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1

Chapter 1

General Introduction
1.1. Research Objectives and Contributions

The importance of data is undoubtedly on the rise. In an increasingly globalized, digitally
interconntected world, the amount of data generated every day is constantly growing
(Manyika et al., 2011). The interpretation of data is the primary tool we have at our
disposal to calibrate economic models and test the hypotheses we derive from them (Sims,
1980; Angrist & Pischke, 2009). In academic research, data serves as an intermediary
between theory and reality, and thus the growing availability of data offers an abundance
of opportunities to answer more and more research questions with more and more precision.
This dissertation explores various facets of the use of data in modern economic research
and sheds light on some of the economic implications of technological change.

This dissertation was written as part of the Research Training Group Globalisation and
Development. The specific project in which I participated as a member of this training
group is called "Measurements and Methods". While the project was designed to focus
mainly on the methodology in dealing with data, the thematic influence of the research
group is apparent. It is noticeable in the research questions and applications pursued
throughout the thesis that highlight a range of opportunities and obstacles quantitative
researchers face in their work.

The fact that challenges with methods and the measurement of data are relevant to
all empirical sub-fields of economic research is reflected in the diversity of the thematic
areas of this thesis. This thesis aims to contribute in the field of applied statistics,
macroeconomics with a focus on competition economics under technological change, as well
as to epidemiological research in the field of global health.

Increasingly complex data structures and larger data sets bring new challenges alongside
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the aforementioned opportunities. The so called curse of dimensionality poses a problem
in empirical research that is growing increasingly prevalent with data sets becoming more
complex (Hastie et al., 2009). One objective of this dissertation is to demonstrate the
challenges related to the curse of dimensionality using a concrete example, and to propose
a method for this specific case that aims to minimize the downsides of complexity while
preserving the upsides.

However, this dissertation focuses not only on data and methods but also on the perpetual
advancement of technology, which is largely driven by the automation of processes (Bryn-
jolfsson & McAfee, 2014). The increasing use of robots and artificial intelligence have been
controversially discussed in the literature, but also outside of it, for several years. The
impact on labor markets and the centralization of power among individual entities such as
technology firms who are global pioneers in these fields are the subject of ongoing debates.1

This gives rise to another question that this dissertation explores. Namely, to what extent
firms that adapt new technologies particularly quickly and efficiently gain market power
and displace less technologically advanced competitors.

Pursuing this research question led to the emergence of another critical, re-occurring aspect
of empirical work, namely issues with data quality. Deficiencies in data quality often pose
challenges to researchers. This dissertation addresses two of these deficiencies. The first one
involves the presence of many missing entries, which makes the data almost impossible to
use with conventional methods (Little & Rubin, 2019). One objective of this dissertation is
to show, with a concrete example, how specialized methods and the combination of different
data sources can be used to fill such gaps in data in a way, that accounts for the uncertainty
underlying the imputations so that it can be taken into account when further utilizing
the data. As part of this thesis, a variety of industrial automation data will be presented,
providing valuable resources for future research projects and addressing a gap in the data
available in this specific field of research.

Another potential deficiency in empirical research that is often overlooked is the presence of
data bias. Failure to recognize and address these biases can result in misleading conclusions
and erroneous interpretations of data (Rothman et al., 2008). This dissertation aims to
investigate this issue in greater detail and intends to provide an illustrative example of how
measurement error can distort the reality represented by the data collected. Unbiased and
representative data form the foundation of data-driven decision-making, highlighting the
crucial role of unbiased research findings for policy makers.

1.2. Summary of the chapters

This dissertation presents four independent studies, comprising a chapter each, that aim
to address the objectives of the thesis. The following summarizes the chapters, providing

1See, e.g., the different assumptions and findings on automation induced net effects on job displacement versus
creation in Prettner & Strulik (2017); Frey & Osborne (2017); Acemoglu & Restrepo (2020); G. Graetz &
Michaels (2018); Aghion et al. (2020, 2022), amongst others.
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some background information about the creation process.

1.2.1. Chapter 2: Factor analysis for data with heterogeneous blocks

The second chapter is co-authored with Prof. Dr. Tatyana Krivobokova. The economic
background for this methodological paper is the literature on macroeconomic uncertainty
(Bloom, 2009; Stock & Watson, 2012; Baker & Bloom, 2013; Bloom, 2014), that finds it to
have mostly growth mitigating effects via various channels. One of these channels are so
called wait-and-see effects, where economic agents delay their economic activity in times
of uncertainty, because the presence of increased uncertainty implies more difficult risk
assessment (Bloom, 2014). In the interest of fostering economic growth, and to counteract
these wait-and-see effects, one approach is to provide now- and forecasts to economic agents,
that are intended to reduce uncertainty about the current economic situation and future
economic development Stock & Watson (2002a).

A common method linking economic uncertainty to the creation of now- and forecasts
are so called factor-based now- and forecasting models, introduced by Stock & Watson
(2002a,b). In this type of model, a set of reductive factors is extracted from the available
macroeconomic time series data, which is informative about various facets of the state of
the economy. These factors are then used as predictors for key economic indicators as
GDP growth or industrial production in regression models. Typically, the factor estimation
methods used to extract these underlying factors are designed to impose orthogonality
on the factors. Stock & Watson (2002a,b) argue, that the orthogonality enables a link
of the factors to distinct forms of macroeconomic uncertainty. These models have been
shown to perform relatively well in now- and forecasting exercises (see, e.g., Boivin & Ng
2005). Subsequent research by Boivin & Ng (2006) showed that extracting the factors
from ever larger data sets in the numbers of variables they contain, does not necessarily
improve the performance of such models, and in some cases even deteriorates it. While
abundant now- and forecasts are available for advanced economies and certain sparse model
specifications have been repeatedly shown to perform well, the same can not be said in the
case of developing countries and emerging market economies.

However, especially in the case of emerging market economies, macroeconomic time series
data has become much more available over the last two decades (see, e.g., Cepni et al.
2020; Li & Chen 2014; Porshakov et al. 2016; Gupta & Kabundi 2011). The simultaneous
abundance of such data, and the problem of performance deterioration observed with
canonical methods led to a series of publications mostly in the field of sparse statistical
modelling (see, e.g., Zou & Hastie 2005; Zou et al. 2006; Bai & Ng 2017; Ayesha et al. 2020).

In chapter one, we suggest that noise level differences between groups of data can cause
the omission of relevant factors using the conventional factor extraction methods. We
demonstrate this phenomenon with simulations in a controlled data environment and
introduce blockPCA, an algorithm that clusters the data into blocks and extracts the
factors from these blocks separately in a first step. In a second step, the factors are
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concatenated and a second set of factors is extracted from the first set of concatenated
factors. The resulting second set of factors is then used as predictors for key economic
indicators. Using the original Stock & Watson (2002b) data revisited by Boivin & Ng (2006),
and five macroeconomic data sets from emerging market economies, we show that this
algorithm is much more robust to factor omission than the conventional factor extraction
methods and thus performs better in a factor-based model setting.

1.2.2. Chapter 3: Taking over the World? Automation and Market Power

Chapter three is joint work with Dr. Henry Stemmler and Prof. Dr. Florian Unger. This
chapter establishes a link between the recent literature on the measurement of global market
power and concentration (see, De Loecker & Warzynski 2012; De Loecker & Eeckhout 2018)
and the literature on industrial automation, which in many cases utilizes the macroeconomic
panel data documenting the adoption of industrial robots by the International Federation of
Robotics (IFR, Müller & Kutzbach 2019), see, e.g., G. Graetz & Michaels (2018); Acemoglu
& Restrepo (2020); Krenz et al. (2021); Artuc et al. (2023). In general, automation
technology comprises mostly either the use of automation enabling hardware such as
industrial robots or the implementation of applications based on artificial intelligence often
using image or sensor data as inputs (de Nigris et al., 2022). In this chapter we focus on
the adoption of the industrial robots reported by the IFR.

This chapter is related to the literature on so-called "superstar" firms, which is a term
coined by D. Autor et al. (2020) and describes high-tech firms excelling in their markets,
claiming ever increasing market shares. Most closely related to our work is probably the
work by Stiebale et al. (2020), who, using different data sources, aim to answer a similar
research question as we aim to answer in this chapter, namely, whether firms pioneering in
the adoption of automation technology manage to increase their market power, measured
by the markup of price over marginal cost. While the work by Stiebale et al. (2020) builds
on data from European firms, our analysis uses global firm data and thus extends to the
global economy. We are also interested in the overall association between the increasing
uptake of industrial automation via robots and changes in market concentration. Our
research question implies that firms are heterogeneous in how quickly they adopt new
technologies, which potentially improves their productivity. In order to derive a set of
hypotheses about firms’ heterogeneous responses to the increasing availability of robots
and the implications for their market shares and market concentration as a whole, we
modify the model of oligopolistic competition in Edmond et al. (2015). This modified
model includes robots as a factor input and introduces firm heterogeneity in the extent to
which robots are utilized in production. It predicts that firms with above average robot
intensity will benefit from the increased availability of robots in contrast to firms with
below average robot intensity. Moreover, it predicts that foreign high-robot-intensity firms
selecting into exporting will exert downward pressure on the market shares of domestic
firms in a symmetric two-countries version of the model.
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Our empirical analysis shows that the increased adoption of industrial robots has had
negative effects on average markups, but that firms in the highest markup quintile have
experienced automation induced gains in market shares. Moreover, we also find that
increasing automation of foreign competitors exerts downward pressure on local firms’
markups across all quintiles, as predicted by the model. These findings corroborate the
findings of the related superstar firm literature.

1.2.3. Chapter 4: Expanding the industrial automation data universe:
Prices, Production, Trade Flows

The fourth chapter is joint work with Néstor Duch-Brown, PhD., who was one of my
supervisors during my research stay at the Joint Research Centre (JRC) of the European
Commission in Ispra, Italy. Having worked on the third chapter of this thesis it became
apparent to me that data on the cost of automation, a variable frequently occurring in
theoretical work modelling firms’ decision to automate, lacked an empirical counterpart. In
fact, the empirical analysis in chapter three relies on a proxy for the increased availability
of industrial robots, which in the theoretical model is expressed as a reduction in the robot
rental rate. At the time I joined the team at the JRC it was tasked to write a policy report
discussing the evolution of European firms’ market shares in the robot industry. It became
clear, that the main data source available on country-level exports of industrial robots were
the Comtrade data (UN, 1990). Unfortunately the Comtrade data posed many challenges
that ended up being addressed following a very different strategy in the policy report than
we utilize in this chapter (Duch-Brown et al., 2021; Duch Brown et al., 2023).

The lack of data on country-level production of industrial robots, data on the evolution of
prices and trade flows were the starting point for this chapter. Using the Comtrade data
alongside data from the IFR (Müller & Kutzbach, 2019), the OECD (OECD, 2015, 2021,
2023a,b), UNCDAT (UNCDAT, 2018), and some minor data sources, we derive new data
and thereby contribute to the available data on industrial automation.

The main challenge inherent to the Comtrade data is the high degree of missing entries
for traded robot units. We impute these missing values using a sophisticated imputation
algorithm called Amelia (Honaker et al., 2011) that draws information from related data
sources. From the imputed Comtrade data, we can derive an origin-destination-matrix
of industrial robots covering 64 countries over the 1996-2018 period. The combination of
country-level robot installations by the IFR, traded volumes in US Dollars, kilograms and
units renders the derivation of unit prices and country-level robot production possible.

We explore the newly derived data using various descriptive statistics, such as measures for
market concentration, market stability, the evolution of robot prices over time by exporting
country, by weight quantile of the robot, etc. We find that a few robot exporting countries
dominate the market claiming high market shares and that market concentration is not
subject to large changes over time. Moreover, we find that robot prices adjusted for inflation
have been declining over the period under consideration even without accounting for the
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most likely having increased capabilities and capacities of the robots. Remarkably, we also
observe a clear pattern of convergence amongst prices of robots across weight quantiles,
potentially hinting that software could make up for an increasingly large share of the value
added in industrial robots compared to hardware.

Finally, we demonstrate how the newly derived data on robot prices can be utilized in
empirical research as a counterpart to the cost of automation often modelled theoretically.
We do so by replicating part of the analysis from chapter three, comparing the estimation
results with the ones obtained using the aforementioned proxy for the increased availability
of industrial robots. We also compare the two instrumental variables constructed using
the novel price data versus using the availability proxy based on standard metrics. We can
confirm the findings from chapter three and find that instrument strength is comparable,
however, we argue that the exclusion restriction is better complied using the price based
instrumental variable.

1.2.4. Chapter 5: Interviewer Biases in Medical Survey Data: The Ex-
ample of Blood Pressure Measurements

This chapter is joint work with Pascal Geldsetzer, Andrew Young Chang, Vivek Charu (all
three Stanford University), Erik Meijer (University of Southern California), Nikkil Sud-
harsanan (Technical University of Munich) and Peter Kramlinger (University of California
Davis). It addresses the often overlooked problem of biased data, in this case the biased
measurement of medical survey data. Medical survey data is routinely collected to obtain
representative data on populations and serves as the empirical foundation of research aiming
to answer various medical, often epidemiological, research questions (see, e.g., Cockburn
et al. 2023; Rahim et al. 2023a,b). Moreover, the prevalences of diseases estimated based
on such medical survey data are often used by policy makers to asses the burden and
development of such diseases and depict an important input to their decision-making process
in taking measures to counteract them (for an influential contribution, see Ezzati et al.
2002).

Some well-established survey-based data sources designed to be nationally representative
are the Demographic and Health Surveys (DHS), the Indonesia Family Life Survey (IFLS,
Strauss et al. 2009; Sikoki et al. 2013; Strauss et al. 2016), the National Income Dynamics
Study of South Africa (NIDS, Southern Africa Labour and Development Research Unit
2018a,b,c,d,e) and the Longitudinal Aging Study in India (LASI, International Institute for
Population Sciences (IIPS), MoHFW, Harvard T. H. Chan School of Public Health (HSPH)
and the University of Southern California (USC) 2020).

Data collection for these survey-based data sets is typically conducted by interviewer
teams that are comprised of non-healthcare worker personnel. In some cases, training
of such personnel may be insufficient to prevent variations in interviewer technique and
demeanour impacting the measurements taken. This interviewer induced measurement
bias is commonly referred to as "interviewer effects" (Svensson & Theorell, 1982; Ulijaszek
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& Kerr, 1999; Ali & Rouse, 2002; Cernat & Sakshaug, 2020). Given the importance of
the implications derived from these data sets and the fact, that these effects receive very
little attention in the literature, this chapter aims to investigate the presence of interviewer
effects in the IFLS, NIDS and LASI data. Unfortunately, the DHS data does not provide
the necessary interviewer IDs in the data, so that it had to be excluded from the analysis.

We focus on the measurement of blood pressure, which is important to assess the prevalence
of hypertension, the disease referring to elevated blood pressure. We employ a linear
mixed model in which the interviewer effects are modelled as random effects, following the
reasoning in Hodges (2013). This model allows us to adjust the observed measurements for
the estimated interviewer effects. Using a bootstrap approach, we can then sample subsets of
the adjusted and unadjusted data to quantify the uncertainty inherent to the prevalence of
hypertension. While we find that hypertension prevalences were not substantially impacted
at national level, we find numerically small, but significant interviewer effects. The smaller
the geographic division however, the higher the risk that an extreme interviewer could cause
substantial bias in measured prevalences. This is important, since estimates from smaller
areas are increasingly used for mapping disease prevalences at subnational levels, sometimes
in areas as small as a few square kilometres (Dwyer-Lindgren et al., 2019; Reiner Jr et al.,
2018; Osgood-Zimmerman et al., 2018; N. Graetz et al., 2018).
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Chapter 2

Factor analysis for data with heterogeneous
blocks

Abstract

Factor-based now- and forecasting models are known to excel at capturing latent

macroeconomic uncertainty and handling high-dimensional data. However, the in-

creasing availability of macroeconomic time series data has revealed challenges. The

predictive accuracy of such models often deteriorates when additional variables are

added, in part due to relevant factors being dominated by other factors and thus not

being adequately accounted for in the final regression model. We provide a theoretical

foundation, highlighting noise level differences between groups of variables as a key

driver of factor omission. In response, we introduce "blockPCA", a novel algorithm

that preserves the strengths of PCR-based factor models while mitigating factor domi-

nation. BlockPCA identifies variable groups and separates them into distinct blocks,

extracting factors from each block separately. These factors are then concatenated,

and a second set of factors is derived from the resulting composite matrix, which serve

as regressors in the final regression model. The application of BlockPCA to five wide

datasets from emerging economies and a long dataset often revisited in the literature

yields considerable improvements in industrial production nowcasting compared to

conventional factor extraction methods.

This chapter is joint work with Tatyana Krivobokova (University of Vienna). We appreciate the feedback
and suggestions received from the participants of the 41st International Symposium on Forecasting 2021
and the 14th International conference of the ERCIM, 2021, London.
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2.1. Introduction

Over the past two decades, factor-based models have become a well-established tool in
economic now- and forecasting (Stock & Watson, 2002a,b; Boivin & Ng, 2005). The more
accurate the now- forecasts, the more they can be expected to counteract macroeconomic
uncertainty, which is often associated with a slowdown in economic activity and growth
(Bloom, 2009; Stock & Watson, 2012; Baker & Bloom, 2013).
In addition to factor-based models, several other econometric approaches have been intro-
duced in the literature that are well suited to the large-scale macroeconomic panel data
typically used in this context (see, e.g., Kelly & Pruitt 2015). Factor models, however,
have often been associated with two distinct qualities. First, as Stock & Watson (2002a,b)
state, the estimated factors can be seen as representations of different forms of economic
uncertainty and thus the link to economic theory is considered compelling. Second, they
were originally associated with the idea that no precise selection of variables needed to be
made in preparation for the analysis, since relevant factors could be extracted even from
large amounts of data.
However, with the steadily increasing availability of macroeconomic time series data, it
became clear that more data does not necessarily improve the performance of such models
(Boivin & Ng, 2006). In particular, Boivin & Ng (2006), suggest that under certain proper-
ties of the data, adding more variables deteriorates now- and forecasting results when using
the method of principal component analysis (PCA) to extract the factors. In addition to
naming cross-correlated errors as one of the reasons for this observation, they discuss the
phenomenon of some factors being dominated by others. These findings led to a series of
subsequent publications, mainly in the area of sparse modeling and thus often dealing with
how to make the best possible preselection of variables (e.g., Zou & Hastie 2005; Zou et al.
2006; Bai & Ng 2017, for an overview see Ayesha et al. 2020).
In this paper, we propose an algorithm that retains the aforementioned advantages of
principal-component-regression (PCR) based factor models while being robust to large
data sets. This algorithm poses an alternative to pretesting variable combinations, while
maintaining the link to economic theory.
We argue that large differences in noise levels between different groups of variables can lead
to factors from some of these groups being dominated and thus omitted in the final regres-
sion model. Based on these theoretical remarks, we introduce "blockPCA", an algorithm
that first clusters the input data into distinct blocks and then extracts factors from those
blocks separately. In a second step, the extracted factors are used to generate new, more
reductive factors that act as regressors in the nowcasting model.
Our simulations confirm that this approach estimates the true underlying factors more
stably than the conventional principal component regression in a setting that imposes the
aforementioned differences in noise levels between blocks.
Using long and wide macroeconomic data, we compare the accuracy of factor-based nowcasts
generated using conventional factor extraction methods versus using blockPCA. As long
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data, where the number of observations substantially exceeds the number of variables, we
utilize the original data from Stock & Watson (2002b) that was revisited by Boivin & Ng
(2006) to demonstrate that additional variables can be detrimental to now- and forecasting
results. As wide data, i.e., data where the number of variables substantially exceeds the
number of observations, we utilize large-scale macroeconomic panel data sets from five
emerging market economies.
The paper is structured as follows. First, we introduce the basic factor Stock & Watson
(2002a,b) model in section 2.2, from which we depart to then provide some theoretical
background on how relevant factors become dominated so that they are not sufficiently taken
into account in typical factor models in section 2.3. Section 2.4 demonstrates the problem
of factor omission in a controlled data environment, before we move to observational data
in section 2.5 to investigate the differences in nowcasting performance by method. Finally,
section 2.6 concludes the paper.

2.2. Basic factor model and motivation

2.2.1. Basic factor model

The basic factor model on which subsequent research has been based can be traced back
to Stock & Watson (2002a,b). It is based on the idea that there are various forms of
macroeconomic uncertainty that cannot be measured directly. However, they can be
thought of as latent variables, that can be represented by the orthogonal factors of a
principal component analysis. Research has shown that these factors serve as useful
predictors in a panel data regression setting with an outcome variable that is affected by
latent uncertainty, such as economic growth. This basic model is conventionally estimated
with ordinary least squares and often includes a lag term in addition to the extracted
factors. Assuming that the N dimensional time series Xt can be represented by a factor
structure, that is, it can be written as

Xt = ΛFt + et, t = 1, . . . , T, (2.1)

where Λ is the loading matrix of dimension N × p, p ≤ N , Ft is the p-dimensional vector of
extracted factors used as regressors in the forecasting regression model, and et is the residual
variation in Xt unexplained by the factor structure. The specification of the forecasting
regression model takes the form

yt+h = F Tt βF + ωTt βω + εt+h (2.2)

where Ft contains the factors extracted from the original explanatory data as specified in
equation 2.1, ωt is a vector containing lags of yt, εt+h is an i.i.d. error term and βF , βω are
unknown regression coefficients. The index t indicates a specific point in time, the index
h indicates how many steps into the future the target variable y is being forecasted. In
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the case of nowcasting, h = 0, so that a prediction for yt is made in a period for which
observations of the explanatory variables in t are already available. Different methods are
available for extracting the factor matrix Ft from Xt. However, the originally proposed and
most widely used approach is the method of principal components. The use of the factors
extracted by principal component analysis is commonly referred to as principal component
regression (Jolliffe, 1982). In contrast to the method of maximum-likelihood based factor
analysis, the factors extracted with PCA are orthogonal to each other, and in line with
economic theory, therefore, represent distinct components of uncertainty. The advantage of
principal components is that large data sets, which would lead to underspecification in a
normal regression model, can be reduced to a few regressors while preserving most of the
variation in the original data.

However, Boivin & Ng (2006) find that adding more data to a principal component
based forecasting model does not necessarily improve forecast accuracy, and under certain
circumstances even worsens it. The authors suggest two possible explanations of this finding.
First, they note that worse forecasting results induced by adding more data to the model
may occur when the idiosyncratic errors are cross-correlated, and second, relevant factors
may be dominated by other factors in large datasets. In this paper, we focus on the second
point and propose an algorithm that builds on the typical principal component approach
and makes it robust to relevant factors being dominated.

2.3. Factor analysis of heterogenous data

We now provide the theoretical background on how relevant factors can be dominated by
other factors in the context of principal component analysis.

2.3.1. Factor models and principal component analysis

Let x = (x1, . . . , xN )T be a random vector. Without loss of generality let E(x) = 0N . Let
S = diag(s−1

1 , . . . , s−1
N ) with s2

i = var(xi), i = 1, . . . , N . Assume for the standardised Sx
a population factor model, that is, Sx = Λf + e, where Λ ∈ RN×p, is the fixed matrix of
unknown loadings of full rank p < N , f ∈ Rp is the random vector of factors and e ∈ RN is
the random error term.
The standard assumptions on the factors and error terms are E(f) = 0p, E(e) = 0N ,
cov(e, f) = 0N×p, cov(f) = Ip. To simplify subsequent notations and calculations we
assume that cov(e) = σ2IN . With these assumptions follows that Σ = cov(Sx) = cor(x) =

ΛΛT + σ2IN .
From the eigendecomposition of ΛΛT = UDUT with D = diag(λ1, . . . , λp, 0N−p), it follows
that up to a rotation Λ = UpD

1/2
p , where Up ∈ RN×p is the matrix of first p columns of the

matrix of eigenvectors U and Dp = diag(λ1, . . . , λp) with λ1 > λ2 > . . . > λp. Hence, one
could estimate the factors via f̂ = D

−1/2
p UTp x. Since the loadings are not observable, one



13

can derive Up and Dp using the identity

Σ = ΛΛT + σ2IN = UDUT + σ2IN = U(D + σ2IN )UT = UDσU
T ,

whereDσ = diag(η1, . . . , ηN ), with ηi = λi+σ
2, i = 1, . . . , p and ηi = σ2 for i = p+1, . . . , N .

Note that since all eigenvalues of Σ are shifted by the same number σ2, the order of the
eigenvalues and herewith eigenvectors of Σ and ΛΛT is exactly the same. Hence, Up can be
derived as the first p eigenvectors of Σ and λi as the i-th eigenvalue of Σ, reduced by σ2.
Observing T realisations of the random vector x leads to the sample factor model SXt =

ΛFt+Et, t = 1, . . . , T , whereXt, Ft and Et are the t-th (independent) realisation of x, f and
e, respectively. Given the sample correlation matrix Σ̂ of Xt, one can derive estimators of
loadings (up to a rotation) Λ̂ = ÛpD̂

1/2
p and of factors F̂t = D̂

−1/2
p ÛTp Xt. Matrix Ûp contains

the first p eigenvectors of the sample correlation matrix Σ̂ and D̂p = diag(η̂1−σ̂2, . . . , η̂p−σ̂2),
where η̂i, i = 1, . . . , p are the first p eigenvalues of Σ̂ and σ̂2 = (N−p)−1

∑N
i=p+1 η̂i estimates

σ2.
It has been shown under various asymptotic scenarios for N and T that the first p (scaled
empirical) principal components of Σ̂ are consistent estimators of the factors f even under
much more general assumptions on cov(Et); also, the assumption on independence of
realisations Xt can be relaxed, see e.g., Boivin & Ng (2006); Bai et al. (2008); Stock &
Watson (2011).

2.3.2. Factor analysis on heterogeneous blocks

In practice, the random vector x ∈ RN often contains groups of intrinsically different
variables, that are typically measured on different scales and may have different magnitudes
of the eigenvalues of corresponding correlation matrices together with the different noise
levels.
To simplify the notation, we will consider only two heterogeneous groups, the extension
to more groups is straightforward. Let x = (xT1 , x

T
2 )T ∈ RN with xj ∈ RNj , j = 1, 2 and

N1 +N2 = N . Assume for each xj that Sjxj = Λjfj + ej , with unknown loading matrices
Λj ∈ RNj×pj of full rank pj < Nj , p1 + p2 = p, random factors fj ∈ Rpj , random errors
ej ∈ RNj and diagonal matrices of inverse standard deviations Sj = diag(s−1

j1 , . . . , s
−1
jNj

).
As in section 2.3.1 we assume E(fj) = 0pj , E(ej) = 0Nj , cov(ej , fj) = 0Nj×pj , cov(fj) = Ipj ,
as well as cov(ej) = σ2

j INj with σ2
1 6= σ2

2. We also assume that cov(f1, f2) = 0p1×p2

and cov(e1, e2) = 0N1×N2 , which implies that cov(x1, x2) = 0N1×N2 . The assumptions on
independence between x1 and x2 can be relaxed. Then the correlation matrix of x results in

Σ = cov(Sx) = cor(x) = blockdiag(Λ1ΛT1 + σ2
1IN1 , Λ2ΛT2 + σ2

2IN2)

= blockdiag
(
U1D1U

T
1 + σ2

1IN1 , U2D2U
T
2 + σ2

2IN2

)
=

(
U1 0N1×N2

0N2×N1 U2

)(
D1 + σ2

1IN1 0N2×N1

0N1×N2 D2 + σ2
2IN2

)(
UT1 0N1×N2

0N2×N1 UT2

)
= UDσU

T ,
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where Dj = diag(λj1, . . . , λjpj , 0Nj−pj ) with λj1 > λj2 > . . . > λjpj , j = 1, 2.
Obviously, the ordering of the eigenvalues in the matrix Dσ depends on the magnitude
of σ2

j and λji, i = 1, . . . , pj , j = 1, 2. If min{λ1p1 + σ2
1, λ2p2 + σ2

2} > max{σ2
1, σ

2
2}, then

all relevant eigenvectors corresponding to the non-zero eigenvalues λj1, . . . , λjpj , j = 1, 2

would enter the first p eigenvectors of matrix Σ and factors f = (fT1 , f
T
2 )T can be estimated

by the first p (scaled) principal components of Σ. In particular, this happens, when
λ1i and λ2i have a very similar magnitude and a decay rate, while σ2

1 and σ2
2 are either

relatively small or equal to λ1p1 and λ2p2 , respectively. In the very extreme case, where
min{λ11 + σ2

1, λ21 + σ2
2} < max{σ2

1, σ
2
2}, all eigenvectors of one of the blocks would not

enter the first p eigenvectors of Σ, because they are indistinguishable from the noise and
no corresponding factors would be estimated. Hence, if the data contains heterogeneous
blocks, it is more advantageous to estimate the factors in each block separately, since the
factors can be estimated consistently in any constellation.
The detection of heterogeneous blocks can be done based on σ2

ji, j = 1, 2, i = 1, . . . , Nj .
Indeed from cov(Sjxj) = UjDjU

t
j + σ2

j INj follows

pj∑
k=1

{Uj}2ikλjk = 1− σ2
j , j = 1, 2, i = 1, . . . , Nj . (2.3)

Since Uj is an orthogonal matrix, its elements {Uj}ik = O(N
−1/2
j ), at the same time

σj = O(1), j = 1, 2. Now, the eigenvalues of a correlation matrix λjk can be represented
as λ∗jk/sjk

2, where λ∗jk is the k-th eigenvalue of S−1
j ΛjΛ

t
jS
−1
j (that is, based on x, the

data before standardisation) and s2
jk = var(xjk), j = 1, 2, k = 1, . . . , pj . It is easy to see

that, if s2
1i � s2

2i or s
2
2i � s2

1i is found for all i = 1, . . . ,min{N1, N2}, this could indicate
that s2

ji compensates for a different magnitude and/or different decay of λ∗j , j = 1, 2. For
example, if λ∗j1 = c1Nj/pj for some constant c1, while λ∗ji = o(Nj/p

2
j ) for i = 2, . . . , Nj ,

then s2
ji should be of order O(p−1

j ) in order equation 2.3 to hold. If all λ∗ji = ciNj/pj for
some constants ci, i = 1, . . . , Nj , then s2

ji = O(1) is needed for equation 2.3 to hold. Hence,
a different behaviour of the eigenvalues in corresponding blocks may be identified by a
different magnitude of s2

1i and s
2
2i.

In the sample model based on T observations of Xt, the same considerations apply to the
sample correlation matrix Σ̂.

2.3.3. Algorithm

The practical implementation of the factor analysis on heterogeneous blocks is straight-
forward. Based on the data matrix X ∈ RT×N , sample standard deviations ŝ1, . . . , ŝN

of each column of X are calculated. Since for large T the sample standard deviations
are asymptotically normally distributed, one can apply a stochastic clustering algorithm
based on a normality assumption of the data, for example, the one implemented in the
R function Mclust, see Scrucca et al. (2016). This function also estimates the optimal
number of clusters based on a BIC. In principle, the same clustering algorithm can be
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applied to sample variances ŝ2
1, . . . , ŝ

2
N as well, but since their distribution in small samples

is more skewed than that of the standard deviations, we found that in practice working
with standard deviations is more stable. Based on the identified clusters, the matrix X is
divided into corresponding blocks and a principal component analysis is run on each block.
Of course, it may happen that not all clusters based on standard deviations correspond to
different behaviours of the eigenvalues in these clusters, or that the algorithm finds addi-
tional clusters. However, taking more clusters than necessary typically does not deteriorate
the performance. The choice of the number of principal components to extract from each
block can be based, for example, on the criterion suggested in Sobczyk et al. (2017). An
implementation of this approach is available from the authors upon request.

2.4. Simulations

For the following simulations, we generate a data matrix consisting of two blocks of variables
X = (XT

1 , X
T
2 )T ∈ RN with xj ∈ RNj , j = 1, 2 and N1 +N2 = N , where N is the number

of variables contained in X, for each of which we generate T observations, so that X has
dimensions T ×N . The variables in each block are subject to a factor structure, so that
there is a separate set of underlying factors in each block. The factor representation for
each block is given by

Xi = Λifi + ei,

where index i = 1, 2 denotes the respective block of variables, Λi the matrix of loadings, fi
the matrix of factors, and ei the error matrix, that explains the variation in Xi that is not
explained by the factor structure. The factors in each block are independent of the factors
in the other block, and there is no cross-block dependence of variables on factors, i.e., their
joint probability distribution is equal to the product of the respective marginal probability
distributions P (f1, f2) = P (f1)P (f2) and thus also cov(f1, f2) = 0, cov(X1, f2) = 0 and
cov(X2, f1) = 0.

In addition, we introduce differently sized errors ei in the factor specifications between
blocks, so that the factors in one block are much more noisy than those in the other block.
The errors are drawn from a Gaussian normal distribution with different second moments,
such that ei ∼ N(0, σ2

i ) and σ1 < σ2.

The composite data matrix X consisting of both blocks takes the form

X =
[
f1ΛT1 | f2ΛT2

]
+ ε,

where ε is the error matrix capturing the idiosyncratic errors ei of both blocks and is given
by

ε =

[
e1 0

0 e2

]
,

implying that there is no cross-correlation of errors between blocks. The variance of the
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matrix ε ∼ N(0,Σ) is given by Σ = blockdiag
(
σ2

1IN1 , σ
2
2IN2

)
. In addition, we create a target

variable denoted y = µy + ε, that is driven by the factorial component µy = 1 + Fβ, where
F is the composite factor matrix F =

[
f1 | f2

]
. The coefficient vector, β ∼ Poisson(λβ),

determines the dependence of the factorial component on the factors in F and is drawn
from a Poisson distribution. Finally, ε ∼ N(0, 1) represents a Gaussian i.i.d. error term
that is added to the factorial component in y.

Based on this framework, we develop two different cases. For Case 1 we assume perfect
information about the block structure of the data and apply conventional PCA to the
blocks separately estimating F̂ on a training split to nowcast ŷ for test data. In Case 2,
we apply our blockPCA algorithm as described in section 2.3.3. We make two changes
in order to make Case 2 more similar to the real-world nowcasting scenario. First, we no
longer assume perfect information about the block structure of the data. The blockPCA
algorithm is designed to detect the blocks of variables as described above. Second, we relax
the fixed parameter choice about the number of factors used in the linear regression models
and determine the optimal number of factors to use in each iteration via leave-one-out
cross-validation.

Each case is run for M = 500 iterations generating T = 300 observations for each of the
N = 100 variables. These chosen dimensions depict the case of long data, with the number
of observations substantially exceeding the number of variables. We ran the simulations
with the opposite dimensions to create wide data as well. The results are so similar that
we do not show them in addition to the long data results.

Tables 2.2 and 2.1 summarize the expressions, dimensions and parameter choices used.

2.4.1. Case 1 - separate versus single factor extraction

As described above, for Case 1 we assume perfect information about the block structure of
the data. This includes knowledge of which variables belong to which block and the true
number of underlying factors to be estimated. In this setting, we compare two different
approaches of how to estimate the factor structure before using the estimated factors to
nowcast the target variable y. The difference between these two approaches is that we
compare the nowcasting results using factors estimated on the composite data matrix
X versus using factors estimated on the block matrices X1 and X2 separately. Both
approaches use conventional PCA to estimate the factors. The estimated factor matrix F̂
thus constitutes the matrix of regressors in both approaches. In the block-wise estimation,
however, it is a composite matrix consisting of the separately estimated block factor matrices,
i.e., F̂ =

[
f̂1 | f̂2

]
.

The data is divided into a training and a test split, so that the factor structure and
coefficients of the OLS nowcasting model are estimated on the first half of the data. In a
first step, the factor structure is estimated. Then, the resulting estimated factors are used
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Table 2.1: Parameter choices for simulation exercises
Definition Parameter Value

Number of repetitions M 500
Number of observations T 300
Number of variables N 100
Number of factors per block k 20
First moment of distribution loadings are drawn from µΛ 4
Second moment of distribution errors in first block are drawn from σ1 1
Second moment of distribution errors in second block are drawn from σ2 50
Parameter of Poisson distribution λβ 1

as regressors in an OLS nowcasting model of the form

ytrain = F̂ γ + ζ,

where γ are the OLS coefficients and ζ is an i.i.d. error term. We conduct the evaluation of
the approaches on the training data, imposing the factor structure on the test partition of
the matrix X, such that

ŷtest = XtestΛ̂γ̂,

where Λ̂ represents the matrix of loadings estimated on the training data. Finally, we
compare the errors in nowcasting ytest, using the mean squared error as the evaluation
criterion

MSEy = (ytest − ŷtest)
2 .

Figure 2.A1a illustrates the differences in MSE for the two approaches. We find that
estimating the factor structure separately results in better predictions of the outcome
variable y, which is driven by those factors.

2.4.2. Case 2 - blockPCA versus PCA

In Case 2, we apply our blockPCA algorithm as described in section 2.3.3. We make
two changes in order to make Case 2 more similar to the real-world nowcasting scenario.
First, we no longer assume perfect information about the block structure of the data.
The blockPCA algorithm is designed to detect the blocks of variables as described above.
Second, we relax the fixed parameter choice about the number of factors k used in the linear
regression models and determine the optimal number of factors to use in each iteration via
leave-one-out cross-validation. Apart from these modifications, the scenario resembles Case
1. Again, we evaluate the mean squared error between the outcome variable in the test
period and the predictions from the linear regression models based on the estimated factor
structure in the data.

In the case of blockPCA, extracting the factors from the individual blocks adds an additional
layer. Thus, an additional loading matrix Λ̂1 enters the equation, imposing the factor
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Table 2.2: Definitions, expressions and dimensions used in simulation exercises

Definition Expression Dimensions

Loadings Λ1,2 ∼ N(µΛ, 1) N/2× k
Factors f1,2 ∼ N(0, 1) T × k
Idiosyncratic errors in blocks e1,2 ∼ N(0, σ1,2) T ×N/2
Variance of errors Σ = blockdiag

(
σ2

1IN1 , σ
2
2IN2

)
N ×N

Error matrix ε ∼ N(0,Σ) T ×N
Composite data matrix X =

[
f1ΛT1 | f2ΛT2

]
+ ε T ×N

Composite factor matrix F =
[
f1 | f2

]
T × k ∗ 2

Coefficients of factors β ∼ Poisson(λβ) 2 ∗ k × 1
Factor driven component of target µy = 1 + Fβ T × 1
Target variable y = µy + ε T × 1
Noise in target variable ε ∼ N(0, 1) T × 1

Coefficient vector from OLS regression γ = (F̂ T F̂ )−1F̂ T y 2 ∗ k × 1

Error term from OLS regression ζ = y − F̂ γ T × 1

structure from the block layer. In this case, the estimator for β takes the form

β̂bPCA = Λ̂1Λ̂2γ̂F̂2
, (2.4)

where Λ̂2 are the loadings from the second principal component regression, in which the
composite factor matrix consisting of the concatenated factors extracted from each block
represents the matrix of regressors. The estimated loading matrix Λ̂1 transforms the
observed data into this composite factor matrix. The estimated OLS coefficients γ̂F̂2

in this
case come from regressing y on the the second layer factor matrix F̂2 from the principal
component regression.

The nowcasts simply follow as

ŷbPCA = Xtestβ̂bPCA.

As described in section 2.3.3, several methods are available to optimize the number of factors
to extract from each block. While they perform very similarly, we stick to the Bayesian
approach described in Sobczyk et al. (2017). Using a maximum-likelihood-approach leads
to very similar results.

In addition, the algorithm provides the option to set an upper limit for the number of
clusters to be identified. For this simulation, we set the maximum number of clusters to
detect to two. Few clusters usually already lead to huge differences in the consistency of
factor estimates. In comparison, marginal effect of further clusters is tends to be relatively
small.

Figure 2.A1b in the Appendix illustrates additonally the differences in mean squared error
between the blockPCA algorithm and conventional principal component regression. Clearly,
the blockPCA algorithm handles the heterogeneous blocks of data better in predicting the
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Figure 2.1: Simulation results by MSE for Case 1 and 2.
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outcome variable driven by the underlying factors than does the conventional principal
component regression.

2.5. Data analysis

To illustrate how the blockPCA algorithm compares to the conventional methods of principal
component analysis and partial least squares in real-world macroeconomic nowcasting
problems, we apply it to two types of data. Firstly, we make nowcasts using the original
monthly macroeconomic time series data from Stock & Watson (2002b) used by Boivin &
Ng (2006) to argue that more data does not always improve the results of factor-based now-
and forecasting models. Secondly, we compile large-scale monthly macroeconomic data
from five emerging economies. To keep the specifications consistent, we select industrial
production as the nowcasting target in both cases. The two types of data differ mostly in
their dimensions. While the emerging market data is what is typically considered wide
data, i.e., the number of variables exceeds the number of observations by far, the Stock
& Watson (2002b) data is considered long, with the number of observations substantially
exceeding the number of variables. The idea is to put the blockPCA algorithm to the test
in both data environments.

For the wide data, we choose emerging economies for the data analysis section of this paper
because, compared to developing countries, there is an abundance of data to work with
and, compared to advanced economies, there are no established sets of variables known to
produce the best nowcasting results. We obtain the data for the analysis from Thomson
Reuters Datastream. For Brazil, Chile, India, Malaysia, Mexico and Turkey, we extract all
monthly economic time series marked as active at the time of extraction over the period
01.01.2000 to 31.12.2019, as shown in Table 2.3.
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Table 2.3: Time frames, number of observations and variables of country data sets.

Country From To Observations Variables

Data from Stock & Watson (2002b) (long data)
USA July 1959 February 1999 238 147

Data from emerging market economies (wide data)
Brazil July 2000 September 2019 231 1845
Chile July 2000 September 2019 231 552
India July 2000 July 2019 229 769
Malaysia July 2000 March 2019 225 1144
Turkey July 2000 October 2018 220 1888

2.5.1. Preprocessing

At the edges, the emerging market economy datasets are patchy, i.e., the first and last
observations for many variables are subject to a high degree of missingness. Our initial data
filtering process excludes variables with missing observations, so we would lose a significant
amount of variables if we were to prioritize a longer time span over trimming the edges to
preserve variables. Thus, we shift the start and end points of the datasets individually to
preserve variables in exchange for a few observations. Moreover, we exclude variables with
a standard deviation close to zero, because they do not represent time dynamics. Finally,
some of the variables contain many null values, which can lead to computational problems
and are therefore also filtered out.

Since we use an ordinary least squares estimator for nowcasting, the assumption of iden-
tically and independently distributed error terms is crucial. This requires that all time
series entering the model are stationary. Using the KPSS (Kwiatkowski et al., 1992) and
Augmented-Dickey-Fuller (Dickey & Fuller, 1979) tests, we individually determine the order
of integration for all variables entering the model and apply an appropriate number of first
differences to ensure stationarity.

Lastly, in the case of the emerging market datasets, we select a monthly measure of industrial
production as the nowcasting target and filter out all explanatory variables that either
contain "industrial production" in the variable description and or are highly correlated
(> 0.95) with the target variable. This step is necessary, because some datasets contain
several similar measures for industrial production, which would dominate the estimation
and thus weaken the comparability of the factor estimation as measured by the mean
squared error in predicting the target variable. In the case of the Stock & Watson (2002b)
data, we exclude all other variables depicting some form of industrial production, following
the same reasoning.

2.5.2. Nowcasting

We employ an ordinary least squares model in which the estimated factors are the only
explanatory variables following the structure outlined in section 2.2. Estimations are run
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independently for all countries, and the available data for each country is split in half to
create a training period and a test period. We estimate the factor structure and OLS
coefficients on the training data and apply them to the test data to create predictions for
the target variable.

More specifically, the factor structure estimated on the training data is imposed on the
test data by multiplying with the estimated loadings and OLS coefficients. The number
of estimated factors used as explanatory variables is determined by leave-one-out cross-
validation on the training data, minimizing the root mean squared error. The estimation
procedure is the same as the the one used for the simulations outlined in section 2.4.

We fix the number of blocks to two for the scope of the analysis. While we observe large
improvements in nowcasting accuracy applying the blockPCA algorithm compared to
conventional methods already with two blocks, the blockPCA induced improvements are
not very sensitive to using more blocks. Major improvements are made by imposing the
block structure, the difference between two and three or four blocks is often not significant.

In addition to comparing the performance of our proposed blockPCA algorithm with
conventional principal component regression, we add the method of partial least squares as
a benchmark. Partial least squares is a related method that extracts the factors maximizing
the covariance between the target variable y and the set of explanatory variables in X.
In other words, the extracted factors are estimated in such a way as to explain as much
variation as possible in the target variable y (see, e.g., Garthwaite 1994). Even though
the factor estimation with partial least squares should be similarly affected by the factor
domination problem outlined above, we are interested in investigating potential differences
between conventional principal component regression and partial least squares in coping
with large noisy datasets.

2.5.3. Results

We evaluate the nowcast accuracy using two metrics. In addition to calculating the mean
squared error for all three competing methods for each point-nowcast, we calculate the
correlation between the series of nowcasts and the true series over the entire test period.
Figures 2.A2 to 2.A7 show the results in terms of mean squared error and correlation,
the eigenvalues by block, and the target variable over time alongside the three competing
nowcasts over time for each country sample individually.

Figure 2.A2 comprises the results for the long Stock & Watson (2002b) data. We observe a
slight improvement across both evaluation metrics, with slightly higher correlation between
the series of nowcasts and the series of testing data and a slightly lower mean squared
nowcasting error in comparison to conventional PCA and PLS.

The emerging differences between blockPCA, PCA and PLS are more significant for the
wide data. Across all five samples, bPCA produces more accurate nowcasts in terms of
mean squared error than PCR and PLS. Improvements in correlation are less significant,
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however the bPCA generated nowcasts are at least slightly more correlated with the true
target series than PCA and PLS in all cases. The time series plots in Figures 2.A3 to 2.A7
indicate that PCA and PLS seem to generally create nowcasts with the correct sign, but
the amplitudes tend to be off compared to bPCA. We hypothesize that this is due to the
dominance of certain factors, causing the omittance of relevant factors better accounted for
by bPCA.

The differences in results between the types of data we observe can be seen as evidence
for the assumption that the wider the data, the more likely relevant factors end up being
omitted.

2.6. Discussion

This paper addresses the observation made in Boivin & Ng (2006) that relevant factors can
be dominated by other factors in a large data principal component regression setting. Over
the past two decades, numerous attempts have been made to deal with the challenges of
very wide data sets, where the number of variables substantially exceeds the number of
observations. While many approaches involve reducing the number of variables in advance,
we propose an approach that is much more robust to the use of large datasets and prevents
factors from being dominated. We derive this approach from the theoretical background we
provide and present the blockPCA algorithm, which identifies different groups of variables
and extracts a first set of factors from these groups separately in a first step. In a second
step, the resulting factors are concatenated and a second set of factors is extracted from the
resulting matrix. This second set of factors is then be used as regressors in the canonical
factor-based now- and forecasting model described in Stock & Watson (2002a,b). We argue
that this approach strongly mitigates the omission of relevant factors caused by noise level
differences between groups of variables.

To demonstrate how the blockwise factor extraction improves the estimation of the true
underlying factors under heteroskedastic idiosyncratic errors, we run a set of simulations
imposing the corresponding error structure on the simulated data. Applying our algorithm
to long and wide real-world data, we show that it handles large-scale macroeconomic
panel data better than the conventional PCA and PLS algorithms. We observe major
improvements using very wide data, i.e., data for which the number of variables substantially
exceeds the number of observations, and minor improvements for long data, where the
number of observations substantially exceeds the number of variables, with the number of
variables being relatively small also in absolute terms. Our proposed algorithm has the
advantage of being easy to use and not requiring preselection of variables, while being much
more robust to the problem of relevant factors being dominated than conventional methods.

In future research the blockPCA algorithm can be applied and further tested in settings,
where conventional principal component analysis could encounter the problems laid out
here. This refers to canonical principal component regression models, but also to other
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contexts in which it is of interest to account for the problem of factor omission.
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2.A. Appendix

2.A.1. Simulations

Case 1.A - comparison of factor estimation approaches using matrix norm

In Case 1.A, we point out that conventional principal component analysis applied to the
data matrix recovers the factors less consistently than principal component analysis applied
to each block of variables separately. We compare the factors estimated by PCA applied to
the joint data and the factors estimated by PCA applied to each block separately to the
true underlying factors using a matrix norm, that evaluates the distance between the true
factors and the factor estimates.

We generate a data matrix X consisting of two blocks of variables, such that X =

(XT
1 , X

T
2 )T ∈ RN with xj ∈ RNj , j = 1, 2 and N1 + N2 = N , where N is the num-

ber of variables contained in X, for each of which we generate T observations, so that X
has dimensions T ×N . Each block is subject to the typical factor structure, and otherwise
we stay in within the framework outlined in section 2.3. With each iteration, new factors
and errors are generated, and the factors are estimated using the two competing approaches.
The matrix norm we use is called the Frobenius norm, which we apply to matrix A, where
A is of the form

A = F − F̂
(
F̂ T F̂

)−1
F̂F.

The matrix A captures the difference between the true and estimated factors. The smaller
the Frobenius norm applied to matrix A, the better the underlying factors have been
recovered. The parameter choices are given in Table 2.1. The two blocks of variables differ
only in the amount of noise that is added to the underlying factor component by setting
σ1 < σ2. Figure 2.A1a illustrates the Frobenius norm results over M = 500 iterations by
approach.

Clearly, applying PCA to both blocks separately and then concatenating the factors from
each block into a joint factor matrix provides more consistent estimates of the true underlying
factors than applying PCA to the data matrix at once.

Case 2.A - comparison of factor estimation approaches estimating factorial
component

Case 2.A extends Case 1 by introducing a regression setting, that includes the outcome
variable y. Instead of estimating the underlying factors, we estimate the the factorial
component of the outcome variable denoted µy, as defined in Table 2.2. This factorial
component µy depends on the factor matrix F as determined by the coefficient vector β,
whose coefficients are drawn from a Poisson distribution at each iteration. We evaluate
both approaches by calculating the mean squared error in estimating µy via y, which, as
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Figure 2.A1: Simulation results by MSE for Case 1.A and Case 2.A
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shown in Table 2.2 is the sum of the factorial component and an i.i.d. error term. The
evaluation criterion is thus

MSEµy = (µy − ŷ)2 .

Figure 2.A1b illustrates the results in terms of mean squared error. Estimating the factors
separately before using them as explanatory variables in a linear regression model with
outcome y leads to a more consistent estimation of the factorial component µy.

2.A.2. Nowcasting
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Figure 2.A2: USA: Results for nowcasting industrial production with data from Boivin &
Ng (2006), originally from Stock & Watson (2002b), by MSE, correlation, and eigenvalue
decay by block.
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Figure 2.A3: Brazil: Results for nowcasting industrial production with data from Thomson
Reuters Datastream, by MSE, correlation, and eigenvalue decay by block.
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Figure 2.A4: Chile: Results for nowcasting industrial production with data from Thomson
Reuters Datastream, by MSE, correlation, and eigenvalue decay by block.
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Figure 2.A5: India: Results for nowcasting industrial production with data from Thomson
Reuters Datastream, by MSE, correlation, and eigenvalue decay by block.
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Figure 2.A6: Malaysia: Results for nowcasting industrial production with data from
Thomson Reuters Datastream, by MSE, correlation, and eigenvalue decay by block.
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Figure 2.A7: Turkey: Results for nowcasting industrial production with data from Thomson
Reuters Datastream, by MSE, correlation, and eigenvalue decay by block.
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Chapter 3

Taking over the World? Automation and
Market Power

Abstract

This paper studies how automation technology affects market power in the global

economy. We develop a theoretical model in which firms’ markups are endogenous to

factor input choices based on technology levels, but are also affected by technology

adoption of other domestic and foreign firms. In an empirical analysis, we find that

market power, measured as the markup of price over marginal cost, declines on average

with higher levels of automation. However, there is substantial heterogeneity, with

firms in the highest revenue and markup quintile gaining market power. Moreover, we

find that exposure to foreign automation increases competition in the local market.

This chapter is joint work with Henry Stemmler (University of Göttingen) and Florian Unger (University
of Göttingen). We are thankful for valuable comments and feedback from Holger Strulik, Gianmarco
Ottaviano, Joel Stiebale, Katharina Erhardt, Krisztina Kis-Katos and participants of the GlaD Seminar at
the University of Göttingen.
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3.1. Introduction

In recent years, there has been a surge of interest in three related phenomena in international
economics: The declining share of labor, the accelerating concentration of market power,
and the increasing use of automation technology. Although a link between these phenom-
ena has been established (Karabarbounis & Neiman, 2014; Berg et al., 2021), the exact
interrelationships remain a matter of ongoing debate and are yet to be better understood
(Grossman & Oberfield, 2021).

In this paper, we investigate whether automation technology contributes to the rise of market
power in the form of markups. Specifically, we develop a theoretical model of oligopolistic
competition in which firms’ markups are endogenous to factor input choices, total factor
productivity and the competitive environment created by other domestic and foreign firms.
We test the model empirically, distinguishing between domestic robot adoption and exposure
to robots in foreign economies. Our empirical analysis reveals considerable heterogeneity
across firms. We find that firms in the highest markup quintile further increase their
markups and market shares through sectoral robot adoption, while firms in lower quintiles
suffer losses in terms of markups and market shares.

The recent literature on the evolution of global market power and hence market concentration
has been largely influenced by De Loecker & Warzynski (2012), both methodologically and
descriptively. In this paper the authors introduced an innovative method for estimating
firms’ markups based on a control function approach, which led to a large number of
subsequent publications building on this methodology. For example De Loecker & Eeckhout
(2018) and Diez et al. (2019) document a global rise in markups, which they mostly
attribute to a reallocation of market shares from low to high markup firms. In this strand
of literature, firms’ markups are assumed to be proportional to firms’ market shares, so
that the documented rise in markups implies increasing market concentration.

Corroborating the notion that fewer firms are increasingly dominating markets, D. Autor
et al. (2020) coined the term "superstar firms", to describe how high-tech firms excel in a
"winner takes all" economy. In related work, D. Autor & Salomons (2018) and Dorn et al.
(2017) link this to the labor share debate, arguing that the emergence of technology, and
hence capital-intensive superstar firms has played a crucial role in the decline of the labor
share. While most "superstar" firms have been documented in the digital, IT and service
sectors, benefiting from platform economies (Lashkari et al., 2018; D. Autor et al., 2020),
similar but somewhat weaker trends have also been observed for technological leaders in
manufacturing (Andrews et al., 2016; Stiebale et al., 2020).

Advances in industrial robot technology and subsequent commercialization have led to a
steady increase in uptake over the past three decades (International Federation of Robotics,
2018). Several dimensions of robot adoption and its consequences have been studied in
recent years. Dinlersoz & Wolf (2018) and Koch et al. (2019) show that the most affluent
and technologically advanced manufacturers pioneer the adoption of industrial robots in
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manufacturing. A number of papers find that robot adoption at the firm level increases sales
and employment, although it typically reduces the labor share (Humlum, 2019; Acemoglu et
al., 2020; Aghion et al., 2020; Bonfiglioli et al., 2020). At the more aggregate labor market
level, Acemoglu & Restrepo (2020) argue that job displacement rather than job creation
effects are the predominant consequence of robot adoption in the US economy. Dauth et al.
(2021) document that more robot-exposed labor markets in Germany experience declines in
manufacturing employment, but these are offset by increasing employment in services.

However, little research has been done on the impact of robot adoption on market power.
In recent work closely related to this paper, Stiebale et al. (2020) investigate the existence
of European superstar firms in manufacturing. In line with our results, they report within-
sector heterogeneity across firms in the effect of robot adoption on markups. Our work
adds to the literature by confirming the findings of Stiebale et al. (2020) using a different
international firm dataset, providing a theoretical model, and extending the scope of the
analysis to robot adoption by foreign firms.

Our theoretical framework builds on a model of oligopolistic competition from Edmond
et al. (2015), which we adapt to the objective of our analysis. Specifically, we introduce a
Cobb-Douglas production technology in which industrial robots serve as an input alongside
labor to intermediate good producing firms. Moreover, we allow output elasticities to vary
at the firm level, so that firms operate with different labor and robot intensities, similar to
Harrigan & Reshef (2015). The model predicts that firms operating with above-average
robot intensities benefit from a reduction in the robot rental rate in terms of market shares
and markups at the cost of firms with below-average robot-intensity in the one-country
economy. Furthermore, the model predicts that robot adoption by foreign competitors
exerts downward pressure on the market shares and markups of all domestic firms in a
two-country economy.

We combine publicly available firm-level balance sheet data, used to estimate average sectoral
markups, with data on industry-level robot uptake from the International Federation of
Robotics (2018) on 29 countries and 20 sectors between 1995 and 2015 for the empirical
analysis. We employ an instrumental variable (IV) approach to account for endogenous
uptake of robots within sectors. Our empirical results suggest that increased automation is
associated with higher markups and larger market shares for the most productive quintile
of firms in our sample. Analogously, we find that firms in the lower quintiles suffer losses in
market shares and markups as a consequence of increased automation. Taken together, these
findings reconcile the notions that average markups in manufacturing have not increased
much over the past years and that automation technologies increase profits for some firms.
We take this as evidence for the hypothesis that the increasing use of industrial robots
amplifies market concentration and makes only a few firms better off. Moreover, we find
that the adoption of robots by foreign competitors exerts downward pressure on all local
firms’ markups and market shares.

The paper is structured as follows. In section 3.2, we develop the one-country and two-
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countries economy versions of the model, and derive the model’s hypotheses about the
effect of a change in the robot rental rate on markups and market shares. In section 3.3 we
present our empirical strategy and in section 3.4 we present all the relevant results. We
conclude the analysis in section 3.5.

3.2. Theory

In the following, we derive a theoretical model to motivate our analysis of the effects of
increasing industrial robot adoption on the distribution of firm-level markups. In order to
obtain a framework that allows the derivation of hypotheses about the interplay between
robot adoption and markups, we combine a number of assumptions.

First, we assume that firms use industrial robots alongside labor as an input to production.
We also assume that firms differ in the intensity with which they use factor inputs, i.e.,
we allow for firm-level heterogeneity in output elasticities. This assumption builds on
the findings of previous work by, for example, Koch et al. (2019), who report firm-level
heterogeneity in the adoption of industrial robots across but also within sectors.

Second, we assume that firms differ in terms of total factor productivity (TFP), as is common
in the literature (see, for example, Melitz 2003). In sum, firms are thus subject to two sources
of heterogeneity, which they obtain by drawing from probability distribution functions. A
joint distribution function of the two technology parameters allows for correlation between
the two, so that, for example, a high level of robot intensity is more likely to be drawn
alongside a high level of TFP than a low level of TFP, as in Harrigan & Reshef (2015).
While Koch et al. (2019) find a positive association between firm productivity and robot
intensity, our data are insufficient to calibrate such a joint distribution function. Therefore,
we refrain from calibrating the model and instead derive purely theoretical results allowing
for different technology parameterizations.

Third, we assume that markups vary at the firm-level and are endogenous to a firm’s com-
petitiveness, which is determined by its technology relative to that of its competitors. Thus,
a firm’s robot intensity, which depends on its technology draw, is one of the determinants
of its markup. To provide a theoretical framework that allows for the combination of these
assumptions, we adapt the model in Edmond, Midrigan, & Xu (2015) (hereafter EMX
model), which is a model of oligopolistic competition based on the Atkeson & Burstein
(2008) model. Although it was originally designed as a trade model, we first simplify the
model to a one-country economy version in order to derive the effect of decreasing robot
prices on markups without interference from foreign competitors or trade effects. In this
setting, we show how a reduction in the robot rental rate makes firms with above-average
robot intensity better off in terms of market shares and markups.

We then extend the model to the two-country case and show how additional competition
via trade aggravates this polarizing effect. Due to fixed costs of trade, only firms with
high productivity and robot intensity choose to export. Thus, a reduction in the price
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of robots increases the average productivity and robot intensity in the export market.
Firms that would have been on the margin of benefiting from the robot price reduction
in the one-country economy are crowded out by foreign high-robot-intensity firms in the
two-country case.

3.2.1. Small open economy: domestic competition

We model a two-stage economy, in which heterogeneous intermediate good producers provide
inputs to homogeneous final good producers. While intermediate good producers operate
under oligopolistic competition, final good producers operate under perfect competition.
Consumers purchase the homogeneous final good and supply labor to the economy.

Final Good Producers

In the final good stage firms produce a homogeneous final good denoted Y under perfect
competition

Y =

(∫ 1

0
y (s)

σ−1
σ ds

) σ
σ−1

, (3.1)

where σ > 1 is the elasticity of substitution across a continuum of sectors s ∈ [0, 1] from
which inputs y(s) are sourced. Consumers buy the final good at price P , which is the price
index for the final good and given by

P =

 1∫
0

p (s)1−σ ds


1

1−σ

, (3.2)

where p(s) is a sector specific price index defined below in Equation 3.5.

Intermediate Good Producers

The number of intermediate good producers is finite and assumed to be exogenous, as in
the benchmark EMX model. Intermediate good producers use Cobb-Douglas production
technology, where labor L and robots R are the only inputs. In addition, intermediate
producers are subject to two sources of heterogeneity, which are imposed by draws from a
joint distribution function. These two draws determine the total overall factor productivity
of intermediate producers ϕi, as well as their output elasticity for labor in production θi,
where the subscript i denotes the intermediate good producing firm. The joint distribution
function is denoted as g(ϕi, θi) as in Harrigan & Reshef (2015). Assuming constant returns
to scale, the draw of θi entails the output elasticity for robots, which follows as 1 − θi.
This firm-level variation in output elasticities implies that producers of intermediate goods
operate with different factor intensities, i.e., different factor input ratios. Their production
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technology for output in a given sector s takes the form

yi(s) = ϕi(s)Li(s)
θiRi(s)

1−θi , (3.3)

where firm-specific input of labor and robots in sector s are denoted Li(s) and Ri(s)

respectively.

In the interest of parsimony, we do not include conventional, non-automation-related capital,
typically denoted K, in the production function. We assume that automation capital, here
represented as robots R, differs from conventional capital conceptually in that it comprises
capital directly linked to automation technology and no other forms of capital. Moreover,
we hypothesize that it is also different from conventional capital in its degree of usage across
firms. Strictly speaking, we assume that there is a difference in the underlying empirical
distributions of the respective output elasticities, with the use of automation related capital
being more heterogeneous across firms than the use of conventional capital. While we
argue that a firm can be operational even with virtually no use of automation capital, we
consider the use of conventional capital to be less variable. However, firm-level data would
be required to estimate the corresponding output elasticities to verify these assumptions by
interpreting the means and variances of the estimated underlying distributions. As data
availability steadily increases, we expect such data to become available in the future so
that we will then be able to calibrate the model we present here, including conventional
capital. For the scope of this work, we argue that its inclusion in the production function
would not alter the core predictions of our model regarding market concentration. We thus
decide to keep the production function as simple as possible for deriving our hypotheses of
interest. Nevertheless, extending the model to include non-automation-related capital in
the production function would be a natural extension and of interest for future calibration.
Following a similar reasoning, we make the simplifying assumption that the sum of the
output elasticities equals one and that we are thus in the classical Cobb-Douglas scenario
with constant returns to scale. Future empirical research must show whether this assumption
should be relaxed in order for the derived hypotheses to match empirical observations as
closely as possible. A deviation from the assumption of constant returns to scales at this
point would add another layer of complexity not clearly being warranted by theoretical
arguments nor the current body of evidence.
There is an ongoing debate in the literature as to whether automation has a positive or
negative effect on labor demand. While the potential channels for both, job displacement
and job creation effects, have been described in detail, evidence to which ultimately domi-
nates is mixed. Moreover, apart from the labor demand effects observed at the level of the
automating firm, the resulting industry-level changes may differ in a general equilibrium set-
ting. In the context of modeling firm-level production, however, it has probably been more
common to assume that technology-related capital and labor function as substitutes. We
depart from this view building on the evidence from Aghion et al. (2020, 2022), and hence
assume that robots and workers are complementary in the production of intermediate goods.
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Demand for Intermediate Goods. Since the demand for intermediate goods in our one-
country economy version is equivalent to the demand for intermediate goods on the home
market in the EMX model, we keep the derivation thereof brief. It is derived from the final
good producer’s profit-maximization problem.1

Demand for the intermediate good produced by firm i in sector s is given by

yi (s) =

(
pi (s)

p (s)

)−γ (p (s)

P

)−σ
Y, (3.4)

where p (s) is the intermediate good price index for any given sector s and γ depicts the
within-sector-elasticity of substitution, which is assumed to be larger than the cross-sector-
elasticity of substitution, so that γ > σ. Equation 3.4 implies that the more competitive
a firm is within its sector, the larger its share of aggregate demand Y will be. A firm’s
competitiveness is determined by its marginal cost advantage over its competitors, which
results from its technology draws. The lower a firm’s marginal cost, the more pricing power
it has and the greater its potential to gain market share. Analogously, the more competitive
the sector in which the firm operates is relative to other sectors, the larger that firm’s share
of aggregate demand Y will be.

The sectoral price index is based on the prices of active firms in a given sector and the
within-sector-elasticity γ and is defined as

p (s) =

n(s)∑
i=1

pi (s)1−γ

 1
1−γ

. (3.5)

Market Structure. We impose Bertrand competition on the intermediate goods market.
The choice between Cournot and Bertrand competition mainly affects the derivation of
the demand elasticity that firms face. Since Edmond et al. (2015) show that Cournot and
Bertrand lead to similar results in the EMX framework, we do not derive the results for
Cournot competition.

Profit Maximization of Intermediate Good Producers. In the interest of parsimony, we do
not introduce fixed operating costs. Intermediate good producers therefore maximize profits
via

πi (s) = max
pi(s),Li(s),Ri(s)

[pi (s) yi (s)− wLi (s)− rRi (s)] , (3.6)

where pi(s) is the price intermediate producer i charges, w denotes the wage rate, i.e. the
cost of labor, and r denotes the robot rental rate. Indirect demand for goods produced by

1See eq. A1 in appendix 3.A.1.
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firm i follows from equation 3.4 and takes the form

pi (s) = yi (s)
− 1
γ p (s)

(
p (s)

P

)−σ
γ

Y
1
γ . (3.7)

By plugging indirect demand into the intermediate producers’ profit maximization problem
(equation 3.6) we can derive the respective profit-maximizing factor demands using first
order conditions. Profit-maximizing demand for labor, L∗i (s) and for robots R∗i (s) take
the form

L∗i (s) =
yi (s)

ϕi (s)

(
1− θi
θi

w

r

)−(1−θi)
, (3.8)

R∗i (s) =
yi (s)

ϕi (s)

(
1− θi
θi

w

r

)θi
. (3.9)

An intermediate good producers’ profit-maximizing price is obtained by plugging the profit-
maximizing factor demands into the profit-maximization problem given by equation 3.6
and deriving with respect to the price pi, which gives

pi (s) =
εi (s)

εi (s)− 1

Vi
ϕi (s)

, (3.10)

where an intermediate producing firm’s marginal costs are defined as

Vi = wθir1−θiθ−θii (1− θi)θi−1 . (3.11)

We denote the demand elasticity intermediate producer i faces with εi. In line with the EMX
Bertrand model, the demand elasticity depends on the underlying within-sector-elasticity
of substitution γ and across-sector-elasticity of substitution σ in the form

εi (s) = γ (1− ωi(s)) + σωi(s), (3.12)

where ωi (s) denotes an intermediate producing firm’s sectoral market share and is defined
as

ωi (s) =

(
pi (s)

p (s)

)1−γ
. (3.13)

An intermediate producer’s market share is thus determined by its profit-maximizing price
relative to the price index of its sector. Consequently, a reduction in the profit-maximizing
price pi (s) is generally associated with an increase in market share ωi (s).

Markups. An intermediate good producing firm’s markup is a function of its demand
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elasticity and given by

µi (s) =
εi (s)

εi (s)− 1
. (3.14)

Hence, the lower the demand elasticity faced by an intermediate producer, the higher its
markup. Accordingly, the higher a firm’s market share, the lower the demand elasticity it
faces and thus the higher its markup.

Market Clearing

Markets clear according to the factor shares in the economy. Aggregate demands for labor
and robots take the form

L =

∫ 1

0

n(s)∑
i=1

L∗i (s)

 ds = θ̄Y, (3.15)

R =

∫ 1

0

n(s)∑
i=1

R∗i (s)

 ds =
(
1− θ̄

)
Y, (3.16)

where θ̄ is the average draw of the output elasticity for labor. We assume that labor supply
is perfectly elastic, so that changes in the demand for labor are reflected in changes in the
wage w. In the case of robots, we assume that they are not produced domestically, but are
imported from a foreign economy in exchange for the final good produced in the domestic
economy. The production of robots is thus exogenous to the domestic economy and not
modelled explicitly. We consider them to be inputs to production that fully depreciate each
period, so that the robot rental rate equals the price of robots in exchange for final goods.
Similarly to the classical setting of a small open economy, we assume that demand from
the domestic economy does not affect the price for robots, but that it is determined on the
world market. The assumption of inelastic robot supply implies that aggregate demand for
robots as given by equation 3.16 is therefore met by foreign supply without affecting the
world market price for robots.
In related empirical work, Duch-Brown & Haarburger (2023) investigate the development of
market concentration for the world market of industrial robots. They find that a few robot
exporting countries provide the majority of world robot supply. The economy modelled
here can be seen as a small economy sourcing robot supply from one of these large-scale
exporters.

3.2.2. Reduction in the robot rental rate: only domestic competition

A reduction in the robot rental rate r, directly affects firms’ marginal costs and profit-
maximizing demands for labor and robots. In response, both firms’ profit-maximizing
prices and sectoral price indexes change, which affects market shares and markups. We are
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interested in identifying which firms gain market share and markups and which firms do
not. To derive this result, we construct a set of robot price elasticities, that allow us to
trace the effect of a change in the robot rental rate.

Effect on marginal costs. Due to the output elasticity of labor being constrained by
0 < θ < 1, all firms use both factor inputs in production. The direct effect of a reduction
in the price of robots r is therefore a reduction in the firm’s marginal cost as defined in eq.
(3.11). Using the differential of the marginal cost equation, we can solve for the elasticity
of a firm’s marginal costs with respect to the robot rental rate

d lnVi
d ln r

= θi
d lnw

d ln r
+ (1− θi) . (3.17)

We interpret the two terms on the right-hand side of equation 3.17 as the direct and
indirect marginal cost effects induced by robot price changes. The higher a firm’s robot
intensity in production, i.e. the smaller θi, the larger is the direct effect (1− θi) on a
firm’s marginal cost in response to changes in the robot rental rate. The indirect effect
(θi

d lnw
d ln r ) represents an adjustment of the wage in response to shifts in aggregate demand

for both input factors in general equilibrium. Since robots and labor enter the production
technology of intermediate firms as complements, a decline of the robot rental rate leading
to increased robot uptake would entail a positive wage response, given that we model labor
supply as perfectly inelastic. As indicated by θi, this affects firms proportionally to their
labor-intensity of production.

Thus, a decrease in the robot rental rate implies a decrease in a firm’s marginal costs Vi as
long as the direct effect is larger than the indirect effect. We discuss the wage response
effect in more detail in section 3.2.3 on the general equilibrium effects.

Effect on profit-maximizing price. To illustrate the effect of changes in the robot rental rate
on an intermediate firm’s profit-maximizing prices, we again construct the differential of
our equation of interest, which in this case is the price equation (eq. 3.10). Based on the
differential, we construct the elasticity of the profit-maximizing price with respect to the
robot rental rate, which takes the form

d ln pi(s)

d ln r
= − 1

εi(s)− 1

d ln εi(s)

d ln r
+
d lnVi
d ln r

. (3.18)

In addition to the effect on the marginal costs as depicted in equation 3.17, a firm’s price is
affected by a change in its demand elasticity, which, as shown above, is a function of its
market share. We construct the differential of the demand elasticity to again rearrange for
its elasticity with respect to the robot rental rate and obtain

d ln εi(s)

d ln r
= −(γ − σ)

ϕi(s)

εi(s)

d lnωi(s)

d ln r
, (3.19)
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which is a function of the elasticity of the market share with respect to the robot rental
rate.

Effect on market shares. A firm’s market share is defined as a relative measure of its
profit-maximizing price to the price index of the sector it is active in. Thus, how a firm’s
market share reacts to decreasing prices of robots depends on its factor intensity draw, i.e.,
its output elasticity of robots (1 − θi). The higher a firm’s output elasticity for robots,
the larger the magnitude of the price reduction effect. The firm with the highest output
elasticity for robots in a given sector will experience the largest increase in market share in
a given sector. We find the elasticity of the market share with respect to the robot rental
rate based on equation 3.13, it takes the form

d lnωi(s)

d ln r
= (1− γ)

(
d ln pi(s)

d ln r
− d ln p(s)

d ln r

)
. (3.20)

Since γ > 1, a firm’s market share will increase in response to a reduction in the robot
rental rate, if its own price decreases by more than the price index.

Effect on sectoral price indexes. The elasticity of the sectoral price index with respect to
the robot rental rate can be written as a market share weighted sum of the changes in
individual firm prices.2 We can write it as

d ln p(s)

d ln r
=

n∑
i=1

(s)ωi(s)
d ln pi(s)

d ln r
. (3.21)

Markups. The final step to fully gauge the effect of a change in the robot rental rate on a
firm’s markup is to combine the above derived elasticities. We again refer to the appendix
for details and present the fully expanded solution for equation 3.19

d ln εi(s)

d ln r
=

(γ − σ)(γ − 1)

1 + Ωi

ϕi(s)

εi(s)

1− θi −
∑n(s)

i=1 ϕi(s)
1−θi
1+Ωi∑n(s)

i=1
Ωi

1+Ωi

 , (3.22)

where Ωi = (γ−σ)(γ−1)
εi(s)−1

ϕi(s)
εi(s)

. Whether the demand elasticity increases (decreases) and
therefore the markup decreases (increases) in response to a reduction in the rental rate
depends on a firm’s robot intensity relative to the average robot intensity in the same sector.
We can distinguish between two cases

i) If (1 − θi) >

∑n(s)
i=1 ϕi(s)

1−θi
1+Ωi∑n(s)

i=1
Ωi

1+Ωi

then d ln εi(s)
d ln r > 0 and µi(s) increases in response to

reduction in r,

2See appendix 3.A.1
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ii) If (1 − θi) <

∑n(s)
i=1 ϕi(s)

1−θi
1+Ωi∑n(s)

i=1
Ωi

1+Ωi

then d ln εi(s)
d ln r < 0 and µi(s) decreases in response to

reduction in r.

3.2.3. General equilibrium

In the general equilibrium, firms will adjust their factor demands according to the changes
in the robot rental rate. With robots and labor being complementary in the production
technology we introduce, a decrease in the rental rate of robots will lead to increased labor
demand, which implies upward pressure on wages with supply being perfectly inelastic. The
feedback on wages following a decline in the robot rental rate will thus further exacerbate
the effect of market concentration, since higher wages affect firms inversely to their robot
intensity. High robot intensity firms are thus relatively better off compared to low robot
intensity firms not only because they benefit more from the decreased robot rental rate,
but also, because they are less affected by the increase in wages.

3.2.4. Small open economy: foreign competition

We extend the model to a simple two-country case, in which intermediate good producing
firms can sell to the final stage in the country foreign to them, in addition to selling to
the final stage in their home economy. We use this simplistic two-country economy model
to illustrate, what we call, the international competition effect. As we have seen in the
one-country model, the domestic effect of a reduction in the robot rental rate will make
the high-robot-intensity firms better off, because they will be able to reduce their marginal
costs the most, allowing them to achieve higher market shares and markups while setting
lower prices. We introduce fixed costs, that a firm must pay in order to gain access to the
respective foreign market. Firms therefore choose to export based on their technology draws.
Increasing robot use by foreign exporters will thus exert downward pressure on domestic
firms’ markups across all technology levels. Firms that were on the verge of benefiting from
decreasing robot prices in the one-country economy are displaced by more productive, more
robot-intense foreign competitors in the two-country economy. Overall, firms operating
with above-average robot intensity will benefit from a reduction in the robot rental rate in
both countries, while labor-intensive firms, i.e. firms with below-average robot-intensity,
will be crowded out in both markets. In the following, we derive the effect of increased
foreign competition for firm’s domestic outcomes.

Intermediate good producers

Due to constant returns, the markup a firm generates in its home and foreign markets are
the result of separate firm problems. A firm therefore faces two separate demand functions,
one representing demand from its home market and one from its foreign market. Demand
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for intermediate goods from domestic producers in the home market takes the form

yHi (s) =

(
pHi (s)

p(s)

)−γ (
p(s)

P

)−σ
Y, (3.23)

while demand for intermediate goods from foreign producers in the home market is

yFi (s) =

(
pFi (s)

p(s)

)−γ (
p(s)

P

)−σ
Y. (3.24)

Conceptually, the aggregate price index P remains unchanged from the one-country economy
model. The sectoral prices p(s) now include the prices of not only domestic but also foreign
firms. Thus, the aggregate price index P now reflects the prices of domestic and foreign
firms operating in the home country. This is illustrated by the two-country sectoral price
index equation

p(s) =

n(s)∑
i=1

pHi (s)1−γ + τ1−γ
n(s)∑
i=1

pFi (s)1−γ

 1
1−γ

, (3.25)

where τ ≥ 1 depicts iceberg trade costs. A firm’s market share in its home market is
therefore determined not only by its competitiveness vis-à-vis domestic competitors, but
also vis-à-vis foreign competitors operating in its home market, whose revenue enters in the
denominator

ωHi (s) =
pHi (s)yHi (s)∑n(s)

i=1 p
H
i (s)yHi (s) + τ

∑n(s)
i=1 p

F
i (s)yFi

=

(
pHi (s)

p(s)

)1−γ

. (3.26)

We also introduce fixed costs of exporting denoted fx. Due to profit-maximizing behavior
some firms select into exporting. The exporting decision for foreign firms can be written as

(
pFi (s)− Vi

ϕi(s)

)
yFi (s) ≥ fx. (3.27)

3.2.5. Reduction in the robot rental rate with foreign competition

Using the equations adapted for the two-countries case laid out in the previous section, we
pursue a similar strategy as in the one-country economy to examine the effect of foreign
robot adoption on home market firm outcomes. We construct a set of elasticities, that, in
combination illustrate the effect of foreign robot adoption on home firms’ market shares
and markups.

Effect on the domestic market share. In contrast to the one-country economy model, in
the two-countries economy a firm’s domestic market share is additionally determined by
the prices of foreign competitors, as formulated in equation 3.26. In order to capture the
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full effect on firms’ domestic market shares in the two-countries economy, we construct the
market share elasticity with respect to the robot rental rate. It takes the form

d lnωHi (s)

d ln r
= (1− γ)

(
d ln pHi (s)

d ln r
− d ln p(s)

d ln r

)
. (3.28)

The presence of foreign firms implies downward pressure on domestic firms’ markups, if
it increases the elasticity of the sector price with respect to the robot rental rate. More
specifically, the sign of equation 3.28 remains negative as long as the elasticity of the firm
price is larger than the elasticity of the sector price.

A negative sign implies that a decrease in the robot rental rate leads to an increase in the
domestic market share of firm i. If the sector price elasticity were larger than the firm price
elasticity, the sign of equation 3.28 were positive, which would imply that a decrease in the
robot rental rate led to a decrease in firm i’s domestic market share. Therefore, the next
step is to derive the elasticity of the sectoral price with respect to the robot rental rate.

Elasticity of the sector price index. The elasticity of the sectoral price with respect to the
robot rental rate in the two-countries case takes the form

d ln p(s)

d ln r
=

n(s)∑
i=1

ωHi (s)
dpHi (s)

d ln r
+ τ1−γ

n(s)∑
i=1

φFi (s)ωFi (s)
dpFi (s)

d ln r
, (3.29)

where φFi is a binary variable indicating firm activity, based on a firm’s exporting decision
formulated in equation 3.27. The summand on the right-hand side represents the effect of
foreign firms on the sectoral price index in the home country. Depending on their technology
draws, some foreign firms will be able to lower their profit-maximizing prices in response
to a reduction in the robot rental rate, while others will not. If the presence of foreign
firms increases the sector price elasticity, or in other words, if the right-hand summand
is positive, this puts downward pressure on the market shares of domestic firms. Due to
exporting fixed costs the firms selecting into exporting are more competitive than firms
not selecting into exporting. Assuming symmetric countries and thereby equal technology
distributions, the average active foreign firm in the home market will be more competitive
than the average domestic firm.

Effect on demand elasticity. Recall, that a firm’s demand elasticity determines its markup,
as shown in equation 3.14. Deriving the results for changes in markups therefore requires
deriving changes in firms’ demand elasticities in response to changes in the robot rental
rate. We construct the corresponding elasticity

d ln εHi (s)

d ln r
= −(γ − σ)

ωHi (s)

εHi (s)

d lnωHi (s)

d ln r
, (3.30)

which again depends on the change in a firm’s market share. Thus, if the presence of foreign
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firms causes a firm’s market share elasticity to change from a negative sign to a positive
sign as discussed above, the sign of the demand elasticity equation formulated in equation
3.30 changes from negative to positive in response. In this case, a firm that would have
benefited from the decrease in the robot rental rate in the one-country economy would lose
in terms of market share and markups due to the adoption robot by foreign competitors.

In general, all domestic firms, regardless of their technology level, will experience downward
pressure on market shares and markups as long as the foreign firms contribute to a decline
in the sectoral price. For symmetric countries, this is the expected outcome, given the
selection of above-average competitive firms into exporting.

3.3. Empirical Strategy

3.3.1. Markup Estimation

We estimate industry-level markups by slightly adapting the procedure developed by
De Loecker & Warzynski (2012) to include robots in production. The firm-level data needed
for the estimation comes from from Worldscope. Worldscope contains financial statements
for more than 80,000 companies worldwide. The sample consists mainly of publicly traded
firms, with few privately held firms.3 Markups are the ratio of price (P) to marginal cost
(MC) and are a direct measure of market power (De Loecker et al., 2020). The advantage of
using markups instead of standard concentration indices such as the Herfindahl-Hirschman
index is that the latter do not measure market power when there is product differentiation
(De Loecker et al., 2020) and that one would require data on all firms in the market, which
we do not have. The method builds on the observation that markups can be estimated using
expenditure shares and output elasticities, which follows from standard cost minimization
via a Lagrange function. Markups can thus be expressed as

µist =
Pist
MCist

=
θVit
αVist

,

where θVist is the output elasticity of variable input V and αVist is the expenditure share on
input V of firm i in sector s at year t. The expenditure shares are directly be observable in
the data.

To obtain output elasticities, we estimate a Cobb-Douglas production function separately
for each industry, following De Loecker & Eeckhout (2018). Unfortunately, since we do not
have information about robots in the firm-level Worldscope data, but only at the sector
level, it is not possible for us to directly estimate firm-level robot output elasticities. To
adhere as much as possible to the established procedure for estimating markups on the on
hand, and to incorporate robots in the markups estimation on the other hand, we alter the

3De Loecker & Eeckhout (2018) use the same data and perform some robustness tests to ensure that the
selection of firms in the data does not lead to biased results.
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standard production function used for the markup estimation in De Loecker & Eeckhout
(2018) by adding sector level robots. The result is a production function that extends the
one introduced in the theoretical part of this paper including labor l and the stock of robots
R, by variable inputs v, and capital k. We argue that omitting variable inputs v and capital
k in the estimation equation could raise omitted variable bias concerns and thus include
them in the estimation. The resulting Cobb-Douglas production function takes the form

qist = βvvist + βkkist + βllist + βrRst + ωist + εist

with q denoting output and all variables being in logs and deflated.4 Unobserved productivity
is given by ω. Estimating the production function yields output elasticities β. The estimation
follows Ackerberg et al. (2015), who use a control function approach to overcome simultaneity
bias between input demand and unobserved productivity. In a first step, expected output
(φist) is estimated

qist = φt(vist, kist, list, Rst, zist) + εist,

where z are other variables that affect the demand for variable inputs (we use a set of
fixed effects to control for other variables) and εist is the residual of estimating expected
output. Following the authors, we correct for variation in expenditure not correlated to
variables impacting input demand using εist: α̂Vist =

PVistVist

PistQ̂ist/exp(ε̂ist)
, where we use a set of

fixed effects to control for other variables that affect the demand for variable inputs.

Next, the inverse demand of variable input ht(·) is used to rewrite expected output as

φist = βvvist + βkkist + βllist + βrRst + ht(vist, kist, list, Rst, zist).

With the expected output, productivity can be computed as ωist(β) = ˆφist − βvvist −
βkkist − βllist − βrRst (De Loecker & Warzynski, 2012). The productivity innovation ξist is
recovered by non-parametrically regressing ωist(β) on its lag. With this, all coefficients of
the production function can be obtained through GMM with the moment conditions

E

ξist(β)


vist−1

kist

list−1

Rst−1


 = 0. (3.31)

The output elasticity of variable input v is then given by θst = β̂v.

After estimating markups at the firm level, we aggregate them to the sector level. In the
main specification, we weight each markup by the firm’s share of industry output. As a
robustness test, we use the average markups as a measure. Figure 3.1 shows that markups
have steadily increased over the past decades and, that our markup estimates are similar to

4We obtain capital, price and GDP deflators from Worldbank’s WDI and OECD’s STAN database.
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Figure 3.1: Estimated average markups over time for all sectors versus manufacturing
sectors using Worldscope data.
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(b) Manufacturing sectors

those of De Loecker & Eeckhout (2018). In panel 3.1b, we plot the evolution of markups
in the manufacturing sector only. While markups have increased after 2011, there is not
as strong an overall upward trend as in panel . This suggests that the service sector was
largely responsible for the strong markup increases between 1995 and 2015 (Lashkari et al.,
2018; D. Autor et al., 2020).

3.3.2. Estimation Equation

To estimate the impact of automation on markups and other outcomes related to market
power and concentration, we first employ a simple regression model

ycst = αcst + βRRcst + βχχcst + γcs + δct + ηst + εcst, (E.1)

where c denotes the country, s the sector, t the year and the outcome of interest is ycst.
Rcst is the stock of domestic robots per 1000 workers. In addition, χcst represents a vector
of control variables, γcs country sector fixed effects, δct country year fixed effects and ηst
sector year fixed effects.5 Thus, we observe changes only within sectors of countries over
time, while controlling for all other larger-scale developments and characteristics.

Data on the stock of robots by country, industry, and year are obtained from the International
Federation of Robotics (IFR). The IFR provides the annual number of "multi-purpose
industrial robots"6 installations at the country, industry and application levels (International
Federation of Robotics, 2018). Industries are defined at the three-digit or two-digit level
according to ISIC classifications.

Estimation equation E.1 already gives a first indication of the relationship between au-

5Our main controls are the number of patents and the capital stock, both of which we take from the
Worldscope database, and net exports, which we take from the OECD ICIO.

6A robot is defined by ISO 8373:2012 as an automatically controlled, re-programmable, multi-purpose
manipulator, programmable in three or more axes, which can be either fixed in place or mobile for use in
industrial automation applications (International Federation of Robotics, 2018)
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tomation and markups. However, the choice to use robots in production is likely to be
endogenous to markups. For instance industries with higher markups could have more
resources to employ robots. Therefore, we use an IV approach to obtain exogenous variation
in robot uptake. Following the current literature, we argue that the global stock of robots is
likely to be exogenous to single industries, and represents the overall decline in robot prices
(G. Graetz & Michaels, 2018; Artuc et al., 2019). We construct a similar but novel IV,

RIVcst = RGt
Ocs
Lcs

Ic,

which interacts the global stock of robots RG with country- and sector-level predictors of
the degree of automation. The fraction Ocs/Lcs, output per worker of sector s in country c
in 1995, reflects the potential of a sector to employ robots. The source of these data are the
OECD’s ICIO tables and the OECD’s Annual Labor Force Statistics (OECD, 2021, 2023b),
respectively. I is a measure of technological capacity in 1990, developed by Archibugi
& Coco (2004). Thus, our IV exploits exogenous variation over time and cross-sectional
capabilities to install automation technologies.

In our main specification we estimate equation E.1 in a two-stage procedure, where Rcst
is instrumented with RIVcst in the first stage. Given the data requirements, we are able to
estimate the equation for 29 countries and 20 sectors, between 1995 and 2015. However, we
do not have a complete panel for all combinations of countries and sectors.

In a second step, we test the theoretical predictions made in section 3.2.5 and include
a measure of foreign robot competition in our model. Following De Benedictis & Tajoli
(2007a,b), we construct a similarity index for the correlation between sectoral exports
between two countries of the following form:

mcdst = 1−
∑

ps |xcst − xdst|∑
ps xcst + xdst

.

Within each sector s, the index compares the exports of two countries c and d over a range
of products p in each year t.7 The resulting index is bounded between 0 and 1, where the
closer it is to 1, the more similar the exports of two countries are in that sector.

We expect that the more similar the domestic and foreign economies are, the greater the
competition from foreign robots. Therefore, to construct a measure of foreign automation,
we weight the stock of foreign robots per worker Rdst by the similarity index, which yields
a competition-weighted measure of foreign robots Fcst:

Fcst =
∑
d

mcdsRdst.

We can therefore test for the differential effects of domestic and foreign automation by

7We use exports at the 4-digit level from Comtrade, over our 18 sectors.
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Table 3.1: Automation and markups - OLS

All sectors Only manufacturing

(1) (2) (3) (4)

Stock of robots p.w. -0.049∗∗∗ -0.047∗∗∗ -0.052∗∗∗ -0.050∗∗∗

(0.01) (0.01) (0.02) (0.02)

Observations 4580 4185 3354 3354

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. The stock of
robots per worker is mean standardized to a standard deviation of one. All specifications include country
sector dummies, country year dummies and sector year dummies. Controls are the logs of net exports and
industry production. Markups are aggregated on the industry level by each firm’s share of sales. Regressions
run from 1995 to 2016.

Table 3.2: Automation IV - First stage

All sectors Only manufacturing

(1) (2) (3) (4)

Robot IV 0.716 0.688 1.170∗∗∗ 1.123∗∗∗

(0.43) (0.42) (0.21) (0.20)

Observations 4530 4155 3354 3354

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. The stock of
robots per worker is mean standardized to a standard deviation of one. All specifications include country
sector dummies, country year dummies and sector year dummies. Controls are the logs of net exports and
industry production. Regressions run from 1995 to 2016.

including Fcst in the estimation equation E.1.

3.4. Estimation Results

3.4.1. Automation and Markups

In this section, we test the theoretical predictions of the model, by estimating how an
increase in automation has affected markups. As laid out in section 3.2, automation is
likely to affect firms differently depending on their level of productivity. We start with
estimating how increasing usage of robots affects markups and other measures of market
power domestically, before moving to the effects of foreign automation. We thereby establish
a complete picture of the effects of automation on market power.

Table 3.1 presents the results of estimating equation E.1 with an OLS model. In all
specifications, the standard errors are two-way clustered at the country and sector level.
The outcome is the logarithm of markups, where industry-level markups are obtained by
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Table 3.3: Automation and markups - IV

All sectors Only manufacturing

(1) (2) (3) (4) (5) (6)

Stock of robots p.w. -0.246∗∗ -0.245∗∗ -0.237∗∗ -0.176∗∗∗ -0.183∗∗∗ -0.172∗∗∗

(0.11) (0.10) (0.10) (0.02) (0.02) (0.02)

Observations 4530 4155 3628 3354 3354 2843

Country × Sector Dummies X X X X X X
Country × Year Dummies X X X X X X
Sector × Year Dummies X X X X X X
Controls X X X X
Additional Controls X X

KP F-Statistic 2.77 2.65 2.9 31.8 30.8 57.5

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. The stock of
robots per worker is mean standardized to a standard deviation of one. All specifications include country
sector dummies, country year dummies and sector year dummies. Controls are the logs of net exports and
industry production. Additional controls are the log number of patents and the log capital stock. Markups
are aggregated on the industry level by each firm’s share of sales. Regressions run from 1995 to 2016.

weighting each firm’s markup by its share of sales in the industry total. In the first two
columns, the regressions are run over all sectors, while in the latter two only manufacturing
sectors are examined. Columns 2 and 3 add industry-level production and net exports in
logarithms as controls. The coefficient on the stock of robots per worker is statistically
significant in all specifications and indicates a negative relationship between the stock of
robots and average markups on average. The effect is stronger for manufacturing sectors.

As laid out above, a firm’s market power reflects idiosyncratic characteristics of firms that
are associated with the likelihood of robot adoption. The results are thus likely to be biased
by reverse causality and we therefore use an IV approach to obtain unbiased estimates. As
outlined in section 3.3.2, we address the endogeneity in the decision to automate by using
an instrumental variable. The results of the first-stage regression are presented in Table
3.2. While the instrumental variable is not significant for all sectors, it is highly significant
and has a positive coefficient for the manufacturing sectors. This is not surprising, as
industrial robots are almost exclusively used in manufacturing production. The inclusion of
the control variable does not change the coefficient or the precision of the instrument. The
instrument is therefore a valid predictor of robot adoption.

Table 3.3 shows the results of the second-stage. The first thing to note is that the
Kleibergen-Paap F-statistic is low with all sectors, but is above the usual thresholds in
the manufacturing sectors, indicating that the instrument is not valid in the service and
agricultural sectors, as found in Table 3.2.

As in the OLS setting, the stock of domestic robots has a negative and statistically significant
coefficient. Since the coefficient is free of endogeneity concerns, we can now interpret the
coefficient as a causal effect. The coefficient on the stock of robots is statistically significant
and negative throughout. In columns 3 and 6, we add the logarithm of the number of
patents at the industry-level as well as the logarithmized industry-level capital stock. The
number of patents controls for the industry’s innovation capacity and the capital stock for
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Table 3.4: Automation and markups - Quintile regressions

Sales-quintiles Markup-quintiles

(1) (2) (3) (4) (5)

Stock of robots p.w. -0.004∗∗

(0.00)

1. Quintile × Stock of robots p.w. -0.016∗∗∗ -0.013∗∗ -0.035∗∗ -0.037∗∗

(0.01) (0.00) (0.01) (0.01)
2. Quintile × Stock of robots p.w. -0.011∗∗∗ -0.009∗∗∗ -0.018∗∗ -0.018∗∗

(0.00) (0.00) (0.01) (0.01)
3. Quintile × Stock of robots p.w. -0.006∗∗∗ -0.005∗∗ -0.004∗∗ -0.003

(0.00) (0.00) (0.00) (0.00)
4. Quintile × Stock of robots p.w. 0.003 0.005 0.012∗ 0.015∗∗

(0.00) (0.00) (0.01) (0.01)
5. Quintile × Stock of robots p.w. 0.014∗ 0.015∗∗ 0.033∗ 0.039∗∗

(0.01) (0.01) (0.02) (0.01)

Observations 11654 11641 10389 11618 10365

Country × Sector Dummies X X X X X
Country × Year Dummies X X X X X
Sector × Year Dummies X X X X X
Controls X X X X X
Additional Controls X X

KP F-Statistic 29 .835 1 .858 .998

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. Quintiles
are based on firms’ sales in the previous year in columns 2 and 3 and on firms’ markups in the previous
year in columns 4 and 5. The sample consists of manufacturing sectors only. All specifications include
country sector dummies, country year dummies and sector year dummies. Controls are the logs of net
exports and industry production. Additional controls are the log number of patents and the log capital
stock. Regressions run from 1995 to 2016.

the overall capital intensity, both of which are correlated with the adoption of robots. The
inclusion of the additional control variables reduces the sample size because the variables
are not available for all observations, but the coefficient in column 6 remains statistically
significant at the 1% level. Thus, a larger stock of robots appears to reduce industry
markups, on average. This finding points to a distribution of technology across firms which
according to our model (section 3.2) suggests that: New technology benefits only a few
firms at the expense of others, leading to an average negative effect on markups. The effect
of automation on markups is substantial: A one standard deviation increase in the stock of
robots per worker reduces average markups by 17%.

To examine whether it is only high-productivity and high-sales firms which benefit from
automation, we split the firms in our sample into quintiles within each sector, based on
their sales and markups in the previous year, to obtain a fuller picture of the distributional
effects of automation.8 D. H. Autor et al. (2016) show that the rise of markups is driven by
"superstar" firms. Furthermore, in another recent study using a similar setting, Stiebale et
al. (2020) find no effect of automation on markups for manufacturing firms on average, but
an increase for the highest quintile of firms.

In Table 3.4, the level of observation is now sector-quintiles. The first column reproduces

8For observations without information on the previous year, we use sales and markups of the same year.
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Table 3.5: Automation, production and exports

log Production log Exports

(1) (2) (3) (4)

Stock of robots p.w. 0.199∗∗∗ 0.156∗∗∗ 1.845 1.239
(0.02) (0.02) (1.89) (1.45)

Observations 3353 2842 3353 2842

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X X X
Additional Controls X X

KP F-Statistic 31.2 59.7 31.3 58.3

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. The stock of
robots per worker is mean standardized to a standard deviation of one. The sample consists of manufacturing
sectors only. All specifications include country sector dummies, country year dummies and sector year
dummies. Controls are the log industry production in columns 1 and 2 and the log net exports in columns
3 and 4. Additional controls are the log number of patents and the log capital stock. Regressions run from
1995 to 2016.

the previous results at the alternative level of observation. In columns 2 and 3, we interact
the sales quintile with the domestic stock of robots and the corresponding instrument. The
same procedure is repeated in columns 4 and 5, using firms’ markups to construct quintiles.
In both settings, and in line with the current literature (Stiebale et al., 2020), we also find
that the decline in average markups is driven by firms in the lowest 3 quintiles. Conversely,
firms in the top quintile experience an increase in markups.9

This suggests interesting within-industry heterogeneity. The largest and most productive
firms are able to reap disproportional benefits from automation. At the same time, less
productive firms face greater competition due to the lower production costs of automating
firms. As a consequence, markups of these firms decrease.

To see whether this pattern is driven by individual industries, we disaggregate the manufac-
turing sector in Table 3.A3. We run the quintile-level analysis for each individual industry.
The Table shows that most sectors have a similar pattern. Although the estimation power is
limited due to the smaller number of observations, the coefficient of the interaction between
the stock of robots and the highest quintile is positive in almost all industries. Similarly, the
coefficients of the first and second quintile are almost entirely negative. Notably, there are
are negative and statistically significant coefficients in the computer electronics industry.

3.4.2. Alternative Outcomes

Having provided evidence above that domestic automation reduces average markups, we
now turn to alternative outcomes related to output and market concentration.

9We find the same pattern when estimating markups using a translogirathmized instead of a Cobb-Douglas
function. Table 3.A2 shows that robots have, on average, a negative effect on markups estimated in this
way, and that the negative effect is driven by lower quantiles.
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Table 3.6: Automation and alternative outcomes

log Number of Firms log Output Prices log Operating Margin

(1) (2) (3) (4) (5) (6)

Stock of robots p.w. -0.032 0.423 -0.137∗ -0.140∗ -0.622∗∗∗ -0.838∗∗∗

(0.35) (0.28) (0.07) (0.07) (0.21) (0.17)

Observations 1565 1282 2637 2216 2365 1932

Country × Sector Dummies X X X X X X
Country × Year Dummies X X X X X X
Sector × Year Dummies X X X X X X
Controls X X X X X X
Additional Controls X X X

KP F-Statistic 9.63 10.3 21.5 31.6 13.7 26.5

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. The
stock of robots per worker is mean standardized to a standard deviation of one. The sample consists of
manufacturing sectors only. All outcome variables are measured in logs. All specifications include country
sector dummies, country year dummies and sector year dummies. Controls are the logs of net exports and
industry production. Additional controls are the log number of patents and the log capital stock. Markups
are aggregated on the industry level by each firm’s share of sales. Regressions run from 1995 to 2016.

First, in Table 3.5, we examine how automation affects production and exports. Production
increases with a larger stock of robots (columns 1 and 2), as might be expected and as
has been found, for example, by G. Graetz & Michaels (2018) and Koch et al. (2019). Net
exports, on the other hand, are not affected by automation.10 Table 3.A1 in the appendix
displays firms’ sales as an outcome, based on quintiles by their sales and markups in the
previous year. The results show that the average decline is again driven by the firms in
the lowest quintile, which are less likely to install robots in production and thus face more
competition. As with markups, more productive firms benefit from automation.

Next, we turn to alternative measures of market concentration. First, in columns 1 and 2
of Table 3.6, we find no changes in the total number of firms in a sector associated with
an increased robot adoption. It should be noted, however, that the sample size here is
relatively small, as data on the number of firms are not available for all countries.

In columns 3 and 4, we examine how prices are affected by automation. We find a negative
association between the stock of robots and prices in the baseline setting and with additional
controls, which supports the previous results. Robotization reduces sectoral prices and
only the most productive firms benefit due to lower marginal costs. Lastly, we use firms’
operating margin as an alternative measure of markups. Firms report their operating
margin directly in the Worldscope data, which eliminates the possibility of estimation error.
11 The coefficient on the stock of robots per worker is again statistically significant and
even larger in size, both in the baseline setting and with additional controls. Our results
are thus robust to alternative measures of markups.

10The same holds true for the log of exports, rather than the log of net exports.
11The operating margin is defined as the operating income divided by net sales.
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Table 3.7: Foreign automation and markups

Only manufacturing sectors

(1) (2) (3) (4)

Foreign weighted robots -0.033∗∗∗ -0.035∗∗∗ -0.015∗∗ -0.022∗∗

(0.01) (0.01) (0.01) (0.01)

Stock of robots p.w. -0.046∗∗ -0.047∗∗

(0.02) (0.02)

Observations 3354 3354 3354 2843

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X X
Additional Contols X

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. The weighted
foreign robot stock and the stock of domestic robots per worker are mean standardized to a standard
deviation of one. The sample consists of manufacturing sectors only. All specifications include country
sector dummies, country year dummies and sector year dummies. Controls are the logs of net exports and
industry production. Additional controls are the log number of patents and the log capital stock. Markups
are aggregated on the industry level by each firm’s share of sales. Regressions run from 1995 to 2016.

3.4.3. Foreign Automation

Having established that domestic automation reduces average industry level markups, driven
by low-sales, and low-markup firms, we now turn to the question of how foreign automation
affects domestic markups. Our theoretical model predicts that foreign automation will
depress domestic markups, due to increased competition through lower production costs
abroad.

Table 3.7 presents the results of including the foreign weighted robot measure Fcst (see
section 3.3.2) into our estimation equation E.1. We focus on the manufacturing sectors, as
these were found to drive our previously found results. The coefficient of foreign-weighted
robots is statistically significant and negative throughout. Adding controls in column 2
doesn’t change the coefficient. While including the domestic stock of robots in column
3 reduces the size of the coefficient, it remains statistically significant at the 5% level.
Moreover, The finding is robust to the inclusion of additional controls.

Compared to domestic automation, we expect that increasing competition from foreign
automating firms will not only affect lower productivity and smaller firms. Indeed, in the
fully specified model with sales quintiles we find a decrease in markups along the entire
distribution of firms, as shown in column 2 of Table 3.8. With quintiles based on markups,
we find a statistically significant effect only for the fourth quintile. In contrast to the
previous results, it is rather the firms in the middle quintiles that experience a larger
reduction in markups. These firms seem to face the strongest competition from foreign
firms.

Foreign automation thus seems to put additional strain on domestic firms, but not only on
the smallest ones. Competition from foreign producers, which can reduce their production
costs, reduces the market power and market share of domestic firms. Table 3.8 provides
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Table 3.8: Foreign automation and markups - Quintile regressions

Sales-quintiles Markup-quintiles

(1) (2) (3) (4)

1. Quintile × Stock of robots p.w. -0.004∗∗∗ -0.003∗∗ -0.007∗∗∗ -0.008∗∗∗

(0.00) (0.00) (0.00) (0.00)
2. Quintile × Stock of robots p.w. -0.002∗∗ -0.002 -0.003∗∗∗ -0.004∗∗∗

(0.00) (0.00) (0.00) (0.00)
3. Quintile × Stock of robots p.w. -0.001 -0.001 -0.001 -0.002∗

(.) (0.00) (0.00) (0.00)
4. Quintile × Stock of robots p.w. 0.003∗∗∗ 0.003∗∗ 0.003∗∗∗ 0.004∗∗

(0.00) (0.00) (0.00) (0.00)
5. Quintile × Stock of robots p.w. 0.004∗∗ 0.006∗∗ 0.007∗∗∗ 0.010∗∗

(0.00) (0.00) (0.00) (0.00)
1. Quintile × Foreign weighted robots -0.002 -0.011∗∗ 0.003 -0.004

(.) (0.01) (0.02) (0.02)
2. Quintile × Foreign weighted robots -0.013 -0.025∗∗ 0.003 -0.007

(0.01) (0.01) (0.02) (0.01)
3. Quintile × Foreign weighted robots -0.013 -0.022∗∗ -0.002 -0.011

(0.01) (0.01) (0.01) (0.01)
4. Quintile × Foreign weighted robots -0.019∗∗ -0.038∗∗∗ -0.010 -0.031∗

(0.01) (0.01) (0.01) (0.02)
5. Quintile × Foreign weighted robots 0.006 -0.023∗∗ -0.007 -0.042

(0.01) (0.01) (0.02) (0.03)

Observations 11641 10389 11618 10365

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X X X
Additional Controls X X

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. Quintiles are
based on firms’ sales in the previous year in columns 2 and 3 and on firms’ markups in the previous year
in columns 4 and 5. The sample consists of only manufacturing sectors. The coefficients of foreign robot
exposure are displayed in 1000s, to ensure visibility. The sample consists of manufacturing sectors only. All
specifications include country sector dummies, country year dummies and sector year dummies. Controls
are the logs of net exports and industry production. Additional controls are the log number of patents and
the log capital stock. Regressions run from 1995 to 2016.

further evidence of this pattern. While domestic automation leads to larger industry-level
production, competition to foreign automation is associated with lower production levels.
No effect is found for net exports.

While exporting firms face greater competition from foreign firms that can produce at
lower costs, increased production by the latter could increase demand for inputs. Therefore,
foreign automation may have countervailing effects. Increased demand for inputs may spur
prices and output of input-providing firms. We therefore add an additional measure of
exposure to foreign robots in Table 3.A4, which captures input-output linkages. We weight
each foreign sector’s stock of robots per worker by the share of input exports (imports) from
a domestic sector to the respective foreign sector.12 In columns 1 and 2, we weight foreign
robots with imports and in columns 3 and 4 with exports. Contrary to domestic robots and
similarity-weighted foreign robots, the coefficient of input-trade-weighted foreign robots
is positive. However, the coefficients are only statistically significant when not including

12Data on input exports and imports are taken from the OECD’s ICIO database.
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Table 3.9: Foreign automation, production and exports

log Production log Exports

(1) (2) (3) (4)

Stock of robots p.w. 0.106∗∗∗ 0.087∗∗∗ 1.127 1.059
(0.03) (0.03) (0.78) (0.84)

Foreign weighted robots -0.094∗∗∗ -0.081∗∗∗ -0.132 0.553
(0.03) (0.02) (1.04) (0.77)

Observations 3353 2842 3353 2842

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X X X
Additional Controls X X

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. Coefficients
of foreign robot exposure are displayed in 1000s, to ensure visibility. The sample consists of manufacturing
sectors only. All specifications include country sector dummies, country year dummies and sector year
dummies. Controls are the log industry production in columns 1 and 2 and the log net exports in columns
3 and 4. Additional controls are the log number of patents and the log capital stock. Regressions run from
1995 to 2016.

additional control variables and thereby losing observations. Moreover, the coefficient of
export-weighted foreign robots is larger in both magnitude and statistical significance than
the the coefficient of import-weighted robots. Therefore, input-providing firms appear to
profit from automation abroad.

On the one hand, finding a positive coefficient for trade-weighted foreign robots reinforces
confidence that we are indeed capturing increasing competition with our similarity-weighted
robot measure. It also shows that automation affects different types of firms differently.
Those which compete with automating firms are crowded out, while firms that provide
inputs to these firms are may benefit from their increased production.

3.5. Conclusion

In this paper, we examine how automation shapes economies through the channel of market
power. We develop a theoretical model that links automation, technological capability and
markups. Building on the model of Edmond et al. (2015), we show that a reduction in the
robot rental rate benefits high-productivity and high-technology firms. These firms are able
to reap the benefits of automation and can reduce their production costs, allowing them
to further increase their markups. This comes at the expense of low-productivity firms,
which are unable to take advantage of the lower prices of robots in production. As high-
productivity firms lower their output prices, low-productivity firms lose in terms of market
share and market power. Furthermore, in a two-country-case, we show that additional
competition from foreign automating firms increases the burden on lower-productivity firms.
Firms which are able to export and can lower their production costs take away additional
market share and thus market power from lower-productivity firms.
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We test these theoretical predictions by estimating how markups are affected by automation.
Since domestic automation is endogenous to market power and productivity levels, we
employ a Two-Stage-Least-Squares (2SLS) strategy. Our findings indicate that automation
has a negative impact on markups, in manufacturing industries. While markups decline on
average, there is substantial heterogeneity within the economy. High-markup firms are able
to increase their markups at the cost of low-markup and low-productivity firms. Firms in
the three lowest markup and productivity quintiles experience large declines in markups.
Complementing these results, we find that automation leads to lower average prices and
lower average operating profit margins.

To empirically investigate how foreign automation affects domestic markups, we develop
a novel measure of competition to foreign automation, which builds on the similarity of
two countries’ export structure. The more similar two countries are, the more we expect
competition to increase when one country adopts more robots. Adding this measure to our
estimations, we find that foreign automation does indeed lead to a reduction in markups.
Again differentiating firms by markup and productivity quintile, we show that firms in the
lower quintiles are the ones which lose market power due to foreign competition.

Our results add to the growing literature on the distributional effects of automation
technology. While markups have risen sharply on average in recent decades (De Loecker &
Eeckhout, 2018), relatively few firms are able to dominate whole markets (D. Autor et al.,
2020). New technologies such as robots in production could exacerbate this trend. Making
technology more readily available is therefore key to counteracting monopolistic markets.
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3.A. Appendix

3.A.1. Theory

One-country economy

Intermediate goods producers

Profit-maximization-problem of the final good producer.

PY −
∫ 1

0

n(s)∑
i=1

pi (s) yi (s)

 ds. (A1)

Demand for intermediate goods. The relative demand for two varieties i and j within the
same sector s is given by:

yi (s)

yj (s)
=

(
pi (s)

pj (s)

)−γ
. (A2)

We multiply with the price of one variety and aggregate over n(s) varieties within a sector:

pi (s) yi (s) = pj (s)γ yj (s) pi (s)1−γ ,

n(s)∑
i=1

pi (s) yi (s) = p (s) y (s) = pj (s)γ yj (s)

n(s)∑
i=1

pi (s)1−γ .

By taking into account the definition of the price index (3.5), we obtain the demand for
one variety:

p (s) y (s) = pj (s)γ yj (s) p (s)1−γ ,

yj (s) =

(
pj (s)

p (s)

)−γ
y (s) . (A3)

Combining equation A3 with the demand function for one sector leads to:

yj (s) =

(
pj (s)

p (s)

)−γ (p (s)

P

)−σ
Y. (A4)

One country economy - reduction in the robot rental rate

Effect on marginal costs

Marginal costs of a firm i :

Vi = wθir1−θiθi
−θi (1− θi)θi−1 (A5)
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The total differential of marginal costs Vi with respect to changes of endogenous variables
can be derived as follows:

dVi = θiw
θi−1dwr1−θiθi

−θi(1− θi)θi−1 + wθi(1− θi)r−θidrθi−θi(1− θi)θi−1

The change of θi can be neglected, as this is an exogenous firm-specific draw. We can
simplify the total differential by using the definition of marginal costs Vi:

dVi = θiw
−1dwVi + V −1

i (1− θi)dr

d lnVi
d ln r

=
dVi
dr

r

Vi
= θi

d lnw

d ln r
+ (1− θi)

Effect on price

The optimal price of a firm is given by

pi(s) =
εi(s)

εi(s)− 1

Vi
ϕi

dpi(s)

dr
=
dεi(s)
dr (εi(s)− 1)− εi dεi(s)dr

(εi(s)− 1)2

Vi
ϕi

+
εi(s)

εi(s)− 1

dVi
dr

1

ϕi
dpi(s)

dr
=− 1

εi(s)− 1

pi(s)

εi(s)

dεi(s)

dr
+ pi(s)

dVi
dr

1

Vi
d ln pi(s)

d ln r
=− 1

εi(s)− 1

d ln εi(s)

d ln r
+
d lnVi
d ln r

Effect on demand elasticity

In the Bertrand version of the model, the demand elasticity is defined as

εi(s) =γ(1− ωi(s)) + σωi(s)

dεi(s)

dr
=− (γ − σ)

ωi(s)

dr
d ln εi(s)

d ln r
=− (γ − θ)ωi(s)

εi(s)

d lnωi(s)

d ln r
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We now use the expression of the market share

ωi(s) =

(
pi(s)

p(s)

)1−γ

dωi
dr

=(1− γ)

(
pi(s)

p(s)

)−γ dpi(s)
dr p(s)− pi(s)dp(s)dr

p(s)2

dωi(s)

dr
=(1− γ)

(
pi(s)

p(s)

)1−γ (d ln pi(s)

dr
− d ln p(s)

dr

)
d lnωi(s)

d ln r
=(1− γ)

(
d ln pi(s)

dr
− d ln p(s)

dr

)

Summary of effects

d ln pi(s)

d ln r
=− 1

εi(s)− 1

d ln εi(s)

d ln r
+
d lnVi
d ln r

(A6)

d lnVi
d ln r

=(1− θi) > 0 (A7)

d ln εi(s)

d ln r
=− γ(γ − σ)

ωi(s)

εi(s)

d lnωi(s)

d ln r
(A8)

d lnωi(s)

d ln r
=(1− γ)

(
d ln pi(s)

d ln r
− d ln p(s)

d ln r

)
(A9)

Combining eqs. A6 and A7 leads to:

d ln pi(s)

d ln r
= − 1

εi(s)− 1

d ln εi(s)

d ln r
+ (1− θi) (A10)

Combining eqs. A8 and A9 leads to:

d ln εi(s)

d ln r
= (γ − σ)(γ − 1)

ωi(s)

εi(s)

(
d ln pi(s)

d ln r
− d ln p(s)

d ln r

)
(A11)

Inserting eq. A11 into eq. A10 leads to:

d ln pi(s)

d ln r
= − 1

εi(s)− 1
(γ − σ)(γ − 1)

ωi(s)

εi(s)

(
d ln pi(s)

d ln r
− d ln p(s)

d ln r

)
+ (1− θi)

d ln pi(s)

d ln r

(
1 +

(γ − θ)(γ − 1)

εi(s)− 1

ωi(s)

εi(s)

)
=

(γ − θ)(γ − 1)

εi(s)− 1

ωi(s)

εi(s)

d ln p(s)

d ln r
+ (1− αi)

Define Ω = (γ−θ)(γ−1)
εi(s)−1

ωi(s)
εi(s)

, so that
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d ln pi(s)

d ln r
=

1− θi
1 + Ωi

+
Ωi

1 + Ωi

d ln p(s)

d ln r

d ln εi
d ln r

=(γ − σ)(γ − 1)
ωi(s)

εi(s)

(
1− θi
1 + Ωi

+
Ωi

1 + Ωi

d ln p(s)

d ln r
− d ln p(s)

d ln r

)
d ln εi(s)

d ln r
=

(γ − σ)(γ − 1)

1 + Ωi

ωi(s)

εi(s)

(
1− θi −

d ln p(s)

d ln r

)

Sector price

The sector price is defined as

p(s) =
1

1− γ

n(s)∑
i=1

pi(s)
1−γ

 1
1−γ

dp(s)

dr
=

n(s)∑
i=1

pi(s)
1−γ

 1
1−γ−1

(−1)

n(s)∑
i=1

pi(s)
−γ dpi(s)

dr

The derivative takes into account that all prices adjust to a change in the rental rate.

dp(s)

dr
=p(s)

n(s)∑
i=1

pi(s)
1−γ

 1
1−γ n(s)∑

i=1

pi(s)
−γ dpi(s)

dr

d ln p(s)

d ln r
=

n(s)∑
i=1

(
pi(s)

p(s)

)1−γ d ln pi(s)

d ln r

Note, that
(
pi(s)
p(s)

)1−γ
= ωi(s), so

d ln p(s)

d ln r
=

n(s)∑
i=1

ωi(s)
d ln pi(s)

d ln r

Thus, the change in the sector price is a weighted sum of changes in firm prices, where the
weights are the respective market shares of goods. We now insert the reaction of a firm’s
price into the response of the sector price:
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d ln pi(s)

d ln r
=

1− θi
1 + Ωi

+
Ωi

1 + Ωi

d ln p(s)

d ln r

d ln p(s)

d ln r
=

n(s)∑
i=1

ωi(s)

(
1− θi
1 + Ωi

+
Ωi

1 + Ωi

d ln p(s)

d ln r

)
d ln p(s)

d ln r
−
n(s)∑
i=1

ωi(s)
Ωi

1 + Ωi

d ln p(s)

d ln r
=

n(s)∑
i=1

ωi(s)
1− θi
1 + Ωi

d ln p(s)

d ln r
=

∑n(s)
i=1 ωi(s)

(1−θi)
1+Ωi

1−
∑n(s)

i=1 ωi(s)
Ωi

1+Ωi

Next, we insert the reaction of the sectoral price into the response of a firm’s price:

d ln pi(s)

d ln r
=

1− θi
1 + Ωi

Ωi

1 + Ωi

∑n(s)
i=1 ωi(s)

(1−θi)
1+Ωi

1−
∑n(s)

i=1 ωi(s)
Ωi

1+Ωi

d ln pi(s)

d ln r
=

1

1 + Ωi

1− θi + Ωi

∑n(s)
i=1 ωi(s)

(1−θi)
1+Ωi

1−
∑n(s)

i=1 ωi(s)
Ωi

1+Ωi


We then insert the reaction of the sectoral price into the response of a firm’s markup:

d ln εi(s)

d ln r
=

(γ − σ)(γ − 1)

1 + Ωi

ωi(s)

εi(s)

(
1− θi −

d ln p(s)

d ln r

)
d ln εi(s)

d ln r
=

(γ − σ)(γ − 1)

1 + Ωi

ωi(s)

εi(s)

1− θi −
∑n(s)

i=1 ωi(s)
(1−θi)
1+Ωi

1−
∑n(s)

i=1 ωi(s)
Ωi

1+Ωi


The markup effect depends on the size of 1− θi relative to the weighted average of 1− θi
across all firms in sector s.

Two-countries economy

Derivation of the sector price elasticity with respect to the robot rental rate.

dp(s)

dr
=

n(s)∑
i=1

φHi (s)pHi (s)1−γ + τ1−γ
n(s)∑
i=1

φFi (s)pFi (s)1−γ

 1
1−γ−1

n(s)∑
i=1

φHi (s)pHi (s)−γ
dpHi (s)

dr
+ τ1−γ

n(s)∑
i=1

φFi (s)pFi (s)−γ
dpFi (s)

dr
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dp(s)

dr
=p(s)
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3.A.2. Empirical Analysis

Table 3.A1: Automation and sales - Quintile regressions

Sales-quintiles Markup-quintiles

(1) (2) (3) (4)

1. Quintile × Stock of robots p.w. -0.337∗∗ -0.336∗∗ -0.092∗∗ -0.056
(0.15) (0.14) (0.04) (0.03)

2. Quintile × Stock of robots p.w. -0.125∗∗ -0.117∗ -0.053∗ -0.026
(0.06) (0.06) (0.03) (0.02)

3. Quintile × Stock of robots p.w. 0.038∗∗ 0.052∗∗∗ 0.027 0.053∗∗∗

(0.01) (0.02) (0.02) (0.01)
4. Quintile × Stock of robots p.w. 0.186∗∗ 0.225∗∗∗ 0.086∗∗ 0.103∗∗∗

(0.07) (0.07) (0.03) (0.03)
5. Quintile × Stock of robots p.w. 0.369∗∗ 0.408∗∗∗ 0.115∗∗ 0.123∗

(0.15) (0.13) (0.05) (0.06)

Observations 11641 10389 11618 10365

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X X X
Additional Controls X X

KP F-Statistic .832 1 .843 .998

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. Quintiles are
based on firms’ sales in the previous year in columns 2 and 3 and on firms’ markups in the previous year in
columns 4 and 5. The sample consists of manufacturing sectors only. All specifications include country
sector dummies, country year dummies and sector year dummies. Controls are the logs of net exports.
Additional controls are the log number of patents and the log capital stock. Regressions run from 1995 to
2016.
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Table 3.A2: Automation and Markups - Translog function

(1) (2)

Stock of robots p.w. -0.149∗∗∗

(0.02)

1. Quintile × Stock of robots p.w. -0.009∗∗

(0.00)
2. Quintile × Stock of robots p.w. -0.005∗∗

(0.00)
3. Quintile × Stock of robots p.w. -0.002

(0.00)
4. Quintile × Stock of robots p.w. 0.003

(0.00)
5. Quintile × Stock of robots p.w. 0.007∗

(0.00)

Observations 2842 10389

Country × Sector Dummies X X
Country × Year Dummies X X
Sector × Year Dummies X X
Controls X X
Additional Controls X X

KP F-Statistic 57.5 1

Notes: In this table, markups are estimated with a translog function. Standard errors, in parentheses,
are two-way clustered on the country and sector level. Quintiles are based on firms’ sales in the previous
year. The sample consists of manufacturing sectors only. All specifications include country sector dummies,
country year dummies and sector year dummies. Controls are the logs of net exports and industry production.
Additional controls are the log number of patents and the log capital stock. Regressions run from 1995 to
2016.
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Table 3.A3: Automation and markups - industry-level quintile regressions
Food, beverages
and tobacco

Textiles and
leather products

Other
manufacturing

Paper and
printing

Chemicals and
pharmaceuticals

Rubber and
plastic

Mineral
products

1. Quintile × 0.063 -0.616 -0.012 0.191 -0.016 -0.015 -0.084
Stock of robots p.w. (0.17) (1.78) (0.06) (0.48) (0.01) (0.01) (0.13)
2. Quintile × 0.058 -0.707 -0.007 0.201 -0.009 -0.013 -0.049
Stock of robots p.w. (0.17) (2.02) (0.05) (0.50) (0.01) (0.01) (0.14)
3. Quintile × 0.076 -0.388 0.024 0.315 -0.009 -0.010 -0.035
Stock of robots p.w. (0.16) (2.02) (0.05) (0.51) (0.01) (0.01) (0.13)
4. Quintile × 0.122 0.065 0.038 0.422 -0.003 -0.001 0.027
Stock of robots p.w. (0.17) (1.89) (0.05) (0.51) (0.01) (0.01) (0.15)
5. Quintile × 0.152 0.439 0.090 0.518 0.002 0.008 0.084
Stock of robots p.w. (0.17) (1.75) (0.06) (0.50) (0.01) (0.02) (0.15)

Observations 1152 732 792 756 1196 416 527

Basic
metals

Fabricated
metals

Computer
electronics

Electrical
equipment

Machinery and
equipment

Automotive Other
vehicles

1. Quintile × -0.073 0.089 -0.055∗∗ -0.034 -0.062 -0.000 -0.998
Stock of robots p.w. (0.04) (0.09) (0.02) (0.09) (0.06) (0.01) (1.19)
2. Quintile × -0.063 0.099 -0.041∗∗ -0.030 -0.052 -0.001 -0.926
Stock of robots p.w. (0.04) (0.10) (0.01) (0.09) (0.06) (0.01) (1.14)
3. Quintile × -0.054 0.096 -0.046∗∗ -0.023 -0.043 0.000 -0.991
Stock of robots p.w. (0.04) (0.09) (0.02) (0.09) (0.06) (0.01) (1.22)
4. Quintile × -0.027 0.103 -0.023 -0.014 -0.027 0.002 -0.894
Stock of robots p.w. (0.05) (0.09) (0.02) (0.09) (0.06) (0.01) (1.13)
5. Quintile × -0.020 0.113 0.004 0.005 0.007 0.007 -0.401
Stock of robots p.w. (0.05) (0.09) (0.03) (0.09) (0.06) (0.01) (1.02)

Observations 675 545 875 982 1048 413 295

Country Dummies X X X X X X X
Year Dummies X X X X X X X
Controls X X X X X X X
Additional Controls X X X X X X X

Notes: Standard errors, in parentheses, are clustered on the country level. Quintiles are based on firms’ sales in the previous year. All specifications include country dummies
and year dummies. Controls are the logs of net exports and industry production. Additional controls are the log number of patents and the log capital stock. Regressions
run from 1995 to 2016.
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Table 3.A4: Trade-weighted foreign automation and markups

Import weighted Export weighted

(1) (2) (3) (4)

Stock of robots p.w. -0.052∗∗∗ -0.053∗∗∗ -0.054∗∗∗ -0.052∗∗

(0.01) (0.02) (0.02) (0.02)
Foreign weighted robots -0.035∗∗∗ -0.039∗∗∗ -0.021∗∗∗ -0.025∗∗∗

(0.00) (0.01) (0.00) (0.01)

Export weighted foreign robots 0.032∗∗ 0.025
(0.01) (0.02)

Import weighted foreign robots 0.018∗ 0.011
(0.01) (0.01)

Observations 3354 2843 3354 2843

Country × Sector Dummies X X X X
Country × Year Dummies X X X X
Sector × Year Dummies X X X X
Controls X X X X
Additional Controls X X

Notes: Standard errors, in parentheses, are two-way clustered on the country and sector level. All variables
are mean standardized to a standard deviation of one. All specifications include country sector dummies,
country year dummies and sector year dummies. Controls are the logs of net exports and industry production.
Additional controls are the log number of patents and the log capital stock. Regressions run from 1995 to
2016.
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Table 3.A5: Foreign automation and markups - industry-level quintile regressions
Food, beverages
and tobacco

Textiles and
leather products

Other
manufacturing

Paper and
printing

Chemicals and
pharmaceuticals

Rubber and
plastic

Mineral
products

1. Quintile × -0.629 -15.527∗∗∗ -0.121 -3.494 0.064 -0.066 -2.618∗∗

Foreign weighted robots (0.48) (3.70) (0.35) (4.00) (0.59) (0.09) (0.79)
2. Quintile × -0.514 -24.368∗∗∗ 0.367 -6.541∗ -0.513 0.006 -2.752∗∗

Foreign weighted robots (0.47) (6.10) (0.27) (3.42) (0.58) (0.09) (0.92)
3. Quintile × -0.580 -9.853∗∗∗ 0.226 -4.912 -0.336 0.103 -3.403∗∗∗

Foreign weighted robots (0.44) (2.97) (0.34) (2.85) (0.57) (0.09) (0.71)
4. Quintile × -0.658 2.157 0.273 -0.463 -0.120 0.103 -2.290∗

Foreign weighted robots (0.41) (13.34) (0.23) (3.00) (0.55) (0.10) (1.06)
5. Quintile × -0.245 26.492∗∗ 0.005 0.777 0.153 0.288∗∗ 2.153
Foreign weighted robots (0.38) (10.51) (0.48) (2.55) (0.51) (0.10) (3.95)

Observations 1152 732 792 756 1196 416 527

Basic
metals

Fabricated
metals

Computer
electronics

Electrical
equipment

Machinery and
equipment

Automotive Other
vehicles

1. Quintile × 0.249 0.167 -0.118 0.101 0.268 -0.001 -1.884∗

Foreign weighted robots (0.20) (0.12) (0.09) (0.07) (0.58) (0.02) (0.96)
2. Quintile × 0.082 0.253∗ -0.141∗ 0.091 0.016 0.001 -2.217
Foreign weighted robots (0.15) (0.14) (0.07) (0.06) (0.64) (0.01) (1.27)
3. Quintile × 0.134 0.243 -0.034 0.104∗ 0.098 -0.007 -0.917
Foreign weighted robots (0.16) (0.14) (0.05) (0.05) (0.54) (0.01) (1.22)
4. Quintile × 0.190 0.265 0.003 0.048 0.408 -0.007 -0.244
Foreign weighted robots (0.23) (0.16) (0.04) (0.07) (0.63) (0.01) (0.93)
5. Quintile × 0.068 0.367∗∗ 0.044 0.014 1.704∗∗∗ 0.010 1.699∗∗

Foreign weighted robots (0.31) (0.16) (0.06) (0.10) (0.49) (0.01) (0.60)

Observations 675 545 875 982 1048 413 295

Country Dummies X X X X X X X
Year Dummies X X X X X X X
Controls X X X X X X X
Additional Controls X X X X X X X

Notes: Standard errors, in parentheses, are clustered on the country level. Quintiles are based on firms’ sales in the previous year. All specifications include country dummies
and year dummies. Controls are the logs of net exports and industry production. Additional controls are the log number of patents and the log capital stock. Regressions
run from 1995 to 2016.
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Chapter 4

Expanding the industrial automation data uni-
verse:
Prices, Production, Trade Flows

Abstract

Empirical research on industrial automation is often limited by data availability. This

paper addresses these data limitations by utilizing industrial robot trade data from

the Comtrade database to extract time series data on robot prices and panel data on

countries’ robot production. Our analysis also explores the global industrial robot

market, examining concentration and stability trends over time, comparing countries’

comparative advantages and market shares, and investigating potential country-level

specialization. To address the issue of missing data in the Comtrade database, we

employ an imputation algorithm precisely calibrated to our problem at hand. Our

findings reveal that a few exporting countries dominate the industrial robot market,

and that concentration is relatively stable over time. Moreover, our novel price data

indicate a decline in inflation-adjusted robot prices over time, even without adjusting

for the growth in robot capacity. To show potential further applications of our data,

we develop an instrumental variable based on the prices of robots to reproduce prior

research that had relied on proxies due to the unavailability of price data. By employing

standard metrics, we demonstrate that this new instrument, which is arguably more

closely connected to underlying theory, is sound for use in regression analysis and

confirms the outcomes of the replicated study.

This chapter is joint work with Néstor Duch-Brown (Joint Research Centre of the European Commission,
Seville). We are grateful for the comments received at the CORA 2022 - Conference on Robots and
Automation, Frankfurt, Germany.
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4.1. Introduction

In recent years, the multifaceted effects of industrial automation have been discussed
extensively in the literature of international economics (see, e.g., the different assumptions
and findings on automation induced net effects on job displacement versus creation in
Prettner & Strulik 2017; Frey & Osborne 2017; Acemoglu & Restrepo 2020; G. Graetz
& Michaels 2018; Aghion et al. 2020, 2022). Empirical research in the field is however
limited by available data on the adoption of industrial robots. The majority of studies
investigating the effects of global automation use data from the International Federation of
Robotics (IFR, Müller & Kutzbach, 2019). While the IFR data covers countries’ yearly
stocks and installations of industrial robots across industries, other dimensions of global
robot adoption remain unrepresented. In this paper we aim to expand the data universe
of international robot adoption by processing and analyzing mostly Comtrade data on
international trade of industrial robotics.
The result of our data expansion strategy is an origin-destination-matrix of industrial
robotics covering 64 countries over the 1996-2018 period subject to no missing entries, from
which we discern various descriptive statistics such as countries’ shares in the international
industrial robot market, overall market concentration and new data such as yearly average
unit prices. Our novel data is perfectly integrable with the commonly used IFR data and
therefore expands the available data on industrial robotics. Besides price data, we derive
novel country-year-level data on industrial robot production by combining data on robot
trade and data on robot installations.
As will be shown, the raw Comtrade data pose some challenges, mainly due to missing
observations. The first part of this paper therefore deals with the problem of missingness
by employing a multiple-imputation algorithm called Amelia (Honaker et al., 2011), which
imputes missing observations in the Comtrade data. It does so by drawing supportive
information from related data sources, such as the IFR data on installations, and imputes
missing observations also amongst those.
Comtrade does not provide information about the destination industry of reported trade
flows. Therefore, it is not possible to track shipped robots to specific industries in the
importing countries such as the automotive industry using only Comtrade data. Since a
sectoral dimension in the destination of robot trade would allow for finer-grained analyses,
we suggest a derivation of industry weights for trade flows adding a sectoral dimension to
the reported trade flows. Specifically, we extract weights from the OECD inter-country
input-output tables (OECD, 2021), with which we distribute yearly bilateral country flows
of industrial robots to the sectors available in the IFR data in the destination country.
We further demonstrate how the newly compiled data can contribute to the literature in
the field of global industrial automation by opening up new avenues for empirical analysis.
The availability of prices and quantities enables the modelling of derived demand, allows
for trade analyses, and may be used in other contexts. In particular, a consecutive time
series of world robot prices has been known to be a missing component in empirical
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analysis since theoretical models often include the cost of automation, which so far were
not straightforward to capture empirically. We replicate a part of the empirical analysis
of related work by Haarburger et al. (2023), which features a theoretical model involving
the price of robots. While the authors previously could only use a proxy variable depicting
firms’ easier access to industrial robots driven by declining robot prices, we can now use
robot unit world prices to re-examine their results and more accurately fit the empirical
analysis to the theoretical predictions of the model. We argue that a relatively greater
plausibility of the exclusion restriction and the linking of theory and empirics improves on
the previous analysis and illustrates how the novel data can be used in the future.

4.2. Data sources

In the following we introduce the data sources used in the scope of this paper. The literature,
and also the available data in the field of automation by means of robotization, can be
broadly divided into two main categories. Firstly, there is panel data available on industrial
robots at the country-, sector- and application level. This data tends to be more relevant
for macroeconomic research. Secondly, there is comparatively less data available on service
robots, commonly utilised in domestic settings, which tends to make them more relevant in
a microeconomic context. This paper focuses only on industrial robots and is related to the
macroeconomic literature.

4.2.1. Comtrade data

We extract trade flow data from the Comtrade database (UN, 1990). At the 6-digit HS level,
Comtrade provides inter-country trade volumes on industrial robotics.1 While the base
unit in which all trade flows in Comtrade are reported is current U.S. dollars, information
on the number of traded units of robots, and the weight of trade volumes in kg are also
provided. A trade flow in a given year only appears in the Comtrade data base, if and only
if a trade volume in current USD is reported by a reporting country. Reporting countries
can be either importing or exporting countries. For the majority of exporter-importer-year
combinations, two observations are available, one reported by the exporter, one reported by
the importer. Thus, missing values of trade volumes in USD within the data only exist in
cases where one of the reporting countries reports a trade flow, while the other does not. In
cases where both countries do not report a trade flow, there is no entry for the respective
exporter-importer-year combination and thus no missing value in the classical sense. In
contrast, the data on the number of units shipped and total weight of the shipment is less
consistent within the reported data, as illustrated by Figure 4.1. The absence of entries also
implies that for some country-year combinations reported trade flows in Comtrade are not
necessarily symmetric, i.e., for a given year exports in a certain HS-category from country

1The 6-digit HS category including industrial robots is "847950, machinery and mechanical appliances;
industrial robots n.e.c. or included".
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A to country B might be reported, while imports of country A from country B in the same
category might not be. The primary reason for the absence of entries is that zero trade
flows are only reported in very rare cases and otherwise left unreported. Whether zero
trade flows are reported or not most likely depends on the reporting countries’ trade flow
documentation methodologies employed by the respective statistical offices. We assume
that the absence of an entry for an exporter-importer-year combination generally implies
that trade flows were zero. In a later section we argue that this assumption is supported
empirically by showing that for countries that have close to or zero robot production, the
sum of their imports corresponds relatively well to the reported installations in any given
year in the IFR data. In other words, assuming unreported trade flows to correspond to
zero seems not to cause an underestimation of shipped volumes using IFR data as the
benchmark.

Since we are interested in putting trade flow data into context with existing data on
industrial robots, primarily installations reported in robot units by the IFR, we impute the
missing unit observations. Moreover, the combination of trade volumes in current USD and
in the number of units shipped allows for the calculation of unit prices per shipment, which
can be aggregated or averaged in manifold ways. Information on unit prices are otherwise
largely unavailable, mainly due to manufacturers’ data accessibility policies. The provision
of unit prices over time, differentiable by exporter- and importer-level, robot weight groups,
real- and nominal values, country of origin, etc., therefore is one of our major contributions
to the data universe on industrial robots.

4.2.2. Other data sources

The imputation algorithm we use incorporates covariates that help to estimate missing
observations. Further details on the imputation strategy including feature selection are
given in section 4.4. The candidate covariates are selected based on economic theory
and data availability. More precisely, we add candidate covariates from various publicly
accessible databases, which are commonly associated with the use of robots, as, e.g., a
country’s share of manufacturing in total value added in a given year. In the following we
discuss what covariates we extract from what sources to include in the analysis.

IFR. The IFR provides data on the number of yearly installed robot units and the total
operating robot stock by country, industry, year and application (Müller & Kutzbach,
2019). The available industries are derived from the International Standard Industrial
Classification (ISIC) system and can thus be related to other data sources using the ISIC
system. Since Comtrade only reports data on country linkages, the industry dimension
provided by the IFR cannot be matched with Comtrade data alone. In section 4.3 we
describe our approach to impose a sectoral dimension on the Comtrade data deriving
weights from OECD input-output tables.

OECD. We use the OECD key indicators to extract "Industrial production, seasonally
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Figure 4.1: Missing value structure in Comtrade industrial robot trade flows amongst
selected 64 countries in 1000 USD, in kg and in number of units, 1996-2018.
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adjusted" and "Total manufacturing, seasonally adjusted" on the country-year level (OECD,
2015). Additionally, we extract "GDP, expenditure approach" from the OECD national
accounts data (OECD, 2023a). For deriving sectoral weights which we use to add a sectoral
dimension on the importer side of trade flows, we use the OECD inter-country input-output
tables (OECD, 2021).

Larch RTA-DB. Mario Larch’s Regional Trade Agreements Database from Egger & Larch
(2008) provides various bilateral indicators as whether countries share a currency unit, have
a free trade agreement, etc., and are thus expected to contribute to explaining bilateral
trade flows.

TRAINS. We construct a binary bilateral variable that indicates whether an importing
country imposed a tariff on products in the HS-6 category of industrial robots in a given
year towards an exporting country. The base for this binary variable are MFN-tariffs from
the UNCDAT TRAINS database (UNCDAT, 2018). The binarisation corresponds better
to the required distributional characteristics of variables of the imputation algorithm.

ILO. We extract yearly data on the total labor force in a given country, which we use to
compute output-labor-ratio (ILOSTAT, 2022).
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4.3. Matrix construction strategy

As described above, the Comtrade data provide exporter- and importer-reported values
for the same observations, so that the trade flows over time can be seen either through
the lens of exporters or of importers, respectively. Whether to use the exporter-reported
values, the importer-reported values or averages of the two is a re-occurring issue in the
economic trade literature. For the sake of deriving traded robot units, we argue that
using exporter-reported units will result in less biased data, because robot-producing and
hence exporting countries are a relatively few highly advanced economies subject to mostly
tight-knit reporting regulations imposed by local statistical offices. Constructing traded
unit averages involving importer-reported units carries the risk of underestimating traded
units, since many importers tend to report few or no traded units, even when reporting
substantial trade flows in current USD. This observation suggests that there is a systematic
difference between countries in the reporting of traded robot units, while there seems to
be no such systematic difference in the reporting of trade volumes in current USD. An
overestimation bias in exporter-reported trade units on the other hand seems unlikely,
emphasizing the argument of using exporter-reported data on units. The same reasoning
applies to reported trade flows in weight and thus we apply the same approach to prioritize
exporter-reported weights.

However, if we were to limit the analysis to the exporter data only, we would potentially
neglect entire country-year trade linkages, even though the importer data might contain
entries different from zero for such linkages. This is because, as described above, Comtrade
does not provide entries for exporter-importer-year combinations for which the reporting
country did not report a trade flow in current USD, resulting in an unbalanced panel overall.
Further, we address these completely missing entries as follows.

We code the respective trade flows as zeros, so that no imputation is performed in these
cases. A balanced panel structure of the input-output-matrix is thus established by filling
in zero flows for combinations for which no data entries are available. The number of such
cases however can be reduced by about 10% by combining exporter-reported and importer-
reported data on trade flows vis-a-vis using exporter-reported data only. Thus, we draw
additional information on trade volumes in current USD from the importer-reported data
by averaging exporter- and importer-reported values in cases in which both are reported
and use the one available in cases where the other is missing.

Table 4.A1 indicates that the imputed origin-destination-matrix explains the majority of
robot installations reported by the IFR, which we interpret as supportive evidence that
systematic under-reporting in the national trade statistics data is not more pronounced
than in the IFR data. Since the IFR installation data are based on sales data provided by
robot manufacturers, as are the consolidated data reported by countries’ statistical offices
in Comtrade, a possible general systematic under- or over-reporting by robot manufacturers
cannot be analyzed.
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Since Comtrade reports inter- and no intra-country flows of robots, we can only derive the
number of robots being produced and installed in a given country ex-post by subtracting
total reported imports in a year from installations in that year. Analogously, we derive
country-year level robot production values adding exports to the number of robots produced
and installed in a given country and year. Our data do not allow to control for inventory
effects, which potentially bias installation data, when they are derived from shipment data.
Shipped robots could be installed in a later time period than delivered or in rare cases
may even never be installed. However, as the IFR data are derived from manufacturer
reported shipments, they do not account for inventory-effects either and thus no systematic
discrepancy between Comtrade and IFR data in terms of inventory-effects should be
expected. Unfortunately, the noise caused by potential inventory-effects in installations and
all data derived from installations can not be addressed using the data sources available to
us.
Comtrade does not include a sectoral dimension of trade flows. In order to investigate the
world robot market along the sectoral dimension in subsection 4.5.4, we introduce sectoral
variation using export weights of machinery and equipment from the OECD inter-country
input-output tables (OECD, 2021). Industrial robots as defined in the 6-digit harmonized
system (HS) represent only a fraction of all products belonging to sector 28 titled "machinery
and equipment" as defined in ISIC rev. 4. However, we assume that the coarser weights
serve as acceptable approximations for the unobservable, finer-grained industrial robot
specific weights. We create exporter-importer-sector-year level weights according to

weits =
Veits=28∑
s=1,...,S Veits

, (4.1)

where weits represents the weight w of flows (volume) of machinery and equipment V from
exporter e to importer i’s sector s in year t. By construction, the weights sum to 1 on the
exporter-importer-year level.

We multiply these exporter-importer-sector-year level weights with the exporter-importer-
year flows from our imputed origin-destination-matrix

%eits = weitsρeit, (4.2)

where %eits represent the obtained yearly sectoral robot trade flows and ρeit aggregated
yearly robot trade flows from the imputed origin-destination-matrix.

4.4. Imputation

As shown by Table 4.A1, no information on the number of traded robot units is available
for 21.4% of observations. We impute these missing values using the R-package Amelia

(Honaker et al., 2011), which includes a bootstrapping based multiple imputation program



80
Chapter 4. Expanding the industrial automation data universe:

Prices, Production, Trade Flows

applicable to cross-sectional, time-series or panel data. Our data categorizes as panel data,
since it comprises cross-sectional bilateral country linkages over the time span 1996-2018.
Amelia uses a bootstrapping expectation-maximization algorithm, which means that the
conventional expectation-maximization algorithm (EM, Moon, 1996) is applied to multiple
bootstrapped samples of the observed, incomplete data. On each bootstrapped sample the
parameters are estimated and imputations for the missing values generated. The result are
multiply imputed values for each missing entry, the variation of which reflect the uncertainty
inherent to the imputations. The possibility of taking uncertainty into account distinguishes
multiple imputation from single imputation.

An underlying assumption of Amelia is that the input data are multivariate normal. What
differentiates Amelia from other imputation algorithms is that it mixes theories of inference
by combining a Bayesian approach with a bootstrapping approach. More precisely, instead
of drawing the first and second moments of the multivariate distribution describing the
input data from their posterior density, they are estimated using a bootstrapping approach.
The EM algorithm is applied to each bootstrapping sample drawn from the observed data
with replacement, so that point estimates of the first and second moments are retrieved for
each of these samples. For each sample, and thereby each set of moment point estimates,
the observed data is used to impute the missing values. Moreover, Amelia allows for
observation specific priors and bounds, with bounds being fixed minima and maxima for
the imputations. Observation level priors can be used to improve imputation accuracy
when observation specific information is available that is not straightforward to include as
a covariate. An example for this sort of information is expert knowledge. Similarly, bounds
impose restrictions on the imputations in cases in which it is clear that the missing values
can not lie outside a certain range.

We add candidate covariates to the Comtrade data in order to improve imputation accuracy
by incorporating additional potentially relevant variation. Specifically, we include importer-
sided country-year level variables, whose relevance we test with a machine learning approach.
Using only complete cases, i.e., rows of observations without missing values, we impose
varying random patterns of missing values for which we then impute. This allows us to
compare average mean squared imputation errors for different parameterizations of the
algorithm and different sets of added covariates as well as the use of leads and lags of such
variables.

For feature selection, i.e., for the selection of covariates to include in the imputation, we
first compute the average mean squared error of traded robot quantities using all candidate
variables. We then omit single candidate variables and observe changes in the mean squared
error compared to the benchmark including the full set. We thus depart from the more
standard approach to select variables based on improvements of the prediction error and
rather choose amongst candidate variables based on negative selection. More specifically,
if omitting a variable on average decreases the mean squared error by more than one
standard deviation compared to the benchmark average mean squared error, we consider it
detrimental to the imputation and omit it in the final imputation. We employ this negative
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selection strategy since the Amelia imputation algorithm in general benefits from more
available information and the authors advocate adding all potentially relevant data. Thus,
our approach is more of an assurance that the variables we add in fact do not degrade
imputation accuracy.

None of our candidate covariates significantly worsens the mean squared imputation error
and thus all are kept for the final imputation. In addition to the Comtrade trade flow
variables in current USD, weight in kg and units, we employ the importer’s average yearly
unit price, which is also derived from the Comtrade data. Moreover, we use a set of
importer-year level covariates that we expect to provide relevant variation for explaining
robot installations and imports. As described above, Amelia imputes over the whole
data set and thus also imputes the 10.1% missing observations in the IFR installations as
shown by Table 4.A1. Besides the importers’ gross domestic product, their value added in
manufacturing as a percentage of GDP and the importers robot installations from the IFR
data, we add importers’ GDP to labor force ratio, which we name labor productivity.

Moreover, including leads and lags of all candidate covariates generally improves the
imputation accuracy and therefore is a preferred option in any specification. Apart from the
option to increase leads and lags of covariates, Amelia also has an option to include binary
covariates in the imputation, which are specified separately and handled accordingly. We
include a set of dyadic binary covariates relating to international trade between countries,
like joint membership in a currency unit, common free-trade-agreements, etc. An overview
is presented in Table 4.A2 in the appendix.

Additionally, we include exporter-time fixed effects, which account for exporter idiosyncratic
variation over time and are thus chosen to improve the estimation. Moreover, Amelia
includes the option to impose polynomials of cross-section specific time trends. Time
dynamics are a common obstacle in the imputation of panel data. As Honaker et al. (2011)
demonstrate, imposing fixed polynomials for time trends can greatly reduce the uncertainty
of the imputed values. Since Amelia does not provide any built-in optimization for choosing
the best fitting order of polynomial, we again use a machine-learning optimization approach
to choose amongst the available options ranging from 1, linear, to 3, cubic. The chosen
polynomial is imposed for all cross-sectional time trends equally. While Amelia offers an
option to estimate individual time trends for each cross-section, in our case this renders the
imputation computationally impossible leading to an unfeasibly long run-time. Table 4.1
summarizes the hyperparameter choices.

Amelia requires each input variable to be normally distributed. In order to ensure that
this assumption holds, we separately run all covariates through a normalization algorithm
provided by the R-package BestNormalize (Peterson, 2021), which minimizes the difference
of a covariate’s distribution to a normal distribution measured by a Pearson P-Statistic
comparing various common transformations such as center and scale, logarithmic, order-
Norm, Yeo-Johnson, etc. After the imputation, all variables are back-transformed. Figure
4.A1 shows the densities of candidate variables before and after normalization. Amelia
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provides us with m sets of imputed values, which we average to arrive at single imputations
in order to create the descriptive statistics discussed in the following section. As the
authors of Amelia recommend, regression analyses based on the imputed data should be
run on the individual sets of imputed data sets individually and the results combined
afterwards. We check the plausibility of the imputations first by comparing the densities of
back-transformed imputed quantities to the density of observed quantities. Moreover, the
multiple imputations can be used to calculate confidence intervals for the averaged imputed
values, which give an idea of the certainty with which the imputations are conducted.
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Table 4.1: Hyperparameter choices of Amelia algorithm.

Option Choice Description

Polynomial of time trends 2 Assuming quadratic time trends for all
exporter-importer flows leads to the low-
est mean squared imputation error.

Individual time trends False Fitting individual time trends for all
exporter-importer pairs renders the run-
time unfeasible.

Leads All covariates Future values are used to explain missing
values.

Lags All covariates Past values are used to explain missing val-
ues.

Bounds:
- Installations (0,∞) Installations are lower bounded to zero,

since negative installations are per defini-
tion not possible.

- Exported units (0,∞) Exported units are lower bounded to zero,
since negative exports are per definition
not possible and reflected by imports also
contained in the data matrix.

Priors:
- Installations, mean µ̃it We assume that the sum of total reported

imports of a country in a given year is a
good prior for its total installations in that
year. We expect this to hold especially in
the case of countries that are no robot pro-
ducers themselves.

- Installations, S.D. σ̃it In order to account for the uncertainty of
the mean installation prior in the case of
robot producing countries, we use an im-
porter specific prior for the standard devi-
ation of installations in combination with
the mean prior. Since we expect a larger de-
viation of installations in a year from total
imports for robot producers, we observe the
standard deviation of the difference between
installations and total imports in years for
which complete data is available. For robot
producers, this standard deviation will be
larger than for non-robot producers.

Where µ̃it =
∑e

eit xeit, with xeit depicting exports from exporter e to importer i in year t
and σ̃it = min [1, sd(D)], where D is a vector containing the year-wise differences of summed
imports of importer i and robot installations of importer i for all years without missing entries.
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4.5. Descriptives of completed origin-destination-matrix

In this section we provide descriptive statistics of the completed origin-destination-matrix
and visualize the unit trade flows. Figure 4.A2 illustrates pooled inter-country flows of
industrial robots from 1996 to 2018. It becomes apparent that Japan is by far the largest
exporter of industrial robots over the 1996-2018 time period. This is further substantiated
by Figures 4.5 and 4.A5, which show the revealed comparative advantages of the 20
countries with the highest RCA over the whole sample period and the market shares of
the overall largest exporters of industrial robots over time, respectively. Figures 4.A3 and
4.A4 illustrate total exports and imports as world maps over the whole time period under
consideration separately.

4.5.1. Market concentration, stability and specialisation

We compute countries’ market shares in the world robot market as their share in exports in
a given year over total exports in that year

ωEet =
xEet∑

e=1,...,Nt
xEet

, (4.3)

where ωEet is the market share of exporter e in year t on the export market, xEet are the export
robot trade flows of exporter e in year t and Nt is the number of active exporters in year t.
Using these market shares, we can compute the normalized Herfindahl-Hirschman-Index
(Rhoades, 1993), which is a standard measure for market concentration and given by

HHIEt =

(∑Nt
e=1 ω

2
et − 1/Nt

)
1− 1/Nt

, (4.4)

where Nt is the number of exporters active on the market in a given year t, and ωet is the
market share as defined by equation 4.3. The normalized HHI ranges from 0 to 1, with an
HHIEt of 1 indicating that a single exporter is the sole supplier in a given year.

No clear trend emerges over the whole time span under consideration. While market
concentration amongst importers and exporters seems to have rather declined from 1996 to
2009, it seems to have been rather increasing since 2009 before starting to decline again
between 2017 and 2018, again amongst importers and exporters. In other words, from 2009
onward, both, few exporters and importers, possibly one respectively, increased their shares
in world robot trade vis-a-vis other exporters and importers. To examine this trend reversal
in more detail, we compare the evolution of market shares of the twelve countries exporting
most robot units over the whole time span as depicted by Figure 4.A5.

We would expect market concentration over time measured by the normalised HHI based on
import shares to resemble the same measure based on installation data. Figure 4.3 depicts
the latter. Several differences emerge. First, the sharp decline before 2000 in the installation
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Figure 4.2: Normalized Herfindahl-Hirsch-Index by imports and exports, 1996-2018, robot
unit trade flows. Source: Comtrade and own imputation.
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Figure 4.3: Normalized Herfindahl-Hirsch-Index, 1996-2018, robot installations. Source:
IFR and own imputation.
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data is not visible in the import data. This might be because the IFR data collection had
only started shortly before and only a relatively small fraction of robot producers had been
part of the survey at this time. Thus, the high perceived concentration might be due to
small sample bias in the IFR data. Second, compared to the smooth HHI time series based
on import data, the installation based HHI time series is subject to higher year to year
volatility. Both Figures however depict an increase in market concentration since 2009.

Japan has seen the most striking increase in market share from about 26% in 2009 to about
39% in 2010 and in direct comparison to other large robot exporters seems to mainly have
driven the sharp increase in HHI observed in the aggregate data. Moreover, Figure 4.A5
illustrates Japan’s consistent dominance on the export market. Besides Japan, only Korea
and China are subject to clearly increasing market shares over time. A few large exporters
show declining trends. The USA stands out the most being subject to a clearly negative
trend in market shares. Although weaker in comparison, France and Germany are subject
to declining market shares in the considered time span as well.

Similarly, we compute a market instability index, which illustrates the overall fluctuations
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Figure 4.4: Instability-Index by imports and exports, 1996-2018, robot unit trade flows.
Source: Comtrade and own imputation.
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in market shares over time. It is given by

IIEt =
1

2

(
N∑
e=1

|ωet − ωet−1|

)
. (4.5)

Figure 4.4 depicts the index based on importers’ and exporters’ market shares. The gap
between importers and exporters observable in market concentration as depicted by Figure
4.2 is not observable for market instability, which reflects that the gap remains consistent
over time. Moreover, instability amongst importers and exporters seems to be correlated
over time. The sharp increase in Japan’s market share between 2009 and 2010 is also
reflected by the instability index. Interestingly, instability amongst importers increased as
well between 2009 and 2010. This might be due to Japan having established trade partners
that absorbed large shares of Japan’s increased exports in that year.

Another metric of interest is the so called revealed comparative advantage (RCA), which is
defined as

RCAes =
xes/

∑S
s=1 xes∑N

e=1 xes/
∑N

e=1

∑S
s=1 xes

. (4.6)

A country is considered to have a revealed comparative advantage, when the ratio of its
share in robot export is greater than the share of robot exports in world exports. This
is the case when the nominator in equation 4.6 is larger than the denominator and the
RCA thus is larger one. Figure 4.5 depicts the RCAs for the 20 countries with the largest
RCAs based on pooled export data from 1996-2018 and thus reveals which countries have
been specialised on producing robots over the time span under consideration. Besides
Japan and Israel, all countries with an RCA larger than one are part of the EU-27. While
other countries are large industrial robot producers in absolute terms, they seem to be less
specialised in the robotics-industry, meaning that robot exports make up a smaller share of
their total exports. This applies to China and the US for example.
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Figure 4.5: Revealed comparative advantage in robot exports, trade volumes in USD,
1996-2018, shown for the 20 countries with highest RCA. Source: Comtrade and own
imputation.
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4.5.2. Derivation of unit prices

The combination of the number of units per shipment and the traded volume in current
USD renders the calculation of unit prices possible. In general, time series price data
on industrial robots is hardly available. The only time series on unit prices provided
by the IFR ends in 2009. We therefore consider the provision of unit price data as a
valuable contribution to the robot data landscape. Furthermore, the composition of our
origin-destination-matrix allows for various break-downs of prices to geographical regions or
single countries. Thus, we can observe average prices over time by exporters, which might
indicate countries’ specialisation on certain types of industrial robots. In general, industrial
robots can differ quite substantially in size and weight. While the software provided with
the robot is an important determinant of its price, larger, heavier robots require more
raw materials in production and thus tend to be more expensive. Unfortunately, the data
available to us does not allow for differentiating software costs from material and production
costs. However, using trade volumes in weight (kg) in combination with the number of units
shipped, we obtain the average weight of a robot shipped. This allows for the analysis of
unit prices over time for different weights of robots. Figure 4.6 depicts yearly average robot
unit prices in nominal and real, i.e. USD producer price index (PPI) adjusted, terms. In
real prices, the average shipped robot unit has become less costly over time. Additionally,
one would expect the productivity of a robot to have increased over the years so that the
price decline would be more pronounced in efficiency units. Unfortunately, the average
productivity is difficult to quantify given the data available.

Figure 4.7 depicts PPI adjusted prices for weight quantiles. Interestingly, robots of different
weight quantiles seem to converge in prices over time. While the gaps in prices between
the respective weight quantiles were largest at the beginning of the period under study,
there seems to be convergence to the same price per unit in 2018, of about 12,000 PPI
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Figure 4.6: Average robot units price in 1000 USD, nominal and real (PPI adj.), 1996-2018.
Source: Comtrade and own imputations.
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Figure 4.7: Average real (PPI adj.) robot units price in 1000 USD per weight quantile,
1996-2018. Source: Comtrade and own imputations.
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adjusted USD. One hypothesis for the convergence is that software might have become
increasingly more important over time and therefore takes a larger part in the unit price.
Since software development costs are probably little affected by robot weight and payload,
some convergence in prices would be expected.

Figure 4.A7 shows differences in average PPI adjusted prices amongst the twelve largest
exporters over time. For some countries we see clear negative trends over time. Especially
in the cases of Japan and Singapore we observe strong unit price declines. While Germany
and France also show a negative trend, it is less pronounced. To explore the question of
whether lower average unit prices are related to lighter shipped units, we depict the median
weight of a shipped robot unit in Figure 4.A8.

In the case of Japan and Singapore we do in fact see that the median shipped robot unit
over time has become lighter as time goes by. While the median shipped robot unit from
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Figure 4.8: Derived number of produced robot units by country, 1996-2018. Source: IFR,
Comtrade, own imputations and calculations.
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Japan weighed just under 600kg in 1996, it weighed about 300kg in 2018. Similarly, in
the case of Singapore, the median has halved from about 400kg in 1996 to about 200kg
in 2018. We observe clear upward trends for some of the other major robot exporters.
Robot producers in Korea, Sweden and the US seem to have sold heavier robots over time,
although there is substantial volatility across all three series and in the case of the US
the trend seems to have reversed since 2011. In summary, these findings may hint to an
ongoing specialisation of robot producers located in the respective countries. However,
more accurate data are needed to investigate this hypothesis further.

4.5.3. Derivation of Production

The simultaneous availability of country level annual exports and installations, allows us
to make inferences about country-year level production of countries. Exports represent
the share of production that leaves the country and installations that exceed a country’s
imports represent the share of production that is installed locally. Taken together, these
parts add up to a country’s production in a given year. The values derived in this way
for the production of robots are, of course, only rough. In some cases, the IFR reports
installations in countries for which no robot imports were documented in that year in the
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Comtrade database. These installations unexplained by Comtrade would be considered
production according to our derivation approach. For some country-year combinations
however it might appear more likely that an export reported by a robot manufacturer
reported to the IFR is not included in the national trade statistics and thus the Comtrade
database. This is a short-coming that needs to be considered when interpreting or making
further use of the data. Figure 4.8 illustrates the derived production of robot units over the
time span under consideration for the twelve countries subject to the largest production.

4.5.4. Sectoral analysis

As outlined above, we impose a sectoral dimension on the importer side of the origin-
destination-matrix by deriving weights from OECD input-output tables. Using the sectorally
distributed trade flows of robots, we can calculate descriptive statistics and indexes along
the sectoral dimension. Figure 4.A9 shows the HHI index over time by sector. It suggests
distinctive differences in market concentration across sectors. The sectors most prone to the
use of industrial robots tend to be less concentrated than the less prone sectors. The sectors
subject to the highest market concentration are the manufacture of electronic, computer
and optical products and the manufacture of electrical equipment. Concentration varies
greatly in the education and research sector, which may be due to the low number of robots
inducing small sample bias leading to a noisy market concentration index.

4.6. Application

As outlined above, by providing consecutive time series price data for industrial robots we
intend to close the gap of missing prices in the robot data universe. The general adoption of
industrial robots has been studied along many dimensions. In related theory, the decision
of a profit-maximizing firm to automate is usually expressed as a function of the costs to
automate amongst other determinants. However, due to the lack of price data, a direct
empirical implementation of such models has not been possible so far. Thus, to illustrate
how the data we provide here can be used in estimations common in the automation
literature, we replicate a set of estimations of related work in which the lack of price data
prompts the authors to use a robot stock based proxy for robot adoption. Haarburger et al.
(2023) investigate the effect of increasing robot adoption on markups combining sectoral
data on the use of robots with firm-level data. The theoretical model they present suggests
that firms increasingly automate due to decreasing robot prices. The empirical analysis uses
a Bartik-type instrumental variable (Bartik, 1991), which consists of an exogenous time
series component and an endogenous cross-sectional component. As the exogenous time
series component the authors choose the world stock of robots, which they interact with the
labor share in a given country and sector in 1995 and a proxy for that sector’s technological
advancement in 1990 from Archibugi & Coco (2004). Since large-scale industrial automation
is generally regarded to have begun in the beginning of the 1990s, the authors argue that the
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Figure 4.9: World robot stock and price indexes as time series components of interacted
instrumental variables over time.
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endogenous cross-sectional component is most likely little affected by the rise of industrial
robots.
With the price data obtained in the scope of the present analysis, we can construct a
similar instrumental variable, which uses producer-price-index adjusted world robot prices
instead of the world robot stock as the time series component. Figure 4.9 depicts both time
series as normalised indexes, i.e., as changes with respect to the first observation in 1996
to establish comparability. As expected, both time series are subject to opposing trends
overall. However, a shortcoming of the price data when used as a proxy for the likelihood
of a firm to adopt robots is that it does not account for the performance of robots. Based
on the assumption that technological progress has made robots more performant over time,
the attractiveness of robots from a firm’s perspective should have increased even more
than the pure decrease in prices would indicate. Due to the diversity of industrial robots,
deriving a performance measure to adjust prices with is not straightforward.

The Bartik instrumental variable is constructed as

RIVcst = RWI
t

O1995
cs

L1995
cs

I1990
c , (4.7)

where RWI
t depicts a robot world index which is either the global stock of robots or global

robot prices. The fraction on the right refers to the output-labor-ratio of a sector in a
country in 1995. The term I1990

c refers to the technological capacity of a country in 1990.

In the following we repeat the estimations from Haarburger et al. (2023) which involve the
instrumental variable and contrast the results obtained using the world robot stock as the
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Table 4.2: Comparing instrumental variables, first stage, manufacturing sectors only -
replication of Table 3.2 in Chapter 3.

Dependent Variable: Stock of robots p.w.
Model: S P

Variables
World stock robot IV 1.1∗∗∗

(0.20)
World price robot IV -0.79∗∗∗

(0.11)

Fixed-effects
Country-Sector Yes Yes
Country-Year Yes Yes
Sector-Year Yes Yes

Controls
log(Production) Yes Yes
log(Net Exports) Yes Yes

Fit statistics
Observations 3,388 3,388
R2 0.96954 0.96364
BIC 4,980.5 5,580.5
F-test 137.93 114.84

Columns marked by S refer to estimations using the world robot
stock instrument, columns marked by P to estimations using
the world price instrument.
Clustered (Country & Sector) standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

time series component with using real world robot prices instead.

Table 4.2 depicts the first stage of the following instrumental variable estimation. Columns
indicated with the letter S refer to estimations using the world stock of robots, while
columns indicated with the letter P analogously refer to estimations using real robot world
prices. Both instrumental variables are significant at the 1% level. In line with economic
theory, the sign of the price IV is negative.

Table 4.3 shows the results of the instrumental variable estimations with sectoral markups
as the dependent variable. In terms of effect size and significance of the coefficients, the
results are very similar across IVs. The statistic of the Wald first stage test, a test which is
also referred to as the test of weak instruments, indicates the strength of the instrument
used in the estimations (Wald, 1943). In general, the smaller the Wald test statistic,
the weaker the instrument. Columns S.1 and P.1 show estimation results for all sectors,
whereas columns S.2 and P.2 show the results for manufacturing sectors only. The Wald test
statistic suggests that both instruments are stronger for manufacturing sectors. Moreover,
in this specification, it suggests the price IV is stronger than the stock IV. Over all specifi-
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Table 4.3: Comparing instrumental variables, IV estimation, by all sectors and manufactur-
ing sectors only - replication of Table 3.3 in Chapter 3.

Dependent Variable: Markups
All sectors Only manufacturing

Model: S.1 P.1 S.2 P.2

Variables
Stock of robots p.w. -0.25∗∗ -0.28∗ -0.18∗∗∗ -0.18∗∗∗

(0.10) (0.15) (0.02) (0.03)

Fixed-effects
Country-Sector Yes Yes Yes Yes
Country-Year Yes Yes Yes Yes
Sector-Year Yes Yes Yes Yes

Controls
log(Production) Yes Yes Yes Yes
log(Net Exports) Yes Yes Yes Yes
log(Capital) Yes Yes Yes Yes
log(Patents) Yes Yes Yes Yes

Fit statistics
Observations 3,676 3,676 2,863 2,863
R2 0.94470 0.94197 0.90082 0.90122
BIC 848.25 1,025.7 -363.93 -375.63
F-test 66.082 64.009 27.441 26.102
Wald (1st stage) 3.0316 2.4884 57.521 83.444
F-test (1st stage) 712.53 116.36 1,074.1 169.20

Columns marked by S refer to estimations using the world robot
stock instrument, columns marked by P to estimations using
the world price instrument.
Clustered (Country & Sector) standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

cations an increase in the stock of robots per worker is associated with a decrease in markups.

Table 4.4 shows results for interactions of the stock of robots p.w. with firm quintiles.
Columns S.1 and P.1 show results for the interaction with sales quintiles and columns S.2
and P.2 show results for interactions with markup quintiles. Remarkably, results are similar
in terms of effect size and significance between the different instrumental variables. The
Wald statistic does not clearly suggest that one of the instruments is stronger.

Table 4.5 shows results for IV regressions with logarithmised production and net exports as
the outcomes respectively. Again, the results are similar across both instrumental variables.
In the case of production, the coefficient of the price IV regression is 50% larger compared
to the stock IV regression. The signs of the coefficients for the stock of robots p.w. in
columns S.2 and P.2, where logarithmised net exports are the outcome, differ. However,
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due to their statistical insignificance an interpretation is not sensible.

Table 4.6 shows the estimation results for three other alternative outcomes, namely the
logarithmised number of firms, logarithmised output prices and the logarithmised operating
margin. Results again are consistent across IVs. According to the Wald statistic, the price
IV is stronger than the stock IV in the estimation where output prices are the dependent
variable. The opposite is the case in columns S.3 and P.3, where an alternative measure to
markups, the operating margin is the dependent variable.

4.7. Conclusion

In this paper, we present novel data derived from the Comtrade database and data provided
by the IFR. We construct a complete origin-destination-matrix of industrial robots covering
the period 1996-2018 and 64 countries. Trade flows of robot units are provided in current
USD, robot units and weight. Our data allows to derive robot unit prices at different
levels of geographical aggregation, over time and by weight group. In addition, we derive
the production of industrial robots at the country-year-level. To address the problem of
incomplete data, especially for traded robot units and weight, we employ a sophisticated
multiple imputation algorithm tailored to our problem at hand, which we also use to impute
missing installation and stock IFR data.

Moreover, we examine the resulting data along several dimensions and find that market
concentration in the global market for industrial robots has been relatively stable over time
and that the market is still dominated by a few robot-producing countries. This finding
is substantiated by countries’ revealed comparative advantages and the development of
countries’ market shares over time. We also observe a trend towards specialisation across
countries in terms of robot unit weights. While the robotics industry in some countries
seems to specialise increasingly in lighter robots, the industry in other countries seems to
take the opposite position, specialising in heavier robots. Surprisingly, however, we observe
a clear conversion of prices across different weight quantiles of traded robot units.

Equipped with the new price data, we show how the empirical analysis of papers in the
automation literature can now be more directly linked to economic theory, when the cost
of automation is a determinant in such models. We replicate some of the empirical analysis
of related work where the cost of automation had to be expressed by a proxy variable due
to the lack of price data. We argue that the instrumental variable we construct based on
robot prices satisfies the exclusion restriction better than the previous proxy-based IV. As
this proxy is commonly used in the literature, we suggest using a price-based instrumental
variable may be beneficial for related empirical analysis in the future.

We make all derived data available to other researchers.
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Table 4.4: Comparing instrumental variables, IV estimation, manufacturing sectors only,
by sales quintiles (S.1 and P.1) and markup quintiles (S.2 and P.2) - replication of Table
3.4 in Chapter 3.

Dependent Variable: Markups
Model: S.1 P.1 S.2 P.2

Variables
Stock of robots p.w. × Sales Quintile 1 -0.01∗∗ -0.01∗∗

(0.005) (0.005)
Stock of robots p.w. × Sales Quintile 2 -0.009∗∗∗ -0.010∗∗

(0.003) (0.003)
Stock of robots p.w. × Sales Quintile 3 -0.005∗∗ -0.005∗∗

(0.002) (0.002)
Stock of robots p.w. × Sales Quintile 4 0.004 0.005

(0.003) (0.003)
Stock of robots p.w. × Sales Quintile 5 0.01∗∗ 0.02∗∗

(0.006) (0.007)
Stock of robots p.w. × Markup Quintile 1 -0.04∗∗ -0.04∗∗

(0.01) (0.01)
Stock of robots p.w. × Markup Quintile 2 -0.02∗∗ -0.02∗

(0.006) (0.008)
Stock of robots p.w. × Markup Quintile 3 -0.003 -0.0008

(0.002) (0.003)
Stock of robots p.w. × Markup Quintile 4 0.01∗∗ 0.02∗∗

(0.005) (0.006)
Stock of robots p.w. × Markup Quintile 5 0.04∗∗∗ 0.04∗∗

(0.01) (0.01)

Fixed-effects
Country-Sector Yes Yes Yes Yes
Country-Year Yes Yes Yes Yes
Sector-Year Yes Yes Yes Yes

Controls
log(Production) Yes Yes Yes Yes
log(Net Exports) Yes Yes Yes Yes
log(Capital) Yes Yes Yes Yes
log(Patents) Yes Yes Yes Yes

Fit statistics
Observations 10,408 10,407 11,284 10,383

Columns marked by S refer to estimations using the world robot stock instrument, columns
marked by P to estimations using the world price instrument.
Clustered (Country & Sector) standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 4.5: Comparing instrumental variables, IV estimation, manufacturing sectors only,
Production and Exports - replication of Table 3.5 in Chapter 3.

Dependent Variables: log Production log Net Exports

Model: S.1 P.1 S.2 P.2

Variables
Stock of robots p.w. 0.16∗∗∗ 0.24∗∗∗ 1.2 -0.82

(0.02) (0.03) (1.5) (2.0)

Fixed-effects
Country-Sector Yes Yes Yes Yes
Country-Year Yes Yes Yes Yes
Sector-Year Yes Yes Yes Yes

Controls
log(Production) Yes Yes Yes Yes
log(Net Exports) Yes Yes Yes Yes
log(Capital) Yes Yes Yes Yes
log(Patents) Yes Yes Yes Yes

Fit statistics
Observations 2,863 2,863 2,863 2,863
R2 0.99661 0.99622 0.84012 0.83953
BIC 185.57 501.21 24,750.7 24,761.3
F-test 1,007.7 991.67 17.058 17.052
Wald (1st stage) 59.663 49.797 58.291 84.811
F-test (1st stage) 1,148.0 193.54 1,076.0 168.70

Columns marked by S refer to estimations using the world robot
stock instrument, columns marked by P to estimations using
the world price instrument.
Clustered (Country & Sector) standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 4.6: Comparing instrumental variables, IV estimation, manufacturing sectors only,
alternative outcomes: number of firms, output prices, operating margin - replication of
Table 3.6 in Chapter 3.

Dependent Variables: log Nr. of firms log Output prices log Operating margin

Model: S.1 P.1 S.2 P.2 S.3 P.3

Variables
Stock of robots p.w. 0.42 -0.04 -0.14∗∗∗ -0.14∗ -0.82∗∗∗ -0.74∗∗∗

(0.27) (0.25) (0.04) (0.07) (0.10) (0.07)

Fixed-effects
Country-Sector Yes Yes Yes Yes Yes Yes
Country-Year Yes Yes Yes Yes Yes Yes
Sector-Year Yes Yes Yes Yes Yes Yes

Controls
log(Production) Yes Yes Yes Yes Yes Yes
log(Net Exports) Yes Yes Yes Yes Yes Yes
log(Capital) Yes Yes Yes Yes Yes Yes
log(Patents) Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 1,303 1,303 2,231 2,231 1,960 1,960
R2 0.89961 0.89897 0.69610 0.69556 0.87029 0.87128
BIC 5,832.9 5,841.1 1,123.7 1,127.7 9,218.0 9,203.0
F-test 23.178 23.165 5.9311 5.7984 18.327 18.216
Wald (1st stage) 22.461 20.299 81.884 137.88 24.649 12.558
F-test (1st stage) 119.67 32.573 1,236.6 59.301 381.18 123.48

Columns marked by S refer to estimations using the world robot stock instrument, columns
marked by P to estimations using the world price instrument.
Clustered (Country & Sector) standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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4.A. Appendix

Table 4.A1: Descriptives of non-binary covariates used in imputation and installations
explained by imports in percentages
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Table 4.A2: Descriptives of binary covariates used in imputation

Figure 4.A1: Transformed data compared to benchmark normal distribution with equal
first and second moments.
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Figure 4.A2: Robot unit trade flows, pooled data for 1996-2018, intra-country trade
excluded, 10 largest exporters out of 64 separate. Source: Comtrade and own imputation.
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Figure 4.A3: Robot exports in billion USD, 1996-2018. Source: Comtrade and own
imputation.
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Figure 4.A4: Robot imports in billion USD, 1996-2018. Source: Comtrade and own
imputation.
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Figure 4.A5: Market shares of selected twelve countries with highest total exported units
over 1996-2018 time span. Source: IFR and own imputation.
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Figure 4.A6: Average exported robot unit weight in kg, 1996-2018. Source: Comtrade and
own imputations.
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Figure 4.A7: Average real (PPI adj.) robot units price in 1000 USD per exported unit,
1996-2018. Source: Comtrade and own imputations.

NLD SGP SWE USA

ITA JPN KOR MEX

AUT CHN DEU FRA

1996 2000 2004 2008 2012 2016 1996 2000 2004 2008 2012 2016 1996 2000 2004 2008 2012 2016 1996 2000 2004 2008 2012 2016

5

10

15

20

5

10

15

20

5

10

15

20

Year

A
ve

ra
ge

 r
ea

l (
P

P
I a

dj
.)

 p
ric

e 
of

 e
xp

or
te

d 
un

it 
by

 e
xp

or
te

r



105

Figure 4.A8: Median exported robot unit weight in kg, 1996-2018. Source: Comtrade and
own imputations.
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Figure 4.A9: Herfindahl-Hirsch-Index, IFR sector classification, weights derived from OECD
input-output tables, 1996-2018
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Chapter 5

Interviewer Biases in Medical Survey Data:
The Example of Blood Pressure Measurements

Abstract

Health agencies rely upon survey-based physical measures to estimate the prevalence of

key global health indicators such as hypertension. Such measures are usually collected

by non-healthcare worker personnel and are potentially subject to measurement error

due to variations in interviewer technique and setting, termed “interviewer effects”.

Using blood pressure as a case study, we aimed to determine the relative contribution

of interviewer effects on the total variance of blood pressure measurements in three

large nationally-representative health surveys from the Global South. In a linear mixed

model, we modeled systolic blood pressure as a continuous dependent variable and

interviewer effects as random effects alongside individual factors as covariates. To quan-

tify the interviewer effect-induced uncertainty in hypertension prevalence, we utilized a

bootstrap approach comparing sub-samples of observed blood pressure measurements

to their adjusted counterparts. Our analysis revealed that the proportion of variation

contributed by interviewers to blood pressure measurements was statistically significant

but small: approximately 0.24-2.2% depending on the cohort. Thus, hypertension

prevalence estimates were not substantially impacted at national scales. However,

individual extreme interviewers could account for measurement divergences as high as

12%. Thus, highly biased interviewers could have important impacts on hypertension

estimates at the sub-district level.

This chapter is joint work with Pascal Geldsetzer (Stanford University, Stanford, CA, USA), Andrew Young
Chang (Stanford University, Stanford, CA, USA), Erik Meijer (Center for Economic and Social Research,
University of Southern California, Los Angeles, CA, USA), Nikkil Sudharsanan (Technical University of
Munich, Munich, Germany), Vivek Charu (Stanford University, Stanford, CA, USA), and Peter Kramlinger
(University of California Davis, Davis, CA, USA).
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5.1. Introduction

Global health indicators such as blood pressure, weight, and height are critical for monitoring
both national and international health system performance. Such markers are largely
collected through household surveys, which are often seen as the gold standard methodology
due to their population-representative nature (Ties Boerma & Sommerfelt, 1993; Corsi et
al., 2012; Boerma et al., 2003; Clark & Sanderson, 2009; Mbondji et al., 2014).
Interviewer-collected physical measures such as heart rate or body mass index (BMI)
may appear to hold greater “objectivity” than self-reported indicators or subjective social
indicators. Self-reported data is frequently prone to not only random measurement error,
but also systematic measurement error due to interviewee attitudes such as recall bias and
social desirability bias (Althubaiti, 2016). Nevertheless, physical measures are still subject
to a substantial degree of random measurement error due to administrator technique and
environmental context during acquisition (Ulijaszek & Kerr, 1999; Cernat & Sakshaug,
2020; Ali & Rouse, 2002; Svensson & Theorell, 1982). This phenomenon may possibly be
magnified in the case where medical measurements are taken by non-clinician interviewers
who may not routinely perform such measures outside of the research setting.
Nevertheless, many household surveys make the implicit assumption that, after their
training, interviewers all perform to the same standard as one another (Jaszczak et al.,
2009). Subsequent analyses therefore assume that the interviewers are not a source of
measurement error and that uncertainty estimates are purely based on the sampling strategy.
At the national level, these “interviewer effects” may average out from the large number
of interviewers contributing both positive and negative measurement error. At finer
geographic divisions, however, the relatively smaller number of interviewers may lead to
greater variation or even potential bias in the measurement of a target indicator. This is
particularly important because estimates from small areas are increasingly being used in
public health decision making and for mapping disease prevalence at subnational levels,
sometimes in resolutions as fine as 5 x 5 km (Dwyer-Lindgren et al., 2019; Reiner Jr et al.,
2018; Osgood-Zimmerman et al., 2018; N. Graetz et al., 2018).
Prior analyses have queried the intra- and inter-observer reproducibility of specific physical
measures, but such investigations have tended to focus on the reliability of these markers
for clinical situations (Ali & Rouse, 2002; Svensson & Theorell, 1982; Schulze et al., 2000).
Furthermore, most such studies have utilized healthcare workers like nurses and medical
trainees as the measurement-takers given their applicability to the medical setting, and have
examined high-income country populations (Bogan et al., 1993; Dickson & Hajjar, 2007).
Large-scale empirical analyses of non-clinician interviewers’ reliability for physical measures
for public health purposes, especially in low- and middle-income countries (LMICs), remain
sparse. The amount of random measurement error found in such global health indicators
varies, with some exhibiting relatively low degrees (e.g., controlled laboratory-based tests)
while others with increased operator inputs suffer from potentially greater degrees of
interviewer-introduced measurement error. For example, anthropometry for newborns,
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adult waist circumference, and blood pressure measurements require interviewers to make
subjective decisions about how and where to place the instruments and in what settings to
do so (Cernat & Sakshaug, 2020, 2021).
Here we assess the magnitude of interviewer-induced measurement error in large-scale global
health surveys using the case study of high blood pressure. High blood pressure is an
ideal case study because it is already a disease of considerable importance in low- and
middle-income countries (LMICs) (Zhou et al., 2017; Yusuf et al., 2020). Blood pressure is
readily and frequently measured noninvasively, and non-clinician study personnel can be
taught how to collect blood pressure assessments (Jaszczak et al., 2009). This is particularly
important as community health workers and other non-nurse/non-physician healthcare
workers are increasingly being called upon to care for noncommunicable diseases in primary
care in poor countries, and they are also frequently called upon for survey data collection
as well (Jeet et al., 2017; Singh & Sachs, 2013; Otieno et al., 2012).
As such, in the present analysis (assuming that interviewers are randomly allocated to
households within primary sampling units) we examine the magnitude of uncertainty
attributable to interviewer effects on blood pressure measurements and hypertension
(systolic blood pressure ≥ 140mmHg) in three large longitudinal health surveys from the
Global South.

5.2. Materials and Methods

5.2.1. Data Sources

We demonstrate the implications of interviewer measurement biases using three common
longitudinal health surveys. Besides waves 4 and 5, as well the east extension of the
Indonesia Family Life Survey (IFLS), we use all five waves of the National Income Dynamics
Study (NIDS), and the first wave of the Longitudinal Aging Study in India (LASI) in our
analysis. All three data sets were collected with the purpose to document socioeconomic and
health outcomes over time. Moreover, they were designed to provide sufficient sample size
and adequate sampling schemes to be nationally representative. Thus, they are generally
considered suitable to estimate prevalences of diseases for whose documentation adequate
examinations were conducted as part of the survey, such as hypertension.

5.2.2. Sampling strategy

NIDS: The NIDS data were collected in five waves between February 2008 and December
2017 (Southern Africa Labour and Development Research Unit, 2018a,b,c,d,e). Since the
NIDS data are of longitudinal nature, the households interviewed in the first wave were
re-contacted for the following waves. However, the sample was topped up throughout
the following waves to account for under-sampled socioeconomic groups and attrition. A
two-stage stratified cluster sample design was applied in the data generation process of the
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first wave.

The underlying 2003 master data used to generate NIDS were provided by Statistics
South Africa, comprised 3000 primary sampling units (PSUs), and were stratified with
respect to 53 district councils. The NIDS data depict a subset of 400 PSUs which were
randomly drawn within the strata, whilst conserving proportionality. Within each PSU,
8 non-overlapping samples of dwelling units had been drawn for the creation of the mas-
ter data, which are referred to as clusters in the NIDS documentation. The majority
of clusters were assigned various household surveys before the creation of NIDS. Two
clusters in each PSU however had never been involved in surveys, and became the base
for NIDS. For further details see (Leibbrandt et al., 2009). NIDS wave 1 comprises com-
pleted surveys of 7,296 households from the aforementioned sub-sampled 400 PSUs. In
order to establish national representativeness, different sets of weights were constructed
as described in (Wittenberg, 2009). Since our analysis does not aim for national represen-
tativeness, but focuses on interviewer effects only, we do not apply the weights provided
within the NIDS data and thus do not further discuss the computation of the weights
here. Thus, they do not account for the interviewer effects, but merely the sampling weights.

After cleaning and preprocessing the NIDS data as outlined above, 87,658 observations
remain, which we use throughout our analysis.

IFLS: The IFLS data used in the scope of this analysis comprise waves four, five and
the east extension (Strauss et al., 2009; Sikoki et al., 2013; Strauss et al., 2016). As is
the case with NIDS, due to the IFLS data being a longitudinal survey, the households
interviewed during the first wave were re-contacted for all following waves. Thus, the
sampling scheme of the first wave determined the sample composition of all following
waves. IFLS1 stratified on provinces and urban versus rural locations within which sim-
ple random sampling was applied. Out of a total of 27 Indonesian provinces, only 13
are included in the sample, which however represented 83% of the population in 1993
(Strauss et al., 2016). Within the selected 13 provinces, 321 enumeration areas (EAs)
were randomly chosen, with proportions being selected to cause oversampling of urban
EAs and smaller provinces to ensure the comparability of rural and urban EAs. While
within each urban EA 20 households were selected, 30 were selected within each rural
EA, resulting in a total of 7,224 completed household interviews in IFLS1. For a more
detailed description of the sampling scheme please refer to (Strauss et al., 2016). IFLS
East includes most of the provinces not covered by the main IFLS. Within each selected
province, 14 villages or urban villages were randomly drawn. These were then subdivided
into units/areas with about 100-150 households, from which one was drawn at random.
Within each of these, again 20 households were drawn if urban and 30 if rural. See (Sikoki
et al., 2013) for more details. After initial data cleaning and processing 26,554 individual
level observations from IFLS 4, 5, and East remain, which we use in the scope of this analysis.
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LASI: We use the first wave of LASI data which was collected between 2017 and 2019
(International Institute for Population Sciences (IIPS), MoHFW, Harvard T. H. Chan
School of Public Health (HSPH) and the University of Southern California (USC), 2020).
The sampling scheme applied throughout the LASI data collection followed the 2011 census,
and implemented a multistage, stratified cluster sample design. While in the case of urban
areas three sampling stages were conducted, four stages were conducted in the case of rural
areas. The first stage consisted in the selection of PSUs within states. In the second stage
villages were selected in the rural PSUs and wards within the urban PSUs. Stage three
included the selection of households in rural areas and the selection of Census Enumeration
Blocks (CEBs) in wards. The final and fourth stage applied in urban areas comprised the
selection of households. The LASI data used in the scope of this analysis comprise 55,469
observations post pre-processing and cleaning.

5.2.3. Interviewer Training, Characteristics, and Monitoring

NIDS: Interviewer training was held at the same time as the pre-test was conducted,
specifics on the training of blood pressure measurements are not documented. The NIDS
documentation does not mention specially trained health professionals taking the health
measurements as is common in similar surveys. Thus, health measurements have been
taken by the interviewer conducting the rest of the household surveys.

With wave five a set of interviewer demographics and experience variables were added to
the available data.

The use of paradata was implemented to oversee interviewers and thereby reduce inter-
viewer effects. Precisely, paradata are used to monitor questionnaire duration, refusal rates,
magnitude of anthropometric measurement differences between current waves and previous
waves, flag extreme BMI measures, and run other similar checks. The checks were taken
periodically from about 6 weeks into fieldwork or when there were enough data to estimate
meaningful averages. When interviewers’ performance measures were conspicuous they
were investigated, retrained, moved to different teams for closer supervision or removed.
In some cases the respective households were re-interviewed. The Southern Africa Labour
and Development Research Unit (SALDRU) carried out a range of pattern searches and
consistency checks on the data during fieldwork to identify interviewer effects and potential
general cases of mis-capture.

The NIDS sample used in our analysis comprises a total of 513 distinct interviewers taking
blood pressure measurements.
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IFLS: Supervisory training was held for all senior personnel. In the case of IFLS5 this
training of trainers included reviewing all parts of the survey: household, community-facility,
health, computer-assisted personal interview system (CAPI) tracking, and the management
information systems used in the scope of the data collection. Household interviewer training
was conducted in two phases. Training sessions were divided into two parts, classroom
training and field practice. Household interviewers received 19 days of classroom training
and 4 days of field practice. The collection of health data was conducted by regular
interviewers, i.e., no health professionals were involved in the data collection on site during
the interviews. Training for health-related measurements was part of the regular interviewer
training. In the case of IFLS4 and IFLS East, the CAPI system had not been implemented
yet and blood pressure measurements were conducted by nurses, i.e. professional health
workers, and non-professional interviewers, respectively.

The combined IFLS data contains a total of 409 distinct interviewers taking blood pressure
measurements.

LASI: A series of manuals were designed to standardize different aspects of surveys con-
ducted in the scope of the LASI data collection. These manuals were instrumental in the
training of interviewers. One of the manuals specifically focuses on the physical measures
section of LASI and thus includes instructions for the measurement of blood pressure. The
training duration of interviewers and health investigators was 35 days, of which five took
place in the field. Even though the interviewers were employed via sub-contractors, they
were trained by trainers, who themselves were trained by the International Institute for
Population Sciences (IIPS). After training was completed, investigators were individually
assessed to assure that their work met the requirements previously defined by the manuals.

The LASI sample used in our analysis comprises a total of 504 distinct interviewers taking
blood pressure measurements.

5.2.4. Definition of Hypertension, Blood Pressure Measurement

Multiple systolic blood pressure measurements were taken in the scope of all surveys
included in this study. In the case of the IFLS and LASI data, three measurements were
taken per individual, in the case of the NIDS data only two. In order to mitigate the
white coat effect and to average out idiosyncratic fluctuations in measurements, we average
the second and third measurement, while disregarding the first in the case of IFLS and
LASI. In the case of NIDS, we only consider the second measurement, disregarding the
first. Following this procedure, we obtain a single systolic blood pressure value for each
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interviewee. We consider interviewees to be hypertensive if their resulting single systolic
blood pressure measurement is equal to or greater than 140 mm Hg.

Measurements were conducted using an Omron HEM 7121 BP monitor in the case of LASI
and an Omron HEM 7203 in the case of IFLS. Information on the exact device used for
blood pressure measurement throughout NIDS data collection is not part of the publicly
available documentation.

5.2.5. Definition of Covariates

We add covariates to the model, which we consider potential determinants of blood pressure.
To keep the results comparable, we use mostly the same set of covariates across all data
sets. Besides using interviewees’ sex, age, BMI, and smoking status, we proxy interviewees’
socioeconomic background with income and education. The variables we choose in the
respective data sets to compose our income proxy refer to monthly salaries and wages
or monthly profits from entrepreneurship for NIDS and IFLS, and the logarithm of total
household income for LASI. While the resulting income variables are hardly comparable
across data sets, we assume comparability within data sets. To align the information on
the education of individuals, we re-code education into three categories, namely less than
primary schooling, primary and/or secondary schooling and tertiary education, except in
LASI, where we added a fourth category for no schooling. In order to proxy for the possible
use of blood pressure lowering medication we include a variable which depicts whether an
interviewee has ever been diagnosed with hypertension before.

5.2.6. Statistical Analysis

We model a linear relationship of systolic blood pressure and available covariates. Formally,
systolic blood pressure for individual i in household j at location k measured by interviewer
l is denoted as Yijkl, so that

Yijkl = β0 +

p∑
d=1

xijkldβd + uj + vk + wl + εijkl, (5.1)

where εijkl ∼ N(0, σ2
ε) is a Gaussian error term. Furthermore, xijkl1, . . . , xijklp are the

available co-variates, β0 ∈ R a common intercept and uj , vk, wl the respective level-effects
of household, location and interviewer, for j = 1, . . . , J , k = 1, . . . ,K, l = 1, . . . , L. These
level-effects, as well as the parameter vector β = (β0, β1, . . . , βp)

t are unknown and have to
be estimated given a sample of independent measurements.

Since the main objective lies in investigating systolic blood pressure, this model includes a
selection of socio-economic control covariates. The separately modeled level-effects include
a household effect, the interviewer effect, and the maximum number of geographical level-
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effects supported by the respective data set. In the following we will motivate the use of
the individual level-effects. We suspect that the interviewer effect significantly influences
systolic blood pressure measurements, and is at the core of our analysis, as described above.
Of note, due to the inability to trace interviewers across waves of the datasets, we treat all
observations individually and ignore the time dimension.

We motivate the use of geographical level-effects based on the assumption that geographical
cultural clusters, geographical differences in the availability of food, geographical differences
in health care access, and similar factors might affect systolic blood pressure spatially.

It is common practice to assign interviewers to households and not to interviewees directly.
An interviewer then interviews all eligible individuals belonging to an assigned household.
Variation in systolic blood pressure on the household level therefore potentially confounds
the estimation of the interviewer effect. Thus, we include household effects to absorb
household level variation.

We are interested in investigating Yijkl − wl, which is the systolic blood pressure adjusted
for the true measurement error induced by interviewers, which we are estimating with our
approach. Accordingly, we consider Yijkl − ŵl, where ŵl is a suitable estimator for wl. In
regression problems with multiple dimensions such as the present case outlined in 5.1, the
question arises as to which effects are best modelled as random versus modelled as fixed.
In general, with a large number of coefficients to be estimated, the potential loss in degrees
of freedom associated with modelling fixed effects is considered an argument in favor of
random effects. In the large surveys considered in this article several hundred interviewers
were involved in taking measurements. Estimating a fixed effect for each interviewer is thus
prohibitively expensive in terms of degrees of freedom. We therefore proceed in line with
common practice and assume that the household effect uj , and interviewer effect wl are
stochastic (Hodges, 2013; Hsiao, 2014; Fielding, 2004). In case of the location effect vk the
optimal choice is less clear. The potential loss of degrees of freedom is lower due to the
lower number of coefficients to be estimated, especially at the highest level of geography.
However, in order to maintain maximum comparability of the level-effects, we consider it
sensible to model all as random.

These random level-effects are assumed to be independently drawn from underlying normal
distributions (Hodges, 2013). As part of the estimation procedure we obtain estimates for
the respective second moments of these distributions, which then can be used for simulation
exercises or the calculation of reliability ratios. With the assumption of random effects,
equation 5.1 constitutes a linear mixed model (LMM), that is:

uj ∼ N(0, σ2
u), j = 1, . . . , J ; vk ∼ N(0, σ2

v), k = 1, . . . ,K; wl ∼ N(0, σ2
w), l = 1, . . . , L.
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5.2.7. Omitted variable bias

An individual’s blood pressure depends on various factors, only some of which can be
fully captured in large-scale surveys. Genetic preconditions for example are practically
impossible to capture sufficiently in survey settings. Thus, we are agnostic about facing
omitted variable bias in explaining systolic blood pressure independent of the particular
survey data set considered. However, depending on the survey, some essential predictors of
blood pressure are missing, which in principle could be recorded in a survey setting.

Recalling that our main interest lies in investigating interviewer effects, we are mostly
concerned about falsely attributing variation in systolic blood pressure measurements to
interviewers. Confounding is most likely to occur if an interviewer’s specific subset of
individuals substantially differs from the overall population, along a dimension relevant for
variation in systolic blood pressure.

The risk of confounded interviewer intercept estimates caused by small samples is mitigated
by using the best linear unbiased predictor (BLUP) for random effects (Henderson, 1975;
Rao & Molina, 2015). This estimator is a weighted average of the pooled sample and
the sample from the level-specific subgroup, i.e., all measurements taken by one specific
interviewer. The former exhibits a bias and small variance, whereas the latter is unbiased
but has a large variance. It is constructed so that the more observations there are in the
level-specific subgroup, the more weight is attributed to it. Conversely, if the level-specific
subgroup sample is very small, the BLUP relies more heavily on the pooled sample. The
estimation procedure therefore amounts to a variance-bias trade-off in which the BLUP
is optimal in terms of the mean squared error (MSE). Consequently, the potential small
sample bias that leads to confounded interviewer intercept estimates is small, and its impact
negligible.

5.2.8. Testing for the Presence of Interviewer Effects

We are interested in investigating the presence and significance of interviewer effects. This
relates to the formal test of the hypothesis H0: σ2

w = 0 vs. H1: σ2
w > 0. This test is

performed by evaluating the likelihood-ratio statistic

LRT = 2 (`H1 − `H0) ,

where `H0 is the log-likelihood of the model under the null and `H1 for the alternative. In
our concrete case, `H1 nests `H0 and additionally includes interviewer random effects. As
fundamental problem, the null lies at the boundary of the parameter space. The asymptotic
distribution of the Likelihood-Ratio-Test (LRT) has the inconvenient distribution of a point-
mass on zero with weight 0.5 and χ2

1-distribution elsewhere. The finite sample distributions
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however may severely differ from the asymptotic distribution (Crainiceanu & Ruppert,
2004, 2005). For multiple random effects as in the present model, a parametric bootstrap
can approximate the finite sample distribution well enough (Crainiceanu, 2008; Greven et
al., 2008). In particular,

LRT
d
≈ aUχ2

1,

where
d
≈ denotes approximate equality in distribution, U ∼ Bern(1− p). Both a and p are

unknown and have to be estimated by bootstrap replications. Eventually, p-values for the
LRT under the null can be provided.

5.2.9. Adjusting for Interviewer Effects

Once we have established the presence and significance of interviewer effects, we adjust
blood pressure measurements for these interviewer effects. Since we obtain not only an
estimate of the second moment of the interviewer effect distribution, but also intercepts for
all individual interviewers, we can individually adjust systolic blood pressure measurements.
A simple adjustment then takes the form

Ŷ adj
ijkl = Yijkl − ŵl, (5.2)

where ŵl are the interviewer intercept effects (the BLUPs).

5.2.10. Assessing Uncertainty in Sample Hypertension Prevalence

In order to quantify the uncertainty in hypertension prevalence induced by interviewer
measurement error we use a non-parametric bootstrap approach. Precisely, for this approach
we repeatedly take sub-samples of observed systolic blood pressure measurements and their
corrected counterparts and compare resulting prevalences of hypertension. We depict the
two generated sets of prevalences as densities, which allows for a straightforward comparison.

Bootstrap

We employ a non-parametric cluster bootstrap approach to infer about the uncertainty
of hypertension prevalence given the corrected observations. We refer to this approach as
non-parametric, since we do not use estimated parameters from the estimated model to
generate new data, but only use the predicted interviewer effects to create adjusted mea-
surements post estimation. Thus, we compare the density of hypertension prevalences based
on corrected observations to the density of prevalences based on uncorrected observations.
In order to account for the clustered structure of our data, we fix the coarsest geographic
level (e.g. provinces) in the data and within these levels we draw from the second coarsest
geographical level (e.g. municipalities).
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The location level effects depict multiple levels of granularity and thus can also be represented
as distinct effects. Let p = 1, ..., P indicate the coarsest geographical level effect (e.g.
province), and m = 1, ...,M(p) represent the second coarsest geographical level effect (e.g.
municipality).

Formally, let yipm,m = 1, ...,M(p) be the ith individual measurements in province p and
yadjipm the adjusted measurements respectively. Then, R bootstrap replications are generated
via:

1. for r = 1, . . . , R:

2. for p = 1, . . . , P:

3. Draw M(p) municipalities with replacement

4. Obtain composite sample B(p) ⊂ {yipm|for individual i in muncipality m}M(p)

5. Pool random samples to obtain B = ∪
p
B(p)

6. Calculate pr(B) = |B|−1
∑

y∈B I(y > 140), and padjr analogously

The bootstrap prevalences (pr)r=1,...,R and (padjr )r=1,...,R allow for inferring about the effect
of adjustment.

5.3. Results

5.3.1. Sample Characteristics

Table 5.1 shows descriptive statistics for the data sets used in this study after pre-processing.
Data from 169,681 total encounters were utilized, with 26,554 from the Indonesia Family
Life Survey (IFLS), 55,469 from the Longitudinal Aging Study in India (LASI), and 87,658
from the National Income Dynamics Study (NIDS) of South Africa, respectively.

5.3.2. Variation shares in hypertension prevalence

To interpret the effect sizes of the interviewer level-effects, we compare their shares in total
variation to the shares of other level-effects and the residual from the same estimations.
Table 5.2 presents the variance components of the fitted linear mixed models (LMM) for
the IFLS, NIDS, and LASI datasets.
The bootstrap likelihood ratio test (LRT) tests give p-values of p < 0.0001 for all three
datasets. This strongly suggests the presence of interviewer effects in all three datasets,
although they are numerically small.
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5.3.3. Uncertainty in Sample Hypertension Prevalence

Figure 5.1 displays the non-parametric bootstrap densities for hypertension prevalence,
based on the original data (blue, dashed), and the corrected measurements (red, dotted).
The vertical line represents the observed prevalence by data source.

5.3.4. Effect Study

In order to illustrate the interviewer-introduced uncertainty in hypertension prevalences, we
perform an effect study. Using the set of observed systolic blood pressure measurements and
the measurements corrected for the estimated interviewer effects, we can compare observed
interviewer-specific prevalences of hypertension to the respective corrected interviewer-
specific prevalences. Alternatively, we can also illustrate differences in prevalences for
geographic areas, such as sub-districts.

Interviewer-Specific Prevalences: Observed and Corrected

Figure 5.2 illustrates a sub-sample of the interviewer-specific observed and adjusted preva-
lences of hypertension for the IFLS dataset. The sub-sample is created based on the
distribution of differences in observed and adjusted prevalences. For example, to focus
on the most extreme cases, we depict the prevalences for all interviewers for whom the
difference between observed and adjusted prevalence lies above the 70th-percentile of these
differences. In other words, we show the 30 percent of cases subject to the most drastic
adjustment effects. The top 50%, 30%, 10%, and 1% cases are presented.

The analogous findings for NIDS and LASI are presented by Figures 5.3 and 5.4

Sub-district specific prevalances: observed and corrected

Analogously to the interviewer specific prevalances, we can also depict changes in prevalances
for geographical units, as illustrated in Figure 5.5. The higher the granularity in geographical
division, the larger the influence of single interviewers. We thus depict adjustment induced
changes in prevalences on the most granular level available for each respective data set. In
case of LASI and IFLS the most granular geographical level are sub-districts. In the case
of NIDS less granular level data is available, so that we are limited to the cluster level.

5.4. Discussion

In the present analysis, we found that interviewer effects in blood pressure measurements
were statistically significant, although numerically trivial, in three large longitudinal health
surveys from Indonesia, India, and South Africa. This was achieved by calculating the
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proportion of total variance attributable to various sources, one of which was the inter-
viewer. Nevertheless, both the absolute and relative contribution of the interviewer to blood
pressure measurement variation was not particularly high, especially when compared to
geographic/community-level effects. In the IFLS cohort, interviewer-level effects comprised
0.5% of the variance, while in NIDS, 2.2%, and in LASI, 0.2%. In fact, household effects
(13.6%, 12.1%, 6.6%, respectively) dominated the variance of all three datasets, with
residential effects (i.e., province, state, subdistrict, municipality) higher than interviewer
effects except for in NIDS.

On the population level, however, the combined interviewer effect could potentially impact
the uncertainty in hypertension prevalence. As such, we generated non-parametric boot-
straps of prevalence estimates unadjusted and adjusted for the interviewer effect, which
show very small but consistently lower point estimates of hypertension prevalence in all
three datasets on the order of a fraction of a percent. This may have minor implications
for public policy targeting hypertension and suggest slight present overestimation of true
hypertension prevalence in these settings.

Nevertheless, the magnitude of the discrepancies is not exceedingly high at these larger
scales — where we found the interviewer effect to carry the greatest possibility of influencing
hypertension estimation was at smaller geographic divisions. Taking the most “extreme”
individual interviewers responsible for the greatest adjustment effects in each dataset and
comparing their observed and adjusted hypertension prevalences revealed divergences as
high as 12% in NIDS. We therefore assessed their impacts by comparing the observed and
interviewer-effect adjusted sub-district specific hypertension prevalences subject to the
greatest adjustment effects. These revealed up to 5-7 percentage points (p.p.) prevalence
differences between observed and corrected values at sub-district levels for the top 1% of
cases subject to adjustment effects. The substantial degree of bias that these may introduce
at the local level compared to the population (or whole sample) level are well-visualized
in the resultant cluster-specific blood pressure density plots. For example, in LASI, the
modal systolic blood pressure signed difference between subdistrict and total population
was nearly 25mmHg.

Our study represents the largest empirical estimation of interviewer effects on blood pressure.
We also believe it to be the first of its kind involving low- and middle-income country
populations. Thus, it contributes to the growing body of work examining and quantify-
ing interviewer-based sources of measurement error for survey-based global public health
indicators. The results are reassuring that the present strategy of utilizing non-clinician
study interviewers is likely not generating a critical degree of variation in blood pressure
measurement for populations, and we propose one possible method by which analysts may
adjust for these small interviewer effects.
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Because our investigation is, to our knowledge, the first to assess interviewer-effects for
blood pressure in household surveys from low- and middle-income countries, we are only able
to compare our findings to those from much smaller samples in two surveys from the UK.
Cernat and Sakshaug found that there are interviewer effects on measurement error from
both nurses and trained non-clinician interviewers in these two UK-based surveys (Cernat
& Sakshaug, 2020, 2021). For non-clinician interviewers, they noted that in measures such
as height, weight, blood pressure, and pulse, interviewer effects similarly comprised only a
small fraction of the variance—for blood pressure, less than 1%. Much like our findings,
these studies also identified that area-level effects contributed a greater source of variation
than the interviewer effect for many physical measures.

Nevertheless, our work further models the public health implications of the interviewer
effect by estimating the impact of these forces on hypertension prevalence estimates at
multiple geographic levels. In doing so, our analyses also identified that extremely biased
interviewers could lead to markedly biased hypertension estimates, and that if there is
disproportionate allocation of these “extreme” interviewers to a locale at the level of a
sub-district or smaller, that there may be substantially biased hypertension prevalence
estimates in these geographic units.

Strengths of our study include the size of the analytic cohort (total 169,681 observations), as
well as the use of three different nationally-representative datasets from Africa, South Asia,
and Southeast Asia. There is substantial heterogeneity in the resultant populations, not
just by the distribution of gender, age, and urban/rural breakdown, but also the underlying
true prevalence of hypertension. Blood pressure measurements from years 2008 through
2019 were included, further capturing time-related variation. The most important limitation
of our analysis is that, analytically, our modeling strategy relies upon the assumption that
all interviewers were quasi-randomly allocated to participants within the primary sampling
units. Other limitations of the work include the inclusion of systolic blood pressure only,
for reasons of statistical feasibility. Diastolic hypertension (both independently and in
conjunction with systolic hypertension) may be a risk factor for adverse cardiovascular
outcomes (Flint et al., 2019; Strandberg et al., 2002). In addition, the LASI cohort was
substantially older than the IFLS and NIDS cohorts. Furthermore, the full dataset does not
constitute a random sample of all household surveys in low- and middle-income countries.
Lastly, all three survey cohorts involved interviewers who were highly trained using estab-
lished, high-quality protocols and closely monitored by study administration. As biased
interviewers have higher impact on measurement error in small geographic units, our results
may underestimate the magnitude of interviewer effects for less-rigorously trained/observed
interviewers in LMIC settings.

We conclude by noting that interviewer effects appear to be present, but small at best in
household surveys of blood pressure in lower middle- and middle-income countries. Future
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work could involve targeted empirical analyses of the influence of “extreme interviewers”
on quantifying the local burden of disease, as well as replication of our methods in other
cohorts from different continents and from low-income countries. Additionally, we recognize
that blood pressure is but one physical measure from a large pool of monitored global
health indicators. As prior research in other settings has suggested that interviewer effects
vary with the type of measurement performed, independent analyses of these other markers
such as weight and body mass index should be pursued to provide a more comprehensive
understanding of the phenomenon.
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5.5. Figures and Tables

Table 5.1: Descriptives of IFLS, NIDS and LASI data.
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Table 5.2: Variance components of the fitted LMMs by data set for IFLS, NIDS and LASI.
Effect Variance Percentage

IFLS
Household 37.6 13.6%
Interviewer 1.47 0.53%
Province 2.96 1.07%
Municipality 2.29 0.83%
Subdistrict 2.78 1.01%
Residuals 229 82.9%
Total 276.1 ≈ 100%

NIDS
Household 39.6 12.1%
Cluster 3.74 1.15%
Interviewer 7.19 2.2%
Province 3.06 0.94%
Residuals 273 83.7%
Total 328.17 ≈ 100%

LASI
Household 21.3 6.55%
Interviewer 0.785 0.24%
State 7.99 2.46%
District 7.75 2.39%
Village/ward 4.96 1.53%
Residuals 282 86.8%
Total 324.785 ≈ 100%
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Figure 5.1: Bootstrap densities for hypertension prevalence, based on the original data
(blue, dashed), and the corrected measurements (red, dotted). The vertical line represents
the observed prevalence.
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Figure 5.2: IFLS: Observed and adjusted interviewer specific prevalences of hypertension, 50%, 30%, 10%, 1% of cases subject to largest adjustment
effects.
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Figure 5.3: NIDS: Observed and adjusted interviewer specific prevalences of hypertension, 50%, 30%, 10%, 1% of cases subject to largest adjustment
effects.
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Figure 5.4: LASI: Observed and adjusted interviewer specific prevalences of hypertension, 50%, 30%, 10%, 1% of cases subject to largest adjustment
effects.
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Figure 5.5: Systolic blood pressure densities, observed and adjusted for estimated interviewer
effects, for selected subdistricts subject to large adjustment induced changes by data source.
Population densities are added as comparison.
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