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Summary

The following thesis deals with a range of current topics in information theory
and statistics. It consists of five distinct contributions: Chapter 2 focuses on the
statistics of single-regression Granger causality estimators. Chapters 3-5 address the
theory of Partial Information Decomposition (PID), an extension of classical Shannon
Information Theory. Chapter 6 is about Significant Subgraph Mining, a statistical
method for finding differences between graph-generating processes with multiple
comparisons correction. In the following, a brief summary of each contribution is
provided:

Chapter 2, "Sampling Distribution of Single Regression Granger Causality estimators",
deals with the statistics of single regression Granger causality estimators for which
only the full auto-regressive model has to be estimated while the parameters of the
reduced model (regressing the target process only on its own past) are analytically or
numerically derived from the full model parameters. This is in contrast to standard
dual regression estimators for which both the full and the reduced model have to
be estimated. The paper shows that the asymptotic distribution of single regression
Granger causality estimators under the hypothesis of vanishing Granger causality
is a generalized χ2-distribution which is in many cases well approximated by a
Γ-distribution. This is true for time-domain Granger causality as well as band-
limited Granger causality which is particularly useful for neuroscientific applications
in which a particular frequency-band may be of interest. The paper also derives
asymptotically valid significance tests based on the derived sampling distributions.

Chapter 3, "Introducing a differentiable measure of pointwise shared information",
proposes a measure of the information shared between particular realizations of a set
of source variables about a particular realization of a target variable. In this sense it is
a pointwise measure. It is constructed in close analogy to classical pointwise mutual
information. This can be achieved in two ways: First, based on the insight that
pointwise mutual information can be defined in terms of probability mass exclusions.
Analogously, pointwise shared information may be introduced in terms of shared
probability mass exclusions. Second, pointwise mutual information can be seen as
the information about the value of a target variable provided by the truth of a certain
logical statement about the source variables. Similarly, there is a logical statement
about the source realizations that reasonably carries their shared information about
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the target realization. The resulting measure of pointwise shared information isx

exhibits desirable properties for applications, in particular its differentiability with
respect to the underlying probability distribution. Further, any general measure
of shared information implies an entire Partial Information Decomposition, which
in the case of isx will also be differentiable. This makes it possible to define goal
functions in terms of PID quantities (e.g. "maximize redundancy") with which neural
networks can be trained.

Chapter 4, "Bits and Pieces: understanding information decomposition from part-
whole relations and formal logic", shows that the entire theory of PID can be
derived, firstly, from considerations of part-whole relationships between information
atoms and mutual information terms, and secondly, based on a hierarchy of logical
constraints describing how a given information atom can be accessed. In this way, the
idea of a PID is developed on the basis of two of the most elementary relationships
in nature: the part-whole relationship and the relation of logical implication. This
unifying perspective provides insights into pressing questions in the field such as the
possibility of constructing a PID based on concepts other than redundant information
in the general n-sources case. The paper also presents a re-derivation of the shared
exclusions measure of redundant information introduced in Chapter 3 based on
principles of logic and mereology (the study of part-whole relationships).

Chapter 5, "From Babel to Boole: The Logical Structure of Information Decomposi-
tions", expands upon the ideas presented in "Bits and Pieces". The central theme of
this chapter revolves around PID "base-concepts". These are information functionals
which, when defined, induce a complete PID. Within the parthood approach, these
base-concepts are expressed in terms of conditions phrased in formal logic on the
specific parthood relations between the PID components and the different mutual
information terms. The work identifies a general pattern for these logical conditions.
Every PID base-concept in the existing literature fits within this pattern as special
cases. Moreover, it leads to a novel base-concepts called "vulnerable information"
which quantifies information that may be lost if one loses access to one of the
sources. Furthermore, all PID base-concepts are shown to fall into equivalence
classes of measures that describe the same information components but viewed from
the perspective of different source collections.

Chapter 6, "Significant Subgraph Mining for Neural Network Analysis with Multiple
Comparison Correction", addresses a problem of graph statistics which often comes
up in the next step after an information theoretic analysis. Suppose for instance
that we have performed a pairwise Granger causality analysis of MEG data in two
experimental groups. For each group we obtain a set of graphs (one for each sub-
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ject) and we would like to know if there are any differences between the groups.
Maybe a particular connection is more likely to occur in one group rather than the
other. And even if there are no such differences on a per-link basis, there may be
differences in the dependencies between links. For instance, while two connections
may always appear together in one group they may occur completely independently
in the other. In principle, any possible stochastic difference between the two graph
graph-generating processes can be expressed in terms of the probabilities of occur-
rence of specific subgraphs. Significant Subgraph Mining systematically tests all
such differences while correcting for the formidable multiple comparisons problem
arising because the total number of possible subgraphs scales super-exponentially
in the number of graph nodes. The paper extends the method to within-subject
experimental designs that allows for dependencies between the graph-generating
processes. It also provides a systematic analysis of its error-statistical properties in
simulation and in empirical data in order to derive practical recommendations for
the application of subgraph mining in neuroscience. In particular, it presents an
empirical power analysis for Transfer Entropy networks inferred from resting state
MEG data comparing autism spectrum patients with neurotypical controls. Finally, a
python implementation as part of the openly available IDTxl toolbox is provided.
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Introduction 1
Since its inception in the mid-20th century, information theory has evolved into
an indispensable framework for deciphering the principles of information flow and
processing in a diverse range of scientific fields. Conceived originally by Claude
Shannon for telecommunications, the theory’s foundational concepts have permeated
disciplines as diverse as biology, computer science, and economics.

This thesis is concerned with the theoretical and statistical underpinnings of infor-
mation theory. It explores three major topics:

1. The statistical theory of linear information flow, framed in terms of Granger-
Geweke causality (Chapter 2). In this part, the thesis analytically derives the
sampling distribution for an efficient class of Granger causality estimators,
known as ’single regression estimators,’ in both time and frequency domains.
The work also constructs statistical tests based on these derived distributions.

2. The theory of Partial Information Decomposition (PID) as a tool to overcome
apparent limitations of classical information theory in providing a compre-
hensive picture of the informational relationships between multiple variables
(Chapters 3-5). In this part, the thesis employs insights from formal logic
and mereology (the study of part-whole relationships) to offer a unifying
perspective on the mathematical structure underlying the PID problem, and
presents a concrete solution.

3. The extension, adaptation, and software implementation of Significant Sub-
graph Mining for comparative analysis of neural networks inferred via infor-
mation theoretic measures of functional connectivity (Chapter 6).

Overall, this thesis aims to advance our theoretical understanding and statistical
inference methods pertaining to the flow and processing of information in diverse
complex systems. It does so by synthesizing insights from multiple disciplines
to tackle foundational questions in a novel way. By addressing both theoretical
principles and practical statistical methods, the thesis fills key gaps in existing litera-
ture, providing a more comprehensive toolkit for researchers studying the complex
interdependencies governing biological as well as non-biological networks.
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In the following sections, we explore the necessary theoretical background, the sci-
entific relevance, and the specific contributions of the work presented in subsequent
chapters. We begin with a brief overview of classical Shannon information theory as
it applies to ’static’ variables without consideration of time. From there, we transi-
tion to the realm of information dynamics, describing the informational relations
between stochastic processes. Key measures such as Transfer Entropy and its linear
approximation, Granger-Geweke causality, are introduced. Subsequently, we review
the foundational concept of Partial Information Decomposition, an extension of
classical information theory, and how it can be applied to a variety of questions in
complex systems, neuroscience and beyond. Finally, we explore how information
theoretic analyses often lead to graph structures describing patterns of information
flow. This creates a need for statistical techniques that can effectively compare these
graph structures between groups or experimental conditions while also handling the
severe multiple comparisons problem arising in this context.

1.1 A brief tour of classical information theory

In his landmark paper, ’A Mathematical Theory of Communication,’ Claude Shannon
formulated three axioms that any reasonable measure of the information in a random
variable X should satisfy [1]. Viewing information as a measure of uncertainty
about the value of X, he proposed that

1. The information of X should be a continuous function of the underlying
probability distribution. Small changes in PXpxq should not drastically change
our uncertainty about X.

2. If the probability distribution is uniform, i.e., PXpxq “
1
m , then the information

content in X should be monotonically increasing with the size of the alphabet
m. The more equally likely values X can take, the more uncertain we are
about its value.

3. If the choice between the different values of X is broken down into multiple
choices, the information of X can be computed as a weighted average of
individual information contributions associated with those choices. Specifically,
if we partition the values of X into multiple groups, our uncertainty about X
can be expressed as our uncertainty about which group X falls into plus our
uncertainties about which value X takes given that it falls within a particular
group (weighted by the probabilities of the respective groups).

2 Chapter 1 Introduction



These axioms lead to the following unique expression for measuring the information
in X (up to some arbitrary constants):

HpXq “ ´
ÿ

x

PXpxq logPXpxq (1.1)

This quantity is known as the entropy of X, and it serves as the foundational building
block for more complex informational quantities (for a good textbook on information
theory see [2]).

Having established the concept of entropy for a single variable, it is natural to extend
our understanding to scenarios involving multiple variables. Specifically, consider
a situation where we observe the value y of another variable Y . How does this
observation affect our uncertainty about X? This leads us to the notion of conditional
entropy of X given Y “ y:

HpX|Y “ yq “ ´
ÿ

x

PX|Y px|yq logPX|Y px|yq (1.2)

Formally, this is the same as the unconditional entropy but with all distributions
conditioned on Y “ y. Intuitively, it is the uncertainty about X in the conditional
universe where we know that Y has assumed the value y. If X and Y are indepen-
dent this reduces to the unconditional entropy. Our uncertainty about X is just as
great as it was before having observed Y in this case. Averaging this quantity over
all values of Y results in the conditional entropy of X given Y :

HpX|Y q “ ´
ÿ

x,y

PXY px, yq logPX|Y px|yq (1.3)

Given these definitions and their interpretations it is straightforward to introduce a
measure of the information that X provides about Y , the mutual information:

IpX : Y q “ HpY q ´HpY |Xq (1.4)

It compares our uncertainty about Y before having observed X with our average
uncertainty after having observed X. In other words, it is our average reduction of
uncertainty about Y after observing the value of X. In many contexts it is crucial to
also consider the conditional mutual information that X provides about Y given a
third variable Z:

IpX : Y |Zq “ HpY |Zq ´HpY |X,Zq (1.5)

1.1 A brief tour of classical information theory 3



So essentially we are putting ourselves in a universe where the value of the third
variable Z is known and ask, given this knowledge, how much further is our
uncertainty about Y reduced by additionally observing X.

Mutual information has many insightful properties of which we will here only
mention the ones which are most important in the remainder of this thesis. Firstly,
mutual information is symmetric:

IpX : Y q “ IpY : Xq (1.6)

The information provided by X about Y is the same as the information provided by
Y about X. Secondly, it follows from Jensen’s inequality that mutual information is
non-negative

IpX : Y q ě 0 (1.7)

There can be no misinformation between random variables if information is under-
stood in the sense of mutual information. Thirdly, mutual information is equal to
zero if and only if X and Y are independent

IpX : Y q “ 0 ô X KK Y (1.8)

In fact mutual information can be equivalently defined as a measure of divergence
of the joint distribution PX,Y from the product distribution PXPY , representing the
case of independence. This may also provide some intuition on the non-negativity
of mutual information: it only measures how strongly dependent two variables
are, irrespective of the type of the dependence. Similarly, conditional mutual infor-
mation measures how strongly dependent two variables are given a third variable.
Accordingly, it is zero just in case X and Y are conditionally independent given Z:

IpX : Y |Zq “ 0 ô X KK Y |Z (1.9)

It is important to point out that conditional mutual information may be larger,
smaller or equal to conditional mutual information. This is rooted in the underlying
fact from probability theory that independence and conditional independence are
logically distinct concepts in the sense that neither implies the other.

Forthly, recall that X and Y could be vectors with multiple components. Mutual
information satisfies a chain rule expressing how the mutual information of multiple
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variables X1, . . . , Xn about another variable Y can be broken down into simpler
mutual information terms:

IpX1, . . . , Xn : Y q “
n
ÿ

i“1
IpXi : Y |X1, . . . , Xi´1q (1.10)

Intuitively: the information provided by all the Xi about Y is the information about
Y provided by X1 plus the additional information provided by X2 about Y given
that we already know X1 plus the additional information provided by X3 about Y
given that we already know X1 and X2 and so forth.

Fifthly, mutual information satisfies the so called Data Processing Inequality. Suppose
we start with variables X and Y that might be statistically dependent. IpX : Y q
quantifies this dependence. Now, suppose further that Y is processed in some way
to obtain a third variable Z. This processing may be deterministic, i.e. Z “ fpY q

for some deterministic function f , or it may be probabilistic. For instance, we might
have Z “ fpY,Nq where f is again some function and N is some independent noise
variable. The Data Processing Inequality states that no such processing can increase
the amount of information X has about Y . In full generality the statement says that
if X ´ Y ´ Z form a Markov-Chain, i.e. Z is conditionally independent of X given
Y , then

IpX : Y q ě IpX : Zq (1.11)

Finally, a last property of mutual information that deserved some attention is its
invariance under invertible tranformations of the variables. Specifically, let f and g
be bijective functions on the codomains of variables X and Y . Then, we have

IpfpXq : gpY qq “ IpX : Y q (1.12)

Intuitively, the information provided by one variable about another should not
depend on the way we describe it, e.g. the units in which we measure it. Converting
everything from, say, meters to kilometers, or even from meters to log-meters, should
not affect how much information X carries about Y . That this is indeed the case
can be shown immediately based on the Data Processing Inequality using f and g as
the processing functions.

The transformation invariance of mutual information only becomes truly interesting
in the continuous case. For discrete variables the transformations amount to a simple
relabelling of the values of the variables (e.g. "A","B","C" instead of "1","2","3"). This
however will not affect the expressions for the entropies (Eqs. 1.1-1.2) at all. In
the continuous case, the situation is more complicated because transformations can
greatly affect the shape of the joint distributions of the variables. Hence, it is much
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more surprising, and hence more profound, that mutual information would still
remain invariant in the continuous case.

Mutual information can be defined for jointly distributed continuous variables in
much the same way as discrete mutual information by simply replacing sums by
integrals and probability mass functions by probability densities in the entropy
expressions 1.1-1.2 leading to differential entropies:

hpXq “ ´

ż

fpxq logpfpxqqdx hpX|Y q “ ´

ż

fpx, yq logpfpx|yqqdxdy (1.13)

The differential entropies themselves behave quite differently from discrete entropies.
In particular, they can be negative and are thus not easily interpretable as measures
of uncertainty about a variable (or uncertainty about a variable given observations
of another variable). However, the continuous mutual information

IpX : Y q “ hpXq ´ hpX|Y q (1.14)

retains all of the properties we discussed above.

A last information theoretic quantity that deserves a short introduction since it plays
a role in Chapters 3-5 about Partial Information Decomposition is the interaction
information. Recall that we introduced the mutual information as the difference
between an unconditional entropy and a conditional entropy. One can continue
this pattern to recursively construct "higher-order" information quantities by sub-
tracting unconditional and unconditional quantities of lower order. The next step in
the sequence would be the difference between unconditional mutual information
and conditional mutual information. This is generally known as the interaction
information [3]

IpX : Y : Zq “ IpX : Y q ´ IpX : Y |Zq (1.15)

Similar to how mutual information is expressed as a change in entropy upon observ-
ing a second variable, interaction information is the change in mutual information
upon observing a third one. However, interaction information may be negative
because the existence of dependence between variables doesn’t automatically im-
ply the presence or absence of conditional independence when a third variable is
introduced, and vice versa.
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1.2 Information dynamics

1.2.1 Basic concepts

So far we have only discussed the informational relationships between "static"
variables without an explicit time dimension. However, in the analysis of complex
systems it is often their time evolution which is of particular interest and data come
in the form of time series. Particularly in neuroscience such data are pervasive, for
instance in the form of magnetoencephalography (MEG), electroencephalography
(EEG) or functional magnetic resonance imaging (fMRI) data. Such data are best
described as being generated by stochastic processes Xt, i.e. infinite sequences of
random vectors indexed with a time index t P Z (the time index may be continuous
but we are focussing on the discrete time case here).

The study of informational relationships between stochastic processes has been
termed information dynamics [4]. There are in particular two well established
information quantities of interest in this context: Active Information Storage and
Transfer Entropy [5, 6]. Both of these quantities seek to measure the degree to which
the future of the process can be predicted. The AIS quantifies the predictability of
Xt`1 based on the entire history of the process itself:

AISXptq “ IpXt`1 : X´
t q (1.16)

where X´
t “ Xt,Xt´1, . . . is the history of the process up to and including the

present. In this way it describes the information stored in the process about what
it will do next. The transfer entropy quantifies the predictability of the process Xt

based on another process Yt over and above the ability of Xt to self-predict. It is
thus introduced as a conditional mutual information:

TEYÑXptq “ IpXt`1 : Y´
t |X´

t q (1.17)

A conditional version of this, taking into account other potential predictors Zt, can
easily be introduced and is often used in practice:

TEYÑX|Zptq “ IpXt`1 : Y´
t |X´

t ,Z´
t q (1.18)

The time index in the definition of AIS and TE is necessary if we are considering
general stochastic processes. However, if we are restricting ourselves to strongly
stationary processes it can be removed. Such processes have the property that
the joint distribution of any finite subselection of process variables is invariant

1.2 Information dynamics 7



under time shifts. In other words if we are considering variables Xt1 ,Xt2 , . . . ,Xtn ,
their joint distribution does not dependent on the specific time points t1, . . . , tn
but only their temperal relations. For example, in a strongly stationary process
X5, X7, X13 would have the same joint distributions as X1, X3, X9 since these two
sets of variables are simply shifted by a time lag of 4.

Transfer Entropy stands in an intimate relation to a concept of causality between
processes introduced by Clive Granger and influenced by earlier works by Norbert
Wiener [7]. According to this conception a process Yt "causes" a process Xt just in
case Xt becomes more predictable when taking into account the history of Yt in
addition to the history of Xt itself and the history of other potentially explanatory
variables Zt. Granger argues that the more carefully Zt is chosen so that it alone
provides as much predictability of Xt as possible, the more stringently the "causality"
from Yt to Xt is tested. If Yt still provides some unique additional insight, then,
according to Granger, the term "causality" is justified [8].

Granger’s condition of causality is often expressed in terms of a conditional depen-
dence statement [5]:

Xt`1 MK Y´
t | X´

t ,Z´
t (1.19)

This states that the future of X is conditionally dependent of the history of X given
its own history and the history of other explanatory variables Z. The transfer entropy
being a conditional mutual information this is equivalent to (due to property 1.9
above):

TEYÑX|Z ‰ 0 (1.20)

The term Granger causality is not only used to refer to the condition for causality
just described but also to a measure of this causal influence for linear stochastic
processes, i.e. a function that assigns a numerical value to the Granger-causal
influence from Yt to Xt. The most influential formulation of such a measure is
that of Geweke [9–11] in the context of vector-autoregressive (VAR) models [12].
It expresses Granger causality in terms of the reduction of the residual’s variance
when comparing a reduced linear regression of Xt on its own past with a full linear
regression that additionally regresses on the past of Yt (full details are given in
Chapter 2).

More formally, consider a vector stochastic process pXt,Ytq where Xt has two stable,
possibly infinite-order, VAR representations: The full model

Xt “

8
ÿ

p“1
Axx,pXt´p `Axy,pYt´p ` ϵx,t (1.21)
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and the reduced model

Xt “

8
ÿ

p“1
AR

xx,pXt´p ` ϵR
x,t (1.22)

such that the residuals ϵx,t and ϵR
x,t in both VAR representations are white noise

processes (zero mean and temporarily uncorrelated) with positive definite covariance
matrices Σ and ΣR. Under these conditions, the Granger-Geweke causality from Y
to X is defined as:

FXÑY “ log
ˇ

ˇΣR
ˇ

ˇ

|Σ| (1.23)

where | ˝ | denotes the determinant. From an information theoretic perspective this
linear measure of improved predictability can be thought of as a linear approximation
to the more general non-linear Transfer Entropy. This is rooted in the fact that for
Gaussian processes (where dependencies are completely described by correlations)
the two measures are equivalent [13].

One significant advantage of Granger causality over Transfer Entropy lies in its
relative ease of estimation and testing using empirical data. While Transfer Entropy
and other information-theoretic measures are notoriously difficult to estimate—often
requiring large datasets for accurate results—Granger causality allows for a more
straightforward analysis. Specifically, standard statistical methods, such as maximum
likelihood estimation and likelihood ratio testing, can be readily applied in the case
of parametric Granger causality. However, it is important to note that this comes at
the cost of being constrained to a more restrictive underlying model class.

Despite these relative advantages of Granger causality, it is crucial to recognize that
its estimation and testing come with their own set of challenges. Specifically, dual
regression estimators, which require separate estimation of the full and reduced
autoregressive models and then plug the estimated residual covariances into the
Granger causality formula, suffer from a severe bias-variance trade-off (see in
particular the instructive exchange described in [14–17]). In response to these
issues, more efficient alternatives known as ’single regression estimators’ have been
developed [18]. Unlike their dual regression counterparts, these estimators require
only a single estimation of the full autoregressive model. The required reduced
model residuals’ covariance is then calculated analytically (or numerically to desired
precision) based on the estimated full model parameters.
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1.2.2 Contribution of this work

Although single regression estimators offer a more efficient alternative to dual
regression methods in Granger causality analysis, an important open question has
persisted in the literature: the absence of an established asymptotic theory for these
estimators. Chapter 2 of this thesis ("Sampling distribution for Single Regression
Granger Causality Estimators") closes this gap by deriving the asymptotic sampling
distributions for single regression Granger causality estimators in both the time
and frequency domains. Subsequently, the chapter introduces valid statistical tests
based on these newly derived distributions. Finally, the chapter outlines how the
same methods can also be utilized to derive the sampling distribution under the
alternative hypothesis, for the conditional case and for general state-space models.

1.3 Partial Information Decomposition

1.3.1 The PID problem

Partial Information Decomposition is an extension of classical information theory
that promises a more fine grained picture of the informational relationships between
variables. It was originally proposed in a seminal paper by Williams and Beer in
2010 [19]. In the most basic case it considers two random variables S1 and S2 called
the information sources and a random variable T called the target. All variables are
jointly distributed and the goal is to decompose the mutual information carried by
the sources about the target IpS1, S2 : T q into four components:

1. The information Πpt1u : T q provided uniquely by S1 about T .

2. The information Πpt2u : T q provided uniquely by S2 about T .

3. The information Πpt1ut2u : T q provided redundantly by both S1 and S2.

4. The information Πpt1, 2u : T q provided synergistically by S1 and S2 which is
only revealed when both variables are known at the same time.
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Intuitively, these components, often called the information atoms, should stand in
the following relations to mutual information terms

IpS1, S2 : T q “ Πpt1ut2u : T q `Πpt1u : T q `Πpt2u : T q `Πpt1, 2u : T q (1.24)

IpS1 : T q “ Πpt1ut2u : T q `Πpt1u : T q (1.25)

IpS2 : T q “ Πpt1ut2u : T q `Πpt2u : T q (1.26)

This is illustrated visually in Figure 1.1. Unfortunately, this system of equations
is underconstrained and classical information theory offers no axioms to uniquely
determine the desired decomposition. Something genuinely novel has to be added
to the theory. This, in essence, is called the PID problem. Over the past decade, a
range of proposals for concrete solutions have been presented in the literature (see
Chapter 5.4, Figure 5.6). However, thus far no consensus could be reached.

Fig. 1.1: Information diagram depicting the partial information decomposition for the case
of two information sources. The inner two black circles represent the mutual
information provided by the first source (left) and the second source (right) about
the target. Each of these mutual information terms contains two atomic parts:
IpS1 : T q consists of the unique information in source 1 (Πpt1u : T q, blue patch)
and the information shared with source 2 (Πpt1ut2u : T q, red patch). IpS2 : T q
consists of the unique information in source 2 (Πpt2u : T q, yellow patch) and again
the shared information. The joint mutual information IpS1, S2 : T q is depicted
by the large black oval encompassing the inner two circles. IpS1, S2 : T q consists
of four atoms: The unique information in source 1 (Πpt1u : T q, blue patch), the
unique information in source 2 (Πpt2u : T q, yellow patch), the shared information
(Πpt1ut2u : T q, red patch), and additionally the synergistic information (Πpt1, 2u :
T q, green patch).

In the general n-sources case, the problem becomes even more pronounced because
the number of information atoms grows much more quickly than the number of
constraints provided by classical information theory. Here the decomposition leads
to information atoms Πpa1, . . . ,am : T q quantifying the information about the
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target that can be obtained if and only if at least one of the source collections
ai Ď tS1, . . . , Snu is known. There is one such atom per set of source collections
α “ ta1, . . . ,amu such that no ai is a subset of some distinct aj . Such collections α
are called antichains and their number for a given n is known as the n-th Dedekind
number.

The Dedekind numbers are a super-exponentially growing and very difficult to
compute sequence of numbers. In fact, the ninth Dedekind number, a number with
42 digits, has been computed just half a year prior to the submission of this thesis by
two independent research teams [20, 21]. By contrast, the number of constraints
we obtain from classical information theory grows only exponentially: for n sources
there are 2n´1 mutual information terms that we may relate to the information
atoms in order to constrain them.

The exact construction of the general information decomposition from first principles,
and different ways to obtain a specific solution, is the topic of Chapters 3-5. For now,
let us turn our attention to the scientific relevance of the PID problem. Why is the
PID problem important? Why would it be useful to have a solution to it?

1.3.2 Why care about PID?

PID illuminates existing information quantities First, PID can help clarify and pro-
vide better intuition for classical information theoretic quantities. Using the chain
rule of mutual information the relations 1.24-1.26 can be written equivalently in
terms of conditional mutual information

IpS1 : T |S2q “ Πpt1u : T q `Πpt1, 2u : T q (1.27)

IpS2 : T |S1q “ Πpt2u : T q `Πpt1, 2u : T q (1.28)

In other words, once we already know one of the sources, the additional information
provided by the other should consist of the unique information it carries about the
target plus the synergy of the two sources. This helps explain, for example, why
conditional mutual information may be preferable to mutual information as a feature
selection criterion in machine learning [22]. Ideally, a new feature should contain
novel information given the already chosen features. This means that it should
either contain some unique information about the correct output or contribute some
information in a synergistic fashion together with the already chosen features. But
according to the PID formalism, these are exactly the components provided by
conditional mutual information. On the other hand, mutual information would
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neglect the synergistic component and instead include information that is already
redundantly contained in other features.

A second example is the interaction information (see Eq. 1.15) which has widely
been considered as an indicator of redundancy (when negative) or synergy (when
positive). The PID formalism can provide better insight into the correct interpreta-
tion. Using the relations above we find that

IpS1 : S2 : T q “ IpS1 : T q ´ IpS1 : T |S2q (1.29)

“ Πpt1u : T q `Πpt1ut2u : T q ´ pΠpt1u : T q `Πpt1, 2u : T qq (1.30)

“ Πpt1ut2u : T q ´Πpt1, 2u : T q (1.31)

So interaction information should be understood as the difference between redun-
dancy and synergy. Assuming Πpt1u : T q and Πpt1, 2u : T q to be non-negative, this
further implies bounds on redundancy and synergy

Πpt1ut2u : T q ě IpS1 : S2 : T q if IpS1 : S2 : T q ą 0 (1.32)

Πpt1, 2u : T q ě ´IpS1 : S2 : T q if IpS1 : S2 : T q ă 0 (1.33)

Finally, PID also sheds light on the Wiener-Granger conception of causality and its
non-parametric implementation via Transfer Entropy. Recall that Granger explicitly
used the term "unique information" when justifying his choice of the term "causality".
Now from a PID perspective this can be further refined. The additional information
that the history of a source process Yt provides about a target process Xt over and
above the information in its own past is not just what is unqiuely contained in the
history of Xt. Including the past of the source process as a predictor might also
make some synergistic information available, i.e. information we only obtain about
Xt once we know both the target’s and the sources’ histories. Formally, we can
again apply the fundamental PID equation for conditional mutual information here
(Eq. 1.27), using T :“ Xt`1 as the PID target and S1 :“ X´

t and S2 :“ Y´
t as PID

sources:

TEYÑX “ IpXt`1 : Y´
t |X´

t q “ Πpt2u : T q `Πpt1, 2u : T q (1.34)

The unique information component is often called "state-independent" transfer
entropy while the synergistic component is called "state-dependent" transfer entropy
[23].
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PID helps to formalize key concepts in the study of complex systems Complex
systems such as neural networks are more than just "systems with many components".
Even though the precise characterization and delineation of what it means for a
system to be "complex" is a contentious area, one common theme is that, in some
sense, a complex system is "more than just the sum of its parts". In other words,
complex systems have emergent properties at the macroscopic level that are not
easily explainable by just looking at the dynamics of its microscopic components
[24] or that in some sense have a "life of their own" [25].

Even though the notion of emergence is a popular one, it is not easy to formalize
mathematically. Here PID theory may offer a solution via the notion of synergistic
information. Just like emergence, the concept of synergy is tightly connected to
the idea of "the whole being more than the sum of its parts". Rosas et al. [26]
introduced an information theoretic condition of what they call "causal emergence"
based on PID ("causal" is here understood in the predictive Wiener-Granger sense).
It is framed in terms of the predictability of the future system behaviour on the
basis of smaller subsystems. Specifically, if there is some information about the
future state of the system that can only be obtained if the states of more than k

system components are known at the same time, then the system is said to exhibit
emergence at order k. In the most extreme case (where k equals the number of
system components), this is the information about the future state that can only be
obtained by observing all the system components at the same time.

Some have suggested that it is a useful perspective on at least some complex systems,
and in particular the brain, to think of them as computational systems, i.e. systems
that compute some output (e.g. motor behaviour) based on some input (sensory
experience) and the internal state of the system. Computational systems can be
described via three fundamental operations: information storage, transfer, and
modification [27, 28]. As discussed, in Section 1.2 above, for the first two operations
there are already widely accepted measures based on classical information theory.
However, the same is not the case for the modification of information. PID has
been suggested as a useful framework to solve this problem. In particular, Lizier
et al. [29] propose to measure information modification as the synergistic part of
information transfer (see Equation 1.34 above). Here the underlying idea is that
this part arises through some form of interaction with information stored in the
target. It is this process of interaction that Lizier et al. conceptualize as modifying
the information coming from the source.

Even the notion of complexity itself has been addressed utilizing the PID formalism.
This is perhaps not surprising given the tight connection of this notion to emergence,
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and hence synergistic information. Ehrlich et al. [30] introduced a measure of the
representational complexity of neural networks. Consider a neural network with
nodes S “ pS1, . . . , Snq aiming to represent some aspect of the external world T , e.g.
"is there a frog over there or not?". Now the question is how much of the network we
have to know in order to decode this information. Lets consider the extreme cases:
on one end of the spectrum there might be a single node in the network from which
the relevant aspect can be read of. In this case one might say that the representation
is very simple. On the other end of the spectrum, it might be necessary to observe the
entire network to obtain the desired information about the world while no proper
subset of neurons tells us anything. In this case the representation can be considered
to be very complex. It is captured by the complex multivariate relationships within
the network.

The notion of representational complexity makes this intuition formal using PID
theory. It is given by the average "degree of synergy" of the information atoms
making up the total mutual information IpS1, . . . , Sn : T q the network carries about
T . The degree of synergy, denoted by mpαq, is the minimal number of source
variables one needs in order to obtain the information atom Πpα : T q (recall that α
is an antichain of source collections). Accordingly, it is a natural number between 1
and n. Each possible degree of synergy is now weighted by the percentage of the
total mutual information provided by information atoms of that degree. Formally,
the representational complexity CpS : T q is then defined as

Wk :“

ř

mpαq“k

Πpα : T q

IpS : T q , (1.35)

CpS : T q :“
n
ÿ

k“1
kWk. (1.36)

In other words, for each 1 ď k ď n we may ask: What percentage of the total
information about T can we obtain by looking at subsets of exactly k neurons? Then
we weight k by that percentage. The result represents something like the "average
number of network nodes we need to observe in order to decode the target". In the
extreme cases described above we obtain C “ 1 and C “ n, respectively.

PID can be used to test and construct theories of (neural) processing One promis-
ing application of PID lies in its capacity for testing theories of neural processing
based on their distinct information-theoretic implications. Different theories have,
as it were, different ’information-theoretic footprints’ [31]. For example, certain
theories may propose the existence of neurons that serve informationally distinct
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roles within a network. A case in point is predictive processing theories, which
distinguish between ’error units’ and ’representation units,’ each tasked with han-
dling different types of information [32]. Another example, from machine learning,
is the information bottleneck theory [33] that suggests two distinct phases in the
learning process of artificial neural networks: an error-minimization phase during
which the network seeks to improve its prediction of the correct output as much as
possible and a compression phase in which the network attempts to form a maxi-
mally simple representation of the input. Each phase is characterized by specific
behaviour the mutual information between the hidden layers and the output or the
input, respectively.

PID might be fruitfully used in this context because it affords a particularly detailed
information theoretic footprint: it is able to describe all the multitude of possible
informational relationships between variables. A particularly promising way to carry
out this approach is to directly phrase theories in information theoretic terms. This
can be achieved for instance via the framework of information theoretic goal-functions
[31] leading to so called infomorphic networks [34]. The starting point is a neuron
with two distinct types of input: receptive input SR from hierarchically lower layers
of the network and contextual input SC from higher layers. This sort of distinction
is for example very useful in describing layer-5 pyramidal neurons which have two
different types of dendrites. The basal dendrites which are thought to mediate the
perceptual input and the apical dendrites responsible for the contextual input. The
information in the output T of the neuron, i.e. its entropy HpT q, can be decomposed
as

HpT q“IpSR,SC: Tq`HpT |SR,SCq (1.37)

“ΠptSRutSCu: T q`ΠptSRu: T q`ΠptSCu: T q`ΠptSRSCu: T q`HpT |SR,SCq (1.38)

An information theoretic goal function is now constructed by giving each term in
the sum a weight Γi. Different choices of these weights correspond to different
goal functions leading the neural processor to prioritize certain types of information
over others. For example, it might place a lot of weight on redundant information
that is contained both in the receptive input and the contextual input, and is in
this way supported not only from sensory data but also from information already
available to the system. Or it might want to minimize the information only contained
in the contextual input while at the same time allowing some information to be
uniquely provided by the receptive input. In this way a very broad class of goal
functions is obtained encompassing some that had previously been suggested in
the literature (e.g. "coherent infomax") and also some that were originally not
phrased in information theoretic terms (e.g. certain forms of predictive coding).
It has been demonstrated that this approach can usefully be employed to various
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learning paradigms such as supervised learning, unsupervised learning, as well as
associative memory learning [34]. It can also be extended to include more types of
inputs and more complicated network structures. One interesting question in this
line of research would be whether real neurons can be parsimoniously described by
a small set of information theoretic goal functions.

1.3.3 Contribution of this work

Chapters 3-5 are concerned with the mathematical structure of the PID problem
as well as the development of a concrete solution, i.e. particular measures of the
different PID atoms.

Chapter 3 ("Introducing a differentiable measure of pointwise shared information")
addresses the later aspect by proposing a general measure of redundant information
called the shared exclusions measure isx. It was already shown in the original
exposition of PID theory by Williams and Beer that, even in the general n-sources
case, a unique solution for all information atoms can be obtained once a measure of
the redundant information of arbitrary source collections is specified. The derivation
of the shared exclusions measure closely follows the construction of mutual informa-
tion, thus preserving many basic information theoretic intuitions. It is formulated
on the pointwise level of individual realizations of source and target variables. This
perspective was used by Fano [35] as a starting point from which the entirety of
information theory can be derived. Due to the similarity in construction isx inherits
some very useful properties from pointwise mutual information, in particular its
continuity and differentiability with respect to the underlying joint distribution and
also a target chain rule. These properties make it especially useful for applications in
the context of artificial neural networks where it can be used to formulate informa-
tion theoretic goal functions [31] as discussed in the previous section. The chapter
provides two distinct ways to motivate the shared exclusions measure, establishes its
mathematical properties and operational interpretation, and illustrates the entailed
decomposition for some exemplary probability distributions.

Chapters 4-5 are concerned with the mathematical structure of the PID problem.
Chapter 4 ("Bits and pieces: understanding information decomposition from part-
whole relations and formal logic") shows that the entire theory of PID can be
derived, firstly, from considerations of part-whole relationships between information
atoms and mutual information terms, and secondly, based on a hierarchy of logical
constraints describing how a given information atom can be accessed. In this way, the
idea of a PID is developed on the basis of two of the most elementary relationships
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in nature: the part-whole relationship and the relation of logical implication. This
unifying perspective provides insights into pressing questions in the field such as the
possibility of constructing a PID based on concepts other than redundant information
in the general n-sources case. The paper also presents a re-derivation of the shared
exclusions measure of redundant information introduced in Chapter 3 based on
principles of logic and mereology (the study of part-whole relationships).

Chapter 5 ("From Babel to Boole: The Logical Organization of Information Decompo-
sitions") centers around the notion of PID base-concepts, i.e. information functionals
that induce an entire information decomposition once they are defined in terms
of the underlying joint probability distribution of source and target variables. The
standard functional used as a PID base-concept is redundant information, yet there
has been ongoing interest in examining the problem through the lens of different
base-concepts of information, such as synergy, unique information, or union infor-
mation. The parthood formulation of PID which was introduced in "Bits and Pieces"
showed that PID base-concepts can be expressed in terms of conditions phrased
in formal logic on the specific parthood relations between the PID components
and the different mutual information terms. "From Babel to Boole" builds on this
foundation by setting forth a general pattern of these logical conditions of which
all PID base-concepts in the literature are special cases and that also reveals novel
base-concepts, in particular a concept we call “vulnerable information”.

1.4 Graph statistics

Graph theory often enters into consideration naturally after an information-theoretic
analysis. This is because information theoretic measures are frequently used to
evaluate the informational relationships between any pair of nodes in a network, and
these relationships can naturally be represented as a graph for further analysis. In a
neuroscientific context, the networks would typically consist of certain brain regions
of interest, the activity of which might be measured using various neuroimaging
techniques.

The graphs obtained in this way may be undirected, for instance if mutual infor-
mation is used as a measure of connectivity, or they could be directed. A typical
example of the latter type would be Transfer Entropy based network inference as
described in [36] (see Fig.1.2 for an illustration). Here, each network node is
considered in turn as a target node. The goal is to identify a maximally informative
set of source nodes, but in such a way that no superfluous sources are included.

18 Chapter 1 Introduction



This is achieved by requiring that each source should provide significant Transfer
Entropy about the target conditional on all other nodes in the set. Another example
of a directed information theoretic analysis would be a pairwise Granger causality
analysis where the Granger causalities from any node in the network to any other
node are estimated conditional on the rest of the network (see e.g. [37]).

Fig. 1.2: Illustration of the main idea behind transfer entropy based network inference. The
goal is to infer, for each node in the network (for instance X), the set of source
nodes (here Y1 , Y2) from which from information is transferred into the given
node. The Figure was adopted from Lizier and Rubinov, 2012

Quite often, networks of informational relationships (or "functional connectivity") are
estimated for experimental units in different groups or under different experimental
conditions with the aim to find differences in these relationships between the
groups/conditions. The process of inferring these functional networks can be though
of as a measurement of two graph generating processes, i.e. processes that randomly,
accordingly to a certain probability distribution, generate graphs describing the
informational relationships between network nodes. Suppose for example that we
are measuring two groups, a group of patients with Asperger Spectrum Disorder
(ASD) and a control group. Then we might be interested in the question: is the
pattern of information flow between certain brain regions of interest different (on
average) in ASD patients versus subjects in the control group? Maybe the information
flow between two regions is more pronounced in one group, or it occurs at a different
temporal delay, or it always goes along with information flow to a third region while
it does not do so in the other group.

In order to address questions of this nature, we need statistical methods for testing
differences between the graph generating processes. Importantly, due to the immense
number of possible differences, these methods have to efficiently control for multiple
comparisons in order to guarantee bounded false positive rates.
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1.4.1 Contribution of this work

Chapter 6 ("Significant Subgraph Mining for Neural Network Comparison with Mul-
tiple Comparisons Correction") describes how the method of Significant Subgraph
Mining can be fruitfully employed in the context of neural network comparison.
Significant Subgraph Mining is a recently developed [38, 39] method for statistically
comparing processes generating binary graphs, i.e. an edge can be present or absent
but has no numerical value attached to it.

The project developed exactly in the context alluded to above, i.e. after a Transfer
Entropy based network analysis of 20 ASD patients and 20 neurotypical controls
using resting state MEG recordings. This analysis lead to a binary, directed graph
for each subject where the edges indicate whether there was statistically significant
information flow from one region of interest to another. Additionally, each edge is
labelled with possibly multiple time lags, indicating at what temporal delays the
information flow was detected. The seven regions of interest used in the analysis
had already been suggested by a previous study [40]. Now, the question arose
how to systematically look for differences between the graphs in the two groups.
There was no theoretical reason to restrict the search to differences of a particular
type such as differences in the occurrences of individual edges (e.g. "significant
information flow from region A to region B occurred with a higher probability in the
ASD group"). Rather, a more general pattern mining approach that systematically
looks for all possible differences between the graph generating processes (be they at
the level of edges, or dependencies between edges, or even more complex higher
order interactions) seemed in order.

In principle, any possible stochastic difference between the two graph-generating
processes can be expressed in terms of the probabilities of occurrence of specific
subgraphs. Significant Subgraph Mining systematically tests all such differences
while correcting for the formidable multiple comparisons problem arising because
the total number of possible subgraphs scales super-exponentially in the number of
graph nodes. However, the original subgraph mining method was in some respects
not adapted to circumstances frequently arising in neuroscience research. This gap
is addressed in Chapter 6.

In particular, it extends the method from between-subject designs (i.e. independent
graph-generating processes) to within-subject experimental designs that allow for
dependencies between the graph-generating processes. It also provides a systematic
analysis of its error-statistical properties in simulation using Erdős-Rényi models
and it presents an empirical power analysis utilizing the MEG data set mentioned
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above. Based on these analyses, practical recommendations for the application of
subgraph mining in neuroscience are derived. Finally, a python implementation as
part of the openly available IDTxl toolbox is provided. This implementation directly
takes account of the data structures arising in information theoretic analyses of
neuroimaging data, e.g. the possibility for information transfer to occur at different
time delays. In this way the adapted method is also able to detect differences with
respect to the temporal structure of information flow.
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Abstract

The single-regression Granger-Geweke causality estimator has previously been
shown to solve known problems associated with the more conventional likelihood-
ratio estimator; however, its sampling distribution has remained unknown. We show
that, under the null hypothesis of vanishing Granger causality, the single-regression
estimator converges to a generalized χ2 distribution, which is well approximated by
a Γ distribution. We show that this holds too for Geweke’s spectral causality averaged
over a given frequency band, and derive explicit expressions for the generalized χ2

and Γ-approximation parameters in both cases. We present a Neyman–Pearson test
based on the single-regression estimators, and discuss how it may be deployed in
empirical scenarios. We outline how our analysis may be extended to the condi-
tional case, point-frequency spectral Granger causality, and the important case of
state-space Granger causality.
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2.1 Introduction

Since its inception in the 1960s, Wiener-Granger causality has found many ap-
plications in a range of disciplines, from econometrics, neuroscience, climatology,
ecology, and beyond. In the early 1980s Geweke introduced the standard vector-
autoregressive (VAR) formalism, and the Granger-Geweke population loglikelihood-
ratio statistic [10, 11]. As well as furnishing a likelihood-ratio test for statistical
significance, the statistic has been shown to have an intuitive information-theoretic
interpretation as a quantitative measure of information transfer between stochastic
processes [13, 41]. In finite sample, the likelihood-ratio estimator requires separate
estimates for the full and reduced VAR models, and as such admits the classical large-
sample theory, and asymptotic χ2 distribution [42–44]. However, it has become
increasingly clear that the “dual-regression” likelihood-ratio estimator is problem-
atic: specifically, model order selection involves a bias-variance trade-off which may
potentially lead to spurious results, including negative Granger causality values [14,
45, 46].

More recently, an alternative single-regression estimator which obviates the problem
has been developed in various forms [18, 47–49]; but, since the large-sample
theory no longer obtains, its sampling distribution has thus far remained unknown.
In addition to the reduced bias and variance of the single-regression estimator
[49], knowledge of its sampling distribution under the null hypothesis of vanishing
causality would allow to construct novel hypothesis tests, especially in the frequency
domain where little is known about the sampling distribution of Geweke’s spectral
Granger causality statistic [10, 11]. Closing this gap is the central objective of
the present study. Our novel application of the 2nd-order Delta Method [50],
furthermore, opens a path to significant extensions of our result, in particular to the
sampling distribution of the state-space Granger causality estimator [18, 51], which
remains unknown.

2.2 var modelling

We assume given a wide-sense stationary, purely-nondeterministic n-dimensional
vector stochastic process Ut “ rU1t, . . . , Unts

T, ´8 ă t ă 8. Ut then has a Wold
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moving-average decomposition [52], which we assume may be inverted to yield a
stable (in general infinite-order) VAR representation

Ut “

8
ÿ

k“1
AkUt´k ` εt , (2.1)

where εt is a white noise innovations process. The sequence of n ˆ n autore-
gression coefficient matrices Ak is square-summable, and, since the process is
purely-nondeterministic, the n ˆ n residuals covariance matrix Σ “ Erεtε

T
t s is

positive-definite. Following Geweke [10], we further assume that the cross-power
spectral density (CPSD) matrix for Ut is uniformly bounded away from zero; this
guarantees a stable, invertible VAR representation for any subprocess of Ut [53, 54].
We assume these conditions for all vector stochastic processes from now on.

If Ak “ 0 for k ą p then (2.1) defines a finite-order VAR(p) model. We write
A “ rA1 . . . Aps (an nˆ pn matrix), and the model parameters are θ “ pA,Σq. The
autocovariance sequence for the process Ut is Γk “ E

“

UtU
T
t´k

‰

(´8 ă k ă 8), and
Γ´k “ ΓT

k. By a standard trick, the process Ũt “
“

UT
t U

T
t´1 . . . U

T
t´p`1

‰T satisfies the
pn-dimensional VAR(1) model

Ũt “ ÃŨt´1 ` ε̃t , (2.2)

where the pn ˆ pn VAR “companion matrix” Ã and covariance matrix Σ̃ of the
residuals ε̃t are respectively

Ã “

»

—

—

—

—

—

—

—

–

A1 A2 . . . Ap´1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
...

...
0 0 . . . I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Σ̃ “

»

—

—

—

—

–

Σ 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

.

The spectral radius of the model is defined as the largest absolute eigenvalue of Ã:

ρpAq “ maxt|z| :
ˇ

ˇIz ´ Ã
ˇ

ˇ “ 0u . (2.3)

The model is stable iff ρpAq ă 1.

Taking the covariance of both sides of (2.2) yields

Γ̃ “ ÃΓ̃ÃT ` Σ̃ , (2.4)
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where Γ̃ is the pnˆ pn block-Toeplitz covariance matrix

Γ̃ “ E
“

ŨtŨ
T
t

‰

. (2.5)

The kℓ-block of Γ̃ is Γ̃kℓ “ Γℓ´k (k, ℓ “ 1, . . . , p). Eq. (2.4) is a discrete-time Lya-
punov (DLYAP) equation, which may be readily solved numerically. If the parameters
pA,Σq are known, the Γk may be calculated from (2.4); conversely, pA,Σq may be
calculated from the Γk, e.g., by Whittle’s algorithm [55]. In sample, maximum-
likelihood parameter estimates

`

Â, Σ̂
˘

may be calculated via a standard ordinary
least squares (strictly speaking, OLS only yields true maximum-likelihood estimates
in the case that the innovations are multivariate-normal).

In the spectral domain [56], let ω P r0, 2πs denote angular frequency in radians. The
transfer function Ψpωq for the VAR model (2.1) is defined as

Ψpωq “ Φpωq´1 , Φpωq “ I ´
8
ÿ

k“1
Ake

´iωk . (2.6)

The cross-power spectral density matrix Spωq is the Fourier transform of the auto-
covariance sequence and, conversely, the autocovariance sequence is the inverse
transform of the CPSD:

Spωq “
8
ÿ

k“´8

Γke
´iωk , Γk “

1
2π

ż 2π

0
Spωqeiωkdω . (2.7)

The matrix Spωq is Hermitian for all ω, and satisfies the factorisation [57]

Spωq “ ΨpωqΣΨpωq˚. (2.8)

The CPSD uniquely determines the VAR parameters, and computationally Ψpωq and
Σ may be factored out from (2.8), e.g., by Wilson’s algorithm [58].

2.3 Granger-Geweke causality

2.3.1 The population statistic

Geweke [10] defines the population (unconditional) Granger causality statistic in
the following context: suppose that the process (2.1) is partitioned into subprocesses
Ut “ rX

T
t Y

T
t s

T of dimension nx, ny respectively. The assumed regularity conditions
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on Ut [10, Sec. 2] ensure that the subprocess Xt will itself admit a stable, invertible
VAR representation (“reduced regression”)

Xt “

8
ÿ

k“1
AR

kXt´k ` ε
R
t (2.9)

with square-summable coefficients AR
k and positive-definite residuals covariance

matrix ΣR “ ErεR
t ε

RT
t s (superscript ‘R’ will be used generally to refer to quantities

associated with the reduced regression). To define Granger-Geweke causality, the
prediction error of the reduced regression (2.9) is contrasted with that of the “full
regression”; that is, the x-component

Xt “

8
ÿ

k“1
Ak,xxXt´k `

8
ÿ

k“1
Ak,xyYt´k ` εxt (2.10)

of (2.1). We stress that (i) the reduced model parameters pAR,ΣRq are fully deter-
mined by the full model parameters pA,Σq, and (ii) even if the full regression (2.10)
has finite order, the reduced regression (2.9) will in general not have finite order.
The Granger-Geweke causality measure (henceforth just “Granger casuality”) from
Y Ñ X for the VAR model (2.1) with parameters θ is then defined as

FY ÑXpθq “ log
ˇ

ˇΣR
ˇ

ˇ´ log |Σxx|. (2.11)

Intuitively, it measures the degree to which the (linear least-squares) prediction of X
can be improved by taking into account the past of Y , as compared with prediction of
X based only on its own past. It may also be interpreted as an approximation to the
“information transfer” from Y to X, on the basis that under Gaussian assumptions
the Granger causality statistic (2.11) is asymptotically equivalent to the more general
non-parametric transfer entropy [6, 13]

In the frequency domain, Geweke [10] defines the (population, unconditional)
spectral Granger causality measure at angular frequency ω by

fY ÑXpω; θq “ log |Sxxpωq| ´ log |Sxxpωq ´ΨxypωqΣyy|xΨxypωq
˚| , (2.12)

where
Σyy|x “ Σyy ´ ΣyxrΣxxs

´1Σxy (2.13)

is a partial covariance matrix. Spectral Granger causality addresses the extent to
which variance of X may be explained by variance of Y at a given frequency ω; e.g.,
“in the long run” for low frequencies, or “in the short run” for high frequencies. For a
concrete econometric example see Geweke [10].
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Barnett and Seth [59] introduce band-limited (frequency-averaged) spectral Granger
causality

fY ÑXpF ; θq “ 1
|F |

ż

F
fY ÑXpω; θq dω , (2.14)

where the frequency range F is a measurable subset of r0, 2πs, in practice usually an
interval. Averaging fY ÑXpω; θq across all frequencies, we recover the corresponding
time-domain Granger causality; that is [10],

fY ÑXpr0, 2πs; θq “
1

2π

ż 2π

0
fY ÑXpω; θq dω “ FY ÑXpθq . (2.15)

The band-limited statistic is of particular interest in neuroscience applications, since
functional and cognitive phenomena in neural systems are well-known to be strongly
associated with spectral power in specific frequency bands [60].

2.3.2 Likelihood-ratio estimation

Suppose given a finite-order VAR model

Ut “

p
ÿ

k“1
AkUt´k ` εt (2.16)

for the process Ut “ rX
T
t Y

T
t s

T. For now, we assume that the model order p is known
(in Section 2.5.4 we discuss infinite-order VAR models and model order selection). In
what follows, we write θ̂ “

`

Â, Σ̂
˘

to denote the random variable θ̂pUq, where θ̂puq
is the maximum-likelihood estimate of the parameter θ for given time-series data u,
and U is a stochastic process distributed according to the VAR model (2.16).

On the face of it, FY ÑXpθq is a population likelihood-ratio statistic [10], since the
maximum likelihood (throughout, “likelihood” refers to average loglikelihood) for a
finite-order VAR model of the form (2.16) is, up to an additive constant, ´1

2 log |Σ̂|,
where Σ̂ is the maximum-likelihood estimate for the population residuals covariance
matrix Σ. As regards estimation of FY ÑXpθq, however, while the full model order
p may be finite, the reduced model (2.9) will in general be of infinite order. We
might be tempted, as suggested in Geweke [10, 11], and until recently standard
practice, to simply truncate the reduced model at order p. Then (2.9) becomes
a nested sub-model of (2.10) corresponding to the null hypothesis of vanishing
Granger causality:

H0 : A1,xy “ . . . “ Ap,xy “ 0 . (2.17)

28 Chapter 2 Sampling distribution for single-regression Granger causality esti-
mators



The likelihood-ratio Granger causality estimator is then

F̂ LR
Y ÑX “ log

ˇ

ˇΣ̂R
ˇ

ˇ´ log |Σ̂xx| , (2.18)

where Σ̂R is the maximum-likelihood estimator for ΣR; i.e., based on the reduced
model (2.9). Note that the distribution of the estimator F̂ LR

Y ÑX depends on the actual
parameters θ.

Here, though, a problem arises: in general, the truncated reduced model will be
misspecified, and failure to take into account sufficient lags of Xt in the reduced
regression biases the estimator (2.18). Noting that a VAR(p) model is also VAR(q)
for q ą p, we could attempt to remedy the situation by selecting a parsimonious
model order q ą p for the reduced model by a standard model order selection
criterion [61], and extend the full model to order q. However, in doing so the full
model becomes over-specified and the variance of the resulting estimator is inflated.
Furthermore, since the estimated model order will generally increase with sample
length N , it is not clear whether the estimator will be consistent in any meaningful
sense. We discuss this further in Section 2.5.4. This conundrum was explicitly
identified by Stokes and Purdon [14], although its symptoms had previously been
noted, particularly in the spectral domain [see e.g., 45, 46]. We remark that Stokes
and Purdon [14], having identified the likelihood-ratio estimator as problematic,
concede that at the time they were unaware that there were already estimators
which obviate the problem [17]. For further commentary on the issues raised in
Stokes and Purdon [14], see Barnett et al. [15, 16], Faes et al. [62], and Dhamala
et al. [63]. We note also that the “block-decomposition” method presented in Chen
et al. [46]—essentially an attempt at constructing a single-regression estimator (see
Section 2.3.3 below)—is incorrect [51].

As a likelihood-ratio statistic, F̂ LR
Y ÑX obeys Wilks’ Theorem [43], which implies that

for any θ P Θ0

NF̂ LR
Y ÑX

d
ÝÑχ2pdq (2.19)

as sample size N ÝÑ8, with degrees of freedom d “ qnxny, where q is the selected
model order for the full and reduced models. Convergence is of order N´1{2. Note
that it should not be assumed that the bias/variance trade-off discussed above is
necessarily problematic as regards statistical inference; see Section 2.5.2 below.
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2.3.3 Single-regression estimation

The above problem may be sidestepped. Given a finite-order VAR(p) model (2.16)
(again, we assume that p is known), the reduced VAR (2.9) may not be assumed
finite-dimensional, but the reduced residuals covariance matrix ΣR will, as previously
remarked, be a continuous, deterministic function

ΣR “ V pθq (2.20)

of the finite-dimensional full-model parameters θ “ pA,Σq, with V pθq “ Σxx for
θ P Θ0. Given parameters pA,Σq, the function V pθq may be computed numerically
to desired precision by spectral factorisation in the frequency domain [47, 48],
spectral factorisation in the time domain [49], a linear transformation/autocovari-
ance method due to Dufour and Taamouti [64], or by a state-space method [18,
51] which devolves to solution of a discrete algebraic Riccati equation (DARE); see
Supplementary Material, Section 2.7.3. From (2.11) and (2.20) the population
Granger causality is

FY ÑXpθq “ log |V pθq| ´ log |Σxx| . (2.21)

Given a data sample, we need only obtain the maximum-likelihood parameter
estimate θ̂ “

`

Â, Σ̂
˘

for the full model (2.16); the estimate for ΣR may then be
calculated directly from θ̂ as V

`

θ̂
˘

, by one of the methods mentioned above, yielding
the single-regression Granger causality estimator

F̂ SR
Y ÑX “ log

ˇ

ˇV
`

θ̂
˘ˇ

ˇ´ log
ˇ

ˇΣ̂xx

ˇ

ˇ . (2.22)

Since maximum-likelihood parameter estimates are consistent, Σ̂xx
p
ÝÑΣxx, and

by (2.20) and the Continuous Mapping Theorem [CMT; 50] V
`

θ̂
˘ p
ÝÑΣR. Thus the

single-regression estimator (2.21) is a consistent estimator of FY ÑXpθq.

The single-regression estimator (2.22) is not a likelihood ratio, so Wilks’ Theorem
does not apply [cf. (2.19)], and the asymptotic distribution under the null hypothesis
(2.17) has thus far remained unknown. We shall see that, in contrast to Wilks’
asymptotic χ2 null distribution, the sampling distribution of the single-regression
estimator under the null depends explicitly on the (true) null parameter θ P Θ0

itself. This raises some issues regarding statistical inference which we address in
Section 2.5.
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2.4 Asymptotic null distribution for single-regression
estimators

2.4.1 The 2nd-order Delta Method

We proceed with a technical result, a multivariate 2nd-order Delta Method [50],
on which our derivation of the asymptotic distributions for the time-domain and
band-limited spectral estimators hinges:

Proposition 1. Let fpθq be a non-negative, twice-differentiable function on a smooth
r-dimensional manifold Θ Ď Rr which vanishes identically on the s-dimensional
hyperplane Θ0 Ă Θ specified by θ1 “ . . . “ θd “ 0 with d “ r ´ s. Then

a. The gradient ∇fpθq is zero for all θ P Θ0.

b. Writing a subscript “0” to denote the dˆd upper-left submatrix of an rˆr matrix,
for θ P Θ0 the Hessian W pθq “ ∇2fpθq takes the form

W pθq “

«

W0pθq 0
0 0

ff

with W0pθq positive-semidefinite.

c. For θ P Θ0 let ϑN be a sequence of r-dimensional random vectors with N1{2pϑN´

θq
d
ÝÑN

`

0,Ωpθq
˘

as N ÝÑ8. Then

NfpϑN q
d
ÝÑχ2`1

2W0pθq,Ω0pθq
˘

(2.23)

as N ÝÑ8, where Ω0pθq denotes the upper-left block of Ωpθq, and χ2pA,Bq

denotes the generalized χ2 distribution [Mohsenipour [65]; see Supplementary
Material, Section 2.7.1].

Proof. See Supplementary Material, Section 2.7.2.

In the more general case where Θ0 is a smooth submanifold of Θ rather than a
simple hyperplane, under an appropriate local change of coordinates we again
obtain a generalised χ2 distribution of the form (2.23) (Supplementary Material,
Section 2.7.2).
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2.4.2 The time-domain single-regression estimator

We shall apply Proposition 1 to the FY ÑXpθq of (2.21). Firstly, FY ÑXpθq is non-
negative and vanishes on Θ0 [10]. Below we establish that it is also twice-differentiable
(in fact real analytic). Secondly, by the large-sample theory, for any θ P Θ we have
θ̂

p
ÝÑ θ, and N1{2`θ̂ ´ θ

˘ d
ÝÑN

`

0,Ωpθq
˘

as sample size N ÝÑ8, where θ̂ is the
maximum-likelihood parameter estimate, and Ωpθq the inverse of the Fisher infor-
mation matrix for the VAR(p) model (2.16) evaluated at the parameter θ. Thus by
Proposition 1, we have for any θ P Θ0

NF̂ SR
Y ÑX

d
ÝÑχ2`1

2W0pθq,Ω0pθq
˘

(2.24)

as N ÝÑ8, where W pθq is the Hessian of FY ÑXpθq. Here the “0” subscript denotes
a submatrix corresponding to the null-hypothesis variable indices x “ t1, . . . , nxu,
y “ tnx ` 1, . . . , nu.

To calculate the generalized χ2 parameters, we thus require firstly the null submatrix
Ω0pθq of Ωpθq. This is a standard result: let Γ̃ be the autocovariance matrix of
(2.5). Considering multi-indices rk, ijs for the regression coefficients Ak,ij (so that k
indexes lags and i, j variables), the entries for the inverse Fisher information matrix
corresponding to the Ak,ij are [66, 67]

Ωpθqrk,ijsrk1,i1j1s “ Σii1

“

Γ̃´1‰
kk1,jj1 “

“

Σb Γ̃´1‰
rk,ijsrk1,i1j1s

, (2.25)

where
“

Γ̃´1‰
kk1,jj1 denotes the jj1 entry of the kk1-block of Γ̃´1, and “b” the Kro-

necker matrix product. Then Ω0pθq is the submatrix of (2.25) with i, i1 P x and
j, j1 P y, or

Ω0pθq “ Σxx b
“

Γ̃´1‰
yy
. (2.26)

Secondly, to calculate the null Hessian W0pθq, we require an expression for the
function V pθq of (2.20). This we accomplish via the state-space formalism introduced
in Barnett and Seth [18].

Proposition 2.
V pθq “ AxyΠAT

xy ` Σxx, (2.27)

where the pny ˆ pny symmetric matrix Π is the solution of the DARE

Π “ ÃyyΠÃT
yy ` Σ̃yy ´

`

ÃyyΠAT
xy ` Σ̃yx

˘`

AxyΠAT
xy ` Σxx

˘´1`
ÃyyΠAT

xy ` Σ̃yx

˘T

(2.28)
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with

Ãyy “

»

—

—

—

—

—

—

—

–

A1,yy A2,yy . . . Ap´1,yy Ap,yy

I 0 . . . 0 0
0 I . . . 0 0
...

...
...

...
0 0 . . . I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Axy “

”

A1,xy A2,xy . . . Ap´1,xy Ap,xy

ı

,

and

Σ̃yy “

»

—

—

—

—

–

Σyy 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

, Σ̃yx “

»

—

—

—

—

–

Σyx

0
...
0

fi

ffi

ffi

ffi

ffi

fl

.

Proof. See Supplementary Material, Section 2.7.3.

It is not hard to see that, by construction, FY ÑXpθq “ log |V pθq| ´ log |Σxx| is
an analytic function of θ: calculation of V pθq via (2.28) and (2.27) only involves
algebraic operations (solution of multivariate polynomial equations), and we know
V pθq to be positive-definite, so that |V pθq| ą 0 for all θ and log |V pθq| is thus
analytic.

Our next result establishes an expression for W0pθq.

Proposition 3.
W0pθq “ 2rΣxxs

´1 bΠ0 , (2.29)

where Π0 is the (unique) solution of the DLYAP equation

Π0 “ ÃyyΠ0Ã
T
yy ` Σ̃yy|x . (2.30)

with

Σ̃yy|x “ Σ̃yy ´ Σ̃yxrΣxxs
´1Σ̃T

yx “

»

—

—

—

—

–

Σyy|x 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

,

and Σyy|x the partial covariance matrix (2.13).

Proof. See Supplementary Material, Section 2.7.3.

We are now in a position to state our first principle result:
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Theorem 1. The asymptotic distribution of the single-regression Granger causality
estimator under the null hypothesis θ P Θ0 is

NF̂ SR
Y ÑX

d
ÝÑχ2

´

Ixx b Γ̃yy|x, Ixx b
“

Γ̃´1‰
yy

¯

(2.31)

as N ÝÑ8, where Ixx is the nxˆnx identity matrix, and Γ̃, Γ̃yy|x satisfy the respective
DLYAP equations

Γ̃ “ ÃΓ̃ÃT ` Σ̃ , Γ̃yy|x “ ÃyyΓ̃yy|xÃ
T
yy ` Σ̃yy|x . (2.32)

Proof. Eq. (2.30), cf. (2.4), specifies the autocovariance matrix (2.5) for a notional
ny-dimensional VAR(p) model with parameters pAyy,Σyy|xq. Accordingly, we write
Π0 as Γ̃yy|x from now on, so that (2.29) becomes W0pθq “ 2rΣxxs

´1 b Γ̃yy|x, and
from (2.24) and (2.26) it follows that

NF̂ SR
Y ÑX

d
ÝÑχ2

´

rΣxxs
´1 b Γ̃yy|x,Σxx b

“

Γ̃´1‰
yy

¯

as N ÝÑ8. But from the transformation invariance χ2pCACT, Bq “ χ2pA,CTBCq

and the mixed-product property of the Kronecker product, we may verify that the
Σxx terms cancel (Σxx is positive-definite, and thus has an invertible Cholesky
decomposition), and (2.31) follows.

From (2.31) we see that the limiting distribution of NF̂ SR
Y ÑX is the sum of nx ran-

dom variables independently and identically distributed as χ2
´

Γ̃yy|x,
“

Γ̃´1‰
yy

¯

. By
Supplementary Material, eq. 2.40, this distribution may be expressed in terms of
the eigenvalues of Ixx b

´

“

Γ̃´1‰
yy

Γ̃yy|x

¯

; these are the eigenvalues λ1, . . . , λpny of
“

Γ̃´1‰
yy

Γ̃yy|x, where each λi appears with multiplicity nx. The asymptotic distribu-
tion of NF̂ SR

Y ÑX under the null thus takes the form of a weighted sum of pny iid
χ2pnxq variables:

λ1W1 ` . . .` λpnyWpny , Wi iid „ χ2pnxq .

The asymptotic mean and variance of NF̂ SR
Y ÑX for θ P Θ0 are

E
”

NF̂ SR
Y ÑX

ı

ÝÑnx

pny
ÿ

i“1
λi , var

”

NF̂ SR
Y ÑX

ı

ÝÑ 2nx

pny
ÿ

i“1
λ2

i (2.33)

respectively as N ÝÑ8, from which the Γ-approximation of the generalized χ2

distribution may be obtained [see Supplementary Material, eqs. 2.41 and 2.42].
Figure 2.1 plots generalized χ2, Γ-approximation and empirical single-regression
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Fig. 2.1: Cumulative distributions for empirical single-regression Granger causality esti-
mates and analytical distributions, for a representative null VAR model with nx “ 3,
ny “ 5 and p “ 7. Generalized χ2 (solid line), Γ-approximation (dotted line, nearly
indistinguishable from generalized χ2), Granger causality estimator: N “ 10, 000
(dashes), N “ 1000 (dot-dash), N “ 500 (dot-dot-dash). The null VAR model was
randomly generated according to the scheme described in Supplementary Material,
Section 2.7.8, with spectral radius ρ “ 0.9 and residuals generalized correlation
γ “ 1. Estimator plots are based on 104 generated time series. Inset figure: the
pny “ 35 distinct eigenvalues for the generalized χ2 distribution, sorted by size.
(Each eigenvalue will be repeated nx “ 3 times.)

estimator cumulative density functions (CDFs) for a representative null VAR model
with nx “ 3, ny “ 5 and p “ 7 for several sample sizes, illustrating asymptotic
convergence with increasing sample length N . The Γ-approximation is barely
distinguishable from the generalized χ2. The eigenvalues λi are all ą 0, since both
“

Γ̃´1‰
yy

and Γ̃yy|x are positive-definite. From Supplementary Material, eq. 2.42, we
find that the shape parameter of the Γ-approximation satisfies nx{2 ď α ď ppnxnyq{2
and α “ ppnxnyq{2 ðñ all the λi are equal ðñ p “ ny “ 1, in which case
the distribution of NF̂ SR

Y ÑX is asymptotically χ2pnxq scaled by λ (cf. Supplementary
Material, Section 2.7.7). We also state the following conjecture, which we have
tested extensively empirically, but have so far been unable to prove rigorously:

Conjecture 1. The eigenvalues of
“

Γ̃´1‰
yy

Γ̃yy|x satisfy λi ď 1 (i “ 1, . . . , pny).
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Fig. 2.2: Distribution of Γ-approximation cumulative distribution functions for a random
sample of 200 null VAR models with nx “ 3, ny “ 5 and p “ 7, for a selection
of spectral radii ρ and residuals generalised correlation γ (see Supplementary
Material, Section 2.7.8 for sampling details). At each scaled Granger causality
value, solid lines plot the mean of the Γ-approximations, while shaded areas bound
upper/lower 95% quantiles. Dashed lines plot the corresponding likelihood-ratio
χ2pdq distributions, with d “ pnxny “ 105. (a) ρ “ 0.6, γ “ 1; (b) ρ “ 0.9, γ “ 1;
(c) ρ “ 0.6, γ “ 8; (a) ρ “ 0.9, γ “ 8. Inset figures: the pny “ 35 distinct
eigenvalues sorted by size, for each of the 200 generalised χ2 distributions (x-
range is 1–35, y-range is 0–1).

If Conjecture 1 holds, then from Supplementary Material, eq. 2.42 and (2.33) the
scale parameter of the Γ-approximation satisfies 0 ď β ď 2. Simulations reveal that
spectral radius and residuals generalised correlation of null parameters θ have a
strong effect on the distribution of the eigenvalues λi. Spectral radius close to 1
and strong residuals cross-correlation give rise to a larger spread of eigenvalues
ă 1, resulting in asymptotic null sampling distributions significantly different from
a (non-generalized) χ2. Figure 2.2 presents the distribution of single-regression
estimator CDFs under random sampling of VAR models of given size, spectral radius
and residuals generalised correlation (see Supplementary Material, Section 2.7.8
for the VAR sampling scheme), where the effects of spectral radius and residuals
correlation on the null distribution via the eigenvalues (inset figures) is clearly seen.
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Assuming Conjecture 1, an immediate consequence of (2.33) andNF̂ LR
Y ÑX

d
ÝÑχ2ppnxnyq

is that for θ P Θ0

E
”

NF̂ SR
Y ÑX

ı

ď E
”

NF̂ LR
Y ÑX

ı

, var
”

NF̂ SR
Y ÑX

ı

ď var
”

NF̂ LR
Y ÑX

ı

, (2.34)

in the limit N Ñ8. As is apparent in Figure 2.2, the reduction in bias (rightward
displacement of CDFs) and variance (slope of CDFs) is strongest for spectral radius
close to 1 and for high residuals correlation.

2.4.3 The band-limited spectral single-regression estimator

We now consider the asymptotic null-distribution of the band-limited spectral
Granger Causality estimator f̂Y ÑXpFq (2.14). It turns out that the null-hypothesis
of vanishing fY ÑXpFq is in fact identical to the time-domain null-hypothesis (2.17).
This can be seen by considering the point-frequency spectral Granger causality
fY ÑXpω; θq. Firstly, it is non-negative and clearly vanishes under H0 for any ω.
Further, by assumed stability of the VAR(p) (2.16), the inverse transfer function
Φpωq does not vanish anywhere, so that Ψpωq, and hence, via (2.8), Spωq and con-
sequently fY ÑXpω; θq, are analytic functions of the angular frequency ω [as well
as of the θ “ pA,Σq]. For a frequency range F Ď r0, 2πs with measure |F | ą 0,
then, fY ÑXpF ; θq vanishes iff fY ÑXpω; θq is identically zero; i.e., precisely under
the original null hypothesis H0. This being the case, given a frequency range F
we apply Proposition 1 to the asymptotic distribution of f̂Y ÑXpFq under the null
hypothesis (2.17) H0 : Ak,xy “ 0 (k “ 1, . . . , p).

In the previous section we calculated the covariance Ω0pθq “ Σxx b
“

Γ̃´1‰
yy

of
null parameters under H0; it remains to calculate the null Hessian W0pF ; θq for
fY ÑXpF ; θq. Since (Lebesgue) integration and partial differentiation are linear
operations, it follows that the Hessian on the original null space Θ0 is just

W0pF ; θq “ 1
|F |

ż

F
W0pω; θq dω ,

where, for given ω, W0pω; θq is the Hessian of fY ÑXpω; θq on Θ0 with respect to the
null parameters Ak,xy (k “ 1, . . . , p).

Proposition 4.
W0pF ; θq “ rΣxxs

´1 bRe
␣

S̃yy|xpFq
(

,
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where

S̃yy|xpFq “
1
|F |

ż

F
Zpωq b Syy|xpωq dω , Zkk1pωq “ e´iωpk´k1q pk, k1 “ 1, . . . , pq

(2.35)
with Syy|xpωq the CPSD for a VAR(p) model with parameters pAyy,Σyy|xq (cf. Theo-
rem 1).

Proof. See Supplementary Material, Section 2.7.5.

We thus obtain our second principal result:

Theorem 2. The asymptotic distribution of the single-regression band-limited Granger
causality estimator over a frequency range F Ď r0, 2πs for θ P Θ0 is

Nf̂Y ÑXpFq
d
ÝÑχ2

´

Ixx bRe
␣

S̃yy|xpFq
(

, Ixx b
“

Γ̃´1‰
yy

¯

(2.36)

as N ÝÑ8, with S̃yy|xpFq as in (2.35), and Γ̃ as in Theorem 1.

Proof. The proof proceeds from Proposition 1 and Proposition 4 in the same way as
the proof of Theorem 1.

The matrix S̃yy|xpFq may be thought of as the spectral counterpart of the autocovari-
ance matrix Γ̃yy|x of Section 2.4.2. In particular, for F “ r0, 2πs we may confirm
that S̃yy|xpr0, 2πsq “ Γ̃yy|x, so that that the distribution of f̂Y ÑXpFq is consistent
with Theorem 1 and (2.15) for F “ r0, 2πs. The limiting asymptotic distribution
of f̂Y ÑXprω ´ ε, ω ` εsq as ε Ñ 0 is obtained by simply replacing S̃yy|xpFq by
Zpωq b Syy|xpωq in (2.36); note that this is distinct from the distribution of the esti-
mator f̂Y ÑXpωq under the point-frequency null H0pωq (see Section 2.6 for discussion
of the point-frequency case). As before, the generalized χ2 distribution in (2.36) may
be described in terms of the eigenvalues λi (i “ 1, . . . , pny) of

“

Γ̃´1‰
yy
Re

␣

S̃yy|xpFq
(

.
By Proposition 1 the λi are real and nonnegative, but in contrast to the time-domain
case will not necessarily be asymptotically ď 1 (cf. Conjecture 1). Empirically we
observe that the maximum eigenvalue shrinks down towards 1 as the bandwidth |F |
increases to 2π.
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In Supplementary Material, Section 2.7.7 we present, as a worked example, a
complete analysis of the single-regression Granger causality estimators in time and
(band-limited) spectral domains, for the general bivariate VAR(1)

Xt “ axxXt´1 ` axyYt´1 ` εxt (2.37a)

Yt “ ayxXt´1 ` ayyYt´1 ` εyt . (2.37b)

Model parameters are

A “

«

axx axy

ayx ayy

ff

, Σ “ E
“

εtε
T
t

‰

“

«

σxx σxy

σyx σyy

ff

,

so that θ “ paxx, axy, ayx, ayy, σxx, σxy, σyyq, and the null hypothesis H0 is axy “ 0.

2.5 Statistical inference with the single-regression
estimators

2.5.1 Neyman-Pearson tests based on single regression estimators

Assuming a VAR(p) model, we construct a Neyman-Pearson test of the null hypothesis
of zero Granger causality H0 : FY ÑX “ 0 against the alternative of non-zero Granger
causality HA : FY ÑX ‰ 0. Since the proposed testing procedure is structurally
identical no matter whether the time-domain statistic or the band-limited statistic is
used (as noted in Section 2.4.3, the null hypothesis is the same in both cases), we
adopt the following short-hand notation for brevity: F will refer to either the time-
domain population Granger causality FXÑY (2.21) or the band-limited Granger
causality fXÑY pFq (2.14) and, accordingly, F̂ will refer to any single-regression
Granger causality estimator.

A key difficulty in the construction is that the asymptotic distributions of the single-
regression estimators F̂ under the null hypothesis depend explicitly on the true null
parameter. Our solution is as follows: having estimated the maximum-likelihood
parameter θ̂ “

`

Â, Σ̂
˘

for given time-series data, we “project” θ̂ onto the null space
Θ0, by setting Â1,xy “ . . . “ Âp,xy “ 0. Given a (not necessarily null) parameter
θ, let Φθ denote the asymptotic CDF of the single-regression estimator—i.e., the
generalized χ2 of (2.31) (time domain) or (2.36) (band-limited)—evaluated at the
projected parameter. Our test proceeds in three steps:
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1. Calculate the maximum-likelihood VAR(p) parameter estimate θ̂.

2. Calculate the single-regression Granger causality estimate F̂ based on θ̂.

3. Reject the null hypothesis if Φθ̂

`

NF̂
˘

ą 1´ α.

Given θ P Θ0, the probability of a Type I error for the above test is

PIpθ;αq “ pr
”

Φθ̂

´

NF̂
¯

ą 1´ α
ı

. (2.38)

Note that both θ̂ and F̂ are sample-size dependent random variables. The following
result states that the proposed testing procedure is asymptotically valid:

Theorem 3. limNÑ8 PIpθ;αq “ α.

Proof. See Supplementary Material Section 2.7.6.

The rate of convergence of PIpθ;αq to α can be expected to depend on the true null
parameter θ (but note that this is also true of the likelihood-ratio test statistic).

2.5.2 Simulation results - time domain

To test statistical inference with the (time-domain) single-regression and likelihood-
ratio estimators, we used the general bivariate VAR(1) (2.37), for which both FY ÑX

and the sampling distributions under the null of its single-regression and likelihood-
ratio estimators may be calculated analytically in closed form (Supplementary
Material Section 2.7.7).

To compare the Type I error rate between the single-regression and likelihood-ratio
tests, we simulated (2.37) with axy “ 0 over a range of parameter values and
sequence lengths N (without loss of generality we took Σ to be a correlation matrix
with correlation κ). Results reveal very little difference between the performance of
the respective estimators. Except for short sequence lengths (N ă 100), Type I error
rates for both tests are close to the significance level α, in line with the analysis in
Section 2.5.1.

As regards statistical power, the Type II error rate given a non-null parameter θ P Θ,
is

PIIpθ;αq “ pr
”

Φθ̂

`

NF̂
˘

ď 1´ α
ı

.
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Fig. 2.3: Type II error rates (colour scale) at significance level α “ 0.05, based on 10, 000
realisations of the bivariate VAR(1) (2.37). Left column: single-regression test;
centre column: likelihood-ratio test; right column: difference in error rate between
estimators. Top row: F “ 0.01, ayx “ 0, κ “ 0.5, sequence length N “ 210.
Bottom row: F “ 0.001, ayx “ ´1, κ “ 0.5, sequence length N “ 212. In the
right-column figures, red indicates higher statistical power for the likelihood-ratio
test, while blue indicates higher statistical power for the single-regression test.

For the likelihood-ratio statistic we have the classical result due to Wald [44], which
yields that the scaled estimator is approximately non-central χ2ppnxny;NF q in the
large-sample limit, where F is the population Granger causality. The approximation
only holds with reasonable accuracy for small values of F . In the single-regression
case we have no equivalent result (but see discussion in Section 2.5.5). Clearly,
PIIpθ;αq will depend strongly on the population Granger causality value associated
with specific parameters θ, but, as for the null case, will still vary within the subspace
of parameters which yield a given population statistic; that is, for given F ą 0,
PIIpθ;αq will vary over the set ΘF “ tθ P Θ : F pθq “ F u.

To gain insight into comparative statistical power, we again simulated the bivariate
VAR(1) (2.37) over a range of parameters, sequence lengths, and Granger causality
values F . For given F ą 0, axx, ayy ayx and κ, axy was calculated so that FY ÑX “ F

(see Supplementary Material Section 2.7.7). Figure 2.3 displays a comparison of
Type II error rates between the single-regression and likelihood-ratio estimators for
two illustrative model parameter regimes, (non-null) Granger causality values F ,
and data lengths N . We find that the difference in statistical power between the
estimators is in general small, and that there are regions which favour one or the
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other in roughly equal measure, the difference being greatest in regions of parameter
space where spectral radius ρ is close to 1 and/or residuals correlation κ is large; in
fact for any given region of parameter space, we found that it was generally possible
to find a complementary region which “mirrored” the difference in statistical power
between the estimators (e.g., by reversing the signs of ayx and κ). It is not clear to
what extent these conclusions extrapolate to higher model orders and system sizes,
as increasing dimensionality of the parameter space renders detailed exploration
impractical.

2.5.3 Utility of inference with the single-regression estimators

The above results suggest that as regards statistical inference, there is little to choose
between the single-regression and likelihood-ratio tests, except in some “extreme”
regions of parameter space where the difference in statistical power is sizeable. This
raises the possibility of devising procedures for ascertaining, given empirical data,
whether we are indeed in such a parameter regime. Given an estimated VAR model
we might, for instance, use the model to generate surrogate time series, test the
Type II error rate for the respective tests, and select the test with the smaller error
rate. The extent to which this procedure might be confounded by model estimation
error is, however, unclear; further research is required.

Regarding the band-limited estimator, even though the band-limited and time-
domain null hypotheses are the same for any given frequency band F , inference on
fY ÑXpFq using the test statistic Nf̂SR

XÑY pFq is nevertheless informative beyond a
time-domain test based onNF̂SR

Y ÑX , due to a difference in power profiles. Thus while
the band-limited test may reject H0 in the neighbourhood of ω1 at some significance
level, it may fail to reject H0 at the same level around a different frequency ω2, with
the implication that while H0 likely does not hold, there is likely to be a sizeable
contribution to Granger causality around ω1 while it is negligible around ω2. By
contrast, the time-domain test is insensitive to the localisation of Granger causality
in the frequency spectrum and does therefore not allow any frequency-specific
conclusions.

2.5.4 Unknown and infinite var model order

So far we have assumed that the model order of the underlying VAR model is both
finite and known. However, these restrictions will generally not be met in practice.
The question, then, is how statistical inference is affected when the true model order
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is unknown, infinite or both. If the model order is unknown, statistical inference
becomes a two-stage process: first we obtain a parsimonious model order estimate p̂
using a standard selection procedure [61]. We then compute a test statistic F pp̂q, the
likelihood-ratio or single-regression estimate, using the selected model order; that
is, maximum-likelihood VAR(p̂q parameter estimates are computed for the full (and
in the case of the likelihood-ratio estimator, reduced) models.

The central question is how the model order selection step should be performed so
that the two-step testing procedure as a whole is (1) asymptotically valid, and (2)
as statistically powerful as possible. We consider first the implications of selecting
a fixed model order q ‰ p for inference on a finite-order VAR(p) process. If q ă p,
then the asymptotic statements underlying the likelihood-ratio test (i.e. Wilks’
theorem) and the single-regression test described in Section 2.5.1 no longer hold;
thus, for instance, in the case of the likelihood-ratio statistic, NF pqq d

ÝÑχ2pqnxnyq

fails under the null hypothesis (2.17). On the other hand, if q ą p then Wilks’
theorem does apply, because (cf. Section 2.3.2) one can always subsume a VAR model
by a higher-order model. For fixed q ą p then, NF pqq d

ÝÑχ2pqnxnyq under the null
hypothesis even though the model is over-specified. However, simulation results
suggest two problems: firstly, the rate of convergence of the test statistic decreases
with q (potentially leading to inflated Type I errors in small samples), and secondly,
statistical power is degraded.

Because the reduced process will in general be infinite order, the reduced model
order estimate will diverge to infinity as sample size increases, leading to subopti-
mal inference as described above. This implies that for the purposes of statistical
inference (as opposed to estimation of effect size), model order should be selected
for the full, rather than reduced process. There remains a choice regarding which
of the many possible selection criteria should be deployed. If the model order
selection criterion utilised is consistent then the probability of choosing the correct
model order converges to 1 as N Ñ8. It is not hard to show that in this case the
two-step procedure consisting of model selection followed by a Neyman-Pearson test
is asymptotically valid. We note that the popular Akaike Information Criterion (AIC)
is not consistent, whereas, e.g., Schwartz’ Bayesian Information Criterion (BIC) and
Hannan and Quinn’s Information Criterion [HQIC; 68] are consistent.

As regards the infinite-order VAR case, establishing an asymptotically-valid scheme
seems more difficult, and merits further research. Preliminary experiments indi-
cate that, at least for vector autoregressive moving-average (VARMA; equivalently
state-space) processes, the single-regression estimator with consistent model order

2.5 Statistical inference with the single-regression estimators 43



selection yields asymptotically valid inference, in the sense that the Type I error rate
converges to a specified significance level α.

Further research is required to explore more fully the consequences of model order
selection on statistical inference. To this end, The VARMA representations in Dufour
and Pelletier [69] may be particularly appropriate, since they are readily identifiable
and (unlike innovations-form state-space models) easily specified in a form which
makes causal interactions explicit.

2.5.5 The alternative hypothesis

We may consider two approaches to approximating the sampling distribution of
the time-domain and band-limited spectral estimators, which address two distinct
scenarios. In the first scenario, we suppose given a fixed true parameter θ R Θ0, and
consider the asymptotic sampling distribution of the Granger causality statistic as
sample length N Ñ8. In this case, the preconditions of Proposition 1 do not apply;
in particular, the gradient of the statistic will not in general vanish at θ, so that a
1st-order multivariate Delta Method is appropriate. This yields a normal distribution
for the estimator, with mean equal to the population Granger causality. If the statistic
is f

`

θ̂
˘

, then explicitly we have

N
1
2
“

f
`

θ̂
˘

´ fpθq
‰ d
ÝÑN

`

0,∇fpθq ¨ Ωpθq ¨∇fpθqT
˘

.

The variance σ2 “ ∇fpθq ¨ Ωpθq ¨ ∇fpθqT may be computed from the known form
of the statistic, although the gradients are harder to calculate, since (i) in the time
domain the DARE does not, as in the null case (Section 2.4.2) collapse to a DLYAP

equation (2.30), while (ii) in the spectral band-limited case (Section 2.4.3), the
transfer function Ψpω; θq is no longer block-triangular. Gradients, furthermore, must
be calculated with respect to all (rather than just null) parameters. This scenario
is more pertinent in a realistic empirical situation where, for instance, we are
reasonably confident (via a Neyman-Pearson test as described in Section 2.5.1) that
an estimated Granger causality is significantly different from zero, and we would
like to put confidence bounds on the estimate.

Under the second and more difficult to analyse scenario, we suppose that sample
length N is fixed (but large), and we consider the limiting distribution of the single-
regression Granger causality estimator as the true non-null parameter approaches
the null subspace Θ0. We are now in the regime of Wald’s Theorem [44], where
the asymptotics of the Taylor expansion on which the 1st- and 2nd-order Delta

44 Chapter 2 Sampling distribution for single-regression Granger causality esti-
mators



Methods are based become a balancing act between sample length N and the
distance between the true parameter and the null subspace. This is likely to be
difficult to calculate; we conjecture that (by analogy with Wald’s Theorem) the
asymptotic distribution will be a non-central generalized χ2. This scenario is more
pertinent to analysis of statistical power (cf. Section 2.5.2).

2.6 Extensions and future research directions

Any estimator of the form g
`

θ̂
˘

, where θ̂ is the maximum-likelihood parameter
estimator, will converge in distribution to a generalized χ2 distribution under the
associated null hypothesis θ P Θ0 if the population statistic gpθq satisfies the pre-
requisites for Proposition 1. This covers a range of extensions to our results. They
vary in tractability according to the difficulty of explicit calculation of the Fisher
information matrix Ωpθq and Hessian W pθq for θ P Θ0.

The conditional case: Extending the time-domain Theorem 1 to the conditional case
[11] is reasonably straightforward. Given a partitioning Ut “ rX

T
t Y

T
t ZT

t s
T of the

variables, the time-domain conditional population Granger causality statistic is

FY ÑX|Zpθq “ log
ˇ

ˇΣR
xx

ˇ

ˇ´ log |Σxx| ,

where now the reduced autoregression (2.9) is on rXT
t ZT

t s
T rather than just Xt.

Again, ΣR is a deterministic (albeit more complicated) function V pθq of the VAR

parameters, which may again be expressed in terms of a DARE [18]. Although more
complex, derivation of the appropriate Hessian proceeds along the same lines as
in Section 2.4.2. Extension to the conditional case in the frequency domain (band-
limited estimator) is more challenging, due to the complexity of the statistic; see
e.g., Barnett and Seth [18, Sec. II]. While the unconditional spectral statistic only
references the full model parameters, in the conditional case both full and reduced
model parameters are required.

The spectral point-frequency estimator: The null hypothesis H0pωq for vanishing
of fY ÑXpω; θq (2.12) at the point frequency ω is Ψxypωq “ 0, where Ψpωq is the
transfer function (2.6) for the VAR model, or [10]:

H0pωq :
p
ÿ

k“1
Ak,xye

´ikω “ 0 . (2.39)
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For given ω, (2.39) represents 2nxny linear constraints on the pnxny regression coef-
ficient matrices Ak. Note that for p ď 2, if ω ‰ 0, π, or 2π then H0pωq coincides with
the original H0 : Ak,xy “ 0 (cf. Supplementary Material, Section 2.7.7). Calculation
of the point-frequency asymptotic sampling distribution is in principle approachable
via a similar technique as before (Proposition 1 must be adjusted for the case of
more general linear constraints). However, we contend that in real-world applica-
tions it makes more sense in any case to consider inference on spectral Granger
causality on a (possibly narrow-band) frequency range via the band-limited spectral
Granger causality fY ÑXpF ; θq (2.14) as discussed in Section 2.4.3 rather than at
point frequencies. Firstly, for a given VAR(p), if the broadband null condition H0 is
not satisfied, then the point-frequency null condition H0pωq will only be satisfied
precisely at most at a finite number of (in practice unknown) point frequencies.
Secondly, real-world spectral phenomena are likely to be to some extent broadband
[e.g., power spectra of neural processes [70]] and/or otherwise blurred by noise.
The asymptotic sampling distribution of the point-frequency estimator is nonethe-
less at least of academic interest, since as far as the authors are aware, it remains
unknown.

The state-space Granger causality statistic: The state-space Granger causality statistic,
unconditional and conditional, in time and frequency domains, was introduced in
Barnett and Seth [18] [see also 51]. It is an attractive alternative to VAR-based
Granger causality, but its sampling distribution under the null hypothesis of vanish-
ing Granger causality remains unknown. The state-space approach extends Granger
causality estimation (and, potentially, inference) from the class of finite-order VAR

processes to the super-class of state-space (equivalently finite-order VARMA) pro-
cesses. The power of the method derives from the fact that (i) unlike the class of
finite-order VAR models, the class of state-space models is closed under subprocess
extraction (an essential ingredient of the Granger causality construct), and (ii)
many real-world data, notably econometric and neurophysiological, have a strong
moving-average component, and are thus more parsimoniously modelled as VARMA

rather than pure VAR processes. The class of state-space models is in addition (again
in contrast to the finite-order VAR class) closed under sub-sampling, temporal/spatial
aggregation and additive observation noise – all common features of real-world data
acquisition and observation procedures.

Solo [51] states without proof that the asymptotic distribution of the state-space
estimator will be a simple χ2 under the null hypothesis. However, like the VAR

single-regression Granger causality statistic, the state-space statistic is also a non-
negative deterministic function of the model parameters, so that the 2nd-order
Delta Method (Proposition 1) applies, and the sampling distribution of the estimator
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under the null will thus be a generalised χ2. This explains the simulation-based
observation in Barnett and Seth [18] that the state-space estimator under the null
is well-approximated by a Γ distribution. In comparison with the VAR case, there
are two challenges to calculation of the generalised χ2 parameters: (i) calculation
of the Fisher information matrix, and (ii) non-linearity of the null condition [18,
eq. 17]. While (ii) complicates calculation of the Hessian (cf. Supplementary Mate-
rial, Section 2.7.2), (i) is likely to present a more formidable obstacle, due to the
considerable complexity of closed-form expressions for the Fisher information matrix
[71].

2.7 Supplementary Materials

2.7.1 The generalized χ2 family of distributions

Let Z „ N p0, Bq be a zero-mean n-dimensional multivariate-normal random vector
with covariance matrix B, and A an nˆ n symmetric matrix. Then [72] we write
χ2pA,Bq for the distribution of the random quadratic formQ “ ZTAZ. If A “ B “ I,
then χ2pA,Bq reduces to the usual χ2pnq. If A is m ˆ m and C is m ˆ n, then
χ2pA,CBCTq “ χ2pCTAC,Bq.

It is not hard to show [65] that if B is positive-definite and A symmetric (which
will be the case for the generalized χ2 distributions we encounter), then χ2pA,Bq “

χ2pΛ, Iq, where Λ “ diagpλ1, . . . , λnq with λ1, . . . , λn the eigenvalues of BA, or,
equivalently, of RART where R is the right Cholesky factor of B (so that RTR “ B).
In that case, we have

λ1U
2
1 ` . . .` λnU

2
n „ χ2pA,Bq , Ui iid „ N p0, 1q , (2.40)

so that χ2pA,Bq is a weighted sum of independent χ2-distributed variables, and
in particular if the λi are all equal then we have a scaled χ2pnq distribution. From
(2.40), moments of a generalized χ2 variable may be conveniently expressed in
terms of the eigenvalues; thus we may calculate that for Q „ χ2pA,Bq

ErQs “ µ “

n
ÿ

i“1
λi , varrQs “ σ2 “ 2

n
ÿ

i“1
λ2

i . (2.41)
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Empirically, it is found that generalized χ2 variables (at least for A symmetric and
B positive-definite) are very well approximated by Γ distributions: specifically, we
have Q « Γpα, βq with shape and scale parameters

α “ µ2σ´2 , β “ µ´1σ2 (2.42)

respectively.

2.7.2 Proof of Main Article, Proposition 1

Proof. Let θ “ rxT yTsT where xi “ θi (i “ 1, . . . , d) and yj “ θd`j (j “ 1, . . . , s).
Since by definition fp0, yq “ 0 for all y, we have immediately ∇yfp0, yq “ 0 for all
y. Treating y as fixed, we expand fpx, yq in a Taylor series around x “ 0:

fpx, yq “ ∇xfp0, yqx` 1
2x

T∇2
xxfp0, yqx` 1

2x
TKpx, yqx , (2.43)

where for fixed y, Kpx, yq is a dˆ d matrix function of x, and limxÑ0 }Kpx, yq} “ 0.
Now we show that since fpx, yq is non-negative, we must have ∇xfp0, yq “ 0 for all
y. Suppose, say, ∇x1fp0, yq “ ´g ă 0. Setting x1 “ ε ą 0 [if ∇x1fp0, yq ą 0 we take
x1 “ ´ε] and x2 “ . . . “ xd “ 0, (2.43) yields

fpx, yq “ ´gε` 1
2
“

∇2
x1x1fp0, yq `K11px, yq

‰

ε2.

Now since limεÑ0 }Kpx, yq} “ 0, we can always choose ε small enough that
1
2
“

∇2
x1x1fp0, yq `K11px, yq

‰

ε ă g, so that fpε, 0, ..., 0, yq ă 0, a contradiction. Thus
we have ∇xfp0, yq “ 0 for all y, proving Proposition 1a.

From (2.43) we thus have

fpx, yq “ 1
2x

T∇2
xxfp0, yqx` 1

2x
TKpx, yqx . (2.44)

To see that ∇2
xxfp0, yq must be positive-semidefinite, we assume the contrary. We

may then find a unit d-dimensional vector u such that uT∇2
xxfp0, yqu “ ´G ă 0.

Setting x “ εu, we may then choose ε small enough that uTKpεu, yqu ă G, so
that again fpx, yq is negative and we have a contradiction. Finally, ∇2

xyfp0, yq “
∇2

yyfp0, yq “ 0 for all y follows directly from (2.44), and we have established
Proposition 1b.
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We now prove Proposition 1c using a 2nd-order Delta Method [50]. Let θ P Θ0.
Since fpθq and its gradient ∇fpθq both vanish, the Taylor expansion of fpϑN q around
θ takes the form

fpϑN q “
1
2 pϑN ´ θq

T W pθq pϑN ´ θq ` pϑN ´ θq
T KpϑN q pϑN ´ θq , (2.45)

whereW pθq “ ∇2fpθq is the Hessian matrix of f evaluated at θ, and limθ1Ñθ }Kpθ
1q} “

0. By assumption N
1
2 pϑN ´ θq

d
ÝÑZ as N Ñ8, where Z „ N p0,Ω

`

θq
˘

. Therefore,
multiplying both sides of (2.45) by the sample size N , by the Continuous Mapping
Theorem [73], we have

NfpϑN q
d
ÝÑ 1

2Z
TW pθqZ (2.46)

as N ÝÑ8, and Proposition 1c follows immediately from (2.46) and Proposition 1b.

In the more general case where the null manifold Θ0 is a smooth s-dimensional
submanifold of Θ Ď Rr, we can always find, at least locally, a change of coordinates
ψ : Rr Ñ Rr such that in the new coordinate system Θ̃0 “ ψpΘ0q and f̃ “ f ˝ ψ´1

satisfy the criteria of Proposition 1. It is not hard to show then that (2.45) holds for
W pθq “ ∇ψpθqT ¨ W̃ pθq ¨∇ψpθq [note that the Jacobian matrix ∇ψpθq is invertible]
and W̃ pθq takes the block form of Proposition 1b. We thus obtain

NfpϑN q
d
ÝÑχ2`1

2W̃0pθq, Ω̃0pθq
˘

(2.47)

as N ÝÑ8, where Ω̃0pθq “ ∇ψpθqT ¨ Ωpθq ¨∇ψpθq.

2.7.3 Proof of Main Article, Proposition 2

Proof. Following Barnett and Seth [18], given a VAR(p) model

Ut “

p
ÿ

k“1
AkUt´k ` εt (2.48)

with parameters θ “ pA; Σq, we create an equivalent innovations-form state-space
model [56]

Zt`1 “ ÃZt `Kεt ,

Ut “ AZt ` εt ,
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where

Ã “

»

—

—

—

—

—

—

—

–

A1 A2 . . . Ap´1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
...

...
0 0 . . . I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, A “
”

A1 A2 . . . Ap´1 Ap

ı

, K “

»

—

—

—

—

—

—

—

–

I

0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Ã is the pnˆ pn state transition matrix (the companion matrix of VAR cofficients) for
the VAR(p) (2.48)], K the pnˆ n Kalman gain matrix, and A the nˆ pn observation
matrix. As before, we use subscript x for the indices 1, . . . , nx, y for the indices
nx` 1, . . . , n, and we use an asterisk to denote “all indices”. The subprocess Xt then
satisfies the state-space model

Zt`1 “ ÃZt `Kεt ,

Xt “ Ax˚Zt ` εx,t .

This state-space model is no longer in innovations form; we can, however [see 18]
derive an innovations-form state-space model for Xt by solving the discrete-time
algebraic Riccati equation (DARE)

P “ ÃP ÃT ` Σ̃´
`

ÃPAT
x˚ ` Σ̃˚x

˘`

Ax˚PA
T
x˚ ` Σxx

˘´1`
ÃPAT

x˚ ` Σ̃˚x

˘T (2.51)

for P (a pnˆ pn symmetric matrix), with

Σ̃ “

»

—

—

—

—

–

Σ 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

, Σ̃˚x “

»

—

—

—

—

–

Σ˚x

0
...
0

fi

ffi

ffi

ffi

ffi

fl

,

which are, respectively, pnˆ pn and pnˆ nx. We note that under our assumptions,
a stabilising solution for (2.51) exists, and is unique [51]. Then

Zt`1 “ ÃZt `KRεR
t , (2.52a)

Xt “ Ax˚Zt ` εR
t (2.52b)

is in innovations form, with innovations covariance matrix and Kalman gain matrix

ΣR “ Ax˚PA
T
x˚ ` Σxx , (2.53a)

KR “
`

ÃPAT
x˚ ` Σ̃˚x

˘“

ΣR‰´1 (2.53b)
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respectively. The innovations εR
t in (2.52) are precisely the residuals of the reduced

VAR model for Xt, and ΣR “ ErεR
t ε

RT
t s implicitly defines V pθq as required for the

single-regression Granger causality statistic F SR
Y ÑXpθq (see Main Article, Section 2.3

and Section 2.3.3).

We may in fact confirm that

ΣR “ V pθq “ AxyΠAT
xy ` Σxx , (2.54)

where the pny ˆ pny symmetric matrix Π is the unique stabilising solution of the
“reduced DARE”

Π “ ÃyyΠÃT
yy ` Σ̃yy ´

`

ÃyyΠAT
xy ` Σ̃yx

˘`

AxyΠAT
xy ` Σxx

˘´1`
ÃyyΠAT

xy ` Σ̃yx

˘T
,

(2.55)
with

Ãyy “

»

—

—

—

—

—

—

—

–

A1,yy A2,yy . . . Ap´1,yy Ap,yy

I 0 . . . 0 0
0 I . . . 0 0
...

...
...

...
0 0 . . . I 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Axy “

”

A1,xy A2,xy . . . Ap´1,xy Ap,xy

ı

,

which are, respectively, pny ˆ pny and nx ˆ pny, and

Σ̃yy “

»

—

—

—

—

–

Σyy 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

, Σ̃yx “

»

—

—

—

—

–

Σyx

0
...
0

fi

ffi

ffi

ffi

ffi

fl

respectively, pny ˆ pny and pny ˆ nx. To see this, we may verify by substitution that
if

Π “

»

—

—

–

Π11 ¨ ¨ ¨ Π1p

...
...

Πp1 ¨ ¨ ¨ Πpp

fi

ffi

ffi

fl

solves the reduced-dimension DARE (2.55), where the Πkl are ny ˆ ny, then

P “

»

—

—

—

—

—

—

—

–

«

0nxˆnx 0nxˆny

0nyˆnx Π11

ff

¨ ¨ ¨

«

0nxˆnx 0nxˆny

0nyˆnx Π1p

ff

...
...

«

0nxˆnx 0nxˆny

0nyˆnx Πp1

ff

¨ ¨ ¨

«

0nxˆnx 0nxˆny

0nyˆnx Πpp

ff

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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solves the original DARE (2.51), and that ΣR is given by (2.54). We may also confirm
that the Kalman gain matrix (2.53b) for the reduced DARE is

KR “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Inxˆnx

LR
1

0nxˆnx

LR
2
...

0nxˆnx

LR
p

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where

LR “
`

ÃyyΠAT
xy ` Σ̃yx

˘“

ΣR‰´1
“

»

—

—

—

—

—

–

LR
1

LR
2
...

LR
p

fi

ffi

ffi

ffi

ffi

ffi

fl

(the LR
k are ny ˆ nx) is the Kalman gain matrix associated with the DARE (2.55).

2.7.4 Proof of Main Article, Theorem 1

Proof. To calculate W0pθq we require derivatives up to 2nd order of V pθq (2.54) with
respect to the null-hypothesis parameters (that is, with respect to Ak,ij for i P x,
j P y), evaluated for θ P Θ0. From (2.54) we may calculate:

BVii1

BAk,uv
“ δui

“

ΠAT
xy

‰

k,vi1 ` δui1 rAxyΠsk,iv `

„

Axy
BΠ
BAk,uv

AT
xy

ȷ

ii1

, (2.56)

where indices i, i1, u, u1 P x, indices j, j1, v, v1 P y and k, k1 “ 1, . . . , p. Since Axy

vanishes under the null hypothesis, we have

BVii1

BAk,uv

ˇ

ˇ

ˇ

ˇ

θPΘ0

“ 0 , (2.57)

and from (2.56) we find

B2Vii1

BAk,uvBAk1,u1v1

ˇ

ˇ

ˇ

ˇ

θPΘ0

“ rδuiδu1i1 ` δui1δu1isΠkk1,vv1 . (2.58)
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We see then that Π is required only on the null space Axy “ 0, in which case the
DARE (2.55) becomes a discrete Lyapunov (DLYAP) equation for Π0 “ Π|θPΘ0

:

Π0 “ ÃyyΠ0Ã
T
yy ` Σ̃yy ´ Σ̃yxrΣxxs

´1Σ̃T
yx.

We may now calculate the required Hessian. For null parameters θα, θβ, from the
definition FY ÑXpθq “ log |V pθq| ´ log |Σxx| and using (2.57) we may calculate

B2FY ÑX

BθαBθβ

ˇ

ˇ

ˇ

ˇ

θPΘ0

“
B2 log |V |
BθαBθβ

ˇ

ˇ

ˇ

ˇ

θPΘ0

“ tr
«

rΣxxs
´1 B2V

BθαBθβ

ˇ

ˇ

ˇ

ˇ

θPΘ0

ff

. (2.59)

Eq. (2.58) then yields

rW0pθqsrk,uvs,rk1,u1v1s “ 2
“

rΣxxs
´1‰

uu1 rΠ0skk1,vv1 ,

or
W0pθq “ 2rΣxxs

´1 bΠ0 ,

as required.

2.7.5 Proof of Main Article, Proposition 4

Proof. Dropping the “ω” and “θ” arguments for compactness where convenient, on
the null space Θ0 we have Φxy “ 0, and since then Φ is lower block-triangular, we
have also Ψxx “ rΦxxs

´1, Ψyy “ rΦyys
´1, and Ψxy “ 0. The CPSD for the process Xt

is given by

Sxx “ rΨSΨ˚sxx “ ΨxxΣxxΨ˚
xx `ΨxyΣyxΨ˚

xx `ΨxxΣxyΨ˚
xy `ΨxyΣyyΨ˚

xy .

On the null space Sxx “ ΨxxΣxxΨ˚
xx so that rSxxs

´1 “ Φ˚
xxrΣxxs

´1Φxx,

We define T pωq to be the nx ˆ nx (Hermitian) matrix T pωq “ ΨxypωqΣyy|xΨxypωq
˚,

so that from Main Article, eq. 2.12, fY ÑXpωq “ log |Sxxpωq| ´ log |Sxxpωq ´ T pωq|.
T pωq vanishes on the null space. We may check that

BΨpq

BAk,rs
“ ΨprΨsqe

´iωk pp, q, r, s “ 1, . . . , n; k “ 1, . . . , pq , (2.60)

from which we may calculate (with i, i1, u, u1 P x, j, j1, v, v1 P y)

BTii1

BAk,uv
“

ÿ

j,j1

rΣyy|xsjj1

´

ΨiuΨvjΨ̄i1j1e´iωk ` Ψ̄i1uΨ̄vj1Ψije
iωk

¯

, (2.61)
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so that in particular
BT

Bθα

ˇ

ˇ

ˇ

ˇ

θPΘ0

“ 0 for a null parameter θα, and we find [cf. (2.59)]

B2fY ÑX

BθαBθβ

ˇ

ˇ

ˇ

ˇ

θPΘ0

“ tr
«

rSxxs
´1 B2T

BθαBθβ

ˇ

ˇ

ˇ

ˇ

θPΘ0

ff

(2.62)

for null parameters θα, θβ. From (2.61) and using (2.60), we may calculate

B2Tii1

BAk,uvBAk1,u1v1

ˇ

ˇ

ˇ

ˇ

θPΘ0

“ ΨiuΨ˚
u1i1

“

Syy|x

‰

vv1 e
´iωpk´k1q `Ψiu1Ψ˚

ui1

“

Syy|x

‰

v1v
eiωpk´k1q,

(2.63)
where

Syy|x “ ΨyyΣyy|xΨ˚
yy (2.64)

is the CPSD for a VAR(p) model with parameters pAyy,Σyy|xq. From (2.62) and (2.63)
we find

B2fY ÑX

BAk,uvBAk1,u1v1

ˇ

ˇ

ˇ

ˇ

θPΘ0

“
“

rΣxxs
´1‰

uu1

!

“

Syy|x

‰

vv1 e
´iωpk´k1q `

“

Syy|x

‰

v1v
eiωpk´k1q

)

“
“

rΣxxs
´1‰

uu1

”

Syy|xe
´iωpk´k1q ` S̄yy|xe

iωpk´k1q
ı

vv1

“ 2
“

rΣxxs
´1‰

uu1 Re
!

“

S̃yy|x

‰

kk1,vv1

)

,

where
S̃yy|xpωq “ Zpωq b Syy|xpωq , Zkk1pωq “ e´iωpk´k1q .

The pny ˆ pny Hermitian matrix S̃yy|xpωq is the CPSD for the companion VAR(1)
(Main Article, eq. 2.2) of a VAR(p) model with parameters pAyy,Σyy|xq, and as
such may be thought of as the spectral counterpart of the autocovariance matrix
Γ̃yy|x of Main Article, Section 2.4.2. Thus for ω P r0, 2πs, we have W0pω; θq “
rΣxxs

´1 bRe
␣

S̃yy|xpωq
(

, so that

W0pF ; θq “ rΣxxs
´1 bRe

␣

S̃yy|xpFq
(

with
S̃yy|xpFq “

1
|F |

ż

F
S̃yy|xpωq dω (2.65)

as required.
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2.7.6 Proof of Main Article, Theorem 3

Lemma 1. Suppose given a sequence of pairs of real-valued random variables pXn, Ynq

such that Xn
d
ÝÑX and Yn

p
ÝÑ c, where c is a constant. Then

prrXn ď Yns ÝÑ prrX ď cs (2.66)

as nÝÑ8.

Proof. By Slutsky’s Lemma [50], we haveXn´Yn
d
ÝÑX´c. Thus for any ε ą 0 there

exists n0 P N such that for all n ě n0 we have
ˇ

ˇprrXn ´ Yn ď 0s´prrX ´ c ď 0s
ˇ

ˇ ă ε,
or, equivalently

ˇ

ˇ prrXn ď Yns ´ prrX ď cs
ˇ

ˇ ă ε, which establishes (2.66).

of Main Article, Theorem 3. Main Article, eq. 2.38 is equivalent to PIpθ;αq “ 1 ´
pr

“

NF̂ ď Φ´1
θ̂
p1 ´ αq

‰

. Since θ̂ is a consistent estimator for θ and the projection
of θ̂ onto Θ0 is continuous—and maps any θ P Θ0 to itself—by the Continuous
Mapping Theorem the projection of θ̂ onto Θ0 converges in probability to θ. It is
not hard to verify that the inverse CDF Φ´1

θ p¨ ¨ ¨ q evaluated at 1´ α is continuous
in the θ argument, so that again by the Continuous Mapping Theorem we have
Φ´1

θ̂
p1 ´ αq

p
ÝÑΦ´1

θ p1 ´ αq. By Main Article, Theorem 1, NF̂ d
ÝÑQθ, where Qθ

is a (generalized χ2) random variable with CDF Φθ. Applying Lemma 1 to the
pair-sequence

`

NF̂ ,Φ´1
θ̂
p1´ αq

˘

we have

PIpθ;αqÝÑ 1´ pr
“

Qθ ď Φ´1
θ p1´ αq

‰

“ 1´ Φθ

`

Φ´1
θ p1´ αq

˘

“ α

as required.

2.7.7 Worked example: the general bivariate var(1)

Consider the bivariate VAR(1)

Xt “ axxXt´1 ` axyYt´1 ` εxt , (2.67a)

Yt “ ayxXt´1 ` ayyYt´1 ` εyt , (2.67b)

with parameters

A “

«

axx axy

ayx ayy

ff

, Σ “ E
“

εtε
T
t

‰

“

«

σxx σxy

σyx σyy

ff

,
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so that θ “ paxx, axy, ayx, ayy, σxx, σxy, σyyq, and the null hypothesis H0 (Main Ar-
ticle, eq. 2.17) is axy “ 0. The transfer function is then Ψpωq “ Φpωq´1 with
Φpωq “ I ´Az, and the factorisation Spωq “ ΨpωqΣΨpωq˚ (Main Article, eq. 2.8) of
the CPSD Spωq holds for ω P r0, 2πs.

Setting ∆pωq “ |Φpωq| (determinant), we have

Ψpωq “
«

1´ axxz ´axyz

´ayxz 1´ ayyz

ff´1

“ ∆pωq´1

«

1´ ayyz axyz

ayxz 1´ axxz

ff

.

This leads to

Spωq “ |∆pωq|´2

«

1´ ayyz axyz

ayxz 1´ axxz

ff«

σxx σxy

σyx σyy

ff«

1´ ayy z̄ ayxz̄

axy z̄ 1´ axxz̄

ff

on z “ 1, where z “ e´iω and z̄ its the complex conjugate1.

We wish to calculate the Granger causality FY ÑX . If v is the residuals variance
for the VAR representation of the subprocess Xt, then the Granger causality is just
FY ÑX “ log v ´ log σxx. To solve for v we could use the reduced DARE (2.55), but
here we use an explicit spectral factorisation for the CPSD Sxxpωq of Xt.

Let ψpωq be the transfer function of the process Xt, which satisfies the spectral
factorisation Sxxpωq “ v|ψpωq|2. We may now calculate (we denote terms we don’t
need by “¨ ¨ ¨ ”).

Spωq “ |∆pωq|´2

«

1´ ayyz axyz

¨ ¨ ¨ ¨ ¨ ¨

ff«

σxx σxy

σyx σyy

ff«

1´ ayy z̄ ¨ ¨ ¨

axy z̄ ¨ ¨ ¨

ff

“ |∆pωq|´2

«

1´ ayyz axyz

¨ ¨ ¨ ¨ ¨ ¨

ff«

σxxp1´ ayy z̄q ` σxyaxy z̄ ¨ ¨ ¨

σyxp1´ ayy z̄q ` σyyaxy z̄ ¨ ¨ ¨

ff

.

We now calculate (note that z ` z̄ “ 2 cosω):

Sxxpωq “ |∆pωq|´2 tp1´ ayyzqrσxxp1´ ayy z̄q ` σxyaxy z̄qs ` axyzrσyxp1´ ayy z̄q ` σyyaxy z̄qsu

“ |∆pωq|´2 ␣σxx|1´ ayyz|
2 ` σxyaxyrp1´ ayyzqz̄ ` p1´ ayy z̄qzs ` σyya

2
xyzz̄

(

“ |∆pωq|´2 ␣σxxr1´ ayypz ` z̄q ` a
2
yys ` σxyaxypz ` z̄ ´ 2ayyq ` σyya

2
xy

(

“ |∆pωq|´2 ␣σxxr1´ 2ayy cosω ` a2
yys ` 2σxyaxypcosω ´ ayyq ` σyya

2
xy

(

,

and finally
Sxxpωq “ |∆pωq|´2pP ´Q cosωq ,

1For a complex variable w, |w| denotes the norm pww̄q
1
2 .
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where we have set

P “ σxxp1` a2
yyq ´ 2σxyaxyayy ` σyya

2
xy , Q “ 2pσxxayy ´ σxyaxyq .

The form of this expression suggests that the transfer function ψpωq should take the
form

ψpωq “ ∆pωq´1p1´ bzq

for some constant b; this implies thatXt is VARMA(2,1). Then |ψpωq|2 “ |∆pωq|´2p1`
b2 ´ 2b cosωq and the spectral factorisation Sxxpωq “ v|ψpωq|2 now reads

vp1` b2 ´ 2b cosωq “ P ´Q cosω .

This must hold for all ω, so we have

vp1` b2q “ P , vb “ 1
2Q .

We may now solve for v. The second equation gives v2b2 “ 1
4Q

2, so multiplying the
first equation through by v we obtain the quadratic equation for v

v2 ´ Pv ` 1
4Q

2 “ 0 ,

with solutions
v “ 1

2

”

P ˘ pP 2 ´Q2q
1
2
ı

.

We need to take the “`” solution, as this yields the correct (zero) result for the null
case axy “ 0, so that

FY ÑX “ log 1
2

”

P ` pP 2 ´Q2q
1
2
ı

´ log σxx .

Besides the residuals covariances Σ, only the Y Ñ X “causal” autoregression
coefficient axy and the Y autoregressive coefficient ayy appear in the expression for
FY ÑX . We note that, given any F ą 0 and a set of model parameters excluding
axy, there are in general two possible values of axy which yield FY ÑX “ F , except
in cases where no axy exists due to the stability constraint on the spectral radius,
which requires that |axxayy ´ axyayx| ă 1.

From Main Article, eq. 2.12, the spectral Granger causality from Y Ñ X is

fY ÑXpωq “ logpP ´Q cosωq ´ log
`

P ´Q cosω ´ a2
xyσyy|x

˘

,

where σyy|x “ σyy ´ σ2
xyσ

´1
xx “ σyy

`

1´ κ2˘, with κ “ σxypσxxσyyq
´ 1

2 the residuals
correlation.
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For the sampling distributions, we shall also need the (inverse of) the covariance
matrix Γ0 of the process rXT

t Y T
t s

T on the null space axy “ 0. Solving the DLYAP

equation Γ0 ´AΓ0A
T “ Σ for

Γ0 “

«

p r

r q

ff

yields

p “
`

1´ a2
xx

˘´1
σxx ,

r “ p1´ axxayyq
´1“σxy ` axxayx

`

1´ a2
xx

˘´1
σxx

‰

,

q “
`

1´ a2
yy

˘´1 “
σyy ` 2ayyayxp1´ axxayyq

´1σxy

` a2
yxp1` axxayyq

`

1´ a2
xx

˘´1
p1´ axxayyq

´1σxx

‰

,

and we have in particular

ωyy “ rΓ´1
0 syy “

p

pq ´ r2 . (2.69)

Note also that in the null case axy “ 0, the spectral radius is ρ “ max p|axx|, |ayy|q.

We apply Main Article, Theorem 1 to calculate the asymptotic distribution of the
single-regression estimator F̂ SR

Y ÑX on the null space. Noting that for model order
p “ 1 we have Γ̃ “ Γ0, and setting Γ´1

0 “ rωijs, we have rΓ̃´1syy “ rΓ´1
0 syy “ ωyy,

where ωyy is given by (2.69). Solving the DLYAP equation (Main Article, eq. 2.32)
for Γyy|x, we find that Γyy|x “

`

1 ´ κ2˘σyy{p1 ´ a2
yyq, and the single eigenvalue

of rΓ̃´1syyΓ̃yy|x is λ “
`

1 ´ κ2qσyyωyy{
`

1 ´ a2
yy

˘

. By Main Article, Theorem 1 the
asymptotic distribution of the single-regression estimator is thus a scaled χ2p1q:

NF̂ SR
Y ÑX

d
ÝÑλ ¨ χ2p1q “ Γ

`1
2 , 2λ

˘

,

and the Γ-approximation in this case is exact.

We also calculate the spectral Granger causality from Y Ñ X at ω P r0, 2πs as

fY ÑXpω; θq “ logpP ´Q cosωq ´ log
“

P ´Q cosω ´
`

1´ κ2˘σxxa
2
xy

‰

.

We find then that

Syy|xpωq “
`

1´ κ2qσyy

`

1´ 2ayy cosω ` a2
yyq

´1. (2.70)
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In this case, since the model order is p “ 1, the point-frequency null hypothesis
(Main Article, eq. 2.39) coincides with the time-domain null hypothesis Main Article,
eq. 2.17 (i.e., axy “ 0), so that from Main Article, Theorem 2 we have

Nf̂Y ÑXpωq
d
ÝÑλpωq ¨ χ2p1q ,

where λpωq “
`

1´κ2qσyyωyy

`

1´2ayy cosω`a2
yy

˘´1, and the asymptotic distribution
for the band-limited estimator may then be calculated as per (2.65) by integrating
(2.70) across the appropriate frequency range2.

2.7.8 A random sampling scheme for var model parameter space

Consider, for given number of variables n and model order p, the parameter space
Θ “ tpA,Σq : A is n ˆ pn with ρpAq ă 1 ,Σ is n ˆ n positive-definiteu of VAR(p)
models. Firstly, we note that the residuals covariance matrix Σ can be taken to be a
correlation matrix; this can always be achieved by a rescaling of variables leaving
Granger causalities invariant. Further Granger causality invariances under linear
transformation of variables [74] allow further effective dimensional reduction of
Θ; however, even under these general transformations, and under the constraint
ρpAq ă 1, the quotient space of Θ has infinite Lebesgue measure3; thus we cannot
generate uniform variates (it is questionable whether this would in any case be
appropriate to a given empirical scenario). Here we utilize a practical and flexible
scheme for generation of variates on Θ, parametrized by spectral radius ρ, log-
generalized correlation4 γ “ ´ log |Σ|`

ř

i log Σii, and population Granger causality
F “ FY ÑXpθq, all of which have a critical impact on Granger causality sampling
distributions.

To generate a random correlation matrix Σ of dimension n with given generalized
correlation γ, we use the following algorithm:

1. Starting with an n ˆ n matrix with components iid „ N p0, 1q, compute its
QR-decomposition rQ,Rs. The matrix Mij “ Qij ¨ signpRjjq is then a random
orthogonal matrix.

2. Create a random n-dimensional variance vector v with components vi iid
„ χ2p1q. The matrix V “ M ¨ diagpvq ¨ MT is then positive-definite, and

2We may use
ş `

1 ´ 2a cos ω ` a2˘´1
dω “ 2

`

1 ´ a2
q

´1 tan´1
´

1`a
1´a

tan ω
2

¯

.
3Although the space of n ˆ n correlation matrices has finite measure.
4For Gaussian covariance matrices, log-generalized correlation coincides with multi-information [75].

If R “ pρijq is a correlation matrix with all ρij ! 1 for i ‰ j, then ´ log |R| «
ř

iăj ρ2
ij .
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for the corresponding correlation matrix Σij “ VijpViiVjjq
´ 1

2 we have γ˚ “

´
ř

i log vi `
ř

i log Vii.

If necessary, repeat steps 1,2 until γ˚ ě γ (this may fail if γ is too large).

3. Using a binary chop, find a constant c such that, iteratively replacing v Ð v` c,
γ˚ falls within an acceptable tolerance of γ (this generally converges). The
correlation matrix Σ is then returned,

For a VAR coefficients matrix sequence A “ rA1 A2 . . . Aps, the spectral radius ρpAq
is given by Main Article, eq. 2.3. If λ is a constant, it is easy to show that if A1 is
the sequence rλA1 λ

2A2 . . . λpAps, then ρpA1q “ λρpAq. Thus any VAR coefficients
sequence may be exponentially weighted so that its spectral radius takes a given
value. Such weighting, however, has the side-effect of exponential decay of the Ak

with lag k, which is, anecdotally, unrealistic5. We observe empirically that we can
compensate for this decay reasonably consistently across number of variables and
model orders by scaling all coefficients by Ak by exp

“

´ ppwq
1
2
‰

for some constant
w; here we choose w “ 1, which generally achieves a more realistic gradual and
approximately linear decay. To generate a random VAR model with given generalized
correlation γ and given spectral radius ρ, our procedure is as follows:

1. Generate a random correlation matrix Σ with generalized correlation γ as
described above.

2. Generate p nˆ n coefficient matrices Ak with components iid „ N p0, 1q. The
Ak are the weighted uniformly by exp

“

´ ppwq
1
2
‰

.

To enforce the null condition Ak,xy “ 0,

3. Set all Ak,xy components to zero.

4. Scale the Ak coefficients sequence exponentially by an appropriate constant λ,
so as to achieve the given spectral radius ρ.

To instead enforce a given (non-null) population Granger causality value F ,

3. Scale the Ak,xy components uniformly by a constant c.

4. Scale the Ak coefficients sequence exponentially by an appropriate constant λ,
so as to achieve the given spectral radius ρ.

Under steps 3, 4 the population Granger causality depends monotonically on c;
consequently,

5At least, in the authors’ experience, for neural or econometric data.
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5. Perform a binary chop on c, iterating steps 3, 4 until the Granger causality is
within an acceptable tolerance of F (this generally converges quickly).

In all simulations except for the bivariate model (Section 2.7.7), we used γ “ 1;
spectral radii and population Granger causality values are as indicated in the plots.
Convergence tolerances were set to pmachine εq1{2 « 1.5 ˆ 10´8 under the IEEE
754-2008 binary64 floating point standard.
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Abstract

Partial information decomposition (PID) of the multivariate mutual information
describes the distinct ways in which a set of source variables contains information
about a target variable. The groundbreaking work of Williams and Beer has shown
that this decomposition cannot be determined from classic information theory
without making additional assumptions, and several candidate measures have been
proposed, often drawing on principles from related fields such as decision theory.
None of these measures is differentiable with respect to the underlying probability
mass function. We here present a novel measure that satisfies this property, emerges
solely from information-theoretic principles, and has the form of a local mutual
information. We show how the measure can be understood from the perspective
of exclusions of probability mass, a principle that is foundational to the original
definition of the mutual information by Fano. Since our measure is well-defined
for individual realizations of the random variables it lends itself for example to
local learning in artificial neural networks. We also show that it has a meaningful
Moebius inversion on a redundancy lattice and obeys a target chain rule. We give
an operational interpretation of the measure based on the decisions that an agent
should take if given only the shared information.
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3.1 Introduction

What are the distinct ways in which a set of source variables may contain information
about a target variable? How much information do input variables provide uniquely
about the output, such that this information about the output variable cannot be
obtained by any other input variable, or collections thereof? How much information
is provided in a shared way, i.e., redundantly, by multiple input variables, or multiple
collections of these? And how much information about the output is provided
synergistically such that it can only be obtained by considering many or all input
variables together? Answering questions of this nature is the scope of partial
information decomposition (PID).

A solution to this problem has been long desired in studying complex systems [76–78]
but seemed out of reach until the groundbreaking study of Williams and Beer [19].
This study provided first insights by establishing that information theory is lacking
axioms to uniquely solve the PID problem. Such axioms have to be chosen in a way
that satisfies our intuition about shared, unique, and synergistic information (at least
in simple corner cases). However, further studies in [79, 80] quickly revealed that
not all intuitively desirable properties, like positivity, zero redundant information
for statistically independent input, a chain rule for composite output variables,
etc., were compatible, and the initial measure proposed by Williams and Beer was
rejected on the grounds of not fulfilling certain desiderata favored in the community.
Nevertheless, the work of Williams and Beer clarified that indeed an axiomatic
approach is necessary and also highlighted the possibility that the higher order terms
(or questions) that arose when considering more than two input variables could be
elegantly organized into contributions on the lattice of antichains (see more below).
Approaches that do not fulfill the Williams and Beer desiderata have been suggested,
e.g., [81, 82]. However, these approaches fail to quantify all the desired quantities
and, therefore, answer a question different from that posed by PID.

Subsequently, multiple PID frameworks have been proposed, and each of them has
merits in the application case indicated by its operational interpretation (Bertschinger
et al. [83], e.g., justify their measure of unique information in a decision-theoretic
setting). However, all measures lacked the property of being well defined on
individual realizations of inputs and outputs (localizability), as well as continuity
and differentiability in the underlying joint probability distribution. These properties
are key desiderata for the settings of interest to neuroscientists and physicists, e.g.,
for distributed computation, where locality is needed to unfold computations in space
and time [84–87]; for learning in neural networks [31, 88] where differentiability is
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needed for gradient descent and localizability for learning from single samples and
minibatches; for neural coding [88, 89] where localizability is important to evaluate
the information value of individual inputs that are encoded by a system; and for
problems from the domain of complex systems in physics as discussed in [90].

While the first two properties have very recently been provided by the pointwise
partial information decomposition (PPID) of Finn and Lizier [91], differentiability is
still missing, as is the extension of most measures to continuous variables. Differ-
entiability, however, seems pivotal to exploit PID measures for learning in neural
networks – as suggested for example in [31], and also in physics problems.

Therefore, we here rework the definition of Finn and Lizier [91] in order to define
a novel PID measure of shared mutual information that is localizable and also
differentiable. We aim for a measure that adheres as closely as possible to the
original definition of (local) mutual information – in the hope that our measure
will inherit most of the operational interpretation of local mutual information. We
also seek to avoid invoking assumptions or desiderata from outside the scope of
information theory, e.g., we explicitly seek to avoid invoking desiderata from decision
or game theory. We note that adhering as closely as possible to information-theoretic
concepts should also simplify finding localizable and differentiable measures.

Our goals above suggest that we have to abandon positivity for the parts (called
atoms in [19]) of the decomposition, simply because the local mutual information
can be already negative 1 With respect to a negative shared information in the PID
we aim to preserve the interpretation of negative terms as being misinformative,
in the sense that obtaining negative information will make a rational agent more
likely to make the wrong prediction about the value of a target variable. Our goals
also strongly suggest to avoid computing the minimum (or maximum) of multiple
information expressions anywhere in the definition of the measure. This is because
taking a minimum or maximum would almost certainly collide with differentiability
and also a later extension to continuous variables.

The paper proceeds as follows. First, Section 3.2, introduces our measure of shared
information isxX . Then, section 3.3 lays out how isxX can be understood based on the
concept of shared probability mass exclusions. Section 3.4 utilizes isxX to obtain a full
PID and establishes its differentiability. Then, Section 3.5 discusses some implications

1This can be seen as follows: Assuming that the negative local MI consists only of shared information,
then this local shared information must be negative, enforcing the existence of negative local
shared information. Now assuming that this shared information does not differ from realization to
realization – something we should consider possible at this point – while the other contributions
vary, then this leads to a shared information that is also negative on average, also see [91]
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of isxX being a local mutual information, its operational interpretation, and some key
applications of isxX . Finally, Section 3.6 concludes by several examples.

3.2 Definition of the measure isx
X of pointwise shared

information

We begin by considering discrete random variables S1, . . . , Sn and T where the Si

are called the sources and T is the target. Suppose now that these random variables
have taken on particular realizations s1, . . . , sn and t. Our goal is to quantify the
pointwise shared information that the source realizations carry about the target
realization. We will proceed in three steps: (1) we define the information shared by
all source realizations about the target realization, (2) we define pointwise shared
information for any subset of source realizations, and (3) we provide the complete
definition of the information shared by multiple subsets of source realizations.

So how much information about the target realization t is redundantly contained in
all source realizations si? We propose that this information can be quantified as the
information about the target realization provided by the truth of the statement

Ws1,...,sn “
`

pS1 “ s1q _ . . ._ pSn “ snq
˘

(3.1)

i.e., by the inclusive OR of the statements that each source variable has taken on
its specific realization. This information in turn can be understood as a regular
pointwise mutual information between the target realization t and the indicator
random variable 2 of the statement Ws1,...,sn assuming the value 1:

isxX pt : s1; . . . ; snq :“ log2
ppt | IWs1,...,sn

“ 1q
pptq

(3.2)

“ log2
ppt | Ws1,...,sn “ trueq

pptq
. (3.3)

The superscript “sx” stands for “shared exclusion” and will be explained in more
detail in the next section. The reason for the choice of Ws1,...,sn is the following: the
truth of this statement can be verified by knowing the realization of any single source
variable, i.e., knowing that Si “ si for at least one i. Thus, whatever information

2Note that the idea of using an auxiliary random variable (IW in our case) is not novel per se. Quax
et al. [81] has defined synergy using auxiliary random variable. However, their auxiliary random
variable is conceptually different from IW and their approach yielded a ‘stand-alone’ measure of
synergistic information without providing any decomposition.
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can be obtained from Ws1,...,sn can also be obtained from any individual statement
Si “ si. In other words, the statement Ws1,...,sn only contains information that
is redundant to all source realizations. Conversely, whatever information can be
obtained from all individual statements Si “ si can also be obtained from Ws1,...,sn

because it implies that at least one of the statements Si “ si has to be true. In
other words, all of the information shared by the source realizations is contained
in the statement Ws1,...,sn . Accordingly, the statement Ws1,...,sn exactly captures the
information redundantly contained in the source realizations. Any logically stronger
or weaker statement would either contain some nonredundant information or miss
out on some redundant information respectively. For a more comprehensive and
foundational version of this argument, connecting principles from mereology (the
study of parthood relations) and formal logic, see [92].

Now, this definition is not entirely complete yet since it only quantifies the informa-
tion shared by all source realizations s1, . . . , sn. However, a full-fledged measure
of shared information also has to specify the information shared by (1) any subset
of source realizations (e.g.,the information shared by s1 and s3) and (2) multiple
subsets of source realizations (e.g., the information shared by ps1, s2q and ps2, s3q)
[19]. The definition for a subset a Ď t1, . . . , nu is straightforward: the information
shared by the corresponding realizations psi | i P aq is the information provided by
the statement

Wa “

˜

ł

iPa
Si “ si

¸

(3.4)

i.e., by the logical OR of statements Si “ si where i is in the subset in question. Note
that in the following we will refer to sets of source realizations by their index sets for
brevity. So we will generally say “the set of source realizations a” instead of “the
source realizations psi | i P aq”. There are formal reasons why it is preferable to
work with index sets that will become apparent in Section 3.4.

Now, how about the case of multiple subsets? Note first that the pointwise mutual
information provided by a given subset a of source realizations about the target
realization is the information provided by the logical AND of the corresponding
statements Si “ si:

i pt : psiqiPaq “ log2
ppt | p

Ź

iPa Si “ siq “ trueq
pptq

. (3.5)

Accordingly, the information shared by multiple subsets of source realizations
a1, . . . ,am can be quantified as the information provided by the logical OR of
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the associated logical AND statements, i.e., as the information provided by the
statement

Wa1,...,am “

˜

m
ł

i“1

ľ

jPai

Sj “ sj

¸

. (3.6)

The underlying reasoning is exactly as described above: whatever information can
be obtained from the Wa1,...,am can also be obtained from all of the conjunctions
Ź

jPai
Sj “ sj because as soon as the truth of one of the conjunctions is known

the truth of Wa1,...,am is known as well. Conversely, whatever information can
be obtained from all conjunctions can also be obtained from Wa1,...,am since this
statement implies that at least one conjunction must be true. This leads us to the
final definition of the information shared by arbitrary subsets of source realizations
a1, . . . ,am:

isxX pt : a1; . . . ; amq :“ log2
ppt | IWa1,...,an

“ 1q
pptq

(3.7)

“ log2
ppt | Wa1,...,an “ trueq

pptq
. (3.8)

Note that this general definition agrees with the above definition of the information
shared by all source realizations or subsets thereof. We would also like to emphasize
here again that isxX has the form of a local mutual information. This feature is of
particular importance in the following section where we aim to provide further intu-
ition for the measure by showing that it can also be motivated from the perspective
of probability mass exclusions as discussed in [93].

3.3 Shared mutual information from shared exclusions
of probability mass

Shannon information can be seen as being induced by exclusion of probability mass
(e.g, [89, Sec. 2.1.3]), and the same perspective can actually be applied to the
mutual information as well – as explicitly derived by Finn and Lizier [93]. In our
approach to shared information, we suggest to keep intact this central information-
theoretic principle that binds the exclusion of probability mass to information and
mutual information. We now first review the probability exclusion perspective on
local mutual information. Subsequently, we show how the measure isxX of shared
information, itself being a local mutual information, can be motivated from the same
perspective as well.
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3.3.1 Mutual information from exclusions of probability mass

The local mutual information [35] obtained from a realization pt, sq of two random
variables T and S is

ipt : sq “ log2
ppt | sq

pptq
. (3.9)

This means that ipt : sq compares the probability of observing t after observing s to
the prior pptq. Thus, s is said to be informative (resp. misinformative) about t if the
chance of t occurring increases (resp. decreases) after observing s compared to the
prior probability pptq, i.e., if ipt : sq ą 0 (resp. ipt : sq ă 0).

The definition of ipt : sq can be understood in terms of excluding certain probability
mass [93] by rewriting it as

ipt, sq “ log2
Pptq ´ PptX s̄q

1´ Pps̄q
´ log2 Pptq , (3.10)

where s̄ is the set complement of the event s “ tS “ su and t “ tT “ tu. Looking
at it in this way, pointwise mutual information can be conceptualized as follows
(illustrated in FIG. 3.1): (i) “removing” all points from the initial sample space Ω
that are incompatible with the observation of a specific s by giving them measure
zero–for the event t this has the consequence that a part of it is also removed,
i.e., Pptq ´ Ppt X s̄q; (ii) rescaling the probability measure to again have properly
normalized probabilities, i.e., dividing by 1´ Pps̄q; and (iii) comparing the size of
t after observing s to the prior Pptq on a logarithmic scale. The remove-rescale
procedure is a conceptual way of thinking about the changes to Ω (after observing
s) that are reflected in the conditional measure Pp¨ | sq.

This derivation of local mutual information can be generalized to any number of
sources. For instance, the joint local mutual information of s1, s2 about t is

ipt : s1, s2q “ log2
Pptq ´ PptX ps̄1 Y s̄2qq

1´ Pps̄1 Y s̄2q
´ log2 Pptq. (3.11)

The two conserved key principles here are that (i) the mutual information is always
induced by exclusion of the probability mass related to events that are impossible
after the observation of s1, . . . , sn, i.e., s̄1, . . . , s̄n, and (ii) the probabilities are
rescaled by taking into account these very same exclusions. These core information-
theoretic principles can be utilized to motivate the measure isxX as explained in the
next section.
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Fig. 3.1: Depiction of deriving the local mutual information ipt : sq by excluding the
probability mass of the impossible event s̄ after observing s. (A) Two events
t, t̄ partition the sample space Ω. (B) Two event partition s, s̄ of the source variable
S in the sample space Ω. The occurrence of s renders s̄ impossible (red (dark gray)
stripes). (C) t may intersect with s (gray region) and s̄ (red (dark gray) hashed
region). The relative size of the two intersections determines whether we obtain
information or misinformation, i.e. whether t becomes relatively more likely after
considering s, or not (D), considering the necessary rescaling of the probability
measure (E). Note that if the gray region in (E) is larger (resp. smaller) than that
in (A), then s is informative (resp. misinformative) about t since observing s hints
that t is more (reps. less) likely to occur compared to an ignorant prior. (F) shows
why the misinformative exclusion PptX s̄q (intersection of red (dark gray) hashes
with gray region) cannot be cleanly separated from the informative exclusion,
Pp̄tX s̄q (dotted outline in (C)), as stated already in [93]. This is because these
overlaps appear together in a sum inside the logarithm, but this logarithm in turn
guarantees the additivity of information terms. Thus the additivity of (mutual)
information terms is incompatible with an additive separation of informative and
misinformative exclusions inside the logarithms of the information measures.
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3.3.2 isx
X from shared exclusions of probability mass

The core idea is now that just as mutual information is connected to the exclusion
of probability mass, shared information should be connected to shared exclusions
of probability mass, i.e., to possibilities being excluded redundantly by all (joint)
source realizations in question. Now, what is excluded by a given joint source
realization aj is precisely the complement of the event aj “

Ş

iPaj
tSi “ siu. Thus,

to evaluate the information shared by the joint source realizations a1, . . . ,am, we
need to remove and rescale by the intersection of the complement events āj . This
intersection contains points that are excluded by all joint source realizations in
question. Hence, we arrive at

isx
X pt : a1; a2; . . . ; anq :“ log2

Pptq ´ PptXpā1X ā2X . . .X ānqq

1´ Ppā1X ā2X . . .X ānq

´ log2 Pptq.
(3.12)

It is straightforward to show that this definition coincides with the one given in
Section 3.2. FIG 3.2 depicts all possible exclusions in the case of three sources.
This concludes our exposition of the measure of shared information isxX . In the next
section, we show how this measure induces a meaningful and differentiable partial
information decomposition.

3.4 Lattice structure and Differentiability

We now present a lattice structure that yields a pointwise partial information de-
composition (PPID) when endowed with isxX and show that all of the resulting PPID
terms are differentiable. The lattice structure was originally introduced by Williams
and Beer [19] on the basis of a range of axioms they placed on the concept of
redundant information (see below). As we showed in [92] it can also be derived
from elementary parthood relationships between the PID terms (also called PID
atoms) and mutual information terms.

3.4.1 Lattice structure

Williams and Beer in their seminal work [19] showed that in order to capture all
the information contributions that a set of sources has about a target, we need to
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Fig. 3.2: Shared exclusions in the three-source variable case. Upper left: A sample space
with three events s1, s2, s3 from three source variables (their complements events
are depicted in (4)). For clarity, t is not shown, but may arbitrarily intersect with
any intersections/unions of si. The remaining panels show the induced exclusions
by different combinations of ai. These exclusions arise by taking the corresponding
unions and intersections of sets. Which unions and intersections were taken can
be deduced by the shapes of the remaining, nonexcluded regions. For (1)-(3)
we show the shared exclusions for combination of singletons ((1) and (2)) and
those of singletons and coalitions, such as the events of the collections (left) and
the shared exclusions (right). For (4)-(7) we only show shared exclusions. The
online version uses the additional, nonessential color-based mark-up of unions
and intersections: An intersection exclusion is indicated by the mix of the individual
colors, e.g., the t1ut2u exclusion is s̄1X s̄2 and mixes red and blue to purple, and
a union exclusion is indicated by a pattern of the individual colors, e.g., the t1, 2u
exclusion is s̄1Y s̄2 and takes a red-blue pattern.
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look at the level of collections of sources. That is, each combination of collections
of sources captures a PPID term (an information contribution / information atom).
Their argument was based on an analysis of the concept of redundant information,
i.e., the information shared by multiple collections of sources. In particular, they
argued that any measure of shared information should satisfy certain desiderata,
referred to as W&B axioms (see Axioms 1, 2, and 3). These axioms imply that
the domain of the shared information function can be restricted to the antichain
combinations, i.e., any combination of collections of sources such that none of the
collections is a subset of another. The reason is the following: consider collections a,
b, and c, and suppose that a Ă b (while a Ć c and c Ć a). Then the information
shared by all three collections is simply that shared by a and c since any information
in a is automatically also contained in b. In this way the information shared by
multiple collections always reduces to the information associated with an antichain
combination by removing all supersets. The measure isxX agrees with this result
because the truth conditions of the statement Wa1,...,am are unaffected by superset
removal.

Mathematically, the antichain-combinations form a lattice structure, i.e., there exists
an ordering ĺ of these antichain combinations such that for any pair of antichain
combinations there is a unique infimum and supremum. In [19], this lattice of
antichain combinations is called the redundancy lattice since it models inclusion of
redundancies: redundant information terms associated with lower level antichains
are included in redundancies associated with higher level antichains. Williams
and Beer then introduced the PID terms implicitly via a Möbius Inversion over the
lattice (more details in Appendix 3.7.1). We can proceed in just the same way on a
pointwise level and introduce the PPID terms via a Möbius-Inversion of isxX , i.e., via
inverting the relationship

isxX pt : αq “
ÿ

βĺα

πsxpt : βq (3.13)

where α and β are antichain combinations. In this way each PPID term πsx measures
the information “increment” as we move up the lattice, i.e., the PPID term of a
given node is that part of the corresponding shared information that is not already
contained in any lower level shared information.

It should be mentioned at this point that the measure isxX actually violates one of
the W&B axioms for shared information: it is not monotonically decreasing as more
collections of source realizations are included. On first sight this appears to be a
problem because one would expect, for instance, that the information shared by
source realizations s1, s2 and s3 should be smaller than or equal to the information
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shared by s1 and s2. After all, the information shared by all three source realizations
should be contained in the information shared by the first two. However, the viola-
tion of the monotonicity property has a natural interpretation in terms of informative
and misinformative contributions to redundant information [91]: whereas each
of these components individually should indeed satisfy the monotonicity axiom,
this is not true of the total redundant information. Using the above example, the
information shared by s1, s2, and s3 can actually be larger than the information
shared by s1 and s2 if the extra information in the latter shared information term
(i.e., the information shared by s1 and s2 but not by s3) is misinformative.

As shown in [93] it is possible to uniquely decompose the pointwise mutual infor-
mation into an informative and a misinformative component. Since isxX is itself a
pointwise mutual information the same decomposition can be applied in order to
obtain an informative pointwise shared information isx `

X (3.15a) and a misinfor-
mative pointwise shared information isx ´

X (3.15b). We may then show that each of
these components individually satisfies the W&B axioms. The decomposition reads

isx
X pt : a1; a2; . . . ; amq “ isx `

X pt : a1; a2; . . . ; amq

´ isx ´
X pt : a1; a2; . . . ; amq, (3.14a)

isx `
X pt : a1; a2; . . . ; amq :“ log2

1
Ppa1Y a2Y . . .Y amq

, (3.15a)

isx ´
X pt : a1; a2; . . . ; amq :“ log2

Pptq
PptXpa1Y a2Y . . .Y amqq

. (3.15b)

Here, the first term of (3.14a) is considered to be the informative part as it is
what can be inferred from the sources (recall that ai are indices of collections of
sources) and we refer to it by isx `

X (3.15a). The second term of (3.14a) quantifies
the (misinformative) relative loss of pptq, the probability mass of the event t (which
actually happened) when excluding the mass of ā1 X ā2 X . . .X ān and we refer to it
by isx ´

X (3.15b).

Now, isx ˘
X should individually fulfill a pointwise version of the Williams and Beer

axioms. These PPID axioms were described by Finn and Lizier [91].

Axiom 1 (Symmetry). i`X and i´X are invariant under any permutation σ of collections
of source events:

i`Xpt : a1; a2; . . . ; amq “ i`Xpt : σpa1q;σpa2q; . . . ;σpamqq,

i´Xpt : a1; a2; . . . ; amq “ i´Xpt : σpa1q;σpa2q; . . . ;σpamqq.
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Axiom 2 (Monotonicity). i`X and i´X decreases monotonically as more source events
are included,

i`Xpt : a1; . . . ; am; am`1q ď i`Xpt : a1; . . . ; amq,

i´Xpt : a1; . . . ; am; am`1q ď i´Xpt : a1; . . . ; amq,

with equality if there exists i P rms such that ai Ď am`1.

Axiom 3 (Self-redundancy). i`X and i´X for a single source event a equal i` and i´,
respectively:

i`Xpt : aq “ hpaq “ i`pt : aq,

i´Xpt : aq “ hpa | tq “ i´pt : aq.

Therefore, iXpt : aq “ ipt : aq.

Note that ipt : aq “ i`pt; aq ´ i´pt; aq, which is the informative–misinformative
decomposition of the pointwise mutual information derived by Finn and Lizier [93].
The following theorem states that isx ˘

X result in a consistent PPID by showing that
isx `
X and isx ´

X individually fulfill the PPID axioms [91] (the proof is deferred to
appendix 3.7.1.

Theorem 4. isx `
X and isx ´

X satisfy Axioms 1, 2, and 3.

In this way the violation of monotonicity of the total shared information isxX can
be completely explained in terms of misinformative contributions. In fact, there is
a another form of monotonicity that should hold as well: monotonicity over the
redundancy lattice. As noted above the redundancy lattice models inclusion of
redundancies. So we would expect lower level redundancies to be smaller than
higher level redundancies. Again this form of monotonicity does not hold for isxX

itself but for its informative and misinformative components as expressed in the
following theorem:

Theorem 5. isx ˘
X increase monotonically on the redundancy lattice.

There is another apparent problem that can be addressed using the separation into
informative and misinformative components, namely, the fact that both isxX as well
as πsx can be negative. This can be interpreted in terms of misinformation as well.
To this end we define misinformative and informative PPID terms πsx

˘ via Möbius
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Inversions of isx ˘
X . These informative and misinformative components of the PPID

terms can be obtained recursively from isx ˘
X (see appendix 3.7.1). They stand in the

relation πsx “ πsx
` ´ πsx

´ to the PPID terms. Now, even though πsx may be negative,
its components πsx

` and πsx
´ are non-negative.

Theorem 6. The atoms πsx
˘ are non-negative.

In appendix 3.7.1, we will provide the necessary tools to prove the above theorems,
in particular, theorem 6. To sum up, this section shows that isxX results in a consistent
and meaningful PPID. The apparent problems of violating monotonicity and non-
negativity can be resolved by separating misinformative and informative components
and showing that these components do satisfy the desired properties (for more
discussion on the idea of misinformation within local Shannon information theory
see Discussion).

This concludes our discussion of the PPID induced by the isxX . The global, variable-
level PID can be obtained by simply averaging the local quantities over all possible
realizations of the source and target random variables. For a complete worked
example of the XOR probability distribution see Figure 3.3, subfigure H in particular.
In the next section we establish the differentiability of isxX and πsx, an important
advantage of these measures compared to other approaches.

3.4.2 Differentiability of isx
X and πsx

˘

We will discuss the differentiability of the PPID obtained by isxX . This is a desirable
property [31] that is proven to be lacking in some measures [94–96] or evidently
lacking for other measures since their definitions are based on the maximum or
(minimum) of multiple information quantities.

Let A prnsq be the redundancy lattice (see section 3.7.1), pT, S1, . . . , Snq be discrete
and finite random variables, and let us represent their joint probability distribution as
a vector in r0, 1s|AT |ˆ|AS1 |ˆ¨¨¨ˆ|ASn |. Thus, the set of all joint probability distributions
of pT, S1, . . . , Snq forms a simplex that we denote by ∆P . Note that isxX and πsx

˘

are functions of the probability distributions of pT, S1, . . . , Snq and so they can be
differentiable w.r.t. the probability distributions. Formally, for a given pT, S1, . . . , Snq,
we show that isxX and πsx

˘ are differentiable over the interior of ∆P .
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Since log2 is continuously differentiable over the open domain R`, then using
definitions (3.15a) and (3.15b), isx `

X and isx ´
X are both continuously differentiable

over the interior of ∆p. Now, for α P A prnsq, using theorem 7 and proposition 7

πsx
` pt : αq “

ÿ

γPPpα´
ztγ1uq

p´1q|γ| log2

ˆ

ppγq ` d1

ppγq

˙

, (3.16)

where α´ “ tγ1, γ2, . . . , γku are the children of α ordered increasingly w.r.t. their
probability mass and α´ :“ tβ P A prnsq | β ă α, β ĺ γ ă αñ β “ γu. Hence, πsx

`

is continuously differentiable over the interior of ∆P since the function x`d1{x and
its inverse are continuously differentiable over the open domain R` . Similarly, πsx

´

is continuously differentiable over the interior ∆P .

3.5 Discussion

In this section, we first present further properties of isxX . Then, we provide an oper-
ational interpretation of isxX , and suggest an approach to compare this operational
interpretation with that of other measures. Following this, we give the intuition
behind the “intrinsic dependence” of PID atoms for joint source-target distributions
where the number of these atoms is larger than these distributions’ alphabet size.
Finally, we provide two applications where isxX is particularly well suited and discuss
the computational complexity of isxX .

3.5.1 Direct consequences of isx
X being a local mutual information

The fact that isxX has the form of a regular local mutual information has several
interesting consequences.

Implied entropy decomposition Since the local entropy of a realization of a set
of variables can be written as a self-mutual information our decomposition also
directly implies an entropy decomposition that inherits the properties of the lattices
described in section 3.4. We start by the local entropy hpa1, . . . ,amq of a set of
collections of realizations of variables Si “ si. Note that these collections have
to be considered jointly, hence the comma 3. Thus, we can equally well write the
entropy that is to be decomposed as hptsi | i P

Ť

ajuq. Thus, we can consider the

3If the collections where considered in an OR relation, there would be no random variable on which
the average entropy is defined (see discussion of the local indicator variable wa1,...,am )
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Fig. 3.3: Worked example of isx
X for the classical XOR. Let T “ XORpS1, S2q and

S1, S2 P t0, 1u be independent uniformly distributed and consider the realiza-
tion ps1, s2, tq “ p1, 1, 0q. (A-B) The sample space Ω and the realized event (gold
(gray) frame). (C) The exclusion of events induced by learning that S1 “ 1, i.e.
s̄1 “ t0u (gray). (D) Same for s̄2 “ t0u. (E) The union of exclusions fully deter-
mines the event p1, 1, 0q and yields 1 bit of ipt “ 0 : s1 “ 1, s2 “ 1q. (F) The shared
exclusions by s̄1 “ t0u and s̄2 “ t0u, i.e., s̄1X s̄2 exclude only p0, 0, 0q. This is a
misinformative exclusion, as it raises the probability of events that did not happen
(t “ 1) relative to those that did happen (t “ 0) compared to the case of complete
ignorance. (G) Learning about one full variable, i.e., obtaining the statement that
s̄1 “ t0u adds additional probability mass to the exclusion (green (light gray)).
The shared exclusion (red (dark gray)) and the additional unique exclusion (green
(light gray)) induced by s1 create an exclusion that is uninformative, i.e., the
probabilities for t “ 0 and t “ 1 remain unchanged by learning s1 “ 1. At the
level of the πsx atoms, the shared and the unique information atom cancel each
other. (H) Lattice with isx

X and πsx terms for this realization. Other realizations are
equivalent by the symmetry of XOR, thus, the averages yield the same numbers.
Note that the necessity to cancel the negative shared information twice to obtain
both ipt “ 0 : s1 “ 1q “ 0 and ipt “ 0 : s2 “ 1q “ 0, results in a synergy ă 1
bit. Also note that while adding the shared exclusion from (F) and the unique
exclusions for s1 and s2 results in the full exclusion from (E), information atoms
add differently due to the nonlinear transformation of excluded probability mass
into information via ´ log2 pp¨q – compare (H).
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si together as a joint random variable whose entropy is to be decomposed. This
can be done by realizing first hptsi | i P

Ť

ajuq “ iptsi | i P
Ť

aju : tsi | i P
Ť

ajuq,
and then applying our PID formalism. In this decomposition then terms of the form
isxX ptsi | i P

Ť

aju : a1; . . . ; amq “: hsx
X pa1; . . . ; amq appear. In other words, on the

target side of the arguments of isxX we will always find the joint random variable,
whereas the collections appear as usual on the source side.

Target chain rule and average measures Another consequence is that isxX satisfies
a target chain rule for a composite target variable T “ tt1, t2u:

isx
X pt1, t2 : a1; a2; . . . ; amq “ isx

X pt1 : a1; a2; . . . ; amq

` isx
X pt2 : a1; a2; . . . ; am | t1q,

where the second term is log2
Ppt2|t1q´Ppt2,ā1,ā2,...,ām|t1q

1´Ppā1,ā2,...,ām|t1q
´ log2 Ppt2 | t1q. Moreover,

by linearity of the averaging a corresponding target chain rule is satisfied for the
average shared information, Isx

X , defined by.

Isx
X pT : A1; . . . ; Amq :“

ÿ

t,s1,...,sn

ppt, s1, . . . , snqi
sx
X pt : a1; . . . ; amq

“
ÿ

t,s1,...,sn

ppt, s1, . . . , snqipt : Wa1,...,am
“ 1q, (3.17)

where probabilities related to the indicator variable Wa1,...,am have to be recom-
puted for each possible combination of source and target realizations. Note that this
indicator variable simply indicates the truth of the statement Wa1,...,am from section
3.2. Also note that in Eq. (3.17) the averaging still runs over all combinations of
t, s1, . . . , sn, and the weights are still given by ppt, s1, . . . , snq, not ppt,Wa1,...,am “ 1q.
Having different variables in the averaging weights and the local mutual information
terms makes the average shared information structurally different from a mutual
information 4. One consequence of this is that in principle the average Isx

X can be
negative. This also holds for the averages of the other information atoms on the
lattice (see next section for the lattice structure). Thus, the local shared informa-
tion may be expressed as a local mutual information with an auxiliary variable
constructed for that purpose, and multiple such variables have to be constructed for
a definition of a global shared information.

4As was to be expected from the difficulties encountered in the past trying to define measures of
shared information.
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Upper bounds. First, we can assess the self-shared information of a collection of
variables:

isx
X pa1; . . . ; am : a1; . . . ; amq :“ ipWa1,...,am

“ 1 : Wa1,...,am
“ 1q

“ hpWa1,...,am
“ 1q ,

(3.18)

where the notation a1; . . . ; am means the event defined by the complement of the
intersection of exclusions induced by the ai, as before. This quantity is greater
than or equal to zero and is the upper bound of shared information that the source
variables can have about any realization u of any target variable U , i.e.,

isx
X pa1; a2; . . . ; am : a1; a2; . . . ; amq ě isx

X pu : a1; a2; . . . ; amq

for any u P AU . This upper bound has conceptual links to maximum extractable
shared information from [97]. Moreover, this upper bound may be nonzero even for
independent sources, showing how the so-called mechanistic shared information
arises.

3.5.2 Operational interpretation of isx
X

Being a local mutual information, isxX keeps all the operational interpretations of that
measure. For example, in keeping with Woodward [98] it measures the information
available in the statement W for inference about the value t of the target. Specifically,
a negative value of the local shared information indicates that an agent who is only
in possession of the shared information is more likely to mispredict the outcome
of the target (e.g., FIGs 3.3, 3.4) than without the shared information; a positive
value means that the shared information makes the agent more likely to choose the
correct outcome. The unsigned magnitude of the shared information informs us
about how relatively certain the agent should be about their prediction.

What remains to be clarified then is the meaning of the average expression Isx
X .

As detailed above the average is taken with respect to the probabilities of the
realizations of the source variables and the target variable, not with respect to the
dummy variables encoding the truth value of the respective statements W — as
an average mutual information would require. To understand the meaning of this
particular average it is instructive to start by ruling out two false interpretations.
Again, consider an agent who tries to predict the correct value of target t. In order
to do so, the agent utilizes a particular information channel.

For the first false interpretation, consider a channel that takes the realizations of
sources and target and produces the statements W carrying the shared information.
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If the receiver of this channel used it multiple times in the case of a negative Isx
X , then

this receiver would learn that the shared information received is negative on average
and could modify their judgment. This leads us to a second false interpretation: the
average could be understood as an average over an ensemble of agents, where each
agent uses the above channel only once, thus avoiding the issue just described. Even
in this scenario however there is a problem: if the agent knew that the information
provided by W is shared by the true source realizations, then the agent could derive
the truth of all sub-statements of W. Accordingly, the agents would receive more
than only the shared information.

In order to obtain the appropriate interpretation of shared information we have to
consider a channel that masks the metainformation that all substatements of W are
true, and also makes learning impossible. This is achieved by a channel that produces
true statements V about the source variables which have the logical structure of W,
but do not always carry shared information. Consider the information shared by all
sources. In this case the channel would randomly produce (true) statements of the
form Vs1,...,sn “

`

pS1 “ s1q _ . . ._ pSn “ snq
˘

but where some of the substatements
might be false. Then V does not always carry shared information (only in case
all substatements happen to be true). The receiver knows the joint distribution of
sources and target and performs inference on t in a Bayes optimal way. Such a
channel would provide non-negative average mutual information. However, for a
channel of this kind the average taken to compute Isx

X , is only over those channel
uses where V actually did encode shared information. In certain cases this average
can be negative (see Table 3.1).

As already alluded to above, the setting of our operational interpretation contrasts
with that of other approaches to PID that take the perspective of multiple agents
having full access to individual source variables (or collections thereof), and that
then design measures of unique and redundant information based on actions these
agents can take or rewards they obtain in decision- or game-theoretic settings based
on their access to full source variables (e.g., in [83, 91, 96]). While certainly useful in
the scenarios invoked in [83, 91, 96], we feel that these operational interpretations
may almost inevitably mix inference problems (i.e., information theory proper) with
decision theory. Also, they typically bring with them the use of minimization or
maximization operations to satisfy the competitive settings of decision or game
theory. This, in turn, renders it difficult to obtain a differentiable measure of local
shared information.

In sum, we feel that the question of how to decompose the information provided
by multiple source variables about a target variable may indeed not be a single
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Tab. 3.1: V-channel for XOR. Left: probability masses for each realization. Middle:
Equiprobable V-statements associated with each realization such that respec-
tive statement carrying shared information is listed first (marked by W) Right:
predicted target inferred from V and where ✓refers to correct predictions and
✗ refers to incorrect ones. Using V a receiver obtains positive average mutual
information, but the contribution of W statements is negative. Bottom: the sign
of IV , the average information provided by all V-statements, and that of Isx

X .

Realization Channel Output Inference

p s1 s2 t V-statement predicted t Correct?
1/4 0 0 0 pS1 “ 0q _ pS2 “ 0q pWq 1 ✗

pS1 “ 0q _ pS2 “ 1q 0 ✓
pS1 “ 1q _ pS2 “ 0q 0 ✓

1/4 0 1 1 pS1 “ 0q _ pS2 “ 1q pWq 0 ✗

pS1 “ 0q _ pS2 “ 0q 1 ✓
pS1 “ 1q _ pS2 “ 1q 1 ✓

1/4 1 0 1 pS1 “ 1q _ pS2 “ 0q pWq 0 ✗

pS1 “ 1q _ pS2 “ 1q 1 ✓
pS1 “ 0q _ pS2 “ 0q 1 ✓

1/4 1 1 0 pS1 “ 1q _ pS2 “ 1q pWq 1 ✗

pS1 “ 1q _ pS2 “ 0q 0 ✓
pS1 “ 0q _ pS2 “ 1q 0 ✓

IV pT : S1; S2q ą 0 (4 ✗ and 8 ✓) and Isx
X pT : S1; S2q ă 0 (4 ✗ and 0 ✓q

question, but multiple questions in disguise. The most useful answer will therefore
depend on the scenario where the question arose. Our answer seems to be useful
in communication settings, and where quantitative statements about dependencies
between variables are important (e.g., the field of statistical inference, where the
PID enumerates all possible types of dependencies of the dependent (target) variable
on the independent (source) variables).

3.5.3 Evaluation of Isx
X on P and on optimization distributions

obtained in other frameworks.

Since our approach to PID relies only on the original joint distribution P it can be
applied to other PID frameworks where distributions QpP q are derived from the orig-
inal P of the problem – e.g., via optimization procedures, as it is done for example
in [83, 96]. This yields some additional insights into the operational interpretation
of our approach compared to others, by highlighting how the optimization from P

to QpP q shifts information between PID atoms in our framework.
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3.5.4 Number of PID atoms vs alphabet size of the joint distribution

The number of lattice nodes rises very rapidly with increasing numbers of sources.
Thus, the number of lattice nodes may outgrow the joint symbol count of the random
variables, i.e., the number of entries in the joint probability distribution. One may
ask, therefore, about the independence of the atoms on the lattice in those cases
(remember that the atoms were introduced in order to have the “independent”
information contributions of respective variable configurations at the lattice nodes).
As shown in Fig. 3.5 and 3.6 our framework reveals multiple additional constraints at
the level of exclusions via the family of mappings from Proposition 7. This explains
mechanistically why not all atoms are independent in cases where the number of
atoms is larger than the number of symbols in the joint distribution.

3.5.5 Key applications

Due to the fact that PID solves a basic information-theoretic problem, its applications
seem to cover almost all fields where information theory can be applied. Here, we
focus on two applications for which our measure is suited particularly well: the first
application requires localizability and differentiability; the second application does
not require differentiability, but requires at least continuity of the measure on the
space of the underlying probability distributions.

Learning neural goal functions

In [31] we argued that information theory, and in particular the PID framework,
lends itself to unify various neural goal functions, e.g., infomax and others. We
also showed how to apply this to learning in neural networks via the coherent
infomax framework of Kay and Phillips [88]. Yet, this framework was restricted to
goal functions expressible using combinations, albeit complex ones, of terms from
classic information theory, due to the lack of a differentiable PID measure. Goal
functions that were only expressible using PID proper could not be learned in the
Kay and Phillips framework, and in those cases PID would only serve to assess the
approximation loss.

Our new measure removes this obstacle and neural networks or even individual
neurons can now be devised to learn pure PID goal functions. A possible key appli-
cation is in hierarchical neural networks with a hierarchy of modules, where each
module contains two populations of neurons. These two populations represent supra-
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and infragranular neurons and coarsely mimic their different functional roles. One
population represents so-called layer 5 pyramidal cells. It serves to send the shared
information between their bottom-up (e.g., sensory) inputs and their top-down
(contextual) inputs downwards in the hierarchy; the other population represents
layer 3 pyramidal cells and sends the synergy between the bottom-up inputs and the
top-down inputs upwards in the hierarchy. For the first population the extraction
of shared information between higher and lower levels in the hierarchy can be
roughly equated to learning an internal model, while for the second population
the extraction of synergy is akin to computing a generalized error (see [99, 100]
and references therein for the neuroanatomic background of this idea). Thus, a
hierarchical network of this kind can perform an elementary type of predictive
coding. The full details of this application scenario are the topic of another study,
however.

Information modification in distributed computation in complex systems

If one desires to frame distributed computation in complex systems in terms of
the elementary operations on information performed by a Turing machine, i.e., the
storage, transfer, and modification of information, information-theoretic measures
for each of these component operations are required. For storage and transfer
well established measures are available, i.e., the active information storage [84]
and the transfer entropy [85–87]. For modification, in contrast, no established
measures exist, yet an appropriate measure of synergistic mutual information from
a partial information decomposition has been proposed as a candidate measure of
information modification [101]. An appropriate measure in this context has to be
localizable (i.e., it must be possible to evaluate the measure for a single event) in
order to serve as an analysis of computation locally in space and time, and it has
to be continuous in terms of the underlying probability distribution. Both of these
conditions were already met for the PPID measure of Finn and Lizier [91]; our novel
measure here adds the possibility to differentiate the measure on the interior of the
probability simplex, which makes it even more like a classic information measure.
This is important to determine the input distribution that maximizes synergy in a
system, i.e., the input distribution that reveals the information modification capacity
of the computational mechanism in a system as suggested in [102].
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3.5.6 Computational complexity of the PID using isx
X

Real-world applications of PID will not necessarily be confined to the standard
two-input variable case – hence the importance of the organization scheme for
higher order terms that are provided by the lattice structure. For such real-world
problems the computational complexity of the computation of each atom on the
lattice becomes important – not least because of the potentially large number of
atoms (see below). This holds in particular when additional nonparametric statistical
tests of PID measures obtained from data require many recomputations of the
measures. We, therefore, discuss the computational complexity of our approach.

For each realization s “ ps1, . . . , snq and t, our PPID is obtained by computing the
atoms πsx

˘ pt : αq for each α P A prnsq. In Appendix 3.7.1, we show that any πsx
˘ pt : αq

is evaluated as follows:

πsx
˘ pt : αq “ isx ˘

X pt : αq ´
ÿ

βăα

πsx
˘ pt : βq @ α, β P A prnsq,

where computing any isxX pt : αq is linear in the size of AT,S , the alphabet of the
joint random variable pT, S1, . . . , Snq. Moreover, using isxX as a redundancy measure,
the closed form of πsx

˘ derived in (3.16) shows that the computation of our PID is
trivially parallelizable over atoms and realizations, which is crucial for larger number
of sources. The importance of parallelization is due to the rapid growth of PID terms
M when the number of sources gets larger for any PID lattice-based measure. This
M grows super exponentially as the n-th Dedekind number dpnq ´ 2. At present
even enumerating M is practically intractable beyond n ą 8.

3.6 Examples

In this section, we present the PID provided by our isxX measure for some exem-
plary probability distributions. Most of the distributions are chosen from Finn and
Lizier [91] and previous examples in the PID literature. The code for computing πsx

is available on the IDTxl toolbox http://github.com/pwollstadt/IDTxl [103].

3.6.1 Probability distribution PwUnq

We start by the pointwise unique distribution (PWUNQ) introduced by Finn and
Lizier [91]. This distribution is constructed such that for each realization, only one
of the sources holds complete information about the target while the other holds no
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Tab. 3.2: PWUNQ Example. Left: probability mass diagrams for each realization. Right: the
pointwise partial information decomposition for the informative and misinforma-
tive. Bottom: the average partial information decomposition.

Realization πsx
` πsx

´

p s1 s2 t t1ut2u t1u t2u t1, 2u t1ut2u t1u t2u t1, 2u
1/4 0 1 1 1 0 1 0 1 0 0 0
1/4 1 0 1 1 1 0 0 1 0 0 0
1/4 0 2 2 1 0 1 0 1 0 0 0
1/4 2 0 2 1 1 0 0 1 0 0 0

Average Values 1 1/2 1/2 0 1 0 0 0

ΠsxpT : t1ut2uq “ 0 ΠsxpT : t1uq “ 1{2 ΠsxpT : t2uq “ 1{2 ΠsxpT : t1, 2uq “ 0

information. The aim was to structure a distribution where at no point (realization)
the two sources give the same information about the target. Hence, Finn and Lizier
argue that, for such distribution, there should be no shared information. Also, this
distribution highlights the need for a pointwise analysis of the PID problem.

Since in all of the realizations, the shared exclusion does not alter the likelihood of
any of the target events compared to the case of total ignorance, isxX will indeed give
zero redundant information. Thus, the PID terms resulting from isxX are the same as
the those resultant from rmin [91] and Iccs [96] measures (see table 3.2).

Recall Assumption p˚q of Bertschinger et al. [83] which states that the unique and
shared information should only depend on the marginal distributions P pS1, T q and
P pS2, T q. Finn and Lizier [91] showed that all measures which satisfy Assumption
p˚q result in no unique information, i.e., nonzero redundant information whenever
P pS1, T q is isomorphic to P pS2, T q. The PWUNQ distribution falls into this category
for which Imin [19], Ired [80], ĂUI [83], and SVK [104] do not register unique
information of S1 and S2. This is due to Assumption p˚q not taking into consideration
the pointwise nature of information. Specifically, a measure that satisfies Assumption
p˚q is agnostic to the fact that at each realization tT “ ju is uniquely determined by
S1 or S2 but never both. On the contrary such a measure registers this as a mixture
of shared and synergistic contribution since neither S1 nor S2 can fully determine
tT “ ju on its own but shared they partly determine tT “ ju.

3.6.2 Probability distribution XOR

Using our formulation of isxX results in negative local shared information for the
classic XOR example. To see this, assume that S1 and S2 are independent, uni-
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formly distributed random bits, and T “ XORpS1, S2q, and consider the realization
ps1, s2, tq “ p1, 1, 0q. From Eq. (3.12) we get

isx
X pt “ 0 : s1 “ 1; s2 “ 1q “ log2

1{2´ 1{4
1´ 1{4 ` log2

1
1{2 ă 0.

We argue that this result reflects that an agent receiving the shared information is
misinformed (see, e.g., [93] for the concept of misinformation) about t. To under-
stand the source of this misinformation, consider that the agent is only provided
with the shared information, i.e., the agent knows only that Ws1,...,sn is true. This
means the agent is being told the following: “One of the two sources has outcome
1, and we do not know which one.” This will let the agent predict that the joint
realization is one out of three realizations with equal probability: p1, 1, 0q, p0, 1, 1q,
or p1, 0, 1q (see FIG 3.3). Of these three realizations, only one points to the correct
target realization t “ 0, while the other two point to the “wrong” t “ 1 leading to
odds of 1:2 — whereas t “ 0 and t “ 1 were equally probable before the agent
received the shared information from the sources. As a consequence, the local shared
information becomes negative 5. Finally, the XOR gate demonstrates an example of
negative shared information; we note that in general unique (e.g., table 3.3) and
synergistic information can as well be negative.

3.6.3 Probability distribution RndErr

Recall RND, the redundant probability distribution, where both sources are fully
informative about the target and exhibit the same information. More precisely, the
redundant realizations, s1 “ s2 “ t “ 0 and s1 “ s2 “ t “ 1, are the only two
realizations that occur equally likely. Derived from RND, the RNDERR is a noisy
redundant distribution of two sources where one source occasionally misinforms
about the target while the other remains fully informative about the target. Moreover,
if S2 is the source that occasionally misinforms about the target, then the faulty
realizations, namely, s2 ‰ s1 “ t “ 0 and s2 ‰ s1 “ t “ 1, are equally likely, but less
likely than the redundant ones. We stick to the probability masses given in [91] for

5Due to ipt : sjq “ 0 for j “ 1, 2 in the XOR example, this negative shared information is then
compensated by positive unique information – however this happens twice, i.e. once for each
marginal local mutual information. As a consequence, the synergy is reduced from 1 bit to 1
minus once this unique information. This may seem counter-intuitive when still thinking about the
PID atoms as areas, in the sense of “How come if we subtract two mutual information of zero bit
from the joint mutual information of 1 bit, that we do not get 1 bit as a result?”. The key insight
is that the two local mutual information terms of zero bit have a negative “overlap” with each
other, making their sum positive. We simply see here again that the interpretation of PID atoms as
(semi-positive) areas has to be given up in the pointwise framework, due to the fact that already
the regular local mutual information can be negative.
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Tab. 3.3: RNDERR Example. Left: probability mass diagrams for each realization. Right:
the pointwise partial information decomposition for the informative and misin-
formative is evaluated. Bottom: the average partial information decomposition.
We set a “ log2p8{5q, b “ log2p8{7q, c “ log2p5{4q, d “ log2p7{4q, e “ log2p16{15q, f “
log2p16{17q, and g “ log2p4{3q.

Realization πsx
` πsx

´

p s1 s2 t t1ut2u t1u t2u t1, 2u t1ut2u t1u t2u t1, 2u
3/8 0 0 0 a c c e 0 0 g 0
3/8 1 1 1 a c c e 0 0 g 0
1/8 0 1 0 b d d f 0 0 2 0
1/8 1 0 1 b d d f 0 0 2 0

Average Values 0.557 0.443 0.443 0.367 0 0 0.811 0

ΠsxpT : t1ut2uq “ 0.557 ΠsxpT : t1uq “ 0.443 ΠsxpT : t2uq “ ´0.367 ΠsxpT : t1, 2uq “ 0.367

the redundant realizations 3{8 and for the faulty realizations 1{8 and speculate that
S2 will hold misinformative (negative) unique information about T.

For this distribution, our measure results in the following PID: misinformative unique
information by S2, informative unique information by S1, informative shared infor-
mation, and informative synergistic information that balances the misinformation of
S2 (see table 3.3).

3.6.4 Probability distribution XorDuplicate

In this distribution, we extend the XOR distribution by adding a third source S3

such that (i) S3 is a copy of any of the two original sources and (ii) S3 does
not have an additional effect on the target, e.g., if S3 is a copy of S1 then T :“
XORpS1, S2q “ XORpS2, S3q. Let S1 and S2 be two independent, uniformly dis-
tributed random bits, S3 be a copy of S1, and T “ XORpS1, S2q. This distribution
pS1, S2, S3, T q is called XORDUPLICATE where the only nonzero realizations are
p0, 0, 0, 0q, p0, 1, 0, 1q, p1, 0, 1, 1q, p1, 1, 1, 0q.

The key point is that the target T in the classical XOR is specified only by pS1, S2q,
whereas in XORDUPLICATE the target is equally specified by the coalitions pS1, S2q

and pS2, S3q. This means that the synergy ΠsxpT : t1, 2uq in XOR should be captured
by the term ΠsxpT : t1, 2ut2, 3uq in XORDUPLICATE.

The XORDUPLICATE distribution was suggested by Griffith et al. [104]. The authors
speculated that their definition of synergy SVK must be invariant to duplicates for
this distribution, ΠsxpT : t1, 2ut2, 3uq “ ΠsxpT : t1, 2uq, since the mutual information
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is invariant to duplicates, IpT : S1, S2, S3q “ IpT :, S1, S2q. Also, they proved that
SVK is invariant to duplicates in general [104].

For the shared exclusion measure isxX , it is evident that the invariant property will
hold since the shared information is indeed a mutual information and it is easy to see
that isxX pt : s1; s2; s3q “ isxX pt : s1; s2q. In fact, we show below that all the PID terms
are invariant to the duplication. That is, the unique information of S2 is invariant
and captured by ΠsxpT : t2uq. Also, the unique information of S1 is invariant but
is captured by the atom ΠsxpT : t1ut3uq since it is shared information by S1 and
S3 as S3 is a copy of S1. Finally, the synergistic information is invariant, however,
it is captured by ΠsxpT : t1, 2ut2, 3uq since the coalitions pS1, S2q and pS2, S3q can
equally specify the target. These claims are shown below by replacing s3 by s1 and
applying the monotonicity axiom 2 on isx `

X and isx ´
X . Note that due to symmetry all

the realizations have equal PID terms and the difference between the informative
and misinformative is computed implicitly.

For any pt, s1, s2, s3q with nonzero probability mass, we have

isx
X pt : s1; s2; s3q “ isx

X pt : s1; s2q “ isx
X pt : s2; s3q “ ´0.5849

isx
X pt : s1; s3q “ isx

X pt : s1q “ isx
X pt : s3q “ 0

implying that

πsxpt : t1ut2uq “ πsxpt : t2ut3uq “ 0

πsxpt : t1ut3uq “ ´πsxpt : t1ut2ut3uq “ 0.5849.

But, isxX pt : s2; s1, s3q “ isxX pt : s2; s3q “ isxX pt : s1; s2q “ ´0.5849 meaning that

πsxpt : t2ut1, 3uq “ 0

πsxpt : t2uq “ isxpt : s2q ´ i
sxpt : s2; s1, s3q “ 0.5849.

Furthermore,

isx
X pt : s1; s2, s3q “ isx

X pt : s1; s1, s2q “ isx
X pt : s1q “ 0

isx
X pt : s3; s1, s2q “ isx

X pt : s1; s1, s2q “ isx
X pt : s1q “ 0

isx
X pt : s1, s2; s1, s3; s2, s3q “ isx

X pt : s1q “ 0

and so

πsxpt : t1ut2, 3uq “ πsxpt : t3ut1, 2uq “ 0

πsxpt : t1, 2ut2, 3uq “ 0.415

πsxpt : t1, 2ut1, 3uq “ πsxpt : t1, 2ut2, 3uq “ 0.
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Finally, we have

isx
X pt : s1, s2, s3q “ isx

X pt : s1, s2q “ isx
X pt : s2, s3q “ 1

isx
X pt : s1, s3q “ 0

and thus it easy to see that their corresponding atoms are zero.

3.6.5 Probability distribution 3-bit parity

Let S1, S2 and S3 be independent, uniformly distributed random bits, and T “
ř3

i“1 Si mod 2. This distribution is the 3-bit parity, where T indicates the parity of
the total number of 1-bits in pS1, S2, S3q. Note that all possible realizations occur
with probability 1{8 and result in the same PPID as well as the average PID due to
the symmetry of the variables. Table 3.4 shows the informative and misinformative
component, and their difference for any realization. In addition, we illustrate in
Figure 3.4 the results of πsxpt : t1, 2ut3, 4uq for the 4-bit parity distribution.

3.7 Appendix

3.7.1 Lattice structure: supporting proofs and further details

We show how the redundancy lattice can be endowed by isx ˘
X separately to obtain

consistent PID terms πsx
˘ . Subsequently, we show that πsx

˘ are nonnegative and thus
the PID terms are meaningful.

Informative and misinformative lattices

We start by explaining the redundancy lattice proposed by Williams and Beer. Then,
we explain in detail how to apply isxX to obtain a PID.

As explained in section 3.4, there is a one-to-one correspondence between the PID
terms and the antichain combinations. Since isxX is defined locally, then for every
realization the antichain combinations are associated to the source events. This way
the PPID terms are computed and their average amount to the desired PID terms.

We use specific index sets and call them antichains to represent the antichain
combination since antichain combinations are uniquely identified by the indices of
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Tab. 3.4: 3-bit Parity Example. Left: the average informative partial information decom-
position is evaluated. Right: the average misinformative partial information
decomposition is evaluated. Center: the average partial information decomposi-
tion is evaluated.

Πsx
`

Πsx
´

t1, 2, 3u t1, 2, 3u

0.2451 0

t1, 2u t1, 3u t2, 3u t1, 2u t1, 3u t2, 3u

0.1699 0.1699 0.1699 0 0 0

t1, 2ut1, 3u t1, 2ut2, 3u t1, 3ut2, 3u t1, 2ut1, 3u t1, 2ut2, 3u t1, 3ut2, 3u

0.0931 0.0931 0.0931 0 0 0

t1u t2u t3u t1, 2ut1, 3ut2, 3u t1u t2u t3u t1, 2ut1, 3ut2, 3u

0.3219 0.3219 0.3219 0.0182 0.3219 0.3219 0.3219 0.2451

t1ut2, 3u t2ut1, 3u t3ut1, 2u t1ut2, 3u t2ut1, 3u t3ut1, 2u

0.0406 0.0406 0.0406 0.1699 0.1699 0.1699

t1ut2u t1ut3u t2ut3u t1ut2u t1ut3u t2ut3u

0.2224 0.2224 0.2224 0.415 0.415 0.415

t1ut2ut3u t1ut2ut3u

0.1926 0

Πsx

t1, 2, 3u

0.2451

t1, 2u t1, 3u t2, 3u

0.1699 0.1699 0.1699

t1, 2ut1, 3u t1, 2ut2, 3u t1, 3ut2, 3u

0.0931 0.0931 0.0931

t1u t2u t3u t1, 2ut1, 3ut2, 3u

0.3219 0.3219 0.3219 -0.2268

t1ut2, 3u t2ut1, 3u t3ut1, 2u

-0.1293 -0.1293 -0.1293

t1ut2u t1ut3u t2ut3u

-0.1926 -0.1926 -0.1926

t1ut2ut3u

0.1926
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(s1,s2,s3,s4,t) = 0,0,1,0,1

(0,0,0,0,0) (0,0,0,1,1) (0,0,1,0,1) (0,0,1,1,0)

(0,1,0,0,1) (0,1,0,1,0) (0,1,1,0,0) (0,1,1,1,1)

(1,0,0,0,1) (1,0,0,1,0) (1,0,1,0,0) (1,0,1,1,1)

(1,1,0,0,0) (1,1,0,1,1) (1,1,1,0,1) (1,1,1,1,0)

(0,0,0,0,0) (0,0,0,1,1) (0,0,1,0,1) (0,0,1,1,0)

(0,1,0,0,1) (0,1,0,1,0) (0,1,1,0,0) (0,1,1,1,1)

(1,0,0,0,1) (1,0,0,1,0) (1,0,1,0,0) (1,0,1,1,1)

(1,1,0,0,0) (1,1,0,1,1) (1,1,1,0,1) (1,1,1,1,0)

excluded by 
excluded by 
shared exclusion

A

B

Fig. 3.4: Worked example of isx
X for a four source-variables case. We evaluate the shared

information isx
X pt : a1; a2q with a1 “ t1, 2u, a2 “ t3, 4u, s “ ps1, s2, s3, s4q “

p0, 0, 1, 0q, and t “ Paritypsq “ 1. (A) Sample space – the relevant event is marked
by the blue (gray) outline. (B) exclusions induced by the two collections of source
realization indices a1 (brown (dark gray)), a2 (yellow (light gray)), and the
shared exclusion relevant for isx

X (gold (gray)). After removing and rescaling, the
probability for the target event that was actually realized, i.e., t “ 1, is reduced
from 1{2 to 3{7. Hence the shared exclusion leads to negative shared information.
Hence, πsxpt : t1, 2ut3, 4uq “ ´0.0145 bit .
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their source events. For instance, an antichain α “ ta1, . . . ,anu such that ai Ă rns

where rns is the index set of the realization s “ ps1, . . . , snq. Moreover, ai P α should
be pairwise incomparable under inclusion since antichain combinations are as such
(see Section 3.4). E.g., tt1, 2u, t1, 3uu represents the source event ps1X s2qYps1X s3q

and the combination of ps1, s2q and ps1, s3q.

Let A prnsq be the set of all antichains; Crampton et al. [105] showed that there
exists the following partial ordering over A prnsq:

α ĺ β ô @ b P β, D a P α | a Ď b @ α, β P A prnsq.

This partial ordering ĺ implies that any α, β P A prnsq have an infimum α ^ β P

A prnsq and a supremum α_ β P A prnsq and so ⟨A prnsq,ĺ⟩ is called a lattice. Now
when endowing ⟨A prnsq,ĺ⟩ with a function f (say a shared information) such that
fpαq “

ř

βĺα πpβq where πpβq are desired quantities (say PID terms) that have a
one-to-one correspondence with β P A prnsq, then we can compute these π using f .
Hence, we reduced the problem of defining different conceptual quantities that each
antichain represents by defining a single conceptual quantity for each antichain that
is the shared mutual information.

Williams and Beer coined this idea of endowing ⟨A prnsq,ĺ⟩ with a redundancy
measure IX and hence the name “redundancy lattice.” For this, they had a set of
axioms that ensured (i) the one-to-one correspondence between A prnsq and the
PID terms and (ii) that IXpαq “

ř

βĺα Πpβq. However, their definition was not
local (for every realization) and thus Finn and Lizier [91] adapted the axioms for
the local case. However, the local shared measure iX can take negative values
and the problem persists upon averaging. Thus, they proposed to decompose
iX “ i`X ´ i´X where i˘X take only nonnegative terms and can be interpreted as
informative and misinformative components of iX. Altogether, for each realization
we will endow ⟨A prnsq,ĺ⟩ with isx `

X (informative lattice) and isx ´
X (misinformative

lattice) individually to obtain πsx
` and πsx

´ PPID terms.

First, for any α P A rns, we define isx ˘
X as follows:

Ppαq “ Pp
ď

aPα

č

iPa
siq

Ppt, αq “ Pp
ď

aPα

č

iPa
ptX siqq

isxX pt : αq “ log2
1

Ppαq
´ log2

Pptq
PptXαq

“ isx `
X pt : αq ´ isx ´

X pt : αq.
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Now to show that this endowing of isx ˘
X is consistent, we prove Theorem 4, that

shows that isx ˘
X satisfy the PPID axioms.

proof of Theorem 4. By the symmetry of intersection, isx ˘
X defined in (3.14) satisfy

the symmetry Axiom 1. For any collection a, using (3.14), the informative and
misinformative shared information are

isx `
X pt : aq “ log2

1
ppaq “ hpaq

isx ´
X pt : aq “ log2

pptq

ppt,aq “ hpa | tq.

and so they satisfy Axiom 3. For Axiom 2, note that

Ppā1, ā2, . . . , ām, ām`1q ď Ppā1, ā2, . . . , āmq

This implies that isx ˘
X decrease monotonically if joint source realizations are added,

where equality holds if there exists i P rms such that ām`1 Ě āi , i.e., if there exists
i P rms such that am`1 Ď ai ô ai Ď am`1.

Then, we assume that

isx ˘
X pt : αq “

ÿ

βĺα

πsx
˘ pt : βq @ α, β P A prnsq. (3.19)

Note that, this assumption is logically sound and is discussed thoroughly in [92].
Finally, to obtain πsx

˘ , we show that Eq. (3.19) is invertible via a so-called Möbius
inversion given by the following theorem.

Theorem 7. Let isx ˘
X be measures on the redundancy lattice, then we have the following

closed form for each atom πsx
˘ :

πsx
˘ pt : αq “ isx ˘

X pt : αq ´
ÿ

H‰BĎα´

p´1q|B|´1isx ˘
X pt :

ľ

Bq. (3.20)

The proof of the above theorem follows from that of [91, Theorem A1].

Nonnegativity of πsx
˘

In order for our information decomposition to be interpretative, the informative and
misinformative atoms, πsx

˘ , must be nonnegative. First, we recall these results from
convex analysis that will come in handy later.
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Theorem 8 (Theorem 2.67 [106]). Let f : Rn Ñ R be a continuously differentiable
function. Then, f is convex if and only if for all x and y

fpyq ě fpxq `∇T fpxqpy ´ xq.

Proposition 5. Let f : Rn Ñ R be a continuously differentiable convex function and
y0 ´ x0 “ c1 where c ě 0. If fpx0q ě fpy0q, then

´
ÿ

i

Bf

Bxi
py0q ď ´

ÿ

i

Bf

Bxi
px0q.

Proof. For any x, y P Rn, using theorem 8 by interchanging the roles of x and y,

´∇T fpyqpy ´ xq ď fpxq ´ fpyq ď ´∇T fpxqpy ´ xq.

Now consider x0, y0 P Rn such that y0 ´ x0 “ c1, then

´c∇T fpy0q1 ď ´c∇T fpx0q1

´
ÿ

i

Bf

Bxi
py0q ď ´

ÿ

i

Bf

Bxi
px0q.

We write down the proof of theorem 5 and then show that isx ˘
X are nonnegative.

proof of theorem 5. Let α, β P A prnsq and α ĺ β. Then α and β are of the form
α “ ta1, ....,akαu and β “ tb1, ....,bkβ

u. Because α ĺ β there is a function f : β Ñ α

such that fpbq Ď b 6. Now we have for all b P β

č

iPb
si Ď

č

iPfpbq

si

Hence,

Ppβq “ P

˜

ď

bPβ

č

iPb
si

¸

ď P

¨

˝

ď

bPβ

č

iPfpbq

si

˛

‚

ď P

˜

ď

aPα

č

iPa
si

¸

“ Ppαq.

(3.21)

6This function does not have to be surjective: Suppose α “ tt1u, t2, 4u, t3uu and β “ tt1, 2, 3, 4uu.
Then necessarily two sets in α will not be in the image of f. It also does not have to be injective.
Consider α “ t1u and β “ tt1, 2u, t1, 3uu. Then both elements of β have to be mapped to the only
element of α
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The last inequality is true because the term on its L.H.S. is the probability of a union
of intersections related to collections a P α (the fpbq), i.e., it is the probability of
a union of events of the type

Ş

iPa si. The probability of such a union can only get
bigger if we take it over all events of this type. Using (3.21), it immediately follows
that isx `

X pt : αq ď isx `
X pt : βq and isx `

X is monotonically increasing. Using the same
argument, isx ´

X is monotonically increasing.

Proposition 6. isx ˘
X are nonnegative.

Proof. isx `
X pt : a1; a2; . . . ; amq “ log2

1
Ppa1 Y a2 Y...Yamq

ě 0.

Similarly, the misinformative

isx ´
X pt : a1; a2; . . . ; amq “ log2

Pptq
PptXrpXiPa1 siq Y pXiPa2 siq Y . . .Y pXiPam siqsq

ě 0.

We construct a family of mappings from Ppα´q where α´ is the set of children of α
to the A prnsq (see FIG 3.5). This family of mappings plays a key role in the desired
proof of nonnegativity.

Proposition 7. Let α P A prnsq and α´ “ tγ1, . . . , γku ordered increasingly w.r.t. the
probability mass be the set of children of α on ⟨A prnsq,ĺ⟩ . Then, for any 1 ď i ď k

fi :P1pα
´ztγiuq Y ttαuuÝÑ A prnsq

B ÝÑ
ľ

βPB
β ^ γi

is a mapping such that PpfipBqq “ Pp
Ź

βPB βq ` di where di “ Ppγiq ´ Ppαq and the
complement is taken w.r.t. Ppα´q, the powerset of α´.

Proof. Since γi P α
´ and β P α´ for any β P B, then p

Ź

βPB βq _ γi “ α. Now, for
any B P Ppα´ztγiuq, using the inclusion-exclusion, β ^ γi “ β Y γi and β _ γi “

Ò βX Ò γi,

PpfipBqq “ Pp
ľ

βPB
β ^ γiq “ Pp

ľ

βPB
βq ` Ppγiq ´ Pp

ľ

βPB
β _ γiq

“ Ppβq ` Ppγiq ´ Ppαq.
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Fig. 3.5: The family of mappings introduced in proposition 7 that preserve the proba-
bility mass difference. Let α be the top node of A pr3sq. The orange (gray dotted)
region is α´, the set of children of α. Each color depicts one mapping in the family
based on some γ P α´. The dark red (solid line) mapping is based on γ1, the red
mapping (dash-dotted line) is based on γ2 and the salmon (dotted line) mapping
is based on γ3.

-

-

-

-

=

=

=

=

=

=

=

=
{1,3}{2,3}

{1,2,3}

{1,3}

{2,3}

{1,2}

{1,2}{2,3}{1,3}

{1,2}{2,3}

{1,2}{1,3}

Fig. 3.6: Depiction of set differences corresponding to the probability mass difference
d1 introduced in proposition 7 and shown in Fig. 3.5, for the sets from Fig. 3.2.
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The following lemma shows that for any node α P A prnsq, the recursive Eq. (3.20)
should be nonnegative which is the main point in the desired proof of nonnegativ-
ity.

Lemma 2. Let α P A prnsq; then

´ log2 Ppαq `
ÿ

H‰BĎα´

p´1q|B|´1 log2 Pp
ľ

Bq ě 0. (3.22)

Proof. Suppose that |α´| “ k and w.l.o.g. that α´ “ tγ1, . . . , γku is ordered increas-
ingly w.r.t. the probability mass. The proof will follow by induction over k “ |α´|.
We will demonstrate the inequality (3.22) for k “ 3, 4 to show the induction basis.
For k “ 3, the L.H.S. of (3.22) can be written as

log2
Ppγ1qPpγ2qPpγ3qPpγ1 ^ γ2 ^ γ3q

PpαqPpγ1 ^ γ2qPpγ1 ^ γ3qPpγ2 ^ γ3q

“ log2

Ppαq`d1
Ppαq

pPpαq`d2q`d1
pPpαq`d2q

´ log2

Ppαq`d3`d1
Ppαq`d3

pPpαq`d3`d2q`d1
pPpαq`d3`d2q

“ rh3pPpαqq ´ h3pPpαq ` d2qs

´ rh3pPpαq ` d3q ´ h3pPpαq ` d3 ` d2qs,

where h3pxq “ log2p1`d1{xq, di :“ Ppγiq´Ppαq for i P t1, 2, 3u, and d3 ě d2 ě d1 ě 0.
Note that h3 is a continuously differentiable convex function that is monotonically
decreasing. Now, take x “ Ppαq and y “ Ppαq ` d3, then

h3pPpαqq ´ h3pPpαq ` d2q

Thm. 8
ě ´d2h

1
3pPpαq ` d2q

Prop. 5
ě ´d2h

1
3pPpαq ` d3q

Thm. 8
ě h3pPpαq ` d3q ´ h3pPpαq ` d3 ` d2q
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and so the inequality (3.22) holds when k “ 3. For k “ 4, we have α´ “

tγ1, γ2, γ3, γ4u ordered increasingly w.r.t. the probability mass. By Proposition 7, the
L.H.S. of (3.22) can be written as

„

h3
`

Ppαq
˘

´ h3
`

Ppαq ` d2
˘

´

ˆ

h3pPpαq ` d3q

´ h3
`

Ppαq ` d3 ` d2
˘

˙ȷ

´

„

h3
`

Ppαq ` d4
˘

´ h3
`

Ppαq ` d4 ` d2
˘

´

ˆ

h3
`

Ppαq ` d4 ` d3
˘

´ h3
`

Ppαq ` d4 ` d3 ` d2
˘

˙ȷ

“

„

h4
`

Ppαq,Ppαq ` d2
˘

´ h4
`

Ppαq ` d3,Ppαq ` d3 ` d2
˘

ȷ

´

„

h4
`

Ppαq ` d4,Ppαq ` d4 ` d2
˘

´ h4
`

Ppαq ` d4 ` d3,Ppαq ` d4 ` d3 ` d2
˘

ȷ

,

where di :“ Ppγiq ´ Ppαq for i P t2, 3, 4u, d4 ě d3 ě d2 ě 0, and h4px1, x2q “

log2p1 ` d1px2´x1q{x1px2`d1qq “ h3px1q ´ h3px2q. Let δ ě 0 and x, y P Hδ
4 :“ tx P

R2˚
` | x2 “ x1 ` δu where x1 ď y1, then h4pxq ě h4pyq since (3.22) holds for k “ 3.

Moreover, h4 is convex since for any x, y P Hδ
4 and θ P r0, 1s

θh4pxq ` p1´ θqh4pyq ´ h4pθx` p1´ θqyq

“ θph3px1q ´ h3px2qq ` p1´ θqph3py1q

´ h3py2qq ´ h3pθx1 ` p1´ θqy1q ` h3pθx2 ` p1´ θqy2q

“ rθh3px1q ` p1´ θqh3py1q ´ h3pθx1 ` p1´ θqy1qs

´ rθh3px1 ` δq ` p1´ θqh3py1 ` δq

´ h3pθx1 ` p1´ θqy1 ` δqs ě 0.

Now, take x “ pPpαq,Ppαq ` d2q and y “ pPpαq ` d4,Ppαq ` d4 ` d2q, then

h4pPpαq,Ppαq ` d2q ´ h3pppαq ` d3,Ppαq ` d3 ` d2q

Thm. 8
ě ´∇Th4pPpαq ` d3,Ppαq ` d3 ` d2qpd3, d3q

Prop. 5
ě ´∇Th4pPpαq ` d4,Ppαq ` d4 ` d2qpd3, d3q

Thm. 8
ě h4pPpαq ` d4,Ppαq ` d4 ` d2q

´ h4pPpαq ` d4 ` d3,Ppαq ` d4 ` d3 ` d2q,

and so the inequality (3.22) holds.
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Suppose that the inequality holds for k and let us proof it for k ` 1. Here α´ “

tγ1, γ2, . . . , γk`1u and using Proposition 7, the L.H.S. of (3.22) can be written as

„

hk

`

ak´2
˘

´ hk

`

ak´2 ` dk´11k´2
˘

´

ˆ

hk

`

ak´2 ` dk1k´2
˘

´ hk

`

ak´2 ` pdk ` dk´1q1k´2
˘

˙ȷ

´

„

hk

`

ak´2 ` dk`11k´2
˘

´ hk

`

ak´2 ` pdk`1 ` dk´1q1k´2
˘

´

ˆ

hk

`

ak´2 ` pdk`1 ` dkq1k´2
˘

´ hk

`

ak´2 ` pdk`1 ` dk ` dk´1q1k´2
˘

˙ȷ

“

„

hk`1
`

ak´2, ak´2 ` dk´11k´2
˘

´

ˆ

hk`1
`

ak´2 ` dk1k´2, ak´2 ` pdk ` dk´1q1k´2
˘

˙ȷ

´

„

hk`1
`

ak´2 ` dk`11k´2, ak´2 ` pdk`1 ` dk´1
˘

1k´2q

´ hk`1
`

ak´2 ` pdk`1 ` dkq1k´2, ak´2 ` pdk`1 ` dk

` dk´1q1k´2
˘

ȷ

where ak´2 :“ pPpαq, . . . ,Ppαq `
řk´2

i“2 diq P R2k´2
, di :“ Ppγiq ´ Ppαq for i P

t2, . . . , k ` 1u, dk`1 ě ¨ ¨ ¨ ě d2 ě 0, and hk`1px1, . . . , x2k´1q “ hkpx1, . . . , x2k´2q ´

hkpx2k´2`1, . . . , x2k´1q.

Let δ ě 0 and x, y P Hδ
k`1 :“ tx P R2k´1

| xi “ xj ` δ, i “ jmod 2k´2u where
xi ď yi for all i, then hk`1pxq ě hpyq because the Ineq. (3.22) holds for k. Moreover,
hk`1 is convex since for any x, y P Hδ

k`1 and θ P r0, 1s

θhk`1px1, . . . , x2k´1q ` p1´ θqhk`1py1, . . . , y2k´1q

´ hk`1pθx1 ` p1´ θqy1, . . . , θx2k´1 ` p1´ θqy2k´1q

“

„

θhkpx1, . . . , x2k´2q ` p1´ θqhkpy1, . . . , y2k´2q

´ hkpθx1 ` p1´ θqy1, . . . , θx2k´1 ` p1´ θqy2k´2q

ȷ

´

„

θhkpx1 ` δ, . . . , x2k´2 ` δq ` p1´ θqhkpy1 ` δ, . . . , y2k´2 ` δq

´ hkpθx1 ` p1´ θqy1 ` δ, . . . , θx2k´2 ` p1´ θqy2k´2 ` δq

ȷ

.
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is nonnegative. Now, take x “ pak´2, ak´2`dk´11k´2q and y “ pak´2`dk`11k´2, ak´2`

pdk`1 ` dk´1q1k´2q, then

hk`1pak´2, ak´2 ` dk´11k´2q ´ hk`1pak´2 ` dk1k´2,

ak´2 ` pdk ` dk´1q1k´2q

ě ´dk∇Thk`1pak´2 ` dk1k´2, ak´2 ` pdk ` dk´1q1k´2q1k´1

ě ´dk∇Thk`1pak´2 ` dk`11k´2,

ak´2 ` pdk`1 ` dk´1q1k´2q1k´1

ě hk`1pak´2 ` dk`11k´2, ak´2 ` pdk`1 ` dk´1q1k´2q

´ hk`1pak´2 ` pdk`1 ` dkq1k´2,

ak´2 ` pdk`1 ` dk ` dk´1q1k´2q,

where the first and third inequalities hold using theorem 8 and the second inequality
holds using Proposition 5 and so the inequality (3.22) holds for k ` 1.

Finally we write down the proof of theorem 6 to conclude that isxX yields meaningful
PPID terms.

proof of theorem 6. For any α P A prnsq,

πsx
` pt : αq “ isx `

X pt : αq ´
ÿ

H‰BĎα´

p´1q|B|´1isx `
X pt :

ľ

Bq

“ ´ log2 Ppαq `
ÿ

H‰BĎα´

p´1q|B|´1 log2 Pp
ľ

Bq.

So, by Lemma 2 πsx
` pt : αq ě 0. Similarly, πsx

´ pt : αq ě 0 since intersecting with t has
no effect on the nonnegativity shown in Lemma 2.

3.7.2 Definition of isx
X starting from a general probability space

Let pΩ,A,Pq be a probability space and S1, ..., Sn, T be discrete and finite random
variables on that space, i.e.,

Si : Ω Ñ ASi , pA,PpASiqq ´measurable

T : Ω Ñ AT , pA,PpAT qq ´measurable,

where ASi and AT are the finite alphabets of the corresponding random variables
and PpASiq and PpAT q are the power sets of these alphabets. Given a subset
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of source realization indices a Ď t1, ..., nu the local mutual information of source
realizations psiqiPa about the target realization t is defined as

ipt : psiqiPaq “ ipt : aq “ log2
P pt|

Ş

iPa siq

Pptq
.

The local shared information of an antichain α “ ta1, . . . ,amu (representing a set
of collections of source realizations) about the target realization t P AT is defined
in terms of the original probability measure P as a function isxX : AT ˆA psq Ñ R
with

isxX pt : αq “ isxX pt : a1; . . . ; amq :“ log2
P pt|

Ťm
i“1 aiq

Pptq
.

A special case of this quantity is the local shared information of a complete sequence
of source realizations ps1, . . . , snq about the target realization t. This is obtained by
setting ai “ tiu and m “ n:

isxX pt : t1u; . . . ; tnuq “ log2
P pt|

Ťn
i“1 siq

Pptq
.

In contrast to other shared information terms, this is an atomic quantity corre-
sponding to the very bottom of the lattice of antichains. Rewriting isxX allows us to
decompose it into the difference of two positive parts:

isx
X pt : a1, ...,amq “ log2

P ptX
Ťm

i“1 aiq

PptqP p
Ťm

i“1 aiq
“ log2

1
P p

Ťm
i“1 aiq

´ log2
Pptq

P ptX
Ťm

i“1 aiq
,

using standard rules for the logarithm. We call

isx `
X pt : a1, . . . ,amq :“ log2

1
P p

Ťm
i“1 aiq

the informative local shared information and

isx ´
X pt : a1, . . . ,amq :“ log2

Pptq
P ptX

Ťm
i“1 aiq

the misinformative local shared information.
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Abstract

Partial information decomposition (PID) seeks to decompose the multivariate mutual
information that a set of source variables contains about a target variable into basic
pieces, the so called "atoms of information". Each atom describes a distinct way in
which the sources may contain information about the target. For instance, some
information may be contained uniquely in a particular source, some information may
be shared by multiple sources, and some information may only become accessible
synergistically if multiple sources are combined. In this paper we show that the entire
theory of PID can be derived, firstly, from considerations of part-whole relationships
between information atoms and mutual information terms, and secondly, based
on a hierarchy of logical constraints describing how a given information atom
can be accessed. In this way, the idea of a partial information decomposition
is developed on the basis of two of the most elementary relationships in nature:
the part-whole relationship and the relation of logical implication. This unifying
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perspective provides insights into pressing questions in the field such as the possibility
of constructing a PID based on concepts other than redundant information in the
general n-sources case. Additionally, it admits of a particularly accessible exposition
of PID theory.

4.1 Introduction

Partial information decomposition (PID) is an example of a rare class of problems
where a deceptively simple question has perplexed researchers for many years,
leading to heated disputes over possible solutions [107], simple but incomplete
answers [3], and even to statements that the question should not be asked [108].
The core question of PID is how the information carried by multiple source variables
about a target variable is distributed over the source variables. In other words, it is
the information theoretic question of ’who knows what about the target variable’.
Intuitively, answering this question involves finding out which information we could
get from multiple variables alike (called redundant or shared information), which
information we could get only from specific variables, but not the others (called
unique information), and which information we can only obtain when looking at
some variables together (called synergistic information).

Examples of questions involving PID, are found in almost all fields of quantitative
research. In neuroscience, for instance, we are interested in how the activity of
multiple neurons, that were recorded in response to a stimulus, can provide informa-
tion about (i.e. encode) the stimulus. Specifically, we are interested in whether the
information provided by those neurons about the stimulus is provided redundantly,
such that we can obtain it from many (or any) of the recorded neural responses,
or whether certain aspects are only present uniquely in individual neurons, but not
others; finally, we may find that we need to analyze all neural responses together
to decode the stimulus - a case of synergy. All three ways of providing information
about the stimulus may coexist and the aim of PID analysis is to determine to what
degree each of them is present [89].

In this way PID can be used as a framework for systematically testing and comparing
theories of neural processing (such as predictive coding [109] or coherent infomax
[88]) in terms of their information theoretic "footprint", i.e. in terms of the amounts
of unique, redundant or synergistic information processing predicted by the theory.
The key idea is to identify such theories with a specific information theoretic goal
function (e.g. "maximize redundancy while at the same time allowing for a certain

106 Chapter 4 Bits and Pieces: Understanding Information Decomposition from
Part-whole Relationships and Formal Logic



degree of unique information"). One may then investigate empirically whether a
given neural circuit in fact maximizes the goal function in question or one may use
the PID framework to come up with entirely new goal functions [31].

The PID problem also arises in cryptography in the context of so called "secret
sharing" [110]. The idea is that a multiple participants (the sources) each hold some
partial information about a particular piece of information called the secret (the
target). However, the secret can only be accessed if certain participants combine their
information. In this context, PID describes how access to the secret is distributed
over the participants.

The partial information decomposition framework has furthermore been used to
to operationalize several core concepts in the study of complex and computational
systems. These concepts include for instance the notion of information modification
[101, 102] which has been suggested along with information storage and transfer
as one of three fundamental component processes of distributed computation. It
has also been proposed that the concepts of emergence and self-organisation can be
made quantifiable within the PID framework [111],[26].

Despite the universality of the PID problem, solutions have only arisen very recently,
and the work on consolidating and on distilling them into a coherent structure
is still in progress. In this paper we aim to do so by rederiving the theory of
partial information decomposition from the perspective of mereology (the study
of parthood relations) and formal logic. The general structure of PID arrived at in
this way is equivalent to the one originally described by Williams and Beer [19].
However, our derivation has the advantage of tackling the problem directly from
the perspective of the parts into which the information carried by the sources about
the target is decomposed, the so called "atoms of information". By contrast, the
formulation used until now takes an indirect approach via the concept of redundant
information. Furthermore, the approach described here is based on particularly
elementary concepts: parthood between information contributions and logical
implication between statements about source realizations.

The remainder of this paper is structured as follows: First, in §4.2 we derive the gen-
eral structure underlying partial information decomposition from considerations of
elementary parthood relationships between information contributions. This structure
is general in the sense that it still leaves open the possibility for multiple alternative
measures of information decomposition. We show that the axioms underlying the
formulation by Williams and Beer [19, 91] can be proven within the framework
described here. In §4.3 we utilize formal logic to derive a specific PID measure and
in this way provide a complete solution to the information decomposition problem.
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§4.4 shows that there is an intriguing connection between formal logic and PID
in that the mathematical lattice structure underlying information decomposition is
isomorphic to a lattice of logical statements ordered by logical implication. This gives
rise to a completely independent exposition of PID theory in terms of a hierarchy
of logical constraints on how information about the target can be accessed. In §4.5
we show that the ideas presented here can be utilized to systematically answer the
question of whether a (full n-sources) PID can be induced by measures other than
redundant information such as synergy or unique information. Before concluding in
§4.7, we briefly address the important distinction between parthood relations and
quantitative relations in §4.6.

4.2 The parthood perspective

Suppose there are n source variables S1, . . . , Sn carrying some joint mutual informa-
tion IpT : S1, . . . , Snq [1, 2] about some target variable T (see Figure 4.1, left). The
goal of partial information decomposition is to decompose this joint mutual informa-
tion into its component parts, the so called atoms of information. As explained in the
introduction, these parts are supposed to represent unique, redundant, and synergis-
tic information contributions. Now, what distinguishes these contributions are their
defining part-whole relationships to the information provided by the different source
variables: the information uniquely associated with one of the sources in only part
of the information provided by that source and not part of the information provided
by any other source. The information provided redundantly by multiple sources
is part of the information carried by each of these sources. And the information
provided synergistically by multiple source is only part of the information carried by
them jointly but not part of the information carried by any of them individually. For
this reason, it seems natural to make the part-whole relationship between pieces of
information the basic concept of PID. The goal of this section is to make this idea
precise, and in this way, to open up a new perspective for thinking about partial
information decomposition.

The underlying idea is that any theory should be put on the foundation of as simple
and elementary concepts as possible. The part-whole relation is one of the most
basic relationships in nature. It appears on all spatial and temporal scales: atoms are
parts of molecules, planets are parts of solar systems, the phase of hyperpolarisation
is part of an action potential, infancy is part of a human beings life. Moreover, it
is not a purely scientific concept but is also ubiquitous in ordinary life: we say for
instance, that a prime minister is part of the government or that a slice of pizza is
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part of the whole pizza. This ubiquity makes it particularly easy to think in terms of
part-whole relationships. We hope, therefore, that starting from this vantage point
will provide a particularly accessible and intuitive exposition of partial information
decomposition. This factor is of particular importance when it comes to the practical
application of PID to specific scientific questions and the interpretation of the results
of a PID analysis.

Developing the theory of partial information decomposition means that we have to
answer three questions:

1. What are atoms of the decomposition supposed to mean, i.e. what type of
information should they represent?

2. How many atoms are there for a given number of information sources?

3. How large are the different atoms of information given a specific joint proba-
bility distribution of sources and target? How many bits of information does
each atom provide?

In the following sections we will tackle each of these questions in turn.

provide information

about

Fig. 4.1: Left: The general partial information decomposition problem is to decompose
the joint mutual information provided by n source variables S1, . . . , Sn about a
target variables T into its component parts. Right: Illustration of the exclusive-or
example. The sources are two independent coin flips. The target is 0 just in case
both coins come up heads or both come up tails. It is 1 if one of the coins is heads
while the other is tails. Coin tossing icons made by Freepik, www.flaticon.com.

4.2.1 What do the atoms of information mean?

Asking how to decompose the joint mutual information into its components parts
is a bit like asking "How to slice a cake?". Of course, there are many possible ways
to do so, and hence, there is no unique answer to the question. In order to make
the question more precise we first have to provide a criterion according to which we
would like to decompose the joint mutual information. This is what this section is
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about. What are the atoms of information supposed to mean in the end, i.e. what
type of information do they represent?

To a first approximation, the core idea underlying the parthood approach to partial
information decomposition is to decompose the joint mutual information IpT :
S1, . . . , Snq into information atoms, such that each atom is characterized by its
parthood relations to the mutual information provided by the different sources.
For instance, one atom of information will describe that part of the joint mutual
information which is part of the information provided by each source, i.e. the
information that is redundant to all sources. Another atom will describe the part
of the joint mutual information that is only part of the information provided by the
first source, i.e. it is unique to the first source. And so on.

Now, we have to refine this idea a bit: it is important to realize that it would not
be enough to consider parthood relations to information provided by individual
sources. The reason is that a collection of sources may provide some information
that is not contained in any individual source but which only arises by combining the
information from multiple sources in that collection. The classical example for this
phenomenon is the logical exclusive-or shown in Figure 4.1, right. In this example
the sources are two independent coin flips. The target is the exclusive-or of the
sources, i.e. the target is 0 just in case both coins come up heads or both come
up tails, and it is 1 otherwise. Initially, the odds for the target being zero or one
respectively are 1:1 because there are four equally likely outcomes in two of which
the target is 1 while it is 0 in the other two. Now, if we are told the value of one
of the coins, these odds are not affected, and accordingly, we do not obtain any
information about the target. For instance, if we are told that the first coin came up
heads there are two equally likely outcomes left: Heads-Heads and Heads-Tails. In
the first case, the target is zero and in the second case it is one. Hence, the odds are
still 1:1. On the other hand, if we are told the value of both coins, then we know
what the value of the target is. In other words, we obtain complete information
about the target.

There are two conclusions to be drawn from examples like this:

1. There are cases in which multiple information sources combined provide
some information that is not contained in any individual source. This type of
information is generally called synergistic information.

2. Any reasonable theory of information should be compatible with the existence
of synergistic information. In particular, it should allow that, in some cases,
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the information provided jointly by multiple sources is larger than the sum of
the individual information contributions provided by the sources.

Regarding the second point we may note that classical information theory satisfies
this constraint because in some cases

IpT : S1, S2q ą IpT : S1q ` IpT : S2q (4.1)

In fact, in the exclusive-or example, each individual source provides zero bits of
information while the sources combined provide one bit of information.

Based on these consideration we may rephrase the basic idea of the parthood
approach as: we are looking for a decomposition of the joint mutual information
into atoms such that each atom is characterized by its parthood relations to the
information carried by the different possible collections of sources about the target.
Of course, we allow collections containing only a single source, such as t1u, as a
special case. Note that we will generally refer to source variables and collections
thereof by their indices. So instead of writing tS1u and tS1, S2u to refer to the first
source and the collection containing the first and second source, we write t1u and
t1, 2u respectively. There are several important technical reasons for this that will
become apparent in the following sections. For now it is sufficient to just think of it
as a shorthand notation.

Let’s now investigate how the idea of characterizing the information atoms by
parthood relations plays out in the simple case of two sources S1 and S2. In this
case, there are four collections:

1. The empty collection of sources tu

2. The collection containing only the first source t1u

3. The collection containing only the second source t2u

4. The collection containing both sources t1, 2u

Now, in order to characterize an information atom Π we have to ask for each
collection a: Is Π part of the information provided by a? For two of the collections
we can answer this question immediately for all Π: First, no atom of information
should be contained in information provided by the empty collection of sources
because there is no information in the empty set. If we do not know any source,
then we cannot obtain any information from the sources. Second, any atom of
information should be contained in the mutual information provided by the full set
of sources since this is precisely what we want to decompose into its component
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parts. Regarding the collections t1u and t2u we are free to answer yes or no leaving
four possibilities as shown in Table 4.1.

Part of {} {1} {2} {1,2}

Π1 (Synergy) 0 0 0 1
Π2 (Unique) 0 1 0 1
Π3 (Unique) 0 0 1 1
Π4 (Shared) 0 1 1 1

Tab. 4.1: Parthood table for the case of two information sources. Each row characterizes
a particular atom of information in terms of its parthood relationships with the
mutual information provided by the different collections of sources. The bold
entries are enforced by the constraints that there is no information in the empty
collection of sources and that any piece of information is part of the information
carried by the full set of sources about the target.

The first possibility (first row of Table 4.1) is an atom of information that is only part
of the information provided by the sources jointly but not part of the information
in either of the individual sources. This is the synergistic information. The second
possibility (second row) is an atom that is part of the information provided by the
first source but which is not part of the information in the second source. This atom
of information describes the unique information of the first source. Similarly, the
third possibility (third row) is an atom describing information uniquely contained in
the second source. The fourth and last possibility (fourth row) is an atom that is
part of the information provided by each source. This is the information redundantly
provided or shared by the two sources.

So based on considerations of parthood we arrived at the conclusion that there
should be exactly four atoms of information in the case of two source variables. Each
atom is characterized by its parthood relations to the mutual information provided
by the different collections of sources. These relationships are described by the
rows of Table 4.1 which we will call parthood distributions. Each atom Π is formally
represented by its parthood distribution fΠ.

Mathematically, a parthood distribution is a Boolean function from the powerset
of t1, . . . , nu to t0, 1u, i.e. it takes a collection of source indices as an input and
returns either 0 (the atom described by the distribution is not part of information
provided by the collection) or 1 (the atom described by the distribution is part of
that information) as an output. But note that not all such functions qualify as a
parthood distribution. We already saw that certain constraints have to be satisfied.
For instance, the empty set of sources has to be mapped to 0. We propose that there
are exactly three constraints a parthood distribution f has to satisfy leading to the
following definition
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Definition 1. A parthood distribution is any function f : P pt1, . . . , nuq Ñ t0, 1u such
that

1. fptuq “ 0 ("There is no information in the empty set")

2. fpt1, . . . , nuq “ 1 ("All information is in the full set")

3. For any two collections of source indices a, b: If b Ě a, then fpaq “ 1 ñ fpbq “ 1
(Monotonicity)

The third constraint says that if an atom of information is part of the information
provided by some collection of sources a, then it also has to be part of the information
provided by any superset of this collection. For example, if an atom is part of the
information in source 1, then it also has to be part of the information in sources
1 and 2 combined. Note that this monotonicity constraint only matters if there
are more than two information sources. Otherwise it is implied by the first two
constraints. To fix ideas, an example of a Boolean function that is not a parthood
distribution is shown in Table 4.2. The function assigns a 1 to the collection t1u but
a 0 to collections t1, 2u and t1, 3u which are supercollections of t1u. Thus, there can
be no atom of information with the parthood relations described by this Boolean
function.

Part of {} {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

0 1 0 0 0 0 0 1
Tab. 4.2: Example of Boolean function that is not a parthood distribution. Bold entries

violate the monotonicity constraint.

We may now answer the question about the meaning of the atoms of information,
i.e. what type of information they represent: They represent information that is
part of the information provided by certain collections of sources but not part of the
information of other collections. More precisely we can phrase this idea in terms of
the following core principle:

Core Principle 1. Each atom of information is characterized by a parthood distribution
describing whether or not it is part of the information provided by the different possible
collections of sources. The atom Πpfq with parthood distribution f is exactly that part
of the joint mutual information about the target which is 1) part of the information
provided by all collections of sources a for which fpaq “ 1, and 2), which is not part of
the information provided by collections for which fpaq “ 0.
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Given this characterization of the information atoms we are now in a position to
answer the second question: How many atoms are there for a given number of
information sources.

4.2.2 How many atoms of information are there?

Since each atom is characterized by its parthood distribution, the answer is straight-
forward: there is one atom per parthood distribution, or in other words, one atom
per Boolean function satisfying the constraints presented in the previous section.
The monotonicity constraint turns out to be most restrictive. In fact, once the mono-
tonicity constraint is satisfied the other two constraints only rule out one Boolean
function each as shown in Table 4.3. The reason is the following: Firstly, there
is only a single monotonic Boolean function that assigns the value 1 to the empty
set, namely, the function that is always 1. Since the empty set is subset of any
other set, monotonicity enforces to assign a 1 to all sets once the empty set has
value 1. However, this possibility is ruled out by the first constraint saying that
there is no information in the empty set. Secondly, there is only a single monotonic
Boolean function assigning the value 0 to the full set t1, . . . , nu, namely the function
that is always 0. Since any other set of source indices is contained in the full set,
monotonicity forces us to assign a 0 to all sets once the full set has value 0. If we
were to assign a 1 to any other set, then we would have to assign a 1 to the full set
as well.

Part of {} . . . . . . . . . {1,. . . ,n}

1 1 1 1 1
0 0 0 0 0

Tab. 4.3: The two constant Boolean functions are ruled out by the first and second constraint
on parthood distributions described above.

This means that the number of atoms is equal to the number of monotonic Boolean
functions minus two. Now the sequence of the numbers of monotonic Boolean
functions of n-bits is a very famous sequence in combinatorics called the Dedekind
numbers. The Dedekind numbers are a very rapidly (in fact super-exponentially)
growing sequence of numbers of which only the first eight entries are known to date
[112]. The values for 2 ď n ď 6 of the Dedekind numbers are: 6, 20, 168, 7581,
7828354.

Now that we have answered what type of information the different atoms represent
and how many there are for a given number of information sources, there is one

114 Chapter 4 Bits and Pieces: Understanding Information Decomposition from
Part-whole Relationships and Formal Logic



important question left: How large are these different atoms? How many bits of
information does each atom provide?

4.2.3 How large are the atoms of information?

The question of the sizes of the atoms is not a trivial one since the number of atoms
grows so quickly. In the case of four information sources there are already 166
atoms. Hence, it does not appear to be feasible to define the amount of information
of each of these atoms separately. What we need is a systematic approach that
somehow fixes the sizes of all atoms at the same time. The core idea is to transform
the problem into a much simpler one in which only a single type of informational
quantity has to be defined. In the following we show how this can be achieved in
three steps.

Define a quantitative relationship between atoms and composite quantities

So far we have only discussed how the atoms of information relate qualitatively to
composite information quantities that are made up of multiple atoms, in particular
mutual information (in the next section we will encounter another non-atomic
quantity). We saw for instance, that in the case of two sources, the mutual infor-
mation contributions provided by the individual sources, IpT : S1q and IpT : S2q,
each consist of a unique and a redundant information atom, while the joint mutual
information IpT : S1, S2q additionally consists of a synergistic part. This is illustrated
in the information diagram shown in Figure 4.2.

Now the question arises: How are these mutual information terms related to the
atoms they consist of quantitatively? The most straightforward answer (and the one
generally accepted in the PID field) is that the mutual information is simply the sum
of the atoms it consists of. We propose to extend this principle to any composite
information quantity, i.e. any quantity that can be described as being made up out
of multiple information atoms:

Core Principle 2. The size of any non-atomic information quantity (i.e. the amount of
information it contains) is the sum of the sizes of the information atoms it consists of.
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Fig. 4.2: Information diagram depicting the partial information decomposition for the case
of two information sources. The inner two black circles represent the mutual
information provided by the first source (left) and the second source (right) about
the target. Each of these mutual information terms contains two atomic parts:
IpT : S1q consists of the unique information in source 1 (Πunq 1, blue patch) and
the information shared with source 2 (Πred, red patch). IpT : S2q consists of
the unique information in source 2 (Πunq 2, yellow patch) and again the shared
information. The joint mutual information IpT : S1, S2q is depicted by the large
black oval encompassing the inner two circles. IpT : S1, S2q consists of four atoms:
The unique information in source 1 (Πunq 1, blue patch), the unique information
in source 2 (Πunq 2, yellow patch), the shared information (Πred, red patch), and
additionally the synergistic information (Πsyn, green patch).

We could also rephrase this as "wholes are the sums of their (atomic) parts". In
the case of two information sources, this principle leads to the following three
equations:

IpT : S1, S2q“Πred`Πunq 1`Πunq 2`Πsyn (4.2)

IpT : S1q“Πred`Πunq 1 (4.3)

IpT : S2q“Πred`Πunq 2 (4.4)

This already gets us quite far in terms of determining the sizes of the atoms: The sizes
of the atoms are the solutions to a linear system of equations. The only problem
is that the system is underdetermined. We have four unknowns but only three
equations. In the case of three sources, the problem is even more severe. In this
case, there are seven non-empty collections of sources, and hence, seven mutual
information terms. Again each of these terms is the sum of certain atoms. But as
shown in section §4.2b there are 18 atoms. So we are short of 11 equations!

In general the equations relating the mutual information provided by some collection
of sources a and the information atoms can be expressed easily in terms of their
parthood distributions:

IpT : aq “
ÿ

fpaq“1
Πpfq (4.5)
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where Πpfq is the information atom corresponding to parthood distribution f and
the summation notation means that we are summing over all f such that fpaq “ 1.
Note that on the left-hand-side we are using the shorthand notation IpT : aq for the
mutual information IpT : pSiqiPaq provided by the collection a. Equation (4.5) can
be taken to define a minimal notion of a partial information decomposition, i.e. any
set of quantities Πpfq at least has to satisfy this equation in order to be considered a
partial information decomposition (or at least to be considered a parthood-based /
Williams and Beer type PID). For a formal definition of such a minimally consistent
PID see Appendix 4.8.1.

This concludes the first step. The next one is to find a way to come up with the
appropriate number of additional equations. In doing so we will follow the same
approach as Williams and Beer and utilize the concept of redundant information to
introduce additional constraints. It should be noted that this is not the only way to
derive a solution for the information atoms. In other words, a PID does not have to
be "redundancy based". This issue is discussed in detail in §4.5. For now, however,
let us follow the conventional path and see how it enables us to determine the sizes
of the atoms of information.

Formulate additional equations using the concept of redundant information

The basic idea is now to extent the considerations of the previous step to another
composite information quantity: the redundant information provided by multiple
collections of sources about the target which we will generically denote by IXpT :
a1, . . . ,amq. The X-symbol refers to the idea that the redundant information of
collections a1, . . . ,am is the information contained in a1 and a2 and, . . . , and am.
Intuitively, given two collections of sources a1 and a2, their redundant information
is the information “shared” by those collections, what they have "in common", or
geometrically: their overlap. These informal ideas are illustrated on the left side in
Figure 4.3.

Note that the redundant information of multiple collections of information sources is
not defined in classical information theory. We have to come up with an appropriate
measure of redundant information ourselves. However, the informal ideas just
describes already tell us that redundant information, no matter how we define it,
should be related qualitatively to the information atoms in a very specific way: the
information redundantly provided by multiple collections of sources should consist
of exactly those information atoms that are part of the information carried by all of
those collections:
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Fig. 4.3: Left: Illustration of the idea of the redundant information of collections a1 and
a2. Right: Redundant information is generally not an atomic quantity. In the
context of three information sources, the redundant information of sources 1 and
2 consists of two parts: the information shared by only by sources 1 and 2, and
the information shared by all three sources.

Core Principle 3. The redundant information IXpT : a1, . . . ,amq consists of all infor-
mation atoms that are part of the information provided by each ai, i.e. all atoms with
a parthood distribution satisfying fpaiq “ 1 for all i “ 1, . . . ,m.

Let’s see what this principle implies in concrete examples. We saw that in the case of
two sources, the redundant information of source 1 and source 2, IpT : t1u, t2uq, is
actually itself an atom, namely the atom with the parthood distribution

{} {1} {2} {1,2}

0 1 1 1

This is the only atom that is part of both the information provided by the first source
and also part of the information provided by the second source. But this is really
a special case. Note what happens if we add a third source to the scenario. In this
case the redundant information IpT : t1u, t2uq of sources 1 and 2 should consist of
two parts: First, the information shared by all three sources (which is certainly also
shared by sources 1 and 2), and secondly, the information shared only by sources 1
and 2 but not by source 3. This is illustrated on the right side in Figure 4.3. Note
also that in the case of three sources there are actually many redundancies that we
may compute:

1. the redundancy of all three sources IXpT : t1u, t2u, t3uq.

2. the redundancy of any pair of sources such as the redundancy of IXpT :
t1u, t2uq.

3. the redundancy between a single source and a pair of sources such as IXpT :
t1u, t2, 3uq.
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4. the redundancy between two pairs of sources such as IXpT : t1, 2u, t2, 3uq.

5. the redundancy of all three possible pairs of sources IXpT : t1, 2u, t1, 3u, t2, 3uq.

It turns out that in total there are 11 redundancies (strictly speaking we should say
11 "proper" redundancies as will be explained below). But this is exactly the number
of missing equations in the case of three information sources (see last paragraph of
previous section).

Now, combining Core Principles 2 and 3, allows us the answer what the quantitative
relationship between redundant information and information atoms has to be: the
redundant information of collections of sources a1, . . . ,am is the sum of all atoms
that are part of the information provided by each collection:

IXpT : a1, . . . ,amq “
ÿ

fpaiq“1@i“1,...,m

Πpfq (4.6)

where again the notation means that we are summing over all f that satisfy the
condition below the summation sign. This equation can be read in two ways: First,
as placing a constraint on the redundant information IX, namely that it has to be the
sum of specific atoms. This means that if we already knew the sizes of the Π’s, we
could compute IX. However, the sizes of the Π’s are precisely what we are trying to
work out. Now the crucial idea is that we can also read the equation the other way
around: if we can come up with some reasonable measure of redundant information
IX we may be able to invert equation 4.6 in order to obtain the Π’s. So the final step
will be to show that such an inversion is in fact possible and will lead to a unique
solution for the atoms of information.

Before proceeding to this step, it is important to briefly clarify the relationships
between the three central concepts we have discussed so far:

1. the mutual information (the quantity we want to decompose)

2. the information atoms (the quantities we are looking for)

3. redundant information (the quantity we are going to use to find the informa-
tion atoms)

These concept are easily confused with each other but should be clearly separated.
The relationships between them are shown in Figure 4.4. First, based on what
we have said so far, mutual information can be shown to be a special case of
redundant information: the redundant information of a single collection IXpT : a1q,
i.e. "the information the collection shares with itself about the target". The reason
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for this is that Core Principle 3 tells us that the redundant information of a single
collection consists of all the atoms that are part of the mutual information carried
by that collection about the target. But this is simply the mutual information of that
collection:

IXpT : a1q
Eq. 4.6
“

ÿ

fpaiq“1@i“1,...,m

Πpfq “
ÿ

fpa1q“1
Πpfq Eq. 4.5

“ IpT : a1q (4.7)

Accordingly, mutual information has been called "self-redundancy" in the PID litera-
ture (although not based on parthood arguments) [19]. The relationship between
redundant information and atoms is as follows: Only the "all-way" redundancy, i.e.
the information shared by all n sources is itself an atom. Any other redundancy, such
as the redundancy of only a subset of sources, is a composite quantity made up out
of multiple atoms.
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Fig. 4.4: Relationships between mutual information, redundant information, and informa-
tion atoms.

Show that a measure of redundant information leads to a unique solution
for the information atoms

There is a very useful fact about parthood distributions that will help us to obtain
a unique solution for the atoms given an appropriate measure of redundant infor-
mation: parthood distributions can be ordered in a very natural way into a lattice
structure that is tightly linked to the idea of redundancy. The lattice for the case
of three sources is shown in Figure 4.5. The parthood distributions are ordered
as follows: If there is a 1 in certain positions on a parthood distribution f , then
all the parthood distributions g below it also have a 1 in the same positions, plus
some additional ones. Or in terms of the atoms corresponding to these parthood
distributions: If an atom Πpfq is part of the information provided by some collections
of sources, then all the atoms Πpgq below it are also part of the information provided
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by these collections. Formally, we will denote this ordering by Ď and it is defined
as

f Ď g ô pfpaq “ 1 Ñ gpaq “ 1 for any a Ď t1, . . . , nuq (4.8)

For n information sources we will denote the lattice of parthood distributions by
pBn,Ďq, where Bn is the set of all parthood distribution in the context of n sources
(for proof that this structure is in fact a lattice in the formal sense see Appendix
4.8.2.

Note that the different "levels" of the lattice contain parthood distributions with
the same number of ones and that higher level parthood distributions contain less
ones: At the very top in Figure 4.5, there is the parthood distribution describing the
atom that is only part of the joint mutual information provided by all three sources
combined, i.e. the synergy of the three sources. One level down, there are the
three parthood distributions that assign the value 1 exactly two times. Yet another
level down, we find the three possible parthood distributions that assign the value 1
exactly three times. And so on and so forth until we reach the bottom of the lattice
which corresponds to the information shared by all three sources. Accordingly the
corresponding parthood distribution assigns the value 1 to all collections (except of
course the empty collection).

Fig. 4.5: Lattice of parthood distributions for the case of three information sources. The
parthood distributions are represented as bit-strings where the i-th bit is the value
that the parthood distribution assigns to the i-th collection of sources. The order of
these collections is shown below the lattice for reference. A distribution f is below
a distribution g just in case f has value 1 in the same positions as g and in some
additional positions. This is illustrated for the parthood distribution highlighted
by the black circle. The positions in which it assigns the value 1 are marked in
bold face.
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Ordering all the parthood distributions (and hence atoms) into such a lattice provides
a good overview that tells us how many atoms exist for a given number of source
variables and what their characteristic parthood relationships are. But the lattice
plays a much more profound role because it is very closely connected to the concept
of redundant information. The idea is to associate with each parthood distribution in
the lattice a particular redundancy: the redundant information of all the collections
that are assigned the value 1 by the distribution. In other words, for any parthood
distribution f we consider the redundancy

IXpT : fq :“ IX pT : pa | fpaq “ 1qq (4.9)

For example, in the case of three sources, the redundant information associated with
the parthood distribution that assigns value 1 to collections t1, 2u, t2, 3u, and t1, 2, 3u,
and value 0 to all other collections (the one emphasized in Figure 4.5), is simply
IXpT : t1, 2u, t2, 3u, t1, 2, 3uq. We saw in the previous section that any redundancy
IXpT : a1, . . . ,amq is the sum of all atoms that are part of the information provided
by each of the ai. Now here is the connection between the lattice and redundant
information: these atoms are the ones that have value 1 on each ai. But, by definition
of the ordering, these are precisely the ones corresponding to parthood distributions
below and including the parthood distribution for which we are computing the
associated redundancy. In other words, the redundant information associated with a
parthood distribution f can always be expressed as

IXpT : fq “
ÿ

gĎf

Πpgq (4.10)

In this way we obtain one equation per parthood distribution. And since there are as
many information atoms as parthood distributions, we obtain as many equations as
unknowns. This is already a good sign. But is a unique solution for the information
atoms guaranteed? This question can be answered affirmatively by noting that the
system of equations described by (4.10) (one equation per f) is not just any linear
system, but has a very special structure: one function IXpT : fq evaluated at a point
f on a lattice is the sum of another function Πpfq over all points on the lattice below
and including the point f. The process of solving such a system for the Πpfq’s once
all the IXpT : fq’s are given, or in other words inverting equation (4.10), is called
Moebius Inversion. Crucially, a unique solution is guaranteed for any real or even
complex valued function IX that we may put on the lattice [113].

This means that we have now completely shifted the problem of determining the
sizes of the information atoms to the problem of coming up with a reasonable
definition of redundant information IXpT : fq. Even though we have to define
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this quantity for each parthood distribution f this is still a much simpler task. The
reason is that all the IX’s represent exactly the same type of information, namely
redundant information. On the other hand, the information atoms Π represent
completely different types of information. Even in the simplest case of two sources
we have to deal not only with redundant information, but also unique information
and synergistic information. And the story gets more and more complicated the
more information sources are considered.

Now, note that apparently we only need to define quite special redundant infor-
mation terms, namely the redundancies associated with parthood distributions
IXpT : fq (see definition (4.9)). However, we will now show that these are in fact
all possible redundancies, i.e. the redundancy of any tuple of collections of sources
a1, . . . ,am is necessarily equal to a redundancy associated with a specific parthood
distribution. The reason for this is that the quantitative relation between atoms
and redundant information (equation (4.6)) not only provides a way to solve for
the information atoms once we know IX, it also implies that IX has to satisfy the
following invariance properties:

1. IXpT : a1, . . . ,amq “ IXpT : aσp1q, . . . ,aσpmqq for any permutation σ (symmetry)

2. If ai “ aj for i ‰ j, then IXpT : a1, . . . ,amq “ IXpT : a1, . . . ,ai´1,ai`1, . . . ,amq

(idempotency)

3. If ai Ą aj for i ‰ j, then IXpT : a1, . . . ,amq “ IXpT : a1, . . . ,ai´1,ai`1, . . . ,amq

(invariance under superset removal / addition)

4. IXpT : aq “ IpT : aq (self-redundancy)

We can easily ascertain that any measure of redundant information IX has to
have these properties by taking a closer look at the condition describing which
atoms to sum over in order to obtain a particular redundant information term
IpT : a1, . . . ,amq: we have to sum over the atoms with parthood distribution
satisfying fpaiq “ 1 for all i “ 1, . . . ,m. Now whether or not this condition is true
of a given parthood distribution f , first, does not depend on the order in which
the collections ai are given (symmetry), secondly, it does not depend on whether
the same collection a is repeated multiple times (idempotency), and thirdly, it
does not matter whether we add or remove some collection ai that is a proper
superset of some other collection (superset removal/addition). This fact is due to
the monotonicity constraint on parthood distributions. Finally, the "self-redundancy"
property was already established in the previous section.

4.2 The parthood perspective 123



These invariance properties are referred in the literature as the Williams and Beer ax-
ioms for redundant information [91] (in addition there is a quantitative monotonicity
axiom that we reject. See §4.6). However, in the parthood formalism described here
they are not themselves axioms but are implied by the core principles we have set
out. The first two invariance properties imply that we may restrict ourselves to sets
instead of tuples of collections in defining IX. The third constraint additionally tells
us that we can restrict ourselves to those sets of collections ta1, . . . ,amu such that no
collection ai is a superset of another collection aj . Such sets of collections are called
antichains. Hence, the redundancy of any tuple of collections of sources a1, . . . ,am

is necessarily equal to the redundancy associated with a particular antichain. This
antichain results from ignoring the order and repetitions of the ai, and removing
any supersets. For instance, IXpT : t1u, t1u, t2u, t1, 2uq “ IXpT : t1u, t2uq.

We can now see that the redundancies IXpT : fq are in fact all possible redundancies
by associating with any antichain α “ ta1, . . . ,amu a parthood distribution fα that
assigns the value 1 to all ai and all supersets of these collections, while it assigns the
value 0 to all other collections. Now, due to the invariance of IX under removal
of supersets, it immediately follows that IXpT : fαq “ IXpT : αq. So in conclusion,
there is one redundancy for each antichain α and these redundancies are equal to
the redundancies associated with the corresponding parthood distributions. Hence
the redundancies IXpT : fq are in fact all possible redundancies.

Of course, there is also an inverse mapping associating with any parthood distribution
f an antichain αf . In fact, the lattice of parthood distributions pBn,Ďq is isomorphic
to a lattice of antichains pAn,ĺq equipped with an ordering relationship that was
originally introduced by Crampton and Loizou [114] and used by Williams and Beer
in their original exposition of PID. The formal proof of this fact is postponed to section
§4.4 where a third perspective on PID, the logical perspective, is introduced.

In the next section, we will tackle the problem of defining a measure of redundant
information for each parthood distibution / antichain by connecting PID theory to
formal logic. The measure Isx

X derived in this way is identical to the one described
in [115]. In showing how this measure can be inferred from logical- and parthood-
principles we aim to 1) strengthen the argument for Isx

X , and 2), open the gateway
between PID-theory and formal logical. This latter point is elaborated in §4.4.
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4.3 Using logic to derive a measure of redundant
information

We have now solved the PID problem up to specifying a reasonable measure of
redundant information IX between collections that form an antichain. In this
section, we will derive such a measure. In doing so we will first move from the level
of random variables T, S1, . . . , Sn to the level of particular realizations t, s1, . . . , sn

of these variables. This level of description is generally called the pointwise level and
has been used as the basis of classical information theory by Fano [35]. Pointwise
approaches to PID have been put forth by [91] and [115].

Note that moving to the level of realizations simplifies the problem considerably
because realizations are much simpler objects than random variables. A realization
is simply a specific symbol or number whereas a random variables is an object that
may take on various different values and can only be fully described by an entire
probability distribution over these values.

4.3.1 Going Pointwise

The idea underlying the pointwise approach is to consider the information provided
by a particular joint realization (observation) of the source random variables about
a particular realization (observation) of the target random variable. So from now
on we assume that these variables have taken on specific values s1, . . . , sn, t. It was
shown by Fano [35] that the whole of classical information theory can be derived
from this pointwise level. By placing a certain number of reasonable constraints
or axioms on pointwise information, it follows that this information must have a
specific form. In particular, the pointwise mutual information ipt : sq is given by

ipt : sq :“ log
ˆ

P pt|sq

P ptq

˙

(4.11)

The mutual information IpT : Sq is then simply defined as the average pointwise
mutual information. Note that pointwise mututal information (in contrast to mutual
information) can be both positive and negative. It essentially measures whether
we are guided in the right or wrong direction with the respect to the actual target
realization t. If the conditional probability of T “ t given the observation of S “ s is
larger than the unconditional (prior) probability of T “ t, then we are guided in the
right direction: The actual target realization is in fact t and observing that S “ s

makes us more likely to think so. Accordingly, in this case the pointwise mutual
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information is positive. On the other hand, if the conditional probability of T “ t

given the observation of S “ s is smaller than the unconditional (prior) probability
of T “ t, then we are guided in the wrong direction: Observing S “ s makes us less
likely to guess the correct target value. In this case the pointwise mutual information
is negative. The joint pointwise mutual information of source realizations s1, . . . , sn

about the target realization is defined in just the same way:

ipt : s1, . . . , snq :“ log
ˆ

P pt|s1, . . . , snq

P ptq

˙

(4.12)

The idea is now to perform the entire partial information decomposition on the
pointwise level, i.e. to decompose the pointwise joint mutual information ipt :
s1, . . . , snq that the source realizations provide about the target realization [91].
This leads to pointwise atoms πs1,...,sn,t (in the following we will generally drop the
subscript). Crucially, we are only changing the quantity to be decomposed from
IpT : S1, . . . , Snq to ipt : s1, . . . , snq. Otherwise, the idea is completely analogous
to what we have discussed in §4.2 (simply replace I by i and Π by π): the goal
is to decompose the pointwise mutual information into information atoms that
are characterized by their parthood relations to the pointwise mutual information
provided by the different possible collections of source realizations. These atoms
have to stand in the appropriate relationship to pointwise redundancy: the pointwise
redundancy iXpt : a1, . . . ,amq is the sum of all pointwise atoms πpfq that are part of
the information provided by each collection of source realizations ai. By exactly the
same argument as described in §4.2ciii, there is a unique solution for the pointwise
atoms once a measure of pointwise redundancy ipt : αq is fixed for all antichains
α “ ta1, . . . ,amu. The variable-level atoms Π are then defined as the average of the
corresponding pointwise atoms:

Πpfq “
ÿ

s1,...,sn,t

P ps1, . . . , sn, tqπs1,...,snpfq (4.13)

We are now left with defining the pointwise redundancy iX among collections of
source realizations. As noted above this is a much easier problem than coming
up with a measure of redundancy among collections of entire source variables. In
the next section, we show how the pointwise redundancy of multiple collections
of source realizations can be expressed as the information provided by a particular
logical statement about these realizations.
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4.3.2 Defining pointwise redundancy in terms of logical statements

The language of formal logic allows us to form statements about the source real-
izations. In particular, we will consider statements made up out of the following
ingredients:

1. n basic statements of the form Si “ si, i.e. “Source Si has taken on value si”

2. the logical connectives ^ (and), _ (or), ␣ (not), Ñ (if, then)

3. brackets ),(

In this way, we may form statements such as S1 “ s1 ^ S2 “ s2 (“Source S1 has taken
on value s1 and source S2 has taken on value s2”) or S1 “ s1 _ pS2 “ s2 ^ S3 “ s3q

(“Either source S1 has taken on value s1 or source S2 has taken on value s2 and
source S3 has taken on value s3”). Now we may ask: What is the information
provided by the truth of such statements about the target realization t? Classical
information theory allows us to quantify this information as a pointwise mutual
information: Let A be any statement of the form just described, then the information
ipt : Aq provided by the truth of this statement is

ipt : Aq :“ ipt : IA “ 1q “ log
ˆ

P pt|A is trueq
P ptq

˙

(4.14)

where IA is the indicator random variable of the event that the statement A is true,
i.e. IA “ 1 if the event occurred and IA “ 0 if it did not. The interpretation of this
information is that it measures whether and to what degree we are guided in the
right or wrong direction with respect to the actual target value once we learn that
statement A is true.

Note that according to this definition the pointwise mutual information provided by
a collection of source realizations ipt : aq is the information provided by the truth of
the conjunction

Ź

iPa Si “ si:

ipt : aq “ i

˜

t :
ľ

iPa
Si “ si

¸

(4.15)

Therefore, the information redundantly provided by collections of source realizations
a1, . . . ,am is the information redundantly provided by the truth of the corresponding
conjunctions. Now, what is this information? We propose that in general the
following principle describes redundancy among statements:
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Fig. 4.6: (a) Information diagram depicting the information provided by statements A and
C. If statement C is logically weaker than statement A, i.e. if C is implied by A,
then the information provided by C has to be part of the information provided by
A. (b) Information diagram depicting the information provided by statements A,
B, and C. C is assumed to be logically weaker than both A and B. Thus it has to
be part of the information provided by A and also part of the information provided
by B. Accordingly, it is contained in the “overlap”, i.e. the redundant information
of A and B. In order to obtain the entire redundant information statement C has
to be “maximized”, i.e. it has to be chosen as the strongest statement weaker than
both A and B (this is indicated by the arrows).

Core Principle 4. The information redundantly provided by the truth of the statements
A1, . . . , Am is the information provided by the truth of their disjunction A1_ . . ._Am.

There are two motivations for this principle: First, the logical inferences to be
drawn from the disjunction A_ B are precisely the inferences that can be drawn
redundantly from both A and B. If some conclusion C logically follows from both A
and B, then it also follows from A_B. Conversely, any conclusion C that follows
from the disjunction A_B follows from both A and B. Formally,

A_B |ù C ô A |ù C and B |ù C (4.16)

where |ù denotes logical implication. The second motivation again invokes the idea
of parthood relationships: If some statement C is logically weaker than a statement A,
then the information provided by C should be part of the information provided by A.
For instance, the information provided by the statement S1 “ s1 has to be part of the
information provided by the statement S1 “ s1 ^ S2 “ s2. This idea is illustrated in
the information diagram on the left side in Figure 4.6.

Now, this idea implies that if a statement C is weaker than both A and B, then the
information provided by C is part of the information carried by A and also part
of the information carried by B. But this means that the information provided by
C is part of the redundant information of A and B. In order to obtain the entire
redundant information, the statement C should therefore be chosen as the strongest
statement logically weaker than both A and B (see right side of Figure 4.6). But
this statement is the disjunction A_B (or any equivalent statement).
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Based on these ideas we can now finally formulate our proposal for a measure
of pointwise redundancy iXpt : a1, . . . ,amq. We noted above that the information
redundantly provided by collections of realizations a1, . . . ,am is the information
redundantly provided by the conjunctions

Ź

iPaj
Si “ si. And by the arguments just

presented this is the information provided by the disjunction of these conjunctions.
We denote the function that measures pointwise redundant information in this way
by isxX (for reasons that will be explained shortly). It is formally defined as:

isxXpt : a1, . . . ,amq :“ i

¨

˝t :
m
ł

j“1

ľ

iPaj

Si “ si

˛

‚ (4.17)

Recall that by definition this is the pointwise mutual information provided by the
truth of the statement in question. Hence, it measures whether and to what degree
we are guided in the right or wrong direction with respect to the actual target value
t once we learn that the statement is true.

We have now arrived at a complete solution to the partial information decomposition
problem: Given the measure isxX we may carry out the Moebius-Inversion

isxXpt : fq “
ÿ

gĎf

πsxpfq (4.18)

in order to obtain the pointwise atoms πsx. This has to be done for each realization
s1, . . . , sn, t. The obtained values can then be averaged as per Equation (4.13) to
obtain the variable-level atoms Πsx.

As shown in [115], the measure isxX can also be motivated in terms of the notion of
shared exclusions (hence the superscript “sx”). The underlying idea is that redundant
information is linked to possibilities (i.e. points in sample space) that are redundantly
excluded by multiple source realizations. We argue that the fact that the measure
isxX can be derived in these two independent ways provides further support for
its validity. We offer a freely accessible implementation of the isx

X PID as part of
the IDTxl toolbox [103]. Worked examples of its computation and details on the
computational complexity can be found in [115].

In the following section, we show that the value of formal logic within the theory of
partial information decomposition goes far beyond helping us to define a measure
of pointwise redundant information. In fact, similar to the lattices of parthood
distributions and antichains, there is a lattice of logical statements that can equally
be used as the basic mathematical structure of partial information decomposition.
This lattice is particularly useful because the ordering relationship turns out to be
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very simple and well-understood: the relation of logical implication. We will show
that this perspective also offers an independent starting point for the development
of PID theory.

4.4 The logical perspective

4.4.1 Logic Lattices

The considerations of the previous section identified the information redundantly
provided by collections a1, . . . ,am with the information provided by a particular
logical statement: a disjunction of conjunctions of basic statements of the form
Si “ si. This has an interesting implication: there is a one-to-one mapping between
antichains α and logical statements. Let us now look at this situation a bit more
abstractly by replacing the concrete statements Si “ si with propositional variables
φ1, . . . , φn. Together with the logical connectives ␣,_,^,Ñ (plus brackets) these
form a language of propositional logic [116]. We will denote this language by L. We
may now formally introduce a mapping Ψ from the set of antichains A into L via

Ψ : A Ñ L, where α↣ α̃ :“
ł

aPα

ľ

iPa

φi (4.19)

In other words, α is mapped to a statement by first conjoining the φi corresponding
to indices within each ai and then disjoining these conjunctions. For instance, the
antichain tt1, 2u, t2, 3uu will be associated with the statement pφ1 ^φ2q _ pφ2 ^φ3q.
Note that if we interpret the propositional variables φi as “source Si has taken
on value si”, then this is of course precisely the mapping of an antichain to the
statement providing the redundant information (in the sense of isx

X ) associated with
that antichain. 1

The range L Ď L of Ψ is set of all disjunctions of logically independent conjunctions of
pairwise distinct propositional variables. The logical independence of the conjunc-
tions is the logical counterpart of the antichain property. The “pairwise distinct”
condition ensures that the same atomic statement does not occur multiple times in
any conjunction. The set L can now be equipped with the relationship of logical
implication |ù in order to obtain a new structure pL,)q which we will show to be

1There is a slight ambiguity in the definition of Ψ since the order of the conjunctions
Ź

iPa φi and
statements φi is not specified. This problem can be solved, however, by choosing any enumeration
of the elements a of the powerset of t1, . . . , nu and ordering the conjunctions

Ź

iPa φi accordingly.
The propositional variables φi within the conjunctions may simply be ordered by ascending order
of their indices.
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Fig. 4.7: The three isomorphic worlds of partial information decomposition: parthood
distributions, antichains, and logical statements.

isomorphic to the lattices of antichains and parthood distributions. Here |ù means
“implies” and ) means “is implied by”.

Based on these concepts, the following theorem expresses the isomorphism of pL,)q
to the lattices of antichains and parthood distributions:

Theorem 9. For all n P N: pLn,)q is isomorphic to pAn,ĺq and pBn,Ďq

Proof. See Electronic Appendix 4.8.2.

Corollary 1. For all n P N: pLn,)q is a poset and specifically a lattice.

In this way the logical perspective is put on equal footing with the parthood perspec-
tive and "antichain" perspective described by Williams and Beer [19]. They are in
fact three equivalent ways to describe the mathematical structure underlying partial
information decomposition. These three “worlds” of PID are illustrated in Figure 4.7
for the case of three information sources.

Intuitively, the logic lattice can be understood as a hierarchy of logical constraints
describing how (i.e. via which collections of sources) information about the target
may be accessed. The information atom associated with a node α̃ in the logic
lattice is exactly the information about the target that can be accessed in the way
described by the constraint α̃. For example, the information shared by all sources
Πpt1u, t2u, t3uq is to be found at the very bottom of the logic lattice because access
to this information is constrained in the least possible way: the shared information
can be accessed via any source (i.e. via source 1 or source 2 or source 3). By
monotonicity, the shared information is of course also accessible via any collection
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of sources so that in total there are seven ways to access it (one per collection).
By contrast, the all-way synergy Πpt1, 2, 3uq is located at the very top of the logic
lattice because access to it is most heavily constrained: the synergy can only be
accessed if all sources are known at the same time. Hence, there is only a single
way (collection) to access it. All other atoms are to be found in between these two
extremes. For instance, the atom corresponding to the constraint φ1 _ pφ2 ^ φ3q is
exactly the information that can be accessed either via source 1 or via sources 2 and
3 jointly (and of course via any superset of these collections by monotonicity) but not
in any other way (i.e. not via sources 2 or 3 individually). So in total there are five
ways to access it corresponding to the collections t1u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3u. In
general, the atoms on the k-th level of the logic lattice (starting to count at the top)
are precisely the atoms that can be accessed via k collections of sources (compare
this to the very similar insight in §4.2ciii).

Finally, one may also associate a redundant information term with each node in the
logic lattice by interpreting the statements as sufficient conditions for access instead
of constraints, i.e. sufficient and necessary conditions, on access. For instance, the
redundancy associated with the statement φ1 ^ φ2 ^ φ3 would be all information
for which joint knowledge of all three sources is sufficient. But this is of course all
information contained in the sources, i.e. the entire joint mutual information. By
contrast, the information atom associated with the same statement is the information
for which joint knowledge of all three sources is not only sufficient but also necessary,
i.e. it cannot be obtained via any other collection of sources. Or put generally: while
the redundancy is the information we obtain if we have knowledge of certain
collections of sources, the information atom is the information we obtain if and only
if we have such knowledge. Defined in this way the redundant information of a
lattice node is again the sum of atoms associated with nodes below and including
it.

In this way the logical perspective can be used as an independent starting point
to develop PID theory. Instead of characterizing atoms by their defining parthood
relations one might equally characterize them by their defining access constraints
and relate them to the notion of redundant information in the way just described.
This is summarized in the following Core Principle:

Core Principle 5. Each atom of information is characterized by a logical constraint
describing via which collections of sources it can be accessed. The atom Πpα̃q associated
with constraint α̃ “

Ž

aPα

Ź

iPa φi is exactly that part of the joint mutual information
about the target that can be accessed if and only if we have knowledge of any one of the
collections of sources a.
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Now that we have fully introduced both the parthood and logical approaches to
PID it is worth noting their key difference to the original "antichain" approach
by Williams and Beer: whereas the parthood and logic approaches are looking at
the problem from the perspective of the atoms and seek to describe their defining
parthood relations / access constraints, the antichain based approach starts off by
placing certain axioms on measures of redundant information leading to the insight
that the definition of redundancy may be restricted to antichains. The atoms are then
indirectly introduced in terms of a Moebius-Inversion over the lattice of antichains.

The next section highlights an additional use of logic lattices, namely as a mathe-
matical tool to analyse the structure of PID lattices.

4.4.2 Using logic lattices as a mathematical tool to analyse the
structure of PID lattices

One advantage that logic lattices have over the lattices of antichains and parthood
distributions is that their ordering relationship is particularly natural and well-
understood: logical implication between statements. By contrast, the ordering
relation ĺ on the lattice of antichains only seems to have been studied in quite
restricted order theoretic contexts so far. Furthermore, it is a purely technical
concept that does not have a clear-cut counterpart in ordinary language. Because
of the simplicity of its ordering relation, many important order theoretic concepts
have a simple interpretation within the logic lattice. This makes it a useful tool
to understand the structure of the lattice itself which in turn is relevant to the
computation of information atoms.

There is an interesting fact about the statements in L that will be useful in the
following investigations: they correspond to statements with monotonic truth-tables.
The truth-table Tα̃ : V Ñ t0, 1u of a statement α̃ describes which models V P V
satisfy α̃ (“make α̃ true”), i.e.

Tα̃pV q “

$

&

%

1 if |ùV α̃

0 otherwise
(4.20)

A truth-table T shall be called monotonic just in case @i P t1, . . . , nu

pV pφiq “ 1 Ñ V 1pφiq “ 1q ñ
`

T pV q “ 1 Ñ T pV 1q “ 1
˘

(4.21)

In other words, suppose a statement α̃ is satisfied by a valuation V . Now suppose
further that a new valuation V 1 is constructed by flipping one or more zeros to one
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in V . Then α̃ has to be satisfied by V 1 as well. Making some φi true that were
previously false cannot make α̃ false if it was previously true. With this terminology
at hand the following proposition can be formulated:

Proposition 8. All α̃ P L have monotonic truth-tables. Conversely, for all monotonic
truth-tables T, there is exactly one α̃ P L such that Tα̃ “ T . In other words, the
statements in L are, up to logical equivalence, exactly the statements of propositional
logic with monotonic truth-tables.

Proof. See Appendix 4.8.3

Now, it was shown in [91] that the information atoms have a closed form solution
in terms of the meets of any subset of children of the corresponding node in the
lattice. The meet (infimum) and join (supremum) operations, however, have quite
straightforward interpretations on pL,)q: The meet of two statements α̃ and β̃ is
the strongest statement logically weaker than both α̃ and β̃. Similarly, the join is
the weakest statement logically stronger than both α̃ and β̃. The meet is logically
equivalent (though not identical) to the disjunction of α̃ and β̃ while the join is
logically equivalent (though not identical) to their conjunction. The conjunction
and disjunction of two elements of L do generally not lie in L because they do
not necessarily have the appropriate form (disjunction of logically independent
conjunctions). However, this can easily be remedied because both the disjunction and
the conjunction of elements of L have monotonic truth-tables. Thus, by Proposition
8 there is a unique element in L with the same truth-table in both cases. These
elements are therefore the meet and join. The detailed construction of meet and
join operators is presented in Appendix 4.8.3.

Let us now turn to the notions of child and parent. A child of a statement α̃ P L is
a strongest statement strictly weaker than α̃. Similarly, a parent of α̃ is a weakest
statement strictly stronger than α̃. The following three propositions provide, first, a
characterization of children in terms of their truth tables, second, a lower bound
on the number of children of a statement, and third, an algorithm to determine all
children of a statement. Due to the isomophism of antichains, parthood distributions,
and logical statements, the propositions can be utilized to study any of these three
structures.

Proposition 9 (Characterization of Children). γ̃ P L is a direct child of α̃ P L if and
only if γ̃ is true in all cases in which α̃ is true plus exactly one additional case, i.e. just
in case Tα̃pV q “ 1 Ñ Tγ̃pV q “ 1 and !DV P V : Tγ̃pV q “ 1^ Tα̃pV q “ 0.
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Proof. See Appendix 4.8.3

Proposition 10 (Lower bound on number of children). Any α P A such that there is
at least one a P α with |a| “ k ě 1 has at least k children.

Proof. See Appendix 4.8.3

Proposition 11 (Algorithm to determine children). The children of a statement α̃
can be determined via the following algorithm (for a pseudocode version see Appendix
4.8.3). It proceeds in three steps:

1. Set k to the maximal number of ones occurring in a valuation that does not satisfy
α̃.

2. For each valuation V that does not satisfy α̃ and contains k ones do the following:

a) Check if there is a valuation with k+1 ones that does not satisfy α̃ and
results from flipping one or multiple zeros in V to one, i.e. a model V 1 such
that V pφiq “ 1 Ñ V 1pφiq “ 1. If there is such a valuation, then skip step
b). Otherwise, proceed.

b) Create a new monotonic truth-table by setting V to one, otherwise leaving
the truth-table of α̃ unchanged. The statement corresponding to this truth-
table is a child of α̃.

3. If k ą 0, decrease k by 1 and repeat Step 2. Otherwise, terminate.

Proof. See Appendix 4.8.3

This concludes our discussion of the relationship between formal logic and PID.
In the next section we return to the parthood side of our story. In particular, we
will address an apparent arbitrariness in the argument presented in §4.2c. Here
we showed that the sizes of the atoms of information can be obtained once a
measure of redundant information is specified. Now, one may ask of course: why
redundant information? Couldn’t the same purpose be achieved by utilizing some
other informational quantity such as synergistic or unique information? We will now
discuss how the parthood approach can help answering this question in a systematic
way.

4.4 The logical perspective 135



4.5 Non-Redundancy based PIDs

Let us briefly revisit the structure of the argument in §4.2c. It involved three steps
(presented in slightly different order above): First, based on the very concept of
redundant information, we phrased a condition describing which atoms are part
of which redundancies (Core Principle 3). Secondly, we showed that this parthood
criterion entails a number of contraints on the measure IX. Finally, we showed
that, as long as these constraints are satisfied, we obtain a unique solution for the
atoms of information. There is actually a fourth step: We would have to check that
the information decomposition satisfies the consistency equations relating atoms
to mutual information terms (Equation 4.5). However, in the case of redundant
information this condition is trivially satisfied due to the self-redundancy property.
In other words, the consistency equations are themselves part of the system of
equations used to solve for the information atoms.

In order to obtain an information decomposition based on a quantity other than
redundant information, lets call it I˚pT : a1, . . . ,amq, we may use precisely the same
scheme:

1. Define a condition Cpf : a1, . . . ,amq on parthood distributions f describing
which atoms Πpfq are part of I˚pT : a1, . . . ,amq for any given tuple of collec-
tions of sources a1, . . . ,am. This leads to a system of equations:

I˚pT : a1, . . . ,amq “
ÿ

Cpf :a1,...,amq

Πpfq (4.22)

2. Analyse which constraints on I˚pT : a1, . . . ,amq (e.g. symmetry, idempotency,
. . . ) are implied by this relationship.

3. Show that given a choice of I˚pT : a1, . . . ,amq that satisfies the constraints, a
unique solution for all information atoms Πpfq can be obtained.

4. Show that the solution satisfies the consistency equation (4.5) relating infor-
mation atoms and mutual information terms.

Let us work through these steps in specific cases.
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4.5.1 Restricted Information PID

Recall that the redundant information of multiple collections of sources is the
information we obtain if we have access to any of the collections. Similarly, we
can define the information “restricted by” collections of sources a1, . . . ,am as any
information we obtain only if we have access to at least one of the collections. For
instance, assuming n “ 2, the information restricted by the first source consists of its
unique information and its synergy with the second source. Both of these quantities
can only be obtained if we have access to the first source.

Thus, in general the restricted information IrespT : a1, . . . ,amq should consist of all
the atoms that are only part of the information carried by some of the ai but not
part of the information provided by any other collection of sources. Thus the parthood
condition Cres is given by

Crespf : a1, . . . ,amq ô pfpbq “ 1 Ñ Di : b Ě aiq (4.23)

and we obtain the relation

IrespT : a1, . . . ,amq “
ÿ

Crespf :a1,...,amq

Πpfq (4.24)

Just as in the case of redundant information, this relationship implies a number of
invariance properties for Ires: it has to be symmetric, idempotent, and invariant
under superset removal/addition allowing us again to restrict ourselves to the set
of antichains. The analogue of the "self-redundancy" property is that the restricted
information of a collection of singletons IrespT : ti1u, . . . , timuq is equal to the condi-
tional mutual information provided by their union αY “

Ťm
j“1tiju conditioned on all

other sources. So if α “ tti1u, . . . , timuu is a collection of singletons, then:

IrespT : αq “ I
´

T : pSiqiPαY |pSjqjPαC
Y

¯

(4.25)

This can be established using the chain rule for mutual information as detailed in
Appendix 4.8.4. The next step is to show that we may obtain a unique solution
for the information atoms once a measure of restricted information satisfying these
conditions is given. This can be achieved in much the same way as for redundant
information. The restricted information associated with an antichain α can be
expressed as a sum of information atoms Πpβq below and including α in a specific
lattice of antichains pA,ĺ1q. This lattice is simply the dual (inverted version) of the
antichain lattice pA,ĺq, i.e.

α ĺ1 β ô β ĺ α (4.26)
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Accordingly, a unique solution is guaranteed via Moebius-Inversion of the relation-
ship

IrespT : αq “
ÿ

βĺ1α

Πrespαq (4.27)

As a final step we need to show that the resulting atoms stand in the appropriate
relationships to mutual information terms. These relationships are given by the
consistency equation (4.5). Again using the chain rule it can be shown that this
equation is equivalent to a condition relating conditional mutual information to the
information atoms:

IpT : aq “
ÿ

fpaq“1
Πpfq ô IpT : a|aCq “

ÿ

fpaCq“0
Πpfq (4.28)

Now consider any collection of source indices a “ tj1, . . . , jmu, then we obtain

I
`

T : a|aC
˘ Eq.(4.25)

“ IrespT : tj1u, . . . , tjmuq (4.29)
Eq.(4.24)
“

ÿ

fpbq“1ÑDi:bĚtjiu

Πrespfq (4.30)

“
ÿ

fpaCq“0
Πrespfq (4.31)

where the last equality follows because in the case of singletons the parthood
condition Cres reduces to fpαC

Yq “ 0. This establishes that the resulting atoms satisfy
the consistency condition and we obtain a valid PID. In the following section we will
use the same approach to analyse the question of whether a synergy based PID is
possible.

4.5.2 Synergy based PID

Note that the restricted information of multiple collections of sources stands in a
direct correspondence to a weak form of synergy which we will denote by IwspT :
a1, . . . ,amq. This quantity is to be understood as the information about the target we
cannot obtain from any individual collection ai. Accordingly, the parthood criterion
is

Cwspf : a1, . . . ,amq ô p@i P t1, . . . ,mu : fpaiq “ 0q (4.32)

But this information is of course the same as the information that we can get only if
some other collections are known (except subcollections of course), i.e.

IwspT : a1, . . . ,amq “ IrespT : pb | @ib Ę aiqq (4.33)
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Consider the case of two sources: the information we cannot get from source 2 alone,
IwspT : t2uq, is the same as the information we can get only if the first source is
known, IrespT : t1uq: unique information of source 1 plus synergistic information.

Due to this correspondence, the argument presented above can also be used to show
that a consistent PID can be obtained by fixing a measure Iws of weak synergy. Once
such a measure is given we can first translate it to the corresponding restricted
information terms and then perform the Moebius inversion of Equation (4.27)
(alternatively, the above argument could be redeveloped directly for Iws with minor
modifications)

Interestingly, if we associate with every antichain α in the lattice pA,ĺq the corre-
sponding IwspT : βq (so that IrespT : αq “ IwspT : βq), then the β form an isomorphic
lattice but with a different ordering (see Figure 4.8). Just as the original antichain
lattice this structure on the antichains has been introduced by Crampton and Loizou
[114].

In the PID field a restricted version of this lattice (i.e. restricted to a certain subset
of antichains) has been described by [117] and [118] under the name “constraint
lattice”. This terms is also appropriate in the present context: Intuitively, if we move
up the constraint lattice we encounter information that satisfies more and more
constraints. First, all of the information in the sources (IwspT : Hq). This is the
case of no constraints. Then all the information that is not contained in a particular
individual source (IwspT : t1uq and IwspT : t2uq). And finally the information that is
not contained in any individual source (IwspT : t1u, t2uq) .

Most recently, the full version of the lattice (i.e. defined on all antichains) has been
utilized by [119] to formulate a synergy centered information decomposition. They
call the lattice extended constraint lattice and define "synergy atoms" SB in terms of
a Moebius-Inversion over it. The concept of synergy Sα utilized in this approach
closely resembles what we have called weak synergy. However, the decomposition is
structurally different from the type of decomposition discussed here and generally
assumed in previous work on PID. Even though it leads to the same number of atoms,
these atoms do not stand in the expected relationships to mutual information. For
instance, in the 2-sources case, there is no pair of atoms that necessarily adds up to
the mutual information provided by the first source and no such pair of atoms for
the second source. The consistency equation (4.5) is not satisfied (except for the full
set of sources). This means that synergy atoms SB are not directly comparable to
standard PID atoms Π. They represent different types of information.
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Fig. 4.8: (a) antichain lattice pA2,ĺq for two sources. Summing up the atoms above and
including a node yields the restricted information of that node. (b) extended
constraint lattice for two sources. The weak synergy associated with a node
in the extended constraint lattice is the sum of atoms above and including the
corresponding node in the left lattice. Note that following a widespread convention
we left out the outer curly brackets around the antichains.

Let us now move towards stronger concepts of synergistic information. The reason
for the term "weak" synergy is that a key ingredient of synergy seems to be missing
in its definition: intuitively, the synergy of multiple sources is the information that
cannot be obtained from any individual source but that becomes "visible" once we
know all the sources at the same time. However, the definition of weak synergy
only comprises the first part of this idea. The weak synergy IwspT : a1, . . . ,amq

also contains parts that do not become visible even if we have access to all ai.
For instance, given n “ 3, the weak synergy IwspT : t1u, t2uq also contains the
unique information of the third source Πpt3uq because this quantity is accessible
from neither the first nor the second source.

So let us add this missing ingredient by strengthening the parthood criterion:

Cmspf : a1, . . . ,amqôp@i P t1, . . . ,mu : fpaiq “ 0&fpαYq “ 1q (4.34)

We obtain a moderate type of synergy we denote by ImspT : a1, . . .amq. It has a nice
geometrical interpretation: in an information diagram it corresponds to all atoms
outside of all areas associated with the mutual information carried by some ai but
inside the area associated with the mutual information carried by the union of the ai

(see Figure 4.9). Furthermore, we can immediately see that the parthood condition
cannot be satisfied for individual collections a (it demands fpaq “ 0 and fpaq “ 1
at the same time). This makes intuitive sense because the synergy of an individual
collection appears to be an ill-defined concept: at least two things have to come
together for there to be synergy. We will get back to the case of individual collections
below.

Let us first see what properties are implied by Cms. It can readily be shown that Ims

is symmetric, idempontent, and invariant under subset removal. This again allows
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Fig. 4.9: Geometrical interpretation of moderate synergy ImspT : t1u, t2uq for 2 and 3
sources.

us to restrict the domain of Ims to the antichains. Additionally, Ims satisfies the
following condition:

If Di : αY “ ai, then ImspT : αq “ 0 (zero condition) (4.35)

This property says that whenever the union of the collection happens to be equal to
one of collections then the moderate synergy must be zero. This is in particular the
case for the moderate "self-synergy" of a single collection. On first sight this raises a
problem since the synergy equations associated with individual collections become
trivial (0 “ 0) and do not impose any constraints on the atoms. This situation can
be remedied, however, by noting that these missing constraints are provided by the
consistency equations relating the atoms to mutual information / conditional mutual
information. In this way a unique solution for the atoms is indeed guaranteed (one
could also axiomatically set the “self-synergies” to the respective conditional mutual
information terms). The proof of this statement is given in Appendix 4.8.4.

An instructive fact about the moderate synergy based PID is that the underlying
system of equations does not have the structure of a Moebius-Inversion over a lattice:
there is no arrangement of atoms into a lattice such that each ImspT : αq turns out
to be the sum of atoms below and including a particular lattice node. The reason
is that any finite lattice always has a unique least element. In other words, some
atom would have to appear at the very bottom of the lattice and would therefore
be contained in all synergy terms. However, in the case of moderate synergy, there
is no such atom for n ě 3. The only viable candidate would be the overall synergy
Πpt1, . . . , nuq. But due to the condition that the synergistic information has to
become visible if we know all collections in question, this atom is not contained e.g.
in ImspT : t1u, t2uq.
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Now one may wonder if the concept of synergy can be strengthened even further
by demanding that the synergistic information should not be accessible from the
union of any proper subset of the collections in question. For instance, the synergistic
information IsynpT : t1ut2ut3uq of sources 1, 2, and 3 should not be accessible from
the collections t1, 2u, t1, 3u, or t2, 3u. We have to know all three sources to get access
to their synergy. Thus, we may add this third constraint to obtain a strong notion
of synergy we denote by IsynpT : a1, . . . ,amq. An atom Πpfq should satisfy the
corresponding parthood condition Csynpf : a1, . . . ,amq just in case

1. f p
Ťm

i“1 aiq “ 1

2. @i P t1, . . . ,mu : fpaiq “ 0

3. @J Ă t1, . . . ,mu, |J | ě 2 :
Ť

jPJ aj ‰
Ťm

i“1 ai Ñ f
´

Ť

jPJ aj

¯

“ 0

The last condition is phrased as a conditional because the union of a proper subset
of collection might happen to be equal to the union of all collections in question.
Consider the case of three sources and the synergy IsynpT : t1, 2ut1, 3ut2, 3uq. In this
case the union of a proper subset of these collections, for instance t1, 2u Y t1, 3u,
happens to be equal to the union of all ai.

Unfortunately, we do not obtain enough linearly independent equations to uniquely
determine the atoms of information. This can be shown using the example of three
sources. According to the parthood criterion, IsynpT : t1ut2ut3uq “ Πpt1, 2, 3uq.
But also IsynpT : t1, 2ut1, 3ut2, 3uq “ Πpt1, 2, 3uq. This means that we do not obtain
independent equations for each antichain. Or in linear algebras terms: our coefficient
matrix will have two linearly dependent (actually identical) rows. Thus, a measure
of strong synergy as described by Csyn cannot induce a unique PID.

4.5.3 Unique information PID

Let us briefly discuss the last obvious candidate quantity for determining the PID
atoms: unique information [83]. The appropriate parthood criterion for a measure
of unique information Iunq seems straightforward in the case of individual collections
a: It should consist of all atoms that are part of the information provided by the
collection a but not part of the information provided by any other collection. This is
what makes this information “unique” to the collection. Since there is always just one
such atom this means that IunqpT : aq “ Πpaq. For instance, IunqpT : t1uq “ Πpt1uq,
as expected. However, defining Iunq only for individual collections does not yield
enough equations to solve for the atoms. We need one equation per antichain /
parthood distribution, and hence, some notion of the unique information associated
with multiple collections a1, . . . ,am. This is a trickier question. What does it mean
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for information to be unique to these collections? Certainly, uniqueness demands
that this information should not be contained in any other collection. But what
about the collections a1, . . . ,am themselves? It seems that the appropriate condition
is that the unique information should consist of atoms that are contained in all of
these collections. This idea aligns well with ordinary language: for instance, saying
that a certain protein is unique to sheep and goats means that this protein is found
in both sheep and goats and nowhere else. Using this idea, the parthood criterion
becomes

Cunqpf : a1, . . . ,amq ô pfpaq “ 1 Ø Di : a Ě aiq (4.36)

However, this condition simply defines the atom Πpa1, . . . ,amq making the unique
information based PID possible but maybe not very helpful: it just amounts to
defining all the atoms separately because IunqpT : αq “ Πpαq for all antichains α.

4.6 Parthood descriptions vs. quantitative descriptions

Before concluding we would like to briefly point out an issue that arises quite
naturally when thinking about information theory from a parthood perspective and
that merits a few remarks: throughout this paper we have drawn a distinction
between parthood relationships and quantitative relationships between information
contributions. In particular, Core Principles 1 and 3 express parthood relationships
between information atoms on the one hand and mutual information / redundant
information on the other. Core Principle 2 by contrast describes the quantitative
relationship between any information contribution and the parts it consists of. It is
crucial to draw this distinction because these principles are logically independent.
Consider the case of two sources: In this case, one could agree that the joint mutual
information should consist of four parts while disagreeing that it should be the sum
of these parts. On other hand, one could agree that the joint mutual information
should be the sum of its parts but disagree that it consists of four parts.

The distinction between parthood relations and quantitative relations is also impor-
tant in the argument that the redundant information provided by multiple statements
is the information carried by the truth of their disjunction. One of the two motiva-
tions for this idea was based on the principle that the information provided by a
statement A is always part of the information provided by any stronger statement B.
This does not mean however, that statementA necessarily provides quantitatively less
information than B (i.e. less bits of information). In fact, this latter principle would
contradict classical information theory. Here is why: suppose the pointwise mutual
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BA
may be 

misinformative

Fig. 4.10: Illustration of the idea that the information provided by a logically weaker
statement A is always part of the information of a stronger statement B, even
though the latter may provide less bits of information. This phenomenon can
be explained in terms of the misinformative, i.e. negative, contribution of the
surplus information provided by B (the shaded ring).

information ipt : sq “ ipt : S “ sq is negative. Now, consider any tautology such as
S “ s_␣pS “ sq. Certainly, this statement is logically weaker than S “ s because a
tautology is implied by any other statements. Furthermore, the probability of the tau-
tology being true is equal to 1. Therefore, the information ipt : S “ s_␣pS “ sqq

provided by it is equal to 0. But this means ipt : S “ sq ă ipt : S “ s_␣pS “ sqq

even though S “ s_␣pS “ sq ) S “ s.

Nonetheless, there certainly is a sense in which a stronger statement B provides
“more” information than a weaker statementA: the information provided byA is part
of the information provided by B. If we know B is true than we can by assumption
infer that A is true, and hence, we have access to all the information provided
by A. The fact that the stronger statement B may nonetheless provide less bits of
information can be explained in terms of misinformation: If we know B is true,
then we obtain all the information carried by A plus some additional information.
If it happens that this surplus information is misinformative, i.e. negative, then
quantitatively B will provide less information than A. This idea is illustrated in
Figure 4.10.

Importantly, the possible negativity and non-monotonicity of isxX as well as the
potential negativity of πsx can be completely explained in terms of misinformative
contributions in the following sense: it is possible [93] to uniquely separate isxX into
an informative part isx+

X and a misinformative part isx-
X such that

isxXpt : αq “ isx+
X pt : αq ´ isx-

X pt : αq (4.37)

Now, each of these components can be shown to be non-negative and monotonically
increasing over the lattice. Moreover, the induced informative and misinformative
atoms πsx+ and πsx- are non-negative as well [115]. In other words, once we seperate
out informative and misinformative components any violations of non-negativity
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and monotonicity disappear. Hence, these violations can be fully accounted for in
terms of misinformative contributions.

4.7 Conclusion

In this paper we connected PID theory with ideas from mereology, i.e. the study of
parthood relations, and formal logic. The main insights derived from these ideas are
that the general structure of information decomposition as originally introduced by
Williams and Beer [19] can be derived entirely from 1) parthood relations between
information contributions and 2) in terms of a hierarchy of logical constraints on how
information about the target can be accessed. In this way the theory is set up from
the perspective of the atoms of information, i.e. the quantities we are ultimately
interested in. The n-sources PID problem has conventionally been approached
by defining a measure of redundant information which in turn implies a unique
solution for the atoms of information. We showed how such a measure can be
defined in terms of the information provided by logical statements of a specific
form. We discussed furthermore how the parthood perspective can be utilized to
systematically address the question of whether a PID may be determined based on
concepts other than redundancy. In doing so, we showed that this is indeed possible
in terms of measures of “restricted information”, “weak synergy”, and “moderate
synergy” but not in terms of “strong synergy”. We hope to have shown that there are
deep connections between mereology, formal logic and information decomposition
that future research in these fields may benefit from.

4.8 Appendix

4.8.1 Minimally Consistent PID

Definition 2 (Minimally consistent PID). Let S1, . . . , Sn, T be jointly distributed ran-
dom variables with joint distribution PJ and let Bn be the set of parthood distributions
in the context of n source variables. A minimally consistent partial-information-
decomposition of the mutual information provided by the sources S1, . . . , Sn about the
target T is any function ΠPj : Bn Ñ R, determined by PJ , that satisfies

IPJ
pT : pSiqiPaq “

ÿ

fpaq“1
ΠPJ

pfq (4.38)
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for all a Ď t1, . . . , nu. The subscripts PJ indicate that both the mutual information
and the information atoms are functions of the underlying joint distribution.

4.8.2 Proof of isomorphism between pB, Ďq, pL, )q and pA, ĺq

First, recall that the relation |ù of logical implication is formally defined in terms of
the notion of a valuation [116]. A valuation is an assignment of truth-values (0 for
false and 1 for true) over the propositional variables φi. So the set of all valuations
V is given by the set of all mappings from tφ1, . . . , φnu into t0, 1u:

V :“ t0, 1utφ1,...,φnu (4.39)

A valuation is said to satisfy a statement α̃, written as |ùV α̃, under the following
conditions

1. If α̃ is an atomic statement, then |ùV α̃ ðñ V pα̃q “ 1

2. If α̃ is of the form β̃ ^ γ̃, then |ùV α̃ ðñ |ùV β̃ and |ùV γ̃

3. If α̃ is of the form β̃ _ γ̃, then |ùV α̃ ðñ |ùV β̃ or |ùV γ̃

In this way, the satisfaction relationship is inductively defined for all statements
of the propositional language we are considering here. The relation of logical
implication is now defined such that a statement α̃ implies a statement β̃ just in case
all valuations that satisfy α̃ also satisfy β̃. Formally,

α̃ |ù β̃ ðñ @V P V :|ùV α̃Ñ|ùV β̃ (4.40)

Proof of the theorem. We first show the isomorphism between pB,Ďq and pA,ĺq and
then the isomorphism between pA,ĺq and pL,)q. The following mapping φ : A Ñ B
is an isomorphism between pB,Ďq and pA,ĺq:

φpαq :“ fα with fαpbq “

$

&

%

1 if Da P α : b Ě a

0 otherwise
(4.41)

First, φ is surjective: let f P B, then φpαf q “ f for the set αf of minimal elements
with value 1, i.e.

αf :“ ta | fpaq “ 1 & ␣Db Ă a : fpbq “ 1u (4.42)

146 Chapter 4 Bits and Pieces: Understanding Information Decomposition from
Part-whole Relationships and Formal Logic



φ is also injective: let φpαq “ fα “ fβ “ φpβq and let b P β. Then, fβpbq “ 1 and
hence fαpbq “ 1. Therefore, Da P α : b Ě a. But this can only be true if b “ a,
because suppose b Ą a. We have fβpaq “ 1 and hence Db˚ P β : a Ě b˚. But then
b Ą a Ě b˚ while b,b˚ P β contradicting the fact that β is an antichain. Hence,
b P α. By the same argument it can be shown that any a P α has to be in β and
therefore α “ β.

It remains to be shown that φ is structure preserving. So let α ĺ β, i.e. @b P βDa P
α : b Ě a. We need to show that in this case φpαq Ď φpβq, i.e. fβpaq “ 1 Ñ
fαpaq “ 1. So let fβpaq “ 1, then Db P β : a Ě b. By assumption this means that
Da˚ P α : b Ě a˚. Hence a Ě a˚ and therefore fαpaq “ 1. Regarding the other
direction suppose that f Ď g. Now let b P βg “ φ´1pgq, then gpbq “ 1 and hence
fpbq “ 1. Therefore, Da P αf “ φ´1pfq : b Ě a, and thus, αf ĺ βg.

We now turn to the isomorphism between pL,)q and pA,ĺq. The mapping Ψ : A Ñ

L defined in the main text is an isomorphism. Ψ is injective for let α, β P A be two
distinct antichains. Then there has to be an a P α not contained in β (or vice versa).
But then the conjunction

Ź

iPa φi will appear in α̃ while it does not appear in β̃.
Accordingly, α̃ and β̃ are distinct elements of L. Ψ is surjective as well for let α̃ P L.
Then α̃ is of the form

Ž

jPJ
Ź

iPj φi for some set of index sets J “ tj1, . . . , jmu where
ji Ď t1, . . . , nu. Because the conjunctions

Ź

iPj φi have to be logically independent it
follows that the index sets cannot be subsets of each other, i.e. ␣pjk Ě jlq for k ‰ l.
But this implies that J is an antichain which is, by definition of Ψ, mapped onto α̃.

It only remains to be shown that β ĺ α ðñ β̃ ) α̃. First, suppose that β ĺ α. We
need to show that for all valuations V P V “ t0, 1utφ1,...,φnu: |ùV α̃Ñ|ùV β̃, i.e. all
Boolean valuations of the φi that make α̃ true, also make β̃ true. So suppose |ùV α̃,
then there must be an a P α such that |ùV

Ź

iPa φi. But since β ĺ α, there must be a
b P β such that a Ě b. Therefore, |ùV

Ź

iPb φi. Hence, V also satisfies the disjunction
over all b P β: |ùV

Ž

bPβ

Ź

iPb φi “ β̃.

Regarding the other direction, suppose that β̃ ) α̃, i.e. all valutions satisfying α̃
also satisfy β̃. Now suppose for contradiction that ␣pβ ĺ αq, i.e. Da˚ P α@b P β :
␣pa Ě bq. In this case, we can construct a valuation V that satisfies α̃ but not β̃ in
the following way:

V pφiq “

$

&

%

1 if i P a˚

0 if i R a˚
(4.43)

By construction all b P β contain at least one index i not contained in a. Therefore, V
does not satisfy any of the conjunctions

Ź

iPb φi, and thus it does not satisfy β̃, in
contradiction to the initial assumption. Hence, β ĺ α, concluding the proof.
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Corollary 2. pL,)q and pB,Ďq are lattices.

Proof. Follows from the isomorphism and the fact that pA,ĺq is a lattice as shown
by [114].

4.8.3 Proofs of Propositions

Monotonic truth tables

Proof of Proposition 1. Let α̃ P L and let V, V 1 P V such that @i P t1, . . . , nu :
V pφiq “ 1 Ñ V 1pφiq “ 1. Suppose that Tα̃pV q “ 1. Then V must satisfy at
least one of the conjunctions

Ź

iPa φi. But since V pφiq “ 1 Ñ V 1pφiq “ 1 any
conjunction satisfied by V must also be satisfied by V 1. Hence, Tα̃pV

1q “ 1.

Regarding the converse: let T be a monotonic truth-table. Then T “ Tα̃˚ for the
statement

α̃˚ “
ł

V PV
T pV q“1

ľ

iPt1,...,nu

V pφiq“1

φi (4.44)

Note that α̃˚ is generally not in L because the conjunctions are not necessarily
logically independent. But one can obtain an equivalent statement α̃ P L by
removing all conjunctions from α̃˚ that logically imply another conjunction in α̃˚.
Let α̃ be this statement. Then, if α̃ is true, certainly α̃˚ is true because the latter
differs from the former only through additional disjuncts. Conversely, if α̃˚ is true,
then one of its conjuncts must be true. If the true conjunct in α̃˚ does appear in α̃ as
well (i.e. it has not been removed), then trivially α̃ has to be true as well. On the
other hand, if this conjunct does not appear in α̃, then it must have been removed
which implies that there is a logically weaker conjunct in α̃. But then this logically
weaker conjunct has to be true as well, thereby making α̃ true. Therefore, α̃˚ and α̃
have the same truth-table T and α̃ P L as desired. Furthermore, α̃ is unique because
|ù is antisymmetric on L by Corollary 1. Hence, there can be no two distinct but
logically equivalent elements (i.e. elements with the same truth-table) in L.

Characterization of Children

Proof of Proposition 2. Concerning the if-part we show the contraposition: Suppose
that there is a β̃ strictly in between γ̃ and α̃. If this is the case, then there must be a
model V1 such that Tβ̃pV1q “ 1 while Tα̃pV1q “ 0 and a distinct model V2 such that
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Tγ̃pV2q “ 1 while Tβ̃pV2q “ 0. But for both of these models it would be true that
Tγ̃pV1q “ 1 while Tα̃pV1q “ 0. Thus, γ̃ would be true in at least two additional cases.

Concerning the only-if part we show the contraposition again: Suppose that γ̃ is true
in the k ě 2 additional cases contained in V˚ “ tV1, V2, . . . , Vku. Consider the subset
of these models with the smallest number of ones:

Vmin
˚ “

#

V P V˚ | @V
1 P V˚ :

n
ÿ

i“1
V pφiq ď

n
ÿ

i“1
V 1pφiq

+

(4.45)

Now let V˚ P Vmin
˚ . Then the truth table

Tβ̃pV q :“

$

&

%

1 if Tγ̃pV q “ 1 but V ‰ V˚

0 otherwise
(4.46)

is monotonic and the statement β̃ associated with this truth-table is strictly in
between γ̃ and α̃. The latter is true because all valuations that satisfy α̃ also satisfy β̃
and all valuations that satisfy β̃ also satisfy γ̃. At the same time there is a valuation,
namely V˚, that satisfies γ̃ but not β̃, and a set of valuations with at least one element,
namely V˚ztV˚u, that satisfies β̃ but not α̃. Thus, all three statements have to be
distinct. Regarding the monotonicity: by assumption γ̃ has a monotonic truth-table
and the truth-table of β̃ is identical except that Tβ̃pV˚q “ 0. So the only way Tβ̃

could not be monotonic would be for there to exist a valuation V 1
˚, distinct from

V˚, that would enforce Tβ̃pV˚q “ 1 via monotonicity, i.e. a valuation that results
from flipping some ones in V˚ to zeros and that satisfies β̃. Suppose there is such a
valuation. V 1

˚ would have to satisfy β̃ while not satisfying α̃, since if it did satisfy
α̃, V˚ would have to satisfy α̃ as well in contradiction to V˚ P V˚. Furthermore, as
V 1

˚ satisfies β̃ it also satisfies γ̃. Therefore, V 1
˚ P V˚. However, if it were true that

V 1
˚pφiq “ 1 Ñ V˚pφiq “ 1, then

řn
i“1 V

1
˚pφiq ă

řn
i“1 V˚pφiq, contradicting the fact

that V˚ P Vmin
˚ .

Lower bound on children

Proof of Proposition 3. Let α be such an antichain and let a P α be a set of indices
such that |a| “ k. We utilize the isomorphism between A and L by showing that α̃
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has at least k children. Since |a| “ k there are exactly k distinct indices i1, . . . , ik P a
and we can define k subsets of valuations

V1 “ tV P V : ␣p|ùV α̃q & i P azti1u Ñ V pφiq “ 1u (4.47)

. . .

Vk “ tV P V : ␣p|ùV α̃q & i P aztiku Ñ V pφiq “ 1u (4.48)

In other words, the valuations in V1, first, do not satisfy α̃, and second, assign a one
to all φi if i is in the collection a but not equal to i1. The definition of the other
Vi is analogous. The goal is now to find ’maximal’ valuations (making as many φi

true as possible) in these sets and modify the truth-table of α̃ by assigning a one to
exactly one of these valuations. This can be done for all valuations separately to
obtain k novel monotonic truth-tables. These monotonic truth-tables are uniquely
associated with specific statements via Proposition 1 which can then be shown to
be children by Proposition 2 since they are true in exactly one more case than α̃.
To make this argument note first that V1, . . . ,Vk each contain at least one element
V1, . . . , Vk respectively:

V1pφiq “

$

&

%

1 if i P azti1u

0 otherwise
(4.49)

. . .

Vkpφiq “

$

&

%

1 if i P aztiku

0 otherwise
(4.50)

These valuations do not satisfy α̃: They don’t satisfy the conjunction
Ź

iPa φi and
since α is an antichain each a1 ‰ a has to contain at least one index j not contained
in a. The corresponding conjunctions

Ź

iPa1 φi “ φj ^
Ź

iPa1ztju φi are therefore not
satisfied by any Vi since by construction V1pφjq “ . . . “ Vkpφjq “ 0. Now consider
the sets of ’maximal’ valuations within the Vi:

Vmax
1 “

#

V P V1|@V
1 P V1 :

n
ÿ

i“1
V 1pφiq ď

n
ÿ

i“1
V pφiq

+

(4.51)

. . .

Vmax
k “

#

V P Vk|@V
1 P Vk :

n
ÿ

i“1
V 1pφiq ď

n
ÿ

i“1
V pφiq

+

(4.52)
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Let V ˚
1 P Vmax

1 , ..., V ˚
k P Vmax

k . Due to the maximality of these valuations the
following truth-tables are monotonic

Tγ̃1pV q “

$

&

%

1 if Tα̃pV q “ 1 or V “ V ˚
1

0 otherwise
(4.53)

. . .

Tγ̃k
pV q “

$

&

%

1 if Tα̃pV q “ 1 or V “ V ˚
k

0 otherwise
(4.54)

This is because, first, the truth-table of α̃ is already monotonic, and second, if a zero
is flipped to a one in V ˚

1 or . . . or M˚
k the resulting valuations are by construction

guaranteed to satisfy α̃. Otherwise, we would obtain valuations in V1 or . . . or Vk

respectively, containing more ones than V ˚
1 or . . . or V ˚

k respectively, in contradiction
to the maximality of these valuations. The uniquely defined statements γ̃1, . . . , γ̃k

corresponding to these truth-tables via Proposition 1 are children of α̃ by Proposition
2 because each of them is true in exactly one additional valuation compared to
α̃. Finally all of these statements are distinct since they are pairwise logically
independent and a single statement cannot have multiple truth-tables.

Algorithm to determine children

Proof of Proposition 4. Firstly, any γ̃ produced by the algorithm is a direct child since
its truth-table differs from that of α̃ only through an additional one, i.e. γ̃ is true in
exactly one more case than α̃ and is thus a direct child by Proposition 2. Secondly,
there is no child of α̃ that is not generated by the algorithm. Again by Proposition 2,
the truth-table of any such child would differ from that of α̃ only through a single
one. But the algorithm explores systematically all possibilities to add a single one to
the truth-table of α̃. Thus any child γ̃ will be generated at some point.

A pseudocode version of the algorithm is shown in Algorithm 1.

Meet and Join operations on logic lattices

The meet ˜̂ and join _̃ operations can be explicitly constructed in the following way:
The element of L logically equivalent to the disjunction α̃_ β̃ can be obtained by
simply removing all disjuncts that logically imply another disjunct. The element of
L logically equivalent to the conjunction α̃^ β̃ can be obtained by, first, applying
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Algorithm 1: Determines children of a statement α̃ in the logic lattice.

1 GetChld α̃
inputs :A statement α̃
outputs :The set of children of α̃ denoted by Cα̃

2 k Ð 0
3 Vα̃ ÐH

4 Cα̃ ÐH

// step (1)
5 foreach valuation V P V do
6 if |ùV α̃ then
7 Vα̃ Ð Vα̃ Y V

// Maximal number of ones in V if |ùV α̃
8 if

ř

i Vi ą k then
9 k Ð

ř

i Vi

// step (3) as a while loop
10 while k ‰ 0 do

// Construct the set of all V P Vα̃ such that
ř

i Vi “ k

11 Vk
α̃ ÐH

12 foreach valuation V P Vα̃ do
13 if

ř

i Vi “ k then
14 Vk

α̃ Ð V

// Construct a child of α̃ if it exists (step (2))
15 foreach valuation V P Vk

α̃ do
16 QÐH

17 for V 1 P Vα̃ do
18 if

ř

i V
1

i “ k ` 1 and V pφiq “ 1 Ñ V 1pφiq “ 1 @i P rns then
19 QÐ V 1

20 break
21 if Q “ H then
22 construct γ̃ that satisfies V and every V 1 P VzVα̃

23 Cα̃ Ð Cα̃ Y β̃

24 k Ð k ´ 1
25 return Cα̃
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the distributive law to obtain a disjunction of conjunctions, second, applying the
idempotency law to all conjunctions to remove repeated statements, and third,
removing again all disjuncts that logically imply another disjunct. Denoting these
three operations by D, I, and ˝ (underline) respectively, the meet and join have
the explicit expressions given in the following proposition:

Proposition 12 (Meet and Join Operations).

α̃ ˜̂ β̃ “ α̃_ β̃ (4.55)

α̃_̃β̃ “ IpDpα̃^ β̃qq (4.56)

Proof. By construction, α̃_ β̃ and IpDpα̃^ β̃qq are in L. Furthermore, since the
operations D, I, and ˝ do not affect the truth-conditions of statements, α̃_ β̃ and
IpDpα̃^ β̃qq are logically equivalent to α̃_ β̃ and α̃^ β̃, respectively. Hence, it only
needs to be shown that these latter statements satisfy the conditions of meet and
join respectively. Now, clearly α̃ _ β̃ is logically weaker than both α̃ and β̃ while
α̃^ β̃ is logically stronger than both α̃ and β̃. It remains to be shown that former is
the strongest such statement while the latter is the weakest such statement. Suppose
there was statement γ̃ stronger than α̃ _ β̃, then there would have to be a model
M˚ making γ̃ false and α̃_ β̃ true. But since α̃_ β̃ is true whenever either α̃ is true
or β̃ is true, this means that γ̃ would have to be false in a case where one of α̃ or β̃
is true. However, this implies that γ̃ cannot be logically weaker than both α̃ and β̃,
and hence, α̃_ β̃ must be the strongest statement logically weaker than α̃ and β̃.
Now suppose there was a statement γ̃ weaker than α̃^ β̃, then there would have to
be a model M˚ making γ̃ true but α̃^ β̃ false. But this means that γ̃ would be true
in a case in which either α̃ or β̃ is false. Accordingly, γ̃ cannot be stronger than both
α̃ and β̃, and hence, IpDpα̃^ β̃qq must be the weakest statement logically stronger
than α̃ and β̃.
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4.8.4 Derivations related to restricted information based and
synergy based PID

Relation between restricted information and conditional mutual information

The relation between restricted information and conditional mutual information
given by Equation 5.5 can be derived via the chain rule as follows:

I
´

T : pSiqiPαY |pSjqjPαC
Y

¯

“IpT : pSiqiPrnsq ´ IpT : pSjqjPαC
Y

q (4.57)

“
ÿ

fprnsq“1
Πpfq ´

ÿ

fpαC
Yq“1

Πpfq (4.58)

“
ÿ

fpαC
Yq“0

Πpfq (4.59)

“
ÿ

fpbq“1ÑDj:tij uĚb
Πpfq (4.60)

“ IrespT : αq (4.61)

Proof that moderate synergy induces a unique PID

The claim that defining a measure of moderate synergy leads to a unique solution
for the atoms of information can be shown by starting from the system of equation
associated with weak synergy. These equations can be transformed into the moderate
synergy equations by operations that preserve invertibility. First, the “self-synergy”
equations

Iws/mspT : aq “ IpT : aC |aq “
ÿ

fpaq“0
Πpfq (4.62)

are contained in both systems. Furthermore, weak and moderate synergy coincide
if αY “ rns. In this case, the additional constraint fpαYq “ 1 is superfluous since
fprnsq is necessarily equal to 1 by the properties of parthood distributions. Thus, the
corresponding equations are again contained in both systems. This only leaves the
case of αY Ă rns while |α| ě 2. Let α be such an antichain. It can be shown that the
corresponding moderate synergies can be expressed as a difference between two
equations in the weak synergy system:

IwspT : αq ´ ImspT : αq “
ÿ

@ai:fpaiq“0
fpαYq“0

Πpfq (4.63)

“
ÿ

fpαYq“0
Πpfq (4.64)

“ IpT : αC
Y|αYq (4.65)
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where the second to last equality follows because the monotonicity of parthood
distributions implies that fpαYq “ 0 Ñ fpaq “ 0 @a P α. Therefore, we obtain

ImspT : αq “ IwspT : αq ´ IpT : αC
Y|αYq (4.66)

“ IwspT : αq ´ IwspT : αYq (4.67)

showing that the moderate synergy equation associated with α is the difference
between two weak synergy equations. Since subtracting two equations from each
other leaves invertibility unaffected this establishes that the moderate synergy system
of equations is invertible as well.
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Abstract

The conventional approach to the general Partial Information Decomposition (PID)
problem has been redundancy-based: specifying a measure of redundant information
between collections of source variables induces a PID via Moebius-Inversion over
the so called redundancy lattice. Despite the prevalence of this method, there has
been ongoing interest in examining the problem through the lens of different base-
concepts of information, such as synergy, unique information, or union information.
Yet, a comprehensive understanding of the logical organization of these different
based-concepts and their associated PIDs remains elusive. In this work, we apply the
mereological formulation of PID that we introduced in a recent paper to shed light
on this problem. Within the mereological approach base-concepts can be expressed
in terms of conditions phrased in formal logic on the specific parthood relations
between the PID components and the different mutual information terms. We set
forth a general pattern of these logical conditions of which all PID base-concepts in
the literature are special cases and that also reveals novel base-concepts, in particular
a concept we call “vulnerable information”.
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5.1 Introduction

Partial information decomposition (PID) is a powerful framework for dissecting the
intricate relationships among multiple information sources and their joint contribu-
tions to a target variable. In the most simple case of two source variables S1 and S2

there is general agreement that the decomposition should contain four terms: the
redundant information of S1 and S2 about T , the unique information of S1 about T ,
the unique information of S2 about T , and the synergistic information of S1 and S2

about T . There is also general agreement that these components should be related
to the mutual information provided by subsets of these sources via the equations

IpS1, S2 : T q “ R` U1 ` U2 ` S (5.1)

IpS1 : T q “ R` U1 (5.2)

IpS2 : T q “ R` U2 . (5.3)

This system does not have a unique solution for the four components because we are
short of one equation. A widely used approach to arrive at a determinate information
decomposition is to fix one of the components and solve for the others using the
above equation. The component most widely used for this purpose is the redundancy
[19, 91, 96, 115, 120–127]. But there are also some unique-information-based
[83, 128, 129] and some synergy-based approaches [119, 130]. In principle, it is
also possible to fix not an individual component but a certain combination of them,
if this combination has an intuitive meaning. An example for this is the sum of
the redundancy atom and the two unique information atoms. This describes the
entirety of the information we can get from at least one information source and has
been called union information. [131] and [127] used this as the starting point to
fix an information decomposition. We will refer to the information quantity fixed
in order to determine a full information decomposition as a PID base-concept. In
the general n-sources case, a base-concept will in fact encompass a whole set of
quantities because the underlying system of equations becomes more and more
undetermined. The key objective of this paper is provide a systematic study of PID
base-concepts in this general case utilizing the mereological approach to partial
information decomposition we introduced in [132].

There are three important reasons why this issue is of interest: First, there is a
theoretical reason. Knowledge about the different possible ways to induce a PID
provides insights into the structure of the problem. It makes clear which aspects of
the original exposition of PID theory are essential and which aspects are replaceable.
For example, does the concept of redundancy have a privileged role in PID theory?
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What about its underlying lattice structure? Furthermore, addressing the problem
from the perspective of other base-concepts may also lead to constraints on possible
solutions. For example, there have been numerous proposals for desirable properties
or axioms on measures of redundant information [123, 133], and also some for
properties of synergistic information [83]. A full account of synergy-based PID
establishes a numerical connection between redundancy and synergy that allows us
to determine whether the proposed properties of these two concepts are compatible.
When they are not, the space of possible solutions to the problem is restricted.

The second reason pertains to the interpretation of information components. While
it is true that in principle all base-concepts determine each other (fixing one, fixes all
of them), the interpretation of measures that are not used as the base-concept will
inevitably be that of a “remainder”. Consider the case of two sources: if we specify
their redundancy, then we can compute the unique information of each source by
subtracting that redundancy from the total information provided by that source
about the target. The synergy is then computed by subtracting redundancy and
unique information from the total mutual information provided by both sources
jointly, i.e. synergy is whatever remains if we subtract the other components from
the total. This indirect definition makes the resulting notion of synergy quite
intangible. By contrast, in a synergy-based PID, the synergy is directly defined in
terms of the underlying joint distribution. This provides us with more control over
its interpretation. Of course, the interpretational problem just described is shifted
towards the non-synergistic components in this case. However, if in the application
at hand synergy is of particular importance, a synergy-based decomposition might
be preferable.

The third reason is a computational one. The number of distinct components in a PID
grows super-exponentially with the number of information sources. Thus it becomes
important to be able to compute useful summaries of the PID that do not require the
computation of all components. An example for such a summary is the backbone
decomposition introduced by [119]. The components in this decomposition measure
the information about the target for which access to exactly k sources is required
(k “ 1, . . . , nq. In this way the components provide a useful measure of the k-way
interaction within the system of sources. The backbone components can be calculated
very easily from a measure of synergy whereas it is not known how to compute them
from a redundancy measure without having to compute all PID components. The
same is true for the measure of “representational complexity” introduced in [134].
Approaching the problem from the perspective of synergistic information makes this
measure applicable to far larger networks since the computational cost scales only
linearly with the number of sources in this case.

5.1 Introduction 159



Our approach is as follows: In the next section, we review the mereological approach
to PID using the example of redundant information and show how it expresses PID
base-concepts in terms of their characteristic logical conditions on parthood relations.
In Section 5.3 we apply the approach to the construction of synergy-based PIDs.
The analyses of redundancy-based and synergy-based PID naturally suggest a more
general logical pattern of conditions for defining based-concepts which we will
discuss in Section 5.4. The resulting scheme comprises all base-concepts considered
in the literature and also leads to new base-concepts. In particular a quantity we call
“vulnerable information” and certain “partner measures” of the existing base-concepts
which pick out the same information components but viewed from the perspective
of different source collections. Section 5.5 addresses the implied properties of the
different base-concepts as well as their associated lattices. Finally, in Section 5.6 we
discuss the relation of the ideas presented here to some previous approaches before
presenting some general conclusions of our analysis in Section 5.7.

5.2 The mereological approach to PID

In a recent paper we showed how to derive PID theory from considerations of
parthood relations between information contributions [132]. The key idea is that
PID decomposes the information that the sources carry about the target into atomic
contributions characterized by their parthood relations to the information provided
by the different possible subsets of source variables. In other words, each information
atom quantifies precisely that portion of the joint mutual information that stands in
a particular constellation of parthood relationships to the 2n different Ipa : T q terms.
Such constellations can be described by what we call parthood distributions, i.e.
Boolean functions f : Ppt1, . . . , nuq Ñ t0, 1u that tell us for any subset a Ď t1, . . . , nu
of sources (referred to via their indices) whether the information atom described by
f is part of Ipa : T q. Parthood distributions form the cornerstone of mereological
PID. Formally, they are defined as follows

Definition 3 (Parthood Distribution). A parthood distribution is a function f :
Ppt1, . . . , nuq Ñ t0, 1u such that

1. fpHq “ 0 ("There is no information in the empty set of sources")

2. fpt1, . . . , nuq “ 1 ("All information is in the full set of sources")

3. a Ď b & fpaq “ 1 Ñ fpbq “ 1 ("All information in a set of sources is also in all
of its supersets")
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In a partial information decomposition there is one information atom Πpfq per
parthood distribution f . These considerations already tell us the intended meaning of
the information atoms and how many atoms there are: one per parthood distribution.
Since parthood distributions are formally non-constant, monotonic Boolean functions
their number for n sources is equal to the n-th Dedekind number minus two. Now,
the question is: how many bits of information does each atom provide? In order to
answer this question it is fruitful to think about how the atoms should be related
to already known information quantities like mutual information. Given how the
atoms are characterized it seems reasonable to demand that the following relation
should be satisfied:

Ipa : T q “
ÿ

fpaq“1
Πpfq pconsistency equationq (5.4)

This equation simply says that any mutual information should made up of all atoms
which are part of it. And these are by construction all atoms Πpfq such that fpaq “ 1.
Summing over all such atoms will therefore yield the mutual information carried by
the collection a about the target. We call Equation 5.4 the consistency equation of
PID. It provides constraints on quantitative solutions for the atoms Πpfq by requiring
them to be related to mutual information in a particular way.

It is well known, however, that the consistency equation alone still leaves the
problem severely under-constrained. We need some additional requirements to
obtain a unique solution. This is traditionally achieved by invoking the concept of
redundant information, which we generically denote by IX. Based on the intended
meaning of the atoms we should have

IXpa1, . . . ,am : T q “
ÿ

@ifpaiq“1
Πpfq (5.5)

In other words, the information shared by collections a1, . . . ,am about T should
consist of all information atoms that are part of each of the Ipai : T q contributions.
But these are of course exactly those atoms Πpfq such that fpaq “ 1 for all i “
1, . . . ,m. It can be shown that Equation 5.5 is invertable so that once a measure of
redundancy is specified a unique solution for the information atoms is implied. A
PID obtained in this way is called a redundancy-based PID. To see how this works,
two insights are crucial.
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First, note that Equation 5.5 places a number of constraints on redundancy functions
IX:

1. IXpa1, . . . , am : T q “ IXpaσp1q, . . . , aσpmq : T q for any permutation σ (symmetry) (5.6)

2. If ai Ě aj for i ‰ j, then IXpa1, . . . , , am : T q “ IXpa1, . . . , ai´1, ai`1, . . . , am : T q (5.7)

(superset invariance)

3. IXpa : T q “ Ipa : T q (self-redundancy) (5.8)

These constraints follow immediately from the properties of parthood distributions
described above. In the literature they are known as the "Williams and Beer axioms"
for redundancy functions since in their original exposition these properties play the
role of axioms instead of being implied properties. The first two of them, symmetry
and superset invariance, imply that the domain of redundancy functions can be
reduced to the set of antichains of the partial order pPpt1, . . . , nuq,Ďq. We use the
symbol A to denote the set of antichains without tu and ttuu since these do not
correspond to any meaningful redundancy terms.

The second important idea is that information atoms can be ordered quite naturally
according to “how easily” they can be accessed. This can be expressed formally in
terms of the following ordering on the parthood distributions:

f Ď g ô p@ a gpaq “ 1 Ñ fpaq “ 1q (5.9)

Intuitively, whenever the information described by g is accessible via some collection,
the information described by f is also accessible via this collection. This order
relation constitutes a lattice at the top of which we find the all-way synergy that
can only be accessed if we know all sources and at the bottom of which we find the
all-way redundancy that can be accessed via any source. Now this ordering stands
in a close relationship to the concept of redundant information as expressed in
Equation 5.5: consider an antichain α “ ta1, . . . ,amu and the parthood distribution
that assigns the value one to exactly these collections and their supersets. We
denote this distribution by fα. We know that in general the redundant information
IXpa1, . . . ,am : T q is equal to the sum of all atoms with parthood distributions
assigning the value one to all of the ai. But these atoms are, by construction, all
atoms below and including fα in the lattice. So we can rewrite Equation 5.5 as

IXpα : T q “
ÿ

gĎfα

Πpgq (5.10)
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The mapping αÑ fα also induces a lattice structure on A that describes the nesting
of redundant information terms. The induced ordering is

α ĺ β ô fα Ď fβ (5.11)

The redundant information associated with an antichain α is included in any redun-
dancy associated with antichains β higher up in the lattice. The lattice pA,ĺq is
the familiar redundancy lattice intitally introduced by Williams and Beer [19]. By
construction the mapping αÑ fα is an isomorphism between the redundancy lattice
and the parthood lattice. The inverse is given by

f Ñ αf “ ta|fpaq “ 1 & ␣Db Ă afpbq “ 1u (5.12)

In other words, αf is the set of minimal collections (with respect to Ď) that are
assigned the value 1 by f . With these mappings one may also write Equation 5.5 as
a Moebius-Inversion over either A or B using the conventions Πpαq :“ Πpfαq and
IXpf : T q :“ IXpαf : T q:

IXpα : T q “
ÿ

βĺα

Πpβq IXpf : T q “
ÿ

gĎf

Πpgq (5.13)

These are now standard Moebius-Inversion formulas which are known to have
a unique solution once a measure of redundant information IX is specified. This
completes the redundancy-based PID story up to the choice of a concrete redundancy
measure. Figure 5.1 illustrates the parthood and redundancy lattices as and how
redundancy terms are expressed in terms of information atoms for the case n “ 3.
In the next section, we apply the same mereological ideas in order to address the
question of how a synergy-based PID can be constructed.
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Fig. 5.1: a) Parthood and redundancy lattices for n “ 3 sources. There is an isomorphism
between the lattices such that the redundancy associated with a node in the redun-
dancy lattice is equal to the sum of atoms associated with parthood distributions
below and including the corresponding node in the parthood lattice. This is shown
for the antichain t1, 2ut2, 3u. Note that we adhere to the standard convention
of omitting the outermost brackets of the antichains. b) Information diagrams
showing all possible redundancy terms and their nested structure.

5.3 The construction of synergy based partial
information decompositions

5.3.1 Proper Synergy

Let us now apply the mereological ideas presented in the previous section to construct
a synergy-based PID. To do so, the first question we have to ask is: can we in general
express synergistic information Isyn as being made up out of certain information
atoms Πpfq? Let us try to work out an answer. Intuitively, the synergy among
collections a1, . . . ,am should certainly only contain information that is not contained
in any individual collection ai. Otherwise, it would not make sense to call it
synergistic. Translating this idea into a constraint on parthood distributions we
can say that the synergy should only contain atoms Πpfq such that fpaiq “ 0 for
any i. Furthermore, it also seems reasonable that the synergy should not contain
information that is accessible via some proper subset of sources contained in the
ai. For instance, the synergistic information of sources S1, S2, and S3 about the
target should not already be contained in the combination of S1 and S2. Also, the
synergy between S1 and the combination pS2, S3q should not be accessible if we only
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know S1 and S2. In terms of parthood distributions we can say the synergy should
only contain information atoms Πpfq such that fpbq “ 0 for all b Ă

Ť

ai. This also
includes the condition on individual ai as a special case. We have now arrived at
a negative constraint telling us which atoms are not part of the synergy. So the
only remaining question is which atoms are part of it. Here it appears plausible to
demand that if we had access to all the collections ai, then we should obtain the
synergistic information they carry about the target. As a parthood constraint this
can be expressed as fp

Ť

aiq “ 1. Putting the negative and the positive constraint
together this leads to the following relation between synergy Isyn and information
atoms Π:

Isynpa1, . . . ,am : T q “
ÿ

@bĂ
Ť

aifpbq“0
fp
Ť

aiq“1

Πpfq (5.14)

Now the crucial question is: can this relation be inverted to obtain a solution for
all Πpfq once a measure of synergy Isyn is provided? Unfortunately, the answer is
no. The problem is that some of the equations coincide and hence the system is
underdetermined. In fact, in the case of three sources, Equation 5.14 only provides
four constraints in addition to the consistency equation (11 would be needed). To see
this, note first that given the relation above, Isyn has to be symmetric, idempotent,
and invariant under subset removal/addition. Hence, its domain can be reduced to
the set of antichains. But there is a further constraint: whenever the union over two
antichains is equal, the associated synergy must be equal. Formally,

ď

ai “
ď

bj Ñ Isynpa1, . . . ,am : T q “ Isynpb1, . . . ,bm : T q (Union Condition) (5.15)

Accordingly, there can only be as many independent synergies as there are different
non-empty unions (the synergy of the empty set has to be zero). Thus, we are
left with seven synergy terms for n “ 3. Three terms correspond to the singletons
tiu. For these, the condition in Equation 5.14 reduces to fpaq “ 1 so that Isynptiu :
T q “ IpSi : T q. But this does not provide any constraint beyond the consistency
equation. Three further terms correspond to the pairs of sources. And the final term
corresponds to the full set of all three sources. It is only the last four terms that
genuinely provide novel constraints on the information atoms. They are shown as
mereological diagrams in Figure 5.2.

In total, after defining a measure of synergy Isyn and given that we also have the
consistency equation at our disposal, we are still short seven equations for n “ 3. An
inversion of Equation 5.14 is therefore not possible. Does this mean that there can
be no such thing as a synergy-based PID? Not necessarily. It remains a possibility
that there are alternative notions of synergistic information, notions that might still
capture some, but necessarily not all, of the intuitive properties described above,
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Fig. 5.2: Mereological diagrams of the four independent synergy terms in the n “ 3 case.

and which allow for the required inversion. We will explore a minimal notion of
synergy in the following section.

5.3.2 Weak synergy

Let us strip our concept of synergistic information from anything but it’s most
essential property: the synergistic information carried by multiple collections of
sources about the target should not be accessible via an individual collection ai. We
will call the entirety of the information satisfying this condition the weak synergy
Iws that collections a1, . . . ,am carry about the target [132]. Given this intended
meaning of weak synergy it should stand in the following relation to the information
atoms:

Iwspa1, . . . ,am : T q “
ÿ

@ifpaiq“0
Πpfq (5.16)

In other words, we sum all atoms that are not part of any individual Ipai : T q
contribution. Again, in order to determine whether this relation is invertible, we
first ask which constraints on Iws are implied by this condition. We obtain the
following:

1. Iwspa1, . . . , am : T q “ Iwspaσp1q, . . . , aσpmq : T q for any permutation σ (symmetry) (5.17)

2. If ai Ď aj for i ‰ j, then Iwspa1, . . . , am : T q “ Iwspa1, . . . , ai´1, ai`1, . . . , am : T q (5.18)

(subset invariance)

3. Iwspa : T q “ IpaC : T |aq (self-synergy) (5.19)

where aC refers to the complement of a. The first two conditions allow us to
restrict the weak synergy to the set of antichains. Although this time we can exclude
the antichains tu and tt1, . . . , nuu. The reason why the full set does not have to
be included is that there is no information atom which is not contained in the
information provided by the full set of sources. Accordingly, its weak synergy must
be zero. Instead, the set containing the empty set ttuu has to be included. The
information not available if we do not know any source is of course all of the
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information in the sources. We refer to the domain of Iws by S. The system of self-
synergy equations ensures that the resulting PID satisfies the consistency equation.
This is because due to the chain rule for mutual information the conditions

Ipa : T q “
ÿ

fpaq“1
Πpfq and IpaC : T |aq “

ÿ

fpaq“0
Πpfq (5.20)

are equivalent.

The relation between weak synergy and information atoms can be rewritten in
terms of the ordering on parthood distributions. It is convenient to first turn this
lattice upside-down so that the more easily accessible atoms are at the top, i.e.
we are considering pB,Ěq. By construction, the weak synergy of an antichain
α “ ta1, . . . ,amu is equal to all atoms that such that fpaiq “ 0 for all i “ 1, . . . ,m.
But these atoms are precisely the atoms associated with parthood distributions below
and including the parthood distribution f̃α that assigns the value zero to exactly all
of the ai and their subsets (in the upside-down parthood lattice):

Iwspα : T q “
ÿ

gĚf̃α

Πpgq (5.21)

All atoms further down in the ordering necessarily also assign the value zero to all
ai and additionally to some other collections as well (i.e. they are even harder to
access). This computation is illustrated in Figure 5.3. What we can see from these
considerations is that, just like the redundancies, the weak synergies are nested. The
mapping αÑ f̃α induces a lattice pS,ĺ1q of antichains that describes this nesting.
The ordering is given by

α ĺ1 β ô f̃α Ě g̃β (5.22)

We will refer to this lattice as the synergy lattice. Weak synergies further down in this
ordering are contained in synergies higher up. Just like the redundancy ordering, the
synergy ordering on antichains also first appeared in a purely order-theoretic work
[114] (written in a different but equivalent form). In the context of synergy-based
PID it has been utilized by [119] (as “extended constraint lattice”), by [135] (as
“information loss lattice”), and most recently by [130] (as "pooling-based lattice").
See Section 5.6 for a discussion of the relation between these approaches and the
mereological approach presented here.

By construction the mapping α Ñ f̃α is an isomorphism between the parthood
lattice pB,Ďq and the synergy lattice pS,ĺ1q. The inverse is given by

f Ñ α̃f “ ta|fpa “ 0q & ␣Db Ă afpbq “ 0u (5.23)
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In other words, α̃f consists of the maximal sets a such that fpaq “ 0. Using this
isomorphism and the conventions Iwspf : T q :“ Iwspα̃f q and Πpαq :“ Πpf̃αq one can
rewrite the relation between weak synergies and atoms as Moebius-Inversions over
the parthood and synergy lattices respectively:

Iwspf : T q “
ÿ

gĚf

Πpgq Iwspα : T q “
ÿ

αĺ1β

Πpβq (5.24)

These relations can be inverted once a measure of weak-synergy is specified. We
can see here that the construction of weak-synergy-based PIDs proceeds along the
same lines as redundancy-based PID. The only difference is that the nesting of weak
synergies is described by a different lattice structure. It is important to note that the
intended interpretation of the information atoms Πpfq remains exactly the same no
matter if the PID is induced by a redundancy measure or a weak synergy measure.
They still quantify the information that stands in the parthood relations described
by f .

Before we proceed to discuss how redundancy and weak synergy are special cases
of a more general construction of PID base-concepts, we would like to consider an
important interpretative point. Note that the formula on the right in (5.24) uses
a different way to associate information atoms with antichains that the one used
conventionally in the PID literature. In the standard way each information atom
is associated with an antichain α in the redundancy lattice via the isomorphism
f Ñ αf we considered in Section 5.2. Given such an antichain α “ ta1, . . . ,amu the
associated information atom Πpαq is the one which is part of the mutual information
provided by any ai and any superset thereof while it is not part of the mutual
information provided by any other collection. In other words, the antichain tells us
what the information atom is part of – leaving it implicit what it is not part of. For
instance, the atom Πpt1uq is the information uniquely contained in the first source.
But there is also an alternative way that uses the synergy related isomorphism
f Ñ α̃f , associating each atom with an antichain in the synergy lattice. Here the
antichain tells us what the corresponding information atom is not part of – leaving it
implicit what it is part of. In this interpretation the information atom Π̃pαq is not
part of the mutual information provided by any ai and any subset thereof while it is
part of the information provided by any other collection. Accordingly, the unique
information of the first source is Π̃pt1, . . . , nuzt1uq in this notation. It is of course
straightforward to convert the two notations by composing the two mappings:

Π̃pαq “ Πpβf̃α
q Πpαq “ Π̃pβ̃fαq (5.25)
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It is merely a matter of convenience which notation is used. However, when it comes
to the interpretation of the information atoms it is important to be clear on this
point.

Fig. 5.3: a) Parthood and synergy lattices for n “ 3 sources. There is an isomorphism
between the lattices such that the weak synergy associated with a node in the
synergy lattice is equal to the sum of atoms associated with parthood distributions
above and including the corresponding node in the parthood lattice. This is shown
for the antichain t2ut1, 3u. Note that we adhere to the standard convention of
omitting the outermost brackets of the antichains. b) Mereological information
diagrams depicting the different synergy terms.

5.4 The logical organization of PID base-concepts

The construction of weak synergy and redundancy suggests a more general scheme
for defining composite information measures. This construction defines the infor-
mation associated with an antichain α in terms of sufficient, necessary, insufficient
or unnecessary conditions on parthood or non-parthood with respect to either sub-
sets or supersets of the a P α. In the case of weak synergy, we are asking for all
information such that it is a sufficient condition for an atom to be included in this
information that it is not part of the information provided by any subset of the a P α.
We can rewrite the parthood condition of weak synergy (i.e. the condition f has to
satisfy so that Πpfq is included in the weak synergy associated with α) to make this
more explicit. Setting rns “ t1, . . . , nu:

@ b Ď rns : D a P α b Ď a Ñ fpbq “ 0 (5.26)

5.4 The logical organization of PID base-concepts 169



which picks out exactly the same information atoms for each α as the condition
@ a P α : fpaq “ 0. Similarly, in the case of redundant information we are asking
for all information such that it is a sufficient condition for an atom to be included
in this information that it is part of the information provided by any superset of the
a P α:

@ b Ď rns : D a P α b Ě a Ñ fpbq “ 1 (5.27)

which picks out the same atoms as @ a P α : fpaq “ 1. In total the logical construction
allows 16 possibilities. Before studying them in detail we would like to introduce a
notion which will turn out to be very useful in the subsequent analysis.

Definition 4 (Partner measure). Let A˚,A˚˚ Ď A. Two information measures I˚ :
A˚ Ñ R and I˚˚ : A˚˚ Ñ R are partner measures just in case there is a bijective
mapping φ : A˚ Ñ A˚˚ such that I˚pα : T q “ I˚˚pφpαq : T q@α P A˚.

where A is the set of all antichains of the partial order prns,Ďq, i.e. including both
ttuu and tt1, . . . , nuu as well as the empty set tu.

Partner measures quantify the same kind of information but viewed from the perspec-
tive of different collections. An example would be weak synergy and the "restricted
information" we introduced in [132]. The information we cannot get from any
individual a P α (weak synergy) is exactly the information we can only get from
other collections (i.e. the information restricted to these other collections), where
the “other” collections are all non-subsets of the a P α. This is illustrated in the
top right corner of Figure 5.4. In the following, we will be interested specifically in
partner measures with respect to the following two mappings between antichains

α ÞÝÑ ᾱ “ min
Ď
ptb P rns | ␣D a P α : b Ď auq (5.28)

α ÞÝÑ α “ max
Ď
ptb P rns | ␣D a P α : b Ě auq (5.29)

The first mapping collects the minimal non-subsets of the collections in α and the
second one collects all the maximal non-supersets of these collections. Restricted
information is a partner measure of weak synergy with respect to the first of the
two mappings. Because the two mappings are inverses of each other (for proof see
5.8.1), weak synergy is a partner measure of restricted information with respect to
the second mapping. Figure 5.5 shows the two mappings for n “ 2.

Let us now consider all the possible cases of the general construction of information
measures described above:
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Fig. 5.4: Intuitive interpretation of partner measures in the case n “ 2. Top left: redundant
information and its partner measure. The information which is redundant to
both sources, IXpt1ut2u : T q, is the information that we can only not get if
we do not know any source, i.e. IXptu : T q. Top right: weak synergy and its
partner measure. The information we cannot get from either source individually,
Iwspt1ut2u : T q, is the information we can only get if we know both sources at
the same time, i.e. the information restricted to the full set of sources Irespt1, 2u :
T q “ Iwspt1, 2u : T q. Bottom left: union information and its partner measure.
The union information, IYpt1u, t2u : T q, is the information we cannot fail to get
from both individual sources. Or in other words, it is all information we can get
from at least one individual source. This can equivalently be described as the
information, IYpt1, 2u : T q, we cannot only get if we know both sources, i.e. for
each component of the union information there is a way to access it that does
not require full knowledge of both sources. Bottom right: vulnerable information
and its partner measure. The vulnerable information, Ivulpt1ut2u : T q, is all
information we cannot get from both sources. This means that for each component
of the vulnerable information there is a scenario in which we fail to obtain it other
than the scenario in which we do not know any of the sources. Therefore, it is the
information we cannot only not get from the empty set of sources, i.e. Ivulptu : T q.

Sufficient Conditions There are four conditions saying that being a subset/superset
of some collection a P α is sufficient for parthood/non-parthood:

@b Ď rns : Da P α b Ě a Ñ fpbq “ 1 @b Ď rns : Da P α b Ď a Ñ fpbq “ 0 (5.30)

@b Ď rns : Da P α b Ď a Ñ fpbq “ 1 @b Ď rns : Da P α b Ě a Ñ fpbq “ 0 (5.31)

We already discussed the first two conditions above. They correspond to redundancy
and weak synergy respectively. The second two conditions are trivial. The first
one because all parthood distributions satisfy fptuq “ 0. Thus, there is always a
b for which the antecedent is true while the consequent is false. Accordingly, no
information is included in the information described by the condition. Phrased
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Fig. 5.5: Mappings 5.28 and 5.29 for n “ 2. Antichains α P A (middle column) are mapped
to either α P A (left column) or α P A (right column).

differently, it is never sufficient for an information atom to be part of Ipb : T q that b
is a subset of some a P α. Analogously, the second condition does not include any
information atom because we always have fpt1, . . . , nuq “ 1. It is never sufficient
for an information not to be part of Ipb : T q that b is a superset of some a P α.

Necessary Conditions The following conditions express that being a subset/super-
set of some a P α is necessary for parthood/non-parthood:

@b Ď rns : ␣Da P α b Ě a Ñ fpbq “ 1 @b Ď rns : ␣Da P α b Ď a Ñ fpbq “ 1 (5.32)

@b Ď rns : ␣D a P α b Ě a Ñ fpbq “ 0 @b Ď rns : ␣Da P α b Ď a Ñ fpbq “ 0 (5.33)

The first condition in 5.32 says that being a superset of some a P α is necessary
for non-parthood, i.e. in order for an atom to not be part of Ipb : T q it must be the
case that b is a superset of some a P α. But this is never true. There is always a
non-superset satisfying fpbq “ 0, namely b “ tu. Accordingly, the condition picks
out none of the information atoms with the sole exception of the antichain α “ ttuu.
Here it trivially picks out all atoms.

The second condition in 5.32 is the partner measure of redundancy IX because from
the perspective of the a P α the non-subsets are exactly the a P α and their supersets
so that IXpα : T q “ IXpα : T q. It says that being a subset of some a P α is necessary
for non-parthood. Accordingly, the information picked out by the condition must be
redundant with respect to all non-subsets of the collections at which IX is evaluated.
For an illustration see the top left corner of Figure 5.4.
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In 5.33, the first condition describes the partner measure of weak synergy Iws

because from the perspective of the a P α the non-supersets are exactly the a P α
and their subsets so that Iwspα : T q “ Iwspα : T q. It says that being a superset of
some a P α is necessary for parthood, i.e. it captures information that may only be
contained in the collections at which it is evaluated and their supersets. This is the
restricted information discussed above (see also top right corner of Figure 5.4).

The second condition in 5.33 says that being a subset of some a P α is necessary
for parthood. But this is never the case. There is always a non-subset satisfying
fpbq “ 1, namely b “ t1, . . . , nu. Accordingly, the condition picks out none of the
information atoms with the sole exception of the antichain α “ tt1, . . . , nuu where
it trivially picks out all atoms.

Insufficient Conditions The conditions expressing that being a subset/superset of
some a P α is insufficient for parthood/non-parthood are

␣p@b Ď rns : Da P α b Ě a Ñ fpbq “ 1q ␣p@b Ď rns : Da P α b Ď a Ñ fpbq “ 1q (5.34)

␣p@b Ď rns : Da P α b Ě a Ñ fpbq “ 0q ␣p@b Ď rns : Da P α b Ď a Ñ fpbq “ 0q (5.35)

The first condition in (5.34) leads to a measure of information that has not been
described in the literature before. Intuitively, it describes the “the information we do
not get from at least one a P α”. One might call this vulnerable information because
it is not completely redundant with respect to the a P α and hence may be lost if
we loose access to some of these collections (or is not contained in any of them in
the first place). It is the complement of the redundancy. The second condition in
(5.34) is trivial. It includes all atoms because there is always a subset of the b P α
for which fpbq “ 0, namely b “ tu. Similarly, the first condition in (5.35) includes
all atoms because there is always a superset of the b P α for which fpbq “ 1, namely
b “ t1, . . . , nu. The second condition in (5.35) describes the union information, i.e.
the information we can obtain from at least one a P α.

Unnecessary Conditions Finally, there are four conditions saying that being a
subset/superset of some a P α is unnecessary for parthood/non-parthood:

␣p@b Ď rns : ␣Da P α b Ě a Ñ fpbq “ 1q ␣p@b Ď rns : ␣Da P α b Ď a Ñ fpbq “ 1q (5.36)

␣p@b Ď rns : ␣D a P α b Ě a Ñ fpbq “ 0q ␣p@b Ď rns : ␣Da P α b Ď a Ñ fpbq “ 0q (5.37)

The first condition in 5.36 is trivial. It says that being a superset of some a P α is not
necessary for non-parthood. But this is true for all antichains and information atoms
because there always a non-superset for which pfpbqq “ 0, namely b “ tu. The only
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exception is α “ ttuu for which the condition trivially picks out no information atom.
The second condition in 5.36 is the partner measure Ivul of vulnerable information
because from the perspective of α the non-subsets are exactly the a P α and their
supersets so that Ivulpα : T q “ Ivulpα : T q. For an intuitive description of vulnerable
information and its partner measure see the bottom right corner of Figure 5.4.

The first condition in 5.37 is the partner measure IY of union information because
from the perspective of α the non-supersets are exactly the a P α and their subsets
so that IYpα : T q “ IYpα : T q. For an intuitive description of union information and
its partner measure see the bottom left corner of Figure 5.4. The second condition
in 5.37 is trivial because it says that being a subset of some a P α is not necessary
for parthood. But this is true for all antichains and information atoms since there is
always a non-subset for which fpbq “ 1, namely b “ t1, . . . , nu. The only exception
is α “ tt1, . . . , nuu where the condition trivially picks out no atom.

So in total we obtain four pairs of partner measures as shown in Figure 5.6 for
the case n “ 2. The Figure also locates previous PID approaches within this scheme.
Thus far, there has been no proposal utilizing vulnerable information as a PID base-
concept. Furthermore, all proposals in the literature are based on IX, IY, or Iws

rather than their partner measures. Some comments are in order in particular about
the weak synergy quadrant: The measure of "synergistic disclosure" by Rosas et al
[119] is very close in spirit to what we have called weak synergy here but only leads
to a standard PID when it is modified appropriately. This is discussed in Section
5.6.1 below. The approach by Perrone & Ay [82] does not attempt to construct a PID
but rather a decomposition of joint mutual information into interactions of orders 1
to n. In the two-sources case this amounts to defining union information and the
synergy atom which is why we included it in parentheses.

Fig. 5.6: Scheme of four equivalence classes of partner measures. Previous PID approaches
are categorized in the appropriate quadrants.
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Before discussing the implied properties and associated lattices of the different
base-concepts we would like to briefly address a base-concept that we have not
considered so far: unique information. This has only been utilized in the two-
sources case [83, 128, 129]. However, we argued in [132] that one may generalize
the concept so that it becomes a base-concept in the general case as well. Given
collections of source variables α one may think of the unique information associated
with these collections as "the information contained in all of the a P α but nowhere
else". In other words, it consists of the information atoms Πpfq where fpbq “ 1 if
b Ě a for some a P α and fpbq “ 0 otherwise. There is only one such information
atom, namely the atom Πpfαq so that we have Iunqpα : T q “ Πpfαq “ Πpαq (see
Section 5.3.2 above for an explanation of this notation). Hence, a unique information
based PID amounts to defining the information atoms directly. Unique information
can also be described by a logical condition similar to the ones we discussed above.
It is captured by a sufficient and necessary condition with respect to parthood in
supersets of the ai:

@b Ď rns : Da P αb Ě a Ñ fpbq “ 1 & @b Ď rns : ␣D a P α b Ě a Ñ fpbq “ 0 (5.38)

This condition is the logical conjunction of the conditions for IX and Iws. It also has
a natural partner measure arising from the conjunction of the Iws and IX conditions
which amounts to a sufficient and necessary condition with respect to non-parthood
in subsets of the ai:

@b Ď rns : Da P α b Ď a Ñ fpbq “ 0 & @b Ď rns : ␣Da P α b Ď a Ñ fpbq “ 1 (5.39)

This describes the partner measure Iunq and can be interpreted as "the information
we do not get from any of the a P α but anywhere else". It satisfies Iunqpα : T q “
Πpf̃αq “ Π̃pαq (see Section 5.3.2 above for an explanation of this notation).

5.5 Properties and Lattices

Each of the information measures discussed in the previous section is associated with
a particular lattice (or semi-lattice) describing its nested structure (except of course
unique information since it is not nested and simply has to satisfy the consistency
equation 5.4). For redundancy and weak synergy these are the lattices pA,ĺq and
pS,ĺ1q as introduced in Section 5.2 and 5.3. Furthermore, each information measure
has a range of fundamental properties following from their characteristic parthood
conditions. For redundancy and weak synergy these are the above Equations 5.6-5.7
and 5.17-5.18, respectively. The corresponding lattices and properties of the other
base-concepts can be derived easily utilizing their relations to redundancy and weak
synergy as well as the mappings αÑ α and αÑ α.
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The redundancy partner IX: The domain of the IX is the image of A under αÑ α,
i.e. A “ Azttt1, . . . , nuu, tuu “ S. In order to find the ordering relation note that

IXpα : T q “
ÿ

gĎf̃α

Πpgq (5.40)

The left hand side expresses the information at most not contained in the a P α
and their subsets. But this is equal to the information atom Πpf̃αq, which is not
contained exactly in all a P α and subsets thereof, plus all information atoms further
down the parthood lattice, i.e. all more accessible atoms. Hence, the appropriate
ordering relation is the inverted weak synergy ordering (compare Equation 5.21
above) so that the lattice for IX is pS,ľ1q. In other words, using IX as a base-concept
amounts to performing an upwards Moebius-Inversion over the synergy lattice. IX

is symmetric, subset-invariant and satisfies the condition

IXprnszti1u, . . . , rnsztimu : T q “ Ipti1, . . . , imu : T q (5.41)

The weak synergy partner Iws “ Ires: Analogously, the domain of Iws is the image of
S under αÑ α, i.e. S “ Aztttuu, tuu “ A, equipped with the inverted redundancy
ordering because

Iwspα : T q “
ÿ

gĚfα

Πpgq (5.42)

The information at most contained in a superset of the a P α is equal to the
information atom Πpfαq which is contained exactly in all a P α and their supersets,
plus all information atoms further down the parthood lattice, i.e. all even less
accessible atoms. Hence, the nesting is described by the lattice pA,ľq. In other
words, using Iws as a base-concept amounts to performing an upwards Moebius-
Inversion over the redundancy lattice. Iws is symmetric, superset-invariant and
satisfies the condition

Iwspti1u, . . . , timu : T q “ Ipti1, . . . , imu : T |ti1, . . . , imuCq (5.43)

Union information and its partner: Since union information is the complement of
weak synergy, i.e. the atoms summed over to obtain the union information are
exactly the atoms not summed over to obtain the weak synergy and vice versa, the
nesting of union information terms must be described by the inverted weak synergy
ordering. There is one union information for every antichain in the synergy lattice
except for ttuu which captures all information if the weak synergy is applied to it and
hence captures no information if the union information is applied to it. Instead the
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antichain t1, . . . , nu is included because it captures no information with respect to
weak synergy and hence all information with respect to union information. Thus the
nesting of union information terms is described by the semi-lattice pA,ľ1q. It is not a
full lattice because it has multiple lowest elements. See Figure 5.7 for the case n “ 3.
The solution for the information atoms is not a Moebius-Inversion. The system of
equations is still invertible because it is merely an equivalence transformation of
the weak synergy system. Given a specific measure of union information I˚

Y the
solution for the information atoms is equal to their solution in the weak synergy
system where we set

I˚
wspa1, . . . ,am : T q :“ Ipt1, . . . , nu : T q ´ I˚

Ypa1, . . . ,am : T q (5.44)

Union information is symmetric, subset-invariant, and satisfies

IYpa : T q “ Ipa : T q (5.45)

The domain of the partner measure of union information IY is the image of A under
α Ñ α, i.e. A “ Aztttuu, tt1u, t2uuu which is not equal to any domain we have
considered before. Since it is the complement of restricted information Ires “ Iws, its
nesting is described by the semi-lattice pA,ĺq. IY is symmetric, superset-invariant
and satisfies

IYpti1u, . . . , timu : T q “ Ipti1, . . . , imu : T q (5.46)

Vulnerable information and its partner: Since vulnerable information is the com-
plement of redundancy the nesting of vulnerable information terms must be de-
scribed by the inverted redundancy ordering. Anologously to the the discussion
of union information we conclude that the domain of vulnerable information is
Azttu, t1, . . . , nuu “ S. Hence, the nesting of vulnerable information terms is de-
scribed by the semi-lattice pS,ľq. Again, the solution for the information atoms
does not have the structure of a Moebius-Inversion. See Figure 5.8 for the case
n “ 3. The underlying system of equations is an equivalence transformation of the
redundancy system and is therefore solvable. Given a specific measure of vulnerable
information I˚

vul the solution for the information atoms is equal to their solution in
the redundancy system where we set

I˚
Xpa1, . . . ,am : T q :“ Ipt1, . . . , nu : T q ´ I˚

vulpa1, . . . ,am : T q (5.47)
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Fig. 5.7: Left: Union information semi-lattice for n “ 3 sources. Right: Mereological
information diagrams depicting the different union information terms.

Vulnerable information is symmetric, superset-invariant, and satisfies

Ivulpa : T q “ IpaC : T |aq (5.48)

The partner of vulnerable information Ivul is defined on the domain

S “ Azttt1u, . . . , tnuu, tt1, . . . , nuuu (5.49)

which again is different from those we considered before. Since Ivul is the comple-
ment of IX its semi-lattice must be pS,ĺ1q. Ivul is symmetric, subset-invariant and
satisfies

Ivulprnszti1u, . . . , rnsztimu : T q “ Ipti1, . . . , imu
C : T |ti1, . . . , imuq (5.50)

Inclusion-Exclusion The logical conditions defining the different base-concepts
do not only entail their individual properties as discussed above. Since each of
them stands in an invertible relation to the information atoms, fixing one of them
automatically fixes the others as well. We would like to illustrate this for the base-
concepts of redundancy and union information. Based on their defining logical
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Fig. 5.8: Left: Vulnerable information semi-lattice for n “ 3 sources. Right: Mereological
information diagrams depicting the different vulnerable information terms.

conditions on parthood relations these base-concepts must stand in an inclusion-
exclusion relationship:

IYpa1, . . . , am : T q “
ÿ

1ďiďm

ÿ

fpaiq“1

Πpfq ´
ÿ

1ďiăjďm

ÿ

fpaiq“1
fpaj q“1

Πpfq `
ÿ

1ďiăjăkďm

ÿ

fpaiq“1
fpaj q“1
fpakq“1

Πpfq ´ . . .

“
ÿ

1ďiďm

IXpai : T q ´
ÿ

1ďiăjďm

IXpai, aj : T q `
ÿ

1ďiăjăkďm

IXpai, aj , ak : T q ´ . . .

To see why the first equation is true consider its first summand. It involves all the
information atoms that are part of at least one Ipai : T q. These are by construction
exactly the atoms making up the union information IYpa1, . . . ,am : T q. However,
some of these atoms are counted multiple times in the first summand. In particular,
if such an atom is part of k mutual information terms Ipai : T q, it will be counted k
times. So the remaining summands must make sure that each atom is only counted
exactly once. This is true for the following reason: take any information atom
Πpfq appearing in the first summand and assume it is part of k mutual information
terms Ipai : T q. It is counted k times by the first summand,

`

k
2
˘

times by the second
summand,

`

k
3
˘

times by the third one, and so on until the k-th summand which

counts it one time. So in total it is counted
k
ř

i“1
p´1qi`1`k

i

˘

“ 1 times, as desired.
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5.6 Relation to previous approaches

5.6.1 Modified Synergistic Disclosure

Rosas et al [119] recently introduced a well motivated measure of synergistic infor-
mation that is conceptually very similar to the notion of weak synergy introduced
in the previous section. The measure is based on the idea of synergistic observables.
Given an antichain α “ ta1, . . . ,amu an α-synergistic observable V is a univariate
random variable such that IpV : aiq “ 0 for i “ 1, . . . ,m. In other words, a synergis-
tic observable does not contain any information about an individual collection ai.
The synergy of source collections a1, . . . ,am is then defined as the supremum of the
information provided by synergistic observables that additionally satisfy the Markov
condition V ´ S ´ T :

ISDpα : T q “ sup
V is α´synergistic

V ´S´T

IpV : T q (5.51)

Intuitively, the Markov condition ensures that the information we are considering
is actually contained in the sources so that, once we know them, V does not yield
any additional information about the target. One may now introduce synergistic
disclosure atoms via a Moebius inversion over the synergy lattice (or, as Rosas et al
call it, the “extended constraint lattice”) [119]. However, the resulting decompo-
sition is not a standard PID because the consistency condition (5.4) is not satisfied.
This means that the atoms cannot be interpreted in terms of parthood relations with
respect to mutual information terms as described in Section 5.2. For example, we
do not obtain any atoms interpretable as unique or redundant information in the
case of two sources. This is because there are no two atoms in the decomposition
that would necessarily add up to IpS1 : T q. But if there were atoms interpretable
as the redundancy between the two sources and unique information of source 1
respectively, then these should always add up to IpS1 : T q (The same problem also
arises for IpS2 : T q).

In order to construct a standard PID out of the synergistic disclosure measure one
may however replace the self-disclosures with the appropriate conditional mutual
information terms to enforce the consistency condition (5.4) to be be satisfied. The
resulting modified synergistic disclosure measure is defined as:

IMSDpα : T q “

$

&

%

ISDpα : T q if |α| ě 2

IpT : aC
1 |a1q if |α| “ 1.

(5.52)
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5.6.2 Loss and Gain Lattices

In a 2017 paper Chicharro and Panzeri [135] introduced partial information decom-
positions based on what they call information gain and information loss lattices.
Structurally, these correspond to what we have here called redundancy lattices and
synergy lattices, respectively. And in fact, there is an intuitive way to understand
redundancy as an information gain and weak synergy as an information loss: sup-
pose that initially we do not have access to any information source. Now we get
access to at least one collection of sources a1, . . . ,am (we do not know which).
Then the information that we are guaranteed to gain should be exactly the redun-
dancy between the ai. Hence, any redundancy can be described as the guaranteed
information gain under such circumstances. Similarly, suppose that initially we
have access to all sources. Now we lose access to all except one of the collections
a1, . . . ,am (we do not know which). Then what we are left with will be exactly the
information contained in the remaining collection (which could be any of them) and
thus the information we are guaranteed to lose should be exactly the information not
contained in any individual ai, i.e. their weak synergy. Hence, any weak synergy
can be described as the guaranteed information loss under such circumstances.

Indeed, the information loss decomposition is structurally identical to the weak
synergy decomposition. It expresses a function of cumulative information loss as a
downwards sum over the lattice pS,ĺ1q. We would like to point out two differences
between the construction of Chicharro and Panzeri and the one presented here:
Firstly, we start the construction with a characterization of the components Π of
the mutual information decomposition. Composite information quantities such
as redundancy or synergy are introduced via their appropriate relation to these
components. The appropriate domains and lattices describing their nested structure
can be derived from these relations. By contrast the information gain (redundancy-
based) and information loss (synergy-based) decompositions are introduced as two
separate decompositions involving prima facie distinct sets of information atoms
∆I and ∆L [135]. These are implicitly defined via Moebius-Inversion over the
corresponding lattices. This raises the question of how these sets of components
are to be interpreted and what their relation should be [135]. Due to the different
construction these issues do not arise in the mereological approach. Secondly, in the
mereological approach redundancy- and synergy-based PID are just special cases of
a more general unifying principle allowing the construction of information decompo-
sitions in terms of a great variety of base-concepts as discussed in Section 5.4. These
base-concepts differ merely in their characteristic logical condition on parthood
distributions.
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5.7 Conclusion

We presented a general pattern of logical conditions on parthood relations that
captures all the PID base-concepts in the literature and that additionally leads to
similarly interpretable novel base-concepts. These include in particular the concept
of “vulnerable information”, i.e. information we cannot obtain from at least one of
the source collections at which it is evaluated. This concept may prove useful in a
data security context where it the amount of information at risk of being lost since it
is not entirely redundant. An interesting fact about vulnerable information is that its
nested structure is described only by a semi-lattice and that its underlying system of
equations does not have the structure of a Moebius-Inversion. This is how it differs
from redundancy or weak synergy. Nonetheless its relationship to the information
atoms is invertible and hence leads to a unique PID. The same applies to the concept
of union information.

Our construction also leads to “partner measures” for each of the PID base-concepts.
These describe the same components of the joint mutual information but from the
perspective of different antichains. Accordingly, two partner measures have different
domains and (semi-)lattices describing their nested structure. One insight to be
gained from this is that a synergy-based PID (in the form of its partner measure Iws)
is obtainable via an upwards Moebius-Inversion on the redundancy lattice while a
redundancy-based PID (in the form of its partner IX) can be obtained via an upwards
Moebius-Inversion over the synergy-lattice. Overall, the unifying analysis presented
here provides, on the one hand, more theoretical options for inducing PIDs that
might be particularly suitable for certain applications contexts and, on the other, it
lays the groundwork for detailed theoretical studies into the compatibility between
properties of different base-concepts as functions of the underlying joint distribution.
This latter point will be a particularly intriguing topic for future studies.

5.8 Appendix

5.8.1 Proof that the partner measure mappings are inverses of each
other

First note that the non-subsets of the a P α are exactly the supersets of the a P α,
i.e.

tb P rns : ␣Da P α : b Ď au “ tb P rns : Da P α : b Ě au (5.53)
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Suppose b P rns is an element of the LHS so that ␣Da P α : b Ď a and assume that
it is not contained in the RHS so that b is a non-superset of the a P α. But then b
must be a subset of some a P α since these are the maximal non-supersets of the
a P α. This contradicts our initial assumption. Hence, if b is in the LHS it must be in
the RHS.

Now suppose that b P rns is an element of the RHS, i.e. it is a superset of some
a P α and assume that it is not in the LHS because b is a subset of some a P α.
But then, since the a P α are the maximal non-supersets of the a P α, b must be a
non-superset of the a P α as well. Again this contradicts our initial assumption so
that if b is in the RHS it must be in the LHS.

Therefore we have,

pαq “ mintb P rns : ␣Da P α : b Ď au “ mintb P rns : Da P α : b Ě au “ α (5.54)
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Abstract

We describe how the recently introduced method of significant subgraph mining
can be employed as a useful tool in neural network comparison. It is applicable
whenever the goal is to compare two sets of unweighted graphs and to determine
differences in the processes that generate them. We provide an extension of the
method to dependent graph generating processes as they occur for example in within-
subject experimental designs. Furthermore, we present an extensive investigation
of the error-statistical properties of the method in simulation using Erdős-Rényi
models and in empirical data in order to derive practical recommendations for
the application of subgraph mining in neuroscience. In particular, we perform an
empirical power analysis for transfer entropy networks inferred from resting state
MEG data comparing autism spectrum patients with neurotypical controls. Finally,
we provide a python implementation as part of the openly available IDTxl toolbox.
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Author Summary

A key objective of neuroscientifc research is to determine how different parts of
the brain are connected. The end result of such investigations is always a graph
consisting of nodes corresponding to brain regions or nerve cells and edges between
the nodes indicating if they are connected or not. The connections may be structural
(an actual anatomical connection) but can also be functional – meaning that there is a
statistical dependency between the activity in one part of the brain and the activity in
another. A prime example of the latter type of connection would be the information
flow between brain areas. Differences in the patterns of connectivity are likely to
be responsible for and indicative of various neurological disorders such as autism
spectrum disorders. It is therefore important that efficient methods to detect such
differences are available. The key problem in developing methods for comparing
patterns of connectivity is that there is generally a vast number of different patterns
(it can easily exceed the number of stars in the milky way). In this paper we describe
how the recently developed method of significant subgraph mining accounts for this
problem and how it can be usefully employed in neuroscientific research.

6.1 Introduction

Comparing networks observed under two or more different conditions is a pervasive
problem in network science in general, and especially in neuroscience. A fundamen-
tal question in these cases is if the observed patterns or motifs in two samples of
networks differ solely due to chance or because of a genuine difference between
the conditions under investigation. For example, a researcher may ask if a certain
pattern of functional connections in a brain network reconstructed from magne-
toencephalography (MEG) data is more likely to occur in individuals with autism
spectrum disorder than in neurotypic controls, or whether an observed difference
in occurrence is solely due to chance. What makes this question difficult to answer
is the fact that the number of possible patterns in the network scales as 2l2 , with l
the number of network nodes, – leading to a formidable multiple comparison prob-
lem. Correcting for multiple comparisons with standard methods (e.g. Bonferroni)
typically leads to an enormous loss of power as these methods do not exploit the
particular properties of the network comparison problem.

By contrast, the recently developed Significant Subgraph Mining approach [38, 136]
efficiently solves the network-comparison problem while maintaining strict bounds
on type I error rates for between unit of observation designs. Within the landscape
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of graph theoretic methods in neuroscience the distinguishing features of subgraph
mining are, first, that it works with binary graphs, second, that it does not rely on
summary statistics such as average clustering, modularity, or degree distribution (for
review see for instance [137]), and third, that it is concerned with the statistical
differences between graph generating processes rather than the distance between
two individual graphs (for examples of such graph metrics see [138–140]). Subgraph
mining can be considered the most fine-grained method possible for the comparison
of binary networks in that it is in principle able to detect any statistical difference.

Here we describe how to adapt this method to the purposes of network neuroscience
and provide a detailed study of it’s error-statistical properties (family-wise error
rate and statistical power) in both simulation and empirical data. In particular, we
describe an extension of subgraph mining for within unit of observation designs that
was, to our best knowledge, not described in the literature before. Furthermore,
we utilize Erdős-Rényi networks as well as an empirical data set of transfer entropy
networks to investigate the behaviour of the method under different network sizes,
sample sizes, and connectivity patterns. Based on these analyses we discuss practical
recommendations for the application of subgraph mining in neuroscience. Finally,
we provide an openly available implementation of subgraph mining as part of
the python toolbox IDTxl (http://github.com/pwollstadt/IDTxl [103]). The
implementation readily deals with various different data structures encountered in
neuroscientific research. These include directed and undirected graphs, between
and within subject designs, as well as data with or without a temporal structure.

In the following section, we will explain the core ideas behind the original subgraph
mining method as introduced in [38, 136] putting an emphasis on concepts and
intuition, but also providing a rigorous mathematical exposition for reference. We
then turn to the extension for within-subject designs before presenting the simulation-
based and empirical investigation of subgraph mining.
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6.2 Background and Theory: The original Subgraph
Mining Method

Neural networks can usefully be described as graphs consisting of a set of nodes and
a set of edges connecting the nodes ([137]). The nodes represent specific parts of
the network such as individual neurons, clusters of neurons, or larger brain regions,
whereas the edges represent relationships between these parts. Depending on
whether the relationship of interest is symmetric (such as correlation) or asymmetric
(such as Transfer Entropy or Granger Causality) the network can be modelled as an
undirected or as a directed graph respectively. Once we have a decided upon an
appropriate graph theoretic description, we can apply it to networks measured in
two different experimental groups, resulting in two sets of graphs. In doing so, we
are essentially sampling from two independent graph-generating processes (see
Figure 6.1 for illustration).

Process 1

Process 2

Fig. 6.1: Illustration of two graph-generating processes. Each process consists of randomly
sampling individuals from a specific population and describing the neural activity
of these individuals as a graph. The population underlying process 1 is sampled
n1 times and the population underlying process 2 is sampled n2 times. The nodes
may correspond to different brain areas while the edges describe any directed
relationship between brain areas such as information transfer.

The key question is now if there are any significant differences between these two
sets. However, since graphs are complex objects it is not immediately obvious
how they should be compared. In principle, one may imagine numerous different
possibilities. For instance, comparing the average number of connections of a node
or the average number of steps it takes to get from one node to another. Instead of
relying on such summary statistics, however, one may also take a more fine-grained
approach by looking for differences with respect to any possible pattern, or more
technically subgraph, that may have been observed. Does a particular edge occur
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significantly more often in one group than in the other? What about particular
bi-directional connections? Or are there even more complex subgraphs -consisting
of many links- that are more frequently observed in one of the groups? Answering
such questions affords a particularly detailed description of the differences between
the two processes. Figure 6.2 shows examples of different subgraphs of a graph with
three edges.

Fig. 6.2: Illustration of subgraphs with one edge (left), two edges (middle), and three edges
(right) of a graph with three nodes.

The process of enumerating all subgraphs for which there is a significant difference
between the groups is called significant subgraph mining [136]. The goal is to
identify all subgraphs that are generated with different probabilities by the two
processes. The main difficulty underlying significant subgraph mining is that the
number of possible subgraphs grows extremely quickly with the number of nodes.
For a directed graph with seven nodes, it is already in the order of 1014. This not
only imposes runtime constraints but also leads to a severe multiple comparisons
problem. Performing a significance test for each potential subgraph and then
adjusting by the number of tests is not a viable option because the resulting test
will have an extremely poor statistical power. As will be detailed later, due to the
discreteness of the problem the power may even be exactly zero because p-values
low enough to reach significance can in principle not be achieved. In the following
sections we will describe the original (between-subjects) significant subgraph mining
method developed by [38, 136] by first setting up an appropriate probabilistic model,
explaining how to construct a significance test for a particular subgraph, and finally,
detailing two methods for solving the multiple comparisons problem.

Probabilistic Model

We are considering two independently sampled sets of directed graphs G1 and G2

describing, for instance, connections between brain regions in two experimental
groups. Each set contains one graph per subject in the corresponding group and
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we assume that the (fixed) sample sizes of each group are n1 “ |G1| and n2 “ |G2|.
All graphs are defined on the same set of nodes V “ t1, 2, ..., lu but may include
different sets of links (edges) E Ď V ˆ V . The graphs are assumed to have been
generated by two potentially different graph-generating processes. Each process can
be described by a random l ˆ l adjacency matrix of, possibly dependent, Bernoulli
random variables:

Xpkq “

»

—

—

—

—

–

X
pkq

11 X
pkq

12 ... X
pkq

1l

X
pkq

21 X
pkq

22 ... X
pkq

1l

... ... ... ...

X
pkq

l1 ... ... X
pkq

ll

fi

ffi

ffi

ffi

ffi

fl

(6.1)

where the superscript k “ 1, 2 indicates the group and

X
pkq

ij „ Bernpp
pkq

ij q, 1 ď i, j ď l (6.2)

Each of those variables tells us whether the corresponding link from node i to node j
is present ("1") or absent ("0"). A graph-generating process can be fully characterized
by the probabilities with which it generates possible subgraphs. Specifically, there
is one such probability for each possible graph G “ pV,EGq on the nodes under
consideration. The probability that G occurs as a subgraph of the generated graph
in group k is given by

π
pkq

G “ P

¨

˝

č

pi,jqPEG

tX
pkq

ij “ 1u

˛

‚ (6.3)

where pi, jq indicates an individual link from node i to node j. It is important to note
that πpkq

G denotes the the probability that all the edges of G are realized plus possibly
some additional edges. This is to be distinguished from the probability that exactly
the graph G is realized. In the following we will always refer to the probability
π

pkq

G as the subgraph probability of G. A graph generating process is completely
specified when all it’s subgraph probabilities are specified. So to sum up, we can
model the two sets of directed graphs G1 and G2 as realizations of two independent
graph generating processes Xp1q and Xp2q. Process Xp1q generates graphs according
to subgraph probabilities πp1q

G whereas the subgraph probabilities for process Xp2q

are given by πp2q

G . Based on this probabilistic model we may now proceed to test for
differences between the two processes.
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Testing Individual Subgraphs

Our goal now is to find those subgraphs G that are generated with different proba-
bilities by the two processes. If the two processes describe two distinct experimental
groups, this means that we are trying to identify subgraphs whose occurrence de-
pends on group membership. Thus, for each possible subgraph G, we are testing the
null hypothesis of equal subgraph probabilities, or equivalently, of independence of
subgraph occurrence from group membership

HG
0 : πp1q

G “ π
p2q

G (6.4)

against the alternative of unequal subgraph probabilities or dependence on group
membership

HG
1 : πp1q

G ‰ π
p2q

G (6.5)

In order to test such a null-hypothesis we have to compare how often the subgraph
G occurred in each group and determine if the observed difference could have
occurred by chance, i.e. if the probability of such a difference would be larger than
the significance level α under the null-hypothesis. The relevant data for this test can
be summarized in a 2ˆ 2 contingency table:

Subgraph G Occurrences Non-Occurrences Total

Group 1 f1pGq n1 ´ f1pGq n1

Group 2 f2pGq n2 ´ f2pGq n2

Total fpGq n´ fpGq n

where fipGq denotes the observed absolute frequency of subgraph G in Group i,
fpGq “ f1pGq ` f2pGq denotes the observed absolute frequency of G in the entire
data set, and n “ n1 ` n2 is the total sample size. In the following, we will
use FipGq and F pGq to denote the corresponding random absolute frequencies.
Given our model assumptions above, the numbers of occurrences in each group are
independent Binomial variables: On each of the n1 (or n2) independent trials there
is a fixed probability πp1q

G (or πp2q

G ) that the subgraph G occurs. This means that our
goal is to compare two independent Binomial proportions. This can be achieved
by utilizing Fisher’s exact test [38, 136] which has the advantage that it does not
require any minimum number of observations per cell in the contingency table.

The key idea underlying Fisher’s exact test is to condition on the total number of
occurrences fpGq. Specifically, the random variable F1pGq can be shown to follow a
hypergeometric distribution under the null-hypothesis and conditional on the total
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number of occurrences. In other words, if the null-hypothesis is true and given the
total number of occurrences, the n1 occurrences and non-occurrences of subgraph G
in Group 1 are assigned as if they were drawn randomly without replacement out
of an urn containing exactly fpGq occurrences and n´ fpGq non-occurrences (see
Figure 6.3). F1pGq can now be used as a test-statistic for the hypothesis test.

Since we are interested in differences between the graph generating processes in
either direction the appropriate test is a two-sided one. For a right-sided test of the
null-hypothesis against the alternative πp1q

G ą π
p2q

G the p-value can be computed as

NO
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Fig. 6.3: Comparing two Binomial proportions using Fisher’s exact test. Under the null-
hypothesis and conditional on the total number of occurrences of a subgraph,
the occurrences are distributed over the groups as if drawn at random without
replacement out of an urn containing one ball per subject. The balls are labelled
’O’ if the subgraph occurred in the corresponding subject and ’NO’ if it did not
occur. In the illustration n “ 20 (number of total measurements, balls), n1 “ 7
(number of measurements for group 1, black balls), and fpGq “ 12 (number of
occurences, balls with ’O’). The seven balls drawn for group 1 are shown to the
right of the urn. They include three occurrences and four non-occurrences. This
result would lead to an insignificant p-value of « 0.5

pR
G “

minpfpGq,n1q
ÿ

k“f1pGq

hyppk;N, fpGq, n1q (6.6)

summing up the probabilities of all possible values of f1pGq larger than or equal
to the one actually observed. Note that f1pGq cannot be larger than minpfpGq, n1q

because the number of occurrences in Group 1 can neither be larger than the sample
size n1 nor larger than the total number of occurrences fpGq. A left-sided p-value
can be constructed analogously. The two-sided test rejects the null-hypothesis just in
case the two-sided p-value

pG “ 2 ˚minppL
G, p

R
Gq (6.7)

is smaller than or equal to α .
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Multiple Comparisons

Since there may be a very large number of possible subgraphs to be tested we are
faced with a difficult multiple comparisons problem. For a directed graph with 7
nodes the number of possible subgraphs is already in the order of 1014. If we were to
use this number as a Bonferroni correction factor the testing procedure would have
an exceedingly low statistical power meaning that it would be almost impossible
to detect existing differences in subgraph probabilities. In the following, we will
describe two methods for solving the multiple comparisons problem: the Tarone
correction [141] and the Westfall-Young permutation procedure [142] which have
been used in the original exposition of significant subgraph mining by [38, 136].

Tarone’s Correction

The subgraph mining problem is discrete in the sense that there is only a finite
number of possible p-values. This fact can be exploited to drastically reduce the
correction factor. The key insight underlying the Tarone correction is that given
any total frequency fpGq of a particular subgraph G there is a minimum achievable
p-value which we will denote by p˚

G. Intuitively, this minimum achievable p-value
is reached if the fpGq occurrences are distributed as unevenly as possible over
the two groups. We may now introduce the notion of the set T pkq of α

k -testable
subgraphs:

T pkq “ tG Ď GC : p˚
G ď

α

k
u (6.8)

containing all subgraphs whose minimum achievable p-value is smaller than or
equal to α

k . Following Tarone, the number of elements of this set can be denoted
by mpkq “ |T pkq|. Tarone et al then showed that the smallest integer k such that
mpkq

k ď 1 is a valid correction factor in the sense that the probability of rejecting a
true null-hypothesis, the family-wise error rate (FWER) , is bounded by α [141].
Moreover, the family-wise error rate is controlled no matter which or how many
null-hypotheses are true (see Supporting Information for proof). This property is
called strong control. A slight improvement of this correction factor was proposed
by [143] (for details see Supporting Information). Figure 6.4 illustrates the concepts
of testable, untestable, and significant subgraphs.
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Fig. 6.4: Examples of 0.05-untestable, 0.05-testable, and significant subgraphs for a data
set consisting of 10 graphs per group (top panel). The fully connected graph
is untestable at level 0.05 because it only occurs twice in the data set (group 2
samples 8 and 9) leading to a minimum achievable p-value of « 0.47. The graph
shown on the bottom middle is testable at level 0.05 since it occurs 9 times in
total. This means that its minimum achievable p-value is « 0.0001. However,
it is not significant with an actual (uncorrected) p-value of « 0.37. The graph
shown on the bottom right reaches significance using Tarone’s correction factor
Kp0.05q “ 17. It occurs every time in group 2 but only once it group 1 which
results in a corrected p-value of « 0.02.

Westfall-Young Correction

The familiy-wise error rate with respect to a corrected significance level δ can be
expressed in terms of the cumulative distribution function of the smallest p-value
associated with a true null-hypothesis: the event that there is at least one false
positive is identical with the event that the smallest p-value associated with a true
null-hypothesis is smaller than δ. The same applies to the conditional family-wise
error rate given the total occurrences of each graph in the data set:

CFWERpδq “ P
ˆ

min
GPG0

pPGq ď δ|F “ f

˙

(6.9)

where G0 is the set of subgraphs for which the null is true and F is the vector of the
total occurrences of each subgraph. This means that if the correction factor is chosen
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as the α-quantile of the distribution in 6.9 the family-wise error rate is controlled.
The problem is that we cannot evaluate the required distribution because we don’t
know which hypotheses are true. The idea underlying the Westfall-Young correction
is to instead define the correction factor as the α-quantile of the distribution of
the minimal p-value across all subgraphs and under the complete null-hypothesis
(stating that all null hypotheses are true). This correction factor always provides
weak control of the FWER in the sense that the FWER is bounded by α under the
complete null-hypothesis (the issue of strong control is addressed in the Discussion
section). It can be estimated via permutation strategies. The procedure is as follows:
First, we may represent the entire data set by the following table

Subject Group G1 G2 ... Gm

1 0 0 1 ... 1

2 0 1 1 ... 1

... ... ... ... ... ...

n1 0 0 0 ... 1

n1 ` 1 1 1 1 ... 1

... ... ... ... ... ...

n1 ` n2 1 0 1 ... 1

The columns labelled Gi tell us if subgraph Gi was present or absent in the different
subjects (rows). The column labelled "Group" describes which group the different
subjects belong to. Under the complete null-hypothesis the group labels are arbi-
trarily exchangeable. This is because, given our independence assumptions, all the
observed graphs in the data set are independent and identically distributed samples
from the same underlying distribution in the complete null-case. The column of
group labels is now shuffled, reassigning the graphs in the data set to the two
groups. Based on this permuted data set we can recompute a p-value for each Gi

and determine the smallest of those p-values. Repeating this process many times
allows us to obtain a good estimate of the distribution of the smallest p-value under
the complete null-hypothesis. The Westfall-Young correction factor is then chosen as
the α-quantile of this permutation distribution. Since the number of permutations
grows very quickly with the total sample size, it is usually not possible to evaluate
all permutations. Instead, one has to consider a much smaller random sample of
permutations in order to obtain an approximation to the permutation distribution.
This procedure can be shown to be valid as long as the identity permutation (i.e. the
original data set) is always included [144].

This concludes our discussion of the original subgraph mining method. Figure
6.5 provides a schematic illustration of the essential steps. In the next section,
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we describe how the method can be extended to be applicable to within-subject
experimental designs which abound in neuroscience.

Fig. 6.5: Schematic illustration of significant subgraph mining. Note that for computational
efficiency various shortcuts can be employed. The figure describes conceptually
how significant subgraph mining works rather than it’s fastest possible implemen-
tation (see for example [38] for a fast algorithm implementing the Westfall-Young
correction).
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6.3 Extension to Within-Subject Designs

So far we have considered networks associated with subjects from two groups and
we assumed that the numbers of occurrences of a subgraph in the two groups
are independent of each other. However, there are many cases in which there is
only a single group of subjects and we are interested in how the networks differ
between two experimental conditions. Since the same subjects are measured in
both conditions, the independence assumption is not warranted anymore. Because
Fisher’s exact test assumes independence, the approach described above has to be
modified. In particular, in case of dependence, the null-distribution of the number
of occurrences in the first group / condition will in general not be a hypergeomet-
ric distribution potentially leading to inflated type I error rates in Fisher’s exact
test. An appropriate alternative is McNemars test for marginal homogeneity. It
essentially tests the same null-hypothesis as Fisher’s exact test, but is based on
a wider probabilistic model of the graph generating processes. In particular, the
independence assumption is relaxed allowing for dependencies between the two
experimental conditions: Whether a subgraph occurs in condition A in a particular
subject may affect the probability of its occurrence in condition B and vice versa.
Suppose we are observing n subjects in two conditions. We may denote the random
adjacency matrices corresponding the i-th subject in condition 1 and 2 by Xp1q

i and
Xp2q

i , respectively. Then the probabilistic model for the graph-generating processes
is:

˜

Xp1q

1
Xp2q

1

¸

,

˜

Xp1q

2
Xp2q

2

¸

, ... ,

˜

Xp1q
n

Xp2q
n

¸

i.i.d. (6.10)

For each subject there is an independent and identically distributed realization of the
two graph-generating processes. The two processes themselves may be dependent
since they describe the same subject being observed under two conditions. The
distributions of Xp1q

i and Xp2q

i are again determined by the subgraph probabilities
π

p1q

G and πp2q

G and for any particular G we would like to test the null-hypothesis:

HG
0 : πp1q

G “ π
p2q

G (6.11)

The idea underlying McNemar’s test is to divide the possible outcomes for each
subject into four different categories: 1) G occurred in both conditions, 2) G occurred
in neither condition, 3) G occurred in condition 1 but not in condition 2, 4) G
occurred in condition 2 but not in condition 1. The first two categories are called
concordant pairs and the latter two are called discordant pairs. The discordant pairs
are of particular interest because differences in subgraph probabilities between the
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two conditions will manifest themselves in the relative number of the two types of
discordant pairs: If πp1q

G ą π
p2q

G , then we would expect to observe the outcome ’G
occurred only in condition 1’ more frequently than the outcome ’G occurred only in
condition 2’. Conversely, if πp2q

G ą π
p1q

G , than we would expect to observe the latter
type of discordant pair more frequently. The frequency of any of the four categories
can be represented in a contingency table:

Condition 1 / Condition 2 Yes No Total

Yes Y G
11 Y G

10 F1pGq

No Y G
01 Y G

00 n - F1pGq

Total F2pGq n-F2pGq n

The variables Y G
11 , Y

G
11 , Y

G
21 , Y

G
22 are the counts of the four categories. The numbers

of occurrences in each condition F1pGq and F2pGq appear in the margins of the
contingency table. McNemar’s test uses the upper right entry, Y G

10 , as the test-
statistic. Conditional on the total number of discordant pairs, Y G

10 ` Y
G

01 , and under
the null-hypothesis, this test-statistic has a binomial distribution

Y G
10 | Y

G
10 ` Y

G
01 “ d

H0
„ Bin

ˆ

d,
1
2

˙

(6.12)

If there are exactly d discordant pairs and the probability of G is equal in both
conditions, then both types of discordant pairs (’only in condition 1’ or ’only in
condition 2’) occur independently with equal probabilities in each of the d subjects
where a discordant pair was observed. A two-sided test can be constructed in just
the same way as described above for the between-subjects case. First, we construct
right- and left-sided p-values as:

pL
G “

yG
10
ÿ

k“0
Bin

ˆ

k; d, 1
2

˙

pR
G “

d
ÿ

k“yG
10

Bin

ˆ

k; d, 1
2

˙

(6.13)

Then the two-sided p-value is

pG “ 2 ˚minppL
G, p

R
Gq (6.14)

Exactly like the Fisher’s test, McNemar’s test also has a minimal achievable p-value.
The only difference is that it is not a function of the total number of occurrences
in condition A, but a function of the number of discordant pairs. The Tarone
correction described above remains valid if Fisher’s exact test is simply replaced by
McNemar’s test. The Westfall-Young procedure requires some modifications because
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the permutation strategy described above is not valid anymore. The problem is
that, because of possible dependencies between the conditions, condition labels
are not arbitrarily exchangeable under the complete null-hypothesis. Instead we
have to take a more restricted approach and only exchange condition labels within
subjects. In doing so, we are not only keeping the total number of occurrences
F pGq constant for each subgraph, but also the total number of discordant pairs
DpGq. Accordingly, the theoretical Westfall-Young correction factor, estimated by the
modified permutation strategy, is the α-quantile of the conditional distribution of
the smallest p-value given F “ f and D “ d and under the complete null-hypothesis
(where F and D are the vectors of total occurrences and discordant pair counts for
all subgraphs).

6.4 Validation of Multiple Comparisons Correction
Methods using Erdős-Rényi Models

In this section we empirically investigate the family-wise error rate and statistical
power of the multiple comparison correction methods for significant subgraph mining
described above. In doing so we will utilize Erdős-Rényi models for generating
random graphs. In these models the edges occurs independently with some common
probability pi in each graph-generating process. This means that the subgraph
probability for a graph G “ pV,EGq in process i is pi raised to the number of edges
G consists of:

π
piq
G “ p

|EG|

i (6.15)

If pi is the same for both graph-generating processes (p1 “ p2), then the complete
null-hypothesis is satisfied. By contrast, if p is chosen differently for the two processes
(p1 ‰ p2), then the null-hypothesis of equal subgraph probabilities is violated for all
subgraphs, i.e. the complete alternative is satisfied. We used the former setting for
the purposes of FWER estimation and the latter for power analysis. Furthermore,
the two graph-generating processes were simulated independently of each other
which corresponds to the between-subjects case. Accordingly, Fisher’s exact test was
used throughout.

6.4 Validation of Multiple Comparisons Correction Methods using Erdős-
Rényi Models
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Family-Wise Error Rate

In order to empirically ascertain that the desired bound on the family-wise error
rate is maintained by the Tarone and Westfall-Young corrections in the subgraph
mining context, we performed a simulation study based on Erdős-Rényi models.
We tested sample sizes n “ 20, 30, 40, network sizes l “ 2, 4, 6, 8, 10, and connection
densities p = 0.1, 0.2, 0.3. For each combination of these values we carried out
1000 simulations and estimated the empirical FWER as the proportion of simulations
in which one or more significant subgraphs were identified. Figure 6.6 shows the
results of this analysis. The FWER is below the prespecified α “ 0.05 in all cases
for the Tarone and Bonferroni corrections and always within one standard error
of this value for the Westfall-Young correction. The Bonferroni correction is most
conservative. In fact, the FWER quickly drops to exactly zero since the Bonferroni-
corrected level is smaller than the smallest possible p-values. The Tarone-correction
reaches intermediate values of 0.1-0.3 while the Westfall-Young correction is always
closest the prespecified level and sometimes even reaches it.
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Fig. 6.6: Estimated family-wise error rates of Tarone, Westfall-Young, and Bonferroni correc-
tions based on 1000 simulations and different sample sizes, connection densities,
and network sizes. Error-bars represent one standard-error. The estimated FWER
never exceeded the desired FWER of α “ 0.05 (red horizontal line) by more than
one standard-error for all correction methods. In fact, it was always smaller than
0.05 except in three cases for the Westfall-Young correction (0.051, 0.052, and
0.055). The estimated FWERs of the three methods were always ordered in the
same way: The Bonferroni correction had the smallest estimated FWER (at most
0.014), followed by the Tarone correction (at most 0.028), and the Westfall-Young
correction (at most 0.055).
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Power

We now turn our attention to the statistical power of the multiple comparison cor-
rection methods, i.e. their ability to detect existing differences between subgraph
probabilities. Previous studies have used the empirical FWER as a proxy for sta-
tistical power [38, 136]. The rationale underlying this approach is that the more
conservative a method is (i.e. the more the actual FWER falls below the desired
significance level), the lower its statistical power. In the following we will take
a more direct approach and evaluate the performance of the methods under the
alternative hypothesis of unequal subgraph probabilities. Again we will utilize Erdős-
Rényi models, only now with different connection densities p1 ‰ p2 for the two
graph-generating processes. The question is: How many subgraphs are we able to
correctly identify as being generated with distinct probabilities by the two processes?
The answer to this question will not only depend on the multiple comparisons
correction used but also on the sample size, the network size, and the effect size.
The effect size for a particular subgraph G can be identified with the magnitude of
the difference of subgraph probabilities |πp1q

G ´ π
p2q

G |. The larger this difference, the
better the chances to detect the effect. In the following we will use the difference
between the connection densities p1 and p2 as a measure of the effect size for the
entire graph-generating processes.

In a simulation study we analyzed sample sizes n = 20, 30, 40. We set the probability
of individual links for the first graph-generating process to p1 “ 0.2. The second
process generated individual links with probability p2 “ 0.2` e, where e = 0.1, 0.2,
0.3. Since p1 and p2 are chosen smaller than or equal to 0.5, the effect sizes for
particular subgraphs are a decreasing function of the number of edges they consist
of. In other words, the difference is more pronounced for subgraphs consisting only
of few edges and can become very small for complex subgraphs. We considered
network sizes l “ 2, 4, 6, 8, 10. For each possible choice of n, e, and l we simulated
1000 data sets and applied significant subgraph mining with either Tarone, Westfall-
Young or Bonferroni correction. The number of permutations for the Westfall-Young
procedure was set to 10000 as recommended in previous studies [38]. The two
graph-generating processes were sampled independently (between subjects case)
and accordingly Fisher’s exact test was utilized. The results are shown in Figure
6.7.

As expected the average number of detected significant subgraphs is an increasing
function of both sample size and effect size. The relationship between detected
differences and number of nodes is less straightforward. Generally, there is an
increasing relationship, but there are a few exceptions. The likely explanation for

6.4 Validation of Multiple Comparisons Correction Methods using Erdős-
Rényi Models
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Fig. 6.7: Average number of significant subgraphs identified depending on correction
method, samples size, network size, and effect size. Error bars represent one
standard error. The number of identified subgraphs increases with sample size
(rows) and effect size (columns) for all correction methods.

this phenomenon is that there is a trade-off between two effects: on the one hand,
the larger the number of nodes the more differences there are to be detected. But
on the other hand, the larger the number of nodes the more severe the multiple
comparisons problem becomes which will negatively affect statistical power. For
some parameter settings this latter effect appears to be dominant. The most powerful
method is always the Westfall-Young correction followed by the Tarone correction.
The Bonferroni correction has the worst performance and its power quickly drops to
zero because the corrected threshold can in principle not be attained.

Generally, only a very small fraction of existing differences is detectable. Since
the graphs are generated by independently selecting possible links with a fixed
probability, the subgraph probability is a decreasing function of the number of links
a subgraph consists of. Complex subgraphs are quite unlikely to occur and will
therefore not be testable. Additionally, the difference between subgraph probabilities
π

p1q

G and πp2q

G decreases with increasing subgraph complexity making this difference
more difficult to detect. For instance, if e = 0.3, then the difference in subgraph
probabilities for subgraphs with 10 nodes is about 0.001. Accordingly, even with a
sample size of 40, only a small fraction of existing differences is detectable.
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Voxel ID Location
0 Cerebellum
1 Cerebellum
2 Lingual Gyrus / Cerebellum
3 Posterior Cingulate Cortex (PCC)
4 Precuneus
5 Supramarginal Gyrus
6 Precuneus

Tab. 6.1: Voxel IDs and corresponding brain regions

6.5 Empirical Power Analysis with Transfer Entropy
Networks

We applied the subgraph mining method to a data set of resting state MEG recordings
comparing 20 autism spectrum disorder patients to 20 neurotypical controls. The
details of the study are described in [40]. Here, seven voxels of interest were
identified based on differences in local active information storage; subsequently
timecourses of neural mass activity in these voxels were reconstructed by means
of a linear constraint minimum variance (LCMV) beamformer. The locations of the
voxels are shown in Table 6.1. We applied an iterative greedy method to identify
multivariate transfer entropy networks on these voxels ([36, 145]). This is at
present considered the best ([146]) means of measuring neural communication in
data (also called "communication dynamics" [147]). The goal of this method is to
find for each target voxel a set of source voxels such that 1) the total transfer entropy
from the sources to the target is maximized, and 2) each source provides significant
transfer entropy conditional on all other source voxels in the set. The outcome
of this procedure is one directed graph per subject where each link represents
significant information transfer from one voxel to another (conditional on the other
sources). Accordingly, we are in a setting in which subgraph mining is applicable.
The inferred transfer entropy graphs are shown in Figures 6.8, 6.9. Note that the
edges are labeled by numbers that represent the time lags at which information
transfer occurred. The parameters of the network inference algorithm were chosen
so that lags are always multiples of five. Since the sampling rate was 1200Hz this
corresponds to a lag increment of « 4ms. So the graph representation also contains
information about the temporal structure of information transfer and differences in
this structure can be detected by subgraph mining as well. For example, even if the
probability of detecting information transfer from voxel 0 to voxel 1 is the same in
both groups, this transfer may be more likely to occur at a time lag of 5 (« 4msq in

6.5 Empirical Power Analysis with Transfer Entropy Networks 203



the autism group whereas it may be more likely to occur at a time lag of 10 p« 8msq
in the control group.

Fig. 6.8: Transfer Entropy networks detected in autism spectrum group.
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Fig. 6.9: Transfer Entropy networks detected in control group.
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We applied subgraph mining with both Tarone and Westfall-Young correction to
this data set. No significant differences between the ASD group and control group
could be identified. Due to the rather small sample size, this result is not entirely
unexpected. For this reason, we performed an empirical power analysis in order
to obtain an estimate of how many subjects per group are required in order to
detect existing differences between the groups. This estimate may serve as a useful
guideline for future studies. The power analysis was performed in two ways: First,
by resampling links independently using their empirical marginal frequencies, and
second, by resampling from the empirical joint distribution, i.e. randomly drawing
networks from the original data sets with replacement.

Fig. 6.10: Results of empirical power analysis assuming independence of links. We simulated
sample sizes 20, 40, and 60 per group and carried out 400 simulations in each
setting. The histograms describe the fractions of simulations in which different
numbers of significant subgraphs were detected.

The results of the power analysis assuming independent links are shown in Figure
6.10. We simulated sample sizes 20, 40, and 60 per group and carried out 400
simulations for each setting. The first notable outcome is that the original data
are strikingly different from the results seen in independent sampling of links. In
particular, the number of testable graphs is far higher in the original data (1272)
than in the independently resampled data (28.7 on average and 55 at most). This
indicates strongly that the processes generating the networks in ASD patients as
well as controls do not generate links independently. Rather, there seem to be
dependencies between the links such that some links tend to occur together making it
more likely that subgraphs consisting of these links will reach testability. Accordingly,
in the case of independent resampling much larger sample sizes are needed in order
to detect the differences between the groups. Even in the n “ 60 per group setting
there were only 0.26 (Tarone) and 0.45 (Westfall-Young) significant subgraphs on
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average. There was no simulation in which more than three significant subgraphs
were detected.

The simulation results of the empirical power analysis based on the empirical joint
distribution are shown in Figure 6.11. Again we used sample sizes 20, 40 and 60.
The average number of testable subgraphs is in the same order of magnitude as
in the original data set for the n “ 20 setting (« 5200). Moreover, the number of
identified significant subgraphs is far greater than in independent sampling for all
sample sizes. The Westfall-Young correction identifies more subgraphs on average
than the Tarone correction: 17.41 compared to 0.86 for n “ 20, 202.20 compared to
14.88 for n “ 40, and 831,24 compared to 100.62 for n “ 60. The distributions are
always highly skewed with more probability mass on smaller values. This is reflected
in the median values also shown in the figure. For example, notwithstanding the
average value of 14.88 significant subgraphs in the n “ 40 setting with Tarone
correction, the empirical probability of not fining any significant subgraph is still
« 42%. For the Westfall-Young correction this probability is only « 1.8% in the
n “ 40 setting. In the n “ 60 setting both methods have high empirical probability
to detect significant differences. In fact, the Westfall-Young correction always found
at least one difference and the Tarone correction only failed to find differences
in 2.5% of simulations. The total number of detected differences can be in the
thousands in this setting.

Fig. 6.11: Results of empirical power analysis performed by sampling from the empirical
joint distribution. We simulated sample sizes 20, 40, and 60 per group and
carried out 400 simulations in each setting. The histograms describe the fractions
of simulations in which different numbers of significant subgraphs were detected.

Since in the n “ 60 setting both methods are likely to detect some of the existing
differences, we performed a subsequent analysis to narrow down the effect sizes
that can be detected in this case. For each possible effect size (any multiple of
0.05 up to 0.35) we enumerated all subgraphs with this effect size and calculated
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their empirical detection probabilities among the 400 simulations. In total there
were about 3.7 million subgraphs occurring with different empirical probabilities
in the two groups. Most of these (99.5%) are subgraphs that occur exactly once
in the entire data set. One important reason for this phenomenon is the following:
suppose a network contains a subgraph that occurs only once in the data set. Then
removing any other edges or combination of edges from the network will again
result in a subgraph that only occurs once in the data set. Consider for example the
last network in the second row in Figure 6.8. It contains a connection from node
6 to node 3 at a lag of 35 samples. This connection does not occur in any other
network. This means that if any combination of the other 18 links occurring in the
network is removed, the result will again be a uniquely occurring subgraph. There
are 218 “ 262144 possibilities for doing so in this case alone.

The averages of the empirical detection probabilities for each effect size are shown in
Figure 6.12 (upper plots). An interesting outcome is that the detection probability is
not a strictly increasing function of the effect size. Rather there is a slight drop from
effect sizes 0.25 to 0.3. Given the standard errors of the estimates this result might
still be explained by statistical fluctuation (the two standard error intervals slightly
overlap). However, in general this type of effect could also be real because the
effect size is not the only factor determining detection probability. This is illustrated
in Figure 6.12 (lower plots) which shows average detection probability over the
smaller of the two occurrence probabilities minpπp1

G , π
p2
G q. It turns out that the more

extreme this probability is, the more likely the effect is to be detected. The highest
detection probability is found if the empirical probability of occurrence is zero in
one of the groups. For this reason it can in fact be true that the detection probability
is on average higher for effect sizes of size 0.25 than 0.3, if the absolute occurrence
probabilities are more extreme in the former case. In the data analysed here this is in
fact the case: roughly half of the subgraphs with effect size 0.25 do have occurrence
probability zero in one of the groups whereas this is not true for any of the subgraphs
with effect size 0.3.
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Fig. 6.12: Upper plots: Average empirical detection probabilities for subgraphs with dif-
ferent effect sizes (i.e. the average is over all subgraphs with a certain effect
size and for each particular graph the detection probability is estimated as the
fraction of detection among the 400 simulations). Error bars are plus minus one
standard error. Standard errors were not calculated for effect size 0.05 due to
computational constraints. There are more than 3.7 million subgraphs with this
effect size meaning that in the order of 1012 detection covariances would have to
be computed. This is necessary because the detections of different subgraphs are
not independent. However, due to this large number of subgraphs, the standard
errors are bound to be exceedingly small in this case. Lower plots: dependence
of average detection probability on minimum of the two subgraph occurrence
probabilities for different effect sizes. Even subgraphs with the same effect size
have considerably different detection probabilities depending on how extreme
the absolute occurrence probabilities are.
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6.6 Discussion

What are the appropriate application cases for subgraph mining? A key feature
of significant subgraph mining that distinguishes it from other statistical methods
for graph comparisons is that it considers all possible differences between graph
generating processes. In other words, as soon as these processes differ in any way,
subgraph mining is guaranteed to detect these differences if the sample size is
large enough. This is in contrast to methods that only consider particular summary
statistics of the graph generating processes such as the average degree of a node.
Such methods are of course warranted if there is already a hypothesis about a
specific summary statistic. For example, [148] were specifically interested in the
entropy of the distribution of shortest paths from a given node to a randomly chosen
second node. In such a case, performing a statistical test with respect to the statistic
of interest is preferable over subgraph mining because the multiple comparisons
problem is avoided. This leads to a higher statistical power regarding the statistic
in question. On the other hand, the test will have a low power to detect other
differences between the processes. There are also well known methods such as
the network-based statistic (NBS) developed by [149] operating on a more fine-
grained level than summary statistic approaches. NBS aims to identify significant
differences with respect to certain "connected components" of links. Thus, in terms
of localizing resolution it is in between a summary statistic analysis and a full
link-by-link comparison. Again, there is a trade-off here between statistical power
with respect to certain features of the graph generating processes on the one hand,
and resolution on the other. Compared to a method specifically tailored towards
a particular summary statistic, the NBS will likely be less powerful. But due to its
higher localizing resolution it will be able to detect differences towards which the
summary statistic is blind.

Subgraph mining is on the far end of localizing resolution when it comes to com-
paring binary graph generating processes (by contrast NBS works with weighted
graphs). Even if the two processes generate any individual link with the same prob-
ability there may be differences in terms of dependencies or interactions between
link occurrences. These will be reflected in different subgraph probabilities for more
complex subgraphs and subgraph mining is guaranteed to detect these differences
given a sufficiently large sample. Of course, this comes at the price of having to deal
with a very severe multiple comparisons problem. However, it would not be correct
to say that for this reason subgraph mining has lower statistical power than more
coarse-grained alternatives. Rather one should say that increasing the localizing
resolution will always come at the price of a lower statistical power with respect
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to certain differences but at the same time it will increase statistical power with
respect to those differences that are only visible at the higher resolution. Given it’s
extremely high resolution we propose that subgraph mining should be the method of
choice if no hypothesis about some specific difference between the graph generating
processes is available so that no custom-tailored tests of those difference can be
applied. In such a case subgraph mining can be utilized to systematically explore
the entire search space of all possible differences.

What are the requirements on sample size? The appropriate sample size depends
primarily on the kinds of effect sizes one seeks to be able to detect. Our empirical
power analysis of the MEG data set discussed in the previous section suggests that in
similar studies a sample size of about 60 is sufficient to have a very high probability
to detect at least some of the existing differences. We carried out an additional
analysis in order to narrow down the effect sizes likely to be detected at this sample
size. This analysis showed that the largest effect sizes occurring in the empirical
joint distribution (« 0.35 difference in probability of occurrence) had a detection
probability of « 0.4 on average using the Tarone correction and « 0.6 on average
using the Westfall-Young correction. This means that for a particular graph with
a certain effect size the probability of detecting it is not extremely high. However,
since there is generally a large number of such graphs there is a high probability
of detecting at least some of them. Our analysis also showed that the effect size,
understood as the difference in probability of occurrence of a subgraph between
the groups, is not the only factor determining statistical power. Even graphs with
the same effect size can have different probabilities of detection depending on how
extreme the absolute probabilities of occurrence are. The detection probability is
particularly high if the occurrence probability of a subgraph is close to zero in one
of the groups. By symmetry we also expect this to be the case if it is close to one.

A possible way to reduce the amount of data required is to restrict the subgraph
mining to subgraphs up to a prespecified complexity . For example, one could perform
subgraph mining for all possible subgraphs consisting of up to three links. The
validity of the method is not affected by this restriction. However, the search
space is reduced and hence the multiple comparisons problem becomes less severe.
In applying subgraph mining in this way it is important to pre-specify the desired
complexity. Otherwise, we would run into yet another multiple comparisons problem.
Consider the MEG data set presented in the previous section. Upon not detecting any
differences with the full subgraph mining algorithm which considers all subgraphs on
the seven nodes in our networks, one could check for differences among subgraphs
consisting of at most six nodes. If nothing is found here either, we could move on to
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five nodes and so forth until we are down to a single link comparison. However, this
approach would not be valid because the individual links are essentially given seven
chances to become significant so that our bounds on the family-wise error rate do
not hold anymore.

What are the computational costs of subgraph mining? Besides the required sam-
ple size another factor for the applicability of subgraph mining is the computation
time. The number of possible subgraphs can very easily be large enough that it
becomes impossible to carry out a test for each one of them. Of course, the main
idea behind the multiple comparisons methods presented here is that a large num-
ber of subgraphs can be ignored because they do not occur often enough or too
often to be testable. For how many subgraphs this is true depends in particular
on the connection density of the graphs. Generally, the computational load be will
greater, the more nodes the graphs consist of and the more densely these nodes
are connected. However, if the graphs are extremely densely connected one could
revert to the negative versions of the graphs which would in this case be very loosely
connected.

We provide a python implementation of significant subgraph mining as part of the
IDTxl toolbox http://github.com/pwollstadt/IDTxl [103]. It offers both Tarone
(with or without Hommel improvement) and Westfall-Young corrections. The latter is
implemented utilizing the "Westfall-Young light" algorithm developed by [38] which
we also adapted for within-subject designs. Details on the computational complexity
can be found in this reference as well. The algorithm performs computations across
permutations and achieves substantially better runtimes than a naive permutation-
by-permutation approach. Our implementation is usable for both between-subjects
and within-subject designs and allows the user to specify the desired complexity of
graphs up to which subgraph mining is to be performed (see previous paragraph). It
is also able to take into account the temporal network structure as described in the
application to transfer entropy networks.

Which multiple comparisons correction method should be used? The choice be-
tween the two multiple comparison correction methods is a matter of statistical
power on the one hand and a matter of false-positive control guarantees on the other.
Regarding power, the Westfall-Young correction clearly outperforms the Tarone cor-
rection. Regarding false-positive control the situation is more complicated: whereas
the Tarone correction is proven to control the family-wise error rate in the strong
sense, the Westfall-Young procedure in general only provides weak control (see
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[142]). There is, however, a sufficent (but not necessary) condition for strong
control of the Westfall-Young procedure called subset pivotality. Formally, a vector
of p-values P “ pP1, P2, ..., Pmq has subset pivotality if and only if for any subset of
indices K Ď t1, 2, ...,mu the joint distribution of the subvector PK “ tPi|i P Ku is
the same under the restrictions

Ş

iPK H0i and
Ş

iPt1,...,mu H0i [142, 150]. In the sub-
graph mining context this means that the joint distribution of p-values corresponding
to subgraphs for which the null-hypothesis is in fact true remains unchanged in the
(possibly counterfactual) scenario that the null-hypothesis is true for all subgraphs. It
has been stated in the literature that the subset pivotality condition is not particularly
restrictive and holds under quite minimal assumptions [151]. However, to the best
of our knowledge, it has not yet been formally established in the subgraph mining
context. A future study addressing this issue would therefore be highly desirable.

Just to clarify the practical role of the distinction between weak and strong control:
weak-control does not allow a localization of differences between graph generating
processes. It only warrants the conclusion that there must be some difference. The
reason is essentially the same as the reason why it is not warranted to reject a
null-hypotheses if it’s p-value has not been corrected for multiple comparisons at
all. Suppose we perform 20 tests at level 0.05 and a particular null hypothesis,
say the fifth one, turns out to reach significance. If we did not correct for multiple
comparisons, it would be a mistake to reject the fifth hypothesis because there is a
plausible alternative explanation for why it reached significance: because we did not
control for having performed twenty tests, it was to be expected that we would see
at least one hypothesis rejected and it just happened to be the fifth one. Similarly, if
we only have weak control of the FWER and a particular subgraph, say G5, reaches
significance, then it would be a mistake to conclude that G5 is actually generated
with different probabilities by the two processes. The alternative explanation is that
our false positive probabilities are not controlled under the actual scenario (the
ground truth) and G5 simply happened to turn out significant. The only scenario
that weak control does rule out (and this is how it differs from not controlling at
all) is the one where all null-hypotheses are true, i.e. the one where the two graph
generating processes are identical.
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6.7 Conclusion

Significant subgraph mining is a useful method for neural network comparison espe-
cially if the goal is to explore the entire range of possible differences between graph
generating processes. The theoretical capability to detect any existing stochastic dif-
ference is what distinguishes subgraph mining from other network comparison tools.
Based on our empirical power analysis of transfer entropy networks reconstructed
from an MEG data set we suggest to use a sample size of at least 60 subjects per
group in similar studies. The demand on sample size and computational resources
can be reduced by carrying out subgraph mining only up to a prespecified subgraph
complexity or by reverting to the negative versions of the networks under consid-
eration. The method can also be used for dependent graph generating processes
arising in within-subject designs when the individual hypothesis tests and multiple
comparisons correction methods are appropriately adapted. We provide a full python
implementation as part of the IDTxl toolbox that includes these functionalities.

6.8 Supporting Information

6.8.1 Proof of validity of Tarone’s correction factor

The validity of the Tarone correction factor Kpαq can be seen as follows: Let
G0 denote the set of subgraphs for which the null hypothesis of equal subgraph
probabilities is true and let T0pkq “ tG P G0|p

˚
G ď

α
k u be the subset of α

k -testable
subgraphs within G0. Furthermore, let m0pkq be the number of elements of this set,
i.e. the number of α

k -testable subgraphs for which the null-hypothesis is true. We
can now compute the conditional family-wise error rate for a correction factor k P N
given the observed total frequencies of each subgraph. These frequencies can be
interpreted as the realization of a random vector F containing one entry F pGq per
possible subgraph:

CFWER
´α

k

¯

“ P

˜

ď

GPG0

tpG ď
α

k
u | F “ f

¸

(6.16)

We only have to take the union over α
k -testable subgraphs because all other terms

have probability zero:

“ P

¨

˝

ď

GPT0pkq

tpG ď
α

k
u | F “ f

˛

‚ (6.17)
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Using Boole’s inequality (the "union bound"):

ď
ÿ

GPT0pkq

P
´

pG ď
α

k
| F “ f

¯

(6.18)

By construction of the p-value we have for any constant c P R` : P ppG ď c|F “ fq ď

c. This fact can be applied to each term in the above sum with c “ α
k :

ď
ÿ

GPT0pkq

α

k
(6.19)

The sum has m0pkq terms:

“ m0pkq
α

k
(6.20)

The number of testable subgraphs for which the null-hypothesis is true is smaller
than or equal to the total number of testable subgraphs:

ď mpkq
α

k
(6.21)

!
ď α (6.22)

For the final equation (6) to be valid it must be true that mpkq

k ď 1. In order to
maximize the power of the resulting test, the correction factor should be chosen
as small as possible. Hence, the appropriate choice is the smallest integer k such
that mpkq

k ď 1, i.e. Kpαq. Since the argument is valid for all possible observed total
frequencies, it is also valid for the unconditional FWER which is simply a weighted
average of the conditional FWERs:

FWER

ˆ

α

Kpαq

˙

“ P

˜

ď

GPG0

tpG ď
α

Kpαq
u

¸

(6.23)

“
ÿ

f

PpF “ fqP

˜

ď

GPG0

tpG ď
α

Kpαq
u | F “ f

¸

(6.24)

ď α
ÿ

f

PpF “ fq (6.25)

“ α (6.26)

It is important to note that this argument does not make any assumptions about
which or how many null-hypotheses are in fact true. The FWER is controlled in all
cases. This property is called strong control of the FWER.

6.8.2 Hommel Improvement of Tarone’s correction

The Tarone correction has been criticized on the basis that it is not α-consistent
[152]. This means that a null-hypothesis might not be rejected at level α even
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though it would have been rejected at an even smaller level δ ă α. However,
there is a simple modification proposed by [143] that makes the Tarone procedure
α-consistent and, maybe more importantly, also improves its statistical power. The
idea is to make the procedure α-consistent by definition, i.e. to reject HG

0 if the
standard Tarone procedure would reject or if there exists a level γ ă α such that the
standard Tarone procedure would reject:

Reject HG
0 if and only if there exists a γ, 0 ă γ ď α, such that pG ď

γ

Kpγq
(6.27)

This rule has to be at least as powerful as the standard Tarone procedure because
a null-hypothesis is rejected by the standard procedure it is also rejected by the
improved version. Additionally, there are cases in which the Hommel impovement
rejects but the standard Tarone procedure does not. Hommel presented a simple
algorithm to implement this idea which, in the subgraph mining context, can be
phrased as follows: First, we order all subgraphs in terms of their minimal achievable
p-values such that p˚

G1
ď p˚

G2
ď ... ď p˚

Gm
, where m “ 2l2 is the total number of

possible subgraphs. Then we define the rejection rule as:

Reject HG
0 if and only if either pG ď

α

Kpαq
or pG ă p˚

GKpαq
(6.28)

6.9 Acknowledgements

AG and MW are employed at the Göttingen-Campus Institute for Dynamics of Bio-
logical Networks (CIDBN) funded by the Volkswagen Stiftung. MW received support
from the Volkswagenstiftung under the programme ’Big Data in den Lebenswis-
senschaften’. This work was supported by a funding from the Ministry for Science
and Education of Lower Saxony and the Volkswagen Foundation through the “Nieder-
sächsisches Vorab”. MW received support from CRC 1193 C04 funded by the DFG.
We thank Lionel Barnett for helpful discussions on the topic.

6.10 Author contributions

Aaron Julian Gutknecht: Conceptualization; Formal analysis; Investigation; Method-
ology; Software; Validation; Visualization; Writing – original draft; Writing – review
& editing. Michael Wibral: Conceptualization; Data curation; Project administration;
Resources; Supervision; Writing – review & editing.

216 Chapter 6 Significant subgraph mining for neural network inference with mul-
tiple comparisons correction



General discussion 7
In the previous five chapters we have ventured from the statistics of linear infor-
mation flow, to the extension of information theory through Partial Information
Decomposition, to the theory of graph comparisons allowing us to find differences in
patterns of information flow. In the following section, we highlight the key insights
derived from this thesis and outline some immediate directions for future research.
Subsequently, in Section 7.2, we explore how the concept of information and the
specific approaches discussed in this thesis, relate to other important concepts in
the analysis of complex systems. The thesis concludes with some final remarks in
Section 7.3.

7.1 Key insights and future directions

7.1.1 Granger causality

In Chapter 2, we introduced the previously unknown asymptotic sampling distribu-
tions for ’single regression’ Granger causality estimators, both in the time domain
and for spectral Granger causality averaged over a frequency band of interest. These
estimators have a significant relevance in diverse fields such as econometrics and
neuroscience addressing notable shortcomings of the standard log-likelihood (’dual
regression’) estimators. The chapter yields the following key insights:
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Key insights Chapter 2

1. The asymptotic (large sample) sampling distribution of single regression
Granger causality estimators is a generalized χ2 distribution in both time
and (band-limited) frequency domains. The generalized χ2 distribution
is well approximated by a Γ distribution.

2. Valid significance tests can be constructed based on these distributions
by first projecting the estimated model parameters into the null-space
and then using the 1´ α quantile of the corresponding null-distribution
as a rejection cut-off.

3. The analytical method underpinning our main results, a multivariate
second-order Delta method, offers remarkable versatility and can be
used to derive sampling distributions in other important cases of interest
within Granger causality analysis.

We have provided analytical expressions for the parameters of the sampling dis-
tributions in the case of unconditional Granger causality for finite-order vector
auto-regressive (VAR) models. We also explored the error-statistical properties
(type I and statistical power) in this setting. Overall, the time-domain test offers
similar statistical power as a likelihood ratio test. Yet there are parameter regimes in
which one or the other test may be preferable. This offers the possibility to develop
improved "two-stage" tests where we first identify the parameter regime and then
select the most appropriate test for that specific regime. However, this possibility
has yet to be explored.

For technical reasons explained in the main chapter, the null-hypothesis of vanishing
Granger causality over a frequency band is in fact identical to the time-domain null-
hypothesis. However, the test based on the band-limited estimator offers insights
into the distribution of Granger causality over the frequency spectrum that the time-
domain test does not. This is due to a difference in the power profiles of the tests:
whereas the time-domain test is primarily concerned with the overall magnitude of
Granger causality, the band-limited test is selectively sensitive to the magnitude of
Granger causality within the frequency-band of interest.

Under specified conditions, our analytical method yields a generalized χ2 distribution
in a range of other important cases as well. While the discussion section elaborates
on various cases where our analytical method can be applied, two specific extensions
merit particular emphasis for future research. First, the extension to conditional
Granger causality, frequently used to evaluate pairwise Granger causality between
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nodes in a network while conditioning on all other nodes. Second, the extension to
general state-space models, which are equivalent to vector auto-regressive moving-
average (VARMA) models. This extension is very desirable because many real-world
data contain a strong moving-average component. In both of these cases, the
asymptotic sampling distribution of the respective estimators will be a generalized
χ2 distribution. Its specific parameters as a function of the model parameters remains
to be determined however.

7.1.2 Partial Information Decomposition

The work presented in Chapters 3, 4, and 5 jointly advance our understanding of
Partial Information Decomposition, from a concrete way to measure the atoms of
information to its abstract mathematical structure.

Chapter 3 introduces the shared-exclusions measure isx of pointwise redundant
information, i.e. of the information redundantly carried by a set of specific source
realizations s1, . . . , sn about a target realization t. This, in turn, automatically
induces a full Partial Information Decomposition (see Section 3.4). Key insights
gained in this Chapter are

Key insights Chapter 3

1. Redundant information can be measured in terms possibilities being
excluded jointly by all source realizations, and equivalently, as the
information provided about the target by certain logical statements
about the source realizations.

2. The resulting measure has the form of a pointwise mutual information,
inheriting its interpretation and mathematical properties.

3. It is differentiable with respect to the underlying source-target joint
probability distribution and obeys a target chain rule making it particu-
larly useful for practical applications.

4. The measure induces a full Partial Information Decomposition, i.e. a
measure of each information atom. This induced PID is differentiable
as well.

One immediate direction for future research regarding the isx measure lies in the
development of statistical tests for the measure itself and its implied PID. Funda-
mentally, this is a problem in non-parametric statistics. We are dealing with a
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functional of the joint probability distribution between source and target variables
and in general we do not wish to impose any parametric form on that distribution.
Methods such as the non-parametric bootstrap would be natural candidates for this
purpose. Such methods have yet to be fully explored in this context, however. In
many cases, we may only be interested in the relative contributions of different types
of information, i.e. their percentages of the total mutual information. This question
falls under the umbrella of "compositional data analysis", which is concerned with
statistics for quantities that are subject to a constant sum constraint [153]. Exploring
this line of research could provide valuable insights and methods for PID analysis.

The original isx measure, as introduced in Chapter 3, is designed for discrete vari-
ables. However, many applications in neuroscience and other fields are better
modeled using continuous variables. Anticipating this, the measure-theoretic formu-
lation provided in the appendix of the chapter laid the groundwork for extending
isx to a continuous setting. In subsequent research, this continuous extension has
been successfully achieved using a measure-theoretic approach [154]. Moreover,
the extension is also able to handle mixed discrete-continuous data. Notably, the
continuous version of isx is transformation invariant under invertible mappings, a
property often deemed highly desirable for information measures. Despite these
advancements, significant questions remain for future research, such as the ana-
lytical evaluation of this measure for concrete multivariate continuous probability
distributions, as well as the development of efficient estimators.

Since its introduction the isx measure has found promising applications in the realm
of artificial neural networks which we briefly review in the following. Firstly, the
isx measure has been leveraged in a study by Ehrlich et al. [30] to investigate
the ’representational complexity’ of artificial neural networks. Recall from the
introduction (Section 1.3.2) that representational complexity can be defined in terms
of PID atoms and quantifies, roughly speaking, the average number of nodes in a
layer required to decode the target, which in this context is the correct output label.
Ehrlich et al. applied this measure to analyze the hidden layer representations of
neural network classifiers tackling well-established tasks such as MNIST handwritten
digit recognition and CIFAR10 image classification. Here, their key finding is that
representational complexity decreases both over the course of training and through
successive layers. The study demonstrates how representational complexity, derived
from isx, can offer valuable insights into the structure of internal representations
within neural networks which go beyond simple pairwise measures such as mutual
information.
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Secondly, the isx measure has been utilized in the context of ’infomorphic networks,’
which aim to optimize abstract information processing goals framed within the
PID framework (as discussed in Section 1.3.2). The differentiability of isx makes it
the ideal measure for such applications, enabling the analytical calculation of the
gradients required for training. Graetz et al. [34] showed how isx-derived goal
functions can be successfully employed in various learning paradigms including
supervised and unsupervised settings, as well as associative memory learning. In
the latter context, the network strives to memorize specific patterns and aims to
reconstruct them when presented with distorted or incomplete versions.

Let us move on to Chapters 4 and 5 concerned with the mathematical structure of
PID. Chapter 4 presents a derivation of PID theory from first principles. It seeks
to develop PID theory on the basis of two of the most elementary relationships of
human thought: the part-whole relationship and the relation of logical implication.
In contrast to the original formulation, this approach addresses the problem directly
from the perspective of the information atoms, i.e. the quantities we are ultimately
interested in, instead of introducing these quantities indirectly through cumulative
measures such as redundant information. Firstly, this has the advantage of making
the intended interpretation of the information atoms in the general n-sources case
particularly clear. Secondly, it illuminates the logical structure of the PID problem
and the theoretical roles played by concepts such as antichain lattices. Thirdly, it
makes certain important questions in PID theory very easy to address, in particular
the question of the construction of non-redundancy based PIDs. The key insights
provided by this chapter are:
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Key insights Chapter 4

1. Each information atom in a PID can be defined by its characteristic
parthood relationships with respect the information provided by the
different possible subsets of source variables about the target. This
approach can be formalized via the concept of parthood distributions.

2. Equivalently, PID theory can be explained in terms of a hierarchy of
logical constraints on how certain pieces of information about the target
can be accessed. This approach can be formalized via the concept of
statements with monotonic truth-tables and proves useful for deriving
properties of PID lattices.

3. The axioms of the original formulation can be proven as theorems within
the novel approach.

4. The shared exclusions measure of redundancy isx can be re-derived
using principles of logic and mereology (the study of part-whole rela-
tions).

5. The novel approach can be utilized to systematically address the ques-
tion of non-redundancy based PIDs, such as synergy-based PIDs.

The PID problem is, in essence, a problem of explication, a term coined by Rudolf
Carnap in his seminal book "Logical Foundations of Probability" [155]. It is the
problem of translating some vaguely defined concepts of some earlier stage of scien-
tific development ("uniqueness", "redundancy", "synergy"), into an exact and, in this
case, formal-mathematical language. One interesting aspect of the PID problem that
distinguishes it from other standard problems of explication (such as the explication
of the notion of probability) is that it is concerned with the simultaneous explication
of a large number of quantities at the same time. Moreover, these quantities are
characterized not only by their intrinsic properties (e.g. properties we might expect
a measure of "redundancy" to satisfy) but, crucially, also by their relationships to
each other and to previously introduced quantities, in particular mutual information.
The approaches presented in Chapter 4 emphasize this relational aspect of the PID
problem and aim to formalize the relevant relationships ("What is contained in
what?") using notions such as "parthood distributions" f , "parthood lattices" B and
"parthood conditions" Cpα, fq.

Chapter 5 directly builds upon these insights, utilizing the parthood approach to
construct a general scheme of PID base-concepts. These are information functionals
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that imply a full PID once they are defined in terms of the underlying source-target
joint distribution (such as redundant information):

Key insights Chapter 5

1. Within the parthood approach base-concepts can be expressed in terms
of conditions phrased in formal logic on the specific parthood relations
between the PID atoms and the different mutual information terms.

2. There is a general pattern of such logical conditions that encompasses
all base-concepts discussed in the literature and also leads to novel base
concepts.

3. The pattern categorizes base-concepts into four equivalence classes
of "partner measures" quantifying the same information components
but viewed from the perspective of different source collections. The
equivalence classes can be represented by the concepts of 1) redundant
information, 2) weak synergy, 3) union information, and 4) vulnerable
information. Additionally, inducing a PID using unique information as
a base measure is possible, but amounts to defining the information
atoms directly.

4. The concept of vulnerable information quantifies information that may
be lost if we lose access to one of the sources. It has not been considered
in the literature before.

Recall from the main chapter (Section 5.1) that the question of PID base-concepts
serves interpretational, computational, and theoretical purposes. Firstly, if a PID
is constructed using a specific base-concept, we gain immediate control over the
interpretation of that base-concept, as it is directly defined in terms of the joint
distribution. Secondly, the choice of base-concept can have computational advan-
tages. For example, if we are mainly interested in quantities related to the idea of
synergistic information, using synergy as a base-concept is generally computationally
advantageous. A case in point is the measure of representational complexity we
discussed above and in Section 1.3.2. The computational cost of computing this mea-
sure scales as Opnq (n being the number of source variables) when using synergy as
a base-measure. Using redundancy, on the other hand, would necessitate computing
all PID atoms, resulting in super-exponential scaling. Thirdly, understanding the rela-
tionships between different base-concepts can provide important theoretical insights.
Because base-concepts are in an invertible relation with the information atoms—and
consequently in a one-to-one relation with each other—imposing axioms on one
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base-concept will inevitable imply certain properties for the other base-concepts (or
imply that they cannot have certain properties). This type of exploration could be
useful for narrowing the set of possible solutions to the PID problem.

One starting point in this context could be a thorough exploration of the novel
base-concept of vulnerable information. As a measure of the "non-robustness"
of representations, understanding vulnerable information could have significant
implications for systems where resilience is critical. For instance, if most of the
information in a neural network about a specific aspect of the external world is
vulnerable, then disruptions to the system could lead to immediate loss of that
information. The next step in this line of research is to formally define a measure
of vulnerable information in terms of the underlying probability distribution. Key
considerations would include determining what reasonable axioms such a measure
should satisfy to adequately capture its intuitive meaning.

Another interesting avenue to explore is whether the constructions of Chapters 4
and 5 can also be used to address similar decomposition problems. The information
relationship ("sources providing information about a target") might not be the only
relationship where a decomposition into unique, redundant, and synergistic compo-
nents (and their appropriate generalizations) can be achieved. Consider for example
logical-deductive relationships between statements, i.e. premises A1, . . . , An im-
plying some conclusion C. Here one could similarly distinguish between unique,
redundant, and synergistic inferences, i.e. inferences to conclusions that uniquely
follow from particular premises, that redundantly follow from multiple premises, or
that follow only synergistically utilizing multiple premises at the same time. The
number of possible types of inferences from n premises should be the same as
the number of information atoms in a PID. The reason is that just like "informa-
tion", the relation of "deductive inference" is monotonic: everything that follows
from a subset of premises will also follow from any superset of it. Accordingly,
there will be one type of inference per (non-constant) monotonic Boolean function
f : PptA1, . . . , Anuq Ñ t0, 1u describing which subsets of premises the conclusions
of the type described by f follow from (similar to PID, the constant Boolean functions
only lead to trivial cases).

A similar decomposition problem arises in the realm of causal relationships where
one might distinguish between unique, redundant, and synergistic effects. This is
discussed below in Section 7.2.2. Let us now turn the final Chapter of this thesis
about subgraph mining as a statistical tool for network comparison.
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7.1.3 Subgraph mining

Chapter 6 addresses the issue of statistically comparing two stochastic processes that
generate unweighted graphs defined on the same set of nodes. These processes may
stand for two separate experimental groups, each producing one graph per subject in
the respective group. The graph nodes could represent specific brain locations where
activity levels are measured through a given neuroimaging technique, and edges
might indicate the presence of statistically significant Transfer Entropy between
these nodes.

The primary objective is to discern stochastic differences between the two processes,
i.e. differences concerning the probabilities with which they generate certain edge
patterns, or subgraphs. Individual edges are also included in this analysis. However,
the differences between the processes can also rest in more complex patterns, re-
flecting differences in the dependencies between edges. Given that even a moderate
number of network nodes can result in an immense variety of such patterns, a severe
multiple comparisons issue arises. The method of Significant Subgraph Mining
was recently introduced [38, 39] to address this problem for independent graph-
generating processes, offering guarantees on false positive rates while examining
the entire space of possible patterns. Chapter 6 adapts and extends this method,
specifically for the comparison of functional connectivity networks in neuroscience.
The key insights of the chapter are as follows
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Key insights Chapter 6

1. Subgraph mining serves as a valuable follow-up analysis after network
inference methods like Transfer Entropy, or Granger causality have been
applied across multiple groups or conditions. In contrast to other net-
work comparison tools, it is capable of detecting any existent differences
between graph-generating processes given a sufficiently large sample
size.

2. The method can be extended to handle dependent graph-generating
processes, making it applicable in within-subject experimental designs.

3. Based on empirical power analysis of Transfer Entropy networks, a target
sample size of approximately n “ 60 is advised for a high probability of
detecting at least some existing differences in similar studies.

4. An open-source Python implementation is made available through the
IDTxl toolbox, which is tailored for neuroscience research. This includes
features like the inclusion of information transfer delays in the graph
structures and the ability to limit subgraph complexity, thereby reducing
computational costs.

The chapter discussed two different methods for multiple comparisons correction:
the Tarone correction and the Westfall-Young correction. While the Westfall-Young
correction appears more powerful in simulations, it’s not yet clear whether this ad-
vantage comes at the cost of weaker error-control guarantees. Specifically, the Tarone
correction ensures strong control of the family-wise error rate—control irrespective
of which and how many null hypotheses are true. In contrast, the Westfall-Young
correction is known to offer weak control – control under the condition that all
null hypotheses are true. A technical condition known as ’subset pivotality’ would
provide strong control for the Westfall-Young method as well, but it remains an open
question whether this condition holds in the case of subgraph mining. Clarifying
this question would broaden the method’s applicability, especially for studies with
smaller sample sizes.
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7.2 Beyond information: knowledge, causality, and
utility

7.2.1 Information and knowledge

The shared exclusions measure introduced in Chapter 3 and rederived in Chapter 4
has tight connections to epistemic logic, i.e. the logic of reasoning about knowledge
[156]. This becomes particularly apparent in the "event-based approach" to multi-
agent epistemic logic described in [157]. The basic mathematical structure in this
approach is called an Aumann structure. It consists of a set Ω of states of the world
and a set of partitions P1, . . . ,Pn of Ω, one for each of n agents. We can imagine each
partition arising from the agents making observations described by an observation
function Si : Ω Ñ Si where Si is the alphabet of possible observations agent i can
make [79]. Each state of the world ω gives rise to a specific observation si for agent
i. From this observation agent i can infer that the actual state of the world must be
in the subset of states giving rise to the specific observation si (i.e. the state must be
in the preimage S´1

i psiq of si under Si). In this way, for each agent, the states of the
world Ω are partitioned into equivalence classes of states indistinguishable by the
agents based on their observations:

Pi “ tS
´1
i psiq : si P Siu (7.1)

For any event E Ď Ω we can say that agent i knows E just in case the event E occurs
in all the states that appear possible to the agent given their observation si:

S´1
i psiq Ď E ( "agent i knows E") (7.2)

We can now think about the set of states of the world such that all agents know
that E has occurred, i.e. the set of states such that it is shared knowledge that E has
happened. Given the terminology just introduced this can be defined as

SKpEq :“ tω P Ω : @i agent i knows E given observation Sipωqu (7.3)

The connection to the shared exclusions measure of redundant information can be
drawn by equipping the set of states Ω with a probability measure P and σ´algebra
A (or in other words, interpreting Ω as a sample space in a probability model). The
observation functions Si become random variables in this case. Let us introduce an
additional random variable T : Ω Ñ T representing some aspect of the state of the
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world. For instance, T could describe the weather in a given state of the world and
take on values "sunny", "rainy", "foggy", etc.

Now we may ask: how much information does the entirety of the agents’ shared
knowledge about the state of the world provide about T? The entirety of shared
knowledge can be captured via the union of the preimages of the agent’s observations:
Given observations s1, . . . , sn, the agents have shared knowledge about the union
of the events S´1

i psiq since all agents can infer, given their observations, that the
actual state of the world must lie in this union. Further, this is the strongest, and
hence most informative, restriction of the states of the world that all agents can
agree upon. Thus, it makes sense to say that the agents’ shared knowledge about
the event E˚ “

Ť

S´1
i psiq is in fact all of their shared knowledge about the state of

the world.

For this reason it seems plausible to compute the information about the actual value
t of T provided by the agents’ shared knowledge about the state of the world as the
pointwise mutual information

ip1E˚ “ 1 : tq “ log
ˆ

PpT “ t|
Ť

S´1
i psiqq

PpT “ tq

˙

(7.4)

where 1E˚ is the indicator of event E˚. This measure essentially says: if we relied
exactly on what is known by all agents, namely that the actual state of the world is in
Ť

S´1
i psiq, by what factor would that make it more or less likely to guess the correct

target value t (compared to not taking into account the agents’ observations at all)?
However, this is precisely isxps1, . . . , sn : tq. Hence, isx quantifies the information
about the target realization provided by the shared knowledge of the agents about the
state of the world.

7.2.2 Information and (interventional) causality

Being firmly rooted in probability theory, information theoretic analyses, including
Transfer entropy / Granger Causality and PID, are concerned with stochastic de-
pendencies and the underlying notion of Wiener-Granger causality is one of purely
predictive causality as explained in Section 1.2. This leaves open what the underlying
interventional causal structure of the system might look, i.e. how does the system
behave under interventions on some of its components? The theory of interventional
causality has been formalized most prominently in terms of Structural Causal Models
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(SCMs) [158]. Given variables of interest X1, . . . , Xn, an SCM E consist of a set of
structural assignments

Xi :“ fipPAi, Uiq (7.5)

where PAi Ď tX1, . . . , XnuztXiu are called the parents of Xi and the variables Ui

are mutually independent noise variables with a given joint distribution PU1,...,Un

[158, 159]. Any SCM is associated with a causal graph, where the variables Xi

are the nodes and each Xi has incoming arrows from all its parent nodes. If the
causal graph is acyclic (which is by far the most intensively studied case in the
literature), the distribution over the noise variables automatically entails a joint
distribution PE

X1,...,Xn
over the Xi via the structural assignments. This is usually

called the observational distribution.

Interventions are modelled in this framework as replacements of certain structural
equations. For instance, one could intervene on the system by setting X1 to a specific
value, say, zero. In this case, the equation for X1 would be replaced by "X1 :“ 0"
leading to a new structural equation model denoted in terms of the "do"-operation
as E; dopX1 :“ 0q. This notation emphasizes that we are actively changing the
underlying system. The new entailed joint distribution over the Xi is called the
interventional distribution PE;dopX1:“0q

X1,...,Xn
. There is said to be a causal effect from Xi

to Xj just in case there is a value xi such that intervening on Xi by setting it to xi

changes the entailed distribution of Xj , i.e. if PE
Y ‰ P

E;dopX1:“0q

Y [159].

Under certain conditions, this interventional conception of causality aligns with
the Wiener-Granger conception framed in terms of conditional independence (or
equivalently, vanishing Transfer Entropy). Specifically, Peters et al. [159] show
that if we have an SCM for a stochastic process Xt (t P Z) with no instantaneous
effects, and the entailed distribution is faithful with respect to underlying causal
graph, then there will be a causal arrow from one variable to another in the causal
summary graph if and only if there is non-zero Transfer Entropy from the former
variable to the latter. In this sense Wiener-Granger causality is the right condition
for interventional causality given the above assumptions.

Let us unpack this statement. In contrast to the SCMs discussed so far, an SCM for a
stochastic process is defined over an infinite number of variables and accordingly
the full causal graph of the model will contain infinitely many nodes. Since causal
relationships should not go from future to past, the causal graph should only contain
an arrow from Xi,t to Xj,t1 if t ď t1. If there is a causal arrow between variables at
the same time index, this is called an instantaneous effect. The above statement
excludes this case. The causal structure can be summarized into a summary graph
with only n nodes, one for each component process. This summary graph will have
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an arrow from Xi to Xj just in case there is a causal arrow Xi,t to Xj,t1 for some
t ď t1, i.e. just in case there is some causal influence of the i-th component process
on the j-th component process.

The faithfulness assumption is central to many state-of-the-art causal inference
techniques. It relates properties of the causal graph to conditional independence
properties of the observed joint distribution. Specifically, faithfulness of an SCM
means that if two sets of variables are conditionally independent given a third set
of variables (all three sets are disjoint), then in the causal graph the first two sets
are d-separated given the third set. d-separation is a purely graph theoretic concept
defined in terms of the conditions under which paths between nodes of the first two
sets are "blocked" by nodes in the third set. The concept is formulated in such a way
that for the causal graph of an SCM, d-separation automatically implies conditional
independence in the observational distribution. Faithfulness is the other direction of
this implication allowing an inference from observed conditional independencies
to the equivalence class of causal graphs satisfying the corresponding d-separation
statements.

Intriguing connections also exist between interventional causality and the Partial
Information Decomposition problem. Much like the concepts of ’unique,’ ’redundant,’
and ’synergistic’ information had been circulating in scientific discourse prior to
their formal treatment by Williams and Beer [19], terms such as ’unique causation’
and ’synergistic causation’ are also quite prevalent (a quick search for the phrase
’synergistically cause’ yields over a thousand results on Google Scholar). This
naturally raises the question: Is it possible to achieve a similar formalization for
these types of causation? Moreover, could insights garnered from PID theory help
improve our understanding of these distinct forms of causality?

Two distinct projects can be distinguished in this context. Firstly, we may ask how
to decompose some measure of the total causal effect of causal factors C1, . . . , Cn

on some target variable T into unique, redundant, and synergistic components
(and appropriate generalizations thereof)? This may be called a Partial Causation
Decomposition (PCD). Chapter 4 formulated three fundamental questions that have
to be addressed in order to systematically construct a PID. These can be translated
into the causal domain as follows

1. What do the components of a Partial Causation Decomposition mean, i.e. what
is their intended interpretation?

2. How many components are there for a given number of causal factors?

3. How to quantify the different components?
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The first two questions pertain to the structure of a PCD. This structure will likely be
different from PID because there is a key difference between causal and informational
relations: while informational relations are monotonic (by adding an information
source we can only gain information), causal relations are non-monotonic. Adding a
causal factor may prevent certain effects that might otherwise have happened. To
illustrate this, imagine I throw a stone at a window. However, you simultaneously
throw another stone that intercepts mine mid-air, preventing the window damage
that would have occurred otherwise. The answer to the third question will heavily
depend on how exactly we measure the "total causal effect", i.e. the strength of
causal relationships. Unlike PID where we have a generally accepted measure of the
quantity we wish to decompose, namely mutual information, the same is not the
case in the causal domain (but see in particular [160]).

A second project relating PID and interventional causality would be whether the
different information atoms in a PID can be given a causal interpretation, i.e. to
what extent the atoms themselves are causally relevant with respect to the target
variable. For instance, if we intervened in such a way that, say, the synergistic
information provided by the source variables about the target vanishes, how would
that affect the distribution of the target? Can we even measure in bits how much
of the information in each atom is causally relevant to the target variable? This
might be called Causal Information Decomposition. The key question in this regard
would be how to construct an appropriate class of interventions affecting specifically
certain information atoms otherwise leaving everything unchanged.

7.2.3 Information and functional utility

In essence, information theoretic quantities capture stochastic dependencies between
various components of a system (e.g., neurons in the brain) or between a system
and its external environment (e.g., a neural network and an environmental variable
it encodes). These dependencies enable an external observer to make predictions
about the system’s behaviour or about the environment based on observations of the
system. However, especially in the context of biological systems such as the brain,
one must ask how the system itself utilizes this information to achieve specific tasks
or goals.

Previous research, notably by Bialek [161], has explored the relationship between
information and function. This work demonstrates that achieving a specific level
of performance—which can be thought of as the system’s ability to achieve a given
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goal—requires the system to have access to a certain minimum amount of informa-
tion. Bialek uses the illustrative example of bacteria in an environment where the
availability of sugar can vary. To metabolize the sugar optimally, the bacteria should
produce an enzyme in a quantity finely tuned to the available sugar, ensuring there
is just enough for metabolism without exceeding this amount, as excess production
would consume valuable energy. In this example, the amount of available sugar can
be considered as an ’external state’ (Y ), and the amount of enzyme produced by the
bacteria can be viewed as an ’internal state’ (X). The growth rate λ, which we can
think of as a measure of performance, can then be conceptualized as a function of
both these internal and external states (λ “ λpX,Y q).

It can now be formally shown that a given level of performance λpX,Y q “ λ0 is
attainable only if the bacterium has access to a minimal amount of information
I0pλ0q about its environment, i.e., if IpX : Y q ą I0pλ0q. Importantly, a system may
possess more information about its environment than is strictly necessary for its
current performance level. In such cases, it appears that the system is not fully
utilizing the available information, or possibly, it may have the wrong information
in some sense. This leads to the realization that not all information is functional in
terms of improving performance, suggesting that there may be non-functional or
‘excess’ information as well.

Given the considerations laid out thus far, a pressing challenge emerges: to bridge
the gap between purely predictive informational relationships and the functional
utilization of information by the system itself. While information-theoretic metrics
like Granger Causality, Transfer Entropy, and Partial Information Decomposition
(PID) provide valuable insights into predictability, they don’t —in and of themselves—
speak to functionality. Thus, an important interpretational question arises: to what
extent is the measured information actually being functionally utilized by the system
under study and how can we quantify this extent?

There have been some approaches to this question in the literature. For example
Polani et al. [162] propose a measure of the "relevant information" in an environ-
mental variable Y . This could be thought of as an upper bound on the functional
information we have been discussing so far. "Information that may be used", even if
it in fact isn’t. Roughly, the measure can be understood as follows: imagine that the
system can perform actions the utility of which depends on the state Y . Since the
agent has some uncertainty about the environment, the agent will thus also have
some uncertainty about what the optional action would be in the case at hand. The
relevant information in Y describes to what resolution the system needs to know the
value of Y in order to perform the optimal action. In the extreme case, the system
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might need to know the exact value of Y in order to choose the right action. In other
words, the system needs to know Y to a resolution of HpY q bits. However, suppose
that for the choice of the right actions the system only needs to know whether the
value of Y falls into one of two equally likely partitions of its possible values. In that
case, the system only needs to know Y to a resolution of 1 bit, and accordingly, this
would be the amount of relevant information in Y in that case.

There have also been approaches directly concerned with the notion of functional
information discussed above. In particular, Kolchinsky [163] proposes a measure of
"semantic information" that a system has about its environment, which is understood
as "information which is in some sense meaningful for a system". Kolchinsky’s
approach fits nicely with the above discussion about performance functions as well
as our discussion regarding interventional causality in Section 7.2.2. The intuition
here is that semantic information has be to causally relevant to the operation of
the system, i.e. it must "make a difference" in the sense that intervening on the
informational relationship is disadvantageous to the system. To what extent this is
the case can be formally expressed in terms of a "viability function". We are then
intervening on the system-environment relationship so that the information the
system carries about the environment is scrambled. The question is: how much of
this information can we scramble away so that the viability remains unchanged?
Kolchinsky defines the semantic information about the environment as the remaining
information under the "viability optimal intervention", i.e. the intervention which
scrambles away the most information without affecting the viability.

These consideration open very interesting possibilities for future research in partic-
ular in relation to PID theory. Firstly, since the measure of relevance by Polani et
al. is phrased as a mutual information between an environmental variable and a
"relevance indicator variable", representing the action chosen by an optimal agent,
PID theory could be directly applied here if the environmental variable has multiple
components Y1, . . . , Yn. These can be thought of as source variables. Taking the
relevance indicator variable as the target we obtain a decomposition of relevance
telling us where the relevance in the complex environmental variable resides. To
what degree is it in a particular component? To what degree is it redundantly
contained in multiple components? And to what degree does it reside synergistically
in some collective property of the environmental variable?

Secondly, we may ask if something like a functional information decomposition
is possible. Given a decomposition of the information a system carries about its
environment (or perhaps about other parts of the system), is it possible to explicitly
measure the extent to which the different information atoms functionally contribute
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to the systems’ performance? The approach by Kolchisnky suggest to obtain such a
decomposition in terms of PIDs associated with viability optimal interventions. This
would certainly be a fruitful avenue to transition from a predictive to a functional
understanding of information.

7.3 Concluding remarks

This thesis has tackled a variety of current topics in information theory, particularly
as they relate to the analysis of complex networks. We began by presenting new
results in the statistical theory of linear information flow, deriving the asymptotic
null-distribution for single regression Granger causality estimators.

Our exploration then moved to Partial Information Decomposition (PID) theory, a
significant extension of classical information theory with numerous promising appli-
cations. Utilizing insights from formal logic and mereology—the study of part-whole
relationships—we derived PID theory from first principles and introduced a general
logical scheme of PID base-concepts, i.e. PID-inducing information functionals.
Furthermore, we offered a concrete solution to the PID problem in the form of the
shared exclusions measure of redundant information isx.

Lastly, we addressed the issue of network comparison, which often emerges as a
subsequent step in information-theoretic analyses. We demonstrated how to adapt
and extend the method of Significant Subgraph Mining, particularly for applications
in information-theoretic network inference in neuroscience.

In summary, all of these topics contribute important elements towards a compre-
hensive theory of multivariate dependencies, both in biological and non-biological
networks. They open up a wide range of promising research directions and establish
connections to other key areas such as epistemic logic, interventional causality,
and the exploration of functional information. The integration of these diverse yet
interconnected topics highlights the richness and complexity of the field, suggesting
an exciting path forward.
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ity estimates and analytical distributions, for a representative null VAR
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Γ-approximation (dotted line, nearly indistinguishable from general-
ized χ2), Granger causality estimator: N “ 10, 000 (dashes), N “ 1000
(dot-dash), N “ 500 (dot-dot-dash). The null VAR model was randomly
generated according to the scheme described in Supplementary Material,
Section 2.7.8, with spectral radius ρ “ 0.9 and residuals generalized
correlation γ “ 1. Estimator plots are based on 104 generated time
series. Inset figure: the pny “ 35 distinct eigenvalues for the generalized
χ2 distribution, sorted by size. (Each eigenvalue will be repeated nx “ 3
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2.2 Distribution of Γ-approximation cumulative distribution functions for a
random sample of 200 null VAR models with nx “ 3, ny “ 5 and p “ 7,
for a selection of spectral radii ρ and residuals generalised correlation
γ (see Supplementary Material, Section 2.7.8 for sampling details). At
each scaled Granger causality value, solid lines plot the mean of the Γ-
approximations, while shaded areas bound upper/lower 95% quantiles.
Dashed lines plot the corresponding likelihood-ratio χ2pdq distributions,
with d “ pnxny “ 105. (a) ρ “ 0.6, γ “ 1; (b) ρ “ 0.9, γ “ 1; (c)
ρ “ 0.6, γ “ 8; (a) ρ “ 0.9, γ “ 8. Inset figures: the pny “ 35 distinct
eigenvalues sorted by size, for each of the 200 generalised χ2 distribu-
tions (x-range is 1–35, y-range is 0–1). . . . . . . . . . . . . . . . . . . . 36

2.3 Type II error rates (colour scale) at significance level α “ 0.05, based
on 10, 000 realisations of the bivariate VAR(1) (2.37). Left column:
single-regression test; centre column: likelihood-ratio test; right column:
difference in error rate between estimators. Top row: F “ 0.01, ayx “ 0,
κ “ 0.5, sequence length N “ 210. Bottom row: F “ 0.001, ayx “ ´1,
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3.1 Depiction of deriving the local mutual information ipt : sq by exclud-
ing the probability mass of the impossible event s̄ after observing s.
(A) Two events t, t̄ partition the sample space Ω. (B) Two event partition
s, s̄ of the source variable S in the sample space Ω. The occurrence of
s renders s̄ impossible (red (dark gray) stripes). (C) t may intersect
with s (gray region) and s̄ (red (dark gray) hashed region). The relative
size of the two intersections determines whether we obtain information
or misinformation, i.e. whether t becomes relatively more likely after
considering s, or not (D), considering the necessary rescaling of the
probability measure (E). Note that if the gray region in (E) is larger
(resp. smaller) than that in (A), then s is informative (resp. misinfor-
mative) about t since observing s hints that t is more (reps. less) likely
to occur compared to an ignorant prior. (F) shows why the misinfor-
mative exclusion PptX s̄q (intersection of red (dark gray) hashes with
gray region) cannot be cleanly separated from the informative exclusion,
Pp̄tX s̄q (dotted outline in (C)), as stated already in [93]. This is because
these overlaps appear together in a sum inside the logarithm, but this
logarithm in turn guarantees the additivity of information terms. Thus
the additivity of (mutual) information terms is incompatible with an
additive separation of informative and misinformative exclusions inside
the logarithms of the information measures. . . . . . . . . . . . . . . . . 70

3.2 Shared exclusions in the three-source variable case. Upper left: A
sample space with three events s1, s2, s3 from three source variables
(their complements events are depicted in (4)). For clarity, t is not
shown, but may arbitrarily intersect with any intersections/unions of
si. The remaining panels show the induced exclusions by different
combinations of ai. These exclusions arise by taking the corresponding
unions and intersections of sets. Which unions and intersections were
taken can be deduced by the shapes of the remaining, nonexcluded
regions. For (1)-(3) we show the shared exclusions for combination of
singletons ((1) and (2)) and those of singletons and coalitions, such as
the events of the collections (left) and the shared exclusions (right). For
(4)-(7) we only show shared exclusions. The online version uses the
additional, nonessential color-based mark-up of unions and intersections:
An intersection exclusion is indicated by the mix of the individual colors,
e.g., the t1ut2u exclusion is s̄1X s̄2 and mixes red and blue to purple,
and a union exclusion is indicated by a pattern of the individual colors,
e.g., the t1, 2u exclusion is s̄1Y s̄2 and takes a red-blue pattern. . . . . . 72
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3.3 Worked example of isxX for the classical XOR. Let T “ XORpS1, S2q

and S1, S2 P t0, 1u be independent uniformly distributed and consider
the realization ps1, s2, tq “ p1, 1, 0q. (A-B) The sample space Ω and the
realized event (gold (gray) frame). (C) The exclusion of events induced
by learning that S1 “ 1, i.e. s̄1 “ t0u (gray). (D) Same for s̄2 “ t0u. (E)
The union of exclusions fully determines the event p1, 1, 0q and yields 1
bit of ipt “ 0 : s1 “ 1, s2 “ 1q. (F) The shared exclusions by s̄1 “ t0u
and s̄2 “ t0u, i.e., s̄1X s̄2 exclude only p0, 0, 0q. This is a misinformative
exclusion, as it raises the probability of events that did not happen
(t “ 1) relative to those that did happen (t “ 0) compared to the case of
complete ignorance. (G) Learning about one full variable, i.e., obtaining
the statement that s̄1 “ t0u adds additional probability mass to the
exclusion (green (light gray)). The shared exclusion (red (dark gray))
and the additional unique exclusion (green (light gray)) induced by
s1 create an exclusion that is uninformative, i.e., the probabilities for
t “ 0 and t “ 1 remain unchanged by learning s1 “ 1. At the level
of the πsx atoms, the shared and the unique information atom cancel
each other. (H) Lattice with isxX and πsx terms for this realization. Other
realizations are equivalent by the symmetry of XOR, thus, the averages
yield the same numbers. Note that the necessity to cancel the negative
shared information twice to obtain both ipt “ 0 : s1 “ 1q “ 0 and
ipt “ 0 : s2 “ 1q “ 0, results in a synergy ă 1 bit. Also note that while
adding the shared exclusion from (F) and the unique exclusions for s1

and s2 results in the full exclusion from (E), information atoms add
differently due to the nonlinear transformation of excluded probability
mass into information via ´ log2 pp¨q – compare (H). . . . . . . . . . . . 78

3.4 Worked example of isxX for a four source-variables case. We evaluate
the shared information isxX pt : a1; a2q with a1 “ t1, 2u, a2 “ t3, 4u,
s “ ps1, s2, s3, s4q “ p0, 0, 1, 0q, and t “ Paritypsq “ 1. (A) Sample space
– the relevant event is marked by the blue (gray) outline. (B) exclusions
induced by the two collections of source realization indices a1 (brown
(dark gray)), a2 (yellow (light gray)), and the shared exclusion relevant
for isxX (gold (gray)). After removing and rescaling, the probability for
the target event that was actually realized, i.e., t “ 1, is reduced from 1{2
to 3{7. Hence the shared exclusion leads to negative shared information.
Hence, πsxpt : t1, 2ut3, 4uq “ ´0.0145 bit . . . . . . . . . . . . . . . . . . 92
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3.5 The family of mappings introduced in proposition 7 that preserve
the probability mass difference. Let α be the top node of A pr3sq. The
orange (gray dotted) region is α´, the set of children of α. Each color
depicts one mapping in the family based on some γ P α´. The dark red
(solid line) mapping is based on γ1, the red mapping (dash-dotted line)
is based on γ2 and the salmon (dotted line) mapping is based on γ3. . . 97

3.6 Depiction of set differences corresponding to the probability mass
difference d1 introduced in proposition 7 and shown in Fig. 3.5, for
the sets from Fig. 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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4.6 (a) Information diagram depicting the information provided by state-
ments A and C. If statement C is logically weaker than statement A, i.e.
if C is implied by A, then the information provided by C has to be part
of the information provided by A. (b) Information diagram depicting
the information provided by statements A, B, and C. C is assumed to
be logically weaker than both A and B. Thus it has to be part of the
information provided by A and also part of the information provided
by B. Accordingly, it is contained in the “overlap”, i.e. the redundant
information of A and B. In order to obtain the entire redundant infor-
mation statement C has to be “maximized”, i.e. it has to be chosen as
the strongest statement weaker than both A and B (this is indicated by
the arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.7 The three isomorphic worlds of partial information decomposition: part-
hood distributions, antichains, and logical statements. . . . . . . . . . . 131

4.8 (a) antichain lattice pA2,ĺq for two sources. Summing up the atoms
above and including a node yields the restricted information of that
node. (b) extended constraint lattice for two sources. The weak synergy
associated with a node in the extended constraint lattice is the sum of
atoms above and including the corresponding node in the left lattice.
Note that following a widespread convention we left out the outer curly
brackets around the antichains. . . . . . . . . . . . . . . . . . . . . . . . 140

4.9 Geometrical interpretation of moderate synergy ImspT : t1u, t2uq for 2
and 3 sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.10 Illustration of the idea that the information provided by a logically
weaker statement A is always part of the information of a stronger
statement B, even though the latter may provide less bits of information.
This phenomenon can be explained in terms of the misinformative,
i.e. negative, contribution of the surplus information provided by B (the
shaded ring). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

254 List of Figures



5.1 a) Parthood and redundancy lattices for n “ 3 sources. There is an iso-
morphism between the lattices such that the redundancy associated with
a node in the redundancy lattice is equal to the sum of atoms associated
with parthood distributions below and including the corresponding node
in the parthood lattice. This is shown for the antichain t1, 2ut2, 3u. Note
that we adhere to the standard convention of omitting the outermost
brackets of the antichains. b) Information diagrams showing all possible
redundancy terms and their nested structure. . . . . . . . . . . . . . . . 164

5.2 Mereological diagrams of the four independent synergy terms in the
n “ 3 case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3 a) Parthood and synergy lattices for n “ 3 sources. There is an isomor-
phism between the lattices such that the weak synergy associated with a
node in the synergy lattice is equal to the sum of atoms associated with
parthood distributions above and including the corresponding node in
the parthood lattice. This is shown for the antichain t2ut1, 3u. Note that
we adhere to the standard convention of omitting the outermost brackets
of the antichains. b) Mereological information diagrams depicting the
different synergy terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

List of Figures 255
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