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Abstract

The interaction of time-dependent electromagnetic fields with electrons in quantum
materials can give rise to many both fundamentally interesting as well as technologi-
cally relevant phenomena like transient band structure manipulations or the emergence
of prethermal states of matter, which are not a result of heating. This thesis con-
tributes theoretical insights to both these topics: We model the interference of Floquet
and Volkov side bands, which are a result of the dressing of electron states by light,
in a time-resolved angle-resolved photoemission spectroscopy (ARPES) experiment.
Furthermore, we analyze the emergence of a band-like feature in the non-equilibrium
spectral function of a one-dimensional charge-density wave insulator upon periodic driv-
ing. Secondly, we use the fermionic truncated Wigner approximation (fTWA), a phase
space method for the time evolution of interacting fermions, to study the light-induced
order parameter dynamics in SU(N)-symmetric fermionic lattice models. By compar-
ison with exact analytical results for an interaction quench in the Hubbard model,
we find that dephasing-induced prethermalization is correctly described by fTWA. We
discuss photoinduced prethermal transitions between competing phases of matter in
the large-N Hubbard-Heisenberg model and find a pronounced frequency-dependence
of the transition. This work contributes to a better understanding of photoinduced
order parameter dynamics from a microscopic perspective.
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Chapter 1

Introduction

Since the advent of quantum physics and quantum mechanics – almost 100 years ago
[6]) – scientists have been fascinated with this powerful yet very counterintuitive the-
ory, which so accurately describes the behavior of elementary particles at the nanoscale.
Nowadays, the theory of “hard”1 condensed matter is a major field of application of
quantum physics. Many properties of materials, e.g. their electrical conductivity, can
only consistently be explained within a quantum mechanical description [7]. Remark-
able successes of the theory of condensed matter include the BCS theory of supercon-
ductivity [8] as well as the establishment of Fermi liquid theory [9] as a theoretical
paradigm that allows to describe the properties of various, even strongly, interacting
materials. A source of many interesting and technologically relevant physical phe-
nomena like high-temperature superconductivity [10, 11] or the colossal magnetore-
sistance [10] are strong electronic correlations [12, 13], which are typically realized in
materials with partially filled f and d electron shells [14]. Many transition metals like
manganese fall in this category. A strong focus in condensed matter theory tradition-
ally lies on the exploration and modeling of equilibrium properties of such strongly
correlated materials. However, many of their characteristic effects, e.g., the formation
of interaction-induced Mott insulators [15], cannot be explained within a simple band
picture of electronic states, which successfully describes the electrical resistivity for
many materials [7]. This led to the design and the analysis of strongly interacting
lattice models like the Hubbard or the t-J model. The Hubbard lattice model [16,
17, 18] is often considered as the “drosophila” of strong correlation research [19]. Its
Hamiltonian reads

ĤHub = −th
∑

⟨i,j⟩,σ

(
c†iσcjσ + H.c.

)
+ U

∑

i

n̂i↑n̂i↓, (1.1)

where c
(†)
iσ denote electronic annihilation and creation operators on sites i of a lattice

and ⟨i, j⟩ denotes nearest neighbors. Remarkably, exact analytical solutions exist for
the one-[20] and the infinite-dimensional [21] model. One great success is the obser-
vation of an interaction-induced Mott insulator phase in the Hubbard model at large
interaction strength U [22, 23]. Nowadays, the phase diagram of the square lattice
model is at the forefront of theoretical research [24]. Many major theoretical insights

1i.e. glued together by quantum effects, in contrast to “soft” matter for which thermal fluctuations
dominate
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on phase transitions in materials were due to the renormalization group machinery,
pioneered by Kadanoff and Wilson [25]. Its modern children like the density matrix
renormalization group [26, 27] and the functional renormalization group [28] are partic-
ularly well suited to analyze strongly correlated systems. Another important step was
the development of dynamical mean-field theory [14]. Of particular interest in current
research are layered two-dimensional strongly correlated materials like the transition
metal dichalcogenides [29]. It turned out that stacking monolayer materials onto each
other, possibly twisted by a “magic angle”, can give rise to superconducting states [30]
or novel quantum Hall phases [31]. The exploration of stacked 2D materials is only at
its beginning.

Next to many remaining open questions in equilibrium physics, quantum systems
out-of-equilibrium have emerged as a very active field of research [32, 33, 34] that
offers a lot of open fundamental questions as well as many perspectives for technolog-
ical applications. One important driving force behind this interest in non-equilibrium
physics are the better and better possibilities to realize quantum mechanical model
systems with ultracold gas experiments [35]. Atoms or ions can be trapped in lattices
created by laser light and serve as quantum simulators [36, 37] that allow to prepare
quantum states and monitor their dynamics in real time. Likewise, time-resolved ex-
perimental techniques in solid state physics [38] have advanced and enable researchers
to observe the dynamics of excited electrons in solids on the femtosecond scale. The
interaction of quantum matter with light is one of the most active and most inno-
vative research directions in contemporary condensed matter physics [34, 39, 40, 41].
While correlated quantum materials in equilibrium already allow for a great wealth
of physically interesting and technologically relevant states of matter, light-matter in-
teraction hosts the potential to even actively manipulate properties of such materials
out-of-equilibrium. This can be used, for example, to design ultrafast switches and
novel opto-electronic components [42]. In time-resolved angle-resolved photoemission
spectroscopy (trARPES), one of the main experimental techniques to unravel the elec-
tronic structure of materials [41, 43, 44], one measures the electronic response to the
application of a strong laser pulse. Among the many fascinating applications of this
technique are a direct measurement of the collapse of long-range order in solids [45],
the direct observation of quantum states dressed by light [46, 47] and the ultrafast
manipulation of magnetic order [48]. A developing paradigm in the field of out-of-
equilibrium quantum materials is the creation of non-thermal pathways [34] to control
the properties of quantum materials. Light-induced superconductivity [49, 50] is one
of the most prominent research directions in this spirit.

The great wealth of experimental techniques and research directions requires reli-
able theoretical simulations of such setups in order to link the experimental observa-
tions with microscopic models [51, 52]. However, theoretical simulations of the light-
induced quantum dynamics in correlated systems are very challenging due to the lack
of a numerical or analytical method that is valid both for a broad range of systems
and over long time periods [53]. Therefore, experimental observations are often mod-
eled in terms of coarse-grained descriptions using free energy landscapes (cf., e.g., [54,
55, 56]). Microscopic modeling of non-equilibrium correlated states is often based on
non-equilibrium dynamical mean-field theory [57], which is a very powerful technique
that goes beyond a simple mean-field description. However, its limited ability to in-
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clude the effect of spatial correlations is currently one of its main restrictions. For
one-dimensional strongly correlated electron models in- and out-of-equilibrium, matrix
product state (MPS) techniques are the most versatile and powerful [27, 58]. Unfor-
tunately, they are less efficient in the two-dimensional situation. MPS methods work
reasonably well for ground state calculations of medium-sized two-dimensional lattice
models (e.g. Heisenberg models on cylinders with 16× 8 sites [59]). Time evolution in
such system is more severely restricted due to the rapid growth of entanglement [60].

In the following, a few perspectives on current research topics, to which this thesis
can contribute new insights, are presented before we close with an overview of the
chapters.

1.1 Non-Equilibrium Quantum Many-Body

Systems

A quote, commonly attributed to John von Neumann, states that a theory of non-
equilibrium would be like a theory of non-elephants. This is to say that non-equilibrium
states might have as much in common as all animals different from elephants. Indeed,
the great success of the concept of thermal equilibrium is based on the observation
that within statistical mechanics and in the thermodynamic limit equilibrium states
are characterized by only a few macroscopic variables like temperature or magneti-
zation. Generic non-equilibrium states can differ from this emergent simplicity in an
overwhelmingly large number of ways. Nevertheless, theoretical physicists continue to
identify sub-classes of non-equilibrium states that share at least some properties, e.g.
the way they are prepared. A challenge for research is to identify new categories of
problems that allow for a systematic treatment as well as to develop new computational
methods. In the following, we give a brief overview over classes of non-equilibrium sys-
tems that are also touched upon in this thesis. More detailed summaries can be found
in specialized reviews and overview articles [32, 61, 62].

Parameter Quenches While the concept of “quenching” originally refers to a sud-
den change of temperature, it is now used as well as a name for instantaneous modifica-
tions of model parameters like, for instance, the interaction strength. Model parameter
quenches can be implemented directly in experiments with ultracold atoms in optical
lattices [63, 64, 65, 66, 67]. The relevance of quench scenarios in solid state systems is a
bit less obvious. Nevertheless, they can be useful as approximate descriptions of tran-
sient modifications of material properties, e.g. via renormalized phonon modes [68].
Quenched systems are particularly convenient for theoretical studies because time prop-
agation with only one single time-independent Hamiltonian is required. Therefore, the
analysis can be focused on the two relevant Hamiltonians before and after the quench.
A good overview was given by Kollar et al. [69]. One can roughly distinguish three
classes of systems with distinct dynamical properties: integrable Hamiltonians, near-
integrable and non-integrable ones. Integrability can be defined in multiple ways [70],
usually it refers to Hamiltonians with a large number of mutually commuting conserved
charges (not the energy eigenstate projectors, which are trivially conserved). The most
prominent analytical technique is Bethe ansatz [20]. Quenches from integrable to in-
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tegrable Hamiltonians allow for a lot of exact mathematical results [61], which we do
not want to review here. The great amount of additional conservation laws prohibits
a relaxation to thermal states of local observables in position or momentum space; in-
stead, they often reach non-thermal steady states [71, 72], whose expectation values are
usually well described by generalized Gibbs ensembles [69]. A variation of the topic are
quenches to near-integrable models, i.e. to Hamiltonians of the form Ĥ0 + ϵĤ1, where
Ĥ0 is integrable, Ĥ1 is non-integrable and ϵ ≪ 1 is small. Such a situation typically
leads to a separation of time scales: the early-time dynamics is still influenced by the
conservation laws [73, 74], while at a later stage thermalization is possible [75]. We
consider such a scenario in Chapter 4. Quenches to non-integrable models are generally
expected to ultimately lead to thermal expectation values of local observables [76] ex-
cept for situations in which, for instance, strong disorder can delay or even completely
prohibit thermalization [77]. An interesting effect that can be observed in quenches
to non-integrable models is confinement [78]. A major success in the field of quantum
quenches was achieved by Calabrese and Cardy [79, 80, 81] who connected the dynam-
ics of correlation functions after a quench to conformal field theories in a higher spatial
dimension.

Periodically Driven Systems Another subclass of non-equilibrium systems with
a rich existing theory are periodically driven ones. Usually, this refers to explicitly
time-dependent systems with a Hamiltonian Ĥ(t) that is time-periodic with period
T : Ĥ(t + T ) = Ĥ(t). A treatment of such Hamiltonian is usually carried out within
Floquet theory [82], which one can understand as an analogue to Bloch wave theory
in time. Floquet theory is based on a separation of time scales argument, where the
dynamics within a period (called micromotion in this context) is split off from the
“stroboscopic” time evolution over periods. If properties of a periodically driven sys-
tem are measured over a sufficiently long time span that encompasses a number of
periods, they can be associated with properties of a time-independent Floquet Hamil-
tonian. An interesting application of this machinery is presented by the field of Floquet
engineering [83, 84, 85], in which periodic driving protocols are designed such that
the effective Floquet Hamiltonian corresponds to a Hamiltonian with desirable equi-
librium properties. Floquet theory predicts a number of phenomena like a transient
manipulation of material properties [86] during the periodic driving, which have been
confirmed in experiments [87, 88, 89]. A challenge both to theory and experiments are
periodically driven strongly interacting systems, which absorb energy during the driv-
ing and will eventually heat up (theoretically) to infinite temperature [90]. One can,
however, identify regimes like high-frequency driving [91] that leads to slow heating
and the formation of prethermal states on experimentally accessible time scales [92,
93].

Variations of these topics like, for instance, systems, which are periodically driven
only over a limited period of time as in experiments with ultrashort laser pulses or
quenches in systems with complicated competing ordering tendencies possess less gen-
eral theoretical descriptions and a precise microscopic modeling of the excitations is
required. We consider a periodically driven interacting model system in Chapter 3 as
well as driving with a finite pulse in Chapter 5.
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1.2 Ordered Phases of Matter In- and

Out-of-Equilibrium

1.2.1 General Concepts In Equilibrium

The equilibrium properties of materials are typically classified into ordered phases of
matter. In this thesis, we mostly consider order in the “Landau sense”, which is
based on the idea of spontaneous symmetry breaking (SSB) and the existence of a local
order parameter Oi that is non-zero in the symmetry-broken phase [94]. If a phase of
matter is completely homogeneous, one can as well speak of a global order parameter
O = 1

V

∑
iOi. One can show that SSB implies the formation of long-range order [95],

which is present if the order parameter correlation functions remain non-zero at large
spatial separations:

lim
|i−j|→∞

lim
V→∞

⟨OiOj⟩ ≠ 0 (LRO) (1.2)

The most common example is magnetism, where a non-vanishing value of the magne-
tization M ∼

〈
Ŝz

〉
̸= 0 indicates ferromagnetic order. The orientation of the mag-

netization spontaneously selects a direction and thereby breaks a symmetry (Z2 in
the Ising case, O(3) in the Heisenberg case). This spontaneous selection of a direc-
tion of the order parameter hints at the conceptual difficulty that symmetry-broken
states are realized in different ergodic components. The question, in which direction the
magnetization vector in a ferromagnetic phase points, is ultimately determined by the
dynamics of the phase transition and cannot be answered with equilibrium tools alone.
To circumvent this problem, one often add a weak symmetry-breaking field to the
Hamiltonian, for instance, a weak magnetic field in the case of the ferromagnet. This
approach is generically only valid if the thermodynamic limit V → ∞ (for constant
particle density) is performed first [94]. If h is the infinitesimal symmetry-breaking
field, one can define

O = lim
h→∞

lim
V→∞

〈 1

V

∑

i

Oi
〉

(1.3)

In the case of Bose condensates, a variation of the long-range order concept was in-
troduced by Yang [96] and is called off-diagonal long-range order, which occurs if
off-diagonal elements of a one-particle reduced density matrix remain finite at large
separation of the indices. We add, for completeness, that a class of order, which
does not belong to the Landau category is topological order [97]. It is characterized
by additional global (quantum) numbers like, for instance, the Chern number which
determines the quantum Hall conductance although it is not related to any kind of
symmetry breaking.
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1.2.2 Order parameters in interacting electron systems

In interacting electron systems there is typically not only one type of order, which can
be present or not, but a number of different ordering tendencies [98]. Prominent exam-
ples include anti-ferromagnetism (AFM), superconductivity (SC) and charge-density
wave order (CDW) [99]. We do not aim to give a full overview here, instead, we
highlight some principles. Often ordered phases lead to translational invariance of the
system only with respect to unit cells that encompass more than one lattice site, i.e.
spontaneous breaking of the full lattice translational symmetry. Such a situation im-
plies a reduction of the electronic Brillouin zone with a new reciprocal lattice vector
Q⃗. Electronic order parameters may often conveniently be expressed in k-space, using
this vector Q⃗. CDW order requires a unit cell size of at least two sites with a real space
order parameter OCDW =

∑
i

(
⟨niA⟩− ⟨niB⟩

)
, where A and B label the atoms in a unit

cell. On a hypercubic lattice one obtains Q⃗ = (π, π, . . . ) and a transformation rule

c†iα =
1√
V

∑

k⃗∈rBZ

(
e−ik⃗·r⃗iαc†

k⃗
+ e−i(k⃗+Q⃗)·r⃗iαc†

k⃗+Q⃗

)
. (1.4)

Here, rBZ refers to the reduced Brillouin zone. The order parameter transformed to
momentum space reads

OCDW = 2
∑

k⃗,σ

(
⟨c†
k⃗σ
ck⃗+Q⃗,σ⟩+ c.c.

)
. (1.5)

Hence, charge-density waves correspond to a coupling of the modes k⃗ and k⃗ + Q⃗ in
momentum space and therefore Q⃗ is also often called the ordering vector. A simpler al-
ternative order parameter definition would be OCDW ∼ ⟨c†k⃗σck⃗+Q⃗,σ⟩, which can be more
convenient in mean-field calculations. In the same spirit there is anti-ferromagnetic or-
der. Superconducting order is typically understood as Cooper pairing OSC = ⟨c†k↑c†−k↓⟩.
In the Hubbard model one may view Cooper pairing also as one realization of a more
general pairing scheme called η-pairing [100]. Cooper pairs have zero center-of-mass
momentum Q = 0, while Q = π pairing is possible as well. The latter, with order
parameter Oη = ⟨c†

k⃗↑
c†
−(k⃗+Q⃗)↓

⟩, is often just referred to as “the” η-pairing. While η-

pairing is of interest out-of-equilibrium [101, 102], it is impossible as a ground state
of the Hubbard model [100] with a finite interaction strength U , unless pair hopping
terms are added to the Hamiltonian [103]. These types of orders are only the most
prominent, in addition there are more complex variants of spin order, nematic phases,
spin liquid states [104], etc.

In real materials, order will rarely occur in pure form but in one of many, possi-
bly inhomogeneous, variations and combinations [105]. In particular, certain types of
order may be seen as composites of fundamental “primary orders” [106] like supercon-
ductivity and CDW. An important aspect of ordering tendencies in solids is that they
will in general be coupled. One possibility – despite criticism [106] – is a competition
between orders, i.e. not both order parameters can be non-zero at the same time.
The more general situation, in which a coexistence of multiple orders is as well possi-
ble, is referred to as intertwined order [106]. A typical phenomenological approach to
model such scenarios is based on Ginzburg-Landau functionals. They can be obtained
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from an expansion of the thermodynamic free energy in the order parameters under
consideration.

For microscopic studies of interacting electron systems, (Hartree-Fock) mean-field
theory is the most important approach, which is based on a neglect of quantum cor-
relations. However, if combined with other analytical approaches like Fermi liquid
theory [107] or effective Hamiltonians [108], mean-field theories can also be quite pre-
dictive.

1.2.3 Order parameters out-of-equilibrium

The experimental advances in time-resolved laser spectroscopy have opened up the
(transient) manipulation of order by light as a very active research topic [34]. While
the description of order in strongly correlated systems is already very challenging in
equilibrium, non-equilibrium setups may in general require even more advanced nu-
merical and analytical techniques. Nevertheless, one feasible and successful approach
is based on mean-field descriptions and Ginzburg-Landau free energies [109, 55, 54].
In these coarse-grained theories one assumes the existence of order parameters O1(r⃗),
O2(r⃗) and formally writes down a free energy functional like [109]

F [O1,O2, t] =

∫
dDr⃗

(
f1[O1, t] + f1[O2, t] + fc[O1,O1] + . . .

)
(1.6)

for suitable functions fi with possibly time-dependent coefficients. The order param-
eters evolve according to an equation of motion of the form 1

γi
∂tOi(r⃗, t) = − δF

δOi(r⃗,t)
.

Such theories can be used for qualitative comparison to experiments [110, 56] and for
the development of fit functions for experimental data. However, Ginzburg-Landau
models can only take a very limited amount of microscopic details of a material into
account. In addition, excitation protocols like photoexcitations are incorporated on
the level of time-dependent parameters in the free energy functionals, which is not
a very precise modeling of the excitation process. Hence, connecting the macroscopic
Ginzburg-Landau dynamics to microscopic theories of order parameter dynamics is one
of the important challenges for theory.

Microscopic modeling of light-induced order parameters is, in contrast, generically
complicated because of the high computational complexity. Often, microscopic mean-
field approaches are used. A nice example is a study by Sentef et al. [111], in which
CDW, SC and η-pairing order parameters in a two-dimensional Hubbard system under
periodic driving are simulated using time-dependent Hartree-Fock theory. The order
parameters are coupled due to an intrinsic SO(4) symmetry in the model. While in
equilibrium CDW and SC are degenerate, the coupling to a time-dependent field can
be used to lift this degeneracy and enhance SC, which contributes to the understanding
of a mechanism behind light-induced superconductivity. The study shows that mean-
field theories can already yield valuable physical insights. However, there are also clear
limitations: the theory lacks intrinsic relaxation mechanisms like dephasing beyond
coherent order parameter oscillations. The development of a beyond mean-field scheme
for the dynamics of competing order parameters, which incorporates some interaction-
induced effects like dephasing, is the topic of Chapter 5.
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1.3 Outline of the Thesis

The main part of this thesis in Chapters 4 and 5 is concerned with the development
and benchmarking of a new approach to simulate the dynamics of competing order
parameters in correlated materials based on a semiclassical time evolution technique
called fermionic truncated Wigner approximation [112]. It is based on time-dependent
Hartree-Fock theory but allows to include in addition the effect of quantum fluctuations
via the generation of random initial conditions to these equations of motion, sampled
from a probability distribution, which is known as the Wigner function. In Chapter 4
we apply this scheme to the well-understood problem of the interaction quench in the
two-dimensional Hubbard model [73, 75] and assess carefully the range of its valid-
ity. We conclude that dephasing-induced quasiparticle formation is indeed correctly
described by the theory, while its long-time dynamics can become unphysical. In order
to work in a well-controlled theoretical environment, we consider SU(N)-symmetric
generalizations of lattice models with α = 1, . . . , N degenerate fermion states instead
of two spin states σ =↑, ↓.

In a second step in Chapter 5, we apply the method to a two-dimensional SU(N)-
symmetric model with two competing order parameters, which are a bond density
wave phase and a so-called staggered flux phase. We model a photoexcitation with a
finite duration and study the formation of order subsequent to the pulse. The fTWA
dynamics allows for qualitative insights how the transition between the two phases
depends on the driving frequency of the pulse. We find a frequency regime for which
the transition occurs with a very low amount of absorbed energy, i.e. without much
additional heating. An advantage of the semiclassical method is that we can simulate
comparably large 2D systems with more than 240 lattice sites. We give an outlook on
how the scheme can be used to study spatially local excitations with inhomogeneous
ordering dynamics.

In addition to these method development-related aspects, we present results related
to spectral properties of driven electron systems in Chapter 3. The first project in the
chapter is a direct collaboration with the experimental group of Stefan Mathias [3]
and concerns the modeling of so-called Floquet and Volkov side bands in time-resolved
ARPES experiments. We derive analytical formulas for the side band intensities of
electron states with parabolic bands in the presence of a pump laser field. The second
project summarizes contributions to a collaboration [4] with Constantin Meyer and
Salvatore Manmana on the formation of an in-gap band in a one-dimensional charge-
density wave insulator, which is periodically driven. Finally, we summarize the main
results and give an outlook on possible future research directions.



Chapter 2

Theoretical Background and
Methods

2.1 Non-Equilibrium Green’s Functions

Green’s functions (GFs) are mathematical objects that contain information about spec-
tral and dynamical properties of many-body systems. A good reference for the follow-
ing definitions is the text book by Stefanucci and van Leeuwen [113]. Single-particle
GFs are expectation values of a combination of two ci(t) operators at different or equal
times. Let us denote the time evolution operator of a generic explicitly time-dependent
Hamiltonian Ĥ(t) by Û(t, t0). In general,

Û(t, t0¸) = T e
− i

ℏ
∫ t
t0
Ĥ(t′)dt′

. (2.1)

A density matrix ρ̂(t) evolves as follows:

ρ̂(t) = Û(t, t0)ρ̂(t0)Û(t0, t)

=
(
T̃ e

+ i
ℏ
∫ t
t0
Ĥ(t′+)dt′+

)
ρ̂(t0)

(
T e
− i

ℏ
∫ t
t0
Ĥ(t′−)dt′−

)
.

(2.2)

One can read this expression as a time propagation on two copies of the real time axis,
one with forward propagation direction (chronological time ordering T ) and one with
backward propagation direction (antichronological time ordering T̃ ). This is known as
the real-time Keldysh contour or “roundtrip”. The most fundamental Green’s function,
which contains all real-time spectral information, is the contour-ordered (or causal)
single-particle Green’s function

Gαβ(z, z′) = −i
〈
TCcα(z)c†β(z′)

〉
, (2.3)

where ⟨Â⟩ = tr(ρ̂Â) denotes the expectation value with respect to the density matrix
ρ. TC is ordering on the real-time Keldysh contour (forward branch before backward
branch). Here, the time parameters z, z′ live on the real Keldysh contour, i.e. they
can lie on the forward (z = t+) or on the backward branch (z = t−). The contour-
ordered GF can be written in a 2×2 matrix form, where the time arguments are on the
forward and backward branches, respectively. The lesser and greater Green’s functions

9
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are defined as follows:

G<
αβ(t, t′) := i

〈
c†β(t′+)cα(t−)

〉
, (2.4)

G>
αβ(t, t′) := −i

〈
cα(t+)c†β(t′−)

〉
. (2.5)

In the following we leave out the +/− indices and need to remember that t and t′ can
be freely chosen for all GFs. One can define a Hermitian conjugate of the lesser and
greater Green’s functions

[G<,>]
‡
(t, t′) := − (G<,>(t′, t))

†
(2.6)

such that G< and G> are Hermitian symmetric, i.e. [G<,>]‡ = G<,> . The retarded
Green’s function is defined as follows:

Gret
αβ(t, t′) := θ(t− t′)

(
G>(t, t′)−G<(t, t′)

)

= −iθ(t− t′)
〈{
cα(t), c†β(t′)

}〉
.

(2.7)

It is instructive to evaluate these definitions in equilibrium ρ̂ = e−βĤ and for a very
simple Hamiltonian Ĥ =

∑
k ϵkc

†
kck. One obtains ck(t) = e−iϵktck and

G<
kl(t, t

′) = ie−i(ϵkt−ϵlt
′)⟨c†l ck⟩ = iδkle

−iϵk(t−t′)⟨nk⟩,
G>
kl(t, t

′) = −ie−i(ϵkt−ϵlt′)⟨ckc†l ⟩ = −iδkle−iϵk(t−t
′)(1− ⟨nk⟩),

Gret
kl (t, t′) = −iδklθ(t− t′)e−iϵk(t−t

′).

(2.8)

The GFs only depend on diagonal ks and on the difference between the two time
arguments, which is expected from the spatial translational invariance of the system and
from the time translational invariance in equilibrium, respectively. This motivates a
Fourier transform (FT) with respect to the time difference. Unfortunately, conventions
regarding the normalization and signs of the transform in this context vary a lot in
the literature. The most commonly used convention (e.g. [114]) seems to be to set
τ := t− t′ and to define G(ω) =

∫∞
−∞ eiωτG(τ)dτ , i.e. using a non-unitary FT. For now,

we stick to this convention: Using F [θ(τ)](ω) = 1/(iω) + πδ(ω), one obtains

G<
k (ω) = i2πδ(ω − ϵk)⟨nk⟩,

G>
k (ω) = −i2πδ(ω − ϵk)

(
1− ⟨nk⟩

)
,

Gret
k (ω) = −i

∫ ∞

−∞
dτ θ(τ)e−i(ϵk−ω)τ

= −i
(
1/(iω) + πδ(ω)

)
= − 1

ω − ϵk
− iπδ(ω − ϵk).

(2.9)

The imaginary part of the retarded Green’s function is known as the spectral function

Ak(ω) = − 1

π
ImGret

k (ω) (2.10)

and in our simple equilibrium example it is given by δ(ϵk − ω).
The calculation highlights the following interpretation of the physical content of the

Green’s functions, which carries over to the non-equilibrium case [115]: The retarded
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Green’s function, via the spectral function, contains information on the k-resolved
density of states (like δ(ϵk−ω)), while the lesser and greater Green’s functions contain
spectral information, which is weighted with the occupation numbers. To be precise,
the lesser Green’s function contains the occupied part of the spectrum, while the greater
contains the unoccupied part.

2.1.1 Time-plane coordinates

One would like to formulate similar Fourier space quantities out-of-equilibrium to get
access to instantaneous spectral information. ω continues to be defined with respect
to the relative time τ = t − t′. In the presence of two time arguments, however,
there is an ambiguity, which time to choose as the “base time” that one associates
the spectral content to. Two choices are the most commonly used ones: Firstly, the
average time tave = t+t′

2
, which, together with τ = t−t′ defines a set of so-called Wigner

coordinates [113]. A second option is to simply choose the time t′. In the two-time
plane this gives rise to a set of “horizontal coordinates”. In a nice study by Kalthoff et
al. [114], both definitions are compared in the case of driven non-interacting fermions.
Both definitions display reasonable physical properties and one can show that in the
case of periodic driving both definitions imply the same period-averaged density of
states [114, 116], which agrees with the Floquet theory expectation.

The main application of the formalism in this thesis is the calculation of non-
equilibrium spectral functions from the retarded Green’s function. For wave function
based numerical methods (like MPS-based time-evolution schemes [58]) it is more con-
venient to consider the horizontal time coordinates because a single time propagation
calculation along t′ already fixes one of the times. The definition of the non-equilibrium
retarded Green’s function with horizontal coordinates reads as follows,

Gret
αβ(thor, τ) = −iθ(τ)

〈{
cα(thor + τ), c†β(thor)

}〉
, (2.11)

where thor corresponds to the original t′ variable. The non-equilibrium spectral function
at time thor is in turn defined as (keeping the Fourier transform conventions from above)

A(thor, ω) = − 1

π
ImGret

αβ(thor, ω). (2.12)

For the evaluation of the Fourier transform τ → ω for numerical data that is only
calculated up to a time τmax, it is often useful to introduce a small complex shift
ω → ω+ iη for an η > 0 that leads to a broadening of the spectral signal and prevents
noise in the frequency space data due to the unphysical time cutoff at tmax.

In order to compute the non-equilibrium spectral function numerically, one needs
to calculate expectation values of the form

〈
cα(t+ τ)c†β(t)

〉
and

〈
c†β(t)cα(t+ τ)

〉
(2.13)

for τ ≥ 0 if one is only interested in the retarded GF because of the θ(τ). The Hermitian
symmetry of the full G<(thor, τ) and G>(thor, τ) is not helpful in this case because it
would connect times (thor,−τ) to (thor − τ, τ).
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2.2 External Fields and Pump-Probe

Spectroscopy

2.2.1 Coupling to electromagnetic fields

Let us consider electric and magnetic fields E⃗(r⃗, t) and B⃗(r⃗, t) with the respective

potentials Φ(r⃗, t) and A⃗(r⃗, t). They are connected by the following relations

E⃗(r⃗, t) = −∇⃗Φ(r⃗, t)− ∂tA⃗(r⃗, t), B⃗(r⃗, t) = ∇⃗ × A⃗(r⃗, t). (2.14)

The most general coupling of the fields to a single-particle electron (q = −e) Hamil-

tonian ĥ =
ˆ⃗p2

2me
+ V (r⃗), where V (r⃗) is a potential term from the Coulomb interaction

of electrons and nuclei, proceeds as follows [117]:

ĥem =
1

2me

(
ˆ⃗p− qA⃗(r⃗, t)

)2

+ qΦ(r⃗, t) + gsµBB⃗(r⃗, t) · ˆ⃗
S, (2.15)

where S⃗ is the electron spin, µB is the Bohr magneton and gs ≈ 2 is called Landé
factor. The whole last term is called Zeeman term and describes the coupling of the
magnetic field to the spin magnetic moment. We will neglect this effect in this thesis.
The shift p⃗→ p⃗+ eA⃗(t) is known as the minimal coupling.

Typical many-body Hamiltonians consist of one-particle and two-particle terms,
where the latter is mostly of pair-interaction form (e.g. Coulomb interaction vpair ∼
|r⃗i − r⃗j|−1 with or without screening):

Ĥ1-p =
N∑

i=1

ĥi, Ĥ2-p =
1

2

∑

i ̸=j

vpair(ˆ⃗ri − ˆ⃗rj) (2.16)

Usually we prefer to work with Hamiltonians formulated in the language of second
quantization. It is therefore desirable to reformulate the minimal coupling in terms
of the second quantized matrix element. The resulting approach, which we review in
the following, goes back to Peierls [118] and was later simplified by Luttinger [119]. A
more recent overview can be found in [120].

We start from the definition of the matrix elements in terms of Wannier wave
functions ϕα(r⃗, t), where α = (n, R⃗, σ) is a block quantum number of band index n,

location R⃗ and electron spin σ. The hopping and interaction matrix elements can be
written as follows (some authors only define the hopping matrix elements with respect
to the deviation ∆U(r⃗) from the local atomic potentials; in order to keep the notation
simple, we also include the atomic part):

tαβ =

∫
d3r⃗ ϕα(r⃗ − R⃗α) Ĥ1-p ϕβ(r⃗ − R⃗β)

vαβγδ =

∫
d3r⃗

∫
d3r⃗′·

· ϕα(r⃗ − R⃗α)ϕβ(r⃗′ − R⃗β) Ĥ2-p ϕγ(r⃗ − R⃗γ)ϕδ(r⃗
′ − R⃗δ)

(2.17)
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Consequently, the many-body Hamiltonian has the structure

Ĥm-b =
∑

α

tαβc
†
αcβ +

1

2

∑

αβγδ

uαβγδc
†
αc
†
βcγcδ. (2.18)

However, the one-particle Hamiltonian (2.15) with electromagnetic fields is not
directly expressible in terms of these matrix elements due to the presence of additional
terms like p⃗ · A⃗. Nevertheless, this problem can be solved by a formal redefinition of
the Wannier orbitals

ϕα(r⃗, t) −→ φα(r⃗ − R⃗, t) = e−ieλα(r⃗,t)ϕα(r⃗ − R⃗), (2.19)

where

λα(r⃗, t) =

∫ r⃗

R⃗α

A⃗(r⃗′, t) · dr⃗′ (2.20)

is defined such that −i∇⃗λα = eA⃗. One obtains

temαβ = ⟨φα|Ĥem
1-p|φβ⟩

=
∑

i

(∫
d3r⃗i φα(r⃗i − R⃗α)·

·
[ 1

2me

(
ˆ⃗p+ eA⃗(r⃗i, t)

)2

+ V (r⃗i)
]
φβ(r⃗i − R⃗β)

)

=
∑

i

∫
d3r⃗i ϕα(r⃗i − R⃗α) e−ie

(
λβ(r⃗i,t)−λα(r⃗i,t)

)
·

·
[ ˆ⃗p2

2me

+ V (r⃗i)
]
ϕβ(r⃗i − R⃗β)

=
∑

i

e−ieλβ(R⃗α,t)

∫
d3r⃗i ϕα(r⃗i − R⃗α) eieΛ(r⃗,t)·

·
[ ˆ⃗p2

2me

+ V (r⃗i)
]
ϕβ(r⃗i − R⃗β),

(2.21)

where

Λ(r⃗, t) =

∫

S

dr⃗′ · A(r⃗′, t) (2.22)

and S is the closed path R⃗α → r⃗ → R⃗β → Rα. Now the usual approximation is
to neglect the Λ-exponential. This can be justified under the assumption of slow
spatial variance of the vector potential on the scale of a lattice constant because of the
strong localization of the Wannier orbitals ϕα(r⃗ − R⃗α) at the atomic positions. The
phase factor Λ(r⃗, t) does only contribute to a non-zero integral for arguments r⃗ in the

immediate vicinity of R⃗α or R⃗β. Since without loss of generality we may assume the

path R⃗α → R⃗β in the integral to be a straight line, the integral over the full path S

proceeds effectively back and forth along this line for the relevant r⃗ if A⃗(r⃗) does not
vary. Using the definition (2.20), one obtains a modified phase factor

temαβ = exp

(
ie

∫ R⃗β

R⃗α

A⃗(r⃗′, t) · dr⃗′
)
tαβ. (2.23)
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In non-equilibrium condensed matter applications, one often assumes a spatially ho-
mogeneous vector potential A⃗(t) such that

∫ R⃗β

R⃗α

A⃗(r⃗′, t) · dr⃗′ =
(
R⃗β − R⃗α

)
· A⃗(t) = ae⃗⟨i,j⟩ · A⃗(t), (2.24)

where we denote the unit vector in the direction of the nearest neighbor bond between
site i and j by e⃗⟨i,j⟩. If we choose units such that the lattice constant a as well as
the electric charge are unity, we obtain the common way to include a time-dependent
vector potential into an electronic kinetic Hamiltonian), which is known as the Peierls
substitution

Ĥkin = −th
∑

⟨i,j⟩

(
c†icj + H.c.

)

→ Ĥ ′kin = −th
∑

⟨i,j⟩

(
e−ie⃗⟨i,j⟩·A⃗(t)c†icj + H.c.

)
.

(2.25)

A pictorial way to understand the general modification (2.23) is presented in Fig. 2.1.
Depending on the spatial structure of the vector potential, it can induce a non-vanishing
magnetic flux Φ(t), which the electrons feel while hopping around a lattice plaquette.
Such a scenario is used frequently in ultracold atoms experiments to prepare phases
with additional gauge fields [121]. In any case, a time-dependent vector potential will
give rise to a non-vanishing electric field E(t) in the model. Finally, it is important to

thei
∫ 2
1 dy Ay(r⃗,t)Φ(t)

thei
∫ 3
2 dx Ax(r⃗,t)

thei
∫ 4
3 dy Ay(r⃗,t)

thei
∫ 1
4 dx Ax(r⃗,t)

Figure 2.1: Sketch of Peierls substitution in a 2d lattice. In addition to an electric
field, the phase factors of the hopping amplitudes may also give rise to a non-vanishing
magnetic flux around the plaquettes.

keep in mind that electromagnetic fields are only defined up to gauge transformations(
ϕ, A⃗

)
→

(
ϕ− ∂tχ, A⃗+∇χ

)
for an arbitrary function χ(r⃗, t). A gauge transformation

like this gives rise to a unitary transformation Û of the Hamiltonian

Ĥ → Û †(t)ĤÛ(t)− iÛ †
(
∂tÛ

)
, ci → cie

−iχ(R⃗i,t). (2.26)
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2.2.2 Description of time-resolved ARPES experiments

In a typical pump-probe time-resolved ARPES experiment two ultrashort (femtosec-
ond scale) laser pulses shine on a sample at a time delay ∆t, a pump pulse with photon
energies typically in the infrared and a second, narrower probe pulse with high photon
frequencies, e.g. in the (extreme) ultraviolet ((E)UV). The photon energy of the pump
pulse is comparable to the energies of electronic transitions and excitation energies
of the material. It induces energy absorption and the (transient) creation of excited
electronic states. The high photon energy of the probe pulse allows to create tran-
sitions into the vacuum and, ultimately, the detector. In order to model interaction
effects and real-time changes in the observed ARPES spectra resulting from scattering
processes, a full many-body formulation involving two-time Green’s functions is neces-
sary. However, some effects of the driving with a laser pulse can be captured already
on a single-particle level, in particular photon dressing effects that give rise to band
structure replicas in the trARPES spectra. We will study such effects more in detail
in Chapter 3. In the following we first introduce a simplified wave function model
for photoemission processes in the presence of time-dependent electromagnetic fields
before we introduce the more common many-body formalism.

2.2.2.1 Single-particle picture

In this section we follow mainly the presentation given by Madsen [122, 123] and
Park [124]. The pump and the probe pulse are modeled on the level of vector potentials

A⃗(r⃗, t). The pump pulse A⃗pump, which we assume to be linearly polarized, can be
thought of as a Gaussian-modulated cosine

A⃗pump = A⃗0
pumpspump(t) cos(ωpumpt), (2.27)

where spump(t) is the envelope function. Typical experimental values for ℏωpump would
be in the range of one to two electron volts [125]. In addition, usually the dipole

approximation A⃗(r⃗, t) = A⃗(t) is applied [122], which is based on a neglect of spatial
variations of the vector potential on the scale of a lattice constant. One may write
down a similar potential for the probe pulse

A⃗probe(r⃗, t) = A⃗0
probesprobe(t) cos(ωprobet). (2.28)

The experimental values for ωprobe vary a lot, the Göttingen setup [125] uses ℏωprobe ∼
26 eV. In addition to the dipole approximation, one usually assumes the rotating wave
approximation for the probe pulse [122]:

A⃗probe(t) =
A⃗0

probe

2
eiωprobet (RWA) (2.29)

The photoionization process itself can be modeled within first order time-dependent
perturbation theory (“Born approximation”) if one treats the probe pulse as a linear
perturbation [122, 124]: The kinetic Hamiltonian, in the presence of the probe pulse,
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is modified via minimal coupling (here we set q = −e)

p⃗2

2me

−→ 1

2me

(
p⃗+ eA⃗probe

)2

=
p⃗2

2me

+
e

2mec

(
A⃗probe · p⃗+ p⃗ · A⃗probe

)
+

e2

2me

(A⃗probe)
2

≃ p⃗2

2me

+
e

2me

A⃗probe · p⃗

(2.30)

where A⃗0
probe is assumed so small that the quadratic terms can be neglected. Further-

more, p⃗ · A⃗probe ∼ ∇⃗ · A⃗0
probe = 0, which is always true in the Coulomb gauge ∇ · A⃗ = 0

if surface effects are neglected.
Let us first consider, for simplicity, the situation without a pump pulse. If one

neglects many-body effects in the material, one can model (static) photoemission as a
scattering process from a single-particle initial wave function ψi(r⃗) to a single-particle
final state wave function. In the Born approximation, the scattering matrix element
(with respect to the perturbation ∼ Aprobe) reads

(SB − 1)fi = − i
ℏ

∫ ∞

−∞
dt ⟨ψf (r⃗, t)| A⃗probe(t) · p⃗ |ψi(r⃗, t)⟩

= − i
ℏ

∫ ∞

−∞
dt ⟨ψf (r⃗)| A⃗probe(t) · p⃗ |ψi(r⃗)⟩ e−i(ωf−ωi−ωprobe)t

= −2πi

ℏ
Mfiδ

(
ωf − ωi − ωprobe

)

(2.31)

where ψα(r⃗, t) = ψα(r⃗)eiωαt for α = i, f denote the inital and final states, respectively,

with energies Eα = ℏωα. Mfi = ⟨ψf (r⃗)| A⃗probe(t) · p⃗ |ψi(r⃗)⟩ is the time-independent
transition matrix element. The transition rate (which is proportional to the measured
photocurrent) between initial and final state is equivalent to Fermi’s golden rule:

wi→f =
2π

ℏ
|Mfi|2δ

(
ωf − ωi − ωprobe

)
. (2.32)

The Dirac-δ expresses energy conservation as one of the important principles of pho-
toemission. The second important principle is the conservation of momentum parallel
to the surface k⃗′∥ = k⃗∥, where k∥ and k′∥ are the initial and final state momenta parallel
to the surface plane, respectively. The conservation law follows from the translational
invariance in directions along this plane, which remains intact during the photoemis-
sion process. The z-component of the electron, in contrast, is not conserved and acts
as measure for the kinetic energy.

This leads over to the most complicated part of the modeling: the wave functions.
While in the single-particle picture one can simply assume the initial state to be a
Bloch wave, the final state is more complicated. The classical reference for a detailed
discussion is the book by Hüfner [126]. In modern “one-step” models of photoemission,
the final state corresponds to a “time-inverted LEED state”, i.e. a high lying Bloch
state in the solid, which is matched to free electron states far away from the surface.
These incorporate diffraction effects at the surface but are not so easy to describe
analytically. A simpler, more pragmatic, model [127] is to assume the final state as
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a free electron state according to the vacuum free electron Hamiltonian Hvac
0 = p⃗2

2me
.

Using such a model, one needs to introduce an artificial energy barrier V0 to at least
phenomenologically incorporate contributions to the energy balance like work functions
etc. The advantage of such a model is that it allows one to determine the kz-component
of the photoelectron explicitly.

In such a single-particle theory of photoemission, the main role of a pump field is
the electromagnetic dressing of the wave functions. In particular, the final free electron
states turn into so-called Volkov wave functions, which we discuss in more detail in the
introduction to Chapter 3.

2.2.2.2 Many-body picture

If interaction effects in the material become important, one needs to apply the many-
body formalism, in which the initial state |Ψi(N)⟩ as well as the final state |Ψf (N)⟩
after photoemission are many-body states with N particles. We again consider a setup
without pump pulse. A common assumption for theoretical calculations is the sudden
approximation, which assumes that the photoelectron decouples immediately from the
electron states in the solid and relaxation effects due to the probe pulse impact are
neglected. A pedagogical introduction was written by Michael Sing in [127] and we
only summarize the results. A generalization of the single-particle scattering theory to
many-body states using the sudden approximation and the assumption of constant ma-
trix elements yields a photocurrent I(k⃗, E) at final momentum k⃗ and energy E, which
is proportional to the spectral function Ak(ω) (cf. (2.10)) of the material, weighted
by the equilibrium mode occupations of the initial state. The latter is generically a
Fermi-Dirac distribution. In summary,

I(k⃗, E) ∼ Ak(ω)⟨nk⟩ = A<k (ω), (2.33)

where A<k (ω) = − 1
π

ImG<
k (ω). This shows the ability of photoemission to directly

obtain information about the spectral function of a correlated material.
An adaptation of the many-body formalism to the pump-probe situation is more

challenging and was first achieved by Freericks et al. [51]. Later, corrections [52, 128]
of the theory to ensure gauge-invariance have been developed. The main result is that
the time-resolved photocurrent I(t, k⃗, E) is proportional to the Fourier transform of
the lesser Green’s function (which might need to be constructed in a gauge-invariant
way) [52]:

I(t, k⃗, E) ∼ − i

ℏ2

∫ t

t0

dt1

∫ t

t0

dt2 spr(t1)spr(t2)e
iω(t1−t2)G<

k⃗
(t1, t2). (2.34)

Here, spr(t) is a shape function of the probe pulse. Although the relation between the
Green’s function out-of-equilibrium is more complicated than in equilibrium, one may
stick to the picture that time-resolved photoelectron spectroscopy measures the non-
equilibrium spectral function, weighted by the information how these non-equilibrium
states are “occupied”.
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2.3 Mean-Field Theory and Classical Limits

2.3.1 Overview

Mean-field theory is the starting point for various approximative treatments of inter-
acting many-particle systems like self-energy based diagrammatic expansions. There
are a number of different viewpoints on mean-field theory. One perspective is a re-
placement of quantum, or statistical, operators by their expectation values, Ô ≈ ⟨Ô⟩,
Ô1Ô2 ≈ ⟨Ô1⟩⟨Ô2⟩, etc. One can formalize this approach by introducing a fluctuation
operator δÔ such that Ô =

〈
Ô
〉

+ δÔ. The mean-field approximation on the operator
level corresponds to neglecting quadratic fluctuation contributions:

Ô1Ô2 =
(
⟨Ô1⟩+ δÔ1

)(
⟨Ô2⟩+ δÔ2

)

= ⟨Ô1⟩⟨Ô2⟩+ ⟨Ô1⟩δÔ2 + ⟨Ô2⟩δÔ1 + δÔ1δÔ2

≈ ⟨Ô1⟩⟨Ô2⟩+ ⟨Ô1⟩δÔ2 + ⟨Ô2⟩δÔ1

= ⟨Ô1⟩⟨Ô2⟩+ ⟨Ô1⟩
(
Ô2 − ⟨O2⟩

)
+ ⟨Ô2⟩

(
Ô1 − ⟨O1⟩

)

= ⟨Ô1⟩Ô2 + ⟨Ô2⟩Ô1 − ⟨Ô1⟩⟨Ô2⟩

(2.35)

One can immediately see that ⟨Ô1Ô2⟩ = ⟨Ô1⟩⟨Ô1⟩ within the approximation. In many-
body applications, fluctuations typically occur in more than one channel, like particle-
hole and exchange in the Hartree-Fock approximation, which gives rise to more terms
in equations like (2.35). It can be introduced in various ways: one is based on the
properties of Slater determinant wave functions in the language of first quantization.
The more straightforward way in second-quantized language is based on Wick’s theo-
rem [129]: One introduces a Wick contraction

A1A2 = A1A2 − : A1A2 : (2.36)

of two operators A1 and A2, where : A1A2 : denotes the normal ordering of the operators
with respect to some state (e.g., the ground state of the many-body system). One
can show that the contraction is a number instead of an operator, which implies that

A1A2 = ⟨A1A2⟩. Wick’s theorem formulates a rule how to express products of operators
A1 . . . An in terms of contractions and normal ordered operators. We only need the
expression for four operators [130] (upper signs: bosons, lower signs: fermions):

A1A2A3A4 =: A1A2A3A4 : +⟨A1A2⟩ : A3A4 : ±⟨A1A3⟩ : A2A4 :

+ ⟨A1A4⟩ : A2A3 : +⟨A2A3⟩ : A1A4 : ±⟨A2A4⟩ : A1A3 :

± ⟨A3A4⟩ : A1A2 :

+ ⟨A1A2⟩⟨A3A4⟩ ± ⟨A1A3⟩⟨A2A4⟩+ ⟨A1A4⟩⟨A2A3⟩

(2.37)

The mean-field approximation is equivalent to a neglect of : A1A2A3A4 :. As an
example we consider the Hubbard interaction term in position space, c†i↑ci↑c

†
i↓ci↓ =

c†i↑c
†
i↓ci↓ci↑. Its mean-field decoupling derived from Wick’s theorem yields three types

of contributions

〈
c†iσciσ

〉
: c†iσ̄ciσ̄ : −

〈
c†iσciσ̄

〉
: c†iσ̄ciσ : ⟨c†iσc†iσ̄⟩ : ciσ̄ciσ : (2.38)
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These are the Hartree, Fock and Bogoliubov terms, respectively. The third “pairing”
channel needs to be included in a mean-field theory if superconducting fluctuations are
relevant, otherwise it is often neglected.

A second perspective on mean-field theory is motivated from the field-theoretical
approach to interacting many-body systems. One starts from a partition function Z
and rewrites it in terms of a path integral over some coarse-grained field, e.g. an order
parameter. Let us consider the Ising Hamiltonian (without transverse field, equivalent
to the classical Ising model) for illustration:

ĤIsing = −J
∑

⟨i,j⟩

σ̂zi σ̂
z
j − h

∑

i

σ̂zi (2.39)

The partition function reads (sum over all classical spin configurations σ = {σ1, . . . σN})

ZIsing = trH
(
e−βĤIsing

)
=

∑

σ

e−βHIsing(σ) (2.40)

Usually, one is interested in the equilibrium value of the magnetization M = 1
N

∑
i σ

z
i .

Formally, one can introduce a “coarse-grained” partition function in terms of the mag-
netization as follows,

ZIsing(M) =
∑

σ

δ
(
M − 1

N

∑

i

σzi
)
e−βHIsing(σ). (2.41)

If one is able to rewrite the Hamiltonian as a function of the magnetization (it is
possible in the fully connected case), one has directly performed a coarse-graining step.
The probability to measure the magnetization value M is ZIsing(M)/ZIsing and the free
energy F (M) is defined as Z(M) = exp(−βF (M))). However, often this procedure
is not possible directly. Alternatively, one can view Z(M) and F (M) as fundamental
objects: This leads to the field theory formalism, in which one considers an abstract
order parameter field M(r⃗) with a partition function of the form

ZIsing =

∫
DM(r⃗) e−βFIsing[M(r⃗)]. (2.42)

Here, DM(r⃗) denotes the functional integration over all field configurations. It is the
analogue to the restricted partition sum (2.41). The mean-field approximation is equiv-
alent to a saddle point approximation of the integral, i.e. finding the order parameter
configuration for which the free energy obeys ∂MF [M ] = 0. In the applications in this
thesis, we usually implement the mean-field approximation directly for the Hamiltonian
and derive a mean-field free energy. We then search for its saddle points to determine
the self-consistent solution for the mean-fields.

2.3.2 Mean-field as a classical limit

An important class of interacting many-particle models are so-called mean-field models,
which possess a parameter ℏeff that controls the strength of quantum fluctuations in
the theory. Usually, ℏeff → 0 corresponds to a complete suppression of fluctuations,
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such that mean-field theory becomes exact. Values ℏeff > 0 allow to include the effect
of fluctuations in a controlled way. That is one reason why mean-field models are also a
very popular test bed for new theoretical methods. If quantum fluctuations are absent,
one natural expectation is that the physics of the model should be describable in terms
of a classical Hamiltonian. The limit ℏeff → 0 is therefore also called a classical limit.

A prototypical mean-field quantum model is the fully connected transverse-field
Ising model

ĤFC-TFIM = − 1

2N

N∑

i,j=1

σ̂zi σ̂
z
j − h

N∑

i=1

σ̂xi (2.43)

with N spins and transverse field h. In nuclear physics it is also known under the
name Lipkin-Meshkov-Glick (LMG) model [131]. In the model, ℏeff = 1

N
and one can

indeed formulate an effective classical Hamiltonian in the limit N → ∞. One way to
construct the classical Hamiltonian is to introduce the operator ˆ⃗m = 1

S

∑
i

ˆ⃗
iσ, where

S = N/2, which allows to rewrite

ĤFC-TFIM = −N
(1

2
(m̂z)2 − hmx

)
(2.44)

If one evaluates the m̂i-operators on coherent wave packets, one can introduce [132, 133,
134] classical conjugate variables Q and P to express the expectation values mz = Q,
mx =

√
1−Q2 cos(2P ), such that

Ĥclass = −1

2
Q2 − h

√
1−Q2 cos(2P ). (2.45)

Models on fully connected lattices are a very convenient setup for semiclassical
analysis. However, in applications one usually prefers to work on lattices with only
nearest neighbor hopping. Therefore, it is desirable to explore mean-field limits that
do not rely on that assumption. A related limit is the limit of high spatial dimensions d,
which reproduces the aspect of a high lattice coordination number (despite the short-
ranged hopping), which is also a core feature of the fully connected lattice. A famous
example is presented by the Ising model on a d-dimensional cubic lattice, for which
mean-field theory becomes exact in the limit d→∞ [135].

Similar results can be obtained for interacting electron models on cubic lattices. For
most types of interactions, like nearest neighbor density-density, Hartree-Fock mean-
field theory becomes exact in the limit d → ∞ [136]. An important exception is
presented by the Hubbard model with its site-local n̂i↑n̂i↓ interaction, for which Hartree-
Fock is not the correct theory in high spatial dimensions [21]. Instead, one obtains
dynamical mean-field theory (DMFT) [137].

Yet another category of mean-field theories is presented by bosonic Hamiltonians in
the limit of high mode occupation numbers [138, 139]. A way to see this is to consider
coherent state expectation values of the annihilation and creation operators ⟨b̂⟩ ∼

√
N

and rescale b̂ → b̂/
√
N . For the rescaled variables, [b, b†] ∼ 1

N
:= ℏeff such that their

quantum nature becomes negligible in the limit N → ∞. Hence, one may formally
introduce classical variables ψ ∼ ⟨b̂⟩/

√
N , which become non-fluctuating in the limit

N → ∞. Let us look at the Bose-Hubbard Hamiltonian as a prototypical example of
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an interacting many-boson Hamiltonian on a (cubic) lattice,

ĤBHM = −th
∑

⟨i,j⟩

(
b†ibj + H.c.

)
+
U

2

∑

i

n̂i(n̂i − 1). (2.46)

In the limit of large mode occupations Ni, the dynamics of the classical variables ψi is
described by the classical Gross-Pitaevskii Hamiltonian [139]

HGP = −
∑

⟨i,j⟩

(
ψ∗iψj + H.c.

)
+
λ

2

∑

i

|ψi|4, (2.47)

where λ = UN/th.

2.3.3 Fermionic Large-N Models

The Gross-Pitaevskii limit of interacting bosons presents a very useful mean-field sce-
nario that is able to capture many experimentally observable phenomena, even at strong
coupling. (Spin-1

2
-)Fermions lack this limit of high mode occupancy due to their in-

trinsic two-dimensional state space. However, one can artificially increase the number
of fermion species (i.e. their degeneracy) by going from two spin species σ =↑, ↓ to
N species α = 1, . . . , N . Such large-N models, also known as SU(N)-symmetric mod-
els can provide, on the one side, an analytical handle to interacting models beyond
perturbation theory in the interaction strength. On the other hand, they also provide
advantages for some numerical methods like quantum Monte Carlo (QMC), where a
large value of N systematically suppresses the fermionic sign problem [140].

The large-N generalization of the Hubbard model (at half filling) reads as follows:

ĤFHM = −th
∑

⟨i,j⟩

N∑

α=1

(
c†iαcjα + H.c.

)
+
U

N

∑

i

( N∑

α=1

(
c†iαciα −

1

2

))2

(2.48)

For N = 2 the interaction term reads (using n̂2
iσ = n̂iσ)

U

2

∑

i

((
n̂i↓ −

1

2

)
+
(
n̂i↑ −

1

2

))2

=
U

2

∑

i

(
2
(
n̂i↓ −

1

2

)(
n̂i↑ −

1

2

)
+ n̂2

i↓ + n̂2
i↑ −

(
n̂i↓ + n̂i↑

)
+

1

2

)

= U
∑

i

(
n̂i↓ −

1

2

)(
n̂i↑ −

1

2

)
+ const. ,

(2.49)

which coincides with the conventional fermionic Hubbard model. A very natural rep-
resentation of SU(N)-symmetric models can be obtained in terms of the following
flavor-averaged one-particle reduced density matrix operators,

ρ̂ij =
1

N

N∑

α=1

(
c†iαcjα −

1

2
δij

)
. (2.50)
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The Fermi-Hubbard model then reads

ĤFHM = Ĥkin + ĤU = −Nth
∑

⟨i,j⟩

(
ρ̂ij + H.c.

)
+ UN

∑

i

ρ̂2ii (2.51)

The global prefactor N is a direct consequence of the semiclassical nature of the theory.
Calculating the commutator of two ρ-operators yields

[
ρ̂ij, ρ̂mn

]
=

1

N2

N∑

α,β=1

[
ρ̂iα,jα, ρ̂mβ,nβ

]
=

1

N

(
δjmρ̂in − δinρ̂mj

)
, (2.52)

which shows that the effective ℏ in the large-N models is given by ℏeff = 1
N

. As N →∞,
the commutator vanishes and one can treat the ρ-operators like complex numbers (akin
to the condensate wave function in Bose-Einstein condensates).

2.3.3.1 Equilibrium Phases in Large-N Models

In the case of the SU(N) Hubbard model the Hartree approximation (particle-hole
channel) becomes exact as N → ∞. We can also see this explicitly from a cluster
decoupling of the interaction term:

〈
ρ̂2ii

〉
=

1

N2

∑

α,β

〈
c†iαciαc

†
iβciβ

〉
+ . . .

=
1

N2

∑

α,β

(〈
c†iαciα

〉〈
c†iβcnβ

〉
−
〈
c†iαciβ

〉〈
c†iβciα

〉)
+ . . .

=
〈
ρii

〉2 − 1

N2

∑

α,β

〈
c†iαciβ

〉〈
c†iβciα

〉

=
〈
ρii

〉2 − 1

N2

∑

α

〈
c†iαciα

〉〈
c†iαciα

〉

(2.53)

In the last step we have assumed a flavor-diagonal state (which we consider in this
thesis): the second “flavor-exchange” term is suppressed ∼ 1

N
. Hence, in the SU(N)-

Hubbard model at N → ∞, only the Hartree term contributes. However, effectively,
it only gives rise to a self-consistent shift of the chemical potential and therefore it
cannot contribute to interesting real space order within mean-field theory. To obtain
order already on the mean-field level, one needs to add additional SU(N)-symmetric
terms to the Hamiltonian that stabilize certain types of order. One example is a
density-density interaction term in the spirit of the extended Hubbard model

ĤV = NV
∑

⟨i,j⟩

ρ̂iiρ̂jj (2.54)

For a unit cell composed of at least two sites this model allows for charge-density wave
order at N →∞ and even at N = 2.

A very important interaction term, which we will investigate later in this thesis, is
given by the following Heisenberg-like Hamiltonian

ĤJ = −NJ
2

∑

⟨i,j⟩

(
ρ̂ij ρ̂ji + ρ̂jiρ̂ij

)
(2.55)
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It is related to the conventional Heisenberg model: If we set N = 2, we can rewrite the
Hamiltonian in terms of spin operators

ˆ⃗
Si =

1

2

∑

α,β=↑,↓

c†iασ⃗αβciβ, (2.56)

and obtain (using that always i ̸= j in this case)

N

2

(
ρ̂ij ρ̂ji + ρ̂jiρ̂ij

)
=

1

2N

∑

α,β=↑,↓

(
c†iαcjαc

†
jβciβ + (i↔ j)

)

= . . .
N=2
= − ˆ⃗

iS · ˆ⃗
Sj −

1

4
(ni − 1)(nj − 1) + const.

(2.57)

The difference to the conventional Heisenberg model is a nearest-neighbor density-
density interaction term. The composite SU(N)-symmetric model Ĥkin + ĤJ + ĤU

was first solved using field-theoretical methods by Affleck and Marston [141, 142].
The explicit inclusion of the Hubbard interaction term allows to consider the limit
U/th → ∞, which implies a complete suppression of charge fluctuations and would
render the density-density interaction term irrelevant. The Hubbard-Heisenberg model
has a rich phase diagram already for N → ∞ and we give a more comprehensive
overview of it and in general of research on SU(N) models in the Introduction to
Sec. 5.

2.3.4 Numerical determination of self-consistent mean-field
solutions

Hartree-Fock mean-field theory usually proceeds in three steps: Firstly, one needs to
decouple all interaction terms such that the remaining Hamiltonian is only quadratic
in the annihilation and creation operators. Secondly, one diagonalizes this mean-field
Hamiltonian in order to obtain a set of mean-field modes and a set of self-consistency
conditions. Thirdly, one needs to find a self-consistent solution for all mean-fields,
which also agrees with the desired particle number and temperature.

For carrying out the third step, more than one method exists. In this thesis we
view mean-field solutions as minima (more generally, saddle points) of a free energy
function F , which at zero temperature coincides with the total energy ⟨H⟩. The free
energy needs to be written in terms of all the mean-fields. A very flexible method
to search for minima of such generically complicated functions is simulated annealing,
which is based on an artificial thermal random walk in the free energy landscape. It
is also suggested in Marston’s and Affleck’s paper [142] as a method to determine the
mean-field solution of the Hubbard-Heisenberg model. The basic idea is as follows:
One defines an artificial initial temperature T0 > 0 and chooses a random initial state
x0 . In each iteration of the procedure a new random state xi+1 is generated from the
old and one compares their free energies.

• If the free energy of the new state is lower than in the old state, the algorithm
discards the old state and continues with the new.

• If the free energy of the new state is not lower than in the old state, one discards
the old state with a Boltzmann probability exp

(
− (F (xi+1)− F (xi))/Ti

)
.
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The temperature Ti is lowered during each iteration at a predefined rate. The algorithm
stops after a predetermined number of iterations and yields the state with the lowest
free energy of all the iterations. An advantage of the algorithm is that it is able to
escape from local minima, which are no global minima. After some experiments with a
self-written code, we mostly used the dual annealing routine of the scipy numerical
library [143] for Python. It implements the idea described above but adds a few more
tricks to speed up convergence. Usually, 3000 iterations yield good convergence. If
self-consistent solutions with specific symmetry properties are desired, we reduced the
number of mean-fields to a minimal amount. The self-consistency conditions are always
used as a check to validate the correctness of the minimum.

2.3.5 Mean-field theory out-of-equilibrium

In order to apply mean-field theory for time evolution, one starts with a deriva-
tion of a mean-field Hamiltonian HHF obtained within time-independent Hartree-
Fock theory. The entries of the one-particle reduced density matrix ρiσ,jτ = ⟨c†iσcjτ ⟩
will usually occur as mean-fields, which are self-consistently determined in equilib-
rium. If one derives the equation of motion for the creation and annihilation oper-
ators −i∂tciσ =

[
HHF[ρ(t)], ciσ

]
, while keeping the mean-fields as numbers, one ob-

tains time-dependent Hartree-Fock theory [144]. Another, equivalent, perspective is
to start from the equation of motion for ρiσ,jτ and to decouple the right hand side.
This yields, in general, a non-linear equation of motion for the one-particle reduced
density matrix that one needs to solve numerically. From the time-diagonal quan-
tities ρiσ,jτ (t) one can also calculate, in a second iteration, Green’s functions like

G<
iσ,jτ (thor, τ) = i⟨c†iσ(thor + τ)cjτ (thor)⟩ by deriving their equations of motion and us-

ing the previously obtained time-diagonal data. Such equations of motion for the
Green’s functions generically have the following structure (for general time arguments
t, t′) [113]:

−i∂tG<,>
iσ,jτ (t, t

′) =
∑

mµ

(
hiσ,mµ(t) + ΣHF

iσ,mµ[ρ(t)]
)
G<,>
mµ,jτ (t, t

′), (2.58)

This is the Hartree-Fock level of the Kadanoff-Baym equations of motion for the Green’s
function [113]. ΣHF

iσ,mµ is the Hartree-Fock self-energy, which depends on the time-
diagonal G<(t, t), i.e. on ρ(t).

Time-dependent Hartree-Fock is the lowest order of a whole dynamical hierarchy
called the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [145]. The
next order of the hierarchy would include the two-particle reduced density matrix
⟨c†ic†mcncj⟩ (or its connected analogue) into the equations of motion and decouple three-
particle terms into sums and products of one- and two-particle terms.
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2.4 Phase Space Methods

The concept of phase space appears very naturally in classical mechanics as the space
of all possible position-momentum pairs (q⃗, p⃗). A classical Hamiltonian gives rise to an
incompressible (Liouville’s theorem) flow on phase space via Hamilton’s equations of
motion. In a classical many-particle system one can easily define distribution functions
ρ(q, p, t) that encode the number of particles found in a unit volume element dnq dnp
at time t. A famous example is provided by the Boltzmann distribution.

In quantum mechanics, due to the non-vanishing commutator
[
q̂, p̂

]
= iℏ, it is not

possible to straightforwardly carry over the phase space concept. Most importantly, it
is not possible to fix both the position and the momentum of a particle at the same
time. The mathematical connections of quantum and classical mechanics, in particular
the question how to systematically “quantize” a classical system, remains an active
topic of research [146]. Nevertheless, it is possible to construct classical analogies to
quantum systems in a systematic way. These allow for semi-classical approximations
like the truncated Wigner approximation (TWA).

2.4.1 Phase Space Formulation of Quantum Dynamics

A deceptive analogy between classical and quantum mechanics is based on the apparent
similarity of Poisson brackets and commutators. Both occur in equations of motion
with the same algebraic structure, namely the Hamiltonian flow d

dt
f =

{
f,H

}
+∂tf of a

phase space function f(q, p, t) and Heisenberg’s equation of motion ∂tÔ = − i
ℏ

[
Ô, Ĥ

]
+

∂tÔ of an observable Ô (where ∂tÔ refers to the time derivative in the Schrödinger
picture).

However, it was noticed already early in the history of quantum mechanics that the
quantization recipe to “replace Poisson brackets by commutators

{
•, •

}
→ − i

ℏ

[
•, •

]
” is

incomplete. The Groenewold-van Hove theorem [147, 148] states that one cannot con-
sistently quantize the Poisson algebra P of all polynomials in qi and pj. Quantization in
the sense of the theorem refers to a map Q from (a subalgebra of) the Poisson algebra
P to the space of Hermitian operators, which obeys a number of rules (see e.g. [149])
like Q

({
f, g

})
= − i

ℏ

[
Q(f),Q(g)

]
. The proof of the theorem is based on contradiction:

One can, for example, start from the classical equality
{
q3, p3

}
= 3

{
q2p, qp2

}
and show

that the application of Q leads to different results on the two sides of the equation.
Nevertheless, a quantization in the original sense is possible on certain subalgebras
of P like the algebra of all polynomials of degree at most two,

{
1, q, p, q2, qp, p2

}
or

the “coordinate algebra” C =
{∑n

i=1 f
i(q)pi + g(q)

}
for polynomials f i and g [149].

However, in applications beyond the harmonic oscillator, Hamiltonians (with quar-
tic interaction terms) do usually not live in such closed subalgebras. Luckily, despite
this famous Groenewold-van Hove no-go theorem, constructive ways to assign classical
phase space functions to quantum operators exist. The most common approach is to
relax the Poisson bracket/commutator correspondence and introduce Moyal brackets
instead of Poisson brackets. Mathematically speaking, Moyal brackets are deformations
of Poisson brackets that agree with them to leading order in ℏ.

There are many different possible choices how to construct Moyal brackets and
classical phase space analogies to quantum operators. Usually, one associates a classical
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phase space function to a specific ordering of quantum operators. The most important
scheme is Wigner-Weyl quantization, which corresponds to symmetric ordering of
operators. Nevertheless, other ordering prescriptions are possible and give rise to the
Husimi or Glauber-Sudarshan formalism, for instance. In the following, we will only
discuss the Wigner-Weyl formalism in more detail.

The phase space function associated to the operators is called Weyl symbol. Let
us look at the example of single-particle quantum mechanics with the operators q̂
and p̂. For now, we denote Weyl symbols with a lattice subscript W. We associate
x̂ 7→ xW, p̂ 7→ pW and 1

2

(
x̂p̂ + p̂x̂

)
7→ xWpW. In case one wants to calculate Weyl

symbols of generic – not necessarily symmetrically ordered – operators, the following
transformation formula exists (some authors exchange ξ ↔ −ξ):

ΩW(q, p) =

∫
dξ e

i
ℏp·q

〈
q − ξ/2

∣∣∣ Ω̂(q̂, p̂)
∣∣∣ q + ξ/2

〉
(2.59)

Here |q⟩ are position eigenstates. For example (d = 1),

(q̂)W =

∫ ∞

−∞
dξ e

i
ℏpξ ⟨q − ξ/2 | q̂ | q + ξ/2⟩

=

∫ ∞

−∞
dξ e

i
ℏpξ

(
q − ξ

2

)
⟨q − ξ/2 | q + ξ/2⟩︸ ︷︷ ︸

δ(ξ)

= q
(2.60)

(p̂)W =

∫ ∞

−∞
dξ e

i
ℏpξ ⟨q + ξ/2 | p̂ | q − ξ/2⟩

=

∫ ∞

−∞
dξ e

i
ℏpξ ⟨q − ξ/2|

∫ ∞

−∞
dp′ |p′⟩ ⟨p′| p̂|q + ξ/2⟩

=

∫ ∞

−∞
dξ e−

i
ℏpξ

∫ ∞

−∞
dp′ e

i
ℏp

′q+ ξ
2
)e−

i
ℏp

′(q− ξ
2
)p′/h

=

∫ ∞

−∞
dp′

∫ ∞

−∞
dξ e

i
ℏ (p

′−p)ξ

︸ ︷︷ ︸
hδ(p−p′)

p′/h = p

(2.61)

(q̂p̂)W =

∫ ∞

−∞
dξ e

i
ℏpξ ⟨x+ ξ/2 | x̂p̂ |x− ξ/2⟩

=

∫ ∞

−∞
dp′ p′/h

∫ ∞

−∞
dξ (x+

ξ

2
)e

i
ℏ (p

′−p)ξ

= xp+
1

2h

∫ ∞

−∞
dp′ p′

∫ ∞

−∞
dξ ξe

i
ℏ (p

′−p)ξ

= xp+
1

2h

∫ ∞

−∞
dp′ p′(iℏ∂p)

∫ ∞

−∞
dξ e

i
ℏ (p

′−p)ξ

pW= xp+
1

2h
(iℏ∂p)(ph) = xp+

iℏ
2

(2.62)

The last identity demonstrates that the non-symmetric operator ordering leads to ℏ-
corrections. One obtains (p̂q̂)W = qp− iℏ/2 and hence

(
[q̂, p̂]

)
W

= iℏ and (1
2
{q̂, p̂})W =
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qp, as expected. The last identity (2.62) can also be obtained by using Moyal products.
In the Wigner-Weyl formalism, the Moyal product of two Weyl symbols Ω1, Ω2 can be
written as follows [150],

(
Ω1Ω2

)
W

(q, p) = Ω1We−
iℏ
2
ΛΩ2W, where Λ :=

∑

i

( ←
∂

∂pi

→
∂

∂qi
−
←
∂

∂qi

→
∂

∂pi

)
(2.63)

The arrows indicate the direction, in which the derivative needs to be executed. The
Moyal bracket {Ω1,Ω2}M, which is the Weyl transform of − i

ℏ [Ω̂1, Ω̂2], can be written
in the following way:

{Ω1,Ω2}M = −2

ℏ
Ω1W sin

(ℏ
2

Λ
)

Ω2W (2.64)

Insertion of the power series of the sine function precisely recovers the Poisson bracket
to leading order. The Weyl symbol of the density matrix ρ̂(t) is called the Wigner
function W (q̂, p̂, t). A central property of the Weyl transform is that it translates
traces of operator products into phase space integrals over their Weyl symbols,

tr
(
Ω̂1Ω̂2

)
=

∫
ddq

∫
ddp Ω1W(q, p)Ω2W(q, p) (2.65)

A direct consequence of this is the following important formula for the evaluation of
quantum mechanical expectation values:

〈
Ω̂(q̂, p̂, t)

〉
= tr

(
ρ̂Ω̂

)
=

∫
ddq

∫
ddp W (q, p, t)ΩW(q, p, t) (2.66)

Hence, if the full Wigner function at time t is known, one can evaluate expectation
values of all quantum observables for which the Weyl symbols are known.

The Wigner-Weyl quantization scheme for positions q̂i and momenta p̂j can be

carried over to bosonic mode operators ψ̂i with [ψ̂i, ψ̂
†
j ] = δij. Instead of position

eigenstates, bosonic coherent states are used in the definition of the transformation rule.
We write |ψ0⟩ = exp(−1

2
|ψ0|2)

∑
n ψ

n
0 /
√
n! |n⟩ for a normalized coherent state (Caveat:

Polkovnikov [150] uses non-normalized coherent states). The adapted transformation
rule reads

ΩW(ψ, ψ̄) =

∫
d(ξ, ξ̄) e

1
2

(
ξ̄·ψ−ξ·ψ̄

) 〈
ψ − ξ/2

∣∣∣ Ω̂(ψ̂, ψ̂
†
)
∣∣∣ψ + ξ/2

〉
(2.67)

In order to write down the classical phase space representation of the dynamics in
the model, we need to calculate the Weyl symbol of the Hamiltonian. The hopping
term transforms straightforwardly, the interaction term has to be symmetrized before.

2.4.2 Truncated Wigner Approximation

We have seen that eqn. (2.66) allows to calculate arbitrary time-dependent expectation
values of observables if the full time-evolved Wigner function is known. The evolution
equation for the Wigner function can be obtained from the von Neumann equation
iℏ∂tρ̂ = [Ĥ, ρ̂] upon Weyl transform:

∂tW (ψ, ψ̄, t) =
{
HW(ψ, ψ̄, t),W (ψ, ψ̄, t)

}
M

(2.68)
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As we have seen, one can expand the Moyal bracket (2.64) in ℏ and we can truncate
this expansion at the leading order, which gives rise to

∂tW (ψ, ψ̄, t) =
{
HW(ψ, ψ̄, t),W (ψ, ψ̄, t)

}
. (2.69)

Here, the curly brackets refer to regular Poisson brackets. The dynamical scheme so
obtained is called truncated Wigner approximation (TWA). An important as-
pect about eqn. (2.69) is its formal analogy to the classical Liouville equation, which
describes the propagation of a classical distribution function on phase space. In clas-
sical mechanics, the Liouville equation is usually derived from Hamilton’s equations
of motion. In the TWA context, one can argue the other way around via the method
of characteristics [150]. The latter is a technique commonly used for the analysis of
partial differential equations. It is based on the conservation of W (ψ, ψ̄, t) along the
trajectories generated by HW. Those trajectories are precisely governed by Hamilton’s
equations of motion for the classical Hamiltonian,

W (ψ(t), ψ̄(t), t) = W (ψ(t0), ψ̄(t0), t0), ψ(t) =
∂HW

∂ψ̄
. (2.70)

This relation allows us to reformulate eqn. (2.66) for expectation values at time t in
terms of propagated classical variables with initial conditions ψ(t = 0) = ψ0 at time
t0 = 0:

〈
Ω̂(ψ̂, ψ̂

†
, t)

〉
=

∫
dd(ψ, ψ̄) W (ψ, ψ̄, t) ΩW(ψ, ψ̄, t)

≡
∫

dd
(
ψ(t), ψ̄(t)

)
W (ψ(t), ψ̄(t), t) ΩW(ψ(t), ψ̄(t), t)

=

∫
dd
(
ψ0, ψ̄0

)
W (ψ0, ψ̄0, t0) ΩW(ψ(t), ψ̄(t), t)

(2.71)

We have implicitly used the fact that the volume element dd
(
ψ0, ψ̄0

)
does not change

under the Hamiltonian time propagation (Liouville’s theorem). Eqn. (2.71) now offers
a natural interpretation in terms of Monte Carlo sampling. The Wigner distribution at
initial time t0 plays the role of a statistical weight for the initial values of the classical
variables, which are propagated using the classical equations of motion.

The derivation of TWA from the von Neumann equation is the most transparent
but it is not very useful when it comes to a calculation of corrections to the mean-field
dynamics beyond TWA. In fact, the next order in ℏ in the expansion of the Moyal
bracket gives rise to a very complicated partial differential equation, which is not solv-
able any more using the method of characteristics. However, another route – pioneered
by Anatoli Polkovnikov [151, 150] – proceeds via the path integral representation of the
Keldysh formalism. Here, TWA is the leading order result of an expansion in quantum
fluctuations. Besides this reassuring fact, the path integral formalism also enables one
to derive a scheme for corrections to TWA based on the concept of quantum jumps.
Although one can indeed show for simple examples that quantum jump corrections
lead to more accurate results, their implementation remains tedious and inefficient.
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2.4.3 Variations on a Theme by Wigner

The original TWA method describes the dynamics of bosons in the regime of high
occupation numbers. However, it turns out that the idea at the heart of TWA, i.e. av-
eraging over mean-field trajectories with fluctuating initial conditions, can be applied
as well to many other quantum systems. A very efficient tool to transfer the bosonic
formalism to other setups is the Schwinger boson representation [152, 112]. If generic
operators X̂α obey commutation relations

[
X̂α, X̂β

]
= i

∑
γ fαβγX̂γ for structure con-

stants fαβγ one needs to find a d×d matrix form (Xα)ij of these operators. The matrix

allows to construct a bosonic representation (“Jordan map” [112]) X̂α 7→ a†i (Xα)ijaj
of X̂α for bosonic annihilation and creation operators ai, i = 1, . . . , d, which obeys
the original commutation relations by design. For TWA schemes, the advantage of
such a representation is the possibility to straightforwardly define the Weyl symbols
Xcl
α :=

(
a†i (Xα)ijaj

)
W

. The equation of motion follows automatically and reads [152]

∂tX
cl
α =

∑

βγ

fαβγ
∂HW

∂Xcl
β

Xcl
γ . (2.72)

The most straightforward extension of this type is TWA for spins. Let us consider
a collection of spin operators

{
Ŝαi

}
, which obey the spin algebra

[
Ŝαi , Ŝ

β
j

]
= iδijϵαβγŜ

γ
i .

α = x, y, z labels the spin component and i is the site index. One can introduce two
families of bosonic operators {ai} and {bj} as follows:

Ŝxi =
1

2

(
a†ibi + b†iai

)
, Ŝyi =

i

2

(
a†ibi − b†iai

)
, Ŝzi =

1

2

(
b†ibi − a†iai

)
(2.73)

If the bosons obey the canonical commutation relations, the spin operators obey the
spin algebra. To be consistent, the Schwinger bosons need to satisfy the following
constraint:

a†iai + b†ibi = 2S, (2.74)

where S is the total spin. Constraints of this kind are not problematic within TWA
because a†iai + b†ibi commutes with all spin Hamiltonians and this conservation law is
respected by the Hamiltonian dynamics [150]. This representation allows one to carry
over the bosonic TWA formalism to spin systems. In the context of this “traditional”
TWA method, one way to systematically improve the validity of the method is to artifi-
cially enlarge the classical phase space via the introduction of additional variables. One
remarkable demonstration of this technique is due to Davidson and Polkovnikov [152],
who embedded an interacting spin-1

2
system into a larger algebra of SU(3) spins al-

lowing them to express certain operators like Ŝ2
z , which are quadratic in the SU(2)

language, as linear operators in the SU(3) formulation. Because the dynamics of linear
operators is exact within TWA, this increases the validity of the method. However, it
is not so easy any more to determine exact Wigner functions for these extended sets
of variables. Therefore, one would usually construct approximate (Gaussian) Wigner
functions that correctly reproduce the lowest moments of the initial state. Another
variation of the topic is the cluster truncated Wigner approximation (CTWA) scheme
for spin systems [153]. It is based on the formation of real-space clusters of spins, which
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are represented as linear operators in TWA. The method has been used to study trans-
port in spin chains [154]. However, the breaking of the spatial translational invariance
due to the definition of the clusters is a downside of the method.

These extensions of the original TWA are usually based on smooth probability
distribution models for the Wigner function (mostly Gaussians). However, modern
variants of the TWA use a more fine tuned sampling scheme, which gives rise to the
so-called discrete TWA [155] and provides another improvement of the TWA method.

2.5 Fermionic TWA (aka stochastic mean-field

approach)

The “traditional” TWA described above is a theory for interacting bosonic (and spin)
systems. Fermions, in contrast, do not allow for a classical limit of Gross-Pitaevskii
type, their internal state space is usually two-dimensional (σ =↑, ↓). Nevertheless, one
can formulate a TWA scheme for fermionic degrees of freedom [112], which is based on
a Schwinger boson representation of fermionic bilinears

ρ̂αβ =
1

2

(
c†αcβ − cβc†α

)
= c†αcβ −

1

2
δαβ and τ̂αβ = cαcβ. (2.75)

These bilinears define a set of phase space coordinates by means of their closed so(2n)
commutator structure

[
ρ̂αβ, ρ̂γδ

]
= δγβ ρ̂αδ − δαδρ̂γβ[

ρ̂αβ, τ̂γδ
]

= δαγ τ̂δβ − δαδ τ̂γβ[
τ̂ †αβ, τ̂γδ

]
= −δαδρ̂βδ + δαγ ρ̂βδ − δβδρ̂αδ + δβδρ̂αγ

(2.76)

The ρ-operators obey, in particular, ρ̂†αβ = ρ̂βα. It is important to note that they
already form a closed algebra such that one can also set up consistent TWA schemes
without explicit inclusion of the τ -variables. These commutation relations can formally
be implemented via the Schwinger boson scheme introduced in the last section. The
operators ρ̂αβ and τ̂αβ are replaced by their associated classical phase space variables
ραβ and ταβ. However, the classical representation of the Hamiltonian is non-unique
as we discuss further below. The semiclassical scheme so obtained is called fermionic
TWA (fTWA) and has not seen many applications so far. fTWA was used to study
the thermalization and echo dynamics in SYK models [112, 156] as well as the non-
equilibrium dynamics in disordered Hubbard models [157, 158, 159].

A natural index set of fermionic lattice models is α = iσ for lattice site i and spin
index σ. As indices α for the Hubbard model we consider site index i and spin index
σ: α = iσ. For a lattice with L sites, the classical ρ-variables give rise to a Hermitian
matrix

(ρστ ) =



ρ0σ,0τ . . . ρ0σ,Lτ
. . . . . . . . .
ρLσ,0τ . . . ρLσ,0τ


 , (ρ) =

(
(ρ↑↑) (ρ↑↓)
(ρ↓↑) (ρ↓↓)

)
(2.77)

of size 2L× 2L with in general 2L2 + L independent complex entries. Similarly, the τ
operators constitute an anti-Hermitian matrix.
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2.5.1 Equations of motion

The classical representation of a fermionic Hamiltonian is in general not unique (it is
if flavor-averaged variables are used, which is the case for most of this thesis). Choices
of classical Hamiltonians correspond to mean-field decouplings of interaction terms.
Given a choice of a decoupling, the classical equations of motion coincide with the
time-dependent Hartree-Fock equations for the respective decoupling. Equivalently,
one can derive the equations of motion in purely classical terms using (for compactness
only written for the ρiσ,jτ )

i∂tρiσ,jτ = {ρiσ,jτ , HW} (2.78)

with the Poisson bracket

{ρiσ,jτ , HW} =
∑

kκ

∂HW

∂ρjτ,kκ
ρiσ,kκ −

∑

kκ

∂HW

∂ρkκ,iσ
ρkκ,jτ . (2.79)

These equations are precisely Hamilton’s equations of motion for the classical Hamil-
tonian. As an example we consider the Hubbard interaction term

ĤU = U
∑

i

c†i↑ci↑c
†
i↓ci↓ (2.80)

A decoupling in the Hartree (“direct”) channel

ĤU = U
∑

i

c†i↑ci↑c
†
i↓ci↓ −→ HW = U

∑

i

(ρi↑,i↑ +
1

2
)(ρi↓,i↓ +

1

2
) (2.81)

yields the following equations of motion for the ρs:

i∂tρiσ,jσ = U(ρjσ̄,jσ̄ − ρiσ̄,iσ̄)ρiσ,jσ

i∂tρiσ,jσ̄ = U(ρjσ,jσ − ρiσ̄,iσ̄)ρiσ,jσ̄
(2.82)

In the classical formalism, these equations follow from

∂HW

∂ρiσ,jτ
= δστ

{
U
(
ρiσ̄,iσ̄ + 1

2

)
, i = j

0, else.
(2.83)

Note that the dynamics of the spin-diagonal ρ-variables is determined by the other spin-
diagonal variables alone. In contrast, a decoupling in the Fock (“exchange”) channel

ĤU −→ HW = −U
∑

i

ρi↑,i↓ρi↓,i↑ (2.84)

gives rise to a different set of equations of motion

i∂tρiσ,jτ = −U(ρjτ̄ ,jτρiσ,jτ̄ − ρiσ,iσ̄ρiσ̄,jτ ). (2.85)

One cannot say in general, which decoupling or which combination of decouplings
gives rise to the most precise semiclassical description, this has to be figured out for each
individual problem. A particularly curious case is presented by the SYK model, whose
relaxation dynamics from an initial product state can be described very accurately
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within fTWA [112] but only for a pure τ -representation of the interaction term. It is
not at all obvious why this is the case.

Instead of a solution in real space, one can as well solve the mean-field equations
of motion in momentum space. The transformation of the c-operators for periodic
boundary conditions,

c†
k⃗σ

=
1√
V

∑

r⃗i

e−ik⃗·r⃗ic†iσ, (2.86)

gives rise to a transformation of the ρ-operators yielding the following equation of
motion

i∂tρkσ,lσ = −
(
ϵ(k⃗)− ϵ(⃗l)

)
ρk⃗σ,⃗lσ+

U

V

∑

s⃗,p⃗

[
ρ(p⃗+s⃗−l⃗)σ̄,p⃗σ̄ρk⃗σ,s⃗σ − ρ(p⃗+k⃗−s⃗)σ̄,p⃗σ̄ρs⃗σ,⃗lσ

]
. (2.87)

Both representations are equivalent, the real space equations of motion are easier to
solve numerically because the sum needs to be carried out only over nearest-neighbor
sites in contrast to a sum over all momenta.

We close this subsection with a general remark on (f)TWA and symmetries. Al-
though, e.g., the Hubbard model hosts many symmetries like translational invariance
or spin-flip symmetry, not all of them can be used to reduce the computational com-
plexity of fTWA. The guiding question is whether a reduced set of operators generates
a closed Poisson algebra with the Hamiltonian. The spin-diagonal ρ-operators, for in-
stance, do so for the Hubbard model and one can restrict the dynamics to this subset
(unless non-diagonal are explicitly required, for example in the case of a decoupling
in the Fock channel). In contrast, one cannot make use of translational invariance
in the same way. This symmetry is only restored as a result of the Wigner function
averaging and one can use the deviation from the perfect symmetry as a measure for
the convergence of the calculation.

2.5.2 Model for the Wigner function

Within fTWA, the Wigner function W (ρ) is usually modeled in terms of a multivariate
Gaussian distribution [112] with means and connected covariances determined from
the respective values of the quantum mechanical initial state. Since already the spin-
diagonal ρs form a closed algebra, we focus on them:

⟨ρiσ,jσ⟩W !
= ⟨ρ̂iσ,jσ⟩QM,

〈
ρ∗iσ,jσρkτ,lτ

〉c.c.
W

!
=

1

2

〈{
ρ̂†iσ,jσ, ρ̂kτ,lτ

}〉c.c.

QM
.

(2.88)

A multivariate Gaussian distribution has the following form

W (z) ∼ exp

{
−1

2

(
(z − µ)T , (z̄ − µ̄)T

)(Γ C
C̄ Γ̄

)(
z − µ
z̄ − µ̄

)}
, (2.89)

where z ∈ z = x+iy is a complex random variable, which models the variables ραβ (and
ταβ) at initial time. The distribution function is determined by the location parameter
µ = ⟨z⟩W , the (Hermitian) covariance matrix

Γαβ = ⟨(zα − µα) (z̄β − µ̄β)⟩W , (2.90)
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and the (symmetric) pseudo-covariance matrix

Cαβ = ⟨(zα − µα) (zβ − µβ)⟩W . (2.91)

Mean and (connected) correlations of the Gaussian are fixed from the quantum me-
chanical expectation values of the operators and their (connected) correlations: (only
the variables ρ are shown)

µρiσ,jσ = ⟨ρiσ,jσ⟩W !
= ⟨ρ̂iσ,jσ⟩QM, (2.92)

Γ(ρiσ,jσ, ρkτ,lτ ) =
〈
ρ∗iσ,jσρkτ,lτ

〉c.c.
W

=

∫
dρ W (ρ)

[
ρ∗iσ,jσρkτ,lτ

]
− µρ∗iσ,jσµρkτ,lτ

!
=

1

2

〈
ρ̂†iσ,jσρ̂kτ,lτ + ρ̂kτ,lτ ρ̂

†
iσ,jσ

〉c.c.

QM

(2.93)

C(ρiσ,jσ, ρkτ,lτ ) = ⟨ρiσ,jσρkτ,lτ ⟩c.c.W =

∫
dρ W (ρ) [ρiσ,jσρkτ,lτ ]− µρiσ,jσµρkτ,lτ

!
=

1

2
⟨ρ̂iσ,jσρ̂kτ,lτ + ρ̂kτ,lτ ρ̂iσ,jσ⟩c.c.QM

(2.94)

If one wishes to include the τ -variables, one can make use of the fact that they are
statistically uncorrelated from the ρ-operators (at least for states with fixed particle
number since an equal number of annihilation and creation operators is necessary for
non-zero expectation values)

W (ρ, τ) = Wρ(ρ)Wτ (τ). (2.95)

For the practical implementation of the initial time sampling it is easier to work
with multivariate real Gaussian distributions

W (x) =
1√

(2π)M |Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.96)

where the real covariance matrix Σ is defined as follows (x, y ∈ x):

Σx,y = ⟨(x− µx)(y − µy)⟩
= ⟨xy⟩ − µxµy.

(2.97)

The (pseudo)covariance matrices Γ, C of the complex Gaussian are related to the real
covariance matrices Σxx and Σyy of the real and imaginary parts in the following way:

Σxx =
1

2
Re {Γ + C} , Σxy =

1

2
Im {−Γ + C} ,

Σyx =
1

2
Im {Γ + C} , Σyy =

1

2
Re {Γ− C} ,

(2.98)

where x = Re(z) and y = Im(z). The mean values are determined from the first
moments of the distribution

µx =

∫
dx W (x)x (2.99)

and the covariances from the second moments.
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2.5.3 Product initial states

In this thesis, we mostly work with product states as initial state. In this case, all means
and covariances of the initial state are real-valued. This implies that the real probability
distribution factorizes into two independent distributions for the real and imaginary
parts (Σx,y = 0). Hence, real and imaginary parts can be drawn independently from
each other. For product states in position and momentum space, one can explicitly
determine all initial data via Wick’s theorem:

⟨c†αc†βcγcδ⟩ = ⟨c†αcδ⟩⟨c†βcγ⟩ − ⟨c†αcγ⟩⟨c†βcδ⟩ (2.100)

The symmetrized connected correlations of the ρ-operators can thus be computed
in terms of the following formulae:

1

2

〈
ρ̂†αβ ρ̂µν + ρ̂µν ρ̂

†
αβ

〉
c

=
1

2

(
δαµ⟨c†βcν⟩+ δβν⟨c†µcα⟩

)
− ⟨c†βcν⟩⟨c†µcα⟩

1

2
⟨ρ̂αβ ρ̂µν + ρ̂µν ρ̂αβ⟩c =

1

2

(
δβµ⟨c†αcν⟩+ δαν⟨c†µcβ⟩

)
− ⟨c†αcν⟩⟨c†µcβ⟩

(2.101)

For a many-body state described by a diagonal single-particle density matrix ραβ =
δαβnα (like the Fermi sea), the formulas simplify as follows,

⟨ρ̂αβ⟩ =
〈
ρ̂†αβ

〉
= δαβ

(
nα −

1

2

)
,

〈
ρ̂†αβ ρ̂µν

〉
c

= δαµδβν (nβ − nαnβ) ,
〈
ρ̂µν ρ̂

†
αβ

〉
c

= δαµδβν (nα − nαnβ)

⟨ρ̂αβ ρ̂µν⟩c = δανδβµ (nα − nαnβ) ,

⟨ρ̂µν ρ̂αβ⟩c = δανδβµ (nβ − nαnβ)

(2.102)

such that the symmetrized connected correlation functions are given by

Γαβ,µν =
1

2

〈
ρ̂†αβ ρ̂µν + ρ̂µν ρ̂

†
αβ

〉
c

=
1

2
δαµδβν (nα + nβ − 2nαnβ) ,

Cαβ,µν =
1

2
⟨ρ̂αβ ρ̂µν + ρ̂µν ρ̂αβ⟩c =

1

2
δανδβµ (nα + nβ − 2nαnβ) .

(2.103)

It follows from these expressions that only connected correlations of the form ⟨ραβρβα⟩c
(covariance Γαβ,αβ) are non-zero. Pseudo-covariances of the form Cαβ,αβ are zero. Only
in the case α = β both the covariance and the pseudo-covariance are non-zero (and
equal). In the following tables we summarize the initial data for a product state in the
diagonal basis (for the Fermi sea state at zero temperature we only need nα = 0, 1 but
for illustration we also list nα = 0.5.
If α = β, one has

nα µραβ
Γαα,αα Cαα,αα ΣRe

αα,αα ΣIm
αα,αα

0 −0.5 0 0 0 0
0.5 0 0.25 0.25 0.25 0
1 0.5 0 0 0 0
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If α ̸= β,

nα nβ µραβ
Γαβ,αβ Cαβ,αβ ΣRe

αβ,αβ ΣIm
αβ,αβ

0 0 0 0 0 0 0
0 0.5 0 0.25 0 0.125 0.125
0 1 0 0.5 0 0.25 0.25

0.5 0.5 0 0.25 0 0.125 0.125
0.5 1 0 0.25 0 0.125 0.125
1 1 0 0 0 0 0

2.5.4 Stochastic mean-field approach

fTWA is an example of a method that has been independently developed more than
once.1 In 2008, Sakir Ayik proposed a method called “stochastic mean-field approach”
(SMF) to the nuclear physics community [160], which is basically identical to fTWA.
A few publications [161, 162, 163, 164, 165, 166] in the nuclear physics community
(most of them by Denis Lacroix) have further developed the method since then and we
summarize some interesting insights: In one of the papers [165], the authors ask the
generically interesting question if one can choose better distributions than a Gaussian
to represent the correlations of initial product states. They derive expressions for the
third and fourth moments of the operators ρ̂αβ in the quantum state. Their interesting
conclusion is that one cannot in general find a distribution that exactly mimics the
initial quantum correlations. However, they propose to use a two-point distribution
function 1

2

(
δ(x−σ)+δ(x+σ)

)
instead of a Gaussian based on an analysis of the kurtosis

of various distributions. They report an improvement of the SMF with two-point func-
tions instead of Gaussians for an application to the LMG model. In Chapter 4 we also
compare Gaussian and two-point sampling but do not find a difference. In a method
comparison paper [163] with non-equilibrium Green’s functions in Hubbard systems,
the SMF yields results of comparable quality to self-energy approaches based on the
second Born approximation. The most interesting development in terms of perspec-
tives how to further improve fTWA/SMF is a recent publication on a combination of
stochastic sampling with equations of motion derived from the BBGKY hierarchy [166].
Similar (but slightly different) proposal also exist for TWA in spin systems [167, 168].
In the context of the stochastic mean-field approach the improved equations of motion
yield a significant improvement upon the mean-field equations of motion at the cost
of an increased computational complexity and the necessity to propagate significantly
more variables. We further discuss their proposal in the Conclusion of this thesis.

2.5.5 Numerical implementation and convergence

2.5.5.1 Numerical solution of the equations of motion

The non-linear equations of motion can in general not be solved analytically and one
needs to solve them numerically. In order to remove redundancies from the data, we
only store the upper triangular part i ≤ j of the Hermitian matrix ρiσ,jτ . For most

1One might want to consider this as a proof of quality.
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of this thesis we consider spin/flavor-averaged variables ρij = 1
N

∑N
α=1 ρiα,jα such that

one can ignore the spin index.
For the numerical solution of the equations of motion we use ODE solvers with

adaptive stepsize control as implemented in the standard odeint library [169]. We
mostly use their implementation of the Runge-Kutta-Fehlberg algorithm [170] of 8th
order or of the Runge-Kutta-Cash-Karp algorithm [171] of 5th order. Adaptive error
control proceeds roughly as follows: At each propagation step the algorithm proposes a
step size for the next step and estimates the error of this next step (e.g. by comparing
to two steps with half the step size each). This error is compared to predefined error
tolerances and if the error is too large the step size is reduced. The procedure is iterated
until the error is below the threshold. The two relevant error tolerances are the absolute
error εabs and the relative error tolerance εrel. The former is mostly relevant if values
are close to zero, while the latter controls the relative error made in each propagation
step. For the applications in this thesis we always choose εabs = 10−10 and εrel = 10−8

or lower.

2.5.5.2 Convergence of the Monte Carlo simulations

The initial conditions for the equations of motion ρ
(k)
ij (t = 0) are sampled from (mostly

Gaussian) random distributions. In the usual mathematical language, the ρ
(k)
ij (t = 0)

for each k are independent and identical (i.i.d.) random variables. Expectation values
within the truncated Wigner scheme are obtained upon averaging over a finite number
of samples k = 1, . . . , n. We may assume that also at times t > 0 the distributions of
the variables ρ

(k)
ij (t) are i.i.d. for each value of k due to the in general chaotic nature of

the non-linear equations of motion. If exact solutions are available for comparison, we
can also check this assumption. The convergence of such an ensemble of (non-diverging)
i.i.d. random variables is controlled by the Strong Law of Large Numbers [172],
which states that

⟨ρij(t)⟩(n) :=
1

n

n∑

k=1

ρ
(k)
ij (t) (2.104)

converges to the true mean ⟨ρij(t)⟩. The rate of the convergence is described by the
Central Limit Theorem, which allows to define a confidence interval of the mean,
which involves the standard deviation σ of the random variables. Since the true σ of
the distribution (at times t > 0) is not known, one calculates an empirical estimate of
σ from the data. This empirical variance of a data set with n samples is defined as

σ2
emp,n :=

1

n− 1

n∑

k=1

(
ρ
(k)
ij (t)− ⟨ρij(t)⟩(n)

)2
(2.105)

or, equivalently,

σ2
emp,n :=

n

n− 1

(( 1

n

n∑

k=1

ρ
(k)
ij (t)2

)
−
(
⟨ρij(t)⟩(n)

)2
)

(2.106)

While the ρij(t) are in general complex variables, we usually only evaluate real observ-
ables like occupation numbers ρkk or absolute values of bonds |ρij|. Therefore we can
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think of the involved quantities as real. Using this empirical variance, one can write
down a confidence interval for the true mean ⟨ρij(t)⟩: With a probability of close to
95%, the true mean lies in the interval[

⟨ρij⟩(n) −
1.96σemp,n√

n
, ⟨ρij⟩(n) +

1.96σemp,n√
n

]
(2.107)

We note for completeness that often this estimate is too conservative and can be im-
proved using, e.g., the Berry-Esseen theorem [172].

We can also use the same principle for error estimates without explicit reference to
the number of TWA trajectories by identifying sets of observables which we expect to
be identical due to symmetry reasons. If a system is translationally invariant, we may
use, for instance, the local occupations ρii on lattice sites i as a set of random variables
with identical mean. Calculating the empirical variance of all these local densities also
gives access to an estimator for the convergence.

The error obtained from the central limit theorem is an absolute error, which is
as such not a meaningful quantity. Whether an absolute error of, say, ±1 is good
or bad, depends on the value of the mean. This is to say that one should better
look at the relative error, which is defined as the error divided by the mean, to check
for convergence. In our SU(N)-fTWA simulations this is a relevant aspect since the
standard deviations of the ensembles, from which the initial conditions are generated,
typically scale like ∼ 1

N
, while means can be of order one. One example of such a

situation is presented by the order parameters in Chapter 5. In their case, typically
only a small number of samples (∼ 100) is needed to converge the expectation values
of observables.

2.5.5.3 Checkpointing scheme

When calculating averages and variances of observables from the trajectories, we would
like to update all statistical data for each new trajectory without the need to save all
past trajectories. In addition, the numerical error from repeated additions of numbers
with a finite floating point accuracy should be as minimal as possible. A solution to
both these problems is provided by Welford’s algorithm [173]. The expectation values
and variances of the ρij(t) are updated “on-line”: Given the running mean ⟨ρij(t)⟩(n)
over n trajectories and a new sample ρ

(n+1)
ij (t), the update rule is as follows:

〈
ρij(t)

〉(n+1)
=

〈
ρij(t)

〉(n)
+

1

n+ 1

(
ρ
(n+1)
ij (t)−

〈
ρij(t)

〉(n))
. (2.108)

The equal-time covariances of the data,

Σ(n)(ρij(t), ρmn(t)) =
1

n

n∑

k=1

[(
ρ
(k)
ij (t)−

〈
ρij(t)

〉(n))(
ρ(k)mn(t)−

〈
ρmn(t)

〉(n))]
, (2.109)

are computed similarly:

Σ(n+1)(ρij(t), ρmn(t)) =
1

n+ 1

[
n · Σ(n)(ρij, ρmn)

+
n

n+ 1

[(
ρ
(n+1)
ij (t)−

〈
ρij(t)

〉(n))(
ρ(n+1)
mn (t)−

〈
ρmn(t)

〉(n))]
]

(2.110)
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For complex data we process independently the real and imaginary parts.
In addition, the formulae allow for a trivial parallelization of the sampling into

several runs A,B, . . . . Statistical quantities from two data batches A and B can be
merged as follows [173]:

〈
ρij(t)

〉(nA+nB)
=

1

nA + nB

(
nA ·

〈
ρij(t)

〉(nA)
+ nB ·

〈
ρij(t)

〉(nB)
)

(2.111)

Σ(nA+nB)(ρij(t), ρmn(t)) =
1

nA + nB

(
nA · Σ(nA)(ρij(t), ρmn(t)) + nB · Σ(nB)(ρij(t), ρmn(t))

+
nA · nB
nA + nB

(〈
ρij(t)

〉(nA) −
〈
ρij(t)

〉(nB)
)(〈

ρmn(t)
〉(nA) −

〈
ρmn(t)

〉(nB)
))

(2.112)

2.6 Basic concepts of Floquet theory

In this thesis we will occasionally draw analogies to periodically driven systems and
in Chapter 3 we will also make explicit use of the effective Floquet Hamiltonian
formalism. We therefore give a condensed overview of important concepts in Flo-
quet theory. Details can be found in specialized reviews [82, 174]. The starting
point is a time-periodic Hamiltonian Ĥ(t + T ) = Ĥ(t) with time evolution opera-
tor Û(t, t0) = T exp

(
− i

ℏ

∫ t
t0
Ĥ(τ)dτ

)
. From its group property it follows Û(t+T, t0) =

Û(t, t0)Û(t0 + T, t0). This representation corresponds to a time scale separation: The
slow evolution over (several) periods is described by Û(t0 +T, t0) =: exp

(
− i

ℏTĤF [t0]
)
,

where ĤF [t0] is called the Floquet Hamiltonian. The fast dynamics within a period is
governed by the stroboscopic kick operator K̂F [t0](t) defined such that

Û(t, t0) = e−
i
ℏ K̂F [t0](t)e−

i
ℏ (t−t0)ĤF [t0]. (2.113)

The eigenvalues of Û(t0 + T, t0) are necessarily complex numbers on the unit circle,
which we denote by exp

(
− i

ℏTϵn
)
. Written in this way, it becomes clear that the

ϵn are only defined up to the addition of multiples of ℏ2π
T

, therefore the ϵn are called
quasi-energies. They are the eigenvalues of the Floquet Hamiltonian.

The operators in the exponentials of ansatz (2.113) retain an explicit gauge depen-
dence on the choice of t0. Although the quasi-energies are gauge-independent, t0 can
show up explicitly in perturbative approximations of ĤF [t0] and ϵn [174]. In order to
get rid of this dependence, one defines a new set of non-stroboscopic kick operators
K̂eff(t) such that e−

i
ℏ K̂F [t0](t) =: e−

i
ℏ K̂eff(t)e

i
ℏ K̂eff(t0). This allows to define the effective

Hamiltonian
Ĥeff = e

i
ℏ K̂eff(t0)ĤF [t0]e

− i
ℏ K̂eff(t0), (2.114)

which is independent of t0. The time-evolution operator for arbitrary times t1, t2 now
reads as follows:

Û(t2, t1) = e−
i
ℏ K̂eff(t2)e−

i
ℏ (t2−t1)Ĥeffe

i
ℏ K̂eff(t1) (2.115)

The great value of such a decomposition lies in the fact that it allows to explain prop-
erties of the periodically driven system in terms of the time-independent Hamiltonian
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Heff. One can construct systematic approximations to the effective Hamiltonian, in
particular using the high-frequency expansion [175], which assumes Ω = 2π

T
to be large

(larger than the other energy scales in the problem). In terms of the Fourier modes

Ĥm =
1

T

∫ T

0

dte−imΩtĤ(t), (2.116)

the lowest order (in 1
Ω

) terms of the expansion read:

Ĥ
(0)
eff = Ĥ0, K̂

(0)
eff = 0

Ĥ
(1)
eff =

1

ℏΩ

∑

m>0

[
Ĥm, Ĥ−m

]

m
, K̂

(1)
eff = − 1

ℏΩ

∑

m ̸=0

eimΩt

m
Ĥm.

(2.117)





Chapter 3

Spectral Properties of Driven
Systems

3.1 Introduction

Driving correlated materials with time-dependent electromagnetic fields can affect the
physical properties of those materials in various ways: Heating and charge carrier
transfer, i.e. changes of occupation numbers during and subsequent to a pulse are
among the most basic effects. Those effects can occur for static band structures and
motivate descriptions of the electronic excitation dynamics using temperature models
and quantum Boltzmann scattering equations [176, 177, 178]. However, on ultrafast
time scales (e.g., femtoseconds) and in the presence of electronic correlations, more
subtle non-thermal [34] effects can appear, like transient changes of material properties.
This can go as far as to enable transitions into “hidden” states of matter, which are
not even accessible in equilibrium [179]. Among the most interesting consequences
of light-matter coupling beyond heating are photon-dressed states, which can lead,
for instance, to a renormalization of band structures. One can roughly distinguish
dressing effects at weak and strong light-matter coupling. The latter can, e.g., give
rise to the formation of complex polariton quasiparticles in cavities [39]. While in
this context the number of involved photons is typically low, they are confined to small
cavity volumes, which causes the strong light-matter interaction. Potential applications
include cavity-mediated superconductivity and ferroelectricity [39]. In this thesis we
concentrate on the case of weak coupling, sometimes also referred to as the classical
regime. Photon numbers are typically large, like in a laser beam, such that one may
treat the macroscopically populated field modes as classical objects. Theoretical studies
of the crossover regime have recently started [180].

A successful theoretical framework to describe transient manipulations of band
structures and spectra in the classical driving regime is Floquet theory, which idealizes
the driving field as infinite and periodic (cf. Sec. 2.6). It allows for approximate descrip-
tions of periodically driven systems in terms of time-independent effective Hamiltonians
in certain regimes, in particular in the high-frequency regime. Such descriptions are
generally only valid on time scales significantly longer than the period of the driv-
ing (time scale separation). As the simplest example it is instructive to consider a
tight-binding chain subject to an infinite sinusoidal vector potential A(t) = A0 sin(Ωt)

41
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(coupled via Peierls substitution, cf. Sec. 2.2, with units a = e = ℏ = 1) in the
high-frequency regime “band width≪ Ω”:

Ĥ = −th
∑

⟨i,j⟩

(
e−iA(t)c†icj + H.c.

)
(3.1)

In order to derive an effective high-frequency Hamiltonian, one needs to calculate the
Fourier modes

Ĥm =
1

T

∫ T

0

dt e−imΩtĤ(t), (3.2)

which one can do based on the formula

e−iA(t) = e−iA0 sin(Ωt) =
∞∑

k=−∞

Jk(A0)e
ikΩt, (3.3)

where Jk(x) is the k-th Bessel function of first kind. Hence, one obtains

Ĥm =
∞∑

k=−∞

Jk(A0)
1

T

∫ T

0

dt e−i(m−k)Ωt(−th)
∑

⟨i,j⟩

(
c†icj + H.c.

)

= −thJm(A0)
∑

⟨i,j⟩

(
c†icj + H.c.

)
.

(3.4)

The zeroth-order term in the high-frequency expansion (2.117) of the effective

Hamiltonian is Ĥ
(0)
eff = Ĥ0, while the non-stroboscopic kick operator (ibid.) vanishes at

that order: K
(0)
eff = 0. In the Floquet picture one obtains thus an effective description

in terms of a Hamiltonian with renormalized hopping matrix element (band width).
One may view this as an elementary example of Floquet engineering, which can be
used to dynamically modify matter properties on a transient time scale. A simple
consequence of the example above is dynamical localization [181], i.e. a suppression
of the hopping amplitude (since |J0(x) < 1| for all x), which is particularly relevant
if other competing energy scales are involved, for example due to interaction terms.
In such interacting models, practical implementations of Floquet engineering can be
challenging on long time scales because of the heating due to energy absorption from
the driving field. Generically, one expects that periodically driven non-disordered sys-
tems, which are not driven in the high-frequency regime [91], will heat up to infinite
temperatures [182, 82]. Exceptions include strongly disordered systems (many-body
localization [77]), which can stabilize Floquet-MBL phases [90]. These can be used,
among other applications, to build a special version of quantum time crystals [183].
Nevertheless, periodically driven systems at and below the high-frequency limit may
remain in prethermal states [92, 184] on experimentally accessible time scales, which al-
lows to engineer models with fascinating new properties like emerging gauge fields [82].
Another important field of application, which we do not consider in this thesis, is the
creation of topological states using periodic driving [185].

So far we have focused on parameter renormalization and generation of non-trivial
effective Hamiltonians as one hallmark of driven many-body systems. Another effect
that occurs in periodically driven systems is the formation of so-called sidebands, which
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are visible in non-equilibrium spectral functions, in particular also in experimental
ARPES spectra [46]). They occur due to the structure of the quasi-energies in Floquet
theory, which are only defined up to shifts by the driving frequency. Therefore, the
observation of such side bands is often interpreted as an experimental proof of the
existence of a dressed state. The simplest and most transparent example is presented
by a kinetic single-particle continuum Hamiltonian with the corresponding plane wave
eigenstate,

Ĥ =
p̂2

2m
, ψ(r⃗, t) =

eip⃗·r⃗

(2π)3/2
(3.5)

The time-dependent vector potential is included via minimal coupling (m = me and
q = −e for an electron):

Ĥ(t) =
1

2m

(
ˆ⃗p− qA⃗(t)

)2
. (3.6)

This Hamiltonian allows for an exact solution of the time-dependent wave function [122],

which is known as the Volkov wave function for a driving field A⃗(t) = A0 cos(ωt):

ψV (r⃗, t) =
1

(2π)3/2
e

i
ℏ

(
p⃗·r⃗− 1

2m

∫ t
0 dt′ (p⃗−qA⃗(t))2

)

=
1

(2π)3/2
e

i
ℏ p⃗·r⃗

∞∑

n=−∞

e−
i
ℏ

(
p2

2m
+Up+nℏω

)
tJn

(
α⃗0/ℏ · p⃗,

Up
2ℏω

)

=
1

(2π)3/2
eik⃗·r⃗

∞∑

n=−∞

e−
i
ℏ

(
ℏ2k2
2m

+Up+nℏω
)
tJn

(
α⃗0 · k⃗,

Up
2ℏω

)
,

(3.7)

where p⃗ = ℏk⃗ and Up =
q2A2

0

4m
=

q2E2
0

4mω2 is the ponderomotive potential (which one

can usually neglect). In addition, α0 = − qA⃗0

mω
= − qE⃗0

mω2 . The functions Jn(x, y) with
two arguments are generalized Bessel functions that reduce to the conventional ones for
y = 0. It is instructive to inspect the complex phase factor of the Volkov wave function,
whose arguments correspond to energies e−

i
ℏ (ϵk+nℏω)t. The ϵk are precisely the quasi-

energies ℏ2k2
2m

+ Up of the periodically driven problem. The way the wave function is
written corresponds to an extended space representation [175], in which every Fourier
component of the Floquet modes occurs explicitly. Hence, for all integers n the wave
function contains copies of this original dispersion, shifted by multiples of the photon
energy ℏω (if one does not like the photon terminology for effectively classical light
fields one can just think in terms of the driving frequency).

The Bessel functions assign non-equal weight to these side bands in the wave func-
tion such that side bands with a large number of photons are suppressed. It is important
to stress that the energy replicas occur as phase factors of the wave function in the
original Hilbert space and do not imply an enlarged physical Hilbert space, although
extended spaces can be constructed as tools [175]. Nevertheless, the side bands lead
to observable consequences in photoemission experiments.

The, arguably, most basic effect is known as the laser-assisted photoelectric effect
(LAPE) [186, 187, 188, 189, 123], which occurs in transitions of a bound electron into
the dressed vacuum. The latter can approximately be described as a Volkov wave
function. In a simple single-particle scattering description of photoemission according
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to (2.31), one can model LAPE within first order time-dependent perturbation theory
by the following scattering matrix [122]

(SB − 1)fi = − i
ℏ

∫ ∞

−∞
dt ⟨ψV | A⃗probe(t) · p⃗ |Φ0⟩ , (3.8)

where ψV is the Volkov wave function (corresponding to the dressing field frequency
ωpump) and Φ0 = ϕ0(r⃗)e

iEbt is a bound electron state with binding energy Eb = ℏωb. As-
suming the rotating wave approximation for the probe field, one can formally introduce

the time-independent matrix element Mfi = ⟨ψV |
A⃗0

probe

2
· p⃗ |ϕ0⟩ such that the integral

turns into an energy conservation condition (we follow, for simplicity, the 2π-convention
of the Fourier transform used in Refs. [122, 124]: δ(ω) = 1

2π

∫∞
−∞ dt eiωt):

(SB − 1)fi = −2πi

ℏ
Mfi

∑

n

anδ

(
p2f

2me

+ ℏ (nωpump − ωprobe + ωb)

)
, (3.9)

where an = Jn(α0). The binding energy ℏωb is needed to release the electron from the

sample such that ℏ(ωprobe−ωb) =
p2f
2me

+nℏωpump is the available energy for the Volkov
state. The photoemission intensity In for the n-th side band (how strong the signal
of the side band is relative to the total photoemission intensity ≃ number of detected
photoelectrons) is proportional to |an|2 = Jn(α0)

2, i.e. the transition probability from
the initial state to the final state, if the static matrix element is ignored, which is a
common approximation [190].

This simple theory already allows for a few predictions, for example, how the side-
band intensity depends on the polarization of the electric field relative to the initial
state momentum k⃗ of the photoelectron. Let us assume an electron with initial momen-
tum component k⃗∥ parallel to the surface (which is conserved in photoemission, k⃗′∥ = k⃗∥,

where primed quantities denote the final state momenta) and let θk⃗∥ := tan−1
(
ky
kx

)
.

Given an electric field

E⃗0
pump =



E∥ cos(θE⃗)
E∥ sin(θE⃗)

Ez


 , (3.10)

one can calculate the LAPE parameter as a function of these angles as follows (we

insert k⃗∥ = k⃗′∥):

α =
e

meω2
pump

(
E∥k∥

[
cos(θk⃗∥) cos(θE⃗) + sin(θk⃗∥) sin(θE⃗)

]
+ Ezk

′
z

)

=
e

meω2
pump

(
E∥k∥ cos

(∣∣θk⃗∥ − θE⃗
∣∣) + Ezk

′
z

) (3.11)

Experimentalists typically distinguish two types of field polarizations that are defined
according to the direction of the field modes relative to the plane of incidence (which
we choose to be the y-direction without loss of generality):
In the case of s-polarization (“senkrecht”, perpendicular to the plane of incidence),
only in-plane components in the x-direction are present: Ez = 0, θE⃗ = 0 such that α ∼
E∥k∥ cos(θk⃗∥). For p-polarization (parallel to the plane of incidence), there are non-zero
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components in the y- and z-direction (θE⃗ = π/2) such that α ∼
(
E∥k∥ sin(θk⃗∥) + Ezk

′
z

)
.

Therefore, a common rule of thumb says that one should use s-polarized light to sup-
press the LAPE effect [47].

We have concentrated the discussion of side bands on the final states so far. They
can as well occur – in addition to the band structure renormalization discussed at the
beginning – for the initial states. To distinguish them from the final state dressing
one often speaks of Floquet side bands (although there is no fundamental difference
in the theory). One aspect, which is in fact mostly different for Floquet side bands
as compared to Volkov/LAPE side bands, is the complexity of the underlying band
structure. While final states will always be parabolic in spatial regions away from the
surface, electrons in materials can realize all kinds of complicated band structures. A
famous example is graphene with its linear dispersion around the K and K ′ points [191].
For this band structure, side bands will intersect each other, giving rise to avoided
crossings and, consequentially, gap openings. For graphene, this effect was predicted
theoretically [192] but has not been observed in experiments as of now [193, 194]. In
contrast, Floquet states have been detected for Bi2Se3 in a famous experiment by Wang
et al. [46]. Not only Floquet side bands can interfere with other Floquet side bands
but also Floquet sidebands with Volkov side bands. This type of interference has been
observed experimentally in Bi2Se3 as well [47].

As a final aspect for this introduction, we would like to emphasize that modern time-
resolved photoemission spectroscopy allows to directly measure the non-equilibrium
spectra of excited states in correlated materials. This enables experimentalists to di-
rectly observe transient effects like band-width renormalization or the formation of exci-
tations governed by a complicated effective Floquet Hamiltonian. A strong link between
theory and experiments is based on the non-equilibrium spectral function (2.11) [51],
which serves as one of the main tools for theorists to make predictions for ongoing and
future experiments.

3.1.1 Scope of this Chapter

This Chapter summarizes contributions to projects, which are connected to the tran-
sient manipulation of spectra during and subsequent to a non-equilibrium excitation.
The first project is directly related to the formation of side bands for time-resolved
ARPES experiments on gold. It makes use of the single-particle scattering formalism
to model the Floquet-Volkov interference in this system (although a posteriori LAPE is
sufficient to describe the results as will be explained further below) and to support the
explanation of an experimental finding in terms of field screening. Secondly, we con-
sider a periodically driven strongly interacting chain of electrons with a charge-density
wave (CDW) phase in equilibrium and analyze how the periodic driving leads to the
formation of an additional band in the CDW gap.
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3.2 Side band formation in time-resolved ARPES

spectra

3.2.1 Background

We have given a general introduction to the concept of side bands and to the laser-
assisted photoelectric effect (LAPE) in the introduction to this Chapter. In the fol-
lowing, we discuss the theoretical modeling of experimental time-resolved momentum
microscopy results for the photon dressing of electron bands of a gold crystal (the
sp-band and a surface state), which are both approximately parabolic. Time-resolved
momentum microscopy is an advanced version of trARPES, which allows to simulta-
neously measure both in-plane momenta kx, ky of the photoelectrons as well as their
kinetic energy (and, as a consequence, k′z). The setup in Göttingen [125] benefits in
addition from very high probe-photon energies in the extreme ultraviolet (EUV) of
ℏωEUV ≈ 26.5 eV. This allows to map the full first surface Brillouin zone of the gold

surface up to large in-plane momenta kxy ∼ 2.4 Å
−1

. Previous momentum-resolved
works on side bands have mostly focused on graphene-like dispersions, either at the
Γ point [46, 47] in the center of the Brillouin zone or at the K, K ′ points [192]. Se-
tups with lower probe photon energies (e.g., 6.3 eV in Ref. [47]) are more restricted
in their “photoemission horizon” of accessible in-plane momenta and therefore studies
have often focused on interesting dispersions close to the Γ-point. In contrast, in our
project [3] we have investigated the properties of photon dressing for parabolic initial
states as well at high electron momenta. A posteriori, it turned out that the observed
data could be explained with LAPE alone, due to a screening of the electric field in the
material. Nevertheless, in the theoretical model, we address the situation with both
initial and final state dressing present. A rough sketch is given in Fig. 3.1: Both the
initial and the final state dispersion are parabolic albeit with possibly different effec-
tive masses. To photoemit an electron, the vacuum energy needs to be surpassed: the
remaining excess energy determines the energy of the free electron state. An important
constraint is provided by the condition that momenta perpendicular to the surface are
conserved. A calculation for a similar situation with Dirac spinor initial states has
been carried out by Park [124] within the single-particle scattering formalism. In the
theory part of the experimental study by Mahmood et al. [47], LAPE was introduced
as an additional phase factor in a second quantized calculation.

Exemplary experimental data is shown in panel (a) of Fig. 3.2. The upper two
plots show the photoemission signal for electrons that originate from close to the Fermi
energy (n0), while the lower two plots show photoemission data at energy EF + ℏωIR

(n1). One can see very well how the original band structure is replicated. Two types of
states can be identified: firstly, a Shockley surface state (SS) [3] around the Brillouin
zone (BZ) center and, secondly, the sp-band, which is closer to the edge of the BZ at the
energy chosen. On the right-hand side of the figure, two quantitative evaluations of the
data are shown: The data dots in panel (b) show the total intensity of the signal n1 as
a function of the field polarization from p to s. The experimental signal follows nicely
a cosine. We discuss the conclusions from the comparison to theory in section 3.2.3.
In (c) the relative intensity of the first side band (for p-polarized light) is plotted
for both states as a function of the in-plane momentum kxy orientation. The precise
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data handling is explained in the Supplemental Information to the publication [3] and
makes use of the fact that side bands are most strongly suppressed for s-polarized
light in order to eliminate the effect of the inhomogeneous photoemission signal. The
main conclusion is that the side band intensity is independent of the Brillouin zone
direction, which is a strong qualitative statement for a comparison to experiments. In
the following, we present our theoretical modeling (which agrees with the respective
text in the Supplement of the publication) and then close with a summary of the
conclusions drawn in the collaboration.

kxy

Energy

electron band

vacuum free electron state

m = −1 Volkov side band

m = +1 Volkov side band

n = +1 Floquet side band

n = −1 Floquet side band

EF

EF + ℏωIR

EF − ℏωIR

. . .

LAPE
example

. . .

. . .

. . .

. . .

≈Evac

Figure 3.1: Sketch of Floquet and Volkov states: The red lines correspond to the
initial parabolic electron state with a general effective mass (in our case m∗SS < me but
m∗sp ≈ me). Blue: dressed vacuum states (Volkov). The photoemission spectrum is
influenced by all possible “transitions” between the states. An example of a transition
from the electron band to Volkov states (LAPE) is sketched with a dashed line.

3.2.2 Theoretical modeling (cf. [3])

The text and the results of this subsection are also contained in the supplement (section
III.) of the publication [3], Electromagnetic dressing of the electron energy spectrum of
Au(111) at high momenta, Phys. Rev. B 102, 161403(R) (2020).

The theoretical description of the laser-assisted photoelectric effect here follows
precedent work by Madsen et al., and others [122, 123, 188, 124]. We start with a
linearly polarized driving laser field

E(t) = E cos(ωIRt) (3.12)
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Figure 3.2: Figure from the publication [3] (Creative Commons Attribution 4.0 In-
ternational license, the figure was created by Marius Keunecke): (a) Photoemission
intensities of the main signal (n0, zeroth side band) and of the first side band (n1)
for both s- and p-polarized pump field. (b) total intensity of the first side band n1

as a function of the polarization of the electric field (from p- to s-polarization). (c)
relative side band intensity I1/I0 as a function of the xy-Brillouin zone direction. The
experimental data is shown in (a) and as dots in (b) and (c). The solids lines in (b)
and (c) are due to the theoretical formulas developed below.

where

E =



Exy sin(θE)
Exy cos(θE)

Ez


 =



E0 cos(68◦) cos(ϕ)

E0 sin(ϕ)
E0 sin(68◦) cos(ϕ)


 , (3.13)

with θE = arctan
(
Ex

Ey

)
, the in-plane angle of the electric field (cf. Fig. 2 in [3]), and

ϕ the polarization angle, where ϕ = 0° (90°) corresponds to a p- (s-)polarized driving
light. The latter description can be seen as the transition to the laboratory frame with
an incidence angle of 68°.

3.2.2.1 Model for the final state

In general, photoemission final states are free electron states in the vacuum that become
distorted at the surface and are matched to high-lying Bloch waves giving rise to so-
called time-inverted LEED states [51]. For metals a common simple surface model
is a step potential model, the so-called ”jellium” model [123]. Here, the final states
are modelled as plane waves parallel to the surface and exponentially damped waves
normal to the surface. The dressing by the laser field, however, can be treated in an
approximate way by using the phase of free electron states dressed by a driving laser
field [195, 123], which are known as Volkov waves [122, 196]. Also plain Volkov waves
have proven to be useful as final states for analytical photoemission calculations [124].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Hence, our model for the final state is

ϕV (r, t) =
eikxy ·rxy

2π
ϕkz(z)e−

i
ℏ (ℏωf+U)t

∞∑

n=−∞

e−inωIRtJn

(
α,

U

2ℏωIR

)
, (3.14)

where ϕkz(z) is the surface-normal part of the wave function, ℏωf (k) is the eigenenergy

of the state, which is ≈ p′2

2me
. U =

e2E2
0

4meω2
IR

is the ponderomotive potential and Jn are

generalized Bessel functions.

α =
e

meω2
IR

EIR · k (3.15)

is the LAPE parameter and k is the momentum in the final state.

3.2.2.2 Model for the initial state

The initial state in photoemission is generically a complicated Bloch wave. However,
in the case of the sp band transition the in-plane dispersion is well approximated as
parabolic ESP(kxy) = −ESP

0 + ℏ2
2me

k2
xy when measured with respect to EFermi. This is in

the spirit of the free electron approximation for noble metals [7], which is a common
simple but often quite predictive approximation for many quantities. Note that kxy of
the initial and final states coincide due to conservation of in-plane momentum in the
photoemission process.

A realistic modelling of the perpendicular momentum dispersion is more compli-
cated. Estimating the initial state kinz from the photoemission energies reveals that for
a probing photon energy of 26.5 eV, kinz is typically close to the bulk Γ-point where the
dispersion is flatter than at high momenta, i.e. close to the L point (see band structure
calculation and photon energy dependent photoemission data in Ref. [197] and [198]).
For flat dispersions we expect a strong suppression of the sideband generation since
the dressing field couples to the momentum-dependent part of the dispersion. This is
consistent with the picture of a parabolic dispersion with high effective mass in that
direction.

Furthermore, we model the initial state dressing as due to an averaged damped
electric field EIR,in inside the metal as a first approximation. Hence, we can work with
a wave function similar to Eq. (3.14) but consider a Floquet parameter

β =
e

meω2
IR

EIR,in
xy · kxy + βz(E

IR,in
z , kinz ) (3.16)

instead of the LAPE parameter α.
The occupied part of the Shockley surface state (SS) has a two-dimensional parabolic

dispersion with an effective mass m∗SS ≈ 0.26me [199]: ESS(kxy) = −ESS
0 + ℏ2

2m∗
SS
kxy

2.

At the same level of modelling as above we may hence use a Floquet parameter similar
to (3.16) but with me → m∗SS and possibly a different average electric field.

3.2.2.3 Photoemission amplitude

The transition in photoemission from the initial state to the final state is calculated
within first order time-dependent perturbation theory (Born approximation [122, 124])
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employing a scattering matrix description. The transition amplitude from an initial
state ϕi to a final state ϕf reads:

(SB − 1)fi = − i
ℏ

∫ ∞

−∞
dt ⟨ϕf |AEUV · p̂|ϕi⟩ , (3.17)

with the vector potential of the EUV probe AEUV = A0

2
exp(−iωEUVt), where we used

the dipole and the rotating wave approximation (cf. Sec. 2.2.2). In the experiment
a driving laser fluence of F = 5 mJ/cm2 with τ = 37 fs pulse duration resulting

in an incident electric field amplitude E0 =
√

2
cϵ0

F
τ
≈ 1 · 109 V/m was used. The

ponderomotive potential U =
e2E2

0

4mew2
IR

is then of the order of 10 meV, and the term
U

2ℏωIR
≈ 0 can therefore safely be neglected. The generalized Bessel function reduces

to the ordinary Bessel function of the first kind.
Plugging the model for the sp wave functions into (3.17) yields

(SB − 1)fi = − i
ℏ
Mfi

∑

mn

∫ ∞

−∞
d t ei(ωf (k)−ωi(k

′)−(m−n)ωIR−ωEUV)tJm
(
β
)
Jn

(
α
)

= −2πi

ℏ
Mfi

∑

mn

δ (ωf (k)− ωi(k′)− (m− n)ωIR − ωEUV) Jm
(
β
)
Jn

(
α
)

= −2πi

ℏ
Mfi

∑

mn

δ (ωf (k)− ωi(k′)−mωIR − ωEUV) Jn+m
(
β
)
Jn

(
α
)

(3.18)

where

Mfi =
〈
ϕf (r)

∣∣∣A
EUV
0

2
· p

∣∣∣ϕi(r)
〉

(3.19)

is the photoemission matrix element generated by the spatial parts of the wave function
[123]. Since we are only interested in the relative k-space structure of the sidebands
we neglect Mfi in the following. Using a Bessel function identity allows to simplify the
expression for the sideband amplitudes

am :=
∑

n

Jn+m
(
β
)
Jn

(
α
)

= Jm
(
β − α

)
. (3.20)

The Dirac-δ in (3.18) describes energy conservation during photoemission and re-
stricts the final momentum k in addition to the momentum conservation parallel to
the surface. The photoemission intensity of the m-th order sideband is

Im ∼ |am|2 = Jm
(
β − α

)2
= Jm

(
βxy − αxy + βz − αz

)2
. (3.21)

Note that the Bessel function obeys: J−m(α) = (−1)mJm(α) for integer m so that the
intensity of the sidebands Im = I−m. We can approximate the Bessel function J1 for
small parameters |β − α| ≪

√
2 resulting in a sideband amplitude (m = 1)

|a1|2 ∼
1

4
(β − α)2 . (3.22)
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This is roughly justified in our case with an incident electric field E0 = 1 · 109 V/m
yielding a maximum LAPE parameter of αmax = 1.28 and only small corrections due
to β because of the efficient screening, i.e. β ≈ 0. Generically, since βxy − αxy =

e
meω2

IR

(
EIR,in
xy − EIR

xy

)
· kxy the sideband generation for the sp band states due to the

in-plane electric fields will be suppressed if the electric field in the metal is only weakly
screened.

Special case LAPE. Since we anticipate strong damping of the electric fields, which
is underpinned by a Fresnel equation estimation (cf. next section), we consider the
special case βxy, βz → 0 of pure LAPE leading to a sideband amplitude

|am|2 ∼ Jm(α)2. (3.23)

In previous works [124, 47] the in-plane component of the electric field was typ-
ically neglected if all electrons are photoemitted nearly perpendicular to the surface
(kz ≫ kx, ky). In our case this approximation is a priori not valid, because we can
detect electrons photoemitted under large photoemission angles and thus high in-plane
momenta. If the in-plane components of the electric field are taken into account, the
result, in contrast, yields a dependence on the azimuthal angle

|am|2 ∼ Jm

(
e

meω2
IR

(
EIR
xykxy cos

(
θk − θE

)
+ EIR

z kz

))2

. (3.24)

We may use the same approximate form of the Bessel function as above such that
the sideband amplitude for the first sideband (m = 1) is given by J1 (α)2 ≈ α2

4
:

|am|2 ∼
1

4

(
e

meω2
IR

(
EIR
xykxy cos

(
θk − θE

)
+ EIR

z kz

))2

(3.25)

A fit of (3.25) to the data as shown in Fig. 3.2 only works for Exy = 0:

|am|2 ∼
1

4

(
e

meω2
IR

EIR
z kz

)2

(3.26)

3.2.3 Conclusion

We have derived Floquet and LAPE parameters that allow for qualitative insights into
the interplay of field direction E⃗xy and in-plane momentum vector k⃗xy. Due to the
approximate parabolic nature of the initial and final state dispersions, we find side
band intensities according to (3.21), which depend on the difference of the Floquet
and LAPE parameters. In principle, this can lead to a destructive interference of the
xy-components, in particular if the effective masses are similar. The role of the initial
state momentum in the z-direction, kinz , is not so clear: In theory there can be initial
state dressing with respect to that component. However, a realistic estimate of the
field strength Ein

z below the surface yields such a strong damping that one can neglect
the contribution in this case. Hence, the first side band intensity I1 is effectively
proportional to J1(γ)2, with

γ = γxyExykxy cos(θkxy − θE) + γzEzkz. (3.27)
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Destructive interference would lead to a suppression of γxy. Turning back to Fig. 3.2,
panel (b) indeed shows that the measured data can only be fitted well if the contribution
proportional to γxy is neglected. In this case, the simpler explanation is a strong
screening of the electric field due to the almost perfect reflection at the metallic surface.
This picture implies that one should set Exy ≈ 0 in (3.27), which also explains the
observed data. Panel (c) in the figure shows that the relative side band intensity is
independent of the momentum direction, which is also incompatible with significant
dressing in the xy-direction. Still, we conclude that parabolic bands may give rise to
interesting interference phenomena of the observed side bands in situations, in which
the screening is weaker. In particular, the side band intensity would depend on the
value of the effective mass of the bands, which could be an interesting point to address
in future experiments.

The following calculation to estimate the value of the field strength in the z-direction
was first carried out by Marius Keunecke [200], based on the formulas in [201, 202]. We
summarize it here for completeness: If one assumes an abrupt metal-vacuum interface,
one can apply the Fresnel equations in order to estimate the electric fields in the z-
direction inside (Ez−) and outside (Ez+) of the metal surface. The relevant formulas
in the paper by Whitaker are:

E2
z+

E2
0

=
4 sin(θd)

2 cos(θd)
2(ϵ21 + ϵ22)

(ϵ21 + ϵ22) cos(θd)2 + S1/2ϵd +
√

2 cos(θd)uϵ
1/2
d (S1/2 + ϵd sin(θd)2)

,

E2
z−

E2
0

=
4 sin(θd)

2 cos(θd)
2

(ϵ21 + ϵ22) cos(θd)2 + S1/2ϵd +
√

2 cos(θd)uϵ
1/2
d (S1/2 + ϵd sin(θd)2)

.

(3.28)

where E0 is the incident electric field amplitude, θd = 68◦ is the angle of incidence
and ϵd is the vacuum dielectric constant. Furthermore,

S := (ϵ1 − ϵd sin(θd)
2 + ϵ22), u := (S1/2 + (ϵ1 − ϵd sin(θd))

1/2. (3.29)

The dieletric function for gold are taken from the literature [203] (ϵ1 = −44.252, ϵ2 =
2.0375). The formula yields a drop to 2% field strength below the surface in comparison
to above. Therefore, in this system, dressing of the initial state kinz -component can be
neglected.
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3.3 In-Gap Band Formation in a Periodically

Driven CDW Insulator

3.3.1 Background

In the introduction to this Chapter we discussed the general idea of Floquet engineering
as a means to manipulate material properties on prethermal time scales, i.e. before
heating becomes dominant. Often in (theoretical) applications, the high-frequency
limit, in which the driving frequency clearly exceeds the intrinsic energy scales of the
model, is considered. In this limit, heating is suppressed [91] and effective Hamiltonians
assume a particularly simple form. In the project presented in this section, we study
the non-equilibrium spectral function (2.11) of a strongly correlated model, which is
periodically driven with a large frequency but not in the extreme high-frequency limit.
The Hamiltonian is defined as follows,

Ĥ(t) = −th
L−1∑

l=1

(
eiA(t)c†l cl+1 + H.c.

)

+ V
L−1∑

l=1

(
nl −

1

2

)(
nl+1 −

1

2

)
+

L∑

l=1

µlnl ,

(3.30)

The equilibrium model (A0 ≡ 0) is the th-V chain, a one-dimensional model of spinless
fermions with a density-density interaction V . µl is an additional, l-dependent on-
site potential, which can be set to a small value at the edge, thereby helping numerical
matrix product state calculations to select one of the symmetry-broken CDW states. By
means of the Jordan-Wigner transformation [204], the equilibrium model is equivalent
in one spatial dimension to the XXZ spin chain, which is exactly solvable via Bethe
ansatz [205]. It shows a Berezhinskii-Kosterlitz-Thouless (BKT) type transition [206]
at half filling and zero temperature from a Luttinger liquid (LL) phase [207] to a charge
density wave (CDW) insulator [15] at V/th = 2. A sketch of the phase diagram is shown
in Fig. 3.3.

Figure 3.3: Sketch of the phase diagram of the interacting th-V model: The system
undergoes a phase transition from a 1D metal (Luttinger liquid) to a charge-density
wave insulator with non-zero CDW order parameter. The red bars illustrate the local
charge distribution.

The charge-density wave order parameter is defined as follows,

OCDW(t) :=
2

L

∑

i even

(
⟨ni+1(t)⟩ − ⟨ni(t)⟩

)
. (3.31)
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For V/th > 2 the order parameter becomes non-zero and the single-particle spectrum
is gapped, while the spectrum is gapless in the metallic phase. The model is often
considered to be the simplest interacting electron model: It is both convenient for
numerical methods because of the small local Hilbert space (2 states) as well as for
analytical methods like mean-field theory or Bethe ansatz. Therefore, it is a suitable
candidate model to study the effect of periodic driving in a simple strongly correlated
system. Related previous works have focused on parameter renormalization in the high-
frequency regime [86] and light-cone spreading of correlations [208]. Recently, these
studies have been extended to the quantum Fisher information [209]. Similar works on
the Hubbard model have studied the doublon formation upon driving [210, 211]. We
complement these works by asking the questions how the momentum-resolved spectral
signatures of the periodically driven model look like, which could be measured, e.g., in
a time-resolved ARPES-like experiment. Therefore, we consider the non-equilibrium
spectral function (2.11) of the system under driving. The starting point is data from a
quasi-exact numerical calculation based on the matrix product state formulation of the
time-dependent variational principle (TDVP) [58]. These calculations were carried out
by Constantin Meyer (details in the PhD thesis [212]). The most interesting effect is
the emergence of a cosine-shaped in-gap feature as a result of the periodic driving. In
order to gain more insight into the mechanism behind this finding, we discuss results
obtained for a driven non-interacting model for charge-density waves as well as for a
mean-field treatment of the interacting model.

3.3.2 Results

The results and parts of the text in this section are also contained in the
publication [4], In-Gap Band Formation in a Periodically Driven Charge Density
Wave Insulator, Comm. Phys. 6, 245 (2023). The DMRG/time-dependent MPS sim-
ulations have been carried out by Constantin Meyer. I created the figures used in the
text here as well as in the publication.

We choose a monochromatic classical light-field A(t) = θ(t)A0 sin
(
Ωt

)
in (3.30),

which couples to the electrons in the system via Peierls substitution. Let us begin
with expectations from Floquet theory. The leading order terms in the high-frequency
expansion (2.117) of the effective Hamiltonian Ĥeff and of the kick operator K̂eff in
terms of the Fourier components Ĥm of the Hamiltonian read

Ĥ
(0)
eff = Ĥ0, K̂

(0)
eff = 0

Ĥ
(1)
eff =

1

ℏΩ

∑

m>0

[
Ĥm, Ĥ−m

]

m
, K̂

(1)
eff = − 1

ℏΩ

∑

m ̸=0

eimΩt

m
Ĥm.

(3.32)

In the case of the th-V Hamiltonian one obtains the harmonics (cf. calculation in
the introduction to the chapter)

Ĥm =
1

T

∫ T

0

dte−imΩtĤ(t) = Jm(A0)Ĥkin + δm,0Ĥint (3.33)
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Insertion in (3.32) yields

Ĥ
(0)
eff = Ĥ0 = −thJ0(A0)

L−1∑

i=1

(
c†ici+1 + H.c.

)
+ V

L−1∑

i=1

nini+1

K̂
(1)
eff = −Ĥkin

∑

m ̸=0

eimΩt

mℏΩ
Jm(A0).

(3.34)

In the following we choose A0 = 1 such that J0(A0) ≈ 0.765197. The lowest order
high-frequency correction for the model is therefore a renormalization of the hopping
parameter th → teffh = thJ0(A0), which implies an effective increase of the interaction
strength V/teffh > V/th and a larger CDW gap to be expected. The 1

Ω
contribution to

the effective Hamiltonian, H
(1)
eff , vanishes in our case because the kinetic Hamiltonian

commutes with itself.
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Figure 3.4: (Non-)Equilibrium spectral functions of the periodically driven CDW
ground state at V/th = 5. a) and e) show the equilibrium spectral functions Ak(ω) of
the system with bare and renormalized parameters, respectively. b)-d) show the non-
equilibrium spectral functions Ak(t, ω) upon driving at the instances indicated. Times
are measured in units of t−1h . The equilibrium spectral features in e) are also present in
the spectral function of the driven system. In addition, there is clearly additional spec-
tral weight appearing whose main feature is well approximated by f(k) ≈ −2.5 cos(ka)
(black line in d)). The data has been obtained by Constantin Meyer [212] with MPS
time evolution for a system with L = 64 chain sites and open boundary conditions.
This figure was created by Alexander Osterkorn and is also published in [4] (Creative
Commons Attribution 4.0 International license).

In Fig. 3.4 numerical results for the non-equilibrium spectral function Ak(t, ω) ob-
tained from the MPS time evolution are shown. The definition of the spectral function
is given in (2.11) in the Methods chapter, we use the horizontal time coordinates here.
The value of the interaction strength is V/th = 5, for which the Bethe ansatz solu-
tion [205] of the model predicts a spectral gap of ∆/th ≈ 1.576. The driving frequency
is Ω/th = 10. The data is obtained using open boundary conditions (OBC), which
is most efficient for matrix product state algorithms. The momentum eigenmodes
of the system for OBC are standing waves [213] ck =

√
2/(L+ 1)

∑
k sin(kri)ci with

k ∈ π
L+1
· {1, . . . , L}. The crystal momentum k therefore lies in the interval [0, π].

Panel (a) of the figure shows the equilibrium spectral function of the model without
driving. The spectrum consists of two main excitation continua above and below zero
energy. Since we consider the retarded Green’s function, we always obtain the full

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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density of states. At k = π
2

we find the gap, whose size agrees with the Bethe ansatz
prediction. In panel (e) the equilibrium spectral function for the Hamiltonian with teffh
instead of th is shown. The spectral gap is indeed larger in (e) than in (a). Panels (b)
to (d) show results for the non-equilibrium spectral function of the periodically driven
chain (with the driving suddenly switched on at t = 0). One finds that the excitation
continua agree with the prediction of the zeroth order effective Hamiltonian. However,
in addition, spectral weight appears in the band gap that is very well approximated
by a cosine but is not part of the ground state spectrum of the effective Hamiltonian.
Since Ĥ

(1)
eff = 0 and second order terms are already quite strongly suppressed, one can

anticipate an important role of the kick operator K̂eff. Nevertheless, spectral effects
can be subtle and a closure of the spectral gap upon melting of a charge-density wave
was also observed in a non-interacting model by Shen et al. [214]. This study did not
calculate a k-resolved spectral function. In order to distinguish the in-gap band from
their effect, we reconsider the A-B model by Shen et al. with periodic driving. The
model is based on the definition of two sublattices A and B and a staggered poten-
tial with values ±U

2
. We implement the model in one spatial dimension such that the

Hamiltonian with Peierls substitution reads

Ĥ =− th
∑

j

(
eiA(t)c†jcj+1 + H.c.

)
+
U

2

(∑

i∈A

c†ici −
∑

i∈B

c†ici

)
. (3.35)

We introduce the following momentum space operators (for periodic boundary condi-
tions)

c†i∈A =
1√
V

∑

k∈rBZ

e−ikri
(
c†k + c†k+Q

)

c†i∈B =
1√
V

∑

k∈rBZ

e−ikri
(
c†k − c†k+Q

)
,

(3.36)

where Q = π and rBZ = [−π/2, π/2] denotes the reduced Brillouin zone. A subsequent
rotation to a particle-hole basis allows to bring the Hamiltonian to diagonal form,

Ĥ =
∑

k,α∈{±}

ϵkαc
†
kαckα, (3.37)

where ϵk± = U
2
− µ±

√
ϵ2k + U2

4
and ϵk = −2th cos(k). It is noteworthy that the single-

particle spectrum is gapped despite the absence of interactions. In the presence of the
driving field A(t), one can exactly write down the time-evolution operator Ûk(t, t−∆t)
for an infinitesimal time step ∆t and momentum k as a 2×2-matrix based on a Trotter
decomposition of Uk(t, t0). The calculation is detailed in the original publication by
Shen et al. [215]. We use this result to solve for the retarded Green’s function with
a real-time step size of 10−6t−1h and a chain length of L = 128 sites with periodic
boundary conditions.

Results for driving frequency Ω/th = 10 and A0 = 1 are collected in Fig. 3.5. Panel
(a) shows the equilibrium spectral function Ak(ω) of the A-B model without driving.
The size of the band gap is U . Panels (b) to (d) show results for the non-equilibrium
spectral function Ak(t, ω) of the driven system. The CDW order parameter is shown in
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Figure 3.5: Simulation results for the A-B model in (3.35) with U = 5th and semi-
infinite sinusoidal driving with amplitude one and frequency Ω = 10th. The panels a)
to d) shows results for the non-equilibrium spectral functions at different times. Panel
e) shows the dynamics of the CDW order parameter under driving and panels f) to
h) show cross sections through the spectral functions of b) to d). The figure is also
published in [4] (Creative Commons Attribution 4.0 International license).

(e). The periodic driving causes oscillations ofOCDW on the time scales considered here.
It oscillates around a value ≈ 0.84, which is slightly lower than the initial equilibrium
value OCDW(t) ≈ 0.88 such that one can at least speak of a partial melting of the
CDW. One can, however, not connect this order parameter dynamics to the emergence
of a band in the spectral gap. We show this exemplarily in cuts through the spectral
function at the center of the Brillouin zone at k = 0 in panels f) to h). Momentum cuts
at other momenta agree qualitatively. Shortly after the start of the periodic driving
(times t = 0, t = 10), the heatmaps (b) and (c) show some weak in-gap signals around
k ≈ ±π

4
, which is, however, a transient effect due to the switch-on procedure and is

not related to the formation of a peak. We can conclude that the observed in-gap
phenomenon is most likely interaction-induced. As a second interesting observation

https://creativecommons.org/licenses/by/4.0/


58 Spectral Properties of Driven Systems

we note the formation of Floquet side band in the spectral function at separations
±Ω from the original bands. The spectral weight of every second side band becomes
negative. The question under which conditions the non-equilibrium spectral function is
manifestly positive is a topic of current research [114, 116]. One can show for the case
of infinite periodic driving that period-averaging leads to a retarded Green’s function
without negative weights for fermions [116]. How useful this procedure is in the case
of semi-infinite driving, which we consider here, remains unclear and so we stick with
the non-averaged version of the non-equilibrium spectral function.

3.3.2.1 Hartree-Fock time evolution

In order to shed more light on the role of interactions, we continue with a time-
dependent Hartree-Fock approximation of the dynamics in the th-V chain. We start
from a decoupling of the interaction term and assume a two-site unit cell with sublat-
tices A and B. Let us denote the mean-fields by

ρA := ⟨c†ici⟩i∈A, ρ0 := ⟨c†ici+1⟩i∈A,
ρB := ⟨c†ici⟩i∈B, ρ1 := ⟨c†ici+1⟩i∈B.

(3.38)

Using periodic boundary conditions and again the momentum modes (3.36), we
obtain, defining ϵk = −2th cos(k), χk = V

(
ρ0e
−ik + ρ∗1e

ik
)
, the following momentum

space representation of the Hamiltonian

(H) =
(
c†k c†k+Q

)(
ϵk − Re(χk) + V (ρA + ρB)− µ i Im(χk) + V (ρB − ρA)
−i Im(χk) + V (ρB − ρA) −ϵk + Re(χk) + V (ρA + ρB)− µ

)(
ck
ck+Q

)

(3.39)
In the following, we only consider half filling µ = V (ρA + ρB). Diagonalization of

the mean-field Hamiltonian yields the eigenenergies

Ek = ±
{
−

[
−
(
ϵk − Re(χk)

)2 − Im(χk)
2

− V 2
(
ρB − ρA

)2]}1/2

= ±
{∣∣ϵk − χk

∣∣2 + V 2(ρB − ρA)2
}1/2

.

(3.40)

The saddle point values of the mean-fields are determined by minimization of the
total energy using a simulated annealing approach (cf. Sec. 2.3). The self-consistency
conditions read

ρ0
!

= ⟨c†ici+1⟩i∈A
=

1

V

∑

k∈rBZ

eik
(
⟨c†kck⟩ − ⟨c†kck+Q⟩+ ⟨c†k+Qck⟩ − ⟨c†k+Qck+Q⟩

)

ρ1
!

= ⟨c†ici+1⟩i∈B
=

1

V

∑

k∈rBZ

e−ik
(
⟨c†kck⟩+ ⟨c†kck+Q⟩ − ⟨c†k+Qck⟩ − ⟨c†k+Qck+Q⟩

)

(3.41)
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By inspection of the eigenenergies (3.40), one finds that the spectral gap is given by
2V (ρB−ρA). The self-consistent solutions turn out to obey ρ0 = ρ1 with real ρ0 and ρ1.
In order to calculate the dynamics of the driven system, we first solve the time-diagonal
problem and obtain the full one-particle reduced density matrix ρij(t) = ⟨c†i (t)cj(t)⟩
using the equation of motion

∂tρlp = −it
[∑

a(l)

e−iφla(t)ρap −
∑

a(p)

ρlae
−iφap(t)

]

+ iV

[(∑

a(p)

−
∑

a(l)

)(
ρlaρap − ρaaρlp

)]
,

(3.42)

where φij(t) = e⟨i,j⟩A(t) is the vector potential measured in the direction from site i to
site j. a(i) denotes the nearest neighbors of site i. In a second iteration we solve the
equation of motion for the contributions from the lesser and greater Green’s function to
the retarded Green’s function in horizontal coordinates, θ(τ)G<(t, τ) and θ(τ)G>(t, τ),
for the relative time τ (only τ > 0 is needed) using the time-diagonal data from the
first iteration:

−i∂tG<,>
ij (t, τ) =

∑

m

(
him(t) + ΣHF

im [ρ(t)]
)
G<,>
mj (t, τ), (3.43)

where

hi,i+1 = −theiA(t), hi+1,i = −the−iA(t)

ΣHF
im [ρ(t)] = V δim

∑

⟨n,m⟩

ρnn(t)− V δ⟨i,m⟩ρim(t) (3.44)

The second expression is the Hartree-Fock self-energy (2.58) for the model. We choose
a chain length of L = 64 sites and solve the equations of motion with a Runge-Kutta
scheme (as implemented in the solve ivp routine of Python’s scipy library [143]) with
a maximal step size of 10−3t−1h . We choose a large value V = 8th to clearly separate V -
dependent spectral features from Floquet side bands. For this value, the spectral gap
size of the mean-field model is ∆ ≈ 15th. We choose a driving frequency of Ω = 30th,
which yields the same ratio ∆/Ω as for the A-B model.

The results are shown in Fig. 3.6. Except for the different spectral gap size, the
equilibrium spectral function of the non-driven system resembles the one obtained in
the A-B model. The main peaks of the band structure of the driven system agree with
the mean-field dispersion relation Ek if evaluated with the renormalized teff = thJ0(A0).
The driven model, however, shows additional signals separated by ±V from the main
peaks (we checked this dependence on V with an additional calculation for V/th = 12).
They gives rise to an in-gap signal around ω/th ≈ 0, which is stronger in amplitude
than the signal, which is shifted by V away from the main peaks. Like in the A-
B model the spectral function displays negative weights, which – in contrast to the
MPS results – are pronounced at all times treated by us, while in the MPS case the
negative weights seem to substantially decrease in time. We conclude, however, that
the spectral function still contains relevant qualitative information, e.g. the position
of spectral peaks. The order parameter in Fig. 3.6(e) is oscillatory with a slowly
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Figure 3.6: Simulation results for the t-V model within Hartree-Fock mean-field theory
with V = 8th and for semi-infinite sinusoidal driving with amplitude one and frequency
Ω = 30th. The data is obtained for a model with L = 64 sites and periodic boundary
conditions. The heatmaps in a) to d) are drawn for the reduced Brillouin zone. Panel
e) shows the dynamics of the CDW order parameter under driving and panels f) to
h) show cross sections through the spectral functions of b) to d). The figure is also
published in [4] (Creative Commons Attribution 4.0 International license).

decaying envelope. In fact, it oscillates around a larger order parameter value than in
equilibrium. Still, the static equilibrium CDW configuration is broken up and charges
can move in the system. We checked that if the driving is suddenly turned off, order
parameter oscillations as well as the in-gap spectral features remain. The Floquet
replicas of the main bands, however, disappear.

Remarkably, the shape of the observed in-gap signals coincides with the shape of
the mean-field spectrum Ek (shifted into the band gap) if rescaled with a factor of two.
Looking at the dispersing part

∣∣ϵk − χk
∣∣ of (3.40) for ρ0 = ρ1, we do indeed find a

cosine-like dispersion if ϵk is neglected:
∣∣ϵk − χk

∣∣ ≈ 2V ρ0
∣∣ cos(k)

∣∣ (3.45)

https://creativecommons.org/licenses/by/4.0/
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One needs to keep in mind that Ek is the particle addition/removal spectrum of the
mean-field calculation in equilibrium, which does not need to coincide with the energy
of excitations. The deviation by a factor of two is therefore not too surprising. The
MPS time evolution in Fig. 3.4 did as well show an approximate shape of the in-gap
signal ∼ V

2
cos(k). In physical terms, one can associate the emergence of the in-gap

bands to the creation and destruction of doublon excitations in the system, which are
also present in time-dependent Hartree-Fock theory but not in the A-B model.

3.3.3 Discussion and Conclusion

In this project we have extended previous studies of the periodically driven th-V chain
by the perspective of non-equilibrium spectral functions. Starting from the numerical
observation of emergent spectral weight in the gap of a periodically driven charge-
density wave insulator, which displays a cosine-like dispersion, we studied two minimal
models in order to see which ingredients are needed to reproduce the effect. While
a periodically driven non-interacting A-B model does not show such a feature (al-
though in-gap spectral weight can occur in such models upon driving [214]), we are
able to reproduce some of its qualitative features within a time-dependent Hartree-
Fock calculation. Nevertheless, a full explanation of the observed phenomenon in the
MPS time evolution needs to take into account correlations effects, which will lead to
an additional dressing of the excitations. An important method-related topic for fu-
ture research concerns the question how to obtain a positive-definite spectral function
in situations like the one considered here. If the system reaches a stationary state,
period-averaging of the retarded Green’s function might be a way to enforce positive
semi-definiteness [116]. However, in the presence of heating and non-strictly periodic
driving (e.g. with switch-on procedures), it is less clear how to proceed.

To further advance the understanding of the doublon-induced in-gap band forma-
tion, it will be useful to consider more in detail the effective Hamiltonian description
within Floquet theory. Since the Fourier components Ĥm for m ̸= 0 are only rescalings
of the kinetic term in the Hamiltonian, one obtains that the 1/Ω-contribution Ĥ

(1)
eff to

the effective Hamiltonian vanishes. The Ω−2 order is already strongly suppressed. It is
important to note that non-equilibrium spectral functions, which depend on two times,
will in general also be influenced by the effect of the non-stroboscopic kick operator
K̂eff(t) because of the representation (2.115) of the time evolution operator for arbitrary

times t1 and t2. The kick operator contribution K̂
(1)
eff (t) in the high-frequency expansion

is non-vanishing and proportional to the kinetic Hamiltonian. The kick operator will
therefore induce hopping processes of electrons that can lead to a creation of doublon
excitations in the interacting model. One way to analyze more in detail the doublon
formation is the Floquet-Schrieffer-Wolff formalism developed by Bukov, Kolodrubetz
and Polkovnikov [210]. We only give an outlook here (the original publication is about
the Hubbard model, we calculated the analogous formulas for the th-V model). The
formalism is based on a rotation to the comoving frame via the transformation

Û(t) = e−itV
∑L−1

i=1

(
ni− 1

2

)(
ni+1− 1

2

)

= e−itV
∑L−1

i=1 nini+1e−it
V
2

∑L−1
i=1

(
ni+ni+1

)
e−it

V
4
(L−1)

(3.46)
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If we assume the limit V ≪ Ω, one can perform the leading order high-frequency
approximation first [210] (th → thJ0(A0)) and rotate to the comoving frame afterwards.
One obtains

Ĥrot(t) =ˆ̂U †(t)Ĥ(t)Û(t) + i
(
∂tÛ

†(t)
)
Û(t)

= −thJ0(A0)
L∑

i=1

(
1− ni−1(1− eitV )

)
c†ici+1

(
1− ni+2(1− e−itV )

)
+ H.c.

= −thJ0(A0)
L∑

i=1

(
1− ni−1 + ni−1e

itV
)
c†ici+1

(
1− ni+2 + ni+2e

−itV ) + H.c.

= −thJ0(A0)
L∑

i=1

(
ĝi,i+1 + e−itV d̂i,i+1 + e+itV k̂i,i+1

))
+ H.c.

(3.47)

with the following operators:

ĝij =
(
1− ni−1

)
c†icj

(
1− nj+1

)
+ ni−1c

†
icjnj+1

d̂ij =
(
1− ni−1

)
c†icjnj+1, k̂ij = ni−1c

†
icj

(
1− nj+1

) (3.48)

ĝij describes a correlated hopping of electrons, d̂ij, k̂
†
ij describe the destruction of dou-

blons, while k̂ij and d̂†ij correspond to the creation of doublons. One may now apply the
high-frequency expansion again, which in this case is equivalent to a Schrieffer-Wolff
transformation. To leading order only the hopping terms ∼ ĝij survive. The effective
Hamiltonians so obtained are in general still complicated correlated models and re-
quire, in general, a numerical solution. Nevertheless, the formalism allows to develop
a more detailed picture of the dynamical doublon creation as a response to the driving
and is likely the best tool to develop a full analytical theory of the cosine-shaped in-gap
feature.



Chapter 4

Interaction Quench in the large-N
Hubbard Model

4.1 Introduction

Landau’s Fermi liquid concept [9] provides a theory to describe the properties of –
even strongly – interacting many-fermion systems. The central idea is that the prop-
erties of the interacting system and those of the non-interacting are adiabatically con-
nected. This refers to the following: The non-interacting Fermi gas is a product state
of all fermionic modes with momentum k whose single-particle energies are lower than
the Fermi energy, ϵk < ϵkF . Its elementary excitations correspond to the creation of
particle-hole pairs. If an electron-electron interaction is switched on very slowly, such
that the system follows the instantaneous eigenstates, the elementary excitations of
the interacting system will be in a one-to-one correspondence to the excitations of the
noninteracting system [9]. In particular, they carry the same quantum numbers, e.g.
momentum and spin. The sea of electrons transforms into a sea of quasiparticles. The
ground state distribution function n(ϵ) for the original electronic states in the inter-
acting system displays a discontinuity ∆nkF := 1 − nkF at the Fermi energy, which is
equal to the quasiparticle residue Z at the Fermi energy, which is a measure for the
overlap of the bare electron wave function with the quasiparticle wave function.

One can now pose the questions what happens if the interaction is not turned on
adiabatically but at a finite speed. This question was studied by Möckel and Kehrein
in a series of papers [73, 216, 217]. The most interesting case is the one opposed to
Landau’s, namely infinitely fast switching, i.e. quenching. Möckel and Kehrein applied
unitary perturbation theory [218] to the problem, which is a perturbative time evolution
scheme for weak interactions based on Wegner’s flow equations [219, 220]. In contrast
to standard time-dependent perturbation theory, it does not suffer from secular terms
because the time evolution operator remains unitary at every order of the approxima-
tion. The perturbative analysis was later refined by Kreye and Kehrein [221, 222] to
include density-density correlations. Besides perturbative approaches, other methods
have been applied to the interaction quench problem, usually with a particular focus
on long times. Most prominently, non-equilibrium DMFT was used [75] to study the
thermalization dynamics. Another line of analysis is based on kinetic equations [223].

In the following we provide more details about the interaction quench setup as well
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as a discussion of the most important physical expectations. At times t < 0 we start
from a non-interacting tight-binding Hamiltonian

Ĥt<0 =
∑

kσ

ϵkc
†
kσckσ, (4.1)

where ϵk is the single-electron dispersion of a nearest-neighbor hopping Hamiltonian
on a cubic lattice, ϵk = −2th

∑
i cos(ki). As the initial state we choose the Fermi sea

ground state of that Hamiltonian (at zero temperature). At time t = 0 a Hubbard
interaction term with interaction strength U > 0 is switched on,

Ĥt≥0 =
∑

kσ

ϵkc
†
kσckσ + U

∑

i

ni↑ni↓, |ψ0⟩ =
∏

ϵk<ϵF ,σ

c†kσ |vac⟩ (4.2)

and we calculate the dynamics generated by this Hamiltonian. While Ĥt<0 is triv-
ially integrable, Ĥt≥0 is non-integrable for d ≥ 2. We continue with an overview
of the basic physical phenomenology of the post-quench dynamics for weak to inter-
mediate interaction strengths. A characteristic observable for the dynamics is the

εF

n(ε)

ε

1

0 εF

n(ε)

ε

1

0

thermal

time t
εF

n(ε)

ε

1

0

ΔnF(t)

t = 0

quench prethermalization thermalization

Figure 4.1: Sketch of the basic phenomenology of the interaction quench dynamics
in the Hubbard model for weak to intermediate interaction strengths U on the single-
particle level. The distribution function n(ϵk) with single-particle energy ϵk is shown for
three characteristic time regimes. Initially, the system is prepared in a zero-temperature
Fermi sea state with a discontinuity at the Fermi energy of size one. During the dynam-
ics a reduction of the discontinuity can be observed corresponding to prethermalization.
Ultimately, the distribution becomes thermal.

discontinuity ∆nkF (t) of the distribution function n(ϵ) at the Fermi energy, which
has the interpretation in Fermi liquid theory mentioned above. Within unitary per-
turbation theory, the following behavior was found: The Fermi surface discontinuity
decreases rapidly on a timescale ∼ ρ(ϵF )−1U−2, where ρ(ϵ) = 1

V

∑
k δ(ϵ − ϵk), until a

non-vanishing value ∆npretherm
kF

> 0 is reached, which then remains constant up to times
∼ ρ(ϵF )−3U−4. The formation of this “plateau” is a remarkable finding and can be in-
terpreted as a dynamical remnant of the integrable pre-quench Hamiltonian, whose
additional conserved quantities still constrain the dynamics on that timescale. Fig. 4.1
shows sketches of the distribution function in the different regimes. Interestingly, one
finds ∆npretherm

k = 2∆nFLT
k , i.e. the non-equilibrium discontinuity differs by a factor of
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two from the Fermi liquid theory prediction in equilibrium. Such “mismatch” factors
can be calculated as well for finite interaction ramp speeds [217] and one finds values
between one and two. The long-lived quasi-steady regime is called prethermal [224].
On later timescales, a departure from the plateau is expected and the distribution
function eventually thermalizes to a smooth Fermi-Dirac distribution. The thermal-
ization dynamics was demonstrated explicitly using non-equilibrium DMFT [75, 225].
It was shown using random matrix theory that prethermalization is indeed a typical,
i.e. characteristic for almost all (in a mathematical sense) applicable perturbations,
phenomenon of weakly perturbed many-body systems [226]. In addition, it can also
occur if the unperturbed dynamics is non-integrable as long as a suitable conservation
law is respected [227].

In more physical terms, one can associate the observed dynamics to the forma-
tion and scattering of quasiparticles. The initial rapid decrease of the Fermi surface
discontinuity is due to a correlation build-up, i.e. a formation of quasiparticles. In
the prethermal phase the quasiparticles have formed but their scattering dynamics is
not efficient on that timescale. Therefore, the prethermal regime is sometimes also de-
scribed as collisionless [228]. In terms of the original electrons, one needs to distinguish
between inelastic and elastic scattering processes. The prethermal phase is generated
by inelastic scattering processes of the electrons that lead to a redistribution between
kinetic and interaction energy. This process is known as dephasing because the one-
particle density matrix becomes diagonal with respect to the quasiparticle basis in the
prethermal phase. This is in contrast to the bare electron one-particle density matrix,
which is diagonal in the initial Fermi sea state but non-diagonal in the prethermal
state. The occupation numbers of the quasiparticles are constants of motion in the
prethermal regime, or, approximate constants of motion of the whole dynamics [69].
One can expect an effective description of the prethermal state in terms of a generalized
Gibbs ensemble (GGE), which takes the additional constants of motion into account.

Finally, we discuss in more detail the post-quench dynamics from the viewpoint
of the energy balance. In the original study [73] the interaction term is written in
normal-ordered form with respect to the non-interacting ground state. Consequently,
the total energy of the system before and after the quench is exactly the same. One
can also keep the density-density representation and include the additional interaction
energy into the energy balance which, due to the product structure of the initial state,
is easy to calculate:

〈
Ĥint

〉
FS

= U
∑

i

〈
n̂i↑n̂i↓

〉
FS

= U
∑

i

〈
n̂i↑

〉
FS

〈
n̂i↓

〉
FS

= UV
(Nel

V

)2

, (4.3)

where we used
〈
n̂i↑

〉
FS

=
〈
n̂i↓

〉
FS

, V denotes the number of lattice sites and Nel the
number of electrons. Since during the dynamics occupation numbers in real space
remain constant, this“mean-field” interaction energy is not redistributed and does not
further influence the dynamics. However, the ground state of the interacting system
has a lower total energy than the post-quench state such that after the quench there
is a finite amount of excitation energy in the system. One can readily learn from 2nd
order perturbation theory [216] that the equilibrium kinetic energy of the interacting
system happens to equal the excitation energy. Interestingly, the long-time average of
the O(U2) unitary perturbation theory result yields a kinetic energy of the prethermal



66 Interaction Quench in the large-N Hubbard Model

state, which equals twice the excitation energy. Hence, during prethermalization all of
the excitation energy is converted into kinetic energy. Ultimately, this additional kinetic
energy will give rise to a non-zero temperature of the thermalized state. In contrast,
the prethermal state is clearly non-thermal as can be seen from the discontinuity of n(ϵ)
at the Fermi energy, which would not be present in a smooth Fermi-Dirac distribution.
The thermalization dynamics is expected to be governed by a quantum Boltzmann
equation (QBE) [73, 216, 75],

∂tnkσ(t) = −2π

(
U

V

)2∑

pq

δ
(
ϵk+q + ϵp−q − ϵp − ϵk

)
·

(
nkσ(t)npσ̄(t)

(
1− n(k+q)σ(t)

)(
1− n(p−q)σ̄(t)

)
−
(
k, p↔ k + q, p− q

))
,

(4.4)

which does not transfer energy between kinetic and interaction sector.
The energy balance illuminates the following principle [53]: Fast relaxation of

momentum-averaged quantities like the kinetic energy and slow relaxation of mode
quantities like the momentum distribution. The first is due to dephasing while the
latter is due to elastic scattering. One needs to keep in mind that momentum redis-
tribution can only happen via exchange in scattering processes. Those, however, are
generally constrained by phase space factors like in the QBE or in Fermi’s golden rule.
This bottleneck delays the momentum relaxation to a later timescale than the energy
relaxation and is the reason for the multi-stage structure of the dynamics.

4.1.1 State of the Art and Open Questions

The physics of the interaction quench problem in the Hubbard model is basically com-
pletely understood. A minor question concerns effects specific to two spatial dimen-
sions, where Fermi surface nesting might suppress the prethermalization plateau at
half filling [229]. However, the most interesting open challenge is method-related and
concerns the bridging of timescales. While QBEs correctly describe the approach to
thermal equilibrium, they do not capture the initial correlation build-up dynamics and
and hence the prethermal electron distribution has to be constructed by hand as an
initial condition to the QBE. On the other hand, the perturbative scheme does – at
least so far – not yield thermalization dynamics at the present order of the calculations
such that its validity is restricted to the prethermal regime. It is likely exactly the
secular on-shell terms that give rise to the Boltzmann dynamics in the long-time limit.
A description based on a more general kinetic equation was proposed [223] to include
both regimes. The perturbative analysis was recently extended to photoexcitations in
Fermi liquids [230].

Due to its combination of multiple timescales with different dynamical characteris-
tics, the interaction quench problem is a well suited problem to assess the validity of
new time evolution methods. Therefore, in the following, we apply the fermionic TWA
scheme to a large-N generalization of the Hubbard model and compare the results to
the exact solution in the prethermal regime.
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4.2 Systematic large flavor fTWA approach to

interaction quenches in the Hubbard model

(cf. [1])

The results and parts of the text in this section are also contained in the preprint [1],
Systematic large flavor fTWA approach to interaction quenches in the Hubbard model,
arXiv:2007.05063. Sections, in which figures or parts of the texts are reprinted, are
marked with a hint “(cf. [1])”.

4.2.1 Model and Method Setup (cf. [1])

We study the interaction quench setup as described in the Introduction section but
for the SU(N)-symmetric version of the Hubbard model. This allows for a detailed
analysis of the validity of the fTWA method as a function of the effective ℏ ∼ 1

N
.

In the following, we always choose a finite L × L square lattice with tight-binding
dispersion ϵk = −2th

(
cos(kx) + cos(ky)

)
.

The SU(N)-Hubbard Hamiltonian is given in eqn. (2.48) and in eqn. (2.51) in terms
of ρ̂ij-operators. We note that the use of flavor-averaged phase space variables resolves
an ambiguity [157] in the classical representation of the N = 2 interaction term, which
is due to the quantum mechanical identity n2

iα = niα for fermions. At N = 2, the
“naive” representation

H
(I)
int = U

∑

i

(
ρi↑,i↑ +

1

2

)(
ρi↓,i↓ +

1

2

)
(4.5)

with ρ̂iα,jβ = c†iαcjβ − 1
2
δijδαβ, is quantum mechanically, but not semiclassically, equiv-

alent to the representation derived from the SU(N) invariant Hamiltonian

H
(II)
int =

U

2

∑

i

(ρi↑,i↑ + ρi↓,i↓)
2 . (4.6)

However, for the problem considered in this text we did not observe differing results
between the two representations. In other contexts [112, 157], a specific choice (corre-
sponding to our SU(N)-invariant model) of the representation has turned out to yield
better numerical results than other choices.

The equations of motion for the classical ρij can be obtained from the classical
Hamiltonian formalism [112] upon mean-field decoupling ρ̂2ii → ρ2ii. Equivalently, they
follow from the Heisenberg equations of motion corresponding to (2.51) in the limit
N →∞,

i∂tρij = −th
∑

a(j)

ρi,a(j) + th
∑

a(i)

ρa(i),j

+ 2U(ρjj − ρii)ρij.
(4.7)

The equilibrium ground state of the model with U = 0 is given by the N -flavor
Fermi sea |FS⟩ =

∏
α,ϵ(k⃗)≤ϵF c

†
k⃗α
|0⟩ whose initial data (2.88) in momentum space is
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given by

〈
ρ̂kl

〉
=

〈
ρ̂†kl

〉
= δk,l

(
nk −

1

2

)
,

〈1

2

{
ρ̂kl, ρ̂sp

}〉c.c.

=
1

2N
δkpδls (nk + nl − 2nknl)

(4.8)

At N →∞, the Hubbard interaction U in the Hamiltonian (2.51) merely plays the role
of a shift of the chemical potential such that non-trivial dynamics after the interaction
quench can only occur at finite N .

There are many different probability distributions with a given mean µ and variance
σ2 of a random variable x. In the following, we will mostly choose a Gaussian distribu-
tion and, for comparison, a two point distribution PTP(x) = 1

2
δ(µ− σ) + 1

2
δ(µ+ σ). In

a study of the LMG model it was demonstrated [165] that the validity of fTWA (the
stochastic mean-field approach) can be improved by using a two-point distribution
instead of a Gaussian distribution.

4.2.2 Results for the SU(N)-fTWA (cf. [1])

4.2.3 Perturbative treatment of the e.o.m.

For weak Hubbard interaction strengths U ≪ th, one can treat the classical equations of
motion perturbatively and evaluate all expectation values with respect to the Gaussian
Wigner function by hand. In order to do so, it is advantageous to work with the
equations in momentum space. Using the Fourier transform

ρij =
∑

kl

ei(kri−lrj)ρkl (4.9)

one obtains the equations of motion in momentum space,

i∂tρkl =− (ϵk − ϵl) ρkl
+

2U

V

∑

sp

(ρp+s−l,pρks − ρp+k−s,pρsl) . (4.10)

A naive perturbative expansion of these equations in U is only valid up to times
O(t2). In order to avoid those restricting secular terms we switch to an interaction pic-
ture representation of the equations of motion by incorporating the free time-evolution
into the variables ρ̃kl = e−i(ϵk−ϵl)tρkl where ∆ϵpks = ϵp+k−s + ϵs − ϵp − ϵk. This yields

i∂tρ̃kl =
2U

V

∑

sp

[
ei∆ϵpsltρ̃p+s−l,pρ̃ks

− ei∆ϵpkstρ̃p+k−s,pρ̃sl

]
.

(4.11)

We may now expand the variables order by order in U

ρ̃kl = ρ̃
(0)
kl + ρ̃

(1)
kl · U + ρ̃

(2)
kl · U2 + . . . . (4.12)
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Inserting the ansatz into (4.11) yields a hierarchy of equations, organized by powers

of U . Since i∂tρ̃kl = O(U), i∂tρ̃
(0)
kl = 0 follows immediately. Consequently, ρ̃

(0)
kl (t) =

δklnk(0).
This fact allows to explicitely integrate all time dependencies in the equation for

ρ̃
(1)
kl . In a last step all expectation values of products of ρ̃

(0)
kl are evaluated using the

Gaussian Wigner function. Successive application of this scheme results in an iterative
procedure to solve for the dynamics to all orders of U .

The equation of motion for the O(U) contribution is

i∂tρ̃
(1)
kl =

2

V

∑

sp

[
ei∆ϵpsltρ̃

(0)
p+s−l,pρ̃

(0)
ks

− ei∆ϵpkstρ̃
(0)
p+k−s,pρ̃

(0)
sl

]
.

(4.13)

We can integrate the dependencies on time explicitly using the integral

I1(∆ϵpab) = −i
∫ t

0

dt′ei∆ϵpabt
′

=

{
1

∆ϵpab

(
ei∆ϵpabt − 1

)
∆ϵpab ̸= 0

−it ∆ϵpab = 0

(4.14)

The Wigner function averages are performed manually using

⟨ρ̃(0)1 ρ̃
(0)
2 ⟩ = ⟨ρ̃(0)1 ρ̃

(0)
2 ⟩c + ⟨ρ̃(0)1 ⟩⟨ρ̃(0)2 ⟩ (4.15)

and the initial data in (2.88). The structure of (4.13) is such that both terms cancel

each other after the Wigner function averaging. Thus ρ̃
(1)
kl (t) = 0.

The next order O(U2) already contains eight terms

ρ̃
(2)
k,l (t) =

4

V 2

∑

sps′p′

[

I2(∆ϵp′s′s,∆ϵpsl)ρ̃(0)(p+s−l),pρ̃
(0)
(p′+s′−s),p′ ρ̃

(0)
k,s′

− I2(∆ϵp′ks′ ,∆ϵpsl)ρ̃(0)(p+s−l),pρ̃
(0)
(p′+k−s′),p′ ρ̃

(0)
s′,s

+ I2(∆ϵp′s′p,∆ϵpsl)ρ̃(0)(p′+s′−p),p′ ρ̃
(0)
(p+s−l),s′ ρ̃

(0)
k,s

− I2(∆ϵp′(p+s−l)s′ ,∆ϵpsl)ρ̃(0)(p′+p+s−l−s′),p′ ρ̃
(0)
s′,pρ̃

(0)
k,s

− I2(∆ϵp′s′l,∆ϵpks)ρ̃(0)(p+k−s),pρ̃
(0)
(p′+s′−l),p′ ρ̃

(0)
s,s′

+ I2(∆ϵp′ss′ ,∆ϵpks)ρ̃(0)(p+k−s),pρ̃
(0)
(p′+s−s′),p′ ρ̃

(0)
s′,l

− I2(∆ϵp′s′p,∆ϵpks)ρ̃(0)(p′+s′−p),p′ ρ̃
(0)
(p+k−s),s′ ρ̃

(0)
s,l

+ I2(∆ϵp′(p+k−s)s′ ,∆ϵpks)ρ̃(0)(p′+p+k−s−s′),p′ ρ̃
(0)
s′,pρ̃

(0)
s,l

]

(4.16)

where

I2(∆ϵp′ab,∆ϵpcd) = −
∫ t

0

d t′
∫ t′

0

d t′′ei∆ϵpcdt
′
ei∆ϵp′abt

′′
. (4.17)
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The third moments of the Wigner function are evaluated using Wick’s theorem for
a Gaussian distribution

⟨ρ̃(0)1 ρ̃
(0)
2 ρ̃

(0)
3 ⟩ = ⟨ρ̃(0)1 ⟩⟨ρ̃(0)2 ρ̃

(0)
3 ⟩c + ⟨ρ̃(0)2 ⟩⟨ρ̃(0)1 ρ̃

(0)
3 ⟩c

+ ⟨ρ̃(0)3 ⟩⟨ρ̃(0)1 ρ̃
(0)
2 ⟩c + ⟨ρ̃(0)1 ⟩⟨ρ̃(0)2 ⟩⟨ρ̃(0)3 ⟩

(4.18)

It turns out that after averaging over the Wigner function, (4.16) has the structure

ρ̃
(2)
kl (t) = δk,l

4

NV 2

∑

pp′

Jpp′k·

·
[
I2(−∆ϵpp′k,∆ϵpp′k) + I2(∆ϵpp′k,−∆ϵpp′k)

] (4.19)

with

I2(∆ϵpp′k,−∆ϵpp′k) + I2(↔) =

=

{
− 4

(∆ϵpp′k)
2 sin2

(
∆ϵpp′k

2
t
)

∆ϵpp′k ̸= 0

−t2 ∆ϵpp′k = 0
.

(4.20)

We have evaluated the expression for the elastic contributions ∆ϵpp′k = 0 directly
at the level of the integral (4.17). Otherwise, they would lead to diverging energy
denominators. Since the elastic terms yield secular contributions ∼ t2 they invalidate
the perturbation theory and one can as well formally shift them into to the unperturbed
part of the Hamiltonian. In the long-time limit we expect that these terms generate
the thermalization dynamics governed by a Quantum Boltzmann equation.

In summary, up to order U2, we obtain the following results:

ρ̃
(1)
kl (t) = 0

ρ̃
(2)
kl (t) = −δk,l

16

NV 2

∑

pp′

∆ϵpp′k ̸=0

sin2
(

∆ϵpp′k
2

t
)

(∆ϵpp′k)2
Jpp′k

(4.21)

where

Jpp′k = nknp+p′−k(1− np)(1− np′)
− npnp′(1− nk)(1− np+p′−k)

(4.22)

is a phase space factor. These results agree precisely with those obtained from uni-
tary perturbation theory [73]. It is worth noting that via the sampling of the initial
conditions the truncated Wigner approach with its time-local mean-field equations of
motion is able to reproduce an effect of the non-Markovian correlated dynamics.
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4.2.4 Numerical results (cf. [1])
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Figure 4.2: fTWA dynamics of a 10 × 10 square lattice Fermi sea at quarter filling
(Np = 25 particles) after an interaction quench to weak and intermediate values of
U (in units of th). The two columns show results for degeneracy parameters N = 2
and N = 100, respectively. The upper two panels contain results for the jump of the
momentum distribution at the Fermi energy, rescaled by a factor of N/U2 that allows
for a comparison to the result (4.21) obtained from perturbation theory. In the bottom
row the dynamics of the interaction energy is shown. There the black dashed curve
is calculated using the perturbative result for the occupation numbers in combination
with energy conservation during time evolution. All fTWA data is averaged over at
least 200000 trajectories.

In order to study the quench dynamics numerically, we implemented Hamilton’s
equations of motion using the odeint library [169] and the Armadillo library [231,
232]. To avoid the accumulation of numerical errors from the addition of floating
point numbers, Welford’s algorithm is used for checkpointing [173]. Two characteristic
observables for the interaction quench dynamics are the change ∆nkF of the momentum

distribution nk at the Fermi energy and the interaction energy ⟨Ĥint⟩ ∼ ⟨n2
i ⟩. The

first is, as detailed above, related to the quasiparticle weight Z [73]. ∆nkF = 1 for
the initial zero-temperature Fermi-Dirac distribution. The interaction energy is, in
contrast, a local quantity that is expected to relax in the prethermal regime to the
equilibrium value of the post-quench Hamiltonian at the final temperature (determined
by the amount of quench energy). It provides a generalization of the double occupation
d(t) = ⟨ni↓ni↑⟩ used in the conventional N = 2 case. The conservation of the total

energy allows to compute the exact time evolution of ⟨Ĥint⟩ at order U2 from the
perturbative result (4.21).
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Figure 4.3: Momentum distribution ∆nϵ(t) = nϵ(t) − nϵ(0) as a function of the band
energies ϵ for a 10×10 square lattice at quarter filling (N = 25 particles) after a quench
to Hubbard interactions U ≤ 1. It corresponds to the data shown in Fig. 4.2. Error
bars are determined from the error of the average over symmetry-related momentum
modes.

Since prethermalization effects are possibly suppressed at half filling in the 2D
model [229], we consider quarter filling in the following. For the finite system sizes
we treat here, we choose a number of electrons so that all energy levels with identical
single-particle energies below the Fermi energy are filled. This leads to a symmetric
occupation of modes in momentum space such that the observed dynamics is not
influenced by finite system degeneracy effects.

Fig. 4.2 shows the numerical results for ∆nkF and the change of ⟨n2
i ⟩ in a 10 × 10

system at two fixed values of the degeneracy parameter N , whereas Fig. 4.4 shows
data for a 20 × 20 system at a fixed value of U = 0.5th and varying N . The case
N = 2 is equivalent to the conventional Hubbard model. In the figures, we scaled the
observables in a way that their order U2/N contributions according to (4.21) coincide.
This allows to focus on the deviations from the formula.

Let us start the discussion with Fig. 4.2: For small U = 0.1th, both observables
agree well with the perturbative calculation. For larger U ∼ th there is a clear deviation
from the perturbative result, which is also expected. However, note that qualitatively
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Figure 4.4: Fermi surface jump and interaction energy for a 20 × 20 square lattice
Fermi sea at quarter filling (N = 101 particles) after an interaction quench to U = 0.5
at varying N .

the overall shape of the curve does not change much, in agreement with other exact
numerical treatments [53] of the interaction quench problem. This indicates that the
mechanism behind prethermalization is more general and not restricted to the pertur-
bative regimes that are well accessible with perturbation theory.

After the initial correlation build-up a plateau is forming until, for N = 2, a further
reduction of the jump sets in. One can observe in particular that the width of the
plateau is smaller for greater values of U , whereas for N = 100 the prethermal dynamics
extends over a much longer timespan. The onset of this reduction for varyingN can well
be seen in Fig. 4.4. Although the behaviour at N = 2 is in qualitative agreement with
numerical calculations in infinite dimensions [53], the question needs to be addressed
whether it describes the true thermalization dynamics. Looking at the interaction
energy the expected equilibration in the prethermal regime is found for N ≥ 100. For
smaller values of N in contrast, ⟨n2

i ⟩ starts to decay even before the reduction dynamics
is visible in ∆nkF . The departure of the interaction energy from its prethermal value
is clearly unphysical behavior since we do not expect energy redistribution between
kinetic and interaction energy at this stage of the dynamics any more.

To shed more light on this question we consider the whole momentum distribution
⟨∆n(ϵ)⟩(t) = nϵ(t)−nϵ(0) at all single-particle energies ϵk shown in Figs. 4.3 and 4.5. At
time zero, nϵ(0) = θ(ϵF − ϵ). For small N negative occupation numbers are observable
close to the band edge at ϵ = 4 already at early times. This becomes worse at later times
and clearly indicates the onset of unphysical behavior. We conclude that in the regime
of weak to moderate interactions the method correctly captures the dynamics at order
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1
N

and is valid at least up to and including the prethermal regime. The dynamics beyond
prethermalization displays a qualitatively correct picture at the Fermi energy but this
is not reliable due to the emergence of unphysical occupation numbers. Another way
to look at this is that the stationary solutions in the long-time limit of the fTWA
dynamics are no Fermi-Dirac distributions. Further below we will take a closer look at
this long-time behavior.
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Figure 4.5: Momentum distribution ∆nϵ(t) = nϵ(t)− nϵ(0) as a function of the single-
particle energies ϵ corresponding to the data shown in Fig. 4.4. Errors are estimated
from the deviations among symmetry-related momentum modes.

4.3 Convergence of the simulations

We continue with a closer look at the convergence of the simulations with the number
of sampled trajectories Nrep. Multiple checks can be done to control the convergence
of the simulation: As a simple tool, we calculate how well symmetries are restored
in the data as a function of the number of Wigner function samples. In particular,
we can use the momentum degeneracy of single-particle energies ϵk and check how
much the values of nk differ among the degenerate k-modes. In the diagrams, we
always plot the degeneracy-averaged values. Due to the underlying symmetry, we can
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Figure 4.6: Error estimate based on how well the k-space symmetries are restored after
the average over Nrep trajectories. Data obtained for a 10 × 10 system and a quench
to U = 0.1. The GS data was obtained using a Gaussian Wigner function model, the
TP data using a two-point distribution model.

interpret the individual values n
(1)
k , . . . , n

(D)
k for a given band energy ϵk as samples

drawn from the same probability distribution. The uncertainty ∆µ of this averaged
value (the mean of that distribution) can be calculated from the empirical variance

σ2
emp = 1

D−1
∑D

i (n
(i)
k −µemp)2 and is given by ∆µ = σemp/

√
D. µemp = 1

D

∑D
i n

(i)
k is the

sample mean. In Fig. 4.6 we show the uncertainties summed over all band energies ϵk
as a function of the number of Wigner function samples Nrep. There is a clear 1/

√
Nrep

scaling visible in the data. We have also checked that the estimated error is compatible
with the generic Monte Carlo error based on the empirical variance of the observables
obtained from the running average over Nrep trajectories.

One can also see that the curve moves to higher uncertainties at later times. This
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Figure 4.7: Deviations from the perturbative calculation in a system with 10 × 10
lattice sites and for a quench to U = 0.1. The inset shows the fTWA mode occupation
distribution n(ϵk) (for the highest number of samples). Blue dots are obtained using a
Gaussian Wigner function, orange dots using a two-point distribution and the dashed
black line shows the perturbative result.

is due to the fact that fluctuations generated at initial time t0 = 0 can grow because
of the non-linear equations of motion. The errors so obtained are typically below 10%
but can be as high as 100%. It is important to note that the slow convergence is a
consequence of the fact that the observable ∆n(ϵ) scales like ∼ 1

N
. It is therefore of

the same order of magnitude as the Wigner function fluctuations, which are also ∼ 1
N

.
Such large numbers of samples are not needed if one is interested in the leading O(1)
contribution. To shed more light on the convergence of the simulation, we make use
of the fact that the perturbative formula can serve as exact comparison data in the
prethermal regime. Figs. 4.7 and 4.8 show results for the L2-distance of the numerical
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Figure 4.8: Deviations from the perturbative calculation in a system with 20 × 20
lattice sites and for a quench to U = 0.1. The inset shows the fTWA mode occupation
distribution n(ϵk) (for the highest number of samples). Blue dots are obtained using a
Gaussian Wigner function, orange dots using a two-point distribution and the dashed
black line shows the perturbative result.

n(ϵ) curve to the perturbative result in 10× 10 and 20× 20 lattices, respectively. The
quench is to U = 0.1 in both cases. In addition, we compare two Wigner function
models: a Gaussian distribution and a two-point Wigner function model. The first
obvious observation is that – at least for the problem considered here – Gaussian and
two-point model converge at the same rate to the same result. Contrary to what was
observed in [165], we do not find an advantage of fine-tuned Wigner function models: th
reason is unclear. At early times, the fTWA data approaches the analytical result also
at a 1/

√
Nrep rate. For comparison we provide a similar figure for a quench to U = 0.5

in Appendix A. One finds that in this case the deviations from the perturbation theory
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are more pronounced at early times and, for N = 2, n(ϵ) becomes clearly unphysical
already at time t = 5. However, also in Fig. 4.7 one can see that the L2-error levels
off at times t = 5 and t = 10. The distribution is definitively not in the prethermal
state any more and converges to another distribution. We note that this fixed point
distribution is identical for the two Wigner function models.

If one compares quenches to two different values of U with each other, one finds that
the relative strength of the fluctuations in the numerical data around the perturbative
reference result is larger for smaller values of U . This is not too surprising since for
U ≪ th the magnitude of the statistical noise is closer to the mean values and hence
the relative statistical error from the sampling will be larger than for values U ∼ th.
For quenches to U ∼ 0.1th we typically averaged the observables over at least 2 · 105

trajectories and for quenches to larger values of U over at least 2 · 104 trajectories. All
discussed results so far have been obtained for quarter filling in order to circumvent
possible complications due to Fermi surface nesting at half filling in 2D. Nevertheless,
we also collected some data for quenches in systems at half filling and we find very
similar behavior to the case of quarter filling. In particular, the system also flows to
unphysical distribution functions. The plots are collected in Appendix A.

4.4 Long-time dynamics and thermalization

4.4.1 Numerical observations

We have seen so far that prethermalization is reproduced by the semiclassical dynamics
but unphysical occupation numbers can occur at later times. This leads over to the
more general question what the fixed points of the dynamics are, or, put differently, if
one is able to observe some kind of thermalization within the fTWA scheme. Figures 4.9
and 4.10 show results for the dynamics of the occupation number n(ϵkF ) at the Fermi
energy on time scales beyond prethermalization for quenches to weak U and for two
values of N . Empirically, one finds that a rescaling of the time by a factor of U/

√
N

approximately collapses the curves. The inset shows the band occupation numbers at
the latest time instants of the simulations, when the system has reached a stationary
state. The figures show that – independent of the value of U – the occupation numbers
flow to a “straight line distribution”, with negative occupation numbers at the right
band edge. While Fermi-Dirac distributions can indeed look like linear functions at
high temperatures, the negative occupation numbers, as well as the missing dependence
on U , point towards incorrect long-time behavior. The total particle number and total
energy remain constant throughout the dynamics. The observed dynamics is therefore
necessarily connected to a redistribution of energy between the kinetic and interaction
budgets, which is not expected to occur after prethermalization. It is remarkable
that in the prethermal phase fTWA exactly reproduces the occupation numbers and
interaction energies of the true quantum system. In particular, also the amount of
excitation energy induced by the quench is correctly described. This clearly hints to
unphysical higher-order contributions in the dynamics.

In Fig. 4.11 we compare the long-time dynamics at different values of N for a fixed
interaction strength U = 0.5. The data indicates that for large values of N there can
be deviations from the “straight line distribution”. Nevertheless, negative occupation
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Figure 4.9: Long-time dynamics after an interaction quench to weak U in a SU(N)-
Hubbard model on a 10 × 10 sites square lattice and N = 2. The inset shows the
stationary distribution.
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Figure 4.10: Long-time dynamics after an interaction quench to weak U in a SU(N)-
Hubbard model on a 10× 10 sites square lattice and N = 8.

numbers still occur. One needs to keep in mind that the dynamics becomes trivial in
the extreme N →∞ limit. Therefore, also the amount of excitation energy is more and
more suppressed at large N such that one can qualitatively expect mode occupation
numbers n(ϵk) to remain closer to the original step function if N increases. Finally,
we check in Fig. 4.12 that the system size does not play a role: The 40 × 40 and the
20× 20 system evolve towards the same distribution.
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Figure 4.11: Comparison of the long-time dynamics after an interaction quench to a
fixed U = 0.5 in a SU(N)-Hubbard model on a 10× 10 sites square lattice for N equal
to 2, 10 and 50.

4.4.2 Connection to the quantum Boltzmann equation

For a more systematic understanding of the long-time dynamics, one should try to
connect fTWA to kinetic equations, which are expected to describe the approach to
thermal equilibrium, in particular, the non-Markovian quantum Boltzmann equation
(QBE), which we wrote down already in (4.4) in the Introduction section. We summa-
rize the conventional derivation of the QBE in Appendix B. One can use this derivation
to find conditions for fTWA to reproduce the physical thermalization dynamics:

The momentum space equation of motion for a momentum-diagonal fTWA variable
(single trajectory) is given by

i∂tρkk(t) =
2U

V

∑

pp′q

(
δk,p+q − δk,p

)
ρp+q,p(t)ρp′−q,p′(t) =:

2U

V

∑

pp′q

Cpp′q(t). (4.23)

In order to obtain the TWA result for the quantum expectation value, one needs to
average ⟨. . . ⟩W all variables over the Wigner function for the initial ρkl(0). However,
in order to draw a connection to the QBE, we take a look at the next order first:

i∂tCpp′q(t) + ∆ϵp′p(p′−q)Cpp′q(t)

=
2U

V

(
δk,p+q − δk,p

)∑

ll′q′

[(
δp+q,l+q′ − δp+q,l

)
ρl+q′,l−q(t)ρl′−q′,l′(t)ρp′−q,p′(t)+

+
(
δp′−q,l+q′ − δp′−q,l

)
ρp+q,p(t)ρl+q′,l+q(t)ρl′−q′,l′(t)

]
(4.24)

Now one needs to perform the Wigner function averaging to obtain ⟨Cpp′q⟩t, which in
turns allows to calculate ⟨ρkk(t)⟩W .

By means of a comparison to the original calculation we have checked that one
should be able to reproduce the Boltzmann dynamics if two conditions are satisfied:
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Figure 4.12: Long-time dynamics after an interaction quench to U = 0.5 in a SU(N)-
Hubbard model on a L × L sites square lattice for N = 2. The data for L = 40 is
averaged over 184 trajectories, the L = 20 data over 3336 trajectories and the L = 10
data over 25000 trajectories.

Firstly, the following Gaussian factorization of Wigner function expectation values at
non-zero times,

〈
ρ1ρ2ρ3

〉
W

=
〈
ρ1
〉
W

〈
ρ2ρ3

〉cc
W

+
〈
ρ2
〉
W

〈
ρ1ρ3

〉cc
W

+
〈
ρ3
〉
W

〈
ρ1ρ2

〉cc
W

+
〈
ρ1
〉
W

〈
ρ2
〉
W

〈
ρ3
〉
W

(4.25)
and, secondly, the following form of the first and connected second moments:

〈
ρkl

〉
W

=
〈
ρ̂kl

〉
W

= δk,l

(
nk −

1

2

)
,

〈
ρklρsp

〉cc
W

=
1

2

〈{
ρ̂kl, ρ̂sp

}〉cc
W

=
1

2N
δkpδls (nk + nl − 2nknl)

(4.26)

These expression are at least valid at initial times but there is a priori no reason why
they should be fulfilled at non-zero times. Nevertheless, one can use analogies like
this to propose improvements of the fTWA method, for example via explicit inclusion
of dynamical variables composed of two ρs. This could allow one to derive equations
of motion that obey those conditions by construction. Similar ideas (not with QBEs
in mind) have been proposed in the context of BBGKY-enhanced phase space meth-
ods [168, 166].

4.5 Discussion and Conclusion

In this Chapter we adopted the fermion degeneracy N as a natural semiclassical ex-
pansion parameter, combined it with the fTWA method, and applied it to the well-
understood problem of the interaction quench in the Hubbard model. This allowed
us to analyze the range of validity of fTWA in a systematic way. Our analytical and
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numerical results showed that fTWA correctly describes the electronic dephasing dy-
namics which generates prethermalization. We observed that, applied at small N , the
method is prone to produce unphysical results at time scales beyond the prethermal-
ization regime. We have furthermore studied the long-time behavior of the dynamics
and identified the “straight line” mode occupation function n(ϵk) as the fixed point
distribution at low N and weak U . It is not clear why this distribution is obtained
in the long time limit. We compared the derivation of the quantum Boltzmann equa-
tion to the fTWA equations of motion and identified conditions for their compatibility,
which, however, need not be satisfied. A systematic look at the convergence of fTWA
yields the following picture: Order one observables (e.g. nkF ) converge quickly for a
few 1000 trajectories. In contrast, observables of order 1

N
like ∆nkF (t) converge slowly

and orders of trajectories more are required.

These findings suggest the picture that fTWA correctly describes the dynamics at
linear order of the effective ℏ ∼ 1

N
. When N is small, the higher order contributions

to the semiclassical dynamics differ from the exact theory. Nevertheless, fTWA is a
powerful tool for applications since it allows, in contrast to unitary perturbation theory,
for a straightforward application to explicitly time-dependent problems, which we make
use of in the next chapter. A general advantage of fTWA is that its computational cost
increases only polynomially in the system size, which allows the simulation of 2d lattice
systems with a much larger number of sites than possible with exact diagonalization or
tensor-network based approaches. In addition, no memory kernels need to be tracked
during the evolution, which is always time-local.

There are a number of ideas how one can try to improve fTWA. Despite reports
in the context of the “stochastic mean-field approach” of an increase of the predictive
power of the method by using refined two-point Wigner functions [165], reminiscent
of discrete TWA methods [155], we have not seen such an improvement for the prob-
lem considered here. Another, more promising, route is to add more complexity to
the equations of motion by adding additional variables derived from the BBGKY hi-
erarchy [166]. We have briefly discussed such possibilities at the end of Sec. 2.5. A
preliminary implementation of a scheme based on the introduction of connected Weyl
symbols following Pineiro-Orioli et al. [168] did unfortunately not yield an improvement
of the long-time behavior so far.

4.5.1 fTWA in infinite spatial dimensions?

Here we briefly summarize some thoughts on fTWA in the limit of high spatial dimen-
sions d. In many models, Hartree-Fock mean-field theory becomes exact as d → ∞.
The Hubbard model is a famous exception, for which site-local correlations ⟨ni↓ni↑⟩
continue to be important even in infinite spatial dimensions and lead to dynamical
mean-field theory (DMFT). Although fTWA is based on Hartree-Fock mean-field the-
ory, the Wigner function sampling can nevertheless incorporate fluctuations due to
quantum correlations like ⟨ni↓ni↑⟩. It is therefore an interesting question to ask for
connections between fTWA and DMFT or leastwise for simplifications of fTWA in
high spatial dimensions. In infinite spatial dimensions, the density of states for a cubic
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tight-binding model is of Gaussian form [21, 136],

ρ̄(ϵ) =
1√
πt∗

e−ϵ
2

. (4.27)

In order to have a finite index set we can think of a discretized energy axis with finite
support on [−D,D],

∫ ∞

−∞
dϵ ρ̄(ϵ) ≈ ∆ϵ

2D/∆ϵ∑

e=0

ρ̄(−D + e∆ϵ). (4.28)

An important simplification in d → ∞ concerns momentum conservation at inter-
action vertices [136]. Here, momentum conserving delta functions (or, more precisely,
the von Laue function, which ensures momentum conservation up to reciprocal lattice
vectors) can formally be replaced by factors 1. Momentum summations then need to
be replaced by energy integrals, weighted by the Gaussian density of states. If we apply
the trivialization of momentum conservation at the level of the equations of motion,
we can formally replace all momentum labels of the ρ-variables with energy indices:

i∂tρkσ,lσ =−
(
ϵ(k⃗)− ϵ(⃗l)

)
ρk⃗σ,⃗lσ +

U

V

∑

s⃗,p⃗

[
ρ(p⃗+s⃗−l⃗)σ̄,p⃗σ̄ρk⃗σ,s⃗σ − ρ(p⃗+k⃗−s⃗)σ̄,p⃗σ̄ρs⃗σ,⃗lσ

]

=−
(
ϵ(k⃗)− ϵ(⃗l)

)
ρk⃗σ,⃗lσ +

U

V

∑

q⃗,s⃗,p⃗

[
δq⃗, p⃗+s⃗−l⃗ ρq⃗σ̄,p⃗σ̄ρk⃗σ,s⃗σ − δq⃗, p⃗+k⃗−s⃗ ρq⃗σ̄,p⃗σ̄ρs⃗σ,⃗lσ

]

d→∞−−−→ − (ϵk − ϵl) ρϵkσ,ϵlσ + U

∫

ϵs

∫

ϵp

∫

ϵq

[
ρϵqσ̄,ϵpσ̄ρϵkσ,ϵsσ − ρϵqσ̄,ϵpσ̄ρϵsσ,ϵlσ

]

=− (ϵk − ϵl) ρϵkσ,ϵlσ + UAσ[ρ]

∫

ϵs

[ρϵkσ,ϵsσ − ρϵsσ,ϵlσ]

(4.29)

where
∫
ϵ

:=
∫∞
−∞ dϵ ρ̄(ϵ) and

Aσ[ρ] :=

∫

ϵ

∫

ϵ′
ρϵσ̄,ϵ′σ̄ (4.30)

is a scalar with

i∂tAσ[ρ] =

∫

ϵ

∫

ϵ′
i∂tρϵσ̄,ϵ′σ̄

=

∫

ϵ

∫

ϵ′

[
(ϵ′ − ϵ)ρϵσ̄,ϵ′σ̄ + UAσ̄[ρ]

∫

ϵ′′
(ρϵσ̄,ϵ′′σ̄ − ρϵ′′σ̄,ϵ′σ̄)

]

=

∫

ϵ

∫

ϵ′
(ϵ′ − ϵ)ρϵσ̄,ϵ′σ̄ + UAσ̄[ρ] (Aσ[ρ]− Aσ[ρ])

= −
∫

ϵ

∫

ϵ′
(ϵ− ϵ′)ρϵσ̄,ϵ′σ̄.

(4.31)
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In the same spirit we could rewrite the Hamiltonian (the shift of the chemical
potential is moved into ϵ(k)):

HHub =
∑

k⃗σ

(
ϵ(k⃗) +

U

2

)
ρk⃗σ,⃗kσ +

U

V

∑

p⃗,p⃗′,q⃗

ρ(p⃗−q⃗)↑,p⃗↑ρ(p⃗′+q⃗)↓,p⃗′↓

=
∑

k⃗σ

(
ϵ(k⃗) +

U

2

)
ρk⃗σ,⃗kσ +

U

V

∑

p⃗,p⃗′,q⃗,s⃗,⃗t

δs⃗,(p⃗−q⃗)δt⃗,(p⃗′+q⃗)ρs⃗↑,p⃗↑ρt⃗↓,p⃗′↓

d→∞−−−→
∑

σ

∫

ϵ

ϵρϵσ,ϵσ + UA↑[ρ]A↓[ρ].

(4.32)

The dynamics so obtained does obey some desirable properties:

• Aσ[ρ] is real.

• Particle number conservation:

i∂t

∫

ϵ

ρϵσ,ϵσ = UAσ[ρ]

∫

ϵ

∫

ϵ′
(ρϵσ,ϵ′σ − ρϵ′σ,ϵσ) = 0. (4.33)

• Energy conservation: The kinetic energy Ekin =
∑

σ

∫
ϵ
ϵρϵσ,ϵσ obeys

i∂tEkin =
∑

σ

∫

ϵ

ϵ UAσ

∫

ϵ′
(ρϵσ,ϵ′σ − ρϵ′σ,ϵσ) = U

∑

σ

Aσ

∫

ϵ

∫

ϵ′
ϵ (ρϵσ,ϵ′σ − ρϵ′σ,ϵσ)

= U
∑

σ

Aσ

∫

ϵ

∫

ϵ′
(ϵ− ϵ′)ρϵσ,ϵ′σ = −U

∑

σ

Aσ (i∂tAσ̄) = −i∂t (UA↑A↓) .

(4.34)

• Fixed points: ρ-variables of the form ρϵσ,ϵ′σ = n(ϵ)δ(ϵ− ϵ′) obey i∂tρ = 0.

The main challenge, however, is related to the setup of the Wigner function. Let us
take the Fermi sea as an example: In k-space we obtain ⟨ρkσ,lτ ⟩FS = δστδkl

(
n(ϵk)− 1

2

)
.

Although occupation numbers are easily expressible in terms of energies alone, the
momentum delta poses a problem: For two given single-particle energies ϵ, ϵ′ only the
diagonal momentum pairs on the two energy shells contribute. One could in principle
remedy this by restricting ρϵσ,ϵ′τ to k-diagonal configurations but a similar issue occurs
on the level of the variance, which is ⟨ρkσ,lτρsσ′,pτ ′⟩ ∼ δkpδls and leads to fluctuations
of exactly the k-nondiagonal variables ρ. This hints towards the greater question of
coarse-graining within truncated Wigner approaches. By introducing energy indices,
we have formed groups of ρ-variables and need to determine a consistent set of correla-
tion data to adapt the TWA scheme for those new variables. In the example at hand,
one strategy could be to introduce two sets of energy-labeled variables, corresponding
to k-diagonal and k-nondiagonal ρs. However, in high dimensions the latter group of
variables will grow much faster than the former and so an adequate rescaling of the
variables will be essential.



Chapter 5

Non-Equilibrium Order Parameter
Dynamics in Large-N Models

Parts of this chapter are also published in the article [2], Photoinduced prethermal
order parameter dynamics in the two-dimensional large-N Hubbard-Heisenberg model,
Phys. Rev. B 106, 214318 (2022). Sections, in which figures or parts of the texts are
reprinted, are marked with a hint “(cf. [2])”.

5.1 Introduction

As already highlighted in the introduction to this thesis, interacting many-electron
systems can host a plethora of ordered phases at equilibrium, which will in general be
intertwined with each other [98, 106]. The cuprate high-temperature superconductors
are arguably the most famous example of a highly complex strongly correlated mate-
rial with many competing ordering tendencies [233, 105, 11]. Their defining property
is a superconducting state at temperatures up to Tc ≈ 140K, way above the critical
tempatures known from conventional superconductors. The precise mechanism that
leads to superconductivity in these compounds is not yet fully understood. Never-
theless, it is consensus that the copper oxide planes play a key role [11], which has
led theoretical studies to focus on the physics of correlated electrons in two spatial
dimensions to make progress [10]. Quickly after the experimental discovery, simplified
models for the planes have been proposed, in particular multi-band Hubbard models
and t-J models – the latter in a famous paper by Zhang and Rice [234]. Another
candidate model includes the Anderson lattice model [235]. The strong interest in
two-dimensional correlated electron models did also stimulate the development and
advancement of numerical as well as analytical techniques to investigate their equilib-
rium phase diagrams [236]. An analytical method which led to a number of influential
publications in the late 80s/early 90s [141, 142, 237, 238] is the large-N expansion. It
had already been successfully applied to mixed-valence compounds before [239, 240].
The technique relies on the fermionic degeneracy N as an expansion parameter, which
is non-perturbative in the couplings. The core of its success lies in a simplification of
diagrammatic calculations because only certain classes of diagrams survive the scaling
N →∞ [241]. For the ease of calculations, large-N expansions are often combined with
slave-boson representations [242, 243, 244, 245] of spin states. Following a proposal
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by Anderson [246], many authors became interested in searching for non-Néel ground
states of quantum antiferromagnets. Using the large-N expansion, Read and Sachdev
thus studied the equilibrium properties of various SU(N)-symmetric antiferromagnetic
Heisenberg models in a series of papers [242, 247, 248, 237, 238]. Their Hamiltonian
reads

ĤHei =
J

N

N∑

α,β=1

∑

⟨i,j⟩

Ŝβα(i)Ŝαβ (j), (5.1)

where in a fermionic representation [140] one can write Ŝβα(i) = c†iαciβ−δα,β 1
N

∑
γ c
†
iγciγ.

These operators are generators of the SU(N) group, which obey

[Ŝβα(i), Ŝδγ(j)] = δij
(
δγ,βŜ

δ
α(i)− δα,δŜβγ (i)

)
. (5.2)

They offer a very convenient way to write SU(N)-symmetric spin models. Note that
one cannot formulate, e.g., kinetic hopping terms with these operators. Written in this
way, it becomes apparent that here is the freedom to choose a representation of the
SU(N) group on every site in (5.1). Without going too much into the details we mention
that the all such irreducible representations can be labeled by Young tableaux, which
are characterized by two integer numbers, in this context often called m and nc [249].
The number k = N/m allows for an interpretation as the minimum number of spins
that are needed to form a singlet. The limit nc → ∞ is a semiclassical limit akin to
the large-S limit (if N = 2 and m = 1, one exactly has nc = 2S). Read and Sachdev as
well as Affleck and Marston set m = N/2. In the fermionic model this corresponds to
an equal distribution of electrons on the sites. A good overview of the various SU(N)
representations and their physical implications was given by Hermele and Gurarie [249].
Similar studies to Read’s and Sachdev’s were performed by Arovas and Auerbach [243].

An important general conclusion from all these works is the possibility to construct
non-Néel ordered ground states, which typically correspond to a fluctuating distribu-
tion of singlets (“valence bonds”) on the lattice. In the limit N → ∞, one finds, in
particular, a class of spin-Peierls states, i.e. periodic bond-no bond patterns that can,
for instance, occur in columnar or box shape [242, 247, 142]. Affleck and Marston [141,
142] also went beyond the pure Heisenberg case. They view the antiferromagnetic
Heisenberg model as one limiting case of a more general hybrid Hubbard-Heisenberg
model. Its Hamiltonian is a combination of the Heisenberg exchange interaction with
a kinetic term and a Hubbard interaction. Although at half filling the Hubbard model
reduces to the Heisenberg model in the limit U/th → ∞, one needs to write the
Heisenberg interaction explicitly because the Hubbard interaction becomes trivial as
N → ∞. Put differently, the limits U/th → ∞ and N → ∞ do not commute. If
one sends U/th → ∞ in the Hubbard-Heisenberg model and sets th = 0, one obtains
back Read’s and Sachdev’s model. The N →∞ phase diagram of the hybrid model in
two spatial dimensions is discussed in detail in the next section. However, we already
briefly summarize the main findings here. In the mean-field limit, the Hubbard inter-
action U becomes irrelevant, a fact we already discussed in Chapter 2. In the extreme
J/th → ∞ limit one obtains the spin-Peierls state of the SU(N) antiferromagnet as a
ground state. Still, the additional kinetic energy scale th leads to a competition between
the Peierls state and a new type of ground state, the so-called staggered flux phase [250,
251, 252]. Its characteristic feature is the emergence of a non-vanishing magnetic flux
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around the plaquettes of the two-dimensional lattice. The staggered flux phase be-
comes the ground state of the two-dimensional large-N model for intermediate values
of J/th. Later, there was increased particular interest also in the staggered flux (SF)
phase because numerical studies [252, 253], in particular based on the density-matrix
renormalization group (DMRG), indicated that the SF phase may also be realized in
more conventional interacting electron models on ladders, without the need for a large-
N setup. In a later work, Marston and coworkers revisited the Hubbard-Heisenberg
model on a two-dimensional triangular lattice [254] and studied the additional effect of
frustration on the phase diagram, which, however, is beyond the scope of this thesis.

Besides the relevance of large-N setups for the approximate treatment of condensed
matter models, there is another, more recent, motivation to study SU(N)-symmetric
models, namely in the context of ultracold Fermi gases [255, 256, 257]. The paradig-
matic examples are alkaline-earth atoms [258] like 87Sr and 135Ba. They are charac-
terized by the absence of hyperfine interactions between nuclear and electronic spin
degrees of freedom. This, combined with the almost perfect independence of electronic
scattering properties (the scattering length, in particular) from the nuclear spins, im-
plies an increased fermionic degeneracy of kinetic and interaction Hamiltonians for
such kinds of atoms. The so far largest realized degeneracy is N = 10 for the spin-9/2
atom 87Sr. [255]. Experimentalists have used alkaline-earth atoms to simulate ferro-
magnets and Mott insulators with SU(N)-symmetries [259]. A very specific application
is the development of highly precise atomic clocks [260]. In the context of ultracold
Fermi gases, there is also some interest to realize staggered Flux phases in experiments
with optical lattices, either with SU(N) fermions with low values of N [261] or using
time-dependent lattices [262].

5.1.1 State of the Art and Scope of this Chapter

The equilibrium properties of SU(N) models in the large-N limit are well explored
analytically, at least in the case of the Heisenberg antiferromagnet. The finite-N equi-
librium phase diagram of the Hubbard-Heisenberg model, however, is less explored ex-
cept for one study based on Quantum Monte Carlo (QMC) [140]. Nowadays, there are
also powerful numerical techniques available to treat SU(N)-systems, e.g. symmetry-
enhanced DMRG or exact diagonalization codes for chains [263, 264, 265] and ladder
systems [266]. QMC is in general a very powerful technique for many models, including
the SU(N)-symmetric versions of the Hubbard model and the Kondo model [267, 268].
QMC’s intrinsic sign problem is mitigated in the large-N limit [140].

Despite the availability of all these methods, the main focus of research on SU(N)
models still seems to be their equilibrium physics. Of course, this is not to say that
large-N techniques have not been used in non-equilibrium research. Large-N expan-
sions have a tradition in field theories based on the Keldysh technique [269, 270, 271,
184, 272]. However, often these works deal with more coarse-grained scalar quantum
field theories and the microscopic dynamics in interacting many-fermion systems seems
indeed a bit less explored [268, 273, 274, 275].

The goal of this chapter is the following: We adopt the large-N Hubbard-Heisenberg
model and view it as a model with an intrinsic competition of two different types of
order, the Peierls phase, which one can view as a simple model for a bond-density
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wave phase, and the staggered Flux phase. It provides an ideal environment to study
the dynamics of such ordered phases in response to non-equilibrium excitations like
parameter quenches or driving with an electromagnetic field. In this thesis we mostly
neglect the Hubbard Interaction (U = 0). This is justified since we are interested
in the near mean-field dynamics, for which the influence of U is less important. In
addition, the finite-N phase diagram for all three parameters th, J and U non-zero is
not reported in the literature and to calculate it could be the topic of a thesis on its
own. Furthermore, we concentrate mostly on the Peierls phase as an initial state since
it represents a prototypical strong coupling phase, whose decay upon non-equilibrium
excitations we would like to study.

We have chosen an SU(N) model because it allows us to use the semi-classical
fermionic truncated Wigner (fTWA) approximation [112] as a time evolution tech-
nique in a very natural environment because of the effective ℏeff = 1

N
. In the previous

Chapter 4 we have seen that fTWA often yields good agreement with exact calculations
on short and intermediate time scales [112] but without a small ℏeff the dynamics can
run into unphysical fixed points in the long time dynamics. If we work at sufficiently
large values of N , we can expect that the dynamics still remains reliable. By using
fTWA and the Wigner function sampling we go beyond mean-field and include some
electron-electron correlations in the dynamics. Based on our observations for the inter-
action quench in the Hubbard model, we assume that fTWA adds dephasing generated
by inelastic scattering processes on top of the mean-field dynamics and will therefore
generate stationary states that can be interpreted as prethermal states, i.e. stable on
a transient timescale before the thermalization dynamics dominates.

To the best of our knowledge, we are the first to combine fTWA with large-N models
and therefore many new technical questions have arisen, in particular ones related to
the initial state preparation. We already mentioned above that except for sketches in
the appendix to Marston’s and Affleck’s original paper [142], no closed-form results for
the one- and two-particle reduced density matrices in the finite-N model are reported
in the literature. However, exactly these would be required for the determination of
a correlated initial state Wigner function. In general, fTWA has so far always only
been used for initial product states and therefore we take the mean-field initial state
to set up an approximate Wigner function. In the following Section 5.2 we discuss
the mean-field phase diagram of the model and discuss issues related to the initial
state preparation within fTWA. In Section 5.3 we discuss results related to parameter
quenches, before we continue with the main part of this chapter, namely Section 5.4,
which treats the photoinduced dynamics in the Hubbard-Heisenberg model. Before we
conclude, we show results for spatially inhomogeneous photoexcitations in Section 5.5.

5.2 Initial State Preparation (cf. [2])

In this section we discuss the equilibrium properties of the Hubbard-Heisenberg model
in the limit N → ∞ and how we set up the Wigner function for fTWA. The N →
∞ equilibrium zero temperature phase diagram was first obtained using a Hubbard-
Stratonovich transformation with subsequent saddle point approximation [141, 142].
In 2005, Assaad re-examined the model using quantum Monte Carlo [140] for finite
N < ∞. Since both the Peierls and the staggered flux phase break the translational
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invariance by one lattice site, one needs to select a unit cell of a least two sites to find
a self-consistent mean-field solution. The smallest possible unit cell is made out of
two sites and is depicted in the top row of Fig. 5.1. It is also the choice in Marston’s
and Affleck’s original work. Note that it is tilted by 45◦ with respect to the original
lattice vectors. It has been shown that larger unit cells can also host more complex
spatial patterns at saddle points of the free energy, in particular box-shaped Peierls
phases [142, 247]. However, at N → ∞ they are degenerate with the Peierls state of
the unit cell with two sites. In addition, the fTWA simulations use a computational
basis in position representation such that there is no predefined unit cell any more and
in principle more complex spatial patterns can emerge dynamically. We will always use
periodic boundary conditions (with respect to the lattice of unit cells) for quadratic
systems with at least 11 × 11 cells, i.e. V = 2 · 112 = 242 lattice sites. The choice
of the tilted unit cell with two sites corresponds to a reduced Brillouin zone, which is
sketched with black color in the inset of Fig. 5.2.

Peierls phase
A

B

ρ0 ρ1

ρ2ρ3

Flux phase

Φ

y
yx x

Figure 5.1: Upper row: Unit cell used in this paper with two atoms per cell. Lower
row: Sketch of the spatial structure of the two competing equilibrium phases Peierls
(one strong bond ρ0 and three identical weak bonds ρ1,2,3 per unit cell) and Flux (four
complex bonds with equal magnitude and non-vanishing plaquette flux). This figure is
also published in [2]. Copyright (2022) by the American Physical Society.

For N < ∞, it would be desirable to explicitly construct the equilibrium states
of the model as controlled starting points for the light-driven dynamics. In complete
generality, this requires the calculation of 1/N corrections to the saddle points and
is a non-trivial task. The equilibrium states so obtained would be stationary under
the semiclassical time-evolution. To proceed without a full calculation, we resort to a
simpler strategy and make direct use of the fTWA dynamics. This is possible in at
least two ways: We can adiabatically switch on the interactions or we can construct
an approximate Wigner function which relaxes to a stationary state in the phase of
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interest. The first strategy has the advantage that for sufficiently slow switching the
system can be prepared in an equilibrium ground state, i.e. without additional heating.
However, it turns out to be challenging to implement this in practice. For switching
times of 1000t−1h the final state energies we obtained were significantly higher than
those from the strategy discussed below. Another difficulty is posed by the fact that all
three phases are stable and a suitable transient symmetry breaking might be required
to reach the desired phase. We leave for future work a more detailed discussion of
adiabatic switching with fTWA.

5.2.1 Mean-field solution at N →∞ (cf. [2])

The original calculation by Marston and Affleck [141, 142] was carried out by means of
a saddle point analysis of the effective free energy, which only depends on the values of
the nearest-neighbor bonds and densities within a unit cell. In order to directly obtain
the full one-particle reduced density matrix from the calculation, we take a different
approach and make use of the fact that the limit N → ∞ is equivalent to a Hartree
decoupling of the interaction term: The way we write the interaction terms with ρ̂ij
operators determines their decoupling. We introduce the deviations

∆ρ̂ij = ρ̂ij − ρij (5.3)

of the ρ̂ij-operators from their expectation value ρij = ⟨ρ̂ij⟩. Plugging (5.3) into the
model Hamiltonian yields the following representation of the interaction terms

ĤHei = −JN
∑

⟨i,j⟩

(
ρij + ∆ρ̂ij

)(
ρji + ∆ρ̂ji

)

= −JN
∑

⟨i,j⟩

(
|ρij|2 + ρij∆ρ̂ji + ρji∆ρ̂ij

)
+O(∆ρ)2

≃ −JN
∑

⟨i,j⟩

(
− |ρij|2 +

1

N

N∑

α=1

(ρijc
†
jαciα + ρjic

†
iαcjα

))
(5.4)

ĤHub = UN
∑

i

(
ρii + ∆ρ̂ii

)2

= UN
∑

i

(
|ρii|2 + 2ρii∆ρ̂ii

)
+O(∆ρ)2

≃ UN
∑

i

(
− |ρii|2 +

2

N

N∑

α=1

ρii
(
c†iαciα −

1

2

))
(5.5)

In the following we neglect the order (∆ρ)2 terms. In order to construct the ground
state of the model we need to specify the lattice geometry and choose a unit cell. Let us
concentrate, for simplicity, on a one-dimensional model and give the generalization to
two spatial dimensions in the end. Here, we label the two sites of the unit cell as A and
B. We call the on-site elements of the ρ-variables ρA := ρi∈A,i∈A and ρB := ρi∈B,i∈B.
The nearest neighbor bonds are called ρ0 := ρi∈A,(i+1)∈B and ρ1 := ρi∈B,(i+1)∈A.
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Next, we transform all non-local operators to momentum space. A way to do this
is to work directly in the reduced Brillouin zone rBZ ⊆ (−π/2, π/2]. This corresponds
to the following transformation rules with Q = π (also described in Ref. [215])

c†i∈A =
1√
V

∑

k∈rBZ

e−ikri
(
c†k + c†k+Q

)

c†i∈B =
1√
V

∑

k∈rBZ

e−ikri
(
c†k − c†k+Q

) (5.6)

Introducing ϵk := 2th cos(k) and χk := J
(
ρ0e
−ik + ρ∗1e

ik
)

we obtain the following
representation of the Hamiltonian

(H) =
(
c†k c†k+Q

)(
ϵk − Re(χk) + U(ρA + ρB)− µ i Im(χk) + U(ρB − ρA)
−i Im(χk) + U(ρB − ρA) −ϵk + Re(χk) + U(ρA + ρB)− µ

)(
ck
ck+Q

)

(5.7)
In the following, we will always only consider half filling, µ = U(ρA + ρB). Diago-

nalization of the Hamiltonian yields the following set of eigenenergies

Ek = ±
{
−

[
−

(
ϵk − Re(χk)

)2 − Im(χk)
2 − U2

(
ρB − ρA

)2]}1/2

= ±
{∣∣ϵk − χk

∣∣2 + U2(ρB − ρA)2
}1/2

.

(5.8)

In two spatial dimensions the procedure is analogous. However, since we use the
rotated unit cell depicted in Fig. 5.1, the k-values are defined with respect to the tilted
lattice of unit cells.

ϵk = 2th

(
cos

(√2

2
(kx − ky)

)
+ cos

(√2

2
(kx + ky)

))
,

χk = J
(
ρ∗0e
−i

√
2

2
(kx+ky) + ρ∗1e

i
√
2
2
(kx−ky)

+ ρ2e
i
√
2

2
(kx+ky) + ρ3e

−i
√
2

2
(kx−ky)

)
.

(5.9)

Rewritten in terms of the axes of the original lattice (here denoted k′) by means of
the following transformation,

(
k′x
k′y

)
=

√
2

2

(
1 −1
1 1

)(
kx
ky

)
, (5.10)

the variables read as follows

ϵk = 2th
(

cos(k′x) + cos(k′y)
)
,

χk = J
(
ρ∗0e
−ik′y + ρ∗1e

ik′x + ρ2e
ik′y + ρ3e

−ik′x
)
.

(5.11)

In summary, we have obtained single-particle eigenenergies with Ek± = ±
(∣∣ϵk −

χk
∣∣2 + U2(ρB − ρA)2

)1/2
. Charge-density wave (CDW) states ρA ̸= ρB would lead to

a gap in the single-particle spectrum. Some caution needs to be taken when looking
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for a saddle point in the mean-field free energy. The saddle point curvature in the
U -direction is inverse to one of the J-terms (some more details are given in the original
publication [142]). The internal energy (expectation value of the Hamiltonian) per
flavor is given by

H/N =
V

2

(
− U(ρ2A + ρ2B) + J

3∑

i=0

|ρ0|2
)

+
∑

k

Ek (ρk+,k+ − ρk−,k−) ,

(5.12)

where V is the total number of lattice sites. Using

U
(
ρ2A + ρ2B

)
=
U

2

(
ρA + ρB

)2
+
U

2

(
ρA − ρB

)2
, (5.13)

where ρA+ρB is fixed by the filling, we see that ρA = ρB is required for a stable saddle
point. It implies that in this model CDWs are thermodynamically unfavorable due to
the U -term in the Hamiltonian. In particular, the value of U is irrelevant for the mean-
field phase diagram. It is worth noting that this is different for nearest-neighbor density-
density interactions instead of or in addition to the Hubbard interaction. Setting
ρA = ρB, we obtain

H/N =
V

2
J
(
|ρ0|2 + |ρ1|2 + |ρ2|2 + |ρ3|2

)

+
∑

k

Ek (ρk+,k+ − ρk−,k−) ,

Ek = 2th
(

cos(kx) + cos(ky)
)

− J
(
ρ∗0e
−iky + ρ∗1e

ikx + ρ2e
iky + ρ3e

−ikx
)
.

(5.14)

Due to the symmetry of Ek± around E = 0, the ground state at half filling is
always obtained by setting ρk−,k− = 1

2
and ρk+,k+ = −1

2
for all momenta k. The self-

consistency conditions follow from the momentum space representation of the local
bond variables:

ρ0
!

= ρ(0|0)A,(0|0)B ⇔ ρ0 =
1

2Vu

∑

k

e−iφk (ρk+,k+ − ρk−,k−)

ρ1
!

= ρ(0|0)A,(−1|0)B ⇔ ρ1 =
1

2Vu

∑

k

ei
√
2kxe−iφk (ρk+,k+ − ρk−,k−)

ρ2
!

= ρ(−1|−1)B,(0|0)A ⇔ ρ2 =
1

2Vu

∑

k

e−i
√
2(kx+ky)eiφk (ρk+,k+ − ρk−,k−)

ρ3
!

= ρ(0|−1)B,(0|0)A ⇔ ρ3 =
1

2Vu

∑

k

e−i
√
2kyeiφk (ρk+,k+ − ρk−,k−)

(5.15)

We find self-consistent values for ρ0, ρ1, ρ2 and ρ3 at zero temperature from the
numerical minimization of (5.14) using the simulated annealing algorithm described in
Chapter 2.
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Numerically, we indeed obtain the three equilibrium phases of the model at half
filling: Firstly, the dimerized bond density wave Peierls phase at large J/th has got
real-valued ρi with one strong bond ρ0 ≫ ρ1 = ρ2 = ρ3. We introduce the following
order parameter for the Peierls phase:

OPeierls = |ρ0| − max
i=1,2,3

|ρi|. (5.16)

Secondly, the staggered Flux phase (also known as DDW phase [253, 140]) at inter-
mediate J/th comes with complex bonds ρi that are equal in magnitude and multiply
to a flux operator Π = Π0e

iΦ around a plaquette with non-vanishing phase Φ ̸= 0.
Hence, we will consider

OFlux = Φ. (5.17)

Lastly, there is the uniform phase which is a stable saddle point at all values of J
but has the lowest free energy only at J = 0. In the uniform phase the unit cell bonds
are real and OPeierls = OFlux = 0. The single-particle band structures obtained from
the mean-field calculation are plotted in Fig. 5.2 for the reduced Brillouin zone. The
bands in the Figure roughly correspond to the electron removal/addition energies and
do not directly contain information about excited states of the system.

We add, for reference, the relation of Affleck’s and Marston’s order parameter
fields [141, 142] to our formalism: The field iϕi corresponds to 2Uρii and their χij
is our −Jρij.

5.2.2 Non-zero temperatures (cf. [2])

Since we are interested in the values of the order parameters after energy absorption
due to the driving, we would like to compare our results to equilibrium states at
temperatures T > 0. In addition, the finite-temperature phase diagram of the N →∞
model is not reported in the literature yet. In order to determine finite-temperature
states, we need to minimize the (Helmholtz) free energy, which includes both the total
energy as well as the entropy term. The mean-field ground state is a simple product
state of a single fermion species, which is labeled by the mean-field momentum modes
k±,

|Ψ̃MF
0 ⟩ =

∏

ϵk±<ϵF

c†k± |0⟩ . (5.18)

Hence, at finite temperature we can use the formula for the entropy of free fermions

S/N =
1

T

∑

ϵk

[
nFD(ϵk)

(
ϵk − µ

)
+ T ln

(
1 + e−(ϵk−µ)/T

)]
(5.19)

with the Fermi-Dirac distribution nFD(ϵ) = 1/
(
1 + exp[(ϵ − µ)/(kBT )]

)
. Formally we

write S/N and F/N . This is always to be understood in the limit N →∞. This yields
the following (Helmholtz) free energy F = ⟨H⟩ − TS,

F/N = J
∑

⟨ij⟩

|ρij|2 −
∑

ϵk

β−1 ln
(

1 + e−β(ϵk−µ)
)
, (5.20)
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(0, π)

Figure 5.2: Single-particle mean-field band structure for J/th = 15 and a system size
of Vu = 41 × 41 unit cells. The spectrum is symmetric around energy zero; here we
only plot the upper half with positive energy. The Peierls phase is gapped, while the
Flux phase is gapless. Inset: Sketch of the reduced Brillouin zone derived from the unit
cell in Fig. 5.1. This figure is also published in [2]. Copyright (2022) by the American
Physical Society.

where β = 1/(kBT ).

We determined the minima of the free energy numerically using the simulated an-
nealing algorithm described in Chapter 2. Special care must be taken to arrive at the
targeted particle number because the single-particle basis changes during the stochas-
tic iterations. We have therefore updated the chemical potential in each iteration step
such that it yields the correct particle number for each intermediate basis. We checked
the convergence of the annealing procedure using the self-consistency relations of the
bonds.

We calculated the phase diagram at half filling, the results are presented in Fig. 5.3.
On the left hand side, we plot the free energies of the three equilibrium phases at
zero temperature. For weak interaction strengths, the Flux phase has the lowest free
energy, while the Peierls phase only exists at a slightly higher free energy. At a value of
J/th ≈ 12, the free energies of Peierls and Flux phase swap roles and the Peierls phase
becomes the equilibrium phase of the model at strong coupling. Despite this first-order
phase transition, Peierls and Flux phase are thermodynamically almost degenerate in
the weak to intermediate coupling regime. The Uniform phase always has a much
larger free energy. On the right hand side of Fig. 5.3 we plot the full finite-temperature
mean-field phase diagram. At high temperatures the Uniform phase dominates the
phase diagram, while at strong coupling there is a transition from Peierls to Flux at
low temperature, followed by a second transition at higher temperatures from the Flux
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Figure 5.3: Equilibrium phase diagrams of the mean-field (N →∞) model. Left: Free
energies at zero temperature as function of the interaction strength J/th. The mean-
field transition occurs at the dashed line around J/th ≈ 11.96. Right: Phase diagram
at non-zero temperatures. The uniform phase is the generic high-temperature phase.

to the Uniform phase. Note that at low temperatures and for weak interaction strengths
J ∼ th, all free energies are practically identical, in these cases we just write Uniform
phase in the diagram. In order to determine the nature of the phase transitions, we
make a cut through the phase diagram at a fixed interaction strength and look at the
free energies as a function of temperature. We select a value of J = 15th, which lies in
a region of the phase diagram where the Peierls phase has the lowest free energy. The
results are shown in Fig. 5.4. From temperature zero up to T ≈ 3.5th there is a regime in
which all three phases are stable. Up to T ≈ 1.6th, the Peierls phase has the lowest free
energy, while at more elevated temperatures the Flux phase is preferred. The uniform
phase is left as the generic high-temperature phase. The transition from Peierls to Flux
is first order, one can see well the jump in the internal energy at the transition point.
The transition from the Flux to the Uniform phase, in contrast, is second order and
the order parameter displays the typical mean-field scaling with exponent β ∼ 1

2
. We

can observe, in addition, that there is a second “hidden” phase transition of the Peierls
phase to the Uniform phase, which occurs at slightly lower temperatures. For larger
values of J the range of temperatures with stable order beyond the uniform phase will
be broader.

Because of the complex structure of the phase transitions, a value J/th = 15 is an
interesting starting point to investigate the non-equilibrium dynamics in the model.

5.2.3 Order parameters in the finite-N model (cf. [2])

Before we continue to discuss possible state preparation techniques for the finite-N
model, we would like to make a general remark on phases and order parameters in the
Hubbard-Heisenberg model with N <∞. It was demonstrated using quantum Monte
Carlo [140] that the mean-field saddle points yield a qualitatively correct picture of the
finite-N Hubbard-Heisenberg model down to N = 6, albeit with renormalized order
parameters and phase boundaries. The respective phase diagram from the original
publication can be seen in Fig. 5.5.



96 Non-Equilibrium Order Parameter Dynamics in Large-N Models

−3

−6

−9

−12

−15/0

F
/(
N
V
u
t h

)
0 1 2 3−5.0

−4.8

−5/π

−4

−3

−2

−1

〈Ĥ
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Figure 5.4: Finite-temperature equilibrium states for the N →∞ Hubbard-Heisenberg
model with Vu = 11× 11 unit cells, J/th = 15 and U = 0. Upper two rows: Helmholtz
free energy F and total (internal) energy ⟨Ĥ⟩ per unit cell. Lower two rows: Order
parameters for the Flux and Peierls phases displaying the typical mean-field scaling.
At temperature T ≈ 1.5th there is a first order transition from Peierls to Flux order.
This figure is also published in [2]. Copyright (2022) by the American Physical Society.

Since we typically choose 250 ≤ N , we are safe to work with the same order
parameter definitions as for the infinite-N model but we need to take care how to
consistently calculate them within the TWA scheme.

We start with a remark related to the calculation of observables within the Wigner-
Weyl scheme. The TWA expectation value of an operator Ô[ρ̂ij], which can be ex-
pressed in terms of the classical variables ρij, reads

〈
Ô(t)

〉
=

∫
dρij(0)W

(
ρij(0)

)
OW

(
ρij(t)

)
, (5.21)

where OW(ρij) is the Weyl symbol of Ô. It can, in general, differ at order ∼ 1
N

for

different ways of writing Ô in terms of the ρ̂ij [157]. In order to extract the Peierls and
Flux order parameters, respectively, we need to calculate absolute values and phase
angles of the ρ̂ij. It is not obvious how the exact Weyl symbols of these operations
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Figure 5.5: Phase diagram as a function of t/J and 1
N

as obtained by Assaad within
quantum Monte Carlo. The “Dimer” phase orresponds to our Peierls phase, the
“DDW” phase is the staggered flux phase. These two phases determine the phase
diagram down to values of N = 6. Reprinted figure with permission from “F.F. As-
saad, Phys. Rev. B 71, 075103 (2005)”. Copyright (2005) by the American Physical
Society.

look like. However, it is clear that in the mean-field theory N →∞ one can calculate
them straightforwardly from the ρij(t). Hence, we assume that corrections to Weyl
symbols, if present at all, will scale like ∼ 1

N
, e.g. | • |W = | • | +O( 1

N
). Since we will

work at large N , we are justified to neglect these corrections. This is the philosophy
of the stochastic mean-field approach as well (cf. Chap. 2).

In the numerical determination of the Flux order parameter we average eiΦ over all
trajectories, i.e. we work with numbers on the unit circle. However, one needs to take
care of the spontaneous breaking of the orientation symmetry of the plaquette flux.
There are two ergodic components, for which Φ lies in the intervals [0, π] and [−π, 0],
respectively. Different fTWA trajectories can select different ergodic components such
that direct averaging of the order parameter may become unphysical (analogous to
averaging the magnetization of a ferromagnet without explicit symmetry breaking).
Hence, in order to calculate the Flux order parameter directly, we introduce a weak
symmetry breaking term iϵmn

(
ĵmn − ĵnm

)
that selects the Φ ∈ [0, π] component. The

current operator (for lattice sites m,n) is given by

ĵmn = ith
(
c†mcn − c†ncm

)
= −2th Im(ρ̂mn). (5.22)

We tried out a few symmetry breaking strengths and concluded that ϵ ∼ 10−3 yields
the best balance of breaking the symmetry but not influencing the dynamics too much.
For reference, we write down the equations of motion for a symmetry-breaking term in
the Hamiltonian,

i
∑

⟨i,j⟩

ϵi,j
(
ρ̂i,j − ρ̂j,i

)
= i

∑

l

∑

a(l),
l≤a(l)

ϵl,a(l)
(
ρ̂l,a(l) − ρ̂a(l),l

)
. (5.23)
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They read

−i∂tρ̂ij = i
∑

l

∑

a(l),
l≤a(l)

ϵl,a(l)
(
δi,a(l)ρlj − δl,jρi,a(l) − (l↔ a(l))

)

= i
∑

a(i)<i

ϵa(i),iρa(i),j − i
∑

i<a(i)

ϵi,a(i)ρa(i),j

+ i
∑

j<a(j)

ϵj,a(j)ρi,a(j) − i
∑

a(j)<j

ϵa(j),jρi,a(j)

= −i
∑

a(i)

ϵi,a(i)ρa(i),j + i
∑

a(j)

ϵj,a(j)ρi,a(j),

(5.24)

where a(i) labels all nearest neighbors of site i. Since the flux in the flux phase is
staggered, the symmetry breaking coefficients ϵl,a(l) need to alternate along a lattice
direction.

The explicit breaking of the symmetry can be useful for spatially inhomogeneous
situations like the type of photoexcitations considered in Sec. 5.5, where long-range
order cannot be expected and where we would like to directly probe the local formation
of order. In spatially homogeneous situations, there is another more convenient probe,
which is also well defined without explicit symmetry breaking field: In numerical studies
of staggered flux states in ladder systems of interacting fermions, Schollwöck et.al. [253]
considered current-current correlators of the form

〈
ĵmnĵrs

〉
. This is similar to studying

spin-spin correlation functions instead of the magnetization in a ferromagnetic model.
We calculate current-current correlators for two bonds at the largest spatial separation
in the system to detect long-range order. Usually, we select the bond ρ0 (which is the
strong bond in the Peierls phase) for the calculations. Making use of the translational
symmetry of the system we determine the correlators for all translationally equivalent
pairs of unit cells and average over them. This reduces the effect of the fluctuations
on the observable within the truncated Wigner approach. For the adiabatic switching
calculations we also need to introduce a weak symmetry breaking for the Peierls phase
in order to select one of the four bonds as the strong one. Details will be given in the
next section.

5.2.4 Adiabatic switching of interactions

A possible preparation procedure for initial states, which should in theory also be ap-
plicable to the finite-N model, is adiabatic switching of interactions. Starting from
a non-interacting system, we expect that for slow enough changes of the interaction
strength the system will always follow the instantaneous ground states. For the adia-
batic switching procedure different ramping profiles can be chosen. A common choice
(e.g. presented in Ref. [276]) are functions fm(t), whose lowest derivatives up to and
including m-th order are smooth at the boundaries. For instance, m = 0 corresponds
to linear ramping:

f0(τ) = τ, f1(τ) = −τ 2(2τ − 3), f2(τ) = τ − sin(2πτ)/(2π),

f3(τ) = −τ 4
(
20τ 3 − 70τ 2 + 84τ − 35

)
,

f4(τ) = τ 5
(
70τ 4 − 315τ 3 + 540τ 2 − 420τ + 126

)
.

(5.25)
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τ = t/T is the ramping parameter based on the total switching time T . All functions
obey fm(0) = 0, fm(1) = 1.

Let us start the discussion of the results with mean-field theory N → ∞. In the
non-interacting state at initial time, all bonds in a unit cell are equivalent and a weak
symmetry breaking is needed to push the system into the symmetry sector of the Peierls
phase. This can be accomplished by adding a term εPei|ρ0|2 with 0 < εPei ≪ 1 to the
Hamiltonian for each unit cell. Its effect is to slightly increase the value of J for one
of the four bonds, which will then end up being the strong bond of the Peierls phase.
All mean-field results are obtained using a value of εPei = 10−3. Fig. 5.6 shows results
for the bond strengths |ρi| upon switching of the interaction J(t) = Jfm(t) for varying
values of m and T . The final bond values depend, as expected, on the total ramping
duration T . The larger T , the better do the bond strengths approach the correct
equilibrium mean-field value. In addition, the oscillations in the numerical data are
smaller for higher T . They would vanish as T → ∞. The effect of m is twofold:
Higher values of m lead to a smoother approach of the bond expectation values to the
mean-field result. In addition, the branch-off of the bond strengths from their initial
values occurs at later times. In Fig. 5.7 we plot the total energy per unit cell as a
function of time during the switching. It follows the temporal profile of the interaction
well and we can see on the right hand side of the plot that the final value of the energy
approaches the expected mean-field result. Furthermore, the quantitative differences
between the different switching profiles becomes negligible if the total ramping time is
sufficiently large.

These numerical results for the mean-field model indicate that adiabatic switching
should indeed be a possible strategy to prepare ordered states of the model in equilib-
rium. However, turning to the finite-N model, a simple adaptation of the strategy to
N < ∞ fails. Fig. 5.8 shows results for linear ramps of J in a system with N = 100
starting from the Wigner function of a non-interacting Fermi sea state (uniform phase)
and four different values of εPei. The switching procedure is completed at time t = 95
and we also turn off the symmetry breaking at the same time. The results show that the
Peierls phase symmetry breaking indeed leads to a split-off of one bond in the course of
the dynamics. However, after εPei is reset to zero the bonds collapse back to a uniform
configuration. The staggered Flux order parameter is also zero in the final state, while
it is non-zero for some time during the switching. The final state thus resides in the
uniform symmetry sector. Our observations for the bond strengths are consistent with
the dynamics of the total energy, which shrinks linearly with time but reaches a higher
final state energy than the state preparation procedure that we will describe below.
The total energy is not affected much by the choice of εPei, which is as it should be.
Paradoxically, the final state energy does not lower upon ramping over a longer time
period: We have checked ramping times up to T = 995. In fact, the final total energy
even increases slightly. The reason for this is not clear but it is likely rooted in the
structure of the free energy landscape, where starting from the zero-coupling uniform
phase one has to traverse the Flux phase to reach the Peierls phase. At intermediate
couplings both phases exist as minima of the free energy but only at strong coupling
is the Peierls phase the phase with the lowest free energy. While the Peierls phase is
gapped, the Flux phase is semimetallic and therefore allows for low-energy excitations.
It is hence likely that the fluctuating trajectories induce such excitations, which lead
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calculation.
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breaking εPei. At time t = 95 we set J = 15 and switch off the symmetry breaking to
monitor the stability of the final state. The system has V = 11 × 11 unit cells and a
fermion degeneracy N = 100.

to additional heating and may drive the system out of the Flux phase into the Uniform
phase. For slower switching, one line of thought could be that the system remains
longer in this intermediate regime such that even more trajectories induce excitations.

These explanations are for sure a bit speculative and more thorough analysis is
required to understand the observed dynamics. For now, we can conclude that adiabatic
switching is not – at least not in the way executed here – a suitable state preparation
technique for the finite-N model.

5.2.5 Quench from mean-field to finite N (cf. [2])

The following approach is meant as a pragmatic procedure to construct a stationary
initial state at least for some combinations of system size V and fermion degeneracy
N . The idea is to adopt the mean-field basis k± for the initial state but to only
populate a finite number of degenerate fermion levels. This effectively amounts to
constructing quantum fluctuations of ρ-operators around the mean-field state. Those
fluctuations are then encoded in a Gaussian Wigner function, which leads to non-
stationary dynamics at the initial time. Hence, we will need to wait for the system
to relax. One can view this protocol as a quench from infinite N to a finite value
N < ∞. However, one has to keep in mind that we continue to use the mean-field
basis to define the initial occupation numbers of states. We assume that at large but
finite N the self-consistent mean-field data for the one-particle density matrix will still
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be close to the true equilibrium states. In the following, we always only consider half
filling such that the initial mean-field state has the following product structure:

|ΨN
0 ⟩ =

∏

k

N∏

α=1

c†k−,α |0⟩ . (5.26)

In order to correctly set up the Gaussian Wigner function, we need to make sure that
we include all non-vanishing quantum correlations. The classical phase space includes
all variables ρk±,l± for arbitrary momenta k, l and the four combinations of ±. However,
as we have shown in Chapter 2, only covariances of the form ⟨ραβραβ⟩ and ⟨ραβρβα⟩ are
non-zero for a product state. The complete initial data for a Gaussian Wigner function
of this type is listed in Table 5.1 for general mode occupation numbers and in Table 5.2
for half filling according to (5.26).

ραβ ρk±,l± ρk±,l∓

µραβ
δkl

(
nk± − 1

2

)
0

Γsymm
αβ,αβ

1
2N

(
nk± + nl± − 2nk±nl±

)
1
2N

(
nk± + nl∓ − 2nk±nl∓

)

Csymm
αβ,αβ

δkl
N
nk±(1− nk±) 0

σ2
Re(ραβ)

1
4N

(
1 + δkl

)(
nk± + nl± − 2nk±nl±

)
1
4N

(
nk± + nl∓ − 2nk±nl∓

)

σ2
Im(ραβ)

1
4N

(
1− δkl

)(
nk± + nl± − 2nk±nl±

)
1
4N

(
nk± + nl∓ − 2nk±nl∓

)

Table 5.1: Correlation data for the Gaussian Wigner function for the mean-field prod-
uct state: symmetrized covariance Γsymm

αβ,µν =
〈
1
2
{ρ̂αβ, ρ̂νµ}

〉c.c.
, symmetrized pseudo-

covariance Csymm
αβ,µν =

〈
1
2
{ρ̂αβ, ρ̂µν}

〉c.c.
. For product states only combinations (µ, ν) =

(α, β) or (µ, ν) = (β, α) can lead to non-zero entries.

ραβ µραβ
Γsymm
αβ,αβ Csymm

αβ,αβ σ2
Re(ραβ)

σ2
Im(ραβ)

ρk±,l± (k = l) 1
2
, −1

2
0 0 0 0

ρk±,l± (k ̸= l) 0 0 0 0 0
ρk±,l∓ 0 1

2N
0 1

4N
1
4N

Table 5.2: Special case half filling: all “−” states are occupied (nk− = 1) and all “+”
states are unoccupied (nk+ = 0). Hence, nk± + nl± − 2nk±nl± = 0 and nk± + nl∓ −
2nk±nl∓ = 1.

We sample real and imaginary parts of the ρk+,l− and ρk−,l+ variables from a Gaus-
sian distribution for all combinations k, l and rotate them to the ρkA,lB sublattice basis
using the mean-field particle-hole transformation

(
ρkA,lA ρkA,lB
ρkB,lA ρkB,lB

)
= Uk ·

(
ρk+,l+ ρk+,l−
ρk−,l+ ρk−,l−

)
· U †l , (5.27)

where

Uk =
1√
2

(
1 1

eiφk −eiφk

)
(5.28)
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and ϵke
iφk := ϵk⃗ − χk⃗ as defined in the previous section. Written out, the right hand

side reads:

1

2

(
ρk+,k+ + ρk+,k− + ρk−,k+ + ρk−,k− e−iφk

(
ρk+,k+ + ρk−,k− − ρk−,k+ − ρk−,k−

)

eiφk
(
ρk+,k+ + ρk+,k− − ρk−,k+ − ρk−,k−

)
ρk+,k+ − ρk+,k− − ρk−,k+ + ρk−,k−

)

(5.29)
As a last step, we use the Fourier transform to obtain the ρ-variables in position space.
The time propagation is always carried out in position space. The freely evolving sys-
tem will relax to a stationary state on a characteristic warm-up time scale. Later, when
we investigate the dynamics of the system under driving, we switch on the drive only
after this warm-up. A disadvantage of the procedure is that the resulting stationary
state is not a ground state. This, however, is not too problematic for now since we
are primarily interested in obtaining a stationary reference state in the Peierls phase
from which to launch the dynamics of interest. For a precise comparison of results
at different values of N , though, it would be desirable to have better control over the
initial states.

0.00

0.05

cu
rr

-c
ur

r

0

+π

O
F

lu
x

0.0

0.25

0.5

O
P

ei
er

ls

0 50 100 150 200 250

time t [1/th]

−1.50

−1.25

E
ki

n
/(
N
V
u
t h

)

N = 100

N = 150

N = 190

N = 200

N = 210

N = 250

N = 300

Figure 5.9: Initial relaxation dynamics generated by a Gaussian Wigner function corre-
sponding to the state (5.26) in the finite-N Hubbard-Heisenberg model with J = 15th,
U = 0 and Vu = 11× 11 unit cells. The order parameters and the kinetic energy reach
a stationary state before time t = 250t−1h for all shown values of N except for N = 200
for which the relaxation takes longer than 1000t−1h . This figure is also published in [2].
Copyright (2022) by the American Physical Society.

Fig. 5.9 shows the time evolution of the order parameters induced by a Gaussian
Wigner function corresponding to the state (5.26) for multiple values of N and a
system size of Vu = 11 × 11 unit cells. The upper two panels show indicators of the
staggered Flux order: the current-current correlator without symmetry breaking in the
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top row and the plain Flux order parameter obtained with explicit symmetry breaking
ϵFlux ∼ 10−3 in the row below. For N ⪆ 200, the dynamics leads to a decrease of
the Peierls order parameter, while OFlux remains zero at all times. In this regime the
stationary state is clearly a Peierls state. Around N ≈ 200 the system transitions
to the Flux phase and the dynamics is very slow. This is also an interesting finding
on its own since it shows – at least qualitatively – the slow tunneling between nearly
degenerate free energy sectors. For smaller values N ⪅ 150, the system ends up in the
Uniform phase. The kinetic energy relaxes to a stationary value on the same timescale
like the order parameters. The redistribution of energy between kinetic and interaction
sector is in accordance with our findings in the SU(N) Hubbard models and suggests
an interpretation in terms of quasiparticle formation. We collect the stationary values
of the order parameters in Fig. 5.10. There is no data point for N = 200 as it was
impossible to extract a definite order parameter on the timescale of our simulation.
The lower row in the figure confirms that the system acquires a finite negative amount
of correlation energy ∼ (−J)/N relative to the mean-field state. We checked that the
total energy of the system prepared with this Wigner function is indeed independent
of the system size if rescaled by the number of unit cells.
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Figure 5.10: Stationary values of the order parameters after the warm-up shown in
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to the system at time t = 0. We omit the data at N = 200 because they were not
relaxed after time 1000t−1h . This figure is also published in [2]. Copyright (2022) by
the American Physical Society.

We conclude that during the warm-up dynamics the system can transition out of
the Peierls phase, which restricts the range of N to which this strategy can be applied.
While the true ground state in the finite-N model can be expected to show a similar
1
N

scaling of the correlation energy, the prefactors need not agree. In analogy to the
case of the SU(N) Hubbard model, this behavior will in general give rise to a finite
amount of excitation energy in the system. We assume that the equilibrium states of
the finite-N model – at not too low N – will be made up of quasiparticles consisting of
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mean-field modes dressed by particle-hole excitations (akin to an RPA picture). Our
analysis of the SU(N)-Hubbard model has shown that fTWA is able to reproduce such
quasiparticle formation (at least for weak U) in principle. However, in contrast to
the spatially uniform case of the Hubbard model, there is the additional complication
of nearly-degenerate competing instabilities with different spatial structures in the
Hubbard-Heisenberg model. The quasiparticles will depend on their respective mean-
field “vacuum state”. It is hence possible that the additional excitation energy (which
will in general also scale like 1

N
) destabilizes the quasiparticle formation in the Peierls

phase and drives the system into the nearly degenerate Flux phase or into the spatially
uniform phase. To investigate this aspect more, an analytical calculation of the true
1
N

-corrections to the mean-field state is required.
In addition and less expected, the system size turns out to play an important role.

We find that in a system with Vu = 21 × 21 unit cells the dynamics does not reach
a stationary Peierls state for values of N ⪅ 600. The system transitions into the
Flux or, at low N , into the Uniform phase. One aspect are generic finite-size effects:
The mean-field states do depend on the number of k-modes and again, via the near-
degeneracy of the two non-uniform phases, this can lead to shifts in the transitions.
However, 242 lattice sites in the Vu = 11 × 11 system is already a large number
and it is not clear why such corrections should lead to a systematic destabilization
of Peierls order. A more likely attempted explanation is related to the number of
fluctuating variables, which increases with the system size because all ρk±,l∓ fluctuate.
Let us focus on the bond ρ0 as an example, it is related to the momentum modes via
Fourier transform: ρi0 = 1

Vu

∑
k,l e

i(k−l)riρkA,lB. (The additional phase factor due to
the sublattice translation A to B is absorbed into ρkA,lB.) All ρkA,lB are fluctuating
variables. If we anticipate the translational invariance and average over all unit cells i,
the bond ρ0 only depends on the diagonal ρkA,kB. At initial time, according to (5.27),
the following equation holds:

ρkA,kB = e−iφk
(
ρk+,k+ − ρk+,k− + ρk−,k+ − ρk−,k−

)
(5.30)

The variables ρk+,k− and, consequently, (ρk+,k− − ρk−,k+) ∼ Im(ρk+,k−) are fluctuating
with random real and imaginary parts that are drawn from identical and independent
Gaussian distributions. In particular, they will have random phases that can average
to zero, in particular, if the number of variables becomes large. Since ρk+,k+ and ρk−,k−
are not fluctuating at time zero, the system will always stay close to the mean-field
configuration at early times. At later times, especially when the fluctuating variables
become more mixed due to the non-linear dynamics, complex phases will also interfere
and average out more. This is, in principle, a desired dephasing effect, which is in
accordance with amplitude-phase fluctuations that one expects in a quantum theory.
They give rise to the corrections to the mean-field dynamics that have shown to yield
the right prethermal distribution in the case of the interaction quench in the Hubbard
model. In the case of the Hubbard-Heisenberg model with non-trivial spatial order,
if the number of fluctuating variables becomes too large (e.g. for large system sizes),
a possible effect is that the dephasing will also more and more average out spatial
order, e.g. ρ0 ∼

∑
k ρkA,kB and ρ1 ∼

∑
k ei
√
2kxρkA,kB become identical. Additional

constraints like
∑

k

(
ρkA,kA+ρkB,kB

)
= const. prevent a complete suppression. It seems

like one needs to balance the amount of fluctuating variables with the strength of their



106 Non-Equilibrium Order Parameter Dynamics in Large-N Models

fluctuations. If a matrix is populated with large random entries on all off-diagonals,
one cannot expect a meaningful “real space” structure upon Fourier transform. These
aspects deserve a more thorough analysis in the future, especially with focus on the
question if a more fine-tuned construction of a Wigner function will be able to better
stabilize spatial order. It is, however, far from obvious how to do that.

We conclude for now that for J = 15th and a lattice with 11 × 11 unit cells we
can use this approximative approach for the initial Wigner function down to values of
about N = 200.

5.3 Quench Dynamics

As a first simple non-equilibrium protocol we consider quenches of the interaction
strength J . We study both quenches within the same phase as well as quenches across
the Peierls-Flux boundary and compare the order parameter dynamics. Another point
of interest is to study the effect of finite-N corrections in a simple setup. Nevertheless,
interesting phenomena can also already occur in mean-field theories. Quenches in BCS
theories [277, 278, 279] have displayed complex behavior like synchronization or Landau
damping. Bose-Hubbard models are known to display dynamical transitions in their
mean-field limit [132].

5.3.1 Mean-field dynamics

Before we discuss the mean-field results, let us start with a remark on the numerical
solution of the equations of motion. One finds that a straightforward implementation
in position space can lead to numerical instabilities, which are due to the finite floating
point accuracy and to the non-linear structure of the equations. Spatially homoge-
neous protocols like quenches give rise to a lot of additional symmetries throughout
the dynamics due to the preserved translational invariance of the system. The finite
numerical accuracy can lead to small spatial inhomogeneities in the initial state, which
grow exponentially during the time evolution with the non-linear equations of motion.
A solution to this problem is to remove the artificial redundancy of dynamical variables
and to go to a hybrid position-momentum representation of the equations of motion.
The translational invariance of the system implies that the one-particle reduced density
matrix always remains diagonal in momentum space: ρkl ∼ δkl. Using labels A and
B for the sites within one unit cell, we obtain the following equations of motion if we
transform to momentum space with respect to the unit cell lattice indices:

i∂tρkA,lA = −i∂tρkB,lB = δk,l [tkρkA,kB − t∗kρkB,kA]

i∂tρkA,lB = δk,l [t
∗
k(ρkA,kA − ρkB,kB) + 2U(ρB − ρA)ρkA,kB]

i∂tρkB,lA = δk,l [tk(ρkB,kB − ρkA,kA) + 2U(ρA − ρB)ρkB,kA] ,

(5.31)

where

tk⃗ = 2t

(
cos

(√2

2
(kx − ky)

)
+ cos

(√2

2
(kx + ky)

)

− J
(
ρ∗0e
−i

√
2

2
(kx+ky) + ρ∗1e

i
√
2

2
(kx−ky) + ρ2e

i
√
2

2
(kx+ky) + ρ3e

−i
√
2
2
(kx−ky)

))
.

(5.32)
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The momentum vectors kx, ky are defined with respect to the tilted lattice of unit cells,
not with respect to the original lattice. The instability problem can in principle also
reoccur on the level of the unit cell, which in the Peierls phase has a reflection symmetry
along the y-direction. In this case, one can reduce the number of dynamical variables
even more. We note that the instabilities do not show up for the propagation of spatially
inhomogeneous configurations (in particular with fluctuating initial conditions). In
these cases there are no redundancies in the dynamical variables.

Let us now discuss the results. We start with J-quenches in the mean-field model
N → ∞. Fig. 5.11 shows results for the order parameter dynamics subsequent to
quenches within the Peierls phase (J = 15 → 20) as well as across the Peierls-Flux
boundary (J = 15 → 5 and J = 5 → 15). In the mean-field model one can extract
the Flux order parameter directly from the flux operator around the plaquettes. All
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Figure 5.11: Mean-field order parameter dynamics upon quenches of the interaction
strength J in a system with V = 41× 41 unit cells. The left column shows the strong
bond ρ0 of the Peierls phase, while the middle column contains the results for the three
weak bonds. The right column shows the Flux order parameter phase angle eiΦ.

quench combinations show undamped coherent oscillations of the order parameters.
If the Flux order parameter is zero initially, it remains zero throughout. There are,
however, qualitative differences in the oscillation patterns that develop after the quench.
One finds that a quench within the Peierls phase leads to a relatively simple beat-like
pattern, while the quenches across the phase boundaries are more complicated. Despite
the simplicity of the mean-field approach, the non-linearity of the equations of motion
can give rise to a complex dynamical response, even without a relaxation mechanism. It
is in fact also difficult to obtain analytical insights: If one is interested in the dynamics
of the bond variable ρ0, one may start from ρ0 = 1

Vu

∑
k ρkA,kB and apply the hybrid

momentum-position representation of the equations of motion:

i∂tρ0 =
1

Vu

∑

k

t∗
k⃗

(
ρkA,kA − ρkB,kB

)
(5.33)
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The A/B-diagonal variables again couple to the non-diagonal ones but the time de-
pendence of tk⃗ (via the bonds ρi) prohibits a closure of the equation:

−∂2t ρ0 =
1

Vu

∑

k

((
i∂tt

∗
k

)(
ρkA,kA − ρkB,kB

)
+ 2t∗

k⃗

(
tk⃗ρkA,kB − t∗k⃗ρkB,kA

))
(5.34)

To make progress, a linearization of the equations of motion or other tools like a
stationary phase approximation analysis [278] are required. Nevertheless, to obtain a
more detailed picture of the mean-field response to quenches, we take a look at the
frequency spectrum of the oscillations numerically. In order to do so, we calculate
the (discrete) Fourier transform of the bond strengths ρ̃i(ω) = F

(
|ρi(t)|

)
and plot the

resulting power spectrum |ρ̃i(ω)|2. The results for quenches within the Peierls phase
are shown in Fig. 5.12. We varied the final state interaction strengths Jf to obtain
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Figure 5.12: Power spectrum of the mean-field oscillations of the bond strengths after
quenches within the Peierls phase. The x-axis is rescaled with the respective final
state interaction strengths Jf . Upper panel: Quenches from Ji = 15 to values Jf =
20, . . . , 50. Lower panel: Quenches to Jf = 30 starting from two different initial values
Ji. All data is obtained for a system with 41× 41 unit cells.

some qualitative insights. The oscillation spectrum of the strong bond is dominated
by one frequency, which scales linearly with Jf . The same is true for the main peak
of the weak bonds, while the second peak approaches the scaling for large Jf . This
picture is consistent with the Peierls phase being a gapped phase, whose gap energy
scale is mainly set by the dynamical Jf . The second peak in the power spectrum
of the weak bond is likely due to corrections from the much smaller energy scale th,
which becomes more and more irrelevant if Jf ≫ th. In the lower panel we can see
that the frequencies of the oscillations do not depend on the initial state, while their
amplitudes do. In contrast, for quenches from the Peierls to the Flux phase, one finds,
next to one main peak, more frequencies that contribute. The most extreme case is
presented by the quench in the opposite direction, starting from the Flux phase. In
this case a full continuum of frequencies is present, although one has to keep in mind
that the real space oscillations are quite weak and therefore the power spectrum has
very low amplitudes as well. These results involving the Flux phase agree with its
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Figure 5.13: Power spectrum of the mean-field oscillations of the bond strengths after
quenches across the first order phase transition between Peierls and Flux phase. Upper
row: quench Peierls to Flux, lower row: quench Flux to Peierls. All data is obtained
for a system with 41× 41 unit cells.

gapless spectrum: the dominant energy scale is less obvious and many frequencies can
contribute.

5.3.2 Finite-N dynamics

While the oscillation spectrum of the mean-field quenches already contains some in-
formation about the properties of the post-quench system, the mean-field oscillations
can never reach a stationary state and a true transition is impossible. We now in-
clude the effect of dephasing corrections and turn to the results for quenches in the
Hubbard-Heisenberg model with N < ∞. We always use the N -quench initial state
preparation strategy outlined in the previous section. The parameter quench is only
executed after a waiting time of 250t−1h when the order parameters have become sta-
tionary. In Fig. 5.14 we show results for quenches within the Peierls phase and from
the Peierls phase into the Flux phase for a model with N = 300. The deviations from
the mean-field case are dramatic: In the Peierls to Peierls case, the bond oscillations
are damped out, as can be seen from the inset. In addition, the bond order parameter
values decay into new stationary states, which are also clearly Peierls-like. In the case
of a quench across the phase boundary starting from the Peierls phase, the order pa-
rameter oscillations are damped as well and all the bond strengths become equal. In
addition, we find that the current-current correlator indicates the formation of Flux
order already very shortly after the quench. The results are encouraging and give a
consistent picture: The semiclassical corrections due to fTWA allow the system to de-
cay into a different minimum of the free energy. In analogy to the interaction quench
in the Hubbard model, we can interpret these stationary states as prethermal order.

In Fig. 5.15 we compare the order parameter decay for varying values of N . The
first observation is that the numerical data perfectly obeys an exponential decay law.
This is true for both the strong and the weak bonds. Secondly, the temporal decay
constant clearly follows a linear scaling τ ∼ N , i.e. the order parameter decays like
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e−t/N . This is an interesting observation since it indicates a universal behavior of the
order parameters in the large-N regime. Put differently: To obtain qualitative insights
beyond mean-field it is sufficient to select a suitable value of N , which is “large enough”.
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5.4 Photoinduced Dynamics (cf. [2])

Now we turn to the dynamics induced by a time-dependent electromagnetic field E(t)
using the Peierls substitution technique [118], which describes a classical electromag-
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netic field (i.e. no quantized photons). Within this approach the hopping matrix
element acquires a time-dependent complex phase theiAi(t), i ∈ {x, y}, where Ai(t) is
the vector potential. It is related to the electric field Ei(t) = −∂tAi(t) but for simplic-
ity we concentrate the discussion on the vector potential itself. We consider linearly
polarized pulsed driving amplitudes of the form

Ai(t) = Amax
i e−

1
2σ2 (t−t0)2 sin

(
ω(t− t0)

)
. (5.35)

We will always work at a fixed pulse width σ = 4/th. In the two-dimensional model
there is an additional freedom of choice for the polarization direction. For initial Peierls
states there are two special directions: along or orthogonal to the strong bond. We
will mostly orient the vector potential along the direction of the strong bond (Ax =
0, Ay ̸= 0) and for comparison orthogonal to it (Ax ̸= 0, Ay = 0). The equations of
motion with Peierls substitution incorporated read

∂tρij =
∑

a(i)

(
ite−iφi,a(i)(t) + (−iJ)ρi,a(i)

)
ρa(i),j

−
∑

a(j)

(
ite−iφa(j),j(t) + (−iJ)ρa(j),j

)
ρi,a(j)

+ 2U(ρjj − ρii)ρij,

(5.36)

where φi,j(t) =
∫ r⃗j
r⃗i
A⃗(r⃗, t) dr⃗ = A⃗(t) ·

(
r⃗j − r⃗i

)

5.4.1 Mean-field dynamics N →∞ (cf. [2])

We again start with time-dependent mean-field theory. It corresponds to setting the
variance of the Gaussian Wigner function to zero and to consider only a single trajec-
tory. For now we set U = 0. Fig. 5.16 shows exemplary results for the order parameter
dynamics with two different values of the driving amplitude Ay. In both cases there
are undamped coherent oscillations of the bonds and of OFlux subsequent to the pulse.
It illustrates that within mean-field theory for the Hubbard-Heisenberg model one does
not reach a stationary state on the timescales considered here due to the absence of
dephasing and collisions (however, this statement is not generally true for all mean-field
theories [277, 278, 279]).

Nevertheless, the system can absorb energy and it is possible to induce Flux order
parameter oscillations around a non-vanishing average value. However, the averaged
absolute values of the bonds need not match with the saddle point symmetries of the
equilibrium phases (e.g. all equal in the Flux phase) as can be seen in the right column.

Fig. 5.17 allows for a more systematic look at the energy absorption. In (a) we
vary the driving amplitude for some fixed values of the frequency ω. All curves in
the figure display similar behavior: There is almost no energy absorption up to a
frequency-dependent threshold amplitude.

This is a very interesting finding since it allows to draw a connection to results
in the context of dielectric breakdown in Mott insulators [280, 281]. Dielectric break-
down refers to the destruction of an insulating state upon the application of an electric
field [280, 282] or a voltage bias between interacting leads [283]. An important contri-
bution is due to Takashi Oka [284], who calculated the doublon production rate Γ in a
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Figure 5.16: Mean-field dynamics of order parameters in the photoexcited Hubbard-
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amplitude of Ay = 0.48 yields oscillations of OFlux around average value zero. Right:
Pulse amplitude of Ay = 0.52 excites oscillations around non-vanishing average. This
figure is also published in [2]. Copyright (2022) by the American Physical Society.

Hubbard model, which is driven by a sinusoidal electric field E(t) = E0 sin(ωt), using a
generalization of the Landau-Zener model for diabatic single-particle transitions. This
so-called Landau-Dykhne method predicts a threshold behavior for the doublon produc-
tion rate [284] Γ ∼ e−πEth/E0 in the low frequency regime, where the dc threshold field
Eth = ∆Mott/(2ξ) is directly related to the Mott gap ∆Mott. ξ is a doublon-holon corre-
lation length. A consequence of this last expression is that one can view the threshold
field as a constant of the model. In this thesis we work in units of the vector potential
amplitude, so we can approximately expect that ωAmax,th

0 = const. In Fig. 5.18 we
plot the absorbed energy as a function of ωAmax

0 for small driving frequencies. One
can indeed observe that the threshold regimes of the curves collapse very well, which
is in agreement with the prediction of Landau-Dykhne theory. The threshold regime
is characterized by quantum tunneling processes from the lower to the upper Mott
band [284]. It is an interesting observation that in our model with a density wave
insulator one can observe the scaling as well within Hartree mean-field theory.

Returning to the discussion of Fig. 5.17, we find that above the tunneling regime
the total energy develops oscillatory patterns as a function of the driving amplitude.
We found that – in contrast to the threshold regime – the precise shape of these
patterns can depend on the system size. They are clearly remnants of the mean-field
theory. Nevertheless, we checked that the averaged trends in the data are consistent for
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Figure 5.17: Energy absorption (mean-field dynamics) after a Gaussian pulse with
Ax = 0, Ay ̸= 0 in a Hubbard-Heisenberg square lattice with Vu = 41 × 41 unit cells,
J/th = 15 and U = 0. (a) post-pulse total energy (per unit cell) plotted against the
pulse amplitude. Energy absorption is efficient only beyond a frequency-dependent
threshold amplitude. (b) total energy plotted against the driving frequency for fixed
values of the amplitude. At small amplitudes two absorption peaks are visible. This
figure is also published in [2]. Copyright (2022) by the American Physical Society.

different system sizes. A way to make sense of this is to think about the Peierls phase
as a minimum in a free energy landscape [34] that is separated from other regions,
e.g. the Flux phase minimum, by barriers. If the system is only weakly excited, order
parameter oscillations around the immediate vicinity of the Peierls phase minimum
are induced. At and beyond the threshold amplitude other regions of the landscape
become accessible. The free energy (5.20) contains a discrete crystal momentum sum
over the ϵk, which leads to an oscillatory fine structure of the mean-field free energy as
a function of the bond operators and thereby likely affects the energy absorption if the
system leaves the initial minimum. In the finite-N case, however, this fine structure
will average out over many trajectories and so we do expect the system size to play
a less significant role there. In Fig. 5.17(b) the roles of frequency and amplitude
are exchanged. We observe two main peaks of the absorption at small amplitudes.
This is reminiscent of results reported for a driven non-interacting two-band model
[285]. The authors plot the occupation of the upper band against ω and observe
a multi-peak structure. In their paper the main peak position corresponded to the
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0 ,

which is approximately equal to the field amplitude. The data is obtained in the mean-
field model with 41 × 41 unit cells. The observed scaling is in qualitative agreement
with the prediction from Landau-Dykhne theory.

band gap and the existence of amplitude-dominated and frequency-dominated driving
regimes are proposed. It is not clear if similar arguments apply here since our band
structure is not static and multiple phases with different single-particle spectra exist.
The gap in the single-particle energy spectrum of the Peierls phase shown in Fig. 5.2
is larger than the peak positions observed in Fig. 5.17(b). However, the mean-field
band structure approximates the electron addition-removal spectrum and does not
necessarily describe single-particle excitations, which can well occur at a lower energy.
For driving amplitudes Amax

y ⪆ 1 the double peak structure disappears and some,
sporadically large, oscillations occur. These are again most likely due to the discrete
k-space structure and will average out if multiple trajectories are used.

5.4.2 Finite-N model: mean-field + dephasing (cf. [2])

In this section we refine the previous discussion by including dephasing dynamics with
fTWA. This allows us to describe the formation of prethermal order subsequent to
the pulse. In the following we will always work on a lattice with periodic boundary
conditions and Vu = 11 × 11 unit cells, i.e. V = 2Vu = 242 lattice sites. We keep
J/th = 15, U = 0 and prepare the system in the initial state (5.26) as outlined in
the Method section assuming that a stationary Peierls state is reached after a time of
about 200t−1h (cf. Fig. 5.9). We center the pulse at t0 = 250t−1h . When we calculate
the Flux order parameter OFlux directly, we always turn on a weak symmetry breaking
ϵFlux = 10−3. Peierls order parameters and current-current correlators are calculated
without symmetry breaking field.

In Fig. 5.19 we show the time evolution of order parameters in an exemplary way
for ω = 3th and three values of the driving amplitude Ay along the direction of the
strong bond. Time zero in the panels is set to t0 − 15t−1h . In contrast to the N → ∞
case, coherent order parameter oscillations subsequent to the pulse are damped out
and a stationary state is reached. Note that |ρ1| = |ρ3| at all times, i.e. the spatial
symmetry of the initial state and of the applied vector potential along the y-direction
is preserved throughout the dynamics. The three driving amplitudes generate final
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Figure 5.19: Dynamics of the order parameters during and subsequent to a photoex-
citation in the Hubbard-Heisenberg model with N = 300 and for Vu = 11 × 11 unit
cells. The frequency of the sinusoidal drive is ω/th = 3. The three columns represent
three different maximum amplitudes of the vector potential Ay(t) (i.e. fluences). The
dynamics leads to transitions within the Peierls phase (left), from the Peierls phase to
the Flux phase (middle) and to the uniform phase (right). This figure is also published
in [2]. Copyright (2022) by the American Physical Society.

states corresponding to the three equilibrium phases at half filling: After weak driving
the system remains in the Peierls phase with a smaller order parameter than in the
initial state. For intermediate amplitudes the Flux order parameter becomes non-
vanishing and the system is Flux-ordered, while strong driving pushes the system into
the Uniform phase. The symmetries of the stationary state observables agree with the
saddle point expectations. We further observe that the post-pulse order parameter
dynamics can continue even if the total energy is already at its stationary value.

5.4.3 Convergence of the simulations

A conclusion of Chapter 4 on the interaction quench in the Hubbard model was that
a large number of samples is needed to converge the fTWA simulations to the pertur-
bative prethermalization result. This traces back to the fact that in this case averaged
quantities of interest, in particular the Fermi surface discontinuity ∆nkF (t), are of equal
magnitude to the fluctuations themselves: both scale with 1

N
. The situation is different

for the observables of interest considered here since the leading order mean-field con-
tribution to the order parameters is independent of N . The Flux order parameter and
the current-current correlator depend on complex phases, which can lead to a more
intricate and less obvious dependence on N . However, we observed that if the bond
order parameters are sufficiently converged, so are the quantifiers of Flux order. The
main role of the quantum fluctuations in the Hubbard-Heisenberg model is to give rise
to a dephasing-induced decay of order parameters into stationary states.

To judge the convergence of the simulations, we used, firstly, the generic Monte
Carlo sampling error of expectation values discussed in Chapter 2, which is based on
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Figure 5.20: Exemplary error estimates of the TWA sampling procedure for a photoex-
citation with ω/th = 12 and two values of the vector potential Ay at time t = 500t−1h

(upper row: system remains in Peierls phase, lower row: transition to Flux phase).
First two columns: Sampling error of the bond strengths based on the empirical vari-
ance of the set of Nrep trajectories. Right column: Relative error of the spatial average
over all translationally invariant unit cell bonds.

the empirical variance σ2
emp of the finite set of samples and is defined as 1.96σemp/

√
Nrep.

Secondly, we made use of the fact that we mostly consider observables O := 1
Vu

∑
iOi,

which are averaged over all unit cells. Since in momentum space all fluctuating entries
of the one-particle reduced density matrix are sampled from independent probability
distributions at initial time, we may view its real space entries, e.g. the nearest neighbor
bonds, as well as independent random numbers. Hence, the error of the mean over all
unit cells is a second useful indicator of convergence. In Fig. 5.20 we show these two
error estimates for the bond order parameters in two exemplary cases with different
vector potential amplitudes. The first two columns show the relative (i.e. divided by
the mean) Monte Carlo sampling error of the bond strengths in one unit cell. This
data is not averaged over all unit cells. Instead, we plot the largest and the smallest
error that we found in any of the unit cells. This is meant as a very rough estimate of
error, which we find to be in the range of at most 2% if at least 1000 trajectories are
averaged over. However, taking the average over all unit cells additionally suppresses
the expected error by a factor of 1/

√
Vu. In the rightmost column of the figure, we

plot the relative error of the mean ∼ 1.96σemp,allρi/
√
Vu of the set of equivalent bond

strengths in all unit cells as a function of the number Nrep of trajectories. Since
we expect the system to be translationally invariant if averaged over infinitely many
trajectories, this quantity is another measure of error. For a few hundred samples
we find it to be below 0.5%, which is already good accuracy. This estimate is well
consistent with the relative sampling error divided by 1/

√
Vu. In practice, we use at

least 1000 trajectories in most cases to obtain the data discussed below.
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5.4.4 Comparison of different values of N
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Figure 5.21: Order parameter dynamics after a photoexcitation with ω/th = 12 and
two values of the vector potential amplitude Amax

y .

In Fig. 5.21 we compare the order parameter dynamics during and subsequent to
a y-polarized photoexcitation with ω/th = 12 (same parameter set as in the preceding
convergence section) for varying values of N . Overall, the picture is similar to the
quenched case: lower values of N imply smaller values of the final state order param-
eters. The ordering dynamics is slightly more complicated in the case of a transition
from Peierls to Flux phase since the values of the bond strengths overshoot their sta-
tionary final values. Nevertheless, their dynamics is faster if N is smaller, which is
consistent with the results from the quench dynamics.

5.4.5 Prethermal dependence on drive parameters (cf. [2])

In this section we study the influence of drive parameters like frequency, amplitude
and polarization direction on the post-pulse order parameters. Before we discuss the
results, a comment on the dynamics after the photoexcitation is in order. For most of
the parameters, the system evolves as shown in Fig. 5.19: a stationary state is reached
quickly after the end of the pulse. However, for parameters close to the transition from
Peierls to Flux order, we observe that the dynamics can become very slow. This is in
agreement with the picture that a new minimum of the free energy becomes accessible
but the tunneling between the minima is inefficient if the free energy difference is small.
Fig. 5.22 shows an extreme case of this phenomenon: The current-current correlator
of bond ρ0 slowly increases while the gap between the bonds decreases. For infinite
waiting time we expect the system to relax to a purely Flux-ordered state. This would
be the anticipated behavior for a competing orders scenario. For practical reasons,
we only carry out simulations up to a total time of 500t−1h . Therefore, we will always
determine the order parameter values at this latest simulation time instant for the
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Figure 5.22: Very slow dynamics of order parameters after a photoexcitation with
ω/th = 8 and Ay = 0.35. The pulse is centered at time t = 250th.
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Figure 5.23: Late-time stationary values of the order parameters after photoexcitation
with varying frequencies ω plotted against the amplitude of the vector potential Amax

y .
The top row shows current-current correlators of ρ0 for two unit cells with the largest
spatial separation in the system (averaged over all unit cell pairs related by translational
symmetry). The three columns correspond roughly to three different frequency regimes
(see text). The data in this figure is obtained for a 11×11 unit cells Hubbard-Heisenberg
model with J = 15th and U = 0. This figure is also published in [2]. Copyright (2022)
by the American Physical Society.

following discussion. However, we need to keep in mind that for longer waiting times
the Peierls to Flux transition will become sharper.

Fig. 5.23 presents the numerical results as a function of Ay for varying drive fre-
quencies ω. In the uppermost row we plot the current-current correlation function for
one of the bonds in a unit cell (the strong bond of the Peierls phase), which displays a
sharp transition from Peierls to Flux and a broad transition range from Flux to Uni-
form order. The Flux order parameter OFlux agrees well with the correlator data except
for deviations at low frequencies ω/th ≤ 4 and energies −4 ≤ E/th ≤ −3.5. These
deviations depend on the choice of the flux symmetry breaking strength and indicate
that a slightly larger ϵmn might be needed in this regime. Current-current correlators
are thus the more robust quantifiers of Flux order.
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Figure 5.24: Same data as in Fig. 5.23 but all final state order parameters are plotted
against the total energy. In the first and third column the order parameters display a
similar behavior for very low and very high frequencies. In the middle column there is
a clear influence of the driving frequency on the order parameter characteristics. This
figure is also published in [2]. Copyright (2022) by the American Physical Society.

One can roughly identify three frequency regimes, which correspond to the three
columns. At low values of the frequency ω ⪅ 5th, there is a threshold amplitude –
analogous to the mean-field case but shifted to lower amplitudes – at the transition
from Peierls to Flux order. The transition moves to lower amplitudes if the frequency
increases. For ω = 5th the Peierls order parameter starts to decrease already at very low
field amplitudes, which indicates that the drive is likely resonant with an elementary
excitation of the system. At higher frequencies, in the middle and right columns of
the Figure, there is no threshold amplitude any more and the electrons absorb energy
also for small values of Ay. In these regimes, we find that the energy absorption
decreases with increasing driving frequency. This agrees with the physical expectation
that energy absorption should be suppressed in the high-frequency regime due to the
absence of available states for drive-induced transitions. However, one cannot read off
the elementary excitations of the system directly from the mean-field band structure
in Fig. 5.2: Still, the Peierls phase has a large gap, while the Flux phase is gapless –
although thermodynamically they are almost degenerate. One way to obtain a more
detailed understanding of elementary excitations of the system would be to consider
quantities like non-equilibrium spectral functions [5], which is beyond the scope of this
work.

Fig. 5.25 is the finite-N analogue to Fig. 5.17. In contrast to the mean-field model,
it is possible to extract final state order parameter information. Looking at the total
energy, we find that, consistent with intuition, it also increases when the amplitude
is raised. At low frequencies one finds a sharp absorption edge that corresponds to a
transition from the Peierls to the Flux phase. In the frequency regime 4 ≤ ω/th ≤ 10
energy is already absorbed at low field amplitudes, which gives rise to a reduction of
the Peierls order. The generic behavior at large driving frequencies is a suppression of
the energy absorption.

Naturally, a question raised by the stationary states of Fig. 5.19 is whether the
post-pulse order could as well be a result of heating. In particular, the mean-field
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y of the y-polarized vector potential. All data is
obtained in a Hubbard-Heisenberg system with 11×11 unit cells and at N = 300. The
Flux phase order parameter is obtained from the current-current correlator.

finite-temperature equilibrium phases in Fig. 5.4 follow the same sequence Peierls to
Flux to Uniform as a function of temperature. To shed more light on this question
we plot the order parameters of Fig. 5.23 directly against the total energy of the
system after the pulse, shown in Fig. 5.24 and again grouped by frequency. At very
low and high energies, the order parameters follow universal lines, independent of ω.
The transition from Peierls to Flux order, in contrast, depends explicitly on the driving
frequency. The fact that not all curves lie on top of each other indicates the non-thermal
nature of the stationary states. Let us look at the regime of low driving frequencies.
As the total energy increases, the Peierls order parameter shrinks linearly down to a
point where it decays and a non-zero Flux order parameter is found. With increasing
driving frequency this transition point shifts to lower energies. In the intermediate
frequency regime the transition moves back to higher energies. In the high-frequency
regime, finally, we find that for 12th ⪅ ω the order parameter curves for all frequencies
collapse. The initial Peierls order is stable over a maximal energy range.

So far we discussed pulses with Ax = 0, Ay ̸= 0, i.e. polarized linearly along the
direction of the strong bond in each unit cell of the Peierls phase. Let us compare the
results to simulations with a vector potential along the x-direction. Fig. 5.26 shows
results for the late-time stationary state value of the order parameters after a pulse with
Ax ̸= 0, Ay = 0 for three different values of the driving frequency ω. For frequencies
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ω ⪅ 6th, the amount of absorbed energy as a function of Amax
x is reduced compared to

Ay-driving, in particular at high amplitudes. The transition from Peierls to Flux order
in Fig. 5.26(b) takes place in a similar way to Fig. 5.24, although the regime with the
earliest departure from Peierls order is shifted to higher frequencies.

Figure 5.26: Late-time stationary values of the order parameters after a pulse with a
vector potential that is polarized in the direction orthogonal to the strong bond of the
Peierls phase (Ax ̸= 0, Ay = 0) and for three different driving frequencies. The lattice
has Vu = 11× 11 unit cells and J/th = 15, U = 0. This figure is also published in [2].
Copyright (2022) by the American Physical Society.

Finally, we extract the transition energies from the order parameter curves in order
to create the “prethermal phase diagram” in Fig. 5.28. At the Peierls-Flux transition
we fit a sigmoid function to OPeierls at the transition and determine the energy value
at the half-height sigmoid. An exemplary fit for ω/th = 6 is shown in Fig. 5.27.
The broadness of the total transition range depends on the driving frequency and is
approximately 0.2/(NVuth). Nevertheless, the edge is sharp for all frequencies and
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the fits are usually well converged. The energy of the Flux-Uniform transition, which
we fit from the current-current correlator, is slightly more difficult to determine since
the remaining fTWA fluctuations in the data render it more difficult to determine the
exact point, at which the correlator begins to become non-zero. Empirically, we find
that the current-current correlator near the transition point roughly follows a parabolic
energy dependence and so we fit a parabola and determine its zero point. An example
is shown on the right hand side of Fig. 5.27. From the fit parameters and by looking
at the data we can estimate an error of roughly ±0.1/(NVuth)
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Figure 5.27: Exemplary determination of the transition energy via a parabolic fit
function for the ω/th = 6 data (L = 11 and N = 300). The dashed line shows the
transition energy we assign to the curves. We estimate the uncertainty of the transition
energies due to the fit to be about ±0.1 in energy units.

We show two sets of data: the one with N = 300 discussed so far and for comparison
another set obtained with N = 250, which we discuss more in detail below. The
transition Flux to Uniform is mostly independent of the driving frequency and field
orientation except for a little uptrend at low frequencies, which needs to be reexamined
with more data points in the transition range. In contrast, the Peierls to Flux transition
is clearly dependent on the parameters of the drive. We find a window of frequencies for
which the transition occurs around a lowest energy. It is shifted to higher frequencies in
the case of Ax-polarization, which demonstrates the relevance of the spatial structure
of order for optical excitations in an extended 2D system. In this regime the transition
occurs with the least amount of absorbed energy, i.e. avoiding additional heating. At
low and high frequencies the transition energies approach similar values. It would be
interesting to see if these limits coincided with the thermal transition of the system
at finite N , which requires a more detailed knowledge of the thermal finite-N phase
diagram. The N = 250 data contains the same qualitative signatures for the transition
values but shifted to lower energies. A comparison with the mean-field lines suggests
a linear downshift of the transition energy and a more complex N -dependence of the
Peierls-Flux transition.
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Figure 5.28: Transition energies between the three equilibrium phases in the Hubbard-
Heisenberg model for J/th = 15 and Vu = 11× 11 unit cells after a pulse with driving
frequency ω. Red symbols correspond to pulses with Ay = 0, Ax ̸= 0 (along the direc-
tion of the strong Peierls bond), blue symbols to the orthogonal direction. The dots
connected with solid lines use N = 300, dashed lines N = 250. Black lines: mean-field
model N → ∞. Black dotted line: thermal transition from Flux to Uniform phase,
upper black dashdotted line: energy E above which the Peierls saddle point disappears,
lower black dashdotted line: energy of the Peierls state at which the first order tran-
sition to the Flux phase occurs. This figure is also published in [2]. Copyright (2022)
by the American Physical Society.

5.4.6 The role of U (cf. [2])

Lastly, we would like to comment on the dynamical role of the Hubbard interaction
U , which we omitted so far. A non-vanishing value of U will lead to a suppression
of the on-site charge fluctuations during and subsequent to the pulse. At half filling,
U/th → ∞ is the Heisenberg limit of the model. To illustrate the effect of the U -
term we show the post-pulse total energy in the N →∞ model for a driving frequency
ω/th = 4 in Fig. 5.29. The threshold amplitude for energy absorption is shifted to higher
amplitudes upon increase of U . However, at high driving amplitudes the system seems
to heat up more than in the U = 0 case. Without going into a detailed discussion of
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these effects, we can at least make the fundamental observation that parameters which
are irrelevant in equilibrium (like U in this case) may be relevant out-of-equilibrium.
In particular, one could design dynamical protocols to determine such parameters. In
this work we will not discuss the role of U at finite values of N because then the value
of U will also be relevant for the equilibrium phase diagram, which goes beyond the
scope of this study.
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Figure 5.29: Total energy after a Gaussian pulse with frequency ω = 4th as a function
of the driving amplitude Ay for some values of the Hubbard interaction strength U
(J = 15th is fixed). The data is obtained for the mean-field (N → ∞) model on a
lattice of 21 × 21 unit cells. This figure is also published in [2]. Copyright (2022) by
the American Physical Society.

5.4.7 Comparison of N = 300 and N = 250 (cf. [2])

So far we have concentrated on a system with Vu = 11×11 unit cells and a degeneracy
N = 300. We would like to compare the results – at least qualitatively – to simulations
obtained with different system parameters. In Fig. 5.30 we compare the final state
order parameter data for N = 250 and N = 300, still in a system with 11 × 11 unit
cells. In Fig. 5.30(a) we plot the total amount of absorbed energy, divided by N . Both
energy data sets coincide for most of the considered driving amplitudes. This is because
in both cases the contribution of the mean-field dynamics to the absorbed energy is
dominating. In contrast, the corresponding stationary order parameter values differ
more strongly. Still, their qualitative behavior as a function of the driving amplitude
agrees. Fig. 5.30(b) presents the order parameters as a function of the total amount
of absorbed energy. At N = 250 both the Peierls-Peierls as well as the Peierls-Flux
transition occur at lower energies than for N = 300. This agrees with the expectation
of an increased significance of quantum fluctuations at lower N , which destabilize non-
trivial spatial order. If the fluctuations of a fixed number of off-diagonal k-modes
become too strong, the fundamental mean-field order will be more and more washed
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out. Nevertheless, the qualitative behavior of the order parameters is consistent, which
can also be seen from the similar shape of the transition lines in Fig. 5.28.

Figure 5.30: Order parameter dynamics for a Gaussian pulse (Ax = 0, Ay ̸= 0) in the
N = 250 Hubbard-Heisenberg model on a lattice with Vu = 11 × 11 unit cells. The
symbols represent N = 250 while the dashed line is the N = 300 case. This figure is
also published in [2]. Copyright (2022) by the American Physical Society.
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5.4.8 Comparison of L = 11 and L = 13

For a second comparison, we keep the degeneracy N fixed and compare two values
of the system size with each other. Again, the order parameters display qualitatively
similar profiles as functions of amplitude and absorbed energy. In Fig. 5.31 we directly
plot the extracted non-equilibrium transition energies. The transition lines move down
to lower total energies for the larger system size. The profile of the transition is more
shallow as a function of the driving frequency but, nevertheless, the main features
are still reproduced: A minimal energy of the first-order Peierls-Flux transition at
intermediate driving frequencies and a mostly flat profile of the second-order Flux-
Uniform transition. Finite-size corrections may lead to small shifts in the characteristic
frequencies of the system but from the current frequency resolution of the data this
is impossible to tell. In summary, like in the previous comparison, we conclude that
both data sets are consistent with each other and an increased number of fluctuating
variables at fixed strength of the fluctuations destabilizes the real space mean-field
order more.
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Figure 5.31: Comparison of the transition energies between the prethermal phases in
the Hubbard-Heisenberg model for system sizes 11× 11 and 13× 13 unit cells.

5.5 Spatially Inhomogeneous Photoexcitations

So far in this Chapter we only considered excitations, which are spatially homoge-
neous, like quenches or uniform photoexcitations. This is also in accordance with the
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often applied simple Ginzburg-Landau picture based on a homogeneous order param-
eter field O(t). Spatial fluctuations can be incorporated in this framework by means

of Gaussian terms
(
∇O(r⃗)

)2
in the Landau functional [54, 56]. However, spatial disor-

dering beyond this Gaussian approximation has recently been proposed as a possible
driving force behind ultrafast phase transitions [286, 287] and challenges the conven-
tional Ginzburg-Landau picture. Studies of such inhomogeneous ordering scenarios
on a microscopic level have only recently been started [288, 289] for charge-density
wave systems. We do not aim to directly contribute to the development of a theory of
disorder-mediated transitions at the present level of our theory. Instead, we consider
a type of excitation, which is manifestly inhomogeneous in space, namely localized
photoexcitations. Such types of excitations on correlated materials do not seem to be
studied much in the literature. This is likely because of the difficulty to realize such
a protocol experimentally since ultrashort as well as ultra-focused beams are required.
In addition, one needs a detection technique, which is able to also spatially resolve the
electronic dynamics to some extent. Nevertheless, some studies with tightly focused
laser beams have been carried out to locally excite surface plasmon polaritons in metal
systems [290]. On the theory side, local excitations pose a challenge to time resolved
simulations because of the necessity to treat large system sizes without being able to
make use of translational invariance for a reduction of the computational cost. In one
spatial dimension, MPS-based time evolution approaches [58] might be sufficient for
not too large system sizes (L ⪅ 100). On the other hand, non-equilibrium DMFT [57]
in its pure form relies on a local approximation to the self-energy such that – without
suitable extensions of the technique – spatial correlations are not taken into account.
A characteristic feature of the fTWA method is that it keeps every entry of the one-
particle reduced density matrix as a dynamical variable explicitly. Spatial symmetries
of the system are only restored after averaging over the trajectories and cannot be im-
plemented from the start. Firstly, this prevents one from using, e.g., the translational
invariance of the system to reduce the computational complexity. But, secondly, one
may also view it as a feature of the method, which is particularly useful for the sim-
ulation of spatially inhomogeneous systems. Two-dimensional systems with random
disorder have shown to be a promising field of application for fTWA [157].

Local photoexcitation protocols host the potential for new physical phenomena to
be explored, for example the dynamical generation of interfaces [109, 55] between re-
gions with different types of competing order. They also allow to study non-equilibrium
transport phenomena, e.g. the spatial distribution of excitation energy, which is ini-
tially localized. Such studies have been performed numerically in one-dimensional
systems for inhomogeneous initial states [291, 292]. Another interesting feature of
spatially non-homogeneous vector potentials is their ability to induce time-dependent
magnetic fields B⃗(r⃗, t) = ∇⃗ × A⃗(r⃗, t). To study their additional effect on the spin
sector, one could add a Zeeman term to the Hamiltonian, which we neglect in this the-
sis. We consider photoexcitations in the framework of the Peierls substitution with an
additional spatial envelope of the vector potential A⃗(r⃗, t), which is of Gaussian shape:

A⃗0(r⃗) = Amax
0 e

− |r⃗−r⃗0|
2

2σ2
spat . (5.37)

In the formula for the Peierls substitution phase factor (2.23), we approximate the
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integral for simplicity (which is justified for slowly varying vector potentials):

∫ r⃗j

r⃗i

dr⃗ · A⃗(r⃗, t) ≈
(
r⃗j − r⃗i

)
· 1

2

(
A⃗(r⃗i, t) + A⃗(r⃗j, t)

)
. (5.38)

We begin with results in the limit N →∞. The mean-field model allows us to treat
comparably large system sizes, we have chosen Vu = 41 × 41 unit cells in the initial
state (3362 lattice sites) and periodic boundary conditions. The vector potential has a
spatial width of σspat = 4. At initial time t = 0, the system is prepared in the Peierls
phase with J/th = 15. Results for a pulse with Ax = 0, Ay = 2 are shown in Fig. 5.32.
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Figure 5.32: Mean-field dynamics of local order parameters in a two-dimensional
Hubbard-Heisenberg model of size Vu = 41 × 41 unit cells. The spatial excitation
profile is Gaussian with a width σspat = 4. The frequency of the pulse is ω/th = 4 and
the field is polarized in the y-direction with amplitude Ay = 2.

The columns in the figure represent different time instances, which are represented
pictorially by the little blue dots at the bottom. The first dot belongs to the first
column etc. The rows show the local values of order parameters, for which we do not
distinguish unit cells any more. Every square in the top row of the figure corresponds
to the strength of a nearest neighbor bond. Initially, one out of four bonds is strong.
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In the middle row each data dot corresponds to one plaquette in the model and shows
the value of the local Flux order parameter obtained from the respective plaquette
operator. The third row shows the local total energy of unit cells, from which we
subtract the average total energy in the system. This allows to better visualize the
redistribution of the excitation energy in the system. During the driving with the
pulse and immediately after it (first two colums), the excitation remains localized. In
the excited area, one finds a melting of the initial staggered bond condfiguration of the
Peierls phase. Bonds become more equal in strength and one also finds a non-vanishing
Flux order parameter.
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Figure 5.33: Similar data to Fig. 5.32 but the field is polarized in the x-direction with
Ax = 2. The local total energy is plotted relative to the average energy in the system.

In addition, the reflection symmetry along the main diagonal of the system remains
conserved throughout the dynamics except for small deviations at late times. These
are likely due to the finite floating point accuracy that pushes the system to choose one
of two degenerate spatial arrangements. It is clear that such simulations in large non-
linear chaotic systems are challenging and susceptible to little variations of, e.g., the
initial conditions. We typically use error tolerances for the ODE solver of εabs = 10−10
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and εrel = 10−8. Variations of these tolerances or a non-zero value of the symmetry
breaking εFlux = 10−3 can lead to different dynamics long after the pulse, however,
the qualitative behavior agrees with the data shown. An interesting observation is
the formation of a domain boundary shortly after the excitation (third column). The
excitation energy is first distributed along the field direction (i.e. along the main
diagonal in the picture), where it triggers the Peierls-to-Flux transition. While in the
spatially homogeneous situations all unit cells obtain the same amount of excitation
energy and cannot lower or redistribute their local energy, the situation is different in
this inhomogeneous situation: Already within mean-field theory, transferring energy
to a neighboring degree of freedom is possible and provides a mechanism to locally
adapt to newly accessible free energy minima. Another conclusion one can draw from
the data is the spatial relaxation of the energy: At late times, the energy of most local
unit cells agrees with the average energy in the system except for a few defect-like
structures.

In Fig. 5.33 we show results for an excitation with polarization in the x-direction
(orthogonal to the main diagonal). Similar to the results obtained for homogeneous
photoexcitations, we find a much weaker energy absorption for driving with this polar-
ization. The explanation is likely that in the initial state the bonds in the y-direction
are much stronger than the bonds in the x-direction, which can give rise to stronger
currents and hence more energy absorption. Like in the y-polarized case the dynamics
mainly occurs along the y-direction but we find much larger regions with unaffected
Peierls order.

Finally, we discuss results for our default finite-N system with Vu = 11×11 unit cells
and for N = 300. In this smaller system we rescale the width of the spatial Gaussian
envelope to σspat = 1. We note that the spatial profile of the vector potential is now of
the order of the lattice constant, which is, strictly speaking, not allowed in the Peierls
substitution (cf. Chapter 2). Nevertheless, for now we ignore this circumstance because
we are mainly interested in a comparison of the qualitative dynamical features to the
mean-field case. As can be seen in the figure, we start with the initial state preparation
warm-up dynamics before the pulse hits the model around time t0 = 250t−1h . To avoid
problems connected to the averaging over the equivalent ergodic components of the
Flux phase, we carry out this simulation with an explicit symmetry breaking parameter
ϵFlux = 10−3. Immediately after the end of the pulse, we see a suppression of the Peierls
order in a central stripe, which is in a qualitative agreement with the mean-field results.
The suppression of the bond order is accompanied by the emergence of non-vanishing
values of the Flux order parameter (here, with the explicit symmetry breaking switched
on, we consider the Flux order parameter defined via the plaquette operator). Late
in the dynamics we find that the energy is distributed uniformly over the system
(expect for remaining quantum fluctuations). In addition, the order parameters have
homogenized. By analogy with the discussion for the heterogeneous photoexcitations
we expect a slow tunneling dynamics into the thermodynamically preferred phase.

5.6 Summary and Discussion (cf. [2])

In this Chapter, we studied the non-equilibrium dynamics of order parameters in the
large-N Hubbard-Heisenberg model with U = 0 under quenching and driving. We
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Figure 5.34: Local photoexcitation in the Hubbard-Heisenberg model on a lattice with
Vu = 11× 11 unit cells and for N = 300. The width of the spatial Gaussian envelope
is σspat = 1. The interaction strength is J/th = 15, the driving frequency ω/th = 4 and
we use a y-polarized field with Amax

y = 2.

started with a calculation of the mean-field solution of the model and presented for
the first time a finite-temperature phase diagram in the limit N → ∞. The model
is characterized by an inherent competition of two types of order: a bond density
wave (“spin-Peierls”) phase and the staggered flux phase (“DDW phase” or “orbital
antiferromagnet”). Within mean-field theory, one finds a first-order transition at zero
temperature around J/t ≈ 12 as well as a transition at finite temperature. This
setup is well suited to study the competition of ordered phases out-of-equilibrium
microscopically, i.e. not within a time-dependent Ginzburg-Landau approach. While
the N → ∞ dynamics should in principle still be equivalent to a Ginzburg-Landau
description, we are also able to go beyond mean-field. The SU(N)-symmetry provides
an ideal environment to apply phase space techniques like the fermionic truncated
Wigner approximation (fTWA), which rely on the existence of a small semiclassical
expansion parameter, ℏeff ∼ 1

N
in this case. However, since this is the first application

of the fTWA method in such a context, some technical issues are not yet completely
solved. This concerns in particular the preparation of stationary initial states. It
turns out to be a challenge to prepare stationary initial states with initial Peierls
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order. Since we do not have access to an analytical 1
N

solution of the model currently,
we started from an approximate initial state derived from the mean-field solution.
While one can expect in theory a dressing of the mean-field modes by particle-hole
fluctuations with respect to the mean-field “vacuum” state, in practice the spatial
structure of the state becomes washed out and one ends up, ultimately, in the Uniform
phase. It is important to keep in mind that this is a consequence of our approximate
state preparation technique. The true quantum model does indeed allow for stable
Peierls solutions at finite-N , a fact which has been demonstrated using quantum Monte
Carlo [140]. Our pragmatic solution is to stick to parameter sets that allow for a
reliable initial state preparation. Therefore, we mostly considered a lattice with Vu =
11× 11 two-site unit cells and to values of N in the range from 250 to 300. As a first
application of the machinery, we looked at the dynamics of the Hubbard-Heisenberg
model after a quench in the interaction strength J . While the mean-field solution yields
undamped coherent order parameter oscillations as a response, we find a dephasing-
induced damping of the oscillations for N <∞. This allows transitions into stationary
states of the post-quench Hamiltonian both for quenches within the Peierls phase as
well as for quenches across the phase boundary. One finds that the dephasing time τ
clearly scales ∼ N . This indicates that the exponential decay is likely a generic feature
of the large-N dynamics beyond mean-field.

In the main part of the Chapter, which is an extended version of the publication [2],
we studied the photoinduced order parameter dynamics under driving with a pulsed
sinusoidal vector potential. A guiding question is the formation of order subsequent to
the pulse, in particular how a transition between the two competing ordering tenden-
cies is influenced by the drive parameters. Again, the mean-field level dynamics leads
to undamped coherent oscillations that do not allow for a direct extraction of order
parameter information. We made use of the dephasing effects at finite N , which give
rise to stationary states whose symmetries agree with those of the equilibrium phases.
As a main result, we argued that the observed post-pulse order in the system cannot
be thermal because otherwise the system should, for a given total energy E, approach
a (unique) state with the lowest free energy. In the numerical data, in contrast, we
observe that the final stationary state also explicitly depends on drive parameters like
the driving frequency ω and the field polarization Ai, i ∈ {x, y}. We find a transition
from the Peierls to the Flux phase with the lowest amount of absorbed energy in the
intermediate frequency regime, while in the low and high frequency regimes the order
parameter curves behave similarly, In addition, they collapse for both considered polar-
izations of the driving amplitude. For small driving frequencies one can make a connec-
tion to threshold behavior observed in Mott insulators based on the Landau-Dykhne
formalism [284]. We observe a similar threshold behavior already within mean-field
theory. The intermediate frequency deserves a better analysis in the future. Currently,
we do not have direct access to spectral information about excited states in the sys-
tem, the Hartree band structure, which is valid for the ground state, can only serve
as an approximate guideline. Nevertheless, the Hartree-Fock calculation indicates –
in agreement with the QMC data – that the Peierls phase is gapped, while the Flux
phase corresponds to a gapless semimetal. The transition from the Peierls to the Flux
phase is therefore likely connected to a resonance of the pulse with an elementary ex-
citation of the Peierls phase. This would also be consistent with the observed shift of
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the transition line minimum for Ax-driving as compared to Ay-driving. Method-wise
it is not clear how to obtain two-time quantities like Green’s functions, which are nec-
essary for the calculation of spectral functions, from fTWA. One could use fTWA for
the time-diagonal quantities and reconstruct the full two-time plane using mean-field
propagators. Whether this yields a consistent scheme remains to be shown. A more
straightforward step would be the calculation of a ground state spectral function in the
N → ∞ model using time-dependent Hartree theory and to assume that the spectra
do not change much at large but finite N .

In this Chapter we have demonstrated non-trivial examples of dephasing-induced
prethermal order, which describes properties of an electron system on transient timescales
before, in the full quantum theory, thermalization sets in. Our findings indicate that in
a scenario with two competing ordered phases one can find an intermediate frequency
regime, which allows to switch the order in the system (on this transient timescale)
with a minimal amount of heating. Therefore, it might be particularly interesting for
experimentalists to look for such a regime in experiments if they want to switch to
thermodynamically unfavored order. Heating, i.e. additional excitation energy in the
system, will suppress values of order parameters and also lifetimes of prethermal states,
thereby rendering transient effects more difficult to observe. Our advantage compared
to other studies of competing order is that we can simulate the photoinduced dynamics
microscopically with more model-specific information (e.g. on excitation energy scales)
than approaches based on coarse-grained Ginzburg-Landau functionals. Our findings
motivate a search for similar frequency regimes in other models of competing ordered
phases, for instance of superconductivity and charge density wave order. Lastly in
this Chapter, we have shown examples of inhomogeneous photoexcitations that inject
energy into the system, which is initially localized in space and then distributes over
the system. One interesting observation is the formation of a domain boundary be-
tween Peierls and Flux phase subsequent to the excitation, which melts in the course
of time. This phenomenology can also be seen in the finite-N model but studies on
larger systems should be carried out in the future.

An important question for a refined analysis concerns the lifetimes of the prethermal
states. While prethermalization corresponds to a formation of quasiparticles, thermal-
ization is due to their scattering. A rough estimate can be based on the available
scattering phase space in the spirit of “Landau’s argument” for the lifetime τ of quasi-
particles, which scales like τ ∼ ε−2 for an excitation energy ε above the ground state [9].
In our case, if ∆E is the excitation energy relative to the ultimate equilibrium state
(e.g. Peierls or Flux phase), we estimate that τscat ∼ N/(∆E)2. For a small amount
of excitation energy, this timescale will be larger than the dephasing timescale. A
systematic study of the scattering dynamics is beyond the scope of our current work
since it requires additional method development to incorporate higher-order correla-
tions into the dynamics. One way to do so could be to take guiding from the BBGKY
hierarchy [163, 167, 168] and to add more dynamical variables to the equations of mo-
tion. Another possible procedure is to derive a kinetic equation akin to the quantum
Boltzmann equation (QBE), which is switched on after prethermalization. Such a QBE
would manifestly evolve the system towards a thermal fixed point and it would allow
for a more precise estimate of lifetimes of prethermal states [293].

In this Chapter, we mostly considered values of N between 250 and 300, which are
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clearly off the conventional condensed matter case of N = 2. Our choice of N is limited
in practice by our state preparation procedure, which starts from a mean-field state
and then switches to finite N . We have seen that a comparison between the results
at different N and L is possible only qualitatively. This is definitively a weakness
of the present approach. One can try to push the simulations to very high values
of N , at which also large system sizes are accessible with the “N -quench approach”.
However, this will also significantly extend the dephasing times, which renders such
simulations more and more inefficient. Contributions of order 1/N2 within fTWA need
not agree with the correct quantum dynamics, as we have already explained using the
example of the interaction quench in the Hubbard model in Chapter 4. Dynamical time
scales and quantitative values of order parameters will depend on the chosen value of
N but within the range of validity of our theory we do expect to observe the same
qualitative behavior also at smaller values of N . The formalism developed here can
directly be applied to other SU(N) models. Interesting candidates are, for instance,
models with charge-density waves in equilibrium, like a SU(N) t-V model. While
large-N models provide a very natural field of application for semiclassical methods,
the fTWA method is not restricted to it and can be used to improve mean-field studies
of more generic order parameter constellations, e.g. in the context of light-induced
superconductivity [111]. The range of validity of fTWA, however, needs to be assessed
carefully if no semiclassical expansion parameter is available. In order to overcome
the limitations of our initial state preparation scheme, an explicit calculation of 1/N
corrections to the saddle points are necessary. The Appendix to Marston’s and Affleck’s
paper provides some ideas how to do this within the field theoretical approach, however
the calculation is demanding and is left there at a proof-of-principle state. Therefore,
it might be worthwhile to look for alternative calculation techniques. One scheme
that might be able to describe the particle-hole dressing of the mean-field states is
the self-consistent random-phase approximation (RPA) [294]. However, it is not clear
to us if the approach will also lead to a destabilization of spatial order. In analogy
to SU(N) spin systems, an adaptation of flavor wave [295] theory could be worth
a try. Possibly the most promising approach might be calculation within the flow
equation approach pioneered by Wegner [219]. Wegner happens to use the exact same
flavor-averaged operators ρ̂ij like we do in a one-dimensional model. In his spirit, one
could try to derive a mean-field like Hamiltonian with renormalized interactions at
order 1

N
and find its equilibrium states self-consistently. If this approach is successful,

one has also obtained a transformed Hamiltonian that allows for analytical results on
the quench dynamics using unitary perturbation theory [218]. Besides these analytical
approaches, efficient quantum Monte-Carlo (QMC) codes [296] exist for SU(N) models,
which could allow one to take the initial equilibrium data for the setup of a Wigner
function directly from a QMC calculation. As a last remark we note that we have only
considered half filling in this thesis. Affleck and Marston predict interesting phases also
in the case of non-zero doping, for instance a so-called “kite” phase close to the Peierls
phase. Doping the model could also allow for interesting analogies to high-temperature
superconductors, which are characterized by a Mott insulating phase, which is slightly
doped. Not without reason did Affleck and Marston originally invent their Hamiltonian
as a simplified model for the physics of those materials.



Chapter 6

Conclusion

This thesis is about the exploration of “non-thermal”[34] effects in correlated electron
models during and subsequent to the interaction with a light field. The notion of
non-thermality refers to phenomena that cannot easily be explained using equilibrium
concepts like heating alone. Typical examples, which are considered in this thesis, are
the dressing of electronic states with light, which is the foundation of Floquet engineer-
ing. Another example is provided by the generation of prethermal states of matter that
are only stable on transient time scales before thermalization. Such non-equilibrium
states created by time-dependent electromagnetic fields are a very attractive field of
study for theoretical physicists due to the high complexity of the phenomena, which
nourishes the hope of discovering something novel. It is fair so say, though, that no
single theoretical framework exists, which is applicable to all models and to all kinds of
questions. The true challenge – according to the opinion of the author – is to dynam-
ically adapt to problems that come up in research and to be flexible enough with the
methods. Along these lines, this thesis summarizes contributions to some questions of
current interest in the field of photoexcited dynamics, using a variety of methods.

In Chapter 3 we presented a simple analytical model for the initial and final state
dressing in a time-resolved ARPES experiment. The theory is based on the exact
solution of plane wave states in the presence of a periodic pump field. In a direct
collaboration with the experimental group of Stefan Mathias, we modeled the interfer-
ence of side bands originating from the dressed initial and final states in photoemission
experiments on a gold surface [3]. The experimental side band intensities could only
be explained if the influence of the in-plane electric field is effectively zero. Although
in the case of the gold surface a screening of the field turned out to yield the simplest
explanation, the calculation offers a second possible mechanism due to the destructive
interference of the two types of side bands. Future research in this direction could,
for instance, look at possible interference patterns of Floquet and Volkov side bands
for parabolic initial states, which are not localized at the Γ but, e.g., at the K point.
Many TMDC materials [29] show such valley structure away from the Γ point. Be-
sides, it turns out to be experimentally challenging to observe Floquet-Bloch states in
graphene [193, 194]. Simple wave function models (akin to Park’s calculation [124])
allow to calculate Floquet-Volkov interference patterns and help to unambiguously
identify Floquet states.

The second topic of Chapter 3 is about the effect of periodic driving on a simple
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one-dimensional model for a charge-density wave insulator, for which we have access to
a quasi-exact reference calculations with matrix product states [212]. Based on an ob-
servation of emergent band-like spectral weight in the single-particle gap of the system
in the exact simulations, we analyzed the minimal prerequisites for such an effect to
occur by comparison to a non-interacting model and to a time-dependent Hartree-Fock
treatment of the interactions. The results show that while such a feature is absent in
the non-interacting model, one can find a similar signal in the mean-field model. This
hints towards doublon excitations in a long-lived prethermal state [211] as the primary
origin of the band. Beyond the specific results, these findings demonstrate that time-
dependent mean-field theory can be a valuable tool to calculate non-equilibrium spec-
tral functions of driven systems. An open issue, which should definitively be addressed
in future research, is how to define non-equilibrium spectral functions which are man-
ifestly positive-semidefinite. The spectral functions, which we obtain from mean-field
theory, do contain significant negative weights. Nevertheless, the shape and relative
intensities of the peak still yields physically reasonable results. The starting point
should be the calculation by Uhrig et al. [116], who constructed a positive-semidefinite
retarded Green’s function using period averaging in the case of infinite periodic driving.

The main part of this thesis addresses the topic of order parameter dynamics out-
of-equilibrium. Many experimental findings [45, 49, 50] indicate that one can make
use of light-matter interaction (via laser pulses, for instance) in order to transiently
manipulate the order in a system. One of the most prominent examples is presented
by light-induced superconductivity [49, 50]. Theoretical models for the dynamics of
competing order parameters, subject to driving with a laser pulse, are often based
on phenomenological Ginzburg-Landau functionals [109, 55, 54], in which the laser
pulse is represented by time-dependent coefficients. Although such a coarse-grained
description is clearly useful, it necessarily neglects a lot of important microscopic de-
tails of materials like realistic dispersion relations. Microscopic descriptions based on
time-dependent Hartree-Fock theory [111] are more realistic and can incorporate some
specifics of the system-specific electronic structure. However, due to the neglect of
correlations within mean-field theory, effects like dephasing and scattering are not in-
cluded and the dynamics is mainly governed by coherent order parameter oscillations.
Therefore, a primary goal of this thesis is to explore a new method to go beyond time-
dependent mean-field theory, which is based on phase space methods, in particular,
the truncated Wigner approximation (TWA). TWA methods have a long tradition in
the physics of quantum gases [139, 150] but they are less often used in the condensed
matter theory community. Only recently, Davidson et al. [112] presented an extension
of TWA for fermions (fTWA), which is basically equivalent to a time evolution scheme
in nuclear physics, called the stochastic mean-field approach [160]. fTWA integrates
nicely into mean-field treatments of interacting systems because the equations of mo-
tion are the same. The new aspect is a stochastic sampling of initial conditions for these
equations of motion. Every initial condition yields a trajectory in phase space and,
according to the rules of the TWA, one needs to average operator expectation values
over these trajectories in order to obtain quantum mechanical expectation values. In
Chapter 4 we applied fTWA to the well-known problem of the weak interaction quench
in the Hubbard model, which is an example of a quench to a nearly integrable model
with approximate constants of motion on a prethermal time scale. Our application
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of fTWA to the problem yields the following main insights: The method reproduces
exactly the dephasing-induced physics of the prethermal phase. However, on longer
time scales, clear deviations from the expected dynamics occur and the system evolved
towards unphysical fixed points. Our strategy to mitigate these problems is to ex-
tend the number of fermion modes from two (σ =↑, ↓) to a number of N flavor modes
α = 1, . . . , N . The interaction quench dynamics in such a generalized SU(N) Hubbard
model remains controlled over long time periods if N is chosen large, e.g. N = 100.
ℏeff = 1

N
plays the role of a semiclassical expansion parameter that controls the strength

of quantum fluctuations and can be used to separate leading semiclassical contributions
∼ ℏeff to the dynamics from unphysical higher order contributions. In Chapter 5 we
use such a large-N scenario to study the photoinduced dynamics of order parameters.
Before we turn to these results we would like to discuss perspectives for future method
development. It is clear that the question of thermalization and a correct fixed point
distribution needs to be addressed. Again, the weak interaction quench in the Hubbard
model is a suitable test case because many higher-order correlations (in a correlation
hierarchy sense) are irrelevant for the dynamics. Taking guidance from the BBGKY
hierachy is probably the most promising path towards systematic improvements of the
fTWA method. In the context of spin systems [167, 168], the introduction of connected
Weyl symbols at the level of the semiclassical theory lead to significant improvements
of the dynamics in comparison to an exact reference dynamics. A similar idea was
formulated by Czuba et al. [166] in the context of the stochastic mean-field approach.
They take higher order terms of the quantum BBGKY hierarchy into account and also
report significant improvements. In contrast to the scheme with the connected Weyl
symbols, it is less obvious how to adapt the scheme by Czuba et al. to a large-N setup.
Having implemented such a scheme it will also be interesting to study quenches to
intermediate and strong interaction strengths.

Despite the necessity of further method development, we may still conclude that
fTWA is able to describe dynamics in correlated 2D systems on time scales, which
can be controlled by ℏeff. This led us to apply it to a more complicated model of the
SU(N)-type, namely to the Hubbard-Heisenberg model first introduced by Affleck and
Marston [141]. The model mimics some features of the copper oxide planes in cuprate
high-temperature superconductors and can be thought of as an SU(N)-symmetric ver-
sion of the t-J model with additional charge fluctuations. The mean-field phase di-
agram of the model is characterized by a competition of two phases, a bond density
wave phase (Peierls phase), which is related to the spin-Peierls phase in large-N quan-
tum antiferromagnets [242] and the staggered flux phase. In order to be able to study
dynamics in the model, we combine the SU(N) Hubbard-Heisenberg model with the
fermionic truncated Wigner approximation. One of the big challenges turns out to be
the initial state preparation procedure. We do not have access to the full correlation
information ∼ 1

N
of the model. Therefore, we start from the mean-field modes at

N → ∞ and “quench” to a finite value of N . This leads to a warm-up dynamics,
which one can interpret – in analogy to the Hubbard interaction quench – as a for-
mation of quasiparticles. However, it turns out empirically that too large system sizes
in combination with low values of N lead to a destabilization of spatial order in the
system if so prepared. If there are too many too strongly fluctuating random variables,
real-space order can become washed out. We discuss possible analytical strategies to
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obtain better initial data in the conclusions to Chapter 5. For a combination of system
size 11 × 11 unit cells and value of N = 300 that lead to stable initial states in the
Peierls phase, we implement a number of non-equilibrium protocols, first parameter
quenches and then, primarily, spatially homogeneous photoexcitations. For all these
protocols we find that fTWA leads to stationary states after the excitations, which we
interpret as prethermal states in accordance with our findings in the SU(N) Hubbard
model. One can think of those states as a sea of non-scattering quasiparticles built on
top of the mean-field “vacuum”. In the case of the homogeneous photoexcitations we
study systematically the transition of an initial state Peierls phase into the competing
Flux phase subsequent to a photoexcitation as a function of excitation parameters like
driving amplitude and driving frequency. We find transitions, which are characterized
by a large amount of absorbed energy in the low- and high-driving frequency regime
and an intermediate regime in which a switching to the Flux phase occurs at a low
amount of total energy. Unfortunately, we do not have access to detailed information
about the elementary excitations of the system. It is reasonable to assume that this
intermediate frequency regime is connected to a resonance with an intrinsic excitation
energy of the system. Future work in this direction should shed more light on this
aspect. Nevertheless, we can already draw the conclusion that fTWA is indeed able to
yield qualitative insights into the ordering dynamics after a non-equilibrium excitation
in a system with competing order parameters. It would be very worthwhile to extend
this fTWA analysis to models of more realistic competing order parameters like CDW
and superconductivity. However, a better initial state control is required first. An in-
teresting research direction, which we present as an outlook is the ordering dynamics of
inhomogeneous photoexcitations that selectively excite one spatial region of the model.
Our preliminary results show that interesting phenomena like domain boundaries can
occur. Exploring this further might be a very interesting research direction, which
makes use of the fact that fTWA is capable of simulating comparably large system
sizes.

We would like to add a remark about further possible applications of semiclassical
techniques like the truncated Wigner approximation. A very straightforward appli-
cation is the application to phononic degrees of freedom, e.g. in a Holstein model.
In this context, TWA is equivalent to a quantum chemistry method, the so-called
multitrajectory Ehrenfest approach [297]. Another idea is to set up TWA schemes
for quasiparticles. If one transforms Hamiltonians into (approximate) representations
in terms of quasiparticle operators (dressed electrons, doublons, polarons, polaritons,
etc.), one can try to implement TWA exactly for those quasiparticle operators. Care
needs to be taken that one obtains a closed dynamical algebra and it is not guaranteed
that such a scheme would work for all kinds of excitations. However, in principle, quasi-
particle TWA would allow to push the validity of semiclassical methods into the strong
coupling regime. A development of this idea for doublons in the Hubbard model is cur-
rently in progress. Overall, bridging the gap between macroscopic free energy pictures
of order parameters and microscopic dynamical descriptions seems to be one of the
most promising research directions in the field of light-induced phenomena in quantum
materials. Although many open challenges remain, phase space methods present a new
powerful approach, which allows to incorporate interaction effects beyond mean-field
while still being able to efficiently simulate large two-dimensional systems.



Appendix A

Interaction Quench: Additional
Figures

This Appendix collects some supplemental figures to Chapter 4. The figures show the
deviation from the perturbative result as a function of the number of trajectories Nrep.
The inset always shows the distribution function n(ϵk) for the data set with the highest
number of trajectories. Fig. A.1 shows data for a quench to U = 0.5 in a 10×10 system
at quarter filling. Figs. A.2 and A.3 show data for an 11 × 11 system at half filling
(Np = 61 electrons) with quenches to U = 0.1 and U = 0.5, respectively.
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Figure A.1: Interaction quench to U = 0.5 in a system with 20 × 20 lattice sites at
quarter filling (Np = 101 electrons)
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Figure A.2: Interaction quench to U = 0.1 in a system with 11× 11 lattice sites at half
filling (Np = 61 electrons)
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Figure A.3: Interaction quench to U = 0.5 in a system with 11× 11 lattice sites at half
filling (Np = 61 electrons)



Appendix B

Review of the derivation of the
Boltzmann equation

In this Appendix we review the derivation of the quantum Boltzmann equation for the
Hubbard model. We follow mostly the derivation presented in [298] and [299, 300].
The starting point is the equation of motion for the mode occupations:

i∂tnkσ(t) =
U

V

∑

pp′q

〈[
n̂kσ, c

†
(p+q)σc

†
(p′−q)σ̄cp′σ̄cpσ

]〉

t

=
U

V

∑

pp′q

(
δk,p+q − δk,p

)〈
c†(p+q)σc

†
(p′−q)σ̄cp′σ̄cpσ

〉
t

=:
U

V

∑

pp′q

Cpp′q(t).

(B.1)

The equation of motion for the above introduced object Cpp′q(t) reads

i∂tCpp′q(t) =
U

V

∑

pp′q

〈[
c†(p+q)σc

†
(p′−q)σ̄cp′σ̄cpσ, H0 +HU

]〉

t

= −
(
δk,p+q − δk,p

)(
ϵp+q + ϵp′−q − ϵp′ − ϵp

)〈
c†(p+q)σc

†
(p′−q)σ̄cp′σ̄cpσ

〉
t

+
U

V

∑

ll′q′

(
δk,p+q − δk,p

)〈[
ĉ†(p+q)σc

†
(p′−q)σ̄cp′σ̄cpσ, c

†
(l+q′)σc

†
(l′−q′)σ̄cl′σ̄clσ

]〉

t

=: −∆ϵp′p(p′−q)Cpp′q(t) + Spp′q(t)

(B.2)

The last line of the above equation suggests a solution using the method of the
variation of the constant:

Cpp′q(t) = Cpp′q(0)ei∆ϵp′p(p′−q)t − i
∫ t

0

dt′ Spp′q(t
′)ei∆ϵp′p(p′−q)(t−t′). (B.3)

Usually,
〈
c†(p+q)σc

†
(p′−q)σ̄cp′σ̄cpσ

〉
t=0
∼ δq,0 and hence Cpp′q(0) = 0.
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The commutator expression in (B.2) can be simplified further:

Spp′q(t) =
U

V

∑
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(B.4)

Omitting the contribution Cpp′q(0), we may write

i∂tnkσ(t) = −iU
V

∫ t

0

dt′
∑

pp′q

Spp′q(t
′)ei∆ϵp′p(p′−q)(t−t′) (B.5)

By insertion of the last line of (B.4) into the formula one can show that the second
summand is the complex conjugate of the first and hence
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(B.6)

This expression is still exact and does not explicitly assume nkσ(t) = nkσ̄(t). Two
approximations are now commonly applied:

1. “restricted quasifreeness” [298]/applicability of the Wick theorem [223], in com-
bination with the assumptions of spatial homogeneity and spin diagonality:

⟨c†(p+q)σcpτ ⟩ ∼ δq,0δστ (B.7)
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This yields:
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Further simplifications after the summation:

∑

pp′q

∑

ll′

(
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)〈
. . .
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To turn the subtraction of the two delta functions into one delta, we need to
perform index shifts in the summation that are compatible with the exponential
ei∆ϵp′p(p′−q)(t−t′). By shifting p 7→ p − q, p′ 7→ p′ + q, q 7→ −q in the first sum we
arrive at ∆ϵ(p′−q)(p+q)p′ = −∆ϵp′p(p′−q). Since only the real part of the expression
matters, we may unite the deltas:
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(B.10)

2. local time [298]/Markov approximation [299, 300]: In a mathematically more
rigorous manner one can study the limit of the integrand with respect to rescaled
time in the limit U → 0. This would correspond to the limit t→∞. Physically
this is identical to the assumption of slow variance (Markov approximation in
open systems) Skpq(t

′) ≈ Skpq(t). Transforming the integral and evaluating the
real part yields

∂tnkσ(t) = −2

(
U

V

)2 ∫ ∞

0

dt′
∑

pq

S̃kpq(t− t′) cos(∆ϵpk(p−q)t). (B.11)
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Using the Markov approximation, the symmetry of the cosine with respect to t
and the fact that in a distributional sense

∫∞
−∞ dt cos(at) = 2πδ(a) the equation

reduces to the Quantum Boltzmann equation:

∂tnkσ(t) = −2π

(
U

V

)2∑

pq
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(

nkσ(t′)npσ̄(t′)
(
1− n(k+q)σ(t′)

)(
1− n(p−q)σ̄(t′)

)
−
(
↔

))
(B.12)
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[6] W. Heisenberg. “Über quantentheoretische Umdeutung kinematischer und mech-
anischer Beziehungen.” In: Zeitschrift für Physik 33.1 (Dec. 1, 1925), pp. 879–
893. issn: 0044-3328. doi: 10.1007/BF01328377.

[7] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Holt, Rinehart and
Winston, 1976. 868 pp. isbn: 978-0-03-083993-1.

[8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Theory of Superconductivity”.
In: Physical Review 108.5 (Dec. 1, 1957), pp. 1175–1204. issn: 0031-899X. doi:
10.1103/PhysRev.108.1175.

[9] Gordon Baym and Christopher Pethick. Landau Fermi-Liquid Theory: Concepts
and Applications. John Wiley & Sons, Sept. 26, 2008. 215 pp. isbn: 978-3-527-
61716-6.

[10] Elbio Dagotto. “Correlated Electrons in High-Temperature Superconductors”.
In: Reviews of Modern Physics 66.3 (July 1, 1994), pp. 763–840. issn: 0034-6861,
1539-0756. doi: 10.1103/RevModPhys.66.763.

[11] B. Keimer et al. “From Quantum Matter to High-Temperature Superconduc-
tivity in Copper Oxides”. In: Nature 518.7538 (7538 Feb. 2015), pp. 179–186.
issn: 1476-4687. doi: 10.1038/nature14165.

[12] Emilia Morosan et al. “Strongly Correlated Materials”. In: Advanced Materials
24.36 (2012), pp. 4896–4923. issn: 1521-4095. doi: 10.1002/adma.201202018.

147

https://doi.org/10.1103/PhysRevB.102.161403
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1007/BF01328377
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1038/nature14165
https://doi.org/10.1002/adma.201202018


148 Bibliography

[13] Elbio Dagotto. “Complexity in Strongly Correlated Electronic Systems”. In:
Science 309.5732 (July 8, 2005), pp. 257–262. doi: 10.1126/science.1107559.

[14] Gabriel Kotliar and Dieter Vollhardt. “Strongly Correlated Materials: Insights
From Dynamical Mean-Field Theory”. In: Physics Today 57.3 (Mar. 2004),
pp. 53–59. issn: 0031-9228. doi: 10.1063/1.1712502.

[15] Florian Gebhard. “Metal—Insulator Transitions”. In: The Mott Metal-Insulator
Transition: Models and Methods. Ed. by Florian Gebhard. Springer Tracts in
Modern Physics. Berlin, Heidelberg: Springer, 1997, pp. 1–48. isbn: 978-3-540-
14858-6. doi: 10.1007/3-540-14858-2_1.

[16] Martin C. Gutzwiller. “Effect of Correlation on the Ferromagnetism of Tran-
sition Metals”. In: Physical Review Letters 10.5 (Mar. 1, 1963), pp. 159–162.
issn: 0031-9007. doi: 10.1103/PhysRevLett.10.159.

[17] Junjiro Kanamori. “Electron Correlation and Ferromagnetism of Transition
Metals”. In: Progress of Theoretical Physics 30.3 (Sept. 1, 1963), pp. 275–289.
issn: 0033-068X. doi: 10.1143/PTP.30.275.

[18] J. Hubbard and Brian Hilton Flowers. “Electron Correlations in Narrow Energy
Bands III. An Improved Solution”. In: Proceedings of the Royal Society of Lon-
don. Series A. Mathematical and Physical Sciences 281.1386 (Sept. 22, 1964),
pp. 401–419. doi: 10.1098/rspa.1964.0190.

[19] Daniel P. Arovas et al. “The Hubbard Model”. Mar. 22, 2021.

[20] Fabian H. L. Essler et al. The One-Dimensional Hubbard Model. Cambridge
University Press, Feb. 7, 2005. 692 pp. isbn: 978-1-139-44158-2.

[21] Walter Metzner and Dieter Vollhardt. “Correlated Lattice Fermions in d = ∞
Dimensions”. In: Physical Review Letters 62.3 (Jan. 16, 1989), pp. 324–327.
issn: 0031-9007. doi: 10.1103/PhysRevLett.62.324.

[22] X. Y. Zhang, M. J. Rozenberg, and G. Kotliar. “Mott Transition in the d
=∞ Hubbard Model at Zero Temperature”. In: Physical Review Letters 70.11
(Mar. 15, 1993), pp. 1666–1669. issn: 0031-9007. doi: 10.1103/PhysRevLett.
70.1666.

[23] Stefan Kehrein. “Density of States near the Mott-Hubbard Transition in the
Limit of Large Dimensions”. In: Physical Review Letters 81.18 (Nov. 2, 1998),
pp. 3912–3915. issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.81.
3912.

[24] J. P. F. LeBlanc et al. “Solutions of the Two-Dimensional Hubbard Model:
Benchmarks and Results from a Wide Range of Numerical Algorithms”. In:
Physical Review X 5.4 (Dec. 14, 2015), p. 041041. issn: 2160-3308. doi: 10.
1103/PhysRevX.5.041041.

[25] Kenneth G. Wilson. “The Renormalization Group and Critical Phenomena”. In:
Reviews of Modern Physics 55.3 (July 1, 1983), pp. 583–600. issn: 0034-6861.
doi: 10.1103/RevModPhys.55.583.

[26] Steven R. White. “Density Matrix Formulation for Quantum Renormalization
Groups”. In: Physical Review Letters 69.19 (Nov. 9, 1992), pp. 2863–2866. doi:
10.1103/PhysRevLett.69.2863.

https://doi.org/10.1126/science.1107559
https://doi.org/10.1063/1.1712502
https://doi.org/10.1007/3-540-14858-2_1
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.70.1666
https://doi.org/10.1103/PhysRevLett.70.1666
https://doi.org/10.1103/PhysRevLett.81.3912
https://doi.org/10.1103/PhysRevLett.81.3912
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/RevModPhys.55.583
https://doi.org/10.1103/PhysRevLett.69.2863


Bibliography 149
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[116] Götz S. Uhrig, Mona H. Kalthoff, and James K. Freericks. “Positivity of the
Spectral Densities of Retarded Floquet Green Functions”. In: Physical Review
Letters 122.13 (Apr. 5, 2019), p. 130604. doi: 10.1103/PhysRevLett.122.
130604.

https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.75.913
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/PhysRevB.89.035134
https://doi.org/10.1023/A:1013804405357
https://doi.org/10.1103/PhysRevB.101.224305
https://doi.org/10.1103/PhysRevLett.123.097601
https://doi.org/10.1103/PhysRevLett.118.087002
https://doi.org/10.1016/j.aop.2017.07.003
https://doi.org/10.1103/PhysRevB.98.035138
https://doi.org/10.1016/j.elspec.2021.147104
https://doi.org/10.1103/PhysRevLett.122.130604
https://doi.org/10.1103/PhysRevLett.122.130604


156 Bibliography

[117] John David Jackson. Classical Electrodynamics. John Wiley & Sons, May 13,
2021. 835 pp. isbn: 978-1-119-77076-3.

[118] R. Peierls. “Zur Theorie des Diamagnetismus von Leitungselektronen”. In: Zeitschrift
für Physik 80.11 (Nov. 1, 1933), pp. 763–791. issn: 0044-3328. doi: 10.1007/
BF01342591.

[119] J. M. Luttinger. “The Effect of a Magnetic Field on Electrons in a Periodic
Potential”. In: Physical Review 84.4 (Nov. 15, 1951), pp. 814–817. issn: 0031-
899X. doi: 10.1103/PhysRev.84.814.

[120] Jiajun Li et al. “Electromagnetic Coupling in Tight-Binding Models for Strongly
Correlated Light and Matter”. In: Physical Review B 101.20 (May 21, 2020),
p. 205140. doi: 10.1103/PhysRevB.101.205140.

[121] N. Goldman et al. “Light-Induced Gauge Fields for Ultracold Atoms”. In: Re-
ports on Progress in Physics 77.12 (Nov. 2014), p. 126401. issn: 0034-4885. doi:
10.1088/0034-4885/77/12/126401.

[122] Lars Bojer Madsen. “Strong-Field Approximation in Laser-Assisted Dynamics”.
In: American Journal of Physics 73.1 (Dec. 13, 2004), pp. 57–62. issn: 0002-
9505. doi: 10.1119/1.1796791.

[123] J. C. Baggesen and L. B. Madsen. “Theory for Time-Resolved Measurements
of Laser-Induced Electron Emission from Metal Surfaces”. In: Physical Review
A 78.3 (Sept. 16, 2008), p. 032903. doi: 10.1103/PhysRevA.78.032903.

[124] Sang Tae Park. “Interference in Floquet-Volkov Transitions”. In: Physical Re-
view A 90.1 (July 28, 2014), p. 013420. doi: 10.1103/PhysRevA.90.013420.

[125] M. Keunecke et al. “Time-Resolved Momentum Microscopy with a 1 MHz High-
Harmonic Extreme Ultraviolet Beamline”. Mar. 3, 2020.
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tralbibliothek, Verlag, 2014. 450 pp. isbn: 978-3-89336-953-9.

[128] J. K. Freericks, H. R. Krishnamurthy, and Th. Pruschke. “Erratum: Theoreti-
cal Description of Time-Resolved Photoemission Spectroscopy: Application to
Pump-Probe Experiments [Phys. Rev. Lett. 102, 136401 (2009)]”. In: Physical
Review Letters 119.18 (Nov. 2, 2017), p. 189903. doi: 10.1103/PhysRevLett.
119.189903.

[129] G. C. Wick. “The Evaluation of the Collision Matrix”. In: Physical Review 80.2
(Oct. 15, 1950), pp. 268–272. issn: 0031-899X. doi: 10.1103/PhysRev.80.268.

[130] Luca Guido Molinari. Notes on Wick’s Theorem in Many-Body Theory. Oct. 25,
2017. doi: 10.48550/arXiv.1710.09248.

https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRev.84.814
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1119/1.1796791
https://doi.org/10.1103/PhysRevA.78.032903
https://doi.org/10.1103/PhysRevA.90.013420
https://doi.org/10.1007/978-3-662-03209-1
https://doi.org/10.1103/PhysRevLett.119.189903
https://doi.org/10.1103/PhysRevLett.119.189903
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.48550/arXiv.1710.09248


Bibliography 157

[131] H. J. Lipkin, N. Meshkov, and A. J. Glick. “Validity of Many-Body Approx-
imation Methods for a Solvable Model: (I). Exact Solutions and Perturbation
Theory”. In: Nuclear Physics 62.2 (Feb. 1, 1965), pp. 188–198. issn: 0029-5582.
doi: 10.1016/0029-5582(65)90862-X.

[132] Bruno Sciolla and Giulio Biroli. “Dynamical Transitions and Quantum Quenches
in Mean-Field Models”. In: Journal of Statistical Mechanics: Theory and Exper-
iment 2011.11 (Nov. 2, 2011), P11003. issn: 1742-5468. doi: 10.1088/1742-
5468/2011/11/P11003.

[133] Angelo Russomanno, Rosario Fazio, and Giuseppe E. Santoro. “Thermalization
in a Periodically Driven Fully Connected Quantum Ising Ferromagnet”. In: EPL
(Europhysics Letters) 110.3 (May 1, 2015), p. 37005. issn: 0295-5075, 1286-4854.
doi: 10.1209/0295-5075/110/37005.

[134] Silvia Pappalardi et al. “Scrambling and Entanglement Spreading in Long-
Range Spin Chains”. In: Physical Review B 98.13 (Oct. 8, 2018), p. 134303.
issn: 2469-9950, 2469-9969. doi: 10.1103/PhysRevB.98.134303.

[135] Rodney J. Baxter. Exactly Solved Models in Statistical Mechanics. Elsevier,
June 12, 2016. 499 pp. isbn: 978-1-4832-6594-0.

[136] E. Müller-Hartmann. “Correlated Fermions on a Lattice in High Dimensions”.
In: Zeitschrift für Physik B Condensed Matter 74.4 (Dec. 1, 1989), pp. 507–512.
issn: 1431-584X. doi: 10.1007/BF01311397.

[137] Antoine Georges et al. “Dynamical Mean-Field Theory of Strongly Correlated
Fermion Systems and the Limit of Infinite Dimensions”. In: Reviews of Modern
Physics 68.1 (Jan. 1, 1996), pp. 13–125. doi: 10.1103/RevModPhys.68.13.

[138] Roberto Franzosi, Vittorio Penna, and Riccardo Zecchina. “Quantum Dynamics
of Coupled Bosonic Wells within the Bose–Hubbard Picture”. In: International
Journal of Modern Physics B 14.09 (Apr. 10, 2000), pp. 943–961. issn: 0217-
9792. doi: 10.1142/S0217979200001011.

[139] Anatoli Polkovnikov, Subir Sachdev, and S. M. Girvin. “Nonequilibrium Gross-
Pitaevskii Dynamics of Boson Lattice Models”. In: Physical Review A 66.5
(Nov. 12, 2002), p. 053607. doi: 10.1103/PhysRevA.66.053607.

[140] F. F. Assaad. “Phase Diagram of the Half-Filled Two-Dimensional $\mathrm{SU}(N)$
Hubbard-Heisenberg Model: A Quantum Monte Carlo Study”. In: Physical Re-
view B 71.7 (Feb. 4, 2005), p. 075103. doi: 10.1103/PhysRevB.71.075103.

[141] Ian Affleck and J. Brad Marston. “Large-n Limit of the Heisenberg-Hubbard
Model: Implications for High-Tc Superconductors”. In: Physical Review B 37.7
(Mar. 1, 1988), pp. 3774–3777. doi: 10.1103/PhysRevB.37.3774.

[142] J. Brad Marston and Ian Affleck. “Large-n Limit of the Hubbard-Heisenberg
Model”. In: Physical Review B 39.16 (June 1, 1989), pp. 11538–11558. doi:
10.1103/PhysRevB.39.11538.

[143] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python”. In: Nature Methods 17.3 (3 Mar. 2020), pp. 261–272. issn:
1548-7105. doi: 10.1038/s41592-019-0686-2.

https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1209/0295-5075/110/37005
https://doi.org/10.1103/PhysRevB.98.134303
https://doi.org/10.1007/BF01311397
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1142/S0217979200001011
https://doi.org/10.1103/PhysRevA.66.053607
https://doi.org/10.1103/PhysRevB.71.075103
https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1038/s41592-019-0686-2


158 Bibliography

[144] Michele Fabrizio. A Course in Quantum Many-Body Theory: From Conven-
tional Fermi Liquids to Strongly Correlated Systems. Graduate Texts in Physics.
Cham: Springer International Publishing, 2022. isbn: 978-3-031-16304-3 978-3-
031-16305-0. doi: 10.1007/978-3-031-16305-0.

[145] Michael Bonitz. Quantum Kinetic Theory. Cham: Springer International Pub-
lishing, 2016. isbn: 978-3-319-24119-7 978-3-319-24121-0. doi: 10.1007/978-
3-319-24121-0.

[146] Cosmas Zachos. “Deformation Quantization: Quantum Mechanics Lives and
Works in Phase-Space”. In: International Journal of Modern Physics A 17.03
(Jan. 30, 2002), pp. 297–316. issn: 0217-751X. doi: 10.1142/S0217751X02006079.

[147] Hilbrand Johannes Groenewold. “On the Principles of Elementary Quantum
Mechanics”. In: On the Principles of Elementary Quantum Mechanics. Ed. by
Hilbrand Johannes Groenewold. Dordrecht: Springer Netherlands, 1946, pp. 1–
56. isbn: 978-94-017-6065-2. doi: 10.1007/978-94-017-6065-2_1.
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[175] André Eckardt and Egidijus Anisimovas. “High-Frequency Approximation for
Periodically Driven Quantum Systems from a Floquet-space Perspective”. In:
New Journal of Physics 17.9 (Sept. 2015), p. 093039. issn: 1367-2630. doi:
10.1088/1367-2630/17/9/093039.

[176] B. Rethfeld et al. “Ultrafast Dynamics of Nonequilibrium Electrons in Metals
under Femtosecond Laser Irradiation”. In: Physical Review B 65.21 (May 22,
2002), p. 214303. doi: 10.1103/PhysRevB.65.214303.

[177] B. Y. Mueller and B. Rethfeld. “Relaxation Dynamics in Laser-Excited Metals
under Nonequilibrium Conditions”. In: Physical Review B 87.3 (Jan. 30, 2013),
p. 035139. doi: 10.1103/PhysRevB.87.035139.

[178] B. Koopmans et al. “Explaining the Paradoxical Diversity of Ultrafast Laser-
Induced Demagnetization”. In: Nature Materials 9.3 (3 Mar. 2010), pp. 259–
265. issn: 1476-4660. doi: 10.1038/nmat2593.

[179] L. Stojchevska et al. “Ultrafast Switching to a Stable Hidden Quantum State in
an Electronic Crystal”. In: Science 344.6180 (Apr. 11, 2014), pp. 177–180. doi:
10.1126/science.1241591.

[180] Michael A. Sentef et al. “Quantum to Classical Crossover of Floquet Engineering
in Correlated Quantum Systems”. In: Physical Review Research 2.3 (July 7,
2020), p. 033033. issn: 2643-1564. doi: 10.1103/PhysRevResearch.2.033033.

https://doi.org/10.1063/1.3637934
https://doi.org/10.1002/zamm.19580381102
https://doi.org/10.1145/79505.79507
https://doi.org/10.1145/3221269.3223036
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1103/PhysRevB.65.214303
https://doi.org/10.1103/PhysRevB.87.035139
https://doi.org/10.1038/nmat2593
https://doi.org/10.1126/science.1241591
https://doi.org/10.1103/PhysRevResearch.2.033033


Bibliography 161

[181] F. L. Moore et al. “Observation of Dynamical Localization in Atomic Mo-
mentum Transfer: A New Testing Ground for Quantum Chaos”. In: Physical
Review Letters 73.22 (Nov. 28, 1994), pp. 2974–2977. issn: 0031-9007. doi:
10.1103/PhysRevLett.73.2974.

[182] Luca D’Alessio and Marcos Rigol. “Long-Time Behavior of Isolated Periodically
Driven Interacting Lattice Systems”. In: Physical Review X 4.4 (Dec. 19, 2014),
p. 041048. doi: 10.1103/PhysRevX.4.041048.

[183] Vedika Khemani, Roderich Moessner, and S. L. Sondhi. “A Brief History of
Time Crystals”. Oct. 23, 2019.

[184] Simon A. Weidinger and Michael Knap. “Floquet Prethermalization and Regimes
of Heating in a Periodically Driven, Interacting Quantum System”. In: Scien-
tific Reports 7.1 (1 Apr. 3, 2017), p. 45382. issn: 2045-2322. doi: 10.1038/
srep45382.

[185] Mark S. Rudner and Netanel H. Lindner. “Band Structure Engineering and Non-
Equilibrium Dynamics in Floquet Topological Insulators”. In: Nature Reviews
Physics 2.5 (5 May 2020), pp. 229–244. issn: 2522-5820. doi: 10.1038/s42254-
020-0170-z.

[186] T. E. Glover et al. “Observation of Laser Assisted Photoelectric Effect and Fem-
tosecond High Order Harmonic Radiation”. In: Physical Review Letters 76.14
(Apr. 1, 1996), pp. 2468–2471. doi: 10.1103/PhysRevLett.76.2468.

[187] L. Miaja-Avila et al. “Laser-Assisted Photoelectric Effect from Surfaces”. In:
Physical Review Letters 97.11 (Sept. 14, 2006), p. 113604. doi: 10 . 1103 /

PhysRevLett.97.113604.

[188] G. Saathoff et al. “Laser-Assisted Photoemission from Surfaces”. In: Physical
Review A 77.2 (Feb. 29, 2008), p. 022903. doi: 10.1103/PhysRevA.77.022903.

[189] L. Miaja-Avila et al. “Ultrafast Studies of Electronic Processes at Surfaces Using
the Laser-Assisted Photoelectric Effect with Long-Wavelength Dressing Light”.
In: Physical Review A 79.3 (Mar. 30, 2009), p. 030901. doi: 10.1103/PhysRevA.
79.030901.

[190] James K. Freericks and H. R. Krishnamurthy. “Constant Matrix Element Ap-
proximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy”.
In: Photonics 3.4 (4 Dec. 2016), p. 58. doi: 10.3390/photonics3040058.

[191] A. K. Geim and K. S. Novoselov. “The Rise of Graphene”. In: Nature Materials
6.3 (3 Mar. 2007), pp. 183–191. issn: 1476-4660. doi: 10.1038/nmat1849.

[192] M. A. Sentef et al. “Theory of Floquet Band Formation and Local Pseudospin
Textures in Pump-Probe Photoemission of Graphene”. In: Nature Communica-
tions 6.1 (May 11, 2015), pp. 1–8. issn: 2041-1723. doi: 10.1038/ncomms8047.

[193] Sven Aeschlimann et al. “Survival of Floquet–Bloch States in the Presence of
Scattering”. In: Nano Letters 21.12 (June 23, 2021), pp. 5028–5035. issn: 1530-
6984. doi: 10.1021/acs.nanolett.1c00801.

[194] Lukas Broers and Ludwig Mathey. “Detecting Light-Induced Floquet Band
Gaps of Graphene via trARPES”. In: Physical Review Research 4.1 (Jan. 28,
2022), p. 013057. doi: 10.1103/PhysRevResearch.4.013057.

https://doi.org/10.1103/PhysRevLett.73.2974
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1038/srep45382
https://doi.org/10.1038/srep45382
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1103/PhysRevLett.76.2468
https://doi.org/10.1103/PhysRevLett.97.113604
https://doi.org/10.1103/PhysRevLett.97.113604
https://doi.org/10.1103/PhysRevA.77.022903
https://doi.org/10.1103/PhysRevA.79.030901
https://doi.org/10.1103/PhysRevA.79.030901
https://doi.org/10.3390/photonics3040058
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1021/acs.nanolett.1c00801
https://doi.org/10.1103/PhysRevResearch.4.013057


162 Bibliography

[195] M. N. Faraggi, M. S. Gravielle, and D. M. Mitnik. “Interaction of Ultrashort
Laser Pulses with Metal Surfaces: Impulsive Jellium-Volkov Approximation ver-
sus the Solution of the Time-Dependent Schr\”odinger Equation”. In: Physical
Review A 76.1 (July 25, 2007), p. 012903. doi: 10.1103/PhysRevA.76.012903.
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Research Data Management

The data associated to the th-V chain project is currently stored in the repository
ssh://git@projects.gwdg.de/floquet-graphene-stripes.git

(A. Osterkorn, C. Meyer and S.R. Manmana have access)
and will be migrated to
https://gitlab.gwdg.de/meyer349/paper_floquet

(same people have access)

The code and data associated with the fTWA projects is currently stored in the repos-
itory
https://gitlab.gwdg.de/osterkorn/phd_data

(only Alexander Osterkorn has access)
Before the publication of this thesis, the data will be moved to
https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-theory/alexander-

osterkorn/phd_data

(all members of the Kehrein group, in particular Stefan Kehrein, have access)

Similarly, the fTWA code will be copied to
https://gitlab.gwdg.de/stefan-kehrein-condensed-matter-theory/alexander-

osterkorn/ftwa_code

and made publicly available.

Moreover, before leaving the institute, all important data will be stored on tape in the
10- Years-Archive provided by the IT of the Institut für Theoretische Physik, Georg-
August-Universität Göttingen.
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