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Abstract
The impact of climate warming on forestry in Germany and Europe has become more
and more visible in recent years and decades. This has lead to an increased demand for
predictions on the development of forest stands with regard to timber production, CO2
sequestration and conservation related properties, such as biodiversity. Phyto-geocentric
climate sensitive site productivity models are helpful tools for estimating trends in the
development of timber and CO2 stocks. Traditional site productivity models are phytocentric,
relying solely on the properties of stands or trees. Adding climate sensitivity requires building
geocentric or phyto-geocentric models, which are based on or include environmental covariates.
Ideally, these models would be based on real time series. However, due to the long time
periods of forest growth processes, these rarely cover climate gradients required for model
development. Hence, they are often replaced by false time series. This approach is also
known as Space-for-Time substitution. Phyto-geocentric climate sensitive site productivity
models following this approach are based on two data components: forest inventory data,
which gives information on site productivity, and climate data from which the necessary
independent covariates are selected. The thesis presented here consists of two studies, each
dealing with one component affecting Space-for-Time based site productivity models: (1)
the spatial extent of the underlying forest inventory data and (2) the aggregation period
used for the climate data. In the first study, height-diameter models for common and sessile
oak (Quercus robur/petraea), European beech (Fagus sylvatica), Norway spruce (Picea abies)
and Scots pine (Pinus sylvestris) were fitted based on a pan-European forest inventory
dataset, supplemented with climate and soil data. In the second study, height-age models for
European beech and Scots pine were developed based on three different aggregation scenarios
for climate data. Soil data was included in both studies to analyze the potential of soil
covariates for increasing the geocentric component of site productivity models. Both studies
were compared with regard to (1) the potential of continental scale forest inventories as a
basis for climate sensitive site productivity models compared to national scale inventories,
(2) the differences in covariate effects and predictions resulting from different aggregation
periods of the underlying climate data and (3) differences in the selection of soil covariates.
Results showed that forest inventories on a continental scale may be better suited for site
productivity model fitting. Compared to the German National Forest Inventory used in the
second study, the identification of plausible effects proved easier, especially at the extreme
edges of the data. However, similar studies show that supplementing national scale inventories
with fine scale regional inventory data may yield equally plausible effects. With regard to the
analyzed aggregation periods, dynamic aggregation of climate data over the tree or stand age
is clearly recommended. Static aggregation periods might lead to over- or underestimation
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or even contrasting directions of productivity changes when projecting into the future. The
identification of plausible soil covariate effects proved difficult in both studies, with most
parameters returning implausible or insignificant effects. However, reasonable effects were
identified for C:P ratio and pH value.

Zusammenfassung (German)
Der Einfluss der Klimaerwärmung auf alle Bereiche der Forstwirtschaft in Deutschland und
Europa ist in den letzten Jahren und Jahrzehnten immer deutlicher geworden. Daraus entsteht
ein gesteigerter Bedarf an Vorhersagen der Entwicklung von Waldbeständen in Bezug auf
Holzproduktion, CO2-Bindung und naturschutzbezogenenen Eigenschaften wie Biodiversität.
Phyto-geozentrische klimasensitive Standort-Leistungs-Modelle sind hilfreiche Werkzeuge um
Trends in der Entwicklung von Holzaufkommen und CO2-Vorräten einzuschätzen. Klassische
Standort-Leistungs-Modelle sind phytozentrisch, d.h. sie basieren lediglich auf Eigenschaften
von Bäumen oder Beständen. Um Klimasensitivität zu erreichen, müssen geozentrische
oder phyto-geozentrische Modelle gebildet werden, welche auf Umwelt-Kovariablen basieren
oder diese einbeziehen. Unter idealen Voraussetzungen würden diese Modelle auf Basis
echter Zeitreihen entwickelt. Durch die langen Zeiträume forstlicher Wachstumsprozesse
decken diese jedoch i.d.R. nicht die für die Modellentwicklung erforderlichen Klimagradienten
ab. Daher werden sie meist durch falsche Zeitreihen ersetzt. Diese Methode wird auch
als Space-for-Time Substitution bezeichnet. Auf diesem Ansatz basierende klimasensitive
Standort-Leistungs-Modelle greifen auf zwei Teildatensätze zurück: Waldinventurdaten,
welche Informationen über die Standort-Leistungs-Beziehung liefern und Klimadaten, aus
denen die unabhängigen Kovariablen selektiert werden. Die vorliegende Arbeit besteht
aus zwei Studien, die sich mit jeweils einer Komponente beschäftigen, welche Space-for-
Time basierte Standort-Leistungs-Modelle beeinflusst: (1) der räumlichen Ausdehnung der
zugrunde liegenden Waldinventurdaten und (2) dem zur Aggregierung der Klimadaten
genutzten Zeitfenster. Im Rahmen der ersten Studie wurden Höhen-Durchmessermodelle
für Stiel- und Traubeneiche (Quercus robur/petraea), Buche (Fagus sylvatica), Fichte (Picea
abies) und Kiefer (Pinus sylvestris) auf Basis eines europaweiten, um Klima- und Bodendaten
erweiterten Waldinventurdatensatzes entwickelt. In der zweiten Studie wurden Höhen-
Altersmodelle für Buche und Kiefer auf Basis von drei verschiedenen Aggregierungszenarien
für Klimadaten entwickelt. In beiden Studien wurden Bodendaten einbezogen, um ihr
Potenzial zur Verstärkung der geozentrischen Komponente von Standort-Leistungs-Modellen
zu analysieren. Beide Studien wurden bezüglich folgender Kriterien analysiert: (1) des
Potenzials von Waldinventuren auf kontinentaler Ebene gegenüber nationalen Waldinventuren
als Grundlage klimasensitiver Standort-Leistungs-Modelle, (2) der Unterschiede in den

2



Kovariableneffekten und Modellvorhersagen, basierend auf den Zeitfenstern der Klimadaten-
Aggregierungen und (3) der Unterschiede in der Selektion von Boden-Kovariablen. Die
Ergebnisse zeigten, dass Waldinventurdatensätze auf einem kontinentalen Stichprobennetz
zur Modellentwicklung potenziell besser geeignet sind als nationale Waldinventuren. Im
Vergleich zur in der zweiten Studie genutzten Bundeswaldinventur erwies sich die Identifikation
plausibler Effekte als einfacher, besonders an den Datenrändern. Jedoch zeigen ähnliche
Studien, dass die Ergänzung nationaler Waldinventuren mit Daten aus regionalen Inventuren
mit engmaschigem Aufnahmeraster zur Identifizierung ähnlich plausibler Effekte führen kann.
Bezüglich der Aggregierung von Klimadaten für die Entwicklung von Standort-Leistungs-
Modellen ist die dynamische Aggregierung über dem Baum- bzw. Bestandesalter deutlich zu
empfehlen. Statische Aggregierungszeiträume können zu Über- oder Unterschätzungen oder
gar gegenläufigen Produktivitätsänderungen in Projektionen der Standortleistung führen.
Die Identifizierung plausibler Kovariableneffekte für die Bodenparameter erwies sich in beiden
Studien als schwierig, wobei die meisten Parameter unplausible oder nicht signifikante Effekte
zeigten. Es konnten jedoch plausible Effekte für das C:P-Verhältnis sowie den pH-Wert
identifiziert werden.

Declaration
Section 2 of this thesis is based on a manuscript that was submitted for publication in the
Annals of Forest Science with the authors being Levent Burggraef, Paul Schmidt-Walter,
Matthias Schmidt and Henning Meesenburg. With regard to § 12 paragraph 1 c) + Appendix
2 of the doctoral degree regulations for the Graduate School of Forest and Agricultural
Sciences, it is hereby declared that all analyses presented here were conducted by Levent
Burggraef. All sections have been written by Levent Burggraef with the exception of of the
text in section 2.2.3, which has been drafted by Paul Schmidt-Walter.
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1 General introduction
The impact of climate warming on forestry in Europe and Germany has become more and
more visible in recent years. Climate projections for Europe based on the fourth IPCC
assessment report predict higher temperatures, especially in winter, as well as a decrease in
precipitation in summer and an increase in winter (IPCC 2007; Jacob et al. 2012). Moreover,
extreme weather events, such as the 2003 heat wave and heavy storms in 1990, 1999, 2007
and 2018, have had a major impact on forests and forestry in Europe, leading to massive
amounts of damaged wood (Schelhaas et al. 2003; Albrecht et al. 2012; Udali et al. 2021)
and reduced production and carbon storage. This may have resulted in forest ecosystems
becoming carbon sources rather than sinks (Ciais et al. 2005; Eggers et al. 2008). Heat
waves and floods are more likely to occur in the future (Schiermeier 2018). While it is not
possible to connect specific events to climate change, research from the field of attribution
studies concludes that the 2018 heat wave (World Weather Attribution 2018; Vogel et al.
2019; Yiou et al. 2020), as well as the 2019 heat wave (Van Oldenborgh et al. 2019) have
been caused by human-induced climate change with virtual certainty. The 2018 heat wave
lead to severe wildfires in Scandinavia and Greece.

This has lead to an increased demand for predictions on the development of forest stands
with regard to timber production, CO2 sequestration and nature conservation.

Predictions on the future development and restoration of forest stands can be made based
on qualitative reasoning (Bolte et al. 2010; McDowell et al. 2020) or quantitative analyses
(Löf et al. 2019; Vauhkonen et al. 2019).

Quantitative analyses usually come in the shape of more or less complex models.
Models dealing with future forest development with regard to climate change can be

divided into three different branches: site productivity models, risk/survival models and
presence-absence models. Site productivity models deal with the development of forest
biomass in the form of net primary production or classical silvicultural measures of timber
production (Battaglia and Sands 1997; Palahí et al. 2004; Albert and Schmidt 2010). Risk
and survival models deal with the probability of calamities like forest fires, storms or pests
(Jaiswal et al. 2002; Schmidt et al. 2010; Overbeck and Schmidt 2012). qnd presence-absence
models focus on changes in the geographical regions which may be suitable for tree species
(Mauri et al. 2017; Mellert et al. 2018; Pecchi et al. 2019).

These three modeling approaches can each take the shape of statistical (Albert and Schmidt
2010; Overbeck and Schmidt 2012; Mellert et al. 2018) and process based models (Battaglia
and Sands 1998; Morin et al. 2007; Hoffman et al. 2018).

Site productivity models are traditionally phytocentric, while climate sensitive models nec-
essarily have to be geocentric or phyto-geocentric. Phytocentric models are based exclusively
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on tree or stand properties, such as traditional yield tables, or models which are only used,
for example, for height imputation (Bontemps and Bouriaud 2013), while geocentric models
include environmental variables.

This thesis deals with site productivity models, which can be subdivided into two approaches:
longitudinal models, which are based on real time series obtained from long term experimental
plots (Yue et al. 2016). This is the straight forward approach to correlate climate observations
to the growth of trees and stands.

Due to the long growth times of trees in contrast to, for example, agricultural crops, it
is often impossible to analyze the results derived from experimental plots within the scope
of one scientific study. Also, the climatic gradients covered during the lifetime of a tree or
stand or the time passed since the introduction of an experimental plot may be too small to
identify meaningful climate effects, or the available climate data may not reach back to the
germination year of the tree or stand.

Thus, researchers often have to resort to false or artificial time series, substituting the
temporal climate gradient by a spatial gradient observed across trees and stands located at
sites with varying climatic conditions and at different ages (Pretzsch 2009, Figure 1.1). Such
studies are also labeled Space-for-Time (SFT) or gradient studies
(Pickett 1989; Fukami and Wardle 2005; Rustad 2008; Lester et al. 2014) and, in spite
of widespread ambitions to transition to real time series, they are still the rule in forest
productivity modeling.

Climate sensitive site productivity models following the SFT-approach are usually based on
two data components: forest inventory data, which gives information on site productivity, and
climate data, which provides the necessary independent covariates. Additional environmental
covariates, such as nitrogen deposition or soil physiological, chemical or hydrological covariates
are often added to investigate which covariates have the most explanatory power and to move
the model further towards geocentricity.

Inventory data is mostly obtained from forest inventories on the national, state or enterprise
level. National forest inventories are common in Europe (Kändler 2006; Vidal et al. 2007)
as well as North America (Gillis et al. 2005; Tinkham et al. 2018) and Asia (Kitahara et
al. 2009; Zeng et al. 2015), with varying capabilities in tropical countries (Romijn et al.
2015). In Germany, fine scale enterprise-level inventories are an established management tool
(Böckmann et al. 1998). Inventories differ in sampling method, grid resolution and spatial
extent. Since the SFT approach is based on a spatial gradient, the larger the spatial extent,
the more likely it is to get reasonable covariate effects. Finer grid resolution can increase the
probability of including plots representing rare site conditions.

Climate data can be obtained from different sources, mostly being taken from regionalized
climate station data. Regionalized data can be taken from public sources like the global
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Figure 1.1: Visual representation of the concepts of real time series vs. false time series used
in SFT studies. The stand in the row at the top is sampled in 1885, 1920, 1960
and 2000, thus providing a real time series. In the column on the right, four
stands at ages 40, 90, 140 and 150 years are sampled in the same year, returning
a false time series. Figure taken from Pretzsch (2009), reuse with kind permission
from the author.
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WorldClim dataset (Hijmans et al. 2005). It is also often supplied project-based by specific
institutions (Zimmermann et al. 2007; Dietrich et al. 2019) or in-house.

Climate data differs not only in the spatial extent for which it is available and the quality
based on regionalization methods.

The time period for which it is available and the aggregation of the climate data to sums
or averages, which are to be correlated with forest inventory data, also have to be considered.
The climate periods covered by site productivity models are often restricted to 30 year
baseline periods (Daly et al. 2008; Albert and Schmidt 2010; Brandl et al. 2018) and rarely
cover longer periods above 40 or even 100 years (Sharma et al. 2012; Bouwman et al. 2020).
Since those real time series of climate data are used to supplement false time series data from
forest inventories, they have to be aggregated to one value for each sample plot. They are
usually averaged to annual means or sums or values for specific months. Values aggregated
over modeled vegetation periods are also very popular (Nuske 2017).

The presented thesis consists of two studies which dealt with two components of site-
productivity models based on a SFT approach: (1) the spatial extent of the underlying
inventory and (2) the aggregation of climate data from real time series for false time series
inventory data.

In the first study, height-diameter (h-d) models were fitted based on a pan-European
dataset supplemented with climate and soil data. The selected covariate effects were analyzed
and projected site indices (SI) were calculated for 100 year old stands all over Europe.

In the second study, height-age (h-a) models were developed based on three different
aggregation scenarios for climate data. Climate data was aggregated over two 30 year baseline
periods and dynamically over stand age. Soil data was included to further analyze the
potential of soil covariates for phyto-geocentric models. SIs were calculated based on climate
grids across Germany for the years 2012 and 2050.

In a final synthesis, the results of both studies were compared and the following questions
were discussed:

1. Do continental-scale forest inventories as a basis for site productivity models yield more
plausible and/or significant climatic effects as opposed to national-scale inventories?

2. Is the dynamic aggregation of climate parameters over stand age advisable in contrast
to aggregation over static 30 year baseline scenarios?

3. Do continental scale forest inventories yield better soil related covariate effects in
contrast to national scale inventories?
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2 Climate-sensitive height-diameter models based on
large-scale forest inventories

2.1 Introduction

The idea of phytocentric site productivity models goes back to traditional yield tables. They
list various quantifiers of productivity based on Eichhorn’s rule and its continuation in the
work of Assman (Skovsgaard and Vanclay 2008). Relations of stand volume to height and
height to age are assessed to identify classes of productivity (e.g. yield classes, yield levels).
Thus, productivity is quantified through plant properties alone. Site quality is indirectly
described by those classes, which are established for specific species, regions and thinning
regimes. But environmental properties concerning soil, climate or radiation, which causally
determine site quality, are not directly addressed and not assumed to change.

As has been discussed in the general introduction, rapidly changing site conditions re-
quire moving from the phytocentric to a geocentric or phyto-geocentric approach, including
predictors which represent a changing environment (Dănescu et al. 2017).

This requires data sets which include site productivity information in connection with
climate data and, if desired, additional environmental parameters.

Due to the difficulty of identifying large enough climate gradients, site productivity
information from experimental plots has rarely been used to develop climate sensitive site
productivity models (Kahn 1995; Fries et al. 2000).

On the other hand, forest inventories have already been used extensively for building site-
productivity models, making use of the aforementioned SFT-approach (Albert and Schmidt
2010; Sharma et al. 2012; Brandl et al. 2014, 2019).

Large scale statistical models based on inventory data have covered average scales from
20.000 to 2.7 · 106 km2 with resolutions, i.e. average distances between selected plots, varying
mostly around 30 km (Ung et al. 2001; Seynave et al. 2005, 2008; Bontemps and Bouriaud
2013). Only one study found in current literature was based on a resolution below 2 km
(Albert and Schmidt 2010). Larger scales have only been covered by process modeling studies,
which rely on a given process model and do not always require actual tree data. Process
modeling studies reach from geographically large states like the U.S.A. (Kautz et al. 2018)
and Australia (Coops et al. 1998) and geological units like the Amazon basin (Galbraith
et al. 2010; Zhang et al. 2015; Rammig et al. 2018) to the global level (Malhi et al. 2011;
Fisher et al. 2014).

For this study, a European-scale data set was compiled from three different forest inventories,
supplemented with climate and soil data. The dataset provides a combination of stand data
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as well as parameters for climate and soil on an international scale and extent that has not
yet been used for statistical site-productivity modeling.

The objectives of this study were to (1) develop site productivity models for common and
sessile oak (Quercus robur/petraea), European beech (Fagus sylvatica), Norway spruce (Picea
abies) and Scots pine (Pinus sylvestris) based on the compiled data set, (2) check for the
plausibility of the identified effects and (3) discuss the potential and limitations of the data
set for site productivity modeling.

2.2 Materials and methods

2.2.1 Forest inventory data

Forest inventory data was composed of three different inventories: (1) the German national
forest soil inventory (NFSI), (2) the BioSoil inventory at the ICP Forests Level I grid and (3)
the plots of the French national forest inventory (French NFI) (Figure 2.1). The German
NFSI was sampled on an 8 km × 8 km raster (Hilbrig et al. 2014), the BioSoil inventory on
a 16 km × 16 km (Bastrup-Birk et al. 2007; De Vos and Cools 2011) and French NFI on a
1.41 km × 1.41 km (= 2 km2) raster (Vidal et al. 2007).

All three inventories used concentric plot designs with different radii and caliper thresholds.
Consequently, they provided different numbers of tree diameter and height observations
(Table 2.1).

Only European beech and Scots pine from the main stand were used for model fitting,
assuming that effects of competition and shading are more homogenous than between different
stand layers.

The quadratic mean diameter (qmD) was calculated for each plot (Kramer and Akça 2008).

Table 2.1: Statistics on the stand inventory data, differentiated by surveys (NFSI , BioSoil, French NFI)
and aggregated over the full data set.

Species Survey N trees N plots N
trees/plot

N
heights/
plot

dbh
range
(5%-95%
quan-
tile)
[cm]

qmD
range
(5%-95%
quan-
tile)
[cm]

Height
range
(5%-95%
quan-
tile)
[m]

Oak NFSI 3102 395 8 3 10.3 -
57.4

10.6 -
53.4

10.2 -
32.8

Beech NFSI 8419 690 12 4 10 - 58.1 11.4 -
49.6

10.3 -
36.6
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Spruce NFSI 11991 715 17 4 11 - 52.8 12.9 -
47.5

11.2 -
36.6

Pine NFSI 13833 584 24 4 10.4 -
43.7

11.1 -
40.6

12.8 - 32

sum NFSI 37345 2384 16 4

Oak BioSoil 1071 137 8 1 8 - 59.5 9 - 50.5 7.6 - 30

Beech BioSoil 3628 203 18 2 3 - 61 8 - 43.2 13 - 37.1

Spruce BioSoil 10898 614 18 2 4.4 -
51.3

7.5 -
42.9

11 - 37

Pine BioSoil 8684 506 17 2 6.7 - 35 7.3 -
32.6

7.5 - 29

sum BioSoil 24281 1460 17 2

Oak NFI
France

86338 19036 5 4 8.9 -
61.8

11.4 -
57.6

8 - 28.8

Beech NFI
France

60649 11881 5 4 8.3 -
60.2

10.8 - 52 8 - 31.4

Spruce NFI
France

33246 4881 7 6 9.5 - 57 12.7 -
49.7

7.2 - 33

Pine NFI
France

36050 6487 6 5 9.2 -
48.4

12.4 -
43.6

5.4 -
25.2

sum NFI
France

216283 42285 5 4

Oak all 90511 19568 5 4 8.9 -
61.8

11.3 -
57.3

8.1 -
28.9

Beech all 72696 12774 6 4 8.3 -
59.8

10.8 -
51.5

8 - 32

Spruce all 56135 6210 9 5 9.5 - 55 10.7 - 48 7.4 -
33.8

Pine all 58567 7577 8 5 9.5 -
46.7

11.3 -
41.9

5.5 -
26.6

sum all 277909 46129 6 4
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Figure 2.1: Map of oak (a), beech (b), spruce (c) and pine (d) inventory plots.
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2.2.2 Climate data

Climate data was obtained from the WorldClim data set (Hijmans et al. 2005). It was
provided as a global grid with a resolution of 30 arc seconds (ca. 1 km × 1 km) of regionalized
temperature and precipitation measurements.

Data for temperature and precipitation has been provided in the form of different ag-
gregates based on daily means. Annual aggregates, as well as aggregates for the warmest
month, coldest month and warmest quarter, were taken from the BIOCLIM dataset provided
by the WorldClim project (Bioclim 2021). The warmest quarter includes the warmest full
three months, which in Europe is mostly June to August, in rare cases July to September.
Aggregates for January and July were computed specifically for the WP-KS-KW (Waldproduk-
tivität, Kohlenstoffspeicherung, Klimawandel; engl: Forest productivity, carbon sequestration,
climate change; see Mette and Kölling (2015)). See Appendix A.1 for a listing of all available
parameters. All climate parameters were averaged for a baseline period from 1971 to 2000.

Table 2.2: Parameters from the WorldClim-Dataset used as covariates. Covariate effects were tested for
significance and plausibility during model selection in step I.2. Parameters were aggregated
from daily values, i.e. means were aggregated from daily means, minima from daily minima
etc. Parameters without BioClim parameter name were aggregated directly from the WorldClim
dataset. For detailed species-level information, see Appendix A.1.

Description Code BioClim parameter 5% quantile 95% quantile

Annual mean tem-
perature [° C]

tmn BIO1 4.50 11.70

Mean temperature
of January [° C]

t01 -5.70 4.60

Mean temperature
of July [° C]

t07 14.30 19.80

Mean temperature
May to September
[° C]

t.5to9 11.80 17.60

Mean temperature
June to August [° C]

t.678 13.40 19.00

Maximum temper-
ature of warmest
month [° C]

tmax.wm BIO5 19.40 25.70

Minimum temper-
ature of coldest
month [° C]

tmin.cm BIO6 -9.10 1.10
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Mean temperature
of warmest quarter
[° C]

tmn.wq BIO10 13.40 19.00

Annual precipita-
tion sum [mm]

psum BIO12 590.00 1223.00

Precipitation sum
May to September
[mm]

p.5to9 271.00 519.00

Precipitation sum
June to August
[mm]

p.678 153.00 317.00

Precipitation sum
of warmest quarter
[mm]

psum.wq BIO18 154.00 317.00

2.2.3 Soil data

Soil data was available for all three inventories with varying levels of differentiation.
The NFSI and the BioSoil inventory contain detailed physical and chemical measurements

for different soil layers that were aggregated to represent soil depths (0-10, 0-30, 0-100) and
the entire soilprofile (Höhle et al. 2018). See Appendix A.1 for detailed by-species information
on data and aggregation depths.

Different from the NFSI and BioSoil, the French NFI contains only a rough description
of site ecology and soil properties. The description included estimations of soil texture
and volume fraction of coarse fragments (stones) of the topsoil and the subsoil, along with
information on total soil depth that was provided for estimating available soil water capacity
(awc) (Vidal et al. 2007).

For all three datasets, awc was estimated using tabulated pedotransfer functions (Wessolek
et al. 2009). The tables provide volumetric awc values based on soil texture, bulk density
and soil organic matter (SOM) content classes. However, awc estimation was solely based on
soil texture class, as information on bulk density and SOM was not available for the French
NFI plots. The obtained volumetric values of the individual soil layers or the topsoil and
subsoil compartments were reduced for the volume fraction of coarse fragments and summed
up to represent awc of 0-100 cm soil depth. Water logged sites (bogs/fens, stagnosols and
gleysols) were excluded from the analysis.
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Table 2.3: Soil parameters for the three inventories used as covariates. Effects of each covariate were tested
for significance and plausibility during model selection in step II.2, except for awc which was
available for the full dataset and included in step I.2. For detailed species-level information, see
Appendix A.1.

Parameter Aggregation
depth

Unit Comment Code Dataset 5% quan-
tile

95% quan-
tile

Effective
soil depth

Max. 100
cm

cm BioSoil,
NFSI, NFI
France

Available
water ca-
pacity
(AWC)

0 – effec-
tive soil
depth

mm awc BioSoil,
NFSI, NFI
France

7.50 194.85

Minimum
air capacity
of soil layers

0 – effec-
tive soil
depth

% aircap BioSoil,
NFSI

4.00 29.00

organic
matter
stock of the
forest floor

Forest
floor

t/ha fbv BioSoil,
NFSI

6.00 147.31

Carbon
stock

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

t/ha oc BioSoil,
NFSI

2.84 151.08

Nitrogen
stock

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

t/ha ton BioSoil,
NFSI

0.16 13.41

Phosphorous
stock

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

t/ha p BioSoil,
NFSI

41.49 2611.17

C:N ratio Forest
floor,
mineral
soil (0-10,
0-20)

- mass ratio,
dimension-
less

cn BioSoil,
NFSI

11.36 33.48
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C:P ratio Forest
floor,
mineral
soil (0-10,
0-20)

- mass ratio,
dimension-
less

cp BioSoil,
NFSI

36.77 663.24

pH value Forest
floor,
mineral
soil (0-10,
0-20, 0-40,
40-80)

- ph BioSoil,
NFSI

3.20 7.18

Base satura-
tion

Forest
floor, min-
eral soil
(0-10, 0-40,
40-80,
0-ET)

% basesat BioSoil,
NFSI

6.32 98.89

Cation ex-
change ca-
pacity

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

molc/ha moles of
electronic
charge per
ha

cec BioSoil,
NFSI

0.02 13.28

Exchangeable
calcium
stock

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

kg/ha ca BioSoil,
NFSI

19.55 22847.14

Exchangeable
magnesium
stock

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

kg/ha mg BioSoil,
NFSI

3.84 2442.62

Exchangeable
potassium
stock

Forest
floor, min-
eral soil
(0-10, 0-40,
0-ET)

kg/ha k BioSoil,
NFSI

6.24 1303.46
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2.2.4 Models

The height-diameter (h-d) relationship was used as a response variable to describe site
productivity. Site index (SI) would have been preferable since it is less dependent on
management, easy to interpret and commonly used by practitioners. Unfortunately, SI could
not be obtained since no precise age estimate was available from the BioSoil inventory.

In order to describe the h-d relation of individual trees, a reparameterized version of the
Korf-function H = 1.3 + A′e−bD−C (Lappi 1997) was used. The reparameterized version
replaces the dbh by a transformed diameter (see Equation 2.1), while tree height as the
response variable is replaced by the natural logarithm ln(.) of tree height. The resulting model
includes the parameters A, B, λ and C which are henceforth called first-order parameters.
Second-order parameters encompass all phytocentric or geocentric covariates which describe
A or B.

The reparameterization has three advantages over the original function: (1) Three of
the four first-order parameters can be interpreted in terms of tree allometry. Parameter A

signifies the expected logarithmic height E[ln(h)] of a tree with 30 cm dbh and determines
the level (position on the y-axis) of the h-d relationship. λ represents the expected difference
between the diameter at ground level and at breast height (Mehtätalo 2004). Parameter B

signifies the difference in expected logarithmic height between a tree with 30 cm and 10 cm
dbh and determines the slope of the h-d relationship. (2) For constant first-order parameters
λ and C, the reparameterized function is linear. This allows for a straightforward description
of the phytocentric first-order parameters A and B using geocentric covariates and effects.
(3) The first-order parameters show only little correlation (see also Schmidt et al. (2018)).

The method of describing variations in first-order parameters A and B, which was used
here, differed from the original study by Lappi (1997). The original study was based on
experimental plots with repeated measurements. A and B were thus estimated on the level of
plot and sampling date, with age trends allowing for the level and slope of the h-d relationship
to change over time. In the present study, only one sampling date was available per plot.
Also, no precise age estimate was given in the BioSoil data set (as mentioned above). Hence,
different stages of stand development and environmental conditions leading to variations in A

and B were represented by resorting (1) to an extensive pool of sampling plots over a large
spatial scale and (2) substituting age by qmD.

The final geocentric models for oak, beech, spruce and pine were selected within a six-step
framework creating a two-step model.

• Model step I

– I.1 First, a phytocentric model was selected for each species, containing only the
transformed diameter xk,i and qmD as covariates (Equation 2.3). It was fitted as a
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Generalized Additive Model (GAM). In some cases, it was necessary to smooth
implausible effect patterns, especially at the edges of the data range. In that case,
constraints for e.g. monotony or concavity were added, refitting the model as
a Shape Constrained Additive Model (SCAM). Software R (R Core Team 2020,
version 3.4.4.) packages scam (Pya 2019) and mgcv (Wood 2017) were used. The
effect of qmD was included, described as a linear coefficient on xk,i and as penalized
basis-function approach using a thin-plate spline basis, in the following short
spline f(qmD), (see Wood 2017 for documentation on splines). Note that covariate
effects multiplied on xk,i affect the slope of the h-d relation, while addition of
covariate effects affects the level. In this step, the optimal combination of first-order
parameters λ and C was selected using an iterative grid search. A range of values
was given for both parameters, which was increased if the grid search reached the
limits of the range. Typical values for the grid ranged between 1 to 50 for λ in
integer steps and 0.1 to 2 for C in steps of 0.1. The grid contained all possible
combinations of both parameter ranges. The model was fitted in a loop with values
for λ and C taken from the grid until changes in the Akaike Information Criterion
became marginal (i.e. were only observed in the decimal range). With constant
λ and C, a linear model which allowed for easy addition of geocentric covariates
was obtained. A log-link function was used to ensure positive expected values.
It also led to covariate effects acting in a multiplicative-exponential way on tree
height, thus accounting for positive interaction effects by the non-linearity of the
link-function. More complex interaction terms described by varying coefficients
(Hastie and Tibshirani 1993; Wood 2017) had been part of preliminary selections,
but lacked significance and/or plausibility. For this and all following modeling
steps, it was assumed that the response follows a Gamma distribution. Note that
this method differs from Lappi (1997) where the residual variance was modeled
explicitly.

– I.2 Then, one model was fitted for each climate parameter from the WorldClim
data set in order to analyze the effect of each parameter individually (Equation 2.4).
The models were based on the stand data from all inventories. However, as the
French NFI contained no soil parameters except for awc, no other soil parameters
were included in this model step. Each model was fitted as a GAM or SCAM
(depending on step I.1) with the geocentric covariate effect being estimated as an
unconstrained spline. The effects of geocentric covariates were evaluated based
on model fit (R2), significance (p-value) and the plausibility of the shape of the
spline. R2 for a GAM is computed as the proportion of the null deviance explained
(Wood 2019). Plausible effect shapes were considered to be: (1) linear increasing
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or decreasing, (2) parabolic, i.e. characterized by an optimum for the respective
covariate, or (3) asymptotic, i.e. increasing or decreasing monotonously above
or below value of saturation (Loehle 2000). A more intuitive way of analyzing
covariate effects is to look at the relative amplitude of each effect for a specific
range of the corresponding covariate. Amplitudes were calculated as the difference
between maximum and minimum value of the covariate term (i.e. the spline or
the linear coefficient multiplied with the covariate value) for the 5%-95% quantile
range of the covariate (Equation 2.7). Each amplitude was divided by the sum
of the amplitudes of all terms to get a relative amplitude, thus quantifying the
effect on logarithmic height variation in comparison to all other terms. Geocentric
covariates were only included by addition in the present study, thus affecting the
level of the h-d relation.

– I.3 A final model was fitted by combining the selected geocentric covariates in
one model (Equation 2.8). Again, geocentric covariate effects were first estimated
as unconstrained splines and evaluated based on R2, significance and plausibility.
At least one covariate was selected from parameter groups for temperature and
water (precipitation and awc), which, together with radiation and nutrients, are
assumed to be the main drivers of tree growth (Kahn 1995; Pretzsch and Kahn
1995; Gadow 2003). After finishing the covariate selection, the original parameters
λ and C were optimized a second time and modifications were added depending on
wiggliness and plausibility. This included adding constraints as well as adjusting
the number of basis dimensions k of splines. Limiting basis dimensions reduces
the degrees of freedom of a spline and produces a less wiggly shape.

• Model step II

– II.1. For the second model step, the covariate effects of the final model of step I
were summarized to give estimates of A and B (Equation 2.5). Subsequently, a
Generalized Linear Mixed Model (GLMM) was fitted including xk,i, the estimates
of A and B (Â and B̂), and random effects for the plot level. Random effects
have the additional advantage of serving as a filter for unexplained plot-level
variation. Thus, they smooth artifacts which otherwise may result in implausible
wiggliness of the splines, which were added in the following step (II.2). Random
effects were multiplied on Â and B̂, thus affecting both level and slope of the h-d
relation. Again, the first-order parameters λ and C were optimized via iterative grid
search and the optimal combination was selected based on the Akaike Information
Criterioin (AIC). GLMMs were fitted using R package lme4 (Bates et al. 2015).

– II.2 As in step I.2, one model was fitted for each parameter individually. Again,
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the covariate effect was estimated as an unconstrained spline (Equation 2.6).
GAMs with mixed effects (GAMMs) at the plot level were created with a reduced
inventory data set. Data from the French NFI was excluded. Instead, covariate
effects were estimated from the parameters for soil chemistry and physiology which
was available for the NFSI and BioSoil inventories. Parameters were evaluated
based on p-value, R2, and plausibility respectively. The R package gamm4 was
used to fit GAMMs (Wood and Scheipl 2020).

– II.3 Finally, candidate parameters selected in step II.2 were combined. Different
covariate effect combinations were estimated as unconstrained splines and tested
for effect significance (p-value) and plausibility.

ln(hk,i) = Ak,i − Bk,ixk,i + ϵk,i (2.1)

with

xk,i = (dbhk,i + λ)−c − (30 + λ)−c

(10 + λ)−c − (30 + λ)−c
(2.2)

and:
hk,i: height of tree i at sample plot k;
xk,i: transformed dbh of tree i at sample plot k;
dbhk,i: dbh for tree i at sample plot k;
Ak,i, Bk,i, C, λ: first-order parameters of the h-d model at sample plot k;
ln(.): natural logarithm
ϵk,i : error term for tree i at sample plot k with ϵk,i ∼ Normal(0, σ2)

ln(µk,i) = βI,1 + βI,2xk,i + βI,3xk,iqmDk + f(qmDk) (2.3)

with
ln(µk,i) natural logarithm of the conditional expectation E(hk,i|xk,i, qmDk) of tree height.
hk,i ∼ Gamma(µk,i, θ) with expected value µ and scale parameter θ;
f(qmDk) one-dimensional spline, describing a non-linear effect of the quadratic mean

diameter on the level of the h-d relationship (first-order parameter A);
βI.: coefficients describing fixed linear effects on level (first-order parameter A) or slope

(first-order parameter B) of the h-d relationship;
xk,i: transformed dbh of tree i at sample plot k (see Equation 2.1);
qmDk: factor of quadratic mean diameter for sample plot k on the slope of the h-d relationship

(first-order parameter B);
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ln(µk,i) = βI,1 + βI,2xki + βI,3xkiqmDk + f(qmDk) + fI,1(xI,1,k) + fI,2(xI,2,k) + ... + fI,n(xI,n,k)
(2.4)

with:
xI.k...xI,n,k: covariates with potentially non-linear one-dimensional effects on the h-d

relationship;
fI,1(xI,1,k)...fI,n(xI,n,k): one-dimensional splines affecting the level of the h-d relationship

(first-order parameter A).

Âk = βI,1 + fI,1(xI,1,k) + fI,2(xI,2,k) + ... + fI,n(xI,n,k)
B̂k = βI,2xk,i + βI,3xk,iqmDk

ln(µk,i) = βII,1Âk + γk,1 + xk,i(βII,2B̂k + γk,2)

(2.5)

with
hk,i ∼ Gamma(µk,i, θ) with expected value µ and scale parameter θ;
Âk, B̂k: estimates of first-order parameters Ak and Bk (Equation 2.1);
βII,1, βII,2: coefficients describing linear fixed effects on the estimates of first-order parame-

ters A and B;
xII,1,k...xII,m,k : covariates with one-dimensional effects on the h-d relationship;

ln(µk,i) = βII,1Âk + γk,1 + xk,i(βII,2B̂k + γk,2) + fII,1(xII,1,k) + fII,2(xII,2,k) + ... + fII,m(xII,m,k)
(2.6)

with:
fII,1(xII,1,k) + ...fII,m(xII,m,k) : one- dimensional penalized splines describing the level of

the h-d relationship;
γk,1, γk,2: random effects for sample plot k

amp(fj(xj)) = max(fj(xj)) − min(fj(xj))∑n
ȷ̃=1 max(fȷ̃(xȷ̃)) − min(fȷ̃(xȷ̃))

(2.7)

with:
amp(xj) : relative amplitude for covariate j

xj...xn : terms for covariates j...n, meaning βjxj for linear effects or fj(xj) for splines.
As an exemplary application, projections were calculated based on the models of step

I.3. Temperature and precipitation projections were obtained from the WorldClim dataset
based on the model MPI-ESM RCP 4.5. Parameters were selected as 30 year averages for a
baseline period from 1961 to 1990 and a future period from 2051 to 2080. qmD was obtained
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from German yield tables for all four species for a 100 year old stand (Schober 1975). Since
traditional yield tables tend to underestimate current tree and stand dimensions, qmD was
corrected using species-specific calibration functions (Staupendahl and Schmidt 2016). For
simplicity, dbh was assumed to be equal to qmD.

2.3 Results

2.3.1 Model Step I

Phytocentric models (Step I.1) based only on the transformed diameter xk,i and qmD (Equa-
tion 2.3) showed R2 above 50% with estimated residual standard deviation close to 4 m for
all species. Monotony constraints were added for the splines of all species to avoid declining
effects at higher qmDs. Grid optimization of the first-order parameters yielded λ of 10 for
oak and spruce and 13 and 22 for beech and pine respectively. C was set to 2.4 (oak), 1.6
(beech), 1.9 (spruce) and 3.5 (pine).

In step I.2, all individual models yielded high significances (p < 2 · 10−16) for the respective
geocentric covariate.

For the final model (step I.3), two climate parameters were selected as covariates for oak,
beech, spruce and pine: the temperature mean for the warmest quarter (from here on denoted
as T) and the precipitation sum for the warmest quarter (P) (Appendix A.1). These specific
covariates were selected for the following reasons:

1. Aggregations for the warmest quarter yielded plausible effect shapes for the four species.
2. Including the same two covariates for each species for inter-species comparability.
3. The warmest quarter is a dynamic date range which may change with changing climate

conditions and adds flexibility for projections.

In addition, awc was selected as a geocentric covariate from the soil parameter set for
all species (Equation 2.8, Figure 2.2). Compared to step I.1, the final grid optimization of
first-order parameters lead to little to no change in λ and C except for spruce. λ stayed the
same for oak and pine, while increasing to 14 for beech. For spruce, λ was reduced to 2. C

stayed at 2.4 for oak and increased by 0.2 for beech and pine (to 1.8 for and 3.7 respectively).
For spruce, it decreased to 1.0. The estimate of the scale (θ) of the Gamma distribution
which was assumed for the response was 0.043 for oak, 0.050 for beech, 0.036 for spruce and
0.076 for pine.
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ln(µk,i,oak)oak]) = βI,1βI,2xk,i + βI,3xk,iqmDkβI,4P̃ + m(qmDk) + f(Tk) + mc(awck)

ln(µk,i,beech) = βI,1 + βI,2xk,i + βI,3xk,iqmDk + m(qmDk) + f(Tk) + m(Pk) + m(awck)

ln(µk,i,spruce) = βI,1 + βI,2xk,i + βI,3xk,iqmDk + m(qmDk) + f(Tk) + m(Pk) + m(awck)

ln(µk,i,pine) = βI,1 + βI,2xk,i + βI,3xk,iqmDk + m(qmDk) + c(Tk) + m(Pk) + m(awck)
(2.8)

with:
f(.) spline; to reduce wiggliness, the spline base for f(Tk) was reduced to 6 for beech.
m(.) spline with monotony constraint
c(.) spline with concavity constraint

P̃k =

Pk − 150, if Pk ≤ 150,

0, if Pk > 150
: segmented effect of precipitation sum for the warmest

quarter.
T mean temperature for the warmest quarter plot k.
Pk precipitation sum for the warmest quarter for plot k.
awck available water capacity for plot k.
Statistics on splines are given in the form of estimated degrees of freedom (edf), which

indicate the wiggliness of its shape (Table 2.5). An edf value of 1 corresponds to a perfectly
linear shape.

Splines showed parabolic as well as asymptotic shapes (Figure 2.2). qmD showed a clear
asymptotic shape for oak, beech and spruce and an asymptotic trend for pine, but with
a continuously positive slope. Parabolic shapes were observed for f(T ). The parabolic
shape is most pronounced for pine, with a steep decrease after the optimum. f(P ) shows
a monotonous increase for beech, spruce and pine, trending towards asymptotes above the
95% quantile of precipitation data. A different effect description for P has to be applied for
oak, since splines proved to be unstable in connection with T and awc, in spite of an obvious
negative effect of P below 150 mm (see Appendix A.2). Hence, a segmented linear effect
is fitted, with a coefficient for values below 150 mm and values above 150 mm set to zero.
f(awc) also increases monotonously for all species, trending towards an asymptote. Note that
qmD has both a linear effect on slope and a nonlinear effect on the level of the h-d relation
(Figure 2.3).
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Figure 2.2: Covariate effects for qmD, T, P and awc for oak, beech, spruce and pine (see Equation 2.8).
Colored line segments identify the inter-quantile range, light grey segments the extremes of the
data range. Note the varying y axis ranges. See Appendix A.2 for single splines with confidence
limits.
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Figure 2.3: Shift in the level of the h-d curve for beech based on the effect of qmD and T (see Figure 2.2).
Curves were plotted by varying the respective covariate and setting all other covariates to mean.

2.3.2 Model Step II

In step II.1, the exclusion of the French NFI from the data set reduced the number of
observations by 26,000 to 70,000, leaving 1,007 observations for oak, 2,119 for beech, 2,965
for spruce and 2,591 for pine (Table 2.4).

In comparison to step I.1, first-order parameters λ and C increased for beech, oak and
spruce while decreasing for pine. The estimate for the scale θ of the Gamma distribution was
0.009 for oak and 0.005 for pine respectively.

Table 2.4: Summary statistics of the final models of step II (step II.3, see equation 2.9).
Speciesn λ C R2 [%] Est. residual

standard de-
viation [m]

R2 (random
effects) [%]

Standard er-
ror [m] (ran-
dom effects)

Oak 1007 13 2.50 65.40 3.86 93.37 1.68
Beech 2259 19 2.50 63.73 4.71 93.77 1.93
Spruce 2965 17 2.00 77.07 3.78 96.69 1.43
Pine 2591 9 2.00 58.53 4.01 95.46 1.33

R2 (for fixed effects) decreased slightly for beech and pine (Table 2.4). It increased
marginally for oak and stayed the same for pine. Estimated residual standard deviation
increased a few cm for all species. Random effects increased R2 above 90% while reducing
estimated residual standard deviation below 2 m for all species.
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Figure 2.4: Penalized regression splines for CP, aggregated for 0-10 cm soil depth for oak, beech, spruce and
pine for model step II.3. Lines are colored for the 5%-95% quantile range and lightgray for the
edges of the data range.
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Within step II.2, pH value, base saturation, potassium stock and air capacity were among
the candidate covariates for all species. However, C/P ratio (CP) for 0-10 cm soil depth
turned out to be the only covariate that was significant and plausible for all species. Hence,
it was selected as a covariate for the final models of step II.

ln(µk,i) = βII,1Âk + γk,1 + xk,i(βII,2B̂k + γk,2) + f(CPk) (2.9)

with:
f(CP) spline for the CP of plot k, aggregated for 0-10 cm soil depth.

Table 2.5: Statistics on model coefficients, terms and covariates for the final models of step I and II (steps
I.3 and II.3, equations 2.8 and 2.9). Estimated degrees of freedom (EDF) indicate the wiggliness
of the effect, with 1 specifying a linear effect. * Note that relative amplitudes (eq. 2.7) of the
linear covariates of step II contain the amplitudes of step I.

Species Coefficient/
Spline

Estimate Standard
error

P-value EDF Term Relative
amplitude
[%]

Oak βI,0 2.34 0.06 0.00 βI,0

Oak βI,1 0.20 0.01 0.00 βI,1xk,i 8.4

Oak βI,2 0.02 0.00 0.00 βI,2xk,iqmDk 36.3

Oak βI,4 0.01 0.00 0.00 βI,4P̃k 0

Oak m(qmDk) 0.00 4.89 m(qmDk) 12.3

Oak f(Tk) 0.00 3.81 f(Tk) 15.7

Oak m(awck) 0.00 3.77 m(awck) 8.9

Oak βII,1 1.02 0.00 0.00 βII,1Âk 26.5 *

Oak βII,2 1.01 0.05 0.00 βII,2B̂kxk,i 55.1 *

Oak f(CPk) 0.00 1.78 f(CPk) 18.4

Beech βI,0 1.99 0.21 0.00 βI,0

Beech βI,1 0.37 0.01 0.00 βI,1xk,i 21.4

Beech βI,2 0.01 0.00 0.00 βI,2xk,iqmDk 25.7

Beech m(qmDk) 0.00 3.99 m(qmDk) 5

Beech f(Tk) 0.00 4.85 f(Tk) 3.5

Beech m(Pk) 0.00 4.69 m(Pk) 25.4

Beech m(awck) 0.00 4.11 m(awck) 10.5

Beech βII,1 1.01 0.00 0.00 βII,1Âk 50.9 *
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Beech βII,2 1.25 0.04 0.00 βII,2B̂kxk,i 40.6 *

Beech f(CPk) 0.01 1.00 f(CPk) 8.5

Spruce βI,0 1.13 0.24 0.00 βI,0

Spruce βI,1 0.62 0.01 0.00 βI,1xk,i 30.7

Spruce βI,2 0.01 0.00 0.00 βI,2xk,iqmDk 20.9

Spruce m(qmDk) 0.00 4.78 m(qmDk) 5.5

Spruce f(Tk) 0.00 5.71 f(Tk) 5.8

Spruce m(Pk) 0.00 4.08 m(Pk) 12.9

Spruce m(awck) 0.00 3.87 m(awck) 3

Spruce βII,1 1.01 0.00 0.00 βII,1Âk 40.6 *

Spruce βII,2 1.04 0.02 0.00 βII,2B̂kxk,i 38.3 *

Spruce f(CPk) 0.00 1.00 f(CPk) 21.1

Pine βI,0 0.35 0.55 0.52 βI,0

Pine βI,1 0.26 0.02 0.00 βI,1xk,i 6.5

Pine βI,2 0.02 0.00 0.00 βI,2xk,iqmDk 15

Pine m(qmDk) 0.00 5.95 m(qmDk) 18.9

Pine c(Tk) 0.00 4.13 c(Tk) 7.7

Pine m(Pk) 0.00 5.00 m(Pk) 10.8

Pine m(awck) 0.00 4.15 m(awck) 18.2

Pine βII,1 1.07 0.00 0.00 βII,1Âk 51.6 *

Pine βII,2 0.84 0.03 0.00 βII,2B̂kxk,i 25.4 *

Pine f(CPk) 0.00 2.45 f(CPk) 23

Species Covariate 5% quan-
tile

95%
quantile

Minimum Maximum

Oak

Oak dbh 9.87 57.93 7.40 127.32

Oak

Oak Pk 151.00 263.00 100.00 366.00

Oak qmD 12.71 53.10 10.00 60.00

Oak Tk 15.90 19.30 13.00 21.90
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Oak awc 25.80 230.00 0.00 260.00

Oak Â 2.68 3.06 2.48 3.08

Oak B̂ 0.40 1.27 0.28 2.07

Oak CP 35.00 273.12 15.62 615.70

Beech

Beech dbh 8.59 58.25 7.00 174.12

Beech

Beech qmD 12.15 49.07 10.01 60.00

Beech Tk 13.20 18.20 10.40 20.20

Beech Pk 164.00 313.00 86.00 478.00

Beech awc 20.80 230.00 0.00 260.00

Beech Â 2.88 3.26 2.50 3.36

Beech B̂ 0.50 0.99 0.42 3.04

Beech CP 43.57 264.52 11.70 943.64

Spruce

Spruce dbh 10.19 57.30 7.00 106.95

Spruce

Spruce qmD 13.95 48.75 10.00 59.90

Spruce Tk 12.10 17.50 9.10 19.80

Spruce Pk 202.00 343.00 140.00 523.00

Spruce awc 23.25 228.56 0.00 260.00

Spruce Â 2.82 3.28 2.21 3.43

Spruce B̂ 0.72 1.10 0.63 1.33

Spruce CP 47.14 347.94 11.28 943.64

Pine

Pine dbh 9.55 48.70 7.00 91.04

Pine

Pine qmD 13.14 44.23 10.00 60.00

Pine Tk 13.70 18.80 9.60 21.20

Pine Pk 154.00 254.00 97.00 454.00

Pine awc 21.50 192.50 0.00 277.20

Pine Â 2.32 3.15 1.98 3.44
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Pine B̂ 0.45 1.03 0.27 1.47

Pine CP 38.05 487.00 17.40 1122.73

2.3.3 Projections

Projections for all species showed potential productivity losses in southern and increases in
northern Europe (Figure 2.5). In central Europe, productivity decreased at lower elevations,
while increases were visible at higher elevations in the Alps and central European mountain
ranges. Large areas will be shifted into the extrapolation range of models in southern regions
in the future, while areas in Norway and Finland will move into the range of the model data.

2.4 Discussion

In the study presented here, climate sensitive, phyto-geocentric h-d models for oak, beech,
spruce and pine were built. Models were based on a unique set of large scale, one-time forest
inventory data using an SFT approach (Bontemps and Bouriaud 2013).

Model development started with fitting a phytocentric model, using qmD as a longitudinal
covariate. qmD has been successfully used as an indicator of stand development for non-even
aged stands that lack precise age estimates (Mehtätalo 2004; Schmidt et al. 2018). Since it
is based on dbh, it is easier to obtain and less subject to error compared to age. Another
advantage over age is that it can be easily calculated, even in mixed forests, where age is hard
to define. One disadvantage is that tree height at a specific point in time can’t be directly
predicted with the qmD based models. A possible workaround would be to obtain qmD values
for a specific age from a yield table. Also, it can’t be known to which degree the effect of
environmental covariates is hidden in the effect of qmD. Comparing covariate effects from the
given models to an age based model will be the subject of a follow up study.

The original model by Lappi (1997) contains the parameters λ and C (Equation 2.1), which
was optimized using an iterative grid search. Values for λ and C are consistently higher than
in the original study on jack pine, where λ was set to 1 cm and C to 0.6-1.6 depending on
age. The values were also mostly higher than in a preceding study on Norway spruce, where
λ was set to 7 cm (Mehtätalo 2004) and C to 1.64. However, λ and C were very similar to a
study on spruce, pine and birch, which also employed an iterative grid search and identified
values between 16 and 20 cm for λ and 2.4 and 2.5 for C (Schmidt et al. 2018). It was
pointed out in that study that values were often located at the upper limits of the search
grid. This supports the higher values of λ=22 cm and C=3.5 for pine in the present study,
where the search grid was adjusted if λ and C reached the limits of the grid.

The selection of covariates in step I.2 and the subsequent covariate combinations in step
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Figure 2.5: Change in height for oak (a), beech (b), spruce (c) and pine (d) at age 100 from a
baseline period 1960-1990 to 2050-2080, based on RCP 4.5. Dark red areas (areas
lost) were part of the model’s data range in the baseline period, but enter the
extrapolation range in the projection period. Vice versa, dark blue areas were not
part of the model’s data range during the baseline period, but enter the range in
the projection period.
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I.3 showed that the effects of temperature and precipitation are mostly plausible (Appendix
A.2), with temperature often showing parabolic shapes.

Responses of plant-growth related covariates are often assumed to be parabolic rather
than asymptotic. However, it has been stated that this assumption is rarely backed by data.
Rather, it is predefined by fitting parabolic functions, e.g. polynomials. It has been suggested
that an asymptotic response is closer to ecological reality and should be implemented in forest
simulators as opposed to a parabolic response (Loehle 2000). The data-based identification
of parabolic temperature effects is a clear benefit of the large spatial extent of the data set.

The effects of P displayed higher relative amplitudes than the effects of T (Table 2.5) except
for oak. There was a strong tendency towards asymptotic shapes for all species, however,
P-distributions were heavily right-skewed (Figure 2.2) and asymptotes were located above
the 95% quantile of P observations, while steep declines were observed below the 5% quantile.
With regard to the P effects, it was apparent that more data in the extreme spectrum (dry
and wet) is needed.

For awc, asymptotic effects were based on evenly distributed data for all species. Parameters
describing the ability of the soil to supply plant available water are regularly used to fit site
productivity models (Bergès et al. 2005; Friedrichs et al. 2009; Brandl et al. 2014, 2019;
Yener et al. 2018; Mellert et al. 2018).

For pine, the awc-effect displayed an exceptionally high amplitude, while being based on
a smaller data range than for beech. High sensitivity and a small environmental gradient
indicated a strong response to a limiting resource. Indeed, a study on tree species distribution
based on soil water storage has pointed out a pronounced sensitivity of pine to awc (Mellert
et al. 2018).

Results of the covariate selection in step II.2 were more ambivalent compared to step
I.2 (Appendix A.3). Soil parameters were available for different subsets of data, with high
variation in the number of observations. Distributions were often clustered and R2 displayed
higher variations; increase in variation was even more pronounced for the relative amplitude
of effects. The selection of soil covariates showed that splines have to be evaluated based on
expert knowledge, since favorable model statistics do not indicate plausibility. An example was
the effect of cation exchange capacity for the 0-40 cm layer of the mineral soil (ca.minst.040),
which displayed an amplitude of 41% but also an implausible steep decline for increasing
cation exchange capacity at values below 5000 molc/ha (Appendix A.3).

CP was the only soil parameter that was selected as covariate for the final models in step
II.3. A decreasing effect on logarithmic height with increasing CP was observed for all species,
indicating lower tree heights at potentially more P-limited sites.

Frequently, nitrogen has been identified as a nutrient limiting productivity, but phosphorous
may be limiting, especially at sites which are already nitrogen saturated (Talkner et al. 2015).
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Phosphorous has been identified as limiting nutrient for spruce in the Bavarian Alps (Mellert
and Ewald 2014). Although a marginal effect of CP on beech was observed, phosphorous
limitation of sites and the effect of CP opposed to nitrogen stock, C/N ratio and absolute
phosphorous stock have been observed for European beech forests (Talkner et al. 2015; Van
Sundert et al. 2019).

Projections for beech and pine based on models of step I.3 and T and P projections under
the RCP 4.5 scenario displayed a shift in productivity from south to north and from lower to
higher altitudes (Figure 2.5). Mountaineous sites have been described as similar to northern
latitude sites with respect to the trees’ ecological niche (Uhl et al. 2021). Overall patterns for
beech were similar to a previous study based on the RCP 4.5 scenario and data for Germany
and France (Brandl et al. 2018). The results extended further to the North due to the
European data set, but the area covered in southern Europe was very similar. A possible
improvement of productivity for beech in mountaineous areas has also been predicted in a
site index modeling study for Lower Saxony (Albert and Schmidt 2010).

Finally, a few points concerning assumptions made within the scope of data aggregation
and model building have to be discussed.

First, the method of identifying covariate effects needs to be addressed. Covariate identifi-
cation was conducted by the evaluation of an unconstrained spline, and subsequent setting
of constraints if deemed necessary. Of course, constraints should only be set if a generally
plausible trend is already visible (Schmidt et al. 2018). It should also be noted that, if
an ecological response is already well known and established functions exist, using those
functions may be preferable to a GAM/SCAM approach. This was taken into account by
using the linearized Korf function as a basis describing the h-d relation, with only the slope
being modified by splines for qmD, and level by splines for geocentric covariates. Thus, in
contrast to an exclusively spline based, free estimate of tree height, series of h-d curves can
always be obtained (Figure 2.3).

It needs to be stressed that climate parameters were aggregated over a 30 year period
without accounting for tree age, while awc and CP were assumed to be constant. Thus, the
same effect of a climate covariate was assigned to, for example, a 30 year old stand and a
100 year old stand. The former might have been subjected to more recent and likely warmer
climate and the latter to a colder climate period, compared to the given 30-year average.
Climate covariate effects might be different in shape, amplitude and significance given the
actual climate period experienced by each tree, which was not available for the analyses
presented here.

The study presents a typical example of space-for-time substitution. This approach includes
some important assumptions on how trees or stands are affected by their environment over
time. Caveats may be rooted in the lack of knowledge of events that have affected a stand in
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its history, their chronology and spatial distribution and other potentially hidden assumptions
(Yue et al. 2016)). For example, similar climate conditions might be expected to act differently
if they arise early or late in the life of a tree.

Another caveat which may lead to a bias in the model fit could lie in different management
strategies being applied based on site quality, ownership structures and size of the managed
area. Poor sites are likely to be less intensively managed. Ownership structures encompass
private, state-owned and communal forest. Small private forests are likely to be managed
differently compared to large private forests, while management strategies by the state may
vary between national sub-units such as federal states. Within the model selection approach,
those differences in thinning methods may lead to unbalanced shifts in qmD and height, which
would confound the correct identification of geocentric effects. For example, stands at poor
sites may be mostly thinned from below, while stands at very productive sites may be thinned
from above. The first method would shift qmD to higher, the latter to lower values. However,
due to the large number of observations and the international scale of the data set, coverage
of a large, balanced set of management strategies and ownership types, could be assumed.

2.5 Conclusion

The goal of the presented study was the creation of phyto-geocentric site productivity models
for oak, beech, spruce and pine, based on a large-scale pan-European set of forest inventory
data and data on climate, soil physiology and chemistry. A linearized version of the Korf
function (Lappi 1997) was used for describing a basic h-d relation and added linear covariates
using a GAM/GAMM/SCAM framework to check for shape and plausibility. Plausible effects
for temperature and precipitation for the warmest quarter, available water capacity and C/P
ratio, were identified. Temperature tended towards parabolic shapes, which are often assumed
but rarely supported by data. Covariate effects of precipitation tended to be asymptotic.
Based on effect shapes at the edges of the data range, more extensive sampling at more
extreme, especially warmer sites is recommended to further validate a decreasing effect on
site productivity at high temperatures. It was shown that a large scale SFT approach can
provide a good basis for the identification of geocentric covariate effects.

33



3 Height-age models based on dynamic and static
aggregation of climate data

3.1 Introduction

Climate sensitive forest productivity models are usually based on regionalized climate data.
Climate data can encompass different aggregation methods of temperature and precipitation,
like sums or means for a year, specific months or growing season (Albert and Schmidt
2010; Sharma et al. 2012; Brandl et al. 2018; Campbell et al. 2021). Other possible
methods of aggregation include, e.g., the aggregation over the warmest quarter of each year
or the seasonality defined as standard deviation of the temperature multiplied with 100
for temperature or the coefficient of variation for precipitation (Brandl et al. 2019). More
extensive datasets combine climate and soil information to obtain hydrological parameters
like soil water capacity (Bergès et al. 2005) or water balance during growing season (Brandl
et al. 2014). If daily climate values are available, time frames during which values cross
certain thresholds, like growing degree days (eg. days with air temperature > 5◦C), can be
aggregated (Brandl et al. 2014).

Regionalized climate data is based on specific measurements from climate stations. In rare
cases, climate stations are located in the vicinity of the plots from which forest productivity
information is obtained (Bouwman et al. 2020). Usually, they are located at greater distance
to forest inventory or experimental plots and measurements are only valid for the point at
which they are measured (Apaydin et al. 2004). In those cases, data is interpolated using
statistical methods like regression approaches (inverse distance weighting, geographically
weighted regression), spline based approaches or kriging (Hutchinson 1989; Tveito et al. 2001;
Apaydin et al. 2004; Bergès et al. 2005; Hijmans et al. 2005; Schulla and Jasper 2007;
Zimmermann et al. 2007; Daly et al. 2008; Dietrich et al. 2019). Selection of the best
interpolation method depends on the characteristics of the data set as well as the aim of the
interpolation. An important characteristic is the spatial distribution of the target climate
variable, especially in mountainous regions where data is sparse and varies on small spatial
scales (Apaydin et al. 2004). Scales of the respective regionalizations can range from very
fine scales for regional models (50 m × 50 m, Zimmermann et al. 2007) to the 1 km × 1 km
scale for global climate grids (Hijmans et al. 2005).

Climate measurements are restricted to specific time periods, depending on the beginning
of measurements by the available stations. Time frames for the interpolation of past climate
station data typically reach from the 1960s or 1970s to the 1990s or the beginning of the
millennium (Bergès et al. 2005; Zimmermann et al. 2007; Sharma et al. 2012; Wang et al.
2016; Dietrich et al. 2019).
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Aggregation periods for climate data rarely cover the lifetimes of actual trees or stands.
Often, the time frame for climate interpolation differs from the sampling time frame of the
underlying productivity data. E.g., forest inventory data from 2012 may be combined with
climate parameter means for 1971 to 2000 (Brandl et al. 2014, 2018). In some studies, the
available climate data does cover the sampling years of stand data (Dănescu et al. 2017;
Brandl et al. 2019). Yet even in those cases, climate variables are averaged over a static time
frame ranging from 5 to 30 years.

Consequently, static climate aggregates may not be related to the actual climate which
trees or stands have been subjected to during their lifetime. Especially using a SFT approach,
a static climate aggregation over a fixed time period assigns climate from the same period to
trees or stands of different ages.

In this study, site-productivity models were fitted, based on data from the third German
National Forest Inventory and climate values aggregated for two static periods and dynamically
over stand age.

Based on the fitted models, the following questions were investigated:

1. Do climate values aggregated dynamically over stand age yield different covariate
combinations and effects during model selection?

2. Do site-productivity models based on dynamic and static climate data aggregations
yield different predictions?

3. Which recommendations can be made for future modeling studies based on observed
differences in covariate selection and climate data aggregation?

3.2 Materials & Methods

3.2.1 Forest inventory data

Forest inventory data was taken from the third German National forest inventory (NFI).
This was conducted in 2012 on a stratified grid. The basic nation wide grid had a density of
4 km × 4 km (16 km2). Local strata were intensified to a double (2.83 km × 2.83 km, 8 km2)
or quadruple (2 km × 2 km, 4 km2) grid (Riedel et al. 2017). Sampling plots were set up as
quadratic tracts with an edge length of 150 m. Trees with diameter at breast height (dbh) of
7 cm and above were sampled using angle count sampling with a counting factor of four at
each of the four tract corners (Bitterlich 1947). This yielded a number of 4 to 6 measured
trees per tract for beech and pine (Table 3.1). Beech data included more trees of higher age,
height and dbh , while also including more low dbh trees compared to pine (Figure 3.1).
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Table 3.1: Statistics on the stand inventory data of the third German NFI.

Species N trees N tracts N trees/tract age min

Beech 92115 22801 4.04 9

Pine 92726 17177 5.40 8

Species age quantile
5% [cm]

age quantile
95% [cm]

age max [cm] dbh min [cm]

Beech 33 170 464 0.1

Pine 27 141 281 0.1

Species dbh quantile
5% [cm]

dbh quantile
95% [cm]

dbh max [cm] N
heights/tract

Beech 0.100 68.7 200.0 4.04

Pine 8.625 51.2 112.1 5.40

Species height min [m] height quantile
5% [m]

height quantile
95% [m]

height max [m]

Beech 2.3 12.1 37.5 48.7

Pine 1.6 12.6 31.9 45.9

3.2.2 Climate data

Climate data was provided in the form of raster grids for annual temperature sum (T) and
precipitation sum (P). Both parameters were aggregated for a dynamic vegetation period
(Nuske 2017). T grids were provided with 50 m×50 m and P grids with 100× 100m resolution.
Retrodictions were available for all years from 1900 to 2019. Predictions were available
for 2020 to 2100 based on different projection models. Retrodictions and projections were
concatenated to aggregate climate for different periods (see below), using the projections
from the MIROC5 model (Watanabe et al. 2010).
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Table 3.2: Statistics on the climate data.

Species Temperature
sum min [◦C]

Temperature
sum quantile
5% [◦C]

Temperature
sum quantile
95% [◦C]

Temperature
sum min [◦C]

Beech 505 1803 2647 3224

Pine 835 2020 2751 3224

Species Precipitation
sum min [mm]

Precipitation
sum quantile
5% [mm]

Precipitation
sum quantile
95% [mm]

Precipitation
sum min [mm]

Beech 99 227 662 1539

Pine 88 189 505 1442

3.2.3 Soil data

Soil data was regionalized from the German National Forest Soil Inventory (NFSI), which
was sampled on an 8 km × 8 km grid (Höhle et al. 2018). The regionalization took place
within the scope of the project Forest Productivity-Carbon Sequestration-Climate Change
(Waldproduktivität-Kohlenstoffspeicherung-Klimawandel, WP-KS-KW, Mette and Kölling
2015) using the NFSI data and additional soil profiles. Methods included Ordinary Least
Squares, Boosted Regression Trees and Random Forests. Regionalization models were
applied to large strata which were based on landscape properties (Wilpert et al. 2017 for
overwiev; Zirlewagen and Wilpert 2010 for detailed method description; Wilpert et al. 2016).
Parameters were available for aggregation depths 0-30 cm and 30-60 cm (Table 3.3).
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Figure 3.1: Histograms of diameter at breast height (dbh), height, age and tempera-
ture/precipitation (T/P) sums for the vegetation period for single tree data.
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Table 3.3: Statistics on soil parameters available for covariate selection in step II.2 of the h-a
model.

Species Parameter Unit Code Aggregation
depth

Min 5%
quan-
tile

95%
quan-
tile

Max

Beech Cation exchange
capacity

µeq/g ake 0-30 1.98 4.67 120.00 532.78

Pine Cation exchange
capacity

µeq/g ake 0-30 1.90 5.12 70.26 226.70

Beech Cation exchange
capacity

µeq/g ake 30-60 2.27 6.78 107.71 467.90

Pine Cation exchange
capacity

µeq/g ake 30-60 2.27 5.49 45.96 211.11

Beech Base saturation % bs 0-30 0.68 7.27 100.00 100.00

Pine Base saturation % bs 0-30 0.68 2.89 41.28 100.00

Beech Base saturation % bs 30-60 0.00 7.37 100.00 100.00

Pine Base saturation % bs 30-60 0.00 3.94 44.90 100.00

Beech Carbon-
nitrogen ratio

1/1 cn 0-30 9.17 12.59 24.02 36.73

Pine Carbon-
nitrogen ratio

1/1 cn 0-30 9.70 17.79 33.08 39.27

Beech Carbon-
nitrogen ratio

1/1 cn 30-60 1.60 6.70 21.92 40.35

Pine Carbon-
nitrogen ratio

1/1 cn 30-60 1.60 9.69 32.43 43.43

Beech Organic carbon
content

g/kg corg 0-30 0.38 8.77 72.83 456.71

Pine Organic carbon
content

g/kg corg 0-30 0.38 0.38 30.94 456.71
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Beech Organic carbon
content

g/kg corg 30-60 0.04 0.30 19.57 241.85

Pine Organic carbon
content

g/kg corg 30-60 0.04 0.06 7.36 158.00

Beech Proportion of
bulk soil

% gba 0-30 0.00 1.07 39.05 73.33

Pine Proportion of
bulk soil

% gba 0-30 0.00 0.18 13.76 73.33

Beech Proportion of
bulk soil

% gba 30-60 0.00 2.07 69.68 95.00

Pine Proportion of
bulk soil

% gba 30-60 0.00 0.14 26.70 95.00

Beech Soil depth cm gruend 2.50 43.74 110.30 209.21

Pine Soil depth cm gruend 2.50 48.45 157.87 209.21

Beech Available water
capacity

% nfk 10.84 16.56 28.06 32.91

Pine Available water
capacity

% nfk 10.17 12.30 23.59 31.28

Beech pH value log10 ph 30-60 2.88 3.77 7.07 8.24

Pine pH value log10 ph 30-60 2.46 3.77 4.88 8.24

Beech Proportion of
sand

% sand 0-30 1.13 5.42 85.06 99.70

Pine Proportion of
sand

% sand 0-30 3.07 37.38 94.34 99.70

Beech Proportion of
sand

% sand 30-60 0.00 5.32 85.61 99.68

Pine Proportion of
sand

% sand 30-60 2.86 38.78 95.93 99.68

Beech Proportion of
silt

% schluff 0-30 0.11 11.05 65.23 81.21
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Pine Proportion of
silt

% schluff 0-30 0.11 3.04 44.36 73.52

Beech Proportion of
silt

% schluff 30-60 0.30 9.75 59.42 77.37

Pine Proportion of
silt

% schluff 30-60 0.00 2.14 39.88 70.98

Beech Proportion of
clay

% ton 0-30 0.17 3.79 39.36 54.08

Pine Proportion of
clay

% ton 0-30 0.15 1.47 18.36 53.18

Beech Proportion of
clay

% ton 30-60 0.00 3.79 44.95 64.13

Pine Proportion of
clay

% ton 30-60 0.00 0.28 22.85 54.39

Beech Density of dried
soil

g/cm3 trd 0-30 0.10 0.66 1.36 1.53

Pine Density of dried
soil

g/cm3 trd 0-30 0.10 1.05 1.48 1.61

Beech Density of dried
soil

g/cm3 trd 30-60 0.10 0.86 1.54 1.88

Pine Density of dried
soil

g/cm3 trd 30-60 0.10 1.23 1.64 2.00

3.2.4 Models

3.2.4.1 Quantifying productivity German NFI data provides limited options for the
quantification of site productivity.

Site Index (SI) is a desirable measure of productivity, since it is only marginally dependent
on density (and thus management). It can also be intuitively interpreted and is common
among practitioners.

However, SI requires dominant height, which was not measured within the scope of the NFI.
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Tree heights were measured according to the following criteria: two height measurements from
the medium to upper dbh range in the main stand for the most frequent species group (spruce
and other coniferous species, fir, douglas fir, pine, larch, oak, beech and other deciduous
species). One additional height measurement for each additional species group in the main
stand. One height measurement for deciduous and coniferous trees in the understory (Polley
2011).

As a substitute for dominant height, the height of Weise’s mean diameter hw is modeled
as the response variable. It is defined as the height corresponding to the quadratic mean
diameter dw of the 20% thickest trees of the respective species in the stand (Kramer and
Akça 2008). Consequently, the calculation of hw would have required a full sample of all tree
dbhs in a stand.

Since this was not available, a kernel density estimation (KDE) was used to model a full
dbh distribution for each tract and species. Only tracts with at least 80% of the sampled trees
being identified as beech or pine were used. A dbh vector was created with each measured
dbh being repeated according to to its expansion factor. Expansion factors were shipped
with the NFI dataset for the calculation of the number of trees per hectare. The KDE was
then fitted for the modeled dbh vector with a bandwidth of 3 cm being used for all tracts.
Different bandwidths were not tested, since this should have no effect on the model fit and
the modeled dw is merely a representation of a plausible dominant diameter of each stand.
Those modeled dbh values above the 80% quantile were queried from the KDE of each tract
(Figure 3.2).

A h-d model was used to predict hw for the dw of each tract. The core model was based on
a transformed version of the Korf function (Lappi 1997) (Equation 3.1). For fixed values of λ

and c, the model is linear, which makes it easy to fit. λ and c were optimized in previous
analyses for both species. λ was set to 5 and 14, and c to 1.1 and 1.6 for beech and pine,
respectively. h-d models were fitted as linear mixed-effects models (LME) in R version 3.6.3
(R Core Team 2020). The gamm function from package mgcv (Wood 2011; Wood 2017)
was used for LME fitting, since the package was also needed for the following selection of
h-a models. H-d models were fitted for both species based on the full data set of measured
trees. A random effect was added in order to model the height variation between tracts
(Equation 3.2).

In order to model the h-a relation, the age corresponding to hw (from here on referred
to as aw) also needed to be calculated. This was achieved by creating an age vector based
on the measured age of each tree and its expansion factor, following the method of the dw
calculation. A KDE with bandwidth 3 cm was fitted over the resulting frequency distribution
of ages. The mean of the modeled ages located above the 80% dbh quantile was calculated
for each tract.
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Figure 3.2: Example for a continuous dbh distribution, modeled using a kernel density esti-
mation (KDE, red line). The KDE was based on the displayed histogram which
was generated from multiplying dbhs measured at an NFI tract (beech on tract 1,
plot 60598) with their expansion factors. The dashed red line denotes the 80%
quantile. The mean quadratic diameter above the 80% quantile (dw) was used to
model Weise’s dominant height (hw).
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ln(hk,i) = Ak,i − Bk,ixk,i + ϵk,i (3.1a)

xk,i = (dbhk,i + λ)−c − (30 + λ)−c

(10 + λ)−c − (30 + λ)−c
(3.1b)

and:

ln(.): natural logarithm;

hk,i: height of tree i at tract k;

Ak,i, Bk,i, c, λ: first-order parameters of the h-d model at tract k;

xk,i: transformed dbh of tree i at tract k;

ϵk,i: error term for tree i at tract k with ϵk,i ∼ Normal (0, σ2).

dbhk,i: dbh for tree i at tract k;

ln(µk) = γk + β0 + β1xk (3.2)

with:

ln(µk): natural logarithm of the conditional expectation E(hwk|xk) of hwk ∼
Gamma(µk, θ) with expected value µ and scale parameter θ at tract k;

β.: coefficients describing fixed linear effects on level (first-order parameter
A) or slope (first-order parameter B) of the h-d relationship;

γk: coefficient of random effect on intercept of the h-d relation tract k.

3.2.4.2 Climate data aggregation T grids were aggregated to 100 m × 100 m resolution in
order to match the resolution of the P grids. Grids for retrodictions and projections were
stacked for the full range of 1901 to 2100. T and P were then extracted for the coordinates of
each tract. Averages were calculated for three different periods for each tract:

1. For a static climate baseline period from 1961 to 1990 (nrm.1).
2. For a static climate baseline period from 1991 to 2020 (nrm.2).
3. Dynamically over aw (dyn).
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Since about 21% of the tracts were established before 1900, additional retrodictions had to
be calculated for those tracts. For T, an LME was fitted based on T over year with a random
effect at the tract level. The full range of retrodictions from 1900 to 2012 was used for the
LME. For P, the mean of P from 1900-1930 of each tract was set for years before 1900. These
simple extrapolations are not as accurate as actual retrodictions, but they can be assumed to
correctly distinguish the tracts established before 1900 from younger tracts with respect to
their colder climate. The retrodictions for T were also roughly in accordance with the famous
hockeystick curve (Mann et al. 1999).

E(Tk|a) = γk + β1 + β2a (3.3)

with:

E(Tk|a): conditional expectation of temperature sum T ∼ Normal (0, σ2)at tract k;

β.: coefficients describing fixed linear effects on intercept and slope of the T-a
relation;

a: the year;

γk: coefficient of random effect on intercept of the T-a line on tract k.

3.2.4.3 Model selection The height-age model was developed from the linearized version of
the Korf-function, which has already been used for the hw prediction (Equation 3.1). Instead
of dbh, a transformed version of aw is used as predictor (Equation 3.4, cmp. Equation 3.1b,
Equation 3.4b).

The constants used in the equation for the diameter transformation were changed accord-
ingly. The constant of 10 cm was changed to 50 years and 30 cm was changed to 100 years.
This led to zk taking a value of zero at an aw of 100 years. Also, the parameter B now
represented the difference in hw between a stand at aw 50 and 100.

ln(hwk) = Ak − Bzk + ϵk (3.4a)

zk = (awk + λ)−c − (100 + λ)−c

(50 + λ)−c − (100 + λ)−c
(3.4b)

While climate data was available for the full 2 km × 2 km to 4 × 4 km grid of the NFI data,
soil data was only available for a subset of the tracts.
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Figure 3.3: Retrodictions for sums of temperature T and precipitation P during vegetation
period for NFI tracts. Retrodictions for tracts established before 1900 were
extrapolated using different approaches for T and P. T was extrapolated using
an LME for T over year with a random effect on tract level. For P, the mean of
1900-1930 for each tract was set for years before 1900.
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To be able to use both climate and soil data, a two step model framework was used.
Climate sensitive models were selected based on the full set of inventory data.

In a second step, the dataset was reduced to the tracts for which soil data was available.
Soil covariates were added for the reduced dataset.

The detailed process was as follows:

• Step I

– I.1 Climate sensitive models were fitted as Generalized Additive Models (GAMs)
(Equation 3.5) using package mvcv (Wood 2011; Wood 2017). The models con-
tained transformed age zk and nonlinear effects for T and P described by a penalized
basis-function approach using a thin-plate spline basis (from here on referred to as
spline). Models were fitted for different combinations of the first-order parameters
λ and c. First, a grid of all possible combinations within a specific range for
each parameter was initialized. Then a model was calculated for each grid line.
The optimal parameter combination was identified by selecting the model with
the lowest Akaike Information Criterion (AIC, Akaike 1974). If the parameter
combination yielding the lowest AIC was located at the minimum or maximum of
one parameter in the grid, the calculation was repeated with a larger grid until
decreases in AIC were only observed in decimal places.

– I.2 One final model was fitted for each species and aggregation period (nrm.1,
nrm.2, dyn). The same values for λ and c were used for all three periods since
previous analyses showed no differences in AIC. If necessary, models were refitted
as Shape Constrained Additive Models (SCAMs). SCAMs provide the option to
add constraints to splines in order to avoid wiggliness of effects at the edges of
data ranges. They were fitted using R package scam (version 1.2-5, Pya 2019).

• Step II

– II.1 In this step, the dataset was reduced to that subset of the NFI grid for which
soil data was available. This reduced the number of measured trees from 92,115
trees (22,801 plots) to 42,718 trees (10,285 plots) for beech. The number was
reduced from 92,726 trees (17,177 plots) to 47,162 trees (8,479 plots) for pine.
Water logged plots were excluded in order to avoid interactions with precipitation
or soil parameters, which would lead to implausible covariate effects. Estimates
of the first-order parameters A and B were calculated from the terms of the
final models from step I.2. A basic model was fitted containing the estimates of
first-order parameters Â and B̂ as well as the transformed aw (zki) as predictors
(Equation 3.6a). As in step I.1, first-order parameters λ and c were optimized
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using an iterative grid search. Again, optimization was only conducted for period
nrm.1 for each species, since there was no difference in results between periods.

– II.2 Then, one model was calculated for each available soil parameter. Each soil
parameter was added to each of the final models from step II.1 as an unconstrained
spline. The soil covariates were then evaluated based on coefficient of determination
(R2), AIC, relative amplitude (Equation 3.7) and visual evaluation of plausibility.
The relative amplitude quantifies the contribution of a covariate to the complete
range of the prediction when increasing the covariate between the 5% and 95%
quantile. Amplitudes of step I were multiplied with the sum of the amplitudes for
Â and B̂ of step II, in order to be able to compare amplitudes of both steps.

– II.3 The final model for each species and period was selected by finding the soil
parameter which is best suited as a covariate based on the results of step II.2. The
same covariate was selected for each aggregation period. Parameters which were
usable as covariate for both species were given preference to enable inter-species
comparisons. Constraints were added if necessary.

ln(µz,k) = βI,1 + βI,2zk + f1(Tk) + f2(Pk) (3.5)

with:

ln(µz,k): natural logarithm of the conditional expectation E(hwk|zk, Tk, Pk) of zk ∼
Gamma(µz,k, θ) with expected value µz and scale parameter θ at tract k;

βI , .: coefficients describing linear effects on level (first-order parameter A) or
slope (first-order parameter B) of the h-a relationship in model step I;

f1(Tk) : one-dimensional spline, describing a non-linear effect of T on the level of
the h-a relationship (first-order parameter A);

f2(Pk) : : one-dimensional spline, describing a non-linear effect of P on the level
of the h-a relationship (first-order parameter A);

Âk = βI,1 + f1(Tk) + f2(Pk) (3.6a)
B̂k = βI,2zk (3.6b)

ln(µz,k) = βII,1Âk + βII,2B̂kzk (3.6c)
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Âk, B̂k: estimates of first-order parameters Ak and Bk of the h-a relationship
(equation 3.4);

βII,1, βII,2: coefficients describing linear fixed effects on the estimates of first-order
parameters A and B in model step II.1.

amp(fj(xj)) = max(fj(xj)) − min(fj(xj))∑n
ȷ̃=1 max(fȷ̃(xȷ̃)) − min(fȷ̃(xȷ̃))

(3.7)

with:

amp(xj) : relative amplitude for covariate j;

xj...xn : terms for covariates j...n, meaning βjxj for linear effects or fj(xj) for
splines.

3.2.5 Projection

In order to analyze the effect of the three aggregation periods, hw was projected for all three
aggregation periods for the year 2050.

To get correct projections for each aggregation period, the period for which the climate
data for the model fit was aggregated had to be moved 38 years into the future (as moving
the year of the NFI, 2012, to 2050).

Climate data for the projections was then aggregated for the respective windows. For
projections for the dyn model, two different aggregations were created. One using the periods
1912 to 2012 and 1950 to 2050 to predict 100 year old stands, and one using 1982 to 2012
and 2020 to 2050 to predict 30 year old stands.

This resulted in the final configuration of aggregation scenarios as follows (see also Fig-
ure 3.4):

• nrm.1: 1961 to 1990 (for 2012) and 1999 to 2028 (for 2050)
• nrm.2: 1991 to 2020 (for 2012) and 2029 to 2058 (for 2050)
• dyn.1: 1912 to 2012 (for 2012) and 1950 to 2050 (for 2050)
• dyn.2: 1982 to 2012 (for 2012) and 2020 to 2050 (for 2050)

Projections were created for all of Germany on a 100 m × 100 m grid. hw differences from
2012 to 2050 were then calculated for each scenario. Additionally, areas which entered or left
the climate range covered by the models from 2012 to 2050 were identified as new or lost
respectively.
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Figure 3.4: Time periods of the different projection scenarios nrm.1, nrm.2, dyn.1 and dyn.2
for 2012 and 2050 respectively (vertical dashed lines denote the target year)
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3.3 Results

3.3.1 Quantifying productivity

The dw calculated from KDEs for each tract displayed a range of 14.24 to 138.42 cm for beech
and 14.24 to 95.19 cm for pine.

hw displayed a distribution of 4.87 m to 47.96 m for beech and 3.02 m to 51.72 for pine, while
aw ranged from 17 to 429 years for beech and 15 to 218 years for pine (Table 3.4). SIs were
modeled based on the h-a pairs for each tract as additional information on site-productivity
(Figure 3.5). R package et.nwfva was used to calculate SIs. Resulting SIs ranged from 8.5
to 48.5 m for beech and 9.20 to 45 m for pine.
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Figure 3.5: Maps of SIs modeled for beech and pine.

Table 3.5: Statistics on the mixed h-d model (eq. 3.2) used to predict hw from dw, including
the scale parameter for the Gamma distribution of the response θ, estimated
residual standard deviations (SD) for the fixed and random effects and the values
for first-order parameters λ and c

Species R2 θ SD fixed effects [m] SD random effects [m] λ c

Beech 0.58 0.0026 4.80 1.15 5 14.0

Pine 0.58 0.0025 3.49 0.96 14 1.6
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Table 3.4: Statistics on dominant diameter dw, dominant height hw, mean age of the dominant
trees aw and SI calculated for beech and pine.

Species Statistic dw hw aw SI

Beech Minimum 14.24 4.87 17.20 8.50
Beech 5% quantile 20.39 14.00 32.20 21.40
Beech 95% quantile 86.69 39.33 181.20 40.20
Beech Maximum 138.42 47.95 429.49 48.50
Pine Minimum 14.24 3.02 15.20 9.20
Pine 5% quantile 23.78 15.04 32.20 20.80
Pine 95% quantile 60.75 32.04 137.20 36.20
Pine Maximum 95.19 51.72 218.22 45.00

Table 3.6: Statistics on coefficients of the mixed h-d model used to predict hw from dw (eq.
3.2).

Species Coefficient Estimate Standard error P value

Beech β0 3.22 0.0031 < 10−15

Beech β1 0.45 0.0016 < 10−15

Pine β0 3.08 0.0021 < 10−15

Pine β1 0.48 0.0012 < 10−15

The h-d model used to model hw from dw displayed an R2 of 58% for beech and pine.
Residual standard deviations for the fixed effects were 4.8 m for beech and 3.49 m for pine
(Table 3.5). Adding random effects reduced the standard deviation of residuals to 1.15 m for
beech and 0.96 for pine. Parameter λ was set to 5 for beech and 14 for pine and c was set
to 1.1 for beech and 1.6 for pine. All parameter coefficients yielded p values of p < 10−15

(Table 3.6).
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3.3.2 Climate aggregation

Table 3.7: Ranges of T and P values aggregated for the three aggregation periods used for
fitting models in step I.1

Parameter Aggregation period Min 5% quantile 95% quantile Max

T nrm.1 1368.20 1917.90 2463.40 2694.63

T nrm.2 1585.37 2161.86 2691.07 2928.40

T dyn 1302.98 1996.70 2549.31 2913.52

P nrm.1 239.50 255.63 465.17 971.03

P nrm.2 279.60 293.83 485.04 1045.10

P dyn 261.26 277.49 479.42 1007.68

Climate aggregations for the periods nrm.1, nrm.2 and dyn resulted in T ranging from
1368 to 2681 ◦C for nrm.1, 1585 to 2918 ◦C for nrm.2 and 1302 to 2774 ◦C for dyn. T values
for the dynamic period dyn are located between the static aggregations nrm.1, and nrm.2
(Table 3.7, Figure 3.6). P ranged from 247 to 971 mm for nrm.1,from
280 to 1045 mm for nrm.2 and from 272 to 1008 mm for dyn. Scenario nrm.1 showed more
plots below 300 mm compared to nrm.2 and dyn.
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Figure 3.6: Histograms of temperature and precipitation sums for the vegetation period (T
and P ) for tracts of the third German NFI, averaged over the three different
aggregation periods.

3.3.3 Model selection

Grid optimization in step I.1 yielded λ of 293 for beech and 36 for pine and c of 10 for beech
and 36 for pine.

Table 3.8: Statistics on the final models of step I.2 based on the three aggregation periods
nrm.1, nrm.2 and dyn for beech and pine. Including estimated standard deviation
of residuals (SD), Akaike Information Criterion (AIC) and the scale parameter of
the Gamma distribution θ

Species Model R2 SD [m] AIC θ

Beech nrm 0.65 4.43 30467 0.027

Beech nrm 0.65 4.43 30472 0.027

Beech dyn 0.65 4.43 30464 0.027

Pine nrm 0.50 3.63 45173 0.025

Pine nrm 0.50 3.63 45180 0.025

Pine dyn 0.50 3.64 45207 0.025
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The final models in step I.2 yielded R2 between 64.6% and 64.7% for the three aggregation
periods nrm.1, nrm.2 and dyn for beech. R2 ranged from 49.7% to 49.9 for pine. Estimated
residual standard deviation stayed at about 4.43 m for beech and at 3.6 m for pine for the
three aggregation periods. The scale θ of the Gamma distribution assumed for the response
stayed at ca. 0.027 for beech and 0.025 for pine. T displayed distinct parabolic shapes for
beech and pine. Concavity constraints were added for T for both species to avoid wiggliness
of the effects. The decrease in the effect on hw above and below the maximum was within
the inter-quantile range of the data for beech, while the data was located mostly above the
maximum for pine (Figure 3.7, Figure 3.8).
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Figure 3.7: Splines for T (left) and P (right) for the final beech models of step I.2, for all
three aggregation periods

For the P effect in the beech model, a monotony constraint was added to avoid a decrease
in the effect at high values which is typical for plots located in mountainous areas. Problems
arose with the P effect for pine, which was significant, but collapsed when the necessary
monotony constraint was added. Hence, the effect was included as a segmented linear effect,
with a positive linear coefficient below a specific P threshold and a coefficient of zero above
that threshold. Thresholds were set at 245 mm for nrm.1, 300 mm for nrm.2 and 280 mm
for dyn.

Grid optimization, after filtering of plots for soil parameters (step II.1), led to a change in
λ from 293 to 296 for beech and 36 to 80 for pine, while c changed from 10 to 9.5 for beech
and 3.7 to 5.6 for pine.

Reducing the data and adding a soil parameter as covariate to model nrm.1 in step II.2
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Figure 3.8: Splines for T (left) and P (right) for the final pine models of step I.2, for all three
aggregation periods.

reduced R2 by about 4% for beech and 9% for pine. It increased the estimated residual
standard deviation slightly by 2-3 cm for beech and reduced it by 1 cm for pine.

In the final step II.3, the pH value for the 30-60 cm aggregation depth (ph) was identified
as a soil covariate for both beech and pine (Equation 3.8, tbl. 3.9). See Appendix A.4
for splines for all soil parameters. The ph effect showed a pronounced parabolic shape for
beech, with the inter-quantile range of data being located around the maximum of the effect
(Figure 3.9). A parabolic shape could be identified for pine as well, with the inter-quantile
range being clustered within a small data range. A concavity constraint was added on the ph
effect for both species.

ln(µk,i) = βII,1Âk + xk,iβII,2B̂k + f(phk) (3.8)

with:

f(ph) spline for the ph of plot k, aggregated for 30-60 cm soil depth.
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Figure 3.9: Spline for ph for beech (left) and pine (right) for all aggregation periods

Table 3.9: Statistics on final models of step I.2 and II.3. For the terms, which include each
coefficient with its respective covariate or spline, the estimated degrees of freedom
(EDF) and relative amplitudes (see equation 3.7) are given. Coefficients for both
steps contain subscripts for model steps I and II respectively.

Species Model Model
step

Coef-
ficient

Esti-
mate

Stan-
dard
error

P-
value

Term EDF Ampli-
tude

Beech nrm.1 I βI,0 2.89 0.09 0.00 βI,0

Beech nrm.1 I 0.00 cv(T) 2.02 0.10

Beech nrm.1 I 0.00 m(P) 1.77 0.04

Beech nrm.1 II βII,1 0.98 0.01 0.00 βII,1Â 0.13

Beech nrm.1 II βII,2 1.01 0.01 0.00 βII,2B̂ 0.81

Beech nrm.1 II 0.00 f(ph) 2.01 0.07

Beech nrm.1 I βI,1 0.37 0.00 0.00 βI,1zki 0.80

Beech nrm.2 I βI,0 2.83 0.16 0.00 βI,0

Beech nrm.2 I 0.00 cv(T) 2.02 0.10
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Beech nrm.2 I 0.00 m(P) 2.14 0.03

Beech nrm.2 II βII,1 0.98 0.01 0.00 βII,1Â 0.13

Beech nrm.2 II βII,2 1.01 0.01 0.00 βII,2B̂ 0.81

Beech nrm.2 II 0.00 f(ph) 2.00 0.07

Beech nrm.2 I βI,1 0.37 0.00 0.00 βI,1zki 0.80

Beech dyn I βI,0 2.59 0.13 0.00 βI,0

Beech dyn I 0.00 cv(T) 2.01 0.10

Beech dyn I 0.00 m(P) 1.95 0.03

Beech dyn II βII,1 0.98 0.01 0.00 βII,1Â 0.13

Beech dyn II βII,2 1.01 0.01 0.00 βII,2B̂ 0.81

Beech dyn II 0.00 f(ph) 2.00 0.06

Beech dyn I βI,1 0.37 0.00 0.00 βI,1zki 0.80

Pine nrm.1 I βI,0 3.06 0.05 0.00 βI,0

Pine nrm.1 I βI,2 0.02 0.01 0.03 βI,3P 0.00

Pine nrm.1 I 0.00 cv(T) 2.05 0.12

Pine nrm.1 II βII,1 0.78 0.03 0.00 βII,1Â 0.12

Pine nrm.1 II βII,2 0.95 0.02 0.00 βII,2B̂ 0.86

Pine nrm.1 II 0.00 f(ph) 5.00 0.02

Pine nrm.1 I βI,1 0.18 0.00 0.00 βI,1zki 0.86

Pine nrm.2 I βI,0 3.02 0.04 0.00 βI,0

Pine nrm.2 I βI,2 0.00 0.00 0.00 βI,3P 0.04

Pine nrm.2 I 0.00 cv(T) 2.01 0.10

Pine nrm.2 II βII,1 0.77 0.03 0.00 βII,1Â 0.13

Pine nrm.2 II βII,2 0.95 0.02 0.00 βII,2B̂ 0.85

Pine nrm.2 II 0.00 f(ph) 4.96 0.02

Pine nrm.2 I βI,1 0.18 0.00 0.00 βI,1zki 0.84

58



Pine dyn I βI,0 2.97 0.05 0.00 βI,0

Pine dyn I βI,2 0.00 0.00 0.00 βI,3P 0.02

Pine dyn I 0.00 cv(T) 1.97 0.12

Pine dyn II βII,1 0.77 0.03 0.00 βII,1Â 0.12

Pine dyn II βII,2 0.95 0.02 0.00 βII,2B̂ 0.85

Pine dyn II 0.00 f(ph) 4.99 0.02

Pine dyn I βI,1 0.18 0.00 0.00 βI,1zki 0.83

Species Model Model step Covariate Minimum 5% quantile 95% quantile Maximum

Beech nrm.1 I T 1368.20 1826.07 2399.37 2681.47

Beech nrm.1 I P 246.50 273.90 547.92 971.03

Beech nrm.2 I T 1585.37 2065.93 2649.71 2918.83

Beech nrm.2 I P 279.63 305.34 566.75 1045.10

Beech dyn I T 1302.98 1897.25 2489.53 2774.78

Beech dyn I P 272.51 296.00 575.36 1007.68

Beech II ph 3.13 3.77 7.08 8.24

Beech I aw 17.20 32.20 181.20 429.49

Beech I hw 4.87 13.98 39.31 47.76

Pine nrm.1 I P 239.50 253.10 370.33 908.00

Pine nrm.1 I T 1712.97 2118.80 2469.47 2694.63

Pine nrm.2 I P 279.60 292.07 389.29 922.00

Pine nrm.2 I T 1943.40 2363.69 2694.55 2928.40

Pine dyn I P 261.26 275.40 380.28 920.46

Pine dyn I T 1823.73 2206.08 2564.51 2913.52

Pine II ph 2.46 3.78 4.89 8.24
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Pine I aw 15.20 32.20 137.01 218.22

Pine I hw 3.02 15.00 32.03 51.72

zki showed the highest amplitude for both species, model steps and aggregation periods.
zki contributed 80% to the relative amplitude for the beech models and 83%-85% for pine.
Effects of T showed the second highest amplitudes with 10% for beech and 9%-11% for pine.
The effects of P displayed low amplitudes from 3% to 4% for beech. The values for pine
ranged from 0% to 4%. The 0% value for nrm.1 was observed due to the whole amplitude
being located outside of the interquantile range of the P data. The ph effect added in model
step II showed higher amplitudes compared to P for beech with 6-7% and partly for pine
with 4% for all models.

3.3.4 Projection

The 100 m × 100 m pixels of the Germany-wide predictions showed an increase of T from
2012 to 2050 for all four projection scenarios (Figure 3.10, see also Figure 3.13, Figure 3.14).
The increase was lowest for dyn.1, with increases up to 233 ◦C (sum for vegetation period),
followed by nrm.2, dyn.2 and nrm.1. To better understand the differences, the following
example might be considered: the difference in T between the aggregation for years 1961
to 1990 and 1999 to 2028 (nrm.1) is higher than the difference in T between aggregation
windows for years 1991 to 2020 and 2029 to 2058 (nrm.2). This is due to a steeper T increase
between the time periods of nrm.1 (see also Figure 3.4).

P mostly decreased from 2012 to 2050 for aggregation scenarios nrm.2, dyn.1 and dyn.2
and mostly increased for scenario nrm.1. The decrease was highest for nrm.2, lowest for
dyn.1 and located between those scenarios for dyn.2.
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Table 3.11: Measures both, lost, new and null denote the proportions of 100 × 100 m cells
which were located inside or outside of the T and P range of the model fit for
the four projection scenarios. both denotes cells which were located in the model
data range in both prediction years, 2012 and 2050. lost cells were located within
the model data range for 2012 but were located in the extrapolation range in
the prediction for 2050. new cells were located in the extrapolation range for
2012, but within the range of the model data in 2050. null cells were located in
the extrapolation range for both years. freq.hw rows contain the proportions of
positive and negative hw differences from 2012 to 2050 for the respective projection
scenario. Following rows contain the minima, maxima and 5%/95% quantiles of
the changes in hw, calculated for positive and negative changes separately.

Species Measure nrm.1 nrm.2 dyn.1 dyn.2

Beech both [%] 80.81 69.32 89.06 62.67

Beech lost [%] 18.15 29.83 8.19 35.25

Beech new [%] 0.54 0.20 0.08 0.09

Beech null [%] 0.50 0.65 2.67 1.98

Beech freq. hw < 0 [%] 48.67 62.03 37.20 68.79

Beech freq. hw > 0 [%] 51.33 37.97 62.80 31.21

Beech min hw < 0 [m] -9.18 -11.42 -7.59 -15.09

Beech qu.05 hw < 0 [m] -1.46 -1.41 -0.60 -2.19

Beech qu.95 hw < 0 [m] -0.05 -0.07 -0.03 -0.09

Beech max hw < 0 [m] -0.00 -0.00 -0.00 -0.00

Beech min hw > 0 [m] 0.00 0.00 0.00 0.00

Beech qu.05 hw > 0 [m] 0.05 0.04 0.04 0.04

Beech qu.95 hw > 0 [m] 2.40 2.21 0.91 1.96

Beech max hw > 0 [m] 5.06 5.98 2.90 5.07

Pine both [%] 82.14 69.00 96.66 79.33

Pine lost [%] 16.50 29.28 1.37 19.55

Pine new [%] 0.83 1.08 0.81 0.81

Pine null [%] 0.54 0.64 1.16 0.31
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Pine freq. hw < 0 [%] 88.66 87.87 87.50 94.71

Pine freq. hw > 0 [%] 11.34 12.13 12.50 5.29

Pine min hw < 0 [m] -5.66 -8.13 -9.88 -16.96

Pine qu.05 hw < 0 [m] -2.12 -4.58 -1.39 -3.75

Pine qu.95 hw < 0 [m] -0.83 -0.72 -0.40 -1.18

Pine max hw < 0 [m] -0.00 -0.00 -0.00 -0.00

Pine min hw > 0 [m] 0.00 0.00 0.00 0.00

Pine qu.05 hw > 0 [m] 0.14 0.13 0.09 0.15

Pine qu.95 hw > 0 [m] 3.64 4.30 2.38 5.66

Pine max hw > 0 [m] 5.46 4.72 2.46 6.05

In order to identify causes for the increases and decreases in hw, the splines of T and P were
also plotted above histograms of the respective effects (Figure 3.11, Figure 3.12).

nrm.1 for beech displayed balanced increases as well as decreases in hw, with an almost
50-50% distribution between both (Table 3.11). About 18% of the cells were located in the
extrapolation range of the model in 2050 (from here on called lost cells). The distribution
of decreases and increases was right skewed, displaying higher variance of increases while
decreases stayed closer to zero. Histograms showed that hw decreases were caused by the
increase in T, with the major proportion shifting to the section of the spline above the
optimum. Increases in hw were caused by (locally very high) increases in P, moving the
distribution of P in the increasing direction of the spline. This made nrm.1 the most optimistic
scenario for beech.

nrm.2 displayed a similar pattern in hw differences, with a higher proportion of decreasing hw
(62.03%). Also, a much higher percentage (29.83%) were lost compared to nrm.1 . Decreases
and increases in hw were otherwise distributed similar to nrm.1. The T development looked
similar, but contributed less to the decrease since the T spline showed less decrease after the
optimum. However, more of the cells experienced a decrease in P compared to nrm.1, moving
P more into the decreasing direction of the spline and into the extrapolation range. Increases
were still observed due to a certain amount of cells with increasing P (Figure 3.10).

dyn.1 for beech displayed a very balanced amount of decrease and increase in hw, with
little variation around 0. It was also the only projection scenario with a distinctly higher
proportion of increasing compared to decreasing hw. Moreover, it was the projection scenario
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with the lowest proportion of lost cells. Compared to the other scenarios, hw differences were
distributed closely around zero. Those patterns were in accordance with relatively small
changes in T and P from 2012 to 2050. Histograms showed that T shifted to slightly higher
values, which stayed mostly within in the data range of the beech model, while P changed
very little. The histograms of climate differences for all scenarios (Figure 3.10) showed that P
mostly decreased, but stayed close to zero. Due to a certain amount of cells with increasing P,
and the increase in T being located in the increasing area of the T effect before the optimum,
a high amount of hw increases was observed.

dyn.2 displayed the highest number of decreases in hw for beech and the highest proportion
of lost cells. The decreases were also more extreme than the increases. This was caused by
high increases in T and decreases in P. As in the other projection scenarios, small proportions
of increases of T below the optimum together with local P increases still led to a small amount
of cells with increasing hw.

For pine, the proportion of decreases in hw was far larger than for beech, with 88% to
95% of cells showing hw decreases from 2012 to 2050. At the same time, there were less lost
cells compared to beech, except for nrm.2. This could have been due to the locally larger
data ranges for T and P in the model fit for pine. Changes were also more extreme in both
directions compared to beech. This was likely caused by steeper T effects, with stronger
decreases before and after the optimum.

nrm.1 for pine displayed increases on few cells. They were still possible due to the same
effect observed in beech, with a small amount of cells experiencing an increase in T below
the optimum of the T effect. The steeper effect, though, led to higher values compared to
beech. In contrast to beech, pine could not profit as much from the pronounced increase in P,
due to the increase occurring mostly in the parallel to the x axis of the segmented P effect.
Decreases were also mostly caused by the T increase. A higher amount of decreases compared
to beech was also rooted in the lower optimum of the effect compared to beech. Lost cells
were also caused by T values above the range of the model fit. The upper limit of T values
observed for the pine model was marginally higher than that of the beech model, leading to
the slightly lower percentage of lost cells.

nrm.2 was the only projection scenario with a percentage of lost cells as high as the
corresponding beech model. It also displayed the most extreme decreases of all four scenarios.
Increases were again possible due to T and P increases below the optima of the corresponding
effects. Decreases were caused by a pronounced increase in T and an especially pronounced
decrease in P. Those observations were also responsible for the lost cells, especially P, which
also caused large amounts of lost cells in the corresponding beech model.

dyn.1 yielded a similar proportion of decreases as observed for nrm.2. The projection
scenario also contained the least amount of lost cells. Increasing and decreasing hw were
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closest to zero, as also observed in beech. Increases and decreases were both likely caused by
increases in T. They moved below and above the T effect optimum with P decreases being
less pronounced. The percentage of lost cells was especially low compared to beech due to
the T data for the model ranging to higher values.

dyn.2 displayed the highest amount of hw decreases and a medium amount of lost cells. At
the same time it showed the highest hw increases. Decreases were caused by the pronounced
increase in T and decrease in P. T moved almost exclusively along the decreasing covariate
effect after the optimum, while the reduction in P moved along the decreasing P effect at
lower precipitation. Again, the percentage of lost cells was lower compared to beech due to
the larger T range in the model fit data.

Cells which moved into the range of the data used for model fit (coded as new areas in
Figure 3.13, Figure 3.14 and Table 3.11) were rarely observed, making up proportions of less
than 1 % for all projection scenarios.

Projection maps for beech showed increases in hw for northern, central and south Germany,
while decreases were observed between central and northern and especially east Germany as
well as in the South-West (Figure 3.13). Areas which left the climate range of the model fit
were mostly observed in east Germany, west Germany and the South-West. Areas with a
decrease in hw and areas with lost pixels were largest for aggregation scenario dyn.2, closely
followed by nrm.2. Increases in hw were most often observed in scenario dyn.1. Scenario
nrm.1 showed a balanced coverage of areas with hw increase and decrease/loss of areas. The
range of increase/decrease was also larger for nrm.1 while changes for dyn.1 were less extreme.
New areas which entered the range of climate data of the model fit were only observed for a
few pixels in north-east Germany for nrm.1.

hw almost exclusively decreased for pine, with the strongest decreases observed in the same
areas as for beech, namely east, west and south-west Germany (Figure 3.14). Scenario dyn.2
showed only areas of decreasing hw except for very few pixels with slightly increasing hw.
Decrease in hw was less extreme for dyn.1 and most extreme for nrm.1.

3.4 Discussion

This study presented the creation of climate sensitive h-a models based on three different
periods of climate data aggregation and forest inventory data.

Productivity was quantified by modeling Weise’s dominant height hw over dominant age
aw. hw was modeled using a h-d model and using dominant diameter dw as a predictor. dw
and aw were both estimated from a KDE for each tract.

The ranges of dw modeled for beech and pine can be compared to recently published
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Figure 3.10: Histograms of changes in T, P and hw from 2012 to 2050 for the four projection
scenarios for beech and pine.
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Figure 3.11: Histograms of projections for T and P based on scenarios nrm.1 and nrm.2
with splines for beech and pine. Colored segments in the splines denote the
inter-quantile range (5%-95%) of the data used for the fit, grey segments the
areas outside of the inter-quantile range. Solid vertical lines in the histograms
show the inter-quantile ranges of the data from the fit, dashed lines the full data
range.
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Figure 3.12: Histograms of projections for T and P based on scenarios dyn.1 and dyn.2
with splines for beech and pine. Colored segments in the splines denote the
inter-quantile range (5%-95%) of the data used for the fit, grey segments the
areas outside of the inter-quantile range. Solid vertical lines in the histograms
show the inter-quantile ranges of the data from the fit, dashed lines the full data
range.
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Figure 3.13: Differences in beech hw [m] at age 100 between 2012 and 2050 for the four
projection scenarios. Lost areas were part of the climate range of the final model
fit of step I.3 in 2012 but not in 2050. New areas were not part of the climate
range in 2012 but entered it in 2050.
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Figure 3.14: Differences in pine hw [m] at age 100 between 2012 and 2050 for the four
projection scenarios. Lost areas were part of the climate range of the final model
fit of step I.3 in 2012 but not in 2050. New areas were not part of the climate
range in 2012 but entered it in 2050.
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dynamic yield tables (Nuske et al. 2022). They display larger ranges, especially into the
upper margins of tabulated productivity, given the modeled aw ranges.

dw values were also higher compared to dominant diameter values modeled in other studies
(Sharma et al. 2012; Díaz-Yáñez et al. 2017; Stankova et al. 2022). Few studies give
information on the corresponding age (Palahí et al. 2003; Castaño-Santamaría et al. 2023),
which could be due to the fact that a dominant diameter is often used as substitute for stand
age.

The larger dws compared to other studies and yield tables may express a factually larger
range in productivity, which is not within the range of current yield tables. They might also
have been caused by the differing modeling approaches. Indeed, it is likely that the selected
bandwidth of 3 for the KDEs yielded systematically higher values compared to the yield
table values. In order to get more realistic dw and consequently hw and SI, the bandwidth
could be derived from experimental plots yielding full diameter samples. They could also
simply be calibrated using yield tables by trying different bandwidths and comparing them
to dw and age pairs in the tables.

Although modeling precise dominant heights was not within the scope of the study, the
hw ranges turned out to be realistic. hw was similar to dominant heights found in the
literature (Sharma et al. 2016; Brandl et al. 2018), with a tendency to larger values given
the respective age (Díaz-Yáñez et al. 2017; González-Rodríguez and Diéguez-Aranda 2021;
Castaño-Santamaría et al. 2023). The larger values might be caused by the bandwidth, but
also by the method of using the 20% largest trees, while dominant heights in the referenced
studies were mostly based on the 100 thickest trees (h100).

The calculated SIs were also much larger than those calculated in similar studies, especially
the minimum values (Palahí et al. 2003; Albert and Schmidt 2010; Nothdurft et al. 2012;
Brandl et al. 2018; Schmidt 2020, ; González-Rodríguez and Diéguez-Aranda 2021). Only
one study showed similarly high, and even larger minimum SI values for pine (Nothdurft et
al. 2012). Compared to the aforementioned yield tables, SI values covered a larger range
than the tabulated ones, reaching into the extrapolation space for higher and especially lower
yield classes.

The values for the original parameters λ and c were higher than in most other studies
(Lappi 1997; Mehtätalo 2004). This might have been caused by the flexible iterative grid
optimization that was used in this study, with grid ranges being adjusted if the search reached
the margins of the grid. Another study which also used an iterative grid search showed higher
values for λ and c compared to the observed ones (Schmidt et al. 2018).

The aggregated climate periods for the model fit showed an expected structure, with
nrm.1 located in a colder climate, while nrm.2 covered a warmer climate after the turn of
the millenium. The dynamic aggregation over aw (dyn) covered a medium climate between
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nrm.1 and nrm.2 for both T and P sum. This was to be expected, since aw covers climate
values until 2012 but often goes far back beyond 30 years of age. The higher P of nrm.2,
compared to dyn and nrm.1, corresponded to a slightly higher mean precipitation of 64.9
mm for 1991-2020 compared to 60.8 mm for 1961-1990 in Germany (Deutscher Wetterdienst
2023). Higher P values might also have been caused by an increased length of the vegetation
period, over which climate parameters were aggregated.

The values for the original parameter λ for the h-a model were, as expected, larger than for
the original h-d model, since transformed aw was passed instead of dbh. The values can be
interpreted as a difference in hw between a 50 and a 100 year old tree. However, the optimized
values for λ were not realistic in that sense, with 36 m for pine and especially 293 m for
beech. In comparison, hw differences between 50 and 100 year old stands from yield tables
range between 11.6 and 15.3 m for beech and 6.8 to 9.6 m for pine. It must be stressed, that
the grid optimization based on statistical measures can potentially be repeated to infinity.
It was, however, cut off at a point where further iterations led to AIC changes at ≤ 10−1

magnitude. Accordingly, the values for λ became increasingly implausible in an ecological
sense, and these values were selected for the best model fit rather than ecological plausibility.

The different aggregation periods led to different levels of climate effects for both species
but very similar shapes. Visible differences in effect shapes could be expected if aggregation
periods yielded different spatial configurations of climate, so that a warmer climate assigned
to one stand would be relatively colder in another period. This was not the case and it can
be concluded that the model fit itself is not very sensitive to different forms of aggregation.
However, this might not be the case if model fits are based on other climate projections or
aggregation periods.

T displayed distinct parabolic covariate effects for both species. Specific effect shapes are
often assumed but not backed by data and might be biased due to the applied statistical
method (Loehle 2000; Oksanen and Minchin 2002). Parabolic effects are often suggested to be
close to ecological reality. They have also been identified in previous studies using GAMs or
related spline-based approaches (Nothdurft et al. 2012; Schmidt 2020). Other similar studies
identified asymptotic functions, without an identifiable optimum at higher temperatures
(Albert and Schmidt 2010; Burggraef et al. 2016; Pya and Schmidt 2016; Brandl et al. 2019).
It is likely that asymptotic effects are identified if temperature data doesn’t range far enough
into hot areas.

P effects showed asymptotic shapes for both species, with the effect for pine having to be
fixed using a segmented covariate in order to maintain significance. Asymptotic precipitation
effects have often been observed (Burggraef et al. 2016; Schmidt 2020), while other studies
showed parabolic effects for precipitation (Nothdurft et al. 2012; Brandl et al. 2019). Those
were probably caused by sample plots located in mountainous areas, with high precipitation
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correlating with cold temperatures. The relatively smaller trees at those sites led to a
declining effect of precipitation on productivity in the model. The data available on dry sites
cannot balance out this effect. This was also the problem with the P effect for pine in the
models presented here, which is why a segmented linear effect had to be used to keep this
important component of climate sensitivity in the model.

Adding soil parameters to the model turned out to be difficult, as covariate effects often
lacked significance or showed implausible shapes. The reason may have been that regionalized
soil parameters don’t represent the site conditions exactly enough. Implausible effect shapes
may often be caused by correlations. For instance, high base saturation may be found on
shallow, calcareous sites, correlating small hw values to high base saturation.

For the final model, ph was selected as a soil covariate. It displayed significance and
plausibility for both species. Beech displayed a plausible optimum at a ph value of 4.5. A
recent study on tree growth depending on soil properties determined, on average, similar
values, locating optimal growth for beech on soil types Haplic Luvisols and Eutric Planosols,
with ph values of 3.5-4.2 and 5-6.5 respectively (Bončina et al. 2023). However, the optimal
growth might have been affected more by the good drainage of the aforementioned soil types
than ph value. The values mentioned in that study match the observed optimum for pine,
which reached its maximum growth at Dystric Leptosols with ph values of 4-5. A study on
pine monitoring plots found similar ph values of 4-4.7 for 20-30 cm soil depth (Prietzel et al.
2020), while another found much higher values of 4.98-7.87 for 60 cm soil depth (Aguirre et al.
2022). However, traditional indicator values characterize both beech and pine as indifferent
to ph, so it is possible that the effects were correlated to other soil characteristics (Ellenberg
1991).

In the final models, zki displayed the highest relative amplitudes, which was to be expected
due to most of the hw signal being explained by aw. The order of the relative amplitudes of
climate and soil covariates was interesting, in that the soil parameter ph displayed similar or
more explanatory power compared to P. This was in spite of the difficulty in the selection of
soil covariates, and of soil covariates mostly being inferior to climate covariates in previous
model fitting attempts (Burggraef et al. 2016). However, soil parameters displaying higher
explanatory power than precipitation has occasionally been observed in site-productivity
modeling (Brandl et al. 2019; Schmidt 2020). Temperature is known to display the highest
impact on site productivity measures after age or diameter (Albert and Schmidt 2010;
Nothdurft et al. 2012; Pya and Schmidt 2016; Rita and Borghetti 2019; Brandl et al. 2019;
Schmidt 2020; Cheng et al. 2023). It should also be added, that statistics on the model
fit don’t always represent the actual impact of a covariate effect on model predictions. A
difference between extreme sites can still lead to a difference of several meters in hw in the
presented models. Thus, even a spline of low significance can be helpful in model application.
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This is why the relative amplitude might be a better measure to evaluate covariate effects. It
also needs to be stressed that the low significance and plausibility of soil covariates in the
presented models do not mean a generally low effect of soil relative to climate in real life.
Rather, it might indicate a problem with using regionalized parameters to predict productivity
measured on a forest inventory grid, which differs from the soil inventory grid or the grid
being too coarse.

As opposed to model fit, large differences were observed between the projections for different
models. Differences could be observed both in the projections for hw as well as the underlying
climate data. Differences in climate were caused both by the location of the aggregation
period on the timeline and by the length of the aggregation period for each scenario.

This was especially apparent for T and the dynamic aggregation over 100 years for dyn.1.
Since it covered more cold years, the resulting T was far lower compared to scenarios nrm.1,
nrm.2 and dyn.2, which closely overlapped in terms of T values. The popular 30-year
baseline periods, which are often used for climate aggregation, may thus overestimate the
climatic effect on older stands. Static climate aggregations for different periods are often used,
depending on the available data (Nothdurft et al. 2012; Pya and Schmidt 2016; Brandl et al.
2019). Especially 30 year means from the WorldClim data set are very popular (Hijmans et
al. 2005; Aguirre et al. 2022; Cheng et al. 2023).

An interesting observation was the increase in P in the projection for nrm.1, while P
decreased for all other scenarios. This was due to the projection scenario in the early 2000s
lying in the abovementioned period where precipitation increased slightly, overlapping with
the aggregation period of nrm.2 for the fit. However, nrm.1 also showed the highest increase
in T compared to the other three scenarios.

With projected T and P moving in different directions along the covariate effects of the
models, changes in hw from 2012 to 2050 also showed high variations between projection
scenarios.

For beech, nrm.1 showed the largest increases in hw compared to the other two scenarios
due to the increase in P. This shows that P, which is notoriously hard to predict, is one of the
key factors determining the direction of productivity trends, in spite of the low amplitudes
shown by the respective covariate effects in the models. nrm.1 and nrm.2 turned out to
be the most positive scenarios. The dyn.1 scenario was the most moderate one – it didn’t
show high decreases or increases, which were closer to zero, supporting the hypothesis that
30-year means might overestimate predictions for older stands. The most negative scenario
was dyn.2 which showed mostly decreases and fewer increases in hw.

For pine, all scenarios predicted high hw losses. Only dyn.1 and nrm.2 showed increases
in hw in some areas while nrm.2 and dyn.2 showed the highest losses. These patterns were
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likely rooted in the small effect of P in the pine models, which means the species couldn’t
profit from increases in P, especially in scenario nrm.1.

The maps of the four scenarios showed SI losses for beech especially in northeast, west and
southwest Germany and increases in the colder north and in mountainous regions in central
and south Germany. This is in accordance with predictions of other studies (Albert and
Schmidt 2010; Brandl et al. 2018). The regions in northwest Germany with the federal states
of Brandenburg, Berlin and Mecklenburg-West Pomerania are notoriously dry, while the
Rhine lowlands in the southwest are known to be hot and dry. The magnitudes of increase
and decrease of beech SI fit to other projections, given longer projection scenarios until 2070
or 2100 (Brandl et al. 2018; Maleki et al. 2022).

The same patterns were visible for pine, even though hw losses prevailed here. Losses were
higher in the regions where beech also experienced the highest losses while productivity gains
were restricted to the mountainous regions. The ranges of decreases and the few increases of
hw also showed similarities to other projections (Nothdurft et al. 2012; Maleki et al. 2022)

Based on these results, it is obvious that different aggregation periods heavily affect model
predictions. It has become apparent that not only the intensity of increase or decrease in
productivity is affected but also the direction of effects. The same areas might be predicted
to increase in productivity for one aggregation period and decrease for another.

It is highly recommended to use a dynamic aggregation method if possible, since those are
closer to ecological reality. In any case, if predictions are to be used to inform practitioners
and political actors, ensemble studies with different modeling approaches and assumptions
have to be considered. Also, syntheses of multiple modeling studies within the scope of
meta-studies are imperative, since model predictions may contradict each other for certain
areas based on aggregation of climate data alone.

An important caveat that has to be mentioned about the approach presented here is that
differences in the effect of climatic covariates on stands of different ages were not modeled.
The effect might have been represented in the two dynamic periods to a certain degree:
while old stands (dyn.1) might not be heavily influenced by a changing climate, younger
stands (dyn.2) might suffer more dramatically from drought and increased T. This was to
some degree represented in the shorter aggregation period of dyn.2, which was located in
the warmer periods with stands not spending the major part of their life in the colder 20th
century. It was also represented in the larger aggregation period of dyn.1 which showed
changes in both directions (hw decrease and increase), but with less extreme ranges.
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3.5 Conclusion

The goal of the study presented here was to analyze how static and dynamic climate
aggregation methods, as a basis for site-productivity models, influence covariate selection
and predictions. In conclusion, covariate selection was only marginally affected by climate
aggregation periods, while predictions were influenced dramatically. Projections based on
different aggregation periods may lead to different magnitudes of increase and decrease in
site productivity as well as to contradictory results concerning the direction of productivity
changes. It is recommended to use dynamic aggregation methods across tree or stand age if
possible, and to keep in mind possible over- or underestimations of productivity changes if
static aggregation periods are used.
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4 Synthesis
The thesis presented here was comprised of two studies. The first one tested the potential
of a continental scale set of inventory data for the development of site productivity models.
The second study analyzed the sensitivity of site productivity models to different aggregation
periods of the underlying climate data.

In the development of models for both studies, soil parameters were also evaluated for
plausibility and significance as potential covariates.

In both studies, a tendency towards parabolic covariate effects was observed for temperature
in all species. Comparing temperature effects for beech in parts 1 and 2, it was clear that
the range of the effect which was covered by the bulk of the data (5%-95% inter quantile
range) was located below the optimum and the decrease of the effect was mainly observed
where data was sparse. For pine, a different pattern was observed: while the optimum effect
for temperature was far more pronounced in part 1, the biggest part of the data was still
located below the optimum. The opposite was observed in part 2. This was likely caused by
the different distribution of the data within the temperature-precipitation climate envelope
(Figure 4.1). While the pan-European dataset from the first study showed a distribution
from high precipitation-cold temperatures to low precipitation-warm temperatures, data
was distributed across a wide temperature range, but it was clustered in a narrow range of
precipitation in part 2. With pine already being located at its precipitation limit, increasing
temperatures only lead to a negative effect on height.

Precipitation effects showed asymptotic shapes for beech in both studies, with the asymptote
being more pronounced in the second study. For pine, the same pattern was observed, with the
aforementioned narrow range of precipitation in the second study, which led to its inclusion
as a segmented linear effect. In the second study, the precipitation effect was also heavily
influenced by low quality, cold sites in high elevation areas. Here, a definite advantage of
the pan-European data set became visible, with the large scale breaking up the correlation
between cold temperature and high precipitation.

However, plausible effects depend not only on the range, but also on the quantity of the
data across the environmental gradient. Plausible precipitation effects for pine have been
identified based on NFI data when it was pooled with data from regional inventories (Schmidt
2020), sometimes including the negative effect due to the temperature correlation (Nothdurft
et al. 2012). Some studies used data from two to three repeated inventories, adding a small
real time series which might also influence effect shapes (Brandl et al. 2019; Schmidt 2020).

Similar problems were observed in both studies when trying to include soil parameters
in the models. Both the pan-European and the German data sets showed problems with
clustered data and implausible shapes, likely due to correlations with plots on shallow soils.
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Figure 4.1: Grids showing the density of pine data within a temperature-precipitation envelope
for the model from the first study (left) and the second study (right). Note that
the first study used temperature mean for the warmest quarter, while the second
study used temperature sum for the vegetation period averaged over stand age.
Red isolines denote equal effect on the single tree height-diameter relation (first
study) and dominant height-age relation (second study) for each model in m.

Yet at least one parameter could be identified in each study, the C:P-ratio in the first one and
the pH-value in the second. Multiple candidate paramaters were available for each model,
such as pH value, potassium stock and base saturation in the first study and base saturation
or available water capacity in the second study. However, few parameters were plausible and
significant across all species and scenarios.

In the second study, problems might have been caused by the regionalization of soil data.
The same does not hold for the first study though, where samples were taken on site and
parameters were obtained from laboratory tests (Höhle et al. 2018).

Another problem might be the modeling approach. GAMs, or regression approaches in
general, might not be the best basis to identify soil parameter effects, while the literature
shows multiple examples of successful soil-data based site productivity modeling using machine
learning algorithms, such as regression trees (Aertsen et al. 2012; Mellert and Ewald 2014;
Jiang et al. 2015).

Projected changes in productivity for the two studies were similar for beech, in spite of
the different modeling approaches. The results from the first study contain more areas of
decreasing productivity in south and central Germany if compared to projection scenarios
nrm.1, nrm.2 and dyn.1 from the second study.
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Since temperature effects were similarly shaped and precipitation splines were steeper in the
second study, this was likely due to different projection times. The basic projections for the
first study were further in the past (1960-1990 as compared to 2012) and future projections
further in the future (2050-2080 as compared to 2050), representing higher temperatures and
less precipitation. Also, the static aggregations of the WorldClim dataset which were used in
the first study were most similar to nrm.1 in the second study, meaning projections would
likely have been be more negative for young stands and more positive for older stands if
dynamic aggregations had been used.

Projected productivity differences for pine were far less dramatic in the first study compared
to the second one, which showed mostly decreases. Here, the reason was to be found in the
covariate effects, especially the precipitation covariate. In the first study, precipitation could
be included as a spline with a relatively modereate decrease in the direction of decreasing
precipitaton, while the decrease for the segmented linear effect in the second study was very
strong. The same observation could be made for the temperature effects, which showed a
more moderate slope before and after the optimum in the first study, in comparison to the
effect in the second study.

In conclusion, the pine model from the second study can barely be considered realistic due
to the restricted data basis. If very steep or insignificant climate effects are observed, the
data basis should be improved by adding data from regional inventories or increasing the
spatial extent.

Important caveats concerting both studies, which have to be kept in mind, are the
assumptions of the SFT approach and the missing differentiation in the effects on different
development phases of a stand.

The problems with the SFT approach have, in part, already been discussed in the discussion
of the first study. The SFT approach assumes time to be a proxy (or surrogate) parameter
for those effects which can be completely explained by varying site conditions across space.
However, histories are expected to differ across sampling plots. Observed sites may come
from different species compositions in the past and are likely to have experienced different
calamities and management practices. This may not be a problem and it may be assumed
that the major effects are still visible and that historical differences are averaged out across
the data set. This assumption, however, usually remains untested. An early review about
SFT-studies on successional stages of plant communities concluded that the SFT-approach is
helpful if general trends are to be analyzed or for hypothesis building, while problems arise
when historical effects are of a large magnitude (Pickett 1989). A similar warning has been
issued for predictions based on modeling studies in general, pointing out that not only the
history of ecological events but also the chronology might lead to different results (Pilkey
and Pilkey-Jarvis 2007).
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The problem of the unknown difference in each environmental effect depending on the
age of the stand has also been mentioned. Temperature and precipitation as well as soil
covariates are likely to have a different effect on a young stand compared to older stands
which have aged past the culmination point of their growth. A possible solution would be
to weigh the effects using growth curves obtained from studies based on real time series, an
approach which is currently being tested (Schick et al. 2023).

4.1 Conclusion

This thesis investigated the development of site productivity models within the scope of
two studies. The first study evaluated the potential of a pan-European dataset for model
development. The second study analyzed the sensitivity of site productivity models to
different aggregation periods of climate data, including dynamic aggregation over stand age.
With regard to the research questions posed, it became apparent that forest inventories
on a continental scale may be superior to national scale inventories with respect to the
identification of plausible effects, especially at the edges of the data. However, results may be
similar if national scale inventories are supplemented with fine scale regional inventory data.
Advantages depend on the geographic area covered by the species in question. Dynamic
aggregation of climate data over the stand age is clearly advisable, in order to avoid over-
or underestimations or even contrasting directions of productivity changes when projecting
into the future. The identification of plausible soil covariate effects proved difficult in
both studies, with most parameters returning implausible or insignificant effects. However,
reasonable effects were identified for C:P ratio and pH value. Other modeling approaches,
such as regression trees, might be better suited to identify effects of soil parameters on site
productivity.
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Table of abbreviations

aw dominant age (age corresponding to Weise’s dominant height (hw)

awc available water capacity

CP carbon-phosphorous ratio

dbh diameter at breast height (1.3 m)

dw mean diameter of the 20% strongest trees on a plot, corresponding to
Weise’s dominant height (hw)

h-a the height-age relation

h-d the height-diameter relation

hw Weise’s dominant height, height corresponding to the 20% strongest trees
on a plot

ph pH value

P precipitation covariate; in the models in section 2 this denotes the precipi-
tation sum for the warmest quarter, in the models in section 3 it denotes
the precipitation sum for the vegetation period

qmD the quadratic mean diameter

SI site index (in projections of section 2 and 3 defined as the dominant height
at age 100)

SFT Space for Time

T temperature covariate; in the models in section 2 this is the mean temper-
ature for the warmest quarter, in section 3 it denotes the temperature sum
for the vegetation period
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A Appendix

A.1 Parameters for the h-d model fit

Quantiles (5% and 95%) for all parameters used for model selection in study I, by species. Note
that climate parameters (tmn_*, tmax_, tmin_* and psum_*) and available water capacity
(awc) are based on the complete dataset including the French NFI, while all other parameters
are based on BioSoil and NFSI. See Table 2.1 for further information on the included surveys
and Table 2.3 for units of the respective parameters.

Species Quantile tmax_wm tmin_cm tmn_wq psum

Beech 5 19.3 -6.1 13.2 677

Beech 95 24.9 0.5 18.2 1259

Oak 5 21.3 -3.1 15.8 644

Oak 95 26.1 2.2 19.2 1049

Pine 5 20.1 -12.4 13.8 548

Pine 95 25.4 0.2 18.5 1029

Spruce 5 18 -11.6 12.1 619

Spruce 95 24.1 -1.4 17.3 1401

Species Quantile psum_wq t01 t07 t_5to9

Beech 5 164 -2.8 14.1 11.84

Beech 95 320 3.7 19 16.78

Oak 5 151 -0.2 16.4 14.56

Oak 95 262 5.3 19.9 17.98

Pine 5 157 -8.7 14.9 11.68

Pine 95 254 3.5 19.4 17.08

Spruce 5 196 -7.8 13.1 10.74

Spruce 95 368 1.7 18.2 15.96

Species Quantile t_678 tyr p_5to9 p_678

Beech 5 13.233 5.733 281 160

Beech 95 18.167 10.825 525 320

Oak 5 15.733 8.408 266 151

Oak 95 19.267 12.333 435 261

Pine 5 13.8 3.125 274 155
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Pine 95 18.5 11.1 436 256

Spruce 5 12.167 3.183 307 196

Spruce 95 17.333 9.708 582 368

Species Quantile pyr awc aircap_min fbv_org

Beech 5 677 20 4 4.785

Beech 95 1259 222 24 127.457

Oak 5 644 26.4 2 3.5

Oak 95 1049 231.5 25 132.8

Pine 5 548 24 7 16.7

Pine 95 1029 192 30 155.072

Spruce 5 619 26.414 3 10.22

Spruce 95 1401 216 25 170.7

Species Quantile oc_org oc_minst_010 oc_minst_040 oc_minst_soildepth

Beech 5 0 16.484 34.025 44.561

Beech 95 34.703 72.787 168.25 229.61

Oak 5 1.046 16.685 33.701 39.69

Oak 95 35.991 56.09 131.439 222.737

Pine 5 4.944 6.388 15.986 20.574

Pine 95 50.3 59.504 136.775 182.85

Spruce 5 0 7.692 21.976 27.972

Spruce 95 53.835 63.578 147.461 213.649

Species Quantile ton_org ton_minst_010 ton_minst_040 ton_minst_soildepth

Beech 5 0 0.896 2.043 2.753

Beech 95 1.523 4.94 13.106 17.363

Oak 5 0.014 0.944 1.546 2.301

Oak 95 1.558 3.717 8.317 14.741

Pine 5 0.163 0.285 0.828 1.192

Pine 95 1.813 2.62 6.327 9.673

Spruce 5 0 0.342 1.574 2.472

Spruce 95 2.238 3.577 8.884 13.14

Species Quantile p_org p_minst_010 p_minst_040 p_minst_soildepth

Beech 5 2.592 104.575 353.565 620.885
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Beech 95 87.286 834.126 3391.583 7243.175

Oak 5 2.349 108.405 335.553 678.577

Oak 95 108.963 826.884 3720.07 8971.4

Pine 5 8.641 48 261.586 492.44

Pine 95 102.295 462.331 2156.949 4282.119

Spruce 5 0 54.789 408.232 693.341

Spruce 95 133.813 689.287 3134.091 8323.349

Species Quantile cn_org cn010 cn020 cp_org

Beech 5 18.49 12.04 10.81 249.045

Beech 95 33.05 26.205 26.86 765.029

Oak 5 16.763 11.83 10.842 191.413

Oak 95 32.42 26.055 27.192 711.914

Pine 5 21.57 14.275 13 296.503

Pine 95 38.65 38.57 38.05 860.303

Spruce 5 19.21 12.975 11.482 201.883

Spruce 95 33.041 28.58 28.177 683.757

Species Quantile cp010 cp020 ph_org ph010

Beech 5 43.48 33.289 3.25 3.3

Beech 95 277.86 227.13 6.094 7

Oak 5 29.882 21.742 3.255 3.217

Oak 95 267.673 191.33 5.64 6.46

Pine 5 33.792 27.795 2.85 3.07

Pine 95 455.387 331.09 5.104 5.64

Spruce 5 36.102 27.198 2.94 3.08

Spruce 95 347.663 295.631 5.2 6.3

Species Quantile ph020 ph040 ph4080 basesat_org

Beech 5 3.487 3.676 3.795 39.96

Beech 95 7.135 7.3 7.565 99.11

Oak 5 3.41 3.57 3.74 41.331

Oak 95 6.683 6.884 7.325 98.04

Pine 5 3.285 3.501 3.9 29.98

Pine 95 5.73 6.152 6.57 93.102
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Spruce 5 3.343 3.525 3.835 26.68

Spruce 95 6.685 6.857 7.375 97.23
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A.2 Splines for the h-d model climate covariates

Splines for climatic covariates for oak, beech, spruce and pine in part I, included in the first
model step with p-values and significance codes as given in R (R Core Team 2020). The
codes symbolize the following significance levels: “***” for p < 0.001, “**” for p < 0. 01,
“*” for p < 0.05, “.” for p < 0.1 and “n.sig” for p > 0.1. All models have the form of the
minimal model Equation 2.3 with the climatic parameter added as a single, unconstrained
spline.
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A.3 Splines for the h-d model soil covariates

Splines for BioSoil parameters for oak, beech, spruce and pine included in the second model
step of study I with p-values and significance codes as given in R (R Core Team 2020). The
codes symbolize the following significance levels: “***” for p < 0.001, “**” for p < 0. 01,
“*” for p < 0.05, “.” for p < 0.1 and “n.sig” for p > 0.1. All models have the form of the
minimal model of the second model step Equation 2.6 with each soil parameter added as a
single, unconstrained spline.
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A.4 Splines for the h-a model soil covariates

Splines for soil parameters for beech and pine evaluated as covariates for the second model
step of study II.
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A.4.2 Pine
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