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Abstract 
Different imaging modalities can be used to probe distinct aspects of the brain, such as 

cerebral anatomy (MRI), tissue diffusion directions (DTI), metabolic activity (PET), 

neurovascular activity (fMRI), or electrophysiological activity (EEG/MEG). The imaging 

modalities differ not only in terms of the aspect they represent, but also in their spatial 

resolution and in their temporal resolution. The medical imaging of the brain with each 

modality separately obtains valuable information. However, the joint use of neuroimaging 

techniques (measured in parallel or sequential) offers the possibility to combine the 

information from multiple modalities to obtain a broader picture of the human brain.  

Epilepsy is characterized by a permanent predisposition of the brain leading to an epileptic 

seizure, a transient occurrence of abnormally synchronous neuronal brain activity. The two 

most common epilepsy syndromes are focal epilepsy, defined by a focal origin of the epileptic 

seizures, and idiopathic generalized epilepsy (IGE), in which epileptic seizure activity rapidly 

involves both cerebral hemispheres of the brain. Epilepsy is characterized as a network disease 

of the brain. Changes in brain networks have been detected in patients with IGE at rest, i.e., 

in the absence of seizures, or discharges, and under the situation by patients completing a set 

specific task. Brain network changes in patients with focal epilepsy are also known and 

identified with respect to diagnosis and treatment options. Though it has not been established 

whether measuring multiple imaging modalities in parallel (EEG-fMRI) provides data of 

sufficient quality in the modalities to detect, for example, group differences between two 

cohorts or constant components in a group of subjects. 

This dissertation aimed at the examination and integration of brain networks from different 

parallel and sequential measured medical imaging modalities in cohorts of patients with 

epilepsy and healthy controls. 

In the first main chapter, the impact of inside MR-scanner measurement condition on high-

density electroencephalography (hd-EEG) was investigated to assess whether known 

statistical group differences of EEG power and phase-based functional connectivity could be 

replicated in patients with IGE compared to healthy controls during a parallel acquisition of 

fMRI. We observed that the analysis of phased-based functional connectivity (imaginary part 

of coherency) of EEG data is suitable for parallel measured hd-EEG-fMRI, and that group 

differences in a comparison of patients with IGE against controls remain identifiable. 

Moreover, between thalamus and the occipital cortical brain, spatial congruence of group 



differences in seed-based functional connectivity (IGE>controls) was found between the two 

modalities measured in parallel, hd-EEG and fMRI. 

In the second main chapter, the influence of different inverse methods for electric source 

imaging (ESI), as well as different stages of interictal epileptic discharges (IEDs) on the spatial 

identification of the epileptogenic zone in patients with focal epilepsy was investigated. 

Furthermore, the spatial relationship of the [18F]fluorodeoxyglucose-positron emission 

tomography (18FDG-PET) hypometabolism found in patients with focal epilepsy and the 

different stages of IEDs (IED-onset, -rise, and -peak) were investigated. The second main 

chapter provides observations for the spatial least distance of ESI at the time when IEDs reach 

their maximum amplitude and the epileptogenic zone. In addition to that, the inverse method 

‘standardized low resolution brain electromagnetic tomography’ (sLORETA) was observed to 

provide best results in identifying the epileptogenic zone.  

In the third main chapter, the presence of metabolic, vascular, and neuronal resting -state 

networks, spatially stable across a cohort of healthy subjects and patients with focal epilepsy, 

were investigated in a fully simultaneous hd-EEG/fMRI/18FDG-PET dataset. The possibility of 

identifying known resting-state functional networks from simultaneous hd-EEG/fMRI/18FDG-

PET data using group independent component analysis in each modality was demonstrated. 

Differences in the spatial expression of these networks were observed among modalities and 

could reflect differences between modalities in regard of signal origin, as well as spatial and 

temporal resolution. 

Overall, this dissertation provides results from the integration of networks from different 

imaging modalities, from a parallel or sequential measurement setting. 

Identifying relevant group differences between IGE and controls from an hd-EEG with parallel 

measured fMRI linked our knowledge of network changes in IGE across modalities. 

Furthermore, it encourages future EEG-fMRI epilepsy studies to subject both imaging 

modalities to same analyses and consideration of their results for conclusions.  

Further work in this dissertation promotes careful choice of parameters in ESI in pre-surgical 

assessment in patients with focal epilepsy. Furthermore, it helps to elucidate the relationship 

between electric source imaging of interictal epileptic discharges and 18FDG-PET in 

preoperative diagnosis and provides an impetus to investigate this relationship in future work.  

Finally, we utilized the benefit of temporal synchrony of the fully simultaneous measurement 

of three modalities (hd-EEG/fMRI/18FDG-PET) to demonstrate the presence and spatial 



concordance of functional resting-state networks in three modalities and provide evidence for 

the rich potential of this measurement set-up.  

Across projects, this dissertation demonstrates that integrating imaging data from multiple 

modalities can provide broader insight into the objects of study in neuroscience and, more 

broadly, neurological disease (exemplified here by epilepsy). 
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1. INTRODUCTION  

This dissertation examines the integration of neural brain networks from the medical imaging 

modalities electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and 

[18F] fluorodeoxyglucose positron emission tomography (18FDG-PET) in epilepsy patients and 

healthy controls. The first chapter of this thesis provides the reader with an overview of the 

disease of epilepsy in humans, and of three imaging modalities (EEG, fMRI, and 18FDG-PET), 

which reveal different aspects of brain activity/function, of their simultaneous application and 

the obtained results. It furthermore introduces the concept of brain networks and describes 

the methods with which they were inferred from brain imaging data.  

1.1. EPILEPSY 

Epilepsy is a disease, which, since the 1980s, has been steadily characterized and defined in 

more detail by the International League Against Epilepsy (ILAE) task force based on worldwide 

research results (League & Epilepsy, 1985). Epilepsy is now characterized as a network 

disease (Blumenfeld, 2014; Fisher et al., 2005). The term epilepsy does not describe a single 

disease but is the umbrella term for a variety of brain disorders that can have different causes 

(Fisher et al., 2005). Affected individuals suffer from recurrent, transient, and temporally 

unpredictable episodes of abnormally excessive or synchronous neuronal activity in the brain, 

which are, and cause disturbances of normal brain function (Fisher et al., 2005, 2017). Epileptic 

seizures occur due to abnormally excessive or synchronous neuronal activity within different 

parts of the brain (Fisher et al., 2017). The manifestations of this neuronal activity vary from a 

momentary lapse of attention to prolonged/persistent muscle spasms (Panebianco et al., 

2016). Ten percent of the population experience a seizure in their lifetime, but not all develop 

epilepsy (Devinsky et al., 2018).  

EPIDEMIOLOGY AND MORTALITY 

Around 46 million people worldwide are affected by epilepsy (Beghi et al., 2019; Ngugi et al., 

2010). In 2015, epilepsy was ranked as one of the top three diseases contributing to the global 

burden of neurological diseases (Vos et al., 2016) making it a relevant cause of disability and 

mortality worldwide. The onset of epilepsy can occur at any age, but the prevalence increases 

with age into early adult and late adulthood (Fiest et al., 2017). The incidence of epilepsy is 

bimodally distributed over age with the first peak during infancy and early childhood and the 
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second one in adults over 50 years of age (Fiest et al., 2017; Singh & Trevick, 2016). Thereafter, 

the prevalence of epilepsy decreases with age (Fiest et al., 2017).  

Epilepsy carries a definite risk of death. This can be a more or less direct result of an epileptic 

seizure e.g., sudden unexpected death, which occurs approximately in 1 in 1000 adults with 

epilepsy (Sveinsson et al., 2017). Complications of a status epilepticus can lead to unexpected 

death, such as pulmonary aspiration with consequent pneumonia, or by accidents brought 

about by the seizure, i.e., drowning, head injuries, burns and motor vehicle accidents 

(Devinsky et al., 2015). Epilepsy can also be indirectly linked to mortality, as a cause of suicide 

and due to adverse effects of antiseizure or other psychiatric drugs (Devinsky et al., 2015). In 

addition to indirect effect of seizures, obesity and cardiovascular illness are associated with 

epilepsy (Devinsky et al., 2015). An estimate of mortality shows that in high-income countries 

the age-specific mortality rate, or most commonly expressed as standardized mortality rate, 

is 2.3 (per 1,000 people with epilepsy) for individuals with epilepsy and 2.6 (per 1,000 people 

with epilepsy) in low- and middle-income countries, with the highest mortality rates in the 

younger age groups (Levira et al., 2017; Thurman et al., 2017). Aside from premature death, 

epilepsy has other influences on the lives of those affected. Around 50% of people with 

epilepsy have coexisting physical or psychiatric conditions, as well as intellectual disabilities 

and these people are also commonly associated with neurodegenerative diseases (WHO, 

2019; Yuen et al., 2018).  

DIAGNOSTIC PROCESS 

When an individual presents with seizures, several essential steps need to be performed by 

the examining physician to make an accurate diagnosis. In the beginning, the clinician must 

determine that the seizure was indeed an epileptic seizure, as differential diagnoses of 

epilepsy imitators are also possible. Those imitators include paroxysmal movement disorders, 

migraine associated syncope, parasomnias, and behavioral, psychological, and psychiatric 

disorders (for a full list of epilepsy imitators see: https://www.epilepsydiagnosis.org/epilepsy-

imitators.html). Differentiating epilepsy from epilepsy imitators can be a difficult task, since 

the patient's own reports of the seizure are usually inaccurate or unavailable, so that the 

diagnosis relies on reports from witnesses to the seizures, which are also error-prone. Once 
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these imitators have been ruled out as the cause of the seizure, the clinician starts with the 

epilepsy classification by classifying the seizure type (Scheffer et al., 2017). 

In many cases, the diagnostic process ends with the decision that the seizure was, indeed, 

epileptic, as there is no further data or even access to further diagnostic tools such as EEG, 

video EEG or other imaging techniques. For other patients, there is simply too little 

information to be able to make a more detailed diagnosis (Scheffer et al., 2017). For example, 

the presentation of a patient with only a single occurrence of a seizure offers little potential 

for the diagnosis of epilepsy, let alone its further classification based on the current 

International League Against Epilepsy guidelines, a diagnosis of epilepsy may be made if any 

of the following conditions are met (Fisher et al., 2014): First, at least two unprovoked (or 

reflex) seizures occurring more than 24 hours apart. Second, one unprovoked (or reflex) 

seizure, plus a probability of further seizures equal to the risk of another seizure (at least 60%) 

occurring after two unprovoked seizures within the next 10 years. Third a diagnosis of an 

epilepsy syndrome. 

SEIZURE TYPE CLASSIFICATION  

Classifying the epilepsy seizure type is important for several reasons: (i) the classification 

serves as a worldwide communication framework for clinical usage, (ii) the classification aids 

in determining the appropriate therapy for the patient, (iii) specific seizure types can be 

related to syndromes or etiologies, (iv) classification allows a more focused approach for 

research studies, and (v) the classification enables the patients to effectively described their 

diseases (Scheffer et al., 2017). Once the clinician has ruled out all differential diagnoses and 

is certain that the seizure was of epileptic nature, and a routine EEG was performed, the first 

stage of epilepsy classification can be initiated with the search for the origin of the abnormal 

neuronal activity that led to the ictal event. If the origin of the seizures cannot be determined, 

the seizure is classified as 'unknown' (Fisher et al., 2017). Otherwise, the seizure is classified 

as ‘focal’ or ‘generalized’ in origin. A focal seizure implies that the onset of the seizure has its 

origin in the network of one hemisphere. Whereas 'generalized' seizures are considered to 

rapidly involve bilaterally distributed brain networks (Fisher et al., 2017). 
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EPILEPSY TYPE CLASSIFICATION  

With adequate information, the clinician is able to perform the second level of epilepsy 

classification, which is to determine the epilepsy type. During the recording of routine EEG 

(~20min) data in the clinic or in research, a seizure only occurs in a minority of the patients. 

The evaluation of the EEG recordings with the patient in a wake state with eyes closed is the 

main tool for diagnosing the epilepsy type. In this state, which is also called interictal state 

("between seizures") in epilepsy patients, typical epileptiform EEG discharges can occur.  

Namely, interictal epileptic discharges (IED), which take the form of spike patterns in the EEG 

recordings, distinguishable from the normal background activity. Multiple different IED 

patterns are observed in epilepsy patients (Pond, 2019). Current epilepsy type classifications 

are: 'focal epilepsy', 'generalized epilepsy', ‘combined generalized & focal epilepsy’, and 

‘unknown epilepsy’ (Fisher et al., 2017). Focal epilepsies include disorders with single or 

multiple focal events, and additionally those with seizures affecting only one hemisphere. 

Interictal EEG recordings typically show focal IEDs. Focal aware seizures, focal impaired 

awareness seizures, focal motor seizures, focal non-motor seizures, and focal to bilateral 

tonic–clonic seizures are the range of seizure types that are associated with focal epilepsy 

(Scheffer et al., 2017). Generalized epilepsy shows generalized spike-wave discharges (GSWD), 

which are a distinct IED pattern only present in generalized epilepsy. GSWD show up as spike 

complex in most EEG channels simultaneously during measurement. This EEG feature is 

essential for the diagnosis of generalized epilepsy. Seizure types like absence, myoclonic, 

atonic, tonic, and tonic–clonic seizures are the possible manifestations of a seizure for patients 

with generalized epilepsy (Fisher et al., 2017). Less commonly, patients have both focal and 

generalized seizures and may even show both focal IEDs and GSWD in interictal EEG 

recordings. However, the presence of epileptiform activity is not required for the diagnosis of 

‘combined generalized & focal epilepsy’ (Fisher et al., 2017). When the clinician is unable to 

determine the type of epilepsy due to insufficient information or unclear indications, the 

patient is diagnosed with 'unknown epilepsy' (Scheffer et al., 2017). 

EPILEPSY SYNDROME CLASSIFICATION  

Once the clinician has been able to determine the particular type of epilepsy in the patient, 

combined analyses such as seizure type, EEG and other imaging techniques can ideally be used 
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to identify a syndrome that underlies the epilepsy disorder. The syndromes are often 

associated with certain characteristics such as seizure trigger, prognosis, and occurrence at a 

certain age (Commission on Classification and Terminology of the International League Against 

Epilepsy, 1981, 1989). For further information, the ILAE has created a website, which has been 

designed as a teaching tool. It provides the individual parameters of diagnoses, videos of the 

individual seizure types and EEG characteristics of established syndromes 

(www.epilepsydiagnosis.org). In the present dissertation, patients with focal and a subgroup 

of generalized epilepsy, called idiopathic generalized epilepsy (IGE) were studied. Therefore, 

the reader will be informed in more detail about the two epilepsy types in the two following 

sections. 

1.2. FOCAL EPILEPSY 

The following section provides the reader with information on focal epilepsy, as the analysis 

of this is a focus of this dissertation. Around 60% of all diagnosed epilepsies in adults are focal 

epilepsy (Freitag et al., 2001; Semah et al., 1998).  

As a rule, focal epilepsy is further subdivided into two subgroups, based on the localization 

results of the electrophysiological examinations, namely mesiotemporal and neocortical 

epilepsy. In adults the common focal epilepsy is temporal lobe epilepsy (Téllez-Zenteno & 

Hernández-Ronquillo, 2012). In the following, the etiology of focal epilepsy and the treatment 

and outcome of focal epilepsy therapy is presented.  

ETIOLOGY 

Focal epilepsy usually results from abnormal structural changes in the brain. It is most 

common to perform magnetic resonance imaging (MRI) to identify such changes, although 

they cannot always be detected (Cendes et al., 2016). In approximately 25% of all focal 

epilepsy cases neuroimaging studies are inconclusive and the cause of the focal epilepsy 

remains unknown (Jobst et al., 2000).  

In the rest of the focal epilepsy cases a variety of structural abnormalities can be the origin of 

the disease. In adults with temporal lobe epilepsy the most common structural brain 

abnormality is hippocampal sclerosis (HS, alias “mesial temporal sclerosis”) (Blümcke, 2009; 

Blümcke et al., 2013). HS is characterized by a segmental loss of pyramidal cells in any area of 

the hippocampal formation, which is accompanied with astrogliosis leading to a hardening 
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and thickening of the brain tissue (Blümcke et al., 2013). Based on the localization and spread 

of brain tissue hardening the hippocampal sclerosis can be determined by a classification 

system from the ILAE (Blümcke et al., 2013): (i) HS ILAE type 1 shows serious neuronal cell loss 

and gliosis predominantly involving CA1 (>80% cell loss) and CA4. However, all other regions 

of the hippocampus are also affected by neuronal cell loss. (ii) For HS ILAE type 2 only the CA1 

shows neuronal cell loss and gliosis, whereas the regions CA2, CA3 and CA4 remain unaffected. 

(iii) The HS ILAE type 3 is defined by a neuronal cell loss of >50% in the CA4 regions, with all 

other regions being unaffected. For the regional definition of CA1-4 the ILAE adopted the 

terminology of Duvernoy (Duvernoy et al., 2005). In general, affected focal epilepsy patients 

show bilateral HS pathology, although one side is more severely affected than the other 

(Sadler, 2006). The cell loss, described by the term hippocampal sclerosis, may lead to a 

reorganization of the neuronal networks, which could promote epileptogenesis (Sloviter, 

1994), although the pathogenesis is not fully understood. Besides HS, other structural causes 

for focal epilepsy are known. In later life, vascular malformations, and neoplasms (Avila & 

Graber, 2010) are the most frequent causes. In infants and early childhood, perinatal injuries 

are generally the cause of focal epilepsy. Focal epilepsy often occurs at the age between one 

and 26 years (mean: 7 years) due to cortical dysplasia (Sisodiya et al., 2009; Tassi, 2002; 

Whiting & Duchowny, 1999). In early adulthood post-traumatic focal epilepsy due to head 

injuries are most frequent (Emanuelson & Uvebrant, 2009). Without any specific age incidence 

strokes (Hauser et al., 1993) and central nervous system infections can also lead to focal 

epilepsy. Apart from structural brain abnormalities, there are also epilepsy syndromes in 

which the focal epilepsy originates mainly in the frontal or temporal lobes. Most of these 

syndromes are genetic manifestations, like autosomal dominant nocturnal frontal lobe 

epilepsy (Andermann et al., 2005; Cho et al., 2008; De Marco et al., 2007; Hayman et al., 1997; 

Parrino et al., 2012; Scheffer, 2000), autosomal dominant lateral temporal epilepsy 

(Andermann et al., 2005; Dazzo et al., 2018; Fanciulli et al., 2012; Kalachikov et al., 2002; 

Kawamata et al., 2010; Michelucci et al., 2000; Striano et al., 2008; Tessa et al., 2007; Winawer 

et al., 2002), and some of the familial temporal lobe epilepsies (Andermann et al., 2005; 

Andrade-Valença et al., 2008; Angelicheva et al., 2009; Michelucci et al., 2000; Striano et al., 

2011).  
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TREATMENT AND OUTCOME 

The diagnosis of focal epilepsy is made on clinical grounds, as described in section 1.1. The aim 

of therapy is the elimination or, at least, reduction of seizures, with minimally adverse 

treatment effects, aimed at improving the physical and psychological  condition in order to 

increase the quality of life (Devinsky et al., 2018). 

The primary approach to epilepsy therapy is the administration of anti-seizure medications 

(ASMs). The choice of the initial ASMs must be tailored to the individual patient, based on the 

patient's epilepsy syndrome and seizures, as well as the patient's age and possible interactions 

with other medications or other existing medical conditions (Glauser et al., 2013). Most people 

diagnosed with epilepsy have a good prognosis, and their seizures can be controlled with 

medication. However, 20–30 % will develop drug-resistant epilepsy (Kwan & Brodie, 2000; Vos 

et al., 2016). In these patients with drug-refractory epilepsy, surgery can be an important 

treatment option with a significantly better outcome with regard to seizure frequency and 

quality of life compared to continued drug therapy (Engel, 2018; Wiebe et al., 2001). The aim 

of epilepsy surgery is to resect the epileptogenic zone to prevent further seizures, while 

sparing non-epileptic tissue with its important neuropsychological and neurological function 

(Vakharia et al., 2018). An accurate spatial identification of the epileptogenic zone is vital for 

the resection surgery to be successful. The presurgical work-up typically starts with a non-

invasive evaluation (“phase 1”), encompassing MR imaging (MRI), video scalp 

electroencephalography (EEG), and detailed neuropsychological assessment (Baumgartner et 

al., 2019; Rosenow, 2001). In many cases 18F-fluorodesoxyglucose positron emission 

tomography (18FDG-PET) or ictal single photon emission computed tomography (SPECT) are 

additionally used. Some epilepsy centers also apply high-density EEG (hd-EEG) with electric 

source imaging (ESI) or, magnetencephalography (MEG) with magnetic source imaging (Ryvlin 

et al., 2014) of the IED events to identify the epileptogenic zone.  

The overall results of epilepsy surgery are very favorable: seizure frequency decreases while 

quality of life is improved (Engel, 2018). Another study showed that patients with drug-

resistant epilepsy who underwent resection surgery experienced an alleviation of their 

anxiety, depression, and other behavioral comorbidities, while patients who did not have 

surgery experienced deterioration in these aspects (Ramos-Perdigués et al., 2016). Reducing 

the frequency of seizures also lowered the likelihood of sudden unexpected death in epilepsy 
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(SUDEP) (Sperling et al., 2016). Taken together with the fact that a study on temporal lobe 

resection reported a mortality rate of 1.4% (after temporal lobectomy of registered cases in a 

national database), shows that surgical treatment of epilepsy is an option that should be 

considered (Kerezoudis et al., 2018). 

 

1.3. IDIOPATHIC GENERALIZED EPILEPSY 

Approximately 15-20% of all epilepsy patients are diagnosed with genetic generalized epilepsy 

(GGE) (Jallon & Latour, 2005). Recently, the classification of genetic generalized epilepsies was 

updated and is now subdivided into two major epilepsy syndrome groups (Hirsch et al., 2022). 

One syndrome group is the idiopathic generalized epilepsy (IGE) that comprises four 

subsyndromes: childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile 

myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures alone (GTCA). 

Those epilepsy syndromes are well defined in terms of their usual age of onset, their 

development, frequency, and duration of seizures, as well as interictal epileptiform and ictal 

EEG representation (Hirsch et al., 2022). Patients that do not fit the criteria of those four IGEs 

are now classified as patients with IGE without a specific epilepsy syndrome. 

ETIOLOGY 

Idiopathic generalized epilepsy is now presumed to have an underlying genetic basis, a finding 

that has emerged from decades of clinical genetic research. The inheritance of IGEs is complex, 

and they can arise with or without the influence of the environment (Hirsch et al., 2022). 

However, even though clinical genetic evidence is available, the identification of the involved 

genes is a slow process, mainly because of the polygenic basis of IGE, in which the presence 

of multiple alleles, each with low to moderate risk, is required for the disease to be expressed 

(Hirsch et al., 2022). The first genome-wide association study in 2009 brought new insights to 

the field, and in 2018 the ILAE Consortium for Complex Epilepsies conducted a genome-wide 

mega-analysis on >15,000 patients with epilepsy and approximately 30,000 healthy controls 

and were able to identify 16 loci significantly associated with IGE, of which eleven were novel 

findings (International League Against Epilepsy Consortium on Complex Epilepsies, 2018). 
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TREATMENT AND OUTCOME 

The diagnosis process of IGE is made on clinical grounds, as described in section 1.1. As with 

focal epilepsy, pharmacological treatment is the initial treatment approach. The anti-seizure 

medication is tailored to the specific IGE type, sex, as well as comorbidities. Similar to the 

ASMs used in other forms of epilepsy, pharmacological mechanisms of ASMs used in IGE 

include blockade of voltage-gated sodium and calcium channels, enhancement of GABA 

transmission, inhibition of glutamate transmission, or synaptic vesicle modulation (Devinsky 

et al., 2018). 

In addition to medication, other important cornerstones for successful treatment of patients 

with IGE are training in self-management of the disease, avoidance of seizure triggers, 

education, and psychological intervention. Also, in IGE, patients can develop drug resistance 

and again experience seizures, which is the case in about 12-36% of all adult patients with IGE 

(Cerulli Irelli et al., 2020; Kwan & Brodie, 2000). Multiple seizure types, seizure onset in 

childhood, occurrence of status epilepticus, and psychiatric comorbidities worsen the 

prospects of successful treatment (Gesche et al., 2017, 2020). In order to provide a clear 

delineation of treatment options it is important to note that, unlike in focal epilepsies, 

resection surgery is not an option for IGEs. Since the seizures have no focal origin and rapidly 

spread into bilateral brain networks, no area can be identified for resection. 

1.4. MODALITIES IN BRAIN IMAGING  

In the main chapter of this dissertation, we will focus on the use of EEG, fMRI and 18FDG-PET 

to study brain activity and synchronization in healthy controls, focal epilepsy patients and IGE 

patients, as well as the possibilities of integrating multiple modalities in these cohorts. In the 

following, the reader will be introduced to the individual modalities, their processing, and the 

methods applied to them to extract information about brain networks from each modality. 

1.4.1. ELECTROENCEPHALOGRAPHY (EEG) 

The EEG is directly measuring the electrical potentials in the brain via sensors on the scalp. 

Electrical potentials in the human brain are generated by active neurons. When neurons act 

in large groups and act synchronously with their neighboring neurons, they form an electrical, 

oscillatory potential, which can be picked up by the EEG sensors. Tens of thousands of synaptic 
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potentials, each generated due to another neuron, lead to electric currents which cause 

electrical potentials that can be measured on the human scalp.  

The outer layer of the human brain, the grey-matter or neocortex, contains pyramidal neurons 

in the cortex, which are oriented vertically to the cortex surface and parallel to each other. 

Excitation of postsynaptic neurons leads to intracellular and extracellular current flows that 

generate an electric field along the major axis of the neurons that can be measured externally. 

The measurement of these cortical activities is carried out over time and results in a 

temporally resolved voltage time series in each EEG sensor. Each sensor (or channel) records 

a different time series at a specific location on the scalp. The EEG with its high sampling 

frequency allows measurement of signals with high temporal resolution in the millisecond 

range. This makes it the ideal technique to detect and investigate brain oscillations in terms 

of their amplitude, which represents the strength of the brain activity, and the signal 

frequency and phase shifts between those oscillations, which resemble communication and 

information exchange in the human brain (Lopes da Silva, 2013; Womelsdorf et al., 2007). 

Even though the time series at sensor level are only a projection of the actual electrical brain 

activity, analyses can be performed at sensor level. However, with sensor-level analyses, one 

must be aware of the limitations in interpreting the results, e.g., in terms of functional 

connectivity (Lai et al., 2018). In order to determine time-resolved activity within the brain, 

one can reconstruct the neuronal sources from the measured sensor data. 

EEG SOURCE RECONSTRUCTION 

Reconstruction of cerebral activity in time and space in EEG/MEG measurements is difficult 

and is related to the so-called inverse problem, or neural source imaging problem. The 

recordings of these modalities are used to reconstruct the origin of the electromagnetic 

fields, i.e., the cerebral current sources (Hämäläinen et al., 1993). Five problems arise when 

reconstructing the source origins: 

i. The current flow in the brain can only be estimated due to imperfect knowledge of 

the geometric and physical properties of the head and brain (Pascarella & Sorrentino, 

2011). 

ii. The changes in the electromagnetic fields are not known for the entire continuous 

surface of the brain, but only for discrete measurement points. 
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iii. The sources of electromagnetic field changes measured by the sensors are not 

limited to the inside of the brain. Therefore, the measurement consists of a 

superposition of neuronal activity, other biological sources, and ambient noise. 

iv. The simultaneous neural activity of two or more sources in the brain leads to a 

measured electromagnetic field that is a superposition of these two individual fields 

(Dammers & Ioannides, 2000). 

v. Due to the infinite number of source variations that can generate the same 

measurement signal in a sensor, there is no unique solution to the inverse problem 

(Von Helmholtz, 1853). 

There are a variety of approaches for solving the inverse problem, from dipole methods 

(Mosher et al., 1992; Schimpf et al., 2002) to distributed source analysis, including methods 

based on minimum-norm estimators (Hämäläinen & Ilmoniemi, 1994; Pascual-Marqui et al., 

1994), and inverse methods with spatial filters, so-called beamformers (Gross et al., 2001; Van 

Veen et al., 1997) and others (Michel et al., 2004). These inverse methods all have different 

constraints in estimating neuronal activity from the measured data. However, the physical 

basis for the generation of electromagnetic fields in all inverse methods are Maxwell's 

equations.  

The reconstruction of brain sources from measured EEG/MEG data is called the inverse 

problem and to solve this problem an accurate forward model is required (Grech et al., 2008). 

The forward model comprises several a priori information, which remain constant during the 

entire measurement. An important part of the forward model is the so-called 'head model', 

which provides information of the geometry of the subject’s head. This information is usually 

obtained from a volumetric reconstruction of the subject’s individual MRI that was obtained 

near to the time to the EEG/MEG measurement. The spatial sensor configuration in relation 

to the subject’s head is passed to the forward model and is referred to as the 'sensor model'. 

Furthermore, each forward model requires a 'source model' that defines the positions at 

which the brain activity is to be reconstructed at each time point of the measurement (Hansen 

et al., 2010; Michel et al., 2004). Source models can be roughly divided into two types: surface 

models, which limit the reconstructions of brain activity to the cortical surface, and volume 

models, which reconstruct brain activity for a defined three-dimensional grid within the brain. 

Those combined model information led to the solution of the forward problem as a vector 
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field, the so-called lead field ℒ, which describes the spatial sensitivity of each sensor by means 

of the direction and amplitude of a source current at a specific location of the source model. 

Each sensor 𝑖 is obtained with a unique lead field 𝐿 𝑖 and a sensitivity based on the sensor 

configuration. This results in a lead field matrix ℒ. The lead field matrix ℒ is calculated once for 

each measurement, since it depends on properties, which are constant during the 

measurement (e.g., subject’s head, sensor configuration, electric conductivity). The sensors 

are represented as a matrix 𝑀 containing the data accumulated over time with dimensions 𝑛𝑟  

× 𝑛𝑡. 𝑛𝑟  is the number of sensors and 𝑛𝑡  is the number of time points recorded. The source 

activation matrix 𝑆 in the dimension of 𝑛𝑠  × 𝑛𝑡, where 𝑛𝑠  is the number of sources defined in 

the source model. The relation between source distribution 𝑆 and the measured data 𝑀 can 

be written as: 𝑀 = ℒ𝑆 + 𝑁 

where an additional noise matrix 𝑁 with the dimensions of 𝑛𝑟  × 𝑛𝑡  is added to the sensors and ℒ is the leadfield. An estimate of the sources in the brain can be written as: 𝑆 = 𝐺𝑀 = 𝐺(ℒ𝑆 + 𝑁) = 𝐺ℒ𝑆 + 𝐺𝑁 = 𝑅𝑆 + 𝐺𝑁 

where 𝑆 represents the reconstructed sources for the measurement data matrix 𝑀. The 

variable 𝑅 describing the relationship between true and estimated sources and 𝐺 is the inverse 

operator matrix. 

The purpose of any inverse method is to reconstruct the source distribution 𝑆  from the known 

data matrix 𝑀 using the known inverse operator 𝐺. With the formulation of the inverse 

operator the different inverse methods start to differ.  

The common expression for the minimum norm estimation (MNE) inverse method is written 

as  (Dale & Sereno, 1993): 𝐺𝑀𝑁𝐸 = ℒ 𝑇(ℒℒ 𝑇 + λC)−1 

, in which λ is introduced as a regularization parameter for the noise covariance matrix 

denoted as 𝐶. That results in resolution matrix for MNE as follows: 𝑆𝑀𝑁𝐸 = 𝐺𝑀𝑁𝐸 𝑀 =  ℒ 𝑇(ℒℒ 𝑇 + λC)−1𝑀 

By introducing a depth-weighting matrix D to 𝐺𝑀𝑁𝐸  the inverse operator becomes more 

sensible to deeper sources (Lin et al., 2006). This weighted minimum norm estimation (wMNE) 

is written as:  𝐺𝑤𝑀𝑁𝐸 = Dℒ 𝑇(ℒℒ 𝑇 + λC)−1 
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Another source estimation method is the so called Standardized low resolution brain 

electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002). It is a method whose 

estimation of the source distribution is based on the standardized source distribution. It uses 

the estimate of the source distribution given by the minimum norm estimate 𝐺𝑀𝑁𝐸  and 

standardizes it by 𝑊𝑠𝐿𝑂𝑅𝐸𝑇𝐴 , which is the diagonal of the MNE resolution matrix 𝑆𝑀𝑁𝐸.  

𝑊𝑠𝐿𝑂𝑅𝐸𝑇𝐴 = √𝐷𝑖𝑎𝑔(𝑆𝑀𝑁𝐸)−1
 

That given the sLORETA is written as: 𝐺𝑠𝐿𝑂𝑅𝐸𝑇𝐴 =  𝑊𝑠𝐿𝑂𝑅𝐸𝑇𝐴  𝐺𝑀𝑁𝐸  

Thus, source reconstruction using sLORETA yields an estimate of the standardized source 

activity distribution. 

Yet another approach of estimating the source activity distribution 𝑆 from the measurement 

data matrix 𝑀 are spatial filters or virtual sensors, also called beamformers. One example of 

beamformer beamformers used in neuroscience is the linearly constrained minimum variance 

(LCMV) beamformer (Van Veen et al., 1997). It assumes that a spatial filter for a source should 

respond only to the activity of that source: 𝐺 ℒ = 1 

Other activities in the brain are suppressed at the same time. In contrast to the minimum-

norm method, sources are not modeled here using the leadfield matrix ℒ, but it is assumed 

that the activities at other locations are captured by the covariance matrix of the data 𝐶𝐷 . This 

suppressing effect for the source 𝑖 is mathematically formulated as: 𝐺𝑖  𝐶𝐷  𝐺𝑖𝑇 → 𝑚𝑖𝑛𝑖𝑚𝑎𝑙  

This results for the linearly constrained minimum variance beamformer in: 𝐺𝑖𝐿𝐶𝑀𝑉 =  ℒ𝑖𝑇𝐶𝐷−1 (ℒ𝑖𝑇𝐶𝐷−1ℒ𝑖 )⁄  

, where C𝐷  is the signal covariance matrix. Different variations of beamformer approaches are 

present that optimize for dipolar source pairs (Brookes et al., 2007), or time- and frequency-

dependent beamformer methods (Dalal et al., 2011; Gross et al., 2001; Woolrich et al., 2013). 
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At this point it must be said that no ideal inverse method could be identified. They all are 

differently influenced by their current application scenario, a priori constraints and 

assumptions, as well as physiological restrictions (Michel et al., 2004). For example, noise 

signals are treated differently in the methods (see standardization in sLORETA by 𝐺𝑀𝑁𝐸 ), or 

the assumption for the inverse method differs from others (see beamformer approaches and 

their assumption of influence from other sources while reconstructing another source). 

Studying reconstructed neuronal activity oscillations allows us to gain new insights into how 

the brain functions and communicates in different states, such as at rest or during tasks. 

Furthermore, it allows us to identify pathological changes in the brain in diseases such as 

epilepsy versus healthy control groups (Cendes et al., 2016; Chavez et al., 2010; Chowdhury 

et al., 2014; Elshahabi et al., 2015; Middlebrooks et al., 2017).  

1.4.2. FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

fMRI is a functional neuroimaging technique, which is capable of measuring brain activity 

based on the changes in blood oxygenation and blood flow, which are affected by neural 

activity. Brain regions with higher activity consume more oxygen, which leads to an increased 

blood flow in order to fulfill this higher oxygen demand (Belliveau et al., 1991; Kwong et al., 

1992; Ogawa et al., 1990). In 1990 Ogawa et al., discovered the blood oxygenation level 

dependent (BOLD) contrast in rats. A decreased intensity of the vascular signal in gradient-

echo (GE) images for deoxygenated blood was observed, with an increase in intensity as the 

flow of freshly oxygenated blood increased (Ogawa et al., 1990). This BOLD mechanism was 

then used to image functional brain activity in humans (Kwong et al., 1992; Ogawa et al., 

1990). Imaging with fMRI results in a higher spatial resolution on the neuronal activity than 

EEG source reconstructions, but with a medium temporal resolution in the dimension of 

seconds and is also completely non-invasive (Logothetis et al., 2001). Measurement results of 

the fMRI is usually provided as three-dimensional voxels with a resolution of 1 to 4 millimeters 

(Huettel et al., 2004). However, one must be aware that fMRI measures a surrogate of 

neuronal activity and, in particular, that the coupling of neuronal activity and blood flow is not 

clear (Attwell & Iadecola, 2002; Drew, 2019). 
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Figure 1.1: Schematic hemodynamic response function following the onset of a short neural activity. 

A negative initial dip, a strong positive BOLD response, and a subsequent negative undershoot.  

 

The possibility to obtain blood oxygenation level dependent functional imaging has led to an 

increased use of MRI in neuroscience (Ogawa et al., 1990; Kwong et al., 1992), and fMRI is 

nowadays one of the most important and frequently used neuroimaging modalities. However, 

fMRI as an imaging technique is not commonly used in everyday clinical practice. There it is 

applied to localize functional brain areas in patients using various stimuli or tasks that elicit 

specific neuronal responses, which are then measured with a “task-based” fMRI. The effective 

mapping of such brain areas with task-based fMRI are in good agreement with the gold 

standard methods, e.g., cortical stimulation during awake craniotomy (Ghinda et al., 2018). 

Nevertheless, scanning a patient performing an active task in the MR scanner has some 

disadvantages, i.e., cooperation of the patient, reduced data quality due to possible increased 

movement of the patient, among others. Therefore, many studies have investigated whether 

resting-state fMRI, in which the subject does nothing and thinks of nothing specific has the 

potential for clinical applications (Detre, 2006; Eickhoff & Grefkes, 2020; Lee et al., 2013; 

Matthews et al., 2006; Takamura & Hanakawa, 2017). 

Reportedly, resting-state fMRI can provide biomarkers of neurological and psychiatric 

diseases, such as Alzheimer, schizophrenia, autism, and depression (D. Zhang & Raichle, 2010). 

Furthermore, fMRI offers us the opportunity to study the functioning and organization of the 
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human brain. In the past and in ongoing research, fMRI imaging has been used to gain new 

insights into brain regions at rest and their connections, for example, regions of the brain that 

are connected to: speech, movement, sensing, and hearing (Lee et al., 2013). 

1.4.3. POSITRON EMISSIONS TOMOGRAPHY (PET) 

Positron emission tomography is an imaging modality that quantifies the distribution of a 

defined substance in a field of view (FOV). The substance is a radioactively labelled tracer that 

is injected into a vein of the person under study and metabolized in the body. Different 

applications require different radiotracers that all have characteristic decay properties such 

as half-life, decay type(s) and decay energy. Upon decay they emit alpha, beta particles and/or 

gamma radiation. The principle of visualizing the tracer distribution is based on the 

simultaneous detection by opposing pairs of detectors of two gamma ray photons with 

511keV, which are emitted by the tracer decay with a radiation angle of exactly 180° to each 

other. Over the period of the measurement, all detected events in the individual detectors are 

added up and saved in a histogram format accumulating events per location. In order to 

reconstruct the origin and subsequently the distribution of the tracer, image reconstruction 

algorithms are applied (Fukuchi et al., 2017; Nolte et al., 2020; Tong et al., 2010). Multiple 

image reconstruction algorithms exist and can be roughly divided in analytical and iterative 

methods (for detailed information see: (Tong et al., 2010)). The resulting two-dimensional 

images, each on a defined axis for the FOV, are stacked to form a three-dimensional image 

volume (Fukuchi et al., 2017; Nolte et al., 2020; Tong et al., 2010). Due to the fact that the 

gamma photon pairs pass through different types of tissue on their way from the origin to the 

detectors, and in most cases one or both are either absorbed or scattered, correction methods 

are needed in order to achieve quantitative image information (detailed information: (Tong 

et al., 2010)). Since the first working prototype PET-CT scanner in 1998 (Beyer et al., 2000), 

this hybrid imaging modality is now established in the clinic and is commonly used for PET 

imaging (Nolte et al., 2020; Townsend et al., 2003, 2004). Under these circumstances, 

computer tomography, which is a three-dimensional x-ray scan, is usually performed before 

each PET measurement. This CT scan is coregistered to the PET images and provides 

attenuation factors for the different tissues, allowing an anatomically precise attenuation 

correction (Humm et al., 2003; Nolte et al., 2020). A new, more unusual approach is the 
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coregistration of the PET image to an MRI image to perform the attenuation correction. Unlike 

CT, MRI provides high soft tissue contrast. Moreover, many different contrasts can be used 

with MRI. Among other things, information on diffusion (diffusion weighted imaging) or brain 

activity (fMRI) can be obtained (Lopci & Fanti, 2020). Briefly, image data acquired with MRI is 

divided into different sections (i.e., tissue types) and each of these sections is assigned an 

attenuation constant, similar to a CT images. In general, attenuation correction methods can 

be divided into three classes of approaches: Segmentation-based, Atlas-based, and PET-based. 

Many methods for attenuation correction in PET/MR scanners have been developed and the 

performance of these methods is steadily advancing (Izquierdo-Garcia & Catana, 2016). 

PET imaging has been a great asset in oncology, as many tracers allow spatial detection and 

assessment of all cancers (Lopci & Fanti, 2020). It has also been proven to be very useful in 

non-oncology applications, as it can be used in the diagnosis and assessment of a wide range 

of diseases (Jiménez-Bonilla & Banzo, 2018). 

For metabolic brain imaging, the common radiotracer [18F]-2-fluoro-2-deoxy-D-glucose, or 

more simply fluorodeoxyglucose, or 18FDG for short, is used. 18FDG-PET is used to visualize 

glucose metabolism in the body. The glucose metabolism reflects the neuronal energy 

consumption. Regions with increased neuronal activity show higher 18FDG accumulation, due 

to the consumption of glucose in neuronal activity processes. 18FDG-PET brain imaging 

provides acceptable spatial resolution in the millimeter range (4-10 mm) (Sokoloff, 2008; Tulay 

et al., 2019). 

Dynamic 18FDG-PET imaging can be performed to provide information on the change in 

glucose metabolism over time. Therefore, a sequence of contiguous acquisitions can be 

performed, or the data can be acquired in the so-called list mode, which stores the detection 

times for all event counts for the corresponding location. This leads to a four-dimensional 

dataset. Analogous to the image reconstruction of the static 18FDG-PET images, the tracer 

distribution can be reconstructed for each measured time frame, which shows the change in 

glucose metabolism over time in temporal resolution of in a the second to minute range. 

Recently, a high-temporal resolution 18FDG-PET approach with constant infusion, so-called 

functional PET or fPET was introduced which provides a temporal resolution of under 60 

seconds or less (Jamadar et al., 2020). 
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1.4.4. PARALLEL MULTIMODAL IMAGING  

The information obtained from the different imaging modalities is used complementarily. As 

in the example of the PET-CT, where the CT contributes to the processing of the data obtained 

by PET (see Chapter 1.4.3), or the anatomical information derived from an MRI scan that 

contributes to the creation of the forward model for EEG source estimation (see Chapter 

1.4.1). Besides the single successive execution of different imaging modalities (non-parallel 

multimodal imaging), parallel multimodal imaging has shown potential in clinical practice (e.g., 

PET-CT scanner) and is a current object of research.  

The potential of multimodal integration of various brain imaging modalities is enormous. Since 

different imaging techniques map activity in the brain due to different signal origins (e.g., 

18FDG-PET: metabolic, BOLD-fMRI: vascular, and EEG: electrophysiological). In addition, these 

techniques differ in terms of spatial and temporal detection of activity in the brain.  

Furthermore, the simple fact that a parallel imaging machine (e.g., PET-CT machine, and PET-

MR machine) offers a simplified measurement workflow and reduces measurement time as 

well as saving space for the equipment itself, the possibility of simultaneous multimodal brain 

imaging provides completely new ways and opportunities to investigate important aspects 

and clarify fundamental questions in neuroscience. Especially with regard to a completely 

simultaneous measurement of the functional processes of the brain, which allows a temporal 

correlation that would not be possible with separate measurements. 

PARALLEL PET-FMRI  

To promote information gain and a broader understanding of the brain, hybridization for 

parallel imaging of the two important functional neuroimaging techniques, PET, and fMRI, was 

also pursued (Judenhofer et al., 2008; Schlemmer et al., 2008). The ability of time-resolved 

18FDG-PET to image metabolic processes with limited temporal resolution and fMRI with the 

temporal resolution of seconds and high spatial resolution to image vascular changes 

complement each other. After demonstrating the feasibility of parallel combined PET-fMRI 

studies of the rat brain at rest or under task-related conditions (Wehrl et al., 2013), studies in 

which time-resolved PET and fMRI measurements of the human brain were performed in 

parallel have been published. 
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Studies provided evidence that local neuronal activity derived from metabolic activity 

determines BOLD functional connectivity at rest in humans (Riedl et al., 2014). Further, 

established fMRI metrices such as regional homogeneity and fractional amplitude of low 

frequency fluctuations were observed to have a strong relationship to glucose metabolic 

activity derived from 18FDG-PET in human at rest (Aiello et al., 2015; Nugent, Martinez, et al., 

2015). In addition, a resting-state study analyzing data from parallel PET and fMRI 

measurements found matching resting-state networks across both modalities (Di et al., 2012; 

Savio et al., 2017). Recently, an animal study utilizing parallel PET-fMRI showed resting-state 

networks with high spatial concordance across both modalities in Lewis rats at rest (resting -

state networks) (Ionescu et al., 2021). 

The application of PET-fMRI also provided insights in the linkage of metabolic and functional 

activity, functional connectivity into neurological diseases, such as Alzheimer (Marchitelli et 

al., 2018; Sun et al., 2021; Zhang et al., 2022), depression (Su et al., 2018). Furthermore, 

medication effects in Parkinson were studied with static 18FDG-PET and fMRI measured 

sequentially (Aljuaid et al., 2019), and resting-state functional connectivity from time-resolved 

18FDG-PET and fMRI measured sequentially (Ruppert et al., 2021) and simultaneously (Zang et 

al., 2022) in Parkinson. Also, variations of resting-state networks in appearance, space and 

time were observed in individuals with disorders of consciousness (Schnakers et al., 2018). 

Also, in the field of epilepsy research, studies conducted using multimodal parallel PET-fMRI 

imaging have observed higher cross modality coupling (fMRI: fractional amplitude of low 

frequency fluctuation and 18FDG-PET: standardized uptake value ratio) in patients with medial 

temporal lobe epilepsy (J. Wang et al., 2020).  

PARALLEL EEG-FMRI  

EEG and functional MRI provide non-invasive measurements of brain activity at different 

spatial and temporal resolutions, and simultaneous recording of these modalities can 

maximize the respective strengths of the two methods while balancing their weaknesses in 

terms of spatial and temporal resolutions. Therefore, studies on realizing multimodal EEG-

fMRI imaging were performed in the 1990s and it was shown that parallel EEG-fMRI 

measurement was technically feasible and safe for subjects (Hill et al., 1995; Ives et al., 1993; 

Lemieux et al., 1997; Warach et al., 1996). 
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Nevertheless, in all parallel EEG-fMRI studies the EEG data is contaminated with unavoidable 

artifacts. The strongest is the gradient artifact (GA) that is caused by the sequentially switched 

magnetic gradients during the MR imaging process, resulting in steep signal peaks with large 

amplitudes, whose magnitudes are larger than the biophysiological EEG amplitudes (Allen et 

al., 2000; Felblinger et al., 1999). The other artifact is the ballistocardiographic artifact (BCG) 

which is the movement of the electrodes in the static magnetic field of the MR scanner caused 

by the motion of the blood being pumped through the aorta (Allen et al., 1998; Bonmassar et 

al., 2002). Over the years, correction of these artifacts has improved with more reliable 

hardware and software solutions, leading to numerous studies that take advantage of EEG-

fMRI imaging (Warbrick, 2022). A common approach for dealing with MR-related artifacts in 

simulatively measured EEG data is average artifact subtraction followed by removal of 

residuals to remove GA. In addition, BCG artifacts are removed using an optimal basis set (OBS) 

algorithm (Niazy et al., 2005). The goal of correcting BCG artifacts led to several studies that 

improved our understanding of the origin and properties of BCGs and their influence on EEG 

data in parallel fMRI recordings (Debener et al., 2008; Mantini et al., 2007; Masterton et al., 

2007; Vasios et al., 2006). Thus EEG-informed fMRI analyses were shown to be a valuable type 

of analysis for event-related potential (ERP) studies when the study paradigm of these studies, 

which triggers ERPs, elicits responses in both modalities (Warbrick et al., 2013). Furthermore, 

studies investigating epilepsy also made early use of multimodal EEG-fMRI imaging which 

provided insights into the disease (Bénar et al., 2003; Krakow et al., 2001; Lemieux et al., 

2001).  

PARALLEL EEG/FMRI/18FDG-PET  

As these problems have been overcome in the past, there have been many multimodality 

studies that have made important contributions to our understanding of the brain. The 

combined fully parallel EEG/fMRI/18FDG-PET measurements allow simultaneous monitoring 

of brain activity on slow (18FDG-PET), medium (fMRI), and fast (EEG) time scales and have the 

capacity to complement each other in various dimensions (e.g., function, temporal, spatial, 

anatomic, and clinical utility etc.) (Shah et al., 2013). It is possible to obtain a better 

understanding of brain function by combining the results of each modality with each other, 

and thus brain function can be viewed simultaneously in metabolic, vascular, and 
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electrophysiological dimensions. For example, short temporal events in the range of 

milliseconds, such as an interictal epileptic discharge in individuals with focal epilepsy, can 

only be identified in high temporal resolution EEG. Recording these events by means of fully 

parallel EEG/fMRI/18FDG-PET measurements thus allow the investigation of such rapid events 

in all aspects of simultaneous trimodal measurement due to the identification of such by EEG.  

Fully simultaneous EEG/fMRI/18FDG-PET trimodal neuroimaging is an unusual measurement 

and has so far only been employed in research and this only at a few institutes (e.g., Research 

Center Juelich, University Hospital Tuebingen, Klinikum rechts der Isar in Munich). 

Furthermore, only few studies have been published presenting results based on fully parallel 

measured data from EEG/fMRI/18FDG-PET.  

The utility of simultaneously recorded trimodal data (EEG/fMRI/18FDG-PET) has been 

investigated in recent years since 2015 with the intention of developing an "advanced 

metabolic imaging scanner" for in vivo human measurements (Shah, 2015). The attenuation 

effect of the EEG cap on the gamma ray photons emitted by radio tracer in EEG/fMRI/18FDG-

PET measurement was evaluated in terms of the imaging quality of each modality and was 

found to be inconsequential (Rajkumar et al., 2017). Further early evaluations of the trimodal 

imaging approach showed strong correlation of the fMRI BOLD signal and the glucose 

consumption rate in default mode areas, which is in line with previous reports in the literature 

(Shah et al., 2017). The authors further expressed that they see great potential in the use of 

simultaneous EEG/fMRI/18FDG-PET measurements, such as simplifying the collection of data 

at only one time point when urgent pharmacological intervention is indicated (Shah et al., 

2017). A recent study, using parallel measured EEG/fMRI/18FDG-PET data, demonstrated a link 

between neuronal excitation and inhibition by showing a significantly higher distribution of 

glutamate and γ-aminobutyric acid (GABA) and their receptors in regions of the default-mode 

and somatomotor networks compared to non-resting-state network regions (Rajkumar et al., 

2021). The combined EEG/fMRI/18FDG-PET measurement of a cohort of 20 patients suffering 

from disorders of consciousness evaluated EEG band power, fMRI network connectivity, and 

18FDG-PET metabolic activity as markers for preserved consciousness and 18FDG-PET and EEG 

were considered to be a suitable tool for evaluating their level of consciousness (Golkowski et 

al., 2017). It was further evaluated as a cost-effective imaging tool for investigating neuronal 

networks in the human brain as well as in the search of biomarkers for schizophrenia (Del 
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Guerra et al., 2018). Further knowledge of the cross-modal relations in multiple dimensions 

will increase our understanding by putting the findings of each modality in a more 

multifaceted context (Presigny & De Vico Fallani, 2022). 

1.5. HUMAN BRAIN NETWORKS - CONCEPTUALIZATION AND IDENTIFICATION 

In the main chapters of this dissertation, group differences, spatial relationships, and cross 

modal linkage of brain networks are reported. The following section describes the concept of 

brain networks and methodological approaches for their identification and characterization.  

The term "network" describes a system with multiple underlying similar organizational units 

that are interconnected and enable communication exchange and/or interaction with each 

other. In neuroscience, the modern way of looking at the brain as a system of networks means 

that brain networks represent individual organized parts of the brain that are structurally 

and/or functionally interconnected and interacting (Bassett & Sporns, 2017). The 

description/definition of a brain network is also dependent on the perspective of the observer, 

and also on the underlying data (modality) on which the definition is based (Bartolomei et al., 

2017). Brain networks can be roughly categorized as structural or functional networks.  

Structural or anatomical networks can be identified by analyzing anatomical/morphological 

and histological similarities in different areas of the brain (Yao et al., 2015), and these 

structural network identifications form the basis of many anatomical brain atlases (Desikan et 

al., 2006; Destrieux et al., 2010; Fischl et al., 2002). Functional brain networks are defined as 

multiple separate brain regions and functional connections between multiple brain regions 

(Yao et al., 2015). To identify different functional networks in the brain, functional data that 

maps the dynamic processes (electrophysiological, vascular, metabolic, etc.) in the brain is 

analyzed.  

One of the most widely used approaches to identify brain networks in functional data is seed-

based connectivity (SBC) analysis, which identifies co-oscillations in time-resolved functional 

brain data and thus categorizes them as brain networks (Friston et al., 1993). The advantages 

of this approach are the freedom to designate any point in the brain as a region of interest 

(ROI) and the convenience of interpreting the results of the analysis. Temporal linkage 

between the time course of the ROI and other timecourses can be established using various 

connectivity methods. Functional connectivity describes the statistical relationship between 



23 

 

 

two time courses. It can be calculated in the time domain, for example by multivariate 

autoregressive modelling (Hytti et al., 2006) or, as used in this work, Pearson correlation 

metric (Greenblatt et al., 2012). Other connectivity metrics quantify the linkage of time 

courses for different frequencies, which requires a transformation into the frequency domain. 

Connectivity metrics calculated in the frequency domain include phase lag index, coherence, 

or imaginary part of coherence, etc. (Greenblatt et al., 2012). The choice of connectivity 

method is highly application-specific, with all methods having their own advantages and 

disadvantages. Throughout time many fMRI studies utilized seed-based Pearson correlation 

analysis in order to identify specific regions (e.g., motor cortex) from resting-state fMRI data 

(Biswal et al., 1995; Xiong et al., 1999).  

A more mathematically sophisticated approach to identifying correlated regions is the 

independent component analysis (ICA) (Jutten & Herault, 1991). This method decomposes the 

given data into multiple components by maximizing their individual statistical independence 

in one dimension (usually space). This analysis results in a set of spatial maps of correlated 

regions, one map for each independent component in the data. It allows the simultaneous 

identification of multiple functional networks with one analysis, based solely on the 

underlying data. The advantage of this approach is that it does not require any a priori regional 

information, although one should be able to monitor the resulting set of components for 

artifact or noise components. This analysis approach was adapted to be applied on a group 

level in order to identify independent components that are consistent over a group of subjects 

(Beckmann & Smith, 2005; Calhoun et al., 2001). The application of group-independent 

component analysis to resting-state fMRI data led to the identification of independent resting-

state networks (Damoiseaux et al., 2006; Smith et al., 2009).  

The so-called resting-state condition is a common term for one type of measurement in 

research. The resting-state mode is defined by the circumstances that the brain is not exposed 

to any specific stimuli, does not have to cope with any specific task, and that the person is not 

thinking about anything in particular. These resting-state networks were found to exhibit 

sustained spontaneous brain activity even in a task-free situation, similar to a default 

condition of the brain work. Such resting-state networks are e.g., the visual (Hampson et al., 

2004; Stern, 2002), somatomotor (Biswal et al., 1995), and default mode network (Raichle et 

al., 2001). Since these resting networks show a clear spatial delimitation functional brain 
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atlases were constructed, such as the so-called Yeo7/17 atlas (Yeo et al., 2011). This functional 

brain atlas was constructed based on resting-state functional connectivity data of 1000 

subjects and identified different connectivity profiles of neighboring regions indicate that they 

participate in distributed networks (Yeo et al., 2011). For future functional characterization an 

atlas of at least seven resting-state functional networks was created, that are: visual, 

somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default mode 

network (DMN) (Yeo et al., 2011). The same study also provides a functional brain atlas of 

further spatial division, separating the previously mentioned brain networks in sub areas, and 

adding the resting-state brain network called temporo-parietal network to the atlas. 

Spatially coherent resting-state network patterns have also been found in MEG studies, 

overlapping spatially with established fMRI-based resting-state networks that show up in 

multiple frequency bands (Brookes et al., 2011, 2012). 

1.6. EPILEPSY AS A BRAIN NETWORK DISORDER 

As described in the previous chapter, the brain is a system of interacting networks that are 

the origin of our behavior. Yet, a malfunction of parts of these networks leads to pathological 

conditions, such as epilepsy (Blumenfeld, 2014; Fisher et al., 2005).  

Understanding epilepsy from a network perspective thus represents a shift toward an 

integrative view of brain structural and functional alterations that encompasses multiple 

spatial and temporal scales (Bassett & Sporns, 2017). This includes the study of comorbidities 

of epilepsy, such as cognitive or behavioral problems, as well as multimodal imaging of 

patients' brain activity and connectivity while performing tasks and during rest. In particular, 

the resting-state condition has found a wide application in the search for biological markers 

of disease (Fox & Raichle, 2007). 

Given the multifactorial nature of the epilepsy disorder, the integration of multiple levels of 

information, derived from one or multiple imaging techniques is highly promising for the 

study, localization, and delimitation of epilepsy. Therefore, examining the whole brain using, 

e.g., non-invasive neural imaging methods is an important part of the picture to unravel the 

global network machinery in generalized and focal epilepsy. 
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1.6.1. BRAIN NETWORKS IN FOCAL EPILEPSY 

Even when a suspected lesion has been detected, the modern concept of epileptogenic 

networks in focal epilepsy comprises several network zones, such as the epileptogenic zone 

network, propagation network, as well as non-involved networks (Bartolomei et al., 2017). It 

proposes a hierarchical organization with regard to epileptogenicity in the brain of a patient 

with focal epilepsy and is solely based on stereo EEG (sEEG) recordings, which is a method of 

placing intracerebral electrodes in regions of interest (Bartolomei et al., 2017).  

Thus, for use in the preoperative assessment of patients with focal epilepsy, six cortical zones 

are defined (Rosenow, 2001), whose spatial definition comes from different modalities and is 

characterized by different features (Figure 1.2). The symptomatogenic zone is the area of the 

cortex that is activated when ictal discharges occur and produces the ictal symptoms. The 

irritative zone is defined as the area of the brain that produces the interictal epileptic 

discharges (IEDs). The seizure onset zone is defined as the area of the brain from which the 

clinical seizures actually originate. The epileptogenic zone, on the other hand, describes the 

area that is mandatory for the initiation of epileptic seizures. The functional deficit zone is the 

region in the brain that shows pathological functional changes in the interictal phase, such as 

the 18FDG-PET hypometabolism (please see below). The epileptogenic zone is a theoretical 

concept and defined as the region in the brain that is mandatory for the development of 

epileptic seizures (Rosenow, 2001). These zones are not spatially clearly delineated from each 

other but can overlap (see Figure 1.2). For promising epilepsy surgery, the most accurate 

possible identification of the individual zones is of great importance, since the goal of resective 

epilepsy surgery is the complete resection of the epileptogenic zone, as well as the areas that 

are responsible for the development of clinical seizures, while sparing uninvolved brain 

regions (Baumgartner et al., 2019; Ryvlin et al., 2014). 
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Figure 1.2: Simplified illustration of the conceptualization of the epileptogenic zones in patients with  focal epilepsy and 

modalities to identify those (Edited from (Jehi, 2018) and used with permission) 

 

In patients with focal epilepsy the interictal epileptic discharges produced in the irritative zone 

(Engel, 1984; Lozano et al., 2009; Pillai & Sperling, 2006; Tatum et al., 2018) show distinct 

temporal characteristics and development, and can be divided into typical phases (Kane et al., 

2017). The first phase of the interictal epileptic discharges is called IED-Onset, which marks 

the beginning of the interictal epileptic discharge event. The phase when the interictal 

epileptic discharge reaches its maximum amplitude is called IED-Peak. When half the 

maximum amplitude is reached one defines the IED-Rise phase. The IED-Peak is followed by 

one or multiple slow afterwaves (Figure 1.3). With respect to the accuracy of electric source 

imaging in the presurgical evaluation of focal epilepsy patients it is important to consider the 

propagation of interictal epileptic discharges as an important influencing variable for interictal 

epileptic discharge source localization (Lantz et al., 2003; Zumsteg et al., 2006). 
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Figure 1.3: Sketch of an interictal epileptic discharge based on averaging multiple interictal epileptic discharges from 

averaged EEG sensors. 

Simplified normal course of EEG sensor activity (1), disrupted by an interictal epileptic discharge (2), followed by a slow wave 

form that superimposes the normal EEG sensor activity (3). 

 

 18FDG-PET REGIONAL CEREBRAL GLUCOSE METABOLISM IN PATIENTS WITH FOCAL EPILEPSY 

In the course of the pre-surgical evaluation of a patient with focal epilepsy, the evaluation of 

interictal 18FDG-PET data has an established role in the spatial identification of the 

epileptogenic foci (Sarikaya, 2015). In the focal epilepsy patient’s interictal state, shares of the 

epileptogenic network are often represented as a regional decrease of cerebral glucose 

metabolism (rCGM). Hypometabolism is only present in one to two thirds of focal epilepsy 

patients and when present, it often extends beyond the genuine epileptogenic area (Alavi et 

al., 2011). Extensions into the frontal lobe can be often found in temporal lobe epilepsy 

patients (la Fougère et al., 2009), and the presence of such hypometabolic extensions are 

associated with an unfavorable post-surgical outcome (Lagarde et al., 2020). Extratemporal 

hypometabolism was a predictor of poor postoperative seizure outcome, while localized 

temporal hypometabolism predicted good outcome (Jaisani et al., 2020).  

However, the pathophysiological origin of this hypometabolism is not fully understood, and 

many reasons have been hypothesized regarding its underlying mechanism (Taussig et al., 

2021). First, there could be neuronal loss in the functional deficit zone, or the existence of 

hypometabolic macro- or microscopic lesions (Knowlton et al., 2001; O’Brien et al., 1997). 

Second, reduced synaptic activity is conceivable, but also deafferentation with a reduction in 

the number of synapses, as well as an underlying post-ictal metabolic depression (Mauguière 
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& Ryvlin, 2004). Third, it could be a breakdown of inhibitory mechanisms due to an advanced 

stage of the disease (Koutroumanidis et al., 2000). 

To gain more insight into this topic, studies investigated the spatial characteristics of 18FDG-

PET hypometabolism and ictal events derived from EEG data in mesiotemporal lobe epilepsy 

(MTLE). It is assumed, that the region of 18FDG-PET hypometabolism mainly reflects patterns 

of ictal EEG, and multiple studies reported results that support this assumption. One study 

observed high frequency oscillations in stereo EEG in hypometabolic areas in 18FDG-PET. The 

authors further hypothesized that a pathophysiologic mechanism common to epileptogenesis 

was involved (Lamarche et al., 2016). Further studies on MTLE patients found concordance 

between 18FDG-PET hypometabolism topography and EEG patterns of ictal onset at sensor 

level, which indicates that neural brain networks are spatially related during ictal events and 

glucose metabolic changes (Chassoux, 2004). 

 

1.6.2. BRAIN NETWORKS IN GENERALIZED EPILEPSY 

The marked difference between patients with generalized epilepsy and those with focal 

epileptic discharges is the short transient episodes of synchronous bilateral discharges 

without a focal origin present in patients with generalized epilepsy (Leutmezer et al., 2002). 

Interictal EEG measurements are commonly used to identify such generalized spike-wave 

discharges (GSWD), which can be seen in a large number of channels with a high amplitude 

and a frequency of 2-3 Hz (Sazgar & Young, 2019). 

As the status of GSWD in the dynamics of epileptic networks has not been fully elucidated, it 

has become a topic of great interest in many studies. Parallel EEG-fMRI measurements of the 

patients are mostly used for this purpose, since the occurrence of GSWD can be determined 

in the highly temporally resolved EEG, and the location of the origin as well as its integration 

into the brain networks before, during and after these events can be investigated in the 

spatially highly resolved fMRI (Aghakhani et al., 2004; Benuzzi et al., 2012; Gotman et al., 2005; 

Hamandi et al., 2006; Klamer et al., 2018; Szaflarski et al., 2013; Tangwiriyasakul et al., 2018). 

This showed bilaterally increased BOLD amplitude in frontal and parietal cortical areas ten 

seconds before the GSWD event, and specifically in the occipital-medial default mode network 

(DMN) region, which is anatomically described as the precuneus poster ior cingulate region 

(Aghakhani et al., 2004; Benuzzi et al., 2012; Hamandi et al., 2006). In addition, there were 
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BOLD increments in thalamus, cerebellum, and anterior cingulate gyrus at GSWD onset with 

decreases in BOLD amplitude in default mode network regions after the GWSD (Benuzzi et al., 

2012; Gotman et al., 2005). 

Further neural imaging studies reinforced the position of thalamocortical and cortico-cortical 

networks as a central element in patients with IGE (Bernhardt et al., 2009; Blumenfeld et al., 

2003; Klamer et al., 2018; Larivière et al., 2020; Moeller et al., 2008; Tangwiriyasakul et al., 

2018). The changes in the brain networks of patients with IGE before and after GSWD 

suggested permanent changes in the interictal periods in the resting-state condition. 

Many fMRI studies investigated the possible resting-state network alterations in patients with 

IGE and found connectivity changes in the DMN networks (Parsons et al., 2020), and 

additionally in the frontal lobe regions (McGill et al., 2012), as well as cerebellar areas (Kay et 

al., 2014). In contrast to fMRI studies that examined GSWD or resting-state data in patients 

with IGE, the number of studies that used EEG data to gain insights is much smaller, although 

in most studies EEG was measured simultaneously with the fMRI in order to temporally mark 

the GWSD events for further fMRI data analysis (Aghakhani et al., 2004; Benuzzi et al., 2012; 

Gotman et al., 2005; Hamandi et al., 2006; Klamer et al., 2018; Szaflarski et al., 2013; 

Tangwiriyasakul et al., 2018).  

Unlike fMRI, the EEG and/or MEG measures the neuronal signal directly with a higher 

temporal resolution (Lopes da Silva, 2013) and also focuses on the origin and characterization 

of GSWD in the brain network of patients with IGE (Holmes et al., 2004; Westmijse et al., 

2009). Resting-state network alterations were derived from sensor-level EEG/MEG studies and 

rich connectivity with modular structure was observed and further, differences in brain 

network topography have been observed in patients with IGE (Chowdhury et al., 2014). 

Alterations in resting-state MEG and EEG were also recently found in source-level connectivity 

and power in patients with IGE (Elshahabi et al., 2015; Li Hegner et al., 2018; Stier et al., 2021, 

2022); all with a consistent finding of increased connectivity in the theta frequency band in 

the frontotemporal and central regions of the brain. 
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2. A IM OF THE DISSERTATION  

Multimodal imaging has shown great potential for the clinical practice and is current body of 

investigation in neuroscience research. The functions of the brain can be mapped under 

different aspects - neuronal, vascular, metabolic, and anatomical. Given the multifactorial 

nature of epilepsy, which is defined in modern terms as a network disease (Blumenfeld, 2014; 

Fisher et al., 2005), the integration of multiple levels of information from multiple imaging 

modalities can increase the understanding of the disease. The study of interictal epileptic 

discharges, as well as the resting-state condition during interictal periods in different imaging 

modalities, has revealed distinct changes in the large-scale brain networks in patients with 

epilepsy. However, it is not entirely clear to what extent the identified brain network changes 

in one modality such as EEG are reflected or complemented in another imaging modality, e.g., 

fMRI. Furthermore, it was not known whether resting-state brain networks, whose 

identification from fMRI data is an established method, are reflected in other common brain 

imaging modalities and to what extent they are spatially or temporally related. In addition, 

the relationship of brain network components from the epileptogenic networks in focal 

epilepsy patients from different brain imaging modalities such as interictal epileptic discharges 

and 18FDG-PET hypometabolism is unclear. Clarification of the relationship of brain network 

components from different brain imaging modalities should provide a better understanding 

of the informativeness of each imaging modality on its own, which in turn would provide a 

better understanding of epilepsy itself and, hopefully in the long term, enable a better 

treatment of the disease. 

Therefore, in the first part of this dissertation project, we investigated whether known 

relevant group differences in power and/or connectivity between patients with idiopathic 

generalized epilepsy and healthy controls, which are known from previous EEG/MEG studies, 

also emerged from EEG data measured in parallel with fMRI. Furthermore, we analyzed to 

what extent group differences were congruent across imaging modalities (Chapter 4.1). This 

not only served to clarify the validation of the information content from EEG data during a 

parallel fMRI after data cleaning but will also serve to increase the understanding of the 

multimodal evaluation of the analysis results for further neuroscientific studies. 

In the second part of this dissertation project (Chapter 4.2), I discuss the influence of different 

source reconstruction methods and different time phases of interictal epileptic discharges in 
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patients with focal epilepsy in terms of their accuracy for localizing the epileptogenic zone. 

Furthermore, I investigated the spatial relationship of these interictal epileptic discharges and 

the 18FDG-PET hypometabolism detected in the patients. 

Building on the results of the first part of this dissertation project, I investigated in the final 

part of my work whether known functional resting-state networks can be extracted from the 

data of fully simultaneous hd-EEG/fMRI/18FDG-PET measurements in a mixed cohort (Chapter 

4.3). These results may provide the encouragement for further multimodal imaging studies 

(e.g., hd-EEG/fMRI/18FDG-PET) for general studies of brain networks in humans, as well as the 

study of epilepsy and other neuronal diseases.  

In summary, I addressed the subsequent overarching questions in this dissertation: 

 

❖ Is it possible to extract relevant group differences in patients with idiopathic 

generalized epilepsy from the hd-EEG of a parallel hd-EEG-fMRI measurement after 

MR artifact cleaning? 

❖ What is the linkage of the 18FDG-PET hypometabolism found in patients with focal 

epilepsy and the interictal epileptic discharges occurring in these patients? 

❖ Are known resting-state brain networks expressed in all modalities of a 

simultaneous hd-EEG/fMRI/18FDG-PET measurement and what is their spatial 

linkage? 
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3. MATERIALS AND DATA 

3.1. MULTIMODAL IMAGING IN IDIOPATHIC GENERALIZED EPILEPSY 

For the purpose of investigation, the influence of MR artefacts in a parallel EEG-fMRI 

measurement on the statistically significant group differences in idiopathic generalized 

epilepsy patients compared to controls, as well as the cross-modal linkage of significant group 

differences we utilized the cohort data used in Stier et al. (Stier et al., 2022). 

In this project a patient sample with mixed IGE syndromes and a cohort of healthy controls 

was recruited through the Department of Neurology, University Hospital of Tübingen, 

Germany. Exclusion criteria for participation were neurologic or psychiatric disorders, cardiac 

or respiratory diseases, and medication intake.  

In the course of this project, among others, all subjects underwent eyes-closed resting-state 

hd-EEG (30min) measurements in supine position. Furthermore, simultaneous fMRI-EEG 

measurements (30min) in resting-state condition and anatomical and diffusion tensor imaging 

(T1 weighted/T2-FLAIR/DTI) was conducted. 

 

My contributions: 

I have developed the data analysis procedure for this project, which includes the data 

processing, as well as first and second level analysis.  

 

Chapter 4.1 of this dissertation contains the results of this data analysis, based on hd-EEG data 

with parallel and non-parallel fMRI, as well as anatomical MRI data. 
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3.2. IMPACT OF INVERSE METHODS AND SPIKE PHASES ON INTERICTAL HD-EEG SOURCE 

RECONSTRUCTION AND ITS RELATION TO 
18FDG-PET HYPOMETABOLISM 

The study of influencing factors on high-density electric source imaging (hd-ESI) and 

multimodal spatial coupling in presurgical workflow is based on retrospective data of patients 

with focal epilepsy, who underwent successful epileptic surgery.  

From the clinical database of the Department of Neurology at the University Medical Center 

Göttingen, patients were identified for whom the following data sets were available: 

presurgical monitoring hd-EEG (≥60 min), high-resolution pre- and post-surgical anatomical 

MRIs, and static 18FDG-PET data sets. All patients underwent their first epilepsy surgery with 

good outcome (Engel I) (Engel, 1993; Wieser et al., 2001). 

From 21 patient’s hd-EEG data an experienced clinician identified interictal epileptic 

discharges visually. Additionally automated detection of interictal epileptic discharges via the 

usage of a set of neural networks from a commercial EEG analysis software called Persyst 

(Persyst, San Diego, USA; non-clinical use, version 14, Rev. C) was applied.  

 

My contributions: 

I formulated the hypothesis and developed the analysis workflow accordingly. I have 

developed my own analysis functions for this project, based on existing literature. I processed 

the data and applied statistical evaluation on the processed results.  

 

Chapter 4.2 of this dissertation contains the results of this data analysis, based on interictal 

epileptic discharges from hd-EEG data, pre-and post-surgical anatomic MRI, as well as 

metabolic 18FDG-PET data.  

The results of a second project can be found in chapter 7.1. Therein hd-EEG, pre- and 

postoperative anatomical MRI were used to evaluate the feasibility of hd-ESI under the 

influence of the number of spikes and under the application of automatic spike detection by 

the commercial software Persyst. 
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3.3. IDENTIFICATION AND CROSS-MODAL SPATIAL RELATIONSHIP OF HUMAN RESTING-STATE 

NETWORKS IN SIMULTANEOUSLY MEASURED HD-EEG/FMRI/18FDG-PET IMAGING 

In order to investigate temporal and spatial relationship of resting-state brain networks across 

multiple modalities, we recruited a cohort of patient with lesional and non-lesional focal 

epilepsy, as well as a group of healthy control subjects through the Department of Neurology, 

University Hospital of Tübingen, Germany.  

Control individuals with neurologic or psychiatric disorders, cardiac or respiratory diseases, 

and medication intake were excluded.  

All subjects underwent eyes-closed resting-state hd-EEG/fMRI/18FDG-PET measurement 

(30min) in supine position. Furthermore, we collected anatomical and diffusion tensor 

imaging (T1 weighted/T2-FLAIR/DTI) data for each subject. 

On a second appointment all subjects underwent the same measurement of a fully 

simultaneously hd-EEG/fMRI/18FDG-PET measurement (30min) in supine position under a 

motor-task (finger tapping) paradigm. Furthermore, we collected anatomical and diffusion 

tensor imaging (T1 weighted/T2-FLAIR/DTI) data for each subject. 

 

My contributions: 

I assisted in recruitment decisions, as well as advised on data acquisition settings. I was also 

the leading role in data transfer, curation, and documentation at the University Medical 

Center Göttingen. I have designed and performed the data analysis workflow for each 

modality in this project, which includes the data processing, as well as first and second level 

analysis.  

 

Chapter 4.3 of this dissertation contains the results of this data analysis, based on anatomical 

MRI, as well as fully simultaneously measured hd-EEG/fMRI/18FDG-PET data at the resting-

state condition. 
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4. ORIGINAL ARTICLES  

I have summarized my research contributions to this dissertation in the following three main 

articles: 

 

Comparison of resting-state EEG network analyses with and without parallel MRI in 

genetic generalized epilepsy 

 

Authors:  Daniel van de Velden1; Christina Stier1,2; Raviteja Kotikalapudi2,3; Ev-Christin 

Heide1; David Garnica Agudelo1; Niels K. Focke1,2 

1 Clinic for Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany 
2 Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University Medical  

   Center Tübingen, University of Tübingen, 72076 Tübingen, Germany 
3 Clinic for Neurology, University Medical Center Essen/University Duisburg-Essen, 45147 Essen, Germany 

 

NKF and DvdV designed and conceptualized the study; CS and RK acquired data; DvdV 

analyzed the data and performed statistical analyses and visualization; DvdV and NKF 

interpreted the results; NKF supervised the project; DvdV drafted the manuscript; NKF, CS, 

RK, EH, and DG revised the manuscript for intellectual content. 

 

Published in Brain Topography, 2023. 

 

 

Impact of inverse methods and spike phases on interictal hd-EEG source reconstruction 

and its relation to 18FDG-PET 

 

Authors:  Daniel van de Velden1; Ev-Christin Heide1; Caroline Bouter²; Jan A. Bucerius²; 

Christian Riedel³; Niels K. Focke1 

1 University Medical Center Göttingen, Clinic for Neurology, 37075 Göttingen, Germany  
2 University Medical Center Göttingen, Department of Nuclear Medicine, 37075 Göttingen, Germany 
3University Medical Center Göttingen, Institute for Diagnostic and Interventional Neuroradiology, 37075 

Göttingen, Germany 

 

NKF, EH, and DvdV designed and conceptualized the study; EH reviewed clinical data and 

provided DvdV with EEG data for analysis; DvdV analyzed the data and performed statistical 

analyses and visualization; DvdV and NKF interpreted the results; NKF supervised the 

project; DvdV drafted the manuscript; NKF, EH, CR, CB and JAB revised the manuscript for 

intellectual content. 

 

Published in Clinical Neurophysiology, 2023. 
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Identification and cross-modal relationship of functional resting-state networks in 

simultaneously measured hd-EEG/fMRI/18FDG-PET imaging 

 

Authors:  Daniel van de Velden1; Ev-Christin Heide1; Pascal Martin2; Benjamin Bender3; 

Sebastian von Beschwitz4; Adham Elshahabi5; Tudor Ionescu6; Bernd Pichler6; 

Christian la Fougère4*; Niels K. Focke1,2* 

 
1 Clinic for Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany 
2 Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University Medical  

   Center Tübingen, University of Tübingen, 72076 Tübingen, Germany 
3 Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 

Tübingen, Germany 
4 Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, 72076 

Tübingen, Germany 
5 Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland 
6 Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University 

Hospital Tübingen, 72076 Tübingen, Germany 

 

 

ClF and NKF designed and conceptualized the study; TI acquired data; DvdV analyzed the 

data and performed statistical analyses and visualization; DvdV interpreted the results; NKF 

supervised the project; DvdV drafted the manuscript. 

 

In preparation for submission. 
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4.1. COMPARISON OF RESTING-STATE EEG NETWORK ANALYSES WITH AND WITHOUT PARALLEL 

MRI IN GENETIC GENERALIZED EPILEPSY 

At this point, it is important to mention that a cohort of patients with idiopathic generalized 

epilepsy (IGE) was analyzed in this study. At the time of the analysis, the terminology genetic 

generalized epilepsy (GGE) was still used to refer to the syndrome of the included patients. 

The terminology genetic generalized epilepsy for this cohort is used only in this main article of 

the dissertation. 
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4.2. EFFECTS OF INVERSE METHODS AND SPIKE PHASES ON INTERICTAL HIGH-DENSITY EEG 

SOURCE RECONSTRUCTION 



Effects of inverse methods and spike phases on interictal high-density
EEG source reconstruction
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h i g h l i g h t s

� Accuracy of 3 inverse methods (LCMV, sLORETA, wMNE) and of spike phases for high-density electric source imaging were evaluated.
� The beamformer method LCMV was as accurate as sLORETA; half-rise and peak phase best localized the sources.
� The clinical hypothesis-based cluster of PET hypometabolism was more accurate than the cluster with the smallest p-value.
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a b s t r a c t

Objective: To determine the effect of inverse methods and timepoints of interictal epileptic discharges
(IEDs) used for high-density electric source imaging (hd-ESI) in pharmacoresistant focal epilepsies.
Methods: We retrospectively evaluated the hd-ESI and [18F]fluorodeoxyglucose positron emission
tomography (18FDG-PET) of 21 operated patients with pharmacoresistant focal epilepsy (Engel I).
Volumetric hd-ESI was performed with three different inverse methods such as the inverse solution lin-
early constrained minimum variance (LCMV, a beamformer method), standardized low resolution elec-
tromagnetic tomography (sLORETA) and weighted minimum-norm estimation (wMNE) and at different
IED phases. Hd-ESI accuracy was determined by volumetric overlap and distance between hd-ESI source
maximum, as well as 18FDG-PET hypometabolic region relative to the resection zone (RZ).
Results: In our cohort, the shortest distances and greatest volumetric overlaps to the RZ were found in the
half-rise and peak-phase for all inverse methods. The distance to the RZ was not different between the
centroid of the clinical hypothesis-based cluster and the source maximum in peak-phase. However,
the distance of the hypothesis-based cluster was significantly shorter compared to the cluster selected
by the smallest p-value.
Conclusions: Hd-ESI provides the greatest accuracy in determining the RZ at the IED half-rise and peak-
phase for all applied inverse methods, whereby sLORETA and LCMV were equally accurate.
Significance: Our results offer guidance in selecting inverse methods and IED phases for hd-ESI, compare
the performance of hd-ESI and 18FDG-PET and encourage future studies in investigating the relationship
between interictal ESI and 18FDG-PET hypometabolism.
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1. Introduction

One third of all cases of epilepsy are pharmacoresistant, i.e. they
do not respond to two tolerated, appropriately chosen and applied
anti-seizure medication (ASM) (Kwan et al., 2009). For these
patients, epilepsy surgery is an important treatment option, as it
offers significantly better outcomes in terms of seizure frequency
and quality of life than continued ASM treatment (Engel, 2018;
Wiebe et al., 2001). In a study by (Sperling et al., 2016), surgically
treated patients had a significantly lower mortality rate than those
without surgery (n = 1110 patients). The aim of epilepsy surgery is
to resect the epileptogenic zone (EZ) and thereby achieve freedom
from seizures while sparing tissue with important neuropsycho-
logical and neurological functions (Vakharia et al., 2018).

Therefore, a detailed presurgical evaluation is necessary. The
presurgical work-up starts with a noninvasive evaluation, which
includes high-resolution magnetic resonance imaging (MRI), video
scalp electroencephalography (EEG), and detailed neuropsycholog-
ical assessment. An adjunctive method of characterizing the EZ is
to use electromagnetic imaging techniques like high-density EEG
(hd-EEG) or magnetencephalography with subsequent electric/-
magnetic source imaging (ESI/MSI) (Ryvlin et al., 2014). This
method provides a spatial reconstruction of the generators of inter-
ictal epileptic discharges (IEDs), usually phrased ‘‘irritative zone”,
indicating that this is not identical to the EZ (Guo et al., 2022;
Lagarde et al., 2020), but often closely related (Duez et al., 2019;
Jehi, 2018). Electric source imaging (ESI) is an estimation of the
source distribution in the brain based on the electric activity
recorded at the scalp.

An estimation of the underlying sources can be determined
using various inverse methods. The classical dipole fitting method
models a small number (often a single dipole) of focal sources as
current dipoles. In contrast, distributed imaging methods such as
the depth weighted minimum-norm estimation (wMNE)
(Hämäläinen and Ilmoniemi, 1994), and the standardized low res-
olution electromagnetic tomography (sLORETA) (Pascual-Marqui,
2002) estimate currents across the whole source space, typically
the cortical surface. In contrast to LORETA (Pascual-Marqui et al.,
1994), sLORETA’s localization interference is based on images of
standardized current density (Pascual-Marqui, 2002). As opposed
to dipole modeling and distributed source imaging, beamformer
methods like linear constrained minimum variance (LCMV) take
an adaptive spatial-filtering approach, independently scanning
each location in a predefined region of interest within the source
space (Van Veen et al., 1997). However, these methods differ in
their algorithmic approach to source reconstruction and their esti-
mated brain activities consequently also differ to a certain extent.
A recent study compared the spatial accuracy of six different
inverse methods for EEG source reconstruction of IEDs at a single
timepoint, the IED half-rise phase (Carboni et al., 2022). LORETA
and local autoregressive average (LAURA) were shown to be more
noise-robust inverse methods with more accurate results for inter-
ictal EEG source localization. However, a dipole fitting method and
beamformer method were not assessed in the study.

However, propagation of IEDs is known to be an important
influencing variable for IED source localization (Lantz et al.,
2003; Mălîia et al., 2016; Zumsteg et al., 2006). In a previous study,
the distances between the source maxima of different timepoints
of high-density electric source imaging (hd-ESI) and the resected
brain area were compared. It was found that timepoints earlier
than 50% of the IED’s half-rise phase gave less accurate results
(Vorderwülbecke et al., 2020). We therefore studied the combined
effect of different EEG inverse methods and of different IED phases
on the accuracy to map irritative and epileptogenic zones in
presurgical evaluation.

Moreover, in many epilepsy centers [18F]fluorodeoxyglucose-
positron emission tomography (18FDG-PET) is additionally used
to identify epileptogenic foci. 18FDG-PET detects the rate of cere-
bral glucose metabolism, which is mainly determined by neuronal
activity (Sokoloff, 2008). Given the rather low temporal resolution
of static 18FDG-PET, images are usually obtained in the interictal
phase. Interictal regional glucose hypometabolism is related to
the functional deficit zone in focal epilepsy patients (Rosenow
and Lüders, 2001). This metabolic alteration has an established role
in noninvasive characterization of epileptogenic foci in focal epi-
lepsy patients (la Fougère et al., 2009). In addition to its diagnostic
usefulness, it was shown that 18FDG-PET hypometabolism is a pre-
dictive variable for the surgical outcome (Vinton et al., 2007).
Hypometabolism in the temporal lobe is associated with better
postoperative seizure control while extensions of the 18FDG-PET
hypometabolism to extratemporal areas, as can be often found in
temporal lobe epilepsy patients (TLE) (la Fougère et al., 2009), were
reported to be associated with an unfavorable post-surgical out-
come (Lagarde et al., 2020).

This study evaluated the effect of inverse methods and of differ-
ent IED phases of patient’s source reconstructed interictal events/
spikes, on the distance to and the volumetric overlap with the
resected zone. In addition, the distance between the region of
18FDG-PET hypometabolism and the RZ was compared to the dis-
tance between hd-ESI and the RZ.

2. Methods

Patient cohort: We studied patients selected from the database
of the Department of Neurology at the University Hospital of
Göttingen, Germany. All patients had been admitted to our epi-
lepsy monitoring unit for preoperative noninvasive epilepsy evalu-
ation between 1st September 2017 and 1st February 2021. We
defined the following inclusion criteria: (I) a diagnosis of pharma-
coresistant focal epilepsy, (II) a presurgical evaluation with 256-
channel, long-term (�2h) hd-EEG recording, and high-resolution
3 T MRI following an epilepsy specific protocol, (III) �10 IEDs in
hd-EEG recording, (IV) subsequent initial resective brain surgery
with good Engel outcome (I) and (V) a post-surgical brain MRI.
Our exclusion criteria were (I) multifocal epilepsy and (II) prior
epilepsy surgery. The presurgical evaluation also included a neuro-
logical and neuropsychological examination, a long-term low-
density video-EEG recording (�7 days), hd-EEG, high-resolution
3 T MRI with an epilepsy specific protocol and 18FDG-PET/
computed tomography as clinically indicated (CT; except for two
patients). Post-surgical outcome was classified using the Engel
Outcome Scale (Engel, 1998). The results are classified as Class I:
free of disabling seizures with (IA) completely seizure-free since
surgery, (IB) non disabling simple partial seizures only since sur-
gery, (IC) some disabling seizures after surgery, but free of dis-
abling seizures for at least 2 years, (ID) generalized convulsions
with ASM withdrawal only, Class II: rare disabling seizures, Class
III: worthwhile improvement and Class IV: no worthwhile
improvement. The local Ethics Committee of the University Medi-
cal Center of Göttingen gave its approval for this study (ethics
number 3/7/22).

MRI acquisition and pre-processing: For each patient, an individ-
ual presurgical high resolution T1 or MPRAGE 3-T MRI of the entire
head was performed (Magnetom Prisma, Siemens Medical Sys-
tems). 3D structural T1 weighted images (repetition time = 1900
ms, echo time = 2.26 ms, field of view = 256 � 256 � 256 voxel, flip
angle = 9�, and voxel size = 1 � 1 � 1 mm) were added. A T1 image
was required for the post-surgical MRI. All anatomical T1 images
were segmented into common tissue classes (grey matter and
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white matter, and cerebrospinal fluid (CSF), etc.) and reconstructed
using Freesurfer (version 6.0.0; https://surfer.nmr.mgh.harvard.
edu/). Furthermore, each patient’s anatomical T1 image was nor-
malized to standard Montreal Neurological Institute space using
the non-linear normalization approach of the toolbox for ‘‘Diffeo-
morphic Anatomical Registration using Exponentiated Lie algebra”
(DARTEL; SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). The deformation field applied for normalization was
saved for further usage.

Definition of resection zone (RZ): The post-surgical T1 was coreg-
istered with the presurgical T1 via SPM12, using a normalized
mutual information cost function. As the resected volume was
mainly filled with CSF after surgery, we determined the differences
between the preoperative and postoperative CSF tissue class by
subtracting the postoperative T1 CSF tissue class from the preoper-
ative T1 CSF tissue class. A semi-automated smoothing and correc-
tion process was then applied. In the first step, misidentified
scattered voxels, e.g. in the subarachnoid space, were filtered (ker-
nel: 3 � 3 � 3 mm). This was followed by applying a filter
(4 � 4 � 4 mm) to adjust for residual spatial differences at the
edges of the resected volume. According to the preoperative and
postoperative MRI, the RZ masks were visually reviewed and man-
ually corrected as needed. Finally, a three-dimensional filter
(9 � 9 � 9 mm) was applied to the edited masks, followed by a
re-binarization with threshold 0.3 to remove sharp edges from
manual editing. Since we only included patients with a good post-
operative outcome (Engel I), one can assume that the RZ contained
the EZ or at least the clinically relevant areas of early ictal spread
(Mălîia et al., 2016).

18FDG-PET acquisition and processing: 18FDG-PET computed
tomography scans were acquired prior to surgical resection using
a Philips Vereos PET/CT scanner (Philips Medical Systems, Cleve-
land, Ohio, USA) using a 128 � 128 matrix and a slice thickness
of 2 mm in 19 out of 21 patients. There were two patients without
PET data since it was not clinically indicated (fully concordant data,
unifocal epilepsy), therefore those patients were excluded from
any 18FDG-PET data-based analysis in this study. One additional
patient was excluded due to endoscopic third ventriculostomy
for obstructive hydrocephalus and gross anatomical differences
of enlarged ventricles. 18F-FDG was injected intravenously (207.8
± 10.25 MBq), and images were acquired 60 min after the tracer
injection with a 10-min scan duration. All patients had fasted at
least 6 h prior to the tracer injection, and blood sugar levels were
measured in order to exclude hyperglycemia. All patients rested
for 20 min in a quiet and dimly lit room prior to and for 10 min
after tracer injection. Images were reconstructed using an ordered
subset-expectation maximization algorithmwith three reconstruc-
tion iterations and 15 subsets. A low-dose CT scan was used for
attenuation correction. Further image processing was performed
using the SPM12 toolbox (SPM12, version 7487; https://www.fil.
ion.ucl.ac.uk/spm/software/spm12). Individual 18FDG-PET image
volumes were coregistrated to the anatomical T1 image. The same
non-linear deformation field applied to the anatomical image data
was used for the 18FDG-PET data images to spatially normalize
them into standard Montreal Neurological Institute space with
voxel sizes of 1.5 � 1.5 � 1.5 mm. Finally, smoothing with an
8 � 8 � 8 mm kernel was applied.

Definition of 18FDG-PET hypometabolism: The spatial definition of
hypometabolism in each patient was done with a semi-
automatized algorithm at voxel level using the SPM12 software.
Each patient was statistically compared to the group of 38 healthy
subjects (two-sided, two-sample t-test). The control group con-
sisted of ten healthy subjects from our local database (ethical ref-
erence number: 295/2015BO1) and twenty-eight subjects from the
CERMEP-IDB-MRXFDG database (Mérida et al., 2021). Each image

was then intensity normalized by dividing each in-brain voxel by
the global average of all in-brain voxels to correct for patient -
and scanner variations in brain metabolism. Images were masked
for voxels inside the brain. All 18FDG-PET control and patient data
scans were processed identically (Mayoral et al., 2016). Each
patient was compared to the control group in a general linear
model, and significant decreases at a threshold of p < 0.01
(family-wise error corrected) were marked (Mayoral et al., 2016;
Person et al., 2010). These suprathreshold voxels were clustered
in groups with a three-dimensional 26 neighborhood connection.
Those maps showing 18FDG-PET hypometabolism were trans-
formed back to the individual subject-specific space and resampled
to T1 resolution 1 � 1 � 1 mm. Resulting clusters with less than 2
voxels (=2 mm3) were rejected.

Finally, the results were visually reviewed by an experienced
clinician (E.-C. Heide, aware of clinical information) based on the
plausibility of the position and the underlying tissue types. Clus-
ters in brainstem, cerebellum, corpus callosum and in ventricles
were removed.

Most patients showed multiple regions of hypometabolism. For
each patient, the 18FDG-PET hypometabolism cluster which was
clinically most plausible based on the hypothesis of the epilepto-
genic focus was chosen for all further analysis. It was referred to as
hypothesis-based cluster (clusterHPT; clusterHPT size: 7435.6 ± 8882.
5 mm3). In addition to that, the 18FDG-PET hypometabolism cluster
encompassing the smallest p-value in a single voxel (strongest sta-
tistical difference to healthy controls, ‘‘peak voxel”) compared to
the control groupwas chosen and further referred to as most signif-
icant cluster (clustermSIG; clustermSIG: 4566.5 ± 9587.2 mm3).

hd-EEG acquisition and pre-processing: hd-EEG acquisition with a
256-channel EEG system was performed on the video-EEG moni-
toring unit using a GES400 system (Electrical Geodesics, Inc.,
now Magstim EGI, Eugene, Oregon, USA) with a sampling rate of
250 or 1000 Hz. In patients with fewer than 10 IED per hour in
the preceding low-density EEG, a long-term hd-EEG (�03:00 h)
was performed, whereas in patients with more than 10 IED per
hour a short-term hd-EEG (�01:45–03:00 h) was deemed clinically
sufficient. The hd-EEG data was 70 Hz low pass and 0.3 Hz high
pass, and 50 Hz notch filtered to account for line noise and further
reviewed by one EEG experienced clinician (E.-C. Heide, aware of
clinical information), and all spikes (<70 ms) and sharp waves
(70–120 ms) were marked on the IEDs’ peaks. IEDs were classified
and grouped at lobar resolution, based on their morphology and
topography. If more than one IED population was found, the one
with the largest amount of IEDs was selected for processing (mean:
87 � 101 IEDs). After filtering, epochs containing the visually
detected IEDs (±2 s) were clipped.

The preprocessing and further analysis steps were performed
using Fieldtrip (https://www.fieldtriptoolbox.org/, version:
fieldtrip-20191127) running in Matlab (version 9.0, R2018b, Math-
works Inc.). All selected IED trials were down sampled to 250 Hz.
This was followed by a visual inspection and rejection of noisy tri-
als and/or trial artifacts contaminated by eye movements, blinks,
cardiac, and muscle activity. We then performed an independent
component analysis (ICA) to identify and remove components
reflecting electrocardiogram and ocular artifacts. The IED trials
were then visually checked and temporally aligned to the peak of
the IED. Finally, all IED trials were averaged.

hd-EEG forward modelling and source analysis: In addition to the
measured EEG activity and the inverse method, a forward model is
needed for hd-ESI. The forward model is based on the head model,
the source model and the electrode model. For the head model, the
anatomical T1 of each patient was used. An individual boundary
element model (BEM) with three layers of different conductivity
(scalp: 0.33 S/m, skull: 0.004 S/m, brain: 0.33 S/m) was constructed
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using the ‘dipoli’ method implemented in Fieldtrip. A 5 mm volu-
metric grid was constructed in the SPM12 CAT12 template
(CAT12; Christian Gaser 2018, https://www.neuro.uni-jena.de/
cat/) and those standardized volumetric grid points were trans-
formed back to the individual anatomical space using the inverted
DARTEL deformation field (DARTEL; SPM12; https://www.fil.ion.
ucl.ac.uk/spm/software/spm12/). These volumetric grid points
were further used to define the positions in space in the source
model for each patient’s forward model. For the sensor model,
the sensors were spatially aligned to the anatomical T1 using
anatomical landmarks of fiducial positions (left/right preauricular
point, nasion, inion) and further projected on to the scalp of the
BEM. The averaged sensor data of each patient’s main IED popula-
tion was projected to each volumetric grid point using the follow-
ing inverse methods:

wMNE: MNE estimates and optimizes a distribution of sources
in the brain based on the assumption that the measured data in
the sensors come from a brain source distribution with minimum
power (Hämäläinen and Ilmoniemi, 1994). To compensate for the
lower gain of deeper sources the wMNE including a weighting
matrix was introduced and used (Pascual-Marqui, 1999).

sLORETA: For single source localization, the regularized sLORETA
gives the best solution in terms of both localization error and ghost
sources. It is an noise-normalized adaption of the MNE method.
The source reconstruction is standardized by the variance of the
estimated sources (Pascual-Marqui, 2002).

In addition to the distributed linear inverse solutions wMNE
and sLORETA we also used a beamformer approach for source
reconstruction.

LCMV: Beamformer approaches design a set of spatial filters to
reconstruct sources in the brain. One well-known time-domain
beamformer approach is the LCMV method (Van Veen et al.,
1997). This approach estimates the brain activity at each position
in the brain, while surpressing the influence from other locations.

Since the dipole fitting method is a common source model in
clinical applications, we also calculated a dipole fit. For this pur-
pose, a single dipole fit was calculated in MATLAB using the Field-
trip toolbox (number of dipoles = 1, initial grid search, non-linear
fitting) for each time bin of the averaged IED timecourses
(Sarvas, 1987).

All inverse methods used here include a regularization parame-
ter k in their source estimation procedure. This was chosen to be
the same for all inverse methods in this study and was calculated
as:

k ¼ 1=SNR

where SNRwas defined as the quotient of the amplitude at the spike
peak of the IED and the standard deviation of the baseline (�2 s to
�0.2 s) of the averaged spike epoch. For each patient’s dataset, the
regularization parameter was calculated individually (mean k: 0.0
051 ± 0.005). Following the source reconstruction, the electrophys-
iological current distribution of all volumetric points were interpo-
lated in the anatomical 3D MRI space. A brain mask was applied to
get an 1 � 1 � 1 mm 3D image of source activity for each timepoint
in the averaged trial. Furthermore, 95th percentile (95%tile) of the
activities of all sources inside the brain was applied as threshold
to the source activity in 3D space. This threshold was chosen empir-
ically. We further determined the three different time phases of the
epileptic spike discharge: (1) IED onset-phase: Defined by the first
timebin surpassing the mean value of the baseline (�2 s to �0.
2 s), plus two times the standard deviation of baseline. (2) IED
peak-phase: Defined by the timebin with maximum amplitude.
(3) IED half-rise -phase: Defined by the timebin when half of the
maximum is reached. The defined timepoints of the IED phases
were checked and approved by an experienced clinician.

hd-EEG and 18FDG-PET analysis: In order to evaluate the spatial
accuracy of the three different inverse methods, the Euclidean dis-
tance between the voxel with the maximum amplitude of each
patient’s source reconstruction and the RZ was calculated in
subject-specific MRI datasets and spaces. If the maximum ampli-
tude was inside the RZ, the distance was taken as 0 mm. As an
additional reference, the nearest Euclidean distance between the
centroid of the 18FDG-PET hypometabolism region and the RZ in
subject-specific 18FDG-PET datasets and spaces was measured. Fur-
thermore, distances were classified and assigned to ordinal scoring
values (SV) as: 0 mm = 1 SV, <10 mm = 2 SV, <20 mm = 3 SV, and
>20 mm = 4 SV.

In addition to distance evaluation, we also evaluated source
reconstructions and hypometabolism in terms of volumetric over-
lap with the RZ. Therefore, the Dice similarity coefficient (DSC)
(Zou et al., 2004) was calculated as noted below

DSC ¼
2 � X \ Yj j

Xj j þ Yj j

where Xj j and Yj j represent the binarized entirety of two volumes.
The DSCs were classified and assigned to ordinal SVs as follows:
0 = 4 SV, <0.2 = 3 SV, <0.4 = 2 SV, and > 0.4 = 1 SV. All measures
of spatial concordance were calculated for each inverse method’s
reconstruction in each of the different IED phases.

Statistics: Statistical analyses were performed in Matlab. A sign
test (one-sided) was used to compare the spatial measures (Eucli-
dean distance, DSC) across inverse methods in each IED phase, as
well as for each inverse method across IED phases. We applied a
one-sided test as we hypothesized that rising-phase and peak-
phase have a better accuracy compared to the onset-phase based
on literature (Brodbeck et al., 2011; Lantz et al., 2003; van Mierlo
et al., 2017). In contrast, we applied a two-sided sign test for the
comparison between the PET hypometabolism cluster and the ESI
peak-phase as a plausible hypothesis could not be defined. Data
was passed to statistical analysis as SVs for each metric. We cor-
rected the resulting p-values for multiple comparison via false dis-
covery rate (FDR) and p-values smaller than 0.05 were considered
statistically significant. In Addition, standardized effect sizes
(Cohen’s d) were calculated for each statistical test, defining effect
sizes as d > 0.5 as moderate, and d > 0.8 as large effect size (Cohen,
1992). The study was exploratory.

The following is an overview of the workflow in Fig. 1.

3. Results

Twenty-one patients in the time period described above met
our inclusion criteria and none had to be excluded (for details
see Table 1). Five of the 21 patients were diagnosed with extratem-
poral lobe epilepsy (ETLE) due to low-grade developmental
epilepsy-associated brain tumors (LEAT), focal cortical dysplasia
(FCD), or cavernomas, whereas the remaining 16 patients had
TLE, mostly with hippocampal sclerosis as underlying cause. An
overview of the clinical data is given in Table 1. 18FDG-PET was
not performed in two patients since it was not clinically indicated
(fully concordant data, unifocal epilepsy), and these patients were
excluded from any 18FDG-PET data-based analysis. One additional
patient was excluded from any 18FDG-PET data-based analysis due
to internal hydrocephalus including endoscopic third ventricu-
lostomy and grossly abnormal ventricles.

Euclidean distance: The proportion of patients with an ESI show-
ing zero distance to the RZ was highest in the IEDs peak-phase for
all inverse methods, and the most accurate results were found for
sLORETA and LCMV (Fig. 2, and Table 2). The lowest rate of zero
distance was found at the IED onset for all inverse methods.
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In detail, sLORETA gave a significantly shorter distance than
wMNE in all IED phases (sLORETA < wMNE: p FDR < 0.05, d > 0.5).
Similarly, LCMV showed significantly smaller distances to the RZ
than wMNE at IED onset and half-rise (LCMV < wMNE: p < 0.05,
d > 0.5). There was no significant difference between sLORETA
and LCMV in any IED phase.

When comparing the different IED phases of each inverse
method, the mean distance increased from onset to peak-phase.
wMNE showed significantly smaller distances in the peak-phase
than in the onset-phase (Peak < OnsetwMNE: p = 0.02, d > 0.5). Like-
wise, a tendency to smaller distances in the peak-phase compared
with the onset was observed with LCMV (Peak < OnsetLCMV : p

FDR = 0.09 and sLORETA (Peak < OnsetsLORETA: p FDR = 0.14). There
was no significant difference in the distance between half-rise
and peak-phase in any inverse method.

In addition, the dipole fitting method showed much larger dis-
tances at our IED timepoints (full data not shown) (Onset: 44.6 ± 2
5.4 mm; Half-rise: 31.3 ± 21.6 mm; Peak: 27.9 ± 21.6 mm) than the
results from our distributed source model approaches.

The 18FDG-PET hypometabolism clusterHPT showed a similar
proportion of zero mm distance to RZ compared with ESI in the
IED peak-phase (clusterHPT: 44%). However, clustermSIG showed sig-
nificantly smaller distances to the RZ than ESI of sLORETA in the
IED peak-phase (p FDR = 0.045, d = 0.96) and than clusterHPT (p

FDR = 0.02, d = 1.37). Furthermore, clustermSIG showed smaller dis-
tances to the RZ than ESI of LCMV in the IED peak-phase at trend
level (p FDR = 0.077, d = 0.86).

Volumetric overlap with the RZ: ESI in the IED onset-phase
showed the lowest proportion of patients with DSC > 0.4 for all
inverse methods (Fig. 3, and Table 3). In the IED half-rise phase,
volumetric overlap increased for all inverse methods. The highest
proportion of patients with DSC > 0.4 was found in the IED peak-
phase.

When comparing the inverse methods, sLORETA showed
greater volumetric overlap than the other inverse methods in all
IED phases. The comparison was significantly different only at
the onset (sLORETA > LCMV: p FDR < 0.05, d > 0.5;
sLORETA > wMNE: p FDR < 0.05, d > 0.5).

Regarding the IED phases of one inverse method, LCMV and
wMNE showed significantly greater volumetric overlap in the
peak-phase compared with the onset-phase (Peak > OnsetLCMV : p

FDR < 0.05, d > 0.5; Peak > OnsetwMNE: p FDR < 0.05, d > 0.5). There
was no significant difference between the IED phases of sLORETA.

There was no significant difference in the volumetric overlap
between 18FDG-PET hypometabolism clusterHPT and ESI in the
peak-phase (clusterHPT: 32%). ClustermSIG showed significantly lower
volumetric overlap to the RZ than ESI in the peak-phase (wMNE: p

FDR = 0.045, d = 1.0; sLORETA: p FDR = 0.025, d = 1.3; LCMV: p

FDR = 0.043, d = 1.2) and than clusterHPT (p FDR = 0.002, d = 0.97).

4. Discussion

In this study we evaluated the effect of inverse methods and of
different IED phases on hd-ESI and relate hd-ESI to the resection
zone and FDG-PET hypometabolism. We showed that among the
three inverse methods LCMV, wMNE, and sLORETA, the best con-
cordance to the RZ was achieved with the distributed method
sLORETA and the beamforming method LCMV in the half-rise and
the IED peak-phase. Moreover, the concordance of the clinical
hypothesis-based hypometabolic PET cluster was significantly
higher compared to the cluster with the shortest p-value. Hd-ESI
concordance was not significantly different from the hypothesis-
based FDG-PET hypometabolic cluster. However, the most signifi-
cant FDG-PET was clearly less concordant with the RZ than hd-ESI.

Hd-ESI – IED’s timepoint: In our cohort, there was a significant
difference for wMNE between onset and peak, and a tendency for
sLORETA and LCMV, with smaller distances in peak-phase. How-
ever, the difference not significant between half-rise and peak. A
previous study provided evidence that the most accurate results
were obtained in the IED half-rise phase utilizing the inverse
method of LAURA (Vorderwülbecke et al., 2020). In line with
Vorderwülbecke et al. (2020), other studies found half-rise to be
an optimal compromise between little propagation at onset and
high signal-to-noise ratio (SNR) in peak-phase (Brodbeck et al.,
2011; Lantz et al., 2003). In contrast, a study by van Mierlo et al.
(2017) found the most accurate results in peak-phase. This was
most probably due to the best SNR in peak-phase and less propa-
gation within the IED (van Mierlo et al., 2017).

The SNR and the propagation increase together from IED onset-
to peak-phase (Aydin et al., 2015). A previous study investigated
the frequency of occurrence of propagation within IED events in
patients being evaluated for epilepsy surgery (Mălîia et al., 2016).
They observed that in half of the patient’s propagation occurreddur-
ing the IED events (Mălîia et al., 2016). However, this propagation
remainedwithin the resected area inmost of the cases. These results
are concordant with a previous, smaller study (Lantz et al., 2003).
Our data showed that not more than three patients among all
inverse methods had a propagation of their maximum more than
10 mm from onset to peak compared with to the RZ (LCMV: 5%,
sLORETA: 0%, wMNE: 10%; see Supplementary Fig. 1). This small
number of patientswith a greater propagationmay explain the good
performance in the peak-phase in our cohort. If more propagation is
expected, earlier timepoints than half-rise might be preferable
(Plummer et al., 2019). These aspects should be taken into account
when choosing the optimal timepoint for hd-ESI in a patient.

Hd-ESI - Inverse methods: In our cohort, sLORETA showed a
better spatial concordance with only small differences between
the different IED phases compared with wMNE. This observation
was probably due to the underlying calculation of sLORETA, which
includes smoothing by dividing the estimated sources by their
variance (Pascual-Marqui, 2002). This results in the attenuation
of strong changes in the source distribution of the reconstructed
IEDs between different IED phases. In addition, the small amount
of patients with propagation could account for the small differ-
ences between the IED phases.

Moreover, our findings showed a significantly smaller distance
for LCMV (except for peak-phase) compared with wMNE. LCMV
gave slightly higher distances to the RZ than sLORETA that were
without significant difference. Therefore, suppressing other
sources while estimating the brain activty at one position is bene-
ficial for the identificaction of the IED source.

In literature, there are only a few studies on the comparison of
inverse methods regarding hd-ESI in presurgical evaluation
(Carboni et al., 2022; Heers et al., 2016; Pascarella et al., 2023).
LCMV estimates the activity of a source at a given location, while
simultaneously suppressing the contribution from all other sources
and from noise (Jaiswal et al., 2020). As this approach differs from
the distributed inverse solution, a comparison with LCMV is partic-
ularly interesting. We are aware of only one recent study by
Pascarella et al. 2023 comparing LCMV beamformers and nine
other source imaging methods in evoked potentials by electrical
stimulation of intracranial EEG (Pascarella et al., 2023). In their
analysis, dipole methods provided better ESI results than dis-
tributed methods. However, in this study, ESI was based on a very
focal stimulation of single electrode contacts and not on IEDs gen-
erated by a, usually more distributed, biological source. Addition-
ally, the input parameters in our study were different. A recent
study by Carboni et al. in 2022 compared six distributed inverse
methods for interictal hd-ESI. It revealed a better spatial concor-
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dance of LORETA and LAURA compared with other distributed
inverse methods such as sLORETA and wMNE (Carboni et al.,
2022). However, no statistical comparison was made between
the distances calculated by wMNE and sLORETA. In line with our
results, sLORETA showed a higher proportion of patients with zero
mm distances to the RZ than wMNE. We did not include the
inverse methods LORETA and LAURA, but the distances of sLORETA
in the peak-phase gave results in our cohort that were similar to
the distances with these two recommended inverse methods. Fur-
thermore, Carboni et al. reported a better volumetric overlap with
the RZ of wMNE than did sLORETA, which is most likely due to a
different definition of volumetric overlap than used in our study.
Carboni et al. used an approach based on locating the source max-
imum with respect to an atlas and an ordinal scoring (inside resec-
tion, sub lobar, lobar, lateralization, or contralateral), whereas we
quantified the volumetric overlap via a similarity statistic metric
(DSC). Therefore, a direct comparison of their volumetric overlap
measurements with those of our study was not possible. Additional
reasons for study differences were the different software packages
used, cohort-specific differences, the amount and spike hetero-

geneity of IED trials, and analysis approaches (e.g., rejection of
cheek electrodes, source-space limited to grey-matter, and fixed
regularization k for all patients).

In line with our findings, previous studies evaluating dis-
tributed EEG source modeling methods in benign focal epilepsy
demonstrated greater consistency in interictal source reconstruc-
tion for sLORETA versus MNE and LORETA (Plummer et al.,
2010b). However, the analysis was performed on the cortex surface
sources, which differs from the recent study of Carboni et al. in
2022 (Carboni et al., 2022) and our analysis. This highlights the
need for standardization of evaluation procedures for electromag-
netic imaging analysis.

18FDG-PET hypometabolism: We found that the 18FDG-PET
hypometabolism showed similar distances to the RZ as the ESI
for all inverse methods in the IED peak-phase when the selection
is based on a clinical hypothesis and not on the cluster with the
most significant p-value. This is in line with previous studies,
which reported a good performance of 18FDG-PET hypometabolism
in defining the EZ in patients with epilepsy due to malformations
of cortical development (Lagarde et al., 2020). Furthermore,

Fig. 1. Workflow of the data processing including: (A) the MRI data for identifying the resection zone (RZ), (B) the high-density EEG (hd-EEG) trial data for reconstructing the
sources of the interictal epileptic discharges (IED) in the brain, (C) and the fluorodeoxyglucose-positron emission tomography (18FDG-PET) data for extracting the regions of
hypometabolism. Following the processing of the MRI, hd-EEG and PET data, the hd-EEG electric source imaging (ESI) of each IED phase and 18FDG-PET hypometabolism were used to

calculate the spatial metrics (Euclidean distance, Dice similarity coefficient) for each patient in reference to the RZ.
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Table 1

Study population.

All patients Patients with 18FDG-PET

Group Size 21 18
Sex Female 8 (38.1%) 8 (44.4%)

Male 13 (61.9%) 10 (55.6%)
Time from epilepsy onset to surgery (years)

Average [standard deviation]

14.0 [12.8] 15.7 [13.3]

Age at surgery (years)

Average [standard deviation]

39.2 [10.0] 39.8 [11.1]

Structural MRI Lesional 14 (66.7%) 11 (61.1%)
Non-lesional 7 (33.3%) 7 (38.9%)

Hd-EEG spike trials
Average [standard deviation]

72 [51.0] 62 [49.9]

Location of seizure onset zone Temporal 16 (76.2%) 14 (77.8%)
Extratemporal 5 (23.8%) 4 (22.2%)

Hemisphere of seizure onset zone Left 12 (57.1%) 10 (55.6%)
Right 9 (42.9%) 8 (44.4%)

Surgery AH + ATR 11 (52.4%) 10 (55.6%)
AH 2 (9.5%) 1 (5.6%)
LiTT 1 (4.8%) 1 (5.6%)
Other 7 (33.3%) 6 (33.3%)

Histology Hippocampal sclerosis 7 (31.8%) 7 (38.9%)
Ganglioglioma 3 (13.6%) 2 (11.1%)
Focal cortical dysplasia 2 (9.1%) 1 (5.6%)
Cavernoma 3 (13.6%) 3 (16.7%)
Normal cortex / Gliosis 6 (27.3%) 5 (27.8%)

Surgical outcome at last follow-up
� 12 months; Engel Classification

IA 15 (71.4%) 14 (77.8%)

IB 1 (4.8%) 1 (5.6%)
ID 5 (23.8%) 3 (16.7%)

Post-op follow-up (months)
Average [standard deviation]

20.3 [8.0] 19.2 [7.1]

Abbreviations: AH = amygdalohippocampectomy; ATR = anterior temporal resection; Hd-EEG = high-density EEG; LiTT = laser inter-
stitial thermal therapy.

Fig. 2. Euclidean distance between high-density EEG source reconstruction (hd-ESI) of interictal epileptic discharges (IED), as well as fluorodeoxyglucose-positron emission
tomography (18FDG-PET) hypometabolism regions, and the resection zone (RZ). Euclidean distance from the maximum amplitude of hd-ESI (linearly constrained minimum

variance (LCMV), standardized low resolution electromagnetic tomography (sLORETA), weighted minimum-norm estimation (wMNE)) to the RZ in each IED phase and the distance of

the hypometabolic regions to the RZ. Asterisks in brackets mark statistically uncorrected and significant differences between inverse methods ([*] p < 0.05), whereas asterisks without

brackets mark statistically corrected and significant differences (false discovery rate (FDR)-corrected) between inverse methods (* pFDR < 0.05), and ymark Cohen’s d effect sizes greater

than 0.5. Note: The smallest distances between RZ and ESI were found in the half-rise and peak-phase with sLORETA and LCMV. Distances between RZ and the clinical hypothesis-based

cluster (clusterHPT) were similar to ESI in the IED peak-phase. Similarly, clusterHPT had significant smaller distances to the RZ than the cluster with the most significant p-value

(clustermSIG; pFDR = 0.02, d = 1.37).
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another study reported similar accuracy (sensitivity and speci-
ficity) of electromagnetic source imaging (using sLORETA) and
18FDG-PET to intracranial measurements (Duez et al., 2019). The
poor volumetric overlap of the 18FDG-PET hypometabolism region
and the RZ fits the concept of ‘‘cortical zones” in patients with epi-
lepsy, in which the 18FDG-PET hypometabolism region did overlap,
but did not spatially coincide with the EZ (Jehi, 2018; Rosenow and
Lüders, 2001). The similar Euclidean distances of ESI and 18FDG-
PET hypometabolism region to the RZ show that there is an equal
spatial proximity of hd-ESI and 18FDG-PET hypometabolism region
to the RZ. This is consistent with findings of previous studies,
which reported about the proximately located the area of 18FDG-
PET hypometabolism to IED and seizure onset zone (SOZ)
(Alkonyi et al., 2009; Grouiller et al., 2015; Jeong et al., 2017;

Juhász et al., 2000; Juhász and John, 2020). In a previous patient
study (n = 6), electrical source activity (inverse method: LORETA)
in half-rise and peak-phase was associated with an area of hypo-
metabolism in most patients (Storti et al., 2014). Similarly, in
another study the dipole location matched the 18FDG-PET hypome-
tabolic area in all patients (Pozo, 2000). When comparing the clin-
ical hypothesis-based hypometabolism cluster to the cluster with
the smallest p-value, the clinical hypothesis-based cluster was sig-
nificantly more accurate in detecting the RZ. In direct comparison
to ESI in the peak-phase, the clinical hypothesis-based cluster was
similar accurate. This highlights the importance of combining
multi-modal information when interpreting additional modalities
like 18FDG-PET in the presurgical workup.

4.1. Limitations

Since we chose to use Fieldtrip, a common Matlab-based tool-
box for EEG/MEG processing, we were limited in the choice of
inverse methods we could evaluate. Other inverse methods include
dynamic statistical parametric mapping (Dale et al., 2000), Classi-
cal LORETA Analysis Recursively Applied (CLARA) (Iordanov et al.,
2014), and LAURA (Menendez et al., 2001). Nevertheless, our study
results are in line with similar previous studies (Carboni et al.,
2022; Plummer et al., 2010a) and therefore provide a context for
the different inverse methods and the choice of different timing
of IEDs. Furthermore, the scoring/selection of IED trials was done
by one clinician, hence, a certain amount of subjectivity / operator
bias cannot be ruled out. Finally, the RZ, used as a surrogate for the
EZ, is not an ideal spatial reference for comparison with ESI, as the
IED source reconstructions represent the irritative zone. This irrita-
tive zone is often closely located to the EZ and the SOZ (Brodbeck

Table 2

Mean Euclidean distance between high-density EEG (hd-EEG) source reconstruction
of interictal epileptic discharges (IED) and the resection zone (RZ), as well as
percentage of the patients’ electric source imaging showing zero distance to the RZ.

[mm] Onset Half-
rise

Peak

LCMV 27.5 22.1 19.6
wMNE 42.6 26.1 24.7
sLORETA 27.2 20.3 18.0
Electric source imaging with zero distance to the

resection zone [%]
LCMV 33% 43% 57%
wMNE 19% 33% 48%
sLORETA 29% 52% 57%

Abbreviations: LCMV = linearly constrained minimum variance; sLORETA = stan-
dardized low resolution electromagnetic tomography; wMNE = weighted mini-
mum-norm estimation.

Fig. 3. Volumetric overlap estimated by Dice similarity coefficient (DSC) of resection zone (RZ) and interictal epileptic discharge (IED) electric source imaging (ESI), as well as
fluorodeoxyglucose-positron emission tomography (18FDG-PET) hypometabolism. Volumetric overlap of ESI (linearly constrained minimum variance (LCMV), standardized low

resolution electromagnetic tomography (sLORETA), weighted minimum-norm estimation (wMNE)) and the RZ in each IED time phase and the volumetric overlap of the hypometabolic

regions to the RZ. Asterisks in brackets mark statistically uncorrected and significant differences without brackets mark statistically corrected and significant differences (false

discovery rate (FDR)-corrected) between inverse methods (* pFDR < 0.05), and y mark Cohen’s d effect sizes greater than 0.5. Note: The greatest volumetric overlap of RZ and ESI was

found in the peak-phase, with statistical significance compared with the onset-phase for LCMV and wMNE. All in all, sLORETA showed the greatest volumetric overlap in all IED phases,

with statically significance compared with other inverse methods in the IED onset-phase (sLORETA > LCMV: pFDR < 0.05, d > 0.5; sLORETA > wMNE: pFDR < 0:05; d > 0:5). Volumetric

overlap between RZ and clusterHPT was not significantly different compared to the one of peak-phase in all inverse methods.
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et al., 2011; Duez et al., 2019). The threshold for ESI was empiri-
cally chosen from a selection of 90%tile, 95%tile, and 97.5%tile thresh-
olds. Because the choice of this threshold influences the spatial
dispersion of the ESI included in the volumetric concordance anal-
ysis, we also performed the volumetric concordance analysis for
the other thresholds. However, the main conclusions remained
the same when a different threshold was applied (see Supplemen-
tary Fig. 2). As only patients with good postoperative outcome
were included in the study, they might have had less propagation.
This could have influenced the choice of the IED timepoint. Never-
theless, the results are in line with another cohort described by
Vorderwülbecke et al. in 2020 (Vorderwülbecke et al., 2020). More-
over, the selection of the 18FDG-PET hypometabolism clusterHPT
biases the specificity. However, in the presurgical evaluation the
estimation of the EZ is based on the accordance of different modal-
ities such as MRI, hd-ESI, 18FDG-PET. Often, 18FDG-PET is used to
confirm or reject the assumed location of the EZ. Therefore, we
chose the cluster based on the clinically most plausible EZ location.
Additionally, analyzing the hd-ESI of the other spike groups would
be an interesting question for further studies.

5. Conclusion

Overall, we showed that for the inverse methods studied here,
the IED half-rise and peak-phase showed the best concordance
with the RZ. Furthermore, sLORETA and LCMV were the inverse
methods with the shortest distances to the RZ in our study. More-
over, we provide evidence of similar accuracy of 18FDG-PET hypo-
metabolism compared with hd-ESI in presurgical evaluation and
guide clinicians to choose the clinical hypothesis-based hypometa-
bolism cluster instead of the one with the smallest p-value in the
presurgical workup.
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ABSTRACT 

Introduction: The human brain is ‘active’ even in the absence of a specific task in the so-called 

‘resting state’. Data-driven methods can be used to identity spatially and temporarily distinct 

functional networks resting-state networks (RSN). Such studies are typically based on 

functional MRI, which has a blood oxygen level-dependent (BOLD) contrast that is an indirect 

measure of neuronal activity but also by means of EEG and [18F]FDG-PET . Here, we 

investigated the presence and spatial relationship of metabolic, vascular, and neuronal 

networks in a cohort of healthy subjects and patients with focal epilepsy in a fully 

simultaneous hd-EEG/fMRI/[18F]FDG-PET dataset. 

Methods: Group independent component analysis (group-ICA) on the fMRI [18F]FDG -PET data 

and on hd-EEG data was applied to extract RSN from each modality. Derived fMRI and [18F]FDG 

-PET components were spatially correlated to the Yeo7 resting-state network atlas. Hd-EEG 

components were spatially correlated to the identified fMRI components. 

Results: Established RSN were identified from fMRI data (r: 0.25-0.58, , pFDR < 0.001). Similarly, 

[18F]FDG -PET showed group-ICA components that were spatially correlated for all RSN of the 

Yeo7 atlas (r: 0.14-0.51, , pFDR < 0.001). Most of the brain networks derived from fMRI data 

were also identified in hd-EEG data via group-ICA (r: 0.32-0.61, , pFDR < 0.05). 

Conclusion: Our findings suggest that the identification of known functional RSN from 

simultaneous hd-EEG/fMRI/[18F]FDG -PET data via group-ICA is feasible in each modality. 

Group-ICA components from [18F]FDG -PET and fMRI showed more spatial similarity than from 

hd-EEG and fMRI. The differences between the spatial expression and FC of components 

among modalities likely reflect the different signal origin and spatial and temporal resolution. 
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INTRODUCTION  

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are typical 

modalities for imaging the human brain and its network functions. They can be used to probe 

the functional state of the brain at rest, i.e., without external stimulus. In the last two decades, 

data-driven processing methods have identified spatially and temporally differentiated 

functional networks of the human brain that are "active" even in the absence of a specific task 

in the so-called "resting state" (rs).  

Most of the resting-state network (RSN) studies utilize fMRI, which typically is based on blood-

oxygen-dependent (BOLD) contrast, i.e., minimal MRI signal fluctuations caused by 

hemodynamic changes through neurovascular coupling. A whole set of RSN with characteristic 

spatial profiles was subsequently described for fMRI , which are remarkably stable both within 

and between subjects (Damoiseaux et al., 2006; De Luca et al., 2006). The most common 

approach to extract these RSN is based on decomposing the observed whole-brain signal 

fluctuations into spatially and temporally separated sources using data-driven methods such 

as independent component analysis (ICA). This analysis method has the advantage that it does 

not require any a-priori information or spatial seeds. In 2011 a large analysis based on 1,000 

rs-fMRI datasets revealed most stable estimations of either 7 or 17 human brain networks 

(Yeo et al., 2011). By applying ICA (and similar methods) ‘visual’, ‘sensorimotor’ and ‘auditory’ 

networks were identified, which showed spatially similar profiles to networks found in task-

based fMRI studies. Furthermore, more complex ‘attention’ networks were commonly found 

, comprising areas associated with working memory and executive functions. Finally, and very 

consistently between studies, a ‘default mode’ network was identified (Fox et al., 2005; 

Raichle et al., 2001). Interestingly, most of the brain's aerobic glucose consumption at rest is 

accounted for by the default mode ,attention and cognitive control networks (Vaishnavi et al., 

2010).  

Due to the limited temporal resolution of fMRI and the indirect measurement of neural 

activity via the BOLD signal, some groups have attempted to validate RSN with 

neurophysiological imaging techniques such as electroencephalography (EEG) and 

magnetoencephalography (MEG). Both modalities have very high temporal resolution, which 

can extend into the kHz range. Most studies have used the classic EEG frequency bands of 1-

3 (delta), 4-7 (theta), 8-13 (alpha), 14-30 (beta) and >30 Hz (gamma), sometimes with further 
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subdivisions to investigate brain networks. The group of Brookes et al. developed an approach 

based on a source-reconstructed MEG signal and performing a temporal ICA decomposition, 

similar to the usual method used in fMRI studies. They were able to detect spatially coherent 

RSN patterns from MEG data for the majority of fMRI-based resting state networks (acquired 

separately), including the DMN, sensorimotor, visual, and attentional networks evident across 

multiple frequency bands (Brookes et al., 2011, 2012). Follow-up single-modality studies using 

EEG/MEG provided via ICA spatially distinct electrophysiological RSN in multiple frequency 

bands with good overlap to fMRI networks on source-level (Aoki et al., 2015; Ramkumar et al., 

2014; Sockeel et al., 2016).  

Over the past decade, several simultaneous EEG-fMRI studies have been conducted to 

elaborate a link between the known resting state networks from fMRI and electrophysiological 

networks at rest. Using parallel recordings of EEG and (BOLD-) fMRI, topographic patterns of 

fMRI activations/deactivations were shown e.g., for alpha-band sensor power (Laufs et al., 

2003, 2006). Similarly, RSN fMRI time courses were linked to EEG power but showed a complex 

interaction of RSN fluctuations and the classical EEG frequency bands, each of which 

correlated relatively weakly (Mantini et al., 2007). These results suggest that there does not 

appear to be a direct relationship between historically selected EEG frequency bands and RSN 

activity. More recent studies have shown that global field potential or global field power (quasi 

stationary EEG topographic maps, called microstates) on a 100-millisecond time scale can map 

BOLD fMRI activation patterns on sensor level and are spatially consistent with known resting 

state networks, such as default mode, sensorimotor and auditory networks (Britz et al., 2010; 

Musso et al., 2010). A single modality EEG study using EEG microstates on source-level 

demonstrated spatial correspondence to known fMRI resting state networks (Custo et al., 

2017). In 2016, a study using parallel EEG-fMRI calculated hemodynamic response function 

convolved EEG microstates across all frequencies on source-level. Whereupon an independent 

component analysis for source level EEG microstates and fMRI to identify stable components 

across their cohort in both modalities followed (Yuan et al., 2016). They found spatially and 

temporally specific electrophysiological correlates for the fMRI resting state networks (Yuan 

et al., 2016). However, in most previously mentioned studies, the EEG analyses were 

performed at the sensor level, and when source reconstruction was performed, the high time-

resolution EEG data were down sampled.  
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Simultaneous EEG-fMRI studies also observed distinct functional connectivity patterns 

between different brain networks that reliably occur across time and subjects on sensor-level 

(Allen et al., 2018). Simultaneous EEG-fMRI studies demonstrated the existance of temporal 

or spectral EEG patterns stable across resting-state on sensor level (Hunyadi et al., 2019; 

Labounek et al., 2019), which were similar to EEG resting state networks expressed as scalp 

potentials in an earlier study (Hiltunen et al., 2014). A simultaneous EEG-fMRI study revealed 

that shares of resting-state connectivity are expressed across EEG and fMRI (Wirsich et al., 

2020). An EEG-fMRI study with a measurement time of 34 minutes found temporal correlation 

patterns between BOLD fMRI and sensor level EEG power on group level with large inter -

subject variability (Meyer et al., 2013) 

Moreover, as another indirect marker of neuronal activity, positron emission tomography 

(PET) imaging using the glucose analogue [18F]-fluoro deoxyglucose ([18F]FDG-) allows imaging 

and quantification of regional cerebral glucose metabolism (rCGM). It has been shown that 

group ICA can be used to extract unique RSN from single-frame static [18F]FDG -PET images 

that are spatially similar to those derived from fMRI data (Di et al., 2012; Savio et al., 2017). 

Using simultaneous PET/MR in rats, the application of a group ICA  on dynamic [18F]FDG-PET 

data identified brain networks not only from BOLD-fMRI but also from rCGM data (Wehrl et 

al., 2013). The amplitude of signal fluctuations in RS-fMRI as well as measures of functional 

connectivity derived from graph theory have been shown to be related to changes in rCGM 

(Aiello et al., 2015; Tomasi et al., 2013). In summary, the available evidence indicates that 

vascular BOLD-fMRI RSN fluctuations are linked to neuronal processes, as measured by EEG 

and MEG as well as rCGM, as measured by [18F]FDG-PET. This attenuates initial doubts, if slow-

timescale fMRI- RSN fluctuations are neuronal.  

In this study we wanted to test if the characteristic RSN can be identified from a simultaneous 

hd-EEG, fMRI and [18F]FDG-PET in a cohort of healthy subjects and epilepsy patients. The 

overarching goal of this study is to provide the basis for the development of a multimodal 

analysis approaches that can be used in further studies , e.g., for the identification of 

biomarkers of neuronal diseases. 
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METHODS 

Participants: This study included 29 subjects (mean age: 34.9, age range: 22–49 years, male 

35%). 14 subjects were healthy controls, and 15 subjects were diagnosed with non-lesional 

focal epilepsy based on the International League Against Epilepsy classification (Scheffer et al., 

2017). All patients were on antiseizure medication. Healthy controls had never experienced 

any seizures, were free of any neurological and psychiatric diseases, and were not taking any 

medication. The study (register number: DRKS00014276) was approved by the local ethic 

committee (295/2015BO1) and performed in concordance with the principles of the 

Declaration of Helsinki. All subjects gave informed consent before study participation. The 

measurements took place at the Universitätsklinikum in Tübingen.  

 

Table 4.3.1: Study population 

 Patients with focal epilepsy  Healthy controls 

Total (N) 15 14 

Female n (%) 9 

(60.0 %) 

10 

(71.4 %) 

Age mean (m); standard deviation (sd) 

Age range 

m: 36.1; sd: 6.7 

26 - 47 

m: 34.4; sd: 9.2 

25 - 49 

Antiseizure medication 

range 

m: 1.8; sd: 0.8 

range: 1 - 3 
- 

Temporal epilepsy 

Extra-temporal epilepsy 

10 

5 
- 

 

Simultaneous EEG, fMRI and PET data acquisition: Before the measurement, all subjects fasted 

at least 12 h. PET and MRI data very simultaneously assessed  on a state of the art 3 T PET/MR 

scanner (Biograph mMR; Siemens Healthineers, Erlangen, Germany) in supine position with 

eyes closed. 61 minutes long data sampling was started after intravenous  injection of 184.1 

± 8.2 MBq [18F]FDG. MRI comprised  a T1-weighted 3D-MPRAGE (magnetization prepared 

rapid gradient echo) sequence was acquired as high-resolution anatomical reference (TR: 

1900 ms, TE 2.49 ms, flip angle: 9°, voxel size: 1 × 1 × 1 mm). In addition, functional MR data 

were acquired with a gradient-echo planar T2*-weighted sequence covering the entire brain 
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(TR: 2.5 s, TE: 32 ms, voxel size: 3.5 × 3.5 × 3.5 mm, anterior-posterior (AP) phase encoding). 

To correct the functional MR images for distortions 15 volumes with reversed phase-encoding 

(posterior-anterior) were also acquired for each subject. Simultaneous Hd-EEG acquisition was 

done using a 256-channel EEG system (Electrical Geodesics, Inc., Eugene, OR, U.S.A.) with a 

sampling rate of 1 kHz. The simultaneous hd-EEG-fMRI-[18F]FDG PET measurements were 

performed during the first 30 min.  

Hd-EEG processing: To remove MR gradient as well as ballistocardiogram artifacts we applied 

the algorithms implemented in the manufacturer’s software (Geodesic EGI tools, version: 

5.4.2 (r29917)). The gradient artifact was removed via an average artifact subtraction method. 

This method constructs an average gradient artifact template for each EEG sensor channel and 

applies a template subtraction at the TR-trigger events from the raw EEG sensor signal. To 

detect and reject ballistocardiogram artifacts we used the algorithm from Niazy et al. (Niazy 

et al., 2005). Principal component analysis is applied to the EEG sensor data, temporally linked 

to the detected cardiac events in the data. Components describing the BCG artifacts were 

selected based on their contribution to the explained variance. Together, these construct the 

optimal basis set (OBS) of BCG artifacts. Such OBS have been used for adaptive artifact 

removal (Niazy et al., 2005). 

Further preprocessing and analysis steps on simultaneous hd-EEG data were performed using 

the Fieldtrip toolbox (https://www.fieldtriptoolbox.org/, version 20191127) running in Matlab 

(version 9.5.0.1298439 (R2018b) Update 7, Mathworks Inc.). At first, we applied a Butterworth 

band-pass filter with 1 Hz high pass and 70 Hz low pass on the simultaneous resting-state hd-

EEG data. Additionally, to account for line noise, a 50 Hz band stop filter was applied as well 

as for its 100 Hz and 150 Hz harmonics. For computational proposes we then downsampled 

the data to 250 Hz. The continuous hd-EEG data was divided in trials of 2.5 seconds lengths 

each synchronized by the MR-scanner’s TR trigger event, resulting in 720 trials for each 

dataset. We visually inspected each trial and rejected noisy trials and/or trials artifacts 

contaminated by eye movements, blinks, cardiac, and muscle activity. Afterwards, an 

independent component analysis (ICA) was applied on the sensor-level data to identify and 

also reject components that representing residual electrocardiogram and blink/eye 

movement artifacts. An experienced clinician (E.-C. Heide) further identified and marked any 
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trial in the patient group data showing interictal discharges (IEDs). Those trials were also 

rejected together with the trials immediately before and after the IEDs trial. 

Forward modelling and source analysis: An individual cortical surface based on their 

anatomical MR image was reconstructed for each subject using FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu, version 6.0.0) and subjected to SUMA 

(https://afni.nimh.nih.gov). By using the SUMA toolbox, the cortical surface of each subject 

was reduced to a fixed number of vertices (ld: 10, resulting in 2004 cortical vertices) based on 

the ‘fsaverage’ template (FreeSurfer). Additionally, the surface of six subcortical nuclei 

(bilateral amygdala, hippocampus, thalamus, caudate, putamen and pallidum) were 

reconstructed using a total of 334 vertices from the fsaverage template. By using the inverted 

DARTEL transformation (DARTEL; SPM12; 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12) we transformed those standardized 

subcortical vertices back to the individual anatomical space, resulting in a total of 2338 

vertices for each subject, with each vertex characterized to correspond to an anatomical point-

by-point correspondence for cortical and subcortical regions across all subjects. Lastly, we 

aligned each subject’s individual surface map to a CTF space by using anatomical landmarks 

of fiducial positions (left/right preauricular point, nasion). With regard to the source 

reconstruction, an individual boundary element model (BEM) with three layers of different 

conductivity (scalp: 0.33 𝑆/𝑚, skull: 0.004 𝑆/𝑚, brain: 0.33 𝑆/𝑚) was constructed using the 

‘dipoli’ method implemented in Fieldtrip. The hd-EEG sensor time series were band-pass 

filtered into the common EEG frequency bands (delta 0-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, 

beta1 12-20 Hz, beta2 21-29 Hz, and gamma 32-48 Hz). Source reconstruction was performed 

by applying dynamic imaging of coherent sources (DICS), a beamformer method, (𝜆 

regularization: 5%) for each frequency band separately (Gross et al., 2001). It was shown that 

beamformer methods are able to attenuate residual gradient and BCG artifacts (Brookes et 

al., 2008; Uji et al., 2021). A set of adaptive spatial filters is calculated by the DICS method, 

and the hd-EEG sensor level time courses were reconstructed in each source space vertex for 

each frequency band. To retain a continuous time series for the further processing, rejected 

trials were replaced with a subject-specific average trial from all non-rejected trials. Finally, a 

Hilbert-transformation was applied to provide the instantaneous integrated power of each 

hd-EEG trial and each frequency band. 
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fMRI data preprocessing: First, a slice-time correction was applied to the fMRI data (SPM12, 

version 7487), followed by an estimation of head movement using the Linear Image 

Registration Tool (FSL version 6.0.3, MCFLIRT) (Jenkinson, 2002) as well as a distortion 

correction utilizing the reversed phase-encoded scan (FSL, topup) (Andersson, Skare, & 

Ashburner, 2003). Further processing and analysis steps were performed using the CONN 

toolbox (www.nitrc.org/projects/conn, RRID:SCR_009550) (Whitfield-Gabrieli & Nieto-

Castanon, 2012). The Artifact Detection Tools (ART) implemented in CONN identified outlier 

scans (‘conservative’ settings), if the observed global BOLD signal change was >3 standard 

deviations and/or the amount of head movement was greater than 0.5 mm. In addition, in 

patients with spike discharges, the corresponding fMRI volume and the following nine 

volumes (=18 seconds) were marked as outliers in the fMRI data and rejected from the further 

analysis. Spatial alignment of the mean functional MR dataset to the anatomical T1 reference 

of each subject was done. Spatial segmentation of the anatomical T1 into tissue classes using 

the unified segmentation in SPM12 resulting in six tissue classes (grey-matter, white-matter, 

skull, scalp, cerebrospinal fluid, and others) and a non-linear transformation of each individual 

T1 scan to the MNI152 T1 reference was done. This transformation matrix was also applied to 

all fMRI volumes and the segmentation masks to spatially normalize those to the MNI152 

space. Furthermore, the fMRI data was smoothed using a Gaussian kernel of 8 mm full width 

at half maximum. To further control for spurious effects of head motion, and cardiac and 

respiratory rhythms, each subject’s data was corrected by partial regression in CONN 

removing the following confounds: six motion parameters (three rotation and three 

translation parameters, based on the MCFLIRT rigid body transformation), subject-specific 

confounding factors that modelled nuisance signals within the segmentation masks of white 

matter (three PCA parameters) and cerebrospinal fluid (three PCA parameters). Finally, the 

BOLD time series was band-pass filtered at 0.008-0.09 Hz. 

PET data preprocessing: Dynamic PET data (61 frames à 60 s) were reconstructed using a 3D 

Ordinary Poisson ordered-subset expectation-maximization (OP-OSEM) algorithm (3 

iterations, 21 subsets, 344 matrix size and post-smoothing by a 4-mm Gaussian filter). PET 

data were corrected for decay, scatter and randoms  as well as for attenuation by means of  a 

MR-based attenuation correction (AC). based on an ultra-short echo-time (UTE) sequence 

with the following imaging sequence parameters: TR: 4.64 ms, TE: 2.46 ms, flip angle: 10°, slice 
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thickness: 1.5625 mm, field of view: 300 mm x 300 mm, and matrix size: 192 x 192. Further 

processing steps were performed using the SPM toolbox (SPM12, version 7487). A spatial co-

registration of the averaged dynamic [18F]FDG-PET dataset to the anatomical T1 reference of 

each subject was performed. This transformation matrix was used to spatially normalize all 

[18F]FDG PET volumes to the MNI152 space. Finally, the [18F]FDG -PET data was smoothed 

using a Gaussian kernel of 8 mm full-width at half maximum. 

Group ICA analysis: We applied group spatial ICA on all subjects on the full-time length of pre-

processed fMRI and 18FDG-PET datasets as implemented in the toolbox GIFT (v4.0c, 

http://icatb.sourceforge.net) (Calhoun et al., 2001) using the FastICA algorithm (Hyvärinen & 

Oja, 1997). Additionally, the software package ICASSO was used to improve the robustness of 

the ICA results (Himberg, Hyvärinen, & Esposito, 2004). Briefly, ICASSO repeatedly performs 

group-ICA and calculates a similarity measure between the independent components from 

each run and identifies clusters for ICs that originate from the same underlying independent 

source. The resulting estimates for the ICs are those that show the highest similarity to the 

other estimates in the respective clusters. In this work the ICASSO is performed with 10 re-

runs each with random initial conditions (Himberg et al., 2004). For the 18FDG-PET data, the 

group ICA was set to extract 20 components based on previous studies (Di et al., 2012). For 

the fMRI data, we empirically chose to extract 40, guided by the estimated mean number of 

43 components based on the in the GIFT toolbox implemented minimum description length 

criterion estimation (Akaike, 1974; Calhoun et al., 2001). The beta weights of the resulting 

independent components were z-transformed and visually inspected to reject noise/artifact 

components. All remaining non-thresholded component were spatially correlated to the Yeo7 

functional network atlas (Yeo et al., 2011) to assign them to one of the following atlas brain 

networks: visual-, somatomotor-, dorsal attention-, ventral attention, limbic-, frontoparietal-, 

and default mode network. Thus, the components derived from fMRI and 18FDG-PET were 

identified as components that represent one whole or discernible parts of a of an established 

functional resting state network. Additionally, the resulting independent components 

identified from fMRI data were transformed and resampled from 3D MNI space to the surface 

vertices (SUMA and subcortical surface).  

In order to extract IC from the hd-EEG data, we utilized the toolbox EEGIFT, which is related 

to the GIFT toolbox (Eichele et al., 2011). The analysis workflow is identical to the group-ICA 
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analysis performed with GIFT, but it applies group-level ICA analysis not in the spatial but in 

the temporal domain (Nugent et al., 2017; Nugent et al., 2015). In temporal group-ICA, 

temporally independent ICs are identified from the data by maximizing the statistical 

independence of time courses (Bridwell, Wu, Eichele, & Calhoun, 2013; Eichele, Calhoun, & 

Debener, 2009; Huster, Plis, & Calhoun, 2015; Wu, Eichele, & Calhoun, 2010). Because the 

mean number of components estimated by the in the EEGIFT toolbox implemented minimum 

description length criterion estimation was extremely high we followed an empirical approach 

of determining the amount of group independent components to extract. We further 

performed temporal group-ICA on the EEG datasets with 80 components to be identified 

(henceforth referred to as group-ICA80). We further identified five additional different 

amounts of components from the data from 50 to 100 ICs (group-ICA50, group-ICA60, group-

ICA70, group-ICA90, and group-ICA100). To obtain the most robust components, we used the 

ICASSO technique (ten re-runs) as in the group-ICA application on fMRI and 18FDG-PET data. 

The beta weights of the resulting independent components of each frequency band were z-

transformed. To identify the components derived from hd-EEG data as functional resting state 

networks, we attempted to spatially correlate all hd-EEG components with the components 

identified from fMRI data, which were identified as established resting state networks 

according to the Yeo7 atlas for functional networks.  

In order to control for chance findings and to estimate the significance of spatial resting -state 

hd-EEG ICs correlates to brain networks, we generated surrogate datasets by shuffling the EEG 

sensors of hd-EEG data of each subject. This was done ten times yielding ten different 

surrogate datasets for each subject. For the surrogate data sets, an identical analysis was 

performed as for the real data including the source reconstruction and ICA. For each frequency 

band and each number of group-independent components, 50 permutations of temporal 

group-ICA analysis were performed. In each permutation, a randomized surrogate hd-EEG 

data set was used for each subject. Each permutation yielding 80 group-ICA80 components 

(analogously, the number of resulting components varies for the other group ICA approaches: 

group-ICA50 to group-ICA100). The cross-modal correlation to the fMRI components was then 

also performed for 400 components (group-ICA80) based on surrogate datasets. Only cross-

modal spatial correlation values of the real data component that surpassed the 99.9th 

percentile of the surrogate data components were considered significant (p < 0.001). The 
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resulting p-values were further corrected for multiple comparisons using false discovery rate 

and a cutoff of pFDR < 0.05 (Benjamini & Hochberg, 1995). 

RESULTS 

Among the 40 fMRI components, twenty-two were identified as brain network related 

components. Of the 20 [18F]FDG-PET components, 13 showed spatial correlation with the Yeo7 

resting state networks. In both modalities, at least one component was assigned for each 

functional brain network atlas (fMRI, r: 0.25-0.58, p < 0.001; 18FDG-PET, r: 0.14-0.51, p < 

0.001). For visualization purposes, a threshold value of 7 was applied to the ICA component 

maps for fMRI and [18F]FDG-PET. We decided empirically that for  group ICA applied on our 

hd-EEG data the extraction of 80 group components provided the most presentable results 

compared to the other approaches of component amounts (Appendix C table 1; Appendix C 

figure 2). For visualization purposes, the hd- EEG group ICA components were treated with a 

threshold value of 2. 

Visual network: For fMRI, three components with significant spatial correlation (r: 0.49-0.58, 

pFDR < 0.001) to the visual functional network atlas were identified, each comprising the 

occipital (fMRI#10), medial (fMRI#17), and lateral (fMRI#22) parts of the visual network (Figure 

4.3.1). From the [18F]FDG-PET data one component was identified (PET#18) with a spatial 

correlation of 0.45, distributed spatially across the medial parts of the visual network. For the 

hd-EEG data, we found one component that reached statistical significance against the 

surrogate permutation results. The component was found in the beta1 (EEG#30) frequency 

band and represented the medial visual network (fMRI#17) with significant spatial correlation 

(r: 0.52, pFDR < 0.001) (Figure 4.3.1).  
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Figure 4.3.1: : Visual network components from fMRI, 18FDG-PET, and hd-EEG.  

Three components from fMRI data and one component from 18FDG-PET data were identified that showed spatial correlation 

with the visual network atlas. For hd-EEG, one component was found in the beta1 frequency band. Only significantly correlated 

(pFDR < 0.05) hd-EEG components are shown. 

 
Somatomotor network From fMRI data three components corresponding to the somatomotor 

network were identified. All three with significant spatial correlations (r: 0.40-0.59, pFDR < 

0.001) to the Yeo7 reference network (Figure 4.3.2), each comprising a different part of the 

Yeo7 somatomotor functional network, namely the central-superior (fMRI#16), superior-lateral 

(fMRI#13), and lateral (fMRI#08) parts were identified. For 18FDG-PET, one component (PET#20) 

showed spatial correlation (r: 0.23, pFDR < 0.001) to the somatomotor functional network. The 

18FDG-PET component represented the superior-lateral part of the somatomotor network. 

From the identified components of the hd-EEG data, only one component exceeded the 

statistical significance threshold from the surrogate permutations. This component in beta1 

showed significant spatial correlations (EEG#20, r: 0.60, pFDR < 0.001) to the component derived 

from fMRI data comprising the central-superior network area (fMRI#16). 
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Figure 4.3.2 : Somatomotor network components from fMRI, 18FDG-PET, and hd-EEG. 

Three components from fMRI data and one component from 18FDG-PET data were identified that showed spatial correlation 

with the somatomotor network. One component was identified from hd-EEG in the beta1 frequency band, which showed 

spatial correlation to the fMRI components of the visual network. Note that component fMRI#16, 18FDG-PET#16, and the three 

components from the hd-EEG analysis (Beta1: EEG#21) represent the same sub-network of the somatomotor network. Further, 

only significantly correlated hd-EEG components are shown. 

 

Dorsal Attention network: From fMRI data one component was identified (fMRI#33) with spatial 

correlation of 0.44 (pFDR < 0.001) to the dorsal attention network from the Yeo7 atlas (Figure 

4.3.3). Also, from 18FDG-PET data one component (PET#16) was identified, spatially correlated 

(r: 0.25, pFDR < 0.001) with the right hemispheric part of the dorsal attention network of the 

Yeo7 atlas. For hd-EEG, group-ICA80 did not identify any component that showed spatial 

correlation with dorsal attentional components of the fMRI data exceeded the threshold set 

by the surrogate data. However, group-ICA100 yielded one component spatially related to the 

dorsal attention network component derived from fMRI data (Appendix C figure 2). 
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Figure 4.3.3 : Dorsal attention networks components from fMRI and 18FDG-PET. 

One component from fMRI data and one component from 18FDG-PET data were identified that showed spatial correlation 

with the dorsal attention network atlas. No component was identified from hd-EEG data that surpassed the significance 

threshold set by surrogate data. Note that component fMRI#24, and 18FDG-PET#17 spatially overlap and represent the same 

share of the dorsal attention network. 

 

Ventral attention network: For fMRI data, one component (fMRI#28) with significant spatial 

correlation (r: 0.48, pFDR < 0.001) was identified, mapping the ventral attention network from 

the Yeo7 atlas (Figure 4.3.4). Furthermore, from 18FDG-PET data one component showed 

spatial correlation of 0.24 (pFDR < 0.001) to the ventral attention network. The components 

identified by fMRI and 18FDG-PET showed no spatial overlap. No hd-EEG components derived 

from group-ICA80 showed spatial significant correlation with the ventral attentional 

components identified in the fMRI data. 

 

 
Figure 4.3.4: Ventral attention networks components from fMRI and 18FDG-PET. 

One component from fMRI data and one component from 18FDG-PET data were identified that showed spatial correlation 

with the ventral attention network atlas. No component from hd-EEG surpassed the threshold set by surrogate data. Note 

that the depicted components fMRI#19 and 18FDG-PET#24 spatially overlap in the midline part of the ventral attention network. 
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Limbic network: For fMRI, two components were identified with spatial correlation (fMRI#09, 

r: 0.42, pFDR < 0.001; fMRI#29, r: 0.36, pFDR < 0.001) to the limbic functional network atlas (Figure 

4.3.5). The frontal part of the limbic network atlas is visible in fMRI#09, and fMRI#29. From 

18FDG-PET data, three components were identified with spatial correlation to the limbic 

functional network. One component (PET#04, r: 0.14, pFDR < 0.001) represents the frontal 

portion of the limbic network. The other two components (PET#07, r: 0.19, pFDR < 0.001; PET#19, 

r: 0.23, pFDR < 0.001) each comprised a hemispheric part of the temporo-frontal portion of the 

limbic network atlas. For hd-EEG no components were found via group-ICA80 that reached 

statistical significance against the surrogate permutation results for the limbic network. With 

60 and 70 independent components (group-ICA60/group-ICA70) we found for each analysis one 

component spatially related to the limbic network and exceeding the statistical significance 

threshold from the surrogate permutations (Appendix C figure 2). 

 

 
Figure 4.3.5: Limbic network components from fMRI and 18FDG-PET. 

Two components from fMRI data and three components from 18FDG-PET data were identified that showed spatial correlation 

with the limbic network atlas. No component was identified from hd-EEG that surpassed the threshold set by surrogate data. 

Note that component fMRI#29 is represented as two components in the 18FDG-PET data (18FDG-PET#07, 18FDG-PET#19). 

 
Frontoparietal network: From fMRI data, five components were identified with spatial 

correlations (fMRI#14, r: 0.38, pFDR < 0.001; fMRI#15, r: 0.39, pFDR < 0.001; fMRI#23, r: 0.38, pFDR < 

0.001; fMRI#30, r: 0.25, pFDR < 0.001; fMRI#40 r: 0.43, pFDR < 0.001) to the frontoparietal network 
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atlas (Figure 4.3.6). Each component comprised a different share of the network. For 18FDG-

PET, one component was identified with spatial correlation (r: 0.24, pFDR < 0.001) to the right 

hemispheric share of the frontoparietal network from the Yeo7 network atlas.  

From hd-EEG data, two components were identified from hd-EEG in the frequency bands 

alpha, and gamma to the identified fMRI components of the frontoparietal network. The 

component found in the alpha frequency band (EEG#62) showed significant spatial correlation 

(r: 0.41, pFDR < 0.001) to the fMRI component (fMRI#23) comprising the bilateral fronto-parietal 

share of the functional network. The other component (EEG#42) found in the gamma frequency 

band represented the fronto-medial share of the frontoparietal network (fMRI#40) with 

significant spatial correlation (r: 0.41, pFDR < 0.05). 

 

 

Figure 4.3.6: Frontoparietal network components from fMRI, 18FDG-PET, and hd-EEG.  

Five components from fMRI data and one component from 18FDG-PET data were identified that showed spatial correlation 

with the frontoparietal network atlas. Two components were identified from hd-EEG data from the alpha and gamma 

frequency bands which showed spatial correlation with the fMRI components of the frontoparietal network. Only significantly 

correlated (pFDR < 0.05) hd-EEG components are shown. 
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Default mode network: From fMRI data, five components with spatial correlation (fMRI#11, r: 

0.25, pFDR < 0.001; fMRI#28, r: 0.52, pFDR < 0.001; fMRI#31, r: 0.34, pFDR < 0.001; fMRI#33, r: 0.37, 

pFDR < 0.001; fMRI#36, r: 0.30, pFDR < 0.001) to the default mode network (DMN) were identified 

(Figure 4.3.7). Each component mapped different spatial shares of the DMN. For 18FDG-PET, 

two components with spatial correlation (PET#02, r: 0.28, pFDR < 0.001; PET#15, r: 0.28, pFDR < 

0.001) to the DMN of the Yeo7 network atlas was found. For hd-EEG data, we found four 

components that reached statistical significance against the surrogate permutation results. 

One component (EEG#09) was found in the delta frequency band with spatial correlation (r: 

0.54, pFDR < 0.05) to the fMRI component (fMRI#28) representing the frontal share of the 

default mode network. One hd-EEG component each was found in the alpha (EEG#70), and 

beta2 (EEG#62), and gamma (EEG#55) frequency band spatially correlating (r: 0.38-0.44, pFDR < 

0.05) with the fMRI (fMRI#33) component imaging the medial-occipital share of the DMN. 
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Figure 4.3.7 Default mode network components from fMRI, 18FDG-PET, and hd-EEG. 

Five components from fMRI data and two components from 18FDG-PET data were identified via group-ICA that showed high 

spatial correlation with the default mode network atlas. Four components were identified from hd-EEG data from the delta, 

alpha, beta2, and gamma frequency bands which showed spatial correlation with the fMRI components of the default mode 

network. Note that component fMRI#33, 18FDG-PET#02, and the three components from the EEG analysis (Alpha: EEG#70; Beta2: 

EEG#62, and Gamma: EEG#55) spatially represent the same medial-occipital share of the default mode network. 

 
 

 

DISCUSSION 

We investigated RSN of three simultaneously measured modalities using a data-driven 

approach, namely group-level independent component analysis (group-ICA). We showed that, 

in addition to the established identification of brain networks from fMRI data, it is possible to 
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detect RSN from the parallel recorded hd-EEG and 18FDG-PET. For most (four of seven) of the 

typical RSN known from fMRI, we could identify corresponding networks for both hd-EEG and 

18FDG-PET from the simultaneous data. However, for the dorsal and ventral attention as well 

as the limbic network of the Yeo7 atlas no components from hd-EEG data were found that 

surpassed the surrogate-data threshold.  

BOLD/fMRI networks: In this study, all components of the resting-state network derived from 

fMRI data were comparable to the results of previous studies (Di et al., 2012; Smith et al., 

2009; Yeo et al., 2011). Cole et al. identified eight of the most common and consistent RSN 

(Cole, 2010). With our analysis, we were able to identify these eight RSN, with some RSN (e.g., 

somatomotor network) consisting of multiple components, i.e., sub-networks. This is probably 

due to the selected number of components to be identified in the group-ICA. Even though it 

has already been shown that a higher number of components in the group ICA increases the 

difficulty to identify and classify the components (Tohka et al., 2008), all non-artifact 

components derived from fMRI data in this study showed spatial correlations to the networks 

from the Yeo7 atlas. Despite the reported signal dropout and spatial distortion of BOLD images 

in the orbitofrontal and anterior temporal cortex (Yeo et al., 2011), we observed components 

with moderate spatial correlation (r>0.36) to the limbic network. 

18[F]FDG-PET networks: Our findings for the networks derived from 18FDG-PET data are 

coherent with previous findings revealing metabolic brain networks in humans (Di et al., 2012; 

Savio et al., 2017). Similar to our findings, they identified components spatially matching RSN, 

such as visual, somatomotor, ventral attention (salience network) (Di et al., 2012), dorsal 

attention (central executive), frontotemporal (central executive network), and DMN (Di et al., 

2012; Savio et al., 2017; Trotta et al., 2018). In contrast to those studies, we were not able to 

extract multiple components spatially describing the visual networks (Di et al., 2012; Savio et 

al., 2017; Trotta et al., 2018). However, we found the somatomotor, and DMN network to be 

expressed in multiple (sub-)components. Compared to the fMRI components derived in this 

study, the number of components was smaller for most of the networks derived from 18FDG-

PET (e.g., frontoparietal and DMN networks). This is consistent with the results of a previous 

study (Di et al., 2012). They hypothesized that the absence of these networks in 18FDG-PET 

data could be due to: (I) their use of static properties of brain metabolic activities, (II) inter -
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regional connectivity beyond the temporal resolution of 18FDG-PET, or (III) differences in 

measurement environments with respect to noise during measurement (Di et al., 2012). Based 

on the simultaneous measurement of imaging modalities in our study, we can exclude the 

difference in acquisition surrounding as cause in our data. The reasons for the absence of 

these networks in the data are rather, the temporal resolution of the PET modality or its 

different signal origin (metabolic) compared to BOLD-fMRI. In a previous study, it was found 

that sufficiently different incoherence of activities in the data causes the group ICA 

components to split into subnetworks due to the independence thus created (Eichele et al., 

2009). Therefore, we can assume, that the fronto-temporal fMRI component spatially 

correlating the Yeo7 limbic network, identified as two components from the 18FDG-PET data, 

had a more pronounced difference in activity at the metabolic level than it does at the vascular 

level. 

Neural networks: With this work, we provided evidence for temporal group-ICA to be able to 

extract independent components in source space from simultaneous hd-EEG/fMRI/18FDG-PET 

measurements, correlating to an established network atlas derived from fMRI data (Yeo et al., 

2011).  

Our findings are in line with previous work identifying resting-state components from non-

parallel MEG-fMRI, EEG, and one parallel EEG-fMRI data corresponding to: default-mode, 

(Aoki et al., 2015; M.J. Brookes, Woolrich, et al., 2011; Mantini et al., 2007; Shou et al., 2020; 

Sockeel et al., 2016; Yuan et al., 2016), visual, sensorimotor, frontoparietal (Aoki et al., 2015; 

M.J. Brookes, Woolrich, et al., 2011; Mantini et al., 2007; Shou et al., 2020; Sockeel et al., 2016; 

Yuan et al., 2016). One study also observed left and right frontoparietal networks divided in 

four components (M.J. Brookes, Woolrich, et al., 2011), which is in line with our findings. We 

did not find components that are spatially correlated to the dorsal attention network from the 

Yeo7 atlas with 80 components to be identified via group-ICA. However, with a different 

number of components to be identified (group-ICA100), we found one component in the beta1 

frequency band spatially correlated to the dorsal attention network. This is in line with 

previous findings from a study, which correlated the timecourses of resting-state network 

components derived from fMRI data via ICA and the power variations in EEG sensor-level 

during a parallel EEG-fMRI measurement (Mantini et al., 2007). They found that the dorsal 

attention network had strong relationship to the alpha and beta rhythms of their EEG sensor-
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power fluctuations (Mantini et al., 2007) , which fits our identification of the dorsal attention 

network in the beta1 frequency band. In contrast to a previous study, which identified the 

right-hemispheric lateral parietal share of the ventral attention network in the alpha band 

frequency (Aoki et al., 2015), we did not observe a component spatially describing the ventral 

attention network. Various factors can be responsible for not identifying the ventral attention 

network in our hd-EEG data, e.g., the size of our cohort, and technical features. The study by  

Aoki et al. analysed the 19-channel EEG data of 80 subjects without a parallelly measured 

fMRI, while we investigated the hd-EEG data of 29 subjects of a parallel measurement of hd-

EEG/fMRI/[18F]FDG-PET. This difference in measurement conditions alone could be the reason 

for the difference in our results.  

Interestingly, with our analyses of group-ICA60 and group-ICA70, we found a similar component 

in both analysis approaches that exceeded the surrogate threshold and appears to represent 

the limbic functional network from the Yeo7 atlas (see Appendix C Figure 2). To our 

knowledge, identification of the limbic network is not an established observation in studies 

examining EEG data with parallel recorded fMRI data. Because the spatial correlations of the 

hd-EEG components of group-ICA80 to the fMRI components are higher compared to other 

group-ICA approaches, we decided to use 80 components as parameters for the results shown 

in the main part of this study. Due to the consistent appearance of components (e.g., DMN) 

and the appearance of other RSN (e.g., limbic, and dorsal attention network) under certain 

numbers of components to be identified suggests that there is no ideal number of components 

which serves as parameters for a group-ICA on resting-state hd-EEG data with parallel 

recorded fMRI/[18F]FDG -PET.  

Consistent with our assumption, we observed multiple hd-EEG components distributed in one 

or more frequency bands that map the same network portion of an fMRI component (e.g., 

frontal, and occipital DMNs). This could be due to the higher temporal resolution of the EEG, 

where temporal independence was found and led to a splitting of the components, or to the 

nature of the group ICA, as the algorithm could have separated the components arbitrarily, 

e.g., as a result of extracting too many components (Särelä & Vigário, 2003). To control for 

this, we applied component analyses on EEG data with other numbers of components (see 

Appendix C table 1), which in most cases identified similar numbers of significant components 

in comparable localizations with variations in their spatial extent (see Appendix C table 1). This 
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is in accordance with the experience of the authors who introduced the EEGIFT toolbox 

(Eichele et al., 2011). Consequently, a spatial correlation was also found between all 

components identified with 80 ICs to extract and for all other group-ICA approaches with other 

amounts of ICs to extract (see Appendix C figure 1). Furthermore, for the other group-ICA 

approaches, some of the components from group-ICA with 80 ICs were found in different 

frequency bands (see Appendix C figure 2). This is supported by previous findings, that 

hypothesized that there is no strong relationship between historically EEG frequency bands 

and resting-state network activity (Mantini et al., 2007). This previous study and our results 

suggest that RSN in EEG do not occur in specialized frequency bands, but broadband. Thus, 

our analysis shows that when different components are chosen to be identified using group-

ICA in hd-EEG data, spatially coherent network components are found in other frequency 

bands or are distributed across multiple frequency bands. Regarding the spatial profile of 

network components identified from hd-EEG/fMRI/[18F]FDG -PET modalities, the differences 

in spatial patterning and delineation are worth mentioning. Results of fMRI group-ICA showed 

more centralized pattern structures in the components, which is not surprising, since the 

group-ICA approach is an established technique yielding robust results applied to fMRI data. 

Using our analysis approach for the hd-EEG components, we selected only those components 

that were spatially correlated with the fMRI components. Therefore, the hd-EEG components 

have a similar spatial pattern as the fMRI components. However, the existing differences 

between fMRI and hd-EEG components will most likely be due to the overall data quality of 

an EEG measurement with a parallel fMRI (Debener et al., 2008; Niazy et al., 2005). 

Furthermore, differences could also be due to the lower spatial and higher temporal 

resolutions of EEG, compared to fMRI. However, we found a strong spatial correspondence 

between EEG and fMRI components, as expectable due to our analysis approach. Since most 

vascular fMRI networks were also found in neuronal hd-EEG data, this observation provides 

further evidence of the coupling between vascular and neuronal activity. However, we cannot 

exclude that there are other EEG RSN that temporally co-operate with RSN derived from other 

modalities but in different regions.  

Metabolic [18F]FDG -PET networks were found to be less spatially defined than their fMRI-

derived counterpart, which is most likely due to the spatial smoothness in [18F]FDG -PET 

images. The components derived from the [18F]FDG -PET data could not always be clearly 
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spatially separated from each other by the group-ICA and therefore appear clustered in their 

spatial distribution, which is in line with previous findings (Savio et al., 2017; Trotta et al., 

2018). Moreover, it has already been observed that the differences in spatial expression of 

the networks are strongly influenced by the origin of the fMRI and [18F]FDG -PET signals (Savio 

et al., 2017). Additionally, the low temporal resolution (change in glucose metabolism in a 

period, here 60 seconds) of the 18FDG-PET signals results in noisier results, since group-ICA on 

[18F]FDG -PET data identifies sources of between-subject covariance. Although the spatial 

correspondence reinforces the linkage of cerebral glucose metabolism to vascular activity, we 

further observed that metabolic mapping of networks is not as spatially distinct as vascular 

mapping. 

LIMITATIONS 

Due to the cohort of healthy subjects mixed with patients with focal epilepsy, we cannot 

exclude patient- / epilepsy-specific effects or detect their influence on the analysis. However, 

we calculated statistical group differences of various analysis metrics (all modalities: seed-

based functional connectivity, functional connectivity on global and vertex/voxel -level; for 

fMRI and 18FDG-PET: fALFF, regional homogeneity, intrinsic functional connectivity, Local 

Correlation; for hd-EEG: power on global and vertex-level) and could not observe any 

statistically significant group difference (healthy subjects vs patients with focal epilepsy).  

 With respect to the data processing, we applied well-established techniques to remove the 

gradient and ballistocardiogram artifacts in the hd-EEG data (Niazy et al., 2005). However, we 

cannot exclude the possibility that other approaches to remove MR environmental artifacts 

from hd-EEG data may yield different results. For example, instead of using post-processing 

methods to correct artifacts, the use of carbon wire loops during data acquisition could have 

improved artifact suppression, resulting in less noisy EEG data. To determine RSN 

components, we relied on spatial correlation of hd-EEG components to fMRI components. 

Furthermore, we cannot exclude whether other spatially uncorrelated hd-EEG components 

would not also be part of an existing (EEG-specific) resting-state network. Lastly, we initially 

chose the functional network atlas Yeo7 to spatially define resting-state network for fMRI and 

18FDG-PET, thus our results must be strictly considered under this constraint. 

CONCLUSION 
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Overall, we showed that spatially coherent resting-state network can be identified from each 

modality of a simultaneous trimodal hd-EEG/fMRI/18FDG-PET measurement. Most of vascular 

fMRI networks, were also found in neuronal hd-EEG data, reinforcing the hypothesized link 

between vascular signaling and neuronal activity. Each modalities measurement property 

(metabolic, vascular, neuronal), as well as their spatial and temporal resolution are crucial 

variables that influence the identification of the RSN in the brain in terms of their spatial 

profile and the occurrence of networks. Nevertheless, the fact of cross-modal expression of 

some RSN reinforces further investigation of such analyses of simultaneously measured 

trimodal (hd-EEG/fMRI/18FDG-PET) datasets, as they hold the potential to identify biomarkers 

for neuronal disease in multiple spatial and temporal dimensions. 
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5. GENERAL DISCUSSION AND OUTLOOK  

This chapter provides the reader with an overview of multimodal brain networks in epilepsy 

patients, as well as temporal and spatial linkage of brain networks from different imaging 

modalities in epilepsy patients and healthy controls. 

To do this, I will first discuss the multimodal changes in the brain networks in patients with 

idiopathic generalized epilepsy (IGE) (Chapter 5.1.1), as well as classify the bimodal alterations 

of the corticothalamic network and discuss about their significance in the context of IGE 

(Chapter 5.1.2). 

Further, I will discuss the impact of methodological choices in source reconstruction in the 

context of presurgical evaluation (Chapter 5.2.1). Additionally, I will relate these results to the 

regional decrease in cerebral glucose metabolism from the metabolic neuroimaging modality 

18FDG-PET and discuss the significance of their spatial relationship to epileptogenic zones 

(Chapter 5.2.2). 

Finally, building on findings from the previous project (Chapter 4.1), I aim to outline the 

characteristics and spatial interrelationships of resting-state networks in the human brain 

derived from a parallel multiple modality measurement, as well as the relevance of these 

observations to this type of measurement (Chapter 5.3).  
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5.1. BRAIN NETWORKS IN PATIENTS WITH IGE 

The results of the first project (Chapter 4.1) of this dissertation can be divided into two 

partitions. The first partition includes the feasibility of extracting relevant statistical group 

differences from hd-EEG data measured with a parallel fMRI, after MR artifact rejection 

methods, at source-level. The second partition builds on the results of the first partition of this 

project and comprises the detection of thalamocortical network changes in patients with IGE 

extracted from both modalities measured in parallel (hd-EEG-fMRI). 

5.1.1. PARALLEL EEG-FMRI BRAIN NETWORK ANALYSIS IN PATIENTS WITH IGE  

We were able to show that relevant group differences in functional connectivity and power 

between patients with IGE and healthy controls can also be extracted from the noisier data of 

an hd-EEG dataset measured with a parallel fMRI (Chapter 4.1). Due to the heterogeneity of 

epilepsy and its understanding as a brain network disease (Blumenfeld, 2014; Fisher et al., 

2005), it is beneficial to study the brain networks in patients with IGE in different temporal 

and spatial scales, as well as in multiple aspects (e.g., vascular, metabolic etc.) to gain a better 

insight into the disorder.  

Previous studies investigating IGE have used EEG-fMRI imaging, with EEG primarily used to 

identify the incidence of generalized spike-wave discharges (GSWD). The associated perfusion 

fluctuations that occur before, during and/or after this event are then analyzed in the fMRI 

data recorded in parallel. With this approach, the brain networks can be studied in the 

generation as well as the development of GSWD in fMRI with its high spatial resolution. 

Following this analytical approach, one study demonstrated the involvement of basal ganglia 

and thalamocortical circuits in the development of GSWD in patients with IGE (Li et al., 2009). 

In another study, changes in functional connectivity between the BOLD fMRI signals of 

different regions (i.e., the sensorimotor and the occipital default mode networks) were 

observed in patients with IGE at different time periods: a few minutes before the onset of 

GSWD, seconds before the onset, during and even several seconds after GSWD 

(Tangwiriyasakul et al., 2018). In another EEG-fMRI study, it was observed from fMRI signal 

that deactivations in the default mode network (DMN) and dorsal attention network and 

activations in the somatomotor network and thalamus occur just before the onset of GSWDs 

(Klamer et al., 2018). The results of this study suggest that the default-mode network favors 
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GSWD in patients with IGE. Based on findings that the healthy human cerebral cortex elicits 

spatiotemporal neuronal activity avalanches (Plenz, 2012), one study demonstrated that 

epilepsy patients tended to exhibit higher neuronal amplification and larger avalanches - 

especially during interictal epileptiform activity (Arviv et al., 2016). From these findings, one 

question can be derived: what is the origin of these affinities of the individual networks in 

epilepsy patients? Further, what role do changes in the resting-state networks play in relation 

to these tendencies? 

To study the analysis of the resting-state networks by fMRI, an EEG-fMRI measurement uses 

the EEG to exclude GSWD from fMRI data measured in parallel, to ensure that the data are 

free of pathological activity and make an unambiguous analysis of the human brain at rest 

possible. Seed-based analysis of such data revealed a decreased functional connectivity 

between DMN regions in patients with IGE (Luo et al., 2011; McGill et al., 2012) and functional 

connectivity alterations in thalamocortical networks (Ji et al., 2015; Wang et al., 2011). These 

results benefited from the high spatial resolution of the fMRI data being able to well identify 

the altered areas spatially. However, apart from the fact that these are persistent changes at 

rest, due to the time resolution of the fMRI one can only make limited statements about the 

temporal composition of these pathologically altered networks in patients with IGE. Because 

the complexity of brain networks is due not only to the sheer number of neurons and their 

connections to 103 to 104 other neurons, but also to the dynamic features, i.e., the highly 

nonstationary nature of these networks (Andrzejak et al., 2012), neuroimaging modalities with 

a high temporal resolution (e.g., EEG and MEG) are necessary. 

Recently, comparisons of EEG and MEG data analyses were performed in patients with IGE 

and healthy controls. These showed an increase in connectivity and power at rest at source 

level in several widespread cortical and subcortical brain regions in several different frequency 

bands in patients with IGE (Elshahabi et al., 2015; Li Hegner et al., 2018; Stier et al., 2021). A 

recently published study also made use of the high temporal resolution of EEG/MEG and 

showed significant increases in functional connectivity in multiple frequency bands, 

predominantly at theta and beta frequencies, in patients with IGE that correspond to some 

degree to DMN areas known from fMRI resting-state studies (Stier et al., 2022). The spatial 

correspondence to DMN seen in these study (Stier et al., 2022) is supported by previous 

evidence that resting-state networks delineated using electrophysiology may correspond to 
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those of resting-state networks from fMRI data in healthy subjects (Brookes et al., 2011; Hipp 

& Siegel, 2015; Jann et al., 2009; Sadaghiani & Wirsich, 2020).  

Even though the results of EEG and MEG studies are inferior to those of fMRI studies in terms 

of spatial accuracy, they are an essential tool in the study of brain network interaction changes 

due to their high temporal resolution (Baillet, 2017; Buzsáki et al., 2012; Lopes da Silva, 2013).  

Previous EEG-fMRI studies have not focused on EEG measurements with parallel fMRI when 

investigating IGE and have even less conducted analyses at the source level. Their results lack 

information on temporal aspects, whereas single-modality EEG/MEG studies lack spatial 

accuracy. One reason for the sparsity of EEG-fMRI studies utilizing EEG data for results is 

probably the induction of strong EEG artifacts by the fMRI, which require intensive cleaning 

procedures (Allen et al., 2000; Felblinger et al., 1999). In particular, the removal of the 

ballistocardiographic (BCG) artifact from EEG data is not a trivial task, due to its temporal non-

stationary characteristic (Bonmassar et al., 2002) which has led to the development of various 

approaches to their removal. These range from techniques for artifact reduction already 

during measurement using additional hardware components in the EEG cap (van der Meer et 

al., 2016), to tracking of the subject's head movement during measurement by MR-compatible 

camera systems for additional information for post measurement processing methods (LeVan 

et al., 2013), to variations of these post measurement processing approaches. These 

approaches mostly use data-driven methods such as principal component analysis (Marino et 

al., 2018; Niazy et al., 2005) or independent component analysis (Joyce et al., 2004), 

individually or in combination with other techniques such as canonical correlation analysis 

(Assecondi et al., 2009), empirical mode decomposition (Javed et al., 2017), or spatial-filtering 

(Rusiniak et al., 2022). All these methods are able to improve the quality of the EEG data 

acquired during the parallel fMRI measurement. However, it had not been established how 

the MR artifact cleaning process affects the underlying information content of the EEG data 

measured with a parallel fMRI at rest.  

Subsequently, several studies have investigated the resting-state functional connectivity of 

the EEG data with a parallel measured fMRI and have provided valuable insights in linking EEG 

and fMRI on (functional) connectivity level at resting-state, such as the performance of 

predicting EEG connectomes from fMRI and vice versa, as well as comparisons of fMRI and 

EEG connectomes (Deligianni et al., 2014). Wirsich et al. demonstrated the feasibility of 
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extracting joint EEG-fMRI connectomes at 7T field strength and showed that EEG-fMRI 

connectomes can be reproduced across different MRI acquisition systems (Wirsich et al., 

2021). They have also worked on an independent component analysis (ICA) approach to 

perform a joint ICA of EEG-fMRI connectivity on a cohort of healthy subjects, the results of 

which suggest that spatial congruent regions of independent functional connectivity state 

networks are co-expressed in both modalities (Wirsich et al., 2020). Also, the functional 

connectivity maps from fMRI and EEG were evaluated after pharmacological modulation with 

ketamine and midazolam (Forsyth et al., 2020). However, it was not established whether EEG 

metrics applied to inside MR-scanner measured EEG, such as power or functional connectivity, 

can be used for identification of statistical group differences at source-level.  

With our results (Chapter 4.1), we demonstrated that relevant statistical group differences in 

patients (IGE>HC) in power and functional connectivity in the hd-EEG data from a parallel hd-

EEG-fMRI measurement are preserved after cleaning. Our findings of increased phase-based 

functional connectivity and power in patients with IGE compared to healthy controls are 

consistent with previous studies (Stier et al., 2021, 2022). Furthermore, we demonstrated that 

certain group differences in functional connectivity in the theta frequency band EEG were also 

expressed in vascular changes in the fMRI.  

With our analysis approach, we did not combine the high spatial resolution of fMRI and the 

high temporal resolution of EEG to obtain increased accuracy in both dimensions. This can be 

done by fusing the brain signals from both modalities, via symmetric approaches (data-driven 

approaches such as ICA, and principal component analysis (PCA) etc.; model-driven 

approaches, by including fMRI information in EEG forward models) or asymmetric fusion 

approaches (e.g., EEG constrained fMRI, or vice versa) (Lei et al., 2012; Tulay et al., 2019; 

Valdes-Sosa et al., 2009). In future studies, conducting such data fusion before performing 

statistical group comparisons could lead to better spatial and temporal definition in the group 

comparison results and provide further insight into network changes in patients with IGE. 

In summary, our results (Chapter 4.1) show that despite the removal of MR environment 

artifacts, the EEG data retained adequate information for extracting relevant group 

differences in power and functional connectivity on source-level in IGE patients. This evidence 

may also be of importance beyond the analysis of group differences in patients with IGE, and 
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may encourage parallel EEG-fMRI studies, in general, for analyzing group comparisons on 

source-level EEG data as well as fMRI data in other neurological diseases. 

5.1.2. THALAMOCORTICAL NETWORK ALTERATIONS IN PATIENTS WITH IGE 

In the second partition of the project (Chapter 4.2) of this dissertation, we showed increased 

functional networks connectivity between the thalamus and the occipital regions of the 

default mode network in patients with IGE compared to healthy controls, which was 

expressed in fMRI and in the theta band of hd-EEG.  

Previous EEG-fMRI studies had initially focused on the investigation of the fMRI correlates of 

GSWD and the involved brain areas, an activated thalamic region and deactivated DMN 

regions were found in many studies (Aghakhani et al., 2004; Benuzzi et al., 2012; Gotman et 

al., 2005; Hamandi et al., 2006; Laufs et al., 2006). At the functional level, fMRI network 

connectivity studies revealed the DMN regions and the thalamus to be altered in the temporal 

sequence of formation, development, and termination of the GSWD (Klamer et al., 2018; 

Tangwiriyasakul et al., 2018; Vaudano et al., 2009). The results of these studies clearly 

establish an involvement in the thalamocortical network in the process of GSWD generation. 

Our work, as well as other studies the fMRI data showed alterations in the thalamocortical 

network in cohorts of patients with IGE at rest and a significant increase in functional 

connectivity between occipital shares of the DMN network and the thalamus (Ji et al., 2015; 

Qin et al., 2021, 2022; Weng et al., 2020).  

A most recent study applied static and dynamic functional connectivity analysis of the 

timecourses from independent components derived from resting-state fMRI data of patients 

with IGE (Qin et al., 2022). In contrast to our results, they found reduced static functional 

connectivity between the components representing the thalamus and precuneus, these 

findings of reduced functional connectivity remained statistically uncorrected in this study 

(Qin et al., 2022). Several fMRI studies in patients with IGE reported either an increase (Ji et 

al., 2015; Weng et al., 2020) or a decrease (Masterton et al., 2012; Qin et al., 2022) in 

functional connectivity between thalamus and occipital default mode network regions. Each 

of these studies, including our own, followed a different analysis procedure in terms of the 

exact spatial definition of the ROI and the further analysis steps. At this point, one cannot 

identify the exact reason for the discrepancy between the studies. It has been shown that 
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variations in the analysis methods among workgroups using the exact same data set has 

significant implications for the results and, consequently, for the conclusions (Botvinik-Nezer 

et al., 2020). However, it remains to be noted that whether increasing or decreasing, a change 

in functional connectivity is present in patients with IGE. More studies are needed to gain 

clarity on this issue. With our analysis, we have provided evidence that these network changes 

are not only found at the vascular level but are also expressed in electrophysiological changes.  

In our IGE cohort the increased functional connectivity in the thalamocortical network was 

found in the theta frequency band of the EEG. Several previous EEG/MEG studies without an 

fMRI measured in parallel also found widespread increased theta connectivity in patients with 

IGE, among others (Clemens et al., 2012, 2021, 2023; Elshahabi et al., 2015; Li Hegner et al., 

2018; Stier et al., 2021, 2022). However, the theta band is not commonly reported in the 

literature as a frequency band of thalamic oscillations associated with cortical communication 

(Bazhenov & Timofeev, 2006; Buzsáki, 2006; Timofeev & Chauvette, 2011).  

Yet, subdural electrocorticographic measurements in two patients with intractable epilepsy in 

whom depth electrodes were stereotactically implanted in the thalamus provided evidence 

that the thalamus exerts regulatory control over higher frequency cortical  (e.g., beta1) activity 

via theta rhythms (Malekmohammadi et al., 2015). This type of measurement is highly unusual 

in humans since the implantation of such electrodes only for study purposes would meet with 

considerable ethical opposition due to the possible dire consequences. The detection of theta 

rhythms emanating from the thalamus as a regulatory mechanism over cortical activities 

remains a most interesting observation. Though, it is not established that these thalamic theta 

rhythms are related to the default mode network. In this context, we are unable to say 

whether the origin of our findings of increased thalamocortical connectivity in IGE patients in 

the theta frequency band has its origin in the thalamus or the cortex.  

In another respect, with the increased connectivity in the thalamocortical network which we 

detected and with the knowledge that the broad and highly complex connections between 

the thalamus and cortex contribute to the function and dysfunction of the entire brain, and 

that thalamocortical circuits play a leading role in the organization of cortical excitation and 

inhibition (Blumenfeld, 2002; Hwang et al., 2017), gives rise to a question: does the increased 

connectivity of the thalamocortical network promote the occurrence of epileptiform 

discharges and subsequent seizures?  
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The nature of our analysis does not allow us to answer this question. However, previous 

studies observed that the healthy human cerebral cortex elicited spatiotemporal neuronal 

activity avalanches (Plenz, 2012), whereupon another study demonstrated that epilepsy 

patients tended to evidence higher neuronal amplification and larger avalanches - especially 

during interictal epileptiform activity (Arviv et al., 2016). On the other hand, studies provided 

evidence that epileptiform discharges induce changes in brain networks that which lad to 

easing (Huberfeld et al., 2011) or hindering (Karoly et al., 2016) seizures, or both (Chang et al., 

2018). Yet the question of the consequences of network changes at rest in patients with 

epilepsy remained open for future studies. It is still an open question which of these occurred 

first: changes in the network's resting-state or GSWD. 

In summary, in this work we have provided evidence of measurable electrophysiological as 

well as vascular expression of thalamocortical resting-state network changes in patients with 

IGE. Previous studies on thalamocortical networks in epilepsy support our findings and 

motivate a more detailed investigation into the spatial and temporal electrophysiological 

network organization of the thalamocortical network in patients with IGE in the future. The 

high temporal resolution of EEG/MEG can be used to better understand the role of the 

thalamus and its connectivity to the default mode network in the context of origin and 

modulation of epileptiform discharges in patients with IGE. Based on the results of our work, 

further studies should investigate the thalamocortical network changes in patients with IGE 

with special attention to the theta frequency band. 
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5.2. BRAIN NETWORKS IN
 
PATIENTS WITH FOCAL EPILEPSY 

The results of the second project (Chapter 4.2) of this dissertation work are, for the sake of 

the following discussion, divided into two partitions. The first partition addresses the 

influences of inverse methods on the electric source imaging (ESI) of interictal epileptic 

discharges (IEDs) in patients with focal epilepsy, as well as the importance of considering the 

IED time phase to be selected for ESI. The second subsection addresses the spatial relationship 

of IEDs to the hypometabolism found in focal epilepsy patients’ 18FDG-PET data. 

5.2.1. INFLUENTIAL PARAMETERS IN THE ESI OF IEDS IN THE PRE-SURGICAL EVALUATION 

PROCEDURE 

In Chapter 4.2 we demonstrated that the choice of inverse method and, even more so, the 

choice of the IED phase, had an impact on the ESI in terms of its spatial accuracy in defining 

the irritative zone.  

Epilepsy surgery is a final treatment option providing significantly better outcome regarding 

frequency of seizures and quality of life for patients with focal epilepsy who no longer respond 

to anti-seizure medication (Engel, 2018; Wiebe et al., 2001). Since this operation procedure is 

an invasive procedure that ideally involves resection of only the epileptogenic zone tissue 

without damaging other healthy and functional tissue, a spatial definition of the epileptogenic 

network is critical. ESI is an important step in the pre-surgical evaluation (Foged et al., 2020). 

Yet, ESI is only used in nine of 25 epilepsy centers in Europe, and no universally accepted 

workflow is present (Mouthaan et al., 2016). Considering that epilepsy surgery has a serious 

impact on the patient's life and given the influence of ESI in the preoperative evaluation 

(Foged et al., 2020), a gold standard for the use of ESI in preoperative assessment must be 

established. Therefore, the evaluation of different inverse methods in the setting of IED 

reconstructions considering the selection of different phases in the temporal course of the 

IEDs of in the human brain is necessary. 

In the past, a variety of methodological studies have compared methods for source estimation 

in the setting of simulated and/or real data (Baillet, Mosher, et al., 2001; Baillet, Riera, et al., 

2001; Friston et al., 2008; Fuchs et al., 1999; Hauk et al., 2011). However, no recommendations 

or guidelines have yet been established that assist researchers without a methodological 
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background in source estimation methods in choosing the most appropriate method and the 

parameter settings best suited for the task at hand (Hauk et al., 2022). 

In Chapter 4.2 we show that sLORETA was the source estimation method with the shortest 

distance to the resection zone in our study. To a certain extent, this agrees with the results of 

previous studies (Carboni et al., 2022; Plummer et al., 2010). The differences in the 

methodological choices in the analysis of the ESI, as well as the ongoing analysis to evaluate 

these results differ. Since the EEG/MEG inverse problem has no unique solution, the source 

distributions reconstructed from the EEG/MEG data depend to a large extent on the individual 

parameters assumed for the forward and inverse modeling (Mahjoory et al., 2017), as well as 

on other a priori information in ESI of IEDs (Mahjoory et al., 2017; Wennberg & Cheyne, 2014). 

In addition to the methodological factors, the individuality of each patient with focal epilepsy 

and the resulting influence of the individual on the cohorts also play a sensitive role in the 

outcome of such studies. More so, it has been shown that there is low reliability in the 

identification of IEDs by different clinicians in identical patients (Jing et al., 2020). Therefore, 

the ideal situation for a generally valid evaluation of inverse methods would be, in our case, a 

constant cohort of patients with focal epilepsy with already identified IEDs. The cohort, with 

appropriate size, could then be used for any methodological evaluation work on source 

reconstructions of IEDs in patients with focal epilepsy. The individual epilepsy or research 

centers each have their own limitations. One study reported considerable differences 

between epilepsy centers in Europe that use ESI for evaluation before epilepsy surgery 

(Mouthaan et al., 2016). In the centers, limited resources prevent the availability of the 

recommended instruments. Furthermore, there is a lack of awareness of recommendations 

or guidelines regarding protocols for the inclusion of structural MRI, PET, and SPECT in 

candidates for epilepsy surgery. Further, some centers have limited or no access to functional 

imaging (Mouthaan et al., 2016). 

With our work we showed the influence of the choice of the time phase of the IEDs on the 

spatial accuracy of the ESI to the resection zone (Chapter 4.2), and that the peak phase of the 

IED should be considered to achieve the closest distance between ESI and resection zone. 

Studies have provided evidence on the propagation of interictal epileptiform discharges and 

its relevance to source localization (Lantz et al., 2003; Schulz et al., 2000; Zumsteg et al., 2006). 

Recently, one study demonstrated the influence of the choice of time bin during the IED for 
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the inverse method Local Autoregressive Average (LAURA) as a secondary result, showing that 

ESI yielded the smallest distances to the resection zone at IED rising phase and IED peak 

(Vorderwülbecke et al., 2020). Aside from that, the effect of the choice of IED phase on the 

localization of IED sources has not been further investigated. However, it is already known 

that time points earlier than the half-rise of the IEDs are less accurate in describing the 

irritative zone, since the signal-to-noise ratio is low there (Bast et al., 2006; Wennberg & 

Cheyne, 2014). Nonetheless, it was important to shine a renewed spotlight on the choice of 

all IED phases in IED's ESI to examine their influence and demonstrate the importance of their 

choice. 

In summary, in this work (Chapter 4.2) we provide evidence for a suitable inverse method in 

order to obtain the closest distance between ESI maximum amplitude and the resection zone 

in patients with focal epilepsy. Furthermore, we can recommend utilizing the time point of 

the IED peak for the smallest distance to the resection zone. In the end, I would like to draw 

attention once again to the importance of a standardized workflow when evaluating the ESI 

of IED with respect to various parameters. For such a workflow, the following key points 

should be considered: among others, a constant cohort (mandatory), common processing 

procedures from raw IED epochs to before ESI application, standardized settings of the 

common processing procedures (filtering, artefact rejection etc.), a standardized set of 

metrics to accurately describe the performance of ESI of IEDs, i.e. distance: Euclidean, or 

Mahalanobis (Mahalanobis, 1936) etc. from maximum amplitude to center/edge/center of 

mass of goal region; volumetric: DICE coefficient (Zou et al., 2004), Pearson correlation etc.. 

5.2.2. ESI AND 
18FDG-PET HYPOMETABOLISM CROSS-MODAL RELATIONSHIP IN PATIENTS WITH 

FOCAL EPILEPSY 

In the second part of the project (Chapter 4.2) of this dissertation, we have shown that the 

smallest spatial distance exists between the 18FDG-PET hypometabolism and the ESI of the 

afterwaves of IEDs. There is no established explanation for the spatial proximity and its cause 

in the context of epileptogenic networks in patients with focal epilepsy, but in the following I 

will attempt to provide an explanation for this finding. 

Based on the assumption that interictal epileptic discharges are abnormal bursts that do not 

evolve into epileptic seizures and that they show spatial proximity to the 18FDG-PET 
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hypometabolism, one can assume an inhibitory effect in the hypometabolic area. An inhibitory 

drive (‘Surround Inhibition’) by a population of neurons surrounding the epileptogenic zone 

was proposed very early (Prince, 1967), and a relationship between interictal epileptic 

discharges and hypometabolism was further established (Ackermann et al., 1986; Engel et al., 

1990; Witte et al., 1994). The hypometabolism showed proximity to the resection zone, but 

low volumetric overlap in our cohort. A study utilizing interictal electrocorticography showed 

that the seizure onset zone and the irritative zone are often found outside but adjacent to the 

hypometabolic area (Alkonyi et al., 2009; Jeong et al., 2017). In one study, focal penicillin-

induced epilepsy was induced in rat models, and there it was shown that hypermetabolic 

epileptic foci were surrounded by a hypometabolic cortex (Witte et al., 1994). Animal studies 

utilizing optical imaging for epileptic foci showed a reversed signal associated with decreased 

blood flow as well as decreased neuronal activity (Schwartz & Bonhoeffer, 2001; Zhao et al., 

2009). This supports our hypothesis that the 18FDG-PET hypometabolic area harbors an 

inhibitory mechanism that may protect cortical areas from rapid seizure involvement, which 

is, to this point, still not completely proven.  

Even though taking 18FDG-PET hypometabolism into consideration is well established in the 

pre-surgical evaluation of patients with focal epilepsy, its pathological cause, and its 

relationship to IEDs remain largely unclear and few studies have attempted to fill this gap in 

knowledge.  

In summary, in this work, we were not able to fully elucidate the relationship of 18FDG-PET 

hypometabolism to IEDs. The findings discussed above and our work, however, provide 

support for inhibitory mechanisms related to the 18FDG-PET hypometabolism and may 

stimulate further studies on this topic. 

A more detailed investigation of dynamic and causal interrelations of interictal 18FDG-PET 

hypometabolism and ESI could provide a more nuanced picture of network interactions in 

patients with focal epilepsy and the role of temporal hierarchies. 
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5.3. IDENTIFICATION OF RESTING-STATE BRAIN NETWORKS FROM PARALLEL MULTIMODAL 

IMAGING  

The results of the third project (Chapter 4.3) of this dissertation are based on the data of a 

rarely performed fully simultaneous measurement of hd-EEG, fMRI, and 18FDG-PET. In this 

project, we showed that it is possible to extract known functional resting-state networks from 

the individual modalities of such a fully parallel measurement. Furthermore, we provided 

evidence that resting-state networks are expressed in all three aspects (electrophysiological, 

vascular, and glucose metabolic).  

As already mentioned in the introduction, it must first be made clear that the completely 

parallel measurement of these three modalities (hd-EEG, fMRI, and 18FDG-PET) is unusual and 

hardly ever performed. However, this holds great potential, namely the investigation of the 

human brain in different stages of temporal and spatial resolution without having to deal with 

confounding factors. Furthermore, trimodal imaging requires only one measurement session, 

which could be useful in clinical neurology patients when a rapid pharmacological intervention 

with a minimal waiting time is needed, e.g., in the case of refractory epilepsy. However, this 

type of imaging is far from having an established place in the clinical setting. Regarding the 

potential of trimodal imaging, any further findings from studies analyzing these data sets are 

important. The literature on fully parallel trimodal measurements is sparse. Nevertheless, 

earlier studies have reported the relationships between simultaneously recorded bimodalities 

(two modalities): (i) fMRI/PET (Aiello et al., 2015; Riedl et al., 2014, 2016), (ii) fMRI/EEG (Ritter 

& Villringer, 2006; Ullsperger & Debener, 2010) and (iii) PET/EEG (Hur et al., 2013). 

In our work, all Yeo7 resting-state networks (Yeo et al., 2011) were extracted from the fMRI 

and 18FDG-PET modalities. Although similar results were not extracted from a trimodal 

dataset, the findings of my project are corroborated by previous studies using one modality 

or two non-parallel or parallel modalities. The identification of resting-state networks from 

fMRI data is a common analysis approach and has already led to the creation of established 

functional network atlases (Doucet et al., 2021; Wang et al., 2021; Yeo et al., 2011); etc.). 

Therefore, the identification of resting-state networks from fMRI data was expected.  

Regarding mapping resting-state networks from 18FDG-PET data, the literature is sparse, but 

existing study results support the findings in our project. A study utilizing simultaneous 

fMRI/18FDG-PET identified ten spatially matching resting-state networks from both modalities 
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(Savio et al., 2017). The first study of this type was performed in 2012 and known resting-state 

networks were found in the PET data there as well (Di et al., 2012). The sparseness of such 

PET studies in healthy controls can be explained by ethical concerns. The residual risk of the 

radiation exposure from the radioactive tracers, which are necessary for PET imaging, is 

ethically difficult to justify for the measurement in healthy controls, while a clinical indication 

for diagnostic clarification justifies such measurements. Due to the paucity of studies 

extracting resting-state networks from 18FDG-PET data, it is important that our results are in 

line and confirm previous study results (Di et al., 2012; Savio et al., 2017).  

We identified EEG resting-state networks at source-level from fully parallel measured hd-

EEG/fMRI/18FDG-PET data describing the visual, somatomotor, frontoparietal, and default 

mode networks in our cohort. Our results are supported by previous studies that have 

identified such resting-state networks from separately measured EEG/MEG datasets at the 

source-level (Aoki et al., 2015; Brookes et al., 2011; Shou et al., 2020; Sockeel et al., 2016), or 

at the sensor-level from EEG data measured with a parallel fMRI (Mantini et al., 2007). We 

were further able to identify EEG resting-state networks, which are spatially associated with 

the dorsal attention networks that were observed earlier at sensor-level during a parallel EEG-

fMRI measurement (Mantini et al., 2007). 

In our work, resting-state network identification was performed based on direct (fMRI and 

18FDG-PET) and indirect (hd-EEG) spatial matching to the Yeo7 functional network atlas. This 

atlas was based on fMRI data using independent component analysis (Yeo et al., 2011). The 

group-ICA applied to our fMRI data resulted in spatially distinct network components with an 

optically recognizable underlying pattern. In comparison, the components of the 18FDG-PET 

data showed clear, but less distinct, network components. That is not surprising, since both 

modalities capture different aspects of neural brain activity, with 18FDG-PET measuring neural 

activity depended on glucose metabolism directly, as fMRI captures signals from a 

composition of cerebral blood flow, volume, and oxygen metabolism (Kim & Ogawa, 2012).  

In contrast to the fMRI components, the PET components regularly showed spatial outliers 

from the main components in the individual components. Previous studies have already 

shown that since the 18F-FDG-PET data represent an averaged snapshot of tracer uptake over 

a period of time, group-ICA extracts sources of inter-subject covariance from the available 

18FDG-PET data (Calhoun & Allen, 2013; Savio et al., 2017). This results in more noisy results 
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compared to the results of a group-ICA on fMRI data. Furthermore, the analysis result of a 

group-ICA on 18FDG-PET data is more dependent on the sample size. Noisier results for 18FDG-

PET data were also observed in a study that identified the default mode network in patients 

with Parkinson's disease using seed-based FC analysis in fMRI and 18FDG-PET (Ruppert et al., 

2021). In a further study the application of group-ICA on a cohort size of 40 healthy controls 

and >100 patients with amyotrophic lateral sclerosis yielded group-ICA components of 

occipital default mode, and somatomotor network with similar spatial outline as the results 

of a group-ICA of fMRI data (Pagani et al., 2016). Overall, with our results we showed a 

coupling of the metabolic activity measured by 18FDG-PET and vascular activity derived from 

fMRI, like previous studies (Cecchin et al., 2017; Marchitelli et al., 2018; Tahmasian et al., 

2015), and, moreover, with evidence of a spatial structure like that of the resting-state 

functional networks underlying the metabolic 18FDG-PET data.  

Spatial comparison of hd-EEG components with fMRI components revealed naturally 

corresponding component patterns. This is, of course, primarily due to our analysis framework 

in which we specifically identified hd-EEG components as resting-state network components 

if they showed a greater spatial correlation with the fMRI data than the hd-EEG surrogate 

datasets. Nevertheless, our results showed that the resting-state networks known from fMRI 

could be extracted in a similar spatial structure from hd-EEG, which emphasizes the coupling 

of the vascular activity underlying the resting-state networks from fMRI with the 

electrophysiological activity from hd-EEG. Animal studies (anaesthetized cats, and monkeys) 

provided evidence of temporal coupling between the BOLD signals and several frequency 

bands of intracranial electrocortical recordings (ECoG) (Niessing et al., 2005; Shmuel & 

Leopold, 2008). Both studies reported that the strongest correlation between hemodynamic 

response and neuronal oscillatory amplitude were present in the frequency spectrum >60 Hz. 

In our work, we observed that components for the resting-state functional networks were 

found in the hd-EEG data across all analyzed frequency bands. Although this does not 

demonstrate temporal coupling of signals from both modalities, it nevertheless shows that 

the spatial patterns of resting state networks in hd-EEG, spatially congruent with fMRI resting 

state networks, are expressed in multiple frequency bands. This supports previous findings 

that electrophysiological resting-state networks consist of a combination of different 

frequency band compounds (Mantini et al., 2007). 
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In addition, we found a spatial correlation between neuronal oscillations (hd-EEG) and 

metabolic activity (18FDG-PET), by extracting spatially similar components for functional brain 

networks (such as visual, and default mode network) from both modalities. Interestingly, a 

study showed a strong correlation between cortical glucose metabolism patterns (18FDG-PET) 

and spectral gamma amplitude of intracranial recordings in non-lesional focal epilepsy 

patients at rest (Nishida et al., 2008). Nishida et al. failed to prove a linear correlation between 

regional metabolic activities and the other frequency bands (delta, theta, and alpha) of the 

subdural EEG measurement. In our work, spatially coherent network components (visual, 

somatomotor, default mode network) in 18FDG-PET and hd-EEG were found in hd-EEG in the 

spectral bands: alpha, beta, and gamma.  

The fully parallel measurement of metabolic, vascular, and electrical brain activity eliminates 

the bias of study results that establish cross-modal associations between successive 

measurement sessions. The proof of identification in the modalities of a trimodal 

(EEG/fMRI/18FDG-PET) measurement is a further step for this type of measurement towards 

a potential establishment in the field of brain research. As described in the introduction, 

resting-state networks are an identifiable functional community of regions or networks of 

sustained spontaneous brain activity in their general resting-state. Disturbances in these 

networks have already been identified as clear indicators for a number of neurological 

diseases, i.e., Alzheimer (Engels et al., 2017; Ibrahim et al., 2021), Parkinson (Baggio et al., 

2015; Hohenfeld et al., 2018; Tahmasian et al., 2017; Wolters et al., 2019), and epilepsy 

(Burman & Parrish, 2018; Kramer & Cash, 2012; van Mierlo et al., 2019). Specifically with 

respect to epilepsy, which is accurately characterized as a neurological network disorder, it is 

crucial to improve our understanding of the "healthy" network structure of our brain. It 

follows that further detailed knowledge of brain networks opens up the possibility of 

improving the diagnosis and treatment of neurological diseases. Characterizing the 

relationships within and between imaging modalities at different spatial and temporal scales 

is necessary to better understand brain organization and function (Presigny & De Vico Fallani, 

2022). 

Although several studies have reported results of analyses examining the functional network 

between parallel and non-parallel measured bimodal trimodal data, an identification of the 

electrophysiological (EEG), neurovascular (BOLD fMRI), and glucose metabolic (18FDG-PET) 
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resting networks in a fully parallel recorded trimodal data set has not yet been published. With 

our findings, we demonstrate the feasibility of identifying resting-state networks from data of 

a fully parallel hd-EEG/fMRI/18FDG-PET measurement.  

Future studies could apply data fusion approaches prior to further analysis to combine the 

strengths of each modality (EEG/fMRI/18FDG-PET) to gain a better understanding of brain 

function. In addition to improved basic understanding of the brain and its functions, a better 

understanding could further lead to earlier and more specific diagnosis of various brain 

diseases. 
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6. CONCLUSION  

This work contributes to a broader understanding of the representation of neuronal networks 

and their relationships between different modalities in patients with epilepsy, as well as in a 

mixed cohort of healthy control subjects and patients with focal epi lepsy.   

This means, on the one hand, that pathological group differences of patients with IGE 

compared to healthy controls can be identified from interictal hd-EEG data measured with a 

parallel fMRI. Second, the spatial relations of epileptogenic networks in patients with focal 

epilepsy extracted from different imaging modalities (hd-EEG, and 18FDG-PET) were provided. 

Lastly, the identification of known resting-state networks was shown to be possible from each 

modality of a fully parallel measurement of hd-EEG, fMRI, and 18FDG-PET. 

We have shown that hd-EEG resting-state network analysis is suitable for inside MR-scanner 

measured EEG data. After conventional cleaning of the hd-EEG data from MR-artifacts, hd-

EEG power estimates were systematically increased. Yet, the spatial topography and general 

direction of the group comparisons (IGE>HC) of power and functional connectivity remained 

similar. Where the group differences for power for the data within the MR-scanner showed 

no significance for the group difference, phase-shifted coherence (ImCoh) was less affected 

and provided group difference significances comparable to those of the outside MR scenario. 

In addition, we showed that there is a spatial correspondence of seed-based functional 

connectivity group differences (IGE>HC) between the two modalities (hd-EEG, and fMRI) for 

the thalamus. Moreover, I discussed the significance of our results and that they have the 

potential to encourage further studies. Future studies are needed to investigate the dynamics 

of networks in humans in resting-state condition and to take advantage of the high temporal 

resolution of EEG, possibly with parallel fMRI. Further EEG studies are needed to further 

investigate the thalamocortical networks in patients with IGE to gain a better understanding 

of this network disease. 

With the work on clinical datasets, we could show that the decision in the choice of the time 

to reconstruct interictal epileptic discharges (IEDs) for imaging the epileptogenic zone should 

be made with caution. Likewise, the choice of the inverse method has an influence on the 

electric source imaging results in the presurgical evaluation procedure. In our work, we 

showed the shortest distance to the resection zone with the inverse method sLORETA at the 

peak of interictal epileptic discharge. The other inverse methods in this analysis also showed 
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the shortest distances to the resection zone in the interictal epileptic discharge peak phase. 

Furthermore, evidence was provided that the hypometabolism derived from the 18FDG-PET 

data of patients with focal epilepsy showed proximity to the source reconstructions of the 

interictal epileptic discharges. Due to the lack of knowledge about this relationship these 

results may motivate  future studies to further investigate this relationship in detail. 

In the last project, we have demonstrated the feasibility of extracting known resting-state 

networks (e.g., visual, somatomotor, frontoparietal, default mode networks) from fully 

parallel hd-EEG/fMRI/18FDG-PET data using group-ICA. Differences in spatial expression of the 

resting-state network components among modalities were characterized and on linked to 

each modalities signal origin, as well as spatial and temporal resolution. This work further 

indicates the underlying potential of this measurement condition and may encourage for 

further applications of fully parallel trimodal measurement of hd-EEG/fMRI/18FDG-PET.  
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7. OTHER CONTRIBUTIONS TO SCIENTIFIC COMMUNITY  

During the period of my doctorate, I was also involved in the preparation of other scientific 

papers. In the following chapter, my contribution and an insight into this work are provided.  

 

7.1.  FEASIBILITY OF HD-ESI IN THE PRESURGICAL WORKFLOW – INFLUENCE OF NUMBER OF 

SPIKES RECORDED AND AUTOMATED SPIKE DETECTION 
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8. APPENDIX A 

This following chapter contains additional figures and tables related to the project from 
chapter 4.1. 

 
Appendix A table 1: Percentage differences of global power group mean between conditions for all frequencies. 

 Delta Theta Alpha Beta1 Beta2 Gamma 

Outside-MR 

scanner 

condition 

HC 2.1112 2.0046 2.1384 1.6262 1.3325 0.8164 

GGE 2.3866 2.3929 2.5071 1.9374 1.5747 1.0298 
       

Inside-MR 

 scanner 

condition 

HC 2.9626 2.9938 2.9201 2.5125 1.9875 1.4671 

GGE 3.0470 3.1542 3.0965 2.5619 2.1130 1.5739 
       

Group mean 

change 

between 

conditions 

HC 40% 49% 37% 55% 49% 80% 

GGE 28% 32% 24% 32% 34% 53% 

 
 
Appendix A table 2: Percentage difference of global functional connectivity group mean between conditions for all 

frequencies. 

 Delta Theta Alpha Beta1 Beta2 Gamma 

Outside-MR 

scanner 

condition 

HC 0.0199 0.0233 0.0388 0.0268 0.0267 0.0277 

GGE 0.0212 0.0277 0.0420 0.0288 0.0259 0.0254 
       

Inside-MR   

scanner 

condition 

HC 0.0248 0.0276 0.0357 0.0286 0.0282 0.0275 

GGE 0.0250 0.0339 0.0424 0.0325 0.0304 0.0278 
       

Group mean 

change 

between 

conditions 

HC 25% 18% -8% 7% 6% -1% 

GGE 18% 22% 1% 13% 17% 10% 
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Appendix A table 3: 2-way ANOVA analysis of global power and functional connectivity values in each frequency . 

The effect of the measurement condition (main effect) was highly statistically significant for global power in all frequency 

bands. The interaction of the inside-outside factor on the patient-control group was only significant for global power in 

Beta1 (𝑝 = 0.0447) and, at trend level, for Delta (𝑝 = 0.0739). None of these interactions survived FDR correction. For global 

connectivity, the effect of the measurement condition was highly statistically significant in the delta and theta frequency 

bands after correcting for multiple comparison via FDR, and, at trend level, for Beta1 and Beta2. No statistically significant 

for the interaction of the inside-outside factor on the patient-control group was observed. 

  Delta Theta Alpha Beta1 Beta2 Gamma 

Global Power  

Main effect of 
inside/outside MR 

condition  

      

𝑝 

*   𝑝 < 0.1   , trend level 

** 𝑝 < 0.05 , significant 
**0.00012 **0.00015 **0.00002 **0.00006 **0.00002 **0.00012 

FDR corrected **< 0.001 **< 0.001 **< 0.001 **< 0.001 **< 0.001 **< 0.001 

       

Interaction of 
inside/outside MR 
factor with group 

difference 

      

𝑝 

*   𝑝 < 0.1   , trend level 

** 𝑝 < 0.05 , significant 

*0.0739 0.111 0.136 **0.0447 0.148 0.119 

FDR corrected 0.148 0.148 0.148 0.148 0.148 0.148 

       

Global functional 

connectivity 

 

Main effect of 
inside/outside MR 

condition  

      

𝑝 

*   𝑝 < 0.1   , trend level 

** 𝑝 < 0.05 , significant 
**<0.0001 **0.0002 0.6960 *0.0655 **0.0466 0.2340 

FDR corrected **< 0.0001 **< 0.001 0.696 *0.09825 *0.0932 0.2808 

       

Interaction of 
inside/outside 

MR factor with group 
difference 

      

𝑝 

*   𝑝 < 0.1   , trend level 

** 𝑝 < 0.05 , significant 
0.351 0.786 0.641 0.7249 0.798 07739 

FDR corrected 0.798 0.798 0.798 0.798 0.798 0.798 
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Appendix A table 4: Spatial Pearson correlation of the cortical maps of group difference maps (– 𝒍𝒐𝒈𝟏𝟎  𝒑-value maps, 

GGE>HC) of power and ImCoh in each frequency band. 

** 𝒑FDR < 0.001 Power ImCoh 

Delta r = 0.8613 ** 0.0978 ** 

Theta r = 0.8615 ** 0.5476 ** 

Alpha r = 0.9127 ** 0.1664 ** 

Beta1 r = 0.8916 ** 0.2112 ** 

Beta2 r = 0.9070 ** 0.2268 ** 

Gamma r = 0.9133 ** 0.0831 ** 

 

 

 

 
Appendix A figure 1: Vertex-power group analysis results (GGE>HC) of inside- and outside-MR scanner conditions. 

Standardized effect sizes (Cohen’s d) for group differences (GGE>HC) of vertex-based power for the outside- (A) and inside-MR 

condition (B). Note the effect size values 𝑑 in the inside scanner condition are smaller than into the outside condition. They 

still show strong effect sizes (d > 0.8) in fewer but identical regions. 
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Appendix A figure 2: Group-averaged sensor power spectrum for inside- and outside-MR scanner condition. 

Note the generally stronger power values in the inside condition compared within the outside condition, and the peaks in the 

inside-MR scanner condition in the frequency bands: delta (3 Hz), theta (5.5 Hz), alpha (8 Hz, 11.5 Hz) and beta1 (16 Hz).  
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9. APPENDIX B 

This following chapter contains additional figures and tables related to the project from 
chapter 4.2. 

 
 

 

Appendix B figure 1: Individual Euclidean distances of high-density EEG (hd-EEG) source reconstruction to the resection 

zone (RZ). 

Changes in Euclidean distance from maximum amplitude of electric source imaging (ESI) (linearly constrained minimum 

variance (LCMV); standardized low resolution electromagnetic tomography (sLORETA); weighted minimum -norm estimation 

(wMNE)) to RZ for each patient. The red lines indicate an increase in Euclidean distance to the RZ of > 10 mm between interictal 

electric discharge (IED) onset and IED peak, whereas the green lines indicate a decrease in Euclidean distance to the RZ of >  

10 mm between IED onset and IED peak. The grey lines indicate either an increase or decrease in Euclidean distance to the RZ 

of < 10 mm between IED onset and IED peak. 
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Appendix B figure 2: Volumetric overlap estimated via Dice similarity coefficient (DSC) of resection zone (RZ) high-density  

EEG (hd-EEG) source reconstruction applying the amplitude thresholds 90%tile and 97.5%tile. 

Volumetric overlap of electric source imaging (ESI) (linearly constrained minimum variance (LCMV); standardized low 

resolution electromagnetic tomography (sLORETA); weighted minimum-norm estimation (wMNE)) to the RZ at each interictal 

epileptic discharge (IED) timepoint. 
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10.APPENDIX C 

This following chapter contains additional figures and tables related to the project from 
chapter 4.3. 

 
 

Appendix C table 1: Overview of amount of EEG components assigned to functional brain networks for different amount 

of components extracted by group ICA, with spatial correlation (mean, standard deviation) to the fMRI components for 

each functional brain network. 

Amount 

of ICs  
Visual Somatomotor 

Dorsal 

Attention 

Ventral 

Attention 
Limbic Frontoparietal 

Default 

Mode 

50 

2 

(r: 0.52 

 ± 0.06) 

- - - - - 

3 

(r: 0.42 

 ± 0.06) 

60 - 

1 

(r: 0.46 

 ± 0.00) 

- - 

1 

(r: 0.50 

 ± 0.00) 

1 

(r: 0.37 

 ± 0.00) 

- 

70 - - - - 

1 

(r: 0.48 

 ± 0.00) 

1 

(r: 0.40 

 ± 0.00) 

5 

(r: 0.36 

 ± 0.07) 

80 

1 

(r: 0.52 

± 0.00) 

1 

(r: 0.60 

 ± 0.00) 

- - - 

2 

(r: 0.41 

 ± 0.00) 

4 

(r: 0.44 

± 0.07) 

90 - 

3 

(r: 0.48 

 ± 0.04) 

- - - 

1 

(r: 0.43 

 ± 0.00) 

2 

(r: 0.42 

 ± 0.12) 

100 

3 

(r: 0.51 

 ± 0.05) 

3 

(r: 0.47 

 ± 0.09) 

1 

(r: 0.43 

 ± 0.00) 

- - 

3 

(r: 0.35 

 ± 0.04) 

6 

(r: 0.42 

 ± 0.11) 
 

 

 

 

Appendix C figure 1: Spatial cross correlation of all components extracted with all amounts of components to be extracted 

via group-ICA on hd-EEG data. 
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