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Preface

In this thesis, the author studies certain arithmetic objects associated with
Elliptic curves and Modular forms. Chapter [I] provides a walk-through of
the contents presented in this thesis. The main results of this thesis are
highlighted in this chapter.

In Chapter [2] the exponential sums associated with the linear recurrence
sequences over prime fields are studied. This chapter provides the essential
tools to prove the main results of Chapter [3| where the author studies the
additivity of the Fourier coefficients of a modular form over specific finite
fields. These two chapters are written based on the author’s published article
[10], jointly written with J. Bajpai and V.C. Garcia.

Chapter [4 is about the theory of Galois representations and their images.
In this chapter, the author discusses how Chebotarev’s density theorem can
be used to study some related analytic problems. This chapter is written
based on [10], author’s preprint [I4], and [15]. Chapter |5|is about studying
the additive properties of the Fourier coefficients and controlling the size of
the solutions. This chapter is written based on [I5], jointly written with S.
Krishnamoorthy and R. Muneeswaran.

Roughly speaking, the Hecke theory provides the necessary tools for
studying the exponential sums for classical modular forms in Chapters
and |5l The same does not work for noncongruence /nonclassical modular forms.
In Chapter [6] and Chapter [7} the author studies one of the generalizations
of modular forms in higher dimensions called vector-valued automorphic
forms. In these two chapters, vector-valued automorphic forms are concerned
with any discrete subgroup of PSLy(R), and any representation of it. In
particular, the growth of the associated Fourier coefficients is studied, and the
non-triviality of an associated exponential sum is established. This is based
on the joint work with J. Bajpai and R. Finder, which was recently accepted
for publication, and the preprint can be found in [9]. The vector-valued
automorphic forms can be divided into two classes, namely the admissible
and logarithmic. In addition to the growth problem, Chapter [7] also studies



the lifting of logarithmic vector-valued automorphic forms and the associated
growth. This is based on the joint work with J. Bajpai in [§].

In Chapter [§] the author studies a special family of non-linear recurrence
sequences known as elliptic sequence(s). Roughly speaking, the terms of any
such sequence are related to the denominators of the points on an elliptic
curve over Q. In this chapter, the periodicity of these sequences is concerned
with modulo any composite numbers. Moreover, it is shown that the parity
of the valuations could be controlled. This is based on a joint work with D.
Loughran, S. Myerson, and M. Nakahara, whose preprint can be found in [16].
Moreover, an analogy with the classical Wieferich-prime problem is addressed,
and some known results for the associated exponential sums are also discussed.

Author contributions

Chapter 1

This chapter delves into the motivations, historical context, and pivotal
findings of this thesis. The insights into exponential sums linked with linear
recurrence sequences over finite fields were imparted to me by Bajpai and
Garcia. Additionally, Bajpai provided valuable insights into the background
of vector-valued modular forms. While Theorem [1.4.2] is stated, its proof
is omitted in this thesis. Nevertheless, the key methodology is elaborated
on in detail on page 29. The contents of pages 29-30 are the outcome of
collaborative efforts with Myerson, Loughran, and Nakahara. The remainder
of the introduction represents my original contributions.

Chapter 2

I gained insight into the historical background of exponential sums over prime
fields through discussions with Garcia and Bajpai. They initially established
the case v = 1 in Theorem [2:2.1] Subsequently, I extended their work to
cover the case v = 2. Finally, through collaborative discussions, we resolved
the case v > 2 using one of Garaev’s techniques. Corollary [2.3.1] follows
immediately from the non-triviality of the exponential sums, as highlighted
by Bajpai and Garcia. Building on this observation, I proceeded to prove
Theorem [2.3.2] and provided Example [2.3.3]in support.

Chapter 3

The suggestion from Bajpai and Garcia to investigate exponential sums
with a(p™) by studying those associated with linear recurrence sequences



was instrumental. We encountered difficulty in demonstrating that the non-
trivial estimate in part (i) of Theorem holds for almost all primes .
However, following a suggestion from Shparlinski during an email exchange, I
successfully devised the proof for Lemma Subsequently, with guidance
from Bajpai and Garcfa on the results of Bourgain and others regarding
exponential sums associated with prime fields, I completed the proofs of both
parts of Theorem and derived Corollary [3.1.2]

Section [3:2] represents my independent contribution. Notably, the con-
dition in part (i) of Theorem closely resembles the study of Sato-Tate
for newforms. Intrigued by this similarity, I investigated the implications
of extending beyond newforms. Upon suggestions from Sawin in one of my
Math Overflow posts, I familiarized myself with the Generalized Sato-Tate
conjecture. Delving into the literature, I provided a brief discussion on this
topic and applied it to prove Theorem [3.0.2

Chapter 4

Section [4.1] is my contribution. In this section, I delve into the study of Q-
linear combinations of newforms modulo composite numbers. The inspiration
for this analysis stems from the works of Serre, Masser, Wiistholz, and Jones,
on the Galois representations.

Moving on to Section[f.2] Proposition 1 and Theorem are my original
contributions. To support these results, I referenced a classical result (Lemma
mentioned on Stack Exchange, which is also discussed in this chapter.

In Section I begin by discussing the fact that the non-trivial estimate
of the exponential sum in Chapter [3| holds under certain conditions, partic-
ularly when certain elements in F; possess sufficiently large orders. This
phenomenon, introduced to me by Bajpai and Garcia, is attributed to Bour-
gain. I then explore the attachment of the Galois representation and leverage
Chebotarev’s theorem to determine conditions under which large orders occur.
Utilizing this framework, I conducted computations leading to Theorems
431 and .3.2] . Lastly, Section [4:4] presents my original contributions.

Remark. The research discussed in Chapter [2| Chapter [3] and specific
sections of Chapter [4] has been published in Research in Number Theory.
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Chapter 5

In this chapter, I study solubility to

o(1)

Z a(ni)) =a (mod m), n; =mPW.

i=1
Initially, I collaborated with Krishnamoorthy and Muneeswaran on this
project. Section [5.1]| primarily comprises auxiliary lemmas essential for the
entire chapter. In Section [5.2] I formulated Lemma [5.2.1] and Lemma [5.2.2]
drawing insights from Shparlinski’s work on the Ramanujan-tau function. The
derivation of Corollary [5.2.3] was a collective effort with Krishnamoorthy and
Muneeswaran, who initially proposed versions of Lemma [5.2.5| and Lemma
Later, I refined the solutions, arguably enhancing their elegance.
Proposition [5.2.7is my independent contribution, inspired by Shparlisnki’s
ideas.

While I authored Proposition [5.2.8] and Corollary [5.2.9] Krishnamoorthy
and Muneeswaran assisted in refining their presentation. Initially, I proposed
approaches to prove Theorem [5.3.1] and Theorem [5.3.2] but through extensive
discussions with them, we developed accurate proofs. Krishnamoorthy and
Muneeswaran further utilized these results to complete the entries in Table
5.1.

The conceptualization and discussions in Section [5.4] were primarily driven
by my ideas. However, after extensive discussions among us, I refined the
concepts and presented them as polished versions.

Remark. This chapter has been accepted for publication in the journal
International Journal of Number Theory.

Chapter 6

In Sections [6.1.1] and [6.2] Bajpai introduced me to the realm of vector-valued
automorphic forms. The proof of Theorem [6.2.12| was primarily derived from
the contributions of Bajpai and Finder. Additionally, I formulated Lemma
65 to provide a more explicit representation of « in the bound O(n®).

My contributions are evident in Sections [6.4] and [6.5] where I discuss some
applications of growth results. Inspired by Bajpai’s insights into Mason’s
work on attaching the L-function to vector-valued modular forms, I developed
these sections.

Section is my independent work, shaped by various suggestions
from Bajpai, Finder, and Patterson. This section plays a crucial role in the
subsequent chapter.
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Chapter 7

Bajpai introduced the work of Knopp-Mason on logarithmic vector-valued
automorphic forms for SLo(Z). In this chapter, my task was to extend this
study to any Fuchsian group of the first kind. I established Lemma [6.3.3
providing the logarithmic expansion, and utilized the results from Section
to derive the polynomial growth of the logarithmic representations
in Section [7.2.1] Lemma [7.2.4] originally due to Bajpai and Finder, was
employed to prove the logarithmic case of Theorem in Section [7.2.3]
The primary results of Sections [7-3] and [7.4] stemmed from my contributions.
Bajpai assisted me in crafting the examples in Section [7.3.2]

The concept of lifting of vector-valued automorphic forms was intro-
duced to me by Bajpai, leading to the contents of Sections [7.4.1] and [7.4.2]
Subsequently, I carried out the work in Sections and

Remark. The content found in Chapters [6] Sections [7.1] and has
been published in the Journal of Number Theory. Sections [7.4] [7.5 and

additional material not included in this thesis is submitted for publication.

Chapter 8

Drawing from insights gained from one of my old arXiv preprints, I delved
into the arithmetic properties of the denominators e,, associated with elliptic
curves, and (elliptic) Wieferich primes. Theorem stands as my original
contribution, and I am currently engaged in expanding upon this discovery.
However, the crux of the proof of Theorem [8.0.6] lies in Proposition [8.0.5]
Myerson mentioned Theorem by Verzobio, which I utilized to establish
the proof of Proposition [8:1.9] Although Proposition [8:2.1] may have existed
in the literature, the explicit constant dependency on P in Lemma [8.2.3]is
unnecessary for the scope of this chapter. I used Proposition [8:2.1]to complete
the proof of Proposition [8.0.5

Section represents my endeavor to expand upon [16, Section 6]. In
this section, Lemma [8:3.2]is credited to Loughran and Mashahiro. Section
[B.4] encapsulates my contribution.

Remark. Sections [B:2] Theorem and other related results are
published in Proceedings of the London Mathematical Society.
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On the notations

Throughout the thesis, we denote C, the field of complex numbers. Say

that, two functions f ~ g, if their domain is in C, and if limx_m)% =1 We

write f < g for |f| < c|g| where ¢ is a constant irrespective of the domains

of f and g, often f = O(g) is written to denote the same. Moreover, we

Igii)ﬂ = 0. By O,,... .(A) we mean a quantity

or some positive constant ¢ depending on

denote f = o(g) when lim,_,
with absolute value at most ¢
a, ...,z only; if the subscripts are omitted the implied constant is absolute.
We write A <., Bfor A=0,.  .(B)and A=o0(B) for A/B—0

We denote Z be the set of all integers. For any integer N > 1, denote

To(N) = {<‘C‘ Z) CSLa(Z) | c=0 (mod N)}

and

T'(N) = {(‘CL Z) CSLy(Z)|a,d=1c=0 (mod N)}.

In the following table, we record all the notations and symbols for the
reader’s convenience and reference.

13
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E/K

Weierstrass equation for £
B(Q)

h

the field of rational numbers

algebraic closure of Q

the projective space of dimension n over QQ
the ring of polynomials in variable z and coef-
ficients in Q

the field of p-adic numbers

p-adic valuation

standard height on P™(Q)

the ring of p-adic integers

the set of natural numbers

Euler’s phi function

Moébius function

number of distinct prime factors

number of prime factors counted with multi-
plicity

the field of real numbers

the ring of polynomials in variable x and coef-
ficients in R

exponential function z — e
the ring of polynomials in variable x and coef-
ficients in C

ring of integers in a number field K

prime field, with p a prime

commutator subgroup of G

the complex upper half plane

a square root of —1 in C

exp(2rir), for any 7 € H

the standard m-th primitive root of unity in C
vector-valued automorphic forms

the n** vector-valued Fourier coefficients of
vvaf X(7)

an elliptic curve over a number field K

Y2 + a1wy + agy = 2° + agx? + asx + ag

the Q-points on the elliptic curve F

the canonical height on E(Q).

2miz
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Chapter 1

(zeneral Introduction

1.1 Classical modular forms and Waring type prob-
lems

Let f be a modular form of weight k € 2Z and level N such that it has a
Fourier expansion

) =3 amernz, §(z) > 0,
n=0

with a(n) be the n® Fourier coefficient. In this thesis, we shall restrict to the
family of modular forms with rational coefficients, that is, f(z) with a(n) € Q
for every n. We say that f(z) is a cuspform if a(0) = 0, and consider Hecke
eigenforms or simply eigenforms in the space of cusp forms of weight k for
the congruence subgroup I'1 (V) with trivial nebentypus. We study solubility
to the equation,

a(ni) +a(nz2) + - -a(npn)) = a,

where a is a given integer, and a(n) is the n*® Fourier coefficient of a modular
form. This problem presents an intriguing aspect due to the multiplicative
nature and polynomial growth exhibited by the Fourier coefficients. This
characteristic establishes a connection with the classical Waring’s problem,
offering a link between the two concepts

When f is an eigenform with integer Fourier coefficients, it follows from
Deligne-Serre that for any prime ¢, there exists a corresponding Galois
representation

P\ Gal (Q/Q) — GLa (Z¢)

15



such that tr(pgf)(Frobp)) = a(p), for any prime p 1 N{. For a quick reference
about this correspondence, we refer the interested reader to [37, Chapter 3|.

In particular, a(p) (mod ¢) is determined by the trace of the corresponding
Frobenius element in GLa(Z¢/¢Zy) = GL2(Fy). In certain cases, Chebotarev’s
density theorem implies that given any A\ € Fy, there exists a prime p such
that a(p) = X (mod ¢). However, the set of primes p possessing this property
has a density strictly less than 1. This prompts consideration of other primes
p that do not exhibit this property. In this context, we address the following
Waring-type question in Chapter

Question. Does there exist an absolute constant s such that for any given
primes p and £, any element of Fy can be written as a sum of at most s
elements of the set {a(p™)}n>17?

A related question was studied by Shparlinski in [85] for the Ramanujan’s
7 function, where 7(n) is defined by the identity

A(z) =q H(l - = ZT(n)q”, with ¢ = exp(27iz).

n>1 n>1

In [85], it is proved that the set {7(n)},>1 is an additive basis modulo any
prime £, that is, there exists an absolute constant s such that the Waring-type
congruence

T(n1) + -+ 7(ns) = A (mod ¢)

is solvable for any residue class A (mod ¢).
Shparlinski’s work was later generalized by Garaev, Garcia and Konyagin
over the global field Q. More precisely, in [41], the authors proved that for

any A € Z, the equation
Z T(ng) = A

i=1
always has a solution for s = 74, 000.

Later Garcia and Nicolae [43] extended this result for coefficients a(n) of
newforms of arbitrary weight k& and level N. Roughly speaking, a newform of
level N is a normalized eigenform which is not a cuspform of level N’ for any
proper divisor N’ of N. For details and basics on modular forms, we refer the
reader to [29]. More precisely, they proved that for any A € Z, the equation

s

Z a(ng) = A

=1

16



always has a solution for some s < ¢(f) with ¢(f) satisfying

k—1 3
o(f) < (2N3/3) "2 Tep1ktOW+e 160k 4 1).

The proof of the above two results are connected to the identity a(p?) =
a®(p) — p*~ 1 and the solubility of the equation
plffl + .- +p§_1 = N, for primes pi,...,ps.

We are studying the finite field version of this additivity problem by
obtaining nontrivial exponential sums associated with coefficients of modular
forms, in the sense of [85]. We are working with the class of forms that Garcia
and Nicolae [43] considered but with Fourier coefficients evaluated only at
prime powers. In particular, we prove in Chapter [3] the following.

Theorem 1.1.1 (Bajpai, Bhakta, Garcia). Let f be a newform without
CM and with rational Fourier coefficients. here is an absolute constant sg
independent to f, such that any element of Fp can be written as a sum of at
most sg elements of the set {a(p™)}n>0 for almost all primes p and £.

To prove this, we shall primarily focus on the exponential sums of type

where p, £ are primes, and 7 is a suitable parameter which we shall specify
later. More precisely, we shall prove the following in Chapter

Theorem 1.1.2 (Bajpai, Bhakta, Garcia). Let f(z) be an eigenform with
rational coefficients a(n). Let P be the set of primes p such that a(p*) # 0
for any u € N. Then for any p € P, and any 0 < € < 1/2, there exists a
0 = d(e) > 0 such that the following estimate

max Zeg (Ca(p™))| < 7676, (1.1)

holds for m(y) + Oy ,(y*) many primes { <y, where the least period T of
the linear recurrence sequence {a(p")} (mod ¢) depends on both p and ¢, and
7(y) denotes the number of primes up to y.

17



A newform is said to have complex multiplication (CM) by a quadratic
Dirichlet character ¢ if f = f ® ¢, where we define the twist as

fed=> an)p(n)q".
n=1

In Theorem the condition a(p*) # 0 holds for almost all prime p
provided that f is a newform without C'M. This is a consequence of Sato-
Tate conjecture, and this proves Theorem [T.1.1]

When f is a normalized eigenform, it is well known that a(n) is a multi-
plicative function and for any prime p { N satisfies the relation

a(anrZ) — a(p)a(p”“) —pkila(pn), n 2 0.

Moreover, we have a(p™) = a(p)" for any prime p | N. These facts come from
the properties of Hecke operators, see [29, Proposition 5.8.5]. If a(p) € Q,
then one can consider a(p) (mod ¢) € Fy naturally for any large enough prime
£. For instance, £ can be taken to be any prime, not dividing the denominators
of the Fourier coefficients. On the other hand, any cuspform can be uniquely
written as a C-linear combination of pairwise orthogonal eigenforms with
Fourier coefficients coming from C. See [29, Chapter 5| for a brief review of
the Hecke theory of modular forms. However, here we are concerned with
all such cuspforms, which can be uniquely written as a Q-linear combination
of pairwise orthogonal eigenforms with Fourier coefficients coming from Q.
In this case, the sequence {a(p™)} is a linear recurrence sequence of possibly
higher degrees. For these families of cuspforms, we prove Theorem [3.0.2] in
Chapter 3] We do this under the assumption of the Generalized Sato Tate
conjecture, which is about the independency of the Sato Tate distributions
associated to the eigenforms.

To prove Theorem [[.1.2] and Theorem [3.0.2] we study exponential sums
associated to linear recurrence sequences. Let r > 1 be an integer and p be
an arbitrary prime number. A linear recurrence sequence {s,} of order r in
[F,, consists of a recursive relation

Sntr = Qp_18p4r—1 + -+ apSp (mod p), withn=0,1,2,...,

and initial values sg,...,s,—1 € F,. Here ag,...,a,—1 € F, are fixed. The
case when associated characteristic polynomial w(z) is irreducible, had been
studied by Korobov [57], Katz [49] and Shparlinski [84]. In Chapter [2| we

prove the following.

18



Theorem 1.1.3 (Bajpai, Bhakta, Garcia). Let p be a large prime number
and e > &' > 0. Suppose that {s,} is a nonzero linear recurrence sequence with
positive order and period T in F), such that its characteristic polynomial w(x)
has distinct roots in its splitting field, and (w(0),p) = 1. Set w(z) = [[; wi(x)
as a product of distinct irreducible polynomials in Fylx], and for each i, o
denotes a root of w;i(x). If all polynomials w;(x) have the same degree, i.e.
degw;(x) =r > 1, and the system 1; = ord «;, satisfies

a) rcrilaxgcd(n,pd —1)<mpc, foranyl<i<uv,
<r
d|r

b) ged(mi, 1) < P, for some pair i # j along with Fp(ag) = Fp(ay),

then there exists a § = 6(g,&’) > 0 such that

Even for the irreducible case, our bound improves any known previous
bounds. It turns out that this extends [19, Corollary] due to Bourgain, where
all of the irreducible factors have degree = 1, while Theorem deals with
the case r > 2. Our approach, which relies on the sum-product phenomenon,
provides an improvement over Theorem 3.1 of [84] for the same class of linear
recurrence sequences, obtaining non-trivial exponential sums in a larger range.
To be more precise, if p(r) denotes the least prime divisor of r then any
T > p"/P)+e gatisfies

e > pT/p(T) > rggg{ ng(T, pd - 1)
d|r

In particular, our result works for any 7 > p"/P(+¢ while bound in [84]
is nontrivial if 7 > p'/271/6+¢. This is an improvement if p(r) > 2, more
precisely when r is odd.

In Theorem [1.1.2] we took a fixed prime p and looked for primes ¢ for
which a non-trivial estimate to holds. However, this result is valid for
almost all primes ¢, that too only for the without CM case, and we do not
know explicitly which of the primes are being excluded in this process. Thus,
one may naturally ask, what if we now fix a prime ¢ and find out for how
many primes p the sum at is non-trivial? In this regard, we prove the
following result in Chapter [

19



Theorem 1.1.4 (Bajpai, Bhakta, Garcia). Let f(z) be a newform of weight
k, without CM and with integer Fourier coefficients. Consider the set Py, =
{¢ prime | (k —1,£ — 1) = 1}. Then, for any fixzed e > 0 and any large enough
l € Py, the set of primes p satisfying

have density at least 1 + O, (ﬁ%&), where 6 = () is same as in Theo-
rem 221

Being determined by a Chebotarev-type condition, any such p in Theo-
rem could [93] be large. Specifically, they could grow exponentially as a
function of £. In Chapter [5| we study the equation

o)
Z a(ni) =a (mod m), n; =mCPW,
i=1

for any composite number m. For every prime ¢ | m, the strategy is to

study the exponential sum Z ey (AN(uug —a)), VA € F}, over a

u1 €U, us€ls
a(n) (mod £)=ujus

suitably large subset U; x Uy of Fy x Fy, which satisfies #U; #Uy > ¢17¢ for
some ¢ > 0. To find explicit ¢, we use the sum-product estimates over finite
fields by Rudnev and Shkredov in [75] and [4], which says that for any small
subset A of Fy, max{|A + A,|A - A} > |A|**!/°. The main outcome of this
approach is the following.

Theorem 1.1.5 (Bhakta, Krishnamoorthy, Muneeswaran). Let f(z) be
any Hecke eigenform with rational coefficients, and S1,S2 be any set of
primes having positive density with S1 N S = ¢. Then there exists an integer
Ns, s, such that for any integer m with all prime factors larger than Ng, s,,
and LV > m/L, where L is the largest prime factor of m, and for any
a € Z/mZ, we can write

S
Za(ni) =a (modm), n; <m™33 v1<i<s,
i=1
for some s < 52. Furthermore, all the prime factors of any such n; are

bounded by O(m5%/%), and they belong to Sy U Sy. Additionally, each n; has
at least one prime factor from both S1 and Ss.
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The reader may note that Theorem [I.1.5]is an improvement over the main
result of Shparlinski [85, Theorem 3]. This is because, when m = £ is a prime,
Shparlinski’s solutions have order O(£*), while our bound has order ¢130/33,
Moreover, we have an explicit bound on the number of required terms in the
summation. In this context, let us again recall the main result of Garcia and
Nicolae in [43]. Their result could be used to have a sharper polynomial
bound, but their result does not guarantee a uniform bound on the number
of terms.

In Chapter [5], we shall also prove an analog of the same result for a
broader family of cuspforms. Moreover, we shall also show that, given any
e > 0, it is possible to produce solutions with all prime factors are O(m?).
In that case, we require w many pairwise disjoint sets of primes S, Ss, -+ .S,
with (1 4 £52) > 2, and record this result as Theorem in Chapter

1.2 Galois representations of composite moduli

Serre, in one of his seminal papers [79)], entitled Divisibilité de certaines
fonctions arithmétiques, presented several crucial results concerning the
divisibility of certain sequences of integers. As a direct application, he showed
that for any integer m, a(n) =0 (mod m) for almost all integers n. In fact,
there is a constant a > 0 such that a(n) £ 0 (mod m) for O(z/(logx)®)
many integers n < x. However, we do not know whether each non-zero residue
class a € Z/mZ can be written as a(n) (mod m) with equal proportion. It
was mentioned by Serre in page 20 of [79] that, for any odd m, any integer
M, and any non-zero a € Z/mZ,

#{n<zlaln)=a (modm)} > 1Ozw(loglogalc)J‘/I. (1.2)
Proof of this argument was based on showing that, for a positive density
of primes p = 1 (mod m) and ¢ = —1 (mod m) the corresponding Hecke
operators T), and T}, acts respectively as 2 and 0 on the Z-module of all
holomorphic modular forms with coefficients in Q.

In Chapter[d] we discuss the theory of Galois representations for composite
modulus and study the distribution of {a(n) (mod m) | w(n) = O(1)}, where
w(n) denotes the number of distinct prime factors of n. Specifically, motivated
by Serre’s lower bound at , we delve into the limiting distribution for
certain cusp forms with rational coefficients, yielding the following result.

Theorem 1.2.1 (Bhakta, Krishnamoorthy, Muneeswaran). Let M > 1 be
any integer, and [ be any newform without CM, and with coefficients in Q.
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Then under the certain assumptions on m, the following asymptotic formula
holds for any tuple
#{n <z|a(n)=a (modm), win)=M} 1
#H{n <z fw(n) = M} m

for some d,(m) > 0, which is an effectively computable constant.

We shall write a more precise version in Theorem in Chapter 4] and
for a much broader family of cuspforms.

In Chapter [l we shall also discuss a special phenomenon regarding the
Galois representations for composite modulus, which we call the local-global
property of Galois representations: let E/Q be an elliptic curve. Serre
introduced the following representation,

pEm : Gal(Q/Q) — Autc(E[m]) = GLy(Z/mZ),

where E[m] is the set of m-torsion points in E(C). Serre’s open image theorem
says that, if F is without complex multiplication, then there exists a constant
cg > 0 such that for any prime ¢ > cg, the associated representation pg g is
surjective. It is conjectured that cg is uniformly bounded. For the known
bounds on c¢g, the reader may refer to Cojocaru [27| and Zywina [101]. When
F has complex multiplication, the surjectivity is not true for large primes; see
page 12 in [25]. In general, whether the elliptic curve E is without complex
multiplication or not, Serre showed that for any m € N with (m, 30) = 1,
PE,m is surjective if and only if pg ¢ is surjective for any prime £ | m.

In Chapter [4, we shall discuss an analog of Serre’s result for elliptic
curves over arbitrary number fields. Let E be an elliptic curve over a
number field K. The understanding of im(pg ) = Gal(K (E[m])/K) requires
comprehending each of the groups Gal(K (E[m4])/K), Gal(K(E[m2])/K),
and the entanglement K(E[m;1]) N K(E[mz]). Studying entanglements is an
active area of research, and interested readers may consult [69] for further
exploration. While we do not delve deeply into entanglements in this thesis,
we extend Serre’s analog to pairs of elliptic curves and modular forms of
arbitrary weights.

1.3 Vector-valued automorphic forms

Let G be a discrete subgroup of PSLa(R). A vector-valued automorphic form
of G with respect to a representation p : G — GL,,(C) is a holomorphic
function X : H — C™ which has functional and cuspidal behaviour. When p
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satisfies certain properties and G has finite volume under the natural action
on the upper half plane H := {7 = z + iy € C | y > 0}, then any such
vector-valued automorphic form admits a Fourier expansion at any cusp of
G.

In the congruence case, let f : H — C be a modular form of level N
and weight k& € Z. It is known that f(7) has a Fourier expansion at any
cusp and the Fourier coefficients have polynomial-growth. To be precise,
it is known that the n'"-Fourier coefficient T s < n*. Throughout the
thesis, whenever we state a bound on the Fourier coefficients, we always
mean a bound for the absolute value of the same. Note that, when f
is a cusp form, it is known that fj, is < ns. Both of these bounds are
obtained by studying the behavior of the function F'(z) = y?|f(z)| in the
fundamental domain for any ¢ € R, and then by comparing F(z) with
F(vz) for any v € I'g(IV) and z in the fundamental domain. We refer the
interested reader to [78] about the discussion on the sharper bounds of fj,).
Moreover, Selberg mentions in the same article that conjecturally, we may
have fi,) < n3~3% for any € > 0. When f is a normalized Hecke eigenform,
it follows from the multiplicativity of the Fourier coefficients and Deligne’s
bound fp,e) < (a+ 1)pa(§7%) (see [17, 28]) that fi,) < ng_%d(n), where d(+)
is the divisor function. This, in particular, settles the conjectural bound since

it is known that d(n) < exp (O (lo?ign)) . There are some known lower

bounds available for fj, (see [70]), and these results suggest that Deligne’s
bound is sharp. For applications of growth estimates of the Fourier coefficients
of modular forms, we refer the interested reader to [77].

This thesis is concerned with establishing the growth of Fourier coefficients
of vector-valued automorphic forms of non-cocompact Fuchsian groups of the
first kind. The term non-cocompact has been used to specify that the Fuchsian
groups of the first kind under consideration are equipped with at least one
cusp. To be explicit about the use of the terms vector-valued modular
form (vvmf) and vector-valued automorphic form (vvaf), we will make the
following distinction between them: vwvaf for a group commensurable
with PSLy(Z) will usually be referred to as vvmf. In this sense, we will
call our vector-valued functions for Fuchsian groups of the first kind studied
in this thesis vector-valued automorphic forms.

In the same article [78] mentioned above, Selberg made use of vector-valued
modular forms to apply the Rankin-Selberg the method more broadly. This
was enough to demand the development of the theory of vector-valued modular
forms. Since then, numerous attempts have been made, and theory has slowly
emerged. For example, they could be an important tool for understanding the

23



modular forms for noncongruence subgroups of the modular group. Observe
that every component of X(7) will be a scalar-valued modular form for the
ker(p), where one could not rule out the possibility of having ker(p) to be
a noncongruence subgroup. This could be, on its own, a motivation to
study vector-valued modular forms to understand scalar-valued modular
forms for noncongruence subgroups. Later in the 1980s, Eichler and Zagier
explained in [3I] how Jacobi forms and Siegel modular forms could be studied
through vector-valued modular forms. For more details on the importance of
vector-valued modular forms, see the introduction of [7, 38|, and references
therein.

Roughly speaking, a vvmf for PSLy(Z) of weight k € 27Z with respect
to a representation p : PSLy(Z) — GL,,(C) is a vector-valued holomorphic
function X : H — C™ which has a certain functional and cuspidal behaviour.
For detailed definition and explanation, see Chapter[6] If p(t) is diagonalizable,
where t = ((1) i) , then each component X;(7) of X(7) has a convergent g-
expansion at cusp infinity. In particular, we can talk about n''-Fourier
coeflicients X; ;s of X;’s. We will call such p admissible otherwise logarithmic,
which we shall discuss briefly in Chapter [6] and Chapter [7] In the same spirit
as in the classical scalar-valued case, Knopp and Mason [51] showed that

all of these X|; ,) < nF+2¢ and the bound is of order n5T when X(7) is a
vector-valued cusp form, where « is a constant such that ||p(y)]| < ||v]|*.
We always denote norm ||-|| of a matrix in GL,(R) as the usual Euclidean
norm in R™.

For logarithmic representation of non-cocompact Fuchsian group of the
first kind, the associated vvaf X(7) is a linear combination of certain Fourier
expansions, where the coefficients are polynomials in 7, see [53] and Def-
inition Knopp and Mason [54] have also studied the growth of the
Fourier coefficients for vector-valued modular forms of the modular group
with respect to the logarithmic representations.

In Chapter [f] and Chapter [7] we prove a generalization of the estimates
established by Knopp and Mason in [51], [54] for the Fourier coefficients of
vector-valued automorphic forms. More precisely, we shall prove the following.

Theorem 1.3.1 (Bajpai, Bhakta, Finder). Let G be a non-cocompact Fuch-
sian group of the first kind and p : G — GL,,,(C) be a representation such
that all the eigenvalues of the image of each parabolic element have norm 1E|
Let ¢ be any cusp of G. Then there exists a constant v, depending on G, with
the following properties.

In certain cases we do not need any restriction on the representation, which will be
discussed later in Section @
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(i) If X(7) is a holomorphic vector-valued automorphic form of even integer
weight k with respect to p, then the sequence of Fourier coefficients of
X at the cusp ¢ is O(nk2).

(i1) If X(7) is a vector-valued cusp form, the sequence of Fourier coefficients
is O(nk/2+e),

(111) Moreover, if k+ 2a < 0, then X(1) = OE|

In our approach for the admissible case, we build upon the classical
methodology, yet the primary hurdle lies in establishing a polynomial bound
[9, Lemma 5.3] for the representation p. We achieve this by leveraging
Beardon’s structure theorem for words [9, Lemma 2.4|. However, transitioning
to the logarithmic case presents a technical challenge due to the logarithmic
representations exhibiting weaker growth. To tackle this issue in Section [7.2.2]
we employ a bridging technique to establish a connection between two regions
in the upper half-plane.

As a consequence to Theorem [1.3.1} we deduce that for any 1 <i <m
and « € [0, 1], we have the following

Z Xjinje(na) < Xk 10g X,
1<n<X

where X; ; is the n Fourier coefficient of the i*" component of X(7). We
shall prove Theorem for the admissible cases in Chapter [6] and the
logarithmic cases in Chapter [7] It will follow from the proof of Theorem
that, for unitary representations, o may be taken to 0. Here by unitary
representation, we mean that each element in the image of p is a unitary matrix.
In particular, when p is 1-dimensional, we have recovered the classical bound
for the scalar-valued case. The proof is divided into two cases: admissible
vvaf and logarithmic vvaf. For their definitions and details, see Section [6.2
We study both cases based on a very classical approach by first looking at
what happens to ||X(z)]|| in a suitable fundamental domain and then to know
what happens for arbitrary 7 in H, we write 7 = vz for z in the fundamental
domain and compare || X(vz)|| with || X(z)|| for any v € G. In this process,
we shall show in Lemma that the polynomial-growth of p based on the
structure theorem for elements in Fuchsian groups, first given by Eichler |30,
Satz 1], and later generalized by Beardon [12] Theorem 2|.

2We shall later see that the constants are different for the admissible and logarithmic
cases. Here we are considering a maximum of them.
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In Chapter [7], we shall discuss sufficient criteria for a representation to
have polynomial-growth. It turns out that any element of G has a sufficiently
nice enough decomposition in which only finitely many distinct non-parabolic
elements are involved. Roughly speaking, this is the reason why polynomial-
growth of p depends only on the parabolic elements. We record this criterion
as Proposition [7.3.1] in Chapter [7] Furthermore, we shall also see what
happens to the holomorphic functions on the upper-half plane, which satisfy
the functional property with respect to a representation with polynomial-
growth. More precisely, we prove the following.

Theorem 1.3.2 (Bajpai, Bhakta, Finder). Let G be a non-cocompact Fuch-
sian group of the first kind, X : HH — C™ be a vector-valued holomorphic
function, and p : G — GL,,,(C) be a representation. Suppose that X(7) is

non-zero, and X(y7) = (¢t + d)*p(v)X(1),Vy € G, 7 € H, where v = (ZZ) .
Then, we have the following.

(a) If p is irreducible and there exists a constant ¢ > 0 such that || X(z + iy)|| <
y~C for all x + iy € H, then

lo()I < IV*7*, vy € G.

(b) More generally, if p is irreducible and | X(x + iy)|| < maxo<j<m—1{|z+
iylly=CY for all x + iy € H, then

j+2¢—k
lo()I < max{ |y Yozj<m-1, ¥y € G.

(c¢) If p is not necessarily irreducible, then some subrepresentation p' of p
must have a similar growth. In particular, if p is decomposable, then
some of the irreducible components of p have similar growth.

The reader may consider this as a converse to Theorem[I.3.1} In particular,
this shows that the assumption on representation p is necessary and sufficient
in Theorem [[.3.1]

Let H be a Fuchsian group of the first kind, p be an associated representa-
tion, and G be another Fuchsian group of the first kind such that H has finite
index in G. Let X(7) be a vector-valued automorphic form associated p and
write G/H = {g1,92,- - ,9r}. Then X (1) := (X(g; '7),X(g5 '7), -, X(g;7'7))
is a vvaf associated to the induced representation Ind$(p). Bajpai in |7
proved that if X(7) is admissible, then X is admissible as well. In Chapter
we first extend this to any arbitrary representations. Consequently, we show
that if X(7) is an admissible vvaf of weight 0 associated to H, then the growth
of the Fourier coefficients for any lift §~§(T), depends only on H. However, it
turns out that in the logarithmic case, the exponent might increase a bit.
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1.4 Valuations and character sums for Elliptic se-
quences

Let n # £1 be any fixed integer. Classically, a rational prime p is called a
non-Wieferich prime with respect to base n, if

nP''=1 (modp)and n?1#1 (mod p?),

holds simultaneously. It is not known whether there are infinitely many
non-Wieferich primes or not. Under ABC conjecture, it is known that there
are infinitely many non-Wieferich primes with (non-trivial) base n. By non-
trivial, we mean n # +1. Silverman showed that there are at least clogx
many non-Wieferich primes up to x, for some constant ¢ > 0, depending
on base a. The reader may note that heuristically, the number of Wieferich

primes up-to x
1
Z — =loglogx,
p<z p

as the probability that ”p%_l is divisible by p can be naively guessed to be

%. Specifically, heuristically, the number of non-Wieferich primes up to z is
approximately 1021 — loglog .

Let G be a commutative algebraic group, and P € G(Q) is a point
of infinite order. An analogous problem in this generalized situation asks
whether N,P =1 (mod p?), where N, = |G(F,)|. For instance, when we take
G to be the multiplicative group G,,, and P € G,,(Q) to be a non-torsion
unit, the problem then asks about the order of P when reduced modulo p?.

Silverman studied this general problem over elliptic curves. He showed
that under ABC, there are infinitely many (in fact, an asymptotic lower bound
of order c¢y/log x) non-Wieferich primes for elliptic curves with j invariant 0
and 1728. This assumption on the invariant j was later removed by Kiihn
and Miiller [60]. The author recently considers the number field analog in
[13], and a lower bound of the same order is achieved.

In Chapter 2] we study linear recurrence sequences and the associated
exponential sums. In Chapter [§] we shall introduce the special kind of
nonlinear recurrence sequences, widely known as elliptic sequences. An
elliptic sequence {3,} is a non-linear recurrence sequence of the form

Bnerﬁnfm,B? — BerrﬂmeB?@ - ﬁn+r6n77‘/872n'

Generally, it is difficult to control the valuations of terms of an elliptic
sequence. A prime p is called an elliptic non- Wieferich prime if v,(8,) = 1
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for some integer n. As already mentioned, Silverman [87] showed that, under
the ABC conjecture, the number of such primes p < z has the lower bound of
order y/log x. In Chapter , we shall show that it is possible unconditionally
to count the number of primes p for which ord(x(p)) 1 vp(8,), for some n,
and some Dirichlet character y. The importance lies in the understanding of
the p-adic valuations of points in E(Q)). However, we generally lack control
over the size of this valuation, due to the connections with elliptic Wieferich
primes. In this context, our objective is to showcase the achievement of
managing the valuations modulo ord(y). Specifically, we will establish the
following outcome.

Theorem 1.4.1 (Bhakta). Let x be a Dirichlet character satisfying certain

Vlog x
log log =

properties. Then unconditionally we get at least > many such primes

p up-to x.

We shall state this more precisely in Chapter This is proved by
showing that there exists a set of primes ¢ of positive density, for which
ord(x(p)) 1 vp(Be) for some prime p. We record this as Proposition [8.0.5 To
prove Theorem [I.4.1], we need the following assumptions on the Dirichlet
character y:

X(|ﬁa|) 7é 0,1, or
x(—|Bal) #0,1 and 4t 7, or
X(=|Ba]) #0,1 and P € E(R)°.

We briefly study the proportion of the characters satisfying these conditions.
One of the key features of this chapter is the study of associated character
sums. For prime p, and any Dirichlet character xy modulo p, we study

SXJF(P): Z X(ﬁn)a

1<n<R

where R is the order of P (mod p). To estimate this, we follow the approach
of Shparlinski and Stange in [86]. Under certain conditions on the sequence
(Bn), we obtain non-trivial bounds when y does not have a large order, and
R > p'~¢. We note that this is related to the elliptic analog of Artin’s
primitive root conjecture. However, we shall show that a much smaller
exponent 1/3 — e could be achieved. In particular, one can use [21I, Theorem
2| by Bourgain, Gilbichuck to obtain non-trivial bounds for the associated
multi-linear exponential sums.

Basic Sieving tools show that almost all integers are not sums of two
squares. Landau and Ramanujan independently proved a famous theorem that
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quantifies this result, showing that for large B, the number of positive integers
below B that are the sum of two square numbers behaves asymptotically
as =< W. Building upon Proposition [8.0.5] [16] establishes an elliptic
counterpart, which can be stated as follows.

Theorem 1.4.2 (Bhakta, Loughran, Myerson, Nakahara). Let E be an
elliptic curve over Q given by an integral Weierstrass equation. Let P € E(Q)
have infinite order with P € E(R)?. Then there exists w = w(E, P) > 0 such
that

#{n € Z: |n| < B,y(nP) is a sum of two squares} <p,p og B)*"

Here E(R)° denotes the connected component of the identity of E(R),
and y(nP) denotes the y-coordinate of the point nP. The result shows that
for almost all multiples of P, the y-coordinate is not a sum of two (rational)
squares. The key tools in the proof are sieves and elliptic divisibility sequences.
In the classical sieve framework, the standard strategy involves sieving with
the homomorphisms Z — Z/pZ, for many primes p. Kowalski [59)] introduced
an elliptic analog of the sieve setup, involving sieving with homomorphisms
from F(Q) — E(Z/pZ). This sieve operates similarly to the traditional
integer sieve, employing reductions modulo primes p where ord(P (mod p)) =
¢, is itself a prime. In this context, understanding the p-adic valuations of
points £,P € E(Q)) is crucial. Our strategy in [16] focused on eliminating
certain multiples of a given non-torsion point, where we can control the
valuation modulo suitable integers. This is where Proposition plays an
important role.

To establish Proposition the crucial property is that elliptic divisi-
bility sequences exhibit periodicity modulo any arbitrary integer (as stated
in Proposition . We achieve this in Chapter |8 using the work of Verzo-
bio [97], which does not seem to have been proven in the literature before
in this generality. In our proof, we also have to be careful with signs, which
requires us to use [90] and equidistribution results for multiples of irrational
numbers modulo 1.

In this regard, we would like to point out that the proof of Theorem [1.4.2
in [I6] gives an explicit value for w, but we doubt that the bound is sharp.
The following question seems quite challenging.

Question 1.4.3. Does there exist an elliptic curve E over Q such that the
set
{(z,y) € E(Q): y is a sum of two squares} (1.3)

18 infinite?
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The following heuristic suggests should be quite sparse: The numer-
ator and denominator of y(nP) have size exp(Og p(n?)), and a proportion
1/n of such integers are sums of two squares. One might therefore ask if
> -n<p 1/n ~log B is roughly the true order of magnitude in Theorem
providing it is infinite. Versions of this problem were raised by Poonen |66,
Question 33, p55| and Browning |24, Problem 10, pp3181-2].
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Chapter 2

Exponential sums for linear
recurrence sequences

Let » > 1 be an integer and p be an arbitrary prime number. A linear
recurrence sequence {s,} of order r in I, consists of a recursive relation

Sptr = Ar—18Sp+r—1 + -+ apSp, (mod p), withn=0,1,2,..., (2.1)
and initial values sg,...,s,—1 € Fp. Here ao,...,a,—1 € F,, are fixed. The

characteristic polynomial w(x) associated to {s,} is

wx)=12" — ar_12" V= — a1z — ap.

Under certain assumptions, linear recurrence sequences become periodic
modulo p, see [58, Lemma 6.4] and [62, Theorem 6.11].

Let p be a prime number and w(z) be the characteristic polynomial of a
linear recurrence sequence {s,} defined by equation (2.1)). If (ag, p) = 1 and
at least one of the s, ..., s,_1 are not divisible by p, then the sequence {s,}
is periodic modulo p, that is for some T' > 1,

SptT = Sp (mod p), n=0,1,2,....
The least positive period is denoted by 7. Moreover, 7 < p" — 1 and 7 divides
T for any period T' > 1 of the sequence {s,}.
2.1 On the known estimates for the prime fields

In 1953, Korobov [57] obtained bounds for rational exponential sums involving
linear recurrence sequences in residue classes. In particular, for the fields of
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order p, if {s,} is a linear recurrence sequence of order r with (ag,p) = 1 and
period 7, it follows that

ey (sa)| <72 (22)

n<T

Note that such a bound is nontrivial if p'/? < 7 and asymptotically
effective only if p'/? /T — 0 as p — oo. Estimate (2.2)) is optimal in general
terms, indeed Korobov [58] showed that there is a linear recurrence sequence

{sn} with length r satisfying

1
ipr/z < Zep (sn) Spr/z.

n<t

In turn, for any given € > 0, it has been proved that there exists a class of
linear recurrence sequences with a better upper bound

Zep (Sn) < 7_1/2+s‘

n<T

However, the proof of the existence is ineffective in the sense that we do not
know any explicit characteristics of such family, see [35, Section 5.1].

The case when the associated polynomial w(z) is irreducible in F)[z], was
widely studied. In particular, from a more general result due to Katz [49]
Theorem 4.1.1.] it follows that if w(0) =1 then

> ep(sa)| <pV

n<T

Shparlinski [84] improved Korobov’s bound for all nonzero linear recurrence
sequences with irreducible characteristic polynomial w(z) in F,[x]. From [84]
Theorem 3.1] we get

max e, (Esp)| < mp /=D 4 p3/11,8/11,(3r—1)/22
ma Z p (Es0)| < 7p p

for any given € > 0 and with period 7 satisfying that
max ged(7, p? — 1) < 7p~°. (2.3)
d<r

dlr
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In particular, if r is fixed then the upper bound is non trivial for 7 >
pr/2—1/6+5.

We already pointed out that the inequality is nontrivial for 7 >
p"/2%€ 5o the most important case occurs when 7 < p'/2+te. If 7+ < pr/2+e,
then condition is needed to obtain a non-trivial bound suggested by an
example given in [84 Section 1]|. In this particular example, the exponential

sums of type
(pm-1)/2

n _ (pm _ 1)
Z €p (Tr(ag2 )) =9

n=1

are considered for certain a in Fym with g a generator of F)» and m be any
even integer. It is worth noting that {Tr(ag?")} is indeed a linear recurrence
sequence of order m in IF),.

2.2 On the improved estimate

In this section, we consider the general case when the associated polynomial
w(x) is not necessarily irreducible, and deduce the following key result.

Theorem 2.2.1 (Bajpai, Bhakta, Garcia). Let p be a large prime number
and e > &' > 0. Suppose that {s,} is a nonzero linear recurrence sequence with
positive order and period T in F), such that its characteristic polynomial w(x)
has distinct roots in its splitting field, and (w(0),p) = 1. Set w(z) = [} wi(x)
as a product of distinct irreducible polynomials in Fylx], and for each i, o
denotes a root of wi(x). If all polynomials w;(x) have the same degree, i.e.
degw;(x) =r > 1, and the system 1; = ord ay, satisfies

a) Iglaxgcd(n,pd —1)<mpc, foranyl<i<uv, (2.4)
<r
d|r

b) ged(mi, ;) < p°, for some pair i # j along with Fp(ou) =2 Fp(ey),

then there exists a 6 = 0(g,&") > 0 such that

max Zep (Esn)| < Tp7°. (2.5)

It turns out that, this extends [I9, Corollary| due to Bourgain, where all
of the irreducible factors have degree r = 1, while Theorem [2.2.1] deals with
the case r > 2.
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Recalling the example of Shparlinski in [84, Section 1], we already noticed
in Section that, condition a) of Theorem is needed if w(z) is
irreducible in Fp[z]. We shall discuss more about this condition later in
Remark

Now, we illustrate with an example that all of the ged(7;, 7;)'s cannot be
too large. In other words, we need condition b) (or some other condition) to
obtain a non-trivial bound in Theorem For example, let r =2 and ¢
be a generator of Fy,. Then, consider the sequence

o= T (P2 ),

with characteristic polynomial (z — g)(z — ¢*)(z — g@+D/2)(z — g/ +1)/2),
Note that

(2+1)/2 _ 02-1
T ged(02—-1,(2+1)/2)

T9=ordg=¢*—1and 7y = ordyg

It is easy to see that ged(¢2 — 1, (£2 +1)/2) =1, so ged(y,72) = £2 — 1. On
another hand we note that ged(7y,¢ — 1) = ¢ — 1. Then, one can show that

021 2-1 ,
doelsn) =) e (Tr (gn@ +1)/2 _ gn))
n=1 n=1
(2-1)/2 (2-1)/2
2 2
- Z e (Tr (gzn(é +1)/2 _an)> n Z e (Tr (g(zn—l)(e 11)/2 _an—1)>
n=1 n=1
2 ©-ye ooy
=5 > er(Tr(=20"Y) = ——+ 3 er(Tr(-20h)),
n=1 heH

where H = (g?).

Let p be any prime and ¢ be any power of p. Then, the classical theorem about
additive sums for one-variable polynomial, due to A. Weil (see [59, Theorem 3.2]),
states that for a given polynomial f(x) € F,[z] with degree d, d < ¢, ged(d,q) =1
and a nontrivial additive character v in IF;, we have

D w(f(@)| < (d—1)ya. (2:6)

z€F,
Consider

142 e (Tr(~29h) = > w(a?),

heH z€F )2
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where ¢ (w) = e/ (Tr (—2gw)) is a nonzero additive character of Fy2. Applying ([2.6))
with f(z) = 22, it follows that

S e (Tr (~29h))

heH

<Y )| <

z€F,2

Therefore, the linear recurrence sequence {s, } satisfies

> e (sn) = F; Ly o(0).

We now need to discuss some necessary background. Let K be a finite field of
characteristic p and F be an extension of K with [F' : K| = r. The trace function
Trp g : F'— K is defined by

TrF/K(z):z+zp+~--+szl, z€F.
The following properties of Trp,x(2) are well known.

Trp/k(az+w) = aTrp/k(2) + Trp/g(w), forallac K, z,w € F. (2.7)
Trp/k(a) =ra, forany ac K. (2.8)
Trp/k(2") = Trp/k(2), forany zeF. (2.9)

Throughout this section, F' = F,, K = F, with ¢ = p” and we will simply write
Tr (2) instead Trp,x(2).

Let {s,} be a linear recurrence sequence of order 7 > 1 in F,, with characteristic
polynomial w(z) in Fy[z]. It is well known that n'"-term can be written in terms of
the roots of the characteristic polynomial, see Theorem 6.21 in [62]. Therefore, if

the roots aq, ..., a,—1 of w(x) are all distinct in its splitting field, then
r—1
Sn= By, forn=0,1,2..., (2.10)
i=0
where [y, ..., 8-—1 are uniquely determined by initial values sg, ..., s,._1, and belong

to the splitting field of w(z) over F,. If the characteristic polynomial w(z) is
irreducible and « is a root, then its r distinct conjugates are

Hence, the coefficients s,, are given by
r—1 )
Sn= Bia"",  n=0,1,2,3,....
i=0
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One of our main tools is the bound for Gauss sum in finite fields given by
Bourgain and Chang [20, Theorem 2]. This will be required to prove Theorem m
Assume that for a given a € F, and € > 0, such that ord a =t satisfies

t>p° d d(t,p? — 1) < tp=. 2.11
>p° and  max ge (t,p ) <tp (2.11)
d|r

Then, there exists a 6 = d(¢) > 0 such that for any nontrivial additive character 1
of Iy, we have

Yo dvlam)| <tp’.

n<t

Note that the second assumption in (2.11]) implies the first one whenever r > 2.

2.2.1 Proof of Theorem [2.2.1]
We proceed by induction over v. Before that, following properties (2.7) and (2.8)) of

trace function we write
v ) v r—1 .
— — T —_ J
sn=Tr(r 's,) =r7'Tr (Z(ﬁi,oa? + ot Bip—ra] ")) =r 1y ) M (ﬁiﬂ'o‘f n) '
i=1 i=1 j=0

By the assumption, [F,(o;) : Fp] = r for any 1 < ¢ < v. In other words, any

such o, is in F,r. We then have, r = [F,(a1,...,q,) : F,] and 2’ = z for any
z € Fp(aa,...,a,). In addition, from (2.9) it follows that, Tr(2?) = Tr (z) for any
z € Fp(au,...,a,). Then, for each pair (7,7), raising each argument ﬂmaf]” to the
power p"—J

r—j r—j

Tr (ﬁi7jafjn) = Tr (ﬁfy;ijafjn'prij) = Tr (62] a?rn) = Tr (Bﬁj Oé?) .

This implies that

v r—1 v r—1 i
= S () = S (S ) e
i=1 j=0 i=1 7=0

= Tr(mal)+--+ Tr(vay),

where v; = 771 Z;;é ﬂﬁ; ' foreach 1 <i <.

The case v = 1 follows from Bourgain and Chang [20, Theorem 2|, considering
the additive character Tr (y12). We shall proceed inductively, and v = 2 will be the
base case. We start by denoting h = ged (7, 72). It is clear that lem(7y,72) = 1i72/h
is a period of s,,, then

Do en (o) = | 30 e (8.

T1T:
nsT n<Tyt
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Hence, it is enough to prove that

D eplésa)| < N7 p=0, with (€,p) =1,

for some 6 = d(¢) > 0. Dividing the range of the sum n < 7y73/h into the form
n = mh + ug with m < 779/h? and 0 < ug < h — 1, we have

h—1

S )= | Y Y e Y| X €
n< DT uo=0, <72 =0 |, <TiT2
<hx max > ep (Esnniun)| - (2.13)
=Ho= n<t172/h?

Let (n1,n2) be a tuple with n; < 7. Since gcd(ﬁ, 72) = 1, by Chinese remainder
theorem, there exist integers mq, ms Wlth ged(my, ) = gcd(mg, 72) =1, such that

T1T:
[ (mod 520) 1< T = [t mamit (mod 52 1 <m < T
(2.14)

Moreover, the pair (ml,mg) has the following property: given (ni,ns), with 1 <
n; < 7;/h, then n = nymi 72 + nymo 7 satisfies

n=n; (mod 7*)and n=ny (mod ),

7'1 7'2 J R

. Since 7+ = ord alt and 2 = ord ol then

and n is unique modulo

h 2 4 nomo T , .
b = QPR b ) << (2.15)

(2 (3

Combining (2.14) and -7 we have

5 e =| 5 o (st x| 5 oo (3 et
n< 7"1172—2 mg% NQS%
- Z €p (Tr (7104?1’1)) X e (Tr (7204;12’1)) ,
mg% nzﬁ%

(2.16)

with 7] = £v107°, 75 = €7205° in Fp(a,az2). Since {s,} is a nonzero sequence,
therefore v/ # 0, at least for some 1 <14 < 2. First, let us assume that v{,~5 # 0.
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Each e, (Tr (§7/z)) corresponds to a nontrivial additive character, say ¢;(z),
in Fy(a;) = Fpr. In order to satisfy condition (2.11)), we first recall assumptions
h<pf,e>e >0and maxge, ged(ri, p? — 1) < 7;p~¢ for some i € {1,2}. Without

d|r

loss of generality, let us assume that ¢ = 1. Then, for any d|r with 1 < d < r, we

have
gcd(}”p —1)<gcd(71,p - <mp < hlp_(E .

Therefore, by Bourgain and Chang [20, Theorem 2] it follows that

> e (m(art))|=| X vaeph| < Tp

nlng/h nlng/h

On the other hand, bounding trivially we have

Z ep(Tr<72ag2h)) = Z o "2h %

nzSTz/h QST2/h

Thus, combining above equations with (2.13) and (2.16) we get

T17T2 -5 _ T172 _§
ma; e, (&s < h x —_— .
max > ey (&sn) 2 P P

7172
n<—4

Now, let us assume that one of the \; = 0, say for i = 2. Arguing exactly as few
lines above, it follows from assumption (a) that

O () R S )

TLlSTl/h nQSTQ/h

Hence, the desired bound follows. This conclude the case v = 2.
Now, we proceed by induction over v, and assume Theorem to be true up

to v — 1. We follow the idea due to Garaev [40], Section 4.4]. Considering (2.12) and
periodicity, for any ¢t > 1 we get

2t 2t

T Zep (€sn)| = Z Zep (E8man)

n<T m<T1 |In<T

2t

= 3 S e (T () ot T ()

m<T7 |In<T

<Y ¥ (S mherer o))

n1 <t no <7 |m<T1
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Raising to the power 2¢, and applying Cauchy—Schwarz, we have

4t 2t
Ty ep(Esn)|  <THEED R TN Y e (sz Tr (i (" + -+ = a?%»)
n<T n1 <t not <7 |m<T i=1
Given (A1,---,\,) € Fy, let Jy(A1,---,\,) denote the number of solutions of the
system
a?l_’_.“_i_a;%t _ a;lwl_,'_”._’_a?’zt_’_)\l
a’,}1+---+af,“ — agt+1+...+agzt+>\y
with 1 <mnq,--- ,n9 < 7. Therefore,
4¢? 2t
Zep(fsn) §T4t2_4t Z Z Jt()‘lv"'7 Zep (§ZTI 'Yz)\ am)
n<r MEF, A €F, m<r
(2.17)
Note that writing J, (A1 -+, A,) in terms of character sums, it follows that
2t

B A = = 3 3 S e (T (@ia)) ey (Te (woal)| x

z1€F, z, €Fy |n<T

X ep(Tr (371)\1)) €p (Tr (x,,ozﬁ))

Si Z Z Zep 5510‘1 ) ep('IT(xl,aLL))

ql/
x1€F, z, €Fy |[n<T

)

2t

S Jt(O, ey 0) = Jt,V-

In particular, we note that J;, < J¢,_1. From (2.17)), it follows that

4t?

Sey(es)| <, 3T Y Z%(ZMH ”)

n<rt m1<T mao <T A\ EFy A €F,

Note that ayA, with a7y # 0, runs over A € F, then e, (Tr (afAz)) runs through

all additive characters v in fF\q, evaluated at z. Then, the above expression can be
written as

4>
Soep(Gsn)| <TI0 Y H > ep(a(a] 4+ = af™))
n<r m1<T mo<Ti=1 \xz€lF,
< T4t2—4tunt27U < T4t2_4tq”J3V_1- (2.18)
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We now require an estimate for J;,_1, and write

2t
1
Jtp—1= o Z Z Zep(ﬁ()‘laT‘F"'-i-/\uan,l))
A€Fy Av_1€F, Im<7
2t
. T2t o iy \ i
= qy71 + (Al,...,ir:?()EFZ_l ;&7( ( 10 -+ y71al,71))
(Mye Au—1)7£0 =
(2.19)

Finally, we note that s/, = Tr (\ya]" + - - + A\,_1a" ;) defines a linear recurrence
sequence with period 7/ dividing 7, which in particular satisfies induction hypothesis.
Therefore

Z ep (Tr (e + -+ A0 )| < 7,
m<T

for some ¢’ = §'(¢) > 0. Now, taking ¢ > d(v — 1)/2¢' (where d = [F, : F,]) and
combining with (2.19)), we get

2t
r
Jip1 K 7(1”_1 .

We conclude the proof combining the above estimate with (2.18)) to get
max Z e, (&sn)| <Tp7°, with 6= % !

The following is an immediate corollary of this theorem which will be quite
handy in establishing several results in the next chapter.

Corollary 2.2.2. Suppose that {s,} is a nonzero linear recurrence sequence of
order v > 2 such that its characteristic polynomial w(x) is irreductble in Fplx]. If its
period T satisfies

max ged(7,p? — 1) < 7p ¢,
ddTr
'

then there exists a 6 = d(g) > 0 such that

!To get a non-trivial estimate, we must have a non zero §. This is true when v > 2.
Hence our induction step starts from v = 2.
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Remark 2.2.3. It is possible to relax the condition (a) by assuming that

maxgcd(n,pd - <mp*
i
s

holds for some 1 < ¢ < v for which A, # 0, where )} is defined in the proof of
Theorem Also, note that \; = 0 if and only if \; = 0.

Since {sy} is a nonzero linear recurrence sequence, there exists some 1 < ¢ <
for which \; # 0. We discussed in Section [2.1] that why (a) (or some other condition)
is needed to prove the irreducible case of Theorem Now, for the reducible
case, some of the A\; could be 0. For the worst-case scenario, let us assume that only
one of them is nonzero, say for ¢ = 1. Then, it follows from that we are back
to considering the irreducible case, and then we need the condition (a) for i = 1. In
particular, we need (a) (or some other condition) for each irreducible component of
the underlying w(z).

2.3 Impact on Waring-type problems

In the present section, we combine Theorem [2.:2.1] with classical analytical tools
to prove that a linear recurrence sequence {s,} is an additive basis over prime
fields, under some assumptions. Moreover, we discuss the advantages of nontrivial
exponential sums obtained in Theorem to prove it.

2.3.1 Waring-type problems with linear recurrence sequences

Let {s,} be a nonzero linear recurrence sequence modulo ¢ as in (2.1)) with order r,
period 7 and (ag, ) = 1. Given an integer k > 2, for any residue class A (mod ¢),
we denote by Tk (A) the number of solutions of the congruence

Spy F o+ 8p, =X (mod ¢), with 1<mny,...,n <.

Then, writing T () in terms of exponential sums, we get

-1
L) = 7303+ Y e (Elsn 4 50, — N)).

E=0n1 <7 nE<T
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Taking away the term £ = 0 and using triangle inequality, it is clear that

ZZ 3 e (Elsny o Sn — )

E=1n1 <71 ne<T

Te(N)

~
=

1
SZZ 'Zeé(g(str"'Jrsnk))
£=1|ny nE<T
12 1
< Z ( Z fsnl Z ep(gsnk)
=1 1<7 n<T
k
< max > er(ésa)|| - (2:20)

n<Tt

Assume that we have an exponential sum bound of the type

max Z er(&sn)| < R. (2.21)

S
ceky n<Tt

Then, combining (2.20) and (2.21) we get ‘Tk()\) - %‘ < RF. Now, if (R/7)*¢ goes
to zero as ¢ — 0o, we obtain an effective asymptotic formula for Tj(\). In particular,
T(\) > 0 for ¢ large enough. For instance, if 7 > £7/2%% we employ Korobov’s
bound (2.2) with R = ¢"/? to get

k k

T Tk T
L) - | < 5 (02myte) < T (),

k

therefore Ty, (\) = (14 o(1)) for k > 1/¢ in the range 7 > ¢r/2%¢ Tf the character-
istic polynomial w(x) of {s,} is irreducible with deg(w) > 2 and the least period
satisfies ged(7, £¢ — 1) < 747¢ for any divisor d < r of 7, then by Corollary [2.2.2 we
choose R = 7/7% for some positive § = §(¢), to get

k

Ti(A) — A

< (ke = I (074

Thus, Tx(\) > 0 when k& > 1/6 and maxg<, ged(7, ¢4 — 1) < 7¢7¢. Let us
d|r
summarize the above discussion in the form of following corollary.

Corollary 2.3.1. Let £ be a prime number, k > 0 be any integer, € > 0, and {s,}
be a linear recurrence sequence of order r > 2 in Fy. If the characteristic polynomial
w(z) in Felz] is irreducible with (w(0),£) = 1, the least period T satisfies

max(r, 04 — 1) < 707¢,

d<r
d|r
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and for every integer A, let T (X) denote the number of solutions of the congruence
Spy o F Sp, =A (mod £), with 1<nq,...,n; <7,

then there exists an integer kg > 0 such that for any k > ko, Ti(\) = %(1 +0(1)).
We are now ready to prove the main result of this section.

Theorem 2.3.2 (Bajpai, Bhakta, Garcia). Let {s,} be a linear recurrence sequence
in Z, whose characteristic polynomial w(x) € Z[z] is monic, irreducible, and having
prime degree. Then for a set of primes { with positive density, the sequence {s,} is
an additive basis modulo £. More precisely, there exists an absolute constant ¢ such
that the Waring-type congruence

Sny o+ S, = A(mod £)
is solvable for any residue class A (mod /).

Proof. Let Q,, denote the splitting field of w and G, be Gal (Q,,/Q). Note that
deg(w) divides |G| and G, is contained in the symmetric group Sgeg(w)- By the
Cauchy’s theorem, there exists an element in G,, of order deg(w). In particular,
there is a deg(w)-cycle in G,, because deg(w) is prime. By Chebotarev’s density
theorem, the set of such primes ¢ for which w(x) (mod £) is irreducible, have positive
density, see Theorem of Frobenius in [92, Page 11]. We are now interested to work
with these primes.

Let a be a root of w(z) (mod ¢), and 7 be the period of sequence {s,,} (mod ¢).
We then have 7 = ord (o). Since w(x) (mod ¢) is irreducible, one can write

deg(w)—1

w(z) (mod ¢) = H (x — o/i) ,

=0

and in particular, w(0) (mod £) = (—a)1FHE++5 Note that (w(0),£) =
1, for all but finitely many primes ¢. We now need to verify the condition of
Corollary 2.3.1] for d = 1 because deg(w) is prime. Observe that ged(ord o, — 1) =
Or((’j“}lﬁl. Fix any 0 < ¢ < 1/2, and now the proof is complete if ord (o/‘l) > (F

holds for almost all primes ¢.
For any integer ¢, we have the following

r—1 t
a(Zfl)t =1 — "t = (H 0/1) — o2t — w(O)Zt.
=0

In particular, o is a root of both w(z) (mod ¢) and [, 7 (z*™* — w(0)?") (mod ).
Now, given a large positive parameter T, we consider the resultant

R(T) = Res | w(x), H (m2rt — w(O)Qt)

t<T
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Counting the number of distinct prime factors of the resultant as in the proof of
Lemma [3.1.1} we see that |{¢ prime | ord (a‘~!) < T}| = O(T?). For any large
y > 0, taking T' = y°, we see that there exists a § such that

holds, for at least ¢, m(y) + O(y?®) many primes ¢ < y, for some constant (which
depends only on w) ¢, > 0. Now, the proof follows immediately from Corollary
O

For further explanation, one can consider the following example.

Example 2.3.3. Consider the classical case of Fibonacci sequence {F,}. In this
case, the characteristic polynomial is 22 — z — 1. It is, of course, a monic, irreducible,
and of a prime degree. This polynomial is irreducible modulo prime ¢, iff we have the
Legendre symbol (%) = —1. The set of such primes has density 1/2. Corollary
says, for almost all of these primes, {F,,} is an additive basis modulo ¢. For the
other primes, we use Lemma Given any 0 < ¢ < 1/2, for n(y) + O(y*¢) many
primes £ < y, we have

orday > £%, ord By > £° and ord(agﬂe_l) A

where oy and (3, are the roots of 22 — x — 1 (mod ¢). It then follows from [19]
Corollary, page 479] that there exists a 6 = d(¢) > 0 such that

max e (ca™ +dB™)| < 019,
(c,d)EF, xFy ;1 a A"
(e,d)#(0,0) ["=T

In particular, we then have

max Z e/ (EF,)| < 1070,

€F
sk n<Tt

which guarantees the existence of an absolute constant, as we saw in the proof of
Theorem [2.3:2] With this, we have an inexplicit result for the Fibonacci sequences
compared to the third author in [42]. However, Theorem m provides a general
result for a large class of linear recurrence sequences.
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Chapter 3

Fourier coefficients supported at
the prime powers

In this chapter, we study the effect of linear recurrence sequence and Theorem [2.2.1
in the behavior of the exponential sums associated with certain Fourier coefficients
of modular forms. When f is a normalized eigenform of weight k& and level N, it is
well known that a(n) is a multiplicative function and for any prime p{ N satisfies
the relation

a(p™*?) = a(p)a(p" ™) = p*la(p"), n>0. (38:1)

Moreover, we have a(p™) = a(p)™ for any prime p | N. These facts come from
the properties of Hecke operators, see [29, Proposition 5.8.5]. If a(p) € Q, then
one can consider a(p) (mod ¢) € Fy naturally for any large enough prime ¢. For
instance, ¢ can be taken to be any prime not dividing the denominators of the Fourier
coefficients. On the other hand, any cuspform can be uniquely written as a C-linear
combination of pairwise orthogonal eigenforms with Fourier coefficients coming from
C. See |29, Chapter 5] for a brief review of the Hecke theory of modular forms.
However, here we are concerned with all such cuspforms which can be uniquely
written as a Q-linear combination of pairwise orthogonal eigenforms with Fourier
coefficients coming from Q. In this case, the sequence {a(p™)} is a linear recurrence
sequence of possibly higher degrees. Let us now recall the main results of this
chapter.

Theorem 3.0.1 (Bajpai, Bhakta, Garcia). Let f(z) be an eigenform with rational
coefficients a(n). Let P be the set of primes p such that a(p*) # 0 for any u € N.
Then the following is true.

(i) The set of primes P satisfies that given p € P, for any 0 < & < 1/2 there
exists a 6 = &(e) > 0 such that the following estimate

n < —d .
max n;ee (a(p™))| < TL7°, (3:2)

45



holds for m(y) + Of.,(y*®) many primes £ <y, where the least period T of the
linear recurrence sequence {a(p™)} (mod £) depends on both p and ¢, and 7(y)

denotes the number of primes up to y which is asymptotically equivalent to
Yy
logy*

(ii) For the exceptional set of primes p ¢ P, let u be the least natural number such
that a(p®) = 0. Then for any 0 < e < 1/2, there exists a § = 6(g) > 0 such
that the following estimate

T

-5
= = F O tu). (3.3)

holds for m(y) + Oy, (y*®) many primes £ < y.
More generally, we shall prove the following.

Theorem 3.0.2 (Bajpai, Bhakta, Garcia). Let f(z) be a cusp form which is not
necessarily an eigenform, and can be written as a Q-linear combination of newforms
with rational coefficients. Suppose that there are ro many components with CM,
then under the assumption of GST hypothesiﬂ there exists a set of primes p with
density at least 272 such that for any 0 < & < 1/2 there exists a 6 = 6(e) > 0 for
which the following estimate

max | Y e (a(p™))| < 77, (3.4)
holds for cym(y) + Oy, (y*¢) many primes £ <y, where ¢y > 0 is a constant.

3.1 Order of the roots of the characteristic polyno-
mial

In the case of normalized eigenforms, the sequence {a(p™)} defines a linear recurrence
sequence of order two when p t N, otherwise it is of order one. This is one of the
tools for Theorem [3.0.1l However, we do not need to assume that the form is
normalized because the normalizing factor is in @, and we can realize that to be
an element of I} for any large enough prime /. Before going into the proof of this
theorem, we develop a tool which will be quite useful throughout. We state it in
the form of following lemma.

Lemma 3.1.1. Let w(z) = 2% + ax + b € Z[x] be a quadratic polynomial with b # 0
and let o, B be its roots such that none of the o, B or aS~" is a root of unity. For
any prime £, let cy, Be be its roots in the splitting field of w(x) over Fy.
Then, given 0 < & < 1/2, for n(y) + O (y*®) many primes £ <y, we have
orday > £¢, ord By > ¢ and ord (agB; ") > (5.

!See Section for the discussion about GST hypothesis.
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Proof. Given a large positive parameter T', we begin by considering the polynomial

Gr(z) = [[ (@' - 1)(@* - b') € Z[a].

t<T

It is clear that w(z) (mod ¢) has distinct roots for all but finitely many primes
¢, since a® — 4b # 0. For any such prime ¢, let oy and S, be the distinct roots in its
splitting field. We now consider the resultant Res(w(z), Gr(z)), and note that

Res(w(z), Gr(x)) (mod &) =[] (or — pi)(Be — o),
1<i<3T

where each p; is a root of Gr(x) in its splitting field over Fy.

In particular, Res(w(z),Gr(z)) = 0(mod ¢) if and only if w(x) (mod ¢) and
Gr(z) (mod £) have common roots in some finite extension of F,. Additionally,
since ayfB; = b, it follows that ord (apB3; ') < T if and only if a2 — b* = 0 (or
BZ — bt = 0), for some t < T. Therefore, ay (or B¢) is a common root of w(x)
(mod ¢) and Gz (z) (mod £) if ord ap or ord (a3, ') (or ord B¢ or ord (ayB; ') is
less than T. Now, the Sylvester matrix of w(x) and Gr(z) is a square matrix of
order 2 +deg(Gr(z)) < T2, and entries bounded by an absolute constant M (which
depends on a, b and not on ¢ or the parameter T'). Then, by Hadamard’s inequality,
the determinant

Res(w(z), Gr(x)) < TT x MT* « M?T*1oeT
Note that Res(w(x), Gr(z)) is zero if and only if o' = 1,8 =1 or (af~1)! =1 for

some t < T, which, following our assumption, can not happen. In particular, the
resultant has at most O, (Tz) many distinct prime divisors. This shows that

|{¢ prime | orday <T or ordfB; <T or ordagf, "t <T}| = 0,(T?).
Choosing T' = y¢, the number of primes ¢ < y such that
orday < ¢ or ordB, <€ or ord (agﬂgl) A
is O, (yQE) . O

3.1.1 Proof of Theorem [3.0.1]
If p | N, then a(p™) = a(p)™ for any n. We only need to consider

max Zeg (&a(p)™)]. (3.5)

If p ¢ P, then there exists u such that a(p*) = 0. Since p | N, we have a(p) = 0. In
this case, the sum is O(1) because we have 7 = 1.
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On the other hand, if p € P, then for any prime ¢ large enough 7 is simply the
order of a(p) (mod /) in F}. Due to Lemma [3.1.1] we may assume that 7 > p® holds
for m(y) + Oy,»(y**) many primes ¢ < y. Hence, this case is settled down by [22]
Theorem 6].

Let us now consider the case pt N. The characteristic polynomial of is

w(z) = 2% —alp)x + p*L, (3.6)

and has discriminant a?(p) — 4p*~!. We note that in our case the discriminant
does not vanish, otherwise |a(p)| = 2p*~1/2 is absurd, with a(p) being an integer
and p*~1/2 irrational. Let P be the set of all primes. We divide the proof for
primes p € P and p € P\ P. Since a?(p) — 4p*~! # 0, for any p € P, we write
a?(p) — 4pF—1! = u?D,, with D, < 0 square-free and u # 0. Let us split the cases
according to D, (mod ¢) is quadratic residue, zero or non quadratic residue modulo
£. Set

P=PyUP; UP_q, WhereIF’V:{EE]P’ : (%) :u}.

For v = 0,1, —1, we also define

o, (2)

(@)

P,(x) =P, N[l,z], m(z)=|P,(x)] and &, =lim,;

It is clear that m,(x) = 7(z)(k, + 0(1)), and ko + K1 + k-1 = 1.

Note that for a given prime p, the associated polynomial w(x) (mod ¢) has a
single root in Fy if and only if u2Dp =0 (mod ¢). Since such equation has finitely
many solutions for ¢, we get kg = 0. On the other hand, Chebotarev’s density
theorem implies that the uniform distribution of primes ¢ such that w(z) (mod ¢)
is irreducible or has distinct roots in Fy. Equivalently, the primes ¢ satisfying

DP

(7) = +1 are distributed in the same proportion, therefore k_; = k; = 1/2. We

now turn to establish nontrivial exponential sums for {a(p™)} (mod ¢) with £ € P,,
for v = £1.

Case 1. / € P_;:

we want to show that the inequality is satisfied by # + O(y*%) many primes
¢ <y in P_;. In this case the associated polynomial is irreducible modulo ¢,
then the idea is to employ Corollary Let o and 8 = of be the conjugate roots
of in its splitting field Fy(«). For a given € > 0, from Lemma it follows
that for 7(y) + O(y?¢) many primes ¢ < y, the following inequalities

orda’ = orda > ¢ and ordaf™t = orda!™f > (¢ (3.7)

hold. Combining the identity

-1 ord a

d
ora ged(ord o, £ — 1)
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with the second inequality of , we get

ord « ord o -
ged(orda, £ — 1) = rda=1 = ordai=t < (orda)l™*.

Applying Corollary [2.2.2] we complete the proof of this case.

Case 2. (€ Py:

let v, B be the roots of w(z) (mod ¢) inside F}. From it follows that for n > 0,
a(p™) = ca™ + dp™ (mod ¢), for some constants ¢, d in Fy, with (o, 8) # (0,0). It
is clear that ¢ — 1 is a period of the sequence a(p™) (mod ¢), and hence 7 divides
¢ — 1. We have

Doer(galp™) = ;o7 D er(alp™) = 77 D er(€lea” +b5™).

n<rt n<l—1 n<l—1

From Lemma there is a subset of P; with @ + Of,p(yzs) many primes
¢ <y such that orda, ord 8 and ord (a3~1) are bigger than ¢¢. It follows from [19]
Corollary, page 479] that there exists a 6 = d(¢) > 0 such that

T dBT)| < 0.
oA | 2 erlea” +dA) <
(e,d)#(0,0) 1™=7

Hence, part (i) of Theorem holds. Now for a proof of part (ii), assume that p
belongs to the exceptional set P\ P, that is a(p*) = 0 for some u > 1. We consider
u = u(p) to be the least such integer. Since the discriminant is nonzero (the roots «
and 8 of are distinct), we get

Set b(u + 1) = a(p™), then it follows that for all n > 1 we have
O/L(u—i—l) _ Bn(u-&-l)
a—p

>The explicit expression of a(p*) can be obtained by using induction on v along with
the fact that o + 8 = a(p),af = p*~! and the recurrence relation at 1)

b(n(u+1)) = a(p"+H71) = =0.
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Therefore,

[/ (u+1)] w

S e (€alp™) = 3 e (€b(n + 1)) = > D eerniut )+ | +Ow
n=0

n<Tt
L7/ (u+1)] u [7/(ut+1)]
= > eedn +Z Z +1)+e€) | +O0u)
n=0

Z Z n(u+1)+e) | +O0(u).

First of all observe that u is odd. As otherwise, if u is even then we would get

u [7/(u+1)]
N Lﬁ + 1J

(ut1) (k=1)
2 )

aqul 4 Bqul _ 2au+1 — :|:2p

. . . (D) (k1)
which is absurd as a%t! 4+ g%+ is a rational, but p— 2

0 <e<u-+1 we have

is not. Now, for any

b((u+1)n +e) = alutn (7; _ ge) = (:l:p%)n a(p®™t),

where the sign on the right-hand side above depends on the sign of a%*!. Without
loss of generality, we are assuming that this sign is negative. It is easy to see that
our next argument applies to the positive sign case as well. Since u is fixed, so are
all the e’s up to w — 1. In particular, we may consider large primes ¢ for which all of
the a(p®) #0 (mod ¢) for any 1 < e < u — 1. Then, we have

7/(u+1) 7/(u+1)

Z e (éb(n(u+1)+e)) = Z e <€ (_p%)na(pe—l)) .

n=0 n—=

Due to Lemma we may assume that t, = ord (—p(F=D@+1)/2) > g2 holds for
7(y) + O(y?) many primes ¢ < y. Now, by [22, Corollary 1] it follows that

Zee (5 (_pW)n a(pe_l)) <t0=%, for some § = d&(¢/2) >0, (3.9)

n<t

and for any ¢, >t > (°.
Writing [7/(u + 1)] = qt,, + r, with 0 < r < ¢, it follows that

Z € (fa(uﬂ)"a(pe—l)) —q Z e (é‘a(u+l)na(pe_1)) N

n<t/(u+1) n<t,

+) e (fa(““)"a(pe’l)) :

n<r
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The estimate

D on<t, € (§a(“+1)"a(pe_1))‘ < t 079 follows from (3.9). If r < ¢/2,
then we get trivially ‘anr e ({a(““‘l)”a(pe_l))‘ < £e/2 1F 45/2 < r < t,, then
from (3.9) it follows that

Z e/ (fa(qul)na(pefl)) < tueié.

n<r

Therefore,

Z e (§a(“+l)”a(pe_1)> < max {55/2, tué_‘;} .

n<r

Recalling that ¢, > /¢, we can also assume that t,/~° > ¢5/2 by taking small enough
6. Thus,

Z e (fa(uﬂ)"a(pe*l)) < (qty +t )00 < %HK*‘S.
n<7/(ut1)

Finally, combining the above inequality with (3.8) we obtain

|3 e (6ol = | T [+ 0 (e +0)

n<rt

__T -
—u+1+0(7’€ +u).

This conclude the proof for all exceptional set of primes p € P\ P.

3.1.2 Consequences of Theorem (3.0.1

Let us consider an exponential sum of type S(p,z,«a) = an<m e(aa(p™)), for
a € [0,1]. As one of the consequences of Theorem we want to study this
exponential sum when « is a rational whose denominator is a prime. In this regard,
we have the following result.

Corollary 3.1.2. Let f be an eigenform of weight k and level N with rational
coefficient. Then for a given 0 < € < 1/2, there exists a 6(¢) > 0 such that for at

1-5/(246)
least > Uog) 77 many primes £, we have the following estimates:

log log x
O ((log 2/ log p)'=%/(2+9)) if p¢P
max| > e (Cal")| =1 .
¢ pr<a o oep T O ((logz/logp)!=0/C+o)) if peP
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Proof. Consider the same 6 := §(g) as in Theorem and any prime
le {(log x/ logp)1/2—5/(4+25)’ 2(log m/k)g1,0)1/2—5/(4+2a)] .

Following Theorem [3.0.1} we have

n T
max Ze (€alr™)| < 5 (3.10)
(log z)!=%/C+o) . )
holds, for at least > —foglogz — Primes £. For these primes, we also have 7 <
2 < igii. In particular,
max| 3 e (€alr")| < s + O (1) = O ((logir/ logp)!~4/2+9)).
Ser pr<w £ logp

On the other hand, let p € P be a prime, then by Theorem we have

| = T T
x| D e (car™) = ——+0(5+u).

1-6/(2+96)

holds, for some u depending on p, and for at least > (logﬁ;)g ogz— Primes £. Due

to Lemma, we can assume that 7 > £ holds by choosing small enough §, for
)1=8/(2+8)

at least > (logl‘z sTogz— Primes (. Arguing similarly as in the previous case, we get

the desired main term, and the error term that we get

0 (5, M) _ (105 ) _ (g ggy-3eo0).

Wlogp Tlogp £ logp

where the last equality holds because 7 > ¢°. O

Corollary 3.1.3. Let f be an eigenform of weight k and level N with rational
coefficients. For w(y) + Of(y*®) many primes £ <y we have the following property.
Given 0 < e < 1/2 and p1,--- ,p, be any set of distinct primes such that a(p¥) # 0
for allu>1 and 1 < i < v, there exists a § = §(¢) > 0 such that

max| > - D ec(Calpy )| STl
ser n1 <71 n, <1,

Proof. Set

SO =13 3 er(capy - pi))]-

n1 <71 ny <7y
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We proceed by induction. Case v = 1 is done by Theorem Now, by multi-
plicativity it follows that

1SUOI< D0 D0 Y erlCalpitalps? - pp))

n1<71 |n2<T2 ny, <Ty
cmom Y 1 Y Y Y el )
n1 <11 n1 <11 na<T2 ny, <1y

a(py?)=0 (mod £) a(p])#0 (mod )

By the induction hypothesis, the second term on the right-hand side of the
above equation is bounded by 7175 - - - 7,079, for some § > 0 depending on . On

the other hand, note that > ni<r 1 counts the number of solutions of the
a(p;!)=0(mod ¢)
congruence

a(p?) =0 (mod ¢), n <.

Writing it as an exponential sum we get

-1
> 1= Y el

n1<71 z=0n1<7;
a(py1)=0 (mod ¢)

T1 1
=7 O (max| 2 e elalr)

We can bound the error term by Theorem and without loss of generality
assuming ¢ < 1, we get the sum above is simply 7 + Oy (7147%). This is further
bounded by 271¢?, because the explicit constant in Theorem is exactly 1.
Therefore,

1S, () <oy (2Tlf_§) + Ty l0,

for some 6 = §(¢) > 0. This shows that the inequality

max| > o Y e (€a(pi - opl))| <3l
¢ n1<7; n, <ty

holds for almost all prime ¢, and this completes the proof because we can remove
the extra factor 3 by taking primes ¢ large enough. O

3.2 Generalized Sato-Tate and a dense set

We shall now prove Theorem Write

T
ar(p") =Y aiaz,(p"),
i=1
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where a; € Q, and f; is a newform with rational coefficients for every 1 < i < r. Let
w(®P) be the characteristic polynomial of ay, (p") and D;(p) be its discriminant.

Consider 5
S = {Eprime| (ip)) =1,vVl<i< r}.

It is clear that &7 has positive density. One can verify this by considering primes
congruent to 1 modulo 8 [T;_, D;(p). This works well because, we then have

(j) _1, (i) ~1and (M) —1LvI<i<r

where odd(.) denotes odd part of the corresponding number. These conditions
altogether imply ¢ € S;. Let a(®?) and B(“P) be the roots of w*?). So for any £ € Sy,
we can write

w®P)(z) (mod ¢) = H (x - aéi’p)> (ﬂv - @gi’p)) ;

1<i<r

where for every 1, j, agz’p ), Béj ?) are in Fy. Now, we consider the set of primes

Sy = {p prime | (34("’7”)(5(3"”))*1 is not root of unity, V i,j}
U {p prime | a#P) (aUP)) =1 is not root of unity, Vi # j} .

Lemma 3.2.1. Let € > 0 be any given real. Then for any prime p € Sy, the
following inequalities are true for m(y) + Oy, (y*®) many primes £ < y.

e ord (aéi’p)(ﬁéj’p))’l) > (¢, ord (aéi’p)) > (¢ and ord (ﬁéj’p)) > (%, for all
1<4,5<r, and

. ord(ay’p)(agj’p))fl) > 05, foralll <i#j<m,

Proof. 1t is enough to prove the result only for 7,5 € {1,2}. Consider the Galois
extension K = Q (aP),a(3P)) . Let £ be a prime ideal lying over £ in Ok. It is
clear that

{og" " a? " B Py = (a9, a®P), p0P, 5EPY (mod £),  (3.11)

because both of these sets serve as a set, of roots of the equation w(z) (mod ¢) and
w(z) (mod £) respectively. Note that w(z) (mod £) coincides with w(x) (mod £). It
follows from that the right hand side does not depend on the choice of prime
£ lying over £, so there is no problem in working with a fixed £ lying over £. It is
now clear that,

{ay@ ( /Béj,P))fl} _ {au,p) (ﬁu,p))fl} (mod £).

1<i,j<2 1<i,j<2
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Consider R(T) = Res (w1 (z), g7(x)) , where wy(z) = (z — a?)) (z — p1P)) and

gr(@) =] (xt _ a(z,p)t> (xt _ 5(2,p)t> .

t<T

It is clear that R(T) # 0 for any T € N as p € 8o by assumption. Now, consider
the set of primes

{£ prime | ord (oz?’p)(ﬁéj’p))_l) yord (aéz’p)(aéj’p))_l) < T for some i # j € {1,2}}

(3.12)
For any prime ¢ in the set above, and for any prime £ in Ok lying over ¢, wq(x)
(mod £) and gr(z) (mod £) have a common root, Therefore, R(T) (mod £) =0
Since both wi(z) and gr(z) are in Zx], it is clear that R(T) € Z, and so R(T)
(mod ¢) = 0 as well. Now, one can estimate the number of prime divisors of R(T")
similar to as in Lemma [3.1.11 This shows that

ord( ’p)(,B(“’) ) > (¢, and ord (agi’p)(ay’p))_l) > (°

holds for all i # j € {1,2}, and 7(y) + Oy ,(y**) many primes ¢ < y. Rest of the
cases can be dealt with Lemma B.1.11 O

3.2.1 GST: Beyond Sato-Tate

When f is a newform without C M, then Sato-Tate conjecture says that the normal-

ized coefficients %2 are equidistributed in [—1, 1] with respect to the measure

2p 2

2
Hnon—CM = */SiHQ(Q) dé.
Y

On the other hand, if f is with C M, then the corresponding Sato-Tate distribution
is

1
= 1d6,
HOM = on / V1 — x? T o /

on [0,7] — {%}. Moreover, at 8, = T, a(p) becomes zero, and it is known that the
set of such primes p has density exactly % Let us now give a short overview of
Sato-Tate distribution. Consider the L-function defined by

L(s,Sym™ f HH 1—alﬁm ip S)

ptN i=0

where «,, 8, are normalized roots of (3 In other words, if oy, Ep are the roots
of 1] then we define o, = k 2 ,ﬁp . Serre in [80] showed that if for all

integer m > 0, L(s, Sym™(f)) extends analytlcally to Re(s) > 1 and does not vanish
there, then the Sato—Tate conjecture holds true for f. Note that Barnet-Lamb et
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al. have proved the conjecture in [II] working with this L-function. However, to
estimate the size of Sy we will have more than one newform to play with, and it will
be helpful to have their distributions independent. This independency property
is stated as Generalized Sato-Tate (GST) hypothesis. In this article, we
shall always work with the newforms that obey this hypothesis. For example, in
Theorem [3.0.2] it is assumed that all the associated newforms satisfy the GST
hypothesis.

3.2.2 A consequence of GST

To prove Theorem [3.0.2] we need to study the set S;. We have that luxury when
the associated newforms satisfy GST.

Lemma 3.2.2. Suppose that there are r1 many components without CM and ro
many components with CM in f. Then under the GST hypothesis, density of So is
2772,

Proof. We start by writing
QP = p Tt eibin BUP) — T e=i0in W1 < j <1
So, the problem is reduced to study the set of primes
{p prime | 0; , £ 6;, € Q x 7, for some 1 <i,j <r}. (3.13)

It follows from the discussion above that the density of this set is bounded by

(2) (21) /--~/sin2(91)sin2(92)-~-sin2(9n)d01d92~-~d9r, (3.14)
T Yis
S

where S = {(61,62,---,60,) € [0,7]" | 0; £60; € Q x 7 for some 1 <i,j <r}. Just
for the sake of simplicity and to have a feel of what is going on, let us first do the
case when there is only one component.

Case 1, r =1:

suppose that the given component is without C' M. If a](gl’p ) B (1P) 55 a voot of unity
then this implies that 6; , € m x Q. By Sato-Tate, density of such primes is bounded

by
(i) / sin?(0) d6.

e xQ

Since the integral above runs over a set of measure zero, the integral is zero, and for
this particular case density of Ss is indeed 1. Now, suppose that the given component
is with C M. In this case, the density of Sy is

(;ﬁ) / sin?(#) df = %

0€[0,7]\7xQ
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Case 2, r > 2:

for this general case, it is enough to show that the integral over S in (3.14) is zero.
This is because, due to GST, we are now working on the measure

(i) (;ﬂ)w/.../Sin2(91)sin2(92)-~-Sin2(9n)d€1 d6s---d0,,  (3.15)

and with respect to this measure, [0,7]" has measure (%)T2 . We can write § =

U1<i’j<r S; j, where the set .S; ; is defined to be the tuples for which §; +60; € Q x 7.
It is now enough to show that each of these sets S; ; has a zero measure. Note that

the integral over S; ; is crudely bounded by | f 1d6; dh;. It is evident that
Si

//1d0d9— // 1d6;do; + // 1d6; do;,

0;+0,€Qxm 0;—0;€Qxm

as Q x Q has zero measure. We now note that

// 1.d6; do, <//1dtd9<<|b—a| (3.16)

—6;€(a,b)

for any b > a. In particular, for any € > 0,

ey
1d91d9j <<227k =e.
0;—0;€Qx k=1

The last implication above follows from the standard argument to show a countable
set always has a zero measure. In particular, the second integral of (3.16) is zero.
On the other hand, just by replacing 6; with m — 6;, we get

[ vasas =[] vaas;

0;+0,€Qxm 0;—0;€Qxm
This just shows that the integral over S, ; at (3.16) is zero, which completes the
proof. O

3.2.3 Proof of Theorem [3.0.2]

Let p € Sy be a prime, then we can write
Zaiaﬁ (p") (mod £) = Zaz@ (C(i,l)an(i,f) i d(i,f)/@n(i,@)) ’
=1 =1

where a52)7 ) and d9 are all in Fy. On the other hand, all the roots o and
B0 are in Fy, as £ € S;. The proof now follows by [I9, Corollary, page 479]

combining with Lemma and Lemma [3.2.2] O
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Remark 3.2.3. It is known, due to Thorner, that GST holds for » = 2 when
both f; and fy are without C'M and not twist-equivalent. We say that f; and
f2 are twist-equivalent if there exists a primitive Dirichlet character x such that
f1 = f2 ® x. For more details, we refer the reader to Theorem 1.3 in [94].

3.2.4 'Waring-type problems for modular forms

Let us now recall our discussion from Chapter [I]about Waring problems for modular
forms. This section assumes that the modular form is a newform without C M. Fix
any 0 < € < 3, say € = 5. Then taking & := §(¢) as in Theorem [3.0.1] the following
estimate

max Z e (Ca(p™))| < 00,

cFy
£er n<T

holds for almost all primes p and ¢. The discussion in Section [2.3.1] shows that
Ts(A\) > 0 for any A € Fy, and s > 1/6, where T,()\) is the number of solutions of
the congruence

a(P™) +---+a@P™) =X (mod £), with 1<mng,...,ns <.

Moreover, this s does not depend on the choice of the eigenform because ¢ does not.
More precisely, we have the following result.

Corollary 3.2.4. Let f be a newform without CM and with rational Fourier
coefficients. We say, a proposition Q¢ (p,¥, s) is true if and only if, any element of
Fy can be written as a sum of at most s elements of the set {a(p™)}n>0. Then, there
is an absolute constant so such that Qr(p,¥, so) is true for almost all primes p and
{. Moreover, sy does not depend on the choice of f.

We obtain the following result as an immediate consequence of Theorem

Corollary 3.2.5. Suppose the newform is without CM and with integer Fourier
coefficients. Then there exists an absolute constant sg such that, for any large prime
¢ satisfying the coprimality condition (¢ — 1,k — 1) = 1, the proposition Qs (p, ¥, so)
is true for a set of primes p with density at least 1+ Oy p (%) . Moreover, sy does
not depend on the choice of f.

o8



Chapter 4

(zalois representation associated
to elliptic curves and modular
forms

Let f(z) be any newform of weight k and level N. From Deligne-Serre correspondence,
we have an associated Galois representation

pgf) : Gal (Q/Q) — GL, (Z/4Z),

such that a(p) (mod ¢) = tr (pﬁf) (Frobp)) for any prime p{ N¢. It is clear that the

characteristic polynomial of pgp (Frob,) is same as 22 — a(p)x +p*~1 (mod ¢). When
f is without CM it follows from Ribet [74, Theorem 3.1] that, the image of this
representation is given by

Ape={A € GLy (Z) | det(A) € (Z/¢Z)*)" '},

except possibly for finitely many primes ¢. More generally, for any integer e > 1, we
have a Galois representation

Pfee : Gal (@/Q) — GLo (Z/ECZ)
satisfying that a(p) (mod £°) = tr (py e (Froby,)), and
im(psec) = Ap(l9) = {A € GL (Z/E°Z) | det(A) € ((Z/¢°Z)")*}.

Now given any composite number m, we can naturally associate a Galois
representation pys ., = HZeHm pr.ee, and denote Gy, to be its image. Due to
Ribet’s result, we immediately have the following.
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Corollary 4.0.1. Suppose that f(z) is any newform without CM. Then there exists
a finite set of primes Sy such that

G = Ap(m) = {A € GLy (Z/mZ) | det(A) € (Z/mZ)*)*~1},
for any integer m co-prime to any prime from Sy.

Consider the prime factorization m = Ham ¢¢. Take any residue class a € Z/(°Z
and X € (Z/¢°Z)*. Denote N, »(¢°) be the number of matrices in Ag(€°) of trace a
and determinant A\. We know from [65, Corollary 6.0.7] that

(2, if g2 — 4\ = 0.
Noa(£9) = < e(£¢ + 1), if a® — 4) is a non — zero square in Z/{°Z. (4.1)
0¢(0¢ — 1) if a® — 4\ is not square in Z/(°Z.

Lemma 4.0.2. Let m = Hamﬁe be any integer, and a be any residue class in
Z/mZ, and X € (Z/mZ)*. Then we have,

Qw(m)mQ
Noa(m) :=#{A € Ap(m) | tr(A) = a, det(A) =} =m?+0 () ,

14
where £ is the smallest prime factor of m.

Proof. By the Chinese remainder theorem, we can write

Ar(m) = ] Axle).

£e|im

Therefore it is enough to prove that the result when m is a prime power. The result
now follows from (4.1)). O

Remark 4.0.3. In particular, for any m with large enough prime factors, all trace
values are equidistributed in Ag(m).

4.1 Representations for cuspforms and image

Now let fi, fo, -+, fr be a set of newforms, of weights respectively ki, ks, -+, k.
Then we can associate a Galois representation py, 7, ... f,.m : Gal (Q/Q) — GLg, (Z/mZ)
defined by the map
pfl,g(o-)
pfg,g(a')
o~ ) . (4.2)
pfr‘g(o-)

Image of this map is contained in Ay, g, ... k,.(m), where Ay, k, ... k. (m) denotes

the set of all block matrices of size 2 x 2 in GLy (Z/mZ) in which determinant of
each block is a k; — 1*" power of some element in the multiplicative group (Z/mZ)*.
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Definition 4.1.1. Let £ be a prime. Two newforms f; and f; of weight and level
respectively k;, k; and N;, N;, are said to be l-equivalent, i.e. f; ~¢ f;, if there exists
a quadratic character

X : (Z/N;N;{Z)* — C*,
satisfying ay(p) = x(p)ag(p) (mod £) for any prime pt N;N;. Moreover we say that
fi and f; are twist equivalent, i.e. f; ~ f;, if there ewists a quadratic character x
satisfying ay(p) = x(p)ag(p) for any prime pt N;N;.

The reader may note that if f; ~ f;, their weights k; and k; should be the same.
More importantly, we have the following.

Lemma 4.1.2. If two newforms f;, f; are not twist-equivalent, then they are (-
equivalent for only finitely many primes £.

Proof. For the sake of contradiction, let us assume that f; ~, f; for infinitely
many primes £. Then for each prime p t N;N; there exists infinitely many primes
¢ > N;N;p satisfying a;(p) = %a;(p) (mod ¢). It is evident that for every prime
p 1 N;Nj, there exists a sign o, € {£1} satisfying a,(p) = opa;(p). Now define
a quadratic character x modulo with x(p) := o, for any prime p not dividing
N;N;. 0

With this notion of equivalence, we have the following fact.

Lemma 4.1.3. Let fi1, fa, -+, fr by any set of pairwise twist-inequivalent newforms
without CM. Then there exists a finite set of primes Sy such that, Gy, #,.... £ .m
contains SLo(Z/mZ)" for any integer m co-prime to any prime from Sy.

Before proving this, let G be any finite group and denote Occ(G) be the
isomorphism classes of non-abelian simple groups coming as the quotient of composite
factors of some subgroup of G. We then recall the crucial result from [27].

Lemma 4.1.4. Let m be any integer co-prime to 30, and G be any subgroup of
GL2(Z/mZ). Then the following holds.

SLy(Z/mZ) C G if and only if PSLy(Z/¢Z) € Oce(G),
for every prime £|m.

Proof of Lemma[.1.3 Tt follows from Lemma that, there exists a finite set of
primes Py such that, any of f;, f; are not ¢-equivalent for any prime ¢ ¢ Py. Then
we make Py bigger if necessary, to ensure that each py, , has image Ay, (¢), and in
particular contains SLy(Z/¢Z). Now it follows from Lemma 5.1 in [63] by taking
e = £ — 1 that, image of Gy, , ¢ contains SLy(IF;) for any ¢ ¢ Py. Now it follows
from [73, Lemma 5.2.2] that Gy, f,.... ¢ contains SLo(Z/¢Z)", since SLy(Z/{Z) is self
commutator for any prime ¢ > 5. In particular, the image contains any matrix of
type (I,1,--- ,SLo(Z/02),1,--- ,I).

Moreover, any (I,1,--- ,PSLo(Z/0Z),1,---,I) € Occ(Gy, fy.- .,m) for any
such integer m, as long as all the prime factors of m are larger than 5. Then it follows
from Lemma [L.1.4] that Gy, f, ... f,.m contains (I,1,---,SLy(Z/mZ),1,--- ,I) and
this completes the proof. O
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Lemma 4.1.5. Let f1, fo, -, fr by any pairwise twist-inequivalent newforms with-
out CM of the same weight k. Then there exists a finite set of primes Sy such
that,

A
Gropem =00 =3 7 Tder(A) = = det(4) € (2/m))
Ar
for any integer m co-prime to any prime from Sy.
Proof. Tt follows from Corollary and by induction that each projection
it Gpee foom — GLo(Z/mZ)

has the property that im(m;) = Ag(m), V1 < i < r. For r = 2, the result follows
from the proof of Lemma 3.3 in [47], combining with Lemma [4.1.3] Note that we
are using Lemma to rule out the case (b) of Lemma 3.3 in [47].

Now by induction,

Ay
A
Gy fom = . | det(Ay) = -+ = det(A,_1) € (Z/mZ*)F
" AL
and Gy, = Ag(m). If Gy, ... f..m does not have the desired image, then by Gour-
sat’s lemma (Lemma 3.2 in [47]), there exists a normal subgroup N1 of Gy, ... 5., m
and a normal subgroup Ny of Gy, ,, and an isomorphism ¢ : Gy, ... ¢, m/Ni1 —
Gy, m/N2 such that

Gy foom = {(91,92) | ¥(91N1) = gaNo}.

If Ny contains SLy(Z/mZ) then clearly Nj is contained in SLg(Z/mZ) 1, because
N; x SLy(Z/mZ) C Ny x Ny € Al (m).

Due to the isomorphism 1, we have Ny = SLy(Z/mZ)"~! and Ny = SLo(Z/mZ). In
particular,

G foorm /N1 = Gyom /No = (Z/mZ)".
This implies that 1 must be the identity map, because Gy, ... . m is the graph of

1, which of course lies inside A,(:) (m). The proof is now complete. O

4.2 Distribution of Fourier coeflficients

In this section, we study {a(n) (mod m)} when n has only finitely many prime
factors. The one prime factor case is just an immediate consequence of Lemma [1.1.5]
and Chebotarev’s density theorem when the corresponding f(z) is a newform. For a
larger family of cuspforms, we have the following result when we study over n with
w(n) =1.
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Proposition 4.2.1. Let f = c1f1 +cafo- -+ fr be any cuspform with coefficients
in Q. Assume that all the f; are pairwise twist-inequivalent newforms without CM
of same weight k. Then there exists an integer Ny such that for any integer m
co-prime to Ny satisfying m ~ ¢(m), and 2w(m)+r — o(¢), where £ is the smallest
prime factor of m, the set

{a(p) (mod m)| p, prime},
18 equidistributed.

Proof. Take any residue class a € Z/mZ. It follows from Lemma that for each
tuple (a1, a2, -+ ,a,) € (Z/mZ)" and (A1, A2, -+, \r) € ((Z/mZ)*)",

#{diag(Ay, -+, Ay) € (GLa(Z/mZ))" | det(A;) = Ai, tr(A;) = a; VI <i<r}

is m?" 4+ 02" (™m?2" /1), where £ is the least prime factor of m. In particular,

#{Ac AP (m) | (A1) = a1, r(Ay) = ar} 2

¢(m)
(¢(m),k—1)

+ 02 Mm?2 /0). (4.3)

Therefore, the set

{plai(p) = a1, az(p) = az,---a,(p) = a,}

P(m) 27 r4w(m), 2r )

. AN TS +0(2 4 . . . 2r r4w(m), 27
has density w(m)’k—l)(m#méﬂ) ™) which is precisely ™ R
Now the number of tuples (ay,as, - ,a,) with cia; + coas - - + cra, = a is m" 1.

Therefore we have a(p) = a, for a set of primes p with density

Lm0 )

#SLo(Z/mZ)"  m’

for any m satisfying m ~ ¢(m), and 2¢(™+" = o(¢), where / is the smallest prime
factor of m. O

Now to study {a(n) (mod m)} with n having more than one prime factor. For
any integer M > 1, denote

Ny(z) ={n <z |wn)= M}

It is a classical result [68] that #Nps(x) ~ ﬁ(kﬁm(log logz)M~1. We now

need the following generalization. E|

For proof, the reader may refer to Lucia’s answer on
https: //mathoverflow.net /questions/156982 /chebotarev-density-theorem-for-k-almost-
primes.
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Lemma 4.2.2. Let Py, ..., P. be disjoint subsets of the primes with density
respectively o, ..., .. Let N(Mjaq,...,a,) denote the set of integers that are
products of M primes with exactly a; of these primes chosen from the set P;. Let
us assume that all a; > 0, a; > 1, then for any fired integer M and as x — 00, we
have the following.

T a;

Z 1~MH % ’ (loglog z)M~1,
J

-, (a;)! (log )

We now consider the factorizations of any a € Z/mZ in-to M many terms
over Z/mZ. Let us write a factorization a = ajag---ap;, with all a; € Z/mZ.
Now given any tuple @ = (a1, as, - ,an) € (Z/mZ)™, denote p(a@) = aras - - - ap.
We say that two vectors a; and a3 are equivalent, i.e. ai ~g,, a2 if and only if
they differ by a permutation in Sy;. Given any element @ € (Z/mZ)M, denote
ng = [[1<;<p 1!, where ay,az,- -, ay are the set of all distinct terms that appear
in @ with a; appearing n; times. In particular, we have ), ., n; = M. We shall
use these notations to study the case of newforms in the next theorem.

To generalize that, we need to work with M, pr(Z/mZ), the ring of matrices
over Z/mZ with r-rows and M-columns. Then we consider the natural action
of Sy on the columns of M,y (Z/mZ). Given any element A € M, (Z/mZ),
denote C1(A4), C3(A),---Cp(A) and Ry(A), Ra(A),--- R-(A) respectively be the
columns, and the rows of A. Moreover, denote n4 to be the number [[; ., ., ni!,
where C1,Cy, -+, C), be the set of all distinct columns that appear in A with C;
appearing n; times.

Theorem 4.2.3 (Bhakta, Krishnamoorthy, Muneeswaran). Let M > 1 be any
integer, and f = c1f1 + cafe- - + ¢ fr be any cuspform with coefficients in Q.
Assume that all the f; are pairwise twist-inequivalent newforms without CM of same
weight k. Then there exists an integer Ny such that for any integer m co-prime to Ny
satisfying m ~ ¢(m), and 2°™*" = o(0), where £ is the smallest prime factor of m,

the following asymptotic formula holds for any tuple @ = (a1, ag,- - ,a,) € (Z/mZ)".
#{n € Ny (z) | a1(n) = a1,a2(n) = az--- ,a.(n) = a,} ~ da(m) 1
#Ny () A M

for some dz(m) > 0, which is an effectively computable constant.

Proof. Let us first do the case r = 1. We use Lemma [£.2.2] and Proposition [£.2.1] to
get

#{n € Nu(z) | a(n) = a} 1 M!
#Npy(x) ~ M Z

n
&‘E(Z/mZ)M/S’M

p(@)=a
Now for the case » > 1, we use the proof of Proposition for r > 1. More
precisely, for each tuple (), a®, ... a(")) € (Z/mZ)", the set

plaip) =a®,a(p) =a?,- -, a,(p) = a"}
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has density ~ % Similarly, as in the case » = 1, it follows from Lemma that
the required proportion is given by

1 M!
mrM Z P

AEMTxM(Z/mZ)/SNI na
p(R1(A))=a1, p(R2(A))=az,p(R-(A))=a,

the proof is now complete taking dz(m) to be the summation in the above line.
O

Remark 4.2.4. Writing m = ¢{'£52...05, for any a € Z/mZ we have an element
in ZMHJZ X ZJESRZ X ... X Z/USSZ of the form (ui€]*, ualsy?, ..., usl?*) where u; are
units in Z/¢;", and 0 < n; < e;. Then the number of ways of writing a as product
of M elements in (Z/mZ) (not counting under the equivalence by Syy) is

¢>(m)M*1H DD DS P (4.4)

inf—2=0ip_5=0 i=0

Let us first look for the case M = 2 and m = £°. Let us write a = uf™, where
w is a unit in Z/¢°Z and n € {0, 1,2, ...,e}. Then the number of times that a as a
product of M number of terms is the same as the number of times ¢ as a product
of M terms. Hence it is enough to compute the number of ways of writing a as
a product of two terms only for £". Any ¢ can be written as the product of two
terms in the following ways

" =u(u ) = () (w Y = (w ) (w ) = (wl™)u Tt

for any unit u € Z/¢°Z. Hence the number of times ¢" can be written as product of
two terms is (n + 1)¢(£°).
In general, the number of times a can be written as product of M terms is

M -2

n i1
> > ]t
tm—2=012p-3=0 1=0

This can be realized by noting that a product of M terms is also a product of
two terms; one term is a product of M — 1 terms and the other. Then for any
a € Z/mZ we have an element in Z/¢7'Z X Z/3?Z x ... x Z /€557 under the natural
isomorphism say (u1 €7, ugls?, ..., usls) € LT L X ZJUPT X ... X L[LSZ, where
u; are units and 0 < n; < e;. Counting the number of ways of writing a as a product
of M terms is equal to the product of the number of ways of writing each coordinate
of a as a product of M terms.

The reader may note that the product in is always at least 1. In particular,
the product is exactly 1 if and only if a is a unit in Z/mZ.
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4.3 Exponential sums for modular forms: the in-
verse case

One may now ask that for a given prime ¢ and small enough ¢, how many primes p
are there for which an estimate like (3.2)) holds. Our attempt to answer this question
is summarized in the following results.

Theorem 4.3.1 (Bajpai, Bhakta, Garcia). Let f(z) be a newform of weight
k, without CM, and with integer Fourier coefficients. Consider the set Pr =
{¢ prime | (k —1,£—1) =1}. Then, for any fized € > 0 and any large enough
{ € Py, the set of primes p satisfying

have density at least 1 + O, (@%35) , where § = 0(¢) is same as in Theorem .

Intuitively, this theorem can be regarded as the inverse (holding /¢ fixed and
varying p) of Theorem and in this analogy, the following result is the inverse
of Theorem Just for the sake of simplicity, we are assuming (k — 1,/ —1) = 1,
which can be easily avoided and will be evident from the proof of the following
theorem.

Theorem 4.3.2 (Bajpai, Bhakta, Garcia). If f(z) is a cuspform, and can be
written as Q linear combination of r many newforms without CM and with integer
coefficients, such that all of these components satisfy GST hypothesis. Then, for
any fized € > 0 and large enough ¢, the set of primes p satisfying

have density at least 27" + O (71222 ) , where § = §(¢) is same as in Theorem [2.2.1]

4.3.1 Proof of Theorem [4.3.1]
) 5

For any prime p, let us denote the roots of 2% — a(p)x + p*~* (mod £) by ap’, By .
Recall that from Deligne-Serre correspondence, we have the associated Galois
representation

P\ Gal (Q/Q) — GLa (Z),
such that a(p) = tr (pgf) (Frobp)) for any prime p ¥ N/. It is clear that the char-

acteristic polynomial of pgf) (Frob,) (mod /) is same as 22 — a(p)x + p*~! (mod ¢).
Following Ribet [74, Theorem 3.1], it is known that the image of this representation
is {A € GLz (Z¢) | det(A) € (Z;)*~*}, except possibly for finitely many primes /.
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In particular, the condition (k — 1,£ — 1) = 1 implies that the induced Galois
representation

pre: Gal (Q/Q) — GLy (Fy),
is surjective for any large prime ¢, and the eigenvalues of the matrix ps ¢(Frob,) €

GL; (Fy) are a,(f) and Bg). From the proof of Theorem we know that an
estimate of type (3.2)) holds provided that,

ord (al(f)) > (¢, ord (,6’1()@) > (¢, and ord (al(f) (ﬁz(f))_l) > (°.
Let us define,
C= {A € GLy(Fy) | ord (M,a), ord (Aa,a), ord (A1 adzy) > eE} ,

where Aj 4, A2 4 are the eigenvalues of A in F,. Now the problem is about computing
the density of primes p for which the corresponding py ¢ (Frob,) is in C. Note that
C' is a subset of GLy () stable under conjugation. Hence, by Chebotarev’s density

theorem, the required density is at least %. For each a # b € F}, let Cy 3 be
the conjugacy class of (¢9). It is known that |C, ;| = (€ + 1)¢. For any element A
in Fp2 \ Fy, we denote ¢y to be the conjugacy class of matrices in GLs (Fy) having

eigenvalue A. It is known that |C\| = ¢(¢ — 1). Now, we consider the following sets:

S1={a,b€F; | ord(a) > %, ord (b) > £°, ord (ab™") > ¢},
Sy ={A€Fp\F; | ord(\) = ord (\*) > ¢, ord (A1) > ¢},

and realize that |C| = $((€+1)¢|S1| + £(¢ — 1)|S2]). This reduced to the problem of
estimating S1 and Sy. Let us first estimate S;. Take o to be a generator of ;. For
any divisor d of £ — 1, the set of all elements of F; having order exactly d is of the

form o7 with (¢,d) = 1. In particular, the number of elements of F; with order
greater than £¢ is given by

DY sd)=t+0|[ > ¢d) | =L+0(d(t —1)) =L+0. (£*),
s s

where d(-) is the divisor function, and here we are using the well-known upper
bound on the divisor function (see [71]) for any prime ¢ large enough. Now note
that ord (abil) < ¢ implies that ab~! belongs to a set with only ka—l pee O(K)

many elements. By the argument above, this set has only O, (625) many elements.
This observation implies that

| {a,b € F; | ord(a), ord (b),orord (ab™") < £°} | = O (£*T1).

In particular, we then have |S1| = ¢2 + O, (£2¢T1).
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Let us now estimate |S’2| Take 7 to be a generator of IFj,, then any A € Sy, of

order d, is of the form Te T , with (i,d) = 1. We also have an order restriction on

A=1, which implies that @D z > ¢¢. Hence,
sl= 3 e=ero( X ).
dje?—1 dje?—1
@i > @i <

Note that, the condition (de—l) < ¢¢ implies that d < 1!, Therefore,

> ¢(d) < TR — 1) = O, (£115) .

dje2—1
d <£5
(d,2—1)

Therefore, the required density is at least

1 |51

1 kN < 1 )
- 122 140, [ —— .
=1 IGL; (Fy) | ML |GLs (Fy) | (132

4.3.2 Proof of Theorem 4.3.2]
Let pyy: Gal (@/Q) — GLa, (F¢) be the map defined by

pf1)( (U)
pfzyg(o')
g

TG

It is clear that the image of this representation is contained in A,.(¢), where

92

Ar(l) = | det(g1) = det(gz) = - -+ = det(gr)

gr

It is in fact the case that the image is contained in A%~ (£), where A=Y (£) denotes
the set of matrices in A, (¢) in which determinant of each block is a (k — 1) power
in F}. Due to [74, Theorem 3.1], we may assume that for any prime ¢ large enough,

the image of each py, , is A(lk_l)(é), which coincides with the set of matrices in
GLy(F,) whose determinants are a (k—1,¢— 1) power in F}. If the image of ps ¢ is

not exactly A&’H)(z), then by [63] Lemma 5.1] we get a set of quadratic characters
{Xi,j,é}lgi,jgr Of Gal (Q/Q) SllCh that

ps..e (Froby) is conjugate to x; ;¢ (Froby) pg; ¢ (Frob,) in GLo(IFy),
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for all 1 <i,j <r. In particular, a;(p) = £a;(p) (mod ¢), for all 1 < i,j < r, and
any prime p{ N{. This implies that ay’p) + ﬂé“” = :I:(af’p) + ﬂéj’p)). Moreover, we
also know that

agi,p)ﬁéi,p) _ Oééjm)ﬁéj’p) =p*1 (mod £).

In particular, this means that
{a/’f’)vﬂéw)} — :t{agj’p),ﬂéj’p)}ﬁl <4,j <r,and for any prime p{ N{. (4.5)
Due to GST, for a positive density of primes p, none of these
{a(i’p)ﬁ_(j’p)}lgi,jﬁ or =+ {a(i,p)7a—(jm)}lg#S2

are roots of unity. For those primes p, following the arguments in the proof of
Lemma, , and considering the set in 1i each element of the set {agl’p ) By (3:p) Hi<ij<2
has order larger than 4 except for finitely many primes £. We then have a contradic-

tion to l) and hence we may assume that the image of py, is indeed AR ()

for any prime ¢ large enough.

[ Ol
INSRICTK
of conjugacy classes of elements in Agk_l)(é) whose eigenvalues satisfy the con-
ditions of Theorem m Note that any tuple (aj,ag, - ,a2.) € (F;)?" with
ord (a;) > ¢¢, ord (aia; ) > £°,Yi # j and a;a,11 = aja;q1,Vi,j odd, satisfies that
[, oaa Caisairs Ck=1(¢). We call these tuples nice and we want to count them.
First of all note that,

Hence, the required density is at least where C¥~1(¢) is the union

(6 _ 1)r+1

{(a1, a2, ,az,) € (Fp)* | aiaip1 = ajaji1,¥i, j odd} = C—1k-1)

On the other hand, for any (k—1)" power X in F}, note that ab = A and ord (ab™ 1) <
¢¢ imply ord (a?A™!) < ¢°. From the proof of Theorem for a fixed A, the
number of such a is O (¢£%¢). Moreover, ord (a) < ¢¢ or ord (b) < £¢ holds for only
O.(£%%) many elements a or b. In particular, the number of tuples that does not
come into our consideration is

142 £r+25

O™ =0, ——— | .

> o =0 ()
A, (k—1)t" power

In particular, we then have

Cr )] > > < II ICai,amI) (4.6)

(ay,a2,,a,) nice \i odd

-(%57) (== o ()

e+1)\"
2

has £(¢+1)
Vi odd, the

is coming because each conjugacy class C,,

=C

Q41,049

The extra factor ( il

many elements and taking into consideration that Cq, q,,,
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extra factor % is coming for each component. The proof is now complete because
-
AF ()] = (1Cafl) 0

-1 C—Lk—1)

4.4 On a local-global phenomenon

In this section, we shall discuss a special phenomenon of the Galois representations
for composite modulus, which we call a local-global property. For example, in the
proof of Lemma [£.1.3] we see that the Galois representation modulo composite
number m has a certain property if and only if it has the same property modulo
any of the prime factors of m. Following the same, we shall discuss other analogous
cases in this section.

For any arbitrary number K, we arrange the elliptic curves over K with respect
to the usual height h(E) = ||(a, b)||, where we consider the usual norm in R ® 0% =
R2K:Q) Here F is in the Weierstrass form given by Ewp - y? = 23 + ax + b with
a,b € Ok, the ring of integers of K. Denote Sk (x) = {(a,b) € O% | h(E(ap)) < x}.
It can be shown that #Sk () = cxz?*Y, for some constant cx > 0. In this regard,
we first prove the following. Throughout the whole section, we say a property holds
for almost all elliptic curves over K, if the property holds for all but o (xz[K ‘Q])
many elliptic curves in Sk (z), as © — oo.

Theorem 4.4.1 (Bhakta). Let K be a number field with discriminant dy and degree
Dy, over Q. Consider E/K to be an elliptic curve and m be any natural number
co-prime to 30.

(i) The induced Galois representation pg,m is surjective if and only if pg¢ is
surjective for any prime £|m, provided that K contains no proper abelian
extension of Q, or if m is co-prime to the discriminant Dg.

(i) Any integer m co-prime to 30, that is not square-free, is bad. Moreover, for
any number field, K,, native to m, almost all the elliptic curves over K,, are
exceptional.

Before proceeding to the proof, let us first shed some light on (ii). We call a
natural number m, bad if there exists a finite extension K,, of K, and an elliptic
curves E over K,, such that im(pg m) # GL2(Z/mZ) but im(pg ) = GL2(Z/VZ)
for any prime ¢ | m. Moreover, we call such a number field as native to m and such
an elliptic curve as exceptional elliptic curve for the pair (m, K,,). This is how we
measure the failure of local-global property for Galois representations.

4.4.1 Proof of Theorem [4.4.1]

Proof of part (i). Let m be an integer co-prime to 30. If pg ., is surjective, then
PE¢ = Py, ¢ © PE,m is surjective for any £ [ m, where

Pl o GLo(Z/mZ) — GLo(Z/(Z),
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is the natural projection.

For the converse, it follows from the given hypothesis that im(pg o) = GL2(Z/¢Z)
is a quotient of im(pg ., ) for any prime £|m. In particular, PSLy(Z/¢Z) € Occ(G) for
any prime ¢|m, where G = im(pg ). It follows from Lemmathat, SLo(Z/mZ)
is contained in G. We then have that SLy(Z/mZ) = comm(G), and in particular
[G : comm(G)] | ¢(m). On the other hand, the Weil pairing gives [K((n) : K] |
[G : comm(G)]. It is now enough to ensure that [K((n) : K] = ¢é(m). Note
that, [K((n) @ K] = [Q(¢m) : KN Q(¢m)], and hence it is enough to ensure that
K NQ(¢n) = Q. We shall see the imposed conditions on m or K gives us that
privilegeEI

First of all, since K N Q(() is an abelian extension of Q contained in K, the
first imposed condition on K forces the intersection to be trivial. On the other
hand, since K N Q((x) is an extension of Q contained in both K and Q({n),
it is evident that the condition (¢(m), Dx) = 1 implies K N Q(¢,n) = Q. More-
over, the assumption (m,dx) = 1 immediately implies that the discriminant of
KNQ(¢n) is only 1. In particular, in all the cases we have KNQ((,) = Q, as desired.
Proof of part (ii). Take any integer m that is not square-free. Write m = H?Zl s
and without loss of generality let us assume that e; > 1. Consider F' to be an
extension of QQ contained in @(C@il) of degree ¢;. We can do that, because e; > 1
by the assumption. It is evident that, F N Q({s, ) = Q. Now for any ¢ > 1, we have
Q(Ce,) NQ(¢ger ) = Q, and in particular, we have F'NQ(¢,) = Q, V1 <i < d. Hence,
for any 1 <7 < d we have

[F(Ce.) : FI = [Q(¢e) : FNQ(C)] = i — 1,

where the last implication is true because F' N Q({y,) = Q. Let us now denote
K,, = F, and show that the pair (m, K,,,) satisfies all the necessary conditions for
m to be a potentially bad number. First, we need to show that there exists at least
one elliptic curve E over K,,, for which

im(pg.m) # GL2(Z/mZ) but im(pge,) = GL2(Z/0,Z), ¥V 1 <1i < d.

We know from [I00, Proposition 2.1] that, there exists at least one elliptic curve
E/K,, for which im(pg¢,) D SL2(Z/0;Z), ¥V 1 < i < d. In fact, this holds for almost
all elliptic curves over K,,. From the construction, we know that [K,,(s,) : K] =
£; — 1, V1 <4 < d. Now it follows from the argument of part (a) that, i.e., due to
the Weil pairing that, im(pg ¢, ) = GL2(Z/4,Z), ¥V 1 < i <d.

On the other hand, for any elliptic curve E/K,,, if the image of pg ., is
GL2(Z/mZ), then we must have that |K,,(¢n) : K| = ¢(m). This is because,
it follows from Weil-pairing that ¢, € K, (E[m]) and o((,) = (%Et(pE”"(g)), where
Cm is the primitive m'" root of unity. In particular, the fixed field of SLy(Z/mZ)
correspond to K ((,). This shows that [, ((n) @ K] = ¢(m). Instead, we have

(K (Cm) : K] = [Q(Cm) = K NQ(Gn)] < [Q(Cm) = K] < o(m),

2This is not true in general. For instance, one may consider K = Q(+/—15) and then
we have [K(C15) : K] =4 # ¢(15).
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since K, is a non-trivial extension of Q contained in Q(¢,,), a contradiction. O

Remark 4.4.2. In part (b) of Theorem we assume that m is square-free. Note
that this assumption is necessary. Otherwise, we do not have the failure because

GLy(z/mZ) = [] GL2(Z/(Z).
¢, prime
Llm
Let us now discuss some interesting consequences of Theorem [£.4.1] If one wants
to make Proposition 5.7 in [TI00] effective, one can see the explicit constant is given

by %;;) First let us recall the definition of the set By, () from [100].

Corollary 4.4.3. For any m € N with (m,30dx) = 1, the explicit constant is given
by

Proof. Tt follows from the proof of Proposition 5.7 in [I00], that |Bg (x)| <

%%. It is now enough to show that
xT 2

Bim(x) € | Brao(X).

Llm

It follows from Theorem that (", Bx,e(2)® 2 Bg,m ()¢, and this completes
the proof. O

4.4.2 Local-global for pairs of elliptic curves

Serre introduced a representation associated with the pair of elliptic curves (analo-
gously for the arbitrary tuple as well) as,

PExEyn(0) = ('DE“S(J) . 0 (G)> for all o € Gal(Q/Q).

In this case, Serre showed an analog of his open image theorem. To be more precise,
Serre showed that im(pg, xg,.¢) = A(£) for all but finitely many primes ¢, where
the diagonal subgroup A(¥) is given by,

Jones in [47] considered this topic and proved an asymptotic estimate analogous
to Grant’s main result in [44]. Grant’s work was based on counting rational points
on certain modular curves. Jones’s approach was by studying the distribution of
Frobenius symbols using the multi-dimensional version of Gallagher’s large sieve.
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Theorem 4.4.4 (Bhakta). Let K be a number field with discriminant dx and
degree Dy, over Q. Consider (Eq, E2) be any pair of elliptic curves over K, and m
be a natural number, and m be any natural number co-prime to 30. The induced
Galois representation pg, x g,,m has image A(m) if and only if, pg ¢ has image A(f)
for any prime £|m, provided that K contains no proper abelian extension of Q, or if
m is co-prime to the discriminant Dg.

Proof. One direction is obvious. For the other direction, by Theorem [:4.1] we have
that
(0, ) = i1y m) = GLa(Z/mT).
Let G be im(pg, xg,,m) € A(m). It follows from the given condition that A(¢)
is a quotient of G, for any prime ¢ | m. Denote SA({) to be the set of elements
in A(¢) whose each block has determinant 1, and G be ker o m,, /- (G) C A(L7),
where r is the maximum power of ¢ dividing m, and 7, /,- be the natural projection
A(m) — A(m/Lem).
Moreover, we consider G = pr,(G®)) C A(¢), and set

Gl = {g € GLy(Fy) : (I g) € G’}, Gl = {g € GLy(F) : (9 1> c G’}.

From the given condition we know that Occ of both G and G}, contains PSLy(Fy), for
every prime ¢ | m. In particular, it follows from Lemmathat G contains SA(m),
which is defined to be the set of elements in A(m) having determinant 1. According to
[47, Lemma 3.3|, G # A(Z/mZ) implies there exist a set C1 x Co C GLo(Z/mZ) x
GLy(Z/mZ), closed under conjugation such that det(Cy) = det(Cz) = 1 with
G N (Cy x Cq) = ¢. This contradicts the deduction that G contains SA(m). O

Let E be an elliptic curve over an arbitrary number field K, and consider
A(E) = 30][sens, ¢, where Mg is the set of primes ¢ > 7 such that pg, is not
surjective. Now for a pair of elliptic curves E; x E5 over K, let us consider

A(El X Eg) =30 H é,
LEME, x By
and Mg, «p, is the set of primes ¢ for which im(pg, x g, ¢) # A(£). It is clear that
ICIII(A(El),A(Eg)) ‘ A(El X Eg)

If they are not equal, then there exists a prime ¢ such that im(pg, ) = GL2(Z/(Z)
fori € {1,2}, and im(pp, x5, ¢) # A(¢). Now by [63, Lemma 5.1|, pg, ¢ and pg, ¢ are
conjugate up-to a quadratic character of Gal(Q/Q). It follows from [64, Proposition
1] and Theorem the following.

Corollary 4.4.5. Let K be any number field satisfying one of the conditions in
part (a) of Theorem and By, Ez/K be two elliptic curves without complex
multiplication, which are not isogenous over Q. then we have the following equality

im(pEg, x£,,m) = GLa(Z/mZ),
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for any integer m co-prime to A(Ey x FE3) < max{hl,hg}o(l), where hy and ho
respectively be the heights of E1 and Fs.

Proof. It follows from Theorem that im(pg, x gy.m) = GL2(Z/mZ), for any
integer m co-prime to A(FE; x Es). For an upper bound on A(F; X E3), the reader
may look at Proposition 1 in [64]. O

Remark 4.4.6. Jones in [47] showed that almost all pairs of elliptic curves over Q
are pairwise non-isogenous over Q.

4.4.3 The modular analog

Let f(z) be any newform of weight k and level N. It is known due to Deligne-Serre
correspondence that, for any integer m we have an associated Galois representation

prm : Gal (Q/Q) — GLy (Z/mZ),

such that a(p) (mod m) = tr(ps,m(Frob,)) for any prime p { Nm. When f is
without CM, it follows from [74] that, there exists an integer My such that for any
integer m co-prime to My, the image of this representation is given by

Apm = {A € GLy (Z/mZ) | det(A) € (Z/mZ)*)F 1} .

Following the proof of Theorem [£.4.1] one could see that for any integer m co-prime
to 30, im(py..,) contains SLo(Z/mZ) if and only if, im(py ) contains SLo(Z/¢Z) for
any prime £ | m. In particular, one could perhaps get a smaller My, as long as we
want the image to contain only SLo(Z/mZ). In this direction, we ask the following.

Question 4.4.7. Is it true that
im(pgm) = Agm if and only if, im(py ) = Age,
for any prime £ | m?

It is not hard to notice that the answer to this question is yes, provided that
¢=19m) s in the field corresponding to ker(pg.m).

Moreover, any cuspform f(z) can be uniquely written as ¢1 f1 + cafa + -+ ¢ fr,
where ¢q,¢2, -+ , ¢, € Q. One can attach a Galois representation prm : Gal (@/Q) —

GLa, (Z/mZ) defined by the map

Pfl,[ (‘7)

P,fZZ(U)
g

' pfr,g(a')

In this case, the image is contained in Ay, g, ... &, (m), where Ay, k, ... k,.(m) denotes

the set of all block matrices of size 2 x 2 in GLy (Z/mZ) in which determinant of
each block is a k; — 1*" power of some element in the multiplicative group (Z/mZ)*.
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Arguing similarly as in the proof of Theorem one can see that, im(ps )
contains SLo(Z/mZ)" if and only if, im(py,,) contains SLo(Z/¢Z)" for any prime
¢| m. One can show that when fi, fa,-- - , f, are not pairwise equivalent, im(py )
contains SLo(Z/mZ)" for all but finitely many primes ¢. In this regard, we again
ask the following stronger question.

Question 4.4.8. Is it true that

im(pﬁm) = Alﬁ,kz,m Jr,m if and only if, im(pﬁg) = Akl,k2,~~~,kr,€7

for any prime £ | m?

75



Chapter 5

Solutions having
polynomial-growth

The main goal of this chapter is to extend the main result of Shparlinski [85] for a
larger class of cuspforms. In certain cases, we also study the same problem, modulo
composite numbers. As already explained in the introduction, the obtained solutions
in Chapter [3] could be too large. In this chapter, we aim to achieve solutions of
smaller sizes. Let us first discuss the tools that will be used throughout.

5.1 Growth results and exponential sums over finite
fields

Let m, s,w > 1 be any given integers, and A, As,- -+ , A, be some subsets of Z/mZ
satisfying
w
[ #4: =m'*2, (5.1)
i=1
for some 8 > 0. For any a € Z/mZ, we denote Ts(a) be the number of solutions to

the equation
w

Ha(li) + H a(;) + ...+ Hagi) =a (mod m), (5.2)
i=1

i=1 i=1

where ay) € A;, V1 <j<s,1<i<w. Following Section in Chapter [2| we
then have the following counting formula,

A1 # Ao - - HA NS 1 m—1
T,(a) = A in #A) Lo EZ 3 e, ()\a(l)a(Q)---a(“’))
A=1 [a(M A, a@) A,
(5.3)
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When w = 2, an old result mentioned in Exercise 14.a in [08, Chapter 6] says that

max,\ez/mz Z Z €mn (/\alag) S \/m#Al#Ag. (54)

a1 €A1 az€A2

To prove this, the reader may use the same argument as in the proof of Lemma 7 in
[21], replacing ¢ by m and taking a := 14,,b:= 14, and ¢ := e,,. As an immediate
consequence, we obtain the following by the bound at (5.4)) in (5.3).

Corollary 5.1.1. For w =2 and any s > 2/03, the sum

agl)af)+a§1)a§2)+--~agl)a§2)

is equidistributed in Z/mZ, where B is the same constant as in , and ag-l) €
Al,af) S AQ,Vl <j<s.

To study (5.2) for w = 3, we shall use the following bound by Shkredov in 83,
Theorem 5].

Theorem 5.1.2. Let Ay, As, A3 C Fy be arbitrary sets such that for some § > 0 the
following holds
|Ay||Az]|As| > 17, (5.5)

Then
m Aql|Asl] A-
aAXxe(z/0z)* § § § e/ (\ajazas) <<M.

B
a1€A; ax€Az az3€A3 £31oeE/A)+4

To treat the case w > 3, the following bound due to Bourgain, Gilbichuck in
[21, Theorem 2| will be handy for us.

Theorem 5.1.3 (Bourgain-Gilbichuck). Let 3 < w < loglog? be a natural number
and & > 0 an arbitrary fixed constant. For any subsets Ay, As,--- , A, CFy\ {0}
with

x| - [Aa| - (|3 - [ALDY3 > 0147, (5.6)

there is an estimate

Ay|lAs]---|A
maX)\G(Z/ZZ)* Z Z .. Z ey ()\alaz...aw) << H[JOA#
a1 €A1 az€A; aw€AL

To study modulo composite numbers, we need to study these exponential sums
over arbitrary finite fields F,. For which, we could use Theorem 4 of Bourgain-
Gilbichuck in [2I]. With this, we get a non-trivial bound assuming that, for any
d € F, and any proper subfield S of F;, dS has a small intersection with each of
the set A;. However in our case, each of the sets A; will be in a prime field Fy,
and hence, we can not use this result. However, Theorem and Theorem [5.1.3
could be used to study the square-free integers. To be more precise, using these two
results, we have the following.
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Corollary 5.1.4. Let m be any square-free integer, and Ay, Ag, -+ , A, C (Z/mZ)*
with
| Al - [Ag] - (|As] - |Au)/B > m!HF. (5.7)

Then we have the following estimate

[Ax||As] - - - [Au|
Mmaxye(z/mz)* Z Z Z €m (AQIGQ"'GUJ) < WM’

a1 €A1 az€A; aw€AL
for some prime factor £ of m.

Proof. Note that there exists a prime ¢ | m for which
AT 145 - (457 [ADD S > 0P,

where AZ(-Z) is denoted to be ¢! component of 4;, V1 < i < w. The proof now follows

applying Theorem for {Agf)}lgigw, and trivially estimating the exponential
sum associated to the other components. O

5.2 Residue classes over small range

Let f(z) be a cuspform with coefficients in Q, and m be any integer. In this section,
we give a lower bound for the number of elements in the set {a(n) (mod m)},ecr,
where [ is some small set. We know from section that the set is Z/mZ, when I
is a large set, and f(z) is of a certain type. In this section, we shall consider a small
set I. Shparlinski in [85] considered this for the Ramanujan-tau function. Arguing
along the same lines, we first have the following generalization.

Lemma 5.2.1. Let f(z) be any Hecke eigenform, and m be any integer. For any
set of primes S, consider

Nym,s(x) = #{a(p),a(p®) (mod m)|p < Va}.
If S has a positive density, then for any x > 1,
Nf,m,S(x) >q l‘1/4+0(1),

provided that z'/? < L, where L is the largest prime factor of m. In particular
Nf,L’S(mQE) >g¢m2zteM) | for any 1 > e > 0, provided that m® < L.

The proof is essentially the same as in [85]. It follows from the Hecke relation
a(p?) = a(p)? — p*~1, and the fact that the number of distinct residue classes p*~!
(mod m), p <+/x < Lis> \/z. Given any integer m, the condition m?® < L is, of
course, satisfied for any small £ > 0. However if we want to take any 1/2 <e < 1,
we should have that vy (m) = 1 and L is sufficiently larger than the other prime
factors of m.
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Let f1, fo, -+, fr be a set of eigenforms of the same weight k& and level N, and
consider

Sty foreifrm ={p | a1(p) = az(p) - = ar(p) (mod m), p*~ ' =1 (modm)}.
(5.8)

Then we have the following.

Lemma 5.2.2. If all of the f1, fo, -, fr are newforms without CM, then Sy, t,.... f,.m
has a positive density of primes, if it is non-empty. Otherwise there exists an integer
Ny, such that for any integer m co-prime to Ny,

ai(p) = +aj(p) (mod m), p*"1 =1 (modm)V 1<i,j<r,
for a set of primes p with positive density.

Proof. Let us first start with recalling the Galois representation from (4.2)

Pf1foyee s frm * Gal(@/(@) — GL2T(Z/mZ).

Now consider

A
C= o . € SLo(Z/mZ)" ’ tr(Ay) =tr(4s) = -+ = tr(4,)

A

If S¢, 45, f,,m is non-empty, then C'Nim(py, f, ... f.,m) is also non-empty, and we
have the required positive density due to Chebotarev’s density theorem.

On the other hand if Sy, f,,... f,.m is empty, then it follows from that
Gy, o, fm does not contain SLo(Z/mZ)". Then Lemma in Chapter
implies that there is more than one equivalence class in the set {f1, fa2,- -, fr}. Let
firs fiss -+, fi, be the representatives from each class. Again applying Lemma
we see that Gy, r,,.....s, ,,m contains SLy(Z/mZ)" . The proof is now complete due

to (4.1). Also, note that the condition p*~! =1 (mod m) is satisfied because we
are working with the conjugacy classes in SLo(Z/mZ). O

Let us now consider f1, fo, ..., fr be the Hecke eigenforms with Fourier expansion
o0

fi(z) = > ai(n)z™, and a;(n) € Q, V1 < i < r. For any homogeneous polynomial

P(z1,29,...,zy) with P(£1,£1,...,£1) # 0, set a(n) = P(ai1(n),az2(n),...,ar(n)).
Consider the quantity Ny, s(x) as in Lemma Since we are assuming that
P(+1,+1,...,41) # 0, we can also assume that P(+1,+1,...,+1) # 0 (mod m), for
any integer m with sufficiently large prime factors.

Corollary 5.2.3. Suppose that f1, fo,- -+, fr are all newforms without CM. Let m be
any integer with sufficiently large prime factors satisfying that P(+1,£1,...,+1) #£ 0
(mod m), and L be the largest prime factor of m satisfying that m® < L for some
0 <e < 1. Then we have,

m6/2+0(1)

Nf,L’S(mQE) > p

, d =deg(P).
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Proof. Iftheset Sy, #,.... 1, m in (5.8) is non-empty, then it follows from Chebotarev’s
density theorem that for any n > 1,

a(p") = P(ar(p"), ar(p"),---ar(p"))  (mod m),

for a set of primes p with positive density. Since P(z1,z3,- - ;) is a homogeneous
polynomial, we have

P(al(pn)v al(pn)’ T al(pn)) = P(lv L, 1)0’1(pn)d (mOd m)z

where d is the degree of P. On the other hand for any prime p not in Sy, f,.... f..m,

a(p") = Qar(p"),a1(p"),---a1(p")) (mod m), Vn >1

for a set of primes p with positive density, where Q(z1, 2, ..., ;) = P(tx1, 129, -+ , £x,.).
Since P(x1, 22, .., z,) is a homogeneous, Q(z1, 22, ...,Z,) is a homogeneous polyno-
mial of degree d = deg(P). Hence we get,

Qa1 (p"),a1(p"), ...a1(p™)) = P(£1,+£1,--- ,:I:l)al(p")d (mod m).

The proof now follows immediately from Lemma and by the assumption that
P(£1,+1,---,£1) # 0. Note that the factor 1/d is coming because an equation
2% =a (mod L) has at most d roots over F. O

Remark 5.2.4. Here we are always concerned with when all the ¢; are in Q.
The number of tuples (¢, ca,- -, ¢,.) of height at most H is ~ (2H/({(2))", see [46,
Theorem B.6.2] Among them, the number of tuples (c1,c2, -+, ¢,) with > 1" | d¢; =
0is ~ H"~!. In the sense of heights, we are saying that almost any f in Si(Q, N)

of the form Y ¢;f;, ¢; € Q, satisfy the condition in Corollary |5.2.3
i=1

Now to study the case when not all of the f; are newforms without CM, we
need to count the number of points on the intersection of certain hypersurfaces. In
this case, we have a weaker lower bound in the sense of a lesser exponent.

-

Lemma 5.2.5. Let us consider a(n) = > a;(n), then for any integer m > 1, the

=1

T ’
sum Y a;(p)™ can be written as a linear combination of a(p™ ), 0 < m' < m, where
i=1
the coefficients are polynomials in p with coefficients in Q. Moreover, the coefficient

associated with 1 (resp. a(p)) has the highest degree when m is odd (resp. even).

Proof. By the properties of the Hecke operators, we have

as(1°%) = as(p)?® — (251— 1)p12ai(p)262 b (—1)f <5 -QF 1>p12ﬂ12ai(p)2_’_

+ (-1,
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and
) = s = ()0 e 1 (7)o

3

for any f € Nand ¢ € {1,2,--- ,7}. Denoting »_ a;(p)™ = A, we see that a(p™)
i=1

1=
can be written as a linear combinaton of Ay, Ay, -+ , A, with the coefficients being
polynomials in p. The proof now follows inductively, as A1 = a(p).
O

T .
Lemma 5.2.6. Let a1, as,...,a, be any r real numbers, s; = Y al, and consider
i=1
f(x) = 2" + "t + @™ % + ... + ¢_17 + g be the polynomial whose Toots
are ai,as, as,...,a.. Then every coefficient q, can be written as a polynomial in

{Sj}j€{1,2,...,r}~

Proof. The proof follows immediately from Newton’s identity on the symmetric
polynomials. More precisely we have

(1"
dk = k' Bk(_817_1!827“' ,—(k_].)'Sk),

for some polynomial By € Q[z1, 22, -, xk]-
O

Proposition 5.2.7. Let f € S(Q, N) be any arbitrary element of the form c1f1 +
cofo+ - crfr, where ¢; € Q, and all the f; are Hecke eigenforms. For any set of
primes S, and any integer m, let us consider

Npms(x) = #{a(p),a(p®), - a(p®) (mod m) |p <27},

Suppose that S has positive density. Then for any § > 0, and any sufficiently large
r > 1, we have
1
Nfm,s(x) >s 257",

provided that /%" < L, where L is the largest prime factor of m. In particular

Ny 1.s(m?) >gmz7~° for any e > 0, provided that m=/™ < L.

Proof. Let y > 0 be any given real number for which Ny, s(z) <y. In particular,
#{a(p) (mod m) : p < x27} < y, and hence there exists a; such that a(p) = a;

o o)

(mod m) for at least primes up-to 2. Now consider the set

Sa, ={p:a(p)=a1 (modm), p< xz%}
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We have that #{a(p?) (mod m) : p € S,, ()} < y, then there exists as such that,

Sa %+0(1) . 1
¢ yl(w) = 22 7 many primes up-to xr. Let us

a(p?) = as (mod m) for at leas
then consider

Sar,ax () =A{p: a(pg) =az (mod m), p € Sy, (2)}.

Since {a(p®) (mod m) : p € Sa,.a,(x)} < vy, there exists ag such that a(p?) =

o Ho(1) . .
az (mod m) for at least #S”;"’(z) = 22" many primes up-to 22 . Arguing

Yy
recursively, we obtain

a(p) =a; (mod m), a(p?) =az (mod m),---,a(p*") =az (mod m),

2= +o(1) . . .
for at least “"2;2T many primes up-to xi, and we denote this set of primes to be

Sa17a27...a2r(37)-
Now the characteristic polynomial of the sequence {a;(p")} is 22 —a;(p)z +p*~1,
and hence {a(p™)} is a linear recurrence sequence with the characteristic polynomial
T

p(T) = [[(T?—a;(p)T+p"—1) It follows from Lemma [5.2.5/and Lemma [5.2.6/that,

i=1
the coefficients of p(x) are polynomials in the prime p, for any p € Su; .as,...0s, (Z)-
Moreover, the polynomial with the highest degree appears only once, with degree
(k — 1)r. In particular, we get a polynomial g(T') of degree (k — 1)r, which satisfies

g(p) =0 (mod m), Vp € Sa17a27---a27‘('r)'

L 4o
In particular, g(p) =0 (mod L) for at least :”;7;(1) many primes p up-to 227 < L.

The proof now follows, taking y = 257 % since g(p) = 0 (mod L) for only O4(1)
many p < L. U

5.2.1 Sums with Hecke eigenforms

Let m be any given integer, and f be any Hecke eigenform. We then want to show
that {a(n) (mod m)},_,om is an additive basis for Z/mZ. This was proved by
Shparlinski when f is given by the Ramanujan-tau function and m is a prime. For
any v > 0, let us consider

N, = {m € N | £ prime divides m = m < ¢'*7}.
Proposition 5.2.8. Let w be any integer, and ~, 3 > 0 be any real numbers. Take

any pairwise disjoint set of primes S1, 59, -+, S, satisfying

> mlt8 —
{#Al#Az #A4,2mP W =23 59)

HAHAY(F Az H#AL)ST >mtP >4

'For a reference, the reader may look at https: //math.stackexchange.com/questions /1348838 /sum-
and-product-of-linear-recurrences.
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where A; = {a(p),a(p?) (mod m) | p € S;}. Set B, (¢) = {m € N, is square-free andp |
m = p > {}. There exists g such that

S

Za(ni) =a (modm)

i=1
1s solvable for any integer a, and

2

2 w=2
5> (1+w)(81;g(%)+4)7 w=3, me B,(ls) (5.10)
s w24, m € B, (ls).
In either of the cases, any such n; has prime factors only from Sy,Sa,- - ,S,.

Proof. The proof for the case w = 2 follows from Corollary since a(-) is
multiplicative and Sy, .Sy are disjoint set of primes.

For higher values of w, we assume that m is squarefree. To prove for w = 3,
note that there exists a prime ¢ | m such that

1APAS| - A > et

where AEZ) is the £*" component of A;. Arguing similarly as in the proof of Corol-

lary we get the following from Theorem

Z Z Z €en ()\0,1(12(13)

a1€A1 a2€A2 a3€As3

Aql|Asl| A
<<| 1]|Az]| 3|.

max/\e(Z/mZ)* 5
{8Tog(8/B)+4

Now note that there exists £5 such that, the following holds for any m € B({3),

Aq||As]|As|\° Aq|| Azl As))®
O((I il ﬁall 3|> ):0((| 1/|42(|45)) )
(FTosts/A T4 m

since s > (8log(8/8) + 4)(1 + ) by the assumption. The result follows this case
from the formula at (5.3).
For a proof of w > 4,, we follow the same argument as is the previous case and

use Corollary and ([5.3)).
O

5.2.2 Sums with a larger class

Let us now consider a modular form f with rational coefficients of the form
c1fi + cofo + - 4+ ¢ fr, where ¢; € @Q, and f; are all Hecke eigenforms with
rational coefficients. More generally, one can also consider a new sequence a(n) :=
P(ay(n),az(n), - ,a.(n)) for any homogeneous polynomial P(x1,xs,- - ,x,) with
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rational coefficients. The first problem we immediately encounter is that a(-) is not
necessarily multiplicative unless P(-) is a monomial. Even in the case of a monomial,
to get an analogous result to Proposition [5.2.8] we need to ensure that

HAHA - H#A, >m TP
where

A ={P(a(p),+-  ar(p), Plar(p?), - ar(p?)) (mod m)|p e Si},

for some set of primes S;. This is easy if P is of the form z{ for some 4. In general,
we have a somewhat weaker result, which shall be discussed in this section. For any
r-tuple of signs &, let us consider

Sy pm=1{p|T101(p) = -+ = 0vay(p) (mod m), p"~1 =1 (mod m)},
and Ssign,f,m =Useqa1yr S&’,f,m' We then have the following.
Corollary 5.2.9. Let m,w,vy and 8 > 0 be as in Proposition |5.2.8, Take any
pairwise disjoint set of primes S1, S, -+, S, satisfying
#Al#AQ#Aw 2m1+57w:273 (5 11)
HAH A (B Az - #A) T > m!P 0 > 4 '
where A; = {a(p),a(p?) (mod m) | pe€ S;N Seign,fm - Suppose that (P(d),m) =1
for any & € {£1}". Then there exists 3’ > 0 (depending on ) such that for w = 2,
3 and w > 4 respectively, and for s > %, (1+7)81%%(8/ﬁ)+4, and (Btg);,w, any a € 7

can be written as
a(ni) +a(n2)+...+alns) =a (modm), n;eN, i=1,2,--- s,

for any sufficiently large m. Moreover any such n; has prime factors only from
S17S27“' 7SUJ'

Proof. Note that for any p € S

~ = . we have
sign, f,m’

ai(p*) = a;(p*), V1<ij<r
In particular, for any such prime p,

a(p) = P(@)ar(p)?, a(p?) = P(1, 1, Dar(p*)*,
for some & € {£1}" and d is the degree of P. Since #A1# Ay - #A, > m!' T8 for
a particular type of sign-tuple & := (01,09, -+ ,0,), we have
!/ ! / m1+lB

#Al#AQ #Aw > 77 W = 273
. mith8
ARy AL >
where A; = {a(p), a(p?) (mod m) |p € S;N S5 7m}- The proof now follows from
Proposition for any 3’ and sufficiently large m satisfying m?#—#" > 2. O

w >4,
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5.3 Proof of the main results

To prove Theorem we need an explicit value of § in . ‘We shall obtain
this by the known explicit bounds for the sum-product problems over finite fields.
For instance, suppose that m := £ is a prime and A C Fy is a small set. Then the
problem is to find 8 > 0 for which

max{|A + A|,|A- A} > |A'TA.

Garaev in [39] showed that 8 could be taken to be 1/14, then Rudnev in [76]

improved it to 1/11 and the most optimal 3, according to the best of our knowledge

is given by 1/5. This is a result of Roche-Newton, Shkredov, and Rudnev in [75].
Let us now state and prove the main results of this chapter.

Theorem 5.3.1 (Bhakta, Krishnamoorthy, Muneeswaran). Let f(z) be any cusp-
form, and Sy, S5 be any set of primes having positive density with S1 NSy = ¢. Then
there exists an integer Ng, s, such that for any integer m with all prime factors
larger than Ng, s,, and LY > m/L, where L is the largest prime factor of m, we
have the following.

(i) If f(z) is a Hecke eigenform then for any a € Z/mZ, we can write

Za(ni) =a (mod m), n; < m130/33, Vl<i<s,
i=1

for some s < 52. Furthermore, all the prime factors of any such n; are
bounded by O(m%/%), and they belong to Sy U Sy. Additionally, each n; has
at least one prime factor from both S1 and Ss.

(ii) In general if f(z) is of the form Y ;_, cifi, ¢i € Q, fi are newforms without
CM and 3 oic; Z 0 (mod m),o; € {£1}. If none of the associated Galois
representations py, f.. ... f..,m does not have image A,(f) (m) for any subset
I={i1,i0, -+ ,is} of {1,2,--+ ,r} with #I > 2. Then for any a € Z/mZ, we
can write

S
a(n;) =a (mod m), n; < m130/33, V1l <i<s,
i=1

for some s < 52. Moreover, all the prime factors of any such n; are O(m5%/66),

and are in S1 U Sy. In addition, each n; has at least one prime factor from
both Sl and SQ.

Proof of Theorem[5.3.1l For proof of part (i), we take £ = 65/66 in Lemma
and obtain that #{a(p) (mod L), p € S1,p < m%/%} or #{a(p?) (mod L), p €
S1,p < mB/06} > q05/13240(1) > [65/132+0(1) " Consider the set with a larger
size and set it as A;. Similarly, #{a(p) (mod L), p € Sa,p < m%/%} or #{a(p?)
(mod L), p € Sp,p < m8/66} > y65/132+0(1) > [65/13240(1) " and denote the larger
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one as As. Now we use [75, Theorem 6] to both of the sets A; and As. We have
set A}, which is one of the A; - A; or A; + Ap, and a set A), which is one of the
Ay - Ay or As + Ao, satisfying that

#A, > Ll3/22+o(1)7 Ay L13/22+0(1)7

when L is sufficiently large say L'/77 > L'. Where L' = 2 with (L,L') = 1. We
have

H#A, HAL > L13/1140(1) > (LL’)14/12 — mit2/12

On the other hand, realizing A} and A} as subsets of Z/mZ under the natural
inclusion Z/LZ < Z/mZ, the proof now follows from Corollary for any s > 12.
This is because any element in A} - A} is of the form a(ny) + a(n2) + a(ng) + a(n4),
with n1, ne, ng, ng < m3%/33 each n; has at least one prime factor from S;, and at
least one prime factor from Ss.

Now for a proof of part (ii), it follows from Lemma that all any two f;, f;
differ by a quadratic character. In particular, the result now follows the same
argument as in the proof of Corollary by takingd=1and P =) cz;. O

Theorem 5.3.2 (Bhakta, Krishnamoorthy, Muneeswaran). Let f(z) be any cusp-
form with rational coefficients, 0 < e,7 < 1 be any given real numbers, m be a
square-free positive integer and Sy,S52, -, S, be any set of primes of positive den-
sity, with (2 + %52) > 2(y + 1) and S; N S; = ¢, i # j. Then there exists an
integer Ng, s, ... 750”5 such that for any integer m with all the prime factors of m
are larger than Ng, s, ... s,.c, m*/? = o(L) and LY > m/L for some v > 0, we have
the following.

(a) If f(z) is a Hecke eigenform then for any a € Z/mZ, we can write

S
Za(ni) =a (modm), n; <m**, V1<i<s,
i=1
for some computable s depending on e,w,~y. Moreover, all the prime factors
w
of any such n; are less than or equal to m¢ and in |J S;.

i=1

(b) In general if f(z) of the form Z ¢ fiyei € Q, fi are newforms without CM

and > o;¢; 20 (mod m),0; € {:l:l} If the associated Galois representation

Pfr.fae from does not have image Ag)( ), then for any a € Z/mZ, we can

write
S

Za(ni) =a (mod /), n; <m?*¥ V1<i<s,

i=1
for the same s as in (a). Moreover, all the prime factors of any such n; are
w

less than or equal to m® and in |J S;.
i=1
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Proof of Theorem[5.3.9. Let us first prove (i). Take € > 0 be any given real,

and Sp, 59, , S, be any pairwise disjoint set of primes of positive density, with
e(1+ %52) > 2. We studied the case w = 2 in Theorem [5.3.1] The proof for w > 2

case follows a similar path. It follows from Lemma[5.2.] that for each 1 <i < w, we
have #{a(p) (mod L), p € Si,p < m°} or #{a(p?) (mod L), p € S;j,p < m°} >
Le/2+o(M) Denote A; to be one of the corresponding sets with larger cardinality, we
have
#A#A( [ #4075 > [E@+52)/240(1)
3<i<w

Denoting 8 = £(2 4+ %52)/2 4 o(1) — 1 (which is positive by the assumption on w)

and writing m = LL' with (L, L") = 1, we have

L8 > m1+ﬂ’7

s—p’
for any /3’ satisfying L1+5” > m/L. The result now follows from Proposition M

for s = ﬁ;ﬁ,, where 8/ = %
Proceeding similar to the proof of part (i7) of the previous proof, we get the
part (i) of this theorem. O

Remark 5.3.3. We now list the explicit values in the following table, obtained
from Theorem R.0.6

w € Y s
21 0.9 0.005 231

165 0.5 0.003 2180

1461 0.1 0.0006 91478
16041 0.1 0.00006 916062
161841 0.001 0.000006 9161866
1619841 0.0001 0.0000006 21619894
16199841 0.00001 0.00000006 216199872
161999841 0.000001 0.000000006 2161999875

Table 1: Required number of terms for a given bound

5.4 Further questions and remarks

5.4.1 Solution with primes

We are having some assumptions on the composite number m in both Theorem
and Theorem [8.0.6] We would like to see if it is possible to remove them. We also
ask if it is possible to obtain a solution to the equation

o(1)
a(pi)) =a (mod m), p; <mOW,
i=1
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where each p; is a prime. Or at least, if {a(n) (mod m)} ,n)=1 is an additive
n<mOW

basis for Z/mZ. Recall that Bajpai, Garcia, and the first author studied this in [10];

however, their method does not give polynomial growth of the solutions. Note that

we have obtained solutions with polynomial growth and w many prime factors for

certain m.

5.4.2 Sum of the polynomial values

Following the arguments in Section one can study solvability of the equation
o)
> a(n;)? = a (mod m), as remarked by Shparlinski in [85]. However, Propo-
i=1

o@

sition |5.2.7] is giving the hope that it is also possible to study 2(:) (a(ny)) = a
i=1

(mod m), for any polynomial p(z) € Q[z]. The only obstacle is that p(f(n)) may
not be multiplicative for any multiplicative function f(n). We also ask if there is
a way to overcome this. Perhaps the most interesting situation is when P is of
degree 1. In that case, a(n) := P(a1(n),az(n), - ,a,(n)) is Fourier coefficient of
some modular form.

5.4.3 On a larger family of cuspforms

We expect that it is possible to work with a larger class of cuspforms in Propo-
sition [5.2.7] at least when m is a prime ¢. We covered some other families in
Corollary In this section, we shall discuss our heuristics for extending these
families. This is because we expect the following to hold, under some suitable
conditions, perhaps.

Question 5.4.1. Let £ be any prime, and L be its any power. Is it true that for any
tuples (¢;)1<i<r € FY, (ai)1<i<r+1 € ]F’}fl, the number of solutions to the equations

ez + coxh + - ewy = aq, V1 <i<r 1,
is at most O,.(1)7

For instance, this is easily seen to be true when all the ¢; are the same, using
Newton’s identity. In general, we have a partial answer due to the following.

Lemma 5.4.2. Let £ be any prime, and L be its any power. For any (¢1,¢2,- -+ ,¢p) €

F7, consider f; = c1a} + cax’ -+~ cpal € Fplay, xa,- - x,], and V be the projective

variety generated by f1, fa, -+, fr. Then dim(V) = 0 provided that > ¢; #0 in Fy
€S

forany S C{1,2,--- ,r}.
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Proof. 1t is enough to prove that there is no non-trivial prime ideal I in the
coordinate ring of V. Suppose there is such a non-trivial prime ideal I. It follows
from the identity f. = Y., ¢;fr—; that (3., ¢;)z122 -z, in I, where ¢; is i*!
elementary symmetric polynomial in z1,x9,--- ,2,. Since Z:=1 ¢; # 0, we may
assume that x, € I. Then repeating the same argument, and keeping in mind that
any sum ZieS ¢; # 0, we have that x1,x2,-- ,z, all are in I. In particular, this
shows that,
I= (flaf27"' 7f7") = (xhx%"' ,.131»),

which completes the proof. O

Remark 5.4.3. The condition ) ¢; # 0 is important. For instance, . ¢; =0,

icS 1<i<r
implies that V' contains the variety (x; — @, 22 — @y, - &,—1 — x,.). In particular,
V is of dimension at least 1.

As a consequence of Lemma [5.4.2] we have a positive answer to Question [5.41]
when all the a; are equal. For proof, one may use [61, Theorem 2.1]. We shall now
see how helpful it is to have a complete answer to Question Let f1, fo, -+, fr
be any set of Hecke eigenforms and set

ap #n) = P(ar(n), az(n), -+ ,an(n)),
where P(z1, 22, -+ ,2,) is a polynomial with » number of varriables.

Corollary 5.4.4. Let { be any given prime, then for any set of primes S, consider
quantity,

Ng p @) =#{ap #(n) (mod{)|p dividesn = p€ S, n<a}.
Suppose that S has positive density, then we have the following estimate for any
sufficiently large prime £, and any § > 0

N

1 -
s.p, () = min {65_67x4r2 5} .

Proof. Let us start with writing a;(p™) (mod ¢) = ¢;af* + d; 81, where «;, 5; € Fye,
and suppose that P is a homogeneous polynomial of degree d. Then af(p") is a

linear combination of {H::l a?t"ﬂ?(d"_ti)}o<ti<di .Let d = (d1,da, - ,d,) appear
S di=d
as degrees of a monomial in P. For a fixed tuple (a1, a2, - ,a,41) € IFZH, let us

now consider the number of primes p for which

(ap,f(p),ap,f(pQ) T aap,f(prﬂ)) (mod ¢) = (ay,az, -+ ,ar41)-

It follows from our expectation in Question [5.4.1| that, {szl a’;iﬁff‘_ti }0<ti<d1’ , is
S di=d

O(1). In particular,

[T 1T IT etst = o,

> di=di1=10<t;<d;
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Recall that o;3; = p¥*~! (mod ¢), and hence

r r—1
I I I esét= T TIp™ "% (mod o) =o0().

S dy=di=10<t;<d; S di=d i=1

This is impossible since S is infinite, and any k; — 1 is strictly positive. In particular,
this shows that the number of primes p for which

(aP,f(p)aaP,f(pz) e aaP,f(PHl)) (mod €) = (a1, a2, -, ar41)

is O(1). The proof now follows, arguing similarly as in the proof of Proposition m
O
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Chapter 6

Admissible Vector-valued
automorphic forms and growth

6.1 Fuchsian groups

A Fuchsian group is a discrete subgroup G of PSLy(R) for which G\H is topologically
a Riemann surface with finitely many punctures. For a quick exposition on the
theory of Fuchsian groups, we refer the reader to [81,[96]. A group G in PSL2(R) is
called discrete, if G is a discrete subgroup of PSLy(R) with respect to the induced
topology of PSLa(R). More explicitly, to define the discreteness of a subgroup G of
PSLy(R), we mean:

given any matriz A € G, there is an €4 > 0 such that all the matrices B(#£ A) in G
have dist(A, B) > €4, where

i,J 2%}

The action of any subgroup of SLy(R) on H is the Mébius action, defined by

ab ar +b
T = .
cd ct+d
Define H* = HUR U {oo} to be the extended upper half plane of PSLa(R) and this

action can be extended to H*. For any v = + (‘CL Z) € PSLy(R), the action of y on

oo is defined as follows:

atr+b a
= - cRU 6.1
cr+d ¢ < {oo}, (6.1)

700 = limr oo
and for any x € R, the action is defined similarly by taking the limit 7 +— 2z in (6.1)).

An element v € PSLy(R) is called parabolic, if the absolute value of the trace
of v is equal to 2. A point 7 € H* is said to be a fixed point of v € PSLa(R) if
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yor=T.Ify=4% (‘CL Z) is a parabolic element then its fixed point 7 = 2 when
a+d= 12 and ¢ # 0, in addition 7 = co when ¢ = 0.

Note 6.1.1. PSLy(R) acts on RU {oco}. Note that in H*, there is only one notion
of oo usually denoted by ioco, but for notational convenience, it will be written
oo. Following 7 for any € R it is observed that there exists an element
v ==(7 701) such that v - oo = z which means PSLy(R) acts transitively on
R U{oo}. For any = € R, such + is denoted by A,.

Definition 6.1.2. Let G be a subgroup of PSLy(R). A point ¢ € RU {oo} is called
a cusp of G if it is fixed by some non-trivial parabolic element of G. Let €z denote
the set of all cusps of G and we define Hf, = HU €¢ to be the extended upper half
plane of G.

For example: if G = PSLy(R) then € = R U {oo} and if G = PSLy(Z)
then €¢ = Q U {0} consists of the G-orbit of cusp co. For any 7 € HE, let
Gr = {y € G|y -7 = 7} be the stabilizer subgroup of 7 in G. For any ¢ € &g,
G, is an infinite order cyclic subgroup of G. If ¢ = oo then G is generated by

too = ((1) h1°°) = the for a unique real number h., > 0 called the cusp width of

the cusp oo. In case of ¢ # oo, G, is generated by ¢, = A.t"< A7! for some smallest
real number h. > 0, called the cusp width of the cusp ¢ such that t. € G where
Ao == (§ 701) € PSLy(R) so that A.(o0) = ¢, as defined in the Note m From
now on, for convenience, h,, will be denoted by h. For every ¢ € €g\{oo}, the
elements of G, depend on ¢. Since ¢ € RU {0}, there are two possibilities: ¢ € R
or ¢ = 0o. Consider ¢ € R and let v be any element in G, then v = (¢)" for some

integer 7, that is, v = A (t"<)" AL

6.1.1 Fuchsian groups of the first kind

The class of all Fuchsian groups is divided into two categories, namely Fuchsian
groups of the first and of the second kind. A fundamental domain of Fuchsian
groups is defined to distinguish between them and will be denoted by Fq. It exists
for any discrete group G acting on H and is defined as follows.

Definition 6.1.3. Let G be any discrete subgroup of PSLy(R). Then a domain
(connected open set) Fg in H is called the fundamental domain of G, if

e 1o two elements of Fg are equivalent with respect to G,

e any point in H is equivalent to a point in the closure of Fg in H with respect
to G, that is, any G-orbit in H intersects with the closure of Fg.

The hyperbolic area of Fg may be finite or infinite. When F¢ has finite area
then such G is a Fuchsian group of the first kind otherwise of the second kind.
A Fuchsian group of the first kind with at least one cusp is often called as non-
cocompact Fuchsian group of the first kind. In this article, we are mainly concerned
with non-cocompact Fuchsian groups of the first kind. A Fuchsian group G will
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have several different fundamental domains but it can be observed that their area
will always be the same. Let us write ﬁG and ﬁG to denote the closure of the
fundamental domain Fq in H and HY, respectively. From Fg a (topological) surface
Y is obtained by identifying the closure Fg of Fg in HE, using the action of G on
Fa, ie. Xg = Fg/~ (equivalently S = G\HE,).

6.1.2 Structure of words in Fuchsian groups

We say that a word in a Fuchsian group is an element of the form C1Cj5 - - - Cy, where
each C; € G. A theorem of Eichler [30, Satz 1| asserts that there exists a finite
set Ggichler C G such that any v in G equals to a product C1Cs ...y, for some
Cy,Cy...,Cr so that L is bounded by a linear function of order log ||y|| and each C;
either belongs to Ggichler Or is a power of a parabolic element of Ggjchler- However,
this result will not be sufficient for our purposes because we need to control the
powers of parabolic elements appearing in the Eichler’s decomposition.

Similarly, Beardon [12] gave a decomposition where each C; is written as a
product of elements from a geometrically chosen set of generators. Following
Beardon’s notations, the number of such elements coming in the product is denoted
by |C;|. These generators, say G*, are precisely the side pairings of a convex
fundamental domain. Let Dg be such a convex fundamental domain of G. We need
to understand these C;’s in more details for the work in Section @ It is known that
D¢ has finitely many vertices. We say that two vertices vy, vy of Dg are equivalent,
if and only if they differ by an element of G, and denoted by v; ~ vy. We call a
vertex as parabolic vertex (cusp), if it is a fixed point of a parabolic element of G.
It is known that the stabilizer of any parabolic vertex is an infinite cyclic group.

Lemma 6.1.4. There exists a constant ¢ (possibly depending on G) and a finite
subset Go of G such that any C; € G with |C;| > ¢, can be written as a product of a
parabolic element with an element of Gy. Here the parabolic element is of the form
t?, for some cusp ¢ € G, and integer n.

Proof. Tt follows from Theorem 3 of [I2] that there exists a constant ¢ (possibly
depending on G) such that any C; € G with |C;| > ¢ can be written as A, 11 --- A
such that

Nit1

Da, An; 41D, .o Anygr - An,,, Da

share a common parabolic vertex, say v. Therefore, we get a sequence of vertices
{vj}1<j<nip1—n; in Dg such that

MNi41

Anit1Ani 12 Anigj(v)) =0, V1 <j <nigq —ng.

For each pair (vi,v2) of equivalent vertices, we fix an element C,, ,, € G which
takes vy to vo. We then have

Ap11An 42+ Ani+1Cv,vn,i+1fni (U) =.

. . _ k .
In particular, we can write An, 414,12+ An,y, Co,,,, ., = Py, where P, is the

parabolic element in G* fixing v. This is because, the stabilizer subgroup (in G)
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of any parabolic vertex is a cyclic group. The proof is now complete because
{Cv, v5) | v1 ~ w2} is a finite set. Moreover, this parabolic element P, is a power of
t. for some cusp ¢, because the parabolic vertex v is a cusp by definition. O

6.2 Vector-valued automorphic forms

This section reviews the basics of vector-valued automorphic forms that we need
to understand and prove Theorem and Theorem Rather recently, the
theory of vector-valued modular forms for the modular group has witnessed a fair
amount of their development and interest, see the references mentioned in [7]. Hence,
a few resources could be used to review the fundamental concepts of vector-valued
automorphic forms. However, our treatment of vector-valued automorphic forms in
this section closely follows [6] [7] [38], 5], [54].

Let j : PSLy(R) x C — C be the function such that for every v = + (‘j Z)

in PSLy(R) and 7 € C, j(v,7) = ¢r + d, and satisfies the property j(y1y2,7) =
J(y1,727)7 (2, T) for every v1,72 € G and 7 € C such that o7 # 0.

Definition 6.2.1. If X : H — C™ is a vector-valued holomorphic function, v €
PSL2(R) and k is an even integer, we define a vector-valued holomorphic function
X[y on H by setting X|py(1) = j(v, 7)"*X(y7).

It is easy to check that X|gy1|kv2 = X|k(7172), so the stroke operator induces
a right group action on the space of vector-valued holomorphic functions on H.
Moreover, if T € GL,,(C), then T(X|y) = (TX)|ry. This plays an important role
in our article, as it allows us to relate the behaviors of the automorphic forms when
we move from one cusp to another.

Definition 6.2.2. Let X : H — C™ be a vector-valued holomorphic function. Then,
we say that:

o X(7) has moderate growth at co when there exist ¥ € R and Y > 0 such that
[IX(7)|| < exp(ry) when y > Y. Recall that we are denoting y = Im7, and

e X(7) has moderate growth at ¢ € R with respect to k € 2Z when X|; A, has
moderate growth at oo.

Remark 6.2.3. If X(7) has moderate growth at ¢ with respect to k and v € PSLy(R)
sends oo to ¢, then X|;v also has moderate growth at co. This can be shown by
using the equality X|py = X[ A |s A7y and the fact that A !y fixes oo, and it is

of the form (S :)

We now define a vector-valued automorphic form (vvaf) with respect to admis-
sible representation p : G — GL,,(C).

Definition 6.2.4. Let p: G — GL,,,(C) be a representation. We say that p is an
admissible representation of G if p(y) is diagonalizable for every parabolic element
v € G. Otherwise, we say that p is a logarithmic representation .
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Remark 6.2.5. For non-trivial vector-valued automorphic form associated to admis-
sible representation, the moderate growth is same as saying that X is meromorphic
at oo. If all the components of any such X are non-zero, then we must have that
all the eigenvalues of p(t~,) are unitary. This is because: without loss of generality,
assume that p(to) is a diagonal matrixﬂ and suppose that p(ts) has at least one
non-unitary eigenvalue, say of the norm r, then this means that

Xi(7 £ nh)| = r*"Xi(7)], Vn € Z, 7 € H,

and for some component X; of X. However for any n,7 & nh and 7 have the same
imaginary parts and taking n — —oo this contradicts the moderate growth condition
unless X; is zero. Here + (resp. —) is used to treat the case r > 1 (resp. r < 1).

6.2.1 Admissible vector-valued automorphic forms

Definition 6.2.6. Let G be a Fuchsian group of the first kind, k£ be an even
integer, p : G — GL,,(C) be an admissible representation and X : HH — C™ be a
vector-valued holomorphic function. Then we say that X(7) is an admissible vvaf
of weight k with respect to p if X(7) satisfies the following functional and growth
conditions.

o X[py=p(1)X, Vy€G,
e For any cusp ¢ of G, the function X has moderate growth at c.

A vvaf is called holomorphic if for any cusp ¢ of G, the function X|; A, is bounded
in some half-plane (contained in H). It is called a vector-valued cusp form if, for
any cusp ¢, the function X|;A.(7) approaches to 0 as y — oo.

Remark 6.2.7. If X is an admissible vvaf of weight k for the Fuchsian group G
with respect to p and v € PSLa(R), then X|;7 is an admissible vvaf of weight & for
7~ 1G~ with respect to the representation vy~ 16y — p(d).

As a consequence of growth condition and functional behavior, X(7) has an
infinite series expansion at any cusp ¢ € 6(;. These expansions, which are essentially
Laurent series expansions, will be referred to as “Fourier series expansions” or simply
as “Fourier expansions”. Often these expansions are also referred to as g.-expansions
with respect to ¢ € €g, where g = exp (%) In addition, for notational

convenience, we will always use ¢ to denote G-

Lemma 6.2.8. Let f(7) be a scalar-valued meromorphic function on H which has
no poles when y >'Y for someY > 0 and obeys f(7+ h) = exp(2wiA) f (1) for every
7 € H for some A € R. Suppose that (1) has moderate growth at co. Then

qfn=> fmad’ (6.2)

n=—M

for some fi,) € C, M € Z, and this sum converges absolutely iny >Y.

!The general case will follow from Remark [6.2.7]
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Proof. Since f(7) has moderate growth at oo, there is an integer M such that F(7) =

" Af(T) approaches to 0 as y — oo for 0 < & < h. Note that F(7 + h) = F(7)
therefore g(q) = F(7) is a well-defined and holomorphic function in the punctured
disc 0 < |g] < exp(—23X), about ¢ = 0 and is bounded there (because it approaches
to 0 as ¢ goes to 0). This means that ¢ = 0 is a removable singularity thus defining

9(0) = 0 gives g(q) is holomorphic in the disc |¢] < exp(—23X). This means that
9(q) has a Taylor expansion in g, which converges absolutely in that disc. O

For each eigenvalue A of p(ts), we denote () to be the unique real number
such that A = exp(2miu(N)) and 0 < pu(N) < 1.

Proposition 6.2.9. Let G be a Fuchsian group of the first kind with a cusp at oo
and k be an even integer. Let X(7) be an admissible vvaf of weight k with respect
to the representation p : G — GL,,,(C). Let p(to) = Pdiag (A1, A2, -+, Am) P71
Then, at the cusp oo,

o0
X(r)=Pg*P" > X" (6.3)
n=—M

where X, € C™ and M € Z. Here @ is denoted to be the diagonal matriz
diag (au(hl)’ g2 .. 7q~u(>\m))

Proof. We have P~*X(7 +h) = diag (A1, A2, - , Am) P71X(7). Hence, each compo-
nent of the function 7 — P~'X(7) satisfies the hypotheses of Lemma Applying
this, we get

PIX(r) =" Y ond" (6.4)
n=—M

for some vector-valued sequence v,. Now we multiply both sides of the last equation
by P and define X,) = Puvy,. O

Remark 6.2.10. If v is an eigenvector of p(t.,) with eigenvalue A, then v is
an eigenvector of Pg*P~! with eigenvalue g*M). Since the p is admissible, the
eigenvectors of p(ts) span C™, this implies that the Fourier expansion at does
not depend on the choice of the diagonalizing matrix.

If X is a holomorphic vvaf then all terms of the sum with n < 0 must vanish.
Indeed, if some of these terms did not vanish, then the infinite series would grow at
least as exp (2my/h) as y — oco. So, X(7) would tend to oo as y — oo, contradicting
our definition of holomorphic vector-valued automorphic forms. Similarly, if X is
a vector-valued cusp form, we may take u(X) such that 0 < u(X) < 1 for each
eigenvalue A of p(ts) (so now p(A) might be 1, but not 0). Then all the terms
with n < 0 vanish. So, for the vector-valued cusp forms, the infinite series in
is bounded, while the matrix Pg*P~! approaches to 0 exponentially as y — oo.
Hence X(7) — 0 exponentially as y — oo.
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Definition 6.2.11. The Fourier expansion of X at co (with respect to the choice
of diag (1u(A1), (A2), - -+, (Am)) is given by (6.3). The coefficients X[, are known
as Fourier coefficients of X(7). The Fourier coefficients of X(7) at a cusp ¢ € R are
defined as the Fourier coefficients of X|;A.(7) at co.

Let us now state the main result of this chapter.

Theorem 6.2.12 (Bajpai, Bhakta, Finder). Let G be a non-cocompact Fuchsian
group of the first kind and p : G — GL,,,(C) be an admissible representation such
that all the eigenvalues of the image of each parabolic element have norm 1. Let ¢ be
any cusp of G. Then there exists a constant o, depending on G, with the following
properties.

(i) If X(1) is an admissible holomorphic vector-valued automorphic form of even
integer weight k with respect to p, then the sequence of Fourier coefficients of
X at the cusp ¢ is O(nF+29).

(i) If X(7) is an admissible vector-valued cusp form, the sequence of Fourier
coefficients is O(n*/2+e),

(i11) Moreover, if k + 2a < 0, then X = 0.

6.3 Growth for admissible vector-valued automor-
phic forms

Before proving Theorem [6.2.12] we briefly summarize our strategy. As the cusp
may be moved to oo using A, we may assume that ¢ = co. Applying a theorem of
Eichler, we shall show the existence of a such that

o= (23] < @+

when p is admissible. We choose a bounded fundamental domain for G. An arbitrary
7 € H is picked, with the aim of bounding ||X(7)||. Then we take v € G and z in the
fundamental domain such that 7 = vz. The vectors X(7) and X(z) are related via
the functional equation, in which there appears p(v), whose norm will be estimated.
Using the Fourier expansion at any cusp of G, one can estimate X(z) as z approaches
to the cusp within the fundamental domain. In addition, j(v, z) appears in the
computations, so we need Corollary [6.3.4] to complete the proof. Also, because of
this corollary which only holds for cusps inequivalent to oo, the case of co must be
treated separately.
The following lemma is one of the key tools to prove our main result.

Lemma 6.3.1. [56, Lemma 6] For any vy = ( Z) in G, there exists an integer n such
h
1

that the real numbers @ and b defined by v = (é )n (‘;‘ Z) satisfy a24+b? < ki(2+d?),

where ki is a constant depending only on G.
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Figure 6.1: Fundamental domain of a Fuchsian group covered by triangles
S (C, Vo, K ) .

Consequently, we have a polynomial-growth of p as follows.

ZZ) in G, we have ||p(v)| < (¢ + d?)®, where

a =0 (log(Mg)) and Mq = max {[|p(7)

Lemma 6.3.2. For any v = (

H }’YGGEichler :

. . _(1n\"(ab ~92 72
Proof. From the previous lemma we can write v = (0 f) (’i d) , such that a“+b- <
k1(c*+d?), where k; is some constant depending on G. The admissibility of p implies

that the powers of Hp (((1) ’;)) H are uniformly bounded, and in particular, ||p(7)| <

Hp ((‘2 z)) H . Now applying the result of Eichler on (i Z) , we get [|p(7)]| < M,

where L < Oy log(a? + 0% + ¢ + d?) + Cy < C log ((k1 +1)(c* +d?)) + Cs, and
C1,Cy are some constants depending on G. In particular, we then have

lp(y)|| < Mgz % ((kl + 1)(62 +d2))01 log(MG).

In particular, we can now take a = C; log(M¢) to complete the proof. O

Now, we establish the bound for the Fourier coefficients of admissible vector-
valued cusp forms as stated in Theorem [6.2.12

6.3.1 Proof of part (ii) of Theorem [6.2.12

With the polynomial-growth of p obtained from the previous lemma (together
with the functional equation), we want to relate X(vz) to X(z). Denoting 7 = vz,
IX(T)]| = I(cz + d)fp(7)X(2)]| < |ez + d|*(c® + d?*)¥||X(2)]|. Let z = u + iv. Using
the elementary inequality ¢ + d? < |cz + d|*(1 + 4/z|?) /v?, proven by Knopp in [56]
lemma 4], one obtains

IX(T)I| < lez +d|* 2% (1 + 4]z*) 20~ [|X (). (6.5)
Applying the identity y = Imyz = m, we get
YK < (1 +427) 02X (2 (6.6)

At this point, it is convenient to restrict z to a fundamental domain of G which does
not depend on 7. Since G is a Fuchsian group of the first kind, G\H, is compact,
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and there are only finitely many equivalence classes of cusps, and a bounded
fundamental domain that may be partitioned into a finite set of pieces, see Figure 1.
More precisely, the constants K, vy, and a finite set of cusps c¢g such that each such
piece is contained in a triangle of the type {z € H: v < vy and |u—¢| < Kv}, which
we denote by S(c,vg, K), where ¢ € €g. Then, for z in this fundamental domain,

Y X ()] < oK ()] (6.7)

Since X is a vector-valued cusp form, if ¢ is any cusp, X|; A, decays exponentially
as the imaginary part of its argument goes to infinity. We shall show this implies
that, for any real number 3, |X(2)| < v® in S(c,vp, K). To do so, let Y, = X[ A..
Then

X(2) = Y|r A7 1 (2) = (¢ — 2)7FY, ( ! ) :

c—2z

Since |¢ — z| is comparable to v,

I < ot (2 ) I

c—2z

Since Y. decays more rapidly than the (k + 3)*-power of the imaginary part of its

argument, we get
1\ 7
IX(2)]| < v (Im ) .
c—z

Note that
1 v v

I — —
R e =22 (c—u)?+02’

whence, from the definition of S(c, vg, K),

1 v

> Im >
T e—2z T K202 492

1
> —.
v

S| =

Therefore,
X(z) < v ¥ =08 Wz € S(c, v, K).

Since the fundamental domain we chose is contained in a finite union of these
sets, the bound holds in the fundamental domain as well. Taking 8 = a — k/2
and using (6.7), we see that y*/2+<||X()|| is bounded in H. Now note that the
i*"-component of the n'*-Fourier coefficient is

Lot e u(n
X[i,n]zﬁ/o Xi(x + iy)g " O da.

In particular, we then have

X[z,n] < yik*%‘ez’f?/(n+u(>\i)/h.

Taking y = we get the desired result. U

1
n4pu(Ai)
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6.3.2 Proof of part (i) and part (iii) of Theorem [6.2.12

We now establish the growth for admissible holomorphic vector-valued automorphic
forms. To complete the proof of the theorem, we need the following lemma.

Lemma 6.3.3. Let ¢ and oo be the cusps of the Fuchsian group G. Then either ¢
and oo are equivalent cusps or inf,cq |7(7,¢)| > 0.

Proof. We begin with the case ¢ = 0. Note that, if v = (‘Z g), then j(v,0) = d.

Now assume that 0 and oo are not equivalent cusps of G. Then d # 0 whenever
(‘Cl g) € G. Since oo is a cusp of G, there is a parabolic element in G\{I} whose

1h
01

) € G for some

lower left entry vanishes. Such an element necessarily equals to (

10
h'1

) for some

nonzero h. Using that 0 is a cusp of G, we similarly obtain (
nonzero h’. For any integer n,

ab 10\" a+nh'b b
(c d> <h’ 1) N (c+nh’d d) '
Since h'd # 0, there is n such that |c + nh'd| < |h’d|, namely the integer part of
—c/h'd. By Lemma 1.7.3 of [67], either ¢ + nh'd = 0 or |c + nh'd| > |h|7t. If
¢+ nh'd = 0, by part 2 of Theorem 1.5.4 in [67] with = co and o equal to
the identity, we have |d| = 1. If |c + nh/d| > |h|™!, by our choice of n, we get
|d| > |hh'|71. So inf,eq |7(7,0)| > min{1,|hh’|71} > 0, as desired.

Now we show the claim for a general ¢. We shall move the cusp to the origin by
means of the translation B.(7) = 7 — ¢. Observe that 0 is a cusp of the Fuchsian
group B.GB_!. Indeed, let § € G be a parabolic element such that dc = ¢. Then
BB ! is parabolic and B.0B;'0 = B.§¢ = B.c = 0. Similarly, oo is a cusp
of B.GB!. If 0 and oo were equivalent cusps of this new group, there would
exist § € B.GB_! such that 50 = oo. Then we would have B 6B, € G and
B;716B.c = B7160 = B oo = 00, so ¢ would be equivalent to oo as a cusp of G, a
contradiction. We have established 0 and oo are inequivalent cusps. From the case

we have already proven,
inf  [j(v,0)| > 0. (6.8)
~veB.GB !
Now let v € G and ¥ = BcyB.!. Then ¢ # oo and 7B, = B.7y. Hence, it follows
from the definition of j that j(%,0) = j(v, ¢). Combining this with inequality ,
we conclude the proof. O

Corollary 6.3.4. Let ¢ and oo be inequivalent cusps of the Fuchsian group G. Let
K and vy be positive real numbers. Then there exists a constant Ck . > 0 such that
l7(7, 2)| > Ck,c for any v € G and any z € S(c, v, K).

Proof. When z varies in S(¢, vg, K), the point j(v,z) = ¢z + d varies in a similar
triangle to S(c, v, K), with a vertex at j(v,c) (see Figure 2). In particular, j(v, 2)
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/ .j(’sz)

¢ 0 J(v,¢)

Figure 6.2: If z lies in a given triangle S(c, vg, K), then j(vy, z) lies in a similar
triangle, which helps to estimate its distance to the origin.

lies between the straight lines through j(v, ¢) with slopes 1/K and —1/K. So the
distance from j(v, z) to the origin is greater than the distance from some of these
straight lines to the origin. From trigonometry, the latter is |j(v,¢)|/VK? + 1.
Therefore

, (7, 9l
, 2 Z = e
i 2)l 2 —
The claim now follows from Lemma taking C,c = % O

We now give proof of the bound of order O(n¥*2%) in Theorem [6.2.12

Proof of part (i) of Theorem [6.2.12} holomorphic vvaf

We begin with the case k + 2o > 0. Let S(c,v9, K) = {u+iv € H: v < vy and |u—
¢| < Kv}. There exists constants vy, v1, K and a fundamental domain Fg that is
contained in a finite union of sets of type S(c,vp, K), where ¢ is a cusp of G that is
not equivalent to oo, and of a set {u+iv € H:0 <wu < h and v > v1}. Take 7 in
H such that Im7 = y < v;. There exists z = v + v in Fg such that vz = 7. From

inequality (6.5]),
YR < lez + d]TF T2 (L + 4z ?) 0t X ().

From the fact that X|z A, is bounded near oo, one can show that v*||X(z)| is
bounded in any set of type S(c,vg, K). Therefore, in such a set,

YR < lez +dTE 72

By Corollary |cz 4+ d| has a lower bound independent of v and z, for any z in

S(c,vp, K). This implies that y*¥2¢X(7) is bounded since we are assuming that the

exponent —k — 2« is negative.

1+4\z\2 i
2

It remains to consider the case in which 0 < u < h and v > v;. Now -

bounded, so that

S

v k+2c
k+2a X < 7k72a'
pEel < () <l
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By Lemma 1.7.3 of [67] and the hypothesis that the exponent —k — 2« is negative,

1h\" 1R\"
01 .But*y:(()l) = Yy =0 > v,

contradicting our choice of 7. Therefore, y*+2%||X(7)| is bounded if y is sufficiently
small. As in the proof for vector-valued cusp forms, one obtains the bound for the
Fourier coeflicients of X.

this has an upper bound unless v = (

Proof of part (iii) of Theorem [6.2.12} case k + 2« < 0

To treat the case k + 2a < 0, we work with a fundamental domain that is contained
in a finite union of sets of the type S(c,v9, K). In such a region, we employ
inequality together with the bound X(z) < v~*, and get

g X)) < v <

since v is bounded. This implies that | X(7)|| — 0 as y — 0. Therefore, each
component of X(7) approaches to 0 as y — 0. Multiplying the i*'-component of X
by ¢ ~#(*) we get a power series in § which approaches to 0 as || — 1. By the
maximum principle applied to circles with a radius close to 1, we conclude that each
component of X(7) vanishes. O

6.4 L-functions and the associated exponential sums

Knopp and Mason remarked [52] that it is possible to attach an L-function to
admissible vvmf for the modular group with analytic continuation. In this section,
we generalize this notion to the admissible vvaf for Fuchsian groups of the first kind.
The proof of functional equation is classical. However, we will briefly discuss the
proof to remain self-contained. In this connection, the reader will find the article [50]
useful, where the authors discussed the special values of L-function attached to vvmf
for the modular group. In this section, we rather focus on the analytic continuation
of these L-functions attached in general to the admissible vector-valued automorphic
forms.

We assume that 0, 00 are cusps of G and X is an admissible cuspform. Let us

define
Xn)

L(X,s) =) AT

n>0

in Re(s) > k/2 + o+ 1, where « is the constant as in Theorem [6.2.12) X[,,] is the
n*-Fourier coefficient of X at oo, and (n + A) is the matrix

diag (n + M()q), n + M()\Q); e,n+ M()‘m)) )

where each )\; is an eigenvalue of p(t,). We also define the completed L-function
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A(X, s) to be (27)~°T'(s)L(X, s). Recalling that I'(s) = J5° e vy*~dy, we have

/ X(ihy)f*ldy — / Z X[n1672wy(n+A)ysfldy

0 0 n>0
= (2m)°I(s)L(X,s) = A(X,s).

Theorem [6.2.12| implies that A(X, s) is analytic in the region Re(s) > k/2 + . This
is because, for each component X; of X we have

‘/ ;i (ihy)y*~ ldy’ </ ‘Xj(ihy)

S/ Ihyl"“/Q‘“yﬁ‘ldy+/ exp(—cy)y®dy,
0 Y

ys—ldy

ys‘ldy+/y ‘Xj(ihy)

where ¢ (> 0) is coming from the exponential decay of X in a neighborhood of co.
In particular, the second integral is bounded for any s. To bound the first integral
it is enough to consider the range only from 0 to 1 and after performing a change
of variable we are left with the integral floo yk/2te=s=1qy which converges for
Re(s) > k/2+ a.

Consider S = ( 71) and note that Y = X|;S5, is an admissible vvaf for the

10
group S1GS. We now have

/ Y(ihy)ysflds—(hi)fk/ y M (i/ hy)dy
0
— (hi)~ / ZX —2m(n+A)/hPy ek 1 gy

n>0

_ hl / ZX e~ 2y (n+A)/h? k 5— 1dy

n>0
= —(hi) "R BA(X, k — s).

Moreover, since oo is a cusp of S™'GS, arguing similarly as before, we get an
analytic continuation for fooo Y (ihy)y®~'ds, to Re(s) > k/2 + a. In particular, the

completed L-function A(X,s) has analytic continuation to Re(s) < k/2 — o as well.

Note 6.4.1. In both cases, we are assuming that 0 and oo are cusps of G. In
general, let us assume that G has at least one cusp. Since G is a Fuchsian group
of the first kind, G has at least two distinct (not necessarily inequivalent) cusps in
PL(R). Let ¢; and ¢y be any two distinct cusps of G. If they are both finite, then we

can choose v := | ¢ ‘1 2 € PSLy(R), which satisfies that yoo = ¢; and 70 = ¢,.
‘1 <o

On the other hand, without loss of generality, let us assume that ¢; = co and ¢ is

finite. In that case we can take v := ((1) ‘12) , which again satisfies that yoo = ¢; and

70 = ¢5. In both of the cases, 7 =!G~ contains the cusps 0 and co. With this set up,

we can now finally define L, ,(X,s) = L(X|zv,5), and this gives us a (non-empty)

family of L-functions indexed by pairwise distinct cusps.
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6.5 Exponential sums and growth

Studying exponential sums associated to arithmetic functions is of great interest in
number theory. When f is a cusp form of weight k£ and level N, by the standard
bound on the Fourier coefficients, one can show that

S(£,0,X)= Y figend) < X*?log X, (6.9)
1<n<X

where we make use of the standard notation e(z) := €2*™* and stick to it throughout
the section. The extra log factor in was later removed by Jutila [48].

In this section, we shall first consider the analogous exponential sums for
holomorphic admissible vector-valued automorphic forms and show how our growth
results give a bound of order X?(*/2+%) Jog X with ¢ = 2 for the holomorphic
vector-valued automorphic forms and ¢ = 1 for vector-valued cusp forms. We
aim to study the analogous exponential sums associated to Fourier coefficients of
holomorphic vector-valued automorphic forms of Fuchsian groups of the first kind.

Consider
<§:3§ “ﬂ+MQ )
0<i<m—1

and the exponential sums associated to the components of the Fourier coefficients as

Si(X,0,X) = Z Xpime(nt), 0 <i<m—1.
0<n<X

For any y > 0, we have X; ,; = %foh X;(r)e (=F(n+ u(A;))) dz. Therefore

s0x)=1 [ %e(- 2) X e(n(r0) @

The sum on the right-hand side is a geometric progression, and this gives us

> e(n (—%+0)) <

0<n<X

l—e(—F+0)

1e(X(;+0))‘.

Note that |e (X (=% +0)) | = e27Xu/h and also from Theorem [6.2.12| we have
IX;(7)| < y=?*/2+) In particular,

1 1
Si(X,0, X)| < y~ok/2Fe)2nXy/h / S S
1i( )<y e
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Replacing = by x + hf and using the periodicity of e (—%),
h h—h6 h/2
/—17, da:z/ v — dx:/ _ —7 dv
o [1—e(=5+0)] o [T=e(=7)] 2 [T=e(=7)]

h/Q 1 Yy 1 h/2 1
<</ —dr=nh /—da:—&—/ — dx
0 |ﬁ| o I7] y |T‘

QU

Thus,
h
|S7;(X,9,X)| < yfa(k/2+a)627er/h (1 + log > .
Y

One now gets |S;(X, 0, X)| < X°*/2+2) Jog X by taking y = h/X.

Doing a little more delicate analysis, we can obtain a better bound of the Fourier
coefficients on average. To be more precise, we shall now give a stronger bound on
Don<x ||Z Xin] ||2 . Before that, let us first discuss the known results for the scalar
case. When f is a (scalar-valued) cusp form of weight k (and of level N, say) then
Rankin |72, Theorem 1] showed that

Yo Ul =Xt 0",

1<n<X

where ¢ > 0 is a computable constant. Writing z = = + iy, we have

> alfetmrs S [
0<n<X 0<i<m—1"0
-/ e+ i) P da
< y072k74a7
for any y > 0. So in particular, taking y = % we obtain for holomorphic vector-valued

automorphic forms that Y, - v || X H2 < X?2k+ia Gimilarly, for vector-valued
cusp forms, we get o

ST |Xp||* < XFH2e (6.10)
0<n<X
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Chapter 7

Logarithmic Vector-valued
automorphic forms: lifting and
growth

In this chapter, we shall generalize the notion of admissible vvaf and study their
growth. Following the standard setup, let G be a Fuchsian group of the first kind,
k be an even integer, p : G — GL,,(C) be a representation, and X : H — C™ be
a vector-valued holomorphic function. Suppose that X(7) satisfies the functional
behavior X|py = p(7)X, Vy € G. We are interested in the case when p is not
necessarily admissible and all the eigenvalues of p(y) are unitary for every parabolic
element v € G. Such an associated vvaf X(7) will be called logarithmic vvaf.

7.1 Logarithmic vvaf and the Fourier expansion

We shall now discuss the properties and features of logarithmic vvaf, following [53].
Let us first consider the space

W = Spang {X;(7) |0 <i<m—1}.

Note that W has dimension at most m over C, and it is invariant under the action of
too. In other words, we can consider p(ts) : W — W defined by X;(7) — X;(7 + h).
With respect to the basis {X;(7) |0 <i<m —1},.,,,_1, or possibly a subset of
this if they are linearly dependent, we may assume that p(ts) is in the Jordan

canonical form
']77l(>\1),>\1

Im(22). 20

Im () Ak
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where the Jordan block J,,,,, is defined to be

which is conjugate to the canonical Jordan block, and m(\) is the multiplicity of
the eigenvalue A. We shall denote R(t~) to be the set of all eigenvalues of p(tso)-

Lemma 7.1.1. Let X(7) be a vector-valued holomorphic function on H such that
X(1 + h) = p(tes)X(7), then for each eigenvalue \ of p(ts) there are q-expansions
P (T) = 3 ez Xpujm @M, 0 <5 <m(X) — 1 such that

m(X)—1

X(r)= > > (logq)ha (7). (7.1)

XeR(tss) J=0

Proof. We start by writing

{xim}ogigm_l: L {xam}

AER(too),
0<i<m(A)—1

such that for each eigenvalue A, we have p(t) is the single block Jy,(x),» when
acting on the space generated by {X; x bo<i<m(x)—1-
For each A\ we can now write,
Xi,A(T + h) = )\(Xi,)\(T) + Xi—l,)\(T))a 0<i< m(/\) —1,
where we set X_; » = 0. Define,

Fon(7) = i:(—uj (T/h i 1>xi_j,A(T), 0<i<m)— 1.

i=0 J

Following the argument of [53] page 265], we see that each iLi, A has a convergent
g-expansion of type EnEZ,n+)\ZO a;(n)g ™ 0 <i <m(\) —1 and

Xia(r) = Z (;) hija(1), 0<i<m(\) — 1. (7.2)

=0

Now note that,

spanc { (7) 1025 < m() — 1} = Spanc {062 0.5 < ) - 1},

107



because 2miT/h = log q. It now follows from (7.2) that there exists a matrix Hy(7),
whose entries are written in terms of h; »’s, such that

X()y)\(’r) 1
XA (1) (log q)
. = H,\(T)A . 5
Xm()—1.2(7) (log g)mV~1
for some A € GL,,,(C). We can therefore write for eigenvalue A and ¢ € {0,1,--- ,m(A\)—
1} that
m(A)—1
Xia() = S (g hisn(r),
§=0

where each h; j z(7) is of form ) -, X[i,jﬂ\,n}ij'”*“(”. The result is now proved by
taking hy (1) = 20<i<m()\)—1 hi jA(T)ex,:, where ey ; is an element of the canonical
basis of C™. T O

Note 7.1.2. The lemma above shows how to get a logarithmic expansion of X(7)
at 0o when p(t..) is in the Jordan canonical form. For a general p, let Pp(too )P~}
be in the Jordan canonical form, then Y = PX is a logarithmic vvaf for PpP~1.
Since Pp(ts)P~! is in the Jordan canonical form, we have

m(X)— 0o

Z Z loga)'] Z g )\)U[A,j,n]

AER(ts) J=0

where vy ;j ) denotes a vector. Then we need only to multiply this by P! Since
multiplying by P~! will mix the components of U[x,j,n], We have g+ for all the
eigenvalues .

To get such an expansion around other cusp ¢, one needs to get an expansion of
X]|r A, around oo, as we did in the admissible case. Having this in our hands, we are
now ready to describe the vector-valued automorphic forms when the corresponding
representation is not admissible.

In Lemma[7.1.7]and Note[7.1.2] we have seen how to get a logarithmic expansion
of X(7). We are interested in studying the growth when all the components X;(7)
are holomorphic at the cusps in the logarithmic sense which we define below and
use in the rest of the article.

Definition 7.1.3. We say that X(7) is holomorphic at the cusp oo if it has an
expansion of the form

m(X\)—1

SO ST S AT

AER(too) J=0
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where each X[y jn) s a vector, and X is holomorphic at the cusp ¢ if X|pAc is
holomorphic at the cusp co. If X is holomorphic at all cusps, then we say that X is
a holomorphic vvaf. Moreover, we say that X(7) vanishes at the cusp oo if it has an
expansion of the form

m(A)—1

= > > 10g®jzx[x,mﬁ” e,

AER(tss) J=0

In other words, all of the associated q-expansions of X(7) have exponential decay as
the imaginary part of T goes to co. Similarly, X(7) vanishes at the cusp ¢ if X| A,
vanishes at the cusp oo, and therefore we say that X(7) is a vector-valued cusp form
if X(7) vanishes at all cusps of G.

7.2 Growth for logarithmic vector-valued automor-
phic forms

In the previous chapter, we studied the growth of Fourier coefficients of admissible
vector-valued automorphic forms. Recall that our definition included moderate
growth for this case. We initiated the discussion about the logarithmic vvaf in
Section Now, we are not imposing the moderate growth condition in this
general setting. In this case, we assume that all the eigenvalues of the image of each
parabolic element are unitary.

7.2.1 Polynomial-growth of the representation

One of the big advantages of assuming p admissible was that, [|p(t?)| = O.(1),
for any cusp ¢ of G and n € Z. However, the same may not hold when p is not
admissible. We have the following lemma to overcome that obstacle.

Lemma 7.2.1. For any integer n # 0, and any parabolic element t. € G, we have
the following estimate
ot <egm ™1

Proof. Due to the assumption, we may assume that p(¢.) is conjugate to a matrix in
the Jordan canonical form. Now it is enough to bound norms of the corresponding
Jordan blocks. Let J,,, », be one of such blocks. We can write

J;l”bt’)\t = )\?(Imt + N)TL = A? Z (n> Ni7
0<i<my ¢
because N* = 0 for any i > m,. In particular, we then have
HJ’:?I“Lt)\tH <Lm, nmt_l’
because [\ = [|[N| =1and > ;e 1 (") <m, n™ 1. The result now follows by
varying the Jordran blocks. O
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We start with considering the decomposition of v given by Beardon, as discussed
in Section We say that a parabolic element v is a parabolic generator, if it is
of the form ¢, for some cusp ¢ of G.

Lemma 7.2.2. The product of the powers of the parabolic generators coming in the
word y = C1Cy - - - Cy is at most ||y||*", for some constant oy depending on G.

Proof. Tt follows from Lemma[6.1.4] that there exists a constant ¢ such that whenever
|Ci| > ¢, we have C; is a product of a power of ¢., (where ¢ is a cusp of G) with an
element coming from a finite subset G* of G. In this case, ||C;|| > the power of ¢,
appearing in C;. On the other hand, the number of C; with |C;| < ¢ is bounded
by |G*|¢ = O(1). In particular, all of the powers of parabolic elements appearing
in such C;’s are also O(1). Therefore, the desired product of the powers of the

parabolic elements coming in « is bounded by O (Hz‘,\cq;bc HCzH) . The proof is now
complete by [12, Theorem 2].

Consequently, we have the following growth result on p. It is not hard to see
that we do not have such a nice growth if images of some parabolic element have
non-unitary eigenvalues.

Lemma 7.2.3. Let vy := (‘i g) € G be an arbitrary element. Then we have that
o) < (a2 + b2+ 2 4 d>)*, for some constant o/ depending on G.

Proof. We first consider the decomposition v = []_, C; as given by Beardon,
and obtain ||p(7)|| < TT;_, [|[p(C:)||. Once again, since G* is finite, the terms with
|C;] < ¢ do not contribute much. On the other hand, following Lemma/|6.1.4} |C;| > ¢

implies that there exists a cusp ¢; of G such that C; is a product of (! with an
element from G*. In particular, it follows from Lemma that

1p(Ci)|l < Mg ||p(ti)

| <<c1,,m MG|ni|m717

where Mg is the maximum of ||p(7) . Now each such ¢; is in fact a vertex of D¢,

||’yEG*
and also the rank m is fixed, hence we can actually write ||p(C;)|| < Mg|n;|™!.

We then have the following estimate

IIP(V)IISHIIP(CZ-)II < II lell<ng I fni™

i,\C,-|>c i,\Ci\>c
t?;’ eC;

Now we get the desired bound by applying Lemma [7.2.2] and the bound s =

O(log(a® + b? + % + d?)) from [12, Theorem 2].
O
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7.2.2 Recipe to bridge two certain regions in H

We need another ingredient to finish our preparation for the logarithmic case of
Theorem [6.2.12] As in the proof of the admissible case, we shall need a relation
between |cz + d|? and ¢? + d?, where (c, d) is the last row of a matrix in G. However,
Lemma [7.2.3| gives a bound in terms of a® + b2 + ¢ + d?. For this reason, it is useful
to have an inequality of the form a? + b? < ¢ + d2. We shall shortly see that there
exists a region where vvaf has the desired growth, and the following result gives us
an element of G, which serves as a bridge to the region 1 <z < h,0 <y < 1.

Lemma 7.2.4. Let vy = (‘is Zg) with ¢g # 0. Let v € PSLy(R) have rows r1 and
Hirall or

I71]] < 2%”@\\, where ||-|| of the rows are defined as the usual norm in R2.

ro. Let ¥ = vy have rows 71 and 7. Then either ||r1]| < max {1, 2 Ucl—g

Proof. Assume ||r1] > max{1,2 ’g—g ‘}||r2|| From the definition of matrix multipli-

cation, 71 = agry + bor and 7o = ¢ory + dore. From the triangle inequality,

1711l < laol - [lr1ll + [bo - [I72]l < (lao| + [bo])[|71]l- (7.3)
Applying the triangle inequality, the hypothesis ||| > 2 ‘ci—(‘)’ lr2]] and (7.3)), give us
. |col 1 |col .
rall = |co| - (|71l = [dol - |lr2l| = —=lm1ll = 5 - =71,
17l > ol ral =l - frall > 501> 5
which is equivalent to the stated inequality. O

7.2.3 Proof of Theorem logarithmic case

Let us consider the case when X(7) is a vector-valued cusp form. We claim that
there exists vy = (ao bo) € G such that ¢y > 0 and dy > 0. The existence of a

co do

matrix y; = (al bl) such that ¢; # 0 follows from [67, Theorem 1.5.4] and the

C1 dl
assumption that G is a Fuchsian group of the first kind. Since we are in PSLy(R)
rather than in SLo(R), we may assume ¢; > 0. Let n be so large that dy + nhep > 0.

ay by+nhay
¢y di+nhcy

Consider Fg to be a fundamental domain of G that is union of the sets of type

S(C,’UO,K), b d
G, = {(id) [ 7] gmax{l,Q 0 }||r2||},

o
and denote H; = G1Fq. The previous lemma, and (6.7 implies that for any 7 € Hj,

Then we can take vy = 1t = ) From now on let us fix such a ~q.

X ()]| < P X )] (7.4)

where 7 = 7z for some v € Gy and z is in the union of S(c, v, K)’s. Since
X is a vector-valued cusp form, all the g.-expansions associated to X|;A. decay
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exponentially as the imaginary part of A7lz = i — 00. On the other hand,

|log ;| grows polynomially, as Im (i) — oo and Re (i) can be taken to be
bounded. The maximum power of log ¢. appearing in the logarithmic expansion
is at most dim(p), and it is clear that an extra polynomial factor does not affect
the exponential decay of the logarithmic expansion. In particular, X|;A, decays
exponentially as y — co. Now arguing similarly as in Theorem that is, by
comparing X with X[ A,, we get y” |X(2)| = O(1) for any z € S(c,yo, K) and real
B. We now get ||X(7)|| < y~*/27% for any 7 € H; by taking 8 = o/ + 5in .

Now we compare X(7) with X(vo7) to see the growth in H\H;. Let 7 = z+iy €
H \ Hj, then using the functional equation,

IX(7)[| = |eoT + do|~*||p(70) " X(707)||
< ‘CoT + d0|_k(1m’}/07')_k/2_0/
B y —k/2—a’
& |eor + do|7* <|c07 +d0|2>
& |eoT + do 2 y~H/2
< y k2o

for any 0 < 2 < hand 0 < y < 1. In particular, |X;(7)] < y~k/2=a" for all
0 < i < m — 1. Then it follows inductively from (7.2) that |hy ;(7)| < y~*/2=
and in particular )
i gn (7)o ()] < y =27 (7.5)
for all 1 < j <m(\) — 1, any eigenvalue X of p(t,), and 0 < x < h. Now note that
1 h
ol < 5 [ st )70 e, w0 < < min) -1

In particular, we then have

HX[AJW] H < y—’f/Q—O/627ry(n—&-u(/\))/h7 VO0<j<m(\) -1

Now, taking y = ﬁ()\) and setting o to be o’ we get the desired result.

Let us now consider the holomorphic case. Similarly as in the previous case, we
shall first show that X has polynomial-growth in H;. Consider a fundamental domain
that is covered by finitely many sets of type S(c,yo, K), where ¢ is a finite cusp
of G not equivalent to oo, and a region of type S = {z € H | 0 < u < h,v > vp}.

From (6.5) we have for any 7 € H; that
YRR ()] < ez +d| TR TE L 4P R )] (76)
where 7 = 7z, for some v € G and z = u + v lying in one of the sets S(c, yo, K).

Following the arguments given in the previous case, we have v*+™||X(z)|| = O(1).
This is because, all g.-expansions of X|; A, are bounded near co and the extra log
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factor grows like Im (i) ~ v~ ! It now follows immediately from Lemma [6.3.4

that y*+2%||X(7)|| is bounded whenever z is in one of the sets S(c,vg, K), where
a = o' +m. On the other hand if z in S, we have to be a little more careful because
of the extra unbounded log factors coming in the Fourier expansion. From it
follows that

Y2 (1) | < 0P ez 4 d) TR 2 (L 4 422 X (2|

< Uk+2m+2a,|cz + d|—k—2a/_2mv—m Hx(z)ll ,

as % is bounded. Now note that v=™ ||X(z)|| = O(1) in S because the hj ;’s
from are bounded in S, |log z| = O(y) and the maximum power of log appearing
in the expansion of X(7) goes up to at most m. Thus, if k£ + 2a’ + 2m > 0 and
y < vo, we have y*+2¢'+7||X(7)|| <« 1 as in the admissible case.

We now need to relate Hy with H, and for that, we are again going to rely on
the comparison of X(7) with X(y97). Note that we have estimated X(7) only at
the points of H; with small imaginary part. So we need to ensure that Imvyym =
m is small. This happens when 0 < z < h and y is small, because then
|coT + do| > Re(coT + do) > dg by our choice of vy. Arguing similarly as in the
previous case, we have that for any 7 =z + iy € H\ Hj,

Xl <y,

provided 7 is bounded. Performing the integration, we get the desired result by the
same choice of «. This completes the proof of parts (i) and (ii).

For part (iii), we may assume that k+2a’+m < 0. If we have also k+2a/+2m >
0, the previous argument gives ||[X(7)| < y~%72¢' =™ so X(7) — 0 as y — 0 with
0<z<h Ifk+2a’4+2m < 0, let & solve the equation k+2&+2m = 0. Then we can
apply the same argument with & instead of /. We get ||X(7)|| < y~*F=20—m = ¢ym
which also approaches to 0 as y — 0. Now we obtain X = 0 as in the admissible
case. O

7.3 Growth of the representations

In both admissible and logarithmic cases of Theorem [1.3.1] we required a unitary
condition on the eigenvalues to get a Fourier expansion. One of the consequences
of this condition is that the corresponding representation has polynomial-growth.
By polynomial-growth, we mean: the existence of a constant « such that ||p(7)| <
|7||* for any + in the group G. In this section, we want to see when a given
representation has polynomial-growth, and what happens to the growth of vector-
valued holomorphic function X on H which satisfies the functional equation X|gy =
p(7)X,Vy € G, for the given representation p.
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7.3.1 On polynomial-growth

We have the following criteria for polynomial-growth of p, which basically says that
it is enough to look over only the set of parabolic elements.

Proposition 7.3.1. Let G be a Fuchsian group of the first kind and p : G — GL,,(C)
be a representation. Then p has polynomial-growth if and only if all the eigenvalues
of the image of each parabolic element are unitary.

Proof. Suppose that all the eigenvalues of the image of each parabolic are unitary,
then we get the polynomial-growth immediately from Lemma [7.2.3] Now for the
other direction, take v € G to be a parabolic element such that at least one

eigenvalue of p() is non-unitary. Note that v is conjugate to an element of the

1 mh
01

with Jordan canonical form as in the proof of Lemma that ||p(y™)|| > ™, for
any n € Z, where r can be taken to be the norm of any eigenvalue of p(y). This
gives a contradiction. O

form and in particular ||7"|| < |n|. It now follows from the computation

We now have an interesting consequence: the polynomial-growth is preserved
under induction, restriction, and isomorphism.

Corollary 7.3.2. Let H C G be two Fuchsian groups of the first kind and H
has finite index in G. Then p has polynomial-growth if and only if the induced
representation p 1= Indg (p) has polynomial-growth.

For the definition and the details on induced representation and their associated
vector-valued automorphic forms, see Sections 3 and 4 of [7]. Let us recall the
definition of p. Write G = yyHU v H U --- U v4H, where d is the index of H in
G. Without loss of generality, we may assume that 73 = 1. The representation
p:H— GL,,(C) can be extended to a function on all of G, i.e. p: G — M,,(C) by
setting p(x) = 0,Vz ¢ H where M,,,(C) is the set of all m x m matrices over C. The
induced representation p : G — GLg, (C) is defined by

p(vitam) p(yrtee) oo p(vr tava)
p(vtem) p(vyteye) .. p(vs tava)

plz) = : : , , , YzeG. (7.7)
p(vgtem) p(ygteye) oo p(vgtava)

Now for any z € G and V1 < i < m, there exists a unique 1 < j < m such that
p(v; 1zfyj) # 0. Therefore, exactly one nonzero m x m block appear in every row

and every column of ([7.7)).

Proof of Corollary[7.3.2 Due to Proposition [7.3.1] we now know that a representa-
tion has polynomial-growth if and only if, every eigenvalue of image of each parabolic
element is unitary. We shall prove this result with respect to this unitary property.

Restriction invariant is an immediate consequence. Now if p; and ps are
isomorphic representations, then p;(v) is conjugate to pa(7) for each element v € G.
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In particular, all the eigenvalues of p; () are unitary if and only if, all the eigenvalues
of pa(7) are unitary.

For the induction invariance, let p be the induced representation of p with
respect to a choice of the coset representatives v1,...,7v4 of H in G, where d is the
index of H in G. Let v € G be a parabolic element. Then, for each 7, some non-trivial
power of g; = *y;l'y'yi is in H. This can be shown from the existence of n; ; and n; o
such that ;"' H = g;""*H, say the n!"- power. Then v, '4N~; € G for each i, where
N =lem{n;}. In particular, 5(7V) is a block diagonal matrix whose blocks are of
the form p(y; 'v™7;). If p has polynomial-growth, then each such block consists of
the unitary eigenvalues, and in particular all the eigenvalues of 5(7V) are unitary.
Moreover, the eigenvalues of 5(7) are N*® roots of the eigenvalues of 5(y"), as one
can see from the Jordan canonical form of p(v). Therefore, all the eigenvalues of
/() are unitary, and hence p has polynomial-growth.

On the other hand suppose that p has polynomial-growth. Take an element
o € H, and it is enough to show that every eigenvalue of p(7g) is unitary. It follows
from the discussion in the previous paragraph that, there exists N such that p(y{")
is a block diagonal matrix. Moreover, one of the block is p(7}') since one of the
representative can be taken to be the identity element of H. In particular, p(7{")
has only unitary eigenvalues, and so does p(vp), as desired. O

7.3.2 On a sharp polynomial-growth for finite index sub-
groups of PSLy(7Z)

In Lemma we had a polynomial-growth on the representation involving all
the entries, while in Lemma [6.3.2] the bound only involved the bottom row. The
difference is that, in the admissible case, for any parabolic element v € G, ||p(y™)]| is
bounded irrespective of n. To improve Lemma [7.2.3 we need to control the number of
times parabolic elements appear when we decompose an element of G. For example,
when we take G to be a finite index subgroup of PSLy(Z), we have a better control.

Proposition 7.3.3. Let G be the finite index subgroup of PSLa(Z), and p be a
representation of G such that, any eigenvalue in the image of each parabolic element
is unitary. Then we have,

NIl < (¢ + d*)* max {[Ja/c|" 7", 1}, ¥y € G.

Proof. First consider the induced representation p of p to PSLa(Z). It follows from

the proof of Corollary [7.3.2] that, image of each parabolic element under this induced

representation have only unitary eigenvalues. Take an element v € G C PSLy(Z).

We start with writing y = (stlo+1)(sth) -« (sth)(stlo) with s = ({ '), t = (51)

as in [54, Lemma 3.1]. Using Corollary 3.5 and the estimate of {,, from [54, Lemma

3.1], we get [[5(1)] < (¢ + d2)2 max {[|a/c[|™ 1,1} . Since [|o(+)]| < [l5(+)]], the
result follows.

O

Therefore we indeed have a better growth for finite index subgroups of PSLy(Z)

at least when ¢ # 0, in the sense that the bound does not involve one of the entries
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of v. When ¢ = 0, the element ~ is parabolic. In that case, one can get a bound
from Lemma [T.2.1]

Example of a representation with non polynomial-growth

There exists a G and a representation p of it such that p does not have polynomial-
growth. For instance, consider G = PSL2(Z) and p : G — GL3(C) given by

a —(at+1)1
pls) = (

a—1 —a 1), p(t) = diag(/\l,)\g,)\g,),
0 0 1

where a, A1, Ag, A3 are yet to be chosen. See [20], Section 2.1] for a proof of p being a
representation, provided that A\; Ay = —\%, ﬁ = —a? and m =a. We
can make sure that these conditions hold by taking A1, As, A3 as follows: take A3 =1
and A1, A2 in such a way, so that AiAe = —1 and Ay — Ay = —%. We want to make

one of A; or Ay non-unitary, which we can ensure by taking any purely imaginary a.

Example of a representation with polynomial-growth

Consider
92(7’)
0 o)

where 05(7), 05(7),04(7) and n(7) are well known weight 1/2 scalar-valued modular
forms. For a complete description of these functions, the reader may refer to [55].
It turns out that X(7) is a vector-valued modular function of PSLy(Z) and repre-
sentation p where p : PSLs(Z) — GL3(C) is a rank 3 representation of I'(1) given
by

p(s)=10 1 0] and p(t) = 0 0 exp(—3)
Lo 0 exp(—1{3) 0

To see whether p has polynomial-growth, it is enough to check the eigenvalues of
p(t). In this case, they are given by exp(7 ), exp(—1{3) and —exp(—73). In particular,
p has polynomial-growth in this case.

7.3.3 A consequence of polynomial-growth

In Theorem [6.2.12 we achieved polynomial-growth of the Fourier coefficients by
showing a bound of the form ||X(7)|| < y~#72% when X(7) is a holomorphic vvaf.
In this process, polynomial-growth of the associated representation p played a
crucial role. We obtained such a growth of p assuming that all the images of
the parabolic elements have only unitary eigenvalues. However, even if we do not
have this assumption, we could still consider a vector-valued holomorphic function
X : H — C™ which satisfies the functional behavior, that is X[,y = p(7)X, Vy € G.
In this more general situation, one may naturally ask whether we still have a
polynomial-growth for X(7). To answer this question, we prove the following.
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Theorem 7.3.4 (Bajpai, Bhakta, Finder). Let G be a non-cocompact Fuchsian
group of the first kind, X : H — C™ be a vector-valued holomorphic function,
and p : G = GL,,(C) be a representation. Suppose that X is non-zero, and

X(y7) = (e + d)*p(v)X(7), ¥y € G, 7 € H, where v = (‘CI g) . Then, we have the
following.

(i) If p is irreducible and there exists a constant ¢ > 0 such that | X(z + iy)|| <
y~C for all x + iy € H, then

oIl < %7, ¥y € G.

(i) More generally, if p is irreducible and || X(z +1y)|| < maxo<j<m-1{|z +
iyly=CY} for all z + iy € H, then

j+2€7k}0§j§m71a vy € G.

()]l < max{]|y|

(iii) If p is not necessarily irreducible, then some subrepresentation p' of p must

have a similar growth. In particular, if p is decomposable, then some of the
irreducible components of p have similar growth.

Proof of Theorem[7.3.7} Let us first consider the space W = Spanc {X(7) | 7 € H}.
Of course, here in W, we are taking finite linear combinations of X(7) over C.
Moreover W is a non-zero proper vector-subspace of C™, since X is a non-zero
holomorphic function H. We now want to show that W is a representation of p.
For this, we use the functional equation j(y,7) *X(y7) = p(7)X(7), and note that
j(y,7) # 0 for any v € G, 7 € H. In particular, we have an action of G on W given
by p. Therefore, W can be considered as a subrepresentation of p. Let us first prove
(7). In this case p is irreducible, and X(7) is a non-zero function, therefore W is
isomorphic to C™. Let us now fix a basis {X(71),X(12), -+ , X(7)} of W. We then
have the following estimate for part (i).

X(7; i d|=F||X ]
lp(7) (T)ll} Sup{CT +d77| (WT)l}
1<i<m 1<i<m

Mﬂ«wﬂ

[1X(7) |l X (7))l
5+ d| 7| D¢
<M{M+IMWM}
I1X(7:)| 1<i<m
< sup { |er; + d*~F|Im(r;)[ ¢ }
1X(7:)l 1<i<m

<+ P <y

where we are writing v = (‘Cl 2) . On the other hand, for part (ii), using the bound

117



| X (z +iy)|| < maxo<j<m—1{|z + iy[’y=¢}, we have the following estimate

w or —k -
ol < sup { LY flem e d 2 LG,

1X(7) | 1X(7:)l
< sup { ler; 4 d|*|y7 |7 [Im(y7;)| ¢ } ‘
X ()| 0<j<m—1
1<i<m
lei + ]~ Iyl
< sup
{ XET fosseme
1<i<m

i+2¢—k
< maX{H“Y||j+2C Yo<j<m—1-

Now for part (iii), if W = C™, then we are done. If not, then W is a non-trivial
subrepresentation of C" because X is a non-zero function. By the same argument
as in part (i), the subrepresentation plyy of p has a similar growth.

In particular when p is decomposable, we can consider a basis of C™, of the
form {X(71),X(72), -, X(Tm/); V41, - - Um } - Then the block of p corresponding
to {X(71),X(2)," -, X(7m)} has a similar polynomial-growth, following the same
argument as in the irreducible case. O

Remark 7.3.5. Part (a) of Theorem could be considered as a converse
statement to the admissible case of Theorem and part (b) to the general
logarithmic case.vTheorem [7.3.4] is meaningful if there exists at least one case where
the associated representation does not have polynomial-growth, and a non-trivial
holomorphic function on H satisfies the corresponding functional equation. We
could then say such a holomorphic function does not have polynomial-growth. For
instance, let us consider G = I'(2), where

I'(2) = (71,72,73 € PSLa(Z) | m72y3 = 1)

4 3 2 4 10 _ 1 2
"= 9.1 y V2 = 91 , V3= 01)"

Let p be a representation for I'(2) defined by

p(73) = (ég) ,p(2) = (ég) o) = (é?) .

Then consider the vvaf X(7) = (5) , for any modular form f for I'(2) associated to

and

the trivial character.

Given any representation of any Fuchsian group of the first kind without having
polynomial-growth, we expect it is possible to construct a vector-valued holomorphic
function that satisfies the functional property.
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7.4 Properties of the lifted vector-valued automor-
phic forms

In this section, we shall recall the induction of representations and introduce vvaf
associated to them. We closely follow [7] throughout this section and develop the

main tools to prove the main results of this article. Let us first recall our setup: G
is a Fuchsian group of the first kind, and H is a finite index subgroup, say d, of G.

7.4.1 A special choice of the representatives

Fix any cusp ¢ € @G and let ¢1,- -+, ¢y be the representatives of the H-inequivalent
cusps which are G-equivalent to the cusp ¢, so we have
nt
G-¢c= U H-c,.
i=1

Therefore, for each i we get an A; € G with A;(¢) = ¢;. Let us denote k, be the
cusp width of ¢ in G and h., be the cusp width of ¢; in H. Then a set of coset

representatives of H in G can be taken to be g;; = t{A;l forall 1 <7 < n. and

0 < j < h;, where h; = ’;‘i € Z. It turns out that, ZKKnm h; =d.

Let p be a representation of rank m associated to H, and denote p := Ind$ (p)
to be the induction of p. With the choice of coset representatives {g; ;} of H in G
as described above, we can write p(t.) in the block diagonal form, where each block
is of size mh; x mh;, V 1 < i < n.. Moreover, these blocks are in the lower-diagonal
form whose right top block is p(t;), and all other blocks are in the lower diagonal
entry is I, «m. More precisely, it is of the form

0 p(ti)

I

I 0 mhi;Xmh;

where t; = A;th A;l is the generator of the stabilizer H,, in H. For a proof of this,
the reader may refer to (4.3) in [7].

7.4.2 Lifting of vector-valued automorphic forms

Let H, G and p be as in the previous section, and X(7) be a vvaf associated to (p, H).
Since H has finite index in G, one can take the similar set of representatives {g; ; }
of Hin G. B
Now one may ask for an induced form X (7), which is also a vvaf associated to
p. Fix a cusp ¢ of G and let {g; ;} be the set of coset representatives of H in G, as
described earlier. We then define the induced function X(©) : H — Cm by setting,
t

T (X(g;ﬁ))xmn ’

0<j<h;
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The reader can note that, given any cusp ¢ of G, we are uniquely lifting the vvaf
X(7) to X()(7), because g; ; are well defined. Of course, X()(7) is just a vector-
valued holomorphic function on H right now, because X(7) is a vvaf. To make sure
that X(9(7) is a vvaf (be it admissible or logarithmic), we first need to check the
functional equation with respect to the induced representation p. Note that,

X(77!97) i(vf 1%—17{117)
N X(vy vy
KO (yr) = (72' m || X M, 7)
21 4
X(vg 1) X(v, lvfyjdvjle)

3O v T RO )X (5, )

303 Vi TR (3 i ) X (3, )

g Ve (v )X (5, )

where {7y;|1 <1 < d} istheset {g; ;|1 <i <n.,0<j < h;}. Tosatisfy the functional
equation property, we need that

O ) =y Tk, V1<i<dyeG.

We can make sure this if, 7o(v; 'y7y;,) = 72(7), V1 <4 <d, v € G, or simply if the
weight k = 0, where 75(-) denotes the second row of the corresponding matrix. Of
course, it is unlikely that TQ(’)’i_l’}/’)/ji) =7ra(7), V1<1i<d, ve G would always
hold. So to be on the safer side, we simply stick to the weight k& = 0 case to ensure
that the functional equation is satisfied. Before discussing the moderate growth
condition, let us define a suitable lift for any arbitrary weight case. Let us first recall
a reduction trick introduced in [7]. The idea is to find a scalar-valued cusp form
Ag(7) of non-zero weight, which is holomorphic on H§, and nonzero everywhere,
except at co. For instance if G is given by the modular group PSLy(Z), then one

can take
Ag(r) = (m(n)* =q [T(1— g™,

n>1

where 7(7) is the Dedekind eta function. For the existence in the general case, the
reader may look at the exposition in [7, Section 4].

Now given any admissible or logarithmic vvaf X(7) of weight k, let us denote
Xo(r) = Aﬁk/wH (7)X(7), where wy is the weight of Ax(7). It is clear that, Xo(7)
is a vvaf of weight 0, associated to the representation p ® vy k¥ where vy is the rank

1 representation associated to All{/ “H(7). One can then consider a reduction to a
weight 0 automorphic form by X(7) — Xo(7). In particular, we now have a recipe
to lift to a vvaf of arbitrary weight, by considering the map

t

X(1) = Xo(7) — XVO(E) (T)A’é/we (1) := A’é/wG () (Xo(gi_,le)>

1<i<ne
0<j<h;
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< (©
Note that Xg

representation (p ® vg)F ® Vé = p. Therefore, we refine our definition of lift by
setting

(T)A’é/wG (1) satisfies the functional equation with respect to the

(©)

XO(r):=Xo  (1)AF" (7).

If 0o is a cusp of G, then we set X(7) := X(°)(7) as the definition of lifted form.
If not, we pick any cusp ¢ of G and set X(7) := X(9|, A (1), which satisfies the
required functional equation with respect to the representation A7 1yA. — p(7).

7.4.3 Preservation of the cuspidal properties

Before studying the behavior at the cusps, we first need to have a better under-
standing of the representatives of H in G. Suppose that co is a cusp of G and
{ei]1 <7 < ny} are the cusps of H lying under oo, and {g; ;} be the set of coset
representatives of H in G as described before, with the important property that,
Gi,j(¢;) = 0o. The following lemma is about a comparison with the set of all coset
representatives {g; ;|1 < i < ne,0 < j < h;} inside G and the set {A,|1 <7 < ng}
inside PSLz(R).

Lemma 7.4.1. There exists a; j and oy ; € R such that
9i,5T = aijA;lT +jhoo + oy 4, V1 eH.

Proof. Recall that, g; ; =t/  A;" where A;(c0) = ¢;. We also know that A, (c0) =
¢;, in particular, A; A, (cc) = oc. On the other hand, A;'A., € PSLy(R). In

a «

01/a for some a,a € R. We then have,

particular, A;lAci = (

a «

gigT = L AT T =t (0 v ) AZYr = a®AZM T + jhoo + aa.
a 4 v

This completes the proof by taking a; ; := a and «; ; := aa. O

We recall that any classical holomorphic modular form does not have weight 0,
unless it is a constant function. In those cases, the representation under consideration
has a finite image. However, the same may not be true if the representation does
not have a finite image. Consider the representation Iy : SLo(Z) — GLy(C),
given by v — 7. Now consider the holomorphic function Y : H — C? given by
7+ (7,1). We know that Y(7) is a holomorphic logarithmic vvaf of weight —1.
Then Y'(7) := Y(7)A(7) 1= is a non-constant holomorphic logarithmic vvaf of weight
0 associated to the representation p’ := Iy ® vgr,(z). In fact, given any holomorphic
logarithmic vvaf of non-zero weight, one can twist with a suitable power of A(7)
to get a holomorphic logarithmic vvaf of weight 0. Following [38] Section 4.2], we
know that the space of holomorphic logarithmic vvaf is a free module of rank two
over the polynomial ring C[Ey, Fg], generated by Y'(7) and its modular derivative.
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Moreover, the representation p’ : SLy(Z) — GL2(C) indeed have infinite image,
because

1P ) = ||To ® vsr,(z) (") || = L") = n,

which follows from the explicit description of vgr,,(z), see [T, Page 7]. Gannon in [38]
gave an explicit description of the logarithmic representations of rank 2 associated
to SLa(Z), and they all differ from p’ by some character of SLy(Z).

We are now ready to prove the required cuspidal properties of the lifted forms.

Lemma 7.4.2. Let ¢ be an arbitrary cusp of G, and {¢;|1 < i < n.} be the set of
all inequivalent cusps of H lying under c. Then we have the following.

(i) If X(7) has moderate growth at all the cusps {¢;|]1 <i < n.}, then the lifted
form X (1) has moderate growth at ¢ as well.

(i) If X(7) is holomorphic (or vanished) at all the cusps {¢;|1 <i < n.}, then
the lifted form X(©) (1) has same properties at the cusp ¢, provided that the
weight of X(1) is 0.

Proof. For both of the parts, it is enough to prove that X(‘)(T) satisfy the required
cuspidal properties at the cusp oo.

Let us first prove (i). It is clear that Xo(7) has moderate growth at all the
cusps {¢;|1 <i < ny}, because any power of Ay (7) has the same property. Now
we shall show that all the components of Xo (1) has moderate growth at co. Let
Y(7) :=Xo(g; le) be such a component. Since Xo(7) has moderate growth at all the
cusps {¢;]1 <14 < ns} there exists a constant ¢ € R such that || Xo(7)|| < |eQ7riCA:ilT|
as im(1) — oo. It follows from Lemma that, |[Y(7)| < |e27¢'7|, for some
constant ¢ € R, as im(7) — oco. This shows that, X,(7) has moderate growth at .
On the other hand, any power of Ag(7) has moderate growth at oo as well, and
this completes the proof of part (i).

Let us now prove (ii). To show that X(7) is holomorphic (or vanishes) at the
cusp oo, we need to show that all the components are bounded (or vanishes) as
im(7) — oo. The constant ¢ appearing in the previous paragraph is 0 when X(7) is
holomorphic and negative when X(7) is a cuspform. Moreover, it can also be seen
from Lemma that the constants ¢ and ¢’ from the previous paragraph are a
positive multiple of each other. Therefore X(7) has the similar cuspidal properties
as X(7). This shows that the lifted form also shares the same cuspidal properties
when the weight is 0. O

7.5 Lifting of logarithmic vector-valued automor-
phic forms
It was proved, by the first author in [7], that the induction of an admissible

representation is admissible. In this section, we shall study the induction of non-
admissible, i.e., logarithmic representations. In this regard, we have the following.
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Proposition 7.5.1. Let ¢ be an arbitrary cusp of G and {¢;|]1 <1i < n.} be the set
of inequivalent cusps of H for which G -¢=|J H - ¢;. Then,

(i) If p(t;) is not diagonalizable for some i, then p(t.) is not diagonalizable.

(i) In particular if p is a logarithmic representation, then p is a logarithmic
representation as well.

Proof. Let us start with considering the coset representatives {g; ;} of H in G from
the previous paragraph. We first claim that, for any pair (¢, j), some non-trivial
power of v; ; = ggjltcgi7.j is in H. To prove this, we start by noting that there
exists n;,;,1 and n, ;2 such that g'5"'H = ¢;"»*H. This is because H has a finite
index in G. In particular, for each pair (i, j), there exists some integer n; ; such
that ggjlt?i’jgi,j € H. Let us now consider n = lem{n; ;|1 <i<n.1<j<h;}. In
particular, g;- jlt?giyj € H for each pair (4, j). Therefore, p(t?) is a block diagonal
matrix where each block is of the form p(g;jlt?gi,j). Note that gi_)jlt?gi,j € H and
fixes the cusp ¢;, hence it is some non-trivial power of ¢;. Let us write g, jlt? 9ij =11,
where m # 0 is an integer. By the assumption, there exists some i for which p(¢;)
can be written in Jordan normal form, with a Jordan block, say Jy, of size greater
than 1. In particular, p(¢*) can be written in a block diagonal form, where one of
the blocks is J{*, which is not diagonalizable for any integer m # 0. This completes
the proof of part (i).

For the proof of part (ii), let ¢; be a cusp of H for which p(¢;) is not diagonalizable.
Now ¢; is a cusp of G as well, with c¢; itself lying under it as a cusp of H. It the follows
from the part (i) that p(¢.) is not diagonalizable, which completes the proof. [

Remark 7.5.2. It is clear that n; ; < d, for each pair (¢, 7), where d is the index
of H in G. In other words, n is crudely bounded by d?. However, if H is normal in
G, one can always take n; ; to be d. In particular, one can take n = d. In fact, the
discussion in Section allows us to take n = lem {h;|1 <i < n.}.

7.5.1 On the growth of the Fourier coefficients

In [9], the authors studied the growth of any holomorphic vvaf associated to Fuchsian
groups of the first kind. More precisely, they showed that, there exists a constant «
(depending on the associated representation) such that || X[n]|| <, n**2*, where
X(7) is a holomorphic vvaf of weight k € 2Z associated a representation p of H.
Moreover, the constant o depends only on H and the exponent k+ 2« can be divided
by 2 for cuspforms. In this section, we shall study the change of this exponent under
lifting.

In general, we show that the constant « is multiplied by at most the index of
H in G. In particular, the exponent do not change when a = 0. In [9], the authors
remarked that « can be taken to be 0 when p is a unitary representation. To prove
the main result of this section, let us start with the following.
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Lemma 7.5.3. Let p be a representation of H such that ||p(h)|| <u ||h|*, Vh € H.
Then the induced representation p associated to a finite extension G of H has the
following growth.

I < 171", ¥y € G.

Proof. Tt follows from the definition of induced representations that,

Pl < max leCrivyy DIl -

vivy; TeH

On the other hand, it follows from the assumption on p, and the semi multiplicative
property of ||-|| that Hp(%v'yfl)H <a ||7]|* - This completes the proof.
O

Let us now recall from Lemma that if X(7) is a holomorphic vvaf of weight

0, then the lifted form X(7) is a holomorphic vvaf as well. As a consequence of
Lemma we deduce the following.

Corollary 7.5.4. Let X(1) be an admissible holomorphic vvaf associated to (H, p)
of weight 0. Then there exists a constant o depending only on H and p such that the
Fourier coefficients of the lifted holomorphic vvaf X(7) have the following growth

HX[n}H <L, Y,

In particular, the growth of the Fourier coefficients of the lifted vector-valued auto-
morphic forms do not depend on G. However, if X(7) is a holomorphic logarithmic
vvaf, then the exponent increases by at most rank(p) := rank(p)|G/H|.

Proof. When p is admissible, we can write ||p(7)|| <a (c® + d*)* due to Lemma 4.1
in [9]. Since X(7) has even integer weight, it is evident that p(I) = p(—1I). Therefore
p can be thought of as a representation of H. One can then follow the proof for the
admissible case in the same article.

For the logarithmic case, one can follow the argument on page 21 of [9]. The
increase in the exponent is coming because of the extra logarithmic terms in the
Fourier expansion, and they come with power at most rank(p), which is precisely
rank(p)|G/H| = md. O

124



Chapter 8

On the elliptic Wieferich primes

Let E/Q be an elliptic curve given by a Weierstrass equation with coefficients
a; € Z, and P € E(Q) be a non-torsion point. Throughout this section we consider
E and P as being fixed.

For any integer n > 0, define the nth division polynomial v, € Z[z, y] as follows.

Yo=0, =1, v2=2y+az+as,
1,[}3 = 3584 + bQI’S + 3b41‘2 + 3b6I + bg,
Py = w2(2$6 + b2$5 + 5b4.’L‘4 + 10b6.’L‘3 + 10bg.’L‘2 + (bgbg — b4b6).%‘ + bybg — bg)

where the b; are defined in [88] Chapter III], with subsequent polynomials given by

3 3
77[12n+1 = wn+2wn - wn+1wn71a n Z 27

9 9 (8.1)
¢2n¢2 = wn/(¢n+2"/}n—1 - ¢n—2’l/)n+l)7 n Z 37
and extend this to negative n by setting v, = —¢_,,. These formulas are equivalent
to the recurrence relation
wm+n¢mfnw3 = ’(/Jerrwmfrwi - /IZ}TL+T’(/}TL7T’L/]3)@ (82)

for any integers m,n,r. The sequence 1, forms a divisibility sequence in Z|z, 3],
ie. ¥, | ¥y, for n | m. One notion of an elliptic divisibility sequence (EDS) in a
commutative ring would be a divisibility sequence satisfying . The study of
EDS in Z, in this sense, was begun by Ward [99], and a modern exposition can be
found in [36, Ch. 10]. We will use a slightly different kind of EDS considered by
Verzobio [97], which is better suited to our purpose.

We can interpret z,y and each v, as rational functions on E(Q). By [88|
Ex. II1.3.7], multiplication by n is given as a rational map by

(P2 — Yp_1¥ng1 Vi 1¥ns2 — Yn_othp g
(G ’ dy(P)yy '

nl(r) = (
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In particular 1, is the square root of the denominator of the x—coordinate; the
problem for us is that in general there may be some common factors between the
numerator and denominator, so it will not be in the lowest terms. We want to work
with the genuine denominator as it has better p-adic properties (cf. Lemma [8.1.3)).

Definition 8.0.1. Define the sequence e, by nP = (a, /€2, b, /e) with gcd(anbn, en) =
1 and e, > 0. Writing sign(t) = t/|t| for any t # 0, set
€n

BO =0, 5n = Sign(wn(P))aa (n €L \ {0})

Definition 8.0.2. A prime p is called an elliptic non- Wieferich prime if vp(8,) =1
for some integer n.

Note that it follows from Lemma 11 in [87] that p is indeed a non-Wieferich
prime for a point P in the sense mentioned in the previous section. In particular,
the problem is then to study square-free parts of the sequence (,,. It follows from
the following conjecture that the number of elliptic non-Wieferich primes at most x
is >p plogx.

Conjecture 8.0.3. Let E/Q be an elliptic curve in the Weierstrass form. For any
€ > 0 there exists a constant c. such that

1
max {2 log |ap|log 6P|} < (1+¢)lograd(ep) +cc

for all P € E(Q)\ {O}.

Definition 8.0.4. Let x be a Dirichlet character with modulus q(x). Say a prime p
is x- Wieferich prime if ord(x(p)) { vp(Bn) for some integer n, and prime p t g(x).

We shall show in the next section that (,, is periodic modulo any prime power
and hence modulo any integer. Let 7 be the period of /3, mod ¢(x). Suppose that
there exists a € N such that

ged(a,m) =1

and such that one of the following holds:
X(|504|)7é0717 or
X(~1Bal) #0,1 and 47, or
x(=|Bal) # 0,1 and P € E(R)°,
then we say the character y is nice. We shall prove the following in the next section.

Proposition 8.0.5. Let x be a nice Dirichlet character with modulus q(x). Then

# {primes £ <z : ord (x(p)) 1 vp(Be) for some prime ptq(x)}

as r — 0Q.
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Consequently, we have the following unconditional lower bound for the x-
Wieferich primes.

Theorem 8.0.6 (Bhakta). For any nice Dirichlet character x, we get at least

cE,plovgl?fgxx many x-Wieferich primes up-to x, for some constant cg p > 0.

Proof. We shall show in the next section that (3, is periodic modulo any integer NV,
with some period 7y, depending on N. Given a Dirichlet character x, denote 7 (x)
to be the period of 3, (mod ¢(x)), and consider

Sy (x) = # {primes £ < z : ord (x(p)) t vp(Be) for some prime p{q(x)}.

Let us first note that, for any prime ¢ € S, (z), we have a x-Wieferich prime py.
Moreover, the association ¢ — p; is injective due to Lemma which we shall
prove shortly in the next section. On the other hand, it follows from [87, Lemma 8§]
that log(pe) < log|B¢| = O(¢?). This completes the proof of Theorem m O

Now we are left with three tasks; first, we shall discuss periodicity, then prove
Proposition [8:0.5] and finally, study the proportion of nice characters.

8.1 Periodicity

Let E be an elliptic curve over Q, given by a (not necessarily minimal) Weierstrass
equation with coefficients in Z,. In other words, let £ be given by

y? + a1y + azy = 7 + agx® + asx + ag, a; € Q,, Vi € {1,2,3,4,6}.

Denote by Ey(Q,) the set of points of E(Q,) with non-singular reduction modulo
p. We say that P € E(Q,) has bad reduction if P ¢ Ey(Q,). There is a subgroup
filtration

-+ C Ey(Qp) C E1(Qy) C Eo(Qp), Ei(Qy) ={P € Ep(Qp) : P=Omod p'}, i > 1.
Definition 8.1.1. If P € E(Q,) \ E1(Q,) we set v,(P) = 0. If P € E1(Qp) we
define

vp(P) =sup{i: P € E;(Q,)}.
Definition 8.1.2. For P € Ey(Q,) and k € N we denote by P mod p* the image
of P in Eo(Q,)/Er(Q,). We denote by ord (P mod p*) its order.

Lemma 8.1.3. Let P = (x,y) € E(Q,). Then v,(P) = max{0, —v,(z)/2}.

Proof. If vp(x) > 0 then v,(P) = 0 so the result holds. So assume v,(z) < 0. As
the rational function x/y is a uniformising parameter at O, we find that v,(P) =
vp(x/y). However, using v,(z) < 0 and the Weierstrass equation, one finds that
2vp(y) = 3vp(z), and the claim easily follows. O
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Lemma [8.1.3] gives a more explicit definition of filtration, which is often used in
texts (e.g. [88, Ex. VIL.7.4]). We have the following inequality for the valuation of a
multiple of a point.

Lemma 8.1.4. Let P € E1(Q,). Then vy(nP) > vp(P) + vp(n), with equality if
pin.

Proof. Hensel’s lemma [23, Lem. 2.1] shows that |E;(Q,)/E;+1(Qp)| = p for all
i > 1, thus this quotient is isomorphic to Z/pZ. The result now easily follows. O

Remark 8.1.5. Using the formal group law on F [88, Thm. IV.6.4(b), Prop. VII.2.2],
one can show that equality holds except possibly if p = 2,v,(P) =1 and p | n. (See
also [91, Thm. 3] for a version over number fields.) The hypothesis is required for
p = 2. Take

E:y’+ay=2>+4a+1, P=(15/4,-83/8).

Then vo(P) = 1, but one calculates that vy(2P) = 4.

The sequence (3, is not in general an elliptic divisibility sequence in the traditional
sense, since it need not satisfy the recurrence relation ; differences can occur if
P admit primes of bad reduction. In [97], Verzobio calls such sequences EDSB, as
opposed to sequences of the form 1, (P) which he terms EDSA. He shows in [97,
Thm. 1.9] that the following weakened version of does hold for an EDSB.

Theorem 8.1.6 (Verzobio, [97]). Set
M = M(P) =lem{ord (P + Ep(Qp)) : p prime},

where ord (P + Ey(Q,)) denotes the order of the image of P in the finite group
E(Qp)/Eo(Qp). Let n,m,r € Z of which two are multiples of M(P). Then

ﬁn-{-mﬁn—mﬁg = Bm-&-rﬁm—rﬁi - ﬁn-{-rﬁn—rﬁfn' (83)

The reader may note that M is the least positive integer such that M P has
everywhere good reduction. Verzobio defines 3, for n > 0 and proves the theorem
under the assumption n > m > r > 0; in our notation this can be removed by using
B_n = —fBp and permuting the variables as appropriate.

To illustrate some of the nice p-adic properties of this sequence, we first make
explicit Lemma [8.1.3

Lemma 8.1.7. For all primes p we have vp(5,) = vp(nP) — vp(P).
Proof. Immediate from the definition and Lemma [3.1.3 O

Lemma 8.1.8. For all n,m € Z we have gcd(Bm, Bn) = |Bgcd(m,n)l-
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Proof. By Lemma for any prime p and any V € N we have
ne€Z:vBn)2V}={ne€Z:nPecFEy,, prQ)}=dqZ
for some ¢ € N. In particular p" | 3, if and only if ¢ | n. Therefore

pV | ng(ﬁwuBn) <~ q | ng(m7n) — pv | ﬂgcd(m,n)-
O

We emphasize that an EDSA need not have these properties if P admits primes
of bad reduction. The elegance of Verzobio’s EDSB is that it has both good p-adic
properties and comes within a whisker of satisfying the recurrence relation.

8.1.1 Symmetry law

A central part of Ward’s work on elliptic divisibility sequences is a symmetry law [99,
Thm. 8.1] (see [I, Thm. 1.11] for a modern formulation). This says that an integral
EDSA modulo a prime forms a periodic sequence of a certain form. We prove a
version of this for EDSBs for general prime powers.

Proposition 8.1.9. Let M be as in Theorem , Let n,r € Z with M | r. Let
p be a prime and let k € N. Suppose that p* divides B,/ gcd(By, Bar). Then for all
{ € Z we have

£(041
Brstr = (BrtsrBri—rBaf) ° ) (BnarBa 1) Bn mod p*, if pF 1 Bn,

where in the first case the quotients ﬁMJrTﬂM,T/BJQV[ and Bnir/Brn are p-adic units.
Proof. Lemma [B.1.8| gives us
‘5gcd(n,r)| = gcd(Bnger, Br) = ged(Bn, Br) (8.4)

for every ¢ € Z. This proves the proposition if p* | 3, so assume that p* { 3,.
Taking m = M in Theorem [B.1.6] and replacing n by n + ¢r, we obtain

ﬁM-}-T/BM—TB»?H-ZT = Bn+(€+1)r6n+(€71)rﬁﬁ/f mod 637 (85)

for any ¢ € Z. We want to combine this with Lemma Let

/3M+T/8M7’l" BnJrér
C = = . .
. T (B ) (50

Since M | r, Lemma shows that C' € Z. Also (8.4) shows that a, is an integer
coprime to 8,/ ged(Bn, Br). Hence, dividing both sides of (8.5)) by 6721+£7'ﬁ]2\/[ gives

o= Yt 9 Br forall /€ Z (8.7)
==& &ed(BuBar, )2 | |
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where every ay is coprime to the modulus. It follows by induction on ¢ from (8.7
that )
B

ng(BnﬂMv B’I")Z ’

e(et) _
ar=C" 2 ala)™" mod

Multiplying by ged (B, ) we obtain

£(041)

agged(Bn, Br) =C™ 2 (a1a0_1)eao ged(Br, Br) mod ged(Bn, Br);

ng(ﬂnﬂMa 57’)2 .

Here S,/ gcd(Bar, Br) divides the modulus, and so the congruence holds modulo p*.
Inserting the definitions proves the first case in the proposition.

Finally, since p* | 3,/gcd(Bar, Br) and p* t B,, we see that p divides the
modulus in . Since every ay is coprime to the modulus, we see that C and
BnirBrt = arag ! are p-adic units, as claimed in the final part of the proposition. [J

We now use the symmetry law to prove that [, is periodic modulo any prime
power and hence modulo any integer. Versions of this appear in the literature for
differing definitions of EDS. Ward proved eventual periodicity modulo any prime in
[99] Thm. 11.1]. Shipsey proved a version modulo p? for primes of good reduction
[82, Thm. 3.5.4]. Ayad proved it modulo any integer, but assuming good reduction
and avoiding p = 2 [ Thm. D]. Silverman proved a version over finite fields [89,
Thm. 1] as well as a version modulo prime powers whenever the curve has good
ordinary reduction [89, Thm. 3|. Our version (Proposition contains none of
these technical assumptions and is a general version of periodicity for Verzobio’s
arguably more elegant EDSB.

Our result is the following, which shows periodicity modulo an arbitrary prime
power and gives an upper bound for the period. Note that the Chinese Remainder
Theorem then easily shows periodicity modulo an arbitrary integer.

Proposition 8.1.10. Let M be as in Theorem [8.1.6, let k € N, and let p be a
prime. Let
r(p*) = M ord (M P mod pF+v»(MP)) (8.8)

and

p

)k Lp(p : 9 and (PrrremPu—reh) _ 4
o :{(p )" r(pY),  ifp#2an ( ) C(89)

2(p — D)p*~Lr(p*), otherwise.
Then for every m € Z we have
m=nmod 7(p") = B =B, mod p".
In other words, the sequence B,, mod p* is periodic with period dividing 7(p*).

Proof. For ease of notation, we write r = r(p*) throughout the proof. We first
observe that rP = O mod p*t*»(MP) by (8:8). That is we have k + v,(MP) <
3.8)

vp(rP), and hence by Lemma and ( we have
koo Br
p® divides ————— and M |r. 8.10
ged(Bur, Br) | (810)
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Let n € Z. By (8.10]), the hypotheses of Proposition are satisfied. If p* | 3,
h

then the result follows immediately; suppose therefore that p* { 3,,. Proposition
shows that

£(£+1)

Bn-&-@r = (BM+TBM—T/3]TJ2) 2

(ﬁn-&-rﬁgl)eﬁn mod pkv

for every ¢ € Z, where 5M+r,3M—rﬁK42, BnirBy ! are p-adic units. In particular

ng(ﬁmpk) = ng(5n+5r7pk) = ged (B, 6r7pk)'
Now #(Z/p*Z)* = (p — 1)p*~!, and so if u € Z, then

£(6+1)

2p— Dp* 1 |4 = w2 =1modpr.

Moreover if p # 2 and (%) =1 then u = v? for v € Zy. So

£(e+1)

(p—1p* "6 p#2, (g) =1 = u 2 =1modp.

Thus by definition of 7(p*), if 7(p*) | ¢r then

£(e+1)

(Brts+rBru—iBaf) 7

(ﬁn+rﬂ;1)e =1l mod pkv
which implies
ﬂn+€r = /Bn mod pk~
Writing m = n + ¢r completes the proof. O

There is a simpler but slightly weaker bound for the period.

Lemma 8.1.11. Let M be as in Theorem[8.1.6, let k € N, and let p be a prime.
Then the period of B, mod p* divides

2M (p — 1)p**=Y ord (M P mod p), if v,(MP) =0,
2M (p — 1)p?F—1, otherwise.

Proof. Let Q = M P. By Proposition it suffices to show that

k—1 d d if -0
ord (Q mod p* (@) divides r(p*) := {pk ord (Q mod p), i yp(Q? ;
b, otherwise.
If v,(Q) = 0 then Lemma implies that v,(p*~Lord (Q mod p)Q) > k — 1 +

vp(ord (Q mod p)@Q) > k. If v,(Q) > 0 then LemmaMyields v, (PFQ) > k+1,(Q).
In both cases 71 (p¥)Q = 0 mod pFtrr(Q) | as required. O

Remark 8.1.12. By definition M divides [], [E(Qy)/Eo(Qp)|, hence is bounded
uniformly with respect to P. Moreover ord (M P mod p) divides |Eo(Q,)/E4(Qp)l|-
Thus Lemma shows that the period of 3, mod N can be bounded indepen-
dently of P for all N € N, with the bound only depending on F and N.
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8.1.2 Signs

Recall from Definition that the sign of f3,, is the sign of the sequence ¢, (P).
The following is [90, Thm. 4] (see also [3] for a generalisation.)

Theorem 8.1.13 (Silverman-Stephens). There is a sign o € {£1} and an irrational
number 5 such that for all n € N we have

(-pt?,if Pe E(R),
o™ Isign(B,) = ¢ (~1)"Pl+5 0 if P ¢ E(R)Y and n is even,
(-1)"7, if P ¢ E(R)® and n is odd.

If P € E(R)Y then B is defined as follows. We firx an R-analytic group isomorphism
Y BE(R)? = R%o/e? . Then let B = logu where u is a representative of ¥(P) in
R, with e ! <u < 1.

In Silverman and Stephens’ original statement of the theorem, there is an
isomorphism E(R) — R*/q”, which maps E(R)? to either R%,/¢” if ¢ > 0 or
R? ,/q*% otherwise. Without loss of generality we can assume that E(R)" is mapped
to R’;O/ez, or else we can compose our isomorphism with v — v=1/1084 or y—1/2logq,
When P € E(R)? their choice of u then satisfies e™! < u < 1 as above.

We want to say something about the Diophantine approximation properties
of the irrational number 8 from the theorem. Let expy : C — E(C) be the usual
parametrisation of F using the Weierstrass p-function, see for example [88] Corollary
5.1.1]. The usual convention would be to normalize so that, in a certain sense, the
derivative of expy at the origin is the identity. This is not necessary for our purposes,
however. We only use the fact that expy is an R-analytic surjective additive group
homomorphism, and Theorem 1.2 of Bosser and Gaudron [I8], which states:

Theorem 8.1.14 (Bosser-Gaudron). Let z € C such that expg(z) € E(Q) \ {O}.
Then we have

~

log|z| > 1 — h(expg(2)),
where h is the canonical height on E(Q).
We use this to prove

Lemma 8.1.15. Suppose the point P from the start of this section satisfies P €
E(R)Y. Let 8 be as in Theorem and let N € Z\ {0}. Then

~

J\r?g%log|Nﬁ— M| >g 1—h(NP).

Proof. Let w € C* such that expg(w) = P, so that expg(wR) = E(R)° and
Y(expp(tw)) = eP+Z for any t € R. For any M € Z we deduce that

expp(N 4+ B71M) = ¢71(6N5+M+Z).
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By the definition of 8 we deduce expg(N + 87'M) = ¢~ (uNe?) which is NP by
definition of u. That is,

expy (NP) D {(N + B *M)w: M € Z}.

Now by Theorem [8.1.14} any ¢ such that tw € expy' (N P) has log [t| > 1—h(NP),
and so

~

ﬁg%longﬁ— M|>g1—h(NP).

O

8.2 Controlling the valuations with Dirichlet char-
acters

We now provide the main technical input required to prove the main results of
this chapter. Under certain assumptions, it stipulates the existence of many prime-
numbered elements of the sequence (3, which are divisible by primes that are
non-trivial with respect to a given Dirichlet character with a certain valuation. We
require the following effective version of uniform distribution modulo 1 for primes
in an arithmetic progression multiplied by an irrational.

Proposition 8.2.1. Suppose the point P from the start of this section satisfies
P € ER)°. Let s,t € N with ged(s,t) = 1 and let 3 be as in Theorem|8.1.18. For
any 0 <a<b<1 and any € > 0 we have

a

#{primes { <z :{=smodt,{{B/2} € [a,b)} = (bgazt) + 0(1)) @,

where we write { -} for the fractional part. In particular for any e > 0 we have

#{primes { <z : 0L =smodt, (-1 =1} = <2gpl(t) + 0(1))

Before proving this, let us firsr recall the following Erdés—Turan inequality [33]
Theorem III]:

log x

Lemma 8.2.2 (Erdés—Turan). For any 0 < a <b <1, any real sequence t,,, any
M €N and any H > 0 we have

M M 1 M
b—a)M =" 1 yean)| < ot ST 1Y eGitm)]
m=1 1<j<H J m=1

where we write {-} for the fractional part, and 1y, yepap) = 1 if {tm} € [a,b) and 0
otherwise.
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Proof of Proposition|8.2.1 For the second part, we note that (—1)%5J =1 if and
only if 0 < {¢(8/2)} < 1/2. So it suffices to prove the first claim in the proposition.
Then we apply Lemma [8:2.2] with M, t,, as follows. Denote the primes ¢ = s mod
t,0 < x by ly,... .0y and let t,, = {¢nG/2}. There is ¢ > 0 such that for each
B > 0 with ¢t < (log ), we have

M=—" 40 () + Op (wexp(—ey/log ),

~ o(t)logz p(t)(log x)?

by the Siegel-Walfisz theorem [68], Corollary 11.21, see also p5]. In particular, we
have the follwing as x — oc.

V= oz +© (ese)

We substitute this into Lemma [8.2.2] to obtain

) (b—a)x
#{m < M {lnf/2} € [o.0)} = Zomn
X €T 1
- y s
< Hop(t)logx * o(t)(log )2 - A= KZI e(j€5/2). (8.11)
T ¢/=s mod t
£ prime

Our goal is to estimate the last sum above. As often happens, it is convenient to
count primes weighted by the von Mangoldt function. By partial summation,

i05/2) = 1 i{5/2
D elth/) = oo D (loge(ie8/2)+
{<x (<x
f=s mod t f=s mod t
£ prime £ prime
* 1
—_ logO)e(j£5/2)dy. (8.12
| S (og0e(its/2)dy. (512
¢/=s mod ¢
¢ prime
Below we will show that
. _[h(P)
Z (logl)e(7¢8/2) <g y - tjt| —= logloglogy (8.13)
logy
<y
f=s mod t
¢ prime

for all y > 1,5 € N. It follows from (8.12) that for each non-zero integer j we have

h(P
Z e(jlB/2) < g L -t h(P) log log log x.
= log x log

¢=s mod t
¢ prime
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Together with (8.11)) and the choice

1/4
log x —-1/2
H=|= ty(t) logloglog x ,
<h(P)> (teo(t) log loglog z)

we have the desired asymptotic formula. O

Lemma 8.2.3. Let 3 be as in Theorem[8.1.13. Then for any integer t, we have the
following estimate as y — oo.

, _[n(P
E e(jlB/2) <gy-tj (P) log log log ¥.
= logy
<y
/=s mod t
¢ prime

Proof. We use the formula

% Z e(m(n—s)/t):{l’ n = s mod t,

otherwise
meZ/tZ 0, ’

which is valid for all integers n. This gives

) 1 .
Y. (ogle(tB/2)=; > e(=ms/t) ) (ogle((m/t+jB/2)0).
<y MEZ/L <y
¢=s mod t
¢ prime
To estimate the inner sum, we now use two standard results on exponential sums in
primes, which appear as Theorem 3.1 and Lemma 3.1 in Vaughan [95].

Theorem 8.2.4 (Vinogradov). If « € R,a € Z,q € N with ged(a,q) = 1,9 < y,
and |a —a/q| < ¢72 then

Y (logp)e(ap) < (logy)*(yg~ /> +y*/* + y'/%¢'/?).
Py
p prime
Lemma 8.2.5. Let B> 0. Ifa € R,a € Z,q € N with ged(a,q) = 1,q < (logy)?
and |a — a/q| < (logy)B /y then there is Cp > 0 such that

> (ogp)eter) = 48 u(a - a/a) + Onlyexp(~Cav/loz)

p prime

where p is the Mdbius function, ¢ is the Euler totient function and v(B) =
Yy
s _,e(Bm).
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Suppose that o € R, a € Z, q € N with ged(a,q) = 1,9 < y, and |a—a/q| < 1/qy.
If ¢ < (logy)? we apply Lemma [8.2.5} otherwise we apply Theorem Recalling
the standard bound ¢(q) > 1515, we have

log1
Z (log )e(al) < p y(logy)*=B + yloglogq

1<y a
¢ prime

To complete the proof of Lemma we take B = 5 and a = m/t + j5/2,
and find a and ¢ satisfying the assumptions above using Dirichlet’s approximation
theorem. This gives us a € Z,q € N with ged(a,¢) = 1 and ¢ < y such that
[(m/t+ 38/2) —a/q| < 1/qy holds, and we then have

log1
>~ (logDel(m/t +jB/2)) < ; Y Y0808q (8.14)
= 0gy q

¢ prime

To apply this, we need a lower bound on ¢. For that we use Lemma [8.1.15| with
N = tjq, which gives

min log [2t7 /3 - M 1— E 2tjqP).
By our ChOiCe Of q we ha\/e

min log [2¢jq5 — M| < log [2tjq5 — 2tj + 2qm| < log(2t/y),
S

which gives us R
1+ log(y/t) <g h(2tjqP).
Recalling that h is a quadratic form on F(Q)®R, we have 1+log(y/t) <g (tjq)?h(P)

and hence either y < t or
logy

We substitute this into (8.14) to show that either

> (log e(t(m/t+ jB/2)) <p y(logy) ™' + ytj\/WPli ;oygloglogy
<y

¢ prime

or y<t.

In the latter case we have >, (logl)e(€(m/t + jB3/2)) < t by the Prime Number
Theorem. So in any case -

\/h(P)loglog
> (ogOe(t(m/t+ jB/2)) <p t+y(logy) ™" + ytﬂ\/@;yg oglogy
<y

¢ prime

and this completes the proof of the lemma. O
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With this, we are now finally ready to prove the main result of this section.

Proof of Proposition[8.0.5 From the assumptions on x, there exists 7 € {1} such
that x(7|8a]) # 0,1. We separate into two cases depending on the real properties of
P.

Case 1. P € E(R)%:

From Theorem [8.1.13 we have sign(8,) = o™ '(=1)"8) for some ¢ € {£1} and
some irrational number 5. Now consider the set of primes

A = {{ prime : £ = o mod 7, sign(B) = 7sign(Ba)}}-

Let £ € A. Then by periodicity we have 8y = S, mod ¢(x), so x(8¢) = x(Ba) as
X is periodic modulo ¢(). Moreover, we have arranged signs so that x(|5¢|) =
X(7|Bal|) # 0,1. Hence as x is multiplicative we deduce the existence of a prime
factor p of |5¢| with p { ¢(x) and ord (x(p)) 1 vp(Be). It thus suffices to note that
{¢ € A: ¢ <z} satisfies the required lower bound by Proposition

Case 2. P ¢ E(R)":

In order to handle a number of sub-cases simultaneously, we show that there is
v €{0,1,2,3} such that o + ¢7 is odd and

i if o is even
_q)(atm=1)/2 _ 7sign(fa), 1 ) .15
=1 7(=1)@=D/2 " if o is odd. (8.15)
Case 2.1. « is even

Here 7 is odd since (a,7) = 1. Choosing ¢ € {1,3} we can arrange for =L to be
odd or even, and hence (—1)(@T7=1/2 = _1 or 1 to satisfy (8.15).

Case 2.2. 2faand 4 | 7
In this case we have 7 = 1. Let + = 0 and then (—1)(@~1/2 = 7(—1)(@=1)/2 a5

required for (8.15]).

Case 2.3. 2fa and 4t 7

We can choose ¢ € {0,2} so that ¢m/2 is odd or even as needed. So we arrange

(—1)"/2 = 7 which gives (8.15).

We now let ¢ = lem (4, 7) and consider primes £ of the form ¢ = «a + ¢ mod gq.

By Theorem [8.1.13 and (8.15) we then have sign(8y) = 7sign(8,). But 5, =
Bo mod g(x) by periodicity, so x(|8¢]) = x(7]8a|) # 0,1, as x is periodic modulo
q(x). We are now in a similar situation to Case 1. Note that a + ¢7 is odd implies
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that ged(a + ¢, q) = 1, and so by the Siegel-Walfisz Theorem, the set under

consideration has size > #(W) + 0(1)) Tog 7> as desired.

O

8.3 On the proportion of nice characters

To find nice characters, we study the characters y for which there exists « € N
such that ged(a,7) = 1 and x(8a) # 0,£1, where m := 7w(x) be the period of
Br (mod ¢g(x)). Then considering the arithmetic progression o mod 7 shows that
there exists such an o with « prime, and there are infinitely many such primes. In
addition x(8,) = 0 implies @ = ord(P (mod p)) for some prime p | ¢(x), whenever
« is a prime.

We can ignore this situation for large enough prime «, because ord(P (mod p))
is finite. In particular, it is now equivalent to look for y for which there exists
infinitely many primes ¢ such that x(8¢) # 1. Note that, given any prime ¢ we

have
#{x modulus p : x(8,) € {£1}} _ 2
#{x modulus p} ord(8)’
where ord(f8,) denotes the corresponding order in the multiplicative group (Z/pZ)*.
Now given a prime £, we say a Dirichlet character x is a ¢-pseuodo nice character

if x(B¢) # +1. We then have the following results applying the main theorems in
[32].

Proposition 8.3.1. Let £ be any prime for which By # +1, then we have the
following.

(8.16)

(i) For all but o(x/logx) many primes p up-to x, the number of not £-pseudo
nice Dirichlet characters of prime modulus p is at most 2p*/? log p.

(i) Let € : N — R be any unbounded sufficiently slow growing function. Then
under the assumption of GRH, the number of £-pseudo nice Dirichlet characters
of prime modulus p is at most £(p), for all but o(x/logz) many primes p
up-to x.

Proof. Part (i) follows the introduction in [32], and part (ii) follows from [32]
Theorem 4]. O

Furthermore, we say a that Dirichlet character x is a ¢-nice character if

x(Be) #0,£1, and £{ 7.

In particular, we now need to take care of those primes p for which
¢=ord(P (mod p)), or ¢ | .
It follows from Lemma [8.1.11] assuming (¢, M) = 1 that
Llp—1or, £|ord(P (mod p)), or £|ord(MP (mod p)).
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To eliminate those primes, we use the following lemma.

Lemma 8.3.2. Let P € E(Q) be any point, and £ be a prime such that the (-adic
Galois representation for E pe : Gal(Q/Q) — GL2(Z/lZ) is surjective. Then the set

; . - ¢
of primes p for which £ | ord(P (mod p)) has density at most z—.

Proof. Let P be a prime unramified in Q(E[¢]) such that ¢ | ord (P mod P). This
implies that E(Fp)[¢] # 0, which is equivalent to
det(Iz — pe(Frob,)) = 0. (8.17)

There are £(¢+1)(¢ —1)? elements in GLa(Z/¢Z), and among them there are ¢3 — (2
many elements x € GLo(Z/¢Z) that satisfy the equation det(I; — z) = 0. Thus, by
the Chebotarev’s density theorem, the proportion of primes p that satisfy (8.17)) is

03— g2 L
e+ —1)2 21

O

Let us now note the following facts due to Siegel’s theorem on the finiteness of
integral points on an elliptic curve.

Lemma 8.3.3. (i) For any integer f, there exists {y such that for any prime
0> 0, B #1.

(i) Under the ABC conjecture, for any sufficiently large f, we have ﬂg #1 for
any prime L.

Proof. Proof of part (i) follows from [34) Theorem 1| and part (ii) from from [34]
Remark 1.2]. In fact, the reader may also look at Theorem 1.3 and Corollary 1.7 in
[60]. O

In particular, we now obtain the following.

Theorem 8.3.4 (Bhakta). Let E/Q be any elliptic curve without CM, and then we
have the following for all but finitely many primes £:

(i) For a set of primes p of density at least 1 — O(%), the number of not £-nice
Dirichlet characters of prime modulus p is at most 2p*/?log p.

(ii) Let € : N = R be any unbounded slow growing function. Then under the
assumption of GRH, for a set of primes p of density at least 1 — O(%), the
number of not {-nice Dirichlet characters of prime modulus p is at most £(p).

Remark 8.3.5. Note that both parts in Theorem are valid for a set of primes
having positive density, and in fact, the density is close to 1 as long as / is large.
So what about other primes? in the exceptional cases, do we get at least one nice
character? It follows from that For any prime ¢, |G| has order > d in (Z/pZ)*

if and only if, the number of not /-nice characters modulo p is at most %(m. In
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particular, for any prime p, there must exist at least one nice Dirichlet character
modulo p, provided that ¢(p) — %ﬁm > 0, or equivalently if d > 2. For that we can
use Lemma In particular, the ABC conjecture implies that given any prime £,
there exists py such that for any prime p > p, there exists a Dirichlet character y of
modulus p for which x(5,) # £1.

The hard part is to ensure that x is indeed a nice character, i.e. we need that
X(Be) # 0 and (¢,7) = 1, where 7 is the period of (8,) modulo ¢ := ¢(x). Then we
see from Lemma that we might face problems when p =1 (mod ¢).

8.4 Associated character sums and exponential sums

Let us recall from Theorem that the sequence (8,,) is an elliptic divisibility
sequence provided that M = 1, or equivalently if P has good reduction any every
prime. In this section, we shall study character sums associated to any such elliptic
divisibility sequence.

Definition 8.4.1. The discriminant of an elliptic divisibility sequence sequence
(Bn) is defined to be

disc(Bn) = BaB3° — 363830 + 387830 — 208,53 B3 + 353 55 + 1685 85 + 837433 B2 + 5.

The elliptic divisibility sequence (By,) is said to be nonsingular if

B2 #0, B3 #0, disc(8n) # 0.

Ward in [99] proves that any nonsingular elliptic divisibility sequences are
equivalent to the division polynomials of an elliptic curve. Moreover, a singular
sequence, up to equivalence, is either the trivial sequence I, = n or a Lucas sequence
Sp = aZ:Zn . In the next section, we shall study some associated character sums and
exponential sums.

Characters sums associated to the division polynomials were considered by
Shparlinski and Stange in [86]. They considered the quadratic case and remarked
that their result could be generalized for any character. In this section, we first
prove that generalization. For any integer 7, any prime power ¢, and any Dirichlet
character xy modulo ¢, let us consider

Ser(P)= > x(Bu),
(n,m)=1
1<n<R

where R is the order of P (mod ¢). Then we have the following.

Proposition 8.4.2. Suppose that (8,) is non-singular, and x has order d, then we
have the following estimate

Sy (P) = O(w(m)p(d) PR ¢* 2 (log q)*/?).
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Proof. For each prime ¢ | w, it is enough to prove that

3" X(Ba) = O(6(d) PRV 27/ (log 9)3).
|n
1§nI§R
We know that 5, = ¥, (FP), for some non-torsion point Py € E'(Q), and for
some elliptic curve E’/Q. Now we proceed as in the proof of Theorem 6 in [86],
and for any large parameter L consider the set of primes SL ={R<{¢{< L|
¢ =1 (mod d)}. We choose any L for which #S, ~ Denoting W =

ZéeSL > ¢In X(Uen(Py)), we argue as in [86], and get
1<n<R

2 1 L
W|* < Z Z (W, (nP)¥y, (nP)) + O (qRqﬁ(d)logL>'

L1#L2€SL {|n
1<n<R

(d) log L-

To bound the summation above, for each ¢; # {2, apply Lemma 5 in [86] for the
subgroup H = {nP |n < R, ¢ divides n}, and obtain the following.

S x(Ba) < qVPRY20(d) 2L A log L) + g/ ARYAL.

n
1<n<R

The proof now follows taking L ~ ¢'/%(log ¢)'/?¢(d)*/3. O

Now we study the singular (3,), let us first consider the case when §,, = = ln.
Let x be any Dirichlet character modulo prime p. Then for any prime ¢ of the form
1+ (p — 1)k we have

for any infinitely many integers k. Therefore, we are now left to consider the
case of Lucas sequences. The result may not necessarily be true for the arbitrary
Lucas sequences. For example one may consider s, 2 — pSp+1 + ps, = 0, and then
X(8n) = 0 for any Dirichlet character y of modulus p. In this regard, one may ask
the following stronger question.

Question 8.4.3. Given a Lucas sequence s, over Q, for how many primes p we
have {s, (mod p)} = F,? and if that happens, how are all the residue classes
distributed?

Of course for any such prime p, we have x(s,) # 0, £1 for some n. We do not
know any positive answer to the question above. We already discussed a weaker
result in Theorem in Chapter [2] as long as the characteristic polynomial for
sy, is irreducible and monic in Z[z].

Let us now get back to the discussion on Proposition First of all, a
non-trivial estimate to Sy »(P) shows that if x is even, then x also must be a nice
character. This is essentially because, if x is even and not nice, then x(|8n]) = x(8n),
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and in particular x(8,) can only be 1 for any (n,7ord(P (mod ¢))) = 1. Now the
bound at Proposition is non-trivial provided that

d2/3q5/6 < Rl—E’

for some € > 0. For this, roughly we need d < ¢'/*~¢ and R > ¢*~¢. In particular,
the bound is non-trivial uniformly for all characters of not so large order, provided
that R > ¢'~¢. In this regard, we have the following when ¢ is a prime.

Lemma 8.4.4. Given any ¢ > 0, for all but o.(x/logx) many primes p up-to x,
we have the following
ord(P  (mod p)) > p'/37=.

Proof. Let us first recall the sequence (D,,) from Section 2 in [87]. Then it follows
from (11) that we need to know the prime factors of (D,,). To prove the lemma, we
need to show that

#{p, prime < z | ord(P (mod p)) < 2'/37°} = O.(x/log z).

/3—¢
This is equivalent to show that w (H;; Dn) = Oc(z/log ). It follows from Lemma

8 in [87] that log D,, <p n?. In particular, w (H Dn> = Op(x'7¢),which
completes the proof. O

1/3—¢

n=1

We now ask the following.

Question 8.4.5. Let P € E(Q) be any non-torsion point. Given any ¢ > 0, how
often it is true that ord(P (mod p)) > p'=¢?, when we vary over all the primes p.

This is an analog of [32] Theorem 4], and could be considered as a weaker version
of elliptic analog of Artin’s primitive root conjecture. In other words, the conjecture
is asking for the proportion of primes p for which ord(P (mod p)) = #E(F,) ~ p.
Gupta and Murty [45] showed under the assumption on GRH that we have a positive
density when E is without CM, and 2,3 are inert in Q(v/—11). We are asking for a
weaker result in Question The reader may note that our question is an elliptic
analog of [32, Theorem 4]. Recently Akbary, Ghioca, and Murty in [2] show under
GRH and ARH (Artin’s holomorphy conjecture) that the answer to Question
is positive as long as we consider the subgroups of F(Q) with large enough rank.

8.4.1 On a multilinear version

As an application to the unconditional result in Lemma we can use Theo-
rem [5.1.3]to get non-trivial multilinear (with more than 83-fold products) exponential
sums associated with (8,,), for almost all the prime fields. To be more precise, for
any tuple of integers 7 = (n1,n2, -+ ,n.), set Bz = By By« + * B, First of all note
that, if x(87) # 0, %1 for some tuple 7@ whose all the co-ordinates are co-prime to
7, then x(8,) # 0,%1 for some some n co-prime. In particular, x is a nice charac-
ter. However, a converse of this phenomenon may not be true in general because
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X(Bm) # 0,£1 and x(8,) # 0,£1 does not imply x(BmS3») # 0, £1. Therefore, it
may be helpful with work with this product version. Combining Lemma and
Theorem [5.1.3] we obtain the following.

Proposition 8.4.6. Almost all the primes p have the following property: for any
r > 83, any element in Fy, can be written sum of at O(1)-elements of the form Bz,
where . € 7.

Regarding this, we ask the following.

Question 8.4.7. Does there exist an r such that for almost all primes p, any
element in Fy, can be written as By ?
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