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ABSTRACT 

As the world population increases and cropland expansion occurs, there will be a high 

need in the food supply soon which will require higher agricultural yields. Crop yield 

estimation, management, and production assessments at the regional and country-level 

are very important in Uzbekistan which requires supplemental spatial data that 

provides timely information on crop type's spatial distribution, condition, and potential 

yields. Crop-type identification at the local and regional level is very important in 

agricultural regions in developing countries where it contributes the main share of the 

country's GDP.  

Nowadays the number of satellites and free availability of these data with the 

integration of multi-sensor images offers coherent time series which gives new 

opportunities for land cover and crop type classification. Poor or developing countries 

compile their agricultural statistics in tabular form by their provincial administrative 

areas, which gives no information about the exact locations where specific crops are 

cultivated. Such data is poorly suited for early warning and assessment of crop 

production. 5-Daily Sentinel and 16-Daily Landsat satellites image time series of 

Tashkent Province, Uzbekistan, acquired in 2018 in combination with reported crop 

area statistics were used to produce the required crop types map. Three well-known 

machine learning algorithms Support Vector-Machine, Random Forest, and Maximum 

Likelihood classifications were used to derive crop types maps and compared for 

recommended suitable methods. Four indices NDVI, EVI, NDWI1, and NDWI2 were 

calculated using blue, green, near-infrared, SWIR 1, and SWIR 2 bands and used as 

input data.   

Firstly, based on the literature review it was found that only limited research was 

carried out to identify irrigated croplands by crop types at the provincial level. Most 

of the available land use land cover maps have low resolution and classified crop types 

as croplands or agriculture. Besides, we have not found any research which compares 

derived crop types area with official state statistics at the provincial level in the study 

area. Thus, it is very important to recommend an accurate and timely crop types 
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mapping method for the local land control and management authorities and policy 

makers. 

Preliminary climate change analysis over the 35 years of 1979 through 2013 

demonstrated the increasing trend of temperature and decreasing trend of precipitation 

over the croplands, pasturelands, and grasslands of the study area. Precipitation 

decrease in the study area may reduce plant productivity and temperature increase may 

have either positive or negative influence on plant production due to more evaporation 

than precipitation. Besides, expansion of agricultural irrigated cropland and population 

increase has a significant influence on land-use intensity.  

Secondly, a comparison of three classifiers algorithms SVM, RF, and MLC 

performance was studied and the result showed SVM and RF classifiers produced a 

visually pleasant and realistic irrigated cropland map in the research area. Accuracy 

assessment results showed that SVM yielded the highest OA and KA. KA of classified 

images for SVM were 0.90 and 0.89 for the RF algorithm. Both performed well and 

achieved identical close values. But MLC showed a lower result of KA 0.60.  

Thirdly, further analysis of testing different indices (NDVI, EVI, NDWI1, and 

NDWI2) with recommended SVM and RF classifiers using Sentinel-2 and Landsat-8 

sensors data were carried out. The results of OA, KA, UA, and PA have shown that 

RS imagery from both sensors is of comparable quality. But the differences in accuracy 

results vary higher based on the vegetation indices used than on sensor data. KA values 

vary between 75% to 88 % in all indices. The lowest KA values were achieved in all 

indices with the SVM classifier of L8 sensor data. The highest KA values 88% and 

87% were achieved with the RF classifier of L8 data when EVI and EVI-NDVI were 

used respectively. Using NDWI 1 and NDWI 2 which uses SWIR 1 and SWIR 2 bands 

is not achieved good results in both accuracies point and area comparison and it is not 

recommended for irrigated crop types mapping. 

Fourthly, the difference between remote sensing derived classified maps area and 

officially recorded statistic crops area was compared. It was found that the smallest 

absolute weighted average value difference of 0.2 thousand ha was obtained using 

EVI-NDVI with RF method and NDVI with SVM method of Landsat 8 sensor data.  

For Sentinel 2 sensor data, the smallest absolute value difference result of 0.1 thousand 



 

3 

 

ha was obtained using EVI with RF method and 0.4 thousand ha using NDVI with 

SVM method. 

Finally, it can be recommended that using medium 30 m resolution Landsat sensor 

data is sufficient for mapping irrigated crop types over the study area, and since the 

launch of this satellite in 1972, historical irrigated cropland mapping is possible for the 

period up to today. Besides, the recent successful launch of Landsat-9 will successfully 

continue the Landsat data suite and enable new opportunities in the joint use of Landsat 

and Sentinel data to capture high temporal resolution during the vegetation growth 

period which helps to distinguish other minor crop types as well as increase 

classification accuracy. 

Classified irrigated crop types maps can benefit regional land management 

administration offices to monitor the spatial extent of crops location and its monitoring 

as well as modeling and predicting crop yields and production by different 

agroecological models. And also, the use of remote sensing-based irrigated crop types 

data periodically to monitor and evaluate agricultural land uses which can save time, 

effort, and capital that are needed for traditional human-based ground surveys. 
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CHAPTER 1 

1 Introduction 

 

The land is the basis for agriculture and other rural land uses, encompassing soils, 

climate, vegetation, topography, and other natural resources.  Globally agriculture uses 

around 4 750 million ha of land for growing crops and livestock farming. More than  

1 500 million ha occupy temporary and permanent crops. And around 3 300 million 

ha of land are used as permanent meadows and pastures. In general, agricultural land 

areas change is very small since 2000. However, irrigated croplands and permanent 

crops have increased, while permanent meadows and pasturelands have significantly 

declined. Between 2000 and 2019 cropland increased by 4 percent in the world which 

is about 63 million ha. Besides, the fast growth of urban areas is replacing agricultural 

lands (SOLAW 2021). 

Irrigated croplands use a lot of water resources. Water resources in the world are under 

pressure nowadays. The water stress level in Central Asia is over 70 percent which 

indicates medium and high. In the study area, most of the agricultural areas are 

irrigated croplands and agriculture plays an important role in water stress and it is very 

high in Uzbekistan because all irrigated croplands compete for the water of river 

basins. 

Irrigation in Central Asian countries began as early as the 6-7th centuries before AD. 

The region's climate is sharply continental, mostly arid and semi-arid. Average annual 

precipitation (falling mainly in winter and spring) is about 270 mm, varying between 

600-800 mm in the mountains and 80-150 mm in desert areas. Tracing the history of 

the development of irrigation networks, it can be noted that irrigated agriculture 

originated in areas adjacent to natural waterways. Factors contributing to the 

development of irrigation in these areas were the proximity of the location sources of 

water and relatively flat and large areas and the length of loess-covered terrace 

surfaces. Soil cover, formed on loess rocks, is characterized by high fertility. Under 

irrigation conditions on these tracts, it is possible to obtain yields of all crops (FAO).  
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A discussion of land use issues in Uzbekistan would be incomplete without mentioning 

the most important problem of water and irrigation. 80% of the territory of Uzbekistan 

is deserts or semi-desert, and only 4.2 million hectares (out of 20.5 million hectares 

belonging to the category of agricultural land) are irrigated land. Agriculture accounts 

for 17.6% of the Uzbek economy and 27.1% of the population are engaged in 

agriculture. The total land area of the Republic of Uzbekistan is 44410.3 thousand 

hectares, of which 4212.8 thousand hectares are irrigated lands, 11143.8 hectares are 

hayfields and pastures, and the remaining 29053.7 hectares are other lands. Irrigated 

land accounts for 23.8% of total agricultural land. Agriculture consists of two major 

sectors: agriculture and animal husbandry. Of the arable land, 39.6% is wheat, 35.8% 

is cotton and the remaining 24.6% is main crops (fruits, vegetables, livestock, and 

various cereals). 

There is a need for an integrated approach to the planning and management of land 

resources in the country. The land is a limited resource and is increasingly impacted 

by competition between mutually exclusive uses. Due to the effects of climate change, 

desertification, erosion, pollution and population increase, pollution, urbanization, and 

other factors, fertile land in rural regions is becoming increasingly scarce.  Government 

authorities and agricultural organizations need to know which areas of the country’s 

land area are used for which purpose.  

Agricultural land use (LU) maps are needed to identify and qualify the agricultural 

lands as well as the major uses of land occurring there. LU maps contribute to better 

management of land by helping to control the allocation of land for specific uses. This 

ensures the availability of resources for future generations. It minimizes the effect of 

economic activities and development on the environment. Land-use planning can 

assist in achieving a balance between these competing and occasionally opposing 

purposes. 

Local cadastre office records showing the extent, value, and ownership of lands are 

not always available in developing or poor countries. The ability to ascribe land 

ownership is one of the main principles to make land-use planning and management 

effectiveness. When either cadastre records exist and other forms of digital records are 

unavailable, remote sensing technologies, i.e. those processing and monitoring an 
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area’s physical characteristics from satellite or aircraft imagery, allow bridging the 

informational gap.  

Therefore, the use of GIS and remote sensing techniques with modern machine 

learning algorithms and data periodically to monitor and evaluate agricultural 

croplands can save time, effort, and capital which are needed for traditional human-

based ground surveys. And also, it is very important to integrate the gathered human-

based statistics with the remote sensing techniques to interpret the capability of derived 

cropland maps which this research intends to investigate. 

1.1 Research objectives 

 

The main goal of this research is to provide explicit recommendations on the 

application of different supervised classification methods for precise and accurate 

irrigated croplands extent product of Tashkent Province in Uzbekistan using Sentinel 

- 2 and Landsat - 8 data in 2018, within the GIS and Remote Sensing software. To 

achieve this goal, the following specific objectives were developed: 

i. to review scientific articles, local reports, and expert’s opinions on land use 

and climate change, land degradation issues of the study area to clarify 

future study activities; 

ii. to map and compare the performance of Machine Learning Algorithms 

(MLA) such as SVM, RF, and MLC methods for main irrigated croplands 

by crop types with 10 m high-resolution Sentinel – 2 data; 

iii. to map and compare irrigated croplands using both Sentinel - 2 and 

Landsat- 8 data by utilizing different indices such as NDVI, EVI, NDWI1, 

and NDWI2 with the best-performed classification algorithm from the 

previous objective;  

iv. to compare the area of all derived agricultural land use maps with the 

official data from the State Committee for Statistics of Uzbekistan; 
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v. to recommend an accurate and precise irrigated croplands classification 

method that concerns spatial-temporal resolution, sensor type, and spectral 

bands. 

 

1.2 Research Questions 

 

Based on these objectives, the following research questions were answered in this 

dissertation:  

1. What kind of research and studies related to the dissertation was carried out in 

the study area and what should be studied in the future?   

2. What is the situation of land use and climate changes in the study area? 

3. How do different classifier algorithms perform in irrigated crop type 

classification using multi-temporal satellite data? 

4. What is the performance of classifier algorithms when different indices were 

used for image classification?  

5. Which remote sensing-based derived crop types areas by satellite types and 

different indices close to the official data?  

6. What is the spatial resolution requirement for crop type identification via the 

supervised image classification methods? 

1.3 Overview of the thesis 

 

This section describes an overview content of each thesis chapter. This dissertation 

consists of six chapters, of which chapters 3, 4, and 5 have been written in the form of 

scientific manuscripts.     

Chapter 1 presents a basic background of the research, general overview, main goal, 

objectives, and research questions of the study. 
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Chapter 2 describes the location, climate, demography, agricultural lands, and the 

soils of the study area. 

Chapter 3 present a short literature review of scientific articles, local reports, and 

expert’s opinion on land degradation caused by climate change (in particular 

temperature and precipitation change) and land-use change in Central Asia (CA) with 

a special interest in Tashkent Province and aspects of regional water management in 

CA to clarify future study activities. This chapter also presents the preliminary analysis 

of climate and land-use changes in Tashkent Province and the author’s opinion about 

the impact of these changes on potential land degradation. 

Chapter 4 provides the potential use of multitemporal Sentinel-2 satellite data using 

different classifier algorithms to derive an up-to-date irrigated crop types classification 

map of the study area for the growing season in 2018. And also compares the area of 

derived irrigated cropland area with data from the State Committee for Statistics of 

Uzbekistan for selected crop types. The best-performed classification algorithm was 

used to further analysis using different indices and satellite sensors to find spatial 

resolution requirements for specific crop types mapping as described in Chapter 5.  

Chapter 5 presents research to compare and assess the importance of optical remote 

sensing data in a crop type classification using medium Landsat 8 and high spatial 

resolution Sentinel-2 RS imagery in 2018. Four indices “Normalized Difference 

Vegetation Index” (NDVI), “Enhanced Vegetation Index” (EVI), and “Normalized 

Difference Water Index” (NDWI 1 and NDWI 2) were used and calculated using blue, 

red, near-infrared, shortwave infrared 1, and shortwave infrared 2 bands. Comparing 

the area of derived irrigated cropland area with data from the State Committee for 

Statistics of Uzbekistan for selected crop types was also shown. 

Chapter 6 summarizes the main findings and conclusions of this dissertation, states 

its limitations, and makes suggestions for future research on the topic.  
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Figure 1.1. The framework of the research. 
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1.4 Irrigated lands contribution to the total yield 

 

Crop yields and multiple cropping sowing are systematically higher in irrigated lands 

than in rainfed areas. Worldwide about 20% of the total arable area is irrigated lands 

but they produce about 40% of all crops and about 60% of cereal production. 

Therefore, it is expected to increase irrigated lands further. (Jean-Marc Faurès, Jippe 

Hoogeveen and Jelle Bruinsma, 2016). 

Figure 1.2. Countries by irrigated land area in 2012. Countries/territories shown with 

the irrigated land area as '0' are shaded with the '<100' color (lightest green); those with 

no data are shaded with the 'N/A' color (grey). Source: CIA World Factbook, 2016. 

China and India are the largest irrigated land area, which makes up 21.3% and 20.6% 

of worldwide irrigated land area. Uzbekistan ranked 14th place in the world with about 

4,2 million ha of irrigated lands in 2012 (Wikipedia 2021). 
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Figure 1.3. Cotton production of the world by country. Source: PSD Online 

http://www.fas.usda.gov/psdonline by (Malik and Ahsan 2016). 

 

One of the world's most important crops is cotton. India is the largest producer of 

cotton in the world and produces about 6.2 million tons per year. Like Uzbekistan, 

India's climate is very favorable for cotton growing. China is the world's second-largest 

cotton producer. China is produced about 6.17 million tons of cotton every year. The 

United States is the third-largest cotton producer in the world, with a production of 3.6 

million tons. Uzbekistan is the world's 6th cotton producer, with a production of about 

1.1 million tons. But it ranks second place in production per person 33.9 kg after 

Australia (FAOSTAT 2020a). 

 

 

 

http://www.fas.usda.gov/psdonline
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Figure 1.4. Wheat production of the world by country. Source: FAOSTAT. 

Wheat is the second-most-produced cereal grain behind maize in the world. The world 

trade in wheat is greater than all other crops combined. In 2020, the total global 

production of wheat was 760 million tons. The three largest individual wheat 

producers in the world are China, India, and Russia which produce about 41% of the 

world’s total wheat production. Uzbekistan ranked 23rd place in the world with 6.2 

million metric tons of wheat production in 2020 (FAOSTAT 2020b). 
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1.5 The role of irrigated agricultural land in the economy 

 

 
 

Figure 1.5. Increase of global agriculture 

value-added. Source: FAO, 2021. 

Figure 1.6. Share of agriculture in 

global GDP. Source: FAO, 2021. 

  

  

 
 

Figure 1.7. Value-added of agriculture, 

forestry, and fishing by regions. Source: 

FAOSTAT. 

Figure 1.8. Share of agriculture, 

forestry, and fishing value-added in 

total GDP by region (US$ 2015 prices). 

Source: FAOSTAT. 

The global value-added generated by agriculture, forestry, and fishing grew by 73 

percent in real terms between 2000 and 2019, reaching USD 3.5 trillion in 2018 

compared to USD 1.5 trillion in 2000. Asian countries were the main contributor with 
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64 percent of the world total in 2019 which is 2.2 USD trillion (FAO Statistical 

Yearbook, 2021). 

Agriculture is an important state-controlled sector of the Uzbek economy, accounting 

for approximately 28.2% of GDP in 2020 (Figures 1.7. and 1.8.) which is over one-

quarter of the Uzbek economy. It employs about 4 million people, which is more than 

26.8% of the total employment in the country. 

Figure 1.9. Sector's contribution to the country's GDP in 2020. Source: State Statistics, 

2021.. 

Figure 1.10. Growth in agricultural GDP. Source: State Statistics, 2021. 
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Growth in agriculture slowed down after 2015 as shown in Figure 1.10. However, it 

has uncertain about the reliability of earlier statistics. The recent agricultural growth 

rate is about 3%. Agricultural Development Strategy in Uzbekistan for 2020-2030 calls 

for annual growth of 3% in 2021, and 5% by 2025. (Stephan von Cramon-Taubadel, 

Shavkat Hasanov 2021). 

 

1.6 Cotton and wheat are major crops 

 

Figure 1.11. Sown crops (thousands ha) in Uzbekistan. Source: State Statistics, 2020. 

The crops cotton and wheat dominate the sown area throughout the country. In 2020, 

almost 65% of the sown area was allocated to these crops. In Tashkent province, cotton 

and wheat occupied over 61% percent of the total sown area in 2018. In general, cotton 

and wheat are less sown in Karakalpakstan and Jizzakh, Tashkent, and Khorezm 

provinces, occupying less than two-thirds of sown land area. In 2016, the average sown 

area per rural inhabitant is 0.23 ha and it is in relative scarcity in Uzbekistan. The 

highest density of rural population is in Andijan, Samarkand, Surkhadarya, and 

Fergana provinces, while the lowest densities are observed in Syrdarya and Jizzakh 

provinces. But in Tashkent province sown area per rural inhabitant is above average 

0.24 ha (Djanibekov 2019).  
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For the last 60 years, crop-planted areas in Central Asian countries passed three 

periods: expansion (1960–1990), reduction (1990–2000), and restoration (2000–

2016). During this time, the grain yield in Central Asia increased from 0.9 t/ha in 1960 

to 1.9 t/ha in 2016. The cotton yield increased from 1.9 to 2.6 t/ha from 1960 to 1990 

and has declined significantly since the 1990s. Unfortunately, water consumption per 

hectare has not changed significantly; the consumption rate for grain is 4326–5417 

m3/ha and for cotton 8155–9157 m3/ha. Water consumption of cotton crops is high 

compared with grain. Under constant sown areas, reducing the proportion of cotton 

area can reduce the total water consumption of crops (Liu et al. 2020). 

The major irrigation practices take place during the vegetation period between April 

and October, and light irrigation and large-scale maintenance of water infrastructure 

are carried out during the non-vegetation period between November and February 

(Djumaboev et al., 2017). 

 

1.7 Climate change impact on agricultural production and 

irrigation 

 

Central Asian countries face significant difficulties to supply their growing population 

with food, water, and land resources. Especially, climate change will impact water 

availability in the region, which is already limited and often used at unsustainable rates. 

Investigating the effects of global change and exploring appropriate agricultural land 

use classification under climate change is very important. Climate change not only 

affects water availability but also the demand for water resources globally. If a region 

becomes drier and warmer, the decreased water availability will be exacerbated by an 

increased water resources demand. Irrigation will be mostly influenced by climate 

change in the water use sector. Nowadays about 67% of the current global water 

withdrawal belongs to the irrigation sector. The share of irrigated agricultural land in 

the total cropped area is less than 20% but it produces about 40% of the world's food. 

Therefore, it is expected that irrigated agriculture will have to be extended in 

the future to feed the world’s growing population. But, it is still not yet known whether 
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there will be enough water resources available for the necessary extension (Petra Döll, 

2002).  

For the last 50-60 years, climate change has reduced Central Asia's glaciers by 30%.  

It is projected that the region’s GDP drop by 11 percent due to this glacial decline to 

result in water availability. 

Uzbekistan is one of the Central Asian countries beset by water scarcity, which will 

be aggravated by climate change, which will lengthen droughts. The entire water 

deficit in the country has surpassed 3 billion cubic meters, and it is expected to rise to 

7 billion cubic meters by 2030 and 15 billion cubic meters by 2050.  

Water availability per capita has also decreased during the last 15 years, from 3048 to 

1589 cubic meters, while the country's population is growing at a rate of 650-700 

thousand people each year.   

Uzbekistan's population is expected to reach 39 million by 2030. Water demands will 

rise by 18-20% as a result of the population increase.  

Kazakhstan to the north, Kyrgyzstan and Tajikistan to the east, and Turkmenistan to 

the south border of Uzbekistan. Droughts and water scarcity are more likely in the 

desert, which covers 78 percent of the country's total territory (Climate Adaptation 

Platform 2021). 

 

1.8 Indices used for major irrigated crop types 

classification 

 

Four spectral vegetation indices, the Normalized Difference Vegetation Index (NDVI) 

[Tucker 1979], Enhanced Vegetation Index (EVI) [Huete et al. 1997, Huete et al., 

2002], Normalized Difference Water Index 1 (NDWI1), and Normalized Difference 

Water Index 2 (NDWI2)  [Gao 1996, Wilson et al 2002], were calculated using the 

surface reflectance values. These indices were formulated by using the following 

equations: 
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𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 

 

 

Equation 1.1 

𝐸𝑉𝐼 = 2.5 ∗
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 6 ∗ 𝜌𝑅𝑒𝑑 − 7 ∗ 𝜌𝐵𝑙𝑢𝑒 + 1
 

 

 

Equation 1.2 

𝑁𝐷𝑊𝐼1 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1
 

 

 

Equation 1.3 

𝑁𝐷𝑊𝐼2 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅2

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅2
 

 

Equation 1.4 

 

where ρBlue , ρRed , ρNIR , ρSWIR1, and ρSWIR2 are the surface reflectance values of Band 

2 (blue, 0.45–0.51 μm), Band 4 (red, 0.64–0.67 μm), Band 5 (near-infrared, 0.85–0.88 

μm), Band 6 (shortwave-infrared 1, 1.57–1.65 μm), and  Band 7 (shortwave-infrared 

2, 2.11–2.29 μm) in the Landsat-8 LOI and Sentinel -2 images, respectively (Table 

5.2). 
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1.9 Classification methods 

 

There are two kinds of classification procedures available in remote sensing: 1) 

unsupervised classification and 2) supervised classification. In unsupervised 

classifications, pixels are assigned to groups based on each pixel's similarity to other 

pixels (no truth, or observed, data are required) (e.g. forest, agricultural, water, etc). 

Usually, this after the fact assignment of spectral clusters is difficult or not possible 

due to these clusters containing assemblages of mixed land cover types. Principally, 

unsupervised classification is useful for quickly assigning labels to uncomplicated, 

broad land cover classes such as water, vegetation/non-vegetation, forested/non-

forested, etc). Besides, the unsupervised classification may reduce analyst bias. In 

supervised classifications, the user instructs the image processing software to specify 

the land cover classes of interest. For each land cover type of interest, the user creates 

"training sites" - places on the map that are known to be representative of that land 

cover type.  Training data is collected in the field with high accuracy GPS devices or 

expertly selected on the computer (M. S. Boori, R. Paringer, K. Choudhary, A. 

Kupriyanov, R. Banda 2018). Many studies have conducted the application of 

multispectral imagery of Sentinel and Landsat in the classification and mapping of 

agricultural land uses in particular crops by crop types. Therefore, this study is 

intended to evaluate SVM, RF, and MLC methods on their performance in mapping 

main irrigated cropland by crop types. The description of these classification methods 

is given in Chapters 4.3.5 and 5.3.3. 

 

1.10 Accuracy Assessment 

 

Designing and performing an accuracy evaluation is the most reliable approach to 

assessing the accuracy of a map quantitatively. The findings of an accuracy evaluation 

usually give us a picture of the map's overall accuracy as well as the accuracy of each 

class. Any classification should include an estimate of accuracy. Accurately assessing 

a product made with remotely sensed data can be time-consuming and expensive. This 
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is the fundamental reason why, in trying to save time or money, this critical stage is 

sometimes skipped or drastically altered in mapping projects. Accuracy assessment 

can be done through a comparison of a map produced from remotely-sensed data with 

another map from some other source. A determination is made of how closely the 

produced map from the remotely-sensed data matches the reference map (Gary M. 

Senseman, Calvin F. Bagley, Scott Tweddale 1995). 

Error matrixes have been produced for each classified map and only user’s accuracy 

(UA), producer’s accuracy (PA), overall accuracy (OA) and Kappa coefficient (KA) 

values have been taken from all tables of matrices to abridge the thesis.  

 

1.11 Accuracy Assessment Formulas 

 

Overall accuracy 

Overall accuracy,' or the percentage of cases appropriately allocated, is one of the most 

common. This is a straightforward indicator of the classification's overall correctness. 

If the focus is on the accuracy of individual classes, the confusion matrix can be used 

to calculate the percentage of cases correctly allocated by dividing the number of cases 

correctly allocated by the total number of cases in that class. 

 

OA =  

 

Equation 1.5 

There are two further measures of map accuracies, from two standpoints, which gives 

rise to the terms user’s and producer’s accuracy, which as the names suggest, depend 

on whether the calculations are based upon the matrix’s row or column marginals.  

User’s accuracy 

The user's accuracy is derived by dividing the total number of valid classifications for 

a given class by the total number of rows using data from simple random sampling. A 

number of fundamental assumptions are made, such as that each case (e.g. pixel) to be 
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classified belongs entirely to one of the discrete and mutually exclusive classes in an 

exhaustively defined set. 

 

UA = 

 

Equation 1.6 

where:  nii  - number of correctly classified pixels in row i  

 ni+ - total number of pixels in column i 

Producer’s accuracy 

The producer's accuracy measures a map’s correctness from the perspective of the map 

maker or producer and indicates the likelihood of a given land cover of a region on the 

ground being categorized as such, or how often genuine characteristics on the ground 

are correctly depicted on the classified map. 

 

PA = 

 

Equation 1.7 

 

where:  nii  - number of correctly classified pixels in row i  

 ni+ - total number of pixels in row i 

Kappa Accuracy 

The kappa statistic, developed by Cohen (Vieira, 2010) is used to control only those 

instances that may have been correctly classified by chance. Both the observed (total) 

accuracy and the random accuracy can be used to compute this. It is proposed that it 

should be accepted as a standard measure to assess map accuracy in specific instances 

since it has many appealing properties as a classification accuracy index. It 

compensates for chance agreement in particular, and a variance term for it may be 

generated, allowing statistical testing of the significance of the difference between two 

coefficients. This is crucial since there is frequently a desire to compare different 

classes and so matrices. 
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KA = 

 

Equation 1.8 

where:  n – total number of pixels 

 q – number of classes 

 Σnkk – total diagonal elements (sum of correctly classified pixels in all images) 

 Nk+  - total number of pixels in row i 

 n+k - total number of pixels in column i 

 

Table 1.1. Interpretation of the agreement for Kappa coefficient  (Landis and 

Koch 1977). 

Value of Kappa Interpretation of agreement 

0,81 ≤ K ≤ 1 almost perfect agreement 

0,61 ≤ K ≤ 0,80 substantial agreement 

0,41 ≤ K ≤ 0,60 moderate agreement 

0,21 ≤ K ≤ 0,40 fair agreement 

0,0 ≤ K ≤ 0,20 slight agreement 

K ≤ 0,0 no agreement 
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1.12 Actuality and major outcomes of this research 

 

The agricultural sector globally is facing many difficulties caused by a range of factors 

such as rapidly growing populations, depletion of natural resources, environmental 

pollution, crop diseases, and climate change. Precise methods of agricultural land use 

are a promising approach to address these issues by improving agricultural land-use 

practices, for example, by effective water and fertilizer resources, estimating crop 

yields and biomass, and reducing environmental impact. Constant and accurate 

monitoring of the growth and condition of agricultural land uses is very important for 

the effective use of agricultural resources, to manage the potential harvest, and to 

monitor and control crop types area for better management. Technological advances 

in remote sensing and GIS technologies have proven valuable for characterizing 

agricultural arable land at the field to regional and global scales. Over the past four 

decades, traditional multispectral satellite sensors have been widely used for crop area 

estimation and seasonal monitoring of land uses. Remote sensing can identify crop 

types within a field and provide useful information for specific field management 

practices.  

At the same time, the range and degree of utilization and implementation of the above-

mentioned technologies in Tashkent province at regional and local levels do not 

correspond to the economic importance of crop production. Therefore, it is very actual 

to investigate appropriate crop types classification methods, oriented to the local 

agricultural crop species during the vegetation period towards sustainable 

development.     

Thus, theoretically, the actuality of this study is determined by the necessity to develop 

methodological support for monitoring the state and types of irrigated crops in the 

region. In the practical aspect, the actuality of the work is related to the achievement 

of a new level of information support for crop type classification, based on the 

materials of remote sensing of the satellite images and GIS technologies.  
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CHAPTER 2 

2 Overview of the study area 

2.1 Location of the study area 

Uzbekistan is one of Central West Asia's fastest-growing economies and has sustained 

rapid economic growth over the past decade. The nation's growth is primarily 

attributable to Tashkent Province, the nation's most economically advanced region and 

largest agglomeration. Tashkent Province is located in the northeastern part of the 

country, between the Syrdarya River and the Tien Shan Mountains. It borders 

Kyrgyzstan, Tajikistan, Syrdarya Province, and Namangan Province. It covers an area 

of 15,300 km². The population is around 2.95 mln. (in 2022) about 48% of the 

population lives in urban areas. The climate is a typically continental climate with mild 

wet winters and hot dry summers.  

Figure 2.1. Administrative map of Uzbekistan and the location of the study area 

(Nations Project, 2022).  
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Tashkent Province has a highly developed agricultural industry that is based primarily 

on irrigation with an increasingly unmet demand for surface water. The main crops are 

cotton and wheat, but cereals, citrus, fruits, and vegetables are on the rise. It generates 

about one-quarter of the nation's entire gross domestic product. 

Tashkent province has 14 districts and six major cities Akhangaran, Almalyk, Angren, 

Bekabod, Chirchik, and Yangiyul cities which are regarded as key economic centers. 

There are three strategically important rivers, Chirchik (north catchment), Akhangaran 

(central catchment), and Syr Darya (south catchment) serving as the main sources for 

irrigation and drainage in the province. 

2.2 The population of the region 

 

The current population of Uzbekistan is 34,246,664 based on projections of the latest 

United Nations (UN) data (Figure 2.2.). The UN estimates the July 1, 2022 population 

at 34,382,084. Uzbekistan’s population is currently growing at a steady pace. The 

current population is 33.47 million people, which is expected to increase over the next 

few decades until its peaks at 44.4 million people in 2070. By the end of the century, 

the population is estimated to be about 42.27 million people. 

Uzbekistan is currently growing at a rate of 1.5% per year. The population growth rate 

has decreased from 1.66% in 2016 to 1.48%, a trend that is expected to continue until 

2070 when the population growth rate will dip into the negative (Figure 2.3.). 

The current fertility rate in Uzbekistan is 2.43 births per woman and the median age is 

27.8 years, allowing the population to continue to grow. While the fertility rate is high 

enough for population replacement now, it is less than half of what it was in 1980 when 

the fertility rate was 5.46 births per woman. This declining fertility rate trend is 

expected to continue over time. ("Uzbekistan Population 2022 - World Population 

Review", 2022).  

 

https://worldpopulationreview.com/countries/uzbekistan-population
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Figure. 2.2. Population growth in Uzbekistan. 

 

Figure 2.3. The population growth rate in Uzbekistan.  

 

Tashkent Province Statistical data on population growth showed the population of the 

area is gradually increasing every year with a 1.07 % average annual growth rate since 

1991 (Figure 2.4.).  
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Figure 2.4. Population growth in Tashkent Province. 

 

2.3 Annual agricultural crops area changes in Tashkent 

Province 

Study area Tashkent Province plays an important role in the economy of the country 

due to the development of industry and agriculture. The total land area of the Province 

is 1525.8 hectares, of which 337.4 thousand hectares are irrigated lands, 434 thousand 

hectares are pastures and hayfields, and 81.4 thousand hectares are forests. Irrigated 

land accounts for 58.5% of the total agricultural land. Agriculture accounts for 59.8% 

of the total agricultural output and livestock for 40.2%. In 2013, a total of 355.6 

thousand hectares of the Tashkent region were planted with agricultural crops, 

including 134.3 thousand hectares of wheat, 98.2 thousand hectares of cotton, 44.3 

thousand hectares of food crops, and 78.8 thousand hectares of other crops (vegetables, 

melons, fruits, and vineyards) (Statistics, 2014).  
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Figure 2.5. Agricultural croplands area changes in Tashkent Province. 

 

Figure 2.6. Cotton and winter-wheat area changes in Tashkent Province. 

Changes in agricultural croplands area since 1981 are shown in Figures 2.5 and Figure 

2.6 Analysis of agricultural croplands area changes indicates a gradual change 

structure of crop area until 2013 and then fluctuating until 2021 as shown in Figure 

2.5. It can be the result of different land use management policies by the government. 

For example, for the period 1981-2018 the area of cotton decreased by about 28%, 

meanwhile, the area of wheat increased dramatically from 5 thousand ha up to 125.1 
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thousand ha. The most changes happened after getting independence from the Soviet 

Union in 1991 (Statistics, 2020).  

 

2.4 Water resources of the study area 

 

The main sources of water for Uzbekistan are the Amu Darya and the Syr Darya, which 

are both transboundary international rivers. The Amu Darya watershed covers 81.5% 

of Uzbekistan. The discharge rate of the Amu Darya watershed is 78.46 km3 /year. 

The amount of inflow from within Uzbekistan is 4.7 km3 /year. Discharge is highest 

from April to September, accounting for 77% to 80% of the total annual discharge; 

discharge from October to March accounts for 20% to 23% of the total. The Syr Darya 

watershed covers 13.5% of Uzbekistan. The discharge rate of the Syr Darya watershed 

is 36.57 km3 /year, and the amount of inflow from within Uzbekistan is 4.84 km3 

/year. The Amu Darya supplies 63% of surface water in Uzbekistan, while the Syr 

Darya contributes 37%. The total available supply of surface water is 42.1 km3 /year, 

of which 9.5 km3 /year comes from within Uzbekistan, and 32.6 km3 /year flows in 

from outside the country. In other words, roughly 80% of the country’s main water 

source, surface water, originates from other countries. 

Basin hydrology analysis using GDEM data was carried out. It was found that there 

are 2 main river basins available in the area as shown in Figure 2.7. The Chirchik River 

located in Tashkent Province is the largest right midstream tributary of the Syrdarya 

River basin, where the population of over 3.0 million depends on water resources for 

irrigation and drinking water (Makhmudova and Makhmudov 2021). The highest point 

of the river basins in the Chirchik-Akhangaran district is the Beshtar peak (4299 m) 

which  



 

31 

 

is located on the Pskem ridge, which extends between the valleys of the Pskem and 

Chatkal rivers. (Gafforov et al.). 

 

Figure 2.7. Available water basins in Tashkent Province derived from Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 

Elevation Model (GDEM) data (Tachikawa et al., 2011). 
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2.5 Soils of the study area and their quality 

According to the Institute for Water Problems of Uzbekistan, the following soil types 

of the study area are determined as alluvial meadow, typical, meadow and dark 

chernozem, brown, light-brown, sierozem, and meadow steppe (Figure 2.8.). Besides, 

in terms of hydro-morphological series, there are grassland dark, grassland light, 

grassland-marsh, and marsh soils. The soils of the basin have been formed in various 

soil-climatic zones, such as Subnival (high mountainous light-brown soils); Humid-

climate-formed type (mountainous brown woodland and mountainous brown soils); 

Sub-arid (dark sierozem soils); semiarid (typical sierozem soils) (Hasanov 2005). 

Irrigated croplands of the Province is located in the Chirchik-Akhangaran River basin. 

The lands of the river basin are represented by soils from typical gray soils to light 

brown meadow steppe. Irrigated agriculture is developed mainly on soils that do not 

require reclamation to combat salinization. Pasture farming, forestry, and pasture 

livestock are also developed (V.G. Prikhodko 2005). 

The quality of irrigated arable cropland in the Tashkent is not identical, as 40.3% of 

the areas are classified as “good” in terms of quality, 17.7% of the areas are classified 

as “best”, 36.2% are classified as “average” and 5.8%  to the “below average” 

category. (V.G. Prikhodko 2005, p. 39) The average soil bonitet (soil quality 

parameter) score in the Tashkent Province is 66, which is 6 points higher than the 

average of the country (60). Such a comparison allows us to conclude that the irrigated 

cropland of the region has relatively better quality characteristics of soil fertility and a 

greater potential for obtaining high productivity of cultivated crops. (V.G. Prikhodko, 

2005) Therefore, the soil quality of the study area is qualified as good which is one of 

the best in the country (Kuziev, 2018). 
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Figure 2.8. The soil types map of Tashkent province (Khurshidbek Makhmudov 

2015). 
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3.1 Abstract 

The paper is a short review of scientific articles, local reports, and expert’s opinions 

on land degradation caused by climate change (in particular temperature and 

precipitation change) and land-use change in Central Asia (CA) with a special interest 

in Tashkent Province and aspects of regional water management in CA to clarify 

future study activities. Furthermore, the paper presents the preliminary analysis of 

climate and land-use changes in Tashkent Province and the author’s opinion about 

the impact of these changes on potential land degradation. Climate change analysis 

based on the 0.5° resolution National Centers of Environmental Prediction (NCEP) 

Global Forecast System Reanalysis (CFSR) weather dataset of the 35 years from 1979 

to 2013 demonstrated the trend of increasing temperature and variable trend of 

precipitation, but small overall precipitation decreases in the croplands, pasturelands, 

and grasslands of the study area. Irrigated agricultural cropland increased to 7.800 

ha from 1999 to 2010 to meet population demand and increase the national economy. 

Therefore, it is very important to carry out a comprehensive study of climate and land-

use change impacts on land degradation at a regional scale using high-resolution 

Spatio-temporal remotely sensed data for better assessment of land degradation. 

Key words: Climate change, land-use change, land degradation, vegetation 

productivity, GIS and remote sensing 
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3.2 Introduction 

Land degradation is the decline or loss of biological or economic productivity and 

complexity of different types of land covers such as irrigated croplands, rain-fed lands 

or rangelands, pasture, forest, and woodlands in arid, semi-arid, and dry sub-humid 

areas, resulting from land uses and human activities (§ 5, UNCCD 1994). The term 

land degradation originally comes from soil degradation and therefore it is often 

accepted the same as soil degradation because soil degradation negatively influences 

plant growth. Worldwide processes like global warming, land use land cover change, 

as well as population increase, advance and intensify land degradation. Particularly 

poor countries challenge degradation processes effect more than developed countries. 

Overuse of natural resources in environmentally sensitive areas also accelerates the 

process of degradation in these countries (Kertész, 2009). Land degradation has 

become a major problem in all CA countries and the issue needs urgent action because 

of rural population engagement in agriculture and livestock, moreover, global climate 

and land-use changes in the region are threatening sustainable agricultural 

development and land management. The latest investigations showed the decrease of 

water resources during the last decades in CA and it is estimated to be continued 

according to future climate change scenarios. The CA countries depend on their rivers 

for drinking water, irrigation, and hydroelectric power. In Kyrgyzstan and Tajikistan 

as, upstream countries the rivers are used mainly for hydro-power, while downstream, 

in Turkmenistan, Kazakhstan, and Uzbekistan, the rivers are used for agricultural 

production in the summertime. Agriculture is the largest water consumer in CA and a 

major employer of the CA’s workforce. The agricultural sector delivers a large amount 

of each country’s gross domestic product (GDP). Improving water quality in 

environmentally degraded landscapes is an urgent need. CA’s agricultural expansion 

and population growth over the past 30 years have placed a great strain on the area’s 

water resources. Given the strong dependence of the CA’s economies on irrigated 

agriculture, it was crucial to stabilizing interstate water exchange immediately after 

independence. In October 1991 the newly independent countries signed an agreement 

“On cooperation in the Field of Joint Management and Conservation of Interstate water 

resources”. This agreement affirmed the continuation of formerly existing Soviet 

structures of interstate water allocation. Transboundary sources of water make up the 
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bulk of water resources useable to Uzbekistan and were used for irrigated agriculture 

whereas market economic principles have not been introduced to the agricultural 

sector in Uzbekistan (McKinney, 2004). Therefore, Uzbekistan’s government had to 

bring up substantial budget subsidies to stabilize the maintenance of the huge water 

supply system. Regions under socio-hydrological stress are additional endangered by 

creeping land degradation. Therefore, Uzbekistan and most of the CA countries have 

an urgent need for improved information systems for integrated water management 

under the thread of land degradation caused by climate and land-use change. 

Geographic Information Systems (GIS) and remote sensing techniques play an 

important role and they have been used in many studies for detecting minor intensities 

and magnitudes of land degradation because of their low cost and time efficiency 

compared to field measurements. Considering above all, it is crucial to study the inter-

relationships between climate, ecosystem, and land-use changes using remote sensing, 

field observations, and modeling experiments for a better understanding of changes 

(Lioubimtseva and Henebry, 2005). Land degradation can be mapped by assessing 

spatial-temporal dynamics of land-use and land-cover changes (Kessler and 

Stroosnijder 2006; Lu et al. 2007, cited in Dubovyk et al. 2013). Therefore, GIS and 

Remote Sensing are effective tools to study land degradation at global, regional, and 

local scales. Land degradation assessments based on remote sensing approaches are 

useful in developing countries, where reliable data and financial means are limited 

(Dubovyk et al., 2012). GIS and remote sensing-based studies for the assessment and 

mapping of land degradation and desertification processes in arid and semi-arid 

regions are broadly recognized and well developed in a wide variety of research areas. 

Satellite technologies advancement together with remotely sensed image acquisition 

and analysis propose productive possibilities for monitoring land use and land cover 

change in the aforementioned fields (Khiry, 2007). 

 

3.3 Land Degradation in CA 

More than 60% of the population lives in rural areas and works in the agriculture sector 

in CA. Land suitable for crop production is 20% of the total agricultural land and 

livestock production plays an important role in the region (NASA, 2014). Land 

degradation of desert and semi-desert rangelands all over the whole CA region has 
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reached an alarming level, calling for an immediate response (Nordblom et al., 1997). 

Many regional and international efforts have been done to understand the reasons, 

magnitude, rate, and societal implications of land degradation, but these efforts have 

not been used effectively to address emerging issues. There are more than 16.4 million 

hectares of rangelands in CA, and 73% are affected by degradation of various origins, 

including human-induced and climate change impacts. And it is estimated that human-

induced land degradation affects 7.4 million hectares (UNCCD, 2006). Overgrazing 

of livestock was the most serious type of degradation among all other types of 

degradation accounting for 44% in rangelands, followed by uprooting and cutting off 

vital shrubs for fuel (25%). Other degradation types, including all abiotic disturbances 

such as drought and wind erosion, accounted for only 30 % of total degradation 

(Yusupov, 2003). The study of changes in vegetation activity seasonally and annually 

at a regional scale in CA revealed an overall 11.35% increase and 35% of the entire 

vegetated area of CA exhibited upward trends in growing season NDVI from 1982 to 

2003. The study concludes that a strong climate impact seasonal and growing season 

trends in vegetation activity in CA (Propastin et al., 2008). Net primary productivity 

(NPP) was derived in Kazakhstan from 2003 to 2011 by using Biosphere Energy 

Transfer Hydrology Model (BETHY/DLR) and results were studied regarding spatial, 

monthly, and inter-annual variations. The results showed mean NPP for Kazakhstan is 

143 g C m2 and it reaches its maximum productivity in June. Most monthly NPP 

anomalies occurred in northern semi-arid regions and these regions are strongly 

affected by climate change. And also, arid ecosystems showed lower inter-annual NPP 

variability in comparison with semiarid ecosystems (Eisfelder et al., 2014). 

Shokparova and Issanova (2013) studied sierozem soil degradation in irrigated lands 

of the foothills of Ile Alatau near the Targap (Almaty/Kazakhstan) by measuring soil 

organic matter (SOM) content, texture, and carbonate content parameters in the 

laboratory to determine changes between slope and plain areas. They found that soil 

humus content in 8° slopes is more than 1.17 times higher than in non-plowed land 

covered with natural vegetation and in plain areas situation is the same and more than 

2 times. Intensive land use in agriculture loses soil fertility and humus content in soil 

horizons. It is estimated that Uzbekistan annually losses US$ 31 million due to land 

degradation (World Bank, 2002, Dubovyk et al., 2013). Soil degradation affects 

croplands and grassland of Fergana, Kashkadarya Bukhara, and Navoi Provinces. 
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Agricultural croplands of Andijan, Namangan, Tashkent, and Surkhandarya Provinces 

are strongly affected by water erosion.  

About 33 % (161.000 ha) of the area in the Khorezm Province area experienced a 

different magnitude of land degradation because of low productive lands bordering on 

the natural sandy desert, proposing that low-fertility areas should be a top place in 

protection planning (Dubovyk et al., 2013). The number of cattle stock has increased 

by 46% and sheep and goats by 25 % since 1991. Poultry stock has been increasing 

more than two times starting in 1997 (Yusupov et al., 2010). Sheep farming operations 

are mainly based on the use of summer mountain pastures, and overgrazing has a high 

contribution to land degradation. During the last two decades, there has been a large-

scale degradation of pasture lands, due to the unsustainable pasture management in 

livestock farming, poor pasture maintenance, and other anthropogenic activities 

(Ibragimov et al., 2007). Rajabov and Thorsson (2009) studied vegetation changes in 

semi-desert rangeland of Uzbekistan caused by grazing using the State and Transition 

model to detect grazing-induced vegetation patterns by NDVI derived from satellite 

imagery and he found considerable vegetation changes resulting from grazing in the 

study area. According to local expert’s observations in the national report of 

Goskomzemgeodezkadastr (The State Committee of the Republic of Uzbekistan on 

Land Resources, Geodesy, Cartography, and State Cadaster) irrigation and wind 

erosion, reducing soil humus content, rising ground water table and soil salinity were 

observed as an indicator of land degradation in Tashkent Province. Buka, Piskent, 

Parkent, Bustanlik, and Akhangaran districts are influenced by irrigation erosion, and 

Bekobod district by wind erosion, while Akkurgan, Yangiyul, and Bekabad districts 

are fronting soil humus content reduction. In some regions of the study area rising 

ground water table is increasing soil bulk density. Studying land degradation at the 

field level in Tashkent Province at the local level is extremely expensive and requires 

a huge amount of labor work. Besides, investigating inter-annual changes in recent 

decades is impossible due to a lack of field data. 
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3.4 Climate Change in CA 

Climate aridity increases in CA because of higher temperatures and lower rainfall rates 

according to the future climate change scenarios. Future global warming may also 

reduce soil water content in many areas of semi-arid grassland in Asia. Heavy rainfall 

and increased wind speed due to climate change may increase soil water and wind 

erosion in some regions. Climate change accelerates the process of land degradation 

in semi-arid lands due to the expansion of the human population during the next decade 

(Sivakumar, 2007).  

All the above may create difficulties for agriculture and rural livelihoods in CA, but 

there are no detailed studies on this issue (Sommer et al., 2013). Climate plays an 

important role in vegetation condition and its development over time. Much of the 

changes in photosynthetic activity by vegetation are being driven by climate change, 

especially global warming (Propastin, 2008). Comprehensive research in studying the 

interrelationships between climate, vegetation cover, and land-use changes will help 

improve our understanding of the role of CA’s ecosystems in the global carbon cycle 

and global climate change. (Propastin, 2008). And also, climate change affects the 

availability of water resources and these resources are not equally distributed in CA. 

Tajikistan and Kyrgyzstan are located upstream and Kazakhstan, Turkmenistan, and 

Uzbekistan are downstream countries. Upstream countries have 80% of river runoff 

and consume only 16%, while the downstream countries contributed 14% of total river 

runoff and withdrew as much as 83% (Micklin 1988 and Chen et al., 2013). Many 

studies proved that glaciers in the Tien Shan and the Pamir continue to retreat and are 

shrinking. Most studies also confirmed the continuation of retreat and shrink, despite 

only a few studies conducted on mass and volume changes (Unger-Shayesteh et al., 

2013). In 2000-2001, 2008 and 2011 major crop yields failed due to the decrease in 

water supply, upstream water use, and droughts in the last years (CACILM, 2006). 

Moreover, the amount of water is predicted to reduce further given the impacts of 

climate change and increasing demand from the continuously growing population 

(Lioubimtseva and Henebry, 2009, Perelet, 2007, cited in Dubovyk et al., 2013). CA 

countries will face temperature increases in the coming decades and the aridity index 

is expected to increase throughout the entire region, mostly in the western parts of 

Turkmenistan, Uzbekistan, and Kazakhstan.  And precipitation is expected to decrease 
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in Uzbekistan and Turkmenistan but a medium increase is projected for winter in the 

eastern part of Kazakhstan and Kyrgyzstan and Tajikistan. Temperature increase can 

benefit northern and eastern Kazakhstan with a longer growing season, warmer winter, 

and little precipitation increase; however western Turkmenistan and Uzbekistan can 

get affected by frequent droughts and extremely high demand for irrigation water 

(Lioubimtseva and Henebry, 2009). Arid zones of CA is verified to be sensitive to 

climate change in the last 100 years, it is expected to have a negative influence on 

projected future temperature increase (IPCC: Climate Change, 2007 and Feng, 2013). 

Mountainous regions of CA are facing a frequency of flood increase due to heavy 

rainfall and it is hardly affecting the poorest population modelled projections show 

even more changes in the future. The temperature in CA may increase by 3.7°C on 

average by the end of this century, in particular during June, July, and August which 

are more important months for crops, and higher temperatures during the vegetation 

period increase drought risk and decline productivity of agricultural production (IPCC, 

2007 and Bobojonov and Aw-Hassan, 2014). Bobojonov and Aw-Hassan, (2014) 

studied climate change's impact on agricultural producers in the far future by using 

bio-economic modeling. Modeling results showed that the sensitivity of agricultural 

systems of CA to climate change depends on agro-ecological zones and socio-

economic aspects. During 2010-2040 climate change will benefit farmers in 

Uzbekistan due to good weather conditions for crop growth, but it is expected to 

decline during 2070-2100 because of temperature increase and water deficit, especially 

if irrigation water declines. The impact of climate change on wheat productivity was 

studied in key agro-ecological zones of CA countries by using the CropSyst model for 

14 wheat varieties grown on 18 sites. The study found an increase in wheat yield by 

12 % because of temperature increase which helped faster crop growth and high 

biomass accumulation in 14 sites but it varies between sites, soils, wheat varieties, and 

agronomic management. The hotter temperature during flowering increases the risk of 

sterility and grain yield reduction in rainfed spring areas in the north and some parts 

of irrigated winter wheat in the south of CA (Sommer et al., 2013).  
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3.5 Climate Change Analysis in Tashkent Province 

Tashkent Province (figure 3.1) is located in the northeastern part of the country, 

between the Syr Darya River and the western part of the Tien Shan Mountains. It 

borders Kyrgyzstan, Tajikistan, Sirdaryo, and Namangan Provinces. Chatkal, Pskem, 

and Ugam mountain ranges are located in the northeastern and eastern parts of the 

Province (upper croplands and grasslands). There are three large water reservoirs 

located in the province: Charvak, Tashkent, and Akhangaran. Most of the area located 

in the south and southwest is a predominant plain that slopes gradually towards the 

Syrdarya River (lower croplands and grasslands) (The Great Soviet Encyclopedia 

1979). The total land area of Tashkent Province is 1.526 Mio. ha including 816.4 

thousand ha of agricultural land and 709.6 thousand ha of other land types (built-up, 

desert, forest, etc.). Agricultural lands consist of 305.1 thousand ha of irrigated 

croplands, 425.4 thousand ha of pasturelands, 35.7 thousand ha of rainfed croplands, 

38.5 thousand ha of gardens, and 11.7 thousand ha of vineyards 

(Goskomzemgeodezcadastr, 2008). The population was 2696.1 thousand people in 

2013 and the population density was 194.6 people per km2. The climate is a typically 

continental climate with humid, relatively mild wet winters and long, hot dry summers. 

The mean January temperature is -1°C to -2°C and the mean July temperature is 

26.8°C. The average annual precipitation is 300 mm in the plain region, 300-400 mm 

in the piedmont region, and 500-600 mm in the mountains. Precipitation mostly occurs 

in the early spring and permanent snow cover is located in the higher mountains. The 
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main river Syrdarya and its tributaries Chirchik and Akhangaron Rivers are fed by 

snow and glaciers and they are used for irrigation and hydroelectric power.  

Figure 3.1. 30 m grid Digital Elevation Model (DEM) of Tashkent Province retrieved 

from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM) (Tachikawa et al., 2011). 

 

Climate change analysis was studied based on the data (Saha et al., 2014) of the 

National Centers for Environmental Prediction (NCEP) Climate Forecast System 

Reanalysis (CFSR) from 1979 to 2013. CFSR weather data cannot replace the accurate 

http://rda.ucar.edu/pub/cfsr.html
http://rda.ucar.edu/pub/cfsr.html
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weather data but it is useful where data are not available or existing data are not reliable 

due to random errors, especially in developing countries. (Dile et al., 2014).  

 

Figure 3.2. Average monthly surface precipitation over Tashkent Province 

interpolated by Kriging using CFSR weather data between 1979-2013. 

 

The lack of reliable and precise data on climate and ecosystems required for regional 

climatic and biogeographic modeling is one of the major sources of uncertainty about 

vulnerability and impacts of climate and land-cover changes in arid lands of CA. 

(Lioubimtseva et al., 2005). Using CFSR precipitation and temperature data in the 
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watershed model provides better stream discharge simulations than using conventional 

weather data where stations are located more than 10 km from the watershed (Fuka et 

al., 2014) (Figure 3.2). Based on the amount of precipitation, the climate zone of 

Tashkent Province is divided into two regions: sub-humid and semi-arid. Precipitation 

exceeding 600 mm is a sub-humid zone and precipitation in the range of 300-500 mm 

is a semi-arid zone. Sub-humid zones are located on a slope and semi-arid zones are 

practiced by agriculture. The drought season lasts from June to August and during this 

period agricultural croplands and pasturelands receive less than 10 mm of 

precipitation. The results demonstrated the trend of increasing temperature and 

variable trend of precipitation, but little overall decrease over the croplands, 

pasturelands, and grasslands of the study area. The rainfall is not well distributed 

throughout the year; thus, pastureland and rangelands of the study area are highly 

influenced by the climate in drought seasons like 2000-2002 and 1995-1996.  

We may expect a significant decrease of evapotranspiration in arid and semi-arid 

climate areas due to a lack of soil water content when the temperature rises where 

precipitation is not expected to increase, and thus it accelerates the process of 

desertification. Some scientists believe that climate change (temperature and 

precipitation variability) can have an advantage in the agricultural sector, because it 

can extend vegetation growing seasons, and a higher concentration of carbon dioxide 

(CO2) can improve plant growth. But agricultural land, as well as pasturelands and 

grasslands in the entire study area, are dependent on irrigation and rain water 

respectively. Even though on a global scale the temperature is increasing slowly and 

the precipitation is expected to be increased slightly but we should consider that the 

temperature increases and precipitation decrease is very active during the summer 

vegetation growing period in Tashkent Province. Therefore, it is crucial to study the 

impacts of climate change on land degradation during the vegetation period (Figures 

3.3, 3.4, 3.5). 
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Figure 3.3. Average monthly surface temperature over Tashkent Province interpolated 

by Kriging using CFSR weather data from 1979 to 2013. 
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Figure 3.4. Annual average temperature change diagrams of croplands and grasslands 

in Tashkent Province. 

 

Figure 3.5. Annual precipitation changes diagrams of croplands and grasslands in 

Tashkent Province. 
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3.6 Land Use Change Analysis in Tashkent Province 

Studying changes in land use and land cover is a good indicator to study the 

ecosystem's vulnerability and landscapes to environmental change. (Peters and 

Lovejoy, 1992 cited in Sivakumar, 2007). Extreme agricultural practices in the last 

several decades are one of the important deriving causes of land degradation and it can 

be seen in many parts of the world it is crucial to consider the influence of drylands 

climates on soil and vegetation, furthermore, it is very important to adopt uniform 

criteria and method to assess desertification and monitoring of dryland degradation. 

And also, it is fact that extensive land-use changes resulted in soil erosion in large 

areas in several parts of the world (Sivakumar, 2007). Irrigated land was expanded 

from 4.51 to 7.99 million ha from 1960 to 2000 in the Aral Basin to meet the demands 

of increasing population and country development (Roll et al., 2005). Land cover and 

land-use change analysis at a regional scale in CA were carried out through a 

classification approach with implemented classification tree model (C5.0) algorithm 

using MODIS time series for the years 2001 and 2009. And the results showed 

significant changes in human-induced water body alterations, seasonal precipitation 

affecting sparsely vegetation areas variability, and forest loss by forest fires and 

logging (Klein et al., 2012).  

Figure 3.6. Changes in irrigated agricultural cropland between 1999 and 2010 in 

Tashkent Province. 
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Figure 3.7. Population growth between 1991 and 2013 in Tashkent Province. 

The other study of land-cover changes and degradation in the CA deserts using remote 

sensing and geostatistical methods was done in three key periods (the mid-late 1970s, 

around 1990, and 2000). The study revealed degradation existed in some areas of the 

region because of enhanced oil recovery and another rangeland area is getting better 

due to a decrease in livestock in Kazakhstan (Karnieli et al., 2008). Chen et al., (2013) 

studied land use land cover change and variations of ecosystem services which include 

net primary productivity (NPP), evapotranspiration (ET) and grain production in CA 

between 1990 and 2009 and they found most significant changes occurred in farmland 

abandonment and reclamation and farmland extent during 2000-2009. Farmland NPP 

was higher than natural vegetation and NPP increased with the rise of temperature in 

2000 despite the decline in precipitation. The actual ET in the central area is lower 

than in the northern and eastern parts of CA. Besides, irrigated agricultural areas in 

one of the CA countries Turkmenistan expanded to 86 % equivalent to a loss of about 

4500 km2 previously available for natural pastures since the 1980s. Pastures close to 

the irrigated and populated area were not affected and vegetation cover increase was 

found in many places of the country. But remote pastures were affected by a higher 

degree of vegetation degradation, mainly because of the development of soil biogenic 
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crust as well as flooding and technology-related desertification that occurred around 

man-made structures. (Kaplan et al., 2014). Irrigated lands in Uzbekistan increased 

from 2.2 million ha in 1953 to 4.21 million ha in 2013, thus the long-term growth rate 

was about 1.5 % a year. Expansion and densification of irrigated cropland in 

Kashkadarya Province of Uzbekistan were studied by classification trees method using 

Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000. Cropland 

extent developed from 134.800 ha to 477.000 ha between 1972/73 and 2009 and winter 

wheat harvesting doubled to approximately 211.000 ha from 1987 to 1998 (Edlinger 

et al., 2012). Irrigated cropland in Tashkent province (figure 6) has grown up from 

297.3 thousand ha to 305.1 thousand ha between 1999 and 2010 

(Goskomzemgeodezkadastr, 2010). 

According to the State Statistical Committee of Uzbekistan, we can see an increase in 

food crops together with fruits, potatoes, melons, and vegetables while grain crops stay 

relatively stable and cotton areas slightly decreased between 2010 and 2013 (figure 8).  

 

 

Figure 3.8. Changes in agricultural cropland area in Tashkent Province. 
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Population increase makes more pressure on natural resources and intensive land-use 

practices which causes a variety scale of land degradation in agricultural land as well 

as pasturelands and rangelands of Tashkent Province. Statistical data of the Province 

showed a 20% population increase with a 1.07 % average annual growth rate since 

1991 (figure 7). The study area consists mostly of agricultural land, pasturelands, and 

grasslands and they play an important role in the rural population and national 

economy. Authors believe that each type of land use has its particular drivers of land 

degradation like agricultural land degradation by lack of soil water content, soil 

salinity, wind and water erosion, intensive land use, and pastureland as well as 

grasslands degradation by climate change, land-use change, overgrazing, and soil 

runoff. 

 

3.7 Conclusions 

Most of the carried-out research to study land degradation in CA countries used 

medium spatial resolution remotely sensed data such as NOAA/AVHRR and MODIS 

which pixels include a mixture of many land covers but they do not capture certain 

land degradation. And throughout reviewing research articles as well as national and 

international reports, it is found that study related to land degradation caused by 

climate and land-use changes at the local level was not carried out throughout Tashkent 

Province to see the inter-annual Spatio-temporal changes in land degradation caused 

by existing problems such as population increase, intensive agricultural practices, and 

water availability in last decades. At the same time modeling the relationship between 

climate change, land-use change, and land degradation is very important for a better 

understanding of interrelationships between climate, vegetation cover, and land 

degradation changes which helps to improve our understanding to find the main drivers 

of land degradation in Tashkent Province. Climate change analysis showed an 

increasing trend of temperature and highly variable trends in precipitation, but it 

indicated a small overall decrease, and the rainfall is not seasonally and quantitatively 

well distributed throughout the year, thus grasslands of the study area can be highly 

influenced by climate change in drought seasons. Furthermore, population increase is 

demanding more natural resources and expansion of irrigated croplands and this leads 

to intensive land use, overgrazing, and other environmental problems in the study area. 
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Using high-resolution remote sensing data is useful for informing land management 

decisions and understanding the interactions between land-use change, climate change, 

and land degradation where accurate field data of the last decades are limited. 
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4.1 Abstract 

Accurately mapping land use and land cover including agricultural use and the state of 

crops at various stages is important to address specific agro-ecological challenges, 

implement sustainable agricultural practices, and monitor crops periodically. This 

study aims to provide a timely and accurate main irrigated crop types mapping at 10m 

resolution for Tashkent province based on multi-temporal Sentinel-2 data acquired for 

the growing season in 2018. This paper shows the potential use of multitemporal 

Sentinel-2 satellite data to derive an up-to-date irrigated crop types classification map 

of the study area. As single-date satellite imagery does not allow proper cropland 

classification, multitemporal and high-resolution Sentinel-2 data was used to capture 

small cropland fields and specific crop types for the vegetation period (April to 

October 2018). NDVI monthly profiles of crop types as well as additional 10 m 

resolution bands 2 and 3 were used as input data to perform and assess three 

classification algorithms: Support Vector Machine (SVM), Random Forest (RF), and 

Maximum Likelihood Classification (MLC). Accuracy assessment results showed that 

SVM showed the highest Overall Accuracy (OA) and Kappa Accuracy (KA). KA of 
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classified images for SVM were 0.90 and 0.89 for the RF algorithm. Both performed 

well with close values. But MLC showed a lower result of KA 0.60. The paper also 

compares the area of derived irrigated cropland area with data from the State 

Committee for Statistics of Uzbekistan for selected crop types. Values for the crops 

"cotton" and "wheat" derived by SVM and RF methods show a high correlation with 

the provided statistical data. Based on the results, the SVM classification method is 

recommended for further mapping and monitoring of irrigated crop types in the region 

when Sentinel-2 data is used. 

 

Keywords: Irrigated croplands, Sentinel-2, Support-vector machine, random forest, 

maximum-likelihood, State Statistics croplands data, Tashkent, Uzbekistan 

4.2 Introduction 

(LULU) maps are of high importance for a variety of sectors in the developing world 

including food security, land use planning, water, and natural resources management 

decisions (Saah et al., 2019). Nowadays remote sensing (RS) imagery together with 

geoinformation systems (GIS) tools is widely used for LULC mapping. Medium and 

coarse resolution RS imagery provide general LULC classifications but cannot 

distinguish specific LUs i.e. on crop level due to similar reflectance values (Jia et al., 

2018). Therefore, freely available high spatial resolution RS imagery such as Sentinel-

2 is necessary to derive timely and accurate information on irrigated croplands and to 

better understand the impact of spectral-temporal properties of various crop types 

allowing control and monitoring of irrigated croplands over larger areas. 

Uzbekistan is one of the Central Asian (CA) countries and is located at the heart of the 

Eurasian continent (Liu, 2011). Climate change in CA countries is expected to strongly 

impact agricultural productivity and food security in the region. Temperatures are 

predicted to increase by 1.7 °C and 2.6 °C and precipitation to rise by 9 % and 12 % 

under global warming scenarios of 1.5 °C and 2.0 °C, respectively (Li et al., 2020).  

Besides, the population increase in CA is leading to higher consumption of natural 

resources, expansion of irrigated croplands, and intensive land-use practices (Erdanaev 

et al., 2015). Agriculture is one of the main sectors of Uzbekistan's economy with 
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agriculture, forestry, and fisheries contributing 32,40 percent of the country's total 

GDP in 2018. 53,20% of agricultural products belong to crop production and 46,80% 

to livestock. Eighty percent of the country is classified as desert or semi-desert. 

Agricultural land totals 20,26 million hectares including only 3.7 million hectares of 

irrigated agricultural land in 2018. The major crops are cotton and wheat. The share of 

Tashkent province towards the total volume of agricultural products, forestry, and 

fisheries amounts to 15.7 percent, the highest in the country (Zvi Lerman, 2019).   

In Uzbekistan, accurate accounting and monitoring of land use in agriculture are very 

important. Unfortunately, several problems have accumulated in the field of geodesy, 

cartography, and cadastre in the country. The last land survey was conducted 40 years 

ago. The procedure for allocating agricultural land was adopted 20 years ago and does 

not meet modern requirements. This is evidenced by the fact that 150 thousand 

hectares of arable land were arbitrarily occupied in 66 districts of the state 

(Mirziyoyev, 2020). Several studies on LULC mapping and change detection have 

been carried out in Uzbekistan using RS imagery and GIS tools. (Chen et al., 2013) 

studied land use and land cover change and variations of ecosystem services including 

net primary productivity (NPP), evapotranspiration (ET), and grain production in CA 

between 1990 and 2009. They found out that the most significant changes were 

triggered through farmland abandonment and reclamation showing a significant 

increase in farmland between 2000 and 2009. Farmland NPP was higher than natural 

vegetation and NPP increased with the rise of temperature in 2000 despite a decline in 

precipitation. The actual ET in the central area was lower than in the northern and 

eastern parts of Central Asia.  

Irrigated lands in Uzbekistan increased from 2.2 million ha in 1953 to 4.21 million ha 

in 2013, thus the long-term growth rate was about 1.5 % annually (Lerman, 2018). 

Expansion and densification of irrigated cropland in Kashkadarya Province of 

Uzbekistan were studied using classification tree methods based on Landsat MSS and 

TM data from 1972/73, 1977, 1987, 1998, and 2000. Cropland extent developed from 

134.800 ha to 477.000 ha between 1972/73 and 2009 and winter wheat harvesting 

doubled to approximately 211.000 ha from 1987 to 1998 (Edlinger et al., 2012). 

Irrigated cropland mapping was performed using pixel-based (PB) and field-based 

(FB) robust non-parametric machine learning algorithms such as RF, SVM, and a 
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common parametric MLC using multi-temporal Landsat 8 images in Khorezm 

Province of Uzbekistan. Accuracy assessment results showed higher OA and kappa 

index (KI) for FB-RF and FB-SVM algorithms over the PB-RF, PB-SVM, and PB-

MLC algorithms. The parametric FB-MLC showed the lowest OA and KI (Basukala 

et al., 2017). Alikhanov et al., (2020) studied LULC change in Tashkent Province 

between 1992-2018 using Landsat images. They found that grassland, shrubland, 

meadow, as well as agricultural lands, decreased from 7000km2 in 1992 to 3000km2 

in 2008 then increased again in 2018. (Juliev et al., 2019) carried out a LULC change 

detection analysis between 1989-2017 in the Bostanlik District of Tashkent Province, 

which is located in the mountain area. They used Maximum Likelihood Classification 

using Landsat data with the resulting classes: snow cover, bare soil-rock, forest, 

waterbody, built-up areas, and agriculture. The results showed that for the last 28 years, 

significant changes occurred within classes of the forest, built-up areas, bare soil, and 

snow cover. 

LULC change in the mountain areas of Tashkent Province using Landsat NDVI values 

as an indicator of land degradation was studied from 1989 to 2018 (Pulatov et al., 

2020). Their research results showed that overgrazing had a significant effect on the 

mountain ecosystem of Tashkent Province with a decrease of 29 thousand ha of 

pastureland from 1989 until1998, which increased again between 2008 and 2018. 

Gerts et al., (2020) studied agricultural land-use change in the Orta Chirchik district of 

Tashkent province between 1994 and 2017. The study was based on Spectral 

Correlation Mapper classification using Landsat and Sentinel-2 NDVI profile analysis. 

The results showed that the combination of both Landsat and Sentinel-1 radar data for 

Spectral Correlation Mapper classification increases classification accuracy. We 

believe that long-term change detection analysis should be performed using similar 

image acquisition dates or months for each year to consider vegetation phenology and 

specific climatic conditions. This approach is missing in the above-mentioned research 

and can result in misclassification and errors in LULC change detection analysis 

(Alikhanov et al., 2020).  

Most of the published data on agricultural land use and land cover change analysis of 

local experts in Uzbekistan are based on the reported statistics through state 

organization bodies that are usually outdated and not very reliable and there is little 
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information available on the extent of agricultural LUs. Up to now, no study has 

provided a deeper understanding of spectral-temporal information derived from 

Sentinel-2 satellite imagery for crop classification on the provincial level in the study 

area. Thus, the RS approach of irrigated crop types mapping using 10 m resolution 

bands of Sentinel-2 data can play an important role in effective land use planning and 

management which are essential to assuring the sustenance of its population while 

fostering environmental sustainability. To achieve this approach relatively modern and 

robust classification algorithms such as SVM, RF and MLC can be utilized. The 

objective of this study aims to provide a timely and accurate irrigated crop types map 

for Tashkent province based on multi-temporal Sentinel-2 data acquired for the 

growing season in 2018. For this purpose, three supervised classification algorithms 

are tested and cross-evaluated. Classification results are compared with available state 

statistics data on crop types for future applicability and can thus provide an important 

basis for more sustainable development, future monitoring, planning, and decision-

making.   
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4.3 Materials and Methods 

4.3.1 Study area  

 

Figure 4. 1.  Location of the study area and the administrative districts. 

 

Tashkent Province was formed in 1938 as part of the Uzbek Soviet Socialist Republic 

(SSR) and is located in the northeast of Uzbekistan between 40.18 and 42.29 N and 

68.64 and 71.27 E of the Greenwich meridian or between the western part of the Tien 

Shan mountains and Syrdarya river. The Province borders Kazakhstan in the north and 

north-west, with Kyrgyzstan in the north-east, Namangan Province in the east, 
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Tajikistan in the south, and with Syrdarya Province in the south-western part (Figure 

4.1).  

Tashkent Province consists of 15 administrative districts and 7 cities with a population 

of 2.81 million in 2018 (State Statistics, 2019). The climate is a typically continental 

climate with humid, relatively mild wet winters and long, hot, and dry summers. The 

mean January temperature is -1°C to -2°C and the mean July temperature is 26.8°C. 

The average annual precipitation is 300 mm in the plains region, 300-400 mm in the 

piedmont region, and 500-600 mm in the mountains. Precipitation mostly occurs in the 

early spring and permanent snow cover is located in the higher mountains. The main 

river Syrdarya and its tributaries Chirchik and Akhangaron Rivers basins are fed by 

snow and glaciers and they are used for irrigation and hydroelectric power (Erdanaev 

et al., 2015). According to statistical data, 50,70% of the Tashkent province’s 

population live in rural areas where most agriculture is practiced. These areas are 

located in low elevated lands.  

4.3.2 Data Collection and Pre-Processing 

 

The total number of 28 images during the crop growing season in 2018 which are 

freely available Sentinel-2 (Level-1C) multi-spectral satellite images of the study area 

were downloaded from the Earth Explorer website of the United States Geological 

Survey (USGS). Band parameters of each spectral band are given in Table 1. These 

products underwent radiometric and geometric corrections but were not corrected 

atmospherically (Drusch et al., 2012). Therefore, the images were pre-processed using 

the Semi-Automatic Classification plugin and the DOS1 (Dark Object Subtraction) 

correction tool in QGIS (Congedo, 2021) allowing the transformation of Top-Of-

Atmosphere (TOA) reflectance to land surface reflectance values which is a basic 

requirement for multi-temporal image analysis. Generally, Sentinel-2 has a temporal 

resolution of approximately 5 days. But we used only the best cloud-free multi-

temporal images for each month with acquisition dates covering the growing season 

(April to October) selected for the study area.  
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Table 4. 1. Band parameter of each spectral band of Sentinel – 2. 

 

Band 

number Description 
 

Wavelengths 

(nm) 

Spatial Resolution 

(m)  

1 Coastal aerosol 433-453 60 

2 Blue 458–523 10 

3 Green 543–578 10 

4 Red 650–680 10 

5 Vegetation Red Edge (RE) 1 698–713 20 

6 Vegetation RE 2 733–748 20 

7 Vegetation RE 3 773–793 20 

8 Near-Infrared (NIR) 785–900 10 

8a Narrow NIR 855–875 20 

9 Water vapor 935–955 60 

10 Shortwave infrared (SWIR)- Cirrus 1360–1390 60 

11 SWIR 1 1565–1655 20 

12 SWIR 2 2100–2280 20 

 

Table 4. 2. Sentinel-2 data was used for image classification. 

 

Scene      

Path/Row April May June July August September October 

T42TVL 20 25 24 09 03 02 02 

T42TWK 12 07 06 01 05 04 04 

T42TWL 12 07 06 01 05 04 04 

T42TWM 12 07 06 01 05 04 04 

 

Irrigated croplands are located in low elevated areas where irrigation canals exist. 

Therefore, irrigated croplands were separated from Mountain areas using high-

resolution base maps in ArcMap. A total of four Sentinel -2 tiles covered the study 

area (Figure 2). All tiles were processed separately then mosaiced and clipped using 

the study area shapefile. Only 10 m resolution visible bands: 2, 3, 4, and 8 were used 

for image classification. Bands 4 and 8 were used for the calculation of monthly NDVI 

time-series data then composited creating multi-temporal NDVI images for all seven 

months. Visible bands 2 and 3 were also composited in the same way and combined 

with the NDVI composites before image classification. The images were projected to 

WGS 1984 Universal Transverse Mercator (UTM), Zone 42 coordinate reference 
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system. All classified images were smoothed to remove the noises and improve the 

quality of classified output.  

 

Figure 4. 2. Outline of irrigated cropland area. 

 

4.3.3 Methodology 

 

The methodological workflow flowchart is given in Figure 3 consisting of the 

following steps: 1) Preparation of input data including the download of cloud-free 

images and band selection; 2) data processing, including atmospheric correction (TOA 

to LSR conversion), creation of NDVI time series and temporal spectral profiles for 

specific crop types as well as delineating multitemporal training samples; 3) irrigated 
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cropland classification using MLC, SVM and RF algorithms; 4) evaluation of 

classification accuracy and comparison of classified irrigated cropland area with the 

State Statistics data. The identification of specific crop types can be achieved using a 

variety of vegetation indices (Sonobe et al., 2018). NDVI-based spectral-temporal 

profiles taken during the vegetation period have a high potential to properly classify 

heterogeneous crops on farmland. 

Figure 4. 3. Flowchart of the study methods 

More than 85% overall accuracy can be achieved using five or more acquisition dates 

covering different phenological phases of vegetation, for example, the period before 

winter-wheat harvest and summer crops in Uzbekistan (Conrad et al., 2014). Thus, 

monthly NDVI profile values for the growing season between April to October were 

used for the delineation of training samples. In addition, multitemporal NDVI image 

composites in combination with composites of Band 2 and Band 3 were used as input 

data for supervised image classification due to their high spatial resolution of 10 m. 
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The high resolution of all input bands including the NDVI calculations was an 

important factor to derive crop-specific land use maps. 

 

4.3.4 Training and Ground Truth data 

 

Archived images from high-resolution satellites for ground-truthing and accuracy 

assessment are costly for scientists in developing countries. But freely available 

Google Earth (GE) images with high spatial resolution can be utilized as training 

samples and ground truth for mapping of LULC on a regional scale (Ahmed Ibrahim 

Ramz, 2015). Available GE images were also used as training and testing samples by 

Thanh Noi and Kappas (2017). It is recommended that the training sample size should 

represent approximately 0.25 percent of the study area for land cover classification of 

satellite images (Thanh Noi and Kappas, 2017).  

Table 4. 3. Training and Ground Truthing Samples. 

Class Name 

Number of Pixels 

Class 

Color 

Training 

Samples 

Ground 

Truthing 

Cotton 2528 250   

Wheat 5750 500   

Rice 3038 250   

Other Crops 2248 250   

Fruits/Trees 3642 250   

Bare land 2560 250   

Others 2601 250   

Water 2899 250   
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Figure 4. 4. Idealized cropping calendar of the main crop types grown in the study 

area based on the guidance of regional agricultural land management authority and 

local experts. 

 

When the training sample sizes are large enough the performance of classifiers 

achieves better results (Thanh Noi and Kappas, 2017). 

High accuracies are not achieved by having a large number of training samples. The 

main factors for ensuring higher accuracies are clarity of samples used in training, 

diversity of training samples, spatially equal distributed samples, and several samples 

(Gumma et al., 2020). To keep spatially well-distributed samples per class, 135 field 

samples were taken for each class except “wheat” due to crop rotation practices, 

requiring more training samples. Some wheat fields are given to farmworkers as a 

subsidy after harvest where they can use the land to grow necessary crops for 

themselves until the end of the harvesting season.  Overall 8 classes were chosen for 

image classification (see Table 4.3): “Cotton”, “Wheat”, “Rice”, “Other Crops”, 

“Fruits/Trees”, “Bare land”, “Others”, and “Water”. “Other crops” include forage, 

melons, and vegetable crops. “Others” include roads, river sands, and non-vegetated 

areas. The class “wheat” includes winter wheat and “secondary crops” after winter 

wheat.  

Usually, crop rotation is practiced after winter wheat is harvested such as maize, beans, 

and sunflowers. State statistics do not give any reports on secondary crops after winter 

wheat. The crops planted after winter wheat are given as a subsidy for farmworkers or 

as additional income sources for farmers. To check the performance of classifiers 250 

ground-truthing pixel points were taken for accuracy assessment. Freely available GE 
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images were used for ground-truthing based on the knowledge of the cropping calendar 

shown in Figure 4.4.   

4.3.5 Classification Methods 

 

Nowadays, there are efficient and inexpensive GIS tools and methods available for the 

monitoring of LUs. In general, image classification can be grouped into three 

categories: a) supervised and unsupervised according to the way of learning, b) 

parametric and non-parametric based on data distribution assumptions, and c) hard and 

soft based on the number of outputs for each spatial unit. These classifiers are either 

based on object-oriented classification (OOC) or pixel-based classification (PBC) 

methods (Jawak et al., 2015). OOC has an advantage over PBC when very high and 

hyperspatial resolution data are used for image classification (Quynh Trang et al., 

2016).  

In unsupervised classifications, pixels are assigned to groups based on each pixel's 

similarity to other pixels (no truth, or observed, data are required). In supervised 

classifications, the user instructs the image processing software to specify the land 

cover classes of interest. For each land cover type of interest, the user creates "training 

samples" - places on the map that are known to be representative of that land cover 

type. The main problem with unsupervised classification is that spectral data will not 

always correspond to spectral classes and that the final grouping of clusters thus needs 

to be decided by the human operator. Supervised classification, on the other hand, 

provides more accurate classifications and also allows for more control over the 

classification process. Especially for large areas and diverse conditions (e.g. differing 

seasonality of phenology at different sea levels), extensive and thus expensive training 

is required (Chuvieco, 2020). Therefore, the following three supervised classification 

algorithms were used:  

 

Support Vector Machine Classification: The Support Vector Machine method is an 

excellent classification method if the number of input variables is high (Sonobe et al., 

2018). The strength of SVM is to produce good results using small training samples as 

well as a high level of class separability. The separation of two classes in the SVMs is 
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done by a hyperplane. A hyperplane is a minimum distance (also called margin) 

between training samples of two classes. Support vectors are the nearest spectra, 

which are used for identifying the hyperplane (Baghdadi and Zribi, 2016). The SVMs 

have four basic kernels: linear; polynomial, radial basis function, and sigmoid. In our 

research, we used a standard linear basic kernel which is available in ArcMap tools.  

 

Random Forest Classification: The random Forest method is a non-parametric 

supervised machine learning classification method and it trains a model according to 

known values given by training samples. RF classifier tool in ArcMap creates models 

and generates predictions based on Leo Breiman's RF algorithm (Breiman, 2001). As 

an attribute selection measure, the RF classifier uses the Gini Index. The Index 

measures the impurity of an attribute related to the classes. For a given training set T, 

selecting one case (pixel) at random and saying that it belongs to some class Ci, the 

Gini index can be written as: 

 

∑ ∑ (
𝑓(𝐶𝑖, 𝑇)

|𝑇|
) (

𝑓(𝐶𝑖, 𝑇)

|𝑇|
)

𝑗≠𝑖

 

Equation 4.1 

 

Where (
𝑓(𝐶𝑖,𝑇)

|𝑇|
) is the probability that the selected case belongs to class Ci. Each time 

a tree is grown to the maximum depth on new training data using a combination of 

features (Pal, 2005). In our research, the maximum number of trees was selected as 50, 

the maximum tree depth was 30 and the maximum number of samples per class was 

1000 by default. 

 

Maximum-Likelihood Classification: The Maximum Likelihood Classification 

algorithm is based on Bayes’ theorem and calculates the likelihood distributions for 

the classes. The likelihood distributions are assumed based on multivariate normal 

distribution models (Richards and Jia, 2006). There should be a sufficient number of 
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training pixels to allow the calculation of the covariance matrix used in this algorithm. 

The likelihood function, described by Richards and Jia (2006), is calculated for each 

pixel as: 

 

𝑔𝑘(𝑥) = 𝑙𝑛𝑝(𝐶𝑘) −
1

2
𝑙𝑛 |∑

𝑘
| −

1

2
(𝑥 − 𝑦𝑘)𝑡 ∑ (𝑥 − 𝑦𝑘)

−1

𝑘
 

 

Equation 4.2 

 

where, 𝐶𝑘 = land cover class k; 𝑥 =spectral signature vector of an image pixel; 

𝑝(𝐶𝑘) = probability that the correct class is  𝐶𝑘 ; |∑𝑘 | = determinant of the 

covariance matrix of the data in class 𝐶𝑘;  ∑ =−1
𝑘  the inverse of the covariance matrix; 

𝑦𝑘 = spectral signature vector of class k. 

4.3.6 Cropping Calendar 

 

In Uzbekistan, cotton and winter wheat are the two major crops cultivated. Cotton is 

the most exported crop in the country, while wheat is the main grain crop in the 

country. Other irrigated crops are rice, watermelons, alfalfa, maize, sunflower, and 

fodder crops. The cropping times may differ slightly according to climate conditions. 

The cropping calendar was created based on the guidance of the regional agricultural 

land management authority and local experts of Tashkent Province, Uzbekistan 

(Figure 4). A similar cropping calendar was created for another region of Uzbekistan 

(Conrad et al., 2014). As shown most of the crops have almost similar cropping seasons 

in the study area. The crops cotton, rice, maize, alfalfa, sunflower, and melons are 

planted between the end of March and the beginning of May and harvested from July 

to October. Only winter wheat is sown in October and November and harvested in 

June and July. Fruit trees and gardens are scattered throughout the study area and it is 

impossible to make the comparison of the classified area of Fruits and Trees with state 

statistics data. Cropping calendar and vegetation growth data play an important role to 

take training samples for supervised classifiers. 
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4.4 Results 

 

In 2018 main crops in Tashkent Province were wheat and cotton. 85 % of crops are 

cultivated on farmland. Cotton is planted between the end of March and April. Thus, 

NDVI values in May show high deviation error bars which are higher compared to 

June due to the growth of weeds (see Figure 5). After 40 to 50 days, at the end of June 

and July, flower buds start to form and cotton bolls begin to fill from July until mid-

August. As a result, NDVI reaches its maximum value in August. End of August and 

in mid-September cotton bolls are fully open and are ready for picking. At this point, 

NDVI values start declining. Cotton is picked in September until mid-October. Wheat 

is planted end of October until the beginning of December. The vegetation period of 

wheat continues until June. Unfortunately, cloud-free satellite images are difficult to 

acquire during wintertime. After harvesting wheat, the land will be used for secondary 

crops or stay as furrows until the next cropping season.  
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Figure 4. 5. Monthly NDVI profiles during the vegetation period in 2018 at the field 

level were retrieved from multitemporal Sentinel-2 data. Mean NDVI and its standard 

deviation error bars are also shown 

Thus, NDVI values fluctuate highly during crop rotation after winter wheat. Secondary 

crops such as vegetables, cucurbits, potatoes, and others are sown to fulfill the food 

requirements of the growing population. The NDVI profiles of Rice are distinguishable 

because of negative values in May and peak values in July and August. Other crops 

are forage crops and vegetables with vegetation periods from May to August. Fruits 

and trees grow throughout the whole vegetation period resulting in constantly high 

NDVI values. These can easily be distinguished by all classification algorithms.  
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Figure 4. 6. Supervised classification methods output and the subset of Agricultural 

LU maps in 2018: SVM classification; RF classification; and MLC classification 

(Continue next page). 
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Figure 4. 6. Supervised classification methods output and the subset of Agricultural 

LU maps in 2018: SVM classification; RF classification; and MLC classification.  

A comparison of this class with state statistics was not possible as the class includes 

fruits and trees of private households and private landowners. Besides, many mulberry 

trees are grown around croplands for sericulture. The results of high-resolution 

irrigated cropland classifications based on SVM, RF, and MLC methods are presented 

in Figure 6 and their subsets in Figure 7. It can be seen the crops “Cotton” and “Wheat” 

are evenly distributed across the entire province. Rice fields are located along Chrichik 

and Syrdarya rivers as well as main irrigated canals. The class “Other Crops” was 

highly misclassified using the MLC method. Visually only small differences can be 

seen when comparing SVM and RF classification results (Figure 4.7). Overall, the 

SVM-derived classification shows higher accuracy compared to RF and MLC. 
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4.4.1 Accuracy Assessment of Image Classification 

Table 4. 4. Confusion matrices and classification methods accuracy based on ground-

truthing data. 

Support Vector Machine Classification 

  Ground Truth     

Classes Cotton Wheat Rice 

Other 

Crops 

Fruits/ 

Trees 

Bare 

land Others Water 

Grand  

Total 

UA, 

% 

Cotton 244  14  4 4   266 91.7 

Wheat  462 1 2  23   488 94.7 

Rice 1  225 5  2   233 96.6 

Other Crops 3 18 6 238 14 2 14 2 297 80.1 

Fruits/Trees 1 20  4 222 4  2 253 87.7 

Bare land 1  1 1 10 204 22  239 85.4 

Others      11 214 1 226 94.7 

Water   3     245 248 98.8 

Grand Total 250 500 250 250 250 250 250 250 2250  
PA, % 97.6 92.4 90 95.2 88.8 81.6 85.6 98   
Overall Accuracy: 91.3%     

Kappa:    0.90     

Random Forest Classification 

Cotton 241 1 8 5 6 5 2  268 89.9 

Wheat  450 2 9  22   483 92.2 

Rice 6 1 235 11 13 4   270 87.0 

Other Crops 2 28 3 213 10 5  1 262 81.3 

Fruits/Trees 1 20  10 220 2  2 255 86.3 

Bare land    2 1 205 20 1 229 89.5 

Others      7 228 2 237 96.2 

Water   2     244 246 99.2 

Grand Total 250 500 250 250 250 250 250 250 2250  
PA, % 96.4 90.0 94 85.2 88 82 91.2 97.6   
Overall Accuracy: 90.5%     

Kappa:                   0.89     

Maximum Likelihood Classification 

Cotton 226  3  2 1   232 97.4 

Wheat  414 1 2  16   433 84.8 

Rice 9  237  5 1  1 253 93.7 

Other Crops 14 57 4 247 125 14 13 4 478 51.7 

Fruits/Trees 1 29  1 112    143 78.3 

Bare land     6 212 4  222 95.5 

Others      6 233 2 241 96.7 

Water   5     243 248 98.0 

Grand Total 250 500 250 250 250 250 250 250 2250   

PA, % 90.4 82.8 94.8 98.8 44.8 84.8 93.2 97.2    

Overall Accuracy:  85.5%,       Kappa:                    0.84     
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To evaluate the derived irrigated cropland maps, an accuracy assessment was 

performed for each classification method. Detailed confusion matrices showing 

classification accuracies are given in Table 4. A total of 2250 well-distributed ground-

truthing samples were taken for the accuracy assessment in Tashkent Province. The 

results show that the overall accuracies (OA) of SVM and RF classification algorithms 

are good and similarly high, whereas the MLC algorithm shows a lower OA. In the 

SVM confusion matrix OA was 91.3%, in RF 90.5% and in MLC 85,5%. User’s 

accuracy (UA) and Producer’s accuracy (PA) of all classes in SVM and RF algorithms 

were higher than 80%, but MLC showed a moderate PA of 44.8% for the class 

“Fruit/Trees” and 51.7% UA for the class “other crops”. All other cropland classes PA 

and UA in MLC were higher than 78%. The highest UA for the cropland class “cotton” 

was achieved using MLC, for the class “wheat” and “rice” SVM showed better 

performances. The class “other crops” performed best using the RF algorithm. SVM 

shows the highest PA for the cropland classes “cotton”, “wheat” and “fruit/trees” and 

MLC for the classes “rice” and “other crops”, respectively. Kappa accuracies (KA) of 

classified images for SVM were 0.90 and 0.89 for the RF algorithm. Both performed 

well with similar values. MLC showed a lower result of KA 0.60. 

 

4.4.2 Comparison Sentinel Derived Cropland Products with 

National Statistical Data 

 

In this study, we calculated areas of crop types for the entire Tashkent Province and 

compared them with the area given by statistics available from the State Statistics 

Committee of Uzbekistan. Figure 8 compares Sentinel-2 derived irrigated croplands 

areas with different supervised classification methods.  

The estimated area of irrigated crop types using SVM and RF fit well with State 

Statistics data. The MLC classification results show the highest differences compared 

to state statistics and are significantly lower than state statistics data. This especially 

accounts for the class “other crops” due to the complexity of phenological stages 

during the vegetation period as shown in the NDVI monthly profiles. Other cropland 

classes in MLC do not significantly differ from state statistics data. 
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Figure 4. 7. LU map subsets from different classification methods. 

In the SVM classification method, Sentinel-2 derived irrigated cropland area was 93.4 

thousand ha for cotton, 120.7 thousand ha for wheat, 9.4 thousand ha for rice, and 69.6 

thousand ha for other crops compared to 83.6, 125.1, 5.6, and 66.1 thousand ha of state 

statistics data respectively. Whereas in RF, it was 101.5 thousand ha for cotton, 122.7 

thousand ha for wheat, 40.6 thousand ha for rice, and 63.1 thousand ha for other crops. 

MLC classified an area of 66.3 thousand ha for cotton, 82 thousand ha for wheat, 19.3 

thousand ha for rice, and 224.9 thousand ha for other crops. Overall, the “cotton” and 

“wheat” classes show reliable results in all classification methods as both are state-

order crops that can be correctly reported. Other crops' vegetation period starts in early 
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spring in April. At the same time, the precipitation amount is high and it can result to 

grow grasses on the bare lands during this period. Usually, these areas are located 

nearby irrigation channels, rivers, and high slope areas. Besides, after harvesting 

winter wheat, the second crop is cultivated by farmers which challenge the 

classification of this class. Therefore, the MLC method misclassified the class “Other 

Crops”. But SVM and RF classification methods have the privilege to distinguish this 

class and classified accurately. 

 

Figure 4. 8. Comparison of Sentinel 2 -derived cropland product with national 

statistical data 

 

4.5 Discussion 

 

In this paper irrigated cropland extent of Tashkent Province was mapped using high-

resolution 10-m Sentinel-2 data and a comparison of supervised classification 

algorithms such as SVM, RF, and MLC performance was carried out. Knowledge of 

vegetation phenological processes and NDVI time-series data were used during the 

image classification process illustrating the importance of continuous satellite-based 

time series, capturing vegetation dynamics and plant growth characteristics to map 
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agricultural crop types. Results show that the use of multi-temporal datasets, in 

comparison to single-date imagery, provides an improved basis for the discrimination 

of crop types. The results are comparable to similar research conducted by Gumma et 

al., (2020) and Xie et al., (2019).     

 

Figure 4. 9. OA and KA value of classifiers. 

This study's results showed that irrigated cropland classification using SVM and RF 

algorithms provided the highest OA and KA compared to MLC (Figure 9). 

Comparable studies in other regions have shown similar results in LU mapping (Burai 

et al., 2015, Deilmai et al., 2014, Thanh Noi and Kappas, 2017, Xie et al., 2019). SVM 

and RF perform better than MLC when there is a limited number of training samples 

(Basukala et al., 2017). The low performance of MLC is because the capability of the 

MLC algorithm depends on a very accurate estimation of the average vector and the 

covariance matrix for each spectral class. Therefore, MLC relies on a satisfactory 

number of training samples per class and it performs unreasonably when a small 

number of training samples is used (Basukala et al., 2017). For example, when the 

training samples were reduced from 30 to 10 accuracy assessment was also 

significantly reduced from 80.78% to 52.56% (Burai et al., 2015). The lowest 

performance of MLC is partially due to crop types having very heterogeneous raster 

values in training samples, including several crops with different spatial and spectral 

preferences. The integration of additional imagery to provide higher temporal 

resolution would most probably improve classification results (Basukala et al., 2017). 

Unfortunately, it was impossible to get additional imagery in early spring due to the 

high percentage of cloud cover. Due to the high OA, KA, UA, and PA result for all 
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irrigated crop types, SVM and RF can be recommended for LU mapping in the region 

as an effective and accurate classifiers.       

Accuracy assessment results of the class “rice” showed high values but its comparison 

with statistics data was not close for all classifiers. It might be the wrong reporting by 

state statistics because the local government is criticizing that the statistical data were 

not correctly reported previously in many cases (Shavkat Mirziyoyev, 2021). Even a 

few years ago rice fields area were two times high than in 2018. Besides, there some 

farmers plant rice crop as a secondary crop after winter wheat is harvested and it is not 

included in the Statistics. There should be detailed field observation to prove it. 

Moreover, some crops are more profitable than other crops and they can be traded on 

the local market except cotton due to government control (Platonov et al., 2014).  As 

a result, there is a high demand for rice in the local market. For example, in 2020 

Uzbekistan imported 13.6 thousand tons of rice but the country’s demand is about 335 

thousand tons. Uzbekistan is planning to double the rice production by planting new 

rice sorts and introducing two crop production (Economy Uzbekistan, 2021). But the 

state-order crop cotton’s growing period is very long which occupies two crop 

production periods. Thus, rice in two-crop production might be challenging due to 

water shortages in the region in the future. Besides the climate of Tashkent Province 

is not convenient for two crop production in comparison with other regions of the 

country. 

With the introduction of winter wheat, competition comes up between state crops and 

cash crops. Because state crops are not profitable for the farmers and farmers can earn 

additional income by planting cash crops after winter wheat (Platonov et al., 2014). 

Cotton is traded only by the government and wheat harvest should be given to the 

government as a part of the contract with the farmers. Thus, their classification results 

were satisfied by all classification methods it was believed the official data was 

correctly reported. The study showed feasible results at the Provincial level for 

irrigated cropland classification and a comparison of classifiers' performance with 

statistics data was not found in previous studies in the research object. As a first-time 

approach to this method, it can be a good start and should be developed in the future 

together with field trips and local experts’ knowledge. Besides, the potential of using 

other indices and spectral bands of Sentinel -2 such as red edge and SWIR for cropland 
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classification raises important questions in the future. In this paper, it is unknown 

whether using other indices and spectral bands can result in better performance of 

irrigated cropland classification. And we intended to carry out more studies in the 

future, to improve the performance of different classification methods by using other 

indices and spectral bands.      

 

4.6 Conclusions 

 

The study produced a 10-m high resolution irrigated crop types product (based on 

Sentinel-2 data with 1 pixel = 0.01 ha). The analysis was applied based on pixels in 

one agricultural calendar year using SVM, RF, and MLC methods using ArcMap and 

open-source software QGIS. NDVI monthly profiles during the vegetation period of 

each class showed the potential of irrigated crop types classification. And the study of 

irrigated crop types mapping at the provincial level with different supervised 

classification methods and comparing the performance of the classifiers as well as the 

comparison of crop types area with official data is the first application in the region.  

Among the tested methods the SVM classifier performed the highest OA and KA and 

produced a visually pleasant irrigated cropland map in Tashkent Province. Therefore, 

the authors conclude that the SVM classification algorithm was the best-suited 

classifier for mapping heterogeneous irrigated crop types and it can be used 

alternatively where digital cadastre LU maps are limited for agro-environmental 

assessment studies in the region. Although the RF classifier had lower accuracy than 

SVM, it performed better than MLC. MLC method could not yield high accuracy and 

handle many pixels incorrectly classified, so we do not recommend this classifier for 

irrigated crop types classification in the study area.  

The comparison of classified crop types area with official State Statistics data showed 

that the state order crops “cotton”, “wheat” and the class “other crops” in SMV and 

RF methods were close to the official data. The area of class “rice” is higher than 

official data which requires additional study further or correct statistical data which 

also includes rice area after winter wheat. And the class “others crops” showed 
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unreliable results in MLC due to its complexity and heterogeneity. Comparing the area 

of class “fruits/trees” is complicated because private households and landowners have 

fruits and trees on their property. And also, many cropland fields are surrounded by 

mulberry trees for sericulture which is not included in the official data. Comparison of 

remote sensing-based irrigated cropland area with official data showed the 

applicability of these methods over other areas of the region which has similar agro-

ecological conditions but there should also be further research with field data and using 

other indices or bands that can improve the estimates in rice and other crops classes.  

We are also motivated to use and test other bands to derive Sentinel-2-based vegetation 

indices incorporating the three RE and SWIR bands in a 20 m resolution for image 

classification in the future. 
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5.1 Abstract 

 

Appropriate crop type mapping to monitor and control land management is very 

important in developing countries. It can be very useful where digital cadaster maps 

are not available or us-age of Remote Sensing (RS) data is not utilized in the process 

of monitoring and inventory. The main goal of the present research is to compare and 

assess the importance of optical RS data in crop type classification using medium and 

high spatial resolution RS imagery in 2018. With this goal, Landsat 8 (L8) and 

Sentinel-2 (S2) data were acquired over the Tashkent Province between the crop 

growth period of May and October. In addition, this period is the only possible time 

for having cloud-free satellite images. The following four indices “Normalized 

Difference Vegetation Index” (NDVI), “Enhanced Vegetation Index” (EVI), and 

“Normalized Difference Water Index” (NDWI1 and NDWI2) were calculated using 

blue, red, near-infrared, shortwave infrared 1, and shortwave infrared 2 bands. 

Support-Vector-Machine (SVM) and Random Forest (RF) classification methods were 

used to generate the main crop type maps. As a result, the Overall Accuracy (OA) of 

all indices was above 84% and the highest OA of 92% was achieved together with 

EVI-NDVI and the RF method of L8 sensor data. The highest Kappa Accuracy (KA) 
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was found with the RF method of L8 data when EVI (KA of 88%) and EVI-NDVI 

(KA of 87%) indices were used. A comparison of the classified crop type area with 

Official State Statistics (OSS) data about sown crops area demonstrated that the 

smallest absolute weighted average (WA) value difference (0.2 thousand ha) was 

obtained using EVI-NDVI with RF method and NDVI with SVM method of L8 sensor 

data. For S2-sensor data, the smallest absolute value difference result (0.1 thousand 

ha) was obtained using EVI with RF method and 0.4 thousand ha using NDVI with 

SVM method. Therefore, it can be concluded that the results demonstrate new 

opportunities in the joint use of Landsat and Sentinel data in the future to capture high 

temporal resolution during the vegetation growth period for crop type mapping. We 

believe that the joint use of S2 and L8 data enables the separation of crop types and 

increases the classification accuracy. 

Keywords: crop types mapping, Sentinel, Landsat, SVM, RF, NDVI, EVI, NDWI, State 

Statistics data, irrigated land, Uzbekistan 

 

5.2 Introduction 

 

Land use or land cover maps are the primary tools to manage information on the 

Earth’s surface and the interaction between different land cover types. In this context, 

the need to distinguish between land cover (i.e., the physical properties of land surface) 

and land use (i.e., human activities making use of land) needs to be mentioned (Lambin 

& Geist, 2006), with this paper focusing on land use, although it is not possible to 

identify land use without identifying land cover. Up to the 1990s, most information on 

land use in Uzbekistan was derived from national mapping and surveying programs 

with standards of spatial as well as thematic resolution widely varying between 

countries and global regions (Feng & Li, 2020). While the capacity for land use 

mapping at a global scale had been steadily developing, starting with the first Landsat 

satellite in 1972, it was the op-opportunity to make global RS imagery more widely 

available via what was initially the internet and later became the world wide web that 

data, as well as processing capabilities and more affordable image processing software, 

became available to a wider range of us-ers globally (Wulder et al., 2019). In addition 
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to their use in land management, land use maps are also of relevance in the context of 

environmental objectives such as the land use, land use change, and forestry sphere 

within the area of climate change politics and re-search (García-Montero et al., 2021) 

or biodiversity research (Cavender-Bares et al.; Stephenson, 2020). 

Before the advent of RS technology, traditional cadaster data formed the basis of 

national land use statistics. Initially, national cadastral mapping had been introduced 

for taxation reasons as a basis for land ownership records as well as land use 

distribution (Polat, 2019; Zaragozí et al., 2019). However, in some countries of the 

world including the study area, adequate information is not yet available. This is due 

to a historical lack of cadaster systems as well as an outdated land management system. 

These issues related to the distribution of power between transnational (e.g., European 

Union), national and sub-national entities, with the latter a particularly vexing factor 

in countries with federal rather than centralized administrative and political systems 

(Schmidt-Traub, 2021). 

RS data have been used widely in the field of crop phenology. Aside from crop 

identification, this includes the identification of crop growth stages. Usually, very 

coarse resolution (i.e., 100–250 m) products such as MODIS (Moderate Resolution 

Imaging Spectrora-diometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) 

have been widely used and proven helpful in landscape and regional level yield 

prediction. However, for analysis at field scale, medium (i.e., 30 m) to high (i.e., 10 m 

or better) resolution products, especially the Landsat series of sensors, are considered 

more beneficial. Unfortunately, in many regions of the world, the lack of clear (cloud-

free) imagery poses a considerable challenge to widespread operational use [3]. The 

availability of RS imagery and relevant processing capabilities have led to a wide range 

of uses of RS data in agriculture. Com-mon applications include crop growth and yield 

assessment, irrigation research, and in-formation on potential crop losses due to pests 

and diseases (Karthikeyan et al., 2020). Similarly, agricultural land use monitoring and 

crop yield forecasting are listed as the main application areas (Weiss et al., 2020). The 

recent interest in precision farming as an approach to improve economic efficiency, 

reduce negative environmental impacts through minimizing the use of herbicides and 

pesticides, and avoid over-fertilization has led to the development of multi-data-source 

approaches incorporating artificial intelligence (AI) technology. Frequently noted 
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examples include the use of higher spatial resolution data gathered from conventional 

aerial sensor technology as well as sensors for the visible spectrum and passive 

hyperspectral sensors but also active light detection and ranging (LIDAR) or radar 

sensors. Other approaches include training AI with a combination of high or medium 

solution RS data (e.g., Landsat or Sentinel) to allow for information of higher accuracy 

to be derived from low-resolution RS sensors (e.g., MODIS), which provides the 

benefit of more frequent return periods (García-Berná et al., 2020; Weiss et al., 2020). 

The most cultivated agricultural crops are maize (corn) with global annual 

consumption of 1107 Mt, wheat with global consumption of 740 Mt, and rice with an 

annual consumption of 510 Mt (FAO, 2019). Consequently, considerable work has 

been conducted in the context of RS methods to improve information on these crops. 

The following re-search works provide a short review related to our research work. 

For maize, research on land use suitability for cultivation in Indonesia was carried out 

by (Habibie et al., 2021), using NDVI as well as SAVI based on L8 data to assess 

cultivation potential, although in this study the areas identified had not yet been 

cultivated with maize. Zhang et al. demonstrate that with appropriate methods it is 

possible to not just identify maize as a crop but to improve phenological analysis to 

allow for the differentiation between com-mon maize (i.e., for human or animal 

consumption or industrial purposes) and seed maize (Zhang et al., 2020). The 

phenological analysis was based on different vegetation indices (VI), including NDVI, 

EVI, triangle vegetation index (TVI), ratio vegetation index (RVI), NDWI, difference 

vegetation index (DVI), and an RF classification. Furthermore, they also assessed 

classification accuracy using the KA and producer accuracy (PA). Satellite RS-based 

maize acreage estimation and prediction of maize yields based on a combination of L8 

NDVI and land surface temperature (LST), data as predictors were analyzed in work 

published by (Ahmad et al., 2020) using ground-truthing plots for super-vised 

classification. These results are also of particular interest due to more frequent              

extreme weather situations, due to climate change, expected to lead to higher variations 

in yield. 

Climate change and phenological reactions of agriculture crops were also the main 

focus of research carried out by (Chen et al., 2020), focusing on the spring phenology 

re-sponse of winter wheat to pre-season weather data based on long-time climate 
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records as well as NOAA-AVHRR NDVI time-series data from 1981 to 2015. Results 

demonstrated the approach to be more suited to assess more long-term climate change 

developments rather than short-term seasonal reactions and also highlighted the 

potential of using long-term time series data available from historical RS records. 

However, Wang et al. ar-rived at different results using the spring frost damage index 

to identify spring frost dam-age using a combination of historic weather data and 

MODIS RS data (Wang et al., 2020). 

Given its importance as a staple crop in many of the most populated regions of the 

world, considerable work has also been carried out using RS data in the context of rice 

farming. For the identification of rice, different classification methods including super-

vised and unsupervised classification as well as phenological indicators have been 

used successfully with newer work focusing on AI approaches. For yield prediction, 

sophisticated methods need to be used, given the required differentiation between 

irrigated, rain-fed, or upland paddy fields. Given these complexities, additional data 

such as digital elevation models (DEM) need to be used. For more precise crop yield 

prediction, complex crop models using additional input, e.g., canopy height from 

LIDAR data (manned air-craft or UAV) are required (dela Torre et al., 2021). 

To summarize, the use of RS for identifying not just the most important crops but also 

for analyzing phenological development details within farmed areas with these crops 

has been widely used with recent approaches combining RS and machine learning 

(ML) technology. 

Classical unsupervised classification is based on a statistical analysis of natural 

groupings of data, typically using cluster-based approaches to analyze the degree of 

similarity of data correlation between different bands within pixels. Classic supervised 

classification is based on the same principle but uses training areas to provide ex ante 

information on areas of different land-cover types. Training areas are classified either 

using ground-truth data or through visual interpretation by a human operator. The main 

problem with unsupervised classification is that spectral data will not always 

correspond to spectral classes and that the final grouping of clusters needs to be 

decided by the human operator. Supervised classification, on the other hand, provides 

more accurate classifications and also allows for more control over the classification 
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process. Especially for large areas and diverse conditions (e.g., differing seasonality 

of phenology at different sea lev-els), extensive and thus expensive training is required 

(Chuvieco, 2020). 

In this context, the main goal of this research is to test the capability of using S2 and 

L8 sensor data for mapping precise and accurate main irrigated crop types using ML 

algorithms SVM and RF. To achieve this goal, the following specific objectives were 

developed: (i) to map and compare the performance of ML algorithms such as SVM 

and RF for main irrigated croplands by crop types with medium and high-resolution 

L8 and S2 data; (ii) to test different index combinations such as NDVI, EVI, NDWI1, 

and NDWI2 as input data to derive crop type classification; (iii) to compare the area 

of all derived agricultural land use maps with the OSS data from the State Committee 

for Statistics of Uzbekistan. The other parts of this research work are structured as 

follows: Section 5.3 describes the study area, presents the data description, and 

theoretical background of methodologies of ML classifiers for crop types mapping, 

Section 5.4 describes the results and provides a discussion of the results. Lastly, 

Section 5.5 draws some conclusions and the future direction. 

 

5.3 Materials and methods 

5.3.1 Study area 

 

This study focuses on the Tashkent province within the central Asian country 

Uzbekistan. Agricultural land makes up for about 62% of the total land area, the 

majority of this being pasture, while only about 10% of the national land area of some 

425 km2 is available as arable land (CIA, 2021). Tashkent Province was formed in 

1938 as part of the Uzbek Soviet Socialist Republic and is located in the northeast of 

Uzbekistan between 40.18 N and 42.29 N and 68.64 E and 71.27 E of the Greenwich 

meridian or between the western part of the Tien Shan mountains and Syrdarya river. 

The Province borders Kazakhstan in the north and north-west, with Kyrgyzstan in the 

north-east, Namangan Province in the east, Tajikistan in the south, and with Syrdarya 

Province in the south-western part (Erdanaev et al., 2015). Since arable land is located 
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only in the lower areas of the province, the analysis only focused on these regions (see 

Figure 5.1.) 
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Figure 5. 1. Location of the study region 
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“The climate is a typically continental climate with humid, relatively mild wet winters 

and long, hot, and dry summers. The mean January temperature is −1 °C to −2 °C and 

the mean July temperature is 26.8 °C. The average annual precipitation is 300 mm in 

the plains region, 300–400 mm in the piedmont region, and 500–600 mm in the 

mountains. Precipitation mostly occurs in the early spring and permanent snow cover 

is located in the higher mountains. The main river Syrdarya and its tributaries Chirchik 

and Akhangaron Rivers basins are fed by snow and glaciers and they are used for 

irrigation and hydroelectric power (Erdanaev, E., Kappas, M., Pulatov, A. and Klinge, 

M, 2015)”. In Uzbekistan, wheat is cultivated on about 40% of irrigated lands, cotton 

is around 36% and the remaining 24% is other crops (fruits, vegetables, livestock, and 

various cereals). In the Tashkent province, cotton and wheat occupied over 61% 

percent of the total cultivated area in 2018 (UzGosKomStat, 2019). 

 

5.3.2 Data 

 

S2 and L8 tiles covering the relevant study region were downloaded from the USGS 

Earth Explorer (USGS, 2020a) site for multiple dates of vegetation growth period from 

May to October 2018. In addition, only cloud-free images are available during this 

time. An overview of the satellite imagery dates for different months is provided in 

Table 5.1. In total, 4 tiles of S2 (T42TVL, T42TWK, T42TWL, T42TWM) and 3 tiles 

(153/031, 154/031, 153/032) of L8 were downloaded and processed separately before 

merging. All tile id numbers of S2 start with T (Toulouse) and the second two numbers 

42 is the Universal Transverse Mercator (UTM) zone, next T is the latitudinal chunk, 

and the last two letters denote the position of the tiles. L8 tiles path and row numbers 

show the location of Tashkent province. 
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Table 5.1. S2 and L8 tiles were downloaded for the classification. 

Month 

S2 Multispectral Imaging (MSI) 

Date 

L8 Operation Land Imager (OLI) 

Date 

T42TVL T42TWK T42TWL T42TWM 153/031 154/031 154/032 

May 25 7 7 7 28 3 3 

June 24 6 6 6 13 20 20 

July 9 1 1 1 15 22 22 

August 3 5 5 5 16 7 7 

September 2 4 4 4 1 8 8 

October 2 4 4 4 3 26 26 

The specification of spectral bands for the two sensor systems used in the analysis can 

be observed in Table 5.2. 

Table 5.2. Specifications of spectral bands for S2 MSI (ESA, 2021) and L8 OLI 

(USGS, 2020b). 

Band  

Number 

S2 MSI L8 OLI 

Description 

Wave-

Lengths  

(nm) 

Spatial  

Resolution  

(m) 

Description 

Wave-

Lengths  

(nm) 

Spatial  

Resolution 

(m) 

1 
Coastal 

aerosol 
433–453 60 Coastal aerosol 433–453 30 

2 Blue 458–523 10 Blue 450–515 30 

3 Green 543–578 10 Green 525–600 30 

4 Red 650–680 10 Red 630–680 30 
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5 
Vegetation 

Red Edge 1 
698–713 20 NIR 845–885 30 

6 
Vegetation 

Red Edge 2 
733–748 20 SWIR 1 1570–1650 30 

7 
Vegetation 

Red Edge 3 
773–793 20 SWIR 2 2100–2300 30 

8 

Near-

Infrared 

(NIR) 

785–900 10 Panchromatic 500–680 15 

8a Narrow NIR 855–875 20    

9 Water vapor 935–955 60 Cirrus 1360–1390 30 

10 SWIR-Cirrus 1360–1390 60 

Thermal 

Infrared 

(TIRS) 1 

10,600–11,200 100 

11 SWIR 1 1565–1655 20 

Thermal 

Infrared 

(TIRS) 2 

11,500–12,500 100 

12 SWIR 2 2100–2280 20   

One of the significant problems in crop type mapping in this research is the lack of 

quality training data. Because of ideal ground reference data limitation, historical 

Google Earth images in 2018 (February, April, June, July, August, and October) 

available in Google Earth Pro desktop application (Google LLC, version 7.3.2.5776, 

Göttingen, Germany) was used as an alternative for validation pixel samples 

collection. It is based on prior knowledge of crop phenology and cropping calendar 

(Erdanaev, E., Kappas, M. and Wyss, D., 2022). The spatial distribution of training 

and validation samples is displayed in Figure 5.2, and the numerical information is 

given in Table 5.3. 

 



 

92 

 

Table 5.3. Numerical information on training and validation data. 

Land Use Training (Polygons/Pixels) Validation (Pixels) 

Cotton 150/2528 250 

Wheat 300/5750 500 

Rice 150/3038 250 

Other Crops 150/2248 250 

Fruits/Trees 150/3642 250 

Bare land 150/2560 250 

Others 150/2601 250 

Water 150/2899 250 

 

Figure 5.2. Location of training and ground-truthing samples. 
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The OSS data (UzGosKomStat, 2019) about the sown area by crop types across 

provinces of the country in 2018 issued by the State Committee of Statistics of 

Uzbekistan is used for comparative analysis with derived remote sensing-based crop 

types area. 

 

5.3.3 Methodology 

5.3.3.1 Data Preprocessing 

After downloading S2 imagery, the SWIR 1 and SWIR 2 bands were resampled to 10 

m resolution. Both L8 and S2 data were then atmospherically corrected from Top of 

Atmosphere Reflectance (TOA) to Surface Reflectance (SR). This was conducted 

using the Dark Object Subtraction (DOS1) tool of the Semi-Automatic Classification 

Plugin (SCP) of the QGIS GIS package (Clemente et al., 2020). Then, all tiles of S2 

and L8 merged for every month separately, and subset to study area. Reflectance 

values were then used to calculate NDVI (Rouse, J.W., Haas, R.H., Schell, J.A. and 

Deering, D.W., 1974), EVI (Alfredo Huete et al., 1999), NDWI1 (Gao, 1996) from 

SWIR 1, and NDWI2 from SWIR 2. In the end, we have obtained monthly temporal 

profiles of NDVI, EVI, NDWI1, and NDWI2 as input data for ML classifiers. 

Before classification built-up areas were manually digitized as polygons and the 

shapefile was used to mask these areas. 

Training data was used to train SVM and RF classifiers. Both classifiers were then 

used to classify the main irrigated crop type maps. This was performed for 5 

combination variants using different indices such as (1) NDVI, (2) EVI, (3) EVI-NDVI 

used together, (4) NDWI1, and (5) NDWI2 data. 

The resulting land use maps were then assessed for accuracy using OA, PA, UA, and 

KA using validation data for reference. 

 

5.3.3.2 Indexes 

Four spectral vegetation indices, NDVI (Rouse, J.W., Haas, R.H., Schell, J.A. and 

Deering, D.W., 1974), EVI (Alfredo Huete et al., 1999), NDWI1 (Gao, 1996) from 
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SWIR 1, and NDWI2 from SWIR 2 were calculated using the surface reflectance 

values. These indices were formulated by using the following equations: 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (Equation 5.1) 

𝐸𝑉𝐼 = 2.5x
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 6 ∗ 𝜌𝑅𝑒𝑑 − 7x𝜌𝐵𝑙𝑢𝑒 + 1
 (Equation 5.2) 

𝑁𝐷𝑊𝐼1 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1
 (Equation 5.3) 

𝑁𝐷𝑊𝐼2 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅2

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅2
 (Equation 5.4) 

 

where 𝜌Blue, 𝜌Red, 𝜌NIR, 𝜌SWIR1, and 𝜌SWIR2 are the surface reflectance values of Band 2 

(blue, 0.45–0.51 μm), Band 4 (red, 0.64–0.67 μm), Band 5 (near-infrared, 0.85–0.88 

μm), Band 6 (SWIR1, 1.57–1.65 μm), and Band 7 (SWIR2, 2.11–2.29 μm) in the 

Landsat-8 LOI and Sentinel-2 images, respectively (Table 5.2). 

The approach is displayed in Figure 5.3. 
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Figure 5.3. Methodology applied for this research 

 

5.3.3.3 ML Algorithms 

SVM is a statistical learning method, which was first published by (Vapnik, 1982). 

The SVM training algorithm is designed to identify a hyperplane separating a dataset 

into predefined discrete classes based on training examples. The decision boundary 

minimizing misclassifications is considered the optimal separation hyperplane. This is 

identified through an iterative learning process separating first training patterns and 

then simulation data with the same configurations (Zhu & Blumberg, 2002). 
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Figure 5.4. Linear SVM example adapted from (Burges, 1998). 

In RS, individual pixels are represented as pattern vectors consisting of numerical 

measurements for each frequency band. In addition, other discriminative 

measurements based on spatial pixel relationships (e.g., texture) may also be elements 

of the feature vector. The hyperplane of maximum margin is defined by the subset of 

points lying on the margin of the classes. In Figure 5.4, the concept is illustrated as a 

linear SVM based on the simple example of a two-class classification problem. In RS 

practice, more complex SVMs are applied using multi-class classifiers as kernel 

functions. A major advantage of SVMs is that they also work well with small training 

datasets while achieving higher classification accuracy than conventional approaches 

(Breiman, 2001). Another advantage is the fact that SVM allows generalizing accuracy 

acquired from finite training patterns to unseen data. 

The main challenge for the use of SVM in RS is constituted by the choice of kernel 

functions. In this context, the radial-bias function and polynomial functions have been 

demonstrated to produce different results (Zhu & Blumberg, 2002). In this research, 

we used a linear kernel function in which the algorithm creates a hyperplane to separate 

the classes. 

The RF method was first introduced by (Breiman, 2001). It is based on a combination 

of tree predictors in which each tree depends on the values of an independently 
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sampled random vector, where all trees in the forest have the same distribution. For 

the set-up of an RF model, the base of the method, constituted by the two parameters, 

the number of trees n and the number of features in each split mtry, are required. 

According to (Breiman, 2001), a random forests consists of tree-structured classifiers 

{h(x, Θk), k = 1,…}. In this {Θk} independent, there are identically distributed random 

vectors. Accurate classification is determined by each tree casting a unit vote. In RF 

classifiers, the number of features used at each node and the number of trees grown 

are user-defined parameters. Thus, at each node only selected features are assessed. In 

the classification of a dataset, each case is assessed in each tree. Accurate classification 

is determined by the majority vote from all trees (Pal, 2005). 

The concept is illustrated in Figure 5.5. A are input samples. B and C are decision trees 

within an RF D, assigning the sample to one of two branches based on the rule at each 

decision point. In both B and C, the sample is assigned to the red class. Consequently, 

the combined output result E of the RF is also the red class. The RF has strong 

predictive performance. In addition, results inform each feature’s level in contributing 

to class prediction (Denisko & Hoffman, 2018). 

  

Figure 5.5. RF concept adapted from (Denisko & Hoffman, 2018). 

Comparing SVM and RF, (Denisko & Hoffman, 2018) concludes that they achieve 

comparable accuracy. The fact that RF only requires two parameters to be set, whereas 

SVM requires several user-defined parameters constitutes an advantage of RF over 
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SVM (Thanh Noi & Kappas, 2017). RF classifier tool in ArcMap creates models and 

generates predictions based on Leo Breiman’s RF algorithm (Breiman, 2001). Another 

advantage of RF is the ability to handle data with missing values and unbalanced data, 

as well as categorical data, which SVM lacks. In addition, RF allows for the detection 

of outliers through proximity analysis. The main difference though is that RF can also 

be used for unsupervised classification. These advantages of RF not-withstanding, 

(Nitze, I., Schulthess, U., & Asche, H., 2012), consider SVM with the polynomial 

kernel as well as radial-basis function to be superior to RF, with RF performing inferior 

to SVM, if only single satellite coverage is used. 

 

5.3.3.4 Accuracy of RS Classification 

 

To assess the performance of each classifier with different satellite sensors and indices 

combination, the confusion matrices were calculated in ArcMap. Confusion matrices 

can be used to describe the classification algorithm’s performance. 

The increased use of digital RS data and various semi-automated or fully-automated 

classification methods has led to an increased interest in classification accuracy. OA 

is the simplest statistic, describing the number of all correctly classified pixels by the 

total number of pixels used for accuracy assessment within the error matrix. In 

addition, producer’s accuracy (PA) describes the probability that a reference pixel has 

been correctly classified (and thus not omitted); the user’s accuracy (UA) describes 

the probability of pixels within a specific class, which have been correctly classified 

and divided by the total number of pixels assigned to that class. Another common 

measure of accuracy is KA, which is calculated by the kappa index of agreement 

KHAT equation (Congalton, 1991): 

�̂� =  
𝑁 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 −  ∑ (𝑥𝑖+𝑥+𝑖)

𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+𝑥+𝑖)
𝑟
𝑖=1

 
Equation 5.1 

Where: 

r: number of rows in the matrix 
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xii: number of observations in row i and column i 

xi+, x+i: marginal totals of row i and column i 

N: total number of observations. 

KA value can be divided into three categories; a value greater than 0.80 represents 

strong agreement; a value between 0.40–0.80 represents moderate agreement; and a 

value below 0.40 represents poor agreement (Congalton, 1991). 

 

5.4 Results 

5.4.1 Results from land use classification 

 

Results from the land use classification for different combinations of sensor, classifier, 

and index are presented in Figure 5.6 (S2-data and SVM classifier), Figure 5.7 (S2-

data and RF classifier), Figure 5.8 (L8-data and SVM classifier), and Figure 5.9 (L8-

data and RF classifier). For comparison in each figure the OSS data are also presented. 

 

Figure 5.6. Comparison of classified crop types area with OSS data for RF classifier 

with S2 sensor. 
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Figure 5.7. Comparison of classified crop types area with OSS data for SVM classifier 

with S2 sensor. 

 

Figure 5.8. Comparison of classified crop types area with OSS data for SVM classifier 

with L8 sensor. 
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Figure 5.9. Comparison of classified crop types area with OSS data for RF classifier 

with L8 sensor. 

With winter wheat being the most abundant crop in the study region, classification 

results for this crop might have a higher influence on the overall result. Figure 5.6 

shows that wheat results based on S2-SVM indices are very close to OSS and each 

other. Figure 5.7, however, shows that except for EVI-NDVI this is also true for S2-

RF. From Figure 5.8, it can be observed that there are higher differences between the 

different indices as well as between individual indices and OSS. However, what is also 

evident from Figures 5.8 and 5.9 is that the SVM and RF classifiers tend to classify 

rice paddies area with a probability of difference between 190% to almost 500% 

compared to the area given by OSS. This can be the result of wetlands being classified 

as rice fields and needs to be investigated further in detail. Besides, the rice is also 

planted after harvesting winter wheat as a second crop which is not included and 

recorded by OSS. This is because the study area is located where the upstream water 

resources are formed and it has more access to the water resources than other areas of 

the country. 

As can be observed from Figure 5.9, there are differences between OSS data and 

classification results for each of the sensor-classifier-index combinations. These 

differences appear to be particularly high for land use classes for which OSS shows 

comparatively low values. To analyze this in more detail, differences between 

individual classification results and OSS were calculated and presented in Table 5.4. 
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Table 5.4. Differences between classification results and OSS (1000 ha). 

S2-SVM     

  NDVI EVI EVI-NDVI NDWI1 NDWI2 

Cotton  0 −9.3 −4.9 18.1 19.1 

Wheat  −2.1 −10.5 −1.8 0 −0.8 

Rice  −3.8 −2.1 −2.9 −5.8 −4.9 

Other crops  −3 −10.9 1.7 23.8 21.7 

 AM −2.2 −8.2 −2.0 9.0 8.8 

 WA (OSS): −0.4 −2.5 −0.5 2.7 2.6 

S2-RF     

  NDVI EVI EVI-NDVI NDWI1 NDWI2 

Cotton  7.9 5.4 −3.6 11.5 13.2 

Wheat  5 4 −10.6 6.6 −1.9 

Rice  −3.7 −2.3 −5.7 −4.7 −4.4 

Other crops  −46.3 −15.6 −4.4 26.1 23.3 

 AM −9.3 −2.1 −6.1 9.9 7.6 

 WA (OSS): −1.6 −0.1 −1.7 31 2.1 

L8-SVM     

  NDVI EVI EVI-NDVI NDWI1 NDWI2 

Cotton  12 12 −10.8 6.9 3.5 

Wheat  −15.7 −15.7 3.1 −12 24.3 

Rice  −22 −4.1 −19.4 −18.8 −18.8 

Other crops  20.6 27.6 22 23.3 15 

 AM −1.3 4.9 −1.3 −0.2 6.0 

 WA (OSS): 0.2 0.7 0.7 0.5 3.8 

L8-RF     

  NDVI EVI EVI-NDVI NDWI1 NDWI2 

Cotton  7.2 7.2 −25.2 −22.4 1.4 

Wheat  −4.9 −4.9 15.2 −6.3 19 

Rice  −18.8 −8.1 −7.5 −10.1 −13.2 

Other crops  −1.4 3.8 −4.3 −2.6 7.5 

 AM −1.35 3.75 −4.3 −2.6 7.45 

 WA (OSS): 0.6 1.2 −0.2 −0.7 3.5 
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For each classification method, the arithmetic means (AM), as well as a WA using 

OSS area as weights, were calculated. Since using the AM value for the differences, 

the results in a disproportionate influence of differences for land use classes with a low 

share of overall land use (i.e., particularly rice); therefore, it was decided to focus on 

the WA results, as shown in Table 5.4. 

Based on the results, the smallest absolute value difference WA 0.1 thousand ha was 

demonstrated for the S2-sensor data using the RF classifier and EVI index, whereas 

for the SVM classifier with S2 data, the smallest absolute value difference WA result, 

0.4 thousand ha, is obtained using the NDVI. 

For L8-sensor data, the smallest absolute value difference result of 0.2 thousand ha 

was obtained by using the EVI-NDVI with RF method or NDVI with SVM method. 

To compare classification results for different sensor-classifier-index combinations, 

subsets of land use maps in the middle of the study area located in Figure 5.10 for the 

SVM classifier and Figure 5.11 for the RF classifier. The location of subsets is shown 

in Figures 5.12 and 5.13. The subset area was chosen due to its location along the main 

river Chirchik and the availability of all main cultivated crops inside. Visual analysis 

of these comparisons indicates that results appear similar for both sensors’ data with 

differences depending on the classifier and index method. The results from the NDWI2 

demonstrate a very high amount of areas classified as water compared to other index 

methods. 

Since OSS data are based on planning data compiled by the Ministry of Agriculture 

and Resources of Uzbekistan, Tashkent, Uzbekistan, rather than on an assessment of 

the actual cultivation situation, a high level of similarity for classification results with 

these data is not necessarily an indicator of the quality of the classification result. 

Therefore, results for classification accuracy are presented and analyzed in the next 

section. 
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Figure 5.10. Subsets of land use maps derived from different indices using the SVM 

classification method for both S2 (left) and L8 (right). 
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Figure 5.11. Subsets of LU maps derived from different indices using the RF 

classification method for both S2 (left) and L8 (right). 
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Figure 5.12. Classification result of S2-SVM-EVI-NDVI (highest OA 88% for SVM). 
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Figure 5.13. Classification result of L8-RF-EVI (highest OA 90% for RF). 
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5.4.2 Results for classification accuracy 

 

Classification accuracy (CA) was assessed using ground-truthing samples derived 

from historical Google Earth data. Results for OA, UA, PA, and KA are presented in 

Table 5.5 for the SVM classifier and in Table 5.6 for the RF classifier. 

Table 5.5. Accuracy assessment (in %) results of SVM classifier. 

Classes 

NDVI EVI EVI-NDVI NDWI1 NDWI2 

UA PA UA PA UA PA UA PA UA PA 

S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 

Cotton 84 75 94 73 74 85 96 92 87 78 97 81 93 86 92 82 90 90 90 85 

Wheat 87 85 92 81 86 78 92 89 88 82 91 83 92 93 93 90 95 89 91 89 

Rice 93 75 78 68 97 94 70 94 95 83 80 74 90 83 92 85 92 84 88 87 

Other crops 76 79 80 86 84 86 80 60 78 78 80 76 87 80 86 72 84 78 89 72 

Fruits/trees 87 81 88 89 81 69 87 88 86 81 89 88 71 76 78 80 73 83 74 81 

Others 89 84 83 85 92 65 75 86 89 91 83 82 92 87 82 90 94 85 86 83 

Water 97 88 95 92 98 99 98 31 98 85 96 93 76 72 75 80 76 74 87 83 

AM 88 81 87 82 87 82 85 77 89 83 88 82 86 82 85 83 86 83 86 83 

OA-S2 87 86 88 86 87 

OA-L8 82 79 82 83 84 

KA-S2 85 84 86 84 84 

KA-L8 78 75 79 80 81 

 

Table 5.6. Accuracy assessment (in %) results of RF classifier. 

Classes 

NDVI EVI EVI-NDVI NDWI1 NDWI2 

UA PA UA PA UA PA UA PA UA PA 

S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 S2 L8 

Cotton 81 77 91 84 77 88 92 95 77 89 94 95 94 90 95 90 93 90 94 90 

Wheat 91 90 87 84 86 94 89 92 91 92 93 87 92 94 92 92 94 89 93 90 

Rice 94 83 76 76 96 94 68 97 92 94 76 97 90 90 94 88 94 90 93 90 

Other crops 72 83 85 84 70 87 78 85 84 76 78 79 88 86 78 77 90 85 84 71 

Fruits/trees 82 81 86 89 81 78 85 81 81 85 81 87 70 76 76 83 76 79 81 84 

Others 89 86 84 82 85 92 73 91 85 96 86 82 95 95 80 86 93 92 82 75 

Water 97 91 97 98 97 93 97 90 99 89 97 99 65 75 74 86 75 68 86 85 

AM 87 84 87 85 85 89 83 77 87 89 86 89 85 87 84 86 88 85 88 84 

OA-S2 86 84 87 85 88 

OA-L8 85 90 89 87 84 

KA-S2 84 81 85 82 86 

KA-L8 82 88 87 84 81 

 

As can be observed from Table 5.5, UA and PA vary considerably between land use 

classes for the SVM classifier. The AM across all land use classes is in the range of 
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84% to 89% for all sensor-ML algorithm-index combinations. The highest mean UA 

value for the SVM classifier is 89% for S2-EVI-NDVI. The highest mean UA value 

for L8 is 83% for NDWI1 and NDWI2, followed by 82% for NDVI and EVI-NDVI. 

Looking at Table 5.6 and using OA and KA as measures, these two classification 

accuracy indicators are higher for the S2 than the L8 sensor data using the SVM 

classifier. In comparison to this, when looking at Table 5.6 at OA for results from the 

RF classifier and S2 and L8, this relationship is less pronounced, with OA showing 

higher values for S2 than L8 for NDVI, and NDWI2, whereas OA for L8 has taken on 

higher values than S2 for EVI, EVI-NDVI, and NDWI1. KA shows the same 

relationships between sensor data for both SVM and RF. 

Results presented in Tables 5.5 and 5.6 indicate that RF with L8 data results in higher 

OA values than SVM with L8 data. However, for S2 data, results from SVM show 

higher OA values than with RF. 

The highest OA of 88% resulted for S2 was achieved when EVI-NDVI was used, as 

well as the highest KA. A map displaying the classification result is shown in Figure 

5.12. In addition, the highest OA of 90% for L8 data was achieved with EVI. A map 

displaying the classification result is shown in Figure 5.13. 

For the RF classifier in Table 5.6, results for UA and PA also differ considerably 

between land use classes and sensors. AM values across all land use classes for each 

satellite datasets-ML algorithms calculation are in the range of 82% to 88%. The 

highest mean value of 89% resulted for EVI-L8, EVI-NDVI-PA-L8, and EVI-NDVI-

UA-L8. The highest mean UA value for S2-data is 88% for NDWI2 followed by 87% 

for EVI-NDVI. The highest PA value is 83% for L8-NDWI2 at 83% and L8-EVI-

NDVI. As can be observed from Tables 5.5 and 5.6, OA is the highest, at 90%, for the 

combination L8-RF-EVI, followed by L8-RF-EVI-NDVI, at 89%, and S2-SVM-EVI-

NDVI and L8-RF-NDWI2, both 88%. The values for KA, on the other hand, are 

highest for L8-RF-EVI at 88%, followed by L8-RF-EVI-NDVI at 87. Generally, the 

values for KA show a wider range from 75 to 88 than those for OA, which range from 

84 to 90. The mapping result for the combination L8-RF-EVI is displayed in Figure 

5.13. 
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5.5 Discussion 

 

In this study, high-resolution S2 data, as well as medium-resolution L8 data were 

analyzed using different vegetation and water indices to derive main irrigated crop 

types mapping. Two widely used ML classifiers of SVM and RF methods were used 

to recommend appropriate classification methods to map high-resolution spatial crop 

types in the semi-arid area of Tashkent province, Uzbekistan, because SVM and RF 

classifiers perform better results for cropland classification when compared with other 

classification methods such as Maximum Likelihood Classification, Classification and 

Regression Trees, Naive Bayes, etc. (Basukala et al., 2017; Clemente et al., 2020). 

 

5.5.1 Performance of ML Classifiers 

Comparison of accuracy assessment analysis indicates that the highest OA 90%, as 

well as KA 88%, was achieved using L8 sensor data with RF classifier and EVI used 

as input data. For the SVM classifier, the highest OA 88% as well as KA 86% resulted 

from using S2 data and EVI-NDVI used as input data. Thus, regarding the accuracy 

assessment analysis, results from this paper do not provide a definitive answer on 

whether S2 or L8 is a better dataset for crop types classification, as the OA and KA 

result rather depends on the classifiers (SVM or RF) than the type of sensor (medium-

resolution L8 or high-resolution S2) used. However, we can conclude that in terms of 

accuracy assessment, the RF classifier performs slighter better than SVM. This result 

also agrees with other studies (Saini & Ghosh, 2018; Azeez et al., 2020; Bofana et al., 

2020; Virnodkar et al., 2021). 

Thus, the conclusion made by Nitze et al. (Nitze, I., Schulthess, U., & Asche, H., 2012) 

that SVM performs superior to RF if used with single satellite coverage is not 

supported by the results presented in this paper. In conclusion, the results demonstrate 

that both classifiers perform well, with comparable results in terms of classification 

accuracy, which are made in (Breiman, 2001), to be supported. 
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5.5.2 Using Different Indices and Their Performance 

 

Using the spectral indices alone improves the classification accuracy. When spectral 

indices are used together with reflectance values for crop type classification, it 

negatively impacts classification accuracy due to large sets of correlated variables. The 

reflectance including bands Blue, Red, NIR, SWIR1, and SWIR2 spectral indices are 

very useful for the identification of crop types and can achieve high classification 

accuracy (Kobayashi et al., 2020). Based on that recommendation, four indices of 

NDVI, EVI, NDWI1, and NDWI2 performance were studied using different satellite 

datasets and ML algorithms. 

The highest values of OA and KA resulted when EVI and EVI-NDVI were used in 

crop type classifications, as shown in Figures 5.14 and 5.15. Using the L8 dataset’s 

EVI, EVI-NDVI, and NDWI1 with RF classifier yielded higher OA values of 90%, 

89%, and 87%, respectively. It also applies to KA values as well. The lowest OA and 

KA values resulted in an SVM classifier of L8 datasets for all indices. 

 

Figure 5.14. OA of SVM and RF classifiers on different indices and satellites. 
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Figure 5.15. KA of SVM and RF classifiers on different indices and satellites. 

For NDWI1 and NDWI2, a visual assessment of classified images in Figures 5.10 and 

5.11 indicates that these indices tended to overclassify water areas, which could 

explain the overall bigger areas classified to these classes because NDWI is very 

sensitive to changes in the water content of vegetation canopies and soil water content 

(Gao, 1996). Due to irrigation of crops in the early crop growing period, the soil water 

content influences the classification accuracy, which resulted in many misclassified 

pixels as water. NDVI and EVI resulted in overall slightly better accuracy values than 

NDWI1 and NDWI2. Vegetation indices, which include NIR, have a great contribution 

to identifying crop types (Palchowdhuri et al., 2018; Saini & Ghosh, 2018; Sonobe et 

al., 2018). The other research studies compared the performance of EVI and NDVI for 

image classifications; it was found that their performance is equally good, with a slight 

overperformance of each other’s (Wardlow & Egbert, 2010; HAO et al., 2020). The 

most important factor is crop phenology knowledge and crop growth period 

consideration during training and validation samples (Pan et al., 2021). At the very 

beginning of the crop growing season (March–April), the classification achieves 

relatively low accuracies, and it significantly increases when satellite images are 

obtained between May and June until the OA reaches its highest value in July (Vuolo 
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et al., 2018; Demarez et al., 2019). However, when the combination of multiple sensor 

datasets is used for crop type classification, it improves the classification accuracy due 

to its high temporal resolution, which captures more datasets throughout the vegetation 

growth period (Yi et al., 2020; Pan et al., 2021; Song et al., 2021). 

 

5.5.3 Comparing Derived Main Crop Types Area with OSS Data 

 

Cropland areas derived from this study were compared with OSS data at the provincial 

level. The other studies also compared calculated croplands area with OSS data at 

national and regional levels (Oliphant et al., 2019; Gerts et al., 2020; Asam et al., 

2022; Erdanaev, E., Kappas, M. and Wyss, D., 2022). In Figure 5.16, a comparison of 

the total area classified for the land use categories of cotton, wheat, rice, and other 

crops is displayed by the sensor, classifier, and index and compared to the equivalent 

figures from OSS. 

The comparison of the total area classified for the land use categories of cotton, wheat, 

rice, and other crops with OSS data in Figure 5.16 shows that with exception of the 

S2-RF sensor-classifier combination, classifications based on NDVI are closest to OSS 

and also comparatively close to each other regarding the total classified area. NDWI1 

and NDWI2 also demonstrate similar total classified area results for all sensor-

classifier combinations, but at roughly 250 thousand ha both show smaller total areas 

than OSS data. The total area of classifiers NDVI-S2-RF, EVI-S2-SVM, EVI-NDVI-

L8-RF, and EVI-NDVI-S2-RF are recorded in OSS.  

The mapped areas of the crop classes in this study area, overall, do well with OSS data 

at the provincial level, with on average 1% deviation in coverage resulting with L8 

sensor datasets using RF-EVI and SVM-EVI-NDVI methods, as shown in Table 5.7. 

A similar result was also found in the work of Asam et al., 2022 (Asam et al., 2022). 

The deviation between 1% to 13% resulted from the EVI and NDVI used by all ML 

classifiers and sensor datasets. The close values are also found in the research of 

Oliphant et al., 2019 (Oliphant et al., 2019). The lowest deviation values of 8% to 14% 

(less than OSS data) were found using NDWI1 and NDWI2 by all ML classifiers and 

sensor datasets. 
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Figure 5.16. Difference between the total area of OSS data and classified area by 

sensors, classifiers, and indices. 

Table 5.7. Deviation (in %) between the total mapped crop areas and OSS data (280.4 

thousand ha). 

Classifier- 

Sensor 

Indices Combination 

NDVI EVI EVI-NDVI NDWI1 NDWI2 

SVM-S2 3 12 3 −13 −13 

SVM-L8 2 −6 1 −12 −8 

RF-S2 13 3 9 −14 −11 

RF-L8 2 −1 13 −14 −8 

 

5.5.4 Theoretical and Practical Implications of the Research 

Land information systems access for local or regional land administration highly 

influences the way a state operates and the policies they develop. Recognizing land 

uses by land administration is a major funding source such as tax, stamp duty on 

property transfers, etc. (Virnodkar et al., 2021). Derived irrigated crop types maps can 

be utilized by regional land administration offices to monitor the spatial extent of crops 
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location and its monitoring as well as modeling and predicting crop yields and 

production by different models. 

 

5.5.5 Limitations and Recommendations 

 

Training and validation sampling points were taken based on the best knowledge of 

crop development phenology, cropping calendar, monthly NDVI profiles during the 

crop growth period, and historical google earth images. However, it is lacking the field 

observation data. In this research, we focused on creating a map of major crops such 

as cotton, wheat, rice, other crops, and fruits/trees, which are recorded by state 

statistics. The “Other crops” class consists of multiple minor crops, and we are 

motivated to continue our research to classify these classes by crop types in the future. 

Besides, we recommend creating detailed second crop maps, which is vital for public 

land management authority and local government to make decisions on a crop location 

that is suitable for soil quality and food security stability. 

 

5.6 Conclusions 

 

In this study, S2 and L8-based time series data in 2018 served as the input for mapping 

irrigated crop types using different vegetation indices such as NDVI, EVI, NDWI1, 

and NDWI2 by SVM and RF ML algorithms. 

Regarding the comparability of medium (30 m) to high (10 m) resolution RS data, the 

results have demonstrated that both sensor products provide comparable outcomes 

concerning total area classified as well as accuracy assessment results. This is 

confirmed by the fact that the classification results demonstrating the highest OA 

results for SVM and RF, respectively, have been produced with different sensors. A 

closer analysis of OA, KA, UA, and PA, too, has demonstrated that RS imagery from 

both sensors is of comparable quality. Differences in accuracy results vary higher 

based on the vegetation indices used than on sensor data. KA values vary between 75% 

to 88% in all indices. The lowest KA values were achieved in all indices with the SVM 
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classifier of L8 sensor data. The highest KA values of 88% and 87% were achieved 

with the RF classifier of L8 data when EVI and EVI-NDVI were used, respectively. 

We can also have a similar conclusion regarding the difference between RS-based-

derived crop types area and OSS area. The lowest absolute WA using OSS area as 

weight, between areas classified per respective OSS category is 0.1 thousand ha for 

S2-RF-EVI classification and 0.2 thousand ha for L8-SVM-NDVI classification. Thus, 

classified maps can be used by global cropland mapping projects or any other 

ecological models that require specific crop types mapping. The recent successful 

launch of Landsat-9 will successfully continue the Landsat data suite and enable new 

opportunities in the joint use of Landsat and Sentinel data to capture high temporal 

resolution during the vegetation growth period. 

The comparison of classified map areas for the main crops of cotton, wheat, and other 

crops demonstrated very reliable results when NDVI and EVI-NDVI were used with 

S2 sensor data. Therefore, S2 high resolution and temporal data can be utilized in the 

future to create LU maps to calculate crop water and irrigation requirements by using 

a variety of climate-hydrology models. Besides, created crop types map of agricultural 

areas can be used to inform decision-makers of local administration offices to develop 

policies to assure food security, valuable ecological resources, and services where 

digital data do not exist or missing. 

The performance of both ML classifiers with S2 and L8 sensor data resulted in not 

being satisfactory for the rice crop due to the mixture of this class with second crops 

after winter wheat, which was due to a similar sowing time and growth period. Another 

limitation of this research relates to other crops classes, where other crop classes 

include a variety of crops; some of these crops might have similar growth periods and 

spectral properties to each other. This can influence on the OA of the classifiers, and 

we recommend further studying the separating of other crop types in the future. 
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CHAPTER 6 

6 General conclusions, limitations, and 

recommendations 

6.1 Summary findings 

 

The focus of this thesis is to map precise and accurate irrigated croplands extent 

product of Tashkent Province in Uzbekistan using different supervised classification 

methods in 2018. To achieve this goal, Sentinel - 2 and Landsat - 8 satellite data were 

utilized by well-known classifiers algorithms SVM, RF, and MLC. GIS and Remote 

sensing tools were used for the study analysis.   The most important findings and main 

conclusions of the specific objectives are presented in this chapter: 

i. Reviewing scientific articles, local reports, and expert’s opinions showed 

only a limited amount of research was published that mapped agricultural 

croplands by crop types using multi-temporal satellite data during the 

vegetation period, and also, compared and evaluated the performance of 

RF, SVM, and MLC with different indices using Sentinel-2 and Landsat-8 

imagery, especially in Tashkent Province of Uzbekistan. Most of the 

carried-out research to study land use land cover, and land degradation used 

medium spatial resolution remotely sensed data such as NOAA/AVHRR, 

MODIS, and Landsat and which may pixels include a mixture of many land 

covers but they do not capture certain croplands by crop types. Last 35 

years climate change data analysis showed an increasing trend of 

temperature and highly variable trends in precipitation and it is predicted 

to rice temperature by 1-2 degrees in the future. We expect an increase in 

precipitation and water resources for certain times of period due to climate 

change and the shrinking of Glaciers in the Tien Shan and Pamir mountains 

then a decrease in water resources in the region. That’s why we intended to 

create a specific crop types map that can play an important role in land 

management policies under climate change scenarios.   
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ii. Classification of main irrigated crop types was carried out using multi-

temporal Sentinel-2 data in 2018. As input data, calculated monthly NDVI 

profiles together with bands 2 and 3 at 10 m resolution were selected.  Three 

classifier algorithms SVM, RF, and MLC were used for the classification 

process. Among the tested methods the SVM and RF classifiers produced 

a visually pleasant and realistic irrigated cropland map in Tashkent 

Province. Performance test results showed that SVM showed the highest 

OA and KA. KA of classified images for SVM were 0.90 and 0.89 for the 

RF algorithm. Both performed well with close values. But MLC showed a 

lower result of KA 0.60. Based on the results, SVM and RF classifiers were 

recommended to test and compare different sensor types and indices for the 

appropriate crop types mapping in the research area. 

iii. Recommended classification algorithms SVM and RF were utilized to map 

irrigated croplands by using Sentinel - 2 and Landsat - 8 sensors data to 

compare the performance and recommend the suitable method for crop type 

classification. Four indices NDVI, EVI, NDWI1, and NDWI2 were 

calculated using blue, green, near-infrared, SWIR 1, and SWIR 2 bands and 

used as input data. All input data resampled at 10 m resolution and SVM 

and RF respectively have been produced irrigated crop types map with 

different sensors and indices. Detailed analysis of OA, KA, UA, and PA, 

too, has shown that RS imagery from both sensors is of comparable quality. 

Differences in accuracy results vary higher based on the vegetation indices 

used than on sensor data. KA values vary between 75% to 88 % in all 

indices. The lowest KA values were achieved in all indices with the SVM 

classifier of L8 sensor data. The highest KA values 88% and 87% were 

achieved with the RF classifier of L8 data when EVI and EVI-NDVI were 

used respectively. Using NDWI 1 and NDWI 2 which uses SWIR 1 and 

SWIR 2 bands is not achieved good results in both accuracies point and 

area comparison. And also, visually it was found that many misclassified 

water pixels throughout the study area. It is because all cropland in the 

study area is irrigated and irrigation water in the early crop development 

process can influence the classification of croplands as water surface by 
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water indices. Thus, we do not recommend using these indices for cropland 

classification using both sensor type and classifiers. 

iv. All derived crop types class areas were compared with official State 

Statistics data for validation. Firstly, SVM, RF, and MLC results showed 

that the state order crops “cotton”, “wheat” and the class “other crops” in 

SMV and RF methods were close to the official data. The area of class 

“rice” was higher than the official data in all classifiers. And the class 

“others crops” showed unreliable results in MLC due to its complexity and 

heterogeneity. Comparing the area of class “fruits/trees” is complicated 

because private households and landowners have fruits and trees on their 

property. And also, many cropland fields are surrounded by mulberry trees 

for sericulture which is not included in the official data. Secondly, using 

calculated NDVI, EVI, NDWI 1, and NDWI 2 values of Sentinel – 2 and 

Landsat – 8 sensors data showed that the arithmetic average difference 

values of main crops cotton, wheat, and other crops showed very reliable 

results when NDVI and EVI-NDVI used with Sentinel - 2 sensor data. 

Therefore, the same conclusion needs to be drawn. The lowest absolute 

weighted average using state statistics area as weight, between areas 

classified per respective state statistics category is 0.1 thousand ha for S2-

RF-EVI classification and 0.2 thousand ha for L8-SVM-NDVI 

classification. Thus, classified maps using NDVI, EVI, and NDVI-EVI can 

be used by global cropland mapping projects or any other ecological 

models which require specific crop types mapping.    

v. Concerning the comparability of medium (30 m) to high (10 m) resolution 

RS data, results have shown that both sensor products provide comparable 

identical outcomes concerning total area classified as well as accurate 

results. This is confirmed by the fact that the classification results showing 

the highest OA results for SVM and RF respectively have been produced 

with different sensors. Thus, logically we can conclude that using medium-

level (30 m) sensor data is sufficient and thus to be recommended since 

using lower resolution data reduces the amount of data as well as the 

requirement for processing resources. With Landsat data at 30 m resolution 



 

120 

 

being available since the launch of Landsat 4 & 5 in 1982, time series 

analysis based on the method suggested in this paper is possible for the 

period 1982 to today. For data collected by Landsat 1-3 since 1972 at 79 m 

x 79 m resolution additional analysis is required using historical land-use 

data to draw further conclusions. The recent successful launch of Landsat-

9 will successfully continue the Landsat data suite and enable new 

opportunities in the joint use of Landsat and Sentinel data to capture high 

temporal resolution during the vegetation growth period. 

 

6.2 Limitations 

 

In this study, the application of GIS and Remote Sensing techniques has proven as an 

effective means for mapping irrigated croplands by crop types and produced some 

meaningful information about the spatial extent of the overall crop area in Tashkent 

Province of Uzbekistan. But it involves some inherent limitations due to resources and 

finance limits, such as:  

• training and ground-truthing points were taken based on the best knowledge of 

crop development phenology, monthly NDVI profiles during the crop growth 

period, and historical google earth images. But it is lacking the field 

observation data. Provided data remotely were not reliable and useful for a 

research purpose; 

• the crops growing together at the same time make the spectral separation 

difficult, which may influence the performance of classifiers. Therefore, more 

images by time duration can solve the problem via increasing temporal 

resolution. For example, combining both Sentinel and Landsat sensor images 

for this purpose as the results were identical;   

• it was found that the performance of all classifiers for the rice crop is less 

reliable due to state statistics reports limitation. Rice crops planted after winter 

wheat as well as rice fields of seed farming should also include in statistical 
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data. Then we can have a proper area comparison results similar to state 

statistics for rice; 

• another limitation of this research relates to the “other crops” class where other 

crops include a variety of crops. And some of these crops might have similar 

growth periods and spectral properties like main crops cotton and wheat. This 

can influence the overall accuracy of the classifiers and we recommend 

studying deeper and further investigation on separating other crop types 

individually;  

• after winter wheat is harvested, usually the practice of a second crop is adopted 

to reduce the poverty. The crops harvested as a second crop are an additional 

outcome or subsidy for poor people or farm workers. And these crops are not 

recorded in the statistics or controlled and managed by the government. There, 

we think the second crop after winter wheat should be classified separately and 

investigated deeply to make a clear vision of the extent of the second crop for 

sustainable crop management policies. 

 

6.3 Recommendations 

 

Irrigated croplands classification using GIS and Remote sensing techniques together 

with Sentinel and Landsat data were found to be very effective in the semi-arid area of 

the Tashkent Province in Uzbekistan. Among tested four indices NDVI and EVI or 

using both together proposed to be very useful to derive irrigated crop types map in 

the region. SVM and RF classification algorithms were the best-suited classifiers for 

mapping heterogeneous irrigated crop types and they can be used alternatively where 

digital cadaster LU maps do not exist for agro-environmental assessment studies in the 

region. Besides, derived irrigated crop types maps can be utilized by regional land 

administration offices to monitor the spatial extent of crop distribution, location, and 

its monitoring as well as modeling and predicting crop yields and production by 

different models. 
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 In this study, we focused to create a map of major crops such as cotton, wheat, rice, 

other crops, and fruits/trees which are recorded by state statistics. “Other crops” class 

consists of multiple minor crops and we are motivated to continue our research to 

classify these classes by crop types in the future. Besides, we recommend creating 

detailed second crop maps which is vital for public management authority and local 

government to make decisions to plant proper crops which is suitable for the soil 

quality.   

Since the performance and area comparison analysis of Sentinel 2 and Landsat 8 

achieved comparable close results, we recommend using them combined to increase 

seasonal temporal resolution which will help to distinguish the crops' spectral 

properties and to increase the accuracy of classification. It will also increase the chance 

of getting cloud-free images during the vegetation growth period.    
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