
Matching Patterns with Variables in
Approximate Settings

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”

der Georg-August-Universität Göttingen

im Promotionsprogramm

“PhD Programme in Computer Science (PCS)”

der Georg-August University School of Science (GAUSS)

vorgelegt von

Stefan Siemer

aus Hameln

Göttingen, 2023

ii

Thesis Committee:

Prof. Dr. Florin Manea

Institute of Computer Science, University of Göttingen

Prof. Dr. Carsten Damm

Institute of Computer Science, University of Göttingen

Prof. Dr. Jens Grabowski

Institute of Computer Science, University of Göttingen

Members of the Examination Board:

Reviewer:

Prof. Dr. Florin Manea

Institute of Computer Science, University of Göttingen

Second Reviewer:

Prof. Dr. Carsten Damm

Institute of Computer Science, University of Göttingen

Further Members of the Examination Board:

Prof. Dr. Marcus Baum

Institute of Computer Science, University of Göttingen

Prof. Dr. Jens Grabowski

Institute of Computer Science, University of Göttingen

Prof. Dr. Dieter Hogrefe

Institute of Computer Science, University of Göttingen

Prof. Dr. Wolfgang May

Institute of Computer Science, University of Göttingen

Date of the Oral Examination: January 31, 2024

ii

Acknowledgments

First and foremost, I hereby express my sincere gratitude and thank my supervisor, Florin Manea,

for the excellent guidance and support throughout my studies. Florin is very knowledgeable in

many areas of theoretical computer science, encouraging and helpful with new research ideas, and a

highly cheerful person throughout my entire studies and everyday work. I am very grateful that he

is swift in answering requests and always finds time to discuss research.

Secondly, I would like to thank my second supervisor, Carsten Damm. I have been working as a

Tutor for Carsten since my Bachelor studies and enjoyed taking his advanced courses in theoretical

computer science. Carsten also convinced me to pursue doctoral studies with the back then “new”

professor at our institute, Florin Manea. Looking back, I am very grateful for all of these things.

Further, I express my gratitude towards Jens Grabowski, who advised me very well with all the

formal requirements as a member of the thesis advisory committee.

I also extend my many thanks to the entire working group. A special thank you goes to Maria

Kosche, Tore Koß, and Paul Sarnighausen-Cahn as my future academic siblings, co-authors, and

thesis proofreaders. I am thankful for the amicable and relaxed work environment I experienced

with the previously mentioned group members and our master students Tina Ringleb, Timo Specht,

and Maximilian Winkler, who work on the same floor. Speaking of people working on the same

floor, I want to express my deepest gratitude to Henrik Brosenne, whom I closely collaborated with

in teaching, as well as Heike Jachinke and Patricia Nitzke, who were always helping us regarding

formal problems, such as traveling, room bookings, and much more, making it exceptionally

convenient to deal with.

I am very grateful to have met many co-authors and collaborators in the last couple of years. First, I

want to thank Pamela Fleischmann, Mitja Kulczynski, Dirk Nowotka, and Max Wiedenhöft from

the University of Kiel for their excellent research cooperation. Secondly, I want to thank Vijay

Ganesh and Zhengyang (John) Lu for the joint work on the Z3Str* solvers, and I am deeply grateful

that you invited me to your group in Waterloo (Canada) for a research stay. Further, I want to thank

Joel D. Day and Markus L. Schmid as regular visitors and good collaborators of our group. It is my

honor to extend my thanks to Paweł Gawrychowski, my most common co-author outside of the

working group, whose immense knowledge of algorithms and data structures is truly inspiring.

iv

I want to thank my family and friends. Let me start with Henrik Wiechers and Jonas Lueg, who

have been my good companions from my early school days to our doctoral studies. Next, I want

to mention Arvid Preuß and Niklas Stöcker, whom I am honored to call my friends since the very

early days of my childhood. Let me continue with Bakhodir Ashirmatov, Kevin Freeman, and

Christoph Rauterberg, who became my good friends during my studies in Göttingen. I want to

thank everybody else I consider a part of my circle of friends and was not explicitly mentioned.

Further, I want to give a big thank you to my parents, Elisabeth and Werner, who always supported

me in every part of my life, my brothers Michael, Ralf, and Max, as well as my sister-in-law Frida

and my lovely nephews Nils and Otto, for the good relationship and strong family bonds.

Last but not least, it is important for me to express my deepest gratitude to my partner, Linda, for

her support in many parts of my life. Ultimately, I want to thank our cats, Amy and Lilly, for letting

me write a few sentences now and then to finish this document.

iv

Contributions

In this overview, I present chronologically my contributions to articles and projects during my

doctoral studies. The articles Paper 2 [50], Paper 3 [78], Paper 6 [79], and Paper 7 [65] that make

up the chapters of this thesis were chosen based on two criteria. First and most important, the

proportion of my contribution to that project. The second criterion is the thematic connection of the

articles to each other to form a coherent story.

Paper 1

Reference: P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer. Efficiently Testing

Simon’s Congruence. In M. Bläser and B. Monmege, editors, 38th International Symposium on

Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany

(Virtual Conference), volume 187 of LIPIcs, pages 34:1–34:18. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021. doi:10.4230/LIPICS.STACS.2021.34

Description: We solved the problem of finding the largest k, for which two given words are k-Simon

congruent, in optimal linear time.

Contribution: I contributed to the design of novel data structures and their usage in our algorithms,

as well as to the general write-up of this paper.

Paper 2

Reference: J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer. The edit distance

to k-subsequence universality. In M. Bläser and B. Monmege, editors, 38th International Symposium

on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,

Germany (Virtual Conference), volume 187 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.STACS.2021.25

Description: We started to investigate for two words that are not ∼k-congruent what is the minimal

number of edit operations (edits distance) that we need to perform on the first word to obtain two

∼k-congruent words? We showed combinatoric and algorithmic results on the particular case of the

second word being a k-universal word with a compatible alphabet.

https://doi.org/10.4230/LIPICS.STACS.2021.34
https://doi.org/10.4230/LIPICS.STACS.2021.25

vi

Contribution: In this paper, I was a main contributor for developing the data structures and algo-

rithms regarding the changing of the universality index of words via the insertion and substitution

operations. Further, I presented this work at STACS 2021 in Saarbrücken (Germany) and several

workshops. A video of my talk can be found on YouTube under this URL (https://www.youtube.

com/watch?v=YkRy9WYW8EQ&ab_channel=SaarlandInformaticsCampus).

Paper 3

Reference: P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under

Hamming Distance. In 46th International Symposium on Mathematical Foundations of Computer

Science, MFCS 2021, volume 202 of LIPIcs, pages 48:1–48:24, 2021. doi:10.4230/LIPIcs.

MFCS.2021.48

Description: We provided our first generalized setting for the problem of matching patterns with

variables by allowing mismatches between the target word and the pattern (under any substitution).

The number of mismatches, known as the Hamming distance, must be either bound by an integer

given as input (decision variant) or minimal (minimization variant) to be a valid substitution. We

obtained algorithmic lower and upper bounds for various classes of patterns.

Contribution: I was a main contributor to identifying the problem described in this paper, the

design of the algorithms, and their write-up in the paper. Further, I presented this work at MFCS

2021 in Tallinn (Estonia) and several workshops.

Paper 4

Reference: M. Kosche, T. Koß, F. Manea, and S. Siemer. Absent subsequences in words. Fundam.

Informaticae, 189(3-4):199–240, 2022. doi:10.3233/FI-222159

Description: We investigated the shortest and minimal (with respect to the subsequence relation)

absent subsequences (i.e., words which are not a subsequence) in a word. This is an invited extended

version of a paper presented at RP 2021.

Contribution: I contributed to the initial stages of this paper, in defining and sketching parts of the

ideas which were later extended to the final algorithms presented there.

Paper 5

Reference: M. Kosche, T. Koß, F. Manea, and S. Siemer. Combinatorial algorithms for sub-

sequence matching: A survey. In H. Bordihn, G. Horváth, and G. Vaszil, editors, Proceedings

12th International Workshop on Non-Classical Models of Automata and Applications, NCMA

2022, Debrecen, Hungary, August 26-27, 2022, volume 367 of EPTCS, pages 11–27, 2022.

doi:10.4204/EPTCS.367.2

vi

https://www.youtube.com/watch?v=YkRy9WYW8EQ&ab_channel=SaarlandInformaticsCampus
https://www.youtube.com/watch?v=YkRy9WYW8EQ&ab_channel=SaarlandInformaticsCampus
https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.3233/FI-222159
https://doi.org/10.4204/EPTCS.367.2

vii

Description: This paper is a survey paper on our group’s results on problems related to subse-

quences.

Contribution: I contributed to this survey paper by selecting and adjusting previous results and

presenting them as part of a coherent overview of the results of our group on this topic.

Paper 6

Reference: P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under

Edit Distance. In D. Arroyuelo and B. Poblete, editors, String Processing and Information Retrieval -

29th International Symposium, SPIRE 2022, Concepción, Chile, November 8-10, 2022, Proceedings,

volume 13617 of Lecture Notes in Computer Science, pages 275–289. Springer, 2022. doi:

10.1007/978-3-031-20643-6_20

Description: This paper provided a natural follow-up to the setting from Paper 3 [78]. Instead of

only considering mismatches (single letter substitutions) between the target word and the pattern, we

extended the setting to allow for insertions and deletions of letters. The amount of these operations

(commonly known as the edit distance) to get from the target word to the input pattern (under any

substitution) must be either bound by an integer in the input (decision variant) or has to be minimal

(minimization variant) in order to be a valid substitution. We obtained algorithmic lower and upper

bounds for various classes of patterns.

Contribution: I was a main contributor to identifying the problem described in this paper, the

design of the algorithms, and their write-up in the paper. Further, I presented this work at SPIRE

2022 in Concepción (Chile) and in several workshops.

Paper 7

Reference: P. Fleischmann, S. Kim, T. Koß, F. Manea, D. Nowotka, S. Siemer, and M. Wiedenhöft.

Matching Patterns with Variables Under Simon’s Congruence. In O. Bournez, E. Formenti, and

I. Potapov, editors, Reachability Problems - 17th International Conference, RP 2023, Nice, France,

October 11-13, 2023, Proceedings, volume 14235 of Lecture Notes in Computer Science, pages

155–170. Springer, 2023. doi:10.1007/978-3-031-45286-4_12

Description: This paper combined two settings we extensively studied in the group. On the

one hand, we have Simon’s congruence, which asks for the equivalence of the respective sets of

subsequences (up to a specific length) of two words. On the other hand, we have the problem of

matching patterns with variables, which was considered in an approximate setting under string

metrics in Paper 3 [78] and Paper 6 [79]. When we combine these two concepts, we ask for a

substitution of the variables in our pattern to reach a word that is k-Simon congruent to a target

word. Contrary to the metrics, this gives us a relation that describes a similarity of the pattern (under

vii

https://doi.org/10.1007/978-3-031-20643-6_20
https://doi.org/10.1007/978-3-031-20643-6_20
https://doi.org/10.1007/978-3-031-45286-4_12

viii

a substitution) and our target word. This problem originated from a joint workshop of our group in

Göttingen and the Dependable Systems group in Kiel, where the co-authors Pamela Fleischmann

and Max Wiedenhöft proposed the problem.

Contribution: I contributed to the complexity results obtained in this paper and was a main

contributor to the NP-hardness reductions.

Paper 8

Reference: D. Adamson, M. Kosche, T. Koß, F. Manea, and S. Siemer. Longest common

subsequence with gap constraints. In A. E. Frid and R. Mercas, editors, Combinatorics on

Words - 14th International Conference, WORDS 2023, Umeå, Sweden, June 12-16, 2023, Pro-

ceedings, volume 13899 of Lecture Notes in Computer Science, pages 60–76. Springer, 2023.

doi:10.1007/978-3-031-33180-0_5

Description: We investigated the problem of computing the longest common subsequence with

gap constraints of two input words. We analyzed various settings of gap constraints and provided

efficient algorithms for computing the longest common subsequence in each. This paper was invited

to the special issue dedicated to the best papers of WORDS 2023, to appear in Theory of Computing

Systems.

Contribution: I contributed to this paper by identifying some of the discussed gap constraints

models and designing initial algorithms for all these settings. These all became parts of the final

algorithms. Further, I was a main contributor to the write-up of several sections, and I presented

this work at WORDS 2023 in Umeå (Sweden).

String-Solver at SMT-COMP 2023

Reference: S.-C. 2023. The international satisfiability modulo theories (smt) competition. URL:

https://smt-comp.github.io/2023/

Description: We develop and work on extensions and improvements for the series of string solvers

Z3S tr∗, which are branches of Microsofts SMT solver Z3. The newest iteration Z3Alpha won a

track in the section QF_Strings (Single Query Track) in the SMT competition mentioned above.

This project has yet to produce a paper, but it is planned to write papers on this topic shortly.

Contribution: I contributed to this project by identifying novel approaches and implementing and

testing these string-solving tactics within our solvers.

viii

https://doi.org/10.1007/978-3-031-33180-0_5
https://smt-comp.github.io/2023/

Abstract

In the literature dealing with patterns with variables, a word, also called string, is a sequence of

terminal letters, while a pattern is a sequence of terminal and variable letters. The problem of

deciding if there is a substitution for all the variables in a pattern, such that a target word is obtained,

is the matching problem for patterns with variables. In many problems related to the processing

of textual data, it is essential to model uncertainty in the text, such as, e.g., typos in handwritten

texts or mutations in biological data. For this reason, I introduce and present in this thesis our

proposals of several settings which model uncertainty in the context of matching patterns with

variables and a series of algorithmic and complexity theoretic results developed in these settings.

The first setting, approached in Chapter 3, is concerned with matching patterns with variables under

Hamming distance, that is, deciding if there is a substitution for all variables in a pattern, such that

a word is obtained that is not “too far” from the target word with respect to the Hamming distance.

The same problem is analyzed in Chapter 4 for the Edit distance and in Chapter 5 for a similarity

measure based on k-Simon’s congruence. The final problem in Chapter 6 is concerned with the edit

distance of a word to a k-universal word, i.e., a word which contains all possible words of length k

as subsequences.

x

x

Contents

1 Introduction 1
1.1 The original problem . 2

1.2 Motivation and related work . 2

1.3 The extended matching problem . 6

1.4 Structure of the thesis . 8

2 Preliminaries 11
2.1 General Notation . 12

2.2 Pattern classes . 12

2.3 The matching problem . 15

2.4 Hamming Distance . 16

2.5 Edit Distance . 17

2.6 Subsequences . 19

2.7 General data structures . 22

2.8 Computational Model . 24

3 Matching Patterns with Variables under Hamming Distance 25
3.1 Overview . 26

3.2 Matching Regular Patterns with Mismatches . 28

3.2.1 Efficient solutions for HDMatchReg and MinHDMatchReg 28

3.2.2 Lower Bounds for HDMatchReg and MinHDMatchReg. 33

3.3 Matching Patterns with Repeated Variables . 37

4 Matching Patterns with Variables under Edit Distance 51
4.1 Overview . 52

4.2 Matching Regular Patterns under Edit Distance 54

4.2.1 Efficient solutions for EDMatchReg and MinEDMatchReg 54

4.2.2 Lower Bounds for EDMatchReg and MinEDMatchReg 63

4.3 Matching Patterns with Repeated Variables . 63

4.3.1 Lower Bounds for Unary Pattern . 63

xii Contents

4.3.2 Solution for Unary Pattern . 68

5 Matching Patterns with Variables under Simon’s Congruence 69
5.1 Overview . 70

5.2 Complexity of MatchUniv . 71

5.2.1 MatchUniv is NP-hard . 71

5.2.2 MatchUniv is in NP . 76

5.2.3 Tractable classes of pattern in MatchUniv 79

5.3 Complexity of MatchSimon . 81

5.4 Complexity of WESimon . 83

6 The Edit Distance to k-Subsequence Universality 85
6.1 Overview . 86

6.2 Problem specific Toolbox . 88

6.2.1 Algorithms and Data Structures . 88

6.2.2 Examples . 99

6.3 Edit Distance to k-universality . 102

6.3.1 Changing the k-universality with Insertions 102

6.3.2 Changing the k-universality with Deletions 107

6.3.3 Changing the k-universality with Substitutions 111

6.4 Space Efficient Implementation . 115

6.5 Extensions on the results . 119

6.5.1 Efficient Implementation for small Alphabets 119

6.5.2 Universality Queries . 121

6.6 Considerations on the computational model . 123

7 Conclusion 129
7.1 Results Summary . 130

7.2 Open Problems and Future Work . 132

Bibliography 135

xii

CHAPTER 1

Introduction

This Chapter is divided into four sections. In the first Section 1.1, I will introduce the original

problem of matching patterns with variables, which is the central underlying concept for the topics

discussed in this thesis. Further, in Section 1.2, I will provide related work and motivation to study

the problems of matching patterns with variables and their approximate extensions. Following the

motivation, I will present an overview of the extensions of the original problem in Section 1.3,

which will be discussed in later chapters of this thesis. In the last Section 1.4, I will outline the

structure of the thesis.

2 Introduction

1.1 The original problem

A pattern with variables is a string consisting of constant or terminal letters from a finite set, the

alphabet Σ (e.g., Σ B {a, b, c}), and a potentially infinite setX, the variables (e.g., X B {x, y, x1, x2})

with Σ ∩ X = ∅. In other words, a pattern α is an element of PATΣ B (X ∪ Σ)+. A pattern α is

mapped by a morphism h : PATΣ → Σ∗, henceforth called substitution, to a word by substituting

the variables in α by arbitrary strings of terminal letters over Σ and leaving all the terminals in α

unchanged. If all the variables from α can be mapped by a substitution h so that h(α) = w, then

h is a solution for which α matches w (see Example 1.1). The following decision problem is called

the (exact) matching problem: given a pattern α and a word w, does a substitution h exist, such that

it matches α to w (h(α) = w)?

Exact Matching Problem: Match

Input: A pattern α ∈ PATΣ, a word w ∈ Σ∗.

Question: Is there a substitution h with h(α) = w?

Example 1.1. α = x1x1bbbx2x2, w = aaaabbbbb

h(x1) = aa h(α) = aaaabbbbb

h(x2) = b w = aaaabbbbb

1.2 Motivation and related work

The matching problem Match for patterns with variables appears in various theoretical and practical

areas of computer science. In particular, Match is a restricted case of the satisfiability problem for

word equations, where one is given two patterns α and β and is interested in finding a substitution

h that maps both patterns to the same word (see, e.g., [123]). Therefore, Match is a word equation

where one side is restricted to contain only terminal letters.

Word Equations:

Input: Two patterns α, β ∈ PATΣ.

Question: Is there a substitution h with h(α) = h(β)?

Example 1.2. α = ax1abx2abx1b, β = x2bax1aabbx1

h(x1) = b h(α) = abababaabbb

h(x2) = aba h(β) = abababaabbb

2

1.2. Motivation and related work 3

Patterns with variables (as a restricted case of word equations) frequently come up in the area of

combinatorics on words (e.g., unavoidable patterns [124]), stringology (e.g., generalized function

matching [9, 136]), language theory (e.g., pattern languages [10]), algorithmic learning theory

(e.g., the theory of descriptive patterns for finite sets of words [155, 10, 58]), database theory (e.g.,

document spanners [69, 67, 56, 150, 105, 151]), or extended regular expressions with backref-

erences [38, 71, 66, 70]. There are several extensions and variations of matching patterns with

variables and word equations. A prominent family of problems, that is intuitively speaking in be-

tween matching patterns and word equations, is the matching of patterns against formal languages,

e.g., regular languages [26, 27, 25, 55, 125, 111].

Moreover, the problem of solving word equations is not only central to the area of combinatorics on

words [123] and other theoretical areas but also frequently occurs in the more practical area of string

solving [7, 83]. An intuitive definition of string solving is the process of reasoning algorithmically

in logics over strings, string functions, and relations of strings. To be more precise, it describes the

process of checking the satisfiability of first-order formulas concerning a logical theory over strings.

The functions in this theory, also called constraints, include, e.g., linear arithmetic on the length of

strings, concatenation and equality of strings, language-membership (e.g., regular languages), and

many more (see Theory of Strings in [18]). The main question that is answered in string solving

is: for a formula (word equations + constraints), does a substitution exist of the variables of that

formula, such that it evaluates to true? In practical scenarios, the most common theories used to

build string-solving problems are specified using the SMT (Satisfiability Modulo Theories) standard

defined in [18]. The purpose of SMT is to provide a declarative approach not only to string solving

(theory of strings) but also for, e.g., the theory on integers, reals, and arrays [18]. These formulas

are then evaluated by SMT-solvers (also called string solvers, if they focus on the theory of strings),

of which the most prominent ones are Z3 [53], CVC4 [19], CVC5 [16] and OSTRICH [137]. In

the Listing 1.1, a word equation example is written in the standard SMT language SMT-LIB2. The

functions in the first four lines, e.g., (declare−fun X1 () String), declare string variables, e.g.,

X1 in this example. Afterwards, the two patterns A and B are defined using the equality function

(=) and the string concatenation function (str .++). A word equation is formed at the end of the

formula using the equality function to set A and B equal.

(d e c l a r e −fun X1 () S t r i n g)

(d e c l a r e −fun X2 () S t r i n g)

(d e c l a r e −fun A () S t r i n g)

(d e c l a r e −fun B () S t r i n g)

(a s s e r t (= A (s t r .++ " aab " (s t r .++ X1 " a "))))

(a s s e r t (= B (s t r .++ X2 (s t r .++ " ba " X1))))

(a s s e r t (= A B))

(check− s a t)

Listing 1.1: The word equation aabx1a = x2bax1 written in SMT-LIB2.

3

4 Introduction

In the Listing 1.2, an example formula with more complex constraints is displayed. The functions

(>=) and (str . len) are used to model a length constraint in order to make sure that X1 is larger

than two. With (str . in_re) and (str . to_re), it is made sure that X1 is in the regular language that

consists of only one word "aa". The core word equation A = B in this formula is an example of

a pattern matching problem, as B consists of only terminal letters.

(d e c l a r e −fun X1 () S t r i n g)

(d e c l a r e −fun X2 () S t r i n g)

(d e c l a r e −fun A () S t r i n g)

(a s s e r t (>= (s t r . l e n X1) 2))

(a s s e r t (s t r . i n _ r e X2 (s t r . t o _ r e " aa ")))

(a s s e r t (= A (s t r .++ X2 (s t r .++ " ba " X1))))

(a s s e r t (= B " aabbbaaa "))

(a s s e r t (= A B))

(check− s a t)

Listing 1.2: The formula |x1| ≥ 2 ∧ x2 ∈ {aa} ∧ x2bax1 = aabbbaaa written in SMT-LIB2.

The problems from our papers [78] (presented in Chapter 3) and [79] (presented in Chapter 4)

originated from the idea of adding string distance functions as an alternative to the equality function

in such SMT-formulas. It was then decided to focus first on the theoretical background of the

restricted problem of matching patterns with variables in approximate settings.

Considering string problems under string distances is natural, as most real-world string-based

data is prone to errors due to, e.g., mutations in genetic data or typos in handcrafted texts. Even

though many concepts are already from the 50’s and 60’s (Hamming distance [85] and edit distance

[121, 120]), it is a very active area of research with a long history of results as it can be seen in,

e.g., the recent papers [42, 81, 80, 161], and the references therein, as well as classical results

such as [8, 132, 114]. Many prominent stringology problems have been considered under the edit

distance, e.g., [115, 44, 24, 131, 22, 43, 41, 133]. Closer to the problems presented in this thesis,

the approximate matching problem was also considered for regular expressions, e.g., in [28, 132].

Another concept for modeling the lossy representation of strings is subsequences [159]. A string u

is a subsequence (in the literature also called scattered factor or subword) of a string w if there

exists a strictly increasing integer sequence 0 < i1 < i2 < . . . < i|u| ≤ |w| with w[i j] = u[j] for all

j ∈ [|u|]. Subsequences are also a heavily investigated topic in the area of word combinatorics,

string algorithms, and combinatorial pattern matching, and are connected to other areas of com-

puter science (see, e.g., in the Chapter Subwords by J. Sakarovitch and I. Simon of the standard

textbook [123] or the survey [107] and the references therein). In theoretical computer science,

one can often encounter subsequences and their generalizations; for instance, in logic of automata

theory, subsequences are used in the context of piecewise testability [156, 157], in particular, to

4

1.2. Motivation and related work 5

the height of piecewise testable languages [94, 95, 96], subword order [84, 113, 112], or downward

closures [167]. In combinatorics on words, many concepts were developed around the idea of

counting the occurrences of particular subsequences of a word, such as the k-binomial equivalence

[144, 68, 119, 117], subword histories [153], and Parikh matrices [130, 146]. In the area of algo-

rithms, subsequences appear, e.g., in classical problems such as the longest common subsequence

[15, 33, 36], the shortest common supersequence [126], or the string-to-string correction [163].

In the 70’s, Imre Simon initiated a line of research on subsequences that studies the set of all

subsequences of a particular word length [156]. An intriguing concept from these studies was the

relation ∼k, which is nowadays called Simon’s congruence [157, 123]. Let Sk(w) be the set of all

subsequences of a given string w up to length k ∈ N0. Two strings w1 and w2 are k-Simon congruent

(w1 ∼k w2), iff Sk(w1) = Sk(w2). Simon’s congruence, which was originally introduced to study

piecewise testable events, is now established in the study of piecewise testable languages, a special

class of regular languages with applications in learning theory, databases theory, or linguistics (see,

e.g., [96] and the references therein). More information and a broad overview of the work of Imre

Simon can be found in the two survey papers [140, 141]

Next to many interesting combinatorial properties, Simon’s congruence is a string similarity measure.

The larger the maximal k for which two words are k-Simon congruent, the more similar the two

words are [156]. For this reason, the computation of deciding for a given k whether two words are

∼k congruent, as well as the corresponding maximisation problem were the subject of a long line of

research in the combinatorial pattern matching community [87, 73, 158, 160, 49, 62]. At last, these

problems were solved in optimal linear time in [17, 76]. In recent research, an interesting algorithmic

problem was tackled in the article [104], which is related to the problem of matching patterns with

variables under Simon’s congruence [65] (Chapter 5 of this thesis). In that paper, the authors

present an efficient solution for the following problem: given two strings w, u and a natural number

k, decide whether there exists a factor w[i : j] with arbitrary i, j of w which is k-Simon congruent to

u. In a framework that uses patterns with variables under Simon’s congruence, this can be modeled

with the pattern α = x1ux2 for variables x1, x2. Therefore, it is reasonable to investigate the general

setting: given a pattern α and string w, does there exist a substitution h, such that h(α) ∼k w?

A specific congruence class defined by ∼k frequently arises in the literature: the class of k-

subsequence universal words consists of words that contain all possible k-length words over

a fixed alphabet as subsequences. The maximal k for which a word w is k-subsequence universal is

denoted by the universality index ι(w) = k. This particular class was first studied in [95, 97], and is

related to the more general problem of fixed-length universality: for a given k and alphabet Σ, is Σk

described/generated/accepted by a mechanism which describes/generates/accepts languages? Such

problems were investigated in contexts related to and motivated by formal languages, automata

theory, or combinatorics, where the notion of universality is central [17, 50, 63, 106, 2, 3, 152, 64].

In [142, 110, 77] and the references therein, the authors discuss many variants and results of the

5

6 Introduction

universality problem for various language-generating and accepting formalisms. The universality

problem was considered for words [128, 52] and partial words [45, 82] with respect to their factors.

More precisely, one is interested in finding, for a given integer ℓ, a word w over an alphabet Σ,

such that each word of length ℓ over Σ occurs exactly once as a contiguous factor of w. The De

Bruijn sequences [52] fulfill this property and have many applications in computer science or

combinatorics [45, 82]. The notion of k-subsequence universal words is going to play an important

role in proving a lower bound for matching patterns with variables under Simon’s congruence in

[65], as well as being the obvious central notion of the problem the edit distance to k-subsequence

universality from [50] (Chapter 5 and 6 from this thesis).

Coming back to the study of patterns with variables. Unfortunately, the (exact) matching problem is

in general already NP-complete [10]. Thus, all the problems based on solving the matching problem

as a subroutine inherit this intractability. One of these problems is the computation of descriptive

patterns for finite sets of words [10, 58], which is located in the area of algorithmic learning theory.

These descriptive patterns are a prominent example of a language class that can be inferred from pos-

itive data (see the survey [155] and the references therein). Further, the new approach of matching

patterns with variables in approximate settings can be used to test: given a learned language and an

input word, compute how “far” apart the word is from the language. These use cases are motivation

to identify tractable cases of the matching problem, as well as for the approximate setting. A natural

approach to this task is to consider restricted classes of patterns. A thorough analysis of the com-

plexity of the matching problem has provided several subclasses of patterns for which the matching

problem is in P when some structural parameters of patterns are bounded by constants [143, 154, 60,

61, 59, 149]. Prominent examples in this direction are patterns with a bounded number of repeated

variables, patterns with bounded scope coincidence degree [143], patterns with bounded locality [51],

or patterns with a bounded treewidth [143]. The formal definitions of these parameters are given in

Section 2.2, and corresponding efficient matching algorithms can be found in [59, 51, 143] and are

overviewed in Section 2.3 of this thesis. These numerical parameters, which describe the structure

of a class of patterns, also parameterize the complexity of the corresponding matching algorithms.

More precisely, in all cases, if the value of the parameter equals k, the matching algorithm runs in

O(nck) for some constant c, and the matching problem is W[1]-hard w.r.t. the parameter. A more gen-

eral approach from [143] introduces the notion of treewidth of patterns and shows that the matching

problem can be solved in O(n2k+4) time for patterns with bounded treewidth k. The algorithms result-

ing from this general theory are less efficient than the specialized ones, while the matching problem

remains W[1]-hard w.r.t. treewidth of patterns. For more details on this, I refer to the survey [127].

1.3 The extended matching problem

In the upcoming chapters of this thesis, I am going to discuss and present our results on an extended

setting of the matching problem for patterns with variables: given a pattern α and a word w, decide

if there exists a substitution h such that h(α) is similar to w, with respect to a similarity measure

6

1.3. The extended matching problem 7

(Hamming resp. edit distance in [78, 79], and Simon’s congruence [65], as well as a comparison to

the original problem, string equality for (exact) Match). This modification to the problem is called

(approximate) pattern matching.

The immediate natural choices for similarity measures between strings are string metrics. A smaller

distance between two strings indicates higher similarity between them. In these metric settings, one

is given a pattern α, a word w, and (in most cases) a natural number ∆. Then, it is required to decide

if there exists a (alternatively, to find the minimizing) substitution h such that D(h(α),w) ≤ ∆, where

D is a distance function (see problems below). Among the most prominent metrics on strings are

the Hamming distance and the edit distance. In Chapter 3, I will present our results where D is the

Hamming distance (published on the 46th International Symposium on Mathematical Foundations

of Computer Science) [78]. In Chapter 4, I will present our results for D being the edit distance

(published on the 29th International Symposium on String Processing and Information Retrieval)

[79]. In both chapters, the matching problem is discussed for the general setting and for structurally

restricted classes of patterns.

Approximate Matching Decision Problem under Distance D

Input: A pattern α ∈ PATΣ, a word w ∈ Σ∗, an integer ∆.

Question: Is there a substitution h with D(h(α))w ≤ ∆?

Approximate Matching Minimisation Problem under Distance D

Input: A pattern α ∈ PATΣ, a word w ∈ Σ∗.

Question: Compute h that minimizes D(h(α))w.

Other very popular measures to define similarity between two strings are the (k-)abelian equivalence

[98, 99], k-binomial equivalence [144, 68, 118] or the previously mentioned Simon’s congruence

∼k [157]. In all of these relations, a numerical parameter k indicates that two k-equivalent strings are

more similar when k is larger. In Chapter 5, I will present our results on problems related to Simon’s

congruence. The first problem involves finding a substitution h, such as h(α) ∼k w. Alternatively,

the problem of finding a substitution h to reach a target universality index k, i.e., ι(h(α)) = k is

considered. Lastly, in the case of word equations, it is examined how to find a substitution h for

two patterns α and β, such that h(α) ∼k h(β) (published at the 17th International Conference on

Reachability Problems) [65].

Matching under Simon’s Congruence: MatchSimon(α,w, k)

Input: Pattern α ∈ PATΣ, word w ∈ Σ∗, an integer k ∈ N0.

Question: Is there a substitution h with h(α) ∼k w?

7

8 Introduction

Matching a Target Universality: MatchUniv(α, k)

Input: Pattern α ∈ PATΣ, an integer k ∈ N0.

Question: Is there a substitution h with ι(h(α)) = k?

Word Equations under Simon’s Congruence: WESimon(α, β, k)

Input: Patterns α, β ∈ PATΣ, an integer k ∈ N0.

Question: Is there a substitution h with h(α) ∼k h(β)?

In all of the considered settings, it is possible to simulate the classical (exact) Match problem by

either setting the distance ∆ to zero or the k of the ∼k relation to the length of our target word w.

Therefore, all the presented results are generalizations of the Match problem. The results from

these papers are compactly summarized in Chapter 7.

1.4 Structure of the thesis

First of all, note that the core of this thesis are the Chapters 3, 4, 5 and 6, which are slightly modified

versions, but essentially unchanged core content from our published papers [78, 79, 65, 50], respec-

tively, to all of which I contributed as a co-author. In most parts, I altered some of the notations

and merged all their respective preliminaries and introductions into one section to provide a concise

presentation of all those thematically well-connected results in one thesis. At the beginning of each

Chapter, I will explicitly state the scope of my contribution to the respective publication.

In Chapter 2, I provide, in addition to the basic notations of this thesis, all necessary definitions,

data structures, and methodology used across all chapters unless explicitly stated otherwise in the

respective section.

In Chapter 3, I present our results from the paper Matching Patterns with Variables under Hamming

Distance, that was published on the 46th International Symposium on Mathematical Foundations

of Computer Science. This chapter is concerned with upper and lower complexity bounds for the

problems HDMatch and MinHDMatch for various pattern classes.

In Chapter 4, I present our results from the paper Matching Patterns with Variables under Edit

Distance, which was published on the 29th International Symposium on String Processing and

Information Retrieval. This chapter is concerned with upper and lower complexity bounds for the

problems EDMatch and MinEDMatch for various classes of pattern.

In Chapter 5, I present our results from the paper Matching Patterns with Variables under Simon’s

congruence, that was published on the 17th International Conference On Reachability Problems.

This chapter is concerned with upper and lower complexity bounds for the problems MatchSimon,

MatchUniv, and WESimon.

8

1.4. Structure of the thesis 9

In Chapter 6, I present our results from the paper The Edit Distance to k-Subsequence Universality,

that was published on the 38th International Symposium on Theoretical Aspects of Computer Science.

This chapter leaves the context of matching patterns with variables but stays in the broader context

of word-to-language distance problems. To be more precise, we studied the edit distance between a

word w and the language Lu,k of words which are ∼k-equivalent to a word u. From this general setting,

we efficiently solved the following nontrivial and well-motivated problem: given the word w and a

number k, compute the minimum number of edit operations applied to w to obtain a k-universal word

(w.r.t. the alphabet of w). An extra motivation and some individual notions regarding this problem

are introduced in the respective overview Section 6.1 to illustrate the importance of this work.

Finally, I provide a general overview of the results and concluding remarks, and an outlook on

future work and open problems in Chapter 7.

9

10 Introduction

10

CHAPTER 2

Preliminaries

The preliminaries of this thesis provide the basic notations and essential concepts that will appear

in the upcoming chapters. As the chapters are based on a series of thematically related papers, these

preliminaries consist of a slightly adapted selection of all the crucial concepts from these papers

in a compact, conflated manner. Hence, this chapter is based on the preliminaries of the following

articles:

P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under Hamming

Distance. In 46th International Symposium on Mathematical Foundations of Computer Science,

MFCS 2021, volume 202 of LIPIcs, pages 48:1–48:24, 2021. doi:10.4230/LIPIcs.MFCS.2021.

48

P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under Edit Distance.

In D. Arroyuelo and B. Poblete, editors, String Processing and Information Retrieval - 29th

International Symposium, SPIRE 2022, Concepción, Chile, November 8-10, 2022, Proceedings,

volume 13617 of Lecture Notes in Computer Science, pages 275–289. Springer, 2022. doi:

10.1007/978-3-031-20643-6_20

P. Fleischmann, S. Kim, T. Koß, F. Manea, D. Nowotka, S. Siemer, and M. Wiedenhöft. Matching

Patterns with Variables Under Simon’s Congruence. In O. Bournez, E. Formenti, and I. Potapov,

editors, Reachability Problems - 17th International Conference, RP 2023, Nice, France, October

11-13, 2023, Proceedings, volume 14235 of Lecture Notes in Computer Science, pages 155–170.

Springer, 2023. doi:10.1007/978-3-031-45286-4_12

J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer. The edit distance to k-

subsequence universality. In M. Bläser and B. Monmege, editors, 38th International Symposium on

Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany

(Virtual Conference), volume 187 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021. doi:10.4230/LIPICS.STACS.2021.25

https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.1007/978-3-031-20643-6_20
https://doi.org/10.1007/978-3-031-20643-6_20
https://doi.org/10.1007/978-3-031-45286-4_12
https://doi.org/10.4230/LIPICS.STACS.2021.25

12 Preliminaries

2.1 General Notation

Let N = {1, 2, . . .} be the set of natural numbers (integers) and N0 = N ∪ {0}. Let [n] = {1, . . . , n}

and [m : n] = [n] \ [m − 1], for m, n ∈ N, with m < n. Let Σ = [σ] be a finite alphabet of terminal

letters or symbols (in most examples the letters {a, b, . . .} or simply integers {1, 2, . . .} are used). Let

Σ∗ be the set of all words (strings, sequences) under the concatenation of letters and ε the empty

word. In an algebraic framework, the structure (Σ∗, ·, ε) is the free monoid over Σ with concatenation

· as the binary operation and ε the neutral element. The concatenation of k words w1,w2, . . . ,wk

is written Πk
i=1wi. The set Σ+ is defined as Σ∗ \ {ε}. For w ∈ Σ∗, the length of w is defined by the

number of letters of w and denoted as |w|. Further for an integer k, let Σk = {w ∈ Σ∗ | |w| = k} and

Σ≤k =
⋃k

i=0 Σ
i. The letter on position i of w, for 1 ≤ i ≤ |w|, is denoted by w[i]. For w ∈ Σ+ and

x, y, z ∈ Σ∗, the word y is called a factor of w, if w = xyz; moreover, if x = ε (respectively, z = ε),

then y is called a prefix (respectively, suffix) of w. Let w[i : j] = w[i] · · ·w[j] be the factor of w

starting on position i and ending on position j; if i > j then w[i : j] = ε. Similarly, for an array A,

A[i : j] denotes a subarray of A whose positions are indexed by the numbers in [i : j].

Let X = {x1, x2, x3, . . .} be a set of variables. The set of terminal letters Σ and the set of variables X

are disjoint Σ ∩ X = ∅. A pattern α is a word containing terminals and variables, i.e., an element of

PATΣ B (X∪ Σ)+. The set of all patterns, over all terminal-alphabets, is denoted PAT B
⋃
Σ PATΣ.

Given a word or a pattern γ, for the smallest sets (w.r.t. inclusion) B ⊆ Σ and Y ⊆ Xwith γ ∈ (B∪Y)∗,

define the set of terminal symbols in γ, denoted by alph(γ) = B, and the set of variables of γ,

denoted by var(γ) = Y . For any symbol t ∈ Σ ∪ X and α ∈ PATΣ, |α|t denotes the number of occur-

rences of t in α. For a pattern α = w0x1w1 . . .wkxk with w0,w1, . . . ,wk ∈ Σ
∗ and x1, x2, . . . , xk ∈ X,

the projection of α on the terminal alphabet Σ is denoted by term(α) = w0w1 . . .wk and the

projection on the variable alphabet as the skeleton skel(α) = x1x2 . . . xk.

A substitution of the variables from X, h : (X ∪ Σ)∗ → Σ∗, is a homomorphism that acts as the

identity on Σ and maps each variable of X to a (potentially empty) string over Σ. That is, h(a) = a

for all a ∈ Σ and h(x) ∈ Σ∗ for all x ∈ X. A pattern α matches a string w over Σ w.r.t. a binary

relation ∼ if there exists a substitution h that satisfies h(α) ∼ w.

If ∼ is the string equality =, the pattern α is said to (exactly) match the string w instead of saying

that α matches w under =. Further, if it is obvious from the context, the substitution h can be omitted

from the notion to get the shorter but less formal α ∼ w.

2.2 Pattern classes

A pattern class P is a subset of all patterns PATΣ = (X ∪ Σ)+, such that all patterns α ∈ P have

a structural property in common. Next to the more or less trivial numerical parameters, such as

counting the variables or the number of distinct variables, more involved parameters are used to

describe the structure of a pattern. One of these numerical parameters is the scope coincidence

12

2.2. Pattern classes 13

degree scd(α) of a pattern α. The two definitions of scope and coincidence are required to define

scd(α). The scope of a variable x ∈ var(α) is defined by scα(x) = [i : j], where i is the leftmost

and j the rightmost occurrence of x in α. The variables x1, . . . , xk ∈ var(α) coincide in α if⋂k
i=1 sc(xi) , ∅. Now, the scope coincidence degree of a pattern scd(α) is the maximal number k of

variables that coincide. This defines the class kSCD, where all pattern α have a bounded scd(α) ≤ k.

Further, there is a similar notion of k-bounded patterns; these are all patterns that have their treewidth

bounded by k if represented as an undirected graph that has all symbols of the pattern as nodes and

edges between consecutive symbols as well as between equal variables (for a detailed definition

see [143]). In the following examples, the scope of each variable is presented as an underline from

the leftmost to the rightmost occurrence of each variable; hence, the scope coincidence degree of

the respective pattern is intuitively given by the maximal amount of stacked lines at any position.

Another nontrivial numerical parameter of a pattern is the notion of k-locality. Let α be a pattern

with p distinct variables. A marking sequence of α is an ordering x1 < x2 < . . . < xp of all

variables that is defined on skel(α) by the following procedure: in step i mark all occurrences of

the variable xi in skel(α). A pattern α is then called k-local iff there exists a marking sequence of

x1 < x2 < . . . < xp such that, for i from 1 to p, the variables marked in the first i steps of the marking

of skel(α) form at most k non-overlapping length-maximal factors. The class of all k-local patterns

is denoted by kLOC. See [51, 39] for an extended discussion and examples regarding k-locality.

In the following, I will define particular classes of interest and how they relate. Let me start with

the class of unary patterns 1Var. A pattern is unary or a one-variable pattern if there exists one

variable x1 ∈ var(α) and additonally |var(α)| = 1. Clearly, 1Var is a subclass of 1SCD and also

of 1LOC. The Example 2.1 shows a unary pattern α1.

Example 2.1.
α1 = abcbax1x1x1abx1x1bab ∈ 1Var

Another pattern class of interest are the regular patterns Reg. A pattern α ∈ Reg is regular if it

can be written α = w0
∏M

i=1(xiwi), with wi ∈ Σ
∗ and the variables named in a canonical way; or

alternatively the pattern fulfils for all xi ∈ var(α) that |α|xi = 1. It is clear that Reg ⊂ 1LOC as every

variable scope is just its position. Furthermore, to obtain a generic marking sequence, canonically

rename the variables and mark them ascending w.r.t to their index. With this marking sequence, it is

implied that Reg ⊂ 1SCD. One of the most prominent patterns from the class of Reg is α = x1w1x2.

The matching problem for this pattern simulates the (classical) pattern matching problem of finding

a word within a text (e.g., when pressing Ctrl+F on the computer). It can be efficiently solved by

the well known Knuth-Morris-Pratt (KMP) or Rabin-Karp algorithm. The name regular pattern

stems from the fact that every variable can be substituted by an arbitrary word Σ∗; hence yielding

an equivalent regular expression, as seen for α2 in the Example 2.2.

13

14 Preliminaries

Example 2.2.

α2 = abx1cbx2aabx3bab ∈ Reg

= abΣ∗cbΣ∗aabΣ∗bab ∈ RegEx

Intuitively, when combining the two previous classes of patterns into one class of pattern, the

resulting class is called one-repeated-variable patterns 1RepVar. To be more precise, α is from

1RepVar if there exists at most one variable x1 ∈ var(α) with |α|x1 > 1 and |α|xi = 1 for i > 1.

Clearly, 1RepVar ⊃ 1Var and 1RepVar ⊃ Reg. Furthermore, for a pattern α ∈ 1RepVar the scd(α)

is at most 2. That is the case when the occurrences of the repeated variable wrap at least one other

variable. The Example 2.3 shows a pattern α3 from 1RepVar.

Example 2.3.
α3 = abx1x2abx3x1x1baab ∈ 1RepVar

An interesting problem from stringology that can be modeled with the pattern class 1RepVar is the

detection of t-repetitions (e.g., squares) in a word. The matching problem for the pattern αt−rep in

the Example 2.4 models this problem.

Example 2.4.
αt−rep = x1xt

2x3 ∈ 1RepVar

The next class to consider are the non-cross patterns NonCross. A pattern α is called non-cross

iff it can be written as the concatenation of multiple 1Var-patterns with pairwise distinct variables.

By a similar argument as in the case of Reg, the variables can be marked generically in their order

of first appearance from left to right to get that NonCross ⊂ 1LOC. Further, the variables are not

interleaved and do, therefore, not coincide, such that NonCross = 1SCD. See the Example 2.5 for

a non-cross pattern.

Example 2.5.
α4 = ax1x1 x2abx3x3x3x3bbx4 ∈ NonCross

The listing below sums up all the important relations of the introduced pattern. These relations are

important as, e.g., hardness results for matching problems on the more restricted cases immediately

imply the hardness of the more general pattern.

• 1Var ⊂ 1RepVar

• 1Var ⊂ NonCross ⊂ 1LOC

• Reg ⊂ 1RepVar

• Reg ⊂ NonCross ⊂ 1LOC

• NonCross \ 1RepVar , ∅ and 1RepVar \ NonCross , ∅ (hence they are incomparable)

14

2.3. The matching problem 15

To finish this overview of pattern classes, let me provide extra pattern to show the separation and

inclusion of these classes in Example 2.6.

Example 2.6.

α5 = abx1abx1x1baab ∈ 1Var

α6 = abx1x2abx3x1x1baab ∈ 1RepVar \ NonCross

α7 = abx1x1 x2abx3x3x3bb ∈ NonCross \ 1RepVar

α8 = abx1x1ax2abx3bba ∈ NonCross ∩ 1RepVar

2.3 The matching problem

Let α be a pattern from a class of patterns P ⊂ PATΣ = (X ∪ Σ)+ and w be a word from Σ∗. The

corresponding decision problem is called (exact) matching problem MatchP.

Exact Matching Problem for P: MatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n.

Question: Is there a substitution h with h(α) = w?

Let ∼ be a relation on two strings, e.g., a string metric or a similarity measure. If a substitution h

exists such that h(α) ∼ w, α is said to match the word w under ∼.

In the following, I will provide known results from the literature on the (exact) pattern matching

problem for a word w and a pattern α from various classes. All of these complexities are in the Word

RAM model, which will be introduced later in Section 2.8. The Theorem 2.7 is on the matching

for 1Var and is considered folklore. The target word’s length immediately implies the variable’s

length, and the substitution is obtained from the variables first occurrence. All that is left to check

is whether this is a valid substitution for all its other occurrences.

Theorem 2.7. The problem Match1Var is solvable in linear time.

Also, Theorem 2.8 on Reg is considered folklore as it greedily uses any linear time pattern matching

algorithm (e.g., KMP) to find the first occurrence of each terminal word w1, . . . ,wM from the pattern

α = w0
∏M

i=1(xiwi) in their respective order from left to right. For an algorithm see [59].

Theorem 2.8. The problem MatchReg is solvable in linear time.

One can find the results of the theorems below in the literature [59, 143, 51].

Theorem 2.9. [59] The problem Match1RepVar is solvable in quadratic time.

15

16 Preliminaries

Theorem 2.10. [59] The problem MatchkRepVar is solvable in O
(

n2k

((k−1)!)2

)
time.

Theorem 2.11. [59] The problem MatchNonCross is solvable in O (pn log n) time, where p is the

number of one-variable blocks (i.e., number of distinct variables).

Theorem 2.12. [59] The problem MatchkSCD is solvable in O
(

pn2k

((k−1)!)2

)
time, where p is the number

of repetitive-variable blocks.

Theorem 2.13. [143] The problem Matchk−bounded is solvable in O
(
n2k+4

)
time.

Theorem 2.14. [51] The problem Match1LOC is solvable in O
(
mn2logn

)
time, where m is the length

of the pattern.

Theorem 2.15. [51] The problem MatchkLOC is solvable in O
(
mkn2k+1

)
time, where m is the length

of the pattern.

2.4 Hamming Distance

Definition 2.16. For two words w1,w2 ∈ Σ
∗ with equal length (|w1| = |w2|), the Hamming distance

dHAM(w1,w2) = ∆ (∆ ∈ N0) is defined as the number of mismatches between the two words. Alterna-

tively, the Hamming distance is the amount of substitution operations needed to obtain w2 from w1.

dHAM(w1,w2) B
∣∣∣{i | w1[i] , w2[i]

}∣∣∣ , for 1 ≤ i ≤ |w1| = |w2|

The Example 2.17 illustrates the Hamming distance of two words.

Example 2.17. w1 = abbcabaa and w2 = acbcaaaa with dHAM(w1,w2) = ∆ = 2.

w1 = a b b c a b a a

↓ ↓

w2 = a c b c a a a a

One can extend the Hamming distance to a pattern α and a word w as a word-to-language distance,

defined by the smallest distance to any word from the language represented by the pattern.

dHAM(α,w) B ∆ = min{dHAM(h(α),w) | h is arbitrary substitution of α}

This definition leads directly to the definition of the minimization matching problem.

Approximate Matching Minimisation Problem for P: MinHDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n.

Question: Compute h that minimizes dHAM(h(α),w).

16

2.5. Edit Distance 17

Further, ∆ can be given in the input to describe a decision problem, which asks for the existence

of a substitution h that fulfills dHAM(h(α),w) ≤ ∆. This decision variant can generally be used as a

subroutine in combination with binary search (choice of ∆) to solve the minimization problem.

Approximate Matching Decision Problem for P: HDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n, an integer ∆ ≤ m.

Question: Is there a substitution h with h dHAM(h(α),w) ≤ ∆?

It is important to note that the length of h(α) is fixed by |w| due to the definition of Hamming

distance.

2.5 Edit Distance

Definition 2.18. For two words w1,w2 ∈ Σ
∗ with |w1| = n and |w2| = m (assume n ≥ m), the edit

distance dED(w1,w2) [121, 120] is defined as the minimal number of edit operations (insertions,

deletions, substitutions) applied to w1 to obtain w2. Let w1,w2, v1, v2 ∈ Σ
∗ and let a, b ∈ Σ.

The insertion of a letter a transforms w1 = v1v2 into w2 = v1av2, and the deletion of a letter

a transforms w1 = v1av2 into w2 = v1v2. Further, a substitution of the letter a by the letter b

transforms w1 = v1av2 into w2 = v1bv2.

The Example 2.19 shows the edit operations applied to a word to obtain a target word.

Example 2.19. Given: w1 = abbab. Three edit operations are required to obtain w2 = baaba,

hence the edit distance is ∆ = 3.

w1 = a b b a b − ↓ deletion

− b b a b − ↓ substitution

− b a a b − ↓ insertion

w2 = − b a a b a

Recall the following basic handling of the edit distance when transforming the word u into w, given

in our paper [79]. Assume that u is transformed into w by a sequence of edit operations γ (i.e.,

w is aligned to w by γ). We can assume without losing generality that the edits in γ are ordered

left to right with respect to the position of u where they are applied. Then, for each factorization

u = u1 . . . uk of u, there exists a factorization w = w1 . . .wk of w such that wi is obtained from

ui when applying the edits of γ which correspond to the positions of ui, for i ∈ {1, . . . , k}. Note

that this factorization of w is not unique: assume that the insertions applied at the beginning of u

correspond to positions of u1, the insertions applied at the end of u correspond to positions of uk, but

the insertions applied between ui−1 and ui can be split arbitrarily into two parts: when considering

them in the order in which they occur in γ (so left to right w.r.t. the positions of u where they

are applied) one can assume first to have a (possibly empty) set of insertions which correspond to

17

18 Preliminaries

positions of ui−1 and then a (possibly empty) set of insertions which correspond to positions of ui.

On the other hand, if w = w1w2, one can uniquely identify the shortest prefix u1 (respectively, the

longest prefix u′1) of u from which, when applying the edits of γ one obtains the prefix w1 of w.

The known algorithms for calculating the edit distance dED(w1,w2) of words w1,w2 are aligning

prefixes w1[1 : j] and w2[1 : ℓ] via dynamic programming based on the following recursion. To

make the recursion more readable, only the length of the prefix j (respectively ℓ) is written instead

of w1[1 : j] (respectively w2[1 : ℓ]). The base cases to this recursion are given by dED(ϵ, ℓ) = ℓ and

dED(j, ϵ) = j due to either deleting or inserting every letter.

dED(j, ℓ) = min

dED(j − 1, ℓ) + 1, w1[j] is deleted;

dED(j, ℓ − 1) + 1, w2[ℓ] is inserted;

dED(j − 1, ℓ − 1) + 1, w1[j] is substituted by w2[ℓ], if w1[j] , w2[ℓ];

dED(j − 1, ℓ − 1), w1[j] is left unchanged, if w1[j] = w2[ℓ];

The standard dynamic programming algorithm that follows from the recursion by saving dED(j, ℓ) in

a cell M[j][ℓ] of a (n × m)-matrix runs in O(n2) time. Two other algorithms prune the search space

of the recursion to relevant values depending on the distance ∆. These algorithms run in O(n∆) and

O(n + ∆2) and improve the standard algorithm as ∆ ≤ n (substituting m letters and deleting n − m

letters). In fact, the conditional fine-grained lower bound of Arturs Backurs and Piotr Indyk [13]

implies that, under standard complexity theoretic assumptions, there does not exist an algorithm

polynomially faster than the rectangular algorithm.

Theorem 2.20. Edit distance can not be computed in time O(nh∆g) where h + g = 2 − ϵ with ϵ > 0,

unless the Orthogonal Vectors Conjecture fails.

The edit distance can be extended to a pattern α and a word w as a word-to-language distance,

defined by the smallest distance to any word from the language represented by the pattern.

dED(α,w) B ∆ = min{dED(h(α),w) | h is arbitrary substitution of α}

Further, the decision and minimization matching problem can be defined in the same way as for the

Hamming distance in the previous Section 2.4.

Approximate Matching Minimisation Problem for MinEDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n.

Question: Compute h that minimizes dED(h(α),w).

18

2.6. Subsequences 19

Approximate Matching Decision Problem for EDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n, an integer ∆ ≤ m.

Question: Is there a substitution h with dED(α,w) ≤ ∆?

While in the case of Hamming distance, the length of h(α) is fixed by |w| due to the nature of the

problem, this is no longer the case under edit distance. It is, however, easy to put an upper bound on

∆ by considering the substitution that replaces all variables with the empty word. This guarantees

that ∆ ≤ max{|term(α)|, |w|} .

2.6 Subsequences

This section contains the important concepts about subsequences from our papers [65] and [50].

A word u is a subsequence of a word w if there exists a strictly increasing integer sequence 0 < i1 <

i2 < . . . < i|u| ≤ |w| with w[i j] = u[j] for all j ∈ [|u|]. If u is a subsequence of w, this is denoted by

u ⪯ w and, for a given k ∈ N0, Sk(w) = {u ∈ Σ≤k | u ⪯ w} is the set of all subsequences of w with

length at most k (see Example 2.21).

Example 2.21.
S2(abaca) = {a, b, c, aa, ab, ac, ba, bc, ca}

Two words w1,w2 ∈ Σ
∗ are called Simon k-congruent (w1 ∼k w2) if Sk(w1) = Sk(w2) [157]. Further,

if for two words w1 ∼k w2, this also implies w1 ∼ℓ w2 for 0 ≤ ℓ ≤ k (smaller subsequences are there-

fore omitted in most examples). In the Example 2.22 , the words w1 = abacab and w2 = baacabba

are Simon 2-congruent, and the words w1 and w3 = baacabbac are not Simon 2-congruent.

Example 2.22.

S2(w1) = S2(abacab) = {aa, ab, ac, ba, bb, bc, ca, cb}

S2(w2) = S2(baacabba) = {aa, ab, ac, ba, bb, bc, ca, cb}

S2(w3) = S2(baacabbac) = {aa, ab, ac, ba, bb, bc, ca, cb, cc}

S2(w1) = S2(w2)⇒ w1 ∼2 w2

S2(w1) , S2(w3)⇒ w1 /2 w3

A word w ∈ Σ∗ is called k-subsequence universal (or k-universal for short) for some k ∈ N if

Sk(w) = Σ≤k; this means that w ∼k (1 · · ·σ)k. The largest k ∈ N0, such that w is k-universal, is called

the universality index of w, denoted by ι(w). If the universality index of w has value k (ι(w) = k),

then w is also ℓ-universal for all ℓ ≤ k. Notice that k-universality is always w.r.t. a given alphabet Σ

as the word abcba is 1-universal (or just universal) for Σ = {a, b, c} but it is not universal for Σ∪ {d}.

19

20 Preliminaries

Unless explicitly stated otherwise, it is always assumed that the universality is defined w.r.t. the

alphabet of the considered word w, i.e., alph(w). The notion of k-universality coincides with the

term k-richness in some parts of the literature (e.g., [95, 96]). See the subsequences of the words

w1 = abacab and w2 = abacabc with alph(w1) = alph(w2) = {a, b, c} in Example 2.23.

Example 2.23.

S2(w1) = S2(abacab) = {aa, ab, ac, ba, bb, bc, ca, cb}

S2(w2) = S2(abacabc) = {aa, ab, ac, ba, bb, bc, ca, cb, cc}

Because S1(w1) = {a, b, c} it is clearly 1-universal but since cc < S2(w1) it is not 2-universal, hence

ι(w1) = 1. For S2(w2), one can easily verify that it is 2-universal but not 3-universal, therefore

ι(w2) = 2. The following Definition 2.24 introduces a unique factorization of words derived from

the research of Hébrard [87].

Definition 2.24. For w ∈ Σ∗ the arch factorisation of w is w = arw(1) · · · arw(k)r(w) for some

k ∈ N0 where arw(i) is universal, the last letter of arw(i), namely arw(i)[| arw(i)|], does not occur in

arw(i)[1 : | arw(i)| − 1] for all i ∈ [1 : k], and alph(r(w)) ⊂ Σ. The words arw(i) are called arches

of w, r(w) is called rest.

The Example 2.25 shows the arch factorization of the word w = abcaccccabcaba.

Example 2.25.

abc︸︷︷︸
arw(1)

| accccab︸ ︷︷ ︸
arw(2)

| cab︸︷︷︸
arw(3)

| a︸︷︷︸
r(w)

The following immediate Theorem 2.26, based on the work of Simon [157], completely characterizes

the set of k-subsequence universal words based on Hebrard’s arch factorization.

Theorem 2.26. The word w ∈ Σ∗ is k-universal if and only if there exist the words vi, with i ∈ [1 : k],

such that v1 · · · vk = w and alph(vi) = Σ for all i ∈ [1 : k].

Using Theorem 2.26, the following Theorem 2.27 shows that the arches and, therefore, the uni-

versality index of a word can be computed in linear time w.r.t. the word length (the computational

model is defined in Section 2.8).

Theorem 2.27. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. The arch

factorization, and therefore ι(w), can be computed in linear time O(n).

20

2.6. Subsequences 21

More precisely, the decomposition of w into arches w = u1 · · · uk can be computed by a greedy

approach as follows:

• u1 is the shortest prefix of w with alph(u1) = Σ, or u1 = w if there is no such prefix;

• if u1 · · · ui = w[1 : t], for some i ∈ [1 : k] and t ∈ [1 : n], compute ui+1 as the shortest prefix

of w[t + 1 : n] with alph(ui+1) = Σ, or ui+1 = w[t + 1 : n] if there is no such prefix.

In order to introduce a slightly modified version of the arch factorization used in Chapter 5, the

following notions are required. To access the first occurrence of a letter a ∈ Σ after a position

i ∈ [|w|] in a word w ∈ Σ∗, define the X-ranker as a mapping [165]:

X : Σ∗ × ([|w|] ∪ {0,∞}) × Σ→ [|w|] ∪ {∞}

with,

(w, i, a) 7→ min({ j ∈ [i + 1 : |w|] | w[j] = a} ∪ {∞}).

Notice that a lookup table for all possible X-ranker evaluations for some given w ∈ Σ∗ can be

computed in linear time in |w|, where each item can be accessed in constant time [62, 17]. In the

special case of X(w, 0, a), call this occurrence of a the signature letter a of w, for all a ∈ alph(w).

A permutation γ of an alphabet Σ is a word in Σσ with alph(γ) = Σ. Based on this new notation,

Definition 2.28 introduces an equivalent variant of the arch factorization.

Definition 2.28. The arch factorisation of a word w ∈ Σ∗ is defined as w = ar1(w) · · · ark(w)r(w)

for some k ∈ N0 such that there exists a sequence (i j) j≤k with i0 = 0, i j = max{X(w, i j−1, a) | a ∈ Σ}

for all j ≥ 1, ar j(w) = w[i j−1+1 : i j] whenever 1 ≤ i j < ∞, and r(w) = w[i j : |w|], if i j+1 = ∞.[87]

In Definition 2.29 the arches and rest as well as the universality index of w ∈ Σ∗ is specifically defined

for individual a ∈ alph(w) (cf. the arch jumping functions introduced in [152]). That is the arch

factorization and universality index for the suffix of w that starts after the first occurrence of a in w.

Definition 2.29. Let w ∈ Σ∗, a ∈ alph(w), and j ∈ [ι(w)]. The arches of signature letters are

defined by ara, j(w) = ar j(w[X(w, 0, a) + 1 : |w|]) and ra(w) = r(w[X(w, 0, a) + 1 : |w|]). The

universality index of a is ιa(w) = ι(w[X(w, 0, a) + 1 : |w|]). The last index with respect to w of

ara, j(w) is defined as arEnda, j(w) = X(w, 0, a) +
∑ j

i=1 |ara,i(w)|.

The marginal sequence of a word w is introduced in Definition 2.1. This is a breadth-first ordering

of σ parallel arch factorizations, each starting after a signature letter of the word. A marginal

sequence is used to search for the smallest substrings of w that allow the completion of the rest of

specific prefixes of w to full arches.

21

22 Preliminaries

a b c

archc

archb

archa

M1

w =

M2M0 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M∞

Figure 2.1: The marginal sequence of a word. (Figure by my co-author Sungmin Kim)

Definition 2.30. Let w ∈ Σ∗ and γ be a permutation of Σ such that X(w, 0, γ[i]) is increasing w.r.t.

i ∈ [σ]. From the arches for signature letters, the marginal sequence of integers of w ∈ Σ∗ is defined

inductively by M0(w) = 0, Mi(w) = X(w, 0, γ[i]) for all i ∈ [σ], and Miσ+ j(w) = arEndγ[j],i(w) for

j ∈ [σ], i ∈ [ιγ[j](w)]. Let M∞(w) = |w| denote the last element of the sequence.

The sequence is called marginal because, for j ∈ [σ], w[Miσ+ j−1(w) + 1 : Miσ+ j(w)] is the smallest

prefix p of w[Miσ+ j−1(w) + 1 : |w|] such that ιγ[j](w[1 : Miσ+ j−1(w)]p) = i. Note that the marginal se-

quence Mi(w) is non-decreasing. Definition 2.31 is a slight variation of the subsequence universality

signature s(w) introduced in [152].

Definition 2.31. 1. For w ∈ Σ∗, the subsequence universality signature s(w) of w is defined as

the 3-tuple (γ,K ,R) with a permutation γ of alph(w), where X(w, 0, γ[i]) > X(w, 0, γ[j])⇔ i > j

(γ consists of the letters of alph(w) in order of their first appearance in w) and two arrays K

and R of length σ with K[i] = ιγ[i](w) and R[i] = alph(rγ[i](w)) for all i ∈ [|alph(w)|]. For all

i ∈ [σ] \ alph(w), let R[i] = Σ and K[i] = −∞.

2. Conversely, for a permutation γ′ of Σ, an integer arrayK ′ and an alphabet array R′ both of length

σ, the tuple (γ′,K ′,R′) is a valid signature if there exists a word w that satisfies s(w) = (γ,′K ′,R′).

Note that, for ki = ιγ[i](w), it holds that R[i] = alph(w[Mkiσ+i(w) + 1 : M∞(w)]), since rγ[i](w) =

w[Mkiσ+i(w) + 1 : M∞(w)].

2.7 General data structures

This section will provide an overviewof the general data structures used in this thesis.

The first data structure reports the Longest Common Prefix (LCP) of two suffixes of a word. This

data structure is essential for many stringology algorithms and is important in this thesis.

Definition 2.32. Given a word w, of length n, the LCP-data structure for w can be constructed

in O(n)-time. This data structure returns for two indices i, j in O(1)-time the length of the longest

common prefix of the suffixes w[i : n] and w[j : n].

LCPw(i, j) = max{|v| | v is a prefix of both w[i : n] and w[j : n]}

22

2.7. General data structures 23

For more details see [100, 101] and the references therein. Now, given two words w1,w2, of length

n and m, one can construct in O(n + m)-time a data structure which returns in O(1)-time the value

LCP(w1[i : n],w2[j : m]), the length of the longest common prefix of the strings w1[i : n] and w2[j :

m] for all j and i. In other words, LCP(w1[i : n],w2[j : m]) = max{|v| | v is a prefix of both w1[i :

n] and w2[j : m]}. This is achieved by constructing LCPw1w2-data structures for the word w1w2, as

above, and a slightly adjusted definition.

LCP(w1[i : n],w2[j : m]) = min(LCPw1w2(i, n + j), n − i)

If one wants to consider suffixes instead of prefixes, the Longest Common Suffix (LCS) data structure

can be build analogously [100, 101]. The Example 2.33 below shows a LCP query on the word

w = banana.

Example 2.33.

w[1 : n] = banana

w[2 : n] = ana|na

w[4 : n] = ana

LCPw(2, 4) = 3

Secondly, the Interval Union-Find data structure [72, 90] is introduced in Definition 2.34.

Definition 2.34. Let V = [1 : n] and S a set with S ⊆ V. The elements of S = {s1, . . . , sp} are

called borders and are ordered 0 = s0 < s1 < . . . < sp < sp+1 = n + 1 where s0 and sp+1 are

generic borders. For each border si, V(si) = [si−1 + 1 : si] is defined as an induced interval. Now,

P(S) B {V(si) | si ∈ S } gives an ordered partition of the set V. The interval Union-Find structure

maintains the partition P(S) under the operations:

• For u ∈ V, find(u) returns si ∈ S ∪ {n + 1} such that u ∈ V(si). In other words, all elements

in the interval V(si) are represented by or have the representative si.

• For u ∈ S , union(u) updates the partition P(S) to P(S \ {u}). That is, if u = si, then replace

the intervals V(si) and V(si+1) by the single interval [si−1 + 1 : si+1] and update the partition

so that further find and union operations can be performed.

The usage of the interval Union-Find data structure will be as follows: describing the intervals stored

initially in the data structure, and then the unions are made between adjacent intervals. Further, the

find operation is adjusted so that it returns both borders of the interval containing the searched

value and additional satellite data associated with that interval. Lemma 2.35 was shown in [72, 90].

23

24 Preliminaries

Lemma 2.35. Given an Interval Union-Find data structure defined as above, the initialisation of the

structure followed by a sequence of m ∈ O(n) union and find operations can be executed in overall

O(n) time and space.

Finally, in Definition 2.36 the Range Minimum Query data structure (RMQ) [21], constructed for

an array of elements, efficiently reports the minimal element in subarrays.

Definition 2.36. Let A be an array with n elements from a well-ordered set. The range minimum

query data structure RMQA is defined for the array A: RMQA(i, j) = arg min{A[t] | t ∈ [i : j]}, for

i, j ∈ [1 : n]. That is, RMQA(i, j) is the position of the smallest element in the subarray A[i : j]; if

there are multiple positions containing this smallest element, RMQA(i, j) is the leftmost of them.

(When it is clear from the context, the subscript A is left out).

Lemma 2.37 provides the main result from [21].

Lemma 2.37. Let A be an array with n integer elements. One can preprocess A in O(n) time and

produce data structures allowing to answer in constant time range minimum queries RMQA(i, j),

for any i, j ∈ [1 : n].

2.8 Computational Model

The computational model that was used in our papers [78, 79, 65, 50] and, therefore, in the chapters

of this thesis is the standard Word RAM model with memory words of logarithmic size. This is

a standard computational model in algorithm design in which, for an input of size n, the memory

consists of memory words consisting of Θ(log n) bits. Basic operations (including arithmetic and

bitwise Boolean operations) on memory words take constant time, and any memory word can be

accessed in constant time. Numbers larger than n, with ℓ bits, are represented in Θ(ℓ/ log n) memory

words, and working with them takes time proportional to the number of memory words on which

they are represented. In most of the problems, it is assumed that a word w and a pattern α, with

|w| = n and |α| = m, are given over a terminal-alphabet Σ = {1, 2, . . . , σ}, with |Σ| = σ ≤ n + m (in

Chapter 5 a constant sized alphabet is assumed). The variables are chosen from the set {x1, . . . , xm}

and can be encoded as integers between n + 1 and n + m. These assumptions yield that all the

processed words are sequences of integers (called letters or symbols), each fitting in O(1) memory

words. This is a common assumption in string algorithms: the input is said to be over an integer

alphabet. For a more detailed general discussion on this computational model, cf. [48].

24

CHAPTER 3

Matching Patterns with Variables under Hamming Distance

and the LaTeX code of the article [74] was used to reproduce it here.

This chapter is based on article [78] (see reference below) and the LaTeX code of this article was

used to reproduce it here. The Introduction and Preliminaries of this paper are worked into Chapter

1 and Chapter 2. Further, the notations are adjusted to match the other chapters and provide a

uniform notation across this thesis.

Reference: P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under

Hamming Distance. In 46th International Symposium on Mathematical Foundations of Computer

Science, MFCS 2021, volume 202 of LIPIcs, pages 48:1–48:24, 2021. doi:10.4230/LIPIcs.

MFCS.2021.48

Description: We provided our first generalized setting for the problem of matching patterns with

variables by allowing mismatches between the target word and the pattern (under any substitution).

The number of mismatches, known as the Hamming distance, must be either bound by an integer

given as input (decision variant) or minimal to be a valid substitution (minimization variant). We

obtained algorithmic lower and upper bounds for various classes of patterns.

Contribution: I was a main contributor to identifying the problem described in this paper, the

design of the algorithms, and their write-up in the paper. Further, I presented this work at MFCS

2021 in Tallinn (Estonia) and several workshops.

https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.4230/LIPIcs.MFCS.2021.48

26 Matching Patterns with Variables under Hamming Distance

3.1 Overview

In this chapter, we extend the study of patterns which can be matched efficiently to the case of

approximate matching: we allow mismatches between the word w and the image of α under a

substitution h. More precisely, we consider two problems. In the decision problem HDMatchP we

are interested in deciding, for a given pattern α from a class P, a given word w, and a non-negative

integer ∆ whether there exists a variable-substitution h such that the word h(α) has at most ∆

mismatches to the word w; in other words, dHAM(h(α),w) ≤ ∆. Alternatively, we consider the

corresponding minimisation problem MinHDMatchP of computing dHAM(α,w) = min{dHAM(h(α),w) |

h is a substitution of the variables in α}.

With the definition of the Hamming Distance (Section 2.4) and the pattern matching problems for

families of patterns P ⊆ PAT (Section 2.2) we can give the formal problem description. In the first

problem, we allow for a certain distance ∆ between the image h(α) of α under a substitution h and

the target word w instead of searching for an exact matching.

Approximate Matching Decision Problem for P: HDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n, an integer ∆ ≤ m.

Question: Is there h with dHAM(h(α),w) ≤ ∆?

In the second problem, we are interested in finding the substitution h such that the number of

mismatches between h(α) and the target word w is minimal, over all possible choices of h.

Approximate Matching Minimisation Problem for P: MinHDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n.

Question: Compute h that minimizes dHAM(h(α),w).

Example 3.1. α = x1x1babx2x2, w = baaababbb, ∆ = 1

h(x1) = aa h(α) = aaaababbb

h(x2) = b w = baaababbb

When analysing the number of mismatches between h(α) and w we need to argue about the number

of mismatches between corresponding factors of h(α) and w, i.e., the factors occurring between

the same positions i and j in both words. To simplify the presentations, for a substitution h that

maps a pattern α to a word of the same length as w, we will call the factors h(α)[i : j] and w[i : j]

aligned under h. We omit h when it is clear from the context. Moreover, saying that we align a

factor α[i : j] to a factor w[i′ : j′] with a minimal number of mismatches, we mean that we are

26

3.1. Overview 27

looking for a substitution h such that |h(α)| = |w|, h(α[i : j]) is aligned to w[i′ : j′] under h, and the

resulting number of mismatches between h(α[i : j]) and w[i′ : j′] is minimal w.r.t. all other choices

for the substitution h.

We make some preliminary remarks. Firstly, in all the problems we consider here, we can assume

that the pattern α starts and ends with variables, i.e., α = xα′y, with α′ pattern and x and y variables.

Indeed, if this would not be the case, we could simply reduce the problems by considering them for

inputs α′ and the word w′ obtained by removing from w the prefix and suffix aligned, respectively, to

the maximal prefix of α which contains only terminals and the maximal suffix of α which contains

only terminals. Clearly, in the case of the exact-matching problem the respective prefixes (suffixes)

of w and α must match exactly, while in the case of the approximate-matching problems one needs

to account for the mismatches created by these prefixes and suffixes. So, from now on, we will work

under the assumption that the patterns we try to align to words start and end with variables.

Secondly, solving MatchP is equivalent to solving HDMatchP for ∆ = 0. Also, in a general

framework, MinHDMatchP can be solved by combining the solution of the decision problem

HDMatchP with a binary search on the value of ∆. Given that the distance between α and w

is at most n = |w|, one needs to use the solution for HDMatchP a maximum of log n times in order

to find the exact distance between α and w. Sometimes this can be done even more efficiently,

as shown in Theorem 3.5. On the other hand, solving MinHDMatchP leads directly to a solution

for HDMatchP. For that reason, some results (especially related to hardness) for the minimisation

problem follow trivially by solving the decision variant and are not explicitly mentioned.

Our Contribution. Our results are also summarized in Table 7.1 in Section 7.1. We obtained

results for the problems HDMatchP and MinHDMatchP (introduced above) for a series of classes P

of patterns for which the matching problem Match can be solved in polynomial time (see Section

2.2 and 2.3). Interestingly, for Reg we obtain matching upper and conditional lower bounds. As

regular patterns are, in fact, a particular case of regular expressions, it is worth mentioning that, due

to the rectangular conditional lower bounds from [12] on exact regular expression matching, it is not

to be expected that the general case of matching regular-expressions under Hamming distance can

be solved as efficiently as the case of regular patterns. Regarding patterns with repeated variables,

we note that while in the case when the number of repeated variables, the scope coincidence

degree, or the treewidth was bounded by a constant, polynomial-time algorithms for the exact

matching problem were obtained. This does not hold in our approximate setting, unless P=NP.

Only the locality measure has the same behaviour as in the case of exact matching: HDMatchkLOC
and MinHDMatchkLOC can still be solved in polynomial time for constant k. In the simpler case of

1RepVar-patterns, the locality corresponds to the number of x-blocks, so, if this is bounded by a

constant, the two problems we consider can be solved in polynomial time. Our upper and lower

bounds for patterns with repeated variables are based on a connection to the Median String and

Consensus Patterns problems [122, 57, 29, 37].

27

28 Matching Patterns with Variables under Hamming Distance

3.2 Matching Regular Patterns with Mismatches

In this section we consider HDMatchReg and MinHDMatchReg.

As a reminder, a pattern α is regular if α = w0
∏M

i=1(xiwi), with wi ∈ Σ
∗. The class of regular patterns

is denoted by Reg (for more details see Section 2.2). For example, the pattern α0 = abxabyzbaab,

with var(α) = {x, y, z} is in Reg.

As mentioned already, a solution for HDMatchReg with distance ∆ = 0 is a solution to MatchReg.

The latter problem can be solved in O(n) by a greedy approach, as shown in Section 2.3. As noted

in the previous Section 3.1, we can assume that w0 = wM = ε, so α = (
∏M−1

i=1 xiwi)xM. Thus, we

identify the last occurrence w[ℓ+1 : ℓ+ |wM−1|] of wM−1 in w, assign the string w[ℓ+ |wM−1|+1 : n]

to xM, and then recursively match the pattern α = (
∏M−2

i=1 xiwi)xM−1 to w[1 : ℓ].

In the following, we propose a solution for MinHDMatchReg which generalizes this approach.

Further, we will show a matching lower bound for any algorithm solving MinHDMatchReg.

3.2.1 Efficient solutions for HDMatchReg and MinHDMatchReg

An equivalent formulation of MinHDMatchReg is to find factors w[ℓi+1 : ℓi+|wi|], with 1 ≤ i ≤ M−1,

such that
∑M−1

i=1 dHAM(wi,w[ℓi+1 : ℓi+|wi|]) is minimal and ℓi+|wi|+1 ≤ ℓi+1, for all i ∈ {1, . . . ,M−2}.

In other words, we want to find the M − 1 factors w[ℓi + 1 : ℓi + |wi|], with i from 1 to M − 1, such

that these factors occur one after the other without overlapping in w, they correspond (in order,

from left to right) to the words wi, for i from 1 to M − 1, and the total sum of mismatches between

w[ℓi + 1 : ℓi + |wi|] and wi, added up for i from 1 to M − 1, is minimal.

To approach this problem we need the following data-structures-preliminaries.

Given a word w, of length n, we can construct in O(n)-time longest common suffix-data structures

which allow us to return in O(1)-time the value LCS w(i, j) = max{|v| | v is a suffix of both w[1 :

i] and w[1 : j]}. See the LCP data structure 2.7 or [100, 101] and the references therein. Given a

word w, of length n, and a word u, of length m, we can construct in O(n + m)-time data structures

which allow us to return in O(1)-time the value LCS w,u(i, j) = max{|v| | v is a suffix of both w[1 :

i] and u[1 : j]}. This is achieved by constructing LCS w-data structures for wu, as above, and noting

that LCS w,u(i, j) = min(LCS w(i, n + j), j).

The following two lemmas are based on the data structures defined above and the technique called

kangaroo-jump [114].

Lemma 3.2. Let w and u, with |w| = |u| = n, be two words and δ a non-negative integer. Assume

that, in a preprocessing phase, we have constructed LCS w,u-data structures. We can compute

min(δ + 1, dHAM(u,w)) using δ + 1 LCS w,u queries, so in O(δ) time.

28

3.2. Matching Regular Patterns with Mismatches 29

Proof. Let a = b = m and d = 0. While a > 0 and d ≤ δ execute the following steps. Compute

h = LCS w,u(a, b). If h < b, then increment d by 1, set a← a − h − 1 and b← b − h − 1, and start

another iteration of the while-loop. If h = b, then set b← 0 and exit the while-loop.

It is not hard to note that before each iteration of the while loop it holds that d = dHAM(w[a + 1 :

m], u[b + 1 : m]). When the while loop is finished, d = min(dHAM(w[i − m + 1 : i], u[1 : m]), δ + 1).

In each iteration we first identify the length h of the longest common suffix of w[1 : a] and u[1 : b].

Then, we jump over this suffix, as it causes no mismatches, and have either traversed completely the

words w and u (and we do not need to do anything more), or we have reached a mismatch between

w and u, on position a − h = b − h. In the latter case, we count this mismatch, jump over it, and

repeat the process (but only if the number of mismatches is still at most δ). So, in other words, we

go through the mismatches of w and u, from right to left, and jump from one to the next one using

LCS w,u queries. If we have more than δ mismatches, we do not count all of them, but stop as soon

as we have met the (δ + 1)th mismatch. Accordingly, the algorithm is correct. Clearly, we only

need δ + 1 LCS w,u-queries and the time complexity of this algorithm is O(δ), once the LCS w,u-data

structures are constructed. □

Lemma 3.3. Given a word w, with |w| = n, a word u, with |u| = m < n, and a non-negative

integer δ, we can compute in O(nδ) time the array D[m : n] with n − m + 1 elements, where

D[i] = min(δ + 1, dHAM(w[i − m + 1 : i], u)).

Proof. We first construct, in linear time, the LCS w,u-data structures for the input words. Note that

the LCS w,u-data structure can be directly used as LCS w[i:i+m−1],u data structure, for all i ≤ n−m+ 1.

Then, for each position i of w, with i ≤ m, we use Lemma 3.2 to compute, in O(δ) time the value

d = min(dHAM(u,w[i − m + 1 : i]), δ + 1). We then set D[i]← d. By the correctness of Lemma 3.2,

we get the correctness of this algorithm. Clearly, its time complexity is O(nδ). □

The following result is the main technical tool of this section.

Theorem 3.4. HDMatchReg can be solved in O(n∆) time. For an accepted instance w, α,∆ of

HDMatchReg we also compute dHAM(α,w) (which is upper bounded by ∆).

Proof. Assume α =
∏M−1

i=1 (xiwi)xM and let αℓ =
∏M−1

i=ℓ (xiwi)xM, for ℓ ∈ {1, . . . ,M − 1}.

A first observation is that the problem can be solved in a standard way by dynamic programming in

O(nm) time.

29

30 Matching Patterns with Variables under Hamming Distance

We only give the main idea behind this approach. We can compute the minimum number of

mismatches T [i][j] which can be obtained when aligning the suffix of length i of w to the suffix

of length j of α, for all i ≤ n and j ≤ m. Clearly, T [i][j] can be computed based on the values

T [i + 1][j + 1] and, if α[j] is a variable, T [i + 1][j]. The full technicalities of this standard approach

are easy to obtain so we do not go into further details.

We present a more efficient approach below.

Our efficient algorithm starts with a preprocessing phase, in which we compute LCS w,u-data

structures, where u =
∏M−1

i=ℓ wi. This allows us to retrieve in constant time answers to LCS w,wi-

queries, for 1 ≤ i ≤ M − 1.

In the main phase of our algorithm, we compute an (M − 1) × ∆ matrix S u f [·][·], where, for

ℓ ≤ M − 1 and d ≤ ∆, we have S u f [ℓ][d] = g if and only if w[g..n] is the shortest suffix of w with

dHAM(αℓ,w[g : n]) ≤ d.

Once more, we note that the elements of S u f [·][·] can be computed by a relatively straightforward

dynamic programming approach in O(nM∆) time. But, the strategy we present here is more efficient

than that.

In our algorithm, we first use Lemma 3.3 to compute S u f [M − 1][·] in O(n∆) time. We simply run

the algorithm of that lemma on the input strings w and wM−1 and the integer ∆. We obtain an array

D[·], where D[i] = min(∆+1, dHAM(w[i− |wM−1|+1 : i],wM−1)). We now go with j from |wM−1| to n

and, if D[j] ≤ ∆, we set S u f [M − 1][D[j]] = j− |wM−1|+ 1. It is clear that h = S u f [M − 1][d] will

be the starting position of the shortest suffix w[h : n] of w such that dHAM(wM−1xM,w[h : n]) ≤ d.

Thus, S u f [M − 1][·] was correctly computed, and the time needed to do so is O(n∆).

Further, we describe how to compute S u f [ℓ][·] efficiently, based on S u f [ℓ + 1][·] (for ℓ from M − 2

down to 1). We use the following approach. We go through the positions i of w from right to left

and maintain a queue Q. When i is considered, Q stores all elements d such that S u f [ℓ][d] was not

computed yet until reaching that position, but i < S u f [ℓ + 1][d]. Accordingly, the fact that d is in Q

means that with a suitable alignment of wℓ ending on position i, we could actually find an alignment

with ≤ d mismatches of αℓ with w[i − |wℓ| + 1 : n]: when Q contains d, . . . , d − t, for some t ≥ 0, an

alignment of wℓ to w[i−|wℓ|+1 : i] with ≤ t mismatches would lead to an alignment of αℓ with w[i−

|wℓ|+1 : n] with ≤ d mismatches by extending the alignment of αℓ+1 to w[S u f [ℓ+1][d− t] : n]. The

values d present in Q at some point are ordered increasingly (the older values are larger), the array

S u f [ℓ+1][·] is also monotonically increasing, and, as S u f [ℓ][d] cannot be set before S u f [ℓ][d′], for

any d and d′ such that d′ < d, the queue Q is actually an interval of integers [new : old], where new

is the newest element of Q, and old the oldest one. When we consider position i of the word, if the

alignment of wℓ ending on position i causes t mismatches, then to be able to set a value S u f [ℓ][d],

with d ∈ Q, we need to have that S u f [ℓ + 1][d − t] > i. As S u f [ℓ + 1][d] > S u f [ℓ + 1][d − t] and

d ∈ Q, this means that d − t ∈ Q, so the number of mismatches t must be strictly upper bounded by

30

3.2. Matching Regular Patterns with Mismatches 31

|Q|, in order to be useful. Accordingly, when considering position i, we compute the number t ←

min{dHAM(wℓ,w[i− |wℓ|+1 : i]), |Q|}, and if t < |Q| we set S u f [ℓ][d]← i− |wℓ|+1 for all d such that

d − t ∈ Q; we also eliminate all these elements d from the queue. Before considering a new position

i, we check if i = S u f [ℓ+1][new−1], and, if yes, we insert new−1 in Q and update new← new−1.

This computation of S u f [ℓ][·] is implemented in the following algorithm:

1. Initialization: We maintain a queue Q, which initially contains only the ∆.

Let new← ∆ (this is the top element of the queue).

2. Iteration: i← S u f [ℓ + 1][∆] − 1 while i ≥ |wℓ| we execute the steps a, b, and c:

(a) Using Lemma 3.2 we compute t ← min(dHAM(wl,w[i − |wℓ| + 1 : i]), |Q|).

(b) If t < |Q|, we remove from Q all elements d, such that d − t ≥ new, and set, for each

of them, S u f [ℓ][d] ← i − |wℓ| + 1. Keep a pointer on the smallest d denoted dmin. If

Q is empty continue with (c), otherwise continue with (d).

(c) If S u f [ℓ + 1][dmin] , 0 then insert dmin in Q and set i ← S u f [ℓ + 1][dmin]. Else set

i← 0 and exit the loop. Go to (e).

(d) If S u f [ℓ + 1][top − 1] = i then we insert top − 1 in Q and top ← top − 1. Else, if

S u f [ℓ + 1][top − 1] = 0 then set i← 0 and exit the loop.

(e) Decrement i − −

3. Filling-in the remaining positions: Set all the positions of S u f [ℓ][·] which were not filled

during the above while-loop to 0.

The matrix S u f [·][·] is computed correctly by the above algorithm, as it can be shown by the

following inductive argument.

To show that S u f [ℓ][·] is computed correctly by our algorithm, under the assumption that S u f [ℓ +

1][·] was correctly computed, we make several observations.

Firstly, it is clear that S u f [ℓ + 1][d] ≤ S u f [ℓ + 1][d + 1]. Secondly, when computed correctly,

S u f [ℓ][d] should be the rightmost position g of w such that dHAM(w[g : n],wℓ) = t ≤ d and

S u f [ℓ + 1][d − t] ≥ g + |wℓ|. Clearly, if S u f [ℓ][d + 1] , 0, then S u f [ℓ][d] < S u f [ℓ][d + 1].

Regarding the algorithm described in the main part of the Chapter, it is important to observe that

the queue Q is ordered increasingly (i.e., the newer is an element in Q, the smaller it is) and the

elements of Q form an interval [new : old].

Now, let us show the correctness of the algorithm.

Let d be a non-negative integer, d ≤ ∆. Assume that our algorithm sets S u f [ℓ][d] = g, with g > 0.

31

32 Matching Patterns with Variables under Hamming Distance

This means that d was removed from the queue in step 2.b when the for-loop was executed for

i = g + |wℓ| − 1. The reason for this removal was that dHAM(w[g : g + |wℓ| − 1],wℓ) = t ≤ |Q| − 1.

Hence, in this step we have removed exactly those elements δ such that new ≤ δ − t. Accordingly,

we also have that new ≤ d − t holds. Let g′ = S u f [ℓ + 1][new]. We thus have g′ > i = g + |wℓ| − 1,

dHAM(αℓ+1,w[g′ : n]) ≤ new, and dHAM(wℓxℓ,w[g : g′ − 1]) = t. Putting this all together, we get that

dHAM(αℓ,w[g : n]) ≤ new + t ≤ d.

Now, assume for the sake of a contradiction, that there exists g′′ > g such that dHAM(αℓ,w[g′′ :

n]) ≤ d, i.e., w[g : n] is not the shortest suffix s of w such that dHAM(αℓ, s) ≤ d. In this case, there

exists d′′ such that g′′ + |wℓ| − 1 < S u f [ℓ + 1][d′′] and d′′ + dHAM(w[g′′ : g′′ + |wℓ| − 1],wℓ) ≤ d.

Because d is in Q when i = g + |wℓ| − 1 is reached in the for-loop, then d must also be in Q when

i′′ = g′′ + |wℓ| − 1 is reached in the for-loop, because i < i′′ < S u f [ℓ + 1][d′′] ≤ S u f [ℓ + 1][d]. In

fact, as S u f [ℓ+1][d] ≥ S u f [ℓ+1][d′′] > i′′, it follows that d′′ must also be in Q when i′′ is reached.

Thus, q ≥ d − d′′ and, as we have seen above, d − d′′ ≥ dHAM(w[g′′ : g′′ + |wℓ| − 1],wℓ). Moreover,

if new′′ is the element on the top of the queue when i′′ is reached, we have that new′′ ≤ d′′. Hence,

new′′ + dHAM(w[g′′ : g′′ + |wℓ| − 1],wℓ) ≤ d′′ + dHAM(w[g′′ : g′′ + |wℓ| − 1],wℓ) ≤ d. Therefore, when

i′′ was reached, all the conditions needed to remove d from Q and set S u f [ℓ][d]← g′′ were met.

We have reached a contradiction with our assumption that g′′ > g.

In conclusion, if our algorithm sets S u f [ℓ][d] = g, with g > 0, then w[g : n] is the shortest suffix

of w such that dHAM(w[g : n],wℓ) ≤ d. By an analogous argument as the one used above in our proof

by contradiction, we can show that if our algorithm sets S u f [ℓ][d] = 0 then there does not exist

any suffix w[g : n] of w such that dHAM(w[g : n],wℓ) ≤ d.

This means that our algorithm computing S u f [·][·] is correct.

To finalize the proof of the theorem, we note that, after computing the entire matrix S u f [·][·], we can

accept the instance w, α,∆ of HDMatchReg if and only if there exists d ≤ ∆ such that S u f [1][d] , 0.

Moreover, dHAM(α,w) = min({d | S u f [1][d] , 0} ∪ {+∞}).

In the following we show that this algorithm works in O(n∆) time. We will compute the complexity

of this algorithm using amortized analysis. Firstly, we observe that the complexity of the algorithm

is proportional to the total number of LCS w,wℓ-queries we compute in step 2.a, for each ℓ ≤ M

or, in other words, over all executions of the algorithm. Now, we observe that when position i

of w is considered (for a certain ℓ), we do |Q| many LCS w,wℓ-queries. So, this means that we

do one query per each current element of Q (and none if |Q| = 0). Thus, the number of queries

corresponding to each pair (ℓ, d) which appears in Q at some point equals the number of positions

considered between the step when it was inserted in Q and the step when it was removed from

Q. This means O(S u f [ℓ + 1][d] − S u f [ℓ][d]) queries corresponding to (ℓ, d). Summing this up

for a fixed d and ℓ from 1 to M − 2 we obtain that the overall number of queries corresponding

32

3.2. Matching Regular Patterns with Mismatches 33

to a fixed δ is O(S u f [M − 1][d]) = O(n). Adding this up for all d ≤ ∆, we obtain that the number

of LCS -queries performed in our algorithm is O(n∆). So, together with the complexity of the

initialization of S u f [M − 1][·], the complexity of this algorithm is O(n∆).

This algorithm outperforms the other two algorithms solving MinHDMatchReg which we mentioned,

and, for ∆ = 0, it is a reformulation of the greedy algorithm solving MatchReg. □

Now it is not hard to show the following result by exponential search.

Theorem 3.5. MinHDMatchReg can be solved in O(nΦ) time, where Φ = dHAM(α,w).

Proof. We use the algorithm of Theorem 3.4 for ∆ = 2i, for increasing values of i starting with 1 and

repeating until the algorithm returns a positive answer and computes Φ = dHAM(α,w). The algorithm

is clearly correct. Moreover, the value of i which was considered last is such that 2i−1 < Φ ≤ 2i. So

i = ⌈log2Φ⌉, and the total complexity of our algorithm is O(n
∑⌈log2 Φ⌉

i=1 2i) = O(nΦ). □

3.2.2 Lower Bounds for HDMatchReg and MinHDMatchReg.

In order to show that MinHDMatchReg and HDMatchReg cannot be solved by algorithms running

polynomially faster than the algorithms from Theorems 3.4 and 3.5, we will reduce the Orthogonal

Vectors problem OV [32] to HDMatchReg. The overall structure of our reduction is similar to the one

used for establishing hardness of computing edit distance [13, 35] or LCS [36], however we needed

to construct gadgets specific to our problem. We recall the OV problem.

Orthogonal Vectors: OV

Input: Two sets U,V consisting each of n vectors from {0, 1}d, where d ∈ ω(log n).

Question: Do vectors u ∈ U, v ∈ V exist, such that u and v are orthogonal, i.e., for all 1 ≤ k ≤ d,

v[k]u[k] = 0 holds?

In general, for a vector u = (u[1], . . . , u[d]) ∈ {0, 1}d, the bits u[i] are called coordinates. It is clear

that, for input sets U and V as in the above definition, one can solve OV trivially in O(n2d) time. The

following conditional lower bound is known for OV.

Lemma 3.6 (OV-Conjecture). OV can not be solved in O(n2−ϵdc) for any ϵ > 0 and constant c,

unless the Strong Exponential Time Hypothesis (SETH) fails.

See [32, 166] and the references therein for a detailed discussion regarding conditional lower bounds

related to OV. In this context, we can show the following result.

Theorem 3.7. HDMatchReg can not be solved in O(|w|h∆g) time (or in O(|w|h|α|g) time) with h + g =

2 − ϵ for some ϵ > 0, unless the OV-Conjecture fails.

33

34 Matching Patterns with Variables under Hamming Distance

Proof. We reduce OV to MinHDMatchReg. For this, we consider an instance of OV: U = {u1, . . . , un}

and V = {v1, . . . , vn}, with U,V ⊂ {0, 1}d. We transform this OV-instance into a HDMatchReg-

instance (α,w,∆), where ∆ = n(d + 1) − 1. More precisely, we ensure that for the respective

HDMatchReg-instance, there exists a way to replace the variables with strings leading to exactly

n(d + 1) mismatches between the image of α and w if and only if no two vectors ui and v j are

orthogonal. But, if there exists at least one orthogonal pair of vectors ui and v j, there also exists

a way to replace the variables of α such that the resulting string has strictly less than n(d + 1)

mismatches to w. Both |w| and |α| are in O(nd), and can be built in O(nd) time. The reduction

consists of three main steps. First we will present a gadget for encoding the single coordinates

of vectors ui and vi from U and V , respectively. Then we will show another gadget to encode a

full vector of each respective set. And, finally, we will show how to assemble these gadgets of the

vectors from set U into the word w and from V into α.

First gadget. Let ui = (ui[1], ui[2], . . . , ui[d]) ∈ U, v j = (v j[1], v j[2], . . . , v j[d]) ∈ V and let k be a

position of these vectors. We define the following gadgets:

A′(ik) =

001, if ui[k] = 0.

100, if ui[k] = 1.
B′(jk) =

000, if v j[k] = 0.

011, if v j[k] = 1.

Note that, when aligned, the pair of strings (A′(ik), B′(jk)) produces exactly one mismatch if and

only if ui[k] · v j[k] = 0; otherwise it produces three mismatches. So, A′(ik) and B′(jk) encode the

single coordinates of ui and v j respectively.

Further, we construct a gadget X′ = 010 that produces always one mismatch if aligned to any of the

strings B′(jk) corresponding to coordinates v j[k]. See also Figure 3.1.

001A′(ik) = 0

100A′(ik) = 1

000 B′(jk) = 0

011 B′(jk) = 1

010 X′

1

1 1
3

1
1

Figure 3.1: Gadgets for the encoding of single coordinates of the vectors. On each edge we wrote
the number of mismatches between the strings in the nodes connected by that edge.

Second gadget. The gadget A(i) encodes the vector ui, for 1 ≤ i ≤ n, while the gadget B(j) encodes

the vector v j, for 1 ≤ j ≤ n. We construct these gadgets such that aligning B(j) to A(i) with a

minimum number of mismatches yields exactly d mismatches, if the two corresponding vectors are

orthogonal, and exactly d + 1 mismatches, otherwise. Moreover, we show that any other alignment

of the gadgets B(j) with other factors of w yields more mismatches.

34

3.2. Matching Regular Patterns with Mismatches 35

In order to assemble the gadgets A(i) and B(j), for 1 ≤ i, j ≤ n, we extend the terminal alphabet

by three new symbols {a, b, #}, as well as use two fresh variables x j, y j for each vector v j. The

gadgets A(i), for all i, and, respectively, the gadgets B(j), for all j, consist of the concatenation of the

coordinate gadgets A′(ik) and, respectively, B′(jk) from left to right, in ascending order of k. Each

two such consecutive gadgets A′(ik) and A′(ik+1) (respectively, B′(jk) and B′(jk+1)) are separated by
###. We prepend to A(i) the string bba and append the string bbbX, where X = (X′###)d−1X′. In the

case of B(j), we prepend x jbba and append y j. The full gadgets A(i) and B(j) are defined as follows.

• A(i) = bbaA′(i1)###A′(i2)### . . . A′(id)bbbX

• B(j) = x jbbaB′(j1)###B′(j2)### . . . B′(jd)y j.

For simplicity of the exposure, let B′(j) = bbaB′(j1)###B′(j2)### . . . ###B′(jd).

Note that |A(i)| is the same for all i, so we can define M = |A(i)|.

Final assemblage. To define the word w, we use a new terminal $. The word w is:

• w = $MA(1)$MA(2)$M . . . A(n)$MA(1)$MA(2) . . . $MA(n)$M

To define α, we use two new fresh variables x and y. The pattern α is:

• α = x$M B(1)$M B(2)$M . . . $M B(n)$My.

The correctness of the reduction. We show that there exists a way to align α with w with < n(d+1)

mismatches if and only if a pair of orthogonal vectors ui ∈ U and v j ∈ V exists. Otherwise, there

exists an alignment of α to w with exactly n(d + 1) mismatches.

To formally prove that the reduction fulfills this requirement, we proceed as follows.

A general idea: the repetition of the gadgets A(i) in the word w guarantees that, if needed, a pair

of gadgets A(i) and B(j), corresponding to the vectors ui ∈ U and, respectively, v j ∈ V , can be

aligned. More precisely, we can align B′(j) to bbaA′(i1)### . . . A′(id). The variables x, y and x j, y j,

for j ∈ {1, . . . , n}, act as spacers: they allow us to align a string B′(j) to the desired factor of w.

This kind of alignment is enough for our purposes, as we only need to find one orthogonal pair of

vectors, not all of them; however, we need enough space in w for the factors of α occurring before

and after B′(j), thus the repetition of the A(i) gadgets.

We now analyse how a factor B′(j) can be aligned to a factor of w. The main idea is to show that

if there are no orthogonal vectors, then any alignment of B′(j) to a factor of w creates at least d + 1

mismatches. Otherwise, we can align it with d mismatches only.

35

36 Matching Patterns with Variables under Hamming Distance

Case 1: B′(j) is aligned to a factor w[i : h] of w which starts with $. Then the prefix bba of B′(j)

causes at least two mismatches, as the first b in bba is aligned to a $ letter, while the a is aligned to ei-

ther a b letter (from a bba factor) or a $ letter. The rest of B′(j) causes, overall, at least d mismatches,

one per each group B′(jk). So, in this case, we have at least d + 2 mismatches caused by B′(j).

Case 2: B′(j) is aligned a factor w[i : h] of w which ends with $. Then, its prefix bba cannot be

aligned to a factor bba of w. So, the a of the prefix bba of B′(j) produces one mismatch, while the

suffix B′(jd) causes at least 2 mismatches. The rest of B′(j) causes at least d − 1 mismatches, one

per each remaining group B′(jk). So, in this case, we have again at least d + 2 mismatches caused

by B′(j).

Case 3: B′(j) is aligned exactly to the factor bbaA′(i1)### . . . A′(id) and ui and v j are orthogonal,

then B′(j) causes exactly d mismatches.

Case 4: B′(j) is aligned exactly to the factor bbaA′(i1)### . . . A′(id) and ui and v j are not orthogonal,

then B′(j) causes at least d + 2 mismatches.

Case 5: B′(j) is aligned exactly to the factor bbbX, then B′(j) causes d + 1 mismatches.

Case 6: B′(j) is aligned to a factor starting strictly inside bbaA′(i1)### . . . A′(id), then the prefix

bba of B′(j) cannot be aligned to a factor bba of w, so it causes at least two mismatches (from the

alignment of ba). The rest of B′(j) causes at least d mismatches, one per each group B′(jk). So,

overall, B′(j) causes at least d + 2 mismatches in this case.

To ease the understanding, cases 3 and 4 are illustrated in the following table: when aligning A(i)

to B(j), to obtain the desired number of mismatches, we can match the parts of A(i) to the parts

of B(j) as described in this table in the two cases 3. and 4.

Gadget I II III IV mismatches

A(i) = ε bbaA′(i1)###. . .###A′(id) bbbX′ ###. . .###X′ ε

3. B(j) = x j bbaB′(j1)###. . .###B′(jd) y j ε d (in II)

4. B(j) = ε x j bbaB′(j1)###. . .###B′(jd) y j d + 1 (in IV)

Wrapping up, there are no other ways than those described in cases 1-6 above in which B′(j) can

be aligned to a factor of w. In particular, in order to reach an alignment with at most n(d + 1) − 1

mismatches, at least one B′(j) should be aligned to a factor of w such that it only causes d mis-

matches (as in case 3). Thus, in that case we would have a pair of orthogonal vectors. Conversely,

if there exist ui and v j which are orthogonal and i ≥ j, then we can align B′(j) to the occurrence of

bbaA′(i1)### . . . A′(id) from the first A(i) and all the other gadgets B′(ℓ) to factors bbbX, and obtain

a number of n(d + 1) − 1 mismatches. Note that such an alignment is possible as there exist at least

j − 1 factors bbbX before the first A(i) and at least n more occurrences of bbbX after it; moreover

the variables xℓ and yℓ can be used to align as desired the strings B′(vℓ) to the respective bbbX

factors of w. If there exist ui and v j which are orthogonal and i < j, then we can align B′(j) to the

36

3.3. Matching Patterns with Repeated Variables 37

occurrence of bbaA′(i1)###A′(i2)### . . . A′(id) from the second A(i) and all the other gadgets B′(ℓ)

to factors bbbX, and obtain again a number of n(d + 1) − 1 mismatches. This is possible for similar

reasons to the ones described above.

This shows that our reduction is correct. The instance of OV defined by U and V contains two

orthogonal vectors if and only the instance of HDMatchReg defined by w, α, and ∆ = n(d + 1) − 1

can be answered positively. Moreover, the instance of HDMatchReg can be constructed in O(nd)

time and we have that |w|, |α|,∆ ∈ Θ(nd).

Assume now that there exists a solution of HDMatchReg running in O(|w|g|α|h) with g + h = 2 − ϵ

for some ϵ < 0. This would lead to a solution for OV running in O(nd + (nd)2−ϵ), a contradiction

to the OV-conjecture. Similarly, if there exists a solution of HDMatchReg running in O(|w|g∆h) with

g + h = 2 − ϵ for some ϵ < 0, then there exists a solution for OV running in O(nd + (nd)2−ϵ), a

contradiction to the OV-conjecture. This proves our statement. □

Remark 3.8. An immediate consequence of the previous theorem is that MinHDMatchReg can not be

solved in O(nhdHAM(α,w)g) time (or in O(|w|h|α|g) time) with h+ g = 2− ϵ for some ϵ > 0, unless the

OV-Conjecture fails. Thus, as dHAM(α,w) ≤ |α|, MinHDMatchReg and HDMatchReg cannot be solved

polynomially faster than our algorithms, unless the OV-Conjecture fails.

3.3 Matching Patterns with Repeated Variables

In Section 3.2 we have shown that if no variable occurs more than once in the input pattern α, then

the problems HDMatch and MinHDMatch can be solved in polynomial time. Let us now consider

patterns where variables are allowed to occur more than once, i.e., patterns with repeated variables.

To recall pattern classes and their properties and relations, a detailed discussion can be found in the

Sections 2.2 and 2.3.

If α is a pattern and x ∈ var(α), then an x-block is a factor α[i : j] such that α[i : j] ∈ 1Var with

var(α[i : j]) = x and it is length-maximal with this property: it cannot be extended to the right or to

the left without introducing a variable different from x.

The next lemma is fundamental for the results of this section.

Lemma 3.9. Given a set of words w1, . . . ,wp ∈ Σ
m, we can find in O(|Σ| + mp) a median string for

{w1, . . . ,wp}, i.e. a string w such that
∑p

j=1 dHAM(wi,w) is minimal.

Proof. We will use an array C with Σ elements, called counters, indexed by the letters of Σ, and all

initially set to 0. For each i between 1 and m, we count how many times each letter of Σ occurs in

the multi-set {w1[i],w2[i], . . . ,wp[i]} using C. Let w[i] be the most frequent letter of this multi-set.

After computing w[i], we reset the counters which were changed in this iteration, and repeat the

37

38 Matching Patterns with Variables under Hamming Distance

algorithm for i + 1. After going through all values of i, we return the word w = w[1]w[2] . . .w[m]

as the answer to the problem. The correctness of the algorithm is immediate, while its complexity is

clearly O(|Σ| + mp). □

The typical use of this lemma is the following: we identify the factors of w to which a repeated

variable is aligned, and then compute the optimal assignment of this variable. Based on this, the

following theorem can now be shown.

Theorem 3.10. MinHDMatch1Var and HDMatch1Var can be solved in O(n) time.

Proof. It is enough to show how to solve MinHDMatch1Var.

Recall that we were given a word w, of length n, and a pattern α, of length m. Let x be the single

variable that occurs in α and, for simplicity, we denote by mx the number of occurrences of x in α,

i.e., mx = |α|x. Thus, α =
∏mx

i=1(vi−1x)vmx , where vi ∈ Σ
∗ for all i ∈ {1, . . . ,mx}.

Let m′ = m − mx be the number of terminal symbols of α. It is clear that x should be mapped to

a string of length ℓ = n−m′
mx

. If ℓ is not an integer, there exists no string u which can be obtained

from α by substituting x with a terminal-word such that |u| = |w| and dHAM(u,w) is finite. So, let us

assume ℓ is an integer.

Now we know that we want to compute a string u which can be obtained from α by substituting x

with a terminal-word ux of length exactly ℓ. Moreover, u =
∏mx

i=1(vi−1ux)vmx . We define the factors

w1, . . . ,wmx of w such that wi = w[ai + 1 : ai + ℓx] and ai = |
∏i−1

j=1(vi−1ux)vi|. These are the factors

that would align to the occurrences of ux when aligning u with w. As the factors vi always create

the same number of mismatches to the corresponding factors of w, irrespective on the choice of ux,

we need to choose ux such that
∑mx

j=1 dHAM(wi, ux) is minimal. For this, we can use Lemma 3.9, and

compute ux in O(|Σ| + mxℓx) time. As it is our assumption that |Σ| ≤ n, we immediately get that ux

can be computed in O(n) time. So u can be computed in O(n) time. To solve MinHDMatch1Var, we

simply return dHAM(u,w), and this can be again computed in linear time. □

By a standard dynamic programming approach, we use the previous result to obtain a polynomial-

time solution for MinHDMatchNonCross based on the solution for MinHDMatch1Var (in the statement,

p = |var(α)|).

Theorem 3.11. MinHDMatchNonCross and HDMatchNonCross can be solved in O(n3 p) time.

Proof. It is enough to show how to solve MinHDMatchNonCross. Once more, we were given a

word w, of length n, and a pattern α, of length m. Assume var(α) = {x1, . . . , xp}, and we have

α = β1β2 · · · βp, where β2i+1 is an x2i+1-block, for all i such that 1 ≤ 2i+1 ≤ m, and var(β2i) = {x2i},

for all i such that 1 < 2i ≤ m. Let αℓ = β1 · · · βℓ, for ℓ ≥ 1.

The idea of our algorithm is the following.

38

3.3. Matching Patterns with Repeated Variables 39

For ℓ from 1 to p, we define Dist[j][ℓ] = dHAM(αℓ,w[1 : j]) for all prefixes w[1 : j] of w. This

matrix can be computed by dynamic programming.

For ℓ = 1, we can use Theorem 3.10 to compute each element Dist[j][1] in linear time. So,

Dist[·][1] is computed in O(n2) time.

Consider now the case when ℓ > 1 and assume we have computed the array Dist[·][ℓ − 1]. For a

position j of the word w, we compute Dist[j][ℓ] = min{Dist[j′][ℓ−1]+dHAM(βℓ,w[j′+1 : j]) | j′ ≤ j},

where dHAM(βℓ,w[j′ + 1 : j]) is computed, once more, by Theorem 3.10. It is clear that computing

each element Dist[j][ℓ] as described above is correct, and that this computation takes O(n2) time.

Therefore, we can compute all elements of the matrix Dist[·][·] in O(n3 p) time. We return Dist[n][p]

as the answer to MinHDMatchNonCross. □

The results presented so far show that MinHDMatchP and HDMatchP can be solved in polynomial

time, as long as we do not allow interleaved occurrences of variables in the patterns of the class

P. We now consider the case of 1RepVar-patterns, the simplest class of patterns which permits

interleaved occurrences of variables.

For simplicity, in the results regarding 1RepVar we assume that the variable which occurs more

than once in the input pattern is denoted by x.

Theorem 3.12. MinHDMatch1RepVar and HDMatch1RepVar can be solved in O(nk+2m) time, where k

is the number of x-blocks in the input pattern α.

Proof. Once more, we only show how MinHDMatch1RepVar can be solved. The result for the

problem HDMatch1RepVar follows then immediately.

In MinHDMatch1RepVar, we are given a word w, of length n, and a pattern α, of length m, which,

as stated above, has exactly k x-blocks. Thus α =
∏k

i=1(γi−1βi)γk, where the factors βi, for

i ∈ {1, . . . , k}, are the x-blocks of α. It is easy to observe that var(γi) ∩ var(γ j) = ∅, for all i and j,

and γ = γ0γ1 · · · γk is a regular pattern.

When aligning α to w we actually align each of the patterns γ j and βi, for 0 ≤ j ≤ k and 1 ≤ i ≤ k,

to respective factors of the word w. Moreover, the factors to which these patterns are respectively

aligned are completely determined by the length ℓ of the image of x, and the starting positions hi of

the factors aligned to the patterns βi, for 1 ≤ i ≤ k. Knowing the length ℓ of the image of x, we can

also compute, for 1 ≤ i ≤ k, the length ℓi of βi, when x is replaced by a string of length ℓ. In this

case, γ0 is aligned u0 = w[1..h1 − 1] and, for 1 ≤ i ≤ k, βi is aligned to wi = w[hi : hi + ℓi − 1] and

γi is aligned ui = w[hi−1 + ℓi−1 : hi − 1]. Thus, β1 · · · βk matches w1 · · ·wk and we can use Theorem

3.10 to determine dHAM(β1 · · · βk,w1 · · ·wk) (or, in other words, determine the string ux that should

39

40 Matching Patterns with Variables under Hamming Distance

replace x in order to realize this Hamming distance). Further, we can use Theorem 3.5 to compute

dHAM(γi, ui), for all i ∈ {0, . . . , k}. Adding all these distances up, we obtain a total distance Dℓ,h1,...,hk ;

this value depends on ℓ, h1, . . . , hk.

So, we can simply iterate over all possible choices for ℓ, h1, . . . , hk and find dHAM(α,w) as the

minimum of the numbers Dℓ,h1,...,hk .

By the explanations above, it is straightforward that the approach is correct: we simply try

all possibilities of aligning α with w. The time complexity is, for each choice of ℓ, h1, . . . , hk,

O(
∑k

i=1 |wi|) ⊆ O(n) for the part corresponding to the computation of the optimal alignment between

the factors βi and the words wi, and O(
∑k

i=0 |ui|dHAM(γi, ui)) ⊆ O(nm) for the part corresponding to

the computation of the optimal alignment between the factors γi and the words ui. So, the overall

complexity of this algorithm is O(nk+2m). □

We can also show the following more general result.

Theorem 3.13. MinHDMatchkLOC and HDMatchkLOC can be solved in O(n2k+2m) time.

Proof. We only present the solution for MinHDMatchkLOC (as it trivially works in the case of

HDMatchkLOC too).

Let us note that, by the results in [51], we can compute a marking sequence of α in O(m2kk) time.

So, after such a preprocessing phase, we can assume that we have a word w, a k-local pattern α

(with p variables) with a witness marking sequence x1 ≤ . . . ≤ xp for the k-locality of α, and we

want to compute dHAM(α,w).

Generally, the main idea behind matching kLOC-patterns is that when looking for possible ways to

align such a pattern α to a word w we can consider the variables in the order given by the marking

sequence, and, when reaching variable xi, we try all possible assignments for xi. The critical

observation here is that after each such assignment of a new variable, we only need to keep track of

the way the t ≤ k length-maximal factors of α, which contain only marked variables and terminals,

match (at most) t ≤ k factors of w.

We will use this approach in our algorithm for MinHDMatchkLOC.

The first step of this algorithm is the following. We go through α and identify all x1-blocks:

β1,1, . . . , β1, j1 . Because α is k-local, we have that j1 ≤ k. For each 2 j1-tuple (i1, . . . , i2 j1) of

positions of w, we compute the minimum number of mismatches if we align (simultaneously) the

patterns βg to the factors w[i2g−1 : i2g], for g from 1 to j1, respectively. This reduces to finding an

assignment for x1 which aligns optimally the patterns β1,g to the respective factors, and can be done

in O(n) time using Theorem 3.10. For each 2 j1-tuple (i1, . . . , i2 j1) of positions of w, we denote by

40

3.3. Matching Patterns with Repeated Variables 41

M1(i1, . . . , i2 j1) the minimum number of mismatches resulting from the (simultaneous) alignment

of the patterns β1,g to the factors w[i2g−1 : i2g], for g from 1 to j1, respectively. Clearly, M1 can be

seen as a j1-dimensional array.

Assume that after h ≥ 1 steps of our algorithm we have computed the factors βh,1, . . . , βh, jh of α,

which are length-maximal factors of α which only contain the variables x1, . . . , xh and terminals

(i.e., extending them to the left or right would introduce a new variable xℓ with ℓ > h); as α is

k-local, we have jh ≤ k. Moreover, for each 2 jh-tuple (i1, . . . , i2 jh) of positions of w, we have

computed Mh(i1, . . . , i2 jh), the minimum number of mismatches if we align (simultaneously) the

patterns βh,g to the factors w[i2g−1 : i2g], for g from 1 to jh, respectively. Mh is implemented as a jh
dimensional array, and this assumption clearly holds after the first step.

We now explain how step h + 1 is performed.

1. We compute the factors βh+1,1, . . . , βh+1, jh+1 of α, which are length-maximal factors of α

which only contain the variables x1, . . . , xh+1 and terminals (i.e., extending them to the left or

right would introduce a new variable xℓ with ℓ > h+ 1). Clearly, βh+1,r is either an xh+1-block

or it has the form βh+1,r = γr,0βh,arγr,1 · · · βr,ar+brγr,br+1 where the patterns γr,t contain only

the variable xh+1 and terminals and extending βh+1,r to the left or right would introduce a new

variable xℓ with ℓ > h + 1.

2. We initialize the values Mh+1(i1, . . . , i2 jh+1) ← ∞, for each 2 jh+1-tuple (i1, . . . , i2 jh+1) of

positions of w.

3. For each ℓ ≤ n (where ℓ corresponds to the length of the image of xh+1) and each 2 jh-tuple

(i1, . . . , i2 jh) of positions of w such that Mh(i1, . . . , i2 jh) is finite do the following:

(a) We compute the tuple (i′1, . . . , i
′
2 jh+1

) such that βh+1,g is aligned to the factor w[i′2g−1 : i′2g],

for g from 1 to jh+1, respectively. This can be computed based on the fact that the

factors βh,g are aligned to the factors w[i2g−1 : i2g], for g from 1 to jh, respectively, and

the image of xh+1 has length ℓ.

(b) We compute the factors of w aligned to xh+1 in the alignment computed in the previous

line. Then, we can use the algorithm from Theorem 3.10 and the value of Mh(i1, . . . , i2 jh)

to compute an assignment for xh+1 which aligns optimally the patterns βh+1,g to the

corresponding factors of w.

(c) If the number of the mismatches in this alignment is smaller than the current value of

Mh+1(i′1, . . . , i
′
2 jh+1

), we update Mh+1(i′1, . . . , i
′
2 jh+1

).

41

42 Matching Patterns with Variables under Hamming Distance

This dynamic programming approach is clearly correct. In Mh+1(i1, . . . , i2 jh+1) we have the optimal

alignment of the patterns βh+1,1, . . . , βh+1, jh+1 to w[i1 : i2], . . . ,w[i2 jh+1−1 : i2 jh+1]. As far as the

complexity is concerned, the lines 1, 3.a, 3.b, 3.c can be implemented in linear time, while the

for-loop is iterated O(n2k+1) times. Line 2 takes O(n2k) times. The whole computation in step h + 1

of the algorithm takes, thus, O(n2k+1) time.

Now, we execute the procedure described above for h from 2 to m, and, in the end, we compute

the array Mm. The answer to our instance of the problem MinHDMatchkLOC is Mm(1, n). The overall

time complexity needed to perform this computation is O(mn2k+1) time. □

Note that NonCross-patterns are 1-local, while the locality of an 1RepVar-pattern is upper bounded

by the number of x-blocks. However, the algorithms we obtained in those particular cases are more

efficient than the ones which follow from Theorem 3.13.

The fact that Lemma 3.9 is used as the main building block for our results regarding HDMatchP and

MinHDMatchP for P ∈ {1RepVar, kLOC}, suggests that these problems could be closely related to

the following well-studied problem [122, 57, 29, 37].

Consensus Patterns: CP

Input: k strings w1, . . . ,wk ∈ Σ
ℓ, integer m ∈ N with m ≤ ℓ, an integer ∆ ≤ mk.

Question: Do the strings s, of length m, and s1, . . . , sk, factors of length m of each w1, . . . ,wk,

respectively, exist, such that
∑k

i=1 dHAM(si, s) ≤ ∆?

Exploiting this connection, and following the ideas of [122], we can show the following theorem.

In this theorem we restrict to the case when the input word w of MinHDMatch1RepVar is over

Σ = {1, . . . , σ} of constant size σ.

Theorem 3.14. For each constant r ≥ 3, there exists an approximation algorithm with run-time

O(nr+3) for MinHDMatch1RepVar whose output distance is at most:

min

2,
1 + 4σ − 4

√
e(
√

4r + 1 − 3)

 dHAM(α,w)

Proof. We first note that there exists a relatively simple algorithm solving MinHDMatch1RepVar such

that the output distance is no more than 2dHAM(α,w) (which also works for integer alphabets).

Indeed, assume that we have a substitution h for which dHAM(h(α),w) = dHAM(α,w). Assume that

the repeated variable x is mapped by h to a string u and the t occurrences of x are aligned, under

h, to the factors w1,w2, . . . ,wt of w. Now, let wi be such dHAM(u,wi) ≤ dHAM(u,w j) for all j , i. Let

us consider now the substitution h′ which substitutes x by wi and all the other variables exactly

as h did. We claim that dHAM(h′(α), u) ≤ 2dHAM(h(α), u). It is easy to see that dHAM(h′(α),w) −

dHAM(h(α),w) =
∑t

j=i(dHAM(wi,w j) − dHAM(u,w j)) ≤
∑t

j=i(dHAM(wi, u) + dHAM(u,w j) − dHAM(u,wi))

42

3.3. Matching Patterns with Repeated Variables 43

(where the last inequality follows from the triangle inequality for the Hamming distance). Thus,

dHAM(h′(α),w) − dHAM(h(α),w) ≤
∑t

j=i dHAM(wi, u) ≤
∑t

j=i dHAM(w j, u) ≤ dHAM(h(α), u). So our claim

holds.

A consequence of the previous observation is that there exists a substitution h′ that maps x to a

factor of w and produces a string h′(α) such that dHAM(h′(α), u) ≤ 2dHAM(α, u). So, for each factor u

of w, we x by u in α to obtain a regular pattern α′, then use Theorem 3.5 to compute dHAM(α′,w).

We return the smallest value dHAM(α′,w) achieved in this way. Clearly, this is at most 2dHAM(α, u).

The complexity of this algorithm is O(n4), as it simply uses the quadratic algorithm of Theorem 3.5

for each factor of w.

We will now show how this algorithm can be modified to produce a value closer to dHAM(α,w), while

being less efficient.

The algorithm consists of the following main steps:

1. For ℓ ≤ n/r and r factors u1, . . . , ur of length ℓ of w do the following:

(a) Compute uu1,...,ur the median string of u1, . . . , ur using Lemma 3.9.

(b) Let α′ be the regular pattern obtained by replacing x by uu1,...,ur in α.

(c) Compute the distance du1,...,ur = dHAM(α′,w) using Theorem 3.5.

2. Return the smallest distance du1,...,ur computed in the loop above.

Clearly, for r = 1 the above algorithm corresponds to the simple algorithm presented in the

beginning of this proof. Let us analyse its performance for an arbitrary choice of r.

The complexity is easy to compute: we need to consider all possible choices for ℓ and the starting

positions of u1, . . . , ur. So, we have O(nr+1) possibilities to select the non-overlapping factors

u1, . . . , ur of length ℓ of w. The computation done inside the loop can be performed in O(n2) time.

So, overall, our algorithm runs in O(nr+3) time.

Now, we want to estimate how far away from dHAM(α,w) is the value this algorithm returns. In this

case, we will make use of the fact that the input terminal-alphabet is constant. We follow closely

(and adapt to our setting) the approach from [122].

Firstly, a notation. In step 1.b of the algorithm above, we align α′ to w with a minimal number of

mismatches. In this alignment, let d′u1,...,ur
be the total number of mismatches caused by the factors

uu1,...,ur which replaced the occurrences of the variable x in α.

43

44 Matching Patterns with Variables under Hamming Distance

Now, assume that we have a substitution h for which dHAM(h(α),w) = dHAM(α,w) = dopt. Assume

also that the repeated variable x is mapped by h to a string uopt of length L and the t occurrences

of x are aligned, under h, to the factors w1,w2, . . . ,wt of w. Let d′opt be the number of mismatches

caused by the alignment of the images of the t occurrences of x under h to the factors w1,w2, . . . ,wt.

Finally, let ρ = 1 + 4σ−4
√

e(
√

4r+1−3)
.

Note that, for ℓ = L, u1, . . . , ur correspond to a set of randomly chosen numbers i1, . . . , ir from

{1, . . . , n}: their starting positions. We will show in the following that E
[
d′u1,...,ur

]
≤ ρd′opt. If this

inequality holds, then we can apply the probabilistic method: there exists at least a choice of

u1, . . . , ur of length L such that d′u1,...,ur
≤ ρd′opt. As we try all possible lengths ℓ and all variants for

choosing u1, . . . , ur of length ℓ, we will also consider the choice of u1, . . . , ur of length L such that

d′u1,...,ur
≤ ρd′opt, and it is immediate that, for that, for the respective u1, . . . , ur we also have that

du1,...,ur ≤ ρdopt. Thus, the value returned by our algorithm is at most ρdopt.

So, let us show the inequality E
[
d′u1,...,ur

]
≤ ρdopt.

For a ∈ Σ, let f j(a) = |{i | 1 ≤ i ≤ t,wi[j] = a}|. Now, for an arbitrary string s of length L, we have

that
∑t

i=1 dHAM(wi, s) =
∑L

j=1(t − f j(s[j])). So, for s = uopt we get
∑t

i=1 dHAM(wi, uopt) =
∑L

j=1(t −

f j(uopt[j])), and for s = uu1,...,ur we have that d′opt =
∑t

i=1 dHAM(wi, uu1,...,ur) =
∑L

i= j(t− f j(uu1,...,ur [j])).

Therefore, E
[
d′u1,...,ur

]
= E

[∑L
j=1(t − f j(uu1,...,ur [j]))

]
=

∑L
j=1 E

[
t − f j(uu1,...,ur [j])

]
.

Consequently, E
[
d′u1,...,ur

− d′opt

]
=

∑L
j=1(E

[
t − f j(uu1,...,ur [j])

]
− t + f j(uopt[j])).

That is, E
[
d′u1,...,ur

− d′opt

]
=

∑L
j=1 E

[
f j(uopt[j]) − f j(uu1,...,ur [j])

]
.

By Lemma 7 of [122], we have that E
[
f j(uopt[j]) − f j(uu1,...,ur [j])

]
≤ (ρ − 1)(t − f j(uopt[j])).

Hence, E
[
d′u1,...,ur

− d′opt

]
≤ (ρ − 1)

∑L
j=1(t − f j(uopt[j])) = (ρ − 1)d′opt.

So, we indeed have that E
[
d′u1,...,ur

]
≤ ρd′opt.

In conclusion, the statement of the theorem holds. □

It remains open whether other algorithmic results related to CP (such as those from, e.g., [30, 31,

129]) apply to our setting too.

In the following we show two hardness results which explain why the algorithms in Theorems 3.12

and 3.14 are interesting.

Theorem 3.15. HDMatch1RepVar is W[1]-hard w.r.t. the number of x-blocks.

Proof. We reduce CP to HDMatch1RepVar, such that an instance of CP with k different input strings

is mapped to an instance of HDMatch1RepVar with k + 1 x-blocks (where x is the repeated variable),

each containing exactly one occurrence of x.

44

3.3. Matching Patterns with Repeated Variables 45

Hence, we consider an instance of CP which consists of k strings w1, . . .wk ∈ Σ
ℓ of length ℓ and

two integer m,∆ defining the length of the target factors and the number of allowed mismatches,

respectively.

The instance of HDMatch1RepVar which we construct consists of a text w and a pattern α, such

that α contains k + 1 x-blocks, each with exactly one occurrence of x, and is of polynomial size

w.r.t. the size of the CP-instance. Moreover, the number of mismatches allowed in this instance of

HDMatch1RepVar is ∆′ = m + ∆. That is, if there exists a solution for the CP-instance with ∆ allowed

mismatches, then, and only then, we should be able to find a solution of the HDMatch1RepVar-instance

with ∆ + m mismatches.

The construction of the MinHDMatch1RepVar is realized in such a way that the word w encodes the

input strings, while α creates the mechanism for selecting the string s and corresponding factors

s1, . . . , sk. The general idea is that x should be mapped to s, and the factors to which the occurrences

of x are aligned should correspond to the strings s1, . . . , sk.

The structure of the word w and that of the pattern α ensure that, in an alignment of α with w which

cannot be traced back to a admissible solution for the CP-instance (that is, the occurrences of x are

not aligned to factors of length m of the words w1, . . . ,wk or x is not mapped to a string of length m)

we have at least M ≫ ∆′ mismatches, hence it cannot lead to a positive answer for the constructed

instance of HDMatch1RepVar.

The reduction consists of three main steps. Firstly, we present a pair of gadgets to encode the

relation of the strings wi and their factors si, for i from 1 to k. Then, we present a second pair of

gadgets, which ensures that, in a positive solution of HDMatch1RepVar, the variable x can only be

mapped to a string of length m, corresponding to the string s. Finally, we show how to assemble

these gadgets into the input word w and the input pattern α for HDMatch1RepVar.

First pair of gadgets. We introduce the new letters {a, b}, not contained in the input alphabet of

the CP-instance, as well as the variable x and two fresh variables yi, zi, for each i form 1 to k. We

construct the following two gadgets for each input string wi with 1 ≤ i ≤ k.

• A gadget to be included in w: gi = wi

M︷ ︸︸ ︷
aMbM . . . aMbM.

• A gadget to be included in α: fi = yixzi

M︷ ︸︸ ︷
aMbM . . . aMbM.

These gadgets allows us to align the ith occurrence of x to an arbitrary factor of the word wi, for i

from 1 to k.

Second pair of gadgets. In this case, we use three new letters {c, d, $} which are not contained in

the input alphabet of CP. Also, let M = (kℓ)2. We define two new gadgets.

45

46 Matching Patterns with Variables under Hamming Distance

• A gadget to be included in w: Aw =

M︷ ︸︸ ︷
cMdM . . . cMdM$m.

• A gadget to be included in α: Aα =

M︷ ︸︸ ︷
cMdM . . . cMdM x.

These gadgets enforce that, in an alignment of α and w, the variable x is mapped to a string of length

m, at the cost of exactly m extra mismatches. Note that, because ∆ ≤ km, we have that M ≫ ∆.

Final assemblage. The word w and the pattern α are defined as follows.

• w = g1g2 . . . gkAw and α = f1f2 . . . fkAα.

To wrap up, the instance of MinHDMatch1RepVar is defined by w, α,∆ + m.

The correctness of the reduction. We will show that our reduction is correct by a detailed case

analysis. We consider an alignment of α and w with minimal number of mismatches, and we make

the following observations.

A. Firstly, if every gi is aligned to fi, for i from i to k, it is immediate that x is mapped to a

string of length m, as the last occurrence of x will be aligned to the $m suffix of w. Thus, the

total number of mismatches between α and w in an alignment with a minimum number of

mismatches is upper-bounded by (k + 1)m.

B. Secondly, we assume, for the sake of a contradiction, that the length of the image of x is not

m. If |x| > m (respectively, |x| < m) then the prefix (cMdM)M of Aα is aligned to a factor of w

which starts strictly to the left of (respectively, to the right of) the first position of the prefix

(cMdM)M of Aw. It is not hard to see that this causes at least M mismatches. Indeed, in the case

when |x| > m, if the factor (cMdM)M of α is aligned to a factor that starts at least M position

to the left of the factor (cMdM)M of w, the conclusion is immediate; if the factor (cMdM)M starts

less then M positions to the left of the factor (cMdM)M of w, then each group cM in α will be

aligned to a factor of w that includes at least a d letter, so we again reach the conclusion. In

the case when |x| < m, then, again, each group cM in α will be aligned to a factor of w that

includes at least a d letter, so the alignment leads to at least M mismatches.

So, we can assume from now on that x is mapped to a string of length m. This also implies

that Aα and Aw are aligned, so we will largely neglect them from now on.

C. Thirdly, we assume that there exists i such that |h(yi)| + |h(zi)| , |wi| − m. Let j = min{i ≤

k | |h(yi)| + |h(zi)| , |wi| − m}. Then the suffixes (aMbM)M of g j and f j do not align perfectly to

each other. If |h(y j)| + |h(z j)| < |wi| − m, then the suffix (aMbM)M of f j is aligned to a factor of

w which starts inside w j. This immediately causes at least M mismatches, as each group aM

will overlap to a group of which contains at least one b letter. If |h(y j)| + |h(z j)| > |wi| − m,

then the suffix (aMbM)M of f j is aligned to a factor of w which starts strictly to the right of

the factor w j. However, because M = (kℓ)2 ≫ kℓ, and f j and g j are followed by the same

46

3.3. Matching Patterns with Repeated Variables 47

number of factors (aMbM)M (until the factors Aα and Aw are reached), the factor corresponding

to the suffix (aMbM)M of f j cannot start more than kℓ positions to the right of w j. It is then

immediate that this factor (aMbM)M of f j will cause at least M mismatches: each group aM will

overlap to a group of which contains at least one b letter.

So, from now on we can assume that the factors (aMbM)M of g j and f j are aligned.

D. At this point, it is clear that in each alignment of α and w which fulfils the conditions

described in items B and C: the variable x is mapped to a string of length m, and its first k

occurrences are aligned to factors of the words w1, . . . ,wk. We will now show that for each

alignment of α and w in which the image of x contains a $ symbol and fulfills the conditions

above, there exists an alignment of α and w with at most the same number of mismatches,

in which the image of x does not contain a $ symbol and, once more, fulfills the conditions

B and C. Assume that in our original alignment x is mapped to a string ux of length m such

that ux[i] = $. Let u1, . . . , uk be the factors of w1, . . . ,wk, respectively, to which the first

occurrences of the variable x are aligned. Consider the string u′x which is obtained from ux

by simply replacing the $ symbol on position i by u1[i]. And then consider the alignment

of α and w which is obtained from the original alignment by changing the image of x to u′x
instead of ux. When compared to the original alignment, the new alignment has an additional

mismatch caused by the occurrence of x aligned to $m, but at least one less mismatch caused

by the alignments of the first k occurrences of x. Indeed, in the original alignment, the ith

position of ux was a mismatch to the ith position of any string u1, . . . , uk, but now at least the

ith positions of w1 and u′x coincide. This shows that our claim holds. A similar argument

shows that for any alignment in which x is mapped to a string containing other letters than the

input letters from the CP-instance there exits an alignment in which x is mapped to a string

containing only letters from the CP-instance.

Hence, from now on we can assume that the factors (aMbM)M of g j and f j are aligned and that

the image of x has length m and is over the input alphabet of CP-instance.

Based on the observations A-D, we can show that the reduction has the desired properties. If the

CP-instance admits a solution s, s1, . . . , sk which causes a number of mismatches less or equal to ∆,

then we can produce an alignment of α to w as follows. We map x to s and, for i from 1 to k, we

map xi and yi to the prefix of wi occurring before si and, respectively, the suffix of wi occurring after

si. This leads to ∆+m mismatches between α and w, so the input (w, α,∆+m) of HDMatch1RepVar is

accepted. Conversely, if we have an alignment of α and w with at most ∆ + m mismatches, then we

have an alignment with the same number of mismatches which fulfills the conditions summarized at

the end of item D above. Hence, we can define s as the image of x in this alignment, and the strings

s1, . . . , sk as the factors of w aligned to the first k occurrences of x from α. Clearly, for i between 1

and k, si is a factor of wi. As m mismatches of the alignment were caused by the alignment of the

last x to $m, we get that
∑k

i=1 dHAM(s, si) ≤ ∆. Thus, the instance of CP is accepted.

47

48 Matching Patterns with Variables under Hamming Distance

This concludes the proof of the correctness of our reduction. As M is clearly of polynomial size

w.r.t. the size of the CP-instance, it follows that both w and α are of polynomial size O(kM2).

Therefore, the instance of MinHDMatch1RepVar can be computed in polynomial time, and our entire

reduction is done in polynomial time. Moreover, we have shown that the instance (w, α,∆ + M)

of MinHDMatch1RepVar is answered positively if and only if the original instance of CP is answered

positively.

Finally, as the number of x blocks in α is k+ 1, where k is the number of input strings in the instance

of CP, and CP is W[1]-hard with respect to this parameter, it follows that MinHDMatch1RepVar is

also W[1]-hard when the number of k-blocks in α is considered as parameter. This completes our

proof. □

It is worth noting that the pattern α constructed in the reduction above is k − 1-local (and not

k-local): a witness marking sequence is z1 < y2 < z2 < y3 < . . . < zk−1 < yk < x < y1 < zk.

Thus, HDMatch1RepVar is W[1]-hard w.r.t. locality of the input pattern as well. Also, it is easy to

see that scd(α) = 2, and, by the results of [143], this shows that the treewidth of the pattern α,

as defined in the same paper, is at most 3. Thus, even for classes of patterns with constant scd,

number or repeated variables, or treewidth, the problems HDMatchP and MinHDMatchP can become

intractable.

In Theorem 3.14 we have shown that MinHDMatch1RepVar admits a polynomial time approximation

scheme (for short, PTAS). We will show in the following that it does not admit an efficient PTAS

(for short, EPTAS), unless FPT = W[1]. This means that there is no PTAS for MinHDMatch1RepVar
such that the exponent of the polynomial in its running time is independent of the approximation

ratio.

To show this, we consider an optimisation variant of the problem CP, denoted minCP. In this

problem, for k strings w1, . . . ,wk ∈ Σ
ℓ of length ℓ and an integer m ∈ N with m ≤ ℓ, we are

interested in the smallest non-negative integer ∆ for which there exist strings s, of length m, and

s1, . . . , sk, factors of length m of each w1, . . . ,wk, respectively, such that
∑k

i=1 dHAM(si, s) = ∆. In

[29], it is shown that minCP has no EPTAS unless FPT = W[1]. We can use this result and the

reduction from the Theorem 3.15 to show the following result.

Theorem 3.16. MinHDMatch1RepVar has no EPTAS unless FPT = W[1].

Proof. Assume, for the sake of a contradiction, that MinHDMatch1RepVar has an EPTAS. That is, for

an input word w and an 1RepVar-pattern α, there exists a polynomial time algorithm which returns

as answer to MinHDMatch1RepVar a value δ′ ≤ (1+ ϵ)dHAM(α,w), and the exponent of the polynomial

in its running time is independent of ϵ.

48

3.3. Matching Patterns with Repeated Variables 49

An algorithm for minCP would first implement the reduction in Theorem 3.15 to obtain a word

w and a pattern α. Then it uses the EPTAS for MinHDMatch1RepVar to approximate the distance

between α and w with approximation ratio (1 + ϵ
2m). Assuming that this EPTAS returns the value D,

the answer returned by this algorithm for the minCP problem is D − m.

As explained in the proof of Theorem 3.15, it is easy to see that the distance between the word

w and the pattern α constructed in the respective reduction is m + ∆, if ∆ is the answer to the

instance of the minCP problem. Thus, the value D returned by the EPTAS for MinHDMatch1RepVar
fulfils m + ∆ ≤ D ≤ (1 + ϵ

2m)(m + ∆). So, we have ∆ ≤ D − m ≤ ϵ2 + (1 + ϵ
2m)∆. We get that

∆ ≤ D−m ≤ (1 + ϵ
2m +

ϵ
2∆)∆ ≤ (1 + ϵ)∆. So, indeed, D−m would be a (1 + ϵ)−approximation of ∆.

Therefore, this would yield an EPTAS for minCP. This is a contradiction to the results reported in

[29], where it was shown that such an EPTAS does not exist, unless FPT = W[1]. This concludes

our proof. □

A conclusion of all the results as well as an outlook on future work is presented in Section 7.

49

50 Matching Patterns with Variables under Hamming Distance

50

CHAPTER 4

Matching Patterns with Variables under Edit Distance

This chapter is based on article [79] (see reference below) and the LaTeX code of this article was

used to reproduce it here. The Introduction and Preliminaries of this paper are worked into Chapter

1 and Chapter 2. Further, the notations are adjusted to match the other chapters and provide a

uniform notation across this thesis.

Reference: P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under

Edit Distance. In D. Arroyuelo and B. Poblete, editors, String Processing and Information Retrieval -

29th International Symposium, SPIRE 2022, Concepción, Chile, November 8-10, 2022, Proceedings,

volume 13617 of Lecture Notes in Computer Science, pages 275–289. Springer, 2022. doi:

10.1007/978-3-031-20643-6_20

Description: This paper provided a natural follow-up to the setting from [78] presented in Chapter

3. Instead of only considering mismatches (single letter substitutions) between the target word and

the pattern, we extended the setting to allow for insertions and deletions of letters. The amount of

these operations (commonly known as the edit distance) to get from the target word to the input

pattern (under any substitution) must be either bound by an integer in the input (decision variant) or

has to be minimal in order to be a valid substitution (minimization variant). We obtained algorithmic

lower and upper bounds for various classes of patterns.

Contribution: I was a main contributor to identifying the problem described in this paper, the

design of the algorithms, and their write-up in the paper. Further, I presented this work at SPIRE

2022 in Concepción (Chile) and in several workshops.

https://doi.org/10.1007/978-3-031-20643-6_20
https://doi.org/10.1007/978-3-031-20643-6_20

52 Matching Patterns with Variables under Edit Distance

4.1 Overview

In this chapter, we study patterns that can be matched efficiently under edit distance: we allow

insertion, deletions, substitutions between the word w and the image of α under a substitution

h. More precisely, we consider two problems. In the decision problem EDMatchP we are in-

terested in deciding, for a given pattern α from a class P, a given word w, and a non-negative

integer ∆ whether there exists a variable-substitution h such that the word h(α) is at most ∆ edit

operations from the word w; in other words dED(h(α),w) ≤ ∆. Alternatively, we consider the

corresponding minimisation problem MinEDMatchP of computing dED(α,w) = min{dED(h(α),w) |

h is a substitution of the variables in α}.

With the definition of the edit distance (see Section 2.5) and the pattern matching problems for

families of patterns P ⊆ PAT (see Section 2.2) we can give the formal problem description. In the

first problem, we allow for a certain distance ∆ between the image h(α) of α under a substitution h

and the target word w instead of searching for an exact matching. In the second problem, we are

interested in finding the substitution h such that the edit distance between h(α) and the target word

w is minimal, over all possible choices of h.

Approximate Matching Decision Problem for EDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n, an integer ∆ ≤ m.

Question: Is there h with dED(α,w) ≤ ∆?

Approximate Matching Minimisation Problem for MinEDMatchP

Input: A pattern α ∈ P, with |α| = m, a word w, with |w| = n.

Question: Compute h that minimizes dED(α,w).

Example 4.1. α = x1x1babx2x2, w = aaababbb, ∆ = 1. In this instance we require either an

insertion of an a in front of w or a deletion of an a in front of h(α).

h(x1) = aa h(α) = aaaababbb

h(x2) = b w = aaababbb

Firstly, we consider the class of regular patterns, and show that EDMatchReg and MinEDMatchReg
can be solved in O(n∆) time (where, for MinEDMatch, ∆ is the computed result); a matching

conditional lower bound follows from the literature [14]. This is particularly interesting because the

problem of computing dED(α,w) for α = w0x1w1 . . . xkwk can be seen as the problem of computing

the minimal edit distance between any string in which w1, . . . ,wk occur, without overlaps, in this

exact order and the word w.

52

4.1. Overview 53

Secondly, we show that, unlike the case of matching under Hamming distance (Chapter 3),

EDMatchP becomes W[1]-hard already for P being the class of unary patterns, with respect to

the number of occurrences of the single variable. So, interestingly, the problem of matching patterns

with variables under edit distance is computationally hard for all the classes (that we are aware of)

of structurally restricted patterns with polynomial exact matching problem, as soon as at least one

variable is allowed to occur an unbounded number of times.

To complement the results presented in this work, we note that, for the classes of patterns considered

in [59, 51, 143, 78], which admit polynomial-time exact matching algorithms, one can straight-

forwardly adapt those algorithms to work in polynomial time in the case of matching under edit

distance, when a constant upper bound k1 on the number of occurrences of each variable exists.

The complexity of these algorithms is usually O(n f (k1,k2)), for a polynomial function f and for k2

being a constant upper bound for the value of the structural parameter considered when defining

these classes (locality, scope coincidence degree, treewidth, etc.). If no restriction is imposed on the

structure of the pattern, Match (and, as such, the matching under both Hamming and edit distances)

is NP-hard even if there are at most two occurrences of each variable [60].

As a first general remark, based on the Section 2.5 on edit distance, the following theorem follows.

Theorem 4.2. EDMatchPAT and MinEDMatchPAT can be solved in O(n2k2+k1) time, where k1 is the

maximum number of occurrences of any variable in the input pattern α and k2 is the total number

of occurrences of variables in α.

Proof. We only give the proof for MinEDMatchPAT .

Assume the input pattern is α = u0x1u1 . . . xk2uk2 from PATΣ, where xi is a variable, for i ∈

{1, . . . , k2}, and wi ∈ Σ
∗ a terminal word, for i ∈ {0, . . . , k2}. Note that there might be the case that

xi = x j for some i , j, as there are no restrictions on the structure of the pattern α.

We make several observations.

Let h be a substitution of the variables from α, such that h(xi) = ti, for i ∈ {1, . . . , k2}. Then, h(α) =

u0t1u1 . . . tk2uk2 . When computing the edit distance dED(h(α),w), one obtains a factorization of

w = w0w′1w1 . . .w′k2
wk2 such that the optimal sequence of edits transforming h(α) into w transforms

ui into wi, for i ∈ {0, . . . , k2}, and t′i into wi, for i ∈ {1, . . . , k2}.

Now, let Vx = {i ∈ {1, . . . , k2} | xi = x} and assume h is a substitution of the variables from α such

that dED(h(α),w) is minimal w.r.t. all possible substitutions of the variables of α. Moreover, let

h(xi) = ti for i ∈ {1, . . . , k2}. As before, there exists a factorization of w = w0w′1w1 . . .w′k2
wk2 such

that the optimal sequence of edits transforming h(α) into w transforms ui into wi, for i ∈ {0, . . . , k2},

and t′i into wi, for i ∈ {1, . . . , k2}. In this case, from the fact that h is optimal, it is immediate that

h(x) = sx where sx is the median string of {w′i | i ∈ Vx}.

53

54 Matching Patterns with Variables under Edit Distance

Based on these observations, we can use the following algorithm solving MinEDMatchPAT .

For each x ∈ var(α), define Vx = {i ∈ {1, . . . , k2} | xi = x}. For each factorization f of w =

w0w′1w1 . . .w′k2
wk2 and for each variable x: compute the median string sx of {w′i | i ∈ Vx}; define

the substitution h f which maps x to sx for all x; compute the edit distance dED(h f (α),w). After

considering each possible factorization f , return the substitution h f for which dED(h f (α),w) is

minimal.

In the above algorithm, to compute the median string of {w′i | i ∈ Vx}, we use the algorithm of [147].

This algorithm runs in O(ℓ|Vx |
x), where ℓx = max{|w′i | | i ∈ Vx}. Therefore, the running time of our

algorithm can be upper bounded by O(n2k2nk1), so also by O(n2k2+k1). □

As mentioned in the Introduction, the result of the previous Theorem can be improved if we consider

the two problems for classes of patterns with restricted structure, where we obtain algorithms whose

complexity depends on the structural parameter associated to that class, rather than the total number

of occurrences of variables.

4.2 Matching Regular Patterns under Edit Distance

The first main result of our paper is about the class of regular patterns. A detailed discussion on the

various pattern families can be found in Section 2.2. As a reminder, a pattern α over the terminal

alphabet Σ is regular (α ∈ Reg) if α = w0(Πk
i=1xiwi) where, for i ∈ {1, . . . , k}, wi ∈ Σ

∗ and xi is a

variable, and xi , x j for all i , j.

4.2.1 Efficient solutions for EDMatchReg and MinEDMatchReg

We can show the following theorem.

Theorem 4.3. EDMatchReg can be solved in O(n∆) time. For an accepted instance w, α,∆ of

EDMatchReg we also compute dED(α,w) (which is at most ∆).

Proof. Preliminaries and setting. We begin with an observation. For α = w0(Πk
i=1xiwi), we can as-

sume w.l.o.g. that wi ∈ Σ
+ for all i ≤ k as otherwise we would have neighboring variables that could

be replaced by a single variable; thus, k ≤ |term(α)|. For example, the pattern α = abx1abx2x3baab,

with var(α) = {x1, x2, x3} is in Reg, and is equivalent (in terms of the words that it matches) to

the pattern α′ = abx1abx2baab, with the additional information that any substitution of x2 in a

match of α′ can be split at any position to give substitutions for x2 and x3 in a match of α. To avoid

some corner cases, we can assume w.l.o.g. that α and w start with the same terminal symbol (this

can be achieved by adding a fresh letter $ in front of both α and w). While not fundamental, these

simplifications make the exposure of the following algorithm easier to follow.

54

4.2. Matching Regular Patterns under Edit Distance 55

Before starting the presentation of the algorithm, we note that a solution for EDMatchReg with dis-

tance ∆ = 0 is a solution to MatchReg and can be solved in O(n) by a greedy approach (Section 2.3).

Further, the special case x1w1x2 can be solved by an algorithm due to Landau and Vishkin [115]

in O(n∆) time. In the following, we are going to achieve the same complexity for the general

case of EDMatchReg by extending the ideas of this algorithm to accommodate the existence of an

unbounded number of pairwise-distinct variables.

One important idea which we use in the context of computing the edit distance between an arbitrary

regular pattern and a word is to interpret each regular variable as an arbitrary amount of “free”

insertions on that position, where “free” means that they will not be counted as part of the actual

distance (in other words, they do not increase this distance). Indeed, we can see that the factor

which substitutes a variable should always be equal to the factor to which it is aligned (after all the

edits are performed) from the target word, hence does not add anything to the overall distance (and,

therefore, it is “free”). As such, this factor can be seen as being obtained via an arbitrary amount of

letter insertions. Now, using this observation, it is easier to design an O(nm)-time algorithm which

computes the edit distance between the terminal words β = term(α) (instead of the pattern α) and w

with the additional property that, for the positions Fg = |(Π
g
i=0|wi|)| for 0 ≤ g ≤ k − 1, we have that

the insertions done between positions β[Fg] and β[Fg + 1] when editing β to obtain w do not count

towards the total edit distance between β and w. For simplicity, we denote the set {Fg|0 ≤ g ≤ k− 1}

by F, we set Fk = +∞, and note that |β| = m − k (so β ∈ Θ(m)).

The description of our algorithm is done in two phases. We first explain how EDMatchReg can be

solved by dynamic programming in O(nm) time. Then, we refine this approach to an algorithm

which fulfills the statement of the theorem.

When presenting our algorithms, we refer to an alignment of prefixes β[1 : j] of β and w[1 : ℓ] of

w, which simply means editing β[1 : j] to obtain w[1 : ℓ].

First phase: a classical dynamic programming solution. We define the (|β| + 1) × (n + 1) matrix

D[·][·], where D[j][ℓ] is the edit distance between the prefixes β[1 : j], with 0 ≤ j ≤ |β|, and w[1 : ℓ],

with 0 ≤ ℓ ≤ n, with the additional important property that the insertions done between positions

β[Fg] and β[Fg + 1], for Fg ≤ j, are not counted in this distance (they correspond to variables in

the pattern α). As soon as this matrix is computed, we can retrieve the edit distance between α and

w from the element D[m − k][n]. Clearly, now the instance (α,w,∆) of EDMatchReg is answered

positively if and only if D[m − k][n] ≤ ∆. So, let us focus on an algorithm computing this matrix.

The elements of the matrix D[·][·] can be computed by dynamic programming. The base cases are

D[j][0] = j, for all j ≤ β and D[0][ℓ] = ℓ. In the case of computing D[0][ℓ], we simply insert all

the letters of w[1 : ℓ] in β[1 : 0] = ε, while in the case of D[j][0] we are deleting all letters from

β[1 : j] (and, if we refer to the edits in α, where we also have variables, then we substitute all the

variables of the prefix of α which corresponds to β[1 : j] by the empty word, as well).

55

56 Matching Patterns with Variables under Edit Distance

The rest of the elements of D[·][·] are now computed according to two cases.

Firstly, we consider the computation of D[j][ℓ] for j < F. In this case, we cannot use the aforemen-

tioned free insertions, so the element D[j][ℓ] is computed as in the case of computing the usual edit

distance between two strings.

D[j][ℓ] = min

D[j − 1][ℓ] + 1, β[j] is deleted in the alignment of β[1 : j]

to w[1 : ℓ];

D[j][ℓ − 1] + 1, w[ℓ] is inserted after position j of β in

the alignment of β[1 : j] to w[1 : ℓ];

D[j − 1][ℓ − 1] + 1, β[j] is substituted by w[j] in

the alignment of β[1 : j] to w[1 : ℓ];

D[j − 1][ℓ − 1], β[j] is left unchanged in the alignment

of β[1 : j] to w[1 : ℓ] because β[j] = w[ℓ].

The more interesting case is when j ∈ F and we can use free insertions. Naturally, our starting point

is still represented by the four possible cases based on which we computed D[j][ℓ] when j < F.

However, the case corresponding to the insertion of w[ℓ] to extend an alignment of β[1 : j] and

w[1 : ℓ − 1] to an alignment of β[1 : j] and w[1 : ℓ] can now be obtained by a free insertion, instead

of an insertion of cost 1. This brings us to the main difference between the two cases. In this case, an

alignment between β[1 : j] and w[1 : ℓ] can be obtained as follows. We first obtain an alignment of

β[1 : j] to some prefix w[1 : ℓ − k] of w and then use free insertions to append w[ℓ − k + 1 : ℓ] to the

edited pattern, and, as such, obtain w[1 : ℓ]. But, this also means that we first obtain an alignment of

β[1 : j] to some prefix w[1 : ℓ−k] of w and then use free insertions to append w[ℓ−k+1 : ℓ−1] to the

edited pattern, and, as such, obtain an alignment of the pattern to w[1 : ℓ − 1], and then insert (again,

without counting this towards the edit distance) w[ℓ] to obtain w[ℓ − k + 1 : ℓ]. Thus, in this case,

an alignment between β[1 : j] and w[1 : ℓ] which uses free insertions corresponding to the position

j ∈ F is obtained from an alignment between β[1 : j] and w[1 : ℓ − 1] followed by an additional

free insertion. We obtain, as such, the following recurrence relation for D[j][ℓ], when j ∈ F:

D[j][ℓ] = min

D[j − 1][ℓ] + 1, β[j] is deleted;

D[j − 1][ℓ − 1] + 1, β[j] is substituted by w[ℓ], if β[j] , w[ℓ];

D[j − 1][ℓ − 1], β[j] is left unchanged, if β[j] = w[ℓ];

D[j][ℓ − 1], w[ℓ] is inserted after position j, for free.

56

4.2. Matching Regular Patterns under Edit Distance 57

Using the two recurrence relation above, we can compute the elements of the matrix D by dynamic

programming (for j from 0 to m − k, for ℓ from 0 to n) in O(nm) time. Moreover, by tracing back

the computation of D[m− k][n], we obtain a path consisting of elements of the matrix, leading from

D[0][0] to D[m − k][n], which encodes the edits needed to transform β into w. An edge between

D[j − 1][ℓ] and D[j][ℓ] corresponds to the deletion of β[j]; and edge between D[j − 1][ℓ − 1] and

D[j][ℓ] corresponds to a substitution of β[j] by w[ℓ], or to the case where β[j] and w[ℓ] are left

unchanged, and will be aligned in the end. Moreover, an edge between D[j][ℓ − 1] and D[j][ℓ]

corresponds to an insertion of w[ℓ] after position j in β; this can be a free insertion too (and part

of the image of a variable of α), but only when j ∈ F.

A listing of an algorithm computing D[·][·] is given in Figure 4.1.

Input: w, α

Output: minimal edit distance between α and w in O(nm)

1 compute β and the set F;

2 for j← [0 to |β|] do
3 D[j][0]← j;

4 end
5 for ℓ ← [0 to n] do
6 D[0][ℓ]← ℓ;

7 end
8 g← 0

9 for j← [0 to |β|] do
10 if j = Fg then
11 for ℓ ← [0 to n] do
12

D[j][ℓ]← min

D[j][ℓ − 1], free insertion

D[j − 1][ℓ] + 1, deletion

D[j − 1][ℓ − 1] + 1, substitution

D[j − 1][ℓ − 1], if w[ℓ] = β[j]

13 end
14 g← g + 1

15 else
16 for ℓ ← [0 to n] do
17

D[j][ℓ]← min

D[j][ℓ − 1] + 1, insertion

D[j − 1][ℓ] + 1, deletion

D[j − 1][ℓ − 1] + 1, substitution

D[j − 1][ℓ − 1], if w[ℓ] = β[j]

18 end
19 end
20 end
21 return D[|β|][n]

Figure 4.1: Algorithm to compute D[·][·] in O(nm) time.

57

58 Matching Patterns with Variables under Edit Distance

This concludes the first phase of our proof.

Second phase: a succinct representation and more efficient computation of the dynamic
programming table. In the second phase of our proof, we will focus on how to solve EDMatchReg
more efficiently. The idea is to avoid computing all the elements of the matrix D[·][·], and compute,

instead, only the relevant elements of this matrix, following the ideas of the algorithm by Landau

and Vishkin [115]. The main difference between the setting of that algorithm (which can be directly

used to compute the edit distance between two terminal words or between a word w and a pattern

α of the form xuy, xu, or uy, where x and y are variables and u is a terminal word) and ours is

that, in our case, the diagonals of the matrix D[·][·] are not non-decreasing (when traversed in

increasing order of the rows intersected by the respective diagonal), as we now also have free

insertions which may occur at various positions in β (not only at the beginning and end). This is

a significant complication, which we will address next.

The main idea of the optimization done in this second phase is that we could actually compute and

represent the matrix D[·][·] more succinctly, by only computing and keeping track of at most ∆

relevant elements on each diagonal of this matrix, where relevant means that we cannot explicitly

rule out the existence of a path leading from D[0][0] to D[m−k][n] which goes through that element.

For the clarity of exposure, we recall that the diagonal d of the matrix D[·][·] is defined as the array

of elements D[j][ℓ] where ℓ − j = d (ordered in increasing order w.r.t. the first component j), where

−|β|+1 ≤ d ≤ n. Very importantly, for a diagonal d, we have that if D[j][j+d] ≤ D[j+1][j+1+d]

then D[j + 1][j + 1 + d] − D[j][j + d] ≤ 1; however, it might also be the case that D[j][j + d] >

D[j + 1][j + 1 + d], when D[j + 1][j + 1 + d] is obtained from D[j + 1][j + d] by a free insertion.

Analysis of the diagonals, definition of Md[δ] and its usage. Now, for each diagonal d, with

−|β| + 1 ≤ d ≤ n, and δ ≤ ∆, we define Md[δ] = max{ j | D[j][j + d] = δ, and D[j′][j′ + d] > δ

for all j′ > j} (by convention, Md[δ] = −∞, if { j | D[j][j + d] = δ, and D[j′][j′ + d] > δ for all

j′ > j} = ∅). That is, Md[δ] is the greatest row where we find the value δ on the diagonal d and,

moreover, all the elements appearing on greater rows on that diagonal are strictly greater than δ

(or Md[δ] = −∞ if such a row does not exist).

Note that if a value δ appears on diagonal d and there exists some j′ such that D[j][j+ d] ≥ δ for all

j ≥ j′, then, due to the only relations which may occur between two consecutive elements of d, we

have that Md[δ] , −∞. In particular, if a value δ appears on diagonal d then Md[δ] , −∞ if and only

if D[|β|][|β|+ d] ≥ δ. Consequently, if there exists k > 0 such that Md[δ− k] = |β| then Md[δ] = −∞.

In general, all values Md[δ] which are equal to −∞ are not relevant to our computation. To un-

derstand which other values Md[δ] are not relevant for our algorithm, we note that if there exist

some k > 0 and s ≥ 0 such that Md+s[δ − k] = |β| then it is not needed to compute Md−g[δ + h], for

any g, h ≥ 0, at all, as any path going from D[0][0] to D[|β|][n], which corresponds to an optimal

sequence of edits, does not go through D[Md−g[δ+h]][Md[δ+h]+d]. If s = 0, then it is already clear

58

4.2. Matching Regular Patterns under Edit Distance 59

that Md[δ] = −∞, and we do not need to compute it. If s ≥ 1, it is enough to show our claim for h = 0

and g = 0. Indeed, assume that the optimal sequence of edits transforming β into w corresponds to

a path from D[0][0] to D[|β|][n] going through D[Md[δ]][Md[δ] + d]. By the fact that Md[δ] is the

largest j for which D[j][j+ d] ≤ δ, we get that this path would have to intersect, after going through

D[Md[δ]][Md[δ]+d], the path from D[0][0] to D[Md+s[δ−k]][Md+s[δ−k]+d+s] = D[|β|][|β|+d+s]

(which goes only through elements ≤ δ − k). As k > 0, this is a contradiction, as the path from

D[0][0] to D[|β|][n] going through D[Md[δ]][Md[δ]+d] goes only through elements ≥ δ after going

through D[Md[δ]][Md[δ] + d]. So, Md[δ] is not relevant if there exist k > 0 and s > 0 such that

Md+s[δ − k] = m.

Once all relevant values Md[δ] are computed, for d diagonal and δ ≤ ∆, we simply have to check

if Mn−|β|[δ] = |β| (i.e., D[|β|][n] = δ) for some δ ≤ ∆. So, we can focus, from now on, on how to

compute the relevant elements Md[δ] efficiently. In particular, all these elements are not equal to −∞.

Towards an algorithm: understanding the relations between elements on consecutive diagonals.
Let us now understand under which conditions D[j][ℓ] = δ holds, as this is useful to compute Md[δ].

In general, this means that there exists a path leading from D[0][0] to D[j][ℓ] consisting only in ele-

ments with value ≤ δ, and which ends with a series of edges belonging to the diagonal d = ℓ− j, that

correspond to substitutions or to letters being left unchanged. In particular, if all the edges connecting

D[j′][j′+d] and D[j][ℓ] on this path correspond to unchanged letters, then β[j′ : j] is a common pre-

fix of β[j′ : |β|] and w[j′+d : n]. Looking more into details, there are several cases when D[j][ℓ] = δ.

If j < F and β[j] , w[ℓ], then D[j−1][ℓ−1] ≥ δ−1 and D[j−1][ℓ] ≥ δ−1 and D[j][ℓ−1] ≥ δ−1

and at least one of the previous inequalities is an equality (i.e., one of the following must hold:

D[j][ℓ − 1] = δ − 1 or D[j − 1][ℓ − 1] = δ − 1 or D[j − 1][ℓ] = δ − 1). If j < F and β[j] = w[ℓ],

then D[j − 1][ℓ − 1] ≥ δ and D[j − 1][ℓ] ≥ δ − 1 and D[j][ℓ − 1] ≥ δ − 1 and at least one of the

previous inequalities is an equality.

If j ∈ F and β[j] , w[ℓ], then D[j−1][ℓ−1] ≥ δ−1 and D[j−1][ℓ] ≥ δ−1 and D[j][ℓ−1] ≥ δ and at

least one of the previous inequalities is an equality. If j ∈ F and β[j] = w[ℓ] then D[j−1][ℓ−1] ≥ δ

and D[j−1][ℓ] ≥ δ−1 and D[j][ℓ−1] ≥ δ and at least one of the previous inequalities is an equality.

Moving forward, assume now that Md[δ] = j , −∞. This means that D[j][ℓ] = δ, and

D[j′′][j′′ + d] > δ for all j′′ > j. By the observations above, there exists j′ ≤ j such that

D[j′][j′ + d] = δ and the longest common prefix of β[j′ : |β|] and w[j′ + d : n] has length j − j′ + 1,

i.e., it equals β[j′ : j]. The last part of this statement means that once we have aligned β[1 : j′] to

w[1 : j′ + d], we can extend this alignment to an alignment of β[1 : j] to w[1 : j + d] by simply

leaving the symbols of β[j′ + 1 : j] unchanged.

Let us see now what this means for the elements of diagonals d, d + 1, and d − 1.

59

60 Matching Patterns with Variables under Edit Distance

Firstly, we consider the diagonal d. Here we have that j′ ≥ Md[δ− 1]+ 1. Note that if δ− 1 appears

on diagonal d then Md[δ − 1] , −∞.

Secondly, we consider the diagonal d + 1. Here, for all rows ℓ with j′ ≤ ℓ ≤ j, we have that

D[ℓ−1][ℓ+d] ≥ δ−1 and D[j′′ −1][j′′ +d] > δ−1, for all j′′ with |β| ≥ j′′ > j. Therefore, if δ−1

appears on diagonal d+1, either D[m][m+d+1] ≤ d−1 or Md+1[δ−1] , −∞ and Md[δ−1]+1 ≤ j.

Finally, we consider the diagonal d − 1. Here, for all rows ℓ with j′ ≤ ℓ ≤ j, we have that

D[ℓ][ℓ + d − 1] ≥ δ − 1 and D[j′′][j′′ + d − 1] ≥ δ, for all j′′ with m ≥ j′′ > j. Thus, either all

elements on the diagonal d − 1 are ≥ δ, or δ − 1 occurs on diagonal d − 1 and Md−1[δ − 1] , −∞.

In the second case, when Md−1[δ− 1] , −∞, we have that j ≥ Md−1[δ− 1] as, otherwise, we would

have that D[Md−1[δ − 1]][Md−1[δ − 1] + d] ≤ δ and Md−1[δ − 1] > j, a contradiction.

Still on diagonal d − 1, if δ occurs on it, then Md[δ] , −∞ holds. So, for g ≤ k − 1 with

Fg ≤ Md−1[δ] < Fg+1, we have that Fg ≤ Md[δ]. Indeed, otherwise we would have two possibilities.

If the path connecting D[0][0] to D[Md−1[δ]][Md−1[δ] + d − 1] via elements ≤ d intersects row

Fg on D[Fg][Fg + d′] for some d′ ≤ d, then D[Fg][Fg + d] ≤ D[Fg][Fg + d′] ≤ δ and Fg > j, a

contradiction. If the path connecting D[0][0] to D[Md−1[δ]][Md−1[δ] + d − 1] via elements ≤ d

intersects row Fg on D[Fg][Fg + d′] for some d′ > d, then the respective path will also intersect

diagonal d on a row > j before reaching Md−1[δ], a contradiction with the fact that j is the last row

on diagonal d where we have an element ≤ δ.

So, for Md[δ] to be relevant, we must have D[|β|][|β| + d + 1] ≥ δ (so there exists no k > 0

such that Md+1[δ − k] = |β|). In this case, if Md[δ] = j, then the following holds. The path (via

elements ≤ d) from D[0][0] to D[j][j + d] goes through an element D[g][g + d′] = δ − 1. If the

last such element on the respective path is on diagonal d, then it must be Md[δ − 1]. If it is on

diagonal d − 1, then either g = Md−1[δ − 1] (and then the path moves on diagonal d via an edge

corresponding to an insertion) or g < Md−1[δ − 1] (and then the path moves on diagonal d via an

edge corresponding to an insertion); in this second case, we could replace the considered path by a

path connecting D[0][0] to D[Md−1[δ− 1]][Md−1[δ− 1] + d − 1] (via elements ≤ δ− 1), which then

moves on diagonal d via an edge corresponding to an insertion, and continues along that diagonal

(with edges corresponding to letters left unchanged). If D[g][g + d′] is on diagonal d + 1 (i.e.,

d′ = d + 1) then, just like in the previous case, we can simply consider the path connecting D[0][0]

to D[Md+1[δ− 1]][Md+1[δ− 1]+ d + 1] (via elements ≤ δ− 1), which then moves on diagonal d via

an edge corresponding to a deletion, and then continues along diagonal d (with edges corresponding

to letters left unchanged). If D[g][g + d′] is on none of the diagonals d − 1, d, d + 1 then we reach

diagonal d by edges corresponding to free insertions from some diagonal d′′ < d. The respective

path also intersects diagonal d − 1 (when coming from d′′ to d by free insertions), so diagonal

d − 1 contains δ and Md−1[δ] , ∞, and we might simply consider as path between D[0][0] and

D[j][j+d] the path reaching diagonal d−1 on position D[Fg][Fg+d−1] (via elements ≤ δ), where

60

4.2. Matching Regular Patterns under Edit Distance 61

Fg ≤ Md−1[δ] < Fg+1, which then moves on diagonal d by an edge corresponding to a free insertion,

and then continues along d (with edges corresponding to letters left unchanged, as Fg is greater or

equal to the row where the initial path intersected diagonal d). This analysis covers all possible cases.

Computing Md[δ]. Therefore, if Md[δ] is relevant (and, as such, Md[δ] , −∞), then Md[δ] can

be computed as follows. Let g be such that Fg ≤ Md−1[δ] < Fg+1 (and g = −1 and Fg = −∞ if

Md−1[δ] = −∞). Let H = max{Md−1[δ − 1], Fg,Md[δ − 1] + 1,Md+1[δ − 1] + 1} (as explained, in

the case we are discussing, at least one of these values is not −∞). Then we have that j ≥ H and the

longest common prefix of β[H + 1 : |β|] and w[H + d + 1 : n] is exactly β[H + 1 : j] (or we could

increase j). So, to compute j = Md[δ], we compute H and then we compute the longest common

prefix β[H + 1 : j] of β[H + 1 : |β|] and w[H + d + 1 : n].

In general, Md[δ] is not relevant either because there exists some s ≥ 0 and δ′ < δ such that

Md+s[δ′] = |β| or because all elements of diagonal d are strictly greater than δ. In the second case, we

note that all values Md−1[δ−1], Fg, Md[δ−1], and Md+1[δ−1] must be −∞ (as otherwise the diagonal

d would contain an element equal to δ), so our computation of Md[δ] returns −∞ (which is correct).

Now, based on these observations, we can see a way to compute the relevant values Md[δ], for

−|β| ≤ d ≤ n and δ ≤ ∆ (without computing the matrix D).

We first construct the word β and longest common prefix data structures for the word βw, allowing

us to compute LCP(β[h : |β|],w[h + d : n]), the length of the longest common prefix of β[h : |β|] and

w[h + d : n] for all h and d.

Then, we will compute the values of Md[0] for all diagonals d. Basically, we need to identify, if

it exists, a path from D[0][0] to D[Md[0]][Md[0] + d] which consists only of edges corresponding

to letters left unchanged, or to free insertions. By an analysis similar to the one done above, we

can easily show that M0[0] is LCP(β[1 : |β|],w[1 : n]) (which is ≥ 1, by our assumptions). Further,

M[d][0] = −∞ for d < 0 and, for d ≥ 0, Md[0] = Fg + LCP(β[Fg + 1 : |β|],w[Fg + 1+ d : n]), where

Fg ∈ F is such that Fg ≤ Md−1[0] < Fg+1 (Md[0] = −∞ if such an element Fg does not exist).

Further, for δ from 1 to ∆ we compute all the values Md[δ], in order for d from −|β| + 1 to n.

We first compute the largest diagonal d′ such that Md′[δ − k] = |β|, for some k > 0. We will

only compute Md[δ], for d from d′ + 1 to n. For each such diagonal d, we compute g such that

Fg ≤ Md−1[δ] < Fg+1 and H = max{Md−1[δ − 1], Fg,Md[δ − 1] + 1,Md+1[δ − 1] + 1}. Then we set

Md[δ] to be H + LCP(β[H + 1 : |β|],w[H + d + 1 : n]) − 1.

Conclusions. This algorithm, which computes all relevant values Md[δ],can be implemented in

O((n + m)∆) time. We first use a linear time algorithm for the computation of the longest common

prefix data structures for β and w (see Section 2.7). Secondly, we use an auxiliary array G of size |β|+

1, which stores for each positive integer i ≤ β the value G[i] = max{g | Fg ≤ i}, and can be computed

in linear time. This allows us to efficiently retrieve the values Fg. Finally, while computing the

61

62 Matching Patterns with Variables under Edit Distance

values Md[δ], for d and δ, we can maintain the value d′ of the greatest diagonal such that there exist k

with Md′[δ−k] = |β|: when we are done with computing all the values Md[δ−1], for all d, we simply

check if we need to update d′ because we might have found some d′′ > d′ for which Md′′[δ−1] = |β|.

Computing Md[δ].

The algorithm for computing the relevant values Md[∆] and how these are used to solve Problem

EDMatchReg is given in Figure 4.2.

Input: w, α

Output: minimal edit distance between α and w in O((n + m)∆)

1 construct β;

2 construct F;

3 init g← −1;

4 construct LCPβ,w;

5 for d ← [−|β| to 0] do
6 Md[0]← −∞;

7 end
8 M0[0]← LCP(β[1 : |β|],w[1 : n]);

9 compute g such that Fg ≤ M0[0] < Fg+1 (g← −1 if F0 > M0[d]);

10 if g = −1 then
11 for d ← [1 to n] do
12 Md[0]← −∞;

13 end
14 else
15 for d ← [1 to n] do
16 Md[0]← Fg + LCP(β[Fg + 1 : |β|],w[Fg + 1 + d : n]);

17 update g such that Fg ≤ Md[0] < Fg+1;

18 end
19 end
20 g← −1;

21 compute d′ = min{d ≤ n | Md[0] = m};

22 for δ← [1 to ∆] do
23 for d ← [d′ + 1 to n] do
24 update g such that Fg ≤ Md−1[δ] < Fg+1;

25

H ← max

Md−1[δ − 1], diagonal below

Fg, for Fg with Fg ≤ Md−1[δ] < Fg+1 ;

M[d][δ − 1] + 1, same diagonal

M[d + 1][δ − 1] + 1, diagonal above

M[d][δ]← H + LCP(β[H + 1 : |β|],w[H + d + 1 : n]) − 1;

26 if (d = n − |β|) ∧ (M[d][δ] = |β|) then
27 return δ;
28 end
29 end
30 maintain d′ = min{d′′ ≤ |β| | Md′′[δ − s] = |β| for some s ≥ 0};

31 end
32 return No solution with ∆ edit operations.;

Figure 4.2: Algorithm to compute the relevant values of M in O((n + m)∆) time.

□

The following result now follows by exponential search.

62

4.3. Matching Patterns with Repeated Variables 63

Theorem 4.4. MinEDMatchReg can be solved in O(nΦ) time, where Φ = dED(α,w).

Proof. We use the algorithm of Theorem 4.3 for ∆ = 2i, for increasing values of i starting with 1 and

repeating until the algorithm returns a positive answer and computes Φ = dED(α,w). The algorithm

is clearly correct. Moreover, the value of i which was considered last is such that 2i−1 < Φ ≤ 2i. So

i = ⌈log2Φ⌉, and the total complexity of our algorithm is O(n
∑⌈log2 Φ⌉

i=1 2i) = O(nΦ). □

4.2.2 Lower Bounds for EDMatchReg and MinEDMatchReg

The upper bounds reported in Theorems 4.3 and 4.4 are complemented by the following lower

bound, known from the literature [14]. Firstly, we recall the OV problem.

Orthogonal Vectors (for short, OV)

Input: Two sets U,V consisting each of n vectors from {0, 1}d, where d ∈ ω(log n).

Question: Do vectors u ∈ U, v ∈ V exist, such that u and v are orthogonal, i.e., for all 1 ≤ k ≤ d,

v[k]u[k] = 0 holds?

It is clear that, for input sets U and V as in the above definition, one can solve OV trivially in O(n2d)

time. The following conditional lower bound is known.

Lemma 4.5 (OV-Conjecture). OVC OV can not be solved in O(n2−ϵdc) for any ϵ > 0 and constant c,

unless the Strong Exponential Time Hypothesis (SETH) fails.

See [32, 166] and the references therein for a detailed discussion regarding conditional lower bounds

related to OV. In this context, the following result is an immediate consequence of [14, Thm. 3].

Theorem 4.6. EDMatchReg can not be solved in time O(|w|h∆g) (or O(|w|h|α|g)) where h + g = 2 − ϵ

with ϵ > 0, unless the Orthogonal Vectors Conjecture fails.

It is worth noting that the lower bound from Theorem 4.6 already holds for very restricted regular

patterns, i.e., for α = xuy, where u is a string of terminals and x and y are variables. Interestingly, a

similar lower bound (for such restricted patterns) does not hold in the case of the Hamming distance,

covered in [78].

4.3 Matching Patterns with Repeated Variables

Our second main result addresses another class of restricted patterns (Section 2.2). To this end, we

consider the class of unary (or one-variable) patterns 1Var, which is defined as follows: α ∈ 1Var

if there exists x ∈ X such that var(α) = {x}. An example of unary pattern is α1 = abxabxxbaab.

4.3.1 Lower Bounds for Unary Pattern

Now we are going to show the following theorem.

63

64 Matching Patterns with Variables under Edit Distance

Theorem 4.7. EDMatch1Var is W[1]-hard w.r.t. the number of occurrences of the single variable x

of the input pattern α.

Before starting the proof of Theorem 4.7 we need the following technical lemma.

Lemma 4.8. Let $ and # be two letters and let S , g, and ℓ be integers. If g ≥ 0, 2g ≤ S , S
2 ≤ ℓ − g,

and ℓ ≤ S then:

1. dED($g($S #S)S−1$S #ℓ, ($S #S)S) = g + (S − ℓ);

2. dED($ℓ#S ($S #S)S−1#g, ($S #S)S) = g + (S − ℓ).

Proof. We only show the first claim, as the second follows identically (as it is symmetrical).

Firstly, it is clear that g + (S − ℓ) edits suffice to transform $g($S #S)S−1$S #ℓ into ($S #S)S .

Now, we will show that we cannot transform $g($S #S)S−1$S #ℓ into ($S #S)S with fewer than S −ℓ+g

edits.

Note that from S
2 ≤ ℓ − g we get ℓ ≥ g + (S − ℓ). So, the suffix #S of ($S #S)S must be obtained

by a series of edits from a suffix of the suffix $S #ℓ of $g($S #S)S−1$S #ℓ. This means that at least

S − ℓ edits must be performed in the respective suffix to obtain S symbols #. This leaves us with

at most g edits remaining to obtain ($S #S)S−1$S . In particular, this means that the prefix $S #S of

($S #S)S−1$S must be obtained from a prefix of the prefix gS #S of $g($S #S)S−1$S #ℓ. As, in the

best case, g $ symbols need to be substituted or removed, it follows that we need to use g edits to

obtain the prefix $S #S of ($S #S)S . As such, we already had to use g + (S − ℓ) edits to transform

$g($S #S)S−1$S #ℓ into ($S #S)S , so it cannot be done with fewer edits. The conclusion follows. □

Proof. Preliminaries. We begin by recalling the following problem:

Median String: MS

Input: k strings w1, . . . ,wk ∈ Σ
∗ and an integer ∆.

Question: Does there exist a string s such that
∑k

i=1 dED(wi, s) ≤ ∆?

(The string s for which
∑k

i=1 dED(wi, s) is minimum is called the median string of the

strings {w1, . . . ,wk}.)

Without loss of generality, we can assume that ∆ ≤
∑k

i=1 |wi| as, otherwise, the answer is clearly

yes (for instance, for s = ε we have that
∑k

i=1 dED(wi, ε) ≤
∑k

i=1 |wi|). Similarly, we can assume that

|s| ≤ ∆ +max{|wi| | i ∈ {1, . . . , k}}.

In [135] it was shown that MS is NP-complete even for binary input strings and W[1]-hard with

respect to the parameter k, the number of input strings.

64

4.3. Matching Patterns with Repeated Variables 65

Reduction: intuition and definition. We will reduce MS to EDMatch1Var, such that an instance of

MS with k input strings is mapped to an instance of EDMatch1Var with exactly k occurrences of the

variable x (the single variable occurring in the pattern).

Thus, we consider an instance of MS which consists in the k binary strings w1, . . . ,wk ∈ {0, 1}∗ and

the integer ∆. As mentioned above, we can assume that in this instance ∆ ≤
∑k

i=1 |wi|.

The instance of EDMatch1Var which we construct consists of a word w and a pattern α, such that α

contains exactly k occurrences of a variable x, and both strings are of polynomial size w.r.t. the size

of the MS-instance. Moreover, the bound on the dED(α,w) defined in this instance equals ∆. That is,

if there exists a solution for the MS-instance such that
∑k

i=1 dED(wi, s) ≤ ∆, then, and only then, we

should be able to find a solution of the EDMatch1Var-instance with dED(α,w) ≤ ∆.

The construction of the EDMatch1Var instance is realized in such a way that the word w encodes

the k input strings, conveniently separated by some long strings over {$, #} (where $, # are two

fresh symbols), while α can be obtained from w by simply replacing each of the words wi by a

single occurrence of the variable x. Intuitively, in this way, for dED(α,w) to be minimal, x should be

mapped to the median string of {w1, . . . ,wk}.

We can now formally define the reduction.

For the k binary strings w1, . . .wk ∈ {0, 1}∗defining the instance of MS, let S = 6(
∑k

i=1 |wi|); clearly

S ≥ 6∆. Let now w = w1($S #S)S w2($S #S)S . . .wk($S #S)S and α =
(
x($S #S)S

)k
.

Reduction: correctness. We prove first the correctness of the reduction, that is, the following claim:

the instance of MS defined by w1, . . . ,wk and ∆ is answered positively if and only if the instance of

EDMatch1Var defined by w, α,∆ is answered positively.

Assume first that the instance of MS defined by w1, . . . ,wk and ∆ is answered positively. Then, it is

immediate to see that dED(α,w) ≤ ∆. Indeed, let w′ =
(
s($S #S)S

)k
be the word obtained from α by

replacing x with the median string s of w1, . . . ,wk. Then, clearly, dED(w′,w) ≤ ∆.

Now, assume that the instance of EDMatch1Var defined by w, α,∆ is answered positively. This

means that there exists some word t ∈ {0, 1, $, #}∗ such that dED(u,w) ≤ ∆ for u =
(
t($S #S)S

)k
.

Therefore, there exists an optimal (w.r.t. length) sequence of edits γ which transforms u into w, such

that the length of γ is at most ∆. As explained in the preliminaries, we can assume that the edits in

the sequence γ are ordered increasingly by the position of u to which they are applied (i.e., left to

right). Our road plan is to show that if such a sequence of edits γ exists, then there exists a sequence

δ of edits of equal length (so also optimal) transforming u into w, such that the edits rewrite the ith

occurrence of the factor t in w into wi, for i from 1 to k, and leave the rest of the string u unchanged.

65

66 Matching Patterns with Variables under Edit Distance

Let u1 be the shortest prefix of u from which we obtain the prefix w1($S #S)S of w when applying

the edits of γ. Clearly, |w1($S #S)S | − S ≤ |u1| ≤ |w1($S #S)S | + S (as the overall distance between u

and w is upper bounded by ∆ ≤ S). Let now u′1 be the longest prefix of u1 from which we obtain w1

when applying the edits of γ, and let u1 = u′1u′′1 . Clearly, the edits of γ transform u′′1 into ($S #S)S .

We are now performing a case analysis.

Case 1: |u′1| ≤ |t|.

Case 1.1: u′′1 = v($S #S)S s, where v, s ∈ {0, 1, #, $}∗ and v is a suffix of t and s a prefix of

(t($S #S)S)k−1. As |u′′1 | = 2S 2 + |v| + |s|, then at least |v| + |s| edits are needed to transform u′′1 into

($S #S)S . We can modify γ such that these operations are deletions of all symbols of v and s, and

obtain a new sequence of edits γ′.

Case 1.2: u′′1 = v($S #S)S−1s, where v ∈ {0, 1, #, $}∗ is a suffix of t and s = $S #ℓ for some ℓ ≥ S − ∆.

We thus have t = u′1v and |v| ≤ 2∆ (because
∣∣∣|u′′1 | − 2S 2

∣∣∣ ≤ ∆). Further, when applying the

operations of γ, after all the edits in u1 were performed, we obtain w2($S #S)S . . .wk($S #S)S from

#S−ℓ(t($S #S)S)k−1 optimally. Hence, from u′′1 we obtain ($S #S)S so, after performing the p edits

corresponding to positions of v (excluding the potential insertions on positions occurring to the right

of the last symbol of v), we must edit them into $ letters, so we must obtain a string $g($S #S)S−1$S #ℓ

for some 0 ≤ g ≤ 2∆. It is immediate that p + g ≥ |v| (as when counting the p edit operations, we

count the symbols which were deleted from v, while all the symbols which were substituted in v

correspond to distinct positions of $g). Now, by Lemma 4.8, since g ≤ 2∆, S − ℓ ≤ ∆, and S ≥ 6∆,

we get that the minimum number of edits needed to transform #g($S #S)S−1#S $ℓ into ($S #S)S is

g + (S − ℓ). So, to transform u′′1 into ($S #S)S we use p + g + S − ℓ ≥ |v| + S − ℓ edits. We can,

therefore, modify γ to obtain a new sequence of edits γ′, which has at most the same length as

γ, in which we first apply all the edit operations from γ to u′1, then we delete all symbols of v,

then we simply leave ($S #S)S alone, then we insert #S−ℓ after ($S #S)S , and we continue by editing

#S−ℓ(t($S #S)S)k−1 into w2($S #S)S . . .wk($S #S)S exactly as in γ. Clearly, we have just replaced

p + g + S − ℓ operations in γ by |v| + S − ℓ edits to obtain γ′. As γ was of optimal length, and

p + g + S − ℓ ≥ |v| + S − ℓ, we have that γ′ must be of optimal length too.

Case 2: |u′1| > |t|. Then u′1 = t$S−ℓ, for some ℓ such that 0 < S − ℓ ≤ ∆.

Case 2.1: u′′1 = $ℓ#S ($S #S)S−2$S #S−g for some g such that (S − ℓ) + g ≤ ∆. Moreover, when con-

sidering the sequence γ, we have that #g(t($S #S)S)k−1 is transformed into w2($S #S)S . . .wk($S #S)S

optimally after the edits in u1 are performed. As |u′′1 | = 2S 2 − g − (S − ℓ), then at least S − ℓ + g

edits are needed to transform u′′1 into ($S #S)S . Now we can modify γ as follows. We first note that,

in γ, the suffix $S−ℓ of u′1 has to be completely rewritten to obtain w1 (as w1 does not contain $

symbols). Therefore, we transform t into w1 by simulating the edits performed in the suffix $S−ℓ by

only applying insertions after the last symbol of t (instead of substitutions in $S−ℓ we do insertions,

the insertions are done as before, and the deletions from $S−ℓ are not needed anymore); the number

66

4.3. Matching Patterns with Repeated Variables 67

of these insertions is at most as big as the number of initial edits applied to the suffix $S−ℓ of u′1.

Then, the factor ($S #S)S following the first t in u is not edited, as it corresponds to the identical

factor of w which follows w1, and then we insert after the first factor ($S #S)S of u a factor #g, with

g insertions, and then continue editing #g(t($S #S)S)k−1 to obtain w2($S #S)S . . .wk($S #S)S as in γ.

The resulting sequence γ′ of edits is at least S − ℓ edits shorter than γ, with S − ℓ > 0. As γ was

optimal, this is a contradiction, so this case is not possible.

Case 2.2: u′′1 = $ℓ#S ($S #S)S−1s where 0 < S − ℓ ≤ ∆ and s ∈ {0, 1, #, $}∗ is a prefix of

(t($S #S)S)k−1. In this case, in γ, we have that the suffix u′ of u occurring after u1 is transformed

into w2($S #S)S . . .wk($S #S)S optimally after the edits in u1 are performed. Now, the suffix s is

transformed, by p edits into #g for some g ≤ 2∆, and we have p + g ≥ |v| (similarly to the Case

1.2). By Lemma 4.8, as in Case 1.2, we get that the minimum number of edits needed to transform

$ℓ#S ($S #S)S−1#g into ($S #S)S is g + (S − ℓ). So, overall, the number of edits needed to transform

$ℓ#S ($S #S)S−1s into ($S #S)S is (S − ℓ) + g + p ≥ (S − ℓ) + |s|. Therefore, we can modify γ as

follows to obtain a new optimal sequence of edits γ′. As in Case 2.1 we simulate the edits in the

suffix $S−ℓ of u′1 by insertions. Then, the factor ($S #S)S is left unchanged. Then we simply delete

the letters of s, and we continue by editing u′ as in γ to obtain w2($S #S)S . . .wk($S #S)S . Clearly, in

γ′ we have at least S − ℓ edits less than in γ, with S − ℓ > 0. As γ was optimal, his is a contradiction,

so this case is also not possible.

This concludes our case analysis.

In all possible cases (1.1 and 1.2), in the newly obtained sequence γ′ of edits, which has the same

optimal length as γ, we have that the prefix t of u is transformed into w1 by a sequence of edits

γ′1 (which ends with the deletion of the suffix v of t), the first factor ($S #S)S of u is then trivially

transformed (by an empty sequence of edits) into the first factor ($S #S)S of w, and then (t($S #S)S)k−1

is transformed into w2($S #S)S . . .wk($S #S)S by an optimal sequence of edits γ′2 (which starts, in

Case 1.1, the deletion of the prefix s of (t($S #S)S)k−1 or, in Case 1.2, with the insertion of a factor

#S−ℓ before (t($S #S)S)k−1).

Now, we can apply the same reasoning, inductively, to the optimal sequence of edits γ′2 which

transforms (t($S #S)S)k−1 into w2($S #S)S . . .wk($S #S)S , and, we will ultimately obtain that there

exists an optimal sequence of edits δ which transforms u into w by transforming the ith factor t of u

into wi, for all i from 1 to k, and leaving the rest of the symbols of u unchanged. As the length of δ

is at most ∆, this means that for the string t we have
∑k

i=1 dED(t,wi) leq∆, so the instance defined by

w1, . . . ,wk and ∆ of MS can be answered positively. This concludes the proof of our claim and, as

such, the proof of the correctness of our reduction.

Conclusion. The instance of EDMatch1Var (i.e., α,w,∆) is of polynomial size w.r.t. the size of the

MS-instance. Therefore, the instance of MinEDMatch1RepVar can be computed in polynomial time,

and our entire reduction is done in polynomial time. Moreover, we have shown that the instance

67

68 Matching Patterns with Variables under Edit Distance

(w, α,∆) of EDMatch1Var is answered positively if and only if the original instance of MS is answered

positively. Finally, as the number of occurrences of the variable x blocks in α is k, where k is the

number of input strings in the instance of MS, and MS is W[1]-hard with respect to this parameter, it

follows that EDMatch1Var is also W[1]-hard when the number of occurrences of the variable x in α

is considered as parameter. This completes the proof of our theorem. □

4.3.2 Solution for Unary Pattern

A simple corollary of Theorem 4.2 is the following:

Corollary 4.9. EDMatch1Var and MinEDMatch1Var can be solved in O(n3|α|x) time, where x is the

single variable occurring in α.

Clearly, finding a polynomial time algorithm for EDMatch1Var, for which the degree of the poly-

nomial does not depend on |α|x, would be ideal. Such an algorithm would be, however, an

FPT-algorithm for EDMatch1Var, parameterized by |α|x, and, by Theorem 4.7 and common param-

eterized complexity assumptions, the existence of such an algorithm is unlikely. This makes the

straightforward result reported in Corollary 4.9 relevant, to a certain extent.

A conclusion of all the results as well as an outlook on future work is presented in Section 7.

68

CHAPTER 5

Matching Patterns with Variables under Simon’s Congru-
ence

This chapter is based on article [65] (see reference below) and the LaTeX code of this article was

used to reproduce it here. The Introduction and Preliminaries of this paper are worked into Chapter

1 and Chapter 2. Further, the notations are adjusted to match the other chapters and provide a

uniform notation across this thesis.

Reference: P. Fleischmann, S. Kim, T. Koß, F. Manea, D. Nowotka, S. Siemer, and M. Wiedenhöft.

Matching Patterns with Variables Under Simon’s Congruence. In O. Bournez, E. Formenti, and

I. Potapov, editors, Reachability Problems - 17th International Conference, RP 2023, Nice, France,

October 11-13, 2023, Proceedings, volume 14235 of Lecture Notes in Computer Science, pages

155–170. Springer, 2023. doi:10.1007/978-3-031-45286-4_12

Description: This paper combined two settings we extensively studied in the group. On the

one hand, we have Simon’s congruence, which asks for the equivalence of the respective sets of

subsequences (up to a specific length) of two words. On the other hand, we have the problem of

matching patterns with variables, which was considered in an approximate setting under string

metrics in Chapter 3 [78] and Chapter 4 [79]. When we combine these two concepts, we ask for

a substitution of the variables in our pattern to reach a word that is k-Simon congruent to a target

word. Contrary to the metrics, this gives us a relation that describes a similarity of the pattern (under

a substitution) and our target word. This problem originated from a joint workshop of our group in

Göttingen and the Dependable Systems group in Kiel, where the co-authors Pamela Fleischmann

and Max Wiedenhöft proposed the problem.

Contribution: I contributed to the complexity results obtained in this paper and was a main

contributor of the NP-hardness reductions.

https://doi.org/10.1007/978-3-031-45286-4_12

70 Matching Patterns with Variables under Simon’s Congruence

5.1 Overview

In this chapter, we study the matching of patterns under Simon’s congruence: we want the word

w and the image of the pattern α under a substitution h to have the same set of subsequences of a

given length k. Further, we consider the problem of finding a substitution h for all the variables in

the pattern α, such that applying this substitution yields a k-subsequence universal word.

Matching under Simon’s Congruence: MatchSimon(α,w, k)

Input: Pattern α, |α| = m, word w, |w| = n, and number k ∈ [n].

Question: Is there a substitution h with h(α) ∼k w?

Matching a Target Universality: MatchUniv(α, k)

Input: Pattern α, |α| = m, and k ∈ N0.

Question: Is there a substitution h with ι(h(α)) = k?

In this problem, ι(w) (the universality index of w) is the largest integer ℓ for which w is ℓ-subsequence

universal. Note that MatchUniv can be formulated in terms of MatchSimon: the answer to

MatchUniv(α, k) is yes if and only if the answer to MatchSimon(α, (1 · · ·σ)k, k) is yes and the

answer to MatchSimon(α, (1 · · ·σ)k+1, k + 1) is no. However, there is an important difference: for

MatchUniv we are not explicitly given the target word w, whose set of k-length subsequences we

want to reach; instead, we are given the number k which represents the target set more compactly

(using only log k bits).

In the problems introduced above, we attempt to match (or reach), starting with a pattern α, the set

of subsequences defined by a given word w (given explicitly or implicitly). We are also going to

extend MatchSimon to the problem of solving word equations under ∼k, defined as follows.

Word Equations under Simon’s Congruence: WESimon(α, β, k)

Input: Patterns α, β, |α| = m, |β| = n, and k ∈ [m + n].

Question: Is there a substitution h with h(α) ∼k h(β)?

Before we go into the results of this work let us state the following assumptions. The problems

addressed in this work deal with matching patterns to words under Simon’s congruence ∼k. For

these problems, the input consists of patterns, words, and a number k. In general, we assume that

each letter of Σ appears at least once, in at least one of the input patterns or words. Therefore, for

input pattern α and word w we assume that Σ = term(α) ∪ alph(w). Hence, σ is upper bounded by

the total length of the input words and patterns. Similarly, the total number of variables occurring in

the input patterns is upper bounded by the total length of these patterns. However, in this section

and in [65], although the number of variables is not restricted, we assume that σ is a constant, i.e.,

70

5.2. Complexity of MatchUniv 71

σ ∈ O(1). Clearly, the complexity lower bounds proven in this setting for the analysed problems are

stronger while the upper bounds are weaker than in the general case, when no restriction is placed

on σ. Note, however, that σ ∈ O(1) is not an unusual assumption, being used in, e.g., [62].

In Section 5.2 we show that MatchUniv is NP-complete, and also present a series of structurally

restricted classes of patterns, for which it can be solved in polynomial time. In Section 5.3, we

approach MatchSimon and show that it is also NP-complete; some other variants of this problem,

both tractable and intractable, are also discussed. Finally, in Section 5.4, we discuss WESimon and

its variants, and characterise their computational complexity.

5.2 Complexity of MatchUniv

In this section, we discuss the MatchUniv problem. In this problem, we are given a pattern α and

a natural number k ≤ n, and we want to check the existence of a substitution h with ι(h(α)) = k.

Note that ι(h(α)) = k means both that h(α) is k-universal and that it is not (k + 1)-universal. A

slightly relaxed version of the problem, where we would only ask for h(α) to be k-universal is

trivial (and, therefore, not interesting): the answer, in that case, is always positive, as it is enough

to map one of the variables of α to (1 · · ·σ)k. The main result of this section is that MatchUniv

is NP-complete. Because the subproofs are long and based on involved ideas, we split them into

two individual sections to make them easier to follow. Based on Lemma 5.2 in Section 5.2.1 we

get NP-hardess and from Lemma 5.7 in Section 5.2.2 we get the containment in NP, such that the

following theorem trivially follows from the upcoming two sections.

Theorem 5.1. MatchUniv is NP-complete.

5.2.1 MatchUniv is NP-hard

To show that MatchUniv(α, k) is NP-hard, we reduce 3CNFSAT (3-satisfiability in conjunctive

normal form) to MatchUniv(α, k). We provide several gadgets allowing us to encode a 3CNFSAT-

instance φ as an MatchUniv-instance (α, k). Finally, we show that we can find a substitution h

for the instance (α, k), such that ι(h(α)) = k, if and only if φ is satisfiable. We begin by recalling

3CNFSAT.

3-Satisfiability for formulas in conjunctive normal form, 3CNFSAT.

Input: Clauses φ B {c1, c2, . . . , cm}, where c j = (y1
j ∨ y2

j ∨ y3
j) for 1 ≤ j ≤ m, and

y1
j , y

2
j , y

3
j from a finite set of boolean variables X B {x1, x2, . . . , xn} and their negations

X̄ B {x̄1, x̄2, . . . , x̄n}.

Question: Is there an assignment for X, which satisfies all clauses of φ?

It is well-known that 3CNFSAT is NP-complete (see [102, 74] for a proof). With this result at hand,

we can prove the following lower bound.

71

72 Matching Patterns with Variables under Simon’s Congruence

Lemma 5.2. MatchUniv is NP-hard.

Proof. We reduce 3CNFSAT to MatchUniv(α, k). Let us consider an instance of 3CNFSAT: formula φ

given by m clauses φ B {c1, c2, . . . cm} over n variables X B {x1, x2, . . . xn} (for simplicity in notation

we define N = n+m). We map this 3CNFSAT instance to an instance (α, k) of MatchUniv(α, k) with

k = 5n + m + 2, the alphabet Σ B {0, 1, #, $} and the variable set X B {z1, z2, . . . zn, u1, u2, . . . un}.

More precisely, we want to show that there exists a substitution h to replace all the variables in

α with constant words, such that ι(h(α)) = 5n + m + 2, if and only if the boolean formula φ is

satisfiable. Our construction can be performed in polynomial time and is of polynomial size with

respect to N. To present this construction, we will go through its building blocks, the so-called

gadgets.

Before we start with these gadgets, let us introduce a renaming function for the variables ρ : X∪X̄ →

X with ρ(xi) = zi and ρ(x̄i) = ui. Also, a substitution h which maps α to a string of universality

index 5n + m + 2 is called valid in the following.

The binarisation gadgets. We use the following gadgets to make the image of variables zi and ui
under a valid substitution be strings over {0, 1}. Recall that we have the alphabet Σ B {0, 1, #, $}

and the set of variables X B {z1, z2, . . . , zn, u1, u2, . . . , un}.

At first, we construct the gadget π# = (z1z2 · · · znu1u2 · · · un01 $)N
6
#, as shown in Figure 5.1. We

observe that for all possible substitutions h, we have two cases for the universality of the image of

this gadget. On the one hand, assume that any of the variables is substituted under h by a string

that contains a #. Then, the universality index of the image of this gadget will be ι(h(π#)) = k′ with

k′ ≥ N6 > k, which is too big for a valid substitution. On the other hand, when all the variables

are substituted under h by strings that do not contain #, this gadget is mapped to a string which is

exactly one arch because there is only one # at its very end. Thus, under a valid substitution h, the

images of the variables zi and ui do not contain #. Note also that, in the arch factorisation of such

a string (h(π#), where h is a valid substitution) we have one arch and no rest.

The gadget π$ = (z1z2 · · · znu1u2 · · · un01 #)N
6
$ is constructed analogously and can be seen in

Figure 5.2. This enforces that under a valid substitution h, the images of the variables zi and ui do

not contain $.

In conclusion, the gadgets π# and π$ enforce that under a valid substitution h, the image of the

variables zi and ui contains only 0 and 1, i.e., they are binary strings.

π# = (z1z2 · · · zn u1u2 · · · un 01 $)N
6
#

No # allowed

Figure 5.1: If any of the variables is substituted by a string that contains a #, then this gadget would
add at least N6 arches, which is already greater than the target universality k = 5n + m + 2.

72

5.2. Complexity of MatchUniv 73

π$ = (z1z2 · · · zn u1u2 · · · un 01 #)N
6
$

No $ allowed

Figure 5.2: If any of the variables is substituted by a string that contains a $, then this gadget would
add at least N6 arches, which is already greater than the target universality k = 5n + m + 2.

The Boolean gadgets. We use the following gadgets to force the image of each zi and ui to be

either in 0∗ or 1∗. Intuitively, mapping a variable zi (respectively, ui) to a string of the form 0+

corresponds to mapping xi (respectively, x̄i) to the Boolean value false (respectively, true). Similarly,

mapping one of these string-variables to a string from 1+ means mapping the corresponding boolean

variable to true. For a beginning, these gadgets just have to enforce that the image of any string-

variable does not contain both 0 and 1. We construct the gadget πz
i

(respectively πu
i
) for every

string-variable zi (respectively, ui), according to Figure 5.3. More precisely, for all i ∈ [n], we

define two gadgets πz
i
= (zi $ #)N6

1001 $ # and πu
i
= (ui $ #)N6

1001 $ #.

We now analyse the possible images of πz
i
= (zi $ #)N6

1001 $ # under various substitutions h. There

are three ways in which zi can be mapped to a string by h. Firstly, if the image of zi contains

both 0 and 1, then for the universality index of the image of πz
i

under the respective substitution

is ι(h(πz
i
)) ≥ N6 > k; such a substitution cannot be valid. Secondly, if the image of zi is a string

from 0∗, then the universality of this gadget is exactly ι(h(πz
i
)) = 2 as shown in Figure 5.4. As a

third option, if the image of zi is a string from 1∗, then the universality of this gadget is exactly

ι(h(πz
i
)) = 2 as shown in Figure 5.5. As for the binarisation gadgets, in the arch factorisation of a

string h(πz
i
), where h is a valid substitution, we have exactly two arches (and no rest). A similar

analysis can be performed for the gadgets πu
i
= (ui $ #)N6

1001 $ #. In conclusion, the gadgets πz
i

and πu
i

enforce that under a valid substitution h, the image of the variables zi and ui contains either

only 0s or only 1s (or is empty).

πz
i
= (zi $ #)N

6
1 0 01 $ #

No 0 and 1 together allowed

Figure 5.3: If any of the variables in the gadget πz
i

(analogous for πu
i
) is substituted by a string that

contains both a 0 and a 1, then this gadget would add N6 arches, which is already greater than the
target universality k = 5n + m + 2.

πz
i
= (zi $ #)N

6
1 0 01 $ #

arch if zi ∈ 0+

Figure 5.4: If any of the variables πz
i

(analogous for πu
i
) consits of only 0’s, this gadget would add 2

arches per variable.

73

74 Matching Patterns with Variables under Simon’s Congruence

πz
i
= (zi $ #)N

6
1 0 01 $ #

arch if zi ∈ 1∗

Figure 5.5: If any of the variables πz
i

(analogous for πu
i
) consits of only 1’s, this gadget would add 2

arches per variable.

The complementation gadgets. The role of these gadgets is to enforce the property that zi and

ui are not both in 0+ or not both in 1+, for all i ∈ [n]. We construct the gadget ξi = $ ziui #, for

every i ∈ [n], according to Figure 5.6. Let us now analyse the image of these gadgets under a valid

substitution (π# and π$ are mapped to exactly one arch each, and πz
i

and πu
i

are mapped to exactly

two arches each). In this case, we observe that ξi is mapped to exactly one complete arch ending on

the rightmost symbol # if and only if the image of one of the variables zi and ui has at least one

0 and the image of the other one has at least one 1. Further, let us consider the concatenation of

two consecutive such gadgets ξiξi+1 and assume that both zi and ui are mapped to strings over

the same letter or at least one of them is mapped to the empty word. In that case, the first arch

must close to the right of the $ letter in ξi+1, hence ξiξi+1 could not contain two arches. Thus, the

concatenation of the gadgets ξ1 · · · ξn is mapped to a string which has exactly n arches if and only

if each gadget ξi is mapped to exactly one arch, which holds if and only if the image of one of

the variables zi and ui has at least one 0 and the image of the other one has at least one 1. When

assembling together all the gadgets, we will ensure that, in a valid substitution, this property holds:

zi and ui are mapped to repetitions of different letters.

ξi = $ zi ui #

Figure 5.6: In order for ξi to contribute an arch, one of zi and ui has to be replaced by only 1’s while
the other must consist of only 0’s.

The clause gadgets. Let c j = (y1
j ∨ y2

j ∨ y3
j) be a clause, with y1

j , y
2
j , y

3
j ∈ X ∪ X̄. We construct

the gadget δj for every clause c j as $ 0ρ(y1
j
)ρ(y2

j
)ρ(y3

j
) #, as shown in Figure 5.7. Now, by all of

the properties discussed for the previous gadgets, we can analyse the possible number of arches

contained in the image of this gadget under a valid substitution. Firstly, note that if at least one

of the variables ρ(y1
j
), ρ(y2

j
), ρ(y3

j
) is mapped to a string containing at least one 1, then this gadget

will contain exactly one arch ending on its rightmost symbol #. Now consider the concatenation

of two consecutive such gadgets δ jδ j+1, and assume that all the variables in δ j are substituted by

only 0s. In this case, the first arch must end to the right of the $ symbol in δ j+1, hence the string to

which δjδj+1 is mapped could not contain two arches. The same argument holds if we look at the

concatenation of the last complementation gadget and the first clause gadget, e.g. ξnδ1.

74

5.2. Complexity of MatchUniv 75

Thus, the concatenation of the gadgets δ1 · · · δm is mapped to a string which has exactly m arches if

and only if each gadget δi is mapped to exactly one arch. This holds if and only if at least one of

the string-variables occurring in δi is mapped to a string of 1s. When assembling together all the

gadgets, we will ensure that at least one of the variables occurring in each gadget δi, for all i ∈ [m],

is mapped to a string of 1s in a valid substitution.

δj = $ 0 ρ(y1j) ρ(y
2
j
) ρ(y3

j
) #

Figure 5.7: In order for δj to contribute an arch, at least one of ρ(y1
j
), ρ(y2

j
) and ρ(y3

j
) has to be

replaced by only 1’s.

Final Assemblage. We finish the construction of the pattern α by concatenating all the gadgets.

That is, α = π#π$πz1π
u
1π
z
2π
u
2 · · · π

z
nπ
u
nξ1ξ2 · · · ξnδ1δ2 · · · δm, as shown in Figure 5.8.

α = π# π$ πz1π
u
1π
z
2π
u
2 · · · π

z
nπ
u
n ξ1ξ2 · · · ξn δ1δ2 · · · δm

1 1 4n n m

Figure 5.8: The concatenation of all gadgets and their respective amount of arches we expect, if we
can find a substitution h with ι(h(α)) = 5n + m + 2.

The correctness of the reduction. We show that there exists a substitution h of the string variables

of α with ι(h(α)) = 5n + m + 2 (i.e., a valid substitution) if and only if we can find an assignment

for all Boolean-variables occurring in φ that satisfy all clauses c j ∈ φ.

Let us first show that if there is a satisfying assignment for Boolean-variables of φ which makes

the formula true, then there exists a substitution h of the string-variables of α such that ι(h(α)) =

5n +m + 2. In this case, we can give a canonical substitution h with h(ρ(xi)) = 1 and h(ρ(x̄i)) = 0 if

xi is assigned true, and h(ρ(xi)) = 0 and h(ρ(x̄i)) = 1 if xi is assigned false. We can easily verify, by

the definition of the gadgets, that under this substitution we have ι(h(α)) = 5n + m + 2. Indeed, in

the images of each gadget π#, π$, πzi, ξi and δi we have exactly one arch, ending on the last symbol

of the respective strings, while in the image of each gadget πz
i

under this substitution there will be

exactly two arches, again ending on their last positions.

Conversely, we want to show that if we have a substitution h of the string-variables such that

ι(h(α)) = 5n + m + 2, then there must be a satisfying assignment of the Boolean-variables for φ.

The general idea is the following. We assume that we have a substitution of the string variables and

compute the arch factorisation greedily and look at the properties enforced by the individual gadgets,

as discussed above. Assume first, towards a contradiction, that the image of some variable zi
contains both 0 and 1 or that it contains # or $. Then, as explained, the number of arches of the

image of π#π$πz1π
u
1π
z
2π
u
2 · · · π

z
nπ
u
n will blow up to a value greater than 5n+m+2, a contradiction. The

same reasoning holds for the variables ui. Therefore, each variable zi is mapped to a string from

75

76 Matching Patterns with Variables under Simon’s Congruence

0∗∪1∗, and the same holds for the variables ui. It follows that h(π#π$πz1π
u
1π
z
2π
u
2 · · · π

z
nπ
u
n) contributes

exactly 4n + 2 arches to the arch factorisation of h(α), and the last arch of this factorisation (when

identified greedily, from left to right) ends on the last letter of πun (which is a # symbol). By this last

property, we are guaranteed that we can look at the suffix h(ξ1ξ2 · · · ξnδ1δ2 · · · δm) of our pattern’s

image under h separately, as no arch from the prefix h(π#π$πz1π
u
1π
z
2π
u
2 · · · π

z
nπ
u
n) extends in it. More

precisely, this allows us to consider the subproblem of analysing h under the assumption that

ι(h(ξ1ξ2 · · · ξnδ1δ2 · · · δm)) = m + n, and, moreover, each string variable is mapped to strings from

0∗ ∪ 1∗. In this subproblem, we have n + m $ symbols in the pattern and we can not introduce new

$ symbols in the image of the string-variables. Therefore, every $ symbol needs to be in exactly

one arch. Now, as discussed when introducing the complementation and clause gadgets, we have to

have the following properties, as otherwise we would have at least two $ symbols in the same arch

and would only get to k′ < m + n arches overall. Firstly, one of each h(ρ(xi)) and h(ρ(x̄i)) has to

consist only of 0s while the other consists only of 1s, and both of them should have length at least 1.

Secondly, at least one of each ρ(y1
j
), ρ(y2

j
) and ρ(y3

j
) has to be substituted by a string from 1+.

Given these properties, we can construct a satisfying assignment of the Boolean-variables from φ by

setting a variable to be true if and only if their corresponding string-variable is mapped to a string

from 1∗. As h(ρ(xi)) and h(ρ(x̄i)) are mapped to strings over distinct alphabets, we get that xi and x̄i

will be assigned distinct truth values. Moreover, at least one of each ρ(y1
j
), ρ(y2

j
) and ρ(y3

j
) has to

be substituted by a string from 1+, so at least one variable per clause is assigned to true. Therefore,

this assignment makes φ true.

This concludes our proof, and shows that MatchUniv(α, k) is NP-hard. □

5.2.2 MatchUniv is in NP

In the following we show that MatchUniv(α, k) is in NP. One natural approach is to guess the

images of the variables occurring in the input pattern α under a substitution h and check whether or

not ι(h(α)) is indeed k. However, it is difficult to bound the size of the images of the variables of

α under h in terms of the size of α and log k (the size of our input), since the strings we look for

may be exponentially long. For example, consider the pattern α = X1: the length of the shortest

k-universal string is kσ [17], which is already exponential in log k. Therefore, we consider guessing

only the subsequence universality signatures for the image of each variable under the substitution.

We show that it is sufficient to guess |var(α)| subsequence universality signatures, one for each

variable, instead of the actual images of the variables under a substitution h using the following

proposition by Schnoebelen and Veron [152].

Proposition 5.3 ([152]). For u, v ∈ Σ∗, we can compute s(uv), given the subsequence universality

signatures s(u) = (γu,Ku,Ru) and s(v) = (γv,Kv,Rv) of each string, in time polynomial in

|alph(uv)| and log t, where t is the maximum element of Ku and Kv.

76

5.2. Complexity of MatchUniv 77

Once we have guessed the subsequence universality signatures of all variables in var(α) under

substitution h, we can compute ι(h(α)) in the following way. We first compute the subsequence

universality signature of the maximal prefix of α that does not contain any variables. We then

incrementally compute the subsequence universality signature of prefixes of the image of α. Let

α = α1α2, where we already have s(h(α1)) from induction. If α2[1] is a variable, we compute

s(h(α1α2[1])) from s(h(α1)) and the guessed subsequence universality signature for variable α2[1],

using Proposition 5.3. Otherwise, we take the maximal prefix w of α2 that does not consist of any

variables. We first compute s(w) and then compute s(h(α1w)) using Proposition 5.3. Once we have

s(h(α)) = (γ,K ,R), we compute ι(h(α)) = K[σ] + 1. Note that the whole process can be done in a

polynomial number of steps in |α|, log k, and σ due to Proposition 5.3, provided that the signatures

are of polynomial size.

Thus, we now measure the encoding size of a subsequence universality signature and, as such,

the overall size of the certificate for MatchUniv that we guess. We can use σ! bits to encode

a permutation γ of a subset of Σ. An integer between 1 and σ − 1 requires logσ bits. Naively,

R requires (2σ)σ bits because there can be 2σ choices for each item. Finally, in the framework

of our problem, note that K[1] − K[|γ|] ≤ 1 by Schnoebelen and Veron [152], and that the

values of K[i] are non-increasing in i. Therefore, we can encode K as a tuple (l, k′) where

k′ = max{K[i] | 1 ≤ i ≤ |γ|} ≤ k and l = |{i ∈ [|γ|] | K[i] = k′}|. This encoding scheme requires at

most logσ + log k bits. Summing up, the overall space required to encode a certificate that consists

of |var(α)| subsequence universality signatures takes at most (1+σ!+ (2σ)σ+ logσ+ log k)|var(α)|

bits. This is polynomial in the size of the input and the number of variables, because we assume a

constant-sized alphabet, i.e. σ ∈ O(1).

It remains to design a deterministic polynomial algorithm that tests the validity of the guessed

subsequence universality signature. Assume that we have guessed the 3-tuple (γ,K ,R). We claim

that there are only constantly many strings we need to check to decide whether or not (γ,K ,R) is

a valid subsequence universality signature - allowing us a brute-force approach. Lemma 5.4 allows

us to “pump down” strings with universality index greater than (2σ)σ, which is a constant.

Lemma 5.4. The tuple (γ,K1,R) is a valid subsequence universality signature iff there exists

w ∈ Σ∗ with ι(w) ≤ (2σ)σ, s(w) = (γ,K2,R), and K1[t] − myKarr2[t] = c ∈ N0 for all t ∈ [|γ|].

Proof. Only if part. Let s(w) = (γ,K2,R) with ι(w) ≥ 1. Then, we have s(γcw) = (γ,K1,R)

where K1[t] = K2[t] + c for all t ∈ [σ] and all c ∈ N0.

If part. Let u be a string with s(u) = (γ,K1,R). If ι(u) ≤ (2σ)σ, the statement is already true.

Otherwise, we have ι(u) > (2σ)σ. Consider two integers i and j (i < j), which are multiples

of σ. Assume that alph(u[Mi+l(u) + 1 : Mi+l+1(u)]) = alph(u[M j+l(u) + 1 : M j+l+1(u)]) for l ∈

[σ − 1] ∪ {0}. Note that the endpoints of the arches after M j+σ(u) depend exactly on the set of

77

78 Matching Patterns with Variables under Simon’s Congruence

characters alph(w[M j+l(u)+ 1 : M j+l+1(u)]) from l = 0 to σ− 1, and the suffix u[M j+σ(u)]. Therefore,

we can remove u[Mi+σ(u) + 1 : M j+σ(u)] without altering γ or R. This argument is illustrated in

Figure 5.9.

Mi

u′ =

Mi+2Mi+σMi+1 Mi+4 Mi+5 Mi+2σ

archc

archb

archa

Mi

u =

Mi+2Mi+σMi+1 Mj Mj+2 Mj+σMj+4 Mj+5Mj+1

σ = 3

Mj+2σ

archc

archb

archa

same alph

Figure 5.9: (Figure by Sungmin Kim) We can safely remove the substring u[Mi+σ(u) + 1 : M j+σ(u)]
to obtain u′ with the same γ and R, and all K values are lower by j−i

σ .

Now, let K2 be the array of integers obtained by subtracting j−i
σ from all values in K1. Then,

s(u[1 : Mi+σ(u)]u[M j+σ(u) + 1 : |u|]) = (γ,K2,R). Since there can be naïvely 2σ choices of

alph(u[Mi+l(u)+ 1 : Mi+l+1(u)]) for each l ∈ [σ− 1]∪ {0}, any string with ι(u) > (2σ)σ is guaranteed

to have integers i and j that satisfy the above conditions by the pigeonhole principle. Therefore, we

will reach a string w with ι(w) ≤ (2σ)σ and s(w) = (γ,K2,R), where K1[t] − K2[t] = c for some

non-negative constant c and all t ∈ [σ] if we repeatedly apply the same argument to remove arches.

□

Lemma 5.4 limits the search space for the candidate string corresponding to a tuple (γ,K ,R) by

mapping valid subsequence universality signatures to subsequence universality signatures for strings

with universality index at most (2σ)σ. Therefore, we need to investigate those strings where there

are up to σ · (1+ (2σ)σ)+ 1 terms in its marginal sequence. The following lemma bounds the length

of the substring between two consecutive marginal sequence terms in such a string. The conclusion

of this line of thought follows then, in Corollary 5.6.

Lemma 5.5. For a given string w, let w = uvx where v = w[Mi(w) + 1 : Mi+1(w)] , ε, and

u = w[1 : Mi(w)], and x = w[Mi+1(w) + 1 : |w|] for some integer i ≥ 1. For a permutation v′ of

alph(v) that ends with v[|v|], we have s(uvx) = s(uv′x).

78

5.2. Complexity of MatchUniv 79

Proof. Since v is between two consecutive marginal sequence terms, all arches for any signature

letter in uvx must end at a position no more than |u| or at a position no less than |uv| Arches that

end at a position no more than |u| in uvx will end at the same positions in uv′x because they only

depend on u. Suppose that an arch for signature letter a starts at a position no more than |u| and

ends at a position no less than |uv| in uvx. Let i be the minimum non-negative integer that allows

alph(ra(u)vx[1 : i]) = Σ. If i ≥ 1, we have alph(ra(u)v) , Σ. Since alph(ra(u)v) = alph(ra(u)v′),

the minimum integer i′ that allows alph(ra(u)v′x[1 : i′]) = Σ is equal to i. On the other hand,

if i = 0, then we have alph(ra(u)v) = Σ and alph(ra(u)v[1 : |v| − 1]) , Σ. Since we have

v′[|v′|] = v[|v|] and alph(v′[1 : |v′| − 1]) = alph(v[1 : |v| − 1]), the arch ends exactly at |uv′| in

uv′x. The number of arches that continues afterwards and the corresponding letters in the rest are

thus equal for uvx and uv′x. Finally, even if v is in the rest of the arch factorization for a signature

letter a, we still have alph(ra(uvx)) = alph(ra(uv′x)) because alph(v) = alph(v′). □

Corollary 5.6. The tuple (γ,K ,R) is a valid subsequence universality signature if and only if there

exists a string w of length at most σ · (σ · (1 + (2σ)σ) + 1) and a constant c ∈ N0 that satisfies

s(w) = (γ,K − c,R).

We can now show the following result.

Lemma 5.7. MatchUniv(α, k) is in NP.

Proof. Follows from Proposition 5.3 and Corollary 5.6. Firstly, for a guessed sequence of univer-

sality signatures (γx,Kx,Rx), for x ∈ var(α), we check their validity. For that, we enumerate all

strings of length up to the constant σ · (σ · (1+ (2σ)σ)+1) over Σ and see if there exist strings wx such

that s(wx) = (γx,Kx − cx,Rx) for some constant cx ≤ k. Since σ is constant, this takes polynomial

time. We then use Proposition 5.3 to check if the guessed signatures lead to an assignment h of the

variables such that ι(h(α)) = k, as already explained. Since we have a polynomial size bound on the

certificate and a deterministic verifier that runs in polynomial time, we obtain that MatchUniv(α, k)

is in NP. □

5.2.3 Tractable classes of pattern in MatchUniv

Further, we describe two classes of patterns, defined by structural restrictions on the input patterns,

for which MatchUniv can be solved in polynomial time.

Proposition 5.8. a) MatchUniv(α, k) is in P when there exists a variable that occurs only once

in α. As such, MatchUniv(α, k) is in P for the class of regular patterns (see, e.g., [59] and the

references therein), where each variable occurs only once. b) MatchUniv(α, k) is in P when |var(α)|

is constant.

79

80 Matching Patterns with Variables under Simon’s Congruence

Proof. a) Let x be the variable that occurs only once in α. Then, we can uniquely rewrite α = α1xα2.

We will successively define three substitutions h1, h2, h3, all of which map variables that are not

x to the empty string, i.e., h1(x′) = h2(x′) = h3(x′) = ε for all x′ ∈ X \ {x}. Now, let h1(x) = ε

as well. We claim that k ≥ ι(h1(α)) if and only if MatchUniv(α, k) is true. For any substitution h,

we have ι(h1(α)) ≤ ι(h(α)) because h1(α) ⪯ h(α). Therefore, the problem is false if k < ι(h1(α)).

Moreover, if k = ι(h1(α)), the problem is true by definition. Now, assume k > ι(h1(α)) and let

h2(x) be a permutation of Σ \ r(h2(α1)). Then, ι(h2(α)) = ι(h2(α1)) + 1 + ι(h2(α2)), because

r(h2(α1x)) = ε. Note that we either have ι(h2(α)) = ι(h1(α)) or ι(h1(α)) + 1. Finally, for an

integer i = k − ι(h2(α)), let h3(x) = h2(x)γi where γ is a permutation of Σ. We now have

ι(h3(α)) = ι(h3(α1)h2(x)) + i + ι(h3(α2)) = i + ι(h2(α)).

Thus, for any k ≥ ι(h1(α)), there exists a substitution h such that k = ι(h(α)). We therefore compute

ι(h1(α)), the universality index of the image, and then return true if and only if ι(h1(α)) ≤ k, which

can be done in polynomial time. □

b) The subsequence universality signature s(h(xi)) of the image of some variable xi ∈ var(α) under

substitution h consists of three items, a permutation γi of a subset of Σ, an arrayKi of σ integers, and

an array Ri of σ subsets of Σ. Recall from the size estimation of such a universality signature that

Ki can be represented with two integers li and ki, where Ki[j] = ki for all j ∈ [li] and Ki[j] = ki − 1

for all j ∈ [li + 1 : |γi|]. Note that there are
∑σ

j=0 j! choices for γ, at most σ choices for li, and (2σ)σ

choices for R. Therefore, if we treat ki as a variable whose value should be determined, we can

enumerate for all possible assignments of γi, li, and Ri for all i ∈ [|var(α)|] in constant time under

the assumption that σ and |var(α)| are constant.

Now, for a fixed set of γis, lis, and Ris, we find the minimum value k′i of ki that validates (γi,Ki,Ri)

as a subsequence universality signature by enumerating all strings up to length σ · (σ · (1+ (2σ)σ)+1)

using Corollary 5.6. If no such k′i exists, we move on to the next set of γis, lis, and Ris. Since

Lemma 5.4 allows us to add an arbitrary number of arches while not altering γi and Ri, we first

assume that the number of additional arches is zero and compute how many more arches we need

for h(α) to reach a universality index of k. We compute this number by counting the number of

arches through an arch factorization on α. Specifically, for each rewriting α1xiα2, we compute the

minimal j ∈ [|γ|] that allows alph(r(h(α1))) ∪ alph(γ[1 : j]) = Σ. If no such j exists, then we

simply compute alph(r(h(α1xi))) = alph(r(h(α1))) ∪ alph(γ) without incrementing the number

of arches. Then, if j ≤ li, we add k′i arches to the total arch count. If j > li, we add k′i − 1 arches

instead. Finally, we continue the arch factorization process with alph(r(h(α1xi))) = Ri[j]. This

way, we can compute the minimum number of arches the image of α can have for a fixed set of γis,

lis, and Ris.

Let d be the total number of additional arches we need for the image of α to reach a universality

index of k. Note that an additional arch for each variable xi will contribute to |α|xi more arches in

the image of α. However, if the subsequence universality signature features γi with alph(γi) , Σ,

80

5.3. Complexity of MatchSimon 81

then we cannot add any more arches for each variable. Let I = {i ∈ [|var(α)|] | |γi| = σ}. Now, the

problem boils down to finding how many additional arches we need for the image of each variable xi

with i ∈ I while making the universality index of the image of α exactly k. Let di be the number of

additional arches for each occurrence of variable xi with i ∈ I. We can solve for dis the following

system of linear inequalities:

∑
i∈I

|α|xidi ≤ d,∑
i∈I

−|α|xidi ≤ −d,

− di ≤ 0 ∀i ∈ I

Note that the first two inequalities imply
∑|var(α)|

i=1 |α|xidi = d and the last |var(α)| inequalities

enforce positive values for each di. If there is an integer solution for the system, then we can assign

di more arches for the image of xi, and the universality index of the image of α will be exactly k.

Because |var(α)| is a constant, this system can be solved in time polynomial in log H, where H is

the maximum between k and the greatest coefficient of a variable in the above system (in absolute

value) [93]. □

5.3 Complexity of MatchSimon

Further, we discuss the MatchSimon problem. In the case of MatchSimon, we are given a pattern α,

a word w, and a natural number k ≤ n, and we want to check the existence of a substitution h with

h(α) ∼k w. The first result is immediate: MatchSimon is NP-hard, because MatchSimon(α,w, |w|)

is equivalent to Match(α,w), and Match is NP-complete.

Lemma 5.9. MatchSimon is NP-hard.

Proof. We note that MatchSimon(α,w, |w|) is equivalent to the NP-complete Match(α,w). □

To understand why this results followed much easier than the corresponding lower bound for

MatchUniv, we note that in MatchSimon we only ask for h(α) ∼k w and allow for h(α) ∼k+1 w,

while in MatchUniv h(α) has to be k-universal but not (k+1)-universal. So, in a sense, MatchSimon

is not strict, while MatchUniv is strict. So, we can naturally consider the following problem.

Matching under Strict Simon’s Congruence: MatchStrictSimon(α,w, k)

Input: Pattern α, |α| = m, word w, |w| = n, and k ∈ [n].

Question: Is there a substitution h with h(α) ∼k w and h(α) /k+1 w?

81

82 Matching Patterns with Variables under Simon’s Congruence

Adapting the reduction from Lemma 5.2, we can show that MatchStrictSimon is NP-hard.

Lemma 5.10. MatchStrictSimon is NP-hard.

Proof. We refer to the notations from Lemma 5.2. We use the same reduction from 3CNFSAT and

note that α can either be mapped to a string h(α) with ι(h(α)) ≤ 5n+m+ 2 (with equality only if the

input instance of 3CNFSAT is satisfiability) or to a string h(α) with ι(h(α)) ≤ (n + m)6. Therefore,

consider the instance of MatchStrictSimon with input the pattern α constructed in the reduction,

w = (10 $ #)5n+m+3, and k = 5n + m + 2. Clearly, there exists a substitution h with h(α) ∼k w and

h(α) /k+1 w if and only if there exists a substitution h with ι(h(α)) = k. Such a substitution exists if

and only if the given instance of 3CNFSAT is satisfiable. □

We can also show an NP-upper bound: it is enough to consider as candidates for the images of the

variables under the substitution h only strings of length O((k + 1)σ); longer strings can be replaced

with shorter, ∼k-congruent ones, which have the same impact on the sets Sk(h(α)). The following

holds.

Theorem 5.11. MatchSimon and MatchStrictSimon are NP-complete.

Proof. By Lemmas 5.9 and 5.10, it is enough to show that both problems are in NP.

We make some observations first. Note that Sk(w1w2) = Σ≤k ∩ Sk(w1)Sk(w2). Thus, for a pattern α

and two substitutions h1 and h2 where h1(x) ∼k h2(x) for all variables x ∈ X, we have w ∼k h1(α) if

and only if w ∼k h2(α). Moreover, Kim et al. [103] showed that, for a given string w, the length of

the shortest string in the set {u ∈ Σ∗ | u ∼k w} is at most
(
k+σ
σ

)
≤ kσ.

Based on these observations, we can now give NP-algorithms for both problems. We note that these

problems reduce to the (exact) pattern matching problem when k ≥ |w|. For MatchSimon, if k ≥ |w|,

we answer MatchSimon(α,w, k) positively if and only if α matches w. For MatchStrictSimon, if

k ≥ |w|, we always answer MatchStrictSimon(α,w, k) negatively. Indeed, if there exists h such

that h(α) ∼k w, then h(α) ∼|w| w. It follows that h(α) = w and h(α) ∼k+1 w, as well; the answer to

MatchStrictSimon(α,w, k) should therefore be no.

Hence, from now on, we can assume that k < |w|.

Let us consider first the problem MatchStrictSimon. From the observations we have made at the

beginning of this proof, and taking into account that we need to consider strings congruent under

∼k+1, we can conclude that there exists a substitution h such that h(α) ∼k w and h(α) /k+1 w if and

only if there exists such a substitution h where the length of the image of each variable is (k + 1)σ.

Since k is at most |w| and σ is a constant, we only need to test certificates of polynomial length

which encode the substitution. The verifier can then simply substitute the variables in the pattern,

which will yield a string of length at most (k + 1)σ|α|. Now, we can compute the largest ℓ for which

82

5.4. Complexity of WESimon 83

h(α) ∼ℓ w in O(|h(α)| + |w|) = O((|w| + 1)σ|α| + |w|) time [76], which is polynomial in the size of

the input, under the assumption that σ is constant. If ℓ = k, then we answer the respective instance

positively. Therefore, the problem is in NP.

A similar argument holds for MatchSimon (but, in that case, it is enough to look for substitutions

where the image of the variables is at most kσ, as we only deal with ∼k). On the other hand, note

that the same argument cannot be applied to MatchUniv, because there is no bound on the size of

k. This makes the size of the certificate, kσ, exponentially large in log k, which is the size of the

encoding for a binary representation of k. □

Finally, note that MatchSimon and MatchStrictSimon are in P when the input pattern is regular.

Proposition 5.12. If α is a regular pattern, then both of the problems MatchSimon(α,w, k) and

MatchStrictSimon(α,w, k) are in P.

Proof. We consider the problem MatchSimon(α,w, k). We assume that α is a regular pattern

α = w0x1w1 · · · xℓwℓ, where, for i ∈ [ℓ], xi is a variable and, for i ∈ [ℓ] ∪ {0}, wi is a string of

constants. The language L(α) of all words which can be obtained by replacing the variables of α

by constant strings is regular, and we can construct in polynomial time a non-deterministic finite

automaton Nα accepting it (it is the automaton accepting the language described by the regular

expression w0Σ
∗w1 · · ·Σ

∗wℓ). Now, using the results of [103], we can construct in polynomial time

(when the size of the input alphabet σ is constant) a deterministic finite automaton Dw,k accepting

the words which are ∼k equivalent to w. Now, we simply check if there is a word accepted by both

these automata (Nα and Dw,k), which can be done in polynomial time. We return the answer to this

check as the answer to MatchSimon(α,w, k).

Further, we consider the problem MatchStrictSimon(α,w, k). Just as before, we construct the

NFA Nα and the DFA Dw,k. Moreover, we construct the DFA Dw,k+1 and its complement D′w,k+1

(which accepts the words which are not ∼k+1 equivalent to w). Now, we see if there is a word

accepted by Nα and Dw,k and D′w,k+1. Clearly, all steps can be done in polynomial time. We return

the answer to this check as the answer to the problem MatchStrictSimon(α,w, k). □

5.4 Complexity of WESimon

In this section, we address the WESimon problem, where we are given two patterns α and β, and

a natural number k ≤ n, and we want to check the existence of a substitution h with h(α) ∼k h(β).

The first result is immediate: this problem is NP-hard because MatchSimon, which is a particular

case of WESimon, is NP-hard.

83

84 Matching Patterns with Variables under Simon’s Congruence

To show that the problem is in NP, we need a more detailed analysis. If k ≤ |α| + |β|, the same

proof as for the NP-membership of MatchSimon works: it is enough to look for substitutions of the

variables with the image of each variable having length at most kσ, and this is polynomial in the size

of the input. If k > |α| + |β|, and β = w contains no variable, then this is an input for MatchSimon

with k greater than the length of the input word w, and we have seen previously how this can be

decided. Finally, if both α and β contain variables, then the problem is trivial, irrespective of k: the

answer to any input is positive, as we simply have to map all variables to (1 · · ·σ)k and obtain two

∼k-congruent words. Therefore, we have the following result.

Theorem 5.13. WESimon is NP-complete.

To avoid the trivial cases arising in the above analysis for WESimon, we can also consider a stricter

variant of this problem:

Word Equations under Strict Simon’s Congruence: WEStrictSimon(α, β, k)

Input: Patterns α, β, |α| = m, β = n, and k ∈ [m + n].

Question: Is there a substitution h with h(α) ∼k h(β) and h(α) /k+1 h(β)?

Differently from WESimon, we can show that this problem is NP-hard, even in the case when both

sides of the pattern contain variables.

Lemma 5.14. WEStrictSimon is NP-hard, even if both patterns contain variables.

Proof. We refer to the notations from Lemma 5.2. We use the same reduction from 3CNFSAT and

note that α can either be mapped to a string h(α) with ι(h(α)) ≤ 5n+m+ 2 (with equality only if the

input instance of 3CNFSAT is satisfiability) or to a string h(α) with ι(h(α)) ≤ (n + m)6. Therefore,

consider the instance of WEStrictSimon with input the pattern α constructed in the reduction,

the second pattern β = (10 $ #)5n+m+3x, where x is a fresh string-variable, and k = 5n + m + 2.

Clearly, there exists a substitution h with h(α) ∼k h(β) and h(α) /k+1 h(β) if and only if there exists

a substitution h with ι(h(α)) = k. Such a substitution exists if and only if the given instance of

3CNFSAT is satisfiable. □

Regarding the membership in NP: if k is upper bounded by a polynomial function in |α| + |β|

(or, alternatively, if k is given in unary representation), then the fact that WEStrictSimon is in

NP follows as in the case of MatchStrictSimon. The case when k is not upper bounded by a

polynomial in |α| + |β| remains open. We can show the following theorem.

Theorem 5.15. WEStrictSimon is NP-complete, for k ≤ poly(|α|, |β|).

A conclusion of all the results as well as an outlook on future work is presented in Section 7.

84

CHAPTER 6

The Edit Distance to k-Subsequence Universality

This chapter is based on article [50] (see reference below) and the LaTeX code of this article was

used to reproduce it here. The Introduction and Preliminaries of this paper are worked into Chapter

1 and Chapter 2. Further, the notations are adjusted to match the other chapters and provide a

uniform notation across this thesis.

Reference: J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer. The edit distance

to k-subsequence universality. In M. Bläser and B. Monmege, editors, 38th International Symposium

on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,

Germany (Virtual Conference), volume 187 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.STACS.2021.25

Description: We started to investigate for two words that are not ∼k-congruent; what is the minimal

number of edit operations (edits distance) that we need to perform on the first word to obtain two

∼k-congruent words? We showed combinatoric and algorithmic results on the particular case of the

second word being a k-universal word with a compatible alphabet.

Contribution: In this paper, I was a main contributor for developing the data structures and

algorithms regarding changing the universality index of words via the insertion and substitution

operations. Further, I presented this work at STACS 2021 in Saarbrücken (Germany) and several

workshops. A video of my talk can be found on YouTube under this URL (https://www.youtube.

com/watch?v=YkRy9WYW8EQ&ab_channel=SaarlandInformaticsCampus).

https://doi.org/10.4230/LIPICS.STACS.2021.25
https://www.youtube.com/watch?v=YkRy9WYW8EQ&ab_channel=SaarlandInformaticsCampus
https://www.youtube.com/watch?v=YkRy9WYW8EQ&ab_channel=SaarlandInformaticsCampus

86 The Edit Distance to k-Subsequence Universality

6.1 Overview

As described in the introduction and preliminaries (Chapter 1 and 2), asymptotically optimal

algorithms are known for deciding whether two words w and u are ∼k-congruent. Thus, similarly

to the case of other relations on strings (e.g., [11, 23]), it is natural to ask, for two words w and u,

which are not ∼k-congruent, what is the minimal number of edit operations (edits, for short) that

we need to perform on them in order to obtain two ∼k-congruent words. The edits we consider are

the usual letter-insertion, -deletion, -substitution, and the scenario we assume is the following: we

edit one word only (say w) and attempt to reach, with a minimal number of edits, an intermediate

word which has the same subsequences of length k as the second input word (namely u). This

formulation is essentially an instance of a word-to-language edit distance problem, in which we

wish to compute the distance between w and the language Lu,k of words which are ∼k-congruent

to u. It is well documented that word-to-language edit distance problems, alongside the classical

word-to-word and also the language-to-language variants, are well motivated and have consequently

been well studied (see, e.g., [162, 139, 86, 34, 92, 46, 47]).

In our case, the languages Lu,k are regular. In particular, for a given subsequence v of length k of u,

we can easily construct a DFA recognising the language of all words containing v as a subsequence.

Consequently, a finite automaton accepting Lu,k can be obtained as a boolean combination of these

DFAs. In fact, for a positive integer k, the set of all languages which can be written as the union

of several languages Lu,k, where u are words of a finite set, is the class of k-piecewise testable

languages [156, 157, 123]. Therefore, if we take as input the word w and the language Lu,k given

as an automaton Au,k with q states, we can solve our distance problem in time O(|w|q2) [162, 6].

However, this is not necessarily efficient, since even when Au,k is a minimal NFAs accepting Lu,k,

the number q of states can be exponential in the size of the alphabet (and hence in the length of u),

see appendix of [50]. Consequently, if we consider the input to be (w, u, k) rather than (w, Au,k), the

exact complexity remains unclear. We can, however, guarantee inclusion in NP as we can trivially

rewrite w into the shortest word u ∈ Lu,k using at most |w| + |u| edits.

It is also worth pointing out that the order of w and u in the input matters: the number of edits

necessarily applied to w order to reach a word w′ such that w′ ∼k u holds, is not generally equal to

the number of edits needed to apply on u in order to reach a word u′ such that u′ ∼k w. Consider, for

example, the words w = aba, u = aaabbbaaa, and k = 2. We need one insertion to transform w into

abab, which is ∼2-congruent to u, but we need two deletions to transform u into aaabaaa, which

is ∼2-congruent to w. An intuitive explanation for this is that w is closer w.r.t. the edit distance

to the set Lu,k of words which are ∼k-congruent to u than u is to the set Lw,k of words which are

∼k-congruent to w, and we only need to edit each of our words until it reaches the word which is

closest to them from the respective sets.

86

6.1. Overview 87

Essentially, we are considering the word-to-language edit distance problem for regular languages

(in fact, piecewise testable languages) which admits a particularly succinct representation: a single

word u. One way to generalise this is to consider the edit distance from a word to the closure of a

given language under ∼k. The problem remains decidable when considering the closures of regular

or context-free languages (the regular case can be solved in nondeterministic polynomial time when

k is a constant). On the other hand, we have already mentioned how taking the closure under ∼k

can result in an exponential blow-up in the size of the representation of the language. Going in the

other direction, one of the most natural restrictions is to consider only words u over an alphabet Σ

for which all length-k subsequences over Σ occur, called k-subsequence universal words (called,

for short, k-universal words) w.r.t. the alphabet Σ. This case is also among the ones for which

the corresponding automata for Lu,k may be exponentially large, remaining thus non-trivial. This

restriction forms the focus of our work.

The focus of our work. In some cases, the problem introduced above admits an input-specification

where the target language is defined in a way which is both easier-to-use and more succinct. One of

these cases is the already mentioned language of k-subsequence universal words w.r.t. an alphabet

Σ = {1, . . . , σ}. While this language can be defined by a word (1 · 2 · · ·σ)k of length kσ or by an

NFA with Θ(2σ) states, it can also be simply specified by the number k and the alphabet Σ (or even

only the size of this alphabet).

The main contribution of our work, described below, is the study of the following problem: given

a word w and a number k, compute the minimum number of edits we need to apply to w in order

to obtain a k-universal word w.r.t. alph(w) (see Section 6.6 for a discussion on why the alphabet Σ

used in the definition of universality is chosen here to be the set alph(w) of letters occurring in the

input word w). As such, we are interested in the edit distance from the input word w to the set of

k-universal words w.r.t. alph(w). We give a series of efficient algorithms showing how to solve this

problem.

This investigation seems interesting to us as the language of k-universal words plays an interesting

role in the overall picture described in Section 1.2.

Our results. The maximum k for which a word w is k-universal is called the universality index of

w, and denoted ι(w). Firstly, we note that when we want to increase the universality index of a word

by edits, it is enough to use only insertions. Similarly, when we want to decrease the universality

index of a word, it is enough to consider deletions. So, to measure the edit distance to the class of

k-subsequence universal words, for a given k, it is enough to consider either insertions or deletions.

However, changing the universality of a word by substitutions (both increasing and decreasing it) is

interesting in itself as one can see the minimal number of substitutions needed to transform a word

w into a k-universal word as the Hamming distance [85] between w and the set of k-universal words.

Thus, we consider all these operations independently and propose efficient algorithms computing

87

88 The Edit Distance to k-Subsequence Universality

the minimal number of insertions, deletions, and substitutions, respectively, needed to apply to a

given word w in order to reach the class of k-universal words (w.r.t. the alphabet of w), for a given

k. The time needed to compute these numbers is O(nk) in the case of deletions and substitutions, as

well as in the case of insertions when k ≤ n (for larger values of k it is just the time complexity of

computing kσ − n, which is the value of the distance in that case). These algorithms are presented

in the Section 6.3, and work in optimal linear time for constant k.

These algorithms are based, like most edit distance algorithms, on a dynamic programming approach.

However, implementing such an approach within the time complexities stated above does not seem

to follow directly from the known results on the word-to-word or word-to-language edit distance.

In particular, we do not explicitly construct any k-universal word nor any representation (e.g.,

automaton or grammar) of the set of k-universal words, when computing the distance from the input

word w to this set. Rather, we obtain the k-universal word which is closest w.r.t. edit distance to w as

a byproduct of our algorithms. In our approach, we first develop (Section 6.2) several efficient data

structures (most notably Lemma 6.5). Then (Section 6.3), for each of the considered operations, we

make several combinatorial observations, allowing us to restrict the search space of our algorithms,

and creating a framework where our data structures can be used efficiently.

Finally (in Section 6.5), we give algorithms running in (n logO(1) σ)-time computing the minimum

number of insertions (respectively, substitutions) we need to apply to w in order to obtain a k-

universal word, with k > ι(w). These algorithms rely heavily on the fact that computing the edit

distance to k-universality can be reformulated, in this case, as computing the path of length k of

minimum weight in a weighted DAG with the Monge property. In particular, these algorithms

provide optimal linear-time solutions for our problem in the case of increasing the universality-index

of words over constant-size alphabets.

6.2 Problem specific Toolbox

In the first part of this section, we present data structures which will be decisive in obtaining efficient

solutions for the approached problems. In the second part of the section, we give examples for the

aforementioned data structures. Our running example will be the word w = bananaban, on which

we illustrate some of the notions we define here.

6.2.1 Algorithms and Data Structures

For a word w over an alphabet Σ, a position j of w, and a letter a ∈ Σ which occurs in w[1 : j], let

last j[a] = max{i ≤ j | w[i] = a}, the last position where a occurs before j; if a does not occur in

w[1 : j] or for j = 0, then, by convention, last j[a] = |w| + 1. Let S j = {last j[a] | a ∈ alph(w[1 : j])}.

If i, j are two positions of w, let ∆(i, j) be the number of distinct letters occurring in w[i : j], i.e.,

∆(i, j) = |alph(w[i : j])|; if i > j, then ∆(i, j) = 0. For a position i of w, and a letter a ∈ Σ, let

di[a] = ∆(lasti[a], i).

88

6.2. Problem specific Toolbox 89

Lemma 6.1. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can compute in

O(n) the values ∆(1, ℓ), for all ℓ ∈ [1 : n].

Proof. We define an array C[1 : σ], whose elements are initialised with 0 and f = 0. Now, we will

traverse the positions of the word left to right. When we reach position ℓ, we do the following. If

C[w[ℓ]] = 0, then we set C[w[ℓ]] = 1 and we increment f by 1. We set ∆(1, ℓ) = f . □

The pseudocode for this algorithm is given in Algorithm 1.

Algorithm 1: Calculation of ∆(1, i) for all i ∈ [1 : n]
Input :word w, alphabet Σ
Output :∆(i − σ + 1, i) for i ∈ [σ : n]

// initialization
1 int f ← 0; int n← |w|; int σ← |Σ|;
2 int C[1 : σ] = 0;

3 for int i← 1 to n do
4 if C[w[i]] = 0 then
5 f ← f + 1;
6 end
7 C[w[i]]← C[w[i]] + 1;

8 ∆(1, i)← f ;
9 end

Lemma 6.2. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can compute in

O(n) the values ∆(i − σ + 1, i), for all i ∈ [σ : n].

Proof.

We define an array C[1 : σ], whose elements are initialised with 0 and f = 0. Now, we will traverse

the positions of the word left to right as shown in 2. When we reach position i, we do the following.

If C[w[i]] = 0, we increment f by 1 since we saw a new letter. Then, C[w[i]] is incremented by 1.

When i = σ, we set ∆(1, i) = f . When i > σ, we decrement C[w[i − σ]] by one, and if the value

of C[w[i − σ]] is now 0, meaning that it does not occur in w[i − σ + 1 : i], we decrement f by 1.

Finally, ∆(i − σ + 1, i) is set to f . □

The pseudocode for this algorithm is given in Algorithm 2.

Lemma 6.3. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can compute in

O(n) time last jσ+1[a] and d jσ+1[a], for all a ∈ Σ and all integers 1 ≤ j ≤ (n − 1)/σ.

Proof. We define an array C[1 : σ], whose elements are initialised with ∞, a variable f = 0, as

well as a doubly linked list R, which will have at most σ elements from [1 : σ], and is empty at

the beginning, and an array P[1 : σ] of pointers to the elements of R (initially they are all set to an

undefined value∞).

89

90 The Edit Distance to k-Subsequence Universality

Algorithm 2: Calculation of ∆(i − σ + 1, i) for all i ∈ [σ : n]
Input :word w, alphabet Σ
Output :∆(i − σ + 1, i) for i ∈ [σ : n]

// initialization
1 int f ← 0; int n← |w|; int σ← |Σ|;
2 int C[1 : σ] = 0;

3 for int i← 1 to n do
4 if C[w[i]] = 0 then
5 f ← f + 1;
6 end
7 C[w[i]]← C[w[i]] + 1;

8 if i = σ then
9 ∆(1, i)← f ;

10 else if i > σ then
11 C[w[i − σ]]← C[w[i − σ]] − 1;
12 if C[w[i − σ]] = 0 then
13 f ← f − 1;
14 end
15 ∆(i − σ + 1, i)← f ;
16 end
17 end

Now, we will traverse the positions of the word w left to right. So, we consider each position i of w,

for i from 1 to
⌊

n−1
σ

⌋
σ + 1 (the largest number of the form jσ + 1, smaller or equal to n).

For position i, we do the following three steps.

1. If C[w[i]] = ∞ then we increment f by 1. Both when C[w[i]] = ∞ or C[w[i]] , ∞ we set

C[w[i]] = i. Now, C[a] is the last occurrence of the letter a ∈ Σ in the word w[1 : i], for all

a ∈ Σ (or∞ if a does not occur in w[1 : i]). Also, f is the number of elements of C which are

not equal to∞, so the number of distinct letters we have seen in w[1 : i].

2. If w[i] does not occur in R (tested by checking if P[w[i]] = ∞ or not), insert w[i] at the end of

R (and set P[w[i]] to point at the node where w[i] occurs, which we have just created). If w[i]

occurs in R, remove w[i] from R (the place where w[i] is stored in R is P[w[i]]), insert w[i] at

the end of R, and update P[w[i]] to point to this node of R. Now R contains in order (from

the front to the end) the f distinct letters occurring in w[1 : i] ordered increasingly by the

position of their last occurrence, and for each letter a occurring in w[1 : i], P[a] is a pointer

to the node containing a of R.

3. If i = jσ + 1 for some j, we need to run the following two special steps. Firstly, we define

the array last jσ+1[·], by setting last jσ+1[a] = C[a] for all a ∈ Σ. Secondly, we set g = f ; then,

for each element e in R, in the order in which these elements occur when traversing R left to

right, we set d jσ+1[e] = g and decrement g by 1.

90

6.2. Problem specific Toolbox 91

It is not hard to see that the arrays last jσ+1[·] and d jσ+1[·] are correctly computed for all j ≤ (n−1)/σ.

The overall time needed to maintain the array C is linear, while computing each of the arrays

last jσ+1[1 : σ] and d jσ+1[1 : σ], for j ≤ n/σ, takes O(σ) time. However, as we only need to

compute such arrays O(n/σ) times, the overall time needed to compute them is O(n). So, the

statement holds. □

The pseudocode for this algorithm is given in Algorithm 3.

Algorithm 3: Calculation of last jσ+1, d jσ+1
Input :word w, alphabet Σ
Output :last jσ+1, d jσ+1 for j ≤ (n − 1)/σ

// initialization
1 int f = 0; int n← |w|; int σ← |Σ|;
2 int C[1 : σ] = ∞; doubly linked list R; pointer array P[1 : n];

3 for i = 1 to
⌊

n−1
σ

⌋
σ + 1 do

// step one
4 if C[w[i]] == ∞ then
5 f ← f + 1;
6 end
7 C[w[i]]← i;

// step two
8 if P[w[i]] , null then
9 remove the element in R at pointer P[w[i]];

10 end
11 add w[i] to the right end of R;
12 P[w[i]]← adress of R[w[i]];

// step three
13 if i mod σ = 1 then
14 j← (i − 1)/σ;
15 foreach a ∈ Σ do
16 last jσ+1[a]← C[a];
17 end
18 int g← f ;
19 foreach e ∈ R do
20 d jσ+1[e] = g;
21 g← g − 1;
22 end
23 end
24 end

For w = bananaban, we have |w| = 9 and σ = 3. In Lemma 6.1 we compute ∆(1, 1) = 1,

∆(1, 2) = 2, and ∆(1, ℓ) = 3 for ℓ ∈ [3 : 9]. In Lemma 6.2 we compute ∆(1, 3) = 3, ∆(2, 4) =

∆(3, 5) = ∆(4, 6) = 2, ∆(5, 7) = 3, ∆(6, 8) = 2, and ∆(7, 9) = 3. In Lemma 6.3 we compute

the arrays last4[·] and last7[·]. We get: last4[a] = 4, last4[b] = 1, last4[n] = 3, and last7[a] = 6,

last7[b] = 7, last7[n] = 5. Therefore, S 4 = {1, 3, 4}, S 7 = {5, 6, 7}, and d4[a] = 1, d4[b] = 3,

d4[n] = 2, d7[a] = 2, d7[b] = 1, d7[n] = 3.

For a word w and a position i of w, let univ[i] = max{ j | w[j : i] is universal}. That is, for the

position i we compute the shortest universal word ending on that position. If there is no universal

word ending on position i we set univ[i] = 0.

91

92 The Edit Distance to k-Subsequence Universality

w

i1univ[i] = j i0

Figure 6.1: The set of elements with univ[i] = j forms an interval: L j = [i0 : i1].

Further, if n = |w|, let Vw = {univ[i] | 1 ≤ i ≤ n}. In Vw we collect the starting positions of the short-

est universal words ending at each position of the word w. Now, for j ∈ Vw, let L j = {i | univ[i] = j};

in other words, we group together the positions i of w for which the shortest universal word ending

on i starts on some position j. Note that L0 = {i | w[1 : i] is not universal}, i.e., the positions of w

where no universal word ends.

Several observations are immediate: for i ∈ L j, i′ ∈ L j′ , we have i ≤ i′ if and only if j ≤ j′. As

each position i of w belongs to a set L j, for some j ∈ Vw, we get that {L j | j ∈ Vw} is a partition of

[1 : n] into intervals. Furthermore, w[i] , w[j] for all i ∈ L j and j , 0: if w[i] would be the same as

w[j] then w[j + 1 : i] would also be a universal word, so i would not be in L j. Also, if i = max(L j)

for some j > 0 then w[i + 1] = w[j]. Indeed, there exists j′ ∈ [j + 1 : i] such that w[j′ : i + 1] is

universal. But w[j] does not occur in w[j′ : i], so w[j] = w[i + 1] must hold.

Further, we define for all positions i of w the value freq[i] = |w[1 : i]|w[i], the number of occurrences

of w[i] in w[1 : i]. Also, let T [i] = min{|w[i + 1 : n]|a | a ∈ Σ}, for i ∈ [0, n − 1], be the least number

of occurrences of a letter in w[i + 1 : n]; set T [n] = 0.

Lemma 6.4. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. We can compute in

O(n) time the following data structures: 1. the array univ[·]; 2. the set Vw and the lists L j, for all

j ∈ Vw \ {0}; 3. the array freq[·]; 4. the array T [·]; 5. the values last j−1[w[i]], for all j ∈ Vw and all

i ∈ L j; 6. the values lasti−1[w[i]], for all i ∈ [2 : n].

Proof. We present first an algorithm for items 1 and 2, then an algorithm for items 3 and 4, and

finally an algorithm for items 5 and 6.

Algorithm for 1,2. (pseudocode: Algorithm 4) To compute univ, Vw, and the lists L j we will use a

two pointer-strategy. That is, we go through the positions of w from n to 1 with two pointers a and

b. Initially, a = n and b = n + 1. We also define an array C with σ elements, all initially set to 0,

and a variable f , initialised with 0. The elements of the array univ are initialised with 0.

Now we repeat the following three-step procedure until b is 0.

92

6.2. Problem specific Toolbox 93

In the first step, we execute the following loop. While b > 1 and f < σ, we do the following:

decrement b by 1, increment C[w[b]] by 1 and if C[w[b]] = 1 then increment f by 1, too.

In the second step, when the loop finished, if f < σ and b = 1, then set b = 0. If f = σ, then we

add b to Vw.

In the third step, while f = σ, we do the following steps. First, set univ[a] = b and store a in Lb.

Decrement C[w[a]] by 1. Now, if C[w[a]] = 0, then decrement f by 1, too. Finally, decrement a

by 1.

The idea is relatively simple: we start with the factor w[a] and then try to extend it to the left (i.e.,

produce the factors w[b : a] with b ≤ a) while keeping track in f how many different letters of Σ

we met (i.e., f = ∆[b : a]), and their respective counts in the array C[·]. As soon as we have seen

all letters (i.e., f = σ), we know that w[b : a] is the shortest universal word ending on a. Thus,

we can store b in Vw, and set univ[a] = b. Now, we try to identify all the universal words starting

on b, ending to the left of a (their respective ending positions and a are exactly the elements of

Lb). This is done similarly: we move the pointer a now to the left one position at a time, and see

which letters of Σ are removed from the word w[b : a], using the array C where we counted the

letter-occurrences. As soon as we have a letter that occurs 0 times in w[b : a] we stop, as w[b : a] is

no longer universal. We then repeat the procedure: move b to the left first till we again have that

w[b : a] is universal, then move a to the left till w[b : a] is no longer universal, and so on. By the

observations we made on the structure of the lists L j, this approach is clearly correct.

The complexity is linear, as each pointer visits each position of w once.

Algorithm for 3,4. (pseudocode: Algorithm 5) To compute freq[·] we use a straightforward strategy.

We use an array C[·] with σ elements, initially set to 0. Then, for i from 1 to n we increment C[w[i]]

by 1 and set freq[i] = C[w[i]]. This clearly takes linear time. At the end of this traversal of the word,

C[a] is the number of occurrences of a in w. We will show now how the array T is computed. Let x

be the letter of Σ such that C[x] is the smallest value of C and m = C[x]. We set T [0] = m. Now,

for i from 1 to n − 1 we do the following three steps. Firstly, we decrement C[w[i]] by 1. Secondly,

if C[w[i]] < m then we set m = C[w[i]] and x = w[i]. Thirdly, we set T [i] = m. It is immediate that

T is correctly computed and that the computation takes linear time.

Algorithm for 5,6. (pseudocode: Algorithm 6) For the computation of all the values last j−1[w[i]],

for all j ∈ Vw and all i ∈ L j, and the values lasti−1[w[i]], for all i ∈ [2 : n], we do the following. We

use an array L[·] with σ elements, initially set to n + 1. Then, for i from 0 to n we do the following

two steps. If i > 0, set lasti−1[w[i]] = L[w[i]] and L[w[i]] = i. If i + 1 ∈ Vw, then we go through the

elements e of list Li+1 and set lasti[w[e]] = L[w[e]]. This takes linear time, as the time needed to

execute the iteration of the loop for some i is either O(1) if i + 1 < Vw or 1 + O(|Li+1|) if i + 1 ∈ Vw.

This adds up to O(
∑

j∈Vw |L j|) = O(n).

93

94 The Edit Distance to k-Subsequence Universality

Algorithm 4: Calculation of univ, Vw, L j
Input :word w, alphabet Σ
Output :univ, Vw, L j for j ≤ σ

// initialization
1 int f ← 0; int a← n; int b← n + 1; int n← |w|; int σ← |Σ|;
2 int C[1 : σ] = 0, univ[1 : n] = 0;

3 while b > 0 do
// step one

4 while f < σ and b > 1 do
5 b← b − 1;
6 if C[w[b]] = 0 then
7 f ← f + 1;
8 end
9 C[w[b]]← C[w[b]] + 1;

10 end

// step two
11 if f = σ then
12 Vw.add(b);
13 else if f < σ and b = 1 then
14 b← 0;
15 end

// step three
16 while f = σ do
17 univ[a] = b;
18 Lb.add(a);
19 C[w[a]]← C[w[a]] − 1;
20 if C[w[a]] = 0 then
21 f ← f − 1;
22 end
23 a← a − 1;
24 end
25 end

It is important to note here that each lasti[·] is implemented as a list (implemented statically) with

exactly one element if i + 1 < Vw (i.e., lasti[w[i + 1]]) and exactly |Li+1 ∪ {w[i + 1]}| elements (i.e.,

lasti[w[i + 1]] and lasti[w[j]] with j ∈ Li+1). In the second case, the list is implemented as an array,

indexed by the the letters in Li+1 ∪ {w[i + 1]}.

This concludes our proof. □

Consider again w = bananaban. In Lemma 6.4 we compute the following values. Firstly, univ[1] =

univ[2] = 0, univ[ℓ] = 1 for ℓ ∈ [3 : 6], univ[7] = univ[8] = 5, univ[9] = 7. Thus, Vw = {0, 1, 5, 7}

and L0 = [1 : 2], L1 = [3 : 6], L5 = [7 : 8], L7 = [9 : 9]. Secondly, freq[1] = 1, freq[2] =

freq[3] = 1, freq[4] = freq[5] = 2, freq[6] = 3, freq[7] = 2, freq[8] = 4, freq[9] = 3. Moreover,

T [0] = 2, T [ℓ] = 1 for ℓ ∈ [1 : 6], and T [ℓ] = 0 for ℓ ∈ [7 : 9]. Then, for j = 1, we have

last0[a] = 0, for a ∈ {a, b, n}; for j = 5, we have last4[b] = 1 and last4[a] = 4; for j = 7, we

have last6[n] = 5. Finally, last0[b] = 10, last1[a] = 10, last2[n] = 10, last3[a] = 2, last4[n] = 3,

last5[a] = 4, last6[b] = 1, last7[a] = 6, last8[n] = 5.

94

6.2. Problem specific Toolbox 95

Algorithm 5: Calculation of f req and T
Input :word w, alphabet Σ
Output : f req, T

// initialization
1 int n← |w|; int σ← |Σ|;
2 int C[1 : σ] = 0; int f req[n]; int T [n];

3 for i← 1 to n do
4 C[w[i]]← C[w[i]] + 1;
5 f req[i] = C[w[i]];
6 end

7 int x;
8 int m← n + 1;
9 for i← 1 to σ do

10 if C[w[i]] < m then
11 m← C[w[i]];
12 x← w[i];
13 end
14 end

15 T [0]← m;
16 for i← 1 to n − 1 do

// step one
17 C[w[i]]← C[w[i]] − 1;

// step two
18 if C[w[i]] < m then
19 m← C[w[i]];
20 x← w[i];
21 end

// step three
22 T [i]← m;
23 end

The main idea behind proving Lemmas 6.1, 6.3, and 6.4 is to traverse the word w left to right (or,

respectively, right to left) and maintain the number of occurrences, as well as the last occurrence, of

each letter in the prefix (respectively, suffix) of w that we have visited so far. For Lemma 6.2, we

only consider a sliding window of size σ which traverses the word left-to-right, while maintaining

similar data as before, but only for the content of the window. In all cases, this requires linear time

and enables us to construct the desired data structures.

Together with the string-processing data structures we defined above and in section 2.7, we build the

following general technical data structures lemma. This lemma (combined with some combinatorial

observations) will be used to speed up some of our dynamic programming algorithms.

In this lemma we process a list A which initially has σ elements, and in which we insert, in

successive steps, σ new elements, by appending them always at the same end. For simplicity, we

can assume that the list A is a sequence with 2σ elements (denoted A[i], with i ∈ [1 : 2σ]), out

of which the last σ are initially undefined. The ith insertion would, consequently, mean setting

A[σ + i] to the actual value that we want to insert in the list A. In our lemma we will also repeatedly

perform an operation which decrements the values of some elements of the list A. However, we

will not require to be able to explicitly access, after every operation, all the elements of the list

(so we will not need to retrieve the values A[i]). Consequently, we will not maintain explicitly the

95

96 The Edit Distance to k-Subsequence Universality

Algorithm 6: Calculation of lasti[w[j]] for i + 1 ∈ Vw and j ∈ Li+1, and lasti[w[i + 1]] for i ≤ n.
Input :word w, alphabet Σ, Vw, lists L j for j ∈ Vw
Output :values last j−1[w[i]] for all j ∈ Vw and i ∈ L j, values lasti−1[w[i]] for all i ≤ n

// initialization
1 int n← |w|; int σ← |Σ|;
2 int L[1 : σ] = n + 1;

3 for i← 0 to n − 1 do
4 if i + 1 ∈ Vw then
5 foreach e ∈ Li+1 do
6 lasti[w[e]]← L[w[e]];
7 end
8 end

9 if i < n then
10 lasti[w[i + 1]]← L[w[i + 1]];
11 L[w[i + 1]]← i + 1;
12 end
13 end

value of all the elements of A (that is, we will not update the elements affected by decrements). We

are only interested in being able to retrieve (by value and position), at each moment, the smallest

element and the last element of A. Thus, throughout the computation, we only maintain a subset of

important elements of A, including the aforementioned two. We can now state our result, whose

proof is based on Lemma 2.35.

Lemma 6.5. Let A be a list with σ elements (natural numbers) and let m = σ. We can execute (in

order) the sequence of σ operations o1, . . . , oσ on A in overall O(σ) time, where oi consists of the

following three steps, for i ∈ [1 : m]:

1. Return e = arg min{A[i] | i ∈ [1 : m]} and A[e].

2. For some ji ∈ [1 : m], decrement all elements A[ji], A[ji + 1], . . . , A[m] by 1.

3. For some natural number xi, append the element xi to A (i.e., set A[m+1] to xi), and increment

m by 1 (i.e., set m to m + 1).

Proof. Firstly, we will run a preprocessing of A.

We begin by defining recursively a finite sequence of positions as follows:

• a1 is the rightmost position of A on which min{A[i] | i ∈ [1 : σ]} occurs;

• for i ≥ 2, if ai−1 < σ, then ai is the rightmost position on which min{A[i] | i ∈ [ai−1 + 1 : σ]}

occurs;

• for i ≥ 2, if ai−1 = σ, then we can stop, our sequence will have i − 1 elements.

Let p be the number of elements in the sequence defined above, i.e., our sequence is a1, . . . , ap. For

convenience, let a0 = 0. Then the sequence a1, . . . , ap fulfils the following properties:

96

6.2. Problem specific Toolbox 97

• ap = σ and ai > ai−1, for all i ∈ [1 : p];

• A[ai] > A[ai−1] for all i ∈ [2 : p];

• for all i ∈ [1 : p], we have A[ai] < A[t], for all t ∈ [ai + 1 : σ];

• for all i ∈ [1 : p], we have A[ai] ≤ A[t], for all t ∈ [ai−1 + 1 : ai].

By definition, for i ∈ [1 : p] we have A[ai] = min{A[t] | t ∈ [ai−1 + 1 : σ]}, A[ai] < min{A[t] | t ∈

[ai + 1 : σ]}, and a1 = min{A[i] | i ∈ [1 : σ]}. Clearly, we have ap = σ.

The positions a1, . . . , ap can be computed in linear time O(σ), in reversed order. As we do not know

from the beginning the value of p, we will compute a sequence b1, b2, . . . of positions as follows.

We start with b1 = σ, t = σ − 1, and i = 2. Then, while t ≥ 1 we do the following case analysis.

If A[t] < bi−1, then set bi = t, increment i by 1, and decrement t by 1. Otherwise, if A[t] ≥ bi−1,

just decrement t by 1. It is straightforward that this process takes O(σ) time, and, when we have

finished it, the number i is exactly the number p, and ai = bp−i+1.

Another observation is that, for a0 = 0, the intervals [ai−1 + 1, ai], for i ∈ [1, p], define a partition

of the interval [1 : σ] into p intervals. Therefore, we can define a partition of the interval [1 : 2σ]

into the intervals [ai−1 + 1 : ai], for i ∈ [1, p], and [t : t], for t ∈ [σ + 1 : 2σ]. Thus, we construct in

linear time, according to Lemma 2.34, an interval union-find data structure for the interval [1 : 2σ],

as induced by the intervals [1 : a1], [a1 + 1 : a2], . . . [ap−1, ap], [σ + 1 : σ + 1], [σ + 2 : σ + 2], . . .

[2σ : 2σ].

Let us now take m = σ (and assume the convention A[0] = 0). We associate as satellite data to each

interval [x : y] with y ≤ m from our interval union-find data structure the value A[y] − A[x − 1].

This entire preprocessing takes clearly O(σ) time.

In order to explain how the operations are implemented, we assume as invariant that the following

properties are fulfilled before oi is executed, for i ∈ [1 : σ]:

• A contains m elements;

• all intervals [x : y] with y > m from our interval union-find data structure are singletons (i.e.,

x = y);

• for each interval [x : y] with y ≤ m, we have the associated satellite data A[y] − A[x − 1];

• for each interval [x : y] with y ≤ m, we have that A[y] ≤ A[t] for t ∈ [x : m] and A[y] < A[t]

for t ∈ [y + 1 : m];

• we have stored in a variable ℓ the value A[m].

This clearly holds after the preprocessing step, so before executing o1.

97

98 The Edit Distance to k-Subsequence Universality

Let us now explain how the operation oi is executed.

The first step of oi is to return e = min{A[i] | i ∈ [1 : m]} and ie the rightmost position of the

list A such that A[ie] = e. We execute find(1) to return the first interval [1 : ie] stored in our

interval union-find data structure; A[ie] is the satellite data associated to this interval (by convention,

A[ie] − A[1 − 1] = A[ie] − A[0] = A[ie]). The fact that the invariant property holds shows that ie is

correctly computed.

The second step of oi is to decrement all elements A[ji], A[ji+1], . . . , A[m] by 1, for some ji ∈ [1 : m].

We will make no actual change to the elements of the list A, as this would be too inefficient, but we

might have to change the state of the union-find data structure, as well as the satellite data associated

to some intervals of this structure.

So, let [x : y] be the interval containing ji, returned by find(ji), and also assume first that x , 1.

According to the invariant, A[ji] ≥ A[y] and A[y] > A[x − 1]. After decrementing the elements

A[ji], A[ji + 1], . . . , A[m] by 1, the difference A[t] − A[t′] is exactly the same as before, for all

t, t′ ∈ [ji : m]. In consequence, the relative order between the elements of the suffix A[ji : m] of

the list A is preserved. Also, for all t ∈ [x : ji − 1], we have now A[t] > A[y] (before decrementing

A[y] we had only A[t] ≥ A[y]). However, the difference A[y] − A[x − 1] is now decreased by 1. If it

stays strictly positive, we just update the satellite data of the respective interval (by decrementing

it accordingly by 1). If A[y] − A[x − 1] = 0, then we make the union of the interval [z : x − 1]

(returned by find(x − 1)) and [x : y] to obtain the new interval [z : y]. Its satellite data is

A[y] − A[z − 1] = A[x − 1] − A[z − 1], so the same as the satellite data that was before associated to

[z : x − 1]. The invariant is clearly preserved, as, even after decrementing it, A[y] (which is now

equal to A[x − 1]) is strictly greater than A[z − 1], strictly smaller than A[t], for t ∈ [y + 1 : m], and

smaller than or equal to A[t], for t ∈ [z : y].

If the interval containing ji is [1 : y], then we just update the satellite data of the respective interval

by decrementing it by 1.

The third step of oi is to append the element xi to A (i.e., set A[m+1] = xi), for some natural number

xi, and increment m by 1.

We implement this as follows. Let t = m and q = A[m] (this value is stored and maintained using

the variable ℓ). While t ≥ 1 do the following. Let [z, t] be the interval returned by find(t); we have

q = A[t]. If q ≥ xi, make the union of [z : t] and [t+1 : m+1]; update q = q−(A[t]−A[z−1]) = A[z−1]

(using the satellite data A[t] − A[z − 1] associated to [z, t]), update t = z − 1, and reiterate the loop.

If q < xi, exit the loop. After this, we set m to m + 1 and ℓ = xi.

It is not hard to see that after running this third step, so before executing operation oi+1, the invariant

is preserved.

98

6.2. Problem specific Toolbox 99

Performing operation oi takes an amount of time proportional to the sum of the number of union

and the number of find operations executed during its three steps. By Lemma 2.35, this means that

executing all operations o1, . . . , oσ takes in total at most O(σ) time. □

6.2.2 Examples

These examples are based on (and supposed to be a companion in understanding) the algorithms

and proofs.

Most of the algorithms which we exemplify in this section use a temporary array C to keep track of

the letters occurring in w, but in slightly different ways. We will explain in each case what is the

semantic of the elements in the array C[·].

For convenience, we assume Σ = {a, b, n} for the examples instead of Σ = {1, 2, 3}. Let w =

bananaban and thus n = 9 and σ = 3.

In Lemma 6.1 we want to compute ∆(1, 1), . . . ,∆(1, 9). Therefore, we traverse the word from left to

right, i.e. from ℓ = 1 to ℓ = 9 and we maintain an array C of length 3 as well as a counter f . In this

lemma, when reaching position i of the word, C[a] = 1 if and only if |w[1 : i]|a , 0, for a ∈ {a, b, n}.

This results in the following computation:

b a n a n a b a n

ℓ 1 2 3 4 5 6 7 8 9

C[a] 0 1 1 1 1 1 1 1 1

C[b] 1 1 1 1 1 1 1 1 1

C[n] 0 0 1 1 1 1 1 1 1

f 1 2 3 3 3 3 3 3 3

∆(1, ℓ) 1 2 3 3 3 3 3 3 3

.

Notice that we have σ = 3. Hence for Lemma 6.2, we only consider i ∈ [3 : 9] and we want to

compute ∆(1, 3), ∆(2, 4), ∆(3, 5), ∆(4, 6), ∆(5, 7), ∆(6, 8), and ∆(7, 9). In this case, when processing

position i, C[a] = |w[i − σ + 1, i]|a, for a ∈ {a, b, n}.

b a n a n a b a n

i 1 2 3 4 5 6 7 8 9

C[a] 0 1 1 2 1 2 1 2 1

C[b] 1 1 1 0 0 0 1 1 1

C[n] 0 0 1 1 2 1 1 0 1

f 1 2 3 2 2 2 3 2 3

∆(1, i) 1 2 3 3 3 3 3 3 3

∆(i − σ + 1, i) - - 3 2 2 2 3 2 3

99

100 The Edit Distance to k-Subsequence Universality

In Lemma 6.3 we determine for all j ≤ n−1
σ =

8
3 the values last jσ+1[a] and d jσ+1[a] for all a ∈ Σ.

The way the array C[·] is used in this case is a bit different: when processing position i, C[a] is the

position of the last occurrence of a in w[1 : i], for a ∈ {a, b, n}.

b a n a n a b

i 1 2 3 4 5 6 7

C[a] ∞ 2 2 4 4 6 6

C[b] 1 1 1 1 1 1 7

C[n] ∞ ∞ 3 3 5 5 5

f 1 2 3 3 3 3 3

R (b) (b, a) (b, a, n) (b, n, a) (b, a, n) (b, n, a) (n, a, b)

P[·] (∞, 1,∞) (2, 1,∞) (2, 1, 3) (3, 1, 2) (2, 1, 3) (3, 1, 2) (2, 3, 1)

lasti[·] [4, 1, 3] [6, 7, 5]

di[·] [1, 3, 2] [2, 1, 3]

In the table above, P[a] is a pointer to the position of the list R where a ∈ {a, b, n} is stored.

Finally we have a look at the algorithms for Lemma 6.4. For the first algorithm (Algorithm 4) we

get the following table. We show the state of the arrays C after each iteration of the while-loop

from step one. In this case, after each iteration of the while-loop from step one, C[x] stores the

number of occurrences of x in w[b : a], for x ∈ {a, b, n}. With k we simply count how many times

the while-loop from step one was executed:

k 1 2 3 4 5 6 7 8 9 10

a 9 9 9 8 8 7 6 6 6 6

b 9 8 7 6 5 5 4 3 2 1

C[a] 0 1 1 2 2 1 2 2 3 3

C[b] 0 0 1 1 1 1 0 0 0 1

C[n] 1 1 1 0 1 1 1 2 2 2

f 1 2 3 2 3 3 2 2 2 3

Vbananaban {7} {7} {7, 5} {7, 5} {7, 5} {7, 5} {7, 5} {7, 5, 1}

univ[9] 7 7 7 7 7 7 7 7

univ[8] 5 5 5 5 5 5

univ[7] 5 5 5 5 5

univ[6] 1

L7 {9} {9} {9} {9} {9} {9} {9} {9}

L5 {8} {8, 7} {8, 7} {8, 7} {8, 7} {8, 7}

L1 {6}

.

The while-loop in step three is now used and we will obtain univ[5] = univ[4] = univ[3] = 1,

and 5, 4, 3 are all added in L1. So L1 = {3, 4, 5, 6}. The rest of the values in the univ array are left as

initialized, namely 0, and L0 = {1, 2}.

100

6.2. Problem specific Toolbox 101

For the second algorithm (Algorithm 5), when reaching position i of the word, C[a] = |w[1 : i]|a,

for a ∈ {a, b, n}. Thus, we compute:

b a n a n a b a n

i 1 2 3 4 5 6 7 8 9

C[a] 0 1 1 2 2 3 3 4 4

C[b] 1 1 1 1 1 1 2 2 2

C[n] 0 0 1 1 2 2 2 2 3

freq[·] 1 1 1 2 2 3 2 4 3

.

For the computation of T set x = b and m = 2 (as determined by the fact that C[b] is the minimum

in C). This implies T [0] = 2. Thus, we get for the computation of T :

i 1 2 3 4 5 6 7 8

C[a] 4 3 3 2 2 1 1 0

C[b] 1 1 1 1 1 1 0 0

C[n] 3 3 2 2 1 1 1 1

m 1 1 1 1 1 1 0 0

x b b b b b b b b

T 1 1 1 1 1 1 0 0

.

Note that T [9] is also set to 0. Now, in each step, when considering the letter a, we decrement C[a]

by 1, and then compute again the minimum of C.

For the last algorithm (Algorithm 6) we get, with Vbananaban = {7, 5, 1}, L1 = {3, 4, 5, 6} and

w[3] = n, w[4] = a, w[5] = n, w[6] = a, L5 = {7, 8} and w[7] = b and w[8] = a, L7 = {9} and

w[9] = n:

i 0 1 2 3 4 5 6 7 8

lasti[·] [10,10,10] [10,-,-] [-,-,10] [2,-,-] [4,1,3] [4,-,-] [-,1,5] [6,-,-] [-,-,5]

L[a] 10 10 2 2 4 4 6 6 8 8

L[b] 10 1 1 1 1 1 1 7 7 7

L[n] 10 10 10 3 3 5 5 5 5 9

In the table above, lasti[·] = (lasti[a], lasti[b], lasti[n]). This representation is chosen for the ease of

understanding. However, note that each lasti[·] is implemented as a list with exactly one element

if i + 1 < Vw (i.e., lasti[w[i + 1]]) and exactly min{|Σ|, |Li+1| + 1} elements (i.e., lasti[w[i + 1]] and

lasti[w[j]] for j ∈ Li+1) if i + 1 ∈ Vw.

101

102 The Edit Distance to k-Subsequence Universality

6.3 Edit Distance to k-universality

We are interested in computing the minimal number of edits we need to apply to a word w, with

|w| = n, alph(w) = Σ, with universality index ι(w), so that it is transformed into a word with

universality index k, w.r.t. the same alphabet Σ. The edits considered are insertion, deletion,

substitution, and the number we want to compute can be seen as the edit distance between w and

the set of k-universal words over Σ.

However, if we want to obtain a k-universal word with k > ι(w), then it is enough to consider

only insertions. Indeed, deleting a letter of a word can only restrict the set of subsequences of the

respective word, while in this case we are interested in enriching it. Substituting a letter might make

sense, but it can be simulated by an insertion: assume one wants to substitute the letter a on position

i of a word w by a b. It is enough to insert a b next to position i, and the set of subsequences of

w is enriched with all the words that could have appeared as subsequences of the word where a

was actually replaced by b. We might have some extra words in the set of subsequences, which

would have been eliminated through the substitution, but it does not affect our goal of reaching

k-universality.

If we want to obtain a word with universality index k, for k < ι(w), then it is enough to consider only

deletions. Assume that we have a sequence of edits that transforms the word w into a word w′ with

universality index k. Now, remove all the insertions of letters from that sequence. The word w′′ we

obtain by executing this new sequence of operations clearly fulfils ι(w′′) ≤ ι(w′). Further, in the new

sequence, replace all substitutions with deletions. We obtain a word w′′′ with a set of subsequences

strictly included in the one of w′′, so with ι(w′′′) ≤ ι(w′′). As each deletion changes the universality

index by at most 1, it is clear that (a prefix of) this new sequence of deletions witnesses a shorter

sequence of edits which transforms w into a word of universality index k.

So, to increase the universality index of a word it is enough to use insertions and to decrease the

universality index of a word it is enough to use deletions. Nevertheless, one might be interested

in what happens if we only use substitutions. In this way, we can both decrease and increase the

universality index of a word. Moreover, one can see the minimal number of substitutions needed to

transform w into a k-universal word as the Hamming distance between w and the set of k-universal

words. We will discuss each of these cases separately.

6.3.1 Changing the k-universality with Insertions

Theorem 6.6. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k ≥ ι(w) be an

integer. We can compute the minimal number of insertions needed to apply to w in order to obtain a

k-universal word (w.r.t. Σ) in O(nk) time if k ≤ n and O(T (n, σ, k)) time otherwise, where T (n, σ, k)

is the time needed to compute kσ − n.

102

6.3. Edit Distance to k-universality 103

Proof. Case 1. Let us assume first that k ≤ n. We structured our proof in such a way that the idea of

the solution, as well as the actual computation steps, and the arguments supporting their correctness

are clearly marked.

General approach. We want to transform the word w into a k-universal word with a minimal

number of insertions. Assume that the word we obtain this way is w′, and |w′| = m. Thus, w′ has a

prefix w′[1 : m′] which is k-universal, but w′[1 : m′ − 1] is not k-universal. Moreover, w′[1 : m′] is

obtained from a prefix w[1 : ℓ] of w, and w′[m′ + 1 : m] = w[ℓ + 1 : n]. Indeed, any insertion done

to obtain w′[m′ + 1 : m] can be simply omitted and still obtain a k-universal word from w, with a

lower number of insertions.

Consequently, it is natural to compute the minimal number of insertions needed to transform w[1 : ℓ]

into a t-universal word, for all ℓ ≤ n and t ≤ k. Let M[ℓ][t] denote this number. By the same

reasoning as above, transforming (with insertions) w[1 : ℓ] into a t-universal word means that

there exists a prefix w[1 : ℓ′] of w[1 : ℓ] which is transformed into a (t − 1)-universal word and

w[ℓ′ + 1 : ℓ] is transformed into a 1-universal word. Clearly, the number of insertions needed to

transform w[ℓ′ + 1 : ℓ] into a 1-universal word is σ − ∆(ℓ′ + 1, ℓ), i.e., the number of distinct letters

not occurring in w[ℓ′ + 1 : ℓ]. As we are interested in the minimal number of insertions needed to

transform w[1 : ℓ] into a t-universal word, we need to find a position ℓ′ such that the total number

of insertions needed to transform w[1 : ℓ′] into a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] into a

1-universal word is minimal.

Algorithm - initial idea. So, for ℓ ∈ [1 : n] and t ∈ [1 : k], M[ℓ][t] is the minimal number of

insertions needed to make w[1 : ℓ] t-universal. By the explanations above, we get the following

recurrence M[ℓ][t] = min{M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ ≤ ℓ}. Clearly, M[ℓ][1] = σ − ∆(1, ℓ).

Also, it is immediate to note that M[ℓ][t] ≥ M[ℓ′′][t] for all ℓ ≤ ℓ′′. Indeed, transforming a word into

a t-universal word can always be done with at most as many insertions as those used in transforming

any of its prefixes into a t-universal word.

w 1 . . . ℓ′ ℓ′ + 1 . . . ℓ . . .

(t − 1)-universal⇒ M[ℓ′, t − 1] universal⇒ σ − ∆(ℓ′ + 1, ℓ)

Figure 6.2: Illustration of the formula developed for the computation of M[ℓ][t].

We now want to compute the elements of matrix M. Before this, we produce the data structures

of Lemma 6.3 (and we use the notations from its framework). That is, we compute in O(n) time

last jσ+1[a] and d jσ+1[a] = ∆(last jσ+1[a], jσ + 1), for all a ∈ Σ and all j ≤ (n−1)
σ .

By Lemma 6.1, we can compute the values M[ℓ][1], for all ℓ ∈ [1 : n] in O(n) time. However, a

direct computation of the values M[ℓ][t], for t > 1, according to the recurrence above is not efficient.

Implemented directly, it requires O(n2k) time; using an efficient structure (e.g., interval trees)

103

104 The Edit Distance to k-Subsequence Universality

for computing the various minima leads to an O(nk log n)-time solution; exploiting the algebraic

properties of M (related to the Monge property [4]) leads to an O(nk logσ/ log logσ)-time solution.

We will describe a more efficient solution.

A useful observation. Assume that to transform w[1 : ℓ] into a t-universal word we transform

w[1 : ℓ′] into a (t − 1)-universal word and w[ℓ′ + 1 : ℓ] into a 1-universal word. The number

of insertions needed to do this is M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)). If w[ℓ′ + 1] occurs twice

in w[ℓ′ + 1 : ℓ], then M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) ≥ M[ℓ′ + 1][t − 1] + (σ − ∆(ℓ′ + 2, ℓ)).

Thus, we can rewrite our recurrence in the following way, using the framework of Lemma 6.3:

M[ℓ][t] = min{M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ + 1 ∈ S ℓ ∪ {ℓ + 1}} (recall the definition of

S ℓ = {lastℓ[a] | a ∈ alph(w[1 : ℓ])} from Section 6.2).

w ℓ + 1 . . .

S l ∪ {ℓ + 1}

Figure 6.3: Only the positions ℓ′ + 1 ∈ {lastℓ[a] | a ∈ alph(w[1 : ℓ])} ∪ {ℓ + 1} = S ℓ ∪ {ℓ + 1} are
needed to compute M[ℓ][t] by dynamic programming. These positions are depicted here in grey.

Once more, a brief analysis can be done. Using directly this observation leads to an O(nkσ)-time

algorithm for our problem; an implementation based on, e.g., interval trees runs in O(nk logσ)-time.

In the following we see that a faster solution exists.

In fact, in the efficient version of our algorithm we will use a slightly weaker formula, where the

minimum is computed for all elements ℓ′ + 1 from a set S ′ℓ ∪ {ℓ + 1}, instead of the set S ℓ ∪ {ℓ + 1},

where S ′ℓ is a superset of size at most 2σ of S ℓ defined as follows. If ℓ = jσ + i, for some

j ≤ (n − 1)/σ and i ∈ [1 : σ], then S ′ℓ =

 S ℓ if i = 1,

S jσ+1 ∪ { jσ + 2, . . . , jσ + i} if i ∈ [2 : σ].

Algorithm - the efficient variant. Using the observation above, together with Lemma 6.5, we can

compute the elements of the matrix M efficiently using dynamic programming.

So, let us consider a value t ≥ 2. Assume that we have computed the values M[ℓ][t − 1], for all

ℓ ∈ [1 : n]. We now want to compute the values M[ℓ][t], for all ℓ ∈ [1 : n]. The main idea in

doing this efficiently is to split the computation of the elements on column M[·][t] of the matrix M

in phases. In phase j we compute the values M[jσ + 1][t], M[jσ + 2][t], . . . , M[(j + 1)σ][t], for

j ≤ (n − 1)/σ.

We now consider some j, with 0 ≤ j ≤ (n − 1)/σ. We want to apply Lemma 6.5, so we need to

define the list A of size σ. This is done as follows.

104

6.3. Edit Distance to k-universality 105

We will maintain an auxiliary array pos[·] with σ elements. Moreover, the element A[i], for each i, is

accompanied by two satellite information: a position of w and the letter found on that position. For

a from 1 to σ, if d jσ+1[a] = σ− i for some i < σ then we set A[i+ 1] = M[last jσ+1[a]− 1][t− 1]+ i

and pos[a] = i + 1; the satellite data of A[i + 1] is the pair (last jσ+1[a], a). If, for some letter a,

last jσ+1[a] = n + 1 and d jσ+1[a] = 0 (i.e., a does not occur in w[1 : jσ + 1]) we set pos[a] = 0.

Intuitively, one can see the elements of A as triples: (A[e], last jσ+1[a], a) where A[e] = M[last jσ+1[a]−

1][t − 1] + e − 1, with e ∈ [1 : σ] and a ∈ Σ. More precisely, let ad, ad−1, . . . , a1 be the letters of

Σ that occur in w[1 : jσ + 1], ordered such that last jσ+1[ae] < last jσ+1[a f] if and only if e > f .

At this point, we have defined only the last d elements of A and, for i ∈ [1 : d], the element on

position σ − i + 1 is A[σ − i + 1] = M[last jσ+1[ai] − 1][t − 1] + (σ − i) and has the satellite data

(last jσ+1[ai], ai). Also, pos[ai] = σ− i+ 1. The first σ− d elements of A are set to∞; as convention,

applying arithmetic operations to∞ leaves it unchanged.

We set m to σ and define (and apply) a sequence of operations o1, . . . , oσ as in Lemma 6.5.

An invariant: We want to ensure that the list A fulfils the following invariant properties before the

execution of each operation oi.

• For e ∈ [1 : d], the triple on position σ − e + 1 of A is:

(M[last jσ+1[ae]−1][t−1]+(σ−∆(last jσ+1[ae], jσ+i)), last jσ+1[ae], ae). That is, A[σ−e+1] =

M[last jσ+1[ae] − 1][t − 1] + (σ − ∆(last jσ+1[ae], jσ + i)).

• For g ∈ [1 : i − 1], the triple on position σ + g of A is:

(M[jσ + g][t − 1] + (σ − ∆(jσ + g + 1, jσ + i)), jσ + g + 1,w[jσ + g + 1]). That is

A[σ + g] = M[jσ + g][t − 1] + (σ − ∆(jσ + g + 1, jσ + i)).

• pos[a] is the position of the rightmost position i storing a triple (A[i], ℓ, a).

That is, the list A contains all the values M[ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)), for ℓ + 1 ∈ S jσ+1 ∪

{ jσ + 2, . . . , jσ + i}, and pos[a] indicates the rightmost position of the list A where we store a

value M[ℓ][t − 1] + (σ − ∆(ℓ + 1, jσ + i)) with w[ℓ + 1] = a. A consequence of this is that

A[pos[a]] = M[last jσ+i[a] − 1][t − 1] + (σ − ∆(last jσ+i[a], jσ + i)).

The invariant clearly holds for i = 1.

Algorithm - application of Lemma 6.5. In oi, we extract the minimum q of A. Then set M[jσ +

i][t] = min{q,M[jσ + i][t − 1] + σ}. We decrement by 1 all elements of A on the positions

pos[a] + 1, pos[a] + 2, . . . ,m, where a = w[jσ + i + 1]. Then, we append to A the element

M[jσ + i][t − 1] + (σ − 1), with the satellite data (jσ + i + 1, a), which implicitly increments m by

1, and set pos[a] = m.

Claim 1. The invariant holds after operation oi.

105

106 The Edit Distance to k-Subsequence Universality

Proof of Claim 1. We now need to show that the invariant is preserved after this step. If a =

w[jσ + i + 1] then the number of distinct letters occurring after each position g > last jσ+i[a]

in w[1 : jσ + i] is exactly one smaller than the number of distinct letters occurring after g in

w[1 : jσ + i + 1]. This means that M[g − 1][t − 1] + (σ − ∆(g, jσ + i + 1)) is one smaller than

M[g − 1][t − 1] + (σ − ∆(g, jσ + i)). Consequently, all values occurring on positions greater

than pos[a] in the list A, which stored some values M[g − 1][t − 1] + (σ − ∆(g, jσ + i + 1)) with

g > last jσ+i[a], should be decremented by 1. Also, the number of distinct letters occurring after each

position g ≤ last jσ+i[a] in w[1 : jσ + i] is exactly the same as number of distinct letters occurring

after g in w[1 : jσ + i + 1]. Thus, all values occurring on positions smaller or equal to pos[a] in

the list A, which stored some values M[g − 1][t − 1] + (σ − ∆(g, jσ + i + 1)) with g ≤ last jσ+i[a],

should stay the same. So, the invariant holds for the first σ + i − 1 positions of A. After appending

M[jσ + i][t − 1] + (σ − 1) to A and incrementing m, then the invariant holds for the position σ + i

(which is also the last position) of A too, so the invariant still holds for all positions of A.

Furthermore, the only position of the pos array that needs to be updated after operation oi is pos[a],

and it needs to be set to the new value of m. This is exactly what we do. □

Claim 2. M[jσ + i][t] is correctly computed, for all i ∈ [1 : σ].

Proof of Claim 2. According to the invariant, before executing operation oi, A contains the values

M[ℓ][t−1]+ (σ−∆(ℓ+1, jσ+ i)), for ℓ+1 ∈ S jσ+1, and M[jσ+g][t−1]+ (σ−∆(jσ+g+1, jσ+ i)),

for g ∈ [1 : i − 1]. As S ′jσ+i = S jσ+1 ∪ { jσ + g + 1 | g ∈ [1 : i − 1]} is a superset of size at most 2σ

of S jσ+i, we obtain that M[jσ + i][t] is correctly computed as the minimum between the smallest

value in A and M[jσ + i][t − 1] + σ. □

Algorithm - the result of applying Lemma 6.5. After executing the σ operations o1, . . . , oσ, we have

computed the values M[jσ + 1][t], M[jσ + 2][t], . . . , M[(j + 1)σ][t] correctly. We can move on to

phase j + 1 and repeat this process.

The result and complexity. The minimal number of insertions needed to make w k-universal is,

according to the observations we made, correctly computed as M[n][k].

By Lemma 6.5, computing M[jσ + 1][t], M[jσ + 2][t], . . . , M[(j + 1)σ][t] takes O(σ) for each j.

Overall, computing the entire column M[·][t] takes O(n) time. We do this for all t ≤ k, so we use

O(nk) time in total to compute all elements of M. This concludes Case 1.

Case 2. If k > n, we return kσ−n. We need, in all cases, kσ−n insertions to obtain a word of length

kσ from w. This is also sufficient: we first use n(σ − 1) insertions to transform w into (1 · · ·σ)n;

then, by (k − n)σ insertions, we further transform it into (1 · · ·σ)k. So the time needed to solve our

problem, in this case, is the time needed to compute kσ − n. □

106

6.3. Edit Distance to k-universality 107

Note that, if k is in O(cn) for constant c, then T (n, σ, k) ∈ O(n logσ). Hence, in that case, our

algorithm runs in O(n logσ) time. If k ∈ O(1) our algorithm runs in optimal O(n) time.

Algorithm 7: The efficient algorithm from Case 1 of Theorem 6.6 (on insertions).
Input :word w, alphabet Σ, int k
Output :minimal number of insertions

// initialization
1 int n← |w|; int σ← |Σ|; int d ← 0;
2 int M[n][k];

// initialise first column of M
3 for l = 1 to n do
4 M[l][1]← σ − ∆(1, l);
5 end

// efficient variant
6 for t = 2 to k do

// ≤ (n − 1)/σ phases
7 for j = 0 to ⌈(n − 1)/σ⌉ do
8 int A[σ][3] (list of triples including satellite data); int pos[σ];
9 for a = 1 to σ do

10 if d jσ+1[a] > 0 then
11 int i← σ − d jσ+1[a]; d ← d + 1;
12 A[i + 1][1]← M[last jσ+1[a] − 1][t − 1] + i;
13 pos[a]← i + 1;

// satellite data for A[i + 1]
14 A[i + 1][2]← last jσ+1[a];
15 A[i + 1][3]← a;
16 end
17 if d jσ+1[a] = 0 and last jσ+1[a] = n + 1 then
18 pos[a] = 0;
19 end
20 end

// exactly d letters of Σ, occur in w[1 : jσ + 1]
// (ordered increasingly by their last occurrence):
// A[σ − d + 1][3], A[σ − d + 2][3], . . . , A[σ − 1][3], A[σ−][3].

21 set all elements in A[1 : σ − d] to∞ (they cannot be changed);
22 m = σ;

// apply sequence of operations as in Theorem 6.5
23 for i = 1 to σ do
24 q← minimum of A;
25 M[jσ + i][t]← min{q,M[jσ + i][t − 1] + σ};
26 a = w[jσ + i + 1];
27 decrement positions pos[a] + 1, pos[a] + 2, . . . ,m by 1;
28 append M[jσ + i][t − 1] + (σ − 1) to A (i.e., set A[m + 1][1] to this value);

// and add satellite data
29 A[m + 1][2]← jσ + i + 1;
30 A[m + 1][3]← a;
31 m← m + 1;
32 pos[a]← m;
33 end
34 end
35 end
36 return M[n][k];

6.3.2 Changing the k-universality with Deletions

Theorem 6.7. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k be an integer

with k ≤ ι(w) ≤ n/σ. We can compute in O(nk) time the minimal number of deletions needed to

obtain a word of universality index k (w.r.t. Σ) from w.

107

108 The Edit Distance to k-Subsequence Universality

Proof. General approach. The case k = 0 is trivial. We just need to count how many times each

letter occurs and then remove the letter that occurs the least number of times. This takes O(n) time.

So let us assume that k > 0. To simplify the presentation, we will call a word u a weak-p-universal

word if u is p-universal and by deleting the last letter of u we obtain a word of universality index

p − 1.

Assume that w′ is a k-universal word that can be obtained by applying the sequence of deletions of

minimal length to w. Clearly, w′ is a subsequence of w, and, by the decomposition defined in the

context of Theorem 2.27, there exist the arches w′1, . . . ,w
′
k, all of universality index exactly 1, and

w′k+1, of universality index 0, such that w′ = w′1 · · ·w
′
kw′k+1. Moreover, each arch w′i , with i ∈ [1 : k],

is a weak-1-universal word.

It follows that actually each of the words w′i is a subsequence of w too. So we will try to identify

the factors w[i j−1 + 1 : i j], with j ∈ [1 : k + 1] and i0 = 0, from which w′j is obtained by deletions,

with the important condition that the last letter of w[i j−1 + 1 : i j] is not deleted (so the last letters of

w′j and w[i j−1 + 1 : i j] coincide).

Note that, to obtain the word w′1 · · ·w
′
kw′k+1 from w with a minimal number of deletions, we need to

find a position ik of w such that w′1 · · ·w
′
k is obtained from w[1 : ik] and w′k+1 from w[ik + 1 : n], with

the restrictions that w[ik] is not deleted and the overall number of deletions made in this process is

the smallest (over all possible choices of the position ik). If we now have ik, we can then search for

ik−1: we need to find a position of w such that w′1 · · ·w
′
k−1 is obtained from w[1 : ik−1] and w′k from

w[ik−1 + 1 : ik], with the similar restrictions that w[ik−1] is not deleted and the overall number of

deletions made in this process is the smallest (over all possible choices of the position ik). And then

we continue with ik−2, ik−3, and so on.

Thus, it seems natural to consider and solve the following type of subproblems: what is the minimal

number of deletions we need to apply to transform a prefix w[1 : i] into a weak-p-universal word v,

without deleting w[i].

Algorithm - initial idea. We first compute all the data structures defined in Lemma 6.4.

We define the n × k matrix N, where N[i][p] is the minimal number of deletions we need to apply

to w[1 : i], without deleting w[i], to obtain a weak-p-universal word v from it (for 1 ≤ i ≤ n and

1 ≤ p ≤ k). If w[1 : i] is not p-universal, N[i][p] will be set to∞.

To compute this matrix, we note that if N[i][1] , ∞, then N[i][1] = freq[i] − 1. Indeed, in order to

produce from w[1 : i] a weak-1-universal word, which fulfils the conditions stated above, we have

to delete all occurrences of the letter w[i] except for the one on position i.

In general, the minimal number of deletions needed to transform a factor w[i : j] of universality

index at least 1 (so with i ≤ univ[j]) into a weak-1-universal word v, such that w[j] is not deleted, is

|w[i : j]|w[j] − 1.

108

6.3. Edit Distance to k-universality 109

Accordingly, we can define the elements of the matrix N as N[i][p] = min{N[i′][p − 1] + |w[i′ + 1 :

i]|wi | i
′ ∈ [1 : univ[i] − 1]}, for i ∈ [1 : n], p ∈ [2 : k].

A straightforward implementation of the above formula is not efficient, so we will explore alternative

and more efficient ways to compute N[i][p].

Algorithm - an efficient implementation. We will show how the elements of the column N[·][p] can

be computed efficiently for a given p ≥ 2, assuming that we have computed them for N[·][p − 1].

Firstly, we define the data structures of Lemma 2.37 (section 2.7) allowing us to answer range

minimum queries for the column N[·][p − 1] of N, denoted by RMQp−1 in the following. Note that

the query RMQp−1(j, i) returns, for some j < i, the position k with k ∈ [j : i], such that w[1 : k] is

the prefix of w, ending between j and i, which can be transformed into a weak-(p − 1)-universal

word with the least number of deletions (among all other prefixes ending between i and j), such that

its last letter w[k] is not deleted.

We define an auxiliary array M′[·] with n elements, where if i ≥ (p − 1)σ, we have M′[i] =

min{N[j][p − 1] + |w[j + 1 : i]|w[i] | j < i}, and if i < (p − 1)σ, we have M′[i] = ∞ (that is, a large

enough value).

Intuitively, M′[i] is the minimal number of deletions we need to make in w[1 : i] in order to obtain

a word v′v′′, where v′ is a weak-(p − 1)-universal word and v′′ is a word with universality index 0

which contains no occurrence of w[i].

We observe that the values M′[i] can be computed as follows. Firstly, we set M′[i] = ∞ if

i < (p − 1)σ. Then, for i ≥ (p − 1)σ, let ℓ = lasti−1[w[i]].

Claim 1. We claim that M′[i] = 1+min{M′[ℓ],N[RMQp−1(ℓ+1, i−1)][p−1]}, if lasti−1[w[i]] , n+1,

or M′[i] = ∞ otherwise.

Proof of Claim 1. The case when w[i] does not occur in w[1 : i − 1] is trivial. The first part of the

claim holds because the minimal number of deletions we need to make in w[1 : i] in order to obtain

a word v′v′′, where v′ is a weak-(p − 1)-universal word and v′′ is a word with universality index 0

which contains no occurrence of w[i] is:

• either the minimal number of deletions we need to apply to w[1 : ℓ] in order to obtain a word

v′0v′′0 , where v′0 is a weak-(p − 1)-universal word and v′′ is a word with universality index 0

which contains no occurrence of w[ℓ] = w[i], and then remove the last occurrence of w[i]

from w[1 : i],

• or the minimal number of deletions we need to apply to w[1 : i] in order to obtain a word

v′v′′, where v′ is a weak-(p−1)-universal word obtained from a prefix w[1 : j], with j > ℓ, by

deleting some letters, but not w[j], and v′′ is a word with universality index 0 which contains

no occurrence of w[i], obtained from w[j + 1 : i] by the single deletion of w[i].

109

110 The Edit Distance to k-Subsequence Universality

This concludes the proof of Claim 1.

Computing M′ takes linear time. Now, we can use the array M′ to compute the values stored in N.

Assume that we want to compute N[i][p].

Let j = univ[i]. If j = 0, then set N[i][p] = ∞. Assume in the following that j , 0. Clearly,

i ∈ L j. Therefore, the structures we computed with Lemma 6.4 provide the value t = last j−1[w[i]].

If t = n + 1 (i.e., w[i] does not occur in w[1 : j − 1]), and because p ≥ 2, we set N[i][p] = ∞ (we

cannot transform the word w[1 : i] into a p-universal word by deletions when it only contains one

occurrence of w[i]). If t < n + 1, let r = RMQp−1(t + 1, j − 1).

Claim 2. We claim that the following holds N[i][p] = min{M′[t] + |w[t + 1 : i]|w[i] − 1, N[r][p −

1] + |w[r + 1 : i]|w[i] − 1}.

Proof of Claim 2. Indeed, this is true because in order to transform (with a minimal number of

deletions) w[1 : i] into a weak-p-universal word without deleting w[i] we can

• either transform (with a minimal number of deletions) a prefix w[1 : t′] of w[1 : t] into a

weak-(p − 1)-universal word and remove all the occurrences of w[i] from w[t′ + 1 : t], and,

then, all occurrences of w[i] from w[t + 1 : i], except w[i],

• or we transform (again with a minimal number of deletions) a prefix w[1 : t′] of w[1 : j], with

t′ > t and j = univ(i), into a weak-p − 1-universal word, and then remove all the occurrences

of w[i] from w[t′ + 1 : i], except w[i].

This concludes the proof of Claim 2.

Let us now note that M′[t]+ |w[t + 1 : i]|w[i] − 1 = M′[t]+ freq[i]− freq[t]− 1 (because w[i] = w[t]).

Also, N[r][p−1]+|w[r+1 : i]|w[i]−1 = N[r][p−1]+|w[t+1 : i]|w[i]−1 = N[r][p−1]+freq[i]−freq[t]−1

because w[i] does not occur in w[t + 1 : r] (as w[i] does not occur between w[t + 1 : j − 1]).

This gives us a way to compute each N[i][p] in constant time (once M′[·] was computed).

Thus, computing the entire column N[·][p] takes overall linear time O(n) (including here the

computation of the array M′).

Consequently, in total, we can compute the elements of the matrix N in O(nk) time.

Collecting the results. We are not done yet, as it is not clear which is the minimal number of

deletions we need in order to transform w into a k-universal word.

Recall that Lemma 6.4 also computes the array T [·] with T [i] = min{|w[i + 1 : n]|a | a ∈ Σ}, for

i ∈ [0 : n].

110

6.3. Edit Distance to k-universality 111

Now, the minimal number of deletions we need in order to transform w into a k-universal word is

clearly min{N[i][k]+ T [i] | 1 ≤ i ≤ n}: we check which is the minimal number of deletions we need

in order to both transform a prefix w[1 : i] into a weak-p-universal word, without deleting w[i], and

the word w[i + 1 : n] into a word with universality index 0.

Complexity. According to the above, the answer returned by our algorithm can be computed in O(n)

time, after the matrix N was computed. So, overall, the time complexity of the algorithm is O(nk).

The correctness of this approach follows from the observations we made during the explanation of

the algorithm. So, the statement follows. □

The idea of this proof is the following. Assume that w′ is a word of universality index k obtained

via the sequence of deletions of minimal length from w. Clearly, w′ is a subsequence of w, and, by

the decomposition defined in Theorem 2.27, there exist w′1, . . . ,w
′
k, all of universality index exactly

1, and w′k+1, of universality index 0, such that w′ = w′1 · · ·w
′
kw′k+1. It follows that each of the words

w′i is a subsequence of w too. So we will try to identify each subsequence w′1 · · ·w
′
p for p ≤ k and

the shortest factor w[1 : i] from which it is obtained. To this end, we define the matrix N, where

N[i][p] is the minimal number of deletions we need to apply to w[1 : i], without deleting w[i], to

obtain a word v from it, with ι(v) = p and ι(v[1 : |v| − 1]) = p − 1 (for i ∈ [1 : n] and p ∈ [1 : k]). If

ι(w[1 : i]) ≥ 1, then N[i][1] = |w[1 : i]|w[i] − 1, as we have to delete all occurrences of w[i] from

w[1 : i], except the one on position i. Then, N[i][p] = min{N[j][p − 1] + |w[j + 1 : i]|w[i] − 1 | j < i

such that ι(w[j + 1 : i]) ≥ 1}. This gives a dynamic programming algorithm for computing N.

Using additional data structures extending the standard Range Minimum Queries structures (see

Lemma 2.37), we can compute the elements of N in O(nk) time. To show the statement, we return

min{N[i, k] + T [i] | 1 ≤ i ≤ n}, using the array T of Lemma 6.4.

6.3.3 Changing the k-universality with Substitutions

Theorem 6.8. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k be an

integer 0 ≤ k ≤ ⌊ n
σ⌋. We can compute the minimal number of substitutions needed to apply to w in

order to obtain a k-universal word (w.r.t. Σ) in O(nk) time.

Proof. Recall that ι(w) is the initial universality index of w. We will distinguish between the cases

ι(w) < k and ι(w) > k. While the former allows for an argumentation similar to Theorem 6.6 for

insertions, the latter will fall back to the Theorem 6.7 for deletions.

Case 1. Let us assume first that ι(w) < k.

General approach. At a high level, the algorithm and data structures we use here are similar to those

used in the case of changing the universality of a word by insertions, described in Theorem 6.6 (the

finer details are, however, different). As in the respective algorithm, we will compute M[ℓ][t] the

minimal number of substitutions one needs to apply to w[1 : ℓ] in order to make it t-universal, for

111

112 The Edit Distance to k-Subsequence Universality

all ℓ ∈ [1 : n] and all t ∈ [1 : k]. Clearly, to edit w[1 : ℓ] into a t-universal word using substitutions,

we first create a (t − 1)-universal word from a prefix w[1 : ℓ′] of w[1 : ℓ], and then a 1-universal

word from w[ℓ′ + 1 : ℓ]. As in the case of insertions, the number of substitutions used in this process

has to be minimal among all the numbers we obtain when choosing ℓ′ in all possible ways. The

main differences are that, in the case of substitutions, we need to have that |w[ℓ′ + 1 : ℓ]| ≥ σ, or we

would not be able to obtain a 1-universal word from w[ℓ′ + 1 : ℓ], and |w[1 : ℓ′]| ≥ (t − 1)σ.

w 1 . . . ℓ′ ℓ′ + 1 . . . ℓ . . . |w|

(t − 1)-universal⇒ M[ℓ′, t − 1]
universal⇒ σ − ∆(ℓ′ + 1, ℓ)

≥ (t − 1)σ ≥ σ

Figure 6.4: Illustration of the formula developed for the computation of M[ℓ][t].

Algorithm - initial idea. As described informally above, we compute the n × k matrix M[·][·], where

M[ℓ][t] denotes the minimal number of substitution needed to transform w[1 : ℓ] into a t-universal

word, for all ℓ ∈ [1 : n] and t ∈ [1 : k]. We will achieve this using dynamic programming. By the

remarks we made above, it is not hard to see that:

M[ℓ][t] = min{M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | σ(t − 1) < ℓ′ + 1 ≤ ℓ − σ + 1}.

In order to compute M efficiently, we will run the algorithms from Lemmas 6.1 and 6.3. These will

provide us with the data structures last jσ+1[·], and d jσ+1[·], for all j, as well as all M[·][1] in O(n)

time. More precisely, M[ℓ][1] = σ − ∆(1, ℓ), if ℓ ≥ σ, and M[ℓ][1] = ∞, if ℓ < σ. As in the case of

insertions, the direct computation of M[ℓ][t] would be too costly. Therefore, we will need further

observations.

Observations. Assume that the letter on position ℓ′ + 1 < ℓ − σ + 1 in w, namely w[ℓ′ + 1], occurs

at least twice in w[ℓ′ + 1 : ℓ]. Then (σ − ∆(ℓ′ + 1, ℓ)) = (σ − ∆(ℓ′ + 2, ℓ)). Thus, it clearly follows

that M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) ≥ M[ℓ′ + 1][t − 1] + (σ − ∆(ℓ′ + 2, ℓ)). So, once more, we only

need to consider in our recurrence that ℓ′ + 1 is the rightmost occurrence of some letter inside the

factor w[1 : ℓ]. The observation made above does not include the case when ℓ′ + 1 = ℓ − σ + 1, so

we will just add this position in the set of the relevant positions for our recurrence too.

As we did in the proof of Theorem 6.6, we can now rewrite our recurrence in a way that will enable

us to apply Lemma 6.3. For Sℓ = (S ℓ ∩ [(t − 1)σ : ℓ − σ]) ∪ {ℓ − σ + 1} :

M[ℓ][t] = min{M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ + 1 ∈ Sℓ}.

112

6.3. Edit Distance to k-universality 113

w ℓ . . .

S ℓ ∩ [(t − 1)σ : ℓ − σ]

(t − 1)σ ℓ − σ + 1

→ (t − 1)-universal → universal

Figure 6.5: Illustration of Sℓ and how it is used to compute M[ℓ][t]. Here we only select from
S ℓ = {lastℓ[a] | a ∈ alph(w[1 : ℓ])} the elements which are in [(t − 1)σ : l − σ]. To obtain Sℓ we
also have to consider the position ℓ−σ+ 1. The elements of Sℓ are depicted with grey in the figure.

Algorithm - the efficient variant. Using these observations in combination with Lemma 6.5, we can

compute the elements of the matrix M efficiently. The algorithm is similar to the one from Case 1

of Theorem 6.6. Firstly, by Lemma 6.2, we can compute the values ∆(i − σ + 1, i), for all i, in O(n)

time.

So, let us consider a value t ≥ 2. Assume that we have computed the values M[ℓ][t − 1], for all

ℓ ∈ [1 : n]. We now want to compute the values M[ℓ][t], for all ℓ ∈ [1 : n]. The main idea in

doing this efficiently is to split the computation of the elements on column M[·][t] of the matrix M

in phases. In phase j we compute the values M[jσ + 1][t], M[jσ + 2][t], . . . , M[(j + 1)σ][t], for

j ≤ (n − 1)/σ.

Now we consider some j, with 0 ≤ j ≤ (n − 1)/σ. We want to apply Lemma 6.5, so we need to

define the list A of size σ. This is done as follows.

We will keep an auxiliary array pos[·] with σ elements. Moreover, the element on each position i

of A, namely A[i], will be accompanied by two satellite data: a position of w and the letter on that

position. Now, for a such that last jσ+1[a] ∈ S jσ+1 \ {(j − 1)σ + 2}, we have that d jσ+1[a] = σ − i

for some i ∈ [0 : σ − 2] (as w[last jσ+1[a] : jσ + 1] contains at least a and w[(j − 1)σ + 2]). We

set A[i + 1] = M[last jσ+1[a] − 1][t − 1] + i and pos[a] = i + 1; the satellite data of A is the pair

(last jσ+1[a], a). We also set A[σ] = M[(j − 1)σ + 1][t − 1] + (σ − ∆((j − 1)σ + 2, jσ + 1)) and

pos[w[(j − 1)σ + 2]] = σ; the satellite data of A is the pair ((j − 1)σ + 2,w[(j − 1)σ + 2]). If, for

some letter a, last jσ+1[a] = n + 1 (i.e., a does not occur in w[1 : jσ + 1]), we simply set pos[a] = 0.

The elements of A which are not defined above will store ∞ (i.e., a large enough value, at least

(k + 1)σ + 1); for simplicity, if we apply any arithmetic operation to∞, we get∞. We also set m to

σ. Now we are in the position of defining and applying a sequence of operations o1, . . . , oσ from

Lemma 6.5.

113

114 The Edit Distance to k-Subsequence Universality

Algorithm - application of Lemma 6.5. In oi, we extract the minimum q of A. Then set M[jσ+ i][t] =

q. We decrement by 1 all elements of A on the positions pos[a] + 1, pos[a] + 2, . . . ,m, where

a = w[(j − 1)σ + i + 2]. Then, we append to A the element M[(j − 1)σ + i + 1][t − 1] + (σ − ∆((j −

1)σ + i + 2, jσ + i + 1)), with the satellite data (jσ + i + 2, a) (and implicitly increment m by 1), and

set pos[a] = m.

Algorithm - the result of applying Lemma 6.5. One can show exactly as in the case of Theorem

6.6 that after executing the σ operations o1, . . . , oσ, we have computed the values M[jσ + 1][t],

M[jσ + 2][t], . . . , M[(j + 1)σ][t] correctly. We can move on to phase j + 1 and repeat this process.

The result. The minimal number of substitutions needed to make w k-universal is correctly computed

as M[n][k].

Complexity. By Lemma 6.5, computing M[jσ + 1][t], M[jσ + 2][t], . . . , M[(j + 1)σ][t] takes O(σ)

for each j. Overall, computing the entire column M[·][t] takes O(n) time. We do this for all t ≤ k,

and we obtain O(nk) time in total to compute all elements of the matrix M.

Case 2. Now let us assume that ι(w) > k.

General approach. We will show that the minimal number of substitutions needed to obtain a

k-universal word from w equals the minimal number of deletions needed to obtain a k-universal

word from w, and then use the algorithm from Theorem 6.7 to compute it.

The proof. First of all, the comments made in the opening of Section 6.3 explain why the minimal

number of substitutions needed to obtain a k-universal word from w is lower bounded by the minimal

number of deletions needed to obtain a k-universal word from w. Indeed, in a transformation of

w, of universality index ι(w), into a word w′, of universality index k, using s substitutions, we can

replace all these substitutions by deletions and get a word w′′ that has universality index lower or

equal to k. Thus reaching a k-universal word from w requires s deletions or less.

To see that, in fact, the minimal number of substitutions needed to obtain a k-universal word from w

equals the minimal number of deletions needed to obtain a k-universal word from w, we proceed as

follows.

Let arw(1) · · · arw(ι(w))rw be the arch factorisation of w. Let w′ be a k-universal word that is

obtained from w using a minimal number of deletions, and let w′ = arw′(1) · · · arw′(k)rw′ be its arch

factorisation. Clearly, w′ is a subsequence of w, so we can identify the list of deleted positions of w,

as well as the position i j of w which corresponds to the last symbol of arw′(j) for j ∈ [1 : k]; that is,

arw′(1) · · · arw′(j) is obtained using the respective deletions from w[1 : i j]. Let i0 = 0. Now, we can

associate the deleted positions to the arches of w′ in the following way: if i is a position of w such

that w[i] was deleted and i ∈ [i j−1 + 1 : i j], then i is associated to arw′(j).

114

6.4. Space Efficient Implementation 115

Now, in the case of substitutions, instead of deleting letters of w, we will replace any deleted letter

w[i] of w by a letter different from the last letter of arw′(j), namely arw′(j)[| arw′(j)|], where arw′(j)

is the arch of w′ associated to position i. Let w′′ be the word obtained in this way. By Definition

2.28 w′′ has an arch factorisation with exactly k archs (the jth arch of this factorisation ends with

the letters arw′(j)[| arw′(j)|] from the corresponding arch of w′).

This shows that the minimal number of substitutions needed to obtain a k-universal word from w is

lower or equal to the minimal number of deletions needed to obtain a k-universal word from w, and,

as we have also shown the opposing inequality, these numbers must be equal.

With this, the analysis of both cases is finished, and it follows that the statement of the theorem

holds. □

Note that, while substitutions and deletions can be used similarly to decrease the universality index

of a word, we always need at least as many substitutions as insertions to increase it. To see that this

inequality can also be strict, note that one insertion is enough to make aabb 2-universal, but we

need two substitutions to achieve the same result.

6.4 Space Efficient Implementation

We presented a series of algorithms computing the minimal number of edits one needs to apply to a

word w in order to reach k-subsequence universality. In fact, one can extend our algorithms and,

using additional O(k|alph(w)|) time, we can effectively construct a k-universal word which is closest

to w, with respect to the edit distance. All our algorithms can be implemented in linear space using

a technique called Hirschberg’s trick [88].

Remark 6.9. Assume k ≤ n. In the proofs of Theorems 6.6 and 6.8 and, respectively, in the proof of

Theorem 6.7 the main part is computing the matrices M and respectively N. This requires O(nk)

time and space. However, as computing the columns M[·][p] and N[·][p] only requires knowing the

values on columns M[·][p − 1] and, respectively, N[·][p − 1], we can reduce the space consumption

to O(n). So, if we are only interested in computing the minimal number of insertions, deletions,

or substitutions required to transform w into a k-universal word, O(n) space and O(nk) time are

enough.

The case k > n is only relevant when we want to compute the minimal number of insertions required

to transform w into a k-universal word. As explained in the proof of Theorem 6.6, this can be

computed in O(n2) time to which we add the time needed to compute σ(k − n). Similarly, by the

observations made above, we can compute the minimal number of insertions required to transform

w into a k-universal word in O(n) space (the computation of the matrix M) to which we add the

space needed to compute σ(k − n). □

115

116 The Edit Distance to k-Subsequence Universality

Theorem 6.10. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k , ι(w) be

an integer. We can construct one of the k-universal words which are closest to w w.r.t. edit distance

in O(kn) time, if k ≤ n, and O(n2 + kσ) time, otherwise. The space needed for this construction is

O(n + kσ)

Proof. The initial algorithm. We first explain how one of the k-universal words which are closest

to w w.r.t. edit distance can be constructed in O(kn) time, without fulfilling the space complexity

restriction. We will split the discussion in two cases.

Case 1. k > ι(w). In this case, we only need insertions to produce one of the k-universal words

which are closest to w w.r.t. edit distance. So we will use the algorithm in Theorem 6.6 to construct

this word. We assume that we use the same notations as in the proof of the respective theorem. In

the referenced algorithm we compute, for each position ℓ of w and each t ≤ min{n, k} a value jℓ
such that

M[ℓ][t] = M[jℓ][t − 1] + (σ − ∆(jℓ + 1, ℓ) = min{M[ℓ′][t − 1] + (σ − ∆(ℓ′ + 1, ℓ)) | ℓ′ ≤ ℓ}.

We define S ol[ℓ][t]← jℓ.

Let us assume first k ≤ n. Define the sequence ik−1 = S ol[n][k] and, for j ∈ [2, k − 1], i j−1 =

S ol[i j][j]. Let i0 = 0 and ik = n. It is not hard to see that for the decomposition w = v1 · · · vk, where,

for j ∈ [1 : k − 1], v j = w[i j−1 + 1 : i j], the following holds:
∑

j∈[1:k](σ − ∆(i j−1 + 1, i j)) = M[n][k].

In other words, if we insert the minimal number of letters in each of the words v1, . . . , vk such that

they become universal, then we obtain one of the k-universal words which are closest to w w.r.t. the

edit distance.

Clearly, the sequence of words v1 = [1 : i1], v2 = [i1+1 : i2], . . .,vk = [ik−1+1 : ik] can be computed

in linear time O(n) once we have the matrix S ol.

Now, to compute a k-universal word obtained from w by making each of the words v1, . . . , vk

universal with a minimal number of insertions, we do the following. For each i ∈ [1 : k], by

traversing the word vi left to right we can identify in O(|vi| + σ) the subset Vi of Σ containing the

letters which do not occur in vi (e.g., using a counting vector like in the proof of Lemma 6.1). We

produce a word ui from vi by appending the letters from Vi at the end of vi; this takes O(|vi| + σ)

time. Then we concatenate the words u1, . . . , uk and obtain a word u which is k-universal and the

number of insertions needed to obtain u from w is M[n][k]. The total time needed to produce u is

O(kσ).

Let us now assume that k > n. Just like above, we obtain an n-universal word u from w. Then we

concatenate at the end of u the word (1 · 2 · · · · σ)k−n. In this way, we obtain a word u′ which is k-

universal and the number of insertions needed to obtain u from w is minimal, i.e., M[n][k]+ (k−n)σ.

The total time needed to produce u′ is O(n2 + kσ).

116

6.4. Space Efficient Implementation 117

This concludes the analysis of Case 1.

Case 2. k < ι(w). In this case, we only need deletions to produce one of the k-universal words

which are closest to w w.r.t. edit distance. So we will use the algorithm in Theorem 6.7 to construct

this word. We assume that we use the same notations as in the proof of the respective theorem. In

the algorithm described in the proof of Theorem 6.7 we compute, for i ∈ [1 : n], p ∈ [2 : k], a value

ji such that

N[i][p] = N[ji][p− 1]+ |w[ji + 1 : i]|wi = min{N[i′][p− 1]+ |w[i′ + 1 : i]|wi | i
′ ∈ [1 : univ[i]− 1]}.

We define S ol[i][p]← ji. We have S ol[i][1] = 0.

Finally, to return the minimal number of deletions needed to transform w into a k-universal word,

we compute m = arg min{N[i][k] + T [i] | 1 ≤ i ≤ n}.

We now define the sequence ik = m, i j−1 = S ol[i j][j], with j ≥ 2, and i0 = 1. Let ik+1 = n. It is

not hard to see that for the decomposition w = v1 · · · vkvk+1, where, for j ∈ [1 : k + 1] and v j =

w[i j−1 + 1 : i j], the following holds:
∑

i∈[1:k](|vi|vi[|vi |] + 1)+ |vk|w[m] = min{N[i][k]+T [i] | 1 ≤ i ≤ n}.

Clearly, the sequence of words v1, . . . , vk, vk+1 can be computed in linear time O(n) once we have

the matrix S ol. To compute a k-universal word obtained from w by making each of the words

v1, . . . , vk universal with a minimal number of deletions, we just remove from vi all the occurrences

of their last letter (i.e., vi[|vi|]), except the rightmost one. This takes O(n) time, and we can output

the word obtained by this procedure as one of the k-universal words which are closest w.r.t. edit

distance to w.

A space efficient implementation. We will only discuss in detail how the case when n ≥ k > ι(w) is

implemented, as all the other cases can be approached in exactly the same manner.

We know by Remark 6.9 that the matrix M can be computed in linear space O(n). However, it is

unclear how we can compute the sequence i0, i1, . . . , ik in linear space. In particular, in the approach

described above we explicitly need to compute and store all the elements in the matrix.

Fortunately, there exists a standard way to deal with this problem (known as Hirschberg’s trick

[88]).

We will need to define more formally the problem that we want to solve in this framework.

We want to solve the problem P(w) which requires, for the input word w of length n, to compute the

smallest number m of insertions needed to transform w into a k-universal word and the sequence of

positions i0 = 1, i1, . . . , ik−1, ik = n such that we can transform each of the words w[i j−1 : i j], with

j ∈ [1 : k], into a universal word, using in total exactly m insertions.

The solution of P(w) is the following.

117

118 The Edit Distance to k-Subsequence Universality

Firstly, we will compute the value m as described in the proof of Theorem 6.6, using only linear

space as described in Remark 6.9, but, alongside m, we will also compute the value i⌊k/2⌋.

This can be done by computing (the columns of) an additional matrix H, simultaneously with (the

columns of) the matrix M. Recall that computing M[ℓ][t] is based on identifying a position jℓ such

that M[ℓ][t] = M[jℓ][t − 1] + (σ − ∆(jℓ + 1, ℓ). Then H[ℓ][t] is defined as follows:

H[ℓ][t] =

∞ if t < ⌊k/2⌋,

H[jℓ][t − 1] if t > ⌊k/2⌋,

j if t = ⌊k/2⌋.

Intuitively, given that M[ℓ][t] is the minimal number of insertions needed to transform w[1 : ℓ]

into a t-universal word, then H[ℓ][t] is the ending position of the prefix of w[1 : ℓ] which was

transformed in a ⌊k/2⌋-universal word when the respective sequence of length M[ℓ][t] of insertions

is applied to w[1 : ℓ] .

Clearly, to compute the elements of the column H[·][t] of the matrix H we only need column

H[·][t − 1] (and the columns M[·][t] and M[·][t − 1] of matrix M). So, we can compute H[n][k] in

linear space and O(nk) time. Also, it is not hard to see that H[n][k] is exactly the value i⌊k/2⌋. In

fact, there may be more solutions to our problem P(w, k), so H[n][k] corresponds to the position

i⌊k/2⌋ in one of these solutions.

To compute the rest of the values i0, . . . , i⌊k/2⌋−1, i⌊k/2⌋+1, . . . , ik we proceed in a divide and conquer

manner. We solve P(w[1 : i⌊k/2⌋], ⌊k/2⌋) and obtain the sequence i0, . . . , i⌊k/2⌋−1, i⌊k/2⌋, and then we

solve P(w[i⌊k/2⌋ + 1 : n], ⌈k/2⌉) and we obtain the sequence i⌊k/2⌋, i⌊k/2⌋+1, . . . , ik. Then we simply

return i0, . . . , i⌊k/2⌋−1, i⌊k/2⌋, i⌊k/2⌋+1, . . . , ik and the value M[n][k] as a solution to P(w, k).

The correctness of the algorithm is based on the following simple remark: if w[1 : n] can be

transformed into a k-universal word by a sequence of m insertions, such that in the respective

sequence of insertions transforms w[1 : i⌊k/2⌋] into a ⌊k/2⌋-universal word, then the following hold:

• w[1 : i⌊k/2⌋] can be transformed into a ⌊k/2⌋-universal word by p insertions;

• w[i⌊k/2⌋ + 1 : n] can be transformed into a ⌈k/2⌉-universal word by m − p insertions.

Thus, solvingP(w, k) can be reduced to computing i⌊k/2⌋ and solving recursivelyP(w[1 : i⌊k/2⌋], ⌊k/2⌋)

and P(w[i⌊k/2⌋ + 1 : n], ⌈k/2⌉).

The time complexity T (n, k) of solving P(w, k) is then T (n, k) = O(nk) + T (i⌊k/2⌋, ⌊k/2⌋) + T (n −

i⌊k/2⌋, ⌈k/2⌉). It is easy to show that T (n, k) ∈ O(nk).

Assume that the algorithm computing H[n][k] and M[n][k] needs cn space for some constant c.

118

6.5. Extensions on the results 119

One can show by induction on n + k that the space complexity S (n, k) of solving P(w, k) is upper-

bounded by dn, where d ≥ c is a constant, n = |w|, and k ≤ n. The case n + k = 2 is trivial. Assume

that this is true for n + k ≤ r. We show that it is true for n + k = r + 1. To solve P(w, k) we

first compute the values M[n][k] and H[n][k] in cn ≤ dn space, for some constant c. The main

observation we make here is that the space we used in this computation can then be reused. Then we

solve P(w[1 : i⌊k/2⌋], ⌊k/2⌋) using di⌊k/2⌋ ≤ dn space (which is actually reused space). Finally, we

solve P(w[i⌊k/2⌋ + 1 : n], ⌊k/2⌋) using d(n − i⌊k/2⌋) ≤ dn space (which is, once more, reused space).

Thus, S (n, k) is upper bounded by dn.

This concludes our proof, and shows the statement of the theorem for the case of increasing the

universality index of a word w by insertions to a value k with k ≤ |w|.

We immediately get that in the case of increasing the universality index of a word w by insertions to

a value k with k > |w| we need O(n) space to reach n-universality, and the rest of the construction

can be done trivially in O(kσ) space (we just need to write down the output).

The case of decreasing the universality index of a word w by deletions to a value k < ι(w) can be

treated in an identical way (using the same divide-and-conquer trick). □

6.5 Extensions on the results

The algorithms we presented work in a general setting: the processed words are over an integer

alphabet. It seems natural to ask whether faster solutions for inputs over an alphabet of constant size

(e.g., binary alphabets) exist. To this end, we state the following two results in the case of insertions

as well as increasing the universality by subsitutions in the following section. For readability we

will present the utilized data structure in a separate section afterwards.

6.5.1 Efficient Implementation for small Alphabets

Theorem 6.11. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k be an

integer ι(w) < k. We can compute the minimal number of insertions needed to apply to w in order to

obtain a k-universal word (w.r.t. Σ) in (n logO(1) σ)-time.

Proof. We first define a weighted directed acyclic graph G with the nodes 0, 1, . . . , n and directed

edges (i, j) with i < j.

Let ω(i, j) = σ − ∆(i + 1, j) (i.e., the number of letter of Σ which do not appear in w[i + 1 : j]) be

the weight of the edge (i, j).

Let us show that the number of insertions needed to transform w into a k-universal word equals the

weight of a minimum weight k-link path in G (i.e., a path with k edges in the DAG G, starting in

node 0, as defined in [20, 5, 148]).

119

120 The Edit Distance to k-Subsequence Universality

Let the minimum weight k-link path of G be (0, i1), (i1, i2), . . . , (ik−1, ik). It has weight W =

ω(0, i1) + ω(i1, i2) + · · · + ω(ik−1, ik) = σ − ∆(1, i1) + σ − ∆(i1 + 1, i2) + · · · + σ − ∆(ik−1, ik). It is

straightforward that by doing ω(it−1, it) insertions we can transform w[it−1 + 1 : it] into a 1-universal

word (for 0 ≤ t ≤ k, and i0 = 0). Thus, with W insertions we can transform w into a word w′ with

ι(w′) ≥ k.

Let U be the minimum number of insertions needed to transform w into a word u with ι(u) = k,

and let I be the respective sequence of insertions. Assume U < W. Consider the arch-factorisation

of u into k-archs u = u1u2 · · · ukuk+1, where alph(uk+1) is a strict subset of Σ. Then, there exists

1 ≤ j1 < j2 < . . . < ik−1 < ik ≤ n such that w[jt−1 + 1 : jt] is transformed using exactly

σ−∆(jt−1 + 1, jt) insertions from the sequence I into ut, where 1 ≤ t ≤ k and j0 = 0. Consequently,

the k-link path (0, j1), (j1, j2), . . . , (jk−1, jk) will have weight U < V , a contradiction.

In conclusion, the number of insertions needed to transform w into a k-universal word equals the

weight of a minimum weight k-link path in G.

Moreover, we can show that G fulfils the concave Monge property. That is, we want to show that

ω(i, j) + ω(i + 1, j + 1) < ω(i + 1, j) + ω(i, j + 1) holds for all 0 < i + 1 < j < n.

To show that ω(i, j)+ω(i+1, j+1) < ω(i+1, j)+ω(i, j+1) means to show that σ−∆[i+1, j]+σ−

∆[i+ 2, j+ 1] ≤ σ−∆[i+ 1, j+ 1]+σ−∆[i+ 2, j] holds for all for all 0 < i+ 1 < j < n. This can be

done easily by case analysis, analysing whether the letter w[i + 1] is contained in alph(w[i + 2.. j]).

If w[i+1] is contained in alph(w[i+2.. j]) then σ−∆[i+1, j] = σ−∆[i+2, j] and σ−∆[i+2, j+1] =

σ − ∆[i + 1, j + 1] and we get that the desired inequality is in fact an equality, so it is true.

If w[i + 1] is not contained in alph(w[i + 2.. j]) then σ − ∆[i + 1, j] = σ − ∆[i + 2, j] − 1 and

σ − ∆[i + 2, j + 1] − 1 ≤ σ − ∆[i + 1, j + 1] and we get, once more, the desired inequality.

This shows that G fulfils the concave Monge property.

We now move on to our algorithm. We first construct in n logO(1) σ-time the data structures from

Lemma 6.13. With these structures, we do not need to construct the graph G explicitly. We can,

however, retrieve in O(logσ/ log logσ) the weight of any edge (i, j) of the graph G.

Further, as the DAG G fulfils the concave Monge property), then the minimum weight k-link path

in G can be computed in O(n log T (logσ/ log logσ))-time, using the algorithms of [20, 5], where

T is the maximum weight of an edge in G.

Adding this up together, the minimum weight k-link path in G can be computed in n logO(1) σ +

O(n logσ(logσ/ log logσ)) = n logO(1) σ time. Consequently, the number of insertions needed to

transform w into a k-universal word can be computed in n logO(1) σ time. □

120

6.5. Extensions on the results 121

Theorem 6.12. Let w be a word, with |w| = n, alph(w) = Σ, and Σ = {1, 2, . . . , σ}. Let k be an

integer ι(w) < k ≤ ⌊ n
σ⌋. We can compute the minimal number of substitutions needed to apply to w

in order to obtain a k-universal word (w.r.t. Σ) in (n logO(1) σ)-time.

Proof. As in Theorem 6.11, we define the weighted directed acyclic graph G with the nodes

0, 1, . . . , n and directed edges (i, j) with i < j. However, the weight of the edges are defined

differently this time. Let ω(i, j) = σ − ∆(i + 1, j) (i.e., the number of letter of Σ which do not

appear in w[i + 1 : j]) be the weight of the edge (i, j) if |w[i + 1 : j]| ≥ σ, and ω(i, j) = ∞ if

|w[i + 1 : j]| < σ.

The rest of the proof is identical to that of Theorem 6.11. □

We conclude that, if σ ∈ O(1), then the algorithms of Theorem 6.11 and 6.12 run in optimal linear

time O(n).

6.5.2 Universality Queries

We consider the following problem, which we will call Distinct Letter Counting: Given a word w,

over an alphabet Σ of size σ, construct data structures allowing us to answer queries ∆(i, j): "How

many distinct letters occur in w[i.. j]?". This problem is, in fact, a reformulation of the problem

of 1D-Coloured Range Counting [116, 134]. We will give an efficient solution for it, which has a

query-answering time similar to that from [134], and, moreover, has also an efficient data structure

construction-time.

For our result, we will use a well known variant of the 2D-Range Counting problem [138, 91],

which asks to construct data structures for n given points in the two dimensional plane, all having

integer coordinates, so that we can answer queries D(a, b, c, d): "How many input points are located

in the rectangle with the lower-left corner (a, b) and upper right-corner (c, d)?", where a ≤ c and

b ≤ d. Note that the coordinates of the points in this problem do not have to be in any relation to n.

For instance, they are not necessarily bounded by O(nℓ) for some constant ℓ, as it is the case to the

integers used as letters of the input word in Distinct Letter Counting.

Pătraşcu showed in [138] that a static data structure of size n logO(1) n for 2D-Range Counting

requires Ω(log n/(log log n)) time per query (in the cell probe model, so also in our computational

model). Chan and Pătraşcu [40] showed the following upper bounds: data structures for 2D-Range

Counting can be constructed in O(n
√

log n) time (and space) such that each query is answered in

O(log n/(log log n)) time. Based on this, we can show that the following theorem holds.

Theorem 6.13. Given a word w over an alphabet Σ, with |Σ| = σ and |w| = n, we can construct in

(n logO(1) σ)-time data structures for Distinct Letter Counting with input w, allowing us to answer

each query in O(logσ/(log logσ)) time.

121

122 The Edit Distance to k-Subsequence Universality

Proof. For simplicity, let us assume that there exists k such that n = 2k.

In a preprocessing phase that takes linear time we compute an array storing ⌊log2 i⌋, for all i ∈ [n].

As such, we can assume that ⌊log2 i⌋ can be computed in O(1) time in the rest of this algorithm.

Let p be a number such that 2p−1 < σ ≤ 2p. In this context, we will assume for simplicity that

p < k; this can be achieved by processing as input word ww instead of w, for instance.

We now describe the first phase of our algorithm.

For each of the positions j = i2p, with i ∈ [2k−p − 1] we can construct in O(nσ
2p) = O(n) time

(following the same ideas as in the proof of Lemma 6.4 or of Theorem 2.27) the list containing

the rightmost occurrences xa of every letter a ∈ Σ in w[1..i2p], as well as the list containing the

leftmost occurrences ya of every letter a ∈ Σ in w[i2p + 1..n]. The construction of these lists consists

in traversing once the word left to right while maintaining the list of the last seen occurrence of

each letter, to obtain the xa values for each of the considered positions, and then a similar traversal

right to left to obtain the values ya for all considered positions. So, this takes linear time.

We now describe the second phase of our algorithm. In this phase we associate a 2D-Range Counting

structure to the pairs of factors of length 2ℓ occurring around position i2ℓ, for i ∈ [n
2ℓ] and ℓ between

p and k.

For ℓ from k − 1 down to p, and for each position j = i2ℓ with i ∈ [n
2ℓ − 1], we do the following.

Select from the list of rightmost occurrences xa of every letter in w[1..i2p], that we computed

for the position i2ℓ, the list of occurrences contained in w[(i − 1)2ℓ + 1..i2ℓ]. For the letters a

that do not occur in w[(i − 1)2ℓ + 1..i2ℓ] we set xa = n + 1. Select from the list containing the

leftmost occurrences ya of every letter a ∈ Σ in w[i2ℓ + 1..n] the list of occurrences contained in

w[i2ℓ +1..(i+1)2ℓ]. For the letters a that do not occur in w[i2ℓ +1..(i+1)2ℓ] we set ya = 0. This can

be done in O(σ) time. For each letter a ∈ Σ, if either xa , n + 1 or ya , 0, we add the point (xa, ya)

to a set of points S i2ℓ (which is initially empty). Then, we construct data structures for answering

2D-Range Counting queries for S i2ℓ .

This process takes σ logO(1) σ time, for each position i2ℓ, with i ∈ [n
2ℓ − 1] and p ≤ ℓ ≤ k − 1. In

total it takes ∑
p≤ℓ≤k−1

nσ logO(1) σ

2ℓ
∈

(
nσ logO(1) σ

2p

)
= (n logO(1) σ) time.

We now describe the third phase of our algorithm. In this phase we associate a 2D-Range Counting

structure to the pairs of factors of length 2ℓ occurring around position i2ℓ, for i ∈ [n
2ℓ] and ℓ < p.

For this phase of our algorithm we will use two arrays C[·] and D[·] with σ elements each (indexed

by the letters of Σ). All the values stored in C and D are initially null.

122

6.6. Considerations on the computational model 123

Finally, for ℓ from p − 1 down to 0, and for each position j = i2ℓ with i ∈ [n
2ℓ − 1], we compute the

list of rightmost occurrences xa of every letter a ∈ Σ inside w[(i − 1)2ℓ + 1..i2ℓ]; we also compute

the list of the leftmost occurrences ya of every letter a ∈ Σ inside w[i2ℓ + 1..(i + 1)2ℓ]. If a occurs in

w[(i − 1)2ℓ + 1..i2ℓ] we set C[a] = xa. If a occurs in w[i2ℓ + 1..(i + 1)2ℓ] set D[a] = ya. Moreover,

if C[a] stores a position in w[(i − 1)2ℓ + 1..i2ℓ] then we add (xa, ya) to the set S i2ℓ (which is initially

empty); otherwise, we add (n + 1, ya) to S i2ℓ . Similarly, if a occurs in w[(i − 1)2ℓ + 1..i2ℓ] and D[a]

does not store a position of w[i2ℓ + 1..(i+ 1)2ℓ] we add (xa, 0) to S i2ℓ . This entire process, including

the construction of S i2ℓ , can be done in O(2ℓ) time. We construct 2D-Range Counting structures for

S i2ℓ . The time needed for this is O(2ℓpoly(ℓ)).

Running this process for all positions i2ℓ, with i ∈ [n
2ℓ − 1] and ℓ ∈ [p − 1]0, takes O(n logσ) (the

construction of the sets of points for all the positions) to which we add the total time needed to

construct the 2D-Range Counting data structures. For a fixed ℓ this takes O((n
2ℓ − 1)2ℓpoly(ℓ)) =

O(npoly(ℓ)); so the time needed to construct these structures for all ℓ ≤ p − 1 is (n logO(1) σ) (as ℓ

ranges from 1 to p − 1 ∈ O(logσ)).

At this point we have constructed all the data structures that we need. The total time used is

(n logO(1) σ).

To answer a query we proceed as follows. Assume we have to answer ∆(i, j).

First, we want to see which of the constructed 2D-Range Counting data structures we will use

for this. We need to identify an ℓ such that there exists r with (r − 1)2ℓ + 1 ≤ i ≤ r2ℓ and

r2ℓ + 1 ≤ j ≤ (r + 1)2ℓ]. It is easy to see that we can take ℓ to be the most significant bit where

i − 1 and j − 1 differ. We compute b = (i − 1)xor(j − 1) and let ℓ = ⌊log2 b⌋. Then compute

r = ⌊(i − 1)/2ℓ⌋ + 1. So we will use the 2D-Range Counting structure computed for the position r2ℓ

(for which we will answer queries D(·, ·, ·, ·).

Now answer a query ∆(i, j) with i ≤ 2k−1 and j > 2k−1, it is enough to return D(i, 0, n + 1, n + 1) +

D(0, 0, n + 1, j) − D(i, 0, n + 1, j), i.e., count by the inclusion-exclusion principle how many of the

points (xa, ya) of S k have xa ≥ i or ya ≤ j, or, in other words, how many distinct letters of Σ occur

in w[i.. j]. □

6.6 Considerations on the computational model

In this section we will discuss some theoretical modifications of the presented problems.

General algorithmic framework. It is interesting to see whether we can extend our results for more

general input alphabets, so when we drop the assumption that if the input word is w, then w is over

the alphabet Σ = {1, . . . , σ} with σ ≤ |w|. In the next paragraph we will follow the similar discussion

made in [76].

123

124 The Edit Distance to k-Subsequence Universality

A more general computational model sometimes used in string algorithms assumes that the input is

over general ordered alphabets (see [108, 109, 75] and the references therein). More precisely, the

input is a sequence of elements from a totally ordered setU (i.e., string overU). The operations

allowed in this model are those of the standard Word RAM model, with one important restriction: the

elements of the input cannot be directly accessed nor stored in the memory used by the algorithms;

instead, we are only allowed to compare (w.r.t. the order inU) any two elements of the input, and

the answer to such a comparison-query is retrieved in O(1) time. In this model, it holds that sorting

the elements of an input sequence requires at least Ω(n log n) comparisons. An implementation of

our algorithms, where we first sort the letters of the input word, map them to words over {1, . . . , n},

and then use the same strategies as the ones described for the case of integer alphabets, would

require some additional O(n log n) computational time, due to the sorting.

In fact, one cannot hope to go under Ω(n log n) comparisons in the respective model of computation.

Indeed, in this framework, it also holds that testing the equality of two sets of size O(n) requires

Ω(n log n) comparisons [54]. We can show the following lower bounds.

Theorem 6.14. Let w be a word, with |w| = n, alph(w) = Σ, and universality index ι(w). Let k be

an integer with n ≥ k. Computing the minimal number of insertions (respectively, deletions, or

substitutions) needed to transform w into a k-universal word requires Ω(n log n) comparisons (so

Ω(n log n) time as well).

Proof. Let S = {s1, . . . , sn} and T = {t1, . . . , tm} two sets, with m ≤ n. We define the alphabet

Σ = S ∪ T ∪ {$, #}, where the letters $ and # do not occur in S . We define the word

w = $s1 · · · sn#$t1 · · · tm#.

We want to show that S = T if and only if the number of insertions needed to transform w into a

2-universal word is 0.

The left to right implication is trivial. The right to left implication is also easy to show. If w is

2-universal, then it has two arches. These arches must be $s1 · · · sn# and $t1 · · · tm# (otherwise one

would need to insert one of the separators). This means that the letters s1, . . . , sn are the same as

t1, . . . , tm. So S = T .

Thus, to check the equality S = T we can compute the minimal number of insertions needed to make

w 2-universal. Thus, this requires at least Ω(|w| log |w|) comparisons. As |w| = n +m + 4 ∈ O(n), the

statement follows.

We can similarly show that S = T if and only if the minimal number of substitutions needed to

transform w into a 2-universal word is 0. Similarly to the case of insertions, the lower bound is

easily obtained now.

124

6.6. Considerations on the computational model 125

Finally, we can show that S , T if and only if the minimal number of deletions needed to transform

w′ = s1 · · · snt1 · · · tm into a 0-universal word (w.r.t. alph(w′)) is exactly 1. Indeed, each element si

occurs exactly once in S and each element t j occurs exactly once in T . So, each letter si (respectively,

t j) may occur at most twice in w′ (if it is contained in both S and T). Clearly, if there is a letter that

occurs exactly once, then the minimal number of deletions needed to transform w′ = s1 · · · snt1 · · · tn
into a 0-universal word is 1, but also this letter occurs only in S or only in T . So T , S . If all letters

occur twice, then the minimal number of deletions needed to transform w′ = s1 · · · snt1 · · · tn into a

0-universal word is 2, and T = S .

Thus, to check the equality S = T we can compute the minimal number of deletions needed to make

w′ 0-universal. Thus, this requires at least Ω(|w| log |w|) comparisons as well. As |w| = n+m ∈ O(n),

the statement follows. □

So, having faster algorithms in this model of computation requires finding better methods than

the dynamic programming approach we used. The approaches in Theorem 6.11 and 6.12 are,

for the case when we want to increase the universality index of a word, optimal in this model of

computation (up to polylog-factors).

In an intermediate model, we can assume that the input is a sequence of elements from a totally

ordered setU (i.e., string overU) whose elements can be stored in a constant number of memory

words. The operations allowed in this model are those of the standard Word RAM model. So, in

other words, the letters are from [1 : nd] for some constant d, if the input word has length n. An

implementation of our dynamic programming algorithms, where we first sort the letters of the input

word, map them to words over {1, . . . , n}, and then use the same strategies as the ones described for

the case of integer alphabets, runs in exactly the same complexity as stated in the main part of this

work, as a set of n numbers from [1 : nd], where d is a constant, can be sorted in O(n) time using

Radix-sort.

125

126 The Edit Distance to k-Subsequence Universality

Algorithm 8: The efficient algorithm from Theorem 6.7 (on deletions).
Input :word w, alphabet Σ, int k
Output :minimal number of deletions

// initialization
1 int n← |w|; int σ← |Σ|;
2 int N[n][k] = ∞;

// initialise first column of N
3 for i = 1 to n do
4 if ∆(1, i) = σ (i.e., w[1 : i] is 1-universal) then
5 N[i][1]← freq[i] − 1;
6 end
7 end

// efficient variant
8 for p = 2 to k do
9 int M′[n];

10 for i = 1 to (p − 1)σ do
11 M′[i]← ∞;
12 end
13 for i = (p − 1)σ to n do
14 int l← lasti−1[w[i]];
15 if l = n + 1 then
16 M′[i]← ∞;
17 else
18 int r ← RMQp−1(l + 1, i − 1);
19 M′[i]← 1 +min{M′[l],N[r][p − 1]};
20 end
21 end

// compute N[·][p] using M′

22 for i = 1 to n do
23 int j← univ[i];
24 if j = 0 then
25 N[i][p]← ∞;
26 else
27 int t ← last j−1[w[i]];
28 if t = n + 1 then
29 N[i][p]← ∞;
30 else
31 int r ← RMQp−1(t + 1, j − 1);
32 N[i][p]← min{M′[t] + freq[i] − freq[t] − 1,N[r][p − 1] + freq[i] − freq[t] − 1};
33 end
34 end
35 end
36 end
37 return min{N[i][k] + T [i] | 1 ≤ i ≤ n};

126

6.6. Considerations on the computational model 127

Algorithm 9: The efficient algorithm from Case 1 of Theorem 6.8 (on substitutions).
Input :word w, alphabet Σ, int k
Output :minimal number of substitutions

// initialisation
1 int n← |w|; int σ← |Σ|;
2 int M[n][k] = ∞;

// initialise first column of M
3 for l = σ to n do
4 M[l][1]← σ − ∆(1, l);
5 end

// efficient variant
6 for t = 2 to k do

// ≤ (n − 1)/σ phases
7 for j = 0 to (n − 1)/σ do
8 int A[σ][3] (list of triples including satellite data); int pos[σ];
9 for a = 1 to σ do

// S ℓ = {lastℓ[a] | a ∈ alph(w[1 : ℓ])}
// Sℓ = (S ℓ ∩ [(t − 1)σ : ℓ − σ]) ∪ {ℓ − σ + 1}

10 if a ∈ S jσ+1 \ {(j − 1)σ + 2} then
11 int i← σ − d jσ+1[a];
12 A[i + 1][1]← M[last jσ+1[a] − 1][t − 1] + i;
13 pos[a]← i + 1;

// satellite data for A[i + 1]
14 A[i + 1][2]← last jσ+1[a];
15 A[i + 1][3]← a;

16 A[σ][1]← M[(j − 1)σ + 1][t − 1] + (σ − ∆((j − 1)σ + 2, jσ + 1));
17 pos[w[(j − 1)σ + 2]]← σ;

// satellite data for A[σ]
18 A[σ][2]← (j − 1)σ + 2;
19 A[σ][3]← w[(j − 1)σ + 2];
20 end

21 if last jσ+1[a] = n + 1 then
22 pos[a] = 0;
23 end
24 end

// apply sequence of operations as in Theorem 6.5
25 for i = 1 to σ do
26 q← minimum of A;
27 M[jσ + i][t]← q;
28 a = w[(j − 1)σ + i + 2];
29 decrement positions pos[a] + 1, pos[a] + 2, . . . ,m by 1;
30 append M[(j − 1)σ + i + 1][t − 1] + (σ − ∆((j − 1)σ + i + 2, jσ + i + 1)) to A (that is, set A[m + 1][1] to that value);

// and add satellite data
31 A[m + 1][2]← jσ + i + 2;
32 A[m + 1][3]← a;
33 m← m + 1;
34 pos[a]← m;
35 end
36 end
37 end
38 return M[n][k];

127

128 The Edit Distance to k-Subsequence Universality

128

CHAPTER 7

Conclusion

In this last Chapter, I will summarize the results of the findings from the previous chapters and give

a brief outlook on future work and open problems.

130 Conclusion

7.1 Results Summary

In this section, I will summarise all the findings from the papers presented in the previous chapters.

In Table 7.1 are all results from Chapter 3, i.e., the paper Matching Patterns with variables under

Hamming Distance [78]. In the leftmost column is the name of the class of patterns that was

considered in the respective row (see Section 2.2). In the second column, all the known results

from the literature on (exact) matching MatchP are displayed for comparison purposes (see Section

2.3). The last two columns list the results for (approximate) matching under Hamming distance

in the decision variant (HDMatchP) and the minimization variant (MinHDMatchP). The result for

HDMatchReg can be found in Theorem 3.4 (upper bound) and Theorem 3.7 (lower bound). The

corresponding result in the case of HDMatchReg stems from Theorem 3.5. In the row of 1Var are

the results of Theorem 3.10 and directly below that Theorem 3.11 for the class NonCross. The

upper bound of HDMatch1RepVar is from Theorem 3.12 and the lower bound from Theorem 3.15.

In the case of MinHDMatch1RepVar, there is also a PTAS as shown in Theorem 3.14 and no EPTAS

as shown in Theorem 3.16. Interestingly, in the case of MinHDMatchkLOC shown in Theorem 3.13,

there is no immediate NP-hardness result for a constant value of its parameter k, as it is the case for

all the other classes as an immediate corollary of Theorem 3.15.

Class P MatchP(w, α) HDMatchP(w, α,∆) MinHDMatchP(w, α)
Reg O(n) [folklore] O(n∆) O(ndHAM(α,w))

matching cond. lower bound matching cond. lower bound
1Var O(n) [folklore] O(n) O(n)
(var(α) = {x})
NonCross O(nm log n) [59] O(n3 p) O(n3 p)
1RepVar O(n2) [59] O(nk+2m) O(nk+2m), PTAS
k=# x-blocks W[1]-hard w.r.t. k W[1]-hard w.r.t. k

no EPTAS (if FPT , W[1])
kLOC O(mkn2k+1) [51] O(n2k+2m) O(n2k+2m)

W[1]-hard w.r.t. k W[1]-hard w.r.t. k W[1]-hard w.r.t. k
no EPTAS (if FPT , W[1])

kSCD O(m2n2k) [59] NP-hard for k ≥ 2 NP-hard for k ≥ 2
W[1]-hard w.r.t. k

kRepVar O(n2k) [59] NP-hard for k ≥ 1 NP-hard for k ≥ 1
W[1]-hard w.r.t. k

k-bounded O(n2k+4) [143] NP-hard for k ≥ 3 NP-hard for k ≥ 3
treewidth W[1]-hard w.r.t. k

Table 7.1: The results from Chapter 3 are listed in columns 3 and 4. Note that: |w| = n, |α| = m,
|var(α)| = p.

In Table 7.2 below are the findings of Chapter 4, i.e., the paper Matching Patterns with Variables

under Edit Distance. Since there is no difference in the results of EDMatchP and MinEDMatchP, I

omitted the MinEDMatchP column and added the HDMatchP column from the previous Table 7.1

130

7.1. Results Summary 131

for better comparison of these results. The findings from Chapter 4 can be found in the rightmost

column. The first result is based on Theorem 4.3 for the upper bound and Theorem 4.6 for the lower

bound. All other entries in that column are the direct results or corollaries of Theorem 4.7. That is

because in all of these pattern classes there might exist a variable that occurs an unbounded number

of times. Therefore, the hardness result proven for 1Var extends to the other pattern classes that do

not take the overall number of occurrences into account but rather the number of continuous blocks

of a variable or how they are arranged, i.e., interleaved.

Class P MatchP(w, α) HDMatchP(w, α,∆) EDMatchP(w, α,∆)

Reg O(n) [folklore] O(n∆), matching O(n∆), matching

cond. lower bound cond. lower bound

1Var O(n) [folklore] O(n) O(n3|α|x)

(var(α) = {x}) W[1]-hard w.r.t. |α|x
NonCross O(nm log n) [59] O(n3 p) NP-hard

1RepVar O(n2) [59] O(nk+2m) NP-hard for k ≥ 1

k=# x-blocks W[1]-hard w.r.t. k

kLOC O(mkn2k+1) [51] O(n2k+2m) NP-hard for k ≥ 1

W[1]-hard w.r.t. k W[1]-hard w.r.t. k

kSCD O(m2n2k) [59] NP-hard for k ≥ 2 NP-hard for k ≥ 1

W[1]-hard w.r.t. k

kRepVar O(n2k) [59] NP-hard for k ≥ 1 NP-hard for k ≥ 1

W[1]-hard w.r.t. k

k-bounded O(n2k+4) [143] NP-hard for k ≥ 3 NP-hard for k ≥ 1

treewidth W[1]-hard w.r.t. k

Table 7.2: The results from Chapter 4 are in column 4. The results in column 3 are from Chapter 3.
Note that: |w| = n, |α| = m, |var(α)| = p.

From Chapter 5, the following results hold for the problem of matching patterns with variables

under Simon’s congruence. The problem MatchUniv is NP-complete due to Theorem 5.1 and in

P when a variable occurs only once or a constant bounds the overall amount of variables. Further,

the problems MatchSimon and MatchStrictSimon are NP-complete as shown in Theorem 5.11

and in P when considering the class Reg. If the setting is extended to word equations, it was

proven that WESimon is NP-complete (Theorem 5.13) and WEStrictSimon is NP-complete, for

k ≤ |α| + |β| (Theorem 5.15).

In Chapter 6, the problem of computing the edit distance to k-subsequence universality was split

into the independent computable cases of using insertions in the case when k ≥ ι(w), deletions when

k ≤ ι(w), and substitutions for any of the two cases. All of these scenarios can be solved in O(nk)

time which follows from Theorems 6.6, 6.7, and 6.8. Note that in the case of insertions, this term

131

132 Conclusion

might be dominated by the time to compute the value of the product kσ − n. Further, it is possible

to construct a k-universal word with fewest edits with O(n + kσ) space in O(kn) time, if k ≤ n, and

O(n2 + kσ) time, otherwise (Theorem 6.10). If ι(w) < k, it is also possible to compute the minimal

number of insertions or substitutions needed to obtain a k-universal word in (n logO(1) σ) (Theorems

6.11 and 6.12).

7.2 Open Problems and Future Work

Now that I have summarised the results of this thesis, it remains to state what is left to do from the

presented topics and give an outlook on related future work. For that, I would like to present some

open problems that my co-authors and I are happy to work and cooperate on and give a broader look

at my future work in this area. Let me start with the latter. As stated in the introduction (see Section

1.2), some of these more theoretical problems arose while working on string solving. Currently,

my colleagues and I are working on expanding and improving the string solvers Z3Str3, Z3Str4

and Z3Alpha, which are branches from Microsofts general SMT solver Z3. The latter even won

a track in this year’s string solving competition SMT-COMP 2023 [1]. Optimally, some of the

results presented in this thesis could be incorporated into a practical scenario within this solver.

Alternatively to implementing it directly within a big solver (e.g., Z3str4), the writing of a smaller

string solver that implements some of the theoretical research ideas on real (for this case modified)

benchmarks of the competition could be a good next goal. Outside of directly implementing the

ideas from this thesis, I would like to investigate other problems related to stringology and string

solving, some of which can be found in the following paragraphs.

While the results from Chapter 3, 4, and 5 seem to cover a vast amount of results, there are still

some extensions to the work of matching patterns with variables in approximate settings. First

and foremost, let me name the obvious extensions to consider other string metrics and similarity

measures. Suitable candidates for this are the Dynamic Time Warping Distance [145], (k-)abelian

equivalence [98, 99], or the k-binomial equivalence[144, 68, 118]. Further, it would be interesting

to identify new classes of patterns that appear in practice, e.g., data mining existing benchmarks.

These classes must not necessarily be as general as the classes discussed in this thesis but could also

describe very restricted kinds of patterns, e.g., a constantly bounded number of variables. In the case

of Hamming distance, if one considers Reg with only two variables, the algorithms from [80, 161]

are already faster than the general lower bounds from Theorem 3.7. Investigating enumeration

algorithms for the presented settings would also be interesting, which produce a stream of valid

substitutions with as little delay between outputs as possible (see survey [164] and references

therein).

Furthermore, it would be interesting to complete and strengthen the results from Tables 7.1 and

7.2, in the sense that either the algorithms or the conditional lower bounds are improved. Exciting

candidates for these improvements are the following. Firstly, the fine-grained complexity of

132

7.2. Open Problems and Future Work 133

computing the median string under edit distance for k [89] was shown for inputs over unbounded

alphabets; it is interesting to see if the bounds also hold for alphabets of constant size. Moreover, it

would be interesting to then extend these results to EDMatch1Var. Secondly, it would be good to

improve the corresponding upper bound of Theorem 4.9 to the one of the median string algorithm

by Sankoff [147]. The last problem that I want to work on (among many other possible open

problems), in the context of Hamming and edit distance, is an improved upper and lower bound

for HDMatchNonCross. Then, in the context of MatchUniv and MatchSimon, it seems interesting to

consider the problem in a parameterized setting, e.g., under nonconstant alphabets of size σ or the

number of variables. The conjecture for these cases are W[1]-hardness results in both cases [65].

Finally, it seems interesting to investigate some of the applications for matching patterns with

variables outside of string solving in this new setting. In the area of algorithmic learning theory

for some pattern classes, a pattern can be inferred from positive data [154]. As mentioned in the

introduction, the first application is to test for an inferred (learned) pattern and a given word: is the

word from this pattern language, and if not, how “far” is it? Other applications could be improving

the learning process itself or developing cluster algorithms for a given set of strings.

Before moving away from the results of Hamming distance and Edit distance, I would like to make

a small excursion to a paper I recently read. In the paper Faster Approximate Pattern Matching:

A Unified Approach [43], the authors present a computational meta-model for various settings in

pattern matching. That is, if one can describe an algorithm with a specific set of meta-operations,

called PILLAR, then as a consequence of this model, multiple results in various computational

models follow directly. Among these are next to the classical word RAM model (used in this thesis),

a compressed setting, a quantum computing setting, and a dynamic string setting. The following

operations make up the PILLAR model [43]:

1. Extract(w, l, r) retrieves the substring w[l : r] from w.

2. LCP(w1, w2) computes the length of the Longest Common Prefix of w1 and w2.

3. LCS(w1, w2) computes the length of the Longest Common Suffix of w1 and w2.

4. IPM(u, w) computes indices of starting positions of exact occurrences of u in w.

5. Access(w, i) retrieves the character w[i].

6. Length(w) returns the length |w| of w.

I conjecture that these operations are sufficient to describe the algorithms in Chapter 3 and 4. Hence,

the results would be extended into multiple computational settings. A deeper investigation of this

model and its applicability to our results will be done in the near future.

133

134 Conclusion

Lastly, I want to state some open problems related to the topics of the edit distance to k-subsequence

universality from Chapter 6. In the current setting of the problem, a word w′ with ι(w′) = k is

obtained from a given word w w.r.t. the alphabet alph(w). If the setting is adjusted in a way that

the word w′ shall be k-universal w.r.t to alph(w′), then the premise of only using deletions to get

to a smaller k and insertions to get to a larger k does not hold anymore. The word bananan can

be edited with 2 insertions to be 3-universal (e.g., banbananb), and also with one deletion (e.g.,

ananan). This setting could also be even more generalized by providing the alphabet as input to

the algorithm. These modifications seem to be a possible extension of the presented work. Finally,

let me restate the original goal of the research on this topic as the last open problem that I will

mention: given two words w and u and an integer k, compute efficiently the edit distance from w to

the language defined by all words that have the same set of subsequences Sk(u).

134

Bibliography

[1] S.-C. 2023. The international satisfiability modulo theories (smt) competition. URL: https:

//smt-comp.github.io/2023/.

[2] D. Adamson. Ranking and unranking k-subsequence universal words. In A. E. Frid and

R. Mercas, editors, Combinatorics on Words - 14th International Conference, WORDS 2023,

Umeå, Sweden, June 12-16, 2023, Proceedings, volume 13899 of Lecture Notes in Computer

Science, pages 47–59. Springer, 2023. doi:10.1007/978-3-031-33180-0_4.

[3] D. Adamson, M. Kosche, T. Koß, F. Manea, and S. Siemer. Longest common subsequence

with gap constraints. In A. E. Frid and R. Mercas, editors, Combinatorics on Words - 14th

International Conference, WORDS 2023, Umeå, Sweden, June 12-16, 2023, Proceedings,

volume 13899 of Lecture Notes in Computer Science, pages 60–76. Springer, 2023. doi:

10.1007/978-3-031-33180-0_5.

[4] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and R. E. Wilber. Geometric applications of

a matrix-searching algorithm. Algorithmica, 2:195–208, 1987. doi:10.1007/BF01840359.

[5] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum-weight k-link path graphs

with the concae monge property and applications. Discret. Comput. Geom., 12:263–280,

1994. doi:10.1007/BF02574380.

[6] C. Allauzen and M. Mohri. Linear-space computation of the edit-distance between a string

and a finite automaton. CoRR, abs/0904.4686, 2009. URL: http://arxiv.org/abs/0904.

4686, arXiv:0904.4686.

[7] R. Amadini. A survey on string constraint solving. ACM Comput. Surv., 55(2):16:1–16:38,

2023. doi:10.1145/3484198.

[8] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with k mis-

matches. J. Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)00097-X.

[9] A. Amir and I. Nor. Generalized function matching. J. Discrete Algorithms, 5:514–523,

2007. doi:10.1016/j.jda.2006.10.001.

https://smt-comp.github.io/2023/
https://smt-comp.github.io/2023/
https://doi.org/10.1007/978-3-031-33180-0_4
https://doi.org/10.1007/978-3-031-33180-0_5
https://doi.org/10.1007/978-3-031-33180-0_5
https://doi.org/10.1007/BF01840359
https://doi.org/10.1007/BF02574380
http://arxiv.org/abs/0904.4686
http://arxiv.org/abs/0904.4686
http://arxiv.org/abs/0904.4686
https://doi.org/10.1145/3484198
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/j.jda.2006.10.001

136 Bibliography

[10] D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,

1980. doi:10.1016/0022-0000(80)90041-0.

[11] L. A. K. Ayad, C. Barton, and S. P. Pissis. A faster and more accurate heuristic for cyclic edit

distance computation. Pattern Recognit. Lett., 88:81–87, 2017. doi:10.1016/J.PATREC.

2017.01.018.

[12] A. Backurs and P. Indyk. Which regular expression patterns are hard to match? In Proc. 57th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 457–466,

2016. doi:10.1109/FOCS.2016.56.

[13] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time

(unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1145/2746539.

2746612.

[14] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic

time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/

15M1053128.

[15] R. A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363–376, 1991.

doi:10.1016/0304-3975(91)90358-9.

[16] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,

M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,

C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength SMT solver. In D. Fisman

and G. Rosu, editors, Tools and Algorithms for the Construction and Analysis of Systems -

28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,

Proceedings, Part I, volume 13243 of Lecture Notes in Computer Science, pages 415–442.

Springer, 2022. doi:10.1007/978-3-030-99524-9_24.

[17] L. Barker, P. Fleischmann, K. Harwardt, F. Manea, and D. Nowotka. Scattered factor-

universality of words. In N. Jonoska and D. Savchuk, editors, Developments in Language

Theory - 24th International Conference, DLT 2020, Tampa, FL, USA, May 11-15, 2020,

Proceedings, volume 12086 of Lecture Notes in Computer Science, pages 14–28. Springer,

2020. doi:10.1007/978-3-030-48516-0_2.

[18] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org, 2016.

136

https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1016/J.PATREC.2017.01.018
https://doi.org/10.1016/J.PATREC.2017.01.018
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1016/0304-3975(91)90358-9
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-48516-0_2

Bibliography 137

[19] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,

and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided

Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,

2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 171–177.

Springer, 2011. doi:10.1007/978-3-642-22110-1_14.

[20] W. W. Bein, L. L. Larmore, and J. K. Park. The d-edge shortest-path problem for a monge

graph. UNT Digital Library, 7 1992. URL: https://www.osti.gov/biblio/10146169.

[21] M. A. Bender and M. Farach-Colton. The lca problem revisited. In G. H. Gonnet and

A. Viola, editors, LATIN 2000: Theoretical Informatics, pages 88–94, Berlin, Heidelberg,

2000. Springer Berlin Heidelberg.

[22] G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis, L. Stougie, and M. Sweering.

String Sanitization Under Edit Distance. In 31st Annual Symposium on Combinatorial

Pattern Matching (CPM 2020), volume 161 of LIPIcs, pages 7:1–7:14, 2020. doi:10.4230/

LIPIcs.CPM.2020.7.

[23] G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis, L. Stougie, and M. Sweering.

String sanitization under edit distance. In I. L. Gørtz and O. Weimann, editors, 31st Annual

Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen,

Denmark, volume 161 of LIPIcs, pages 7:1–7:14. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2020. doi:10.4230/LIPICS.CPM.2020.7.

[24] G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone. Approximate pattern matching on

elastic-degenerate text. Theor. Comput. Sci., 812:109–122, 2020. doi:10.1016/j.tcs.

2019.08.012.

[25] M. Berzish, J. D. Day, V. Ganesh, M. Kulczynski, F. Manea, F. Mora, and D. Nowotka.

String theories involving regular membership predicates: From practice to theory and

back. In T. Lecroq and S. Puzynina, editors, Combinatorics on Words - 13th Inter-

national Conference, WORDS 2021, Rouen, France, September 13-17, 2021, Proceed-

ings, volume 12847 of Lecture Notes in Computer Science, pages 50–64. Springer, 2021.

doi:10.1007/978-3-030-85088-3_5.

[26] M. Berzish, J. D. Day, V. Ganesh, M. Kulczynski, F. Manea, F. Mora, and D. Nowotka.

Towards more efficient methods for solving regular-expression heavy string constraints.

Theor. Comput. Sci., 943:50–72, 2023. doi:10.1016/J.TCS.2022.12.009.

[27] M. Berzish, M. Kulczynski, F. Mora, F. Manea, J. D. Day, D. Nowotka, and V. Ganesh. An

SMT solver for regular expressions and linear arithmetic over string length. In A. Silva and

K. R. M. Leino, editors, Computer Aided Verification - 33rd International Conference, CAV

137

https://doi.org/10.1007/978-3-642-22110-1_14
https://www.osti.gov/biblio/10146169
https://doi.org/10.4230/LIPIcs.CPM.2020.7
https://doi.org/10.4230/LIPIcs.CPM.2020.7
https://doi.org/10.4230/LIPICS.CPM.2020.7
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1007/978-3-030-85088-3_5
https://doi.org/10.1016/J.TCS.2022.12.009

138 Bibliography

2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in

Computer Science, pages 289–312. Springer, 2021. doi:10.1007/978-3-030-81688-9\

_14.

[28] P. Bille and M. Farach-Colton. Fast and compact regular expression matching. Theor. Comput.

Sci., 409(3):486–496, 2008. doi:10.1016/j.tcs.2008.08.042.

[29] C. Boucher, C. Lo, and D. Lokshantov. Consensus patterns (probably) has no EPTAS. In

Proc. 23rd Annual European Symposium, ESA, volume 9294 of LNCS, pages 239–250, 2015.

doi:10.1007/978-3-662-48350-3_21.

[30] B. Brejová, D. G. Brown, I. M. Harrower, A. López-Ortiz, and T. Vinar. Sharper upper and

lower bounds for an approximation scheme for consensus-pattern. In Proc. 16th Annual

Symposium Combinatorial Pattern Matching, CPM 2005, volume 3537 of LNCS, pages 1–10,

2005. doi:10.1007/11496656_1.

[31] B. Brejová, D. G. Brown, I. M. Harrower, and T. Vinar. New bounds for motif finding in

strong instances. In Proc. 17th Annual Symposium Combinatorial Pattern Matching, CPM

2006, volume 4009 of LNCS, pages 94–105, 2006. doi:10.1007/11780441_10.

[32] K. Bringmann. Fine-grained complexity theory (tutorial). In Proc. 36th International

Symposium on Theoretical Aspects of Computer Science, STACS 2019, volume 126 of LIPIcs,

pages 4:1–4:7, 2019. doi:10.4230/LIPIcs.STACS.2019.4.

[33] K. Bringmann and B. R. Chaudhury. Sketching, streaming, and fine-grained complexity of

(weighted) LCS. In S. Ganguly and P. K. Pandya, editors, 38th IARCS Annual Conference

on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018,

December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 40:1–40:16. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.FSTTCS.2018.

40.

[34] K. Bringmann, F. Grandoni, B. Saha, and V. V. Williams. Truly sub-cubic algorithms for

language edit distance and rna-folding via fast bounded-difference min-plus product. In

I. Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS

2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 375–384.

IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.48.

[35] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string problems

and dynamic time warping. In Proc. 56th IEEE Annual Symposium on Foundations of

Computer Science, FOCS, pages 79–97, 2015. doi:10.1109/FOCS.2015.15.

138

https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1016/j.tcs.2008.08.042
https://doi.org/10.1007/978-3-662-48350-3_21
https://doi.org/10.1007/11496656_1
https://doi.org/10.1007/11780441_10
https://doi.org/10.4230/LIPIcs.STACS.2019.4
https://doi.org/10.4230/LIPICS.FSTTCS.2018.40
https://doi.org/10.4230/LIPICS.FSTTCS.2018.40
https://doi.org/10.1109/FOCS.2016.48
https://doi.org/10.1109/FOCS.2015.15

Bibliography 139

[36] K. Bringmann and M. Künnemann. Multivariate fine-grained complexity of longest common

subsequence. In Proc. 29th ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,

pages 1216–1235. SIAM, 2018. doi:10.1137/1.9781611975031.79.

[37] L. Bulteau and M. L. Schmid. Consensus strings with small maximum distance and small dis-

tance sum. Algorithmica, 82(5):1378–1409, 2020. doi:10.1007/s00453-019-00647-9.

[38] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expressions. Int. J.

Found. Comput. Sci., 14:1007–1018, 2003. doi:10.1142/S012905410300214X.

[39] K. Casel, J. D. Day, P. Fleischmann, T. Kociumaka, F. Manea, and M. L. Schmid. Graph

and string parameters: Connections between pathwidth, cutwidth and the locality number. In

Proc. 46th International Colloquium on Automata, Languages, and Programming, ICALP

2019, volume 132 of LIPIcs, pages 109:1–109:16, 2019. doi:10.4230/LIPIcs.ICALP.

2019.109.

[40] T. M. Chan and M. Puatracscu. Counting inversions, offline orthogonal range counting, and

related problems. In M. Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,

pages 161–173. SIAM, 2010. doi:10.1137/1.9781611973075.15.

[41] P. Charalampopoulos, T. Kociumaka, and S. Mozes. Dynamic String Alignment. In 31st

Annual Symposium on Combinatorial Pattern Matching (CPM 2020), volume 161 of LIPIcs,

pages 9:1–9:13, 2020. doi:10.4230/LIPIcs.CPM.2020.9.

[42] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz. Faster approximate pattern matching:

A unified approach. In Proc. 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, pages 978–989, 2020. doi:10.1109/FOCS46700.2020.00095.

[43] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz. Faster approximate pattern matching:

A unified approach. In S. Irani, editor, 61st IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2020, pages 978–989. IEEE, 2020. doi:10.1109/FOCS46700.

2020.00095.

[44] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz. Faster pattern matching under edit

distance. CoRR, abs/2204.03087, 2022. arXiv:2204.03087, doi:10.48550/arXiv.

2204.03087.

[45] H. Z. Q. Chen, S. Kitaev, T. Mütze, and B. Y. Sun. On universal partial words. Discret. Math.

Theor. Comput. Sci., 19(1), 2017. doi:10.23638/DMTCS-19-1-16.

139

https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1007/s00453-019-00647-9
https://doi.org/10.1142/S012905410300214X
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://doi.org/10.4230/LIPIcs.ICALP.2019.109
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.4230/LIPIcs.CPM.2020.9
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095
http://arxiv.org/abs/2204.03087
https://doi.org/10.48550/arXiv.2204.03087
https://doi.org/10.48550/arXiv.2204.03087
https://doi.org/10.23638/DMTCS-19-1-16

140 Bibliography

[46] H. Cheon and Y. Han. Computing the shortest string and the edit-distance for parsing

expression languages. In N. Jonoska and D. Savchuk, editors, Developments in Language

Theory - 24th International Conference, DLT 2020, Tampa, FL, USA, May 11-15, 2020,

Proceedings, volume 12086 of Lecture Notes in Computer Science, pages 43–54. Springer,

2020. doi:10.1007/978-3-030-48516-0_4.

[47] H. Cheon, Y. Han, S. Ko, and K. Salomaa. The relative edit-distance between two input-

driven languages. In P. Hofman and M. Skrzypczak, editors, Developments in Language

Theory - 23rd International Conference, DLT 2019, Warsaw, Poland, August 5-9, 2019,

Proceedings, volume 11647 of Lecture Notes in Computer Science, pages 127–139. Springer,

2019. doi:10.1007/978-3-030-24886-4_9.

[48] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge University

Press, 2007. doi:10.1017/CBO9780511546853.

[49] M. Crochemore, B. Melichar, and Z. Tronícek. Directed acyclic subsequence graph - overview.

J. Discrete Algorithms, 1(3-4):255–280, 2003. doi:10.1016/S1570-8667(03)00029-7.

[50] J. D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer. The edit distance

to k-subsequence universality. In M. Bläser and B. Monmege, editors, 38th International

Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021,

Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 25:1–25:19.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.STACS.

2021.25.

[51] J. D. Day, P. Fleischmann, F. Manea, and D. Nowotka. Local patterns. In Proc. 37th IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2017, volume 93 of LIPIcs, pages 24:1–24:14, 2017. doi:10.4230/

LIPIcs.FSTTCS.2017.24.

[52] N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v. Weten-

schappen, 49:758–764, 1946. URL: https://api.semanticscholar.org/CorpusID:

63276705.

[53] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as

Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29-April 6, 2008. Proceedings., TACAS’08/ETAPS’08, page

337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[54] D. P. Dobkin and R. J. Lipton. On the complexity of computations under varying sets

of primitives. J. Comput. Syst. Sci., 18(1):86–91, 1979. doi:10.1016/0022-0000(79)

90054-0.

140

https://doi.org/10.1007/978-3-030-48516-0_4
https://doi.org/10.1007/978-3-030-24886-4_9
https://doi.org/10.1017/CBO9780511546853
https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.4230/LIPICS.STACS.2021.25
https://doi.org/10.4230/LIPICS.STACS.2021.25
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24
https://api.semanticscholar.org/CorpusID:63276705
https://api.semanticscholar.org/CorpusID:63276705
https://doi.org/10.1016/0022-0000(79)90054-0
https://doi.org/10.1016/0022-0000(79)90054-0

Bibliography 141

[55] A. Draghici, C. Haase, and F. Manea. Semënov arithmetic, affine vass, and string constraints.

CoRR, abs/2306.14593, 2023. arXiv:2306.14593, doi:10.48550/ARXIV.2306.14593.

[56] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Document spanners: A formal

approach to information extraction. J. ACM, 62(2):12:1–12:51, 2015. doi:10.1145/

2699442.

[57] M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif

search problems. Comb., 26(2):141–167, 2006. doi:10.1007/s00493-006-0011-4.

[58] H. Fernau, F. Manea, R. Mercas, and M. L. Schmid. Revisiting Shinohara’s algorithm for

computing descriptive patterns. Theor. Comput. Sci., 733:44–54, 2018. doi:10.1016/j.

tcs.2018.04.035.

[59] H. Fernau, F. Manea, R. Mercas, and M. L. Schmid. Pattern matching with variables:

Efficient algorithms and complexity results. ACM Trans. Comput. Theory, 12(1):6:1–6:37,

2020. doi:10.1145/3369935.

[60] H. Fernau and M. L. Schmid. Pattern matching with variables: A multivariate complexity

analysis. Inf. Comput., 242:287–305, 2015. doi:10.1016/j.ic.2015.03.006.

[61] H. Fernau, M. L. Schmid, and Y. Villanger. On the parameterised complexity of

string morphism problems. Theory Comput. Syst., 59(1):24–51, 2016. doi:10.1007/

s00224-015-9635-3.

[62] L. Fleischer and M. Kufleitner. Testing Simon’s congruence. In I. Potapov, P. G. Spirakis, and

J. Worrell, editors, 43rd International Symposium on Mathematical Foundations of Computer

Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages

62:1–62:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/

LIPICS.MFCS.2018.62.

[63] P. Fleischmann, S. B. Germann, and D. Nowotka. Scattered factor universality - the power

of the remainder. CoRR, abs/2104.09063, 2021. URL: https://arxiv.org/abs/2104.

09063, arXiv:2104.09063.

[64] P. Fleischmann, J. Höfer, A. Huch, and D. Nowotka. α-β-factorization and the binary case of

Simon’s congruence, 2023. arXiv:2306.14192.

[65] P. Fleischmann, S. Kim, T. Koß, F. Manea, D. Nowotka, S. Siemer, and M. Wiedenhöft.

Matching Patterns with Variables Under Simon’s Congruence. In O. Bournez, E. Formenti,

and I. Potapov, editors, Reachability Problems - 17th International Conference, RP 2023,

Nice, France, October 11-13, 2023, Proceedings, volume 14235 of Lecture Notes in Computer

Science, pages 155–170. Springer, 2023. doi:10.1007/978-3-031-45286-4_12.

141

http://arxiv.org/abs/2306.14593
https://doi.org/10.48550/ARXIV.2306.14593
https://doi.org/10.1145/2699442
https://doi.org/10.1145/2699442
https://doi.org/10.1007/s00493-006-0011-4
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1016/j.tcs.2018.04.035
https://doi.org/10.1145/3369935
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.4230/LIPICS.MFCS.2018.62
https://doi.org/10.4230/LIPICS.MFCS.2018.62
https://arxiv.org/abs/2104.09063
https://arxiv.org/abs/2104.09063
http://arxiv.org/abs/2104.09063
http://arxiv.org/abs/2306.14192
https://doi.org/10.1007/978-3-031-45286-4_12

142 Bibliography

[66] D. D. Freydenberger. Extended regular expressions: Succinctness and decidability. Theory

of Comput. Syst., 53:159–193, 2013. doi:10.1007/s00224-012-9389-0.

[67] D. D. Freydenberger. A logic for document spanners. Theory Comput. Syst., 63(7):1679–

1754, 2019. doi:10.1007/s00224-018-9874-1.

[68] D. D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea, and W. Rytter. Testing

k-binomial equivalence. CoRR, abs/1509.00622, 2015. URL: http://arxiv.org/abs/

1509.00622, arXiv:1509.00622.

[69] D. D. Freydenberger and M. Holldack. Document spanners: From expressive power

to decision problems. Theory Comput. Syst., 62(4):854–898, 2018. doi:10.1007/

s00224-017-9770-0.

[70] D. D. Freydenberger and M. L. Schmid. Deterministic regular expressions with back-

references. J. Comput. Syst. Sci., 105:1–39, 2019. doi:10.1016/j.jcss.2019.04.001.

[71] J. E. F. Friedl. Mastering regular expressions - understand your data and be more productive:

for Perl, PHP, Java, .NET, Ruby, and more (3. ed.). O’Reilly, 2006. URL: http://www.

oreilly.de/catalog/regex3/index.html.

[72] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.

J. Comput. Syst. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)90014-5.

[73] E. Garel. Minimal separators of two words. In A. Apostolico, M. Crochemore, Z. Galil,

and U. Manber, editors, Combinatorial Pattern Matching, 4th Annual Symposium, CPM

93, Padova, Italy, June 2-4, 1993, Proceedings, volume 684 of Lecture Notes in Computer

Science, pages 35–53. Springer, 1993. doi:10.1007/BFB0029795.

[74] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[75] P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen. Faster longest common extension

queries in strings over general alphabets. In R. Grossi and M. Lewenstein, editors, 27th

Annual Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel

Aviv, Israel, volume 54 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2016. doi:10.4230/LIPICS.CPM.2016.5.

[76] P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer. Efficiently Testing Simon’s

Congruence. In M. Bläser and B. Monmege, editors, 38th International Symposium on

Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,

Germany (Virtual Conference), volume 187 of LIPIcs, pages 34:1–34:18. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.STACS.2021.34.

142

https://doi.org/10.1007/s00224-012-9389-0
https://doi.org/10.1007/s00224-018-9874-1
http://arxiv.org/abs/1509.00622
http://arxiv.org/abs/1509.00622
http://arxiv.org/abs/1509.00622
https://doi.org/10.1007/s00224-017-9770-0
https://doi.org/10.1007/s00224-017-9770-0
https://doi.org/10.1016/j.jcss.2019.04.001
http://www.oreilly.de/catalog/regex3/index.html
http://www.oreilly.de/catalog/regex3/index.html
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1007/BFB0029795
https://doi.org/10.4230/LIPICS.CPM.2016.5
https://doi.org/10.4230/LIPICS.STACS.2021.34

Bibliography 143

[77] P. Gawrychowski, M. Lange, N. Rampersad, J. O. Shallit, and M. Szykula. Existential length

universality. In C. Paul and M. Bläser, editors, 37th International Symposium on Theoretical

Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume

154 of LIPIcs, pages 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

doi:10.4230/LIPICS.STACS.2020.16.

[78] P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under

Hamming Distance. In 46th International Symposium on Mathematical Foundations of

Computer Science, MFCS 2021, volume 202 of LIPIcs, pages 48:1–48:24, 2021. doi:

10.4230/LIPIcs.MFCS.2021.48.

[79] P. Gawrychowski, F. Manea, and S. Siemer. Matching Patterns with Variables Under Edit

Distance. In D. Arroyuelo and B. Poblete, editors, String Processing and Information

Retrieval - 29th International Symposium, SPIRE 2022, Concepción, Chile, November 8-10,

2022, Proceedings, volume 13617 of Lecture Notes in Computer Science, pages 275–289.

Springer, 2022. doi:10.1007/978-3-031-20643-6_20.

[80] P. Gawrychowski and P. Uznanski. Optimal trade-offs for pattern matching with k mismatches.

CoRR, abs/1704.01311, 2017. arXiv:1704.01311.

[81] P. Gawrychowski and P. Uznanski. Towards unified approximate pattern matching for

hamming and l_1 distance. In Proc. 45th International Colloquium on Automata, Languages,

and Programming, ICALP 2018, volume 107 of LIPIcs, pages 62:1–62:13, 2018. doi:

10.4230/LIPIcs.ICALP.2018.62.

[82] B. Goeckner, C. Groothuis, C. Hettle, B. Kell, P. Kirkpatrick, R. Kirsch, and R. W. Solava.

Universal partial words over non-binary alphabets. Theor. Comput. Sci., 713:56–65, 2018.

doi:10.1016/J.TCS.2017.12.022.

[83] M. Hague. Strings at MOSCA. ACM SIGLOG News, 6(4):4–22, 2019. doi:10.1145/

3373394.3373396.

[84] S. Halfon, P. Schnoebelen, and G. Zetzsche. Decidability, complexity, and expressiveness of

first-order logic over the subword ordering. In 32nd Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE

Computer Society, 2017. doi:10.1109/LICS.2017.8005141.

[85] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical

Journal, 29(2):147–160, 1950. doi:10.1002/j.1538-7305.1950.tb00463.x.

[86] Y. Han, S. Ko, and K. Salomaa. The edit-distance between a regular language and a

context-free language. Int. J. Found. Comput. Sci., 24(7):1067–1082, 2013. doi:10.1142/

S0129054113400315.

143

https://doi.org/10.4230/LIPICS.STACS.2020.16
https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.1007/978-3-031-20643-6_20
http://arxiv.org/abs/1704.01311
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.1016/J.TCS.2017.12.022
https://doi.org/10.1145/3373394.3373396
https://doi.org/10.1145/3373394.3373396
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1142/S0129054113400315
https://doi.org/10.1142/S0129054113400315

144 Bibliography

[87] J. Hébrard. An algorithm for distinguishing efficiently bit-strings by their subsequences.

Theor. Comput. Sci., 82(1):35–49, 1991. doi:10.1016/0304-3975(91)90170-7.

[88] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.

Commun. ACM, 18(6):341–343, 1975. doi:10.1145/360825.360861.

[89] G. Hoppenworth, J. W. Bentley, D. Gibney, and S. V. Thankachan. The Fine-Grained

Complexity of Median and Center String Problems Under Edit Distance. In 28th Annual

European Symposium on Algorithms (ESA 2020), volume 173 of LIPIcs, pages 61:1–61:19,

2020. doi:10.4230/LIPIcs.ESA.2020.61.

[90] H. Imai and T. Asano. Dynamic segment intersection search with applications. In 25th

Annual Symposium on Foundations of Computer Science, West Palm Beach, Florida, USA,

24-26 October 1984, pages 393–402. IEEE Computer Society, 1984. doi:10.1109/SFCS.

1984.715940.

[91] J. F. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for multidimen-

sional dominance reporting and counting. In R. Fleischer and G. Trippen, editors, Algorithms

and Computation, 15th International Symposium, ISAAC 2004, Hong Kong, China, Decem-

ber 20-22, 2004, Proceedings, volume 3341 of Lecture Notes in Computer Science, pages

558–568. Springer, 2004. doi:10.1007/978-3-540-30551-4_49.

[92] R. Jayaram and B. Saha. Approximating language edit distance beyond fast matrix multi-

plication: Ultralinear grammars are where parsing becomes hard! In I. Chatzigiannakis,

P. Indyk, F. Kuhn, and A. Muscholl, editors, 44th International Colloquium on Automata,

Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80

of LIPIcs, pages 19:1–19:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

doi:10.4230/LIPICS.ICALP.2017.19.

[93] H. W. L. Jr. Integer programming with a fixed number of variables. Math. Oper. Res.,

8(4):538–548, 1983. doi:10.1287/MOOR.8.4.538.

[94] P. Karandikar, M. Kufleitner, and P. Schnoebelen. On the index of Simon’s congruence

for piecewise testability. Inf. Process. Lett., 115(4):515–519, 2015. doi:10.1016/J.IPL.

2014.11.008.

[95] P. Karandikar and P. Schnoebelen. The height of piecewise-testable languages with ap-

plications in logical complexity. In J. Talbot and L. Regnier, editors, 25th EACSL Annual

Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille,

France, volume 62 of LIPIcs, pages 37:1–37:22. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2016. doi:10.4230/LIPICS.CSL.2016.37.

144

https://doi.org/10.1016/0304-3975(91)90170-7
https://doi.org/10.1145/360825.360861
https://doi.org/10.4230/LIPIcs.ESA.2020.61
https://doi.org/10.1109/SFCS.1984.715940
https://doi.org/10.1109/SFCS.1984.715940
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.4230/LIPICS.ICALP.2017.19
https://doi.org/10.1287/MOOR.8.4.538
https://doi.org/10.1016/J.IPL.2014.11.008
https://doi.org/10.1016/J.IPL.2014.11.008
https://doi.org/10.4230/LIPICS.CSL.2016.37

Bibliography 145

[96] P. Karandikar and P. Schnoebelen. The height of piecewise-testable languages and the

complexity of the logic of subwords. Log. Methods Comput. Sci., 15(2), 2019. doi:

10.23638/LMCS-15(2:6)2019.

[97] P. Karandikar and P. Schnoebelen. The height of piecewise-testable languages and the

complexity of the logic of subwords. Log. Methods Comput. Sci., 15(2), 2019. doi:

10.23638/LMCS-15(2:6)2019.

[98] J. Karhumäki, A. Saarela, and L. Q. Zamboni. On a generalization of abelian equivalence

and complexity of infinite words. J. Comb. Theory, Ser. A, 120(8):2189–2206, 2013. doi:

10.1016/J.JCTA.2013.08.008.

[99] J. Karhumäki, A. Saarela, and L. Q. Zamboni. Variations of the morse-hedlund theorem for

k-abelian equivalence. Acta Cybern., 23(1):175–189, 2017. doi:10.14232/ACTACYB.23.

1.2017.11.

[100] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proc. 30th

International Colloquium Automata, Languages and Programming, ICALP 2003, volume

2719 of LNCS, pages 943–955, 2003. doi:10.1007/3-540-45061-0_73.

[101] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J. ACM,

53(6):918–936, 2006. doi:10.1145/1217856.1217858.

[102] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,

editors, Proceedings of a symposium on the Complexity of Computer Computations, The

IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972. doi:

10.1007/978-1-4684-2001-2_9.

[103] S. Kim, Y. Han, S. Ko, and K. Salomaa. On Simon’s congruence closure of a string. Theor.

Comput. Sci., 972:114078, 2023. doi:10.1016/J.TCS.2023.114078.

[104] S. Kim, S. Ko, and Y. Han. Simon’s Congruence Pattern Matching. In S. W. Bae and

H. Park, editors, 33rd International Symposium on Algorithms and Computation, ISAAC

2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages 60:1–60:17. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ISAAC.2022.

60.

[105] S. Kleest-Meißner, R. Sattler, M. L. Schmid, N. Schweikardt, and M. Weidlich. Discovering

event queries from traces: Laying foundations for subsequence-queries with wildcards and

gap-size constraints. In 25th International Conference on Database Theory, ICDT 2022,

volume 220 of LIPIcs, pages 18:1–18:21, 2022. doi:10.4230/LIPIcs.ICDT.2022.18.

[106] M. Kosche, T. Koß, F. Manea, and S. Siemer. Absent subsequences in words. Fundam.

Informaticae, 189(3-4):199–240, 2022. doi:10.3233/FI-222159.

145

https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.1016/J.JCTA.2013.08.008
https://doi.org/10.1016/J.JCTA.2013.08.008
https://doi.org/10.14232/ACTACYB.23.1.2017.11
https://doi.org/10.14232/ACTACYB.23.1.2017.11
https://doi.org/10.1007/3-540-45061-0_73
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/J.TCS.2023.114078
https://doi.org/10.4230/LIPICS.ISAAC.2022.60
https://doi.org/10.4230/LIPICS.ISAAC.2022.60
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.3233/FI-222159

146 Bibliography

[107] M. Kosche, T. Koß, F. Manea, and S. Siemer. Combinatorial algorithms for subsequence

matching: A survey. In H. Bordihn, G. Horváth, and G. Vaszil, editors, Proceedings 12th

International Workshop on Non-Classical Models of Automata and Applications, NCMA

2022, Debrecen, Hungary, August 26-27, 2022, volume 367 of EPTCS, pages 11–27, 2022.

doi:10.4204/EPTCS.367.2.

[108] D. Kosolobov. Computing runs on a general alphabet. Inf. Process. Lett., 116(3):241–244,

2016. doi:10.1016/J.IPL.2015.11.016.

[109] D. Kosolobov. Finding the leftmost critical factorization on unordered alphabet. Theor.

Comput. Sci., 636:56–65, 2016. doi:10.1016/J.TCS.2016.04.037.

[110] M. Krötzsch, T. Masopust, and M. Thomazo. Complexity of universality and related problems

for partially ordered nfas. Inf. Comput., 255:177–192, 2017. doi:10.1016/J.IC.2017.

06.004.

[111] M. Kulczynski, K. Lotz, D. Nowotka, and D. B. Poulsen. Solving string theories involving

regular membership predicates using SAT. In O. Legunsen and G. Rosu, editors, Model

Checking Software - 28th International Symposium, SPIN 2022, Virtual Event, May 21, 2022,

Proceedings, volume 13255 of Lecture Notes in Computer Science, pages 134–151. Springer,

2022. doi:10.1007/978-3-031-15077-7_8.

[112] D. Kuske. The subtrace order and counting first-order logic. In H. Fernau, editor, Computer

Science - Theory and Applications - 15th International Computer Science Symposium in

Russia, CSR 2020, Yekaterinburg, Russia, June 29 - July 3, 2020, Proceedings, volume 12159

of Lecture Notes in Computer Science, pages 289–302. Springer, 2020. doi:10.1007/

978-3-030-50026-9_21.

[113] D. Kuske and G. Zetzsche. Languages ordered by the subword order. In M. Bojanczyk and

A. Simpson, editors, Foundations of Software Science and Computation Structures - 22nd

International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,

Proceedings, volume 11425 of Lecture Notes in Computer Science, pages 348–364. Springer,

2019. doi:10.1007/978-3-030-17127-8_20.

[114] G. M. Landau and U. Vishkin. Efficient string matching in the presence of errors. In Proc.

26th Annual Symposium on Foundations of Computer Science, FOCS 1985, pages 126–136,

1985. doi:10.1109/SFCS.1985.22.

[115] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string matching. Journal of

Algorithms, 10(2):157–169, 1989. URL: https://www.sciencedirect.com/science/

article/pii/0196677489900102.

146

https://doi.org/10.4204/EPTCS.367.2
https://doi.org/10.1016/J.IPL.2015.11.016
https://doi.org/10.1016/J.TCS.2016.04.037
https://doi.org/10.1016/J.IC.2017.06.004
https://doi.org/10.1016/J.IC.2017.06.004
https://doi.org/10.1007/978-3-031-15077-7_8
https://doi.org/10.1007/978-3-030-50026-9_21
https://doi.org/10.1007/978-3-030-50026-9_21
https://doi.org/10.1007/978-3-030-17127-8_20
https://doi.org/10.1109/SFCS.1985.22
https://www.sciencedirect.com/science/article/pii/0196677489900102
https://www.sciencedirect.com/science/article/pii/0196677489900102

Bibliography 147

[116] K. G. Larsen and F. van Walderveen. Near-optimal range reporting structures for categorical

data. In S. Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013,

pages 265–276. SIAM, 2013. doi:10.1137/1.9781611973105.20.

[117] M. Lejeune, J. Leroy, and M. Rigo. Computing the k-binomial complexity of the thue-morse

word. J. Comb. Theory, Ser. A, 176:105284, 2020. doi:10.1016/J.JCTA.2020.105284.

[118] M. Lejeune, M. Rigo, and M. Rosenfeld. The binomial equivalence classes of finite words.

Int. J. Algebra Comput., 30(07):1375–1397, 2020. doi:10.1142/S0218196720500459.

[119] J. Leroy, M. Rigo, and M. Stipulanti. Generalized pascal triangle for binomial coefficients of

words. Adv. Appl. Math., 80:24–47, 2016. doi:10.1016/J.AAM.2016.04.006.

[120] V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones.

Problems of Information Transmission, 1:8–17, 1965.

[121] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.

Soviet physics. Doklady, 10:707–710, 1965. URL: https://api.semanticscholar.org/

CorpusID:60827152.

[122] M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences. J. Comput. Syst.

Sci., 65(1):73–96, 2002. doi:10.1006/jcss.2002.1823.

[123] M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997. doi:10.1017/

CBO9780511566097.

[124] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.

doi:10.1017/CBO9781107326019.

[125] K. Lotz, A. Goel, B. Dutertre, B. Kiesl-Reiter, S. Kong, R. Majumdar, and D. Nowotka.

Solving string constraints using SAT. In C. Enea and A. Lal, editors, Computer Aided

Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,

Proceedings, Part II, volume 13965 of Lecture Notes in Computer Science, pages 187–208.

Springer, 2023. doi:10.1007/978-3-031-37703-7_9.

[126] D. Maier. The complexity of some problems on subsequences and supersequences. J. ACM,

25(2):322–336, Apr. 1978.

[127] F. Manea and M. L. Schmid. Matching patterns with variables. In Proc. 12th International

Conference Combinatorics on Words, WORDS 2019, volume 11682 of LNCS, pages 1–27,

2019. doi:10.1007/978-3-030-28796-2_1.

147

https://doi.org/10.1137/1.9781611973105.20
https://doi.org/10.1016/J.JCTA.2020.105284
https://doi.org/10.1142/S0218196720500459
https://doi.org/10.1016/J.AAM.2016.04.006
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
https://doi.org/10.1006/jcss.2002.1823
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1007/978-3-031-37703-7_9
https://doi.org/10.1007/978-3-030-28796-2_1

148 Bibliography

[128] B. M. H. Martin and M. H. Martin. A problem in arrangements. Bulletin of the American

Mathematical Society, 40:859–864, 1934. URL: https://api.semanticscholar.org/

CorpusID:123567918.

[129] D. Marx. Closest substring problems with small distances. SIAM J. Comput., 38(4):1382–

1410, 2008. doi:10.1137/060673898.

[130] A. Mateescu, A. Salomaa, and S. Yu. Subword histories and parikh matrices. J. Comput.

Syst. Sci., 68(1):1–21, 2004. doi:10.1016/J.JCSS.2003.04.001.

[131] T. Mieno, S. P. Pissis, L. Stougie, and M. Sweering. String sanitization under edit distance:

Improved and generalized. In P. Gawrychowski and T. Starikovskaya, editors, 32nd Annual

Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021, Wrocław, Poland,

volume 191 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2021. doi:10.4230/LIPICS.CPM.2021.19.

[132] E. W. Myers and W. Miller. Approximate matching of regular expressions. Bull. Math. Biol.,

51(1):5–37, 1989. doi:10.1007/BF02458834.

[133] G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–88,

2001. doi:10.1145/375360.375365.

[134] Y. Nekrich. Efficient range searching for categorical and plain data. ACM Trans. Database

Syst., 39(1):9:1–9:21, 2014. doi:10.1145/2543924.

[135] F. Nicolas and E. Rivals. Hardness results for the center and median string problems under

the weighted and unweighted edit distances. J. Discrete Algorithms, 3(2-4):390–415, 2005.

doi:10.1016/j.jda.2004.08.015.

[136] S. Ordyniak and A. Popa. A parameterized study of maximum generalized pattern matching

problems. Algorithmica, 75(1):1–26, 2016. doi:10.1007/S00453-015-0008-8.

[137] OSTRICH. Ostrich - an smt solver for string constraints. URL: https://github.com/

uuverifiers/ostrich/.

[138] M. Pătraşcu. Lower bounds for 2-dimensional range counting. In D. S. Johnson and U. Feige,

editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,

California, USA, June 11-13, 2007, pages 40–46. ACM, 2007. doi:10.1145/1250790.

1250797.

[139] G. Pighizzini. How hard is computing the edit distance? Inf. Comput., 165(1):1–13, 2001.

doi:10.1006/INCO.2000.2914.

148

https://api.semanticscholar.org/CorpusID:123567918
https://api.semanticscholar.org/CorpusID:123567918
https://doi.org/10.1137/060673898
https://doi.org/10.1016/J.JCSS.2003.04.001
https://doi.org/10.4230/LIPICS.CPM.2021.19
https://doi.org/10.1007/BF02458834
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/2543924
https://doi.org/10.1016/j.jda.2004.08.015
https://doi.org/10.1007/S00453-015-0008-8
https://github.com/uuverifiers/ostrich/
https://github.com/uuverifiers/ostrich/
https://doi.org/10.1145/1250790.1250797
https://doi.org/10.1145/1250790.1250797
https://doi.org/10.1006/INCO.2000.2914

Bibliography 149

[140] J. Pin. The consequences of imre simon’s work in the theory of automata, languages,

and semigroups. In M. Farach-Colton, editor, LATIN 2004: Theoretical Informatics,

6th Latin American Symposium, Buenos Aires, Argentina, April 5-8, 2004, Proceed-

ings, volume 2976 of Lecture Notes in Computer Science, page 5. Springer, 2004. doi:

10.1007/978-3-540-24698-5_4.

[141] J. Pin. The influence of Imre Simon’s work in the theory of automata, languages and

semigroups. Semigroup Forum, 98:1–8, 2019. doi:10.1007/s00233-019-09999-8.

[142] N. Rampersad, J. Shallit, and Z. Xu. The computational complexity of universality problems

for prefixes, suffixes, factors, and subwords of regular languages. Fundam. Inf., 116(1-4):223–

236, Jan. 2012.

[143] D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth. Inf. Comput., 239:87–99,

2014. doi:10.1016/j.ic.2014.08.010.

[144] M. Rigo and P. Salimov. Another generalization of abelian equivalence: Binomial complexity

of infinite words. Theor. Comput. Sci., 601:47–57, 2015. doi:10.1016/J.TCS.2015.07.

025.

[145] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word

recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49,

1978. doi:10.1109/TASSP.1978.1163055.

[146] A. Salomaa. Connections between subwords and certain matrix mappings. Theor. Comput.

Sci., 340(1):188–203, 2005. doi:10.1016/J.TCS.2005.03.024.

[147] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics,

28(1):35–42, 1975. doi:10.1137/0128004.

[148] B. Schieber. Computing a minimum-weight k-link path in graphs with the concave monge

property. In K. L. Clarkson, editor, Proceedings of the Sixth Annual ACM-SIAM Symposium

on Discrete Algorithms, 22-24 January 1995. San Francisco, California, USA, pages 405–411.

ACM/SIAM, 1995. URL: http://dl.acm.org/citation.cfm?id=313651.313774.

[149] M. L. Schmid. A note on the complexity of matching patterns with variables. Inf. Process.

Lett., 113(19):729–733, 2013. doi:10.1016/j.ipl.2013.06.011.

[150] M. L. Schmid and N. Schweikardt. A purely regular approach to non-regular core spanners.

In Proc. 24th International Conference on Database Theory, ICDT 2021, volume 186 of

LIPIcs, pages 4:1–4:19, 2021. doi:10.4230/LIPIcs.ICDT.2021.4.

149

https://doi.org/10.1007/978-3-540-24698-5_4
https://doi.org/10.1007/978-3-540-24698-5_4
https://doi.org/10.1007/s00233-019-09999-8
https://doi.org/10.1016/j.ic.2014.08.010
https://doi.org/10.1016/J.TCS.2015.07.025
https://doi.org/10.1016/J.TCS.2015.07.025
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1016/J.TCS.2005.03.024
https://doi.org/10.1137/0128004
http://dl.acm.org/citation.cfm?id=313651.313774
https://doi.org/10.1016/j.ipl.2013.06.011
https://doi.org/10.4230/LIPIcs.ICDT.2021.4

150 Bibliography

[151] M. L. Schmid and N. Schweikardt. Document spanners - A brief overview of concepts,

results, and recent developments. In PODS ’22: International Conference on Management

of Data, pages 139–150. ACM, 2022. doi:10.1145/3517804.3526069.

[152] P. Schnoebelen and J. Veron. On arch factorization and subword universality for words and

compressed words. In A. E. Frid and R. Mercas, editors, Combinatorics on Words - 14th

International Conference, WORDS 2023, Umeå, Sweden, June 12-16, 2023, Proceedings,

volume 13899 of Lecture Notes in Computer Science, pages 274–287. Springer, 2023.

doi:10.1007/978-3-031-33180-0_21.

[153] S. Seki. Absoluteness of subword inequality is undecidable. Theor. Comput. Sci., 418:116–

120, 2012. doi:10.1016/J.TCS.2011.10.017.

[154] T. Shinohara. Polynomial time inference of extended regular pattern languages. In

E. Goto, K. Furukawa, R. Nakajima, I. Nakata, and A. Yonezawa, editors, RIMS Sym-

posium on Software Science and Engineering, Kyoto, Japan, 1982, Proceedings, vol-

ume 147 of Lecture Notes in Computer Science, pages 115–127. Springer, 1982. doi:

10.1007/3-540-11980-9_19.

[155] T. Shinohara and S. Arikawa. Pattern inference. In K. P. Jantke and S. Lange, editors,

Algorithmic Learning for Knowledge-Based Systems, GOSLER Final Report, volume 961

of Lecture Notes in Computer Science, pages 259–291. Springer, 1995. doi:10.1007/

3-540-60217-8_13.

[156] I. Simon. Hierarchies of events with dot-depth one - Ph.D. thesis. University of Waterloo,

1972.

[157] I. Simon. Piecewise testable events. In H. Barkhage, editor, Automata Theory and Formal Lan-

guages, 2nd GI Conference, Kaiserslautern, May 20-23, 1975, volume 33 of Lecture Notes in

Computer Science, pages 214–222. Springer, 1975. doi:10.1007/3-540-07407-4_23.

[158] I. Simon. Words distinguished by their subwords (extended abstract). In Proc. WORDS 2003,

volume 27 of TUCS General Publication, pages 6–13, 2003.

[159] S. S. Sturrock. Time warps, string edits, and macromolecules – the theory and practice

of sequence comparison. david sankoff and joseph kruskal. isbn 1-57586-217-4. Genetics

Research, 76(3):327–329, 2000. doi:10.1017/S0016672300219320.

[160] Z. Tronícek. Common subsequence automaton. In J. Champarnaud and D. Maurel, editors,

Implementation and Application of Automata, 7th International Conference, CIAA 2002,

Tours, France, July 3-5, 2002, Revised Papers, volume 2608 of Lecture Notes in Computer

Science, pages 270–275. Springer, 2002. doi:10.1007/3-540-44977-9_28.

150

https://doi.org/10.1145/3517804.3526069
https://doi.org/10.1007/978-3-031-33180-0_21
https://doi.org/10.1016/J.TCS.2011.10.017
https://doi.org/10.1007/3-540-11980-9_19
https://doi.org/10.1007/3-540-11980-9_19
https://doi.org/10.1007/3-540-60217-8_13
https://doi.org/10.1007/3-540-60217-8_13
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1017/S0016672300219320
https://doi.org/10.1007/3-540-44977-9_28

Bibliography 151

[161] P. Uznanski. Recent advances in text-to-pattern distance algorithms. In Proc. 16th Conference

on Computability in Europe, CiE 2020, volume 12098 of LNCS, pages 353–365, 2020.

doi:10.1007/978-3-030-51466-2_32.

[162] R. A. Wagner. Order-n correction for regular languages. Commun. ACM, 17(5):265–268,

1974. doi:10.1145/360980.360995.

[163] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168–

173, Jan. 1974.

[164] K. Wasa. Enumeration of enumeration algorithms, 2016. arXiv:1605.05102.

[165] P. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for foˆ2 on

words. Log. Methods Comput. Sci., 5(3), 2009. URL: http://arxiv.org/abs/0907.

0616.

[166] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

[167] G. Zetzsche. The complexity of downward closure comparisons. In I. Chatzigiannakis,

M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors, 43rd International Colloquium on

Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, vol-

ume 55 of LIPIcs, pages 123:1–123:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2016. doi:10.4230/LIPICS.ICALP.2016.123.

151

https://doi.org/10.1007/978-3-030-51466-2_32
https://doi.org/10.1145/360980.360995
http://arxiv.org/abs/1605.05102
http://arxiv.org/abs/0907.0616
http://arxiv.org/abs/0907.0616
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.4230/LIPICS.ICALP.2016.123

	Introduction
	The original problem
	Motivation and related work
	The extended matching problem
	Structure of the thesis

	Preliminaries
	General Notation
	Pattern classes
	The matching problem
	Hamming Distance
	Edit Distance
	Subsequences
	General data structures
	Computational Model

	Matching Patterns with Variables under Hamming Distance
	Overview
	Matching Regular Patterns with Mismatches
	Efficient solutions for and
	Lower Bounds for and .

	Matching Patterns with Repeated Variables

	Matching Patterns with Variables under Edit Distance
	Overview
	Matching Regular Patterns under Edit Distance
	Efficient solutions for and
	Lower Bounds for and

	Matching Patterns with Repeated Variables
	Lower Bounds for Unary Pattern
	Solution for Unary Pattern

	Matching Patterns with Variables under Simon's Congruence
	Overview
	Complexity of
	 is NP-hard
	 is in NP
	Tractable classes of pattern in

	Complexity of
	Complexity of

	The Edit Distance to k-Subsequence Universality
	Overview
	Problem specific Toolbox
	Algorithms and Data Structures
	Examples

	Edit Distance to -universality
	Changing the -universality with Insertions
	Changing the -universality with Deletions
	Changing the -universality with Substitutions

	Space Efficient Implementation
	Extensions on the results
	Efficient Implementation for small Alphabets
	Universality Queries

	Considerations on the computational model

	Conclusion
	Results Summary
	Open Problems and Future Work

	Bibliography

