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CHAPTER 1

Introduction

1.1. Motivation

Since their early days, the sciences of mathematics and physics have been tightly
interwoven. Two physical subjects which particularly challenged new mathematical de-
velopments are the theory of general relativity and quantum mechanics. The theory of
general relativity is founded upon concepts of differential geometry and uses objects with a
local structure, such as smooth manifolds, vector fields, flows and differential operators. In
contrast, quantum mechanics often requires an understanding of global properties. In this
realm, a researcher may look at vector fields as unbounded linear operators on a Hilbert
space, and at flows as exponentials of such operators defined by functional calculus. Both
general relativity and quantum mechanics have been very fruitful over the years, but are
still not unified in a common theory. Thus any new connection between their mathematical
foundations can be of scientific interest.

One mathematical area which connects local and global theories is the representation
theory of Lie groups and Lie algebras. Representations of Lie groups by bounded operators
have been soundly studied during the last century. They carry deep information about the
global group structure. As commonly known, a Lie group can be differentiated to a Lie
algebra, namely its tangent space at the identity. Differentiation of a Lie group representation
gives us a representation of the Lie algebra, which only carries local information. For
representations on finite-dimensional spaces, this process can be reversed, integrating Lie
algebra representations to Lie group representations. In principle, this is also possible for
infinite-dimensional representations, but in that case, a bounded Lie group representation
may differentiate to an unbounded Lie algebra representation. Integration then requires
deeper knowledge of functional analytic properties, in particular, elements of the Lie algebra
should be represented by essentially skew-adjoint operators. The necessary conditions were,
among others, studied by Edward Nelson in the fifties, using analytic vectors and properties
of the Laplace operator.

The representation theory of Lie groups and Lie algebras has given birth to many
new ideas in mathematical physics, but it also has its limits. More recent publications
have introduced the more general notions of Lie groupoids and Lie algebroids. Whereas a
Lie group can be interpreted as composable arrows from a single point to itself from the
perspective of category theory, a Lie groupoid consists of arrows between the infinitely
many different points of a smooth manifold. Whereas Lie algebras have a basis of finitely
many vector fields, Lie algebroids are infinite-dimensional and require an understanding of
multiplication with smooth functions instead of just scalars.

The original goal of this dissertation was to develop a representation theory for Lie
groupoids and Lie algebroids, resembling the classical theory of Lie groups and Lie algebras.
In particular, I aimed to show that Lie algebroid representations can be integrated to Lie
groupoid representations, because this direction is much more difficult than differentiation.
There is hope that such a new representation theory could, similar to the classical Lie
theory, inspire new developments in mathematics and theoretical physics.
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1.2. METHODS 5

1.2. Methods

For a Lie groupoid G, the simplest form of representation is not a representation defined
on G itself, but a homomorphism π : C∗(G) → B(H) from the groupoid C∗-algebra C∗(G)
into the bounded operators on a Hilbert space H. One reason for this is the fact that
smoothness is, in a sense, a requirement which is too strong for groupoid homomorphisms.
One can define a smooth theory of Lie groupoid representations on smooth vector bundles,
but this is different from the measurable theory that will be used in this thesis, and also
less rich.

Thus the common way to differentiate a Lie groupoid representation is to start with a
representation π : C∗(G) → B(H) and define an unbounded representation R = diff(π) :
DiffR(G) → O(H) from the right-invariant differential operators on G into the unbounded
operators on H by the formula R(D)(π(f)v) = π(D(f))v on the domain {π(f)v | f ∈
C∞
c (G), v ∈ H}. This procedure was known before the start of my project and does not

require the investigation of groupoid homomorphisms.
That changes for the integration process which I developed. Like in the classical Lie

theory, I use exponential maps for the integration. Unfortunately, there is no obvious
way to define the exponential of an arbitrary differential operator in our given context.
Instead, I will consider exponentials of Lie algebroid sections, which are bisections in the
corresponding Lie groupoid. This will allow us to define a map on the groupoid itself from
a representation of its invariant differential operators.

To properly do this, more theory is required. As mentioned before, a natural way to
define groupoid representations is to use a vector bundle instead of a vector space as target.
The smooth theory is too limited here, but it turns out that the same idea can be used in
a surprisingly general context. This is thanks to the theory on measurable fields of Hilbert
spaces developed by Jacques Dixmier (see [5]). Using his theorems and adaptations to
our given context, we will see how each Hilbert space relevant to us is isomorphic to a
measurable field of Hilbert spaces. In this sense, we can decompose both the target space
and unitary operators on it into fibres.

Using this decomposition technique and exponential maps, I was able to prove integra-
tion theorems for Lie algebroid representations in a particular context. Beyond the explicit
definitions and computations, another important part in the process is Stone’s theorem on
one-parameter unitary groups (see [23]), which complements the used exponentials and
allows us to investigate the domain of certain unbounded operators in a concise way.

While the overall process was successful, major hindrances occurred at certain steps.
The most prominent example of this is the exponential map for Lie algebroids. Unlike
for Lie algebras, exponentials are not always globally defined, and most importantly, a
Baker-Campbell-Hausdorff formula does not apply for non-commuting sections of the
algebroid.

This is the main reason why we focus on the case of pair groupoids and the tangent
algebroid in the later chapters of this monograph. In this case, we can use commuting vector
fields to avoid the need for a Baker-Campbell-Hausdorff formula. Using ideas from classical
Lie theory as well as new methods from differential geometry and functional analysis, I
have proven that representations of the tangent algebroid can actually be integrated under
certain assumptions. In precise terms, I have proven the following theorem (in the main
text, this is Corollary 7.3.5):

Theorem 1.2.1. Let M be a compact and simply connected smooth manifold. Let
ω ∈ Ωm(M) be a volume form. Let R : Diff(M) → O(K) be a representation on a separable
Hilbert space K such that R|C∞(M) is injective.

Suppose that R is integrable. Then there is a representation π = int(R) : C∗(M×M) →
B(K) such that diff(π)(D) = R(D) for all D ∈ Diff1(M).



6 1. INTRODUCTION

The assumption that R is integrable is a necessary technical condition, which will be
formally defined in the last chapter.

A short summary of the complete content is given in the next section.

1.3. Short Summary

This dissertation investigates representations of Lie groupoids and Lie algebroids and
the connection between them. Lie groupoids and Lie algebroids are differential-geometric
generalisations of Lie groups and Lie algebras. A Lie groupoid representation is a bounded
*-homomorphism from the groupoid C∗-algebra of the groupoid into the bounded operators
on a separable Hilbert space. A Lie algebroid representation is a unital *-homomorphism
from the universal enveloping algebra of the Lie algebroid into the unbounded operators
on a separable Hilbert space which has a common, invariant, dense domain. Similar to Lie
groups, any Lie groupoid G can be differentiated to a Lie algebroid A(G). In this case,
the right-invariant differential operators on G (those differential operators which commute
with the multiplication maps rg : h 7→ hg) are a universal enveloping algebra for A(G) and
carry a natural involution defined using the divergence for vector fields. I use an algebraic
definition of differential operators, which does not involve charts. All of these notions are
formally introduced in the first three chapters of this thesis.

In Chapter 4 I give a proof of the known fact that every non-degenerate Lie groupoid
representation can be differentiated to a representation of its Lie algebroid on the same
Hilbert space. I also show that in this derived representation, symmetric differential
operators of order 1 act by essentially self-adjoint unbounded operators.

Chapter 5 covers measurable fields of Hilbert spaces, which are infinite-dimensional
generalisations of vector bundles. I show how every Hilbert space which is the target of
a Lie algebroid representation is isomorphic to the section space of a measurable field of
Hilbert spaces. Any measurable field of Hilbert spaces H on a space M defines a groupoid
of unitary maps U(H) over M . I use this to define a third type of representation, which
is a groupoid homomorphism from a Lie groupoid G to the unitary groupoid U(H) of a
measurable field of Hilbert spaces over the same base space. I show that each local groupoid
homomorphism which is defined on a neighbourhood of the identities can be extended to a
global homomorphism if the groupoid has simply connected fibres.

Chapters 6 and 7 serve the construction of an integration theorem for Lie algebroid
representations. In Chapter 6 I show that exponentials of vector fields act by decomposable
unitary operators and use this to integrate representations of the Euclidean tangent bundle
TRm to representations of the pair groupoid Rm ×Rm. I also demonstrate how to integrate
groupoid homomorphisms to representations of the groupoid C∗-algebra. Then I show that
the combination of both integration steps is actually inverse to differentiation using explicit
computations.

Chapter 7 uses techniques introduced in Chapter 6 to prove a generalised integration
theorem. This theorem states that every integrable representation of a tangent algebroid
TM , where M is a compact, simply connected smooth manifold, can be uniquely integrated
to a representation of the pair groupoid M × M . A necessary and sufficient condition
for integrability is that all symmetric differential operators of order 1 act by essentially
self-adjoint operators and that exponentials of locally commuting vector fields fulfil a local
group relation. I show that integration and differentiation are again inverse to each other
in this scenario. Finally I investigate a few other conditions for integrability.



CHAPTER 2

Lie Groupoids and Lie Algebroids

2.1. An Elementary Example

Before we investigate the more theory-heavy concepts which are involved in our later
main theorems, I would like to showcase a rather elementary example and define a few
basic terms in the process. Maybe the simplest way to represent differential operators is to
let them act on the function space they are defined on. So if we have a vector field X on the
real numbers R, we can view X as a linear operator C∞

c (R) → C∞
c (R). We can also regard

the compactly supported smooth functions C∞
c (R) as a subspace of the square-integrable

functions L2(R). This then assigns operator theoretic properties to our vector field, for
example, it must have an adjoint.

Having a focus on differential geometry, we should apply the same idea to arbitrary
smooth manifolds instead of just the real line. In this case, we are lacking a canonical
measure on our space, which is why we have to choose one. The convenient thing to do is
to actually choose a volume form, which is slightly less general, because this allows us to
immediately use Stokes’ Theorem and related results.

In the following definition we give a shorter name to a manifold with a volume form on
it and define the respective divergence of vector fields.

Definition 2.1.1. A volumetric manifold is a pair (M,ω), where M is an oriented
smooth manifold and ω is a positive volume form on M , i.e. a smooth differential form
ω ∈ Ωm(M), where m = dimM , such that ω(e1, . . . , em) > 0 for every positively oriented
smooth local frame (e1, . . . , em) of TM . If ω is clear from context or not relevant in the
notation, I may call M itself a volumetric manifold.

Given a volumetric manifold (M,ω), for all smooth vector fields X ∈ X(M) we define
the divergence div(X) := f to be the unique smooth function f ∈ C∞(M) such that
LXω = f · ω. Here, LX is the Lie derivative by X.

A vector field X ∈ C∞(M) is called solenoidal if div(X) ≡ 0.

A few things can be noted about this definition: By continuity, ω being positive is
equivalent to ωp(v1, . . . , vm) > 0 for a single positively-oriented basis (v1, . . . , vm) of TpM
and all p ∈ M . Furthermore, the divergence is uniquely defined because ω is non-vanishing
and rk ∧m(T ∗

pM) = 1, so that (ω) alone is a frame of ∧m(T ∗
pM) = 1. There are many

different definitions of a vector field’s divergence in different contexts, but often they are
equivalent. For compactly supported vector fields X, the Lie derivative LXω and hence the
divergence have compact support, too. This will be important for the functional analysis
point of view.

Beyond the mathematical content, the somewhat unusual name solenoidal can be
translated as tube-shaped and stems from the mathematical analysis of magnetic fields.

The main application of volume forms is integration on manifolds, so it is no surprise
that they induce a canonical measure.

Proposition 2.1.2. Let (M,ω) be a volumetric manifold. Let τ = {U ⊆ M |U open} be
the topology of M and B = σ(τ) the induced Borel σ-algebra of M . Then there is a unique
Radon measure µ = µω : σ(τ) → R≥0 ∪ ∞ such that

∫
M fdµ =

∫
M fω for all f ∈ Cc(M).

7



8 2. LIE GROUPOIDS AND LIE ALGEBROIDS

Proof: Consider the map I : Cc(M) → R, f 7→
∫
M fω (using the integral of a continuous

differential form as defined in [11]). By Proposition 16.6, page 407 in [11], I is a linear
map and positive in the sense that I(f) ≥ 0 for all functions f with f(p) ≥ 0 for all p ∈ M
(because in that case, fω is another positively oriented volume form on f−1(R>0) ⊆ M).
So I is a positive linear functional.

Being a smooth manifold,M is locally compact, thus by the Riesz-Markov representation
theorem, there is a unique Radon measure µ on B with

∫
M fdµ = I(f) =

∫
M fω for all

f ∈ Cc(M). □

Using this canonical measure, we define Lp-spaces.

Definition 2.1.3. Let (M,ω) be a volumetric manifold. For every p ∈ R>0 we define

Lp(M,ω) := Lp(M,σ(τ), µω) = {f : M → K | f measurable,
∫
M

|f |pdµω < ∞}/N ,

where N = {f : M → K | f measurable,
∫
M |f |pdµω = 0}. Here, measurable always means

Borel-Lebesgue-measurable. K is either R or C. By convention, I will consider real-valued
functions in this section and complex-valued ones later; the computations are all very
similar.

If ω is clear from context, I may also just write Lp(M) for the same object.

Of course I am going to use the main results about Lp-spaces, namely that Lp(M,ω) is
a Banach space with ∥f∥p = (

∫
M |f |pdµg)

1
p for all p ≥ 1 and that L2(M,ω) is a Hilbert

space with ⟨f, g⟩ =
∫
M f̄gdµω.

Remark 2.1.4. Clearly every continuous function on M is measurable, and if it has
compact support, then it is a representative of an Lp-element for every p ∈ R≥1 since
µω is σ-finite. Because there are no open null sets in M by the strict positivity of ω, the
projection map π : C0

c (M) → Lp(M,ω), f 7→ [f ] is injective (the lower index c indicates
compact support). Because of this I will sometimes just identify functions f, g ∈ C0

c (M)
with elements of Lp(M,ω).

Let us now include a formal definition of (not necessarily bounded) linear operators,
which is often confusingly omitted.

Definition 2.1.5. Let V be a topological K-vector space. The set of operators on V is
defined to be

O(V ) = {(W, τ) | W ⊆ V vector subspace, τ : W → V K-linear},
with addition (W, τ)+(X,σ) = (W ∩X, τ |W∩X +σW∩X) and composition (W, τ)◦ (X,σ) =
(X ∩σ−1(W ), τ ◦σ|X∩σ−1(W )). The neutral elements are (V, 0) for the addition and (V, idV )
for the composition.

An operator (W, τ) ∈ O(V ) is, intuitively, called densely defined if W is dense in V ,
i.e. W = V . For any (W, τ) ∈ O(V ) we define dom(W, τ) := W and occasionally just write
τ ∈ O(V ) for the same operator; the domain is determined by τ anyway.

While the addition and composition defined as above make perfect sense, one has to be
aware that both may drastically decrease the domain. Even if two operators on a Hilbert
space are densely defined, their sum need not be. As an example consider the spaces of
polynomial functions and functions vanishing in a neighbourhood of the boundary, which
are both dense in L2([0, 1]), with their intersection being plain {0}. So the densely defined
operators usually do not form a subspace. However, we will see that important sets of
operators will have a common dense domain, which is enough to ensure the validity of
important theorems.

Now, what actually is the adjoint of a vector field? We are not yet ready to investigate
the intricate domain issues, but we can at least deduce a formula which works on the



2.1. AN ELEMENTARY EXAMPLE 9

smooth function space. This would traditionally be done using partial integration, but
Stokes’ theorem makes the proof much more compact.

Theorem 2.1.6. Let (M,ω) be a volumetric manifold and X ∈ X(M). Then for all
f, g ∈ C∞

c (M), we have:

⟨f,LX(g)⟩ = −⟨LX(f), g⟩ − ⟨f divX, g⟩

Here the scalar products are taken in the real-valued L2(M,ω).
In particular, LX ∈ O(L2(M)) is formally skew-adjoint if and only if X is solenoidal.

Proof: Let X ∈ X(M) and f, g ∈ C∞
c (M) be arbitrary. Then by the Leibniz rule for the

Lie derivative we have:

LX(fgω) = fgLXω + LX(f)gω + fLX(g)ω

Note that LX(fgω) ∈ Ωm(M) (m = dimM) still has compact support. Because the exterior
derivative of forms of maximal rank is zero, we have LX(fgω) = d ◦ iX(fgω). So by Stokes’
theorem (as proven in [11], page 411, Theorem 16.11), it has integral∫

M
LX(fgω) =

∫
M
d ◦ iX(fgω) =

∫
∂M

ι∗∂M iX(fgω) = 0,

using that ∂M = ∅. Hence using LXω = div(X)ω we get

0 =
∫
M
fgLXω + LX(f)gω + fLX(g)ω = ⟨f, g div(X)⟩ + ⟨LX(f), g⟩ + ⟨f,LX(g)⟩

or equivalently:
⟨f,LX(g)⟩ = −⟨f, g div(X)⟩ − ⟨LX(f), g⟩ □

It is crucial for this theorem that M has no boundary. Otherwise, the closed unit
interval with linear and quadratic functions and the usual derivative would already give a
counterexample.

Another important property of certain unbounded operators is that they have a large
enough domain. The following theorem shows that this is always true in cases relevant for
us. It uses important results from measure theory and functional analysis and combines
them to get a suitable version of the statement for the context of volumetric manifolds.

Proposition 2.1.7. Let (M,ω) be a volumetric manifold. Then C∞
c (M) ⊆ L2(M,ω)

is dense.

Proof: We know that (M,µω) is a locally compact Hausdorff space with a regular Borel
measure by basic manifold theory and Proposition 2.1.2. So by [7], page 78, Proposition
5.7, the compactly supported continuous functions Cc(M) are dense in L2(M). This still
holds for smooth functions. The proof goes as follows:

Concretely, we need to show that for every f ∈ L2(M) and ϵ > 0 there is h ∈ C∞
c (M)

with ∥f − h∥L2 < ϵ. So let ϵ > 0 and f ∈ L2(M) be arbitrary. As mentioned before,
Cc(M) ⊆ L2(M) is dense, so there is g ∈ Cc(M) with ∥f − g∥2

L2 <
ϵ
2 . Set K := supp g,

which is compact.
Note that the restrictions of smooth global functions C∞(M)|K form a point-separating,

non-vanishing subalgebra of C(K), so by the Stone-Weierstraß Theorem, they are dense
in C(K), using the supremum norm. If µ(K) = 0, then g ≡ 0 is already smooth, so
assume that µ(K) > 0, and choose h ∈ C∞(M) with ∥(g − h)|K∥∞ < ( ϵ

4µ(K))
1
2 . Using

that µ = µω is (outer) regular, we find an open precompact set U ⊆ M with K ⊆ U and
µ(U \K) < ϵ

4∥h|V ∥∞
≤ ϵ

4∥h|U ∥2
∞

. Here, V is some open subset containing K, which is used
to get a constant value at the right side; shrinking the set further to U can only decrease
the supremum norm. The supremum norm is finite since U is precompact.
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Now since U is open and K ⊆ U is compact, there is a smooth bump function
b ∈ C∞

c (M) with 0 ≤ b ≤ 1, b|K ≡ 1 and supp(b) ⊆ U (e.g. use a partition of unity
subordinate to {M \K,U}). Set k := bh ∈ C∞

c (M). Within this construction we compute:

∥f − k∥2
L2 ≤ (∥f − g∥L2 + ∥g − k∥L2)2

≤ ∥f − g∥2
L2 + ∥g − k∥2

L2

<
ϵ

2 +
∫
K

(g − k)2dµ+
∫
M\K

(g − k)2dµ

= ϵ

2 +
∫
K

(g − h)2dµ+
∫
U\K

b2h2dµ

≤ ϵ

2 + µ(K)∥(g − h)|K∥2
∞ + µ(U \K)∥h|U∥2

∞

<
ϵ

2 + µ(K)
(

ϵ

4µ(K)

) 1
2 ·2

+ ϵ

4∥h|U∥2
∞

∥h|U∥2
∞ = ϵ

As ϵ > 0 was arbitrary (in particular, we could also use ϵ2), this finishes the proof. □

Knowing that Lie operators are defined on a dense domain allows us to build their
adjoint. By Theorem 2.1.6, we can partly compute it.

Corollary 2.1.8. Let M be a volumetric manifold and X ∈ X(M). Then the adjoint
L∗
X ∈ O(L2M) of LX exists, its domain dom(L∗

X) contains C∞
c (M) ⊆ L2M , and

L∗
X |C∞

c (M) = −LX −mdivX ,

where mh : C∞
c (M) → C∞

c (M), f 7→ h · f denotes the multiplication operator for h ∈
C∞(M).

Proof: The existence of an adjoint is guaranteed by the mere fact that the domain
dom(LX) = C∞

c (M) ⊆ L2M is dense (Proposition 2.1.7). By definition,

dom(L∗
X) = {f ∈ L2M |∃h ∈ L2M ∀g ∈ C∞

c (M) : ⟨f,LXg⟩ = ⟨h, g⟩}.

For f ∈ dom(L∗
X), the value of the adjoint L∗

X(f) is just h.
Let f ∈ C∞(M). Then we know by Theorem 2.1.6 that for all g ∈ C∞

c (M) ⊆ L2M we
have ⟨f,LXg⟩ = ⟨−LX(f) − f divX, g⟩, so f ∈ dom(L∗

X), and

L∗
X(f) = −LX(f) − f divX = (−LX −mdivX)(f).

Since f ∈ C∞(M) was arbitrary, this implies indeed that C∞
c (M) ⊆ dom(L∗

X) and
L∗
X |C∞

c (M) = −LX −mdivX . □

Now that we know about the adjoint, general theorems from functional analysis ensure
that Lie operators are also closable:

Corollary 2.1.9. Let M be a volumetric manifold and X ∈ X(M). Then LX is a
closable operator.

Proof: By Corollary 2.1.8, C∞
c (M) ⊆ dom(L∗

X) holds for the domain of the adjoint. So by
Proposition 2.1.7, the adjoint is densely defined. Hence by [25], Theorem 3, page 196, LX
has a closed linear extension, i.e. it is closable. □

We will see later how these humble formulas give rise to a ∗-algebra structure on the
algebra of differential operators, with deep implications for representation theory. The
divergence operator will be our trusted companion throughout the chapters of this thesis.
For now, let us settle with our first results and finish the elementary example. The next
sections will formally introduce our main character.
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2.2. Lie Groupoids and their Sections

Readers of this work are probably familiar with the notion of Lie groupoids as well
as with the fact that Lie groupoids can be differentiated to Lie algebroids, which can,
under special circumstances, be integrated to obtain a Lie groupoid again. Although these
structures are not new to the mathematical world, I will give a short introduction to
Lie groupoids here to be self-contained. With the use of category-theoretic language, the
definition looks as follows:

Definition 2.2.1. A Lie groupoid is a category G in which all arrows are isomorphisms,
where the classes of objects M = G0 and of morphisms G = G1 are smooth manifolds such
that:

(1) The source and target maps s, t : G → M are smooth surjective submersions.
s and t are defined by s(g) = x and t(g) = y for any morphism g ∈ G(x, y),
x, y ∈ M .

(2) The inclusion map ι : M → G, x → idx is a smooth embedding.
(3) The composition mult : G2 := {(h, g) ∈ G2|t(g) = s(h)} → G is smooth.

Given such a structure, M is called the base of the groupoid, and G is often itself referred
to as a groupoid, using the rest of the structure implicitly.

Lie groupoids with base M , morphism space G and source and target maps s, t are
commonly denoted s, t : M ⇒ G or just M ⇒ G. As for Lie algebroids, there are two basic
examples of Lie groupoids, which can be thought of as corner cases, the first one being just
a Lie group.

Example 2.2.2. Any Lie group G corresponds a Lie groupoid over the single-point
base {0}.

Proof: It is a category theoretic fact that groups can be seen as categories with one object
and only invertible morphisms. Call this corresponding category G and its object 0. The
source, target and inclusion maps are all trivially smooth because their range or domain are
singletons. The smoothness of the composition mult : G2 = G2 → G is a defining property
of Lie groups. □

The other standard example is the pair groupoid over a given manifold.

Example 2.2.3. Let M be any smooth manifold. The pair groupoid M×M ⇒M of M
is defined by source s(m′,m) = m, target t(m′,m) = m′ and multiplication (z, y) ∗ (y, x) =
(z, x). The inclusion is ι : M → M × M, x 7→ (x, x). Clearly s, t, ∗ and ι are all smooth,
and s and t are surjective submersions, so the pair groupoid is a groupoid not only by
name.

Unlike morphisms of Lie algebroids, Lie groupoid morphisms are quite obvious to
define:

Definition 2.2.4. Let G = (G ⇒ M) and H = (H ⇒ N) be Lie groupoids. A
morphism of Lie groupoids from G to H is a covariant functor F : G → H which is smooth
on morphisms and on objects, i.e. a pair of smooth maps (F, f) of f : M → N with
f ◦ s = s′ ◦F , f ◦ t = t′ ◦F for the respective source and target maps and F : G → H with
F (g2g1) = F (g2)F (g1) for all (g2, g1) ∈ G2.

The main difference between Lie groups and Lie groupoids is that not any two elements
of a groupoid can be composed like in the group case. In particular, left and right translation
can be defined, but not on the whole of G. We have to use the fibres of source and target
instead.



12 2. LIE GROUPOIDS AND LIE ALGEBROIDS

Definition 2.2.5. Let G ⇒ M be a Lie groupoid. For any x ∈ M , define Gx :=
t−1({x}) = {g ∈ G | t(g) = x} (the target fibre over x) and Gx = s−1({x}) (the source fibre
over x).

On these level sets, left and right multiplication by a fixed g ∈ G are defined:

lg : Gs(g) → Gt(g), h 7→ gh

and
rg : Gt(g) → Gs(g), h 7→ hg.

Note that both Gx and Gx are submanifolds of G by [11], Theorem 5.12, page 105
for any x ∈ M . Furthermore, the maps lg and rg are all diffeomorphisms with inverse
(lg)−1 = lg−1 and (rg)−1 = rg−1 , respectively.

The nature of Lie groupoids cuts down the number of tools we can use for theories,
compared to Lie groups. To preserve a few of them in an altered form, we need to introduce
the notion of bisections. They can be thought of as generalised elements of the groupoid
and allow to define global translation maps and an exponential function again.

Definition 2.2.6. (Compare [15], 3.2, page 15)
Let G = (G ⇒ M) be a Lie groupoid. A bisection of G is a submanifold S ⊆ G such

that both s|S : S → M and t|S : S → M are diffeomorphisms. The set of bisections on G
is denoted Γ(G).

We define a product ◦ : Γ(G) × Γ(G) → Γ(G) by
S ◦ T := mult((S × T ) ∩ G2) = {gh | g ∈ S, h ∈ T, t(h) = s(g)}

for all S, T ∈ Γ(G), where mult denotes the composition in G.

There are a few basic properties that a well-schooled mathematician will assume at the
sight of such a definition. I list the following, and more later on, without going into the
proof.

Proposition 2.2.7. Γ(G) with the product defined above is a group.

For the pair groupoid, bisections are simply given by diffeomorphisms of the base, as
illustrated in the following short example.

Example 2.2.8. Let M be a smooth manifold. The bisections on its pair groupoid are
given by diffeomorphisms of M , namely

Γ(M ×M) = {Sϕ | ϕ ∈ Diffeo(M)},
where Sϕ := {(ϕ(x), x) | x ∈ M} is the graph of a diffeomorphism ϕ, up to the order of the
pair.

Proof: Set G = M ×M and consider the map χ : Γ(G) → Diffeo(M), S 7→ t|S ◦ s|−1
S . For

any R ∈ Γ(G) we have
Sχ(R) = St|R◦s|−1

R
= {(t ◦ s|−1

R (x), x) | x ∈ M} = {(y, x) | (y, x) ∈ S} = S

because s|−1
R (x) = (y, x) for the unique y ∈ M such that (y, x) ∈ R.

The other way around, we have
χ(Sϕ)(x) = t|Sϕ

◦ s|−1
Sϕ

(x) = t(ϕ(x), x) = ϕ(x)

for all ϕ ∈ Diffeo(M) and x ∈ M , i.e. χ(Sϕ) = ϕ. □

The name section suggests that bisections can also be viewed as maps from the base
M to the arrow space G, which I will indeed do frequently, by writing S(p) := (s|S)−1(p)
for S ∈ Γ(G) and p ∈ M . By definition, we always have s(S(p)) = p, and it is easily seen
that (S ◦ T )(p) = S(t(T (p)) · T (p) for two bisections S, T ∈ Γ(G).
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2.3. Differentiation of Lie Groupoids to Lie Algebroids

In this section I am going to do a quick recap of how to obtain a Lie algebroid from a
Lie groupoid, similar to the investigation of Lie groups and their Lie algebras. This process
is commonly called differentiation.

In our general definition, the base M of a Lie groupoid G⇒M does not have to be a
subset of G. However, the canonical inclusion ι : M → G was assumed to be an embedding,
so that in any case its image ι(M) ⊆ G is a smooth submanifold, which can be identified
with M via ι. To make the notation more comfortable, we will hence rightfully assume
that M ⊆ G and ι(x) = x for x ∈ M .

Remark 2.3.1. Let G⇒M be a Lie algebroid, where M ⊆ G. Then TM ⊆ TG|M is
a smooth vector subbundle, which allows us to take a quotient.

Furthermore, note that the source and target maps fulfil s|M = idM = t|M , hence
(Ts− Tt)|TM = 0, so that Ts− Tt induces a well-defined map on the quotient by TM .

This allows for the following definition:

Definition 2.3.2. ([15], page 58)
Let G ⇒ M be a Lie groupoid. The normal bundle A = Lie(G) = ν(G,M) of G is

defined as A := TG|M/TM , which is a vector bundle over M . Furthermore, we define the
anchor

ρ = (Ts− Tt) : A → TM, vx + TxM 7→ (Ts− Tt)(vx) ∈ TxM,

which is a smooth vector bundle homomorphism.

So the vector bundle structure and the anchor of the Lie algebroid corresponding to
G ⇒ M are quite easy to define. The definition of the Lie bracket requires some more
effort. The idea is that we relate sections of the normal bundle to left-invariant vector fields
on G and use their commutator bracket.

Let us look at the definition first. A priori there is no important reason to prefer left-
or right-invariance.

Definition 2.3.3. Let G⇒M be a Lie groupoid. A vector field X ∈ X(G) is called
left-invariant if it is tangent to the target fibres, i.e. X(g) ∈ T (Gt(g)) for all g ∈ G, and

Thlg(Xh) = Xgh ∈ TghG
t(g)

holds for all g, h ∈ G with t(h) = s(g). The set of left-invariant smooth vectors fields on G
is denoted by XL(G).

Likewise, X is called right-invariant if X(g) ∈ T (Gs(g)) for all g ∈ G (X is tangent to
the source fibres) and

Thrg(Xh) = Xhg ∈ ThgGs(g)

holds for all g, h ∈ G with s(h) = t(g). The set of right-invariant smooth vector fields on G
is denoted by XR(G).

It is easily proven that invariant vector fields are closed under the commutator.

Lemma 2.3.4. XL(G) and XR(G) are Lie subalgebras of X(G) with its Lie bracket.

Proof: Consider left-invariant vector fields first. For X,Y ∈ XL(G), the defining property
is that T lgX|Gs(g) = X ◦ lg and T lgY |Gs(g) = Y ◦ lg for all g ∈ G, hence also

T lg[X,Y ]|Gs(g) = [X,Y ] ◦ lg
by the naturality of the Lie bracket as stated in [11], Proposition 8.30, page 188. In
particular, [X,Y ](g) = [X,Y ] ◦ lg(s(g)) = T lg[X,Y ](s(g)) ∈ TGt(g) for all g ∈ G. So indeed
[X,Y ] ∈ XL(G).

For right-invariant vector fields, the proof is similar. □
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The next proposition will flesh out the correspondence of normal sections to left-invariant
vector fields.

Proposition 2.3.5. Let G ⇒ M be a Lie groupoid with M ⊆ G and normal bundle
A = ν(G,M). Then the map

τ : XL(G) → Γ(A), X 7→ X|M
mapping left-invariant vector fields to the pointwise equivalence class of their restriction to
M is an isomorphism of C∞(M)-modules. The module structure on XL(G) is defined by
f ·X(g) := f(s(g))X(g) for f ∈ C∞(M), g ∈ G.

Proof: τ is clearly R-linear, and for f ∈ C∞(M), p ∈ M we have τ(fX)(p) = f(s(p))X(p) =
f(p)X(p) = fτ(X)(p), so it is a C∞(M)-module homomorphism. We will now construct
the inverse.

First, let b ∈ X(M) = Γ(TM). Let g ∈ G and p = s(g) ∈ M . Then for any f ∈ C∞(G)
we have f ◦ lg|M∩Gp ≡ f(g), hence Tplgb(p)(f) = b(p)(f ◦ lg) = 0. So

σ : Γ(A) → X(G), σ(ā)(g) := Ts(g)lga(s(g))

is a well-defined map, which is C∞(M)-linear because all the maps T lg are R-linear. I also
write Xā := σ(ā) for this. Let a ∈ Γ(A). Let g, h ∈ G with t(h) = s(g) and set p := s(h).
Then we have by definition

Xā(gh) = Tplgha(p) = Tp(lg ◦ lh)a(p) = Thlg ◦ Tplha(p) = ThlgXā(h),
so Xā is indeed left-invariant.

Checking the compositions, we have of course

τ ◦ σ(ā)(p) = σ(ā)(p) = Tplpa(p) = a(p) = ā(p)
for all ā ∈ Γ(A) and p ∈ M , as well as

σ ◦ τ(X)(g) = σ(X|M )(g) = Ts(g)lgX(s(g)) = X(gs(g)) = X(g)

for all X ∈ XL(G) and g ∈ G, so τ and σ are indeed inverse to each other. □

This isomorphism allows us to define the Lie bracket of a Lie groupoid’s algebroid as
follows:

Definition 2.3.6. Let G ⇒ M be a Lie groupoid with M ⊆ G and normal bundle
A = ν(G,M). Then the Lie bracket on Γ(A) is defined by

[a, b] := τ([σa, σb]) = [Xa, Xb]|M
for all a, b ∈ Γ(A).

It remains to check that the resulting structure is really a Lie algebroid. I prove a short
lemma in advance.

Lemma 2.3.7. Let G ⇒ M be a Lie groupoid with normal bundle A = ν(G,M). Let
a ∈ Γ(A). Then TtXa(g) = 0 ∈ Tt(g)M holds for all g ∈ G.

Proof: By abuse of notation, we use the same glyph a for an element of Γ(A) and a
representative a ∈ X(G)|M of it.

Let g ∈ G and f ∈ C∞(M) be arbitrary. Then we have
TtXa(g)(f) = Xa(g)(f ◦ t) = Ts(g)lga(s(g))(f ◦ t) = a(s(g))(f ◦ t ◦ lg) = 0

because t ◦ lg ≡ t(g) is constant. □

Now we can proceed to the main theorem of this section, which is not very hard to
prove at this point.
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Theorem 2.3.8. Let G⇒M be a Lie groupoid with M ⊆ G. Then the triple (A, ρ, [·, ·]),
where A = ν(G,M), ρ = Ts− Tt and [·, ·] is as in Definition 2.3.6, is a Lie algebroid over
M .

Proof: The vector bundle structure is clear. We know that τ and σ from the proposition
before are module isomorphisms and that the commutator bracket makes XL(G) a Lie
algebra. This implies that the bracket on Γ(A) is also a Lie algebra bracket, i.e. bilinear and
satisfying the Jacobi identity. ρ was checked to be a smooth vector bundle homomorphism.
This leaves only the Leibniz identity to be proven.

To do so, let a, b ∈ Γ(A) and f ∈ C∞(M) be arbitrary. Then by our previous lemma
we have

[a, fb] = [Xa, Xfb]|M = [Xa, f ◦ sXb]|M
= (f ◦ s[Xa, Xb] +Xa(f ◦ s)Xb)|M
= f [a, b] + TsXa(f)Xb|M
= f [a, b] + (Ts− Tt)Xa(f)Xb|M
= f [a, b] + (Ts− Tt)(a)(f)b = f [a, b] + ρ(a)(f)b

as required. Here, TsXa(f) is defined by TsXa(f)(g) = TgsXa(g)(f) for g ∈ G. □

While the topic has been extensively studied by others, I will humbly stick to this
short recap on the differentiation of Lie groupoids. I will also not investigate the backwards
theory, the integration of Lie algebroids here. Only so much be said: In certain cases, it is
possible to find a Lie groupoid that differentiates back to a given Lie algebroid.

2.4. Haar Systems and the Groupoid C*-Algebra

The recurring main topic of this thesis are groupoid and algebroid representations and
how both are connected. However, we still have not defined them appropriately. While there
are many different possible definitions, one of them is especially fruitful due to its intrinsic
connections to functional analysis. In that definition, we investigate not representations of
the morphism space itself, but of the function space LI(G) and its enveloping C∗-algebra,
the groupoid C∗-algebra C∗(G). Both of these algebras have their classical counterparts in
Lie group theory.

Hence I will use the pages of this section to introduce and investigate the groupoid
C∗-algebra of a Lie groupoid, which does carry an interesting structure in the form of being
a C∗-algebra as the name implies. To do this, we need a set of measures first. Concretely, I
will next introduce Haar systems, which are a generalisation of Haar measures on groups.

For that definition, we need to recall the concept of the support of a measure.

Definition 2.4.1. Let (X, τ) be a Hausdorff space and µ a Radon measure on the
Borel σ-algebra σ(τ). The support of µ is defined as

supp(µ) := X \

 ⋃
U∈τ,µ(U)=0

U

 ,
the complement of the largest open null set.

Note that for any measurable f : X → R we have
∫
X f dµ =

∫
suppµ f dµ. This is of

particular use for the definition of a Haar system, where the support of each individual
measure is assumed to be a target fibre.

Definition 2.4.2. Let G⇒M be a Lie groupoid. A Haar system on G is a family of
Radon measures (λx)x∈M on the Borel σ-algebra of G such that

(1) suppλx = Gx = t−1({x}) ⊆ G for all x ∈ M ,
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(2) the map M → R, x 7→
∫
G f dλx is continuous for all f ∈ Cc(G) and

(3)
∫
Gs(g) f ◦ lg dλs(g) =

∫
Gt(g) f dλt(g) for all f ∈ Cc(G) and g ∈ G.

(λx)x∈M is called smooth if for all x ∈ M , the measure λx is smooth and the map
M → R, x 7→

∫
G f dλx is smooth for all f ∈ C∞

c (G).

Although the multiplication function lg is generally not defined on the whole of G,
I may also write the integral as

∫
G f ◦ lgdλs(g) :=

∫
Gs(g) f ◦ lgdλs(g), which is justified by

suppλs(g) = Gs(g), so that we would expect
∫
G\Gs(g) f ◦ lgdλs(g) = 0 anyway.

The first place where Haar systems come to use is the definition of the convolution on
a Lie groupoid, which works similarly to the usual Lp-product, but yields an independent
value for every target (or source) fibre.

Definition 2.4.3. Let G⇒M be a Lie groupoid with a smooth Haar system (λx)x∈M .
We define the convolution

∗ : Cc(G) × Cc(G) → Cc(G), f ∗ g(x) :=
∫
Gs(x)

f(xy)g(y−1)dλs(x)(y)

and the involution
∗ : Cc(G) → Cc(G), f∗(x) := f(x−1).

In this case, Cc(G) is the algebra of compactly supported continuous functions G → C.

By [22], 1.1.Proposition, page 48, Cc(G) equipped with these operations and the
inductive limit topology is a topological ∗-algebra (because the constant function 1 from G
to S1 ⊂ C is a continuous 2-cocycle). To recall, the inductive limit topology is defined as
follows:

Definition 2.4.4. Let X be a locally compact Hausdorff space. The inductive limit
topology or topology of uniform convergence on compact sets on Cc(X) is the topology of
the inductive limit vector space

(Cc(X), τ) = colimK∈Comp(X)(CK(X), τpK ),

where CK(X) = {f ∈ C(X) | supp f ⊆ K} for a compact set K ⊆ X. Comp(X) is the
category of compact subsets of X with inclusions as morphisms and τpK is the topology
generated by the norm given as pK(f) := supx∈K |f(x)|, f ∈ CK(X).

This gives rise to a new definition of Lie groupoid representations, or more precisely, of
Cc(G):

Definition 2.4.5. Let G ⇒ M be a Lie groupoid. A representation of Cc(G) is a
pair (H, L), where H is some Hilbert space and L is a ∗-homomorphism L : Cc(G) →
B(H), such that L|CK

is bounded for every compact subset K ⊆ G (again, CK =
{f ∈ C(G) | supp f ⊆ K}).

(H, L) is called non-degenerate if the closed linear span

span{L(f)v | f ∈ Cc(G), v ∈ H}

is equal to the whole of H.

As usually, I may also refer to L alone as a representation of Cc(G) and omit the
Hilbert space from the notation.

A logical next step in enriching the structure of Cc(G) and defining the groupoid
C∗-algebra is the definition of a norm on it. It turns out that there are a few (pre)norms
to choose from. Firstly we have the source, target and maximal integral norms, defined as
follows:
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Definition 2.4.6. Let G⇒M be a Lie groupoid with smooth Haar system (λx)x∈M ,
where M is compact. The I-norm or integral norm ∥ · ∥I on Cc(G) is defined by

∥f∥I,t := sup
u∈M

∫
Gu

|f |dλu,

∥f∥I,s := sup
u∈M

∫
Gu

|f |dλu,

where λu := λu ◦ inv−1 is the image measure of λu under the inversion in G, and
∥f∥I := max{∥f∥I,t, ∥f∥I,s}

.

Obviously it should be checked that ∥ · ∥I is a norm.

Proposition 2.4.7. ∥ · ∥I as defined above is a norm.

Proof: ∥ · ∥I is always finite because M is compact. Namely for any f ∈ Cc(G), ∥f∥I is the
maximum of the map u 7→

∫
|f |dλu, which is continuous by the second property in the

definition of Haar systems.
For every u ∈ M , the values

∫
Gu |f |λu and

∫
Gu

|f |λu are the usual L1-norms of f under
the respective measure and hence fulfil the triangle inequality as well as ∥λf∥ = |λ|∥f∥ for
all scalars λ ∈ C. These two properties are inherited by ∥ · ∥I .

Furthermore, if ∥f∥I = 0 for some f ∈ Cc(G), then
∫
Gu |f |dλu = 0 for all u ∈ M .

Because f is continuous and λu is Borel with suppλu = Gu, this implies that f |Gu ≡ 0.
But every element of G has some target, so

⋃
u∈M Gu = G, hence f = f |G = 0. □

The maximal integral norm gives rise to a space of functions on the Lie groupoid. To
obtain a Banach algebra, we complete and get:

Definition 2.4.8. Let G ⇒ M be a Lie groupoid with a Haar system λ. The space
LI(G) is defined as

LI(G) := (Cc(G), ∥ · ∥I),
the topological completion with respect to the maximal integral norm.

It can be shown that LI(G) is indeed a Banach ∗-algebra, but I will not include the
detailed computations here. For the special case of G just being a unimodular Lie group,
this is indeed isomorphic to the usual function space L1(G,λ). For the more general case,
it will serve as a useful generalisation.

Beyond the integral norms, there is another way to define a norm on functions over a
Lie groupoid. In fact, this is a standard construction which is meant to give us a C∗-algebra.

Definition 2.4.9. Let G⇒M be a Lie groupoid with smooth Haar system (λu)u∈M .
The maximal C∗-norm of Cc(G), ∥ · ∥, is defined by

∥f∥ := sup{∥L(f)∥ | L is a bounded representation of Cc(G)}.

The speciality in this context is the interaction between the maximal C∗-norm and the
integral norm. By Theorem 2.42, page 28 in [17], the maximal C∗ norm fulfils ∥f∥ ≤ ∥f∥I
for all f ∈ C∞(M), in particular, it is finite. Knowing that, as the supremum of any set of
norms, ∥ · ∥ is indeed a norm. Since B(H) is a C∗-algebra for every Hilbert space H, we
have

∥f∗f∥ = sup
L

∥L(f)∗L(f)∥ = sup
L

∥L(f)2∥ = ∥f2∥,

where L ranges over the bounded representations of CcG.
Hence the following construction indeed gives a C∗-algebra, which can be used to define

groupoid representations.
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Definition 2.4.10. Let G ⇒ M be a Lie groupoid with smooth Haar system λ =
(λu)u∈M . The groupoid C∗-algebra of G with respect to λ is

C∗(G,λ) := (Cc(G), ∥ · ∥),
the topological completion of Cc(G) with the maximal C∗-norm.

A representation of C∗(G) is a pair (H, π), where H is a Hilbert space and π : C∗(G) →
B(H) is a ∗-homomorphism. Likewise, a representation of LI(G) is a pair (H, π), where H
is a Hilbert space and π : LI(G) → B(H) is a ∗-homomorphism. Usually, we also assume
that π is non-degenerate in both cases. It is called continuous if π is continuous with respect
to the norm topology of B(H).

Continuity is sometimes assumed implicitly.



CHAPTER 3

Differential Operators

In the upcoming chapter, I am going to introduce and investigate differential operators
on smooth manifolds. This is of course not a new topic, and most readers of this thesis
probably have encountered differential operators in one form or another. I still wanted
to include this section because I had a different focus than the most common sources on
the same topic. Many authors prefer to give a hands-on definition of differential operators
using coordinate vector fields. This works most easily on open subsets of the Euclidean
space; the generalisation to manifolds is sometimes done and sometimes neglected.

The hands-on approach is useful when the text in question is about solving certain
differential equations, but this is not my focus here. Instead, I am going to consider the set
of all (linear, partial, smooth) differential operators on a given manifold as an algebraic
object. I will give proves for the fact that they form a filtered algebra in a natural way and
investigate (formal) adjoints.

Given this context and personal experience with algebraic geometry, I decided to use
a definition for differential operators which originates from commutative algebra and is
sometimes attributed to Grothendieck. Two modern references for this approach are [13]
and [10]. The algebraic definitions are applicable to an arbitrary commutative ring R with
a given sub-ring S ⊆ R, but I will specialise to the case of R = C∞(M) and S = R here.

3.1. Definitions and Basic Properties

We start with a purely algebraic definition for differential operators over a smooth
vector bundle.

Definition 3.1.1. (compare [13], Definition 1.2.1.9, page 7 or [10], page 17)
Let M be a smooth manifold (over R), let K ∈ {R,C} and let E → M , F → M

be smooth K-vector bundles. A differential operator from E to F is a local, K-linear
map D : Γ(E) → Γ(F ) for which there is a natural number k ∈ N0 such that for all
f0, . . . , fk ∈ C∞(M,K) the equation [mf0 , [. . . [mfk

, D] . . . ]] = 0 holds. Here mf : Γ(E) →
Γ(E), s 7→ fs (or likewise mf : Γ(F ) → Γ(F )) denotes the multiplication operator given
by any f ∈ C∞(M,K). The space of differential operators from E to F is denoted as
Diff(E,F ).

The order ordD of a differential operator D ∈ Diff(E,F ) is the smallest natural number
k ∈ N0 fulfilling the above property. The space of differential operators of order k or less
is denoted by Diffk(E,F ) ⊆ Diff(E,F ). If E = F we write Diff(E) := Diff(E,E) and
Diffk(E) := Diffk(E,E).

A (real) function-valued differential operator on M is defined as an operator from∧0 T ∗M to itself, and the respective space is denoted as Diff(M) := Diff(
∧0 T ∗M), and

likewise Diffk(M) := Diffk(
∧0 T ∗M) for all k ∈ N0. The space DiffC(M) of complex

differential operators on M is defined likewise, using C ⊗
∧0 T ∗M instead of

∧0 T ∗M .
The real and complex form-valued differential operators are Diff(ΩM) := Diff(

∧
T ∗M)

and DiffC(ΩM) := Diff(C ⊗
∧
T ∗M), respectively.

By convention and because it fits better into the propositions to come, the order of the
zero map is defined to be ord 0 := −∞ instead of 0. The commutator [mf , D] may also be
abbreviated as [f,D].

19
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Remark 3.1.2. Because C∞(M,C) = C∞(M) ⊕ iC∞(M), it suffices to check the
multiple commutator equality [mf0 , [. . . [mfk

, D] . . . ]] = 0 only for real-valued fi ∈ C∞(M)
even in the case of complex vector bundles as soon as C-linearity is given.

Since D ∈ Diff0(E,F ) is equivalent to 0 = [mf , D](s) = fD(s) − D(fs) for all
f ∈ C∞(M) and s ∈ E, the differential operators of order 0 are precisely the C∞(M,K)-
linear maps: Diff0(E,F ) = HomC∞(M)(Γ(E),Γ(F )) ≡ Γ(E∗ ⊗ F ). Here we use that
C∞(M)-linearity implies locality.

Of course
∧0 T ∗M is a trivial bundle of rank 1, so Γ(

∧0 T ∗M) = Ω0(M) ∼= C∞(M),
which justifies the name function-valued. This identification will be used frequently without
further explanation.

In general, the locality of differential operators is just an additional assumption in the
definition. For the function-valued operators however, it already follows from the other
properties and could be left out. This is shown in the following proposition.

Proposition 3.1.3. Let M be a smooth manifold and D : C∞(M) → C∞(M) an
R-linear map for which there is k ∈ N0 such that [mf0 , [. . . [mfk

, D] . . . ]] = 0 holds for all
f0, . . . , fk ∈ C∞(M). Then D is a local map i.e. if two functions f, g ∈ C∞(M) coincide
on an open subset U ⊆ M , then D(f)|U = D(g)|U for any differential operator D on E.

Proof: By linearity of D it suffices to check that D(f)|U = 0 for f ∈ C∞(M) with f |U = 0.
To do so, let p ∈ U be arbitrary. Choose an open neighbourhood V ⊆ U of p with a smooth
bump function h ∈ C∞(M) fulfilling h|V ≡ 1 and h|M\U ≡ 0. Then we have hkf = 0,
hence

0 = [h, [. . . [h, [f,D]] . . . ]] = hk[f,D] − [f,D]hk

= hkfD − hkDmf − fDmhk +Dmfhk = −hkDmf − fDmhk ,

where we use k copies of h in the first line. In particular, we have 0 = (hkDmf (1) +
fDmhk(1))(p) = D(f)(p), because f(p) = 0. So since p ∈ U was arbitrary, D(f)|U = 0. □

We have already identified elements of Diff0(E,F ) with C∞(M)-linear maps Γ(E) →
Γ(F ), which was not hard to do. With slightly more effort, we can also give a characterisation
of differential operators of order 1.

Proposition 3.1.4. Let M be a smooth manifold and D ∈ Diff(M). Then D :
C∞(M) → C∞(M) is a derivation if and only if D ∈ Diff1(M) and D(1) = 0.

Proof: Suppose first that D is a derivation. Then we have

D(1) = D(1 · 1) = 1 ·D(1) +D(1) · 1 = 2D(1),

hence D(1) = 0. Also, for all f, g, h ∈ C∞(M) we have

[f, [g,D]](h) = fgD(h) − fD(gh) − gD(fh) +D(fgh)
= fgD(h) − fD(g)h− fgD(h) − gD(fh) + gD(fh) + fhD(g) = 0,

so D ∈ Diff1(M).
Now let D ∈ Diff1(M) with D(1) = 0 be arbitrary. Then for any f, g ∈ C∞(M) we

have

0 = [f, [g,D]](1) = fgD(1) − fD(g) − gD(f) +D(fg) = −fD(g) − gD(f) +D(fg)

i.e. D(fg) = fD(g) − gD(f). This means that D is a derivation. □

Lemma 3.1.5. Let E,F → M be smooth K-vector bundles, K ∈ {R,C}. Then for every
k ∈ N0, Diffk(E,F ) is a K-vector space. Diff(E,F ) is also a K-vector space.
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Proof: Diff(E,F ) is contained in the K-vector space of K-linear maps HomK(Γ(E),Γ(F )),
so it suffices to show that Diffk(E,F ) is closed under addition and multiplication for every
k ∈ N0 ∪ {∞}, where Diff∞(E,F ) := Diff(E,F ).

Let c ∈ K and P,Q ∈ Diffk(E,F ), k < ∞. Then cP + Q is again local because
(cP +Q)(e)|U = cP (e)|U +Q(e)|U for all open U ⊆ M and e ∈ Γ(E). In addition we have
for all f0, . . . , fk ∈ C∞(M):

[f0, [. . . [fk, cP +Q] . . . ]] = c[f0, [. . . [fk, P ] . . . ]] + [. . . [fk, Q] . . . ]] = 0

Hence cP +Q ∈ Diffk(E,F ). If P,Q ∈ Diff(E,F ) are arbitrary, then still

cP +Q ∈ Diffmax{ordP,ordQ}(E,F ) ⊆ Diff(E,F )

by what was just shown. So indeed all sets Diffk(E,F ), k ∈ N0 ∪ {∞}, are subspaces of
HomK(Γ(E),Γ(F )). □

At this point it may be worth noticing that Diffk(E,F ) ⊆ Diff l(E,F ) for k ≤ l and that
Diff(E,F ) =

⋃
k∈N0 Diffk(E,F ), which follows directly from the definition of differential

operators.
An advantage in the language of differential operators compared to vector fields is that

differential operators can not only be added and scaled, but also composed to get new
differential operators. The proof is a little more complex than the last lemma, but still
quite straightforward.

Lemma 3.1.6. (compare [10], page 19)
Let E,F,G → M be a smooth K-vector bundles. Let P ∈ Diffk(E,F ) and Q ∈

Diff l(F,G). Then Q ◦ P ∈ Diffk+l(E,G).

Proof: First of all, notice that concatenations of local maps are local: For σ, τ ∈ Γ(E) with
σ|U = τ |U we have P (σ)|U = P (τ)|U since P is local, hence QP (σ)|U = QP (τ)|U since Q
is also local.

The main part of the lemma is proven by induction. Let f1, . . . , fk+l+1 ∈ C∞(M). Let
t ∈ {0, . . . , k + l} and assume that

[ft, [. . . [f1, QP ] . . . ]] =
nt∑
i=1

[gi1, [. . . [giri
, Q] . . . ]][hi1, [. . . [hisi

, P ] . . . ]]

is a sum where the summands are products of ri- and si-fold brackets such that ri + si = t
for all i. Then for t+ 1 we have

[ft+1, [ft, [. . . , f1, QP ] . . . ]]] =
nt∑
i=1

[ft+1, [gi1, [. . . [giri
, Q] . . . ]] ◦ [h1, [. . . [hisi

, P ] . . . ]]]]

=
nt∑
i=1

[ft+1, [gi1, [. . . [giri
, Q] . . . ]]] ◦ [hi1, [. . . [hisi

, P ] . . . ]]]

+ [gi1, [. . . [giri
, Q] . . . ]] ◦ [ft+1, [hi1, [. . . [hisi

, P ] . . . ]]]]

=
nt+1∑
i=1

[g̃i1, [. . . [g̃ir̃i
, Q] . . . ]][h̃i1, [. . . [h̃s̃i , P ] . . . ]],

where
(1) nt+1 = 2nt
(2) r̃i = ri+1, s̃i = si, g̃i1 = ft+1, g̃ip = gip−1 for p > 1 and h̃ip = hip while i ∈ {1, . . . , nt}
(3) r̃i = ri−nt , s̃i = si−nt + 1, g̃ip = gi−nt

p , h̃i1 = ft+1 and h̃ip = hi−nt
p−1 for p > 1 while

i ∈ {nt + 1, . . . , 2nt}.
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Of course we have r̃i + s̃i = rj + sj + 1 = t+ 1, so the induction step is complete.
The start of the induction is trivial for t = 0: QP = QP suffices to fulfil the requirements,

so the induction is complete.
By this induction, we know that [fk+l+1, [. . . [f1, QP ] . . . ]] =

∑n
i=1Ri, where for each

i, Ri is a product Ri = [g1, [. . . [gr, Q] . . . ]][h1, [. . . [hs, P ] . . . ]] with r + s = k + l + 1.
In any case we have either r ≥ l + 1 or s ≥ k + 1. So because Q ∈ Diff l(F,G) and
P ∈ Diffk(E,F ), one of the factors must be zero, and hence Ri = 0. So in summary,
[fk+l+1, [. . . [f1, QP ] . . . ]] =

∑n
i=1Ri = 0. Since the functions fi were arbitrary, this means

that QP ∈ Diffk+l(E,G). □

As one may have expected, the last two lemmas can be combined to obtain an algebra
of differential operators.

Proposition 3.1.7. Let E → M be a smooth K-vector bundle. Then the set Diff(E) is
an (associative) K-algebra. It is a filtered algebra with the filtration

Diff(E) =
⋃
n∈N0

Diffn(E)

by order.

Proof: We use the vector space structure from Lemma 3.1.5 and composition as multiplica-
tion, which is well-defined by Lemma 3.1.6 since every differential operator has an order. It
was proven there that Diffk(E) ◦ Diff l(E) ⊆ Diffk+l(E). Associativity is clear for all kinds
of compositions, so we only have to check the law of distributivity.

Let P,Q,R ∈ Diff(E) and c, d ∈ K. Then we have P (Q+R) = PQ+ PR because P
is additive, (P + Q)R = PR + QR holds for any kind of maps into a vector space, and
(cP )(dQ) = (cd)(PQ) hold because P is K-multiplicative. □

Definition 3.1.8. Let E → M be a smooth vector bundle. The graded algebra of the
filtered algebra Diff(E) is defined as follows: For every n ∈ N0, set

An = An(E) := Diffn(E)/Diffn−1(E),
with Diff−1(E) := {0}, with the inherited vector space structure. Define then A(E) :=⊕

n∈N0 An. An(E) gets the algebra structure defined by
(P + Diffk−1(E)) · (Q+ Diff l−1(E)) := P ◦Q+ Diffk+l−1 ∈ Ak+l

for all (P + Diffk−1(E)) ∈ Ak, (Q+ Diff l−1(E)) ∈ Al, which is well-defined because
(P + Diffk−l(E)) ◦ Diff l−1(E) ⊆ Diffk+l−1(E)

and
Diffk−1(E) ◦ (Q+ Diff l−1(E)) ⊆ Diffk+l−1(E).

Associativity and distributivity are inherited from Diff(E).

Definition 3.1.9. Let E,M as before. The canonical involution ∗ : A(E) → A(E) is
defined by [D]∗ := (−1)k[D] for homogeneous [D] ∈ Ak(E), extended additively.

Obviously, ∗ is R-linear on every component and we have ([D]∗)∗ = (−1)2k[D] = [D], so
the canonical involution is indeed a self-inverse linear map. In addition we have ([P ][Q])∗ =
(−1)k+l[P ][Q] = [P ]∗[Q]∗ for all [P ] ∈ Ak, [Q] ∈ Al, so it is even an algebra homomorphism.

3.2. Function-Valued Differential Operators and *-Structures

An important kind of mathematical object in the investigation of operators between
Hilbert spaces are *-algebras. Most basically, the usual association of an adjoint makes
B(H) a *-algebra (H is any Hilbert space here). Our goal to characterise representations
of algebras of differential operators on Hilbert spaces makes it necessary to investigate
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*-structures on Diff(M) first. The results from this section are closely related to the basic
divergence formula proven in Theorem 2.1.6.

Definition 3.2.1. Let E → M be a smooth K-vector bundle, K ∈ {R,C} and
D ⊆ Diff(E) a unital subalgebra. A *-structure on D is an involutive unital local algebra
antihomomorphism ∗ : D → D, D 7→ D∗. More precisely, this means that ∗ is a map which
fulfils

(1) (P +Q)∗ = P ∗ +Q∗

(2) (PQ)∗ = Q∗P ∗

(3) 1∗ = 1 (1 = mconst1 ∈ Diff(E) is the multiplication operator given by the constant
function 1).

(4) (D∗)∗ = D
(5) (cD)∗ = c̄D∗ and
(6) P ∗|U = Q∗|U if P |U = Q|U

for all P,Q,D ∈ D and c ∈ K.
A *-structure ∗ on D is called filtered if it fulfils D − (−1)kD∗ ∈ Diffk−1 for all

D ∈ Diffk(E), k ∈ N0 and weakly filtered if this is true for k ∈ {0, 1}, i.e. (D+D∗) ∈ Diff0(E)
for all D ∈ D ∩ Diff1(E) and D∗ = D for D ∈ Diff0(E) ∩ D.

The name filtered for this kind of *-structure was chosen because filtered *-structures
are exactly those which descend to a *-structure on the graded algebra A(M) given by
the filtration. The proof requires a lemma on the generation of Diff(M) and is given a few
statements later.

The main point of this section is to show a correspondence between *-structures
on Diff(M) and volume forms on M , given some technical requirements. Because this
correspondence is only obvious for Lie operators (we will define L∗

X = −LX − div(X) as in
Theorem 2.1.6), we have to show first that Diff(M) is actually generated by Lie operators
and smooth functions. Then we can derive the *-structure on general operators from its
value on the generators.

First we introduce some notation for multi-indices:

Definition 3.2.2. A (natural) multi-index is an n-tuple I = (i1, . . . , in) ∈ Nn0 for some
n ∈ N. For such multi-indices I, J ∈ Nn

0 I write:

(1) |I| :=
∑n
k=1 ik,

(2) J ≤ I if jk ≤ ik for all k ∈ {1, . . . , n},
(3) I − J := (i1 − j1, . . . , in − jn) (for J ≤ I), and
(4)

(I
J

)
:=
∏n
k=1

(ik
jk

)
.

Let now M be a smooth manifold and (U, ϕ) a smooth chart of M . Then for any
multi-index I ∈ Nm0 , where m = dimM , I write

(1) ϕI :=
∏m
k=1(ϕk)ik ∈ C∞(M) and

(2) ∂ϕI := Li1
∂ϕ

1
◦ · · · ◦ Lim

∂ϕ
m

∈ Diff(U), with the special case of

(3) ∂I := ∂idR
I on Rm.

In the next step, we quickly prove that applying a differential operator preserves roots
of functions, provided they have multiplicity greater than the order of the operator. More
precisely:

Lemma 3.2.3. Let M be smooth manifold and D ∈ Diffk(M). Let p ∈ M and
f0, . . . , fk ∈ C∞(M) with fi(p) = 0 for all i. Then also D(

∏k
i=0 fi)(p) = 0.
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Proof: By the defining property of differential operators and the assumption fi(p) = 0 we
have

0 = [f0, [. . . [fk, D] . . . ]](1)(p) =
∑

I⊆{0,...,k}
(−1)k+1−|I|∏

i∈I
fi(p)D(

∏
j∈IC

fj)(p)

= (−1)k+1D(
k∏
i=0

fi)(p),

which is the required result up to sign. Here we use the notation IC = {0, . . . , k} \ I for
the complement of the set I. □

This can be used to derive a coordinate representation of arbitrary differential operators.

Lemma 3.2.4. Let M be smooth manifold of dimension dimM = m and D ∈ Diffk(M).
Let (U, ϕ) be a smooth chart of M . Then locally over U we have:

D|U =
∑

I,J∈Nm, |I|≤k, J≤I
(−1)|I−J |

(I
J

)
|I|!ϕ

I−JD(ϕJ)∂ϕI

Proof: This lemma is a consequence of Taylor’s theorem. With the version stated in [11],
page 648, Theorem C.15, we first deduce a manifold version of Taylor’s theorem. Namely
let f ∈ C∞(M), then f |U = fϕ−1ϕ, and fϕ−1 ∈ C∞(ϕU) has domain ϕ(U) ⊆ Rm. So let
a ∈ U and Ṽ ⊆ Ũ := ϕ(U) be a convex subset with b := ϕ(a) ∈ Ṽ . Set V := ϕ−1Ṽ ⊆ U .
By the version of Taylor’s theorem in [11], we have for all x ∈ V (using y := ϕ(x)):

f(x) = fϕ−1(y) =
k∑

n=0

1
n!

∑
I∈Nm

0 ,|I|=n
∂I(f ◦ ϕ)(b)(y − b)I

+ 1
k!

∑
|I|=k+1

(y − b)I
∫ 1

0
(1 − t)k∂I(fϕ−1)(b+ t(y − b))dt

=
k∑

n=0

1
n!
∑

|I|=n
∂ϕI f(a)(ϕx− ϕa)I

+ 1
k!

∑
|I|=k+1

(ϕx− ϕa)I
∫ 1

0
(1 − t)k∂ϕI f(ϕa+ t(ϕx− ϕa))dt

The two summands are called the (k-th order) Taylor polynomial

P ϕk =
∑

|I|≤k

1
|I|!∂

ϕ
I f(a)(ϕ− ϕa)I

and remainder term

Rϕk = 1
k!

∑
|I|=k+1

(ϕ− ϕa)I
∫ 1

0
(1 − t)k∂ϕI f(ϕa+ t(ϕ− ϕa))dt

of f under ϕ.
Note that each summand of the remainder term is a product of k+ 1 smooth functions

on M vanishing at a, namely f0 = (ϕi − ϕia)
∫ 1

0 (1 − t)k∂ϕI f(ϕa + t(ϕ − ϕa))dt for some
index i and multi-index I and fl = ϕj − ϕja for some index j if l > 0. So by Lemma 3.2.3,
D(Rϕk)(p) = 0.
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Hence using once more the locality of D as well as some combinatorics, we get:

D(f)(a) = D(P ϕk )(a) =
∑

|I|≤n

∂ϕI f(a)
|I|! D((ϕ− ϕa)I)(a)

=
∑

|I|≤k

∂ϕI f(a)
|I|! D

∑
J≤I

(−1)|I−J |
(
I

J

)
ϕI−J(a)ϕJ

 (a)

=

 ∑
|I|≤k,J≤I

(−1)|I−J |
(I
J

)
|I|!ϕ

I−JD(ϕJ)∂ϕI

 (f)(a)

Since f ∈ C∞(M) and a ∈ U were arbitrary, this implies the desired result. □

Using this coordinate representation, it is not hard to see how differential operators
are generated by low orders.

Lemma 3.2.5. Let M be a smooth manifold. Then Diff1(M) = {mf + LX |f ∈
C∞(M), X ∈ X(M)} and Diff(M) is locally generated by Diff1(M), i.e. every point p ∈ M
has an open neighbourhood U ⊆ M such that Diff(U) is generated as an R-algebra by
Diff1(U).

More precisely: Each p ∈ M has an open neighbourhood U such that for each operator
D ∈ Diffk(U), k ≥ 1 there are n ∈ N and D1,1, . . . , Dn,k ∈ Diff1(U) such that D =∑n
i=1

∏k
j=1Di,j (with at most k factors of order 1 in each summand).

Proof: We prove the second part first, which is a direct consequence of the previous lemma.
Namely let p ∈ M . Choose a smooth chart (U, ϕ) around p. Let D ∈ Diffk(U), k ∈ N0 be
arbitrary. (U, ϕ) is also a smooth chart of the manifold U , so by Lemma 3.2.4 we have

D =
∑

|I|≤k,J≤I
(−1)|I−J |

(I
J

)
|I|!ϕ

I−JD(ϕJ)∂ϕI

=
∑

|I|≤k,J≤I
(−1)|I−J |

(I
J

)
|I|!mϕI−JmD(ϕJ )L

i1
∂ϕ

1
. . .Lim

∂ϕ
m
,

which is a sum of products of multiplication operators and Lie operators, which are both
clearly contained in Diff1(U). This proves the local generation part. Note that we have
at most k factors from Diff1(U) in each summand, namely (−1)|I−J | (I

J)
|I|!mϕI−JmD(ϕJ )L∂ϕ

j
,

where j is chosen minimally such that ij ̸= 0, and i1 + · · ·+ ij −1+ · · ·+ im = |I|−1 ≤ k−1
partial derivatives; for |I| = 0, simply take the single factor (I

J)
|I|!mϕI−JmD(ϕJ ).

Note that for the case of k = 1, the summands are only products of multiplication
operators and up to one Lie operator. So because mfmg = mfg and mfLX = LfX holds for
all f, g ∈ C∞(M) and X ∈ X(M), using bump functions we deduce that any D ∈ Diff1(M)
is a locally finite sum

D =
∑
i∈I

mfi
+ LXi = mf + LX

for f :=
∑
i∈I fi and X :=

∑
i∈I Xi. □

The fact that differential operators are generated by vector fields and functions has
direct consequences for the graded algebra of function-valued differential operators.

Proposition 3.2.6. For every smooth manifold M , the graded algebra A(M) :=
A(
∧0 T ∗M) is commutative.
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Proof: For all X,Y ∈ X(M) and f, g ∈ C∞(M) we have [LX ,LY ] = L[X,Y ] ∈ Diff1(M),
hence LXLY + Diff1(M) = LY LX + Diff1(M), LXmf + Diff0(M) = mfLX + mX(f) +
Diff0(M) = mfLX + Diff0(M) and mfmg = mgmf by default.

Now we know by the previous lemma that the whole of Diff(M) is generated by
operators of the form LX and mf for X ∈ X(M), f ∈ C∞(M). This implies directly that
A(M) is generated by the equivalence classes of such in A1 and A0, respectively. But if
the generators commute, all elements have to commute. □

This proposition tells us that the canonical involution on A(M) is an algebra antiho-
momorphism (which is the same as a homomorphism in the commutative case), which we
would expect from a *-structure.

It is now time to show the background of the name filtered for certain *-structures.

Theorem 3.2.7. For any smooth manifold M with a *-structure ∗ on Diff(M), the
following statements are equivalent:

(1) ∗ is weakly filtered.
(2) ∗ is filtered.
(3) ∗ descends to the canonical involution on A(M), i.e. [D∗] = [D]∗ holds for all

D ∈ Diff(M).

Proof: I will show the implications (1) ⇒ (3), (3) ⇒ (2) and (2) ⇒ (1):
(1) ⇒ (3): For any operator D ∈ Diff1(M) we know that D − D∗ ∈ Diff0(M), so D∗ =

−D − mf for some f ∈ C∞(M). Hence in the graded algebra we get [D∗] =
[−D−mf ] = −[D] = [D]∗. Also, [m∗

f ] = [mf ] = [mf ]∗ is clear for all f ∈ C∞(M).
Now let D ∈ Diffk(M), k > 1. Then by Lemma 3.2.5, there is an open

cover U of M with operators DU,1,1, . . . , DU,n,k ∈ Diff1(U) such that D|U =∑n
i=1DU,i,1 . . . DU,i,k for all U ∈ U . So for all U ∈ U we have

[D∗]|U =
[(

n∑
i=1

DU,i,1 . . . DU,i,k

)∗]
=
[
n∑
i=1

D∗
U,i,k . . . D

∗
U,i,1

]

=
n∑
i=1

[D∗
U,i,k] . . . [D∗

U,i,1] =
n∑
i=1

[DU,i,k]∗ . . . [DU,i,1]∗

=
[
n∑
i=1

DU,i,1 . . . DU,i,k

]∗

= [D|U ]∗ = [D]∗|U ,

hence [D∗] = [D]∗ on the whole of M .
(3) ⇒ (2): Let D ∈ Diffk(M). Then by assumption we have [D − (−1)kD∗] = [D] −

(−1)k[D]∗ = [D] − (−1)2k[D] = [0], i.e. D − (−1)kD∗ ∈ Diffk−1(M). Since D
and k were arbitrary, ∗ is filtered.

(2) ⇒ (1): Trivial; (2) implies (1) a fortiori. □

We will soon proceed with the main theorem of this section. The proof requires one
more rather technical assumption, which is described in the next definition. But first, let
us look at an example:

Example 3.2.8. Consider the smooth manifold M = Rm and the real differential oper-
ators on it. The vector fields on the real plane have a global C∞(M)-basis {∂1, ∂2, . . . , ∂m}.
So by the generation lemma 3.2.5, the linear independence of ∂α, ∂β for α ̸= β ∈ Nm0
and the fact that [∂i, ∂j ] = 0, we know that Diff(Rm) is a free C∞(Rm)-module, namely
Diff(Rm) = {p(∂1, . . . , ∂m)|p ∈ C∞(Rm)[T1, . . . , Tm]} (however, we do not always have
p(∂1, . . . , ∂m)q(∂1, . . . , ∂m) = (pq)(∂1, . . . , ∂m), so this association is not a homomorphism).
Hence for every m-tuple (P1, . . . , Pm) ∈ Diff(Rm)m of differential operators, we can define
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an R-linear map by

∗ : Diff(Rm) → Diff(Rm),
∑

|α|≤k
aα∂

α1
1 . . . ∂αm

m 7→
∑

|α|≤k
Pαm
m . . . Pα1

1 maα .

This formula is of course a necessity if we want to have an involution with ∂∗
i = Pi

and m∗
a = ma for a ∈ C∞(M). This is also local: If D =

∑
α aα∂

α, D′ =
∑
α a

′
α∂

α and
D|U = D′|U , then aα|U = a′

α|U for all α, and hence D∗|U = (D′)∗|U because the Pi are
local themselves.

This map ∗ is involutive exactly if (∂∗
i )∗ = P ∗

i = ∂i for all i ∈ {1, . . . ,m}. A further
characterisation of this property in the general case is hard because C∞(M) does contain
zero divisors.

In the case that we are specifically looking for weakly filtered *-structures, we have to
assume that ∂∗

i + ∂i ∈ Diff0(Rm) and m∗
h −mh ∈ Diff−1(Rm) = {0} for h ∈ C∞(M), i.e.

∂∗
i = Pi = −∂i − gi for all i and m∗

h = mh for certain gi ∈ C∞(Rm) and all h ∈ C∞(Rm).
In that case, P ∗

i = (−∂i − gi)∗ = −(−∂i − gi) − gi = ∂i.
Given such Pi, a necessary condition to generate an actual *-structure is that PiPj =

(∂i∂j)∗ = (∂j∂i)∗ = PjPi, i.e. [Pi, Pj ] = 0 for all i. This condition computes as

0 = [Pi, Pj ] = [∂i + gi, ∂j + gj ] = [∂i, ∂j ] + [gi, ∂j ] + [∂i, gj ] + [gi, gj ]
= gi∂j − ∂jgi + ∂igj − gj∂i

= gi∂j − gi∂j − ∂j(gi) + gj∂i + ∂i(gj) − gj∂i = ∂i(gj) − ∂j(gi).

It turns out that this is also sufficient for ∗ to be anti-multiplicative. Proving this
requires a series of computations. First, let i ∈ {1, . . . ,m}, k ∈ N0 and f ∈ C∞(M). I will
just write f for the multiplication operator mf ∈ Diff0(M). With this we have

∂kimf = ∂k−1
i ∂imf = ∂k−1

i (f∂i + ∂i(f))
= ∂k−2

i ∂i(f∂i + ∂i(f)) = ∂k−2
i (f∂2

i + ∂i(f)∂i + ∂2
i (f) + ∂i(f)∂i

= ∂k−2
i (∂2

i (f) + 2∂i(f)∂i + f∂2
i ) = · · · =

k∑
t=0

(
k

t

)
∂ti (f)∂k−t

i .

Applying this to a multi-index α ∈ Nm0 we get

∂αf = ∂α1
1 . . . ∂αm

m f

= ∂α1
1 . . . ∂

αm−1
m−1

αm∑
im=0

(
αm
im

)
∂imm (f)∂αm−im

m = . . .

=
α1∑
i1=0

· · ·
αm∑
im=0

(
α1
i1

)
. . .

(
αm
im

)
∂i11 . . . ∂imm (f)∂α1−i1

1 . . . ∂αm−im
m

=
∑
I≤α

(
α

I

)
∂I(f)∂α−I .

Now I introduce the notation (−∂ − g)α := (−∂1 − g1)α1 . . . (−∂m − gm)αm . This is
justified in the sense that (−∂ − g)α(−∂ − g)β = (−∂ − g)α+β for all α, β ∈ Nm0 because
[−∂i − gi,−∂j − gj ] = 0 by assumption. We do another computation similar to what has
been done before: First, we have (−∂i − gi)f = −∂i(f) − f∂i − fgi = f(−∂i − gi) − ∂i(f),
i.e. f(−∂i − gi) = (−∂i − gi)f + ∂i(f) for all i ∈ {1, . . . ,m} and f ∈ C∞(M). It follows
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that

f(−∂i − gi)k = (∂i(f) + (−∂i − gi)f)(−∂i − gi)k−1

= (∂2
i (f) + 2(−∂i − gi)∂i(f) + (−∂i − gi)2f)(−∂i − gi)k

= · · · =
k∑
j=0

(
k

j

)
(−∂i − gi)j∂k−j

i (f)

and hence

f(−∂ − g)α =
∑
I≤α

(
α

I

)
(−∂ − g)I∂α−I(f) =

∑
I≤α

(
α

I

)
(−∂ − g)α−I∂I(f).

Consider any P =
∑

|α|≤k aα∂α, Q =
∑

|β|≤k bβ∂β. Using both sides we can finally
compute

(PQ)∗ =
(( ∑

|α|≤k
aα∂α

)(∑
|β|≤l

bβ∂β

))∗

=

∑
α,β

aα∂αbβ∂β

∗

=

 ∑
α,β,I≤α

(
α

I

)
aα∂I(bβ)∂α−I∂β

∗

=
∑

α,β,I≤α

(
α

I

)
(−∂ − g)α+β−Iaα∂I(bβ)

=
∑
α,β

(−∂ − g)β
∑
I≤α

(−∂ − g)α−I∂I(bβ)aα

=
∑
α,β

(−∂ − g)βbβ(−∂ − g)αaα = Q∗P ∗

The condition that ∂∗
i = −∂i − gi for some gi ∈ C∞(M) is also sufficient for the

resulting *-structure to be weakly filtered because in the graded algebra we have[
(
m∑
i=1

fi∂i)∗
]

=
∑
i

[−∂i − gi][fi]

=
∑
i

−[∂i][fi] =
∑
i

[∂i]∗[fi]∗ = [
∑
i

fi∂i]∗ ∈ A1(Rm)

for all f1, . . . , fm ∈ C∞(M), i.e. (
∑
i fi∂i)∗ ∈ (

∑
i fi∂i) + Diff0(Rm).

So indeed for every m-tuple (g1, . . . , gm) of smooth functions with ∂i(gj) = ∂j(gi) for
all i, j ∈ {1, . . . ,m}, there is a weakly filtered *-structure ∗ = ∗g1,...,gm on Diff(Rm) given
by  ∑

|α|≤k
aα∂α

∗

=
∑

|α|≤k
(−∂ − g)αaα,

and every possible weakly filtered *-structure on Rm is given in this way.

Now, what is the technical property mentioned before? The definition looks as follows.

Definition 3.2.9. A ∗-structure ∗ on Diff(M) is called commutative derivation pre-
serving if for all P,Q ∈ Diff1(M) with P (1) = Q(1) = 0 and [P,Q] = 0, also

PQ∗(1) = QP ∗(1)

is fulfilled.
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The name commutative derivation preserving for such a *-structure is to be understood
in the following sense: If ∗ is also filtered, then for all commuting derivations P,Q ∈ Diff(M),
PQ∗ −QP ∗ = PQ∗ − (PQ∗)∗ is a derivation again.

Before the main theorem of this section, let us consider the example again and check
when the extra property applies.

Example 3.2.10. Consider the previous example 3.2.8 with the *-structure given by ∑
|α|≤k

aα∂α

∗

=
∑

|α|≤k
(−∂ − g)αmα

again.
Then since clearly ∂i and ∂j are commuting derivations for all i, j ∈ {1, . . . ,m}, it

is necessary for ∗f,g to be commutative derivation preserving that ∂i(gj) = −∂i∂∗
j (1) =

−∂j∂∗
i (1) = ∂j(gi).

This is the same condition we already had found necessary for the map of the previous
example to be anti-multiplicative.

We will now prove an important theorem for characterising *-structures on Diff(M)
for the special case where M ⊆ Rm is a simply connected open subset. In short, they are
all given by volume forms. Given an abstract *-structure ∗, we will construct a volume
form such that the formal adjoint under ∗ and the adjoint in the L2-space of the volume
form are formally equal. This comes with a caveat: I will not investigate the domain of
adjoints in the following theorem, all results only hold on the space of smooth functions.

Proposition 3.2.11. Let M be a smooth manifold of dimension m which is diffeo-
morphic to a simply connected open subset of Rm. Let ∗ be a weakly filtered, commutative
derivation preserving *-structure on Diff(M).

Then there is a smooth volume form ω on M such that
ins : Diff(M) → O(L2(M,ω)), D 7→ (C∞(M), D),

is a unital *-homomorphism, using the *-structure (C∞(M), D)∗ = (C∞(M), (D∗)|C∞M )
in O(L2(M,ω), the restriction of the usual adjoint to the smooth functions.

Furthermore, any other η ∈ Ωm(M) such that ins : Diff(M) → O(L2(M,η)) is a unital
*-homomorphism is given as η = cω for a constant c ∈ R \ {0}.

Proof: For each X ∈ X(M), define div(X) := −(LX + L∗
X)(1) = −L∗

X(1). Then for all
f ∈ C∞(M) we have

div(fX) = −L∗
fX(1) = −(mf ◦ LX)∗(1) = −L∗

X ◦mf (1) = −L∗
X(f)

= −fL∗
X(1) + LX(f) = f div(X) +X(f),

using that (LX + L∗
X)(f) = f(LX + L∗

X)(1) = fL∗
X(1) and that mf is an order 0 operator

and hence self-adjoint under the given ∗-structure. Because LX+Y = LX + LY holds for all
X,Y ∈ X(M) and ∗ is additive, div is also additive.

By assumption, there is a smooth global chart ϕ : M → Ũ ⊆ Rm. Using this, define

θϕ :=
m∑
i=1

div(∂ϕi )dϕi ∈ Ω1(M).

For all i, j ∈ {1, . . . ,m} we have
0 = L[∂ϕ

i ,∂
ϕ
j ] = [L

∂ϕ
i
,L

∂ϕ
j
],

as well as L
∂ϕ

i
(1) = 0 = L

∂ϕ
j
(1). So because ∗ was assumed to be commutative derivation

preserving, we get
∂ϕi div ∂ϕj = L

∂ϕ
i
L∗
∂ϕ

j

(1) = L
∂ϕ

j
L∗
∂ϕ

i

(1) = ∂ϕj div ∂ϕi .
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Hence we have

dθϕ =
m∑
i=1

d div(∂ϕi )dϕi

=
m∑

i,j=1
∂ϕj div(∂ϕi )dϕjdϕi

=
∑
i<j

(∂ϕi div ∂ϕj − ∂ϕj div ∂ϕi )dϕidϕj = 0

Now because M is simply connected, we have H1
d(M) = {0} for the degree 1 de Rham

cohomology, so dθ = 0 implies that θ = dgϕ for some gϕ ∈ C∞(U). Set fϕ := exp ◦gϕ, then
dfϕ = exp′ ◦gϕdgϕ = fϕdgϕ = fϕθ, i.e. ∂ϕi (fϕ) = fϕ div(∂ϕi ) holds for all i ∈ {1, . . . ,m}.

Set ω = ωϕ := fϕdϕ1 . . . dϕm. Then we have

L
∂ϕ

i
ωϕ = L

∂ϕ
i
(fϕ)dϕ1 . . . dϕm + fϕL

∂ϕ
i
(dϕ1 . . . dϕm)

= ∂ϕi (fϕ)dϕ1 . . . dϕm

= fϕ div(∂ϕi )dϕ1 . . . dϕm = div(∂ϕi )ωϕ

for all i ∈ {1, . . . ,m}. It follows that for all f ∈ C∞(M),

L
f∂ϕ

i
ωϕ = fL

∂ϕ
i
ωϕ + (−1)i+1fϕ∂

ϕ
j (f)dϕjdϕ1 . . . d̂ϕi . . . dϕm

= fL
∂ϕ

i
ωϕ + ∂ϕi (f)fϕdϕ1 . . . dϕm

= (f div(∂ϕi ) + ∂ϕi (f))ωϕ = div(f∂ϕi )ωϕ,

so because both L and div are additive, LXωϕ = div(X)ωϕ holds for all X ∈ X(U). This
means that div = divω is the usual divergence defined on the volumetric manifold (M,ωϕ).
Note also that ωϕ is non-vanishing because exp > 0.

Now we have to show that this form ω really preserves the *-structure. So let X ∈ X(M)
be arbitrary. Then by the previous results we know that −L∗

X(1) = divω(X) holds for the
usual divergence defined by the volume form ω on M . Because the *-structure on DiffC(M)
is relatively skew-adjoint, LX + L∗

X is C∞(M)-linear, so for any f ∈ C∞(M) we have

f div(X) = f(LX + L∗
X)(1) = (LX + L∗

X)(f),

hence
ins(L∗

X) = ins(−LX −mdiv(X)) = ins(−LX −mdivω(X)) = ins(LX)∗,

because the latter two terms coincide on the dense subspace C∞(M) ⊆ L2(M) by Co-
rollary 2.1.8, as well as ins(m∗

f ) = ins(mf ) = ins(mf )∗. So since Diff(M) is generated by
Diff1(M) = {mf + LX |f ∈ C∞(M), X ∈ X(M)} as stated in Lemma 3.2.5, this implies
ins(D)∗ = ins(D∗) for all D ∈ Diff(M). The map ins is clearly R-linear, so it is indeed a
∗-homomorphism. It is unital because multiplication with the constant function 1 is just
the identity.

Now suppose that η is another volume form on M such that ins : Diff(M) → L2M is a
unital *-homomorphism. Then we have

divηX = −L∗
X(1) = divωX

for all X ∈ C∞(M). Because ω is non-vanishing, there must be a smooth non-vanishing
function f ∈ C∞(M) with η = fω. It follows that

divη(X)η = LX(fω) = X(f)ω + fLXω = (X(f) + f divω(X)ω) = X(f)ω + divη(X)η,
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hence X(f) = 0 for all X ∈ X(M) (ω is non-vanishing). Because M is connected, this
means that f is just a constant f ≡ c ∈ R, giving η = cω. c ̸= 0 must hold because f is
non-vanishing. □

We can also deduce an analogous result for the whole of M = Rm.

Corollary 3.2.12. Every weakly filtered *-structure on Diff(Rm) is given by a volume
form.

Proof: This statement is not a corollary of Theorem 3.2.11 in the strict sense that it follows
from its statement, but rather a slight variation of its proof.

By Example 3.2.8 we know that any weakly filtered *-structure ∗ on Diff(Rm) is given
by ∗ = ∗g1,...,gm for certain gi ∈ C∞(Rm) with ∂i(gj) = ∂j(gi) for all i, j. Notice that, with
the notation of Theorem 3.2.11, we have div(∂i) = gi for all i. Furthermore, (Rm, id) is a
smooth chart of Rm with simply connected domain. So by the proof of Theorem 3.2.11,
the volume form ω = fdx1 . . .dxm ∈ Ωm(Rm), where f = exp ◦g, g ∈ C∞(Rm) with
dg =

∑m
i=1 gidxi fulfils divω(∂i) = gi. Here, the theorem does not use the commutative

derivation preservation for all derivations, but only for the coordinate vector field of the
given charts, which is fulfilled here by ∂i∂∗

j (1) = −∂i(gj) = −∂j(gi) = ∂j∂
∗
i (1).

So because Diff(Rm) is generated by ∂1, . . . , ∂m, it follows that L∗
X = −LX − divω(X)

for all X ∈ X(Rm). □

As it turns out, there is another generalisation that we can make. The proof idea was
recommended to me by my supervisor and uses results from cohomology theory.

Theorem 3.2.13. Let M be a compact and simply connected smooth manifold of
dimension m and let ∗ be a weakly filtered ∗-structure on Diff(M). Then there is a volume
form ω ∈ Ωm(M) such that

ins : Diff(M) → O(L2(M,ω)), D 7→ (C∞(M), D),

is a unital *-homomorphism, and this is unique up to multiplication with a non-zero real
number.

Proof: Because M is compact, there exists a finite good cover U = (U1, . . . , Un) for M ;
that is, open sets U1, . . . , Un ⊆ M with M =

⋃n
i=1 Ui such that for all I ⊆ {1, . . . , n}, the

intersection
⋂
i∈I Ui is diffeomorphic to Rm. The existence of such a cover is proven in [2],

Theorem 5.1, page 42.
In particular, the sets Ui themselves are diffeomorphic to Rm. By definition, ∗-structures

are local maps. Being filtered is also a local property (because the map id±∗ : Diffk(M) →
Diffk(M) is local for all k ∈ N), hence ∗ restricts to a filtered ∗-structure on every open
subset of M . By Corollary 3.2.12 (and using a pullback by a diffeomorphism), there is for
every i ∈ {1, . . . , n} a volume form ωi ∈ Ui such that ∗|Ui =∗

ωi
is the ∗-structure given by

ωi; that is, X∗ = −X − divωi X holds for all X ∈ X(Ui).
As shown in Proposition 3.2.11, for every non-empty intersection Uij = Ui ∩ Uj , there

must be a scalar cij ∈ R\{0} such that ωi|Uij = cijωj |Uij . Because M is is simply connected,
it is orientable. Hence we can choose an orientation on M and assume every ωi to be
positively oriented, which implies that cij > 0 for all i, j ∈ {1, . . . , n}. For all i, j, set
dij := log(cij) ∈ R. I claim that the family d = (dij)i,j∈{1,...,n},Ui∩Uj ̸=∅ is a 1-coboundary in
the Čech complex associated to the cover U .

To prove this, consider any three indices i, j, k ∈ {1, . . . , n} for which the respective
intersection U = Uijk = Ui ∩ Uj ∩ Uk is non-empty. Then we find that

ωi|U = (ωi|Uij )|U = (cijωj |Uij )|U = (cijωj |Ujk
)|U

= (cijcjkωk|Ujk
)|U = cijcjkckiωi|U
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and hence cijcjkcki = 1. It follows that dij − dik + djk = log(cij) + log(cki) + log(cjk) =
log(cijcjkcki) = log(1) = 0 because cki = 1

cik
. Thus d is a 1-cocycle. The rest follows from

homotopy. Namely, M was assumed to be simply connected (so it has a trivial fundamental
group π1(M) = {0}). Hence by Corollary 15.4.2, page 140 in [1], it also has a trivial
grade-1 de Rham cohomology: H1

dR(M) = {0}. But by the de Rham theorem, there is an
isomorphism {0} ∼= H1

dR(M) ∼= H1
C(M,U) (using that U is a good cover) between the de

Rham and Čech cohomology. Thus every 1-cocycle here is a coboundary, in particular, this
is true for d.

Hence there is a set of real numbers {b1, . . . , bn} such that for all i, j ∈ {1, . . . , n} where
Uij is non-empty, dij = bi − bj . We set ai := exp(bi) and find that aia−1

j = cij for all i, j
with intersection.

In the last step, we use that the cover is finite to guarantee existence of a product. For
each i ∈ {1, . . . , n}, define:

ηi :=

 ∏
j∈{1,...,n}\{i}

aj

ωi ∈ Ωm(Ui)

Consider any i, j ∈ {1, . . . , n} such that Uij ̸= ∅. Then we have:

ηi|Uij =

 ∏
k∈{1,...,n}\{i}

ak

ωi|Uij =

 ∏
k∈{1,...,n}\{i}

ak

 aia−1
j ωj |Uij

=

 ∏
k∈{1,...,n}\{j}

ak

ωj |Uij = ηj |Uij

Thus we can define ω ∈ Ωm(M) by ω|Ui = ηi for all i ∈ {1, . . . , n}. By construction, we have
X∗|Ui = −X|Ui − divηi(X|Ui) = (−X − divω(X)) |Ui for all i ∈ {1, . . . , n} and X ∈ X(M),
thus the given ∗-structure is indeed induced by the volume form ω, as discussed before in
the proof of Proposition 3.2.11. The proof of uniqueness is also analogous to the one in
Proposition 3.2.11. □

The previous Proposition 3.2.11 uses the technical assumption of a *-structure being
commutative derivation preserving. This assumption already looks a bit arbitrary, an
impression which is amplified by the observation that it is not required on Rm or in
Theorem 3.2.13.

As it turns out, we can actually prove that every *-structure given by a volume
form fulfils this extra property, so that it is a necessary assumption. The proof relies on
computations within the Euclidean space and on the relation of diffeomorphisms with the
divergence operator. We start with the following lemma:

Lemma 3.2.14. Let (M,ω) be a volumetric manifold, N another smooth manifold
and let ϕ : M → N be a diffeomorphism. Let X ∈ X(M) be a vector field. Set ϕ∗X :=
Tϕ ◦X ◦ ϕ−1 ∈ X(N). Then

Lϕ∗X((ϕ−1)∗ω) = (ϕ−1)∗LXω.

Proof: Abbreviate η := (ϕ−1)∗ω. First notice that for Y2, . . . , Ym ∈ X(N) we have

iϕ∗Xη(Y2, . . . , Ym) = (ϕ−1)∗ω(TϕXϕ−1, Y2, . . . , Ym)
= ω(X,Tϕ−1Y2ϕ, . . . , Tϕ

−1Ymϕ) = iXω(ϕ∗Y2, . . . , ϕ∗Ym)
= (ϕ−1)∗(iXω)(Y2, . . . , Ym),
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hence iϕ∗Xη = (ϕ−1)∗(iXω). So because ω and η are forms of maximal degree, we get

Lϕ∗X((ϕ−1)∗ω) = diϕ∗X((ϕ−1)∗ω) = d((ϕ−1)∗iXω)
= (ϕ−1)∗(diXω) = (ϕ−1)∗LXω. □

Using this, we can prove a formula about the divergence under the pushforward by a
diffeomorphism.

Lemma 3.2.15. Let (M,ω) and (N, η) be two volumetric manifolds with a diffeomorph-
ism ϕ : M → N . Let X,Y ∈ X(M). Then

ϕ∗X(divη(ϕ∗Y )) =
(
XY (fϕ) − Y (fϕ)X(fϕ

(fϕ)2 ) +X divω Y
)

◦ ϕ−1

holds for a smooth function f ∈ C∞(N).

Proof: Let m = dimM . Because rk
∧m T ∗M = 1, there must be a unique smooth, non-

vanishing function f ∈ C∞(M) with η = f(ϕ−1)∗ω. Then by the previous lemma we
have

Lϕ∗Xη = Lϕ∗X(f)(ϕ−1)∗ω + fLϕ∗X(ϕ−1)∗ω

= X(fϕ)ϕ−1(ϕ−1)∗ω + f(ϕ−1)∗LXω
= X(fϕ)ϕ−1(ϕ−1)∗ω + f divω(X)ϕ−1(ϕ−1)∗ω

=
(
X(fϕ)ϕ−1

f
+ divω(X)ϕ−1

)
η,

which implies that

divη(ϕ∗X) =
(
X(fϕ)
f

+ divω(X)
)

◦ ϕ−1.

Using the quotient rule we compute finally that

ϕ∗X(divη(ϕ∗Y )) = X

(
Y (fϕ)
fϕ

+ divω(Y )
)
ϕ−1

=
(
XY (fϕ) − Y (fϕ)X(fϕ)

(fϕ)2 +X divω Y
)

◦ ϕ−1. □

In the Euclidean space, we can directly compute divergences and deduce the following
fact about divergences of commuting vector fields:

Proposition 3.2.16. Let U ⊆ Rm be an open subset, m ∈ N. Consider the standard
volumetric manifold (U,dx1 . . . dxm). Let X,Y ∈ X(U) with [X,Y ] = 0. Then we have

X(div Y ) = Y (divX).

Proof: X and Y can be represented as X =
∑m
i=1 fi∂i and Y =

∑m
i=1 gi∂i for some smooth

fi, gi ∈ C∞(U). Then we have

0 = [X,Y ] =
m∑

i,j=1
[fi∂i, gj∂j ] =

m∑
i,j=1

(fi∂i(gj) − gi∂i(fj))∂j
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by assumption, i.e.
∑m
i=1 fi∂i(gj) =

∑m
i=1 gi∂i(fj) holds for all j ∈ {1, . . . ,m}. Hence we

compute:

X(div Y ) = X(
m∑
i=1

∂i(gi)) =
m∑

i,j=1
fi∂i∂j(gj)

=
m∑

i,j=1
fi∂j∂i(gj) =

m∑
i,j=1

∂j(fi∂i(gj)) − ∂j(fi)∂i(gj)

=
m∑
j=1

∂j(
m∑
i=1

∂j(
m∑
i=1

fi∂i(gj)) −
m∑
i=1

∂j(gi)∂i(fj)

=
m∑
j=1

∂j(
m∑
i=1

∂j(
m∑
i=1

gi∂i(fj)) −
m∑
i=1

∂j(gi)∂i(fj)

=
m∑

i,j=1
gi∂j∂i(fj) =

m∑
i,j=1

gi∂i∂j(fj) = Y (divX) □

For arbitrary manifolds, an equivalent result follows using pushforwards.

Theorem 3.2.17. Let (M,ω) be any volumetric manifold. Let X,Y ∈ X(M) with
[X,Y ] = 0. Then we have

X(divω Y ) = Y (divωX).

Proof: Set m := dimM . Let p ∈ M be arbitrary. Let (U, ϕ) be a smooth chart of M around
p, with range Ũ := ϕ(U). Let η := dx1 . . . dxm ∈ Ωm(Ũ). Set X̃ := ϕ∗X|U = TϕXϕ−1 and
Ỹ := ϕ∗Y |U . We know by [11], Corollary 8.31, page 189 that [X̃, Ỹ ] = ϕ∗[X,Y ]|U = 0.

Hence by Proposition 3.2.16 we have
X̃(divη Ỹ ) = Ỹ (divη X̃).

By Lemma 3.2.15 we get
X(divω Y )|U = ϕ−1

∗ X̃(divω ϕ−1
∗ Ỹ )

=
(
X̃Ỹ (fϕ) − Ỹ (fϕ)X̃(fϕ)

(fϕ)2 + X̃(divη Ỹ )
)

◦ ϕ−1

=
(
Ỹ X̃(fϕ) − X̃(fϕ)Ỹ (fϕ)

(fϕ)2 + Ỹ (divη X̃)
)

◦ ϕ−1

= Y (divωX)|U ,

in particular X(divω Y )(p) = Y (divωX)(p). So because p ∈ M was arbitrary, we have
proven X(divω Y ) = Y (divωX). □

As promised, we can now prove that volume forms actually define *-structures with
the desired properties.

Theorem 3.2.18. Let (M,ω) be a volumetric manifold. Then there is a unique *-
structure ∗ on Diff(M) such that

ins : Diff(M) → O(L2(M,ω)), D 7→ (C∞M,D),
is a unital *-homomorphism.

This *-structure is also weakly filtered and commutative derivation preserving.

Proof: Any *-structure ∗ on Diff(M) for which the insertion map ins is a *-homomorphism
has to fulfil

L∗
X(f) = ins(L∗

X)(f) = ins(LX)∗(f) = −LX(f) − divω(X)f
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for all X ∈ X(M) and f ∈ C∞(M), i.e. L∗
X = −LX − divω(X). Also, m∗

f = mf must
hold for smooth functions f ∈ C∞(M) because this holds for multiplication operators
on L2(M,ω). These two properties already determine uniquely any possible *-structure
because Diff(M) is generated by {mf + LX |f ∈ C∞(M), X ∈ X(M)}, as proven in Lemma
3.2.5.

Now we still have to prove that this formula actually gives a well-defined *-structure
with the required properties. For this, let (U, ϕ) be any smooth chart of M . By Lemma
3.2.4 and the fact that these coordinate differential operators are linearly independent
(over C∞(M)) we know that {∂ϕI |I ∈ Nm0 } is a C∞(M)-basis of Diff(U). Hence

∗ : Diff(U) → Diff(U),
∑
I

fI∂
ϕ
I 7→

∑
I

(∂ϕI )∗mfI
,

where (∂ϕI )∗ := (−∂ϕm − div(∂ϕm))im . . . (−∂ϕ1 − div(∂ϕ1 ))i1 , is a well-defined map. Because
summation and differential operators are R-linear and local, so is this map ∗. Note also
that these definitions make sure that 1∗ = (∂ϕ(0,...,0))

∗ = 1 as well as m∗
f = 1∗mf = mf for

general f ∈ C∞(M).
Let i, j ∈ {1, . . . ,m}. Then by Theorem 3.2.17 we have

(div ∂ϕi + ∂ϕi )(div ∂ϕj + ∂ϕj ) = ∂ϕi ∂
ϕ
j + div ∂ϕi ∂

ϕ
j + ∂ϕi mdiv ∂ϕ

j
+ div ∂ϕi div ∂ϕj

= ∂ϕi ∂
ϕ
j + div ∂ϕi ∂

ϕ
j + div ∂ϕj ∂

ϕ
i + ∂ϕi (div ∂ϕj ) + div ∂ϕi div ∂ϕj

= ∂ϕj ∂
ϕ
i + div ∂ϕj ∂

ϕ
i + div ∂ϕi ∂

ϕ
j + ∂ϕj (div ∂ϕi ) + div ∂ϕj div ∂ϕi

= (div ∂ϕj + ∂ϕj )(div ∂ϕi + ∂ϕi )

Now let I, J ∈ Nm0 be two multi-indices. Then using this commutation property we
compute by the definition above:

(∂ϕI ∂
ϕ
J )∗ =(∂ϕI+J)∗

=(−∂ϕm − div(∂ϕm))im+jm . . . (−∂ϕ1 − div(∂ϕ1 ))i1+j1

=(−∂ϕm − div(∂ϕm))jm . . . (−∂ϕ1 − div(∂ϕ1 ))j1

◦ (−∂ϕm − div(∂ϕm))im . . . (−∂ϕ1 − div(∂ϕ1 ))i1

= (∂ϕJ )∗(∂ϕI )∗

Let now g ∈ C∞(M) and i ∈ {1, . . . ,m}. Then we have:

(∂ϕi mg)∗ = (g∂ϕi + ∂ϕi (g))∗

= (∂ϕi )∗mg + ∂ϕi (g) = (−∂ϕi − div ∂ϕi )mg + ∂ϕi (g)

= −g∂ϕi − ∂ϕi (g) − g div ∂ϕi + ∂ϕi (g)

= g(−∂ϕi − div ∂ϕi ) = mg(∂ϕi )∗

An induction argument hence implies that (∂ϕImg)∗ = mg(∂ϕI )∗ holds for all I ∈ Nm0 .
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Consider now general I, J ∈ Nm0 and f, g ∈ C∞(U). In the next step we compute:
(
f∂ϕI g∂

ϕ
J

)∗
=

f ∑
K≤I

∂ϕK(g)∂ϕI−K∂
ϕ
J

∗

=
∑
K≤I

(
∂ϕI−K∂

ϕ
J

)∗
∂ϕK(g)mf

= (∂ϕJ )∗

∑
K≤I

(∂ϕI−K)∗∂ϕK(g)

mf

= (∂ϕJ )∗

∑
K≤I

∂ϕK(g)∂ϕI−K

∗

mf

= (∂ϕJ )∗(∂ϕImg)∗mf

= (∂ϕJ )∗mg(∂ϕI )∗mf = (g∂ϕJ )∗(f∂ϕI )∗

Finally we have the most general case of arbitrary P,Q ∈ Diff(U). P and Q can be
expressed as locally finite sums P =

∑
I fI∂

ϕ
I and Q =

∑
J gJ∂

ϕ
J for suitable fI , gJ ∈

C∞(M), I, J ∈ Nm0 . So it easily follows from linearity and the previous computations that

(PQ)∗ =
∑
I,J

(fI∂ϕI gI∂
ϕ
J )∗ =

∑
I,J

(gJ∂ϕJ )∗(fI∂ϕI )∗ = Q∗P ∗

just as required.
This anti-multiplicativity makes it easy to show that ∗ is an involution: Because Diff(U)

is generated by multipliers mf , f ∈ C∞(M) and coordinate operators ∂ϕi , i ∈ {1, . . . ,m},
it suffices to note that (m∗

f )∗ = m∗
f = mf as well as

((∂ϕi )∗)∗ = (−∂ϕi − div ∂ϕi )∗ = ∂ϕi + div ∂ϕi − div ∂ϕi = ∂ϕi .

So indeed we have defined a *-structure on Diff(U).
This map ∗ was constructed to fulfil L∗

X = −LX − div(X) for all X ∈ X(M), which is
indeed the case, namely:

L∗
X =

(
m∑
i=1

X(ϕi)∂ϕi

)∗

=
m∑
i=1

(−∂ϕi − div ∂ϕi )X(ϕi)

=
m∑
i=1

−∂ϕi (X(ϕi)) −X(ϕi)∂ϕi −X(ϕi) div ∂ϕi

=
∑
i=1

m−X(ϕi)∂ϕi − div(X(ϕi)∂ϕi ) = −LX − div(X)

It is now time to extend these local *-structures to the whole of M . If (V, ψ) is another
smooth chart of M with its corresponding *-structure ⋆ on Diff(V ) defined as before, then
by locality, ∗|U∩V and ⋆|U∩V are both *-structures on Diff(U ∩V ) with m∗

f = mf = m⋆
f and

L∗
X = −LX − div(X) = L⋆X for X ∈ X(M), f ∈ C∞(M). By the remark in the beginning

of the proof, *-structures with these properties are unique, hence ⋆|U∩V = ∗|U∩V . Hence
we can define ∗ : Diff(M) → Diff(M) by D∗|U = (D|U )∗ for any smooth chart domain
U ⊆ M .

R-linearity, anti-multiplicativity, involutivity and locality itself are all local properties,
so ∗ : Diff(M) → Diff(M) inherits them from the locally defined *-structures and is
hence itself a *-structure on Diff(M). It is also clear from the local definitions that
L∗
X = −LX − div(X) for X ∈ X(M) and m∗

f = mf for f ∈ C∞(M). Because Diff(M) is
generated by Diff1(M), this suffices to assure that ins : Diff(M) → O(L2M) is indeed a
unital *-homomorphism under this *-structure. It was shown to be unique in the beginning.

It is only left to prove that ∗ defined above is also weakly filtered and commutative
derivation preserving. The weakly filtered property is clear by sight since Diff0(M) =



3.3. THE ENVELOPING ALGEBRA OF A LIE ALGEBROID 37

{mf |f ∈ C∞(M)} and mf = m∗
f for every f ∈ C∞(M) as well as Diff1(M) = {LX +

mf |X ∈ X(M), f ∈ C∞(M)} and LX + mf + (LX + mf )∗ = 2mf − mdiv(X) ∈ Diff0(M)
for all operators X ∈ X(M), f ∈ C∞(M).

The operators P,Q ∈ Diff1(M) with P (1) = Q(1) = 0 and [P,Q] = 0 are exactly the
Lie operators LX ,LY for which [X,Y ] = 0. Theorem 3.2.17 directly implies that

LXL∗
Y (1) = −X(div Y ) = −Y (divX) = LY L∗

X(1)
holds for any such operators. Hence ∗ is also commutative derivation preserving. □

This implies that being commutative derivation preserving is automatic for *-structures
on Rm.

Corollary 3.2.19. Every weakly filtered *-structure on Diff(Rm) is commutative
derivation preserving.

Proof: By Corollary 3.2.12, any weakly filtered *-structure ∗ on Diff(Rm) is determined by
L∗
X = −LX − divω(X) for some volume form ω ∈ Ωm(Rm). This is exactly the *-structure

such that ins : Diff(Rm) → O(L2(Rm, ω)) is a unital *-homomorphism from Theorem
3.2.18, which is commutative derivation preserving by the theorem. □

The results of this section can be extended to invariant differential operators on Lie
groupoids. This will be done in the last section of this chapter. Before investigating these
invariant operators, the next section will show how they are useful.

3.3. The Enveloping Algebra of a Lie Algebroid

An important example of Lie algebras are associative R-algebras with the commutator
[x, y] = xy− yx. It turns out after only a little bit of theory that, in fact, every Lie algebra
can be viewed as a subalgebra of one of that kind. An associative algebra in which a Lie
algebra can be embedded is then called an enveloping algebra of that Lie algebra, and the
smallest of all enveloping algebras is called universal. The universal enveloping algebra can
be proven to exist by a general construction or found in the form of more natural examples.

In the context of Lie groups, one finds a close connection between the group C∗-algebra
and the universal enveloping algebra of its Lie algebra, in particular, regarding their
respective representations. This is the reason to be interested in enveloping algebras and
may make the reader wonder whether the concept can be generalised to Lie algebroids, as
we have generalised the group C∗-algebra to a groupoid C∗-algebra. Again, the answer is
yes. The formal definition of enveloping algebras of Lie algebroids is now to follow, using
the commutator product mentioned before.

Definition 3.3.1. (compare [19], pages 14–15, or [8], pages 7–8)
Let A → M be a Lie algebroid with anchor ρ. An enveloping algebra of A is a triple

(E, i1, i2), where E is an associative unital R-algebra, i1 : C∞(M) → E is a unital algebra
homomorphism and i2 : Γ(A) → E is a Lie algebra homomorphism, such that

i1(f)i2(a) = i2(fa)
and

[i2(a), i1(f)] = i1(ρ(a)(f))
hold for all f ∈ C∞(M) and a ∈ Γ(A).

A homomorphism of enveloping algebras from (E, i1, i2) to (F, j1, j2) is a unital algebra
homomorphism ϕ : E → F such that ϕi1 = j1 and ϕi2 = j2.

Since the identity idE : E → E is trivially a homomorphism of enveloping algebras and
ϕit = jt, ψjt = kt implies ψϕit = ψjt = kt, t ∈ {1, 2}, enveloping algebras of a given Lie
algebroid form a category with the usual concatenation of maps as composition.

So what does it mean for an enveloping algebra to be small? The answer is given by a
basic concept of category theory.
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Definition 3.3.2. Let A → M be a Lie algebroid. An enveloping algebra (E, i1, i2) of
A is called universal if it is initial in the category of enveloping algebras of A, i.e. if for any
other enveloping algebra (F, j1, j2) of A there is a unique unital algebra homomorphism
ϕ : E → F such that ϕi1 = j1 and ϕi2 = j2.

When we make up a new definition it is always good to know that it is not a void one.
So next I am going to prove that every Lie algebroid has a universal enveloping algebra by
an abstract construction. First we need the following lemma:

Lemma 3.3.3. Let A → M be a Lie algebroid. On the C∞(M)-module V = C∞(M) ⊕
Γ(A) define an operation [·, ·] by

[f + a, g + b] := ρ(a)(g) − ρ(b)(f) + [a, b]
for f, g ∈ C∞(M), a, b ∈ Γ(A). Then V with this operation is a Lie algebra.

Proof: R-bilinearity is clear by (bi-)linearity of vector fields, ρ and the bracket of Γ(A).
The bracket is also skew-symmetric since [f + a, f + a] = ρ(a)f − ρ(a)f + [a, a] = 0 holds
for arbitrary f ∈ C∞(M), a ∈ Γ(A). Checking the Jacobi identity is a mere computation.
Namely for f1, f2, f3 ∈ C∞(M) and a1, a2, a3 ∈ Γ(A) we have:

[f1 + a1,[f2 + a2, f3 + a3]] = [f1 + a1, ρ(a2)f3 − ρ(a3)f2 + [a2, a3]]
= −ρ([a2, a3])f1 + ρ(a1)(ρ(a2)f3) − ρ(a1)(ρ(a3)f2) + [a1, [a2, a3]]

Doing the same with cyclic permutations of the indices and using the Jacobi identity for
Γ(A), we get
[f1 + a1, [f2 + a2, f3 + a3]] + [f2 + a2, [f3 + a3, f1 + a1]] + [f3 + a3, [f1 + a1, f2 + a2]]

= − ρ([a2, a3])f1 + ρ(a1)(ρ(a2)f3) − ρ(a1)(ρ(a3)f2) + [a1, [a2, a3]]
− ρ([a3, a1])f2 + ρ(a2)(ρ(a3)f1) − ρ(a2)(ρ(a1)f3) + [a2, [a3, a1]]
− ρ([a1, a2])f3 + ρ(a3)(ρ(a1)f2) − ρ(a3)(ρ(a2)f1) + [a3, [a1, a2]]

= − ρ([a2, a3])f1 + [ρ(a1), ρ(a2)]f3 − ρ([a3, a1])f2

+ [ρ(a2), ρ(a3)]f1 − ρ([a1, a2])f3 + [ρ(a3), ρ(a1)]f2 = 0
since ρ : Γ(A) → X(M) is a Lie algebra homomorphism. □

After this, our theorem still requires a bit of effort, but the construction is rather
intuitive.

Theorem 3.3.4. Let A → M be a Lie algebroid. Then A has a universal enveloping
algebra, and this is unique up to isomorphism.

Proof: Since universal enveloping algebras were defined as initial objects, the uniqueness
part follows from general category theory. The existence part is proven by an explicit
construction.

Consider first the C∞(M)-module V = C∞(M)⊕Γ(A). This is a Lie algebra by Lemma
3.3.3, using the bracket defined there. Let W := T (V ) =

∑∞
n=0 T

n
R (V ) be the R-tensor

algebra of V . Define
I := ⟨{fg − f ⊗ g|f, g ∈ C∞(M)} ∪ {constr ⊕ 0 − r|r ∈ R}

∪ {fa− f ⊗ a|f ∈ C∞(M), a ∈ Γ(A)} ∪ {x⊗ y − y ⊗ x− [x, y]|x, y ∈ C∞(M) ⊕ Γ(A)}⟩
to be the ideal generated by the four sets written above. Here, constr ∈ C∞(M) is the
constantly r-valued function. Set U = U(A) := W/I. Intuitively, two maps are defined:
i1 : C∞(M) → U, f 7→ f ⊕ 0 + I and i2 : Γ(A) → U, a 7→ 0 ⊕ a+ I.

Now we have to show that (U, i1, i2) is indeed a universal enveloping algebra for A. I will
first prove that it is an enveloping algebra at all. The fact that i1 and i2 are homomorphisms
follows right from the definition of I, namely we have i1(f)i1(g) = f ⊗ g + I = fg + I,
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i1(const1) = const1+I = 1+I and [i2(a), i2(b)] = ab−ba+I = [0⊕a, 0⊕b]+I = [a, b]+I for
all f, g ∈ C∞(M), a, b ∈ Γ(A). In addition we get i1(f)i2(a) = f ⊗ a+ I = fa+ I = i2(fa)
and [i2(a), i1(f)] = a⊗ f − f ⊗ a+ I = [a, f ] + I = ρ(a)(f) + I = i1(ρ(a)(f)). So (U, i1, i2)
is an enveloping algebra of A.

Let (Z, k1, k2) be another enveloping algebra of A. Suppose τ : (U, i1, i2) → (Z, k1, k2)
is a homomorphism of enveloping algebras. Then for all f ∈ C∞(M), a ∈ Γ(A) we have
τ(f ⊕ a+ I) = τ(i1(f) + i2(f)) = k1(f) + k2(f). Since W = T (V ) is generated by elements
of the form f ⊕ a as a unital algebra, U is generated by elements of the form f ⊕ a+ I,
hence τ is completely determined be the formula above. So there can be at most one
homomorphism of enveloping algebras τ : (U, i1, i2) → (Z, k1, k2).

In fact the above formula can as well be used to define a homomorphism. We just have
to check that it is well-defined and has the required properties. So define τ̃ : W → Z by
τ̃(f ⊕ a) := k1(f) + k2(a), extended to a unital algebra homomorphism, which is possible
since k1 and k2 are R-linear. Let r ∈ R, f, g ∈ C∞(M) and a, b ∈ Γ(A), with x := f ⊕ a,
y := g ⊕ b. Then we have:

(1) τ̃(constr) = k1(constr) = rk1(const1) = r · 1 = rτ̃(1) = τ̃(r),
(2) τ̃(f ⊗ g) = τ̃(f)τ̃(g) = k1(f)k1(g) = k1(fg) = τ̃(fg),
(3) τ̃(f ⊗ a) = k1(f)k2(a) = k2(fa) = τ̃(fa),

and finally,

τ̃(x⊗ y − y ⊗ x) =(k1(f) + k2(a))(k1(g) + k2(b)) − (k1(g) + k2(b))(k1(f) + k2(a))
=k1(f)k1(g) − k1(g)k1(f) + k2(a)k1(g) − k1(g)k2(a) − k2(b)k1(f)

+ k1(f)k2(b) + k2(a)k2(b) − k2(b)k2(a)
=k1(fg − gf) + [k2(a), k1(g)] − [k2(b), k1(f)] + [k2(a), k2(b)]
=k1(ρ(a)(g)) − k1(ρ(b)(f)) + k2[a, b]
=τ̃([f ⊕ a, g ⊕ b]) = τ̃([x, y]).

So τ̃ |I ≡ 0, hence τ : U → Z, u+ I 7→ τ̃(u) is a well-defined unital algebra homomorphism.
By construction we also have τ ◦i1(f) = τ(f+I) = k1(f) and τ ◦i2(a) = τ(a+I) = k2(a),

hence τ is even a homomorphism of enveloping algebras.
We have hereby shown that there is a unique enveloping algebra homomorphism

τ : (U, i1, i2) → (Z, k1, k2), where the latter one was arbitrary. Hence (U, i1, i2) is indeed
initial, i.e. a universal enveloping algebra. □

While the abstractly constructed universal enveloping algebra is well-suited to satisfy
our curiosity, it stays of limited use in further proofs. What will really inspire further
theories is the fact that the left-invariant (or right-invariant) differential operators on a Lie
groupoid are an explicit realisation of the universal enveloping algebra. The actual proof is
a bit tricky and was completed by other authors already, whom I will refer to instead of
repeating the whole process.

What I will present are concrete definitions and examples regarding the construction of
an enveloping algebra structure on DiffL(G). Firstly, what even is a left-invariant operator
in the formal sense?

Definition 3.3.5. Let G⇒M be a Lie groupoid. A differential operator D ∈ Diff(G)
is called tangent to the target fibres if for all p ∈ M and all f1, f2 ∈ C∞(G) with f1|Gp =
f2|Gp , also D(f1)|Gp = D(f2)|Gp (so D restricts to a well-defined differential operator
Dp = D|Gp : C∞(Gp) → C∞(Gp) for all p ∈ M).

A differential operator D ∈ Diff(G) is called left-invariant if it is tangent to the target
fibres and for all g ∈ G and f ∈ C∞(G), Ds(g)(f ◦lg) = Dt(g)(f)◦lg. The set of left-invariant
differential operators on G is denoted DiffL(G) ⊆ Diff(G).
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Analogously, a differential operator D ∈ Diff(G) is called tangent to the source fibres
if for all p ∈ M and all f1, f2 ∈ C∞(G) with f1|Gp = f2|Gp , also D(f1)|Gp = D(f2)|Gp . D
is called right-invariant if it is tangent to the source fibres and Dp(f ◦ rg) = Ds(g)(f) ◦ rg
for all f ∈ C∞(G) and g ∈ G, where p = t(g) and Dp = D|Gp . The set of right-invariant
differential operators on G is denoted DiffR(G).

From now on, I may use the same symbol for the differential operator D ∈ DiffL(G)
and its restrictions Dp to Gp, and likewise for D ∈ DiffR(G) and D|Gp .

The following three propositions can be proven in complete analogy for right-invariant
differential operators. Choosing one or the other is a matter of readability in a given context
or simply of taste.

As for general differential operators, the most basic example are multiplication operators.
In this case the functions we multiply with have to be left-invariant themselves. One way
to obtain such functions is to concatenate functions on the base manifold with the source
map.

Example 3.3.6. Let G ⇒ M be a Lie groupoid and α ∈ C∞(M). Then the multi-
plication operator mα := mα◦s : C∞(G) → C∞(G), h 7→ fh is a left-invariant differential
operator.

Proof: For f1, f2 ∈ C∞(M) with f1(g) = f2(g) for some g ∈ G we have mα(f1)(g) =
α(sg)f1(g) = α(g)f2(g) = mα(h2)(g), hence mf is clearly tangent to the target fibres.

For arbitrary f ∈ C∞(G) and g, h ∈ G with s(g) = t(h) we have
mα(f ◦ lg)(h) = α(s(h))f(gh) = α(s(gh))f(gh) = mα(f) ◦ lg(h)

because s(gh) = s(h), hence mα is indeed left-invariant. □

Of course the left-invariant differential operators should be closed under addition and
multiplication. This is quickly proven in the following lemma.

Lemma 3.3.7. DiffL(G) ⊆ Diff(G) is a unital subalgebra.

Proof: Let D,E ∈ DiffL(G). Let p ∈ M and g ∈ G. Then for any f, f1, f2 ∈ C∞(G) with
f1|Gp = f2|Gp we have E(f1)|Gp = E(f2)|Gp because E is tangent to the target fibres, hence
D(E(f1))|Gp = D(E(f2))|Gp because D is tangent to the target fibres, so DE is tangent to
the target fibres, too.

Also, we have DE(f ◦ lg) = D(E(f) ◦ lg) = DE(f) ◦ lg, so DE ∈ DiffL(G). The fact
that idC∞(G) ∈ DiffL(G) is tautological. □

To every vector field X ∈ X(G) we can associate a differential operator LX ∈ Diff(G),
which we have called Lie operator. It seems very natural to suggest that left-invariance of
both X and LX are equivalent properties. The proof is more of a routine task, but still
worthy of some attention because it has applications in the later constructions.

Lemma 3.3.8. For any left-invariant vector field X ∈ XL(G), LX ∈ DiffL(G) is a
left-invariant differential operator.

Proof: Let X ∈ XL(G) be left-invariant. Let p ∈ M . Let f1, f2 ∈ C∞(G) with f1|Gp = f2|Gp .
Then by assumption we have Xg ∈ TGp for all g ∈ Gp, so LX(f1)(g) = Xg(f1) =
Xg(f1|Gp) = Xg(f2) = LX(f2)(g). Hence LX is tangent to the target fibres.

Now let f ∈ C∞(G) and g ∈ G. Then for h ∈ Gs(g) we have LX(f ◦ lg) = ThlgXh(f) =
Xgh(f) = LX(f)(gh) = LX(f) ◦ lg(h). So indeed LX ∈ DiffL(G). □

Both of the previous lemmas are true in a completely similar form for right-invariance.
Let us detail how the invariant differential operators are an enveloping algebra. This

step is not very hard to prove.
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Proposition 3.3.9. Let G⇒M be a Lie groupoid (with M ⊆ G). Let A = Lie(G) be
the corresponding Lie algebroid. Define the maps i1 : C∞(M) → DiffL(G) α 7→ mα and
i2 : Γ(A) → DiffL(G), a 7→ LXa. Then (DiffL(G), i1, i2) is an enveloping algebra of A.

Proof: First of all, the maps i1 and i2 are well-defined by Example 3.3.6 and Lemma 3.3.8.
The set DiffL(G) was shown to be a unital (sub-) algebra in Lemma 3.3.7 and inherits
associativity from Diff(G).

i1 is a unital algebra homomorphism by i1(α)i2(α) = mα◦mβ = m(α◦s)(β◦s) = m(αβ)◦s =
mαβ = i1(αβ) for α, β ∈ C∞(M) and i1(const1) = mconst1 = id ∈ DiffL(G). i2 is a Lie
algebra homomorphism because i2([a, b]) = LX[a,b] = Lστ [σa,σb] = L[Xa,Xb] = [LXa ,LXb

] =
[i2(a), i2(b)] for a, b ∈ Γ(A). Here, τ and σ map sections of A to left-invariant vector fields
and back as in Proposition 2.3.5.

Furthermore we have i1(α)i2(a) = mα◦sLXa = Lα◦sXa = LXαa = i2(αa) for all
α ∈ C∞(M), a ∈ Γ(A). Here we use that σ is a homomorphism of C∞(M)-modules.

Finally, let α ∈ C∞(M), ā ∈ Γ(A) and g ∈ G be arbitrary and p = s(g). Then we have
Tpt(a(p)) = Tpt(Xa(p)) = 0 by Lemma 2.3.7, hence

Xā(α ◦ s)(g) = Ts(g)lga(s(g))(α ◦ s)
= a(p)(α ◦ s ◦ lg) = a(p)(α ◦ s) = Tps(a(p))(α)
= (Tps− Tpt)(a(p))(α) = ρ(ā)(α)(p) = ρ(ā)(α) ◦ s(g).

This implies that for a ∈ Γ(A),

[i2(a), i1(α)] = LXamα◦s −mα◦sLXa

= mα◦sLXa +mXa(α◦s) −mα◦sLXa

= mρ(a)(α)◦s = i1(ρ(a)(α))

just as required.
So (DiffL(G), i1, i2) is indeed an enveloping algebra for A. □

For universality, I refer to the following theorem:

Theorem 3.3.10 ([19], page 133). Let G be a Lie groupoid with Lie algebroid A. Then
the enveloping algebra (DiffL(G), i1, i2) of A as in the previous theorem is universal.

3.4. The *-Algebra of Invariant Differential Operators

Without going into too much detail as to why this is the case at this point, it turns
out that a very important tool for our investigations of groupoid representations in the
next chapter is a suitable *-algebra structure on the algebra of right-invariant differential
operators (which was already mentioned to be isomorphic to the universal enveloping
algebra and can hence be used as a perfect substitute).

Constructing this *-structure is what we will do now, starting with the definition of an
orientation on a Lie groupoid.

Definition 3.4.1. Let G⇒M be a Lie groupoid. A (target fibre) orientation on the Lie
groupoid G is a family of orientations (Ox)x∈G on the vector spaces TxGtx that is continuous
in the following sense: For every x ∈ G, there is a smooth local frame (X1, . . . , Xn) of
(Tt)−1(TM) over a neighbourhood U ⊆ G of x such that [(X1(y), . . . , Xn(y))] ∈ Oy, i.e.
the ordered basis (X1(y), . . . , Xn(y)) is positively oriented for all y ∈ U .

An oriented Lie groupoid is a pair (G ⇒ M, (Ox)x∈G) of a Lie groupoid and a fixed
orientation.

As usual, preferring target over source fibres is an arbitrary choice. There is a similar
definition for source fibres. I will state it now, only to shortly prove that both are equivalent.
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Definition 3.4.2. Let G⇒M be a Lie groupoid. A source fibre orientation on G is a
family of orientations (Ox)x∈G on the vector spaces TxGsx such that for all x ∈ G, there is
a smooth local frame (X1, . . . , Xn) of (Ts)−1(TM) over a neighbourhood U ⊆ G of x such
that (X1(y), . . . , Xn(y)) ∈ Oy is positively oriented for all y ∈ U .

Proving the equivalence is an easy task using the inverse map inv : G → G. The
following proof and others to follow rely on the fact that this map is a diffeomorphism.

Proposition 3.4.3. Let G ⇒ M be a Lie groupoid. Then the following statements
hold:

• If O = (Ox)x∈G is a target fibre orientation on G, then
T inv(O) := (Tx−1 inv(Ox−1))x∈G

is a source fibre orientation on G.
• If P = (Px)x∈G is a source fibre orientation on G, then

T inv(P ) := (Tx−1 inv(Px−1))x∈G

is a target fibre orientation on G.
• These associations are inverse to each other, i.e. T invT inv(O) = O and

T invT inv(P ) = P.

Proof: I only prove one direction here because the other one works completely analogously.
So let (Oz)z∈G be a target fibre orientation on G.

Choose x ∈ G. First notice that the inversion map inv : Gtx−1 = Gsx → Gsx is a diffeo-
morphism (with the inversion map itself as inverse). So in particular, Tx−1 inv : Tx−1Gtx

−1 →
TxGsx is a linear isomorphism. Hence Tx−1 invOx−1 is a well-defined orientation on the
vector space TxGsx.

To show continuity, use the defining property of (Oz)z∈G to find a smooth local
frame (X1, . . . , Xn) of (Tt)−1(TM) over a neighbourhood U ⊆ G of x−1 such that
(X1(y), . . . , Xn(y)) is positively oriented for all y ∈ U . Then because inv is a diffeo-
morphism,

(T invX1, . . . , T invXn)
is a smooth local frame of T inv(Tt)−1(TM) = T (t ◦ inv)−1(TM) = Ts−1TM over U−1,
which is a neighbourhood of x. By the choice before we have [(X1(y), . . . , Xn(y))] ∈ Oy
for all y ∈ U , hence [(TyinvX1(y), . . . , TyinvXn(y))] ∈ TyinvOy (and inv : U → U−1 is
surjective), which makes (T invX1, . . . , T invXn) positively oriented in every fibre.

The inverse part of the proposition is computed in one line:
(T invT inv(O))x = Tx−1 inv(T invO)x−1 = Tx−1 invTxinvOx = Txinv2Ox = TxidOx = Ox

holds for all x ∈ G, so T invT inv(O) = O. For P , the proof is likewise. □

The reason to define an orientation on a manifold is usually that it allows us to
integrate top-degree differential forms. However, the main object we are interested in for
the investigation of groupoid algebras are rather smooth functions. As in the raw manifold
case, we can integrate them, too, once we have chosen a fixed volume form to work with.
We will do this fibrewise, as explained in the following definition.

Definition 3.4.4. Let (M ⇒ G, (Ox)x∈G) be an oriented Lie groupoid. Let n =
rk Tt−1TM be the dimension of the target fibres (which is constant because the target
map is a submersion). A (target) volume form on G is a non-vanishing differential form
ω ∈ Ωn(G) with the following properties:

(1) ω(x) ∈ T ∗
xG

tx for all x ∈ G.
(2) For all x ∈ G, the restricted form ω|Gtx ∈ Ωn(Gtx) is positive with respect to

(Oy)y∈Gtx .
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(3) ω is left-invariant, i.e. for all x ∈ G we have l∗x(ω|Gtx) = ω|Gsx .
A pair of an oriented Lie groupoid and a volume form on it I will call a volumetric groupoid,
resembling Definition 2.1.1.

The orientation is usually omitted from the notation; this is justified by more than
readability because it could be reconstructed from the volume form by declaring an ordered
basis (v1, . . . , vn) of TxGtx to be positively oriented if and only if ωx(v1, . . . , vn) > 0.

Again, we could have gone for source target forms instead, which are defined likewise.

Definition 3.4.5. Let (M ⇒ G, (Ox)x∈G) be an oriented Lie groupoid with target fibre
dimension n. A source volume form on G is a non-vanishing differential form ω ∈ Ωn(G)
with the following properties:

(1) ω(x) ∈ T ∗
xGsx for all x ∈ G.

(2) For all x ∈ G, ω|Gsx is positive with respect to (Tx−1 inv(Ox−1))x∈G
(3) ω is right-invariant, i.e. r∗

xω|Gsx = ω|Gtx for all x ∈ G.

Just like orientations, source and target volume forms are equivalent in the following
sense:

Proposition 3.4.6. Let (M ⇒ G, (Ox)x∈G) be an oriented Lie groupoid. Then the
following statements hold:

• If ω is a target volume form on G, then inv∗ω is a source volume form on G.
• If η is a source volume form on G, then inv∗η is a target volume form on G.
• These associations are inverse to each other, i.e. inv∗inv∗ω = ω and inv∗inv∗η = η.

For the rest of this chapter I will mostly stick to using source volume forms because
they work together with right-invariant differential operators. Choosing them instead of
left-invariant ones is more compatible with conventions of operator algebra theory.

In previous chapters we have worked with Haar systems on Lie groupoids; in fact most
of our groupoid algebra theory is reliant on their usage. So it would clearly be beneficial to
connect volume forms into that theory, just like in the manifold case, where every volume
form gives a smooth measure. For groupoids we need to assure that the resulting measure is
right-invariant in addition. But this is almost trivial because right-invariance (respectively
left-invariance) has already been included in the definition of volume forms.

What takes a bit more effort is the verification that the resulting system of measures
is really smooth. To connect the different styles of definitions in groupoid and manifold
theory we have to prove a handy lemma on rather elementary analysis first. The process
investigated there could be called partial integration, but with a different meaning than
usual.

Lemma 3.4.7. Let k,m ∈ N0, n = m + k. Let W ⊆ Rn be open and precompact and
f ∈ C∞(W ) a smooth function (i.e. the restriction of a smooth function on a larger domain).
Denote by pr1 : Rn → Rm, (x1, . . . , xn) 7→ (x1, . . . , xm) and pr2 : Rn → Rk, (x1, . . . , xn) 7→
(xm+1, . . . , xn) the two projections and set U := pr1(W ) and V := pr2(W ). Then the map

F : U → R, (x1, . . . , xm) 7→
∫

pr2(pr−1
1 ({(x1,...,xm)}))

f(x1, . . . , xn)dxm+1 . . . dxn

is smooth and bounded.

Proof: F is bounded by the mere fact that λk(pr2(pr−1
1 ({(x1, . . . , xm)})) ≤ ckd

k, where λk
is the k-dimensional Lebesgue measure, d = supx,y∈W ∥x− y∥ is the diameter of W and
ck = πn/2

Γ( k
2 +1) is the proportion constant in the hyperball volume formula. By this we have

|F | ≤ ckd
k sup |f | < ∞; f is bounded on W because continuous on W .

The more intricate part of this lemma is showing smoothness. To do this, we first
assume that W = (a1, b1) × · · · × (an, bn) is just a hyperrectangle. Then we have the
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simple relations U = (a1, b1) × · · · × (am, bm) and V = (am+1, bm+1) × · · · × (an, bn) =
pr2(pr−1

1 ({(x1, . . . , xm)}) for all (x1, . . . , xm) ∈ U . Hence we can write

F (x1, . . . , xm) =
∫

(am+1,bm+1)×···×(an,bn)
f(x1, . . . , xn)dxm+1 . . . dxn

=
∫ bm+1

am+1
· · ·
∫ bn

an

f(x1, . . . , xn)dxn . . . dxm+1

So by an elementary analysis theorem on commutability of integration and differentiation
along intervals (applied multiple times), every partial derivative of F exists and is given by

∂F

∂xi
(x1, . . . , xm) =

∫ bm+1

am+1
· · ·
∫ bn

an

∂f

∂xi
(x1, . . . , xn)dxn . . . dxm+1

=
∫
U

∂f

∂xi
(x1, . . . , xn)dx1 . . . dxn.

From here, smoothness of F follows by an inductive argument because all partial derivatives
are smooth functions on W again.

For the general case, note the following two things: Firstly, the topology on Rn is
separable and generated by open hyperrectangles, and secondly, every union of hyperrect-
angles can be written as a disjoint union of possibly smaller ones. Hence we can write
W =

⋃
i∈NRi for hyperrectangles Ri ⊆ W with Ri ∩Rj = ∅ for i ̸= j.

Now we can use the Dominated Convergence Theorem and the rectangular case to
deduce that the partial derivatives of F exist and are given by

∂F

∂xi
(x1, . . . , xm) = ∂

∂xi

∑
j∈N

∫
pr2pr1|−1

Rj
{(x1,...,xm)}

f(x1, . . . , xn)dxm+1 . . . dxn

=
∑
j∈N

∂

∂xi

∫
pr2pr1|−1

Rj
{(x1,...,xm)}

f(x1, . . . , xn)dxm+1 . . . dxn

=
∑
j∈N

∫
pr2pr1|−1

Rj
{(x1,...,xm)}

∂

∂xi
f(x1, . . . , xn)dxm+1 . . . dxn

=
∫

pr2pr1|−1
W {(x1,...,xm)}

∂

∂xi
f(x1, . . . , xn)dxm+1 . . . dxn. □

All the technicalities aside, the intuitive interpretation of the process in the previous
lemma is as follows: We consider a body of finite volume inside the Euclidean space, then
we take parallel slices of it and measure the area of each of these slices. We would intuitively
expect the function that assigns the area of each slice to its number or distance to the first
slice to be continuous, even smooth. Of course the visual imagination falls short in higher
dimensions, but this expectation was formally proven to be true in the lemma.

The one point to remember from this intuitive way of thinking is that this slicing
process is essentially the same as assigning the target fibre to each base point of a groupoid,
just that the space is not necessarily Euclidean any more. But with a few simple pullbacks
by charts, the smoothness of a measure system obtained from a volume form becomes a
breeze.

Lemma 3.4.8. Let (G⇒M,ω) be a volumetric groupoid. Then the family (µω|Gp )p∈M
of integral measures induced by ω is a smooth Haar system.

Proof: In the first part of the proof I will show that the family of measures defined here
is really left-invariant. To do so, first introduce the notation µp := µω|Gp for all p ∈ M .
Then notice that the volume form ω was assumed to be non-vanishing, hence each induced
measure has full support suppµp = Gp.
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Now let f ∈ Cc(G) and x ∈ G be arbitrary. Then we have∫
Gsx

f ◦ lxdµsx =
∫
Gsx

f ◦ lxω|Gsx =
∫
Gsx

l∗xfl
∗
xω|Gtx

=
∫
Gsx

l∗x(fω|Gtx) =
∫
Gtx

fω|Gtx

by [11], Proposition 16.6 (d). Here we know that the diffeomorphism lx must be orientation-
preserving because both

∫
Gtx ω|Gtx and

∫
Gsx ω|Gsx =

∫
Gsx l∗xω|Gtx are greater than 0 by

positivity of the restrictions of ω. So the induced family of measures is really left-invariant.
Now I am going to show smoothness. To do so, let f ∈ C∞

c (G) be arbitrary. Choose
x ∈ G and set p = tx. Denote the dimensions as n = dimG, m = dimM and k = dimGp =
dimG − dimM . By the definition of Lie groupoids, t : G → M is a smooth surjective
submersion, so the triple (G,M, t) is a fibred manifold. Hence there must be a fibred
chart (V, ψ) around x, i.e. a smooth chart (V, ψ) around x together with a smooth chart
(U, ϕ) of M around p such that U = t(V ) and ϕ ◦ t = pr1 ◦ ψ. Here we use pr1 : Rn →
Rm, (x1, . . . , xn) 7→ (x1, . . . , xm) and pr2 : Rn → Rm (x1, . . . , xn) 7→ (xm+1, . . . , xn).

For every p ∈ U we have pr1 ◦ ψ|Gp = ϕ ◦ t|Gp ≡ p, hence ψp := pr2 ◦ ψ|Gp is a smooth
map with range Ṽ p = pr2 ◦ ψ(Gp) = pr2(pr1|−1

ψ(V )(ϕ(p)) (which is open by elementary
analysis) and inverse ψ−1

p : Ṽ p → V p = V ∩Gp, z 7→ ψ−1(ϕ(p), z).
Note that for every y ∈ V with t(y) = p and all i ∈ {1, . . . , k} we have ∂ψp

i (y) =
d
drψ

−1
p (ψp(y) + rei) = d

drψ
−1(ϕ(p),pr2ψ(y) + rei) = d

drψ
−1(ψ(y) + rei+m) = ∂ψi+m(y), i.e.

∂ψ|Gp = ∂ψp for all p ∈ M (in particular, these vector fields are tangent to the target
fibres). By the very definition of ϕp, we also have dψi+m|Gp = dψip for all i and p.

Now for our volume form ω we know that
ω|V p = ω|V p(∂ψp

1 , . . . , ∂
ψp

k )dψ1
p ∧ · · · ∧ dψkp = (ω(∂ψm+1, . . . , ∂

ψ
n )dψm+1 ∧ · · · ∧ dψn)|V p

using the formula for arbitrary top-degree forms and charts. Hence

ω|V = ω(∂ψm+1, . . . , ∂
ψ
n )dψm+1 ∧ · · · ∧ dψn

holds for the whole of V =
⋃
p∈U Vp.

We use this formula to compute the integrals of f ∈ C∞
c (M). Namely for each p ∈ U

we have:∫
V p
fdµp =

∫
V p
fω|Gp =

∫
V p
fω|V p(∂ψp

1 , . . . , ∂
ψp

k )dψ1
p ∧ · · · ∧ dψkp

=
∫
Ṽ p
fω(∂ψm+1, . . . , ∂

ψ
n ) ◦ ψ−1

p (x1, . . . , xm)dx1 . . . dxk

=
∫
Ṽ p
fω(∂ψm+1, . . . , ∂

ψ
n ) ◦ ψ−1(ϕ(p), xm+1, . . . , xn)dxm+1 . . . dxn

=
∫

pr2pr−1
1 Ṽ (ϕ(p))

fω(∂ψm+1, . . . , ∂
ψ
n ) ◦ ψ−1(ϕ(p), xm+1, . . . , xn)dxm+1 . . . dxn

This depends smoothly on p by Lemma 3.4.7 and because f , ω(∂ψm+1, . . . , ∂
ψ
n ), ψ and ϕ are

smooth. We may assume without loss of generality that V and Ṽ := ψ(V ) are precompact
and that fω(∂ψm+1, . . . , ∂

ψ
n ) ◦ ψ−1 ∈ C∞(ψ(V )) by shrinking the chart domain if necessary.

To finish the proof, choose a finite open cover (Vi)i∈I of supp f by domains of fibred
charts as before and a partition of unity (hi)i∈I subordinate to it. Then p 7→

∫
Gp fdµp =∑

i∈I
∫
V p

i
hifdµp must be smooth as the sum of smooth functions. □

Now that I have proven that volumetric groupoids are a special case of Lie groupoids
with smooth Haar system, I may use all the definitions and theorems made for them. For
example, the convolution algebra C∗(G) of a volumetric groupoid (G⇒M,ω) is defined
by the induced Haar system (µω|Gp )p∈M .
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As said before, the current goal is to define a suitable ∗-structure on DiffR(G). We can
do this using the tools forged in the very first chapter of the thesis, applying them to each
fibre individually. Firstly we do so with the divergence function.

Definition 3.4.9. Let G⇒M be a volumetric groupoid with volume form ω. Denote
by ω−1 := inv∗η the equivalent source volume form. Denote by λp := µω|Gp the induced
integral measure on each target fibre, and by λp = λp ◦ inv−1 the equivalent measure on
the source fibre. Let X ∈ XR(G) be a right-invariant vector field. The right-divergence of
X with respect to ω is defined as

divRλ (X) : G → R, g 7→ divω−1|Gsg
(X|Gsg )

This function is uniquely determined by the property that∫
Gp

fdLXλp =
∫
Gp

f div(X)dλp

holds for all f ∈ C∞
c (G) and all p ∈ G.

Both indices of the divergence may be omitted if the Haar system and laterality of
choice are clear from context.

When we define an adjoint of a right-invariant differential operator using the divergence
function, we want this adjoint to be right-invariant, too. The following lemma will be used
to show that it really is.

Lemma 3.4.10. Let G, ω as before and X ∈ XR(G). Then div(X) ◦ rg = div(X)|Gtg

holds for all g ∈ G.

Proof: We do a short computation involving the Lie derivative of the volume form. Namely
we get

div(X) ◦ rgω|Gtg = div(X) ◦ rgr∗
gω

= r∗
g(div(X)ω) = r∗

g(LX|Gsg
ω|Gsg)

= LTrgX|Gsg
r∗
gω|Gsg = LX|Gtg

ω|Gtg

= (divXω)|Gtg = div(X)|Gtgω|Gtg

using the right-invariance of both X and ω. So because ω is non-vanishing, it follows that
div(X) ◦ rg = div(X)|Gtg . □

Definition 3.4.11. Let G⇒M be a Lie groupoid with Lie algebroid A. The divergence
of a section a ∈ Γ(A) is defined as div(a) := divR(Xa)|M ∈ C∞(M), where Xa ∈ XR(G) is
the right-invariant vector field corresponding to a.

Since div(Xa)(g) = divR(Xa) ◦ rg(tg) = divR(Xa)(tg) = div(a) ◦ t(g), we have
divR(Xa) = div(a) ◦ t.

Proposition 3.4.12. For any a ∈ Γ(A) and f ∈ C∞(M), we have div(fa) = f div(a)+
ρ(a)(f).

Proof: Use the convention where ρ = Tt and compute using div(fX) = f div(X) +X(f)
for normal divergence. □

So how is the formal adjoint actually defined? The formula is very simple.

Definition 3.4.13. Let X ∈ XR(G). The formal adjoint of its Lie operator LX is
defined by L∗

X := −LX −mdiv(X).

As mentioned before, this formal adjoint has to be right-invariant. Using the lemma
proven before, the proof is a two-liner.

Proposition 3.4.14. For all X ∈ XR(G) we have L∗
X ∈ DiffR(G).
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Proof: Clearly we have LX ∈ DiffR(G). mdiv(X) ∈ DiffR(G) follows by Lemma 3.4.10,
hence L∗

X = −LX −mdiv(X) ∈ DiffR(G). □

Just as its name says, the groupoid C∗-algebra C∗(G) was designed to be a C∗-algebra.
However, in some cases it is more intuitive to think of it as a Hilbert module over itself,
using the following definition:

Definition 3.4.15. Let G⇒M be a volumetric groupoid. For f, g ∈ C∗(G), define
⟨f, g⟩ := f∗ ∗ g ∈ C∗(G).

This is a general construction for arbitrary C∗-algebras and makes C∗(G) a Hilbert
C∗(G)-module. The advantage is that computations in this notation look more similar to
the basic case of L2(M) discussed in the first chapter.

It should be checked that our formal adjoint is actually an adjoint (in the purely
algebraic sense for the beginning). This is achieved in the next theorem.

Theorem 3.4.16. Let (G ⇒ M,ω) be a volumetric groupoid and X ∈ XR(G). Then
for all f, g ∈ C∞

c (G) we have:
⟨L∗

X(f), g⟩ = ⟨f,LX(g)⟩

Proof: Choose x ∈ G. Set p = s(x), ωp := (inv∗ω)|Gp and λp := µωp . Note that we have

⟨f, g⟩(x) = f∗ ∗ g(x) =
∫
Gp
f∗(xy)g(y−1)dλp

=
∫
Gp

f∗(xy−1)g(y)dλp =
∫
Gp

f(yx−1)g(y)dλp

=
∫
Gp

f ◦ rx−1(y)g(y)dλp = ⟨f |Gprx−1 , g|Gp⟩λp ,

with the L2-product under the measure λp in the last line.
Hence for the case we want to prove, we get

⟨L∗
Xf, g⟩(x) = ⟨L∗

X |Gp(f |Gp) ◦ rx−1 , g|Gp⟩
= ⟨(−X(f |Gp) − div(X)|Gpf |Gp) ◦ rx−1 , g|Gp⟩
= ⟨−X(f |Gp ◦ rx−1) − divωp(X)f |Gp ◦ rx−1 , g|Gp⟩
= ⟨f |Gp ◦ rx−1 , X(g|Gp)⟩

by Theorem 2.1.6. □

The natural way to define the adjoint of higher order right-invariant differential operators
is to use the expected formula (LX1 . . .LXn)∗ = L∗

Xn
. . .L∗

X1
. To do so, however, we need

to prove that DiffR(G) is generated by order 1 and 0 elements, i.e. by C∞
c (G) ∪ XR(G).

We show this relying on the fact that DiffR(G) is a universal enveloping algebra of the Lie
algebroid corresponding to G. Looking at the following lemma, readers will notice that not
much more is needed to finish the proof of this fact.

Lemma 3.4.17. Let A be a Lie algebroid and (E, i1, i2) be a universal enveloping algebra
of A. Then E is generated as an algebra by i1(C∞(M)) ∪ i2(Γ(A)).

Proof: Let

E0 :=
{

n∑
k=1

xk1 . . . x
k
mk

| n,mk ∈ N, xkj ∈ C∞(M)) ∪ i2(Γ(A)
}

⊆ E

be the algebra generated by i1(C∞(M))∪i2(Γ(A)). By definition, i1 and i2 have their images
inside of E0. E0 is unital because i1(const1) = 1E . i1 and i2 still fulfil their enveloping
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algebra axioms as in Definition 3.3.1, so (E0, i1, i2) is an enveloping algebra for A. We will
quickly show that it is even universal.

Namely let (F, j1, j2) be another enveloping algebra of A. Since (E, i1, i2) is universal,
there is a unique unital algebra homomorphism ϕ̃ : E → F with ϕ̃ ◦ ik = jk, k ∈ {1, 2}.
Denote by ι : E0 → E the inclusion (which is a unital algebra homomorphism), then
ϕ := ϕ̃ ◦ ι : E0 → F is a unital algebra homomorphism with ϕ ◦ ik = ϕ̃ ◦ ik = jk, i.e. an
enveloping algebra homomorphism.

If ψ : E0 → F is any enveloping algebra homomorphism, then by ψ ◦ ik = jk =
ϕ ◦ ik we have ψ|i1(C∞(M))∪i2(Γ(A)) = ϕ|i1(C∞(M))∪i2(Γ(A)). But two algebra homomorphisms
coinciding on a set are equal on the algebra generated by it, so ψ = ϕ. Hence there is
exactly one unital algebra homomorphism E0 → F , and because F was arbitrary, this
means that E0 is universal.

In particular, there is an enveloping algebra isomorphism f : E0 → E by Theorem
3.3.4. But there is only one enveloping algebra homomorphism E0 → E, and the inclusion ι
is one such homomorphism, hence ι = f is an isomorphism, which means that E0 = E. □

The theorem mentioned in the last chapter actually uses left-invariant operators instead
of right-invariant ones. So we need to assure that both are isomorphic. This is more of a
routine task.

Lemma 3.4.18. Let G be a Lie groupoid with Lie algebroid A. Then the pullback by
inversion

inv∗ : DiffL(G) → DiffR(G), (inv∗D)(f) = D(f ◦ inv) ◦ inv−1

is an isomorphism of enveloping algebras.

Proof: It is clear that inv∗ is a unital algebra isomorphism since this holds for any pullback
of differential operators by a diffeomorphism. So we just have to show that it is compatible
with the enveloping algebra inclusions.

Namely our enveloping algebras are given as (DiffL(G), iL1 , iL2 ) and (DiffR(G), iR1 , iR2 ),
where iL1 (f) = mf◦s, iR1 (f) = mf◦t, iL2 (a) = LσL(a), iR2 (a) = LσR(a), σL(a)(g) = Tsglga(sg),
σR(a)(g) = Ttgrga(tg).

inv∗ ◦ iL1 = iR1 holds by
inv∗(mf◦s)(h) = (f ◦ s · h ◦ inv) ◦ inv = (f ◦ t ◦ inv · h ◦ inv) ◦ inv

= f ◦ t · h = mf◦t(h) = iR1 (f)(h)

for all f ∈ C∞(M), h ∈ C∞(G).
For the second inclusion map, we compute that
iL2 (a)(f ◦ inv)(g) = Tsglgasg(f ◦ inv)

= TginvTsglgasg(f) = Tsg(inv ◦ lg)asg(f)
= Tsg(rg−1 ◦ inv)asg(f) = Ttg−1rg−1atg−1(f) = iR2 (a)(f)(g−1)

for all a ∈ Γ(A), f ∈ C∞(G), g ∈ G. Hence inv∗iL2 (a)(f) = iL2 (f ◦ inv) ◦ inv = iR2 (a)(f) for
all f , so indeed inv∗ ◦ iL2 = iR2 . □

The theorem on generation sets we wanted to prove is now just the composition of the
previous propositions.

Theorem 3.4.19. Let G ⇒ M be a Lie groupoid. Then DiffR(G) is generated by
{mf |f ∈ C∞(M)} ∪ {Xa|a ∈ Γ(A)} as an algebra, where Xa denotes the right-invariant
vector field corresponding to a.

Proof: We know by Theorem 3.3.10 that DiffL(G) is a universal enveloping algebra for A,
hence by Lemma 3.4.17 it is generated by iL1 (C∞(M)) ∪ iL2 (Γ(A)). Using the enveloping



3.4. THE *-ALGEBRA OF INVARIANT DIFFERENTIAL OPERATORS 49

algebra isomorphism inv∗ : DiffL(G) → DiffR(G) from Lemma 3.4.18, we deduce that
DiffR(G) is generated by

inv∗(iL1 (C∞(M)) ∪ iL2 (Γ(A))) = iR1 (C∞(M)) ∪ iR2 (Γ(A))
= {mf |f ∈ C∞(M)} ∪ {Xa|a ∈ Γ(A)}. □

With this generation lemma, we can define star structures on right-invariant differential
operators. We can rely on several propositions from the first chapter in the process.

Theorem 3.4.20. Let (G⇒M,ω) be a volumetric groupoid. Then there is a unique
star structure (an involutive local algebra anti-endomorphism) ∗ on DiffR(G) such that
L∗
Xa

= −LXa −mdiv(Xa) and m∗
f = mf for all a ∈ Γ(A) and f ∈ C∞(M).

Proof: We know by Theorem 3.4.19 that DiffR(G) is generated as an algebra by {mf |f ∈
C∞(M)} ∪ {Xa|a ∈ Γ(A)}. So clearly there can be at most one star structure with the
required properties because it is completely determined by its values on the generating set.

It is now to show that such a star structure exists. This can be done with relative
ease using previous work. Namely let D ∈ DiffR(G). For every p ∈ M , define D∗

p :=
(D|Gp)∗ ∈ Diff(Gp), using the unique star structure on Diff(Gp) with m∗

f = mf and
L∗
X = −LX −mdiv(X) for all f ∈ C∞(Gp) and X ∈ X(Gp) constructed in Theorem 3.2.18.

Then define D∗ : C∞(G) → C∞(G) by D∗(f)(x) := D∗
sx(f)(x).

Notice first that D∗ is a map which is tangent to the source fibres by its very definition.
∗ : DiffR(G) → {F : C∞(M) → C∞(M)} is easily seen to be additive by (P +Q)∗|Gp =
((P + Q)|Gp)∗ = (P |Gp + Q|Gp)∗ = P ∗|Gp + Q∗|Gp for all p ∈ M . The proofs for anti-
multiplicativity (also with constants) and locality are completely analogous, so ∗ is a local
algebra anti-homomorphism.

We still have to show that D∗ ∈ DiffR(G). To do this, use Theorem 3.4.19 one more time
to write D in the form D =

∑m
k=1D

k
1 . . . D

k
nk

for certain Dj
i ∈ {mf |f ∈ C∞(M)}∪{Xa|a ∈

Γ(A)}. Consequently we have D∗|Gp = (D|Gp)∗ =
∑m
k=1(Dk

nk
|Gp)∗ . . . (Dk

1 |Gp)∗ for all
p ∈ M .

Let k ∈ {1, . . . ,m} and i ∈ {1, . . . , nk} be arbitrary. Then there are two possibilities
for Dk

i : If Dk
i = mf = mf◦s for some f ∈ C∞(M), then (Dk

i |Gp)∗ = m∗
f(p) = mf(p) =

mf |Gp . Otherwise we have Dk
i = LX for some X ∈ XR(G). Then (Dk

i |Gp)∗ = −LX|Gp
−

divω|Gp
(X|Gp) = L∗

X |Gp , where L∗
X is defined as in Definition 3.4.13 (this coincides with the

definition made in this proof). So in either case we have (Dk
i |Gp)∗ = (Dk

i )∗|Gp for an operator
(Dk

i )∗ ∈ DiffR(G). Because p ∈ M was arbitrary, we get that D∗ =
∑m
k=1(Dk

nk
)∗ . . . (Dk

1)∗ ∈
DiffR(G) as the concatenation of right-invariant differential operators. □

The last theorem in this section shows that the star structure defined before is more
than an independent algebraic thing: It is the involution which gives us adjoints of operators
on a Hilbert module, up to closure.

Theorem 3.4.21. Let (G ⇒ M,ω) be a volumetric groupoid. Let ∗ : DiffR(G) →
DiffR(G) be the induced star structure as in Theorem 3.4.20. Then ι : DiffR(G) →
O(C∗(G)), D 7→ (C∞

c (G), D) is an injective *-homomorphism.

Proof: Evaluation of a linear map and closing an operator are always linear and multiplic-
ative, and hence so is ι. ι is injective because given P,Q ∈ DiffR(G), P (f) = Q(f) for all
f ∈ C∞

c (G) implies P (f) = Q(f) even for all f ∈ C∞(G) because of locality, i.e. P = Q.
The more interesting part of this theorem is to show that ⟨D̄∗(f), g⟩ = ⟨f, D̄(g)⟩ for

all f ∈ dom(D̄∗), g ∈ dom(D̄). As always when working with closures of densely defined
operators, it suffices to show that ⟨D∗(f), g⟩ = ⟨f,D(g)⟩ for all f, g ∈ C∞

c (M). This was
already proven for the case that D is a Lie operator in Theorem 3.4.16. For the order 0
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case, assume that D = mf for some f ∈ C∞(M), then for all g, h ∈ C∞
c (G) and x ∈ G we

have
⟨mfg, h⟩(x) = (mfg)∗ ∗ h(x)

=
∫
Gsx

(f ◦ tg)∗(xy−1)h(y)dλsx(y)

=
∫
Gsx

f ◦ t(y−1)g(yx−1)h(y)dλsx(y)

=
∫
Gsx

g(yx−1)f ◦ t(y)h(y)dλsx(y) = ⟨g,mfh⟩(x),

so ⟨D∗g, h⟩ = ⟨Dg, h⟩ = ⟨g,Dh⟩. So since DiffR(G) is generated by those order 0 and 1
elements, it follows that indeed ⟨D∗g, h⟩ = ⟨g,Dh⟩ for all g, h ∈ C∞

c (G) as required. □

Strictly speaking, we have only shown that ι(D∗) ⊆ ι(D)∗ holds for the adjoints in the
previous theorem; the domain may still be different. A more elaborate investigation of this
distinction will follow in the next chapter.

For now, we have proven propositions for volumetric groupoids with compact base that
are conceptually identical to those proven in the first chapter only for the manifold case,
i.e. for pair groupoids. I could go and formulate everything in the exact same grammar or
repeat the process for left-invariance, but our work so far is enough to understand the new
concepts which lately arose. We can hence progress to the next section, where we start
investigating actual groupoid representations on Hilbert modules.



CHAPTER 4

A Differentiation Theorem

The goal of this chapter will be to differentiate representations of a Lie groupoid to
representations of its Lie algebroid. This was shown before to be possible in a slightly
different context by Ralf Meyer in [16]. More precisely, we start with a representation of
the groupoid C∗-algebra C∗(G) and want to construct a representation of the universal
enveloping algebra U(A) of the corresponding Lie algebroid in a reasonable, natural way.
After that, we may also go the other direction and integrate representations of U(A).

The terms differentiation and integration should not be over-interpreted in this context.
The origin of these is mainly the classical Lie theory, where the tangent map at the origin,
also called differential, of a smooth Lie group representation turns out to be a representation
of the corresponding Lie algebra. When we use this kind of theory in the upcoming section,
it will mostly be implicitly by the use of important theorems. The actual mathematics
there will rather consist of investigations on volume forms and algebraic properties.

4.1. From the Groupoid Algebra to Differential Operators

Given a representation π : C∗(G) → B(E) of a groupoid G on a Hilbert module
E, we are going to define a representation Kπ : DiffR(G) → O(E) using the formula
Kπ(D)(π(f)e) = π(D(f))e. One necessary condition for this to work out is that
π(D(f ∗ g))e = Kπ(D)(π(f ∗ g)e) = Kπ(D)(π(f)π(g)e) = π(D(f))π(g)e = π(D(f) ∗ g)e

holds for all D ∈ DiffR(G), f, g ∈ C∞
c (G) and e ∈ E; if π is non-degenerate, this means

that we should expect D(f) ∗ g = D(f ∗ g) to hold. It will turn out that we do not really
need to prove this in advance of the next big theorem because it is covered by a more
general computation. However, proving this equation on a more elementary level provides
us a bit of additional understanding in the area of groupoid representations. In particular,
this part does not need a volume form or an orientation to work with. This is enough
reason to go for it anyway.

First of all, let us state the definition of a representation:

Definition 4.1.1. Let A be a unital *-algebra. An (unbounded) representation of A is
a pair (H,R), where H is a Hilbert C∗-module over any C∗-algebra and R : A → O(H) is
a map from A to the operators on H with the following properties:

(1) Common dense domain: There is a dense right-ideal domR ⊆ H (called the
domain of R) such that for all D ∈ A, the corresponding operator has domain
domR(D) = domR.

(2) Invariance of domain: For each D ∈ A, we have R(D)(domR) ⊆ domR.
(3) Homomorphy: For all P,Q ∈ A and λ ∈ C, we have R(λP + Q) = λR(P ) + Q

and R(PQ) = R(P )R(Q) (these are defined on domR by properties 1 and 2).
Furthermore, R(1) = idH |domR.

(4) Formal preservation of adjoints: For each D ∈ A and all v, w ∈ domR ⊆ H, we
have ⟨R(D)v, w⟩ = ⟨v,R(D∗)w⟩ (i.e., R(D∗) ⊆ R(D)∗).

Of course, the *-algebra which we will usually use is the algebra of invariant differential
operators DiffR(G). The Hilbert C∗-module will often just be a separable Hilbert space; in
that case the domain is simply a dense subspace.

51
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The upcoming proof is not really hard, but requires one more lemma to be certain
about which computational steps involving vector fields and measures are valid.

Lemma 4.1.2. Let M and N be smooth manifolds with smooth measures µ on M
and ν on N . Let X ∈ X(M) and let F ∈ C∞(M × N) be a smooth function. Define
X(F ) ∈ C∞(M ×N) by X(F )(x, y) := X(F (·, y))(x) = TπyX(F )(x, y). Suppose that for
all x ∈ M , F x = F (x, ·) ∈ C∞(M) and X(F )x = X(F )(x, ·) are ν-integrable.

Then we have
X

(∫
M
F (·, y)dµ(y)

)
=
∫
M
X(F )(·, y)dµ(y)

for all x ∈ M .

Proof: Let (U, ϕ) be a smooth chart of M and (V, ψ) be a smooth chart of N . By assumption,
ν is a smooth measure, so there is a smooth v ∈ C∞(ψ(V )) such that ν|V = vψ−1 ·
µdψ1∧···∧dψm , i.e.

∫
V fdν =

∫
ψU f ◦ ψ−1(x)v(x)dx1 . . .dxn for all integrable f ∈ C∞(V )

(here, n = dimN).
So for any i ∈ {1, . . . ,m}, we can use Leibniz’ integral rule for real-variable functions

(several times when we are working in higher dimensions) to compute:

∂ϕi

(∫
V
F (·, y)dν(y)

)
=
(
∂

∂x̃i

(∫
V
F (·, y)dν(y) ◦ ϕ−1(x̃)

))
◦ ϕ

=
(
∂

∂x̃i

∫
ψV

F (ϕ−1x̃, ψ−1ỹ)v(ỹ)dỹ
)

◦ ϕ

=
∫
ψV

∂

∂x̃i
F (ϕ−1x̃, ψ−1ỹ) ◦ ϕ v(ỹ)dỹ

=
∫
ψV

∂ϕi F (·, ψ−1ỹ)v(ỹ)dỹ =
∫
V
∂ϕi F (·, y)dν(y)

So because integration is R-linear:

X

(∫
V
F (·, y)dν(y)

)∣∣∣∣
U

=
m∑
i=1

X(ϕi)∂ϕi
∫
V
F (·, y)dν(y)

=
m∑
i=1

X(ϕi)
∫
V
∂ϕi F (·, y)dν(y)

=
∫
V

m∑
i=1

X(ϕi)∂ϕi F (·, y)dν(y) =
∫
V
X(F (·, y))dν(y)

∣∣∣∣
U

Since this holds for any smooth chart (U, ϕ) of M , it follows that

X

(∫
V
F (·, y)dν(y)

)
=
∫
V
X(F (·, y))dν(y).

Now choose a locally finite cover (Vi, ψi)i∈I of N by smooth charts and a smooth
partition of unity (hi)i∈I subordinate to it. Then because LX is an R-linear, local map, we
have

X

(∫
N
F (·, y)dν(y)

)
= X

(∑
i∈I

∫
Vi

hi(y)F (·, y)dν(y)
)

=
∑
i∈I

∫
Vi

hi(y)X(F (·, y))dν(y) =
∫
N
X(F (·, y))dν(y)

as required. □

Note that compactly supported smooth functions are always integrable with respect
to smooth measures, so if F (x, ·) ∈ C∞

c (N) for all x ∈ M , then the lemma can always be
applied. This is of particular use in the next proof.
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Proposition 4.1.3. Let G⇒M be a Lie groupoid with a smooth Haar system (λp)p∈M .
Let X ∈ XR(G) be a right-invariant vector field and f, g ∈ C∞

c (G). Then X(f∗g) = X(f)∗g.

Proof: Let p ∈ M . Then since X is tangent to the source fibres, we can write X(f ∗ g)(p) =
X|Gp(f ∗ g|Gp). Because all considered functions have compact support, we can apply
Lemma 4.1.2. Using that and the right-invariance of X, we get:

X(f ∗ g)|Gp = X|Gp(f ∗ g|Gp) = X|Gp

(∫
Gp
f ◦ ryg(y−1)dλp(y)

)
=
∫
Gp
X|Gp(g(y−1)f ◦ ry)dλp(y)

=
∫
Gp
TryXGp(f)g(y−1)dλp(y)

=
∫
Gp
XGp(f) ◦ ryg(y−1)dλp(y)

= X|Gp(f |Gp) ∗ g|Gp = (X(f) ∗ g)|Gp

So because p ∈ M was arbitrary, this implies that indeed X(f ∗ g) = X(f) ∗ g. □

For simplicity we have stuck to vector fields instead of general differential operators,
but the proof could easily be expanded using the fact that differential operators can always
be written as a locally finite polynomial of vector fields. This could either be done at the
stage of Lemma 4.1.2 or after Proposition 4.1.3 with right-invariant generators, but shall
not be further regarded in this thesis.

At this point it is certainly no wonder that the equivalent statement for left-invariant
vector fields is also true. Whether justified by formal category theory or steadily built-up
intuition, another proof seems unnecessary to write down here.

Lemma 4.1.4. Let G⇒M be a Lie groupoid with a smooth Haar system (λp)p∈M . Let
X ∈ XL(G) be a left-invariant vector field and f, g ∈ C∞

c (G). Then X(f ∗ g) = f ∗X(g).

So let us focus on our main theorem for this section now. This is a known result (compare
[16]). Because an understanding of the proof in our given context will be important later,
I decided to include another proof here. As most preliminary work has been done, we can
step right into the theorem.

Theorem 4.1.5. Let (G⇒M,ω) be a volumetric groupoid with Lie algebroid A. Let
π : LI(G) → B(E) be a non-degenerate ∗-representation on a right Hilbert module E
over any C∗-algebra B. Set E∞ := {

∑n
i=1 π(fi)xi|n ∈ N0, fi ∈ C∞

c (G), xi ∈ E}. Define
Kπ : DiffR(G) → O(E) by domKπ(D) = E∞ and

Kπ(D)(
n∑
i=1

π(fi)xi) :=
n∑
i=1

π(D(fi))xi

for all D ∈ DiffR(G), f ∈ C∞
c (G), x ∈ E.

Then Kπ is a well-defined representation of DiffR(G).

Proof: First of all, notice that E∞ ⊆ E is a right-ideal because π(f)(x)β = π(f)(xβ) and
sums are included by definition. It is dense by the assumption that π is non-degenerate.

For the next step, let n,m ∈ N0, fi, gj ∈ C∞
c (G) and xi, yj ∈ E, i ∈ {1, . . . , n},

j ∈ {1, . . . ,m}, with
∑n
i=1 π(fi)xi =

∑m
j=1 π(gj)yj . We have to show that the definition

yields the same value for both terms, i.e.
n∑
i=1

π(D(fi))xi =
m∑
j=1

π(D(gj))yj

for any D ∈ DiffR(G).
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To do so, we make a computation on inner products, using the shorthand hz := π(h)(z)
for all h ∈ C∞

c (G) and z ∈ E. So for all such h and z we get with Theorem 3.4.21:

⟨
∑
i

D(fi)xi, hz⟩ =
∑
i

⟨xi, D(fi)∗ ∗ hz⟩ =
∑
i

⟨xi, ⟨D(fi), h⟩z⟩

=
∑
i

⟨xi, ⟨fi, D∗(h)⟩z⟩ = ⟨
∑
i

fixi, D
∗(h)z⟩

Doing the same for
∑
j gjyj , we deduce that

⟨
∑
j

D(gj)yj , hz⟩ = ⟨
∑
j

gjyj , D
∗(h)z⟩ = ⟨

∑
i

fixi, D
∗(h)z⟩ = ⟨

∑
i

D(fi)xi, hz⟩.

π was assumed to be non-degenerate and continuous, and C∞
c (G) ⊆ LI(G) is dense, so we

know that {hz|h ∈ C∞
c (G), z ∈ E} ⊆ E is dense. Hence it follows by the previous equation

that
∑
j D(gj)yj =

∑
iD(fi)xi as required.

It is easy to show that Kπ(D) is actually a B-linear map for any D ∈ DiffR(G). Namely
for such D and f ∈ C∞

c (G), β ∈ B we have:
Kπ(D)((π(f)(x))β) = Kπ(D)(π(f)(xβ)) = π(D(f))(xβ)

= π(D(f))(x)β = Kπ(D)(fx)β
Alternatively, this also follows from the fact that an adjoint for Kπ(D) exists by the
previous computation.

We have already proven that
⟨Kπ(D)fx, hz⟩ = ⟨D(f)x, hz⟩ = ⟨fx,D∗(h)z⟩ = ⟨fx,Kπ(D∗)hz⟩

for all f, h ∈ C∞
c (G), D ∈ DiffR(G) and z ∈ E. By the non-degeneracy, this implies that

indeed ⟨Kπ(D∗)v, w⟩ = ⟨Kπ(D)w⟩ for all v, w ∈ E∞.
It is clear from the definition that Kπ(D)(E∞) ⊆ E∞. Thus it is only left to prove

that Kπ is a unital algebra homomorphism, which is achieved quickly. Because Kπ(D) is
always linear, it suffices to check this on elements of the single-summand form fx ∈ E∞,
f ∈ C∞

c (G), x ∈ E. So let P,Q ∈ DiffR(G). Then we have Kπ(P + Q)(fx) = (P +
Q)(f)x = (P (f)+Q(f))x = P (f)x+Q(f)x = Kπ(P )(fx)+Kπ(Q)(fx) and Kπ(PQ)(fx) =
PQ(f)x = KπP (Q(f)x) = KπPKπQ(fx). The latter equation shows that in particular
λKπ(Q) = Kπ(λQ) for all λ ∈ C by the usual inclusion of C as multiplication operators
by constant functions. Of course Kπ is unital by Kπ(idC∞(G))(fx) = idC∞(G)(f)x = fx,
which finishes the proof. □

The representation obtained in the previous theorem will also be called diff(π) := Kπ.

4.2. Properties of the Derivative

In this section I wish to investigate additional properties of the representation diff(π)
derived from a representation π : C∗G → B(H). In particular we will see that vector
fields act by essentially self-adjoint operators in such a derived representation, with a few
technical caveats.

The following investigations require the use of elliptic differential operators. I will
not give a formal introduction here. Just recall this much: A differential operator D =∑
I∈Nm, |I|≤k fI∂

ϕ
I ∈ Diffk(M) given by coordinate vector fields of a chart ϕ and their

products has a principal symbol σ(D) ∈ Γ(T ∗M), defined as σ(D)(ξ) = σk(D) =∑
I∈Nm, |I|=k fIξ(ϕ)I , for ξ(ϕ)I := ξ(ϕ1)i1 . . . ξ(ϕi)im if I = (i1, . . . , im). One can show

that this is independent of chart choice, using that the commutator [P,Q] of operators
P ∈ Diffk(M), Q ∈ Diff l(M) has at most order k + l − 1, not k + l.

A differential operator D ∈ Diff(M) is elliptic if its principal symbol is non-zero at every
point of the manifold. By extension, a right-invariant differential operator D ∈ DiffR(G)
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on a Lie groupoid G is called elliptic if for every p ∈ M = G(0), the restriction D|Gp to the
target fibre is elliptic.

The following lemma also mentions pseudodifferential operators, but only uses them as
a technical term from Vassout’s work. The important part here is that every differential
operator is also a pseudodifferential operator.

Lemma 4.2.1. Let G be a compact volumetric groupoid. Let D ∈ DiffR(G) be a right-
invariant differential operator with D = D∗ (formally in DiffR(G)) which is elliptic. Then
the densely defined unbounded operator (C∞(G), D) ∈ O(C∗G) is regular and essentially
self-adjoint.

Proof: If D has order 0, then it is bounded and we are done. So assume without loss of
generality that k := ordD > 0.

D is assumed to be right-invariant, i.e. the restriction D|Gp : C∞(Gp) → C∞(Gp) is
well-defined for all p ∈ M and fulfils D|Gp ◦ r∗

g = r∗
g ◦D|Gq for all g ∈ G with tg = q, sg = p.

This means that D is a G-operator in the sense of [24], page 169. As D is smooth like all
differential operators considered in this thesis, D is of class C∞ in terms of that paper.
As a differential operator of order k, D is in particular a pseudodifferential operator of
constant order k, and of course Re(k) = k > 0. Because G is compact, D is compactly
supported. Note that C∞(G) = C∞,∞(G) in Vassout’s notation, because G is compact.

So all the assumptions of Proposition 21, page 175 in [24] apply, hence by that
Proposition, the adjoint of (C∞(G), D) is:

(C∞(G), D)∗ = (C∞(G), D∗) = (C∞(G), D)

Note that in the cited proposition, the musical natural sign simply denotes the formal
adjoint D∗ ∈ DiffR(G) of D, without regards for the domain.

(C∞(G), D) is regular by Proposition 21, page 175, [24] (if E is a Hilbert space, this is
automatic). □

This is an interesting result from Vassout, but more important is the corresponding
result induced in a representation.

Proposition 4.2.2 (compare Proposition 4, page 166 in [24]). Let π : LI(G) → B(E)
be a non-degenerate representation on a Hilbert module E and R = diff(π) = Kπ the
induced representation as in Theorem 4.1.5. Let D ∈ DiffR(G) be any right-invariant
differential operator such that (C∞(G), D) ∈ O(C∗G) is regular and essentially self-adjoint.
Then R(D) ∈ O(E) is regular and essentially self-adjoint.

Proof: The first thing to notice is that the complete tensor product C∗G⊗πE is isomorphic
to E. Namely consider the linear map U : C∗G⊗π E → E, defined by f ⊗ e 7→ π(f)e. This
fulfils

⟨U(f ⊗ v), U(g ⊗ w)⟩ = ⟨π(f)v, π(g)w⟩ = ⟨v, π(f∗)π(g)w⟩
= ⟨v, π(f∗ ∗ g)w⟩ = ⟨v, π(⟨f, g⟩)w⟩ = ⟨f ⊗ v, g ⊗ w⟩π

for all f, g ∈ C∗G, v, w ∈ E, so U is isometric, in particular bounded and injective. Sur-
jectivity follows from π being non-degenerate. U is C∗G-linear by gU(f⊗v) = π(g)π(f)v =
π(g ∗ f)v = U(g(f ⊗ v)).

Having this noted down, we immediately see that the differentiated representation of
D is given by

U−1R(D)U(f ⊗ v) = U−1R(D)(π(f)v) = U−1π(D(f))v
= π(D(f)) ⊗ v = D ⊗ 1(f ⊗ v)

for f ∈ C∞G, v ∈ E, so that R(D) = U(D ⊗ 1)U−1.
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Thus R(D) is regular, respectively essentially self-adjoint if and only if D ⊗ 1 is. But
indeed by Proposition 4, page 166 in [24], we know that D ⊗ 1 is regular and:

(D ⊗ 1)∗ = (D∗ ⊗ 1) = (D ⊗ 1) = (D ⊗ 1) = D ⊗ 1

where (D ⊗ 1) = D ⊗ 1 because domD ⊗alg E is a core for both (D ⊗ 1) and D ⊗ 1 by (3)
of the Proposition, and D|domD = D|domD = D.

So D ⊗ 1 is essentially self-adjoint, as well as R(D). □

This proposition shows in particular, in combination with Lemma 4.2.1, that R(D) is
essentially self-adjoint for every elliptic D ∈ DiffR(G) and R = diff(π).

Next I will show that not only elliptic operators, but also any symmetric differential
operator of order 1 acts by something self-adjoint. Proving this is not a trivial task and
requires deep results from functional analysis, in this case a theorem from [21]. That
theorem works on the premise that certain unbounded operators are bounded in modified
Sobolev type norms. In the following lemma, we will see that this is satisfied.

Lemma 4.2.3. Let G be a compact volumetric groupoid, π : C∗(G) → B(H) a rep-
resentation on a Hilbert space and R = diff(π). Let N ∈ DiffR(G) be a strictly positive
symmetric elliptic differential operator of order k ∈ N \ {0} such that R(N) is also positive.
Let A ∈ DiffRk (G) be any differential operator of order at most k. Then for every s ∈ R>0,
the operator R(A) : Hs(R(N)) → Hs−k(R(N)) viewed as an operator between Sobolev
spaces is bounded (the Sobolev space Hs(R(N)) is the closure of H equipped with the norm
∥v∥Hs(R(N)) = ∥R(N)

s
k (v)∥H). That is, there exists a constant c = cn ∈ R such that for

all v ∈ domR:

∥R(N)
s−k

k R(A)v∥H ≤ c∥R(N)
s
k v∥H

Proof: By Lemma 4.2.1, N ∈ O(C∗G) is essentially self-adjoint and regular. It is also
positive, allowing us to define a positive operator Nx := N

x ∈ O(C∗G) for all x ∈ R>0
by functional calculus. By Theorem 41, page 184 in [24] and the following discussion this
operator is actually another pseudodifferential operator of order xk with principal symbol
σ(Nx) = σ2(N)x, thus it is elliptic. So we can use Nx + i to define the norm on Hxk as
defined in definition 32, page 180, ibid., because this is still elliptic of order xk. For all
v, w ∈ C∞G we have

⟨v, w⟩Hxk(Nx+i) = ⟨(Nx + i)v, (Nx + i)w⟩ + ⟨v, w⟩
= ⟨Nxv,Nxw⟩ − ⟨v, w⟩ + ⟨v, w⟩ + i⟨v,Nxw⟩ + ī⟨Nxv, w⟩
= ⟨Nxv,Nxw⟩ + i⟨v,Nxw⟩ − i⟨v,Nxw⟩ = ⟨Nxv,Nxw⟩

because Nx is still symmetric. In particular, ∥v∥Hxk = ∥Nxv∥C∗G (the norm may be
different for another choice of N , but compatible).

Let s ∈ R>0 be arbitrary and consider the pseudodifferential operator D = N
s−k

k AN− s
k .

This has order at most k s−kk + k − k sk = s− k + k − s = 0, so it is bounded on C∗(G) by
Theorem 18, page 173, [24]. Thus D⊗ 1 is bounded on C∗(G) ⊗π H as mentioned on page
166 ibid.. Put c = ∥D ⊗ 1∥.

As proven in Proposition 4.2.2, R(N) is essentially self-adjoint like N , allowing us
to define R(N)x. Furthermore, for the canonical unitary map U : C∗G ⊗π H → H, we
have R(B) = U(B ⊗ 1)U−1 for all B ∈ DiffR(G), as shown there. Hence we find for all
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f ∈ C∞(G), v ∈ H:

∥R(N)
s−k

k R(A)π(f)v∥ = ∥(N ⊗ 1)
s−k

k (A⊗ 1)(f ⊗ v)∥

= ∥(N
s−k

k A)(f) ⊗ v∥ = ∥(N
s−k

k AN− s
kN

s
k )(f) ⊗ v∥

= ∥(N
s−k

k AN− s
k ⊗ 1)(N

s
k (f) ⊗ v)∥

≤ c∥N
s
k (f) ⊗ v∥ = c∥R(N)

s
k (π(f)v)∥

Within the preceding computation, we implicitly used Proposition 4, page 166, [24] to get
(N ⊗ 1)x = Nx ⊗ 1.

The Sobolev space Hs here is defined as the completion of dom(R(N)
s
k ) with respect

to the norm ∥v∥s = ∥R(N)
s
k v∥, so it is clear that we get a bounded operator between the

respective spaces. □

Our tool for the upcoming proof is a symmetric, elliptic, positive differential operator,
which can be viewed as a generalisation of the Laplace operator on Rm. But up to now, we
cannot be sure that such an operator even exists in more general cases. Luckily, the proof
of existence is not very hard.

Lemma 4.2.4. Let G ⇒ M be a volumetric groupoid and R : DiffR(G) → O(H) a
representation. Then there exists a non-negative, symmetric, elliptic differential operator
L ∈ DiffR2 (G) of order 2 such that R(L) is non-negative.

Proof: Let A be the Lie algebroid of G. Let (Ui)i∈I be a countable cover of M by domains
of local frames for A and (hi)i∈I a smooth partition of unity subordinate to this cover.
Set k = rkA. For each i ∈ I, choose a frame (ai1, . . . , aik) of A over Ui. For each i ∈ I,
j ∈ {1, . . . ,m}, let Xij = Xhiai

j
∈ XR(G) be the right-invariant vector field corresponding

to hiaij ∈ Γ(A). For each i ∈ I, j ∈ {1, . . . ,m}, define Aij := Xij + 1
2 divR(Xij) ∈ DiffR(G),

which is skew-symmetric.
Define L := −

∑
i∈I
∑m
j=1A

2
ij , which is well-defined because (hi)i is locally finite. Now

let x ∈ G and ξ ∈ T ∗
xGsx \ {0} be arbitrary. Then the principal symbol σ(L) fulfils

−σ(L)(x)(ξ) =
∑
i,j

ξ((Xij)(x))2 =
∑
ij

h2
i (tx)ξ(Ttxrxaij(tx))2

≥
k∑
j=1

h2
l (tx)ξ(Ttxrxalj(tx))2 > 0,

because (al1(tx), . . . , alk(tx)) is an ordered basis for Atx ∼= TtxGtx and thus

(Ttxrxal1(tx), . . . , Ttxrxalk(tx))
is one for TxGsx ∼= (T ∗

xGsx)∗. Here l ∈ I is any index such that tx ∈ Ul and hl(tx) > 0,
which must exist by the properties of a partition of unity. Thus L is elliptic.

Furthermore, L is symmetric because the Aij are skew-symmetric: Within DiffR(G)
we have L∗ = −

∑
ij(−A∗

ij)2 = −
∑
ij A

2
ij . Clearly L has order 2.

Next we will show that L is non-negative. To do so, recall that an element b of a C∗-
algebra B is non-negative if and only if ϕ(b) ∈ R and ϕ(b) ≥ 0 for every state ϕ : B → C,
and that b∗b is always non-negative.

So let f ∈ G∞
c (G) be arbitrary and let ϕ : C∗G → C be a state. Then we have:

ϕ (⟨Lf, f⟩) = −
∑
ij

ϕ
(
⟨A2

ijf, f⟩
)

=
∑
ij

ϕ (⟨Aijf,Aijf⟩)

=
∑
ij

ϕ ((Aijf)∗ ∗ (Aijf)) ≥ 0
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Since ϕ was arbitrary, this shows ⟨Lf, f⟩ ≥ 0. As f was arbitrary, L ≥ 0. Here, convergence
of the series

∑
ij ϕ(⟨Aijf,Aijf⟩) is guaranteed by the fact that the partial sums are non-

negative and dominated by ϕ(⟨Lf, f⟩).
Likewise we see that R(L) ∈ O(H) is non-negative. Namely if v ∈ domR, then:

⟨R(L)v, v⟩ =
∑
ij

⟨R(Aij)v,R(Aij)v⟩ ≥ 0 □

Using this generalized Laplacian, we can prove:

Theorem 4.2.5. Let G be a compact volumetric groupoid. Let π : C∗G → B(H) be
a representation on a Hilbert space and R = diff(π). Let A ∈ DiffR1 (G) be a symmetric
differential operator of order 1 (i.e., A = i(X + 1

2 divX) for some X ∈ XR(G)). Then
R(A) ∈ O(H) is essentially self-adjoint.

Proof: Let L ∈ DiffR2 (G) be a non-negative, symmetric and elliptic operator of order 2
such that R(L) is non-negative, which exists by the previous lemma. Set N = L+ 1, which
is still elliptic and symmetric and fulfils N ≥ 1 and R(N) ≥ 1.

By Lemma 4.2.3, we find a constant c = ∥R(A)∥B(H2,H0) ∈ R (where Hs = Hs(R(N))
with norm ∥v∥s = ∥R(N)

s
2 v∥H) such that ∥R(A)v∥ ≤ c∥R(N)v∥ for all v ∈ domR.

Furthermore, notice that the commutator [N,A] has at most order 2. Thus by the same
lemma, there is a constant d = ∥R([N,A])∥B(H1,H−1) such that

∥R(N)− 1
2R([N,A])v∥ ≤ d∥R(N)

1
2 v∥

for all v ∈ domR.
H−1 ∼= (H1)′ is also the dual space of H1, so we have for all v ∈ C∞(G) \ {0}:

d∥R(N)
1
2 v∥ = d∥v∥H1 ≥ ∥R[N,A]v∥B(H1,C)

= sup
w∈H1\{0}

1
∥w∥H1

|⟨R[N,A]v, w⟩| ≥ 1
∥R(N)

1
2 v∥

|⟨R[N,A]v, v⟩|

Hence
|⟨R(A)v,R(N)v⟩ − ⟨R(N)v,R(A)v⟩| = |⟨R([N,A])v, v⟩| ≤ d∥R(N)

1
2 v∥2

for all v ∈ domR([A,N ]) = domR.
By Proposition 4.2.2, R(N) ∈ O(H) is essentially self-adjoint. So R(N) is self-adjoint

and domR = domR(A) ⊆ domN is a core for N . Thus by the inequalities we have shown
before, we can apply Theorem X.37, page 197 in [21], which states that R(A) is essentially
self-adjoint on its domain. □

Designing and proving our integration theorems is what we are about to do next, as
promised from the beginning of this thesis. However, it turns out that besides the technical
proofs, there is still one fundamental idea lacking to do this. The following chapter will fill
in this gap.



CHAPTER 5

Measurable Fields of Hilbert Spaces

In the classical theory of Lie group representations, one defines an integrated form P of
a Lie algebra representation R by the association P (exp(v)) = eR(v) (for sufficiently small
vectors v in the Lie algebra), where we have the Lie group exponential on the left hand
and functional calculus on the right one. Our main approach is to apply this idea to a
representation R of differential operators to get a representation P of the morphism space
of a Lie groupoid (which will be formally defined later).

However, there is one key difference to the Lie group case: The exponential exp(X) of a
vector field is not an element of the groupoid itself, but a bisection. We obtain a groupoid
element exp(X)(p) ∈ G by inserting a point p of the base space as second argument. Hence
it would be natural for our desired generalisation to do the same on the right hand side,
where functional calculus is used, to obtain fibrewise operators (eR(X))(p). In general, this
formula does not make sense for a unitary operator on a Hilbert space. But there is a certain
context in which it does, namely when the operator is a so called decomposable operator
over a whole field of Hilbert spaces. These concepts and how to work with them shall
be introduced in this chapter. The main source for this will be Dixmier’s Von Neumann
Algebras, but secondary sources were also used.

5.1. Definitions and Basic Properties

Let us first define our next object of interest. We will usually assume that our base
space is equipped with a suitable measure, but formally, only a notion of measurable sets
is required, which means having a measurable space.

Definition 5.1.1. [12], page 1, Definition 1, compare also [5], page 164
Let (X,S) be a measurable space. A measurable field of separable Hilbert spaces (or

shortly, a Hilbert field) on (X,S) is a pair (H,M) of a family H = (Hx)x∈X of Hilbert
spaces Hx and a subset M ⊆ P =

∏
x∈X Hx such that there is a countable subset M0 ⊆ M

which satisfies the following properties:
(1) For all g ∈ P , we have g ∈ M if and only if for all f ∈ M0, the function X → R,

x 7→ ⟨g(x), f(x)⟩ is S-Lebesgue-measurable.
(2) For all x ∈ X, the linear span of {f(x)|f ∈ M0} is dense in Hx.

Such a countable subset is called a fundamental sequence.
I may also just write H → X for a Hilbert field on X, implicitly referring to the same

structure.

Notice that in this definition, a measurable section is only formally defined; there is
no canonical measure on the union

⋃
p∈X Hp which would allow us to define a measurable

map. However, these measurable sections usually behave like we would expect measurable
functions to do.

For example, using that limits of measurable functions are again measurable, one can
quickly obtain the following lemma, which is a slight generalisation of the first defining
property.

Lemma 5.1.2. Let H → X be a Hilbert field on X. Then for all f, g ∈ M , the map
X → R, x 7→ ⟨f(x), g(x)⟩ is measurable.

59
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It is equally easy to prove that multiplying with a measurable function keeps measur-
ability:

Proposition 5.1.3. Let X, H as before. Let σ be a measurable section in H and let
f : X → C be a measurable function. Then f · σ (defined as usual by (fσ)(p) = f(p)σ(p))
is again measurable.

One of the most important structures associated to a given Hilbert field is its section
space. This is also the point where an actual measure comes into play over merely measurable
spaces. As I am most interested in Hilbert spaces for this thesis, I only define the space of
square-integrable sections, which looks as follows:

Definition 5.1.4. (Compare [5], page 168)
Let (M,ν) be a measure space and H → M a Hilbert field with respect to the ν-

measurable sets in M . A measurable section σ of H is called square-integrable if the integral∫
M ∥σ(x)∥2

Hx
dν(x) is finite. The set of all square-integrable functions is denoted by L2(H, ν).

Two section σ, τ ∈ L2(H, ν) are called equivalent (written σ ∼ τ) if σ(p) − τ(p) = 0 ∈ Hp

for ν-almost all p ∈ M . This defines an equivalence relation ∼, and the space
L2(H, ν) := L2(H, ν)/∼,

consisting of equivalence classes of square-integrable sections.
Furthermore, for [σ], [τ ] ∈ L2(H, ν), we define ⟨[σ], [τ ]⟩ :=

∫
M ⟨σ(p), τ(p)⟩Hpdν(p) ∈ C.

This definition is very similar to the standard definition of the function space L2(M,ν).
Indeed, square-integrable sections behave largely like square-integrable functions and the
intuition working with both can remain the same. The only difference is often that an
extra norm or inner product is written under the integral formulas.

As for L2-functions, I will not further differentiate between sections σ ∈ L2(H, ν) and
their equivalence classes in L2(H, ν). Furthermore, I may just write L2(H) for the same
object if the measure is clear from context.

The space L2(H) has exactly the structure we expect it to have:

Proposition 5.1.5. ([5] page 162 and Corollary, page 172) Keep the previous notation.
Then L2(H, ν) with the bracket ⟨·, ·⟩ described before is a Hilbert space. If M is locally
compact, second countable and σ-compact and ν is a Radon measure, then L2(H, ν) is
separable.

The precise properties of the space and measure required for this to work are not of
great interest for this thesis. From now on it will suffice to remember that the section space
is well-behaved in all cases which are considered here (i.e. where M is a smooth manifold
and ν is chosen in an abstract way by Dixmier’s own theory).

Let us now investigate what it means for an operator A : L2(H1, ν) → L2(H2, ν) to be
decomposable. To do so, we need to look at measurable fields of operators, in the following
sense:

Definition 5.1.6. ([5], Definition 1, page 179) Let (M,ν) be a measure space. Let
H1 → M , H2 → M be two ν-Hilbert fields (i.e. Hilbert fields with respect to the ν-
measurable sets). Let A = (Ap)p∈M be a family of bounded operators Ap : H1(p) → H2(p).
This family is called a measurable field of operators if for all measurable sections σ in H1,
the family (Ap(σ(p)))p∈M is a measurable section in H2.

A is said to be essentially bounded if it is measurable and the essential supremum
ess supp∈M,ν ∥Ap∥ < ∞

is finite.

Dixmier goes on in his book to show:
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Proposition 5.1.7. Let H1, H2 as before. Let (Ap)p∈M be an essentially bounded field
of operators between H1 and H2. Then the operator

∫⊕
M Apdν(p) : L2(H1) → L2(H2) defined

by ∫ ⊕

M
Apdν(p)(σ)(q) = Aq(σ(q)) ∈ H2(q)

is a well-defined bounded operator with ∥
∫⊕
M Apdν(p)∥ = ess supp∈M ∥Ap∥.

As usual for measurable function spaces, this definition is not sensitive to variations
on null sets; if (Bp) is another essentially bounded field of operators with Ap = Bp almost
everywhere, then

∫⊕
M Apdν(p) =

∫⊕
M Bpdν(p).

Using this structure, we get the following definition of decomposable operators:

Definition 5.1.8. ([5], Definition 2, page 182) Keep the previous notation. Let A :
L2(H1) → L2(H2) be a bounded operator. Then A is said to be decomposable if and only
if there is an essentially bounded field of operators (Ap)p∈M between H1 and H2 such that
A =

∫⊕
M Apdν(p).

A simple but important example of decomposable operators are the multiplication
operators, which map each section to its pointwise product with an essentially bounded
function:

Definition 5.1.9. Let H → M be a Hilbert bundle on a measure space M . Let
f ∈ L∞(M) be essentially bounded. This defines a bounded operator Tf : L2(M) →
L2(M), Tf (σ)(p) := f(p)σ(p).

Again, these definitions fulfil many expectable properties, which can be read about in
more detail in Dixmier’s book. I will come back to decomposable operators later, for now
it suffices to keep the definitions in mind.

One more preliminary thing about Hilbert fields that we have to consider are pullbacks,
which will allow us to consider fields of operators which do not necessarily always keep
the base point constant, i.e. we can have mappings Ap : Hp → Hq for q ̸= p ∈ M . The
definition is part of the following simple proposition:

Proposition 5.1.10. Let M and N be measurable spaces with a measurable map
f : M → N . Let H be a Hilbert field on N . Let S0 be a fundamental sequence for H. Then
there is a unique Hilbert field structure on f∗H := (Hf(p))p∈M such that σ ◦ f is measurable
for all σ ∈ S0.

Proof: By construction, we have two important properties: Firstly, consider arbitrary
elements σ, τ ∈ S0. Then the inner product ⟨σ ◦ f, τ ◦ f⟩ = ⟨σ, τ⟩ ◦ f is measurable because
⟨σ, τ⟩ and f are.

Secondly, consider any p ∈ M . Then we have

spanC ((f∗S0)(p)) =
{

n∑
i=1

λiσi(fp)|λi ∈ C, σi ∈ S0

}
⊆ Hf(p),

which is dense in Hf(p) = (f∗H)p because S0 is a fundamental sequence. Thus f∗S0 is a
total (pointwise dense) sequence in f∗H.

So by Proposition 4, page 167 in [5], there is a unique Hilbert field structure on f∗H
such that all elements of f∗S0 are measurable. □

It is routine to deduce elementary properties of the pullback. For example, the pulback
f∗σ of an arbitrary measurable section σ in H is a measurable section in f∗H. This defines
a canonical map from the sections of a Hilbert field to the sections of its pullback. However,
this is not bounded in every case, and in particular not unitary. But under mild conditions,
we can multiply it with an error correction term to obtain such a unitary transformation.
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Proposition 5.1.11. Let H → M be a Hilbert field over a measure space (M,µ) and
f : M → M be a bi-measurable map such that f∗µ ≪ µ and µ ≪ f∗µ. Then there is a
unitary map Uf : L2(H,µ) → L2(f∗H,µ) defined by (Ufσ)(p) :=

(
dµ

df∗µ
(f(p))

) 1
2 σ(f(p)) ∈

Hf(p) = (f∗H)p.
This map fulfils Uf ◦ Tg = Tg◦f ◦ Uf for all g ∈ L∞(M,µ).

Proof: Put h =
(

dµ
df∗µ

) 1
2 . Let us prove that Uf preserves scalar products. Namely for

σ, τ ∈ L2H, we have:

⟨Ufσ, Ufτ⟩ =
∫
M

⟨h(fp)σ(f(p)), h(fp)τ(f(p))⟩dµ(p)

=
∫
M

⟨h(p)σ(p), h(p)τ(p)⟩df∗µ(p)

=
∫
M

⟨σ(p), τ(p)⟩ dµ
df∗µ

(p)df∗µ(p)

=
∫
M

⟨σ(p), τ(p)⟩dµ(p) = ⟨σ, τ⟩

as required. In particular, this shows that Ufσ ∈ L2(f∗H,µ) for σ ∈ L2(H,µ) since
∥σ∥ = ∥Ufσ∥.

Linearity is clear by

Uf (λσ + τ)(p) = h(fp)(λσ + τ)(f(p))
= λh(fp)σ(f(p)) + h(fp)τ(f(p)) = (λUfσ + Ufτ)(p).

Uf is bijective with the inverse U−1
f : L2(f∗H) → L2H, U−1

f (τ)(p) = h(p)−1τ(f−1(p)).
Another easy computation proves:

Uf ◦ Tg(σ)(p) = h(fp)Tg(σ)(f(p)) = g(f(p))h(fp)σ(f(p)) = Tg◦fUfσ(p) □

This will be an important ingredient for our integration theorem in the next chapter.
For now, let us advance to a slightly more elaborate part of the Hilbert field theory.

5.2. Disintegration of Hilbert Spaces

As described at the beginning of this chapter, Hilbert fields and sections on them
behave quite nicely in the context of Lie groupoid representation theory. However, assuming
such a section space as domain of a representation seems rather arbitrary. A more natural
assumption seems to be that the domain is (a dense subset of) an arbitrary separable
Hilbert space. Luckily it turns out that a representation of differential operators already
contains enough information in it to ensure that its domain is indeed isomorphic to a
Hilbert field’s section space, if only the measure is chosen correctly. In this section I will
show how this isomorphy can be constructed, using a powerful theorem from Dixmier’s
work:

Theorem 5.2.1 ([5] Theorem 1, page 233). Let H be a separable Hilbert space, let
y ⊆ B(H) be a commutative C∗-algebra within the bounded operators. Let Z = ŷ be the
Gelfand spectrum (i.e. the space of non-zero ∗-homomorphisms from y to C) of y, and let
ν be a basic measure on Z. Suppose that the identity idH is contained in the weak closure
of y within B(H).

Then there exists a ν-Hilbert field H → Z which has a unitary transformation ϕ :
L2(H) → H such that ϕ ◦ TÂ ◦ ϕ−1 = A for all A ∈ y, where Â ∈ C0(ŷ) is the Gelfand
transform (x 7→ x(A)), and Tf : L2(H) → L2(H) is the multiplication operator by f for
any f ∈ C0M .
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This theorem uses the notion of a basic measure. In this section I will not define this
term, but merely use that it is guaranteed by one more proposition by Dixmier. Curious
readers are welcome to look up the precise meaning in his book.

So our work in this section is to build a bridge between the Lie groupoid representation
theory and the functional analysis notation of Dixmier to make the application of the
theorem possible. In precise terms, this means constructing the y and ν of the above theorem.
We start with the following lemma, which shows that representations of differential operators
are automatically bounded on smooth functions vanishing at infinity.

Lemma 5.2.2. Let G be a Lie groupoid, H any Hilbert space, R : DiffR(G) → O(H)
a representation. Then for any f ∈ C∞

b (M,R), the operator R(mf ) is bounded with
∥R(mf )∥ ≤ ∥f∥∞.

Proof: This proof uses an idea from Lemma 5.2, page 17, [4] in a different context.
Using that f is bounded, choose c ∈ R with c > ∥f∥∞ = supp∈M |f(p)|. Then the

function g := (c2 − f2)
1
2 is well-defined and smooth, and f2 + g2 = c2. We have

⟨R(mf )v, w⟩ = ⟨v,R(m∗
f )w⟩ = ⟨v,R(mf )w⟩

for all v, w ∈ domR(mf ), hence :

∥R(mf )v∥2 = ⟨R(f)v,R(f)v⟩ = ⟨R(f2), v⟩
= ⟨R(f2 + g2)v, v⟩ − ⟨R(g2)v, v⟩
= ⟨c2v, v⟩ − ∥R(g)v∥2 = c2∥v∥2 − ∥R(g)v∥2 ≤ c2∥v∥2

From this it follows that ∥R(mf )v∥ ≤ c∥v∥, and because c > ∥f∥∞ was arbitrary,
∥R(mf )v∥ ≤ ∥f∥∞∥v∥. This holds for all v ∈ domR(mf ), so indeed ∥R(mf )∥ ≤ ∥f∥∞. □

Using that these multiplication operators are bounded, we can extend a representation
of differential operators to continuous functions. We use the space

C0(M,K) = {f ∈ C(M,K) | ∀ϵ > 0∃K ⊆ M compact : ∥f |M\K∥∞ < ϵ} ⊆ Cb(M,K)

of functions vanishing at infinity, where C(M,K) denotes the continuous functions from
M to K and K ∈ {C,R}. When the second argument is not specified, I mean C0(M) =
C0(M,C). The details of this extension process are explained in the following statement.

Proposition 5.2.3. R induces a bounded representation r : C0(M) → B(H), i.e. there
is a unique bounded homomorphism of C-algebras r : C0(M) → B(H) with r(f)|dom(R(mf )) =
R(mf ) for all f ∈ C∞

0 (M,R). r has norm 1 and r(f)∗ = r(f̄) for every f ∈ C0(M).

Proof: Let f ∈ C∞
b (M,R). Denote by E the common dense invariant domain of R. Then

by Lemma 5.2.2, the operator R(mf ) : E → H is bounded with ∥R(mf )∥ ≤ ∥f∥. Because
domR(mf ) is dense by assumption, there is a unique bounded extension Af : H → H of
R(mf ). If g ∈ C∞

b (M) is another function, then Afg|E = R(fg) = R(f)R(g) = Af |EAg|E =
AfAg|E , hence (as E ⊆ H is dense) Afg = AfAg. Likewise, we get that Af +Ag = Af+g.
This implies that the map

r0 : C∞
b (M,R) → B(H), f → Af

is a bounded homomorphism of R-algebras with ∥r0∥ ≤ 1. By putting r0(f + ig) =
r0(f) + ir0(g) for each h = f + ig ∈ C∞

b (M,C), this extends to a homomorphism of
C-algebras which still fulfils ∥r0∥ ≤ 1. C∞

0 (M) ⊆ C0(M) is dense in the supremum norm,
so as before, there is a unique continuous extension r : C0(M) → B(H) of r0|C∞

0 (M). This
is again multiplicative by r(limi fi)r(limj gj) = limi limj r(fi)r(fj) = limi limj r(fifj) =
r(limi limj fifj) = r((limi fi)(limj fj)) for fi, gj ∈ C∞

b . We have r(f)|E = r0(f)|E =
Af |E = R(mf ) for f ∈ C∞

b (M) by the very definition.
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For self-adjointness, let f = limi fi ∈ C0(M,R), where fi ∈ C∞
0 (M,R). Let v, w ∈ E ⊆

H. Then

⟨r(f)v, w⟩ = lim
i

⟨r(fi)v, w⟩ = lim
i

⟨R(mfi
)v, w⟩

= lim
i

⟨v,R(m∗
fi

)w⟩ = lim
i

⟨v,R(mfi
w⟩

= lim
i

⟨v, r(fi)w⟩ = ⟨v, r(f)w⟩

by continuity of r and the scalar product maps ⟨·v, w⟩ and ⟨v, ·w⟩. As r(f) is bounded and
E is dense in H, this suffices to show that it is self-adjoint. It follows that for h = f + ig ∈
C0(M,C) we have r(h̄) = r(f − ig) = r(f) − ir(g) = r(f)∗ + ir(g)∗ = r(f + ig)∗ = r(h)∗ as
required. □

The image of this homomorphism is going to be our C∗-algebra. To make sure that
this has our original space M as spectrum, we need that r is injective, which is implied
by R being faithful. If r is not injective, the spectrum is a closed subset of M and we can
proceed with that. A short proof of our desired fact is given below.

Lemma 5.2.4. Let R : DiffR(G) → O(H) be a representation and r : C0(M) → B(H)
the induced one. Suppose that R|C∞M is injective. Then r is injective. In particular, this is
true if R is faithful, i.e. if R(P )v = R(Q)v for all v ∈ domR implies P = Q.

Proof: It suffices to show that r has trivial kernel. We show this by contradiction: Suppose
that there is a function f ∈ C0(M) \ {0} such that r(f) = 0. By continuity, the pre-image
f−1(C \ {0}) is open, and it is non-empty since f ≠ 0. So because M is locally compact,
it contains a non-empty compact subset, which implies we can choose a non-zero bump
function h ∈ C∞

c (M) \ {0} with supph ⊆ f−1(C \ {0}). By this choice, the pointwise
fraction h

f ∈ C0M is a well-defined continuous function. Since r(f) = 0 by assumption, we
have

0 = r(f)r(h
f

) = r(h) = R(mh),

which implies mh = 0 ∈ DiffR(G) since R|C∞M is injective, which is a contradiction to
h ̸= 0.

Hence the assumption must be wrong and we actually have ker r = {0}, which means
that r is injective. □

So r : C0M → B(H) is an injective homomorphism of C∗-algebras. Such homomorph-
isms are automatically isometries, which implies that r : C0M → r(C0M) ⊆ B(H) is an
isomorphism of *-algebras. In particular, y := r(C0M) ⊆ B(H) is a C∗-algebra isomorphic
to C0M .

The next thing that we still need to show is that the weak closure of y contains the
identity (in modern terms, this just means that r is non-degenerate).

Lemma 5.2.5. Let y = r(C0M) ⊆ B(H) as above. Then the weak closure of y contains
the identity.

Proof: Choose a function f ∈ C∞
0 (M,R) such that f(x) > 0 for all x ∈ M (this is always

possible, but for non-compact M , any such f will converge to 0 near infinity). Then the
fraction 1

f ∈ C∞(M) is a well-defined (though not necessarily bounded) function, and for
all v ∈ E = domR, we have:

r(f)R( 1
f

)v = R(1)v = v

Since R( 1
f )v ∈ E and r(f)v = R(mf )v ∈ E for all v ∈ E by invariance of R, this implies

that r(f)E = E, which is dense in H by assumption.
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Now choose a sequence of compactly supported functions fi ∈ C∞
c (M) with 0 ≤ fi ≤ 1

such that (fi)i converges uniformly on compact subsets to 1 (e.g. by fj |Ki ≡ 1 for j ≥ i
and an exceeding sequence Ki ⊆ M of compact subsets). Then the product fi · f converges
uniformly to f by the following argument: Let ϵ > 0 be arbitrary. Then since f vanishes
at infinity, there is a compact set K ⊆ M such that f |M\K < ϵ. Since fi → 1 on compact
sets, there is i ∈ N such that for j ≥ i, ∥fj |K − 1∥∞ < ϵ

∥f∥∞
. Hence ∥fjf − f∥∞ =

max(∥fjf |K − f |K∥, ∥fjf |M\K − f |M\K∥) < max( ϵ
∥f∥∥f∥, ∥f |M\K∥) = max(ϵ, ϵ) = ϵ.

Now let w ∈ E be arbitrary. By the previous argument, there is another vector
v ∈ E such that w = r(f)v. So since r : C0M → B(H) is continuous, we find that
limi→∞ r(fi)w = limi→∞ r(fif)v = r(f)v = w. Since E ⊆ H is dense, this implies that
limi r(fi)w = w even for all w ∈ H, which means that r(fi) converges weakly to idH as i
goes to infinity. This means that idH is in the weak closure of y = r(C0M). □

We can now apply the following lemma to obtain a basic measure:

Lemma 5.2.6 ([5], Proposition 4, page 130). Let H be a separable Hilbert space. Let
Z ⊆ B(H) be an abelian von Neumann algebra, and y ⊆ Z a C∗-algebra. Then there is a
bounded basic Radon measure ν on ŷ.

Namely, if y = r(C0M) ⊆ B(H) as before, then the weak closure Z of y is an abelian
von Neumann algebra with y ⊆ Z. Hence indeed, a basic measure exists on ŷ.

In the upcoming theorem, we will have to use a few more technical notions from
Dixmier’s work. I summarize them in the following definition:

Definition 5.2.7. Let H be a Hilbert space and A ⊆ B(H).
• The commutant of A is A′ := {T ∈ B(H)|∀S ∈ A : TS = ST} ([5], page 1).
• An element x ∈ H is called cyclic with respect to A if Ax = {Tx|T ∈ A} ⊆ H is

dense ([5] Definition 3, page 5). Dixmier only uses this when A is a ∗-subalgebra.
• Suppose that A is a separable commutative C∗-algebra and let x ∈ H be arbitrary.

Then the spectral measure νx is the unique measure on Â (the space of characters
on A → C) such that

∫
Â fdνx = ⟨f̂x, x⟩, where f̂ ∈ A is the Gelfand transform of

f , defined by f(χ) = χ(f̂) for χ ∈ Â ([5], page 360).

Combining the different parts explained in this section, we get the following statement
in the context of our representation theory:

Theorem 5.2.8. Let (G ⇒ M,ω) be a volumetric groupoid, H a Hilbert space and
let R : DiffR(G) → O(H) be a representation. Suppose that R|C∞M is injective or M is
compact. Then there are a bounded Radon measure ν on M and a ν-Hilbert field H → M
together with a unitary map ϕ : L2(H) → H such that ϕ−1 ◦ R(mf ) ◦ ϕ = Tf for all
f ∈ C∞

0 (M).
Furthermore, if R|C∞M is injective, then there is an element σ ∈ L2H which is cyclic

for the commutant of {Tf | f ∈ C0M} ⊆ B(L2H) such that ν = νσ, in the sense that∫
M fdν = ⟨Tfσ, σ⟩ for f ∈ C0M (I implicitly use that ({Tf | f ∈ C0M})∧ ∼= M here).

Proof: Let r : C0(M) → B(H) be the induced representation as in Lemma 5.2.3. As before,
set y := r(C0(M)) ⊆ B(H), which is a commutative C∗-algebra. By [5], Proposition 4,
page 130 and the previous arguments, there is a bounded basic Radon measure ν ′ on ŷ.
More precisely, we have ν ′ = νx for an element x ∈ y which is cyclic for the commutant y′,
as detailed in said proposition and its prerequisites.

As shown before, the weak closure of y contains the identity, hence by [5] Theorem 1,
page 233, there are a ν ′-Hilbert field H′ → ŷ, together with a unitary ψ′ : L2(H′) → H
compatible with the Gelfand transform as described before.

If R|C∞M is injective, then r : C0M → y is an isometric *-isomorphism by Lemma
5.2.4. In this case, set A = M .
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Even if R|C∞M is not injective, the kernel ker r = r−1({0}) ⊆ C0M is a (closed) ideal.
If M is compact, then C0M = C(M), and all ideals I ⊴ C(M) for a compact space M are
of the form I = IB = {f ∈ C(M)|f |B = 0} for a closed subset B ⊆ M . This is an example
from elementary algebra. So let A ⊆ M be closed such that ker r = IA. Then the induced
homomorphism r̃ : C0M/IA → y, f + IA 7→ r(f) is a well-defined isomorphism. Note that
C0M/IA = CM/IA ∼= C(A). We write rA : C0(A) → y for the induced isomorphism. Note
that rA(f |A) = r(f) for all f ∈ C0 = M . Since A is closed in the compact set M , it is
again compact and fulfils C(A) = C0(A).

In either case, the pullback r∗
A : ŷ → Ĉ0A, χ 7→ χ ◦ rA is a homeomorphism, as is the

canonical map ev : A → Ĉ0A, p 7→ evp, evp(f) = f(p). So let ν := (ev−1 ◦r∗
A)∗(ν ′) be the

image measure under these maps. Because both are homeomorphisms, this ν is a Radon
measure on A, and we have ν(A) = ν ′(ŷ) < ∞, so ν is still bounded.

We pull back the Hilbert field H′ by the same homeomorphisms, defining H →ν A
by Hp := H ′

(r∗
A)−1◦ev(p), and the set of measurable sections as pullbacks of those on H′,

which is indeed a Hilbert field over ν with L2(H, ν) = ((r∗
A)−1 ◦ ev)∗L2(H′, ν ′) almost by

definition.
For the isomorphism, define ϕ := ψ ◦ ((r∗

A)−1 ◦ ev)∗)−1 : L2H → H, which is unitary as
a composition of unitaries, where ((r∗

A)−1 ◦ ev)∗ is unitary because
∫
A((r∗

A)−1 ◦ ev)∗fdν =∫
ŷ fdν ′ for f ∈ L1(ŷ) by definition of the image measure.

Now let us check the desired property: Let f ∈ C∞
0 (M) be arbitrary. Then because

R(mf ) = r(f) = rA(f |A), we have

ϕ−1 ◦R(mf ) ◦ ϕ = ((r∗
A)−1 ◦ ev)∗ ◦ ψ−1 ◦R(mf ) ◦ ψ ◦ (((r∗

A)−1 ◦ ev)∗)−1

= ev∗ ◦ ((r∗
A)∗)−1 ◦ T ̂rA(f |A) ◦ (r∗

A)∗ ◦ (ev∗)−1,

hence for σ ∈ L2H and p ∈ A:

(ϕ−1 ◦R(mf ) ◦ ϕ)(σ)(p) =
(
T ̂rA(f |A)(σ ◦ ev−1 ◦ r∗

A)
)

◦ (r−1
A )∗ ◦ ev(p)

= ̂rA(f |A)((r−1
A )∗evp) · σ(p) = (evp ◦ r−1

A )(rA(f |A)) · σ(p)
= evp(r−1

A rA(f |A))σ(p) = evp(f |A)σ(p)
= f(p)σ(p) = Tf |A(σ)(p)

To get a Hilbert field on the whole of M even in the case where A ̸= M , we simply
extend by 0. Formally, we set ν+ := (ιA)∗ν for the inclusion map ιA : A → M and
define H+ → M by H+

p := Hp for p ∈ H and H+
p = 0 for p ∈ M \ A. If M is compact,

ν+ is a Radon measure because ιA is proper. We see immediately that the restriction
map ψ : L2(H+, ν+) → L2(H, ν), σ 7→ σ|A is an isomorphism in this case. It fulfils
ψ−1 ◦ Tf |A ◦ ψ = Tf for all f ∈ C0M because sections in L2(H+) are already 0 outside of
A by definition of H+. Hence we get that

(ϕ ◦ ψ)−1 ◦R(mf ) ◦ ϕ ◦ ψ = ψ−1 ◦ Tf |A ◦ ψ = Tf

for all f ∈ C0M .
Thus the first statement of this theorem is fulfilled with the measure ν+, the Hilbert

field H+ and the unitary map ψ ◦ ϕ.
Now consider again the case where R|C∞M (and thus r) is injective. As mentioned

before, we have ν ′ = νx for some x ∈ H, which is cyclic with respect to y′. Using our
previous construction, we find that∫

M
fdν =

∫
ŷ
f ◦ ev−1 ◦ r∗dνx = ⟨(f ◦ ev−1 ◦ r∗)∧(x), x⟩ = ⟨r(f)x, x⟩H
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because
χ((f ◦ ev−1 ◦ r∗)∧) = f ◦ ev−1 ◦ r∗(χ) = f ◦ ev−1(χ ◦ r) = χ ◦ r(f) = χ(r(f))

for all χ ∈ ŷ. We have proven before that ϕ−1r(f)ϕ = Tf and that ϕ is unitary, thus∫
M
fdν = ⟨ϕTfϕ−1x, x⟩ = ⟨Tfϕ−1x, ϕ−1x⟩ =

∫
M
fdνϕ−1x

for f ∈ C∞
0 M , which extends to f ∈ C0M by continuity. So because Radon measures are

determined by their values on continuous functions, we find that ν = νσ for σ = ϕ−1x. x is
cyclic with respect to y′, i.e. y′x ⊆ H is dense. So because ϕ is unitary, ϕ−1y′ϕσ = ϕ−1y′x ⊆
L2H is also dense. For any T ∈ y′ and f ∈ C0M , we know by the definition of the commutant
that Tr(f) = r(f)T , thus ϕ−1TϕTf = ϕ−1Tϕϕ−1r(f)ϕ = ϕ−1Tr(f)ϕ = ϕ−1r(f)tϕ =
Tfϕ

−1Tϕ. As this holds for all f , we find that ϕ−1Tϕ ∈ {Tf |f ∈ C0M}′. This in turn is
true for all T , thus ϕ−1y′ϕ ⊆ {Tf |f ∈ C0M}′. In particular, {Tf |f ∈ C0M}′σ ⊇ ϕ−1y′ϕσ
must be dense in L2H, thus σ is cyclic with respect to {Tf |f ∈ C0M}′. □

This shows that in the context of Lie algebroid representation theory, any Hilbert space
which is the domain of a representation can be assumed without loss of generality to be
the space of square-integrable sections on a measurable field of Hilbert spaces over the
base manifold.

The rest of this section will build on the more technical second statement from the above
theorem to show that the constructed measure ν is actually equivalent to any non-zero
smooth measure on M , in the case of the pair groupoid. To do so, we need one result which
will only be proven in the next chapter of this thesis. I still decided to include these proofs
here because it is thematically fitting.

Lemma 5.2.9. Let G = M ×M be a pair groupoid with a volume form ω ∈ Ω(M) and a
Hilbert field H → M over a spectral Radon measure ν = νx on M , for an element x ∈ L2H
which is cyclic with respect to {Tf |f ∈ C0M}′. Suppose that there is a representation
R : Diff(M) → L2(H) with R(mf ) = Tf for all f ∈ C∞

0 (M).
Consider the group of diffeomorphisms generated by compactly supported vector fields,

Diffe(M) := {θX1 | X ∈ Xc(M)}, denoting by θX1 the time-1 flow of X.
Then ν is Diffe(M)-quasi-invariant, that is, ν ◦ ϕ−1 ≪ ν for all ϕ ∈ Diffe(M).

Proof: Let ϕ ∈ Diffe(M). Then by Lemma 6.1.3, there is a unitary operator U : L2H →
L2H such that Tf◦ϕ = UTfU

∗ for all f ∈ C∞
c (M). In particular, we have∫

M
fdν ◦ ϕ−1 =

∫
M
f ◦ ϕdν = ⟨Tf◦ϕx, x⟩

= ⟨UTfU∗x, x⟩ = ⟨TfU∗x, U∗x⟩ =
∫
M
fdνU∗x

for all such f . Here, νU∗x is the spectral measure with respect to U∗x.
x was assumed to be cyclic with respect to y′ = {Tf | f ∈ C0(M)}′ ⊆ B(L2H), i.e.

y′x := {Tx | T ∈ y′} ⊆ L2H is dense. Since U is unitary, this implies that U∗y′x =
{U∗TU(U∗x) | T ∈ L2H is also dense. Note that U∗TUTf = U∗TTf◦ϕU = U∗Tf◦ϕTU =
TfU

∗TU for all f ∈ C∞
c (M). Because C0(M) → B(L2H), f → Tf is continuous and

C∞
c (M) ⊆ C0(M) is dense, this implies that even U∗TUTf = TfU

∗TU for all f ∈ C0M ,
hence U∗TU ∈ y′. Thus y′U∗x ⊆ L2H is dense, too, so U∗x is cyclic for y′. Hence νU∗x is
basic by Proposition 2, page 129 [5] and thus equivalent to the basic measure ν = νx as
detailed on page 127, [5], in particular, νU∗x ≪ ν.

As discussed in the beginning, we have
∫
M fdν ◦ ϕ−1 =

∫
M fdνU∗x for all f ∈ Cc(M).

So because both ν ◦ ϕ−1 and νU∗x are Radon measures and M is locally compact, this
implies that ν ◦ ϕ−1 = νU∗x ≪ ν (this uniqueness property is a part of the Riesz-Markov
representation theorem and follows from outer regularity of the measures). □
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This lemma can, in particular, be applied to the measure constructed in Theorem 5.2.8,
using the induced representation R̃ : Diff(M) → O(L2H, ν), D 7→ ϕ−1R(D)ϕ – this is
actually the only case where it will be used. Let us proceed.

Lemma 5.2.10. Keep the notation from the previous lemma. Let ϕ : U → Rm be a chart
of M . Then the image measure ν ◦ ϕ−1 on Rm is Rm-quasi-invariant, that is, translations
preserve null sets.

Proof: Put µ = ν ◦ϕ−1. Let A ⊆ Rm be any Borel set. Notice that Rm =
⋃
I∈Zm I + [0, 1]m,

so µ(A) ≤
∑
I∈Zm µ(AI), where AI = A ∩ I + [0, 1]m.

Now assume that A is a µ-null set. Let c ∈ Rm be arbitrary. Choose any I ∈ Zm.
Then we know that µ(AI) ≤ µ(A) = 0. We construct a vector field Xc as follows: Set
r = ∥I∥ + 2 + ∥c∥, so that tc + x ∈ Br(0) for all t ∈ [−1, 1] and x ∈ I + [0, 1]m,
where Bd(0) = {x ∈ Rm | ∥x∥ ≤ d}. Choose a smooth bump function h ∈ C∞

c (Rm)
with h|B5r(0) ≡ 1. Define Xc = h · c∂ = h

∑m
i=1 ci∂i, which is compactly supported with

Xc|B2r(0) ≡ c∂|B2r(0). So for each (t, p) ∈ [0, 1] ×B2r(0) we have θc∂(t, p) = p+ tc ∈ B5r(0)
and hence θXc(t, p) = θc∂(t, p) = p + tc. Let ψ = θXc

1 be the flow at time 1. Then in
particular, ψ(p) = p+ c for all p ∈ AI .

Consider the pullback vector field ϕ∗X ∈ Xc(U). Its flow at time 1 is ϕ−1 ◦ψ◦ϕ. Having
compact support, this vector field extends to a global vector field Y ∈ Xc(M), with the
same flow inside of U . Extending by the identity, we find that ψ̃ = ϕ−1 ◦ ψ ◦ ϕ ∈ Diffe(M).
Thus by Lemma 5.2.9, ν is quasi-invariant with respect to ψ̃.

We know that 0 = µ(AI) = ν(ϕ−1(AI)), hence this implies that also µ(AI + c) =
µ(ψ(AI)) = ν(ϕ−1ψϕϕ−1(AI)) = 0. Consequently, µ(A+ c) ≤

∑
I∈Zm µ(AI + c) = 0. Since

A was an arbitrary null set, µ is quasi-invariant with respect to translation by c. Because
c ∈ R was arbitrary, this implies that µ is R-quasi-invariant. □

We can now use a powerful theorem on quasi-invariance of measures to conclude with
the desired result as follows:

Proposition 5.2.11. Let (M,ω) be a volumetric manifold, H a Hilbert space and let
R : DiffR(M ×M) → O(H) be a representation. Suppose that R|C∞M is injective. Then
the measure ν stipulated by Theorem 5.2.8 is equivalent to µω.

Proof: Let ϕ : U → Rm be a chart of M . By Lemma 5.2.10, the image measure µϕ = ν ◦ϕ−1

is Rm-quasi-invariant. By [3], page 20, Proposition 11, this implies that µϕ is equivalent
to the left Haar measure on Rm, i.e. the Lebesgue measure (on the Borel σ-algebra).
So there is a Borel measurable function hϕ = µϕ

λ : Rm → R>0 (the Radon-Nikodým
derivative with respect to the Lebesgue measure λ) such that µϕ = hϕλ. Thus we find that
ν|U = µϕ ◦ ϕ = hϕ ◦ ϕλ ◦ ϕ.

The measure λ ◦ ϕ is given by the volume form ϕ∗dx ∈ Ωm(U) and thus equivalent to
µω|U . Furthermore, hϕ ◦ ϕ is still Borel measurable (and non-zero) because this property is
preserved by concatenations with diffeomorphisms. Thus there is a new Borel measurable
function hU = hϕ ◦ ϕ · λ◦ϕ

µω |U with ν|U = hUµω|U .
To conclude, we cover M by a countable family (Ui)i∈N of subsets diffeomorphic to

Rm and define h : M → R>0, h(p) = hi(p) for p ∈ Ui. This is well-defined for almost all
p ∈ M because Radon-Nikodým derivatives are unique up to deviations on null sets; the
set {p ∈ M | ∃(i, j) ∈ N2 : p ∈ Ui ∩ Uj and hi(p) ̸= hj(p)} must still be a null set. h is
locally Borel measurable and thus Borel measurable, non-zero almost everywhere and fulfils
ν = hµω by construction. □

In (pair) groupoid representation theory, we actually need equivalence not of the
measures on the base space, but of their respective product measures. However, this can
quickly be shown to follow:
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Lemma 5.2.12. Let (X,A) and (Y,B) be measurable spaces. Let µ1 and µ2 be two
σ-finite measures on A. Likewise, let ν1 and ν2 be two σ-finite measure on B.

If µ1 ≪ µ2 and ν1 ≪ ν2, then the respective product measures fulfil µ1 × ν1 ≪ µ2 × ν2.

Proof: By assumption, we are only using σ-finite measures. So by the Radon-Nikodým
Theorem, we find densities m = µ1

µ2
and n = ν1

ν2
which are measurable with respect to

A respectively B and the Borel σ-algebra on R. Hence their product mn : X × Y →
R≥0, (x, y) 7→ m(x)n(y) = m ◦ prA · n ◦ prB is A ⊗ B-Borel measurable, because the
projections prX : X × Y → X and prY : X × Y → Y are always measurable with respect
to the product σ-algebra.

Now for any measurable function f : X × Y → R≥0, we know by Fubini’s theorem that∫
X×Y

fmndµ2 × ν2 =
∫
X

∫
Y
f(x, y)m(x)n(y) dν2(y) dµ2(x)

=
∫
X

∫
Y
f(x, y)dν1(y)m(x)dµ2(x)

=
∫
X

∫
Y
f(x, y)dν1(y)dµ1(x) =

∫
X×Y

f dµ1 × ν1,

and thus µ1 × ν1 = mn · µ2 × ν2 is a usable density function, which means that µ1 × ν1 ≪
µ2 × ν2. □

We conclude with one more proposition:

Proposition 5.2.13. Let (M,ω) be a volumetric manifold, H a Hilbert space and let
R : DiffR(M ×M) → O(H) be a representation. Suppose that R|C∞M is injective. Let ν be
the measure stipulated by Theorem 5.2.8. Then µω × ν is equivalent to ν × µω on M ×M .

Proof: By Proposition 5.2.11, ν is equivalent to µω. Set µ1 = ν2 = µ and µ2 = ν1 = ν to
find that µ× ν ≪ ν × µ, by Lemma 5.2.12. This also works the other way around, so both
product measures are indeed equivalent. □

In the next section, I will discuss quasi-invariance of measures on groupoids more
formally. We will see how it applies to our given setting.

5.3. Measurable Homomorphisms of Groupoids

At this point, we have worked with representations of the groupoid C∗-algebra and
of (invariant) differential operators, and even proven a differentiation theorem. What we
have not yet investigated are representations of a Lie groupoid itself. As explained at the
beginning of this chapter, those are an important step in the integration theory. To allow
their usage in the next chapter, this section will serve as an introduction to representations
of groupoids.

The concept is actually quite simple: A representation of a Lie groupoid will be a
homomorphism between it and the unitary groupoid of a Hilbert field. A homomorphism
of groupoids is, at first glance, just a map P fulfilling P (gh) = P (g)P (h) for all g, h in the
groupoid which are composable; in category theory, this is called a functor. However, in
the context of Hilbert fields, we need a measurable theory, where such homomorphisms are
possibly undefined on a null set within the groupoid.

To accurately and consistently account for such null sets, we first need to define a
measure on the morphism space. Before, we have already worked with measures on both
the fibres and the base space of a groupoid. One can quite easily combine the two to get
the following definition.

Definition 5.3.1. Let G⇒M be a locally compact groupoid with a Haar system α.
Let ν be a Radon measure on M . In this situation, define the following measures:
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• ν1 (also denoted ν ◦ α) on G by∫
G
fdν1 :=

∫
M

∫
Gp
f(g)dαp(g)dν(p)

for all f ∈ CcG
• ν2 on G(2) = {(g, h) ∈ G×G|sg = th} by∫

G(2)
fdν2 =

∫
M

∫
Gp

∫
Gsg

f(g, h)dαsg(h)dαp(g)dν(p) =
∫
G

∫
Gsg

f(g, h)dαsg(h)dν1(g)

for all f ∈ CcG
(2)

Notably, there are more ways to canonically define measures on G and its higher
products when given a Haar system and a measure on the base space. For example, we can
define (ν1)′ = ν ◦ α̃ by

∫
G fdν ◦ α̃ =

∫
M

∫
Gp
f(g)dαp(g)dν(p), where αp = inv∗α

p for the
inversion map inv : G → G, g 7→ g−1.

A further discussion of this can be found in [4], page 7. For now it suffices to consider
the measures above because all the methods yield equivalent measures (i.e. the same null
sets) in relevant situations. A measure ν for which ν ◦ α and ν ◦ α̃ have the same null sets
is called quasi-invariant.

As we are using pair groupoids so often, it seems natural to look at them for an example
of these freshly defined measures.

Example 5.3.2. Let M be a smooth manifold with a volume form ω and a bounded
Radon measure ν. Consider the corresponding volumetric pair groupoid (M × M ⇒
M,pr∗

2ω). Let f : G(2) → R be ν2-measurable. Denote the corresponding Haar system by
α = (αp)p∈M = (µpr2|∗

Gpω)p∈M . Then we have∫
G(2)

fdν2 =
∫
M

∫
Gp

∫
Gsg

f(g, h)dαsg(h)dαp(g)dν(p)

=
∫
M

∫
Gp

∫
M
f(g, (sg, q))dµω(q)dαp(g)dν(p)

=
∫
M

∫
M

∫
M
f((p, w), (w, q))dµω(q)dµω(w)dν(p)

because
∫
M ϕ∗ω =

∫
N ω for any diffeomorphism ϕ : M → N between smooth manifolds M

and N with a top-degree form ω on N .
Furthermore, we find for f : G → R that∫
G
fdν ◦ α =

∫
M

∫
Gp
f(g)dαp(g)dν(p) =

∫
M

∫
M
f(p, q)dµω(q)dν(p) =

∫
G
fdν × µω

and∫
G
fdν ◦ α̃ =

∫
M

∫
Gp

f(g)dαp(g)dν(p) =
∫
M

∫
M
f(p, q)dµω(p)dν(q) =

∫
G
fdµω × ν,

hence ν is quasi-invariant if and only if ν × µω is equivalent to µω × ν.

So as it turns out, the canonical measure on the pair groupoid is quite easy to use for
integration.

Having seen this, we can now formally define essential homomorphisms of groupoids,
where the word essential is meant to point to the fact that null sets are neglected, like with
the essential supremum, for example.

Definition 5.3.3. Let G⇒M be a locally compact groupoid with Haar system α and
a measure ν on M . Let H be any groupoid over M .

An essential homomorphism of first type from G to H is a pair (D,R), where D ⊆ G
is a co-null set (i.e. ν1(G \D) = 0) and R : D → H is a map which fulfils:

• s ◦R = s|D and t ◦R = t|D.
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• There is a set N ⊆ G(2) with ν2(N) = 0 such that for all g, h ∈ D with sg = th,
gh ∈ D and (g, h) /∈ N , we have R(gh) = R(g)R(h).

An essential homomorphism of second type from G to H is a pair (D,R), where again
D ⊆ G is co-null and R : D → H fulfils:

• s ◦R = s|D and t ◦R = t|D.
• R(gh) = R(g)R(h) for all g, h ∈ D such that sg = th and gh ∈ D.

Now that we have seen this concept, let us immediately also look at the local variant.
There our homomorphisms are only defined in a neighbourhood of the diagonal in the
groupoid. Besides that, the idea stays the same, resulting in the following definition. Note
that the special case W = G is precisely the definition of a global essential homomorphism.

Definition 5.3.4. Let G,H,M, ν as before.
A local essential homomorphism of first type is a pair (D,R), where D = W \N for

an open subset W ⊆ G with M ⊆ W such that W ∩Gp is path-connected for all p ∈ M
and a null set N ⊆ G, and R : D → H is such that there exists a null set N2 ⊆ G(2) with
R(gh) = R(g)R(h) for all g, h ∈ D with sg = th, gh ∈ D and (g, h) /∈ N2.

A local essential homomorphism of second type is a pair (D,R), where D = W \N for
an open subset W ⊆ G with M ⊆ W such that W ∩Gp is path-connected for all p ∈ M
and a null set N ⊆ G, and R : D → H is such that R(gh) = R(g)R(h) for all g, h ∈ D
with gh ∈ D and sg = th.

But why do we need two different definitions each time? As it turns out, the measurable
theory of groupoid morphisms spawns a variety of rather inconvenient detail questions.
The first type definition is, in my opinion, the most intuitive one: Not only in the domain
of definition but also in the homomorphy check, a variation on null sets is possible. This
is also what we will get at the end of some of the upcoming theorems. In contrast, the
second definition is slightly shorter and easier to work with, and as such best suited as a
proposition’s premise.

A priori, the second definition is a stronger requirement: There may be essential
homomorphisms of first type which are not essential homomorphisms of second type.
However, after a short time of getting used to these objects, it turns out that both
definitions are mostly equivalent: Every first type homomorphism is also a second type
homomorphism, but on a neglectably smaller domain. A comparable result in a different
context was proven in Theorem 3.2, page 328 of [20].

This equivalence is what I want to show next. As usual, we need another lemma first.
Lemma 5.3.5. Let N ⊆ G be a null set, i.e. ν1(N) = 0. Then for ν1-almost all g ∈ G,

the set Ng := (Gsg ∩N) ∪ (g−1(Gtg ∩N)) is a null set, i.e. αsg(Ng) = 0.

Proof: We know by assumption that

0 = ν1(N) =
∫
M
αp(N ∩Gp)dν(p),

hence there is a ν-null set P ⊆ M such that for all p ∈ M \P , αp(N ∩Gp) = 0. Furthermore,
by the invariance of a Haar system, we have αsg(g−1(Gtg ∩N)) = αtg(Gtg ∩N). So for all
g ∈ G with sg /∈ P and tg /∈ P , we have αsg(Ng) ≤ αsg(N ∩Gsg) + αtg(N ∩Gtg) = 0. It is
left to show that Q := {g ∈ G|sg ∈ P or tg ∈ P} is a ν1-null set.

Obviously we have Q = Q1 ∪ Q2 for Q1 = t−1P and Q2 = s−1P . We have ν1(Q1) =∫
M αp(Gp ∩Q1)dν(p) =

∫
M αp(Gp)χP (p)dν(p) = 0 since ν(P ) = 0. Furthermore, denote by

ν̃1 = ν ◦ α̃ the measure on G induced by the right-invariant Haar system α̃ corresponding
to α. Then ν̃1(Q2) =

∫
M αp(Gp ∩ Q2)dν(p) =

∫
M αp(Gp)χP (p)dν(p) = 0 since ν(P ) = 0.

Since ν is quasi-invariant by assumption, ν1 is absolutely continuous with respect to ν̃1

(and vice versa), hence also ν1(Q2) = 0. This implies ν1(Q) ≤ ν1(Q1) + ν1(Q2) = 0, which
finishes the proof. □
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Using this lemma, the proof of the actual fact is not hard, albeit a bit technical. The
main idea is to show that a certain set has positive measure and hence cannot be empty,
involving a few set-theoretic computations.

Proposition 5.3.6. Let G⇒M , α, ν, H, r as before. Let (D,R) be an essential local
homomorphism of first type from G to H. Then there is a subset D̃ ⊆ D with ν1(D\D̃) = 0
such that (D̃, R|D̃) is a homomorphism of second type.

In particular, if (D,R) is global, then (D̃, R|D̃) is a global homomorphism of second
type.

Proof: Let D = W \Z for W ⊆ G open with M ⊆ W and Z ⊆ G a null set. Let N ⊆ G(2) be
a set with ν2(N) = 0 and R(gh) = R(g)R(h) for all composable g, h ∈ W with gh ∈ W \Z
and (g, h) /∈ N . Then by the definition of ν2, we have

0 = ν2(N) =
∫
G(2)

χNdν2 =
∫
G

∫
Gsg

χN (g, h)dαsg(h)dν1(g),

where χN is the characteristic function of N , so by elementary measure theory and χN ≥ 0,
there is a set N1 ⊆ G with ν1(N1) = 0 such that

∫
Gsg χN (g, h)dαsg(h) = 0 for all g ∈ G\N1.

Hence for all g ∈ G \N1 and αsg-almost all h ∈ Gsg, (g, h) /∈ N .
Put C := G \Z. Since lg : Gsg → Gtg is a bijection for all g ∈ G, we have the following

set theoretic computation:
Gsg \ g−1(Gtg ∩ C) = g−1g(Gsg \ g−1(Gtg ∩ C))

= g−1(gGsg \ gg−1(Gtg ∩ C)) = g−1(Gtg \ (Gtg ∩ C)) = g−1(Gtg \ C),
hence

Gsg \ (Gsg ∩ C ∩ g−1(Gtg ∩ C)) = (Gsg \ C) ∪ (Gsg \ (g−1(Gtg ∩ C)))
= (Gsg \ C) ∪ g−1(Gtg \ C) = (Gsg ∩ (G \ C)) ∪ (g−1(Gtg ∩ (G \ C)))
= (Gsg ∩ Z) ∪ (g−1(Gtg ∩ Z))

By Lemma 5.3.5, there is a null set N2 ⊆ G such that (Gsg ∩ Z) ∪ (g−1(Gtg ∩ Z)) is
an αsg-null set for all g ∈ G \ N2, i.e. Cg := Gsg ∩ C ∩ g−1(Gtg ∩ C) is co-null by the
computation before.

Now for all g ∈ D, put Dg := Gsg ∩D ∩ g−1(Gtg ∩D). We have D = W \ Z = W ∩ C,
so Dg = Gsg ∩ W ∩ C ∩ g−1(Gtg ∩ W ∩ C) = (W ∩ Gsg ∩ g−1(Gtg ∩ W ) ∩ Cg. For all
g ∈ W , we obviously have sg = g−1g ∈ g−1(Gtg ∩W ) and sg ∈ W ∩Gsg since M ⊆ W . So
(W ∩Gsg ∩ g−1(Gtg ∩W ) ⊆ Gsg is non-empty as well as open, hence it has strictly positive
measure. Hence also αsg(Dg) > 0.

Set D̃ := D \ (N1 ∪ N2), let g ∈ D̃ ∩ W = W \ (N1 ∪ N2 ∪ Z) and define Rh(g) :=
R(gh)R(h)−1 for all h ∈ Dg = Gsg ∩D ∩ g−1(Gtg ∩D). Then as shown in the first part,
for almost all h ∈ Gsg we have (g, h) /∈ N , so for almost all h ∈ Dg ⊆ Gsg, we have

Rh(g) = R(gh)R(h)−1 = R(g)R(h)R(h)−1 = R(g)
by the defining property of a first-type homomorphism.

Now let g, h ∈ D̃ ∩ W be arbitrary with sg = th and gh ∈ D̃ ∩ W . Consider the set
P := {h−1x|x ∈ Gsg, (g, x) ∈ N}∪{y ∈ Gsh|(gh, y) ∈ N}∪{y ∈ Gsh|(h, y) ∈ N}. Because
g, h, gh ∈ G \N1 and because α is left-invariant, P is still an αsh-null set. Then for almost
all y ∈ Dh \ P ⊆ Gsh, we have

R(g)R(h) = R(g)Ry(h) = R(g)R(hy)R(y)−1

= R(ghy)R(y)−1 = R(gh)R(y)R(y)−1 = R(gh)

because (h, y) /∈ N , (g, hy) /∈ N and (gh, y) /∈ N . Dh \ P still has strictly positive measure,
so it is non-empty in particular, which implies that indeed R(g)R(h) = R(gh). This
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shows that (D̃, R|D̃) is an essential homomorphism of second type, with the same open
neighbourhood of the diagonal W as for the original (D,R). □

So it is now clear that the difference between the two definitions is really just a technical
one (which does not mean it will not be of use). Having that settled, we can now proceed
to the more advanced part of this section. We will soon prove that, like ordinary Lie group
homomorphisms, a local essential homomorphism from a Lie groupoid to another groupoid
can be extended to a global one if the source fibres are simply connected.

The key idea for this theorem will be, as for Lie groups, to take a path from the identity
to any point in the groupoid, cut it in small pieces and define the global homomorphism by
products of these small pieces. Of course more detail will follow soon, but this extension
theorem requires a few more preliminaries to handle the technical details.

Let us start proving the necessary lemmas now. The assumptions of the first one may
seem a bit arbitrary, but the important part here is that they are fulfilled almost everywhere
if N is a null set.

Lemma 5.3.7. Let p ∈ M . Let N ⊆ G be a set. For all i ∈ N, let hi ∈ Gp such that
αshi(Gshi ∩ (N ∪N−1)) = 0. Let g ∈ Gp and let U ⊆ Gp be an open neighbourhood of g.
Then there is an element h ∈ U such that h−1

i h /∈ N and h−1hi /∈ N for all i ∈ N.
Furthermore, if αp(s−1{q ∈ M |αq(Gq ∩ (N ∪ N−1)) ̸= 0} ∩ Gp) = 0, then h can be

chosen with the former property such that αsh(Gsh ∩ (N ∪N−1)) = 0.

Proof: We have αp(hi(Gshi ∩ (N ∪ N−1)) = αshi(Gshi ∩ (N ∪ N−1)) = 0 for each i, so
the countable union

⋃
i∈N hi(Gshi ∩ (N ∪ N−1)) is still a null set. Because αp has full

support as part of a Haar system and U is non-empty and open, we have αp(U) > 0. Hence
U \

⋃
i∈N hi(Gshi ∩ (N ∪N−1)) has strictly positive measure, which means it is non-empty.

So choose an element h ∈ U \
⋃
i∈N hi(Gshi ∩ (N ∪N−1)).

Then for each i ∈ N, we have h /∈ hi(Gshi ∩ N), so h−1
i h /∈ Gsh ∩ N). Clearly

t(h−1
i h) = shi, so h−1

i h ∈ Gshi \ N . Furthermore, we have h /∈ hi(Gshi ∩ N−1), hence
h−1
i h /∈ Gshi ∩N−1 (but still h−1

i h ∈ Gshi), hence h−1hi = (h−1
i h)−1 /∈ N = (N−1)−1. This

proves the first required property.
Now assume that αp(s−1{q ∈ M |αq(Gq ∩ (N ∪ N−1)) ̸= 0} ∩ Gp) = 0. Then the set

U \ (s−1{q ∈ M |αq(Gq ∩ (N ∪N−1)) ̸= 0} ∪
⋃
i∈N hi(Gshi ∩ (N ∪N−1))) still has the same

positive measure as U , hence is non-empty. So choose h from this set. Then in addition to
h−1
i h /∈ N and h−1hi /∈ N as before, we have h /∈ s−1{q ∈ M |αq(Gq ∩ (N ∪ N−1)) ̸= 0},

i.e. sh ∈ {q ∈ M |αq(Gq ∩ (N ∪N−1)) = 0}, i.e. αsh(Gsh ∩ (N ∪N−1)) = 0. □

This lemma is designed to carefully avoid certain null sets in our extension theorem,
which is necessary because essential homomorphisms are not defined everywhere. The
second part of the lemma allows us to use it for an induction process.

The second lemma will now build on the first one to give us sequences of points in
groupoid fibres, which not only avoid a null set themselves, but also are arranged such that
their products avoid it.

Lemma 5.3.8. Let W ⊆ G be an open set with M ⊆ W . Let N ⊆ G be any set such
that N ∩ M = ∅. Let p ∈ M be such that Gp is path-connected, αp(s−1{q ∈ M |αq(Gq ∩
(N ∪N−1)) ̸= 0} ∩Gp) = 0, αp(Gp ∩ (N ∪N−1)) = 0. Let g ∈ Gp such that g /∈ N ∪N−1

and αsg(Gsg ∩ (N ∪N−1)) = 0.
Then there are finitely many elements h0 = p, h1, . . . , hn−1, hn = g such that h−1

i hi+1 ∈
W for all i ∈ {0, . . . , n− 1} and h−1

i hj /∈ N for all i, j ∈ {0, . . . , n}.

Proof: Let γ : [0, 1] → Gp be a path from p to g. Then since γ and the multiplication in G
are continuous and [0, 1] is compact, there is a positive δ > 0 such that for all a, b ∈ [0, 1]
with |a − b| < δ, γ(a)−1γ(b) ∈ W . Choose n ∈ N with n > 1

δ and set gi := γ( in) for all
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i ∈ {0, . . . , n}. Then we have g−1
i gi+1 ∈ W for all i ∈ {0, . . . , n−1}. Since the multiplication

is continuous and W is open, we can choose an open neighbourhood Ui of gi for each
i ∈ {0, . . . , n} such that U−1

i Ui+1 ⊆ W for all i ∈ {0, . . . , n− 1}.
Now we use Lemma 5.3.7 for an induction argument: Set h0 = g0 = p /∈ N and

hn = gn = g. By assumption we have αp(s−1{q ∈ M |αq(Gq ∩ (N ∪N−1)) ̸= 0} ∩Gp) = 0,
αsg(Gsg ∩ (N ∪N−1)) = 0 and αsh0(Gsh0 ∩ (N ∪N−1)) = 0, which gives the beginning of
the induction.

For each i ∈ {1, . . . , n − 1}, choose, using the lemma, an element hi ∈ Ui such that
αshi(Gshi ∩ (N ∪ N−1)) = 0, h−1

j hi /∈ N and h−1
i hj /∈ N for all j ∈ {0, . . . , i − 1} ∪ {n},

which is possible since the requirements of the lemma are fulfilled in each step.
By this process we have made sure that for each i ∈ {1, . . . , n − 1} and each j ∈

{0, . . . , i − 1, i + 1, . . . , n} we have h−1
i hj /∈ N and h−1

j hi /∈ N . Furthermore, we have
h−1
i hi = s(hi) /∈ N for all i, h−1

0 hn = g /∈ N and h−1
n h0 = g−1 /∈ N . So indeed h−1

i hj /∈ N
for all i, j ∈ {0, . . . , n}.

By the choice of the Ui, we have made sure that h−1
i hi+1 ∈ W for all i ∈ {0, . . . , n− 1}

since hi ∈ Ui. □

Whenever it gets hard to remember all the technicalities, we just need to keep in mind
that our helpful lemmas give us certain paths through the groupoid which are good in the
sense that they avoid the undefined zones.

We need just one more lemma of this kind. This time, it is less about measures and
more about topology and metrics.

Lemma 5.3.9. Let G ⇒ M be a Lie groupoid with a metric d such that the topology
of G is induced by d. Let p ∈ M , K be a compact metric space and let γ : K → Gp be a
continuous map. Let W ⊆ G be open with s ◦ γ(K) ⊆ M ∩W .

Then there exists an ϵ > 0 such that for all x, y ∈ K and g, h ∈ Gp with dK(x, y) < ϵ,
d(γ(x), g) < ϵ and d(γ(y), h) < ϵ, we have g−1h ∈ W .

Proof: To begin with, on G×G (and a fortiori on G(2) ⊆ G×G), we use the product metric
d2 with d2((x, g), (y, h)) := d(x, y) + d(g, h), which induces the usual product topology.
On K2 we use d2

K defined by d2
K((a, b), (x, y)) = dK(a, x) + dK(b, y). Other metrics would

work, too.
γ is continuous with a compact domain, hence it is uniformly continuous. The same

holds for γ2 : K2 → G(2), (a, b) 7→ (γ(a)−1, γ(b)). Let ∆ = {(a, a)|a ∈ K} ⊆ K2 be the
diagonal. We have mult ◦ γ2(a, a) = γ(a)−1γ(a) = s ◦ γ(a) ∈ W for all a ∈ K, hence
γ2(∆) ⊆ mult−1W , where mult : G(2) → G is the multiplication map. Because W is open
and mult is continuous, mult−1W is also open.

Because mult−1W is open and γ2(∆) ⊆ mult−1W , for every a ∈ K, there is an
ϵa > 0 such that the d2-ball U2ϵa(γ2(a, a)) ⊆ mult−1W . Because ∆ and hence γ2(∆) is
compact, we can choose finitely many a1, . . . , an ∈ K such that we have a finite sub-
cover γ2(∆) ⊆

⋃n
i=1 Uϵai

(γ2(ai, ai)). Set ϵ0 := minni=1 ϵai > 0. Then if a ∈ K is arbitrary,
and x ∈ Uϵ0(γ2(a, a)), we have d2(γ2(a, a), γ2(ai, ai) < ϵ0 for some i ∈ {1, . . . , n}, hence
d2(x, γ2(ai, ai)) < 2ϵ0 ≤ 2ϵai , hence x ∈ mult−1W .

Choose a compact neighbourhood L of γ(K) within Gp. Because γ(K) is compact,
there exists an ϵ1 > 0 such that Uϵ1(g) ⊆ L for all g ∈ γ(K). Because L is compact, the
restricted inversion map inv|L is uniformly continuous, hence there is a δ > 0 such that for
all g, h ∈ L with d(g, h) < δ, d(g−1, h−1) < ϵ0

3 .
And because γ is uniformly continuous, there is a δ2 > 0 such that for all x, y ∈ K

with dK(x, y) < δ2, d(γ(x), γ(y)) < ϵ0
3 .

Using all of the above, set ϵ := min{ ϵ03 , δ, δ1, ϵ1}. Let x, y ∈ K with dK(x, y) < ϵ and
g, h ∈ Gp with d(γ(x), g), d(γ(y), h) < ϵ. Then because d(g, γ(x)) < ϵ1, we have g ∈ L.
So because d(g, γ(x)) < δ, we have d(g−1, γ(x)−1) < ϵ0

3 . Because dK(x, y) < δ1, we have
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d(γ(x), γ(y)) < ϵ
3 . By definition we also have d(h, γ(y)) < ϵ0

3 . Hence we get:

d2((g−1, h), γ2(x, x)) = d2((g−1, h), (γ(x)−1, γ(x)))
= d(g−1, γ(x)−1) + d(h, γ(x))

<
ϵ0
3 + d(h, γ(y)) + d(γ(x), γ(y)) < 3ϵ03 = ϵ0

This shows that (g−1, h) ∈ Uϵ0(γ2(x, x)) ⊆ mult−1W ⊆ G(2), so mult((g−1, h)) = g−1h ∈
W . □

So without further ado, let us look at the main theorem of this section.

Theorem 5.3.10. Let G⇒M be a Lie groupoid with simply connected target fibres.
Let ν be a quasi-invariant measure on M and α = (αx)x∈M a Haar system on G. Let H
be a groupoid. Let (D,R) be a local essential homomorphism of second type from G to H.
Then R extends to a global essential homomorphism of second type, i.e. there is a global
essential homomorphism (D̃, R̃) from G to H such that R̃|D̃∩D = R|D̃∩D. Any two such
extensions are equal up to changes on a null set.

Proof: All smooth (and second-countable, which is contained in my standard definition)
manifolds are metrizable. So choose, once for the whole theorem, a metric d on G which
induces the topology of G. This will be used later.

Let W ⊆ G be open with M ⊆ W and N ⊆ G a ν1-null set such that D = W \ N .
Because ν is quasi-invariant, the set N−1 is still a null set, as is N ∪ N−1. Hence for
ν-almost all p ∈ M we have mp := αp(Gp ∩ (N ∪N−1)) = 0. Hence we have ν̃1(s−1{p ∈
M |mp ≠ 0}) =

∫
M αp(Gp ∩ s−1{q ∈ M |mq ≠ 0})dν(p) =

∫
M αp(s−1{q ∈ M |mq ≠ 0, q =

p})dν(p) =
∫
M αp(Gp) · (1 − δmp,0)dν(p) = 0 as (1 − δmp,0) = 0 ν-almost everywhere.

It may occur that αp(Gp) = ∞, but the computation is still valid in this case. Since ν
is quasi-invariant, null sets under ν1 and ν̃1 are the same, so 0 = ν1(s−1{p ∈ M |mp ≠
0}) =

∫
M αp(s−1{q ∈ M |mq ≠ 0} ∩ Gp)dν(p). Hence for ν-almost all p ∈ M , we have

0 = αp(s−1{q ∈ M |mq ̸= 0} ∩Gp) = αp(s−1{q ∈ M |αq(Gq ∩ (N ∪N−1)) ̸= 0} ∩Gp).
Since N ∪N−1 is a null set, we also have αp(N ∪N−1) = 0 for almost all p ∈ M . Let

p ∈ M be a point such that this is fulfilled as well as 0 = αp(s−1{q ∈ M |αq(Gq ∩ (N ∪
N−1)) ̸= 0} ∩Gp). In a more worded but equivalent sense this means that for almost all
g ∈ Gp, we have αsg(Gsg ∩ (N ∪N−1)) = 0. So choose g ∈ Gp such that this is true and
such that g /∈ N ∪N−1.

Gp is (even simply) connected, so choose a path γ : [0, 1] → Gp from p to g. By
Lemma 5.3.9, there is an n ∈ N such that g−1h ∈ W for all x, y ∈ [0, 1], g, h ∈ Gp with
|x− y|, d(g, γ(x)), d(h, γ(y)) ≤ 3

n . Set g0 = p = γ(0) and gn = g = γ(1). By inductive use of
Lemma 5.3.7 as in Lemma 5.3.8, choose gi ∈ U 1

n
(γ( in)) for all i ∈ {1, . . . , n− 1} such that

αsgi(Gsgi ∩ (N ∪ N−1)) = 0 and g−1
i gj /∈ N for all i, j ∈ {0, . . . , n}. Then by the choice

of n and the construction, we have g−1
i gi+1 ∈ W \N , and clearly s(g−1

i gi+1) = s(gi+1) =
t(g−1

i+1) = t(g−1
i+1gi+2) for all i, hence we can define:

Rγ,n,g1,...,gn−1(g) := R(g−1
0 g1)R(g−1

1 g2) . . . R(g−1
n−1gn)

I will now show, step by step, that this definition is in fact independent of the choice of
the gi, of n and of γ. This is the most tedious part of the proof.

Step 1: Let hi ∈ U 1
n

(γ( in)) be another choice of elements for each i ∈ {1, . . . , n − 1}
such that h−1

i hj /∈ N and αshi(Gshi ∩ (N ∪N−1)) = 0. Using the same induction by Lemma
5.3.7 again, this time with the starting elements g0, . . . , gn, h0, . . . , hn, a0 . . . , ai−1 we can
find ai ∈ U 1

n
(γ( in)) for i ∈ {1, . . . , n− 1} such that a−1

i aj , a
−1
i gj , g

−1
i aj , a

−1
i hj , h

−1
i aj /∈ N

for all i, j ∈ {0, . . . , n}. Then for all i we have g−1
i ai+1 ∈ W \ N , a−1

i+1gi+1 ∈ W \ N and
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g−1
i ai+1a

−1
i+1gi+1 = g−1

i gi+1 ∈ W \N , hence

R(g−1
i ai+1)R(a−1

i+1gi+1) = R(g−1
i gi+1).

Likewise, we have a−1
i gi, g

−1
i ai+1, a

−1
i ai+1 ∈ W \N , hence

R(a−1
i gi)R(g−1

i ai+1) = R(a−1
i ai+1).

So we compute:

Rγ,n,g1,...,gn−1(g) = R(g−1
0 g1) . . . R(g−1

n−1gn)
= R(g−1

0 a1)R(a−1
1 g1)R(g−1

1 a2)R(a−1
2 g2) . . . R(g−1

n−1an)R(a−1
n gn)

= R(g−1
0 a1)R(a−1

1 a2) . . . R(a−1
n−1an)R(a−1

n gn)
= R(a−1

0 a1) . . . R(a−1
n−1an) = Rγ,n,a1,...,an−1(g),

using the former two lines and the fact that a0 = g0 = p and an = gn = g, so that
R(a−1

n gn) = R(sg) = 1sg ∈ Hsg.
The n− 1-tuples (g1, . . . , gn−1) and (h1, . . . , hn−1) are completely interchangeable here,

so we get the analogous result for the hi:

Rγ,n,h1,...,hn−1(g) = Rγ,n,a1,...,an−1(g)

Consequently, we have equality between the two choices and denote:

Rγ,n(g) := Rγ,n,g1,...,gn−1(g) = Rγ,n,h1,...,hn−1(g)

Step 2: Let m ∈ N be another natural number such that g−1h ∈ W for all x, y ∈ [0, 1],
g, h ∈ Gp with |x− y|, d(g, γ(x)), d(h, γ(y)) ≤ 3

m . Using our beloved Lemma 5.3.7, choose
ai ∈ U 1

nm
(γ( i

nm)) for all i ∈ {1, . . . , nm− 1} such that a−1
i aj /∈ N for all i, j ∈ {0, . . . , nm},

where a0 = p and anm = g. Then because U 1
nm

(γ( i
nm)) ⊆ U 1

n
(γ( i

nm)) for all i ∈ {0, . . . , nm}
and | i

nm − i+j
nm | = j

nm ≤ 1
n for all j ∈ {1, . . . ,m}, we have a−1

i ai+j ∈ W \N for i ≤ nm− j

by the choice of n. Likewise, we have a−1
i ai+j ∈ W \ N for all j ∈ {1, . . . , n} and all

i ∈ {0, . . . , nm − j} by the choice of m. This implies that R(a−1
i ai+1)R(a−1

i+1ai+j) =
R(a−1

i ai+j) for all j ∈ {1, . . . ,max(n,m)}, so inductively R(a−1
i ai+1) . . . R(a−1

i+m−1ai+m) =
R(a−1

i ai+m) for i ∈ {0, . . . , (n− 1)m} and R(a−1
i ai+1) . . . R(a−1

i+n−1ai+n) = R(a−1
i ai+n) for

i ∈ {0, . . . , n(m− 1)}.
Set gi := aim for all i ∈ {0, . . . , n} and hi := ain for all i ∈ {0, . . . ,m}. Then as noted

before, gi ∈ U 1
n

(γ( in)) and g−1
i gj /∈ N a fortiori since this is true for the ai, and likewise for

the hi. By Step 1 of the proof we can use these gi and hi to define Rγ,n(g) and Rγ,m(g),
respectively. By this fact and the previous explanation, we deduce:

Rγ,n(g) = R(g−1
0 g1) . . . R(g−1

n−1gn) = R(a−1
0 am) . . . R(a−1

(n−1)manm)

= R(a−1
0 a1) . . . R(a−1

m−1am) . . . R(a−1
(n−1)ma(n−1)m+1) . . . R(a−1

nm−1anm)

= R(a−1
0 an) . . . R(a−1

n(m−1)anm) = R(h−1
0 h1) . . . R(h−1

m−1hm) = Rγ,m(g),

which shows independence of the choice of n. Hence we denote, for any large enough n ∈ N:

Rγ(g) := Rγ,n(g)

Step 3: Let γ0, γ1 : [0, 1] → Gp be two paths from p to g. Since Gp is simply connected,
there is a continuous homotopy η : [0, 1]2 → Gp from γ0 to γ1. So we have γi = η(i, ·) for
both i and η(·, 0) ≡ p, η(·, 1) ≡ g. By Lemma 5.3.9, choose an n ∈ N such that for all
x, y ∈ [0, 1]2 and all g, h ∈ Gp with ∥x− y∥, d(η(x), g), d(η(y), h) ≤ 13

n we have g−1h ∈ W .
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Using this n, define ηi := η( in , ·) for all i ∈ {0, . . . , n}. Furthermore for all i ∈
{0, . . . , n− 1} and all j ∈ {0, . . . , n+ 1}, define

ηij : [0, 1] → Gx, ηij(r) :=


ηi+1(r), r ≤ j−1

n

η( i+j−nrn , r), j−1
n < r ≤ j

n

ηi(r), j
n ≤ r

Note that ηij is still a continuous path from p to g, ηij( jn) = ηi( jn), ηi0 = ηi and ηi,n+1 = ηi+1
for all i, j. Furthermore we have η00 = η0 = γ0 and ηn−1,n+1 = ηn = γ1.

For all i ∈ {0, . . . , n} and all j ∈ {−1, 0} set gi,j := p, and gi,j := g for j ∈ {n, n+1, n+
2}. Using Lemma 5.3.7 once more, choose gi,j ∈ U 1

n
(η( in ,

j
n)) for all i ∈ {0, . . . , n} and all

j ∈ {1, . . . , n−1}, such that g−1
i,j gk,l /∈ N for all i, k ∈ {0, . . . , n} and all j, l ∈ {−1, . . . , n+2}.

Then by the choice of n and the fact that ∥( i+1
n , j−1

n ) − ( in ,
j+1
n )∥ = 1

n∥(1,−2)∥ ≤ 3
n , we

have g−1
i+1,j−1gi,j+1 ∈ W \N for all i ∈ {0, . . . , n− 1} and all j ∈ {0, . . . , n+ 1}. By likewise

arguing, we also have g−1
i+1,j−1gi,j , g

−1
i,j gi,j+1, g

−1
i+1,j−1gi+1,j , g

−1
i+1,jgi,j+1 ∈ W \ N . So using

that R is a local essential homomorphism on W \N , we find that
R(g−1

i+1,j−1gi,j)R(g−1
i,j gi,j+1) = R(g−1

i+1,j−1gi,j+1) = R(g−1
i+1,j−1gi+1,j)R(g−1

i+1,jgi,j+1).
For all i, j and all x, y ∈ [0, 1] we have ηi,j(x) = η(x̃) and ηi,j(y) = η(ỹ) for some

x̃, , ỹ ∈ [0, 1]2 with ∥x̃− ỹ∥ ≤ 2|x− y|, namely

x̃ =


(i+ 1, x), x ≤ j−1

n

( i+j−nrn , x), j−1
n < x ≤ j

n

(i, x), j
n < x

and likewise for y. Verification of the equation above is just case distinction with the three
possible steps for x and y. This assures that Rηi,j (g) = Rηi,j ,n(g) and that the latter is
defined; that n is large enough with respect to d and ηi,j .

Choose i ∈ {0, . . . , n − 1} and j ∈ {0, . . . , n}. We have gi+1,k ∈ U 1
n

(η( i+1
n , kn)) =

U 1
n

(ηi,j( kn)) for all k ∈ {1, . . . , j − 1} and gi,k ∈ U 1
n

(η( in ,
k
n)) = U 1

n
(ηi,j( kn)) for k ∈

{j, . . . , n− 1}, hence by the previous two steps,
Rηi,j (g) = Rηi,j ,n,gi+1,1,...,gi+1,j−1,gi,j ,...,gi,n−1(g)

= R(g−1
i+1,0gi+1,1) . . . R(g−1

i+1,j−2gi+1,j−1)R(g−1
i+1,j−1gi,j)R(g−1

i,j gi,j+1)
·R(g−1

i,j+1gi,j+2) . . . R(g−1
i,n−1gi,n)

= AR(g−1
i+1,j−1gi,j)R(g−1

i,j gi,j+1)B

for A = R(g−1
i+1,0gi+1,1) . . . R(g−1

i+1,j−2gi+1,j−1) and B = R(g−1
i,j+1gi,j+2) . . . R(g−1

i,n−1gi,n).
Likewise, we find that:

Rηi,j+1(g) = AR(g−1
i+1,j−1gi+1,j)R(g−1

i+1,jgi,j+1)B
As shown before, we have

R(g−1
i+1,j−1gi,j)R(g−1

i,j gi,j+1) = R(g−1
i+1,j−1gi+1,j)R(g−1

i+1,jgi,j+1),
so indeed Rηi,j (g) = Rηi,j+1(g). By finite induction, this implies that Rηi(g) = Rηi,0(g) =
Rηi,n+1(g) = Rηi+1(g). This is true for all i ∈ {0, . . . , n− 1}, hence by one more induction,
Rγ0(g) = Rη0(g) = Rηn(g) = Rγ1(g), which is the required result. Hence, we may define

R̃(g) := Rγ(g)
for any path γ from p to g within Gp.

Step 4: Domain of definition: Define Z := {q ∈ M |αq(Gq ∩ (N ∪N−1)) ̸= 0}. All of the
above construction was done for an arbitrary p ∈ M such that αp(Gp ∩ (N ∪N−1)) = 0
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(i.e. p ∈ M \Z) and αp(Gp ∩ s−1Z) = 0, and an arbitrary g ∈ G with tg = p, g /∈ N ∪N−1

and αsg(Gsg ∩ (N ∪N−1)) = 0. So set N± := N ∪N−1 and define:

D̃ := {g ∈ G \ (N±)|0 = αtg(Gtg ∩ (N±)) = αsg(Gsg ∩ (N±)) = αtg(Gtg ∩ s−1Z)},
which is co-null within G because N and s−1Z are null sets. This was already discussed
in more detail before. Hence the construction from before gives us a well-defined map
R̃ : D̃ → H.

Step 5: We will show homomorphy now. Let g, h ∈ D̃ be arbitrary with sg = th
and gh ∈ D̃. Set p = tg, q = th = sg. Let γg : [0, 1] → Gp be a path from p to g and
γh : [0, 1] → Gq a path from q to h. Define γ[0,1] → Gp by

γ(r) :=
{
γg(2r), r ≤ 1

2
gγh(2r − 1), r > 1

2

for all r ∈ [0, 1], which is a continuous path from p to gh by γg(2· 1
2) = g = gq = gγh(2· 1

2 −1).
Let n ∈ N be large enough to define Rγg ,n(g), Rγh,n(h) and Rγ,n(gh). Then a fortiori, also
Rγ,2n(gh) is defined.

Let K be a compact neighbourhood of γh([0, 1]) ⊆ Gq, which exists because Gq is locally
compact and γh([0, 1]) is compact. The map lg : Gq → Gp, a 7→ ga is continuous, hence
lg|K is uniformly continuous. So choose an ϵ > 0 such that d(ga, gb) < 1

2n for all a, b ∈ K

with d(a, b) < ϵ. Without loss of generality, choose this ϵ such that also Uϵ(γh( in)) ⊆ K for
all i ∈ {0, . . . , n} and such that ϵ < 1

2n .
Set g0 = p and gn = g. We have g, gh ∈ D̃ by assumption, so p, g, g−1, gh, h−1g−1 /∈ N ,

αsg(Gsg ∩ (N ∪ N−1)) = 0 = αs(gh)(Gs(gh) ∩ (N ∪ N−1)), αp(Gp ∩ (N ∪ N−1)) = 0 and
αp(Gp∩s−1Z) = 0. Hence using Lemma 5.3.7, we can choose, inductively, gi ∈ Uϵ(γg( in)) ⊆
Gp for all i ∈ {1, . . . , n−1} such that g−1

i gj /∈ N , g−1
i gh /∈ N and (gh)−1gj = h−1g−1gj /∈ N

for all i, j ∈ {0, . . . , n}, as well as αsgi(Gsgi ∩ (N ∪N−1)) = 0.
Furthermore, by h ∈ D̃ we have q, h, h−1 /∈ N , αsh(Gsh ∩ (N ∪ N−1)) = 0, αq(Gq ∩

(N ∪N−1)) = 0 and αq(Gq ∩ s−1Z) = 0. We also have αs(g−1gj (Gs(g−1gj) ∩ (N ∪N−1)) =
αsgj (Gsgj ∩ (N ∪ N−1)) = 0 for all j ∈ {0, . . . , n}. So set h0 = q, hn = h and by using
Lemma 5.3.7 again, choose, inductively, hi ∈ Uϵ(γh( in) for all i ∈ {1, . . . , n − 1} such
that αshi(Gshi ∩ (N ∪ N−1)) = 0, h−1

i hj /∈ N , h−1
i g−1gj /∈ N and g−1

i ghj /∈ N for all
i, j ∈ {0, . . . , n}.

Now for each i ∈ {0, . . . , n}, set ci := gi, and for each i ∈ {n+1, . . . , 2n}, set ci := ghi−n.
Then for each i ∈ {0, . . . , n} we have

ci = gi ∈ Uϵ(γg(
i

n
)) = Uϵ(γ( i2n)) ⊆ U 1

2n
(γ( i2n)),

and for each i ∈ {n+ 1, . . . , 2n} we have

ci = ghi−n ∈ gUϵ(γh( i− n

n
)) ⊆ U 1

2n
(gγh( i− n

n
)) = U 1

2n
(gγh(2 i

2n − 1)) = U 1
2n

(γ( i2n)).

We also have c0 = p, cn = g and c2n = gh. We need to check that c−1
i cj /∈ N for all

i, j ∈ {0, . . . , 2n}. The specific choices of the gi and hi were to make this sure. Namely
there are the following cases:

If i, j ≤ n, then c−1
i cj = g−1

i gj /∈ N by the choice of the gi. If i, j > n, then c−1
i cj =

(ghi−n)−1ghj−n = h−1
i−nhj−n /∈ N by the choice of the hi. If i ≤ n and n < j < 2n, then

c−1
i cj = g−1

i ghj−n /∈ N and c−1
j ci = (ghj−n)−1gj = h−1

j−ng
−1g−1

j /∈ N by the choice of the
hj . If i ≤ n and j = 2n, then c−1

i cj = g−1
i gh /∈ N and c−1

j ci = h−1g−1gi /∈ N by the choice
of the gi. These are all possible cases, so indeed c−1

i cj /∈ N for all i, j ∈ {0, . . . , 2n}.
Lastly, we can be sure that αsci(Gsci ∩ (N ∪N−1)) = 0 because sci = sgi or sci = shi−n

and the gi, hi we chosen in this way.
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Hence Rγ,2n,c1,...,c2n−1 is defined and by the steps 1 to 3 we know that

R̃(gh) = Rγ,2n,c1,...,c2n−1(gh).

Because ϵ < 1
n , g−1

i gj /∈ N , αsgi(Gsgi ∩ (N ∪ N−1)) = 0 = αshi(Gshi ∩ (N ∪ N−1)) and
h−1
i hj /∈ N for all i, j ∈ {0, . . . , n} by the choices made before, we also have R̃(g) =
Rγg ,n,g1,...,gn−1(g) and R̃(h) = Rγh,n,h1,...,hn−1(h).

Hence we finally compute:
R̃(gh) = Rγ,2n,c1,...,c2n−1 = R(c−1

0 c1) . . . R(c−1
n−1cn)R(c−1

n cn+1) . . . R(c−1
2n−1c2n)

= R(g−1
0 g1) . . . R(g−1

n−1gn)R(g−1gh1)R(h−1
1 g−1gh2) . . . R(h−1

n−1g
−1ghn)

= R(g−1
0 g1) . . . R(g−1

n−1gn)R(h−1
0 h1) . . . R(h−1

n−1hn)
= Rγg ,n,g1,...,gn−1(g)Rγh,n,h1,...,hn−1(h) = R̃(g)R̃(h)

Because g, h ∈ D̃ were arbitrary, this shows that (D̃, R̃) is indeed an essential homo-
morphism of second type.

Step 6: Let us now show that R̃|D̃∩D = R|D̃∩D. To do this, let g ∈ D̃ ∩D = D̃ ∩W be
arbitrary. Set p = tg. By assumption, Gp ∩W is connected and p ∈ Gp ∩W , so choose a
path γ : [0, 1] → Gp∩W from p to g. Choose n ∈ N large enough and gi ∈ W ∩U 1

n
(γ( in)) for

i ∈ {1, . . . , n− 1} suitable to define Rγ,n,g1,...,gn−1(g), which is possible since W is open and
γ( in) ∈ W . Then for all i ∈ {0, . . . , n−1} we have g−1

0 gig
−1
i gi+1 = g−1

0 gi+1 = gi+1 ∈ W \N ,
so because R is a local essential homomorphism on W \ N , we have R(g−1

0 gig
−1
i gi+1) =

R(g−1
0 gi+1), and hence by induction:

R̃(g) = Rγ,n,g1,...,gn−1(g) = R(g−1
0 g1) . . . R(g−1

n−1gn) = R(g−1
0 gn) = R(g)

Step 7: Now, assume that (E,P ) : G 99K H is any global essential homomorphism of
second type such that P |E∩D = R|E∩D. I claim that there is another set F ⊆ E ∩ D̃ which
is co-null in G such that P |F = R̃|F , so that in this sense, the extension R̃ is unique up to
null sets.

Namely consider the set L := (G \ E) ∪ (G \ D̃), which is still a null set as union of
null sets. Define ZL := {q ∈ M |αq(Gq ∩ (L ∪ L−1)) ̸= 0} and
F := {g ∈ G\(L∪L−1)|0 = αtg(Gtg∩(L∪L−1)) = αsg(Gsg∩(L∪L−1)) = αtg(Gtg∩s−1ZL)}
like in step 4 with L instead of N , which is co-null as discussed before. By construction,
F ⊆ E ∩ D̃.

Let g ∈ F be arbitrary. Put p = tg. Since Gp is connected, choose a path γ : [0, 1] → Gp

from p to g. Use Lemma 5.3.9 to choose an n ∈ N such that for all x, y ∈ [0, 1], g, h ∈ Gp with
|x− y|, d(γ(x), g), d(γ(y), h) < 4

n , g−1h ∈ W . We have αp(Gp ∩ s−1ZL) = 0 by construction
of F , so we can once more apply Lemma 5.3.7 inductively to obtain gi ∈ U 1

n
(γ( in)),

i ∈ {1, . . . , n− 1}, such that g−1
i gj /∈ L for all i, j ∈ {0, . . . , n}, where g0 = p, gn = g. By

the choice of n, we have g−1
i gi+1 ∈ W . Using this precise setting, the following intuitive

computation is actually valid:
R̃(g) = R̃(g−1

0 g1g
−1
1 g2 . . . g

−1
n−1gn) = R̃(g−1

0 g1) . . . R̃(g−1
n−1gn)

= R(g−1
0 g1) . . . R(g−1

n−1gn) = P (g−1
0 g1) . . . P (g−1

n−1gn)
= P (g−1

0 g1 . . . g
−1
n−1gn) = P (g)

In the first line we use that g−1
i gj ∈ D̃ and that R̃ is an essential homomorphism. In

the second line we use that g−1
i gj ∈ D ∩ D̃ ∩ E and that all three maps are equal on

this intersection. In the third line we use that g−1
i gj ∈ E and the fact that P is an

homomorphism.
Since g ∈ F was arbitrary, this shows that P |F = R̃|F as required. □
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In a moment of humour, I called the theorem that we have just proven the “Sausage
Theorem”. The reason for this name is the following idea: In the classical Lie group case,
we just choose a path from the identity to an element, follow it step by step and are done.
In contrast, with essential homomorphisms we need to keep a whole neighbourhood around
the path to be able to avoid the unwanted null sets. In my imagination, this neighbourhood
looks like a tube, or perhaps, a sausage. The name may not be the most fitting one, but it
brought me a spark of joy, which I hope to share with my readers through this anecdote.
Time will show whether it sticks. For now, let us finish this chapter and prepare for the
first part of the actual integration theory in the next one.



CHAPTER 6

An Integration Theorem for the Euclidean Space

The last of the more independent foundations have been laid out in the last chapter and
it is now time to begin proving the first of our integration theorems for representations of
a Lie algebroid. This first one will be suited for the pair groupoid over the Euclidean space
Rm, which has a particularly convenient structure: Namely, we always have the coordinate
vector fields as a global, complete, commuting frame for the tangent algebroid, and the
exponential map is easy to write down and understand, as well as its inverse.

6.1. From Differential Operators to the Groupoid

The integration process will take two distinct steps: First we go from representations
of the differential operator algebra to representations of the groupoid itself, in the sense
of essential global homomorphisms to a unitary groupoid. This step is the hardest one
and the reason for most of our technical foundations. In the next section, I will then show
how to integrate further to a representation of the groupoid algebra, which is a bit more
routine.

Proving the first integration theorem requires, beyond the basis laid before, a variety of
specialised lemmas. The main ingredient will be a certain set of unitary operators obtained
by taking the exponential of coordinate vector fields under functional calculus. The precise
properties of these exponentials need to be understood first. The goal for now shall be
to show that these exponential operators are decomposable, which is true under a few
technical caveats.

Let us start with a simple lemma from the realm of manifold analysis:

Lemma 6.1.1. Let M be a smooth manifold and X ∈ X(M) a complete vector field with
flow θ. Then for all t ∈ R and all f ∈ C∞(M):

X(f) ◦ θt = X(f ◦ θt)

Proof: Let p ∈ M be arbitrary. By definition of flows, we have X(q) = d
dt |t=0θt(q) for all

q ∈ M , so

X(f) ◦ θt(p) = X(θt(p))(f) = ( d
ds

∣∣∣∣
s=0

θs(θt(p)))(f) = ( d
ds

∣∣∣∣
s=0

f ◦ θs ◦ θt(p))

= d
ds

∣∣∣∣
s=0

f ◦ θs+t(p) = d
ds

∣∣∣∣
s=0

f ◦ θt ◦ θs(p)

= d
ds

∣∣∣∣
s=0

θs(p)(f ◦ θt) = X(p)(f ◦ θt) = X(f ◦ θt)(p) □

The second lemma details a few properties carried by the exponential of a Lie algebroid
section. Any reader not familiar with those exponentials is welcome to think only of the
pair groupoid case, where the exponential of a vector field is given by its flow, as this
will be our main environment anyway. Only for now I will keep the slightly more general
context for possible future applications.

Lemma 6.1.2. Let G⇒M a Lie groupoid with induced Lie algebroid
A =

⋃
p∈M

Tp(Gp) → M

81
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and its anchor ρ = Tt|A. Let a ∈ Γ(A) have compact support. Then a is complete, i.e.
exp(ra) ∈ ΓM (G) is defined globally for all r ∈ R.

Furthermore, for all r ∈ R denote ϕr := t ◦ exp(ra) : M → M and let θ be the maximal
flow of ρ(a) ∈ X(M). Then ϕr = θr.

Proof: By Proposition 3.6.1., page 133 in [14], there are ϵp > 0 and Up ⊆ M open
for all p ∈ M , such that exp(ra) ∈ ΓUp(G) is defined for all |r| < ϵp. Since supp a is
compact, choose finitely many p1, . . . , pn ∈ supp a such that supp a ⊂ U :=

⋃n
i=1 Upi . Set

ϵ := minni=1 ϵpi > 0. Then for |r| < ϵ, exp(ra)(p) is defined for all p ∈ U . For p ∈ M \supp a,
set exp(ra)(p) := p ∈ Gp. Using this definition, exp(ra) : M → G, p 7→ exp(ra)(p) is a
well-defined smooth map since exp(ra)|U\supp a(p) = exp(0)(p) = p for all p, so that both
definitions are compatible.

We have ϕx ◦ ϕy = t exp(xa)t exp(ya) = t exp(xa) ⋆ exp(ya) = t exp(x + y)(a), so ϕ

is a flow, and d
dr

∣∣∣
r=0

ϕr(p) = Tt d
dr

∣∣∣
r=0

exp(ra)(p) = Tt(a) =: ρ(a), which proves that
ϕ generates ρ(a). Using this, we know that ϕ(U) = θρ(a)|U (U) = U and ϕ|U : U → U
is a (compactly supported) diffeomorphism. ϕ is an extension of this by the identity,
hence a diffeomorphism, hence exp(ra) ∈ ΓM (G) as required. We can now also define
exp(ra) := exp( rna)n for every r ∈ R and any sufficiently large n ∈ N, which is well-defined
and smooth because exp is a local homomorphism. □

Combining these two lemmas, we can prove the following more interesting proposition.
The proof uses a simple idea from elementary analysis: If a function has 0 as its derivative,
then it is constant. This old idea applies nicely to our unitary operators, though in the
more advanced environment of Banach algebras.

Proposition 6.1.3. Let (G ⇒ M,ω) be a volumetric groupoid with source s and
target t and let A → M be the corresponding Lie algebroid with anchor ρ. Let H be a
Hilbert space, R : DiffR(G) → O(H) a representation and r : C0(M) → B(H) a continuous
representation such that r(f) = R(mf ) for all f ∈ C∞

c (M) (where mf (h) = f ◦ t · h). Let
a ∈ Γ(A) be a complete section and let g ∈ C∞

c (M) be such that R(mg + La) ∈ O(H) is
essentially skew-adjoint. For x ∈ R, define the unitary operator Ux := exR(mg+La) ∈ B(H).
Let f ∈ C∞

c (M).
Then for all x ∈ R, we have

U∗
xr(f ◦ ϕx)Ux = r(f) ∈ B(H),

where ϕx := t ◦ exp(xa) for the exponential map exp : Γ(A) 99K Γ(G).

Proof: Let θ be the maximal flow of ρ(a). Then we have

d
dxf ◦ ϕx = d

dxf ◦ θx = d
dy

∣∣∣∣
y=0

f ◦ θy ◦ θx = ( d
dy

∣∣∣∣
y=0

θy)(f) ◦ θx = ρ(a)(f) ◦ ϕx

by Lemma 6.1.2, so because r is continuous and linear, d
dxr(f ◦ ϕx) = r(ρ(a)(f) ◦ ϕx).

Furthermore, R(mg + La) ∈ O(H) is self-adjoint by assumption, hence

Ux := exR(mg+La)
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is unitary (bounded, in particular). The product rule for differentiation applies and yields
for every v ∈ domR:

d
dxU

∗
xr(f ◦ ϕx)Uxv = d

dx(e−xR(mg+La)r(f ◦ ϕx)exR(mg+La)v)

= − e−xR(mg+La)R(mg + La)r(f ◦ ϕx)exR(mg+La)v

+ e−xR(mg+La)r(ρ(a)(f) ◦ ϕx)exR(mg+La)v

+ e−xR(mg+La)r(f ◦ ϕx)exR(mg+La)R(mg + La)v

=U∗
x

(
−R(mg + La)r(f ◦ ϕx) + r(ρ(a)(f) ◦ ϕx) + r(f ◦ ϕx)R(mg + La)

)
Uxv,

using that R(mg + La) commutes with exponentials of itself. Proceeding with the inner
term, we get

−
(
R(mg + La)r(f ◦ ϕx) + r(ρ(a)(f) ◦ ϕx) + r(f ◦ ϕx)R(mg + La)

)
w

= R(−(mg + La)mf◦ϕx +mρ(a)(f)◦ϕx
+mf◦ϕx(mg + La))w

= R(−mg·f◦ϕx −mf◦ϕxLa −mρ(a)(f◦ϕx) +mρ(a)(f)◦ϕx
+mf◦ϕx·g +mf◦ϕxLa)w

= r(ρ(a)(f) ◦ θx − ρ(a)(f ◦ θx))w = 0

for all w ∈ domR, using Lemma 6.1.1. Hence d
dxU

∗
xr(f ◦ ϕx)Ux ≡ 0, so

U∗
xr(f ◦ ϕx)Ux = U∗

0 r(f ◦ ϕ0)U0 = r(f)

for all x ∈ R. □

As mentioned before, we aim to prove that the operator given as the functional calculus
exponential of a coordinate vector field is decomposable. For technical reasons, we have to
make the following adaptations: Half of the divergence of the vector field has to be added
to ensure the vector field is actually formally skew-adjoint. The resulting operator has to
be closed to make it actually skew-adjoint, and then we need to pull back by a flow map
to keep the fibre constant. This results in the following decomposability theorem, which is
now relatively easy to prove using the previous lemmas.

Theorem 6.1.4. Let (G⇒M,ω) be a volumetric groupoid with Lie algebroid A and
H → M a Hilbert bundle. Let ν be a Borel measure on M . Let H → M be a Hilbert field
(with respect to the Borel σ-algebra of M). Set K := L2(H, ν). Let R : DiffR(G) → O(K)
be a ∗-representation such that r : C0(M) → B(K), f 7→ Tf is a continuous representation
with r(f) = R(mf ) for all f ∈ C∞

c (M).
Let a ∈ Γ(A) and g ∈ C∞

c (M) be such that R(La + mg) is essentially skew-adjoint.
Set Ux = exR(La+mg), ϕx := t ◦ exp(xa) and Kx := L2((ϕ−1

x )∗H, ν) for all x ∈ R. Then
(ϕ−1
x )∗ ◦ Ux : K → Kx is a decomposable operator.

Proof: It is a known fact that C∞
c (M) is not norm-dense in L∞(M,ν), but weakly *-dense.

For example, the case where M is an open subset of R2 is proven in [9], Theorem 7. So for
each f ∈ L∞(M,ν), we find a sequence (fi)i∈N ⊂ C∞

c (M) such that for all g ∈ L1(M,ν),
limi→∞

∫
M fig dν =

∫
M fg dν.

So let f ∈ L∞(M,ν) be arbitrary and choose a uniformly bounded sequence (fi)i∈N ⊂
C∞
c (M) which converges to f in the weak *-topology. Let ξ ∈ K be arbitrary. Then the
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function M → R, ⟨ξ, ξ⟩ : p 7→ ⟨ξ(p), ξ(p)⟩Hp is in L1(M,ν). Hence we find that

∥fiξ − fξ∥2
L2 =

∫
M

⟨fiξ − fξ, fiξ − fξ⟩ dν

=
∫
M

(f̄ifi + f̄f − f̄if − f̄fi)⟨ξ, ξ⟩ dν

=
∫
M

(fi − f)(fi − f)⟨ξ, ξ⟩ dν

≤ ∥fi − f∥∞

∫
M

|fi − f |⟨ξ, ξ⟩ dν → 0

and thus fiξ → fξ in L2(H, ν). We know that |fi − f | → 0 *-weakly because fi − f → 0
*-weakly and | · | : L∞(M) → L∞(M) is continuous.

Hence by Proposition 6.1.3, we have
(Tf (ϕ−1

x )∗Ux)(ξ) = f(ϕ−1
x )∗Ux(ξ) = lim

i∈I
fi(ϕ−1

x )∗Ux(ξ)

= lim
i∈I

(Tfi◦ϕ◦ϕ−1(ϕ−1
x )∗Ux)(ξ) = lim

i∈I
(ϕ−1
x )∗Tfi◦ϕUx(ξ)

= lim
i∈I

(ϕ−1
x )∗UxTfi

(ξ) = (ϕ−1
x )∗UxTf (ξ),

in the weak *-topology. So since ξ was arbitrary, Tf (ϕ−1
x )∗Ux = (ϕ−1

x )∗UxTf . Hence by [5],
Theorem 1, page 187, the continuous linear operator (ϕ−1

x )∗Ux is decomposable. □

Before we can prove our first integration theorem, we need one more lemma, which is
only a short computation on Radon-Nikodým derivatives. It plays a technical role in the
upcoming main proof.

Lemma 6.1.5. Let M be a smooth manifold and ν a measure on M . Let ϕ : Rm×M → M
be a flow (i.e. ϕx ◦ϕy = ϕx+y for all x, y ∈ Rm) such that (ϕx)∗ν ≪ (ϕy)∗ν for all x, y ∈ R.
Then we have:

dν
d(ϕ−x)∗ν

· dν
d(ϕ−y)∗ν

◦ ϕx = dν
d(ϕ−x−y)∗ν

Proof: Let f : M → R be ν-integrable and x, y ∈ Rm. Then we have:∫
M
f

dν
d(ϕ−x)∗ν

dν
d(ϕ−y)∗ν

◦ ϕxd(ϕ−x−y)∗ν

=
∫
M

(
f

dν
d(ϕ−x)∗ν

)
◦ ϕ−x

dν
d(ϕ−y)∗ν

d(ϕx)∗(ϕ−x−y)∗ν

=
∫
M

(
f

dν
d(ϕ−x)∗ν

)
◦ ϕ−x

dν
d(ϕ−y)∗ν

d(ϕ−y)∗ν

=
∫
M

(
f

dν
d(ϕ−x)∗ν

)
◦ ϕ−xdν =

∫
M
f

dν
d(ϕ−x)∗ν

d(ϕ−x)∗ν =
∫
M
fdν

Since f was arbitrary, this implies that (almost everywhere):
dν

d(ϕ−x)∗ν

dν
d(ϕ−y)∗ν

◦ ϕx = dν
d(ϕ−x−y)∗ν

□

Having this settled, let us formulate and prove the first integration theorem.

Theorem 6.1.6. Let M = Rm and let ω ∈ Ωm(M) be a volume form. Let (G =
M × M ⇒ M,pr∗

2ω) be the corresponding volumetric pair groupoid. Let H → M be a
ν-Hilbert field for a quasi-invariant measure ν and K = L2(H, ν). Let R : (Diff(M), ∗ω) ∼=
(DiffR(M × M), ∗pr∗

2ω
) → O(K) be a representation such that R(mf ) = r(f) = Tf for

all f ∈ C∞
c (M), where r : C0(M) → B(K) is a bounded representation. Let Lap =∑m

i=1(∂i + 1
2 divω(∂i))2 ∈ Diff(M) be the Laplacian with respect to ω.
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If R(Lap) ∈ O(K) is essentially self-adjoint, then there is a local essential homomorph-
ism of first type P : G 99K U(H) with

P (p, q) =
(

dν
d(ϕp−q)∗ν

) 1
2

(p)
(
ϕ∗
p−qeR̄((q−p)(∂+ 1

2 div ∂))) (q)

for almost all (p, q) ∈ G close enough to the diagonal, where ϕx(p) = p+ x.

Proof: Consider the operators Ai := R(L∂i
+ 1

2mdivω ∂i
) ∈ O(K), i ∈ {1, . . . ,m}, and

for x ∈ Rm, xA :=
∑m
i=1 xiAi. We know that [∂i, ∂j ] = 0 within Diff(M) (by Schwarz’s

Theorem), so by Theorem 3.2.17 also [L∂i
+ 1

2mdivω ∂i
,L∂j

+ 1
2mdivω ∂j

] = 0 and hence
[Ai, Aj ] = 0 for all i, j ∈ {1, . . . ,m}. The differential operators ∂̃i = L∂i

+ 1
2mdivω ∂i

are
formally skew-adjoint by construction, so Ai is skew-symmetric in O(K), as is xA for all
x. Skew-symmetric operators are closable, so let xB = (

∑m
i=1 xiAi) be the closure and

Ux = exB ∈ O(K) (this definition is possible because xB is skew-adjoint, as detailed
in the next paragraph). The first step now is to show that this is well-defined and that
UxUy = Ux+y for all sufficiently small x, y ∈ Rm.

Let L = R(Lap) =
∑m
i=1A

2
i ∈ O(K), ξ := |A1| + · · · + |Am| ∈ |O(K)| and α :=

|L| + |idK |O(K)| in the set of absolute values of operators (see the second chapter in [18]
for details on this). By [18], Lemma 6.2, page 588, α analytically dominates ξ (this lemma
can be applied because the Lie algebra generated by A1, . . . , Am is finite-dimensional since
the operators commute on their domain). Let E :=

⋂
n∈N dom(Ln) be the common domain

of all powers of the Laplacian’s closure (note that domR ⊆ E because R is invariant).
Then by [18], Lemma 5.2, page 14, we know two things: Firstly, the operators xA are
all essentially self-adjoint, hence Ux is well-defined and unitary. Secondly, there are an
s > 0 and a dense subset Eω ⊂ E such that for all v ∈ Eω, ∥es

∑m

i=1 |Bi|E |v∥ < ∞. More
explicitly:

∞∑
n=0

sn

n!
∑

1≤i1,...,in≤m
∥Bi1 . . . Bin(v)∥ < ∞

The above formula contains compositions of the Bi in different orderings. But the
expectation is that the order does not matter here, because we have started with commuting
vector fields. Indeed, we know that the operatorsAi are skew-symmetric. Hence their closures
Bi are also skew-symmetric, which then implies that the Lie bracket [Bi, Bj ] = BiBj−BjBi
is again skew-symmetric. In particular, it is closable. Hence we have 0|domR = [Ai, Aj ] ⊆
[Bi, Bj ] ⊆ [Bi, Bj ]. Because the right side is closed and domR ⊆ K is dense, this implies
that [Bi, Bj ] = 0. Namely let v ∈ dom[Bi, Bj ] ⊆ dom [Bi, Bj ]. As domR is dense, choose a
sequence (vi) ⊂ domR which converges to v. We have [Bi, Bj ](vi) = [Ai, Aj ](vi) = 0 for all
i, so in particular, [Bi, Bj ](vi) = [Bi, Bj ](vi) converges to 0. Since [Bi, Bj ] is closed, this
implies [Bi, Bj ](v) = 0.

In particular, we have BIBJ(v) = BI+J(v) for all I, J ∈ Nm and v ∈ Eω. Using
this commutation and the absolute convergence from Nelson’s Lemma, we can write our
exponentials as power series and see that for x, y ∈ Rm with ∥x∥∞ + ∥y∥∞ ≤ s and v ∈ Eω,
we have:
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UxUy(v) =
∞∑
n=0

1
n! (xB)n

( ∞∑
k=0

1
k! (yB)k(v)

)

=
∞∑
n=0

1
n!

∑
I∈Nm,|I|=n

(
n

I

)
xIBI

 ∞∑
k=0

1
k!

∑
J∈Nm,|J |=k

(
n

J

)
yJBJ(v)


=
∑
I∈Nm

∑
J∈Nm

1
I!J !x

IBIyJBJ(v) =
∞∑
n=0

1
n!

∑
|I|+|J |=n

n!
I!J !x

IBIyJBJ(v)

=
∞∑
n=0

1
n!

∑
k+l=n

n!
k!l! (xB)k(yB)l(v) =

∞∑
n=0

1
n! ((x+ y)B)n(v) = Ux+y(v)

For this computation, we used that the operators Bi are closed and the partial sums
are absolutely convergent by Nelson’s Lemma and |xI | =

∏m
k=1 |xikk | ≤ s|I| to obtain the

third line. Because UxUy and Ux+y are bounded and Eω is dense in K, we conclude that
UxUy = Ux+y for ∥x∥∞ + ∥y∥∞ ≤ s. In the proof of this fact I used details from Nelson’s
theory to generalize his results.

For x ∈ Rm, let ϕx := t ◦ exp(x∂) = θ∂1
x1 ◦ · · · ◦ θ∂m

xm
with the respective maximal domain

inside M , where θ∂i is the flow of ∂i. In this case, we have explicitly: ϕx(p) = p+ x. Note
that ϕx+y = ϕxϕy = ϕyϕx for all x, y ∈ Rm since [∂i, ∂j ] = 0.

Let Φx := ((ϕx)−1)∗ : L2H → L2(((ϕx)−1)∗H). The operator ΦxUx is decomposable by
Lemma 6.1.4, so there is a section ξ ∈ L∞(B(H, (ϕ−x)∗H)) such that ΦxUx =

∫⊕
M ξdν. For

all p ∈ M and ∥x∥∞ < s, set Ux(p) := ξ(p).
The next step is to show that for all x, y ∈ Rm with ∥x∥+∥y∥ we have Ux(ϕ−yp)Uy(p) =

Ux+y(p) for almost all p ∈ M . To do so, define Ψy := (ϕy)−1)∗ : L2((ϕ−x)∗H) →
L2((ϕ−y)∗(ϕ−x)∗H) = L2((ϕ−xϕ−y)∗H). Then for all σ ∈ L2H, p ∈ M ,

ΨyΦx(σ)(p) = σ(ϕ−yϕ−x(p)) = σ(ϕ−x−y(p)) = Φx+yσ(p),
hence ΨyΦx = Φx+y.

It follows that
Φx+yUx+y = Φx+yUxUy = ΨyΦxUxUy = ΨyΦxUx(Φy)−1ΦyUy

Let ξ be a section with
∫⊕
M ξdν = ΦxUx and χ a section with

∫⊕
M χdν = ΦyUy. Let

σ ∈ L2H be arbitrary. Then we know by the previous results that for ν-almost all p ∈ M :
Ux+y(p)(σ(p)) = Φx+yUx+y(σ)(p) = ΨyΦxUx(Φy)−1ΦyUy(σ)(p)

= (
∫ ⊕

M
ξdν)(Φy)−1(

∫ ⊕

M
χdν)(σ)(ϕ−yp)

= ξ(ϕ−y(p))
(

(Φy)−1(
∫ ⊕

M
χdν)(σ)(ϕ−yp)

)
= ξ(ϕ−y(p))(

∫ ⊕

M
χdν)(σ)(p)

= ξ(ϕ−y(p))χ(p)(σ(p)) = Ux(ϕ−y(p))Uy(p)(σ(p))

Since {σ(p)|σ ∈ L2H} is dense in Hp ν-almost everywhere, this implies that
Ux+y(p) = Ux(ϕ−y(p))Uy(p)

for almost all p ∈ M , just as required.
There is yet another small problem to solve here: The operator ΦxUx is decomposable,

but no longer unitary. To get this property back, we have to multiply with a Radon-Nikodým
term. Namely by Lemma 5.1.11, the operator

(
dν

d(ϕ−x)∗ν
◦ ϕ−x

) 1
2 Φx : L2H → L2(ϕ∗

−xH) is
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indeed unitary. So
(

dν
d(ϕ−x)∗ν

◦ ϕ−x
) 1

2 ΦxUx is unitary as the product of the unitary operators

Ux and
(

dν
d(ϕ−x)∗ν

◦ ϕ−x
) 1

2 Φx, and decomposable as the product of the decomposable

operators T(
dν

d(ϕ−x)∗ν
◦ϕ−x

) 1
2

and ΦxUx. Hence the operator
((

dν
d(ϕ−x)∗ν

◦ ϕ−x
) 1

2 ΦxUx

)
(q) :

Hq → Hq−x is well-defined and unitary for almost all q ∈ M by Proposition 3, page 182 in
[5].

For each x ∈ Rm with ∥x∥ < s
2 , let Nx ⊆ M be a null set such that(( dν

d(ϕ−x)∗ν
◦ ϕ−x

) 1
2

ΦxUx

)
(q)

is unitary for all p ∈ M \Nx. Define N ′ :=
⋃
x∈Rm,∥x∥< s

2
{(q− x, q)|q ∈ Nx}, which is a null

set in G.
For any (p, q) ∈ M ×M with ∥p− q∥∞ < s

2 , define

P (p, q) =
(

dν
d(ϕp−q)∗ν

) 1
2

(p)(ϕ∗
p−qUq−p)(q)

Define W := {(p, q) ∈ M2|∥p− q∥∞ < s
2}, which is an open neighbourhood of the diagonal,

and N = W ∩N ′, so that P (p, q) is unitary for all (p, q) ∈ W \N .
I claim that P is a first-type local essential homomorphism. To show this, let first

x, y ∈ Rm be arbitrary with ∥x∥, ∥y∥ < s
2 . Then by the previous argument and Lemma

6.1.5, there is a null set Nx,y ⊆ M such that dν
d(ϕ−x)∗ν

(p) · dν
d(ϕ−y)∗ν

◦ ϕx(p) = dν
d(ϕ−x−y)∗ν

(p)
and ΦxUx(p− y)ΦyUy(p) = Φx+yUx+y(p) for all p ∈ M \Nx,y. Define

N2 := {(r + x+ y, r + x) | x, y ∈ Rm, ∥x∥, ∥y∥ < s

2 , r ∈ Nx,y},

which is a null set in G.
Now let g = (p, q), h = (q, r) ∈ W \ N such that gh = (p, r) ∈ W \ N . Set x = p − q

and y = q − r, so that g = exp(x∂)(q) and h = exp(y∂)(r). Then if also (g, h) /∈ N2, we
have r /∈ Nx,y and hence:

P (g)P (h) =
( dν

d(ϕx)∗ν

) 1
2

(p)(ϕ∗
xU−x)(q)

(
dν

d(ϕy)∗ν

) 1
2

(q)(ϕ∗
yU−y)(r)

=
(

dν
d(ϕx)∗ν

(p) dν
d(ϕy)∗ν

(p− x)
) 1

2

(ϕ∗
xU−x)(q)(ϕ∗

yU−y)(r)

=
(

dν
d(ϕx)∗ν

(p) dν
d(ϕy)∗ν

◦ ϕ−x(p)
) 1

2

Φ−xU−x(r + y)Φ−yU−y(r)

=
(

dν
d(ϕx+y)∗ν

(p)
) 1

2

Φ−x−yU−x−y(r)

=
(

dν
d(ϕp−r)∗ν

(p)
) 1

2

ϕ∗
p−rUr−p(r) = P (p, r)

As g, h were arbitrary, P : W \N → U(H) is indeed a local essential homomorphism
of first type. □

After this laborious proof, let us enjoy the freshly proven theorem’s fruits by combining
it with one of our previous results to quickly get an even more pleasant result. We get the
following corollary:
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Corollary 6.1.7. Under the assumptions of Theorem 6.1.6, there is even a global
essential homomorphism of second type P : G 99K U(H) with

P (p, q) =
(

dν
d(ϕp−q)∗ν

) 1
2

(p)
(
ϕ∗
p−qeR̄((q−p)(∂+ 1

2 div ∂))) (q)

for almost all (p, q) ∈ G close enough to the diagonal.

Proof: Let P0 be the local essential homomorphism of first type obtained from Theorem
6.1.6 with domain W \ N for a null set N ⊆ G and a neighbourhood of the base space
W ⊆ G. By Lemma 5.3.6, there is another null set N2 ⊆ G such that P0|W\N2 is a local
essential homomorphism of second type. This extends to a global one by the Sausage
Theorem 5.3.10. □

Summarizing this section, we started with a representation R : DiffR(M × M) →
O(L2H) of the differential operator algebra over M = Rm. We assumed that it maps a
Laplacian element to a self-adjoint operator. A representation with this property we can
now rightfully call integrable, for we have proven it to integrate to a representation (an
essential global homomorphism of second type) P : M ×M 99K U(H) of the pair groupoid.
This first integration map shall be denoted int1, setting int1(R) := P in the notation of
Theorems 6.1.6 and 6.1.7.

6.2. From the Groupoid to its Groupoid Algebra

Now that we have completed the first step of the integration for the Euclidean space, this
section will consider the second step, being the integration from groupoid representations to
groupoid algebra representations. The theorems from this section are thankfully a bit easier
to prove and also a bit more general than those before. Most of the relevant computations
have been done by other authors before in different contexts, yet it is useful to lay them
down here in a condensed and adapted manner.

To begin with, recall the I-norm on a groupoid with Haar system λ: For f : G → C,
∥f∥I = max{supp∈M

∫
Gp |f(p)|dλp, supp∈M

∫
Gp

|f(p)|dλp}, where λp = λp ◦ inv−1. Recall
also that we have measures ν ◦ λ and ν ◦ λ̃ on G defined by

∫
G fdν ◦ λ =

∫
M

∫
Gp fdλpdν(p)

and
∫
G fdν ◦ λ̃ =

∫
M

∫
Gp
fdλpdν(p). We will mainly consider the groupoid algebra LI(G),

which is the completion of Cc(G) with respect to this I-norm.
The first thing to prove is an inequality between different norms:

Lemma 6.2.1. Let G⇒M be a groupoid with Haar system λ and ν a quasi-invariant
measure on M . Let H → M be a ν-Hilbert field. Denote by µ = ν ◦ λ the measure on G
induced by ν and λ. Then for all f ∈ LI(G) and all σ ∈ L2(H), we have∫

G
|f(x)|∥σ ◦ s(x)∥2dµ−1(x) ≤ ∥f∥I∥σ∥2

and ∫
G

|f(x)|∥σ ◦ t(x)∥2dµ(x) ≤ ∥f∥I∥σ∥2.

Proof: We have∫
G

|f(x)|∥σ ◦ s(x)∥2dµ−1(x) =
∫
M

∫
Gp

|f(x)|∥σ(p)∥2dλp(x)dν(p)

≤ sup
p∈M

∫
Gp

|f(x)|dλp(x) ·
∫
M

∥σ(p)∥2dν(p)

= ∥f∥I,s∥σ∥2 ≤ ∥f∥I∥σ∥2



6.2. FROM THE GROUPOID TO ITS GROUPOID ALGEBRA 89

and likewise:∫
G

|f(x)|∥σ ◦ t(x)∥2dµ(x) =
∫
M

∫
Gp

|f(x)|∥σ(p)∥2dλp(x)dν(p)

≤ sup
p∈M

∫
Gp

|f(x)|dλp(x) ·
∫
M

∥σ(p)∥2dν(p)

= ∥f∥I,t∥σ∥2 ≤ ∥f∥I∥σ∥2 □

Using this inequality, we can already face our main theorem for this section.

Theorem 6.2.2. Let G ⇒ M be a Lie groupoid with a Haar system λ and a quasi-
invariant measure ν on M . Let H → M be a ν-Hilbert field and let P : G ⊃ D → U(H)
be an essential homomorphism of second type. Suppose that for all measurable sections
σ, τ ∈ M(H), the map G → C, x 7→ ⟨P (x)σ(sx), τ(tx)⟩ is measurable.

For f ∈ Cc(G) and σ ∈ L2(H) ∩ L∞(H), define:

π(f)(σ) ∈ L2(H), π(f)(σ)(p) :=
∫
Gp

∆− 1
2 (x)f(x)P (x)(σ(sx))dλp(x),

where ∆ := dν◦λ
dν◦λ̃ . This is well-defined with ∥π(f)(σ)∥ ≤ ∥f∥I∥σ∥, and π extends to a

∗-homomorphism π : LI(G) → B(L2H).

Proof: First, let us check that the written integral is well-defined. Namely for all p ∈ M
such that Gp ∩D is co-null (which is true for almost all p ∈ M) and all τ ∈ L∞(H), we
know that Gp → C, x 7→ ⟨∆− 1

2 f(x)P (x)σ(sx), τ(tx)⟩ is measurable by assumption, and
absolutely integrable because∫

Gp
|∆− 1

2 ⟨f(x)P (x)σ(sx), τ(tx)⟩|dλp(x) ≤
∫
Gp

|∆− 1
2 f(x)|∥P (x)σ(sx)∥∥τ(tx)∥dλp(x)

=
∫
Gp

|∆− 1
2 f(x)|∥σ(sx)∥∥τ(tx)∥dλp(x)

≤ ∥∆− 1
2 |supp f∥∞∥f∥∞∥σ∥∞∥τ∥∞λ

p(supp f ∩Gp)

For a dense subset of vectors τp ∈ Hp we can choose τ ∈ L∞(H) such that τ(p) = τp and
∥τ∥∞ ≤ ∥τ∥. This implies that Hp → C, v 7→

∫
Gp⟨f(x)P (x)σ(sx), v⟩dλp(x) is a bounded

linear functional, hence by the Riesz representation theorem there is indeed a vector w ∈ Hp

with ⟨w, v⟩ =
∫
Gp⟨∆− 1

2 (x)f(x)P (x)σ(sx), v⟩dλp(x) for all v, which is denoted, as usually,
by
∫
Gp ∆− 1

2 f(x)P (x)σ(sx)dλp(x) = w.
So far we have proven that π(f)(σ) is indeed a well-defined section of H. It is measurable

by the following argument: If again τ ∈ M(H) is a measurable section, then G → C, x 7→
⟨P (x)σ(sx), τ(tx)⟩ is measurable by assumption, so x 7→ ∆− 1

2 (x)f(x)⟨P (x)σ(sx), τ(tx)⟩
is of course also measurable, and by the properties of a Haar system, M → C, p 7→∫
Gp ∆− 1

2 (x)f(x)⟨P (x)σ(sx), τ(tx)⟩dλp(x) = ⟨
∫
Gp ∆− 1

2 (x)f(x)P (x)σ(sx)dλp(x), τ(p)⟩ must
be measurable, too. Since this is true for sufficiently many sections τ , following the defining
properties of Hilbert fields yields that π(f)(σ) is indeed measurable.

Next, for the norm: Let f , σ as before, τ ∈ L2H. Using the Cauchy-Schwartz inequality
to obtain the fifth line, we compute:

|⟨π(f)(σ), τ⟩| =
∫
M

|⟨π(f)(σ)(p), τ(p)⟩|dν(p)

≤
∫
M

∫
Gp

∆− 1
2 (x)|f(x)| |⟨P (x)σ(sx), τ(p)⟩|dλp(x)dν(p)

≤
∫
G

∆− 1
2 (x)|f(x)|∥σ(sx)∥∥τ(tx)∥dν ◦ λ(x)

= ⟨∆− 1
2 f

1
2 ∥σ ◦ s∥, f

1
2 ∥τ ◦ t∥⟩L2(G,ν◦λ)
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≤ ∥∆− 1
2 f

1
2 ∥σ ◦ s∥∥2 · ∥f

1
2 ∥τ ◦ t∥∥2

=
(∫

G
∆−1(x)|f(x)|∥σ ◦ s(x)∥2dν ◦ λ(x)

) 1
2

·
(∫

G
|f(x)|∥τ ◦ t(x)∥2dν ◦ λ(x)

) 1
2

=
(∫

G
|f(x)|∥σ ◦ s(x)∥2dν ◦ λ̃(x)

) 1
2

·
(∫

G
|f(x)|∥τ ◦ t(x)∥2dν ◦ λ(x)

) 1
2

≤
(
∥f∥I∥σ∥2∥f∥I∥τ∥2

) 1
2 = ∥f∥I∥σ∥∥τ∥,

where the last line is by Lemma 6.2.1. In particular,

∥π(f)σ∥2 = |⟨π(f)σ, π(f)σ⟩| ≤ ∥f∥I∥σ∥∥π(f)σ∥,

i.e. ∥π(f)σ∥ ≤ ∥f∥I∥σ∥, just as required.
Because the integral map and the operators P (x), x ∈ G, are linear, the mapping

σ 7→ π(f)(σ) is also linear. Consequently, as L2H ∩L∞H ⊆ L2H is dense, π(f) extends to
a bounded operator L2(H) → L2(H) with ∥π(f)∥ ≤ ∥f∥I .

The map LI(G) → B(L2H), f 7→ π(f) is also linear because the integral map has
this property, and we have just shown that it is bounded by 1. Let us now show the next
important property: Compatibility with the ∗-structure. To do this, let f, g ∈ C∞

c (G) be
arbitrary. Then for all σ ∈ L2H ∩ L∞H and almost all p ∈ M , we have

π(f)π(g)(σ)(p) =
∫
Gp

∆− 1
2 (x)f(x)P (x)π(g)(σ)(sx)dλp(x)

=
∫
Gp

∆− 1
2 (x)f(x)P (x)

∫
Gsx

∆− 1
2 (y)g(y)P (y)σ(sy)dλsx(y)dλp(x)

=
∫
Gp

∫
Gsx

∆− 1
2 (x)∆− 1

2 (y)f(x)g(y)P (xy)σ(sy)dλsx(y)dλp(x)

=
∫
Gp

∫
Gtx

∆− 1
2 (x)∆− 1

2 (x−1y)f(x)g(x−1y)P (y)σ(s(x−1y))dλtx(y)dλp(x)

=
∫
Gp

∫
Gp

∆− 1
2 (x)∆− 1

2 (x−1y)f(x)g(x−1y)P (y)σ(sy)dλp(y)dλp(x)

=
∫
Gp

∫
Gp

∆− 1
2 (x)∆− 1

2 (x−1y)f(x)g(x−1y)P (y)σ(sy)dλp(x)dλp(y)

=
∫
Gp

∫
Gp

∆− 1
2 (y)∆− 1

2 (y−1x)f(y)g(y−1x)P (x)σ(sx)dλp(y)dλp(x)

=
∫
Gp

∫
Gtx

∆− 1
2 (y)∆− 1

2 (y−1x)f(y)g(y−1x)P (x)σ(sx)dλtx(y)dλp(x)

=
∫
Gp

∫
Gsx

∆− 1
2 (xy)∆− 1

2 (y−1)f(xy)g(y−1)P (x)σ(sx)dλsx(y)dλp(x)

=
∫
Gp

∫
Gsx

∆− 1
2 (x)f(xy)g(y−1)P (x)σ(sx)dλsx(y)dλp(x)

=
∫
Gp

∆− 1
2 (x)f ∗ g(x)P (x)σ(sx)dλp(x) = π(f ∗ g)(σ)(p),

using that ∆(xy) = ∆(x)∆(y) for almost all composable x, y ∈ G by Theorem 3.15, page
37 in [17].
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This implies π(f ∗ g) = π(f)π(g) since L∞H ∩ L2H ⊆ L2H is dense. Since π is
continuous and C∞

c G ⊆ LIG is dense, this implies that π(f ∗ g) = π(f) ∗ π(g) for all
f, g ∈ LIG, hence π is multiplicative.

It is left to check that π(f∗) = π(f)∗ for all f . Again by Theorem 3.15, page 37 in [17],
we know that ∆(x−1) = ∆(x)−1 for almost all x ∈ G, so we easily compute:

⟨π(f∗)σ, τ⟩(p) =
∫
Gp

∆− 1
2 (x)f̄(x−1)⟨P (x)σ(sx), τ(tx)⟩dλp(x)

=
∫
Gp

∆− 1
2 (x−1)f̄(x−1)⟨σ(sx), P (x−1)τ(tx)⟩dλp(x)

=
∫
Gp

∆− 1
2 (x)−1f̄(x)⟨σ(tx), P (x)τ(sx)⟩dλp(x),

and hence

⟨π(f∗)σ, τ⟩ =
∫
M

⟨π(f∗)σ, τ⟩(p)dν(p)

=
∫
M

∫
Gp

∆− 1
2 (x)−1f̄(x)⟨σ(tx), P (x)τ(sx)⟩dλp(x)dν(p)

=
∫
G

∆∆− 1
2 f̄⟨σ ◦ t, P ◦ τ ◦ s⟩d(ν ◦ λ̃)

=
∫
G

∆− 1
2 f̄⟨σ ◦ t, P ◦ τ ◦ s⟩d(ν ◦ λ)

=
∫
M

∫
Gp

∆− 1
2 (x)f̄(x)⟨σ(tx), P (x)τ(sx)⟩dλp(x)dν(p)

=
∫
M

⟨σ, π(f)τ⟩(p)dν(p) = ⟨σ, π(f)τ⟩;

as before, continuity finishes the proof. □

The representation π obtained from P in the previous theorem will be denoted by
int2(P ) from now on, adding to the maps diff from Theorem 4.1.5 and int1 from Corollary
6.1.7.

Of these three maps, int2 is in a sense the most well-behaved because we can directly
prove that it is actually a bijection. To do this, I rely on a powerful theorem from [4],
which in turn was based on ideas by Renault. Unfortunately that theorem is not directly
applicable at this point because it was stated in a slightly different context. But as we will
see, the gaps can be bridged with just a few more lemmas.

Firstly, let us have another look at an important property of groupoid C∗-algebras:
Almost by construction, their representations correspond to those of the groupoid algebra
LI(G).

Lemma 6.2.3. Let G⇒M be a Lie groupoid with Haar system λ and let K be a Hilbert
space. Then the representations of the groupoid algebra LI(G) and those of the groupoid
C∗-algebra C∗(G) on K are in bijection.

More precisely: Let π : LI(G) → B(K) be a non-degenerate bounded representation.
Then there is a representation π̃ : C∗(G) → B(K) with π|CcG = π̃|CcG. Likewise, if
τ : C∗(G) → B(K) is a non-degenerate bounded representation, then there is one τ̃ :
LI(G) → B(K) with τ |CcG = τ̃ |CcG, and these constructions are inverse to each other.

Proof: Start with a representation π : LI(G) → B(K). Let f ∈ CcG ⊆ LI(G) be arbitrary.
By the definition of the groupoid C∗-algebra, the norm of f as an element of C∗G is
∥f∥C∗ = supτ ∥τ(f)∥, where τ ranges over all non-degenerate representations of CcG with
involution. But π|CcG is such a representation. So in particular:

∥f∥C∗ = sup
τ

∥τ(f)∥ ≥ ∥π(f)∥
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Hence π|CcG : C∗G ⊃ CcG → B(K) is bounded (by 1) and defined on a dense subspace,
and thus extends to a bounded linear map π̃ : C∗G → B(K). Compatibility with convolution
and involution is given on CcG by definition of π and extends to C∗G by continuity.

Likewise, let τ : C∗G → B(K) be a representation. Then for all f ∈ CcG we have
∥τ(f)∥ ≤ ∥τ∥∥f∥C∗ ≤ ∥τ∥∥f∥I

by Theorem 2.42., page 28 in [17]. Actually, ∥τ∥ = 1 for C∗-algebra representations τ , but
this is not important here.

So τ |CcG : LI(G) ⊃ CcG → B(K) is bounded on a dense subset and hence extends to a
bounded representation of LI(G); compatibility with the *-structure is inherited from τ as
before.

The mappings are inverse to each other because ˜̃π|CcG = π|CcG, both sides are continu-
ous, and CcG is dense in both LI(G) and C∗(G). □

In the next step, we consider another way to encode a groupoid representation. We will
see that an essential homomorphism from a groupoid to a unitary groupoid is equivalent
to a unitary map between certain L2-spaces. Namely:

Lemma 6.2.4. Let G be as before and let ν be a quasi-invariant measure on M = G(0).
Let H be a ν-Hilbert field and P : G 99K U(H) an essential homomorphism of second type.
Then the map

UP : L2(s∗H, ν ◦ λ̃) → L2(t∗H, ν ◦ λ), UP (σ)(x) := ∆− 1
2 (x)P (x)(σ(x))

is unitary (here, ∆ = ν◦λ
ν◦λ̃).

Proof: First of all, the map UP is well-defined in terms of sections because P is defined
almost everywhere, and for all σ ∈ L2(s∗H, ν ◦ λ̃) and almost all x ∈ G, we have σ(x) ∈
(s∗H)x = Hsx, so that P (x)σ(x) is defined and an element of Htx = (t∗H)x. For the norms
and scalar products, we compute:

⟨UPσ, UP τ⟩ =
∫
G

⟨∆− 1
2 (x)P (x)σ(x),∆− 1

2 (x)P (x)τ(x)⟩dν ◦ λ(x)

=
∫
G

⟨P (x)σ(x), P (x)τ(x)⟩dν ◦ λ̃(x)

=
∫
G

⟨σ(x), τ(x)⟩dν ◦ λ̃(x) = ⟨σ, τ⟩,

so UP is isometric. It has an inverse defined by U−1
P (σ)(x) = ∆

1
2 (x)P (x)−1(σ(x)), which

can be easily computed. So UP is in particular surjective, and hence unitary. □

As discussed in [4], page 11, the mapping P 7→ UP is even a bijection between
(equivalence classes given by changes on null sets of) essential homomorphisms P : G →
U(H) and unitary maps U : L2(s∗H, ν ◦ λ̃) → L2(t∗H, ν ◦ λ) which intertwine with
multiplication operators.

To grant compatibility with the foreign theorem, we need yet another equivalence: I
will quickly demonstrate a way to identify the L2-spaces from before with certain tensor
products.

Lemma 6.2.5. Let G⇒M be a Lie groupoid with Haar system λ and quasi-invariant
measure ν and a ν-Hilbert field H. Consider the non-degenerate ∗-homomorphism ϕ :
L∞(M,ν) → B(L2H), f 7→ (Tf : σ 7→ f · σ). For A ∈ {L2(G, s, λ̃), L2(G, t, λ)} (which
are Hilbert-L∞M modules), denote by A⊗ϕ L

2(H, ν) the complete tensor product, i.e. the
topological completion of the algebraic tensor product A⊗L2(H, ν) with respect to the inner
product given by ⟨a1 ⊗ σ1, a2 ⊗ σ2⟩ = ⟨σ1, ϕ(⟨a1, a2⟩)σ2⟩.

Then there are two unique continuous linear maps
α : L2(G, s, λ̃) ⊗ϕ L

2(H, ν) → L2(s∗H, ν ◦ λ̃)
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with α(f ⊗ σ) = f · (σ ◦ s) and
β : L2(G, t, λ) ⊗ϕ L

2(H, ν) → L2(t∗H, ν ◦ λ)
with β(g ⊗ σ) = g · (σ ◦ t) for all f ∈ L2(G, s, λ̃), g ∈ L2(G, t, λ) and σ ∈ L2(H, ν), and
those maps are unitary.
Proof: It is clear that the given formulas uniquely determine continuous linear maps because
pure tensors densely span the complete tensor product. One property which is a bit more
complicated to prove in all details is the fact that α and β are surjective. This fact is
discussed in [4], Proposition 2.6, page 5 and on page 11 there. The idea is that the span of
pure tensors is dense in the inductive limit topology.

What I want to prove in detail here is isometry, because the necessary computation is
enlightening for the following proposition. Namely, let f, g ∈ L2(G, s, λ̃) and σ, τ ∈ L2(H, ν)
be arbitrary. Then we have

⟨α(f ⊗ σ), α(g ⊗ τ)⟩ =
∫
G

⟨fσ ◦ s, gτ ◦ s⟩dν ◦ λ̃

=
∫
M

∫
Gp

f(x)g(x)dλp(x)⟨σ(p), τ(p)⟩dν(p)

=
∫
M

⟨f, g⟩(p)⟨σ(p), τ(p)⟩dν(p)

=
∫
M

⟨σ(p), ⟨f, g⟩(p)τ(p)⟩dν(p)

= ⟨σ, ϕ(⟨f, g⟩)τ⟩ = ⟨f ⊗ σ, g ⊗ τ⟩.

Likewise, if f, g ∈ L2(G, t, λ), then

⟨β(f ⊗ σ), β(g ⊗ τ)⟩ =
∫
M

∫
Gp
f(x)g(x)dλp(x)⟨σ(p), τ(p)⟩dν(p)

=
∫
M

⟨σ(p), ⟨f, g⟩(p)τ(p)⟩dν(p) = ⟨f ⊗ σ, g ⊗ τ⟩. □

Let us now take these ingredients and combine them to show that the integration map∫
2 is bijective (up to equivalence classes).

Proposition 6.2.6. Let G ⇒ M be a Lie groupoid with Haar system λ, a quasi-
invariant measure ν on M and a ν-Hilbert field H.

The integration map int2 is essentially bijective, in the following sense: Given two
essential homomorphisms P,Q : G 99K U(H) such that int2(P ) = int2(Q), we have
P (x) = Q(x) for almost all x ∈ G, and every representation π : LI(G) → B(L2H) fulfils
π = int2(P ) for some representation P : G 99K U(H).
Proof: This theorem can be viewed as a version of [4], Theorem 3.23., page 10. Indeed, the
more advanced details of the proof can be found there and shall not be repeated in this
thesis. Our work here lies in bridging the gaps between the slightly different definitions to
make that theorem applicable in our scenario.

Namely by Theorem 3.23, there is a bijection between representations π : C∗(G) →
B(L2H, ν) and representations (ϕ,U) of (G,λ) on the Hilbert C-module L2(H, ν). Given a
representation (ϕ,U) of (G,λ), denote its integrated form as of that theorem by int3(ϕ,U). If
we start with an essential homomorphism P : G 99K U(H), then by Lemma 6.2.4, it induces
a unique unitary UP : L2(s∗H, ν◦λ̃) → L2(t∗H, ν◦λ). Using the isomorphisms from Lemma
6.2.5, we get a unitary U = β−1 ◦UP ◦α : L2(G, s, λ̃)⊗ϕL

2(H, ν) → L2(G, t, λ)⊗ϕL
2(H, ν).

This operator intertwines the C0G-actions, namely if h ∈ CcG, f ∈ L2(G, sλ̃), σ ∈ L2(H, ν),
then U(h·(f⊗σ)) = β−1UP (hfσ◦s) = β−1(hUP (fσ◦s)) = h·β−1(UP (fσ◦s)) = h·U(f⊗σ)
since UP (hfσ◦s)(x) = h(x)∆− 1

2 (x)P (x)(f(x)σ(sx)) = (hUP (fσ◦s))(x) and β((hf)⊗σ)) =
hfσ = hβ(f ⊗ σ).
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So (ϕ,U) is the data of a representation as in Definition 3.12, [4]. The property from
Definition 3.18 is equivalent to P (xy) = P (x)P (y) for almost all x, y ∈ G(2) as discussed
on page 11 of the same paper, so (ϕ,U) is indeed a representation as in Definition 3.18,
implying that it integrates to int3(ϕ,U) : C∗G → B(L2H, ν). By our Lemma 6.2.3, this
is equivalent to a representation int4(P ) :=

(
int3(ϕ, β−1UPα)

)∼ : LI(G) → B(L2H, ν). As
discussed in this section and in the aforementioned paper, this whole mapping int4 is a
bijection as a composition of bijections.

What is left to show now is that int4 = int2 from our previous definition. To do that,
fix f ∈ CcG ⊆ LI(G). Denote L = int3(ϕ,U). As defined in [4], Definition 4.1, we have
L(f) = T ∗

h1
U(Mf ⊗ idK)Th2 for any h1, h2 ∈ CcG with hi|supp f ≡ 1, using the notation

from there and K = L2(H, ν). To compute this expression explicitly, first note that for all
g ∈ L2(G, t, λ) and τ ∈ L2(H, ν) and almost all p ∈ M we have

T ∗
h1β

−1(g · τ ◦ t)(p) = T ∗
h1(g ⊗ τ)(p) = ⟨h1, g⟩(p) · τ(p)

=
∫
Gp
h1(x)g(x)dλp(x)τ(p)

=
∫
Gp
h1(x)g(x)τ ◦ t(x)dλp(x) = ⟨h1, gτ ◦ t⟩(p).

This implies T ∗
h1
β−1(χ) = ⟨h1, χ⟩ for all χ ∈ L2(t∗H, ν ◦ λ). Hence we get for all σ ∈

L2(s∗H, ν ◦ λ̃)

L(f)(σ) = T ∗
h1U(Mf ⊗ idK)Th2(σ) = T ∗

h1U(Mf ⊗ idK)(h2 ⊗ σ)
= T ∗

h1β
−1UPα((fh2) ⊗ σ) = T ∗

h1β
−1UP (fh2σ ◦ s)

= T ∗
h1β

−1(fh2∆− 1
2P (σ ◦ s)) = ⟨h1, fh2∆− 1

2P (σ ◦ s)⟩.

Using that hi|supp f ≡ 1 by assumption, this yields for almost all p ∈ M

L(f)(σ)(p) =
∫
Gp
h1(x)f(x)h2(x)∆− 1

2 (x)P (x)σ(sx)dλp(x)

=
∫
Gp
f(x)∆− 1

2 (x)P (x)σ(sx)dλp(x) = int2(P )(f)(σ)(p).

So because p and σ were arbitrary, int4(P )(f) = int3(ϕ,U)(f) = L(f) = int2(P )(f) just as
required. This proves that int2 = int4 is a bijection (up to changes on null sets). □

The notation int3 and int4 is now obsolete and shall not be further used. What remains
important are the mappings diff, int1 and int2. Further properties of these are to be
discussed in the next section.

6.3. Differentiation versus Integration

At this point, we have successfully defined a representation of the groupoid algebra in
dependence of a differential operator representation. As discussed more than once, this is
meant to be an inverse to the differentiation map defined in Theorem 4.1.5. This chapter
exists to prove that this is actually the case (for the pair groupoid G = Rm × Rm).

The proof idea is relatively straightforward: We compose the differentiation and integ-
ration maps using explicit formulas and reduce the expression using partial integration (in
the manifold sense, involving divergence). As usual, things are a bit more complicated in
the details. Firstly, the partial integration I want to show is only possible with left-invariant
vector fields, not right-invariant. This is why we will make use of the following short lemma
to connect the two.

Lemma 6.3.1. Let G⇒M be a volumetric groupoid with algebroid A. Let a ∈ Γ(A) be
a section and let aL ∈ XL(G), aR ∈ XR(G) be the corresponding left- and right-invariant
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vector fields. Let f ∈ C∞(G). Then:

(aR(f∗))∗ = aL(f)

Proof: First notice that the transition from right- to left-invariant vector fields is given by
XRG → XLG, X 7→ inv∗X = TX ◦X ◦ inv, where inv : G → G, x 7→ x−1 is the inversion
map. So we have for all x ∈ G:

(aR(f∗))∗(x) = aR(f∗)(x−1) = aRx−1(f ◦ inv) = Tx−1 inv(aRx−1)(f)
= T inv ◦ aR(x−1)(f) = T invaRinv(x)(f) = inv∗a

R(f)(x) = aL(f)(x),

hence aR(f∗)∗ = aL(f) as required. □

Let us save this information for later. Before we can go to the main computation of this
section, we need a series of lemmas related to measures and Radon-Nikodým derivatives.
The first one may be known from elementary measure theory, but it is at least worth
reminding of:

Lemma 6.3.2. Let M be a measurable space with two measures µ and ν and ϕ : M → M
be bimeasurable such that µ ≪ ν. Then ϕ∗µ ≪ ϕ∗ν and dµ

dν = dϕ∗µ
dϕ∗ν

◦ ϕ, where ϕ∗µ is the
pushforward measure, defined by

∫
M σdϕ∗µ =

∫
M σ ◦ ϕdµ.

Proof: Let f ∈ L1(M,ϕ∗µ). Then we have:∫
M
fdϕ∗µ =

∫
M
f ◦ ϕdµ =

∫
M
f ◦ ϕdµ

dν dν =
∫
M
f

dµ
dν ◦ ϕ−1dϕ∗ν,

hence ϕ∗µ ≪ ϕ∗ν with dϕ∗µ
dϕ∗ν

= dµ
dν ◦ ϕ−1. □

With this small computation tool, we get another result which is more specific to our
representation theory and more interesting.

Lemma 6.3.3. Let M = Rm with volume form ω, let G = M × M , let ν be a quasi-
invariant measure on M , let λ = λω be the Haar system induced by ω on G. Let ∆ = dν◦λ

dν◦λ̃
be the modular function of (G,λ). Let ϕx : M → M,y 7→ x + y for all x ∈ M . Then for
almost all (p, q) ∈ G, we have:

∆(p, q) = dν
d(ϕp−q)∗ν

(p) · d(ϕp−q)∗ω

dω (p)

Proof: To ease the notation, I will sometimes just write ν
µ for the Radon-Nikodým derivative

dν
dµ of two measures. Firstly, we have:

dω
d(ϕp−q)∗ω

(p) · d(ϕp−q)∗ν

dν (p) = ω

ν
(p) (ϕp−q)∗ν

(ϕp−q)∗ω
(p)

= ω

ν
(p) ν

ω
◦ ϕq−p(p) = ω

ν
(p) ν

ω
(q)

It follows that for every ν ◦ λ̃-integrable f : G → R, we have∫
G
f(x) dω

d(ϕtx−sx)∗ω
(tx)d(ϕtx−sx)∗ν

dν (tx)dν ◦ λ(x) =
∫
M

∫
M
f(p, q)ω

ν
(p) ν

ω
(q)dω(q)dν(p)

=
∫
M

∫
M
f(p, q)ω

ν
(p)dν(q)dν(p) =

∫
M

∫
M
f(p, q)dν(q)dω(p)

=
∫
M

∫
Gq

f(p, q)dλq(p)dν(q) =
∫
G
fdν ◦ λ̃,
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and hence for almost all x = (p, q) ∈ G:

(∆(p, q))−1 = dν ◦ λ̃
dν ◦ λ

(x)

= dω
d(ϕtx−sx)∗ω

(tx)d(ϕtx−sx)∗ν

dν (tx) = dω
d(ϕp−q)∗ω

(p)d(ϕp−q)∗ν

dν (p)

We conclude:

∆(p, q) =
(

dω
d(ϕp−q)∗ω

(p)d(ϕp−q)∗ν

dν (p)
)−1

= dν
d(ϕp−q)∗ν

(p) · d(ϕp−q)∗ω

dω (p) □

This lemma will make sure that the possibly non-smooth modular function cancels out
of the upcoming computations to allow for differentiation.

A main ingredient of the theory is the divergence of a vector field, which defines our
formal adjoints. The next three lemmas give us more tools to compute it and relate it to
other parts of the theory.

Firstly, I have not yet formally stated the following elementary property of the diver-
gence:

Lemma 6.3.4. Let (M,ω) be a volumetric manifold and X ∈ X(M). Let f ∈ C∞(M)
with f−1(0) = ∅. Then:

divfω(X) = X(f)
f

+ divω(X)

Proof: We compute:(
X(f)
f

+ divω(X)
)
fω = X(f)ω + f divω(X)ω

= LX(f)ω + fLXω = LX(fω) = divfω(X)fω,
which gives the result by fω ̸= 0. □

Using this first lemma on the divergence, we can compute the divergence of coordinate
vector fields.

Lemma 6.3.5. Let M = Rm and let ω ∈ Ωm(M) be a volume form. Then the divergence
of the coordinate vector fields is

divω(∂i) = ∂i(
ω

dx1 . . . dxm
) · dx1 . . . dxm

ω

for all i ∈ {1, . . . ,m}.

Proof: Let η = dx1 . . .dxm be the standard volume form of Rm. Then we have L∂i
η =

di∂i
η = d((−1)i+1dx1 . . .dxi−1dxi+1 . . .dxm) = ∂i(1)dx1 . . .dxm = 0, hence divη(∂i) = 0.

By definition of the quotient, we have ω = ω
dx1...dxm

η. Using Lemma 6.3.4, we deduce that

divω(∂i) =
∂i( ω

dx1...dxm
)

ω
dx1...dxm

+ divω(∂i) = ∂i

(
ω

dx1 . . . dxm

) dx1 . . . dxm
ω

. □

And with this expression for the coordinate divergence, we can get another, somewhat
unintuitive result: The partial derivatives of a much-used Radon-Nikodým derivative can
be expressed in terms of this divergence. Namely:

Lemma 6.3.6. Let M = Rm with a volume form ω, let ϕx be the time-1 flow of
x∂ =

∑m
i=1 xi∂i for x ∈ Rm. Then for all p, q ∈ M , we have

d
dqi

(
dω

d(ϕp−q)∗ω

) 1
2

(p) = −1
2

(
dω

d(ϕp−q)∗ω

) 1
2

(p) divω(∂i)(q)
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Proof: To ease the notation, I just write ν
µ = dν

dµ for Radon-Nikodým derivatives where
appropriate. Denote the Lebesgue measure on Rm by λ. λ is translation invariant, so we
have (ϕx)∗λ = λ for all x ∈ Rm. Hence by Lemma 6.3.5, we get the following equation:

d
dqi

dω
d(ϕp−q)∗ω

(p) = d
dqi

(
ω

λ

(ϕp−q)∗λ

(ϕp−q)∗ω

)
(p) = ω

λ
(p) d

dqi
λ

ω
(q)

= ω

λ
(p)∂i(

λ

ω
)(q) = ω

λ
(p)∂i(

(
ω

λ

)−1
)(q)

= −ω

λ
(p)∂i

(
ω

λ

)
(q)
(
ω

λ

)−2
(q)

= −ω

λ
(p) divω(∂i)(q)

ω

λ
(q)
(
λ

ω

)2
(q)

= −ω

λ
(p)λ

ω
(q) divω(∂i)(q) = −ω

λ
(p) (ϕp−q)∗λ

(ϕp−q)∗ω
(ϕp−qq) divω(∂i)(q)

= − ω

(ϕp−q)∗ω
(p) divω(∂i)(q)

Consequently, we get

d
dqi

(
dω

d(ϕp−q)∗ω

) 1
2

(p) = 1
2

(
dω

d(ϕp−q)∗ω

)− 1
2

(p) d
dqi

dω
d(ϕp−q)∗ω

(p)

= −1
2

((ϕp−q)∗ω

ω
)
) 1

2
(p) ω

(ϕp−q)∗ω
(p) divω(∂i)(q)

= −1
2

(
dω

d(ϕp−q)∗ω

) 1
2

(p) divω(∂i)(q)

as required. □

With this set of lemmas we are prepared to prove the following proposition. As
mentioned before, it involves left-invariance, partial integration and the computational
tools constructed before. Beyond that, it mainly depends on a page-long series of equations,
which does not need many comments.

Proposition 6.3.7. Let M = Rm, ω ∈ Ωm(M) be a volume form, G = M × M ,
H → M a ν-Hilbert field and R : DiffR(G) ∼= Diff(M) → O(L2H) a representation with
respect to the star structure induced by ω such that R(

∑
i(∂i + 1

2 div ∂i)2) is essentially
self-adjoint. Denote by λ the Haar system induced by ω.

Let P : G 99K U(H) be the representation obtained from R by Corollary 6.1.7. Let
π : L1(G) → B(L2H) be the representation obtained from P by Theorem 6.2.2.

Let W ⊆ G be such that

P (p, q) =
(

dν
d(ϕp−q)∗ν

) 1
2

(p)
(
ϕ∗
p−qeR̄((q−p)(∂+ 1

2 div ∂))
)

(q)

for all (p, q) ∈ W . For X ∈ X(M), denote by XL the left-invariant vector field corresponding
to X. For p ∈ M , denote by ϕp : M → M, q 7→ p+q the flow of p∂. Then for all f ∈ C∞

c (G)
with supp f ⊆ W , all σ ∈ domR and all i ∈ {1, . . . ,m}, we have

π(∂Li f)(σ) = π(f)R(−∂i − div ∂i)σ.

Proof: As defined in the aforementioned theorems, there is a neighbourhood W of the diag-
onal in G such that for almost all x = (p, q) ∈ W we have P (p, q) = P (exp((p− q)∂)(q)) =
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Uq−p(q) : Hq → Hp, where Uq−p : L2H → L2(ϕ∗
p−qH) is the unitary decomposable operator

defined as

Uq−p = dν
d(ϕp−q)∗ν

1
2

◦ ϕp−q · ϕ∗
p−qeR((q−p)(∂+ 1

2 div ∂)),

fulfilling

P (p, q)(σ(q)) = dν
d(ϕp−q)∗ν

1
2

◦ ϕp−q(q) · ϕ∗
p−qeR((q−p)(∂+ 1

2 div ∂))(σ)(q)

= dν
d(ϕp−q)∗ν

1
2
(p) · eR((q−p)(∂+ 1

2 div ∂))(σ)(p).

Using this and Lemma 6.3.3, for almost all p ∈ M we compute as follows:

π(∂Li f)(σ)(p) =
∫
Gp

∆− 1
2 (x)∂Li f(x)P (x)σ(sx)dλp(x)

=
∫
M

∆− 1
2 (p, q)∂Li f(p, q)P (p, q)σ(q)dµω(q)

=
∫
M

∆− 1
2 (p, q)∂i(f(p, ·))(q)P (p, q)σ(q)dµω(q)

=
∫
M

∆− 1
2 (p, q) dν

d(ϕp−q)∗ν

1
2
(p)∂i(f(p, ·))(q)eR̄((q−p)(∂+ 1

2 divω ∂))(σ)(p)dµω(q)

=
∫
M

dω
d(ϕp−q)∗ω

1
2
(p)∂i(f(p, ·))(q)eR̄((q−p)(∂+ 1

2 divω ∂))(σ)(p)dµω(q)

= −
∫
M
f(p, q)(∂i + divω ∂i)

(
dω

d(ϕp−·)∗ω

1
2
(p)e(·−p)R̄(∂+ 1

2 div ∂)(σ)(p)
)

(q)dµω(q)

= −
∫
M
f(p, q) d

dqi

(
dω

d(ϕp−q)∗ω

1
2
(p)e(q−p)R̄(∂+ 1

2∂)(σ)(p)
)

dµω(q)

−
∫
M
f(p, q) divω ∂i(q)

dω
d(ϕp−q)∗ω

1
2
(p)e(q−p)R̄(∂+ 1

2∂)(σ)(p)dµω(q)

= −
∫
M
f(p, q) d

dqi

(
dω

d(ϕp−q)∗ω

1
2
(p)
)

· e(q−p)R̄(∂+ 1
2∂)(σ)(p)dµω(q)

−
∫
M
f(p, q) dω

d(ϕp−q)∗ω

1
2
(p) d

dqi

(
e(q−p)R̄(∂+ 1

2∂)(σ)(p)
)

dµω(q)

−
∫
M
f(p, q) divω ∂i(q)

dω
d(ϕp−q)∗ω

1
2
(p)e(q−p)R̄(∂+ 1

2∂)(σ)(p)dµω(q)

= −
∫
M

−1
2f(p, q) dω

d(ϕp−q)∗ω

1
2
(p) divω(∂i)(q)e(q−p)R̄(∂+ 1

2∂)(σ)(p)dµω(q)

−
∫
M
f(p, q) dω

d(ϕp−q)∗ω

1
2
(p)eR̄((q−p)(∂+ 1

2 div ∂))(R(∂i + 1
2 div ∂i)σ)(p)dµω(q)

−
∫
M
f(p, q) divω ∂i(q)

dω
d(ϕp−q)∗ω

1
2
(p)e(q−p)R̄(∂+ 1

2∂)(σ)(p)dµω(q)

= −
∫
M
f(p, q)∆− 1

2 (p, q) dν
d(ϕp−q)∗ν

1
2
(p)eR̄((q−p)(∂+ 1

2 div ∂))(R(∂i + 1
2 div ∂i)σ)(p)dµω(q)

−
∫
M

1
2 divω(∂i)(q)f(p, q)∆− 1

2 (p, q) dν
d(ϕp−q)∗ν

1
2
(p)eR̄((q−p)(∂+ 1

2 div ∂))(σ)(p)dµω(q)
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= −
∫
M
f(p, q)∆− 1

2 (p, q)P (p, q)((R(∂i + 1
2 div ∂i)σ)(q))dµω(q)

−
∫
M

1
2 divω(∂i)(q)f(p, q)∆− 1

2 (p, q)P (p, q)(σ(q))dµω(q)

= −
∫
M
f(p, q)∆− 1

2 (p, q)P (p, q)((R(∂i + 1
2 div ∂i)σ)(q) + 1

2 divω(∂i)(q)σ(q))dµω(q)

= −
∫
M
f(p, q)∆− 1

2 (p, q)P (p, q)((R(∂i + div ∂i)(σ)(q))dµω(q)

= π(f)(R(−∂i − div ∂i)(σ)(p) □

If we denote the differential operator representation returned from this π by R′, the
previous proposition is almost enough to show that R′(∂i) = R(∂i). Heuristically, we
could deduce from here that π(f)R′(∂i)∗ = π(∂Li f) = π(f)R(∂∗

i ) = π(f)R(∂i)∗, and thus
R′(∂i) = R(∂i) by non-degeneracy of π. However, this computation is not valid in the realm
of unbounded operators. The one remaining problem is the question of domain, which
needs to be looked at independently.

Before we do this, let us investigate smooth functions instead of coordinate vector
fields; we will need results for both. Luckily, the computation is much easier in this case,
and the domain is also not an issue as both sides are bounded, so that their closures have
the whole Hilbert space as domain.

Lemma 6.3.8. Keep the notation from the previous proposition. In addition to that, let
R′ be the representation derived from π using Theorem 4.1.5. Then for all g ∈ C∞(M), we
have R(g) = R′(g).

Proof: Let f ∈ Cc(G) be arbitrary. On the one hand, we have

π(f)R′(g) = (R′(g)∗π(f)∗)∗ = (R′(g)π(f∗))∗

= π(g ◦ t · f∗)∗ = π((g ◦ t · f∗)∗) = π(g ◦ s · f),

because
(g ◦ t · f∗)∗(x) = (g ◦ t · f∗)(x−1) = g ◦ s(x) · f(x)

and π(f), R′(g) are bounded.
On the other hand, we compute for all σ ∈ L2H, p ∈ M , that

π(f)R(g)σ(p) = π(f)(gσ)(p)

=
∫
Gp

∆− 1
2 (x)f(x)P (x)g(sx)σ(sx)dλp(x)

=
∫
Gp

∆− 1
2 (x)(g ◦ s · f)(x)P (x)σ(sx)dλp(x) = π(g ◦ s · f)(σ)(p),

and consequently,
π(f)R(g) = π(g ◦ s · f) = π(f)R′(g).

Because π is non-degenerate, this implies that R(g) = R′(g). □

We still want to show that our integration map is a right-inverse to the differentiation
map, and there still is an open question of domain. Besides that, the other thing to show
is that it is also a left-inverse. That direction is actually a bit easier in different aspects, as
we do not need to worry about domains of unbounded operators too much. So instead of
pondering restlessly about the domain question, let us look at this direction first.

The main point in the upcoming proofs is the fact that our integrated representation
yields unitary operators, which fulfil a certain differential equation; the original operators
fulfil the same one, hence they must be equal.

So under a more detailed look, what unitaries am I talking about?
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Lemma 6.3.9. Let G⇒M be a Lie groupoid with Haar system λ, ν a quasi-invariant
measure on M and P : G 99K U(H) a representation of G on a ν-Hilbert field H. Then for
every bisection α ∈ Γ(G), the map

P (α) : L2H → L2H, P (α)(σ)(p) :=
(
ϕ∗ν

ν

) 1
2

(p)P (α(ϕ−1p))(σ(ϕ−1p)),

where ϕ = t ◦ (s|α)−1, is unitary. By convention, I write α(p) := (s|α)−1(p) here.

Proof: P (α) is linear because P (α(ϕ−1p)) is linear for all p ∈ M , as is the evaluation at a
point. Regarding isometry, let σ, τ ∈ L2H be arbitrary. Then we compute:

⟨P (α)σ, P (α)τ⟩ =
∫
M

⟨(P (α)σ)(p), (P (α)τ)(p)⟩dν(p)

=
∫
M

⟨
(
ϕ∗ν

ν

) 1
2

(p)P (α(ϕ−1p))(σϕ−1p),
(
ϕ∗ν

ν

) 1
2

(p)P (αϕ−1p)(τϕ−1p)⟩dν(p)

=
∫
M

(
ν

ϕ−1
∗ ν

)
(ϕ−1p)⟨P (αϕ−1p)(σϕ−1p), P (αϕ−1p)(τϕ−1p)⟩dν(p)

=
∫
M

ν

ϕ−1
∗ ν

(p)⟨P (αp)(σp), P (αp)(τp)⟩dϕ−1
∗ ν(p)

=
∫
M

⟨P (αp)(σp), P (αp)(τp)⟩dν(p)

=
∫
M

⟨σ(p), τ(p)⟩dν(p) = ⟨σ, τ⟩,

using that P (αp) is unitary for almost all p ∈ M . □

So in short, instead of inserting elements of the groupoid to get fibrewise unitaries, we
can insert bisections to get global ones. The advantage of those is that, in a controlled
context, we can compute values more explicitly, as in the following lemma.

Lemma 6.3.10. Let M = Rm with a volume form ω and ν a quasi-invariant measure
on M (with respect to the volumetric groupoid M2). Let H → M be a ν-Hilbert field. Let
P : M2 99K U(H) be a representation and π = int2(P ). Then we have:

P (exp(x∂))(π(f)σ) =
((ϕx)∗ω

ω

) 1
2
π(f ◦ lexp −x∂)(σ)

for all f ∈ C∞
c (M2) and σ ∈ L2H, where ϕx(y) = y + x = t ◦ exp(x∂)(y).

Proof: By definition, we have:

P (expx∂)(π(f)σ)(p) =
((ϕx)∗ν

ν

) 1
2

(p) · P (p, p− x)(π(f)σ(p− x))

Computing the right part first gives us (for almost all p):

P (p, p− x)(π(f)σ(p− x)) = P (p, p− x)
∫
M

∆− 1
2 (p− x, q)f(p− x, q)P (p− x, q)σ(q)dω(q)

=
∫
M

∆− 1
2 (p− x, q)f(p− x, q)P (p, p− x)P (p− x, q)σ(q)dω(q)

=
∫
M

∆− 1
2 (p− x, q)f(p− x, q)P (p, q)σ(q)dω(q)

= ∆− 1
2 (p− x, p)

∫
M

∆− 1
2 (p, q)f ◦ lexp −x∂(p, q)P (p, q)σ(q)dω(q)

= ∆− 1
2 (p− x, p)π(f ◦ lexp −x∂)(σ)(p)
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Now by virtue of Lemma 6.3.3, we have almost everywhere:((ϕx)∗ν

ν

) 1
2

(p)∆− 1
2 (p− x, p) =

(
(ϕp−(p−x))∗ν

ν

) 1
2

(p)∆
1
2 (p, p− x)

=
((ϕx)∗ω

ω

) 1
2

(p)

Putting these computations together yields:

P (expx∂)(π(f)σ)(p) =
((ϕx)∗ν

ν

) 1
2

(p) · P (p, p− x)(π(f)σ(p− x))

=
((ϕx)∗ν

ν

) 1
2

(p)∆− 1
2 (p− x, p)π(f ◦ lexp −x∂)(σ)(p)

=
((ϕx)∗ω

ω

) 1
2

(p)π(f ◦ lexp −x∂)(σ)(p)

=

((ϕx)∗ω

ω

) 1
2
π(f ◦ lexp −x∂)(σ)

 (p) □

With such an explicit formula, it is no wonder that we can also explicitly explain how
to derive the derivations of our unitary. Using both formulas together characterizes the
unitaries in terms of a differential equation.

Lemma 6.3.11. Keep the previous notation. Then the partial derivatives of this expres-
sion are

∂

∂xi
P (expx∂)(π(f)σ) =

((ϕx)∗ω

ω

) 1
2
π((−∂i − 1

2 divω ∂i)R(f) ◦ lexp −x∂)(σ)

for all i ∈ {1, . . . ,m}, where DR ∈ DiffR(M2) denotes the right-invariant differential
operator corresponding to any D ∈ Diff(M).

In particular:
∂

∂xi
P (expx∂)(π(f)σ) = P (exp(x∂))(π((−∂i − 1

2 divω ∂i)R(f))σ)

Proof: We differentiate both factors and use the product rule for Banach algebras. On the
one hand, we can compute that

∂

∂xi

((ϕx)∗ω

ω

) 1
2

(p) = ∂

∂xi

( ω

(ϕp−(p−x))∗ω

) 1
2

(p)

−1

= −
(

ω

(ϕp−(p−x))∗ω

)−2∗ 1
2

(p) · (−1
2)

·
(

ω

(ϕp−(p−x))∗ω

) 1
2

(p) · divω(∂i)(p− x) · (−1)

= −1
2

((ϕx)∗ω

ω

) 1
2

(p) · divω(∂i)(p− x)

=

−1
2

((ϕx)∗ω

ω

) 1
2

divω(∂i) ◦ ϕ−x

 (p)

using Lemma 6.3.6 and the chain rule.
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On the other hand, we easily see for all (p, q) ∈ M2 that
∂

∂xi
f ◦ lexp −x∂(p, q) = ∂

∂xi
f(p− x, q) = −∂i(f(·, q))(p− x)

= −∂Ri (f)(p− x, q) = −∂Ri (f) ◦ lexp −x∂(p, q)
and hence

∂

∂xi
π(f ◦ lexp −x∂)(σ) = π( ∂

∂xi
f ◦ lexp −x∂)(σ) = π(−∂Ri (f) ◦ lexp −x∂)(σ)

by continuity of π.
Combining these and using the fact that

t ◦ lexp −x∂(p, q) = t(p− x, q) = p− x = ϕ−x ◦ t(p, q)
for p, q ∈ M , we compute as follows:

∂

∂xi
P (expx∂)(π(f)σ) = ∂

∂xi

((ϕx)∗ω

ω

) 1
2
π(f ◦ lexp −x∂)(σ)


= − 1

2

((ϕx)∗ω

ω

) 1
2

divω(∂i) ◦ ϕ−xπ(f ◦ lexp −x∂)(σ)

+
((ϕx)∗ω

ω

) 1
2
π(−∂Ri (f) ◦ lexp −x∂)(σ)

=
((ϕx)∗ω

ω

) 1
2
π(−1

2 divω(∂i) ◦ t ◦ lexp −x∂ · f ◦ lexp −x∂)(σ)

+
((ϕx)∗ω

ω

) 1
2
π(−∂Ri (f) ◦ lexp −x∂)(σ)

=
((ϕx)∗ω

ω

) 1
2
π((−∂i − 1

2 divω ∂i)R(f) ◦ lexp −x∂)(σ)

=P (exp(x∂))(π((−∂i − 1
2 divω ∂i)R(f))σ) □

Furthermore, we can also compute explicitly the value of the unitaries induced by the
integrated form of a representation. Recall that, in this chapter, a representation R of
Diff(Rm) is called integrable if the Laplacian L =

∑m
i=1(∂i + 1

2 div ∂i)2 gets mapped to
an essentially self-adjoint operator R(L). In the next chapter, we will use a slightly more
complicated definition in a more general setting.

Lemma 6.3.12. Let M , ω, ν, H be as before and let R : Diff(M) → O(L2H) be an
integrable representation. Let Q := int1(R). Then for all σ ∈ L2H we have

Q(expx∂)(σ) = eR(−x∂̃)(σ),

where x∂̃ =
∑m
i=1 xi(∂i + 1

2 divω(∂i)).

Proof: Using our definitions from Lemma 6.3.9 and Theorem 6.1.6, we see that for almost
all p ∈ M ,

Q(expx∂)(σ)(p) =
((ϕx)∗ν

ν

) 1
2

(p)Q(p, p− x)(σ(p− x))

=
((ϕx)∗ν

ν

) 1
2

(p)
(

ν

(ϕx)∗ν

) 1
2

(p)eR̄(−x∂̃)(σ)(p) = eR̄(−x∂̃)(σ)(p). □

Now let us compare both sides:
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Lemma 6.3.13. Let M,ω, ν,H as before. Let P : M2 99K U(H) be a representation. Set
Q = int1 ◦ diff ◦ int2(P ) : M2 99K U(H). Then for all x ∈ Rm, we have:

Q(expx∂) = P (expx∂)
Proof: Set π = int2(P ), R = diff(π). Let τ = π(f)σ ∈ domR = π(C∞

c (M2))L2H be
an arbitrary element in the domain of the differentiated representation. Firstly, we
have Q(exp 0∂)τ = τ = P (exp 0∂)τ . Furthermore, by Lemma 6.3.12 we have for all
i ∈ {1, . . . ,m}:

∂

∂xi
Q(expx∂)τ = ∂

∂xi
eR̄(−x∂̃)(τ) = eR̄(−x∂̃)(R(−∂̃i)τ) = Q(expx∂)(R(−∂̃i)τ)

Additionally, by Lemma 6.3.11 we know that
∂

∂xi
P (expx∂)τ = ∂

∂xi
P (expx∂)(π(f)σ) = P (exp(x∂))(π((−∂i − 1

2 divω ∂i)R(f))σ)

= P (expx∂)(R(−∂̃iπ(f)σ) = P (expx∂)(R(−∂̃i)τ).
By elementary calculus, this implies that Q(expx∂)τ − P (expx∂)τ = Q(exp 0∂)τ −

P (exp 0∂)τ = 0 for all x ∈ Rm, i.e. Q(expx∂)τ = P (expx∂)τ . Since domR ⊆ L2H is
dense and Q(expx∂) and P (expx∂) are bounded, this implies that Q(expx∂) = P (expx∂)
as required. □

Proposition 6.3.14. Let M = Rm with a volume form ω and a quasi-invariant measure
ν. Let H → M be a ν-Hilbert field and P : M2 99K U(H) a representation, i.e. an essential
homomorphism of second type. Then int1 ◦ diff ◦ int2(P ) = P (almost everywhere).
Proof: Put Q := int1 ◦ diff ◦ int2(P ). Let (σi)i∈N be a generating sequence for H. By Lemma
6.3.13, for all x ∈ Rm and i ∈ N there is ν-null set Ni ⊆ M such that Q(expx∂)(σi)(p) =
P (expx∂)(σi)(p) for all p ∈ M \Ni. Put N =

⋃
i∈NNi, which is still a null set as a countable

union of such. Then for all x ∈ Rm and all p ∈ M \N , Q(expx∂)(σi)(p) = P (expx∂)(σi)(p)
holds for all i ∈ N. In particular, these equations hold for almost all (x, p) ∈ M × M .
The map M2 → M2, (q, p) 7→ (p− q, p) is bimeasurable, hence we get that for almost all
(p, q) ∈ M2 the equation

P (p, q)σi(q) =
((ϕp−q)∗ν

ν

) 1
2

(p)P (exp(p− q)∂)(σi)(p)

=
((ϕp−q)∗ν

ν

) 1
2

(p)Q(exp(p− q)∂)(σi)(p) = Q(p, q)σi(q)

holds for all i ∈ N. Since spanC{σi(q)|i ∈ N} is dense in Hq for all q, this implies that
P (p, q) = Q(p, q) for almost all p, q ∈ M2, just as required. □

This was not quite the identity we wanted! Luckily, we have already proven that the
second integration map int2 is a bijection. So it is clear that our last lemma readily implies:

Proposition 6.3.15. Let M = Rm with a volume form ω and a quasi-invariant measure
ν. Let H → M be a ν-Hilbert field and let π : LI(M ×M) → B(L2H) be a representation.
Then:

int2 ◦ int1 ◦ diff(π) = π

Proof: By Proposition 6.3.14, we know that int1 ◦ diff ◦ int2 = id (on equivalence classes of
homomorphisms, where P ∼ Q if P (x) = Q(x) for almost all x). By Proposition 6.2.6, int2
is a bijection, hence int2 ◦ int1 ◦ diff = int2 ◦(int1 ◦ diff ◦ int2)◦ int−1

2 = int2 ◦ int−1
2 = id. □

As it turns out, the unitaries investigated for proving that the integration map is
a left inverse to differentiation are also useful for the other direction. The question of
domain which was left unanswered before can now be approached using Stone’s theorem
on one-parameter unitary groups. Formally, we can formulate the following lemma:
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Lemma 6.3.16. Let M = Rm and let ω be a volume form on M . Let R : Diff(M) →
O(L2H) be an integrable representation. Let P = int1(R) : M2 99K U(H), π = int2(P ) :
LI(M2) → B(L2H) and R′ = diff(π) : Diff(M) → O(L2H). Then for all i ∈ {1, . . . ,m}
we have:

R′(∂i + 1
2 div ∂i) ⊆ R(∂i + 1

2 div ∂i)

Proof: By definition, R is integrable if and only if R(L) is essentially self-adjoint, where
L =

∑m
i=1(∂i + 1

2 div ∂i)2. As discussed in the proof of Theorem 6.1.6, this implies that
R(∂i + 1

2 div ∂i) is essentially skew-adjoint, i.e., R(∂i + 1
2 div ∂i) = −R(∂i + 1

2 div ∂i)∗. By
Lemma 6.3.12, we have

P (expx∂) = eR(−x∂̃)

for all x ∈ Rm, in particular,

P (expx∂i) = e−xR(∂i+ 1
2 div ∂i)

holds for all i ∈ {1, . . . ,m} and x ∈ R.
Thus by one part of Stone’s theorem on one-parameter unitary groups (Theorem D,

page 647 in [23]), we know that

v ∈ domR(∂i + 1
2 div ∂i)

if and only if the map x 7→ P (expx∂i)v is differentiable at 0, and in that case,

R(∂i + 1
2 div ∂i)v = − d

dx

∣∣∣∣
x=0

P (expx∂i)v.

If v = π(f)σ ∈ domR′, then, as Lemma 6.3.11 states, we have
∂

∂xi
P (expx∂)(π(f)σ) = P (exp(x∂))(π((−∂i − 1

2 divω ∂i)R(f))σ)

for all x ∈ Rm. In particular, the map R → L2H, x 7→ P (expx∂i)v is differentiable with
d

dx

∣∣∣∣
x=0

P (expx∂i)v = π((−∂i − 1
2 div ∂i)R(f))σ = −R′(∂i + 1

2 div ∂i)(v),

thus v ∈ domR(∂i + 1
2 div ∂i) and R(∂i + 1

2 div ∂i)(v) = R′(∂i+ 1
2 div ∂i)(v). As v ∈ domR′

was arbitrary, this shows that R′(∂i + 1
2 div ∂i) ⊆ R(∂i + 1

2 div ∂i). □

A side effect of the last lemma is that the computation in Proposition 6.3.7 is not
actually necessary for our final theory. As the reader may guess, this only occurred to me
in hindsight. The proof technique with Stone’s theorem appears to be much more elegant
than partial integration and will be central in the next chapter. I still wanted to showcase
the more explicit computation to illustrate the original thought process.

From the inclusion of the images of coordinates, we can deduce further inclusions for
more general vector fields. As we are dealing with inclusions of unbounded operators, we
need to remember a few computational rules which apply here. These formulas are not
new, but also not hard to prove. First about sums and products of adjoints:

Lemma 6.3.17. Let H be a Hilbert space and A,B ∈ O(H) be densely defined. Then
we have

A∗ +B∗ ⊆ (A+B)∗

if domA ∩ domB is dense and
B∗A∗ ⊆ (AB)∗

if dom(AB) is dense in H.



6.3. DIFFERENTIATION VERSUS INTEGRATION 105

Proof: Let v ∈ dom(A∗) ∩ dom(B∗) = dom(A∗ + B∗). Then by definition, the maps
domA → C, w 7→ ⟨v,Aw⟩ and domB → C, w 7→ ⟨v,Bw⟩ are continuous. In particular,
their restrictions onto domA ∩ domB = dom(A + B) are continuous. Hence the map
dom(A+B) → C, w 7→ ⟨v, (A+B)w⟩ = ⟨v,Aw⟩ + ⟨v,Bw⟩ must also be continuous. Hence
v ∈ dom(A+B)∗. Furthermore, we have ⟨v, (A+B)w⟩ = ⟨A∗v+B∗v, w⟩ = ⟨(A∗ +B∗)v, w⟩
for all w ∈ dom(A+B), so that (A+B)∗v = (A∗ +B∗)v as required.

Let v ∈ dom(B∗A∗), i.e., v ∈ dom(A∗) and A∗v ∈ domB∗. Then for w ∈ dom(AB), we
have ⟨v,ABw⟩ = ⟨A∗v,Bw⟩ = ⟨B∗A∗v, w⟩, so v ∈ dom(AB)∗ and (AB)∗v = B∗A∗v. □

Furthermore, I need the following technicalities about inclusions and closures of oper-
ators:

Lemma 6.3.18. Let H1, H2, H3 be vector spaces. Let A : H1 → H2 and B : H2 → H3
be linear operators (defined on the whole spaces) and T, S ∈ O(H2). Then B(T + S)A =
BTA+BSA : H1 ⊃ dom(B(T + S)A) → H3.

If T ⊆ S, then BTA ⊆ BSA.
If A is bounded and T is closable, then TA is closable, and TA ⊆ TA.

Proof: We have the following equivalence for v ∈ H1:

v ∈ domB(T + S)A ⇔ Av ∈ dom(T + S) = domT ∩ domS

⇔ Av ∈ domT ∧Av ∈ domS

⇔ v ∈ domTA ∩ domSA

= domBTA ∩ domBSA = dom(BTA+BSA)

So dom(BTA+BSA) = dom(B(T + S)A) = domBTA ∩ domBSA. Obviously, for every
v ∈ domBTA ∩ domBSA, we have B(T + S)Av = B(TAv + SAv) = BTAv + BSAv =
(BTA+BSA)v so that actually B(T + S)A = BTA+BSA.

Now suppose that T ⊆ S and let v ∈ domBTA. Then Av ∈ domT ⊆ domS, so v ∈
domSA = domBSA, and BSA(v) = BS(Av) = BT (Av) = BTA(v). Thus BTA ⊆ BSA.

Now suppose that A is bounded and T is closable. Let v ∈ H1 and (vi) ⊂ dom(TA) ⊆ H1
be an arbitrary sequence with vi → v such that TAvi is convergent. Then since A is bounded,
(Avi) ⊂ domT is convergent (to Av), hence because T is closable, the limit TAvi must be
the same for all such sequences vi:

lim
i

(TA)vi = lim
i
T (Avi) = T (Av)

Thus TA is closable. We have shown that Av ∈ domT and TA(v) = TAv, thus TA ⊆
TA. □

We can now use these lemmas to prove:

Proposition 6.3.19. Let M = Rm and ω be a volume form on M . Let R : Diff(M) →
O(L2H) be an integrable representation. Let P = int1(R) : M2 99K U(H), π = int2(P ) :
LI(M2) → B(L2H) and R′ = diff(π) : Diff(M) → O(L2H). Then for all X ∈ X(M), we
have:

R′(X) ⊆ R(X∗)∗

Proof: For each Y ∈ X(M), set Ỹ = Y + 1
2 div Y , as usual. Let X ∈ X(M) be arbitrary.

Then since (∂1, . . . , ∂m) is a global frame, there are f1, . . . , fm, g ∈ C∞(M) such that
X = g +

∑m
i=1 fi∂̃i. As discussed before, R(∂̃i) is essentially skew-adjoint for integrable R,

thus by Lemma 6.3.16, we know that

R′(∂̃i) ⊆ R(∂̃i) = −R(∂̃i)∗ = R(∂̃i
∗)∗

holds for all i ∈ {1, . . . ,m}.
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Consequently, we can compute using Lemma 6.3.17 and Lemma 6.3.18:

R′(X) = R′(g) +
m∑
i=1

R′(fi)R′(∂̃i) ⊆ R(g∗)∗ +
m∑
i=1

R(f∗
i )∗R(∂̃i

∗)∗

⊆
(
R(g∗) +

m∑
i=1

R(∂̃i
∗)R(f∗

i )
)∗

= R

((
g +

m∑
i=1

fi∂i

)∗)∗

= R(X∗)∗ □

Notice how we used the double adjoint (once formally within Diff(M), once within
O(L2H)) to ensure a large enough domain. The main point here is that sums of adjoints
are more well-behaved than sums of closures of operators.

A natural follow-up hypothesis is that we actually haveR′(X) = R(X) for allX ∈ X(M).
This property can indeed be proven under certain circumstances (we will do it for the
context where M is a compact manifold in the next chapter), but the proof will use that
derivatives of groupoid representations are integrable. This is something which we actually
have not proven; keep in mind that Proposition 4.2.1 does not apply to Rm × Rm because
this is not compact. Thus we will stick with the double adjoint formula for now. Further
characterisations of domain and integrability will follow in the next chapter in a more
general context.

At this point we have decent knowledge about the differentiation and integration of
Lie groupoid representations for the basic case where the groupoid is Rm × Rm. We have
constructed three mappings and shown that they are inverse to each other (up to an open
question of domain). This information is condensed in the diagram below:

B(L2H)

π

LI(G)

U(H) P G DiffR(G) R O(L2H)

R(D)(π(f)σ)=π(D(f))σ

diffint2

π(f)(σ)(p)=
∫
Gp

∆− 1
2 (x)f(x)P (x)σ(sx)dλp

int1

P (p,q)=
(

dν
d(φp−q)∗ν

) 1
2 (p)

(
φ∗
p−qe

R̄((q−p)(∂+ 1
2

div ∂))
)

(q)

The most important parts in the definition of int1 are color-coded: We have in purple the
m-tuple of partial derivatives ∂ = (∂1, . . . , ∂m), in orange its divergence with respect to a
volume form ω, in teal the pullback by the flow of ∂ which makes our unitary decomposable
and in blue the Radon-Nikodým derivative necessary for norm-correction.

In the above diagram, the maps diff and int2 are well-defined for general volumetric
groupoids, while the important integration map int1 is only defined for the Euclidean pair
groupoid Rm × Rm at the moment. Isn’t that result a bit meagre? While the Euclidean
environment is a very important first step, we started out wondering about arbitrary Lie
groupoids, not just real numbers. To engage this limitation, there is still one more chapter
to this thesis, which will generalize our integration theorem to give a more convincing
result.



CHAPTER 7

An Integration Theorem for Smooth Manifolds

In this final mathematical chapter we will use ideas from the previous chapter to prove
a more general integration theorem, which works for tangent bundles of compact manifolds
instead of just for Rm. With a differential-geometric background, the natural idea here is
to cover the manifold by charts and apply the Euclidean integration theory locally. The
special challenge of this context is that certain properties of unbounded operators, like
being self-adjoint, do not work well together with restrictions to open subsets. In particular,
for a given representation R : Diff(M) → O(L2H) and a differential operator D ∈ Diff(M)
such that R(D) is essentially self-adjoint, a restriction R(D|U ) ∈ O(L2H|U ) can be defined,
but is usually not essentially self-adjoint; an example for this is the Laplacian on R, which
is not essentially self-adjoint on C∞

c ((0, 1)).
This is why we will always consider global vector fields X ∈ X(M) and assume that

R(X + 1
2 divX) ∈ O(L2H) is essentially skew-adjoint. Because global commuting frames

do not exist for general manifolds, I will only assume that certain vector fields commute
on an open subset. Suitable vector fields can be constructed using local charts. With
these caveats, the process is relatively straightforward: Starting with a representation
R : Diff(M) → O(L2H), we first construct local representations PU : U ×U 99K U(L2H|U )
on open subsets U . We cover M by such local representations and show that the overlaps
are identical. Then we stitch the pieces together to get a global integration theorem. Finally
we show compatibility with differentiation and investigate integrability conditions.

7.1. Construction of Local Representations

To get started, it is very helpful to define an integration frame for an algebroid
representation. In short, this is simply a local frame of commuting vector fields which
act by essentially skew-adjoint operators and whose exponentials commute locally. This
object type is exactly what I will use throughout this chapter to define local integrals of
representations, hence the name. The precise formulation is as follows:

Definition 7.1.1. Let (M,ω) be a volumetric manifold with a quasi-invariant measure
ν. Let R : Diff(M) → O(K) be a representation on a Hilbert space K (e.g., K = L2H for
a ν-Hilbert field H).

An integration frame for R on an open subset U ⊆ M is a tuple (X1, . . . , Xm) of vector
fields Xi ∈ X(M) such that:

(1) xB :=
∑m
i=1 xiR(Xi + 1

2 divω(Xi)) is essentially skew-adjoint for all x ∈ Rm,
(2) [Xi, Xj ]|U ≡ 0 for all i, j ∈ {1, . . . ,m},
(3) (X1(p), . . . , Xm(p)) is an (ordered) basis for TpM for all p ∈ U and
(4) there exists an ϵ > 0 such that for all x, y ∈ Uϵ(0) ⊆ Rm and all h ∈ C∞

b (M) with
h|M\U ≡ 0: R(h)exBeyB = R(h)e(x+y)B.

The fourth property in particular may seem a bit technical, but it is required to show
that our local construction defines a homomorphism. I will show later that it is fulfilled in
relevant cases. Note that for a Hilbert field representation, R(h) = Th is the multiplication
operator by h. This is the only case we will deal with in the following constructions, but
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it is useful for the final theorem and its corollary to formulate the definition in a slightly
more general context.

In the previous chapter (Theorem 6.1.4), we have seen that the exponential of a vector
field in a representation is a decomposable operator. The first thing that we need to prove
now is that the pointwise decomposition of this operator inherits the group relation from
the global unitaries. More precisely:

Lemma 7.1.2. Let R : Diff(M) → O(L2H) be a representation. Let (X1, . . . , Xm) be
an integration frame on an open subset U ⊆ M .

For p ∈ M and x ∈ Rm sufficiently small, let ϕx be the flow of xX =
∑m
i=1 xiXi at

time 1 and define
Ux(p) :=

(
ϕ∗
xe−xB

)
(p) : Hp → Hϕxp

Then there is an open subset W ⊆ Rm × Rm ×M with {0} × {0} × U ⊂ W such that
for almost all (x, y, p) ∈ W we have:

• Ux(ϕyp)Uy(p) = Ux+y(p) and
• ϕxϕy(p) = ϕx+y(p)

Proof: Let K ⊆ U be an arbitrary compact subset. Choose a bump function h ∈ C∞
c (U)

with h|K ≡ 1 (which is possible sinceK is compact and U is open). DefineK1 := supph ⊆ U .
By continuity of the flow maps, there is an ϵ1 > 0 such that for all x, y, z ∈ Rm with
|x|, |y|, |z| ≤ ϵ1, ϕx ◦ ϕy ◦ ϕz(K1) ⊆ U . Also by continuity, the set K2 := {ϕxϕyϕz(p)|p ∈
K1, |x|, |y|, |z| ≤ ϵ1} ⊆ U is again compact. So we can choose another ϵ2 > 0 such that
ϕxϕyϕz(K2) ⊆ U for all |x|, |y|, |z| ≤ 3ϵ2. Then for all |x|, |y|, |z| ≤ ϵ and all p ∈ K2, we know
that ϕxϕyϕz(p) = θ

X|U
x θ

X|U
y θ

X|U
z (p) = θ

X|U
x+y+z(p) = ϕx+y+z(p) because [Xi|U , Xj |U ] = 0.

Here, θX|U
x denotes the time-1-flow of x1X1|U + · · · + xmXm|U , and these flows commute

wherever defined since the vector fields commute.
Set ϵ = ϵK := min{ϵ1, ϵ2, s} > 0. Let x, y ∈ Rm with |x|, |y| ≤ ϵ and p ∈ K be arbitrary.

Consider any section σ ∈ L2H. Notice that we have supph ◦ ϕ−y ◦ ϕ−x = ϕxϕy(supph) ⊆
K2 ⊆ U , so we know by the definition of integration frames that Th◦ϕ−y◦ϕ−xe−xBe−yB =
Th◦ϕ−y◦ϕ−xe(−x−y)B. Thus we compute:

Ux(ϕyp)Uy(p)σ(p) = h(p)Ux(ϕyp)Uy(p)σ(p) = Ux(ϕyp)Uy(p)(Thσ)(p)

= Ux(ϕyp)
(
e−yB(Thσ)(ϕyp)

)
=
(
e−xBe−yB(Thσ)

)
(ϕxϕyp)

=
(
Th◦ϕ−y◦ϕ−xe−xBe−yBσ

)
(ϕxϕyp)

=
(
Th◦ϕ−y◦ϕ−xe(−x−y)Bσ

)
(ϕxϕyp)

= h(ϕ−yϕ−xϕxϕy(p))
(
e(−x−y)Bσ

)
(ϕxϕyp) = h(p)

(
e(−x−y)Bσ

)
(ϕxϕyp)

= h(p)
(
e(−x−y)Bσ

)
(ϕx+yp) = Ux+y(σ(p))

Since σ was arbitrary, this implies Ux(ϕyp)Uy(p) = Ux+y(p) almost everywhere.
Define WK := Uϵ ×Uϵ ×K◦ ⊆ Rm ×Rm ×U , where K◦ denotes the interior of K. WK

is open with {0} × {0} × K◦ ⊆ WK , and a fortiori we know by the previous arguments
that Ux(ϕyp)Uy(p) = Ux+y(p) and ϕxϕyp = ϕx+yp for almost all (x, y, p) ∈ WK .

This procedure can be done for any compact K ⊆ U , so take the union W :=⋃
K⊆U compactWK ⊆ Rm × Rm × U , which is still open and fulfils Ux(ϕyp)Uy(p) = Ux+y(p)

as well as ϕxϕyp = ϕx+yp for almost all (x, y, p) ∈ W . Furthermore, because U is locally
compact and open, it can be covered by precompact open subsets, thus we have

{0} × {0} × U =
⋃

K⊆U compact
{0} × {0} ×K◦ ⊆ W,
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which finishes the proof. □

The formulation with an open set W ⊆ Rm × Rm ×M is just a formally correct and
relatively short way to describe that the bound for x and y in the lemma depends on p,
unlike for complete globally commuting vector fields.

Before we really use this result, we need to introduce a minor technical trick to guarantee
that fibres are connected in our local integration.

Lemma 7.1.3. Let M be a smooth manifold. Let W ⊆ M×M be an open neighbourhood
of diag(M) = {(p, p)|p ∈ M}. Then there is another open set Z ⊆ W with diag(M) ⊆ Z,
such that Zp = ({p} ×M) ∩ Z is connected for all p ∈ M .

Proof: Consider any p ∈ M . Choose a chart ϕ : U → Ũ ⊆ Rm with p ∈ U and ϕ(p) = 0 ∈ Ũ .
Since W is open, there exists an ϵ > 0 such that Zp := (ϕ−1Uϵ(0))2 ⊆ W . Zp ∼= Uϵ(0)2 is
connected and open. Let q ∈ M be another arbitrary point. Put Up = ϕ−1Uϵ(0). Then we
find for the intersection:

({q} ×M) ∩ Zp = ({q} ×M) ∩ U2
p =

{
{q} × Up, q ∈ Up

∅, q /∈ Up

So in either case, it is connected. If it is non-empty, it contains (q, q).
Define Z :=

⋃
p∈M Zp. Let q ∈ M be arbitrary. Then by the previous discussion, we

have:
Zq = ({q} ×M) ∩ Z =

⋃
p∈M

({q} ×M) ∩ Zp

=
⋃

p∈M, q∈Up

{q} × Up

Since {q} × Up is connected and (q, q) ∈ {q} × Up for all p with q ∈ Up, this union is again
connected. Because (p, p) ∈ Zp for all p ∈ M , we also have diag(M) ⊆ Z. □

Using these two lemmas, we can already construct a local representation and prove the
main result of this section:

Proposition 7.1.4. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let
(X1, . . . , Xm)

be an integration frame on U ⊆ M .
Then on every precompact simply connected open set V ⊆ V̄ ⊆ U there is a local

essential homomorphism P = PX : V × V 99K U(H|V ) with

P (exp(xX)(p)) =
(

ν

(ϕx)∗ν

) 1
2

(ϕxp)
(
ϕ∗
xe−xB

)
(p)

for almost all p ∈ V and almost all sufficiently small x ∈ Rm, where ϕx is the time-1 flow
of xX.

Proof: By Proposition 5.1.11 and Theorem 6.1.4, the operator
(

ν
(ϕx)∗ν

) 1
2 ◦ ϕx · ϕ∗

xe−xB is
unitary and decomposable (for x small enough).

For p ∈ M and x ∈ Rm such that e−xB is defined, put Ux(p) :=
(
ϕ∗
xe−xB

)
(p).

By Lemma 7.1.2, there are an open subset W ⊆ R2m × U with {0} × U ⊆ W and a
null set N ⊆ W (with respect to λ × λ × ν, λ being the Lebesgue measure), such that
Ux(ϕyp)Uy(p) = Ux+y(p) for all (x, y, p) ∈ W \ N (in particular, the terms are defined),
and also ϕx+y(p) = ϕxϕy(p).

Because V̄ ⊆ U is compact, there exists an ϵ1 > 0 such that Uϵ(0)2 × V ⊆ W . Because
(X1|U , . . . , Xm|U ) is a smooth commuting frame and V̄ is compact, there is another ϵ2 > 0
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such that the map x 7→ (ϕx(p)) = exp(xX)(p) is a diffeomorphism for all p ∈ V and
|x| < ϵ2. Put ϵ = min{ϵ1, ϵ2} and define:

W ′ := {(ϕx(p), p)|x ∈ Uϵ(0), p ∈ V } ∩ V 2

By the choice of ϵ2, exp(xX)|Uϵ(0)×V : Uϵ(0) × V → {(ϕx(p), p)|x ∈ Uϵ(0), p ∈ V } is a
diffeomorphism, so that W ′ ⊆ V 2 is open. Clearly for all p ∈ V , (p, p) = (ϕ0p, p) ∈ W ′, so
that W ′ contains the diagonal.

By Lemma 6.1.5, there is another null set N ′ ⊆ W ⊆ Rm × Rm × U such that
ν

(ϕx+y)∗ν
◦ ϕx+y(p) = ν

(ϕx)∗ν
◦ ϕx+y(p) · ν

(ϕy)∗ν
(ϕyp) for all (x, y, p) ∈ W \N ′. So put N2 :=

{((ϕxϕyp, ϕyp), (ϕyp, p))|(x, y, p) ∈ N ∪N ′} ⊆ (M ×M)(2), which is a null set since N and
N ′ are null sets and (x, p) 7→ ϕxp is smooth.

Define

P : W ′ → U(V ), exp(xX)(p) 7→
(

ν

(ϕx)∗ν

) 1
2

(ϕxp)Ux(p)

Now let g, h ∈ W ′ be arbitrary such that th = sg and (g, h) /∈ N2. Then because
exp(X) : (x, p) 7→ (ϕxp, p) = exp(xX)(p) is locally bijective, there are unique x, y ∈
Uϵ(0) ⊆ Rm, p ∈ V , such that g = (ϕxϕyp, ϕyp) and h = (ϕyp, p). In particular, the above
definition of P is well-posed. Since (g, h) /∈ N2, we know that (x, y, p) /∈ N ∪ N ′. By
construction, we have (x, y, p) ∈ U2

ϵ × V ⊆ W , so that indeed

P (gh) = P (exp((x+ y)X)(p)) = ν

(ϕx+y)∗ν
(ϕx+yp)Ux+y(p)

= ν

(ϕx)∗ν
◦ ϕx+y(p) · ν

(ϕy)∗ν
(ϕyp)Ux(ϕxp)Uy(p)

= P (exp(xX)ϕyp)P (exp(yX)p) = P (g)P (h)

By Lemma 7.1.3, choose another open set Z ⊆ W ′ with diag(V ) ⊆ W ′ such that
Z ∩ ({p} × V ) is connected for all p ∈ V . Then we a fortiori have P (gh) = P (g)P (h) for
all g, h ∈ Z with gh ∈ Z and (g, h) /∈ N2. So P |ZV × V 99K U(H|V ) is an essential local
homomorphism of first type. By Proposition 5.3.6, P |D is a homomorphism of second type
for some co-null set D ⊆ Z, which finishes the proof. □

A priori, this construction depends on the chosen integration frame and can yield a
different result for another choice. We will show in the next section that this is actually
not the case.

7.2. Showing Independence of Chart Choice

Proving that the local integrals of our representation are independent of chart choice is
not at all a trivial task. Generally speaking, two charts on the same domain are connected
by a transformation matrix of smooth functions. In many areas of differential geometry,
independence of chart choice is shown using explicit computations with this transformation
matrix. Now the challenge in our scenario is that there is no obvious relation between
the exponential of a vector field and the exponential of its product with a given smooth
function. For non-commuting vector fields, we cannot even say much about the exponential
of their sum; the Baker-Campbell-Hausdorff formula still applies in functional calculus,
but not for groupoid exponentials.

We will solve this problem by essentially outsourcing the computations from the unitary
operators back to the differential operator algebra. Namely we will immediately differentiate
our local integral again and investigate the relation of this derived representation with
the original. We will find that this derivative does not significantly depend on the chosen
integration frame, thus the local integral cannot either.
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Our first goal is to consider different definitions of the exponential of a vector field
and show that they are equivalent. To do so, let us start with a computation involving
Radon-Nikodým derivatives and divergence.

Recall that for a diffeomorphism ϕ : M → M , ϕ∗ω ∈ Ωm(M) is the pullback of a
differential form, while ϕ∗ω = ϕ∗µω is the pushforward measure of the measure induced by
ω. We find that ϕ∗ω = ϕ−1

∗ ω and formulate the following lemma:

Lemma 7.2.1. Let (M,ω) be a volumetric manifold. Let X ∈ X(M) be a vector field.
Denote by θ : D → M , D ⊆ R ×M open, the flow of X. Then for all (x, p) ∈ D, we have:

d
dx

ω

(θx)∗ω
◦ θx(p) = θ∗

xω

ω
(p) · divω(X) ◦ θx(p)

Proof: Usually I use the definition LX = d ◦ iX + iX ◦ d for the Lie derivative, but it is also
possible to define LXη = d

dt

∣∣∣
t=0

θ∗
t η, for any tensor field η. For differential forms η ∈ Ω(M),

these expressions are equivalent by Theorem 14.35, page 372 in [11]. Hence we find:
d

dx
ω

(θx)∗ω
◦ θx · ω = d

dx
(θ−x)∗ω

ω
· ω = d

dx(θ−x)∗ω

= d
dxθ

∗
xω = d

dt

∣∣∣∣
t=0

θ∗
xθ

∗
tω = θ∗

x

d
dt

∣∣∣∣
t=0

θ∗
tω

= θ∗
xLXω = θ∗

x(divω(X) · ω)

= divω(X) ◦ θx · θ∗
xω = θ∗

xω

ω
· divω(X) ◦ θx · ω,

and thus, since ω(p) ̸= 0 for all p ∈ M , d
dx

ω
(θx)∗ω

◦ θx = θ∗
xω
ω · divω(X) ◦ θx as required.

More precisely, for every precompact open U ⊆ M , by continuity of θ we find an ϵ > 0
such that Uϵ(0) × U ⊆ D, and the above equations are true for (x, p) ∈ Uϵ(0) × U ⊆ D.
Since M can be covered by precompact open subsets, the result follows. □

Notice that the pullbacks in the preceding lemma are only defined in a neighbourhood
of each point, which suffices. In a representation of the groupoid algebra, any vector field
acts by left-multiplication – we have used this construction before. With our lemma, we
can compute the derivative of this map.

Lemma 7.2.2. Let (M,ω) be volumetric, with a quasi-invariant measure ν on M and a
Hilbert field H → M . Let π : C∗(M2) → B(L2H) be a representation. Let X ∈ X(M) be a
vector field (not necessarily complete), and let θ : D ⊆ R ×M be its flow. Consider any
f ∈ C∞

c (M2). Choose ϵ > 0 such that U2ϵ × t(supp f) ⊆ D. Then for all x ∈ (−ϵ, ϵ), we
have:

d
dx

((θx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX)) =

((θx)∗ω

ω

) 1
2
π((−X − 1

2 divω(X))R(f) ◦ lexp(−xX))

Proof: Using Lemma 7.2.1 and the chain rule, we compute first:

d
dx

((θx)∗ω

ω

) 1
2

= d
dx

(
ω

(θ−x)∗ω
◦ θ−x

) 1
2

= −1
2

((θ−x)∗ω

ω
◦ θx

) 1
2

· (θ−x)∗ω

ω
· divω(X) ◦ θ−x

= −1
2

(
ω

(θx)∗ω

) 1
2

· (θx)∗ω

ω
· div(X) ◦ θ−x

= −1
2

((θx)∗ω

ω

) 1
2

div(X) ◦ θ−x
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On the other hand, we find for all x ∈ (−ϵ, ϵ) that:

d
dxf ◦ lexp(−xX)(p, q) = d

dxf(θ−xp, q) = −X(f(·, q))(θ−xp)

= −XR(f)(θ−xp, q) = −XR(f) ◦ lexp(−xX)(p, q)

for all p ∈ θ(Uϵ(0), t(supph)) ⊆ t(supp f ◦ lexp(−xX)), q ∈ M , so that

d
dxf ◦ lexp(−xX) = −XR(f) ◦ lexp(−xX)

and
d

dxπ(f ◦ lexp(−xX)) = π(−XR(f) ◦ lexp(−xX))

because π is continuous.
Hence by the product rule we get:

d
dx

((θx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX))

= − 1
2

((θx)∗ω

ω

) 1
2

div(X) ◦ θ−xπ(f ◦ lexp(−xX)) +
((θx)∗ω

ω

) 1
2
π(−XR(f) ◦ lexp(−xX))

= − 1
2

((θx)∗ω

ω

) 1
2
π(div(X) ◦ θ−x ◦ tf ◦ lexp(−xX)) +

((θx)∗ω

ω

) 1
2
π(−XR(f) ◦ lexp(−xX))

=
((θx)∗ω

ω

) 1
2
π((−X − 1

2 div(X))R(f) ◦ lexp(−xX)) □

Given a groupoid representation P : M2 99K U(H), any vector field X ∈ X(M), even if
it is not complete, defines an exponential P (exp(xX)) acting on certain sections in L2H.
The next lemma is mostly about the precise definition of this, but also shows that this
mapping behaves like a unitary with group properties.

Lemma 7.2.3. Let (M,ω) be volumetric, ν quasi-invariant on M , H → M a Hilbert
field, P : M2 99K U(H) a representation. Let X ∈ X(M) be a vector field (not necessarily
complete). Let θ : D ⊆ R × M → M be the flow of X. Let K ⊆ M be compact and
σ ∈ L2(H) such that the essential support ess supp(σ) ⊆ K is contained in K. Choose
ϵ > 0 such that U2ϵ ×K ⊆ D. For all x ∈ (−ϵ, ϵ), define P (exp(xX)σ) by

(P (exp(xX)σ) (p) :=
((θx)∗ν

ν

) 1
2

(p)P (p, θ−xp)σ(θ−xp)

for p ∈ θ([−ϵ, ϵ] ×K) (where θ−xp is defined) and P (exp(xX)σ)(p) = 0 for

p ∈ M \ θ([−ϵ, ϵ] ×K)

(where σ(θ−xp) = 0 if it is defined).
Then P (exp(xX)σ) ∈ L2H, and ∥P (exp(xX)σ)∥ = ∥σ∥. Furthermore, we have

P (expxX)P (exp yX)σ = P (exp(x+ y)X)σ for x, y ∈ R with |x| + |y| < ϵ and

⟨P (exp(xX))σ, τ⟩ = ⟨σ, P (exp(−xX))τ⟩

for τ ∈ L2H with ess suppσ ⊆ K.
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Proof: Let σ, τ ∈ L2H with ess suppσ, ess supp τ ⊆ K. Then we have

⟨P (expxX)σ, P (expxX)τ⟩ =
∫
M

⟨(P (expxX)σ)(p), (P (expxX)τ)(p)⟩ν(p)

=
∫
M

(θx)∗ν

ν
(p)⟨P (p, θ−xp)σ(θ−xp), P (p, θ−xp)τ(θ−xp)⟩ν(p)

=
∫
M

(θx)∗ν

ν
(p)⟨σ(θ−xp), τ(θ−xp)⟩ν(p)

=
∫
M

⟨σ(θ−xp), τ(θ−xp)⟩(θx)∗ν(p)

=
∫
M

⟨σ(p), τ(p)⟩ν(p) = ⟨σ, τ⟩

because P (p, θ−xp) is unitary. In particular:

∥P (expxX)σ)∥ = ⟨P (expxX)σ, P (expxX)σ⟩
1
2 = ⟨σ, σ⟩

1
2 = ∥σ∥

The next property also follows from a straightforward computation. Namely, we have
for all x, y ∈ R with |x| + |y| < ϵ and almost all p ∈ M :

P (expxX)P (exp yX)(σ)(p) =
((θx)∗ν

ν

) 1
2

(p)P (p, θ−xp)(P (exp yX)σ)(θ−xp)

=
((θx)∗ν

ν

) 1
2

(p)P (p, θ−xp)
((θy)∗ν

ν

) 1
2

(θ−xp)P (θ−xp, θ−yθ−xp)σ(θ−yθ−xp)

=
((θx)∗ν

ν

) 1
2

(p)
((θx)∗(θy)∗ν

(θx)∗ν

) 1
2

(p)P (p, θ−yθ−xp)σ(θ−yθ−xp)

=
((θx+y)∗ν

ν

) 1
2

(p)P (p, θ−(x+y)p)σ(θ−(x+y)p) = P (exp(x+ y)X)(σ)(p)

Thus P (expxX)P (exp yX)σ = P (exp(x+ y)X)σ.
Combining these two results, we see that

⟨P (expxX)σ, τ⟩ = ⟨P (exp(−xX))P (expxX)σ, P (exp(−xX))τ⟩
= ⟨σ, P (exp(−xX))τ⟩

holds for all x ∈ (− ϵ
2 ,

ϵ
2). □

So in a sense, we have once more defined a unitary operator. It is important to keep in
mind though that P (expxX) is not globally defined on all sections of L2H for any fixed
x ∈ R, but the possible values for x depend on the support of the section.

We will show soon that the definition by left-action and the exponential definition
coincide. To do this, we need a short lemma which characterises the modular function of a
pair groupoid.

Lemma 7.2.4. Let (M,ω) be a volumetric manifold and ν a quasi-invariant measure
on M with respect to M ×M . Let ∆ = ν◦λ

ν◦λ̃ be the corresponding modular function.
Then for almost all (p, q) ∈ M2 we have:

∆(p, q) = ν

ω
(p)ω

ν
(q)

Proof: In the following, I will omit the d from the integral notation. Put G = M × M .
Notice that we have:∫

G

ν

ω
◦ sω

ν
◦ tν ◦ λ =

∫
M

∫
M

ν

ω
(q)ω

ν
(p)ω(q)ν(p)

=
∫
M

∫
M
ν(q)ω(p) =

∫
M

∫
M
ω(p)ν(q) =

∫
G
ν ◦ λ̃
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Thus we know that ν
ω ◦sων ◦t = ∆−1 almost everywhere, i.e. ∆(p, q) = ∆−1(q, p) = ν

ω (p)ων (q)
for almost all (p, q) ∈ G. □

The desired intermediate result is now achievable by a straightforward computation.

Lemma 7.2.5. Let (M,ω) be volumetric, ν quasi-invariant on M , H → M a Hilbert
field, P : M2 99K U(H) a representation, π = int2(P ) : C∗(M2) → B(L2H). Let X ∈ X(M)
be a vector field (not necessarily complete). Let θ : D ⊆ R × M → M be the maximal
flow of X. Let f ∈ C∞

c (M2). Choose ϵ > 0 such that U2ϵ × t(supp f) ⊆ D. Then for all
x ∈ (−ϵ, ϵ), we have:

P (exp(xX))(π(f)σ) =
((θx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX))σ

Proof: Let p ∈ M be arbitrary. If p /∈ θ(Uϵ(0) × t(supp f)), then we know that

P (exp(xX))(π(f)σ)(p) = 0

by definition since ess supp(π(f)σ) ⊆ t(supp f). Likewise we know that

ess supp(π(f ◦ lexp(−xX))σ) ⊆ (t supp f ◦ exp(−xX)) ⊆ θ(Uϵ(0) × t(supp f)),

so that also
((

θx)∗ω
ω

) 1
2 π(f ◦ lexp(−xX))σ

)
(p) = 0 on the other side.

Thus look at the case where p ∈ θ(Uϵ(0) × t(supp f)). By our definition, we have for
almost all such p:

P (expxX)(π(f)σ)(p) =
((θx)∗ν

ν

) 1
2

(p)P (p, θ−xp) ((π(f)σ)(θ−xp))

=
((θx)∗ν

ν

) 1
2

(p)P (p, θ−xp)
∫
M

∆− 1
2 (θ−xp, q)f(θ−xp, q)P (θ−xp, q)σ(q)ω(q)

=
∫
M

(
ω

ν
(θ−xp)

ν

ω
(q)(θx)∗ν

ν
(p)
) 1

2
f ◦ lexp(−xX)(p, q)P (p, θ−xp)P (θ−xp, q)σ(q)ω(q)

=
∫
M

((θx)∗ω

(θx)∗ν
(p) ν

ω
(q)(θx)∗ν

ν
(p)
) 1

2
f ◦ lexp(−xX)(p, q)P (p, q)σ(q)ω(q)

=
∫
M

((θx)∗ω

ω
(p) ν

ω
(q)ω

ν
(p)
) 1

2
f ◦ lexp(−xX)(p, q)P (p, q)σ(q)ω(q)

=
((θx)∗ω

ω

) 1
2

(p)
∫
M

∆− 1
2 (p, q)f ◦ lexp(−xX)(p, q)P (p, q)σ(q)ω(q)

=
((θx)∗ω

ω

) 1
2

(p)(π(f ◦ lexp(−xX))σ)(p)

Combining both parts, we see that indeed

P (exp(xX))(π(f)σ) =
((θx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX))σ

just as required. □

Again, x can only be chosen in dependence of the support of our section. This is
undesirable, because we want to think of the mapping we defined as a unitary operator
and link it to the functional calculus exponential, which is defined globally. The first step
in filling the gap is to consider the natural projection and inclusion maps between local
and global section of our Hilbert field.



7.2. SHOWING INDEPENDENCE OF CHART CHOICE 115

Definition 7.2.6. Let H → M be a ν-Hilbert field and let U ⊆ M be measurable.
Define prU : L2H → L2(H|U ), σ 7→ σ|U and ιU : L2(H|U ) → L2H, σ 7→ σ̄, where
σ̄(p) = σ(p) for p ∈ U and σ̄(p) = 0 for p ∈ M \ U .

These maps are bounded with ∥prU∥ = 1 = ∥ιU∥. With their assistance, we can relate
the first couple of exponentials, first only for the elements of our integration frame.

Lemma 7.2.7. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let (X1, . . . , Xm)
be an integration frame for R on an open set U ⊆ M and let V ⊆ V̄ ⊆ U be precompact.

Let P : V × V ⊃ W 99K U(H|V ) be the local integrated representation defined in that
proposition. Let X ∈ {X1, . . . , Xm}. Then for all σ ∈ L2

c(H|V ) and all sufficiently small
x ∈ R, we have:

ιV P (exp(xX|V ))σ = e−xR(X+ 1
2 divX)(ιV σ)

Proof: Denote σ := ιV σ ∈ L2H for σ ∈ L2(H|V ). Choose a bump function h ∈ C∞
c (M)

with h|suppσ ≡ 1 and supph ⊆ V . Choose ϵ > 0 such that U2ϵ×supph ⊆ D, where D is the
common flow domain of X1|V , . . . , Xm|V , and also exp(X) = (θ, idM )((−2ϵ, 2ϵ)×supph) ⊆
W , where θ is the flow of X. Then for all x ∈ (−ϵ, ϵ) and almost all p ∈ θ([−ϵ, ϵ] × supph),
we have

P (exp(xX|V ))(σ)(p) =
((θx)∗ν

ν

) 1
2

(p)P (exp(xX)(θ−xp))σ(θ−xp)

=
((θx)∗ν

ν

) 1
2

(p)
(

ν

(θx)∗ν

) 1
2

(θxθ−xp)
(
θ∗
xe−xR(X+ 1

2 divX)
)

(θ−xp)σ̄(θ−xp)

= e−xR(X+ 1
2 divX)(σ̄)(θxθ−xp) = e−xR(X+ 1

2 divX)(σ̄)(p),
assuming without loss of generality that ϵ is small enough that the formula for P (exp(xX)q)
applies like in Proposition 7.1.4.

Now consider p ∈ M \ θ([−ϵ, ϵ] × supph). Then we have on the right hand side

e−xR(X+ 1
2 divX)(σ̄)(p) = e−xR(X+ 1

2 divX)(hσ̄)(p)

= h ◦ θ−x(p)e−xR(X+ 1
2 divX)(σ̄)(p) = 0

since θ−x(p) /∈ supph by the choice of p. On the left hand side, if p /∈ V , we have
ιV P (exp(xX|V ))(σ)(p) = 0 by definition of the extension to L2H. If p ∈ V \ θ([−ϵ, ϵ] ×
supph), then

ιV P (exp(xX|V ))(σ)(p) = P (exp(xX|V ))(σ)(p) = 0
as defined in Lemma 7.2.3.

So in all of the cases, we have indeed:

ιV P (exp(xX|V ))σ(p) = e−xR(X+ 1
2 divX)(ιV σ)(p) □

This result is very interesting because we also expect that P (expxX) = e−xR′(X+ 1
2 divX),

where R′ = diff int2(P ), so we have a clear connection between R and R′. Going beyond
intuition, we have to carefully investigate the domain of each of the unbounded operators
involved. For example, R′(X+ 1

2 divX) need not be essentially skew-adjoint, and the domain
of R′ need not be contained in the domain of R. We will deal with these intricacies using
Stone’s theorem on one-parameter unitary groups and arrive at the following formulation:

Lemma 7.2.8. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let X1, . . . , Xm ∈
X(M) be an integration frame on an open set U ⊆ M and let V ⊆ V̄ ⊆ U be precompact
and simply connected.

Let P0 : V ×V ⊃ W 99K U(H|V ) be the integrated representation defined in Proposition
7.1.4 and P : V ×V 99K U(H|V ) the extension of P0 as in Theorem 5.3.10. Let π = int2(P )
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and R′ = diff(π). Let X ∈ {X1, . . . , Xm}. Then for all f ∈ C∞
c (V 2) and σ ∈ L2(H|V ), we

have ιV π(f)σ ∈ domR(X + 1
2 divX) and:

ιVR
′((X + 1

2 divX)|V )π(f)σ = R(X + 1
2 divX)ιV π(f)σ ∈ L2H

Proof: Remember that by the requirements for integration frames, B = R(X + 1
2 divX) is

skew-adjoint.
Denote the flow of X by θ. By Lemma 7.2.5 and Lemma 7.2.7, we know that there is

an ϵ > 0 such that for all x ∈ (−ϵ, ϵ):

ιV

((θx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX))σ

 = ιV P (exp(xX|V ))(π(f)σ)

= e−xR(X+ 1
2 divX)(ιV (π(f)σ))

Thus by Lemma 7.2.2 (and d
dx0 = 0), we find that the map

x 7→ e−xR(X+ 1
2 divX)(ιV π(f)σ)

is differentiable around 0 with:

d
dx

∣∣∣∣
x=0

e−xR(X+ 1
2 divX)(ιV π(f)σ) = d

dxιV

((θx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX))σ


= ιV

((θ0)∗ω

ω

) 1
2
π((−X − 1

2 divω(X))R(f) ◦ lexp(−0X))σ


= ιV

(
π((−X − 1

2 divω(X))R(f))σ
)

= ιV

(
R′((−X − 1

2 divX)|V )π(f)σ
)

Hence by one part of Stone’s Theorem on One-Parameter Unitary Groups (Theorem
D, page 647, [23]), we find that ιV π(f)σ ∈ dom −R(X + 1

2 divX) and

ιV (R′((−X − 1
2 divX)|V )π(f)σ) = −R(X + 1

2 divX)(ιV π(f)σ)

The result follows by multiplying with −1. □

So in short, we have proven that ιV ◦R′((X + 1
2 divX)|V ) ⊆ R(X + 1

2 divX) ◦ ιV for
vector fields X in our integration frame. To go on with our computations, we first need an
analogous result for smooth functions. Luckily, this is easy to prove.

Lemma 7.2.9. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let (X1, . . . , Xm)
be an integration frame on an open set U ⊆ M and let V ⊆ V̄ ⊆ U be precompact and
simply connected.

Let P : V × V 99K U(H|V ) be the (extension of the) integrated representation defined
in Proposition 7.1.4. Let π = int2(P ) and R′ = diff(π).

Then for all f ∈ C∞
b (M), we have

R′(f |V ) = prV ◦R(f) ◦ ιV
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Proof: By Theorem 5.2.8 R can be assumed to fulfil R(f) = Tf : τ 7→ fτ . On the other
hand, we know that

R′(f |V )π(g)σ = π(mR
f (g))σ(p) = π(f |V ◦ t · g)σ(p)

=
∫
V
f(p)∆− 1

2 (p, q)g(p, q)P (p, q)σ(q)ω(q) = f(p)π(g)σ(p)

= f(p)π(g)σ(p) = Tfπ(g)σ(p)

= prV ◦R(f) ◦ ιV (π(g)σ)(p)

for all σ ∈ L2(H|V ), g ∈ C∞
c (V 2), p ∈ V , so that R′(f |V ) = Tf = prV ◦ R(f) ◦ ιV since

{π(g)v|g ∈ C∞
c (V 2), v ∈ L2(H|V )} is dense in L2(H|V ) and both sides are bounded. □

The next lemma will deal with frame vector fields again, combining the previous results.
The point in taking an extra adjoint in the formula is that sums of adjoints are more
well-behaved than sums of closures of operators. In the end, the difference will not matter
much because we are dealing with essentially skew-adjoint operators.

Lemma 7.2.10. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let (X1, . . . , Xm)
be an integration frame (in particular, R(Xi + 1

2 divXi) are essentially self-adjoint) on an
open set U ⊆ M and let V ⊆ V̄ ⊆ U be precompact and simply connected.

Let P : V × V 99K U(H|V ) be the integrated representation defined in that proposition
(with extension). Let π = int2(P ) and R′ = diff(π). Then for all X ∈ {X1, . . . , Xm}, we
have:

ιV ◦R′(X|V ) ⊆ R(X∗)∗ ◦ ιV

Proof: By Lemma 7.2.8, we know that ιV ◦ R′((X + 1
2 divX)|V ) ⊆ R(X + 1

2 divX) ◦ ιV .
We also assumed that R(X + 1

2 divX) = −R(X + 1
2 divX)∗.

By Lemma 7.2.9, we have ιVR′(f |V ) ⊆ R(f)ιV = R(f)∗ιV for all f ∈ C∞(M).
Thus by Lemma 6.3.17 and Lemma 6.3.18, we have

ιV ◦R′(X|V ) = ιV (R′(X + 1
2 divX) −R′(1

2 divX|V ))

= ιVR
′(X + 1

2 divX) − ιVR
′(1

2 divX|V )

⊆ −R(X + 1
2 divX)

∗
ιV −R(1

2 divX)ιV

= −R(X + 1
2 divX)

∗
ιV −R(1

2 divX)
∗
ιV

=
(

−R(X + 1
2 divX)

∗
−R(1

2 divX)
∗)

◦ ιV

⊆ (−R(X + 1
2 divX) −R(1

2 divX))∗ιV

= R(−X − divX)∗ιV = R(X∗)∗ ◦ ιV □

With the previous results, the analogous formula for arbitrary vector fields follows
quickly.

Lemma 7.2.11. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let (X1, . . . , Xm)
be an integration frame (in particular, R(Xi + 1

2 divXi) are essentially self-adjoint) on an
open set U ⊆ M and let V ⊆ V̄ ⊆ U be precompact and simply connected.

Let P : V ×V 99K U(H|V ) be the integrated representation defined in Proposition 7.1.4.
Let π = int2(P ) and R′ = diff(π). Then for all X ∈ X(M) we have:

ι ◦R′(X|V ) ⊆ R(X∗)∗ ◦ ιV
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Proof: Put ι = ιV : L2(H|V ) → L2H for this proof.
Since (X1|U , . . . , Xm|U ) is a frame, there must be f1, . . . , fm ∈ C∞

b (M) and Y ∈ X(M)
with suppY ⊆ M \ V̄ such that X =

∑m
i=1 fiXi + Y .

Obviously we have Y |V = 0, so R′(Y |V ) = 0. On the other hand, since suppY ⊆ M \ V̄
(which is open), we can find a bump function f ∈ C∞

c (M) with supp f ⊆ M \ V̄ and
f |suppY ≡ 1, so that fY ∗ = f(−Y − div Y ) = −Y − div Y = Y ∗ (since supp(div Y ) ⊆
suppY ). Hence

R(Y ∗)∗ = R(fY ∗)∗ = (R(f)R(Y ∗))∗ ⊇ R(Y ∗)∗R(f)∗ ⊇ R(Y )Tf

by Lemma 6.3.17, and since Tf ι = ιTf |V = 0,

R(Y ∗)∗ι ⊇ R(Y )Tf ι = 0

by Lemma 6.3.18, thus R(Y ∗)∗ι = 0 : L2(H|V ) → L2H.
Thus we have:

ιR′(X|V ) =
m∑
i=1

ιR′(fi|V )R′(Xi|V ) + ιR′(Y |V ) =
m∑
i=1

ιTfi|V R
′(Xi|V )

=
m∑
i=1

Tfi
ιR′(Xi|V ) ⊆

m∑
i=1

Tfi
R(X∗

i )∗ι

=
m∑
i=1

R(fi)∗R(X∗
i )∗ι ⊆

m∑
i=1

(R(X∗
i )R(fi))∗ι

=
m∑
i=1

(R(X∗
i )R(fi))∗ι+R(Y ∗)∗ι

⊆
(

m∑
i=1

R(X∗
im

∗
fi

+R(Y ∗))
)∗

ι = R((
m∑
i=1

fiXi + Y )∗)∗ι = R(X∗)∗ι □

This result is indeed independent of our chosen integration frame. Now we need to
transfer it back to the local integral P |U : U2 99K U(H|U ). One more time, the tool we use
are the one-parameter unitary groups P (expxX) of vector fields X ∈ X(M).

To get a proper differential equation in our upcoming computations, we need that a
vector field commutes with exponentials of itself in a derived representation. More precisely:

Lemma 7.2.12. Let (M,ω) be a volumetric manifold and let P : M ×M 99K U(H) be a
representation of the pair groupoid on a Hilbert field H. Let π = int2(P ) : C∗(M ×M) →
B(L2H) and R = diff(π) : Diff(M) → O(L2H). Let X ∈ X(M) be a (not necessarily
complete) vector field and let f ∈ C∞

c (M) and σ ∈ L2H. Then for all sufficiently small
x ∈ R, we have:

P (expxX)R(X + 1
2 divX)π(f)σ = R(X + 1

2 divX)P (expxX)π(f)σ

Proof: Set v = π(f)σ ∈ domR and X̃ = X + 1
2 divX. As described in Lemma 7.2.3, we

can choose an ϵ > 0 such that P (expxX)v is defined for all x ∈ (−ϵ, ϵ). By Lemma 7.2.2
and Lemma 7.2.5, we know that d

dxP (expxX)v = P (expxX)R(−X̃)v; in particular, the
derivative exists (shrink ϵ if necessary).
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Consider any other w ∈ domR. Since P (exp(x+ y)X)v = P (expxX)P (exp yX)v for
|x| + |y| < ϵ by Lemma 7.2.3, we get for all x ∈ (−ϵ, ϵ):

⟨P (expxX)R(X̃)v, w⟩ = ⟨− d
dxP (expxX)v, w⟩ = − d

dx⟨P (expxX)v, w⟩

= − d
dt

∣∣∣∣
t=0

⟨P (exp tX)P (expxX)v, w⟩

= − d
dt

∣∣∣∣
t=0

⟨P (expxX)v, P (exp −tX)w⟩

= d
dt

∣∣∣∣
t=0

⟨P (expxX)v, P (exp tX)w⟩

= ⟨P (expxX)v, d
dt

∣∣∣∣
t=0

P (exp tX)w⟩ = ⟨P (expxX)v,−R(X̃)w⟩

= ⟨−R(X̃)∗P (expxX)v, w⟩ = ⟨R(−X̃∗)P (expxX)v, w⟩
= ⟨R(X̃)P (expxX)v, w⟩

In this computation, t has to lie in a neighbourhood of 0 which depends on w, but the final
equation does not depend on w. In the second last line we use that P (expxX)v ∈ domR
by the formula in Lemma 7.2.5. So because domR ⊆ L2H is dense and w ∈ domR was
arbitrary, we find that P (expxX)R(X̃)v = R(X̃)P (expxX)v. □

With this lemma, we finally get an integration-frame-independent equality for operators.

Lemma 7.2.13. Let R : Diff(M) → O(L2(H, ν)) be a representation. Let (X1, . . . , Xm)
be an integration frame on an open set U ⊆ M and let V ⊆ V̄ ⊆ U be precompact and simply
connected. Let P : V × V 99K U(H|V ) be the integrated representation. Let π = int2(P )
and R′ = diff(π).

Let X ∈ X(M) be any vector field such that R(X + 1
2 divX) is essentially skew-adjoint.

Then for every h ∈ C∞
c (V ), we have:

P (expxX)Th = prV e−xR(X+ 1
2 divX)ιV Th

for all sufficiently small x ∈ R.

Proof: First of all, choose ϵ > 0 such that (−2ϵ, 2ϵ) × supph ⊆ dom θ, where θ is the flow
of X|V , and such that exR(X+ 1

2 divX) is defined for all |x| < ϵ. Consider any f ∈ C∞
c (V )

and σ ∈ L2(H|V ) and put v = π(f)σ. Then by Lemma 7.2.2 and Lemma 7.2.5, we have for
all |x| < ϵ:

d
dxP (expxX)Thv =

((θx)∗ω

ω

) 1
2
π((−X − 1

2 div(X))R(h ◦ tf) ◦ lexp(−xX))σ

= P (expxX)R′(−X|V − 1
2 divX|V )Thv

By Lemmas 7.2.12, 7.2.9 and 7.2.11, this is:

P (expxX)R′(−X|V − 1
2 divX|V )Thv = R′(−X|V − 1

2 divX|V )P (expxX)Thv

= prV (R(−X∗)∗ −R(1
2 divX)∗)ιV P (expxX)Thv

= prVR(X + 1
2 divX)∗ιV P (expxX)Thv
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On the other hand, we have
d

dxprV e−xR(X+ 1
2 divX)ιV Thv = prV e−xR(X+ 1

2 divX)R(−X − 1
2 divX)ιV Thv

= prVR(−X − 1
2 divX)e−xR(X+ 1

2 divX)ιV Thv

= prVR(X + 1
2 divX)∗e−xR(X+ 1

2 divX)ιV Thv

since R(X + 1
2 divX) is essentially skew-adjoint.

Extending it by 0, consider h an element of C∞
c (M) where appropriate. We know that

e−xR(X+ 1
2 divX)Th = Th◦θ−xe−xR(X+ 1

2 divX) by Proposition 6.1.3, where θ is the flow of X.
Because this flow is continuous, h◦ θ−x still has compact support inside of V for sufficiently
small x. This implies that ιV prV Th◦θ−x = Th◦θ−x . Thus we get:

prVR(X + 1
2 divX)∗e−xR(X+ 1

2 divX)ιV Thv

= prVR(X + 1
2 divX)∗Th◦θ−xe−xR(X+ 1

2 divX)ιV v

= prVR(X + 1
2 divX)∗ιV prV Th◦θ−xe−xR(X+ 1

2 divX)ιV v

= prVR(X + 1
2 divX)∗ιV prV e−xR(X+ 1

2 divX)ιV Thv

So the functions F1 : x 7→ P (expxX)Thv and F2 : x 7→ prV e−xR(X+ 1
2 divX)ιV Thv both

solve the same differential equation d
dxF (x) = prVR(X + 1

2 divX)∗ιV F (x). We also have
P (exp 0X)Thv = Thv = prV e−0R(X+ 1

2 divX)ιV Thv.
Hence there must be an ϵ2 ∈ (0, ϵ] such that

P (expxX)Thv = prV e−xR(X+ 1
2 divX)ιV Thv

for all x ∈ (−ϵ2, ϵ2). This statement can be found in the Picard-Lindelöf theorem, for
example. To be able to apply that theorem, we use that the operator B := prVR(X +
1
2 divX)∗ιV is actually bounded when considering the right domain. Namely put, for any
given v, E := span({F1(x), F2(x) | x ∈ R}) ⊆ L2(H|V ). For each x ∈ R we know that

∥BF1(x)∥ = ∥P (expxX)R′(−X|V − 1
2 divX|V )Thv∥ = ∥R′(X|V + 1

2 divX|V )Thv∥ =: c1

and

∥BF2(x)∥ = ∥prV e−xR(X+ 1
2 divX)R(X + 1

2 divX)ιV Thv∥ ≤ ∥R(X + 1
2 divX)ιV Thv∥ =: c2

by the previous computations, using that P (expxX) preserves the norm by Lemma 7.2.3,
exR(X+ 1

2 divX) is unitary, and ∥prV ∥ ≤ 1. It follows that ∥B|E∥ ≤ max{c1, c2}.
Because v can be an arbitrary element of domR′ = π(C∞

c (V 2)L2(H|V ), domR′ ⊆
L2(H|V ) is dense and P (expxX)Th, prV e−xR(X+ 1

2 divX)ιV Th are both bounded, this implies
that indeed:

P (expxX)Th = prV e−xR(X+ 1
2 divX)ιV Th □

One important point of the preceding equality is that both sides are bounded operators
now, so we do not need to worry about different domains any more. That makes the final
result of this section relatively easy to show. The involved computation only gets a little bit
longer because P (expxX) was only explored for a single vector field X in certain lemmas,
not for a frame X = (X1, . . . , Xm). The same intuition applies nonetheless.
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Lemma 7.2.14. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be integration frames for a repres-
entation R : Diff(M) → O(L2H) on open sets U ⊆ M and V ⊆ M . Let U0 ⊆ U0 ⊆ U and
V0 ⊆ V0 ⊆ V be precompact simply connected open subsets. Let P = PX : V 2

0 99K U(H|V0)
and Q = PY : U2

0 99K U(H|U0) be the respective groupoid representations obtained by
Proposition 7.1.4.

Then on W = U0 ∩ V0, we have P |W 2 = Q|W 2 almost everywhere.

Proof: Let K ⊆ W be compact. Let ϕx be the time-1 flow of xX. Because the map
ϕ : (x, p) 7→ ϕx(p) is continuous in a neighbourhood of {0} × K ⊆ Rm × W , we can
choose an ϵ > 0 such that ϕx(p) ∈ W for x ∈ U2ϵ(0) and p ∈ K. Choose h ∈ C∞

c (M)
with supph ⊆ W and h(ϕxp) = 1 for all x ∈ Uϵ(0) and p ∈ K (which is possible since
{ϕxp|x ∈ Uϵ(0), p ∈ K} is still compact).

Then by Lemma 7.2.13 and because [Xi, Xj ]|W = 0 = [Yi, Yj ], we know that

prWP (expxiXi)ThιW = prWprU0e−xiR(Xi+ 1
2 divXi)ιU0ThιW

= prWprV0e−xiR(Xi+ 1
2 divXi)ιV0ThιW

= prWQ(expxiXi)ThιW

for |xi| < ϵ (shrink ϵ if necessary), where we simply write P (expxX) for P (exp(xX|U0)).
Hence for all σ ∈ L2H and almost all x ∈ Uϵ(0) and p ∈ K:

((ϕx)∗ν

ν

) 1
2
(p)h ◦ ϕ−x(p)P (p, ϕ−xp)σ(ϕ−xp) = (P (expxX)Thσ|U0)(p)

=P (expx1X1) . . . P (expxmXm)Thσ|U0(p)
=prWP (expx1X1)Th◦ϕ(0,x2,...,xm)ιW . . . prWP (expxmXm)ιWσ|W (p)
=prWQ(expx1X1)Th◦ϕ(0,x2,...,xm)ιW . . . prWP (expxmXm)ιWσ|W (p)
=prWQ(expx1X1)ιWprWP (expx2X2)Th◦ϕ(0,0,x3,...,xm)ιW

. . . prWP (expxmXm)ιWσ|W (p)
= · · · = prWQ(expx1X1)ιW . . . prWQ(expxmXm)ThιWσ|W (p)

=(Q(expxX)Thσ|V0)(p) =
((ϕx)∗ν

ν

) 1
2

(p)h ◦ ϕ−x(p)Q(p, ϕ−xp)σ(ϕ−xp)

Within the preceding computation, I used that by [Xi, Xj ]|U = 0 we have exp(xX)(p) =
exp(x1X1) . . . exp(xmXm)(p) for all p ∈ supph and all sufficiently small x. The point here
is that R(xX + 1

2 div xX) was not assumed to be essentially skew-adjoint; our integrability
assumption only states that the sum of closures

∑m
i=1 xiR(Xi + 1

2 divXi) is essentially
skew-adjoint. This nuance has to do with the theory of analytic vectors. However, xiR(Xi +
1
2 divXi) is already essentially skew-adjoint for each i ∈ {1, . . . ,m}.

Since h ◦ ϕ−xp = 1 and σ was arbitrary, it follows that P (p, ϕ−xp) = Q(p, ϕ−xp)
for almost all x ∈ Uϵ(0) and p ∈ K. Because (X1|U , . . . , Xm|U ) is a frame, the set
EK := {(p, ϕ−xp)|p ∈ K◦, x ∈ Uϵ(0)} ⊆ W 2 is open. Furthermore, diag(K◦) ⊆ EK
since ϕ0 = id and we have just shown that P (g) = Q(g) for almost all g ∈ EK (since the
exponential map is a local diffeomorphism and thus bimeasurable).

Do this process for all compact K ⊆ W and put E =
⋃
K⊆W compactWK . As a union of

open sets, E ⊆ W 2 is still open. Since W is locally compact, diagW ⊆ E. And as proven,
P (g) = Q(g) for almost all g ∈ E. It follows by the uniqueness part of Theorem 5.3.10 that
P |W = Q|W almost everywhere. □
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7.3. Combining the Pieces

Let us now combine the newly constructed local representations to a global one. To
make this possible, we need to cover our manifold of choice by integration frames first. We
need to be a bit careful with the size of each frame domain, because our local integration
theorem only works on a subset of the original domain. In the following definition I give a
special name to such covers to make keeping track of these technicalities easier.

Definition 7.3.1. Let (M,ω) be a volumetric manifold with a quasi-invariant measure
ν. Let R : Diff(M) → O(K) be a representation on a Hilbert space K (e.g., K = L2H for
a Hilbert field H).

An integration gallery for R is a finite or countable family (Vi, Xi
1, . . . , X

i
m)i∈I of

Xi
j ∈ X(M) and precompact, simply connected, open Vi ⊆ M such that M =

⋃
i∈I Vi

and such that for every i ∈ I, there is an open subset Ui ⊆ M with Vi ⊆ Ui on which
(Xi

1, . . . , X
i
m) is an integration frame for R.

The representation R is called integrable if there exists an integration frame for R and
for all X ∈ X(M), R(X + 1

2 divX) is essentially skew-adjoint.

The name integration gallery was inspired by the image of an art gallery where a
collection of framed paintings is stored. In our case, we have a collection of integration
frames.

Up to now, the usual assumption about adjoints in our representation was that R(X +
1
2 divX) is essentially skew-adjoint for certain vector fields X. A more general condition is
when R(D)∗ = R(D∗) holds for all differential operators D. For higher orders, this may
not always be true, but at least for order-1 operators, this follows from skew-adjointness of
vector fields, as the following lemma shows.

Lemma 7.3.2. Let R : DiffR(G) → O(L2H) be a representation. If R(X + 1
2 divX)

is essentially skew-adjoint for all X ∈ XR(G), then even R(D∗) = R(D)∗ for all right-
invariant differential operators D ∈ DiffR1 (G) of order 1.

Proof: Let D ∈ DiffR(G) be an arbitrary (real-valued) differential operator. Then there
are a smooth function f ∈ C∞(M) and a right-invariant vector field X ∈ XR(G) such
that D = LX̃ +mf◦t, where X̃ = X + 1

2 divR(X). By abuse of notation, we simply write
D = X̃ + f . By assumption, we have R(X̃)∗ = −R(X̃) = R(X̃∗). Recall that R(f) is
bounded, in particular, R(f)∗ = Tf = R(f) has domain L2H. Thus we compute:

R(D)∗ = R(X̃ + f)∗ −R(f)∗ +R(f)∗ ⊆ (R(X̃ + f) −R(f))∗ +R(f)∗

= R(−X̃) +R(f) = R(−X̃) +R(f) = R((X̃ + f)∗) = R(D∗)

Here R(−X̃) + R(f) = R(−X̃) +R(f) follows from R(f) being bounded. We also have
R(D∗) ⊆ R(D)∗ by the defining properties of a representation, and R(D)∗ is closed. Thus
R(D)∗ = R(D∗). □

This property is already very useful because higher-order differential operators can be
represented by products of order-1 operators, and because all of our integration theory
only concerns order-1 operators anyway.

There is one last technicality to alleviate before the proof of our main theorem. To
prove that the global construction is again a homomorphism, we have to consider products
of groupoid elements from different frame domains. Luckily there is a trick to deal with
this: The following lemma shows that we can refine our original cover in such a way that
the intersections of the refinement are always contained in a single set of the original cover,
so that homomorphy is guaranteed by local homomorphy. Let us have a look at the precise
mathematics.
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Lemma 7.3.3. Let M be a compact smooth manifold. Let U = (Ui)i∈I be an open
cover of M . Then there exists a barely intersecting refinement of (Ui)i∈I , that is, an
open refinement (Vj)j∈J of U with an open set W ⊆

⋃
j∈J Vj × Vj ⊆ M × M such that

∆(M) = {(p, p)|p ∈ M} ⊆ W with the following properties for all (p, q) ∈ W :
(1) If q ∈ Vj for some j ∈ J , then there is an i ∈ I with Vj ⊆ Ui and p ∈ Ui.
(2) If p ∈ Vj for some j ∈ J , then there is an i ∈ I with Vj ⊆ Ui and q ∈ Ui.
(3) W ∩Gp is path-connected.

Proof: Every smooth manifold is metrizable, so choose a metric d on M which induces
the topology of M . Define the metric d2 on M ×M by d2((p, q), (x, y)) = d(p, x) + d(q, y).
For every point p ∈ M , there is an i = ip ∈ I with p ∈ Ui, and because Ui is open, an
ϵp > 0 such that Uϵ(p) = {q ∈ M |d(p, q) < ϵ} ⊆ Ui. Put Vp := U ϵ

4
(p) ⊆ Uip . Using this, we

get an open cover (Vp)p∈M of M (indexed by M) which is indeed a refinement of U by
construction.

Now because M is compact, there is a finite subset J ⊆ M such that (Vj)j∈J is still an
open cover of M (and a refinement of U). Put ϵ := minj∈J ϵj

4 > 0 and define:

W := Uϵ(∆(M)) = {(p, q) ∈ M ×M |∃x ∈ M : d2((p, q), (x, x)) = d(p, x) + d(q, x) < ϵ}
It is left to show that W has the required properties. So let (p, q) ∈ W be arbitrary.

Assume that q ∈ Vj and put i = ij ∈ I. Choose x ∈ M such that d(p, x) +d(q, x) < ϵ. Then
d(p, q) ≤ d(p, x) + d(x, q) < ϵ ≤ ϵj

4 . Also by definition of Vj and q ∈ Vj we have d(j, q) < ϵi
4 .

Hence d(j, p) ≤ d(j, q) + d(p, q) < ϵi
2 . So because Uϵj (j) ⊆ Ui, we have p ∈ Ui.

Likewise, if p ∈ Vj , then again d(p, q) < ϵj
4 and d(j, p) < ϵj

4 , so d(j, q) < d(p, q)+d(j, p) <
ϵj
2 , hence q ∈ Uij . □

As it turned out, the proof of this lemma was simpler than the formulation of the idea.
This is certainly not the case for our upcoming integration theorem. But thanks to all of
our previous results, we can confidently state and prove:

Theorem 7.3.4. Let M be a compact and simply connected smooth manifold. Let
ω ∈ Ωm(M) be a volume form. Let ν be a quasi-invariant measure on M and H → M a
ν-Hilbert field. Let R : Diff(M) → O(L2H) be a representation in which smooth functions
act by multiplication operators (R(mf ) = Tf ) for f ∈ C∞M)).

Suppose that there exists an integration gallery for R. Then there is a representation
P = int1(R) : G = M ×M 99K U(H) such that R′ = diff int2(P ) fulfils R′(X) ⊆ R(X∗)∗

for all X ∈ X(M).
If R is integrable, then R′(D) = R(D) for all D ∈ Diff1(M).

Proof: Let (Vi, Xi
1, . . . , X

i
m)i∈I be an integration gallery for R. Consider any i ∈ I. By

assumption, there is another open set Ui ⊆ M with Vi ⊆ Ui such that (Xi
1, . . . , X

i
m) is an

integration frame on Ui. Vi ⊆ Vi ⊆ Ui is precompact, so by Proposition 7.1.4, there is a
local essential homomorphism of second type P 0

i : V 2
i 99K U(H|Vi). By Theorem 5.3.10,

this extends to a global essential homomorphism of second type Pi : V 2
i 99K U(H|Vi).

For every i, j ∈ I, Lemma 7.2.14 implies that Pi|Vi∩Vj = Pj |Vi∩Vj . By virtue of Lemma
7.3.3, we may choose a barely intersecting refinement ((Wj)j∈J ,W ) of (Vi)i∈I . Let α : J → I
be the refinement map (the map satisfying Vj ⊆ Uα(j) for all j ∈ J). For each pair (i, j) ∈ I,
let Aij ⊆ (Ui ∩ Uj)2 be the null set of x ∈ (Ui ∩ Uj)2 such that Qi(x) ̸= Qj(x) (or one of
the two is undefined). Set A :=

⋃
i,j∈I Aij ⊆ M2, which is still a null set because I (and

hence I2) is countable. We use this to define a map
P : W \A → U(H)

by setting P (x) := Pi(x) for any i ∈ I such that x ∈ V 2
i , which is well-defined since

Pi(x) = Pj(x) for all x ∈ (Vi ∩ Vj)2 \A by the construction of A. I claim that P is a local
essential homomorphism of second type.
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First, let us check that the source and target of P (x) are actually the right ones. Namely
if (p, q) = x ∈ W 2

j ⊆ V 2
α(j), then for i = α(j) we have P (x) = Pi(x) : Hsx = (H|Vi)sx →

(H|Vi)tx = Htx, and this is a unitary operator just as required.
Now let x, y ∈ W \ A be two composable elements with xy ∈ W . Since W ⊆

⋃
jW

2
j ,

there are i, j ∈ J such that x ∈ W 2
i , y ∈ W 2

j . Let p = tx, q = sx = ty and r = sy. Then we
have p, q ∈ Wi ⊆ Vα(i). By the property of our chosen subcover as described in the lemma,
this also implies that r ∈ Vα(i), so that y = (q, r) ∈ V 2

k and xy = (p, r) ∈ V 2
k as well as

x = (p, q) ∈ V 2
k for k = α(i) ∈ I. So because Pk is an essential homomorphism of second

type on V 2
k , this shows that

P (xy) = Pk(xy) = Pk(x)Pk(y) = P (x)P (y)
just as required. Hence P is a local essential homomorphism of second type.

By the Sausage Theorem 5.3.10, P extends to a global essential homomorphism of second
type P̃ : M × M → U(H). Via Theorem 6.2.2, let π = int2(P ) : LI(M × M) → B(L2H)
be the integrated form of P .

It is left to show that actually diff(π) = R. We can obtain this result relatively quickly
using that we already know it is fulfilled locally.

Choose a smooth partition of unity (hi)i∈I subordinate to (Vi)i∈I . Let i ∈ I and
X ∈ X(M) be arbitrary such that R(X + 1

2 divX) is essentially skew-adjoint. Denote
the flow of X by θ : Rm ×M → M (X is complete since M is compact). We know that
supphi ⊆ Vi is compact, so we can choose ϵi > 0 such that θ([−2ϵi, 2ϵi] × supphi) ⊆ Vi.
For now, put h = hi. Then for all x ∈ (−ϵ, ϵ), Pi(expxX|Vi)Th : L2(H|Vi) → L2(H|Vi) is
defined (and bounded), and for all σ ∈ L2H and almost all p ∈ Vi:(

ιViPi(expxX|Vi)ThprVi
σ
)

(p) = Pi(expxX|Vi)(hσ|Vi)

=
((θx)∗ν

ν

) 1
2

(p)Pi(p, θ−xp)h(θ−xp)σ(θ−xp)

=
((θx)∗ν

ν

) 1
2

(p)P (p, θ−xp)h(θ−xp)σ(θ−xp)

= (P (expxX)Th(σ)) (p)
For p ∈ M \ Vi, both sides are 0 because supph ◦ θx ⊆ Vi. Hence ιViPi(expxX|Vi)ThprVi

=
P (expxX)Th.

Since M is compact, we can assume I to be finite without loss of generality. So define
ϵ = mini∈I ϵi > 0. It follows that for all x ∈ (−ϵ, ϵ):

P (expxX) =
∑
i∈I

P (expxX)Thi
=
∑
i

ιViPi(expxX|Vi)Thi
prVi

=
∑
i

ιViprVi
e−xR(X+ 1

2 divX)ιViprVi
Thi

=
∑
i∈I

e−xR(X+ 1
2 divX)Thi

= e−xR(X+ 1
2 divX)

by Lemma 7.2.13 and the fact that supphi ◦ θx ⊆ Vi.
Denote R′ := diff(π) = diff int2(P ). Then we know by Lemma 7.2.2 and Lemma 7.2.5

that
d

dxe−xR(X+ 1
2 divX)v = d

dxP (expxX)v = P (expxX)R′(−X − 1
2 divX)v

for all v ∈ domR′ and x ∈ (−ϵ, ϵ); in particular, the derivative exists. Hence by Stone’s
theorem (Theorem D, page 647, [23]), we find that v ∈ dom −xR(X + 1

2 divX) and
−xR(X + 1

2 divX)v = R′(−X − 1
2 divX)v. Thus R′(X + 1

2 divX) ⊆ R(X + 1
2 divX) =

−R(X + 1
2 divX)∗.
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We have already discussed multiple times that R′(f) = Tf = R(f). It follows that
R′(X) = R′(X + 1

2 divX) − R(1
2 divX) ⊆ −R(X + 1

2 divX)∗ − R(1
2 divX)∗ ⊆ (R(−X −

1
2 divX) −R(1

2 divX))∗ = R(X∗)∗.
Now let X ∈ X(M) be an arbitrary vector field. Then there are fij ∈ C∞(M) = C∞

c (M)
such that X =

∑
i∈I
∑m
j=1 fijX

i
j since (Xi

1, . . . , X
i
m) is a frame on Vi and the Vi cover M .

Thus we find:

R′(X) =
∑
i∈I

m∑
j=1

R′(fij)R′(Xi
j) ⊆

∑
i,j

R(f∗
ij)∗R((Xi

j)∗)∗

⊆

∑
i,j

R((Xi
j)∗)R(f∗

ij)

∗

=

R((
∑
i,j

fijX
i
j)∗)

∗

= R(X∗)∗

Lastly, suppose that R is integrable, so that R(X + 1
2 divX) is essentially skew-adjoint

for all X ∈ X(M). By Theorem 4.2.5, the same holds for R′ = diff int2(P ). Thus we have
R(D∗) = R(D)∗ and R′(D∗) = R′(D)∗ for all D ∈ Diff1(M) by Lemma 7.3.2. So let D =
X+f ∈ Diff1(M), for X ∈ X(M) and f ∈ C∞(M). We have proven that R′(X) ⊆ R(X∗)∗,
so R′(D) = R′(X)+R′(f) ⊆ R(X∗)∗ +Tf = R(X∗)∗ +R(f∗)∗ ⊆ R(D∗)∗ = R(D), and thus
R′(D) ⊆ R(D). On the other hand, because A ⊆ B implies B∗ ⊆ A∗ for any unbounded
densely defined operators A,B, we see that also R(D) = (R(D)∗)∗ ⊆ R′(D∗)∗ = R′(D),
using D∗ instead of D in the previous equation. Hence R′(D) = R(D). □

Because two representations R′ and R as well as their integrals are completely determ-
ined by their values on Diff1(M), it is justified to call them equivalent if R(D) = R′(D)
for all D ∈ Diff1(M). In this sense, we have constructed a right-sided inverse to the
differentiation map, mapping equivalence classes of integrable algebroid representations to
representations of the groupoid C∗-algebra. As before in the Euclidean case, we should also
consider the other direction. But before we do this, let us remember that a measurable field
of Hilbert spaces is a technical tool. Thanks to our previous endeavours, we can formulate
the same theorem for a representation on a more general Hilbert space. The proof mainly
relies on the fact that unitary intertwiners commute with closure and adjoint operations.

Corollary 7.3.5. Let M be a compact and simply connected smooth manifold. Let
ω ∈ Ωm(M) be a volume form. Let R : Diff(M) → O(K) be a representation on a separable
Hilbert space K such that R|C∞M is injective.

Suppose that R is integrable. Then there is a representation π = int(R) : C∗(M×M) →
B(K) such that diff(π)(D) = R(D) for all D ∈ Diff1(M).

Proof: By Theorem 5.2.8, there are a bounded Radon measure ν and a ν-Hilbert field
H on M , together with a unitary map α : L2H → K such that α−1R(f)α = Tf for all
f ∈ C∞

0 (M) = C∞(M). By Proposition 5.2.13 and Example 5.3.2, this measure ν is
quasi-invariant. Define

RH : Diff(M) → O(L2H), D 7→ α−1R(D)α,

which is another representation with domain domRH = α−1(domR). R was assumed to be
integrable, and we quickly see that this implies integrability of RH . Namely for X ∈ X(M)
and X̃ = X + 1

2 divX, we have

RH(X̃) =
(
α−1R(X̃)α

)∗
= α−1R(X̃)∗α

= α−1(−R(X̃))α = −α−1R(X̃)α = −RH(X̃)
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because α is unitary. Consider any integration frame (X1, . . . , Xm) for R on U ⊆ M . Then
for any h ∈ C∞M supported in U or its closure and x, y ∈ Rm sufficiently small, we have

RH(h)eRH(xX)eRH(yX) = α−1R(h)eR(xX)eR(yX)α

= α−1R(h)eR((x+y)X))α = RH(h)eRH((x+y)X)),

so that (X1, . . . , Xm) is an integration frame for RH on the same subset U . Thus RH is
again integrable.

Hence by Theorem 7.3.4, there is a representation P : M × M 99K U(H) such that
diff int2(P )(D) = RH(D) for all D ∈ Diff1(M). Set πH = int2(P ) : C∗(M ×M) → B(L2H)
and define π : C∗(M×M) → B(K), f 7→ απH(f)α−1, which is a representation because πH
is one. Set R1 = diff(π) and consider also R2 : Diff(M) → O(K), D 7→ α diff(πH)(D)α−1.
Then we find that

domR1 = π(C∞M2)K = απH(C∞M2)α−1K

= απH(C∞M2)L2H = α dom diff(πH) = domR2

holds for the domains of these representations. Furthermore, for all D ∈ Diff(M), f ∈ C∞M ,
v ∈ K we have:

R1(D)(π(f)v) = π(Df)v = απH(Df)α−1v

= α diff(πH)(D)(πH(f)α−1v)
= α diff(πH)(D)α−1(π(f)v) = R2(D)(π(f)v)

Hence R1(D) = R2(D) (including the domain). Consequently, for all D ∈ Diff1(M) we find
that

diff(π)(D) = R1(D) = R2(D) = α diff(πH)(D)α−1

= αdiff(πH)(D)α−1 = αRH(D)α−1 = αRH(D)α−1 = R(D)
just as required. □

The Hilbert space K in the previous corollary is isomorphic to the sections of a ν-Hilbert
field H even if R|C∞M is not injective, but then the measure ν will not be quasi-invariant
due to the extension by 0. It is also not possible to apply the integration theory directly to
the closed subspace of M that we find in Theorem 5.2.8 because it may not be a smooth
submanifold. Thus we will settle for this result.

Let us now show that our integration map is also a left-sided inverse to differentiation.
This is relatively easy using the one-parameter groups generated by exponentials of vector
fields, as detailed in the next theorem.

Theorem 7.3.6. Let (M,ω) be a compact simply connected volumetric manifold with
quasi-invariant measure ν and let P : M × M 99K U(H) be a representation on a ν-
Hilbert field H. Suppose that there exists an integration gallery for R = diff int2(P ). Then
int1(R) = P almost everywhere.

Proof: Denote P ′ := int1(R). Consider any vector field X ∈ X(M) such that R(X+ 1
2 divX)

is essentially skew-adjoint. Let v ∈ domR. Then we know by Lemma 7.2.2 and Lemma
7.2.5 that

d
dxP (expxX)v = P (expxX)R(−X − 1

2 divX)v

for all x ∈ R. So because R(X + 1
2 divX) is essentially skew-adjoint, P (expxX) =

e−xR(X+ 1
2 divX). Furthermore, we have found within the proof of Theorem 7.3.4 an ϵ > 0

such that for x ∈ (−ϵ, ϵ):

P ′(expxX) = e−xR(X+ 1
2 divX) = P (expxX)
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Now let (Vi, Xi
1, . . . , X

i
m)i∈I be an integration gallery for R. Let i ∈ I. For x ∈ Rm,

denote by ϕix the time-1 flow of xXi = x1X
i
1 + · · · + xmX

i
m. By definition, (Xi

1, . . . , X
i
m) is

an integration frame on an open subset Ui which contains the closure of Vi; in particular,
[Xi

k, X
i
l ]|Ui = 0. So because flows of commuting vector fields commute, we find an ϵ > 0

such that

P (expxXi)σ(p) = P (expx1X
i
1) . . . P (expxmXi

m)σ(p)

for all σ ∈ L2H and almost all x ∈ Uϵ(0) ⊆ Rm, p ∈ Vi, and likewise for P ′. For these x, p
we get:

P (p, ϕi−xp)σ(ϕ−xp) =
((ϕx)∗ν

ν

)− 1
2

(p)(P (expxXi)σ)(p)

=
((ϕx)∗ν

ν

)− 1
2

(p)P (expx1X
i
1) . . . P (expxmXi

m)σ(p)

=
((ϕx)∗ν

ν

)− 1
2

(p)P ′(expx1X
i
1) . . . P ′(expxmXi

m)σ(p)

=
((ϕx)∗ν

ν

)− 1
2

(p)(P ′(expxXi)σ)(p) = P ′(p, ϕi−xp)σ(ϕ−xp)

Since σ was arbitrary, P (p, ϕi−xp) = P ′(p, ϕi−xp). Because (Xi
1, . . . , X

i
m) is a frame on Ui,

the set Wi := {(p, ϕi−xp)|p ∈ Vi, x ∈ Uϵ(0)} is a neighbourhood of diag(Vi) in M2. Doing
this for all i, we get a neighbourhood W =

⋃
i∈IWi of diag(M) =

⋃
i∈I diag(Vi) with

P (g) = P ′(g) for almost all g ∈ W . The uniqueness part of Theorem 5.3.10 now shows that
P = P ′ almost everywhere. □

We already know that the integration map int2 from groupoid homomorphisms to
groupoid algebra representations is a bijection, up to equivalence classes, where two groupoid
homomorphisms are equivalent if they only differ on a null set. So we have once more
established a commuting triangle of maps between representation types, this time for the
pair groupoid G = M ×M of a simply connected compact manifold M :

B(L2H)

π

LI(G)

U(H) P G DiffR(G) R O(L2H)

R(D)(π(f)σ)=π(D(f))σ

diffint2

π(f)(σ)(p)=
∫
Gp

∆− 1
2 (x)f(x)P (x)σ(sx)dλp

int1

P (exp(xX)p)=( dν
d(φx)∗ν )

1
2 (φxp)

(
φ∗
xeR(−x(X+1

2
divX))

)
(p)

However, this only works if the derivative of a groupoid representation is actually
integrable. The main challenge is to show that vector fields act by essentially skew-adjoint
operators, which we have shown to be true at least for compact manifolds. Using this result,
integrability is relatively quick to show, and we will do so in the next section.
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7.4. Integrability of the Derivative

To show integrability of the derivative, we need to construct integration frames. For
the tangent bundle, we can always find commuting local frames using charts, and self-
adjointness was investigated before. The remaining thing to show now is that exponentials
of suitable vector fields commute locally. This is formally described and proven in the
following lemma.

Lemma 7.4.1. Let (M,ω) be a compact volumetric manifold, π : C∗(M×M) → B(L2H)
a representation of the pair groupoid on a Hilbert field and R = diff(π). Let X1, . . . , Xm ∈
X(M) be vector fields and U ⊆ M open such that [Xi, Xj ]|U = 0 for all i, j ∈ {1, . . . ,m}.

Then for every compact set K ⊆ U there exists an ϵ > 0 such that for all h ∈ C∞(M)
with supph ⊆ K and all x, y ∈ Uϵ(0) ⊆ Rm:

TheR(xX+ 1
2 div(xX))eR(yX+ 1

2 div(yX)) = TheR((x+y)X+ 1
2 div((x+y)X))

Proof: First of all, we know by Theorem 4.2.5 that R(xX + 1
2 div(xX)) is essentially

skew-adjoint for all x ∈ R, so that Ux := eR(−xX− 1
2 div(xX)) is well-defined. Furthermore, by

Proposition 6.2.6 we know that π = int2(P ) for some representation P : M ×M 99K U(H).
Using this, we see by Lemma 7.2.2 and Lemma 7.2.5 that P (exp(xX)) = Ux; this was
discussed before in the proof of Theorem 7.3.6. Thus for any f ∈ C∞

c (M2), v ∈ L2H we
find that

Uxπ(f)v =
((ϕx)∗ω

ω

) 1
2
π(f ◦ lexp(−xX))v

for all x ∈ Rm (using that M is compact). Here ϕx is the time-1 flow of xX.
For each i ∈ {1, . . . ,m}, let θi be the flow of Xi|U . Then because [Xi, Xj ]|U = 0, there

is an open set D ⊆ Rm×U with {0}×U ⊆ D such that ϕx(p) = θ1
x1 ◦· · ·◦θmxm

(p) ∈ U for all
(x, p) ∈ D; D is the common domain of the commuting flows θ1, . . . , θm. Because θ1, . . . , θm

are continuous and commute, we even find an open subset D2 ⊆ Rm × Rm × U with
{0} × {0} ×U ⊆ D2 such that ϕx+y(p) = θ1

x1+y1 . . . θ
m
xm+ym

= ϕxϕy(p) for all (x, y, p) ∈ D2.
Because K is compact and D2 is open, we can choose ϵ > 0 such that Uϵ(0)2 ×K ⊆ D2.

Let f ∈ Cc(M × M) be arbitrary. Consider any x, y ∈ Uϵ(0) ⊆ Rm and (p, q) ∈ G =
M ×M . If p /∈ K, then we have h(p) = 0 and thus:

((h ◦ t) · (f ◦ lexp((x+y)X)))(p, q) = 0 = ((h ◦ t) · (f ◦ lexp(yX) ◦ lexp(xX)))(p, q)

Remember that by the construction of ϵ, we have {y} × {x} ×K ⊆ D2. Thus if p ∈ K, we
have ϕyϕxp = ϕx+yp and hence:

f ◦ lexp yX ◦ lexpxX(p, q) = f ◦ lexp yX(ϕxp, q) = f(ϕyϕxp, q)
= f(ϕx+yp, q) = f ◦ lexp(x+y)X(p, q)

Combining both cases, we see that h ◦ tf ◦ lexp yX ◦ lexpxX = h ◦ tf ◦ lexp(x+y)X , and likewise
h ◦ tf ◦ lexp −yX ◦ lexp −xX = h ◦ tf ◦ lexp −(x+y)X

Besides this, consider the pull-back ϕ∗
xϕ

∗
yω. For every p ∈ K and all v1, . . . , vm ∈ TpM ,

we have

ϕ∗
xϕ

∗
yω(p)(v1, . . . , vm) = ϕ∗

yω(ϕxp)(Tpϕxv1, . . . , Tpϕxvm)
= ω(ϕyϕxp)(Tp(ϕyϕx)v1, . . . , Tp(ϕyϕx)vm)
= ω(ϕx+yp)(Tpϕx+yv1, . . . , Tpϕx+yvm) = ϕ∗

x+yω(p)(v1, . . . , vm)

because ϕyϕx = ϕx+y in a neighbourhood of p. Since (ϕx)∗ω = ϕ∗
−xω, we also see that

(ϕx+y)∗ω = (ϕx)∗(ϕy)∗ω.



7.4. INTEGRABILITY OF THE DERIVATIVE 129

Combining the previous results, we compute for any σ ∈ L2H and p ∈ K:

TheR(xX+ 1
2 div(xX))eR(yX+ 1

2 div(yX))(π(f)σ)(p) = ThUxUy(π(f)σ)(p)

=ThUx

((ϕy)∗ω

ω

) 1
2
π(f ◦ lexp(−yX))(σ)

 (p)

=Th
((ϕx)∗ω

ω

) 1
2
π((
((ϕy)∗ω

ω

) 1
2

◦ t ◦ lexp(−xX)) · (f ◦ lexp(−yX) ◦ lexp(−xX)))(σ)(p)

=
((ϕx)∗ω

ω

) 1
2
((ϕy)∗ω

ω

) 1
2

◦ ϕ−xπ((h ◦ t) · (f ◦ lexp(−yX) ◦ lexp(−xX)))(σ)(p)

=
((ϕx)∗ω

ω

) 1
2
((ϕx)∗(ϕy)∗ω

(ϕx)∗ω

) 1
2
π((h ◦ t) · (f ◦ lexp(−(x+y)X)))(σ)(p)

=

((ϕx+y)∗ω

ω

) 1
2
hπ(f ◦ lexp(−(x+y)X))(σ)

 (p) = TheR((x+y)X+ 1
2 div((x+y)X))(π(f)σ)(p)

Because p, f and σ were arbitrary, it follows that ThUxUyv = ThUx+yv for all v ∈ domR =
π(C∞

c (M2))L2H. Because both ThUxUy and ThUx+y are bounded and domR ⊆ L2H is
dense, it follows that ThUxUy = ThUx+y. x and y were also chosen arbitrarily within
Uϵ(0) ⊆ Rm, so this is the desired result. □

To summarize the previous proof, we mostly rely on the fact that functional calculus
exponentials on the operator side are given by left-actions of groupoid exponentials, for
which domain is not an issue.

Using this result and Theorem 4.2.5, the construction of an integration gallery is
straightforward.

Proposition 7.4.2. Let (M,ω) be a compact volumetric manifold, π : C∗(M2) →
B(L2H) a representation and R = diff(π). Then R is integrable.
Proof: We know by Theorem 4.2.5 that R(X + 1

2 divX) is essentially skew-adjoint for all
X ∈ X(M). So we only need to construct an integration gallery for R, which is easy using
our previous knowledge.

Namely let p ∈ M be arbitrary. Choose a chart (U, ϕ) around p. Choose a compact
neighbourhood K ⊂ U of p and a bump function h ∈ C∞

c (M) with h|K ≡ 1 and supph ⊆ U .
Put Xp

j = h∂ϕj ∈ X(M) for each j ∈ {1, . . . ,m}. Let U2 ⊆ K be another, smaller
neighbourhood of p. Then since h|U2 ≡ 1 and [∂ϕi , ∂

ϕ
j ] = 0, we know that [Xp

i , X
p
j ]|U2 = 0

for all i, j ∈ {1, . . . ,m}. Choose another open neighbourhood Up3 = U3 of p with U3 ⊆ U2.
U3 is compact as a closed subset of K, so by Lemma 7.4.1, we find an ϵ > 0 such that

TfeR(xX+ 1
2 div(xX))eR(yX+ 1

2 div(yX)) = TfeR((x+y)X+ 1
2 div((x+y)X))

for all x, y ∈ Uϵ(0) and all f ∈ C∞(M) with f |M\U3 ≡ 0.
Since h|U3 ≡ 1 and (∂ϕ1 , . . . , ∂ϕm) is a frame for TU , (Xp

1 (p), . . . , Xp
m(p)) is a basis for

TpM for each p ∈ U3, and we know that [Xp
i , X

p
j ]|U3 = 0 a fortiori for all i, j ∈ {1, . . . ,m}

since this is even true on U2. As mentioned, the vector fields act by essentially skew-adjoint
operators. So in summary, (Xp

1 , . . . , X
p
m) is an integration frame on U3.

Let Vp ⊆ U3 be a simply connected open neighbourhood of p such that Vp ⊆ U3, e.g.
Vp = ϕ−1(Uδ(p)) for sufficiently small δ > 0. Vp is precompact since K (or even M) is
compact. Since p ∈ Vp, the family (Vp)p∈M is an open cover of M . As M is compact, we
can choose a finite set I ⊆ M such that (Vp)p∈I is still a cover of M . By construction, for
each p ∈ I, (Xp

1 , . . . , X
p
m) is an integration frame for R on the larger neighbourhood Up3 .

Hence (Vp, Xp
1 , . . . , X

p
m)p∈I is an integration gallery for R, in particular R is integrable. □
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Now that we have a complete result for the case we specialized on, we could close
this chapter and with it, the thesis. However, our integrability assumption is still a bit
technical. We know that it is fulfilled for derivatives, but when we start with an algebroid
representation from a different context, the necessary assumption might be hard to prove.
Thus it is worthwhile to try and find other conditions which imply integrability and are
more handy. This is what I will engage in during the remaining section of this chapter.

7.5. Integrability and Analytic Vectors

In the construction of an integration theorem for the Euclidean space, we have used
analytic vectors to deduce skew-adjointness of vector fields and exponential relations
from the mere fact that a Laplace operator acts by an essentially self-adjoint operator. I
originally planned to do the same for the more general integration theorem. This failed
because Nelson’s theory only applies for finite-dimensional Lie algebras and the Lie algebra
generated by non-commuting vector fields is usually infinite-dimensional. However, the
case of globally commuting vector fields is still an interesting example. In this section, I
take the opportunity to investigate analytic vectors once more and show how we can get
an integration frame from an essentially self-adjoint Laplacian.

As many times before, we will start showing a few results which seem rather obvious,
but should be handled with care in the context of unbounded operators. The first one is a
Lemma on sums of skew-symmetric operators.

Lemma 7.5.1. Let H be a Hilbert space. Let A,B ∈ O(H) be densely defined operators.
If A is (skew-)symmetric, then its closure Ā is (skew-)symmetric, too. If A and B are both
(skew-)symmetric, then so is A+B : domA ∩ domB → H.

Proof: Let us first look at the symmetric case.
Let v, w ∈ dom Ā. Then there are sequences (vi), (wi) ⊂ domA such that vi → v,

wi → w and such that Avi → Āv, Awi → Āw. For these we have
⟨Āv, w⟩ = lim

i
⟨Avi, wi⟩ = lim

i
⟨vi, Awi⟩ = ⟨v, Āw⟩

because the inner product is continuous and A is symmetric.
Let now v, w ∈ domA ∩ domB = dom(A+B). Then we have

⟨(A+B)v, w⟩ = ⟨Av,w⟩ + ⟨Bv,w⟩ = ⟨v,Aw⟩ + ⟨v,Bw⟩ = ⟨v, (A+B)w⟩
because the inner product is bilinear and A and B are symmetric.

For skew-symmetric operators, the result follows by insertion of a minus sign in the
above equations or using that multiplying with i makes them symmetric. □

The second lemma is about unbounded commutators.

Lemma 7.5.2. Let H be a Hilbert space and let A,B ∈ O(H) be any symmetric linear
operators. Then their commutator [A,B] = AB − BA : dom(AB) ∩ dom(BA) → H is
skew-symmetric.

Proof: Let v, w ∈ dom(BA) ∩ dom(AB) be arbitrary. Then we have:
⟨[A,B]v, w⟩ = ⟨ABv −BAv,w⟩ = ⟨ABv,w⟩ − ⟨BAv,w⟩

= ⟨Bv,Aw⟩ − ⟨Av,BW ⟩ = ⟨v,BAw⟩ − ⟨v,ABw⟩
= ⟨v,BAw −ABw⟩ = −⟨v, [A,B]w⟩ □

The third lemma shows that a closed operator is 0 on its domain if it contains the zero
operator.

Lemma 7.5.3. Let X be a Banach space and let A,B ∈ O(X) be densely defined
operators with A ⊆ B. If B is closable and Av = 0 for all v ∈ domA, then Bw = 0 for all
w ∈ domB.
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Proof: Let v ∈ domB be arbitrary. As A is densely defined, choose a net (vi) ⊂ domA
with vi → v. Since A is 0 on its domain and A ⊆ B, we have Bvi = Avi = 0, and hence
limiBvi = 0; in particular, the sequence converges. Because B is closable and vi → v, this
implies that Bv = limiBv = limiBvi = 0. □

Next we give a condition for closability of products.

Lemma 7.5.4. Let H be a Hilbert space, A,B ∈ O(H) densely defined linear operators
such that dom(B∗A∗) ⊆ H is dense. Then AB is a closable operator.

Proof: Let v ∈ H be arbitrary. Let (vi) ⊂ domAB be any sequence with vi → v such that
(ABvi) converges. Then we have

⟨lim
i
ABvi, w⟩ = lim

i
⟨ABvi, w⟩ = lim

i
⟨Bvi, A∗w⟩

= lim
i

⟨vi, B∗A∗w⟩ = ⟨v,B∗A∗w⟩

for all w ∈ dom(B∗A∗). Since dom(B∗A∗) is dense, this uniquely determines limiABvi. So
AB is closable. □

We use the previous facts to show that if vector fields commute locally, then their
closures in a representation also commute locally, in the following formal sense:

Lemma 7.5.5. Let M be a smooth manifold with a volume form ω and U ⊆ M open.
Let H → M be a ν-Hilbert field, where ν is quasi-invariant. Let R : Diff(M) → O(L2H)
be a representation. Choose m ∈ N and let X1, . . . , Xm ∈ X(M) be vector fields such that
[Xi, Xj ]|U ≡ 0 for all i, j ∈ {1, . . . ,m}.

Let h ∈ C∞(M) with h|M\U ≡ 0 and denote by Th ∈ B(L2H) its multiplication operator.
Let Bi := R(Xi + 1

2 divXi) be the closures of the operators given by coordinate vector fields.
Choose k ∈ N and i1, . . . , ik ∈ {1, . . . ,m}. Then for every permutation σ ∈ Sk and all
v ∈ dom(Bi1 . . . Bik) ∩ dom(Biσ1 . . . Biσk

), we have:
ThBi1 . . . Bikv = ThBiσ1 . . . Biσk

v

Proof: For each i ∈ {1, . . . ,m}, put Ai := R(Xi + 1
2 divXi) ∈ O(H), which is densely

defined on domR and symmetric. For all i, j ∈ {1, . . . ,m}, we have [Xi, Xj ]|U = 0 by
assumption. By Lemma 3.2.17, we thus also have Xi(divXj)|U = Xj(divXi)|U , and hence
[Xi + 1

2 divXi, Xj + 1
2 divXj ]|U =

(
[Xi, Xj ] + 1

2Xi(divXj) − 1
2Xj(divXi)

)
|U = 0. By an

induction argument, this implies that even for all i1, . . . , ik ∈ {1, . . . ,m} and σ ∈ Sk, we
have X̃i1 . . . X̃ik |U = X̃iσ1 . . . X̃iσk

|U , where X̃ = LX + 1
2mdivX ∈ Diff(M).

So let h ∈ C∞(M) be any smooth function with h(p) = 0 for all p ∈ M\U . Then because
differential operators are local, we have h(X̃i1 . . . X̃ik − ˜Xiσ1 . . .

˜Xiσk
) = 0 ∈ Diff(M).

Consequently, we get that
Th(Ai1 . . . Aik −Aiσ1 . . . Aiσk

) = R(h(X̃i1 . . . X̃ik − X̃iσ1 . . . X̃iσk
)) = 0

on its domain domR, which is dense.
Recall the notation Bi = Ai. Because R has an invariant domain, we know that

domR ⊆ dom(Bi1 . . . Bik) ∩ dom(Biσ1 . . . Biσk
),

so that
Th(Ai1 . . . Aik −Aiσ1 . . . Aiσk

) ⊆ Th(Bi1 . . . Bik −Biσ1 . . . Biσk
).

Also by the domain invariance of R, we know that
Th domR ⊆ domR ⊆ dom(Bi1 . . . Bik −Biσ1 . . . Biσk

)∗.

Hence, as Th = T ∗
h :

domR ⊆ dom((Bi1 . . . Bik −Biσ1 . . . Biσk
)∗T ∗

h )
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In particular, this domain is dense. Lemma 7.5.4 thus implies that

Th(Bi1 . . . Bik −Biσ1 . . . Biσk
)

is a closable operator. Now Lemma 7.5.3 applies and shows that

Th(Bi1 . . . Bik −Biσ1 . . . Biσk
) = 0

on its domain because

0|domR = Th(Ai1 . . . Aik −Aiσ1 . . . Aiσk
) ⊆ Th(Bi1 . . . Bik −Biσ1 . . . Biσk

).

So indeed, for all

v ∈ dom(Th(Bi1 . . . Bik −Biσ1 . . . Biσk
)) = dom(Bi1 . . . Bik) ∩ dom(Biσ1 . . . Biσk

),

we see that 0 = Th(Bi1 . . . Bik −Biσ1 . . . Biσk
)v, i.e., ThBi1 . . . Bikv = ThBiσ1 . . . Biσk

v. □

We get to a more elaborate proposition now. Using the existence of common analytic
vectors, we will show that certain exponentials commute locally. Namely:

Proposition 7.5.6. Let M be a smooth manifold with a volume form ω and U ⊆ M
open. Let H → M be a ν-Hilbert field, where ν is quasi-invariant. Let R : Diff(M) →
O(L2H) be a representation. Choose m ∈ N and let X1, . . . , Xm ∈ X(M) be vector fields
such that [Xi, Xj ]|U ≡ 0 for all i, j ∈ {1, . . . ,m}.

Set Bi := R(Xi + 1
2 div(Xi)) ∈ O(L2H). For x ∈ Rm, put xB :=

∑m
i=1 xiBi. Set

E :=
⋂

k∈N, 1≤i1,...,ik≤m
dom(Bi1 . . . Bik) ⊇ domR

Suppose that there are s ∈ R>0 and a set Eω ⊆ E which is dense in L2H such that for all
v ∈ Eω:

∞∑
n=0

sn

n!
∑

1≤i1,...,in≤m
∥Bi1 . . . Bin(v)∥ < ∞

Then for all h ∈ C∞
b (M) with h|M\U ≡ 0 and all x, y ∈ Rm with ∥x∥∞, ∥y∥∞ ≤ s

2 , we
have:

ThexBeyB = The(x+y)B

Proof: For all x, y ∈ R with ∥x∥∞, ∥y∥∞ ≤ s
2 and v ∈ Eω, we know by our assumption that

∞∑
n=0

1
n!∥((x+ y)B)nv∥ =

∞∑
n=0

1
n!

∥∥∥∥∥∥
∑

1≤i1,...,in≤m
(xi1 + yi1) . . . (xim + yim)Bi1 . . . Bimv

∥∥∥∥∥∥
≤

∞∑
n=0

1
n!

∑
1≤i1,...,in≤m

|(xi1 + yi1) . . . (xim + yim)| ∥Bi1 . . . Bimv∥

≤
∞∑
n=0

1
n!

∑
1≤i1,...,in≤m

(|xi1 | + |yi1 |) . . . (|xim | + |yim |) ∥Bi1 . . . Bimv∥

≤
∞∑
n=0

1
n!

∑
1≤i1,...,in≤m

sn ∥Bi1 . . . Bimv∥ < ∞,

because |xi|, |yi| < s
2 for all i. In particular, (x+ y)B is essentially self-adjoint by Nelson’s

theorem, which ensures that the exponentials in this lemma exist to begin with.
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Similarly, we get the following estimate:
∞∑

k,l=0

1
k!l!∥(xB)k(yB)lv∥ =

∞∑
n=0

1
n!

∑
k+l=n

n!
k!l!∥(xB)k(xB)lv∥

≤
∞∑
n=0

1
n!

∑
k+l=n

(
n

k

) ∑
1≤i1,...,ik≤m

∑
1≤j1,...,jl≤m

|xi1 . . . xikyj1 . . . yjl |∥Bi1 . . . BikBj1 . . . Bjlv∥

≤
∞∑
n=0

1
n!

∑
k+l=n

(
n

k

) ∑
1≤i1,...,ik≤m

∑
1≤j1,...,jl≤m

(
s

2

)n
∥Bi1 . . . BikBj1 . . . Bjlv∥

=
∞∑
n=0

1
n!

(
s

2

)n ∑
k+l=n

(
n

k

) ∑
1≤i1,...,in≤m

∥Bi1 . . . Binv∥

=
∞∑
n=0

1
n!

(
s

2

)n
2n

∑
1≤i1,...,in≤m

∥Bi1 . . . Binv∥ =
∞∑
n=0

sn

n!
∑

1≤i1,...,in≤m
∥Bi1 . . . Binv∥ < ∞

So the two series
∑∞
n=0

1
n((x+ y)B)nv and

∑∞
k,l=0

1
k!l!(xB)k(yB)lv are absolutely con-

vergent. Hence we can use them to express the corresponding exponentials. That is, we
have

e(x+y)Bv =
∞∑
n=0

1
n

((x+ y)B)nv

and

exBeyBv =
∞∑

k,l=0

1
k!l! (xB)k(yB)lv

for all v ∈ Eω.
Now let h ∈ C∞

b (M) with h|M\U ≡ 0 be arbitrary. Recall that the multiplication
operator Th : L2H → L2H, σ 7→ hσ is bounded with ∥Th∥ = ∥h∥∞, and in particular,
continuous. Furthermore, we know by Lemma 7.5.5 that

ThyB(xB)nv =
∑

1≤j,i1,...,in≤m
yjxi1 . . . xinThBjBi1 . . . Binv

=
∑

1≤j,i1,...,in≤m
yjxi1 . . . xinThBi1 . . . BinBjv = Th(xB)nyBv,

so that a version of the binomial theorem applies and yields

Th(xB + yB)nv =
∑

k+l=n

n

k!l!Th(xB)k(yB)lv.

Thus we have:

ThexBeyBv =
∞∑

k,l=0

1
k!l!Th(xB)k(yB)lv

=
∞∑
n=0

1
n!

∑
k+l=n

n!
k!l!Th(xB)k(yB)lv

=
∞∑
n=0

1
n!Th(xB + yB)nv = The(x+y)Bv

Because this is true for all v ∈ Eω, Eω ⊆ H is dense, and both ThexBeyB and The(x+y)B

are bounded, this implies that indeed ThexBeyB = The(x+y)B. □
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An experienced reader may notice at this point that the bump function h in the previous
proposition may be supported on the whole subset U where the Xi commute, unlike in
previous cases where we needed a compact subset of U as support. This correlates with
the intuition that common analytic vectors are something we cannot expect in general.

But for our special case, we can now show that our regarded frame is an integration
frame.

Lemma 7.5.7. Let M be a smooth manifold with a volume form ω and U ⊆ M open.
Let H → M be a ν-Hilbert field, where ν is quasi-invariant. Let R : Diff(M) → O(L2H)
be a representation. Choose m ∈ N and let X1, . . . , Xm ∈ X(M) be vector fields such that
[Xi, Xj ]|U ≡ 0 for all i, j ∈ {1, . . . ,m} and such that (X1|U , . . . , Xm|U ) is a local frame of
TM .

Set Bi := R(Xi + 1
2 div(Xi)) ∈ O(L2H). For x ∈ Rm, put xB :=

∑m
i=1 xiBi. Set

E :=
⋂

k∈N, 1≤i1,...,ik≤m
dom(Bi1 . . . Bik) ⊇ domR

Suppose that there are s ∈ R>0 and a set Eω ⊆ E which is dense in L2H such that for all
v ∈ Eω:

∞∑
n=0

sn

n!
∑

1≤i1,...,in≤m
∥Bi1 . . . Bin(v)∥ < ∞

Then (X1, . . . , Xm) is an integration frame for R on U .

Proof: The facts that [Xi, Xj ]|U ≡ 0 for all i, j ∈ {1, . . . ,m} and (X1(p), . . . , Xm(p)) is
an (ordered) basis for TpM for all p ∈ U were included in our assumptions. Let x ∈ Rm
be arbitrary. Choose c ∈ R > 0 such that ∥xc ∥ < 1. Then from our assumption it follows
instantly that every v ∈ Eω is a fortiori an analytic vector for x

cB, thus x
cB must be

essentially skew-adjoint by Nelson’s theorem. Hence xB = cxcB is essentially skew-adjoint.
ThexBeyB = The(x+y)B was shown in Lemma 7.5.6 to be true for ∥x∥∞, ∥y∥∞ ≤ s

2 . Since
all norms on Rm are equivalent, the result follows. □

Using a self-adjoint Laplacian, we can also formulate the following concise proposition,
which is in line with our Euclidean integration theory.

Proposition 7.5.8. Let (M,ω) be a volumetric manifold and R : Diff(M) → O(L2H)
be a representation. Suppose that there exists a global commuting frame (X1, . . . , Xm) of
TM , and that R(

∑m
i=1Xi + 1

2 div(Xi)) is essentially self-adjoint. Then (X1, . . . , Xm) is an
integration frame on M .

Proof: Like in the previous lemma, let Bi = R(Xi + 1
2 divX) and

E :=
⋂

k∈N, 1≤i1,...,ik≤m
dom(Bi1 . . . Bik) ⊇ domR.

The operators Ai = R(Xi + 1
2 divXi) commute, thus the Lie algebra generated by them

is finite-dimensional. Put ∆ =
∑m
i=1R(Xi + 1

2 divXi)2. By Lemma 6.2 in [18], |∆| + |I|
analytically dominates

∑m
i=1 |Ai|, where I is the identity on domR. Thus by Lemma 5.2,

page [18], there are an s > 0 and a subset Eω ⊆ E such that for all v ∈ Eω,

∥es
∑m

i=1 |Bi|E |v∥ =
∞∑
n=0

sn

n!
∑

1≤i1,...,in≤m
∥Bi1 . . . Bin(v)∥ < ∞,

and Eω ⊆ L2H is dense. Thus Lemma 7.5.7 applies, showing that (X1, . . . , Xm) is an
integration frame. □



CHAPTER 8

Conclusion

8.1. Discussion of Results

Behind us lies a large amount of dense mathematical statements, including new terms
and theories developed on our way. Before the end of this book, let us take a moment and
reflect on our achievements. In the beginning of the thesis, I have already given a short
summary of all the contents and I will not repeat it here. Instead I will use the opportunity
to highlight a few of our most important findings and discuss their extent as well as their
limits.

A personal favourite of mine is the Sausage Theorem 5.3.10, which allows us to complete
local groupoid homomorphisms to global ones. One reason for this status is the fact that
it can be applied in quite a general context: The result is independent of representation
theory and may be applied in other areas. The target of the homomorphism which we want
to extend does not even need any additional structure like topology or measures. Another
advantage is that the statement resembles a result from classical Lie theory and is easy to
understand despite its technical depth. On the flip side, our theorem is only applicable for
a domain of definition which has simply connected fibres as well as suitable measures and
a useful topology. The formal definition of a local groupoid homomorphism is, involving
null sets, also quite technical. Still the Sausage Theorem has proven useful many times
and is an important cornerstone of the Lie groupoid representation theory.

Regarding the actual representation theory, we have three types of representations and
three theorems mapping between them. First there is the differentiation theorem 4.1.5, which
differentiates representations of the groupoid algebra to representations of the algebroid.
Secondly, we have Theorem 6.2.2, which associates a groupoid algebra representation to
a groupoid representation. Likely the most important theorem in this monograph is the
integration theorem 7.3.4, which maps algebroid to groupoid representations.

Between integration and differentiation, there is a notable gap in the amount of formal
requirements: Every non-degenerate representation of the groupoid C∗-algebra can be
differentiated to a representation of the algebroid. This works for an arbitrary Lie groupoid
and even if the domain of the representation is a Hilbert C∗-module instead of an ordinary
Hilbert space. In contrast, our integration theorem requires that the domain is a Hilbert
space, because the disintegration into measurable fields of Hilbert spaces is only possible
for those. And while many intermediate results are true for general Lie groupoids (such as
Theorem 6.1.4, in the end we restricted to the case of pair groupoids. In addition to that,
we need simply connected fibres to extend local homomorphisms.

These limitations may be viewed as inspirations for further research. The most promising
direction may be the generalisation to more general Lie groupoids. With the current
knowledge, this will not go very far because the exponential map for Lie algebroids does
not have the desired properties. However, with a better understanding of this map, also in
the context of functional analysis, it might still be possible to prove analogous results using
methods similar to those presented in this dissertation. Most of the constructions work in
principle, and the challenge is to show that the map constructed is a homomorphism.

Alleviation of the other restrictions seems less likely. I do not know how to disintegrate
Hilbert modules. Maybe methods of their representation theory such as the local-global
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principle from [16] can be used to obtain some results. Having simply connected fibres is
also not a requirement that we can dismiss, because it is necessary in the extension process
of local homomorphisms just like in classical Lie theory.

Let us summarize. Due to technical obstructions, we have not completed our most
ambitious original goal of building an integration theory for all Lie algebroid representations.
However, we were able to obtain a satisfying result for the more confined case of the tangent
algebroid. We have constructed an integration theorem for tangent algebroid representations
on Hilbert spaces, shown that it is inverse to differentiation and defined understandable
integrability conditions. With these results I close this thesis. Any motivated researcher
who wishes to do so is hereby invited to continue investigations on the topic.
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