 −0.12 10.3
18–14 −0.04 3.0
TOTAL −1.19 100.0
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Table B.2: Details of the pair orbital analysis for methane dimer in Figure 4.7. The picture above
shows the valence orbital densities for each monomer in a dimer. These numbers are the valence
orbitals of every system automatically assigned in the procedure.

3

5

4

6

7

8

910

Methane 1 Methane 2

3

4

5

5

6

7

8

9

10

Water 2

Water 1

Orbital pair ∆Edisp,
kJ mol−1

% ∆Edisp per
orbital pair

7–4 −0.17 8.7
7–5 −0.17 8.7
7–6 −0.12 6.1
8–4 −0.17 8.7
8–5 −0.12 6.1
8–6 −0.17 8.7
9–4 −0.12 6.1
9–5 −0.17 8.7
9–6 −0.17 8.7
7–3 −0.09 4.4
8–3 −0.09 4.4
9–3 −0.09 4.4
10–4 −0.09 4.4
10–5 −0.09 4.4
10–6 −0.09 4.4
10–3 −0.06 3.1
TOTAL −1.98 100.0
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Table B.3: Details of the pair orbital analysis for benzene-acetylene system in Figure 4.8. The
picture above shows the valence orbital densities for each monomer in a dimer. These numbers are
the valence orbitals of every system automatically assigned in the procedure.

9

10

13

18

22

23

11

12

15

17

19

20

26

25

14

16

21

28

27

24

Acetylene

Benzene

Perspective 1 Perspective 2

Orbital pair ∆Edisp,
kJ mol−1

% ∆Edisp per
orbital pair Orbital pair ∆Edisp,

kJ mol−1
% ∆Edisp per
orbital pair

24–16 −0.81 9.3 25–18 −0.06 0.7
24–21 −0.81 9.3 25–13 −0.06 0.7
24–14 −0.81 9.3 25–10 −0.06 0.7
25–16 −0.41 4.7 25–22 −0.06 0.7
26–21 −0.40 4.6 26–22 −0.06 0.6
26–14 −0.39 4.5 26–10 −0.06 0.6
25–14 −0.38 4.4 26–13 −0.05 0.6
25–21 −0.37 4.3 26–18 −0.05 0.6
26–16 −0.37 4.2 25–9 −0.05 0.6
24–19 −0.18 2.0 25–23 −0.05 0.6
24–11 −0.18 2.0 27–19 −0.04 0.4
24–17 −0.18 2.0 27–11 −0.04 0.4
24–15 −0.16 1.9 27–17 −0.04 0.4
24–20 −0.16 1.9 27–15 −0.03 0.4
24–12 −0.16 1.9 27–20 −0.03 0.4
27–16 −0.15 1.7 27–12 −0.03 0.4
27–21 −0.15 1.7 27–18 −0.02 0.3
27–14 −0.15 1.7 27–10 −0.02 0.3
24–23 −0.09 1.0 27–23 −0.02 0.3
24–18 −0.09 1.0 27–9 −0.02 0.3
24–10 −0.09 1.0 27–22 −0.02 0.3
24–22 −0.09 1.0 27–13 −0.02 0.3
24–13 −0.09 1.0 28–21 −0.02 0.2
24–9 −0.09 1.0 28–14 −0.02 0.2
25–17 −0.07 0.8 28–16 −0.02 0.2
26–11 −0.07 0.8 28–19 0.00 0.0
26–19 −0.07 0.8 28–11 0.00 0.0
25–19 −0.07 0.8 28–17 0.00 0.0
25–11 −0.07 0.8 28–15 0.00 0.0
26–17 −0.07 0.8 28–20 0.00 0.0
26–15 −0.07 0.8 28–12 0.00 0.0
25–20 −0.07 0.8 28–23 0.00 0.0
25–12 −0.07 0.8 28–22 0.00 0.0
26–12 −0.07 0.8 28–18 0.00 0.0
26–20 −0.07 0.8 28–13 0.00 0.0
25–15 −0.07 0.8 28–10 0.00 0.0
26–23 −0.06 0.7 28–9 0.00 0.0
26–9 −0.06 0.7 TOTAL −8.75 100.0
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Table B.4: Details of the pair orbital analysis for water dimer in Figure 4.9. The picture above
shows the valence orbital densities for each monomer in a dimer. These numbers are the valence
orbitals of every system automatically assigned in the procedure.

3

5

4

6

7

8

94

Methane 1 Methane 2

3

4

5

5

6

7

8

9

10

Water 2

Water 1

Orbital pair ∆Edisp,
kJ mol−1

% ∆Edisp per
orbital pair

7–3 −0.34 9.9
7–4 −0.34 9.9
7–5 −0.83 23.7
7–6 −0.63 18.0
8–3 −0.11 3.2
8–4 −0.11 3.2
8–5 −0.24 7.0
8–6 −0.17 4.7
9–3 −0.07 2.0
9–4 −0.07 2.0
9–5 −0.18 5.3
9–6 −0.10 3.0
10–3 −0.05 1.4
10–4 −0.05 1.4
10–5 −0.12 3.3
10–6 −0.07 2.1
TOTAL −3.49 100.0
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C.1 Structures for CH3OH and NCOH

Optimized Structure for CH3OH, calculated at the MP2/cc-pVTZ using
Gaussian 16.202

6

Optimized Structure

C 0.663101000 -0.019517000 0.000010000

H 1.078461000 0.983414000 -0.000924000

H 1.027551000 -0.539098000 0.887769000

H 1.027858000 -0.540728000 -0.886725000

O -0.748406000 0.121767000 -0.000016000

H -1.125229000 -0.760617000 -0.000056000

Optimized Structure for NCOH, calculated at the MP2/cc-pVTZ using
Gaussian 16.202

4

Optimized Structure

N -0.060221000 1.347167000 0.000000000

C 0.000000000 0.176201000 0.000000000

O 0.143887000 -1.119336000 0.000000000

H -0.729554000 -1.532686000 0.000000000
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C.2 Values of MR Diagnostics

Table C.1: Values of different diagnostic tests for several systems found in Figures 5.2-5.4.
Optimized geometries and diagnostic values reflected in this table are found in References 50,248.

Systems T1 T2 D1(MP2) D1(CCSD) D2(MP2) D2(CCSD)
HCl 0.00566 0.00429 0.00753 0.01072 0.12399 0.14338
HF 0.00668 0.00609 0.01026 0.01168 0.11003 0.11805
CO 0.01841 0.01671 0.03579 0.03883 0.14638 0.16155
CO2 0.01794 0.01677 0.04313 0.04643 0.15078 0.15015
HCN 0.01421 0.01295 0.02651 0.02862 0.16775 0.17800
C2 0.03861 0.02930 0.05139 0.08611 0.26411 0.37730
O3 0.02522 0.02087 0.05795 0.07177 0.26972 0.26086
F2 0.01025 0.00883 0.02330 0.02738 0.18164 0.21254
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C.2. VALUES OF MR DIAGNOSTICS

Table C.2: Individual D2(CCSD) values of a dissociation reaction, where ∆MRDe and
max D2(CCSD) were plotted in Figure 5.6.

Diatomic Metal ion Main Group
Ion |∆MRDe|

max
D2(CCSD)

CASE 1: All SR
AgCl −−→ Ag+ + Cl– 0.153 0.094 0.145 0.2 0.153
AgF −−→ Ag+ + F– 0.133 0.094 0.117 0.1 0.133
AuCl −−→ Au+ + Cl– 0.161 0.101 0.145 0.1 0.161
AuF −−→ Au+ + F– 0.150 0.101 0.117 0.1 0.150
CuF −−→ Cu+ + F– 0.169 0.086 0.117 0.5 0.169

CASE 2: All MR
PtC −−→ Pt2+ + C2– 0.201 0.290 0.344 1.6 0.344
ScH −−→ Sc+ + H– 0.183 0.294 0.236 1.9 0.294

CASE 3: Mix of SR and MR
AgH −−→ Ag+ + H– 0.178 0.094 0.236 0.3 0.236
AgO −−→ Ag2+ + O2– 0.143 0.093 0.183 0.5 0.183
AuH −−→ Au+ + H– 0.173 0.101 0.236 0.5 0.236
AuO −−→ Au2+ + O2– 0.220 0.104 0.183 1.1 0.220
AuS −−→ Au2+ + S2– 0.179 0.104 0.184 0.6 0.184
CoCl −−→ Co+ + Cl– 0.186 0.103 0.145 3.7 0.186
CoH −−→ Co2+ + O2– 0.210 0.103 0.236 2.8 0.236
CoO −−→ Co2+ + O2– 0.125 0.089 0.183 7.7 0.183
CuCl −−→ Cu+ + Cl– 0.236 0.086 0.145 1.1 0.236
CuH −−→ Cu+ + H– 0.154 0.086 0.236 1.4 0.236
CuO −−→ Cu+ + O –

2 0.218 0.078 0.183 0.8 0.218
CuS −−→ Cu2+ + S2– 0.205 0.078 0.184 0.3 0.205
FeCl −−→ Fe+ + Cl– 0.204 0.118 0.145 1.8 0.204
FeH −−→ Fe+ + H– 0.199 0.115 0.236 0.7 0.236
FeO −−→ Fe2+ + O2– 0.225 0.098 0.183 2.1 0.225
IrC −−→ Ir2+ + C2– 0.153 0.206 0.344 2 0.344
IrO −−→ Ir2+ + O2– 0.122 0.206 0.183 15.3 0.206
NiCl −−→ Ni+ + Cl– 0.187 0.095 0.145 3.7 0.187
NiF −−→ Ni+ + F– 0.254 0.095 0.117 3.4 0.254
NiH −−→ Ni+ + H– 0.213 0.095 0.236 3 0.236
NiO −−→ Ni2+ + O2– 0.172 0.083 0.183 0.9 0.183
PtH −−→ Pt+ + H– 0.191 0.124 0.236 0.6 0.236
PtO −−→ Pt2+ + O2– 0.189 0.111 0.183 5 0.189
RuC −−→ Ru2+ + C2– 0.302 0.145 0.344 5 0.344
RuO −−→ Ru2+ + O2– 0.325 0.120 0.183 0.6 0.325
ScF −−→ Sc+ + F– 0.154 0.294 0.117 1.6 0.294
ZnCl −−→ Zn+ + Cl– 0.185 0.081 0.145 0.1 0.185
ZnH −−→ Zn+ + H– 0.248 0.081 0.236 0.4 0.248
ZnO −−→ Zn2+ + O2– 0.210 0.072 0.183 1.1 0.210
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