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1 Introduction

Complex networks appear across various contexts of our lives. Telecommunication,
transport, infrastructure and finance are candidates to come to mind, and we humans
ourselves, just going about our day as usual, meeting others, create a complex network of
contacts. Also in our bodies, we can find intricate complex networks, not just of metabolic
and molecular interactions, but in a structural sense. As a particular example, consider the
human brain, where the cortex alone is built of 16 × 109 neurons, forming
far-from-random structures, which are reflected e.g. in columns and hierarchical areas,
each associated with distinct functional benefits or evolutionary necessity [1].

These networks can form a backbone on which spreading processes unfold [2]. In the
nervous system, action potentials propagate fromone neuron to the next, potentially forming
ongoing cascades as activity spreads through the underlying network. On social media, news
passes fromone person to the next, causing a seemingly unpredictable spread of information.
The way information travels then depends on who talks to whom or, more generally, the
structure of the communication network. For example, once a piece of news is shared by
an influencer with millions of followers, the reach of this news increases dramatically. Such
network nodes with more-than-average links are commonly referred to as hubs, and they
can greatly affect the spread on the network [3, 4]. There are many other structural features
of networks that affect spreading, such as small-world-ness [5], clustering [6, 7], or densely
connected communities where interactions between members of the community are more
likely than with outsiders [3, 8, 9]. In many cases, they imply a structural heterogeneity that
alters the spreading dynamics compared to a homogeneous network [10].

In this thesis, we discuss two examples where particular structural aspects of a network
interplay with a spreading process to give rise to remarkable emergent dynamics: i) As a
well-controlled neuronal system, we consider in vitro cultures of cortical neurons that are
engineered to feature a modular topology [11]. Notably, in neuronal systems, the network
structure is not only the backbone of activity propagation but also represents a form of
information storage, as memories are formed through long-lasting changes of the
connection strength between neurons [12]. One could say structure is knowledge. ii) As an
example of disease spread on a human contact network, we explore face-to-face contact
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data of university students [13] and study the interplay of contact patterns and disease
progression. In both examples, our models go beyond a spreading process unfolding on a
static network. We take into account that the spreading dynamics are not isolated and find
that interactions with the environment can lead to unforeseen emergent dynamics.
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1 Introduction

1.1 Thesis outline

We investigate how spreading processes are modulated by the underlying structure. To that
end, we develop tools to quantify the dynamics in an unbiased manner from sparse data
and showcase how recording parameters can affect the inference. We then consider two
examples, in vitro neuronal cultures and a human contact network, where rich dynamics
unfold on a topological backbone.

In Chapter 2, we showcase our software package that enables an unbiased estimation of
the autocorrelation time from heavily subsampled activity in various contexts. Although
the implemented multistep-regression estimator derives from a simple branching process,
the tool has found wide application and helped to infer the distance to criticality in several
studies [Ps3, Ps9, Ps10, 14–17].

In Chapter 3, we focus on the neuroscience context and investigate how measurement
overlap and recording parameters affect the observed dynamics. We find that it is not
essential to record as many units (or as large a fraction) of the system as possible, but
models need to be tailored to the available measurements and data; in the case of neuronal
recordings, spikes are favorable over coarse measures such as local field potentials (LFP).

In Chapter 4, we investigate engineered cultures of cortical neurons that feature a
modular topology. Using spiking data from optical recordings, we find that the modular
architecture facilitates control of the global dynamic state through a noisy input. Due to the
inhomogeneous connectivity (highly connected within modules, sparsely connected across
modules), the noisy input reduces the stochastic inter-module activity propagation, while
modules remain synchronized. Notably, optical recordings of in vitro cultures enable a
nearly perfect spatial sampling at single-cell resolution, which allows us to draw the
connection between single-unit and larger-scale dynamics. Here, we find that a
parsimonious, effective description—where modules form the smallest units— can be
sufficient to describe system-wide dynamics.

In Chapter 5, we turn to an example where perfect sampling is not possible (and
hopefully never will be): Human contact networks. Similar to Chapter 4 we investigate if,
and at what scale, effective descriptions of the spatio-temporal structure are sufficient to
describe relevant macroscopic dynamics. In particular, this work is motivated by the
question to which extent the well-mixed and Markovian assumptions underlying common
compartmental models of disease spread are warranted. We develop a statistical description
of human contact networks that reflects macroscopic observables relevant to disease spread,
and find that generative models of human contact patterns need to be non-Markovian.

In Chapter 6, we present an overarching discussion and future perspectives.

17



1 Introduction

1.2 Background

1.2.1 Phase transitions in neuronal systems

Depending on system parameters (including but not exclusive to underlying structural
properties) spreading processes exhibit vastly different dynamics. For instance, the spread
of an infectious disease could be stable, with case numbers relaxing to some finite value
after a small perturbation occurred, or it could be unstable, with case numbers increasing
until a large fraction of the population has been infected. Motivated by concepts from
statistical physics, these different regimes are often called phases, and each phase comes
with its own characteristic dynamic states and configurations. When the system changes
from one phase to another, it is said to undergo a non-equilibrium phase transition [18, 19].

There are diverse types of non-equilibrium phase transitions, but the most well-known
examples are from stable to unstable, synchronous to asynchronous, or absorbing to active.
Often, these transitions are accompanied by emerging correlations: As the system
undergoes the transition, the spatial and temporal distance for which system variables are
statistically dependent diverges. For example, for absorbing-to-active transitions, when the
distance to the transition becomes small, ϵ → 0, the correlation length and time diverge
with respective critical exponents [19]:

ξ⊥ ∼ |ϵ|−ν⊥ and ξ∥ ∼ |ϵ|−ν∥ .

In a neuroscience context, a parsimonious model of neural activity propagation that
features an absorbing-to-active transition is the driven branching network. In this case, the
transition is controlled by the branching parameter m, which, in simple words, describes
how many further activations a previous activation will cause; it determines if the system is
in the absorbing phase with low activity (m < mcrit) or in the active phase (m > mcrit) [20].

Closely related, when the network topology and coalescence effects [21] are not of primary
interest, the simpler branching process [22, 23] can be used, for which a similar transition
occurs at mcrit = 1, where on expectation, every activation causes exactly one other
activation. The branching process is of particular interest in this thesis because it serves as a
minimal model also for disease spread (Chapter 5), and the autocorrelation time, which is
in this context often denoted by τ instead of ξ∥, can be directly linked to the branching
parameter (Chapter 2).

Focusing on a single neuron, the autocorrelation time describes the duration over which
the neuron’s current state (e.g. its firing rate) is related to its past state, and it serves as a
proxy for working memory [24, 25]. Because information storage is a central aspect of
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computation [26], the large correlations that accompany many phase transitions could be
considered beneficial for information processing [20, 27, 28]. However, because
computational performance depends on other metrics, too, there cannot be a working
point that is universally ideal— independent of context or example. Rather, depending on
the task at hand, requirements often vary and oppose one another [29, 30].

Despite this intuitive conundrum (or maybe, because of it), the notion that neuronal
systems benefit from operating near a non-equilibrium phase transition has received
tremendous attention [20, 23, 29, 31–37]. Considering a neural system’s dynamics as either
stable or unstable, the charm of this so-called critical brain hypothesis can be easily seen: In
the low-activity phase, the network responds fast to perturbations such as presented
stimuli, but correlations (in time and space) are low, which is undesirable. For instance, the
movement of a limb easily extends over multiple seconds, requiring coordination (and
thus, correlation) over a time period that is much longer than the millisecond timescale of
neuronal firing. On the other hand, in the unstable phase, activity would spread
uncontrollably (such as seen in epilepsy patients [36]), hindering activity-based
computation. Thus, the ideal operating point would be directly at (or very near to) the
transition, where correlations are large. This entails scale-free (power-law) statistics and the
separation of timescales [31], precise selectivity [20], and diverse dynamics, with a maximal
number of metastable states and network responses [38].

However, a critical brain also faces conceptual challenges: An increase in the variability
of network responses is accompanied by a decrease in specificity [39] and reliability [40, 41].

In other words, if the space of responses is infinite, how can a particular input lead to a
meaningful and deterministic response, as would be required from a reliable computing
device? Further, at criticality, the time until a past stimulus is cleared or forgotten becomes
infinite, which, assuming serial computation, prevents the next input from being processed.
This so-called critical slowing down is a consequence of the diverging correlations and it
occurs already before the transition point is reached [42]. To summarize, not all properties
associated with criticality are beneficial for computing, and some already manifest in the
vicinity of the transition. Thus, rather than maximizing a single property, “sufficient
performance for a given task is a more likely design principle” [29].

An elegant concept that addresses contradictions around the critical brain hypothesis has
been introduced as dynamic adaptive computation [29, 40]. Dynamic adaptive computation
builds on the idea that instead of a single working point, there is a regime of operation
around criticality, and that the dynamics of the system, (and, thereby, computing
properties) change swiftly when a control parameter is altered. Reconsidering the
branching process, the susceptibility χ ∼ |ϵ|−γ diverges when the distance to criticality

19
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ϵ = m−mcrit becomes small. Note that χ is a response function, and it can be seen as the
sensitivity that describes the relative impact of an external perturbation. In particular, to
adapt the sensitivity according to e.g. task requirements, a small modulatory change to ∆m

has the greatest effect when m ≈ 1. Avoiding m > 1, to allow a safety margin from
instability, the ideal regime of operation would thus be slightly subcritical [29]. Such a
reverberating regime has found experimental support in vivo [43, 44], but evidence from
in vitro studies is less clear, which we discuss in detail in Chapter 3. Two open questions
that remain are how adaptive tuning is biologically implemented, and which role structural
heterogeneity plays.

1.2.2 Emergent dynamics shaped by network structure

Before returning to neuronal systems, let us consider a curious and relatable example from
everyday life that illustrates how sensitive dynamic processes are to the network structure
on which they unfold. In infrastructure networks, whose function often relies on a
precisely set working point, even subtle changes in the structure can be detrimental.
Contrary to intuition, an expansion of the network (creating new links to improve overall
performance) can have the opposite effect— a phenomenon known as Braess’ paradox [45].

It can be found in a variety of networks and has gained recent attention for power grid
extensions [46], where the augmentation and addition of grid links are given necessities.
However, these changes affect how load and flow are distributed, potentially altering
preferential pathways. Due to the conservation of energy, and if no new sources are added,
an increased flow through reinforced links also causes an increased flow in unchanged
links [46]. Previously underused links may now become a preferred path, pushing them
closer to their capacity limit. Although power grids are only loosely comparable to
biological systems, this example illustrates how sensitive the dynamics unfolding on
networks are to the underlying structure.

Also in neuronal systems, the underlying structure affects the resulting dynamics in
countless ways, and often, distinct structural aspects can be linked to specific functions [47].

Cortical areas are generally associated with distinct sensory, motor, or associative
functions [48, 49], whereas (horizontal) layers organize the cortical connectivity [50, 51],

traversed by (vertical) columns that form the canonical processing units of the cortex [52].

These meso- and macroscopic structures form from diverse cellular types of neurons that
are again structurally and functionally distinct [53, 54]. However, in general, elucidating the
connection between structure, dynamics, and function remains challenging [55, 56].

In modeling studies and in vitro, on the other hand, the connection between structure,
dynamics, and, to an extent also function, can often be rigorously established. For instance,
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large-scale dynamical models revealed that the heterogeneities across areas and inter-areal
connections give rise to a range of dynamic working points, where a hierarchy of timescales
satisfies different functional requirements (fast processing for sensory information vs. long
integration for motor control) [57]. On a more abstract level, modular and hierarchical
organization (such as of the human connectome) has been shown to enable extended
regions of criticality [58–60]. These Griffiths phases occur when structural inhomogeneities
such as disorder or random defects produce rare regions that are only weakly coupled. The
rare regions can isolate and confine activity, causing it to develop distinctly from the
surrounding [59, 61–63], which, in turn, smears out and shifts the dynamic transition
point—with network responses diverging all along the extended critical region [59, 63].

Thus, yielding the associated functional benefits like pattern richness and large dynamic
range, this example illustrates how structure, dynamics, and function can be linked in a
principled way.

1.2.3 Cultures of dissociated neurons

A principled understanding has also long been the main motivation for experiments of
neuronal cultures [64, 65]. In such preparations, experimentalists can electrophysiologically
probe individual neurons with relative ease: Patch-clamping [66, 67] enabled studies of
single-neuron dynamics and the interactions between pairs of neurons, while recordings
stemming from Multi-electrode arrays [68] or optical fluorescence imaging [69] yield a wider
perspective at the network level.

In particular, using cultures of dissociated neurons in vitro, these two perspectives can be
exploited together to link single-neuron properties to (functional) network structure, and
emergent dynamics (see [70] for a recent example). To create such a system, neurons are
first extracted and dissolved in liquid media, before being plated on suitable substrates
where they reattach and grow. This procedure disrupts any network structure that might
have formed before extraction, but it offers great control over the resulting system and
enables bottom-up studies. For example, depending on the plated neuron density, a rich
repertoire of the characteristic network bursts manifests [71], which also depends on
development age [71–76], the extent of spatial aggregation [77–79], the formation of a
percolating cluster of connections [80–82] or the interplay between topology and dynamic
noise [83, 84].

On the one hand, precise control over the cultures’ structure enables experimentalists to
design network structures that shape certain dynamics e.g. as 1-dimensional
communication channels [85], logic devices such as and-gates or diodes [86], or
increasingly complex modular assemblies [11, 87, 88] to mimic, for instance, feed-forward
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layering [89]. On the other hand, under suitable conditions, cultures also self-organize into
such topologies that enable rich, proposedly close-to-critical, dynamics [74, 75, 90–92]. For
example, as the cultures mature, the connectivity profile changes [82, 93], with the density
of synapses increasing [94, 95], and resulting dynamics reflect these changes [73, 74].

Initially, individual spikes occur sporadically (as connections are still sparse) but become
more correlated over time [73]; intense network-wide bursts tend to form at around 14
days-in-vitro [73, 96], and settle to more variable dynamic states over the following
weeks [71, 73–75]. In this self-organization process, two aspects stand out: i) to support
dynamics beyond network-wide bursts, the structures that form are heterogeneous and
modular [77, 92, 97] and ii) they develop in an activity-dependent manner [74, 98].

The activity-dependent development can be driven by various types of plasticity [99, 100],

each describing a specific way in which properties like the connections between neurons
change in response to their firing. The best-known type of plasticity is Hebbian
plasticity [101] commonly quoted as “neurons that fire together wire together” [102]. More
elaborate formulations like spike-timing-dependent plasticity (STDP) go beyond the
temporal proximity between spikes and consider their order [103]. For example, the
connection between two neurons could be strengthened if a post-synaptic neuron spiked
shortly after the pre-synaptic neuron (although it might be weakened if the post-synaptic
neuron fired first [103]). In both cases, the shorter the delay between spikes, the stronger
the structural change. This implies that the characteristic in vitro network bursts—with
rapid activations— should be a key determinant that shapes network structure.

A phenomenon that is similar to synchronized bursts can also be found in vivo: in the
form of pre-natal, self-generated, retinal waves [104]. Retinal waves propagate throughout
the entire visual system [105], and evidence suggests that they play a central role in the
development of the visual system [104, 106]. This opens an intriguing perspective on
spontaneous activity in cortex: It was recently proposed that self-generated activity before
birth (in the absence of visual stimuli) could act as an effective pre-training that allows
faster learning once stimuli are presented [107]—which again stresses the role of
background activity. Similarly, in the developed cortex, ongoing background activity stems
from the many projections from other brain areas, such as asynchronous inputs from the
thalamus that proposedly modulate cortical synchronization [108–110].

Together, this leads to the question of how emergent system-wide events are controlled
mechanistically by asynchronous input. We will address this question in Chapter 4, where
we go beyond a heuristic description of synchrony in cultures, and, using modeling at
different scales, propose an underlying adaptation mechanism that explains the transient
input dependence on short timescales.

22



1 Introduction

1.2.4 Human interaction networks

As another example of the pivotal role of structure in complex networks, we consider
human interaction networks, because they exhibit a barrage of structural properties whose
effects have motivated decades of research [3, 111]. The probably most famous property of
human contact networks is that any two people know each other through six contacts or
less [112]. The small-world effect goes back to experiments on (offline) social networks [113]

and it describes that the mean path length between network nodes increases at most
logarithmically with the total number of nodes [114], which can lead to very fast spreading
of information or infectious diseases [5]. At the same time, not all human relations are
equal. We may have hundreds of acquaintances, but only a few good friends in our closest
circle or layer [115]. When we are introduced to new people, the introduction is often made
by a mutual friend. This preferential attachment leads to the formation of clusters [7, 114],

and in the corresponding contact network, two nodes that share a common neighbor are
likely to be connected directly. Preferential attachment also leads to scale-free degree
distributions and hubs that have a higher-than-expected number of links [116], like, for
example, a salesperson who meets many clients on a daily basis. When considering disease
spread on physical contact networks, such hubs can affect the spread in non-trivial
ways [117, 118] as they are likely the first to become infected, but also immune. Further,
because of the various contexts in which humans interact (from work to the karate club, at
university, in one’s family or with friends), the contact networks that span across these
contexts are modular: Nodes form groups of high connectivity [119], which might
themselves divide into groups of groups and so forth, creating a hierarchical
organization [120] of overlapping communities [121, 122]. Together, all these features
emphasize the rich structures we can find in human contact networks.

Crucially, the “structure” of contact networks is not limited to static (or spatial) aspects
such as who interacts with whom. Rather, they are constantly evolving— raising the
question of who interacts and when. This requires a more subtle perspective than a
spreading process developing on a static network that acts as the topological backbone. If
the timescales of the spreading process are close to those of the network changes, the
spreading becomes impossible to disentangle from the dynamics of the network itself, and a
holistic approach is required [10]. In that regard, the framework of temporal networks is
useful, as it directly incorporates that links (contacts) between nodes are transient [123].

Although taking temporal information into account seems more complex than a static
description, it allows to uncover community evolution [124], and can at times even simplify
the picture, directly exposing features such as gatherings and social cores [125]. As we will
also explore in Chapter 5, despite its complexity, much of the temporal structure follows
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reoccurring schedules [125, 126], or, in simple words, our memory of which day of the week
it is.

1.2.5 Non-Markovian dynamics

Many processes in nature and everyday life arememoryless and can bemodeled by aMarkov
process [127]. A simple example is a board game where moves are determined by rolling a
dice. At any time step t in such a game, the potential next moves Xt+1 only depend on the
player’s position i and the rolled dice, but not how the player got there (it−1, ..., i0):

P
(
Xt+1 = j

∣∣ Xt = i,Xt−1 = it−1, ..., X0 = i0
)

= P
(
Xt+1 = j

∣∣ Xt = i
)
.

This so-calledMarkov property oftenmakes it feasible to treatmodels analytically [127], but it
is violated whenever the system described by the model has memory or history dependence.

Both, human contact networks and neural networks are examples of such systems, where
dynamics are non-Markovian. In contact networks, this manifests through clustering and
correlated contact times; if you encounter the bus driver, you are also likely to encounter
fellow passengers. In neuronal networks, it manifests as memory on the network level but
also for individual nodes, through plasticity or refractoriness; most neurons that just spiked
are unlikely to spike again within the next few milliseconds [128]. Indeed, the
non-Markovian nature is baked into most models of neuronal firing, where membrane
potentials are modeled to integrate presynaptic currents over time. Conversely, models of
contact networks and disease spread often assume the Markov property, for example
through memoryless, Poissonian agents or well-mixed compartments (with exponentially
distributed transition times). Of course, this seeming inconsistency remains purely
conceptual, as long as the model can successfully reproduce the observed data. However, it
raises the question under which conditions Markovian models fail, and how they compare
to non-Markovian ones [129–136]. For the particular case of disease outbreaks on a human
contact network, we address this question in Chapter 5.
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Abstract

Here we present our Python toolbox “MR. Estimator” to reliably estimate the intrinsic time-

scale from electrophysiologal recordings of heavily subsampled systems. Originally

intended for the analysis of time series from neuronal spiking activity, our toolbox is applica-

ble to a wide range of systems where subsampling—the difficulty to observe the whole sys-

tem in full detail—limits our capability to record. Applications range from epidemic spreading

to any system that can be represented by an autoregressive process. In the context of neu-

roscience, the intrinsic timescale can be thought of as the duration over which any perturba-

tion reverberates within the network; it has been used as a key observable to investigate a

functional hierarchy across the primate cortex and serves as a measure of working memory.

It is also a proxy for the distance to criticality and quantifies a system’s dynamic working

point.

1 Introduction

Recent discoveries in the field of computational neuroscience suggest a major role of the so-

called intrinsic timescale for functional brain dynamics [1–8]. Intuitively, the intrinsic time-

scale characterizes the decay time of an exponentially decaying autocorrelation function (in

this work and in many contexts it is synonymous to the autocorrelation time). Exponentially

decaying correlations are commonly found in recurrent networks (see e.g. Refs. [5, 9]), where

the intrinsic timescale can be related to information storage and transfer [10–12]. More impor-

tantly, such decaying autocorrelations are also found in the network-spiking-dynamics

recorded in the brain: Here, the intrinsic timescale serves as a measure to quantify working

memory [3, 4] and unravels a temporal hierarchy of processing in primates [1, 2].

Although autocorrelations and the intrinsic timescale can be derived from single neuron

activity, they characterize the dynamics within the whole recurrent network. The single neuron

basically serves as a readout for the local network activity. One can consider spiking activity in

a recurrent network as a branching or spreading process, where each presynaptic spike triggers

on average a certain numberm of postsynaptic spikes [13–15]. Such a spreading process

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0249447 April 29, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Spitzner FP, Dehning J, Wilting J,

Hagemann A, P. Neto J, Zierenberg J, et al. (2021)

MR. Estimator, a toolbox to determine intrinsic

timescales from subsampled spiking activity. PLoS

ONE 16(4): e0249447. https://doi.org/10.1371/

journal.pone.0249447

Editor: Michal Zochowski, University of Michigan,

UNITED STATES

Received: October 6, 2020

Accepted: March 18, 2021

Published: April 29, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0249447

Copyright: © 2021 Spitzner et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Referenced scripts

are available at https://github.com/Priesemann-

Group/mrestimator/blob/v0.1.7/examples/paper

27



typically features an exponentially decaying autocorrelation function, and the associated time

constant is in principle accessible from the activity of each unit. However, approaching the sin-

gle-unit level, the magnitude of the autocorrelation function can be much smaller than

expected, and can be disguised by noise.

In experiments we approach this level: we typically sample only a small part of the system,

sometimes only a single or a dozen of units. This subsampling problem is especially problem-

atic in neuroscience, where even the most advanced electrode measurements can record at

most a few thousand out of the billions of neurons in the brain [16, 17]. However, we recently

showed that this spatial subsampling only biases the magnitude of the autocorrelation function

(of autoregressive processes) and that—despite the bias—the associated intrinsic timescale can

still be inferred by using multi-step regression (MR). Because the intrinsic timescale inferred

by MR is invariant to spatial subsampling, one can infer it even when recording only a small

set of units [5].

Here, we present our Python toolbox “MR. Estimator” that implements MR to estimate the

intrinsic timescale of spiking activity, even for heavily subsampled systems. Since our method

is based on spreading processes in complex systems, it is applicable beyond neuroscience, e.g.

in epidemiology or social sciences such as the timescale of epidemic spreading (from subsam-

pled infection counts) [5] or the timescale of opinion spreading (from subsampled social net-

works) [18].

The main advantage of using our toolbox over a custom implementation to determine

intrinsic timescales is that it provides a consistent way that can now be adopted across studies.

It supports trial structures and we demonstrate how multiple trials can be combined to com-

pensate for short individual trials. Lastly, the toolbox calculates confidence intervals by default,

when a trial structure is provided.

In the following, we discuss how to apply the toolbox using a code example (Sec. 2). We

then briefly focus on the neuroscience context (including a real-life example, Sec. 3) before we

derive the MR estimator and discuss technical details such as the impact of short trials (Sec. 4).

While of general interest, this section is not required for a general understanding of the tool-

box. In the discussion (Sec. 5), we present selected examples where intrinsic timescales play an

important role. Lastly, an overview of parameters and toolbox functions is given in Tables 1

and 2 at the end of the document.

2 Workflow

To illustrate a typical workflow, we now discuss an example script that generates an overview

panel of results, as depicted in Fig 1. The discussed script and other examples are provided

online [19].

In the example, we generate a time series from a branching process with a known intrinsic

timescale (Fig 1A). At the discrete time steps Δt of such a branching process, every active unit

activates a random number of units (on averagem units) for the next time step. As this princi-

ple holds for any unit, activity can spread like a cascade or avalanche over the system. Taking

the perspective of the entire system, the current activity At (or number of active units) depends

on the previous activity and the branching parameterm. Then, the branching parameter is

directly linked to the intrinsic timescale τ = −Δt/ln(m): Asm becomes closer one, τ grows to

infinity (for the mathematical background, see Sec. 4). Because τ corresponds to the decay

time of the autocorrelation function (Fig 1C), a larger τ will cause a slower decay.

With this motivation in mind, it is the main task of the toolbox to determine the correlation
coefficients rk—that describe the autocorrelation function of the data—and to fit an analytic

autocorrelation function to the determined rk—which then yields the intrinsic time scale. In
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the example, we determined rk with the toolbox’s default settings (Fig 1C) and we fitted two

alternative exponentially decaying functions to determine the intrinsic timescale (a plain expo-

nential and an exponential that is shifted by an offset). The toolbox returns estimates and 75%

confidence intervals for the branching parameter and the intrinsic timescale (Fig 1D); the esti-

mates match the known valuesm = 0.98 and τ� 49.5 that were used in the example. To dem-

onstrate the effect of subsampling in the example, we recorded only 5% of the occurring events

of the branching process.

Listing 1. Example script (Python) that creates artificial data from a branching process and

performs the multistep regression. An example to import experimental data is available online,

along with detailed documentation explaining all function arguments [19].

Table 1. List of the most common parameters and functions where they are used. For a full list of each function’s possible arguments, please refer to the online docu-

mentation [43].

Symbol Parameter description Function Example argument

k Discrete time steps of correlation coefficients (shift between original

and delayed time series)

full_analysis() kmax = 1000

coefficients() steps=(1, 1000)

fit() steps=(1, 1000)

Unit of discrete time steps full_analysis() dtunit=‘ms’

coefficients() dtunit=‘ms’

fit() dtunit=‘ms’

Δt Size of the discrete time steps in dtunits full_analysis() dt = 4

coefficients() dt = 4

fit() dt = 4

rk Correlation coefficients fit() data

Method for calculating rk full_analysis() coefficientmethod=‘sm’

coefficients() method=‘ts’

Selecting Fitfunctions: full_analysis() fitfuncs=[‘exp’, ‘offset’,
‘complex’]

fit() fitfunc=‘exp’

α Subsampling fraction simulate_subsampling
()

prob

simulate_branching() subp

hAti Activity (e.g. of a branching process) simulate_branching() a = 1000

m Branching parameter simulate_branching() m = 0.98

h External input simulate_branching() h = 100

Bootstrapping: number of samples, rng seed full_analysis() numboot = 100, seed = 101

coefficients() numboot = 100, seed = 102

fit() numboot = 100, seed = 103

https://doi.org/10.1371/journal.pone.0249447.t001

Table 2. The (lengthy) descriptions of fit-functions and coefficient-methods can be abbreviated.

Full name Abbreviation

‘trialseparated’ ‘ts’

‘stationarymean’ ‘sm’

‘exponential’ ‘e’, ‘exp’

‘exponential_offset’ ‘eo’, ‘exp_offset’, ‘exp_off’

‘complex’ ‘c’, ‘cplx’

https://doi.org/10.1371/journal.pone.0249447.t002
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Fig 1. The toolbox provides a full_analysis() function that performs all required steps and produces an

overview panel. A: Time series of the input data, here the activity At of ten trials of a branching process withm = 0.98

and τ = Δt/ln(m)� 49.5 steps (Δt is the step size of the branching process). B: Mean activity and standard deviation of

activity for each trial. This display can reveal systematic drifts or changes across trials. C: Correlation coefficients rk are

determined from the input data, and exponentially decaying autocorrelation functions are fitted to the rk. Several

alternative fit functions can be chosen. D: The decay time of the autocorrelation function corresponds to the intrinsic

timescale τ, and allows to infer the corresponding branching parameterm. The shown fit results contain confidence

intervals in square brackets (75% by default).

https://doi.org/10.1371/journal.pone.0249447.g001
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# load the toolbox

import mrestimator as mre

# enable matplotlib interactive mode so

# figures are shown automatically

mre.plt.ion ()

# 1. -----------------------------------#

# example data from branching process

bp = mre. simulate_branching (m = 0.98, a = 1000,
subp = 0.05, length = 20000, numtrials = 10, seed = 43771)

# make sure the data has the right format

src = mre.input_handler (bp)

# 2. -----------------------------------#

# calculate autocorrelation coefficients,

# embed information about the time steps

rks = mre.coefficients (src, steps = (1, 500), dt = 1, dtu-
nit = ‘bp steps’, method = ‘trialseparated’)

# 3. -----------------------------------#

# fit an autocorrelation function, here

# exponential (without and with offset)

fit1 = mre.fit(rks, fitfunc = ‘exp’)

fit2 = mre.fit(rks, fitfunc = ‘exp_offset’)

# 4. -----------------------------------#

# create an output handler instance

out = mre.OutputHandler ([rks, fit1, fit2])

# save to disk

out.save (‘*/mre_example/result’)

# 5. -----------------------------------#

# gives same output with other file title

out2 = mre.full_analysis (data = bp, dt = 1, kmax = 500,
dtunit = ‘bp steps’, coefficientmethod = ‘trialseparated’,
fitfuncs = [‘exp’, ‘exp_offset’], targetdir = ‘*/mre_exam-
ple/’)

PLOS ONE MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity
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1. Prepare data: After the toolbox is loaded, the input data needs to be in the right format: a

2D NumPy array [20–22]. To support a trial structure, the first index of the array corresponds

to the trial (even when there is only one trial), the second index corresponds to the time (in

fixed time steps). All trials need to have the same length.

We provide an optional input_handler() that tries to guess the passed format and

convert it automatically. For instance, it can check and convert data that is already loaded (as

shown in Listing 1) or load files from disk, when a file path is provided.

2. Multiple regressions: Once the data is in the right format, multiple linear regressions are

initiated by calling coefficients() (see Sec. 4.3 for more details). The function performs

linear regressions between the original time series (src), and the same time series after it was

shifted by k time steps. It returns the slopes found by the regression—we call them correlation

coefficients rk (rks). Here, we specify to calculate the correlation coefficients for steps 1�

k� 500. In Listing 1, the linear regression is performed for each trial separately. To obtain a

joint estimate across all trials, the estimated rk are averaged (trialseparated method).

Confidence intervals are calculated using bootstrapping.

Please note that (independent from subsampling) the linear regression can be biased due to

short trials [23, 24]. In case of stationary activity across trials, the issue can be circumvented by

using the stationarymean method (see Sec. 4.3 and Fig 5).

3. Fit the autocorrelation function: Next, we fit the correlation coefficients using a desired

function (fitfunc). In order to estimate the intrinsic timescale, this function needs to decay

exponentially. Motivated by recent experimental studies [1], the default function is expo-
nential_offset (other options include an exponential and a complex fit with

empirical corrections).

4. Visualize and store results: Multiple correlation coefficients and fits can be exported

using an instance of OutputHandler. The save() function not only exports a plot but

also a text file containing the full information that is required to reproduce it.

5. Wrapping up: For convenience, the full_analysis() function performs all steps

with default parameters and displays an overview panel as shown in Fig 1.

3 Interpretation in a neuroscience context

Timescales of neural dynamics have been analyzed in various contexts and can be interpreted

as reward memory [25] or as temporal receptive windows [26]. Here, however, we focus on

the timescale of the decay of the autocorrelation function [1], which is thought to be related to

the duration of integration in local circuits [2] or to working memory [3, 4]. As such, the

intrinsic timescale represents a measure of how long information is kept (or can be integrated)

in a local circuit; it ranges between 50 to 500 ms and this diversity of timescales is believed to

arise from differences in local connectivity [27, 28].

In the brain, the autocorrelation function is not only determined by the intrinsic timescale.

If the spiking activity is dominated by a single timescale τ, the autocorrelation is expected to

decay exponentially (see Sec. 4): C kð Þ / exp � k
t

� �
. However, often the autocorrelation is more

complex, which we take into account and provide a complex fit function, based on an empir-

ical analysis of autocorrelation functions by König [29]:

CðkÞ ¼ De�
k

texp þ Ee�
k

toscð Þ
g

cos ð2pnkÞ þ Fe
� k

tgauss

� �2

þ O :
ð1Þ

In addition to the exponential decay, the complex fit function features three terms that

account for:
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• Neural oscillations, reflected as an exponentially decaying cosine term: Ee�
k

toscð Þ
g

cos ð2pnkÞ.

• Short term dynamics of a neuron with a refractory period, reflected as a Gaussian decay:

Fe
� k

tgauss

� �2

.

• An offset O which arises due to the small non-stationarities of the recordings on timescales

longer than a few seconds.

To illustrate the usefulness of the complex fit function, we analyze an openly available

dataset of spiking activity in rat hippocampus [30]. We find an intrinsic timescale of around

1.5 seconds (which is similar to the timescales found in rat cortex [31]). One challenging char-

acteristic of this dataset are theta oscillations (5–10 Hz) in the population activity, which carry

over to the autocorrelation function. Because the complex fit function features an oscillatory

term, it can capture these oscillations, and still yield a solid estimate of the autocorrelation

time. (Fits from functions without the oscillatory term will deviate from the data and lead to

biased estimates.) Additionally, by including this term into the fit, we also obtain an estimate

of the oscillation frequency: In the shown example (Fig 2), we find ν = 6.1 Hz, which is well in

the range of theta oscillations. This shows that our toolbox can deal with complex neuronal

dynamics of single-cell activity.

4 Technical details

4.1 Derivation of the multi-step regression estimator for autoregressive

processes

The statistical properties of activity propagation in networks can be approximated by a sto-

chastic process with an autoregressive representation [15, 18, 32], at least to leading order [14].

We will use this framework of autoregressive processes to derive the multi-step regression esti-

mator and show that it is invariant under subsampling [5].

Here, we consider the class of stochastic processes with an autoregressive representation of

first order. This process combines a stochastic, internal generation of activity with a stochastic,

external input. The internal generation on average yieldsm new events per event, wherem is

Fig 2. Example analysis of spiking activity from rat hippocampus during an open field task that demonstrates the

usage of the complex fit function. A short example code that analyzes the data [30] and produces this figure is listed

in appendix A.

https://doi.org/10.1371/journal.pone.0249447.g002
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called the branching parameter (using the terminology of the driven branching process) [33–

35]. The external input is assumed to be an uncorrelated Poisson process with rate h (a gener-

alization to non-stationary input can be found in Ref. [36]). For discrete time steps Δt, we

denote the number of active units at time t with At and obtain the autoregressive representa-

tion

hAtþ1jAti ¼ mAt þ hDt ; ð2Þ

where h�i denotes the expectation value. This autoregressive representation is the basis of our

subsampling invariant method and makes it applicable to the full class of first-order autore-

gressive processes. From Eq (2), we can also see that one could determinem from a time series

of a system’s activity by using linear regression. The linear regression estimate ofm is

mlr ¼
Cov½Atþ1;At�

Var½At�
¼

PT� 1

t¼1
ðAtþ1 � hAtþ1iÞðAt � hAtiÞ
PT� 1

t¼1
ðAt � hAtiÞ

2
: ð3Þ

This well established approach [5, 33, 37, 38] only considers the pairs of activity that are

separated by one time step—it measures the slope of the line that best describes the point

cloud (At+1, At). Instead, themulti-step regression (MR) estimator considers all the pairs of

activity separated by increasing time differences k—it estimates multiple regression slopes.

Analogous to the case of k = 1 in Eq (3), we define the correlation coefficients rk as the slope

of the line that best describes the point cloud (At+k, At)

rk
Cov½Atþk;At�

Var½At�
¼
hðAtþk � hAtþkiÞðAt � hAtiÞi

hA2
t i � hAti

2
: ð4Þ

For an autoregressive process that is fully sampled, these correlation coefficients become rk =

mk. To show this, we first generalize Eq (2) using the geometric series (cf. Ref. [5, 36])

hAtþkjAti ¼ mkAt þ hDt
1 � mk

1 � m
: ð5Þ

We then use the law of total expectation to obtain hAt+k Ati = hhAt+k|AtiAti and hAt+ki = hhAt
+k|Atii. This allows us to rewrite the covariance:

Cov½Atþk;At� ¼ hAtþk Ati � hAtþkihAti ð6Þ

¼ hhAtþkjAtiAti � hhAtþkjAtiihAti ð7Þ

¼ mkhA2
t i þ hDt

1 � mk

1 � m
hAti � m

khAti
2
� hDt

1 � mk

1 � m
hAti ð8Þ

¼ mkðhA2
t i � hAti

2
Þ ¼ mk Var½At� : ð9Þ

When we insert this result into Eq (4), we find that the correlation coefficients are related to

the branching parameter as rk =mk, which enables the toolbox to detect the branching parame-

ter from recordings of processes that are subcritical (m< 1), critical (m = 1) or supercritical

(m> 1).

In the special case of stationary activity, where hAti = hAt+ki, the correlation coefficients can

be further related to an autocorrelation time. In this case, the correlation coefficients, Eq (4),
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match the correlation function

rk ¼
hAtþk Ati � hAti

2

hA2
t i � hAti

2
¼ CðAtþk;AtÞ : ð10Þ

Note that we here consider the definition of the autocorrelation function normalized to the

time-independent variance (other definitions are also common, e.g. a time-dependent Pearson

correlation coefficient Cov [At+k, At] / Std [At] Std [At+k]). For stationary autoregressive pro-

cesses, the correlation function decays exponentially and we can introduce an autocorrelation

time τ

CðAtþk;AtÞ ¼ eð� k Dt=tÞ ð11Þ

¼ eðk lnmÞ ¼ mk: ð12Þ

We can thus identify a relation between the branching parameterm and the intrinsic timescale

τ (or, more precisely, the autocorrelation time) via the time discretization Δt:

t ¼ � Dt= ln ðmÞ : ð13Þ

It is important to note that τ is an actual physical observable, whereasm offers an interpre-

tation of how the intrinsic timescales are generated—it sets the causal relation between two

consecutive generations of activity. Whereasm depends on how we chose the bin size of each

time step Δt, the intrinsic timescale τ is independent of bin size.

4.2 Subsampling invariant estimation of the intrinsic timescale by multi-

step regression

Subsampling describes the typical experimental constraint that often one can only observe a

small fraction of the full system [5, 39, 40]. Given the full activity At, we denote the activity that

is recorded under subsampling with at. We describe the amount of subsampling (the fraction

of the system that is observed) through the sampling probability α, where α = 1 recovers the

case of the fully sampled system.

It can be shown that subsampling causes a bias b that only affects the amplitude of the

autocorrelation function—but not the intrinsic timescale that characterizes the decay [5].

This is illustrated in Fig 3. By fitting the exponential and the amplitude, the subsampling

problem boils down to an additional free parameter in the least-square fit of the correlation

coefficients:

rk ¼ b mk ¼ b e� kDt=t with b ¼ a2
Var½At�
Var½at�

; ð14Þ

where at is the (recorded) activity under subsampling and At is the (unknown) activity that

would hypothetically be observed under full sampling. As we see above (Eq (14), Fig 3) the

intrinsic timescale τ is independent of the sampling fraction α. In general, when measuring

autocorrelations, Eq (10), by definition r0 = 1. Under subsampling however, the amplitude

for rk � 1 decreases as fewer and fewer units of the system are observed. This can cause a

severe underestimation in the single regression approach, Eq (3).

In order to formalize the estimation of correlation coefficients rk forsubsampled activity, let

us denote the set of all activity observations with x = {at} and the observations k time steps

later with y = {at+k}. If T is the total length of the recording, then we have T − k discretized
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time steps to work with. Then

rk ¼
Cov½x; y�
Var½x�

¼

PT� k
t¼1
ðxt � hxiÞðyt � hyiÞ
PT� k

t¼1
ðxt � hxiÞ

2
; ð15Þ

where we approximate the expectation values hxi and hyi using

�x ¼
1

T � k

XT� k

t¼1
at and �y ¼

1

T � k

XT� k

t¼1
atþk :

In other words, �x is the mean of the observed time series and �y is the mean of the shifted time

series.

4.3Different methods to estimate correlation coefficients

The drawback of the naive implementation, Eq (11), is that it is biased if T is rather short—

which is often the case if the recording time was limited (for a recent discussion of this topic

see also Ref. [24]). In the case of short recordings, �x and �y are biased estimators of the expecta-

tion values hati and hat+ki. However, we can compensate the bias by combining multiple short

recordings, if available.

In practice, multiple recordings are often available: If individual recordings are repeated

several times under the same conditions, we refer to these repetitions as trials. One typically

assumes that across these trials, the expected value of activity is stationary. However, this is not

necessarily the case because trial-to-trial variability might be systematic. Since this assumption

has to be justified case-by-case, the toolbox offers two methods to calculate the correlation

coefficients: the trialseparated and stationarymean method.

4.3.1 Trialseparated. The trialseparated method makes less assumptions about

the data than the stationarymean method. Each trial provides a separate estimate of the

Fig 3. The amplitude of correlation coefficients decreases under subsampling, whereas the intrinsic timescale τ
and the branching parameter m (characterized by the slope of the rk on a logarithmic scale) are invariant.

Coefficients were determined by the toolbox for a fully sampled and binomially subsampled branching processes [19].

https://doi.org/10.1371/journal.pone.0249447.g003
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correlation coefficients ri,k. Let us again denote the observations before (after) the time lag

with xi (yi), where index i denotes the i-th out of N total trials. All trials share the same number

of time steps T. We can apply Eq (15) to each trial separately and thereafter average over the

per-trial result:

rk ¼
1

N

XN

i¼1

PT� k
t¼1
ðxi;t � �xi;kÞðyi;t � �yi;kÞ
PT� k

t¼1
ðxi;t � �xi;kÞ

2

" #

¼
1

N

XN

i¼1

ri;k ð16Þ

with

�xi;k ¼
1

T � k

XT� k

t¼1

ai;t and �yi;k ¼
1

T � k

XT� k

t¼1

ai;tþk :

As the expected activity hati is estimated within each trial separately, this method is robust

against a change in the activity from trial to trial. On the other hand, the trialseparated
method suffers from short trial lengths when �xi;k and �yi;k become biased estimates for the

activity.

4.3.2 Stationarymean. The stationarymean method assumes the activity to be sta-

tionary across trials: Now, the expected activity hati is estimated by �x �;k and �y �;k that use the full

pool of recordings (containing all trials):

rk ¼

PN
i¼1

1

T � k

XT� k

t¼1
xi;t � �x �;k
� �

yi;t � �y �;k
� �

� �

PN
i¼1

1

T

XT

t¼1
ðxi;t � �x �;kÞ

2

ð17Þ

with

�x �;k ¼
1

NðT � kÞ

XN

i¼1

XT� k

t¼1

ai;t and �y �;k ¼
1

NðT � kÞ

XN

i¼1

XT� k

t¼1

ai;tþk :

The two methods are illustrated in Fig 4 and the impact of the trial length on the estimated

autocorrelation time is shown in Fig 5. For short trials (red shaded area), the stationary-
mean provides precise estimates—already for time series that are only on the order of ten

Fig 4. Illustration of the two methods for determining the correlation coefficients rk from spiking activity At.

Both methods assume a trial structure of the data (discontinuous time series)Top: The trialseparated
method calculates one set of correlation coefficients ri,k for every trial i (via linear regression).Bottom: The

stationarymean method combines the information of all trials to perform the linear regression on a single, but

larger pool of data. This gives an estimate of rk that is bias corrected for short trial lengths.

https://doi.org/10.1371/journal.pone.0249447.g004
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times as long as the autocorrelation time itself. The trialseparated method, on the other

hand, is biased for short trials but it makes less strict assumptions on the data. Thus, the

trialseparated method should be used if one is confident that trial durations are long

enough.

As a rule of thumb, if an a priori estimate of τ exists, we advise to use trials that are at least

10 times longer than that estimate. The longer, the better. As an example, to reliably detect t̂ �

200ms (for instance in prefrontal cortex), a time series of 2 s could suffice (when using the

stationarymean method). Furthermore, as a consistency check, we recommend to com-

pare estimates that derive from both methods.

4.4 Toolbox interface to estimate correlation coefficients

The correlation coefficients are calculated by calling the coefficients() function, with

the method keyword.

Fig 5. Independent of subsampling, correlation coefficients can be biased if trials are short. As a function of trial

length, the autocorrelation time that was estimated by the toolbox (t̂) is compared with the known value of a

stationary, fully sampled branching process (τ). Each measurement featured 50 trials and was performed once with

each method, trialseparated (solid lines) and stationarymean (dashed lines). For short time series (red

shaded area), it is known analytically that the correlation coefficients are biased [23]. The bias propagates to the

intrinsic timescale (black dotted line) and it is consistent with the timescale obtained from the trialseparated
method. The stationarymean method can compensate the bias, if enough trials are available across which the

activity is indeed stationary. However, the improvement to the estimates scales directly with the number of trials—the

effective statistical information is increased with each trial. Error bars (for clarity only depicted for τ = 103): standard

deviation across 100 simulations. For more details, see appendix B.

https://doi.org/10.1371/journal.pone.0249447.g005

# typical keyword arguments, steps from 1 to 500

rks = mre.coefficients(src, method = ‘stationarymean’,
steps = (1, 500))

# create custom steps as a numpy array,

# here from 1 to 750 with increment 2

my steps = np.arange(1, 750, 2)
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From the code example above, it is clear that one has to choose for which k-values the coef-

ficients are calculated. This choice needs to reflect the data: the chosen steps determine the

range that can be fitted. If not enough steps are included, the tail of the exponential is over-

looked, whereas if too many steps are included, fluctuations may cause overfitting. A future

version of the toolbox will give a recommendation, for now it is implemented as a console

warning.

The k-values can be specified with the steps argument, by either specifying an upper and

lower threshold or by explicitly passing an array of desired values. In order to give the rk physi-

cal meaning, the function also takes the time bin size Δt (corresponding to the step size k) and

the time unit as arguments: dt and dtunit, respectively. Those properties become part of

the returned data structure CoefficientResult, so that the subsequent fit- and plot-rou-

tines can use them.

4.5 Toolbox data structure

Recordings are often repeated with similar conditions to create a set of trials. We took this into

account and built the toolbox on the assumption that we always have a trial structure, even if

there is only a single recording.

The trial structure is incorporated in a two dimensional NumPy array [20–22], where the

first index (i) labels the trial. The second index (t) specifies the time step of the trials activity

recording Ai,t, where time is discretized and each time step has size Δt. All trials must have the

same length and the same Δt (or in other words, should be recorded with the same sampling

rate).

Because all further processing steps rely on this particular format, we provide the

input_handler() that attempts convert data structures into the right one. The

input_handler() works with nested lists, NumPy arrays or strings containing file paths.

Wildcards in the file path will be expanded and all matching files are imported. If a file has

multiple columns, each column is taken to be a trial. To select which of the columns to import,

specify for example usecols=(0,1,2) which would import the first three columns.

4.6 Error estimation

The toolbox provides confidence intervals based on bootstrap resampling [41]. Resampling

usually requires the original data to be cut into chunks (bins) that are recombined (drawing

with replacement) to create new realizations, the so called bootstrap samples. Because the

toolbox works on the trial structure, the input data usually does not need to be modified: each

trial becomes a bin that can then be drawn with replacement to contribute to the bootstrap

sample. While this is a good choice if sufficient (*100) trials are provided, using trials directly

for resampling means that no error estimates are possible with a single trial. If no trial structure

is available, such as for resting-state data, an easy workaround is to manually cut long time

# specify the created steps,

# step size dt and unit of the time-step

rks = mre.coefficients(src, method = ‘stationarymean’,
steps = my steps, dt = 1, dtunit = ‘bp steps’)
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series into shorter chunks to artificially create the trial structure [19]. The error estimation via

bootstrapping is implemented in the coefficients(), fit() and full_analysis()
functions. All three take the numboot argument to specify how many bootstrap samples are

created.

4.7 Getting help

Please visit the project on GitHub [42] and see our growing online documentation [43]. You

can also call help() on every part of the toolbox:

5 Discussion

Our toolbox reliably estimates the intrinsic timescale from vastly different time series, from

electrophysiologal recordings to case numbers of epidemic spreading to any system that can be

represented by an autoregressive process. Most importantly, it relies on the multi-step regres-

sion estimator so that unbiased timescales are found even for heavily subsampled systems [5].

In this work, we also took a careful look at how a limited duration of the recordings—a

common problem in all data-driven approaches—can bias our estimator [23, 24]. With exten-

sive numeric simulations we showed that the estimator is robust if conservatively formulated

guidelines are followed. We can also bolster our previous claim [5] that the estimator is very

data efficient. Moreover, short time series (trials) can be compensated by increasing the num-

ber of trials.

The toolbox thereby enables a systematic study of intrinsic timescales, which are important

for a variety of questions in neuroscience [44]. Using the branching process as a simple model

of neuronal activity, it is intuitive to think of the intrinsic timescale as the duration over which

any perturbation reverberates (or persists) within the network [13, 45]. According to this intui-

tion, different timescales should benefit different functional aspects of cortical networks [12,

46, 47].

Experimental evidence indeed shows different timescales for different cortical networks [5,

48]. It even suggests a temporal hierarchy of brain areas [1, 2, 49]; areas responsible for sensory

integration feature short timescales, while areas responsible for higher-level cognitive pro-

cesses feature longer timescales. For cognitive processes (for example during task-solving), the

# as an example, create variables.

bp = mre.simulate branching(m = 0.98, a = 10)

# try pressing tab e.g. after typing mre.c

rks = mre.coefficients(bp)

# help() prints the documentation,

# and works for variables and functions alike

help(rks)

help(mre.full analysis)
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intrinsic timescale was further linked to working memory. In particular, working memory

might be implemented through neurons with long timescales [3, 4, 50].

In general, recordings could exhibit multiple timescales simultaneously [51–53]. This can

be readily realized with the toolbox by using a custom fit function (e.g. a sum of exponential

functions, see Sec. 3). However, it is important to be aware of the possible pitfalls of fitting

elaborate functions to empirical data [53, 54]. In our experience, most recordings exhibit a sin-

gle dominant timescale.

Lastly, it was theorized that biological recurrent networks can adapt their timescale in order

to optimize their processing for a particular task [46, 55, 56]. For artificial recurrent networks,

such a tuning capability was already shown to be attainable by operating around the critical

point (of a dynamic second order phase transition) [15, 32, 47, 57]. For instance, reducing the

distance to criticality increases the information storage in these networks [10, 12]. At the same

time, the observed intrinsic timescale increases. It is plausible that the mechanisms of near-

critical, artificial systems also apply to cortical networks [58–60]. This and other hypothesis

can now be reliably tested with our toolbox and properly designed experiments [8]. For appli-

cations of our approach and the MR. Estimator toolbox see e.g. Refs. [48, 61, 62] and Ref. [7,

36, 63], respectively.

6 Appendix

6.1 A Real-world Example

Listing 2. Minimal script that shows how to prepare real-world data [30, 64], and produces Fig

2 from the main text. Characteristic for this dataset are theta oscillations (5–10 Hz) that carry

over to the autocorrelation function. We first create a time series of activity by time-binning

the spike times. Then, we create an artificial trial structure to demonstrate error estimation

and apply the built-in fit functions. Last, we print the frequency ν = 6.13 Hz of the theta oscilla-

tions as an example to show how to access the different parameters of the complex fit. The

full script is available on GitHub [19], and for further details, also see the online documenta-

tion [43].

# helper function to convert a list of time stamps

# into a (binned) time series of activity

def bin_spike_times_unitless (spike_times, bin_size):
last_spike = spike_times [−1]

num_bins = int (np. ceil (last_spike / bin_size))

res = np. zeros (num_bins)

for spike_time in spike_times:

target_bin = int (np. floor (spike_time / bin_size))

res [target_bin] = res [target_bin] + 1

return res

# load the spiketimes

res = np. loadtxt (‘./crcns/hc2/ec013.527/ec013.527.res.1’)
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# the .res.x files contain the time-stamps of spikes
detected

# by electrode x sampled at 20 kHz, i.e. 0.05 ms per time
steps.

# we want ‘spiking activity’: spikes added up during a given

# time. usually, *4ms time bins (windows) is a good first
guess

act = bin_spike_times_unitless (res, bin_size = 80)

# to get error estimates, we create 25 artifical trials by

# splitting the data. not recommended for non-stationary
data

triallen = int (np.floor (len (act)/25))

trials = np.zeros (shape = (25, triallen))

for i in range (0, 25):

trials [i] = act [i � triallen: (i + 1) � triallen]

# now we could run the analysis and will get error estimates

# out = mre.full_analysis (trials, dt = 4, dtunit = ‘ms’,
kmax = 800,

# method = ‘trialseparated’)

# however, in this dataset we will find theta oscillations.

# let’s try the other fit functions, too.

out = mre.full_analysis (trials, dt = 4, dtunit = ‘ms’,
kmax = 800, method = ‘trialseparated’, fitfuncs = [‘exponen-
tial’, ‘exponential_offset’, ‘complex’], targetdir = ‘./’,
saveoverview = True)

# by assigning the result of mre.full_analysis (. . .) to a

# variable, we can use fit results for further processing:

# the oscillation frequency nu is fitted by the complex fit

# function as the 7th parameter (see online documentation).

# it is in units of 1/ dtunit and we used ‘ms’.

print (f “theta frequency: {out.fits [2]. popt [6] � 1000}
[Hz]”)
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The spiking data from rats were recorded by Mizuseki et al. [30] with experimental proto-

cols approved by the Institutional Animal Care and Use Committee of Rutgers University. The

data were obtained from theNSF-founded CRCNS data sharing website [64].

6.2 B short trials cause bias

The data shown in Fig 5 was created with the simulation_branching() function

included in the toolbox. Every measurement was repeated 100 times, featured 50 trials, target

activity 1000 and no subsampling (the bias investigated here is independent from subsam-

pling). The colored lines correspond to the median across 100 independent simulations. Error

estimates were calculated but not plotted for clarity—in the red shaded area of Fig 5, the very

short trials lead to low statistics (and large error bars). Error bars represent the standard devia-

tion across the 100 simulations. The included steps k covered [1 : 20τ], if available, which cor-

responds to the fit range of the exponential with offset.

To further illustrate the bias we observed in Fig 5, we plot the correlation coefficients rk that

were found by the toolbox with the two different methods in Fig 6. When trials are short, the

coefficients found by the trialseparated method are offset and skewed. The statio-
narymean method finds the correct coefficients because the estimation could profit from the

trial structure. Since neither the true timescale nor the stationarity assumption are known in

experiments, we suggest to compare results from both methods: if they agree, this is a good

indication that the trials are long enough.

The black dashed line in Fig 5 is derived from the analytic solution Eq. 4.07 in Ref. [23] that

gives the expectation value of the biased correlation coefficient in dependence of the trial

length T. For simplicity, we focus on the leading-order estimated branching paramter m̂ via

the one-step autocorrelation function. Starting from Eq. 4.07 in Ref. [23],

m̂ � CðAtþ1;AtÞ ¼ r1

� m1 �
1

T
ð1þmÞð1Þ þ 2m1½ � þ O

1

T2

� �

ð18Þ

� m 1 �
1

T
3þ

1

m

� �� �

ð19Þ

Fig 6. Correlation coefficients rk for τ = 102 (orange in Fig 5). Individual background lines stem from the 100 independent

repetitions.Left: Coefficients are shifted and skewed for short trial length T/τ when using the trialseparated method. The solid

foreground lines are obtained from Eq. 4.07 of [23]. Right: With 50 trials and the stationarymean method, even very short (green)

time series yield unbiased coefficients and, ultimately, precise estimates of the intrinsic timescale.

https://doi.org/10.1371/journal.pone.0249447.g006
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cf. Eqs (4) and (11). Inserted into Eq (13) t̂ ¼ � Dt= ln ðm̂Þ and withm = exp(−Δt/τ), we find

t̂ �
� Dt

ln ðmÞ þ ln 1 � 1

T 3þ 1

m

� �� � ð20Þ

�
� Dt

ln ðmÞ � 1

T 3þ 1

m

� � ð21Þ

¼
� Dt

� Dt
t
� 1

T
3þ eDt=t
� � ð22Þ

¼
t

1þ t

TDt 3þ eDt=t½ �
: ð23Þ

For sufficiently large τ> Δt, we obtain to leading order

t̂

t
�

1

1þ t

T
4

Dt

: ð24Þ

For Fig 5—where Δt = 1, x = T/τ and y ¼ t̂

t
—this means that

y ¼ 1=ð1þ 4=xÞ : ð25Þ
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Abstract

To date, it is still impossible to sample the entire mammalian brain with single-neuron preci-

sion. This forces one to either use spikes (focusing on few neurons) or to use coarse-sam-

pled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique

impacts inference about collective properties. Here, we emulate both sampling techniques

on a simple spiking model to quantify how they alter observed correlations and signatures

of criticality. We describe a general effect: when the inter-electrode distance is small, elec-

trodes sample overlapping regions in space, which increases the correlation between the

signals. For coarse-sampled activity, this can produce power-law distributions even for non-

critical systems. In contrast, spike recordings do not suffer this particular bias and underlying

dynamics can be identified. This may resolve why coarse measures and spikes have pro-

duced contradicting results in the past.

Author summary

The criticality hypothesis associates functional benefits with neuronal systems that operate

in a dynamic state at a critical point. A common way to probe the dynamic state of a neu-

ronal systems is measuring characteristics of so-called avalanches—distinct cascades of

neuronal activity that are separated in time. For example, the probability distribution of

the avalanche size will resemble a power-law if a neuronal system is critical. Thus, power-

law distributions have become a common indicator for critical dynamics.

Here, we use simple models and numeric simulations to show that not only the

dynamic state of a system has an impact on avalanche distributions. Also aspects that are

only related to the sampling of the system (such as inter-electrode distance) or the way

avalanches are calculated (such as thresholding and time binning) can shape avalanche

distributions. On a mechanistic level we find that, if electrodes record spatially overlap-

ping regions, the signals of electrodes may be spuriously correlated; multiple electrodes

might pick up activity from the same neuron. Subsequently, when avalanches are inferred,

such a measurement overlap can produce power-law distributions even if the underlying

system is not critical.
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1 Introduction

For more than two decades, it has been argued that the cortex might operate at a critical point

[1–7]. The criticality hypothesis states that by operating at a critical point, neuronal networks

could benefit from optimal information-processing properties. Properties maximized at criti-

cality include the correlation length [8], the autocorrelation time [6], the dynamic range [9,

10] and the richness of spatio-temporal patterns [11, 12].

Evidence for criticality in the brain often derives from measurements of neuronal ava-
lanches. Neuronal avalanches are cascades of neuronal activity that spread in space and time. If

a system is critical, the probability distribution of avalanche size p(S) follows a power law p(S)

� S−α [8, 13]. Such power-law distributions have been observed repeatedly in experiments

since they were first reported by Beggs & Plenz in 2003 [1].

However, not all experiments have produced power laws and the criticality hypothesis

remains controversial. It turns out that results for cortical recordings in vivo differ

systematically:

Studies that use what we here call coarse-sampled activity typically produce power-law dis-

tributions [1, 14–23]. In contrast, studies that use sub-sampled activity typically do not [16, 24–

28]. Coarse-sampled activity include LFP, M/EEG, fMRI and potentially calcium imaging,

while sub-sampled activity is front-most spike recordings. We hypothesize that the apparent

contradiction between coarse-sampled (LFP-like) data and sub-sampled (spike) data can be

explained by the differences in the recording and analysis procedures.

In general, the analysis of neuronal avalanches is not straightforward. In order to obtain

avalanches, one needs to define discrete events. While spikes are discrete events by nature, a

coarse-sampled signal has to be converted into a binary form. This conversion hinges on

thresholding the signal, which can be problematic [29–32]. Furthermore, events have to be

grouped into avalanches, and this grouping is typically not unique [24]. As a result, avalanche-

size distributions depend on the choice of the threshold and temporal binning [1, 33].

In this work, we show how thresholding and temporal binning interact with a commonly

ignored effect [16, 34]. Under coarse-sampling, neighboring electrodes may share the same

field-of-view. This creates a distance-dependent measurement overlap so that the activity that

is recorded at different electrodes may show spurious correlations, even if the underlying spik-

ing activity is fully uncorrelated. We show that the inter-electrode distance may therefore

impact avalanche-size distributions more severely than the underlying neuronal activity.

In this numeric study, we explore the role of the recording and analysis procedures on a

locally-connected network of simple binary neurons. Focusing on avalanche distributions, we

compare apparent signs of criticality under sub-sampling versus coarse-sampling. To that end,

we vary the distance to criticality of the underlying system over a wide range, from uncorre-

lated (Poisson) to highly-correlated (critical) dynamics. We then employ a typical analysis

pipeline to derive signatures of criticality and study how results depend on electrode distance

and temporal binning.

2 Results

The aim of this study is to understand how the sampling of neural activity affects the inference

of the underlying collective dynamics. This requires us to be able to precisely set the underly-

ing dynamics. Therefore, we use the established branching model [35], which neglects many

biophysical details, but it allows us to precisely tune the dynamics and to set the distance to

criticality.

To study sampling effects, we use a two-level setup inspired by [34]: an underlying network

model, on which activity is then sampled with a grid of 8 × 8 virtual electrodes. Where possible,
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parameters of the model, the sampling and the analysis are motivated by values from experi-

ments (see Methods).

In order to evaluate sampling effects, we want to precisely set the underlying dynamics. The

branching model meets this requirement and is well understood analytically [11, 27, 34–36].

Inspired by biological neuronal networks, we simulate the branching dynamics on a 2D topol-

ogy with NN = 160 000 neurons where each neuron is connected to K� 1000 local neighbors.

To emphasize the locality, the synaptic strength of connections decays with the distance dN

between neurons. For a detailed comparison with different topologies, see the Supplemental

Information (Fig A in S1 Text).

2.1 Avalanches are extracted differently under coarse-sampling and sub-

sampling

At each electrode, we sample both the spiking activity of the closest neuron (sub-sampling)

and a spatially averaged signal that emulates LFP-like coarse-sampling.

Both coarse-sampling and sub-sampling are sketched in Fig 1A: For coarse-sampling (left),

the signal from each electrode channel is composed of varying contributions (orange circles)

of all surrounding neurons. The contribution of a particular spike from neuron i to electrode k
decays as 1=dgik with the neuron-to-electrode distance dik and electrode contribution γ = 1. In

contrast, if spike detection is applied (Fig 1A, right), each electrode signal captures the spiking

activity of few individual neurons (highlighted circles).

In order to focus on the key mechanistic differences between the two sampling approaches,

we keep the two models as simple as possible. (This also matches the simple underlying

dynamics, for which we can precisely set the distance to criticality). However, especially for

coarse-sampling, this yields a rather crude approximation: More realistic, biophysically

detailed LFP models would yield much more complex distance dependencies, which are an

open field of research [37–40]. Our chosen electrode-contribution of γ = 1 assumes a large

field of view, which implies the strongest possible measurement overlap to showcase the

coarse-sampling effect. As this is an important assumption, we consider electrodes with a

smaller field of view in Sec. 2.5 and provide an extended discussion in the Supplemental Infor-

mation (Fig B in S1 Text).

To test both recording types for criticality, we apply the standard analysis that provides a

probability distribution p(S) of the avalanche size S: In theory, an avalanche describes a cascade

of activity where individual units—here neurons—are consecutively and causally activated.

Each activation is called an event. The avalanche size is then the total number of events in the

time between the first and the last activation. A power law in the size distribution of these ava-

lanches is a hallmark of criticality [6]. In practice, the actual size of an avalanche is hard to

determine because individual avalanches are not clearly separated in time; the coarse-sampled

signal is continuous-valued and describes the local population. In order to extract binary

events for the avalanche analysis (Fig 2), the signal has to be thresholded—which is not neces-

sary for spike recordings, where binary events are inherently present as timestamps.

2.2 The branching parameter m sets the distance to criticality

In order to compare apparent signatures of criticality with the true, underlying dynamics, we

first give some intuition about the branching model. The branching parameter m quantifies the

probability of postsynaptic activations, or in other words, how many subsequent spikes are

caused (on average) by a single spike. With increasing m! 1, a single spike triggers increas-

ingly long cascades of activity. These cascades determine the timescale over which fluctuations
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occur in the population activity—this intrinsic timescale τ describes the dynamic state of the

system and its distance to criticality.

The intrinsic timescale can be analytically related to the branching parameter by τ� −1/ln

(m). As m! 1, τ!1 and the population activity becomes “bursty”. We illustrate this in

Fig 1B and Table 1: For Poisson-like dynamics (m� 0), the intrinsic timescale is zero

(t̂psn � 0ms) and the activity between neurons is uncorrelated. As the distance to criticality

becomes smaller (m! 1), the intrinsic timescale becomes larger (t̂sub � 19ms, t̂rev � 98ms,
t̂crit � 1:6 s), fluctuations become stronger, and the spiking activity becomes more and more

correlated in space and time. Apart from critical dynamics, of particular interest in the above

list is the “reverberating regime”: For practical reasons, we assign a specific value of m

Fig 1. Sampling affects the assessment of dynamic states from neuronal avalanches. A: Representation of the

sampling process of neurons (black circles) using electrodes (orange squares). Under coarse-sampling (e.g. LFP),

activity is measured as a weighted average in the electrode’s vicinity. Under sub-sampling (spikes), activity is measured

from few individual neurons. B: Fully sampled population activity of the neuronal network, for states with varying

intrinsic timescales τ: Poisson (t̂psn � 0ms), subcritical (t̂ sub � 19ms), reverberating (t̂rev � 98ms) and critical

(t̂crit � 1:6 s). C: Avalanche-size distribution p(S) for coarse-sampled (left) and sub-sampled (right) activity. Sub-

sampling allows for separating the different states, whereas coarse-sampling leads to p(S)� S−α for all states except

Poisson. Parameters: Electrode contribution γ = 1, inter-electrode distance dE = 400 μm and time-bin size Δt = 8 ms.

https://doi.org/10.1371/journal.pcbi.1010678.g001
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(Table 1), which represents typical values observed in vivo [41, 42]. However, this choice is

meant as a representation for a regime that is close-to-critical, but not directly at the critical

point. In this regime, many of the benefits of criticality emerge, while the system can maintain

a safety-margin from instability [41].

2.3 Coarse-sampling can cloud differences between dynamic states

Irrespective of the applied sampling, the inferred avalanche distribution should represent the

true dynamic state of the system.

However, under coarse-sampling (Fig 1C, left), the avalanche-size distributions of the sub-

critical, reverberating and critical state are virtually indistinguishable. Intriguingly, all three

show a power law. The observed exponent α = 1.5 is associated with a critical branching pro-

cess. Only the uncorrelated (Poisson-like) dynamics produce a non-power-law decay of the

avalanche-size distribution.

Under sub-sampling (Fig 1C, right), each dynamic state produces a unique avalanche-size

distribution. Only the critical state, with the longest intrinsic timescale, produces the charac-

teristic power law. Even the close-to-critical, reverberating regime is clearly distinguishable

and features a “subcritical decay” of p(S).

Fig 2. Analysis pipeline for avalanches from sampled data. I: Under coarse-sampling (LFP-like), the recording is

demeaned and thresholded. II: The timestamps of events are extracted. Under sub-sampling (spikes), timestamps are

obtained directly. III: Events from all channels are binned with time-bin size Δt and summed. The size S of each

neuronal avalanche is calculated. IV: The probability of an avalanche size is given by the (normalized) count of its

occurrences throughout the recording.

https://doi.org/10.1371/journal.pcbi.1010678.g002

Table 1. Parameters and intrinsic timescales of dynamic states. All combinations of branching parameter m and per-neuron drive h result in a stationary activity of 1 Hz

per neuron. Due to the recurrent topology, it is more appropriate to consider the measured autocorrelation time t̂ rather than the analytic timescale τ.

State name m t̂ (measured) t ¼ � 2 ms
lnm h

Poisson 0.0 0.1 ± 0.1 ms 0.0 ms 2 × 10−3

Subcritical 0.9 18.96 ± 0.09 ms 18.9 ms 2 × 10−4

Reverberating 0.98 98.3 ± 1.0 ms 98.9 ms 4 × 10−5

Critical 0.999 1.58 ± 0.12 s 1.99 s 2 × 10−6

https://doi.org/10.1371/journal.pcbi.1010678.t001
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2.4 Measurement overlap causes spurious correlations

Why are the avalanche-size distributions of different dynamic states hard to distinguish under

coarse-sampling? The answer is hidden within the cascade of steps involved in the recording

and analysis procedure. Here, we separate the impact of the involved processing steps. Most

importantly, we discuss the consequences of measurement overlap—which we identify as a key

explanation for the ambiguity of the distributions under coarse-sampling.

In order to obtain discrete events from the continuous time series for the avalanche analy-

sis, each electrode signal is filtered and thresholded, binned with a chosen time-bin size Δt
and, subsequently, the events from all channels are stacked. This procedure is problematic

because (i) electrode proximity adds spatial correlations, (ii) temporal binning adds temporal

correlations, and (iii) thresholding adds various types of bias [29–31].

As a result of the involved analysis of coarse-sampled data, spurious correlations are intro-

duced that are not present in sub-sampled data. We showcase this effect in Fig 3, where the

Pearson correlation coefficient between two virtual electrodes is compared for both the (thre-

sholded and binned) coarse-sampled and sub-sampled activity. For the same parameters and

dynamic state, coarse-sampling leads to larger correlations than sub-sampling.

Depending on the sensitivity and distance between electrodes, multiple electrodes might

record activity from the same neuron. This measurement overlap (or volume conduction

effect) increases the spatial correlations between electrodes—and because the signals from

multiple electrode channels are combined in the analysis, correlations can originate from mea-

surement overlap alone.

2.5 Measurement overlap depends on electrodes’ field of view

The amount of measurement overlap between electrodes is determined effectively by the elec-

trodes’ field of view, thus the distance dependence with which a neuron’s activity si contributes

to the electrode signal Vk (Fig 4). We consider electrode signals VkðtÞ ¼
PNN

i siðtÞ=dgik, where

the exponent γ indicates how narrow (γ = 2) or wide (γ = 1) the field of view is. Note that real-

istic distance dependencies are more complex and depend on many factors, such as neuron

morphology and tissue filtering [37–40].

We find that the collapse of avalanche-size distributions from different dynamic states is

strongest when the field of view is wide—i.e. if there is stronger measurement overlap. In that

case, coarse-sampled distributions are hardly distinguishable (Fig 4C and 4D). For a narrow

field of view, distributions are still hard to distinguish but do not fully collapse (Fig 4E and 4F).

Fig 3. Coarse-sampling leads to greater correlations than sub-sampling. Pearson correlation coefficient between the

signals of two adjacent electrodes for the different dynamic states. Even for independent (uncorrelated) Poisson

activity, measured correlations under coarse-sampling are non-zero. Parameters: Electrode contribution γ = 1, inter-

electrode distance dE = 400 μm and time-bin size Δt = 8 ms.

https://doi.org/10.1371/journal.pcbi.1010678.g003
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In order to study the impact of inter-electrode distance and temporal binning, in the

following we focus on the wide field of view (γ = 1) where the avalanche collapse is most

pronounced.

2.6 The effect of inter-electrode distance

Similar to the field of view of electrodes, avalanche-size distributions under coarse-sampling

depend on the inter-electrode distance dE (Fig 5A). For small inter-electrode distances, the

overlap is strong. Thus, the spatial correlations are strong. Strong correlations manifest them-

selves in larger avalanches. However, under coarse-sampling the maximal observed size S of an

avalanche is in general limited by the number of electrodes NE [34] (cf. Fig B in S1 Text). This

limit due to NE manifests as a sharp cut-off and—in combination with spurious measurement

correlations due to dE—can shape the probability distribution. In the following, we show that

these factors can be more dominant than the actual underlying dynamics.

In theory, supercritical dynamics are characterized by a sharp peak in the avalanche distri-

bution at S = NE. Independent of the underlying dynamics, such a peak can originate from

small electrode distances (Fig 5A, dE = 100 μm): Avalanches are likely to span the small area

covered by the electrode array. Furthermore, due to strong measurement overlap, individual

events of the avalanche may contribute strongly to multiple electrodes.

Fig 4. The signal of an extracellular neuronal recording depends on neuronal morphologies, tissue filtering, and other factors, which all impact the

coarse-sampling effect. In effect, an important factor is the distance of the neuron to the electrode. Here, we show how the distance-dependence, with

which a neuron’s activity contributes to an electrode, determines the collapse of avalanche distributions. A: Biophysically plausible distance dependence of

LFP, reproduced from [38]. B: Sketch of a neuron’s contribution to an electrode at distance dik, as motivated by (A). The decay exponent γ characterizes the

field of view. C–F: Avalanche-size distribution p(S) for coarse-sampling with the sketched electrode contributions. C, D: With a wide-field of view,

distributions are hardly distinguishable between dynamic states. In contrast, for spiking activity the differences are clear (light shades in C). E, F: With a

narrower field of view, distributions do not fully collapse on top of each other, but differences between reverberating and critical dynamics remain hard to

identify. Parameters: Inter-electrode distance dE = 400 μm and time-bin size Δt = 8 ms. Other parameter combinations in Fig B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010678.g004
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Subcritical dynamics are characterized by a pronounced decay already for S< NE. Indepen-

dent of the underlying dynamics, such a decay can originate from large electrode distances

(Fig 5A, dE = 500 μm): Locally propagating avalanches are unlikely to span the large area cov-

ered by the electrode array. Furthermore, due to the weaker measurement overlap, individual

events of the avalanche may contribute strongly to one electrode (or to multiple electrodes but

only weakly).

Consequently, there exists a sweet-spot value of the inter-electrode distance dE for which p(S)

appears convincingly critical (Fig 5A, dE = 250 μm): a power law p(S)�S−α spans all sizes up to

the cut-off at S = NE. However, the dependence on the underlying dynamic state is minimal.

Fig 5. Under coarse-sampling, apparent dynamics depend on the inter-electrode distance dE. A: For small

distances (dE = 100 μm), the avalanche-size distribution p(S) indicates (apparent) supercritical dynamics: p(S)� S−α

with a sharp peak near the electrode number NE = 64. For large distances (dE = 500 μm), p(S) indicates subcritical

dynamics: p(S)� S−α with a pronounced decay already for S< NE. There exists a sweet-spot value (dE = 250 μm) for

which p(S) indicates critical dynamics: p(S)� S−α until the the cut-off is reached at S = NE. The particular sweet-spot

value of dE depends on time-bin size (here, Δt = 4 ms). As a guide to the eye, dashed lines indicate S−1.5. B: The inferred

branching parameter m̂av is also biased by dE when estimated from neuronal avalanches. Apparent criticality (m̂av � 1,

dotted line) is obtained with dE = 250 μm and Δt = 4 ms but also with dE = 400 μm and Δt = 8 ms. B, Inset:

representation of the measurement overlap between neighboring electrodes; when electrodes are placed close to each

other, spurious correlations are introduced.

https://doi.org/10.1371/journal.pcbi.1010678.g005
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Independently of the apparent dynamics, we observe the discussed cut-off at S = NE,

which is also often seen in experiments (Fig 6). Note, however, that this cut-off only occurs

under coarse-sampling (see again Fig 1C). When spikes are used instead (Fig 7), the same

avalanche can reach an electrode repeatedly in quick succession—whereas such double-

events are circumvented when thresholding at the population level. For more details see Fig

B in S1 Text.

A further signature of criticality is obtained by inferring the branching parameter. If the

inference is unbiased, the inferred m̂ matches the underlying branching parameter m. We

have developed a sub-sampling invariant estimator (based on the population activity inferred

from spikes [27]), but m̂ is traditionally inferred from avalanches. Then, m̂av is defined as the

average ratio of events between subsequent time bins in an avalanche, i.e. during non-zero

activity [1, 33].

Obtaining m̂av for different electrode distances results in a picture consistent with the one

from avalanche-size distributions (Fig 5B). In general, the dependence on the electrode dis-

tance is stronger than the dependence on the underlying state. At the particular value of the

inter-electrode distance where m̂av ¼ 1, the distributions appear critical. If m̂av < 1 (m̂av > 1),

Fig 6. In vivo and in vitro avalanche-size distributions p(S) from LFP depend on time-bin size Δt. Experimental LFP results are reproduced by many

dynamics states of coarse-sampled simulations. A: Experimental in vivo results (LFP, human) from an array of 60 electrodes, adapted from [43]. B: Experimental

in vitro results (LFP, culture) from an array with 60 electrodes, adapted from [1]. C–F: Simulation results from an array of 64 virtual electrodes and varying

dynamic states, with time-bin sizes between 2 ms� Δt� 16 ms, γ = 1 and dE = 400 μm. Subcritical, reverberating and critical dynamics produce approximate

power-law distributions with bin-size-dependent exponents α. Insets: Log-Log plot, distributions are fitted to p(S)� S−α, fit range S� 50. The magnitude of α
decreases as Δt−β with −β indicated next to the insets, cf. Table 2.

https://doi.org/10.1371/journal.pcbi.1010678.g006
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the distributions appear subcritical (supercritical). Notably, the supercritical m> 1 corre-

sponds to dynamics where activity increases indefinitely, which is not possible for systems of

finite size and exposes m̂av > 1 as an inference effect. More precisely, in case of our simula-

tions, m̂av suffers two sources of bias: firstly, the coarse-sampling bias that is rooted in the pre-

ceding avalanche analysis, and secondly the estimator assumes a pure branching process

without specific topology or coalescence effects [36].

Concluding, because the probability distributions and the inferred branching parameter

share the dependence on electrode distance, a wide range of dynamic states would be consis-

tently misclassified—solely as a function of the inter-electrode distance.

2.7 Temporal binning determines scaling exponents

Apart from the inter-electrode distance, the choice of temporal discretization that underlies

the analysis may alter avalanche-size distributions. This time-bin size Δt varies from study to

Fig 7. In vivo avalanche-size distributions p(S) from spikes depend on time-bin size Δt. In vivo results from spikes are reproduced by sub-sampled

simulations of subcritical to reverberating dynamics. Neither spike experiments nor sub-sampled simulations show the cut-off that is characteristic under

coarse-sampling. A: Experimental in vivo results (spikes, awake monkey) from an array of 16 electrodes, adapted from [24]. The pronounced decay and the

dependence on bin size indicate subcritical dynamics. B: Experimental in vitro results (spikes, culture DIV 34) from an array with 59 electrodes, adapted from

[44]. Avalanche-size distributions are largely independent of time-bin size and resemble a power law over four orders of magnitude. In combination, this

indicates a separation of timescales and critical dynamics (or even super critical dynamics [45]). B, Inset: Log-Lin plot of fitted α, fit range s/N� 5. C–F:

Simulation for sub-sampling, analogous to Fig 6. Subcritical dynamics do not produce power-law distributions and are clearly distinguishable from critical

dynamics. F: Only the (close-to) critical simulation produces power-law distributions. F, Inset: Log-Log plot of fitted α, fit range S� 50. In contrast to the in
vitro culture (in B), the simulation does not feature a separation of time scales (due to external drive and stationary activity), and therefore the slope shows a

systematic bin-size dependence here.

https://doi.org/10.1371/journal.pcbi.1010678.g007
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study and it can severely impact the observed distributions [1, 24, 43, 44]. With smaller bin

sizes, avalanches tend to be separated into small clusters, whereas larger bin sizes tend to

“glue” subsequent avalanches together [24]. Interestingly, this not only leads to larger ava-

lanches, but specifically to p(S)� S−α, where the exponent α increases systematically with bin

size [1, 43]. Such a changing exponent is not expected for conventional systems that self-orga-

nize to criticality: Avalanches would be separated in time, and α should be fairly bin-size

invariant for a large range of Δt [24, 44, 46].

Our coarse-sampled model reproduces these characteristic experimental results (Fig 6).

It also reproduces the previously reported scaling [1] of the exponent with bin size α� Δt−β

(cf. Fig 6 insets and Table 2). Except for the Poisson dynamics, all the model distributions

show power laws. Moreover the distributions are strikingly similar, not just to the experi-

mental results, but also to each other. This emphasizes how sensitive signs of criticality are

to analysis parameters: All the shown dynamic states are consistent with the ubiquitous ava-

lanche-size distributions that are observed in coarse-sampled experiments [45] (cf. Table A

in S1 Text).

When spikes are used instead, power-law distributions only arise from critical dynamics.

For comparison with the coarse-sampled results in Fig 6, we show avalanche-size distributions

from experimental spike recordings and sub-sampled simulations in Fig 7.

In vivo spike recordings of awake animals produce distributions that feature a pronounced

decay instead of power laws (Fig 7A). Interestingly, spike recordings of in vitro cultures often

show power-laws and, here, even little-to-no bin-size dependence, which indicates a fairly

good separation of timescales (Fig 7B). In this example, the power-law extends over several

orders of magnitude, and the slope does not decrease systematically with the bin size. This

indicates close-to-critical dynamics; the slight bump that represents an excess of very large ava-

lanche, however, might also point to slight super-criticality [44, 45].

Considering our simulations of sub-sampling (Fig 7C–7F), we only observe approximate

power laws if the model is (close-to) critical (Fig 7F). Note that in critical systems, the ava-

lanche distribution should not change with bin size, and that here the bin-size dependence of

the slope is caused by the finite system size and by the non-zero spike rate, which impede a

proper separation of timescales. Nonetheless, in contrast to coarse-sampling, the avalanche

distributions that stem from sub-sampled measures (spikes) allow us to clearly tell apart the

underlying dynamic states from one another.

Overall, as our results on coarse-sampling have shown, different sources of bias—here the

measurement overlap and the bin size—can perfectly outweigh each other. For instance,

smaller electrode distances (that increase correlations) can be compensated by making the

time-bin size smaller (which again decreases correlations). This was particularly evident in Fig

5B, where increasing dE could be outweighed by increasing Δt in order to obtain a particular

value for the branching parameter mav. The same relationship was again visible in Fig 6C–6F:

Table 2. Fitted exponents of α� Δt−β.

Dynamic state β

dE = 200 μm dE = 400 μm

in vitro (LFP) [1] 0.16 ± 0.01

Critical (coarse) 0.113 ± 0.001 0.141 ± 0.001

Reverberating (coarse) 0.127 ± 0.003 0.156 ± 0.002

Subcritical (coarse) 0.159 ± 0.004 0.231 ± 0.016

Critical (spikes) 0.143 ± 0.010 0.123 ± 0.005

https://doi.org/10.1371/journal.pcbi.1010678.t002
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For the shown dE = 400 μm (see also S1 Text for dE = 200 μm), only Δt = 8 ms results in α = 1.5

—the correct exponent for the underlying dynamics. Since the electrode distance cannot be

varied in most experiments, selecting anything but the one “lucky” Δt will cause a bias.

3 Discussion

When inferring collective network dynamics from partially sampled systems, it is crucial to

understand how the sampling biases the measured observables. Without this understanding,

an elaborate analysis procedure—such as the one needed to study neuronal avalanches from

coarse-sampled data—can result in a misclassification of the underlying dynamics.

We have shown that the analysis of neuronal avalanches based on (LFP-like) coarse-sam-

pled data can cloud differences of avalanche distributions from systems with different spatio-

temporal signatures. These signatures derive from underlying dynamic states that, in this

work, range from subcritical to critical—a range over which the intrinsic timescale undergoes

a hundred-fold increase. And yet, the resulting avalanche-size distributions can be ambiguous

(Fig 1).

The ambiguity of neuronal avalanches partially originates from spurious correlations. We

have demonstrated the generation of spurious correlations from two sampling- and processing

mechanisms: measurement overlap (due to volume conduction) and temporal binning. Other

studies found further mechanisms that can generate apparent power-law distributions by (pur-

posely or accidentally) introducing correlations into the observed system. For instance, corre-

lated input introduces temporal correlations already into the underlying system [47, 48]. Along

with thresholding and low-pass frequency filtering—which add temporal correlations to the

observed system [25, 49]—this creates a large space of variables that either depend on the sys-

tem, sampling and processing, or a combination of both.

As our results focus on sampling and processing, we believe that the observed impact on

avalanche-size distributions is general and model independent. We deliberately used simple

models and confirmed that our results are robust to parameter and model changes: First, our

model for coarse-sampling prioritizes simplicity over biophysical details—in order to be con-

sistent with our simplified but well-controlled neuronal dynamics—but we checked that our

results are consistent with different distance-dependencies or adding a cut-off (Figs B and C in

S1 Text). Second, employing a more realistic topology causes no qualitative difference (Fig A

in S1 Text). Third, as a proof of concept, we investigated the impact of measurement overlap

in the 2D Ising model (Fig G in S1 Text). Even in such a fundamental model a measurement

overlap can bias the assessment of criticality. Lastly, we investigated scaling relations (of ava-

lanche size- and duration distributions) and found that under coarse-sampling, the inference

is severely hindered (Fig F in S1 Text). Under sub-sampling, scaling relations hold but with a

different collapse exponent than expected for our model. This is consistent with other recent

work showing that sampling can affect the collapse exponent [50].

Despite these efforts, our work remains a mechanistic modeling study and we want to stress

its limitations: Our virtual sampling did not account for neuron morphology nor the individ-

ual neuron’s connectivity profiles. As spikes are non-local events, both these aspects impact

the sampling range of an electrode and the decay of e.g. an LFP signal [38, 40]. Sampling also

depends on effects that occur prior to recording, such as possible filtering due to extracellular

tissue [25, 51] or filtering due to neuron morphology [40, 52]. In particular, low-pass filtering

can arise from synaptic dynamics or the propagation within dendrites [53]. Clearly, as high

frequencies get stripped from the signal, this could attenuate deflections of the recorded time

series. Because these deflections are central to the avalanche detection, low-pass filtering could,

in principle, affect avalanche statistics. However, preliminary tests showed that our main result
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of overlapping distributions for different dynamics states remains intact when the raw time

series are low-pass filtered (Fig E in S1 Text).

Our results seemingly contradict experimental studies that demonstrate that the avalanche

analysis is sensitive to pharmacological manipulations such as anesthesia [18, 54–57]. Follow-

ing a sufficient manipulation, a system’s dynamic state will change—which should be reflected

by a visible difference of avalanche distributions. We showed that under coarse-sampling, the

precise dynamic state could be misclassified. Whereas subtle differences between the avalanche

distributions from different dynamic states are indeed visible (Fig 5), in general, they are

clouded under coarse-sampling due to the measurement overlap. However, the smaller the

measurement overlap becomes (e.g. through increasing the electrode-distance), the clearer the

differences between dynamic states become (Fig B in S1 Text). In experiments the measure-

ment overlap is unknown; it is also a priori unknown how strong a pharmacological perturba-

tion is (relative to the equally unknown initial dynamic state) and how much coarse-sampling

affects its inference. In modeling studies such as ours, these circumstances are well controlled

—providing an explanation on a mechanistic level that can now be taken into consideration

(and accounted for) when analyzing experimental data.

With our results on sampling effects, we can revisit the previous literature on neuronal ava-

lanches. In Ref. [26] Ribeiro and colleagues show that “undersampling” biases avalanche distri-

butions near criticality. In this case, undersampling was modeled by electrodes picking up a

variable number of closest neurons. Here, we separated the effect of sub-sampling (electrodes

cannot record all neurons) from coarse-sampling (electrodes record multiple neurons with dis-

tance-dependent contributions) and can add to previous results: In our model, we found that

coarse-sampling clouds the differences between subcritical, reverberating, and critical dynamics;

for γ = 1, the avalanche distributions always resemble power laws (Fig 4). Because of this ambigu-

ity, the power-law distributions obtained ubiquitously from LFP, EEG, MEG and BOLD activity

should be taken as evidence of neuronal activity with spatio-temporal correlations—but not nec-

essarily of criticality proper; the coarse-sampling might hinder such a precise classification. In

this regard, the interpretation of results from calcium imaging (which has a lower temporal reso-

lution than electrode recordings) remains open (cf. Table A in S1 Text for an overview).

In contrast, a more precise classification seems possible when using spikes. If power-law

distributions are observed from (sub-sampled) spiking activity, they do point to critical

dynamics. For spiking activity, we even have mathematical tools to infer the precise underlying

state in a sub-sampling-invariant manner that does not rely on avalanche distributions [27,

58]. However, not all spike recordings point to critical dynamics: Whereas in vitro recordings

typically do produce power-law distributions [44, 59–61], extracellular spike recordings from

awake animals typically do not [16, 18, 24, 62].

Lastly, our results might offer a solution to resolve an inconsistency between avalanche dis-

tributions that derive from spikes vs. LFP-like sampling: For experiments on awake animals,

spike-based studies typically indicate subcritical dynamics. Although coarse measures typically

produce power laws that indicate criticality, in this work we showed that they might cloud the

difference between critical and subcritical dynamics. Consistent with both, a brain that oper-

ates in a near-critical regime—as opposed to a fixed dynamic state—could harness benefits

associated with criticality while flexibly tuning its response properties [43, 63–69].

4 Methods

4.1 Model details

Our model is comprised of a two-level configuration, where a 2D network of NN = 160000

spiking neurons is sampled by a square array of NE = 8 × 8 virtual electrodes. Neurons are
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distributed randomly in space (with periodic boundary conditions) and, on average, nearest

neighbors are dN = 50 μm apart. While the model is inherently unit-less, it is more intuitive to

assign some length scale—in our case the inter-neuron distance dN—to set that scale: all other

size-dependent quantities can then be expressed in terms of the chosen dN. For instance, the

linear system size L can be derived by realizing that the random placement of neurons corre-

sponds to an ideal gas. It follows that L ¼ 2
ffiffiffiffiffiffi
NN
p

dN ¼ 4cm for uniformly distributed neurons.

(For comparison, on a square lattice, the packing ratio would be higher and it is easy to see

that the system size would be
ffiffiffiffiffiffi
NN
p

dN.) Given the system size and neuron number, the overall

neuronal density is ρ = 100/mm2. With our choice of parameters, the model matches typical

experimental conditions in terms of inter-neuron distance and system size (see Table 3 for

details). Whereas the apparent neuron density of ρ = 100/mm2 is on the lower end of literature

values [70, 71], this parameter choice avoids boundary effects that can be particularly domi-

nant near criticality due to the long spatial correlation. The implementation of the model

in C++, and the python code used to analyze the data and generate the figures, are available

online at https://github.com/Priesemann-Group/criticalavalanches.

4.2 Topology

We consider a topology that enforces local spreading dynamics. Every neuron is connected to

all of its neighbors within a threshold distance dmax. The threshold is chosen so that on average

K = 103 outgoing connections are established per neuron. We thus seek the radius dmax of a

disk whose area contains K neurons. Using the already known neuron density, we find

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=pr

p
� 1:78mm. For every established connection, the probability of a recurrent

activation decreases with increasing neuron distance. Depending on the particular distance dij

between the two neurons i and j, the connection has a normalized weight wij ¼ e� d2
ij=2s2

=Oi

(with normalization constant Oi ¼
P

j0e
� d2

ij0
=2s2

). Our weight definition approximates the dis-

tance dependence of average synaptic strength. The parameter σ sets the effective distance over

which connections can form (dmax is an upper limit for σ and mainly speeds up computation.)

Table 3. Values and descriptions of the model parameters.

Symbol Value Description

Δt 2 − 16 ms Time-bin size (duration) for temporal binning

Θk 3 Activity threshold, in units of standard deviations of the time series of electrode k
δt 2 ms Simulation time step

r 1 Hz Average spike rate

NN 1.6 × 105 Number of neurons

dN 50 μm Inter-neuron distance (measured between nearest neighbors)

L 4 cm Linear system size

ρ 100/mm2 Neuronal density

K 1000 Average network degree (outgoing connections per neuron)

dmax 1.78 mm Connection length; all neurons within dmax are connected

σ 300 μm Effective length of synaptic connections, sets the distance-dependence of the probabilities of

recurrent activations

NE 8 × 8 Number of electrodes

dE 50 − 500 μm Inter-electrode distance

d�E 10 μm Dead-zone around each electrode (no neurons present)

γ 1 Decay exponent. Contributions of each spike to the coarse electrode signal scale as V(d)�

1/dγ. See SI for results and discussion of different electrode contributions.

https://doi.org/10.1371/journal.pcbi.1010678.t003
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In the limit σ!1, the network is all-to-all connected. In the limit σ! 0, the network is

completely disconnected. Therefore, the effective connection length σ enables us to fine tune

how local the dynamic spreading of activity is. In our simulations, we choose σ = 6dN =

300 μm. Thus, the overall reach is much shorter than dmax (σ� 0.16 dmax).

4.3 Dynamics

To model the dynamic spreading of activity, time is discretized to a chosen simulation time

step, here δt = 2 ms, which is comparable to experimental evidence on synaptic transmission

[72]. Our simulations run for 106 time steps on an ensemble of 50 networks for each configura-

tion (combination of parameters and dynamic state). This corresponds to� 277 hours of

recordings for each dynamic state.

The activity spreading is modeled using the dynamics of a branching process with external

drive [27, 35]. At every time step t, each neuron i has a state si(t) = 1 (spiking) or 0 (quiescent).

If a neuron is spiking, it tries to activate its connected neighbors—so that they will spike in the

next time step. All of these recurrent activations depend on the branching parameter m: Every

attempted activation has a probability pij = m wij to succeed. (Note that the distance-dependent

weights are normalized to 1 but the activation probabilities are normalized to m.) In addition

to the possibility of being activated by its neighbors, each neuron has a probability h to spike

spontaneously in the next time step. After spiking, a neuron is reset to quiescence in the next

time step if it is not activated again.

Our model gives us full control over the dynamic state of the system—and its distance to

criticality. The dynamic state is described by the intrinsic timescale τ. We can analytically cal-

culate the intrinsic timescale τ = −δt/ln (m), where δt is the duration of each simulated time

step. Note that m—the control parameter that tunes the system—is set on the neuron level

while τ is a (collective) network property (that in turn allows us to deduce an effective m). As

the system is pushed more towards criticality (by setting m! 1), the intrinsic timescale

diverges τ!1.

For consistency, we measure the intrinsic timescale during simulations. To that end, the

(fully sampled) population activity at each time step is given by the number of active neurons

A(t) = ∑i si(t). A linear least-squares fit of the autoregressive relation A(t + 1) = e−δt/τ A(t) +

NNh over the full simulated time series yields an estimate t̂ that describes each particular

realization.

By adjusting the branching parameter m (setting the dynamic state) and the probability for

spontaneous activations h (setting the drive), we control the distance to criticality and the aver-

age stationary activity. The activity is given by the average spike rate r = h/(δt(1 − m)) of the

network. For all simulations, we fix the rate to r = 1Hz in order to avoid rate effects when com-

paring different states (see Table 1 for the list of parameter combinations). Note that, due to

the non-zero drive h and the desired stationary activity, the model cannot be perfectly critical

(t̂ !1, see Table 1).

4.4 Coalescence compensation

With our probability-based update rules, it may happen that target neurons are simultaneously

activated by multiple sources. This results in so-called coalescence effects that are particularly

strong in our model due to the local activity spreading [36]. For instance, naively setting m = 1

(with σ = 300 μm) would result in an effective (measured) m̂ � 0:98, which has considerably

different properties. Compared to e.g. m = 0.999 this would result in a 20-fold decrease in τ.

In order to compensate these coalescence effects, we apply a simple but effective fix: If an

activation attempt is successful but the target neuron is already marked to spike in the next
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time step, another (quiescent) target is chosen. Because our implementation stores all the con-

nected target neurons as a list sorted by their distance to the source, it is easy to activate the

next neuron in that list. Thereby, the equivalent probability of the performed activation is as

close to the originally attempted one as possible.

4.5 Virtual electrode recordings

Our simulations are designed to mimic sampling effects of electrodes in experimental

approaches. To simulate sampling, we use the readout of NE = 64 virtual electrodes that are

placed in an 8 × 8 grid. Electrodes are separated by an inter-electrode distance that we specify

in multiples of inter-neuron distance dN. It is kept constant for each simulation and we study

the impact of the inter-electrode distance by repeated simulations spanning electrode distances

between 1dN = 50 μm and 10dN = 500 μm. The electrodes are modeled to be point-like objects

in space that have a small dead-zone of d�E ¼ dN=5 ¼ 10mm around their origin. Within the

dead-zone, no signal can be recorded (in fact, we implement this by placing the electrodes first

and the neurons second—and forbid neuron placements too close to electrodes).

Using this setup, we can apply sampling that emulates either the detection of spike times or

LFP-like recordings. To model the detection of spike times, each electrode only observes the

single neuron that is closest to it. Whenever this particular neurons spikes, the timestamp of

the spike is recorded. All other neurons are neglected—and the dominant sampling effect is

sub-sampling. On the other hand, to model LFP-like recordings, each electrode integrates the

spiking of all neurons in the system. Contributions are strictly positive, matching the underly-

ing branching dynamics (for more biophysically detailed LFP models, contributions would

depend on neuron types and other factors). The contribution of a single spike, e.g. from neu-

ron i to electrode k, decays as 1/dik with the neuron-to-electrode distance. (See Fig B in S1 Text

for a detailed discussion of the qualitative impact of changing the distance dependence, e.g. to

1=d2
ik.) The total signal of the electrode at time t is then VkðtÞ ¼

PNN
i siðtÞ=dik. Diverging elec-

trode signals are prevented by the forbidden zone around the electrodes. For such coarse-sam-

pled activity, all neurons contribute to the signal and the contribution is weighted by their

distance.

4.6 Avalanches

Taking into account all 64 electrodes, a new avalanche starts (by definition [1]) when there is

at least one event (spike) in a time bin—given there was no event in the previous time bin (see

Fig 2). An avalanche ends whenever an empty bin is observed (no event over the duration of

the time bin). Hence, an avalanche persists for as long as every consecutive time bin contains

at least one event—which is called the avalanche duration D. From here, it is easy to count the

total number of events that were recorded across all electrodes and included time bins—which

is called the avalanche size S. The number of occurrences of each avalanche size (or duration)

are sorted into a histogram that describes the avalanche distribution.

4.7 Analysis of avalanches under coarse and sub-sampling

We analyze avalanche size distributions in a way that is as close to experimental practice as

possible (see Fig 2). From the simulations described above, we obtain two outputs from each

electrode: a) a list containing spike times of the single closest neuron and b) a time series of the

integrated signal to which all neurons contributed.
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In case of the (sub-sampled) spike times a), the spiking events are already present in binary

form. Thus, to define a neural avalanche, the only required parameter is the size of the time

bin Δt (for instance, we may choose Δt = 4 ms).

In case of the (coarse-sampled) time series b), binary events need to be extracted from the

continuous electrode signal. The extraction of spike times from the continuous signal relies on

a criterion to differentiate if the set of observed neurons is spiking or not—which is commonly

realized by applying a threshold. (Note that now thresholding takes place on the electrode

level, whereas previously, an event belonged to a single neuron.) Here, we obtain avalanches

by thresholding as follows: First, all time series are frequency filtered to 0.1 Hz< f< 200 Hz.

This demeans and smoothes the signal (and reflects common hardware-implemented filters of

LFP recordings). Second, the mean and standard deviation of the full time series are computed

for each electrode. The mean is virtually zero due to cutting low frequencies when band-pass

filtering. Each electrode’s threshold is set to three standard deviations above the mean. Third,

for every positive excursion of the time series (i.e. Vk(t) > 0), we recorded the timestamp t =

tmax of the maximum value of the excursion. An event was defined when Vk(tmax) was larger

than the threshold Θk of three standard deviations of the (electrode-specific) time series.

(Whenever the signal passes the threshold, the timestamps of all local maxima become candi-

dates for the event; however, only the one largest maximum between two crossings of the mean
assigns the final event-time.) Once the continuous signal of each electrode has been mapped to

binary events with timestamps, the remaining analysis steps were the same for coarse-sampled

and sub-sampled data. Last, avalanche size and duration distributions are fitted to power-laws

using the powerlaw package [73].

Supporting information

S1 Text. Supplementary text, figures and extended modeling. We provide additional com-

putations, numerical simulations, and an extended discussion of the model and its parametri-

zations.

(PDF)
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Modular architecture facilitates noise-driven control of
synchrony in neuronal networks
Hideaki Yamamoto1,2*†, F. Paul Spitzner3†, Taiki Takemuro1,4, Victor Buendía5,6,7,
Hakuba Murota1,2, Carla Morante8,9, Tomohiro Konno10, Shigeo Sato1,2,
Ayumi Hirano-Iwata1,2,4,11, Anna Levina5,6, Viola Priesemann3,12‡, Miguel A. Muñoz7,13‡,
Johannes Zierenberg3‡, Jordi Soriano8,9‡*

High-level information processing in the mammalian cortex requires both segregated processing in specialized
circuits and integration across multiple circuits. One possible way to implement these seemingly opposing
demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms
behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use pre-
cision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with
an in silico model of spiking neurons and amesoscopic model of stochastically coupledmodules to show that (i)
amodular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stim-
ulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlyingmech-
anism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks
of excitable units is determined by both its modular architecture and the properties of the external inputs.
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INTRODUCTION
The mammalian brain is in a state of perpetual ongoing activity
characterized by high levels of irregularity in single-neuron re-
sponse (1, 2) and correlated fluctuations across brain regions (3–
7). Understanding the origin and functional significance of such
neuronal activity has been challenging for both physics and neuro-
science, and diverse competing hypotheses have been proposed to
rationalize its nature. A compelling concept in statistical physics is
that cortical networks operate nearby a critical point, i.e., at the edge
of a nonequilibrium phase transition (8–15). One possibility is that
such a transition separates synchronous and asynchronous phases
(16, 17). Synchrony in this context refers to the collective activation
of neurons in a fast-cascading event, a phenomenon also referred to
as neuronal avalanches (8, 18). Such synchronous states can be
argued to enable coherent or robust information transfer integrated
across distance and time (19), while asynchronous states have been
argued to enable segregated processing in local circuits with
reduced redundancy (17). Flexible switching between states with
different levels of synchrony would enable networks to transiently

exploit diverse functional advantages, all the most in modular net-
works where the phase transition can be very broad, with a rich hi-
erarchy of intermediate states of partial synchronization (20).

Transitions between synchronized and desynchronized states are
well-known to occur in the mammalian brain and have mostly been
described in the context of dynamical properties of individual
neurons (21) and the dynamical consequences of the network archi-
tectures they form (20–27). Recent findings, however, suggest that
such transitions can also be induced depending on the nature of ex-
ternal inputs (28, 29). For instance, the thalamus projects asynchro-
nous background inputs to the cortex (30–32), which decreases the
level of synchrony. Consistent with this, anesthesia, which reduces
the thalamocortical input (33), enhances neuronal synchrony in the
rat somatosensory cortex (34). The deprivation of such inputs by
anatomical lesions has also been shown to increase cortical syn-
chrony and generate epileptic seizure-like activity in slice prepara-
tions (35). Meanwhile, theoretical studies reveal that the response of
a generic network to external perturbations strongly depends on
network architecture and on the strength of synaptic interactions
(36). Therefore, given that cortical networks are nonrandom (37)
and exhibit strong modularity (5, 38–43), it is reasonable to hypoth-
esize that cortical dynamics rely on the underlying network archi-
tecture in conjunction with the asynchronous input they constantly
receive from subcortical areas, such as the thalamus. However,
despite the accumulated evidence, the actual mechanisms that
allow cortical networks to transiently regulate their level of synchro-
nization remains elusive, both experimentally and theoretically.

To fill this gap, here, we use in vitro cortical networks grown on
engineered substrates (44). Three different types of modular net-
works with diverse degrees of modularity were grown, and their re-
sponses to asynchronous stimulation delivered via optogenetics
were assessed using fluorescence calcium imaging. The results
show that modularity, together with asynchronous external input,
enhances the dynamical repertoire by fostering desynchronization.
This effect weakens when inhibitory synapses are pharmacologically
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blocked, i.e., when the network is purely excitatory driven. The
results are then compared with in silico analyses of a spiking
neural network model to show that a combination of sparser (sto-
chastic) intermodular interactions and decreased level of available
synaptic resources is the underlying mechanism behind the exper-
imentally observed desynchronization. Last, we derive a mesoscopic
model incorporating a state-dependent gating of intermodular in-
teractions that allows us to rationalize the previous results in a par-
simonious way. Together, our findings demonstrate a potential
network mechanism by which asynchronous input can serve as a
control parameter for tuning the dynamical state of structured neu-
ronal networks.

RESULTS
Disruption of synchrony by optogenetic stimulation
We first assessed how external perturbations influence synchro-
nized neuronal activity in networks of primary cortical neurons,
containing both excitatory and inhibitory neurons, grown in
vitro. We designed ring-modular micropatterns consisting of four
small squares (200 μm by 200 μm each) with connection lines that
allowed a fraction of the neurites to interconnect the squares
(Fig. 1A). The neuronal activity of the micropatterned networks
was recorded by fluorescence calcium imaging using the calcium
probe GCaMP6s (Fig. 1B and movies S1 and S2), which was
virally expressed under the Synapsin promoter that transduces
both excitatory and inhibitory neuronal populations in the cortex
(45). Neurons were perturbed either by irradiating patterned light
to individual neurons transfected with the photoactivatable cation
channel ChrimsonR (optogenetic stimulation; Fig. 1C) expressed in
both excitatory and inhibitory populations or by increasing the ex-
tracellular potassium concentration [K+]o (chemical stimulation).
The former induces spiking activity in targeted neurons (46),
whereas the latter increases the frequency of collective activity of
neurons in the entire culture, effectively raising the overall neuronal
excitability (47).

In the nonstimulated state (Fig. 1D), the activity of the cultures
was characterized by quasi-periodic episodes of network-wide
bursting activity with some variability in population rate amplitude
due to the modular architecture (44). External perturbation via op-
togenetic stimulation induced a qualitative change in network dy-
namics. This stimulation was delivered as alternating patterns of red
light illuminating the soma of up to 10 neurons selected from the
lower two of the four modules (Fig. 1A). Only the neurons express-
ing ChrimsonR were selected as potential targets, with no imposed
bias in excitatory/inhibitory cell types. The illumination pattern was
switched every 400 ms, and in each time window, each neuron was
targeted with a probability of 40%. During stimulation, the frequen-
cy of collective events as well as the variety of activity patterns in-
creased (Fig. 1, E and G). These enriched network dynamics were
observed during ongoing stimulation and diminished when it was
switched off (Fig. 1F). Representative snapshots of network behav-
ior before, during, and after stimulation are provided in Fig. 1G, il-
lustrating the shift in collective activity from a synchronized to a
desynchronized state upon optogenetic (asynchronous) stimula-
tion. Such a transient shift in the network state was also observed
when the asynchronous stimulation was delivered to all four
modules and when a uniform stimulation was delivered locally to
one of the modules (see section S1B and fig. S1 for details). In

contrast, chemical stimulation imposed a qualitatively different
change in network dynamics (Fig. 1, H and I, and movies S3 and
S4). Contrary to optogenetic stimulation, network-wide collective
activity remained dominant, even in the perturbed state. These
results indicate that a mere increase in excitability was insufficient
and that an asynchronous stimulation was necessary to break syn-
chrony and increase the dynamical repertoire of the cortical
cultures.

Changes in collective activity during stimulation were quantified
by measuring the distribution of event sizes, i.e., the fraction of
neurons entrained in each collective activity episode (Fig. 1J, left).
Optogenetic stimulation led to a significant decrease in event size
indicating a loss of synchrony. This change was accompanied by a
decreased median and a broadened distribution of pairwise corre-
lation coefficients (Fig. 1J, middle), the latter of whichmanifested in
an increased functional complexity (Fig. 1J, right), a signature of
enhanced integration-segregation balance (48). Chemical stimula-
tion, however, preserved synchrony in network dynamics and
showed the opposite trend in both the event size and functional
complexity.

The overall effect induced by optogenetic stimulation was abol-
ished in the presence of bicuculline (20 μM), a γ-aminobutyric acid
type A receptor antagonist that blocks inhibitory synapses, and the
effect was thus γ-aminobutyric acid (GABA) dependent (fig. S2 and
movies S5 and S6). This indicates that GABAergic balancing of ex-
citation and inhibition (49, 50) is required for external input to alter
the network dynamics. This observation suggests that when a
network is in an exceedingly excited state, neurons become
mostly depleted of neurotransmitters between collective activity
events (51, 52), leading to a state that is insensitive to perturbations.

Impact of modular architecture
Next, we assessed how the effect of asynchronous stimulation
depends on the network topology, specifically its modular architec-
ture. Hence, we prepared three types of networks with a constant
number of neurons and different degrees of modularity (Fig. 2,
top drawings, and fig. S3). The modular micropattern used in the
aforementioned experiments is hereafter referred to as the “single-
bond” (1-b) micropattern. Similarly, a “triple-bond” (3-b) micro-
pattern was designed by increasing the number of connection
lines to three. Last, the “merged” micropattern was a single square
of 400 μm by 400 μm. The modularity of the network, defined as the
fraction of intermodular connections within a network greater than
the expected fraction in a random network, decreased in the order
of 1-b, 3-b, and merged (44, 53).

A comparison of the distribution of event sizes and correlation
coefficients between these three cases revealed that noise perturba-
tions have stronger effects when modularity is higher. As shown in
Fig. 2A, the decrease in median event size via optogenetic stimula-
tion was 54% for the 1-b network, whereas the values were 21 and
25% for the 3-b and merged networks, respectively. A similar trend
in structure dependence was also observed for the correlation coef-
ficients (Fig. 2B), which decreased by 49, 13, and 19% for the 1-b, 3-
b, and merged networks, respectively. To understand the mecha-
nism of this structure dependence, we analyzed the shift in the cor-
relation coefficient between two generic neurons i-j, rij, during
perturbation (Fig. 2C). For the 1-b network, the decrease in corre-
lation largely stemmed from the neuron pairs that included at least
one stimulated neuron, in which case rij broadly scattered below the
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unit line in the pre-stim plane. The median rij strongly decreased
when either one or both neurons in a pair were located within the
stimulated modules, a feature that was not observed for neuron
pairs in unstimulated modules (Fig. 2D). The spatial dependence
was less pronounced when modularity was low (3-b) or
absent (merged).

The tendency for strongly modular networks (1-b pattern) to be
more sensitive to the optogenetic perturbation was also evident in
the realization-level estimates (Fig. 2, E to H). These changes were
independent of firing rate (Fig. 2E). In addition, the broadened dis-
tribution of correlation coefficients during stimulation increased
the value of functional complexity (Fig. 2H), which was largest in
the 1-b network under stimulation. Summarizing, modularity fos-
tered local and transient decorrelation from asynchronous

stimulation to dampen the collective activity events that propagate
globally throughout the entire network.

Microscopic spiking neural network model
To rationalize the underlying mechanisms behind the enhanced
sensitivity to external perturbations in modular networks, we next
constructed a spiking neural network (SNN) model based on leaky
integrate-and-fire (LIF) neurons (see Materials and Methods,
section S2, and movies S7 and S8 for details). The networks were
generated on the basis of the metric construction approach de-
scribed previously (18), and modularity was tuned by specifying
the number of axons k that crossed from one module to another
(Fig. 3, A and B). To control the modularity while retaining the
overall connectivity, the mean in-degree of neurons was fixed to

Fig. 1. Optogenetic stimulation on modular neuronal cultures increases the variability in collective network dynamics. (A) Phase-contrast image of a represen-
tative single-bond modular network. Neurons appear as dark round objects with a white contour. Ten neurons were selected from the bottommodule pair (orange box)
and optogenetically targeted in a randommanner. (B) Representative fluorescence traces and inferred spike events (dots) of three neurons along 1 min. (C) Sketch of the
experimental setup. Neuronal cultures were transfected with ChrimsonR for optogenetic stimulation (orange arrow) and GCaMP6s for simultaneous activity monitoring
(blue and green arrows). (D) Pre-stimulation raster plot (top panel) of network spontaneous activity, with neurons grouped according to their module, and the corre-
sponding population activity (bottom). (E) Corresponding data upon optogenetic stimulation, wherein population activity markedly increases in variability. Targeted
modules are marked as orange bands. (F) Spontaneous activity post-stimulation, with a return to strong network-wide bursting. (G) Representative snapshots of calcium
imaging recordings for the above data. All modules activate synchronously without stimulation. Upon stimulation, activity events extend over individual neurons, mul-
tiplemodules, or all modules. (H and I) Raster plot and population activity before and during chemical stimulation. Chemical stimulation increases the frequency of events
but maintains the network-wide activity. (J) Effect of optogenetic and chemical stimulation on bursting median event sizes, median correlation coefficients, and func-
tional complexity (paired-sample t test, two-sided). For chemical stimulation with N = 4, no test was performed.
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be the same in all topologies (fig. S4). Spontaneous activity was
driven by Poisson noise, representing the spontaneous release of
neurotransmitters in biological presynaptic terminals (18, 51).
Note that we focus on the optogenetic stimulation, as the change
in the extracellular potassium concentration induced in the chem-
ical stimulation does not simply translate to a single parameter in
the LIF model. With k = 3, we obtained dynamic behaviors compa-
rable to experiments in 1-b networks (Fig. 3, C and D). The model
accurately recapitulated the experimental observations made in the

optogenetic stimulation paradigm. In the pre-stimulated state
(Fig. 3C), activity patterns composed of sporadic activity with reoc-
curring network-wide events. Stimulation, introduced in the two
lower modules as an additional noise input (mimicking inward
current pulses from optogenetic inputs), led to a breakdown of syn-
chrony among modules and an increase of events localized to a frac-
tion of modules (Fig. 3D). As shown in the panels of Fig. 3E, the
median event size decreased from 0.81 to 0.27, and the median cor-
relation among neuron pairs decreased from 0.84 to 0.58 (cf. table

Fig. 2. Disruption of network-wide collective activity upon optogenetic stimulation is facilitated by modular architecture. (A) From left to right, event size dis-
tribution before, during, and after optogenetic stimulation for the 1-b, 3-b, andmerged networks. Violin plots (left side of distribution) represent smooth kernel estimates
of the events observed across all networks, while individual observations are shown in swarms (right side). Error bars (middle) are obtained via bootstrapping. White dots
indicate the median of the 500 bootstrap estimates, and bars represent the 95 percentiles. (B) Corresponding distribution of pairwise Pearson correlation coefficients
between neurons calculated from binned spike counts. A substantial drop is only observed for 1-b. Data are presented as in (A). (C) Change of correlation coefficients rij
between the pre-stimulated and stimulated conditions, grouped according to the regions in which neurons are located. Both neuronsmay either reside in regions that are
targeted by stimulation (yellow), both reside in nontargeted regions (blue), or the pair spans across a targeted and nontargeted regions (red). For modular networks, the
regions correspond directly to modules. Decorrelation is more pronouncedwhen one or both neurons are in regions that are targeted. Colored areas are fitted probability
density estimates for each data group. (D) Same as (C) but showing realization-level statistics. Bar heights represent the medians of independent estimates in each
realization, and error bars represent 95 percentiles. cf. table S7. (E to H) Estimates for each realization: mean firing rates (E), median event sizes (F), median correlation
coefficients (G), and functional complexity (H) for the three topologies. Thin lines, individual realizations (networks); white dots, means of 500 bootstrap samples; thick
bars, SEM; thin bars, extrema. P values are from paired-sample t test (two-sided), cf. tables S1 and S7.
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S6). Corroborating the experiments, a greater decrease in the corre-
lation coefficient was observed for cell pairs wherein one of the cells
belonged to the targeted modules (Fig. 3, E and J), whereas the
change was less pronounced for cell pairs in nontargeted modules.

For a systematic investigation of the effect of network modular-
ity, we explored topologies with different numbers of axons crossing
the modules: k = 1, 3, 5, and 10, corresponding to modularity Q =
0.71, 0.62, 0.53, and 0.32, respectively (cf. section S2B for analytical
details). The simulations showed that desynchronization caused by
stimulation strongly depends on the underlying network topology
(Fig. 3, F to I). As a general trend, the event sizes and pairwise cor-
relations increased with k due to increased coupling between
modules (44). In the absence of any intermodular connection (k
= 0) event sizes and correlation coefficients correspond to activity
that is confined to individual modules (synchronized only at chance
level) and, as expected, stimulation had little effect.

For k > 0, the presence of additional noise input (stim) decreased
the median event size (Fig. 3F), and at low coupling (k = 1 and 3),
event sizes consistently reached the single-module level. For higher
coupling (k = 5 and 10) and in the absence of stimulation, the system
was synchronous (with event sizes ~1), and stimulation caused a de-
crease to intermediate values. Note that the percentile bars (Fig. 3, F
to J) represent the variability between realizations, which stems
from the randomness in the amount of actual connections that
are formed by bridging axons. This stresses that the response to
noise stimulation, and thus the sensitivity of the network, is strongly
constrained by its topology.

Pairwise correlations (Fig. 3H) showed a similar trend, where
networks with low k were already quite desynchronized even
without stimulation. Networks with larger k also desynchronized
upon stimulation, but median values did not go as low as those
for low k. Since the functional complexity (Fig. 3I) is maximal for

Fig. 3. Microscopic-level simulations ofmodular networks using LIF neuronmodels. (A) Sketch of a singlemodule, where k axons connect to each adjacent neighbor
(shown for k = 1). (B) Sketch of a simulatedmodular network with k = 3. (C andD) Representative raster plots in the pre-stimulated (C) and stimulated (D) regimes. Modules
targeted with an increased noise are #0 and #2. (E1 and E2) Joint distributions of event size and pairwise correlation coefficients from data pooled from 50 independent
numerical realizations, comparing pre and stim conditions. Both distributions exhibit a substantial drop towards smaller values upon stimulation. White dots are the
median of 500 bootstrap estimates, and error bars representing the 95 percentiles are smaller than the symbol size. (E3) Change of correlation coefficients rij between the
pre-stimulated and stimulated conditions (yellow: neuronal pairs reside in target modules; blue: reside in nontargeted; red: span across a target and a nontargeted
module). The diagonal black line is the no-change reference condition. As in the experiments, decorrelation is more pronounced when one or both neurons are in
modules with increased noise. (F to I) Dependence of four descriptors (event size, firing rate, neuron correlation, and functional complexity) on k. The higher k, the
lower the modularity of the networks. Statistics are obtained across realizations where each realization yields a single scalar. White dots are the median of single-real-
ization estimates. Rounded bars are 68 percentiles, indicating the variability between realizations. Triangles on the right of each panel indicate the values from single-
bond experiments. (J) Correlation of neuron pairs grouped by the neurons’ respective modules (yellow, red, and blue). For each k, the pre- and post-conditions are
compared (faint versus dark colors). The strongest decorrelation is observed when both neurons are in noise-targeted modules (yellow) or modularity is high (k = 1
and 3).
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a flat distribution of correlation coefficients (48), large values coin-
cide with a median correlation near 0.5. Consistently, the functional
complexity is maximal for k = 1 and 3. Correlation distributions at
those k are already broad without stimulation (Fig. 3E2), and there-
fore, the effect of stimulation on functional complexity is stronger at
higher k. We note that, for all k, these observations were indepen-
dent of the changes in firing rates, which were consistent across net-
works (Fig. 3G, see also fig. S7).

Overall, simulations confirmed that the coupling between
modules shapes the impact of the noise input, with the effect
most prominently visible in the regions that directly received stim-
ulation (Fig. 3J). The coupling between modules—which, besides
from k, depends on the particular network realization—forms the
substrate for dynamics that are then mediated by the noise level. For
instance, highly modular networks (k = 1 and 3) feature rich dy-
namics already at baseline (pre, Fig. 3, F and I), but less modular
networks (k = 5) may still be enriched through noisy input (stim,
Fig. 3, F and I). However, strong coupling between modules (k =
10) may lock the system in an integrated state where the additional
noise only mildly decreases the median event size and neuron cor-
relations. This can be explained by the heterogeneous degree distri-
butions (cf. fig. S5): The connectivity betweenmodules scales with k
and affects the probability of activity spreading between modules
(fig. S6), while the connectivity within modules is always high, so
that modules are effectively synchronized units.

Network mechanisms: The importance of synaptic
resources
To understand the network mechanisms that enable the increased
sensitivity to external noise input inmodular networks, we analyzed
the dynamics of synaptic resources in each simulated neuron. For
this purpose, we plotted the evolution of the mean synaptic resourc-
es in eachmodule as a function of themodule-averaged firing rate of
the neurons. The characteristic behaviors of the mean synaptic re-
sources R ∈ [0, 1] are depicted in Fig. 4 (A to C). Abrupt discharges
during bursting events are followed by gradual recharges between
the events. In the baseline condition (pre), R had a maximal value
of ~0.8 when charged but dropped to ~0.3 after network-wide
bursting events. When neurons were subjected to additional noise
input (stim), R of the targeted modules (Fig. 4B, orange trajectories)
only recovered to ~0.5, effectively reducing the synaptic efficacy.
While, in general, R of the nontargeted modules (blue trajectories)
was only indirectly affected by the stimulation, the precise cycles de-
pended on the individual realizations (cf. dark blue versus light
blue, Fig. 4, B and C). Independent of the network architecture, in-
creased noise decreased the overall size of the cycles in targeted
modules, but modularity still affected cycles of nontargeted
modules (fig. S4). This stresses that the combination of network to-
pology and asynchronous stimulation determines the charge-dis-
charge dynamics on the module level.

To complete these results, we investigated how the degree of syn-
chrony between modules changed with the strength of external
input, as parameterized here by its frequency (Fig. 4D). In
general, we observed that the correlation between module-level
firing rates of targeted modules (Fig. 4D, top) decreased with stim-
ulation but that stronger noise was required for larger k. For
example, in k = 1 networks, an increase of 10 Hz in external
input reduced correlation from 0.4 to 0.25, but to cause the same
drop in correlation for k = 10, an increase of about 25 Hz was

required. To further illustrate the effect of noise on modular net-
works, we revisited k = 3 and computed the fraction of events
that spanned a given number of modules, from 1 to 4 (Fig. 4D,
bottom; cf. zoom-ins in Fig. 4C). Without stimulation, about 50%
of the events encompassed the four modules, i.e., network-wide
bursting. The addition of noise of just 10 Hz provided a more ba-
lanced dynamics in which the occurrence of 1-module and 4-
module activations was both about 35%.

Mesoscopic description
As illustrated in the raster plots for both the pre and stim cases
(Fig. 4C, insets), in which neurons activate in a quasi-synchronous
manner within each module, much of the noise-induced changes in
network dynamics occurred between modules. This implies that, to
study global effects, some microscopic details can be neglected and
that modules can be reduced to an effective dynamical unit. Thus, to
extrapolate the microscopic behavior of individual neurons to the
macroscopic dynamics, we built a mesoscopic module-level
model that captures the key empirical results. Here, the dynamics
of each module were described by a rate model with resource deple-
tion (12), where two coupled differential equations represent the
evolution of firing rate ρ and synaptic resources R, respectively
(see Materials and Methods and section S3A for details).

As a first exploration of the model, we considered the case in
which each module received input through a nonlinear activation
function that depended on the rate and resources of the connected
modules and an external input that captured the main (average)
effect of stimulation. In such a case, increasing the amplitude of ex-
ternal input (which reflects enhanced stimulation frequency in both
the experiments and the microscopic model) decreased the size of
the resource-rate cycles of each module but did not affect synchro-
nization (fig. S10). Thus, we introduced nondeterministic inter-
modular interactions as “gates” that stochastically disconnect
when synaptic resources are depleted and reconnect after a charac-
teristic time (Fig. 4E and section S3C). The stochastic gating reflects
the following neuron-level dynamics which we embedded into the
underlying module-level equations (figs. S11 and S12): When a
module starts bursting, resources of all involved neurons are
rapidly consumed, so that also those connecting to other modules
will not transmit activity. Accordingly, outgoing gates will deacti-
vate with a short time constant and remain disconnected for a rel-
atively long time while neuron resources recharge. In this period,
should the module bursts again, the propagation of activity to
other modules hinges on the few intermodular connections and is
less probable to spread. This probability is reflected by the gate
being already reconnected or not. If still disconnected, activity
cannot spread to the neighboring modules. Hence, if modules
tend to burst with a time scale faster than the gate recovery, the
mutual entrainment of activity between modules is hindered,
because the crucial initiating inputs cannot pass through the dis-
connected gates, and, therefore, the system cannot synchronize.
Thus, these gates capture the essence of the microscopic dynam-
ics—wherein intermodular coupling only operates when the syn-
apses projecting from one module to another are not fully
depleted—on the mesoscopic level.

Numerical simulations revealed that the addition of the gating
mechanism was indeed sufficient to recapitulate the noise-depen-
dent breakdown of synchrony observed in the experiments and
SNN model (Fig. 4, B and C versus Fig. 4, F and G). Network-
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wide events were decreased under stimulation (Fig. 4, G and H),
despite stimulated modules remaining in a more oscillatory
regime than in the SNN (stim condition in Fig. 4G). Yet, the meso-
scopic model successfully captured the noise-dependent reduction
of intermodular correlation with external input and its dependence
on the coupling strength (here denoted by w; Fig. 4H, top). Weakly
coupled networks (low w) exhibited a systematic lower correlation
than strongly coupled ones (high w). Similarly to the SNN model,
the fraction of events that spanned a given number of modules for
medium w = 0.1 quickly changed from a 4-module dominated
regime in the absence of stimulation to a richer repertoire of activa-
tion patterns for increased external input (Fig. 4H, bottom).

Furthermore, the simplicity of the mesoscopic model allows for
an analytic understanding of the input-dependent change in the size
of resource-rate cycles (fig. S10). In the resource-rate plane, the
fixed point corresponding to a charging, nonfiring module i that
receives no input is at (ρi, Ri) = (0,1). Spontaneous fluctuations (de-
pending on external input and noise) may push the module out of
its (slow, ρ = 0) path toward the fixed point and ignite a burst along
the flow field in the resource-rate plane (fig. S10). As the external
input to a module effectively reduces the activation threshold, it de-
termines how easily a burst can be ignited. During a burst, the tra-
jectorymoves fast at high rates in the negative R direction, due to the
small-time constants of the rate equation (τρ) and of the discharge
term (τd). However, the trajectory is slow in the positive R direction

due to the large time constant in the resource charge term (τc).
Thus, at large external inputs (low threshold), a module may start
a burst before completing its slow return to the fixed point, which
explains the reduced cycle size. Further details and the mechanisms
linking resource cycles to the synchronization between modules are
provided in section S3B. In summary, the simple mesoscopic ap-
proach elucidates the critical role of stochastic intermodular inter-
action in determining the network dynamics of modular networks
and provides an intuitive understanding of the noise-induced
breakdown of synchrony in modular neuronal networks.

DISCUSSION
Taking advantage of in vitro experiments using cultured neuronal
networks as a model biological system, we showed that modular ar-
chitecture enhances the sensitivity of the network to external asyn-
chronous perturbation. In particular, network-wide collective
bursts are much reduced in the presence of modular structures
driven by noise. This occurs only when noise is asynchronous (op-
togenetic stimulation of targeted neurons) and not homogeneous
across the network (chemical stimulation) and happens only in ba-
lanced networks, while when inhibition is blocked, bursty events
persist even in the presence of noise. Furthermore, computational
in silico modeling enabled us to identify themechanisms behind the
noise-driven decrease of synchrony reported in experiments.

Fig. 4. Desynchronization can be understood through charge-discharge cycles in the resource-rate plane, which is captured by a minimal mesoscopic model.
(Top row) Microscopic model using LIF neurons. (Bottom row) Mesoscopic model, where modules are the smallest functional unit. (A) Top: Sketch of the microscopic
model, in which orange modules are those targeted by an increased noise. Bottom: Conceptual representation of the resource-rate cycles and the contrasting timescales
involved. (B) Resource-rate cycles in a representative simulation with k = 3. Orange trajectories correspond to targeted modules, and blue trajectories correspond to
nontargeted ones. Under stimulation, resources are more depleted on average (smaller excursions), and discharge events start at lower resources (colored triangles). (C)
Module-level firing rates, raster plot, and average module-level resources under pre and stim conditions. Insets show a detail of neuronal activity during a network-wide
activity event. (D) Top: Correlation between module-level firing rates of targeted modules as a function of the external input (added noise). Curves from bottom to top
correspond to gradually higher k values. Triangles indicate the the values of external input for the pre and stim conditions, from which the cycles and raster plots of (B)
and (C) are built. Bottom: Average fraction of modules that participate in an event for k = 3 as a function of external input. (E) Top: Sketch of the mesoscopic model with
probabilistic gates betweenmodules. Bottom: Gates have a high probability to disconnect when resources of the source module are low. (F) Resource-rate cycles and the
effect of stimulation for themesoscopicmodel. (G) Module rate, gate state (solid when connected), andmodule resources as a function of time. Note the disconnection of
gates after high-rate discharge events. (H) Top: Correlation of the firing rates of targetedmodules as a function of the external input. Bottom: Average fraction of modules
involved in events (w = 0.1). a.u., arbitrary units.
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Focusing on the modular architecture that entrains burst-like activ-
ity within modules and stochastically propagated activity across
modules (44, 54, 55), we showed that asynchronous input reduces
the average level of synaptic resources, which only weakly affects ac-
tivity propagation within modules but decreases the probability to
propagate activity across modules. This can be understood at the
neuron level, where the probability of a neuron to spike depends
on the strength and number of incoming synaptic connections.
Whereas the reduction of average synaptic resources affects the syn-
aptic strengths in all neurons, themodular architecture only reduces
the expected number of connections between neurons of different
modules, which together results in the reduction of activity propa-
gation across modules (fig. S6). Hence, our results extend previous
theoretical studies that identified the strength of external noise as
control parameter to interpolate between bursting and reverberat-
ing dynamics in neural networks (29).

To demonstrate the robustness of our results, we coarse-grained
our microscopic simulations of spiking neurons into a mesoscopic
model (12), where the depletion of resources is expressed in a min-
imalistic way. In both micro and meso approaches, stochastic inter-
modular connections were essential and were grounded on the
heterogeneous degree distribution in the spiking neuron model
and the gating mechanism in the mesoscopic one.

Our mesoscopic description opens an intriguing perspective: As
we have shown, a coarse description of neuron populations through
scalar variables can suffice to capture those dynamics that are most
relevant on large scales, which was also explored recently in hippo-
campal networks (56). This is implicitly often assumed, for instance,
whenever measures such as local-field potentials are used. In such
cases, single-neuron dynamics cannot be inferred, raising valid crit-
icism about the gained understanding of population dynamics (57).
Our comparison between microscopic and mesoscopic dynamics
supports that—if the applied coarse scale is correct—such popula-
tion-level measures are indeed sufficient to study the large-scale dy-
namics. As a related remark, we note that an ensemble of quadratic
LIF neurons, such as those used in here as the spiking neuron
model, could, in principle, be represented in the mean field (58–
60), even with limited stochastic noise (61). While not applicable
for our small and noise-driven modules, the mean-field approach
can provide a complementary theoretical description in cases
where the assumption of near infinite size and low noise are
justified.

In a more general scope, noise is a ubiquitous property of brain
networks. For example, while the fundamental role of the thalamus
is to relay peripheral sensory information to the cortex (62), thalam-
ic neurons are also known to deliver asynchronous, weakly correlat-
ed inputs to the cortex in the spontaneous state (30). Intracellular
recordings in the barrel cortex also show that the temporal correla-
tion of membrane potential fluctuations is close to zero when the
cortex is driven solely by the thalamus (31). Such input from sub-
cortical areas could act merely as a source of noise, but it could also
change the dynamical state of the targeted cortical region to mod-
ulate its stimulus sensitivity, dynamical repertoires, and computa-
tional capabilities (9, 13, 14, 63). By adapting a ubiquitous property
of brain networks (in vivo) to well-controlled cultures of cortical
neurons (in vitro), our work provides an understanding of how
asynchronous inputs modulate the ongoing activity of cortical
networks.

In previous studies, electrical stimulation with multielectrode
arrays (64–66) and more recently optogenetic stimulation (67)
have been used to show that multisite stimulation effectively
reduces the occurrence of collective activity events in cortical cul-
tures on uniform substrates. These experimental investigations cor-
respond to the merged topology of our study, wherein a similar
suppression of collective events has been confirmed, even if at a
smaller degree than in highly modular preparations. A number of
works (64, 66, 67) also suggested a plastic change induced in
network dynamics, an effect that was not observed in the present
study. The difference could originate not only from the culture
age or the duration of stimulation but also from extracellular
calcium condition (68), opening future applications of in vitro cor-
tical networks to the understanding of the cellular mechanisms un-
derlying learning and memory. Besides the precision
micropatterning approach used in the present work, the overall
extent of network modularity can also be controlled through the
modulation of cell affinity of the scaffold (54, 55) or through phar-
macological manipulation of neurite outgrowth (69, 70), which
could be beneficial in tuning network structures at a larger scale.

We note that twenty percent of neurons in the mammalian
cortex are inhibitory, with some variation across species and areas
(71, 72), and this presence of inhibition is believed to be crucial for
computational purposes (17). Our experiments revealed that GA-
BAergic inhibition is necessary for the neuronal network to modu-
late its level of synchrony, because when inhibition was blocked,
synchronous epileptic-like activity prevailed (fig. S2). The same
trend was also observed in the computational model of spiking
neurons (fig. S8). The fundamental role of inhibition in shaping
asynchronous states has been explored both experimentally and the-
oretically, revealing that networks of purely excitatory neurons are
not able to generate stable asynchronous states (17). The critical role
of inhibition in stabilizing system dynamics (50) and in increasing
input-dependent flexibility (figs. S2 and S8) highlights the evolu-
tionary significance of preserving the balance of electrical-chemical
signal transduction in the nervous system.

It has been conjectured that the function of neural networks re-
quires the segregated processing of diverse inputs in specialized cir-
cuits as well as the integration of all of them to generate high-level
information processing and response (73). This demands a flexible
balance of segregation and integration, the loss of whichmay induce
dysfunction (74). In dynamical terms, such an optimal balance is
necessarily associated with high diversity and variability of under-
lying synchronization patterns of neuronal activity to be sustained
(75). Therefore, understanding how network structural features and
dynamical aspects collectively shape complex synchronization pat-
terns is crucial for advances in the field. Our findings might also be
relevant to understand other networked systems that have modular
architectures and are subjected to noise, such as gene, epidemic, and
social networks.

MATERIALS AND METHODS
Micropatterned substrate
Microcontact printing was used to pattern protein ink onto glass
coverslips. First, glass coverslips (C018001, Matsunami Glass Ind.)
were cleaned by sonication in 100% ethanol, rinsed inMilli-Qwater,
and treated with air plasma for 60 s (PM-100, Yamato). The cleaned
coverslips were then treated with a 0.2% solution of poly(2-
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methacryloyloxyethyl phosphorylcholine-co-3-methacryloxyprop-
yl triethoxysilane) (76) in ethanol for 10 s, dried in an ethanol en-
vironment for 20 min, baked in an oven at 70°C for 4 hours, and
dried under vacuum overnight. The coverslips were then sterilized
by immersion in ethanol, rinsed inMilli-Qwater, and dried. Protein
ink [extracellular matrix gel (E1270, Sigma-Aldrich; 1:100 dilution)
+ poly-D-lysine (50 μg ml−1; P0899, Sigma-Aldrich)] was patterned
using a polydimethylsiloxane (PDMS) stamp. The fabrication of the
PDMS stamp has been detailed previously (44). Four pieces of thin
PDMS films (approximately 2 mm by 2 mm and 0.5-mm thickness)
were then attached to the periphery of the coverslip, which served as
spacers. Last, the coverslips were dried overnight in a fume hood
and immersed in neuronal plating medium [minimum essential
medium (MEM; 11095-080, Gibco) + 5% fetal bovine serum
+0.6% D-glucose].

Cell culture
The culture protocol of primary rat cortical neurons has been de-
scribed previously (44, 77). Briefly, primary neurons were obtained
from the cortices of embryonic day 18 pups, plated on a microfab-
ricated coverslip at a density of 360 to 480 cells mm−2, and cocul-
tured with astrocyte feeder cells in N2 medium containing MEM +
N2 supplement + ovalbumin (0.5 mgml−1) + 10 mMHepes. Half of
the medium was changed at day in vitro (DIV) 4 and DIV 8 with a
conditioned neurobasal medium containing neurobasal (21103-
049, Gibco) + 2% B-27 supplement (17504-044, Gibco) + 1% Glu-
taMAX-I (35050-061, Gibco). In some experiments, neurons were
cultured in the neuron culture medium (FujiFilm Wako Pure
Chemical Corp. 148-09671), a glia-conditioned medium. The astro-
cyte feeder layer was not used when culturing the neurons in the
latter medium.

During cultivation, neurons were transfected with adeno-associ-
ated virus (AAV) vectors encoding the fluorescent calcium probe
GCaMP6s (Addgene viral prep #100843-AAV9) and a red-shifted
channelrhodopsin ChrimsonR (Addgene viral prep #59171-
AAV9) under the Synapsin promotor. The as-received viral prepa-
rations were aliquoted and added at concentrations of 1 μl ml−1
(GCaMP6s) and 0.7 μl ml−1 (ChrimsonR) at DIV 4. The AAVs
were diluted during medium exchange but remained in the
growth medium until the end of the culture. All procedures were
approved by the Tohoku University Center for Laboratory
Animal Research, Tohoku University (approval number:
2020AmA-001) and Tohoku University Center for Gene Research
(2019AmLMO-001).

Calcium imaging
At DIV 10 to 11, the coverslips with micropatterned neurons were
rinsed in Hepes-buffered saline (HBS) containing 128 mM NaCl, 4
mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM D-glucose, 10 mM
Hepes, and 45 mM sucrose and transferred to a glass-bottom dish
(3960-035, Iwaki) filled with HBS (44, 77). GCaMP6s fluorescence
was imaged using an inverted microscope (Olympus IX83)
equipped with a 20× objective lens (numerical aperture, 0.75), a
white-light light-emitting diode (LED) (Sutter Lambda HPX), a sci-
entific complementary metal-oxide-semiconductor camera (Andor
Zyla 4.2P), and a stage-top incubator (Tokai Hit). All recordings
were performed at 37°C, inside the stage-top incubator that kept
the temperature constant and humidified the sample. All recordings
were performed approximately 10 min after transferring the sample

from the cell culture incubator to the stage-top incubator, to elim-
inate the potential effect of environmental temperature on neuronal
activity (78). Two networks were selected from a coverslip for the
recording. A recording session of a network consisted of three
phases: Phase 1 was a spontaneous activity recording, phase 2 a re-
cording with optogenetic stimulation (see below), and phase 3 a
spontaneous activity recording. Each phase lasted for 10 min, and
time-lapse images were taken at 20 frames s−1 using Solis soft-
ware (Andor).

Stimulation
For the optogenetic stimulation, patterned light illumination for ac-
tivating ChrimsonR was delivered using a digital micromirror
device (DMD) (Mightex Polygon400G) coupled to a high-power
LED (Thorlabs Solis 623C; nominal wavelength, 623 nm) via a
liquid light guide. The DMD was mounted on the inverted micro-
scope, and patterned light was reflected onto the sample stage using
a short-pass dichroic mirror with an edge frequency of 556 nm
(Semrock FF556-SDi01). The spatiotemporal pattern of light illumi-
nation was designed in customMATLAB script and programmed to
the DMD using PolyScan2 software (Mightex). In the MATLAB
script, somas of 10 neurons expressing ChrimsonR were randomly
selected from the lower half of the cultured neuronal network. Sub-
sequently, a circular illumination area centered around the soma
(diameter, 25 μm) was generated randomly with a probability of
40% for each position. Last, 750 black-and-white bitmap files with
the illumination pattern were generated and imported into Poly-
Scan2. The duration of each frame was set to 400 ms, which was
sufficiently long to initiate one or more spiking activities in the il-
luminated neuron. Identical spatiotemporal patterns were repeated
in the first and second halves of the 10-min session. Chemical stim-
ulation was realized by increasing the extracellular potassium con-
centration from 4 to 6 mM.

Spike detection
To extract the neuronal activity, regions of interest (ROIs) were
manually set around the neuronal somas using the CellMagicWand
plugin in ImageJ2, and the mean intensity within the ROIs was ex-
tracted for each time step. ROIs with no activity were not used, and
an equal number of neurons were selected from each of the four
modules. Spikes were detected from calcium fluorescence traces
using the MLSpike algorithm (79). The first 1 min of each 10-min
recording was removed to eliminate artifacts originating from the
session onset. The algorithm occasionally detected pulse signals
originating in the residual stimulation light as spikes, which were
manually inspected and removed based on their shape and
duration.

SNN model
The neurons were modeled using as LIF neurons, as described pre-
viously (18, 80). In short, the single-neuron dynamics are described
by the coupled differential equations

τv _v ¼ aðv � vrefÞðv � vthrÞ � uþ IAMPA � IGABA
τu _u ¼ bðv � vrefÞ � u

where v and u are variables representing the membrane potential
and membrane recovery, respectively (with time constants τx).
Neurons interact through excitatory and inhibitory currents
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(IAMPA and IGABA), which are described by a relaxation τx _Ix ¼ � Ix
and are increased instantaneously at the postsynaptic neuron upon
presynaptic firing by Ix,post → Ix,post + jx,preRpre, where jx,pre is a cons-
tant to describe the current strength, and R is the presynaptic re-
source variable that decreases upon firing by R → βR and
recovers as τR _R ¼ 1 � R. In addition, all neurons are spontaneously
driven by a Poisson shot noise added to IAMPA, which accounts for
spontaneous synaptic release and, depending on the noise rate, the
optogenetic stimulation.

Amodular network was constructed by considering four squares
(200 μm by 200 μm) separated by 200 μm, locating 40 neurons ran-
domly within each square, and simulating axon growth. Of these,
80% were excitatory neurons and 20% were inhibitory neurons, re-
sembling the ratio reported for both in vivo and in vitro networks of
the mammalian cortex (49, 81, 82). To create a model with k inter-
modular connections, the corresponding number of axons was
forced to grow between each pair of modules. Binary adjacency ma-
trices were then generated by forming synaptic connections when
the axon of a presynaptic neuron intersected a circular region
around a postsynaptic neuron within a radius of 150 ± 20 μm
(mean ± SD). The corresponding connection probability was ad-
justed for each topology, so that the average in-degree per neuron
was fixed to kin ~ 30. Full details of themodel are provided in section
S2 (figs. S4 to S9).

Mesoscopic model
Each node i in the mesoscopic model corresponds to a module, and
its dynamics were modeled using a coupled rate model with re-
source depletion (12)

_ρiðtÞ ¼ �
1
τρ
ρiðtÞ þ F½IiðtÞ� þ σξiðtÞ

_RiðtÞ ¼ �
1
τd

ρiðtÞRiðtÞ þ
1
τc
½R0 � RiðtÞ�

where ρ and R are firing rate and synaptic resource variables, re-
spectively, R0 is the baseline resource level, and τx are time con-
stants. F(Ii) is a nonlinear function mapping the total input to
module i, Ii, to a rate change (section S3A). Modules were sponta-
neously driven by Gaussian noise ξ with an amplitude σ, which was
associated with internal biological variability.

Network models were constructed by coupling four modules to-
gether in a grid-like pattern (as in the 1-b and 3-b topologies),
encoded by the adjacency matrix A = [Aij]. Then, Ii was the sum
of external input h, activity propagation within the module, and ac-
tivity propagation from connected neighbors

IiðtÞ ¼ hþ ρiðtÞRiðtÞ þ w
X

j=i
AijgijðtÞρjðtÞRjðtÞ

where w is the coupling strength, and gij is the gating variable that
describes whether modules i-j are connected or disconnected. hwas
varied to simulate perturbed conditions. The merged topology in
the experiments corresponded to the behavior of a single module
unit. Further details of the model are provided in section S3 (figs.
S10 to S12).

Data analysis
For the analysis of collective activity events in the experimental data,
the spike trains were first summed across all neurons and convolved

with a normalized Gaussian kernel (SD = 200 ms), yielding a con-
tinuous time series that resembles a network-wide firing rate (aver-
aged either per module or the whole population). The start and end
times of the events were then obtained by thresholding the popula-
tion rate at 10% of the maximum observed for any recording. An
event thus begins whenever the population rate exceeds the thresh-
old and ends when the rate drops below the threshold. To account
for fluctuations during an event, we also merged consecutive events
if a start time was separated by less than 100 ms from a previous end
time. Event size was then defined as the number of unique neurons
that contributed to the event normalized by the total number of
neurons in the network. Events in SNN models were defined anal-
ogously to experiments with the following parameters: SD of the
Gaussian kernel = 20 ms and threshold = 2.5%. The adjustments
were motivated by designing a kernel that scaled with the shortest
observed interspike interval and were necessary to account for the
different sampling rates in simulations (5 ms) and experiments
(50 ms).

To measure neuron correlation, Pearson correlation coefficients
rijwere calculated to quantify the synchronicity between a given pair
of neurons i-j. For this analysis, the spike train was binned at 500
ms, and the number of spikes in each time bin was counted for
each neuron. From here, rij was calculated by

rij ¼
P
t½xiðtÞ � xi�½xjðtÞ � xj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
t ½xiðtÞ � xi�

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t ½xjðtÞ � xj�
2

q

where xi(t) is the time-binned spike train of neuron i, and xi is the
time average of xi(t). When comparing to themesoscopic model, we
further calculated the module correlation as the Pearson correlation
coefficient between the time series of module-averaged firing rates
(calculated as described above).

The functional complexity χ (48) was evaluated as

χ ¼ 1 �
m

2ðm � 1Þ

Xm

μ¼1
pμðrijÞ �

1
m

�
�
�
�

�
�
�
�

where pμ(rij) is the probability distribution of rij in bin μ, m = 20 is
the number of bins for rij used to estimate the distribution, and |.|
denotes the absolute value. The definition of the error bars is de-
scribed in the captions of the corresponding figures. Note that the
choice of bin size (500 ms) affects the absolute value of correlation
coefficients and functional complexity, and we confirmed that the
reported results remain consistent with bin sizes of 250, 500, and
1000 ms.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S12
Tables S1 to S7
Legends for movies S1 to S8
References

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S8

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Yamamoto et al., Sci. Adv. 9, eade1755 (2023) 25 August 2023 10 of 12

84



REFERENCES AND NOTES
1. W. R. Softky, C. Koch, The highly irregular firing of cortical cells is inconsistent with tem-

poral integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).
2. A. Arieli, A. Sterkin, A. Grinvald, A. D. Aertsen, Dynamics of ongoing activity: Explanation of

the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).
3. M. E. Raichle, The restless brain. Brain Connect. 1, 3–12 (2011).
4. J. Aru, J. Aru, V. Priesemann, M. Wibral, L. Lana, G. Pipa, W. Singer, R. Vicente, Untangling

cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).
5. A. Fornito, A. Zalesky, E. Bullmore, in Fundamentals of brain network analysis. (Academic

Press, 2016).

6. R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun, M. Corbetta,
S. Penna, J. H. Duyn, G. H. Glover, J. Gonzalez-Castillo, D. A. Handwerker, S. Keilholz,
V. Kiviniemi, D. A. Leopold, F. Pasquale, O. Sporns, M. Walter, C. Chang, Dynamic functional
connectivity: Promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

7. T. Matsui, T. Q. Pham, K. Jimura, J. Chikazoe, On co-activation pattern analysis and non-
stationarity of resting brain activity. Neuroimage 249, 118904 (2022).

8. J. M. Beggs, D. Plenz, Neuronal avalanches in neocortical circuits. J. Neurosci. 23,
11167–11177 (2003).

9. R. Legenstein, W. Maass, Edge of chaos and prediction of computational performance for
neural circuit models. Neural Netw. 20, 323–334 (2007).

10. D. R. Chialvo, Emergent complex neural dynamics. Nat. Phys. 6, 744–750 (2010).
11. L. Cocchi, L. L. Gollo, A. Zalesky, M. Breakspear, Criticality in the brain: A synthesis of

neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).
12. S. di Santo, P. Villegas, R. Burioni, M. A. Muñoz, Landau-Ginzburg theory of cortex dy-

namics: Scale-free avalanches emerge at the edge of synchronization. Proc. Natl. Acad. Sci.
U.S.A. 115, E1356 (2018).

13. M. A. Muñoz, Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys.
90, 031001 (2018).

14. B. Cramer, D. Stöckel, M. Kreft, M. Wibral, J. Schemmel, K. Meier, V. Priesemann, Control of
criticality and computation in spiking neuromorphic networks with plasticity. Nat.
Commun. 11, 2853 (2020).

15. D. Plenz, T. L. Ribeiro, S. R. Miller, P. A. Kells, A. Vakili, Self-organized criticality in the brain.
Front. Phys. 9, 639389 (2021).

16. N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons. J. Comput. Neurosci. 8, 183–208 (2000).

17. A. Renart, J. de la Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, K. D. Harris, The
asynchronous state in cortical circuits. Science 327, 587–590 (2010).

18. J. G. Orlandi, J. Soriano, E. Alvarez-Lacalle, S. Teller, J. Casademunt, Noise focusing and the
emergence of coherent activity in neuronal cultures. Nat. Phys. 9, 582–590 (2013).

19. P. Fries, Rhythms for cognition: Communication through coherence. Neuron 88,
220–235 (2015).

20. P. Villegas, P. Moretti, M. A. Muñoz, Frustrated hierarchical synchronization and emergent
complexity in the human connectome network. Sci. Rep. 4, 5990 (2014).

21. M. I. Rabinovich, P. Varona, A. Selverston, H. D. I. Abarbanel, Dynamical principles in
neuroscience. Rev. Mod. Phys. 78, 1213–1265 (2006).

22. E. Tognoli, J. A. S. Kelso, The metastable brain. Neuron 81, 35–48 (2014).
23. O. Weinberger, P. Ashwin, From coupled networks of systems to networks of states in

phase space. Discrete Continuous Dyn. Syst. Ser. B 23, 2043–2063 (2018).
24. L. Donetti, P. I. Hurtado, M. A. Muñoz, Entangled networks, synchronization, and optimal

network topology. Phys. Rev. Lett. 95, 188701 (2005).
25. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex

networks. Phys. Rep. 469, 93–153 (2008).
26. Y. M. Lai, M. A. Porter, Noise-induced synchronization, desynchronization, and clustering in

globally coupled nonidentical oscillators. Phys. Rev. E 88, 012905 (2013).
27. M. Dazza, S. Métens, P. Monceau, S. Bottani, A novel methodology to describe neuronal

networks activity reveals spatiotemporal recruitment dynamics of synchronous bursting
states. J. Comput. Neurosci. 49, 375–394 (2021).

28. A. Y. Y. Tan, Y. Chen, B. Scholl, E. Seidemann, N. J. Priebe, Sensory stimulation shifts visual
cortex from synchronous to asynchronous states. Nature 509, 226–229 (2014).

29. J. Zierenberg, J. Wilting, V. Priesemann, Homeostatic plasticity and external input shape
neural network dynamics. Phys. Rev. X 8, 031018 (2018).

30. R. M. Bruno, B. Sakmann, Cortex is driven by weak but synchronously active thalamo-
cortical synapses. Science 312, 1622–1627 (2006).

31. K. C.-K. Malina, B. Mohar, A. N. Rappaport, I. Lampl, Local and thalamic origins of correlated
ongoing and sensory-evoked cortical activities. Nat. Commun. 7, 12740 (2016).

32. H. Mizuno, K. Ikezoe, S. Nakazawa, T. Sato, K. Kitamura, T. Iwasato, Patchwork-type spon-
taneous activity in neonatal barrel cortex layer 4 transmitted via thalamocortical projec-
tions. Cell Rep. 22, 123–135 (2018).

33. M. H. Friedberg, S. M. Lee, F. F. Ebner, Modulation of receptive field properties of thalamic
somatosensory neurons by the depth of anesthesia. J. Neurophysiol. 81, 2243–2252 (1999).

34. D. S. Greenberg, A. R. Houweling, J. D. Kerr, Population imaging of ongoing neuronal
activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751 (2008).

35. W.-P. Chang, J.-S. Wu, C.-M. Lee, B. A. Vogt, B.-C. Shyu, Spatiotemporal organization and
thalamic modulation of seizures in the mouse medial thalamic-anterior cingulate slice.
Epilepsia 52, 2344–2355 (2011).

36. Ł. Kuśmierz, S. Ogawa, T. Toyoizumi, Edge of chaos and avalanches in neural networks with
heavy-tailed synaptic weight distribution. Phys. Rev. Lett. 125, 028101 (2020).

37. C. W. Lynn, D. S. Bassett, The physics of brain network structure, function and control. Nat.
Rev. Phys. 1, 318–332 (2019).

38. J. W. Scannell, M. P. Young, The connectional organization of neural systems in the cat
cerebral cortex. Curr. Biol. 3, 191–200 (1993).

39. J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’Neil, M. P. Young, The connectional
organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299 (1999).

40. C.-C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, J. W. Scannell, M. P. Young, Anatomical
connectivity defines the organization of clusters of cortical areas in the macaque monkey
and the cat. Phil. Trans. R. Soc. Lond. B 355, 91–110 (2000).

41. D. Meunier, R. Lambiotte, E. T. Bullmore, Modular and hierarchically modular organization
of brain networks. Front. Neurosci. 4, 200 (2010).

42. M. P. van den Heuvel, E. T. Bullmore, O. Sporns, Comparative connectomics. Trends Cogn.
Sci. 20, 345–361 (2016).

43. W.-C. A. Lee, V. Bonin, M. Reed, B. J. Graham, G. Hood, K. Glattfelder, R. C. Reid, Anatomy and
function of an excitatory network in the visual cortex. Nature 532, 370–374 (2016).

44. H. Yamamoto, S. Moriya, K. Ide, T. Hayakawa, H. Akima, S. Sato, S. Kubota, T. Tanii,
M. Niwano, S. Teller, J. Soriano, A. Hirano-Iwata, Impact of modular organization on dy-
namical richness in cortical networks. Sci. Adv. 4, eaau4914 (2018).

45. J. L. Nathanson, Y. Yanagawa, K. Obata, E. M. Callaway, Preferential labeling of inhibitory
and excitatory cortical neurons by endogenous tropism of adeno-associated virus and
lentivirus vectors. Neuroscience 161, 441–450 (2009).

46. N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto,
A. S. Chuong, E. J. Carpenter, Z. J. Tian, J. Wang, Y. L. Xie, Z. X. Yan, Y. Zhang, B. Y. Chow,
B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. S. Wong, E. S. Boyden,
Independent optical excitation of distinct neural populations. Nat. Methods 11,
338–346 (2014).

47. Y. Penn, M. Segal, E. Moses, Network synchronization in hippocampal neurons. Proc. Natl.
Acad. Sci. U.S.A. 113, 3341–3346 (2016).

48. G. Zamora-López, Y. Chen, G. Deco, M. L. Kringelbach, C. Zhou, Functional complexity
emerging from anatomical constraints in the brain: The significance of network modularity
and rich-clubs. Sci. Rep. 6, 38424 (2016).

49. N. Sukenik, O. Vinogradov, E. Weinreb, M. Segal, A. Levina, E. Moses, Neuronal circuits
overcome imbalance in excitation and inhibition by adjusting connection numbers. Proc.
Natl. Acad. Sci. U.S.A. 118, e2018459118 (2021).

50. S. Sadeh, C. Clopath, Inhibitory stabilization and cortical computation. Nat. Rev. Neurosci.
22, 21–37 (2021).

51. D. Cohen, M. Segal, Network bursts in hippocampal microcultures are terminated by ex-
haustion of vesicle pools. J. Neurophysiol. 106, 2314–2321 (2011).

52. E. Tibau, M. Valencia, J. Soriano, Identification of neuronal network properties from the
spectral analysis of calcium imaging signals in neuronal cultures. Front. Neural Circuits 7,
199 (2013).

53. E. A. Leicht, M. E. J. Newman, Community structure in directed networks. Phys. Rev. Lett.
100, 118703 (2008).

54. S. Teller, C. Granell, M. De Domenico, J. Soriano, S. Gómez, A. Arenas, Emergence of as-
sortative mixing between clusters of cultured neurons. PLOS Comput. Biol. 10,
e1003796 (2014).

55. M. A. Rabadan, E. D. De La Cruz, S. B. Rao, Y. Chen, C. Gong, G. Crabtree, B. Zu, S. Markx,
J. A. Gogos, R. Yuste, R. Tomer, An in vitro model of neuronal ensembles.Nat. Commun. 13,
3340 (2022).

56. B. Pietras, V. Schmutz, T. Schwalger, Mesoscopic description of hippocampal replay and
metastability in spiking neural networks with short-term plasticity. PLOS Comput. Biol. 18,
e1010809 (2022).

57. J. P. Neto, F. P. Spitzner, V. Priesemann, Sampling effects and measurement overlap can
bias the inference of neuronal avalanches. PLOS Comput. Biol. 18, e1010678 (2022).

58. E. Montbrió, D. Pazó, A. Roxin, Macroscopic description for networks of spiking neurons.
Phys. Rev. X 5, 021028 (2015).

59. Á. Byrne, R. D. O’Dea, M. Forrester, J. Ross, S. Coombes, Next-generation neural mass and
field modeling. J. Neurophysiol. 123, 726–742 (2020).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Yamamoto et al., Sci. Adv. 9, eade1755 (2023) 25 August 2023 11 of 12

85



60. C. Bick, M. Goodfellow, C. R. Laing, E. A. Martens, Understanding the dynamics of biological
and neural oscillator networks through exact mean-field reductions: A review. J. Math.
Neurosci. 10, 9 (2020).

61. I. V. Tyulkina, D. S. Goldobin, L. S. Klimenko, A. Pikovsky, Dynamics of noisy oscillator
populations beyond the Ott-Antonsen ansatz. Phys. Rev. Lett. 120, 264101 (2018).

62. S. M. Sherman, R. W. Guillery, The role of the thalamus in the flow of information to the
cortex. Phil. Trans. R. Soc. Lond. B 357, 1695–1708 (2002).

63. M. D. McDonnell, L. M. Ward, The benefits of noise in neural systems: Bridging theory and
experiment. Nat. Rev. Neurosci. 12, 415–425 (2011).

64. G. Shahaf, S. Marom, Learning in networks of cortical neurons. J. Neurosci. 21,
8782–8788 (2001).

65. D. A. Wagenaar, R. Madhavan, J. Pine, S. M. Potter, Controlling bursting in cortical cultures
with closed-loop multi-electrode stimulation. J. Neurosci. 25, 680–688 (2005).

66. M. Chiappalone, P. Massobrio, S. Martinoia, Network plasticity in cortical assemblies. Eur.
J. Neurosci. 28, 221–237 (2008).

67. X. Zhang, F.-C. Yeh, H. Ju, Y. Jiang, G. F. W. Quan, A. M. J. VanDongen, Familiarity detection
and memory consolidation in cortical assemblies. eNeuro 7, ENEURO.0006–
19.2020 (2020).

68. Y. Inglebert, J. Aljadeff, N. Brunel, D. Debanne, Synaptic plasticity rules with physiological
calcium levels. Proc. Natl. Acad. Sci. U.S.A. 117, 33639–33648 (2020).

69. S. Okujeni, U. Egert, Self-organization of modular network architecture by activity-de-
pendent neuronal migration and outgrowth. eLife 8, e47996 (2019).

70. S. Okujeni, U. Egert, Structural modularity tunesmesoscale criticality in biological neuronal
networks. J. Neurosci. 43, 2515–2526 (2023).

71. F. M. Krienen, M. Goldman, Q. Zhang, R. C. H. del Rosario, M. Florio, R. Machold, A. Saunders,
K. Levandowski, H. Zaniewski, B. Schuman, C. Wu, A. Lutservitz, C. D. Mullally, N. Reed,
E. Bien, L. Bortolin, M. Fernandez-Otero, J. D. Lin, A. Wysoker, J. Nemesh, D. Kulp, M. Burns,
V. Tkachev, R. Smith, C. A. Walsh, J. Dimidschstein, B. Rudy, L. S. Kean, S. Berretta, G. Fishell,
G. Feng, S. A. McCarroll, Innovations present in the primate interneuron repertoire. Nature
586, 262–269 (2020).

72. S. Loomba, J. Straehle, V. Gangadharan, N. Heike, A. Khalifa, A. Motta, N. Ju, M. Sievers,
J. Gempt, H. S. Meyer, M. Helmstaedter, Connectomic comparison of mouse and human
cortex. Science 377, eabo0924 (2022).

73. G. Tononi, O. Sporns, G. M. Edelman, A measure for brain complexity: Relating functional
segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91,
5033–5037 (1994).

74. L.-D. Lord, A. B. Stevner, G. Deco, M. L. Kringelbach, Understanding principles of integra-
tion and segregation using whole-brain computational connectomics: Implications for
neuropsychiatric disorders. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160283 (2017).

75. G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, K. Friston, The dynamic brain: From
spiking neurons to neural masses and cortical fields. PLOS Comput. Biol. 4,
e1000092 (2008).

76. Y. Xu, M. Takai, T. Konno, K. Ishihara, Microfluidic flow control on charged phospholipid-
polymer interface. Lab Chip 7, 199–206 (2007).

77. H. Yamamoto, S. Kubota, Y. Chida, M. Morita, S. Moriya, H. Akima, S. Sato, A. Hirano-Iwata,
T. Tanii, M. Niwano, Size-dependent regulation of synchronized activity in living neuronal
networks. Phys. Rev. E 94, 012407 (2016).

78. C. M. Hales, J. D. Rolston, S. M. Potter, How to culture, record and stimulate neuronal
networks on micro-electrode arrays (MEAs). J. Vis. Exp. 39, 2056 (2010).

79. T. Deneux, A. Kaszas, G. Szalay, G. Katona, T. Lakner, A. Grinvald, B. Rózsa, I. Vanzetta, Ac-
curate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging
of large neuronal populations in vivo. Nat. Commun. 7, 12190 (2016).

80. E. M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14,
1569–1572 (2003).

81. S. Sahara, Y. Yanagawa, D. D. M. O’Leary, C. F. Stevens, The fraction of cortical GABAergic
neurons is constant from near the start of cortical neurogenesis to adulthood. J. Neurosci.
32, 4755–4761 (2012).

82. J. Soriano, M. R. Martínez, T. Tlusty, E. Moses, Development of input connections in neural
cultures. Proc. Natl. Acad. Sci. U.S.A. 105, 13758–13763 (2008).

83. T. Takemuro, H. Yamamoto, S. Sato, A. Hirano-Iwata, Polydimethylsiloxane microfluidic
films for in vitro engineering of small-scale neuronal networks. Jpn. J. Appl. Phys. 59,
117001 (2020).

84. M. Newman, in Networks (Oxford University Press, ed. 2, 2018).

85. R. Guimerà, M. Sales-Pardo, L. A. Nunes Amaral, Modularity from fluctuations in random
graphs and complex networks. Phys. Rev. E 70, 025101(R) (2004).

86. E. Alvarez-Lacalle, E. Moses, Slow and fast pulses in 1-D cultures of excitatory neurons.
J. Comput. Neurosci. 26, 475–493 (2009).

87. J. S. Isaacson, M. Scanziani, How inhibition shapes cortical activity. Neuron 72,
231–243 (2011).

88. K. A. Ferguson, F. Njap, W. Nicola, F. K. Skinner, S. A. Campbell, Examining the limits of
cellular adaptation bursting mechanisms in biologically-based excitatory networks of the
hippocampus. J. Comput. Neurosci. 39, 289–309 (2015).

89. M. Stimberg, R. Brette, D. F. Goodman, Brian 2, an intuitive and efficient neural simulator.
eLife 8, e47314 (2019).

90. L. Huang, P. Ledochowitsch, U. Knoblich, J. Lecoq, G. J. Murphy, R. C. Reid, S. E. J. de Vries,
C. Koch, H. Zeng, M. A. Buice, J. Waters, L. Li, Relationship between simultaneously re-
corded spiking activity and fluorescence signal in GCaMP6 transgenic mice. eLife 10,
e51675 (2021).

91. H. R. Wilson, J. D. Cowan, Excitatory and inhibitory interactions in localized populations of
model neurons. Biophys. J. 12, 1–24 (1972).

92. M. Jedynak, Collective excitability in a mesoscopic neuronal model of epileptic activity.
Phys. Rev. E 97, 012204 (2018).

93. W. Gerstner, W. M. Kistler, R. Naud, L. Paninski, in Neuronal dynamics: From single neurons to
networks and models of cognition (Cambridge Univ. Press, 2014).

94. M. V. Tsodyks, H. Markram, The neural code between neocortical pyramidal neurons
depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. U.S.A. 94,
719–723 (1997).

95. D. Holcman, M. Tsodyks, The emergence of Up and Down states in cortical networks. PLOS
Comput. Biol. 2, e23 (2006).

96. V. Buendía, P. Villegas, R. Burioni, M. A. Muñoz, Hybrid-type synchronization transitions:
Where incipient oscillations, scale-free avalanches, and bistability live together. Phys. Rev.
Research 3, 023224 (2021).

97. P. C. Bressloff, J. N. Maclaurin, Stochastic hybrid systems in cellular neuroscience. J. Math.
Neurosci. 8, 12 (2018).

Acknowledgments
Funding: H.Y., A.H.-I., and S.S. acknowledge MEXT Grant-in-Aid for Transformative Research
Areas (B) “Multicellular Neurobiocomputing” (21H05164), JSPS KAKENHI (18H03325, 19H00846,
20H02194, 20K20550, 22H03657, 22K19821, 22KK0177, and 23H03489), JST-PRESTO
(JMPJPR18MB), JST-CREST (JPMJCR19K3), and Tohoku University RIEC Cooperative Research
Project Program for financial support. F.P.S., V.P., and J.Z. received support from theMax-Planck-
Society. F.P.S. acknowledges funding by SMARTSTART, the joint training program in
computational neuroscience by the VolkswagenStiftung and the Bernstein Network. F.P.S. and
V.P. were funded by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG), SFB-1528–Cognition of Interaction. V.P. was supported by the DFG under Germany’s
Excellence Strategy EXC 2067/1- 390729940. V.B. and A.L. were supported by a Sofja
Kovalevskaja Award from the Alexander von Humboldt Foundation, endowed by the Federal
Ministry of Education and Research. A.L. is a member of the Machine Learning Cluster of
Excellence EXC 2064/1- 39072764. M.A.M. acknowledges the Spanish Ministry and Agencia
Estatal de investigación (AEI) through Project of I + D + i (PID2020-113681GB-I00), financed by
MICIN/AEI/10.13039/501100011033 and FEDER “Away to make Europe”, and the Consejería de
Conocimiento, Investigación Universidad, Junta de Andalucía and European Regional
Development Fund (P20-00173) for financial support. J.Z. received financial support from the
Joachim Herz Stiftung. J.S. acknowledges Horizon 2020 Future and Emerging Technologies
(grant agreement 964877-NEUChiP), Ministerio de Ciencia, Innovación y Universidades
(PID2019-108842GB-C21), and Departament de Recerca i Universitats, Generalitat de Catalunya
(2017-SGR-1061 and 2021-SGR-00450) for financial support. Author contributions:
Conceptualization: H.Y., F.P.S., V.P., J.Z., and J.S. Methodology: H.Y., T.K., S.S., A.H.-I., A.L., V.P.,
M.A.M., and J.S. Investigation (experiments): H.Y., T.T., and H.M. Investigation (SNN simulation):
F.P.S. and J.Z. Investigation (mesoscopic simulation): F.P.S., V.B., and M.A.M. Analysis: H.Y., F.P.S.,
T.T., V.B., C.M., and J.S. Visualization: F.P.S. Supervision: S.S., A.H.-I., A.L., V.P., M.A.M., J.Z., and J.S.
Writing—original draft: H.Y., F.P.S., V.B., V.P., M.A.M., J.Z., and J.S. Writing—review and editing:
T.T., H.M., C.M., T.K., S.S., A.H.-I., and A.L. Competing interests: The authors declare that they
have no competing interests.Data andmaterials availability: The data and processed analysis
results for this study have been deposited in G-Node GIN https://doi.org/10.12751/g-node.
t77b3p. The source code for analysis and simulation have been deposited in Zenodo https://
doi.org/10.5281/zenodo.7962283 and in GitHub https://github.com/Priesemann-Group/
stimulating_modular_cultures. All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials.

Submitted 29 July 2022
Accepted 21 July 2023
Published 25 August 2023
10.1126/sciadv.ade1755

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Yamamoto et al., Sci. Adv. 9, eade1755 (2023) 25 August 2023 12 of 12

86



5 How contact patterns destabilize and
modulate epidemic outbreaks

Published in New Journal of Physics (2023)

DOI 10.1088/1367-2630/acd1a7
Preprint arXiv:2109.12180

Supplementary material Appendix C
Source code github.com/Priesemann-Group/contact_pattern_outbreak

License

Own contributions ✓ Conceptualization
✓ Methodology
✓ Software
✓ Validation
✓ Formal Analysis
✓ Investigation

Resources
✓ Data Curation
✓ Writing—Original Draft
✓ Writing—Review & Editing
✓ Visualization

Supervision
Project Administration
Funding Acquisition

JZ and I jointly developed themodels and implemented the code.
I created all figures. All authors wrote the manuscript.

https://doi.org/10.1088/1367-2630/acd1a7
https://arxiv.org/abs/2109.12180
https://github.com/Priesemann-Group/contact_pattern_outbreak 
https://creativecommons.org/licenses/by/4.0/




New J. Phys. 25 (2023) 053033 https://doi.org/10.1088/1367-2630/acd1a7

OPEN ACCESS

RECEIVED

17 February 2023

REVISED

20 April 2023

ACCEPTED FOR PUBLICATION

2 May 2023

PUBLISHED

30 May 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

How contact patterns destabilize and modulate epidemic
outbreaks
Johannes Zierenberg1,5,∗, F Paul Spitzner1,5, Jonas Dehning1, Viola Priesemann1,2,
Martin Weigel3 and Michael Wilczek1,4
1 Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
2 Institute for the Dynamics of Complex Systems, University of Göttingen, 37077 Göttingen, Germany
3 Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
4 Theoretical Physics I, University of Bayreuth, 95440 Bayreuth, Germany
5 J Z and F P S contributed equally.
∗ Author to whom any correspondence should be addressed.

E-mail: johannes.zierenberg@ds.mpg.de

Keywords: human contact patterns, non-Markovian dynamics, epidemic outbreak, latent period

Supplementary material for this article is available online

Abstract
The spread of a contagious disease clearly depends on when infected individuals come into contact
with susceptible ones. Such effects, however, have remained largely unexplored in the study of
epidemic outbreaks. In particular, it remains unclear how the timing of contacts interacts with
the latent and infectious stages of the disease. Here, we use real-world physical proximity data
to study this interaction and find that the temporal statistics of actual human contact patterns (i)
destabilize epidemic outbreaks and (ii) modulate the basic reproduction number R0. We explain
both observations by distinct aspects of the observed contact patterns. On the one hand, we find
the destabilization of outbreaks to be caused by the temporal clustering of contacts leading to
over-dispersed offspring distributions and increased probabilities of otherwise rare events (zero-
and super-spreading). Notably, our analysis enables us to disentangle previously elusive sources of
over-dispersion in empirical offspring distributions. On the other hand, we find the modulation of
R0 to be caused by a periodically varying contact rate. Both mechanisms are a direct consequence
of the memory in contact behavior, and we showcase a generative process that reproduces these
non-Markovian statistics. Our results point to the importance of including non-Markovian contact
timings into studies of epidemic outbreaks.

1. Introduction

As contagious diseases are passed on through contacts, the number of secondary infections depends crucially
on the contact patterns of infectious individuals. These contact patterns encode relevant information such as
the number of interaction partners and contact timing. However, the majority of prevailing models for
disease spread prioritize simpler descriptions that neglect these aspects—despite evidence from studies that
show the effects of contact patterns to be crucial for disease spread: structurally, when interaction partners
are modeled by a static complex network [1], the network structure affects disease spread through the
occurrence of hubs [2, 3], multiscale link communities [4] and influential spreaders [5]. Dynamically,
real-world interaction times generally follow a non-Markovian process (in contrast to commonly assumed
memoryless processes), which influences epidemics through the occurrence of bursts [6, 7] and daily and
weekly variations in human interaction [8, 9].

Thus, for a better understanding of disease spread through human contacts, a complete description of
time-varying interactions in the form of so-called temporal networks [10, 11] seems necessary. However,
constructing detailed temporal networks from real-world contacts requires extensive amounts of recorded
data, which in principle can be collected in field studies [12–14] but such data are notoriously limited in
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Figure 1. Real-world contacts represented as encounter trains. (a) A contact between two individuals is defined as ongoing
co-location during consecutive time steps. Focusing on contagious disease transmission, we only consider contacts closer than
2m and longer than 15min. (b) The start times of the remaining contacts per individual form their encounter train. A raster plot
of such encounter trains shows a clear temporal structure of human contact patterns. (c) and (d) Randomization preserves the
number of encounters per train but destroys temporal structure.

duration and system size. Although such limitations of real-world data can be partly remedied by generating
surrogate data [15, 16], it is often unclear to which extent they represent the real system. An unsolved task is
thus to generate surrogate data that mimics temporal statistics and individual variations of actual human
contact data.

Here, we address this gap by identifying and isolating features of contact behavior that affect epidemic
outbreaks using a novel analysis of real-world contact data. Instead of characterizing full epidemic outbreaks
on a large (likely under-determined) temporal network, we develop an effective description through
potentially infectious encounters that propagates statistics of contacts to statistics of disease spread. This
approach avoids treating microscopic (non-linear) network effects [17–19] and allows us to focus on how
contact patterns statistically affect epidemic outbreaks. Our analysis reveals two main mechanisms: (i)
contact clustering destabilizes outbreaks by increasing the dispersion of offspring distributions and the
probability of zero-spreading events, and (ii) temporal variation of the contact rate modulates the mean
basic reproduction number, R0, due to an interference between contact patterns and disease progression.
Finally, we showcase a non-Markovian process that faithfully reproduces the temporal statistics and their
effect on disease spread as a proof of principle for a new class of generative models for surrogate data that
mimic human contact patterns.

2. Results

To shed light on the interplay of contact patterns and epidemic outbreaks, we analyse proximity data from
the Copenhagen Networks Study [20] and, in the supplementary material, from SocioPatterns [13, 21]. We
filter each individual’s contacts by distance and duration, and define encounters as their starting times (see
methods). The resulting encounter trains are a point-process-like representation that captures the
non-Markovian statistics of the underlying contact patterns (figure 1). The importance of these
non-Markovian statistics can be seen when comparing to randomized encounter trains. In these surrogate
data, encounter times are uniformly reassigned within the duration of the experiment—which preserves the
number of encounters per train, i.e. the inter-individual variability (figure 1(c)), but destroys any temporal
structure (figure 1(d)).

In order to quantify the effect of contact patterns on epidemic outbreaks, we focus on potential
secondary infections and assume a contagious disease that can be transmitted only during infectious
encounters. Further, if τ is the time elapsed since infection, infected individuals undergo a (non-infectious)
latent period τ ∈ [0,Tlat) and an infectious period τ ∈ [Tlat,Tlat +Tinf) during which all ninf encounters are
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Figure 2. Real-world contact patterns increase the probability of rare spreading events, which increase the extinction probability
of an epidemic outbreak. (a) Sketch of estimating ninf from encounter trains for a disease model with Tlat and Tinf. (b) P(ninf)
depends on Tlat for human encounter trains (red, blue) but not for randomized controls (gray, yellow), which underestimate both
zero-spreading as well as super-spreading events. (c) Data-driven branching model where ninf are drawn from P(ninf) and infected
independently with probability pinf. (d) The resulting offspring distribution P(x) can be fitted by a negative binomial, yielding an
estimate for the dispersion parameter α. (e) Dispersion as a function of Tlat, Tinf and R0. (f) The extinction probability of an
epidemic outbreak depends on R0 (left, fixed Tinf = 3days) and on α (right, all combinations of Tlat and Tinf for given R0), and is
larger for human contact patterns compared to randomized controls.

potentially infectious. We estimate ninf by considering every encounter in the data set as a potential start for an
infection (figure 2(a), see methods). As we show in figure 2(b), empirical contact patterns increase both the
probability of very few ninf (related to zero-spreading events) as well as very many ninf (related to
super-spreading events) when compared to randomized controls. This increase in variability influences
whether a single infection results in an epidemic outbreak or not.

2.1. Human contact patterns destabilize epidemic outbreaks
To demonstrate the effect of empirical contact patterns on epidemic outbreaks, we map the probability
distribution of ninf to an offspring distribution using a two-step, data-driven branching process (figure 2(c)):
Each infected individual first generates encounters according to the empirical distribution P(ninf), and then
infects each of them independently with probability pinf resulting in binomial-distributed secondary
infections. Taking the expectation value yields the offspring distribution

P(x) =
∞∑

ninf=x

P(ninf)

(
ninf
x

)
pxinf(1− pinf)

ninf−x. (1)

Similar to empirical distributions from contact tracing [22], P(x) can be well described by a negative
binomial distribution (figure 2(d)) with mean x= R0 = pinf ninf and variance (x−R0)2 = R0 +αR2

0, where α
is the dispersion parameter that characterizes the increase in variance relative to a Poisson distribution.

Our data analysis provides a systematic approach to identifying sources of the dispersion observed in
empirical offspring distributions [23–25]. We analyze step by step the dispersion occurring because of
human contact patterns, and how it depends on Tlat, Tinf and R0 (figure 2(e), left to right). For a completely
randomized control, where encounters are uniformly distributed across trains and time, we consistently find
Poissonian offspring distributions (figure 2(d), gray) with vanishing dispersion (α= 0), independent of the
three disease parameters (figure 2(e), gray triangles). When including variability of contact rates into the
control, while still randomizing within trains, the dispersion of the offspring distribution increases (α≈ 0.3)
but remains mostly independent of disease parameters (yellow circles). Lastly, when also including the
precise timing of human contact patterns, offspring distributions show a large dispersion that depends on
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Tlat and Tinf (blue symbols). In particular, dispersion is strongest for short Tinf but decays as Tinf increases.
Hence, part of the empirical dispersion can be attributed to variability of contact rates between individuals,
but the non-Markovian timing of human contact patterns causes a further increase—for realistic parameters
roughly by a factor of two.

From P(x) we derive the extinction probability pext, defined as the fraction of outbreaks that
asymptotically end up in the absorbing state of zero infections (figure 2(f)). It can be calculated using the
probability generating function, π(θ) =

∑∞
x=0P(x)θ

x, as the smallest θ∗ that solves θ∗ = π(θ∗) [26]. In
addition to the anticipated monotonic decrease of pext = θ∗ with increasing R0, we find that extinction is
more likely for actual human contact patterns (red, blue) than for randomized controls (gray, yellow).
Moreover, for fixed R0, we find that an increased dispersion α due to human contact patterns non-linearly
increases pext (figure 2(f), right).

Summarizing, we find that the non-Markovian timing of human contact patterns can be a strong source
of variability, relevant to explaining the over-dispersion of empirical offspring distributions. In particular,
increasing the dispersion for a fixed R0 increases the probability of zero-spreading events (figure 2(d), blue vs
gray), and results in a higher extinction probability (figure 2(f)) — in other words, the non-Markovian
temporal structure of human contact patterns destabilizes epidemic outbreaks.

2.2. Interplay between contact pattern and disease progressionmodulates basic reproduction number
As highlighted in figure 2(b), ninf depends on Tlat for human encounter trains. This might be at first glance
surprising, because for memory-less processes, ninf is proportional to Tinf but independent of Tlat. Hence, in
the following, we systematically vary Tlat and Tinf to study how the interplay between human contact patterns
and disease progression affects ninf (figure 3).

Considering a fixed Tinf = 3days (figure 3(a)) and scanning Tlat leads to a periodic modulation of ninf
from human encounter trains (black, dashed) around the constant estimate from randomized trains
(yellow). Thus, we consider ninf relative to randomized (figure 3(b)), which accounts for the trivial increase
of ninf with increasing Tinf. For small Tinf < 1day, we find daily modulations as a function of Tlat, with
regions below-randomized (blue) and above-randomized (red). This effect diminishes for larger Tinf, where
we find extended, triangular regions with interfaces located at Tlat +Tinf = 7days and Tlat = 7days. We thus
find periodic modulations of ninf on the scale of days (small Tlat) and weeks (large Tlat).

In the following, we uncover the origin of these periodic modulations using what we call conditional
encounter rateΨ(τ), see methods. In short,Ψ(τ) describes the average rate of encounters conditioned on an
initial encounter (figure 3(c)). Considering the initial encounter as an infection,Ψ(τ)measures the rate of
potentially infectious encounters but neglects variability and dispersion. We find thatΨ(τ) features a peak at
0 (which implies strong clustering [6]) and the anticipated periodic modulations between high and low
encounter rates (which cause a time-dependent secondary attack rate). Both, the initial peak and
modulations are again lost for randomized controls (yellow line).

Note that we can directly obtain an estimate of ninf for a particular disease progression (Tlat, Tinf) by
integratingΨ(τ) over the infectious period (figure 3(c), shaded areas). Reconsidering the previous examples,
this explains the lower ninf for Tlat = 2days (blue area covering the valley) and the larger ninf for Tlat = 6days
(red area covering the 7 day peak). The examples showcase that ninf is determined by the alignment of the
infectious period with regions of low or highΨ(τ).

Consequently, since ninf is related to R0, the interplay between contact patterns and disease progression
modulates the pace of epidemic spread. To illustrate this, we construct a continuous-time branching process,
where each exposed individual generates encounters according toΨ(τ). During the infectious period,
encounters again have a probability pinf to become infected (figure 3(d)). Assuming an outbreak that
survived the initial generations, we prepare the system with 100 random initial infections in the interval
[−Tlat −Tinf,0). The resulting time evolution of daily new cases shows clear exponential growth, where the
growth rate λ trivially decreases with the generation time and, thus, Tlat (figure 3(e)). However, this expected
decrease of λ for memoryless encounter timings (yellow) is modulated in the model due to variations in
Ψ(τ), which results in slower-than-random (blue) or faster-than-random (red) growth.

Summarizing, human contact patterns cause a dependence of ninf on Tlat that modulates R0 and thereby
the growth rate of an epidemic outbreak.

2.3. Destabilization andmodulation of epidemic spread can be attributed to specific temporal statistics of
contact patterns
After illustrating that non-Markovian statistics can destabilize and modulate epidemic outbreaks, it seems
natural to ask how they can be included in models of disease spread. In such models it is common to
approximate encounter times between individuals as memoryless (Poisson) processes [1]. Assuming
independence, these processes can be merged to result in encounter trains with Poisson statistics—the same
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Figure 3. Real-world contact patterns modulate the pace of epidemic spread as a function of the latent period. (a) Absolute ninf
are periodically modulated with Tlat for human encounter trains but not for randomized (yellow). (b) ninf relative to randomized
reveals periodic modulations on both daily and weekly scale in the full (Tlat,Tinf)-plane. (c)Ψ(τ) features daily and weekly
modulations for non-Markovian human encounter trains but is constant for randomized encounter trains (yellow). Assuming the
initial encounter to be an infection, this explains the modulations of ninf by combinations of Tlat and Tinf for which the integral
(shaded areas) is dominated by valleys (blue) or peaks (red). (d) Continuous-time branching model, where encounter times are
generated fromΨ(τ) and infected with constant probability pinf. (e) Choosing an initial I0 = 100 random infections in
[−Tlat −Tinf,0) and pinf = 0.12, we demonstrate that the (average) number of infections grows exponentially. The growth rate λ
for time-independent encounter times in a fixed Tinf is expected to decrease trivially with Tlat. If not constant,Ψ(τ)modulates λ
and causes regimes of slower-than-random (blue) or faster-than-random (red) growth of infections.

statistics as our randomized encounter trains. In the following, we construct encounter trains with
non-Markovian statistics and identify three specific features of contact patterns that are necessary to
reproduce the relevant statistics of encounters. As a proof of principle, we showcase a novel tailored renewal
process that is constrained by data and reproduces all salient features (figure 4, top row):

i) Focusing on temporal statistics, the encounter rate ρ(t) averaged across individuals and weeks is
time-dependent but cyclostationary; ρ(t) repeats in a weekly cycle with differences between day and
night, and between weekdays and weekends (figure 4, first column). This can be captured by an
inhomogeneous Poisson process (figure 4, middle row), which reproduces the periodic modulation of
ninf (fourth column) andΨ(τ) (see supplemental figure S3).

ii) The distribution of inter-encounter intervals P(δt) has high probability for small δt and a heavy tail of
non-vanishing probability for large δt (second column). Because this tail corresponds to long periods
without any encounter, it causes the high probability of ninf ≈ 0 (last column) that strongly contributes
to the destabilization of epidemic outbreaks. P(δt) is dominantly shaped by the clustering of human
contacts and can be well approximated by a Weibull distribution [7, 27]. Accordingly, a Weibull-renewal
processes (last row) reproduces P(δt) and P(ninf) well, but it does not have a time-varying ρ(t) and
cannot reproduce the period modulations ofΨ(τ) and ninf.

iii) Encounter rates vary between individuals (third column). This variability can be attributed to intrinsic
differences in contact behavior (cf figure 2, gray vs yellow) and is partly captured by the degree
distribution of the contact network [28]. Recall that such across-individual variability is crucial to
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Figure 4. Specific temporal statistics of surrogate point processes can be related to specific characteristics of disease spread.
Top: Tailored renewal process that captures time-dependent ρ(t) (first column), heavy-tailed P(δt) (second column), and
heterogeneous P(ntrain) (third column), reproduces core characteristics such as the modulation of ninf (fourth column, cf figure 3)
and the increased probability of zero-spreading in P(ninf) (fifth column, cf figure 2). Center: An inhomogeneous Poisson process
with only time-varying, cyclostationary ρ(t) and heterogeneous P(ntrain) reproduces the modulations in ninf, but underestimates
the probability of low ninf due to a lack of clustering. Bottom: A Weibull-renewal process with contact clustering from P(δt) and
heterogeneous P(ntrain) reproduces the high probability of rare outcomes in P(ninf), but cannot reproduce the modulations in ninf
due to a lack of cyclic temporal structure. If, additionally, one relaxes the constraint of heterogeneous P(ntrain) and considers
statistically identical trains, then both surrogate processes underestimate the probability of large ninf related to super-spreading
(see supplementary material).

reproduce the heavy tails of P(ninf) and offspring distributions (see also supplemental figure S3 for
generative processes where individuals share a common rate).

Clearly, models of disease spread can benefit from a generative process that reproduces those relevant
features of human contact patterns, such as the tailored Weibull-renewal process showcased here. However,
although our process reproduces all discussed features, it is built heuristically, and future work is needed to
construct microscopic models that give rise to cyclostationary rates with clustering in a principled way, while
remaining mathematically tractable.

3. Discussion

We analyzed real-world human contact patterns and found that their non-Markovian timings shape
epidemic spread in two important ways. Firstly, they increase the over-dispersion of offspring distributions,
compared to random (Poisson) contact patterns, which (a) leads to more zero- and super-spreading events,
and (b) decreases the probability of an epidemic outbreak from an initial infection. While clustering is
typically associated with super-spreading events, it inevitably causes periods of low contact rate that increase
the probability of zero-spreading events. The resulting increase in extinction probability (despite
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super-spreading) is consistent with previous results, where individual variation of R0 captured the
over-dispersion of empirical offspring distributions [23]. Still, the sources of this variation remained poorly
understood, with candidates ranging from environmental factors (behavior, seasonality) to intrinsic ones
(viral load, susceptibility) [29]. Here, we disentangled two sources based on contact patterns and identified
heterogeneous contact rates and the non-Markovian timing of contacts as relevant factors for
over-dispersion in disease transmissibility.

Secondly, human contact patterns non-trivially modulate the pace of epidemic spread depending on the
latent period, which we attribute to time-dependent but cyclostationary encounter rates. A cyclostationary
rate leads to periods of statistically high and low encounter rates conditioned on a potential infection. How
these periods typically align with the infectious period is affected by the latent period and determines
whether the number of potential secondary infections, and in turn R0, increases or decreases. This
modulation of R0 can thus be understood as a resonance following either a constructive or destructive
interference between a periodically changing contact rate and the disease progression. This resonance is a
new mechanism to explain the previously observed slow-down or speed-up of diffusion processes on
temporal networks due to non-Markovian characteristics [30].

In the main manuscript we focus on deterministic disease progression with fixed periods (Tlat, Tinf), but
we also considered non-deterministic disease progression with gamma-distributed periods [31–33]; the
results are summarized in the supplementary material (figure S1). We find our main conclusion verified for
non-deterministic disease progression: the probability of zero-spreading events is reliably higher for human
contact patterns compared to randomized; however, the modulation of ninf with Tlat is smeared out with
increasing variability in the period durations. Thus, in the unrealistic (but commonly adopted) limit of
exponentially distributed periods, human contact patterns still reduce the robustness of outbreaks but no
longer modulate the pace of epidemic spread.

To reproduce the relevant temporal features of human contact patterns, we introduced non-Markovian
contact dynamics in the form of Weibull-distributed inter-encounter intervals (clustering) or
inhomogeneous encounter rates (cyclostationarity). Previous studies of non-Markovian disease spread [7]
found that clustering drastically affects the epidemic threshold for Tlat = 0, which is caused by the high
frequency of small inter-encounter intervals [34] that, in our context, manifests as a near-zero peak in the
conditional encounter rate (figure 3). Although it was shown that some non-Markovian models can be
mapped onto effective Markov models [35, 36], our results suggest that the non-Markovian and
cyclostationary features of human contact patterns make a similar general mapping elusive. This highlights
the necessity for generative models that are non-Markovian, yet well understood and simple enough to find
broad use in epidemic modeling and beyond.

Our work is a first step towards providing such models. We identified temporal statistics of real-world
contact data that affect disease spread, and faithfully reproduced them with our tailored Weibull-renewal
process. Thereby, our work provides an accessible pathway towards including non-Markovian statistics into
spreading processes, in general, and paves the way to systematically study their non-equilibrium physics.

4. Methods

Extracting contacts from real-world physical proximity data: Consider data composed of a list of
co-locations (physical proximity) described by the tuple (timestamp, user id A, user id B). We first sort the
co-location times into unique lists for all id pairs (A, B) and (B, A). For each valid A, we then iterate over its
list of (A, B) and merge co-location times that span consecutive time steps to construct pairwise contacts
with starting time s and duration D. Combining these contacts yields a list of contacts {(si,Di)}A for each
participant A.

From the lists of contacts, we construct a point-process-like representation for each participant that we
call encounter train (see figure 1). Throughout the manuscript, an encounter refers to the starting time of a
contact. The encounter train of participant A is the time-sorted list of all contact starting times si and can
formally be written as

T(t) =
∑
i

δ(t− si). (2)

The main data set from the Copenhagen Networks Study [12, 20] is based on Bluetooth signals between
phones of individuals that participated in the study. The published data is a list of interactions described by
the tuple (timestamp, A, B, RSSI), where user id B can be negative if the interaction is with a device outside
of the study or an empty scan, and RSSI is the received (Bluetooth) signal strength indicator. The RSSI can be
considered as a proxy for interaction distance, especially since all participants used the same device [37], with
an RSSI≈−80dBm corresponding to a distance of about 2m± 0.5m. Since the data provides a maximal
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RSSI per time window, we consider RSSI<−80dBm to indicate interactions to be further apart than 2m
throughout the full time window [37], and exclude them. Consequently, we filter the raw data to only include
those interactions that are within the study (user id B⩾ 0) and have RSSI⩾−80dBm. See supplementary
material for various controls. The data set covers a duration of tmax = 28days, with a time step of 5min, for
675 encounter trains.
Average time-dependent encounter rate ρ(t): Because encounter trains are a point-process-like

representation, we can define an encounter rate as the number of encounters in a window of size∆t.
Assuming statistical independence between weeks and between participants, we determine the average
time-dependent encounter rate ρ(t) by averaging the number of encounters in a time windows of size
∆t= 1h throughout the week (i.e. first hour of a Sunday until last hour of a Saturday) across weeks of the
experiment and across participants. Statistical errors are calculated on the level of participants using delete-m
jackknife error analysis.
Inter-encounter interval δt: To study temporal clustering and contact bursts, we measure the interval δt

between consecutive encounter times. Since we are interested in the encounter statistics, each encounter has
the same statistical weight independent of its encounter train origin. Consequently, the distribution P(δt) is
simply the distribution over all observed intervals. To estimate statistical errors, we take into account that the
number of encounters nj differs between individual trains (hence also the number of inter-encounter
intervals nj − 1), and evaluate statistical errors on the level of observed intervals using delete-mj jackknife
error analysis withmj = nj − 1.
Conditional encounter rateΨ(τ ): To investigate how contact patterns interact with disease spread, we

measure the encounter rateΨ(τ) upon a hypothetical infection from an encounter at τ = 0. To construct
Ψ(τ), we iterate over all encounters to measure the time-dependent encounter rate with temporal resolution
of the experiment, starting from the encounter time, i.e, τ = t− si = 0, until τ = τmax (we typically chose
τmax = 10 days) or, if tmax − si < τmax, until τ = tmax − si. We then average over all these time-dependent
encounter rates taking into account their different lengths. To estimate statistical errors, we take into account
that the number of encounters nj differs between individual trains by using delete-mj jackknife error analysis
withmj = nj.
Disease model:We consider a disease that progresses in three discrete states upon infection:

exposed-infectious-recovered. The duration Tlat within the exposed state is called latent period and the
duration Tinf within the infectious state is called infectious period. For our main results, we consider the
simple and intuitive case of a deterministic disease progression, where these periods are always the same. This
corresponds to drawing the periods from delta distributions, which is quite different to commonly employed
approximations that draw periods from exponential distributions (as expected for Poisson processes that
describe many state transitions, from radioactive decay to chemical reactions). To confirm that our results
also apply to non-deterministic disease progression, we repeated our analysis for the more realistic case of
gamma-distributed periods [31–33] and obtained consistent results (supplemental material).
Potentially infectious encounters ninf: To avoid assumptions on the probability of infection upon

encounter, we introduce potentially infectious encounters as the number of encounters that occur during the
infectious period of a hypothetical disease. For the deterministic disease progression, we can enumerate the
statistics by iterating over all encounters of the data set. For each encounter si, we check whether the disease
progression still fits into the experimental duration (si +Tlat +Tinf ⩽ tmax), and if true, estimate ninf as the
number of subsequent encounter sj for which Tlat < sj − si < Tlat +Tinf. For the non-deterministic disease
progression, we need to sample disease realizations (see supplemental material). Statistical errors are
calculated again on the level of encounters using the delete-mj jackknife analysis withmj = nj.
Branching process with empirical distribution: To estimate the survival probability from the empirical

distribution of potentially infectious encounters, P(ninf), we construct a discrete-time data-driven branching
process (figure 2(c)). In a first step, each infection causes X∼ P(ninf) potentially infectious encounters. In a
second step, each of these encounters can cause a secondary infection with probability pinf, such that the
number of secondary infections is binomial, Y∼ B(X,pinf). From Zt infections in generation t, we thus
obtain Zt+1 =

∑Zt
i=1Yi infections in the next generation.

Continuous-time branching process with inhomogeneous contacts: To study the pace of epidemic
spread, we construct a continuous-time branching process that captures the conditional encounter rates but
neglects interactions between infected individuals. Here, each infected individual generates an independent
encounter train starting from their initial infection time as an inhomogeneous Poisson process with a
time-dependent rate given byΨ(τ)(figure 3(d)). Only those encounters that occur during the infectious
period cause secondary infections with a chosen probability pinf. Every secondary infection then generates a
new encounter train and so on. For simplicity, we restrict our example to deterministic diseases with fixed
latent and infectious periods.
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Point process models to approximate human contact patterns: To disentangle the effect of distinct
features of human contact patterns on the statistics of encounters, we constructed point-process models that
captured (i) the distribution of rates across individuals, (ii), a time-dependent average encounter rate, and
(iii), the distribution of inter-encounter intervals, or a combination thereof (see supplementary material for
comparison of combinations).

To reproduce the inter-individual variability, we consider the same number of encounter trains as present
in the data and weight each train i with their relative rates, i.e, wi = ntrain,i/⟨ntrain⟩, where ⟨·⟩ is the average
across trains.

To reproduce a time-dependent encounter rate ρ(t), we employ thinning [38]: From a hidden process
with rate maxt[ρ(t)] we accept events at time t with probability p(t) = ρ(t)/maxt[ρ(t)]. This procedure can
formally only be applied for memory-less hidden processes, i.e. Poisson processes, in which case it results in
an inhomogeneous Poisson process. To further reproduce heterogeneous rates in the inhomogeneous
Poisson process, we rescale the rates of the hidden processes, ρi(t) = wi ρ(t), which keeps p(t) fixed.

To reproduce the empirical distribution of inter-encounter intervals, we construct a Weibull-renewal
process: inter-encounter intervals are drawn from a Weibull distribution with scale parameter λ and shape
parameter k. The Weibull distribution was parameterized by a fit to the data yielding (k,λ) = (0.3690,3030).
To further reproduce heterogeneous rates in the Weibull-renewal process, we notice that the mean rate of a
Weibull-renewal process is given by ρi = [λiΓ(1+ 1/ki)]

−1, such that we can simply choose ki = k and
λi = λ/wi.

To combine all features in a single model, we construct a tailored renewal process: A Weibull-renewal
process with heterogeneous rates and additional (heuristic) thinning. We start with a set of hidden
Weibull-renewal processes with ki = k, λi = λ/wi, and time-dependent acceptance probability p(t) with
time-average p(t). The mean rate of each process is ρi = p(t)wi/λΓ(1+ 1/k). Since we cannot fit (k,λ) of the
hidden process, we further constrain the parameters with the mean rate from data, i.e.
ρ(t) = ⟨ρi⟩= p(t)/λΓ(1+ 1/k), with ⟨wi⟩= 1 by construction. Since ρ(t)/p(t) =maxt[ρ(t)], we thus find
λ= [maxt[ρ(t)]Γ(1+ 1/k)]−1, such that k remains the only free parameter. We obtained our best estimate of
k by minimizing the Kullback–Leibler divergence [39] between the distribution tails (δt≳ 0.5days) of model
and empirical P(δt), finding k≈ 0.24.
Jackknife error estimation: To estimate statistical errors of our results, we use jackknife error estimation

while carefully taking into account the size of the left-out data set. The basic idea of the jackknife method is
to estimate from some data X= {x1, . . . ,xg} the variance of an observable Ô= f(X) using a resampling
approach [40]. Jackknife samples Oj are generated by systematically leaving out data, e.g. Ôj = f(Xȷ̄) with
Xȷ̄ = {x1, . . .,xj−1,xj+1, . . .,xg}. Importantly, here each xj can be a block of (differently many) data points.
While typically theses blocks have the same sizem (delete-m jackknife), they could have different sizesmj

(delete-mj jackknife), which is relevant for some of our cases. From the jackknife samples, one can show that
bias-reduced estimators of the mean and variance are given by [41]

ÔJ =

g∑
j=1

1

hj

(
hjÔ− (hj − 1)Ôj

)
,

σ̂2
J =

1

g

g∑
j=1

1

hj − 1

(
hjÔ− (hj − 1)Ôj − ÔJ

)2
, (3)

where hj = (
∑g

i=1mi)/mj, and Ô= f(X) is the naive estimate. For blocks of equal size,mj =m, we have
hj = g and this simplifies to

ÔJ = gÔ− g− 1

g

g∑
j=1

Ôj,

σ̂2
J =

g− 1

g

g∑
j=1

Ôj −
1

g

g∑
j=1

Ôj

2

. (4)

In our case, the data X is the set of all encounter trains and in the resampling step we leave out individual
encounter trains. Since trains include differently many encounters, this can result in removing blocks of
different sizes. In particular, all observables that derive from the number of encounters, e.g. ninf or P(ninf),
require the delete-mj analysis, equation (3), to estimate the statistical error. On the other hand, for
observables that depend on time-binned data, e.g. the time-dependent rate, each encounter train has the
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same size given by the number of time bins during the recording such that the delete-m analysis,
equation (4), is sufficient to estimate the statistical error.

Data availability statements

The data that support the findings of this study are openly available [13, 20] and our code is available at the
following URL: https://github.com/Priesemann-Group/contact_pattern_outbreak [42].
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5 How contact patterns destabilize and modulate epidemic outbreaks

Comparison with real-world dispersion

In the published manuscript, our focus was to gain a mechanistic understanding of contact
patterns, and how they give rise to dispersed offspring distributions. Because of this focus,
we did not compare the amount of dispersion that can be attributed to contact patterns with
dispersion values observed from real-world measurements.

This is of course a question of general interest, but to answer it, one faces several
challenges. For example, one challenge is that up-to-date real-world data for the basic
reproduction number R0 —and more so, its dispersion—are hard to come by: Because R0

does not just depend on the transmission properties of the pathogen, but also on the
large-scale behavior of the susceptible population, literature values become outdated as
societal habits change over time [138]. Further, real-world estimates of k are likely biased
because they are often based on single outbreaks with fewer than 100 individuals [139, 140].

To our knowledge, since the seminal work by Lloyd-smith et al. in 2005 [139], no
comprehensive overview of dispersion values has been published. We leave the cultivation
of such an updated overview for future work, but, as a preliminary result, compare in the
figure below our model to the existing literature values. Our estimates of dispersion are on
the lower end of the references (in terms of 1/k), likely because our model does not yet
account for variable transmission probabilities between individuals, as could arise from
differing viral loads. However, because our estimates are already on the right order of
magnitude, this supports the hypothesis that contact patterns constitute a baseline of
dispersion, and properties specific to the pathogen modulate from this baseline. This idea is
explored in more detail in the discussion (Section 6.2).
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Figure 5.1:Howdoes dispersion caused by contact patterns compare tomeasurements of real-world disease
outbreaks? We follow the approach by Lloyd-smith et al. [139] to calculate all shown quantities as a function
of the dispersion parameter (k = 1/α in the notation of our manuscript). A: Transmissions caused by the
most infectious 20% of cases (i.e. have the highest individual reproduction number). For a homogeneous
population, all infection chains have the same R0 and k → ∞ (lower right, consistent with completely
randomized encounter trains, not shown). B: In this case, the proportion of transmissions due to a given
proportion of cases is the same for all cases (straight line). For highly dispersed diseases, a small proportion
of cases causes a large fraction of the total transmissions (left part of the graph). Models correspond to
our reference examples of the two-step branching process with Tinf = 3 days. When the model has variable
onset times, dispersion is further increased (cf. supplementary material in appendix C for details on the non-
deterministic disease progression). Data sources: supplementary material of [139], and [141, 142]. Values
should be interpreted with caution, see notes within respective references. Visualization inspired by figures
1b and 1c in [139].
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6 Discussion

In this thesis, we investigated spreading processes on a structural backbone, and how distinct
structural features interplay with the emergent dynamics.

We first developed inference tools that allow an unbiased treatment, taking into account
that each analysis has to be tailored to the question: In Chapter 2, we developed a software
package to infer the distance to criticality in a sub-sampling invariant manner, which is of
particular interest to the neuroscience community: Ever-more-powerful techniques enable
recording thousands of neurons in parallel, but full spatial sampling in vivo is still limited to
few exemplary organisms with comparably small brains. In Chapter 3, we demonstrated an
application and compared the Mr-estimator to the conventional method of probing
criticality through power-law distributions. We showed that power-law distributions are no
robust indicator of criticality, and that avalanche-analysis based on spiking data are less
susceptible to sampling bias than from coarse measures, such as the Local Field Potential.
Revisiting the literature, these two results can resolve a long-standing controversy.

In Chapter 4, we employed a combination of precision-engineered in vitro cultures and
phenomenological in silico models at different scales to elucidate how modularity and
background input determine the collective dynamics of a neuron population. This
combined approach strikes the balance between biologically plausible single-unit neural
dynamics, near-perfect spatial sampling, control over the network topology, and, crucially,
mechanistic tractability. Our work confirmed that i) a heterogeneous topological backbone
is a key ingredient for cultures of dissociated neurons to desynchronize, and ii) it showed
that noisy background input can act as a control parameter of synchrony.

Switching context, in Chapter 5, we considered a real-life human contact network, and
developed a statistical description that enabled us to study the interactions between this
temporal network and disease spread. Notably, we drew heavy inspiration from the
previous chapters— e.g. in the form of spike-trains as a minimal, point-like representation
that propagates the relevant, non-Markovian statistics of contact patterns into the statistics
of disease spread. This enabled us to identify how the memory in contact behavior
destabilizes epidemic outbreaks, modulates the basic reproduction number, and causes
over-dispersed distributions of secondary infections. Our results stress the relevance of
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contact patterns for disease modeling, and the need for empirical studies that measure
contact data (across social contexts and geographic regions) and make them openly
available.

Throughout all chapters, we employed causal models constrained by data, where we
profited from the universal yet flexible nature of this approach. Both topics, the collective
activity of neuronal systems and disease spread on contact networks, evolve around a
spreading process interacting with a structural backbone. This naturally leads to
similarities, which we could exploit during the investigation, but also to subtle-yet-key
differences that we needed to take into account when developing our analysis. Some
examples of these similarities, differences and, sometimes, curious consequences are
discussed in the following.

6.1 A question of perspective

Despite its complexity, human behavior is surprisingly predictable [120, 125, 126]: For
example, every night at 19:30 you will find me feeding my dog. Yet, predicting collective
behavior such as the effectiveness of non-pharmaceutical interventions or election results
from conventional polling is becoming increasingly difficult [143].

6.1.1 The micro-macro problem

Part of this seeming contradiction is due to perspective: The microscopic behavior of
individual people can in principle be well inferred (using social surveys and behavioral
experiments), but the relation to macroscopic phenomena on the population level generally
remains non-trivial [144]. Similarly, the dynamics and responses of a cultured neuron can
be well determined (e.g. through patch-clamping), but the formation of bursts is an
emergent phenomenon involving more than a superposition of individual neurons [83].

One reason for this micro-macro problem [144] is that the microscopic properties can be
widely distributed— in stark contrast to many classical examples from statistical physics,
such as condensation in a homogeneous particle system [Ps12]. The variability of
microscopic constituents makes it hard to derive a macroscopic description for the
ensemble, which has motivated approaches where it can be directly implemented (like
agent-based modeling [145] or in silico simulations of networks of spiking neurons [146]).
These approaches are not as rigorous as traditional analytic formalisms, but when taking a
statistical perspective— considering an ensemble of trajectories, initial conditions, and
realizations— they still allow us to gain a principled insight into the underlying
mechanisms. In certain cases, as we demonstrated in chapters 4 and 5, distinct aspects of
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the microscopic dynamics can thereby be linked to features of the emergent, meso- and
macroscopic dynamics.

6.1.2 Inference and causal modeling

When case numbers of the Covid-19 pandemic in Germany were on the rise in early 2020,
we published a study on the effectiveness of political interventions that linked a series of
assumed change-points of a simple model to the (macroscopic) changes of daily new
cases [Ps8]. Touching on a sensitive political topic, the work subsequently caused a bit of
controversy, which highlighted how important it is to communicate model assumptions
and limitations clearly [Ps11, 147].

For example, a key variable that often appeared in public media was the reproduction
number R to describe how many further infections are caused by an infected individual
(think “cases per case” [138]). What usually did not make an appearance is that R represents
the control parameter of a reproductive process and that its meaning depends on this
assumed process. This issue is often hidden because the focus lies on inferring R, rather
than finding out its role as a model parameter. After all, that role seems a priori clear:
Irrespective of the details, large R should imply an increase in case numbers, and small R
should imply a decrease. When inferring the parameters of a causal model, we thus control
some other aspect of the system, such as the average number of contacts, and then quantify
the change we caused by measuring R. In other words, the model encodes our
understanding of the mapping of a potentially unknown system onto a well-known process,
and we seek the parameters that best describe the data: If this unknown system was a
branching process, then its branching parameter would be 0.98. However, we need to keep in
mind that the system might not be a branching process, with a simple control parameter R.

To illustrate this, it helps to differentiate the various meanings of the reproduction
number: For example, the basic reproduction number R0 is the epidemiologic metric to
describe the number of secondary cases due to a single infected individual in a completely
susceptible population—e.g. the first case at the start of an outbreak. It is an indicator for
transmissibility, influenced by many factors like viral contagiousness or regional
differences in contact behavior, but, because the susceptible fraction of the population
changes during an outbreak, and becauseR0 lacks a time-unit, it is not a direct indicator for
the pace of epidemic spread or for the effect of vaccination campaigns [138]. This role is
better filled by the effective reproduction number Reff, which depends on R0 but also takes
into account immunity and that the behavior of the population might change during an
outbreak [138]. It is often expressed with an explicit time-dependence Reff

t , to describe the
current stability of the system as outlined above. Because Reff

t is a heuristic description, it
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reflects hidden factors, but it can only be interpreted in the context of the chosen model
and its assumptions (such as e.g. the generation time [Ps11]). Therefore, Reff

t generally
remains hidden, and it cannot be trivially inferred from the daily new cases. This becomes
clear when considering that cases are detected and reported only with a certain probability
so that the observed reproduction number Robs

t cannot simply be the control parameter of a
branching process of observed cases; in order to faithfully account for effects like
undetected infection chains, more involved models are required [Ps6, Ps7]. Together,
although these seem like mere word-level differences, they offer great potential for
misinterpretation [138] and reiterate that all models have limits.

6.2 Dispersion, an example for the role of non-Markovian dynamics

The simple branching process is a classic example of a model with the Markov property,
where possible future states only depend on the current state, but not on past ones.
However, the history of their past states is relevant for many processes in nature, which
motivates the question of how Markovian models compare to non-Markovian ones, and
under which conditions they might become inadequate. Examples where this has been
investigated range from gene-regulatory networks [129] to quantum systems [130], polymer
reaction-kinetics [131], particulate flow [132], diffusion on networks [133], credit
rating [134], decision making [135] and epidemic spreading [136], and they cover a broad
range of fields from biology to physics, chemistry, finance, neuroscience, and
epidemiology. With Chapter 5, we add to this list the interplay of contact patterns with
disease spread. As we showed, one aspect of disease spread that cannot be explained by a
memoryless process is the over-dispersion of offspring distributions1.

6.2.1 Contact patterns cause dispersion

It has been long known that empiric distributions of secondary infections are wider than
expected from a Poisson distribution, but, so far, the sources of this over-dispersion remain
largely elusive [139]. One likely cause is the variable probability of disease transmission as
viral shedding varies from one person to the next. This viral heterogeneity has been put
forward as themain cause for dispersion and super-spreading in the context of the Covid-19
pandemic [141, 149]. However, because transmissions of infectious diseases occur through
physical proximity, contact patterns necessarily must play a central role, too.

1 Note that we considered contact data from an uninformed and fully susceptible population. Accordingly, we
report dispersion for R0, as common [139, 148].
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Our approach in Chapter 5 builds on this intuition and isolates those contributions to the
dispersion that derive from contact patterns while remaining agnostic about the probabilistic
uncertainties that stem from the transmission. We find that the over-dispersion deriving
from contact patterns can be attributed to i) the heterogeneity across individuals, that is, the
personal differences in each participant’s contact behavior, and ii) the non-Markovian timing
of contacts, e.g. regularly reoccurring events such as a Monday-afternoon seminar.

A natural question is how our estimates for the dispersion parameter k compare to
typical empirical values2. Depending on the disease, k inferred from data of traced cases
ranges from k ≈ 0.16 (SARS) to k ≈ 1.37 (Pneumonic plague) [139], with estimates for
Covid-19 around k ≈ 0.1 [141, 148]. Our results for a generic disease (with latent and
infectious periods Tlat = 2 and Tinf = 3 days) are well within that region, yielding k ≈ 1.3

when all considered sources were included. For a control that neglected contact timing but
considered that individuals have differently many contacts, we found k ≈ 3.3, very much
in line with a comparable case in [141]. Our estimates of k are likely on the upper end of
literature values because of finite-size effects: For our dataset [13], a hypothetical
super-spreading event could not extend beyond the recorded 675 individuals, but real-life
super-spreading events have been found to cause more than a thousand secondary
infections after mass-gatherings, with even more participants [150]. Also considering that
estimates of k tend to be biased upward [140], this highlights the severity of the effect of
contact patterns. Together, our results indicate that viral heterogeneity of infectious
diseases is not the sole cause of dispersed offspring distributions, and that non-Markovian
contact patterns contribute considerably.

6.2.2 Encounter-trains: a powerful representation of contact networks

Our results on dispersion were enabled by a data-efficient description of the contact
network that was inspired by the spike-trains common in neuroscience. Our
encounter-trains reduce physical contacts (extended periods of time-varying proximity
between pairs of individuals) to a series of time points for each individual—maintaining
important statistics of the underlying contact network.

At first glance, encounter-trainsmight seem like a too strong simplification, whereas spike-
trains are the canonical way for describing outgoing neuronal signals. For example, because
we binarize via thresholds, contacts with long durations contribute as much as short ones, or

2 In Chapter 5, we expressed the dispersion of the negative binomial distribution viaα, the increase in variance
relative to a Poisson distribution. This facilitates fitting, but in the literature, dispersion is more commonly
reported via k = 1/α, where k → 0 indicates strong dispersion, k = 1 recovers a geometric distribution,
and k → ∞ approaches the Poisson distribution [140].
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close ones as much as far ones (within the respective thresholds). However, note that spike-
trains are a simplification, too. Although (most) neurons do spike, from the spike-times
alone it remains unclear what effect the spike has on the postsynaptic neuron. For instance,
whether a spike will increment or decrement the postsynaptic membrane potential depends
on the type of the presynaptic neuron. Also, the strength of postsynaptic currents is not
represented by spike-trains, although it is relevant for neural activity propagation, similar to
the duration of contacts for disease spread.

Despite these simplifications, both spike-trains and encounter-trains faithfully capture
many relevant statistics and effects, including non-Markovian ones: Refractory periods,
history dependence, inter-event-intervals, synchronization, reoccurring patterns, and other
spatio-temporal structures. As an example to illustrate how underlying phenomena
manifest in encounter-trains, consider a gathering, where an individual meets a larger
group. It might appear that people meeting in a close space, at the same time, and over an
extended period, could not be faithfully represented. However, our thresholding filters for
encounters that are relevant (close enough and long enough), and because gatherings are
coordinated events, the time between encounters will be short, as all participants arrive
roughly at a designated starting time. When looking at the ensemble of encounter-trains,
the number of encounters (due to pairs of individuals coming together in the gathering)
scales with group size, ∼N2, clearly marking such synchronized “contact bursts” [123] in
the overall encounter rate. The close resemblance between such contact bursts and the
neuronal bursts of in vitro cultures highlights how similar the two representations are: Both
prioritize the timing of events, while spatial aspects and the identity of interaction partners
are not expressed explicitly. As such, inferring the connectivity of a neuron population
from recorded spike-trains is a topic of ongoing research [151]. For the encounter-trains, we
consciously prioritized the onset times over identity because this i) allows aggregating
statistics over individuals and ii) treating repeated contacts the same as unique ones is a
decent approximation for low transmission probabilities.

As a final consideration, note that a point-like representation opens the door to
constructing surrogate contact data via generative processes. We demonstrated such a
generative process that features non-Markovian encounter times, which produces
encounter-trains that closely resemble real-life data, and reproduces key statistics relevant
to disease spread. Our tailored renewal process is derived heuristically but provides a basis
for deriving such processes from first principles [152], which will enable a new class of
epidemic models to close the gap between macroscopic compartmental models (which
mostly ignore contact patterns) and microscopic agent-based models (which have to
explicitly implement them).

108



6 Discussion

6.2.3 Next steps

We introduced a minimal representation of contact data that enabled us to treat disease
spread from a novel perspective, in which contact patterns are first described independently
from the disease spread, and required details (both, of contact patterns and disease spread)
can be added in a second stage. We found that, independent of many details of the assumed
disease, the non-Markovian timing of encounters causes over-dispersion with a
subsequently high probability of “rare events” (super-spreading, but also zero-spreading).
As a control, we investigated non-deterministic disease progression (where latent and
infectious periods are random variables), which decreased the modulation of R0

(supplementary material in [Ps2]), but, on the other hand, preliminary analysis suggested
that the dispersion of offspring distributions was further increased. Notably, all our
identified sources of dispersion appear complementary to viral heterogeneity [141].

This motivates an intriguing hypothesis, when considering together viral heterogeneity
and sources of dispersion due to contact patterns: Because contact patterns form the
backbone of disease spread, they alone should explain dispersion values that fall within the
range of empirically observed values— as we found in Chapter 5. Then, relative to the
baseline set by contact patterns, the variability that depends on a particular disease (viral
load, infectiousness, transmission probability, latent and infectious periods) would further
fine-tune the dispersion. This calls for a straight-forward next step. A plausible approach to
include viral heterogeneity would be to model transmission probabilities dependent on
contact duration, which could be easily added as a “weight” to each encounter. Because we
already identified complementary sources of heterogeneity that cause dispersion (the
variability between individuals, non-Markovian timing, and variable disease stages), this
might yield a complete picture: Adding durations as a proxy for heterogeneous
transmission probabilities into our framework could enable us to fully disentangle the
origin of the wide range of empirically observed dispersion.

6.3 Sampling bias

In this thesis, we encountered and treated various forms of sampling biases. Sampling biases
generally arise when the measurement or recording technique leads to a non-representative
view of the data. For instance, in Chapter 3 we coined the term coarse-sampling to describe
an overlapping field of view (e.g. of the recording electrodes) which can bias the measured
avalanche distributions of neuronal activity. However, we do not see this as a flaw of the
recording technique, but argue for embracing that sampling bias is a natural consequence
of the data-acquisition. In many cases, a full observation of all involved actors in a system
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is unlikely, leading to sub-sampling (Chapter 2), or more commonly, limited resources and
general constrains lead to scarce data. In Chapter 5 we dealt with scarce data through a
statistical description that aggregates data across those details that are not most relevant for
the question. In this case, we tailored the analysis (of existing data), model and method to
the question. However, it may also be productive to re-evaluate existing methods, as we did
in Chapter 3.

6.4 Revisiting the working point of neuronal systems

The debate about the dynamic working point of the brain has endured for over two
decades [29]. In particular, the controversy around the critical brain hypothesis is not just
caused by experimental results, but conceptional questions remain, too. How are diverging
correlations near a second-order phase transition compatible with the computational
requirement for reliable responses? What is the type of this transition [153, 154]? And is this
even a useful question to ask, given that neural dynamics could be seen as a mere “footprint
of information processing” [155] that allows us only indirectly to probe how brain functions
arise?

6.4.1 A unified picture of neuronal avalanches

In light of the persistent controversy, the results in this thesis, andChapter 3 in particular, add
to a growing list of efforts to consolidate the differing perspectives and conflicting evidence
(see e.g. [37] for a recent example). An emerging theme is that the brain’s “working point”
is not a point. More likely, neuronal systems operate in an extended region in the (high-
dimensional) vicinity of, rather than at, a critical point. Such an extended region could be
created by a heterogeneous (modular-hierarchic) structure [154, 156] that is shaped through
activity-dependent adaptation [98] and external input [157, 158]. Notably, this interpretation
is consistent with established concepts like the neural Griffiths phase [59], dynamic adaptive
computation [40], integration-segregation balance [159], or a hierarchy of timescales [160,

161]—and it is supported also by our results.
Considering the type of criticality associated to neuronal avalanches [23, 154], one

controversy was stirred by contradicting experimental evidence. Because critical systems
are scale-free, the size- and duration-distributions of avalanches in a critical system are
expected to follow a power-law. However, although power-law distributions have become a
hallmark of brain dynamics, appearing both in vitro and in vivo, exceptions have been
found consistently— in particular, from spiking-data of awake cortex in vivo [44, 162, 163].

Due to the coarse-sampling effect (Chapter 3), this can now be unified into a consistent
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picture of neuronal avalanches: On the one hand, awake cortex is likely poised in a slightly
subcritical regime, flexibly tuning to task-demands while maintaining a safety-distance
from instability [40]. This regime can be perturbed by neuro-modulators [164, 165], or
under anesthesia—blocking relevant asynchronous thalamic input, leading to more
synchronous activity [166, 167] and scale-free avalanches. On the other hand, mature
in vitro cultures show scale-free distributions consistently, which can be explained by their
lack of background input [32]. Notably, many studies reported power-law avalanches for
awake animals in vivo, incompatible with this picture (see Table A in Appendix A for an
overview). However, because many of these results derive from measures like local field
potentials, they are now compatible with a subcritical cortex due to the coarse-sampling
bias.

According to this perspective, when (super-) critical systems such as developing cultures
are exposed to the right input, they should deviate from their characteristic bursting
behavior. The idea to stimulate cultured neurons to control their emergent dynamics is not
new [168–171]. However, in Chapter 4 we provided the input through precise optogenetic
stimulation, which enabled us to asynchronously target individual neurons with relative
ease compared to electrical methods [172]. Further, our approach mimics noisy
background activity, as opposed to aiming for a stimulus-evoked response [169, 173], which
further differentiates it from previous studies that used electrical stimulation and often
required a closed-loop setup [170, 174].

As the core mechanism to explain the input-dependence, we proposed short-term
depression [175, 176], and that the depletion of synaptic resources affects the
(heterogeneously connected) neuron population unevenly. Although the short timescales
of this mechanism and our experiments limit our scope to transient changes, our results
still highlight the role of heterogeneous structures into which cultures grow. Here we
created the heterogeneity by forcibly growing the cultures into a modular topology, which
enabled noisy input to effectively act as a control parameter of synchrony.

6.4.2 Next steps

From our results, two complementary next steps arise naturally. First, given the dynamical
benefits attributed to hierarchical organization [88, 177, 178], a next step will be to adapt our
setup to larger networks consisting of 4× 4 modules arranged into nested 2× 2 rings. Our
proposed mechanism should extend to those systems, and because of the
hierarchical-modular structure, this setup will allow us to probe how far synchronization
extends across the hierarchical levels, as a function of the asynchronous input. Embedding
synchronization in the context of integration-segregation balance [159], even minute-long
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stimulation should shift the cultures from an integrated state (corresponding to
system-wide synchronization across the hierarchy) towards more segregated states (where
the levels of modules that synchronize should depend on the input strength).

Second, the durations of our recordings were limited to several minutes. However,
activity-dependent structural changes and self-organization of topology take place on
longer timescales [98]. Therefore, we here constrained our scope to short-term changes of
dynamics, and a predetermined topology. In a next step, optogenetic stimulation should be
applied over the whole course of development. This is already being investigated in
collaboration with Neef et al.3, and it has also been studied in the past using electrical
methods e.g. to investigate learning in cultures [169, 173]. Long-term stimulation is
particularly interesting because it has been suggested that the underlying structure should
reflect the emergent dynamics, and, driven by long-term adaptation mechanisms, vice
versa [32, 159, 179]. In particular, near-critical dynamics would go hand-in-hand with an
underlying network structure that is also poised in-between lattice-like order and
randomness. This idea invites careful speculation about tentative long-term stimulation
patterns: For example, when assuming a Hebbian learning rule, an asynchronous pattern
would foster long-range projections, whereas a stimulation with a wave-like pattern
(mimicking network bursts or retinal waves) would foster local connections. Clearly, the
required experimental setup needs to permit long-term (optogenetic) stimulation with
simultaneous activity recordings, which poses tremendous engineering challenges [171].

However, these challenges are likely only addressable with in vitro approaches, again
stressing their potential as an exciting and promising research avenue.

6.5 Conclusion and outlook

In this thesis, we investigated examples of spreading processes interacting with an
underlying complex network. For a modular network of dissociated neurons in vitro, we
showed that noisy background input can act as a control parameter of synchrony. As a
tentative next step, future work should focus on longer timescale, tracking such a system
over days and weeks to further elucidate how modular and hierarchical structures form in
response to a given activity pattern (Section 6.4.2). For a temporal contact network of
university students, we showed how the temporal stages of disease progression can interact
with human contact patterns in a principled way. We found that real-life contact patterns
can modulate the reproduction number (by roughly up to 30%) and pose a source of

3 Neef and colleagues have independently developed a refined in vitro setup and analysis pipeline, which enable
long-term optical stimulation with various patterns, as well as simultaneous recordings. We are currently
working together to analyze preliminary data.
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over-dispersed offspring distributions that has so far received little attention in the literature.
With our novel framework of encounter-trains, it will be straight-forward in future work to
model contact patterns and viral heterogeneity simultaneously (Section 6.2.3). This should
allow us to fully disentangle the sources that cause over-dispersion in the spread of
infectious diseases, with possible implications for the design of future non-pharmaceutical
interventions.

For both these phenomena, non-Markovian dynamics played a crucial role. Although we
listed a few specific examples where models that take non-Markovian dynamics into
account have been compared to memoryless formulations, this is still a largely unexplored
field (Section 6.2). We are convinced that it will receive more attention in the future, which
will lead to novel, data- and simulation-driven approaches like we demonstrated here.
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A Supplementary material for “Sampling
effects and measurement overlap can bias
the inference of neuronal avalanches”



Supplementary Information
Please note that a double-column version of this SI with
working hyperlinks is available on arXiv:1910.09984.

1.1 Sampling bias remains under alterna-
tive topologies

The network topology used in the main paper is local: on
average, each neuron is connected to its nearest 𝐾 = 103

neighbors. It is of interest to check if alternative topologies
can impact the distinguishability of the underlying dynamic
state under coarse-sampling.

For that, we select two additional topologies. The first
(”Orlandi”) mimics the growth process of a neuronal cul-
ture. In short, axons grow outward on a semiflexible path
of limited length and have a given probability to form a
synapse when they intersect the (circular) dendritic tree of
another neuron. Thereby, this topology is local without
requiring distance-dependent synaptic weights (refer to [1]
for more details). The second (”Random”) implements a
purely random connectivity, with each neuron being con-
nected to 𝐾 = 103 neurons. Note that this is an unrealistic
setup as this topology is completely non-local.

We find that, under coarse-sampling, reverberating and
critical dynamics remain indistinguishable with the alter-
native topologies (Fig A, left). Meanwhile, under sub-
sampling, all dynamic states are clearly distinguishable for
all topologies (Fig A, right).

1.2 Influence of the electrode field-of-view
In the main paper we considered that the contribution of a
spiking neuron to the electrode signal decays with distance
𝑑 as ∼ 1/𝑑 (see Ref. [3, 4]). The precise way neuronal
activity is recorded by extracellular electrodes depends on
many factors such as neuronal morphology and the level of
correlation between synapses [2, 4]. Because it is difficult
to account for all relevant factors, we instead prioritized a
simple, mechanistic approach.

In more detail, we are interested in the impact of a
spike as a function of the distance to the electrode. Thus,
two main contributions arise: first, the transmembrane
currents along the pre-synaptic neuron and the currents
at the synapses and post-synaptic neurons (which do not
necessarily cause further spikes). This creates a distance-
dependence of the LFP contribution that depends on the
neuron’s morphology and the connectivity profile. Second,
the LFP signal has a distance-dependent decay depending
on whether the source corresponds to an electric monopole
(1/𝑑) or dipole (1/𝑑2). The particular decay was found to
depend, among other factors, on neuron type and morphol-
ogy, and it effectively varies from 1/𝑑 near the soma to
1/𝑑2 (and steeper) in the far-field limit [2–4]. Together, a
more realistic LFP model would need to incorporate the
connectivity profile of the neurons and the signal decay
(the final effect of a neuron would be a convolution of both
functions).

In our simplified model, we neglect neuron morphol-
ogy (because our simple binary neurons only feature a
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Fig A: Effect of alternative network topologies.
Avalanche-size probability 𝑝(𝑆) from coarse-sampled activity
(left) and sub-sampled activity (right) for subcritical, reverber-
ating and critical dynamics. Top: results for the topology used
in the main paper (”Local”). Middle: results for a topology
that mimics culture growth [1] (”Orlandi”). Bottom: results
for a random topology. Under coarse-sampling, reverberating
and critical dynamics are indistinguishable with all topologies.
Parameters: 𝑑E = 400 µm and 𝛥𝑡 = 8 ms.

single compartment) and the connectivity profile (because
our topology is homogeneous and local). Thus, our imple-
mented distance-dependence of the electrode signal merely
serves an effective description that sensibly depends on the
considered population.

As a sensitivity analysis for our effective description, we
here study the impact of a varying electrode field of view
(Fig B). An important detail that we neglect in the main
manuscript is that the 1/𝑑 contribution does not extend
into the far-field limit (beyond 100–1000 µm) [2, 3]. We im-
plemented various different effective distance-dependencies,
which are motivated by the work of Einevoll and colleagues,
especially Fig 2D of Ref. [2]. Note however, that the re-
ported shape function describes the LFP contribution as a
function of a neuron receiving input, whereas, in our case,
the potential describes the contribution of a spiking neuron.

In particular, we checked 𝛾 = 2 (Fig B, right column),
which represents a very narrow electrodes’ field of view. In
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Fig B: Effect of changing the electrode contribution of a spiking neuron at distance 𝑑. a: Biophysically more plausible
distance dependence of LFP, reproduced from [2]. b: Sketch of distance dependencies of tested effective electrode contribution
that are motivated by (A). See accompanying text. Large decay exponents 𝛾 correspond to a narrow field of view of the electrodes
(right column). When the transition from shallow to large exponents occurs at smaller 𝑑, electrodes can record fewer units and
measurement overlap decreases. Eventually, distributions become distinguishable. As a notable side-effect, also the cut-off near
𝑆 = 64 starts to vanish.

this case, avalanche-distributions become distinguishable,
but the particular shape, cut-off and the amount of overlap
between states again depends on the electrode distance and
time-bin size.

We also checked contributions with a shallow exponent

(𝛾 ≤ 1) near the electrode, which changes into a steep expo-
nent (𝛾 = 2) beyond a certain distance. For shallow expo-
nents that reach far (transition at 1000 µm, Fig B d, h, l),
the distributions of all considered states overlap, as in the
main manuscript. Notably, the change in shape due to
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panels.

changing the inter-electrode distance is even more severe
than for 𝛾 = 1. For shallow exponents that do not reach
far (transition at 100 µm, Fig B e, i, m), distributions start
to be distinguishable. However, in the usually considered
range of avalanche sizes extending up to the number of elec-
trodes (𝑆 = 64), reverberating and critical dynamics still
tend to overlap (E, M). Only for short time bins (𝛥𝑡 = 2 ms)
along large inter-electrode distances (𝑑E = 400 µm) are the
two states distinguishable (I).

Summarizing Fig B, we find that a main cause of col-
lapsing avalanche distributions is a large electrodes’ field
of view. As the field of view becomes narrower, the rela-
tive contribution of the closest neurons to the electrode in-
creases, and coarse-sampling becomes more similar to sub-
sampling. The cut-off at 𝑆 ∼ 𝑁E vanishes for steeper de-
cays (large 𝛾), and the different dynamic states become
distinguishable.

For completeness, we performed further checks which
follow the same reasoning. First, instead of changing expo-
nents, we implemented a hard cut-off, beyond which neu-
rons cannot contribute to an electrodes’ signal (Fig C). We
again found that, for cut-off values (≥ 1 mm), our main
finding that avalanche distributions from different dynamic
states are hardly distinguishable is unaltered. For short-
range cut-off values that approach the distance between

neurons (𝑑N = 50 µm), distributions become distinguish-
able (not shown). This effect is similar to what we saw for
increasing the decay exponent 𝛾 → 2.0, where only individ-
ual neurons remain in the field of view of the electrode. In
both theses cases, coarse-sampling starts to observe single-
unit properties and becomes similar to the case of applying
spike detection (here, sub-sampling).

Second, as our electrode potential is only an effective
description and cannot be directly compared to Ref. [2], we
additionally considered a hypothetical decay with exponent
𝛾 = 1.5 and repeated the analysis on different topologies
(Figs. H and I). In all cases, 𝛾 ≥ 1.5 causes the cut-off near
𝑆 = 𝑁E to vanish, and an increase of 𝛾 weakens the coarse-
sampling effect. Note, however, that even with relatively
narrow field of view, avalanche distribution from coarse-
sampling still differ from those of spike analysis.

The above changes of the electrode model indicate that
in real electrode recordings both effects are present, sub-
sampling and coarse-sampling. In particular, the resulting
avalanche distributions change on a continuous scale where
our descriptions of coarse-sampling and sub-sampling are
the extremes. Underlying dynamic states are better distin-
guishable when the sampling is “closer” to sampling single
units instead of weighted averages — and when the mea-
surement overlap that is characteristic to coarse-sampling
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goes to zero.
Lastly, we want to caution about a peculiarity of 1/𝑑1.

From a geometric point of view, one has to consider how
the number of neurons per volume element increases with
distance from the electrode. In two dimensions, the number
of neurons contained in a thin ring around an electrode
scales 𝑁 ∼ 2𝜋𝑑. If 𝛾 = 1, the contributions of far-away
neurons could be as strong as the contributions of close-by
neurons, especially if activity is correlated.

In more detail, let the ring be of inner radius 𝑑 and
outer radius 𝑑 + 𝜖, then its area is 𝐴 = 2𝜋(𝑑𝜖 + 𝜖2). At a
constant density 𝜌, the number of neurons in this ring is
given by 𝑁 = 𝜌𝐴, so that, up to a constant, 𝑁 ∼ 2𝜋𝑑𝜖𝜌.
Let 𝑥𝑖 = {0, 1} denote the state of a single neuron. Here, we
assume that all neurons are uncorrelated and independent
identically distributed random variables, with expectation
value ⟨𝑥⟩ = 𝜇 and the same variance Var[𝑥]. Our electrode
potential was modeled as

𝑉 =
𝑁

∑
𝑖=1

𝑥𝑖/𝑑𝑖 . (1)

For every ring, we assume a constant 𝑑𝑖 = 𝑑 for all neurons
in the ring. Then, the expected potential for the ring is

⟨𝑉 (𝑑)⟩ = ⟨
𝑁

∑
𝑖=1

𝑥𝑖/𝑑⟩ =
𝑁

∑
𝑖=1

⟨𝑥𝑖/𝑑⟩ = 𝑁𝜇/𝑑 . (2)

Thus, when 𝑁 ∼ 2𝜋𝑑𝜖𝜌, then ⟨𝑉 (𝑑)⟩ ∼ 𝜇. Indeed, this
implies that the contributed potential of any of these rings
is constant and that many neurons in a far-away ring can
“contribute as much” as few local ones.

However, the variance of the potential per ring is not
constant. For uncorrelated 𝑥, the variance of their sum is
equal to the sum of their variances:

Var[𝑉 (𝑑)] = Var [
𝑁

∑
𝑖=1

𝑥𝑖/𝑑] =
𝑁

∑
𝑖=1

Var[𝑥𝑖/𝑑] . (3)

With

Var[𝑥𝑖/𝑑] = ⟨(𝑥𝑖/𝑑)2⟩ − ⟨𝑥𝑖/𝑑⟩2 (4)

= 1
𝑑2 (⟨𝑥2

𝑖 ⟩ − ⟨𝑥𝑖⟩2) (5)

= 1
𝑑2 Var[𝑥𝑖] (6)

we see that

Var[𝑉 (𝑑)] = 1
𝑑2

𝑁
∑
𝑖=1

Var[𝑥𝑖] = 𝑁
𝑑2 Var[𝑥] . (7)

When again considering 𝑁 ∼ 2𝜋𝑑𝜖𝜌,

Var[𝑉 (𝑑)] ∼ Var[𝑥]𝜖𝜌/𝑑 . (8)

Hence, the standard deviation of the rings vanishes as
𝑑 → ∞; far away rings do contribute to the electrode, but
they do not add to the variance of the signal. During the
avalanche detection, the start or end of an avalanche is

given by a threshold crossing. In a signal with more vari-
ance, more threshold crossing will occur, possibly leading
to different avalanche statistics. As we showed, far-away
neurons that are uncorrelated increase the mean, but they
do not increase the variance, and, thus, do not lead to more
(or less) threshold crossings. Notwithstanding, this reason-
ing only holds for uncorrelated neurons. If 𝑥𝑖 are correlated,
also far-away neurons could contribute to the variance. Al-
though we think that is not the main cause for the coarse-
sampling effect (cf. Fig B), we want to stress the limited
range of electrodes for future work.

For a population of neurons receiving (un-) correlated
synaptic input, the distance dependence of the LFP signal
is studied in much more detail in Ref. [2]. Together with
the above reasoning, this work highlights another possible
source of sampling bias (which also affects our model elec-
trodes): Because closer-to-critical dynamic states typically
feature more correlated activity than subcritical states, the
effective distance-dependence of an electrode is also af-
fected by the dynamic state that is being recorded.

To conclude this section, we want to sketch an ideal-
ized experimental set-up: in order to determine critical-
ity under coarse-sampling, the set-up should combine i) a
large distance between electrodes 𝑑E, ii) a narrow electrode
field-of-view (large 𝛾) and, ideally, iii) systems to calibrate
with, which feature different dynamic states. This could
potentially be used to qualitatively compare the distance
to criticality between the systems. However, not only is
this much more limited than what is possible with spike
data [5–7], but the cut-off is a characteristic and ubiqui-
tous feature commonly observed in experimental data of
coarse-sampled recordings [8, 9]. This indicates that elec-
trodes typically have a large field-of-view, and motivated
our modeling assumption of 𝛾 = 1.

1.3 Neuron density
As the coarse sampling effect is sensitive to the field of
view of electrodes, it may similarly depend on the amount
of neurons any electrode captures, and, thus, the density of
the neuron population. Hence, we performed a basic test of
the robustness of our results with respect to the density of
neurons (Fig D). To that end, we kept most parameters of
the model as in the main manuscript: The culture extended
over 4 cm substrate and neurons were hard-wired to their
≈ 1000 closest neighbors. A change in density impacts
how far these neighbors are distributed, but we kept the
effective projection range constant (𝜎 = 300 µm), so that
our “local” topology and the connectivity profile remain
unchanged. We kept electrode contributions at 1/𝑑 and
placed electrodes at a large distance (400 µm), so that every
electrode samples many neurons and changes in density can
become clear.

Compared to 𝜌 = 100/ mm2 of the main manuscript, we
considered lower (𝜌 = 25/ mm2) and higher densities (𝜌 =
400/ mm2). Surprisingly, a change of neuron density only
has a minor impact on the coarse sampling effect: Overall,
the overlap of distributions and the cut-off remain for all
considered densities (Fig D). Nonetheless, subtle differences
are visible. Firstly, the slopes of the distributions seem to
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Fig D: Varying neuron densities. Simulations with parameters as in the main manuscript, with matching spatial extend of
the substrate, connectivity profile of the neurons and field of view of the electrodes (𝛾 = 1). As a guide to the eye, black dashed
lines indicate 𝑝(𝑆) ∼ 𝑆−1.5, and the fitted 𝛼 for the reverberating state are indicated in the lower corner of every panel. Our main
result that measurement overlap can render dynamic states indistinguishable is confirmed.

change, but this is shadowed by the dependence of the slope
on the time-bin size. Secondly, for higher densities 𝜌 ≥
100/ mm2 distributions appear critical or slight subcritical,
but for the low density, they also resemble super-critical
distributions with a pronounced peak near the cut-off.

In conclusion, our main results concerning overlapping
avalanche distributions for different dynamic states seem to
be fairly invariant when increasing neuron density.

1.4 Low-pass filtering
A relevant question that we have not addressed in the main
manuscript is how mechanisms that come into effect before
the sampling hardware could impact avalanche statistics.
Many studies are concerned with low-pass frequency filter-
ing and how measurements of neuronal activity are affected.
Such a temporal filtering may arise from the intrinsic neu-
ronal morphology [2, 4, 10] or the surrounding extracellular
tissue [11–13].

As a simple test that mimics natural low-pass filtering,
we convolved the raw time series of every electrode with an
exponentially decaying kernel (Fig E). Thus, the filtering
was applied before the remaining analysis pipeline. The
decay of the kernel (and the strength of the filtering) is
parametrized through the decay time of the exponential.

We considered decay times 𝜏f between 2 ms and 128 ms
(ranging from 1 to 128 time steps of the simulation). The
kernel was created using scipy.signal.exponential with
a window size of 1000 time steps. The remaining analysis
pipeline remained unchanged, and, in particular, included
the frequency filtering to 0.1 Hz < 𝑓 < 200 Hz that we as-
sumed as part of the recording hardware.

Whereas the overlap of distributions largely remains
when low-pass filtering is applied, the shape of the distri-
butions depends on the strength of the filter. As a general
trend, all distributions tend to form “super-critical” peaks
as filtering becomes stronger. We associated these peaks
with multiple electrodes picking up the same event (boost-
ing the amount of large avalanches, up to the number of
electrodes). This goes along with a decreased number of
total avalanches that are detected (lower left corner in all
panels). Note that the same raw time series with the same
duration were used along every row of Fig E.

Together, this is consistent with the expecting “smooth-
ing” of the raw time series due to low-pass filtering: De-
flections of a time series around its mean get attenuated,
and small excursions (at high frequency) become rare. Be-
cause these excursions potentially trigger the start of a new
avalanche, fewer avalanches (or events) are detected when
filtering becomes stronger. Intriguingly, the change of the
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Fig E: Low-pass filtering using an exponential kernel. To mimic low-pass filtering as possibly caused by extracellular
tissue or neuron morphology, an exponential kernel with decay time 𝜏f was applied to the raw signal before applying the analysis
pipeline of the main manuscript (which includes frequency filtering to 0.1 Hz < 𝑓 < 200 Hz). As a guide to the eye, black dashed
lines indicate 𝑝(𝑆) ∼ 𝑆−1.5, and the number of events that contributed to the distribution for reverberating dynamics are indicated
in the lower corner of every panel.

distribution shape due to filtering seems to affect critical
and reverberating dynamics more severely than subcritical
dynamics (especially visible in the bottom row).

However, note that the filtering employed here only
serves as an example for a low-pass filter. Experimentally,
power-spectra are often found to show 1/𝑓𝛽 scaling, with
0 < 𝛽 < 4, which limits the functional form a more realistic
filtering kernel might have [12, 14–16].

1.5 Scaling laws may fail under coarse-
sampling

The most used indication of criticality in neuronal dynam-
ics is the avalanche-size distribution 𝑝(𝑆). However, at crit-

icality, the avalanche duration distribution 𝑝(𝐷) and the
average avalanche size for a given duration, ⟨𝑆⟩(𝐷), should
also follow power-laws, each with a respective critical expo-
nent [17]:

𝑝(𝑆) ∼ 𝑆−𝛼 (9)

𝑝(𝐷) ∼ 𝐷−𝛽 (10)

⟨𝑆⟩(𝐷) ∼ 𝐷𝛾 (11)
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Fig F: Scaling laws of a system with critical dynamics under coarse- and sub-sampling. a–c: Avalanche-size distri-
bution 𝑝(𝑆) ∼ 𝑆−𝛼, avalanche-duration distribution 𝑝(𝐷) ∼ 𝐷−𝛽, and average size for a given duration ⟨𝑆⟩(𝐷) ∼ 𝐷𝛾, respectively,
for sub-sampled (“sub”) and coarse-sampled (“coarse”) simulations. Distributions under sub-sampling easily span more than one
order of magnitude, while coarse-sampled distributions suffer from an early cut-off (which hinders power-law fits). d, e: Shape col-
lapse of 𝑠(𝑡, 𝐷) ∼ 𝐷𝛾−1ℱ(𝑡/𝐷) for sub-sampled and coarse-sampled data, respectively. Under coarse-sampling, the early duration
cut-off results in few unique shapes for the collapse (corresponding to unique 𝐷-values). f: Comparison of the critical exponents
obtained independently from Eqs. (11)–(13). Exponents are consistent only under sub-sampling. Parameters: 𝑑E = 400 µm and
𝛥𝑡 = 8 ms.

The exponents are related to one another by the scaling
relationship∗

𝛽 − 1
𝛼 − 1 = 𝛾 . (12)

For a pure branching process — or any process in the mean-
field directed percolation universality class [18, 19] — they
take the values 𝛼 = 3/2, 𝛽 = 2 and 𝛾 = 2.

Lastly, at criticality, avalanches of vastly different dura-
tion still have the same average shape: The activity 𝑠(𝑡, 𝐷)
at any given time 𝑡 (within the avalanche’s lifetime 𝐷) is
described by a universal scaling function ℱ, so that

𝑠(𝑡, 𝐷) ∼ 𝐷𝛾−1ℱ(𝑡/𝐷) . (13)

In other words, changing 𝑠(𝑡, 𝐷) → 𝑠(𝑡, 𝐷)/𝐷𝛾−1 and
𝑡 → 𝑡/𝐷 should result in a data collapse for the average
avalanche shapes of all durations.

The shape collapse of Eq. 13 is done following the al-
gorithm described in [20]. Briefly, the avalanche profiles

∗In this subsection, 𝛾 exclusively denotes the scaling exponent
and the decay exponent (which is denoted with 𝛾 in the rest of the
manuscript) equals 1 for all results presented here.

𝑠(𝑡, 𝐷) of all avalanches with the same duration 𝐷 are av-
eraged, and the resulting curve is scaled to 𝑡/𝐷 and inter-
polated on 1000 points in the [0, 1] range. Avalanches with
𝐷 < 4 , or with less than 20 realizations are removed. The
chosen collapse exponent 𝛾 is the one that minimizes the
error function:

𝐸 = ⟨Var(𝑋𝐷/𝐷𝛾−1)⟩
𝛥𝑋2 (14)

where 𝑋𝐷(𝑡/𝐷) is the interpolated average
shape of avalanches with size 𝐷, and 𝛥𝑋 =
max𝑡,𝐷(𝑋𝐷/𝐷𝛾−1) − min𝑡,𝐷(𝑋𝐷/𝐷𝛾−1). The vari-
ance Var(.) is calculated over all valid 𝐷, and the
mean ⟨.⟩ is taken over the scaled duration 𝑡/𝐷. For
interpolation and minimization we use the scipy [21]
functions interpolate.InterpolatedUnivariateSpline and
optimize.minimize, respectively.

From Eqs. (11)–(13), we have three independent ways
to determine the exponent 𝛾. Consistency between the
three is a further test of criticality. However, to the best of
our knowledge, experimental evidence with the full set of
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scaling laws is mainly observed under sub-sampling: from
spikes of in vitro recordings † [23, 24], but see Ref. [22].

The absence of scaling laws in coarse-sampled data can
be explained by how coarse-sampling biases the average
shape: the cut-off in 𝑝(𝑆) near the number of electrodes
𝑆 = 𝑁E implies that ⟨𝑆⟩(𝐷) < 𝑁E. From Eq. (11) we have
𝐷 < 𝑁1/𝛾

E . If 𝛾 > 1 the cut-off in 𝑝(𝑆) causes a much
earlier cut-off in both 𝑝(𝐷) and ⟨𝑆⟩(𝐷).

Given that experiments typically have 𝑁E ∼ 102 elec-
trodes, 𝑝(𝐷) of a pure branching process (with 𝛾 = 2) would
span a power-law for less than one order of magnitude.
However, the typical standard to reliably fit a power-law
is at least two orders of magnitude [25]. While this is prob-
lematic under coarse-sampling (Fig 6), we have shown that
the hard cut-off is not present under sub-sampling (Fig 7).

When we apply the independent measurements of 𝛾 to
our model (with critical dynamics) under sub-sampling, we
find consistent exponents for all measurements (Fig Ff).
Moreover, the exponents we find under sub-sampling are
compatible with experimental values, e.g. 𝛾exp = 1.3 ± 0.05
reported in Ref. [23] and 1.3 ≤ 𝛾exp ≤ 1.5 reported in
Ref. [24]. Notably, the exponents found in our model and
experimentally differ from those expected for a pure branch-
ing process (𝛾 = 2). While not the focus here, we believe
this deviation to derive from topological properties of the
network, which was also observed in Ref. [23]; distance-
dependent weights of local topologies affect avalanche dura-
tion and size and yield different exponents than a branching
process (which does not face any topological constraints).

When we apply the independent measurements of 𝛾 to
our model (with critical dynamics) under coarse-sampling,
exponents differ from measurement to measurement: The
exponent obtained from the shape collapse (𝛾 ≈ 0.74)
greatly differs from the other two (𝛾 ≈ 1.74, 𝛾 ≈ 1.62),
Fig Ff. Moreover, the extremely short range available to
fit 𝑝(𝐷) and ⟨𝑆⟩(𝐷) with power-laws (1 ≤ 𝐷 ≤ 6) makes
the estimated exponents unreliable.

To conclude, the full set of critical exponents revealed
criticality only under sub-sampling. Only in this case we
observed both, a match between all the measurements of
the exponent 𝛾, and a power-law behavior extending over
a range large enough to reliably fit them.

1.6 Coarse Graining the Ising Model
To demonstrate how general the impact of measurement
overlap is, we study the two-dimensional Ising model. The
Ising model is well understood and often serves as a text-
book example for renormalization group (RG) theory in
Statistical Physics [26]. In this framework, the system is
coarse grained by merging multiple parts (spins) into one.
An intuitive way to think of it is by zooming out of a photo-
graph on a computer screen; a pixel can only show one color
although there might be more details hidden underneath.
Coarse graining is also known as the real-space block-spin
renormalization and it can be used to assess criticality.

†An exception can be found in Ref. [22], where scaling relations
were found to hold in vivo. However, in this study, fluorescence imag-
ing was coupled with very large time bins 𝛥𝑡 ≥ 0.47 s, the effect of
which remains to be understood in full.

Please note that coarse graining is different from coarse-
sampling. Conventionally, coarse-graining perfectly tiles
the space without any measurement-overlap (see Fig G).

The two-dimensional Ising model consists of 𝑁 = 𝐿2

spins with states 𝑠𝑖 = ±1, arranged on a square lattice of
length 𝐿. In its simplest form, it is given by the Hamil-
tonian 𝐻( ⃗𝑠) = ∑⟨𝑖,𝑗⟩ 𝑠𝑖𝑠𝑗, where ⟨𝑖, 𝑗⟩ denotes all pairs of
nearest neighboring spins. The probability of observing ⃗𝑠
is given by the Boltzmann distribution

𝑃( ⃗𝑠, 𝑇 ) = 1
𝑍𝑇

𝑒−𝐻( ⃗𝑠)/𝑘𝐵𝑇 (15)

where 𝑇 is the temperature of the system, 𝑘B is the Boltz-
mann constant (here, 𝑘B = 1) and 𝑍𝑇 is the partition func-
tion that normalizes the distribution. As the temperature
𝑇 → 𝑇𝑐 = 2/ln(1 +

√
2), the system undergoes a second-

order phase transition between a disordered spin configu-
ration (𝑇 > 𝑇𝑐) and an ordered state of aligned spin ori-
entations (𝑇 < 𝑇𝑐). Many observables diverge at 𝑇 = 𝑇𝑐
for 𝐿 → ∞, such as correlation length, specific heat and
susceptibility [18, 26].

We perform Monte Carlo simulations of the 2D
Ising model using the massively parallel multicanonical
method [27, 28]. The multicanonical method offers nu-
merous advantages over conventional Monte Carlo ap-
proaches. For instance, instead of simulating at a sin-
gle temperature, one simulation covers the whole energy
space. High-precision canonical expectation values of ob-
servables are recovered for any desired temperature during
a post-production step. Thereby, we obtain the normal-
ized absolute magnetization as a function of temperature
𝑚(𝑇 ) = 1

𝑁 | ∑𝑖 𝑠𝑖|.

1.7 Block-Spin Transformation
Measurement overlap causes individual sources to con-
tribute multiple times to a signal. For the Ising model, a
similar process takes place when coarse graining is applied.
In the process, spins are grouped into blocks of size 𝑏 × 𝑏,
here 𝑏 = 4 and every block only takes a single value. The
value of each block can be obtained in different ways.

• Most commonly, the majority rule [26] is employed,
where the block is assigned +1 (−1) if the majority
of spins has value +1 (−1). In this case, the contri-
bution of multiple sources is integrated. Hence we
compare this rule to the effects observed when neu-
ronal systems are coarse-sampled.

• Alternatively, one can use the decimation rule [26].
In this case, all except a single spin value within a
block are discarded. The block value is assigned from
the single spin that is kept. Hence we compare this
rule to the effects observed when neuronal systems
are sub-sampled.

This block-spin transformation rescales the number of spins
by a factor of 1/𝑏2, effectively reducing system size (which
will cause finite-size effects). It is well known, that when
studying the magnetization, the effective size of the com-
pared systems (after rescaling) has to match.
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1.8 Overlap
To mimic the measurement overlap, we now introduce an
overlap between the blocks of the Ising model coarse grain-
ing (Fig G). In the native block-spin transformation, blocks
do not overlap. Then, in terms of spins, the linear distance
𝑑 between two blocks matches the block size 𝑏 = 𝑑 = 4
(Fig Ga). When the distance between blocks is smaller
than the block size, 𝑑 < 𝑏 (Fig Gb), measurement overlap
is created, while when 𝑑 > 𝑏 parts of the system are not
sampled. Clearly, the changes that such an overlap will
cause on rescaled observables should depend on the rule
used to perform the block-spin transformation.

Here, we look at combinations of block size 𝑏 = 4 with
distance between blocks of 𝑑 = 2, 𝑑 = 4 and 𝑑 = 8. In
order to preserve the effective system size (𝐿 = 16), we
thus perform simulations for 𝐿 = 32, 𝐿 = 64 and 𝐿 = 128,
respectively.

Using the majority rule and no overlap — which is the
default real-space renormalization-group approach — the
procedure moves 𝑚 away from 𝑚 (𝑇𝑐) (Fig Gc, 𝑑 = 𝑏):
For 𝑇 < 𝑇𝑐, 𝑚 is increased; For 𝑇 > 𝑇𝑐, 𝑚 is decreased.
Ordinarily, 𝑇𝑐 can be obtained by finding the crossing of
𝑚 between an unblocked (𝐿 = 16) and a blocked (𝐿 = 64,
𝑏 = 4) system — only at 𝑇𝑐 is the measured 𝑚 invariant
under block rescaling transformations.

1.9 Majority Rule “coarse”
What is the impact of the overlap for the majority rule? For
increasing overlap (𝑑 < 𝑏), the crossing occurs at 𝑇 > 𝑇𝑐
(Fig Gc). This is because sharing spins increases the corre-
lations between blocks (pairwise and higher-order), making
it more likely that the rescaled spins point into the same
direction. In other words, it biases the measurement of 𝑚
towards order, increasing our estimated critical tempera-
ture.

For absent overlap (𝑑 > 𝑏), only every other block is
measured. This decorrelates the spins near the borders
of each block and, therefore, decreases the correlation be-
tween blocks. As a consequence, the spin orientation of
the blocked system moves towards disorder, decreasing the
measured magnetization 𝑚.

1.10 Decimation Rule “sub”
If instead of the majority rule the decimation rule is used,
the blocking procedure does not alter the correlation be-
tween spins before and after the transformation (Fig Gd).
As a consequence, the magnetization remains unaltered
in general. However, in the disordered phase, we still
notice a systematic deviation from the unblocked system
(with 𝐿 = 64). This deviation can be fully attributed to
finite-size effects: The distribution of realizable magnetiza-
tions in the disordered phase follows a Gaussian with mean
zero and variance proportional to the (effective) number
of spins. Due to the definition of the magnetization with
absolute value, the expectation value of the magnetization
for 𝑇 → ∞ is determined by the (effective) system size.

As was the case when sub-sampling neuronal systems,
the increase in correlation that ultimately leads to biased
observables is caused by integrating weighted contributions
from various sources. This is not the case when the deci-
mation rule is applied. Note that the impact of different
block-transformation rules on 𝑚(𝑇 ) will not hold for all
other canonical observables such as the energy 𝐸(𝑇 ) [26].
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Fig G: Coarse graining the Ising model. a: Representa-
tion of the standard coarse graining where block size matches
the distance between blocks (𝑑 = 𝑏 = 4). No overlap is cre-
ated. b: Coarse graining with block size 𝑏 = 4 and a distance
between blocks of 𝑑 = 3. Overlapping spins (orange) are shared
by two or more blocks. c: With the “coarse” majority rule, over-
lap impacts the spontaneous magnetization 𝑚(𝑇 ). Only the
crossing between the unblocked (𝐿 = 16) and non-overlapping
blocked system (𝑑 = 𝑏, 𝐿 = 64) happens at 𝑇 = 𝑇𝐶 , as would
be expected. Intriguingly, the overlap (𝑑 < 𝑏, 𝐿 = 32) pushes
the system towards higher magnetization where spins appear
more aligned. On the other hand, the absence of overlap (𝑑 > 𝑏,
𝐿 = 128) causes smaller magnetization where spins appear more
random. (Note that, in order to avoid finite-size effects, the
target size after coarse graining has to match, here 𝐿 = 16.
Consequently, depending on the ratio between 𝑑 and 𝑏, simu-
lations have different system sizes.) d: Comparison between
the fully-sampled, unblocked system and blocked systems using
the majority rule (“coarse”) and the decimation rule (“sub”) for
𝑑 = 𝑏 = 4. All simulations and curves for 𝐿 = 64. In the ordered,
low-temperature phase, the sub curve matches the fully sam-
pled system. Only for the high-temperature phase deviations
occur due to finite-size effects (the magnetization for 𝑇 → ∞
approaches the value expected for the rescaled 𝐿 = 16 system).
The coarse curve is systematically biased towards more ordered
states.
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Fig H : Effect of changing the electrode contribution ∼ 1/𝑑𝛾 of a spiking neuron at distance 𝑑, for different network
topologies and 𝑑E = 200 µm. Dynamic states are Subcritical (left), Reverberating (center) and Critical (right). Topologies
are Local (top), Orlandi (middle) and Random (bottom). Local corresponds to the topology used in the main paper, Orlandi
corresponds to the model described in [1], and Random corresponds to a completely random topology. Increasing 𝛾 (decreasing
electrode FOV) results in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the coarse-sampling becomes more spike-like. Bin-size for all
distributions is 𝛥𝑡 = 4 ms.
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Fig I : Effect of changing the electrode contribution ∼ 1/𝑑𝛾 of a spiking neuron at distance 𝑑, for different network
topologies and 𝑑E = 400 µm. Dynamic states are Subcritical (left), Reverberating (center) and Critical (right). Topologies
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electrode FOV) results in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the coarse-sampling becomes more spike-like. Bin-size for all
distributions is 𝛥𝑡 = 8 ms.
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1. SUPPLEMENTARY VIDEOS AND EXTENDED EXPERIMENTAL RESULTS

A. Supplementary Videos

Videos encompass both experimental recordings and numerical simulations of networks of spiking neurons. The
videos corresponding to experimental recordings are played at 20× speed. The left-hand side of the videos shows the
recording, while the right-hand side shows the raster plot derived from its analysis. The original image sequences were
obtained in greyscale format and here are presented as a blue–red–yellow color scheme to enhance the visualization
of activity. The brighter the color, the stronger the activity of the neurons. For modular networks, each of the 4
modules is highlighted with a faint colored outline, where the color matches the grouping of spikes and module rates
on the right.

Video 1. Single–bond network during spontaneous activity.
These recordings and their raster plots are the same ones shown in Figs. 1D–G of the main manuscript.

Video 2. Same network as in Video 1 but under optogenetic stimulation.

Video 3. Single–bond network during spontaneous activity before chemical stimulation with potassium.
The raster plots correspond to the data shown in Figs. 1H–I of the main manuscript.

Video 4. Same as network as Video 3 but after chemical stimulation with high potassium.

Video 5. Single–bond network during spontaneous activity while exposed to bicuculline.

Video 6. Single–bond network exposed to bicuculline under optogenetic stimulation.

Video 7. Simulations, model of spiking neurons with modules connected by k = 3 axons, with neurons receiving only baseline
noise.
Video 8. Same network and random number seed as Video 7 but neurons in the lower two modules receive 20 Hz additional
noise beyond baseline.
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B. Comparison of Different Optogenetic Stimulation Paradigms

In the following, we describe two control experiments to investigate i) the role of how many modules are targeted
(partial vs global stimulation) and ii) the impact of asynchronous vs synchronous stimulation (Fig. S1). We focus
on modular, single-bond topologies. Note that for these new control experiments, substrates differ from the main
manuscript: Cultured cortical neurons were patterned using microfluidic devices [83], which we found to provide more
reproducible results. The four modules again consist of 200 µm×200 µm squares that are connected by microchannels
of three different sizes to adjust the degree of modularity (S: 4 µm width × 2 µm height, M: 7×2 µm, L: 7×4 µm). All
experiments were conducted at 10–11 DIV, as in the other experiments. For each channel size, we considered three
stimulation protocols:

• stim 2 is the protocol described in the main manuscript. The lower two modules are targeted by asynchronous
optogenetic stimulation, where ten individual neurons are preselected candidates to be targeted (during each
400 ms time bin, every candidate has a probability p = 0.4 to be stimulated).

• stim 4 is similar to the protocol of the main manuscript, but two to three candidates are selected from each of
the four modules (ten in total). Note that, due to an experimental constraint, the area from which neurons can
be selected is limited, so that candidates do not cover the whole culture.

• stim 1 is a synchronous stimulation protocol, where the entire area of one of the four modules was targeted with
a square light pulse of 400 ms. The pulses were delivered at a mean interval of 10 s with a standard deviation
of 2 s.

Partial stimulation: We first confirmed the reproducibility of the experiments reported in the main manuscript
by applying protocol stim 2. As shown in the example raster plots (Fig. S1A), collective activity events present in
the spontaneous activity (pre) were disrupted during stimulation, which decreased the overall neuron correlation
and event size (Fig. S1B) and recovered during post (not shown). The decrease in correlation was also observed
when the optogenetic stimulation was delivered locally, to one of the four modules (stim 1, Fig. S1B). However,
note that the typical response of the cultures to the stim 1 differed to stim 2: The synchronous stimulation reliably
triggered bursting activity, causing an event that started in the targeted module and probabilistically propagated to
neighbouring modules, potentially spanning the whole system. This observation is in line with the gating mechanism
that we abstractly model in the mesoscopic description (Section 3, below). The asynchronous stimulation, on the
other hand, did not trigger events deterministically at pre-defined times. This can be seen as a confirmation of our
proposed resource mechanism. Reconsidering the recharge dynamics (main Fig. 4A–C), the perturbing effect of the
stim 1 protocol should vanish if the delivery of the pulse is timed to match the intrinsic, natural timing of events
each culture has. In this case, the duration of charge-discharge cycles would not be altered, merely the onset-times of
events. On the other hand, if pulses are delivered at a higher frequency, resources would be depleted more often. To
confirm this intuition, we color-coded the lines representing each culture according to its (natural) IEI during the pre
condition (Fig. S1). For stim 1, and channel size M in particular, this intuition seems confirmed: Those realizations
where the IEI was already short before the stimulation at 1/10 s (yellow and red) tend to show smaller changes.

Global stimulation: As presented in Fig. 1 of the main manuscript, a global increase in neuronal excitablility
induced by chemical stimulation did not break synchrony in modular networks. To address the question whether
global but asynchronous stimulation does break synchrony, we applied the protocol stim 4. Overall, the results for
this protocol show the same trends as for stim 2, with decreased event sizes and neuron correlations, and a strong
dependence on the topology.

Channel size: The most consistent trend in the results of these new control experiments is the dependence on
channel size. In particular, for large channels (L), where presumably connections between modules are strong and
modularity low, the effect size of all stimulation protocols tends to be smallest. This supports our main conclusion,
that the modularity of the topology is the key ingredient to facilitate the desynchronizing effect of stimulation.
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Figure S1. Comparison of different optogenetic stimulation paradigms. A: Raster plots. As controls of the asyn-
chronous stimulation in two modules stim 2 (main manuscript), we considered two other stimulation paradigms. In stim 1, a
single module was targeted with a flash covering the whole module every ∼10 s. Thus, the stimulation was synchronous (to all
neurons of this module) and partial, as only a subset of the modules was targeted. Notably, flashes reliably cause events that
span at least the targeted module. In stim 4, individual neurons from all modules were targeted asynchronously, similar to
stim 2 but extending the stimulation region to the full system (global). However, note a constraint of the experimental setup
that limited the location of neurons that could be targeted to parts of each module. B: For these stimulation paradigms, we
compare the pre condition with the respective stim condition, for three different channel sizes, S, M, and L. Note that the
samples for partial stimulation (stim 2 and stim 1) are correlated, as they were recorded in sequence, from the same cultures.
For each realization, the line connecting pre and stim is color-coded by the mean inter-event-interval (IEI, measured during the
pre condition). This serves as a proxy for the strength of the perturbation caused by stim 1: In this paradigm, the impact of
stimulation on the recharge dynamics is presumably small when the frequency of the flash (every ∼10 s) is close to the intrinsic
IEI (red for 15 s, blue for 60 s). Because asynchronous stimulation (stim 2, stim 4) targets individual neurons, and does not
trigger events that span a whole module, this dependence seems less pronounced. Independent of the stimulation protocol, note
the dependence on channel size (as an indicator for modularity): With increasing channel size, the effect from all considered
forms of stimulation decreases.
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C. Effect of the Blockade of Inhibition on Dynamics

Figure S2. The desynchronizing effect of optogenetic stimulation relies on GABAergic balancing. Data collected
on 1-b modular networks (N = 5 trials) in the presence of 20 µm bicuculline, a GABAA receptor antagonist. The data for
this assay was collected using 1-b modular networks grown in both microcontact printed substrates and microfluidic devices
(Ref. [83], different samples from those analyzed in the previous section). A: Aggregated distributions of network-wide events
(left) and pairwise correlation coefficients (right). B: Trial-to-trial estimates of the mean event size, mean correlation, and
functional complexity. ns, no significance (two-sided, paired-sample t-test). We note that administration of bicuculline at 20 µm
may seize or substantially decrease the rate of spontaneous activity in small-scale neuronal networks, such as those used in the
present work, at 10–11 DIV. In such a case, similar effects could be observed at a concentration of ∼5 µm.

D. Statistics across Experimental Repetitions

Figure S3. Trial-level estimates, related to main Fig. 2. A: Mean number of cells per network. The differences between the
means of the three topologies are statistically not significant. Two-sided, unpaired t-test. B, C: Every faint line corresponds to
the estimate of a quantity within one trial and its change across conditions (pre, stim and post). Error bars (thick vertical lines)
are obtained from bootstrapping the within-trial estimates (500 samples). The white dot denotes the mean of the bootstrap
samples, and the extended thin vertical line indicates the maximal and minimal value observed in a trial. The indicated
statistical significance (pre to stim) is calculated from two-sided, paired-sample t-tests. For p-values of all combinations, see
Table S1.

Layout Comparison Rate
Event
size

Neuron
correlation

Functional
complexity

IEI
Core
delay

1b (N = 7 trials)
pre-stim 0.8411 0.0067 0.0084 0.0524 0.0338 0.1557
stim-post 0.6910 0.0130 0.0071 0.0037 0.1033 0.0719
pre-post 0.9685 0.1749 0.9631 0.5391 0.1219 0.8875

3b (N = 7 trials)
pre-stim 0.2072 0.0513 0.0335 0.0384 0.0057 0.1556
stim-post 0.2957 0.0617 0.0103 0.0170 0.0428 0.0647
pre-post 0.3505 0.6590 0.9678 0.0666 0.4373 0.0898

merged (N = 7 trials)
pre-stim 0.0284 0.0463 0.0195 0.0469 0.0278 0.5641
stim-post 0.1773 0.0542 0.0181 0.0560 0.0678 0.6848
pre-post 0.6078 0.4167 0.3847 0.9992 0.7199 0.8951

Table S1. Overview of p-values for Main Fig. 2 and Suppl. Fig. S3. Two-sided, paired-sample t-test.
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2. DETAILS OF THE MICROSCOPIC MODEL OF SPIKING NEURONS

A. Topology

To create the 2D topology, we model axonal growth as proposed by Orlandi et al. [18] (cf. Table S3). Neurons
are spread out uniformly over a 2D surface where somas are modeled as hard, non-overlapping discs with radius
rs = 7.5 µm from which axons grow on a semi flexible path with mean length la ≈ 1000 µm. The path is constructed
from several concatenated axonal segments of unit length δa = 10 µm. The variance of the mean bending angle σ(θ)
along neighboring segments determines the overall stiffness. If an axon intersects the dendritic tree of another neuron
(modeled as soft disks with mean radius rd ≈ 150 µm), then each overlapping segment has probability α to establish
the connection. (Note, this is a different convention than Ref. [18], where the probability to form the connection is
independent of the number of intersecting segments.) Because dynamics are heavily dependent on the in-degree, we
adjust α so that kin ≈ 30 incoming connections per neuron [82] for all topologies, independent of their modularity.
Once the connections are set (as a binary matrix), additional details of the topology can be discarded. The types of
neurons (inhibitory GABAergic or excitatory AMPA-glutamatergic) are not distinguished topologically.

In order to create the modular topology, soma, axon segments, and dendritic trees are only placed on the substrate,
which consists either of one 400× 400 µm2 rectangle (merged) or four 200× 200 µm2 rectangles (modular). To avoid
axons growing out of the substrate, larger bending angles (with increased variance σ(θ′) = 5σ(θ)) are allowed near
the domain walls, which effectively deflect the axons back into the module (main Fig. 3A). To connect neighboring
modules with a given number of axons, every module acts once as a “source module”. Then, for every adjacent
neighboring module, k neurons are selected and forced to first grow their axons towards the center of the target
module (neglecting the substrate) before the growth continues randomly within the target, again confined to the
substrate. The in-degree distributions for the different topologies are summarized in Fig. S5.

We found this controlled approach to produce more consistent topologies than an algorithm where we would add
a given number of bridges as an actual part of the substrate (as in the experiments) and axons had to grow through
the bridges by chance. For the latter case, it frequently occurred that modules were only connected in one direction
or not connected at all. As the topological structure is the backbone of the observed dynamics, a much larger number
of repetitions would have been needed to find reliable ensemble estimates of observables.

B. Modularity

In the following, we show analytically how the modularity index Q depends on the number of axons crossing between
modules (k) and the in-degree per neuron (kin)1. The straightforward mathematical way of measuring how well a
partition splits the graph into modules is computing the modularity—the fraction of the edges that fall within the
given groups minus the expected fraction if edges were distributed at random [84]. While using this measure to find
community division is criticized [85], in our case, communities are already defined (as modules) per the experimental
or theoretical construction, and we evaluate the modularity for this partitioning.

Modularity is formally defined as:

Q =
1

2m

∑
ij

(
Aij − γ

kikj
2m

)
δ(ci, cj), (1)

where m is the total number of edges, Aij is the adjacency matrix of the graph, ki is the degree of node i, γ is the
resolution parameter that we take, γ = 1, and δ(ci, cj) is 1 if nodes i and j belong to the same community and 0
otherwise. The summation is performed over all pairs of nodes in the network. The simplified formula for Q reads:

Q =

n∑
c=1

[
Lc
m
− γ

(
kc
m

)2
]
, (2)

where summation is performed over all modules c, Lc is number of links within a module, and kc is the sum of the
degrees of all nodes of the module.

When growing the networks with axons crossing over between modules, we control the mean in-degree per neuron.
To do so, we need to adjust the expected density of connections per unit length α. Let us compute the number of

1 Note that the number of axons that cross to neighbouring modules is denoted by k in the rest of the material. In this section, we denote
it as k to differentiate from other degree-related variables.
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connections, assuming N neurons in the module and k neurons that would form a cross-module axon per neighbour.
In this case, the total number of connections between neurons of the same module (Lc) is a sum of connections due to
axons not crossing modules plus connections due to the parts of crossing axons that are still within the same module.
With our model parameters (200 µm module size / separation and la ≈ 1000 µm axon length) a crossing axon spends
∼ 100 µm in the source module, ∼ 200 µm between modules, and ∼ 700 µm in the target module. Thus, the number
of connections within the same module Lc is given by

Lc = (N − 2k)α · la + 0.1 · 2k · α · la = (N − 1.8k)α · la. (3)

The number of connections coming from the two other neighbouring modules is proportional to the axon parts they
have within the target module, 0.7la:

Lo = 0.7 · 2k · α · la = 1.4k · α · la. (4)

Combining Eq. 3 and Eq. 4, we get the average in-degree per neuron

kin = (Lc + Lo)/N = α la(N − 0.4k)/N, (5)

which, taking, without loss of generality, la = 1, gives us

α =
kinN

N − 0.4k
. (6)

The total number of edges in the network is given by m = 4kinN (note that, here, N denoted the number of neurons
per module). Inserting the computed m, Lc, and α into Eq. 2 we get

Q =
4∑
c=1

(
Lc

4kinN
−
(
kinN

4kinN

)2
)

= 4

(
(N − 1.8k)kinN

4(N − 0.4k)kinN
− 1

16

)
=
N − 1.8k

N − 0.4k
− 1

4
. (7)

Interestingly, the final result does not depend on the choice of kin—which gives us some degree of freedom to select a
reasonable value for it in simulations (we took kin = 30). The computed modularity closely matches the observations
from network generation (minor discrepancies are expected due to variable degrees and actual numbers of synapses
in every simulation. cf. Table S2).

simulations, for different kin
analytic kin = 15 20 25 30

k=0 0.750 0.748 0.749 0.749 0.749
k=1 0.715 0.706 0.706 0.705 0.705
k=3 0.642 0.621 0.619 0.618 0.616
k=5 0.566 0.535 0.533 0.532 0.530
k=10 0.361 0.322 0.322 0.322 0.324
k=20 −0.125 −0.102 −0.089 −0.074 −0.057

merged 0 0.018 0.018 0.019 0.019

Table S2. Modularity Q for different k vs. kin combinations. Analytically, Q is independent from kin, which is closely matched
by the values measured in simulations.

C. Dynamics

To model neuronal behaviour, we use quadratic integrate-and-fire dynamics [80] with synaptic depression [86],
which is implemented in a reduced form as in Ref. [18]. The neuron population consists of 20% inhibitory and 80%
excitatory neurons, where inhibitory currents are modeled to have a higher amplitude and a slower decay time than
excitatory ones [49, 87], cf. Table S3. Dynamic parameters of the model were chosen so that the network resembles
regular spiking neurons [80] and the frequency of network-wide events was between 3 to 12 per minute, as observed in
the experiments. Note that the parameter combination that was ultimately used is not unique and other combinations
could yield the same burst frequency [88].
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Independent of the neuron type, membrane dynamics are described through two coupled differential equations2 for
the membrane potential v and the recovery variable u:

τv v̇ = a (v − vref) (v − vthr)− u+ IAMPA − IGABA, (8)

τu u̇ = b (v − vref)− u, (9)

if v ≥ vpeak :

{
v → vreset,

u→ u+ uincr.
(10)

The first term in Eq. (8) describes the basic behavior of the membrane potential. Below threshold, v < vthr, the
membrane potential slowly decays to the resting value vref depending on the characteristic time constant τv and leak
factor a. Once the threshold is exceeded by repeated stimulation, the membrane potential rises quickly until the
peak potential vpeak is reached, a spike is triggered, and the potential is reset to vreset. The membrane potential is

decreased through the recovery variable u, which is driven by the activation of K+ currents and the inactivation of
Na+ currents [80]. In practice, the coupling of Eqs. (8) and (9) determines the inter-spike interval and implements an
effective refractory period.

The coupling of neurons is realized through excitatory and inhibitory current terms in Eq. 8: IAMPA and IGABA

consist respectively of all excitatory and inhibitory currents arriving from the rest of the network. Each spike from
a presynaptic neuron instantaneously increments the current term of the postsynaptic neuron. Note that in Ref. [18]
small membrane fluctuations were implemented through an additional term, which we here omit to control the level
of noisy input through a single control parameter.

Whenever an excitatory (inhibitory) pre-synaptic neuron spikes, it emits a current I that increments (decrements)
the membrane potential of the post-synaptic neuron. The strength of the current depends on the amount of pre-
synaptic resources (associated with the available neurotransmitters). To model the synaptic currents I and the level
of synaptic resources (R = 1 for full available resources, R = 0 for full depletion), every neuron has three additional
dynamic variables:

τAMPA İAMPA = −IAMPA, (11)

τGABA İGABA = −IGABA, (12)

τR Ṙ = 1−R, (13)

if v ≥ vpeak : R→ β R. (14)

Note that I respectively describes all excitatory and inhibitory currents that arrive at the neuron, whereas R scales
the outgoing current (0 ≤ β ≤ 1). Whenever a pre-synaptic neuron of type x spikes, the respective post-synaptic
current term (AMPA or GABA) is incremented instantaneously:

Ix,post → Ix,post + jx,preRpre , (15)

where jx,pre is a constant to describe the current strength that depends on the type of the pre-synaptic neuron. From
Eqs. (11)–(13), we see that Ix decay to 0 with a characteristic time τx and R slowly recovers to 1 with τR. In general,
τR is much longer than the other time constants (see Table S3).

D. Stimulation

To incorporate optogenetic stimulation, the model features a controlled source of noise. The excitatory current
arriving at each neuron is increased by small spikes of amplitude jm generated randomly by a Poisson process

IAMPA → IAMPA + jm at rate h , (16)

where h denotes the “synaptic noise rate” that serves as our control parameter when investigating the interplay of
modularity and stimulation (main Figs. 3, 4 and Fig. S4).

In the main manuscript, we consider a baseline noise level to all neurons at h = 80 Hz, which accounts for miniature
synaptic potentials (“minis”) even in the absence of stimulation [18]. To mimic the experimental stimulation within
two modules, additional Poisson noise at 20 Hz is applied to the neurons in those modules. Note that, because Poisson
noise is additive, a local increase of the baseline input to 100 Hz would be equivalent.

2 We express the equations in reduced form, and, for readability, omit the resistance R by denoting I := RI∗.
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Parameter Description References

Topology [18]

N = 160 Number of neurons, out of which 20% inhibitory [49, 87]
200 µm× 200 µm Substrate area per module (4 modules)
ρ = 1000 mm−2 Density of plated neurons
rs = 7.5 µm Radius of somas (hard discs)
rd ≈ 150 µm Radius of dendritic trees (soft discs), drawn from Normal dist. (µ = 150 µm, σ = 20 µm)
la ≈ 1000 µm Length of axons, drawn from Rayleigh dist. (σ = 800 µm)
δa = 10 µm Length of axon segments
θ ≈ 0◦ Bending angle between segments, drawn from Normal dist. (µ = 0◦, σ = 57◦)

α ≈ 0.3− 2.7 % Probability to form a connection, per intersecting axon segment. Adjusted to realize kin.
kin ≈ 30 Average in-degree per neuron (all substrates) [82]

Dynamic variables

v Membrane potential
u Recovery variable

IAMPA Excitatory current
IGABA Inhibitory current
R Synaptic resources

Time scales

τv = 50 ms Time scale of the membrane potential v
τu = 50 ms Time scale of the recovery variable u
τR = 20 s Time scale of recovery of synaptic resources R

τAMPA = 10 ms Decay time of post-synaptic excitatory current
τGABA = 20 ms Decay time of post-synaptic inhibitory current

Dynamic constants [18, 80]

vref = −60 mV Resting potential
vthr = −45 mV Threshold potential
vpeak = 35 mV Peak potential, after vthr is passed, rapid growth towards vpeak
vreset = −50 mV After-spike reset value of the membrane potential v
uincr = 50 mV After-spike increment value of recovery variable u
a = 0.5 mV−1 Leak factor

b = 0.5 Sensitivity of u to sub-threshold fluctuations of v

jAMPA = 45 mV AMPA current strength
jGABA = 50 mV GABA current strength

β = 0.8 R→ βR after spike, here synaptic depletion, thus β < 1

h = 80− 115 Hz Rate for Poisson noise (80 Hz baseline, 0− 35 Hz stimulation)
jm = 15 mV Strength of Poisson noise (stimulation), applied on IAMPA

Simulation settings [89]

T = 30 min Simulation time (after 5 min thermalisation)
δt = 0.05 ms Time-step of numeric time integration (Euler)
≈ 30 min Wall-clock runtime per simulation

50 Number of repetitions

Table S3. Overview of parameters and variables of the microscopic model.
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Figure S4. Extended simulation details. A: Overview of topology and dynamics for k = 0, corresponding to four indepen-
dent modules. The dynamics plotted below (A2–A4) share this topology (and the RNG seed), and differ only in the stimulation
rate. A1: Representation of the topology, featuring soma (white circles) and axons (colored lines). A2, A3: Module-level
firing rate, raster plot and synaptic resources for a 180 s time window at 80 Hz baseline input (pre), and with an additional 20
Hz stimulation to the orange modules (stim). Synaptic resources are averaged across all neurons in a particular module and
color-coded accordingly. The black dot denotes a 250 ms long zoom into the raster plot to illustrate a single event. A4: Charge-
discharge cycles are illustrated in the resource-rate plane. Both synaptic resources and firing rates are calculated on the module
level. 80 traces are shown (20 per module) where each trace lasts from end-time to end-time of two consecutive events (system-
level bursting). The triangles on the x-axis indicate the average level of resources when an event starts. B–D: like A, but for
k = 1, k = 3 and k = 10. Summary: In general, stimulation causes bursts to fire at lower rates (circle size) and to start at
lower resource levels (triangles near x-axis). When modules are disconnected (k = 0), cycles reflect single-module properties
independent of the stimulation. For intermediate connections (k = 3), the fluctuation in the trajectories of the non-targeted
modules is strongest, but still retains module-dependent sizes. When intermodular connection is further increased (k = 10),
cycles of non-targeted modules also decrease, as they activate together with targeted modules—while synchrony is maintained
due to strong connections.
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Figure S5. In-degree distributions for different topologies. For all topologies, the growth was adjusted to match an
expected in-degree of kin ≈ 30. In simulations, modular cultures synchronize less strongly when average synaptic resources get
depleted. This effect depends on the the number of incoming connections, which, determined by the topology, may greatly differ
between internal connections (originating in the same module) and external connections spanning across modules. Distributions
obtained from 20 independent realizations of each topology.
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Figure S6. Probability of event propagation. We investigated the stochastic inter-modular connections, and in particular,
how the probability of burst propagation depends on available resources. We performed simulations of two-module networks,
where a single axon projected one-way from the left to the right module (k = 1, k̄in = 30). A: Sketch of the resulting
connectivity. Causally, events can only propagate from the left to the right module. B: Probability that an event propagates
from the source module (left) to the target module (right) as a function of the respective resource levels (module-average). To
record events, 500 network realizations were sampled for a simulated duration of 5 min. Each simulation was repeated with
different noise levels targeting the left, right or both modules. Noise frequency was varied from 0 to 35 Hz in steps of of 5 Hz.
Events were mostly detected as for the main manuscript, but the system-wide rate threshold was fixed to 3 Hz to account for
the altered topology. Events were classified as “successfully propagated” if both modules participated (module-level threshold
crossing separated at most 100 ms). Coincidental events, where the right module fired alone, or by chance, just before the other
module, were discarded. Thus, all considered events originate in the left module. For each of the remaining events, we extracted
the average resources present in the source and target module, at the time of the event start. For all resulting (and binned)
combinations of resources in the source- and target-module, we then calculated the propagation probability as the fraction of
events that did indeed propagate. Note that we cannot set the combinations of resources directly (but, rather, we have to
measure after adjusting them indirectly by setting the provided noise), which limits the accessible regions in the plotted phase
plane. However, overall, the propagation probability is more sensitive to a depletion of resources in the originating module
(x-axis) compared to depletion in the target module (y-axis).
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Figure S7. In simulations, increasing noise decreases the intensity of network-wide events. Dynamics depend
on stimulation rate and the number of axons connecting modules, k. k = 0 is included as a control, indicating chance-level
synchronization. A: Stimulation slightly increases the mean firing rate. B: Event size describes the fraction of neurons that
fire at least one spike during a detected event (the chance-level event size that corresponds to one module is 0.25). Event
sizes are larger for higher k but decrease under stimulation. C: Correlation of neuron pairs where both neurons are in
modules targeted by stimulation (corresponding to main Fig. 4D, where the correlation of module-level firing rates is shown).
D: Functional complexity is maximal at different stimulus intensity, depending on k. E: Inter-event-intervals decrease under
stimulation. F: Core delays describe the the time between the respective highest-firing rate time-points when multiple modules
contribute to an event. It serves as a proxy of the multi-module burst-duration. Note that k = 0 corresponds to chance-level.
G: Consistent with the observed changes of charge-discharge cycles, the average module-level resources at the time point when
an event starts decrease with increased stimulation rate. H: For every detected event we calculate the number of spikes each
neuron contributed. Besides the decrease in the number of neurons that contribute (panel B), the decrease in spikes is a second
mechanism to conserve (module-level) resources.
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Figure S8. Blocking inhibition in simulations weakens the desynchronizing effect of input. Same as main Fig. 3,
but with the current strength of inhibitory neurons set to jGABA = 0. Paremeters: k = 3, kin ≈ 30.
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E. Optical Recordings and Spike Detection

The raster plots from simulations that we presented in the main manuscript seem to differ from the experimental
rasters, at first glance. In the following we explore that these differences are likely rooted in the sampling. Optical
recordings are known to miss some spiking events, whereas simulations provide perfect sampling. In order to assess
how these missing spikes affect the statistics of rates and bursting, we here considered a “virtual optical recording”,
in which some events are removed from simulated data, and then the statistics are compared.

Recently, Huang et al. [90] performed simultaneous patch-clamp recordings of spiking activity with fluorescence
imaging, and computed the fraction of missing events. They found that isolated spikes are more likely to go undetected
by fluorescence analyses, while consecutive spikes are detected more reliably. In order to mimic this phenomenology,
we consider a probability pmiss(n) of missing a single event when n spikes are presented in a time window of 250 ms,
as reported in [90]. Then, the probability of missing m out of n spikes in a given time bin is given by a binomial
distribution, B(m,n, pmiss(n)). The result of this process can be seen in Fig. S9. One can see that the raster gets
“cleaner”, since many of the asynchronous, isolated spikes are removed, thus giving a picture closer to that of the
experiments. Notably, the burst-like events appear unaltered. We computed some core observables before and after
applying the filter: the number of modules involved in events, the fraction of neurons involved (event size), inter-event-
intervals, neuron correlations. Although detected firing rates decrease (not shown), and correlation distributions do
not cover the low tail (corresponding to uncorrelated activity in-between events), the statistics of events and (median)
correlations remain mostly the same. Thus, we conclude that results of simulations can be directly compared with
those coming from the experiments, despite the fact that fluorescence misses some events. Since most missed events
are isolated, bursting and synchronization statistics are not affected.
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Figure S9. Effect of missed spikes due to fluorescence in measured statistics. Optical measurements predominantly
miss isolated spikes from the recording. However, especially event-related observables are hardly affected. A: Original spike
train at reference conditions (k = 3, pre). B: Filtered raster plot, after virtual optical recording. Note that we picked a
realization that shows rather segregated activity, beyond the monotonic four-module synchrony. C: Observables employed in
the main manuscript remain mostly unaffected when filtered. However, neuron-level correlations tend to be slightly higher
when filtered. This is expected, as the missing of spikes occurs dominantly in the low-activity regime outside of synchronized
events—which corresponds to uncorrelated firing of individual neurons.
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3. DETAILS OF THE MESOSCOPIC MODEL WITH GATING MECHANISM

A. Mean-field Description of Module Dynamics

In order to link the mechanisms that we uncovered based on single-neuron dynamics and their impact on large-scale
behavior, we developed a mesoscopic description that bridges local, finite-size aspects with conventional mean-field
ideas to describe large populations of neurons through coarse-grained variables. In particular, the smallest spatial
unit we consider in the following is a module. Each module i is characterized by only two stochastic variables: the
module firing rate, ρi(t), and the amount of available synaptic resources, Ri(t). Notice that in a mean-field description
individual neurons are assumed to be fully connected, meaning that the variables ρi(t) and Ri(t) do not present any
dependence on space. The dynamics of an isolated module follows a rate model, which are a common choice to
represent the activity of neuronal masses [75, 91–93]:

ρ̇i(t) =− 1

τρ
ρi(t)︸ ︷︷ ︸

Decay

+ F [Ii(t)]︸ ︷︷ ︸
Input

+ σ ξi (t) ,︸ ︷︷ ︸
Noise

(17a)

Ṙi(t) = − 1

τd
ρi(t)Ri(t)︸ ︷︷ ︸

Discharge

+
1

τc
(R0 −Ri(t)) .︸ ︷︷ ︸

Charge

(17b)

Here, we also include short-term synaptic plasticity, Eq. (17b), to describe through one variable the average depletion
and recovery of neurotransmitters of all neurons in the module, following Tsodyks and Markram [94, 95]. See Table
S4 for a full description of all parameters.

At any given time t, module i receives a total input

Ii(t) = ρi(t)Ri(t)︸ ︷︷ ︸
Self

+ h︸︷︷︸
External

+ w
∑
j 6=i

Aij gij(t) ρj(t)Rj(t)︸ ︷︷ ︸
Neighbours

. (18)

Input can stem from three sources: recurrent input from the module itself, external input accounting for, e.g., stimu-
lation, and input from neighbouring modules (which depends on the state of the neighbour ρj(t)Rj(t), the connections
between modules wAij and a novel gating variable gij(t), see Section 3 C, below). The effect of inputs is implemented
through a sigmoidal transfer function F , which maps the input to a change of the target-modules’ rate:

F (I; θ, a, b) =

{
b 1−e−a(I−θ)
1+eaθe−a(I−θ)

I > θ ,

0 I ≤ θ ,
(19)

where θ, a, and b are constant parameters that determine the shape of the transfer function (Fig. S10A). The sigmoidal
is selected such that F (I = 0; θ, a, b) = 0, as is customarily done to ensure continuity of the function at zero input
[91].

The dynamics of a single module are as follows: whenever the total input stays below the threshold [Ii(t) < θ], the
transfer of inputs is suppressed, and the firing rate decays [ρi(t)→ 0] with the (relatively short) time scale τρ. During
such times of low activity, synaptic resources are rarely used and slowly charge with time scale τc, until reaching the
upper reference [Rj(t)→ R0]. Notice that the amount of resources modulates the recurrent input [Eq. (18)], so that
an isolated module without resources cannot increase its firing rate. On the other hand, once resources are charged
and available, input from any source can trigger a feedback loop; a once-heightened firing rate causes the recurrent
inputs to exceed the threshold, which again causes an increase in firing rate. Such self-accelerating episodes of high
activity are commonly called bursts, and they will only terminate once the resources are depleted. For an isolated
module, the noise term in Eq. (17a) ensures that such bursts occur from time to time, which reproduces well the
behavior of in vitro systems (without enriched topologies), where large bursting events occur stochastically.

Here, depending on model parameters, an isolated module can also undergo stochastic burst cycles, where it
alternates between states of high and low firing rates. Cycles tend to appear independently of parameters if the
charging and discharging timescales are well separated and the maximum resources are enough to trigger the modules’
feedback loop with a small fluctuation. The periods of cycles (and the burst duration) are determined by the timescales
of resource charging (τc) and discharging (τd). This has been previously demonstrated in detail in Refs. [12, 96].
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B. The Role of External Input

In the mesoscopic model, our experimental optogenetic stimulation is accounted for by the amplitude of module-
level fluctuations σ, and the external input h in Eq. (18). In particular, this input is supplied to all modules at
constant rate3; it is independent of the gate state, firing rate and resources. Consistent with the SNN-simulations, we
find that an increase in external input decreases the amplitude of charge-discharge cycles in the resource-rate plane
(Fig. S10C), and, if the gating mechanism is enabled, it helps to desynchronize modules (Fig. S11). This raises the
question: how does external input decrease the amplitude of charge-discharge cycles?

Let us consider an isolated module at different values of h, without input from neighbours, and without fluctuations
(σ = 0, Fig. S10B). For small h, no matter how we initialize the system, it will always end up in the charged state
with zero firing rate and fully charged resources. For sufficiently large h, the system is in an input-driven regime
that is characterized by high firing rates and low synaptic resources. The transition into this regime is discontinuous
(Fig. S10B), and can be explained by the non-linear activation function (Eq. 19, Fig. S10A): only once all collected
inputs exceed θ, does a rate change occur — and for the considered case of no neighbours, the only possible sources
are h and the modules’ recurrent input (ρiRi). Once the system is in the input-driven regime, the total input always
overcomes the decay, leading to the stationary dynamics with ρi(t) > 0. In neither of the above cases does the system
undergo full (and repeated) charge-discharge cycles.

Parameter Description

Dynamic variables

ρi(t) Firing rate (or activity) of module i
Ri(t) Available synaptic resources in module i
Ii(t) Total input arriving at module i
ξi(t) Gaussian noise (mean 0, variance 1)

Dynamic constants

R0 = 1 Baseline synaptic resources
σ = 0.1 Intensity of (additive) background noise

h = 0.0− 0.3 External input (rate), supplied to all modules

Time scales

τρ = 1 Time scale of module rates (decay back to baseline)

τd = 5 Time scale of discharging synaptic resources
τc = 40 Time scale of charging synaptic resources

τgd = 1 Time scale of disconnecting gates
τgc = 20 Time scale of (re-)connecting gates

Input transfer sigmoid

θ = 0.2 Activation threshold, for input below θ no transfer
a = 1.6 Knee (abruptness of change) mapping module input to rate change
b = 20.0 Input gain of the function

Gates and module coupling

gij(t) Gate states. 1 if connected (transmitting activity), 0 else
Ωij Rates at which gates connect/disconnect

Aij Adjacency matrix of modules. 1 if coupled/neighbouring, 0 else
w = 0− 0.15 Coupling strength between modules

ag = 10 Knee of sigmoid mapping Rj(t)→ Ωij
θg = R0/2 Threshold of resources below which gates start to disconnect

Simulation settings

Table S4. Overview of parameters and variables of the mesoscopic model.

3 The constant rate in the mean-field picture is motivated microscopically by the Poisson spiking of every neuron in the population.
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Next, let us next consider the isolated module, but with fluctuations (σ 6= 0, Fig. S10C). From Eq. (18), we note
that h contributes as a linear term in the exponents (I − θ) of the transfer function Eq. (19). Thus, increasing h is
equivalent to lowering the threshold θ, which determines how easily a burst can start due to fluctuations of a given
amplitude σ. Thus, when the external input is increased h→ θ, the module bursts more frequently and the average
amount of available resources decreases. Due to the effectively lower threshold, even at the decreased resources,
fluctuations can start a (less intense) burst. Together, this manifests in smaller charge-discharge cycles.

How do h and σ relate to the optogenetic stimulation in the experiments? As h describes the average external
input to the underlying neuron population, the random optogenetic stimulation of individual neurons corresponds
to an increased h. Consistently, increasing h causes higher activity in the mesoscopic model, as we also observed
in experiments during stimulation. Because the targets of optogenetic stimulation are random, stimulation also
corresponds to an increase of the module-level noise (an increase in σ). Reconsidering Fig. S10C, we see that increasing
σ also decreases the size of charge-discharge cycles (as long as h < θ). When fluctuations have a larger amplitude,
they are more likely to push the module away from the stable point at high resources, triggering a burst. Thus, the
average amount of resources at which bursts occur is lowered — just as in the case when increasing h. Thus, h and
σ have a similar effect. In the following, we keep σ = 0.1 fixed and focus on systematically varying h.

Figure S10. Interplay of noise and external input for individual modules. In the absence of fluctuations (“no noise”,
σ = 0), an isolated module will always end up at a stable fixed point. Charge-discharge cycles can only be triggered by
sufficiently large fluctuations. A: Sketch of the transfer function F (I; θ, a, b) mapping the total input arriving at a module to
a rate change. B: The position of the fixed point depends on the external input h. Colors scale from blue (low input) to red
(high input) and match across panels to show how the fixed point moves in different representations. Bigger dots correspond to
the values of h shown in panel C. As h is increased, the system undergoes a discontinuous transition to the input-driven (up)
state, near h ≈ θ = 0.2, see accompanying text. C: Charge-discharge cycles in the Resource-Rate plane for simulations that
include noise. Gray background lines indicate the deterministic flow field and derive from short, equally long time-integrations
of Eqs. 17b and 17a (excluding the noise term and inputs from other modules). Long gray lines indicate fast dynamics and
short lines indicate slow dynamics. The colored lines are example trajectories of the full model for a single module, including
noise but without interacting neighbors. C, top to bottom: Increasing σ. Independent of external input h, only fluctuations
can trigger a discharge by perturbing the module sufficiently far from the fixed point. C, left to right: Increasing h. For small
h� θ = 0.2, fluctuations trigger a fast discharge (bursting at high rates, depleting resources). Once resources are depleted, the
module slowly recovers resources at rates near zero. For larger h ≥ θ, the system is in the input-driven regime of continuous
firing at medium rates and low resources (right column). In this regime, fluctuations cannot start a burst (and the characteristic
large cycles), because no resources are available.

C. Stochastic Gates as Connections between Mesoscopic Modules

In a mean-field formulation, one assumes that connectivity in the neuron population is all-to-all — an assumption
which we here clearly violate when neurons are predominantly confined to grow connections within modules. As
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we illustrate in the following, this manifests in the way modules synchronize and necessitates the introduction of a
stochastic gating mechanism.

In the experimental cultures, modules connect because individual neurons grow an axon into a neighboring, coupled
module. Thus, the total input projected from module j to i should depend on the average firing rate within the source
module ρj(t) and the number of connecting axons. Describing the average number of connecting axons through a
continuous variable (the coupling strength w), and considering all coupled modules, then the total input to i would
be Ii(t) ∼ w

∑
j 6=iAijρj(t), where Aij is the adjacency matrix describing links from j to i (1 if modules are coupled,

0 otherwise).
Clearly, in our experimental setup (and the simulations of LIF-neurons), the local topology plays a key role when

coupling different modules, because only few individual neurons project to neighboring clusters (1 ≤ k ≤ 10). In
particular, if k = 1 and the projecting neuron is already in a refractory state when a module-level burst occurs
(or, by chance, it fails to release an action potential) then activity cannot spread between modules, preventing
synchronization. Thus, the mean-field coupling strength (w) only partly captures the mechanism of the microscopic
number of connecting axons (k): It accounts for the scaling of the input due to more connections but not for
the increased probability of a successful transmission of activity. To account for this, we introduce a novel gating
mechanism that incorporates the probabilistic nature of the connections between modules through a discrete gate
variable. This allows us to maintain the advantages of the mean-field description (such as better analytic tractability)
by accounting for the effects of low-level spatial structure while avoiding the necessity to explicitly incorporate it. As
such, our model combines continuous and discrete variables and is an example of hybrid stochastic systems, which
have also been employed to successfully describe single-cell dynamics [97].

A gate from module j to i is a discrete (Boolean) variable gij(t) with two possible states: connected (1, activity
can pass) or disconnected (0, activity cannot pass). Gates are not symmetric; gij can be connected while gji is
disconnected, so that activity can spread in an inhomogeneous manner. Microscopically, disconnected gates represent
a state in which the presynaptic neurons are exhausted. We have already included the state of the gates in the input
to each module [Eq. (18)]. Input is projected from j to i only if both modules are coupled (Aij = 1) and the gate is
currently connected [gij(t) = 1]. The gates transition between states as follows: They (re-)connect at a constant rate,
so that a disconnected gate recovers after a typical time τgc, and gates become more likely to disconnect as resources
of the source-module are depleted. The stochastic transition-rates are:

Ωij (0→ 1) =
1

τgc
, (20a)

Ωij (1→ 0) =
1

τgd

[
1− 1

1 + e−ag(Rj(t)−θg)

]
, (20b)

where ag, and θg are parameters that control the (sigmoidal) response of the gate to the amount of available resources
(cf. Fig. 4E in the main manuscript). For sufficiently small time steps δt, these rates directly correspond to the
probability that a gate connects or disconnects, Pij ≈ Ωijδt.

D. Gates Desynchronize Modules

How does the gating mechanism affect the interaction of multiple modules? Let us first consider how modules
synchronize while gates are connected. In this case, the input from one module to another has the same effect that
we saw for stochastic fluctuations and isolated modules. If a module is charged, a sufficiently strong perturbation can
trigger a module-level burst. In addition, because bursts feature a high firing rate, they also cause severe input to
all neighboring modules [Eq. (18)], which again acts as an initial perturbation, triggering subsequent bursts in those
modules. Note that, because time scales are separated, the time of discharge during the burst is much quicker than the
charging, so that all modules that participated in the system-level burst start recharging at what can be considered
the “same time”. Thus, they are also ready to burst again, and the system synchronizes. A crucial detail is that pairs
of modules enter a recurrent feedback loop, just as we described for a single module; with constantly connected gates
[gij = 1 in Eq. (18)], a change in ρj is very similar to a change of ρi. Of course, the recurrent feedback loop does
not occur for vanishing coupling w → 0, in which case modules become independent and could only synchronize by
chance.

Our stochastic gating mechanism can disrupt the inter-module feedback loop for non-vanishing coupling: When a
module starts bursting, its available resources are rapidly consumed, so that its outgoing gates will deactivate quickly
(∼ τgd). Once a gate is disconnected, it will remain disconnected for a relatively long time (∼ τgc). In this period,
if the module bursts again, activity cannot spread to the neighboring modules. Hence, if modules tend to burst with
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a time scale faster than τgc, the recurrent feedback loop between modules is hindered, because the crucial initiating
inputs cannot pass through the disconnected gates, and therefore the system cannot synchronize.

Finally, let us reconsider the external input h, an increase of which caused smaller charge-discharge cycles for
isolated modules, by effectively lowering the threshold θ. Importantly, the smaller charge-discharge cycles correspond
to more frequent bursts on the module level and lower average resources. For multiple modules connected by the
gating mechanism, the lower resources cause the gates to be disconnected more often, and the fraction of bursts
occurring in times of disconnected gates increases. Thus, it becomes less likely for a module-level burst to trigger a
system-wide burst, because either gates are not ready or the target modules are not in the state of sufficiently charged
resources.

To summarize, in order to desynchronize the modules of the mesoscopic model for non-vanishing coupling strengths,
two ingredients are needed: i) a sufficiently strong amplitude of fluctuations to cause charge-discharge cycles, and ii)
an inhomogeneous as well as stochastic coupling between modules, implemented through our novel gating mechanism.
If both conditions are met, then the desynchronization can be facilitated by increasing the external input h to all
modules (cf. Figs. S11 and S12).

4. CODE AVAILABILITY

Our source code for analysis and simulation is available via Github:
• Github: https://github.com/Priesemann-Group/stimulating_modular_cultures
• DOI: 10.5281/zenodo.7962283

Experimental data and processed analysis results are available via G-Node GIN:
• https://gin.g-node.org/pspitzner/stimulating_modular_cultures
• DOI: 10.12751/g-node.t77b3p

167



20

Figure S11. Mesoscopic model with gating mechanism enabled, and varying stimulation to all modules. With the
gating mechanism, modules desynchronize when the coupling between modules is removed, or the external input is increased.
Correlations between modules gradually decrease with increasing external input, until reaching the transition to the up state
at h ≈ θ = 0.2. Note that very strong coupling (e.g. w = 5.0) leads to a saturation of the gating mechanism so that gates
are always disconnected and modules can no longer synchronize, despite the strong coupling. Panels with a gray star are also
presented in the main manuscript.
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Figure S12. Mesoscopic model with gates permanently connected, and varying stimulation to all modules.
Without the gating mechanism, modules only desynchronize for vanishing coupling. An increase of external input cannot
desynchronize the modules. Correlations between modules drop abruptly as the system enters the input-driven up state
h ≥ θ = 0.2.
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5. DATA TABLES

Layout Condition
targeted
modules

across
non-

targeted
all

single-bond

pre
median 0.72 0.76 0.81 0.76

2.5 0.66 0.69 0.75 0.74
97.5 0.81 0.82 0.85 0.82

stim
median 0.22 0.31 0.73 0.41

2.5 0.05 0.16 0.51 0.21
97.5 0.31 0.41 0.74 0.44

post
median 0.74 0.79 0.81 0.81

2.5 0.56 0.61 0.80 0.73
97.5 0.78 0.80 0.84 0.81

tripe-bond

pre
median 0.82 0.80 0.84 0.81

2.5 0.80 0.68 0.78 0.78
97.5 0.90 0.88 0.88 0.88

stim
median 0.72 0.71 0.75 0.73

2.5 0.27 0.31 0.71 0.46
97.5 0.81 0.74 0.81 0.76

post
median 0.81 0.84 0.86 0.85

2.5 0.68 0.68 0.75 0.72
97.5 0.90 0.89 0.89 0.89

merged

pre
median 0.92 0.89 0.91 0.91

2.5 0.73 0.81 0.72 0.79
97.5 0.95 0.92 0.93 0.92

stim
median 0.59 0.51 0.74 0.62

2.5 0.26 0.30 0.36 0.28
97.5 0.84 0.85 0.89 0.87

post
median 0.92 0.88 0.93 0.91

2.5 0.87 0.83 0.82 0.85
97.5 0.95 0.92 0.94 0.93

simulation
(two modules

targeted,
k = 3)

pre (0.0 Hz)
median 0.83 0.81 0.82 0.82

2.5 0.77 0.76 0.78 0.80
97.5 0.86 0.84 0.85 0.84

post (20.0 Hz)
median 0.33 0.50 0.80 0.58

2.5 0.28 0.46 0.74 0.53
97.5 0.44 0.53 0.84 0.63

Table S5. Pairwise correlation sorted according to stimulation targets. The data shown in the barplots (main Fig.
2D) compares neuron correlation and their dependence on the neuron’s positions. For every neuron pair, both neurons could
reside in the “targeted modules”, both could reside in “non-targeted” modules, or “across”, where one neuron is within a
targeted module and the other one is not. The last column contains the ensemble of all pairs, irrespective of position. Note
that for merged topologies, no modules exist but categorization is still possible, depending on whether a neuron is a potential
stimulation target. The median corresponds the single-realization estimate (median neuron correlation), 2.5% and 97.5% are
percentiles of the bootstrap distribution.
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Layout Condition Percentile
Event

size
Neuron

correlation
IEI

(seconds)
Core delays

(ms)

single-bond

pre
50 1.00 0.77 18.97 39.17
2.5 0.96 0.76 16.15 32.83
97.5 1.00 0.78 21.35 45.26

stim
50 0.46 0.40 6.23 70.00
2.5 0.42 0.38 5.60 65.83
97.5 0.50 0.42 6.92 77.83

post
50 0.83 0.78 12.43 46.67
2.5 0.81 0.77 11.43 42.24
97.5 0.88 0.78 13.94 53.89

tripe-bond

pre
50 0.95 0.86 16.13 31.17
2.5 0.95 0.86 12.96 27.91
97.5 0.95 0.87 20.20 35.67

stim
50 0.75 0.75 7.04 46.67
2.5 0.73 0.74 6.33 39.92
97.5 0.80 0.75 7.55 53.58

post
50 0.95 0.88 17.13 34.83
2.5 0.95 0.87 15.35 29.03
97.5 0.95 0.88 19.69 41.25

merged

pre
50 1.00 0.89 19.85 35.83
2.5 1.00 0.89 17.75 32.67
97.5 1.00 0.90 23.67 40.42

stim
50 0.75 0.72 5.35 37.67
2.5 0.68 0.71 4.89 34.75
97.5 0.79 0.75 5.87 40.00

post
50 1.00 0.92 20.78 31.33
2.5 1.00 0.91 15.73 28.17
97.5 1.00 0.92 25.82 35.09

chemical

KCl =0 mm
50 0.81 0.72 42.40 59.25
2.5 0.75 0.71 20.39 37.24
97.5 0.88 0.74 48.64 100.00

KCl =2 mm
50 0.94 0.76 20.01 104.50
2.5 0.88 0.73 17.15 67.67
97.5 0.94 0.78 22.34 153.33

bicuculline

0 µm
50 1.00 0.82 73.90 173.58
2.5 0.85 0.80 56.74 129.58
97.5 1.00 0.84 100.15 177.17

20 µm
50 0.80 0.82 6.31 29.92
2.5 0.80 0.80 4.97 26.87
97.5 0.85 0.83 8.34 34.21

simulation
(two modules

targeted,
k = 3)

pre (0.0 Hz)
50 0.81 0.84 18.76 18.00
2.5 0.79 0.84 18.46 17.67
97.5 0.81 0.85 19.06 18.17

stim (20.0 Hz)
50 0.27 0.58 5.50 28.31
2.5 0.26 0.57 5.38 27.75
97.5 0.27 0.58 5.64 28.79

Table S6. Statistics aggregated across trials. For all the violins (main Figs. 2A,B and 3E) we plot aggregated observations
(activity events, IEI or a pair of neurons contributing a correlation coefficient) that are collected across all trials. To get
uncertainty estimates, we bootstrap the observations (a large number) and calculate the median for each of the 500 bootstrap
samples. Then, considering all bootstrap samples, we get a distribution of where these medians fall. The percentiles of this
distribution are plotted as the error sticks in the violins: the error bar from the 2.5% to the 97.5% and the white dot is located
at the 50% (corresponding to the median of all bootstrap samples). Here, we use the median as we expect these distributions to
be non-Gaussian, and skewed (for instance, the median event size of non-stimulated single-bond is 1, because the distribution
is skewed — this would not be captured so well if we used the mean instead of the median).
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Layout Condition
Event

size
Correlation

coefficient
Functional
complexity

IEI
(seconds)

Core delays
(ms)

single-bond
(N = 7 realizations)

pre

mean 0.98 0.77 0.47 41.13 0.05
sem 0.05 0.03 0.06 12.86 0.03
max 1.00 0.85 0.75 109.98 0.24
min 0.69 0.49 0.39 9.64 0.03

stim

mean 0.52 0.39 0.68 9.45 0.07
sem 0.11 0.06 0.07 2.91 0.02
max 0.88 0.73 0.77 16.52 0.16
min 0.25 0.21 0.47 4.41 0.04

post

mean 0.93 0.79 0.47 18.57 0.05
sem 0.05 0.04 0.04 8.14 0.02
max 1.00 0.82 0.69 49.46 0.14
min 0.75 0.47 0.38 9.60 0.02

triple-bond
(N = 7 realizations)

pre

mean 0.96 0.82 0.39 34.41 0.05
sem 0.04 0.04 0.06 9.76 0.01
max 1.00 0.92 0.55 56.53 0.10
min 0.75 0.72 0.24 7.06 0.02

stim

mean 0.85 0.70 0.52 9.89 0.05
sem 0.11 0.09 0.05 4.29 0.02
max 1.00 0.90 0.67 41.80 0.11
min 0.33 0.27 0.29 4.55 0.02

post

mean 0.97 0.85 0.33 25.25 0.04
sem 0.07 0.05 0.07 12.93 0.01
max 1.00 0.91 0.55 47.84 0.06
min 0.75 0.68 0.22 13.12 0.02

merged
(N = 7 realizations)

pre

mean 0.99 0.90 0.30 61.41 0.05
sem 0.02 0.05 0.07 24.62 0.03
max 1.00 0.95 0.46 154.61 0.16
min 0.94 0.69 0.16 3.14 0.02

stim

mean 0.72 0.62 0.49 9.04 0.04
sem 0.28 0.16 0.10 2.77 0.02
max 1.00 0.94 0.70 16.11 0.14
min 0.30 0.27 0.24 3.76 0.02

post

mean 0.98 0.90 0.31 48.17 0.06
sem 0.03 0.03 0.06 25.23 0.02
max 1.00 0.93 0.48 158.83 0.09
min 0.88 0.81 0.16 5.64 0.01

chemical
(N = 4 realizations)

KCl =0 mm

mean 0.79 0.72 0.58 63.01 0.12
sem 0.08 0.01 0.02 39.26 0.08
max 1.00 0.75 0.62 177.93 0.34
min 0.69 0.69 0.54 19.52 0.04

KCl =2 mm

mean 0.92 0.75 0.48 34.50 0.15
sem 0.05 0.09 0.09 12.55 0.09
max 1.00 0.93 0.57 63.82 0.36
min 0.78 0.53 0.21 17.38 0.03

bicuculline
(N = 5 realizations)

0 µm

mean 0.90 0.76 0.49 90.78 0.15
sem 0.16 0.05 0.06 13.84 0.03
max 1.00 0.91 0.63 126.47 0.18
min 0.25 0.65 0.38 55.56 0.07

20 µm

mean 0.88 0.76 0.47 49.69 0.08
sem 0.16 0.05 0.11 32.90 0.06
max 1.00 0.94 0.65 134.48 0.30
min 0.25 0.70 0.16 4.91 0.03

Table S7. Trial-wise statistics. For all the trial-level plots (main Fig. 1J and Figs. 2E–H) we consider observables of individual
trials (realizations). Thus, the observable is calculated once for each realization (for example, functional complexity, the median
neuron correlation in a trial, or the median event size in a trial). We then bootstrap these trials and get a distribution from
the bootstrap samples. The white dot is the mean of the samples, the error bar indicates the mean plus/minus the bs-sample
standard error and the extended thin line indicates that maximal/minimal value observed in any realization. Here, we use the
mean because we expect these distributions to be normal.
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In the Supplementary material, we provide additional controls to verify the robustness of our
results in the main manuscript.

A. Non-deterministic disease progression

In the main manuscript, we have focused on deterministic disease progression, where latent and infectious periods
had a precise duration. For a more realistic view, we want to allow for the latent and infectious periods to vary
from case to case (Fig. S1). However, if we draw random periods then we can no longer enumerate the statistics
of P (ninf) but have to sample it instead. Specifically, we sample 106 disease realizations, where we first draw a
random realization of the disease progression (Tlat,i, Tinf,i), to then draw disease start times si from the ensemble of
all encounters until we find an si such that the disease progression is within the remaining duration of the experiment,
i.e., si + Tlat,i + Tinf,i ≤ Texp. Only once we have a valid disease start time si, we count the number of subsequent
encounters within the infectious period as above. If, for any disease realization, we need to draw more than 1000
disease start times until we find a valid one, we abort the estimation for the set of parameters (Tlat, Tinf , k). By this
procedure to first draw and fix a random realization of the disease progression, we avoid a bias towards small periods
that would occur due to the finite period of the experimental data.

Here, we chose to draw the periods Tlat and Tinf from a gamma distribution, where we fix the mean 〈Ti〉 by choosing

FIG. S1. Increased variability of disease-stage periods does not affect conclusions on robustness of outbreaks
but weakens the modulation of spreading pace. a, b: To include person-to-person variability, we draw both latent and
infectious periods from gamma distributions characterized by the shape parameter k, which interpolates between exponential
(k = 1) and delta (k → ∞) distributions. For small k, Tlat and Tinf differ in duration from realization to realization —
across individuals, the probability to be infectious at a given time is smeared out. As k increases, the periods vary less around
their expected value and the disease progression eventually becomes deterministic. c: Probability distributions of potentially
infectious encounters ninf for k → ∞ (top) and k = 10 (bottom). When randomizing trains, the probability of zero-infectious
encounters is suppressed. d: Mean number of potentially infectious encounters ninf as a function of k for the two examples
from the main manuscript (Tinf = 3 days and Tlat = 2 or 6 days). For k → ∞, we recover the result for deterministic disease
progression (dashed lines), where the latent period induces a notable difference between the two examples. For smaller k, the
resonance effects remain relevant but the difference decreases, see also Fig. S2.
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the scale θ = 〈Ti〉/k such that Pk(Ti) = T k−1
i e−Ti/θ/[Γ(k)θk]. Hence, the shape parameter k parameterizes the case-

to-case variability (Fig. S1a) and allows us to interpolate between a delta distribution (k →∞) and the exponential
distribution (k = 1) that is commonly assumed in computational epidemiology for mathematical tractability [1].
Clinically observed distributions are neither delta distributed nor exponential distributed and may be best described
by distributions with a clear peak but vanishing probability at zero, such as log-normal distributions or gamma
distributions with shape parameters in between (1,∞). On the one hand, delta-distributed periods seem like a
convenient but unrealistic simplification. On the other hand, exponentially distributed periods may appear more
realistic, however, they imply an artificially high probability of short durations, which in turn leads to realizations
where the infectious period either starts shortly upon infection or has close-to-zero duration (example traces in
Fig. S1a). In fact, it has been argued already in the past that gamma distributions are more realistic [2–4], see for
example empirical distributions of latent periods for COVID-19 [5], such that more realistic shape parameters could
be in the range h ∈ [5, 20] which is between delta and exponential. To investigate how case-to-case variability affects
the number of potentially infectious encounters ninf , we again consider the probability distribution P (ninf) (Fig. S1c),
and revisit the two examples (Tinf = 3 days with either Tlat = 2 days or Tlat = 6 days).

For the delta-disease (k → ∞, top), the red (Tlat = 6 days) and blue (Tlat = 2 days) distributions exhibit a peak
at zero, they are broad, and have a long tail. Comparing red and blue, we find that the latent period determines
the height of the peak at zero as well as the position of the bulk distribution, and, thereby, determines the mean
number of potentially infectious encounters (dashed vertical lines). The mean values clearly differ. Again comparing
with the randomized encounter trains (yellow line), we find no peak at zero, a shorter tail, and no dependence on the
latent period (the respective randomized lines fall on top of each other). Importantly, a peak at zero implies that the
infected individual does not pass on the infection, so that the disease becomes more likely to die out if case numbers
are low.

Employing a non-deterministic disease progression (k = 10, Fig. S1c bottom), the distribution from randomized
data is barely affected. However, the red and blue distributions are more similar to each other, but also broader
and smoother than for the delta-disease. This can be explained by gamma-distributed periods acting as a smoothing
kernel along both dimensions of Fig. S1f, where variability in the infectious period directly affects ninf, while variability
in the latent period affects ninf through the resonance effect. Consequently, we expect that with decreasing shape
parameter k, the mean number of potentially infectious encounters becomes independent of the mean latent period.
Indeed, when considering ninf as a function of k, we find that the estimates for our two examples approach each other,
as k decreases (Fig. S1d).

Note that our analysis has a lower bound in k once realizations of disease progression (latent + infectious period)
cannot find sufficiently many initial encounters to fit into the finite duration of the experiment (4 weeks for Copenhagen
Networks Study). However, using other examples with smaller latent and infectious periods (where we can acquire
enough statistics), we show that the two extreme cases meet for k ≈ 1 (see Fig. S2).

B. Non-deterministic disease progression with fast disease stages

With the parameters of the main text, we were not able to sample for small k values (more variability across disease
realizations) because the 28-day duration of the data becomes too short once the periods of disease progression are
close-to exponentially distributed (k → 1).

To avoid this issue and to illustrate shorter timescale, we here compare with another hypothetical example of a
“faster” disease progression, where Tinf = 0.5 days and Tlat is either 1 or 1.5 days (Fig. S2). In this case, expected
periods are very short so that even realizations with periods that severely exceed their expected value fit into the
28-day duration.

We find a few noteworthy aspects: First, the absolute value of potentially infectious encounters ninf is much lower
for faster disease progression. This is due to the much shorter infectious period. However, the relative deviation from
the randomized surrogate data is consistent between the two examples. Second, we now find that the longer latent
period (1.5 vs 1.0 days) leads to fewer potentially infectious encounters (red vs blue). This is just a result of the
chosen latent periods: choosing an even longer latent period would result in a respective decrease of ninf (e.g. 2.0
vs 1.5 contacts). Third, as expected, as k → 1, the estimates of ninf overlap for different latent periods, because
individual disease realizations become very variable (cf. Fig. S1a).
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FIG. S2. Example with smaller latent and infectious periods provides additional insight on low-k regime of non-
deterministic disease progression. Here, we compare the example from the main manuscript (“slow”, Tinf = 3 days and Tlat

either 2 or 6 days) with a hypothetical “fast” disease progression (Tinf = 0.5 days and Tlat either 1 or 1.5 days) and show both
the mean number of potentially infectious encounters as a function of the shape parameter k of the gamma-distributed latent
and infectious period (top) as well as their distributions for selected k. Due to the finite duration of the recording, the accessible
low-k regime is determined by the mean latent and infectious period, because for low k large periods quickly exceed the finite
duration. For faster disease progression (smaller latent and infectious period), we observe modulations on smaller timescales
and, in addition, reach the low-k regime of exponentially distributed periods (k = 1) commonly assumed in epidemiological
simulations. As one can see more clearly for faster disease progression, the mean number of potentially infectious encounters
approach each other in this low-k regime, which can only be anticipated from the results for slower disease progression. This
implies that modulations will not be present for exponentially distributed latent and infectious periods but only for more
realistic non-exponentially distributed ones with higher k.
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C. Simple point processes cannot fully reproduce temporal features

As we noted in the main text, each of the considered simple generative models is insufficient to reproduce the full
set of observed temporal features of contact patterns. Here, we provide a more complete overview of processes and
the features they reproduce (Fig. S3). We identified three relevant features:

i) a time-varying, cyclostationary encounter rate ρ(t) (first column)
ii) a heavy-tailed inter-encounter-interval distribution P (δt) (second column)
iii) encounter rates vary between individuals (third column)
Feature i) is responsible for modulation of the conditional encounter rate Ψ(τ) (fourth column). Combined with

disease progression, this causes modulations of ninf and distributions P (ninf) that vary with Tlat and Tinf (last two
columns). Feature ii) is responsible for zero-spreading events, which destabilize epidemic outbreaks and manifest in
the peak of P (ninf) for ninf ≈ 0 (last column). Feature iii) is responsible for super-spreading events, which correspond
to the tail of P (ninf) and, thus, can cause a systematic shift of ninf .
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FIG. S3. Simple generative processes are not capable of reproducing all aspects of the full real-world contact
statistics. An inhomogeneous Poisson process can reproduce cyclostationary ρ(t) but fails to reproduce sufficiently heavy-tailed
P (δt). A Weibull-renewal process reproduces heavy-tailed P (δt) but fails to reproduce the cyclostationary ρ(t). Generative
processes need to reproduce variability between individuals P (ntrain) to produce long-tailed distributions P (ninf). In order to
reproduce the data in all the considered aspects, we designed a tailored Weibull-renewal process with heterogeneous rates.
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D. Control regarding continuous contribution of participants

In the main manuscript, we use the full published data set of the Copenhagen Networks Study [6], covering the
physical proximity data of 675 participants. Upon closer inspection, there are periods both at the beginning and
the end of the experiment without entries for some of these 675 participants. Since entries also occur for Bluetooth
signals with unknown devices, this may indicate irregularities in the contact behavior of some of the participants, e.g.,
incomplete participation of individuals.

In order to make sure that our results are not affected by such boundary effects, we reanalyzed the data and
included only the contact trains of those individuals for which any Bluetooth signal was recorded on both the first
and last day of the study (Fig. S4). Technically, we achieved this easily by restricting our analysis to those IDs for
which timestamps were recorded within the first day (timestamp < 1 · 24 · 60 · 60 s) and the last day (timestamp
> 27 · 24 · 60 · 60 s), reducing the data set to 533 contact trains.

This control analysis fully supports our quantitative results from the main manuscript (Fig. S4) such that we can
rule out artifacts from boundary effects of incomplete participation. In particular, we observe a matching weekly
structure of the encounter rate (Fig. S4a), a matching distribution of inter-encounter intervals that can be fitted with
a Weibull distribution (Fig. S4b), and a matching conditional encounter rate (Fig. S4c). Consequently, both mean
potentially infectious encounters for deterministic disease progression (Fig. S4d and f) as well as for non-deterministic
disease progression (Fig. S4e and g) match our main results.

FIG. S4. Control regarding continuous contribution of participants. Here, we excluded those trains that did not have
any encounters during the first or last day. This results in 533 instead of 675 trains. Panels match key figures from the main
manuscript. Results are consistent. The fitted Weibull distribution has shape parameter 0.3739 and scale parameter 3161.
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E. Analysis of an alternative data set

To further test the robustness of our results, we repeated our analysis on an independent data set. Here, we
consider contact data recorded at one of the office buildings of the French Institute for Public Health Surveillance
“InVS” [7, 8]. This data is recorded with a different technique, namely so-called near-field chips that only record
signals in close proximity (. 5 m) and avoid to threshold the Bluetooth signal. Moreover, the temporal resolution
of contacts is 20 s as opposed to 5 min in the main manuscript. In addition, the data is recorded for a different
social group, namely employees within an office building. Last, the data is recorded in another country (France) by
a different collaboration (SocioPatterns). The data set spans 2 weeks of recording 145 participants (two thirds of the
staff agreed to participate).

The analysis of this completely independent data set provides completely consistent results to those presented in
the main manuscript (Fig. S5). When comparing the results, we have to highlight that the available statistics for
this data set are much smaller due to smaller duration and smaller number of participants. However, we clearly see
the expected weekly structure in the encounter rate (which is here again dominated by working days because of office
hours), the distribution of inter-encounter intervals that is well described by a Weibull distribution, as well as the
typical conditional encounter rate with a peak at 7 days. Consequently, the results for (delta) disease progression are
also consistent with our main findings on the modulation of potential secondary infections (Fig. S5d). Results on non-
deterministic disease progression are confined to shorter latent and infectious periods due to the shorter experimental
duration. We conclude that the additional data set fully supports our results in the main manuscript.

FIG. S5. Main results for other data set. Because the recording lasted “only” two weeks, the duration of disease that can
be sampled were limited to the fast disease progression. The fitted Weibull distribution has shape parameter 0.225 and scale
parameter 675.
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F. Infections from outside the study group

To check the effect of contacts that could take place with people who were not part of the study, we investigate
disease onsets that do not directly follow the contact patterns observed in the data (Fig. S6). In our analysis of the
main manuscript, an infection could only originate from an encounter with another participant in the data set. Here,
we keep the original encounter trains (to evaluate potentially infectious encounters) but the disease onset can occur
at any time, due to a hypothetical contact with an external person. We focus on the resulting distribution and the
mean of potentially infectious encounters ninf (Fig. S6).

We distinguish the following different possibilities of disease onset:

internal: Onsets occur as in the main manuscript only at encounters recorded in the data set. This
naturally incorporates the spatio-temporal structure of encounters, in particular their temporal
inhomogeneity and their variability across participants.

external i: Onsets occur completely randomly, at random times for random participants. This neglects
both temporal inhomogeneity of encounters and their variability across individuals.

external ii: Onsets occur at random times with a probability proportional to the encounter rate for random
participants with a probability proportional to their total number of encounters. This incor-
porates both the (averaged) temporal inhomogeneity of encounters and the variability across
individuals.

external iii: Onsets occur at random times with a probability proportional to the encounter rate but uni-
formly across random participants. This incorporates the (averaged) temporal inhomogeneity
of encounters but neglects the variability across individuals.

external iv: Onsets occur at uniformly random times for random participants with a probability propor-
tional their total number of encounters. This neglects the temporal inhomogeneity of encounters
but incorporates the variability across individuals.

Once an onset has been chosen, the disease progression is modeled as in the main manuscript. We focus on the
usual examples but use gamma-distributed latent and infectious periods with k = 10 to evaluate potentially infectious
encounters (k = 10 aims to strike a balance between completely deterministic and exponential disease stages [2–4]).

Comparing the different versions of disease onset (Fig. S6), we can attribute clear effects to both the temporal
inhomogeneity of the onset time as well as the variability of onset times across individuals. Please note that in all
cases the encounter statistics of the actual encounter trains did not change — all we change is the statistics of the
disease onset time. Please note further that the results for different versions of disease onset represent the extreme
scenario where all disease onsets originate from external sources.

Comparing the distributions of ninf for fixed Tlat (Fig. S6a and Fig. S6c), we notice that those distributions that
best resemble the shape of internal disease onset are those where external disease onset statistics incorporate the
variability across individuals (external ii and iv). This can be explained by the fact that also for internal disease onset
more onsets occur for contact trains with more encounters, which in turn increases the probability of higher ninf and
thereby also the mean ninf. It appears that for the overall shape of the distribution, as well as the leading order of its
mean value, it is not necessary that disease onsets occur with the same temporal inhomogeneity as true encounters
for the chosen infectious periods (this may change for very small infectious periods though).

Comparing further the results of specific disease onsets for different Tlat (Fig. S6b comparing solid vs opaque
symbols), we notice that incorporating the temporal inhomogeneity into the disease onset (external disease ii and
iii) seems relevant for the modulation that causes differences in ninf due to latent periods. This can be explained
by reoccurring contact patterns: if infections are not more likely to occur during times of many contacts (as for
external i and iv), then differences in the number of potential infections are smeared out when averaging over multiple
realizations.

Concluding, the results for the extreme scenarios of external infections fully support our conclusions from the main
manuscript.
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FIG. S6. Infectious encounters for external infections. In our analysis in the main manuscript, we preserved the temporal
features by constraining disease onsets to available encounters. a: Distribution of potentially infectious encounters for non-
deterministic disease progression (k = 10). 6 days latent period. b: Comparison of the mean n̄inf between 6 days latent period
(dark) and 2 days latent period (light). c: Same as a), but 2 days latent period.

192



10

G. Impact of the distance threshold for considered contacts

In the main manuscript, we filtered the physical proximity data to only include contacts with a minimal Bluetooth
signal strength (RSSI & −80 dBm) as a proxy for contact distances below 2 m [9]. This choice was motivated in the
main manuscript and moreover corresponds to a value that optimizes the ratio between strong and weak links [9]. Here
we show that our results are robust under changes in the cut-off signal strength which sets a scale, but does not alter
the patterns observed. In particular, we consider two cases of lower (RSSI & −75 dBm) and higher (RSSI & −95 dBm)
threshold. As can be seen from Fig. S7, this threshold changes the scale of the encounter rate (Fig. S7a) but does not
alter the resonance effect compared to random encounters (Fig. S7b).
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FIG. S7. Effect of threshold distance. To test which impact the distance at which a contact becomes potentially infectious
has on our results, we varied the RSSI threshold in the preprocessing step. A higher threshold (RSSI & −95 dBm) corresponds
to including more contacts (which previously were considered too far away), thus resulting in a higher number of potentially
infectious encounters, and (in absolute numbers) to a higher conditional encounter rate. Vice versa, a lower threshold (RSSI &
−75 dBm, corresponding to about 1 meter distance) leads to a lower conditional encounter rate. In both cases, the overall
functional shape of the conditional encounter rate (featuring valleys at night, peaks at daytime and pronounced peaks at seven
days) remains intact. Consequently, also the number of potentially infectious encounters relative to randomized remain mostly
unaltered.
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H. Impact of the contact duration for considered contacts

In the main manuscript, we filtered contacts to only include those with a sufficient duration of at least 15 minutes.
This choice was motivated in the main manuscript, and it is particularly suitable to avoid transient contacts that
arise in passing. Still, different choices are possible. Here, we show for shorter and longer minimum durations that
this choice only affects the scale of the encounter rate but does not affect any results relating to the modulation of
potentially infectious encounters (Fig. S8).
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FIG. S8. Effect of threshold duration. To test which impact the minimum duration after which a contact becomes
potentially infectious has on our results, we varied the required duration for qualifying contacts during the preprocessing step.
A shorter required duration (e.g. 5 minutes vs 15 minutes in the main manuscript) leads to more contacts qualifying and a higher
conditional encounter rate. Vice versa, a longer required duration (e.g. 30 minutes) leads to a lower conditional encounter rate.
In both cases, the overall functional form of the conditional encounter rate remains intact. Again, although we see a higher
absolute number of potentially infectious encounters, the change relative to randomized encounter trains is mostly unaltered.
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